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Résumé

Grace aux progres récents en photogrammeétrie, il est désormais possible de recons-
truire automatiquement un modele d"une scene 3D a partir de photographies ou d"une
vidéo. La reconstruction est réalisée en plusieurs étapes. Tout d’abord, on détecte des
traits saillants (features) dans chaque image, souvent des points mais plus générale-
ment des régions. Puis on cherche a les mettre en correspondance entre images. On
utilise ensuite les traits communs a deux images pour déterminer la pose (positions et
orientations) relative des images. Puis les poses sont mises dans un méme repere global
et la position des traits saillants dans 1’espace est reconstruite (structure from motion).
Enfin, un modéle 3D dense de la scéne peut étre estimé.

La détection de traits saillants, leur appariement, ainsi que l'estimation de la po-
sition des caméras, jouent des roles primordiaux dans la chaine de reconstruction 3D.
Des imprécisions ou des erreurs dans ces étapes ont un impact majeur sur la précision
et la robustesse de la reconstruction de la scéne entiere. Dans cette theése, nous nous
intéressons a I'amélioration des méthodes pour établir la correspondance entre régions
caractéristiques et pour les sélectionner lors de 1’estimation des poses de caméras, afin
de rendre les résultats de reconstruction plus robustes et plus précis.

Nous introduisons tout d’abord une contrainte photométrique pour une paire de
correspondances (VLD) au sein d"'une méme image, qui est plus fiable que les contraintes
purement géométriques. Puis, nous proposons une méthode semi-locale (K-VLD) pour
la mise en correspondance, basée sur cette contrainte photométrique. Nous démontrons
que notre méthode est tres robuste pour des scenes rigides, mais aussi non-rigides ou
répétitives, et qu’elle permet d’améliorer la robustesse et la précision de méthodes d’es-
timation de poses, notamment basées sur RANSAC.

Puis, pour améliorer I'estimation de la position des caméras, nous analysons la pré-
cision des reconstructions et des estimations de pose en fonction du nombre et de la
qualité des correspondances. Nous en dérivons une formule expérimentale caractéri-
sant la relation “qualité contre quantité”. Sur cette base, nous proposons une méthode
pour sélectionner un sous-ensemble des correspondances de meilleure qualité de fagon
a obtenir une tres haute précision en estimation de poses.

Nous cherchons aussi a raffiner la précision de localisation des points en correspon-
dance. Pour cela, nous développons une extension de la méthode de mise en corres-
pondance aux moindres carrés (LSM) en introduisant un échantillonnage irrégulier et
une exploration des échelles d'images. Nous montrons que le raffinement et la sélec-
tion de correspondances agissent indépendamment pour améliorer la reconstruction.
Combinées, les deux méthodes produisent des résultats encore meilleurs.

Mots-clefs

vision par ordinateur ; stéréovision ; estimation robuste ; contrainte photométrique ; ligne
virtuelle ; descripteur de ligne virtuelle; méthode semi-locale de mise en correspon-
dance; sélection de correspondances ; raffinement de correspondances.






Abstract

With the recent progress in photogrammetry, it is now possible to automatically recon-
struct a model of a 3D scene from pictures or videos. The model is reconstructed in
several stages. First, salient features (often points, but more generally regions) are de-
tected in each image. Second, features that are common in images pairs are matched.
Third, matched features are used to estimate the relative pose (position and orienta-
tion) of images. The global poses are then computed as well as the 3D location of these
features (structure from motion). Finally, a dense 3D model can be estimated.

The detection of salient features, their matching as well as the estimation of camera
poses play a crucial role in the reconstruction process. Inaccuracies or errors in these
stages have a major impact on the accuracy and robustness of reconstruction for the
entire scene. In this thesis, we propose better methods for feature matching and feature
selection, which improve the robustness and accuracy of existing methods for camera
position estimation.

We first introduce a photometric pairwise constraint for feature matches (VLD),
which is more reliable than geometric constraints. Then we propose a semi-local match-
ing approach (K-VLD) using this photometric match constraint. We show that our
method is very robust, not only for rigid scenes but also for non-rigid and repetitive
scenes, which can improve the robustness and accuracy of pose estimation methods,
such as based on RANSAC.

To improve the accuracy in camera position estimation, we study the accuracy of re-
construction and pose estimation in function of the number and quality of matches. We
experimentally derive a “quantity vs. quality” relation. Using this relation, we propose
a method to select a subset of good matches to produce highly accurate pose estima-
tions.

We also aim at refining match position. For this, we propose an improvement of
least square matching (LSM) using an irregular sampling grid and image scale explo-
ration. We show that match refinement and match selection independently improve the
reconstruction results, and when combined together, the results are further improved.

Keywords

computer vision; structure from motion; stereovision; robust estimation; photometric
constraint; virtual line descriptor; semi-local matching; match selection; match refine-
ment.
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Chapter 1

Preamble

The first digital camera was built in 1975 by Steven Sasson. Since then, this technology
has been expanding, spreading everywhere from satellites to watches. The birth of dig-
ital cameras transformed photos to a flow of digital numbers that can be manipulated
via computers. Today’s cameras are able to take photos or videos with much higher
quality, raising up many applications and researches in computer vision. As photos
capture the real world, a natural question is whether we can reconstruct the 3D world
with captured photos. Several technologies have been developed to achieve the 3D re-
construction. The most popular one is stereo-vision. With a collection of photos taken
from different view points, the idea of stereo-vision is to recover the spatial informa-
tion of cameras as well as observed objects. Successful approaches such as Structure
from Motion give the possibility to reconstruct a 3D world using a simple camera. These
technologies have been applied in various domains: medical imaging, robotic vision,
movie post-production, video game industry, planet exploration, etc. Many applica-
tions have specific requirements. Some put the stress on reconstruction accuracy, some
need methods that can be applied under difficult conditions, others require real-time
processing speed, etc, which leads to many active research area in stereo-vision.

This thesis aims at identifying and improving weak steps in 3D reconstruction pipelines,
in terms of accuracy and robustness. Our work mainly focuses on the critical early
stages of Structure from Motion for 3D reconstruction.
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1.1 Methods for 3D reconstruction.

There exists many ways to reconstruct the 3D world, such as using a laser scanner, pho-
tometric stereo, structural pattern and structure from motion. We briefly go through
these methods.

1.1.1 Laser scanner

When reconstructing a 3D scene, a laser scanner emits laser rays and receives their re-
flection in order to measure object positions. The most widely used scanners follow the
LIDAR technology. It has many applications and its wavelengths is variable from about
10 micrometers to the UV to suit the material of the target. These scanners produce very
accurate point clouds of the scanned scene. However, the price of these scanners is high
and requires specific skills to be properly manipulated; moreover, the scanning times
can be up to several minutes, depending on the required density of the point cloud.
Thus, this method is mostly used for specific professional tasks.

Figure 1.1: Images from http://fr.wikipedia.org/wiki/Lidar and http://www.
uav-lidar.com.

1.1.2 Photometric stereo

In an interior scene with a controlled light source
and a camera at a fixed position, it is possible to es-
timate surface normals of an object. By taking sev-
eral photos with different lighting conditions (with
changes of light position), the surface normals at
various points on the object are estimated by ana-
lyzing the reflected lights. The global surface struc-
ture is reconstructed by integrating the local surface
normals. This method has a high requirement on
the control of the light sources. Besides, any uncal-
Figure 1.2: image from Wu et jbrated extra light source may degrade the result.
al. [85] This technique thus has a limited field of applica-
tion.
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1.1.3 Structured light scanner

There exists another kind of controlled light system for 3D reconstruction called “struc-
tured light scanner”. It starts by projecting a light pattern containing specific structure
such as lines, points or any other patterns to the scene. Then a camera observes the
deformation of the projected pattern to reconstruct the depth map of the scene. The
Kinect, developed and commercialized by Microsoft, uses this structured light scan-
ner system, and is capable of reconstructing the depth map in real-time, using an in-
frared light pattern. As the camera captures specific patterns, it has a certain robustness
against external light. However, the range of mapping depends on the reception of the
pattern, and a too strong external light still erases the patterns. By consequence, struc-
tured light applies mostly to indoor scenes for the 3D reconstruction of small areas.

Figure 1.3: Kinect and its structured light patterns.

1.1.4 Structure from Motion

The 3D scene can also be reconstructed by digital photographs. By taking several im-
ages from different positions around an object, we can recover both the camera posi-
tions and the 3D scene (Figure 1.4). This method is called structure from motion (SfM)
as the scene is reconstructed from moving camera positions. A more detailed descrip-
tion is available in Chapter 3. A variation to SfM is the Simultaneous localization and
mapping (SLAM) method, which reconstructs 3D scene and maps the camera position
at real time (e.g., on a video flow). Compared to the other methods, SfM has several
advantages, making it the most explored approach in stereo vision for reconstruction:

* Low accessible price: Compared to LIDAR system, a camera for SfM is much
cheaper.

* Mobility: Only a camera is needed for SfM photo acquisition. A camera can be of
very small size and mounted on a UAV.

¢ Simple manipulation: No special skill is needed.

¢ Adapted to various conditions: SfM is suitable for both indoor and outdoor envi-
ronments, and no special light condition is required.

¢ Large datasets available: With the fast growing availability of photo datasets on
the internet such as Flickr, Facebook and Google images. A large quantity of
photos are already present. People can reconstruct a popular scene even without
taking photos by themselves.

¢ In practice, methods with projected light are limited to interior scene. In con-
trast, SfM doesn’t need any projected light nor specific settings. Besides, it is less
affected by the lighting condition and may recover the real color of the objects.
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............. CY

s

Figure 1.4: Structure from motion approaches reconstruct the 3D object from photos
taken from different view points.

1.2 Applications of 3D reconstruction

The 3D reconstruction technologies have various applications in many areas. Some are
very close to our everyday life.

Products such as Google Maps allow people to have an aerial view of the Earth, and
its street-view function is able to provide a virtual visit by calibrating and adapting in
real time the landscape images to the view point. Though the technology does not
really reconstruct the 3D scene, but provides only discrete available view points, the
result of virtual visits shows a very promising future. Projects that virtually reconstruct
entire cities are also available from companies such as Acute3D'.

The 3D reconstruction technology is also closely linked to robotics. The visual sys-
tem in robots can help to provide location information based either on reconstructed
scenes or on an external database [51]. The spread of unmanned vehicles with mounted
cameras expands and requires better reconstruction technologies in terms of speed, ac-
curacy and scale. The Google Car is able to drive and park alone, without human
intervention. The micro aerial vehicles (MAV) as Black Hornet nano air vehicles carry-
ing a camera are a fast growing area. Home cleaning robots with visual systems also
show their advantages in trajectory planning.

Figure 1.5: Left: Google auto-drive car. Middle: Black Hornet nano air vehicle. Right:
Hauzen VC-RE70V SLAM based vacuum robot.

Thttp:/ /www.acute3d.com
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In the movie and game industries, modeling realistic scene via stereo vision can
reduce the costs. Actually, the 3D reconstruction technology still faces some limitations
and is only used as an initial base on which manual scene refinements are required. But
partial /semi-automatic reconstruction techniques are already commercialized (such as
Kinect).
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Chapter 2

Introduction

3D reconstruction by stereo-vision has been actively explored for years. The method
“Structure from motion” is particularly efficient, and has been widely studied. The idea
of SfM is as follows. First, images from different view-points of the object are captured.
Second, specific features such as remarkable points or lines are extracted from images.
Third, we establish correspondences between the features from different images point-
ing to the same space location. Fourth, in an either incremental or global manner, both
approximate camera positions and actual feature location in 3D are estimated. Finally,
in a multi-view case, an optimization taking into account all images is performed.

It is possible to reconstruct the scene from two images (2-view SfM) or more (N-
view SfM). The 2-view SfM is a fundamental step in any case. Two steps play a very
important role in SfM results:

¢ The feature correspondence has very important impact on the reconstruction qual-
ity, as it participates both in the camera position estimation and scene reconstruc-
tion.

¢ In 2-view and N-view SfM, the position estimation of cameras also have an im-
portant impact on the reconstruction result.

Many techniques have been proposed to produce high quality correspondences and
camera positions. The standard pipeline is as follows: the program produces descrip-
tors for detected features, and matches the features according to descriptor similarity.
The initial matches are then filtered by RANSAC-like methods to separate inliers and
outliers. Finally, the camera position is estimated by an optimization algorithm using
as input all inliers.

This approach works correctly in general, but still faces problems:

e feature localization accuracy,

* robustness of feature matching,

¢ model optimization accuracy given inliers.

In this thesis, we try to identify problems occurring while establishing the point cor-
respondences and estimating the camera positions. We propose solutions to overcome
the present limitations, which have been tested under the 2-view SfM case and could be

extended to the N-view SfM case in the future. Besides, our work in feature matching
is not limited to SfM.
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2.1 Thesis contribution

This thesis focuses on exploring new methods to increase the 2-view structure from
motion performance in terms of robustness and accuracy.
The main contributions of the thesis are the following:

* A pairwise photometric constraint between feature correspondences: Most con-
straints between matches are based only on a geometric relation. We show that
photometric information between matches can be used as a robust pairwise sig-
nature. We encode the photometric information between features using a virtual
line descriptor (VLD), and use the similarity of VLDs to evaluate the photometric
consistency between matches. The boost of using VLDs in pairwise match con-
straints is proved by our experiments.

¢ A semi-local matching method using VLD constraint: We introduce a semi-local
approach in feature correspondence filtering. Using VLDs, our method outper-
forms the state-of-the-art algorithms in terms of accuracy, robustness and scala-
bility. It is robust even for non-rigid scene.

¢ The “quantity vs. quality” trade-off in reconstruction accuracy: A study of recon-
struction accuracy in the 2-view SfM case is carried out with a theoretical motiva-
tion and extended based on experimental observations, while varying the number
of matches and the inaccuracy.

* A new match-selection approach for camera position estimation: The “quantity
vs. quality” study shows the possibility of using fewer matches with higher accu-
racy to have a more accurate camera pose estimation. Different from traditional
approaches that use all inliers to estimate the camera pose, our match-selection
approach tests a series of match subsets of different sizes and their corresponding
estimation candidates, and chooses a subset which better optimizes the “quantity
vs. quality” trade-off.

¢ Extension of least square matching (LSM) for match localization refinement: We
extend the LSM methods for match refinement with an image scale exploration
and a focused grid.

2.1.1 Publications

* Match Selection and Refinement for Highly Accurate Two-View Structure from Motion.

Z. Liu , P. Monasse and R. Marlet. European Conference on Computer Vision
(ECCV), 2014, Oral.

e Virtual Line Descriptor and Semi-Local Graph Matching Method for Reliable Feature
Correspondence. Z. Liu and R. Marlet. British Machine Vision Conference (BMVC),
2012, Poster.

2.1.2 Software contributions

K-VLD

We built an open source C++ library implementing our semi-local matching method us-
ing photometric pairwise constraint. Matching tests for rigid scenes and deformable ob-
jects are provided (cf. Figure 2.1). Link: https://github.com/Zhe-LIU-Imagine/KVLD
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Figure 2.1: Illustration of matching result by our online code of K-VLD method.

MRMS _online

We developed a C++ library implementing the match refinement and match selection
methods. The refinement method adjusts the feature locations for existing matches and
selects the matches for an optimal “quality vs. quantity” trade-off. The two methods
can be applied independently or combined to achieve more accurate 2-view structure
from motion results (Figure 2.2). https://github.com/zhe-LIU-Imagine/MRMS_online

Images Subset
Match
refinement [ RANSAC ]
Feature \|/ \L J/ i
matching
D Match Model selection
ordering

l KVLD filter l— Accurate model

Figure 2.2: Pipeline of the combined method of match refinement and match selection.

Groti 2.0

We are the co-author of a visual assistant for studying feature detection, description,
matching and calibration. It has various functions and provides information to help
the analysis of every step of 2-view structure from motion.

2.1.3 Teaching and supervision

Teaching

I taught an introduction to C++ programming course for first year students at Fcole des
Ponts ParisTech (64 hours) for 3 years.

Supervised internship - Groti 2.0 bases

I supervised the internships in the IMAGINE group of two freshmen from Ecole des
Ponts ParisTech. The work was to setup the basic structure of the Groti project, using
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the ot platform.

2.2 Manuscript organization

The manuscript is organized in the following way. In Chapter 3, we start by describing
the basics of structure from motion, including the feature matching process. Then we
explain in Chapter 4 the semi-local matching approach with photometric pairwise con-
straint, followed in Chapter 5 by its various applications including a robust matching
method for segments. In Chapter 6, we present our match refinement work. Finally, we
introduce in Chapter 7 the match selection strategy for a better “quality vs. quantity”
balance and a more accurate camera pose estimation .
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Chapter 3

Overview of Structure from Motion

Before we go into the details of our work, this chapter gives a synoptic view of each
step of the Structure from Motion approach (SfM).
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Notations

Euclidean space
Projective space

3D point observed in world coordinate frame, X = (X Y Z) r
3D point observed in camera coordinate frame, X, = (XC Y, ZC) r

3D point in homogeneous form X = (X ¥ z 1)’

~

T
Projection of X, to the focal plan of camera C in homogeneous form, X, = (XZCC Zf f) ~ X

2D point in homogeneous form in pixel dimensions, X = (u v 1)T
2D point in pixel dimensions in the image, x = (1 v)

Rotation matrix

Translation vector

Camera center in world coordinate frame
Calibration matrix, intrinsic parameters of a camera
Camera central projection matrix

focal plane of a camera
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3.2 Introduction

In order to reconstruct a 3D scene, an SfM approach usually goes through the follow-
ing steps. Interest points (features) are detected, and a specific signature (descriptor) is
assigned to every feature. A matching strategy is then applied to establish feature cor-
respondences. Given the feature matches between two images, we recover the epipolar
geometry by estimating a fundamental matrix F relating them. If the internal calibra-
tion parameters are known (the calibration matrix K), this also provides an estimation
of the camera motion (rotation R, translation 7) and the 3D positions of matched points
(cf. Figure 3.1).

RANSAC for
F estimation

Feature detection
& matching

; CameraR &t
-1 estimation

3D reconstruction

Point cloud

Figure 3.1: A classical two-view SfM pipeline

Organization

In this chapter, we recall some elements of projective geometry and the pinhole camera
model, with an emphasis on two-view camera geometry. We then go through the fea-
ture detection, description and matching methods. Finally, we explain how the camera
poses are estimated (external calibration phase).

3.3 Projective geometry

In all the following sections, we work in the Euclidean space and/or the projective
space. More detailed notions about projective geometry can be found in [34]. A projec-
tive space has the following properties:

1. A point X = (X;,X>,...X,) € R" of dimension n in Euclidean space is represented
by a vector of dimension n+ 1 in projective space as (X;,Xz,...X,,1) € P", whichis
also called the homogeneous form of the point X. It is also written X = (X, 1) € P"
for short.

2. Forany c € R\{0}, and point X = (X1, X2, ... X,,w) € P", the point cX = (cXi,cXa, . ..cXy,cw)
is considered as equivalent to X, noted as cX ~ X.
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3. Points at infinity are noted as (X;,Xz,...X,,0). Note that (0,0,...,0) ¢ P".

We go through two concrete examples to illustrate how projective geometry simplifies
algebraic formulations.

Projection of 3D points to a plane

In the coordinate frame of the camera, where the center C of the camera is the coordi-
nate origin, we suppose a 3D point X, = (X, Y., Z.) is projected to the image plane z = f
to point X, = (Xsz , Ysz ,f) in 2D space through a ray passing by the center of the camera
and X.. All points on this ray {X' = c¢X.|c € R\{0}} project to the same %X, on the image
plane. This becomes obvious with the 2D projective space P? as all points in the ray
{(cX¢,cYe,cZ,),c € R\{0}} € P? are similar to &, = (%, %/ ). That is to say, considering

Z. ' Zo
P2 = R3\{0}, we have %, ~ X..

Reference change in 3D space

In a Euclidean space, if the camera is not centered at the origin, a point observed at
X, = (X¢,Y,Z.) in the camera coordinate, is expressed as X = (X,Y,Z) in the absolute
coordinate frame. Then we have X, = R(X — C), where R is the rotation of the world
coordinate from the camera coordinate. We define the camera translation as:

t=—RC. (3.1)

The relation between X, and X can be expressed in terms of a rotation and a translation,
i.e., with R the rotation of world coordinate axes observed in the camera coordinates,
and t the translation of the origin of the world coordinate observed in the camera coor-
dinate, we write X, = RX +t. Under homogeneous forms, this expression becomes:

X [R t][X
=l 62
The rotation matrix R and the translation vector t are also called the extrinsic pa-
rameters of a camera.

3.4 Pinhole camera model

A digital camera is equipped with a grid of optical sensors that can capture light in-
tensity. When we take a photo, light enters the camera and goes through a series of
lenses before it finally hits an optical sensor during a short exposure time. If the cap-
tured image is very near to a projection of the 3D scene to a 2D plan through a pinhole,
we obtain a simple projection model that is called pinhole camera model. This model is
also equivalent to the projection of 3D scenes through a very fine convex lens. The prin-
cipal property of the pinhole camera model involved here is that all light rays passing
through the center of the camera do not change direction, thus all points are projected
on the intersections of the image plane and the rays passing through the camera center
from the 3D points. By convention, we define the z direction as the direction where the
camera is pointed, see Figure 3.2.
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Optical axis

Principal point

Xe . X

Focal plan

7
Camera coordinate

R
A World coordinate

Figure 3.2: Pinhole camera illustration. A 3D point X observed in world coordinate
has coordinate X, in camera coordinate; it is projected to X on the focal plane by a per-
spective projection of the camera center. The rotation matrix and the translation vector
between the camera orientation and position C and the world coordinate of origin O
are called the camera extrinsic parameters. The focal plane is usually situated behind
the camera center C at z = —f; however, it is equivalent and simpler to consider a focal
plane in front of the center.

Image coordinate and Camera coordinate

We want to establish a relation between the projection of a 3D point on the focal plane
and its pixel position captured in the image. Supposing a 3D point observed in camera
coordinate X, = (X,,Y.,Z.) is projected on a 2D point x, = ();Ef , Yz‘—f) of the focal plane,
with an associated homogeneous form X, = (Xz‘(f , %, ), and this point is captured in an
image at position (u,v). We associate an homogeneous form for this position X = (u,v, 1)
in image. The point (0,0, f), origin of the plane z = f is not necessarily the origin of the
image, we note its position in the image as (xp,yo) in terms of pixel dimensions and call
it the principal point, see Figure 3.3. For a unit distance in the world coordinate frame,
we note the number of pixels in x and y directions as m, and m,. The relation between
%, and X is thus expressed by (3.3):

u oy S X
Xx=|v| ~KX,where K= |0 o, ¥y
1 ' 0 0 1 (33)

with o, =m, f and o, = m, f

The matrix K is called the camera calibration matrix, m, and m, are usually close
but not necessarily equal. s is the shearing parameter. The matrix K is also called the
intrinsic parameters of a camera. Here the common defect known as image distortion
is not taken into account.
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c=(xg , y0) Xcam

Ycam

Figure 3.3: Image coordinate and camera coordinate, c is the principal point. By con-
vention, the origin of the image is on the top left corner with v direction pointing down.

Intrinsic and extrinsic parameters of a pinhole camera

Finally, we can put the world coordinates, the camera coordinates and the image coor-
dinates together in an equation and write:

%~ K& ~KX,=K|[R 1] m : (3.4)

The matrix P=K [R 1] is called the camera projection matrix, with K the internal pa-
rameters describing camera intrinsic properties, and [R 1] the external parameters de-
scribing camera orientation and position.

3.5 Two-view camera geometry

This section presents the relationship between observations from different cameras of a
common 3D point X. We discuss only the two-view case, as it is similar for the general
N-view case. In this section we suppose there is a 3D point X in world coordinates, and
there are two cameras located at position C and C’ with rotation R and R’, and intrinsic
calibration matrix K and K'. For convenience reason, we set R =1 and C =0. According
to the previous section, we have:

X ~Kx.and X~ [R 1] m

¥ ~K%,and %, ~ [R' 1] m :

Epipolar geometry

The epipolar geometry describes basically the relationship linking X. and X! between

two cameras. We know that C, C' and X define a plane noted as ©, = (CXC’). X, and
—

X! lay on 7, as CX and C'X pass through them, which means X, (respectively X/.) must

be on the intersection of image plane 7y (respectively 7)) and 7,. By consequence,

knowing the camera positions and X. without knowing X, X. must lay on the line
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Figure 3.4: Tllustration of epipolar geometry: C and C’ are camera centers. For a 3D
point X, we observe point X. on the focal plane of the left camera, and X!. on the right
camera. The epipolar geometry expresses the following constraint: knowing X., point X/,
lays on the intersection line /, of plane (CXC’) and the focal plane 7). I; is the epipolar
line for X.. Different positions on I, correspond to different 3D points on the ray C_i(c>
€ is the perspective projection of C on 7 , all epipolar lines /, pass through €/, and
vise-versa for e.

defined by C, %, and C’ as described on Figure 3.4 called the epipolar line. However,
there is no way to determine the exact location of X or X/,, as different positions of X/, on
the epipolar line correspond to 3D points at different distances to the camera center C

on the ray C%..

Essential matrix

More formally, we can write this constraint as:
(X-C)'[(C'-C)]«(X-C)=0 (3.5)

where [v] denotes the matrix of the cross-product with vector v on the left.

We have supposed that R = 1 and C =0, thus X, = X. Besides, we apply (3.1), then
C' — C = —R""'t. Using the right part of (3.4) and R ' =R7, we get X, =R (X - C'), i.e,,
XTR = (X—C')T. Finally, we can simplify (3.5) to:

XTRIR"],X. =0 < XTR[R"t).%. =0
or:
KTEx. =0 (3.6)
with E = R[RTt]

The term R'[R''t'], is defined as the essential matrix E of the second camera to the
tirst one according to [34]. It is not unique for a given pair of cameras, since cE with
¢ € R also encodes the same constraints as (3.6). The essential matrix has 5 degrees of
freedom, namely 3 angles for the rotation and 2 for the translation direction.
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Fundamental matrix

Equation (3.6) can be further transformed to the following:
i/TK/_TR/ [R/Tt/] XK_li — 0’
or

YTFx =0 (3.7)
F— KlfTEKfl — KlfTR/[R/Tt/]XKfl_

Here F is called the fundamental matrix of the second camera to the first one. The main
reason of using the fundamental matrix rather than the essential matrix is that it estab-
lishes a relationship between different observations in image positions, which is more
straightforward. For instance, we observe X in the image, but to calculate X., we also
need to know K which is not always available. The difficulty of dealing with F comes
from its 7 degrees of freedom, since det ' = 0 and the scale of F is insignificant.

We have formulated the epipolar constraint using either the fundamental or the
essential matrix. As explained before, it is not possible to determine the exact location
of X’ or X on the epipolar line without more information about X.

Homography transformation

One pertinent extra information could be that X lays on a plane m, = {n,d} of equation
n’X +d = 0, which is a common case for planar scenes, see Figure 3.5. We suppose 7,
doesn’t pass through C. Since R =1 and t = 0, we have X, ~ X, = X, supposing A%, = X
we have An’%. +d = 0, which leads to A = —d/(n'%.). So we have X = —d%./(n’ %.).
Now, according to Equation (3.4) for the second camera, the extra constraint can be
expressed as following:

%, ~ X, =RAX +1,

which leads to
& ~R%+t/A= (R —tn” /d)%..

We rewrite the equation using X and X/, and finally get:
¥ ~K'(R —tn” Jd)K™'x. (3.8)

Here, H = K'(R' — tn! /d)K™! is called a homography matrix, and the transformation of
a planar scene between two viewpoints is defined as a homography transformation. The
homography matrix has 8 degrees of freedom, for scaling is insignificant.

Conclusion

We have established relationships for observations of a same 3D point from two differ-
ent view points in the general case and in the particular case of a homography trans-
formation case. Knowing the essential matrix, or the fundamental/homograph matrix
with intrinsic parameters, we can recover camera positions, which is not available in
general case. To solve this inverse problem, we need 3D points captured from differ-
ent images, or more exactly, several observations (x,x’) of the same 3D points. This
is the point correspondence problem. The next section explains techniques to establish
correspondences, especially for points.
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Figure 3.5: Illustration of homography transformation.

3.6 Feature detection and description

As explained before, we will need to retrieve observations of a same point in differ-
ent images. This raises several issues. First, given an observation in one image, the
question is how to efficiently and robustly find in the other images the corresponding
observation. Second, how to localize as accurately as possible different observations of
a same object? Even with the best techniques, a digital image is produced by a grid of
optical sensors and thus only a discrete sampling of the real world’s projection, which
causes imprecision of location.

To overcome these difficulties, practitioners rely on feature matching techniques,
which form a fundamental research area in computer vision. In images, features are
specific structures that are more or less stable from different view points. They can be
points, edges or any other object satisfying certain stability properties.

To solve the inverse problem of camera position recovery, people first detect features
in images, then describe each feature with either geometric or photometric information
over an appropriate zone around the detected feature, and finally try to establish the
correct correspondences between features. This pipeline involves three important top-
ics as feature detection, feature description, and feature matching. In this section and
in the following one, we will give an overview of these topics.

¢ Feature detection: Extracting specific structures from images.

¢ Feature description: Assigning a more or less view-point invariant signature to
each feature, so that observations of the same object in the other images have a
similar signature, and different features have different signatures.

¢ Feature matching: Assigning correspondences to features from different images
using various methods, based on feature descriptor comparison, and possibly,
geometric and/or photometric consistency.
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3.6.1 Feature detection

It is beyond hope to try to find correspondences for every point in an image directly,
as some textureless positions in the images are hard to be correctly located in the other
images. In stereo vision, people look for specific features in the images, and work only
with these detected features. There are many criteria to evaluate the performance of
features detection.

* Location accuracy: Features should be distinctive with respect to their neighbor-
hood to be accurately located.

* Robustness/repeatability: Features should be robust under moderate view point
changes. Precisely, since photos could be taken from any position (rotation and
translation in space) and distance, features should still be detected under transla-
tion, orientation and scale changes. Some more advanced features detectors are
designed to be invariant under an affine transformation.

* Scale and orientation: Features do not necessarily have a specific size nor ori-
entation. However, the feature descriptor needs to choose an area to produce a
signature, and knowing an orientation largely reduces the description space. In
order to always describe the feature based on a similar area in different images,
feature detection is usually coupled with a detection scale and orientation.

¢ Density and distribution: A good feature detector should detect a sufficient
number of features. Ideally, detected features should also be evenly distributed
in the whole image as opposed to being concentrated in a small area. Detectors
should also avoid the overlap of similar features (with similar coordinate, orien-
tation and scale) to avoid the ambiguity in feature description.

Some aspects restrain others, such as increasing accuracy and robustness may re-
duce feature numbers. There are several categories of features known in computer
vision, such as corners, segments and regions. We will focus on features describing
corners and regions as they are quite similar in presentation and application.

Figure 3.6: Feature detection: specific structures of images are detected, along with a
scale (circle radius length) and an orientation (displayed radius).

Corners and regions

Corners were used relatively early as features. The first corner features that have been
largely used were Harris corners [33] in 1988, which are invariant to orientation and do
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not take scale into account. The work of Lindeberg [46] analyzed the rescaling effect on
images and characterized the properties of scale-invariant features. Then, the Harris-
Laplace detector [56] extended the Harris detector with image scale exploration. The
image scale exploration has also been applied to Hessian-affine region detectors [55]
and led to the famous SIFT detector, defined by D.G. Lowe [50] in 1999. SIFT uses an
image pyramid to present image scales and the differences of Gaussian-convolved im-
ages to efficiently compute scale invariant blob-like features. It has been further refined
by Brown and Lowe [12] to achieve sub-pixel precision. The work of Morel and Yu [59]
in 2009 introduces various synthetic images with different view points to increase ro-
bustness against perspective transformation. The KAZE feature by Alcantarilla et al.
[4] in 2012 introduced non-linear image scale space to increase the robustness.

Matas et al. [52] have developed the MSER feature detector, which detects con-
trasted regions in the images. Later work by Forssen and Lowe [28] also incorporated
the scale exploration.

Most of the above features have the problem of a computational burden. Thus peo-
ple have also looked at the speed in detection. SURF [74] uses integral images to effi-
ciently (in memory and speed) interpret images of different scales. FAST [69] applies a
learning approach to detect corner features.

Comparison of feature categories

Usually, corner detectors are more accurate in localization than region detectors; how-
ever, corners often lay on the border of objects and are less reliable in scale, making
their surroundings unstable under view-point change. Thus it adds extra difficulties to
create reliable signature for corners. Blob-like feature detectors discover stable regions
under view-point change with a reliable scale, and for the reason explained before, it
is easier to describe these features. In our experiments, MSER detects much fewer fea-
tures than blob-like features.

3.6.2 Feature description

Once features are detected, we want to locate observations from different images of
a same object and link them together. For this, detected features are assigned with
a signature called a descriptor. A descriptor efficiently characterizes the information
of an area around the feature, it is usually a vector of numbers. A good descriptor
should produces similar signatures for different observations of a same point X and
different-enough signatures for different points (cf. Figure 3.7). Besides, a descriptor
should deal with several challenging situations for realistic images, and be robust to
these situations:

¢ Invariant to light conditions: as photos are taken at different times, the light con-
ditions may be different, including shading.

¢ Invariant to translation, rotation and scale: as photos are taken from different
positions, features from different images of a same object are translated, rotated
and re-scaled. (More complex transformations may occur.)

Besides, descriptors must deal with a dilemma between distinctiveness and repeata-
bility. Signatures need to be distinctive enough to differentiate from each others and
should be repeated from different images under different challenging situation. Dis-
tinctive descriptors tend to be less repeatable and vise-versa.
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Figure 3.7: Feature description: a signature characterizing a feature neighborhood is
computed for every detected feature.

The SIFT descriptor by Lowe [50] in 1999 has been widely used for its performance
facing these criteria. The SIFT descriptor, a 128 float-size vector, consists of 16 his-
tograms of gradients discretized into 8 bins. It encodes a form of spatial information
around the feature. The gradients are produced at the detected image scale. The use
of gradients is more robust than the direct use of image intensity against light changes.
With the help of feature orientation, the 16 histograms characterize the area around the
feature and the use of histograms allows small shift of gradients due to perspective
transformation. This descriptor has been applied to various detectors such as MSER,
Harris-Laplace and Hessian-affine features... The work by Mikolajczyk and Schmid [53]
shows that the SIFT descriptor has good performance under various situations.

The SIFT descriptor is a vector of length 128 for every feature, while there could be
thousands of features in one image. This limits the applications for a large quantity of
images. To reduce the memory consumed by SIFT, various approaches have been pro-
posed. In matching learning, discrete SIFT features are used in the bag of words model;
some also reduce descriptor size. Alternatively, Calonder et al. [14] calculate a binary
descriptor based on intensity comparison between samples, and use a learning method
to train a more performing descriptor with much smaller memory requirements.

A feature descriptor characterizes the local information around features by a signa-
ture, which is used to establish feature correspondences. Due to limited local informa-
tion and challenging changing situations, pairing features with most similar descriptors
is not sufficient.
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3.7 Feature matching

Features correspondences (cf. Figure 3.8), also called matches, are difficult to establish
but are very important for SEM. Here we focus on the two-view case. We suppose we
have images I and I’ with extracted features {x;,i € {1,...,n}} and {x},i’ € {1,...,n}}.
We note descriptors for features as {desc(x;)} and {desc(x})}. It is much more efficient
to match only features instead of matching every pixel, but there still exists n x n’ pos-
sibilities. In order to produce reliable correspondences, several strategies at local and
global scales can be applied.

Figure 3.8: Feature matching.

3.7.1 Local descriptor matching

Locally, we can pair features according to the similarity of signatures. In order to pro-
duce correct matches, various strategies can be applied for different purposes.

First nearest neighbor (FNN)

The most basic approach is to match with the first nearest neighbor (FNN) in the signa-
ture space. In other words, for each feature x;, we look for X, satisfying

X), = arg ,mind (deSC(Xi);desc(X,j'))
i

where desc(x) is the signature of x and d (s,s’) is the distance between signatures s and
/
s'.

Note that this approach is not symmetric. Thus if X, is the FNN for x;, conversely x;

may not be the FNN of x/,.

Symmetric matching

The next approach adds the symmetric property to FNN. A pair of features (x;,X})
construct a match if and only if they are FNN of each other.

X), = argmind (deSC(Xi);desc (X,]'))
x,
J

X; = argmind (desc(Xj),deSC(X;’))
Xj
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Lowe ratio

In natural scenes, and even more so in urban scenes, it is very common to have repet-
itive features, which creates ambiguity as descriptors of different features can be very
similar. To partly get around ambiguous choices, Lowe [50] introduced a threshold
ratio. Given x;, let x, be its FNN and x}, be its second nearest neighbor. The Lowe ratio
is defined as:

d (desc(xi),desc(x’j,))
d (desc(x;),desc(x}))

ratio(X;) =

To reduce the sensitivity to repetitive patterns, only features with a Lowe ratio smaller
than a threshold (typically 60%, or up to 80% to have more matches) are considered as
matches.

Upper bound criterion

An upper bound value for descriptor differences can also be used: only matches with
dissimilarity smaller than this upper bound value will be considered.

Fast approximate nearest neighbors

The FNN approach requires a comparisons with every possible candidate, which means
n x n' descriptor comparisons, which is computationally burdensome. Muja and Lowe
[64] apply a kD-tree structure to efficiently identify approximate nearest neighbors. The
partition on binary tree decreases the number of comparisons at the cost of matching
accuracy.

3.7.2 Global matching strategy

Matches obtained from local methods often contain numerous false correspondences
(mismatches), due to the limited use of local information only. In fact, too strict criteria
would lead to too few selected matches (still with mismatches), and too loose criteria
includes a lot of mismatches, see Figure 3.9. In challenging conditions, a local matching
strategy itself cannot produce satisfying matches, a global matching strategy is thus
needed. Still it is possible to apply a loose local matching strategy in order to accept
more correct correspondences, and leave the task of remove mismatches to a global
matching strategy.

Being aware of the limitation of local matching strategies, researchers have looked
for global constraints that may help improving the correspondences. Typically, the
question addressed is: given an initial group of matches produced by local matching,
how to remove as many false matches to outliers as possible while keeping as many
correct ones in inliers as possible? Two main approaches have been developed to solve
this problem. If the scene has a rigid structure, then the epipolar constraint can be
applied. Thus one solution is to try to fit 3D camera position hypotheses to the scene
with epipolar constraint (or homography constraint in planar situation).

If there is no obvious rigid structure, people try to consider the constraints between
matches, which leads to a graph matching problem. Though graph matching methods
are more complex and have a reduced usage compared to model fitting in the case of
SfM, these two approaches can compensate their defects and have better results when
combined.
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Figure 3.9: Result of local SIFT matching: The symmetric first nearest neighbor (FNN)
strategy is applied in each case. Left: Lowe ratio=0.6, middle: Lowe ratio=0.8, right:
Lowe ratio=0.98. Due to local matching and descriptor performance, applying a too
strict threshold ratio removes many correct matches, applying a too loose strategy leads
to many mismatches. In any case, it is difficult to get rid of all mismatches while keep-
ing a sufficient number of correct matches.

3.7.3 Model fitting methods—the RANSAC family

If there is a rigid structure between both images, a possibility to remove false matches
consists in trying to fit a camera position hypothesis to the scene; if the hypothesis is
correct, then correct matches should satisfy the constraint. However, matches selected
by local matching are contaminated by mismatches; in order to provide a good hypoth-
esis, we will need uncontaminated match samples.

One of the first widely used algorithms to solve this chicken-and-egg dilemma is
the RANdom SAmple Consensus algorithm, abbreviated RANSAC, by Fischler and
Bolles [27]. Given a group of contaminated data samples, where correct samples satisfy
a geometric model constraint, and false samples are randomly distributed in space, the
RANSAC method randomly retrieves a small set of samples from the data, and esti-
mates a hypothesis of the model. If all samples in this set are correct, the hypothesis
should be close enough to the solution and thus many other correct samples should
also support this hypothesis (with an error tolerance §). By iteratively renewing sets of
samples a large number of times, RANSAC probabilistically finishes by getting a close-
enough hypothesis, as well as the samples supporting this hypothesis. Example of line
fitting with contaminated data are shown in Figure 3.10.

The error tolerance threshold and the number of iterations are two important pa-
rameters for RANSAC methods. The error tolerance threshold should depend on the
variance of inliers imprecision; a too small value leads to fewer inliers and produces an
unstable/biased result; a too big value accepts many mismatches thus degrades the fi-
nal results. The probability P (level of confidence) to return a right hypothesis depends
on the number of iterations K, the number n of samples to generate an hypothesis, and
the ratio p of inliers in the contaminated data. Since RANSAC is a random process,
the more iterations we perform, the better chance it has of returning a good result. The
relation between P, K, n and p can be expressed as:

1-P=(1-p"k.

In this simple setting, the required number of iterations w.r.t. to an expected confi-
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Figure 3.10: RANSAC method for line fitting: Inliers are in red, outliers are in black.
Two hypotheses have been generated based on points in . Left: the hypothesis
based on two inliers is close enough to the right solution, and thus has many supporting
points in the tolerance range. Right: the hypothesis generated by contaminated data
has fewer supporting point in the tolerance range.

dence P is thus:
_ log(1-P)
log(1—p")
P is usually a number close to 1 (not equal) and # is fixed by the nature of the ge-
ometric model required to generate an hypothesis. Only 8 and p require extra knowl-
edge about the data samples, although some RANSAC variants try to estimate them.
The basic RANSAC algorithm is depicted in Figure 3.11.

(3.9)

Application to fundamental matrix estimation

We leave the model hypothesis refinement step to Section 3.8. RANSAC has been
widely used in stereo vision for Structure from Motion. Data samples are input matches
m; = (X;,X;), the hypothesis can be a fundamental matrix, an essential matrix or a ho-
mography matrix. (Here feature X, matching features x; are re-indexed as x; to simplify
notations.) We give details here for the fundamental matrix estimation as it is the most
common case in SfM. First, a hypothesis of the fundamental matrix is represented in

vector form as:

i
J2 fi o fC
H= | |,whereF=|fi f5 fe{]|, (3.10)
: fE G fol?
Lfo]

with { a conditioning parameter. (Note that H represents here a hypothesis, not a ho-
mography.) If the match m; satisfies the epopolar constraint defined by F, then we have

£ Fx; = 0.
uj u;
with,= | v | andX=| v/ |; wecanexpand this to the scalar equation
1 1

fidui 4 faulvi + fulC+ faviu + fsvivi+ fevil+ frul+ favil + fo* = 0. (3.11)
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RANSAC
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Figure 3.11: Basic RANSAC algorithm. Note that H represents here a hypothesis, not a
homography. H(m) represent the fitting error of the match m with H.

We note the vector form of match m; as:

wiT = [u;ul- i w8 viug vivi Vi uil vl Cz] (3.12)
As the fundamental matrix is non-null and invariant to re-scaling, we constrain the
equationby H'H = 1.

Either 7 or 8 random matches are used to generate a hypothesis H according to
different methods for solving the equation. For example, for the 7-point algorithm:

wé 0
w; 0

2l H=.| where (i1,i2...i7) are random indices. (3.13)
wh 0

(This leaves one degree of freedom in H, which can be solved using the contraint det ' =
0.) If a match m; supports the hypothesis H, then we have:

wlH < 3. (3.14)

Variants

There exists a very rich family of RANSAC variants aiming at different purposes. We
just list a few examples here. More details can be found in [19, 67].

¢ Fast convergence: Without additional information, the retrieval of small » data is
uniform among all input data, thus every generated hypothesis is independent
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from the others. Several methods have been proposed to accelerate the genera-
tion of a correct hypothesis. Moisan and Stival [57] propose to retrieve samples
from supporting points of the last valid hypothesis, which quickly leads to a cor-
rect result. Chum and Matas propose the Prosac method [52], which ranks data
samples according to a confidence function, and generates hypotheses with most
confident samples as a priority. The confidence function determines the gain in
convergence. Parameters as the descriptor differences can be used as the confi-
dence function.

* Robustness: There are many variants to increase the robustness of RANSAC meth-
ods. MLESAC, by Torr et Zisserman [77], introduces a probabilistic measure for
hypothesis quality supposing the mismatch distribution is uniform and the cor-
rect matches are Gaussian distributed. ORSA, by Moisan and Stival [57], applies
an ”a contrario” approach to the measure of hypothesis quality, supposing that
feature distribution in images is uniform. This method automatically selects p
during iterations.

¢ Accuracy: LO-RANSAC by Chum et al. [21] proposes to refine the generated hy-
pothesis during iterations, which is also the case for ORSA method.

Limitation of RANSAC methods

There are two major limitations for RANSAC-like methods. The first one is the number
of iterations. Since the RANSAC iteration number depends on the ratio of inliers p,
the required iteration number K increases dramatically when p drops below 50%. The
second limitation is related to the epipolar geometry. As mentioned before, knowing
the camera position and a point x in image /, any point on the corresponding epipolar
line in image I’ can satisfy the constraint. Thus, if H* is a correct hypothesis and x}, is a
false match of x; on the epipolar line, m = (x;,x),) still satisfies the condition H*(m;) < 8.
RANSAC-like methods are unable to remove this type of outliers. In Chapter 4, we will
address this problem with our K-VLD method.

3.7.4 Graph matching methods

Graph matching methods are other tools to generate feature correspondences, which
globally optimize a match consistency. They can be used even with non rigid scenes.
The idea is to construct a graph for each image where vertices are features and edges are
pairwise relations between features. Graph matching methods try to establish a vertex
correspondence between two graphs, satisfying matching constraints or optimizing a
global score. The feature descriptor similarity is expressed via vertex similarity, and
higher order constraints are represented via hyper-edges. More details can be found
in the review [22]. For graph matching methods, the nature of constraints between
features has a direct impact on the result. However, this issue has little been addressed.

Pairwise constraints

Second-order graph matching methods, such as [18, 44], use point distances. Alexander
et al. [9] combine the distance with the orientation information. Albarelli et al. [3] use
both feature orientation and scale to predict the projection of neighbor features, which
is a more elaborate and fruitful constraint.
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Higher order constraints

Some methods look for higher order constraints (involving more than two vertices)
to gain accuracy and robustness to noise. A usual approach is to express the triangle
similarity as a 3"_order constraint [43, 68, 16]. A 4""-order constraint can be used to
model a local affine transformation [24]. Even higher order constraints can express
projective-invariant potentials [24].

Limitation of graph matching methods

As far as we know, most practical constraints are purely based on geometric relations,
which are brittle under perspective transformation. It supposes that the structure in the
two images remains rigid. We believe that a combination with photometric information
can boost the performance of any graph matching methods, to the point that a simple
2"-order matching method could yield very good results.

For high-order graph matching, the running time and memory consumption are a
major issue, especially for large datasets (images with hundreds or thousands of fea-
tures): the complexity is at least O(N¢) where N is the number of points and d the order.

Besides, graph matching methods are not well suited to remove numerous mis-
matches; the inlier rate is assumed to be relatively large. For instance, Lee et al. [43] only
describe experiments with at least 50% of inliers (and at most 60 points), and Duchenne
et al. [24] show a severe drop of performance when the inlier rate falls below 30% (with
less than 100 points). In Chapter 4, we will discuss our solution to these limitations.

For these reasons, SfM uses essentially a model fitting approach to remove mis-
matches, and graph matching methods are used more as an optional intermediate step.

3.8 Two-view camera calibration

3.8.1 Model refinement

RANSAC-like methods remove mismatches and propose a rough model hypothesis,
which can be used to recover camera positions. A more accurate model can then be
computed based on all the inliers. We keep using here the previous example of fun-
damental matrix. Torr and Murray [78] have presented various existing solutions to
refine the fundamental matrix with accuracy in mind. Kanatani and Sugaya [36] look
for an optimal solution with a more complex form. We only present the naive method
and the iterative re-weighted least square method (IRLS), which presents a close to op-
timal performance with a simple implementation. We suppose a preceding RANSAC
method produces an inlier set {m;|i € {1,2...,n}}.

Naive method: minimization of an algebraic error
The naive method minimizes the sum of the square algebraic error for inliers

n
H,p = argmin ) (wrH)?,
H|H|=1i=1
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or in matrix form

Hyp = argmin H (W W)H (3.15)
H,||H||=1
wi
with W =
wl

n

Equation (3.15) is a classic optimization problem that admits as solution an eigenvector
of WI'W (9 x 9 matrix) associated to its smallest eigenvalue.

Iterative re-weighted least square method: minimization of the geometric error

The naive method is fast, but produces a sub-optimal estimate of F. It is better to mini-
mize the sum of square distances to epipolar lines (the geometric error), see Figure 3.12.
To do that, we first calculate the epipolar line equations for both images:

/

a; a;
Li=F'%= |b;| and Il =F%; = |b!] . (3.16)
i c

1

Given that the formula of the distance from a point (xo,yo) to a line ax+by+c=01is

|axo + byo + ¢|
Va2 +pr

we compute the square distance from the point ; to line /; by

(&[0 (KTFTR)? _ H (wiwlH

i

A0 @b a b

d(l;,%)* =

Thus for m;, the sum of the square epipolar distances in the two images is

1 1
H' (Y c2ww!)H, with ¢; = + .
B C V@bl (@ b7

We note

W= : |. (3.17)

CnWp

Then H,,, is an eigenvector of WIW, associated to its smallest eigenvalue. However, the
coefficients ¢; depend on H. We thus iterate several times the optimization process; at
every iteration, ¢; are updated with the latest H,,;. Other similar definition for ¢; have
been proposed. For more details, we refer to Torr and Murray’s work [78].

3.8.2 Essential matrix decomposition

Once the fundamental matrix is refined, it is used to compute the essential matrix. The
SVD decomposition of an essential matrix gives:

E=UxV! with 2= (3.18)

S O«
Sy O
S O O
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N
7

Figure 3.12: At each iteration, the IRLS method tries to approximate the sum of the
square geometric error with the estimated model by re-weighting input samples before
generating the next model.

The camera’s rotation and translation can be expressed as follows:

t], = £VGEVT
R=+UG VT,

0 -1 0 (3.19)
withG=|[1 0 0
0 0 1

The sign of the rotation matrix is determined by detR = 1 and only one solution of t will
project features in front of both cameras.

3.8.3 Bundle adjustment

An alternative to determine the camera positions and reconstruct the 3D points is the
bundle adjustment, first introduced by Triggs et al. [79]. It can be applied to the two-
view SfM problem as well as in the N-view case. The idea is to consider as variables the
camera projection matrices {P;|j € {1...n.}} and 3D point positions {X;|i € {1...n,}},
and iteratively refine these variables via a Levenberg-Marquardt process. We note xlj
the observation of feature X; by the j" camera, ilj the projection of X; to the j" image
so that ilj ~P;X;, and §; ; is defined as:

(3.20)

5 1 if X; is seen by the j”* camera;
"1 0 otherwise.

The minimized function in bundle adjustment is the sum of squared reprojection

errors:
np ne

argmin Z Z Sivj(xlj —ilj)z with ilj ~P;X;. (3.21)
{Pj}{Xi}i=1 /=1
This algorithm requires an initialization that is close enough to the optimum, other-
wise it could return a sub-optimal result.
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3.9 N-view camera calibration

The calibration of the camera positions for multiple images usually goes through the
following steps: first, a two-view camera calibration process is performed for every
possible image pair. If the two-view calibration succeeds, it tries to establish the pair-
wise spatial relationship with the feature correspondences. Second, the matches that
potentially point to a same 3D point are grouped together to form feature tracks and
initial global positions are computed for each image according to some algorithm. Last,
a pose refinement process is performed. For this, their exist two approaches: incremen-
tal or global refinement.

3.9.1 Incremental methods

The incremental approach tries to add images one after another, refining the position
of already-calibrated cameras as new images are added. Bundler [72] is a well-known
method and system following this schema. This approach may suffer from drift errors.

3.9.2 Global methods

The global approach tries to deal with all images at the same time to avoid drift errors
and better deal with image mismatches. The global method proposed by Moulon et
al. [62] shows its advantage in accuracy. It is however more demanding in terms of
computing power and memory. It is thus better suited to a smaller number of images.

As our work does not focus on N-view SfM, a more complete study of N-view
camera calibration is out of the scope of this thesis.
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Chapter 4

Feature correspondence

In the early stage of Structure From Motion, finding reliable correspondences between
sets of features in two images has an important impact on the quality of output re-
construction. Despite extensive work in this domain, difficult but common cases like
repetitive patterns or poor texture are still persistent problems for feature correspon-
dence. In this chapter, we present our contribution in improving the robustness of
feature matching, and its application in various domains, other than structure from

motion.
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4.1 Introduction

Finding reliable correspondences between sets of feature points in two images is a
key step in a number of computer vision problems, e.g., camera calibration and object
recognition. To achieve this task, feature detectors such as SIFT [49], SURF [8], Harris-
affine [54] or MSER [52] identify interest points or areas in images robustly. By design,
the detected points or areas are salient enough to be likely also salient in other views
of the same scene, under different imaging conditions (viewpoint, lighting, orientation,
scale, etc.).

Besides, these points or areas can be individually described based on their scale,
if any, as well as on an abstraction of their photometric neighborhood, e.g., based on
the distribution of local gradients. Such feature descriptors include SIFT [49], SUREF [8]
and MSER shape descriptor [28]. Like detectors, these descriptors are designed to be
robust, to some extent, to variations such as noise or change of viewpoint, orientation
or illumination.

Matching detected features in two images based on the similarity of their descriptor
often provides good correspondences . However, it also includes false matches. Elimi-
nating those false matches while preserving true correspondences remains challenging
for images with ambiguities or strong transformations. Ambiguity usually arises from
repetitive patterns (e.g., facade windows) or lack of texture. In this case, the descriptors
are not discriminative enough to safely differentiate feature points. There actually is
a balance to find as repeatable descriptors tend to be less distinctive, and vice versa.
As for strong transformations, they can sometimes be avoided by carefully controlling
imaging conditions. Yet some sharp transformations cannot be avoided, e.g., due to
strong occlusions, when a foreground object obstructs very different background areas.
To get both a high number of correct matches and a low mismatch ratio, just compar-
ing individual feature descriptors is not enough. Global methods are required, such as
RANSAC or graph matching.

4.1.1 Feature matching by RANSAC

For rigid transformations, RANSAC-like methods [27] can accurately separate inliers
from outliers. They randomly sample subsets of correspondences to build a putative
model of the transformation (fundamental/homography matrix) and count the number
of matches that are compatible with the model. The largest consensus set defines what
is to be considered as inliers, other matches being regarded as outliers.

This works well if the inlier rate p is high, not if it is low. The reason is that the
number of required sampling iterations is on the order of 1/p”, where n is the num-
ber of correspondences to draw to define a model, cf. Section 3.7.3. (In general, for the
fundamental matrix, n = 7 or 8 [34].) Better drawing strategies such as MLESAC [77]
or PROSAC [20] can greatly reduce the number of models to sample, but they are
nonetheless not well suited for inlier rates lower than 50%. Only a few methods such as
ORSA [57] can treat an inlier rate of 10%. Yet in any case, all RANSAC-like methods in-
herently suffer from a limitation when estimating the fundamental matrix: they cannot
eliminate mismatches corresponding to points that have matches near their epipolar
line but far from the correct location, which may degrade precision.

4.1.2 Graph matching methods

Graph matching is also a tool to determine feature point correspondences, with a global
consistency criterion. It applies not only to rigid scenes but also to deformable objects.
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The idea is to construct a graph where vertices are feature points and edges are pairwise
relations. Higher-order constraints, involving more than two vertices, can be modeled
as hyperedges. Graph matching methods try to establish a vertex correspondence be-
tween two graphs, satisfying matching constraints or optimizing a global score. Some
can also handle inexact matching, allowing different structures to some extent [22].

For 2"-order graph matching, many methods use the relative distance between
points as constraint [18, 44], possibly in combination with angles [9]. Feature orien-
tation and scale are used too, e.g., to define an affine transformation predicting the pro-
jection of neighboring points [3]. Some robust pairwise descriptors combine individual
feature descriptors too [30].

A better matching accuracy or robustness to noise can be achieved with higher order
graph matching [43, 68, 16]. A common 3"-order constraint expresses triangle similar-
ity [43]. 4™-order constraints typically include consistency w.r.t. a local affine transfor-
mation [88, 24]. Graph matchers supporting edges of even higher-order can for instance
also express projective-invariant potentials [24]. However, despite recent advances in
higher-order graph matching, the running time and memory consumption remain an
issue, especially for large datasets (images with hundreds or thousands of features):
the complexity is at least O(N?) where N is the number of points and d the order of the
constraints. Besides, although some methods explicitly include a treatment of outliers,
e.g., using absorbing nodes [43], the inlier rate is still assumed to be relatively large.
For instance, Lee et al. [43] only describe experiments with at least 50% inliers (and at
most 60 points), and Duchenne et al. [24] show a severe drop of performance when the
inlier rate falls below 30% (with less than 100 points).

Last but not least, without a strong consistency criterion, graph matching methods
follow either the “match until conflict” strategy, i.e., they search the maximum number
of no-conflicting matches, or “match ordering” strategy, i.e., consistent matches have a
higher ranking without a clear and explicit separation of inlier/outlier. Both strategies
may work for small number of matches but are prone to overlook outliers at larger
scales.

4.1.3 Region growing methods

Match propagation is an approach to deal with ambiguous feature correspondences [42,
17, 26, 65]. It propagates matches from seeds to their neighbors according to the local
transformation consistency. The performance of these algorithms depends on the dis-
tinctiveness of pairwise or higher-order constraints. Ok et al. [65] mention that the ge-
ometric pairwise constraints based on a local feature transformation is experimentally
very noisy; this is why they use 4-th order constraints.

4.2 Our contributions in matching

4.2.1 Robust 2"d-order photometric criterion

Feature descriptors provide 1%-order photometric information to estimate correspon-
dence likelihood and identify potential matches. All other information used for match-
ing is generally restricted to geometric information, i.e., relative point location in the
image. This is the case for RANSAC methods and for most existing graph matchers.
Although some authors mention possible extensions of graph matching potentials to
photometric information [24], such uses are scarce and tend to translate into quasi-
dense matching [26]. For instance, experiments in [88, 44, 3, 23, 43, 68, 16] are limited to
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Ym(x;, X )“ Amage 1, ,f'

m(x;, x',)

Figure 4.1: General idea of 2"9-order photometric criterion: information along oriented
segments (xi,x;) and (x;,x)) is unlikely to be similar unless both matches (x;,x;) and
(x;,X) are correct.

geometric relations as triangle similarity, arc length, descriptor’s scale and orientation.
Photometric information between features is ignored.

We propose here a novel, simple and efficient, 2™-order photometric criterion. It
is based on the fact that for points x;,x; in image / and x;,, X, in image I', it is unlikely
to find similar photometrlc information around lines (x;,x;) and (x;,x),) unless both
(xi,x;)) and (x;,x/,) are correct matches, see Figure 4.1. Photometric similarity between
lines is stronger when the 2D lines actually lie on a 3D plane which is not occluded, but
some similarity still remains under moderate surface curvature and occlusion.

To express this property, we define a virtual line descriptor (VLD) that captures pho-
tometric information between two points. The distance between two such descriptors
measures the dissimilarity between the corresponding two virtual lines. It can be used
in the 2"-order term of graph matchers to improve their accuracy.

4.2.2 Light semi-local matching strategy

Thanks to the robustness of our VLD used as 2™-order photometric criterion, we also
define a semi-local matching strategy based on VLD which is a light version of graph
matching using photometric information. It can be used as a preprocessor to RANSAC
methods to improve the quality of match selection by considerably increasing the inlier
rate before RANSAC. As it can eliminate false matches near epipolar lines, it greatly
improves precision. As the inlier rate is improved, the needed number of iterations in
RANSAC can be considerably reduced.

4.3 Virtual line descriptor (VLD)

As far as we know, when it comes to studying the consistency of a pair of matches,
existing pairwise constraints are mostly based on geometry only. However the pure
geometric constraint lacks distinctiveness. A pair of features (x;,x;) in / is unstable un-
der perspective transformation in image /" and could have several occurrences (x;,x)
having a high consistency score. The use of pairwise photometric information along

the path (x;,x;) avoids spurious matching and thus is more robust.

The general idea of our descriptor for a virtual line between points x; and x; is to
describe its photometric information by a number of SIFI-like gradient histograms. To
ensure the robustness of this description, we consider a regular covering, with some
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overlap, of an image strip between x; and x;, and use a SIFT-like descriptor to char-
acterize each element of the covering. The global line descriptor is the concatenation
of the descriptors of each covering element. It inherits SIFT descriptor’s robustness to
noise and changes of scale, orientation and illumination.

4.3.1 Geometric consistency

Before describing a line, we actually first check a geometric constraint, extending that
of Albarelli et al. [3].

Given matches m; 7 = (x;,x;) and m; j = (x;,X;), and assuming that the local trans-
formation around x; is close to a similarity, we define the point p/, in image I’ as the
expected position of X', (cf. Figure 4.2):

s(xy)
s(xi)

where s(x) is the scale of feature point x, a(x) is the angle of the main orientation at x,
and R(a) is the rotation of angle o. Permuting / and I’ defines a point p; in image / as
the expected position of x;. The transformation error of (x;,x’;) by (x;,x}) is measured
in I based on distances d; ; = dist(x;,X;), t; j = dist(X;,pj), e; j = dist(Xj,p;), and likewise
inrl.

The normalized and symmetrized score of geometric consistency (smaller means
more consistent) for matches m; y and m; ; is defined as:

/

Py =X, + R(a(xy) —a(x;)) XX, 4.1)

x(mipmj ) = min(ni,i/,j,j'anj,j',i,i') (4.2)

/
€ j eij

where My ;= =My =

min(d£,7j,,t{,7j,). min(d,-t,-,tu)

Matches m; 7 and m; jy are considered as consistent w.r.t. geometry iff y(m;y,m; j) < Ymax-
In all our experiments, we use a threshold value ymax = 0.5. This fast prefiltering step
eliminates many false matches before photometric comparison while preserving most
good matches.

Comparison with other geometric constraints

Our pairwise geometric constraint improves over other existing ones. [88] uses a func-

. . . — |dist (x;,x;)—dist(x, X/,
tion of the difference of distance between (x;,x;) and (x;, X)) suchas dist (xi.;) —dist (xy X3 )|.

(dist(x;,x ) —dist (x;, ,x;., ))?

262
—Amax(e

[44] uses 4.5 —

better constraint as e <) (. Figure 4.2 for ¢] ;), but it is neither symmetric nor
invariant to scale. Our geometric constraint y(m;y,m; j) is a better one, with invariance
to scale, and symmetry.

for some 6. Albarelli et al. [3] propose in their work a

4.3.2 Line covering

For two points x; and x; in image / at distance d one from another, we consider U inter-
point disks (D,) of radius r = ULH centered on points x; + ULH)TX; forue{l,...,U} (see
Figure 4.3). Each disk is then described at image scale s = max(r/rmin, 1) where rpyi, is
a minimum description radius. In our experiments, we use U = 10 and rpin = 5 pixels,
which provides a good balance between discrimination and repeatability.

In practice, scales can be discretized and precomputed, to avoid rescaling the im-
age for each new pair of points. As for SIFT [49], we construct a pyramid of scaled
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Figure 4.2: Distances used for the computation of the transformation error n, ; ; . It is
understood as the following: according to the transformation from x; to X}, the error
ratio from the projected point p’, to x/;.

images. In our experiments, a geometric progression with ratio v/2 proved enough for
repeatability. For any disk radius  in the original image 1, we thus use scale s* = 29/2
for ¢ natural integer such that 29/ <5 < 2(4*1/2 je., g = LZII‘SSZJ In the scaled image,
the disk radius is r* = r/s* (see Figure 4.4).

4.3.3 Inter-point gradient histogram

The descriptor for disk D, is a single SIFT-like local gradient histogram [49]. (SIFT ac-
tually defines a grid of 4 x 4 such histograms.) We use V bins (/,,)ye1,...v} to represent
the distribution: each pixel in the disk votes in the orientation bin corresponding to its
gradient (relatively to the line direction), weighted by the gradient magnitude and by
a Gaussian-weighted circular window with 6 = 3r* like SIFT. In our experiments, like
SIFT, we use V = 8. The line histograms are then normalized so that Y, ¥V h,, = 1.
(Contrary to SIFT, we use the L'-norm rather than the L2-norm for better discrimina-
tion.)

4.3.4 Inter-point orientation

Inter-point orientation is computed as SIFT too, with some adaptation. We construct an
orientation histogram for D, using W bins (O, )weqo,....w—1}- As slightly more variations
can be expected on the line between two points than on the feature point themselves,
we recommend W >V (as in SIFT). In all our experiments we use W = 24 (whereas SIFT
uses 36 bins), which intuitively improves robustnes and empirically seems to preserve
enough discrimination. In addition, we treat opposite directions together and actually
consider the derived histogram (5u7w)we{07___’w_1} defined as 5u,W = Ouyw = Oy (wW/2) mod W
(i.e, 5u7w = —6u7(w+w/2)modw). This also happens to preserve enough discrimination
while enhancing robustness. The main orientation wj, is finally defined as the bin of
the derived histogram with the highest value.

~

w, = argmax Oy, (4.3)

Note that max,ec,.. w-1} 5u7w = max,c(o,..w/2-1} |5,,7W| > 0. The reason why we use
maX,c(o,.. w1} a,w instead of max,,c(o,...w—1} Ouw is that, we believe the first one is more
robust, as it has the biggest gap compared to its opposite side, which is more difficult
to be replaced.
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Figure 4.3: Top: disk covering of line (x;,x;). Bottom: 8-bin histogram of gradient
orientation for disk D,, and main orientation w.

—4\7N§(eﬂﬂﬂ‘N\ NIFEIRN
T\I \>)/*’ﬂ“’r~{\mm UER

P Nl%7y7 7%{\‘$Z\
\/Ermin< Ve NE \/;4\ — r*
[PAACEEETEPARTY |

N )"V&f’VZ}F(N A\
»‘IR[7¢2A4A’2’PR <—\N4

N\N\Nﬂﬂz’?/‘zZﬁr{Im

A\Z\Nxzﬂﬂ\%—)/‘fVN

| NN T =P L

/‘\\ NN EEEE /¢¢

NN LD A s

RS 7 e s L2175 [ [ 2|~

T AN T |7 A =]

Figure 4.4: For r > ryin, the VLD is computed on the g™ image scale on r*-radius disks,
where rpin < r* = }’/2‘1/2 < Fmin V2.
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We also define normalizing factors v, to weigh each orientation over the whole line:

~

* a~ OM¢WZ
w, = argmax Oy, Y=g A — >0 4.4)
we{0,..,.W—1} Zu:l Ou,wl*‘

-----

the normalizing factor vy,. The size of the overall line descriptor is thus U (V +2).

4.3.5 Distance between two VLDs

Given lines /; ; = (x;,x;) infand [, , = (x;,,x);) in I, we now define the distance between
their descriptors. For each inter-point disk D, in I and corresponding inter-point disk
D) in I'’, we compute both the difference of the gradient histograms and the difference
of the main orientations. Orientations w}, and w," are compared modulo W/2 (most dis-
similar orientation), normalized to 1, and weighted by the average of the orientation
normalizing factors 7y, and Y,, resulting in a value in [0, 1]. The differences of the gradi-
ent histograms and the main orientations are then linearly combined with a weighting
factor B € [0, 1]:

U wi—wh wr —w*
ll ZBZZWN uv‘_'_ Z(Yu—i_’y, mln(| v“//vg ’ u u‘)) (45)
u=1lv= =1

Experimentally (see Section 4.6), we use B = 0.36, The value of B is coupled with the
value of Tnax (section below) to best separate consistent/inconsistent VLDs (cf. Fig-
ure 4.15).

4.3.6 VLD-consistency

The VLD-distance between matches m; y=(x;,x;) and m; y=(x;,x/,) is the VLD-distance
between the corresponding lines: t(m; ,m; ) =T(l; j,ly y) € [0,1] where [; ; = (x;,X;) and
l; » = (x;,X). The lower 7, the more similar the virtual lines.

It can be used in the pairwise score of a graph matcher (cf. Section 3.7.4), e.g., with
a contribution of the form exp(—At?). Experimentally (see Section 4.6), we use A = 100.

When a binary choice (consistent or not) is required, matches m; y and m; ; are said
VLD-consistent iff their virtual lines satisfy t(m;;,m; ) < Tma. Experimentally (see
Section 4.6), we use Tmax = 0.35. The matches are said gVLD-consistent iff they are
both geometry- and VLD-consistent.

4.3.7 High contrast suppression

VLDs are discriminative when they contain a variety of gradient directions. If the gra-
dient pattern is mostly the same on all VLD disks, then the virtual line is likely not to be
discriminative because its descriptor will not vary if we shift (translate) the line along
its direction. This typically occurs when the virtual line follows a highly contrasted
image edge. Such an example is illustrated in Figure 4.5 where the putative matches
(x})ie{l,...,3}in I’ of points (x;) i € {1,...,3} in I are shifted up while staying gVLD-
consistent as a group. We want to detect such a situation to prevent corresponding
virtual lines from being taken into account in matching decisions.
For this reason, we define a line contrast indicator:

*

s oA
=q Y Ou (4.6)
u=1
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Image / Image /'

Figure 4.5: Example to illustrate the necessity of high contrast suppression: Four
matches (x;,x}), i € {1,2,3,4} are detected. Among them, (x;,x}), i € {1,2,3} are along
an image edge and correspond to points (x}) that are globally shifted up, only (x4,x}) is
correct. However, VLDs between (x;,X}), i € 1...3 in red are gVLD-consistent between
themselves, still we do not want to use them for match validation. Note however that
VLDs outside the edges with (x4,x)) in green are still discriminative. Thus, we penalize
VLDs along edges, using a form of high contrast suppression.

In equation (4.6), s* is the re-scaling factor of the current image scale from which the
VLD is computed. The gradient of a point in the image is computed based on its neigh-
boring pixels; its intensity is inversely proportional to the observed scale, i.e., for a same
region, the gradients appear sharper if the region appears smaller and vice-versa. For
this reason, equation (4.6) contains a normalizing factor s*/d.

VLDs with contrast k above given threshold ¥p.x are considered unreliable and
discarded. Experimentally (see Section 4.6), assuming image intensity in the range
0,...,255, we use Kmax = 30.

44 K-VLD: a K-connected VLD-based matching method

VLD can be directly used as a pairwise constraint in 2"¢ or higher-order graph matching
methods. Yet, existing graph matching methods do not scale well to large numbers of
matches and, as shown in the experiment section, they may perform poorly when the
foreground creates background occlusions. Besides, some of them are not well suited
for large outlier elimination.

In this section, we introduce K-VLD, a novel matching method that overcomes these
limitations. It is semi-local in the sense that the score of a match depends on its consis-
tency with neighboring matches. The consistency is both geometric and photometric,
using our VLD criterion.

The basic idea is that, given a potential match (x;,x}), if there are in the neighbor-
hood of x; and x, at least K other matches (x jkaX;L)ke{l,...,K} that are gVLD-consistent

with (x;,x}), then (x;,X]) is likely to be a correct match, see Figure 4.6. The method can
be seen as a simplified 2"-order graph matcher specialized for image features. It pro-
vides a binary assessment for each match (correct or not) as well as a consistency score
for further filtering.
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Figure 4.6: K-VLD's idea: Five matches as m;; = (x;,X;), i € [1...5] are detected, (Xs,Xj)
is a mismatch. We suppose they are all neighbors. (x,x}) are likely to be gVLD-
consistent with its neighbors if the neighbors are correct matches, i.e., having several
gVLD-consistent neighbors m; ;,i € [2...4] makes m; | very credible as a correct match.

4.4.1 Neighborhoods

Having more than K gVLD-consistent matches makes the considered match very likely
to be a correct match. It is inefficient and unnecessary to check gVLD-consistency
with all other matches. In fact, the more distant the matches (i.e., the longer the vir-
tual lines), the more likely the virtual lines are to differ. It is thus enough in practice
to check K-connected gVLD-consistency only within a neighborhood of the points, to
avoid quadratic complexity. We actually adapt the size of the neighborhoods to the
density p of feature points. Neighborhoods are defined as disks centered on x; and X,
with respective radius B and B'. Given a set M of potential matches between I and I’,
with minimum inlier rate ppyin, and assuming a more or less uniform distribution, then
the average number of correct matches Kz in a B-neighborhood is:
2

K = %f(l) Duin | M. (4.7)
As B should be chosen such that Kz > K, we get a definition for the minimum radius Bk
of the neighborhood from (4.7). Moreover, for stability reason, we exclude neighboring
points x; that are too close to x;, within By, pixels. Wrapping up, we say that a match
(x j,x;.,) is a neighbor of (x;,x}) iff x; is in the (Bmin, Bx)-annulus centered on x; in I, or
x;., is in the (Bmin, By )-annulus centered on x), in I. This provides a relation between
the minimum radius B and the minimum number of agreeing neighbors K; one can be
computed from the other one, as follows:

(B> —B2.) Karea([)
Kp = ————20 pyi | M Bx = | ——=+B2,
B area([) Puin | M| K TP umin | M | B

In case we discover a posteriori that p < pmin, Bx has to be expanded (e.g., pmin =
Pmin/2) and the algorithm has to be rerun (possibly reusing information about already-
found gVLD-consistent match pairs). If we still get p < pmin after 5 reruns (Pmin is 32
times smaller than its original value), we consider there are no more matches and stop
the algorithm. In all our experiments, we set pyin = 3% and B, = 10 pixels. Then, given
a set of matches M C M and a match m € M, we define the following neighborhoods:

(4.8)

® Ny (m) = {m’' € M | m and m'are neighbors}
® Nisgeom(m) = {m' € M | m and m'are geometry-consistent neighbors} C Ny (m)

* Nyguid(m) = {m' € M | m and m'are gVLD-consistent neighbors} C Njs geom (1)
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Input: images / and /', detected features in / and I/, and set of potential matches M
Output: selected subset of matches in M
1. Compute pyramid of scaled images for 7 and I’
2. Set up tables #yxm|, Tim|x1, Cjm|x1 and initially mark all matches as inliers
3. Do
4. Set T and C to zero values
5. For every inlier match m;
6. For every inlier match m;, a neighbor of m;
7. If #[m;, m;] is undefined
8. If (m;,m;) are gVLD-consistent
9. then t[m,',mj] — ’C(mi,mj) and t[mj,mi] — ’C(mj,mi)
10. else t[m;,m;] < discard and t[m, m;] < discard
11. If #[m;, m;] # discard
12. T[m,-] — T[m,-] —i—t[mi,mj}
14. If C[m;] > Nmax then consider next m; (line 5)
16. Sort inliers by increasing value of C, or increasing T if C-equal
17. (a) For every inlier m; in sort order
18. If C[m;] < K then mark m; as outlier
19. (a’) For every inlier m; and every inlier m; in sort order
20. If m; conflicts with m;, mark as outlier the match with lowest C,
or lowest T if C-equal
21. (b) For every inlier m; in sort order
22. Compute the proportion ® of geometric-consistent neighbors of m;
23. Compute the average transformation error ¥ amongst neighbors of m;
24. Mark m; as outlier if 0 < Opin OF ¥ > ¥ max
25. while some matches have been marked as outliers (in this iteration)
26. If p < pmin go back to line 3 with pin = Pmin/2
27. Return matches marked as inliers

Table 4.1: K-VLD filtering algorithm.

4.4.2 Problem statement

Experimentally, requiring that good matches have at least K gVLD-consistent neighbors
eliminates many mismatches, but some may still remain, especially with ambiguous
matches. We found that adding an extra constraint on the proportion ® of geometry-
consistent neighbors and on the average score j of geometric consistency for neighbors
helped in removing many of these remaining mismatches. Formally, given a set of
potential matches M, we look for a subset M C M such that, for allm € M,

‘NM,geom(m)‘ > @i, OF Zm’ENM(m)X(mvm,)
[Nt (m)| N (m)]|

[Naguid(m)| > K and ( gzmax>. (4.9)

We are actually interested in a set M* with maximum cardinality satisfying this condi-
tion. The absence of ambiguous matches in M can also be imposed (see below).
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4.4.3 Algorithm

The detailed K-VLD pseudo-code is given in Table 4.1. For efficiency reasons, we ac-
tually only look for sets M of large cardinality satisfying equation (4.9). Our algorithm
starts with M = M and repeatedly performs the following operations:

(a) remove all m € M such that Ny gyiq(m) < K

‘NM,geom (m)| < Oy and Zm’GNM(m)X(mvml)
[Nas (m)] [Ny (m)]

until no match is removed. Upon termination, which always occurs as |M| strictly de-
creases (after around 3 iterations, at most 5 in practice), either M = 0 or M satisfies
condition (4.9). In practice, this yields a large set of matches for M, almost never empty.
gVLD-consistency is enforced first because it is the strongest condition. In all our ex-
periments, we use K = 3, Onin = 30% and Jmax = 1.2.

(b) remove all m € M such that > Ymax

Dealing with ambiguity

Ambiguous matches, i.e., matches that share a point in one images or the other, cor-
respond to a special kind of mismatches. Treating them as ordinary matches when
eliminating outliers does not guarantee an ambiguity-free set of final matches. For
this reason, a heuristic elimination is often performed by matching methods to keep
at most one match per point, generally by keeping only the one with the best score.
But sometimes there is no easy choice, e.g., with ambiguous points on an epipolar line.
In that case we can use VLD information to improve disambiguation. For this, we
sort the matches in M so that matches m with the highest number of gVLD-consistent
neighbors are preferred or, if equal, the highest average of VLD score among these
gVLD-consistent neighbors, i.e., T(m) = ¥yen,, o ?m, 1) /[Ny guid (m)|. More formally,
matches are sorted (less likely matches first) according to the order relation: m <y m’ iff

|NM,ngd (m)\ < ‘NM,gvld (m')| or (‘NM,ngd (m)] = |NM,ngd (m/)| and T(m) > T(m/)) (410)

Match disambiguation can then be addressed with the following step added to the
algorithm:

(@") for each m € M in <y-sort order, remove m if Im’ € M\ {m} s.t. m’ conflicts with m

If two matches have same values for [Ny gvid| and T (ie. m =y m’), we keep both of them.
There is a chance to make a decision in later iterations where more false matches are
removed. The sorting can also be used in step (a) and (b) of the algorithm for picking
m € M, updating M as matches are removed. However, sorting in (a) and (b) does lead
to much better results experimentally.

4.4.4 Optimizations and heuristics

Given a match m, we need to count the number of gVLD-consistent neighbors m’, which
requires computing t(m,m’). To avoid recomputation, we keep theses values in a cache
(1] x|m| in Table 4.1). Besides, to speed up the algorithm, we do not have to enumerate
all gVLD-consistent neighbors. It is enough to stop after Nyax > K neighbors are found,
as m is then extremely unlikely to be later removed (e.g., Nmax = 20 for K = 3).
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4.5 Evaluation

We experimented with existing matching methods, some of which were also augmented
with VLD, and we compared with K-VLD. We evaluated matching accuracy in various
imaging conditions. We also tested K-VLD as a prefilter to RANSAC-based calibration.

All extracted features are SIFT keypoints, as implemented in VLFeat [80]. We se-
lected a range of state-of-art methods presenting the rich variety of graph matching ap-
proaches. We use the authors’ code for probabilistic hypergraph matching (HGM) [88],
hypergraph matching via reweighted random walks (RRWHM) [43] and tensor match-
ing (TM) [24], and our own implementation of spectral matching (SM) [44], which com-
putes the same matching results (but with different speed) as integer projected fixed
point (IPFP) [45], and game-theoretic matching (GTM) [3]. Besides, VLD was incorpo-
rated to SM (2"-order method) and HGM. For calibration experiments, we used the
IPOL implementation of ORSA [58, 57], which is a parameterless, state-of-art RANSAC
variant.

4.5.1 Changing imaging conditions

We use Mikolajczyk et al.’s dataset, that evaluates feature detectors and descriptors
under different image transformations, including change of viewpoint and illumina-
tion, zoom, blur and rotation [53]. It is composed of 8 sequences of 6 images with
increasing variation. For each sequence, we successively match image 1 with all other
images in the sequence. We extract the best 400 SIFT matches (i.e., with lowest descrip-
tor distance) as candidates for each image pair. 400 features was about the limit that
methods TM and RRWHM could handle on a 24 GB computer, running in 200s; K-VLD
runs in 1s, with a performance quasi linear in | |. For each method, we extract the N
best matches according to the method, where N is the number of ground truth inliers.
Matches with less than 5-pixel transformation error are considered as inliers, and ac-
curacy is the proportion of correct matches among the N returned matches [43]. This
dataset features image transformations that can be described by a single homography:.
As lines are preserved, VLDs are expected to be relatively stable. In fact, results in
Figures 4.7 and 4.8 show that K-VLD often outperforms other methods. Besides, VLD
significantly improves existing methods, especially for scenes with viewpoint or scale
changes.

4.5.2 Strong occlusions

To evaluate the case of occlusions, we use the Détenice fountain dataset [13], from
which we took a sequence of 43 images. The occluding foreground (a statue) creates
strong variations in the background. A ground truth calibration is first constructed by
selecting 50 correct matches by hand. As above, we extract the best 400 SIFT matches
for each pair of successive images. We then measure the actual inlier rate and the accu-
racy. Results are shown in Figure 4.9, where strong local variations have been smoothed
and where the 42 measures have been re-sampled in plotted graphs for readability.

K-VLD creates clusters of consistent matches despite occlusions, outperforming
other methods most of the time. VLD improves SM moderately (5-10% more inliers)
and HGM only slightly, as it already has an excellent performance.
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Figure 4.7: Matching accuracy measured on Mikolajczyk et al.’s [53] dataset (part 1)
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Figure 4.9: Détenice fountain. Top: K-VLD clusters on one image pair (green lines).
Bottom: & average accuracy on all pairs. K-VLD out performs other methods (though
the HGM method also achieves good results with or without VLD pairwise constraints
in this occlusion test, it is shown in previous experiment that HGM+VLD outperforms

HGM under re-scaling and viewpoint changes.)
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4.5.3 Ambiguity and RANSAC prefiltering

To evaluate the benefits of K-VLD as a preprocessing filter for RANSAC-based calibra-
tion, we use Strecha’s Castle-P19 dataset [73]. It is composed of a looping sequence of
19 images of a courtyard and provides ground truth for both internal and external cam-
era calibration. The scene is highly ambiguous due to many repeated windows, which
degrades registration, as illustrated on Figure 4.10.

Around 5,000 to 7,000 SIFT points are extracted in each image. We vary the Lowe
rejection threshold [49], i.e., the maximum distance ratio of closest to second closest
keypoint (often 0.8 in the literature) to generate different potential matches for each
pair of consecutive images. A high rejection threshold (~ 1) allows more ambiguous
matches but also increase possible matches. Conversely, a low rejection threshold re-
jects ambiguous matches but also decreases the number of potential matches. We also
test the case of symmetric matching, i.e., points P whose match P’ in the second image
has P as match in the first image. This yields 300 to 3,000 matches per image pair.

We measure the average rotation error w.r.t. the ground truth rotation over each
pair after camera calibration based on K-VLD filtered matches, as well as the standard
deviation of this error. As the last image can be compared with the first one, we also
measure the accumulated angle error independently of the ground truth by multiplying
all the rotation matrices and measuring the angle difference with identity. We compare
two methods for estimating the fundamental matrix: using ORSA [57] alone, or pre-
filtering the matches with K-VLD before ORSA. Results are shown in Figure 4.11. The
use of K-VLD as a match prefilter greatly improves stability (deviation) and precision.

Figure 4.10: Matches on pair of images from Strecha’s Castle-P19 dataset [73]. Left:
inliers by ORSA. Middle: false matches near epipolar lines not eliminated by ORSA
but rejected by K-VLD. Right: inliers by K-VLD + ORSA. (Symmetric matches; Lowe
criterion threshold = 0.8; for readability, only 1/4 matches shown, thus matches may
show or hide in different image pairs.)

4.5.4 Comparison of ASIFT and K-VLD

We compare the results of our K-VLD method with ASIFT [59] on a difficult scene
with large view-point change. This is a synthetic scene for which we have an exact
ground truth; images are available on IPOL [60]. We use the ASIFT source code from
the authors, available on IPOL [87].
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Figure 4.11: Angle error on Strecha’s Castle-P19 dataset [73]. Top-Left: average rotation
error over 19 image pairs. Top-right: accumulated rotation error after one loop over
all 19 image pairs. Bottom: detailed rotation error for each image pair and iteration;
results are sorted in increasing error order (50 test results per image pair).
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Matching results depend on a chosen threshold for the Lowe criterion [49]. In our
test, we use for ASIFT a maximum Lowe score of 0.73, which is the default value of
the provided implementation. For SIFT [49], to put us in the worst situation (many
ambiguities, hence many mismatches), we use a maximum Lowe score of 0.99.

Figure 4.12 shows the matches found by SIFT (without any symmetric selection cri-
terion). Filtering those matches with K-VLD removes most mismatches. The remaining
“mismatches” are rather due to the imprecision of the detections that slightly misplaces
corresponding points than to wrong positions.

Figure 4.13 similarly shows matches selected by ASIFT. Due to ambiguities and
viewpoint change, there are many false matches. However, using K-VLD as a post-
filter to ASIFT removes most mismatches.

Figure 4.14 shows the result of filtering the ASIFT matches with ORSA [57]. As dis-
cussed before, the output of ORSA still contains several mismatches near the epipolar
lines. But if we filter the ASIFT matches by K-VLD before feeding them into ORSA,
most remaining mismatches are removed.

4.6 Parameters

Our VLD descriptor may seem to have many parameters, but many of them actually
are directly imported from SIFT, where they have been set to default values after ex-
perimenting on a dataset [49]. Our own experiments just taught us that SIFT standard
values, e.g., the number of sampling scales per octave, could be weakened in our case
for a lighter but still discriminant and robust descriptor.

Most parameters that are specifi