
HAL Id: tel-01194884
https://pastel.hal.science/tel-01194884

Submitted on 7 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of logic flaws in multi-party business
applications via security testing

Giancarlo Pellegrino

To cite this version:
Giancarlo Pellegrino. Detection of logic flaws in multi-party business applications via security testing.
Cryptography and Security [cs.CR]. Télécom ParisTech, 2013. English. �NNT : 2013ENST0064�. �tel-
01194884�

https://pastel.hal.science/tel-01194884
https://hal.archives-ouvertes.fr

2013-ENST-0064

EDITE - ED 130

Doctorate ParisTech

T H E S I S

TELECOM ParisTech

in « Computer Science and Networks »

Giancarlo PELLEGRINO

08/11/2013

Detection of Logic Flaws in Multi-party Business Applications
via Security Testing

Advisor : Davide BALZAROTTI

Jury members :

M. Engin KIRDA, Professor, Northeastern University, US Reporter

M. Frédéric CUPPENS, Professor, Télécom Bretagne, FR Reporter

M. Refik MOLVA, Professor, EURECOM, FR Examiner

M. Alessandro ARMANDO, Professor, Università degli Studi di Genova, IT Examiner

M. Luca COMPAGNA, Doctor, SAP Product Security Research, FR Examiner

TELECOM ParisTech

école de l’Institut Télécom - membre de ParisTech

2013-ENST-0064

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Giancarlo PELLEGRINO
08/11/2013

Détection d’Anomalies Logiques dans les Logiciels
d’Entreprise Multi-partis à travers des Tests de Sécurité

Directeur de thèse : Davide BALZAROTTI

Jury
M. Engin KIRDA, Professeur, Northeastern University, US Rapporteur

M. Frédéric CUPPENS, Professeur, Télécom Bretagne, FR Rapporteur

M. Refik MOLVA, Professeur, EURECOM, FR Examinateur

M. Alessandro ARMANDO, Professeur, Università degli Studi di Genova, IT Examinateur

M. Luca COMPAGNA, Docteur, SAP Product Security Research, FR Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Acknowledgements

I would like first to express my gratitude to Davide Balzarotti. I have learned

so much from him and this thesis would not have been possible without his

supervision.

I would like to thank the following people for their inspiration, support, help,

company, and encouragement: Luca C., Giampaolo, Peter, Alessandro A.,

Roberto Carbone, Alessandro S., Volkmar, Jean-Christophe, Sylvine, Luca

Z., Andreas, Roberto Catanuto, Michele, Thomas, Stefan, Florian K., Mar-

tin, Xavier, Achim, Francesco, Antonino, Theodoor, Kuba, Slim, Antonella,

Gerald, Julia, Akram, Johann, Jörn, Florian S., Stephane, Gabi, Matteo,

Serena, Corentin, Samuel, the-noisy-printer, Sebastian, Cédric, Rosario, Luca

M., the S3 group, the SPaCIoS group, and the AVANTSSAR group.

I would like also to give a special thank to Christina, a famiglia, Mercecindo,

Saro, Tama, and Kata, to have supported me with the right combination of

care and non-sense.

Finally, thanks to prof. Engin Kirda, prof. Frédéric Cuppens, prof. Refik

Molva, prof. Alessandro Armando, and dr. Luca Compagna for agreeing to

be reporters and examiners.

This thesis has been funded by SAP AG, by the EU funded project FP7-

ICT-2009-5 no. 257876, “SPaCIoS: Secure Provision and Consumption in the

Internet of Services”, and the EU funded project FP7-ICT-2007-1 no. 216471,

“AVANTSSAR: Automated Validation of Trust and Security of Service-oriented

Architectures”.

v

vi

Abstract

Multi-party business applications are computer programs distributed over

the Web implementing collaborative business functions. These applications

are one of the main target of attackers who exploit vulnerabilities in order

to perform malicious activities. The most prevalent classes of vulnerabili-

ties are the consequence of insufficient validation of the user-provided input.

However, the less-known class of logic vulnerabilities recently attracted the

attention of researcher. Unfortunately, the unavailability of the source code

in these kind of applications makes it hard to discover this type of vul-

nerabilities. According to the availability of software documentation, two

further techniques can be used: design verification via model checking, and

black-box security testing. However, the former offers no support to test real

implementations and the latter lacks the sophistication to detect logic flaws.

In this thesis, we present two novel security testing techniques to detect logic

flaws in multi-party business applications that tackle the shortcomings of the

existing techniques. First, we present the design verification via model check-

ing of two security protcools. We then address the challenge of extending the

results of the model checker to automatically test real protocol implemen-

tations. Second, when explicit documentation is not available, we present

a novel black-box security testing technique that combines model inference,

extraction of workflow and data flow patterns, and an attack pattern-based

test case generation algorithm. Finally, we discuss the application of the

technique developed in this thesis in an industrial setting.

We used the techniques presented in this thesis to discover previously-unknown

design errors in the SAML SSO and OpenID security protocols and their

implementations, and ten severe logic vulnerabilities in eCommerce business

applications allowing an attacker to pay less or even shop for free.

vii

viii

Table of Contents

Acknowledgements v

Abstract vii

Table of Contents ix

List of Figures xiii

List of Tables xv

List of Publications xvii

1 Introduction 1

1.1 Multi-party Business Applications 1

1.1.1 Historical Outline . 1

1.1.2 Collaboration in Modern Business 2

1.1.3 The Role of Security Protocols 4

1.2 Security Risks of Multi-party Business Applications 6

1.2.1 Threats to Multi-party Business Applications and Eco-

nomical Impact . 6

1.2.2 The Rise of Logic Flaws 7

1.3 Objectives and Challenges . 10

1.4 Contribution . 12

1.5 Structure . 13

2 Related Work 15

2.1 White-box Security Testing 17

2.1.1 Detection of Input Validation Vulnerabilities 17

2.1.2 Detection of Application Logic Vulnerabilities 19

2.1.3 Discussion . 20

2.2 Design Verification . 20

ix

x TABLE OF CONTENTS

2.2.1 Design Verification . 20

2.2.2 Model checking and Testing 24

2.2.3 Discussion . 26

2.3 Black-box Security Testing . 27

2.3.1 Detection of Input Validation Vulnerabilities 27

2.3.2 Detection of Application Logic Vulnerabilities 30

2.3.3 Discussion . 31

2.4 Model Inference . 32

2.4.1 Active learning . 32

2.4.2 Passive learning . 34

2.4.3 Discussion . 35

2.5 Conclusions . 36

3 Case Studies 37

3.1 Case Study 1: Web-based Single Sign-On Protocols 38

3.1.1 The SAML 2.0 Web browser Single Sign-On 38

3.1.2 The OpenID Authentication Protocol 44

3.1.3 Security Goals . 47

3.2 Case Study 2: eCommerce Applications 47

3.2.1 Application Logic . 49

3.3 Conclusions . 50

4 Model Checking 51

4.1 Formalization . 52

4.1.1 AVANTSSAR Specification Language 52

4.1.2 Formalization of SAML SSO 53

4.1.3 Formalization of OpenID 67

4.2 Formal Analysis . 74

4.2.1 The AVANTSSAR Platform 74

4.2.2 SAML SSO . 76

4.2.3 OpenID . 79

4.3 Logic Flaws . 80

4.3.1 SAML SSO . 80

TABLE OF CONTENTS xi

4.3.2 OpenID . 82

4.4 Testing Real Implementations 83

4.4.1 Exploitations in SAML SSO 84

4.4.2 Exploitation in OpenID 86

4.5 Conclusions . 86

5 From Model Checking to Security Testing 89

5.1 Architecture . 90

5.2 Model Checking . 91

5.2.1 Specification of the rules of the honest agents 93

5.2.2 Specification of the rules of the intruder 94

5.2.3 Specification of the authentication property 95

5.3 Instrumentation . 96

5.3.1 Instrumentation of the rules of the honest agents . . . 99

5.3.2 Instrumentation of the rules of the intruder 102

5.4 Test Case Execution . 103

5.4.1 Error Handling . 104

5.5 Experimental Results . 104

5.5.1 Protocol Implementations Under Test 105

5.5.2 Experiments . 109

5.6 Conclusions . 113

6 Black-Box Detection of Logic Flaws 115

6.1 Overview . 116

6.2 Model inference . 116

6.2.1 Resource abstraction 117

6.2.2 Resource clustering . 120

6.3 Behavioral Patterns . 124

6.3.1 Execution Patterns . 124

6.3.2 Model Patterns . 125

6.3.3 Data Propagation Patterns 126

6.4 Test Case Generation . 127

6.4.1 Multiple execution of repeatable singletons 129

xii TABLE OF CONTENTS

6.4.2 Breaking Multi-Steps Operations 129

6.4.3 Breaking server-generated propagation chains 130

6.4.4 Waypoints Detour . 131

6.5 Test Case Execution . 131

6.6 Test Oracle . 132

6.7 Experiments . 134

6.7.1 Shopping carts . 134

6.7.2 Testing Oracle . 136

6.7.3 Test Case Execution 137

6.8 Results . 139

6.8.1 Vulnerabilities . 140

6.9 Limitations . 146

6.10 Conclusions . 147

7 From Academia to Industry 149

7.1 Formal Analysis of SAP NW NGSSO 150

7.1.1 SAP NetWeaver New Generation Single Sign-On . . . 150

7.1.2 Analysis . 151

7.2 A Formal Analysis and Security Testing Tool 153

7.2.1 Design Verification . 153

7.2.2 Model-based Security Testing 156

7.2.3 Configuration and Implementation decisions 159

7.2.4 Verification and Test Campaign 160

7.3 Conclusions . 161

8 Conclusions and Future Work 163

8.1 Contributions . 163

8.2 Future Work . 165

References 167

Appendices

Appendix A Résumé en Français 181

List of Figures

1.1 Reference business scenario: the procurement process 3

1.2 A detailed view of the procurement process 5

1.3 Security Incidents due to Logic Flaws from 1999 to 2012 . . . 9

2.1 Testing Scenarios and Techniques 16

3.1 SAML SSO SP-initiated with front channels 39

3.2 SAML SSO IdP-initiated with front channels 40

3.3 SAML SSO SP-initiated with back channels 41

3.4 SAML SSO IdP-initiated with back channels 42

3.5 OpenID authentication protocol with Diffie-Hellman session

association . 45

3.6 The workflow of eCommerce web applications 48

3.7 eCommerce web application and payment systems 49

4.1 The AVANTSSAR Platform 75

4.2 Configurations for the SP-initiated profile 77

4.3 Authentication Flaw of the SAML 2.0 Web Browser SSO Profile 81

4.4 Authentication Flaw of the OpenID SSO Protocol 83

4.5 XSS Attack on the SAML-based SSO for Google Apps 85

5.1 Overview of the Approach . 90

5.2 SAML-based Single Sign-On for Google Apps 105

5.3 SimpleSAMLphp as deployed in Foodle 107

5.4 Zoho Invoice relaying party service 108

5.5 User login at Zoho Invoice . 109

6.1 Resource abstraction and syntactic type inference of HTML

page . 118

6.2 Resource abstraction and syntactic type inference of a JSON

data object . 120

xiii

xiv LIST OF FIGURES

6.3 (a) Application-level actions, (b) URLs requested, and (c) ab-

stract resources with list of originators 121

6.4 (a) Clusters after comparing all the resources (b) Clusters

after having identified parameters encoding a command . . . 123

6.5 Example of behavioral patterns using π1 = 〈a, b, a, c, d, e, f, e〉

and π2 = 〈a, c, d, e, f, e〉 . 124

6.6 Propagation Chains: from traces to the navigation graph . . . 126

6.7 Test case generation patterns 128

6.8 Shopping for free with osCommerce v.2.3.1 and AbanteCart v.1.0.4141

6.9 Paying less with OpenCart v.1.5.3.1 and TomatoCart v.1.1.7 142

6.10 Shopping for free with TomatoCart v.1.1.7 144

6.11 Session fixation in TomatoCart v.1.1.7 145

7.1 ASLan++ Editor . 154

7.2 The Event Sequence Chart viewer 155

7.3 The IUT for testing the SAML-based SSO for Google Apps . 157

7.4 The Navigator . 159

7.5 The Test Campaign Manager 160

List of Tables

4.1 Results for the SP-initiated profile 78

4.2 Results for the IdP-initiated profile 79

4.3 Results for OpenID . 80

5.1 Facts and their informal meaning 92

6.1 Popularity index . 135

6.2 Test case generation and execution 138

6.3 Results . 139

7.1 Results for the SP-initiated profile 152

xv

xvi LIST OF TABLES

List of Publications

The results of thesis have been published in peer-reviewed journals, confer-

ences, and workshops. The list of contribution is the following:

[PB14] G. Pellegrino, D. Balzarotti,Toward Black-box Detection of Logic

Flaws in Web Applications, Proceedings of Network and Dis-

tributed System Security Symposium 2014 (NDSS’14), San

Diego, CA, 2014

[PCM13] G. Pellegrino, L. Compagna, T. Morreggia A Tool for Support-

ing Developers in Analyzing the Security of Web-based Security

Protocols, 25th IFIP International Conference on Testing Soft-

ware and Systems (ICTSS’13), Istanbul, Turkey, November 13-

15, 2013

[ACC13] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pel-

legrino, A. Sorniotti, An Authentication Flaw in Browser-based

Single Sign-On Protocols: Impact and Remediations, Computers

& Security, 2013

[APC12] A. Armando, G. Pellegrino, R. Carbone, A. Merlo, D. Balzarotti,

From Model-checking to Automated Testing of Security Proto-

cols: Bridging the Gap, 6th International Conference on Tests &

Proofs (TAP 2012), Prague (Czech Republic), May 31 - June 1,

2012

[AAA12] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi,

A. Cappai, R. Carbone, Y. Chevalier, L. Compagna, J. Cuéllar,

G. Erzse, S. Frau, M. Minea, S. Mödersheim, D. von Oheimb,

G. Pellegrino, S. E. Ponta, M. Rocchetto, M. Rusinowitch, M.

Torabi Dashti, M. Turuani, and L. Viganó. The AVANTSSAR

Platform for the Automated Validation of Trust and Security

of Service-Oriented Architectures, 18th International Conference

xvii

xviii LIST OF PUBLICATIONS

on Tools and Algorihms for the Construction and Analysis of

Systems (TACAS 2012), Talling, Estonia, March 24 - April 1,

2012

[ACC11] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pelle-

grino, A. Sorniotti, From Multiple Credentials to Browser-based

Single Sign-On: Are We More Secure?, 26th IFIP TC-11 Inter-

national Information Security Conference (SEC 2011), Luzern

(Switzerland), June 7-9, 2011

[ACCP11] A. Armando, R. Carbone, L. Compagna, G. Pellegrino, Auto-

matic security analysis of SAML-based single sign-on protocols,

Chapter 10 in "Digital Identity and Access Management: Tech-

nologies and Framework", Business Science. Editors: Raj Shar-

man R., Das Smith S., Gupta M., December 2011

[ACC10] A. Armando, R. Carbone, L. Compagna, K. Li, G. Pellegrino,

Model-checking Driven Security Testing of Web-Based Applica-

tions, International Workshop on Modeling and Detection of

Vulnerabilities (MDV 2010), Paris (France), April 10, 2010

Chapter 1

Introduction

1.1 Multi-party Business Applications

1.1.1 Historical Outline

Business applications are computer programs that are used to perform busi-

ness functions. The way business applications are developed, deployed and

consumed faced fundamental changes over the last decades.

Business applications appeared for the first time in the 1960s. Their ar-

chitecture was monolithic, in which the data management, the application

logic, and the presentation were implemented in the same code. Business

applications were deployed in room-size mainframes and accessed via ter-

minals. In the 1970s, data management was isolated into an independent

component originating two-tier software architectures. Both tiers were still

deployed in mainframes. In the 1980s, three-tier architectures replaced two-

tiers, in which the presentation was separated from the application logic.

The new presentation layer was implemented in independent applications

that were deployed on workstations and personal computers, while the data

and application logic functions remained on the mainframe. Clients and

servers were within the premises of the organization and connected to each

other through local networks. In the 1990s, the architecture of business ap-

plications evolved into a multi-tier architecture in which data management

and application logic were distributed over several servers. Applications were

1

2 CHAPTER 1. INTRODUCTION

still accessed using the client-server paradigm, however servers were located

in different sites of the same organization.

Nowadays, business applications are developed as a composition of ser-

vices. Each service implements a basic business function, and can be de-

ployed over the network. Business applications are accessed via web browsers

or web-enabled client applications running on personal computers, or mobile

devices. While in the past business applications were available within a pri-

vate network, nowadays they can be accessed from public networks such as

the Internet.

1.1.2 Collaboration in Modern Business

Collaboration between organizations is fundamental for modern businesses

to remain competitive [Xu07, KMR05, DHL01]. It can be implemented by

meshing the business processes of an organization with the business processes

of its customers, suppliers, and other business partners [XB05].

Figure 1.1 shows an example of the procurement process. This process

is used throughout this manuscript as a running example. In general, the

term procurement refers to the purchase of goods and services from external

entities for satisfying a need of the buyer. The process involves several

steps, e.g., the identification of the need of the buyer, the identification of

the supplier, ordering, payment, and billing. In our example we consider a

simplified version with three steps: ordering goods, payment, and billing.

The procurement process of Figure 1.1 involves three business partners.

They are Buyer Inc., Seller Inc., and Bank Inc.. The scenario originates

from the need of Buyer to purchase goods and services. Seller is a supplier

specialized in business-to-business provisioning, and Bank Inc. manages the

monetary transaction between Buyer and Seller. The process is described

from the point of view of Buyer Inc. and proceeds as follows. First, the

employee U of Buyer Inc. accesses the store of Seller Inc. and chooses the

good to purchase in the catalogue of Seller Inc.. Then, U authorizes the bank

to transfer the amount of money of the goods to the account of the Seller

Inc. Finally, U receives a notification from Seller confirming the purchase

1.1. MULTI-PARTY BUSINESS APPLICATIONS 3

Figure 1.1: Reference business scenario: the procurement process

with the details of the delivery.

As shown in Figure 1.1, the procurement process can be implemented

as a collection of services. Seller owns a platform implementing an online

catalog, a virtual shopping cart, and a customer care service. The platform

is available on the Internet as a service, say S. The Bank Inc. offers an online

payment service P for performing monetary transactions and payment via

credit cards. Finally, Buyer uses a web application that composes these

services together implementing the process in Figure 1.1.

The logic of the application in Figure 1.1 can be defined in terms of ex-

pectations of the business partners. For example, at the end of the execution,

the parties involved have the following expectations:

1. Seller Inc. and Buyer Inc. agreed on the goods of the purchase and on

their price;

2. The bank transferred the amount of money from an account of Buyer

Inc. to the account of Seller Inc.;

3. Seller Inc. delivers the goods to Buyer Inc.

Moreover, Buyer Inc. has additional security requirements, i.e., only

authorized employees working for the procurement department can create

4 CHAPTER 1. INTRODUCTION

orders at S and authorize payments at P. These type of requirements can be

satisfied by using security protocols.

1.1.3 The Role of Security Protocols

Prior to computer networks, security of business applications was achieved

by restricting physical access to the mainframes [MCJ97]. Physical restric-

tion was then replaced by authentication schemes in which a user provides

username and password over a terminal [MCJ97]. This mechanism was suf-

ficient to access the computer via secure communication channels [MCJ97].

In 1980s, the need of sharing data and computational resources led to the

creation of computer networks in which organizations connected computers

to each other over insecure communication channels. As a result, attack-

ers could intercept and reuse user credentials to gain unauthorized access.

Exchanging credentials in clear-text over these links was no longer a secure

practice [MCJ97]. This led to the development of user authentication proto-

cols and other security protocols based on cryptographic primitives (See the

Security Protocols Open Repository [spo02]).

Security protocols play two roles in modern business applications. First,

they provide the security guarantees that business applications need in order

to carry out the business functions, e.g., user authentication and confidential

message exchange. Second, they are enabling technology for business collab-

orations. For example, security protocols allow business partners to set up

federated identity management, or enable an organization to share resources

with partners keeping the ownership and the access control.

With reference to Figure 1.1, let us consider the following two security-

relevant requirements. First, Buyer Inc. would like that only authorized

employees of the procurement department can create orders at S, and au-

thorize payments at P. Second, Buyer Inc. would like that its employees are

authenticated only once to access the services S and P.

These two requirements are satisfied by security protocols. For example,

Figure 1.2 shows a detailed description of the procurement process that ex-

tends Figure 1.1 by adding two new services IdP and AS. IdP is the identity

1.1. MULTI-PARTY BUSINESS APPLICATIONS 5

Figure 1.2: A detailed view of the procurement process

management provider in charge of authenticating users of the organization

of Buyer Inc.. AS is the authorization service that grants or denies the ac-

cess to resources to the employees of Buyer Inc.. The user authentication

and authorization are performed upon a request issued by a service called

initiator. Then, IdP, or AS, issues a signed token for the initiator that proves

that the user is authenticated, or authorized, respectively. For the sake of

simplicity, in Figure 1.2 we omit the token generation and exchange.

The process is the following. First, U accesses S for making an order for

the item I. S does not known the identity of U nor whether U is authorized

to make orders. Thus, S asks U to be authenticated by IdP, the identity

provider of his own company, and to be authorized by AS to make an order

at S. U shows to S two messages signed by IdP and AS to prove that she is

authenticated and authorized. Afterwards, U confirms the order and visits P

for transferring money to the account of the store. Similarly as seen before,

P does not know the identity of U nor whether U is authorized to access P.

6 CHAPTER 1. INTRODUCTION

So, P asks U to be authenticated at IdP and to get the authorization for

paying S. Afterwards, P pays Seller Inc. the value of I as asked by U. Finally,

U receives a notification from S confirming the purchase with the details of

the delivery.

1.2 Security Risks of Multi-party Business Appli-

cations

Multi-party business applications play a very important role in many areas,

and are currently trusted by billions of users and companies to purchase

goods and services, perform financial transactions, and store confidential

data. Unfortunately, this makes these applications one of the primary targets

for attackers interested in a wide range of malicious activities.

As seen in the previous sections, the surface of business applications

accessible to external entities increased over the years. On the one hand, the

software architecture shifted from monolithic and centralized to multi-tier

and distributed. On the other hand, the IT infrastructure changed from a

mainframe-terminals to a client-server architecture. As a result, software

vulnerabilities are no longer visible only to the member of an organization,

but also to external actors. Therefore, the risk of being attacked by external

actors dramatically increased.

1.2.1 Threats to Multi-party Business Applications and Eco-

nomical Impact

According to the Verizon Data Breach Investigations Report 2013, there are

three types of cyber threats to an organization: internal actors, partners,

and external actors [Ver13]. An internal actor is a person that works for the

organization. For example, the employee U is an internal actor of Buyer Inc.

A partner is a business partner. For example, employees of Buyer Inc. and

employees of Seller Inc. are partners of each other. An external actor is a

person outside of both the organization and partners.

In the last five years the number and frequency of attacks from external

1.2. SECURITY RISKS OF MULTI-PARTY BUSINESS APPLICATIONS7

actors has increased dramatically. According to the Verizon Data Breach

Investigations Report 2013, attacks from external actors increased by 17.8%

over the last 5 years (from 78% in 2008 up to 92% in 2012) [Ver13]. On the

contrary, the attacks from internal actors decreased by 64.1% (from 39% in

2008 to 4% in 2012) [Ver13] while attacks from partners have been always

relatively low (5% in 2008 and 1% in 2012 [Ver13]). According to the Cost

of Cyber Crime Study by the Ponemon Institute, the average number of

successful attacks in 2012 is 1.8 per week with an average growth by about

40% each year [Pon12]. Moreover, the Ponemon Institute reported that in

the same year, 64% of the companies experienced at least one attack coming

from the Web [Pon12].

According to the Verizon Data Breach Investigations Report 2013, most

of the external attacks are coming from organized criminal groups, State-

affiliated groups, independent groups, activists, and former employees [Ver13].

About 70% of attacks are performed by criminal and State-affiliated groups

(50% and 20% respectively) [Ver13]. The majority of the attacks have finan-

cial motivations such as payment fraud, and identity theft [Ver13].

The economical impact of web-based attacks is still very high [Pon12]. In

2012, each company had an average cost of $8.9 million due to the cyber at-

tacks with an average increment of about +$0.5 million from 2011 and about

+$2,45 million from 2010 [Pon12]. The total cost is calculated considering

indirect costs such as the costs for the detection, investigation, containment,

and recovery, and direct costs due to the information loss, costs for business

disruption, equipment damage, and revenue loss [Pon12]. The average cost

of web-based attacks is about $1 million per organization in 2012 [Pon12].

1.2.2 The Rise of Logic Flaws

The most prevalent class of web applications vulnerabilities is due to insuf-

ficient validation of user input, e.g., SQL injection (SQLi) and Cross-Site

Scripting (XSS) [MIT]. This type of vulnerabilities has been largely studied

by the scientific community [HVO06, SBK12]. Another, less known, class

of web vulnerabilities that only recently has attracted the attention of re-

8 CHAPTER 1. INTRODUCTION

searchers is the one related to logic errors.

Logic vulnerabilities still lack a formal definition but, in general, they

are often the consequence of an improper validation of the business process

of an application. The resulting violations may involve both the control

plane (i.e., the navigation between different pages) and the data plane (i.e.,

the data flow that links together parameters of different pages). In the

first case, the root cause is the fact that the application fails to properly

enforce the sequence of actions performed by the user. For example, it may

not require a user to log in as administrator before changing the database

settings (authentication bypass), or it may not check that all the steps in the

checkout process of a shopping cart are executed in the right order. Logic

errors involving the data flow of the application are instead caused by failing

to enforce that certain values, which are propagated between different HTTP

requests, are not modified by the user. For example, an attacker can try to

replay expired authentication tokens, or mix together the values obtained by

running several parallel sessions of the same web application.

Logic vulnerabilities can be seen also from the perspective of testing.

The goal of security testing is to find an execution of the software under

test that proves the existence of a vulnerability. The ability to find this

particular type of execution depends from two factors. First, the tester must

be able to generate the proper executions and second, the tester must be able

to decide whether an execution is proving the presence of a vulnerability.

Both abilities may or may not need models of the application. For example,

to detect stored XSS, a tester needs a behavioral model for the test case

generation whereas she does not need a model to decide if an execution

detected a flaw. Conversely, to detect logic flaws, the tester may not need

a model for test generation however she needs a model of the application

logic to decide whether the execution proves the existence of a vulnerability.

From this perspective, the importance of models in order to discover logic

vulnerabilities emerges.

In the last years, we have observed an increasing number of security

incidents due to logic flaws. Figure 1.3 shows the number of incidents that

are reported in the Common Vulnerability Enumeration database (CVE-

1.2. SECURITY RISKS OF MULTI-PARTY BUSINESS APPLICATIONS9

0

50

100

150

200

250

300

350

400

450

1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013

E
n
tr

ie
s

Years

Web Application Logic Flaws
 Logic Flaws

Web Application Logic Flaws Trend
 Logic Flaws Trend

Figure 1.3: Security Incidents due to Logic Flaws from 1999 to 2012

DB), and that are caused by logic flaws from the year 1999 till the year

20121. As can be seen in Figure 1.3, the general trend of incidents due to

logic flaws is increasing over the years. The number of these incidents in

2012 is 267, 82 of which in web applications. The highest peak is in 2008

with 384 incidents, 143 of which in web applications.

The increasing importance of logic flaws is supported by other sources.

See for example the OWASP Top 10 Security Risks from 2004 till 2013 [The04,

The07b, The10, The13c], the Trustwave Global Security Report 2013 [Tru13],

and the WhiteHat Website Security Statistics Report 2013 [Whi13]. These

three sources mainly address special classes of logic vulnerabilities such as

improper authentication, improper authorization, and information exposure

vulnerabilities.

1We extracted the data by querying the CVE-DB with a set of known keywords such
as authentication bypass or authorization bypass (we excluded bypasses caused by code
injection vulnerabilities, e.g., SQL injection), and logic flaws. Then, we grouped the entries
by year of disclosure. The number of flaws in web applications is calculated by refining
the search criteria including the following keywords “php”, “asp”, “html”, “web”, “url”, and
by excluding keywords such as “browser”, “firefox”, “chrome”, and “internet explorer”. We
verified the quality of the data by classifying manually a sample of 10% of the population
(we selected the sample randomly). About 75% of the sample is correctly classified.

10 CHAPTER 1. INTRODUCTION

OWASP Top 10 Security Risks 2013 ranked the improper authentication

vulnerability as the 2nd most important risk in 2013 [The13c] overtaking

Cross-Site Scripting vulnerabilities. Trustwave Global Security Report 2013

rated the overall logic flaw vulnerabilities 2nd in the top 10 application vul-

nerabilities 2013 [Tru13]. Moreover, it reported that 14 % of applications

contain at least one logic flaw [Tru13]. Finally, WhiteHat Website Security

Statistics Report 2013 reported that in 2012 information exposure vulnera-

bilities overtook Cross-Site Scripting vulnerability [Whi13] ranking it at the

1st position. The report estimated that in 2012 about 55 % of websites have

at least one information exposure vulnerability [Whi13].

1.3 Objectives and Challenges

Researchers have proposed a number of techniques to detect vulnerabilities

that can be used to test multi-party business applications. The choice of

the technique depends on the information available to the tester including

the software itself (e.g., the source codes) and the models describing the

applications (e.g., formal specifications). However, developers of business

application services do not share the source code with other organizations.

As a result, source code-based testing techniques cannot be applied to multi-

party business applications.

When specifications are available, the tester can use model checking tech-

niques to explore the states of a formal model of the specifications to detect

flaws in the logic. However, model checking offers no support to test real

implementations. Finally, when both the source code and the specifications

are not available, black-box testing techniques can be used. However, web

scanners lack of the knowledge that is needed to detect logic flaws. This

thesis aims at tackling these limitations. More specifically, the objectives of

this thesis are the following:

Objective 1:

When a model is available, can we automatically verify whether

1.3. OBJECTIVES AND CHALLENGES 11

real systems expose a flaw discovered by model checking tech-

niques?

To answer this question, we foresee several challenges. The main challenge

are the translations between abstract elements of a model and the concrete

world. The complexity of the translations depends from different factors,

e.g., the choice of the testing interface, the relationship between model and

real systems, and the vulnerabilities to discover.

First, a higher-level testing interface can remove too many details of

the implementation and, as a result, the translation needs more powerful

algorithms to reconstruct the missing information. On the contrary, a lower-

level testing interface may carry too much information to the tester. As a

result, the model may be too detailed making automatic reasoning unfeasible.

Second, the relationship between models and real system may not be nec-

essarily 1-to-1. For example, the specifications of a standardized, security

protocol are an informal model that describes a number of non-identical im-

plementations. When testing different implementations, a rigid translation

would prevent its reuse therefore making testing laborious.

Finally, the abstraction rules must take into account the type of vulner-

ability to be detected. For example, to test for cross-site scripting vulnera-

bilities, the tester sends malicious inputs inside an URL parameter. Then,

the testing checks whether the response contains the same input. If the ab-

stracting rules abstract away the response, then the tester may not be able

to detect when the injection succeeded.

Objective 2

When models are not available, is it still possible to design an

automated technique to detect flaws in the logic of multi-party

business applications?

First, to detect logic flaws we need two types of model. The first type of

model is a behavioral model of the implementation. The second model is a

description of the logic that the application implements. These models can

12 CHAPTER 1. INTRODUCTION

be obtained by using model inference algorithms that learn a model with

observations of the application.

The second challenge is related to the performance of the model-based

testing techniques. In order to detect logic flaws, we need algorithms that

are aware of the internal states of the application as well as of the applica-

tion logic. These algorithms can be fully-fledged reasoning techniques such

as model checking. However, most of the model-based testing techniques,

model checking included, poorly scale because of the state explosion prob-

lem [FWA09], in which the state space to be explored could be sufficiently

large to make it impracticable.

1.4 Contribution

The thesis makes the following contributions:

1. We present the design verification and testing via model checking of two

authentication protocols. The analysis takes into account the different

protocol flows as well as the protocol options. We show that given a

formal model, the expected security properties, and a description of the

implementations under test, we can execute the attacks discovered by

the model checker against a number of implementations. Moreover, the

testing techniques bridge the different abstraction layers in a generic

and systematic way;

2. We show that when the specifications and the source code are not

available, it is still possible to detect logic flaws following a black-

box approach. Given a set of network traces and a description of the

business function, our technique infers a model, generates test cases

following an number of attack patterns, and then verifies whether the

tests violated the business logic of the application;

3. We implemented our techniques into two prototypes. The prototypes

demonstrated their effectiveness by discovering previously unknown

logic flaws in real-size implementations;

1.5. STRUCTURE 13

4. We migrated the result of this thesis to SAP by (i) developing test-

ing tools and (ii) supporting developers and engineers in assessing the

security of the design and implementations.

1.5 Structure

The reminder of this manuscript is structured as follows.

Chapter 2 presents the related work to detect flaws for each of the following

three categories: code analysis, model checking, and security testing.

This section addresses the limitations and strengths of each category.

First, this chapter shows that the source code analysis enables to detect

input validation and application logic vulnerabilities. Second, it shows

that model checking has been extensively used to detect logic flaws into

security protocol specifications, web services, and business processes.

Finally, it presents works in the area of security testing. This chapter

presents also relevant work in the area of model inference.

Chapter 3 presents the two case studies of this thesis. The first case study

are two web-based user authentication protocols whose specifications

are publicly available, namely SAML Single-Sign On and OpenID pro-

tocols. The second case study is the eCommerce web applications. As

opposed to the first case study, the specifications of web applications

are never available in practice.

Chapter 4 presents the verification of the design of web-based user authen-

tication protocols. This chapter makes the following contributions:

• it presents with great details the formal analysis via model check-

ing of security protocols and their configuration options;

• it presents two logic flaws discovered by the model checking tech-

nique;

• it highlights that the verification of real implementations is still

performed manually;

14 CHAPTER 1. INTRODUCTION

Chapter 5 addresses the first core-question. It tackles the problem of bridg-

ing design verification via model checking with the testing of real im-

plementations. This chapter makes the following contributions:

• it presents a technique to bridge the gap between the two abstrac-

tion levels in a systematic way;

• it provides an interpretation of abstract attacks;

• it executes automatically attacks against five security protocol

implementations;

Chapter 6 addresses the second core-question. It presents a novel tech-

nique that enables to test web applications when the specifications are

not available. This chapter makes the following contribution:

• it presents a black-box passive model inference technique;

• it introduces an attack pattern-based test case generation algo-

rithm;

• it demonstrates that real eCommerce web applications suffer from

severe logic vulnerabilities

Chapter 7 presents the two migration activities performed in SAP. First,

it shows an application of the results of Chapter 4 to the SAP im-

plementations of SAML SSO. Second, it presents a tool implementing

the technique of Chapter 5 to support SAP developers, engineers, or

security analyst in verifying the design of protocols and to test them

against putative attacks found by the model checker.

Chapter 8 draws the conclusions and gives an outline of the future work.

Chapter 2

Related Work

In this chapter, we review previous works describing techniques for detect-

ing vulnerabilities in web applications, security protocols, and business pro-

cesses. Furthermore, we present works in the area of model inference.

Researchers have proposed a number of techniques to detect vulnerabil-

ities that can be used to test multi-party business applications. The choice

of the technique depends on the information available to the tester. This in-

formation includes the software itself, in the form of source code or binaries,

and explicit software documentation such as software specifications, and user

manuals. According to the availability of this information, we can identify

four testing scenarios as summarized in Figure 2.1. For each scenario, we

associate the techniques that can be used.

In the scenarios at the top of Figure 2.1, the tester has access to the soft-

ware. The tester can use different white-box security testing techniques such

as static analysis, dynamic analysis, or taint analysis. At the bottom-left

scenario of Figure 2.1, the tester has no information about the application.

The tester can connect to it via the testing interface, and inspect the ap-

plication by providing inputs and observing outputs. The inspection can be

automated by using black-box security testing tools such as black-box web

application scanners. Furthermore, black-box scanners can be combined with

model inference techniques to obtain a model to guide the scanner. In the

bottom-right scenario, the tester has the documentation of the application.

Here, we assume that the documentation is sufficiently detailed to describe

15

16 CHAPTER 2. RELATED WORK

Figure 2.1: Testing Scenarios and Techniques

the behavior of the application. In this case, the tester can write a formal

model and use design verification techniques such as model checking.

A number of causes limit the application of code analysis to multi-party

business applications. First of all, software developers may not share the

source code with the other developers. Second, the binaries of a service

may be only available to the provider that executes them. Developers and

providers may still perform the analysis of their own services. However, this

leaves out of the scope vulnerabilities due to the composition, or caused by

diverging security assumptions. For these reasons, in this thesis we will not

consider white-box security testing techniques. However, to better present a

complete picture of the security testing techniques, in this chapter we review

also white-box techniques.

Structure: The remainder of this chapter is organized as follows. In Sec-

tion 2.1, we present white-box security testing techniques. Then, in Sec-

tion 2.2, we introduce the use of model checking for the design verification,

and its application for supporting testing. Afterwards, in Section 2.3, we

present black-box security testing techniques, and, in Section 2.4, we present

2.1. WHITE-BOX SECURITY TESTING 17

model inference algorithms and their applications. Finally, we conclude the

chapter with a discussion in Section 2.5.

2.1 White-box Security Testing

In this section, we review relevant white-box testing techniques that can be

applied when the source code of the application is available.

White-box testing tools combine together different code-based analysis

techniques. The analysis begins by creating a model of the source code. The

model can contain different aspects of a software program such as control

flow, data flow, or both. Then, the model is analyzed by using different

techniques. The choice of the technique mainly depends on the class of

vulnerabilities to be detected.

To detect input validation vulnerabilities, white-box tools check whether

the source code contains paths that allow untrusted input to reach databases

or the output for the user. This can be done via model checking or taint-

based analysis. Alternatively, the source code can be scanned to find SQL

queries whose syntactical structure can be modified by the user inputs.

To detect logic flaws, white-box tools use model checking or custom al-

gorithms looking for predefined patterns in the code. When a model checker

is used, the security properties to be checked can be extracted in the form

of code invariants via dynamic code analysis.

2.1.1 Detection of Input Validation Vulnerabilities

Huang et al [HYH+04a, HYH+04b] presented WebSSARI, a tool to dis-

cover injection vulnerabilities in PHP web applications. WebSSARI com-

bines three techniques in one tool: static code analysis, lattice-based safety-

type analysis, and bounded model checking. First, WebSSARI extracts a

model with variable assignments, function calls, conditional structures, in-

puts and the outputs of the program. Second, it uses lattice-based safety-

type analysis to assign a safety type to variables. Finally, the bounded model

checker propagates the safety type of the input parameters to the variables

18 CHAPTER 2. RELATED WORK

until the output is reached. The authors assessed WebSSARI against 230

open source web applications discovering 863 insecure statements. 607 of

them were related to real vulnerabilities. Xie et al. [XA06] improved the

approach of WebSSARI introducing a better support for the PHP language

with inter-procedural analysis, dynamic typing, and conditional branches.

Livshits et al. [LL05] proposed a static analysis tool for detecting injection

vulnerabilities in Java web applications. First, the user defines the vulnera-

bility as a query in PQL [MLL05] (Program Query Language). A PQL query

consists of the source Java objects (e.g. query string), the sink Java objects

(e.g., database objects), and a set of rules to describe the data propagation

between objects. Then, the tool performs a taint object propagation to de-

rive sink objects starting from source objects. The authors assessed the tool

on nine Java web applications searching for XSS, SQLi, and HTTP splitting

vulnerabilities. The tool reported in total 41 vulnerabilities; 12 of them were

false positives.

Jovanovic et al. [JKK10] presented Pixy, a tool based on static taint

and data flow analysis of PHP source code. The tool analyzes the source

code to identify vulnerable points. First, it propagates tainted input data

(e.g., user inputs) into the code. Second, it checks if during the propagation

the code contains special function calls to sanitization functions. Then, it

checks whether the tainted data reached a database, or the user. In the

former case, the tool discovered a SQLi, in the latter a XSS vulnerability.

The tool analyzed seven PHP web applications of in total four million lines

of code, discovering 409 injection vulnerabilities (213 XSS and 193 SQLi

vulnerabilities) and raising 149 false alerts (89 XSS and 60 SQLi).

Wasserman et al. [WS07] proposed a technique to detect SQLi vulnera-

bilities in web applications. The approach takes in input a list of PHP files.

First, it identifies input sources (e.g. URL parameters) and divides them into

direct sources that provide data directly from the user, and indirect sources

that provide data from other sources such as databases. Second, it performs

a string and taint analysis of the query strings for inferring a Context-Free

Grammar (CFG). The CFG is annotated to mark the parts of the grammar

that are direct or indirect sources. Finally, it checks whether the language

2.1. WHITE-BOX SECURITY TESTING 19

generated by the CFG contains a command injection. The authors devel-

oped a tool and assessed it against five PHP web applications. The tool

discovered 19 SQLi vulnerabilities and generated five false positives.

2.1.2 Detection of Application Logic Vulnerabilities

Balzarotti et al. [BCFV07] proposed MiMoSA (Multi-Module State Ana-

lyzer), a tool that detects workflow and data flows violations in PHP web

applications. MiMoSA analyzes the source code in two phases. First, it

builds a synthesis of the PHP files processing each file in isolation. For each

of them, MiMoSA extracts a set of pre-conditions, post-conditions, sinks,

and links to other PHP resources. The analysis of PHP code is done using

the Pixy static analysis framework [JKK06]. During the second phase, Mi-

MoSA infers the intended workflow and dataflow matching pre- and post-

conditions of two PHP modules. Finally, MiMoSA uses a model checker to

verify whether there are violations of the intended workflow and data flow.

The authors tested the tool against five real-size PHP web applications de-

tecting 32 vulnerabilities (six workflow and 26 data flow violations) with

seven false positives.

Felmetsger et al.[FCKV10] proposed Waler, a tool for detecting logic

flaws through the dynamic analysis of the source codes of J2EE-based web

applications. First, Waler derives likely invariants of the Java servlets by us-

ing Daikon [EPG+07]. Then, it uses a modified version of the Java PathFinder

model checker [NAS05] to detect violations of the invariants. The authors

assessed Waler against 12 web applications, four of which are real-world ap-

plications. In total, Waler discovered 47 previously-unknown vulnerabilities

and generated eight false positives.

Doupé et al. [DBKV11] presented a technique to detect a novel type of

vulnerability called Execution After Redirect (EAR). EARs occur when the

web application does not halt its execution after sending an HTTP redirec-

tion to the web browser. The authors developed a static source code analysis

tool to detect EARs in Ruby on Rails web applications using heuristics to

identify real vulnerabilities. The authors tested 18,127 web applications de-

20 CHAPTER 2. RELATED WORK

tecting 3,944 EARs in 1,173 of them. 855 EARs were classified as exploitable

because they caused unauthorized changes in the database, or information

leakage to unauthorized users.

2.1.3 Discussion

As we have seen in the previous sections, white-box testing techniques have

been used to discover both input validation vulnerabilities and logic flaws in

web applications [BCFV07, FCKV10]. However, the source code of all the

services of a multi-party business application are not available in practice.

Therefore, these techniques cannot be applied to our scenario.

2.2 Design Verification

In this section, we review the relevant works in the area of design verification

via model checking.

Model checking is a technique originally developed by Clarke et al. [CE82]

and Quielle et al. [QS82]. It takes as input a model and a property and it

explores the state-space of the model to verify whether the property is always

satisfied. If the model does not satisfy the property, then the model checker

produces a counterexample as a proof.

Two decades ago, Lowe proposed in a seminal work (See [Low96]) to use

model checking to verify the design of security protocols. Afterwards, model

checking has also been used to verify the design of web services and business

processes. Furthermore, model checking has been used to analyze already

deployed security protocols.

2.2.1 Design Verification

In this section, we first discuss the design verification of security protocols,

starting from the seminal work of Gavin Lowe, and then covering similar

applications to more complex security protocols. In the second part of the

section, we discuss other applications of model checking to web services and

business processes.

2.2. DESIGN VERIFICATION 21

Security Protocols

Lowe was the first to propose the use of model checkers for the design verifica-

tion of security protocols [Low96]. He applied model checking to verify the

correctness of the Needham-Schroeder Public-Key (NSPK) authentication

protocol [NS78] against an active attacker that is able to intercept, overhear,

forge, and decompose messages (under the assumption that the attacker

knows the cryptographic keys). Lowe modeled the honest protocol partici-

pants and the attacker in CSP (Concurrent Sequential Processes [Ros97]).

Moreover, he modeled two parallel protocol executions. The first execution

takes place between honest agents, while in the second, the attacker plays the

role of a participant. The model checker discovered that the NSPK protocol

is vulnerable to a man in the middle attack in which the attacker manages

to be authenticated as one of the protocol participants.

Following this seminal work, model checking has been applied to other,

more complex, security protocols. Donovan et al. [DNL99] reported the

result of the verification of 51 protocols of the Clark-Jakob library [CJ97] by

using the process algebra CSP [Ros97] and the model checker FDR (Failures-

Divergence Refinement [FDR97]). The authors discovered that 16 protocols

of the Clark-Jakob library are flawed.

Panti et al. [PST02] presented a formal analysis of the Kerberos au-

thentication protocol [Ker00] by using NuSMV [CCGR99], a symbolic model

checker. The authors discovered a vulnerability in Kerberos in which an at-

tacker can intercept and reuse authorization tokens to create unrequested

user sessions.

Mitchell et al. [MSS98] analyzed the Secure Socket Layer 3.0 Handshake

Protocol [FKK11] with Murφ [MMS97], a finite-state analysis tool. The

authors performed an incremental analysis of the protocol that they named

rational reconstruction. First, the authors started with a basic version of

the protocol with essential message exchanges and omitting signatures and

hashed data. Then, they added details to the protocol in an incremental

way. At each step, they checked the correctness of the current version of the

protocol with Murφ, and if needed, they corrected adding new parts of SSL

22 CHAPTER 2. RELATED WORK

3.0. At the end of this iterative process, they reached a model that resembles

the SSL 3.0 protocol except for the parts explicitly omitted because of the

perfect cryptography assumption. They authors discovered that a malicious

client can force the server to switch to a lower and weaker version of the

protocol.

Shmatikov et al. [SM99] and Armando et al. [ACC07] have analyzed

the ASW protocol (Asokan, Shoup, and Waidner [ASW98]), a protocol to

exchange contract signatures to allow the participants to reach mutual, non

repudiable commitment on a previously agreed contract. Shmatikov et al.

discovered two flaws in the protocol by using Murφ [MMS97]. The first

vulnerability lets the attacker replay messages of an old run of the protocol

causing one of the participants to agree on an old version of a contract.

The second vulnerability allows a malicious participant to cause agreement

on inconsistent versions of the contract. Shmatikov et al. proposed a new

version of the protocol fixing the flaws. Armando et al. [ACC07] analyzed

the new version and discovered a further flaw. Armando et al. fed the

SAT-based Model Checker [ACC07] (SATMC) with (i) a transition system

modeling participants and the attacker, (ii) a set of LTL constraints modeling

security properties of the communication channels, and (iii) LTL formulas

as security properties. SATMC discovered an attack in which a malicious

participant can obtain a different contract then the one on which the parties

agreed.

Web Services and Business Processes

With the advent of Service-Oriented Architecture (SOA), researchers inves-

tigated the security issues of this new paradigm.

Salauüm et al. [SBS04] proposed the use of process algebra for modeling

Web Services and verifying that their composition conforms to their require-

ments. The authors checked local properties of a single web service such

as equivalences between processes, safety properties, and liveness properties.

Moreover, they verified service choreography and orchestration for certifying

compatibility. The authors used CWB-NC (Concurrency Workbench of the

2.2. DESIGN VERIFICATION 23

New Century [CLS00]), a model checker for verifying finite-state concurrent

systems. The model checker detected problems such as deadlocks and lack

of synchronization.

Fu et al. [BFHS03, FBS04] analyzed different aspects of Web Services.

First, they studied the relationship between the aggregated behavior of the

composition of web services and the local behavior of single services [BFHS03].

Then, they extended their analysis to BPEL web services considering the

message semantics [FBS04]. The authors proposed to translate BPEL web

services into Promela [Hol04], and to use the SPIN model checker [Hol04].

They assessed the approach on a loan origination process using application-

dependent LTL properties.

Backes et al. [BG05] discussed the risk of using the abstractions typical

to the formal analysis. For example, the perfect cryptography assumption

can leave undetected problems such as leaks due to length of encrypted data,

and the abstraction of the time excludes timing attacks.

Backes et al. [BMPV06] presented a composed analysis of the Secure

WS Reliable Messaging Scenario [DCV+05], a protocol that allows reliable

message exchange between web services. First, the authors studied the pro-

tocol under the assumption of perfect cryptography by using the AVISPA

tools [ABB+05]. Then, they manually analyzed the cryptographic primitives

demonstrating classical cryptographic properties such as indistinguishability

under adaptive chosen ciphertext attack (Ind-CCA2).

Schaad et al. [SLS06] presented an approach for the formal verification

of delegation and revocation functionalities on the loan origination process

in presence of static and dynamic separation of duty policies. The authors

proposed to translate the workflow of the process from BPEL and ERP

objects to NuSMV and then modeled the separation of duty policies as LTL

constraints.

Wolter et al. [WMM09] presented an approach for the verification of

access control security properties of business processes. The authors sug-

gested to translate an augmented BPMN (Business Process Modeling Nota-

tion) with security annotation to Promela [Hol04]. Then, the model checker

SPIN [Hol04] verifies the business process against a set of user-defined prop-

24 CHAPTER 2. RELATED WORK

erties for detecting deadlocks.

Armando et al. [AP09] proposed an approach for modeling security-

sensitive business processes with RBAC access control policies. They built

a model checking problem where the model is a transition system translated

from BPEL, and the property is any LTL formula. The authors discovered

several flaws of the Loan Origination Process providing a corrected version.

Arsac et al. [ACPP11] presented a similar approach in which the translation

is from annotated BPMN models.

2.2.2 Model checking and Testing

In this section, we introduce works that discuss the use of model checking to

generate test cases to test real implementations. We start with works that

use model checking in latter phases of the life-cycle and, finally, we discuss

the use of model checking when the model is not vulnerable.

Model Checking and Security Testing

Recently, model checking has been used to verify the security of already

deployed security protocols. For example, Armando et al. [ACC+08] discov-

ered a severe security flaw in the SAML-based Single Sign-On for Google

Apps [Goo08]. The authors fed SATMC with (i) a transition system for the

behavior of the participants and the attacker, (ii) a set of LTL constraints for

modeling properties on the communication channels, and (iii) a LTL formula

modeling the non-injective agreement property [Low97]. SATMC returned

an attack in which a malicious SAML service provider can impersonate a

legitimate user at any other service provider within the same federated en-

vironment. It is important to point out that the attack has been manually

interpreted and reproduced against the implementation.

Guangdong et al. [GGJ+13] presented AUTHSCAN, a tool that com-

bines a number of different techniques: model inference, static analysis of

client-side script, model checking, and security testing. The first two tech-

niques aim at inferring a model from a protocol implementation and will be

detailed in Section 2.4. After the model inference step, the model is verified

2.2. DESIGN VERIFICATION 25

by the model checker in the classical way. If the model checker returns a

counterexample, AUTHSCAN translates it into a concrete test case. The

translation replaces the abstract values of the counterexample with the real

values learned during the model inference step. Furthermore, AUTHSCAN

uses a user-defined test oracle to produce the test verdict after the test ex-

ecution. The authors evaluated their tool against eight implementations

of BroweserID (now called Persona [The13b]), Facebook Connect [Fac13],

Windows Live ID [Mic13], and custom user authentication protocols. The

authors reported that AUTHSCAN discovered seven security vulnerabilities

of different type e.g. replay attacks, CSRF attacks, secret token leaks, and

guessable tokens.

Model Checking and Mutation-based Security Testing

If the model checker does not find a counterexample in the model, it does not

imply that the implementations are secure as well. In fact, implementations

may be still vulnerable due to errors introduced by the developers. Dadeau

et al. [DHK11] and later Büchler et al. [BOP11, BOP12a, BOP12b] proposed

to apply the mutation-based testing technique to detect vulnerabilities.

Dadeau et al. proposed to mutate the model of a security protocol by

injecting faults. Faults are injected by using the so called mutation oper-

ators. If the model checker finds an attack, the attack is used as a test

case. Büchler et al. [BOP11, BOP12a, BOP12b] went beyond the prelimary

work of Dadeau by proposing SPaCiTE, a tool for mutation-based, semi-

automatic, security testing of web applications. The tool works as follows.

First, the user selects the vulnerability to inject into the model. Then, the

model checker verifies the security property on the mutation. If the model

checker finds a counterexample, then it is concretized and executed against

the real implementation. The concretization is done in two steps. First,

the counterexample is mapped into concrete browser actions. To simplify

the mapping, the authors proposed an intermediate language called WAAL

(Web Application Abstract Language). Then, the counterexample is inter-

preted and executed against the web application. SPaCiTE has been assessed

26 CHAPTER 2. RELATED WORK

against two lessons of WebGoat [The07a], an application vulnerable on pur-

pose for educational purposes. The authors reported that they manage to

detect successfully stored XSS, and lack of authorization vulnerabilities.

2.2.3 Discussion

In this section, we have presented works in the area of design verification via

model checking. Model checking was applied to verify the design of security

protocols, web services, and business processes, discovering previously un-

known design flaws both during the design and at the deployment phases.

Moreover, model checking has been proposed as a tool for supporting testing

and security testing of real implementations.

However, these works showed the following shortcomings. First, the de-

sign verification via model checking focuses on the automatic detection of

flaws in a model of the system under verification and falls short on testing

the real system. In fact, the counterexamples returned by model checkers

prove only that the model is flawed and it does not say whether the real

system is also vulnerable. For example, a real system may solve the security

flaw with additional and undocumented behaviors. As a result, in order to

detect the flaw in implementations, the counterexamples are interpreted and

reproduced against each implementation. To date, this activity is still done

manually. Second, the mutation testing techniques have been assessed only

on small applications to detect known vulnerabilities and there is still a lack

of evidence of the scalability of these approaches to real systems. More-

over, the translations between models and real systems are specific to the

web application domain, and they do not support cryptographic primitives,

message composition and parsing.

In this section, we also presented AUTHSCAN whose authors claim it is

able to automatically execute counterexamples against real implementations.

It must be pointed out that the contribution of this thesis relatively to the

execution of counterexamples is anterior to AUTHSCAN. Furthermore, the

authors did not provide sufficient details about their techniques nor provided

the tool. As a result, we could not perform any comparative analysis.

2.3. BLACK-BOX SECURITY TESTING 27

2.3 Black-box Security Testing

In this section, we present black-box security testing techniques.

This section is organized as follows. In Section 2.3.1, we present ap-

proaches for detecting input validation vulnerabilities. Then in Section 2.3.2,

we introduce techniques for discovering application logic vulnerabilities.

2.3.1 Detection of Input Validation Vulnerabilities

To detect input validation vulnerabilities, we can use manual testing or

(semi-)automatic black-box web application security scanners.

Black-box web application scanners are tool used for aiding the tester in

detecting automatically or semi-automatically a wide spectrum of vulnera-

bilities. There are plenty of commercial and non-commercial web application

scanners. A rich, yet incomplete, list is available at sectools.org [FF13].

The architecture of web application scanners is composed of three mod-

ules: the crawler, the attacker (or test vector set), and the analysis mod-

ules [BBGM10, DCV10]. The scan begins when the user provides an URL to

the crawler. The crawler retrieves the page, extracts URLs from it, and re-

quests the new pages. The crawler repeats this operations until a user-defined

depth is reached, or until it does not find any new URL. The attacker mod-

ule prepares and executes test cases in which it probes the web application

with special inputs. The way the application is tested, and choice of the

inputs depends from the type of vulnerability. Finally, the analysis module

processes the pages in order to detect the vulnerability.

Bau et al. [BBGM10] and Doupé et al. [DCV10] presented two indepen-

dent and, in a certain sense, complementary studies on black-box web ap-

plication scanners. Bau et al. [BBGM10] studied the distribution of vulner-

abilities into the wild correlating this distribution with the detection power

of the scanners. Doupé et al. [DCV10] extensively benchmarked scanners

against a wide range of vulnerabilities. In both works the authors performed

controlled experiments on custom web applications to measure the coverage,

the vulnerability detection rate, and the false positive rate.

28 CHAPTER 2. RELATED WORK

The coverage of a web application measures the capability of the scan-

ner of extracting URLs [BBGM10, DCV10]. URLs can be static strings in

the HTML code, or generated dynamically by client-side scripts. Experi-

mental results showed that scanners perform fairly well in discovering static

URLs [BBGM10, DCV10]. Doupé et al. observed that the amount of surface

the web application exposes to the scanner change dramatically with their in-

ternal state. Therefore, the coverage can be significantly improved by making

scanners aware of the internal state [DCV10]. The experiments also showed

that scanners perform poorly with dynamic URLs [BBGM10, DCV10]. How-

ever, the coverage slightly improves with text-based client-side scripts such

as JavaScript and SilverLight. Bau et al. argue that this could be caused

by the textual-based URLs extraction technique implemented by the scan-

ners [BBGM10].

The detection rate measures the capability of the scanners in detect-

ing vulnerabilities. Doupé et al. reported that 8 out of 16 vulnerabilities

such as stored XSS/SQLi, logic flaws, and forceful browsing remained unde-

tected [DCV10]. Similarly, Bau et al. also reported that SQLi vulnerabilities

were not detected [BBGM10]. Moreover the detection rate of stored XSS,

open redirects, HTTP response splitting, and flash parameter injection vul-

nerabilities was rather low [BBGM10]. Bau et al. attribute the low detection

rate of advanced forms of XSS to the lack of a deep knowledge of the web

application under test. For example, they reported that few scanners man-

aged to inject a JavaScript code for a stored XSS but they failed in detecting

the vulnerability. By correlating the capability of detecting single classes of

vulnerabilities, Bau et al. observed that the testing emphasis for black-box

web application scanners as a group is reasonably proportional to the verified

vulnerability population in the wild [BBGM10].

The analysis of the false positives showed that the scanners with the

highest detection rate are ranked among the one with the lowest number

false positives [BBGM10]. Conversely, scanners with the lowest detection

rate reported the highest false positive rate [BBGM10]. This indicates that

false positives are rather a problem of the quality of the tools [BBGM10].

The experimental results of Bau et al. and Doupé et al. showed strengths

2.3. BLACK-BOX SECURITY TESTING 29

and limitations of scanners. First, the results on the coverage rates show

room for improvement. Scanners have no notion of state and have a limited

support for client-side scripts. This limits the capability of a scanner to crawl

a web application. Second, the detection rates show that scanners focus on

discovering the most common vulnerabilities such as reflected XSS. However,

scanners have a low or null detection rate for a wide range of vulnerabilities

such as stored XSS, SQLi, and logic vulnerabilities. Both authors attribute

to the lack of knowledge of the state as the limitation in detecting certain

classes of vulnerabilities.

Doupé et al. [DCKV12] presented a black-box state-aware vulnerability

scanner, a tool containing a novel state-aware crawler and attacker module.

The crawler module aims at inferring a Mealy machine [BJR08] by interact-

ing with the web application. The details of the model inference technique

are given in Section 2.4. During the inference process, the crawler uses the

model for choosing the next link. It gives priority to the links that (i) do

not cause a change of state, and (ii) are rarely or not yet visited. Once the

inference phase is concluded, the attacker module takes as input the model

for testing the application in a state-aware fashion. The test begins by re-

setting the state of the web application. Then it repeats the requests done

by the crawler. If a request does not change the state of the application, the

attacker module identifies inputs for probing the application with special

values. Otherwise the module tries to explore the model looking for a path

that brings to one of the previous state. If such a path does not exist, the

attack module resets the application and repeats the same requests executed

by the crawler. The authors did not developed a new fuzzing component, but

rather integrated the one of the w3af tool [w3a13]. The authors run the tool

against eight popular web applications comparing it with wget[SN12], w3af,

and skipfish [the12]. In the experiments they considered three metrics, they

are the number of discovered vulnerabilities, the number of false positives,

and percentage of code coverage. The baseline for the code coverage is set

to wget. The authors reported that their tool improved the code coverage of

66% in average from the baseline with a peak of 240%. w3af discovered six

vulnerabilities and reported 10 false positives while their tool discovered nine

30 CHAPTER 2. RELATED WORK

vulnerabilities and one false positive. The tool that discovered most vulner-

abilities is skipfish that discovered 20 vulnerabilities (15 in the same web

application) and seven false positives. However, their tool provided better

code coverage than skipfish.

2.3.2 Detection of Application Logic Vulnerabilities

The OWASP Testing Guide v.3.0 [The08] suggests a 4-steps approach to test

for application logic flaws in a black-box settings. First, the tester studies

and understands the web application by playing with it and reading all the

available documentation. Second, she prepares the information required to

design the tests, including the intended workflow and the data flow. Then,

she proceeds with the design of the test cases, e.g., by reordering steps or

skip important operations. Finally, she sets up the testing environment by

creating testing account, runs the tests, and verifies the results.

A number of prevalently manual methodologies have been recently pro-

posed to detects more subtle vulnerabilities. Wang et al. [WCWQ11] pre-

sented a field study of the of Cashier-as-a-Service (CaaS) based web stores

in which they developed a methodology that given a number of HTTP con-

versations of the same length, labels API arguments to show which ones an

attacker could play with. The labeling rules are the following:

• A label can be of three types: S for the store, A for the attacker, and

C for CaaS;

• Fresh values are labeled with the originators. For example, if the value

of a argument order_id is originated by the store, then the argument

is labeled with S;

• If a value is digitally signed, then it is labeled with the signing party.

For example, if the argument order_id is signed by the store, then

the argument is labeled with S.

• Any unsigned value is labeled with A;

2.3. BLACK-BOX SECURITY TESTING 31

• The labels are propagated to the subsequent arguments carrying the

same value;

At the end of the labeling, the tester can design test cases by replacing the

values of the arguments labeled with A. The test cases generation and tests

execution are performed manually. Wang et al. applied their methodology

and manually tested to two web stores, namely NopCommerce [nop13] and

Interspire [Big13], discovering severe logic vulnerabilities in both software

allowing an attacker to shop for free.

Wang et al. presented also a large-scale analysis of Single Sign-On pro-

tocols [WCW12] extending the earlier technique by enriching the labeling

technique. First, the user collects three HTTP conversations between a web

browser and the single sign-on protocol (SSO) implementation. Then, they

label parameters similarly as described before. In this work they introduced

new labels such as syntactic labels (e.g., decimal, boolean, and word), se-

mantic labels (e.g., user-unique values and propagation chains), and read-

write labels. Wang et al. applied this technique to real SSO implementations

such as GoogleID (implementation of OpenID), Facebook Connect, JanRain,

Freelancer.com, Nasdaq.com, and NYSenate.gov discovering 8 previously un-

known flaws allowing the attacker to impersonate a victim at a relying party.

In Section 2.2.2, we presented the tool AUTHSCAN [GGJ+13] that de-

tects logic flaws in SSO implementations. AUTHSCAN does not need the

source code nor an initial model to generate and execute tests. This quali-

fies AUTHSCAN as a black-box security testing technique as the other ap-

proaches in this section.

2.3.3 Discussion

In this section, we have presented existing techniques to detect vulnerabilities

in a black-box setting. Web scanners are tools used to explore the web

application and then to prepare test cases to detect vulnerabilities. These

tools perform well against specific classes of vulnerabilities such as reflected

XSS. However, the lack of a model hampers the detection power of these

tools such as stored XSS, stored SQLi, and logic vulnerabilities.

32 CHAPTER 2. RELATED WORK

In this section we have seen that when black-box web application scanners

are aware of the state of the application under test, then the coverage, and

the detection power increase. However, these recent advances focused on

input validation leaving the problem of detecting logic flaws in a black-box

setting unexplored.

Recently, new ideas have been proposed to the black-box detection of

logic flaws, which offer methodologies that highlight interesting parts of the

data flow. However, these methodologies offer no support for the automatic

generation and execution of tests. Moreover, automatic tools such as AUTH-

SCAN do not focus on vulnerabilities of the application logic of web appli-

cation but on authentication issues of single sign-on protocols. Therefore, to

date, the detection of logic flaws in web application is still done by manual

inspection.

2.4 Model Inference

Model inference refers to a family of algorithms that derive a model from

the observations of the behavior of an application. Model inference can

be divided in two categories: active and passive learning. Active learning

methods interact with the application under inference in order to explore its

behavior whereas passive learning builds a model from a set of observations.

The remaining of this section is organized as follows. In Section 2.4.1,

we present techniques and application of active learning techniques. In Sec-

tion 2.4.2, we review passive learning techniques and their applications.

2.4.1 Active learning

We start off with the seminal paper by Dana Angluin. Angluin [Ang87]

proposed the L* algorithm for learning an unknown regular languages L.

The L* algorithm assumes that the alphabet of L is known and relies on an

oracle to query on the membership of strings in L. The algorithm builds

an internal table of strings called observation table representing the current

knowledge of the algorithm about L. The table is updated by querying the

2.4. MODEL INFERENCE 33

oracle about the membership of a string prepared by the algorithm. When

the algorithm cannot decide whether there is a new state to explore and

the table contains enough information to build a language, it proposes a

conjecture S. Then, the oracle verifies S against L. If the two languages

are the same, then the algorithm terminates. Otherwise, the oracle returns

a counterexample that is a string w in the symmetric difference between

L and S. The algorithm extends the table with w and provides a new

conjecture. The L* algorithm has been proposed to infer a DFA from the

implementation by using the implementation as the oracle [PVY01], and

experiments as membership queries.

Hossen et al. [HGR11] proposed to use the L* algorithm to infer a DFA

of web application for security testing. However, the algorithm cannot be

applied directly to web applications for the following reasons. First, web

applications accept parametric inputs (i.e. URL with query strings and/or

POST data). Second, web applications generate dynamically output mes-

sages whose contain part of the inputs for the next communications. As a

result, the assumption that the input alphabet is a priori known is no longer

valid. Hossen et al. [HGOR13] proposed to solve the first issue by model-

ing web application as Extended Finite State Machines (EFSM). Then, they

proposed to use a state-aware crawler for discovering the inputs before the

inference begins [HGOR13].

Doupé et al. [DCKV12] proposed to learn a model of the application while

crawling the web application. We already described the testing technique in

Section 2.3.2 and in this section, we detail the model inference technique.

The inference algorithm is based on three sub-algorithms for page clustering,

state change detection, and state clustering. The authors proposed to model

web applications as Mealy machines [BJR08]. A Mealy machine is an au-

tomaton whose the output is determined by the current state and the input.

The input symbols are the URLs including the query string and POST data.

The output symbols are abstraction of HTML pages. A single web page is

represented as a prefix tree of vectors for anchors and forms. Each vector

contains the DOM path, the URL domain and path, a list of parameters,

and the value of the parameters. A group of pages can be represented in a

34 CHAPTER 2. RELATED WORK

similar way. All the prefix trees are transformed into a vector such that the

i-th element of a page vector contains the list of nodes of the tree at depth

i. These vectors are stored in a further prefix tree called Abstract Page Tree

(APT) whose leaves are HTML page. The page clustering algorithm visits

the APT seeking for internal nodes that satisfy certain properties based on

the number of leaves and depth of the subtrees. The pages belonging to the

subtree rooted in the chosen node are clustered together.

2.4.2 Passive learning

Li et al. [LX11] proposed BLOCK, a black-box tool that learns model by

observing HTTP conversations to block attacks. BLOCK infers a model of

the web application and a set of invariants on the session variables. BLOCK

models a web application as a stateless machine that receives an input and

returns an output. The input of the application is the URL, the parameters

and the session variables. The output is a synthesis of a web page and the

session variables. Web pages are clustered in four steps. The clustering tech-

nique borrows the first 2 steps from TEXT [KS11]. First, the web pages are

transformed in a set of DOM paths. Second, the list of paths are pruned in

order to keep only the essential paths of the page. This is done by calculating

the number of pages in the conversation that contain a path. Third, pages

are clustered by similarity. Two pages are similar if they have similar essen-

tial paths. Finally, each page in the HTTP conversation is compared against

the template it belongs to and the essential paths are removed. The remain-

ing paths are the output parameters. The second part of the training mode

consists in calculating three different types of invariants, they are: invariants

between inputs, between an input and an output, and between consecutive

input/output pairs. Invariants are calculating with Daikon [EPG+07]. The

resulting model and invariants are used by BLOCK to intercept and block

attacks to the web application.

In Section 2.2.2, we presented AUTHSCAN, a black-box tool that use a

number of techniques to test SSO implementations. In this section, we pro-

vide the details on its model inference phase. The model inference algorithm

2.4. MODEL INFERENCE 35

takes in input HTTP conversations and extract an initial model in TML

(Target Model Language [WL93]). The model is refined then with static

code analysis of the JavaScript code. In this step, AUTHSCAN looks for

known function calls for arithmetic operations, cryptographic operations,

and concatenations. Furthermore, AUTHSCAN uses a differential fuzzing

analysis for removing redundant data by probing the SSO implementation

with mutated data in order to identify differences in responses. AUTH-

SCAN performs also a type inference on data to identify strings, integers,

and booleans.

Dury et al. [DHP09] described an approach for passively learning a model

of web-based business applications. The authors used Parameterized Finite

Automaton (PFA) for modeling the applications that enriches the classic no-

tion of finite automaton [HMU06] with guards on transitions and parameters

on states. PFA models both control flow and data flow of an application.

The authors consider each input traces as a PFA, then they merge all the

PFAs into a single PFA that in turn is abstracted into a symbolic PFA.

Dury et al. proposed to use data mining algorithms like C4.5 [Qui93] to in-

fer guards of a symbolic PFA from a PFA. The final model is then translated

into Promela [Hol04] and passed to SPIN [Hol04] for verifying application-

dependent properties.

2.4.3 Discussion

In this section, we have presented applications of model inference techniques

to security testing. We have seen that both active and passive techniques

have been used for infering models for different purposes. Model inference has

been used to detect input validation vulnerabilities, to detect attacks against

web applications, to detect flaws specific to the single sign-on domain, and

to test application-dependent properties. To best of our knowledge, there

are no applications of model inference to obtain a model to be used for the

generation of test cases to detect logic flaws.

36 CHAPTER 2. RELATED WORK

2.5 Conclusions

In this chapter, we have reviewed existing techniques to detect vulnerabili-

ties. The choice of the testing technique depends on the availability of the

software source code and documentation.

We have seen that when the source code is available there is great variety

of techniques that can be used. However, in multi-party business application

the source code is not available in practice. Therefore, in this thesis we do

not consider white-box testing techniques.

When the specifications are available, we have seen that design verifica-

tion via model checking is quite effective in detecting logic flaws. However,

model checking falls short when verifying already deployed protocols and the

counterexample proves the existence of a vulnerability at model-level. As a

result, counterexamples are often interpreted and executed manually against

real implementations.

When even models are not available, automated tools such as black-box

web scanners can be used. Black-box security testing tools are very effective

in detecting vulnerabilities such as XSS and SQLi. However, these tools are

not capable of detecting vulnerabilities in the logic of the application. As a

result, logic flaws are still detected by manual inspection.

Chapter 3

Case Studies

In this thesis, we use two case studies to show how the testing techniques we

propose can be applied to real world scenarios. The fundamental aspect that

differentiates these two case studies is the availability of the specifications.

The first case study describes a web-based single sign-on protocol used by

multi-party business applications. In this thesis, we consider the SAML 2.0

Web-based Single Sing-On and the OpenID authentication protocols whose

specifications are publicly available. The design of these protocols is verified

in Chapter 4 via model checking, while their real implementations are tested

in Chapter 5.

The second case study is an eCommerce web application. eCommerce

web applications are multi-party business applications whose specifications

are not available. In this thesis, we use this case study in Chapter 6 to assess

the black-box testing technique we propose to detect logic flaws without a

starting model.

Structure: This chapter is organized as follows. In Section 3.1, we in-

troduce the SAML 2.0 Web-based Single Sing-On and the OpenID authen-

tication protocols. Then, in Section 3.2 we introduce the eCommerce web

applications.

37

38 CHAPTER 3. CASE STUDIES

3.1 Case Study 1: Web-based Single Sign-On Pro-

tocols

The OASIS Security Assertion Markup Language 2.0 [OAS08] Web browser

Single Sign-On (hereafter SAML SSO) and the OpenID Authentication Pro-

tocol [Ope07] (hereafter OpenID) are two emerging standards that enable

partners of multi-party business applications to authenticate their users once,

and then access the services of the application without the need to be authen-

ticated again. SAML SSO and OpenID implementations are part of identity

management software such as SAP NetWeaver Identity Manager and IBM

Tivoli Federated Identity Manager, as well as by online services such as the

Google Apps suite (e.g., GMail and Google Calendar). Everyday, millions of

users are authenticated by using these two protocols. For example, Google

claims that more than 5 millions of companies use SAML and OpenID to

login their users at Google Apps1.

3.1.1 The SAML 2.0 Web browser Single Sign-On

SAML SSO is a standardized, open, and interoperable authentication pro-

tocol. In this respect, it offers a significant number of configuration options

allowing it to be applicable in a multitude of environments. It is based on

an XML format for encoding security assertions as well as a number of pro-

tocols and bindings that prescribe how assertions should be exchanged in a

variety of applications and/or deployment scenarios. Three roles take part

in the protocol: a client C, an identity provider IdP and a service provider

SP. The objective of C, typically a web browser guided by a user, is to get

access to a service or a resource provided by SP. IdP authenticates C and

issues corresponding authentication assertions (a special type of assertions

used to authenticate users). The SSO protocol ends when SP consumes

the assertions generated by IdP to grant or deny C access to the requested

resource.

A SAML SSO profile offers two main usages depending on whether the

1See http://www.google.com/enterprise/apps/business/

3.1. CASE STUDY 1: WEB-BASED SINGLE SIGN-ON PROTOCOLS39

C IdP SP

S1. URI

A1. IdP, AReq(SP, IdP, ID), URI

A2. IdP, AReq(SP, IdP, ID), URI

IdP builds
AA = AuthnAssert

(SP, IdP, C, ID)
A3. SP, AResp(ID, SP, IdP, {AA}

K
−1

IdP

)

A4. SP, AResp(ID, SP, IdP, {AA}
K
−1

IdP

)

S2. Resource

Figure 3.1: SAML SSO SP-initiated with front channels

web user requests a resource from an SP by contacting the SP directly (SP-

initiated SSO), or by contacting the IdP that presents a set of SP resources

that web users can consume (IdP-initiated SSO). Both SP-initiated and IdP-

initiated SSO can be used in combination with the artifact resolution pro-

tocol (ARP) that provides a mechanism by which SAML messages can be

transported by reference instead of by value. In addition, SAML SSO offers

many configuration options ranging from optional fields in messages, usage

of SSL/TLS at transport layer, encryption, digital signature, etc.

In the rest of this section we detail both SP-initiated and IdP-initiated

SAML SSO variants with and without ARP. The use of the ARP is often

referred to as back channel, while front channel indicates that the artifact

resolution protocol is not used. In this chapter we use the latter naming.

SAML SSO SP-initiated with front channels

Figure 3.1 shows the reference flow for the SAML SSO SP-initiated vari-

ant with front channels. In step S1, C asks SP to provide the resource

located at the address URI. SP then initiates the protocol by sending C a

redirect response (e.g., HTTP 302 Response message) directed to IdP con-

40 CHAPTER 3. CASE STUDIES

C IdP SP

S1. URI
IdP builds
AA = AuthnAssert

(SP, IdP, C, ID)
A1. SP, AResp(ID, SP, IdP, {AA}

K
−1

IdP

)

A2. SP, AResp(ID, SP, IdP, {AA}
K
−1

IdP

)

S2. Resource

Figure 3.2: SAML SSO IdP-initiated with front channels

taining an authentication request of the form AReq(SP, IdP, ID) where ID is

a string uniquely identifying the request. IdP then challenges C to provide

valid credentials and if the authentication succeeds IdP builds an authen-

tication assertion AA = AuthnAssert(SP, IdP,C, ID) and places it into a

response message AResp(ID, SP, IdP, {AA}
K
−1

IdP
), where {AA}

K
−1

IdP
is the as-

sertion digitally signed with K−1
IdP
, the private key of IdP. SAML does not

prescribe how the IdP authenticates C. This is thus abstracted away from

our formalization. In our analysis we assume that a successful user authen-

tication takes place.

IdP then places AResp into an HTML form and sends it back to C (SAML

POST Binding). The response is forwarded by using a client-side script that

triggers the POST submission to SP. This completes the message exchange

and SP can deliver the requested resource to C.

SAML SSO IdP-initiated with front channels

The message flow is shown in Figure 3.2. As opposed to SP-initiated, C asks

IdP to access SP’s resources (step S1 in Figure 3.2). Once C authenticates

with IdP, IdP initiates the SAML Authentication Protocol by issuing an

authentication assertion. The execution of the protocol continues as seen in

Figure 3.1.

3.1. CASE STUDY 1: WEB-BASED SINGLE SIGN-ON PROTOCOLS41

C IdP SP

S1. URI

A1. IdP, AReq(SP, IdP, ID), URI

A2. IdP, AReq(SP, IdP, ID), URI IdP builds
AA = AuthnAssert

(SP, IdP, C, ID)
and Art = (IdP,Ref)A3. SP, Art, URI

A4. SP, Art

A5. ArtResolve(IDa, SP, Artifact)

A6. ArtResp(IDa, AResp(ID, SP, IdP, {AA}
K
−1

IdP

)))

S2. Resource

Figure 3.3: SAML SSO SP-initiated with back channels

Back channels (Artifact Resolution)

In Figure 3.1 and Figure 3.2 SAML messages are directly exchanged by using

C as intermediary. The SAML profiles exposing SAML messages to the web

browsers are called front channel profiles. In addition, SAML defines another

method for exchanging SAML messages. Instead of relaying through the web

browser SAML messages, SPs and IdPs exchange references called artifacts.

Then, they run the ARP to resolve artifacts in SAML messages.

The ARP can be used for exchanging SAML requests as well as SAML

responses. Figure 3.3 shows an SP-initiated SSO in which back channels are

used to resolve only the SAML response.

The protocol flow for exchanging the SAML request is the same as seen

in Figure 3.1. After having authenticated C, in step A3 the IdP prepares the

authentication assertion AA. Additionally, it prepares the artifact Art =

42 CHAPTER 3. CASE STUDIES

C IdP SP

S1. URI
IdP builds
AA = AuthnAssert

(SP, IdP, C, ID)
and Art = (IdP,Ref)

A1. SP, Art, URI

A2. SP, Art, URI

A3. ArtResolve(IDa, SP, Artifact)

A4. ArtResp(IDa, AResp(ID, SP, IdP, {AA}
K
−1

IdP

)))

S2. Resource

Figure 3.4: SAML SSO IdP-initiated with back channels

(IdP,Ref) associated to AA. Then IdP stores in a database the AA and

the Art. Finally IdP sends Art to C that in turn forwards to SP (step

A4). Upon receiving Art, SP establish a direct channel with IdP and sends

the ArtifactResolve(IDa, SP, Art) where IDa is a string uniquely identifying

the resolve request (step A5). Then, IdP fetches the assertion associated to

the artifact, encapsulates the SAML response into a ArtifactResponse(IDa,

ArtifactResolve(. . .)), and finally sends it back to SP. The protocol ends

when SP serves the resource to C.

Similarly as seen for the SP-initiated profile, the IdP-initiated profile uses

back channels. Figure 3.4 shows the IdP-initiated profile with back channels.

Security Assumptions

The security of the SAML SSO protocol relies on a number of assumptions

about the trustworthiness of the principals involved as well as the security

of the transport protocols employed.

Protocol Participants Concerning trustworthiness, the protocol assumes

that:

3.1. CASE STUDY 1: WEB-BASED SINGLE SIGN-ON PROTOCOLS43

A1 : IdP is trustworthy for both C and SP;

A2 : SP is not trustworthy.

Secure Transport Layer The SAML 2.0 specifications repeatedly state

the following assumptions of the transport protocols used to carry the pro-

tocol messages:

TP1 : Communication between C and SP can be carried over a unilateral

SSL/TLS channel, established through the exchange of a valid certifi-

cate (from SP to C).

TP2 : Communication between C and IdP is carried over a unilateral SS-

L/TLS channel that becomes bilateral once C authenticates itself on

IdP. This is established through the exchange of a valid certificate

(from IdP to C) and of valid credentials (from C to IdP).

An analysis of the SAML specifications reveals that the standard does

not specify whether the messages exchanged at steps S1 and A4 of Figure 3.1

and of Figure 3.3 must be transported over the same SSL/TLS connection

or whether two different SSL/TLS connections can be used for this purpose.

In other words, there is a certain degree of ambiguity on how assumption

TP1 of Section 3.1.1 can be interpreted.

The reuse of the SSL/TLS connection at step S1 to also transport the

message at step A4 is at first sight the most natural option. However this is

difficult to achieve in practice for a number of reasons:

Resuming SSL/TLS connections The use of a single SSL/TLS connec-

tions for the exchange of different messages cannot be guaranteed as,

e.g., the underlying TCP connection might be terminated (e.g. timeout,

explicitly by one of the end points), an SSL server could not resume

a previously established session, or a client might be using a browser

that very frequently renegotiates its SSL connection.2

2See, for instance, http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/

index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm

44 CHAPTER 3. CASE STUDIES

Software modularity Nowadays, software is designed to be increasingly

modularized, capitalizing on layering and separation of concerns. This

may result in the fact that—within SP implementations—the software

module that handles SAML messages has no access to the internal in-

formation of the transport module that handles SSL/TLS. Thus, the

information on whether the client has used a single SSL/TLS connec-

tion or two different ones may not be available.

Distributed SPs The SAML SP may be distributed over multiple ma-

chines, e.g., for work-balancing reasons. This results in physically dif-

ferent SSL/TLS endpoints, with the inherent impossibility of enforcing

a single session for all communications between SP and C.

3.1.2 The OpenID Authentication Protocol

OpenID is an open and user-centric web browser-based single sign-on pro-

tocol. It provides a way to authenticate a user C by asking her to prove

that she controls a valid user identifier [Ope07]. OpenID is decentralized in

the sense that it does not require relying parties (SPs) and OpenID iden-

tity providers (IdPs) to have a pre-established relationship. It also does not

rely on an existing infrastructure on which a central authority approves or

registers relying parties or OpenID providers. The OpenID Authentication

2.0 specification [Ope07] describes an authentication protocol and an associ-

ation session protocol. It also prescribes how messages are transported over

HTTP messages defining two communication types: direct communication

and indirect communication. The former is established between service and

identity providers, the latter involves the user agent as intermediary. In the

next section, we describe in more details the different protocols.

Authentication Protocol

The protocol is initiated by C who access a resource URI at SP providing

SP an identifier that C has to prove to control. The identifier is used by

SP to identify which IdP C uses for authentication. Then C is redirected to

IdP together with an authentication request. Once C proves to control the

3.1. CASE STUDY 1: WEB-BASED SINGLE SIGN-ON PROTOCOLS45

C IdP SP

A1. URI, identifier(C)

S1. p, g, gxa mod p

S2. gxb mod p, h, H(gxa∗xb mod p⊕KHMAC)

A2. IdP, AReq(C, IdP, h, SP)

A3. IdP, AReq(C, IdP, h, SP)

A4. SP, AResp(IdP, C, SP, n, HMAC)

A5. SP, AResp(IdP, C, SP, n, HMAC)

A6. Resource

Figure 3.5: OpenID authentication protocol with Diffie-Hellman session as-
sociation

identifier, IdP issues and signs a positive assertion and redirects C back to

the SP transporting the response. SP checks the validity of the signature

and it lets C access resources available at its site. The manner in which C

is challenged is out of the scope of the protocol specification.

Association Session Protocol

The association session protocol establishes a shared secret KHMAC between

SP and IdP used to sign and verify authentication responses. SP initializes

this protocol by sending an association session request to IdP right after SP

discovers which IdP C uses to authenticate. IdP returns to SP a shared

secret together with a value h called handle used as a key to refer to as-

sociations. OpenID specifies only two ways to transmit KHMAC , that are:

No-Encryption association sessions and Diffie-Hellman (D-H) association

46 CHAPTER 3. CASE STUDIES

session. When No-Encryption is used the IdP sends a response with KHMAC

in plain-text, whereas when D-H association is deployed a D-H shared key

is calculated in order to encrypt KHMAC . No-Encryption is used only over

a secure transport layer.

OpenID Authentication Protocol with Session Association

Figure 3.5 depicts the authentication protocol flow used in combination

with the D-H session association. In step A1, C sends to SP his identi-

fier identifier(C). SP identifies IdP using C’s identifier (this procedure

is not considered here, we just assume that SP has a look-up table) and

then initiates the D-H association session protocol. At the end of its execu-

tion, SP receives an handle for the association h and a shared secret KHMAC

(step S2); then SP issues an authentication request in step A2. C, acting

as intermediary, redirects the request to IdP (step A3), which challenges C

and issues an assertion within an authentication response accordingly. The

information sent to SP is signed calculating an HMAC over IdP, C, SP, a

nonce n and the handle h (step A4). In step A5, C delivers the response to

SP. If SP accepts the response, then it will send a resource back to C.

Security Assumptions

Protocol Participants OpenID works under the assumptions that IdP is

not compromised and that IdP is trusted by SPs to generate authentication

assertions. The latter requires a certain care from SPs as in principle any

entity can claim itself to be an IdP. SPs are assumed to be capable to select

those IdPs that can be considered trustworthy.

Secure Transport Layer The OpenID specifications strongly recommend

the use of SSL connections for all parts of the interaction, including com-

munication with the user. Not following this recommendation would make

the OpenID protocols vulnerable in many trivial aspects that may not fit

relevant business scenarios. In our analysis we follow this recommendation

and we assume that the protocol is working under the assumptions TP1 and

3.2. CASE STUDY 2: ECOMMERCE APPLICATIONS 47

TP2 as discussed in Figure 3.1.1.

3.1.3 Security Goals

In this section, we introduce the security goals of web-based single sign-on

protocols.

By comparison with multiple credentials web authentication schemes

(one username-password pair per service), it is natural to expect that at

the end of the execution the protocol fulfills the following mutual authenti-

cation goal: SP authenticates C, and C authenticates SP.

Furthermore, when SP uses SSL/TLS to send the resource to C, we

also expect that the protocol offers confidentiality of the resource, i.e., the

resource will remain a secret between C and SP.

3.2 Case Study 2: eCommerce Applications

The term eCommerce refers to the activities of buying and selling goods

and services over electronic communication systems. eCommerce covers a

wide range of forms of commerce including business-to-consumer commerce

(e.g., online stores, marketplace, video streaming platforms, auction sys-

tems, and online gambling), business-to-business commerce (e.g., procure-

ment, producer-wholesaler or wholesaler-retailer transactions, and so on),

and business-to-government commerce. Modern eCommerce is carried on

over the web, and it can be accessed via web applications, typical for online

stores, or via electronic data interchange (EDI) services for the exchanged of

commercial data between business partners. In this thesis, we focus on online

stores for business-to-consumer commerce accessible via web applications.

eCommerce web applications are software solutions for buying and sell-

ing products or services over the web between online stores and consumers.

eCommerce applications implement on-line catalogues and virtual shopping

carts in which customers place the items they would like to buy. An exam-

ple of a workflow of a eCommerce web application is shown in Figure 3.6.

eCommerce web applications have a front-end for the customers, and a back-

48 CHAPTER 3. CASE STUDIES

Figure 3.6: The workflow of eCommerce web applications

office interface for the store administrators and employees. Consumers place

orders by using the front-end of the store. While in the back-office of the

store, clerks process the orders by fetching the items from the warehouse and

preparing them for the delivery. Finally, the store ships the items and an

invoice to the customer.

eCommerce web applications integrate the payment into the purchase

process. This is done by using the API provided by online payment services

such as PayPal, Amazon Payments, Google Checkout, or Authorize.NET3.

The integration can be done at different steps of the purchase process and it

depends on the payment system that is integrated. In Figure 3.7, we show

an example of integration that requires two HTTP redirections. In step S1,

U adds the item I into the cart. The store confirms the operation showing

the updated cart in step S2. In step S3, U confirms the order. Then, S

redirects U to P together with the details of the cart such as the name of

3For a rich, yet incomplete, list of payment systems see https://en.wikipedia.org/

wiki/List_of_online_payment_service_providers.

3.2. CASE STUDY 2: ECOMMERCE APPLICATIONS 49

Figure 3.7: eCommerce web application and payment systems

the payee, the amount of the monetary transaction, and so on. In step S6, P

may notify S about the result of the money transfer authorized by U. This

step is optional and it depends on the API provided by the service P. In step

S7, U has authorized the payment for the amount of I and is redirected back

to the store. In step S8, the store may query P for checking the result of the

transaction. The purchase ends with a confirmation of the purchase. The

steps S6 and S9 could be performed offline by the clerk when processing the

order.

3.2.1 Application Logic

At the end of the purchasing process, the parties involved have the following

expectations:

1. the buyer and the seller agreed on the goods of the purchase;

50 CHAPTER 3. CASE STUDIES

2. the buyer, the seller, and the bank agreed on the amount of money to

transfer from the buyer to the seller;

3. the bank transferred the amount of money from the account of the

buyer to the one of the seller;

4. the seller delivers the goods to the buyer.

Therefore, we expect that the software fulfills the above requirements.

3.3 Conclusions

In this chapter we introduced two case studies. The first case study consist

of two web-based authentication protocols: SAML SSO and OpenID. On

this two protocols, we will apply a model checking technique for detecting

flaws in their design (See Chapter 4). Then, we will address the question

of whether also real implementations suffer from the flaws identified by the

model checker (See Chapter 5). The second case study is a typical eCom-

merce web application for which no formal specifications are available. In

this case, we will apply a model inference technique in order to extract a

sufficiently expressive model to perform model-based security testing in a

black-box scenario (See Chapter 6).

Chapter 4

Model Checking of Web-based

Authentication Protocols

When the software specifications are available, it is possible to use auto-

mated reasoning techniques such as model checking to detect vulnerabilities

in applications. In this section we present a novel application of model check-

ing for the security analysis of authentication protocols. Our study led to

the discovery of a previously unknown logic flaw into the design of SAML

SSO and OpenID. By exploiting this vulnerability, an attacker can hijack a

client authentication attempt or force the latter to access a resource without

its consent or intention. In this section, we also discuss the manual tests

required to verify the presence of the design flaw in actual protocol imple-

mentations. We tested three SAML SSO implementations and two OpenID

implementations discovering that four out of five are vulnerable to the logic

flaw discovered by the model checker. Moreover, we discovered that the de-

sign flaw can be exploited as a launching pad of Cross-Site Scripting attacks

in the SAML-base SSO for Google Apps. All our findings have been dis-

cussed with members of the OASIS Security Services Technical Committee

and a SAML V2.0 Errata has been redacted and approved [OAS12].

Structure: This chapter is organized as follows. Section 4.1 presents the

formal models of SAML SSO and OpenID. Section 4.2 introduces the pro-

tocol options, the formal analysis, and the results. Section 4.3 presents the

51

52 CHAPTER 4. MODEL CHECKING

authentication flaw we discovered in SAML SSO and OpenID. Then, Sec-

tion 4.4 discusses the manual tests against real implementations. Finally,

Section 4.5 draws the conclusions.

4.1 Formalization

This section presents the formalization of SAML SSO and OpenID protocols.

This section focuses on four main aspects of the model: messages, behavior

of participants, protocol sessions, and the security goal. For each participant

we differentiate the behavior according to the profile.

The specification language that we use in this section is ASLan++ (the

AVANTSSAR Specification Language [vOM11]), one of the specification lan-

guage of the AVANTSSAR platform [AAA+12]. However, when we analyzed

SAML SSO, the ASLan++ language was still under development and we

used the HLPSL++, another specification language of the AVANTSSAR

platform.

4.1.1 AVANTSSAR Specification Language

In this section we introduce the main concept of ASLan++1. ASLan++

is a formal language for specifying service-oriented architectures, security

policies, and security properties. An ASLan++ specification is a set of en-

capsulated entities. Entities may model web services as processes and their

static compositions. In our case studies, we model the client, the service

provider and the identity provider as entities. The top-level entity is usually

called Environment, and it is used to “glue” together the inner entities. The

definition of an entity contains a list of parameters, the symbol section, and

the body section. The list of parameters represent what the entity knows at

the beginning of its execution. The symbol section contains the declaration

of types, variables, constants, functions, macros, and algebraic equations

that are accessible only from the entity and its inner entities. The body of

an entity contains the logic. For example, an entity modeling a web service

1A detailed explanation, as well as tutorials and software are available at http://www.
avantssar.eu.

4.1. FORMALIZATION 53

performs message sending and message receiving actions while a composition

of entities instantiates two entities with appropriate parameters. ASLan++

supports common programming language-like statements such as if-then-else

for deterministic conditional branches, select-do for non deterministic condi-

tional branching, while loops, as well as message passing primitives such as

message sending and receiving statements.

The security goals can be expressed in temporal logic [Pnu77, Hol04] or

state formulas, while the policies are expressed as Horn clauses [Hor51].

4.1.2 Formalization of SAML SSO

In this section we present the formal model of the SAML SSO protocols

shown in Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4.

Structure of a Specification

The SAML SSO specification is structured as follows:

1 entity Environment {

2 symbols

3 % Protocol Message

4

5 entity Session (...) {

6

7 entity Client (...) {

8 % [...]

9 }

10 entity ServiceProvider (...) {

11 % [...]

12 }

13 entity IdentityProvider (...) {

14 % [...]

15 }

16 body {

17 % Instantiation of a single SAML SSO protocol run

18 }

19

20 } goals:

21 % G1 and G2

22 body {

23 % Instantiation of several SAML SSO protcol run

24 }

54 CHAPTER 4. MODEL CHECKING

25 }

The innermost entities are the Client entity, ServiceProvider entity,

and IdentityProvider entity. These entities are contained in the Session

entity that model a single protocol run by instantiating the principal and

providing the appropriate parameters. The outermost entity is Environment

that instantiates parallel protocol runs.

Protocol Messages

We model messages, their structure, encapsulation, message encoding and

fields by using ASLan++ function symbols and constants. We declare them

in the symbol section of the Environmant entity as follows:

1 symbols

2 %% HTTP protocol values

3 get , post : method;

4 code_30x , code_200 : code;

5 uri_sp , uri_i : uri;

6 c, sp, idp : agent;

7 id : int;

8 %[...]

9

10 %% HTTP Messages

11 httpReq(method , agent , http_element , http_element : message;

12 httpResp(code , agent , http_element , http_element) : message;

13 %% HTML elements

14 htmlForm(agent , saml_binding) : http_body;

15 %% SAML Messages

16 aReq(agent , agent , int) : saml_message;

17 noninvertible

18 signedAResp(private_key , agent ,

19 agent ,agent , int) : saml_message;

20 %% SAML bindings

21 hBind(saml_message , uri) : saml_binding;

22 pBind(saml_message , uri) : saml_binding;

23

24 % [...]

Symbols for function such as httpReq, httpResp, aReq and authnResponse

model single protocol messages. hBind and pBind represent message bindings.

Constants get, post, code_200 and code_30x model the HTTP GET method,

4.1. FORMALIZATION 55

the HTTP POST method, HTTP 200 response code, and the HTTP 30x-

family response codes.

We express protocol message encapsulation by composing together sym-

bols. For example, the authentication request aReq(sp,idp,id) transported

over an HTTP message is expressed as follows:

httpResp(code_30x , idp ,

hBind(aReq(sp, idp , id), uri),

nil_http_element)

Communication Channels

ASLan++ supports three different abstractions for communication channels,

they are Abstract Channel Model (ACM), Cryptographic Channel Model

(CCM), and Ideal Channel Model (ICM). In our models, we used the ACM

model. As opposed to the other channel models, ACM explicitly refers to

communication channels by using element of the formal language. We believe

that this feature better suites to the purpose of this thesis that is testing real

implementations. Nevertheless, the other channel models could be used as

well, however the testing technique introduced in Chapter 5 does not support

them yet.

ACM refers to channel by ASLan++ constants of the type channel. An

agent A sends a message M to B over the channel ch by using the following

ASLan++ primitive:

1 A -ch-> B: M;

While A receives a message M from B over the channel ch by using the

following statement:

1 B -ch-> A: M;

In the following section use the following naming convention for chan-

nels. We use the variable name Ch_X2Y of type channel for representing a

communication channel between the agent X and the agent Y in which X is

the sender and Y is the intended recipient. Moreover, we assume that every

time two agents communicate they use a new pair of channels.

56 CHAPTER 4. MODEL CHECKING

Client Entity

The Client entity takes four parameters called Actor, SP, IdP and URI rep-

resenting, respectively, the agent that plays the entity of Client, the service

provider, the identity provider, and the resource that C wants to access.

1 entity Client (Actor , SP, IdP: agent ,

2 URI : agent ,

3 % [...]

4) {

5 symbols

6 AReq : hBind(aReq (agent , agent , int), agent);

7 ARsp : pBind(signedAResp (inv(public_key),

8 agent , agent , agent , int), uri);

9 % [...]

10 }

C is a web browser guided by a user. We model C as a standard browser

unaware of protocols encapsulated in HTTP messages. We model this be-

havior by using ASLan++ compound types2. The ASLan++ code above

shows the declaration of two compound types Areq and ARsp, respectively,

the SAML authentication request and response. We use compound type also

for modeling SAML artifact messages.

SP-initiated with front channels As shown in Figure 3.1, a client par-

ticipating to the SAML SSO SP-initiated profile with front channel performs

the following actions. First, C initiates its run by sending an HTTP request

for a resource and receiving an authentication request over a 30x HTTP re-

sponse (step S1 and A2). Second, C executes the 30x redirection type and

receives from the IdP and authentication response within an HTML form

(step A2 and A3). Finally, C sends the authentication response to the SP

and receives the resource.

The Client entity for the SAML SSO SP-initiated with front channels

takes in input 5 parameters more, they are Ch_C2SP_1, Ch_SP2C_1, Ch_C2IdP,

Ch_IdP2C, Channels, respectively for the communication channel for request-

2The same aspect could have been captured by using the most general ASLan++
message type. However, compound types have the characteristic that they prune the
research space of the model checker.

4.1. FORMALIZATION 57

ing a resource to SP, for receiving the authentication request from SP, for

forwarding the authentication request to IdP, for receiving the authentica-

tion response from IdP, and a set of pairs of channels for forwarding the

authentication response to SP. We will clarify the use of the set of channels

later.

The Client entity is the following:

1 entity Client (%[...]

2 Ch_C2SP_1 , Ch_SP2C_1 ,

3 Ch_C2IdP , Ch_IdP2C: channel ,

4 Channels: agent.channel.channel set) {

5 %% Compound types

6 % [...]

7 body {

8 %% S1-A1

9 Actor -Ch_C2SP_1 -> SP : httpReq(get , URI , nil_http_element ,

10 nil_http_element);

11 SP -Ch_SP2C_1 -> Actor : httpResp(code_30x , IdP , ?AReq ,

12 nil_http_element);

13

14 %% A2-A3

15 Actor -Ch_C2IdP -> IdP : httpReq (get , IdP , AReq , nil_http_element

);

16 IdP -Ch_IdP2C -> Actor : httpResp(code_200 , nil_agent ,

17 nil_http_element , htmlForm (?AnySP ,

?ARsp));

18 if(Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))) {

19 %% A4-S2

20 Actor -Ch_C2SP_2 -> AnySP : httpReq (post , AnySP ,

21 nil_http_element , ARsp);

22 AnySP -Ch_SP2C_2 -> Actor : httpResp(code_200 , nil_agent ,

23 nil_http_element , ?

Resource);

24 }

25 }

26 }

Here, the Client entity uses AnySP for fetching the new channels Ch_C2SP_2

and Ch_SP2C_2 respectively for sending the ARsp and receiving the Resource.

IdP-initiated with front channels The Client entity of SAML SSO

IdP-initiated with frond channels does not request the resource to SP. In-

stead, it requests the resource hosted by SP to the IdP and receives the

58 CHAPTER 4. MODEL CHECKING

authentication response from the IdP (step S1 and A1 of Figure 3.2). The

Client entity’s body begins as follows:

1 body {

2 %% S1-A1

3 Actor -Ch_C2IdP -> IdP : httpReq (get , URI , nil_http_elements ,

4 nil_http_element);

5 IdP -Ch_IdP2C -> Actor : httpResp(code_200 , nil_agent ,

6 nil_http_element , htmlForm (?AnySP , ?

ARsp));

7 %% A2-S2 == A4 -S2 of SP-initiated with front channels

8 %[...]

9 }

The steps A2-S2 of the IdP-initiated profile with front channels are the

same of the steps A4-S2 of the SP-initiated profile with front channels.

Back channels When back channels are used, SP and IdP do not exchange

SAML messages through C. Instead, they use C for redirecting references.

This requires to modify the structure of the messages received by the Client

entity. This is done in two points. First, in the symbol section and then in

the body. For example, let us consider the SP-initiated with back channels

of Figure 3.3. The Client entity is derived from the entity of SAML SSO

SP-initiated with front channel as follows:

1 entity Client (Actor , SP, IdP: agent ,

2 URI : agent ,

3 % [...]

4) {

5 symbols

6 AReq : hBind(aReq (agent , agent , int), agent);

7 Art : artBind(artifact(agent , int), agent);

8

9 body {

10 %% S1-A1

11 % [...]

12

13 %% A2-A3

14 Actor -Ch_C2IdP -> IdP: httpReq (get , IdP , AReq , nil_http_element);

15 IdP -Ch_IdP2C -> Actor: httpResp(code_200 , nil_agent ,

16 nil_http_element , htmlForm (?AnySP ,

?Art));

17 if(Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))) {

18 %% A4-S2

4.1. FORMALIZATION 59

19 Actor -Ch_C2SP_2 -> AnySP: httpReq (post , AnySP ,

20 nil_http_element , Art);

21 AnySP -Ch_SP2C_2 -> Actor: httpResp(code_200 , nil_agent ,

22 nil_http_element , ?

Resource);

23 }

24 }

25 }

ServiceProvider entity

The general ServiceProvider entity has four parameters. They are Actor,

IdP, C and URI representing the agent that plays the entity of ServiceProvider

, the identity provider, the client, and the resource it hosts. The other

parameters are the channels whose number depends from the specific profile.

1 entity ServiceProvider(Actor , IdP , C: agent ,

2 URI : uri ,

3 % [...]

4) {

5 % [...]

6 }

SP-initiated with front channels In the SP-initiated profile with front

channels, the service provider, upon receiving a request for a resource, ini-

tiates the protocol by issuing an authentication request (See steps S1-A1

of Figure 3.1). Then, it waits for incoming authentication responses, and

finally it returns the requested resource (steps A4-S2 of Figure 3.1).

The ServiceProvider entity of the SP-initiated profile with front chan-

nels takes four parameters more for the communication channels, they are

Ch_C2SP_1, Ch_SP2C_1, Ch_C2SP_2, and Ch_SP2C_2.

1 entity ServiceProvider(% [...]

2 Ch_C2SP_1 , Ch_SP2C_1 ,

3 Ch_C2SP_2 , Ch_SP2C_2: channel

4) {

5 % [...]

6 body {

7 %% A1-S1

8 C -Ch_C2SP_1 -> Actor: httpReq(get , URI , nil_http_element ,

9 nil_http_element);

60 CHAPTER 4. MODEL CHECKING

10 ID := fresh();

11 Actor -Ch_SP2C_1 -> C: httpResp(code_30x , IdP ,

12 hBind(aReq(Actor , IdP , ID),

13 URI),

nil_http_element

);

14

15 %% A4-S2

16 C -Ch_C2SP_2 -> Actor: httpReq (post , Actor , nil_http_element ,

17 pBind(signedAResp(inv(pk(IdP)),

18 Actor , IdP , C, ID),

URI));

19 Resource := fresh ();

20 Actor -Ch_SP2C_2 -> C : httpResp(code_200 , nil_agent ,

21 nil_http_element , Resource);

22 }

23 }

fresh is a reserved ASLan++ keyword for generating nonces. The ServiceProvider

uses it for both generating the unique ID of the authentication request ID

and for modeling the resource Resource.

SP-initiated with back channels When back channels are used the ser-

vice provider executes the artifact resolution protocol. In Figure 3.2, SP

executes the ARP in step A5 and A6. We model the service provider as

follows:

1 entity ServiceProvider(% [...]

2 Ch_C2SP_1 , Ch_SP2C_1 ,

3 Ch_C2SP_2 , Ch_SP2C_2 ,

4 Ch_SP2IdP , Ch_IdP2SP: channel) {

5 % [...]

6 body {

7 %% S1-A2 of the SP-initiated with front channels

8

9 %% A4

10 C -Ch_C2SP_2 -> Actor: httpReq (get , Actor , nil_http_element ,

11 artBind(artifact(IdP , ?Ref), URI);

12 %% A5

13 Actor -Ch_SP2IdP -> IdP: httpReq(get , IdP , nil_http_element ,

14 artResolve(IDa , SP, artifact(IdP ,Ref

)));

15 %% A6

16 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,

4.1. FORMALIZATION 61

17 nil_http_element ,

18 aReq(Actor , IdP , ID));

19 %% S2

20 Resource := fresh ();

21 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,

22 nil_http_element , Resource);

23 }

24 }

IdP-initiated with front channels In the IdP-initiated profile, the ServiceProvider

entity waits for any incoming authentication response that matches IdP,

Actor, and it is signed with inv(pk(IdP) key own by the identity provider

(step A1 of Figure 3.2) . Then, it returns the resource (step S2) We model

this as follows:

1 entity ServiceProvider(% [...]

2 Ch_C2SP_2 , Ch_SP2C_2: channel) {

3 % [...]

4 body {

5 %% A2-S2

6 C -Ch_C2SP_2 -> Actor: httpReq(post , Actor , nil_http_element ,

7 pBind(signedAResp(inv(pk(IdP)),

8 Actor , IdP , C, ?ID), URI)

);

9 Resource := fresh ();

10 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,

11 nil_http_element , Resource);

12 }

13 }

IdP-initiated with back channels The ServiceProvider entity of the

IdP-initiated profile with back channels is the following:

1 entity ServiceProvider(% [...]

2 Ch_C2SP_1 , Ch_SP2C_1 ,

3 Ch_C2SP_2 , Ch_SP2C_2 ,

4 Ch_SP2IdP , Ch_IdP2SP: channel) {

5 % [...]

6 body {

7 %% A2

8 C -Ch_C2SP_2 -> Actor: httpReq(get , Actor , nil_http_element ,

9 artBind(artifact(IdP , ?Ref), URI);

10 %% A3

62 CHAPTER 4. MODEL CHECKING

11 Actor -Ch_SP2IdP -> IdP: httpReq(get , IdP , nil_http_element ,

12 artResolve(IDa , SP,

13 artifact(IdP , Ref)));

14 %% A4

15 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,

16 nil_http_element ,

17 signedAResp(inv(pk(IdP)), Actor , IdP ,

18 C, ID));

19 %% S1

20 Resource := fresh ();

21 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,

22 nil_http_element , Resource);

23 }

24 }

where A3 and A4 are the execution of the ARP.

IdentityProvider entity

The general IdentityProvider entity takes four parameters: Actor, C, SP and

TrustedSPs representing, respectively, the agent that will play the identity

provider entity, the client, the service provider, and a set of trusted service

providers. The general IdentityProvider entity is the following:

1 entity IdentityProvider (Actor , C, SP: agent ,

2 TrustedSPs: agent set ,

3 % [...]

4) {

5 % [...]

6 }

SP-initiated with front channels The IdP of the SP-initiated profile

with front channels performs three steps. First, it waits for incoming authen-

tication request from C. Second, it checks if the issuer of the authentication

request is a trusted service provider. Finally, it sends back to the client an

authentication response. This is modeled as follows:

1 body {

2 %% A2

3 C -Ch_C2IdP -> Actor: httpReq (get , Actor ,

4 hBind(aReq(?SP, Actor , ?ID),

5 ?URI), nil_http_element);

6 if (TrustedSPs ->contains(SP)) {

4.1. FORMALIZATION 63

7 %% A3

8 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

9 nil_http_element ,

10 htmlForm(SP, pBind(

11 signedAResp(inv(pk(Actor)), SP,

12 Actor , C, ID), URI)));

13 }

14 }

SP-initiated with back channels When back channels are used, the

identity provider does not send back the authentication response. Instead,

first it stores the response locally and the service provide associates a refer-

ence to the request. Second, it sends the reference to the client. Finally, it

waits for executing the ARP (steps A5-A6).

1 body {

2 %% A2

3 C -Ch_C2IdP -> Actor: httpReq (get , Actor ,

4 hBind(aReq(?SP, Actor , ?ID),

5 ?URI), nil_http_element);

6 if (TrustedSPs ->contains(SP)) {

7 Ref := fresh();

8 DB->add(Ref , signedAResp(inv(pk(Actor)), SP , Actor , C, ID));

9 %% A3

10 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

11 nil_http_element ,

12 arpBind(artifact(Actor , Ref), URI

));

13 %% A5

14 SP -Ch_SP2IdP -> Actor: httpReq(get , Actor , nil_http_element ,

15 artResolve (?IDa , SP,

16 artifact(Actor , ?AnyRef)));

17 if (DB ->contains (?AnyRef , signedAResp(inv(pk(? AnyIdP)),

18 ?AnySP , ?AnyIdP , ?AnyC , ?AnyID))) {

19 %% A6

20 Actor -Ch_IdP2SP -> SP: httpResp(code_200 , nil_agent ,

21 nil_http_element ,

22 signedAResp(inv(pk(AnyIdP)),

23 AnySP , AnyIdP , AnyC ,

AnyID));

24 }

25 }

26 }

64 CHAPTER 4. MODEL CHECKING

IdP-initiated with front channels The identity provider of the IdP-

initiated profile wait for a request for a resource from the client (step S1).

Then it sends an authentication response to the client (step A1). We modeled

it as follows:

1 body {

2 %% S1

3 C -Ch_C2IdP -> Actor: httpReq(get , URI , nil_http_element ,

4 nil_http_element);

5 if (TrustedSPs ->contains(SP)) {

6 %% A1

7 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

nil_http_element ,

8 htmlForm(SP, pBind(

9 signedAResp(inv(pk(Actor)), SP,

10 Actor , C, ID), URI)));

11 }

12 }

IdP-initiated with back channels The entity of the identity provider

of the IdP-initiated profile with back channels is the following:

1 body {

2 %A1

3 C -Ch_C2IdP -> Actor: httpReq(get , URI ,

4 nil_http_element , nil_http_element);

5 if (TrustedSPs ->contains(SP)) {

6 Ref := fresh();

7 DB->add(Ref , signedAResp(inv(pk(Actor)), SP, Actor , C, ID));

8 %% A2

9 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

10 nil_http_element ,

11 arpBind(artifact(Actor , Ref), URI));

12 %% A3

13 SP -Ch_SP2IdP -> Actor: httpReq(get , Actor , nil_http_element ,

14 artResolve (?IDa , SP,

15 artifact(Actor , ?AnyRef)));

16 if (TrustedSPs ->contains (?AnyRef ,

17 signedAResp(inv(pk(? AnyIdP)),

18 ?AnySP , ?AnyIdP , ?AnyC , ?AnyID))) {

19 %% A4

20 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,

21 nil_http_element ,

22 signedAResp(inv(pk(AnyIdP)),

4.1. FORMALIZATION 65

23 AnySP , AnyIdP , AnyC , AnyID))

;

24 }

25 }

26 }

Sessions and Environment

The scenarios that we considered involve a trusted identity provider, two

service provides, one of which is malicious, and a client. In our analysis we

suppose that a user asks for two different resources (e.g. by using two in-

stances of a web browser) being authenticated by the same identity provider.

We specified this scenario in the Environment entity that instantiates two pro-

tocol executions. A single protocol execution is defined in the Session entity

that in turns instantiates participants.

The fragment below shows the body of the Environment and Session

entities for the SAML SSO SP-initiated with front channels:

1 entity Environment {

2 % [...]

3 entity Session (C, IdP , SP: agent ,

4 TrustedSPs : agent set ,

5 URI : agent ,

6 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2 ,

7 Ch_C2IdP , Ch_IdP2C: channel ,

8 Channels: agent.channel.channel set) {

9

10 entity Client (

11 % [...]

12 } entity IdentityProvider (

13 % [...]

14 } entity ServiceProvider (

15 % [...]

16 } body {

17 %% New protocol run

18 new Client(C, SP , IdP , URI ,

19 Ch_C2SP_1 , Ch_SP2C_1 ,

20 Ch_C2IdP , Ch_IdP2C ,

21 Channels);

22 new ServiceProvider(SP, IdP , C, URI ,

23 Ch_C2SP_1 , Ch_SP2C_1 ,

24 Ch_C2SP_2 , Ch_SP2C_2);

25 new IdentityProvider(IdP , C, SP, TrustedSPs ,

66 CHAPTER 4. MODEL CHECKING

26 Ch_C2IdP , Ch_IdP2C);

27 } goals

28 %% Mutual authentication goal

29 G1a:(_) C *-> SP;

30 G1b:(_) SP *-> C;

31 %% Confidentiality goal

32 G2:(_) {C, SP};

33

34 }

35 body {

36 TrustedSPs := {sp, i};

37 CChannels := {(sp, ch_c2sp_2s1 , ch_sp2c_2s1),

38 (i, ch_c2i_2s2 , ch_i2c_2s2)};

39 %% Two protocol runs

40 % honest agents

41 new Session(c, idp , sp,

42 TrustedSPs ,

43 uri_sp ,

44 ch_c2sp_1s1 , ch_sp2c_1s1 , ch_c2sp_2s1 , ch_sp2c_2s1 ,

45 ch_c2idp_s1 , ch_idp2c_s1 ,

46 CChannels);

47 % malicious sp (==i)

48 new Session(c, idp , i ,

49 TrustedSPs ,

50 uri_i ,

51 ch_c2i_1s2 , ch_i2c_1s2 , ch_c2i_2s2 , ch_i2c_2s2 ,

52 ch_c2idp_s2 , ch_idp2c_s2 ,

53 CChannels);

54 }

55 }

Security goals

As we said in Chapter 3, we expect that SAML SSO fulfills the mutual

authentication property G1 and the confidentiality of the resource G2.

We specify the G1 and G2 security properties in the goals section of

the Session entity. This is modeled by using ASLan++ labels. The mutual

authentication is modeled with two labels defined in the goal section of the

Session entity: G1a:(_)C *-> SP and G1a:(_)SP *-> C. The labels G1a G1b

are then used to mark the data value upon which the agents SP and C agree

on. For example, when C sends the message S1 to SP, the variable URI is

marked as follows: URI. Similarly, we define the confidentiality property:

4.1. FORMALIZATION 67

G2(_){C, SP}. In this case, the property states that only C and SP shares a

data value marked by G2.

4.1.3 Formalization of OpenID

In this section we present the formal model of OpenID in Figure 3.5.

In this subsection we present a formalization in ASLan++ of OpenID. It

abstracts away the steps of the protocol considered irrelevant for the analysis

we perform in this case study, more precisely, the IdP discovery phase, and

the association session.

Structure of a Specification

An OpenID formal specification is structured as follows:

26

27 entity Environment {

28 symbols

29 % Protocol Message

30

31 entity Session (% Parameters

32) {

33

34 entity Client (% Parameters

35) {

36 %[...]

37 }

38 entity ServiceProvider (% Parameters

39) {

40 %[...]

41 }

42 entity IdentityProvider (% Parameters

43) {

44 %[...]

45 }

46 body {

47 %Instantiation of a single OpenID protocol run

48 }

49

50 } goals:

51 % G1 and G2

52 body {

53 % Instantiation of several OpenID protocol run

68 CHAPTER 4. MODEL CHECKING

54 }

55 }

Protocol Messages

We model messages, their structure, encapsulation, message encoding and

fields by using ASLan++ function symbols and constants as follows:

Listing 4.1: Model excerpt.

1

2 symbols

3 %% HTTP protocol values

4 get , post : method;

5 code_30x , code_200 : code;

6 uri_sp , uri_i : uri;

7

8 %% HTTP Messages

9 httpReq(method , agent , http_element , http_element) : message ;

10 httpResp(code , agent , http_element , http_element) : message ;

11 htmlForm(agent , http_element) : http_body;

12

13 %% OpenID Messages

14 aReq(agent , agent , int , agent) :

oid_authn_message;

15 aResp(agent , agent , agent , int , int , hmac) :

oid_authn_message;

16 noninvertible

17 hmac(symmetric_key , agent , agent , agent , int , int) : hmac;

18

19 }

The function symbols aReq and aResp model the structure of a protocol

message. The function symbols httpReq and httpResp describe the structure

of a HTTP message that can be used to transport the previous OpenID

messages. Constants get, post, code_200 and code_30x model the HTTP

GET method, the HTTP POST method, HTTP 200 response code, and the

HTTP 30x-family response codes. The function hmac models the structure

of the shared secret between SP and IdP.

4.1. FORMALIZATION 69

Communication Channels

We used the ACM model and the same naming convention as seen for SAML

SSO.

Client Entity

The Client entity takes nine parameters. The first three are the agents

involved in a protocol run Actor, IdP, SP, respectively for the agent that

will play the entity of Client, the OpenID provider, and finally, the service

provider. The parameter URI is the address of the resource the end-user

would like to access. The further parameters in the Client entity declaration

refer to the ACM channel pairs used for exchanging messages with the other

protocol entities.

Listing 4.2: Client entity.

1 entity Client (Actor , IdP , SP: agent , URI : uri ,

2 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2IdP , Ch_IdP2C: channel ,

3 Channels: agent.channel.channel set) {

4 symbols

5 AnySP : agent;

6 Resource : http_element;

7 AReq : aReq(agent , agent , int , agent);

8 AResp : aResp(agent , agent , agent , int , int , hmac);

9 Ch_C2SP_2 : channel;

10 Ch_SP2C_2 : channel;

11

12 % [...]

13 }

The symbol section in Client introduces variables used locally in the

body. The next ASLan++ code fragment will make clear in which context

they are used:

Listing 4.3: Sample interaction.

1 body {

2 %% A1-A2

3 Actor -Ch_C2SP_1 -> SP : httpReq (post , URI , nil_http_element ,

4 identifier(Actor));

5 SP -Ch_SP2C_1 -> Actor : httpResp(code_30x , ?IdP , ?AReq ,

nil_http_element);

70 CHAPTER 4. MODEL CHECKING

6 %% A3-A4

7 Actor -Ch_C2IdP -> IdP : httpReq(get , IdP , AReq ,

nil_http_element);

8 select {

9 on(IdP -Ch_IdP2C -> Actor : httpResp(code_30x , ?AnySP , ?AResp ,

10 nil_http_element) &

11 Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))): {

12 %% A5-A6

13 Actor -Ch_C2SP_2 -> AnySP: httpReq(get , AnySP , AResp ,

nil_http_element);

14 AnySP -Ch_SP2C_2 -> Actor: httpResp(code_200 , nil_agent ,

15 nil_http_element , ?

Resource);

16 }

17 }

18 }

The first step in the protocol is performed by C who accesses a resource

URI at SP providing it with an identifier, identifier(Actor), that C has

to prove to control. The corresponding HTTP response redirects the user

agent towards IdP, given the HTTP 30x code contained in it. The HTTP

response carries also the authentication request AReq, which contains infor-

mation about the client that is requesting to initialize the protocol.

In the next step, C proves control of the identifier to IdP. Upon the recep-

tion of a positive response from IdP, C is redirected back to SP transporting

the AResp response.

It is important to remark that the configured channels are being checked

to verify the relationship between the service provider and this client (as we

will discuss later). Finally, the contacted SP will provide C with a httpRespCookie

containing the requested resource.

OpenID Provider Entity

The IdentityProvider entity takes as parameters, respectively, the agents

participating to the session Actor, SP, and C. Then, the parameter Shared_key

represents the shared secret key used to sign and to verify assertions. Finally,

the parameter Handle is a value used as a pointer to refer to the Shared_key.

SP is supposed to hold valid credentials in order to issue an authentication

requests to IdP. Additional parameters are the communication channels

4.1. FORMALIZATION 71

used in the body of the entity. The variable Nonce is a fresh value sent in

the redirection of C to SP. Note that the actual authentication of C towards

IdP is abstracted away.

Listing 4.4: IdentityProvider model.

1 entity IdentityProvider (Actor , SP, C: agent ,

2 Shared_key: symmetric_key ,

3 Handle: int) {

4 symbols

5 Nonce: int;

6 body {

7 select{

8 on(C *->* Actor: httpReq(get , Actor , aReq(C, Actor , Handle , SP)

,

9 nil_http_element)): {

10 Nonce := fresh();

11 Actor *->* C: httpResp(code_30x , SP , aResp(Actor , C, SP, Nonce

, Handle ,

12 hmac(Shared_key , Actor , C, SP , Nonce ,

Handle)),

13 nil_http_element);

14 }

15 }

16 }

17 }

Service Provider Entity

This entity takes the same agent parameters as the identity provider plus

some specific set parameters such as: Discovery, used to abstract the discov-

ery sub-protocol; ConsumedNonces, initially empty, used to check the fresh-

ness of the aResp. Other parameters are Shared_key and Handle, already

explained before. The remaining parameters consist in the communicating

channels used here.

Listing 4.5: ServiceProvider entity.

1 entity ServiceProvider (Actor , IdP , C: agent , URI : uri ,

2 Discovery: agent.agent set ,

3 ConsumedNonces: int set ,

4 Shared_key: symmetric_key ,

5 Handle: int ,

72 CHAPTER 4. MODEL CHECKING

6 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2:

channel) {

7 symbols

8 AnyC : agent;

9 Resource : http_element;

10 Nonce : int;

11 Any : hmac;

12 % [...]

13 }

The behavior of the entity ServiceProvider is shown below. Upon the

reception of the client’s request containing its private identifier identifier

(Actor), the SP will discover towards which OpenID provider IdP it must

request the client to authenticate to by querying the Discovery set for the

pair AnyC, IdP. Next, SP redirects C to authenticate to IdP including in the

httpResp the aReq, embedding SP’s handle. After authenticating to IdP, the

client presents a signed assertion to SP. As only the Shared_key between SP

and IdP can be used to compute the hmac(Shared_key, IdP, ?AnyC, Actor,

?Nonce, Handle) the verification is straightforward. The Nonce is then added

to the set of consumed values. In the last step, provided that all conditions

are satisfied, the resource is delivered to C.

Listing 4.6: Interaction sample.

1 body {

2 select{

3 on(?C -Ch_C2SP_1 -> Actor: httpReq (post , URI , nil_http_element ,

4 identifier (?AnyC)) &

5 Discovery ->contains ((?AnyC , ?IdP))): {

6 Actor -Ch_SP2C_1 -> C: httpResp(code_30x , IdP , aReq(AnyC , IdP ,

Handle ,

7 Actor),

nil_http_element

);

8 select{

9 on(?C -Ch_C2SP_2 -> Actor: httpReq(get , Actor , aResp(IdP , ?AnyC

, Actor ,

10 ?Nonce , Handle , hmac(Shared_key ,

IdP ,

11 ?AnyC , Actor , ?Nonce , Handle)),

12 nil_http_element) &

13 !ConsumedNonces ->contains ((? Nonce))): {

14 ConsumedNonces ->add(Nonce);

4.1. FORMALIZATION 73

15 Resource := fresh ();

16 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent , LID

,

17 nil_http_element , Resource);

18 }

19 }

20 }

21 }

22 }

Sessions and Environment

The scenarios that we considered for the analysis involve a trusted identity

provider, two service providers, one of which malicious, and a client. In our

analysis we suppose two concurrent protocol execution, one with an honest

sp and another where it is instantiated with i. Notice that i shares a valid

secret with idp.

Listing 4.7: Sessions and environment models.

1 entity Environment {

2 symbols

3 % Protocol Message

4

5 entity Session (% Parameters

6) {

7 body {

8 new ServiceProvider (SP, IdP , C, URI ,

9 Discovery , ConsumedNonces , Shared_key , Handle ,

10 Ch_C2SP_1 , Ch_SP2C_1 ,

11 Ch_C2SP_2 , Ch_SP2C_2);

12 new IdentityProvider (IdP , SP, C,

13 Shared_key , Handle ,

14 Ch_C2IdP , Ch_IdP2C);

15 new Client (C, IdP , SP, URI ,

16 Ch_C2SP_1 , Ch_SP2C_1 ,

17 Ch_C2IdP , Ch_IdP2C ,

18 Channels);

19 } goals

20 %% G1 and G2 goals

21 }

22

23 body {

24 Discovery := { (c, idp), (i, idp) };

74 CHAPTER 4. MODEL CHECKING

25 ConsumedNonces := { };

26 CChannels := {(sp, ch_c2sp_2s1 , ch_sp2c_2s1), (i, ch_c2i_2s2 ,

ch_i2c_2s2)};

27 %% Two protocol runs

28 % honest agents

29 new Session(c, idp , sp, uri_sp ,

30 Discovery , ConsumedNonces , hmac_key_sp , handle_sp_idp ,

31 ch_c2sp_1s1 , ch_sp2c_1s1 ,

32 ch_c2sp_2s1 , ch_sp2c_2s1 ,

33 ch_c2idp_s1 , ch_idp2c_s1 ,

34 CChannels);

35 % malicious sp (==i)

36 new Session(c, idp , i , uri_i ,

37 Discovery , ConsumedNonces , hmac_key_i , handle_i_idp ,

38 ch_c2i_1s2 , ch_i2c_1s2 ,

39 ch_c2i_2s2 , ch_i2c_2s2 ,

40 ch_c2idp_s1 , ch_idp2c_s1 ,

41 CChannels);

42 }

43 }

Security goals

As we discussed in Chapter 3, we expect that OpenID satisfies the the mutual

authentication property G1 and the confidentiality of the resource G2. We

specified the goal as seen for SAML SSO in 4.1.2.

4.2 Formal Analysis

In this section we present the formal analysis of SAML SSO and OpenID.

This section is organized as follows. First, in Section 4.2.1 we give an in-

troduction to the AVANTSSAR platform. Then, in Section 4.2.2 and Sec-

tion 4.2.3 we discuss the options we considered and show the results.

4.2.1 The AVANTSSAR Platform

The architecture of the AVANTSSAR platform is shown in Figure 4.1. The

AVANTSSAR platform takes as input a high-level specification of a secu-

rity protocol, the expected security goals, as well as the scenario in which

4.2. FORMAL ANALYSIS 75

CL-AtSe

OFMC

SATMC

Input Output

ASLan++ HLPSL++

Connectors

Validators

Figure 4.1: The AVANTSSAR Platform

the protocol is employed, and automatically evaluates its security. The

AVANTSSAR platform supports two highlevel speficiation languages, namely

HLPSL++ and ASLan++. The high-level specification is translated by a

connector into an intermediate specification language amenable to formal

analysis. The intermediate specifications feed the validator which automat-

ically checks whether the protocol achieves its security goals. If this is not

the case, then an attack trace is returned and translated back into a user-

friendly format. Currently the AVANTSSAR platform supports three model

checker for security protocols, namely CL-AtSe [Tur06b], OFMC [MV09],

and SATMC [ACC07].

In the experiments reported in this chapter, we used the ASLan++ con-

nector and the SATMC back-end. The ASLan++ connector takes as input

an ASLan++ specification and translates it to ASLan, the intermediate spec-

ification language. In addition, the ASLan++ connector displays attacks (if

any) as message sequence charts (MSC). SATMC takes as input a formal

specification, a scenario to be considered for the analysis, a specification

76 CHAPTER 4. MODEL CHECKING

of the expected security property, and an integer max. SATMC determines

whether the protocol satisfies the expected security property in the scenario

by considering up to max execution steps. At the core of SATMC lies a

procedure that automatically generates a propositional formula whose satis-

fying assignments (if any) correspond to attack of length bounded by some

integer k ≤ max. Therefore, finding attacks (of length k) on the protocol

boils down to solving propositional satisfiability problems. SATMC relies

on SAT solvers for this task which can handle propositional satisfiability

problems with hundreds of thousands variables and clauses and even more.

SATMC can also be instructed to perform iterative deepening on k. By set-

ting max to infinite (max = −1), SATMC is a semi-decision procedure that

it is guarantee to terminate if there is an attack, but may not terminate if

the protocol is secure. SATMC is a decision procedure for protocols without

loops, i.e. it is guaranteed to terminate with a definitive sound answer. The

security protocols considered in this chapter do not have loops and thus fall

in this decidable class. When run against them, SATMC is thus guaranteed

to either report an attack (if any) or to reach a termination condition that

ensures that enough execution steps, say ksafe, have been explored proving

the safety of the protocol (i.e., absence of attacks).

4.2.2 SAML SSO

Table 4.1 and Table 4.2 show the results of the analysis. Each entry is a

model. The column MID is the unique identifier of the model. The column

from is the MID it derives from. The remaining columns are the options

organized in four areas. The first area is the use of the ARP. As we discussed,

ARP can be used in two distinct phases of SAML SSO for exchanging the

authentication request AReq and for the authentication response AResp. In

the IdP-initiated profile, ARP is used only for the latter. The second area is

the use of secure transport layer. The SAML specification recommends the

use of secure transport layer such as SSL/TLS for carrying authentication

requests and authentication assertions. However, when SSL/TLS is not used

for transmitting AResp, the protocol is trivially vulnerable to the Man-In-

4.2. FORMAL ANALYSIS 77

���

���

���

���

���

����

�	�
� �	�
� �	�
� �	�
�
	�
�
	�
�

�	�
� �	�
� �	�
� �	�
� �	�
� �	�
�

�
	�
� �
	�
� ��	�
� ��	�
� ��	�
� ��	�
�

�
�
�

�
�
�
��

�
�
��
�

Figure 4.2: Configurations for the SP-initiated profile

The-Middle attack in which the attacker overhear the assertion and reuses

it to impersonate C. In our analysis we assumed that SSL/TLS is always

used for exchanging AResp and consider optional the use of SSL/TLS for

exchanging AReq. When back channels are used, we assume that SSL/TLS is

always used (columns ARP: AReq-ARP: AResp). However, we explored two

types of SSL/TLS connection; server-side unilateral authenticated SSL/TLS

and bilateral authenticated SSL/TLS channels, respectively identified by “U”,

and “B” in Table 4.1 and Table 4.2. The third area is the use of signature to

digitally sign SAML messages. The SAML SSO profiles we considered count

in total five SAML messages that can be signed: the authentication request,

the authentication response, the assertion, the artifact resolve request, and

artifact response. The SAML specification mandates that the assertion is

always signed leaving the signature for the other 4 messages optional. The

last area is the use of encryption for encrypting portion of messages. In this

analysis we considered the encryption of the authentication assertion in the

the SP-initiated profile.

The last two columns show whether an attack to the properties has been

discovered by the model checker. In Table 4.1 and Table 4.2 we use the

78 CHAPTER 4. MODEL CHECKING

ARP SSL/TLS Sign Attacks
M
ID

fr
om

A
R
eq

A
R
es
p

C
-S
P
:A
R
eq

A
R
P
:
A
R
eq

A
R
P
:A
R
es
p

A
R
eq

A
R
es
p

A
rt
R
es
ol
ve

A
rt
R
es
p

E
n
cr
.
A
A

G
1

G
2

0fc - n n n - - n n - - n y n
1bc-U 0fc y n n U - n n n - n y n
2bc-U 0fc n y n - U n n - n n y n
3bc-U 0fc y y n U U n n n n n y n
1bc-B 1bc-U y n n B - n n n - n y n
2bc-B 2bc-U n y n - B n n - n n y n
3bc-B 3bc-U y y n B B n n n n n y n
4bc-U 1bc-U y n y U - n n n - n y n
5bc-U 2bc-U n y y - U n n - n n y n
6bc-U 3bc-U y y y U U n n n n n y n
4bc-B 1bc-B y n y B - n n n - n y n
5bc-B 2bc-B n y y - B n n - n n y n
6bc-B 3bc-B y y y B B n n n n n y n
13bc-U 4bc-U y n y U - y y y y y y n
14bc-U 5bc-U n y y - U y y y y y y n
15bc-U 6bc-U y y y U U y y y y y y n
13bc-B 4bc-B y n y B - y y y y y y n
14bc-B 5bc-B n y y - B y y y y y y n
15bc-B 6bc-B y y y B B y y y y y y n
2fc 0fc n n y - - n n - - n y n
4fc 2fc n n y - - y n - - n y n
5fc 4fc n n y - - y y - - n y n
6fc 4fc n n y - - y n - - y y n
12fc 0fc n n n - - y n - - n y n

Table 4.1: Results for the SP-initiated profile

symbol “y” when the option is used, “n” when the option is not used, the

symbol “-” for option non applicable, “U” for unilateral server authenticated

SSL/TLS channel, and “B” for bilateral authenticated SSL/TLS channel.

We derived the formal specification as shown in Figure 4.2. We started

from a single, initial configuration for each profile, i.e. 0fc, and we derived

new models by enabling one option per time. The initial configuration is

4.2. FORMAL ANALYSIS 79

ARP SSL/TLS Sign Attacks
M
ID

fr
om

A
R
es
p

A
R
P
:
A
R
es
p

A
A

A
R
es
p

G
1

G
2

0fc - n - y n n n
1bc-U 0fc y U y n n n
1bc-B 1bc-U y B y n n n
2bc 1bc-U y n y n n n

Table 4.2: Results for the IdP-initiated profile

taken from the prototypical examples available in the SAML specifications.

In total, we wrote 28 formal models.

In our experiments, we used the ASLan++ connector and the SATMC

validator. Table 4.1 and Table 4.2 shows the following results. First, the

property G1 is achieved by all the model both SP- and IdP-initiated. Second,

the IdP-initiated models achieve the authentication property G1. Third,

the SP-initiated SAML SSO does not satisfy the property G1. Fourth, by

enabling the protocol options G1 is never satisfied.

4.2.3 OpenID

Table 4.3 shows the results of the analysis of OpenID. Each entry is a model.

The column MID is the unique identifier of the model, and the column from

points to the model it derives from. The remaining columns are the options

and the result of the formal analysis. The column C-SP: AReq is the use of

SSL/TLS communication channels in steps A1 and A2, whereas the column

C-SP: AResp refers to the use of SSL/TLS communication channels for the

steps A4 and A5. The last two columns are for the results of the model

checker for the property G1 and G2.

As seen for SAML SSO, we derived the specifications starting from an

initial configuration and then we added incrementally the other options. We

wrote in total 4 models of OpenID. The setup for our tests is the same used

for SAML SSO.

80 CHAPTER 4. MODEL CHECKING

SSL/TLS Attacks

M
ID

fr
om

C
-S
P
:
A
R
eq

C
-S
P
:
A
R
es
p

G
1

G
2

0 - n n y y
1 0 y n y y
2 1 y y y n

Table 4.3: Results for OpenID

Table 4.3 shows the following results. First, when SSL/TLS is not used

for delivering the AResp to the SP, then the property G2 is not achieved.

The attack violating the property G2 is trivial: the attacker (i) overhears

the AResp that C sends to SP, (ii) blocks the delivery of the message to SP,

and (iii) sends the AResp at the SP. The second result is that G1 is never

satisfied.

4.3 Logic Flaws

4.3.1 SAML SSO

Table 4.1 shows that the SAML SSO SP-initiated does not satisfy the prop-

erty G1. A closer look at the the counterexamples revealed that them expose

a common attack pattern. The attack pattern is in Figure 4.3.

The attack involves four principals: a client (c), an honest IdP (idp), an

honest SP (sp) and a malicious SP (i). The attack is carried out as follows: c

initiates the protocol by requesting a resource urii at SP i. Now i, pretending

to be c, requests a different resource uri at sp and sp reacts according to the

standard by generating an Authentication Request, which is then returned

to i. Now i maliciously replies to c by sending an HTTP redirect response to

idp containing AReq(id, sp) and uri (instead of AReq(idi, i), and urii as the

standard would mandate). The remaining steps proceed according to the

standard. The attack makes c consume a resource from sp, while c originally

4.3. LOGIC FLAWS 81

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AReq(id, sp)&RelayState=uri
idp builds an authenti-
cation assertion AA =
AuthnAssert(id, c, idp, sp)

A3. HTTP200 Form(. . .)

A4. POST sp?SAMLResponse=AResp(id, sp, idp, {AA}
K
−1

idp
)&RelayState=uri

S2. HTTP200 Resource(uri)

Figure 4.3: Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

asked for a resource from i.

The attack in Figure 4.3 does not strictly require a malicious SP in order

to be successful. Any malicious web server i would be able, upon a request

from c, to mount the attack provided that (i) c is a client of sp and (ii) c

has an active authentication context with idp. The attack in Figure 4.3 can

be exploited in a number of ways:

Delivery of an unrequested resource. The most trivial exploitation of

the flaw consists in the attacker forcing the client to receive a protected re-

source different from the one that was initially requested. The same exploita-

tion may also be mounted if a malicious web server redirects the browser to

a legitimate SP before SAML SSO starts. However this attack can be pre-

vented by using well-known browser-side plugins that restrict HTTP redirec-

tions (e.g., the NoRedirect addon for Firefox). By allowing only IdP-to-SP

and SP-to-IdP redirections, the delivery of an unrequested resource upon

redirection outside of the SAML SSO Protocol is prevented, but a malicious

SP can still mount the one depicted in the Figure 4.3.

Launching pad for Cross-Site Request Forgery (CSRF) attacks.

This attack assumes that the URI that was initially requested did not point

to a resource, but rather contained a URL-encoded command, such as a

82 CHAPTER 4. MODEL CHECKING

request for the change of some settings or user’s preferences, for the deletion

of some resource, or for the annulment of/committing to an action, such

as the purchase of a paid good. Depending on the output provided by the

execution of the command, the client may or may not be able to detect

the attack. This type of attack is even more pernicious than classic CSRF,

because CSRF requires C to have an active session with SP, whereas in

this case, the session is created automatically hijacking C’s authentication

attempt.

Launching pad for Cross-Site Scripting (XSS) attacks. It is straight-

forward to see that this attack also constitutes a launching pad to reflected

XSS attacks, i.e. XSS attacks that can be triggered by visiting a maliciously-

crafted URL. In addition, a vanilla implementation of the SAML SSO pro-

tocol exposes the RelayState field to a possible injection of malicious code

that may be executed at the honest SP side. Although the SAML standard

recommends to protect the integrity of this field, our experience shows that

this often is not the case (see Section 4.4.1).

4.3.2 OpenID

Table 4.3 shows that the property G1 is not satisfied. The counterexamples

returned by the model checker have a common attack pattern. The attack

pattern is shown in Figure 4.4

The attack involves four principals: a client (c), an honest IdP (idp), an

honest SP (sp) and a malicious service provider (i). The client c requests urii

at SP i. Here, the attacker i, impersonating c, requests a different resource

to sp and sp reacts starting OpenID by crafting a proper authentication

request for c. The malicious SP i uses this authentication request in its pro-

tocol session with c. The protocol simply proceeds according to the OpenID

standard resulting in c accessing to a resource of sp, while c originally asked

for a resource from i.

The differences between SAML SSO and OpenID make the exploitations

on SAML SSO not directly applicable to OpenID. For example, OpenID does

4.4. TESTING REAL IMPLEMENTATIONS 83

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?AReq(c, idp,H, sp)A1. HTTP302 idp?AReq(c, idp,H, sp)

A2. GET idp?AReq(idp,H, sp)
idp builds an authenti-
cation assertion AA =
AuthnAssert(idp, c, sp,H)

A3. HTTP200 Form(. . .)

A4. POST sp, {AA}K

S2. HTTP200 Resource(uri)

Figure 4.4: Authentication Flaw of the OpenID SSO Protocol

not prescribe any parameters to let SP recover its previous state (e.g. RelayState

in SAML SSO). Therefore, the CSRF and the XSS attacks described in

Section 4.3.1 are not possible.

4.4 Testing Real Implementations

In the previous sections, we described the application of a model checking

technique to the security analysis of authentication protocols. Our analy-

sis led to the discovery of an attack to the mutual authentication property

G1. Moreover, we discussed possible exploitations of the flaw. However, the

AVANTSSAR tool and, in general, model checking techniques, offer no sup-

port for testing real implementations. As a consequence, we tested manually

protocol implementations for verifying whether the attack returned by the

model checker is applicable. Then, we verified possible exploitations of the

flaw.

This section reports on the results of manual testing SAML SSO and

OpenID implementations.

84 CHAPTER 4. MODEL CHECKING

4.4.1 Exploitations in SAML SSO

We have analyzed a number of SAML-based SSO solutions available on the

market, including the SAML-based SSO for Google Apps, a deployment of

Novell Access Manager v.3.1, and SimpleSAMLphp as deployed for Foodle

(https://foodl.org). All these deployments support the SAML SSO use

case. As expected, by inspecting the messages exchanged between the par-

ties we verified that SPs accept and process SAML responses carried over

SSL/TLS channels different from that used to deliver the SAML request.

The SAML-based SSO for Google Apps Our analysis of the SAML-

based SSO for Google Apps shows that by exploiting the weakness we dis-

covered with the model checker, a compromised SP can force C to consume

a resource from Google, e.g., by visiting any page of the GMail service. This

trivial attack is however easily detected by the user using C, and does not

bring any real advantage to the attacker. Definitely more serious was the

XSS attack we were able to execute and that allowed the compromised SP

to steal the cookies of C for the Google domain and thus to impersonate C

on any Google application. The abstract flaw of Figure 4.3 served indeed as

launching pad for this XSS. The attack is depicted in Figure 4.5. As we can

see in the figure, c requires a resource from a compromised SP i; i, acting in

turn as a client, receives from sp an Authentication Request, and passes it

back to c, with the malicious code injected into the RelayState. The client’s

browser eventually executes the redirection to the maliciously-crafted URI,

as if coming from the Google domain (thus circumventing the same origin

policy). This redirection leads to the theft of the session cookies by sp. In

other words, the combination of the abstract flaw and the missing saniti-

zation was key to this XSS attack. In response to our vulnerability report

Google patched the issue by properly sanitizing the RelayState value. An

acknowledgement of our contribution can be found in the Google corporate

web pages [Goo09].

4.4. TESTING REAL IMPLEMENTATIONS 85

c idp i sp

S1. GET urii S1’. GET uri

S2’. HTTP302 sl?continue=uri

S3’. GET sl?continue=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp, acs)
&RelayState=MaliciousCode

A1’. HTTP302 idp?
SAMLRequest=AReq(id, sp, acs)
&RelayState=sl?continue=uri

A2. GET idp?SAMLRequest=AReq(id, sp, acs)&RelayState=MaliciousCode

idp builds an authentication assertion
AA = AuthnAssert(id, c, idp, acs)A3. HTTP200 Form(. . .)

A4. POST acs?SAMLRequest=AResp(id, acs, idp, {AA}
K
−1

idp
)&RelayState=MaliciousCode

S4. HTTP200 Script(. . .); SetCookies(HID,HUSR,ASIDAS)

S5. GET i/collect.php?cookies=(HID,HUSR,ASIDAS)

S5’. GET sl?continue=uri;Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 uri?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET uri?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 uri?AuthEventSource=SSO; SetCookies(Session)

S9. GET uri?AuthEventSource=SSO;Cookies(Session)

S10. HTTP200 Resource(uri); SetCookies(. . .)

Legenda: : https

Figure 4.5: XSS Attack on the SAML-based SSO for Google Apps

Novell Access Manager We have also analyzed the SAML SSO solution

of the Novell Access Manager v.3.1 as deployed in a real industrial environ-

ment and even in this case we were able to confirm the authentication flaw.

We have been able to mount a XSS attack similar to the one found in the

Google SSO solution. In this deployment RelayState is not used to store

the URI; instead, a URL-encoded parameter is used to this end and also

in this case, the parameter was not sanitized. In response to our findings

Novell promptly patched their implementation and issued a vulnerability

report [Nov11].

86 CHAPTER 4. MODEL CHECKING

SimpleSAMLphp SimpleSAMLphp, as deployed in Foodle, is not vulner-

able to the authentication flaw that we discovered with the model checker.

The reason is that SPs running SimpleSAMLphp additionally use cookies

that block the flaw. SimpleSAMLphp stores the initially requested URI into

the URL parameter ReturnTo. Although that field is not sanitized, we have

not been able to mount any XSS.

Also in this case we promptly informed the developer and maintainer of

the SSO solution, namely UNINETT. UNINETT credited us in the release

notes of a new version of SimpleSAMLphp [UNI10].

4.4.2 Exploitation in OpenID

The authentication flaw on SAML SSO can be exploited in several ways.

However, the differences between SAML SSO and OpenID make the ex-

ploitations on SAML SSO not directly applicable to OpenID. For example,

OpenID does not prescribe any parameters to let SP recover its previous

state (e.g. RelayState in SAML SSO). Therefore, the CSRF and the XSS

attacks described in Section 4.3.1 are not possible. However, the OpenID

specifications enable SP to append customized parameters to the redirection

URLs whose names and values are out of the scope of the OpenID specifica-

tions. Depending on their use, they can be exploited in a similar way as we

have seen for SAML SSO.

We have verified that the Zoho Invoice service provider 3 used with the

OpenID provider by Google or by Yahoo suffers from the logic flaw of Sec-

tion 4.3.2.

4.5 Conclusions

In this chapter, we presented the formal analysis of SAML SSO and OpenID

via model checking. Starting from the protocol specifications, we formal-

ized the seven protocol flows as well as the security-relevant configuration

options. We verified the different configurations discovering a previously

3http://invoice.zoho.com

4.5. CONCLUSIONS 87

unknown logic flaw allowing an attacker to mount CSRF attacks or cause

the delivery of unrequested resources. We tested manually five real protocol

implementation against the counterexample returned by the model checker.

Four out of five implementations suffer from the authentication flaw. More-

over, we discovered that in presence of XSS vulnerabilities, an attacker can

use the logic flaw as a lunching pad for XSS attacks in which the attacker

hijacks the user session by stealing the session cookies.

In this chapter we showed that model checking is a powerful technique

for detecting logic flaws in security protocols specifications. However, the

counterexamples prove that the model does not satisfy a given security pro-

tocol, while nothing is said about the implementations of the protocol. To

this end, the counterexample must be interpreted and executed against the

implementations deployed on the wild. However, reproducing counterexam-

ples not only requires a thorough understanding of both the protocol and

its implementation, but also a substantial amount of manual activity. In

Chapter 5 we present a technique that tackles these difficulties.

88 CHAPTER 4. MODEL CHECKING

Chapter 5

From Model Checking to

Security Testing

In Chapter 4, we showed that when specifications are available, model check-

ing can be used to detect subtle flaws in the logic of the application. However,

the counterexamples returned by the model checker witness a violation of a

security property in the model, and, which does not necessarily reflect a vul-

nerability in a real implementation. Moreover, the model checker provides

little support for testing the real implementations. As a result, counterexam-

ples are normally interpreted and executed manually against the real system.

In this chapter we propose an automatic model checking-driven approach for

testing security protocols against counterexamples returned by the model

checker. We applied our technique to four SAML SSO and OpenID protocol

implementations. The experiments show that the approach is capable of de-

tecting the logic flaws of SAML SSO and OpenID into real implementations.

Structure: This chapter is organized as follows. Section 5.1 describes

the architecture of the approach. Section 5.2 presents the ASLan language.

Section 5.3 describes the instrumentation techniques. Then, in Section 5.4

we describe the test execution engine. Section 5.5 shows the experiments

and the results of our tests. Finally, Section 5.6 draws some conclusions.

89

90CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Figure 5.1: Overview of the Approach

5.1 Architecture

An overview of our approach is shown in Figure 5.1. It takes in input a model

amenable for formal analysis, a security property, and the implementation

under test IUT. The IUT is a data structure containing the mapping between

abstract model symbols and real values and the protocol participants that

are under test. Our approach consists of the following steps:

Model Checking Given a formal model of the protocol and a description

of the expected security properties, a model checker systematically

explores the state space of the model looking for counterexamples. Any

counterexample found by the model checker is returned as an abstract

test case.

Instrumentation The instrumentation step automatically calculates and

5.2. MODEL CHECKING 91

provides the Test Execution Engine with a collection of program frag-

ments, encoding how to verify (generate) incoming (outgoing, resp.)

messages, by using the functionalities provided by the adapter in the

IUT input.

Execution The Test Execution Engine (TEE) interprets the abstract test

case and executes the program fragments accordingly. The IUT speci-

fies which principals are part of the system under test (SUT) and which,

instead, are simulated by the TEE. The verdict indicates whether the

TEE succeeded or not in reproducing the attack. Note that if the ver-

dict is negative, the whole approach can be iterated by requesting the

model checker to provide another attack trace (if any).

5.2 Model Checking

In this thesis, we used ASLan++ to model SAML SSO and OpenID. As said

in Section 4.2.1, the ASLan++ connector translates ASLan++ specifications

into ASLan, an intermediate language amenable for formal analysis. In this

section we present a simplified version of ASLan, featuring only the aspects

of the language that are relevant for this work.

Background of the AVANTSSAR Platform

ASLan supports the specification of model checking problems of the form

M |= φ, where M is a labeled transition system modeling the behaviors of

the honest principals and of the Dolev-Yao intruder (DY)1 and their initial

state I, and φ is a Linear Temporal Logic (LTL) formula stating the ex-

pected security properties [ACC+08]. The states of M are sets of ground

(i.e. variable-free) facts, i.e. atomic formulae of the form given in Table 5.1.

Transitions are represented by rewrite rules of the form (L
rn(v1,...,vn)
−−−−−−−→ R),

where L and R are finite sets of facts, rn is a rule name, i.e. a function symbol

uniquely associated with the rule, and v1, . . . , vn are the variables occurring

1A Dolev-Yao intruder has complete control over the network and can generate new
messages both from its initial knowledge and the messages exchanged over the network.

92CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Fact Meaning

stater(j, a, [e1, . . . , ep]) a, playing role r, is ready to execute the pro-
tocol step j,and [e1, . . . , ep], for p ≥ 0 is a list
of expressions representing the internal state
of a.

sent(rs, b, a,m, c) rs sent message m on channel c to a pretend-
ing to be b.

ik(m) The intruder knows message m.

Table 5.1: Facts and their informal meaning

in L. It is required that the variables occurring in R also occur in L. The

rules for honest agents and the intruder are specified in Sections 5.2.1 and

5.2.2. Here and in the sequel we use typewriter font to denote states and

rewrite rules with the additional convention that variables are capitalized

(e.g. Client, URI), while constants and function symbols begin with a lower-

case letter (e.g. client, hReq).

Message modeling Messages are represented as follows. HTTP requests

are represented by expressions httpReq(mtd , addr , qs, body), where mtd is

either the constant get or post, addr and qs are expressions represent-

ing the address and the query string in the URI respectively, and body is

the HTTP body. Similarly, HTTP responses are expressions of the form

hResp(code, loc, qs, body), where the code is either the constant c30x or c200,

loc and qs are (in case of redirection) the location and the query string of

the location header respectively, and body is the HTTP body. In case of

empty parameters, the constant nil is used. For instance, the message A1

in Figure 3.1 is

hResp(c30x, IdP, hBind(aReq(SP, IdP, id(N)), URI), nil)

obtained by composing hResp, hBind and aReq. id(N) is the unique ID of the

request, hBind binds the SAMLRequest aReq and the RelayState URI to the

location header. All the other HTTP fields are abstracted away because they

are either not relevant for the analysis or not used by SAML SSO protocol.

5.2. MODEL CHECKING 93

The above expressions are sufficient to capture the relevant aspects of

SAML SSO. However, it must be noted that it can be adjusted by adding

or removing parameters according to the need. For example, httpReq and

hResp can be extended with further parameters in order to support basic

authentication HTTP headers [FHBH+99] as used by OAuth 2.0 [Har12].

5.2.1 Specification of the rules of the honest agents

The behavior of honest principals is specified by the following rule:

sent(brs, bi, a,mi, ci) � stater (j, a, [e1, . . . , ep])
send

j,k
r (a,...)

−−−−−−−−→

sent(a, a, bo,mo, co) � stater (l, a, [e
′

1, . . . , e
′

q]) (5.1)

for all honest principals a and suitable terms brs, bi, bo, ci, co, e1, . . . , ep,

e′1, . . . , e
′
q, mi, mo, and p, q, k ∈ N. Rule (5.1) states that if principal a

playing role r is at step j of the protocol and a message mi has been sent

to a on channel ci (supposedly) by bi, then she can send message mo to

bo on channel co and change her internal state accordingly (preparing for

step l). The parameter k is used to distinguish rules associated to the same

principal, and role. Notice that, in the initial and final rules of the protocol,

the fact sent(. . .) is omitted in the left and right hand sides of the rule (5.1),

respectively. For instance, the rule for receiving the message A1 and sending

message A2 in Figure 3.1 is modeled as follows:

sent (SP1, SP, C, hResp(c30x, IdP, AReq, nil), CSP2C) �

statec(2, C, [SP, IdP, URI, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C])

send
2,1
c (C,IdP,SP,SP1,URI,AReq,CC2SP,CSP2C,CC2SP2 ,CSP2C2 ,CC2IdP,CIdP2C)−−→

statec(4, C, [SP, IdP, URI, AReq, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C]) �

sent (C, C, IdP, hReq(get, IdP, AReq, nil), CC2IdP) (5.2)

94CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

5.2.2 Specification of the rules of the intruder

The abilities of the DY intruder to intercept and overhear messages are

modeled by the following rules:

sent(A, A, B, M, C)
intercept(A,B,M,C)
−−−−−−−−−−−→ ik(M) (5.3)

sent(A, A, B, M, C)
overhear(A,B,M,C)
−−−−−−−−−−→ ik(M) �LHS

where LHS is the set of facts occurring in the left hand side of the rule.

We model the inferential capabilities of the intruder restricting our atten-

tion to those intruder knowledge derivations in which all the decomposition

rules are applied before all the composition rules [MCJ97]. The decomposi-

tion capabilities of the intruder are modeled by the following rules:

ik({M}k) � ik(k
−1)

decrypt(M,...)
−−−−−−−−→ ik(M) �LHS (5.4)

ik({M}sK) � ik(K)
sdecrypt(K,M)
−−−−−−−−→ ik(M) �LHS (5.5)

ik(f(M1, . . . , Mn))
decomposef (M1,...,Mn)
−−−−−−−−−−−−−→ ik(M1) � . . . � ik(Mn) �LHS (5.6)

where {m}k (or equivalently enc(k,m)) is the result of encrypting message

m with key k and k−1 is the inverse key of k, {m}sk (or senc(k,m)) is the

symmetric encryption, and f is a function symbol of arity n > 0.

For the composition rules we consider an optimisation [JRV00] based

on the observation that most of the messages generated by a DY intruder

are rejected by the receiver as non-expected or ill-formed. Thus we restrict

these rules so that the intruder sends only messages matching the patterns

expected by the receiver [AC02]. For each protocol rule (5.1) in Section 5.2.1

and for each possible least set of messages {m1,l , . . . ,mjl ,l} (let m be the

number of such sets, then l = 1, . . . ,m and jl > 0) from which the DY

intruder would be able to build a message m′ that unifies mi, we add a new

rule of the form:

5.2. MODEL CHECKING 95

ik(m1,l) � . . . � ik(mjl,l) � stater (j, a, [e1, . . . , ep])
impersonate

j,k,l
r (...)

−−−−−−−−−−−−→

sent(i, bi, a,m
′, ci) � ik(m

′) �LHS (5.7)

This rule states that if agent a is waiting for a message mi from bi and

the intruder is able to compose a message m′ unifying mi, then the intruder

can impersonate bi and send m′.

5.2.3 Specification of the authentication property

The security goal of 4.1.2 are translated by the ASLan++ translator into

an linear temporal logic formula. ASLan uses facts propositions as atoms of

the formulas, logic operators such as ∧, ⇒), the first-order quantifiers ∀ and

∃, and the temporal operators F (eventually), G (globally), and O (once).

Informally, given a formula φ, Fφ (Oφ) holds if at some time in the future

(past, resp.) φ holds. Gφ holds if φ always holds on the entire subsequent

path. (See [ACC+08] for more details about LTL.) We use ∀(φ) and ∃(φ)

as abbreviations of ∀X1. . . . ∀Xn.φ and ∃X1. . . . ∃Xn.φ respectively, where

X1, . . . , Xn are the free variables of the formula φ. We base our definition of

authentication on Lowe’s notion of non-injective agreement [Low97]. Thus,

SP authenticates C on URI amounts to saying that whenever SP completes a

run of the protocol apparently with C, then (i) C has previously been running

the protocol apparently with SP, and (ii) the two agents agree on the value

of URI. This property can be specified by the following LTL formula:

G∀(statesp(7, SP, [C, . . . , URI, . . .])⇒

∃O statec(2, C, [SP, . . . , URI, . . .])) (5.8)

stating that, if SP reaches the last step 7 believing to talk with C, who

requested URI, then sometime in the past C must have been in the state 2,

in which he requested URI to SP.

96CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Since we aim at testing implementations using attack traces as test cases

with the purpose of detecting a violation of the authentication property, we

would like to be sure that at the end of the execution of the attack trace, the

property has been really violated. Thus, we need to take into account the

testing scenario in terms of the observability of channels and of the internal

states of each principal. This can be done by defining a set of observable

facts. For instance, in case the tester can observe the messages passing

through a channel c then, for all rs, b, a, and m, the sent(rs, b, a,m, c)

facts are observable. Similarly, in case the tester can observe the internal

state of an agent a, then for all r, j, e1, . . ., en the stater(j, a, [e1, . . . , en])

facts are observable.

Once defined the set of observable facts according to the testing scenario,

we rewrite the formula using them. For instance, let us suppose that the

internal state of sp is not observable, while the channel cSP2C is observable,

we rewrite the property (5.8) as follows:

G∀(sent(SP, SP, C, res(URI), cSP2C)⇒

∃O statec(2, C, [SP, . . . , URI, . . .])) (5.9)

where res(URI) represents the resource returned by SP in step 7.

5.3 Instrumentation

The model instrumentation aims at calculating program fragments p associ-

ated to each rule of the model. Program fragments are then evaluated and

executed by the TEE (See Section 5.4) in the order established by the attack

trace.

Before providing further details, we define how we relate expressions with

actual messages. As seen in Section 5.2, messages in the formal model are

specified abstractly. For instance, let us consider the following SAML au-

thentication request:

<AuthnRequest ID="IDreq" Version ="2.0" IssueInstant ="IIreq"

5.3. INSTRUMENTATION 97

Destination ="DS" AssertionConsumerServiceURL ="ACS"

ProtocolBinding ="HTTP -POST">

<Issuer >IS </Issuer >

</AuthnRequest >

where IDreq is a string uniquely identifying the request, IS is the issuer of the

request, DS is the intended destination of this request, IIreq is a timestamp,

and ACS (Assertion Consumer Service URL) is the end-point of the SP.

The above SAML request is modeled by the expression aReq(SP, IdP, ID)

thereby abstracting IIreq. A further abstraction step is done by modeling

two fields such as IS and ACS with only one variable SP. Let D be the

set of data values the messages exchanged and their fields. For instance, if

AReq(is, ds, ii, acs, id) is an element in D, then also id, ds, ii, acs, and id

are in D. Let E be the set of expressions used to denote data values in D.

An abstraction mapping α maps D into E.

Let D⊥ be an abbreviation for D ∪ {⊥} with ⊥ 6∈ D. Let f be a user

defined function symbol of arity n ≥ 0. Henceforth we consider constants

as functions of arity n = 0. We associate f to a constructor function and a

family of selector functions:

Constructor: f : Dn → D such that α(f(d1, . . . , dn)) = f(α(d1), . . . , α(dn))

for all d1, . . . , dn ∈ D;

Selectors: πi
f : D → D⊥ such that πi

f (d) = di if d = f(d1, . . . , dn) and

πi
f (d) = ⊥ otherwise, for i = 1, . . . , n.

with the following exceptions. With K ⊆ D we denote the set of cryp-

tographic keys. If k ∈ K, then inv(k) is the inverse key of k. If f = enc

(asymmetric encryption), then

1. π1
enc is undefined and

2. π2
enc : K×D → D⊥, written as decrypt , is such that decrypt(inv(k), d′) =

d if d′ = encrypt(k, d) and decrypt(inv(k), d′) = ⊥ otherwise.

If f = senc, sdecrypt is defined similarly as above, replacing inv(k)

with k. We assume that the Adapter provides constructors and selectors as

98CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

program procedures. The association between symbols and procedures are

specified in the mapping (See Figure 5.1). In the specification of security

protocols, the behavior of the principals is represented in an abstract way,

and thus the operations to check incoming messages and to generate outgo-

ing ones are implicit. For example, in ASLan, message checks are realized

by pattern matching and fields of the received message must match with

some expressions stored in the state of the agent. Outgoing messages are

computed without specifying which operations are performed to compute it.

Therefore, in order to interact with a system under test, we need to make

explicit these procedures. We write these procedures as well as the TEE in

a pseudolanguage composed of statements such as if-then-else, foreach, and

the like. We also assume that the pseudolanguage has a procedure eval(p)

in order to evaluate a program fragment p. Let e be a ground expression in

E. We call ℓe a memory location in which a data value d ∈ D is stored such

that e = α(d).

A data value d could be the result of the evaluation of a program fragment

p, i.e. d = eval(p). For the sake of simplicity, in the sequel we sometimes

use indifferently the data value notation and the memory location containing

it. We use memory locations to refer to channels as well. Let ℓci and ℓco

be two memory locations for the channel constants ci and co, respectively.

Besides the common operation of reading and writing on channels as memory

locations, we define two operators to access them as pipes in order to send

(i.e. ℓc >> ℓm) and to receive data values (i.e. ℓc << ℓm). Also, we consider

a further operation to peek the first data value available in the pipe without

removing it (i.e. ℓc |> ℓm). The use of the latter operator will be clear to

the reader when we explain the Instrumentation for the intruder’s rules.

5.3. INSTRUMENTATION 99

5.3.1 Instrumentation of the rules of the honest agents

Example 5.3.1. Let us consider the following example of ASLan rule:

sent (A, A, B, f({g(A, B, m)}sK, {h(A, K)}Kb), CA2B) �

stateb(1, B, [B, Kb, inv(Kb), m, CA2B, CB2A])
send

1,1
b (B,A,Kb,K,CA2B,CB2A)

−−−−−−−−−−−−−−−→

stateb(2, B, [. . . , A, K]) � sent (B, B, A, f(B, m), CB2A) (5.10)

This rule can be executed only if the message received on the channel ℓCA2B

is f(d1, d2)), where d1 can be decrypted only after having decrypted d2,

containing the data value of the decryption key K. Moreover d1 must be

g(d3, d4, d5)), where d3 is simply stored in ℓA, while d5 must be equal to

ℓm, and d4 must be equal to ℓB, given that the variables B belongs to the

internal state of the agent. As said, these checks are implicit in the ASLan

semantics (pattern matching), as well as the procedure necessary to construct

the message ℓf(B,m), which is sent on the channel ℓCB2A
. Nevertheless, for

the testing purpose, we need to explicit these procedures. They only depend

on the structure of the rule and thus can be precomputed.

A program fragment p
send

j,k
r (a,...,ci,co)

encoding a rule (5.1) is as follows:

ℓ′mi
:= ℓmi

;

ℓci >> ℓmi
;

if ℓ′mi
is not empty and ℓmi

!= ℓ′mi
then: return False;

eval(pmi
);

ℓmo
:= eval(pmo

);

ℓco << ℓmo
;

where mi and mo are the incoming and outgoing message respectively.

The fragment pmi
checks whether ℓmi

is such that mi = α(ℓmi
) and pmo

computes a message ℓmo such that mo = α(ℓmo). In the sequel, we describe

how to generate automatically pmi
and pmo for a generic ASLan rule (5.1).

We define an association between an ASLan expression e and the frag-

ment p used to retrieve –accessing directly to memory locations or using

selectors operating on them– the corresponding data value denoted by e.

100CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

We call p : e an associated expression where e ∈ E and p is a program

fragment –containing selectors operating on memory locations– such that

e = α(eval(p)). With reference to the send rule (5.1), just after the recep-

tion of ℓmi
, the knowledge of the principal is represented by the following

set of associated expressions: Ms = {ℓmi
: mi, ℓe1 : e1, . . . , ℓen : en}. Given

Ms we need compute the associated expressions of each sub-term of mi.

Closure under decomposition Given a setMs of associated expressions,

the closure of Ms under decomposition, in symbols ↓Ms, is the smallest set

such that:

1. Ms ⊆ ↓Ms,

2. if p1 : enc(k, e) ∈ ↓Ms and p2 : inv(k) ∈ ↓Ms, then (decrypt(p2, p1) :

e) ∈ ↓Ms,

3. if p1 : senc(k, e) ∈ ↓Ms and p2 : k ∈ ↓Ms, then (sdecrypt(p2, p1) :

e) ∈ ↓Ms,

4. if p : f(e1, . . . , en) ∈ ↓Ms, then (πj
f (p) : ej) ∈ ↓Ms for j = 1, . . . , n.

Example 5.3.2. Let us provide an example of closure. With reference to

the rule (5.10), the set Ms contains the associated expression for the incom-

ing message ℓf(senc(...),enc(...)) : f(senc(K, g(A,B, m)), enc(Kb, h(A,K))) and

other expressions known by the agent ℓB : B, ℓKb : Kb, ℓinv(Kb) : inv(Kb),

ℓm : m, ℓCA2B
: CA2B, and ℓCB2A

: CB2A. By definition ↓Ms contains Ms

and other associated expressions. For example, we have ℓf(senc(...),enc(...)) :

f(senc(. . .), enc(Kb, h(A,K))) ∈Ms ⊆ ↓Ms then π1
f(ℓf(senc(...),enc(Kb,h(A,K)))) :

senc(. . .) and π2
f(ℓf(senc(...),enc(Kb,h(A,K)))) : enc(Kb, h(A,K)) are in ↓Ms

(case 4 of the definition). Given that ℓKb : Kb is in ↓Ms, the case 2 is

applicable, thus decrypt(ℓinv(Kb), π
2
f(. . .)) : h(A,K) ∈ ↓Ms as well.

Example 5.3.2 can be easily extended to the other sub-terms of the mes-

sage. However, it already clarifies why we need the closure of the knowledge.

5.3. INSTRUMENTATION 101

Indeed, the first part of the message f(. . .) is encrypted with K and it can

be decrypted only after having decrypted the second part, containing the

key K. Notice that, for the sake of simplicity, in this section we assume

atomic keys. Nevertheless the approach described can be readily generalized

to support composed keys.

After having computed all the associated expressions, we need to either

check or store the data values, according to the list of expressions represent-

ing the internal state of the principal. With reference to the send rule (5.1),

let kn = {e1, . . . , en}, and Ms′ = ↓Ms− {ℓe1 : e1, . . . , ℓen : en}.

Atomic checks The set of atomic checks Pmi
for a message mi ∈ E over

a knowledge kn is defined as follows:

1. for each p : e in Ms′, if either e is a constant or e is a variable, and

e ∈ kn then the following fragment is in Pmi
:

if eval(p) != ℓe then: return false;

2. for each p1 : e, . . . , pn : e in Ms′, if e is a variable, and e 6∈ kn then the

following fragment is a member of Pmi
:

ℓe := eval(p1);

if (ℓe!=eval(p2) or ℓe!=eval(p3) or . . . or ℓe!=eval(pn))

then: return false;

For instance, let us consider the rule (5.10), the following checks are in

Pf(...):

1. if eval(π3
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != ℓm then: return false;

if eval(π2
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != ℓB then: return false;

2. ℓA := eval(π1
h(decrypt(ℓinv(Kb), π

2
f(. . .))));

if (ℓA!=eval(π1
g(sdecrypt(π

2
h(. . .), π

1
f(. . .))))) then: return false; . . .

Program fragment pmi
is a sequence of all the items in Pmi

.

102CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Message generation function We call message generation function over

a set of expressions kn a function MsgGen defined as follows:

1. MsgGen(e) = ℓe if e ∈ kn;

2. MsgGen(f(e1, . . . , en)) = f(MsgGen(e1), . . . ,MsgGen(en))

With reference to the send rule (5.1), the program fragment pmo is cal-

culated by MsgGen(mo) over kn = {e′1, . . . , e
′
q}.

5.3.2 Instrumentation of the rules of the intruder

Intercept and overhear rules

Let us consider the intercept rule (5.4) in Section 5.2. Let M be the mes-

sage. The fragment pintercept(A,B,M,C) of pseudocode encoding the rule is as

follows:

ℓ′M := ℓM ;

ℓc >> ℓM ;

if ℓ′M is not empty and ℓM != ℓ′M then: return False;

where ℓ′M contains the previous value (if any) in ℓM , before the reception

of the new message. The fragment of pseudocode encoding the overhear

rule (5.4) in Section 5.2 is the same as the one defined above, except from

the operator |> in place of >>.

Decomposition rules

Let us consider the rules modeling the ability of decomposing messages (i.e.

decrypt, sdecrypt, and decompose).

The fragment of pseudocode pdecrypt(M,...) encoding the rule (5.4) is as

follows:

ℓM := eval(decrypt(ℓinv(K), ℓ{M}K
));

where M and K are two ASLan expressions for the message and the

public key, {M}K is the asymmetric encryption of M with K, and decrypt

5.4. TEST CASE EXECUTION 103

is the selector function associated to enc. Similarly for psdecrypt(...) encoding

the rule (5.5). The fragment pdecomposef (M1,...,Mn) encoding the rule (5.6) is

as follows:

ℓM1
:= eval(π1

f (ℓf(M1,...,Mn)));
...

ℓMn
:= eval(πn

f (ℓf(M1,...,Mn)));

where f(M1, . . . ,Mn) is the message the intruder decomposes, and πi
f for

i = 1, . . . , n are the selector functions associated to the user function symbol

f .

Composition rules

Let us consider the impersonate rule (5.7) in Section 5.2. The fragment of

pseudocode p
impersonate

j,k,l
r (...)

encoding this rule is computed byMsgGen(m′)

over the knowledge kn = {m1,l, . . . ,mjl,l}.

5.4 Test Case Execution

The Test Execution Engine (TEE) takes as input a SUT Configuration,

describing which principals are part of the SUT, and an attack trace. The

operations performed by the TEE are as follows:

1 procedure TEE(SUT :Agent Set;[step1, . . . , stepn]:Attack Trace)

2 for i:=1 to n do:

3 if not(stepi == sendj,k
r

(a, . . .) and a ∈ SUT) then:

4 while eval(pstepi
) == false do:

5 if handle_error () == false then:

6 printf ("Test failed in step %s", stepi);

7 halt;

The TEE iterates over the attack trace provided as input. During each it-

eration it checks whether the rule stepi must be executed (line (3)). Namely,

if stepi is either an intruder’s rule or a rule concerning an agent that is not

under test, then the program fragment pstepi is executed. If pstepi is executed

without any errors the procedure continues with the next step, otherwise the

TEE executes an error handling procedure. If the error is correctly handled,

104CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

then the test continues, otherwise, (lines (6)–(7)) notifies that an error oc-

curred.

5.4.1 Error Handling

Protocol implementations may differ from the model. For example, SP may

perform addition HTTP 30x redirections between the message S1 and A1.

In general, when a mismatch between the message received and the message

expected is detected, eval(pstepi) returns false. This error is captured by the

TEE that in turn executes an error handling procedure. If the error can be

handled, e.g., by executing the HTTP redirection, the TEE repeats the step

that cause the error until it succeed. If the error cannot be handled, then

the TEE interrupts the execution and reports that the test execution failed.

5.5 Experimental Results

In order to assess the effectiveness of the proposed approach, we have devel-

oped a tool of the architecture depicted in Figure 5.1. A complete description

of the tool is given in Chapter 7. In this section we introduce only the main

aspects. We implemented the instrumentation, the TEE and the adapter

modules in Java. The model checking module is the SATMC model checker

tool [ACC07]. The instrumentation module takes in input an ASLan model

and the mapping, and it returns a Java class where each method is a program

fragment. The TEE instantiates the class and executes the attack trace as

described in Section 5.4. The adapter implements the constructor and selec-

tor functions defined in Section 5.3. For example, constructors and selectors

for the HTTP protocol are available in a Java class called adapter.Http

that is built upon the Apache HttpComponents (http://hc.apache.org/).

These functions are used by program fragments as described in Section 5.3.

We used the attack traces shown in Figure 4.3 and Figure 4.4.

5.5. EXPERIMENTAL RESULTS 105

C IdP SP

S1. GET URI

S2. HTTP302 SL?continue=URI

S3. GET SL?continue=URI

A1. HTTP302 IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=SL?continue=URI

A2. GET IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=SL?continue=URI

IdP builds an authentication assertion
AA = AuthnAssert(ID,C, IdP,ACS)A3. HTTP200 Form(. . .)

A4. POST ACS?SAMLResponse=AResp(ID,ACS, IdP, {AA}
K
−1

IdP
)&RelayState=SL?continue=URI

S4. HTTP200 Script(. . .); SetCookies(HID,HUSR,ASIDAS)

S5. GET SL?continue=URI;Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 URI?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET URI?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 URI?AuthEventSource=SSO; SetCookies(Session)

S9. GET URI?AuthEventSource=SSO;Cookies(Session)

S10. HTTP200 Resource(URI); SetCookies(. . .)

Legenda: : https

Figure 5.2: SAML-based Single Sign-On for Google Apps

5.5.1 Protocol Implementations Under Test

In this section we describe two implementations of the profile SP-initiated

of SAML SSO, and one implementation of the OpenID protocol used with

different IdPs. They are the SAML-based SSO for Google Apps, Simple-

SAMLphp, and Zoho Invoice used with Google and Yahoo OpenID identity

provider.

SAML-based SSO for Google Apps

The protocol implemented in the SAML-based SSO for Google Apps in op-

eration until 2009 is depicted in Figure 5.2. The model has been obtained

by carefully inspecting the reference implementation of SAML-based Single

Sign-On for Google Apps and by experimenting with the online service.

106CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

In the implementation offered by Google, when SP receives a request for a

resource URI from C, if the request is accompanied by a valid session cookie,

then the resource is returned right away (step S10 in Figure 5.2). The name of

the session cookie depends on the specific service considered, e.g. it is named

CALH in case of Google Calendar, and GXAS in case of Gmail. If the request is

accompanied by valid values for the parameters auth and husr in the URI,

then SP creates a fresh session cookie and sends it back to C; C then is asked

to resubmit the request by means of an HTTP redirect (steps S8 and S9).

If neither of the above conditions hold, C is redirected to the Service Login

(SL) and the requested URI is passed as the value of the continue URL-

encoded parameter. Upon receipt of this request, SL initiates the SAML

Authentication Protocol (step A1) using SL?continue=URI as the value of

the aforementioned RelayState field. If the SAML Authentication Protocol

completes successfully, then SL sets the cookies HID, HUSR, and ASIDAS and

returns an HTML page of the form (concisely indicated as Script(. . .) in step

S4 of Figure 5.2):

<html >

...

<body >

<script >

var url=URI

. . .

window.setTimeout(

function () {

window.location = url;

},

0);

</script >

. . .

</body >

</html >

This simulates a redirection by setting the value of the browser variable

window.location to URI and forcing the browser to reload the page. Notice

that since the value of URI is embedded into the HTML page, it will be

5.5. EXPERIMENTAL RESULTS 107

C IdP SP

S1. GET URI

S2. HTTP200 Homepage; SetCookies(PHPSESSID,SimpleSAMLSessionID,foodleSession)

S3. GET as_login.php?ReturnTo=URI; Cookies(Session)

A1. HTTP302 IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=URI

A2. GET IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=URI

IdP builds an authentication assertion
AA = AuthnAssert(ID,C, IdP,ACS)A3. HTTP200 Form(. . .)

A4. POST ACS?SAMLResponse=AResp(ID,ACS, IdP, {AA}
K
−1

IdP
), &RelayState=URI; Cookies(Session)

S4. HTTP200 Resource(URI); SetCookies(SimpleSAMLAuthToken)

Legenda: : https

Figure 5.3: SimpleSAMLphp as deployed in Foodle

evaluated by the JavaScript interpreter.

SimpleSAMLphp

The protocol implemented by SimpleSAMLphp is depicted in Figure 5.3

where SP is the Foodle service offered by Uninett and available at http:

//foodl.org, while IdP is the OpenIdP provided by Uninett and available

at https://openidp.feide.no/.

The protocol execution starts with C asking for the resource URI to SP.

In step 2, SP redirects C to an internal login service of SP. Here, between

step S3 and A1 takes place the identity provider discovery protocol. The

identity provider discovery protocol aims at identitifying the last IdP used

by C by inspecting the cookies of C. In all our experiments, we assume that

when C starts the protocol, C does not have any cookie installed. As a result

the identity provider discovery protocol fails and SP shows to C a list of IdP.

C selects IdP, and the SAML protocol begins. In step A1, SP redirects C to

the IdP with an authentication request. The IdP challenges C and redirects

C to the SP. The protocol ends with SP providing the resource to C.

108CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

C IdP SP

S1. GET URI

S2. HTTP302 SP/login?serviceurl=URI

S3. GET SP/login?serviceurl=URI;

S4. HTTP200 LoginForm;

S5. POST SP/openid; identifier=IdP&servicename=ZohoInvoice

S6. HTTP302 IdP?oidAuthnRequest(C, IdP, h, SP)

S7. GET IdP?oidAuthnRequest(C, IdP, h, SP)

S8. HTTP302 SP?oidAuthnResponse(IdP, C, SP, n, h)

S9. GET SP?oidAuthnResponse(IdP, C, SP, n, h)

S10. HTTP200 Resource(URI)

Legenda: : https

Figure 5.4: Zoho Invoice relaying party service

Zoho Invoice Relying Party

Our experiments focused on the relying party provided by Zoho Invoice.

Zoho Invoice is an online billing solution for small business https://www.

zoho.com/invoice developed by Zoho. Zoho Invoice service allows users to

be registered and log in at their domain. Alternatively, users can login by

using SSO protocols such as OpenID, or other protocols such as OAuth2.0.

Zoho Invoice supports only two OpenID identity providers, they are Google

OpenID and Yahoo OpenID. In our experiments we have focussed only on

Zoho Invoice service when used with both OpenID identity providers.

Figure 5.4 shows the HTTP messages exchanged between a web browser

guided by an user C, the identity provider IdP, and the Zoho Invoice service

SP for accessing the front page URI=https://invoice.zoho.com/view/ZB_

Main/ZB_Invoice.

In step S1, C requests the resource URI. Then, SP redirects C to the local

login service SP/login with a parameter serviceurl carrying the original

resource asked by C. In step S4, the login service of SP returns the login page

5.5. EXPERIMENTAL RESULTS 109

Figure 5.5: User login at Zoho Invoice

of Figure 5.5. Afterwards, C selects to login with Google or Yahoo OpenID

identity provider. As a result, SP prepares the authentication requests and

redirects C to the IdP selected for being authenticated. The user is then

authenticated and, in turn IdP prepares an authentication response. In step

S8, IdP redirects C to SP together with the authentication response. Once

SP receives the authentication response, SP provides the resource to C.

5.5.2 Experiments

General setup

The first step of the experiments involves the setup the testing environment,

in which we registered a user account at each of the identity provider that

we tested.

SAML SSO We registered the domain ai-lab.it at Google Apps2. Then,

we deployed our own SAML identity provider in our servers3. In the config-

uration panel of Google Apps, we added our identity provider in the list of

trusted identity providers. Moreover, we uploaded the public key for verify-

ing the signature of the assertions. Finally, we created two user accounts for

testing; the first one at our identity provider, the second at the OpenIdP by

Uninett.

2When we set up the environment, the service was free of charge. See http://www.

google.com/apps
3For security reasons, we intentionally omit the URL of our identity provider service.

110CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Model adjustment

As we said in Section 5.4, the protocol implementations may differ from

the model due to HTTP 30x redirections. However, there are other differ-

ences that must be considered in order to execute tests. For example, both

the SAML SSO and the OpenID specifications explicitly abstract away the

user authentication, leaving to the implementation the choice of a particular

mechanism. As a result, the counterexamples returned by the model checker

do not specify how to pass the user authentication phase at the IdP. In order

to support implementation-specific steps, we added the support for execut-

ing arbitrary user code at specific point of the protocol. This is done by

adding a user-defined symbol into the model, and then by adding a mapping

between the user-defined symbol and the code implementing the logic of the

step.

SAML SSO We added userlogin into the Client and IdentyProvider

entities between the step A2 and step A3 of Figure 3.1. For example, the

Client has been modified as follows:

1 Actor -Ch_C2IdP -> IdP : httpRequest (get , IdP , AReq ,

2 nil_http_element);

3 userlogin;

4 IdP -Ch_IdP2C -> Actor: httpResponse(code_200 , nil_agent ,

5 nil_http_element ,

6 htmlForm (?SP , ?ARsp));

Listing 5.1: Modification of the Client

The IdentyProvider has been modified as follows:

1 C -Ch_C2IdP -> Actor : httpRequest (get , Actor , httpBinding(

2 authnRequest (?SP, Actor , ?ID), ?URI),

3 nil_http_element);

4 if (TrustedSPs ->contains(SP)) {

5 userlogin;

6 Actor -Ch_IdP2C -> C : httpResponse(code_200 , nil_agent ,

7 nil_http_element ,

8 htmlForm(SP, postBinding(

9 signedAuthnResponse(inv(pk(Actor)),

10 SP, Actor , C, ID), URI)));

5.5. EXPERIMENTAL RESULTS 111

11 }

Listing 5.2: Modification of the IdentyProvider

OpenID We added userlogin into the client and OpenID provider entities

between the step A3 and step A4 of Figure 3.5.

IUTs

We specified four IUTs, one for each implementation under test. For example,

Listing 5.3 shows the mapping for testing SAML-based SSO for Google Apps.

1 <iut model ="SAML_SSO -SP_init.aslan">

2 <map name="c" type=" String" value =" client"/>

3 <map name=" code_200" type=" Integer" value ="200"/ >

4 <map name=" code_30x" type="Multiple -Value" value ="302 ,301 ,303 ,304"/ >

5 <map name="get" type=" String" value="get"/>

6 <map name="i" type=" String" value =" intruder"/>

7 <map name="nil" type="Wild -Card" value =""/>

8 <map name=" nil_agent" type="Wild -Card" value =""/>

9 <map name=" nil_http_element" type="Wild -Card" value =""/>

10 <map name="post" type=" String" value="post"/>

11 <map name=" uri_i" type="URL" value ="http :// localhost :8081/ resource"/>

12 <map name=" uri_sp" type="URL" value="http ://www.google.com/calendar/

hosted/ai-lab.it"/>

13 <map name=" userlogin" type=" String" value =" gmail.UserLogin "/>

14 <map name=" htmlForm" type=" Adapter" value =" adapters.Html"/>

15 <map name=" httpReq" type=" Adapter" value=" adapters.Http"/>

16 <map name=" httpResp" type=" Adapter" value =" adapters.Http"/>

17 <map name="idp" type="URL" value="http ://i/sso/IdP/process_response.

php"/>

18 <map name="sp" type="URL" value="https ://www.google.com/a/ai -lab.it/

acs"/>

19 <map name=" httpBinding" type=" Adapter" value=" adapters.Saml"/>

20 <map name=" authnRequest" type=" Adapter" value =" adapters.Saml"/>

21 </iut >

Listing 5.3: Mapping for SAML SSO

Each entry of Listing 5.3 has a name, a type and a value. The name is

an ASLan symbol. The type can be one of the following: Java string, Java

integer, URL, adapter (i.e., Java class name), and multi-value. A multi-

value type is a special type where all the values within the same multi-value

112CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

elements are equals. For example, the symbol code_30x is mapped with

a multi-value whose values are 301, 302, 303, and 304. For generating a

message, the constructors picks the first element of the list, while for parsing,

the real values 301, 302, 303 and 304 are abstracted to code_30x.

It is worth noticing that the user-defined symbol userlogin is mapped

with a Java class gmail.UserLogin. The class gmail.UserLogin implements

the logic for executing the user login, e.g., submitting an HTTP form with

the user name and the password of the user account used for our tests.

In our experiments, we tested the honest service provider sp and the

identity provider idp. The client c and the attacker i are simulated by the

instrumented model.

Test Case Execution

We run the prototype against the SAML-based SSO for Google Apps. The

TEE automatically executed the attack traces till the message S2 of Fig-

ure 4.3 and, as expected, the message S2 contains the mailbox of the user.

The tests against SimpleSAMLphp failed when message S2 was received.

The analysis of the HTTP conversation has revealed that SimpleSAMLphp

returns an error message instead of the message S2. We identified the cause

of this error in a set of additional checks that were introduced in the code to

reinforce the binding between authentication requests and responses. These

checks are based on cookies and, since the authentication request is never

routed through c, no cookies are installed in c. Therefore, when c presents

an authentication response at sp, it fails in restoring the local user session

for c.

Finally, we run the attack trace of Figure 4.4 against Zoho Invoice relying

party with Google OpenID identity provider and Yahoo OpenID identity

provider. In both cases, the TEE reached the step S2, that, as expected,

contains the resource requested in S1.

5.6. CONCLUSIONS 113

5.6 Conclusions

In this chapter we have shown that starting from the specifications of a

protocol, it is possible to generate test cases by using a model checker and

to automatically execute them against different protocol implementations.

We developed a tool and used it to test the SAML-based SSO for Google

Apps, the Foodle service, and the Zoho Invoice service against the flaw of

Chapter 4. Our results show that the prototype is able to detect the logic

flaw on the Google service and the Zoho service. Moreover, the prototype

was not able to automatically confirm the authentication flaw on Foodle

due to specific implementation mechanisms used by SimpleSAMLphp that

mitigate the flaw.

The formal analysis of security protocols relies on the assumption that

the specifications of a protocol are available. This assumption is still valid

for the approach that we presented. However, the specification of a web

application are almost never available in practice. Chapter 6 presents a

technique for detecting logic flaws without the specifications of the system

under test. The approach first infers a model from a number of HTTP

conversations, then it generates and executes test cases that are likely to

tamper with the application logic.

114CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

Chapter 6

Black-Box Detection of Logic

Flaws

In the previous chapters, we saw how, starting from the formal specification

of a protocol it is possible to automate the testing of real applications. How-

ever, specifications describing the evolution of the internal state and of the

expected user behavior are almost never available for web applications. This

lack of documentation makes it very hard to find logic vulnerabilities. In this

chapter we propose a technique for detecting logic flaws when the specifica-

tions are not available. We applied our technique to seven large eCommerce

applications executing more than 3100 test cases, 900 of which violated the

expected behavior of the application. We discovered ten previously unknown

logic flaws among which five of them allow an attacker to pay less or even

shop for free.

Structure: This chapter is structured as follows. Section 6.1 gives an

overview of the proposed approach. Section 6.2 and Section 6.3 present,

respectively, the inference technique and the behavioral patterns. Section 6.4

presents the pattern-based test case generation, while Section 6.5 describes

the test execution engine. Section 6.6 presents the test oracle that verifies

for violation of the application logic. Section 6.7 discusses the setup for

the experiments and Section 6.8 shows the results. Finally, Section 6.9 and

115

116 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Section 6.10 respectively discuss the limitation of the approach, and draw

the conclusions.

6.1 Overview

The OWASP Testing Guide v.3.0 [The08] suggests a 4-steps approach to

test for business logic flaws in a black-box settings. First, the tester studies

and understands the web application by playing with it and reading all the

available documentation. Second, she prepares the information required to

design the tests, including the intended workflow and the data flow. Then,

she proceeds with the design of the test cases, e.g., by reordering steps or

skip important operations. Finally, she sets up the testing environment by

creating testing account, runs the tests, and verifies the results.

Our approach aims at automating the previous steps in a single black-

box tool. First, starting from a list of network traces containing HTTP

conversations, our system infers an application model and clusters resources

related to the same workflow “step” (Section 6.2). Second, our technique

analyzes the model and extracts a set of behavioral patterns (Section 6.3)

modeling both the workflow and dataflow of the application. Third, we apply

a set of attack patterns to automatically generate test cases (Section 6.4).

Finally, we execute them against the web application (Section 6.5), and we

use an oracle to verify whether the logic of the application has been violated

(Section 6.6).

In the rest of the section we describe each phase in details using eCom-

merce web applications of Chapter 3 as a running example.

6.2 Model inference

The technique we present in this chapter is passive and black-box. This means

that we do not require any access to the application source code (both on

the client and on the server-side), and that we do not actively crawl the

application pages or generate any traffic to probe its internal state. Instead,

we take as input a list of traces containing sequences of HTTP requests and

6.2. MODEL INFERENCE 117

responses. These traces can be manually generated by the tester, or just

collected by logging real user interactions.

For simplicity, we consider only network traces that exercise a specific

functionality of the web application. For example, if the web application

under test is a shopping cart, we will use traces in which users log in, add

items into the cart, and check out to buy the products. Nothing prevents the

tester from generating traces that also contain other functionalities, such as

browsing the online catalog or posting product reviews. However, focusing

only on one aspect of the business logic helps our system to find the relevant

operations with a minimum number of input traces.

Web applications often involve multiple parties. For instance eCommerce

web applications typically involve the client, the eCommerce website, and the

payment service. However, the communication between them is normally

channeled through the user browser and, therefore, we focus on this point

for the collection of our traces. In addition, it is useful to collect traces from

different deployments of the same web applications, to allow our inference

method to identify parameter values hard-coded in a certain installation.

Once the input traces have been collected, the first phase of our analysis

consists of building the navigation graph of the application, enriched with

the syntactic and semantic types for each parameter. The model inference

is done in three steps: resource abstraction, resource clustering, and model

refinement.

6.2.1 Resource abstraction

Input traces are sequences of pairs of HTTP requests and responses to re-

quest and fetch resources. Our approach currently supports the following

resources: JSON data objects [Cro06] and HTML pages. However, it can be

easily extended to other types such as SOAP messages [Wor07].

An HTML page is a resource that is displayed to the user within the

web browser. It contains link and form tags that the user uses to request

other resources. An HTML page can also contain client-side scripts such as

JavaScript (JS) for generating AJAX requests for fetching asynchronously

118 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.1: Resource abstraction and syntactic type inference of HTML page

other resources. As opposed to an HTML page, a JSON data object is

not directly displayed to the user. It is an associative tree-like data struc-

ture that associates keys to data values. A JSON data object is requested

asynchronously by client-side scripts and, once fetched, it is processed and

inserted into the HTML page by using the DOM API [Wor05]. The JSON

data object supports different data types such as numbers, strings, booleans,

arrays, and objects [Cro06]. For example, the data values of a shopping cart

can be sent to the web browser with the following JSON object:

{‘items’:

{‘item1’: [’price’: 19.9,

‘tax’ : 1.6],

‘item2’: [...]

}

}

The example above shows five keys: ’items’, ’item1’, ’item2’, ’price’, and

’tax’. Each key is associated to data types. The keys ’price’ and ’tax’ are

associated to data values of type number. The key ’item1’ and ’item2’ are

associated to one array each. Finally, the key ’items’ is associated to a data

value of type object.

At this step of the inference, we aim at extracting from the resources

information related to the dataflow and the workflow of the web application.

6.2. MODEL INFERENCE 119

The information related to the dataflow are the data values exchanged

between the web application and the web browser. These data values are

placed by the web application inside the HTML page in the form of HTML

forms, HTML links, or inside the JSON data objects. For example, the left-

hand side of Figure 6.1 and Figure 6.2 shows the tree-representation of an

HTML page and a JSON data object. The leaves are the URLs of the input

fields carrying data values that may be used to submit new HTTP requests

to the web application. The leaves as well as the URL, the POST data,

and HTTP redirections are used in Section 6.3 to extract the data values

propagation patterns.

As opposed to the dataflow, the information specific to the workflow

cannot be directly identified in HTML tags or JSON keys. In our approach,

we extract the workflow information by first clustering together resources

that share similarities, and then by inferring behavioral patterns such as the

occurrences in the trace. The clustering is detailed in Section 6.2.2 and the

behavioral patterns are explained in Section 6.3. At this stage of the inference

technique, the resource abstraction extracts from the HTML code and JSON

data object the DOM path of HTML tags that would allow a comparison

between the resources. With reference to Figure 6.1 and Figure 6.2, the

paths from the roots till the leaves are the position of the leaves inside the

resource. The comparison between JSON data object, and in a similar way

between HTML pages, is done via the comparison of the paths.

We call abstract HTML page the collection of (i) its URL, (ii) the POST

data (iii) the anchors and forms contained in the HTML code and their DOM

paths, (iv) the URL in the meta refresh tag, and (v) the HTTP redirection

location header.

Figure 6.1 shows the tree-representation of the DOM paths of all the

anchor and form elements. We treat HTTP redirections as special HTML

resources.

We call abstract JSON object a collection of (i) its URL, (ii) the POST

data, (iii) the pairs of value and path in the object and (iv) the HTML links

if any HTML code is contained.

From each abstract resource we extract a set of elements corresponding

120 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.2: Resource abstraction and syntactic type inference of a JSON
data object

to all possible parameters that appear in the URLs, in the POST data, and

in all the links. Each element is characterized by a name, a value, a path,

and an inferred syntactic type. Our approach supports the integer type,

decimal type, URL type, email address type, word type (alphabetical strings

e.g. “add”, “remove”, . . .), string type, list type (comma-separated values),

and unknown type for everything else. The type is automatically associated

to each element by inspecting the values that the element had in the input

traces. Obvious priority rules are applied in case of ambiguity – e.g. id=20

can be both a number and a string, but being the first a subset of the second,

it is considered to be a number.

6.2.2 Resource clustering

Modern web applications map application logic operations to different re-

sources. For instance, the operation of displaying the shopping cart could

involve an initial HTML page containing the skeleton of the web page and

then a collection of AJAX requests for populating the page with the list of

items, tax, available vouchers, and so on. Given a list of network traces we

would like to cluster the resources when they are likely to encode the same

operation of the application logic. We cluster resources in three phases.

First, we relate AJAX requests to the resource that originated them. Then

6.2. MODEL INFERENCE 121

Figure 6.3: (a) Application-level actions, (b) URLs requested, and (c) ab-
stract resources with list of originators

we group together resources considering their similarity and the originators.

Third, we split a cluster if a parameter of its resources encodes a command

rather than carrying a value.

During the first phase, we preprocess input traces to identify AJAX re-

quests. This can be done by checking the “X-Requested-With" HTTP re-

quest header [The13a] or by detecting JSON responses. After that, we asso-

ciate each resource to its originators. Figure 6.3 provides an example of this

first phase. In Figure 6.3.a we have a segment of input trace in which the user

logs in, checks the status of the shopping cart, and finally accesses the details

of a product. These application-level actions are mapped to the resources

shown in Figure 6.3.b, that are abstracted in Figure 6.3.c. In Figure 6.3.c

we have the HTML page r1 followed by the page r2. Then, r2 requests r3

by using AJAX that enriches r2 with new HTML code, or new client-side

scripts. The example then ends with r4 that we assume to be caused by a

link in r2 or added by r3. Figure 6.3.c shows also the list of originators of

each resource. r1, r2, and r4 have no originators, while r3 was originated by

r2.

In the second phase, we cluster resources. In general, two resources are

in the same cluster if they have the same URL, the same POST parameters,

122 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

and, if any, the same redirection URL. When comparing URLs we do not

take into account the values of the parameters, but only their syntactic types.

For example, the following three URLs are equivalent:

store.com/do.php?action=add&id=3

store.com/do.php?action=add&id=7

store.com/do.php?action=show&id=3

We compare first synchronous resources as explained before. For in-

stance, the resources r2 and r4 of Figure 6.3 are in the same cluster. Then,

we compare asynchronous resources. Two asynchronous resource are in the

same cluster if they have the same URL, POST data, redirection URL, and

originators. For instance, let us suppose to compare r3 with another asyn-

chronous resource r′ (not shown in Figure 6.3). After comparing the URLs

and POST data, we compare whether the originators of and r′ are in the

same cluster.

During the last phase, we visit each cluster and we try to identify the

parameters that are encoding a command rather than just transporting a

value. For each parameter we take the sub-group in which pages have the

same value for that parameter. For example, the parameter action divides

the gray cluster of Figure 6.4.a in two sub-groups, one for the cart value

and one for the show value. We then compute the page similarity between

pages in the same sub-group and between pages in different sub-groups. The

comparison is done by looking at the DOM path of HTML forms, their

action attribute (URL domain and parameter names), and the name of the

nested input elements. The function is applied to sub-groups by calculating

the percentage of pages that are similar. If the similarity inside the same

sub-groups is high (more than 55%), and between different sub-groups is

low (less than 45%), then we assume the parameter is used to specify an

operation and we create a different node for each value. Otherwise we leave

the cluster unmodified. The result of this phase is shown in Figure 6.4.b.

Once we have grouped all the resources in clusters, we can build the nav-

igation graph. The navigation graph is a directed graph G = (C ∪{I, F}, E)

where C the set of clusters, I the source node, F the final node, and E the

6.2. MODEL INFERENCE 123

Figure 6.4: (a) Clusters after comparing all the resources (b) Clusters after
having identified parameters encoding a command

set of edges initially empty. We place the edge (u, v) if there exists one input

trace π in which a resource r′ ∈ u immediately precedes a resource r′′ ∈ v.

Then, for each rj at the beginning of each trace (i.e. π = 〈rj , . . .〉), we place

the edge (i, u) where rj ∈ u and for each rj at the end of each trace, (i.e.

π = 〈. . . , rj〉) we place the edge (u, f) where rj ∈ u. Finally, we associate to

each node u the set of all the elements for every r ∈ u.

Model Refinement

In the final step of the model inference, elements associated to nodes are

enriched with semantic types. In [WCWQ11, WCW12] Wang et al. proposed

to label URL parameters with syntactic and semantic attributes. Our work

borrows few of their types (Server- and Client- generated attributes) and

add new ones. The list of semantic types supported is the following:

Unique type - for parameters whose values is different in each page within

the same node

Constant type - for parameters that have always the same value in all

resources within the same node

Server-generated type - for parameters whose values appear in HTTP

responses before appearing in any HTTP request

Client-generated type - for parameters whose values appear in an HTTP

request before appearing in any HTTP response.

124 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.5: Example of behavioral patterns using π1 = 〈a, b, a, c, d, e, f, e〉
and π2 = 〈a, c, d, e, f, e〉

Intuitively, the first two types describe properties of parameters that are

true inside a node, while the last two describe properties of parameters that

are true in the same input trace.

6.3 Behavioral Patterns

During the second phase of our approach, we analyze the navigation graph

and the input traces looking for patterns that are likely related to the under-

lying application logic. We divide workflow patterns in Execution Patterns,

that model what users normally do in our input traces, and Model Patterns

that model what the navigation graph allows to be done. Finally, Data Prop-

agation Patterns model how data is propagated throughout the navigation

graph.

6.3.1 Execution Patterns

Execution patterns model the actions performed by the user in the input

traces. In particular, we focus on three patterns:

Singleton Nodes

A node is a singleton if it is never visited more than once by any input

trace. Some of the users may visit these nodes, and some may not - but

no one visit them twice. For example, submitting a discount voucher

6.3. BEHAVIORAL PATTERNS 125

can be an operation observed in some of input traces but none of them

is submitting a voucher twice.

Multi-Step Operations

A Multi-Step Operation is a sequence of nodes always visited in the

same order. This is very common in many functionalities in web appli-

cations. For example payment procedures or user registrations often

consist of precise sequences of steps, and all traces going through those

processes always execute them in the same exact order.

Trace Waypoints

We use the concept of waypoints to identify nodes that play an impor-

tant role in the interaction between the user and the web application.

In particular, trace waypoints are those nodes that appear in all the in-

put traces. For example, if all our traces contains a purchase, then the

redirection to the payment website (e.g., PayPal) is a trace waypoint.

6.3.2 Model Patterns

Model patterns model the sequences of actions that are allowed according to

the navigation graph:

Repeatable Operations

Nodes that are part of a loop in the navigation graph are operations

that can potentially be repeated multiple times.

Model Waypoints

Model waypoints are those nodes that belong to every paths in the

navigation graph that go from the source node to the final node. In

other words, these nodes are not only visited in all input traces, but

there is no way in the navigation graph to bypass them. Therefore,

every model waypoint is by definition also a trace waypoint but not

vice versa.

Figure 6.5 shows a little example to better describe the difference between

model and execution patterns. The example shows the behavioral patterns of

126 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.6: Propagation Chains: from traces to the navigation graph

a navigation graph extracted from two input traces π1 = 〈a, b, a, c, d, e, f, e〉

and π2 = 〈a, c, d, e, f, e〉. The symbols St, TrWP, Rp, and MWP stand

for, respectively, singleton nodes, trace waypoints, repeatable nodes, and

model waypoints. The thick dotted line delimits an example of multi-step

operation. The way in which these patterns are combined together to test

the web application is presented in Section 6.4.

6.3.3 Data Propagation Patterns

Propagation chains identify those cases in which the same variable is sent

back and forth between the client and the web application. Our approach

uses the propagation chains in two phases. First, it uses them during the

test case generation in order to replay values of propagation chains across

different user sessions. Second, it uses the propagation chains during the test

execution in order to fetch the data value to submit it to the web application.

From an operational point of view, a propagation chain is a set of elements

associated to nodes that have the same values. Two parameters in the model

carry the same value if there are some input traces in which they hold the

same value, and there are no traces in which the values are different (since the

user does not perform the same actions in all the traces, a certain parameter

may not be present in all of them).

6.4. TEST CASE GENERATION 127

We compute this in two steps. First we identify the propagation chain

of each value within a trace. For example let us consider the example in

Figure 6.6. Here, in the input trace π1, the element w of the node c has

the same value of the elements z, q, and r of the nodes d, e, and f respec-

tively. Looking at trace π2, the elements w of the node c is still equal to the

parameters z and q respectively in d and e, but it is now different from q.

By comparing these relationships, we obtain the propagation chain de-

picted in the right side of Figure 6.6. A value propagates between two nodes,

linking together the variables w and z. Note that the relationship between

r and q in π1 has been invalidated by π2 and therefore is not included in the

final model.

We say that the chain is client generated if the initial value is chosen by

the user, and server generated otherwise. A similar classification is used by

Wang et al. [WCW12]. However, their notion is limited to input traces of

the same length while ours is extended to traces of different lengths and to

the application models.

6.4 Test Case Generation

In this section we describe how we generate test cases to stress the logic of

the web application. This is done by using attack patterns that simulate

an attacker that tries to use the application in an unconventional way. In

particular, we focused on a set of actions an attacker could perform: repeat-

ing operations, skipping operations, subverting the order of operations, and

mixing parameter values across user sessions. For each action we designed

a pattern. An example of these attack patterns is presented in Figure 6.7.

These examples are based on the navigation graph of Figure 6.5. We en-

riched the graphs with numbers for showing the order in which the nodes

are visited. For simplicity, we are omitting the source node I and the final

node F , respectively connected to a and e.

128 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

F
igu

re
6.7:

T
est

case
gen

eration
p
attern

s

6.4. TEST CASE GENERATION 129

6.4.1 Multiple execution of repeatable singletons

This attack pattern is obtained by comparing execution patterns with model

patterns. If the model identifies a node as “repeatable” but the traces mark

it as “singleton”, it means that even though there seems to be a way to

execute an operation multiple times, this was never observed in our normal

training set. Therefore, it may be interesting to see what happens when

these operation are repeated.

Figure 6.7.a shows the sequence of steps in the test case. If b is a repeat-

able singleton node, we select an input trace that visits b (e.g. 〈a, b, a, c, d, e, f, e〉).

This path is then cut into two parts at the node before the singleton, that

is 〈a〉 and 〈b, a, c, d, e〉. We call these two parts test case prefix and suffix.

Second, we compute the shortest loop on the navigation graph that brings

from the singleton node to itself, that is 〈b, a〉 in our example. Finally, the

test case is obtained by concatenating the prefix, the loop, and the suffix

paths.

6.4.2 Breaking Multi-Steps Operations

There are several ways of subverting the order of multi-steps operations.

We distinguish two types. The first approach is to give a different order to

the steps composing the operation. For example, let us suppose that the

nodes a, c, d, e, and f in Figure 6.7.b compose a multi-steps operation in

the given order, we can try to execute the sequence as 〈a, d, c, e, f〉. The

second approach is to break the sequence by interleaving one of the already

performed operations. For example, between d and e we could go back and

visit again c (e.g., executing 〈a, c, d, c, e, f〉). For instance, after adding the

taxes to a checkout process, we could go back and change the number of

items in the shopping cart. Our approach currently support the latter type,

however it could be extended to support the former type or other types of

reordering.

130 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

6.4.3 Breaking server-generated propagation chains

The goal of this attack pattern is to execute two user sessions and then

replace a value generated by the server in one session with the one of the other

session. As shown in Figure 6.7.c, the corresponding test case is composed

of two parts. The first part has the goal of interacting with the application

and capturing the value of a server generated propagation chain. The second

part starts another session and interrupts the propagation chain replacing

the value of z with the value v previously captured.

This attack pattern can potentially generate a very large number of test

cases. In fact, each web application can contains a lot of identifiers generated

by the server (for instance, all the product or message IDs). Therefore, we

focus our test case generation only on two types of propagation chains: the

ones containing unique values (i.e., that differ in all the input traces and are

therefore related to the session) and the ones containing installation-specific

values (i.e., values that are constant only within the same installation).

The test case generation algorithm operates as follows. First, we select

the parameters belonging to the chain that appear inside an HTTP request.

These parameters are called injection points and model the point in which

an attacker can replace the value generated by the server. For example, in

Figure 6.7.c the parameter z of the node d is an injection point. Second,

we select two traces from different user sessions that are visiting the node

associated to the injection points. The first is truncated at the injection

point and the second, unmodified path, is appended to the first one. With

reference to Figure 6.7.c, the two paths are respectively at the left- and

right-hand side.

In general, our approach only requires input traces that exercise a busi-

ness function of the web application. However, depending on the type of

attack pattern used, the input traces should satisfy further requirements.

For example, in order to apply this attack patterns, the tester must provide

input traces from different users and, optionally, from different web applica-

tion installations.

6.5. TEST CASE EXECUTION 131

6.4.4 Waypoints Detour

Waypoints are operations that are executed always by all the input traces.

When these operations happen only once per input trace, they seem to in-

dicate some sort of milestone in the execution of the business process of the

web application. In this case, the attacker can try to skip one or more of

these operations.

We consider two attack patterns that skip waypoints. The first is shown

in Figure 6.7.d in which the attacker skips an individual waypoint, e.g. d.

The second is depicted in Figure 6.7.f in which the attacker skips two oper-

ations, e.g. 〈c, d〉.

The generation of test cases following the pattern in Figure 6.7.d is

straight forward. First, we select an input trace that visits the waypoint

d, e.g., 〈a, b, a, d, e, f, e〉 and then we remove the node d. The result is

〈a, b, a, e, f, e〉.

The generation of test cases for the attack pattern in Figure 6.7.e requires

further care. In this case, we consider also the interference of the attack

pattern to the propagation chain. For example, it may happen that skipping

a waypoint can interrupt a propagation chain of a data value that is needed

for the subsequent actions. For example, let us suppose that the URL of the

node e requires the parameter q whose value appear in the resource d. In

this case, we use a similar approach as seen in breaking of server-generated

propagation chain in which the values of q is taken from another user session.

The generation of the test case is the following. First, we select a pair

of waypoints c and d. Then, we select two input traces from two users. The

first input trace is truncated at the first occurrence of e, i.e., 〈a, b, a, c, d, e〉.

The second skips the steps c and d, i.e., 〈a, b, a, e, f, e〉. The result is the

following test case 〈a, b, a, c, d, e〉.〈a, b, a, e, f, e〉.

6.5 Test Case Execution

The test cases described in Section 6.4 are abstract representations that

still miss details required to be properly executed. For example, the values

132 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

of some parameters cannot be determined from the model and needs to

be collected during the test case execution. The execution engine has to

treat different parameters in different ways, taking the constant from the

models, others from the values observed in the input traces, and preserving

the propagation of the ones that are generated by the application at runtime.

In addition, it is important that after each test the application is reset

to its initial state to avoid interferences between consecutive executions. For

example, a test may leave a number of items in the shopping cart, thus

affecting every following experiment performed with the same user account.

In general, it is often enough to delete the cookies and empty the shopping

cart at the end of each test.

The execution engine iterates over each page in the test case and turns

them into an abstract HTTP request. Constant values and propagation

chains are then assigned to the request parameters to generate a concrete

request that is executed by the engine. The response is parsed in order to

extract server generated parameters and update their current values. If the

execution engine is not able to properly reconstruct a chain (e.g., because the

page that was supposed to generate its value returned an error) the execution

engine abort the execution and report the exception.

We say that a test is correctly executed, if the test execution engine ends

with no exception. Otherwise, we say that it is not correctly executed.

6.6 Test Oracle

The approach we propose in this chapter is completely independent from

the business logic of the web application. Our technique can automatically

identify behavioral patterns, and then generate test cases to break those pat-

terns in a number of different ways. The system can also determine if a given

test was executed correctly, but this is as far as it is possible to go with an

application-agnostic approach. For example, replacing the value of a secu-

rity token in a payment workflow would probably make the entire process

fail. Unfortunately, without any knowledge about the underlying business

logic, the test verdict could only say whether the pattern was applied suc-

6.6. TEST ORACLE 133

cessfully, but it can not draw any conclusion about the possible implications.

Therefore, if we want our tool to be able to report possible violations of the

application logic, we need to extract the sequence of events that occur during

a test case execution and compare them with the logic property that we want

to violate.

A simple way to express a logic property for shopping carts could be

the following: if an order is approved for a user, then the user must have

completed a payment for the corresponding amount. In this formulation two

events play a central role: the fact that an order is placed, and the fact that a

user has paid a certain amount. Another important aspect of this property

is the time dependency between the two events. Since propositional logic

can only express truth regardless of the time, in our approach, we model

logic properties as Linear Temporal Logic (LTL) formulas [Pnu77, Hol04].

LTL adds temporal connectives like O (once in the past) to traditional logical

operators like ∧ (and), and =⇒ (implies). This enables to verify whether

one event will eventually happen in the future or it already happened in

the past. For example, the above logic property can be written in an LTL

formula as follows:

ordplaced ∧ onStore(S) =⇒ O(paid(U, I)) (6.1)

where ordplaced, onStore(S), and paid(U, I) are respectively the events order

placed, operation performed on the store S, and user U paid the price of item

I. Now, the problem of identifying violation of the logic property is recast

into the problem of checking whether the LTL formula is satisfied or not by

a given test case.

In our approach, the Test Oracle is the component that given an ex-

ecution of a test case returns true if a certain predefined logic property is

violated, and false otherwise. The oracle is composed of two parts: an events

extractor and an LTL formula checker. The extractor collects from the exe-

cuted test a partially ordered set of events (events can happen in sequence

or in parallel) grouped by user sessions. The second part verifies whether all

134 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

sequences satisfies or not the provided LTL formula.

It is important to note that both the events and the LTL formula depend

on the type of applications under test and on the type of vulnerabilities

that we are interested to find. For example, to find authentication bypass

vulnerabilities it would be interesting to observe events related to the user

login and to the access of private pages. However, since in this chapter

we focus on the test of eCommerce applications, we are more interested in

monitoring the money transfer and the value of the purchased items, as

described in more details in the next section.

6.7 Experiments

In this section we describe the experiments we performed on a number of

popular shopping cart applications. We first introduce the web applications

under test, then we discuss the extracted models and the results of our

automated analysis.

6.7.1 Shopping carts

We tested our technique on a number of popular shopping carts available for

offline testing. Our tool can be used also to test online eCommerce appli-

cations (such as the Amazon store). However, our tests require to attempt

malformed operations and to complete a large number of checkout processes.

This would be both unethical, since the application can malfunction as a re-

sult of our tests, and very expensive, since it would have required to buy

at least one product for each test case. Therefore, we opted for seven well

known open source applications, as reported in Table 6.1. The table also

shows the applications popularity measured according to the search results

obtained by performing a number of googledorks [Hac13]. Each Google query

was built by combining both the URL structure (e.g., the path of one of the

cart’s operation) and some static HTML content extracted from the appli-

cation’s pages (e.g., the “powered by. . . ” text in the footer). As such, the

numbers reported in the table are only a lower bound of the number of

6.7. EXPERIMENTS 135

Table 6.1: Popularity index
WebApp Installations WebApp Installations

OpenCart 9,710,000 TomatoCart 119,000
Magento 3,130,000 osCommerce 80,500
PrestaShop 650,000 AbanteCart 21,200
CS-Cart 260,000

Total 13,970,700

publicly-accessible installations available on the Internet.

This conservative measurement shows that these seven applications are

used by almost 14 million eCommerce installations. As a comparison, the

two applications tested by Wang et al. [WCW12] returned less than 40,000

hits using similar Google dorks.

General setup

We installed two instances of each web application on our own servers. We

will refer to them as the Store A and Store B. All installations except for

AbanteCart and PrestaShop were then configured to use both the PayPal

Express Checkout [Pay12a] and the PayPal Payments Standard [Pay12b]

methods. In total we obtained 12 different configurations to test1. We left

the other configuration options to the default ones.

We configured all the e-shopping applications in SandBox mode. In this

configuration, each application performs transactions by using the PayPal

SandBox payment gateway. These payments do not involve real money as

they are performed between the seller and buyer testing accounts.

To generate the input traces we created two user accounts, U1 and U2,

each controlling a PayPal buyer testing account. For each web application

we captured in total six HTTP conversations, three for each store: one with

U1 buying one item, one with U2 buying another item, and one with U1

buying two different items. These input traces were sufficient to stimulate

1When we did the experiments AbanteCart and PrestaShop were providing only one of
the two payment flows above, respectively PayPal Payments Standard for AbanteCart and
PayPal Express Checkout for PrestaShop.

136 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

the main shopping cart functionality, but a better training could be used in

the future to expose also more subtle features or configurations.

6.7.2 Testing Oracle

In their experiments, Wang et al. [WCWQ11] used the following logic prop-

erty to describe shopping cart applications:

“The store S changes the status of an item I to “paid” with regard to a

purchase being made by user U if and only if (i) S owns I; (ii) a payment is

guaranteed to be transferred from an account of U to that of S in the CaaS;

(iii) the payment is for the purchase of I, and is valid for only one piece of

I; (iv) the amount of this payment is equal to the price of I.”

However, this property is not entirely verifiable in a black-box setting.

For instance, it is not possible to test the truth of the predicate “S owns I”

nor to check whether the due amount has been transferred to the merchant’s

account. According to that, we simplified the above invariant by removing

the non-verifiable clauses. The new property that can be used for automated

black-box testing becomes:

When the store S confirms the user U that an order has been placed,

then in the past U paid S the amount equal to the price of I and U agreed

on purchasing I from S.

We modeled the invariant using the following events extracted during

each test case execution:

• ordplaced when the shop confirms that the order has been placed;

• onStore(S) when an operation has been performed on the store S;

• paid(U, I) when the user U authorizes the payment gateway to pay the

price of I;

• toStore(S) when the payment is meant for the store S;

• ack(I), when the user acknowledges to buy I.

6.7. EXPERIMENTS 137

These events are combined together in the following LTL formula mod-

eling the logic property of the shopping cart applications:

ordplaced ∧ onStore(S) =⇒

O(paid(U, I) ∧ toStore(S) ∧

O(ack(U, I) ∧ onStore(S))) (6.2)

6.7.3 Test Case Execution

By applying our attack patterns to the models extracted from the input

traces, we generated around 3100 test cases, an average of 262 per appli-

cation. The number of test generated in each category is summarized in

Table 6.2.

Table 6.2 also shows the portion of test cases that were successfully ex-

ecuted. An execution failed when, by applying one of the attack template,

the resulting test case brought the application in a state in which it was

impossible to proceed with the rest of the test (e.g., because of an error page

was returned in an intermediate step). This is a common result, since by

definition our tests try to stress the application to expose some unexpected

behavior. The number of test cases violating our LTL formula is reported in

Table 6.3. As mentioned before, there are events that are not visible to the

oracle. Therefore, a violation to the LTL formula does not always correspond

to a vulnerability. In fact, it is possible that further checks performed in the

back end of the application would detect the fraud and cancel the order. In

order to distinguish real vulnerabilities from other forms of bugs (e.g. erro-

neously reporting to the user a failed transaction as successful) we manually

inspected the balance sheets of the merchant, the list of orders, and their

status. Whenever the result was not confirmed by our manual inspection,

we discarded it as a non-vulnerable case. The remaining cases correspond

instead to anomalous behaviors associated to real software vulnerabilities, as

explained in the next Section. It is important to note that over 28.9% of the

test cases generated by our approach brought the application in a state that

violated our oracle test, and 1 test out of 52 exposed a previously unknown

13
8

C
H

A
P

T
E

R
6
.

B
L
A

C
K

-B
O

X
D

E
T

E
C

T
IO

N
O

F
L
O

G
IC

F
L
A
W

S

Table 6.2: Test case generation and execution
Generation Execution

WebApp Time Repeat Detour MSteps PChains Time Exec. Not Exec. Total

AbanteCart Std ≪ 0:01 9 152 51 21 4:51 74 159 233
Magento Exp 0:02 10 246 82 5 16:23 240 103 343

Std 0:02 14 303 62 7 14:50 210 176 386
OpenCart Exp 0:01 10 83 77 3 2:34 140 33 173

Std 0:01 15 60 38 22 2:08 71 64 135
osCommerce Exp ≪ 0:01 4 142 13 6 3:22 117 48 165

Std 0:01 8 144 63 10 3:42 128 97 225
PrestaShop Exp ≪ 0:01 12 100 22 3 2:42 85 52 137
TomatoCart Exp 0:02 9 215 68 10 4:54 238 64 302

Std 0:02 17 138 32 37 4:36 115 109 224
CS-Cart Exp 0:05 8 562 24 6 12:02 347 253 600

Std 0:02 16 137 54 15 5:29 127 95 222

Total 132 2282 586 145 1892 1253 3145

6.8. RESULTS 139

Table 6.3: Results
WebApp Viol. Bugs Vuln.

AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1

Total 909 849 60
100% 93.4% 6.6%

logic vulnerability.

Test case generation does not require much resources, while the execu-

tion phase can be quite time consuming (max 16h for the Magento). This is

largely due to the lack of parallelization in our experiments, and to the fact

that the PayPal sandbox environment is much slower than its live counter-

part. The model inference – omitted from Table 6.2 – required an average of

9 minutes per application for building the navigation graphs that, in average,

contained 34 nodes and 48 edges.

6.8 Results

In this section we discuss the results of our experiments. 6.6% of the problems

identified by our tests correspond to vulnerabilities. They were confirmed

manually by inspecting the merchant/buyer balance sheets in the merchant

PayPal account, and the status of the orders available in the back-office of

the online store. The remaining 93.4% are bugs in the presentation in the

eCommerce application. In these cases, the tests were executed until the

final page in which the store congratulates the customer for the purchase.

140 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

This caused the generation of the events ordplaced ∧ onStore(S). However,

a manual inspection revealed that all the orders in the database were “not

present”, “not complete”, or “unpaid”.

6.8.1 Vulnerabilities

Table 6.3 shows that 60 of our test cases (1.9% of the total) exposed a logic

vulnerability in the target applications. We discovered the following flaws:

• In osCommerce v.2.3.1, CS-Cart v.3.0.4, and AbanteCart v.1.0.4 with

PayPal Payments Standard a malicious customer can shop for free

(exploitable)

• In OpenCart v.1.5.3.1 and TomatoCart v.1.1.7 with PayPal Express

Checkout a malicious customer can pay less (exploitable)

• In TomatoCart v.1.1.7 with PayPal Express Checkout a malicious cus-

tomer can shop for free (exploitable)

• OpenCart v.1.5.3.1, TomatoCart v.1.1.7 and osCommerce v.2.3.1 with

PayPal Express Checkout a customer can pay an amount different from

what she authorized (not exploitable)

• TomatoCart v.1.1.7 with PayPal Express Checkout a customer pays

another customer’s cart (not exploitable)

All the exploitable flaws have been already responsibly disclosed. When

the developers did not answered within two weeks of our notification, we

reported the vulnerabilities also to the US Cert2. In the following we describe

each class of vulnerability we discovered in our experiments.

osCommerce, CS-Cart, and AbanteCart with PayPal Payments

Standard - shopping for free

These flaws have been discovered by test cases that interrupted the server-

generated propagation chain transporting the PayPal account of the mer-

2http://www.kb.cert.org/vuls/id/459446, http://www.kb.cert.org/vuls/id/

207540, http://www.kb.cert.org/vuls/id/583564

6.8. RESULTS 141

Figure 6.8: Shopping for free with osCommerce v.2.3.1 and Abante-
Cart v.1.0.4

chant.

An example is shown in Figure 6.8. The left-hand side of the Figure

shows the message sequence chart while the right-hand side shows events

grouped by user session. Each user session begins with a login message. The

events show how the violation was detected. At the end of the execution,

the clause ordplaced ∧ onStore(“Store B”) is satisfied as all the events in it

were observed. However, the formula O(paid(U, I) ∧ toStore(“Store B”) ∧

O(ack(U, I)∧onStore(“Store B”))) is not satisfied because none of the events

in it were observed in the past.

The manual inspection verified that (i) no payment was made to the

Store B, (ii) the status of the order in the back office of Store B was marked

as “completed”, and (iii) the invoice resulted paid.

It is straightforward to turn the above test case into a real attack. Indeed,

when redirected to PayPal, an attacker can replace the seller PayPal account

142 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.9: Paying less with OpenCart v.1.5.3.1 and TomatoCart v.1.1.7

with another PayPal account the attacker controls. This results in placing

an order and by paying herself instead of the real shop.

OpenCart and TomatoCart with PayPal Express Checkout - pay

less

In OpenCart and TomatoCart with PayPal Express Checkout an attacker

can pay less than the value of the goods she is purchasing. The flaw has been

detected by using the waypoints detour pattern. The test case generator

produced 11 test cases for OpenCart and 11 for TomatoCart in which the

user U2 skips the nodes of the redirection to PayPal for the payment and

reconstructs the URL with values taken from the user session of U2. A

representative test case is shown in Figure 6.9.

The events in Figure 6.9 shows that during the second user session the

clause ordplaced∧onStore(“Store A”) is satisfied. However, the other clauses

6.8. RESULTS 143

of the formula are not satisfied because neither the user acknowledgment nor

the payment were observed.

The manual inspection found two distinct orders in the list of orders, one

for I and for I ′. Both orders were in the state “paid” and ready for shipping.

However, the balance sheet of the merchant contains only the transaction

for I, while nothing is recorded for I ′.

This test case can be turned into an attack by first buying a cheap item

and intercept the redirection URL from PayPal to the store. Then, the

attacker can login again, add an expensive item to the cart and replay the

URL captured before. The store responds with a confirmation page. Even

worse, we verified that the attacker (or any other user) can reuse the same

TokenID and PayerID to complete an arbitrary number of additional fake

transactions. This process is only bounded by the timeout set by PayPal on

the token.

TomatoCart with PayPal Express Checkout - shopping for free

This problem has been identified by 11 different test cases generated with the

waypoint detour pattern. A representative test case is shown in Figure 6.10.

The events in Figure 6.10 shows that during the second user session the

clause ordplaced∧onStore(“Store A”) is satisfied. However, the other clauses

of the formula are not satisfied because neither user acknowledgment nor the

payment were observed.

The manual inspection verified that no payment for I and for I ′ were

done. However, the list of orders contained the order for I ′ in a “paid” state

and ready for shipping.

This test case can be turned into an attack as shown before with the

difference that the attacker ends the first user session at step 7.

osCommerce, OpenCart and TomatoCart with PayPal Express

Checkout - pay less

In osCommerce the test was generated by the waypoints detour, while in

OpenCart and TomatoCart the discovery was done by breaking server-generated

144 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Figure 6.10: Shopping for free with TomatoCart v.1.1.7

propagation chains.

For osCommerce, the test case is similar to the one shown in Figure 6.10.

The events show that the order made by U2 was placed but no payment

was observed. For OpenCart and TomatoCart, the tests are similar to the

one in Figure 6.8. However, the difference is the chain that is interrupted.

When PayPal Express Checkout is selected, as opposed to PayPal Payments

Standard, the store and PayPal are exchanging the Token via redirections.

Here, the pattern interrupted the chain of Token when the user is redirected

to PayPal for the payment. In both cases the oracle verified that the user U2

has a confirmation and that the clause paid(U2, I
′)∧ toStore(A) is satisfied.

However, the oracle could not verify O(ack(U2, I
′)∧onStore(A)) because the

events observed in the past were O(ack(U2, I) ∧ onStore(A)).

For these cases, the manual inspection confirmed that the order for the

item I ′ was in the list of the orders in status “paid”. However, the balance

sheet of the merchant shows that the payment for I ′ was done by U1, the

user used for the first user session, and not by U2. In this case, U1 authorized

6.8. RESULTS 145

Figure 6.11: Session fixation in TomatoCart v.1.1.7

PayPal to pay for the amount of I while his/her credit card was charged for

the amount of I ′.

TomatoCart with PayPal Express Checkout - Session Fixation

Our prototype discovered a flaw in which a user could be authenticated

as another user. The test cases were created by breaking the propagation

chain of the parameter sid in two distinct points. Figure 6.11 shows one of

them. The events of Figure 6.11 did not satisfy the logic formula because the

payment I ′ was of a different amount than the one the user acknowledged I.

We investigated the problem and found out that sid carries the same

value of the cookies and breaking it causes a Session Fixation in which, in

our case, U2 results logged in as U1. From that point on U2 can access U1

data. As a consequence of the previous point, U2 (now logged as U1) pays

the cart of U1. However, we couldn’t find any realistic exploitation of this

vulnerability. Supposing that the victim (i.e. U2) “clicks” on an URL crafted

146 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

by the attacker (U1), then the victim could notice the fraud in three different

moments (i) when checking the summary of order, (ii) when providing the

shipping address (it shows the attacker’s one), and (iii) during the payment

because the amount is different.

6.9 Limitations

Our approach uses attack patterns that tamper with the observed dataflow

and workflow. However, it does not test for other types of logic vulnerabilities

such as unauthorized access to resources. Moreover, we did not consider

cases in which the attacker can also play the role of a malicious store, or

the cases in which the attacker can intercept and tamper with the messages

between the application and the payment service. Nevertheless, the approach

could be extended for detecting other types of logic vulnerabilities as well

as supporting other types of attacks. This could be done by adding input

traces of privileged user (e.g., admin), by adding other behavioral patterns,

or by adding new attack patterns.

Second, the test generation favors efficiency over coverage. This means

that only few values are used for each test category, to maximize the possi-

bility to find bugs in a limited amount of time. A more thorough exploration

of the attack space could be used to discover more vulnerabilities, however

this could require a considerable amount of execution time. The focus of

this chapter is to show how an automated approach can be used to find logic

vulnerabilities in many real-word applications, and not to analyze in dept a

single application (a scenario that would also require more input traces to

better explore the application’s logic).

Finally, we modeled logic properties in LTL. The use of LTL enables us

to verify events with time dependency. However, LTL do not support algebra

whose terms appears at different moment of the execution. For example, our

oracles cannot verify whether the payment is the sum of the items the user

added into the cart at some point in the past. There are works that extend

LTL with constraints on integer numbers [BCF+10], and they could be used

by our oracle for checking more fine-grained properties.

6.10. CONCLUSIONS 147

6.10 Conclusions

In this chapter we showed that it is possible to automatically extract a

simplified model of a web application, and that this model is sufficient to

generate test cases that are likely to detect flaws in the logic of the web

application.

The technique we presented aims at automating the manual testing in a

single black-box tool. Our approach does not require the source code nor the

specifications of the web application. It is based on two key concepts: model

inference and an attack pattern-based test case generation. Our approach

starting from a number of network traces infers a model, and then, it extracts

a set of work flow and data flow patterns. Finally, it generates test cases

following a number of attack patterns. The attack patterns reproduce the

behavior of an attacker who intends to tamper with the data flow and the

work flow of the application. We used our prototype to test seven eCommerce

applications executing more than 3100 test cases, 900 of which violated the

expected behavior of the application. As a result, our tool detected ten

previously unknown logic vulnerabilities in the applications under test. Five

of them allow an attacker to pay less or even shop for free.

148 CHAPTER 6. BLACK-BOX DETECTION OF LOGIC FLAWS

Chapter 7

From Academia to Industry

This thesis was carried out within an industrial context. This allowed me to

balance the design of novel security testing techniques with their pragmatic

application to modern industrial-size scenarios. For example, we applied the

methodology presented in Chapter 4 to support SAP engineers in the design

and implementation of security protocols in SAP products. In this activity,

we formally verified their design and implementation decision of the SAML

SSO. Moreover, we developed a tool to automatize this type of analysis

implementing the model checking-based security testing of Chapter 5. The

tool has been used for the formal analysis and security testing of the SAP

implementation of OAuth2.0 protocol.

Structure: This chapter is organized as follows. Section 7.1 introduces

an excerpt of the formal analysis of the SAP implementation of SAML.

Then, Section 7.2 presents the design verification and security testing tool

implementing the techniques in Chapter 5 that was used for the SAP imple-

mentation of OAuth2 [Har12]. This tool was also used for the experiments

in Chapter 5 and Chapter 4.

149

150 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

7.1 Formal Analysis of SAP NetWeaver New Gen-

eration Single Sign-On

Implementations of security protocols may deviate from the protocol speci-

fications. However, deviations may endanger the overall security goals. For

example, SAML-based SSO for Google Apps until 2008 neglected few but

important message fields that allowed a malicious service provider to imper-

sonate a user at any other service provider.

In Chapter 4, we showed that model checking can be used to analyze

the security of authentication protocols by taking into account the different

protocol flows and the different option configurations. In this section, we

show how the technique of Chapter 4 can be further extended to include

the design and implementation decisions. We applied this technique to the

SAP implementation of SAML SSO supporting development units in taking

decisions of the design.

7.1.1 SAP NetWeaver New Generation Single Sign-On

SAP NetWeaver New Generation Single Sign-On (hereafter NGSSO) is a

component of the SAP software ecosystem implementing SAML SSO. The

implementation provides software components to integrate services into the

federated environment of a SAP customer.

NGSSO offers a configuration environment in which the administrator

sets up SAML federated environments. The configuration of a SAML en-

vironment includes the list of identity and service providers, the supported

profiles, as well as the entity configuration per single profile. For instance,

the administrator could set up an identity provider that accepts signed mes-

sages in the SAML SSO. The configuration environment allows to establish

the trust relationship between entities by setting up the certificate manager

with entities’ certificates. Moreover, the administrator can specify whether

to use SSL/TLS or plain-text TCP sockets. The default values for all these

configuration options reflect the recommendations and requirements of the

SAML standard. However, administrators can change them according to the

7.1. FORMAL ANALYSIS OF SAP NW NGSSO 151

requirements of the deployment landscape.

NGSSO implements the main SAML SSO flows and features the SAML

SSO configuration options ranging from optional message fields, use of SS-

L/TLS at transport layer, and application of encryption and digital signa-

ture. We discussed these options in Chapter 4. In addition to these options,

developers may consider additional features or deviations from the protocol

specifications. In this thesis we describe two of them.

The first is a deviation from the SAML SSO specification in which the

SP is stateless. SAML SSO prescribes that SPs must verify whether the ID

of a response is equal to the ID they issue in the request. As a result, SPs

keep an internal table where to store the authentication requests. We call

this type of SP stateful SPs. However, stateful SPs may be vulnerable to

Denial-of-Service attacks. For example, the attacker can request resources

to the SP until the table is full or the SP runs out of memory. In security-

sensitive scenarios, stateless SPs are preferred to stateful as more resistant

to this type of denial of service.

The second feature is whether the SP uses session cookies during the

protocol execution. SAML SSO does not use HTTP cookies at any step

of the protocol. However, SP may use them to enforce particular policies.

For example, SP would like to enforce that the client forwarding a SAML

response is the same client that asked for the SAML request.

Our analysis included other features, however in this thesis we will not

present all of them.

7.1.2 Analysis

Table 7.1 shows the options, the deviations, and the results of our analysis.

Table 7.1 is structured as follows. Each row is a model with unique identifier

MID. The column from is a pointer to the model from which MID is de-

rived. The remaining columns are grouped in SAML SSO options, Dec., and

Attacks respectively for the options described in Chapter 4, the implemen-

tation decisions, and the result of the analysis. We use y when the option

(resp. decision) is used or when the model checker found a violation; we use

152 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

SAML SSO options Dec. Attacks
ARP SSL/TLS Sign

M
ID

fr
om

A
R
eq

A
R
es
p

C
-S
P
:A
R
eq

A
R
P
:
A
R
eq

A
R
P
:A
R
es
p

A
R
eq

A
R
es
p

A
rt
R
es
ol
ve

A
rt
R
es
p

E
n
cr
.
A
A

S
P
se
ts
co
ok
ie

S
P
ch
ec
k
s
ID

G
1

G
2

0fc - n n n - - n n - - n n y y n
2fc 0fc n n y - - n n - - n n y y n
4fc 2fc n n y - - y n - - n n y y n
5fc 4fc n n y - - y y - - n n y y n
. . .

0a-fc 0fc n n n - - n n - - n y y n n
5a-fc 5fc n n y - - y y - - n y n n n
. . .

Table 7.1: Results for the SP-initiated profile

n otherwise.

We used the AVANTSSAR platform for the analysis with the HLPSL++

connector and SATMC validator. We wrote in total 85 formal specifications

in HLPSL++ capturing the standard configuration options of Section 4.2.2,

and the SAP internal design and implementation choices. Our analysis con-

sidered two execution scenarios. The first scenario involved only SAP par-

ticipants, while the second considered an IdP by SAP and a standard SP.

The security properties as well as the security assumptions are the same of

Chapter 4.

Table 7.1 contains part of the results our analysis. It shows only the SP-

initiated models and 2 out of 8 implementation decisions we considered. The

first group of models, e.g. 0fc, 2fc, 4fc, and 5fc are the same in Chapter 4.

The second group of models are new models and they are variation of the

SAML SSO protocol. For example, the model 0a-fc derives from the model

0fc by adding the use of cookies.

Table 7.1 shows the following results. First, the protocol does not satisfy

the property G1. Second, the standard protocol options are not sufficient

7.2. A FORMAL ANALYSIS AND SECURITY TESTING TOOL 153

for fixing the flaw. Third, the use of cookies solves the vulnerability. Fourth,

the two implementation decisions do not endanger the security with respect

to the properties G1 and G2. Finally, the security goal G2 is always reached.

Developers can use the results of Table 7.1 for taking decisions about the

design and the implementation. For example, in security-sensitive scenarios,

they may enforce the use of cookie and avoid storing the ID as a Denial-of-

Service countermeasure.

7.2 A Formal Analysis and Security Testing Tool

This section presents a tool that leverages on the design verification and

security testing techniques of Chapter 4 and Chapter 5, and extends them to

support developers in analyzing the security of security protocols. The tool

helps developers, software engineers, and security experts in taking decisions

during the development process and to detect flaws both at the design and

deployment phases.

The current version of the tool targets web-based security protocol. How-

ever, we plan to extend it with the technique of Chapter 6. Our tool is a

set of Eclipse plugins that supports (i) the specification of protocol options

and implementation decisions, (ii) implements the design verification and

model-based security testing, and (iii) supports the verification of multiple

models and the execution of different tests.

Our tool was used for the experiments of Chapter 5 and it is currently

used for supporting SAP developers and engineers in assessing the security

of SAP implementation of OAuth2.

7.2.1 Design Verification

The design verification implements the formal analysis of security protocols

via model checking. The process consists of three steps. First, the user

writes the formal model and specify the security properties. Then, the model

checker explores the model looking for violation of the property. If a violation

is discovered, the model checker returns a counterexample witnessing the

154 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

Figure 7.1: ASLan++ Editor

violation. Finally, the user inspects the counterexample and interprets it.

The tool supports these three steps by integrating parts of the AVANTSSAR

platform. The AVANTSSAR platform offers as well a user interface for this

workflow. However, it is available only as a web application or a set of com-

mand line tools. Our tool aims at integrating AVANTSSAR tools into a

development environment familiar to engineers and developers.

Modeling

Our tool supports the ASLan and ASLan++ formal languages. However,

it can be extended to support other languages such as HLPSL [CCC+04],

Promela [Hol97], or ProVerif [Bla01]. The ASLan and ASLan++ editors

implement features that are typical of an IDE, such as syntax highlighting

and error highlighting. Figure 7.1 shows the ASLan++ editor and the syntax

highlighting features.

7.2. A FORMAL ANALYSIS AND SECURITY TESTING TOOL 155

Figure 7.2: The Event Sequence Chart viewer

Verification

Our tool verifies formal models against the security properties via model

checking. The tool currently integrates the SAT-based Model Checker (SATMC [ACC07])

that is executed within the Eclipse workspace. The integration is done via

a programming interface that can be extended to support the other model

checkers such as OFMC [BMV03] and ClAtSe [Tur06a], and SPIN [Hol97].

Visualization

If the model checker discovers a violation, it returns a counterexample. A

counterexample is a sequence of messages that are sent and received by the

protocol principals. Our tool offers a viewer called Event Sequence Chart

viewer (ESC), to show a graphical representation of the counterexample

similarly as seen in Chapter 4. Figure 7.2 shows the ESC viewer. The

viewer displays a timeline for each of the principal, e.g., sp, c, idp, and the

attacker i. Then, it places messages and arrows to show the direction of the

communication. The viewer uses a dashed arrow when the message has been

sent but not received yet.

The viewer offers other features that are not showed in Figure 7.2 such

as attack trace inspection. In particular, it allows the user to inspect the

original output returned by the model checker by simply clicking on the

156 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

messages displayed in the ESC.

7.2.2 Model-based Security Testing

The model-based security testing enables the user to generate and execute

test cases for detecting vulnerabilities in real implementations. This process

consists of five steps. First, the user models the protocol. Second, it uses

specific algorithms for generating test cases. In the third step, the user

defines the implementations under test. Finally, the test cases are executed

and the results are shown to the user.

Modeling

The user develops the models as seen before for the design verification. More-

over, we plan to integrate the inference technique of Chapter 6.

Test Case Generation

The current version of the tools use SATMC for generating test cases as

showed in Chapter 5. However, we plan to add the attack pattern-based test

case generation algorithm of Chapter 6.

Implementation Under Test

The user specifies the implementations under test (IUTs) by using the IUT

editor (see, e.g., Figure 7.3). The IUT is a data structure containing the

mapping between model symbols and concrete values, and the set of protocol

participants under test. Figure 7.3 shows the main parts of the UI in which

the user inputs the mapping, and lists the participants under test.

The list of adapters to be used is included into the mapping table. For

example, in Figure 7.3 we marked the Java classes mapping the abstract

ASLan symbols. Our tool allows the user to implement customized adapters.

Adapter As said in Section 5.3, the ASLan symbol used for modeling pro-

tocol messages are associated to a set of program functions called constructor

7.2. A FORMAL ANALYSIS AND SECURITY TESTING TOOL 157

Figure 7.3: The IUT for testing the SAML-based SSO for Google Apps

and selectors. These functions are implemented into the adapter module of

Figure 5.1.

Our tool enables user to develop custom adapters. An adapter is a Java

class that comply with the following convention. First, the class is a public

static Java class. Second, the constructor and parsers functions are static

Java method of the same arity n of the ASLan symbol. Finally, the name

of constructor methods is constr_sym and the name for parser is pij_sym

where sym is the name of the ASLan symbol and 0 ≤ j ≤ n is the position

of the parameter. For example, let us consider the user-specified symbol

httpReq in Section 4.1.2. The adapter for generating and parsing HTTP

requests is the following:

1 public static Http {

2

3 // CONSTRUCTOR

4 public static HttpRequest constr_httpReq(

5 Object methodStr , Object hostPortStr ,

6 Object urlParamStr , Object bodyUrlEncFormEnt) {

7 // [...]

8 }

158 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

9

10 // PARSERS

11 public static String pi1_httpReq(Object request){

12 // [...]

13 }

14

15 public static String pi2_httpReq(Object request){

16 // [...]

17 }

18

19 public static String pi3_httpReq(Object request){

20 // [...]

21 }

22

23

24 public static String pi4_httpReq(Object request){

25 // [...]

26 }

27 }

Test Case Execution

Our tool implements the instrumentation technique described in Chapter 5

for the concretization and execution of test cases. Given a model and a IUT,

the instrumentation technique generates a set of Java program fragments

encoding how to generate and parse protocol messages. A concrete test

case is defined as an abstract counterexample and the set of corresponding

program fragments.

Given a concrete test case and an IUT, the test execution engine inter-

prets the counterexamples and executes the program fragments accordingly.

Moreover, the test execution engine logs the HTTP messages exchanged with

the protocol participants under test. The algorithm is shown in Section 6.5.

Visualization

Our tool allows the user to inspect the messages exchanged between the test

execution engine and the implementation under test. In particular, it im-

plements a view of the HTTP conversations and an HTTP messages viewer.

The former offers a synthesis of the conversation listing the HTTP messages

7.2. A FORMAL ANALYSIS AND SECURITY TESTING TOOL 159

Figure 7.4: The Navigator

exchanged. Moreover, it links real HTTP messages with the abstract coun-

terexample, allowing the user to deeply inspect the fields of the message. Our

tool has a built-in web browser to visualize the content of HTTP responses.

7.2.3 Configuration and Implementation decisions

Our tool enables the specification of configuration options and implementa-

tion decisions. This is done through the SPaCIoS navigator. The navigator

implements three main functionalities. First, it allows the specification of

single protocol option (or decision) by means of labels. A label is a text

description and a arbitrary color. Second, it allows for the creation of a

new model (capturing the option) starting from an existing one. Finally, the

navigator keeps track of all the model generated in a derivation tree in which

the roots are the reference models. The tree and the labels are used later on

for the preparation of the test/verification campaign.

The left-hand side of Figure 7.4 is the navigator. The upper part displays

160 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

Figure 7.5: The Test Campaign Manager

the derivation tree in which each model (i.e., node tree) is associated to

labels. A model can have more than one label. The lower part of the

navigator shows the list of labels created during the analysis. They capture

the configuration options of the SAML SSO standard. For comparison, the

right-hand side of Figure 7.4 shows the standard view of Eclipse projects.

7.2.4 Verification and Test Campaign

A verification campaign is a multiple execution of the verification workflow.

This solves the practical problem of verifying several models. Similarly, the

test campaign consists of the executions of several test cases.

Figure 7.5 shows the editor for the test campaign manager. On the left-

hand side, the editor displays the available models. Models are shown in

a tree-like form. On the right-hand side, the editor shows the list of test

cases generated and the IUTs available. The user selects the test cases and

the IUTs, and she runs the campaign. At the end of the execution, the

tool displays the HTTP conversations for off-line analysis. The result of a

campaign is organized into tables. In addition, the tool logs the results and

HTTP messages of all the test for future inspections.

7.3. CONCLUSIONS 161

The result of a verification and/or test campaign is organized into tables

together with the result and/or test verdict as well as the labels (if any).

7.3 Conclusions

In this chapter we showed how some of the techniques presented in this dis-

sertation have been transferred to SAP. We described the security analysis

of the SAP implementation of SAML SSO, supporting developers in taking

design and implementation decisions. In addition, we presented the design

of a tool that eases the security analysis of protocol design, the assessment

of protocol configuration, and the analysis of protocol deviation. In addi-

tion, the tool enables to test real implementations using counterexamples as

abstract test cases.

162 CHAPTER 7. FROM ACADEMIA TO INDUSTRY

Chapter 8

Conclusions and Future Work

In this chapter we summarize the contribution of this thesis with respect to

the objectives that we have set in Section 1.1. Then, we give an overview of

possible future work that could be carried out based on the results presented

in this thesis.

8.1 Contributions

State-of-the-art security testing technologies do not provide automated sup-

port to the discovery of logic vulnerabilities in multi-party business applica-

tions. In this thesis, we have addressed the shortcomings of these technolo-

gies in order to support the automated detection of logic flaws.

We started in Chapter 4 with the design verification via model checking

of the SAML SSO and OpenID authentication protocols. Starting from the

specifications written in natural language, we wrote formal models captur-

ing the behavior of the protocol participants, message structure, and com-

position of participants. We showed that when formal models are available,

model checking can automatically discover flaws into the logic of the protocol

design. However, the discoveries are not directly applicable to the real im-

plementations. Moreover, we showed that there is still a substantial amount

of manual work required to confirm the presence of the flaw in real imple-

mentations. Finally, we discovered that the design flaw can be exploited as

a launching pad of XSS attacks in the SAML-base SSO for Google Apps.

163

164 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

All our findings have been discussed with members of the OASIS Security

Services Technical Committee and a SAML V2.0 Errata has been redacted

and approved [OAS12].

In Chapter 5 we tackled the first objective of this thesis that is testing

real implementations starting from the attacks returned by a model checker.

We proposed an approach that fills the gap between formal model and real

implementations by the means of model instrumentation. The model instru-

mentation calculates a set of program fragments that encode the message

generation, message parsing, and the check of the incoming messages against

the current state of the participants. The fragments are then executed in

the order established by the counterexample.

The approach of Chapter 4 and Chapter 5 is applicable when the speci-

fications are available. In Chapter 6, we proposed an automated black-box

approach that does not require a model as input. Our approach infers a

model from a set of network traces. Afterwards, the model is used to gen-

erate test cases following a number of attack patterns. Finally, tests are

executed against the real implementation and an oracle decides whether a

property of the application has been violated.

This thesis has been carried out in an industrial context. This allowed us

to balance the design of testing techniques with their pragmatical application

to real world applications. The techniques of Chapter 4 and Chapter 5 have

been implemented in an industrial tool, while the black-box testing technique

of Chapter 6 is implemented as a proof-of-concept. The former tool has

been used to test three implementations of SAML SSO and two of OpenID

detecting the logic flaws discovered by the model checker. Moreover, this tool

has been used to support SAP engineers to evaluate the security of the design

of their SAML SSO implementation. Furthermore, it is currently used to

test the SAP implementation of OAuth 2.0. The second tool implements the

black-box testing approach described in Chapter 6. The tool has been used to

test 12 eCommerce web application deployments discovering ten previously

unknown critical vulnerabilities and about 900 presentations bugs. All the

critical vulnerabilities that our techniques discovered have been responsibly

disclosed.

8.2. FUTURE WORK 165

8.2 Future Work

The results of this thesis corroborate the claim that model-based testing

can improve the effectiveness of existing security testing methodologies. As

a future work, we would suggest to strengthen the basis of the claim in

two ways. First, the techniques of this thesis could be extended to detect

newer vulnerability classes that are still discovered by manual inspection,

e.g., improper authentication and authorization, and session management

vulnerabilities. Second, it would be interesting to explore how our approach

could be applied to other types of business applications, e.g., billing and

invoicing applications.

In this thesis, we argued that the capability of detecting vulnerabilities

relies on two factors. First, the ability to generate good tests and second,

the ability to decide whether the test execution proves the presence of a

vulnerability. This dissertation mainly focused on the former, while the latter

is implemented by the means of satisfiability of a user-provided LTL formula

modeling the expected behavior. However, the development of LTL formula

can be error-prone. In addition, the development of the LTL formula may

require application-specific knowledge for the extraction of symbols from the

test executions. As a future direction, it would be interesting to investigate

on the automatic generation of the expected behavior. For example, this

could be achieved by using Daikon [EPG+07] to generate likely invariants

or by inferring LTL formulas from the dataflow and workflow behavioral

patterns.

In this thesis, we showed the use of model checking to detect logic flaws

in protocol implementations. As opposed to model checking, the attack

pattern-based approach uses heuristics instead of exhaustive search. The

experimental results in Chapter 6 indicate that this technique is efficient.

However, the empirical evidence should be supported with theoretical argu-

ments. In particular, it would be interesting to compare quantitatively the

two test generation approaches.

Furthermore, it would be interesting to apply the attack pattern-based

approach to generate test cases to test security protocol implementations.

166 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

This may require to extend the set of attack patterns targeting security

protocol attacks and session management vulnerabilities. Similarly, it would

be interesting to extend the application of model checking techniques to the

black-box testing scenario to detect violations in eCommerce applications.

This could be done by translating the navigation graph and the behavioral

pattern in a formal language (e.g., ASLan or ASLan++) and then by using

a model checker in the classical sense in order to generate test cases.

References

[AAA+12] Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Al-

berto Calvi, Alessandro Cappai, Roberto Carbone, Yannick Chevalier, Luca

Compagna, Jorge Cuéllar, Gabriel Erzse, Simone Frau, Marius Minea, Se-

bastian Mödersheim, David von Oheimb, Giancarlo Pellegrino, Serena Elisa

Ponta, Marco Rocchetto, Michaël Rusinowitch, Mohammad Torabi Dashti,

Mathieu Turuani, and Luca Viganò. The avantssar platform for the auto-

mated validation of trust and security of service-oriented architectures. In

Cormac Flanagan and Barbara König, editors, TACAS, volume 7214 of Lec-

ture Notes in Computer Science, pages 267–282. Springer, 2012.

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,

P. Hankes Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Möder-

sheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,

and L. Vigneron. The AVISPA Tool for the Automated Validation of Internet

Security Protocols and Applications. In Proceedings of the 17th international

conference on Computer Aided Verification, CAV’05, pages 281–285, Berlin,

Heidelberg, 2005. Springer-Verlag.

[AC02] Alessandro Armando and Luca Compagna. Automatic sat-compilation of

protocol insecurity problems via reduction to planning. In DoronA. Peled and

MosheY. Vardi, editors, Formal Techniques for Networked and Distributed

Sytems - FORTE 2002, volume 2529 of Lecture Notes in Computer Science,

pages 210–225. Springer Berlin Heidelberg, 2002.

[ACC07] A. Armando, R. Carbone, and L. Compagna. Ltl model checking for security

protocols. In Computer Security Foundations Symposium, 2007. CSF ’07.

20th IEEE, pages 385–396, July 2007.

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and

Llanos Tobarra Abad. Formal Analysis of SAML 2.0 Web Browser Single

Sign-On: Breaking the SAML-based Single Sign-On for Google Apps. In

Proceedings of ACM FMSE08, 2008.

[ACPP11] Wihem Arsac, Luca Compagna, Giancarlo Pellegrino, and Serena Elisa

Ponta. Security validation of business processes via model-checking. In Úlfar

Erlingsson, Roel Wieringa, and Nicola Zannone, editors, ESSoS, volume 6542

of Lecture Notes in Computer Science, pages 29–42. Springer, 2011.

167

168 REFERENCES

[Ang87] Dana Angluin. Learning regular sets from queries and counterexamples. Inf.

Comput., 75(2), November 1987.

[AP09] Alessandro Armando and Serena Elisa Ponta. Model checking of security-

sensitive business processes. In Pierpaolo Degano and Joshua D. Guttman,

editors, Formal Aspects in Security and Trust, volume 5983 of Lecture Notes

in Computer Science, pages 66–80. Springer, 2009.

[ASW98] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for opti-

mistic fair exchange. In Security and Privacy, 1998. Proceedings. 1998 IEEE

Symposium on, pages 86–99, 1998.

[BBGM10] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art:

Automated black-box web application vulnerability testing. In Security and

Privacy (SP), 2010 IEEE Symposium on, 2010.

[BCF+10] Marcello M. Bersani, Luca Cavallaro, Achille Frigeri, Matteo Pradella, and

Matteo Rossi. Smt-based verification of ltl specifications with integer con-

straints and its application to runtime checking of service substitutability.

CoRR, abs/1004.2873, 2010.

[BCFV07] Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger, and Giovanni Vigna.

Multi-module vulnerability analysis of web-based applications. In Proceedings

of the 14th ACM conference on Computer and communications security, CCS

’07, New York, NY, USA, 2007. ACM.

[BFHS03] Tevfik Bultan, Xiang Fu, Richard Hull, and Jianwen Su. Conversation spec-

ification: a new approach to design and analysis of e-service composition. In

Proceedings of the 12th international conference on World Wide Web, WWW

’03, pages 403–410, New York, NY, USA, 2003. ACM.

[BG05] Michael Backes and Thomas Gross. Tailoring the dolev-yao abstraction to

web service realities. In ACM SWS05, 2005.

[Big13] BigCommerce Pty. Ltd. BigCommerce Interspire, 2013.

[BJR08] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for

state machines using domains with equality tests. In Proceedings of the The-

ory and practice of software, 11th international conference on Fundamental

approaches to software engineering, FASE’08/ETAPS’08, Berlin, Heidelberg,

2008. Springer-Verlag.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog

rules. In Proceedings of CSFW’01, pages 82–96. IEEE CSP, 2001.

REFERENCES 169

[BMPV06] Michael Backes, Sebastian Mödersheim, Birgit Pfitzmann, and Luca Viganò.

Symbolic and Cryptographic Analysis of the Secure WS-ReliableMessaging

Scenario. In Proceedings of FOSSACS’06, 2006.

[BMV03] D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for

Security Protocol Analysis. Submitted, available at www.infsec.ethz.ch/

publications/ofmc.pdf, 2003.

[BOP11] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Security mu-

tants for property-based testing. In TAP 2011, 2011.

[BOP12a] Matthias Büchler, Johan Oudinet, and Alexander Pretschner. Semi-

automatic security testing of web applications from a secure model. In SERE.

IEEE, 2012.

[BOP12b] Matthias Buchler, Johan Oudinet, and Alexander Pretschner. Spacite – web

application testing engine. Software Testing, Verification, and Validation,

2008 International Conference on, 0:858–859, 2012.

[CCC+04] Yannick Chevalier, Luca Compagna, Jorge Cuellar, Paul Hankes Drielsma,

Jacopo Mantovani, Sebastian Mödersheim, and Laurent Vigneron. A High

Level Protocol Specification Language for Industrial Security-Sensitive Pro-

tocols, volume 180 of Automated Software Engineering, pages 193–205. Aus-

trian CS, Austria, September 2004.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New

Symbolic Model Verifier. LNCS 1633, 1999.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-

nization skeletons using branching-time temporal logic. In Logic of Programs,

Workshop, pages 52–71, London, UK, UK, 1982. Springer-Verlag.

[CJ97] John Clark and Jeremy Jacob. A Survey of Authentication Protocol Lit-

erature: Version 1.0. www.cs.york.ac.uk/~jac/papers/drareview.ps.gz,

November 1997.

[CLS00] Rance Cleaveland, Tan Li, and Steve Sims. The concurrency workbench of

the new century, version 1.2 - user’s manual, 2000.

[Cro06] Douglas Crockford. RFC4627: The application/json Media Type for

JavaScript Object Notation (JSON), July 2006.

[DBKV11] Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna. Fear

the ear: discovering and mitigating execution after redirect vulnerabilities. In

170 REFERENCES

Proceedings of the 18th ACM conference on Computer and communications

security, CCS ’11, New York, NY, USA, 2011. ACM.

[DCKV12] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vi-

gna. Enemy of the State: A State-Aware Black-Box Vulnerability Scanner.

In Proceedings of the 2012 USENIX Security Symposium (USENIX 2012),

Bellevue, WA, August 2012.

[DCV+05] Davis D, Ferris C, Gajjala V, Gavrylyuk K, Gudgin M, Kaler C, Langworthy

D, Moroney M, Nadalin A, Roots J, Storey T, Vishwanath T, , and Walter

D. Secure ws-reliablemessaging scenarios, April 2005.

[DCV10] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest:

An analysis of black-box web vulnerability scanners. In Christian Kreibich

and Marko Jahnke, editors, DIMVA, volume 6201 of LNCS. Springer, 2010.

[DHK11] F. Dadeau, P.-C. Héandam, and R. Kheddam. Mutation-based test genera-

tion from security protocols in HLPSL. In ICST 2011, 2011.

[DHL01] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. Business process coordi-

nation: State of the art, trends, and open issues. In Proceedings of the 27th

International Conference on Very Large Data Bases, VLDB ’01, pages 3–13,

San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[DHP09] Arnaud Dury, Hesham H. Hallal, and Alexandre Petrenko. Inferring be-

havioural models from traces of business applications. In Proceedings of the

2009 IEEE International Conference on Web Services, ICWS ’09, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

[DNL99] Ben Donovan, Paul Norris, and Gavin Lowe. Analyzing a library of security

protocols using Casper and FDR. In Proceedings of the FLOC’99 Workshop

on Formal Methods and Security Protocols (FMSP’99), 1999.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos

Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for

dynamic detection of likely invariants. Science of Computer Programming,

69(1–3):35–45, December 2007.

[Fac13] Facebook Inc. Facebook Connect, 2013.

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web

services. In Proceedings of WWW ’04, 2004.

REFERENCES 171

[FCKV10] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni

Vigna. Toward automated detection of logic vulnerabilities in web applica-

tions. In Proceedings of the 19th USENIX conference on Security, USENIX

Security’10, Berkeley, CA, USA, 2010. USENIX Association.

[FDR97] FDR2 — Failures-Divergence Refinement, Documentation. http://www.

fsel.com/documentation/fdr2/html/index.html, 1997.

[FF13] Fyodor and David Fifield. SecTools.Org: Top 125 Network Security Tools,

2013.

[FHBH+99] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-

tonen, and L. Stewart. HTTP Authentication: Basic and Digest Access

Authentication. RFC 2617 (Draft Standard), June 1999.

[FKK11] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Pro-

tocol Version 3.0. RFC 6101 (Historic), August 2011.

[FWA09] Gordon Fraser, Franz Wotawa, and Paul Ammann. Issues in using model

checkers for test case generation. J. Syst. Softw., 82(9):1403–1418, September

2009.

[GGJ+13] Bai Guangdong, Meng Guozhu, Lei Jike, Sathyanarayan Venkatraman Sai,

Saxena Prateek, Sun Jun, Liu Yang, and Dong Jinsong. Authscan: Auto-

matic extraction of web authentication protocols from implementations. In

Annual Network & Distributed System Security Symposium (NDSS), 2013.

The Internet Society, 2013.

[Goo08] Google. SAML Single Sign-On (SSO) Service for Google Apps, 2008.

[Goo09] Google. Google security and product safety, 2009. [Online; accessed 16-July-

2012].

[Hac13] Hackers for Charithy. The Google Hacking Database at Hacking for Charity,

2013.

[Har12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed

Standard), October 2012.

[HGOR13] K. Hossen, R. Groz, C. Oriat, and J.-L. Richier. Automatic generation of test

drivers for model inference of web applications. In Software Testing, Verifi-

cation and Validation Workshops (ICSTW), 2013 IEEE Sixth International

Conference on, pages 441–444, 2013.

172 REFERENCES

[HGR11] Karim Hossen, Roland Groz, and Jean-Luc Richier. Security vulnerabili-

ties detection using model inference for applications and security protocols.

In Software Testing, Verification and Validation Workshops (ICSTW), 2011

IEEE Fourth International Conference on, march 2011.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction

to Automata Theory, Languages, and Computation (3rd Edition). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[Hol97] G. J. Holzmann. The Spin Model Checker. IEEE Transactions on Software

Engineering, 23(5):279–295, May 1997.

[Hol04] Gerard J. Holzmann. The SPIN Model Checker - primer and reference man-

ual. Addison-Wesley, 2004.

[Hor51] Alfred Horn. On sentences which are true of direct unions of algebras. J.

Symb. Log., 16(1):14–21, 1951.

[HVO06] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classification

of SQL-Injection Attacks and Countermeasures. In Proceedings of the IEEE

International Symposium on Secure Software Engineering, Arlington, VA,

USA, March 2006.

[HYH+04a] Yao-Wen Huang, Fang Yu, C. Hang, Chung-Hung Tsai, D.T. Lee, and Sy-

Yen Kuo. Verifying web applications using bounded model checking. In

Dependable Systems and Networks, 2004 International Conference on, pages

199–208, 2004.

[HYH+04b] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,

and Sy-Yen Kuo. Securing web application code by static analysis and run-

time protection. In Proceedings of the 13th international conference on World

Wide Web, WWW ’04, pages 40–52, New York, NY, USA, 2004. ACM.

[JKK06] Nenad Jovanovic, Christopher Krügel, and Engin Kirda. Pixy: A static

analysis tool for detecting web application vulnerabilities (short paper). In

IEEE Symposium on Security and Privacy, pages 258–263. IEEE Computer

Society, 2006.

[JKK10] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis for

detecting taint-style vulnerabilities in web applications. J. Comput. Secur.,

18(5):861–907, September 2010.

[JRV00] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Compil-

ing and verifying security protocols. In Proceedings of the 7th international

REFERENCES 173

conference on Logic for programming and automated reasoning, LPAR’00,

pages 131–160, Berlin, Heidelberg, 2000. Springer-Verlag.

[Ker00] Kerberos: The Network Authentication Protocol, 2000. URL: http://web.

mit.edu/kerberos/www/.

[KMR05] Lea Kutvonen, Janne Metso, and Toni Ruokolainen. Inter-enterprise collabo-

ration management in dynamic business networks. In Proceedings of the 2005

Confederated international conference on On the Move to Meaningful Inter-

net Systems - Volume Part I, OTM’05, pages 593–611, Berlin, Heidelberg,

2005. Springer-Verlag.

[KS11] Chulyun Kim and Kyuseok Shim. Text: Automatic template extraction

from heterogeneous web pages. Knowledge and Data Engineering, IEEE

Transactions on, 23(4), april 2011.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in

java applications with static analysis. In Proceedings of the 14th conference

on USENIX Security Symposium - Volume 14, SSYM’05, Berkeley, CA, USA,

2005. USENIX Association.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol

Using FDR. In Proceedings of TACAS’96, 1996.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In Proceedings of

of the 10th IEEE CSFW ’97. IEEE Computer Society Press, 1997.

[LX11] Xiaowei Li and Yuan Xue. Block: a black-box approach for detection of

state violation attacks towards web applications. In Proceedings of the 27th

Annual Computer Security Applications Conference, ACSAC ’11, New York,

NY, USA, 2011. ACM.

[MCJ97] W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols.

tech. report cmu-scs-97-139. Technical report, CMU, May 1997.

[Mic13] Microsoft Corporation. Microsoft Live ID Web Authentication SDK, 2013.

[MIT] MITRE. Common Weakness Enumeration.

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application

errors and security flaws using pql: a program query language. In Proceedings

of the 20th annual ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, OOPSLA ’05, pages 365–383,

New York, NY, USA, 2005. ACM.

174 REFERENCES

[MMS97] J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryp-

tographic Protocols Using Murphi. In Proceedings of IEEE Symposium on

Security and Privacy, pages 141–153, 1997.

[MSS98] J.C. Mitchell, V. Shmatikov, and U. Stern. Finite-state analysis of ssl 3.0.

In Seventh USENIX Security Symposium, pages 201–216, 1998.

[MV09] Sebastian Mödersheim and Luca Viganò. The open-source fixed-point model

checker for symbolic analysis of security protocols. In Alessandro Aldini,

Gilles Barthe, and Roberto Gorrieri, editors, FOSAD, volume 5705 of Lecture

Notes in Computer Science, pages 166–194. Springer, 2009.

[NAS05] NASA. Java PathFinder, 2005.

[nop13] nopCommerce. NopCommerce, 2013.

[Nov11] Novell. Access Gateway Appliance security concerns poisoning or tampering

cookies, 2011. [Online; accessed 16-July-2012].

[NS78] Roger Needham and Michael Schroeder. Using encryption for authentica-

tion in large networks of computers. Communications of the ACM, 21(12),

December 1978.

[OAS08] OASIS Consortium. Security Assertion Markup Language V2.0 Tech.

Overview. http://wiki.oasis-open.org/security/Saml2TechOverview,

March 2008.

[OAS12] OASIS. SAML Version 2.0 Errata 05. http://docs.oasis-open.org/

security/saml/v2.0/sstc-saml-approved-errata-2.0.html, May 2012.

[Ope07] OpenID Foundation. OpenID Specifications. http://openid.net/

developers/specs/, 2007.

[Pay12a] PayPal. PayPal Express Checkout Integration Guide, August 2012.

[Pay12b] PayPal. PayPal Payments Standard Integration Guide, June 2012.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS. IEEE Computer

Society, 1977.

[Pon12] Ponemon Institute. 2012 Cost of Cyber Crime Study. Technical report,

Ponemon Institute, 2012.

[PST02] M. Panti, L. Spalazzi, and S. Tacconi. Using the nusmv model checker to

verify the kerberos protocol, 2002.

REFERENCES 175

[PVY01] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking.

J. Autom. Lang. Comb., 7(2):225–246, November 2001.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in cesar. In Proceedings of the 5th Colloquium on Interna-

tional Symposium on Programming, pages 337–351, London, UK, UK, 1982.

Springer-Verlag.

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Int.,

1997.

[SBK12] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things changed

now? an empirical study on input validation vulnerabilities in web applica-

tions. Computers & Security, 31(3):344–356, 2012.

[SBS04] G. Salaun, L. Bordeaux, and M. Schaerf. Describing and reasoning on web

services using process algebra. In Web Services, 2004. Proceedings. IEEE

International Conference on, pages 43–50, 2004.

[SLS06] Andreas Schaad, Volkmar Lotz, and Karsten Sohr. A model-checking ap-

proach to analysing organisational controls in a loan origination process. In

Proceedings of the eleventh ACM symposium on Access control models and

technologies, SACMAT ’06, pages 139–149, New York, NY, USA, 2006. ACM.

[SM99] Vitaly Shmatikov and John C. Mitchell. Analysis of a fair exchange protocol.

In Proceedings of the 1999 FLoC Workshop on Formal Methods and Security

Protocols, Trento, Italy, 1999.

[SN12] Giuseppe Scrivano and Hrvoje Niksic. GNU wget, 2012.

[spo02] Security Protocols Open Repository, 2002.

http://www.lsv.ens-cachan.fr/spore/index.html.

[The04] The OWASP Foundation. OWASP top 10 application security risks - 2004,

2004.

[The07a] The Open Web Aapplication Security Project. The WebGoat Project, 2007.

[The07b] The OWASP Foundation. OWASP top 10 application security risks - 2007,

2007.

[The08] The OWASP Foundation. OWASP testing guide, January 2008.

176 REFERENCES

[The10] The OWASP Foundation. OWASP top 10 application security risks - 2010,

2010.

[the12] the Skipfish Project. skipfish: Web Application Security Scanner, 2012.

[The13a] The jQuery Foundation. jquery, January 2013.

[The13b] The Mozilla Foundation. Mozilla Persona, 2013.

[The13c] The OWASP Foundation. OWASP top 10 application security risks - 2013,

2013.

[Tru13] Trustwave. 2013 Trustwave Global Security Report. Technical report, Trust-

wave, 2013.

[Tur06a] M. Turuani. The CL-Atse Protocol Analyser. In F. Pfenning, editor, Pro-

ceedings of 17th Int. Conf. on Rewriting Techniques and Applications, RTA,

LNCS, Seattle (WA), August 2006. Springer.

[Tur06b] Mathieu Turuani. The cl-atse protocol analyser. In Proceedings of the 17th

international conference on Term Rewriting and Applications, RTA’06, pages

277–286, Berlin, Heidelberg, 2006. Springer-Verlag.

[UNI10] UNINETT. simplesamlphp-1.6.3 is available, with a security fix, 2010. [On-

line; accessed 16-July-2012].

[Ver13] Verizon. 2013 Data Breach Investigations Report. Technical report, Verizon,

2013.

[vOM11] David von Oheimb and Sebastian Mödersheim. Aslan++ – a formal

security specification language for distributed systems. In Proceedings of the

9th international conference on Formal Methods for Components and Objects,

FMCO’10, pages 1–22, Berlin, Heidelberg, 2011. Springer-Verlag.

[w3a13] w3af. w3af: Web Application Attack and Audit Framework, 2013.

[WCW12] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts

through facebook and google: a traffic-guided security study of commercially

deployed single-sign-on web services. In Proceedings of the 2012 IEEE Sym-

posium on Security and Privacy. IEEE Computer Society, 2012.

[WCWQ11] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to shop for

free online – security analysis of cashier-as-a-service based web stores. In

Proceedings of the 2011 IEEE Symposium on Security and Privacy, SP ’11,

Washington, DC, USA, 2011. IEEE Computer Society.

REFERENCES 177

[Whi13] WhiteHat. Website Security Statistics Report. Technical report, WhiteHat,

May 2013.

[WL93] Thomas Y. C. Woo and Simon S. Lam. A semantic model for authentication

protocols. In Proceedings of the 1993 IEEE Symposium on Security and

Privacy, SP ’93, pages 178–, Washington, DC, USA, 1993. IEEE Computer

Society.

[WMM09] Christian Wolter, Philip Miseldine, and Christoph Meinel. Verification of

business process entailment constraints using spin. In Proceedings of the

1st International Symposium on Engineering Secure Software and Systems,

ESSoS ’09, pages 1–15, Berlin, Heidelberg, 2009. Springer-Verlag.

[Wor05] World Wide Web Consortium. Document object model, January 2005.

[Wor07] World Wide Web Consortium. Simple object access protocol (soap) 1.2, April

2007.

[WS07] Gary Wassermann and Zhendong Su. Sound and precise analysis of web

applications for injection vulnerabilities. In Jeanne Ferrante and Kathryn S.

McKinley, editors, PLDI, pages 32–41. ACM, 2007.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in

scripting languages. In Proceedings of the 15th conference on USENIX Se-

curity Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006.

USENIX Association.

[XB05] Lai Xu and Sjaak Brinkkemper. Modeling multi-party web-based business

collaborations. In Robert Meersman, Zahir Tari, Pilar Herrero, Gonzalo Mén-

dez, Lawrence Cavedon, David Martin, Annika Hinze, George Buchanan,

María S. Pérez, Víctor Robles, Jan Humble, Antonia Albani, Jan L. G.

Dietz, Hervé Panetto, Monica Scannapieco, Terry A. Halpin, Peter Spyns,

Johannes Maria Zaha, Esteban Zimányi, Emmanuel Stefanakis, Tharam S.

Dillon, Ling Feng, Mustafa Jarrar, Jos Lehmann, Aldo de Moor, Erik Duval,

and Lora Aroyo, editors, OTM Workshops, volume 3762 of Lecture Notes in

Computer Science, pages 866–875. Springer, 2005.

[Xu07] Lai Xu. Outsourcing and multi-party business collaborations modeling.

JECO, 5(2):77–96, 2007.

178 REFERENCES

Appendices

179

Appendix A

Résumé en Français

Résumé

Le logiciel d’entreprise multi-partis sont des logiciels distribués sur le Web

qui mettant en œuvre des fonctions collaboratives d’entreprise. Ces types de

logiciels sont les principaux objectifs des attaquants qui exploitent les vul-

nérabilités de logiciels pour les activités malveillantes. La principale classe

de vulnérabilités logicielles sont la conséquence de insuffisante validation

d’entrée fournie par les utilisateurs. Récemment, un type moins connu de

la vulnérabilité, les anomalies logiques, ont attiré l’attention des chercheurs.

Sur la base de la disponibilité des documents, peut être utilisé deux tech-

niques de testing: le model checking, les tests de sécurité de type “boîte

noire”. Malheureusement, le model checking ne prend pas en charge le test

des implémentations actuelles, tandis que de tests de type boîte noire n’est

pas assez sophistiquée pour découvrir les vulnérabilités logique. Dans cette

thèse, nous présentons deux techniques d’analyse modernes visant à résoudre

les inconvénients de état de l’art. Pour commencer, nous présentons la véri-

fication de deux protocoles de sécurité modernes utilisant le model check-

ing. Ensuite, nous nous concentrons sur l’extension du model checking pour

soutenir les tests automatisés d’implémentations. La seconde technique con-

siste en un test de sécurité de boîte noire qui combine l’inférence du modèle,

l’extraction du workflow et des data flow, et, à la fin, une technique de

generatione des tests basés sur les modèles d’attaque. En conclusion, nous

discutons l’application dans un contexte industriel des techniques dévelop-

pées dans cette thèse.

181

A.1. INTRODUCTION Appx. I

A.1 Introduction

Le logiciel d’entreprise multi-partis sont des programmes informatiques

qui sont utilisés pour effectuer des fonctions commerciales. Aujourd’hui, les

logiciels d’entreprise sont développées comme une composition de services

de réseau. Chaque service implémente une fonction élémentaire qui est mis

à disposition sur un réseau d’ordinateurs. Ces logiciels sont utilisés par bro-

wesers web, ou par les applications clientes qui s’exécutent sur des ordina-

teurs personnels, ou sur des appareils mobiles. A l’origine, les applications de

l’entreprise étaient accessibles via des réseaux privés, mais sont aujourd’hui

accessibles à travers les réseaux publics tels que, par exemple, l’Internet.

A.1.1 Security Risks of Multi-party Business Applications

La logiciels d’entreprise jouent un rôle important dans de nombreux do-

maines, et sont actuellement utilisés par des millions d’utilisateurs et orga-

nisations pour acheter des biens et services, effectuer des transactions moné-

taires, et de stocker des données confidentielles. Pour cette raison, les logiciels

d’entreprise sont un objectif principale pour les attaquants cyber qui ont un

intérêt à faire un large éventail d’activités criminelles.

A.1.2 The Rise of Logic Flaws

Les vulnérabilités les plus courantes sont causées par une validation in-

suffisante des entrées utilisateur, comme l’injection SQL (SQLI) et Cross-Site

Scripting (XSS). Ces vulnérabilités logicielles ont été largement étudiés par

la communauté scientifique. Un autre type de vulnérabilité qui sont mal étu-

dié a récemment attiré l’attention des chercheurs. Ce type est provoqué par

des erreurs logiques dans le logiciel.

La tendance générale d’incidents cyber qui sont causés par des erreurs

logique, a augmenté ces dernières années. Le nombre de ces incidents en 2012

s’élève à 267, dont 82 dans les applications web de soleil. Le pic a été en 2008

avec 384 cas, dont 143 cas dans les applications web.

Appx. II

A.1.3 Objectives and Challenges

Les chercheurs ont proposé plusieurs techniques pour découvrir des vulné-

rabilités dans les logiciels d’entreprise multi-partis. Le choix de la technique

dépend de l’information qui est disponible pour l’analyste. Cette information

peut être le code source ou des modèles qui décrivent le comportement du

logiciel. Cependant, les développeurs ne distribuent pas le code source à des

sociétés tierces. Par conséquent, les techniques basées sur la disponibilité du

code source ne peuvent pas être utilisés dans ce domaine particulier.

Lorsque les spécifications du logiciel sont disponibles, l’analyste peut uti-

liser la technique de vérification de modèle pour explorer les états d’un mo-

dèle formel et découvrir erreurs logiques. Cependant, la technique de vérifi-

cation de modèle fournit pas de support pour la présence d’erreurs dans le

logiciel. Enfin, à la fois comme le code source et les logiciels spécifications

ne sont pas disponibles, vous pouvez utiliser les techniques de vérification

de «boîte noire». Cependant, ces techniques n’ont pas la sophistication né-

cessaire pour trouver des erreurs logiques. Cette thèse vise à trouver une

solution aux limitations ci-dessus. Plus précisément, les objectifs de cette

thèse sont les suivants :

Objectif 1 :

Lorsque les modèles de logiciels sont disponibles, nous pouvons

vérifier automatiquement si un logiciel souffre d’une faille logique

qui a été découvert en utilisant la technique de la vérification de

modèle ?

Pour répondre à cette question, nous nous attendons à des défis. Le princi-

pal défi réside dans la traduction entre les éléments abstraits dans un modèle

avec les éléments concrets du monde physique. La complexité de la traduc-

tion dépend de plusieurs facteurs, par exemple par le choix de l’interface

pour interaggire avec le logiciel, à partir de la relation entre le modèle et le

logiciel, et le type de vulnérabilités qui sont découverts.

A.1. INTRODUCTION Appx. III

Une interface au niveau trop élevé du logiciel peut enlever trop de dé-

tails dell’implementatione. Par conséquent, la traduction nécessite des algo-

rithmes plus puissants pour reconstituer l’information manquante. D’autre

part, une interface de bas niveau peut plus transmettre trop d’informations

et en conséquence le modèle peut être trop détaillée, rendant les techniques

modèle de contrôle inefficace.

La relation entre les modèles et les logiciels peuvent ne pas être néces-

sairement un-à-un. Par exemple, les spécifications d’un protocole standard

de sécurité sont un modèle informel qui décrivent un nombre indéterminé

de mises en œuvre qui ne sont pas nécessairement identiques. Dans la réa-

lisation des essais, une traduction stricte empêcherait sa réutilisation sur

d’autres logiciels en augmentant l’effort pour réaliser les tests.

En fin de compte, les règles de l’abstraction doivent prendre en considé-

ration le type de vulnérabilité que vous souhaitez découvrir. Par exemple,

pour trouver des vulnérabilités XSS, l’analyste insère les paramètres d’entrée

de malveillance dans une URL. Par la suite, l’analyste vérifie si la réponse du

logiciel contient la même entrée. Si les règles de l’abstraction ignorent cette

information dans la réponse, l’analyste peut ne pas être en mesure de juger

si le logiciel est vulnérable.

Objectif 2 :

Lorsque les modèles ne sont pas disponibles, il est possible de

découvrir des vulnérabilités dans la logique du logiciel automati-

quement

Pour découvrir des vulnérabilités dans la logique de logiciels, nous avons

besoin de deux types de modèle. Le premier type de modèle et d’un modèle

de comportement du logiciel. Le deuxième modèle est une description de la

logique qui met en oeuvre le logiciel. Ce modèle peut être obtenu par le mo-

dèle inférence algorithmes déduire un tel modèle en utilisant les observations

sur le logiciel.

La deuxième difficulté est lié à la performance des techniques de tech-

niques de test avec le modèle. Pour découvrir les vulnérabilités logique, nous

Appx. IV

avons besoin des algorithmes qui sont conscients des états internes du logiciel

et de la logique mise en œuvre. Ces algorithmes peuvent être automatisées

techniques de raisonnement, comme la technique de vérification de modèle.

Cependant, les techniques basées sur des modèles comme le model checking

souffrent du problème connu comme l’explosion d’états, dans lequel l’espace

d’état à explorer pourrait etre assez grande pour rendre la tache impossible.

A.2 Case Studies

Cette thèse utilise deux études de cas pour présenter deux nouvelles tech-

niques de test automatique. La première classe concerne les protocoles d’au-

thentification unique. Deux protocoles, OASIS Security Assertion Markup

Language 2.0 Web browser Single Sign-On (SAML SSO) et OpenID Authen-

tication Protocol (OpenID) serviront d’exemples pour illustrer la détection

de failles lorsqu’une spécification de l’application est disponible publique-

ment. La seconde classe concerne les applications de commerce en ligne.

Ces applications seront utilisées pour illustrer les techniques de détection de

failles selon une approche “boite noire”, envisageable lorsque les spécifications

des applications à analyser ne sont pas disponibles.

A.2.1 Case Study 1 : Web-based Single Sign-On Protocols

SSO SAML et OpenID sont deux protocoles de sécurité qui permettent

aux partenaires commerciaux d’identifier leurs utilisateurs à la fois, puis de

leur permettre d’accéder aux services du logiciel de l’entreprise sans avoir be-

soin de les identifier à nouveau. Les implémentations de SAML SSO et Ope-

nID font partie de la célèbre des logiciels tels que SAP NetWeaver Identity

Manager, IBM Tivoli Federated Identity Manager, et Google Apps (Gmail

et Google Calendar). Chaque jour, des millions d’utilisateurs sont identifiés

à l’aide de ces deux protocoles. Par exemple, Google affirme que plus de 5

A.2. CASE STUDIES Appx. V

millions organisations utilisent OpenID et SAML SSO pour identifier leurs

employés.

OpenID et SAML SSO fournissent trois rôles : un client C, un IdP de

fournisseur d’identité, et un SP de fournisseur de services. Le but de C,

typiquement un navigateur web entraînée par un utilisateur, est d’accéder à

un service ou une ressource offerte par SP. IdP authentifie C et de créer une

affirmation d’authentification (un message spécial utilisé pour identifier les

utilisateurs). Les protocoles d’identification finissent quand SP consomme

l’affirmation généré par l’IdP, et fournit C la ressource demandée.

Á travers une comparaison entre l’identification unique avec les sché-

mas classiques basées sur de multiples mots de passe, il devient naturel de

s’attendre à ce que le SSO SAML et OpenID offrent une propriété de l’au-

thentification mutuelle entre C et SP.

A.2.2 Case Study 2 : eCommerce Applications

Applications Web de commerce électronique sont des produits logiciels

conçus pour vendre et acheter des biens et des services sur le Web. Applica-

tions Web mettent en œuvre des catalogues virtuels et des caddies virtuels

grace à laquelle les clients choisissent les produits qu’ils envisagent d’ache-

ter. Ces logiciels ont un front-end pour les clients et un back-end pour les

employés et les administrateurs. Les clients de créer des commandes via le

front-end. Les employés utilisent le back-end pour traiter les commandes,

collecter les marchandises du magazin, et préparer l’expédition.

Les applications Web à intégrer les systèmes de paiement de commerce

électronique offerts par des tiers. Ceci est mis en pratique par le biais des

interfaces de programmation (API) offerts par des services tels que PayPal,

Amazon Payments, Google Checkout, ou Authorize.NET. L’intégration des

services peut être effectuée à différents points dans le processus d’achat et

dépend également du type de système de paiement choisi.

Appx. VI

A.3 Model Checking

Lorsque les spécifications du logiciel sont disponibles, l’analyste peut uti-

liser des techniques de raisonnement automatisés, comme, par exemple, la

technique de la vérification de modèle. Dans cette thèse, nous avons utilisé

la technique de la vérification de modèle pour l’analyse de la sécurité de

OpenID et SAML SSO. Notre analyse a également examiné les options et

configurations possibles de protocoles. Nos études ont conduit à la décou-

verte d’une logique de vulnérabilité jusqu’alors inconnue. Cette vulnérabilité

pourrait être utilisé par un attaquant d’exploiter l’authentification d’un utili-

sateur ou forcer l’utilisateur à accéder à une ressource sans son consentement

explicite. Nous avons vérifié manuellement que la vulnérabilité existe dans

les implémentations des protocoles disponibles sur Internet. Nous avons testé

trois implémentations de SAML SSO, et deux implémentations de OpenID.

Nous avons découvert que les implémentations quatre sur cinq souffrent de

vulnérabilités que nous avons découvert grace à la vérification de modèle.

En outre, nous avons constaté que la vulnérabilité logique peut être utilisé

comme une rampe de lancement pour les attaques contre les XSS services

SAML de Google. Tous nos résultats ont été discutés avec les membres de

l’organe de normalisation de SAML qui ont élaboré errata.

A.3.1 Formal Analysis

L’analyse formelle de SAML SSO et OpenID a été menée par la plate-

forme AVANTSSAR. Nous avons modélisé protocoles utilisant un langage

formel appelé Aslan + +, un langage formel pour spécifier les architectures

orientées services, les politiques de sécurité et de propriétés de sécurité. En

outre, nous avons utilisé SATMC (un vérificateur de modèle basé sur le

problème de satisfiabilité SAT) pour découvrir les violations de la propriété

de l’authentification mutuelle.

A.3. MODEL CHECKING Appx. VII

SAML SSO SATMC découvert une attaque à SAML SSO prouver qu’il

ne pas satisfaire la propriété d’authentification mutuelle. L’attaque est re-

présentée sur la Figure 1.

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AReq(id, sp)&RelayState=uri
idp builds an authenti-
cation assertion AA =
AuthnAssert(id, c, idp, sp)A3. HTTP200 Form(. . .)

A4. POST sp?SAMLResponse=AResp(id, sp, idp, {AA}
K
−1

idp
)&RelayState=uri

S2. HTTP200 Resource(uri)

Figure 1 – Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

L’attaque se déroule en quatre participants : un client, un IdP honnêtes,

un SP honnête et SP malveillante. L’attaque est la suivante : C commence

le protocole en demandant la ressource à SP malveillante. A ce stade, l’atta-

quant se fait passer pour C et nécessite une ressource différente de SP. SP se

comporte selon le protocole et génère une demande d’authentification, qui est

renvoyé à l’attaquant. Maintenant, l’attaquant répond au client par l’envoi

d’une redirection vers l’IdP contenant AReq(id, sp) et uri au lieu AReq(idi, i)

et urii comme le protocole l’exige. Les étapes restantes sont effectuées selon

le standard. L’attaque provoque le client de consommer une ressource de SP,

mais le client à l’origine demandé des ressources à la SP malveillante.

OpenID SATMC découvert une attaque à OpenID prouver qu’il ne pas

satisfaire la propriété d’authentification mutuelle. L’attaque est représentée

sur la Figure 2

Appx. VIII

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?AReq(c, idp,H, sp)A1. HTTP302 idp?AReq(c, idp,H, sp)

A2. GET idp?AReq(idp,H, sp)
idp builds an authenti-
cation assertion AA =
AuthnAssert(idp, c, sp,H)

A3. HTTP200 Form(. . .)

A4. POST sp, {AA}K

S2. HTTP200 Resource(uri)

Figure 2 – Authentication Flaw of the OpenID SSO Protocol

A.4 From Model Checking to Security Testing

Dans le section A.3, nous avons montré que lorsque les spécifications

du logiciel sont disponibles, la technique de la vérification de modèle peut

être utilisé pour la découverte de vulnérabilités dans la logique. Cependant,

les attaques détectées par le vérificateur de modèle démontrent la présence

d’une vulnérabilité dans les modèles qui ne sont pas nécessairement reflété

dans une vulnérabilité de logiciel. En outre, le vérificateur de modèle n’offre

pas de support pour les implémentations de test. Par conséquent, les attaques

sont normalement interprétées et exécutées sur le système réel manuellement.

Dans ce section, nous proposons une technique pour les tests automatisés

qui est entraîné par la vérification de modèle, et est en mesure de vérifier la

présence de vulnérabilités dans les implémentations de protocoles de sécurité.

Nous avons appliqué notre technique sur deux implémentations de SAML

SSO, et deux implémentations de OpenID. Les expériences montrent que

notre technique de test est capable de détecter les vulnérabilités SAML SSO

et OpenID dans les systèmes réels.

Architecture Un aperçu de notre approche est illustrée à la Figure 3.

Notre approche prend en entrée un modèle, une propriété de sécurité, et un

A.4. FROM MODEL CHECKING TO SECURITY TESTING Appx. IX

Figure 3 – Aperçu de notre approche

implementatione sous test (IUT). L’IUT est une structure de données qui

contient une correspondance entre les symboles du modèle théorique et les

valeurs réelles. En outre, il contient également les participants du protocole

qui sont en cours de test. Notre approche comprend les étapes suivantes :

Model Checking A partir d’un modèle formel du protocole et une descrip-

tion des propriétés de sécurité prévu, le model checker explore systéma-

tiquement les états du modèle à constater des violations de propriété.

Les violations sont identifiées par des contre-exemples qui sont utilisés

comme des cas de test abstrait (abstract test case).

Instrumentation L’instrumentation calcule automatiquement et fournit

l’exécuteur de tests (Test Execution Engine) un ensemble de fragments

de programme qui codent la procédure de vérification (ou générer) les

messages entrants (ou sortant) grâce à l’utilisation des fonctionnalités

Appx. X

offertes par l’adaptateur (Adapter) spécifiée dans l’IUT.

Execution L’exécuteur de tests (TEE) exécute des fragments de programme

dans l’ordre établi par le cas de test abstrait. IUT spécifie ou les parti-

cipants sont en cours de test (SUT) et qui, au contraire, seront simulées

par TEE. Le verdetetto indique si le TEE a réussi à reproduire le scé-

nario de test. Il est important de noter que si le verdict est négatif,

notre approche peut être répété en exigeant le model checker un autre

cas de test.

A.5 Black-Box Detection of Logic Flaws

Dans les sections précédents, nous avons vu que, à partir de la spéci-

fication formelle d’un protocole, il est possible d’automatiser le test de la

sécurité d’une application réelle. Cependant, les spécifications qui décrivent

l’évolution de l’état interne et le comportement attendu de l’utilisateur dans

les applications Web, sont rarement disponibles. Le manque de documenta-

tion augmente la difficulté de la découverte de vulnérabilités logiques. Dans

ce section, on propose une technique pour la découverte de vulnérabilité

logique dans le cas ou les spécifications du logiciel ne sont pas disponibles.

Nous avons appliqué notre technique sur sept applications de commerce élec-

tronique, exécutant plus de 3100 cas de tests, dont 900 ont violé le compor-

tement attendu. Nos tests ont découvert 10 vulnérabilités logiques inconnus,

dont cinq auraient permis à un attaquant de payer un montant inférieur ou

même d’acheter en ligne gratuitement.

Le “OWASP Testing Guide v.3.0” propose une approche composée de

4 étapes manuelles pour vérifier la présence de vulnérabilités logiques dans

les applications web en tenant compte de l’application comme une «boîte

noire». Tout d’abord, le testeur étudie l’application à travers l’exploration

des pages, et lisant la documentation disponible (comme l’aide en ligne). Par

la suite, le testeur prépare les informations nécessaires à la conception des

tests, y compris le flux de travail et le flux de données que le testeur a observé

A.5. BLACK-BOX DETECTION OF LOGIC FLAWS Appx. XI

dans la première phase. Après cela, le testeur procède à la conception des

tests. Par exemple, les testeurs ont créé les tests qui subvertissent l’ordre

de quelques étapes de de l’application, ou des tests qui permettent d’éviter

certaines étapes de de l’application. Enfin, le testeur prépare l’environnement

de test, exécute les tests, et évalue le résultat.

L’approche présentée dans ce section vise à automatiser les étapes ci-

dessus dans un seul outil pour les tests de boîte noire. Tout d’abord, l’ap-

proche, à partir d’un ensemble des conversations HTTP, déduit un modèle

de l’application en regroupant les ressources HTTP qui se réfèrent à la même

"étape" dans le flux de travail. Ensuite, notre technique analyse le modèle

et en extrait un ensemble de comportements liés à flux de travail et l’ap-

plication de flux de données. Après, notre approche utilise un ensemble de

schémas d’attaque pour générer les cas de test. L’approche se termine par

l’exécution de cas de test contre une application web et utilise un oracle de

décider si la logique de l’application a été violé.

Dans cette section, nous nous sommes concentrés sur un ensemble d’ac-

tions que l’attaquant peut exécuter contre l’application : Répétez les opéra-

tions, éviter les opérations, renverser l’ordre des opérations, et, enfin, d’échan-

ger des valeurs entre les sessions utilisateurs. Pour chaque type d’attaque,

nous avons conçu un schéma d’attaque. Un exemple de ces schémas d’attaque

sont présentées dans la Figure 4.

Nous avons effectué des tests sur des applications de commerce électro-

nique indiquées dans le Tableau 1. Notre outil peut également être utilisé

pour tester l’application de commerce électronique en ligne (comme la bou-

tique Amazon). Cependant, ces tests n’auraient pas été éthique et pourraient

nuire à Amazon, les concessionnaires et les clients.

L’application de nos modes de schémas d’attaque extraites des traces

d’entrée, notre outil a généré environ 3100 cas de test, une moyenne de 262

par application. Le nombre de cas de test générés pour l’application est

résumée dans le Tableau 2.

6,6% de nos cas de test qui ont été exécutées avec succès correspond

aux vulnérabilités. Ces cas ont été confirmés manuellement par l’inspection

des registres du marchand et l’acheteur. 93,4% des cas de test ont trouvé

A
p
p
x
.
X
II

Figure 4 – Test case generation patterns

A.6. MIGRATION TO SAP Appx. XIII

Table 1 – Popularity index
WebApp Installations WebApp Installations

OpenCart 9,710,000 TomatoCart 119,000
Magento 3,130,000 osCommerce 80,500
PrestaShop 650,000 AbanteCart 21,200
CS-Cart 260,000

Total 13,970,700

des bugs dans la mise en oeuvre d’applications web. Dans tous ces cas, les

tests ont été effectués jusqu’à la dernière ressource contenant un message de

félicitations pour l’achat de produits.

A.6 Migration to SAP

Cette thèse a été principalement développée dans les laboratoires de

SAP. Cela m’a permis de équilibrer le développement de nouvelles techniques

d’analyse de leur application de scénarios industriels modernes. D’une part,

j’ai appliqué les techniques de tests de protocoles de sécurité et des applica-

tions Web réelles découverte de nouvelles vulnérabilités logique. Deuxième-

ment, les résultats ont migré vers SAP afin de soutenir les ingénieurs de SAP

dans (i) d’analyser la sécurité des configurations de protocoles de sécurité et

(ii) de tester les implémentations pour trouver des vulnérabilités logiques.

SAP NetWeaver New Generation Single Sign-On SAP NetWea-

ver New Generation Single Sign-On (ci-apres NGSSO) met en oeuvre les

principaux flux de SAML SSO, ses options, l’utilisation de SSL/TLS, et le

décodage de messages cryptés et vérification de la signature digitale. En

outre, les ingénieurs ont considéré SAP autres caractéristiques et les écarts

par rapport aux spécifications du protocole. Dans ce section, nous allons

décrire brièvement deux de ces.

La première différence par rapport à SAML SSO est l’utilisation de SPs

sans état. SAML SSO fournit que les SPs convient de vérifier si l’ID des

A
p
p
x
.
X
IV

Table 2 – Test case generation and execution
Generation Execution

WebApp Time Repeat Detour MSteps PChains Time Exec. Not Exec. Total

AbanteCart Std ≪ 0 :01 9 152 51 21 4 :51 74 159 233
Magento Exp 0 :02 10 246 82 5 16 :23 240 103 343

Std 0 :02 14 303 62 7 14 :50 210 176 386
OpenCart Exp 0 :01 10 83 77 3 2 :34 140 33 173

Std 0 :01 15 60 38 22 2 :08 71 64 135
osCommerce Exp ≪ 0 :01 4 142 13 6 3 :22 117 48 165

Std 0 :01 8 144 63 10 3 :42 128 97 225
PrestaShop Exp ≪ 0 :01 12 100 22 3 2 :42 85 52 137
TomatoCart Exp 0 :02 9 215 68 10 4 :54 238 64 302

Std 0 :02 17 138 32 37 4 :36 115 109 224
CS-Cart Exp 0 :05 8 562 24 6 12 :02 347 253 600

Std 0 :02 16 137 54 15 5 :29 127 95 222

Total 132 2282 586 145 1892 1253 3145

A.6. MIGRATION TO SAP Appx. XV

Table 3 – Results
WebApp Viol. Bugs Vuln.

AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1

Total 909 849 60
100% 93.4% 6.6%

réponses sont égaux à l’ID de la demande. Par conséquent, les SPs maintenir

une table interne où stocker ces informations. Ces types de SPs sont appelés

SPs qui ont l’état interne. Toutefois, les SPs avec l’etat peuvent être vul-

nérables à des attaques par déni de service dans laquelle un attaquant peut

consommer la mémoire de la SPs envoyant des requêtes faux. Par conséquent,

dans certains scénarios, les SPs qui sont sans état interne, sont préférés en

raison de leur résistance à ces types d’attaques.

La deuxième différence est le contrôle des cookies de session au cours

de l’exécution du protocole. SAML SSO ne nécessite pas l’utilisation des

cookies dans aucune partie du protocole. Cependant, la SP peut utiliser des

cookies pour mettre en œuvre des politiques particulières. Par exemple, le

SP voudrait s’assurer que le navigateur Web qui transmet la réponse SAML

est le même navigateur Web qui transmet les demandes SAML.

A Formal Analysis and Security Testing Tool Nous avons déve-

loppé un outil qui met en oeuvre les techniques de vérification et de test

montré dans les section A.3 et section A.4. En outre, nous avons étendu

Appx. XVI

Figure 5 – ASLan++ Editor

ces techniques pour aider les ingénieurs d’analyser et de tester différentes

configurations du même protocole.

A.7 Conclusions

L’état de l’art des techniques d’analyse ne fournit pas de support pour

la découverte automatique des vulnérabilités dans la logique de l’entreprise

de logiciels. Dans cette thèse, nous avons développé des techniques d’ana-

lyse pour résoudre les problèmes de ces technologies afin de permettre la

découverte automatique des vulnérabilités logiques.

Dans la section A.3, nous avons montré une application de la technique

de la vérification de modèle de protocoles de sécurité SSO SAML et OpenID.

A partir des spécifications des protocoles, nous avons écrit des spécifications

formelles qui capturent le comportement des participants, la structure des

messages, et la composition des participants. Nous avons montré que la vé-

rification de modèle peut détecter automatiquement les vulnérabilités dans

A.7. CONCLUSIONS Appx. XVII

la logique des protocoles. Cependant, les résultats ne sont pas directement

applicables aux implémentations. Nos résultats sont, cependant, été discutés

avec les membres de l’organisation OASIS. En conséquence, OASIS a publié

un erratum pour SAML.

Dans la section A.4, nous avons abordé le premier objectif de cette thèse,

à savoir exécuter des tests contre les implémentations à partir des attaques

détectées par le vérificateur de modèle. Nous avons proposé une approche

qui comble le fossé entre les modèles formels et système réel grace à l’ins-

trumentation du modele. L’instrumentation du modele consiste à calculer

automatiquement un ensemble de fragments de programmes qui codent pour

la génération et la vérification de messages. Les fragments sont finalement

exécutés sur la base de l’attaque identifié par le vérificateur de modèle.

Les techniques des section A.3 et section A.4 ne sont applicables que

lorsque les spécifications sont disponibles. Dans la section A.5, nous avons

proposé une technique automatique pour le modèle de boîte noire qui ne né-

cessite pas d’apport. Notre approche en déduit un modèle de conversations

HTTP. Par la suite, le modèle est utilisé pour générer les cas de test en fonc-

tion d’un certain nombre de modes d’attaque. Enfin, les tests sont effectués

contre l’application Web, et un oracle décide si la logique de l’application a

été violé.

Cette thèse a été développée principalement dans un contexte industriel.

Les techniques présentées dans la section A.3 et section A.4 ont été intégrés

dans un outil industriel, alors que la technique de la section A.5 est une

preuve de concept. L’outil industriel a été utilisé pour tester quatre implé-

mentations de SSO SAML et OpenID. En outre, cet outil a été utilisé dans

SAP pour évaluer la sécurité des protocoles de sécurité mis en place par

SAP. Le deuxième outil a été utilisé pour tester 12 application de commerce

électronique Web, qui a découvert 10 vulnérabilités uniques logique, et 900

bugs. Tous les vulnérabilités critiques ont été signalées aux développeurs.

