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Abstract

The Intelligent Transport Systems (ITS) arose several years ago pursuing the introduction
of smarter in-vehicle systems in order to assist drivers and make roads safer. From the ITS
perspective, vehicles are seen as mobile communicating hubs inside a large, diversified,
complex, and easily accessible network. Consequently, the deployment and operation
of on-board architectures shall face a wide variety of threats that may endanger vehicle
safety and human being lives.

A vast majority of distributed embedded systems is also concerned by security risks.
The fact that the applications may result poorly protected is partially due to methodolog-
ical lacks in the engineering development process. More specifically, consider security
as an after thought is not as effective as its early introduction during system conception
stages. Since formal methodologies have been successfully applied to ensure properties
of concurrent systems, we believe that their appropriate integration into the engineering
development process may help to ensure security of applications. Methodologies target-
ing formal verification may lack support to certain phases of the development process.
Particularly, system modeling frameworks may be complex-to-use or not address secu-
rity at all. Along with that, testing is not usually addressed by verification methodologies
since formal verification and testing are considered as exclusive stages. Nevertheless, we
believe that platform testing can be applied to ensure that properties formally verified in
a model are truly endowed to the real system.

Our contribution is made in the scope of a model-driven based methodology that, in
particular, targets secure-by-design embedded systems. The methodology is an iterative
process pursuing coverage of several engineering development phases and that relies
upon existing security analysis techniques. Still in evolution, the methodology is mainly
defined via a high level SysML profile named Avatar. The contribution specifically con-
sists on extending Avatar so as to model security concerns and in formally defining a
model transformation towards a verification framework. This contribution allows to con-
duct proofs on authenticity and confidentiality and also provides a basis to later support
proofs on other security properties. We illustrate how an automotive cryptographic pro-
tocol is partially secured by applying several methodology stages like System Analysis,
Threats Analysis, Requirements Structuring, Properties Modeling, System Design, For-
mal Verification, and Coverage Assessment. In addition, it is described how Security
Testing was conducted on an embedded prototype platform within the scope of an auto-
motive project and relying upon state of the art techniques.
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Chapter 1

Introduction

1.1 Context

The Intelligent Transport Systems (ITS) arose several years ago impelling the design of
new applications in the automotive industry. The ITS paradigm envisages a wide network
of mobile vehicles and fixed architecture to exchange information so as to make roads
more coordinated. The architecture not only for in-car exchanges but also for vehicle and
road side architecture communications should still be developed. The ITS network pursues
several objectives many of which are in the scope of driver safety:

1. Assist driver/car in emergency maneuvers, e.g., to reduce impact in collisions.

2. Broadcast warning messages, e.g., drivers are warned of road dangers ahead.

3. Provide toll services, e.g., automatic emergency call after a crash.

4. Lead to interactive road side architecture, e.g., radars enforce speed limits.

5. Improve traffic flow, e.g., driver is assisted in seeking for alternative routes.

Several challenges should be faced before ITS becomes a viable alternative. For instance,
the creation of new standards is necessary to regulate/harmonize implementations. Harmo-
nization is a mean to achieve interoperable technology across countries. Standardization
may demand that a wide range of topics be addressed: from technical aspects up to legal
ones. To ensure interoperability, agreements between involved countries seem mandatory.
Moreover, vehicles should be equipped with reliable and secure ITS implementations. Thus,
car makers, service providers, and developers are highly concerned with embedded systems
dependability. ITS deployment strongly depends upon the level of trustiness achieved in
automotive applications.

Designers have started to consider security from the very first design stages by imposing
stringent requirements. It is generally accepted that for achieving security and technical
objectives, hardware and software threats should be identified, analyzed, and prevented.
To do so, external communication (V2X) as well as internal on-board architecture need
to be secured. Indeed, exchanges over public communication channels are typical targets
of attackers. Hostile actions may threaten not only wireless vehicle exchanges (V2X com-
munication) but also wired links, i.e., exposed buses and ports inside the vehicle (in-car
communication). As referred in several works, current automotive embedded systems may
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be the target of a variety of attacks [121], [123], [181], [156], [46], [202], [47], [179], [25],
[217], [29]. The technology and resources required to threaten vehicles are sophisticated but
eventually accessible. It means that a skilled and motivated hostile party has chances of
overtaking on-board systems and compromising vehicle operation. The impact of attacker
actions may even endanger driver safety and human being lives [121], [123]. Also, the
privacy of drivers may be compromised via vehicles tracking [25], [217]. Along with that, as
recently occurred [47], poorly protected systems may lead to vehicles theft what damages
owners’ economy.

Improve in-car applications so as to better protect them against the hostile environment
is imperative in order to achieve ITS objectives. The correct operation of safety critical
applications like braking strongly depends upon trusted exchanges. Also, facilities that warn
drivers must be trusted so as to properly enlarge driver’s view ahead. Introduced facilities
may prevent casualties or reduce their impact, e.g., passengers injuries, car damages, thus
improving vehicular safety [199], [212].

1.2 Problematic

Many distributed embedded systems are threatened by hazards similar to the ones in the
automotive domain. To achieve a certain level of SW/HW applications protection, formal
verification has been proposed and successfully used, see [102]. Thus, formal techniques
may also help to improve ITS development [135], [50]. However, the adequate integration
of formal techniques into the engineering development process needs to be thoroughly
addressed. Several approaches applied for securing vehicle architectures are empirical and
limited to undertake certain issues. In particular, some proposals only protect the system
against specific attack cases, e.g., [89], [215], [124]. In others, the effectiveness of security
countermeasures is not proved against any adversary, e.g., [114], [99], [140]. Securing
applications only considering specific hazards may be ineffective with respect to real hostile
environment [97]. Relying upon a local-view paradigm strengthens certain aspects of the
engineering development process whereas other critical concerns may remain barely or
not addressed at all. We believe that adopting a global-view may help to better identify
methodological lacks that have led to poorly protected applications.
Security of distributed embedded systems is a vast and highly complex problem. To our
knowledge, there is neither master guide nor golden rule that provides security and ensures
overall system protection. So far, we aim to improve certain methodological issues:

1. To some extent, several automotive applications are currently vulnerable to attacks.
Those cases show that the engineering development process may produce poorly protected
systems. Thus, the support provided to certain development phases should be improved.

2. Several system development approaches have mainly focused in functional aspects and
security was rather an afterthought. Those approaches have resulted ineffective for
achieving system protection.

3. An adequate framework for modeling complex embedded systems is crucial. Many
frameworks are engineer-oriented but unfortunately informal. On the contrary, many
methodologies that introduce formal techniques are too complex what compromises
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their usability. Adequate integration of formal techniques into the engineering design
process is an important task to be addressed.

4. A verification methodology capable of addressing the whole set of requirements of
typical specifications is worth having. Verification methodologies usually focus on a
certain kind of requirements. Nonetheless, development of critical embedded systems
may demand evaluation of time, functional, and security features.

5. Many verification methodologies introducing formal techniques do not support auto-
mated proofs. Modeling and verifying formal models by hand may be complex, time
consuming, and prone to error.

In addition, a modeling framework should effectively consider constraints imposed by
embedded in-car systems:

• Real time constraints: Applications should act-react according to time constraints
imposed by critical scenarios, e.g., car braking in a collision scenario.

• Resource constraints: Embedded systems are constrained by limited hardware re-
sources, e.g., by memory, CPU power, and/or bus capacity.

• Complex heterogeneity : In-car infrastructure is quite heterogeneous and complex.
A car embedded system is integrated by several kinds of HW and SW modules:
processors, memories, software drivers, operating systems, user applications, security
protocols, etc.

• Complex communication: Exchanges in distributed embedded applications are sup-
ported by complex bus policies and protocols. Overall system operation strongly
depends upon them.

1.3 Contributions

1.3.1 Objective

Based upon identified issues, a methodology to conduct formal verification of concurrent em-
bedded systems with respect to functional and non-functional requirements is targeted. Our
main contribution is made in the scope of that methodology. Our approach adopts a global
view of the engineering development process as a way to identify lacks in methodological
support. Thus, the aspects to be particularly addressed are:

a. Modeling of embedded systems (HW-SW): To ensure its usability, a modeling frame-
work should ease integration of formal languages and be also adequate for analyzing
features of embedded systems.

b. Modeling of functional and non-functional requirements: Development of automotive
embedded systems often demands verification of time, functional, and also security
requirements. A framework suitable for those tasks is worth having.

c. Representation of threats model required in security proofs: System features are proved
against an attacker model. The effectiveness of achieved system protection strongly
depends upon threats model accuracy.
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d. Framework formalization and verification: In order to keep our approach engineer
oriented, formal issues are not introduced at modeling level. Instead, formalization
is made by model transformation and verification is carried out at backend level
exploiting formal based tools.

e. Assessment of attack protection: A stage that precises the extent of verification
results is proposed. A post-verification analysis is introduced in order to show
satisfied/unsatisfied requirements as well as respective covered attacks.

f. Functional and non-functional tests: Code is automatically generated from verified
models. However, handmade code may be integrated so as to execute the application
inside a host platform. A stage is proposed to validate final implementation features.

1.3.2 Thesis Approach Synopsis

First, a set of uncovered security aspects in automotive embedded systems is precised. To
do so, the development of in-car embedded applications in the last decades is exposed
what shows how security has been addressed. Several aspects that have been barely or not
covered at all are thus identified. Afterwards, the support offered by current verification
methodologies to the engineering development process is analyzed. The objective is to
identify/precise lacks that may impede effective protection of embedded systems. The
analysis is conducted as follows. Several verification methodologies are reviewed, their
main features exhibited, and the support provided to the engineering development phases
evaluated. Since lacks are identified in several phases, an overall methodology is accordingly
proposed. Methodology relies upon existing security analysis techniques. Thesis contribution
is made in the scope of proposed methodology. Indeed, it introduces means pursuing both
missing support and effective protection against attacks. The problematic aspects signaled
in section 1.2 aim to be undertaken. In particular, the design framework is extended so
as to model security concerns. This contribution endows the environment with a formal
semantics and makes it adequate for proving security properties. The methodology is
suitable for verification of embedded systems in general. Its applicability has been partially
shown in an industrial automotive project [77]. Also, some results of this work have been
published [159], [160].

1.4 Outline

This manuscript is structured as follows. In chapter 2 a state of the art of embedded
automotive applications is exposed. Among others, the chapter shows several aspects
that have impeded appropriate embedded systems protection. Chapter 3 evaluates the
features offered by several verification methodologies and shows the lack of support to
certain engineering development phases. Justifications to thesis contributions are precised
in this chapter. The global methodology that aims to undertake identified issues is shown
in chapter 4. Stages introducing a contribution are accordingly highlighted. A main
contribution consists in introducing formal techniques without compromising modeling
framework usability. Chapter 5 is dedicated to show it. To show approach applicability, the
methodology is applied in an industrial automotive case study that is exposed in chapter
6. Since the methodology supports both safety and security analyses, two instances are
respectively targeted. The conclusions and work perspectives are finally provided in chapter
7.
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Chapter 2

Security and Vehicular Applications

In this chapter we precise several aspects that may render vehicle applications not enough
secured. To do so, a survey on vehicular applications evolution is first shown. This survey
provides an explanation about why security became a trendy topic of research in the
automotive domain. It shows the late introduction of security in applications development,
and the initial efforts performed for securing. The main goal consists in assessing to
which extent security protections may nowadays result ineffective. Afterwards, a typical
mobile architecture is described what exhibits the complexity of current on-board in-car
systems. Complexity of embedded architectures is a challenge for achieving security goals
since it notably increases the difficulty of system analyses during development [120]. A
reference automotive architecture is mostly taken from an European project that targeted
security of distributed on-board applications [77]. Several threats in vehicular networks
are summarized relying upon the reference architecture. More particularly, infrastructure
weaknesses, threats, and potential impact are shown. The conclusions summarize our
findings and justify the need for improving certain aspects in methodological support.

2.1 Vehicular Applications Evolution and Security

2.1.1 80’s Decade Developments

At early eighties, several proposals were published pursuing remote control of vehicles from
a traffic center. For instance in [17], vehicles receive control signals via rail guides connected
to Radio Frequency (RF) antennas. Several in-vehicle functions are directly programmed
on microprocessors and many of those functions target vehicle safety. Indeed, speed control,
collision avoidance, and emergency braking applications receive guideway inputs and react
in consequence. Even if safety was stated among the general objectives, the main goal
was traffic improvement by settling policies according to transport demand in real time.
However, no security aspect is considered at all and the approach focused only on functional
aspects.

Focusing on functional concerns is a tendency observed in many efforts published during
mid and late 80’s. Some standalone applications delivered as a vehicle add-on roughly
addressed security. On the contrary, in many other instances security is not addressed at
all. For example in [16], a technology for vehicle identification based upon RF is presented.
The system pursued identification and location of vehicles with a fixed schedule, e.g.,
buses, trucks or even rail guided cars. It is recognized that communication between RF
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readers and vehicle’s card may be perturbed by physical factors - like Electromagnetic
Interference (EMI) [221]. However, it is claimed that the system can be applied in sensitive
services like toll payment, even if no security analysis is conducted [16].

In late 80’s, in-vehicle systems conception evolves towards a more autonomous approach.
Instead of envisaging a remote automated control of vehicles, driver’s role is kept whereas
in-car applications only assist the driver. Since developing in-car applications became
challenging and costly, the communication between vehicles and outside world should
be first justified [220]. The in-car architecture evolved from being a set of standalone
application-oriented controllers, to an internal network of processing units. As explained in
[80], increasing the number and complexity of in-car applications would likely increase the
number of transfers. Thus, a message in-car network is proposed as an efficient solution to
avoid bottlenecks. The envisaged network is composed by a Master Station that provides
global facilities and controls a two-wire bus to which Control Units are connected. Control
Units are in charge of a wide range of dedicated devices, like sensors, display, wipers, lights,
and also generic device arrays. A diagnostic Station is introduced for monitoring and
storing overall bus exchanges and other critical device operations, e.g., in engine control
unit. Such facility is intended to perform off-service vehicle diagnostics by wired connection.
Among the benefits of this in-car network are easier installation and reconfiguration, and
the ability for supporting more advanced subsystems [80]. Nonetheless, the approach does
not address any security aspect and development objectives remained functional and safety
oriented.

2.1.2 90’s Decade Developments

In early 90’s, technologies became more specialized leading to a growing complexity. Along
with that, drawbacks and challenges of in-car networks are pointed out. As stated in [135],
a failure in a complex inter-connected system may affect several components. Oppositely
to previous standalone architectures, in-vehicle networks target reconfiguration and scal-
ability what also increases complexity. Thus, even typical components with a very good
record of failures became inter-dependent what impacted overall system reliability [135].
Consequently, other requirements than purely functional ones arose. In the work presented
in [135], possible sources of failure are classified: Random Failures, due to physical misbe-
haviour or damage, Systematic Errors, due to wrong HW or SW designs, and Intermittent
Failures, due to environmental conditions. To cope with those failures, redundancy in
system components is proposed, e.g., double or triple processor architectures in charge
of equivalent functions. Nevertheless, redundancy is not enough to cope with Systematic
Errors, since they mainly depend upon faulty system specification or design [135]. Even
if formal verification is mentioned as a mean to ensure correctness no formal analysis is
conducted.

A milestone for consolidation of in-vehicle networks was the development of commu-
nicating protocols. Several efforts were conducted to deploy not only in-car but also V2I
and V2V communications. This tendency was greatly motivated by projects launched
during late eighties like PROMETHEUS and DRIVE. Those projects mainly targeted
traffic management and control. As mentioned in [66], roadside communication architecture
mostly remained local. More intelligence and computing power were settled in on-board
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systems. Rather than proposing new applications, many efforts were dedicated to deploy
prototypes of proposed embedded systems, e.g., the one in [66].

Two domains integrating vehicle architectures are clearly identified: one for the in-car
network (on-board) and the other for the envisaged overall network of vehicles and roadside
architecture - also referred as vehicular or off-board network. Nodes within in-vehicle
network are modular SW/HW components named Electronic Control Unit (ECU)s. They
support local and distributed vehicle applications. ECUs are interconnected via a variety
of buses and links. It is observed that industry and academy progressively changed the
objectives of both in-car and off-board networks. Rather than an automated control of
traffic, ameliorate vehicular safety became a major concern [15]. A way to improve vehicular
safety is to virtually increase driver vision ahead, e.g., by implementing advisory warning
systems. An example of those systems is thoroughly specified in [15].

At mid and late 90’s, consolidation and spreading of internet architectures, and more
specifically the IEEE 802.x family became evident - e.g., [106]. That tendency likely
influenced the introduction of wireless technology in vehicular networks. Along with that,
security requirements were finally considered in the development of systems. Nonetheless,
analyses were not yet thoroughly performed [50]. Two main trends are identified [50]: define
protocols only when necessary and be aware of potential applications integration in the
future. Even if formal techniques are not applied, the need of formal methods for proving
final implementations is recognized [50]. The growing interest upon in-vehicle applications,
like autonomous intelligent cruise controls, collision reduction, and collision warning radar
systems is observed. Maturity in those applications is such that integration into high-end
vehicles is considered as imminent [70]. Even if many safety critical applications were under
development, only a few measures were taken with regard to potential impact of security
threats.

2.1.3 2000’s Decade Developments

By early 2000’s, research in vehicular domain is rather focused on improvement of technology
via system design. As mentioned in [118], challenges in development of in-vehicle systems
are compared to those faced in other safety critical areas like aerospace, medical, and
nuclear power. Vehicular networks have critical characteristics since they are dynamic,
time-sensitive, and potentially large [118]. Neighbour vehicles change over the time and a
trade-off between the need for mutual authentication and privacy arose. Since exchanges
between vehicles may be safety critical, their processing becomes highly time-constrained,
e.g., for collision avoidance systems. Time-critical applications made clear the need for
means that ensure efficient communication and processing. As a consequence, priority,
schedule, and hybrid based communication buses were introduced. More precisely, the
Controller Area Network (CAN), Time Triggered Architecture (TTA), Local Interconnect
Network (LIN), and FlexRay protocols are applied in on-board architectures [118]. After-
wards, a variety of wired and wireless based technologies were developed so as to extend and
improve protocol capabilities. For instance, the TT-CAN [144] targets fault tolerance - i.e.,
overcome from messages collision -, determinism in transmission - i.e., ensure upper time
bounds -, higher bandwidth, and more flexibility - i.e., bus policies adapted to applications
changes.
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As can be noticed from several works [155], [97], security is not anymore an add-on but
a mandatory aspect for ensuring critical safety goals. Along with inherent lossy characteris-
tics of transmission channels, messages can also be intentionally corrupted or modified by
hostile parties [155]. As summarized in [51], vehicles became “communications hubs with
multiple wireless connections”. In-car applications are capable of communicate with remote
servers via roadside architecture - i.e., V2I - and also with other vehicles - i.e., V2V. Such
distributed mobile approach imposed new security challenges to the on-board network. It is
recognized that traditional security solutions resulted unpractical for the limited resources
offered by embedded systems [51]. A taxonomy of hazards threatening vehicle domain
is accordingly elaborated. The taxonomy categorizes attackers and techniques, system
targets and vulnerabilities, and the impact of hostile actions. Security gaps in embedded
systems like vulnerable crypto protocols [48] and invasive attacks [125] are mentioned as
trend topics. It is highlighted that the side effects in case of system misbehaviour, failure,
or attack may even endanger human lives [119].

The ECU architecture became a target of security analyses. Weaknesses of embedded
platforms even in lower layers - e.g., network layer - may also compromise ITS operation. As
discussed in [97], several security vulnerabilities were identified in ad-hoc routing protocols
like AODV [161], DSR [65] and wireless Media Access Control (MAC) IEEE 802.11 [107].
Assuming a cooperative environment is among the causes of identified vulnerabilities [97].
A malicious router node can alter or drop packets in order to deviate, generate loops, divide
the network and isolate vehicles. In addition, a malicious party can pervasively inject junk
packets thus flooding network resources. The introduction of an attacker to conduct security
analyses is highlighted [97]. Vulnerability analyses revealed several security concerns in the
whole ECU stack. They range from physical up to application layers, e.g., preventing Denial
of Service (DoS), protecting MAC, and routing protocols, securing end-to-end communi-
cations, preventing viruses, protect applications, etc. Security became a primary concern
that was undertaken via platform services [97] that pursue authenticity, confidentiality,
integrity, anonymity, and availability. Hash-Based MAC (HMAC) and digital signatures
are proposed as protections for network layer. A Public-Key Infrastructure (PKI) is sug-
gested as a suitable mean to perform secure V2V and/or V2I (V2X) communications, even
if it demands more on-board computing power. It is recognized that proposed security
solutions do not cover all possible operation scenarios, e.g., protocols may be exploited by
unanticipated attacks. In addition, no effective solution is recognized for certain attacks like
DoS [167] even if they are recognized as critical [61]. The deployment of evaluation method-
ologies and toolkits is suggested as a way to effectively secure vehicle embedded applications.

The fact that several security issues were initially not thoroughly addressed motivated
new initiatives from industry and academy. In particular, the efforts targeting development
of ITS architectures were strongly oriented by security concerns. The design of secure
automotive systems is conducted relying upon model-based approaches [110]. Rather than
considering security as an afterthought, systems should be secure by design. A common
method for securing is identified in several initiatives [124], [156], [157]: first, the need
for security is identified. A threats model representing some generic or specific threats
is elaborated. Afterwards, requirements are elicited so as to cope with identified threats.
Finally, the functions, mechanisms, and countermeasures that aim to fulfill requirements
are deployed, what defines final ECU architecture. In [124], the authors consider that
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“intelligent attackers” have not been yet introduced in design of vehicular networks. A multi-
defense paradigm is proposed for designing secured on-board and off-board applications.
The design process consists of several protection phases applied at different platform layers.
Several approaches addressing criteria for securing vehicular applications followed similar
paradigms, e.g., [227], [156], [182].

By late 2000’s, several questions raised with respect to the gap between required and
achieved security. Even if several standalone off-the-shelf applications are secured, it is
recognized that in-vehicle distributed applications may still be compromised. Consequently,
safety sensitive applications may misbehave [156]. Since ITS failures may impact stakehold-
ers safety and economy, ITS trustworthiness is still at stake.

2.1.4 From 2010 Up to Now Developments

At late 2000’s and early 2010’s, several projects were launched to boost and harmonize
development, implementation, and deployment of ITS technologies [158]. Many of those
projects were funded by international organizations interested on deployment of ITS at
large scale. A tendency to standardize not only applications but also deployment processes
is observed [158]. Thus, several specifications and designs were developed based upon
commonly accepted approaches like the Model Driven Engineering (MDE) [5]. Launched
projects progressively precised and targetted significant issues, e.g., [173]. Protection of
sensitive in-vehicle and driver data is mandatory so as to avoid disclosure of secret material.
Also, on-board diagnostic applications, like flashing SW images, face a landscape of cyber
threats including viruses and spyware [158]. It is highlighted that V2X facilities open a
window to dangerous remote attacks that may compromise driver safety, economy, authority,
and privacy [156]. Along with security, other characteristics are evaluated like platform
functionality, performance, buses bandwidth, and cost [158]. Since interoperability across
countries is pursued, technology integration and applications standardization are relevant
aspects to be discussed. Table 2.1 shows a summary of projects leading the development
of vehicle on-board and off-board networks. It summarizes some initiatives launched to
address several ITS concerns like on-board and off-board security, large scale implementation,
technology interoperability, and tests under real conditions.

Table 2.1: Projects pursuing development and deployment of off-
board and on-board networks

Project Main Goal
NoW
2004-2008

Definition of communication protocols and data security for V2V and V2I
applications. A bench for functional tests was provided [145]

SEVECOM
2006-2009

Achieve overall security of V2X communications. Specified architecture
considers a threats model and targets authenticity, integrity and privacy of
over-the-air exchanges. [173].

EVITA
2008-2011

Specify, design, verify, prototype, and test a prototype architecture for
securing in-car applications. A threats model, security requirements, formal
verification, and functional tests were conducted relying upon a Hardware
Security Module (HSM) based prototype. [77].

Continued on next page
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Project Main Goal
GEONET
2008-2011

Provide the technology for scalable and reliable distribution of information
to concerned vehicles on a geo-region. The project provided a scheme
and protocol for intelligent message forwarding and distribution for safety
applications [88]. Security is not addressed.

SimTD
2008-2012

Specify and implement the in-car and roadside architecture for realizing
V2X communication in a large-scale real scenario. The vehicular network is
evaluated in terms of reliability and efficiency. Political and legal aspects
are also addressed [174].

OVERSEE
2010-2012

Specify an open architecture for execution of Original Equipment Manu-
facturer (OEM) and no-OEM applications offering a single access point for
internal and external communications. A virtualized architecture is proposed
in combination with a HSM to achieve security goals [153].

DRIVE-C2X
2011-2013

Settle the foundation for rolling out automotive cooperative systems in
Europe. Several V2X technologies will be tested - e.g., SimTD - in a multi-
country scenario and results will serve as underpinnings for future standards.
In particular, privacy in communications is addressed [73].

PRECIOSA
2011-2014

Prove from a prototype, that a pan-European vehicular architecture can be
implemented protecting sensitive information of drivers and vehicles. Results
should provide models, ontology, and verifiable architecture for protecting
privacy of individuals in vehicles [164].

PRESERVE
2011 -2014

Design, implement, and test an integrated V2X architecture satisfying se-
curity, cost, and performance requirements. The ECU-HSM architecture
prototyped in the EVITA project should become as close as possible to an
off-the-shelf product. The platform is tested under realistic conditions [165].

C2C-CC
2004-?

Organization targetting the development and release of ITS standards. Along
with validation of V2I architectures, it also pushes the harmonization of
V2V standards worldwide [186].

After a brief projects reviewing, we observe that the the gap between secure prototype
platforms and off-the-shelf products is being filled [165]. Also, the structure of ITS on-board
and off-board architectures is more clearly specified - see [77], [174]. Nevertheless, develop-
ment of embedded systems still faces some challenges. For instance, increase computing
power improves on-board throughput but it is costly, and faulty or inefficient SW designs
may easily vanish benefits of HW acceleration [111]. Moreover, since automotive applica-
tions are distributed at both on-board and off-board levels, estimate realistic upper bounds
for response delays may be difficult or even impossible [111]. Thus, to develop safety/time
critical applications, the fulfillment of respective constraints must be first ensured.

Along with adequate throughput, the protection of sensitive material - e.g., private keys
- stored inside the vehicle is a major challenge. Indeed, PKI schemes do not only demand
more computing power but also require secure storing and controlled access. Even if efforts
were conducted to reinforce security and to adapt existent security modules - like the
Trusted Platform Module (TPM) [194] -, certainty about requirements fulfillment is not yet
achieved [82]. Inadequate HW performance, limited set of crypto functions, non-scalable
configuration, and high cost are mentioned as main drawbacks of existent security modules.
As explained in [198], an overall protection for in-vehicle ECUs needs to be specified. To
achieve this objective, an HSM-based solution is proposed. The HSM follows a modular-
ized approach and plays the role of trusted security anchor within the ECU stack. This
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ECU/HSM solution is specified at three architectural levels covering different needs in
HW acceleration, crypto algorithms, and internal processing modules. Tamper protection
shields are also settled in order to avoid unauthorized data manipulation. HSM-based
solutions combine modularized and scalable architecture that can be implemented in a
cheap application oriented circuitry, e.g., Application-Specific Integrated Circuit (ASIC).
The use of HSM modules has been considered in several works and projects, e.g., [181], [153],
[164]. Even so, security modules and top embedded applications are also concerned with
fault injection and side channel threats, i.e., the ones introducing/sensing electromagnetic
perturbations in/from physical layer. In particular, as explained in [75], fault injections
targeting clock cycles or memory cells operation may provoke applications misbehavior
so as to undermine security shields deployed in HW or SW. Such kind of security cracks
may not only be provoked by electromagnetic sources but also emulated by SW [130]. It
implies that SW viruses are also capable of reproduce/emulate certain fault injection threats.

We finalize our survey presenting some tendencies in development of in on-board and
off-board vehicle technology. It is commonly accepted that car accidents and severity can
be decreased by endowing vehicles with a variety of driver assistance applications. As
explained in [78], many safety applications are currently integrated in vehicles. Some off-the-
shelf instances are Forward Collision Warning, Adaptive Cruise Control (ACC), Collision
Mitigation Brakes, Low Speed ACC, Night Vision, Lane-passing Alarm, and Brake Assist
with Navigation Link. The recent introduction of technologies for enlarging buses bandwidth
- like Multimedia Oriented Systems Transport (MOST), offering up to 24.8 Mbps - speeds up
the operation of on-board distributed applications what improves systems availability and
security. A broad consensus exists on the fact that upcoming technologies and deployments
require security in order to ensure their operability in real hostile environments [78]. Among
the main challenges faced by embedded systems engineering are an adequate elicitation of
safety and security requirements. It is agreed that requirements elicitation has not been
sufficiently addressed [78]. Overall embedded systems protection should still be thoroughly
addressed by development methodologies [91].

2.2 Current Vehicles Architecture

This section presents a fine grained view of current automotive architectures. The architec-
tural description is taken as a reference to show associated security concerns. Uncovered
security aspects are described in next subsection 2.3. Some parts of the technology are
currently under development and still need to be secured and tested.

Current in-vehicle networks exhibit general characteristics of standard computer net-
works. An in-car network counts dozens of interconnected nodes named ECUs supporting
thousands of inter-dependent SW applications which are composed by gigabytes of code
[166]. In addition to existent on-board applications, several off-board facilities are being
developed in order to communicate vehicle with outside world. The ECU nodes are linked
via a variety of buses like CAN, MOST, FlexRay, LIN or Byteflight. ECUs are HW/SW
components integrated by modules that are structured by layers. ECUs play dedicated
roles within the network: they may be sensors, gateways, routers, actuators, etc. Along
with a generic role, ECUs also support a variety of high level applications. ITS deployment
shall introduce new safety-critical applications, e.g., emergency braking systems, operating
in parallel with non-safety critical ones, e.g., infotainment media. The introduction of
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X-by-wire technology [118] shall allow ECUs to fully or partially automate a variety of me-
chanical systems like those controlling brakes or accelerator, e.g., Brake-by-wire. Recently,
the steering-by-wire technology was introduced in commercial vehicles by the first time
ever [143].

Several principles are being applied to secure embedded systems. As suggested in [85],
the use of virtualization techniques may help to deal with interactions from attackers. By
categorizing and separating ECU applications according to their exposure to threats, their
exchanges can be better controlled and the system protected. It is considered [85] that
Virtual Machines can be used to enforce security requirements in combination with tamper
resistant modules like the TPM [194] or the HSM [198]. Just referred modules are the
basis upon which ECU security is built since both can play the role of security anchors:
they provide mechanisms to enforce platform integrity, authenticity, confidentiality, and
freshness. Even so, TPM and HSM own different features. In particular, the TPM is
standardized what favorably impacts applications development and portability. The HSM is
not standardized but provides HW acceleration, modular architecture, more cryptographic
primitives, and a Coordinated Universal Time (UTC) clock, all not supported by the TPM.
Figure 2.1 shows the crosslayer modular composition of an ECU supporting security, safety,
and user oriented applications. This architecture specification is borrowed from [13].

Figure 2.1: Modular structure of an applications ECU stack

Figure 2.1 shows applications separation what allows to sanitize exchanges from un-
trusted sources. The architecture is composed by three virtual machines controlled by a
central hypervisor named OKL4 [150]. A virtual machine is settled for containing SW
modules in charge of overall security - leftmost box. The AUTOSAR [37] machine is in
charge of standard automotive and safety oriented applications - box in the middle. Finally,
user oriented and other untrusted applications are embedded in a separated machine -
rightmost box. On-board and off-board communicating facilities can also be installed within
the user oriented virtual machine. To protect overall ECU architecture a security anchor is
proposed. The root of trust enabling security for the ECU is the HSM proposed in [198].
Just described complexity is a challenge for achieving required applications performance,
temporal constraints fulfillment, and also security. Platform complexity may impose diffi-
culties to adequately analyze, design, and implement embedded systems [120].
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ECU nodes distribution and configuration vary upon carmakers. Next paragraphs
present two complementary on-board architectures that are under deployment and test.
The SimTD initiative specifies ECUs architecture for achieving off-board communication,
i.e., V2X communication. Complementary, the EVITA approach specifies on-board network
mainly targetting secure in-car applications.

The SimTD architecture [181] is intended for large scale vehicular communication
networks. The architecture is divided in two parts, one harmonizing in-vehicle service
components, and the second one comprising the infrastructure for services provided off-
board. Thus, on-board architecture is mainly integrated by three interconnected ECUs
with a modular crosslayer composition:

CCU: The Communication Control Unit (CCU) that provides a link between on-board and
off-board networks. Along with V2V facilities, the CCU provides Global Positioning
System (GPS), Universal Mobile Transmission System (UMTS), WLAN and G5a,b
connections for external services. For exchanges between internal components, the
CCU supports CAN and Ethernet - LAN - protocols. The CCU behaves as a router
directing incoming and outgoing message flows.

AU: The Applications Unit consists of safety and non-safety related applications on the top
of the crosslayer component. Middleware layer relies upon the Java/OSGI platform
[152] and supports security modules, communication, navigation, and other services.
Lower layer is the host Operating System (OS) Windows XP Embedded that holds
the whole stack.

HMI: The Human Machine Interface receives input from safety and non-safety applications
in the AU. It provides driver with information via graphical and sound interfaces.
Thus, Human-Machine Interface (HMI) is tightly coupled to AU operation.

Figure 2.2: Reference architecture for developing secure in-vehicle applications in the EVITA
project

The goal of SimTD architecture is to achieve an efficient platform for long distance wire-
less communication - WiMax, Long-range WiFi, GPS, Vehicular Ad-Hoc Network (VANET)
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- necessary for safety oriented applications. On the contrary, the EVITA architecture speci-
fies a secured platform mainly targetting on-board wired services. EVITA is aware about
the integration of V2X technology. Thus, EVITA also supports short distance wireless
communication like Dedicated Short-Range Communications (DSRC) and Bluetooth. The
reference architecture for applications deployment is presented in figure 2.2. The reference
architecture is a network of ECUs grouped in application-oriented domains. Each colored
rectangle in figure 2.2 corresponds to an ECU. The domains contain a master ECU and
several specific oriented sensor and actuator ECUs. The master ECU controls the domain
and plays the role of gateway. The CCU links on-board architecture with external services,
roadside communication architecture, and vehicles. Thus, CCU incorporates DSRC, UMTS,
GPS/Galileo, and 802.x antennas. The CCU routes internal and external message flows by
interacting with respective master ECUs and gateways. Many applications in charge of
safety critical tasks like braking or vehicle steering are installed in Powertrain and Chassis
and Safety ECUs, i.e., PTC and CSC, respectively. The Body Electronic Module ECU
(BEM) includes applications usually activated/deactivated by the driver like lights, wipers,
climate, and door locks. Infotainment applications are supported by the Head Unit ECU
(HU). In addition, the HU may be in charge of safety critical applications and tasks like
alert displaying and automatic emergency calls. EVITA architecture shows the complexity
of current on-board networks.

2.3 Uncovered Security Aspects

In previous section an overview of automotive architectures was presented. This section
highlights some uncovered security aspects taking the automotive architecture as reference.
Since, uncovered security aspects may render automotive architectures vulnerable, several
attacks are documented and explained. The respective impact of security vulnerabilities is
also shown.

2.3.1 Critical Security Aspects

Security aspects that need to be considered in development and deployment of embedded
applications are described in next items.

Insecure Wired Channels: On-board buses like CAN, FlexRay, and Ethernet are open
and accessible, e.g., by on-board ports connection. Above mentioned links are
mainly conceived to fulfill functional and performance criteria but do not consider
possible security threats. In particular, communicating protocols were originally
deployed without assuming a hostile environment and little or no effort was put on
securing [118]. Thus, packets can be seen and analyzed by whoever accessing the
bus. Moreover, toolkits ease analysis of exposed material what underpins subsequent
hacking procedures, e.g., via CarShark [121] and Wireshark [197]. Once a bus is sniffed,
respective analyses can be conducted so as to assess scenarios and possible system
vulnerabilities. Other advanced techniques like reverse engineering can be applied so
as to reproduce code that emulates ECU applications. Among others, emulation code
can be used for probing more elaborated attack scenarios and exploiting vulnerabilities.
Also, techniques like random packet injection, replaying, and fuzzing may be enough
for disturbing, disrupting or flooding on-board resources. The opportunities for a
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hostile party targetting wired on-board channels depend upon physical access to
non-protected links. Security protocols like IPsec [68] may provide certain protection
to wired in-vehicle channels.

Insecure Wireless Channels: Large and short range wireless links are supported by
WiFi, Long-range WiFi, WiMax, UMTS, GPS, VANET, DSRC, and Bluetooth
technologies. Some of those over-the-air channels like VANET and DSRC are open and
accessible to anyone inside network range [97]. WiFi, Long-range WiFi, and WiMax
were originally conceived with certain security which has been progressively improved
but that may be breakable - see authenticity and privacy attacks in WEP and WPA
[228]. Bluetooth technology has pursued secure communication but crypto schemes
for confidentiality and authenticity have been repeatedly cracked - see [96]. Even if
UMTS includes mechanisms for addressing integrity and confidentiality, eavesdropping
and impersonation are possible [26]. Next generation of GPS technology has been
recently introduced to protect against DoS and hacking attacks [191]. Along with
security weaknesses, a variety of wireless analyzers and tools are available, e.g., Ufasoft
Snif [205]. Consequently, intervention of third parties in over-the-air communications
is possible. Based upon sniffing, analyses, reverse engineering, injection, replaying
and fuzzing techniques, a hostile party can leverage himself to play an active role in
safety critical scenarios whilst still being physically and virtually invisible. A remote
attacker can dynamically intervene, fake, disturb or disrupt operation of safety critical
applications like emergency alerts or braking [121]. In particular, authentication of
vehicles has been identified as mandatory for ensuring VANETs operation. However,
driver’s privacy concerns arise with respect to vehicle’s traceability. Proposed solutions
to ensure privacy still need to be proved [91]. The operation of safety critical on-board
applications - like broadcasting of cooperative awareness messages - depends upon
adequate VANET operation and other over-the-air channels. Thus, security in wireless
links impacts operation of safety critical applications.

Applications Deployment: Several standalone off-the-shelf applications have been in-
troduced in vehicles [78]. However, to our knowledge, the deployment of secure
on-board distributed systems is still work in progress, e.g., [165]. As shown in the
survey of section 2.1, distributed automotive applications have been developed mainly
targetting functional and performance aspects and a late introduction of security
is observed. Initial efforts for securing applications followed empirical approaches
and effectiveness of overall security protections was not integrally proved. Several
weaknesses in mutual authentication, privacy, availability, and confidentiality have
not been overcome nowadays. Distributed applications that are non-secured can
be attacked via insecure wireless and wired channels. For instance, the emergency
braking application is distributed over CCU, HU, and CSC ECUs, thus, braking
actions could be corrupted or false positive ones injected in CAN [121]. Along with
channel side attacks, ECU stack can be infected via informatics viruses hidden in
SW updates, downloaded applications or garage service transactions [179]. Once
an application is overtaken by a hostile party, the impact on the overall on-board
network is not negligible. An attacker may provoke application misbehaving, ECU
isolation, or ECU disabling. If main ECU defenses are defeated, attacker actions
may compromise not only on-board behaviour but also the neighbor vehicles. Lost
of secret and private-sensitive material insecurely stored in SW is a potential risk of
compromised ECUs.
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Methodological Support for Securing: Many previous attempts for securing automo-
tive architectures have mostly relied upon empirical paradigms. Overall concepts
about what security is and methods for achieving it have been proposed [158]. Nonethe-
less, further methodological means can be tried in order to improve security, e.g.,
formal verification. A crucial objective is the assessment of achieved attack protection.
Security countermeasures and mechanisms may be deployed to prevent only specific
attack scenarios. In those cases, the system may crash in the presence of attacks not
anticipated in analyses [97]. Since a security vulnerability may defeat overall ECU
defenses, integral approaches ensuring adequate protection are of utmost importance.
The fact that current vehicle architectures can be attacked [121], [179] shows that
more interest should be put on securing and that securing methodologies need to
be improved. Even if formal techniques have been mentioned as means to obtain
the required methodological support [50], adequate integration into the engineering
development process is still an ongoing and promising topic [42], [172].

2.3.2 Known Attacks and Potential Impact

This subsection presents a refined view of vulnerabilities in off-board and on-board vehicle
embedded systems. As shown in [121], [179], if an attacker gains enough ECU control,
several safety critical applications as those controlling, alerts, engine or even brakes can be
compromised. By performing techniques like sniffing, target probing, and packet fuzzing
over CAN buses, the attacker can lead to undermine the operation of applications, sensors,
and actuators. Indeed, a hostile party can for instance: display arbitrary messages, speed-up
and disturb engine, impede driver from starting or stopping engine, perform braking, lock or
disable brakes, and freezing instruments panel [121]. Attacker capabilities can be increased
by applying reverse engineering upon sniffed data. By doing that, the attacker may even
fully drive the Body Electronic Module. Hence, attention is raised on the fact that vehicle
architectures should be endowed with adequate security protections with regard to a set of
potential attacks [121].

Table 2.2 presents a list of some known attacks associated to target vehicle assets.
Some major consequences of the attack are also mentioned, e.g., with respect to security,
safety, and driver’s economy. The list is descriptive and made according to the issues
mentioned in previous subsection 2.3.1. It means that other relevant attack scenarios
due to for instance dishonest owners or garage service providers are also feasible. For
example, configuration/development tools like [67] and [213] can be used to modify ECU’s
configuration so as to unbridle car’s engine. This kind of attacks are out of scope and
consequently they are not addressed in this thesis manuscript.

Table 2.2: Summary of attacks on automotive architecture assets
and potential impact

Asset Attack Method Potential Impact
On-board
network

Disabling communications by inject-
ing halt commands in CAN bus [121]

Safety: Engine is stopped whilst vehicle
is on road. Overall applications become
non-operational

On-board
network

Drop, flood, modify, read, replay,
spoof messages in the CAN network
[123]

Safety: Overall vehicle misbehaviour.
Security: Exploit protocol and applica-
tions vulnerabilities.

Continued on next page
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Asset Attack Method Potential Impact
ECUs Turning ECUs to reflashing mode by

command injection in CAN bus [121]
Safety: Engine is stopped whilst vehicle
is on road

CCU Overpassing CCU access control pro-
tocol and loading SW applications
[121]

Security: Cyber viruses transmission
Safety: Control of overall vehicle appli-
cations

PTC, CSC,
BEM

Know and override parameterized
data by fuzzing CAN bus [121]

Safety: Intervene, disturb and disrupt
communications. Full control of engine,
brakes and body modules

On-board
network

Flooding network resources by
fuzzing wired links [121]

Security: Denial of Service
Safety: Overall applications become
non-operational

BEM Reverse engineering on low speed
CAN bus and fuzzing on high speed
CAN bus [121]

Security: Control of all functions avail-
able in BEM domain

CSC Fuzzing, analyzing, packet forging
and injection on CAN bus [121]

Safety: Prevent brakes from being en-
abled. Perform abrupt braking at high
speed. Blocking vehicle

VANET,
Wireless
Network

Tracing vehicles by sniffing periodic
cooperative packets [181]

Security: Privacy of drivers threatened

VANET,
Wireless
Network

Introducing faked alert/emergency
messages [156]

Security: Mutual authentication of ve-
hicle nodes violated
Safety: Vehicular network misbehaviour

Wireless Net-
work (CCU,
HU)

Disabling centralized vehicle access
control [121]

Security: Theft of secret information
Driver’s economy: Vehicle theft

Wireless Net-
work (CCU)

Fuzzing and flooding wireless net-
work resources [121], [46]

Security: Denial of Service.
Safety: DoS hides emergency scenario

Wireless Net-
work (CCU)

Flooding toll payment application
resources [202]

Security: Denial of Service.
Safety: Car unable to pass toll road.

Wireless Net-
work (CCU)

Corrupting toll payment confirma-
tion packets [202]

Security: Re-execution of credit pay-
ment procedure.
Driver’s Economy: Unnecessary
recharge of toll credit tag.

On-board
architecture
(OBD ports)

Programming and flashing blank
keys inside ECUs [47]

Security: Attacker disables vehicle pro-
tections.
Safety: Vehicle unable to start.
Driver’s Economy: Vehicle theft.

CD Media
Player (HU
domain)

Malware infection by infotainment
firmware update or music file play
(WMA) [179]

Safety: Overall control of on-board ve-
hicle system. Vehicle misbehaviour.
Security: ECU defenses neutralized,
malware dissemination, data theft.

On-board
network
(ECUs)

Injection of malware by com-
promising and exploiting rout-
ing/forwarding devices of service
center network [179]

Safety: Vehicular network compromised
at large scale. Vehicles misbehaviour.
Security: Vehicular network defenses
neutralized, virus spreading, massive
data theft.

HU (Blue-
tooth port)

Paired phone infected with trojan ap-
plication provokes ECU buffer over-
flow [179]

Safety: Critical ECUs misbehaviour,
e.g., Brake control ECU disabled.
Security: Large scale trojan virus dis-
semination.

Continued on next page
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Asset Attack Method Potential Impact
CCU
(UMTS)

Neutralize CCU authentication by
exploiting cell phone interface vul-
nerability [179]

Safety: Attacker gains overall vehicle
control.
Security: Malware injection and dissem-
ination. Secret data theft.

Sensor ECUs
and DSRC in
CCU

Compromised Road-Side Unit
(RSU)s and external spy nodes
deliver and retrieve cookies to and
from vehicles [25]

Security: Vehicle tracked. Driver’s pri-
vacy compromised.

Sensor ECUs
and GPS in
CCU

Tampered sensor - e.g., at service
garage - transmits vehicle position
via UMTS or DSRC [25], [217]

Security: Vehicle tracked. Driver’s pri-
vacy compromised.

On-board
architecture
(Closure
System)

Exploiting authentication vulnerabil-
ities in the remote keyless entry sys-
tem for vehicle access [29]

Driver’s Economy: Vehicle theft

As can be seen from previous summary, several attacks performed via wired links can
eventually be achieved remotely, i.e., via wireless channels. It implies that a remote attacker
could virtually overtake vehicle’s control on the road and endanger vehicle and driver
safety. Along with that, there also exist economical and privacy risks due to vehicle theft
or disclosure of secret information, respectively. Thus, car-makers, OEMs, service garages,
etc. may share legal and economical responsibilities with regard to potential stakeholders
injuries. The technology required for threatening current and next generation automotive
architectures is sophisticated but the motivations of hostile parties are quite enough to
go ahead [169]. Fortunately, the existence of mentioned vulnerabilities has been mostly
revealed in the scope of experimental tests and not in real scenarios. All in all, poorly
protected distributed applications open the window to new threats that need to be properly
prevented so as to protect human being safety, economy, and security.

2.3.3 Hypothetical Automotive Attack

This subsection shows a hypothetical attack instance that is inspired from the literature
[121], [179]. The description shows up conditions that render hostile actions successful. The
security issues discussed in subsection 2.3.1 are taken as a basis. Along with a more fine
grained view of the attack, suggestions to vanish or limit attacker chances are afterwards
proposed. The attack targets the Electronic Brake Control Module (EBCM) in the Chassis
and Safety Controller (CSC) domain - see figure 2.2 - and is described in next items and in
table 2.4.

Attacker goal: Lead to EBCM misbehaviour so as to prevent driver from
braking

Type of attack: Wireless channel attack
Resources: Laptop with WiFi 802.11 ad-hoc connection,

wireless network analyzer,
802.11 ad-hoc transceiver adapted with USB port,
CAN-to-USB converter,
knowledge on CAN bus protocol,
knowledge on automotive on-board architecture
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Initial conditions: Physical access to on-board CSC CAN bus in the target
vehicle(s)

Table 2.4: Actions to remotely compromise the Electronic Brake
Control Module in an in-car network

Attacker Action Weakness/Condition
0. Install network analyzer in spy laptop
with WiFi

Spyware technology available

1. Attach a CAN-to-USB converter to CSC
CAN bus in the target vehicle

Vehicle on-board architecture is accessible

2. Connect IEEE 802.11 ad-hoc transceiver
to USB port

Vehicle on-board architecture is accessible

3. Follow target vehicle. Attacker is
equipped with spy laptop

Target vehicle is unprotected against bus
eavesdropping

4. Sniff CAN packets Messages in CAN bus are plaint-text based
5. Identify EBCM packets transmitted dur-
ing target vehicle braking

Attacker may subtly coerce target vehicle
to brake in order to simplify EBCM packets
capturing

6. Apply reverse-engineering on sniffed
packets

Practically unlimited time to conduct anal-
yses. Sniffing can be conducted on the same
or different target vehicles

7. Program a hostile routine to automate
and ease packet injection, e.g., to release,
lock, arm, and fire brakes

EBCM brake application operation can be
determined from sniffed packets

8. Probe target vehicle by injecting
forged/tampered/replayed EBCM packets

No authentication fields in CAN packet
frame. No defenses implemented in EBCM
brake application

9. Re-try forged packet injection up to
achieve EBCM misbehaviour

No intrusion detection system in the vehi-
cle. Driver is unable to identify that car
misbehaviour is due to an attack.

10. Inject fuzzed EBCM packets in the
CSC CAN

No defense against DoS attacks leads to
EBCM misbehaviour

Several aspects can be considered in order to limit attacker chances in the above hypo-
thetical scenario. This shall improve security of the EBCM brake application.

Initially, attack feasibility is not only due to weaknesses in embedded systems design.
As can be seen from initial hostile actions in table 2.4, accessibility of overall vehicle
architecture plays a crucial role in the attack - steps 1, 2. CAN bus design is a significant
concern, since the protocol was not conceived with security in mind. Indeed, CAN packet
frames do not include authenticator fields and consequently there is no mean - at network
level - to filter messages from hostile parties.

Also, since there is no protection of payload fields, plain-text messages can be interpreted
by anyone accessing the bus - steps 4, 5. These weaknesses are enough to consider security
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in embedded applications design as a primary aspect. For instance, cypher schemes may
be settled to authenticate and keep secrecy of exchanges, e.g., Message Authentication
Code (MAC), PKI signatures. Otherwise, sniffed packets can be analyzed to reveal overall
behaviour of the application, as it is considered in steps 6 and 7. Once these weaknesses are
adequately exploited, the attacker can repeatedly probe the vehicle and tune his strategy
according to actions effectiveness - step 8. The strategy can be adapted to threaten other
buses like FlexRay or Ethernet as well as other ECU domains. Acquired knowledge is also
a basis to conduct attacks on applications distributed over wireless channels like VANET,
WiFi or Bluetooth.

A way to better protect the EBCM brake application is to make it secure by design.
To do so, security techniques and principles should be considered from early stages of the
engineering development phases. The effectiveness of security countermeasures like those for
ECUs authentication can be formally proved against an attacker model what may improve
system trustiness. Security analyses may also reveal the need for auxiliary components
so as to deal with system weaknesses or vulnerabilities - as is the case in step 9 -, e.g.,
intrusion detection or watchdog modules. Monitoring components can include mechanisms
to limit the impact in case of network flooding - step 10.

2.4 Conclusions

The security of current and next generation automotive architectures needs to be improved.
To show it, a historical survey in the field of vehicular applications was presented. The
survey roughly sampled several initiatives and projects made in previous decades. This
state of the art depicted the evolution of automotive applications from early eighties up
to now. The overview shows why security in vehicular domain was introduced. Along
with that, the underlying on-board architecture of an ITS vehicle was presented. Referred
architecture is a basis to understand complexity as well as uncovered security aspects in
automotive embedded systems.

Several efforts for securing automotive applications have been performed. However,
many of those initiatives have not yet led to enough dependable on-board systems. Even if
many standalone off-the-shelf applications are integrated in current automobiles, overall
security in on-board architectures still needs to be improved. Originally, automotive systems
were conceived mainly focusing on functional aspects. Designers were mainly concerned
on achieving operability and performance and little attention was put on security aspects.
The late introduction of security in the design process imposed an important gap between
secured and implemented applications. The growing complexity of applications, components,
and networks increased the challenge. The fact that applications were not conceived to
operate in hostile environments influenced designers to introduce security as an add-on.
However, that approach has resulted non-effective and new efforts are required to adequately
undertake the problematic.

The evolution of automotive applications shows that the objectives imposed to commu-
nicating vehicles were very ambitious. The efforts necessary to fully deploy such complex
systems were likely underestimated. The initial works introducing security for protecting
applications relied upon informal techniques. As soon as security weaknesses were identified
and their possible consequences understood, a bundle of proposals for securing vehicular
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applications and networks appeared. Unfortunately, relevant weaknesses were progressively
identified in those approaches. For instance, the fact that applications were only partially
protected, since requirements were elicited with respect to particular attack cases. Moreover,
the effectiveness of security countermeasures to cope with attacks was not integrally proved.
Even if several standalone mechanisms are security effective, the uncertainty about overall
system protection remained. Formal techniques were early mentioned as a mean to enforce
system protection. However, a gap still exists between off-the-shelf and formally verified
applications.

By adopting global-view approaches, the ITS challenge is better addressed. The joint
efforts between industry and academy as well as the international collaboration for integra-
tion and standardization of applications show significant progress. Recently, more attention
is put on the design phases as an early mean to secure and improve applications. Despite
mentioned efforts, several uncovered security aspects have been revealed. Among others,
the hostile environment in which automotive architectures operate along with accessible
insecure channels still make distributed applications obvious targets of attackers. A lack
of methodological support for effectively ensuring applications protection is identified.
Inadequately protected applications may render the on-board network non-operational.
Moreover, as it is shown in section 2.3.2, experimental tests demonstrate that current
vehicle on-board networks are vulnerable what may undermine driver safety, security, and
economy. Compromising the overall in-vehicle system requires sophisticated skills and tools.
However, attackers may have enough motivations and resources for threatening vehicular
networks and endanger ownerships and human being lives [169].

Security in embedded systems in general is a vast and very complex problem. After
years of experience, the problem is better understood nowadays. Security is not easy to
achieve, but improperly or not address it result more adverse. The fact that several systems
considered secure have been finally cracked shows that security should be more thoroughly
considered. In particular, that settled protections should be adapted to the evenly growing
attacker capabilities, chances, and motivations. The introduction of technology like ITS
is associated with known and new security threats. Explore approaches that accordingly
improve embedded systems protection and limit attackers chances is of utmost importance.
Development of embedded systems waits for more effective methodologies that improve
security.
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Chapter 3

Methodologies for Embedded
Systems Verification

As shown in previous chapter 2, there exists a need for improving security in embedded
systems, in particular in the automotive domain. Some lacks in methodological support
were also mentioned in subsection 2.3.1. More specifically, in the methods used to validate
security features of automotive systems. A hypothesis that we adopt hereinafter is that
formal techniques can be applied in order to improve certainty on that respect. Indeed,
provided that security requirements are adequately elicited, formally verifying them over a
system model provides certainty of security. Formal methodologies have been largely applied
to improve concurrent systems [79]. We are particularly interested on analyzing how those
techniques have been integrated into the engineering development process so as to verify
security. The analysis shall show up methodological aspects that need to be better supported.

The objective of this chapter is two fold. In a first step, the features offered by current
verification methodologies will be precised. Thus, the phases of the engineering development
process that are barely or not yet supported will be identified. In a second step, the features
required by an overall verification methodology will be pointed out. To do so, several
verification methodologies that can be applied to secure systems are analyzed. As shown in
previous chapter, embedded systems may be safety critical and security weaknesses may
compromise their operation. Accomplish security and safety objectives may depend upon
functional and non-functional requirements. For instance, imposing a minimum key length
for encryption is a functional requirement1 whereas demanding mutual ECUs authentication
is a non-functional one, and both of them are security requirements. Similarly, specifying
inputs/outputs for a facility is a functional requirement whereas demanding priority-based
schedulability is a non functional one and both requirements may be safety critical, i.e, if
they are not enforced, then something improper may occur to systems or individuals. That
is why, our survey focuses on methodologies targeting verification of functional and non-
functional requirements, and in particular security ones. An evaluation of methodologies is
conducted so as to highlight their pros and cons, their capabilities for the verification of
properties, and the usability of modeling frameworks. It will be finally concluded whether
methodological aspects still need to be addressed for effectively achieve secured applications.

Our approach is focused - but not limited - to analyze next aspects of methodologies:

1Example provided by Professor Yves ROUDIER, http://www.eurecom.fr/∼roudier/
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• Support for system development. The support provided by verification method-
ologies to the engineering development phases exhibits features, limitations, and
adaptation of methodologies to the development process.

• Verification of requirements. Capabilities for verification of functional and non
functional requirements (security and safety) are worth having since embedded systems
may be imposed to satisfy both of them.

• Framework usability. The successful integration of formal methods into the engi-
neering development process strongly depends upon how the modeling framework is
adapted to user needs and skills.

Above criteria are chosen as a basis to evaluate verification methodologies and to assess
their contributions for improving security. To simplify and order the analysis, methodologies
are first classified. Proposed classification is a first step to settle metrics for methodologies
evaluation. Next taxonomy is adopted:

Generic Formal Theories: Generic theories or approaches providing a basis to perform
formal verification.

Generic Formal Based Tools: Toolkits based upon generic formal theories that are
implemented to automate verification of properties in systems.

Formal Security Oriented Methodologies: Formal theories, languages, and respective
toolkits specifically developed or extended for verifying security in distributed systems.

Cryptographic Protocol Oriented Approaches: Approaches and tools specifically tar-
geting verification of so named security protocols.

Model Driven Engineering Environments: Frameworks based upon the MDE paradigm
addressing systems improvement and verification of properties, in particular security
properties. They may rely upon formal languages and tools to conduct proofs.

High Level Non-Model Driven Engineering Environments: Frameworks not based
upon MDE approaches and assisting the engineering design process at a high level
so as to automate verification, ease design, etc. Formal languages and tools may be
introduced to conduct proofs.

Certification Oriented Approaches: Approaches based upon international standards
targeting certification of distributed systems, and in particular security. These
approaches may rely upon automated provers so as to provide proof of requirements.

Methodologies are classified in the category that better corresponds with their main
characteristics. Even so, several of them may easily fit into two or more classes. Each
category is defined through a level of abstraction, approach directives, main targets, and
underlying backends. This taxonomy will be further refined for analyzing methodologies in
more detail.

The chapter is structured as follows. To achieve chapter’s objective, the survey in
section 3.1 shows the main features offered by several verification methodologies. By doing
that, advantages and shortcomings of each methodology are highlighted. To go more deeply,
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in section 3.2, those features are refined and used to exhibit the support provided to the
engineering development phases. Afterwards, the capabilities of methodologies for verifying
properties are precised. Finally, an evaluation to assess the usability of design frameworks
is carried out. So far, this analysis proves how current methodologies undertake the aspects
highlighted in previous three-item list. The conclusions are finally presented at the end of
the chapter in section 3.3.

3.1 Verification Methodologies Survey

This section shows several methodologies targeting verification in concurrent embedded
systems. Methodologies are shown according to the taxonomy previously adopted. De-
scriptions mainly include modeling semantics, support for requirements modeling, and
formal verification procedures. When adequate, other phases covered by the approach
are described, e.g., code generation. A brief evaluation is provided what highlights main
advantages and also limitations. The terms “methodology” and “approach” are used in
the same semantical sense. It is nonetheless recognized that some of the items presented
in the survey do not truly correspond with a methodology but only with a standalone
environment, framework, tool, language, or method. They are even so analyzed due to their
support and relevance for the engineering development process.

3.1.1 Generic Formal Theories

Generic Formal Theories provide the basis and semantics to conduct formal verification.
Members within this category are Timed Automata [31], Petri Nets [142], Process Algebras
[43], and Propositional Logics [76]. Rigorousness of languages and methods allows derivation
of soundness results. Many formal theories define a semantics relying upon a state-transition
approach. Timed Automata are among them and have been widely studied [109], [112], and
used in verification of properties [31], [116]. Verification is usually conducted upon Compu-
tational Tree Logic (CTL) [183], a language appropriate for representation of reachability,
liveness, safety, and deadlock freedom properties. Other variants of CTL representing time
have been also used, e.g., Timed CTL (TCTL) [30]. However, none of those logics was
conceived to proof security properties. In addition, Timed Automata is a generic approach
that does not directly address any security aspect. Even so, as shown in [116], threats can
be specified as an attacker automata whereas certain security properties can be expressed
in terms of reachability, liveness, or safety formulas. Thus, the extent of results finally
depends upon a security model entirely proposed by the user.

Petri Nets have been also applied for modeling and verifying a wide variety of timed
concurrent systems, e.g., [142]. As for Timed Automata, a semantics for verification of
reachability and liveness properties is available [142]. In addition, the semantics allows
verification of boundedness and reversibility. Contrary to liveness or reachability, bound-
edness settles thresholds for accomplishment of certain conditions whereas reversibility
ensures that the net can return to a given fail safe status under any circumstance [142].
Security properties have been represented as Petri Nets that behave as security observers
of the target system. An instance proving confidentiality is described in [127]. Other
security sensitive systems, like security protocols, can also be verified relying upon Petri
Nets approach. For instance, in [49] authenticity is expressed in terms of liveness and
reachability formulas. Properties are proved with respect to states signaling correct system
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termination. For certain models, referred states must be visited a bounded number of
times so as to avoid state explosion. Thus, attacker capabilities may be weakened and
consequently the extent of certain proofs limited, e.g., liveness properties.

The Process Algebra theory [43] provides formal languages whose operational semantics
can be expressed as Labeled Transition System (LTS). Since verification of LTS is conducted
upon CTL or TCTL logics, proof capabilities of Process Algebras are at least the same as for
state-transition approaches, e.g., Timed Automata. Thus, shortcomings present in the latter
ones may be also shared by Process Algebras, e.g., the state explosion problem. Temporal
Process Algebras like LOTOS [203] have been early defined to represent many aspects of
systems concurrency like parallelism, synchronization, and actions indeterminism. The
extension of those algebras to model real time - e.g., RT-LOTOS [60] - allows verification
of time constraints and also schedulability, i.e., feasibility of a schedule - see for instance
[101]. Propositional Logics are generally based upon axioms, number, and set theories [76].
They differ from the finite state-transition paradigm and provide semantics for reasoning
based upon boolean predicates in the form Conditions imply Conclusions. System models,
properties, procedures for proofs, etc. are also expressed in terms of predicates. Due to
its semantics, Formal Logics are adequate for representing richer notions of properties
than those modeled in CTL or TCTL. But, the richer a semantics is, the more elaborated
a proof may result. Thus, settle algorithms to automate proofs may be complex. Non
automated/hand made proofs may dramatically increase the time spent in verification phase.

Generic Formal Theories are the support for other verification methodologies that do
not have themselves a formal semantics. Nonetheless, Formal Theories do not provide
explicit means for addressing many relevant engineering concerns like security. Indeed,
analysis and modeling of threats, elicitation and modeling of requirements, and support
for results interpretation should be addressed by the designer and without any assistance.
By letting the designer conceive a security framework, several design choices may not be
appropriately taken, e.g., with respect to threats model accuracy. Consequently, the validity
and scope of verification outcomes may result badly biased by choices taken at design. For
instance, weakening attacker capabilities beyond real conditions may render verification
results inappropriate. Other Generic Formal Theories not based upon the state-transition
paradigm, like mathematical logics, have similar limitations.

3.1.2 Generic Formal Based Tools

This category contains tools strongly linked to formal theories described in previous sub-
section. For instance UPPAAL [211], Atelier-B [57], Isabelle/HOL [207], and CADP [108].
Tools in this category provide SW support and a framework upon which modeling and
verification can be performed. Along with a modeling frontend, the automation of verifi-
cation is a major advantage. Implemented algorithms and procedures to conduct proofs
decrease error risk and speed up verification phase. Even if graphical support may be
provided, framework language - i.e., symbols, syntax, and semantics - is mostly inherited
from respective formal theory.

The UPPAAL framework implements and extends the Timed Automata approach [90].
UPPAAL extends Timed Automata semantics by introducing data types, variables and
constants. Introduced constructs allow definition of broadcasting synchronous channels and
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support more complex structures that enlarge modeling capabilities [211]. Time elapses
in a global and continuous scale and each automaton is able to count time via a finite set
of variables named Clocks. Clocks can be set, reset, and used to specify time constraints.
Along with reachability, safety, liveness, and deadlock freedom properties, UPPAAL allows
verification of bounded liveness. A bounded liveness property declares events that should
always occur before an upper time threshold. Properties are verified in an extension of CTL
[109]. Due to its features, UPPAAL is suitable for conducting time constraints analyses
including schedulability [223]. Some security properties have been also verified. As shown in
[139], temporal RBAC policies are verified via an observer automaton. In [116], authenticity,
secrecy, and freshness are verified in terms of states signaling correct automata termination.
It is highlighted that security properties are verified even without a threats or attacker
model. Thus, the resistance against attacks or threats is not evaluated.

The B method and tools offer a formal framework based upon Abstract Machines logics
[23]. The syntax has a resemblance with a programming language making it adequate for
SW systems development. The method relies on machine specifications - named theories -
based upon the mathematical concepts of refinement and function. By applying sequential
refinements to an initial Abstract Machine, a final SW application can be generated. B
method ensures that properties verified upon an Abstract Machine are preserved by its
refinements. In the B context, properties are named proof obligations and are represented
as logical propositions in the form Conditions imply Conclusions. Proof obligations are
settled so as to verify machine correctness that is defined by associations between function
inputs and outputs. Composition of Abstract Machines is allowed. However, no semantics is
available for modeling synchronous or asynchronous communications what may be necessary
in concurrent systems modeling. The Event B Method has been introduced to undertake
just mentioned limitation [44]. Even so, B semantics does not support real-time analyses
and no security concern is originally addressed. Among the main facilities offered by B-tools
are model animation, type analysis, assisted generation of proof obligations, interactive
proofs, and code generation and execution [57]. Proofs termination in B logics may require
human aid what demands formal knowledge. The B method has been used as underlying
verification framework by other security oriented approaches [52], [99] that are discussed in
respective subsections.

Isabelle/HOL is a theorem prover that has been applied in verification of concurrent sys-
tems. The framework combines the theorem prover Isabelle, with a High Order Logic (HOL)
[207]. The syntax has alikenesses with a logic programming language - e.g., Prolog. It
also follows an axiomatic structure. Expressions may be composed by basic types, variable
declarations, functions definitions, logical predicates, theorems, and proofs. Thus, properties
to be verified are expressed as theorems, lemmas or rules. As for any high order logics,
just mentioned expressions are written as Horn clauses, i.e., in the form Conditions imply
Conclusions [201]. Classical methods like induction and deduction are applied when proving
properties. With the exception of code generation, verification capabilities and limitations
of Isabelle/HOL are the same as for B method. Security properties have been modeled and
verified relying upon Isabelle/HOL. In [74] for instance, RBAC policies are verified against
“arbitrary” users. But it is not discussed to which extent conducted verification relieves the
explicit introduction of an attacker model. On the contrary in [176], a Dolev-Yao adversary
[14] is introduced and authenticity and data secrecy verified. The notion of time is modeled
relying upon sequential indexes that allow verification of message freshness. Nevertheless,
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the adversary is barely described and strongly biased by the targeted instance. It is also
highlighted that proofs are user interactive and become complex - even for simple instances
- thus demanding skills on logics and formal knowledge.

As can be noticed, Generic Formal Based Tools are tightly coupled to the formal theory
upon which they depend. Even if a modeling frontend is provided, the syntax remains
formal and almost unchanged. The aids provided at frontend may improve approach
comprehension and usability. All in all, the support provided to engineering development
phases like system analysis is minor. In addition, properties modeling capabilities are
mostly focused on functional, time constraint, and schedulability proofs. Since no security
concern is directly supported by the tools, modeling of security concerns mostly depends
upon designer experience. Several limitations already mentioned in subsection 3.1.1 are
inherited by these tools.

3.1.3 Formal Security Oriented Methodologies

Methodologies in this category extend a Generic Formal Theory - see subsection 3.1.1 -
so as to address security concerns. As representative instances are Avispa/HLPSL [184],
ProVerif [2], and SHVT [84]. Among the main security aspects to be formalized are a
threats model, definitions of security properties, means for modeling typical security-related
structures, like crypto primitives, and procedures/algorithms to conduct proofs. Along with
formalization of security concerns, toolkit support is worth having so as to reduce proof error
risks and speed up verification process. Modeling languages and security extensions mostly
remain formal. Methodologies in this category mainly focus on modeling and verification
phases. Certain tools also provide aids to ease results interpretation like traces showing
vulnerabilities.

Avispa/HLPSL provides a high level language for modeling security-oriented appli-
cations and an interface for conducting automated proofs [184]. The syntax follows a
state-transition approach, even if HLPSL is mostly a dialect of the π-calculus [168]. The
semantics is appropriate for modeling communicating entities of distributed systems. Pat-
terns for modeling cryptographic primitives and Dolev-Yao channels [14] are available. The
intruder controls exchanges over public channels whereas his initial knowledge is specified
by the designer [94]. Rules defining intruder capabilities are already specified in the Avispa
tool. Thus, strong and weak authenticity can be verified relying on the concepts of injective
and non-injective agreements [129], respectively. Also, secrecy of data can be proved. The
verification approach exploits the capabilities of a variety of checkers like OFMC, CL-AtSe,
SATMC, and TA4SP [35]. The system and attacker behaviours are finally represented
at backend. According to [35], Avispa/HLPSL is able to recognize many known security
vulnerabilities in protocols. Nevertheless, its capabilities to uncover security vulnerabilities
are limited since some checkers are blind to recognize intentionally flawy systems [35].
To overcome this limitation a translation of Avispa/HLPSL models towards ProVerif has
been proposed [94]. It is highlighted that Avispa/HLPSL semantics provides no struc-
ture for modeling functions other than crypto ones and that time analyses are not supported.

ProVerif is an extension of the spi-calculus [22] that was early proposed in [21]. Along
with a formal syntax, ProVerif offers an automated framework suitable for security proofs
[2]. In ProVerif, communicating entities are modeled as processes that interact via public or
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private channels. A border between public and private domains is introduced. That border
allows definition of private and public variables what also splits the initial knowledge. A
major contribution of ProVerif is its formally defined Dolev-Yao attacker [38]. ProVerif’s
attacker is specified in terms of rules defining privileges over public channels. The semantics
allows modeling and verification of strong and weak authenticity, and data secrecy. Formal
structures are also available for modeling security elements like crypto primitives and other
functions. Another major contribution of ProVerif is its automated resolution algorithm.
It applies several techniques so as to settle a bounded and representative space of Horn
clauses that ensures soundness of proofs and upon which properties are automatically
proved/disproved [54]. It is even so recognized that the algorithm is blind for identifying
message order [54] what limits verification capabilities. The proof algorithm relies upon
the unification technique that search for equivalent predicates. Identifying semantically
equivalent predicates may fail what may lead to infinite searches or loops. Some techniques
are suggested to cope with that shortcoming [45]. However, it is recognized that infinite
searches and loops may still appear [45]. Even if ProVerif has been thoroughly developed,
time modeling is not supported. Consequently time-based properties like freshness are not
easy to address. This shortcoming also makes not obvious the verification of authenticity
in exchanges that rely upon time-stamps.

The SHVT/SeMF is a formal approach based upon the concepts of automata compo-
sition, simple homomorphism, and preservation of properties [148]. The methodology is
supported by a toolkit [84]. In SHVT, system components are modeled as automata that
can be composed. The concept of simple homomorphism is introduced to simplify automata
structure whereas certain properties are still preserved. Approximations are introduced
in order to cope with the state explosion problem [149]. The properties preserved under
simple homomorphisms rely upon a weakened version of liveness: conditions should be
satisfied at least in one possibly infinite continuation for all paths. Formal structures for
proving authenticity and secrecy are introduced in [171]. The so named Security Modeling
Framework (SeMF) conceptualizes security as the ability of a component for identifying
correct and incorrect actions with respect to its limited view of the overall system. Even if
an attacker is not explicitly modeled, its behaviour is implicitly considered in sequences
including incorrect actions. As shown in [32], the SeMF has been complemented with
formalizations for non-repudiation and data-traceability, the latter necessary for proving
privacy. As major limitations, SeMF has not been fully integrated in the SHVT toolkit -
what is a major disadvantage with respect to Avispa/HLPSL and ProVerif. Since SeMF
language is highly complex and proofs of properties are hand-made, strong formal skills are
demanded. Also, time spent in verification may dramatically increase even for simple in-
stances. As shown in [19], the approach has been applied for securing industrial automotive
applications. Nevertheless, time-based analyses are not addressed and security properties
like freshness not yet introduced.

Security Oriented Formal Methodologies provide explicit means for modeling and
verifying some security properties. Among them are Strong and Weak Authenticity, Data
Secrecy, Non-Repudiation, and Data Traceability. Methodologies introduce explicit or
implicit threats models thus relieving designers from that task. Attacker models aim to
be generic, i.e., independent of a system model, and are specified to stress the system so
as to validate targeted security properties. These features ensure soundness of verification
results. Procedures and algorithms for proofs may be implemented in automated or
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interactive provers. The syntax remains formal and little adapted for assisting tasks in
the engineering development process. Methodologies in this category are not suited for
performing functional, time constraint, or schedulability analyses. This is a limitation for
directly modeling security properties that are time dependent like freshness. In addition,
other relevant security properties like controlled access and integrity are not covered.

3.1.4 Cryptographic Protocol Oriented Approaches

The need for open channels to realize communication is a main source of security risks.
The limited view of communicating entities along with insecure/flawy implementations may
be exploited by attackers so as to disrupt, disturb, intervene or gain control. As shown in
chapter 2, attacker actions may badly impact safety, economy, trustiness, and authority
of stakeholders, cryptographic service providers, and/or makers. That is why, approaches
adapted to verify so named security protocols are of utmost importance, e.g., KL(n) [71],
AIF [137], and Avispa/HLPSL [184] - already shown in previous subsection. This section
shows the capabilities of some paradigms targeting security in protocols. Among primary
concerns are modeling languages, supported security properties, procedures for verification,
and formal backends. Identified drawbacks are also discussed.

The work in [72] proposes protocol modeling and verification on the linear-time tempo-
ral logic of knowledge KL(n) and S5 [71]. Predicates rely upon three main components:
knowledge, operations, and quantifiers, and take the form Conditions imply Conclusions.
A protocol is modeled as a set of predicates settling assumptions, axioms on knowledge,
and communicating policies. Agent’s behaviour is modeled as a set of rules specifying
its initial knowledge, starting rule, and actions to be performed afterwards. The attacker
should be specified by the designer as a particular agent of the protocol and also relying
upon predicates. The space of search is built by states defined by agent’s knowledge and
actions declared in predicates. Authenticity, secrecy, and non-repudiation can be modeled
as reachability, safety or liveness formulas. As main limitations, security definitions are not
generic and strongly depend upon protocol states what limits their re-usability. A resolution
method based upon standard elimination and simplification techniques is proposed [71].
The method is not fully automated and human interaction is required. In addition, no
semantics is available for modeling multiple protocol executions (parallel or sequential). It
implies that the attacker intervenes in at most a single system run. Thus, soundness of
proofs is strongly limited by this shortcoming.

As shown in [116], UPPAAL automata can be used for modeling and verifying security
protocols. In this approach - denoted by AK − BK -, protocol agents are modeled as
timed automata that interact via an attacker automaton. The attacker automaton is
modeled by the designer based upon a Dolev-Yao paradigm [14]. A technique for modeling
crypto primitives is proposed and applied. Modeling security properties depends upon
states indicating correct protocol completion. Thus, authenticity and secrecy properties are
accordingly verified. Timed automata allow delays measurement what allows verification
of freshness properties [116]. Verification is automatically conducted by the CTL verifier
implemented in UPPAAL [211]. In order to avoid the state explosion problem, several sim-
plifications should be introduced. For instance, random attacker capabilities are weakened
by constraining its transitions. In addition, a single protocol run is allowed in each agent
automaton. Introduced simplifications strongly limit soundness of proofs and moreover
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may render results non-realistic, e.g., in the case of freshness. Proof of certain properties,
like strong authenticity, are a trivial consequence of scenarios without multiple protocol
executions (parallel or sequential).

The AIF-framework [137] depends upon a logics quite similar to KL(n). The main
difference is that the number of actions of honest or dishonest parties is unbounded what
enriches verification capabilities. A protocol is modeled based upon sets of parameters like
agents names, keys, nonces, etc. A protocol state is defined by a combination of predicates
and operations over parameter sets. Transitions between states are settled as clauses in the
form Conditions imply Conclusions. Possible attack states should be identified and declared
by the designer. Attacker capabilities are specified as transition rules leading to attack
states. Instead of properties, anti-properties are defined, i.e., clauses declaring sufficient
conditions for leading to attack states. Thus, anti-properties for violation of authenticity
and secrecy are exemplified. Since the logics does not support modeling of time, a discrete
scale is emulated what allows verification of a discrete version of freshness [137]. Models are
proved either in ProVerif [2] or on the theorem prover SPASS [133]. As main limitations,
proofs in SPASS require human aid for termination what demands formal skills. The
specification of the AIF attacker model and its relation with the ProVerif attacker must be
thoroughly justified. Finally, anti-properties strongly depend upon protocol states what
compromises their re-usability.

Approaches in this category provide some means for modeling and formalizing protocol
elements and security properties. Since modeling threats is not a simple issue, protocol
approaches demand specialized knowledge in security and logics. As it is shown, languages
are formal and not suited for assisting engineering development tasks. As major limitations,
threats models are not thoroughly introduced. Moreover, simplifications in system and/or
attacker models may limit scope of results and make them unrealistic. Verification of
Authenticity, Secrecy, Freshness, and Non-repudiation is covered. Security properties like
RBAC and Integrity are not supported by the above approaches. Recent work on protocols
verification introduces the notion of dynamical verification of protocol thus extending the
traditional validation on a single protocol definition [58]. Such kind of approach shall allow
on-the-fly verification of a protocol family according to the constraints imposed by the
context scenario and the options of the end-point entities [58].

3.1.5 Model Driven Engineering Environments

Model Driven Engineering (MDE) environments assist system design at a high level of ab-
straction [5]. Approaches in this category provide languages that pursue the improvement of
systems. A representative instance is the Unified Modeling Language (UML) standard [10]
which is broadly known and used. That is why, the environments shown in this subsection
are UML-based. Most UML-based approaches targeting formal verification follow a similar
path: they settle an UML framework suitable for modeling systems and requirements at a
high level. Since UML is informal, models are later translated to a formal backend upon
which verification is conducted. All in all, UML-based environments are standalone and
may not include formal verification. This subsection shows capabilities and limitations of
some environments with and without formal techniques support.

The Systems Modeling Language (SysML) [190] was defined by the OMG [7] for specify-
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ing, analyzing, designing, and verifying concurrent systems. SysML extends the UML profile
by re-defining Block and Activity Diagrams. In addition, Requirement and Parametric
Diagrams are introduced. SysML extensions aim to better support analysis and modeling
of concurrent systems. Moreover, requirements and constraints imposed over safety critical
systems can be accordingly structured. Two SysML-based frameworks that also have toolkit
support are Artisan [36] and Rational Rhapsody [105]. Artisan and Rhapsody offer C, C++,
and Java code generation from models. An important shortcoming is that SysML-based
approaches are not adapted for modeling security concerns.

Several UML profiles have been introduced for fulfilling semantical lacks not covered by
UML nor SysML, e.g., SecureUML [128] and UMLsec [113]. SecureUML introduces con-
structs for modeling and verifying RBAC policies. The profile is defined by a language that
generates designs close to a software implementation what is useful for code generation [216].
Security RBAC policies are modeled as formulas in the Object Constraint Language (OCL)
[6]. Proofs of policies are conducted upon formal backends and assisted by environments
like Isabelle/HOL-OCL [24]. SecureUML is mainly oriented to prove access control policies
and no attacker model is explicitly introduced what may limit its capabilities for addressing
other security properties, e.g., authenticity.
The main extension in UMLsec is the security link between classes and objects. Introduced
links can be defined by formal constraints that specify their features. Thus, secret and
public communicating channels can be defined. Along with formal constraints, the link
stereotype provides means for specifying attacker capabilities. According to the authors
[114], security properties, like authenticity, secrecy, and integrity can be modeled as formal
constraints imposed on respective links. Several proposals have been made in order to
formalize and verify UMLsec models - see [114], [12]. An important shortcoming is that
a generic attacker is not yet fully specified what limits soundness of proofs. In addition,
security properties should be defined and formalized by the designer. Verification of UMLsec
models relies upon Computer Aided Software Engineering (CASE) tools, theorem provers -
like Isabelle/HOL -, and other verification engines [196], [12].

The VERTAF approach [154] provides an UML-based framework suitable for schedu-
lability analyses and model checking [154]. Properties to be verified are defined as OCL
formulas [6]. The main characteristics of this methodology are grouped in three categories:
system models, formal synthesis, and formal verification. System models are made in
almost pure UML what allows model portability. Synthesis is conducted in two phases:
scheduling and code generation. The scheduling phase is conducted so as to prove - or
disprove - that system model satisfies temporal and spatial constraints due, for instance, to
priorities in scheduling or buffers size, respectively. Formal verification is finally conducted
upon a built-in model checker that directly displays design errors on UML designs. Also,
portable code can be automatically generated from models. It is claimed that preservation
of verified properties is ensured [154]. Even if functional and non-functional analyses can be
performed, the methodology does not address security at all. The framework may require
major modifications in order to include security analyses capabilities. Other approaches
similar to VERTAF are OMEGA2 [146] and MARTE [195].

TURTLE [33] provides methodological support for requirements structuring, analysis,
design, and verification of timed concurrent systems. System design is based upon extended
UML Classes and Activity Diagrams. TURTLE classes are defined with attributes and
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gates that support exchanges between classes. Gate connectors can be associated with an
operator that settle conditions for classes execution like parallel, sequential, and preemption.
Class behaviour is modeled in an Activity Diagram defined with several order and time
based operators. Introduced semantics is appropriate to model several deterministic, inde-
terministic, ordered, and time-based events in concurrent systems. Properties to be verified
are represented as observer classes that include error states signaling property violation
[81]. TURTLE exploits verification features of three formal backends: UPPAAL [211],
LOTOS [203], and RT-LOTOS [60]. Thus, the framework provides adequate support to the
engineering development process and is suitable for time-based analyses and verification.
However, as it is shown in [19], security concerns like a threats model should be completely
conceived by the designer. Along with that, introduced simplifications to avoid the state
explosion problem strongly limit the extent of security proofs.

A main characteristic of the approach presented in [56] is that UML modeling is formally
guided. A method is presented for representing system and RBAC policies as an automaton.
Each state represents a subject accessing an object whereas transitions respectively enforce
access policies. Some guidelines are given to manually translate the automaton into UML
class and statechart diagrams. Contrary to previous approaches, the modeling language
relies upon pure UML, i.e., no extension is defined. The approach shows how to prove
confidentiality relying upon Linear Temporal Logic (LTL) formulas. UML models are
translated to PROMELA and formal verification is conducted upon the SPIN model checker
[185]. SPIN is able to display counter examples in case of property violations. The main
limitations of this UML/SPIN approach are the absence of an explicit attacker model,
needed to prove certain security properties, and means for modeling concurrent systems
like communicating channels.

The goal of the AORDD methodology [89] is two-fold: achieving secure designs and
efficient system performance/throughput. To achieve this, system assets and behaviours are
represented in standard UML diagrams. Based upon the Aspect Oriented Approach [83],
attack cases and respective security countermeasures can be selected from object libraries.
Later, they are accordingly integrated into the system model. Properties ensuring system
resilience are represented in OCL semantics [6]. Verification is finally conducted by trans-
lating the integrated UML model into the Alloy analyzer [189]. The model checker displays
traces whenever a property violation is discovered. Traces are automatically interpreted
and translated as counterexamples at UML level. Finally, an analysis is proposed so as to
explore and find a cost effective and time-adapted security design based upon Bayesian
Networks [89]. A drawback of AORDD is that security analyses rely upon specific attack
sequences what may limit overall system protection. Indeed, protect against a specific
attack is not as effective as protect versus a generic attacker model.

SecureMDD [138] is a MDE approach that models static and dynamic parts of systems
in standard UML Class, Deployment, and Activity Diagrams. UML is extended with stereo-
types that model security constructs like crypto functions. The extensions of deployment
diagrams provide means for specifying system architecture and attacker actions, e.g., over
ports and connectors. In order to conduct verification, SecureMDD models are translated
towards the high-order theorem prover KIV [206]. Attacker actions are specified by the
user at UML level and are later transformed to KIV what settles a Dolev-Yao attacker [14].
Properties to be verified are expressed as theorems in the form Conditions imply Conclusions.
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Once models are verified, a second transformation towards the Model Extension Language
(MEL) can be performed [138]. Translation to MEL allows automatic generation of Java
code from models and integration of hand-made code. An important shortcoming is that
perturbation of verified properties due to handmade code is not addressed. In addition, any
mean for modeling security properties at UML level is available. Finally, formal skills are
needed for modeling security properties in KIV and assist the tool in proofs termination.

MDE-based environments provide means well adapted to the engineering development
process. They rely upon semi-formal and standard languages oriented to analyze, structure,
and model systems at a high level. To conduct security analyses, features of the system
context and threats model are introduced. Several environments in this category target
verification of functional and non-functional properties, e.g., time constrains, absence of
misbehaviour, and also security qualities. Those approaches automatically transform UML
models to underlying backends in order to conduct proofs. Along with that, certain support
for results interpretation is provided, e.g., translation of violation traces to UML sequences.
A main goal of MDE-based verification is the generation of code from models. Since the
integration of handmade code may perturb verified properties, how to ensure properties in
a final implementation is still an open topic [41]. Many MDE environments targeting code
generation still need to address that issue.

3.1.6 High Level Non-MDE Environments

Environments in this category are seen as non-standard approaches that pursue similar
goals as their MDE counterparts. It is assumed that Non-Model Driven Engineering en-
vironments - denoted as N-MDEs - are not based upon the MDE paradigm and provide
support to the engineering development process at a high level. Thus, N-MDEs also
rely upon underlying backends to conduct proofs. A vast majority of works to assist
design at high level are MDE-based. Consequently, only a few N-MDEs are found in the lit-
erature. The main features and limitations of some of them are discussed in next paragraphs.

The KAOS approach is thoroughly presented in [188] and [52]. KAOS proposes secure
system development oriented by requirements. Each element in the modeling language com-
bines informal and formal syntaxes. KAOS modeling is mainly based upon four constructs:
Goals, Responsibilities, Objects, and Operations. Goals are meant to define, structure, and
refine security requirements and attacker actions specified as obstacles. In Object modeling,
refined goals are associated to system elements that should achieve goals thus providing
obstacle mitigations. Similarly, a Responsibility is meant to assign refined goals to an
expected stimuli - or response - from external system components. Finally, an Operation
associates stimuli/response events from external components to elements within the object
model. The main contributions of KAOS are the semantics and respective method for
analyzing, structuring, and refining security requirements and obstacles. Verification of
KAOS models is conducted on underlying formal backends like B-based tools. As shown
by the FADES approach [99], a translation of KAOS onto B abstract machines is feasible.
Along with translation rules, a method is proposed for eliciting and refining obstacles - i.e.,
attacker actions - from negated security goals. FADES exhibits a smooth transformation
from high level modeling up to a final implementation. This feature may ensure properties
preservation across model-to-code generation process. It is identified that eliciting and
refining obstacles from negated goals strongly depends upon designer experience. Moreover,
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no attack assessment is addressed at all. System countermeasures are not formally proved
so as to ensure that refined obstacles are truly prevented. Since goals and obstacles are
directly modeled in linear or high logics, formal knowledge is demanded. Also, the lack of
support for modeling time, links features - like public/private -, and communicating policies
are major shortcomings.

The Software Architecture Modeling (SAM) is a high level methodology for SW and
threats modeling and for verification of properties [100]. A design is composed by component
architecture diagrams - representing system assets - and simple or timed Petri nets - model-
ing assets behaviour. Thus, properties can be represented as CTL or TCTL formulas. SAM
provides a procedure for elicitation of threats targeting system assets. Threats elicitation is
performed relying on a basic set of attacks: Spoofing, Tampering, Repudiation, Information
disclosure, Denial of Service, and Elevation of privilege, i.e., the STRIDE model. SAM
methodology performs an iterative refinement process between threats and system model
[28]. The iterative process eventually introduces attack mitigations in the system under
design. Among SAM mitigations are logical constraints, architecture countermeasures, and
security modules. In order to verify that mitigations truly cope with respective threats,
SAM models are translated towards the Symbolic Model Verifier (SMV) [55]. If a property
is violated, SMV provides traces that are translated as sequences in Petri net diagrams what
starts an iterative process for design remodeling. As main limitations, the procedures for
attack refinement and properties elicitation strongly depend upon user experience. System
and properties modeling are formally developed and demand formal skills what may impose
limitations to non-experimented designers. Last but not least, elicitation of attacks and
security properties out of the STRIDE model is not covered.

SecureTropos targets development of secure software oriented by goals [208]. The
methodology addresses not only features of the Information Technology (IT) but also the
procedures and policies of the organization in which it operates. Several phases of the
engineering development process are supported: requirements engineering, system design,
and formal verification. SecureTropos introduces a graph semantics where actors, their goals,
and the tasks and resources for achieving goals are modeled as nodes. Associations between
nodes help to declare objectives, capabilities, trustiness between actors, and permissions
and orders [132]. By refining this goals model, IT architecture elements can be identified
and modeled with the aid of security patterns [132]. IT and organization components
are modeled in the Agent Unified Modeling Language [208]. Design, formalization, and
verification of models is supported by the SecTro toolkit [193]. Behavioural properties
are automatically verified in a temporal logics [86] whereas security properties are proved
in an Answer Set Programming logics similar to Prolog [92]. The methodology has been
mainly applied to prove authenticity, authorization, and privacy [132]. Explicit attackers
can modeled as any other actor in the system. The refinement of attackers, goals, and IT
models entirely depends upon the designer what demands security skills. Since security
properties are written as linear formulas, formal skills are worth having. Along with that,
SecureTropos does not offer code generation and time-based properties are not supported.

As can be noticed, N-MDEs share similarities with their MDE-based counterparts. They
both provide a good support for modeling system, threats, and functional and non-functional
requirements. N-MDEs also address formalization, transformation, verification, and code
generation stages. Nonetheless, N-MDE modeling is mostly made on formal languages
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which are less adapted to the engineering development phases. In particular, for the stages
typically performed on informal languages like system analysis. Last but not least, since
either system or properties should be formally modeled, formal skills are demanded to
designers.

3.1.7 Certification Oriented Approaches

The Common Criteria (CC) [3] became a significant reference for security evaluation of
IT systems. Common Criteria were jointly elaborated by several organizations over the
world settling a documentary basis for security assurance of technologies. The agreed
Common Criteria are granted to ISO/IEC and written as the standard ISO/IEC 15408
[187]. ISO/IEC 15408 provides language, categories, and requirements for achieving system
certification in one of the seven Evaluation Assurance Level (EAL). The higher assurance
level is pursued, the more and more stringent exigencies imposed over the system. Since CC
and ISO/IEC 15408 do not provide any methodological support, several efforts have been
conducted targeting both certification of systems and formal verification. This section is
dedicated to show the capabilities and shortcomings of some approaches that combine CC
and formal verification. Just referred approaches assist system design and ease integration
of the standard into a specific formal framework. As for other high level methodologies,
underlying formal backends are required to conduct proofs.
The CC classify security requirements into two categories: functional and assurance. Func-
tional security requirements should be undertaken by functions within the system whereas
security assurance requirements are imposed on processes for system design and deployment.
Requirements are stated according to pursued EAL certification. The so named Target of
Evaluation (ToE) is defined in a core document named Security Target (ST). The ToE
precises system assets as well as respective threats. The ST also includes a description
of security objectives to achieve assets protection and threats prevention. Functional and
assurance requirements may be specified as security objectives. Thus, a final ST should
include a whole description of the functions and assets composing the ToE, respective
threats, and security objectives.

The PalME approach [215] proposes a mapping of CC requirements to system devel-
opment phases. A schedule states how and when CC requirements should be addressed
according to the system development process. The engineering process is conceptualized in
several phases: planning, analysis, design, implementation and testing, and delivery and
operation. Threats analysis and security countermeasures partially define the ToE and the
ST which are further precised during design phase. The design phase is developed on the
AutoFocus tool [204] that supports several modeling profiles similar to UML. The testing
phase is performed using attack sequences defined during analysis stage. Tests are mainly
settled to provide evidence for targeted EAL certification. To conduct formal proofs, models
are automatically translated to the SMV prover [55]. Thus, properties should be directly
modeled in LTL or CTL logics. Since neither elicitation nor formalization of properties are
assisted, formal knowledge is demanded to designers. In this approach, even if formalized
CC criteria are satisfied, the effectiveness of threats countermeasures may not be formally
ensured, since the proofs are conducted without a generic attacker model. Indeed, the
security protections are settled with respect to specific attack sequences.

The methodology in [140] proposes formalization of the target of verification - ToE -
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and respective CC requirements in the Z language [175], a dialect originally used for devel-
oping the B method. The methodology is focused only in functional security requirements.
Accordingly, a library of Z templates covering the whole functional CC specification is
claimed to be available [140]. Along with templates generation, the approach describes
the phases for verification of the ST. First, the target system is modeled in Z language. Z
templates are selected according to the pursued EAL certification. Afterwards, selected Z
templates are instantiated what defines the properties to be verified. Finally, verification
is performed upon Z/EVES [151], a theorem prover similar to Isabelle/HOL or SPASS.
As main shortcomings of this work, since system and properties should be modeled in Z,
formal knowledge is needed. Formal skills are also required in order to assist the tool in
proofs termination. Along with that, no explicit threats model is introduced. Consequently,
even if formalized CC requirements are satisfied, system protection against attacks may
not be formally ensured.

Just presented CC-based approaches provide certain support for integration of ISO/IEC
15408 requirements into the engineering development process. In particular, good support
for modeling security requirements is provided. Formalization of models and automated or
interactive verification are mainly addressed. Since modeling of system and requirements is
formal, certain skills are consequently needed. Some similarities between above approaches
and KAOS exist, e.g., the design is oriented by requirements. Although, the CC [3] provide
an extensive documentary basis to derive security requirements and to test relying upon
vulnerability analyses, what is not available in KAOS. The CC are also the basis for a
so named Common Evaluation Methodology [3] that is intended to evaluate the security
of IT systems and assign an EAL certification. The combination of the CC and formal
techniques is meant to improve the methodological support to the evaluation process.

3.2 Qualitative Evaluation of Verification Approaches

Verification approaches are evaluated with respect to the support provided to the engineering
development process. Thus, evaluation features are elicited considering the different phases
of the development process. They are shown in table 3.1. Most features are refined
in subcategories associated to a code ID. Code IDs are useful for assigning qualities to
methodologies in a simplified manner.

Table 3.1: Features of verification methodologies

Feature Mode ID

System Design Support Analysis D.1
Modeling D.2

Requirements Structuring Aids

Analysis P.1
Modeling P.2
Safety Requirements P.3
Security Requirements P.4

Threats Structuring Aids Analysis A.1
Modeling A.2

Translation/Formalization Means F.1

Verification Support Automated V.1
Interactive or hand-made V.2

Continued on next page
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Feature Mode ID

Results Analysis Capabilities Property Coverage R.1
Attack Coverage R.2

Code Deployment Assistance Automatic Generation C.1
Code Adaptation C.2

Application Testing Procedures Model Based T.1
Platform Based T.2

3.2.1 Features by Category

This subsection associates features elicited in table 3.1 with methodologies analyzed in
section 3.1. Offered features are grouped by category and depicted in figure 3.1. The
categories are placed according to their level of abstraction.

Figure 3.1: Verification Methodologies Map

A feature is offered either by the approach itself - named Main features - or borrowed
from other approaches - named Associated features. As can be noticed, a top-down arrow
enclosing categories is drawn. That arrow means that a methodology may rely upon lower
level approaches. In particular, when formal verification is targeted. It is assumed that
integration of formal techniques into the engineering development process is a mean to
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improve security in systems. That is why, the survey in section 3.1 is mostly focused on
approaches targeting security by formal verification.

As illustrated in figure 3.1, the category of MDE-based environments provides most
of the features stated in table 3.1. Even so, support for assessment of attack protection,
assistance for code integration into the target platform, and testing procedures are not
thoroughly supported by analyzed MDE environments. A wide variety of approaches ad-
dressing mentioned lacks have been separately and independently published, e.g., addressing
security testing. The integration of those approaches into the engineering development
process should be thoroughly considered. In particular, to harmonize those efforts with the
techniques, methods, and outcomes provided by the envisaged formal verification stage.

An overall comparative view of features offered by category is shown in table 3.2. Main
features are labeled with ‘m’ whereas associated features are labeled with ‘a’.

Table 3.2: Methodology features by category

Category
Methodology Features

Design Properties Attacks FV Verify Results Code Tests

D1 D2 P1 P2 P3 P4 A1 A2 F1 V1 V2 R1 R2 C1 C2 T1 T2

Generic Formal Theories m m m m m
Generic Formal Tools m m m m m m m
Formal Security Approaches m m m m m m m m
Crypto Protocol Approaches m m m a m a a
MDE Environments m m m m m m m m a a a a a
Non-MDE Environments m m m m m m a a a
Certification Approaches m m m a m a a m
Global View Methodology m m m m m m m m a a a m m m m m m

‘m’ stands for main feature whereas ‘a’ stands for associated feature

MDE environments support many stages of the development process. It is reminded
that features are shown by category, and no standalone MDE approach provides the whole
set of features offered by the category. Thus, even if MDE environments provide many of
the features settled in table 3.1, further work is needed to support uncovered stages. The
final row in table 3.2 does not show a category but what a standalone methodology should
address so as to provide a global support. Proposed methodology should be capable of
assisting the whole engineering development process, from early stages up to tests on the
target platform.

3.2.2 Pros and Cons of Verification Methodologies

This section shows a refined view of our findings. In table 3.3 pros and cons identified in
current verification approaches are summarized. The objective is to evaluate standalone
methodologies and highlight specific characteristics of each approach. The metrics originally
settled in table 3.1 are also considered.
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Table 3.3: Pros and Cons in some verification methodologies

Approach Pros Cons
T. Automata [31] Formal and sound, suitable for temporal

logics properties modeling and proof
Security not addressed - but can be -,
non intuitive modeling language

Petri Nets [142] Formal and sound, suitable for temporal
logics properties modeling and proof

Security not addressed - but can be -,
non intuitive modeling language

UPPAAL [90] Formal and sound, suitable for temporal
logics properties modeling and proof,
automated proofs, simulation

Security not addressed - but can be -,
complex non-intuitive modeling

B-Method [23] Formal and sound, formal generation of
code, SW oriented

Security not addressed - but can be
-, time modeling not supported, not
adapted for embedded systems model-
ing, aid for proofs termination required

Isabelle/HOL [201] Formal and sound, high order language -
richer modeling semantics -, unbounded
states logics

Security is not addressed - but can be -,
time modeling not supported, complex
modeling, non automated proofs

HLPSL/Avispa [224] Formal, parameterized attacker, proofs
of authenticity and secrecy, multiple for-
mal backends

Time modeling and safety analyses not
supported, soundness of proofs depen-
dent of attacker

ProVerif [54] Generic and formal D-Y attacker in-
cluded, automated verification of au-
thenticity and secrecy, soundness of
proofs, used by other approaches, e.g.,
Avispa/HLPSL

Time modeling not directly supported,
formal and security knowledge required

SHVT/SeMF [171] Formal and sound, state explosion prob-
lem addressed, suitable for authenticity,
secrecy, non-repudiation, and linkability
modeling and proof

Very high complex modeling and verifi-
cation, implicit abstract threats model-
ing, hand-made proofs

KL(n) [72] Protocol oriented, suitable for authen-
ticity, secrecy, and non-repudiation
modeling and proof

Hand-made proofs, multiple protocol
runs not supported, generic attacker not
specified, time modeling not supported

T.A. [116] Protocol oriented, suitable for authen-
ticity, secrecy, and freshness modeling
and proof, automated proofs

Simplified hand-made attacker, single
protocol execution, very limited scope
of proofs

AIF [137] Protocol oriented, suitable for authen-
ticity, secrecy, and freshness proofs, un-
bounded states logics

User defined attacker, non automated
proofs, soundness of proofs dependent
of attacker

SecureUML [128] UML-based approach, security oriented,
suitable for proving RBAC policies

Implicit attacker model, proofs may re-
quire human aid, only focused on access
control

UMLsec [113] UML-based approach, security oriented,
suitable for authenticity and secrecy
modeling and proof, Java code genera-
tion

Generic attacker not modeled, very lim-
ited soundness of proofs

VERTAF [154] UML-based framework, schedulability
and safety analyses supported, auto-
mated verification, soundness, multiple
code generation options

Security not addressed at all, major
modifications required to address secu-
rity

TURTLE [33] UML-based language, supports require-
ments, system analysis, and design, au-
tomated verification and code genera-
tion

Security concerns introduced by the de-
signer, e.g., attacker model and security
properties, extent of proofs limited by
design simplifications

Continued on next page
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Approach Pros Cons
UML/SPIN [56] UML-based language, secrecy and

RBAC properties modeling and proof,
automated model checking, violation
traces

No generic attacker model, lack of sup-
port for concurrent systems modeling,
e.g., channels

AORDD [89] UML-based language, attacks and coun-
termeasures defined in object libraries,
automated model checking, UML viola-
tion sequences

Verification against specific attacks, ex-
tent of proofs limited

SecureMDD [138] UML-based approach, security oriented,
parameterized attacker, Java code gen-
eration

Non automated proofs, properties mod-
eled at backend level, formal knowledge
required

OMEGA2 [147] UML-based framework, linked to formal
backend, temporal logics supported, au-
tomated proofs

Security not addressed at all

Artisan [36] SysML-based framework, diagrams
traceability, time and safety analyses
supported, C, C++, and Java code gen-
eration, proofs supported via plug-in
(SPARK)

Informal approach, security not ad-
dressed at all

Rhapsody [105] UML/SysML framework, requirements
engineering, real-time and safety analy-
ses, diagrams traceability, model simula-
tion, C, C++, and Java code generation,
model based testing

Informal approach, security not ad-
dressed at all

KAOS/FADES
[52],[99]

High level language, security oriented,
refinement of requirements and threats
allowed, formal backend support, code
generation

Abstract attacker model, properties not
proved against attacker, protections not
proved versus attacker, time model-
ing not supported, formal and security
knowledge required

SAM [100] High level language, security oriented,
threats based upon STRIDE model,
safety and time analyses supported, au-
tomated verification

Properties not verified against attacker,
soundness of proofs limited, protection
not proved, formal knowledge required

SecureTropos [132] High level language, secure design ori-
ented by goals, refinement of goals, at-
tackers, and system models, automated
proofs of authenticity, access control,
and privacy

Formal skills required, time modeling
not available, code generation not sup-
ported

Common Criteria [3] Security oriented, design oriented by
requirements, broadly accepted

Informal, costly, paper work oriented,
no safety issues, abstract attacker model

CC & PalME [215] Smooth CC integration, high level de-
sign, threats and security requirements
analyses supported, automated verifica-
tion backend, functional and vulnerabil-
ity testing

Properties modeled at backend level,
properties not proved against attacker,
effectiveness of mitigations not proved,
formal and security knowledge required

CC & Z [140] Based upon formal CC templates, li-
brary of CC templates available, formal
verification backend, sound approach

Abstract and implicit attacker model,
interactive proofs, no smooth integra-
tion, formal and security knowledge re-
quired
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The approaches in table 3.3 have been placed according to their level of abstraction
starting from the lowest one. Thus, they range from pure formal up to plain-text oriented
approaches. Many of them offer formal verification since integration of formal techniques
is pursued. It is identified that approaches focus on either temporal and safety, or upon
security analyses, but not in all. That imposes a strong limitation for critical architectures
that require temporal, safety, and security analyses, e.g., automotive embedded systems -
see conclusions in section 2.4. Verification methodologies with a medium and high level
semantics are more adapted to the engineering development process. Even so, some of
them either directly rely on formal modeling, e.g., SAM [100], or do not provide consistent
support for security concerns modeling, e.g., SecureMDD [138]. No methodology provides
the whole set of features settled for evaluations - see table 3.1. Among the main limitations
identified in high level security approaches are the lack of support for threats or requirements
modeling, e.g., Common Criteria [3]. On the contrary, ProVerif [54] offers a formal and
security oriented framework covering certain threats and requirements modeling via a
generic attacker. Even approaches like HLPSL/Avispa [224] have relied on ProVerif as
backend to conduct security proofs. Also at low level, the UPPAAL [90] framework has
been used for verification of temporal, schedulability, and safety properties. A global view
methodology harmonizing capabilities and overriding limitations of current verification
methodologies should still be proposed.

3.2.3 Properties Support and Framework Usability

Along with support for all engineering development phases, capabilities for verification of
properties and usability of modeling frameworks are of utmost importance. By supporting
verification of safety and security requirements, methodologies are able to conduct analyses
required in development of critical embedded systems. In addition, the introduction of
formal techniques into the engineering development process should not increase complexity.
That is why, modeling semantics should be adapted to engineers in order to ensure framework
usability. Hence, properties support and framework usability offered by methodologies are
evaluated in this subsection. First, since security in automotive embedded systems is the
main target, table 3.4 shows the security properties supported by each approach. As a
reference, informal definitions of the security properties are presented in line:

Authenticity: Whenever an entity believes that a received information comes from a
certain entity, it is truly the case.

Data Secrecy: A piece of information is restricted to certain entities and must never be
revealed to other third parties.

Freshness: A received piece of information is not a copy of another one already received
and arrives within a certain time delay.

Non-repudiation: No entity can reject its participation in an event in which it truly
participated.

Privacy: Information making reference to individuals must not allow to reveal neither
their identity nor participation in events.
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Controlled Access: Entities must access information and resources only in the way it is
intended and declared.

Table 3.4: Properties supported by verification methodologies

Approach Security Properties
Authenticity Data

Secrecy
Freshness Non-

Repudiation
Privacy Controlled

Access

HLPSL/Avispa [224] Yes Yes No No No No
ProVerif [54] Yes Yes No No No No
SHVT/SeMF [171] Yes Yes No Yes Yes No
KL(n) [72] Yes Yes No Yes No No
T.A. [116],[139] Yes Yes Yes No No Yes
AIF [137] Yes Yes Yes No No No
SecureUML [128] No No No No No Yes
UMLsec [113] Yes Yes No No No No
UML/SPIN [56] No Yes No No No Yes
AORDD [89] N.S. N.S. N.S. N.S. N.S. N.S.
SecureMDD [138] N.S. N.S. N.S. N.S. N.S. N.S.
KAOS/FADES [52],[99] N.S. N.S. N.S. N.S. N.S. N.S.
SAM [100] Yes Yes No Yes No Yes
SecureTropos [132] Yes No No No Yes Yes
CC & PalME [215] N.S. N.S. N.S. N.S. N.S. N.S.
CC & Z [140] N.S. N.S. N.S. N.S. N.S. N.S.

Yes: It is supported, No: It is NOT supported, N.S.: Not specified whether it is supported, or not

As can be noticed, the support provided for modeling and verifying properties is quite
limited with regard to the landscape of security requirements usually found in a nominal
specification - e.g., see [20]. Requirements imposed over a security sensitive system may
also include integrity, availability, and anonymity properties. A methodology covering
all those security properties is worth having. As stated in reports on security threats on
mobile embedded systems like [134] and [136], impersonation and data theft/disclosure are
among the most frequent and severe incidents. The fact that many approaches support
both Authenticity and Data Secrecy corresponds with just mentioned tendency. That is
why, we assume that Authenticity and Data Secrecy - also named Confidentiality - are
among the main security concerns that should be addressed by methodologies. Finally, as
shown in table 3.4, it is not precised which security properties are supported by several
security oriented methodologies like KAOS/FADES [99].

Get a consensus on the notion of framework usability is not an easy matter. Formulate
a definition is indeed out of scope. To overcome this difficulty, it is assumed that usability
stands for the convenience of using a modeling framework. Rather than providing a precise
definition, several characteristics are associated with the notion. In particular, language
complexity, support for system and properties modeling, automation in verification, and
aid for results analysis are considered. Table 3.5 shows the evaluation conducted on several
security modeling frameworks.
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Table 3.5: Usability of verification frameworks

Approach Framework Usability Features
Language
Complexity

System Modeling Properties
Modeling

Verification Results Anal-
ysis

HLPSL/Avispa [224] High Symbolic, state-
transition based

Relying on prede-
fined tags and query
patterns

Automated Plain-text
violation
traces and log
files

ProVerif [54] High Symbolic, based on
π processes

Relying on prede-
fined event and
query patterns

Automated Plain-text vio-
lation traces

SHVT/SeMF [171] Very high Symbolic, state-
transition based

Relying on word
sequences classi-
fication, formal
definitions available

Hand made Not supported

KL(n) [72] High+ Symbolic, state-
transition based,
Horn predicates
semantics

Relying on attack
states, no patterns
predefined

Not fully au-
tomated

Not supported

T.A. [116] High Graphic, state-
transition based

Relying on CTL and
goal states, no pre-
defined patterns

Automated Not supported

AIF [137] High+ Symbolic, state-
transition based,
Horn predicates
semantics

Relying on attack
states, no patterns
predefined

Automated
and Interac-
tive

Violation
traces pro-
vided by
ProVerif

UMLsec [113] Low Graphic, object, be-
haviour, and secu-
rity oriented

Manually formalized
at backend

Depending
on the
backend

Depending on
the backend

UML/SPIN [56] Medium Graphic, object and
behaviour oriented

LTL formulas, man-
ually formalized at
backend

Automated Counterexamples
provided at
backend

AORDD [89] Low Graphic, object, be-
haviour, and secu-
rity oriented

OCL formulas, no
patterns predefined

Automated UML violation
traces at fron-
tend

SecureMDD [138] Medium Graphic, object, be-
haviour, and secu-
rity oriented

Horn predicates
at backend, no
patterns predefined

Interactive Not supported

KAOS/FADES
[52],[99]

Medium+ Graphic and sym-
bolic, oriented by re-
quirements

Horn predicates log-
ics, no patterns pre-
defined

Interactive Not supported

SAM [100] Medium+ Graphic, object
oriented, state-
transition based

CTL and TCTL for-
mulas, no patterns
predefined

Automated Violation
sequences at
frontend

SecureTropos [132] Medium+ Graphic and sym-
bolic, oriented by
goals

Linear temporal log-
ics, no patterns pre-
defined

Automated Not supported

CC & PalME [215] Medium+ Graphic, object and
behaviour oriented

LTL and CTL for-
mulas, no patterns
predefined

Automated Violation
traces at
backend

CC & Z [140] High Symbolic, based on
Horn predicates

Based on Horn pred-
icates, formal tem-
plates available

Interactive Not supported

The usability of a modeling framework mostly depends upon its adaptation to the
engineering development process. Thus, complexity of modeling language should be
preferably low. Along with that, support for modeling typical concurrent systems and
security concerns is also necessary. The convenience of a modeling paradigm is not easy
to assess. On one side, graphic languages are more advantageous versus symbolic ones
since graphics may result more intuitive to learn. On the other side, develop graphical
models of huge specifications may be time consuming and model intuitiveness may be
vanished. In those cases, symbolic languages may be more advantageous. Also, having
predefined property patterns notably eases requirements modeling since designer is relieved
from defining security concepts. Fully automated verification is also worth having since
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proofs are speeded up and error risks decreased. Finally, by providing sequences showing
properties violation, the designer is guided through system re-modeling. As can be noticed
from table 3.5, no modeling framework covers all the criteria associated to usability.

3.3 Summary and Conclusions

In this chapter we have analyzed and evaluated several verification methodologies. The
evaluation mainly demonstrated their capabilities and limitations. The objective of the
analysis was three-fold: precise the methodological support to the engineering develop-
ment process, the security properties that can be verified, and the usability of modeling
frameworks. The analysis was conducted in order to identify to which extent verification
methodologies assist the development of secure-by-design embedded systems.

First, to provide a basis for the analysis, several methodologies targeting verification of
embedded systems were shown in section 3.1. To ease the survey, approaches were grouped
into seven categories according to their level of abstraction, approach orientation, and
pursued objectives. Afterwards, the support to the engineering development phases was
precised in subsection 3.2.1 based upon a refined scale of features. By doing that, the
advantages of MDE-based approaches were identified. MDE approaches exhibit many of
the features settled for evaluation. However, the fact that no standalone approach provides
all features imposes strong limitations. For instance, major modifications are required
for introducing security in a safety oriented approach. As can be noticed from table 3.2,
provided support is mainly focused on Design, Properties, Attacks, Formalization and
Verification stages. On the contrary, final stages like Results Coverage, Code Generation
and Integration, and Testing are barely or not addressed. Even if several approaches
have independently addressed mentioned subjects, further integration is needed so as to
harmonize those approaches with the engineering development process and in particular
with outcomes from the formal verification stage.

Pros and cons of each methodology were also summarized in table 3.3. As it is shown -
and to the best of our knowledge -, no methodology is suitable for conducting verification of
needed functional and non-functional requirements. More precisely, verification approaches
target either time and safety, or security properties but not all. As concluded in chapter
2, automotive embedded systems may be time, safety, and security critical. That is why,
a methodology for verification of those requirements - functional and non-functional - is
worth having but nonetheless still missing.

Three kinds of attacker paradigms were identified so far: abstract/implicit, specific,
and generic. The abstract/implicit paradigm assumes the presence of a hostile party
without explicitly declaring its capabilities, e.g., SHVT/SeMF [171]. Approaches based
upon this paradigm derive requirements as countermeasures against the imaginary attacker.
If required, the refinement of the abstract attacker entirely depends upon the designer what
demands certain experience, e.g., Common Criteria [3]. Since the attacker is abstracted,
certain difficulties for proving that a refined system is protected against a particular at-
tack may appear. The specific attacker paradigm is widely adopted by many MDE-based
approaches. This paradigm considers patterns of known attack cases that are modeled as
sequence diagrams. Thus, system protection strongly depends upon the available attack
cases, and upon their selection and adaptation into the target model. A major challenge of
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this paradigm is to ensure that protection against specific attack cases leads to required
overall system protection. The generic attacker paradigm mainly relies upon three concepts:
initial knowledge, methods, and composition rules. A generic attacker is able to generate
a space of attacks according to its three basic components. Approaches like ProVerif [54]
have relied in this paradigm to ensure sound proofs of security properties. Conduct proofs
of certain properties versus a space of attacks may result more adequate with respect to
real attacker capabilities, than proving versus specific or abstract attackers. Nevertheless,
formally specifying generic attackers is highly complex and further efforts are needed to
adequately capture real attacker capabilities.

The security properties addressed by verification methodologies were shown in section
3.2.3. As shown in table 3.4, many security properties still need to be supported, e.g.,
integrity, availability, and anonymity. Methodologies mainly focus on Authenticity and
Confidentiality what may be a countermeasure to the security threats signaled among
the most frequent and severe in mobile and embedded systems [134], [136]. Reviewed
methodologies also provide support for verification of controlled access, non-repudiation,
privacy, and freshness. Since no methodology covers all security properties, the use of
several frameworks may be needed to secure a system. These lacks of support are major
challenges to achieve effective systems protection, since current specifications impose a
wide variety of complex security requirements upon embedded systems - see for instance [20].

Finally, the usability of several modeling frameworks was evaluated. The usability of a
modeling framework was associated to several features like language complexity, support
for design and properties modeling, automation in verification, and aid for results analysis.
According to the results in table 3.5, no methodology fulfills all usability criteria. Even
so, several MDE-based approaches are a good reference to consider. UML-based languages
are in general low complex and adapted to the engineering phases. They also provide
good support for modeling concurrent systems. Provide templates for modeling security
properties strongly assist the verification of security. By introducing templates of security
properties, designers/engineers are relieved from formulate security concepts and thus, the
risk of introducing flawy definitions is reduced. Unfortunately, many verification method-
ologies do not provide templates for representing security properties. This is an important
shortcoming that should still be addressed to improve framework usability.

Thus, according to previous findings, next conclusions are stated:

1. Adequate conception, verification, and implementation of security/safety
critical embedded systems demands a methodology adopting a global view
and capable of supporting all stages of the engineering development pro-
cess.

2. Methodological lacks have been identified mainly for final phases of the en-
gineering development process - see section 3.2. More precisely, in attack
coverage assessment - what ensures security protection -, code generation
and integration - what may alter verified properties -, and tests conducted
upon the final implementation, - what finally ensures required properties.
Even if many state-of-the-art approaches target mentioned phases, fur-
ther work is needed to integrate those approaches into the development
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process. In particular, to harmonize them with the formal verification
stage.

3. Development of critical embedded systems demands verification method-
ologies and frameworks suitable for time, safety, and security analyses. A
such methodological support has not been provided from the same frame-
work.

4. Currently, verification methodologies mainly support verification of Au-
thenticity and Confidentiality. Other properties separately addressed are
controlled access, non-repudiation, and privacy. Further work is needed
to support verification of the landscape of security properties from the
same framework.

5. The usability of modeling frameworks still needs to be improved so as to
ease the integration of formal techniques into the engineering development
process. In particular, the introduction of templates for modeling security
properties is worth having.

A new methodology should consider current approaches to exploit their capabilities.
Along with taking benefits of MDE environments, rigorousness of formal theories, and
advances in securing systems, the envisaged methodology should also fulfill identified
methodological lacks. According to our analysis, a such global view methodology shall
improve security in embedded systems.
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Chapter 4

Proposed Methodology for Verifying
Safety and Security Critical
Embedded Systems

This chapter shows a methodology for assisting the development of safety and security
critical embedded systems. The proposal adopts a global view pursuing adequate support
to all stages of the engineering development process. By doing that, the methodological
lacks identified in section 3.2 are progressively addressed. The methodology relies upon
several approaches that are accordingly reused or integrated. Particular attention is put on
the capabilities for verifying security properties, and the usability of the modeling framework.

The proposal relies upon a methodology named Avatar. Avatar is MDE-based and
supports several stages of the engineering development process. It was originally conceived
with a SysML modeling profile appropriate for temporal and safety analyses [64]. The
Avatar profile was later extended to support verification of security properties [159]. Among
others, Avatar provides several UML means to support requirements structuring, threats
analysis, system analysis, and design modeling. These and other facilities are integrated
and implemented within an open source toolkit named TTool [9]. Along with methodolog-
ical support, TTool automates verification of properties exploiting capabilities of formal
backends like UPPAAL [211] and ProVerif [2].

This chapter describes the whole methodology and the contributions addressing issues
highlighted in section 3.3. The chapter is structured as follows. Section 4.1 summarizes the
contributions and provides an overview of proposed methodology. Afterwards, methodology
stages are introduced in section 4.2. Each subsection shows a stage by providing its
justification (rationale), a description, and related issues. Some conclusions are addressed
in last section 4.3.

4.1 Contributions and Methodology Overview

This section presents the overall methodology and respective contributions. The method-
ology addresses all stages of the engineering development process and ranges from early
system analyses up to code generation and testing in a target platform. This global view
approach is adopted in order to overcome problematic issues stated in section 3.3. The main
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goal of the methodology is to prove that a final implementation fulfills certain requirements.
Also, the methodology is mainly focused on verifying security requirements since they
provide protection against threats. It is recalled that poorly protected applications can be
exploited by attackers what may endanger human beings safety, economy, authority, and
privacy - see conclusions in section 2.4.

The contributions are first summarized below:

Subsection 4.2.4: Conceptual support for requirements specification . Since the
methodology targets verification of both functional and non-functional requirements -
and in particular security ones - a general approach for conceptualizing requirements is
proposed. As concluded in section 2.4, embedded applications may be time, safety, and
security critical. However, certain methodological lacks for supporting both functional
and non-functional analyses from the same framework are identified - see section 3.3.
Thus, a semantics for functional and non-functional requirements conceptualization is
proposed. Along with that a method for eliciting security requirements is provided.

Subsection 4.2.6: Formalization of the Avatar modeling profile and transforma-
tion to underlying backend . An inconvenience of several verification methodologies
is that system or requirements should be formally modeled by the designer. Formal
languages may be complex-to-use for non-experimented users. In addition, they are
not adapted to conduct certain phases of the engineering development process, e.g.,
system analysis. On the contrary, the Avatar methodology relies upon standard
languages like UML and SysML. Since those languages are semi-formal, they are not
adequate to conduct formal proofs. Thus, the Avatar modeling framework has been
translated to a formal framework what provides support for verification of properties.
The contribution consists in endowing the modeling profile with a formal semantics
and in specifying a transformation into ProVerif [2]. Endowing Avatar designs with
a formal semantics at a high level provides a mean for proving equivalence between
semantics. Since the modeling framework is also translated into UPPAAL, certain
model features should be preserved in both operational semantics, e.g., reachability.
This contribution endows Avatar framework with a formal semantics without compro-
mising framework usability - see section 3.2.3. The contribution is further described
in chapter 5.

Subsection 4.2.7: Draft of procedure for attack coverage assessment . As con-
cluded in section 3.2, methodological support is needed in order to effectively assess
applications protection. A post verification analysis is proposed for assessing verified,
satisfied, and non-satisfied properties. The analysis helps to precise to which extent
verified requirements help to ensure attack prevention, i.e., attack coverage. A draft
of a procedure for assessment of verification results is provided.

Subsection 4.2.9: Harmonization of application testing with formal verification .
The automatic generation of code from models is addressed in several approaches,
e.g., [27]. The question about how to generate code adapted to the target platform
without modifying the code generator or integrating handmade code is a research
topic [209], [27]. In our approach, it is assumed that a model is an abstraction of
the system that may not include low level details like calls to lower layers, crypto
algorithms, etc. Thus a stage named code adaptation is considered in order to adapt
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generated code to be executed in a target platform. This process may change the
semantics of generated code and thus the properties verified from the model. Along
with that, code operation is dependent upon other modules like HW/SW drivers,
OS, middleware. Thus, outcomes from formal verification should be validated on
the final implementation. To provide evidence that final code is operational and
satisfies imposed requirements, a procedure for testing is introduced. Testing stage
considers verified and non-verified requirements as well as the attacks that the system
is intended to prevent. The stage is thus aligned with the outcomes from formal
verification. Tests are not usually addressed by verification methodologies - see table
3.2 - since formal proofs and tests are considered as exclusive stages. In our approach,
platform testing is applied to ensure that properties formally verified in a model are
truly endowed to the real system.

A flow chart of the methodology is presented in figure 4.1, as a reference. As can be
seen, the methodology is conceptualized in three sequential and iterative phases - enclosed
by dashed rectangles:

Analysis and Design: This initial phase comprises identification of system threats, early
elicitation of requirements, and initial conception and modeling of the system. The
phase can be started at any of analysis stages, i.e., requirements, threats, or system
analysis. These stages are critical, since they settle what the system should be and
how to achieve it with respect to a given specification. As concluded in section 2.4,
early consideration of requirements improves system conception and development. In
particular, security architectures should be conceived with respect to the attacks they
have to prevent. Threats analysis stage comprises a risk analysis that helps designer
on assessing the tradeoff between attack impact and attacker resources, opportunities,
and motivations [169]. The respective outcomes provide means for attack evaluation
and categorization. A first model of the system, and a set of properties to be verified
are the main outputs from this phase. Analysis and Design phase is performed at a
high level relying upon SysML Avatar.

Verification: Verification phase comprises system and properties modeling, respective
formal proofs, and post-verification analyses. A main concern in this phase is the
integration of formal techniques into the engineering development process. Formal
proofs provide evidence about properties fulfillment. After verification, the achieved
protection is precised in the coverage assessment stage. Fulfilled properties and
respective attack protection determine the extent of verification results. It is considered
that proofs of certain properties may not be covered, e.g., due to lack of techniques
or time. This shortcoming is addressed by next stages of the methodology. To speed
up verification phase, model proofs are automated. Even so, the risk of combinatory
explosion still exists. Avatar modeling framework is adequate to abstract models so
as to deal with that possibility. The main outputs of this phase are a verified model
of the system, a map of requirements fulfillment, and respective attack prevention.
Verification is automatically conducted from the Avatar framework relying upon
underlying formal backends.

Implementation and Tests: This phase comprises automatic generation of code from
models, adaptation of the code to be executed in a target platform, and testing.
Verified models are used to generate code and provide a final implementation of
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Figure 4.1: Avatar Methodology Flow Chart
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the system. A stage for adapting the code to the target platform is considered.
Adaptations partially justify a testing stage where operability and system requirements
are finally proved. Avatar framework already supports code generation. However, code
adaptation and test stages should still be further developed. Even so, methodological
support is provided in order to accomplish this phase.

As can be noticed, methodological support is addressed for the whole engineering
development process. Methodology stages are further detailed in next section.

4.2 Methodology Description

4.2.1 Threats Analysis

Rationale

As concluded in section 2.4, introducing security as an afterthought has not yet provided
required protection in automotive embedded systems. Exhibited vulnerabilities in vehicle
on-board systems have raised serious questions on protections efficacy [121]. The introduc-
tion of threats analyses at early stages of the system development process has been proposed
as a mean to undertake the problem [170]. We agree that, by performing early identification
of threats, the system is conceived as a preventive entity inside a hostile environment. Thus,
the assessment of the hostile mean is an important task for achieving effective systems
protection. Several works addressing threats modeling exist, they rely upon informal or
semiformal approaches, e.g., [170], [178]. However, methods for formally modeling threats
are usually oriented/biased to develop specific applications, e.g., web services [103]. We
consider that introducing formalization at early stages of the development process is not
adequate. Formal semantics are not adequate to conduct analyses that usually rely upon
plain-text specifications. Thus, Threats Analysis stage is conducted in an informal way
and relying upon existing approaches. This stage provides inputs used for requirements
structuring, system analysis and design.

The inputs received in this stage comprise - but are not limited to - a set of use cases or
a system specification. It is assumed that they specify a nominal system behaviour based
upon an underlying architecture, required services, and/or functions. Threats Analysis
should precise possible malicious interactions over architecture assets as well as their risks.
To do so, open borders between the system and its operation context are delimited. e.g.,
exposed/public links of a distributed system. Afterwards, the interactions over exposed parts
that may affect/modify/alter nominal system behaviour are identified, e.g., eavesdropping of
public channels. Entities and potential interactions that may deviate/alter nominal system
behaviour are named threats. Respectively, an attack is a specific sequence of actions that
diverts the system from its nominal behaviour provoking misbehaviour, fault, information
losses, disclosure, system damage, etc. - see the instance in subsection 2.3.3. The Threats
Analysis should provide evidence to support one of next conclusions:

C.1: The hostile context behaves in such a way that its influence to the system is negligible.
The system is threats immune if, for instance, threats impact is negligible or unfeasible,
e.g., when the tradeoff between attacker gain/resources makes attacks unrealistic.

C.2: The context behaves in such a way that its influence to the system may be severe.
The system is threats sensitive if the impact of possible attacks may compromise
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system behaviour, owners data, trustiness of service providers, makers authority,
owners/providers economy, or human being lives.

Thus, a security risk analysis of elicited threats should be conducted so as to prove
one of previous conclusions. By deriving C.1, the Threats Analysis stage may not be
further considered during the development process. On the contrary, if the analysis leads
to conclusion C.2, then the system is security sensitive and the Threats Analysis is taken
into account in other stages. Proposed Threats Analysis is shown in next subsection.

Stage Description

This subsection shows an approach to informally conduct Threats Analysis at a high level of
abstraction. The objective is three-fold: identify assets potentially targeted by attackers, as-
sociated threats that may lead to attacks, and categorize identified threats according to their
risks. We rely upon existing approaches to conduct this stage and no contribution is pursued.

Threats Analysis establishes borders between the system and its context. By doing
that, the system may be decomposed in several communicating components. The context
is defined by the active and passive elements interacting with system components via
exposed parts. Active elements rely on certain knowledge and behaviour capabilities. Their
capabilities are determined by operations or methods - e.g., compose a message -, external
actions - e.g., send/receive a message -, and overall procedures or directives - e.g., for
playing a role in a protocol. Thus, active elements depend upon knowledge and operation
rules. They are often referred as actors. The Threats Analysis is focused on two particular
actors: the ones that aim to exploit the system in order to gain some benefit, i.e., the
attackers. Secondly, in the actors that may be exploited by attackers to achieve pursued
objectives. They are named intermediaries, i.e., passive elements that react according to
attacker stimuli, e.g., a compromised road side facility.

Since the target system is described in use cases or in a system specification, assets
threatened by attackers can be identified. However, the methodology is an iterative process
and some of those assets may be introduced just after several cycles. Attacks are elicited by
specifying exposed parts of the system, targeted assets, and attacker capabilities. This task
strongly depends upon designer experience. Once identified, threats can be structured using
Attack Trees [200]. Representing threats and potential attacks via Attack Trees provides
next benefits:

a) Attack Trees ease traceability of attack nodes. They are suited to perform updates like
refinements or pruning due to modifications in the system specification. To certain
extent, graphical languages are intuitive and suited for the engineering development
process.

b) Attack Trees provide a hierarchical structure appropriate for modeling threats. To
certain extent, hierarchy, dependencies, and other associations are better modeled via
graphical languages.

c) The informal semantics allows modeling of all threats elements: attacker goals,
objectives, methods, intermediaries, restrictions, and targeted assets.
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An Attack Tree is a graph composed by nodes connected by edges. Each Attack Tree
has a single root node and edge loops are not allowed. The semantics of nodes changes
according to node hierarchy. The root node occupies the highest hierarchy and is labeled
with the overall goal pursued by the attacker. Several child nodes are set according to
possible means for accomplishing the attack. Subsequent child nodes specify methods,
procedures, or intermediaries that the attacker may use to achieve its goal. Finally, leaf
nodes specify threatened system assets and also the operation(s) performed by the attacker.
A sample of an Attack Tree is shown in figure 4.2. To assist the designer, Attack Trees
modeling is supported by Avatar and TTool [9].

Figure 4.2: Sample of Attack Tree showing its components

A security risk analysis is performed once security threats are identified. Several
approaches have been proposed to conduct qualitative and quantitative risk analyses for
embedded systems - see [222], [163]. They provide metrics and methods to categorize
attacks in terms of their impact, easyness, cost, likelihood, etc. So far, Attack Tree nodes
are characterized based upon the opportunities, resources, and motivations of the attacker
[169]. By assigning values to the nodes of the Attack Tree, several analyses can be conducted
so as to identify critical threats, i.e., those with a non-negligible impact and acceptable
feasibility for attackers [53]. These analyses help security designers to focus on relevant
threats and to settle countermeasures to protect the system. As stated in [53], creating
Attack Trees is “the basis of understanding” the security process. We rely upon approaches
like the one in [20] to conduct the security risk analysis.

Related Issues

Even if it is not precised before, Threats Analysis stage iterates with Requirements Struc-
turing and System Design stages - see figure 4.1. As discussed in [141], threats elicitation
strongly depends upon System Design, since attacks can be better identified once the
system has been analyzed and a first model is available. Conversely, modifications in the
System Design may change attacker opportunities what may lead to updates on Attack
Trees and security risks. Also, the security requirements to be fulfilled by the system are
elicited according to identified threats. Thus, a correlation exists between attacks, targeted
assets, and security requirements. Such correlation implies that a modification of Attack
Trees or security risks may lead to restructuring security requirements, or to modifications
in the System Design. As it is shown in figure 4.1, this iterative process may also lead to
modifications on system specification or use cases.
Attack Trees essentially provide a semantics for modeling system threats statically, since
dynamic characteristics of attackers like time or behavior are abstracted. Recently, ap-
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proaches like the Boolean logic Driven Markov Processes [162] have been used to introduce
dynamic features in Attack Trees. This kind of approaches provide fine grained semantics
to formally represent and evaluate system threats based upon parameters like time and
probability. Quantifications allow, for instance, to estimate how easy an attack would be or
for how long a security shield would resist. We consider that just referred formalisms can
complement our approach. Those computational and probabilistic threats models are not
yet considered in our work.

4.2.2 System Analysis

Rationale

Verification methodologies usually focus on proposing a modeling framework and on showing
its capabilities. Early phases in which the designer understands and abstracts a security
system specification are barely addressed - see evaluations in subsection 3.2.1. In particular,
in approaches targeting system and properties modeling at low level, e.g., [109]. System
specifications provide non exhaustive descriptions of system behaviour and features that
often require extensions or even corrections. Along with that, specifying the target system
is often part of the engineering development process. In some cases, specifications are
written in parallel with other development phases. Thus, system specifications may evolve
all along system development. That is why, means for understanding, analyzing, and
correcting embedded systems specifications have been increasingly considered from several
years ago, e.g., [117]. This System Analysis stage also pursues just referred objectives.
System Analysis is meant for translating specifications into a system model. Proposed stage
also allows early identification of inconsistencies and improvement of system conception.
The analysis relies upon known techniques and no contribution is pursued.

Use cases and specification are the basis for a first model of the system. Instead of
directly representing use cases and behaviours stated in the specification as a single system
model, they are first separately analyzed as concrete scenarios relying upon UML semantics.
By doing that, next advantages are identified:

a) Use cases and behaviours are separately modeled relying upon UML sequence diagrams
[10]. It provides a progressive understanding and translation of the specification into
a single system model.

c) Analyses are conducted so as to identify and correct inconsistencies from early stages.
Along with that, error scenarios can be identified and avoided. Correcting mistakes in
late stages of the development process is generally more costly and may be ineffective.
Addressing inconsistencies in analysis stages is suggested [229].

d) Proposed analysis is oriented to identify system vulnerabilities from early stages.
System Analysis can be thus performed in parallel with Threats Analysis. As shown
by other methodologies like [89] and [138], attack scenarios can be represented in UML.
By considering specific attack cases during analysis, threats and system vulnerabilities
can be better identified.

Stage Description

The system is analyzed in a non-exhaustive but representative way. This subsection shows
how to conduct System Analysis based upon the MDE approach and relying upon standard
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UML diagrams such as Use Case Diagrams, Interaction Overview Diagrams, and Sequence
Diagrams [10].

UML Use Case Diagrams are suitable for representing and analyzing overall system
specification. A Use Case Diagram allows separation between the system and its context
- see figure 4.3. By settling borders, system facilities and functionalities can be modeled.
Elements in the context are named users or actors. Thus, attackers modeling can also
be introduced. Each element within system’s border is a node representing a UML Use
Case. A Use Case node represents a specific scenario in which the system operates. The
nodes can be associated and hierarchically structured. Indeed, Use Case nodes can be
linked via inclusion - composition -, extension, and generalization relations [10]. Also, Use
Case Diagrams can be decomposed into aggregated functions and other composing objects.
These features are useful to refine Use Cases what helps in particular to identify attack
scenarios, system vulnerabilities, and foresee system protections.

Figure 4.3: Example of Use Case Diagram

A UML Sequence Diagram provides a fine grained view of interactions between users/
actors and system components. Each Use Case Diagram is defined through one or more
Sequence Diagrams. In Sequence Diagrams, every component of the system and actor
is associated to a progression line - see figure 4.4. The interactions between progres-
sion lines are represented by arrows. Thus, Use Cases are modeled as sequences of
synchronous/asynchronous messages, replays, function calls, callbacks, and timed events
according to the scenario. The control of sequences is made by loops and alternatives
declared in terms of boolean conditions. UML semantics is adequate for modeling message
losses, intervals, and actions/events on timers, e.g., timeouts. This refined view of the
Use Case is enriched if attackers are considered. Critical attacks identified in Threats
Analysis can be modeled and precised. New attacker opportunities and strategies may also
be revealed. UML sequences introduce a semantics upon which hostile actions can be better
analyzed, e.g., introducing time allows analysis of message replaying. The abstract attacker
may also exploit Error Cases, i.e., scenarios leading to wrong system status. The system
can be analyzed and conceived to avoid/deal with error scenarios and to prevent attacker
from exploiting them. An instance of a Sequence Diagram is presented in figure 4.4.

Related Issues

System analysis is a significant stage of the methodology. In particular, because external
entities interacting with the system are modeled. If a Threats Analysis is conducted, scenar-
ios in which an attacker intervenes can also be modeled. Contrary to other methodologies
that only rely upon specific attack cases - e.g., [89], [215] -, in our approach modeling
attack sequences is a complement to the global Threats Analysis shown in section 4.2.1.
Modeled attack scenarios refine the strategies represented in Attack Trees. In addition,
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Figure 4.4: Behaviour analysis using a Sequence Diagram

they are a basis to conduct security tests as it is described in section 4.2.9. It is recalled
that identification of attack scenarios strongly relies upon designer’s experience.

4.2.3 System Design

Rationale

Many verification methodologies propose a modeling framework based upon a formal
semantics - see section 3.2. Having a formal model is indeed necessary for conducting
proofs. However, formal languages may be complex-to-use and demand specialized skills,
e.g., in logics or mathematics. In addition, formal frameworks may not provide a semantics
oriented to model engineering concerns like security. Introducing missing constructs by hand
often increases model complexity and demand certain work, e.g., if time modeling is not
supported. Moreover, as concluded in section 3.3, letting the designer introduce security by
hand may significantly limit soundness of proofs. More particularly, if attacker or properties
modeling are simplified beyond appropriate circumstances. Consequently, rely upon a
formal framework to conduct System Design imposes limitations to non-experimented users
what compromises framework usability. On the contrary, MDE-based frameworks provide
graphical means for modeling that can undertake identified shortcomings. As shown in
section 3.2, UML/SysML-based approaches provide suitable support for many stages of the
engineering development process, including design. So far, the aspects to be addressed in
System Design stage are:

a) As shown in chapter 2, automotive embedded systems may be time, safety, and
security critical. Consequently, a design framework should be capable of modeling
constraints imposed by embedded systems like resources and time.

b) Since embedded systems must satisfy a wide variety of functional and non-functional
requirements, a design framework should be capable of modeling those requirements.

Stage Description

The target system is modeled in the Avatar design environment. Avatar provides a SysML-
based framework for embedded systems modeling. The profile reuses and extends several
stereotypes defined in SysML [8]. Along with a modeling framework, Avatar also provides
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an interface towards underlying verification backends. Next paragraphs present a brief
introduction to the modeling profile.

The Avatar modeling framework is mainly defined by the Avatar Block Diagram and the
Avatar State Machine Diagram. An Avatar Block inherits and reuses several features of the
standard SysML Block [8]. It is defined by a name and three list of elements: Attributes,
Methods, and Signals. Attributes are defined with predefined data types that store values
and also allow definition of timers. Methods represent functions that the system can call.
Blocks communication is realized via Signals that are sent over synchronous or asynchronous
ports. To model behaviour, an Avatar State Machine Diagram (SMD) is associated to
each Block. An Avatar SMD is composed by a set of states linked by directed transitions.
Transitions can be defined with a guard, two random time intervals, and assignations. A
guard imposes a boolean condition that must be satisfied before the transition can be
traversed. Time intervals endow transitions with time analysis capabilities. More precisely,
delays in which the Block activity is suspended or time spent by Block computations are
modeled by time intervals that last between fixed minimum and maximum bounds. Several
kind of state nodes are available, for instance timer setting, resetting, and expiration are
represented as action states. Signal sending and reception are also modeled by nodes
representing those events. Avatar Block Diagrams and SMDs are appropriate for modeling
real-time concurrent systems.

Since Avatar was originally conceived to conduct time and safety analyses [64], several
limitations for modeling security concerns were identified. Thus, Avatar was later extended
so as to cover security aspects [159], [160]. The Avatar approach pursues intuitive modeling,
support of real-time, safety, and security analyses, and improvement of framework usability.
To do so, proposed security extensions consider the system and a hostile context, i.e., a
model of threats. Thus, the notions of ‘private’ and ‘public’ are introduced. This semantics
allows specification of knowledge upon which an attacker relies for threatening the system.
The notion of initially shared knowledge allows to declare initial common values in Blocks
such as constants, private and public keys. Several predefined templates allow modeling of
crypto functions and rules of crypto mechanisms. A syntax for modeling security properties
is also available. Introduced features are meant to undertake limitations of the safety ori-
ented version of Avatar. Last but not least, the framework is supported by the open source
TTool [9]. An overview of the Avatar Design frontend is shown in figure 4.5. This view
includes the model of a microwave system composed by several Avatar Blocks. Notice that
tabs for Requirements, Attack Trees, and Analysis Diagrams can be seen at the background.
System Design stage provides a first design upon which proofs can be conducted.

Related Issues

System Design is developed upon Avatar, a SysML-based approach. The formalization and
translation of the Avatar Design framework to an underlying backend will be shown in
chapter 5. The transformation integrates formal techniques into the engineering development
process in a transparent way for the user what ensures framework usability. Avatar was
proposed and partially developed in the scope of an European project named E-safety
Vehicle Intrusion Protected Applications (EVITA) [77]. The Avatar Design framework was
applied for analysis, design, and verification of EVITA architecture specifications [77].
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Figure 4.5: Overview of the Avatar Design Framework
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4.2.4 Requirements Structuring

Rationale

Eliciting requirements is focused on what should be demanded in order to endow the system
with specified features. By accepting that what a system is depends upon what it fulfills,
and conversely, a correlation between System Design and Requirements Structuring stages
appears. Also, what the system must fulfill is settled according to its context. Thus,
previous correlation is extended to the Threats Analysis stage. Consequently, precising
what the system must fulfill is of utmost importance. Several methodologies have addressed
elicitation and structuring of requirements. As it is shown in section 3.2, approaches only
cover certain kind of requirements, e.g., either safety or security. For instance, KAOS [52] or
SecureTropos [132] are mainly oriented to elicit and structure security requirements. Even if
Tropos [210] covers other requirements than only security-related, it derives IT requirements
from an organizational perspective. Also, the requirements in KAOS, SecureTropos, and
Tropos should be specified as a combination of plaintext and formal languages what is
not adequate for our approach. The Common Criteria [3] provide a conceptual plaintext
reference that is only oriented to cover security in IT systems. We rely upon previous
approaches and others like [63], [104], [93] to propose a conceptual basis for specifying
functional and non-functional requirements. This is a contribution to the methodology. It
is a first draft for specifying from the same framework time, safety, and security requirements.

Requirements Structuring stage pursues next objectives. These are meant to provide a
conceptual framework adapted to the methodology:

a) Settle notions of functional and non-functional requirements and precise the concept
of security requirement.

b) Provide a method for identifying security requirements taking as inputs Threats
Analysis and System Design.

c) Structure requirements in a way that they can be refined and traced from Threats
Analysis and System Design.

d) Precise a set of requirements to be modeled and verified over the System Design.

Even if other steps like documentation of requirements specification are involved, the
contribution is mainly focused in previous subjects. Next subsections show how pursued
objectives are addressed. In particular, some criteria for classification of functional and
non-functional requirements are given.

Requirement

The terms “functional” and “non-functional” have been used assuming prior notions. However,
to conduct this stage those notions need to be precised. Thus, a definition of requirement
is first provided:

Definition 1 Requirement
A Requirement is a plain-text sentence including the following semantical entities:

Goal : Describes the rationale of the requirement, the goal or objective that should/must be accom-
plished.
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Elements : The elements of the system or its context participating in goal fulfillment, e.g., active
or passive elements, system components, assets, mechanisms, functions, facilities, etc.

Conditions : The conditions or constraints that referred Elements should/must satisfy in order
to accomplish the goal, e.g., conditions or constraints on data, time, order, events, actions,
status, relationships, etc.

Conclusions : The conditions or constraints that certain Elements should/must fulfill proving that
the goal is effectively achieved.

A Requirement settles a pattern that associates an informal goal with a logical rule of
the form “if Conditions then Conclusions”. The rest of definitions in this section are based
upon previous definition.

Functional Requirement

According to [93], a broad consensus exists on the meaning of functional requirement. A
functional requirement associates a stimuli with a expected system response [93]. The
concept is adapted to definition 1 and precised as follows:

Definition 2 Functional Requirement
A Requirement is a Functional Requirement (FR) if its semantics is as follows:

Goal : Specifies a behaviour to be accomplished by a system. Behaviour is specified in terms of
stimuli/response associations or in terms of conditions over system actions.

Elements : Subset of the system performing a function or providing a service like functions,
mechanisms, components, facilities, subsystem, or even the overall system.

Conditions : Determined by the stimuli that should be given to considered Elements. Stimuli may
not only refer to data but to the overall circumstances.

Conclusions : Determined by the response that concerned Elements should provide. Response may
not only refer to data but to the reaction that the system should/must accomplish.

Non-Functional Requirement

As stated in [93], it is difficult to have a consensus on a definition for non-functional
requirements. Here, a taxonomy that provides a separation between domains is presented.
This taxonomy is adequate for the proposed methodology. In order to define the taxonomy,
three levels of evaluation of a System Design are introduced (see figure 4.6):

Functional: The most basic level of evaluation relies upon Functional Requirements (see
definition 2). The target system is evaluated with respect to specified stimuli/response
associations. The evaluation is focused on what the system should do according to
predefined stimuli/response relationships.

Performance: The second level of evaluation introduces scales for measuring variables or
parameters - e.g., time, speed, throughput, consumption, complexity - and methods
to conduct measurements. The evaluation is focused on determining how the system
should behave with respect to predefined bounds or thresholds.

Context-Based: In the third level of evaluation, the context inside of which the system
behaves is considered. Such context is active and capable of interact with the system.
To evaluate the system with respect to those interactions, several qualities are settled
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as well as methods for assessing them. Thus, the evaluation takes into account who
interacts with the system and how those interactions should/must be, with respect to
predefined qualities.

Figure 4.6: Requirements are associated to evaluation levels

According to introduced evaluation levels, definitions for performance and context-based
Requirements are provided:

Definition 3 Performance Requirement
A Performance Requirement is a Requirement made in the scope of a system performance
evaluation and thus it relies upon next semantics:
Goal : It imposes conditions over a variable to be measured.

Elements : The variables, system parameters, and respective elements upon which measurements
depend.

Conditions : A set of conditions to be satisfied for the measurement method be applied.

Conclusions : The values that the variable should/must take in terms of an interval, threshold or
constraint.

Definition 4 Context-Based Requirement
A Context-Based Requirement is a Requirement made in the scope of a context-based system
evaluation and thus it adopts the following semantics:
Goal : Precise and impose conditions upon a defined quality that the system should/must have.

Elements : The quality, the elements of the system and its context upon which the quality assessment
method depends.

Conditions : A set of conditions that should be satisfied for the assessment method can be applied.

Conclusions : The results that the assessment method should/must provide showing that the quality
is satisfied.

Based upon previous definitions, a statement for non-functional requirements is provided:

Definition 5 Non-Functional Requirement (NFR)
A Non-Functional Requirement is either a Performance Requirement or a Context-Based
Requirement according to definitions 3 and 4, respectively.

Since security requirements can be functional and non-functional two definitions are
provided:

Definition 6 Non-Functional Security Requirement (NFSR)
A Non-functional Security Requirement is a Context-Based Requirement whose semantics
includes attackers among its set of Elements - see subsection 4.2.1. Among others, qualities
belonging to Non-functional Security Requirements domain are: Authenticity, Confidentiality,
Integrity, Freshness, Availability, Non-Repudiation, Privacy. The definitions of security
qualities and respective assessment methods are considered as predefined.
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Definition 7 Functional Security Requirement (FSR)
A Functional Security Requirement is a Functional Requirement according to definition 2
whose rule ‘Conditions imply Conclusions’ is meant to ensure/enforce a security aspect or
quality of the system.

Definition 8 Safety Requirement
A Safety Requirement is either a FR or a NFR according to definitions 2 and 5, respec-
tively, whose rule ‘Conditions imply Conclusions’ is meant to avoid a circumstance that
compromises nominal system operation, i.e., errors, failures, or accidental damages.

Note 1 Scope of Safety Requirements
The semantics of a Safety Requirement may not consider intentional hostile interactions
but they are not excluded.

Stage Description

A method for deriving Security Requirements from Threats Analysis and System Design is
shown. Afterwards, elicited Security Requirements are structured and refined. This method
is a contribution to the methodology.

As shown in Threats Analysis in subsection 4.2.1, a set of Attack Trees was elicited.
Leaves in Attack Trees represent attacks targeting a specific system asset. The path of
nodes from a leaf node up to the root node defines a possible attack strategy. In order to
prevent the attack, a set of Security Requirements is derived. Each Security Requirement
takes into account:

a) The elements of the system (assets) targeted by the attacker.

b) The procedures performed by the attacker to achieve an attack and respective
interactions with the system.

c) The qualities that the system should/must have so as to prevent the attack.

To elicit a Security Requirement, three steps are followed: one concerned with Attack
Trees, a second one concerned with System Design, and a third one to finally specify the
Requirement:

Step 1: Each Attack Tree node can be associated to one or more Security Requirements.
Security qualities are requested to the system so as to prevent attacks described in
nodes, e.g., authenticity. To associate a security quality to an Attack Tree node, its
respective leaf nodes should be evaluated - see figure 4.7. Each path of attack nodes
may include attacker objectives, methods, actions, and specific system assets, i.e., an
strategy. The designer should provide evidence showing that the security quality is
necessary to prevent the attack strategy.

Step 2: For each quality imposed to the system, threatened elements in the System Design
are identified, e.g., the components inside an Avatar Block Diagram representing
exposed assets - see figure 4.7. By doing that, the designer is able to precise system
elements accessible to the attacker and compromising the quality, e.g., a public
channel. The designer should provide evidence showing that the set of demanded
qualities is sufficient so as to prevent attack strategy.
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Step 3: Elicited Security Requirements are specified as follows: the Goal of the require-
ment is stated in terms of an attack and required quality necessary to prevent it.
The Elements involved in the requirement come from steps 1 and 2. The set of
Conditions depend upon quality definition, the method for quality assessment, and
the characteristics of System Design - identified in previous steps. The Conclusions
settle the circumstances showing that the quality is satisfied.

Figure 4.7: Identifying Security Requirements

Once a Requirement - FSR or NFSR - has been specified, a refinement process is
initiated. The refinement pursues next objectives:

a) Provide a set of fine-grained requirements close to the vocabulary used in security qualities
and/or system design.

b) Derive a set of refined Requirements to be verified over the system model.

c) Provide a structure to associate Requirements with Threats Analysis and System Design
stages. Such association establishes links between requirements, attacks, and system assets,
i.e, a structure for traceability.

Structuring of Requirements is supported by Avatar Requirements Diagram (AvatarRD).
AvatarRDs are UML based and are composed by nodes representing Requirements. Require-
ment nodes are associated using directed links endowed with a semantics. A Composition
association establishes a relation between a parent Requirement node and a set of composing
nodes. All child nodes must be satisfied for the parent requirement be fulfilled. A deriveReqt
associates an origin Requirement with a derived one. A Refine edge associates a coarse
Requirement with a child Requirement having a more fine grained semantics, closer to
qualities semantics and vocabulary. Finally, the Verify association establishes a link between
a leaf requirement and a property to be verified over the system model. Thus, by refining
Requirements, a set of properties to be verified is elicited. Requirements are structured
as a tree - see figure 4.8 - with a single root Requirement, and sequences of Requirements
from leaf nodes up to the root node named paths.

Related Issues

Requirements Structuring outputs a refined set of Requirements to be verified over the
System Design. Proposed method for eliciting Security Requirements assumes that each
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Figure 4.8: Excerpt of an Avatar Requirement Diagram

security quality and assessment method are already defined. Moreover, evidence about
sufficient and necessary Requirements to prevent attacks completely depends upon designer
skills. Several iterations may be necessary for achieving a first set of verifiable requirements.
Iterations may also lead to refinements in Threats Analysis and System Design models. As
long as Security Requirements are refined, dependencies with other NFRs or FRs may arise.
Dependencies between Requirements is an interesting topic that is nonetheless out of scope.

4.2.5 Properties Modeling

Rationale

A Property is a model of a refined Requirement that can be verified over the system model.
Since Requirements mostly remain in plaintext, their format is not adequate to conduct
formal proofs. This stage provides some semantics for modeling Requirements. As shown in
section 3.2.3, many methodologies have relied on formal languages to model requirements,
e.g., LTL, CTL, TCTL. However, formal modeling demands skills on logics. In addition, if
no property patterns are predefined, modeling may result high complex what compromises
framework usability - see section 3.2.3. Finally, as shown in 3.2.2, no methodology is
suitable to verify time, safety, and security properties, as it is required by current critical
embedded systems - see section 2.4. This stage proposes means to overcome just referred
shortcomings. Properties modeling is performed based upon existing approaches and no
contribution is pursued. The main objectives are:

• Provide MDE-based semantics suitable for Requirements modeling.

• Provide a framework suitable for modeling FRs and NFRs, including Security Re-
quirements, as they are defined in subsection 4.2.4.

The taxonomy presented in subsection 4.2.4 provides a basis to address pursued objec-
tives.

Stage Description

Three MDE-based semantics for modeling Requirements are shown. The Temporal Property
Expression Language (TEPE) [64] is mainly introduced for modeling time, attributes, and
event based constraints. The pragmas semantics supports representation of Requirements
in a text-based form. Since pragmas depend upon pre-defined qualities, they are suited
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Figure 4.9: Instance of a property modeled in TEPE framework. It states that whenever the
Attribute “remainingTime” takes the value 0, the Signal “ringBell” must always eventually
be received.

for Security Requirements modeling. Finally, Observers rely upon a logics appropriate for
modeling both FRs and NFRs. Properties are modeled and adapted to the system model
made in System Design stage - see subsection 4.2.3.

Modeling Properties in TEPE

TEPE is a SysML language suitable for modeling time, attributes, and event based prop-
erties [64]. TEPE extends Parametric Diagrams [8] with a semantics similar to CTL.
Properties in TEPE are modeled by imposing constraints over Attributes and Signals
defined in Avatar Block Diagrams - see subsection 4.2.3. Three kind of operators are
available according to the subject of verification: Attribute, Signal, and Property-based
operators.

Attribute-based operators are meant for setting Block Attributes. In addition, con-
straints over Attributes can be defined. Attribute-based properties are satisfied/unsatisfied
with respect to their constraints. Signal-based operators define conditions over sets of
Signals. A Logical Constraint (LC) operates over a couple of disjoint sets of Signals respec-
tively defining correct and wrong behaviour. The LC operator requires that all signals from
the correct behaviour set are observed for the property to be satisfied. In addition, if any of
the wrong behaviour signals is observed between the occurrence of the first and last correct
signals, then the property is not fulfilled. The Logical Sequence (LS) operator has a similar
semantics as the LC operator. The LS operator additionally requires that signals from the
correct set behaviour are observed in a given order for the property to be satisfied. The
last Signal-based operator is the Temporal Constraint (TC). A TC settles conditions upon
reception/occurrence time of one or two Signals and the outcome from another property
operator. Conditions are settled with respect to a minimum and a maximum time bounds.
Based upon six possible semantics - see [64] -, the TC declares the conditions for the
property to be satisfied. All these Property-based operators can be composed via logical
“and”/“or”. Logical operators also introduce a verification constraint that sets whether
the property must be satisfied at least one time (reachability), must be always eventually
satisfied (liveness), or must never happen (safety). An instance of a property modeled in
TEPE is shown in figure 4.9.
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TEPE mainly supports modeling of time and safety related FRs and NFRs. Also,
TEPE provides a semantics for modeling ordered and unordered sequences of events, and
logical composition of properties. Nevertheless, many Context-Based Requirements might
not be easily modeled. For instance, Non-Functional Security Requirements depend upon
predefined security qualities and assessment methods that are not in the scope of TEPE
language. Next subsection shows how to address this shortcoming.

Modeling Properties as Pragmas

As stated in section 4.2.4, NFSRs depend upon the notion of pre-defined security qualities
and methods for quality assessment. Once security qualities and assessment methods are
already defined and formalized, Security Properties can be modeled relying on text-based
Pragmas.
Consider next definition as a quality instance and assume that the assessment method for
proving it is already defined:

Authenticity: The quality involves, at least, two entities exchanging information via
channels. One entity outputs a piece of information (i.e., a message) to a channel
whilst the other one inputs the piece from another channel. The quality is satisfied if
and only if whenever the input entity validates/believes that the piece of information
comes from certain entity, it truly comes from that entity.

Security Requirements can be modeled by parameterizing qualities. Afterwards, param-
eter values can be instantiated according to the System Design model. The parameters
involved in the Authenticity quality are:

i) An entity that outputs a message

ii) The entity that inputs a message

iii) The events signaling and output or input message

iv) The channels and their characteristics

v) The circumstances under which the property is verified, e.g., with respect to time, bounded/
unbounded scheme, etc.

vi) The assessment method for verifying the quality

Even if iv), v) and vi) are considered as parameters of the quality, they can be settled
and managed at backend level, e.g., within the verification engine. Thus, Authenticity can
be parameterized based upon i), ii) and iii). The representation of qualities as Pragmas
relies upon a syntax. For Authenticity, it is as follows:

• #Authenticity Bo.Eo.mo Bd.Ed.md

Bo and Bd are the names of the Avatar Blocks in the System Design playing the role
of sender and receiver, respectively. Accordingly, Eo and Ed are the state events signaling
message output and input. Finally, mo and md represent the messages sent/received by
respective Blocks.

Pragmas are a refined way of modeling NFSRs. The complexity of qualities is hidden to
the designer, since only parameters need to be instantiated. Moreover, complexity of proofs
is solved by assessment methods - i.e., algorithms - that can be automated at the backend.
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Modeling Properties with Observers

Observer semantics is mostly based upon the language of the system modeling framework.
An Observer is an entity whose operational semantics is non intrusive. The Observer is
sensed to know system components status, but should not disrupt system operation beyond
that.

Observers are modeled according to the semantics provided in definition 1. A Require-
ment is an association between a Goal and a rule of the form If Conditions then Conclusions.
The rule states the Conditions for the Requirement be fulfilled whereas the Conclusions
state facts proving Goal accomplishment.

An Observer is defined as an Avatar Block - see System Design 4.2.3 - that separates
its Attributes and Signals in two sets. One set corresponds to Attributes and Signals
carrying sufficient information so as to evaluate Requirement Conditions. The second set
corresponds to Attributes and Signals sufficient so as to verify Conclusions. Thus, an
Observer should be able to receive Attributes and Signals within Conditions set, evaluate
them, and determine whether the Requirement can be proved. Afterwards, if Conditions are
fulfilled, the Observer should be capable of receive Attributes and Signals from Conclusions
set, evaluate them, and determine whether the Goal is accomplished or not. Whenever the
goal is accomplished, the Observer status comes back to its original state waiting for input
from Conditions set. Otherwise, the Observer should enter to an error state showing Goal
non-fulfillment. Thus, modeled properties can be simply disproved by verifying error state
reachability.

Related Issues

Modeling FRs and NFRs provides a set of Properties to be verified over the system model.
TEPE, Pragmas, and Observers semantics are SysML based what eases integration into
the engineering development process. The complexity of formal properties is managed
by underlying backends where proofs are finally conducted. Due to the relation between
FRs and NFRs with associated properties, the terms Functional Property (FP) and Non-
Functional Property (NFP) are respectively introduced. Similarly for the terms Functional
Security Property (FSP) and Non-Functional Security Property (NFSP).

4.2.6 Formalization and Verification

Rationale

Previous stages are performed at a high level of abstraction and relying upon MDE-oriented
semantics like UML and Avatar what improves framework usability - see section 3.2.3.
However, Avatar semantics is semiformal and not adequate to conduct formal proofs. To
introduce a formal techniques without compromising framework usability, the modeling
profile is first endowed with a formal semantics and then transformed to a formal backend
where proofs are finally conducted. It relieves designers from dealing with formal notations
and proofs. Also, the designer is assisted in tasks that may be highly time consuming and,
due to its complexity, prone to error.

As can be seen from section 4.2.4, the semantics of FSRs, NFSRs, and Safety Require-
ments can be quite heterogeneous. To our knowledge no approach supports verification of
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time, safety, and security properties from the same framework - see conclusions in section 3.3.
This stage proposes an appropriate solution to overcome mentioned difficulty. An overview
of proposed verification process for proving (disproving) Safety and Security Requirements
is presented in next subsection. A contribution is made in the scope of this stage and is
thoroughly described in chapter 5

Stage Description

This stage takes the System Design and a set of Properties to be verified as inputs. Instead
of directly translating System and Properties languages to a formal backend, they are first
endowed with a formal semantics. By formally representing modeling languages, appropriate
correspondences between informal and formal semantics are settled at high level. It also
provides flexibility since, once formalized, modeling languages can be translated to several
underlying formal backends to exploit their capabilities - see figure 4.10. System modeling
and also properties modeling languages are formalized, i.e., TEPE, Pragmas, and Observers
- see section 4.2.5.

Once modeling framework is endowed with a formal semantics, a formal backend is
selected in order to perform a transformation. Since the semantics of FPs and NFPs as well
as the methods for proving properties are quite heterogeneous, several underlying formal
backends are targeted. The goal is to harmonize Property semantics with capabilities of
formal backends - see figure 4.10. As shown in section 3.2, UPPAAL [109] and ProVerif [2]
have been respectively used to verify time and safety, and security properties in concurrent
systems. Thus, the operational semantics of Avatar is adapted to UPPAAL and ProVerif
semantics.

Figure 4.10: Scheme showing Avatar Formalization and Translation

Avatar models can be translated into UPPAAL as a network of synchronized automata
whereas Properties as CTL queries [183]. However, several shortcomings were identified in
UPPAAL for verification of security properties. In particular, attacker model needs to be
defined by the designer and introduced simplifications to avoid state explosion may strongly
limit the extent of proofs. That is why, Security Properties are verified in ProVerif.

ProVerif provides a formal backend where methods for quality assessment are already
automated via a resolution algorithm [54]. Another main advantage of ProVerif is that
proofs are conducted based upon a generic and formally defined attacker. Thus, designer
is relieved from modeling it. Two security qualities are currently supported by ProVerif:
Confidentiality and Authenticity. Further descriptions on ProVerif can be found in the annex
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A. We contribute to formalize and transform Avatar modeling profile towards ProVerif.
This contribution is thoroughly described in chapter 5.

Related Issues

Verification of Security Properties depends upon Threats Analysis stage - see subsection
4.2.1. A major concern is the correspondence between the informal threats model and the
attacker model defined in ProVerif. Up to now, both approaches have been harmonized
according to ProVerif capabilities. Nonetheless, further extensions are necessary so as to
cover other security properties, e.g., by translating Avatar to other formal backends - see
figure 4.10. The correspondence between Avatar and other backend semantics should be
proved in order to ensure consistency. For instance, some model features must be equivalent
in both UPPAAL and ProVerif, e.g., reachability. Proofs of features equivalence between
backend semantics are imperative so as to ensure approach correctness.

4.2.7 Coverage Assessment

Rationale

As shown in section 3.2, a lack of support for post-verification analyses was identified.
Indeed, verification methodologies mainly address support for modeling and verification.
Along with properties fulfillment, ensuring attack protection is also a primary concern.
As concluded in section 2.4, current vehicle embedded systems are still vulnerable to
attacks. To improve security of embedded applications, the extent of fulfilled requirements
and prevented attacks should be carefully precised. This post-verification analysis pushes
designer to assess Requirements and also attacks coverage.
Some of the elicited Properties may not be verified, e.g., due to lack of support or because
the risk of the associated attacks is negligible. However, Properties associated to critical risk
threats may depend upon non-verified properties. Along with that, semantical differences
between informal and formal models (system, properties, and attacks) impose a need for
thorough analysis of verification outcomes. Just mentioned aspects justify this Coverage
Assessment stage.

Among the factors that may provoke partial accomplishment of verification are:

a) Highly complex verification of properties, i.e., beyond available time and resources.

b) Limitations in formal verification backends, e.g., security properties not supported.

c) Only critical Properties are targeted in verification, i.e., Properties associated to
negligible risk threats are left out.

This stage proposes a method for assessing the extent of verification results. The
analyses should consider highlighted issues and properly assess Requirements and Attack
Trees coverage. This stage is a contribution to the methodology.

Stage Description

The stage follows two sequential phases:

• Requirements Coverage: The goal of the analysis is to provide evidence of fulfilled
Requirements and takes Requirements Structuring and verified Properties as inputs.
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• Attacks Coverage: The goal of the analysis is to provide evidence of prevented
attacks based upon Attack Trees and verified Properties. Attack Coverage analysis is
performed only if Threats Analysis stage was performed.

Coverage Assessment takes a set of verified Properties as input. First, it is determined
the extent of Requirements fulfillment according to verified Properties. Secondly, it is
determined the extent of prevented Attacks with respect to fulfilled Properties. To perform
the first phase, a bottom-up analysis is conducted on Avatar Requirement Diagrams -
see section 4.2.4. Each satisfied Property leads to a path of Requirement nodes that
eventually reaches the root node, i.e., the global Requirement - see left arrows in figure
4.11. Requirement paths should be analyzed so as to precise the coverage of the global
Requirement. The designer should provide evidence that justifies fulfillment level. Thus,
some criteria should be introduced to categorize full, partial, and no Requirement coverage.
The scale can be refined according to the specific instance. Once a leaf node is categorized,
the coverage of upper Requirements depends upon the semantics of the parent node and
respective association link. Some aspects to consider for settling Requirement coverage
criteria are:

• Verification weaknesses. If a formal method for proving a security quality has limita-
tions, the impact of those shortcomings on verified Properties should be considered.

• Differences in semantics The correspondence between the formal semantics of verified
Properties and the informal semantics of the associated Requirements is reviewed.

• Modeling assumptions/simplifications. The impact of assumptions and model simplifi-
cations on verified Properties is analyzed.

• Exceptions. The scenarios or circumstances in which the Property is not covered by
verification outcomes.

• Extent of results. The designer analyzes to which extent the results in verification
truly cover the Requirement.

Once the first phase is accomplished, it is recalled that global Requirements are derived
as a countermeasure to an Attack Tree node - see figure 4.7. To perform the second phase,
a top-down analysis is conducted on respective Attack Tree. To determine assets protection,
the relation between the global Requirement node and respective system assets is recalled.
The method for Requirements Structuring shown in section 4.2.4 elicits global Requirements
in terms of threatened system assets. Thus, the designer can assess to which extent an
attack strategy is prevented by respective Requirement. The right arrows in figure 4.11
show two attack strategies, i.e., two paths from a Attack Tree node towards leaf nodes.
Some aspects to consider in attack coverage analysis are:

• Global Requirement coverage. The coverage of the global Requirement node impacts
the degree of protection against an attack method or strategy.

• Dependencies with other Requirements. Several global Requirements may have been
settled for preventing an attack strategy. The coverage of those Requirements should
be considered in order to assess attack prevention.

• Intermediary Attack Tree nodes. The impact of non-fully covered Requirements on
intermediary Attack Tree nodes should be evaluated.
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Figure 4.11: Scheme showing attack coverage assessment

• Assets protection. The degree of assets protection against concrete attacker actions is
of utmost importance. The coverage depends upon Properties associated to system
assets and concerned leaf attack nodes - see figure 4.11.

Since this is a contribution to the methodology, the procedure is applied to a study case
in chapter 6.

Related Issues

Coverage Assessment is performed in two phases: one for assessing Requirements coverage
and the second one for assessing Attack Trees coverage. Requirements coverage analysis
demands criteria for qualifying to which extent fulfilled leaf Properties ensure root Re-
quirement. Analogously, Attack Trees coverage analysis demands criteria for assessing to
which extent an attack strategy is prevented and system assets protected. Some aspects
for eliciting those criteria were presented. However, the heterogeneity of Requirements
and Attack Tree semantics make it difficult to settle criteria in advance. The outcomes
of this stage show whether the System Design is acceptable or not. As depicted in figure
4.1, if results are not adequate, an iterative process begins up to achieve an acceptable
System Design. The proposed coverage assessment method has been partially applied in
the EVITA project [18].

4.2.8 Code Generation and Adaptation

Rationale

Several verification methodologies target generation of code from models. As shown in
section 3.2, UML/SysML-based environments offer several facilities for code generation,
e.g., [138], [154], [36], [105]. The main goal is to generate code endowed with the Properties
already verified on the system model. Thus, a method for transforming model semantics into
a programming language should be settled. By defining such a method, utility of models
is extended to automatically deploy the embedded system. Code Generation is a relevant
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stage intended to reduce coding time and improve software quality [98]. Deployment tasks
may be time-consuming and error-prone when they are manually conducted [27].

In our approach, the technical objectives of Code Generation are as follows:

a) Provide a consistent mapping between System Design semantics and a programming
language.

b) Resolve issues introduced in modeling like concurrence, random choices, synchroniza-
tion, and high level of abstraction.

c) Automate generation of executable code so as to reduce handmade adaptations.

The problem of generating code adapted to target platforms without modifying the
generator or introducing handmade code is a research topic [209]. Generally, a gap exists
between the level of abstraction of a system model and executable code. In particular,
because several abstractions are made when complex systems are modeled and verified,
e.g., due to lack of information in the specification or to avoid the state explosion problem.
On the contrary, prototyping code for a specific platform requires to introduce low level
details usually hidden in modeling, e.g., OS, libraries, processor type, etc. Along with that,
adaptations in generated code may be necessary so as to:

• Introduce data structures and functions not modeled in the system, e.g., auxiliary
buffers.

• Redefine functions by adding parameters abstracted during modeling, e.g., parameters
in calls to HW modules.

• Redefine functions by adding function calls abstracted during modeling, e.g., data
serializing/deserializing, cryptographic functions.

• Introduce programming libraries, e.g., related to underlying OS.

• Resolve indeterminisms in random choices and other modeling abstractions.

As stated in [122], just referred adaptations can be introduced in the system model, prior
to Code Generation. Nonetheless, resulting model may be complex and not appropriate
to conduct Formal Verification anymore. Since the methodology is an iterative process,
that choice is not an appropriate option. Indeed, a model that can not be formally verified
anymore impedes the nominal continuation of iterations as considered by the Methodology
- see figure 4.1. Thus, a stage to introduce handmade code is proposed and named Code
Adaptation. The objective of Code Adaptation is two-fold: introduce low level details
in generated code whilst verified properties are still preserved, and adapt generated code
for being tested in a host platform. Next subsection presents an overview of proposed
Code Generation and Adaptation stages. The stages are conducted based upon existing
approaches and no contribution is pursued.

Stage Description

This subsection provides an overview of Code Generation and Adaptation stages relying
upon the Avatar design framework - see subsection 4.2.3.
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Code Generation is supported by TTool [9] and is performed as follows [122]. An Avatar
System Design is mapped to standard C/POSIX. C/POSIX contains libraries supporting
multi-threads, access protection for critical areas, and threads synchronization. The main
component in an Avatar System Design is the Block - see subsection 4.2.3. Each Avatar Block
is translated to a couple of .c, .h files where respective SMD’s behaviour is coded as a thread.
The translation of SMD elements like Guards and Assignations in Transitions is quite direct.
Indeed, Guards are translated as conditionals whereas Assignations involving Attributes are
accordingly coded as assignations in C/POSIX. Avatar Methods are respectively translated
as function calls. On the contrary, the translation of random time intervals, i.e., after and
computeFor, is not so straightforward. In order to associate code to time intervals, and to
synchronous/asynchronous Block messages, a set of Avatar libraries is settled. Libraries
define the Avatar run-time environment capable of storing communication requests from
Blocks, and supporting mutex and variable conditions required in process synchronization
[122]. This feature is necessary to adequately implement exchanges over synchronous and
asynchronous Avatar port connectors. One process per Block and execution parameters like
scheduling policy are declared within the main.c file. The main file initializes all processes,
waits until their termination, and finishes overall execution. The main file also describes
how the threads are mapped on processors.

It is assumed that after performing refinements/modifications in the system model,
it always remains verifiable. This is an appropriate assumption to preserve the iterative
nature of the Methodology. To initiate Code Adaptation, a cross compiler is first generated
according to the target platform, e.g., a gcc-based cross-compiler for a 32-bit PowerPC. Low
level details are introduced in the code so as to achieve cross-compilation and execution.
Some directives to conduct Code Adaptation are listed:

1. All exchanges in distributed applications are modeled and verified so as to avoid
handmade adaptation, e.g., exchanges over public channels.

2. Exclusive access is required whenever shared variables are introduced, e.g., auxiliary
buffers read from several modules.

3. Only auxiliary data structures are added in functions. Any choice is defined over
introduced data.

4. Introduced function calls allow the application to continue its nominal operation.

5. Added libraries and respective functions should be reliable.

6. Functions or code solving indeterminisms - e.g., cryptographic functions - should be
reliable, i.e., already verified or tested.

Once the code has been adapted to the target platform, it can be cross-compiled
and linked to required libraries and OS as a single executable file. As explained in [122],
C/POSIX code from Avatar model, the Avatar runtime library, and the OS MutekH [126]
are cross-compiled all together. The binary file of the embedded application can be finally
executed into the target host platform or simulated upon a virtual prototyping environment.
For instance, the framework SoCLib [192] supports emulation of several multi-processor
architectures. The code can be simulated upon a variety of virtual processors like MIPS,
PowerPC, ARM, Sparc [192]. Code Adaptation stage should produce an operational
implementation of the system design suitable to conduct tests.
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Related Issues

The Adaptation Stage is meant to introduce handmade code to the automatically generated
code from models. Several concerns should be solved in order to store, trace, and reuse
handmade code during methodology iterations. A proposal is made to support those
tasks. It consists of a modeling layer introduced to manage handmade. Proposed layer
would provide an interface upon which the designer can integrate, store, trace, and reuse
handmade code. Since the proposal needs to be elaborated, such interface has not been yet
implemented.
Even if Code Adaptation aims to preserve nominal system behaviour and features, the goal
may not be achieved. In fact, proposed directives to guide Code Adaptation do not ensure
preservation of system properties. Thus, Platform Tests are envisaged so as to provide
evidence of final system features.

4.2.9 Platform Tests

Related Work

A wide variety of approaches target application testing. As described in [225], several
techniques are known for conducting tests, e.g., Software Analysis, Behaviour Based Testing,
Penetration Testing. The general objective is to validate the conformity of the application
with respect to specified requirements. In the blackbox paradigm, the generation of testing
vectors and routines that provide such evidence is the main concern.

The approach in [177] is focused on validating system robustness and the test vectors
are generated from models with and without faults. Unfortunately, test of security concerns
is not covered and modeling is formally conducted what is not adapted to our MDE-based
approach. The work in [131] has similarities with our Methodology. System components
and behaviour are modeled in UML whereas formal verification is conducted in Event B
[44]. Even if automated generation of test cases is provided by the Conformiq Tool [214],
handmade adaptations are needed for adjusting test code to the system under test. Other
approaches supporting both formal verification and tests are [115], [59]. In [115], a formal
model of the code under test is first built in the automata semantics. Required properties
are represented in CTL and verified in a model checker. Test cases are defined by injecting
CTL formulas that make the model checker yield violation traces. Those traces are used as a
reference to define test cases. The work in [59] provides algorithms for automatic generation
of safety-test cases from system and properties models. The system, properties, and test
cases are represented as automata. The Test automata are translated to an implementation
that probes the system as a blackbox. These two approaches ([115], [59]) may be useful
to address model-based testing in our Methodology, since the formal semantics endowed
to Avatar Security Environment (AvatarSE) is also an automata. The approach in [219]
proposes generation of test cases based upon predefined script patterns. The designer
should select and adapt a script pattern according to a test scenario or requirement. It is
claimed that re-usability of predefined scripts reduces the time and effort demanded in test
cases development. Also, validation of time-based requirements is supported. All above
referred approaches only cover safety-based testing.

Two recent approaches addressing security-based testing are [218] and [69]. The approach
in [218] proposes system modeling and verification in the Z language [175]. Security
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properties are modeled as theorems. A method is provided to re-write set operators and
quantifiers in theorems for increasing coverage of the test space. Test cases are generated
either randomly or by setting conditions for the theorems to be true or false. Verification
and test generation are supported by the ZBSAT tool. The approach has been applied for
experimental testing of data confidentiality and integrity according to the Chinese Wall
policy. The work in [69] presents an approach to generate test cases from a formal threats
model. System threats are represented as Petri Nets [142]. The nets are the basis for
generation of attack traces which are later translated as test code. The algorithms for
traces generation and traces-to-implementation mapping are provided. The effectiveness
of the approach has been evaluated by testing two web-based applications according to
the STRIDE model. It is claimed that dynamical testing has resulted more effective for
discovering vulnerabilities than static analysis. These security oriented testing approaches
depend upon a formal semantics.

Rationale

The existing testing approaches are a good reference for developing our Testing stage.
Pros and cons have been identified so as to propose a testing procedure adapted to our
Methodology. As can be noticed from the related work, testing approaches are either safety
or security oriented. Also, the test generators usually depend upon formal models. However,
our Methodology is MDE-oriented and formal techniques have been integrated trying to
improve framework usability. Support for verification of safety and security Properties from
the same framework has been also provided. Thus, we estimate more convenient reuse the
conceptual support introduced in analysis and verification rather than integrating a new
approach.

As shown in section 3.2, application testing is not usually addressed by verification
approaches. In our methodology, along with formal verification, an application testing stage
is considered. The main reasons for introducing a testing stage are:

• The adaptation of code described in previous section 4.2.8 may compromise the
preservation of Properties verified over the system model.

• As mentioned in subsection 4.2.7, some properties may not be verified in the model.
The code automatically generated from the model inherits its features.

• The conformity between the formal semantics of models and the - informal - program-
ming language should be tested.

• Testing has been an effective and conclusive mean for discovering security vulnerabili-
ties [121].

In order to ensure that the final implementation is endowed with required features,
a Platform Tests stage is introduced. Tests should provide evidence showing whether
the implementation truly fulfills Requirements specification (time, safety, and security
Requirements). The objectives pursued in this stage are precised below:

a) Provide means for evaluating FRs and NFRs over a system application and in
particular FSRs and NFSRs.

b) Provide evidence of system protection against threats - see subsection 4.2.1.
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c) Provide means for automatically conducting tests cases at different levels of evaluation,
e.g., attack tests.

d) Achieve exploration of system parameters domain inside and outside specification.

e) Settling a testing environment to perform tests according to previous objectives.

Tests results are evaluated by the designer according to observed operability, strongnesses,
and weaknesses. It is finally decided whether the code is ready to be delivered or further
Methodology iterations are needed - see figure 4.1. Testing Platform stage is a contribution
to the methodology and is described in next subsection.

Stage Description

A method for conducting dynamical tests is proposed. Two ways of conducting Platform
Tests are pursued:

Model Based Testing: Test cases, routines, and results evaluation are respectively settled
and conducted from the System Design framework.

Platform Based Testing: Test cases, routines, and results evaluation are respectively
settled and conducted relying upon a testing environment specifically deployed for
the host platform.

Further work is required to integrate Model Based Testing in our Methodology. That is
why only the Platform Based procedure is presented. The stage is conducted following a
blackbox approach. This is meant to reduce modifications in the code, what eases traceabil-
ity of handmade adaptations. It also provides a testing framework adequate for introducing
the evaluation levels defined in Requirements Structuring - see subsection 4.2.4. First,
the system under test is associated with Threats Analysis and Requirements Structuring
models - see figure 4.12.

Figure 4.12: Mapping of the correlation between Threats, Requirements, and System Design
to the system under test

By doing that, respective Requirement and Attack Trees diagrams are associated with
the system under test. Thus, the Requirements that the system must fulfill and the
attacks that should be prevented can be associated with respective platform assets. Test
cases are derived from Requirements and Threats models. The method reuses definitions
introduced in section 4.2.4 and is depicted in figure 4.13. It is recalled that Requirements
were elicited from Attack Trees and a System Design. As can be seen from figure 4.13,
the global Requirement NFSR1 demands mutual authenticity between ECU1 and ECU2
what prevents impersonation attacks. The global Requirement is composed by two nodes
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Figure 4.13: Deriving test cases from Requirements and Threats

that demand authenticity with respect to ECU1 and ECU2. Method steps are applied on
refined nodes as follows.

1.Rules Analysis. Each leaf Requirement is analyzed so as to extract its rule ‘Conditions
imply Conclusions ’. The rules are written in plaintext form. Set operators, quantifiers,
parameters, and system elements within ‘Conditions’ and ‘Conclusions’ should be
identified.

2.Conditions Negation. Once rules ‘Conditions imply Conclusions ’ have been extracted,
the ‘Conditions’ of the rule are negated. Negated ‘Conditions’ are used to elicit
circumstances/conditions outside of nominal specification.

3. Conclusions Negation. The ‘Conclusions ’ in the extracted rule are negated. Negated
facts are used to elicit circumstances/conditions that may contradict the rule and
show system inconsistencies or even vulnerabilities. It is based on the fact that if
P ⇒ C then ¬C&P is a contradiction.

4.Conformance Test Cases. Tests cases are elaborated for probing system conformity
based upon rules Analysis. The stimuli that should be provided to the system under
test comes from ‘Conditions’. The expected response is derived from ‘Conclusions’.
Conformance Test Cases are plaintext written and can be modeled in UML Sequence
Diagrams - see subsection 4.2.2.

5.Robustness Test Cases. To validate the robustness of the system, tests cases are
elaborated based upon negated Conditions from step 2. Robustness Test Cases are in
plaintext form and can be modeled in UML Sequence Diagrams. It is expected that
after performing a Robustness Test Case, the system under test should continue its
nominal operational.

6. Attack Test Cases. To prove system protection against attacks, test cases are elabo-
rated based upon negated ‘Conclusions’ from step 3 and also from strategies repre-
sented in Attack Trees. It is expected that after performing an Attack Test Case, the
system under test should be able to identify and prevent the attack.
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7.UML Attack Sequences. The attack sequences modeled during System Analysis - see
subsection 4.2.2 - are introduced in the set of possible Test Cases.

8.Test Cases Coding. Test Cases are selected and coded according to the system under
test and the target platform. Techniques like uniform parameter domain sampling
and fuzzing can be used to fast explore testing domain.

9.Test Routines Coding. A test routine is meant to automatically execute one or more
test cases. Also, it is intended to evaluate outcomes from the system under test and
determine non-conformities, system weaknesses and vulnerabilities.

10.Test Execution & Evaluation. Test Routines are automatically executed on the
system under test. Since routines are meant to evaluate results, they should continue
their normal execution unless a non-conformity, system weakness or vulnerability is
identified.

Notice that previous method relies upon the definition of Requirement - see definition
1 - and can be applied in particular to FSRs and NFSRs. The system can be tested
at Functional, Performance, and Context-Based levels as they are defined in subsection
4.2.4. Several levels of granularity can be also explored at each level according to involved
Elements, e.g., a function or facility, a component of the system, or the overall system.

Tests targeting FSRs conformity

The system is initially tested according to specified stimuli/response associations, i.e.,
with respect to imposed FSRs. Functional security testing is later extended for proving
other capabilities. As shown in figure 4.14, tests can go beyond and stress the system with
parameters outside of specification.

Figure 4.14: System under black box testing

To test whether the system fulfills a FSR, a routine of test cases is accordingly defined
and automatically executed. Each test case takes into account the structure and semantics
of the FSR, i.e., its Goal, involved system Elements, as well as the associated rule Conditions
imply Conclusions. For FSRs, Conditions correspond to the stimuli that should be provided
to the system whereas Conclusions are the expected system response. Test routines can be
enriched by introducing several kind of test cases, e.g., combining tests with parameters
inside and outside of specification, different levels of granularity, etc. To do so, fuzzing
function parameters can be applied. Results evaluation is performed according to next
definitions:

System Correctness: Both the stimuli provided to the target system and the correspond-
ing response are as specified.
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System Inconsistency: The target system receives a stimuli inside specification but the
response is not as specified.

System Robustness: When a stimuli outside of specification is received, the system
continues its nominal operation on other test cases.

Tests targeting NFSRs conformity

To conduct tests targeting NFSRs an analogous approach is followed. However other
aspects need to be considered. In particular, Non-Functional Security Requirements
depend upon the definition of security qualities and respective assessment methods - see
definition 6. Moreover, Security Requirements are formally verified with respect to a
Threats Model. Thus, an attacker should also be introduced in security test cases. The
testing environment emulates attacker strategies as they are declared in Attack Trees. Thus,
intervene, alter, inject, replay, and corrupt exchanges in open channels are among the testing
attacker capabilities. The attack Sequence Diagrams modeled during System Analysis - see
subsection 4.2.2 - are also a basis to define test cases. As in Formal Verification stage, the
evaluation of security test cases also involves quality assessment methods. Testing results
should be accordingly analyzed so as to identify system vulnerabilities. Along with the
definitions introduced for evaluation of tests targeting FSRs, evaluation of NFSRs is also
based upon next definitions:

System Vulnerability: When a sequence of hostile actions or attack routine is performed,
the system is unable to identify and prevent it.

System Protection: The target system is able to identify and react as specified when a
sequence of hostile actions or attack routine is performed.

As it is shown in [121], settling a security testing environment is not a minor issue.

Related Issues

A drawback of Platform Based Testing is that the testing environment depends upon the
host platform and coded Test Cases may not be easily reusable. On the contrary, Model
Based Testing overcomes that shortcoming. Nonetheless, defining test cases in the System
Design may increase models complexity. As suggested in [219], the definition of basic script
patterns may be a suitable option to achieve reusable Test Code.

Platform Tests may not be exhaustive. Even so, test cases along with automatic execu-
tion of routines should provide enough evidence of system features. To do so, criteria for
adequately covering the testing space should be first stated. Improve support for security
tests cases is envisaged, however further work is needed so as to deploy the approach and
experiment.

Platform Based tests have been conducted in the scope of the EVITA project [77]. This
is a contribution to the methodology and an instance is shown in chapter 6.
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4.3 Conclusions

In this chapter we have proposed a global view Methodology to assist the design of critical
embedded systems. The Methodology is an iterative process and was conceived to provide
support for all stages of the engineering development process. In particular, to cover aspects
that are not usually addressed by formal verification methodologies. As concluded in
section 3.3, methodological lacks were identified in the usability of modeling frameworks,
in assessing the extent of formal verification results, and in introducing a testing stage to
validate the implementation. The conformity of a final implementation with respect to
time, safety, and security requirements is mainly pursued.

The Methodology relies upon several existing approaches. In particular, it is based upon
the Avatar methodology and its toolkit support TTool [9]. Other state-of-the-art approaches
are also re-used and accordingly referenced. It is highlighted that the contributions are
only focused in certain stages and aspects of the global Methodology. The rest of stages
and aspects help to address and explain the contributions but no authorship is claimed
out of the aspects mentioned in section 4.1.

The definitions introduced for Requirements Structuring provide an adequate basis
for requirements specification and elicitation. This conceptual support is also re-used in
Platform Testing. The procedure for requirements and attack coverage assessment precises
the extent of verification results with respect to fulfilled Requirements and prevented
Attacks. This analysis provides a map of covered/uncovered aspects as well as levels of
fulfillment what finally shows up achieved protection. The integration of formal techniques
into the engineering development process mainly depends upon the SysML profile Avatar,
its extension to cover security concerns - AvatarSE -, and the transformation into ProVerif
[2] where security proofs are conducted. Time, safety, and security analyses are partially
supported. Along with support for more security properties, further work is needed to
prove that integration of formal techniques into the Avatar framework is well founded. This
aspect is further addressed in chapter 5. Since formal verification is seen as an intermediary
mean and not as a conclusive stage of the Methodology, Platform Tests are introduced in
order to probe implementation conformity. Testing stage is inspired by several existing
approaches and harmonized with previous stages. Test cases targeting NFSRs still need
to be deployed and the coverage of the test space analyzed. The Methodology has been
partially applied to secure embedded system specifications in the scope of an automotive
project [77].

The Methodology is still in evolution and several aspects need to be addressed for
consolidating it. In particular, several stages need to be refined and other case studies
analyzed. This work is necessary to prove approach feasibility, better identify limitations,
and accordingly propose improvements. Implement toolkit facilities for better assisting
Methodology application is also a future work. The challenges for integration of safety
and security from the same framework are thoroughly presented in chapter 5. The main
contribution is also explained in that chapter.
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Chapter 5

Assisted Design with Avatar

Introducing a formal semantics to conduct modeling and verification may compromise the
usability of a framework - see subsection 3.2.3. In fact, formal languages may be complex
to use and not adapted to several phases of the engineering development process, e.g.,
threats or requirements analysis. The Generic Formal Theories - as they were classified in
subsection 3.1.1 - do not address proofs of security concerns. Introducing formal techniques
into the time constrained SW development process may impose important difficulties. To
undertake previous shortcomings and improve framework usability, model design should
be assisted and adapted to the engineering development process. Since handmade formal
proofs may be highly complex, time consuming, and prone to error, automated verification
is worth having.
The MDE philosophy aims to ease and exploit models in order to improve systems design
and implementations [5]. UML profiles [10] follow the MDE paradigm and have become
standards widely known by engineering and scientific communities. The SysML, an exten-
sion of the UML standard, was specifically conceived for system specification, modeling,
and analysis [190]. As embedded applications become more complex, more elaborated
analyses should be carried out. The introduction of technology like the ITS exposes embed-
ded systems to non-negligible security threats [121]. As shown in chapter 2, automotive
embedded systems may be time, safety, and security critical. Thus, modeling frameworks
should evolve to better assist designers on developing systems as required.

This chapter presents an extension of the SysML profile that undertakes identified
issues. The extension is made upon the Avatar profile briefly introduced in section 4.2.3.
The modeling framework is not a contribution to the Methodology proposed in chapter 4.
However, an overview is presented in next section 5.1 in order to ease chapter lecture. The
Avatar profile initially supports verification of time and safety properties [64]. Avatar is
afterwards extended so as to support security analyses [159]. To do so, profile limitations
are identified and afterwards proposed extensions for overcoming them are shown in section
5.2. As concluded in section 3.2.3, automation of verification improves framework usability.
Thus, translation of the Avatar profile towards underlying formal backends is addressed.
To provide more flexibility, the Avatar framework is first formally specified. By doing
that, consistent translation to several formal backends is achieved that allows exploiting
capabilities of several backends. Section 5.3 shows formal specification of the Avatar profile,
proposed security extensions, and the Avatar-to-ProVerif translation. The limitations of
the contribution and conclusions come in last section 5.4.
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5.1 The Avatar Design Framework: An Overview

This section shows an overview of the Avatar profile as initially conceived for time and safety
oriented analyses. First, the metamodels that specify the profile are shown. Afterwards, an
overview of the framework supporting the profile is exposed. The extensions proposed in
next section 5.2 are introduced with respect to elements described in this one.

The Avatar Design Framework is methodically extended as follows. First, a model
capturing Avatar profile components is developed, i.e., the Avatar metamodel. By providing
the metamodel of Avatar, it is conceptualized in a semi-formal way what eases further
work on it. The metamodel is a basis for UML based extensions, formalizations, and
transformations. Thus, defining the Avatar metamodel is an adequate step prior to settle a
verification scheme, as it is described in the Methodology - see subsection 4.2.6. The Avatar
metamodel is a contribution to the Methodology useful to propose security extensions, to
ease formalization, and transformation to underlying formal backends. The metamodel
plays a significant role in integrating formal techniques into the engineering development
process.

5.1.1 Avatar Design Metamodel

The following paragraphs briefly introduce the Avatar metamodels illustrated in figures 5.1
and 5.2. Subsections 5.1.1.1 and 5.1.1.2 respectively present more detailed descriptions.

The Avatar profile was conceived to ease modeling and analysis of real time concurrent
systems. It reuses and extends several stereotypes of the SysML profile [8]. In Avatar,
SW or HW components can be represented by an extension of the standard SysML Block
named Avatar Block - see figure 5.1. An Avatar Block establishes a logical border delimiting
the component and its features. Values stored in Attributes can be exchanged between
Blocks via Ports and respective Interfaces and Signals. A main Avatar add-on is its Port
that extends the SysML standard Port by allowing Synchronous and Asynchronous com-
munication patterns. The profile also supports user-defined data types that depend upon
standard boolean or integer types. Additionally, Avatar provides a data type for declaration
of Timers. The behaviour of each Avatar Block is captured in an extension of the standard
SysML SMD, i.e., an Avatar SMD.

An Avatar SMD is mainly composed by Behaviour Nodes and Transitions - see figure
5.2. Along with States, an Avatar SMD supports data exchanges between Blocks via
Send and Receive Signal Nodes. Dedicated nodes are also available for modeling Timer
actions. More precisely, Timer Setting, Resetting, and Expiration are available. Aiming
to optimize the profile, the set of Avatar modeling elements is kept as reduced as possible.
Thus, many SysML stereotypes, like “History Nodes”, are not considered. Transitions
between Nodes are endowed with Guards, i.e., boolean conditions over Block Attributes.
Additionally, two random time intervals are available for modeling delays and time spent
by computations. The SMD semantics endows Avatar with real-time analysis capabilities.
In particular, it can be proved whether time constraints are satisfied, the order of events
occurrence, or reachability of states. Simulation and verification may help to identify
undesirable behaviours, like livelocks or deadlocks, adequately fix timer settings, and change
computation time bounds.
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Figure 5.1: Avatar Block Diagram Metamodel
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5.1.1.1 Block Metamodel Components

The metamodel in this subsection shows stereotypes composing an Avatar Block Diagram.
In addition, associations and dependencies between those stereotypes are expressed. The
Avatar Block is motivated by the need of intuitive and flexible means for modeling system
components at different levels of abstraction. And by the need of hierarchically structuring
components in the way SW/HW artifacts are specified. As shown in section 2.2, embedded
systems have a modular, multilayer, heterogeneous architecture. The following paragraphs
describe the means offered by the Avatar Block diagram to ease their modeling.

The structure of an Avatar Block is almost inherited from its standard SysML counter-
part. The Avatar Block stereotype considers that components can be modeled relying upon
three kind of features: knowledge, functions, and communication. In Avatar, knowledge is
captured in Block Attributes and supported by several data types whereas functions are rep-
resented via Block Methods. Declared Signals finally establish communication capabilities.
Two basic communication modes are considered: synchronous and asynchronous. Relying
upon basic modes, several communication policies can be modeled, e.g., priority-based
policies. Thus, the Avatar Block Diagram provides a set of basic modeling means upon
which complex HW/SW artifacts can be abstracted.

The stereotypes presented in figure 5.1 are described in line. Note that quotation marks
are used to differentiate between elements defined in SysML or UML standards, and the
ones of the Avatar profile.

AvatarBlockDiagram: Is an extension of the meta-class “Model” specified in UML [10]
that partially inherits the features of the stereotype. An AvatarBlockDiagram provides
elements to model system components as SysML “Blocks”.

AvatarBlock: Is an extension of the object “Block” specified in SysML [8]. The Avatar-
Block inherits several characteristics from “Block” like operations, values and prop-
erties. The AvatarBlock also extends standard “Block” definition by including com-
partments for other SysML constructs, like “SendSignal” and “ReceiveSignal”. Avatar-
Blocks model system components and are defined with Attributes, Methods and
Input and Output Signals. In addition, AvatarBlocks can also be nested what allows
a hierarchical structure. However, nested AvatarBlocks do not inherit attributes of
parent blocks.

AvatarAttribute: It is an abstract stereotype that inherits features of “Attribute” in the
standard UML class - as defined in [10]. The AvatarAttribute generalizes the four
types defined in Avatar: BooleanAttribute, IntegerAttribute, TimerAttribute and
UserDefinedAttribute.

BooleanAttribute: Instantiates standard boolean data types. It has a name and a
boolean value. True and false are equivalent to 0 and 1 values, respectively.

IntegerAttribute: Instantiates standard integer data types. It has a name and an integer
type.

UserDefinedAttribute: Instantiates user defined data types. It has a name and a
reference to an already user-defined data type.
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TimerAttribute: Instantiates an Avatar Timer and is defined by a name. Once a Timer
is set about, it counts from 0 up to a given positive threshold. Then, the timer expires.
A Timer can be reset at any time by a resetting action - see next subsection 5.1.1.2.

AvatarSignal: It partially inherits features from the UML “Signal” specified in [10]. In-
coming and outgoing AvatarSignals specify required and offered services, respectively.
The stereotype allows attribute exchanges across AvatarBlock borders. Exchanged
attributes are written as a list of parameters which rely upon defined data types.

AvatarMethod: Their features are inherited from the standard “Operation” specified in
UML[10]. AvatarMethods declare operations that an AvatarBlock can perform. An
AvatarMethod may accept one or more attributes represented as a list of parameters.
It may also include a return data type.

AvatarPort: An AvatarBlock includes a set of AvatarPorts. An AvatarPort provides an
extension to the standard “Port” defined in SysML [8] and partially inherits its features.
In addition, it is an abstract stereotype that generalizes and supports synchronous
and asynchronous exchanges between AvatarBlocks.

SynchronousPort: Output signals over a synchronous port wait until the target Avatar-
Block is ready to accept the incoming exchange. It is an extension of the UML
standard “Port” that can exchange signals based upon a broadcast policy.

AsynchronousPort: It is an extension to the UML standard “Port”. Output signals over
an asynchronous port write values - carried upon data types - on a buffer that can
be asynchronously read by the target AvatarBlock. The stereotype allows setting of
buffer properties like its size, whether it is blocking on read or whether data losses
may happen.

AvatarInterface: As for SysML “Port”, an AvatarPort provides an interface on which
required and offered signals are launched. The semantics of the AvatarInterface is
inherited from the SysML “Interface” specified in [8].

AvatarSMD: Is an extension of the meta-class “StateMachine” specified in SysML [8].
It partially inherits the features of such stereotype, e.g., history “PseudoStates” are
not supported by AvatarSMD. The behaviour of an AvatarBlock is represented using
the AvatarSMD stereotype. The AvatarSMD profile is further described in next
subsection.

AvatarComposition: Partially inherits the structure of the standard UML “Composi-
tion” specified in [10]. It defines a composition relation between AvatarBlocks but
multiplicity is not supported, i.e., each AvatarBlock models only a single instance.

AvatarPortConnector: Inherited from the UML meta-class “Connector” [10], the Avatar-
PortConnector is an abstract stereotype to support associations between offered/required
AvatarSignals. AvatarBlocks linked by this connector exchange compatible signals
relying upon the same communicating policy (either synchronous or asynchronous).

SynchronousPortConnector: The stereotype represents a connection between two dif-
ferent instances of synchronous ports. Only associations between compatible in-
put/output AvatarSignals are allowed.
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AsynchronousPortConnector: Represents a connection between two different instances
of asynchronous ports. Only associations between compatible input/output AvatarSig-
nals are allowed.

Table 5.1 presents an association between aspects addressed in embedded systems
modeling - see section 1.2 - and introduced Avatar constructs.

Table 5.1: Aspects in embedded systems addressed by Avatar Block
stereotypes

Embedded System Aspect Introduced Avatar Stereotype(s)
Time constraints modeling TimerAttribute
Resources constraints modeling AvatarAttribute, BooleanAttribute, Inte-

gerAttribute, UserDefinedAttribute
Modular, multilayer, heterogeneous ar-
chitecture modeling

AvatarBlockDiagram, AvatarBlock, Avatar-
Composition, AvatarSMD, AvatarMethod

Communication mechanisms modeling AvatarSignal, AvatarPort, AvatarInter-
face, SynchronousPort, AsynchronousPort,
AvatarPortConnector, SynchronousPort-
Connector, AsynchronousPortConnector

5.1.1.2 SMD Metamodel Components

Behaviour is a capability of system components. The SMD attached to an Avatar Block is
meant for capturing it. The metamodel presented in this subsection describes the elements
upon which an Avatar SMD relies. The choice of SMDs for capturing behaviour relies on
two facts. First, the behaviour of targeted systems depends upon provided inputs and the
current state of the system. SMDs are indeed a suitable mean for modeling sequential
systems. Secondly, formal techniques need to be integrated to conduct proofs and get sound
results. Since formalization of SMDs and translation to underlying formal frameworks
is quite straightforward, the SMD is a good candidate with regard to formalization and
verification objectives. SMD semantics can be translated for instance to timed automata
[109] or Algebra of Communicating Processes (ACP)s [43]. As explained in following
paragraphs, Avatar SMD provides means for abstracting component behaviour.

The elements composing the AvatarSMD profile are described in line and shown in
figure 5.2. Quotation marks are used to differentiate between elements from SysML or
UML specifications and those from Avatar extensions.

AvatarBehaviourNode: Is an abstract stereotype that represents all nodes defined in
Avatar SMDs. An AvatarBehaviourNode may have several incoming or outgoing edges
useful for linking nodes with directed transitions.

AvatarState: Fully inherits the properties of “State” defined in the standard “SMD” in
SysML [8]. The stereotype may include several incoming or outgoing edges.

InitialState: Inherits the features of the “InitialNode” defined in SysML [8]. An InitialState
is composed by a single outgoing edge. An AvatarSMD has a single InitialState.



89

Figure 5.2: Avatar State Machine Metamodel
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FinalState: Fully inherited from the “FinalState” in SysML [8]. A FinalState has a single
incoming edge.

AvatarSendSignal: Stereotype that captures the properties of “SendSignalAction” spec-
ified in UML [10]. An AvatarSendSignal takes and output signal defined in the
AvatarBlock and instantiates it as a node. It owns one incoming and one outgoing
edges. The node behaves according to the communicating policies of the AvatarPort
on which the signal is launched.

AvatarReceiveSignal: Captures the properties of “ReceiveSignalAction” specified in UML
[10]. An AvatarReceiveSignal uses an input signal defined in the AvatarBlock and
instantiates it as a behaviour node. It only has one incoming and one outgoing edges.
The behaviour of the node depends upon the AvatarPort on which the signal is shared.

SetTimer: This stereotype represents an action on a TimerAttribute defined within the
AvatarBlock. The node takes the name of the TimerAttribute to be set. A positive
integer is given and set as a time bound up to which the referred timer may count.
This node is composed by one incoming and one outgoing edges.

ResetTimer: This node models timer resetting. It takes the name of a TimerAttribute
defined within the AvatarBlock. Resetting makes timer being ready for further actions.

TimerExpiration: Stereotype useful for modeling the expiration of a timer. It takes the
name of a TimerAttribute defined within the AvatarBlock and signals that the time
bound was reached. Timer expiration can only occur if the timer has been previously
set.

AvatarTransition: The stereotype inherits features of “Transition” defined in the standard
SMD in UML [10]. It is a directed link for connecting Avatar nodes: the tail of the
AvatarTransition joins one outgoing edge of a node, and its head joins one incoming
edge of another node. AvatarTransitions support AvatarGuard, AvatarAfter and
AvatarComputeFor stereotypes - defined in line. Additionally, integer and boolean
assignations are supported.

AvatarGuard: Inherited from the stereotype “Constraint” defined in UML [10]. An
AvatarGuard is a boolean expression that must be satisfied in order to traverse the
AvatarTransition (see Grammar of Avatar Expressions in figure 5.9).

AvatarAfter: Inherits the properties of “DurationInterval” as defined in UML [10]. AvatarAfter
models a time during which the AvatarBlock activity is suspended, e.g., waiting for
an event. The delay lasts between a minimum and maximum time bounds. The
transition is traversed only after the delay has elapsed.

AvatarComputeFor: Analogously to AvatarAfter, this stereotype inherits features from
“DurationInterval” defined in UML [10]. AvatarComputeFor models a time in which
a computation or operation are executed. The time spent in executing instructions
lasts between a minimum and maximum time bounds. The transition is traversed
only after the computation time has elapsed.

AvatarAssignation: It is an abstract stereotype that assigns an AvatarExpression to an
AvatarAttributeName.



91

AvatarExpression: Abstract stereotype that generalizes allowed expressions in Avatar:
AvatarAlgebraicExpresion, AvatarMethod and AvatarBooleanExpression (see Gram-
mar of Avatar Expressions in figure 5.9).

Table 5.2 shows associations between issues addressed in embedded systems modeling -
see section 1.2 - and introduced constructs in Avatar.

Table 5.2: Aspects in embedded systems addressed by Avatar SMD
stereotypes

Embedded System Aspect Introduced Avatar Stereotype(s)
Time constraints modeling SetTimer, ResetTimer, TimerExpiration,

AvatarAfter, AvatarComputeFor, Avatar-
Guard, AvatarExpression

Resources constraints modeling AvatarComputeFor, AvatarGuard, Avatar-
Expression

Modular, multilayer, heterogeneous ar-
chitecture modeling

AvatarSMD

Communication mechanisms modeling AvatarSendSignal, AvatarReceiveSignal

The next subsection presents an overview of the Avatar profile implementation.

5.1.2 Avatar Design Framework Implementation

As mentioned at the beginning of this chapter, there exists a need for SW tools suitable for
analyzing, modeling, and verifying application designs. Since the use of graphical languages
- like UML - may ease systems conception and design, tools implementing those frameworks
extend the support to the engineering design process. TTool [9] is an open source toolkit
supporting several SysML/UML profiles mainly targeting the design, simulation, and formal
verification of embedded systems - see [33], [34]. Avatar is also a profile supported by TTool.
Moreover, several stages of the proposed Methodology are also supported by TTool: Require-
ments Structuring, Threats Analysis, and System Design - see chapter 4. This subsection
is dedicated to show Avatar Design modeling components as they are implemented in TTool.

An Avatar design comprises a Block Diagram and one or more State Machine Diagrams.
Beside its name, an Avatar Block allows three compartments for definition of Avatar
Attributes, Methods, and Signals. By default, Block attributes are local and thus may be
initially unknown by other Blocks. The semantics described in the Block metamodel in
section 5.1.1 is fully respected by the implementation. To set and edit Block features a
dialog box facility is available. An instance of an Avatar Block is shown in figure 5.3.

Figure 5.3: Avatar Block overview
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The composition association between Blocks is also implemented. In addition, Blocks
can be connected using port connectors. The connector is implemented as specified in the
metamodel, i.e., synchronous and asynchronous communication modes are supported - see
figure 5.4. More specifically, a First In/First Out (FIFO) buffer is available to support
asynchronous exchanges between Blocks. Offered and expected signals in AvatarBlocks can
be accordingly associated via a tool box.

Figure 5.4: Avatar port connectors: synchronous (black boxes) and asynchronous (white
crossed boxes) modes are supported

To better respect system components hierarchy, Blocks can be composed with other
Blocks. The Blocks shown in figure 5.4 are nested into an outer Block. However, attributes
in outer Blocks are not shared to inner Blocks. Consequently, if required, values should be
exchanged via ports and signals. The designer is allowed to define data types that can be
customized in a tool box facility. User defined data types can not be nested. Along with a
name, an user-defined data type may contain a list of attributes set with a name and a
basic type, i.e., either bool or int - see figure 5.5. Each attribute in the list may have an
initial value. No values are set by default otherwise.

Figure 5.5: Instance of an user defined data type in Avatar

In an Avatar design, the behaviour of each AvatarBlock is captured in an instance
of the State Machine Diagram (SMD) metamodel. The SMD is composed by behaviour
states linked with directed transitions. The Avatar framework supports all behaviour
states specified in the SMD metamodel. Since almost all SMD elements are extensions
of UML/SysML stereotypes, they inherit symbols of their counterparts. Some behaviour
states in Avatar are shown in figure 5.6.

Figure 5.6: Initial, final and nominal states as implemented in Avatar

As it is shown in figure 5.7, Send and Receive Signal nodes inherit the UML symbols.
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To define this kind of nodes, the name of an input or output signal must be provided.
Parameter values should be accordingly provided. Of course, only signals defined in Blocks
can be instantiated.

Figure 5.7: Input and output signals instances as implemented in Avatar framework

To model timer setting, resetting, and expiration, nodes are respectively available (see
figure 5.8). For setting nodes, a timer name and a natural value are required whereas for
resetting and expiration the name of the concerned timer should be provided.

Figure 5.8: Set, reset, and expiration timer nodes in Avatar

Transitions linking behaviour nodes take the semantics specified in the SMD metamodel.
More precisely, guards and the random duration intervals are supported (after and com-
puteFor). First, a guard is defined using a boolean expression. Valid boolean expressions
are specified in the Grammar of Avatar Expressions presented in figure 5.9.

AvatarInteger ::= IntegerValue | IntAttributeName: int
AvatarBoolean ::= BooleanValue | BoolAttributeName: bool
AvatarAttributeName ::= IntAttributeName | BoolAttributeName |

UserdefinedAttributeName
AvatarParameter ::= AvatarAttributeName | BooleanValue | IntegerValue

Op ::= + | - | * | /
LogicOp ::= > | < | >= | <= | ==
LogicConnective ::= and | or
LogicNot ::= not

AvatarAlgebraicExpression ::=
IntegerValue | IntAttributeName |
AvatarAlgebraicExpression Op AvatarAlgebraicExpression |
( AvatarAlgebraicExpresion )

AvatarBooleanExpression ::=
BooleanValue | BoolAttributeName |
AvatarAlgebraicExpression LogicOp AvatarAlgebraicExpression |
AvatarBooleanExpression LogicConnective AvatarBooleanExpression |
AvatarBooleanExpression LogicOp AvatarBooleanExpression |
LogicNot ( AvatarBooleanExpression ) |
( AvatarBooleanExpression )

AvatarMethodExpression ::=
AvatarMethodName ( [[AvatarParameter,]∗ AvatarParameter] )

Figure 5.9: Grammar of Avatar Expressions

A transition can be traversed only if the boolean expression is true. Afterwards, the
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transition behaves according to after or computeFor intervals, i.e., time spent in the
transition randomly lasts between interval bounds. A transition can be endowed with a
list of assignations to be performed once its guard is satisfied and time intervals elapsed.
Names of attributes defined within AvatarBlocks can be assigned to both, boolean and
algebraic expressions as well as to Avatar methods. The syntax of accepted expressions
is presented in figure 5.9. Finally, an overview of a SMD instance is shown in figure 5.10.
Avatar components endow the profile with performance and temporal analysis modeling.

Figure 5.10: Instance of a SMD. Guards are between brackets, duration intervals between
parentheses and assignations with the symbol ‘=’

5.2 Extending Avatar Design Profile

The informal specification of the Avatar profile was presented in previous sections along with
an overview of the implemented framework. The profile is suitable for modeling embedded
systems and to perform temporal and safety analyses. More precisely, the features of the
Avatar profile:

1. Define logical borders circumventing component capabilities.

2. Help to hierarchically structure SW/HW components and applications.

3. Provide a semantics for synchronous and asynchronous exchanges across component
boundaries.

4. Model components behaviour relying upon SMDs.

5. Provide a semantics for endowing transitions with logical conditions and with passage
of time.

6. Allow modeling of concurrent real time systems.

As concluded in section 2.4, development of critical automotive embedded systems require
time, safety, and security analyses. Since Avatar targets development of embedded systems
in general, supporting modeling and verification of security concerns is worth having.
However, as it will be shown in next subsection, the profile is not suitable to support
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security analyses. Thus, it is extended with a set of modeling constructs that overcome
identified limitations. The rest of this section shows SysML elements used to extend the
Avatar profile in order to support security.

5.2.1 Avatar Design Limitations

Design frameworks can be classified into two categories: first class assumes that parties
accessing the system are only “well intentioned” users. The second one assumes that, along
with well intentioned users, certain malevolent parties may intervene and try to intentionally
exploit it. As it is, the Avatar profile falls in the first category. Let us consider a system in
which two parties interact: a sensor and a broadcasting controller. The sensor provides
several output signals which are received by the controller that will broadcast messages
according to them, e.g., an alert. If a third party can overtake or intervene between sensor
and the controller, i.e., a man-in-the-middle attack, then the system may misbehave if no
protections are considered, e.g., via signatures or MACs. Since Avatar profile does not
includes stereotypes for such kind of protections, modeling and verifying the just referred
scenario is not so straightforward. For better precising Avatar profile limitations, let us
consider the Avatar Block diagram of the Alice-Bob system shown in figure 5.11.

Figure 5.11: Alice-Bob example modeled in Avatar

Assume that Alice wants to send a secretData to Bob. To keep it confidential, data
are encrypted with the symmetric key sk. Consequently, sk should be initially preshared
with Bob in order to allow message decryption. However, Avatar is unable to set initial
preshared knowledge between Blocks. In addition, no elements are included for modeling
and verifying whether secretData truly remains confidential or whether the authenticity
of communicating Blocks can be undermined. As concluded in section 3.3, support for
modeling and verification of security properties is crucial to ensure modeling framework
usability. The properties are verified against an attacker that is not specified in Avatar
and consequently should be modeled by the designer. Since the Avatar port connector can
not be listened by other Blocks, links undertaken by the attacker should be modeled by
hand. Last but not least, the scenario relies upon well known cryptographic functions that
should be abstracted by the designer. Letting the designer elaborate models for security
requirements, attackers, channel vulnerabilities, and crypto primitives may render the final
model very complex, inaccurate, and/or difficult to prove, for instance due to the state
explosion problem.

The following items provide a precise description of Avatar limitations for representing
security concerns. Items list includes a reference code LX that will be used in next
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subsection to justify introduced stereotypes.

L1. Initially Shared Values: An AvatarBlock defines a logical border inside which At-
tributes, Methods, and Signals are defined. AvatarBlocks are unable to share initial
knowledge, unless values are explicitly set in each Block. Systems may require that a
set of initial knowledge be shared between Blocks. For instance in cryptography, it is
frequently assumed that public or secret keys are known by a set of communicating
entities. To ease modeling and analysis of this kind of scenarios, the Avatar profile
should consider initially shared values.

L2. Cryptographic Mechanisms: The crypto functions used for encryption, decryption,
verification of signatures, etc. should be known by the entities requiring those
mechanisms. Crypto primitives rely upon well known patterns. However, in Avatar
those functions should be modeled by hand what may also increase model complexity.
This feature should be taken into account in proposed security extensions.

L3. Attributes Association: Association between parameters or attributes is often
needed in security. For instance, public and private key pairs, pseudo names of
entities protecting name’s privacy, random seeds defined by private and public parts,
etc. Since security scenarios often rely upon this kind of associations, they should be
supported by the modeling framework for better modeling system characteristics.

L4. Security Assumptions/Conditions: In distributed applications scenarios, assump-
tions should be frequently made over certain attributes, e.g., data initially secret. It
may also be required that certain conditions be settled, e.g., key valid for one session.
Basically, it is stated who knows the value and when. Avatar currently does not
support a semantics to express security assumptions nor conditions on attributes.

L5. Communication Architecture: The Avatar profile realizes communication based
upon ports, interfaces sharing services on ports, and connectors. Even if synchronous
and asynchronous channels are available, Avatar Port connectors only support uni-
cast communication. Systems frequently rely upon other communicating policies,
like multicasting or broadcasting. Since those policies may have an impact on the
overall behaviour and on properties verification - e.g., in public channels modeling
-, the designer should model them by hand what increases model complexity. Thus,
modeling of communication patterns can be assisted in order to simplify system
design.

L6. Threats Model: As it is, Avatar falls in the category of frameworks where only “well
intentioned” entities can participate. Many systems can be correctly analyzed with
that perspective. However, many other systems operate in a hostile environment.
Frameworks targeting security aspects may require a threats model since security
properties are verified with respect to attacker capabilities. Among others, specified
attackers may know a subset of shared values and primitives as well as have access
to the communications architecture. Even if threats can be modeled with Avatar
Blocks, this choice significantly increases model complexity. Moreover, introduced
simplifications to avoid state explosion may compromise the extent of proofs.

L7. Security Properties: Even if there is no consensus on formal security properties
definitions [93], frameworks assisting the design of secure applications should ease
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modeling of security requirements. A semantics for capturing requirements to be
verified is worth having. Ideally, the semantics should also provide templates to assist
designer in properties modeling and verification. However, as described in previous
subsection, Avatar lacks such semantics.

L8. Verification Methods: As discussed in section 3.2.3, the procedures to perform
verification should be automated. In particular, the assessment methods for prov-
ing/disproving security properties. Thus, formal proofs should be conducted relying
upon a formal security-oriented backend. Avatar semantics should be accordingly
harmonized to the underlying formal framework.

5.2.2 Avatar Extensions: The Avatar Security Environment

As explained in sections 5.1 and 5.2.1, the Avatar design framework is only adequate for
modeling time and safety oriented properties. To make Avatar suitable for designing and
verifying security concerns, an extension is defined. The extension is made according to lim-
itations identified in previous subsection 5.2.1. The proposal extends several UML/SysML
stereotypes defined in the Avatar Block metamodel and is named AvatarSE. An overall
description is presented in the following paragraphs.

AvatarSE includes a Block named Avatar Sharing Block that specifies attributes to
be shared. The stereotype inherits several features to its nested Blocks. Thus, Blocks
that require common preshared attributes should be aggregated into a Sharing Block. For
instance, in the toy diagram in figure 5.12, the attribute initialvalue owned by Block3 is
initially shared by the three inner Blocks. This feature is added so as to overcome limitation
L1 mentioned in previous subsection 5.2.1.

Figure 5.12: Avatar Diagram showing a Sharing Block named Block3

In AvatarSE signals can be sent/received over private or public Port Connectors. More
specifically, a Dolev-Yao Port Connector is defined and it allows an attacker to intervene in
exchanges. This port partially overcomes the limitation L5. A so named Avatar Crypto
Block is also introduced. It provides predefined Crypto Methods, Private and Public
Keys, and associations necessary to define key pairs. Thus, shortcomings L2 and L3 are
undertaken. Properties to be verified as well as security assumptions are written inside a text
box named Avatar Pragma Comment. The semantics and syntax is suitable to undertake
problematic issues L4 and L7. Further details on the stereotypes composing AvatarSE and
addressed limitations are presented in the following paragraphs. The AvatarSE metamodel
for addressing security in embedded systems is illustrated in figure 5.13.

AvatarSecurityEnvironment: Abstract stereotype that represents an extension of the
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Figure 5.13: Proposed extensions of the Avatar profile to undertake security analyses
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AvatarBlockDiagram. It is composed by several stereotypes that address and overcome
Avatar profile limitations. The components of the Avatar Security Environment are
described in line.

ThreatsModel: It is an abstract stereotype that represents the threats model against
which security properties are verified. ThreatsModel is an element that is not
instantiated in the Avatar profile. Instead, the ThreatsModel is fully borrowed from
the ProVerif framework and is described in annex A. By introducing a threats model
at backend level, the designer is relieved from designing it by hand what reduces model
complexity. As explained in section 3.1.3, ProVerif provides a formal and generic
attacker model that ensures soundness of security proofs. ThreatsModel represents
the formal attacker which is introduced in a transparent way for the designer thus
undertaking limitation L6.

AvatarSharingBlock: This stereotype inherits all the characteristics of AvatarBlock. It
provides a mean for sharing Attributes, Methods, and Signals to attached AvatarBlocks.
Inner Blocks initially share values defined within the parent Block. An AvatarBlock
can be self connected what enables inner Blocks to use Send/Receive Signals owned
by the parent Block. These features overcome limitation L1.

InitialSharedValue: It is an abstract stereotype inherited from AvatarAttribute defined
in the Avatar metamodel. An InitialSharedValue generalizes three stereotypes: Ini-
tialKnowledge, AvatarConstant and Key - explained below. The stereotype represents
a value initially shared by a set of Blocks and is defined with a boolean parameter
named ‘private’. If ‘private’ is set to true, the attacker in ThreatsModel does not
know the InitialSharedValue. Otherwise, the attacker knows and can use the value.
InitialSharedValue allows definition of different types of shared values and helps to
address shortcoming L1.

InitialKnowledge: This stereotype represents a common value for a set of AvatarBlocks
settled at their initial states, i.e., at the initial states of their SMDs. Attributes holding
the value can be independently modified within AvatarBlocks. This stereotype is
introduced to support attributes that need to be equally initialized but that can be
independently updated afterwards. It helps to address drawback L1.

AvatarConstant: Stereotype that represents a common value for a set of AvatarBlocks,
i.e., at the initial states of their SMDs. Once set, attributes holding the value can not
be modified any more. This stereotype supports values that should remain unchanged
all along system operation. It helps to overcome limitation L1.

Key: Stereotype that generalizes a cryptographic key. A Key can be either a PrivateKey
or a PublicKey. The value modified all along system operation. The difference with
respect to InitialKnowledge is that Keys can be associated. It helps to undertake
shortcoming L1.

PrivateKey: Avatar attribute that represents a private crypto key. By default, the
parameter ‘private’ of a PrivateKey is set to true. Since a PrivateKey can be
associated to one or more PublicKeys, drawback L3 is partially undertaken.

PublicKey: Avatar attribute that represents a public crypto key. At least, each PublicKey
should be associated to a PrivateKey. By default the property ‘private’ of a PublicKey
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is set to false. Since associations between PrivateKey and PublicKey are allowed,
shortcoming L3 is partially overcome.

CryptoMethod: A CryptoMethod can be defined within an AvatarSharingBlock - and
consequently shared to inner Blocks - or within an AvatarCryptoBlock. A Cryp-
toMethod is an abstract stereotype for modeling crypto primitive patterns. It is
composed by an AvatarMethod, a CryptoRule, and a boolean parameter named ‘pri-
vate’. If the parameter ‘private’ is set to true, no entity within the ThreatsModel - i.e.,
the attacker - knows the CryptoMethod. This abstract stereotype allows definition of
crypto patterns and helps to address limitation L2.

CryptoRule: It is a constraint over a CryptoMethod and/or its parameters. A CryptoRule
may refer to other CryptoMethods and may impose conditions on the parameters that
should be received. This stereotype abstracts the rules under which standard cipher
mechanisms operate, e.g., ciphering, deciphering, signatures, etc. Thus, it helps to
define crypto patterns what tackles shortcoming L2.

AvatarCryptoBlock: Inherits all features from AvatarBlock and additionally includes
a list of predefined CryptoMethods. An AvatarCryptoBlock may include sets of
PrivateKeys and PublicKeys. Since a list of predefined crypto methods is available, the
designer is relieved from modeling those primitives what decreases model complexity
and tackles shortcoming L2

DYPortConnector: Inherits all features from AvatarPortConnector. It additionally
includes a property named ‘private’. If ‘private’ is set to true entities in ThreatsModel
can not see AvatarSignals nor AvatarAttributes on respective ports. Otherwise The
connector behaves based upon a Dolev-Yao policy, i.e., entities in ThreatsModel are
allowed to know and intervene in AvatarSignals and exchanged AvatarAttributes.
Introduced port connector relieves the designer from modeling attacker interventions
what partially undertakes drawback L5.

AvatarPragmaComment: Inherited from the stereotype “Comment” specified in UML
[10], AvatarPragmaComment allows modeling of properties to be verified or assump-
tions. More precisely it supports security pragmas, i.e., sentences that specify security
properties to be verified, or assumptions to be respected (further descriptions follow).
This stereotype supports modeling patterns what simplifies model complexity and
addresses problematic issues L4 and L7.

SecurityPragma: An abstract stereotype that generalizes allowed security pragmas: Se-
curityProperty and SecrecyAssumption. A SecurityPragma is intended to support
modeling patterns what addresses limitations L4 and L7.

SecrecyAssumption: This stereotype allows to declare that an attribute is considered
secret at initial state, i.e., unknown by the attacker. The syntax is as follows:

• #SecrecyAssumption BlockName.AttributeName

It states that the AttributeName defined within BlockName is assumed secret and thus
should be unknown by the attacker at initial state - but possibly known afterwards.
This element partially undertakes drawback L4.
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SecurityProperty: Abstract stereotype comprising the security properties supported by
the AvatarSecurityEnvironment. Currently, two security pragmas are supported:
ConfidentialityPragma and AuthenticityPragma. This stereotype helps to address
limitation L7.

ConfidentialityPragma: Stereotype representing a pragma for verification of data confi-
dentiality. The syntax of the pragma is as follows:

• #Confidentiality BlockName.AttributeName

It declares that AttributeName defined in BlockName must remain confidential, i.e.,
ignored by the attacker all along system operation - and not only at initial states like
in the SecrecyAssumption. This pragma provides a modeling pattern that helps to
undertake shortcoming L7.

AuthenticityPragma: Abstract stereotype that provides a pattern for verification of
Blocks authenticity. Two definitions of authenticity are supported: WeakAuthentici-
tyPragma and StrongAuthenticityPragma. This element provides modeling support
for addressing limitation L7.

StrongAuthenticityPragma: The syntax of a StrongAuthenticityPragma is as follows:

• #Authenticity BlockA.SendMsgState.AuthAttA BlockB.ValidMsgState.AuthAttB

This sentence states that the authentication attribute AuthAttA, sent right after the
state SendMsgState within the SMD of BlockA, is meant to be received by BlockB as
the attribute AuthAttB and when the exchange is accepted in the state ValidMsgState
as coming from BlockA, it truly comes from that entity. This pragma is verified
assuming that the behaviour of each AvatarBlock is instantiated infinitely many times,
i.e., Authenticity is proved considering an unbounded number of system executions.

WeakAuthenticityPragma: The syntax of this pragma is as follows:

• #WeakAuthenticity BlockA.SendMsgState.AuthAttA BlockB.ValidMsgState.AuthAttB

Its semantics is almost the same as for StrongAuthenticityPragma. However, WeakAu-
thenticityPragma is verified assuming that the behaviour of each AvatarBlock is
instantiated only one time, i.e., the proof of Authenticity is conducted considering
only a single system execution.

Finally, table 5.3 shows a summary of Avatar limitations, explained in subsection 5.2.1,
and AvatarSE stereotypes introduced to overcome them.

5.3 Attaching a Formal Semantics to AvatarSE

AvatarSE is a modeling profile with a semi-formal semantics. In order to conduct proofs of
properties, models should be endowed with a formal connotation. The analyses conducted
in chapter 3 highlighted pros and cons of several formal approaches. According to those
analyses, we conclude that frameworks not addressing security should not be used to bear
AvatarSE with a formal semantics. In particular, because approaches without a threats
model, no support for proving security properties, or not including security constructs are
definitely not adapted to AvatarSE. Rather than developing a new formal framework, we
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Table 5.3: Matrix of Avatar limitations and proposed AvatarSE stereotypes
Avatar Limitation
(described in subsection 5.2.1)

AvatarSE Stereotype(s)

L1. Initially Shared Values AvatarSharingBlock, InitialSharedValue, Initial-
Knowledge, AvatarConstant, Key, PrivateKey,
PublicKey

L2. Cryptographic Mechanisms AvatarSharingBlock, CryptoMethod, Avatar-
CryptoBlock

L3. Attributes Association AvatarCryptoBlock, PrivateKey, PublicKey
L4. Security Assumptions/ Con-
ditions

AvatarPragmaComment, SecurityPragma, Secre-
cyAssumption

L5. Communication Architecture DYPortConnector
L6. Threats Model ThreatsModel (Borrowed from ProVerif framework)
L7. Security Properties AvatarPragmaComment, SecurityPragma, Secu-

rityProperty, ConfidentialityPragma, Authentici-
tyPragma, WeakAuthenticityPragma, StrongAu-
thenticityPragma

L8. Verification Procedures (Borrowed from the underlying framework ProVerif )

believe that the existing ones can provide the required formal semantics. More specifically,
ProVerif [2] has several features that make it a good candidate: ProVerif is a framework
that relies upon a formal approach - pi-calculus [168] - that was extended for verification
of security properties. It provides both, the formal semantics required to conduct sound
security-oriented proofs as well as automated procedures for verification [54].

Even if data types can be modeled with AvatarSE, we have not identified a dependency
between data structures and proofs of security concerns. For instance, proving certain
properties like authenticity and confidentiality mainly depends upon values and correspon-
dences. Thus, data types can be abstracted and represented as variables. Data types make
modeling more intuitive, ordered, and often simpler. They are also useful to support code
generation from models. However, data types may not be required in security proofs. In
ProVerif [2], verification of Authenticity or Confidentiality is possible without representing
data types. However, this assessment may not be true in other security domains, e.g.,
Provable Security [180] targets proofs in which length of data types matters. But this kind
of proofs is not covered by AvatarSE. Further work is necessary to consider this kind of
capabilities. Even if ProVerif provides a typed pi-process dialect [21], [2], the translation of
AvatarSE is made relying on untyped pi-calculus. The rest of this section is dedicated to
present the formal descriptions of Avatar and AvatarSE and translations towards ProVerif.

5.3.1 Avatar & AvatarSE Formal Descriptions

Instead of directly transforming Avatar and AvatarSE into ProVerif, they are first formally
described. This choice is taken due to following considerations:

1. AvatarSE is an extension of Avatar which is already endowed with a formal semantics
based upon UPPAAL automata. Profiles formalization provides a mean for ensuring
the consistency of proofs that can be conducted in both UPPAAL and ProVerif, e.g.,
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reachability.

2. The theory behind ProVerif provides generic definitions for proving authenticity and
data confidentiality [54]. Many other properties like integrity, freshness, or privacy
may be later targeted by AvatarSE. Even if ProVerif has been used to prove properties
like privacy [40], it is foreseen that AvatarSE may rely in other formal frameworks
supporting more security properties. Thus, AvatarSE formalization is a mean for
future extensions and consistent translation towards other security frameworks.

In this subsection, Avatar and AvatarSE are formally described. Afterwards, formal
specifications are transformed into ProVerif syntax [54], [38].

5.3.1.1 Avatar Formal Description

To ease lecture, a map of definitions is provided in figure 5.14. This map shows dependencies
between concepts. Formal definitions come afterwards. As can be seen, all these concepts
are meant to formalize an AvatarBlockDiagram in definition 19.

Figure 5.14: Map of Avatar formal definitions and their dependencies.

Definition 9 AvatarAttribute
An AvatarAttribute is a variable defined upon one of the following domains:

i) The set of 32 bits integers denoted by Z32.

ii) The boolean set B := {true, false}.

iii) The set D1 × . . .× Dk where Di is either Z32 or B, i = 1, . . . , k, k ∈ N.

Notation 1 Attributes Domain
To simplify description, the domain of an AvatarAttribute is simply denoted by D, i.e.,
D := Z32 or D := B or D := D1 × . . .× Dk (see definition 9). The domains Dm and Dn in
functions denoted by f : Dm → Dn are independent and may refer to different sets D.
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Definition 10 AvatarMethod
Let m,n ∈ N. An AvatarMethod is a mathematical function that maps values from Dm

towards the set Dn. Let f : Dm → Dn be an AvatarMethod. An AvatarMethod g : Dn → Dm

is called the inverse of f if and only if g(f(x)) = x for all x ∈ Dm. Finally, g is a reduction
of f if g(f(x1, . . . , xm)) = (xi1 , . . . , xik), k < m, ij ∈ {1, . . . ,m}, j = 1, . . . , k.

Definition 11 AvatarSignal
Let m,n ∈ N, n ≥ m. An AvatarSignal is either an AvatarSendSignal or an AvatarReceiveS-
ignal as defined below:

AvatarSendSignal: It is a function s : X ⊆ Dm → Dn such that s(X) ⊆ Dn. Whenever
s is applied to an attribute x ∈ X, it is denoted by out s(x).

AvatarReceiveSignal: It is a function s′ : Y ⊆ Dn → Dm such that s′(Y ) ⊆ Dm.
Whenever s′ is applied to an attribute y ∈ Y , it is denoted by in s′(y).

We say that an AvatarSendSignal s : X ⊆ Dm → Dn is operable with and AvatarReceiveSig-
nal s′ : Y ⊆ Dn → Dm if s′(s(x)) = x, ∀x ∈ X.

Notation 2 Operable signals
Let s : X ⊆ Dm → Dn, s′ : Y ⊆ Dn → Dm be two operable AvatarSignals. The fact that
s′(s(x)) = x, for a particular x ∈ X is denoted by out s(x)|in s′(x).

Definition 12 AvatarPort
Let S be a set of AvatarSignals. An AvatarPort is a tuple Ap := (PS , r, l) where

i) PS is a subset of AvatarSignals in S: PS ⊂ S.

ii) r is a list of boolean variables equally named ‘ready’. Each AvatarSignal is associated
with a unique variable ‘ready’: ‘ready’=true means that the AvatarSignal can be applied
whereas ‘ready’=false stands for the contrary.

iii) l is a list containing Port features: if the AvatarPort is synchronous the list of features
l only contains the boolean variable ‘broadcast’. The list l for an asynchronous port is
composed by two boolean variables named ‘lossychannel’, ‘blockingWrite’, an array of
attributes ‘FIFO’, and ‘sizeFIFO’ that declares the number of entries of ‘FIFO’.

The features of the Port impose conditions upon AvatarSignals as it is defined below:

synchronous. Impose a restriction over AvatarSignals. Before it can be applied to an attribute x,
AvatarSendSignal must be operable with an AvatarReceiveSignal - see definition 11. Both
AvatarSendSignal and associated AvatarReceiveSignal must have ‘ready’=true.

asynchronous. To be applied, AvatarSendSignal needs to be operable with other AvatarReceiveS-
ignal. Only the variable ‘ready’ of the AvatarSendSignal must be equal to true, i.e., Avatar-
ReceiveSignal may have ‘ready’=false. The output of AvatarSendSignal is written into the
variable array named ‘FIFO’. An AvatarReceiveSignal can be evaluated in values within
‘FIFO’ whenever its variable ‘ready’ is true and according to a First-In/First-Out policy.
Whenever the AvatarReceiveSignal is applied, the respective entry in ’FIFO’ is emptied.

broadcast. The AvatarSendSignal is associated with a set of AvatarReceiveSignals. AvatarSendSig-
nal must be operable with every AvatarReceiveSignal in the set - see definition 11. All the
variables ‘ready’ associated to AvatarSendSignal and AvatarReceiveSignals must be set to
true before applying AvatarSendSignal.
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blockingWrite. If ‘blockingWrite’=true, then whenever the number of occupied entries in ‘FIFO’
is equal to ‘sizeFIFO’, the ‘ready’ variables associated to AvatarSendSignals in the port are
set to false until an entry is emptied.

lossychannel. A policy for randomly erasing non-empty entries in ‘FIFO’ is applied.

Note 2 Simplifying AvatarPorts notation
To simplify notation and when there is no confusion, we denote an Avatar port Ap := (PS , r, l)
and its set of signals PS simply as Ap.

Definition 13 AvatarPortConnector
Let Ap1, Ap2 be two AvatarPorts of the same type, i.e., either synchronous or asynchronous,
and with their lists of features equally set, i.e., ‘broadcast’, ‘lossychannel’, ‘blockingWrite’,
and ‘sizeFIFO’ are equivalent in both lists. An AvatarPortConnector is a function p :
Ap1 → Ap2 that satisfies following conditions:

i) The number of signals in ports Ap1 and Ap2 is the same.

ii) If s1(x) ∈ Ap1 is an AvatarSendSignal, then there exists an AvatarReceiveSignal s2(x) ∈ Ap2
such that s2 = p(s1).

iii) If s1(x) ∈ Ap1 is an AvatarReceiveSignal, then there exists an AvatarSendSignal s2(x) ∈ Ap2
such that s2 = p(s1).

iv) The function p is injective - what implies that p has an inverse p−1 : Ap2 → Ap1.

Note 3 Lists of Properties Equally Set
Even if previous definition demands that the lists of features be equally set, some features may
only affect the operational semantics of one side of the AvatarPortConnector. For instance,
‘blockingWrite’ imposes a constraint only upon AvatarSendSignals, what may prevent a Block
from applying Signals as explained in definition 12. Further work is necessary to consider
these particularities in translations presented in next subsection 5.3.2.

Note 4 Inverse of an AvatarPortConnector
Note that the inverse of an AvatarPortConnector is also an AvatarPortConnector.

Definition 14 Avatar State Machine Diagram
An Avatar State Machine Diagram is a tuple SMD := (Q,S,L, q0, T ,F) where:

i) Q is a finite set of AvatarStates.

ii) S is a finite set of AvatarSignal.

iii) L is a set of Avatar expressions used for labeling.

iv) q0 ∈ Q is the initial state.

v) T ⊂ (Q∪S)×L×(Q∪S) is a set of elements named AvatarTransition. In an AvatarTransition
(o, b, d), o and d are the origin and destination, respectively, whilst b is the label.

vi) F ⊂ Q is the set of final states.

AvatarTransitions satisfy rules stated in next definition 15.

Definition 15 Rules for Defining AvatarTransitions
Let SMD := (Q,S,L, q0, T ,F) be an Avatar State Machine Diagram. The following rules
apply to elements in T :

a) q0 can only appear in one single AvatarTransition of T , as the origin.
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b) ∀ si ∈ S, si can only appear in a single AvatarTransition, as the origin, and in a single
AvatarTransition, as the destination - this rule prevents random choices.

c) ∀ qi ∈ Q, i 6= 0, qi can appear as origin or destination in several AvatarTransitions.

d) ∀ qf ∈ F , qf can appear in at most one AvatarTransition, as its destination.

e) Every element in L is of the form [guard] : [assignation]∗. A ‘guard’ is an AvatarBooleanEx-
pression as stated in figure 5.9. An ‘assignation’ borrows the structure of an AvatarAssignation
as defined in subsection 5.1.1.2.

Definition 16 AvatarBlock
An AvatarBlock is a tuple B := (A,M,S, P, SMD) where:

i) A is a finite set of AvatarAttributes.

ii) M is a finite set of AvatarMethods.

iii) S a finite set of AvatarSignals.

iv) P := {Ap1, . . . , Apk} is a set of AvatarPorts such that S = ∪ki=1Api, and Api∩Apj = ∅, i 6= j.

v) SMD is an Avatar State Machine Diagram whose set of expressions L is formed relying
upon attribute names in A and method names in M .

vi) The signals integrating the SMD - see definition 14 - are taken from the set of signals S
defined in B. The set S may be enlarged according to definitions 17 and 18.

Definition 17 AvatarComposition
An AvatarComposition is an ordered relation (B1, B2) between two AvatarBlocks Bi, i = 1, 2,
expressing that B1 is composed by B2. An AvatarBlock B is composed by several Blocks
B1, . . . Bn if (B,Bi) for i = 1, . . . , n.

Definition 18 AvatarDelegatePortConnector
Let B be an AvatarBlock composed by several AvatarBlocks B1, . . . Bn, i.e., (B,Bi), i =
1, . . . , n inside an AvatarBlockDiagram BD := (B,P, C). An AvatarPortConnector p is an
AvatarDelegatePortConnector if:

i) There exist two AvatarPorts Ap1, Ap2 defined in B such that p : Ap1 → Ap2.

ii) The set of AvatarSignals S defined in B satisfies S = Ap1 ∪Ap2 and Ap1 ∩Ap2 = ∅

iii) The signals defined in S can be used by all Bi, i = 1, . . . , n, according to the Avatar-
PortConnector p.

Definition 19 AvatarBlockDiagram
An AvatarBlockDiagram is a tuple BD := (B,P, C) where:

i) B := {B1, . . . , Bm} is a finite set of AvatarBlocks.

ii) P is a finite set of AvatarPortConnectors, over the ports offered by Blocks in B

iii) C is a set of AvatarCompositions over the set B × B.

The next subsection provides the formal description of AvatarSE.
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5.3.1.2 AvatarSE Formal Description

The formal description of AvatarSE relies upon formal definitions 9 to 18 given in the
previous subsection 5.3.1.1. Several definitions in this subsection make reference to elements
in a ThreatsModel. Such definitions can be considered as semi-formal since ThreatsModel
is not formalized at this level. However, this issue is fully overcome once AvatarSE is
transformed to the formal semantics in ProVerif. To ease the lecture, a map of definitions is
presented in figure 5.15. The map also shows dependencies between concepts. It is recalled
that formal description is a prior step before transforming AvatarSE to an underlying formal
semantics.

Figure 5.15: Map of AvatarSE formal definitions and their dependencies

Definition 20 ThreatsModel
A ThreatsModel is abstracted and denoted by At. It adopts the informal semantics stated in
subsection 5.2.2. ThreatsModel introduces an abstract entity named attacker. We extend
the AvatarBlockDiagram BD := (B,P, C) by introducing two possible categories in which
diagram elements can be classified:

Private: Elements of BD defined as private are initially unknown to the abstract attacker.
Private elements may be only known to a subset of AvatarBlocks in BD.

Public: Elements composing BD defined as public are known to the abstract attacker and
to any other entity in the model.

The knowledge of the attacker is a set that includes known Avatar elements and is denoted
by Wat. AvatarAttributes, AvatarMethods, and AvatarSignals within Wat can be respectively
used, called, and made by the attacker.

Note 5 Private Elements
Hereinafter, we assume that elements in Avatar are extended and can be defined as private
according to previous definition. Otherwise they are considered as public.

Definition 21 InitialSharedValue
Let BD := (B,P, C) an AvatarBlockDiagram and {B1, . . . , Bn} a subset of AvatarBlocks.
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Let SMD1, . . . , SMDn be their associated State Machine Diagrams. A variable v is an
InitialSharedValue of the AvatarBlocks B1, . . . , Bn if there exist variables v1, . . . , vn such
that:

i) vi is an attribute of Bi and vi = v, i = 1, . . . , n.

ii) Each assignation vi = v is made in the initial state of SMDi, i = 1, . . . , n.

iii) The value v can be defined as ‘private’ meaning that it is initially shared only by Blocks
B1, . . . , Bn

iv) If the value v is not defined as ‘private’, it is also known to the attacker, i.e., v ∈Wat

The following kinds of InitialSharedValues are defined in AvatarSE:

AvatarConstant: It is a value shared by attributes v1, . . . , vn in respective AvatarBlocks B1, . . . , Bn.
Once vi is initially set in its SMD, assignations modifying its value are not allowed, i =
1, . . . , n.

InitialKnowledge: It is a value shared by attributes v1, . . . , vn in respective AvatarBlocks B1, . . . , Bn.
Once vi is initially set in its SMD, assignations modifying its value are allowed and indepen-
dently performed in each SMD, i = 1, . . . , n.

Key: It is a value shared by attributes v1, . . . , vn in respective AvatarBlocks B1, . . . , Bn, that
represents a cryptographic key. Once vi is initially set in its SMD, assignations modifying its
value are allowed and independently performed in each SMD, i = 1, . . . , n.

PrivateKey: Is a Key defined as ‘private’, it is not initially included in Wat.

PublicKey: Is a Key not defined as ‘private’, it is included in Wat.

Definition 22 Private/Public Key Association
Let y, v a PrivateKey and a PublicKey, respectively. The association between y and v is
represented by v = Pk(y).

Definition 23 CryptoRule
Let BD := (B,P, C) an AvatarBlockDiagram. A CryptoRule in BD is an equation defined
by the following grammar:

Parameter ::= letter_symbol

CryptoRule ::= Parameter == AvatarMethodName ( [[Parameter,]* Parameter] ) |
Parameter == Pk ( Parameter ) |
Parameter == Parameter

The domain on which parameters are defined is implicitly defined by the AvatarMethod.

Definition 24 CryptoMethod
A CryptoMethod is a couple (f(x1, . . . , xm), [r]∗) where:

i) f : Dm → Dn is an AvatarMethod, as defined in 10.

ii) r is a CryptoRule, as generated by the grammar in definition 23.

If the CryptoMethod is defined as ‘private’, it is only known to the AvatarBlock inside
which it is declared. Otherwise, the method is known to entities in ThreatsModel and by
other Blocks, it is included in Wat.

The next definition provides the CryptoMethods already defined in AvatarSE. It helps
to clarify their meaning.
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Definition 25 Predefined CryptoMethods
Let u, v, w, x, y, z be AvatarAttributes, and v = Pk(y) an association between a PrivateKey
y and a PublicKey v. The following CryptoMethods are predefined in Avatar:

• int aencrypt(x,y). Asymmetric encryption of x with the public key y.

• int adecrypt(u,v), u=aencrypt(x,y), y=Pk(v). Asymmetric decryption of u with the
private key v.

• int sign(x,y). Signature of x with the private key y.

• bool verifySign(u,v,w), v=sign(x,y), w=Pk(y), u=x. Verification of signature v rely-
ing upon the message u and the public key w.

• int cert(x,y). Certificate of x with the signature y.

• bool verifyCert(u,v), u=cert(x,w), w=sign(x,y), v=Pk(y). Verification of certificate
u with the signature w relying upon the public key v.

• int sencrypt(x,z). Symmetric encryption of x with the key z.

• int sdecrypt(u,v) u=sencrypt(x,z), v=z. Symmetric decryption of u with the key v.

• int hash(x). Hash value of x.

• int MAC(x,z). A MAC of x generated with the symmetric key z.

• bool verifyMAC(u,v,w), w=MAC(x,z), v=z, u=x. Verification of MAC w relying
upon the message u and the key v.

• int concatN(x1, . . . , xn). Returns the concatenation of x1, . . . , xn.

• getN(y, x1, . . . , xn). Assigns the n components of y to the variables x1, . . . , xn.

The set of predefined CryptoMethods is denoted by Mc.

Definition 26 AvatarCryptoBlock
Let B := (A,M,S, P, SMD) be an AvatarBlock. B is an AvatarCryptoBlock if:

i) M contains a subset of predefined CryptoMethods (Mc).

ii) A contains a subset of PrivateKeys - the subset can be empty.

iii) A contains a subset of PublicKeys, each one associated to only one PrivateKey - the subset
can be empty.

iv) Guards in transitions within SMDs are restricted to the following grammar:

AvatarInteger ::= IntAttributeName: int
AvatarBoolean ::= BoolAttributeName: bool
AvatarAttributeName ::= IntAttributeName | BoolAttributeName
LogicEq ::= ==
LogicNot ::= not

AvatarBooleanExpression::=
BoolAttributeName |
( AvatarAttributeName ) LogicEq ( AvatarAttributeName ) |
AvatarAttributeName LogicEq AvatarAttributeName |
LogicNot ( AvatarBooleanExpression ) |
( AvatarBooleanExpression )

v) Assignations in transitions within SMDs rely upon the following grammar:
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AvatarExpression ::=
AvatarAttributeName | AvatarBooleanExpression |
AvatarMethodName ( [[AvatarAttributeName,]* AvatarAttributeName] )
( AvatarExpression )

Assignation ::= AvatarAttributeName = AvatarExpression

Definition 27 DYPortConnector
Let BD := (B,P, C) be an AvatarBlockDiagram. Let us assume that the abstract attacker
introduced in definition 20 is defined by a set of formal Dolev-Yao rules [14]. A DYPortCon-
nector is an AvatarPortConnector p ∈ P that can be defined as private or public according
to following policies: if p : Ap1 → Ap2 is private the attacker can not tamper with neither
AvatarSignals within Ap1, Ap2 nor carried AvatarAttributes. If the port connector is not
defined as private, then it is public and the port can be known and tampered, according to
the attacker Dolev-Yao rules [14].

Definition 28 AvatarSharingBlock
Let BD := (B,P, C) be an AvatarBlockDiagram and B := (A,M,S, P, SMD) be an Avatar-
Block in B. B is an AvatarSharingBlock if:

i) B is composed by a subset of AvatarBlocks {B1, . . . , Bk} ⊂ B, i.e., (B,Bi), i = 1, . . . , k (see
definition 17).

ii) Bi is either an AvatarBlock or an AvatarCryptoBlock, i = 1, . . . , k.

iii) A contains a subset of InitialSharedValues (see definition 21) - the subset can be empty.

iv) M contains a subset of predefined CryptoMethods (see definition 25) - the subset can be
empty.

v) There exist, two AvatarPorts Ap1, Ap2 ∈ P and a DYPortConnector p ∈ P such that
p : Ap1 → Ap2 and p is an AvatarDelegatePortConnector - see definition 18.

vi) The sets defining SMD are empty, i.e., the operational semantics of B is empty.

Condition v) means that an AvatarSharingBlock is self connected.

Definition 29 SecurityPragma
A SecurityPragma is a sentence adopting the semantics specified in subsection 5.2.2. There
are four kinds of SecurityPragmas:

i) SecrecyAssumption

ii) ConfidentialityPragma

iii) WeakAuthenticityPragma

iv) StrongAuthenticityPragma

Definition 30 AvatarSecurityEnvironment
An AvatarSecurityEnvironment is a tuple BDse := (Bse,Pse, Cse, P r,At) such that:

i) Bse = B ∪ Bc ∪ Bsh and B is a set of AvatarBlocks, Bc is a set of CryptoBlocks and Bsh is a
set of AvatarSharingBlocks.

ii) B ∩ Bc = ∅, B ∩ Bsh = ∅, Bc ∩ Bsh = ∅.

iii) (B,Pse, Cse) is an AvatarBlockDiagram.

iv) Pse contains a subset of DYPortConnectors.

v) Pr is a set of SecurityPragmas based upon names in (Bse,Pse, Cse).
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vi) At is a ThreatsModel against which SecurityPragmas can be proved (see ThreatsModel in
section 5.2.2).

In next subsection, the formal AvatarSE specification is transformed into ProVerif
semantics.

5.3.2 AvatarSE-to-ProVerif Transformation

This subsection provides transformations of Avatar and AvatarSE formal specifications into
ProVerif semantics. To ease description, a ProVerif specification is split into several sections.
Indeed, it is decomposed in sections for Global Declarations, Processes Definition and Main
Composition Process. Global Declarations section is accordingly subdivided into Variables,
Basic Blocks and Equations, Secrecy Assumptions, and Queries. An overall description of
AvatarSE-to-ProVerif translation is given in the subsequent paragraphs.

The behaviour of an AvatarBlock modeled in its SMD is translated as a ProVerif process
that may be composed of several subprocesses. Since the SMD of an AvatarSharingBlock is
empty, no corresponding process is generated. Instead, the AvatarSharingBlock is translated
to several ProVerif expressions that are introduced within processes of respective inner
AvatarBlocks. More precisely, Attributes, Methods, and Signals within a SharingBlock
are translated to statements composing Global Declarations or Main Composition Process
sections. Predefined CryptoMethods are translated as ProVerif functions. The semantics of
ports within AvatarSharingBlocks is compliant with channels defined in ProVerif. Thus, the
translation is straightforward. Signals declared within an AvatarSharingBlock are translated
to ProVerif as global variables, and thus shared by their associated processes. Pragmas
declared in the AvatarPragmaComment have a suitable representation either as ProVerif
queries or as secrecy assumptions. Each SMD determines the structure of the process
associated to the AvatarBlock.

Each state of a SMD produces a new subprocess. Mutually exclusive AvatarGuards in
an outgoing transition are evaluated using if ... then statements and placed within the
respective subprocess. If the condition is satisfied, the assignations in the AvatarTransition
are performed. The flow is finally directed to the respective subprocess, i.e., the one
associated to the outgoing Avatar node. In case of non-mutually exclusive guards or even
empty guards a new subprocess is defined for each Transition. Defined subprocesses are
finally composed with the operator |. No semantics in ProVerif is available for direct
translation of Avatar time intervals, i.e., AvatarAfter and AvatarComputeFor. Similarly,
SetTimer, ResetTimer and TimerExpiration are transformed to empty sentences. Instances
of AvatarSendSignal and AvatarReceiveSignal are formally coded as ProVerif out and
in expressions, respectively. As can be noticed, the operational semantics of ProVerif
follows a tree structure. Consequently, to perform a straightforward mapping from a SMD
to a process in ProVerif, loops in SMDs are not allowed. This choice aims to preserve
the equivalence between formal SMD and ProVerif semantics. A proof of equivalence of
operational semantics between formalized Avatar/AvatarSE and ProVerif still needs to be
elaborated. Further work is necessary to elaborate that proof. Finally, it is recalled that
our contribution is only focused in formalizing and translating Avatar/AvatarSE to ProVerif.

The following paragraphs present formal definitions for AvatarSE-to-ProVerif translation.
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Definition 31 AvatarSE-to-ProVerif Transformation
Let Pv the formal semantics of ProVerif as defined in [39], [54]. An AvatarSE-to-ProVerif
Transformation T is a function mapping the AvatarSecurityEnvironment in Pv, i.e.,
T :AvatarSE→ Pv.

Definition 32 AvatarSMD-to-Pv function
Let B = (A,M,S, P, SMD) an AvatarBlock. The function F1 transforming SMD :=
(Q,S,L, T , q0,F) to Pv is defined below. Declarations in ProVerif are placed in Process
Definition section within the Pv specification.

Avatar ProVerif Conditions
q0 7→ let B_q0 = q0 Initial State

event enterB_q0();
qi 7→ let B_qi = ∀ qi ∈ Q

event enterB_qi();
out s(x) 7→ out (p, x); s ∈ Apj, p : Apj →

Apk, p ∈ P

in s(x) 7→ in (p, x); s ∈ Apk, p : Apk →
Apj, p ∈ P

(qi, [Guard] : [Assignation]∗, qj) 7→ let B_qi = Process B_qi
declared only once.event enterB_qi();

[if Guard = true then ] qi, qj ∈ Q
[let Assignation in ]∗ B_qj.

(qi, Guard1 : [Assignation1]
∗, qj) 7→ let B_qi = Process B_qi

declared only once.... event enterB_qi();
(qi, Guardn : [Assignationn]

∗, qj) B_qG1| ... |B_qGn. qi, qj ∈ Q
let B_qGk = Process B_qGk
if Guardk = true then associated to Guardk
[let Assignationk in ]∗ B_qj.

(si(x), [Guard] : [Assignation]∗, sj(y)) 7→ in|out (si,x); si, sj ∈ S
[if Guard = true then ]
[let Assignation in ]∗

in|out (sj,y);
(qi, [Guard] : [Assignation]∗, sj(y)) 7→ let B_qi = Process B_qi

declared only once.event enterB_qi();
[if Guard = true then ] qi ∈ Q, sj ∈ S
[let Assignation in ]∗

in|out (sj,y);
(si(x), [Guard] : [Assignation]∗, qj) 7→ in|out (si,y); si ∈ S, qj ∈ Q

[if Guard = true then ]
[let Assignation in ]∗ B_qj.

(qi, [ ] : [Assignation1]
∗, q1) 7→ let B_qi = Process B_qi

declared only once.... event enterB_qi();
(qi, [ ] : [Assignationn]

∗, qn) B_qG1| ... |B_qGn. Non-exclusive guards.
qi, q1, ..., qn ∈ Q.

let B_qGk = Process B_qGk
[let Assignationk in ]∗ B_qk. associated to Guardk

(qi, [Guard1] : [Assignation1]
∗, q1) 7→ let B_qi = Process B_qi

declared only once.... event enterB_qi();
(qi, [Guardn] : [Assignationn]

∗, qn) B_qG1| ... |B_qGn. Non-exclusive guards.
qi, q1, ..., qn ∈ Q.

let B_qGk = Process B_qGk
if Guardk = true then associated to Guardk
[let Assignationk in ]∗ B_qk.

qf 7→ let B_qf = ∀ qf ∈ F
event enterB_qf();
0.
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This transformation depends upon the grammar of expressions settled in definition 26.
Thus, a Guard is a single AvatarBooleanExpression and no logical connectives are allowed
(and/or). The transformation is not sequential. Elements within an AvatarSMD are placed
according to the conditions stated in the third column.

Definition 33 AvatarBlock-to-Pv function
Let B = (A,M,S, P, SMD) an AvatarBlock. The function F2 transforming B to Pv is
defined in next table. Declarations in ProVerif are placed in Global Declarations section
within the Pv specification, unless other thing be indicated. Private functions in Avatar are
accordingly declared in ProVerif.

Avatar ProVerif Conditions
vi 7→ new B_vi; (inside process B_q0) ∀vi ∈ A, vi over D
fi : Dm → Dn 7→ [private] fun fi/m. fi ∈M

gi : Dn → Dm 7→ [private] reduc gi(y1, . . . , yn)
= (x1, . . .,xm).

gi ∈M defined as re-
duction, i.e., n > m

in | out si(x) 7→ ∅ ∀si ∈ S

Api 7→ ∅ ∀Api ∈ P

SMD 7→ F1(SMD) (see definition 32)

Note 6 Block Translation
Note that, once translated in ProVerif, Attributes in Blocks are renamed considering both
Block’s name and Attributes’ name. This choice recognizes the fact that Attributes in
Blocks are independent, even if they share the same name. Thus, attributes defined within a
process can be used/called by all subprocesses without ambiguity. Note as well, that in/out
Signals are translated to empty sentences, since their semantics has been already considered
in AvatarSMD-to-Pv translation (see definition 32). Analogously, AvatarPorts Api are
translated to empty sentences. The translation of communicating links is not performed at
Block level but at Block Diagram level as shown in next definition.

Definition 34 AvatarBlockDiagram-to-Pv function
Let BD := (B,P, C) an AvatarBlockDiagram. The function F3 transforming BD to Pv
semantics is defined as follows. AvatarPorts defined as private are accordingly translated in
ProVerif.

Avatar ProVerif Conditions
Bi 7→ F2(Bi) (see definition 33) ∀Bi ∈ B
pi : Apj → Apk 7→ [private] free pi.

(in Global Declarations section)
∀pi ∈ P

ci = (Bj , Bk) 7→ ∅ ∀ci ∈ C
BD 7→ process !(B1_q0|. . .|Bk_q0).

(in Main Composition Process)
Bi ∈ B

Note 7 Translation of Block Composition Associations
As can be seen from definition 34, Block composition associations ci = (Bj , Bk) are translated
to empty sentences in ProVerif. However, the AvatarDelegatePortConnector - see definition
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18 - that can be declared over ci = (Bj , Bk) is translated as shown in definition 39 what
models the association.

Definition 35 CryptoMethod-to-Pv function
The function F4 that transforms predefined CryptoMethods to Pv, is defined in the table
below. ProVerif sentences are placed in the Global Declarations section within the Pv
specification unless other thing be indicated. If the CryptoMethod is private the word
private is added at the beginning of Pv sentences. Due to lack of space, we omit to include
the term private in the transformation.

AvatarSE ProVerif
int aencrypt(x,y) 7→ fun aencrypt/2.
int adecrypt(u,v), u=aencrypt(x,y),
v=Pk(y)

7→ fun Pk/1.
reduc adecrypt(aencrypt(x,y),Pk(y))=x.

int sign(x,y) 7→ fun sign/2.
bool verifySign(u,v,w), v=sign(x,y),
w=Pk(y), u=x

7→ equation verifySign(x,sign(x,y),Pk(y))=true.

int cert(x,y) 7→ fun cert/2.
bool verifyCert(u,v), u=cert(x,w),
w=sign(x,y), v=Pk(y)

7→ equation verifyCert(cert(x,sign(x,y)),Pk(y))=true.

int sencrypt(x,z) 7→ fun sencrypt/2.
int sdecrypt(u,v) u=sencrypt(x,z), v=z 7→ reduc sdecrypt(sencrypt(x,z),z)=x.
int hash(x) 7→ fun hash/1.
int MAC(x, z) 7→ fun MAC/2.
bool verifyMAC(u,v,w), w=MAC(x,z),
v=z, u=x

7→ equation verifyMAC(x,z,MAC(x,z))=true.

int concatN(x1, . . . , xn) 7→ let y=(x1,. . ., xn) in (within a process B_qi)
intn getN(y), y = (y1, . . . , yn) 7→ let (x1, . . ., xn)=y in (within a process B_qi)

Note 8 Definition of new CryptoMethods
It is stated that definition 35 is descriptive since other CryptoMethods can be defined in
AvatarSE. Up to now, a syntax to define equations in Avatar is not available. Reductions
can be defined using AvatarMethod.

Definition 36 CryptoBlock-to-Pv function
Let B = (A,S,M,P, SMD) be a CryptoBlock. The function F5 transforming a CryptoBlock
to Pv is defined in the table below.

AvatarSE ProVerif Conditions
vi (private key) 7→ new B_vi;

(in process B_q0 or in Main Compo-
sition Process)

vi ∈ A, vi a Pri-
vateKey

uj (public key) 7→ let B_uj = Pk(B_vk) in
out (p, B_vk);

uj , vk ∈ A, uj
a PublicKey, vk a
PrivateKey. p ∈
P a public DYPort-
Connector defined by
transformation 34

fc : Dm → Dn 7→ F4(fc)
(see definition 35)

fc ∈ M , fc a Cryp-
toMethod

B 7→ F2(B)
(see definition 33)

F2 does not consider
elements falling in
previous cases.
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Note 9 Crypto Block Translation
Note that the translation of a PrivateKey is the same as for other Block Attributes, however
the translation of a PublicKey leads to an association with the respective PrivateKey. Once
associated, the PublicKey is sent in a DYPortConnector and thus it is known by the attacker.
Finally, it is recalled that a CryptoBlock is an extension of a Block. Thus, the translation
of a CryptoBlock is defined in terms of Block transformation in definition 33. The Block
transformation does not cover elements defined as extensions.

Definition 37 AvatarSharingBlock-to-Pv function
Let BD := (B,P, C) be an AvatarBlockDiagram and B := (A,M,S, P, SMD) be an Avatar-
SharingBlock in B. Let assume that B is composed by B1, . . . , Bk, Bi ∈ B. The function F6
transforming B on a Pv specification is defined below. Pv sentences are placed in Global
Declarations section unless other thing be indicated.

AvatarSE ProVerif Conditions
vi 7→ [private] data B_vi/0. vi ∈ A an Avatar-

Constant
vi 7→ new B_vi;

(in Main Composition Process)
vi ∈ A is private Ini-
tialKnowledge

vi 7→ free B_vi. vi ∈ A is public Ini-
tialKnowledge

xi 7→ private free B_xi. xi ∈ A is a Pri-
vateKey

yi 7→ let B_yi = Pk(B_xj) in
out (p, B_yi);
(in Main Composition Process)

yi ∈ A is a Pub-
licKey, p ∈ P a public
DYPortConnector.

fc 7→ F4(fc)
(see definition 35)

fc ∈ M is a Cryp-
toMethod

Bj 7→ F5(Bj)
(see definition 36)

Bj is a CryptoBlock
composing B

Bj 7→ F2(Bj)
(see definition 33)

Bj is an AvatarBlock
composing B

This transformation renames AvatarAttributes according to the AvatarBlock inside of
which they are declared. Renaming also affects variables within nested AvatarBlocks. They
are translated as stated in definition 33.

Note 10 Avoiding Equally Renamed AvatarAttributes
AvatarAttributes within different AvatarBlocks can have the same name even if they are
semantically different. It also applies for nested AvatarBlocks. Since AvatarBlocks can not
be equally named, the transformation defined in 37 can not generate variables with the same
name - even in nested AvatarBlocks.

Note 11 Particularities of AvatarSharingBlock Transformation
It is recalled that that the SMD of an AvatarSharingBlock is empty - see definition 28. Also,
an AvatarSharingBlock is selfconnected by an AvatarDelegatePortConnector what allows
exchanges between nested Blocks. The delegate port connector is translated as stated in
definition 39.
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Definition 38 SecurityPragmas-to-Pv function
Let BDse := (Bse,Pse, Cse, P r,At) an AvatarSecurityEnvironment. Let {Bi, Br} ⊂ Bse,
qj , qs be two AvatarStates, and vk, vt be two AvatarAttributes of Bi and Br, respectively.
Next function F7 defines how elements in Pr are translated on Pv semantics. ProVerif
sentences are placed in Global Declarations section unless other thing be pointed out.

AvatarSE ProVerif
#SecrecyAssumption Bi.vj 7→ not attacker: Bi_vj.
#Confidentiality Bi.vj 7→ query attacker: Bi_vj.
#Authenticity Bi.qj.vk Br.qs.vt 7→ query evinj:authBr_qs(x)==>evinj:authBi_qj(x).

event authBi_qj(vk) (in subprocess Bi_qj;)
event authBr_qs(vt) (in subprocess Br_qs;)

#WeakAuthenticity Bi.qj.vk Br.qs.vt 7→ query ev:authBr_qs(x)==>ev:authBi_qj(x).
event authBi_qj(vk); (in subprocess Bi_qj)
event authBr_qs(vt); (in subprocess Br_qs)

Event expressions are placed within processes as defined below:

i) event authBi_qj(vk) is placed right before the expression in which the message is
sent in the channel by the process Bi_qj.

ii) event authBr_qs(vt) is placed right after the expression(s) in which process Br_qs
validates that the message comes from the claimed sender. vk is a secret code upon
which authentication relies.

Definition 39 AvatarSE-to-Pv function
Let BDse := (Bse,Pse, Cse, P r,At) an AvatarSecurityEnvironment. The AvatarSE-to-Pv
function transforming BDse on Pv is defined as specified in the table below and denoted by
Tpv.

AvatarSE ProVerif Conditions
Bi 7→ F2(Bi) (see definition 33) Bi ∈ B, Bi an

AvatarBlock
Bi 7→ F5(Bi) (see definition 36) Bi ∈ B, Bi an

AvatarCryptoBlock
Bi 7→ F6(Bi) (see definition 37) Bi ∈ B, Bi an

AvatarSharingBlock
p : Api → Apj 7→ [private] free p. ∀p ∈ Pse
ci = (Bj , Bk) 7→ ∅ ∀ci ∈ Cse
mi 7→ F7(mi) (see definition 38) ∀mi ∈ Pr

At 7→ ∅ (borrowed from ProVerif attacker
model)

Note 12 Particularities of AvatarSE-to-Pv Transformation
It is recalled that Block composition associations are translated to empty sentences. An
explanation was already provided in note 7. It is also recalled that the attacker model At in
AvatarSE is abstract. The formal specification of At is provided by the ProVerif framework.

Finally, the AvatarSE-to-ProVerif transformation is graphically represented in figure 5.16.
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It shows just defined functions and the compositions that define the global transformation
Tpv.

Figure 5.16: AvatarSE to ProVerif transformations

5.3.3 Example of AvatarSE-to-ProVerif Transformation

In previous subsection 5.3.2, a formal transformation from AvatarSE into ProVerif was
defined. This subsection illustrates the transformation by applying it to an AvatarSE model.
The objective is to ease understanding by exemplifying ProVerif code generation.
The AvatarSE model consists of three AvatarBlocks: Sharingblock, B1, and B2. Blocks
B1 and B2 are indeed CryptoBlocks and are nested into the Sharingblock which is self-
connected via a delegate port connector - see figure 5.17.

Figure 5.17: Overview of an AvatarSE model. Notice that verification of confidentiality is
conducted over data exposed to the attacker

In this model, B1 sends a new symmetric key named newSK to B2. The confidentiality
of newSK is protected by encrypting the message with a preshared secret key named SK.
Thus, SK is preshared by B1 and B2 through the sharing Block - see figure 5.17. To ensure
data authenticity, a MAC is added to the message also relying on SK. Once the message
is received by B2, the MAC code is verified. If the MAC corresponds with the message
payload, then B2 accepts newSK, otherwise the message is discarded. The behaviour of
B1 and B2 is accordingly modeled in their SMDs. An overview of the SMDs of B1 and B2
is depicted in figure 5.18.

As can be seen in figure 5.18, the message M1 is composed in the SMD of B1 - denoted
by SMD1 - as described in previous paragraph. The methods sencrypt() and MAC() used
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Figure 5.18: Overview of the SMDs of B1 - on the left - and B2 - on the right

for message composition are predefined in the CryptoBlock. Afterwards, the message is
sent through the AvatarSendSignal node outchan(Msg). It is received in the SMD of B2 -
denoted by SMD2 - by the AvatarReceiveSignal node inchan(Msg). Message content is
verified using the predefined CryptoMethod verifyMAC(Msg,Key,MAC). The response
of verifyMAC() is stored in the boolean Attribute resp. The result is finally evaluated so
as to determine whether the MAC is authentic or not. In case of authentic MAC, SMD2
leads to the state MACM1OK. Otherwise, the state WrongMACM1 is reached.

Now, it is explained how the AvatarSE-to-ProVerif transformation - defined in subsection
5.3.2 - is applied to elements in the above model and the result. We particularly focus on
the transformation of the SMDs.

SMD1 is translated based upon the function in definition 32. An excerpt of the resulting
ProVerif code is shown in figure 5.19.

let B1_1 =
event enteringState_B1_ComposingM1();
let B1_tmp_val= sencrypt(newSK,SK_val) in
let B1_tmp1_val= MAC(tmp_val,SK_val) in
let B1_Msg_val = (tmp_val,tmp1_val) in
B1_2.

let B1_2 =
event enteringState_B1_SendM1();
event authenticity_B1_SendM1(B1_newSK);
out(ch, B1_Msg_val);
0.

Figure 5.19: Transformation of SMD1 into ProVerif
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The transformation associates each state in SMD1 with one subprocess. The first
subprocess is named B1_1 and includes an event expression enteringState_B1_Composing
M1(). As can be noticed, event expressions are placed at each subprocess so as to verify
reachability. According to definition 32, the three assignations in the first transition are
associated to three assignations in ProVerif. These assignations forge the message Msg, i.e.,
M1, and rely upon functions sencrypt() and MAC() defined by the transformation of the
CryptoBlock. Right after, the subprocess B1_2 is called. Subprocess B1_2 is also defined
by an event expression event enteringState_B1_SendM1() and finally by the sentence
out(ch, Msg_val) that delivers Msg through the public channel ch. The event with prefix
authenticity_B1 is placed so as to verify authenticity of Msg as it is explained later.

SMD2 is transformed also applying definition 32. As can be seen from figure 5.20, the
sequential states named WaitForM1, DecomposeM1, and V alidateM1 are associated to
the sequential subprocesses B2_1, B2_2, and B2_3, respectively. These subprocesses are
generated in a similar manner as the ones described in previous paragraph. However, the
Avatar state named Decision has two outgoing transitions. This state is associated with
the subprocess B2_4 that performs a parallel composition of B2_5 and B2_6, one for each
transition. Process B2_5 verifies with an if ... then sentence that the MAC code of M1
truly corresponds with the message whereas process B2_6 is meant to make the contrary.
Thus, B2_5 leads to the subprocess B2_7 that is associated to the Avatar stateMACM1OK
signaling correct MAC validation. On the contrary, B2_6 leads to the subprocess B2_8
that is associated to the Avatar state WrongMACM1. Along with event expressions for
proving process reachability, the event with prefix authenticity_B2 is introduced. This
sentence is necessary to prove authenticity of Msg, i.e., M1.

The transformation of the Avatar elements introduced to verify authenticity in the
scenario is finally described. As can be seen from the Avatar Block model in figure 5.17, an
AuthenticityPragma is modeled:

#Authenticity B1.SendM1.newSK B2.MACM1OK.memory

The semantics of the pragma was already presented in subsection 5.2.2. The expression
is transformed to ProVerif according to definition 38. Thus, a ProVerif query and two
events are generated. The query is placed in the global section of the ProVerif code. The
syntax is as follows:

query evinj:authenticity_B2_MACM1OK(x) ==> evinj:authenticity_B1_SendM1(x).

The query makes a reference to two event expressions upon which the proof of authentic-
ity relies. As defined in 38, the event expressions are respectively placed within the subpro-
cesses associated to B1 and B2. More specifically, the event expression authenticity_B1_
SendM1() is placed within subprocess B1_2 as shown in figure 5.19 whereas the event
expression authenticity_B2_MACM1OK() is placed within subprocess B2_7 as depicted in
figure 5.20. Further details on the ProVerif framework can be found in the annex A.

5.4 Approach Limitations and Conclusions

In this chapter we have described an extension of the Avatar profile named AvatarSE.
AvatarSE introduces elements and semantics that overcome several shortcomings of Avatar
so as to verify security concerns. Since AvatarSE is SysML-based, it should be endowed
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let B2_1 =
event enteringState_B2_WaitForM1();
in(ch, B2_Msg_val);
B2_2.

let B2_2 =
event enteringState_B2_DecomposeM1();
let (B2_tmp_val,B2_tmp1_val) = B2_Msg_val in
B2_3.

let B2_3 =
event enteringState_B2_ValidateM1();
let B2_MAC_tmp0_1 = MAC(B2_tmp_val,B2_SK_val) in
let B2_MAC_tmp1_1 = B2_tmp1_val in
B2_4.

let B2_4 =
event enteringState_B2_Decision();
((B2_5) | (B2_6)).

let B2_5 =
if B2_MAC_tmp0_1 = B2_MAC_tmp1_1 then
B2_7.

let B2_6 =
if B2_MAC_tmp0_1 <> B2_MAC_tmp1_1 then
B2_8.

let B2_7 =
event enteringState_B2_MACM1OK();
let B2_memory_val=sdecrypt(B2_tmp_val,B2_SK_val) in
event authenticity_B2_MACM1OK(B2_memory_val);
0.

let B2_8 =
event enteringState_B2_WrongMACM1();
0.

Figure 5.20: Transformation of SMD2 into ProVerif
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with a formal semantics to conduct proofs. To do so, AvatarSE has been first formalized
and afterwards transformed into the ProVerif semantics. Before addressing conclusions on
this proposal, the main limitations of our approach are highlighted.

5.4.1 Approach Limitations

A formal specification of the AvatarSE profile has been provided. Formalization is a prior
step before transforming models into ProVerif semantics. As explained in subsection
5.3.1, the profile formalization helps to ensure the consistence of model and proofs that
are conducted at different backends. In particular, it provides a basis for proving the
consistence of proofs that refer to the same semantics or features, e.g., reachability. On
one side, Avatar is transformed into the formal semantics of UPPAAL automata. On the
other side, AvatarSE is an extension of Avatar and is transformed into ProVerif processes.
Along with that, it is foreseen that AvatarSE may be extended and translated to other
frameworks so as to support verification of more security properties. Profile formalization
is a mean upon which proofs of equivalence between those semantics can be conducted.
Thus, the approach is still in evolution and further work is necessary to undertake identified
limitations:

Transformation limitations: There exist several differences between AvatarSE and Pro-
Verif semantics. Several of them are already undertaken by the AvatarSE-to-ProVerif
transformation. Up to now, the main differences that have not been overcome are
on modeling of time, channel features, and threats model. As shown in section 5.1,
Avatar includes several stereotypes that allow modeling of real-time systems. On the
contrary, the formalization of AvatarSE and transformation do not introduce time
modeling. Thus, all time-related elements in AvatarSE - like timers - are transformed
to empty sentences in ProVerif. This is because ProVerif does not provide support
to explicitly model time. Also, Avatar is suitable for modeling channel features like
broadcasting, asynchronous, lossy, blocking on write, and FIFO links. However, in
ProVerif, communication between processes is performed over synchronous unicast
channels. The transformation is not really adapted to deal with models including
asynchronous or broadcasting channels since these features are finally vanished in
ProVerif. If security proofs depend upon referred features, then channels should be
modeled by hand relying on AvatarBlock semantics. An abstract attacker has been
introduced in AvatarSE. This abstract model relies upon the formal attacker specified
in ProVerif. The association between both models is precised by the AvatarSE-to-
ProVerif transformation. Nonetheless, AvatarSE and the transformation are not
suited to configure or modify the operation of the ProVerif attacker model.

Proofs capability: As shown in subsection 5.2.2, AvatarSE provides a semantics to model
some security properties, i.e., confidentiality and authenticity. This semantics is
adapted to the capabilities offered by ProVerif via the AvatarSE-to-ProVerif transfor-
mation. However, as concluded in section 3.3, support for verification of integrity,
freshness, privacy, availability, etc. is also worth having. Thus, AvatarSE should still
be extended in order to cover the landscape of demanded security properties. Nonethe-
less, it is recognized that our approach is mostly conceived for statical modeling of
properties. The work needed for addressing dynamical/context based properties like
the ones in [62] has not been estimated. ProVerif relies upon a resolution algorithm
that conducts proofs of properties [54]. As proved by the authors, the resolution
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algorithm is sound but for certain instances it may not terminate. Even if some
techniques have been proposed to modify models and overcome that shortcoming
[45], infinite searches may still occur. It is recognized that our transformation does
not introduce those techniques and is unable to deal with non-termination in proofs.
Another issue that limits proof capabilities in our approach is the formalization of
synchronous channels in ProVerif. According to the authors, the resolution algorithm
formalizes channels in such way that the order in exchanges is not considered [54].
On the contrary, the operational semantics attached to signals and port connectors in
AvatarSE considers order in events. Unfortunately, the AvatarSE-to-ProVerif transfor-
mation is unable to deal with such difference. Consequently, if the proof of a security
property depends upon message order, then the order scheme should be modeled by
hand. Otherwise, the proof may not be sound.

Integration of security and safety: It was claimed that a framework for proving time,
safety, and security critical embedded systems was targeted. Avatar profiles, their
formalization and transformation partially provide such framework. However, further
work is necessary to consolidate the integration of safety and security into Avatar
and AvatarSE. The formalization of the profile is a first step to endow Avatar and
AvatarSE with an operational semantics at a high level. This allows to conduct proofs
of equivalence with the rest of formal backend semantics. For instance, to demonstrate
that model features that should be preserved by two - or more - frameworks are
effectively preserved. To adequately achieve integration of safety and security in
AvatarSE, those proofs should be imperatively conducted. Even if equivalence is
ensured, some difficulties for verifying time, safety, and security from the same
model may appear. In fact, the operational semantics of Avatar and AvatarSE is
mostly aligned with the automata semantics. Thus, transformation of AvatarSE
into UPPAAL should be quite straightforward. However, the structure of sequential
processes in ProVerif is similar to a tree. It implies that if a process eventually falls in
a recursive call to itself, event expressions within the process are infinitely repeated
what compromises the proof of authenticity. Event expressions for verification of
authenticity must appear only once in a process branch [54]. To deal with this issue,
the SMDs of models to be verified in ProVerif should not contain cycles. Consequently,
modeling is finally biased by the targeted properties. An impact on the integration of
time, safety, and security analyses into the Avatar/AvatarSE framework is recognized.

5.4.2 Conclusions

AvatarSE and Avatar are still in evolution and further modifications are foreseen. Even so,
the approach provides a framework that is adequate to conduct modeling and verification
of time, safety, and security properties at a high level. The approach has shown up that
integration of formal techniques to assist design and verification of embedded systems is
not a simple issue. Our proposal has addressed some of the critical steps in integration. In
particular, we have attached a formal semantics to AvatarSE and we have translated it into
ProVerif. This contribution provides a link between a semiformal SysML-based language
and a formal context necessary for proofs. Thus, the integration of formal techniques into
an engineering development framework is partially achieved. This integration relieves the
designer from working on languages and proofs that may impose certain complexity. By
identifying the shortcomings of our approach, it can be better applied before improvements
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are addressed.

In section 3.2.3, some metrics were adopted to evaluate the usability of security verifica-
tion frameworks. These metrics are used to address some conclusions on the usability of
AvatarSE and Avatar. First, the profile is SysML-based what is a significant advantage for
its usability in engineering environments. AvatarSE and Avatar were conceived so as to keep
them as simple as possible. They are defined with a minimum set of modeling constructs
what may simplify profile learning. In addition, the framework adequately supports model-
ing of constraints in embedded systems. In particular, time and resource constrains and the
complex modular heterogeneity. Along with a graphical modeling, an intuitive semantics
is also offered. Avatar modeling can be seen as a graphic, object/communication, and
timed-behaviour oriented paradigm. AvatarSE extends modeling capabilities and makes
the approach security oriented by including attacker, security properties, and cryptography
modeling.

Properties modeling relies upon parameterized expressions named pragmas. These
security pragmas provide patterns that considerably simplify modeling. The designer is
relieved from elaborating definitions of security properties and from adapting them to the
model. Since security patterns do not depend upon the model instance, properties are
not biased by the model. Finally, AvatarSE/Avatar framework is supported by TTool that
automatically performs model transformation to underlying backends. Proofs are afterwards
automatically conducted at backend level and results exhibited at frontend. ProVerif is able
to provide violation traces showing system vulnerabilities. Those traces can be displayed in
the verification tool box offered by TTool.

The development of AvatarSE/Avatar and toolkit support show significant progress.
Even so, additional work needs to be performed so as to ensure consistent integration of
formal techniques and more effective framework usability, i.e., with respect to other metrics
like human acceptability. In addition, further work is also needed to address and overcome
shortcomings mentioned in previous subsection.
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Chapter 6

Case Study: Securing and Testing
EVITA Architecture

A methodology that supports the whole engineering development process has been proposed
in chapter 4. As it is explained, the proposal addresses verification of both safety and
security critical embedded systems, and partially fulfills methodological lacks highlighted
in chapter 3. Moreover, as described in chapter 5, the design framework provides engineer
usability whereas sound formal proofs can also be conducted. The contributions to the
methodology mainly consist on: integration of formal techniques into the engineering
development process, a method for assessment of system protection against attacks, and a
procedure for system testing upon the target platform. The Methodology is now applied to
secure an automotive system specified and prototyped in the scope of the EVITA project
[77]. The reference on-board architecture has been introduced in section 2.2. This chapter
shows how the methodology stages introduced to fulfill lacks are applied. Also, whether
the outcomes correspond to Methodology rationale.

The chapter is structured in two sections. In section 6.1, a protocol for ECUs re-keying
is analyzed, modeled, verified, and the achieved level of attack protection assessed. The
protocol is security critical since most on-board ECU exchanges rely upon symmetric -
and asymmetric - keys that eventually expire and need to be renewed - see deliverables
[13], [95]. If a key is disclosed by the attacker, then concerned ECUs can be impersonated,
compromised, and sensitive data stolen. Attackers may even overtake and gain control of
the overall on-board network. That is why the protocol needs to be secured. This section
mainly shows protocol analysis, modeling, and verification. Afterwards, an attack coverage
assessment is conducted. In section 6.2, a safety and security critical subpart of the EVITA
ECU stack is targeted. The HSM Driver operates as an intermediary between middleware
and the EVITA security anchor: the HSM. The Driver should properly manage requests
coming from potentially insecure middleware applications, and responses from the HSM.
The HSM Driver is safety and security critical since its operation is time constrained and
is inside the EVITA Trusting Computing Base (TCB) border. Thus, after model-based
verification and adaptation into the target platform, HSM Driver is tested as shown in
section 4.2.9. The Tests show Driver operability and provide certain evidence of conformity
with requirements. Tests may also provide conclusive evidence about weaknesses and
vulnerabilities of the prototype implementation.
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6.1 Securing EVITA Symmetric Keying Protocol

This section applies several stages of the methodology proposed in chapter 4 in order to
partially secure an EVITA protocol. It mainly shows the usability of the design/modeling
framework - see subsection 3.2.3 - and the application of the attack coverage assessment
method. To accomplish these objectives, system, threats, and requirements analyses are
conducted according to the stages exposed in section 4.2. Our approach was applied in the
scope of the EVITA project and further details can be found in deliverables [19] and [18].

6.1.1 Initial System Analysis

Host Platform Context: Why ECU Groups

The EVITA reference architecture has been exposed in section 2.2. The target protocol runs
on the top of the EVITA ECU stack within the applications layer. The EVITA components
and their interactions are depicted in figure 6.1. It reflects a mature status of the EVITA
architecture achieved just after several analyses and refinements were performed. As it is
shown, top applications interact with the HSM via intermediary SW and HW modules.
Top applications are able to demand cryptographic services to the HSM like encryption,
decryption, key generation, key updating, signatures and MAC verification. Thus, the
HSM stores and handles secret material like symmetric or asymmetric keys associated to
ECU, vehicle, owner and pseudo ID’s. Applications are also able to exchange messages
between ECUs relying upon middleware communication facilities and via wired buses like
CAN, FlexRay, and MOST. As shown in section 2.3, referred applications are security
sensitive since exchanges can be threatened by malicious parties. In order to secure EVITA
applications and cope with possible threats, several cipher mechanisms can be applied.
Nevertheless, forge/verify ciphered messages increases computation time and message
overhead what impacts time constrained and safety critical applications, e.g., collision
avoidance systems. Consequently, efficient schemes for ECUs communication are needed.
ECUs group communication is among proposed EVITA solutions - see deliverable [95]. In
a group, every ECU can share a symmetric secret key with the rest of group members and
use it to sign/MAC and broadcast group messages. Shared keys are set so as to give the
owner ECU full privileges whereas the rest of group members can only use it for MAC
verification. Thus, each ECU is able to efficiently broadcast messages among group ECUs
preserving authenticity and secrecy. This scheme is useful for safety critical applications
that demand very short processing times, e.g., applications for processing Cooperative
Awareness Message (CAM) signaling emergency situations ahead [95].

Figure 6.1: EVITA on-board architecture
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Protocol Description

The Keying Protocol aims to securely distribute a randomly generated key among the
members of a group of ECUs relying upon a central ECU named Key Master. The key to
be distributed is referred as Session Key (SesK) and the ECU that creates it is referred
as generator. When the protocol is triggered, the generator creates the SesK and sets its
flag to ’verify’ (use_flag=verify, see [13], Key Data Structures). Thus, other ECUs in the
group are enforced to use the SesK only for MAC verification. Afterwards, the SesK is
sent to the central Key Master for group distribution. Since the Key Master owns the
Pre-shared Secret Key (PSK) of every ECU in the group, the generator encrypts the SesK
with its own PSK. That message includes a time stamp and is finally protected with a
MAC. After reception, the Key Master verifies the blob and in case of a valid request, the
SesK is imported into Key Master HSM. From this point, the Key Master is responsible
for SesK distribution. Consequently, the SesK is encrypted with the PSK of the respective
target ECU. The message is time stamped and MAC protected. When a member of the
group receives a message from the Key Master, it verifies message validity and afterwards
imports the new SesK into its HSM. Finally, a message including an acknowledgement flag
(ACK) is sent by the importer ECU to the Key Master thus informing SesK acceptance.
The acknowledgement also includes a time stamp and is MAC protected. The Key Master
receives the acknowledgement and a security check is performed. The Key Master should
repeat just described procedure for every ECU in the group (excluding the generator).
After SesK distribution, the Key Master informs the results to the generator (partial or
total accomplishment). The message includes the respective ACK code, the time stamp
and is MAC protected. Finally, after reception of acknowledgement, the generator verifies
message validity and afterwards the protocol ends. The cryptographic description of the
protocol is as follows.

ECU1 → ECUKM : {SesK}PSK1 , gn, ts1,MAC({{SesK}PSK1 , gn, ts1}, PSK1)
ECUKM → ECUN : {SesK}PSKN

, gn, ts2,MAC({{SesK}PSKN
, gn, ts2}, PSKN )

ECUN → ECUKM : Ack, ts3,MAC({Ack, ts3}, PSKN )
ECUKM → ECU1 : Ack, ts4,MAC({Ack, ts4}, PSK1)

Protocol Analysis

As can be noticed, protocol specification only describes a nominal scenario in which a
key is successfully distributed among a group of ECUs. Several assumptions are made for
leading to protocol accomplishment. For instance, that acknowledgements arrive on time,
i.e., before ECUs timeouts occur and message freshness expires. On the contrary, protocol
implementation may face conditions in which those assumptions are not satisfied. As stated
in section 4.2.2, a system analysis is conducted so as to improve protocol understanding,
identify specification inconsistencies, and scenarios out of nominal behaviour. Among the
latest ones, attack scenarios may be identified.

The whole analysis of the Keying Protocol involve several nominal and out of specification
cases. Two of them are selected to show this stage. The first scenario is the nominal key
distribution specified in previous subsection. The second scenario shows a possible error case
due to ECU timeouts. Selected cases are represented relying upon Sequence Diagrams. The
sequence in figure 6.2 shows a successful distribution of the SesK among the members of a
group. The notation used in messages correspond with the cryptographic notation provided
at the end of previous subsection. This diagram depicts the exchanges between three
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ECUs: generator (ECU1), Key Master (ECUKM), and one target ECU (ECUN). Request
for re-keying (Message 1), key distribution (Message 2), and respective acknowledgements
(Messages 3 and 4) are correctly delivered and security checks passed. At the end of the
protocol, the SesK is successfully distributed to all group members and ECU1 is accordingly
informed. The nominal scenario shows right synchronization between ECUs.

Figure 6.2: Sequence Diagram of the Keying Protocol

Protocol specification does not cover scenarios due to message losses, timeouts, inter-
leavings, and other event-based circumstances. That is why analysis of out of specification
scenarios is of utmost importance. The scenario in figure 6.3 shows a sequence in which a
timeout leads to a system inconsistency that may impede group communication. It shows
the distribution of a key generated by ECU1 among a group of four ECUs. The Key Master
(ECUKM) successfully delivers encrypted blobs containing the SesK to ECU2 and ECU3
(Messages 2 and 3). Afterwards, ECU2 correctly acknowledges key reception to ECUKM,
i.e., before timer expiration (Message 4). However, the acknowledgement coming from
ECU3 (Message 5) does not arrive on time, e.g., due to message loss or corruption. ECUKM
may try to resend the blob and wait for acknowledgement, however, the SesK was already
imported by ECU3 and it simply dismisses duplicated request. Even if it is not specified,
dismissing duplicated messages is a standard procedure that prevents ECU flooding. After
last attempt, ECUKM finally signals a partial SesK distribution to ECU1 (Message 6),
even if the SesK is already owned by all group members. The fact that ECUKM and
ECU1 only recognizes a partial key distribution impedes that SesK be used. Thus, ECU1
may re-trigger the protocol so as to accomplish overall key distribution. Nevertheless, this
procedure is an extension of the protocol that should be first specified. Since keys must be
renewed before an expiration threshold, remaining time for re-keying may be critical. Thus,
if the issue is not overtaken, ECU group communication shall result non operational.
As it has been shown in the analysis, the protocol is underspecified. The error scenario
demonstrates that system inconsistencies may lead to safety critical situations. In addition,
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Figure 6.3: Sequence Diagram of the Keying Protocol showing a system inconsistency

an attacker aware about protocol weakness can intervene so as to impede overall vehicle
re-keying undermining on-board group communications. The protocol is security sensitive
and further analyses are required to identify weaknesses, vulnerabilities, and threats.

6.1.2 Threats and Requirements Analyses

Threats Analysis

The Keying Protocol and related EVITA ECU architecture can be the target of multiple
attacks. As stated in deliverable [20], a variety of threats may undermine EVITA architecture
security. In this subsection we mainly focus on two of the most critical threats: impersonation
of embedded devices identity and disclosure of secret data. As stated in security reports like
[134] - Mcafee Security Center - and [136] - Mocana Corporation -, remotely compromised
devices and data theft are among major security issues in embedded systems. Hence, the
analysis is focused on mentioned threats and conducted as stated in section 4.2.1. The
main hypotheses upon which system threats are elicited are:

Hypothesis 1 Attacker-related Hypotheses

AH.1 The attacker does not have physical access to internal ECU modules or links like
buses, memories, HSM.

AH.2 The attacker may have physical access to on-board CAN buses and other links external
to the ECU.

AH.3 The ECU stack has not been attacked. The attacker only knows public information
and any ECU secret material has been initially disclosed.

Results on attacks elicitation are summarized in next paragraphs. According to previous
hypotheses, attacks on ECUs impersonation can rely upon next known methods:
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Preshared Secret Keys (PSK) Theft: Preshared secret keys are stolen or leak from
factory or garage service. Attacks in this category do not directly concern with the
system development process but with the key management process.

Export fake PSK inside ECU: The attacker exports its own fake PSK into a valid
ECU in the group. Protocols for key management, exporting, importing, and flashing
into HSM non-volatile memory are directly concerned.

Exploit Protocol Vulnerability: The attacker intervenes public channels so as to dis-
cover and exploit a protocol vulnerability. Hence, the attacker listens, eavesdrops,
intercepts, alters, corrupts, forges, injects, replays messages exchanged over on-board
channels trying to play ECU’s role. In particular the attacker may try to disclose
secret keys used in exchanges.

As depicted in the Attack Tree in figure 6.4 and according to hypotheses AH.1 to
AH.3, the attacker should exploit a protocol vulnerability by targeting exposed on-board
channels. The main objective is to partially or fully intervene protocol exchanges. Along
with techniques mentioned in previous items, a sophisticated attacker may also rely on
reverse engineering techniques. Boxes right below leaf attack nodes represent targeted
assets.

Figure 6.4: Attack Tree showing attacks on ECUs impersonation

Attacks on secret material disclosure can rely upon next known methods - see figure
6.5. Elicitation of threats is based upon hypotheses AH.1 to AH.3 provided in 1.

Preshared Secret Keys (PSK) Theft: Preshared secret keys are stolen or leak from
factory or garage service. Attacks in this category do not directly concern with the
engineering development process but with the key management process.

Undertake/Gain ECU control: Once an attacker gains ECU control, secret material
is at stake. Among the means to overtake ECUs are cyber viruses, rootkits, and
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other sorts of malware. Poorly protected applications and protocols for downloading,
updating, flashing applications are concerned with these threats. Non-sanitized
procedures and tools used for on-board diagnosis open a window for viruses spreading.

Exploit Protocol Vulnerability: The attacker intervenes public channels trying to ex-
ploit a protocol vulnerability so as to achieve secret material disclosure. The attacker
sniffs public channels and applies reverse engineering, fuzzing, as well as other tech-
niques looking for a vulnerability.

Figure 6.5 shows the attack tree corresponding to secret disclosure attacks. Concerned
assets are depicted below leaf nodes.

Figure 6.5: Attack Tree showing attacks on secret material disclosure

Requirements and Properties

As stated in section 4.2.4, requirements should be elicited in order to cope with identified
threats. Requirements are derived with respect to attack nodes targeting protocol vulnera-
bilities - see attack trees in figures 6.4 and 6.5. To ease lecture, Security Requirements are
separated in two Diagrams, each one associated to one Attack Tree.

The Requirements Diagram in figure 6.6 shows requirement nodes for coping with ECU
impersonation attacks. A global authenticity requirement is stated as root node. The
root requirement is a goal that is analyzed to identify conditions necessary to achieve it.
Along with that, the relationships with the requirement goal are also identified. In our
instance, the root requirement demands authenticity for all the commands or requests
received by ECUs. To achieve this goal, the condition must be in particular satisfied by
the three involved ECUs. Thus, three child requirements are respectively elicited - one
for each ECU. Afterwards, these three requirements are refined considering the specific
messages that each ECU should receive according to its role in the protocol. Finally, a
set of leaf requirements is derived from refined requirements so as to impose conditions
over the specific message correspondences that must be fulfilled in order to ensure the
authenticity goal. More precisely, leaf nodes impose exigencies on data authenticity and
upon sender-receiver correspondences. Fulfillment of stated requirements prevents ECU
impersonation.
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Figure 6.6: Diagram showing Authenticity Requirements for the Keying Protocol

The Requirements Diagram in figure 6.7 shows requirements for coping with attacks on
secret material disclosure.

Figure 6.7: Diagram showing Confidentiality Requirements for the Keying Protocol

According to the hypotheses stated in 1, the attacker initially ignores any secret material
and can only have access to accessible links like the CAN bus. Consequently, to preserve
the confidentiality of secret material, the commands or requests carrying that information
over public channels must be ensured. Thus, the protocols transporting firmware, keys,
seeds are particularly concerned. The root Requirement states just referred goal. In the
EVITA architecture, two sorts of keys are identified according to their roles: the target
keys that should be transferred, and the preshared keys used to transport the target keys.
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The confidentiality of both sorts of keys must be ensured in order to achieve the goal. The
root requirement is respectively composed by two requirement nodes. Finally, leaf-node
requirements are elicited so as to demand confidentiality for specific keys and transfers
in the scenario. Preshared secret Keys as well as the key to be distributed (SesK) must
remain confidential to group ECUs. Leaf nodes provide the requirements to be verified
upon a system model, i.e., they represent confidentiality properties.

6.1.3 Design and Verification

Protocol Design

Protocol is modeled relying upon the Avatar design framework and respective security
extensions. Avatar and AvatarSE profiles have been thoroughly exposed in chapter 5.
For simplicity, each ECU in the Keying Protocol is represented as an Avatar Block. In-
teractions between ECU layers, including the HSM, are abstracted since only exposed
channels are concerned with security proofs. Each ECU is modeled as a single standalone
component, according to the sequences made during protocol analysis, and relying upon
SMDs semantics. More specifically, Block SMDs are designed according to the nominal
behaviour depicted in figure 6.2. Figure 6.8 shows excerpts of the SMDs of ECU1 and
ECUKM that model the first exchange in the protocol. The message is forged in ECU1 as
specified in subsection 6.1.1 and sent in a public channel. Once received, ECUKM verifies
the authenticity of the message using its MAC. In case of valid request, the session key
is deciphered and stored within the HSM memory. The rest of exchanges is afterwards
performed. In case of mismatch in MAC verification, the request is discarded and nothing
else is done. The properties are proved with respect to the nominal scenario. The Preshared
Secret Keys initially owned by the Key Master and respective ECUs are modeled via prag-
mas - see definition 21. The mechanisms for encryption, decryption, and MAC generation
and verification are modeled with predefined patterns within the AvatarCryptoBlock - see
definition 26. ECU Blocks communicate relying upon a DYPortConnector and consequently
all exchanged signals can be undertaken by an attacker - see definition 27.

Figure 6.8: Excerpts of the SMDs of ECU1 and ECUKM. They respectively model sending
and reception of the first message in the protocol

An overview of the Avatar Block Diagram for the Keying Protocol is shown in figure
6.9. Some pragmas modeling authenticity and secrecy properties can be seen within the
AvatarPragmaComment. Verified properties are precised in next subsection.
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Figure 6.9: Overview of the Avatar model for the Keying Protocol

Protocol Verification and Results

Verification of properties is conducted at the push of a button. Avatar system model and
properties are automatically translated by TTool [9] to the backend ProVerif [2]. The
translation is based upon the formalization and transformation of Avatar/AvatarSE specified
in chapter 5. Afterwards, security proofs are conducted and finally the results are displayed
at frontend. The automated translation of Avatar towards ProVerif has been exposed in
section 5.3.2. Thus, the designer can prove/disprove system properties and obtain results
in a transparent way, without the need of formal skills. As described in chapter 5, the
integration of formal techniques into the engineering development process is ensured by the
Avatar methodology and toolkit support.

The properties verified on the Keying Protocol model are listed in table 6.1. In the first
column the leaf requirements depicted in diagrams 6.6 and 6.7 are listed. Second column
shows the respective properties modeled and verified over the system model - see pragma
semantics in subsection 5.2.2. The third column presents results from proofs. Along with
confidentiality, the strong correspondence between sender and receiver ECUs is verified
what implies authenticity according to [54]. Data origin authenticity is proved by verifying
that whenever a MAC code is received, it was previously generated by a group ECU. Thus,
replayed copies of MACs are also considered as authentic data.

Table 6.1: Results from verification of the Keying Protocol

Requirement SR Property P Result
SR-KP-C1.1.1, Confidentiality
of PSK1

#Confidentiality ECU1.PSK1 Satisfied

SR-KP-C1.1.2, Confidentiality
of PSKN

#Confidentiality ECUN.PSKN Satisfied

SR-KP-C1.2.1,2, Confidentiality
of SesK

#Confidentiality ECU1.SesK Satisfied

SR-KP-A1.1.1.1,
ECU1-ECUKM Correspondence

#Authenticity ECU1.o.M1 ECUKM.d.M1 Satisfied

Continued on next page
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Requirement SR Property P Result
SR-KP-A1.2.1.1,
ECUKM-ECU1 Correspondence

#Authenticity ECUKM.o.M4 ECU1.d.M4 Satisfied

SR-KP-A1.2.2.1,
ECUKM-ECUN Correspondence

#Authenticity ECUKM.o.M2 ECUN.d.M2 Satisfied

SR-KP-A1.3.1.1,
ECUN-ECUKM Correspondence

#Authenticity ECUN.o.M3 ECUKM.d.M3 Satisfied

SR-KP-A1.1.1, Data origin
authenticity M1

Received MACs can not be generated by the
attacker

Satisfied

SR-KP-A1.2.1, Data origin
authenticity M4

Received MACs can not be generated by the
attacker

Satisfied

SR-KP-A1.2.2, Data origin
authenticity M2

Received MACs can not be generated by the
attacker

Satisfied

SR-KP-A1.3.1, Data origin
authenticity M3

Received MACs can not be generated by the
attacker

Satisfied

6.1.4 Attack Coverage Assessment

As shown in section 3.2, verification methodologies do not consider further analyses after
verification. Consequently, the assessment of achieved protection is not precised. As stated
in section 4.2.7, this stage introduces a mean for interpreting formal results and assessing
the extent of requirements and attacks coverage.

Requirement Coverage Assessment

As proved in previous section several leaf requirement nodes have been verified and satisfied.
A bottom-up analysis is performed on paths starting at leaf nodes and leading to the root
of the tree. The goal is to assess to which extent upper requirements are covered by verified
properties. The informal semantics of each node is a main aspect to consider. An excerpt
of a such analysis targeting the path starting from requirement node SR-KP-A1.1.1.1 is
shown in next paragraphs - see figure 6.6.

According to results in table 6.1 the requirements stated in leaf nodes SR-KP-A1.1.1.1
and SR-KP-A1.1.1 are satisfied. The textual description of those requirements comes from
the diagram in figure 6.6 and is as follows:

GeneratorKeyMasterCorrespondence: The request from re-keying must truly and
only come from the intended generator ECU.

DataAuthenticityInECUKM_1: Whenever a requesting for re-keying is received by
ECUKM (Message 1), it must be authentic.

The authenticity of data received by ECUKM from ECU1 is fulfilled. Moreover, a strong
correspondence between requesting ECU1 and Key Master is also proved with respect to the
ProVerif attacker. It implies that whenever Key Master believes that certain information
comes from ECU1, that perspective is truly correct. Both requirements nodes are considered
as explicitly covered (EC) according to verification results. The immediate upper node
SR-KP-A1.1 imposes the following requirement - see figure 6.6:
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AuthenticDataFromECU1: Whenever a command or request is received from ECU1
through an insecure channel, the data must be authentic.

Even if data authenticity and the strong correspondence between ECU1 and ECUKM
have been proved, the result can not be extended to every command or request coming
from ECU1 and received by ECUKM. Verification results rigorously apply to the protocol
instance and modeled exchanges. Some additional exchanges could be modeled and proved
but that implies a modification of our target of verification. Modeling all possible exchanges
may lead to a complex model or to a state explosion during proofs. It is concluded that
the requirement node SR-KP-A1.1 is only partially covered (PC). The root node of the
Requirement Diagram is finally considered:

AuthenticInformationFromInsecureChannels: Whenever a command or request is
received by an internal ECU from another internal ECU, received information must
be authentic.

According to our protocol model, several layers intervening during messages journey
have been abstracted. Implementation of referred crosslayer modules may introduce security
vulnerabilities. In addition, conducted verification did not comprise all possible exchanges
between ECUs. Consequently, the requirement node SR-KP-A1 is assumed as partially
covered (PC). The analysis of the rest of requirement paths is conducted in a similar way.
Results from coverage requirement analysis are shown in table 6.2.

Table 6.2: Results from requirements coverage analysis for the
Keying Protocol

Node ID Requirement Coverage
SR-KP-A1.1.1.1 The request from re-keying must truly and only come from

the intended generator ECU.
EC

SR-KP-A1.2.1.1 The acknowledgement signaling re-keying accomplishment
must truly come from the assigned ECUKM to which the
re-keying request was originally sent.

EC

SR-KP-A1.2.2.1 The re-keying request must truly come from the assigned
ECUKM.

EC

SR-KP-A1.3.1.1 The acknowledgement signaling re-keying finished must
truly come from the target ECU to which the re-keying
request was originally sent.

EC

SR-KP-A1.1.1 Whenever a requesting for re-keying is received by
ECUKM (Message 1), it must be authentic.

EC

SR-KP-A1.2.1 Whenever an acknowledgement is received by ECU1
informing re-keying accomplishment (Message 4), it must
be authentic.

EC

SR-KP-A1.2.2 Whenever a request for re-keying is received by ECUN
(Message 2), it must be authentic.

EC

SR-KP-A1.3.1 Whenever an acknowledgement is received by ECUKM
informing re-keying accomplishment (Message 3), it must
be authentic.

EC

SR-KP-A1.1 Whenever a command or request is received from ECU1
through an insecure channel, the data must be authentic.

PC

Continued on next page
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Node ID Requirement Coverage
SR-KP-A1.2 Whenever a command or request is received from ECUKM

through an insecure channel, data must be authentic.
PC

SR-KP-A1.3 Whenever a command or request is received from ECUN,
through an insecure channel, the data must be authentic.

PC

SR-KP-A1 Whenever a command or request is received by an internal
ECU from another internal ECU, received information
must be authentic.

PC

SR-KP-C1.1.1 Preshared Secret Key PSK1 must be kept confidential for
ECU1 and ECUKM

EC

SR-KP-C1.1.2 Preshared Secret Key PSK1 must be kept confidential for
ECUN and ECUKM

EC

SR-KP-C1.2.1 Whenever ECU1 sends a request for re-keying through an
insecure channel the new key must be kept confidential
(Message 1).

EC

SR-KP-C1.2.2 Whenever ECUKM sends a request for re-keying through
an insecure channel the new key must be kept confidential
(Message 2).

EC

SR-KP-C1.1 If the keys to transport data are not public they must be
kept confidential with respect to valid ECU owners.

PC

SR-KP-C1.2 Whenever a session key needs to be updated, the new key
must be kept confidential with respect to its valid owners.

PC

SR-KP-C1 Whenever a flashing/re-keying command or request is sent
to an ECU, confidentiality of firmware data or key must be
ensured.

PC

Attack Coverage Assessment

As a conclusion from requirement coverage analysis, authenticity and confidentiality root
nodes are partially covered. This conclusion is taken as a basis to initiate the attack
coverage assessment stage already described in section 4.2.7. The analysis is conducted on
the attack trees elicited in subsection 6.1.2 and depicted in figures 6.4 and 6.5. First, it is
recalled that the root requirement SR-KP-A1 was stated in order to cope with attacks on
ECU impersonation derived from a protocol vulnerability. The root requirement SR-KP-C1
plays a similar role with respect to attacks on disclosure of secret material. A top down
analysis is initiated from associated attack nodes in order to identify prevented attacks up
to reach leaf nodes. The main goal is to determine to which extent attacks are prevented
and respective assets protected. Next paragraphs provide an instance of the analysis.

The attack Exploit_Protocol_Vulnerability in figure 6.4 can be achieved by one of four at-
tack methods: Disclose_Secret_Keys, Play_SesKGenerator_Role, Play_KeyMaster_Role,
or Play_TargetECU_Role. To play the role of one of the involved ECUs, the attacker
should target and intervene exposed channels. According to satisfied requirements in
table 6.2, the attacker is unable to undermine sender-receiver correspondences relying on
protocol instance exchanges. The authenticity of data is also enforced since the attacker is
unable to forge MAC codes. Consequently, the remaining option for ECU impersonation
is to Disclose_Secret_Keys. However, as it has been proved and shown in table 6.2, the
three secret keys involved in the protocol remain confidential, i.e., PSK1, PSKN, and
SesK. It is concluded that ECU impersonation attacks can not be performed from a pure
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protocol vulnerability. Nevertheless, as it is shown in respective attack tree - see figure
6.4 -, ECUs can still be undertaken via keys theft or leak in factory or garage, and by
exploiting vulnerabilities of the EVITA ECU stack, e.g., exporting/importing mechanisms
or flashing protocols. Associated threats and vulnerabilities are definitely not addressed
in Keying Protocol verification. Thus respective attack nodes are not covered (NC) at all.
Consequently, the root node of the attack tree is considered as partially covered (PC). The
results from previous attack coverage analysis are presented in figure 6.10.

Figure 6.10: Results of Attack Coverage analysis for ECU impersonation attacks

According to results from confidentiality requirements - see table 6.2 - attacks on
disclosure of secret data have been proved unfeasible. More precisely, preshared and
distributed keys remain confidential since the attacker is unable to disclose them from
protocol exchanges. Thus the attack node Exploit_Protocol_Vulnerability and respective
sub-tree are explicitly covered (EC) - see figure 6.11. However, as already mentioned,
disclosure of secret material may occur at factory or garage. Moreover, if an ECU is
compromised due to a poorly protected architecture or applications, loss of secret material
is a potential risk. Just referred threats are not covered (NC) by Keying Protocol verification.
Consequently, attacks targeting disclosure of secret material are considered as partially
covered. The results from previous attack coverage analysis are presented in figure 6.11
what concludes coverage assessment.

6.1.5 Conclusions: Case Study I

In this section several stages of the Methodology proposed in chapter 4 were applied. It was
described how a critical embedded application is partially secured. The Keying Protocol is
meant to distribute a new key among the members of a ECU group for replacing a key whose
validity is close to expiration. Ensure that keys truly come from intended ECUs as well
as keeping their values confidential is necessary for the correct operation of ECUs and the
overall on-board system. Since the operation of safety critical applications depends upon se-
cure group ECU communication, the Keying Protocol directly impacts overall system safety.
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Figure 6.11: Results of Attack Coverage analysis for secret material disclosure attacks

The Keying Protocol has been partially secured applying several stages of the Method-
ology. In particular, System Design, Properties Modeling, and Formal Verification were
conducted from the AvatarSE framework. As concluded in section 5.4.2, the profile is still
in evolution and further work is foreseen to undertake limitations. Even so, the basis for
integration of formal techniques into AvatarSE has been settled without compromising
usability. A SysML-based language, support for modeling security aspects of embedded
systems, and transparent model checking are among claimed advantages. On the contrary,
support for proving other security properties like privacy or freshness as well as little aid
for analysis of ProVerif outcomes are main inconveniences. More specifically, when ProVerif
yields attack traces.

The attack Coverage Assessment proposed in subsection 4.2.7 was conducted on verifica-
tion outcomes. It was shown that Coverage Assessment provides a mean to conduct analyses
after verification. Introduced stage is meant for assessing the extent of requirements and
attacks coverage. Such analyses precise requirements fulfillment and respective attacks
prevention. Even if the semantics remains informal, it precises the scope of verification
results and establishes explicitly, partially, and non-covered objectives what points out a
map for system improvement. Further criteria need to be provided to refine the level of
coverage of Requirements and Attack Tree nodes. Up to now, just referred criteria are
coarse and strongly biased by the designer’s experience. A Coverage Assessment algorithm
is still pursued. Settle an algorithm for systematical association of Requirements, Attack
Trees, and system assets is among considered improvements.

Since the Methodology supports Code Generation from models, the Keying Protocol can
be used to conduct Platform Tests stage. However, other EVITA embedded system that
is both safety and security critical is used instead. Rather than privileging the technical
interest of testing on a real platform, that instance was chosen because it was the original
mean for refining the test method proposed in subsection 4.2.9. In addition, because chosen
instance is suitable to show validation of both FRs and FRs, and in particular FSRs and
NFSRs. The referred case study is shown in next section.
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6.2 EVITA HSM Driver Tests

This section is intended to show feasibility of the testing stage introduced in subsection
4.2.9. Tests are conducted in order to validate that final implementations are operational
and to provide evidence of application conformity with respect to elicited Requirements.
This phase can be performed at several levels of abstraction so as to validate FRs and
NFRs. Testing stage is introduced as part of the Methodology exposed in chapter 4. It is a
final phase that provides evidence of achieved system safety and security. The adaptation of
code generated from models within the platform is among the main reasons for conducting
tests. Indeed, code adaptations - or also the compiler - may make the system divert from
specified functionality and Requirements.

6.2.1 HSM Driver Context

The HSM Driver - also named Low Level Driver (LLD) - is a relevant component of the
EVITA prototype architecture. As shown in figure 6.12, the Driver is in charge of commands
coming from top level applications (named requests) up to they are sent to the HSM module
via Serial Peripheral Interface (SPI) ports and completed. Along with requests, the driver
should asynchronously accept callbacks from the HSM stack (named responses) up to they
are delivered to the top application that originated the request. The HSM Driver is security
critical, since it provides direct access to the HSM which is the security anchor of the whole
ECU stack. The LLD grants many privileges for accessing HSM functions like ciphering,
deciphering, signatures/MACs verification, and keys handling. If a malware, spyware, or
attacker gains access to LLD level, it may steal secret material and compromise the whole
ECU operation. Thus, potentially insecure applications must not directly interact with LLD
layer. The Driver is also safety critical since the operation of top applications - including
safety critical ones - rely upon LLD. A Driver with deadlocks, livelocks, or functional
inconsistencies/weaknesses may compromise the operation of the whole ECU stack and in
particular the operation of safety and time critical applications.

Figure 6.12: Overview of the EVITA prototype architecture

To ensure that the LLD properly addresses its functional and safety objectives, the
component was first modeled and verified. The methodology - exposed in chapter 4
- was partially applied and results published in [87]. Even if Driver code was finally
handmade, feedback was provided from verification results so as to improve code. The LLD
implementation was fully integrated into the EVITA prototype architecture and was set
up to conduct testing phase. Some results of our tests were published in the scope of the
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EVITA project [226]. This section presents a summary of conducted tests. Along with
approach feasibility, the refinement of the testing method introduced in subsection 4.2.9 is
described.

6.2.2 Driver Test Method

As stated in section 4.2.9, tests can rely upon two kind of approaches: Model and Platform
Based. However, since the Avatar framework does not yet support Model Based approach,
tests are Platform Based. Since AvatarSE has been endowed with a formal semantics at a
high level, approaches like [115], [59], [218], [69] provide a reference for addressing Model
Based Testing from AvatarSE.
A testing method and environment were deployed and adapted to the EVITA prototype
depicted in figure 6.12. Tests can be conducted at different levels as they are defined in
subsection 4.2.4: functional, performance, and context-based levels. This subsection shows
how to conduct functional tests that are later used to analyze and evaluate security on the
target system.

Test method follows a blackbox approach. Thus, the LLD Application Programming
Interface (API) is targeted. Indeed, the LLD API is called whenever an upper application
requires a service from the HSM board - see figure 6.12. API functions are the initial
subject of our tests. LLD API is dynamically tested at three different levels as defined
below:

Coarse Level: Targets a standalone SW functionality or component - e.g., an LLD API
function - by using fixed parameters inside specification. Test evaluation analyzes
stimuli/response relationships and is limited to determine the final status of the SW
component. In particular, the EVITA codes returned by the function under test -
e.g., evitaResponseOk, evitaNotAvailable, etc. - help to determine the final status
of the function. The return codes obtained at LLD side are based upon a reference
ASN.1 specification. Thus, the codes should correspond with the respective ones
originally returned by the HSM board. If no response at all is obtained after a given
delay, the component is non-operational. Coarse level tests are mainly performed
during Driver implementation and integration.

Fine-grained Level: Targets one or more operable SW functions or components - e.g.,
execution of chained LLD functions - by exploring the domain of parameter values
accepted by the function(s). Evaluation of stimuli/response relationships is made by
comparing expected and returned values. Once testing parameters are settled, an
oracle is consulted to compute correct values, required in evaluations. In the EVITA
prototype architecture, the HSM board plays oracle’s role.

Overall Level: Targets not only the operability of a set of SW functions or components,
but their overall features with respect to a given scenario, e.g., wrong parameters
injection. The domain of parameter values accepted by targeted SW components
can be explored. Thus, along with stimuli/response relationships and an oracle, test
case evaluations may require a set of criteria, defined along with the test scenario.
Suitable testing categories at this level are: Monitoring, Blackbox Fault Injection,
and Penetration Testing [226].
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Our testing method relies upon just defined Coarse, Fine-grained and Overall levels. The
objective is to provide evidence of LLD conformity with respect to specified Requirements.
Defined levels provide conceptual support to conduct tests targeting both FRs and NFRs
conformity. Some examples of Requirements and associated validation levels are presented
in table 6.3.

Table 6.3: Examples of Requirements and associated validation levels
Type Requirement Rule Conditions imply Conclusions Test Level
FR Whenever the module f() receives input X∈ D, it implies

that f() eventually outputs Y
Fine-Grained,
Coarse

Safety Whenever the module f() receives input X∈ D at t1, it
implies that f() outputs Y at t2, and t2-t1 < δ

Overall, Fine-
Grained

NFSR Whenever the system component A believes that M comes
from the component B, it implies that B already sent M
to A through a channel

Overall

FSR Whenever a key is generated with g() by the component
A, it implies that the length of the key is greater than K

Coarse, Fine-
Grained

Let us exemplify how Test Cases are generated from the NFSR rule in table 6.3. By
negating the ‘Conditions’ of the rule, the next statement is obtained:

Negated Conditions: The system component A does not believe that M comes from the
component B.

The objective of the Test Case is to make A believe that the exchange M sent by B comes
from a different entity than B. To achieve it, the test routine may for instance intercept and
corrupt exchanges from B. A space of possible Test Cases can be designed and implemented.
By negating the Conclusions of the rule, the next statement is obtained.

Negated Conclusions: The component B did not send M to A.

In this case, the objective of the Test Case is to make A believe that the exchange M comes
from B provided that B did not send anything to A. To achieve it, the routine should try
to impersonate B by replaying or forging messages. A space of possible Test Cases can
be designed relying upon attacker capabilities and system operation. The rest of Require-
ment rules in table 6.3 can be analyzed in a similar way so as to derive respective Test Cases.

Thus, to provide evidence that the system is compliant with Requirements, a LLD testing
environment supporting adopted levels and defined Test Cases is first settled. Afterwards,
Test Cases within and outside the domain of accepted parameters are implemented so as
to achieve domain exploration. Safety and security oriented tests cases are developed and
automatically executed. A testing of the whole EVITA LLD API is pursued. Results should
provide expected evidence or required feedback for LLD improvement.

6.2.3 Driver Testing Environment

A Testing Environment is deployed. The environment supports the evaluation levels
adopted in previous subsection. Thus, we believe that it is a suitable way that implements
the method introduced in section 4.2.9. In particular, the environment provides a way
to validate specified Input/Output associations. The environment mainly contains two
applications (see figure 6.13):
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HSM Fuzzer: This application directly interacts with the HSM stack. The HSM Fuzzer
allows the execution of tests at three levels of abstraction, as they are defined in
previous subsection. The test routines are intended to stress the HSM architecture.
Before performing a HSM call, the parameters of the respective API function are
randomly chosen (fuzzing). Afterwards, the call is performed and the stimuli/response
values are finally written in a file - referred as C file. More precisely, every line in
the C file makes the assignation of input/output values into array registers using
C syntax. Stimuli/response instances constitute a base for comparisons that makes
HSM play the role of oracle.

LLD Fuzzer: This application runs directly on the top of the LLD and thus is compiled
with EB-Tresos [1] and Altium/VX-toolset [11] environments. The stimuli/response
C file, generated at HSM side, is taken as a source. For each stimuli/response
instance, a LLD request is created using the same stimuli parameters. The request
is afterwards sent to the LLD. Once a response is obtained, it is compared with
the respective values from the reference C file. The evaluation of HSM vs. LLD
instances is automatically conducted. Breakpoints are settled wherever comparisons
betweenLLD and HSM outcomes lead to a mismatch. Finally, exchanges between
Tricore and Field Programmable Gate Array (FPGA) boards via SPI are monitored
and stored in a log file for further test case analysis.

Figure 6.13: Scheme of the Driver Testing Environment

The nominal execution of a testing routine is as follows - see figure 6.13: The defined
test case may target one or more LLD functions. Each parameter within a function call is
fuzzed by generating a random value from a seed. To cover both inside and outside specifi-
cation testing, random values can be mapped to predefined intervals, using for instance the
modulus function. Once set, call parameters are written into a C file and the request is
directly sent to the HSM interface. Eventually, returned values are also written within the
C file, thus defining a stimuli/response instance. Once the test case is finished on HSM



144 6. Case Study: Securing and Testing EVITA Architecture

side, one or more C files are generated and integrated as part of the LLD Fuzzer. After
compilation and flashing on the Tricore - using the HiTOP debugger [4] -, the LLD Fuzzer
executes a set of LLD requests thus reproducing the test cases. A comparison between
HSM and LLD responses is right after performed. Indeed, relying on the HiTOP debugger,
breakpoints are set at unsatisfied comparisons what automatically points out differences
between HSM and LLD responses. Test case analysis is complemented by monitoring HSM
behaviour during LLD Fuzzer execution as indicated in figure 6.13.

As can be noticed, the Testing Environment allows in particular the implementation of
routines in which hostile actions are emulated. However, the analysis of results from tests
targeting NFSRs may not be automatic and human intervention may be required so as to
evaluate routine outcomes and conclude.

6.2.4 Results and Discussion

As stated in section 4.2.9, elicited requirements used in formal verification are also used
in testing stage. These requirements were already verified and fulfilled by the LLD model.
Formal verification analyses are published in [87]. Tests aim to validate that the LLD truly
fulfills next requirements:

1. The Driver must be deadlock free, or differently said, the Driver must not get blocked
forever in any circumstance.

2. All Driver interface functions must satisfy given properties stated in the specification,
e.g., function re-entrancy.

3. Driver is stateful, that is, calls on driver interfaces results in corresponding modifica-
tions on internal driver data structures.

4. Driver phases must be correctly accomplished, e.g., initialization, de-initialization,
request, response.

5. The Driver must process requests according to given directives, e.g., priority ordering.

Even if the LLD model fulfills previous requirements, the LLD implementation did not.
The analysis of test cases allowed us to identify several functional, safety, and security
issues. Among others, the LLD did not properly manage request/response sessions, i.e., the
mechanism for redirecting callbacks according to requester application. The origin was a
lack of exclusive access protection in several buffers. It was also identified the need for other
mechanisms, e.g., to deal with long delay responses from HSM what may provoke livelocks.
Since operation of some HSM functions relies upon sessions and a maximum of them was
set, the tests showed that HSM may lead to a Denial of Service status. Indeed, if HSM
sessions are not properly closed, e.g., due to message corruption, they remain open forever.
A mechanism to enforce association between LLD request and HSM session is needed for
ensuring proper HSM session closing. Since the LLD provides full access to the interface of
the HSM, to internal HSM modules, and secret material, the EVITA middleware defense
must be robust enough to prevent overall ECU compromise. It is recognized that further
tests are necessary for better assessing LLD features/limitations, e.g., context based and
more precisely security oriented tests.
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6.2.5 Conclusions: Case Study II

This section shows an embedded system on which the methodology proposed in chapter
4 was applied. Nevertheless, only the Testing stage is explained here. This decision was
taken because the selected embedded system - the EVITA LLD - was the basis to refine the
method proposed in section 4.2.9. In addition, because just referred embedded system is
both safety and security critical. Developed case study shows how Formal Verification and
Testing stages are harmonized. Proposed methodology provides certain support to all phases
of the engineering development process, including tests, and is suitable for verification and
validation of both safety and security critical embedded systems.

The methodology was applied to conduct tests over a safety and security critical compo-
nent of the EVITA prototype architecture: the HSM Driver (also named LLD). Contrary
to many methodologies that do not address system testing, Platform Tests stage recognizes
that the adaptation of code automatically generated from models may divert system oper-
ability and properties. Along with feasibility, LLD tests and respective outcomes show the
relevance of introduced stage. Indeed, several mismatches were identified between properties
verified in system model and tested code. Platform Tests provides evidence of achieved
functionality, safety, and security goals what highlights next steps on system improvement.

It has been confirmed that decisions taken during system implementation may easily
change system features so as to divert its conformity with respect to specified Requirements
- even if they are already verified in the model. The tests were conducted at three levels:
Coarse, Fine-Grained and Overall levels. The functional and safety Requirements stated
in subsection 6.2.4 were validated. Several security issues were identified from conducted
tests. However, other tests targeting Security Requirements should still be performed.
More precisely, test routines including hostile strategies should be designed, implemented,
and executed. Those tests stress the LLD and may provide evidence of weaknesses and
vulnerabilities and how the EVITA stack and HSM can be better protected.

Contrary to Formal Verification, the testing method is not meant to be exhaustive.
Obtained evidence only concerns the Test Case and the conclusions can not be extended to
other Cases - even if they are similar. However, tests provide conclusive evidence when
weaknesses or vulnerabilities are found. Since those vulnerabilities and weaknesses may be
introduced during implementation, identify them during Formal Verification may be unreal-
istic. That is why in our Methodology Formal Verification and Tests are complementary
stages.
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Chapter 7

Conclusions and Perspectives

7.1 Initial Findings

In this thesis we have addressed certain aspects in the security of embedded systems
within the automotive domain. Currently, certain distributed embedded systems are still
vulnerable to attacks. Among the main causes are the late introduction of security in
applications conception and the lack of effective protection of the system against the hostile
operation environment. The main sources of security issues come from accessible wired and
wireless channels that are conceived with little or no security at all. Also, from applications
with an inadequate protection against threats. A hostile party with enough motivations,
resources, and skills can gain system control and undermine vehicle and driver safety
endangering human being lives. In order to propose a suitable methodology that undertakes
identified issues, several verification methodologies were evaluated and their main features
analyzed. By doing that, the support offered to the the engineering development process
was identified. It is noticed that several methodological lacks have impeded an adequate
accomplishment of security goals. Indeed, the analysis of verification outcomes, necessary
for interpreting and precising the extent of results, is barely addressed. If the extent of
requirements fulfillment is not determined, then attack prevention is not accurately assessed.
Also, automatic generation of code from models usually requires adaptation of handmade
code. Thus, the preservation of verified properties is not ensured. Semantical gaps between
system model and code semantics strengthen that possibility. That is why, testing the
implementation with respect to imposed requirements is an important stage to validate
system conformity. Even if a wide variety of testing techniques exist, tests are usually not
considered by verification methodologies. Thus, harmonization of formal verification and
tests should be addressed.

Also, it was identified that current verification methodologies focus on either time and
functional, or in security analyses but not in all. Since development of critical embedded
systems - like automotive ones - usually depends upon functional and non-functional re-
quirements, a framework supporting verification of both kind of requirements is needed.
Some qualitative criteria were settled in order to compare security frameworks usability.
Usability is a quality that ensures suitable integration of formal techniques into the engi-
neering development process. According to this metric, it has been identified that modeling
frameworks need to be improved so as to provide engineer-oriented modeling - system and
properties -, support to ease security properties modeling, automated proofs, and aids for
results interpretation.
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Thus, we have precised a problematic consisting of several uncovered aspects in security
of automotive embedded systems. Our main hypothesis for addressing the problematic, is
that formal techniques may improve the security - and safety - of embedded applications.
Hence, several mitigations have been accordingly proposed and introduced.

7.2 Contributions and Conclusions

Several improvements have been introduced in order to undertake the problematic issues
recalled in previous section 7.1. The contributions made in this work are among them.
They are summarized as a traceability matrix and shown in table 7.1.

Table 7.1: Traceability matrix showing problematic, targeted issues,
and contributions

Problematic Targeted Aspect Response/Contribution

! Not enough support to the
engineering development
process (EDP). Automotive
applications and architecture
are still vulnerable to attacks
(Ch.2)

• Support to certain phases of the
EDP is indeed needed (Ch.3)

C. A global view Methodology
covering all stages of the EDP is
proposed and shown (Ch.4)

• Methodological lacks are iden-
tified in attack coverage assess-
ment, code integration, and test-
ing stages (Ch.3)

C. Methods for Attack Cover-
age and Platform Testing stages
have been proposed in the
Methodology (Ch.4)

• Authenticity and confidential-
ity are among the main proper-
ties supported by methodologies
(Ch.3)

R. ProVerif is settled as for-
mal verification backend (Ch.4,
Ch.5)

! Security was introduced in de-
velopment of automotive appli-
cations as an afterthought. Se-
curity goals have not been ade-
quately achieved (Ch.2)

• Security is introduced by sev-
eral methodologies from the very
first stages (Ch.3)

R. Proposed Methodology intro-
duces security analyses from
early stages: Threats Analysis,
System Analysis, and Require-
ments Structuring (Ch.4)

! Automotive applications are
time, safety, and security critical
(Ch.2)

• Verification methodologies fo-
cus only upon a kind of require-
ments. Support for verifying
functional and non-functional re-
quirements is needed (Ch.3)

C. A conceptual basis for
specifying functional and
non-functional requirements is
introduced (Ch.4). Avatar sup-
ports time and safety analyses.
AvatarSE extends Avatar with
security capabilities (Ch.5)

! Engineering oriented modeling
frameworks are informal whereas
formal ones may be high com-
plex (Ch.3)

• Usability of modeling frame-
works needs to be improved for
an adequate integration of for-
mal techniques into the EDP
(Ch.3)

C. Avatar/AvatarSE are SysML-
based, suitable for modeling sys-
tem and properties, and adapted
to the EDP. Formalization and
translation to ProVerif is trans-
parent for the designer (Ch.5)

Continued on next page
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Problematic Targeted Aspect Response/Contribution

! Conduct formal proofs by hand
may be highly complex, time
consuming, and prone to error
(Ch.3)

• To preserve framework us-
ability, support for automated
proofs is needed (Ch.3)

R. Proofs in Avatar are con-
ducted following a push button
approach relying upon UPPAAL
and ProVerif as backends (Ch.4,
Ch.5)

Ch.X denotes a reference to chapter X

Contributions are proposed in the scope of a Methodology that targets implementa-
tion of security and safety critical embedded systems. To achieve security/safety goals,
a global view of the engineering development process is adopted. From this perspective,
formal techniques are considered as means to ensure system features. Thus, the adequate
integration of those techniques into the development process is a major concern. Due to
their characteristics, MDE initiatives have become standards widely accepted and knowing.
That is why, the Methodology is UML/SysML-based. However, rather than adopt either a
rigorous or an informal scheme, the Methodology combines both in order to systematically
reduce the gap between informal and formal semantics. Proposed Methodology is an
iterative process and helps the designer to transit from plain-text specifications to verifiable
models of system and properties. Then, to prove the models and transit from proved models
to executable code for a host platform. Two main goals are pursued by the Methodology.
First, ensure that verified properties effectively cope with identified threats and, secondly,
validate that a system implementation is endowed with those properties.

In order to achieve the first goal, several stages are considered so as to assist the designer
in identifying and structuring attack strategies and in associating requirements that cope
with threats - see subsection 4.2.4. A system model is developed just after the system
specification has been analyzed and behaviour sequences modeled. A basis for requirements
conceptualization was introduced in subsection 4.2.4 what provides a theoretical framework
where functional and non-functional requirements can be specified, prior to be verified.
Post verification analyses have been introduced in order to assess the extent of verification
results - see section 4.2.7. The method demands levels to categorize requirement fulfillment
as well as respective attack coverage. This contribution provides means to analyze to which
extent system features and protection are ensured. Carrying out post-verification analysis
helps to determine which attacks are effectively prevented.

In order to achieve the second goal, i.e., validate that an implementation is endowed
with required features, several stages are considered. Models are first transformed to a
programming language. Since it is assumed that the code automatically generated may
be adapted by the designer, preservation of verified properties may not be ensured. The
gap between informal and formal semantics also justifies that possibility. Thus, a testing
stage is introduced to validate application conformity with respect to requirements specifi-
cation. To do so, a method is proposed for generating test cases from requirements, UML
attack sequences, and Attack Trees - see subsection 4.2.9. The method targets testing of
functional and non-functional requirements and in particular FSRs and NFSRs. Test cases
are defined according to functional, performance, and context-based evaluation levels as
they are defined in subsection 4.2.4. Even if testing stage is not exhaustive, it may provide
conclusive evidence of system weaknesses and vulnerabilities.
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The usability of a modeling framework was stated in terms of the complexity of sys-
tem/properties modeling, the support to conduct proofs, and aids for results interpretation
what assists model reworking. These features ease integration of formal techniques into
the engineering development process. The Avatar/AvatarSE framework has been conceived
considering the usability criteria. Along with a graphical UML/SysML modeling, the
language is suitable for modeling embedded systems constraints present in time critical
applications with limited HW resources. Also, the semantics is suitable to model a system
at different levels of abstraction. Proofs in Avatar/AvatarSE are conducted at the push
of a button in formal backends like UPPAAL and ProVerif. The complexity of formal
verification is avoided, since translation and proofs are automatically managed by TTool
[9]. By formalizing the Avatar/AvatarSE framework, verification capabilities are extended
since the models can be translated to exploit the capabilities of other formal backends and
not only the current ones. Last but not least, Avatar/AvatarSE framework is suitable to
conduct safety - including time - and security analyses what covers certain needs in the
development of critical embedded systems.

Initial results of our work have been published [159], [160]. The case study developed in
chapter 6 applies several Methodology stages in order to partially secure components of the
EVITA architecture. Proposed Methodology was partially applied in the automotive project
EVITA [77]. More particularly, the stages of the Methodology in which a contribution is
made have been applied: verification of safety and security critical applications [87], [19],
threats coverage assessment [18], and functional and security testing [226]. Even so, it
is considered that several stages still need to be refined and further work is required to
overcome shortcomings that may compromise Methodology effectiveness.

7.3 Discussion: Shortcomings and Perspectives

We have proposed several improvements to assist the design of secured embedded systems.
It was assumed that security objectives become reachable by identifying and overcoming
weaknesses and shortcomings in methodologies. Consequently, the limitations of proposed
Methodology should also be highlighted. Some of them are discussed in this section. In
addition, perspectives to consolidate our work are briefly exposed.

Early stages of the Methodology strongly depend upon designer’s reasoning and ex-
perience. In particular, threats elicitation is conducted in terms of the target system
and host architecture. Moreover, threats model is mostly developed relying upon known
attacks. The effectiveness of settled protections depends upon the correspondence between
the threats model and real hostile parties capabilities. Along with that, since security
requirements are imposed in terms of elicited threats, a weakened threats model will lead to
an incomplete requirements specification. Security methodologies still demand approaches
to properly analyze and achieve an adequate correspondence between threats model and
real attacker behaviour. As explained in section 3.3, three kind of attacker models have been
identified: abstract/implicit, specific, and generic. To better address the correspondence
between threats model and real attacker capabilities, the three kind of attackers could be
integrated in the same framework. In this way, the designer can conduct proofs not covered
by the generic attacker relying upon user-defined UML attack sequences. Achieve attackers
integration may be complex, but may ensure an adequate correspondence between real
attacker and threats model.
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The threats model in our Methodology is based upon known attacks. Even so, the
model is suitable to cover a wide spectrum of threats. In fact, strategies modeled in Attack
Trees represent many hostile actions. To conduct verification of security requirements, the
threats model should be accordingly formalized. Since requirements are imposed in order
to cope with threats, formal attacker must correspond with the informal threats model, i.e.,
it must cover attack strategies specified in Attack Trees. ProVerif attacker is based upon
a finite set of basic actions - e.g., decompose, compose, drop, replay - and composition
rules in the form Conditions imply Conclusions - e.g., if send(ch1,msg), public(ch1) ⇒
Attacker(msg). ProVerif attacker model should be adapted to the capabilities of real hostile
parties. Updates in attacker model are required when new security properties need to be
verified or when the capabilities of the real attacker change. However, the Methodology
targets engineer usability and it is not adequate consider that the designer is meant to
perform those modifications by hand. Consequently, the approach is not flexible to verify
properties against richer notions of attackers.

As shown in section 3.2.3, authenticity and confidentiality are among the main properties
supported by verification methodologies. Since proposed Methodology relies upon ProVerif,
AvatarSE also supports proofs of authenticity and confidentiality. Nevertheless, formal
extensions are necessary to support other security properties like integrity or data linkability
- necessary to prove privacy. An important limitation of ProVerif is that real time modeling
is not supported. Thus, the designer should rely on UPPAAL to conduct proofs of freshness
and other time-based requirements. However, this solution is not optimal since the extent
of proofs may be limited by simplifications introduced in attacker or system models - see
subsection 3.1.1. A way to overcome this shortcoming is to exploit the capabilities of
other formal backends - yet, not explored. To do so, it is imperative elaborating proofs to
demonstrate the equivalence between the operational semantics of Avatar/AvatarSE models
and respective backends.

Adaptation of the code automatically generated from models is an important step
barely or not addressed at all by many verification methodologies - see section 3.2. A lot
of industrial UML/SysML-based toolkits automatically generate ready-to-use code and
without considering handmade adaptations. Even so, the problem of generating code
adapted to embedded platforms without modifying the generator or introducing hand-
made code is a research topic [209]. In our approach, a Code Adaptation stage has been
considered in subsection 4.2.8. But further work is necessary to implement a suitable
framework that manages handmade code. An interface was proposed to help the designer
to store, trace, update, and reuse handmade code during Methodology iterations. Further
work is also necessary to achieve model based testing and to consolidate platform based
testing, e.g., by applying the Methodology to other platforms and case studies. Among the
main aspects to consider are quick deployment of tests, proper separation of flaws pertain-
ing to the code and host architecture (SW/HW), and criteria to assess testing space coverage.

It is observed that many security flaws can be introduced during deployment of the
embedded system. Testing stage contributes to uncover some of them. However, the
Methodology should be extended to properly address that kind of security flaws. Finally,
the Methodology is mostly Dolev-Yao based [14] and consequently other kind of attacker
models like those from computational security [180] are not supported at all. Introducing
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computational security analyses together with richer models of threats - e.g., [162] - would
greatly complement Methodology capabilities.
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Appendix A

Underlying Formal Backend

A.1 ProVerif

ProVerif is a formal based framework and tool targeting modeling of concurrent systems and
verification of security properties [2]. ProVerif is an extension of the π-calculus, a member
of the Communicating Sequential Processes (CSP) from the ACPs field. The syntax, rules,
and semantics were originally proposed in [22]. Later, a typed syntax and a definition for
secrecy were introduced [21]. Along with that, attacker model was better precised and
respective proof methods were consolidated. A formal definition for authenticity was also
elaborated and respective formal methods for verification automated. Next paragraphs
provide an up-to-date overview of ProVerif language and framework.

In ProVerif, the main formal construct for modeling is a process - see figure A.1. Terms
inside a process are defined via names, variables, and function patterns named constructors.
Some terms can be used to perform synchronized exchanges between processes. They adopt
the role of communicating channels. In particular, processes can input - in(M,x) - and
output terms - out(M,x) - over those channels. A particularity of ProVerif - and more
precisely of the π-calculus - is that channel names can be transferred in channels. That
is why ProVerif semantics is useful for mobile communications modeling [168]. Processes
can be defined in terms of pre-defined processes via the composition operator |. Processes
composition is a mean for modeling synchronizations and possible interleavings of operations
and events. The replication of a process ! declares an unbounded number of instances. It
implies that proofs are not limited to a fixed number of process executions what extends the
scope of proofs. The defined terms or variables have a scope and context. More precisely,
variables can be restricted to a single process, only known by all processes, or known
by all processes and also the attacker. This settles a border between public and private
knowledge. It is assumed that elements that are not known by the attacker belong to the
private domain. ProVerif constructors are used to declare functions holding terms as their
arguments whereas destructors declare elimination rules for getting arguments managed by
constructors. Processes flow is controlled with if ... then ... else and let ... in
... else expressions. The operational semantics of the process can be analyzed relying
upon events. An event expression evt(M) is meant to formally state that the process has led
to that event point during process operation. A process has a single initial statement but it
may have several expressions to continue which can be seen as subprocesses. Thus, event
expressions are useful to identify which subprocess has been called. Thus, indeterminism as
well as other behavioral features can be properly modeled and analyzed. Once an event has
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occurred, it is represented with the expression evt_ex(M).

Notation Semantics
M,N ::= Terms

x, y, z Variables
a, b, c, k Names
f(M1, . . .Mn) Constructor application

P,Q ::= Processes
out(M,N).P Output N in M then P
in(M,x).P Input x in M then P
0 Null process
P |Q Parallel composition
!P Infinite replication of P
(new a).P a is restricted to P
let x = g(M1 . . .M2) in P else Q Destructor application
if M = N then P else Q Conditional
event s(M).P Event s(M) then P
event_ex s(M).P Event s(M) has been executed,

then P

Figure A.1: Grammar of the ProVerif process calculus

A main contribution of ProVerif is that, along with a semantics for concurrent systems
modeling, a formal attacker is defined. Indeed, the global context considers not only com-
municating processes but the participation of a hostile party or attacker. In particular, the
formal attacker relieves the designer from modeling an attacker by hand. Thus, soundness
of proofs is not compromised due to an attacker model weakened beyond realistic conditions.
ProVerif terms, names, variables, constructors, and destructors can be labeled as private
meaning that they are initially ignored by the attacker. Otherwise, they are considered as
public and accessible to the attacker, e.g., in the expression free c the name c and its value
are known by the attacker. Variables and names defined within a process are restricted to
its local context, e.g., new a represents a new value restricted to the process inside which is
defined. ProVerif semantics also allows definition of equations and logical predicates use-
ful for settling overall rules on terms and functions. Once processes are defined, they can be
composed within a main process. The main process is a mean for setting parameters nec-
essary for model execution, e.g., preshared keys and private/public pairs. Along with that,
a composition scheme is declared, i.e., it is stated whether processes are replicated or not (!).

The main constructs provided by ProVerif for modeling security concerns are listed
below [38], [54]:

Crypto Primitives: Relying upon constructors and destructors, crypto primitives can
be represented. Among others, encryption, decryption, generation of signatures and
MACs, verification of signatures and MACs, and hash functions can be modeled.
Along with that, association rules between public and private pairs can be declared.
For instance, an encryption-decryption scheme with a symmetric key k is modeled as
follows: fun encrypt/2. reduc decrypt(encrypt(x, k),k)=x.
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Secrecy Assumptions: A secrecy assumption states that a certain term should be initially
unknown by the attacker. A secrecy assumption is necessary to ensure that the value
is truly unknown by the attacker and that it was not revealed before processes
initiation/execution. It prevents the designer from leading to wrong conclusions and
ensures that if an attack trace appears, it is only due to a design vulnerability and
not due to modeling mistakes. A secrecy assumption for a term M is represented with
the sentence not attacker:M..

Attacker Model: The formal attacker specification relieves the designer from modeling
it. The attacker model is fully implemented in ProVerif and its role and operation are
mostly hidden to the user. ProVerif attacker is based upon the Dolev-Yao approach
[14]. He interacts with processes via non-private channels. In fact, all exchanges in
public channels are eventually known by the attacker, who can forge, drop, and replay
them. According to its rules, the attacker also knows free variables as well as other
non-private constructs like crypto primitives. Moreover, the attacker is allowed to
initiate and control the execution of replicated processes. The attacker can use known
names and variables in combination with constructors and destructors so as to derive
clauses in the form Conditions imply Conclusions - named Horn clauses - necessary
for proofs. The formal rules upon which an attacker Q behaves are listed below [38]:

1. Wat is a set that includes the initial knowledge of the attacker Q. Q knows an
element a if and only if a ∈Wat.

2. The attacker Q can generate an unbounded number of new names b, unless b is
restricted to a process P or b is a free name already declared. Every new name b
is included in Wat.

3. For each non private constructor f of arity n, if Q knows M1, . . . ,Mn then
f(M1, . . .Mn) is included in Wat.

4. For each non private destructor g(M1, . . .Mn) → M of arity n, if Q knows
M1, . . . ,Mn, then M is included in Wat.

5. If g(M ′
1, . . . ,M

′
n) → M

′ and there exists a substitution σ in the finite set of
substitutions of g such that M ′

i = σMi, i = 1, . . . , n, and g(M ′
1, . . . ,M

′
n)→M

′ ,
then M ′ is included in Wat.

6. For every out(c,M).P , if the attacker Q knows the term c then M is included
in Wat.

7. If c, M ∈Wat then the attacker Q can perform out(c,M).

8. The attacker Q is unable to know events occurrence within processes, i.e.,
∀ event s(M).P , event_ex s(M) /∈Wat

Secrecy: Properties are verified with respect to attacker capabilities. A term M satisfies
secrecy property if the attacker is unable to disclose M relying upon knowledge acquired
during public exchanges. Security properties in ProVerif are expressed as queries.
The respective expression for secrecy is: query attacker:M.

Weak Authenticity: The property relies upon the concept of non-injective agreement
described in [129] and is verified assuming no process replication. Weak authenticity
involves a sender process Ps, a receiver process Pr, and an exchange M. The property is
satisfied if whenever Pr accepts M as coming from Ps, Ps has truly sent M at least one
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time. Weak authenticity implies that the attacker is unable to forge a message like
M without prior knowledge about it. To establish the correspondence between sent
and received messages, respective expressions event send(M) and event accept(M)
are placed in Ps and Pr, respectively. The query for proving weak authenticity is as
follows:

query ev:accept(x)==>ev:send(x).

Strong Authenticity: The property relies upon the concept of injective agreement de-
scribed in [129] and consequently it must be verified assuming infinite processes
replication. The semantics and syntax for strong authenticity are analogous to the
ones for weak authenticity. Nonetheless, the property is satisfied if and only if when-
ever Pr accepts M as sent by Ps, a respective and uniquely associated message M’ has
been truly sent by Ps, i.e., an injective relation between received and sent messages
exists. Strong authenticity implies that the attacker is unable to impersonate the
sender process Ps, even knowing the exchange M’ in advance. The query for proving
strong authenticity is as follows:

query evinj:accept(x)==>evinj:send(x).

A second relevant contribution of ProVerif is its verification methods. Verification of
models is conducted with a resolution algorithm [54]. The algorithm transforms ProVerif
specifications onto Horn clauses. Afterwards, a bounded space of search is generated
according to the knowledge gained by the attacker [54]. Several methods are applied so as
to settle and explore the bounded space of possible Horn implications that may disprove a
query. First, the facts on the left side of the query are searched in the space. Once found,
rules are applied in order to reach the facts on the right side of the query. If after space
exploration no sequence of Horn clauses contradicts the query, then the property is satisfied.
Otherwise, the respective trace signaling the contradiction is displayed. The contradiction
sequence shows the steps to accomplish a successful attack. Further explanations about
ProVerif semantics, framework, and algorithm can be found in [54]. Despite its advantages,
ProVerif authors recognize some limitations. The fact that translation onto Horn clauses
introduce approximations renders the algorithm blind in recognizing order in message
exchanges. Thus, the methods for searching in the space of Horn clauses may lead to
proofs in which a specification without process replication is equivalent to a specification
with replication. For some cases and due to the unification process, proofs may lead to
loops and consequently the resolution algorithm may not terminate. Some techniques have
been proposed for coping with loops and ensuring algorithm termination [45]. Even so,
termination may not be ensured for some instances. Finally, the fact that ProVerif does not
support real time modeling makes difficult to conduct verification of time based properties.
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