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Abstract

In this thesis, we report the first realisation of the Hong-Ou-Mandel experiment with massive
particles in momentum space. This milestone experiment was originally performed in quantum
optics: two photons arriving simultaneously at the input ports of a 50:50 beam-splitter always
emerge together in one of the output ports. The effect leads to a reduction of coincidence counts
which translates into a dip when particles are indistinguishable.

We performed the experiment with metastable helium atoms where the specificities of the
Micro-Channel-Plate detector allows one to recover the momentum vector of each individual
atom. After listing the necessary tools to perform this experiment with atoms, the experimental
sequence is discussed and the results are presented. In particular we measured a coincidence
count reduction that cannot be explained through any simple classical model. This corresponds
to the signature of a two-particle interference, and confirms that our atomic pair source
produces beams which have highly correlated populations and are well mode matched. This
opens the prospect of testing Bell’s inequalities involving mechanical observables of massive
particles, such as momentum, using methods inspired by quantum optics. It also demonstrates
a new way to produce and benchmark twin-atom pairs that may be of interest for quantum
information processing.

Keywords: Quantum atom optics — Bose-Einstein condensate — Four-wave mixing —
Atomic pairs — Optical lattices — Correlations — Single-Atom detector — Metastable helium

Résumé

Cette these décrit I'observation expérimentale de 1’effet Hong-Ou-Mandel avec une source
atomique ultra-froide. L'expérience originale réalisée en 1987 par C. K. Hong, Z. Y. Ou et L.
Mandel illustre de fagon simple une interférence a deux particules explicable uniquement par
la mécanique quantique : deux particules bosoniques et indiscernables, arrivant chacune sur
une face d’entrée différente d’une lame semi-réfléchissante ressortent ensemble. Cet effet se
traduit par une réduction du taux de détection en coincidence entre les deux voies de sortie
quand les particules arrivent simultanément sur la lame. Cette expérience fut originalement
réalisée avec des photons et nous rapportons ici la premiére mise en oeuvre expérimentale avec
des particules massives se propageant dans l'espace libre.

Apreés présentation des différentes techniques nécessaires a sa réalisation, nous décrivons
cette expérience et analysons les résultats obtenus. En particulier, la réduction du taux de
coincidence est suffisamment forte pour exclure toute interprétation classique ; I'observation
de cet effet constitue une brique fondamentale dans le domaine de I'information quantique
atomique.

Mots-clé : Optique quantique atomique — Condensat de Bose-Einstein — Mélange a
quatre ondes — Paires atomiques — Réseau optique — Corrélations — Détecteur a atome
unique — Hélium métastable
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Introduction

Quantum mechanics often sounds abstract or inaccessible when theoretically discussed. Con-
cepts such as entanglement and non-locality have for very long seemed out of reach. However,
continuous technical advances open the way to probe this theory in its more deep details and
to constantly put its validity to the test. The realisation of benchmark experiments allowed to
truly understand the theory behind it and to realise how vast and rich is its field of applications.

Entanglement is probably one of the most intriguing feature of quantum mechanics, de-
scribed by Albert Einstein as a "spooky action at a distance". The physical object is affected
without being physically touched, contrarily to the contact description of interactions sup-
ported by early classical mechanical theories. Entanglement, in its most basic formulation,
corresponds to two particles generated or interacting as a pair in such way that the quantum
state description of each particle cannot be done individually, instead, it describes the pair. This
means, for instance, that if the two particles are travelling away from each other, any measure-
ment performed on one of the two will immediately affect the other one. This led Einstein,
Podolsky and Rosen to question the completeness of quantum mechanics in their famous 1935’s
paper [1] against the Copenhagen interpretation [2]. Since no information can travel faster then
the speed of light, than how can a particle immediately feel the effect of the other? Are there
hidden variables shared by both particles which guarantee that the two "combine" their answer at
the beginning of the experiment? These questions raised a spirited discussion in the scientific
community with Bohr [3] and Schrédinger [4, 5] defending the completeness of quantum theory
contrary to the predictions of Einstein. These questions, which stayed for a long time in the
epistemological domain, were converted to an algebraic form by Bell in the early 60’s, leading
to the famous Bell’s inequalities tests [6]. Therefore all local theories of natural phenomena
formulated within the framework of local-realism may be tested using a single experimental
arrangement whose result differs from the prediction of a complete quantum theory description
[7, 8], where the two particles are inseparable and their description is non-local. Since both
descriptions do not lead to the same results, an experimental violation of one of the tests, cor-
responding in most cases to an algebraic inequality, proves that local-realism cannot describe
the result and that quantum mechanics is complete.

With the advent of the first laser in the 60’s and the development of single photon pairs,
optics entered deeply in the realm of quantum mechanics. It began to be possible, via a pumped
radiative atomic cascade [9-11] or spontaneous parametric down-conversion in a non-linear
crystals [12, 13], to produce correlated single pairs of photons. The first experimental protocols
for tests of non-locality were formulated in the 70’s using polarisation detection [9, 14, 15] and
the first experiments performed just a few years later [8, 10, 16, 17] proving that quantum
mechanics is intrinsically non-local. Since then, tests of Bell’s inequalities are getting closer to
the original paradox with tests on momentum and phase measurements [18], with increasing
space-like separation of the two observers [19] and higher detection efficiency [20, 21].

This action "at distance" is at the heart of several recent developments in the topic of quantum
cryptography [22, 23], quantum information [24-26] or even quantum teleportation [27, 28].
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The ﬂexibility of the experimental realisations and the increasing distances between the particles
[29-32] make us believe that this topic of research will revolutionise our future.

Almost 40 years after the first laser, another technological jump led to the observation of
the first Bose-Einstein condensate (BEC) [33]. This macroscopic state of matter described by a
single wave-function opened the door to an incredible vast field of research and applications.
One of the most interesting feature of cold atoms experiments is the ability to simulate many
different Hamiltonian. Allowing us, from very general assumptions, to follow the evolution of
a system with the advantage of controlling its different parameters. This allows one to simulate
the behaviour of solid state physics, getting deeper in the understanding of superconductivity
[34-36], to realise analogues of cosmological objects [37-39], to study the low energy structure of
matter such as the Higgs amplitude mode [40, 41], to perform inertial precision measurements
[42, 43] or to generate entangled states in analogy to what is done in quantum optics [44-46],
the last being the main interest of our work.

Since the Bose-Einstein condensate is a macroscopic coherent source of matter-waves, as a
laser is in quantum optics for photons, itdid not take long until the firstatomic pairs experiments
were performed. From the very strong non-linearity of the condensate, due to the atom-atom
interactions, it has been possible to create atomic pairs via condensate collisions [47, 48] or
through dissociation of weakly bound molecules near a magnetic-field Feshbach resonance
[49]. The domain of both atomic spin and atomic pairs in momentum space have, in the last
years, showed promising results with the measurement of squeezing in momentum space and
spin domain [50-52] and entanglement [53].

One of the milestone experiments in quantum optics is the one performed by Hong, Ou and
Mandel [54] in 1987. It corresponds to a simple conceptual experiment at the origin of very pure
entangled state production. The experiment consists of two photons entering a 50:50 beam-
splitter, one in each input port. When both photons are identical, their probabilities of exiting
in different output ports cancelled out due to destructive interference effect. Consequently, one
will always detect both photons emerging together in one of the two output ports. The resulting
output state is a maximally entangled state which is widely used in quantum optics [55, 56]. On
the other hand, if photons become distinguishable the destructive interference effect vanishes
and the output state is no longer entangled. With this experiment, one can measure accurately
the correlation strength of the pair, the source bandwidth, path lengths and arrival time of the
two photons on the beam-splitter. It is also widely used for logical operations leading, for
instance to the realisation of a C-NOT gate [57, 58]. Outside quantum optics, this experiment
has been recently realised in the microwave frequency domain [56], with levitons [59], electrons
[60] and surface plasmons [61, 62]. Similar effects have also been observed with independently
prepared single atom sources in individual optical tweezers [63].

In this manuscript, we discuss the realisation ofa Hong-Ou-Mandel experiment with atomic
pairs in momentum space, in close analogy to the original quantum optics experiment [54].
Atoms with different momenta are recombined on a 50:50 atomic beam-splitter performed by
Bragg diffraction [43]. Via the correlation reduction at the output ports, we identify the quantum
destructive interference effect between identical paths.
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Manuscript organisation

The manuscript is organised as follows:

e Chapter 1

A brief introduction to the Hong—Ou-Mandel effect, its description and a link to the
Cauchy-Schwarz inequality will be given. This will allow us to understand the funda-
mental interest lying behind this experiment and how can one use it to describe the pair
source. From this discussion, the most essential tools in order to adapt the photonic
experiment to matter-waves sources will be listed;

e Chapter 2

An overview of the apparatus, before this work started, is given, pointing out the defi-
ciencies that were present. The solutions adopted in order to suppress those weak points
and how this played an important role in the experimental realisation of the atomic Hong-
Ou-Mandel effect will be discussed. Among the improvements made, we will give special
attention to the new crossed dipole trap designed for the experiment;

e Chapter 3

We divide our discussion on the role of the different lattices at play in our experiment
in two chapters. In this chapter, we start by introducing the most basic concepts of the
effect of a periodic potential on the atoms. Since the pairs are produced via dynamical
instabilities of a BEC placed in a moving lattice, we will then discuss the theory behind it
and the experimental realisation of atomic pairs in momentum space;

e Chapter 4

The basic tools to manipulate the atoms will be presented in this chapter. We will focus our
discussion in how to perform an atomic 50:50 beam-splitter and mirror. Another lattice
will be presented and discussed in detail, the beam-splitter lattice. In this chapter, we
will give particular attention to the theory of Bragg diffraction at the heart of the atomic
mirror and beam-splitter;

e Chapter 5

Finally, the main result of this manuscript will be presented, namely the Hong-Ou-
Mandel experiment with matter waves. We will show that it is possible with the atomic
source to realise a two-particle interference and that no simple classical theory can explain
our result. The analysis will give deep insights on the atomic source properties and how
it can be used for non-classical interferometric studies, opening the way to more complex
tests of quantum non-locality via tests of Bell’s inequalities;
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e Appendix A

This appendix corresponds to the derivation of the speed of sound in a condensate follow-
ing the method described in Ref. [64]. This is useful for systems lying in the intermediate
quasi-condensate regime.

e Appendix B

A more detailed calibration of the crossed-dipole trap is given with emphasis on the
experimental determination of the trapping beams waists;

e Appendix C

A brief description of stimulated two-photon Raman scattering is given. The most impor-
tant numbers, speciﬁca]ly, the detuning used, the angle between the two beams and the
transfer efficiency are specified;

e Appendix D

This appendix is a complement to Chapter 5. We will describe the steps towards the
expressions used for the HOM-dip visibility and width. A special attention is also given
to the mirror or 50:50 beam-splitter imperfections where we will show that these imper-
fections do not have a strong impact on the HOM-dip visibility;

e Appendix E

In the conclusion of this manuscript, a brief introduction to a possible scheme to perform
the test of Bell's inequalities in momentum space will be discussed. The derivation of the
main results shown in the Perspectives are here summarised.
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As a side note, although in this manuscript only the work performed to the realisation of the Hong—
Ou—Mandel is discussed, l would like to point out that I also participated in other projects during my PhD
whose related publications are added at the end of this manuscript. In particular, I strongly participated
in two projects:

The acoustic analog to the dynamical Casimir effect in a Bose-Einstein condensate [39]. In
this project, we modulated the condensate density via the modulation of the optical trap stiffness, in which
the condensate is obtained. This modulation is performed with velocities above and below the speed of
sound of the condensate. This is equivalent to modulating the index of refraction of an optical cavity
close to the speed of light, leading to the pairwise creation of photons [65, 66]. This phenomenon has
recently been observed in Ref. [67] where pairs of photons in the micro-wave domain were produced and
two-mode squeezing observed in the emitted radiation.

In our experiment, we observed the production of two atomic clouds with opposite momenta and
proved, through the measurement of the correlation between the two clouds, that the process is pairwise.
We also studied the response of the system to the modulation frequency. Via Bragg spectroscopy, we
were able to show that the energy given to the system was split between the two clouds forming the
pair in analogy to parametric down-conversion for quantum optics. Therefore, we were able to prove
pairwise creation of particles with momenta ranging from the phononic branch to the particle branch of
the Bogoliubov dispersion relation.

The study of 2nd order coherence of Superradiance from a Bose-Einstein condensate [68]. In
an anisotropic source, a collective emission builds up more efficiently in the directions of highest optical
thickness. For that reason, in an elongated BEC, we excite atoms such that an allowed emission dipole
can radiate along the elongated BEC axis. Superradiance is, therefore, expected to occur along this axis,
in the so called “endfire” modes [69, 70]. Just after been released from the crossed dipole trap, the atoms
are excited through the application of a very intense and close to resonance (600 MHz detuned) laser
beam. The atoms initially in the m; = 1 state are equally scattered into m; = 1 and m; = 0.

We focused our study in the atoms scattered to the two endfire mode of the m; = 0 state corresponding
to Raman superradiance [71]. We observed that the second order auto-correlation function reaches a
value close to 2. This shows clearly that, despite strong amplified emission in the endfire modes, the atoms
undergoing a superradiant process have statistics comparable to that of a thermal sample. These large
fluctuations can be simply understood by modelling the superradiant emission as a four-wave mixing
process; they arise from the fact that the emission is triggered by spontaneous emission. In order to
confirm this explanation, we performed a coherent transfer of population from the statemj = 1tom; = 0
via stimulated Raman scattering. In this case, vacuum fluctuations do not initiate the scattering process
and the resulting mode occupation is not thermal but coherent which translates into the measurement of
a very-nearly flat second order normalised auto-correlation function equal to 1.


http://link.aps.org/doi/10.1103/PhysRevLett.109.220401
http://link.aps.org/doi/10.1103/PhysRevA.90.013615
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Basic concepts of the Hong—-Ou—-Mandel
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All photons are equal but some photons
are more equal than others

Title of Ref. [72] probably inspired by
George Orwell’s book "Animal Farm".

The experiment of C. K. Hong, Z. Y. Ou, and L. Mandel performed in 1987 [54] and widely
known as the Hong-Ou-Mandel (HOM) experiment is one of the most important demonstration
of quantum mechanics. In this experiment, two photons produced via parametric down-
conversion are recombined on a beam-splitter. Two photodiodes placed at the output ports of
the beam-splitter register the output signal. A synchronisation is then performed to compare
the signal of both detectors and recover the coincidence counts, meaning the probability for
detecting a photon in one of the two detectors at time interval t + dt knowing that the other
photon had been detected at time f on the other detector.

According to Newtonian particle theory, for the case of non-interacting particles, one would
expect to detect a coincidence count for half of the realisations since the four cases illustrated
in Fig. 1.1 are equally probable. However, for classical indistinguishable waves an interference
pattern appears. In the case considered here, the relative phase is kept undetermined, such that
after averaging over N realisations, the interference washes out. By looking at the coincidence
count, one would find that for indistinguishable waves the coincidence count is reduced by a
factor two compared to the case of distinguishable waves. By indistinguishable classical waves
one means that they have the same polarisation, spatial mode, etc... For single indistinguishable
photons, however, the same result does not apply. The 1987’s experiment showed that in this
case the coincidence count goes to zero although the relative phase of the two photons is
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b)

C) d)

—

Figure 1.1: Classical scenarios for two incoming particles. Schematic representation of all four cases corresponding to
the different possibles arrangements of two particles arriving on a 50:50 beam-splitter. The blue arrows represent the arriving
particles. Case: a) both particles are reflected; b) both transmitted; c) and d) one reflected and the other one transmitted.

Figure 1.2: Beam-splitter input and output ports convention. The 50:50 beam-splitter is schematically represented. Two
photons arrive at the beam-splitter through ports a and b represented by incident blue arrows. The output ports are designed
by cand d.

completely random. This means that one will never detect at the same time one photon per
output port and that the two photons always emerge together. This two-photon destructive
interference effect is known as the HOM effect [54].

This chapter is organised as follow. In Section 1.1, the basic understanding of the HOM effect
will be summarised. One will also discussed the quantumness of the effect and the necessary
conditions that the input state must fulfil. In Section 1.2, the connection between the HOM-dip
visibility and the violation of the Cauchy-Schwarz inequality will be presented and explored in
order to generalise the interpretation of this effect to an arbitrary state. Finally, in Section 1.3, the
analogy with atomic pairs will be discussed, introducing the major difficulties and challenges
associated with this experiment and the required tools to perform it.

1.1 HOM effect: basic explanation

The HOM experiment can hardly be seen as an interferometer since it does not correspond to
a situation where a wave is split and recombined on a 50:50 beam-splitter, but to a situation
where two particles, here photons, arrive on the input ports of a 50:50 beam-splitter. The
easiest experimental way to have two photons arriving simultaneously on a beam-splitter is
to create them simultaneously and at equal distance from the beam-splitter. This is commonly
performed in quantum optics via generation of photon pairs when an intense laser beam, called
pump beam, passes through a non-linear medium [13]. Another method consists in using
spontaneous emission of photons from trapped atoms such that a finite probability of having
two atoms emitting at the same time exists [73].

The HOM effect appears via a reduction of the coincidence count. Which translates in the
reduction of the correlator (¢'d*¢ d), where () accounts for the quantum average. The operators
d, b correspond to the incoming field operators of the beam-splitter and ¢, d to the outgoing
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field operators (see Fig. 1.2). The simplest way to calculate such a correlator is to transform
the operators and the state vector back in the input space before the beam-splitter and to use
the Heisenberg picture. The transformation matrix between the operators ¢, d and a, b can be
worked out from first principles,

=y e
Il
U

T =

The scattering matrix S represents the 50:50 beam-splitter operator and can be written as

R 1 ie~is
S=L ,
V2 jeigs 1
with ¢s a phase associated to the beam-splitter. 1 1t is then possible to rewrite the operators
such that

¢=—=(a+ie®b),

d= (b +iei9sa).

Considering first the ideal case of an input state with exactly one photon in each channel,
|14, 1), one obtains

[1a, 1) = 45|10, 0y — %(e*d‘ﬂo, 0y +i(d'd*e%s +c'ete ) (0,0 —d'et0,00) . (1.1)

One immediately sees that dtet)0,0) and étdt|0,0) are identical but associated with opposite
phases, such that the sum of their amplitudes vanishes. This corresponds to a destructive
interference effect, leading to a suppression of coincidence counts between the output ports
of the 50:50 beam-splitter. This suppression is the marking feature of the HOM experiment.
Please note that this result is only true for identical photons.

Let us consider the case of two photons arriving to a beam-splitter but with perpendicular
polarizations, for example photon a with horizontal polarization, ag, and b with vertical polar-
ization, by, where the subscript index stands for the polarization. Consequently, after the 50:50
beam-splitter one retrieves

o, 1nv) = ahbh10, 0) — %(e}{&{,m, 0) + f(&L&{,ﬁs + eLe{,e—*’ﬁbs) 10,0y — dt,et o, 0)) . (12

and since the output states JLEV|0, 0) and ELJ{,|0, 0) are different their amplitude does not sum,
and no destructive interference effect is observed. This means that for distinguishable photons,
one will not measure a reduction of the cross-correlation or coincidence count.

The output state, for the case of indistinguishable particles, can be written via Eq. (1.1) as

[Yout = % (75122, 04) + 5105, 24)) , (13)

1This notation can seem rather unsual for photons, but as we will see later in Chapter 4 and in Appendix D it is
well suited for describing the effect of the atomic beam-splitter. The atomic beam-splitter corresponds then to a /2
Rabi oscillation with ¢s corresponding to the relative phase between the laser beams forming the optical lattice.
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Figure 1.3: 1987 Hong-Ou-Mandel dip. Measurement ~ Figure 1.4: Schematic representation of the 1987’s
of the coincidence count reduction as function of the beam-  Hong—Ou—Mandel experiment. Two photons produced via
splitter displacement. The minimum value corresponds to  parametric down-conversion are plugged into a 50:50 beam-
the case of perfect indistinguishable particles. The solid line  splitter, after passing through a frequency and spatial filter.
corresponds to the theoretical predicted curve while the dashed Two photodiodes register the number of detected photons on
line corresponds to an attenuation of 0.9 of the first curve. both output ports. A coincidence count is then performed
Figure copied from Ref. [54]. afterwards. Figure copied from Ref. [54].

which is a maximally entangled two-photon state [24]. The coalescence effect, which translates
the tendency of photons to always exit together, is a feature of the symmetry of the wave function
associated to bosons [74]. For fermions, one would obtain the output state [()our = é*tf*l[), 0y,
corresponding to a maximum coincidence count [75].

The HOM effect translates thus to a vanishing coincidence count when particles are made
indistinguishable [76]. This means that the cross-correlator ij‘i), defined by

G2 = (tdted), (1.4)

tends to zero. On the other hand, since we are considering a 50:50 beam-splitter, the average
output populations are thg same, (ng) = (n.) with (71.) = (¢* ¢) the number of photons in the
output port c and (1) = (d* d) the number of photons in the output port d.

As we have seen two scenarios are then possible. Either the photons are indistinguishable,
meaning that it is impossible to idenﬁfy which photon has been reflected or transmitted, or
they are distinguishable, meaning that one can know, via some quantity, which particle has
been reflected or transmitted. The crossover between these two scenarios is responsible for
the HOM-dip represented in Fig. 1.3. Going from distinguishable to indistinguishable particles
was originally performed by changing the optical path, that is, by changing the position of the
beam-splitter, as it can been seen in the schematic representation of the original experiment
shown in Fig. 1.4. When the change in the optical path is such that the two photons do not
overlap on the beam-splitter, the particles are distinguishable. On the other hand, when the
two particles overlap on the beam-splitter their paths are indistinguishable and one retrieves
the zero coincidence count ? as shown in Fig. 1.3. Other strategies can be exploited in order to
control the distinguishability between the two particles [72]. For example, in Refs. [74, 77, 78],
the polarization of the two produced photons was used in order to tune their distinguishability.

It is important to note that originally, the HOM experiment had for goal to determine the
wavepacket size of the photons with a resolution of a few hundreds of femtoseconds. The size
was determined through the width of the dip which is directly linked to the correlation length
of the particles [54]. We will see in Chapter 5, however, that the width of the HOM-dip can also
be due to the contribution of the spectral and spatial filtering procedure.

n fact, the cross-correlation does not reach zero. According to the authors the difference is due to a non perfect
spatial overlap.

16



HOM effect: basic explanation

1.1.1 Generalisation of the HOM effect

In contrast to the previous situation, input states containing more than one photon per chan-
nel lead to partial destructive interference and, consequently, to a non vanishing coincidence
count. Consider the following situation where instead of having one photon per input port one
considers the input state |2;, 2;)

atpt
2

[V)in = 124, 2) = |0, 0).

Applying the same transformation as before, one finds
1)out = —% [e—%sfﬁcﬁ&*&* + edPsgtetatat o 26*@*&*&*] 0,0) . (1.5)

One sees that the probability of detecting two photons coincidently does not vanish and the
destructive interference is only partial. This means that, although one will never detect at the
same time one particle per output port, one may detect two particles at the same time in both
output ports. Consequently, the coincidence count does not go to zero but presents a finite
value. This effect was discussed in detail in Refs. [79, 80].

The same calculation can be performed for a twin-Fock state with N particles
INg, Np)

leading to a multi-particle-interference effect. The state can be rewritten as

N . .. 4\N
[9dou = sy (¢95d" +e7%5e™) 10, 0) .
The probability of detecting n particles, n being an even number, at one of the two output ports,
as a function of the total number of particles 2N is equal to

_1(n (N—-n)
P(n, even) = N (n/2)((N ~ n)/Z) , (1.6)

while the probability to detect an odd number in one of the two output ports is always zero,
P(n, odd) = 0.

Fig. 1.5 summarises the different distributions for 2N = 2, 2N = 4 and 2N = 10. The situation
with 2N = 2 corresponds to the discussed two photon interference [54, 81]. With increasing
number of particles, 2N = 10 for example, one retrieves the characteristic U-shape discussed
in Ref. [82]. This shape indicates that for indistinguishable particles, when the total number
of particles at the input ports increases, the probability of detecting all particles in one of the
output ports increases although the coincidence count does not strictly vanishes. In the case
of distinguishable particles, the probability of detecting n between 2N particles follows the
binomial distribution, see Fig. 1.6a). One has an increased probability of de tecting the averaged
value of N due to 50 % transmission of the beam-splitter. These distributions have been recently
studied both theoretically and experimentally with photons [82, 83].

In conclusion, in the case of indistinguishable particles, the variance of the distributions in-
creases when compared to the distinguishable case, see Fig. 1.6b).

The U-shape, however, corresponds only to the particular case of a perfect detection, any
losses would translate into a non-vanishing probability to detect odd number of photons. It
is also essential to be able to detect single photons in order to differentiate the even from
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Figure 1.5: U-shape of the HOM effect with increasing number of particles per input ports. Each canvas represents
the probability to detect n particles (P(n)) on one of the two outcome ports for N incoming particles per port. From left to right,
the total number of incoming particles 2N increases from 2 to 10. For the case of N = 2, one retrieves the expected annihilation
of coincidence counts which translates in a null probability to detect one particle per output port. When the total number
of particles increases, although for odd number one still has a null probability, one starts to detect even numbers of particles
different from the extreme cases 0 or 2N which means that the coincidence count has a certain finite value.
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Figure 1.6: Distribution of the number of particles at one of the two output ports for both distinguishable and
indistinguishable 2N = 10 particles. Red histogram corresponds to the binomial distribution that one would obtain without
interference effect. This corresponds to the case of distinguishable particles. In blue, the indistinguishable particle interference
distribution for 2N = 10 particles. One can see that the probability of detecting even numbers in one of the output ports follow
a U-shape distribution.

the odd number. Furthermore, in the case of a multimode source, the U-shape also tends to
vanish as discussed in Ref. [82-84]. In Ref. [83], a twin-beam produced via parametric down-
conversion is used. Although the total photon number in each beam can fluctuate, the relative
population is ideally very well defined, indicating photon-number correlations between the
beams. The number of photons per beam N is set to 5 X 1010 photons. The two beams are then
filtered both spatially (performed by the presence of a pinhole on the incoming beams) and
spectrally (via a Fabry-Perot interferometer), being afterwards recombined on a 50:50 beam-
splitter. Measurements with different numbers of modes show that the U-shape becomes less
visible as the number of modes increases. This is represented in Fig. 1.7 for a selection of 1.2
modes, see Fig. 1.7a), where the U-shape is visible. For higher mode number, however, the
shape tends to disappear as shown in Fig. 1.7b). It is also important to note that the filtering
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Figure 1.7: Effect of the number of modes in the output port number of atoms distribution. Probability distributions
P(A) obtained for the effective numbers of modes m = 1.2 (a)) and m = 3.4 (b)). One sees that when the effective number of
modes increases the U-shape tends to disappear. Figure copied from Ref. [83].

0.06 ' 0.06 T
a) b)
g i | 4 I l
EO.OS E_—fO.OS
A A

Figure 1.8: U-shape obtained with classical states. U-shape observed for classical beams with the fluctuations in the
relative phase increased artificially. The probability distribution P(A) for: a) the thermal state and b) the coherent state with
artificially randomised phase. Figure copied from Ref. [83].

procedure lowers the efﬁciency of detection, since photons are lost in the process. Consequently,
the probability of detecting odd numbers increases and the effect is less marked.

In the same article, the authors show that in this situation, with high number of photons,
multimode source and imperfect detection efﬁciency, classical states with random relative
phases can reproduce the behaviour of a strongly correlated state, |N,N) for example. The
random phase between the two input waves allows to replicate the enhanced relative phase
uncertainty of the state |[N;, Np).

The interferometric result for classical states is shown in Fig. 1.8. Both the situation of a
thermal state (a) and a coherent state (b), with relative random-phases, simulate the discussed
U-shape. One concludes that in the case of macroscopic populations with imperfect detection
efficiency one can not distinguish the result obtained for a classical state from a quantum state.
Consequently, this raises the question of whether the HOM effect, with a number of input
particles close to one, can also be replicated for a classical state.
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1.1.2 Generalisation for any input state

As seen previously, increasing the number of particles at the input port of a 50:50 beam-splitter
tends to weaken the destructive interference effect. Although the previous calculations were
based on twin Fock states, one can generalise the result without any assumption on the incoming
state.

The cross-correlation between ports ¢ and d for the case of indistinguishable photons or
distinguishable ones can then be written, respectively, as (see the detailed demonstrations in
Appendix D)

@ _li@, -~

Coaind. = 7 (Ca +Gy) (1.7a)
@ _li-@,~\,1-0

Gca‘,Dis. T4 (Cﬂﬁ + Cbb ) + Ecab ’ (1.7b)

where Cf) = (iti'7 i) stands for the autocorrelation of the input portsi = a, band Gﬁ) = (a*btab)
for the cross-correlation between the input ports @ and b. In the case of the input state |1,,13),

Q=69 =0,

2 _
Cab =1,
and, consequently,
~(2) _
ch, Ind. — 0,
@ 1
cd, Dis. 27

leading to the complete annihilation of coincidence counts when the particles are indistin-
guishable. This formalism is however applicable to any input state as will be discussed in
Section 5.3.

For the discussed input state |25, 2;), one immediately sees that

GP =62 =2,

(2)
G, =4
SO,
)
ch, Ind. I,
(2)
ch, Dis 3

and, therefore, the indistinguishable case does not correspond to a fully vanishing coincidence
count. This effect is related to the visibility [85] defined as
(2)
V=1 ch,lnd.
N G@
cd, Dis.

(1.9)

which for a state [25,2;) is equal to V = 0.66 instead of V = 1 for the two particle case |15, 1p).
Experimentally, the visibility corresponds to the contrast of the dip present on the coincidence
count as a function of T as shown in Fig. 1.3. For a coincidence count evolving from a finite
background value to zero, the visibility reaches the maximum value of 1. For non-vanishing
minimum values of the coincidence count the visibility decreases.
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Parametric down-conversion

Consider the output state of a 2-mode parametric down-conversion process [86] which is often
used in quantum optics [13]

?1

N tanh
i Z cosh(/’t)

n=0

where A is related to the average number of particles via the relation (n) = sinhz(/’t). The
autocorrelation and cross-correlation are then equal to [87]

G = = 2(n)?, (1.10a)
Gﬁ) = (n) (1 +2(n)), (1.10b)

which gives the fo]lowing result for the cross-correlation measured on the output ports

G, = (7, (1.11a)
i = 07 (24 355). (i

in the case of indistinguishable and distinguishable particles, respectively. This leads to a
visibility V defined by Eq. (1.9) of
_ 1

V=1-——1\ (1.12)
2+m

that tends to 1 when (n) — 0 and to 0.5 when (n) — oo. The first case, when {(n) — 0,
corresponds to the situation for which it is very unlikely to have more than one particle per
input port, that is, to the case of the input state |1, 15). When (1) increases, the probability of
having more than one particle per input port is no longer negligible and the visibility decreases
towards the asymptotic value of 0.5.

Fig. 1.9a) shows the evolution of the visibility V as a function of the averaged number of
particles at the input ports (1) varying between 0.0 and 4.0. One sees that as the average number
increases towards (1) = 1 the visibility reduces rapidly. Atlow population ({(n) < 0.4), as shown
in the inset the visibility goes from 1.0 for (1) = 0 to 0.75 for (n) = 0.2. This is due to the fact that
the probability of having more than one particle per input port increases rapidly as represented
in Fig. 1.9b) where the probability of detecting n particles for an average population (1)

tanh” [sinh_1 ( V) )] 2
cosh [sinh_1 ( V) )]

is represented as a function of (n). As (n) increases the probability of detecting more than
one particle is no longer negligible when compared to the one of detecting one particle. This
is rapidly the case, as shown in Fig. 1.9b) where for an average population of (n) = 0.2 the
probability of detecting two particles is only a factor four weaker than the probability of
detecting one particle.

P((n),n) = (1.13)

It is now clear that increasing the number of particles per input port has as consequence a
reduction of the HOM-dip visibility towards a finite value of 0.5. This means that for the
case of two correlated macroscopic beams of indistinguishable particles, the cross-correlation
after passing through a 50:50 beam-splitter is twice smaller than for the case of distinguishable
particles.
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Figure 1.9: Evolution of the HOM-dip visibility as a function of the averaged population {(n). a) HOM-dip
visibility V as a function of the averaged population per input port (n). b) Evolution of the probability to find n particles
(P(n)) in one of the input port as a function of the averaged population (n). The distribution corresponds to the parametric
down-conversion state.

1.1.3 Classical threshold

Although the HOM effect has been presented and described so far as a pure quantum effect, a
natural question to ask is whether it is possible or not to re-interpret this experiment through
classical wave arguments. The answer to this question is yes and no. Yes, because it is possible
to predict a reduction of the cross-correlation when the paths of our two particles become
indistinguishable. And no, because, the contrast in this situation is bound to 0.5. For classical
waves with random phases it is impossible to measure a visibility above 0.5. This means that a
classical description gives a threshold value for the visibility above which no simple classical
explanation can predict the result as we will see.

Consider two incoming electromagnetic waves &, and &, of same amplitude & but different
phases

8& = 803@" ’
& = Ee'™,

on a 50:50 beam-splitter. The two outcoming waves can be written as

& = % (& +ie70s8,)

1 .
&= — (& +id¥sE,).
(& ioe,
The intensity at the two output ports I; and I; becomes then

I. = 2y sinz(W) ,

I, = 2Ip cos? (‘pb ¢a +¢S)

and, consequently, the product intensity I.I; is equal to

II; = 412 cos? (‘p*’ qb“) (‘pb (p“) 12 sin? (¢ — o + ps) -
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The question is then to know if itis possible, via classical arguments to retrieve a vanishing
coincidence count. Since classical waves interfere, it is indeed possible to select an area where
the intensity is always zero. Then, if the detector is at this position the coincidence count would
go to zero when the waves interfere (indistinguishable waves) and finite when the waves
are distinguishable (orthogonal polarisations for example). If now one changes randomly the
phase between the two incoming waves in each realisation, the interferometric pattern will
move randomly and, wherever the detector is placed, once averaged over all realisations,
the coincidence count will never be equal to zero. For a twin Fock state, however, it is well
known that the relative phase between the two photons is completely undefined since it is
the Heisenberg conjugate of the particle number difference whose uncertainty is zero [88-90].
Consequently, choosing randomly the relative phase between the two incoming particles does
not change a thing. In this situation, classical waves would never present a zero coincidence
count while a quantum state, as a twin Fock state, would.

Averaging the classical wave interference over the phase difference ¢, — ¢, (()¢) leads to

(g =g = 1o (1.14a)
(Laloys = 15/2, (1.14b)
and to the visibility
Tl
I)ellede
=0.5.

In order to randomise the phase, one can also vary from realisation to realisation the phase
of the 50:50 beam-splitter, ¢s. In fact, this is what we performed experimentally as will be
discussed in Chapter 5. Thus, the visibility cannot exceed the threshold value of 0.5 meaning
that, via classical arguments, one can never measure V > 0.5. In fact, this threshold of 0.5
corresponds, to the best possible situation for classical waves since population imbalance at the
entrance of the beam-splitter or losses at the beam-splitter would always lead to a reduction of
the interference contrast and, consequently, of V.

It is important to keep in mind that, via simple classical arguments, the maximum prediction
for the HOM-dip visibility can not exceed the value of Viyres = 0.5. Any result above this limit
leads to the confirmation that quantum destructive interference are at play and that the input
state is not a classical state.

1.2 HOM-dip visibility and Cauchy-Schwarz inequality

As seen previously, in order to quantify the destructive interference the visibility of the HOM-
dip can be expressed as

(2
— ch, Ind.

V=1-
(2)
ch, Dis.

which combined with Eq. (1.7) leads to the expression
2G%
(G2 +G2) +262

V= (1.15)
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Figure 1.10: Beam a and b split by a beam-splitter, schematic representation. Splitting of the incoming beams a and
b in order to determine their autocorrelation. Beam a (blue incoming arrow) is split on a 50:50 beam-splitter (black trace) into
two outcoming beams c, and d,. The same scheme is represented for beam b.

From this expression, one directly sees that if the cross-correlation between the input particles a
and b becomes much stronger than their respective autocorrelation then the visibility increases
to 1. On the other hand, for a source with a finite autocorrelation value, meaning that the
number of photons per beam is higher than one, the visibility of the HOM-dip decreases. This
comparison between cross-correlation and autocorrelation is linked to the Cauchy-Schwarz
(CS) inequality [91-93].

The CS inequality is ubiquitous in mathematics and physics [94]. Its utility ranges from
proofs of basic theorems in linear algebra to the derivation of the Heisenberg uncertainty
principle. In its basic form, the CS inequality simply states that the absolute value of the inner
product of two vectors cannot be larger than the product of their lengths. In the presentsituation,
the interest of the CS inequality is related to the detected intensity fields of the two incoming
photons. Considering the two photons as classical electromagnetic waves the inequality writes

as
(Lalpy < \(I2) (1D, (1.16)

where I; and I, corresponds to the intensity of the beams a and b. In order to measure (13), one
cannot just measure (I;) and take the value to the square. Since no detector directly measures
the square of the intensity field, one needs to be ingenious. The solution is then to place a 50:50
beam-splitter in the path of each beam as represented in Fig. 1.10. The electromagnetic field is
then split into two output ports ¢ and d. For the case of beam a one has

Lo = (I, +12,)

and for beam b
I, = (I, +1g,).-

Let us focus on the case of beam a (the calculations for beam b are identical). By measuring the
cross-correlation at the output ports (I, 1;,), which for a perfect 50:50 beam-splitter corresponds
to

1
Il = (I,
one recovers the value of (I2) and (Ig). Eq. (1.16) can then be written as

(Laly) < 16¢I,alaa)Icplap)- (1.17)

In quantum mechanics, however, the expression of the CS inequality changes slightly. The
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beam-splitter, as described in Section 1.1, leads to the fo]lowing expressions

1 oA

&t = —(at +ie Ot , 1.18a
5 ) (1.182)
1 . "

dl = — (ie%sat + O'), 1.18b
=2 ) (1.18b)

with CA)’i tAhe Heisenberg operator for vacuum. As before, looking at the quantity (fi,1,,) with
(f;) = (i* i), where the number of atoms is the equivalent of the intensity, we obtain

(fic,aftg,a) = %(a*a’fa ay = %(ﬁa(ﬁa 1)) = %(: A2 1) (1.19a)
1 gognn 1 1
(fic,bfa,p) = Z<b’rb’rbb) = 7wy = 1)) = 7y ) (1.19b)

with (: :) standing for the normal ordering average [95]. This non-intuitive ordering average
can easily be seen as a consequence of the total number of particles conservation after a beam-
splitter. In this sense, if one measures 1 particle of a total number of N particles, one has to
detect N — 1 particles on the other port. Thus, the CS inequality can now be written as

(frafip)® < (: 72 20 A2 2). (1.20)

Please note the importance of the normal ordering in this new expression of the CS inequality.
Let us consider the case of the state seen earlier, |1,,1;). For this particular, case one has
( ﬁ§ D= ﬁ§ :y = 0 while (f1,71;)* = 1. The inequality does not hold any more and one violates
the CS inequality [96]. This results shows that for the case of stronger-than-classical correlations
the CS inequality is violated. In fact, it is important to note that for distinguishable particles a
violation of such inequality does hold information on the correlation strength [97]. In the case of
indistinguishable particles, however, the inequality violation is only possible for non-classical
states.

The experimental production of such states is widely used for tests of quantum mechanics
[56, 98, 99], quantum networking [100, 101] and quantum information [31, 32, 102] for example.
The connection between the CS inequality violation and the properties of indistinguishability
for entanglement is discussed in Ref. [103]. It states that the violation of the CS inequality can
lead to a proof of entanglement in the case of indistinguishable particles.

The CS inequality can thus be written as

@ @50
G < cPc?. (1.21)

In order to easily express the violation of this inequality, the parameter C
(2)
Cab

2) ~(2
Jeeg

corresponding to a correlation coefficient is introduced. This parameter is smaller than unity
classically, but can be larger than unity for states with stronger-than-classical correlations. In
order words, C > 1 indicates a violation of the CS inequality. The idea is now to connect this
correlation coefficient C to the HOM-dip visibility V. Starting from Eq. (1.15) one can express
Vv by the general expression

C= (1.22)

_ 1
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Figure 1.11: HOM-visibility and visibility threshold as a function of 6 and C. a) HOM-dip visibility threshold Viires
as a function of the imbalance parameter 5. One can see that the maximum value is set to 0.5 since 6 > 1. The inset shows
the threshold inside a range close to the one measured experimentally in our system. b) HOM-dip visibility as a function of C
for 8 = 1. One sees that the visibility threshold goes above 0.5 when C > 1 and saturates at 1 for C — co. The inset shows
the value of V for the correlation coefficient C in the range of the experimental values of C (see Section 3.4.2). The gray line
indicates the threshold value of 0.5 while the dashed gray lines indicates C = 1.

where 6 = (G + Gy ) [2,/GRGL -

For C = 1, which corresponds to the maximum reachable value for a classical state, one gets
the threshold limit for the visibility

_ 1
Viwes = 7575 (1.24)

with 6 > 1 since all the correlators G@ have positive values. The value of Vinyes is represented in
Fig. 1.11a) as a function of 8. It is shown that the maximum value of Vires is equal to Vippes = 0.5,
obtained for 6 = 1. For 6 > 1 the value of Vipes decreases and corresponds to situations where
the two beams have different autocorrelation values which can be explained from imbalanced
populations, background noise, different production processes, etc. .

For 6 = 1 the visibility becomes

1

V=1jc

As one can see in Fig. 1.11b), when C is higher than 1 the visibility 1% goes over 0.5 and reaches
unity when C — oo, corresponding to a situation where the autocorrelation value is zero.
This means that the probability to find more than one photon per beam vanishes. Such state
corresponds to [iP) = [1,, 1) discussed at the beginning of this chapter.
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We have seen so far that the HOM effect corresponds to a destructive interference which
translates to a reduction of the coincidence count depending on the properties of the input
state. This interference allows to quantify the number of particles present per input port as well
as the correlation between the particles arriving at the beam-splitter. The HOM-dip visibility

can reach the maximum value of 1 and cannot be explained through classical wave interference
if V> Vihes with Vinres being at most equal to 0.5. Thus, we conclude that despite the
fundamental interest of performing the HOM experiment, which is an essential proof of the
validity of quantum mechanics, this experiment is also a fundamental tool to determine certain
properties of the source as the averaged population, stronger-than-classical correlations and
indistinguishability.

The objective of the work done during this project was, based on the wide experience
accumulated in the domain of quantum optics, to adapt the photonic HOM effect to cold atom
experiments and to perform the same kind of experiments but with a source of correlated atomic
pairs. For this purpose, in the next section the required tools and expected difficulties to probe
this effect with atoms are summarised.

1.3 HOM experiment with atoms: necessary tools

The most difficult part to implement the HOM experiment with cold atoms is the production
and control of atomic pairs. Although the cold atom community is obtaining promising results
for atomic pair creation in both spin domain [53, 104] and momentum space domain [47, 48,
52, 105], the ability to produce and detect single pairs of matter waves that can be easily
manipulated is still not common. The known examples include the case of trapped ions [101]
and atoms [63, 106, 107]. However, in these cases, particles are not travelling apart from each
other and the input/output ports of the 50:50 beam-splitter are the same contrary to the case of
the HOM experiment.

The difficulty with atomic pairs in momentum space lies in the fact that particles are distin-
guished by their momenta which are continuous external degrees of freedom. Small modifica-
tions of the initial conditions translates into the production of different pairs. In other words,
contrary to spin squeezing where the particle is either T or |, in the case of momentum pair cre-
ation there are no boundaries. In this sense, the experimental realisation is very demanding in
terms of control and stability. We will discuss in Chapter 3 the achieved atomic pair production
in our experiment based on dynamical instabilities [105, 108].

Another question that naturally raises from interference phenomenon with matter-waves is
the role played by interactions [109]. In contrast to what happens with photons, particles can
interact via collisions or induced dipole forces. However, when the number of particles at play
is low, as the HOM experiments requires, the role played by interactions is negligible [109] (see
Section 5.8).

Also the detection of atoms can be an issue. Along this chapter, the discussion was always
based on the ability to detect single particles. In that sense, the domain of cold atoms have done
great improvements with single-atom-resolved fluorescence of atoms trapped in a lattice [36,
110-112] or via fluorescent resonant light sheet lying under the cloud [113]. Another technique
relies on the unique properties of metastable helium atoms used in our experiment. This very
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stable excited state lies 20 eV above the ground state. When in contact with a metallic surface, the
internal energy of the atom is sufficient to produce an electronic burst which is later amplified
and recorded as explained in Subsection 2.1.2. This single atom detection technique is at the
heart of correlation measurement in our experiment from the Hanbury Brown and Twiss effect
with matter waves [114, 115] to the violation of CS inequality on atomic pairs resulting from
Bose-Einstein condensate collisions [96].

Finally, the last difference when compared to the original HOM experiment stands from
the selection of both frequency and spatial modes via pinholes or spectral filters and on the
atomic beam-splitter. Regarding the atom beam-splitter this is a well known domain with a vast
literature [116-118]. The ﬁltering procedure, however, has no direct analogue. Nevertheless,
one will see in Chapter 5 that in our experiment, via the 3D-resolution of the detector, we are
able to filter the contribution of the different modes.

In conclusion, in order to efficiently observe the HOM effect with matter-waves four main
tools need to be at our disposal:

e asingle atom detector;

e a source of atomic pairs with stronger-than-classical correlations (C > 1);

e a coherent atomic 50:50 beam-splitter;

e a filtering procedure in order to guarantee indistinguishability between particles.

In the next chapters, we will discuss in details these key tools.
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"-T’as vu les atomes de la mélasse?
- heuuu... je crois pas. Mais j"ai peut-étre
fermé 1'oeil au mauvais moment."

JR and RL in the lab...

In Chapter 1, four fundamental blocks were listed in order to experimentally accomplish
the HOM experiment with atoms. Each block will be discussed in more detail in the next
chapters. In this chapter, we will give an outline of the experimental apparatus, pointing out
its deficiencies at the beginning of this project and how we solved them.

The chapter is organised as follow. In Section 2.1, we start by reviewing some of the most
fundamental protocols of the experiment. A brief overview of the status of the apparatus
when this work started is given, indicating the points that were missing or not adapted to the
realisation of the atomic HOM experiment. In Section 2.2, the experimental realisation of a
metastable helium BEC, with higher focus on the new dipole trap conﬁguraﬁon implemented
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during this thesis, is presented and the actual BEC conditions are summarised, pointing out the
improvements made and their significance for present and future experiments.

2.1 Status of the experiment in the beginning of the project

The metastable helium experiment at the Institut d’Optique is one of the oldest cold atoms
experiments where the first BEC of metastable helium 4 was obtained in 2001 by A. Robert e al.
[119]. This set-up is at the origin of many different important results in the domain of quantum
atom optics such as the Hanbury Brown and Twiss effect with atoms [114, 120, 121], atomic
pairs sources in momentum space [48, 51, 108], superradiance [68], dynamical Casimir effect
with matter waves [39], and more recently the atomic HOM effect [122].

This manuscript is focused on the work carried between the years 2011 and 2014. During
this time the atomic HOM experiment and the atomic analogue to the dynamical Casimir effect,
alongside with the study of superradiance, were performed. The results presented in this thesis
are a consequence not only of new improvements done on the existing set-up but also all the
work done by previous researchers since 1996. The goal of this section is to summarise the main
characteristics of the apparatus, at the beginning of this thesis, and its operating procedure.

2.1.1 Metastable helium

The reason for helium 4 not being cooled in its fundamental state lies in the fact that the internal
state can not be magnetically trapped since it has no global spin and that the closest excited state
is 19.8eV above it (see Fig. 2.1). This huge difference of energy corresponds to a wavelength of
50 nm that is difficult to address experimentally. Since most cold atom techniques are based on
light-matter interactions [123, 124] it is then a bad candidate to be cooled.

On the other hand, the 23S; metastable state has a spin induced magnetic dipole moment
that allows one to trap it magnetically and presents accessible optical transitions at 1.08 um
and 389nm as represented in Fig. 2.1. For these reasons, the metastable state 23S, is a good
candidate to be trapped and cooled, making Helium one of the few non-alkali atoms to have
been condensed [119, 125-132]. In Table 2.1 the most important values of the metastable helium
4 are summarised.

One of the particularities of this metastable atom is its internal energy. Each trapped atom
has an internal energy of 19.8eV which is large compared to the energy scale of such systems
(the recoil energy being equal to Erec = 10711 eV). This is the most important reason why we
are working with this atom. When it hits a metallic plate its energy is sufficient to release an
electron since the electron binding energy of most metals (work function) is equal to a few eV.
This electron can be amplified leading to a macroscopic electronic signal. Experimentally this is
performed by letting the atoms fall towards a micro-channel-plate at the end of the experimental
sequence which allows us to detect each atom individually.

Another important characteristic of helium atom is its low mass. This implies that the recoil
velocity allows one to resolve efficiently the momentum distribution of scattered atoms. This
will be an important feature to distinguish the atomic pairs from the initial BEC source and we
will come back to this point later.
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Figure 2.1: Helium 4 atomic structure. Energy level representation of the first excited states of helium atom. The metastable
state 23S, is represented 19.8 eV above the fundamental level and the optical transitions with the excited state 2Py » used for
cooling and manipulate the metastable state are represented.

Optical transitions

Two optical transitions have to be considered (see Fig. 2.1),

e the P; line, corresponding to the transition between 235, — 23P,, which is used for
all cooling mechanisms, namely for the magneto-optical-trap (MOT), optical molasses,
Zeeman slower, re-pumping and 1D Doppler cooling (see Subsection 2.1.3);

¢ and the Pp line, corresponding to 23S, — 23Py transition, through which the beam-splitter
and the Raman transfer are performed (see Chapter 4 and Appendix C for more details).

To address these two transitions two DBR laser diodes [136] are used on the experiment,
one locked, by saturation absorption, on the P; transition and another one locked on the Py
transition.

2.1.2 The Micro-Channel-Plate: He* detector

More details on the Micro-Channel-Plate detector can be found in the thesis of Lynn Hoender-
vanger Ref. [137] and Ref. [138].

The Micro-Channel-Plate (MCP), shown in Fig. 2.2, corresponds to the best suited metastable
helium detector for cold atoms experiments. It operates in the same way as a photomultiplier
does for photons: when a metastable helium atom hits the metallic plate, its internal energy
is sufficient to extract at least one electron from the plate which is later amplified through the
channel (see scheme of Fig. 2.2a)). In order to increase the electronic signal, two plates are placed
one behind the other which allows us to multiply the flux by a factor 107 . Since the pressure
in the science chamber is very low (P < 1079 mbar) the probability of detecting anything else
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Figure 2.2:  Representation of the
Micro-Channel-Plate. a) Schematic rep-
resentation of the mechanism of the channel
plate detector. The atom hits the channel and
releases a few electrons. Due to a high volt-
age difference between the edges of the metal-
lic tube, the electron signal is amplified and
corresponds at the end of the tube to a macro-
scopic electron burst easily detectable. b) The
plate is shown in its mount with the delay
lines laying beneath the MCP. The MCP cor-
responds to hundreds of tubes as the one de-
scribed in a) with a separation between each
of 5 um. The tubes draw an angle of 7 ° along
the vertical direction and have an effective di-
ameter of 25 uym. This angle is responsible
for the vertical resolution. Two atoms arriv-
ing at the same time but separated by less
than 25 um produce two identical electron
burst and cannot be distinguish. This leads
to a vertical resolution of 150um, full width
at half-maximum

ctron burst

I signal line
reference line S ]

comparator  fime-fo-digital
converter

Figure 2.3: Delay line schematic representation. The electron burst coming from the MCP falls to the delay line. The
electric signal propagates then along the line in both directions. Two detectors at the ends of the lines register the arrivals time
of both signals. A comparison is petformed between the recorded times of the two detectors. Knowing the length of the line
and the propagation velocity along if, one infers the position of the electron burst and, as a consequence, of the atoms on the
MCP. The precision on the position of the atom is limited by the finite width of the electronic signal. This is responsible for
the transverse resolution of our detector of 400um, full width at half-maximum. Two perpendicular delay lines are then placed
below the MCP, in order to determine both components on the horizontal plane. The delay lines do several loops in order to
completely map the area beneath the MCP. This allows, with the arrival time, to reconstruct the position of the atom in all three

directions of space.
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Quantity Symbol Value
Lifetime of the 23S; metastable state [133] 7870 (510) seconds
Mass MHe 6.65 x 107% kg
Wavelength of the transition (23 S; — 2°P») Arec 1083 nm
Radiative decay rate r 2t x 1.62 MHz
Saturation intensity Toat 1.6 W/m?
Scattering length for the s-wave (see Ref. [134, 135]) an 7.512%x 10° m
Recoil momentum Krec = f—:c 5.8 % 10°m™!
Recoil velocity Viee = }fﬂ?—:: 9.2 cm/s
Recoil energy Brec = o= | 28x107%]
Recoil temperature Trec = Ek—": 2.06 uK

Table 2.1: Main values of metastable helium 4. Summary of the most important values associated to the metastable
helium 4 atom.

than single metastable atoms is negligible [139]. This technique allows us to detect independent
single atoms and avoids any double counting. Indeed, once the internal energy of the atom has
been transferred into an electron burst the probability for the same atom to produce another
electron burst is negligible. However, the detection efﬁciency of this process is quite reduced
since not all atoms succeed in extracting an electron. From our most recent experimental results,
we estimate the detection efficiency to be at least equal to 25 (5) % [68, 122] (see Section 3.4.2).

Since the electron propagation time is reduced, shorter than a nanosecond, the arrival
time measurement of the electron burst reflects directly the arrival time of the atom. In our
experiment, the detector lays 46 cm below the atomic cloud and so we are essentially sensitive
to the initial speed of the atom or, as in the case of a condensate, to the velocity of the atoms
after the conversion of the interaction potential into kinetic energy has been done.

For the case ofa very elongated condensate with long axis along the vertical z direction, which
was the case for a condensate obtained in the vertical trap alone, however, this is untrue. The
time-of-flight is not sufficiently long to neglect the initial size of the condensate. Consequently,
the arrival time of each atom is given by its initial speed and position along the condensate
[140]. This anisotropy of the cloud has, since then, changed with the addition of an horizontal
trap (see Section 2.2). The time difference due to the finite size of the cloud is now currently
around 34 us and lies below the vertical resolution of the detector as we will see later on. For
the case of the atomic pairs, as we will see, the arrival time reflects only their initial speed (see
Section 3.3).

By measuring the arrival time of the atoms, one recovers the initial velocity of each detected
atom along the vertical z—axis. For the other two transverse components of the velocity vector,
it is impossible, from the MCP signal alone, to determine their components. In order to fully
describe the velocity vector, it is then necessary to add two delay lines.
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Delay lines

A delay line corresponds to a metallic, transmission line with a well defined length. It is placed
under the MCP and its functionality is the following. The electron burst produced by the
atom comes out of the channel and falls on the metallic line which lays below the MCP. The
electrons propagate along the line on both directions at a speed v ~ ¢/3, with ¢ the speed of
light. By measuring the arrival time of both pulses on each end of the line one can, knowing
the total length of the line, recover the position of the atom along this direction (see Fig. 2.3 for
a schematic representation of the process). If now one places two of those lines perpendicular
to each other, it becomes possible to get the coordinates of each atom on the horizontal plan.
Combined with the arrival time measurement, one is able to ful]y reconstruct the velocity vector
of each detected individual atom. The pulses are converted into digital (binary) output through
a Time to Digital Converter (TDC) to be later analysed (see Ref. [139] for more details).

Detector resolution

The resolution of the detector is mainly determined by geometrical and electronic features.
Transversely the resolution is limited by the spread of the electron burst which is approxima-
tively equal to 400 um, while vertically the dominant limitation is due to the inclination (7-8°)
of the channels and leads to a detector resolution of 150 um (for a detailed description see
Ref. [141]).

Converted into speed, this corresponds to a resolution of 1.3x 1073 m/sorl4x 1072 Vrec along
the transverse direction and of 4.6 x 1074 m/sor5x 1073 Vyee longitudinally.

Detector saturation

When the flux of incident atoms is high, as for the case of a BEC, a local saturation of the detector
is noticeable. An asymmetric arrival time distribution is then visible (see Fig. 2.7 for instance).
This asymmetry can be due to [142]:

e [ocal saturation

The saturation corresponds to a massive extraction of electrons from the walls of the
channels that have a certain loading time. If many atoms arrive at the same time then
the first ones are normally detected while the latest are more likely missed. This kind
of phenomenon translates to an asymmetric shape of the arrival time distribution. This
usually happens for a local flux of 10° atom/ cm?/s.

e Electronic saturation

The consecutive signal treatment induces a dead time of approximatively 20ns. If two
atoms arrive with a time difference shorter than this value, they cannot produce two dis-
tinguishable electron burst and, consequently, one of the two is missed. This corresponds
then to a maximum temporal flux of 1/20ns = 5 X 107 atoms/s. However, this value is
also limited by the maximum flux of the electronics which saturates at 5 x 106 atoms/s.

e Reconstruction saturation

During the reconstruction algorithms used to transform the four electronic signals, cor-
responding to the four outputs of the two delay lines, into a 3D coordinate of one single

!Consequently, no information can be sorted out from the density profile of the BEC. This will be discussed in
Section 2.2.
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atom a selection is performed. If the atom flux increases strongly then it becomes difficult
to differentiate the four since each electron burst has a finite width. It is then impossi-
ble to reconstruct each atom individually [139]. This translates into a dip centred at the
maximum intensity of the cloud.

Detection efficiency

With the pair production system, discussed along this manuscript, a sub-shot noise variance
has been measured. Considering that the produced pairs are maximally correlated and that the
variance goes to zero (see Section 3.4.2 and Ref. [51] for more details) we estimate the detection
efficiency to be higher than 25 (5) %. However, no upper bound has been estimated yet.

2.1.3 Cooling protocol
Helium source

The first step in order to create a BEC of metastable helium is to transfer some helium atoms to
the 235, excited state. Asshown in Fig. 2.1, the metastable state has an internal energy of 19.8eV
corresponding to a wavelength of approximatively 50 nm. Although one can not address this
transition optically, it is possible to excite atoms in a very easy and dirty way by letting the
atoms pass through a high electric potential difference. A plasma is then created with all kind
of excited states and ionised particles [143, 144]. A very weak fraction ( < 1072%) of atoms
are transferred to the 23S; metastable state which can be addressed optically using laser beams
with wavelength of 1083 nm [124]. After this electric discharge, the atoms move fast on all three
axis.

One would then like to collimate the produced metastable atoms in order to direct them into
a trap where they could be effecﬁvely cooled down. For this purpose, four laser beams create
the equivalent of a lens for atoms via transverse molasses and collimate the atomic beam [136,
145]. This technique allows us not only to capture the atoms but to keep only the ones lying
on the metastable state. The longitudinal velocity is limited by cooling the discharge structure,
represented in Fig. 2.4 by (b), with liquid nitrogen down to 77 K. However, after this procedure
the atoms are still moving with a speed of 1500 m/s along the axis of propagation. In order to
load the magnetic-optical-trap, one still needs to strongly reduce their speed.

Zeeman slower

A 3 m long Zeeman slower is used [124, 136]. The length of the Zeeman slower, which is
a characteristic of all metastable Helium experiments, is due to the very long lifetime of the
excited state 23P, which corresponds to 7 = 1/I' = 0.1 us. Since the recoil velocity, given by the
absorption of a photon, is approximatively equal to 0.1 m/s and knowing that the initial speed
is equal to 1500 m/s then, it is necessary for each atom to perform 15000 cycles of absorption-
emission to slow down to zero. The typical time is 1.5ms which corresponds to a distance
travelled of approximatively 3m. The laser beam responsible for the cycling process is detuned
400 MHz to the red of the transition and a spatially varying magnetic field compensates the
Doppler shift along the distance [124].
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Figure 2.4: Source of metastable helium atoms. A constant flux of helium atoms is sent towards a metallic needle
connected to a 3 kV power supply. A plasma takes place between the needle and the cone in front of it connected to the ground.
The container represented in (b) is cooled down by liquid nitrogen during this phase in order to reduce the atomic longitudinal
speed. A transverse molasses is then applied in order to reduce the transversal spreading of the metastable helium atoms
allowing to effectively load a MOT located at the end of a 3 m long Zeeman slower.

Magnetic trap

The Zeeman slower loads directly a magneto-optical trap (MOT) with a flux of 108 — 10% at/s
which saturates after 2 s. The MOT beams correspond to a set of three pairs of laser beams with
polarization ¢, for two of the pairs, and o~ for the other pair. The six beams are detuned by
56 MHz to the red of the transition.

Up to 108 metastable Helium 4 atoms with an approximate temperature of 300 uK are then
loaded in a Ioffre-Pritchard like magnetic trap where an optical pumping phase is performed
[136]. A 1D Doppler cooling stage is also performed in the magnetic trap where a close-to-
resonance low-intensity laser beam is applied on the atoms for 6 s [146]. The cloud temperature
is then equal to 150 uK. The magnetic trap is afterwards compressed in order to increase
the cloud density and the atoms are cooled via evaporative cooling by radio frequency (RF)
coupling [147]. The RF is ramped between 30 to 6.2MHz in 6s, knowing that the bias field
lies at 5.5 MHz. At the end of this stage, up to 5 X 10° metastable helium atoms are trapped
and cooled at a temperature of approximatively 15uK. The evaporation can be continued
until condensation is reached, which was the procedure that allowed the first observation of
metastable helium condensate in 2001 [119]. Nevertheless, due to the presence of magnetic
instabilities, the bias field fluctuates between successive experimental cycles. This leads to an
instability on the evaporation process and, as a consequence, on the total number of atoms
present in the BEC [148]. In order to avoid these instabilities the atoms are now transferred to
a vertical dipole trap since the year 2010 [149, 150].

2.1.4 Vertical dipole trap

In order to create an attractive or repulsive potential via light-matter interaction one can take
advantage of the induced dipole of the electromagnetic field [151] (see Appendix B for more
details). The optical vertical dipole trap, whose optical bench is represented in Fig. 2.5, is
formed from a single far-detuned 1.5-um-wavelength laser, from I’C company. The vertical
dipole trap corresponds to a laser beam focused to a waist wo = 43 um. The induced dipole
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x

vertical axis

Figure 2.5: Picture of the optical bench of the vertical dipole trap. This optical bench is suspended in the vertical
position above the science chamber. Figure copied from Ref. [150].

potential plus gravity can then be written as
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with I' = 2t X 1.6 MHz corresponding to the radiative decay rate of the transition 235, — 23P,,
wo the frequency of the transition, wgip the frequency of the electromagnetic field, wyert the waist

of the vertical beam, zyert = (nwf,ert) X}Ldip the vertical beam Rayleigh length and zp = 2.3 mm
the central position of the vertical waist.

The intensity is ramped up to a full power of P ~ 1.5W in approximately 1s. The magnetic
trap is then switched off in a time scale on the order of 100 us and a bias magnetic field By = 3G
is applied in the horizontal direction in order to maintain the polarisation of the atoms. At full
power, the trap provides a potential depth of 50 uK. However, since the beam propagates along
the vertical direction (z—axis) due to gravity an effective lip is formed at the bottom of the vertical
potential [149]. The height of the lip defines the effective depth of the potential and depends
strongly on the optical power. Typically up to1 -3 X 10° atoms are transferred in this potential
with a temperature, after thermalisation of the cloud, of 3 uK. The typical lifetime of atoms in
the sub-level state m; = +1 is then of 22s. At full power, the typical trapping frequencies are
w,; =2n X 24kHz and w, = 27t X 15 Hz. Further cooling is achieved by evaporation as the trap
laser intensity I is decreasing from its maximum value, I , to a constant nonzero value, Ir , in
an exponential way over approximatively 4s as

I(t) = (Io = Ip)e™™) + I,

where the time constant 7., = 1s. After evaporation, a condensate with up to 3 x 10* atoms
is obtained with a remaining thermal fraction on the order of 5% at a temperature Ttherm =
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Figure 2.6: Schematic representation of a vertical — Figure 2.7: Typical arrival time distribution of a con-

trap BEC time-of-flight. The expansion of the condensate densante obtained in the vertical dipole trap. The con-

obtained in a vertical dipole trap is schematically represented. densate arrival time distribution presents a half-width at half-

Figure copied from Ref. [150]. maximum of 0.08 ms and a residual thermal cloud at temper-
ature of 200 uK. The central dip in the density profile is due
to saturation of the detector (see Subsection 2.1.2 for more
information). t, corresponds to the central arrival time and
is equal to 308 ms.

300 nK. The condensate has then a very elongated shape with a vertical Thomas-Fermi radius
of L = 400 um and a transverse radius of R = 4 um, see Subsection 2.2.2. The typical trapping
frequencies are then, at the end of the evaporation, equal tow, = 2nx1.3kHzand w, = 2nx7 Hz.
The typical critical temperature is around 600nK. Once the trapping beams are switched off,
the atoms fall to the MCP detector, located 46 cm below the trapping region. The expansion
of the cloud is schematically represented in Fig. 2.6. The detection corresponds to a very long
time-of-flight (308 ms) allowing us to reconstruct the initial speed of the atoms. A typical time-
of-flight density distribution profile, along the vertical axis, is represented in Fig. 2.7. The hole
in the distribution and the anisotropic shape are due to the saturation of the detector.

The vertical dipole trap allowed the experiment to gain stability over density and temper-
ature. However, an arrival time fluctuation of the BEC obtained in the vertical dipole trap is
noticeable and attributed to the vertical optical bench stability. In order to improve the experi-
mental stability a horizontal dipole trap was added to the set-up. This is widely discussed on
Section 2.2 and corresponds to one of the additions to the experimental apparatus during this
thesis.

2.1.5 The 1D optical lattice

The existing lattice, at the beginning of this work, was formed by two counter-propagating
laser beams with wavelength of Ajat = 1064 nm (detuned 19 nm from resonance) coming from
a Mephisto laser split in two independent optical paths. Both beams were focused to a 1/¢?
Gaussian beam waist radius of 200 ym. The two beams were counter propagating and forming
an angle of 7° with respect to the vertical axis. This angle is due to the restricted optical axis of
our science chamber and determined by the position of the four windows represented by the
letters W12 3 4 in Fig. 2.8. The usual optical power is 13 mW corresponding to a lattice depth of
0.8 Ejat with Ej5¢ defined by

ﬁzklzat
2my,

Elat =
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Figure 2.8: Lattice alignment geometry. Before and after this project. The lattice is now aligned with the vertical axis
and superposed with the vertical dipole trap defining the long axis of the condensate.
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The lattice depth can, however, be tuned up to a maximum value of 4E,;. As we will see later
on, we are interested in working with very shallow lattices for the pair creation process.

Since the two beams are independent, one can change their respective frequency and, as a

consequence, change the lattice speed. This is used to give a certain velocity to the lattice and
to create atom pairs via dynamical instabilities.

One particular change that has been done during this project is the geometrical alignment of
the lattice. Since both beams made an angle of 7° with respect to the vertical z—axis, the lattice
was also making an angle of 7° with respect to the vertical direction, see Fig. 2.8 left side. This
small angle had a noticeable effect on the pair creation process as we will see in Section 3.3.

The lattice beams are now forming an angle of 7% and —=79 which leads to a 1D optical lattice
aligned along the z—axis, see Fig. 2.8 right panel.

2.1.6 Summary

The characteristic values discussed so far are summarise in Tables 2.2 and 2.3.
We have shown that several different tools were at disposal at the beginning of this project.
However, there were still some issues to address, namely:
the vertical dipole trap stability
and the geometrical alignment of the 1D optical lattice.

The beam-splitter, essential for the HOM experiment, was not built. In this sense, a lot of

experimental work was needed before hopping to achieve the atomic HOM experiment. The
following sections describe in details all this changes and their impacts on the physics at play.
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Step Temperature (uK) Number of atoms
MOT + Molasses 300 108
Magnetic trap + optical Pumping + 1D 150 1-5x107
Doppler cooling
RF evaporative cooling 15 5x 106
Dipole trap (loading) 3 1x10°
BEC (vertical trap) 3-6x10*
Residual thermal cloud 0.3 103

Table 2.2: Characteristic temperature and atom number along the current experimental cycle. Summary of the
temperature and number of atoms along the different steps of the typical cycling procedure.

Geometrical Waist (um) Maximum Axis of Wavelength
Details 1stipm Power (mW) propagation (nm)
43 2000 vertical z—axis 1550
Number of Anisotropy
BEC w, (2n X Hz) wz(2n X Hz) Atoms (L/R)
1550 7 3-6x10* 100

Table 2.3: Typical values of the BEC in the vertical dipole trap. We summarise in this table the most important
information about the vertical dipole trap and the obtained BEC.

2.2 Bose-Einstein condensate of metastable Helium

A Bose-Einstein condensate is a state of matter of a dilute Bose gas obtained when a large
fraction of bosons occupy the lowest energetic quantum state [147, 152]. Such a state is reached
by cooling down the gas as well as increasing its density leading to an increase of its phase-space
density. For a 3D gas, when n/’ng > 2.6, where n and A;p correspond to the density and the
thermal de Broglie wavelength respectively, a BEC is obtained [153]. The condensation leads to
the extinction of phase fluctuations and density fluctuations over the length of the cloud.

For the experiment reported in this thesis the interest of using a BEC is twofold. First, itis a
source of high density and allows one to easily probe non linear effects such as superradiance
or spontaneous parametric down-conversion. Second, the source has a very small spread in
momentum space which allows us to easily distinguish the BEC from the produced atomic
pairs after time-of-flight. For these reasons our starting point will always correspond to a BEC
of metastable helium 4.

2.2.1 Arrival time instability of the condensate

As discussed in Refs. [39, 108, 141, 142] and in Subsection 2.1.4, we noticed that the central
arrival time of the condensate, obtained in the vertical dipole trap (alone), was ﬂuctuating from
shot to shot realisations. The fluctuations presented a RMS width of 0.1 ms determined from
2100 repetitions of the same experimental cycle. This has to be compared to a single event
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Figure 2.9: Jitter effect on the two-body correlation function. The fluctuation of the condensate induces fluctuations of
the atomic pairs velocities via conservation of momentum (upper panel). These fluctuations, once computed, translate into the
appearance of artificial structures on the normalised two-body correlation function. Figures copied from Ref. [141].

arrival time distribution, which has a RMS width of approximatively 0.08 ms. The arrival time
fluctuation is then comparable to a single arrival time distribution and can not be neglected.

Since the atoms are detected after a very long time-of-flight, the fluctuation corresponds
mainly to an initial speed fluctuation [142]. This initial instability is prejudicial to our pair
production as we will see in Section 3.2. Indeed, the physical process at the origin of the
pair production (dynamical instability, see Refs. [105, 108, 154, 155]) depends on the initial
BEC speed. If the speed is not well defined, neither are the velocities of the pairs produced
and, consequently, the same initial experimental conditions are not maintained in between
realisations.

Consequences of this instability

One specific consequence of these instabilities was reported in Ref. [142] page 128, where
artificial two-body correlations appear due to arrival time fluctuations of the atomic pairs.
Since the initial velocity of the condensate fluctuates the phase-matching conditions lead to
fluctuations of the pair velocities (see Section 3.2 for more informations). In Fig. 2.9, we
schematically represent the two atomic beams 2 and b (corresponding to our atom pairs) with
initial speed fluctuations (Ak, and Ak, respectively, see Fig. 2.9) due to fluctuations of the BEC
(Akg see Fig. 2.9). The expected two-body correlation function between atoms with momenta k,
and k;, is represented in the bottom panel. One can see that artificial structures appear, centred
on the three clouds, when they should not (see Ref. [141, 142] for more informations).

This means that in order to accurately measure the correlations between the two beams, for
instance, one needs to select from N realisations the M < N events corresponding to similar
initial speed in order to avoid the artificial contribution from BEC fluctuations. This, however,
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Figure 2.10: Arrival time fluctuation of the BEC. Fluctuations of the arrival time distribution of the BEC produced in the
vertical trap alone. Each detected condensate density profile is fitted and the center of its distribution correspond to one entry of
the represented histogram. The represented distribution correspond to the addition of the different central arrival time of 2100
condensate realisations.

strongly reduces the total number of events under consideration and is an issue in terms of
signal-to-noise ratio.

Another possibility consists in refocusing each condensate arrival time distribution and,
consequently, correct the fluctuations after detection. This does not allow us to safely correct
the shift in the atom pairs reconstruction since the atoms travel with different velocities, see
Fig. 2.9. One can then fit each cloud forming the pair and refocusing it [39, 108]. However, this
becomes impossible to perform when one wants to work with very low population, as in the
case of the HOM experiment. The solution is then to use more sophisticated analysis protocols
such as the Principal Component Analysis.

Whatever one might choose to do, the most general consequence is that some events have
to be selected from the total sample of realisations. This leads unequivocally to a diminution
of the signal-to-noise ratio and to an effective slower experimental cycle, since it is necessary to
repeat the experiment more times to retrieve the same number of useful events.

Quantitative measurement of the fluctuations

In order to quantitatively discuss this effect, let us look at the arrival time distribution of the
condensate (see Fig. 2.7 for instance) on the MCP after the time-of-flight of 308 ms. We fit the
arrival time distribution of one BEC retrieving its central arrival time. From one experimental
realisation to the other this central value fluctuates. We thus obtain a distribution of central
arrival times as represented in Fig. 2.10. The figure corresponds to 2100 identical experimental
sequences. One can identify two distinct groups in the distribution shown in Fig. 2.10. The
first one is centred at approximatively 308 ms with a RMS width of 0.1 ms. The second group
corresponds to condensates arriving sooner, around 307.3 ms and with an RMS fluctuation of
0.2ms. Once more, by comparing those fluctuations to a single arrival time, with width equal
to 0.08 ms, one immediately see that the fluctuations are not negligible. Indeed, a fluctuation of
0.1 —0.2ms translates into an initial speed fluctuation of 1— 2 X 1020, which, as we will see in
Chapter 3, change the velocity of the produced atomic pairs by approximatively 1-5 1072 V.
Knowing that the typical autocorrelation width is equal to 1-2 X 1072 Vyeo along the vertical axis
(we will show this result in Section 3.4), it is important to suppress these fluctuations.
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2.2.2 Anisotropy of the BEC: phase fluctuation issues

Another issue that comes with the vertical trap is that the resulting BEC is very elongated since
the transverse frequency of the trap w, = 2m X 1275kHz is much larger than the longitudinal
frequency w; = 21t X 7Hz.

For such strongly anisotropic condensate the well know Thomas—Fermi approximation does
no longer hold [156, 157].2 This approximation consists, in the regime where the atomic
interactions are dominant (4 > wj, kgT), in neglecting the kinetic energy term of the Gross-
Pitaevskii equation

h 9?
() = [—g@ +VE) + gyl [ve),

where m corresponds to the atomic mass, (z) the wave-function in real space, u the chemical

potential, V(z) the trapping potential along the longitudinal axis and g = 4’22“, with a the
scattering length. The cloud corresponds then to an inverted parabola with radii R, along the
transverse direction, and L, along the vertical axis, given by the equations

(2.2a)

2
L:J £, (2.2b)
m w?

with the chemical potential determined through normalisation of the wave function

hao /ma‘) |2;5
P'. = 7 (15Naf i ? (2.3)
2

1/3
where @ = (wzcu l) and Ny the total number of atoms.

2.2.3 Quasi-BEC or BEC?

In some cases, such as in atom-chip experiments [158] or 2D lattice potentials [159] or even
anisotropic dipole traps [160], the transverse confinement can become so strong compared
to the chemical potential that the system is “frozen” in the transverse direction and behaves
as a real unidimensional system. In this 1D case, the transverse proﬁle of the cloud corre-
sponds to the fundamental solution of the harmonic oscillator, which is a Gaussian of width
Vi/2mw, ', and the longitudinal profile to a parabola defined by the 1D chemical potential
pip = hw, V1 +4anip, with n1p = Ng/(2L) the one-1D density, such that [161]

2(hw, —
- /wl_flw. 2.4)
m sy

In our case the transverse trapping frequency @, is much higher than the longitudinal one, as
seen so far. This leads to a stronger transverse confinement than longitudinal and the question
is then to know how truly 1D this system is .

’Nevertheless, as we will see in Subsection 2.2.4 it is now possible to tune the anisotropy of our condensate and
to verify the Thomas—Fermi approximation. For this purpose, we remind here the most important results.
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The 3D and 1D regimes can be differentiated through the parameter [161]

=N @A
W, a,
wherea, , = [/ &’L . When x > 1, the 3D Thomas-Fermi approximation is valid while for

X < 1 the system is unidimensional.

For a condensate obtained in the vertical dipole trap w; = 2n X 7Hz, w, = 21X 1275 Hz and
N, = 3x 10* atoms, one finds a value x = 0.88 which lies in between the two scenarios. For such
trapping potential, the system is neither ful]y 1D nor 3D but corresponds to an intermediate
regime which is explored in Ref. [64].

BEC length and chemical potential for both 3D and quasi-1D regime

In Ref. [64]%, the author shows that for the intermediate case where y ~ 1 it is possible to find
an approximate solution which can be applied to both 3D and 1D situations. The method used
in the article consists, via a local density approximation, to assume a Gaussian shape for the
radial component of the wave function, f, (p), whose width (w, ) is a variational parameter that
verifies

n2 A 1 4mi?
ﬂ + —ma? p? + e

“2m |f¢(p)‘ 2 m

with ;. the local equilibrium chemical potential and n1p(z) corresponds to the 1D, integrated
over radial degrees of freedom, density profile of the cloud. We consider a system where the
longitudinal confinement is sufficiently weak to neglect the density derivatives of n1p and f,
as a function of z.

Ule = n1p(z) |fL(p)|2,

The following equalities are then obtained by developing f, (p) to the first order in w,,

w, [m1p(2)] = a, [1 +4anyp(z)]/*

and

Ule. = B, A1 + 4anyp(z)

with the total chemical potential u corresponding to
= phre [mp@E)]+V(2) (2.5)

where V, = % mmﬁz2 is the trapping potential along the longitudinal axis.

One can now determine the condensate lengths, its density proﬁle along the longitudinal
axis and the chemical potential. Let us consider the case of z = L where the local density
nmp(L) = 0 and yj,, = hw,, which leads to

U= haw, + %mmi‘Lz, (2.6)

and to the following expression of L

22
L=—"=+va
a,

*Typos are present in this paper. The results presented here correspond to a reviewed version of the article.
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with @ = 2(u/hw, —1). Using both Eq. (2.5) and Eq. (2.6), one retrieves the longitudinal density
profile

mp(z) = (1—22)2% +(1 —22)%,

with Z = z/L. Since the total number of atoms corresponds to the integration of n1p(z)
L
Naf = f H]D(Z)dz,
-L

one obtains the following equality for the length of the condensate along the longitudinal axis

% [(Lc)5 +5 (LG)S] =Ny 2.7)

with G = aL/az and y = aal/aﬁ.

Knowing N and the trapping frequencies it is then possible to extract the value of L. From
that one retrieves the value of the chemical potential y, via Eq. (2.6) as well as the value of a.
The Gaussian width of the condensate, forz =0, corresponds then to

w, (0) = a, [1 + 4anyp(0)]** (2.8)

where n1p(0)

2 2
a L% |(a L2
o) = 3] X@[(a_?) X@”}-
Z

Z

Quasi-condensate regime

For an elongated condensate with T = 0 K, the cloud exhibits a suppression of density fluctua-
tions as well as phase fluctuations. However, as it was shown in Ref. [162], at finite temperatures
T, below critical temperature T, ~ N U3h@, excitations can still exist. The low energy excitations
contribute to axial fluctuations of the phase. In Ref. [162] it is discussed that these excitations
decrease with the temperature and for sufficiently low values compared to a critical phase
fluctuation temperature given by

Naf
r

_ 2
Ty = 15 (hw2) T2ks

(2.9)

can be safe]y neglected. This means that for temperatures T above Tq, andbelow T, (T, > T > Tq,)
evenif density fluctuations are suppressed, the phase can still fluctuate. In that sense, the system
does not reach true BEC, since phase fluctuations are still present. The system is then in an
intermediate situation often called quasi-condensate in contrast to the “real” condensate regime
(T, Tc > T).

For the case of a BEC obtained in the vertical dipole trap alone (w, = 2n X 7Hz, w, =
2n X 1275Hz and Ny = 3 X 104 atoms), the phase fluctuation temperature is equal to 14nK
which is well below the condensation temperature of T, =~ 600nK and below the estimated
temperature of the residual thermal cloud of T ~ 200nK. As a consequence, phase fluctuations
are still present which translates after time-of-flight into density fluctuations. This leads to
phase fluctuations during the atomic pair production and in a reducing coherence length of the
condensate.
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Vertical optical bench
See J-C. Jaskula thesis for more details
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Horizontal dipole trap bench

Figure 2.11: Schematicrepresentation of the optical bench for the horizontal beam trap. The laser beam is split in two
with one part used for the vertical dipole trap as described in Ref. [150] and the other injected into a polarisation-maintaining
optical fiber sending the optical power to another optical bench. There, the beam goes through an acousto-optic modulator where
it is diffracted to order +1 with an efficiency of 90%. The optical power is set by increasing the RF power at the acousto-optic
modulator entrance. The beam is then split with 1% power sent to a photodiode in order to lock the horizontal beam intensity.
The other part is again injected. The final output coupler corresponds to a F810APC from Thorlabs company leading to a
diameter beam of 7 mm. The beam is then focused by a focus lens of f = 400 mm leading to a waist on the atoms of 82 um.

2.24 Crossed dipole trap: solution to both issues

In order to solve both the arrival time fluctuation of the BEC and its phase fluctuation, we
built a new dipole trap, a horizontal one, crossed with the original vertical trap on the atoms.
The horizontal laser beam is obtained by splitting the original vertical one in two independent
optical paths with independent acousto-optic modulators as represented in Fig. 2.11. The
effective maximum power on the atoms is equal to 2 W. Almost 90% of the total power is
used for the vertical dipole trap and around 10% to the horizontal trap. A relative frequency
difference is set to 80 MHz between the two beams in order to avoid low frequency modulation
of the trap intensity 4

One beam propagates along the vertical z—axis corresponding to the “original” trap de-
scribed in Ref. [150] and the second on the horizontal plane, forming an angle 8.6 ° respectively
to the x—axis defined by the magnetic trap (see Fig. 2.11 and Fig. 2.12). The typical optical power
at the end of the evaporation is 600 mW for the vertical trap and 30mW for the horizontal one.

With the new crossed dipole trap, the vertical confinement of the trapping potential does no
longer depend on the vertical beam. The longitudinal trapping frequency is then essentially
given by the intensity of the horizontal beam. The total trapping potential can then be written
as

“If the modulation intensity is close to a trapping frequency, this induces parametric excitation of the cloud. Since
the typical frequencies of our trap is on the order of the kHz, a detuning by 80 MHz between both trapping beams
guarantee that we avoid the resonance.
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Figure 2.12: Schematic representation of the crossed dipole trap.

Vopt(xr Y, Z) = Vyert. (xr Y, z) + Vhor 5 ’ (210)
X
xhor) 1
where Vyert.(x, ¥,2) is given by Eq. (2.1) and
3mc? 2P r r
Vhor = - > 3 w};c'r ( + )
Wy Mw;  \@0 — Wdip @0 + Wdip

where xpor = (nwﬁor) X Adip 1s the horizontal beam Rayleigh length and wn,, the horizontal beam
radius waist at 1/¢2 (see more information in Appendix B).

Arrival time fluctuations

In Fig. 2.13a) the arrival time fluctuations before adding the horizontal trap is represented,
as discussed previously, while in Fig. 2.13b) the same analysis is performed for a condensate
obtained in a crossed dipole trap.

One can see that, by adding the horizontal trap, the fluctuations were reduced to a RMS
value of 0.04 ms which is very close to the temporal resolution of our detector. The addition
of the horizontal trap has proved to reduce the arrival time fluctuations and, at the moment,
the remaining fluctuations are, in practice, completely negligible. Indeed, the fluctuations are
much smaller than the time-of-flight distribution of a condensate obtained in the crossed dipole
trap (which trapping frequencies are different from the one of the vertical trap). A single
condensate arrival time distribution corresponds to a typical RMS value of 0.5 ms. The residual
fluctuations are then a tenth of the arrival time distribution width. For most of our analysis no
selections, based on the arrival time-of-ﬂight, are then necessary. This decreases signiﬁcantly
the acquisition time in order to retrieve a satisfactory signal-to-noise ratio.
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Figure 2.13: Crossed dipole trap effect on the arrival time fluctuation of the BEC. a) Fluctuations of the arrival time
distribution for a BEC produced in the vertical trap alone. b) Fluctuations of the arrival time distribution for a BEC produced
in the crossed dipole trap. The number of files for b) is approximatively equal to those in a). One can see, that the crossed dipole
trap leads to a reduced arrival time fluctuations.

Obtained condensate: some numbers

With the two available trapping beams, it is now possible to easily tune the longitudinal
frequency from 7 to 200 Hz keeping a constant transverse frequency of 1275 Hz (see Section B.1
for more details). The aspect ratio of the condensate can thus be tuned between 200 to 6. This
represents a strong improvement in terms of control and flexibility of our experiment.

In the following manuscript, most of the results correspond to a trapping potential with
frequencies equal to w, ~ 2nx 1.275 kHz, transversally, and w; ~ 21 X 93 Hz, along the vertical
direction. We obtain a condensate with 4 — 7 x 10% atoms in the mj = 1 sub-level state, where
the uncertainty on the atomic population comes from the detection efficiency of our MCP. In
this case, as one can see in Table 2.4, x is much larger than 1 indicating that one had reach
the 3D condensation regime. As discussed before, for the vertical trap alone, corresponding
to a vertical frequency equal to w; = 21t X 7 Hz, the value of y = 0.88 and corresponds to an
intermediate regime.

w, =2nx 1275Hz
w, =2nxX7Hz | w, =2nx93Hz | w, =2nx 170Hz
Ny = 3% 10* Nga =5x10% Ng =7 x10*

X 0.88 19.47 49.82

Table 2.4: Typical values of x for different optical traps accessible in our experimental set-up. By changing the
value of w, it is possible to go from the quasi-1D regime into deep 3D-reginte.

Regardless of the phase fluctuations, one can now see in Table 2.5 the different regimes
available with this new trapping potential. For w,; = 2m X 7Hz (case of the vertical trap
alone) the situation corresponds to the quasi-condensate regime while for frequencies w, =
21t x (93, 170) Hz, obtained in the crossed dipole trap, we recover the real condensation regime
with T¢ >T.>T.
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w, =2nx1275Hz
w|=2nxX7Hz | ) =2nx93Hz | wj=2nx170Hz
Ny =3x10* Ng =5x 10* Ny =7 x 10*
Ty (1K) 0.014 1.53 5.00
T, (uK) = 0.330 0.600 1.00
T (uK) = 0.200

Table 2.5: Typical values of Ty, T, and T. Scaling of the phase fluctuation temperature T for different trapping potential
configurations and comparison with the respective condensation temperatures T, and residual thermal cloud temperature T.
For trapping frequencies of w, > 21 X 93 Hz, one does not expect any phase fluctuations along the condensate.

The addition of the horizontal dipole trap allowed us to enter deeply in the real condensate
regime and to avoid phase fluctuations in the condensate.

These fluctuations, if remaining, translate into density fluctuations after time-of-flight [163].
By measuring the two-body correlation function, one can then experimentally probe if they are
still present in the system.

Density fluctuations and autocorrelation measurement

The local two-body correlation corresponds to the probability of detecting a particle at a time
interval t + At knowing that another particle has been detected at time f. For a condensate, the
normalised second order correlation is flat and equal to 1 which indicates the suppression of
density fluctuations. On the other hand, if the second order autocorrelation presents a value
superior to 1 and structures [142], then one can identify density fluctuations and link this result
to phase fluctuations, as seen in Ref. [164, 165] and discussed in Ref. [166].

The second-order autocorrelation function is obtained for the condensate as [68]

2@ (Aky) = f dik, dAk, f i
fo% Qy (n

Ors o 2 (AR + AK) 1)

g@(Aky) = fﬂ ks dk, fg G0 e AR 2.11)

where 71 is the number operator such that Ny (k) = (n(k)). The volume () is defined by the
boundary conditions |Ak,| < 3 X 1072 kpee, |Aky| < 3 X 1072 ke and Q, by |Aky| < 3 X 1072 kyee,
|Akz| < 3 X 1072 kpec. Qv is the volume centred on the cloud with a half-width at 1/ /e’ along z
equal to 0.1 krec and no constraint in the xy—plane.

Ak + AK) 1)
(K)) ((k + Ak))

It is fundamental to avoid detector saturation in order to not influence the detected number
of atoms. We thus transfer a small fraction of the entire BEC population into a magnetic
field insensitive sub-level state (m; = 0) via two-photon Raman scattering (see Appendix C
for more details). A strong magnetic gradient is afterwards applied in order to get rid of the
non-transferred atoms.

In Fig. 2.14 we represent the second order correlation function as a function of Ak, for the
case of a trapping potential with vertical trapping frequency of w, = 211 X 93 Hz and transverse
frequency w, = 2mx 1275Hz [68], with a) corresponding to a cut along the z—axis and b) along
the transverse y—axis. An almost flat dependence of g (k) as a function of Ak is recovered.
The increase of ¢® at Ak — 0 can either be accounted by small phase fluctuations induced by
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Figure 2.14: Autocorrelation function ¢ of the BEC. Condensate autocorrelation projection on the z and y—axis. An
almost flat dependence of g9 as a function of Ak is recovered.

the residual thermal fluctuations of the cloud or due to weak detector saturation. The observed
correlation is, however, much flatter than the one observed in Ref. [142] and we believe that the
phase fluctuations in the condensate are almost ne gligible.

2.2.5 Condensate: determination of the chemical potential and size

Once the trap is switched off the condensate expands [167]. The size of the cloud, in both
transverse and longitudinal axis at a certain time ¢ after released from the trap, is given by the
following equations

R(t) = RO) 1+ (w11’ (2.12a)
L(t) = L(0) (1 + €2 [(wzt) arctan [w;t] — log /1 + (@.1)? ]) , (2.12b)
w;(0)

with € = 2.0 For the trapping frequenaes under consideration, i.e. w, = 2t X 93Hz and

w; =2m X 1275 Hz one finds (through the Thomas-Fermi approximation) a condensate radius
of L(0) = 58 um along the vertical direction and R(0) = 4.4 um transversally. One expects to
detect, after 308 ms time-of-flight, a cloud with size equal to

L(tof) = 1.25mm (2.13a)

and

R(tof) = 1.08 cm. (2.13b)

One could then predict the chemical potential of the condensate by measuring the arrival
time distribution of the cloud after time-of-flight. However, this prediction is not directly
applicable to our experimental situation. Two reasons are behind it:

e The first reason is that the condensate corresponds to a very high flux of atoms resulting
in a saturation of the MCP. Consequently, both the real number of atoms and the size of
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Figure 2.15: Time-of-flight density profile of a BEC. a) Cut of the density profile along the vertical z—axis. b) Cut of
the density profile along the transverse x—axis. The density profiles correspond to an integration on the other two axis of
[0.14 x 0.14] (cm?) for the vertical cut and of [0.14 X 0.03] (cm?) for the transverse cut. The blue line indicates, in both panels, a
fitting function corresponding to a parabola plus Gaussian function. The orange dashed line represents the estimated parabolic
shape after time-of-flight obtained by Eq. (2.13).

the cloud after time-of-flight are blurred. This, however, can be avoided by transferring a
small fraction of the condensate into the insensitive sub-level state m j = 0 via stimulated
two-photon Raman scattering event (see Appendix C for more details) and to push the
remaining atoms through a magnetic field gradient;

e The second reason is linked to the solution of the first one. If the cloud is transferred to the
sub-level m j= 0 after being released from the trap the scattering length changes between
~ 7 to =~ 5 nm. Since this is done just after releasing the cloud from the trapping potential,
the change on the interaction potential is not negligible. The expansion of the cloud is
thus modified in a non-trivial way and, as a consequence, the result from Ref. [167] can
not be directly applied. The solution would then consist in transferring the atoms after
a few hundreds of microseconds of expansion. At this time the interaction potential has
reduced sufficiently to be negligible and a change on the scattering length will not change
the BEC expansion. Nevertheless, this implies that during the initial expansion, with
the atoms still in the m j= 1 state and thus sensitive to any residual magnetic field, the
expansion of the cloud can also be modified. At the moment this effect has not been yet
calibrated experimentally.

Experimentally, we weakly transfer the BEC into the state m j = Ojust after turning off the
trapping potential to avoid detector saturation. Although the expansion evolution described
by Eq. (2.12) does not strictly apply, one can compare roughly the experimental result to the
theoretical predictions. For this purpose we perform cuts along both longitudinal and transverse
density profile after time-of-flight as represented in Fig. 2.15a) and b), respectively.

The arrival time distribution is fitted on both directions by a parabolic function plus Gaussian,
represented by the blue line in both panels, in order to account for the contribution of a residual
thermal cloud. The experimental radius is extracted for both longitudinal, Lexp = 1.3mm,
and transverse directions, Rexp = 0.97cm. Compared to the values of Eq. (2.13), one can see
that the experimental result is in good agreement with the predictions. To have a more visual
comparison, the density profile given by Eq. (2.12a) and Eq. (2.12b) are represented by an orange
dashed line Fig. 2.15.
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Figure 2.16: Determination of the number of atoms inside the BEC. a) Typical distribution along the vertical axis
for the condensate obtained in the crossed-dipole trap. The total number of detected atoms is around 1500. b) Arrival time
distribution of the condensate after application of a 1D vertical moving lattice with speed equal to 9.3 cm/s Sand depth equals to
2 E.. applied for 200 us inside the crossed dipole trap. The condensate is then widely enlarged along the vertical direction (the
distribution goes from a width of approximatively 0.05v,,. in a) to 2v,,. in b)) although its transverse profile does not change
much, guaranteeing that all the atoms fall on the detector. The number of detected atoms increases then almost by a factor 10
revealing the saturation effect.

We thus conclude that transferring the atoms in the state m j= 0 immediately after releasing
the BEC from the trap does not change significantly the expansion of the cloud. Nevertheless,
this measurement is not sufficiently precise to quantitatively determine the initial BEC size
and chemical potential. The solution is then to determine the real number of atoms inside

the condensate, the trapping frequencies and apply the predictions given by Eq. (2.12a) and
Eq. (2.12b).

Determination of the total number of atoms

To avoid saturation on the MCP and an erroneous determination of the number of atoms in
the BEC, one solution consists in enlarging the arrival time distribution. By doing so, the
arrival flux lowers and one can, taking into account the detection efficiency of the MCP, retrieve
the total number of atoms. In order to do so, a deep moving optical lattice is applied to the
condensate. The atoms are then diffracted into different classes of momenta (see Section 3.4).
This is represented in Fig. 2.16 where the left panel corresponds to a saturated detection of
the condensate and the right panel to the arrival time distribution after application of the
lattice. The number of detected atoms is strongly enhanced going from Ng; ~ 1500 atoms to
Ngat =~ 10000 atoms which illustrate the saturation effect.

From our detection efficiency estimation (at least 25 (5) %) we retrieve a total number of atoms
around 5 x 10* atoms. However, the detection efﬁciency uncertainty leads to an uncertainty in
the total number of atoms which is not negligible.

“The condensate is then at resonance with the Bragg diffraction condition, see Section 4.1.
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Figure 2.17: Experimental measurement of the transverse frequencies of the dipole trap. The optical intensity of the
dipole trap beams is modulated between 1 kHz and 3 kHz. Two resonances are visible corresponding the dipole resonance of the
trap at w, /27 and the quadrupole resonance at 2 X w, [2m. The value of w, [2m = 1275 (8) Hz is in good agreement with the
theoretical predictions of w, /2m = 1258 Hz obtained for a vertical beam waist of 43 ym.

Trapping frequencies

In order to experimentally probe the trapping frequencies, one needs to decouple transverse
and longitudinal directions. For the case of an ideal Bose gas without interactions the first
quadrupole oscillation is expected to occur at twice the trapping frequency [168, 169]. In the
case of a very elongated BEC however, the first resonances are expected at w = \fS/T w; and
w=2w, [168].

Transverse direction

To probe the transverse frequency, the vertical beam intensity is modulated, at a tunable fre-
quency @Wmod- When one modulates the trap at a frequency close to the resonance frequency,
the cloud heats and eventually explodes depending of the amplitude of the modulation. When
the modulation frequency is far from the resonance condition, one recovers after time-of-flight,
an arrival time distribution very sharp corresponding to the unperturbed cold atomic cloud.
When one gets closer to the resonance condition, the distribution gets larger and the number
of detected atoms with arrival time close to fy lowers. By looking at both the central number
of detected atoms and width of the distribution, one can identify the resonant frequency. The
modulation frequency is tuned from 1kHz to 3kHz and the number of atoms detected in a
small volume around ¢ given by

ot0
Nat(0) = fm fv dx dy f dt n(x,yt),
—00 J—00 0—0¢

with 7 the atomic density of the detected cloud, is measured as a function of Wmeq as represented
in Fig. 2.17. As a complementary measurement, the arrival time distribution width is extracted
from a Gaussian fit and represented as a function of Wmeq in Fig. 2.17 (inset).

Two resonances, the first one at wyeq = 271 X 1275(8) Hz and the second at wpyq = 27 X
2542 (15) Hz, are visible. While the second resonance is clearly noticeable for both quantities,
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the first one is only discernible in the analysis of the width distribution. We attribute the second
resonance to 2w, , which agrees with the theoretical prediction (w, = 2nx1258Hz) for an optical
power equal to Ppor = 30 mW, Pyert = 585 mW and waists of 43 ym and 82 um for the vertical
and horizontal beams respectively. The first resonance corresponds to residual heating due to
dipole oscillations at w, . The transverse resonance has also been checked for others power of
the vertical beam. In all scenarios, the theoretical prediction is always close to the experimental
result which confirms our estimation of the vertical waist.

Longitudinal direction

The addition of the horizontal beam is mainly going to affect the vertical trap confinement. In
the crossed dipole trap, the frequency along the z—axis can easily be tuned from a few Hz to
a few hundreds of Hz by changing the horizontal beam power. Although the same analysis,
as for the transverse frequency, could be carried out, this would correspond to a very long
modulation time in order to probe a few Hz of confinement. For this reason, we decided to
determine the longitudinal frequency from direct observation of the cloud oscillation in the
dipole trap.

This is performed by giving an initial velocity (via Bragg diffraction, see Subsection 4.1),
along the vertical direction, to the condensate. The BEC is then kept inside the trap for a certain
holding time, t,04. For small enough velocities and deep traps, the trapping potential can be
approximate by an harmonic potential. The BEC speed oscillates in time, with frequency equal
to the longitudinal trapping frequency. This oscillation is recovered by switching off the trap
at different holding times. After a very long time-of-flight, one has access to the initial speed
of the condensate at the instant the trap has been switched off and can then reconstruct the
oscillation.

0.000 0.006 0.012 0.018 0.024
Time(ms)

Figure 2.18: Vertical oscillation of the BEC in the crossed dipole trap. Oscillation of the central arrival time, after
time-of-flight, of a condensate as a function of the holding time in the crossed dipole trap. The arrival time oscillation corresponds
to the velocity oscillation of the cloud inside the dipole trap. The frequency corresponds to the vertical trapping frequency.

Fig. 2.18 shows this oscillation for the case of a horizontal beam power Ppo = 110 mW. The
trapping potential presents a frequency equal to w; = 27t X 210 (1) Hz along the longitudinal
axis with a small attenuation due to atom losses. For a horizontal beam power of 30 mW,
which is the typical value in most of our experiments, the frequency oscillation is then equal to
w; = 2n X 93 (4) Hz.
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Conclusion

Typical BEC-size determination

In Table 2.6 the different possible configurations of the experiment and the characteristic values
of the condensate following both Ref. [64] (1D-3D intermediate regime) and the Thomas—Fermi
approximation are summarised. In Table 2.6, L stands for the radius of the parabola along the
longitudinal long axis of the condensate, R the transverse parabolic radius according to the
Thomas—Fermi approximation and w, (0) to the central transverse radius according to Ref. [64].

w, =2nx 1275Hz
w||:2n><7Hz CU":ZT[X93HZ m||:2nx170Hz
Ny =3 x10% Ny =5x10% Ny =7x 10
L (um) 323 55.00 37.00
Ref. [64]
(1D-3D crossover w, (0) (um) 2.28 3.45 3.86
description) % (kHz) 2.29 6.36 9.12
. L (um) 430 60.05 39.64
Thomas-Fermi
approximation R (um) 2.36 4.40 5.30
£ (kHz) 1.79 6.18 8.99

Table 2.6: Typical values of u, L, R and w,(0). Summary of the different accessible values of the chemical potential
vertical radius of the condensate L and transverse radius R according to the Thomas—Fermi approximation. Comparison of
those values with the ones obtained following Ref. [64], with w, (0) corresponding to the Gaussian width of the condensate at
z=0.

2.3 Conclusion

We have shown that several experimental limitations have been solved with the construction
of a crossed dipole trap. We had in mind with this modification to increase the stability of
the experiment and to simplify the comprehension of our results. The arrival time fluctuation
has been strongly reduced avoiding us to perform complex analysis. Namely, since no post-
selection is needed this implies a more effective use of the data acquired. This translates, for the
same signal-to-noise ratio, in a reduced acquisition time 6. Tt was also shown that it is possible
to tune our chemical potential and trapping frequencies such that one can easily choose the
configuration of the obtained BEC.

®To give an order of magnitude almost half of the realisations were not used after post-selection due to arrival
time fluctuations. Thus the arrival time fluctuations made the experimental cycle, in practise, twice longer.
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Experimental requisites towards the HOM experiment: atomic pair production

The next experimental step required for the realisation of the atomic HOM experiment is
the creation and manipulation of atomic pairs. This is achieved through the manipulation of
optical periodic potentials created by the superposition of laser beams.

A brief theoretical description of weak periodic optical potential applied to cold atoms is
performed in Section 3.1 with emphasis on the appearance of an energy band structure. In
Section 3.2, based on the description of dynamical instabilities, the theory behind the atomic
pair creation mechanism is discussed and is followed by the description of the experimental
realisation in Section 3.3. The detailed analysis of the produced state is performed in Section 3.4
and a summary of the most important results given in Section 3.5.

3.1 Theory of shallow optical periodic potentials

In this section, the basic tools to understand the dynamics of atoms in the presence of an
optical lattice are summarised following closely Refs. [170-172]. The theoretical background
has mainly been developed in condensed matter where the electrons live in a periodic potential
created by the crystalline structure of the atoms or molecules. For cold atoms, the analogy is
almost directly applicable, since the light, with periodic spatial modulation, induces, via dipole
interaction, a periodic potential seen by the atoms.

3.1.1 Formation of a periodic potential

The induced dipole produced by the electromagnetic field leads to the potential [172]

HT21(r) o %
Via(r) = Yy, 2 @3.1)

where Aij denotes the detuning between the laser frequency and the transition i — j, r-1
the lifetime of the excited state, Isy¢ the saturation intensity and d,'f the specific line strength
associated to the dipole matrix element between levelsi and j

pij = eillg;) = dilipll,
with I = e-r, representing the electric dipole operator. The rotating wave approximation has

been applied in Eq. (3.1) since the laser wavelength for the lattice (Aj,¢ = 1064 nm) is similar to
the atomic transition wavelength (Ao = 1083 nm) [151].

In order to create an effective optical lattice, that is, a periodic potential in space, it is
necessary to perform a spatial modulation of the light intensity. This is done by the interference
of two laser beams propagating with a relative angle 20, with same wave number 27/, and
polarisation, and with frequencies w1, Wy as represented in Fig. 3.1. The total electromagnetic
field can be written as

Er(z) = Er1exp (i [iqa,z + arctan(0)kjatx — w1t + qf)l])
+&Erexp (i [—k;a,z + arctan(0)kjatx — wat + ¢2])

with Iy = |80|2 and kj = sin (0) 211/ Ajat. For simplicity, the amplitude of the two electromagnetic
fields are assumed equal & = &, = &) and the phase difference, A¢p = ¢ — 1, constant over
time. The intensity profile corresponds to

I(z) = 4lo sin® (iqa,z + M)

5 (3.2)
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W

Figure 3.1: Schematic representation of the optical lattice. A laser beam, called 2, with frequency w, and intensity I
coming from the top interferes with a laser beam, called 1, with frequency wy and intensity I, giving raise to a periodic intensity
modulation in the overlapping zone of the two laser beams.

and the lattice periodicity is equal to aj,; = A/(2sin(0)).

Two possible situations can occur, either w, = w; and the optical lattice is stationary, or
w; # w1 and the lattice moves with a velocity defined along the vertical direction (in the picture
z—direction) by

(w2 —w1)  Opat

i) = — = . 3.3
lat 2klat 2klat ( )
In both situations, the periodic potential, in the lattice frame of reference, corresponds to
Viat(2) = Vosin? (kigz) (3.4)
with
A2,
Vo = -5,
(ZIsatAlat)

_ 11 )
where A, = 271 ( 1o T )

In the laboratory frame of reference, the atoms are at rest and the lattice moves with a speed

given by Eq. (3.3). Therefore, in the lattice frame of reference this corresponds to atoms moving
with the same speed but in opposite direction.

3.1.2 Energy band structure in the presence of a lattice

The BEC corresponds to a very elongated cloud of atoms with long axis along the vertical
direction. The optical lattice is also aligned along the vertical direction and thus the system in
which the dynamics takes place is almost unidimensional. The 1D Schrodinger equation for an
atom in such a system can be written as 1

i
H"bn,q(z) = [_ﬂy + Vlat(z)] an,q(z) = En,q‘!"n,q(z) (3'5)

!Since the atoms are weakly confined along the vertical direction, the optical dipole trap potential is not taken
into account.
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Figure 3.2: Energy bands as a function of the lattice depth V. Energy band structure for a) Vo = 0.8E;y and b)
Vo = 4.0 Ey, where in blue we represent the lower energy band. Increasing the lattice depth increases the energy gap between
2

lat

the lower energy band and the second. The recoil energy of the lattice is equal to Ej; = ﬁm .

whose solutions correspond to Bloch wave functions [170-172] that can be decomposed to plane
waves of momenta g + 2mky, [173],

o0

[Ynq) = Z O, m (| Pg+2mkyay) (3.6)

mM=—00

where n stands for the band energy level, g for the quasi-momentum associated to the Bloch
function and ki, is the lattice periodicity in reciprocal space. The coefficients a,, ,,(q) correspond
to the projection of the Bloch wave function of energy E, 4 on the plane wave |¢, omk,,,)-

Substituting Eq. (3.6) in Eq. (3.5), one finds

72 (q + 2mkia)®  Vy

Vo _
2m 5| nm () - 4 (@n,m+1(q) + an,m-1(9)) = Engnm(q) - (3-7)

Due to the potential periodicity only the first neighbours components 7 +1 and m — 1 contribute
to the solution of the particle with quasi-momentum ¢. Solving these coupled equations is
equivalent to the diagonalisation of a m X m matrix. The eigenvalues correspond to the energy
bands qu, represented in Fig. 3.2 in the first Brillouin zone with n equal to 0, 1 and 2.

The dispersion relation of an atom in a periodic potential is no longer quadratically dependent
on the momentum k, as it is the case in free space, even for weak lattice depths.

3.1.3 Adiabatic loading

For atomic pair creation, it is necessary to avoid Bragg diffraction, see Chapter 4, or any
secondary effect that could induce losses or noise in one of the two atomic beams forming the
pair [174, 175]. For this purpose one has to adiabatically load the BEC in the lattice such that
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the projection of the state in Bloch waves has only a non-vanishing weight in the lowest energy
band. The adiabatic condition reads [176]

2
- |Enq(8) ; Eoq(t)| ’ .

JH
[l G0

where the left term is always smaller than 22 [173, 176, 177].

In a shallow lattice, where the band gap is small, the energy difference reduces to
AE(q,t) = E14(t) — Eog4(t) .

As an example, let us look at the situation depicted in Fig. 3.3 corresponding to a linear ramp of
the lattice depth between V(t = 0) = 0 and V(t = T) = V. The inequality can then be rewritten
as

aVo

W <1 (39)

The difference of energy between the two band levels for an atom with quasi-momentum g
depends on the lattice depth. Since the lattice depth changes in time, it is then necessary to
ensure that for the entire duration of the loading, the inequality Eq. (3.9) holds [178].

For the case of an atom at rest in the lattice frame of reference (g = 0), the energy difference,
AE?%(0,1), is larger than 16E‘f—at [173,177,179] and Eq. (3.9) simplifies to

aVo

2
T << 16Elaf'

For Helium 4 atoms, due to the low atomic mass, this is easily verified since the recoil energy
is very large.

Consider the case of the atomic pair creation where the lattice depth is typically equal to
Vo = 0.8 Ej5;. For an atom at rest in the lattice frame of reference, the adiabatic condition is then
equal to

T> > 180ns.

lat

The typical lattice rise time, for a sudden loading, is around 200 ns. Consequently an atom at
rest, even in this situation, will not be diffracted.

However, to produce atomic pairs in the 1D optical lattice, the BEC needs to be loaded with
a quasi-momentum higher than 0.5kj,; in the lattice frame of reference (this will be discussed
in Section 3.2). The time necessary to verify adiabatic loading will then be different. For the
experimental data shown in this manuscript, the BEC is loaded at -0.57 kiat, in the lattice frame
of reference, and one of the two clouds forming the pair has a quasi-momentum close to the
1st Brillouin zone boundary. For the BEC, the main interest is to avoid diffraction during the
loading of the lattice as well as during its extinction. For the atomic pairs only what happens
at the moment the lattice is turned off needs to be considered (before there are no pairs)®.

The adiabatic threshold condition corresponds then to

nv,

2The presence of scattering processes during the extinction of the lattice would result in losses of atoms from the
pairs. This gives us an idea why it is so important to verify the adiabatic criterion.
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Figure 3.3: Adiabatic loading conditions for different lattice depths, Vo, and quasi-momenta, qo. The lattice depth
is ramped on linearly as represent in the top panel. Adiabatic threshold for different lattice depth Vy (Vy = 0.8 Eiy for a) and b)
; Vo = 4.0Ey, for ¢) and d)) and different quasi-momentum qq (qo = —0.57 ky for a) and c) ; gy = —0.9 ky, for b) and d)). The
loading criterion corresponds for: a) T > 1.0us, b) T > 20 us, ¢) T > 5 us, d) T > 100 us.

In Fig. 3.3, we represent the adiabatic threshold condition given by Eq. (3.10) as a function of T
at the beginning of the loading. For a linear ramp, this corresponds to the critical situation, since
the gap between the two energy band is at its minimum. The result for two different maximum
lattice depths (Vo = 0.8 Eat, Fig. 3.3 a), b) and Vp = 4.0 Ejat, Fig. 3.3¢), d)) and two quasi-momenta
(g0 = 0.57 kyat, Fig. 3.3a), c) and qo = 0.9 Kiat, Fig. 3.3b), d)) are compared. The adiabatic criterion
is represented with a dashed line. Asexpected, for deeper lattices the adiabatic criterion implies
longer loading times. In the same way, when the atom reaches the border of the Brillouin zone,
it has a higher probability transfer and, as a consequence, the adiabatic criterion is satisfied for
slower loading functions.

In the case of a lattice depth equal to Vi = 0.8Ej, the loading of the condensate with
quasi-momentum go = —0.57 kj5¢ requires a linear ramp duration T > 1.0 us in order to fulfil
the adiabatic criterion. For an atom (one of the two atoms forming a pair for instance) with
quasi-momentum q = 0.9 qja, the loading/extinction criterion requires T > 20 us. Please note
that for shallow lattice potentials, as in our case, the linear ramp is sufficient to easily satisfy the
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adiabatic criterion and, as a consequence, was used in the experimental realisation. However,
such a simple ramp does not correspond to the optimised loading procedure, where one would
rather have a smoother increase of the lattice depth over time 3 [178, 180, 181].

3.1.4 Spontaneous emission

During the loading process, heating can also induce losses. It has been shown in Ref. [142] that
heating, in our experimental set-up, is mostly due to the spontaneous emission rate induced by
the lattice. For one beam, the spontaneous emission rate is given by [151, 182]

r S

[sp,1beam = = (3.11)
PSR 2541 + (2A/T)?
with s = Iy/Is. This can be simplified, for the case of shallow lattices (s < 1), into
r 3P,
Tsp,tbeam ~ =0— Vo = ————— (3.12)

2
2R A5t nIgwl AL

where I' = 271X 1.62 MHz corresponds to the radiative decay rate of the transition, wj,y = 200 um

corresponds to the waist of the lattice beam on the atoms and A = 271 X C(% - E) to
the detuning. For a power of 13mW, corresponding to the case of Vj = 0.8Ejy, we find

['sp.1beam = 0.018s™ 1. This leads to a heating of [151, 183]

dE
= = 2X Ty X Eree = 720K -5~

For our typical lattice duration, around 1 ms, this has a negligible effect and justifies the use of
a laser wavelength Aj,; = 1064 nm with a detuning approximatively equal to A ~ 211 X 5 THz,
sufficiently large to avoid spontaneous emission.

3.1.5 Instabilities in the presence of a lattice

Instabilities can arise even if the cloud is adiabatically loaded. These occur when the condensate
is not at rest in the lattice frame of reference [184, 185]. We emphasise here two instabilities: the
energetic instability and the dynamical instability.

e The energetic instability is a static instability, that is, the perturbation does not grow in
time. It corresponds to a saddle point in the minimisation of the functional energy and it
occurs when a BEC moves respectively to an impurity (a thermal atom for instance [186])
with a speed higher than the speed of sound in the condensate [187-190].

e The dynamical instability corresponds to the existence of an imaginary eigenvalue of the
Hamiltonian at a given g, in the lattice frame of reference, implying that the population
at q grows exponentially over time. This instability was widely studied in Refs. [154, 191,
192] and its applications were also treated in Refs. [105, 155] where it was pointed out that
the mechanism behind it is pairwise, that is, the growth of population at g is linked to an
increased population at —g. Itisimportant to note thatin the case of dynamical instabilities,

3In Ref. [178], the optimised expression for the lattice loading is given and corresponds to
Vma:r
1+exp (—athmp]

V(t) =

where o and Tmp are adjustable parameters.
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atoms with quasi-momenta g and —q (the atomic pairs) are present in the condensate. If
the pairs have a speed higher than the speed of sound, energetic instabilities can also take
place. Thus the system, which is initially dynamically unstable, also becomes energetically
unstable leading to second order effects both on the distribution of the pairs and on the
temperature of the BEC.

3.2 Dynamical instability: pair creation

The fundamental mechanism behind the atomic pair production in our experimental set-up is
the dynamical instability [188, 193, 194]. This can be viewed as a four-wave mixing process, in
the sense that, a pair of atoms is coherently transferred from an initial momentum state ko, in
the laboratory frame of reference, to two new momenta states k, and k; forming a pair.

Four-wave mixing

The mechanism is inspired from non-linear optics, where a coherent beam passing through a
non-linear medium leads to the creation of a pair of photons verifying momentum and energy
conservation.

The Hamiltonian describing this process is given by
] — A7 5 s atat
Hrwm = Z hvj(Aj+1) +hx (apap,ata) +hc), (3.13)
j:pl!pzﬁli

where pq, p2 are the two photons pumps, that can be identical, and s, i are the signal and idler
photons produced by the non-linear response of the non-linear medium and 7 i the number
operator. The conservation of energy and momentum implies that

Iy, + ko, = ks + K, (3.14a)

Vp, +Vpy = Vs V. (3.14b)

When the pump is weakly depleted, the operators of the pump beams can be replaced by
numbers, Ny, and N,, respectively, and Eq. (3.13) can be re-written as

Hrwm = Ho + ik [Ny, (N, (ﬁ:r’z‘j + c.c.)

with Hy = Y =pLp ’s!,vhvj (ﬁ j+ 1). This corresponds to the parametric down-conversion Hamil-
tonian which is often used in quantum optics [13, 86]. However, since the phase-matching
conditions can be verified by several sets {s;, i;} of photon pairs, the Hamiltonian can be written
more generally as

Hrwm = ZHO,I + Z ik \|Np, \[Np, (aFaf; +c.c.)
1 1
leading to the state
(b)) = e~ Hrwut/hjp), (3.15)
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that corresponds to a superposition of twin-Fock states with 1,2,3,... pairs in each distinct

mode /. In quantum optics, it is usual to filter only two modes. The wave-function is then given
by

B tanh ()" '
) = ; “cosh G 1 i (3.16)

where |n,n)s i corresponds to a state with n particles in the signal and idler mode, and A is
related to the averaged population

(n) = sinh? ().

With atoms the same physics apply [195]. The non-linearities are then coming from the
interaction between atoms and the Hamiltonian can be written as

2

Hrwum = f dr (r, )" [—% + V(r, t)] P(r, 1) + % f dr (x, ) P(r, 1) P (x, i(x, 1), (3.17)
with ¢ = 4“7’12“ and a the scattering length. The field operator {(r, t) is decomposed in three

terms: the pump field p, the idler (i) and signal (s),
(1) = Op(r, )iy + Ds(r, H)ds + Di(r, ).

This allows one to re-write the interacting component of the Hamiltonian as a sum of several
terms. Most of them are non-resonant terms since they do not conserve energy and momentum.
The resonant term that conserves both quantities can be written as

Hnpyrwm = 28 f dr D, 2 DLD; ﬁfﬁjﬁg +he.,

which is equivalent to the interaction term obtained in Eq. (3.13). This interaction Hamiltonian
describes the coherent transfer of two atoms from the BEC to two new momenta. From now
on, the term idler and signal will be replaced by a and b.

The conservation of both momentum vector and energy of the process leads to the fo]lowing
phase-matching conditions

2ko =k, + ky (3.18a)
2Eo = E, + Ey, (3.18b)

where ko and Ep stand, respectively, for the momentum and energy of the condensate.

These conditions can not be fulfilled in free-space for any values of ko since the dispersion
relation is quadratic. When an optical lattice potential is added, the energy dispersion relation
becomes periodic and the phase-matching conditions can be verified.

For simplicity, instead of talking about atomic pairs, since several pairs can be created at the
same time, the term atomic beams will be often used. Two cloud of atoms are then generated.
The one with momentum, in the laboratory frame of reference, closest to the BEC will be called
beam a and the second, beam b.
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Figure 3.4: Schematic representation of phase-matching conditions for the pair creation process. Two atoms from
the condensate qq (blue circles) are scattered into the quasi-momenta q, (red circles) and g, + 2k (light blue circles for q, and
qp + 2kia) such that both energy and momentum conservation are fulfilled.

3.2.1 Determination of the phase-matching conditions

The atomic pair creation takes place in the dipole trap whose transverse frequencies are much
larger than the longitudinal frequency and, as said previously, the system can be approxima-
tively described as 1D. More information on this subject and the validity of this approximation
can be found in Ref. [141], page 77.

Therefore, one can write the phase-matching conditions of the 1D system along the longitu-
dinal z—axis as

2E(q0) = E(qa) + E(q), (3.19a)
qu;U ={z,at qz,b IZklat] ‘ (319b)

where, since the atoms are evolving in an optical lattice, the momentum has been replaced
by their respective quasi-momenta. The phase-matching conditions are represented in Fig. 3.4
where two atoms from the condensate with g;0 = —0.57 kst (dark blue circle) are transferred to
Gza = 0.15 (red circle) and g, 5 = —1.3 Kot + 2 Kkijae = 0.7 k¢ (blue circle). Since the process is 1D,
the quasi-momentum will always refer to the vertical component and the index z will be, from
now on, dropped.

Knowing the initial quasi-momentum of the condensate o, it is then possible to retrieve the
values of the pairs quasi-momenta ¢, and g, from Eq. (3.19b) and their respective energies will
be given by the dispersion relation Ey(q;)°.

Mean field correction: a simple approach

Since the four-wave mixing process is based on interactions, it is necessary to add the mean-field
contribution (gn) to the phase-matching condition. Keeping in mind that we are interested in

“Where the notation [2k;,] corresponds to +2ki,, such that beam b is projected into the 1st Brillouin zone, see
Fig. 3.4.
*Eo(q) corresponds to the lowest energy band without interaction corrections.
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Figure 3.5: Modulation of the condensate wave-function by the optical lattice. Spacial modulation of the BEC wave
function with initial quasi-momentum of qy = —0.57 quy by a periodic optical lattice potential with depth Vi = 0.8 Ejy.

producing pairs with low populations (necessary for the HOM effect), the mean field contribu-
tion due to the pairs is negligible. However, the same does not hold for the condensate mean
field contribution. The energy conservation is then given by 6

2[E(qo) + gno] = E(qa) + 2810 + E(qp) + 280,
2E(q0) = E(qa) + E(gp) + 2810,
where ng is the density of the BEC given by

ng = gandr|%(f)|2 :

As a consequence, the phase-matching conditions of Eq. (3.18) are shifted and broadened.
Indeed, the wave-function of the BEC described by the Bloch wave

[e]

Yo(2) = Z ao,m(q0)e %, (3.20)

mM=—00

corresponds to a modulated function in space. As an example in Fig. 3.5, |0 (z)‘z is represented
for a lattice depth Vj = 0.8 Ejx and BEC initial quasi momentum go = —0.57 qjat. The energy
conservation can then be written as

2q0 =qa + qp [2q1at], (3.21a)
E(qa) + E(qp) + 2g (10 — 6no) <2E(qo0) < E(qa) + E(gp) + 2g (10 + 6n9), (3.21b)

where 6n¢ corresponds to the modulation amplitude. The energy conservation condition does
no longer correspond to a single solution, but to a range of solutions limited by the conditions

E(qa) + E(q) = 2E(qo) — 2g (no + dny),
E(qa) + E(qs) = 2E(qo0) — 2g (10 — 6no) .
One will then have a range of g satisfying the phase-matching conditions. This is represented

in Fig. 3.6 for the case of Vjy = 0.8 Ejat, o = —0.57 qja¢ and gng = 0.067 Ej. The sum of the atomic
pair energies (E(qq) + E(qp)), with g verifying the conservation of momentum

qb = qa — 290 [2k1at] ,

®The term 2 X 2gn, in the right side comes from the fact that an atom from either beam a or b is distinguishable
from the condensate. The mean-field contribution for one atom inside the condensate, on the contrary, is equal to
gno [153].
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Figure 3.6: Determination of the phase-matching condition taking into account the mean-field contribution.
Representation of the total energy of the atomic pairs E(q) + E(q+2qu: — 2q0) for a fixed condensate quasi-momentum qq as a
function of q (blue line). The gray shaded area corresponds to twice the energy of the two atoms from the condensate whose
range is defined by Eq. (3.23). The intersection between the line and shaded area correspond to both pairs with a width given
by the mean-field potential. The red shaded area indicates the atomic beam a and the light blue the atomic beam b.
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Figure 3.7: Determination of the phase-matching condition taking into account the mean-field potential for
different condensate quasi-momentum qo and lattice depth V. Phase matching conditions for the atomic pair production
as a function of the condensate quasi-momentum qo for a lattice depth Vo of: a) Vo = 0.4 Eia, b)Vo = 0.8 Ejm, ¢) Vo = 1.2En
and d) Vo = 2.0Ey. The red shaded area indicates the atomic beam a and the light blue the atomic beam b. The widths are fixed
by the mean-field modulation. The dark blue line represents the condensate quasi-momentumn.

is plotted as a function of g,. When the total energy of the pair intersects the energy zone
defined by the boundaries

2E(qo) — 2g (no + dno), (3.22)
2E(q0) — 28 (no — dno), (3.23)

represented in gray on the graph, the values of g, (in red) and g (in blue) are found. These
correspond to beam a and b, respectively.

By applying the same procedure for different values of the BEC quasi-momentum go, one
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obtains the phase matching curve displayed in Fig. 3.7 for four different lattice depths. From
these curves, it is possible to extract the expected quasi-momenta of atomic beams a and b (g,,
qp) as a function of the condensate quasi-momentum go. One sees that the pair production starts
for values of gy above a critical value g, > 0.5k} depending on the lattice depth. When ¢ is
close to the value of g, the atomic pairs are not well separated in momentum space. For deeper
lattices, the spread of the pairs and the threshold value tends to increase. These observations
are in good agreement with the numerical results of Ref. [154].

Mean field correction: a numerical method

The previous procedure, although very intuitive, does not allow us to predict the atomic beam
shape nor the atomic beams dynamics. In order to get this information we will, fo]lowing
Ref. [154], start by solving the stationary Gross-Pitaevskii equation

: 5
B = |-+ V@) + gyl | v, (3.24)

where V(z) corresponds to the lattice potential 7 . The wave-function of the condensate, as in
Eq. (3.20), corresponds then to a Bloch wave with initial quasi-momentum go.

This resolution is performed numerically by first finding the solutions of Eq. (3.24) without
interactions, given by

o0

0= Y tom ol

MmM=—0a

By solving the m coupled equations

K2 (q0 + qulat)z . Vo
2m 2

1%
—} ao,m,0(qo) — IO (a0,m+1,0(9) + a0m—-1,0(q0)) = Eo,g0,080,m,0(q0),

one finds the coefficients agm, o of the wave function ¢(z). One can now add the contribution
of the mean-field potential, such that the m coupled equations are now given by

K2 (g0 + qulat)z Vo
2m 2

V
+ —]an,m,l(%) - IO (a0,m+1,1(q0) + a0,m-1,1(90))

X 2
+ Hogz a0,p, 0 4y 0A0,m+p,1 + 108 |a0,m,0| ao,m,1 = Eo,go,190,m,1(q0)-
pr'

The solution of these equations give us the value of the coefficients a ,, 1 and allow us to recover
the wave-function

P1(z) = Z ag,m, 1677 .

m

Doing the same procedure but replacing ag, o by a9, 1, the solution of ¢,(z) can be find. This
self-consistent procedure is developed until both energy and wave-function correction of higher
orders become negligible [141].

Once a solution of Eq. (3.24) is obtained, one needs to test the stability of the wave-function.
In order to do so, we add a small perturbation to the condensate wave-function and study

"The dipole trap potential is neglected along the longitudinal axis.
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its response [154]. This corresponds to adding to the wave-function of the condensate the
perturbation

5g0(2,4', 1) = Vgo 2, , )T + W} (2,0, )e T,

where vy, (z, ¢, t) and wy,(z, q’, t) are two functions with the same spatial periodicity of the lattice.
These functions correspond to excitations with quasi-momentum qo +¢" and qo —¢’, in the lattice
frame of reference, and have weak amplitudes. By solving the time dependent Gross-Pitaevskii
equation

oYz, t) W2 PPt Vo 2
ik 5 " o a2 T2 (1= cos (2zq1at)) + g10 ‘F,D(Z, f)| Y(z,1), (3.25)
one gets, in first order approximation,
,q,t gt
fﬁﬂ(”%(z 1 )) = My, q’)(v‘”(z ! )), (3.26)
ot\wg,(z,q',t) We, (2,9, 1)

where M, (z,¢’) is equal to

’ 2
Myeqy=| 207 X G (3.27)
—gnoYs  —L(—q0 +4q')

and

(o .V Vo, 2
L(q) = ‘g(g +1q) + = sin’ (ki) = 1 + 2810 Va0 - (3.28)

Through the diagonalisation of the matrix M, one can determine the eigenvalues of the
system. If one of the eigenvalues is complex, the system is not stable and the respective
perturbation growths exponentially in time leading to a depletion of the condensate. This
corresponds to the dynamical instability or, in other words, the atomic pair production.

These instabilities can be stimulated with the introduction of a seed — stimulated process
— or can happen spontaneously due to vacuum fluctuations — spontaneous pair creation. Our
main interest is in the latter.

The eigenvalues of M are computed by ﬁxing the BEC quasi-momentum ¢ and scanning
the perturbation quasi-momentum, ¢q’, in the 1st Brillouin zone. Each imaginary eigenvalue
corresponds to a quasi-momentum g’ verifying the phase-matching conditions of the atomic
pairs. By identifying the values of g’ for which the eigenvalue has an imaginary term and
knowing qo, one extracts the values of g, and g;. The complex part of the imaginary eigenvalue
corresponds to the growth rate of the excitation. In Fig. 3.8, one can see that the rate increases
with the lattice depth and with the absolute value of go. This means that for deeper lattices
and larger BEC quasi-momenta the pair production rate increases. Consequently, in order to
produce the same number of atomic pairs for different quasi-momenta or lattice depths, one
has to adapt the lattice duration.

In Fig. 3.8, the quasi-momenta ¢, and g, are plotted for different go ranging from —0.9 ki,
to —0.5kyyt, with different lattice depths:Vy = a) 0.4Ej; b) 0.8Ejy; ) 1.2Ej, and d) 2.0 Ejy.
The density is kept constant and the mean-field term is equal to gng = 0.067 Ejy 8. One
recovers similar features as for the method discussed previously just by adding the mean-field
contribution. Namely, the phase matching conditions, the critical value q. and width solutions
for beam a and b are qualitatively the same.

8This value is extracted from the typical BEC numbers given in Chapter 2, Table 2.6, with ny = 3% where
ER
w,(0) and L are obtained from Ref. [64].
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Figure 3.8: Phase matching conditions and growth rate of the pairs following Ref. [154]. Phase matching conditions as
a function of the condensate quasi-momentum qo for different lattice depths Vi: a) Vo = 0.4Ej,, b)Vy = 0.8Eyy, ¢) Vo = 1.2E,
and d) Vo = 2.0 Ei. The red line indicates the quasi-momentum associated to beam a while the blue line indicates beam b. The
dark blue line corresponds to the BEC quasi-momentumn.
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Figure 3.9: Comparison between the width of the atomic beam a for the case of an intuitive addition of the
mean-field potential and for the resolution of the Gross-Pitaevskii equation following [154]. The different canvas
correspond to lattice depth Vy equal to: a) 0.8E,y, b) 1.2E;, and c)2E;,. The condensate quasi-momentum corresponds to
qo = —0.6 quu. One can see that the range of values of q, that verify the phase-matching condition is equivalent between the
two methods.

Comparison between the two methods

The resonance widths are compared in more detail in Fig. 3.9 where the result following the
self-consistent solution (red area) is superimposed to the naive solution obtained by adding the
mean-field contribution (blue shaded area). Despite a small shift in the upper g branch, both
results agree in terms of central phase-matching condition, as well as in terms of the resonance
width. The first treatment of the interactions cannot, however, predict the expected growth rate
as a function of go and, in this sense, can not explain the shape of the produced pairs.
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Figure 3.10: Growth rate of the atomic beam a as a function of q. In order to recover the shape of beam a, we assume that
the BEC can be decomposed into several plane waves of different quasi-momenta centred around qy. The result is represented in
blue shaded area. This method is compared to the solution obtained for a single plane wave description of the condensate with
quasi-momentum qp, in red.

3.2.2 Atomic beam shape prediction

Following Ref. [154], it is now possible to estimate the shape of the atomic beams. For short
lattice application time, such that the exponential growth of the pair is still close to a linear
growth, the momentum distribution of the beam is a multiple of the growth rate value as a
function of g’ ? Fora longer lattice application time, this is untrue since the process becomes
to be seeded and the shape "shrinks" around the maximum eigenvalue. Nonetheless, we will
always work in the weakly populated regime where the growth rate distribution gives us
enough information about the beam shape.

It is important, however, to point out that since the condensate is represented by a plane
wave of quasi-momentum qo, the gain width does not take into account the initial momentum
distribution of the real BEC. In order to be able to predict the correct shape of the atomic beams,
one needs to take into account the initial momentum spread of the condensate.

The exact wave function of the condensate can be retrieved by solving the time dependent
Gross-Pitaevskii equation inimaginary time. For our typical parameters, the density in momen-
tum space can be approximated by a Gaussian of width 0 = 6 X 10~ 3kjat. We thus represent the
distribution of the condensate as a coherent sum of plane waves convoluted by this Gaussian

“The growth rate corresponds to the complex part of the eigenvalue obtained through the solution of the GPE
as described previously. The complex part is a function of the perturbation quasi-momentum 4’ and, consequently,
the growth rate also depends on it.
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Figure 3.11: Schematic representation of the optical access to the science chamber. W1, Wy, W5 and Wy correspond
to the four windows through which the optical lattice can be aligned on the atoms. Two mirrors inside the science chamber
guarantee that a laser beam centred on either W1 or W will exit through Wa or Wy, respectively.

shape. The atomic beam width can then be estimated through a convolution between the gain
at each q centred around g and the width of the initial BEC distribution. As a consequence,
one can see an enlargement of beam a as represented in Fig. 3.10 for several lattice depths
(from 0.8 to 2Ejat from top to down) and different central BEC quasi-momenta qo (from 0.85
to 0.55kj,¢ from left to right) with, in blue, the realistic growth-rate prediction for the atomic
beam a taking into account the BEC momentum distribution and, in red, the growth-rate for a
plane wave of quasi-momentum gy. One can see that for a shallow lattice and a small central
quasi-momentum, qo, the growth-rate of beam a is wider than the central (qp) growth-rate. In
this regime, the dominant contribution for the atomic beam shape comes from the condensate
initial momentum distribution. This is precisely the situation in which the pair were obtained
in order to achieve the atomic HOM experiment.

In this section, the phase-matching conditions have been discussed. By changing the detuning
between the two laser beams, the quasi-momentum of the BEC in the lattice frame of reference
is changed and the produced atomic pairs selected. The population of the atomic beams can
also be controlled through the lattice application time. This method corresponds then to a very
tunable way of producing atomic pairs in momentum space and represents a huge improvement
over the control of the atomic pairs production in our experiment.

3.3 Pair creation: experimental realisation

After having brieﬂy described the theoretical steps required to understand the pair creation
mechanism, we will now focus on the experimental realisation and analysis of the atomic
beams.
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Figure 3.12: Schematics representation of the optical bench for the optical lattice.

The optical lattice consists in two laser beams with wavelength of 1064 nm, see Fig. 3.12.
At the beginning of this work, the laser beams formed an angle of 7° degrees with respect to
the vertical z—axis. The two beams were then going through the science chamber windows W
and Wy (see Fig. 3.11). Instead, we now use the windows W1 and Wy (see Fig. 3.11) to align
the lattice along the vertical z—axis. The relative angle between both beams correspond then to
0 = 20 = 166 ° and the beam waist is equal to 200 um for the upward beam and 400 um for the
downward one. ¥

As seen in Section 3.1, by changing the detuning between the two laser beams, d1at, one
can control the speed of the condensate in the lattice frame of reference. For a value of 54 =
27t X 100.5 kHz the lattice speed is equal to —0.57 vi,; and one produces two atomic beams with
momenta k, = 0.73kj,¢ and k = 1.27 ky,y, in the laboratory frame of reference. This situation is
interesting for performing the HOM experiment as we will explain in Chapter 4.

Effect of vertical alignment

In Fig. 3.13 and Fig. 3.14, the 2D atomic distributions are represented for dj,¢ = 27t X 100.5 kHz
and Pyp = 13mW (Vo = 0.8Ejat) in the xz and yz—plane, for the new and old optical lattice
alignment, respectively. The old conﬁguration corresponds to an angle of 7° with respect to the
vertical z—axis while the new configuration is aligned along the vertical axis. The lattice is kept
for 300 us at its maximum depth and, in both situations, the loading as well as the extinction of
the lattice are performed adiabatically.

10At the time the new lattice alignment has been performed, no collimator was available to guarantee the same
waist on the atoms for both beams. As a temporary solution, the waist of the downward beam was changed to
400 um which is two times larger than the upward beam. In order to have the same intensity profile on the atoms,
the downward beam has four times the power of the upward beam. Since the condensate size is much smaller that
the lattice beam waists, the intensity profile is uniform over the condensate.
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Figure 3.13: Two-dimensional momentum distribu-
tion of the atomic pairs obtained in the vertical optical
lattice in the laboratory frame of reference. Representa-
tion of the z — y momentum distribution of the atomic pairs
produced in the optical lattice with the new alignment. Beam
a corresponds to the cloud with central momentum 0.73k,
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Figure 3.14: Two-dimensional momentum distribu-
tion of the atomic pairs obtained in the old optical
lattice in the laboratory frame of reference. Pair creation
in lattice aligned 7° with regard to the vertical z—axis. One
can see that along the y—axis the shape of the pairs is no longer
centred on zero and follow the inclination of the optical lattice.

and beam b with momentum 1.27ky, produced in a moving
lattice with velocity equal to 0.57 viy.

In the case of the old geometry, as one can see in Fig. 3.14, the atomic beams are no—longer
centred transversally around {x, y} = {0, 0} but are asymmetric along the y—axis corresponding
to the inclination of the lattice. With the new alignment this feature disappears [108, 141, 142].
This change is crucial in order to guarantee a good spatial overlap of the two atomic beams in
the HOM experiment as it will be discussed in Chapter 5.

3.3.1 Geometrical alignment

The lattice alignment is based on the repulsive dipole potential of each lattice beam. One turns
on each laser beam individually, for 100 us, on the atoms after switching off the dipole trap.
Since the lattice beams are blue detuned, the light induces a repulsive dipole force on the atoms
that are now falling due to gravity. Since the lattice beams are almost aligned along the vertical
axis, the atoms feel a strong repulsive potential lying beneath them and are, consequently,
repelled transversally. After a long time-of-flight of 308 ms, the repulsive dipole force translates
into a hole in the 2D xy—plane density distribution, see Fig. 3.15.

Fig. 3.15 shows the obtained results for the upward (Fig. 3.15 a)) and downward (Fig. 3.15
b)) lattice beams. The hole in the transverse distribution corresponds to the repulsive potential
of the lattice beam which is centred on the atomic cloud. A good alignment would correspond
to an almost symmetric ring as seen in the figure.

3.3.2 Loading procedure of the 1D lattice

In order to adiabatically load the BEC in the lattice, the intensity of the laser beams has to be
ramped slowly over a time T. 11 The minimal value of T for atoms at different quasi-momenta

"We consider a linear ramp, although this is not the optimised situation as reported in Ref. [178].
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Figure 3.15: Alignment of the optical lattice beams on the condensate. Geometrical alignment of the lattice beams by
applying each beam independently on the condensate. Since the laser is blue detuned, the light creates a repulsive potential.
The atoms are then repelled at the intensity maximum giving raise to an halo after time-of-flight. Alignment effect for: a) the
upward lattice beam, b) downward lattice beam.
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Figure 3.16: Loading procedure of the optical lattice. From top to bottom. In red, we represent the optical trap power as
a function of time. In blue, the lattice depth is represented as a function of time. One can see the adiabatic loading performed
in 300 us and the adiabatic extinction in 50 us. The two lattice beams detuning is then represented in green. One can see the
adiabatic acceleration of the lattice once the lattice depth has reached its maximum value. Finally, in orange, the stimulated
two-photon Raman scattering process is represented. This is performed in order to transfer the atoms from the state m; = 1 to
the insensitive magnetic field state m; = 0.

and lattice depth was discussed in Subsection 3.1.3. For a condensate with quasi-momentum

q = —0.57 q1at, which is the case considered here, the condition T > 1 us has to be verified.

The procedure is done, as represented in Fig. 3.16, by first ramping up the lattice depth from
0 to Vo = 0.8Ejat in 300 us. During this time, the lattice speed is kept at zero so that the BEC
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is kept at rest inside the dipole trap. After reaching the maximum value of Vy, the lattice is
accelerated from 0 to 0.57 vy, in 50 us. The condensate is afterwards modulated by the optical
lattice potential for 350 us and undergoes spontaneous pair production.

After this time the pair creation process starts to be slightly seeded by the first produced
atoms. For the HOM experiment it is required that the averaged number of atoms remains
as low as possible. It is then essential to stop the process as quickly as possible. This means,
however, to extinct the lattice abruptly which can lead to diffraction. The adopted procedure
is to lower the lattice depth with a linear ramp from the maximum value Vj to 0 in 50 us. This
time is sufficient to guarantee that the atoms in beam b, that lie close to the boundary of the 1st
Brillouin zone, do not undergo Bragg diffraction (for g, = 0.72kj,, the condition T > 4 us is
verified). On the other hand, the time is sufficiently short to guarantee that the averaged pair
population does not growth during the adiabatic extinction of the lattice.

Experimentally, the adiabaticity of the loading process is checked by a band mapping tech-
nique [179]. The test consists in turning off the lattice in the same manner as it was turned
on. If the atoms have been transferred to higher energy bands, than they will be projected to
Brillouin zones once the lattice is turned off. This can be checked by looking at the populations
at kg + 2nkj,e. In our case, no diffraction is visible for the loading ramp. For the extinction ramp,
less than 0.02 % of the initial BEC population is transferred to kg + 2kjat and no visible diffraction
of the pairs is recovered.

The pair production time can then be estimated as
Tproa. = [Time of the moving lattice at full power] — [acceleration time of the lattice] = 350us.

This is sufficient to guarantee an average population of the pairs around 20 — 40 in each beam.
By taking into account the MCP detection efficiency of 25 % this leads to approximatively 5—10
detected atoms on average.

3.3.3 Atomic pair production

As described in Section 3.2, it is possible to theoretically predict the distribution in momentum
space of the atomic beams. The experimental density profile is then compared to the predicted
one in Fig. 3.17 where we represent, in blue, the experimental density profi]e and, in red, the
theoretical prediction with an adjusted growth time in order to fit the amplitude of the atomic
beam a. The description of the atomic beam width due to the momentum distribution of the
BEC agrees well with the experimental observation. However, two important discrepancies are
noticed.

e First there is a background noise between the two atomic beams that is not fully described
by the theoretical model. This background can eventually be explained by energetic
instabilities, since the pairs are moving above the speed of sound of the condensate
(c = 0.24 vy with ¢ the speed of sound, see Appendix A) [189, 193, 196]. This would lead
to collisions between the pairs and the condensate and possibly explain this background
population.

e Second, thereis an anisotropy between the population of the cloudsa and b. The theoretical
model is based on a Hamiltonian closely related to parametric down-conversion process
which gives raise to a symmetric population between the two beams, see Eq. (3.17).
However, since beam b has a quasi-momentum above the threshold limit value (q.)
for dynamical instability it can lead to secondary four-wave mixing events. This effect
should, in principle, be negligible since beam bis very dilute. However, four-wave mixing
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Figure 3.17: Density profile of beams a and b, experimental result and theoretical predictions. The theoretical
prediction for the atomic beams shape as a function of the momentum k in the laboratory frame of reference (red shaded area)
is compared to the experimental density profile (blue shaded area). The lattice depth is Vo = 0.8Ejx and the lattice is moving
at —0.57v;,. The amplitude of the theoretical prediction is adjusted to the experimental profile corresponding then to a fitting
parameter.

processes triggered by an atom from the BEC and an atom from cloud b can happen. This
would result in losses from beam b.

The population difference between the two atomic beams have also been reported in the
experiment of W. Ketterle’s group [105] and, in this sense, we believe that it must correspond
to a physical process rather than an experimental artefact. Further tests are being performed in
order to understand this discrepancy between the two beams. In particular we are interested
in study the dependence of the atomic beam population difference as a function of the speed of
sound in the BEC and as a function of beam b quasi-momentum.

In Fig. 3.18 are represented the density profiles along the longitudinal z—axis (left panel) of
the condensate and the atomic pairs for the case of an initial quasi-momentum qo = —0.57 qja¢
and a lattice depth Vy = 0.8Ejy. Since the condensate saturates completely the MCP, no
information can be extracted from its transverse profile. The transverse 2D distribution of both
beams a and b is also shown. One can see that the two clouds present shoulders (right panel)
which indicates that pairs are also created in excited transverse modes. Those are not dominant
since their growth rate is much weaker than the fundamental mode as discussed in more detail
in Ref. [141], page 81.

3.3.4 Evolution of the pairs in the trapping potential

The three clouds of different quasi-momenta (the BEC at qo, beam a at g, and beam b at q;,) evolve
in a potential formed by the dipole trap and the lattice. Although the trapping potential has
always been neglected in the 1D theoretical treatment presented so far, it plays an important
role on the time evolution of the pairs. The BEC is, in the laboratory frame of reference, always
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Figure 3.18: Density profiles of the atomic pairs in the case of the HOM-experimental realisation before application
of the beam-splitter From left to right: 2D momentum distribution of the atoms in the xz—plane. The condensate saturates
the detector and, as a consequence, its width along the x—axis has no physical meaning. The pairs appear with momenta
k, = 073k and ky = 1.27 k. We also represent a 2D momentum distribution in the xy—plane for beam a (upper panel) and
beam b (bottom panel). The integration length along the vertical z—axis is equal to 0.01k,, and centred on k, = 0.73 kyy and
on ky = 1.27 ky, respectively. Finally, we show the cut along the x—axis of the 2D momentum distribution on xy—plane for
both beam a (upper panel) and beam b (bottom panel). The cut corresponds to an integration length along the y—axis equal to
0.05 kigt.

at rest and does not explore spatially the trapping region, however, the same can not be said for
the pairs.

The atomic beams have a finite speed in the laboratory frame of reference and thus can move.
One important point is their position when the optical trap is switched off. If they did not leave
the maximum density region of the BEC, their expansion, once the trap is switched off, can be
strongly perturbed by the mean-field potential. Moreover, since the speed of the two atomic
beams are different, the effect of the mean-field potential is going to affect them differently. This
represents a huge experimental difficulty in order to achieve the HOM experiment since the
particles have to be well mode matched when overlapped.

Experimental observation of the spatial shape deformation

The lattice is adiabatically switched on and kept at its maximum power for 400 us. The exper-
iment is performed for a lattice depth of 0.8 Ej;; and speed vj¢ = 0.77 vi¢ which leads to the
production of cloud a with momentum, in the laboratory frame of reference, equal to 0.31 ki,
After switching off the lattice, the cloud is kept in the dipole trap for a certain waiting time (7w),
after which the dipole trap is switched off in less than a microsecond. The atoms expand and
their longitudinal as well as transverse velocities components are recovered after time-of-flight.
The momentum distribution of cloud g, in the xy—plane is shown in Fig. 3.19. It is possible to
notice a hole in the transverse distribution for waiting times lower than 50 us. For longer 7, the
expected transverse Gaussian shape is recovered as discussed in Ref. [141].
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Figure 3.19: Transverse shape of the atomic beam a as a function of the holding time in the optical dipole trap.
For the first panels, a hole appears in the transverse shape of beam a which tends to disappear for longer holding times t,,.Each
panel corresponds to a 2D momentum distribution in the xy—plane.

Mathematical description of the problem

One possible explanation for the spatial shape deformation, would be that if beam a is super-
posed to the condensate when the trap is switched off, then the cloud would feel a very strong
repulsive potential beneath it. That would translate into a repulsive transverse force and, after
time-of-flight, this would lead to the formation of a hole on the horizontal plane. In order to
test this assumption, let us look at the atomic beams dynamics. Two distinct situation are to be
considered.

First, one has to consider the atomic beam displacement in the optical potential formed
by the dipole trap and the periodic optical lattice. This corresponds to the first instants after
production of the first atomic pairs. The particle evolution equations are then given by [186]

d?q  9V(0,0,z)
EE = —T (3293)
dz 1JE(g)
E = Ea—q — Mat, (329b)
where v}, corresponds to the speed of the lattice and the dipole potential is taken at {x, y} = {0, 0}.

It is important to note that the atom spatial evolution depends on the group velocity given by
19E
hdg:

Consider the case of a weak lattice and a BEC quasi-momentum equal to —0.77 k. This
corresponds to the produced atomic beams represented in Fig. 3.19 where the hole has been
identified, with beam g, = —0.46 kit and g, = 0.92 1y, in the lattice frame of reference. Since
beam a is moving slower than beam b with respect to the condensate, the effect of the interactions
will be maximally felt on beam a. In order to determine the spatial displacement of the atomic
beam, one needs to evaluate the time after which the first pairs have been produced. We
experimentally estimated that the first produced pairs are generated, for the current value of
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Figure 3.20: Central position of beam a as a function of the holding time T, . The experimental situation corresponds
to a lattice depth Vy = 0.8 Ey, and a condensate quasi-momentum, in the lattice frame of reference, equal to gy = —0.77 vj4.
This is related to the observation made in Fig. 3.19

qo, after approximatively 200 us and, since the lattice application time is equal to 400 us, this
means that the pairs are travelling for 200 us in an optical potential formed by both an optical
lattice and a dipole trap. From Eq. (3.29b), we recover a spatial displacement for beam a equal
to 7 ym. This means that at the time the lattice is switched off, beam a has already moved 7 ym.

The second situation corresponds to the evolution of the atomic cloud in the dipole trap
alone. The equations of position and momentum correspond then to the evolution ofa particle
in a quasi-harmonic potential.

In Fig. 3.20, one shows the evolution of the central position of beam a, from the initial
position of 7 um, when the lattice has been extinct to the final position of the particle, after
Ty = 200 us, equal to 13 um. When compared to the Thomas-Fermi radius of the condensate,
approximatively equal to 60 um, one concludes that beam a is still deeply inside the condensate.
This means that the observed behaviour as a function of the waiting time, 7, reported in Fig. 3.19
cannot be understand through a simple spatial argument.

Another experiment provides more insight in this observation. In this experimental se-
quence, after producing the pairs via dynamical instabilities, we change the lattice speed in
order to, via Bragg diffraction (see Chapter 4), accelerate the beam a. The atoms with initial
momentum k, are transferred to a momentum k, + 2ki,;. The dipole trap is then immediately
switched off, such that the atoms did not have enough time to significantly move. We then
compare the situation with and without Bragg diffraction as shown in Fig. 3.21 and Fig. 3.22,
respectively. One can see that for the situation in which beam a is not diffracted, a hole is
noticeable in the 2D atomic distribution and disappears when the beam is diffracted, showing
that the speed of the cloud during the expansion plays an important role. We also notice a
shrink in the transverse distribution of beam b.
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Figure 3.21: Effect of the initial speed on the trans-
verse shape of beam a. a) Vertical density representation
with cloud a at k, = 031k in the laboratory frame of
reference and cloud b at 1.72ki. Bragg diffraction from
the condensate at k = 2k is visible due to the fact that the
lattice is non-adiabatically switched off. b) Transverse profile
of beam a. One can see that the cloud present a hole in the
transverse plane. The cut along the x—axis represented in d)
allow us to visualise more clearly the effect. c) Transverse
profile of beam b. No structure similar to beam a is visible.
This is, once more, easier to observe through the cut along
the x—axis represented in e).
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Figure 3.22: Effect of the initial speed on the transverse
shape of beam a after being Bragg diffracted. Beam a is
diffracted just after being produced and the dipole trap is
immediately switched off afterwards. a) Density profile of the
clouds along the vertical direction. The initial momentum
of beam a is represented by the red box. The arrow line
indicates the diffraction performed. Beam a has now an initial
momentum higher than beam b. Bragg diffraction from the
condensate is alsonoticeable at k = 2kiy. b) 2D density profile
on the xy horizontal plane centred on cloud a. The hole in
Fig. 3.21 is no longer present has it is possible to check via the
cut along the x—axis represented in d). c) 2D density profile
on the xy—plane centred on cloud b. The cloud gets thinner
when compared to the situation of Fig. 3.21 but has still a
similar shape.

The formation of a hole in the transverse density profile of beam a, after time-of-flight, is still
an open question that needs to be further investigated. The explanation based on the spatial
overlap between beam a and the condensate cannot explain entirely our observation. From
Fig. 3.21 and Fig. 3.22, we conclude that the initial speed of the atoms plays an important role,
and that atoms with higher velocities will be less disturbed. Since the situation of interest for
the HOM experiment corresponds to a beam a with higher vertical velocity than the one studied
here, one can expect a negligible effect. Nevertheless, in order to avoid any possible distortion
of the cloud, we will, for the HOM experimental sequence, wait for 200 us before releasing the
atoms from the optical dipole trap (see Chapter 5).

With these results in mind, one can now investigate the correlation properties of the pairs
and their interest for the realisation of quantum atom experiments.
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3.4 Correlated pairs of atoms: analysis

In order to use the atomic pairs for the HOM scheme, one needs to guarantee that the momentum
difference between the two atomic beams is equal to the momentum transfer of the beam-splitter.
As it will be explain in Chapter 4 due to the limiting optical access of our science chamber the
beam-splitter momentum transfer corresponds to Ak = 0.55kj,. The pairs are then produced
with a momentum difference equal to 0.55 ki, as represented in Fig. 3.18. This is achieved by
loading the condensate in a moving lattice with speed vy = 0.57 vi5. The two atomic beams, a
and b, are then centred around momenta k; = 0.73 (1) kiat and kp, = 1.27 (2) Kjat, respectively.

3.4.1 Cross-correlation and autocorrelation

The main interest of a non-linear process as four-wave mixing is the ability to transform a
classical state (a coherent state for instance) in a strongly, quantum, correlated state due to
the non-linearities of the system. This non-classical characteristics can be quantified via non-
local correlations, variance reduction below shot-noise and entanglement. Following the well
known results for parametric down conversion [13], in this section, the study of correlation
measurement is applied to our atomic pairs.

The parametric down-conversion Hamiltonian given by Eq. (3.13) leads to multimode state
described by

() = ey,

= I+Zﬁx‘/Np1 ‘/ a a +cc

In order to determine the mode size, we compare the two-body autocorrelation function to the
density distribution [108].

with

Autocorrelation function: mode characterization

For a two mode state corresponding to

o tanh" (1)
) = ; mlﬂ; M)a,b (3.30)

where A is related to the averaged number of particles per mode, through the relation (1) =
sinh? (1), the autocorrelation can be written as

@ _ {(a'aaa)
8w = " atayata)
1
" 8cosh? (1) sinh* (1)
=9 (3.31)

[8sinh* (1) cosh® (1) (2sinh? (1))

If the source is multimode, the autocorrelation function

82 (k, Ak + k)
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Figure 3.23: 2nd order autocorrelation function for both beams a and b. Left panels: Projection of the 2nd order
autocorrelation function along the longitudinal z—axis for both atomic beams. The area of integration is equal to Oy =

!.z‘:x b -£y] = [2x 102]* K2,. Right panels: Projection of the 2nd order autocorrelation function along the transverse y—axis
the same shape is recovered along the x—axis) for both atomic beams. The integration area is equal to Oy = [L, x L.] =
[2x1072 x1x1072] k2.

is no longer flat but evolves with the momentum difference, Ak, where Ak = k—k’ with kand k’
corresponding to momenta vector of two atoms in the same atomic beam. The autocorrelation
function will reach the maximum value of 2 in the central region and decreases to 1 when Ak is
larger than the mode size.

Since several atoms with different momenta are produced, it is preferable, in order to max-
imise the signal to noise ratio of the autocorrelation function, to integrate over k in a volume
Qy comparable to the atomic beam momentum spread. The 3D autocorrelation function corre-
sponds then to

8D(Aky, Aky, Akz) = f i ik + A):) (3.32)

a, (Ak) Ak +Ak))’

which is projected into the longitudinal axis (z) and one of the transverse axis (y) by integration
over an area, {27 and (2; small when compared to the autocorrelation cross section area. The
autocorrelation projections are then given by

2)(Ak,) = | dAkdAk dek(:ﬁ(k)ﬁ(kJrAk):)’
S (85 L1A My a, (k) (i(k + Ak))

O (Ak,) = [dAkedak, (st Ak):)
B Q, a, (k) (i(k+Ak))

(3.33)

where (: :) corresponds to the normal ordering average and the integration surfaces are equal
to

O = [Lex L, =[2x 107 ]2 K2,
Q= [Ly X L] = [2x 1072 x 1x 10—2] K2,
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Local

Clouda | Cloudb

05,1 (kiat) | 0.012(2) | 0.010(2)
o1 (kiat) | 0.05(1) | 0.04(2)
AL 0.70(5) | 1.00(5)
0.70(5) | 0.90(5)

Table 3.1: Autocorrelation fitting parameters for beams a and b. Summary of the fitting parameters of Eq. (3.35)

applied to the projections of the 2nd order correlation function along the longitudinal z—axis and transverse x—axis represented
in Fig. 3.23.

The autocorrelation function for both clouds are computed and displayed in Fig. 3.23. The solid
lines represent an empirical Gaussian fit given by

@ (Ak,) = A A 3.34

Qaa (Akz) :zexp[ 2‘53,:]+ , (3.34)

@ _ a

Qua (Aky) = Ajyexp T30 +1. (3.35)
O'y,l

Those fits are used in order to determine both the maximum amplitude correlation and the
correlation width defined as the half-width at 1/+e. The resulting fitting parameters are
summarised in Table 3.1. One can see that the amplitudes differ and are equal to 1.00(5) , for
beam b, and 0.70 (5) , for beam a. This difference is probably due to the background population
which can affect differently the two clouds or to the losses associated to beam b.

The two atomic beams show the same autocorrelation width inside the confidence interval
given by the standard deviation. The mode size, in both transverse and longitudinal axis, is
attributed to the autocorrelation width and the number of modes is deduced from the ratio
between the density width and the autocorrelation width.

Estimation of the number of modes

The widths of the atomic beams distributions are retrieved by fitting the density profile by an
empirical Gaussian function. For the two clouds, the half-width at 1/ Ve corresponds to

On(iyz = 0.06 (1) Kyat,
OnyL = 0.08 (1) kiat.

Performing the ratio between these values and those of the autocorrelation function, one can
estimate the number of modes in each atomic beam to be

On(k)z
Nmode,z = =4-38,
Oz,1
On(k)L
Nmode, L = =1-2.
Oz, 1
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We thus conclude that each cloud has, roughly, between 4 to 32 modes. Furthermore, knowing
that the total number of atoms in each atomic beam is estimated around 10 — 30, one estimate
that the number of atoms per mode is in between 0.3 and 8. Although this technique only gives
a rough estimation of the number of modes it allows one to predict the order of magnitude for
the mode occupation in our system.

Cross-correlation function: pair production

In the same way as we did for the autocorrelation function, one can define the cross-correlation
function between atoms with momenta k, and k;, +Ak verifying phase-matching conditions [12].
For the case of a two-mode state produced through spontaneous parametric down-conversion
the cross-correlation is given by

@ _ (a'btab)
- (atay(bt b

1 . ‘
= cosh (1) simi (1 L2 ) ost () (1+ 2inb ()]
1
oy 3.36
RO 036

When (n) — oo, the cross-correlation amplitude tends to the autocorrelation amplitude of 2,
and in contrast, when the mode occupation is reduced, gfj} increases.

The cross-correlation function is then given by

§2(Ak, Ak,, Ak;) = f P, dSkb :Ala)ft ey + Ake):) (3.37)

av, Jay, (Ak)) (A(ky + Ak)) 7

which is projected into the longitudinal axis (z) and one of the transverse axis (y) by integration
over the surface, Q1 and Qy, that are small when compared to the cross-correlation cross
section. The projections are the written as

@) 3 ( (k) (kp + Ak):)

Sap (A=) ‘f ‘iAk"d‘ﬁkyLik“ b (a)) (il + AK)) 7
g2k dAkdAk, f P, f P, 1k + Ak):) 3.38
» () = o k) (ke + AK)) (339)

with Qp = [ £, x £,] = [2x 1072 ]2 K2 and Qp = [L;x L] = [2x102 x 1x 1072] K2,

The data shown in Fig. 3.24 corresponds to the projection of the cross-correlation function
along the longitudinal axis (z) and one of the transverse direction (y) (the same shape can be
recovered for the other transverse direction). One can see an increase of the cross-correlation
for Ak — 0, indicating that beam a and b are correlated and produced in pairs. The empirical
Gaussian fit

2
g2 (Ak,) = A, . exp (—z—) +1, (3.39)
2crZ c
2 9’2
8D (Aky) = A,y exp {——2] +1 (3.40)
20%5

is used in order to determine both the amplitude correlation and the correlation width defined
as the half-width at 1/ +/e’. The obtained fitting parameters are summarised in Table 3.2. The
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Figure 3.24: 2nd order cross-correlation as a function of the momentum difference between two atoms from beam
a and b. Left panel: Projection of the 2nd order cross-correlation function along the longitudinal z—axis. The integration
area in the transverse plane is equal to Qp = [.& X Ly] = [2x 1072 ]2 k... Right panels: Projection of the 2nd order
cross-correlation function along the transverse y—axis (the same shape is recovered along the x—axis). The integration area is
equal to Qy = [L x L]1=[2x102 x1x 102 ] kZ..

Cross

0cz (kiat) | 0.025(3)
ey (Kiat) | 0.08(1)
Acz 0.27 (3)

Acy 0.24(3)

Table 3.2: Cross-correlation fitting parameters. Summary of the fitting parameters of Eq. (3.40) applied to the projections
of the 2nd order cross-correlation function along the longitudinal z—axis and transverse y—axis represented in Fig. 3.24.

cross-correlation function is, for both directions, two times larger than the autocorrelation
function. Since the averaged population is estimated to N ~ 0.3-8 one would expect from
Eg. (3.36) a maximum correlation value of 2.1- 5.3. This value is in disagreement with our
result of 1.3. This indicates that either the produced atomic beams cannot be trustily described
through spontaneous parametric down-conversion or that subsequent losses are reducing the
cross-correlation value.

3.4.2 Non-classical correlations

Correlations are present in day to day live. In most classical systems, two quantities can be
associated such that the presence of one of the two implies an increased probability of finding
the other. However, for a statistical classical experiment, relative number fluctuations can never
correspond to a distribution with lower than Poissonian fluctuations. For instance, consider a
system that produces N/2 classical pairs of bullets with opposite velocities. On average, one has
N/2 bullets in each direction with a variance, fo]lowing the Poisson law, equal to the expected
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value N/2. The variance of the bullets difference corresponds then to the sum of the variance
of both distributions and is equal to N. This intrinsic fluctuation is often called shot noise.

For a quantum state, it is possible to measure a variance lying below the classical shot noise
limit. Such a state is often called squeezed state since it corresponds to a squeezed distribution
of one variable describing the state. In the case ofa parametric down-conversion state described
by Eq. (3.16), the normalised variance of the population difference between beams a and b is
given by
V= (AN?) — (AN)?

(N at N, b)

and is equal to 0, since (AN?) = (AN)? = 0, corresponding to a maximally squeezed state.

(3.41)

However, this result assumes a perfect detection efficiency. If most of the atoms are lost
due to low detection efﬁciency, then the fluctuation increases and, since the loss is a classical
process, the distribution evolves to a Poisson law. To quantify this effect, one can describe
the detection efficiency as a beam-splitter with a coefficient of transmission 4/n’, with 7 the
detection efficiency. Consider the effect on the variance of the variable 7, = ata. The operator
d, due to the action of the beam-splitter, transforms into

it = \mi'+ \1-nO",
where O is the vacuum operator at the other input port of the beam-splitter. The averaged
quantity can be written as

15y = A2 + (L = n)a),
while
(1) = nX(a)?,
and (1’,;) = 1{f1,). The expression for the detected variance is then given by
Var =V +(1-n), (3.42)

where V corresponds to the real normalised variance of the variable. It is then clear that even
if the initial state has a zero variance, the detected variance can increase to the shot noise limit
(V. =1)if n — 0. On the other hand, if one assumes that the input state has an almost zero
variance, then the measurement of sub shot noise fluctuation provides an estimation of the
detection efficiency 1.

The normalised variance of the population difference corresponding to Eq. (3.41) is recovered
for our atomic beams. The atom number inside two different boxes, A, fixed on top of beam
a, and B, moving from A towards beam b, are compared. The integration volumes (A and B)

rec*
showed in Fig. 3.25as a function of the analysis box, B. Itis possible to see that when B is on top

of A the variance goes artificially to zero and when B is centred on top of beam b (corresponding
to the red shaded area) the variance falls below the shot-noise threshold, reaching a minimum
value of 0.75 (5) .

correspond to Qy = [Aki X Akz] =10.262 x 0.19] k3. The value of the normalised variance is

This result means that beam a and b correspond to a pair and that their state has stronger-
than-classical correlations. This is fundamental in order to perform quantum atom optics
experiments.

Assuming that the variance is equal to zero, one can then recover the detection efﬁciency .
Since nothing can guarantee that V = 0, we can only argue that the detection efﬁciency cannot
be lower than f)pin = 1 — Vget.. In our experiment, this results in nyin. = 25(5) %.

This allows us to give a lower bound of 25 (5) % to our detection efficiency.

96



Correlated pairs of atoms: analysis

S

V (n(ka), n(k))

1.0 1.2 1.4
k(kiat)

Figure 3.25: Variance of the difference of population as a function of the position of the analysed zones. The atom
number inside two different boxes, A, fixed on top of beam a, and B, moving from A towards beam b, are compared. A reduction
below shot-noise is clearly visible when the second zone, B, is centred on top of beam b (blue circles). The bottom canvas
corresponds to a zoom performed on the upper one. Beam b is represented in red shaded colour for guidance.

Cauchy-Schwarz inequality

A complementary study is done using the Cauchy-Schwarz (CS) inequality. In Ref. [96], it is
shown that the CS inequality can be adapted to integrated quantities. The violation of this
inequality for the correlation functions indicates that the cross-correlation between the atomic
beams cannot be classically described. Thisis then related to the measurement of the normalised
variance described previously.

Let us consider the non-normalised correlation function described by

G® = (NN ) f Pk, f PG (I, & 3.43
2=« = G007, o, o, (ki, ;) (3.43)

where G@ (k,v, kj) = (n(k;)i(k;)) corresponds to the second-order correlation function between
the atom number densities 7i(k) at two points in momentum space. The volumes of integration
QVL}. are defined as

Q,; = [A Ak ] K,

with the integration lengths along the longitudinal, z—axis (Ak;), and transverse axis, x— and
y—axis (Aky).

For identical mode occupancy, that is (1), = (1), and G(z) = ng}, the normalised variance of
the difference can then be written as
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where the parameter C corresponds to the correlation coefficient
_ ~2,~2
C= Gab /G

or in its more general form

c=G62/,/cPc2 . (3.44)

One can see that for C > 1itis possible to recover a sub-shot noise variance and corresponds to
a violation of the Cauchy-Schwarz inequality

(2) (2) ~(2)
Gy < \VGau Gy - (3.45)
The correlation coefficient (C) is then smaller than one for a classical state and larger for
states with stronger-than-classical correlations, in the case of indistinguishable particles [97], as
discussed in Section 1.2.

In Fig. 3.26 the coefficient parameter C is measured from the experimental data as a function
of the integration volumes Qy, and Qy, centred on the atomic beams a and b, respectively.

The integration volume corresponds to a parallelepiped of size Qy = [Aki X AkZ] (kf’at). In
Fig. 3.26a) we represent the value of C for a fixed integration length along the transverse
direction, Ak, = 0.048ky,, as a function of the integration length along the vertical axis, Ak;. In
Fig.3.26b), on the other hand, we represent C for a fixed Ak, = 0.028ky,; as a function of a varying
Ak, . It is possible to see that, for small integration volumes, the violation of the CS inequality
increases until it reaches a plateau. The optimised volume of integration is approximatively
equal to the cross-correlation width as summarised in Table 3.1. This is coherent with the
fact that C decreases when the volume of integration reaches the cross-correlation width (as
discussed in supplementary material of Ref. [96]).

An optimised volume corresponding to
Qv, = Qv, = [AK] Ak;| = [0.0487 x 0.028 ] Ky,
is represented in Fig. 3.26a) and b) by a red circle.

We recover a value of C = 1.75(20) which proves, once more, that the two atomic beams are
strongly correlated.

3.5 Conclusions

We have showed that the atomic beams produced via dynamical instabilities in a moving 1D
lattice constitute a pairwise system with stronger-than-classical correlation. This pair produc-
tion mechanism allows us to precisely tune the momentum difference between the two atomic
beams and their mode occupancy.

Certain details concerning the atomic pair creation and propagation are still open questions
that will be addressed in the near future. However, the pair creation process is sufficiently under
control to allows us to use it in interferometric scheme, as for example, the HOM experiment.

Table 3.3 summarises all the relevant measurements performed along this Chapter. The
different widths measured for both the auto- and cross-correlation and the optimised volume
of integration for CS inequality violation are given. The estimated number of modes along the
longitudinal and transverse direction and the distribution width are also provided.
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Figure 3.26: Correlation parameter C as a function of the integration volume. The correlation parameter C, indicating
a violation of the CS inequality for C > 1, is represented as a function of the integration volume along the: a) longitudinal
axis with integration length along both transverse directions fixed to Ak, = 0.05kix; b) transverse axis with integration length
along the other transverse directions fixed to Ak, = 0.05k;, and along the longitudinal direction to Ak, = 0.028ky. The
threshold limit between classical and quantum correlations (C = 1) is represented by the red dashed line.

Local Cross | CS inequality
Clouda | Cloudb

o, (k) | 0.012(2) | 0.010(2) | 0.025(3)
oo (ka) | 0.05(1) | 0.042) | 0.08(1)
Onyz (kiat) | 0.06(1) | 0.06(2)
Oniy (kiat) | 0.08(1) | 0.08(2)

Nmodes, = 5(1) 6(2)

Nimodes, 1 15(5) 15(5)

Ake,z (Kiat) 0.028
Ake, 1 (Kiat) 0.048

Table 3.3: Summary of the density profile widths and correlation functions for beams a and b.
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This is your work, envious one! And I
hardly think the future generations will
bless you for it...

Stanistaw Lem in Cyberiad

In this chapter, we will discuss the realisation of an atomic 50:50 beam-splitter and mirror.
With the goal of this project being the realisation of a two-atom interferometer, one needs to be
able to coherently manipulate the atomic pairs. To do so, we will show in this chapter how one
can use Bragg diffraction to perform an atomic mirror and 50:50 beam-splitter in momentum
space. The basic theoretical description is briefly reviewed in Section 4.1 and the calibration on
the BEC performed in Section 4.2 and on the atomic pairs in Section 4.3, respectively. The noise
added by the beam-spitter and its phase stability are described in Section 4.4 and Section 4.5.
In Section 4.6, the autocorrelation of beam b is recovered after splitting the beam via a 50:50
beam-splitter, in very close analogy to what is performed in quantum optics.
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4.1 Bragg diffraction

Bragg diffraction consists in an elastic multiphoton deflection process by which the atomic de
Broglie wave is coherently diffracted by a periodic dipole potential [116]. This translates to a
population transfer of an atom with momentum k to another momentum k’.

Focussing on the temporal evolution of a BECin a periodic potential, let us consider the
condensate as a plane wave with quasi-momentum g

1 .
Pgo(2) = Wg'%z

z

’

and study its temporal evolution in a periodic potential as a function of the lattice duration.
This will show us how to perform an atomic mirror as well as a 50:50 beam-splitter.

Attime t = 0, an optical lattice is turned on. The wave function of the BEC is then projected
to Bloch waves described by

|D(t = 0)) = Z [¥n,q0)¥n,q01Pg0 (4.1)
n=0

where (Pn q0lPq,) = @, . _,(q) as described in Chapter 3. The system evolves and, at any given
time ¢, the state is described by

DE) = Y a5, o(qo)e B i), 42)

n=0
with Ej 4, the energy for the quasi-momentum ¢ in the energy band n and

o0

[Wngo) = Y, nm(0)ldgys2m)

mM=—00

the associated Bloch wave, where |¢;,12mk,,) corresponds to a plane wave of quasi-momentum
qo + 2mbki,e and ke represents the periodicity of the considered lattice in momentum space. For
a shallow lattice, for instance V = 0.8Ey (as used in most of our experiments), only the two
first coefficients ag, a1 are non negligible since only those have non vanishing values in the
1st Brillouin zone as shown in Fig. 4.1. Therefore the wave-function at a time #, considering
only first neighbours coefficients (m = +1), which is a good approximation for shallow lattices,
can then be re-written as

D)) = a3 o(qo)e™Eon (1o g} + a o(Go)e™F90 M [ihy 4,)
m=1

. iEgg t/h s —iEq g t/h
Z [@5,0(q0)a0m(qo)e 00" + a3 o1 me™ 190" | g 2
m=—1

For t = 1, the lattice is suddenly switched off and the state is projected to the plane wave
basis that corresponds to the measurement basis. The amplitude of probability bg associated to
the diffracted quasi-momentum gy and b, associated to gy + 2kj, is then given by [173, 179]

—iE0,qyT/R + ‘a],O(qU)l g_tEL‘ioT‘m , (438)

2
bo(qo, T) = an,o(‘?n)l e

bi1(qo, T) = ﬂf}lg(qo)ﬂ(},ﬂ(ffo)t?_iE”"m“ h alo(fj[})a]!il(fjg)E’_iEl’qUT’m . (4.3b)
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Figure 4.1: Coefficients values of the decomposition into Bloch waves for a plane wave function with quasi-
momentum qy loaded suddenly in a lattice of depth equal to 0.8 E,.

Let us consider the simplest case, often used for the atomic beam-splitter, of go = —kia. For
N . 2 2 A

this initial quasi-momentum ‘aglgl = |a1,0| = 0.5 (see Fig. 4.1) and a ja91 = —0.5, a] ;211 = 0.5,

aa 0701 = a*l 071,-1 = 0 (see in Fig. 4.2).

The wave function at time T, in the measurement basis, is then described by

(1)) = ¢ (Er -t *Eohy )T/ [cos (Aﬁ—ET/z) p_r,..) +€? sin (Aﬁ—Er/z) |¢—kla.+2km)]
with @ a phase accumulated during the Bragg diffraction process Tand AE equal to [177]

3V0 Vn Vg
AE = Bty = Eokigy = OR = Erat + == = (E“‘t i I) T2
where Qg corresponds to the two-photon Rabi frequency and Ej,; to the recoil energy given by

the lattice. The wave function as a function of 7 can then be written as

[®(1)) = ¢ [cos (QrT/2) Ik} + &9 sin (QRT/2) [P, 20,,)] /

and the probability to find an atom in either q = —kj5t or g = —kjat + 2kja¢ = ki after a certain
time 7 is equal to

P, (1) = cos? (Qr1/2) , (4.4a)
Py, (1) = sin® (Qr7/2) . (4.4b)

The population between —kj,; and kit oscillates over time as it is represented in Fig. 4.3 for
the case of a lattice depth equal to 0.8Ej,. This oscillation corresponds to a Rabi oscillation
[177].

The value of T allows one to coherently exchange the population between the two momenta,
with a certain probability. The two important cases are

e (r7 = 7t that corresponds to a total inversion of populations — an atomic mirror;

e QrT = 71/2 that corresponds to a 50:50 exchange of populations — 50:50 beam-splitter.

1This phase can correspond to the phase difference between the two laser beams forming the lattice.
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Figure 4.2: Crossed coefficients values of a; \ao1, @, 41,1, @ ;80,1 and aj ya1,-1 as a function of the quasi-momentum
q. The coefficients product a, 0901 (in orange), a; a1, (in green), aa _1f0-1 ( in dashed red) and aj @) _y (in dashed blue) are
represented as a function of q for Vy = 0.8Ep. For the example given in the text of q = —1lkiy one sees that non-zero terms
correspond to ay a0, and aj 4a1,1 corresponding to a diffraction of population into q = +1ky.
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Figure 4.3: Example of a Rabi oscillation. Rabi oscillation of the population between the quasi-momenta +kiy and —kiy

for a lattice depth of Vy = 0.8E,y. The initial quasi-momentum qq is equal to —1ky such that the probability to diffract to
Go + 2k = ki is maximum.

These two cases are very often used as atomic mirror and beam-splitter in momentum
space [43]. For the 50:50 beam-splitter, essential for the HOM experiment, the wave function
corresponds then to

T

1 i
= 550 = 7 (It + €%l

and one recovers the scattering matrix notation for the 50:50 beam-splitter used in Chapter 1.

Resonance condition

In the case of a non-resonant initial quasi-momentum, meaning that g is close to —kj,; but not
equal, the equations are more complicated. One can see from Fig. 4.1 and Fig. 4.2 that the
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Figure 4.4: Comparison between a Rabi oscillation at resonance and out of resonance. a) Rabi oscillation at resonance
(6 = 0), b) Rabi oscillation out of resonance (6/Qg = 0.6 ).

probability amplitudes are different when compared to the resonant case and that the transfer
probability lowers. Besides this effect also the oscillation frequency changes. The effective
frequency is now equal to

AE 1 |VE (m2\*,, 2
Qett = 5 = E\/ 3+ () (- 00+ 20?) @5)
= Q3 + 82, (4.6)

where 6 = % (q% — (g0 + 2klat)2) corresponds to the frequency shift towards resonance. The

transfer probability can then be written as
. 2 2
X sin (,HQR + &2 ’I/Z) .

2
e
2 2
QR +6
As shown in Fig. 4.4, for 6 = 0 the population in kjat and —kjat oscillate with frequency Qg
from zero to unity with opposite phase. When 6 # 0, the population transfer does not reach
unity and the oscillation frequency increases as described in Eq. (4.6).

Pgo+2ka) = 4.7)

In order to effecﬁvely exchange the populations between the two momenta, it is then crucial
to Verify the resonance condition, that corresponds to go = —kiat. Consider the case of an atom
at rest in the laboratory frame of reference. In the lattice frame of reference, the atom has a
velocity equal to the velocity of the lattice but in the opposite direction. The atomic velocity is
then given by

kit

UBEC = —Ulat = — m '

with vggc the speed of the atom. The atom speed corresponds then to the inverse velocity of
the optical lattice which is given by the frequency difference, w> — w1, of the two laser beams
responsible for the lattice. One can thus write the resonance condition as

60 =Wy —w = —4E1at/ﬁ, (48)
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Figure 4.5: Resonance condition for Bragg diffraction. Bragg diffraction probability as a function of the resonance
detuning o for a lattice duration of a) T = m/2Qg, b) T = 3n/Qg and c¢) T = 51/2Q.

with 0y the frequency difference between the two laser beams such that g = —kja.

If the atom is not at rest in the laboratory frame of reference, the resonance is shifted by 6
defined as

8 = —2Vinit, - 2 Kya/1, 4.9)

[Viat|
with vjn;t the atom velocity in the laboratory frame of reference.

Experimentally, one can find the resonance condition by keeping 7 constant and varying the
value of 01at = w2 — w1. The resonance corresponds then to the value of 815t = 8¢ for which
the transfer efficiency reaches its maximum value. However, the value of 7 has to be chosen
carefully. The transfer of population as a function of j5¢/6p is compared in Fig. 4.5 for different
duration 7. One can see that for 7 = %, the most efficient transfer is reached for a value of
O1at # 0p. Meaning that one will tend, in order to increase the transfer efficiency at fixed value
of T, to get out of resonance. In order to avoid this misalignment, the resonance calibration has
to be performed at 7 ~ 2%; where the transfer efficiency is always maximum for dj,¢ = 0p and

T

the resonance is thinner than in the case T = 05"

4.2 Beam-splitter calibration with the BEC

In this Section, the characterisation of the beam-splitter lattice, responsible for both atomic mirror
and 50:50 beam-splitter, is described. The calibration is first performed on the condensate. This
allows us to calibrate the beam-splitter on a coherent source with a small momentum spread
and to later apply our results to the atomic pairs.

The beam-splitter lattice is formed by two laser beams with a flat intensity profile of radius
1.0 mm, wavelength equal to Ap = 1083 nm and relative angle between the two beams 6 = 32.5 °,
The periodicity in momentum space of the lattice is equal to kpms/2 = sin (0/2) ‘% 2. The two-

Zkpms corresponds to the momentum given to the atoms after diffraction.
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Figure 4.6: Representation of the atomic transition 2°S; —2°Pq used for the atomic beam-splitter. The energetic
difference between the sublevels m; = +1 is due to a magnetic bias field of 3 G. This corresponds to an energy difference of
i x 2m x 8.2 MHz.

photon Rabi frequency is equal to [153]

2 2
B E B r Ic'dﬂ,(}

OR=5"= A"

where the detuning A is equal to 2t X 600 MHz and dg o = % corresponds to the dipole matrix

element associated to the transition 23S; — 2°P, represented in Fig. 4.6.

For the 600 MHz detuning, the effective spontaneous rate ['sy_is equal to 0.17 ms L. For the
application time of the mirror (100 us) the heating due to spontaneous emission corresponds to

Tirror = 640K
and for the case of the 50-50 beam-splitter duration (50 us) to

Tpms = 32nK.

The resonance condition, according to Eq. (4.9), corresponds then to

ik
g = ——2 = 211 x 13kHz,
2m

for an atom at rest in the laboratory frame of reference.

4.2.1 Geometrical alignment of the beam-splitter

Since the pair creation is performed along the vertical axis, it is important to guarantee that the
beam-splitter lattice is also vertical. The alignment is performed by diffracting the condensate
to several diffraction orders via the application of a very strong lattice for a very short time,
corresponding to the Kapitza-Dirac regime [197]. If the lattice is purely aligned along the
vertical axis, the momentum difference vector between the different orders of diffraction will
only have a non-zero component along the vertical z—axis. This corresponds to several atomic
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clouds separated in momentum space by the quantity kpms along the z—axis and with zero
transverse components. However, if the alignment is not perfect, this means that the lattice has
a small angle with respect to the vertical direction, each diffracted cloud will have a non-zero
momentum component along the x— and/or y— axis. The key advantage of the Kapitza-Dirac
regime is that, since the cloud is diffracted several times, we have access to a high multiple of
the momentum vector given to each atom. Even if one vector components is small, since it is
multiplied several times, we will be able to measure it.

This is represented in the two left panels of Fig. 4.7. We show a 2D momentum distribution
on the xz and yz—plane after strong diffraction of the condensate in the beam-splitter lattice. It
is possible to see five diffracted clouds corresponding to the diffraction orders from -2 to +3. To
avoid saturation of the detector, the Raman transfer efficiency is lowered such that only a small
fraction of the BEC is detected (see more about our Raman transfer in Appendix C). Fig. 4.7a)
and c) correspond to a 2D distribution on the xy—plane of the diffracted peak at +3kpms and
—2kpms, Tespectively. Althoughitis not possible, within our transverse resolution, to identify any
modification along the transverse y—axis, a small shift is visible along the x—axis. To quanﬁfy
this shift, a cut along the x—axis is shown in canvas b) and d). By fitting the distribution with
a Gaussian, we find that the diffracted cloud at +3kppys is centred at 3 X 1072 (1) ky,¢ while the
diffracted cloud at —2kpm is at =4 x 1072 (1) kya¢. This corresponds to a shift along the x—axis of
7% 1072 (2) kiat accumulated over 5 diffraction orders. We thus measure an acquired momentum
along the x—axis of 1.4 x 1072 (3) Kkpat per order of diffraction. This is related to an angle along
the x—axis between the two laser beams forming the lattice

0, = 2sin™! (1.4 x 1072 /2) X % 1/sin(166°/2) = 0.82°.
Both the mirror and the 50:50 beam-splitter correspond to 1st order diffraction and the angle
along the x—axis will have a negligible effect since the accumulate momentum is of the same
order as the resolution of the detector. In this sense, the beam-splitter lattice can be, under first
order diffraction, considered as a 1D vertical lattice.

Since the cloud is diffracted several times, for the case of the Kapitza-Dirac regime, along the
vertical direction and each peak of Fig. 4.7e) corresponds to an integer of ks, it is possible to
measure, very precisely, the value of kpms. By fitting the five diffracted peaks along the vertical
direction we find a value of kyys = 0.550 (5) kyat.

4.2.2 Alignment via Bragg diffraction

As for the case of the pair production lattice, one has to guarantee that the laser beams forming
the beam-splitter lattice overlap on the atomic cloud. Since the wavelength of both beams
is close to the atomic transition, one cannot use the repulsive dipole force, as performed in
Chapter 3 and the alignment is performed through Rabi oscillation measurement. As before,
the Rabi oscillation is obtained by comparing the number of atoms at +kpms with the ones
staying at 0 with a transfer efficiency given by

N (kbms)

eff = m, (410)

where N(k) stands for the number of atoms with momentum k. The oscillation is displayed

in Fig. 4.8 where a maximum transfer of 0.94 (3) is obtained for a two-photon Rabi frequency

equal to 6.0 (1) kHz. This experimental value agrees well with the expected theoretical value of
2Iod?,

O = A =2nx 7kHz,

112



Beam-splitter calibration with the BEC

Averaged det. atom number T T
.00 1.00 2.00 E)
I 1 %% 1
2.0 T T T T T T |
< o4t -
16| —eea=w || e |z
wn
£ 0.0 !
1.2} | - 8 o .
- || —=> 1% 459 ]
0.8 | . e
1 =2
o4 L — e Z 94l J
3 ]
200" W= - = 0.0 00 oa
"
~4 kz (klat)
_0.4L JL J
-_—a || == 3 — ——
oy e
=
-0.8L | 12 ,
.12} TN g
-
; 1 |
_1.6L JL J
BN | |
=
_2-0 1 1 1 1 1 1 0 1 l 1 L
Z05 0.0 05 -05 00 0.5 3 2 1 0 1 2 3
kz (klat) k‘y (klut) kz (klat)

Figure 4.7: Kapitza-Dirac diffraction of the condensate via the beam-splitter optical lattice. Each image corresponds
to an average over 30 identical experimental realisations. Left panels: 2D momentum distribution on the xz and yz—planes of the
atoms after diffraction on the beam-splitter optical lattice. Diffraction of the condensate by the beam-splitter lattice: alignment
along the vertical axis. Right panels: a) 2D momentum distribution on the xy—plane of the diffraction order +3 corresponding
to a momentum along the vertical z—axis of 3 kyys. b) Cut along the x—axis of the 2D momentum distribution of panel a). The
center of the cloud is determined by a Gaussian fit and equals to 3x 1072 (1) k. ¢) 2D momentum distribution on the xy—plane
of the diffraction order —2 corresponding to a momentum along the vertical z—axis of —2 Kpms. d) Cut along the x—axis of the
2D momentum distribution of panel c). The center of the cloud is determined by a Gaussian fit and equals to —4 % 1072 (1) kia.

e) Cut along the z—axis of the diffraction pattern. The transverse integration area is equal to [0.05 X 1[]‘2]2 (2,).

[e]
Q % D e}
0.9 - g) o] (S)
Q Q
» o] ? %0 (o] Y
o0 o o o 0%’ q
? o] g
2 0.6 |
3{5) o o o o @ o
o] d
e 8 » °o %
& o [e]
= o]
o o o
& 0.3 o 9 o © é)
o o o o
o]
o 0o o] o CQ:.
Cbo 8 (o] g
0ol & . © ©
0 400 800 1200
T (us)

Figure 4.8: Optimised two-photon Rabi oscillation of the condensate on the beam-splitter optical lattice. The
lattice is shinned on the atoms and kept for a certain duration . By comparing the populations between the diffracted peak and
the initial cloud as described by Eq. (4.10), we retrieve the following oscillation curve corresponding to a Rabi oscillation. We
used a frequency sweep for one of the laser beams equal to 4.7 kHz [ms in order to compensate the gravity acceleration (blue
circles). The oscillation is fitted by Eq. (4.7) with free parameters Qg and the amplitude transfer probability.
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obtained for a beam intensity of 10 pW/mm?2. We thus conclude that the lattice is well aligned
on the atoms.

The curve of 4.8 gives us two informations. First, that one can coherently transfer the
population between the external states |p—o) and |¢y=y,_) for more than 1 ms after which de-
coherence, mainly coming from spontaneous emission (I's, = 0.17 ms‘l), lowers the transfer
efficiency. And second, it allows us to determine the duration, 7, in order to perform either a
50:50 beam-splitter or a mirror.

4.2.3 Resonance condition in free space

Both the 50:50 beam-splitter and mirror are applied after releasing the atoms from the trapping
potential. In order to stay at resonance with the atoms, one has to place the lattice in an
accelerating frame of reference in order to compensate the shift induced by the gravitational
acceleration. For this purpose a frequency sweep is applied to one of the laser beams. Another
frequency shift comes from the fact that the atoms are immediately transferred, via two-photon
Raman scattering, to the insensitive magnetic field m j= 0. Due to the geometry of the two
lasers beams responsible for the Raman transition a small momentum, kRaman = +0.2 ki, along
the vertical direction is given to the atom (see Appendix C for more details).

These two effects lead to a shift in the Bragg diffraction resonance that needs to be compen-
sated. The condition of resonance can then be written as

ﬁkﬁms ﬁkRam k
+ kpms gt — RamanZbms 411
2m b m ( )

Olat = wp — w1 = 0p = —

with kpmsg = 27 X 5.07 kHz/ms. This means that if the lattice is not placed in the free fall frame
of reference, after 1 ms, the resonance has shifted 27t X 5.07 kHz. Knowing that for the typical
intensity of the beam-splitter lattice the resonance width at t = 37/2Qg is approximatively
equal to 27t X 5kHz, see Fig. 4.9 for instance, one can immediately understand that if the shift
is not compensate one gets, very rapidly, out of resonance.

To experimentally get the temporal evolution of the resonance condition, we probe the
resonant frequency difference ¢ as a function of the time delay, T, between the end of the Raman
transfer and the beam-splitter lattice application (see Fig. 4.10 top panel, red circles). We find,
from the linear fit, that the frequency difference evolves at 4.7 (5) kHz/ms, compatible with the
theoretical prediction of 5.07 kHz/ms. We then test several compensation ratesat3.9 (3) ,4.7 (3)
and 6.6 (3) kHz/ms. For a frequency sweep rate of 4.7 (3) kHz/ms, the resonance is almost
constant over T, this means that one has compensate the shift induced by the gravitational
acceleration >. The effect of the optimised compensation is visible in the Rabi oscillation as
shown in Fig. 4.10 (bottom panel). When the compensation rate is equal to 4.7 kHz/ms, the
oscillation is maintained over { > 1ms (red circles), while without any compensation, the

oscillation vanishes after 200 us (blue circles).

The value of the de tuning at time T = 0 corresponds to the quantity

2
50 — _ﬁkbms _ ﬁkRamankbms
2m m

= -2t % 23.6(3) kHz,

in agreement with the expected result of —27 x 22.7 kHz.

3The difference with respect to the theoretical prediction comes from the fact that, at the time this measurement
was done, we did not have in our experiment a spectrum analyser able to demodulate the frequency ramp. More
recently, this alignment has been repeated and a optimised frequency compensation was obtained for 5.0kHz/ms
in agreement with the theoretical prediction.
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Figure 4.9: Determination of the resonance diffraction condition for the beam-splitter optical lattice. Resonance
condition for the beam-splitter diffraction order +1 (corresponding to qy = —kiy and thus to a diffracted cloud at qo + kiy),
in blue circles, and —1 (qy = +ki), in red circles. The experimental data is fitted by a parabolic function which retrieves the
correct behaviour of the theoretical sinus cardinal function, see Eq. (4.7). The resonance frequency is equal to 2m x 2.8 kHz for
the order —1 and of —2m x 23.6 kHz for the +1 order.
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Figure 4.10: Gravity acceleration compensation for the Bragg diffraction resonance. Upper panel: Displacement of
the resonance for a compensation rate of 0 (red curve), 3.9 (green line), 4.7 (blue line) and 6.6 kHz /ms (orange line). The
theoretical optimal gravity compensation rate is equal to 5.07 kHz/ms in good agreement with our measurement. Bottom panel:
Two-photon Rabi oscillation for the case of an optimised gravity compensation (red circles) and without gravity compensation
(blue circles).

4.2.4 50:50 beam-splitter and mirror stability

The atomic HOM experiment consists in several repetitions of the same experimental procedure
where two atoms are recombined on a 50:50 beam-splitter. One important aspect to ensure is
the stability of the 50:50 beam-splitter as well as the one of the mirror.

For this purpose, a test is done with a BEC weakly transferred to the state m ji= 0 to
avoid detection saturation. We then perform a mirror and 50:50 beam-splitter over 30 different
realisations. The transmission efficiency and reflectance for both situations are estimated and the
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Figure 4.11: Calibration of the beam-splitter transmittance and losses for both mirror and beam-splitter applica-
tions. Left panel: Reproducibility of the 50:50 beam-splitter operation (red histogram) and mirror (blue histogram). Right top
panel: Losses induced by the 50:50 beam-splitter. Right bottom panel: Losses induced by the mirror.

reflectance of each realisation is shown in Fig. 4.11 where each bin corresponds to a reflectance
of one percent,

e For a 50:50 beam-splitter — Qg7 = 7/2 = 50 us —, the distribution is centred around a
reflectance of 0.51 and has a standard deviation of 0.02 (red histograms);

e For the mirror — Qg7 = 7t = 100 us — the reflectivity is centred on 0.93 and the distribution
presents a standard deviation of 0.02 (blue histograms).

We also observe a weak population transfer to higher diffraction orders. These high orders
diffractions represent losses in our beam-splitter operations. To quantitatively measure them,
the populations present in non-resonant diffraction orders are compared to the ones present in
the 0 and +1. The losses correspond to

N(lkl > 2kbms)
N(0) + N(2kpms) + N (k| > 2kpms)

Losses =

and are plotted in the two right panels of Fig. 4.11. The losses associated with the mirror have
an average value of 0.03 and the distribution over 30 realisations presents a standard deviation
of 0.01. For the beam-splitter the losses have an average value of 0.05 and a standard deviation
of 0.01. However, as shown in detail in Appendix D, these small imperfections have negligible
impact on the HOM result.

4.3 Beam-splitter used on the atomic pairs

With the first calibrations of the beam-splitter done so far on the condensate, let us now adjust
them to the atomic beams.

Resonance condition for the atomic pairs

Since the pairs are moving in the laboratory frame of reference, the frequency difference between
the two laser beams forming the beam-splitter lattice has to be adjusted to the momentum
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Figure 4.12: Calibration of the beam-splitter resonance on the atomic pairs. From top to bottom the frequency
difference corresponds to: a) b1z = 211 % 85 kHz, b) 74 kHz, c) 66 kHz, d) 57 kHz. The blue and red boxes represent the initial
positions of beam a and b. The arrows in orange indicate the diffracted classes of momenta. The difference between the two
is always equal to Akpy,s = 0.55 kyy and corresponds to the momentum periodicity of the beam-splitter lattice. The diffraction
always occurs from lower to higher momentum as indicated by the direction of the black arrow.

difference of atomic beams a and b. Since the beam-splitter exchanges the two atomic beams,
the condition of resonance for beam a4, with momentum k,, to be transferred into k, + kpms is the
same than the one of transferring beam b, with momentum k;, into kj — kpms. From Eq. (4.11)
and knowing that beam a has an initial momentum k, = 0.73 (1) kj; along the vertical direction
(beam b corresponds to k = 1.27 (2) kjat = k; + kpms), we find that beam a is at resonance for a
frequency different equal to 6p = 27t x 58 kHz.

Contrary to what happens with the condensate, where the diffracted population is easily
measurable, for the atomic pairs the situation is more complicated since the diffraction of beam
a is going to superimpose with beam b. Thus, by measuring the transfer efficiency, one can
never reach zero nor one, since both external states have non-zero popu]ation at the beginning
of the interaction.

The solution is to take advantage of the background population between beams a and b
seen in Section 3.3. One can then look at the population transfer to the order +1 for atoms
with momentum equal or lower than k;, but higher than k,, such that they diffract to classes of
momenta where the populations are zero before application of the beam-splitter.
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Figure 4.13: Effect of the beam-splitter application on the variance of the difference between the atomic pairs.
Variance as a function of the analysed zone for the atomic pairs after application of a mirror (red curve) or directly after
producing the pairs (blue curve). The application of the mirror leads to a small increase of the fluctuations.

This is shown in Fig. 4.12 where the effect of the beam-splitter lattice, calibrated such that it
acts as a mirror, on the atomic distribution is represented as a function of the laser detuning 0t
The blue and red shaded area indicate the initial central position of beam g and b, respectively.
The orange arrows show the diffracted population, with the arrow on the left indicating the
atoms at resonance and the right one the transferred population.

Fig. 4.12a) corresponds to the situation for which the lattice has a frequency difference of
27t X 84 kHz, almost at resonance with beam b. As expected for the case of a 7t pulse, the atomic
beam b has a central hole and a diffracted cloud is visible at kj, + kpms. The half-width of the
diffracted peak at 1/ \/e , as a function of k, is equal to 0.06 ki, and corresponds to the resonance
width of the mirror in momentum space. Canvas b) corresponds to &9 = 21t X 74 kHz which,
theoretically, is resonant with k = 1.066 kj,¢ and a hole is visible around this value. The third
canvas corresponds to 89 = 27 X 66 kHz, the diffracted cloud is no longer distinguishable from
beam b, since the transferred atoms are expected at 1.45ky,; and overlap with those of beam b.
For the same reason, the transfer efficiency does not reach a value of 1, since the two momenta
have anon-vanishing initial population. Finally, the last canvas corresponds to 6y = 21t x57 kHz.
There are neither hole nor diffracted cloud meaning that beam a and b are exchanged. This is
in good agreement with the expected result of 0.58 kiat.

4.4 Noise induced by the beam-splitter on the atomic beams

In this section, we would like to see if the beam-splitter lattice adds noise to the population
difference between the atomic beams a and b. One can, for example, compare the variance of the
population difference without mirror to the situation in which the atomic beams are exchanged
via the application of an atomic mirror.

First we create pairs of atoms in momentum space then, the atoms are transferred to the
mj = 0 state via two-photon Raman scattering done in 300 us after switching off the dipole
trap. The atomic mirror is then immediately applied, and the populations between beam 2 and
b are exchanged with an efficiency of 93%. The variance of the difference is then measured
as described in Subsection 3.4.2. The normalised variance V presents a minimum when both
zones are centred on top of the atomic beams as seen in Fig. 4.13. Both the obtained results with
(red points) or without the mirror (blue points) are plotted in the same figure.

The measured normalised variance of the difference after exchanging the two atomic beams
is equal to 0.80(5), while the minimum registered without mirror is equal to 0.75(5). This
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difference is negligible but can be partially explained by the value of the mirror reflectivity of
93 %. This corresponds to a reduction of the detection efficiency that can be written as

\/E:\/Ex\/l?.

Assuming that the real variance of the difference is zero 4 the detected variance is then given by
Videt. = 1 =17 = 0.77 (see Subsection 3.4.2) and allows one to partially understand the measured
difference.

The beam-splitter lattice appears to be rather noiseless and can be safely used to coherently
manipulate the atomic pairs.

4.5 Phase stability of the beam-splitter

Although for the HOM experiment the phase induced by the 50:50 beam-splitter on the atoms
does not modify the experimental result (see Chapter 1), it is interesting to look at its stability for
possible future applications. The first tests were performed by applying twice the beam-splitter
on the BEC in order to produce two clouds of equal momenta. Those clouds are then overlapping
on the detector after time-of-flight due to their expansion. This leads to an interference pattern
whose central position depends on the relative phase of the two beam-splitter pulses [198].

After releasing the BEC from the optical trap, the beam-splitter is shinned once and two
diffracted clouds with momenta 0.55 kj,¢ and 1.10kj,; are produced corresponding to first and
second order Bragg diffraction. One millisecond later, the beam-splitter is again applied on the
atomic beams but this time only first order diffraction from the peak at 0.55kj, occurs. After
the second pulse, two clouds of atoms with identical velocities propagate in space. This is
schematically represented in Fig. 4.14a) and b), where the blue line corresponds to the trajectory
of the cloud with momentum 1.10 kj,; and the red one corresponds to the trajectory of the other
cloud that had been first diffracted at 0.55k;,; and afterwards into 1.10 ky. For simplicity, let
us call the blue cloud 1 and the red one 2.

In order to observe interferences, the two clouds need to overlap after time-of-flight. Their
spatial separation after the application of the last beam-splitter pulse corresponds to

1
Zl(t) =Zp+ 2'me5t - ngz ’

and

1
ZZ&) =20 + 20pmst — VpmsT — ng2 ’

with 7 the time difference between the two beam-splitter pulses.

The two clouds fall on the MCP and their respective arrival time leads to the equality 5

1
Eg (ti - t%) + vams (t2 - tl) = UbmsT -

Consider the solution in which t, = t; + At with At corresponding to a small time difference
when compared to the time-of-flight of t;. This leads to the expression

—Qt1At + 20pms At = UpeT,

“The detection efficiency 1) has been estimated to 25% through the variance of the difference equal to 0.75 (5)
assuming that the real variance is equal to zero.

°It is important to note that we are only looking at the arrival time of the distribution center. Both clouds have a
certain spread in momentum space which is going to be translated in an arrival time width.
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Figure 4.14: Representation of the interference between two condensates. a) At scale representation of the trajectories
of the two atomic clouds for a time interval between the two Bragg pulses of 5ms in the laboratory frame of reference. b)
Schematic representation of the overlap of the two clouds during the time-of-flight. The size of the condensate is not at scale.
The two clouds are represented in red and blue. Their overlap corresponds to the interference zone.

where since gt1 > 20pms and 7 = 1 ms

_ UbmsT
gh

At =

=-17us.

Knowing that the arrival time of the condensate corresponds to a distribution with half-width
at1/ \/f? approximatively equal to 400 us, one can conclude that for T = 1 ms the two clouds are
still well overlapped. It would be necessary to wait between the two beam-splitter pulses for
more than 7 = 27 ms in order to substantially reduce their spatial overlap.

Since the two clouds are overlapping after ﬁme-of-ﬂight, one can now determine the relative
phase between both clouds accumulated during these trajectories in order to estimate the inter-
ference pattern. In the free-fall frame of reference, the relative phase difference is then obtained
through the propagation operator in free space [115] and by adding the phases imprinted by
the beam-splitter lattice on the atoms, @1 and @, (see Appendix D for more details). The phase
difference is then equal to

2 2
le n122

PGt o TP

= %(z‘;—zg)wﬂ'p]—(pz
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with 2o = 21 — UpmsT and UpmsT < 21,

MUbmsT
A¢p = 2;;5 71 + Ag,

where Ap = @1 — 7.

After time-of-flight, cloud 1 corresponds to a distribution of atoms centred on t; = 321 ms
and with an half-width of 400 us. An atom with arrival time difference At, respectively to the
center of the distribution, is then, in the laboratory frame of reference, described by

1
z1(to + At) = 20 + 20pms(to + At) — 58 (to + At .

In first order in At, one can write
gAt
z1(tg + At) = const. + ?mvbms'r ,

MUpmsT vamfo—lﬂgf%

with the constant term corresponding to —; f — 5y, MVbmsT-

The phase difference can thus finally be written as

GAEM UL, T

A¢ = Ag + const. — - ,

which for T =1 ms corresponds to a fringe spacing teringe = = 200 ps.

1
kbmsg'r
Suppose that both atomic wave-packets are described by two Gaussian functions, with same
half-width at 1/ e’ equal to o such that

—(to — At)?
At) = _,
fi(at) = exp =2
—(to — dT — At)?
fa(Af) = exp 52 ,
where dT = —% accounts for the arriving time difference between the two clouds. Then after

time-of-flight, if the two clouds overlap on the detector inside their correlation length, ® their
amplitudes sum and one recover the total intensity. The phase difference accumulated by the
two different clouds induces a periodic distribution of the number of atoms (atomic intensity)
on the arrival time distribution described by

Na(AD) = |fi(At) + an[
= 2cos (A) f1(At) X fo(At) + |fu( At)f +| fz(Af)‘2

(to— AD?  (tg— dT — At)?
= 2cos (Arp) exp (— 0 o2 0 ) )
2 2
+exp (—%;72&)) +exp (—W) (4.12)

®For a pure condensate, the correlation length is equivalent to the size of the cloud. However, during the
expansion of the cloud interactions play a very important role and the density is not the same along the entire cloud
and so, the phase coherence along the cloud can change. Here, the number of atoms in each cloud is reduced in
order to avoid the effect of interactions as well as the saturation of the detector.
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Figure 4.15: Interference between two clouds from the condensate. Two clouds of atoms are extracted from the condensate
with momentum ofk = 1.01kpy,s. After time-of-flight, they recombine on the MCP and interfere leading to the following patterns.
a) Corresponds to an average over 5 identical experimental realisations and b) corresponds to an average over 87 realisations.
Since the interference pattern is still visible after averaging over 87 repetitions, one can conclude that the phase fluctuation is
small.

with periodicity kpmsgT.

The interference pattern position is then going to depend on the phase difference between the
two imprinted terms @1 and @». If from one experimental realisation to another Ag fluctuates,
the central position of the interference moves, and, after averaging over several realisations, the
interference pattern washes out.

Experimentally, we detect density fringes on the arrival time distribution with a periodicity
of 200 us as expected. This can be seen in Fig. 4.15. In Fig. 4.15a), an average over 5 realisations
is performed, while in Fig. 4.15b) the distribution corresponds to 87 realisations. One can see
that the fringes never reach a contrast of one which we attribute to an imbalanced populations
between the two atomic clouds. However, the fact that after 87 realisations, the same contrast
is recovered indicates that the relative phase of the interferometric scheme does not fluctuate
much. This is a proof of a relatively stable phase difference between the two laser beams
forming the beam-splitter lattice.

One can also estimate how sensitive is the contrast of the interference pattern on the fluc-
tuation of the imprinted phase difference Ag. For this purpose, we consider the theoretical
prediction of two equally populated clouds produced with 1ms difference and detected 321 ms
later, represented in Fig. 4.16. If the phase is perfectly stable, Fig. 4.15a), the interference signal
has a contrast of 1 and periodicity of 200 us asexpected. Fig. 4.15b) corresponds to an integration
over the phase difference Ap performed between —m/4 to 11/4, which accounts for imprinted
phase difference fluctuations between —m/4 to 71/4. The contrast lowers slightly, meaning, that
even if the relative phase between the two beam-splitter pulses vary over 11/4, the interference
contrast is almost unaffected. To modify it significantly, the fluctuations need to vary over
+37/4 for which the interference pattern washes out as shown in Fig. 4.16¢).

With these experimental tests, one can guarantee that the phase difference fluctuation is smaller
than 37t/4 . This test is only a first qualitative estimation of the phase fluctuations in our system.
Other tests are currently being carried on in order to get a more quantitative estimation of those
fluctuations.

It is also important to note that the current study is only sensitive to the phase difference
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Figure 4.16: Effect of phase fluctuations on condensate interference. Predicted interference pattern between two cloud
of atoms from the condensate with equals population and with relative phase fluctuations of a) +1/8; b) +1/4, c) +3m/4.

between the two pulses and does not give any information about the absolute phase stability
of the beam-splitter. For EPR-like experiment, for example, the absolute phase stability can be
necessary as proposed in Ref. [199].

4.6 Autocorrelation measurement via a 50:50 beam-splitter

As said previously, our detection mechanism is very similar to a photo-multiplier where each
atom is converted into an electronic signal and, as so, the same quantum detection theory [95,
200, 201], can be applied. The main advantage of our detector is that its dead time, estimated
around 20 ns, as well as its temporal resolution, 300 ns, are smaller than the typical arriving time
difference between two atoms from the same mode, that is usually on the order of 1 us. This
implies that one can, without splitting the incoming beam, do an autocorrelation measurement
as shown in Section 3.4.1.

However in optics, the arrival time difference between two photons from the same source
lays below the time resolution of the photo-diodes and it is impossible to directly measure
the autocorrelation function. The solution is then to split the incoming beam in two through
a 50:50 beam-splitter. Then, by detecting the number of photons on the two output ports of
the 50:50 beam-splitter and performing a comparison between the two signals one can recover
the normalised autocorrelation function. Since we also have an atomic beam-splitter, we can
compare our direct measurement of the autocorrelation function, to the usual method used in
quantum optics.

The normalised autocorrelation is given by

@ _ (b'b'Db)

o (bty - (bth)
where (btH1bb) = (ny, (7 — 1)). This normal ordering average comes naturally from the fact that
when n particles are at play, if one detects 1 particle on one side of the 50:50 beam-splitter, n—1

particles are detected on the other side [202]. As in Chapter 1, the output ports field operators
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Figure 4.17: Autocorrelation measurement on beam b via application of a 50:50 beam-splitter. The autocorrelation
is obtained after splitting beam b in two via a 50:50 beam-splitter application. Left panel: 2D autocorrelation function
representation as a function of the momenta difference between beam ky, and the diffracted beam ky + Kpms, on longitudinal z—axis
Ak, and transverse direction Ak, . Right panels: a) Projection of the autocorrelation function on the transverse direction x (the
same behaviour is recovered for the y—axis.). The blue line represents a Gaussian fit from which the amplitude and width are
extracted. The integration along the other two axis correspond to an integration area of [ L, x L] = [2x 1072 x 1x 102 ] K2,
b) Projection of the autocorrelation function on the vertical z—axis. The blue line represents a Gaussian fit from which the

amplitude and width are extracted. The integration along the two others axis correspond to [.;Cx X .£y] =[2x 1072 ]2 K,

(c and d) can be written as
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with O the vacuum operator and, consequently, the correlation between ports corresponds to

(etdted) _ (b*bthb)y
@ey - (dtdy  (bthy - (bthy

In order to compare these two methods, we experimentally perform a 50:50 atomic mirror
on beam b. The cross-correlation between the number of atoms present in N(k;) with the ones at
N(kp + kpms) is computed, by the same method as in Section 3.4.1. Fig. 4.17 shows the obtained
correlation function on the yz—plane as well as the integrated projections on the x and z—axis.

By fitting the curves with an empirical Gaussian function, we retrieve the half-width at
1/4/e’ of the obtained autocorrelation o, = 8.2 X 1072 (1) kuat along the vertical z—axis and
0, =6%x1072(1) kat along the transverse directions. The amplitude of the correlation is equal
to 1.6 (1) kit below the measured autocorrelation value of beam b in Section 3.4, that was equal
to 2.00 (5) . The reason for this difference is still unclear at the moment.

The width of the correlation is, in very good agreement with the direct measurement, allowing
us to conclude that the beam-splitter momentum periodicity is very well defined. This means
that an atom with momentum k is diffracted into k + kbms *+ Akpms With Akpms much smaller than
the autocorrelation function width, o, = 8.2 X 1073 (1) kyas.
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4.7 Conclusion

In this Chapter, the atomic beam-splitter based on Bragg diffraction has been intensively dis-
cussed. The geometrical alignment and calibration of the beam-splitter, as well as the stability of
both reflectance and transmittance were discussed. Preliminary calibrations of the phase stabil-
ity of the beam-splitter via BEC interference has been presented opening the way to promising
future experiments.

Perspectives, the adiabatic passage

The actual calibration of the beam-splitter shows that it can be directly used for the realisation
of the HOM experiment. However, some limitations are still present. Since we are interested
in dealing with the entire atomic beam, this implies a broad resonance condition. A direct
consequence, when a square pulse is used, is a non-vanishing probability to diffract the cloud
to higher diffraction orders. This translates into losses for both the 50:50 beam-splitter and
mirror, as discussed in Section 4.2, that have been estimated to be of a few percent and, in this
sense, are completely negligible (see discussion in Appendix D).

However, the use of a square pulse can also lead to a non-uniform value of the reflectivity
over the entire momentum spread of the cloud as seen in Section 4.1. One possible solution
for this problem would be to use adiabatic pulses in analogy with the technology developed
in RMN (see for instance Ref. [203] and Ref. [204] for more details). The idea is then, through
a combination of specific intensities, frequencies and phases, to transfer the population of
the atomic beams with equal efficiency inside a tunable momentum width, see Ref. [205] for
instance. This project is currently being developed in our team.

Along the past three chapters, we reported the different improvements to the existing metastable
helium experiment in order to accomplish the HOM experiment. The three fundamental blocks
that have been discussed at this point of the manuscript correspond to

¢ asingle atom detector;

e a source of atomic pairs;

¢ a coherent atomic 50:50 beam-splitter and mirror.
We have shown that this three blocks are well under control in our experiment and we are now
ready to finally discuss the atomic Hong-Ou-Mandel experiment.
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The whole is greater than the sum of its
parts.

Aristotle

As discussed in Chapter 1, in order to attain the HOM experiment, four fundamental exper-
imental blocks are necessary:

e asingle atom detector — the MCP detector brieﬂy discussed in Subsection 2.1.2. This is
the atomic equivalent of a photomultiplier in optics. It allows us to extract both second
order auto- and cross- correlation;



Atomic Hong—Ou—Mandel experiment

e a source of atomic pairs — the pairs are produced via dynamical instabilities from a con-
densate placed on a moving lattice, as described in Section 3.2 and Section 3.3. The pairs
show stronger-than-classical correlations, as demonstrated in Section 3.4. The averaged
number of atoms also needs to be lower than 1, as discussed in Section 1.2;

e a coherent atomic 50:50 beam-splitter and mirror — performed via Bragg diffraction on a
lattice designated beam-splitter lattice as discussed in Chapter 4;

e and a filtering procedure in order to guarantee the indistinguishability between particles
— performed by filtering the atom source after the beam-splitter via the 3D reconstruction
in momentum space of our detector. For a lossless beam-splitter it is the equivalent of an
atomic pinhole. This will be developed in Section 5.1.

This chapter is organised as follow. In Section 5.1 the filtering method adopted in the
experiment will be discussed and the procedure to detect the HOM effect pointed out. The
experimental protocol to accomplish the two-particle interferometer will be presented in Sec-
tion 5.2. The analysis of the interferometric effect will be discussed in Section 5.3, where we
identify a decrease of the cross-correlation between two output ports as a function of the overlap
between the two atomic beams. The obtained result allows us to conclude that the dip cannot
be explained classically. The comparison with the theoretical expected visibility will be devel-
oped in Section 5.4 and the expected dip width in Section 5.5. In Section 5.6, the coalescence
effect, corresponding to the increased probability of detecting two particles in one of the two
output ports, is discussed and compared to the destructive interference result. Linked to both
quantities is the variance of the difference of population that can also be used in order to probe
the interference behaviour, as shown in Section 5.7. Finally, the role of particle interactions will
be briefly discussed in Section 5.8 closing the analysis of the two-particle interference effect.

51 HOM effect: how to measure?

The HOM effect corresponds to a situation where two photons, with undefined relative phases,
are plugged at the input ports of a 50:50 beam-splitter. If the two photons are indistinguishable
the coincidence count between the two output ports of the beam-splitter vanishes, unlike what
one would expect for classical particles or waves. One can measure this result in two different
ways, either by focusing on the coalescence effect of the out-coming state [79]

[V)out = 10c, 2a) +12¢, 0a),

that is, the increased probability of detecting two particles in one of the two output ports, or by
looking at the reduction of the coincidence counts between the two output ports. In quantum
optics experiments, the HOM effect is often probed via the reduction of coincidence counts. In
this situation, two photodiodes at the output ports of the 50:50 beam-splitter, c and d, detect the
out coming photons and a coincidence count is performed between the two. The coincidence
count corresponds to the probability of detecting one photon on a time interval  + At in one of
the output ports knowing that another photon has been detected at time ¢ at the other. When
the photons are indistinguishable this coincidence count reaches zero but, on the other hand, if
the photons are distinguishable, the coincidence count has a finite, non-zero, value.

5.1.1 How to tune distinguishability?

Distinguishability between particles can either be experimentally achieved with a change in the
optical paths [54, 206] or phase difference [77]. In the 1987 experiment of Hong, Ou and Mandel,
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Figure 5.1: Schematic representation of the 1987’s HOM experiment. Two photons produced via parametric down-
conversion are plugged into a 50:50 beam-splitter, after passing through a frequency and spatial filter. Two photodiodes register
the number of detected photons on both output ports. A coincidence count is performed afterwards. Figure copied from Ref. [54].

b)

C) d)

Figure 5.2: Classical scenarios for two incoming particles. Schematic representation of the four possible cases.The blue
arrows represent the arriving particles beams on a 50:50 beam-splitter. Case: a) both particles are reflected; b) both transmit ted;
c) and d) one particle is reflected and the other one transmit ted.

the optical path was tuned by changing the position of the beam-splitter. If the paths of the
photons are different, they do not overlap on the beam-splitter and it is possible to distinguish
them. On the other hand, if the photons overlap, below the coherence length of the photon
wavepacket, the particle’s paths are indistinguishable and the coincidence count decreases to
zero. The original experimental set-up is schematically represented in Fig. 5.1 [54]. The source
corresponds to a pair of photons produced via parametric down-conversion. Since this is a
multimode source, a filter is applied in order to select both the spatial and temporal modes. The
two photons travel apart from each other until they reach the mirrors M1, M2 that recombine
the beams on a 50:50 beam-splitter. The photons are then either transmitted or reflected as
schematically represented in Fig. 5.2. Two photodiodes placed at each exit of the beam-splitter
record the number of photons per port. When two photons exit coincidently the beam-splitter
through different ports, a coincidence count is recovered. By changing the position of the
beam-splitter and counting the number of coincidences, one retrieves the celebrated HOM-dip
where the minimum corresponds to the case of indistinguishable paths and the background to
distinguishable paths as shown in Fig. 5.3.

Adaptation to the case of atoms

The beam-splitter, in our case, acts on momentum space. By changing the application time of the
beam-splitter, we can tune the distinguishability of the two atomicbeams. The indistinguishable

131



Atomic Hong—Ou—Mandel experiment

1000

800 -

600

400 -

200

No. of coincidence counts in 10 min.

I 1 ! i ' ] ! N 1
260 280 300 320 340 360
Position of beam splitter {,cm)

Figure 5.3: 1987 HOM-dip. It is possible to see that the coincidence count goes to zero when the position of the beam-splitter
is such that the two photons are indistinguishable. Since their speed is equal to the speed of light, the spatial width of the dip
gives an indirect information on the temporal correlation length of the photons. Figure copied from Ref. [54].

case corresponds to the situation in which the two atoms overlap on the 50:50 beam-splitter
and one cannot say which one has been transmitted or reflected, as represented in Fig. 5.4a). In
the case of a bad temporal overlap between the two beams, due to an application time of the
beam-splitter such that the atoms do not overlap, see Fig. 5.4b), one gets the distinguishable
case. The output ports c and d correspond to the two atomic beams after the 50:50 beam-splitter.
Their momenta is equal to k. and k4, with k. = k,; and k; = kp, which leads to different arrival
times on the detector. With the temporal resolution of the detector being shorter than the time
difference between the two correlated atoms, one can directly measure their cross-correlations
and extract the coincidence count. The HOM experiment consists then to measure the cross-
correlation between the two clouds c and d as a function of the 50:50 beam-splitter application
time, £,.

Knowing the initial speed of the two clouds and the time at which the atomic mirror has been
applied (t), one can determine the application time of the 50:50 beam-splitter, t;, corresponding
to the indistinguishable situation. Consider that beam a has an initial speed v, and beam ba
speed vy, along the vertical direction. In the laboratory frame of reference, the position of the
two clouds corresponds to

1
za:z()+vat—§gt2,

1 2
Zb:Zg+Ubf—§gf .

After a time t,,, the position difference between both clouds along z is equal to Az = (v, — vp)t,,.
At this moment the mirror is applied and the velocities are exchanged. The position difference
between the two clouds is then equal to

Az = (vg — vp)tm — (Vg — Up)(t — tm).

If the 50:50 beam-splitter is applied at ts = 2t;;, then Az = 0 and the two atomic beams overlap.
This corresponds to 7 = ts — ty, = tm — to where, for simplicity, we will consider fp = 0. On
the other hand, if the atoms do not overlap at the moment when the beam-splitter is shinned
(ts # 2t,,), then the reflection of beam a is different than the transmission of beam b and the
paths are made distinguishable, see Fig. 5.4.
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3=

b)

Figure 5.4: Schematic representation of two-particles interference. a) Beam-splitter application in the case of indistin-
guishable particles. b) Beam-splitter application in the case of distinguishable particles.

Figure 5.5: Schematic representation of multimode two-particles interference. Several modes are outcoming from the
initial source, mode a correlated with b, a’ with b’ and a” with b"'. The mirror and beam-splitter are calibrated such that a and
b overlap on the beam-splitter. This implies that mode a’ overlap with mode b" and a' withV'.

In contrast to the experiment of Hong, Ou and Mandel in which the beam-splitter position
defines the distinguishability of the particles, in our case, since the atomic beam-splitter is
performed in momentum space, it is the application time of the 50:50 beam-splitter that defines
it.

5.1.2 Filtering method: 3D detection and noiseless beam-splitter

Similar to the photonic case, our atomic source is not single mode but multimode, as discussed
in Section 3.4. This means that each atomic beam corresponds to several modes, each one
correlated to its symmetric in the other beam. Due to phase-matching conditions, the two
modes have to verify the momentum condition k, + k, = 2kja¢ + 2kp as discussed in Section 3.2.
At time {,, the two atomic beams are swapped. This means that an atom with initial momentum
k. has a probability of 50% to be diffracted into k; + kpms. This is also valid for beam b with
momentum given by k, — kpms after the 50:50 beam-splitter. In order to exchange a pair of
correlated atoms one has to verify both

lky — ka — koms| < 0k (5.1a)
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and

lka + kp — 2kiat — 2ko| < Ok, (5.1b)

where 6k accounts for the mode size in momentum space. Only the atoms with momenta such
that both conditions are verified will correspond to a perfect indistinguishable case. Those that
are exchanged with atoms from another mode will always be distinguishable.

This is schematically shown in Fig. 5.5 where two atomic pairs corresponding to particles
{a’, b'} and {a", b"'} are produced, with

ky — ko = kpms — Ok
and
kyr — kgr = kpms + Ok,
where
kbms = kp — ka.

In this scenario, ' and b’ are correlated as well as @’ and b”, but no correlation exists between
a” and b’ or a’ and b”. This corresponds to atoms with momenta vector difference

(kyr — k) — (kpy — k) = 26k > 0

where o, represents the cross-correlation function width. In our experimental realisation, both
mirror and 50:50 beam-splitter have resonances sufficiently wide in order to effectively swap
the entire beams. Thus, the situation discussed above needs to be considered.

In order to obtain a maximum HOM-dip visibility, it is necessary to filter out the distin-
guishable cases. In Fig. 5.5 this corresponds to neglect the contribution of 4, b"” and a”,V’. In
optics, this is easily done by placing narrow-band interference filters just before the detectors
and pinholes in the optical paths [54, 206]. With atoms this is more demanding. One could
imagine an equivalent process via selective Bragg diffraction. However, this technique can only
perform selections along the axis of the beam-splitter lattice (z—axis) and no selection would be
performed transversally. The solution, for our experiment, relies on our 3D detector resolution.

Since we are able to reconstruct the velocity vector in all three directions of each atom,
one can select those that are recombined with their partner. Experimentally, this is simply
performed by reducing the integration volume around the two momenta of interest k. = k; and
ks = ky. By reducing the bandwidth of the selection, one can recover a two-mode configuration.
It is, however, very important to select the right momenta k. and k;. For this purpose we
adjust the atomic beam production in order to match, as close as possible, the beam-splitter
lattice periodicity kpms. In this sense, we guarantee that the population maxima correspond to a
recombined pair as schematically represented in Fig. 5.6. Itis important to note that this filtering
technique is only possible if the beam-splitter transfer is very well defined in momentum space,
which we have proved to be true in Chapter 4, otherwise each atom is arbitrarily recombined
with another. If the uncertainty is greater than the correlation length, no post-filtering can be
performed since several different modes would have been mixed.

Our filtering method consists then to reduce the volume of inte gration, around the central zones
of analysis, until a maximum visibility is obtained as schematically shown in Fig. 5.7. This is
similar to the detection mode techniques used in quantum optics [207-209].
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Figure 5.6: Schematic representation
of the HOM experiment with mode rep-
- resentation. Description from top to bot-
‘UL tom. The atomic beams are formed of sev-

eral modes. Each mode is represented by

a different color and the correlated mode in
the other beam is represented with the same
colour. The mirror, corresponding to a Bragg
beam b beam a diffraction process,, Jeads to a translation of
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Figure 5.7: Schematic representation of the
mode selection performed in our experiment.
Asexplained in Fig. 5.6 only the center of the distri-
bution corresponds to an overlap between identical
Partial modes. By performing a selection in momentum

™ indistinguishable case space, corresponding to the volume of our integra-
tion, one can then evolve from a petfect indistin-
guishable situation (only one mode inside the inte-
gration volume) or mixed situation between indis-
tinguishable and distinguishable cases.

Distinguishable

A different approach is, however, suggested in Ref. [85]. In this article, instead of varying the
application time fs, the momenta under analysis {k., k;} are tuned. This allows one to pass from
a distinguishable case, for example in Fig. 5.5 {k, k;’}, to an indistinguishable scenario when
looking at {ks, kp}. However, this analysis can only be performed in a situation where 7 is such
that an indistinguishable case exists. In order words, one will inevitably have to scan 7 in order
to find the overlap between the two atomic beams. Moreover, the populations between the
distinguishable and indistinguishable cases can be different since they correspond to different
classes of momenta in the atomic distribution. This leads to a modification of the HOM-dip
shape if the cross-correlation is not normalised. For all these reasons, we have decided to not
use this method of analysis for our HOM experiment.

The distinguishability of our atomic beams is done by changing the application time of the
beam-splitter, ;. A selection in k is performed through the MCP resolution in order to filter the
modes in momentum space and to maximise the visibility of the HOM-dip.

135



Atomic Hong—Ou—Mandel experiment

to tm . ts

= 1 T T = T T 1 ]
Ey
R
o

0 1 I I I
. 120 T T T T T T T T ]
=
E 8t 1
30 4 1
[v 9

0 1 1 1 1
. 100 L T T T T T T T T ]

|

= 50| | -
3 f
< |

0 I I 1 I I I

1F T T T T T T T T .
=
ﬂ%

0 1 1 1 1 L 1 1

1[ T T T T T T T T ]
[p]
=
m

0

0 200 400 600 800 1000 1200 1400 1600 1800
Time (p s)

Figure 5.8: Experimental sequence for the HOM experiment. Inside the dipole trap (power indicated in red), the lattice
is adiabatically switched on, by ramping both its depth (blue sky shaded area) and detuning (green shaded area) in 350 us.
The BEC is then, in the lattice frame of reference, moving at a speed vy = —0.57 v, and start to produce atomic pairs due to
dynamical instabilities. At time t,, the first atoms forming the pairs start to be produced 50 us before the lattice is adiabatically
switched off. The atoms are then kept in the dipole trap for 200 us. At this point the optical dipole trap (ODT) is switched off
and atoms are released. They are then transferred to the insensitive sub-level mj_o in 300 ps via stimulated two-photon Raman
transfer. The atomic mirror is then shinned on the atoms via a Bragg pulse of 100 us length (dark blue shaded area) at time t,,.
A second pulse is performed after a time T = t, — t,, corresponding to the application of the 50:50 beam-splitter.

5.2 HOM: experimental sequence

The experimental sequence in order to achieve the atomic HOM experiment is represented in
Fig. 5.8. With the atoms still trapped in the optical dipole trap, the lattice is adiabatically turned
on, in two steps (power and frequency), as explained in Subsection 3.3.2. The lattice speed is set
to —0.57 vy and the lattice is kept on for 350 ps. L. The lattice is then switched off adiabatically
and the atoms are kept in the dipole trap for 200 us in order to avoid distortion of the transverse
profi]e during the expansion, see Subsection 3.3.4. The optical trap is afterwards rapidly
switched off and the atoms immediately transferred to the insensitive magnetic field state
mj = 0 via stimulated two-photon Raman scattering in 300 us (see more details in Appendix C).
At this moment, the atoms have already been travelling away from each other for at least 500 us
and the distance between the two atomic beams, along the vertical direction, is equal to 25 um.

The mirror is then applied (corresponds to t,, in Fig. 5.8) in order to invert the velocities of
beam a and b, via Bragg diffraction with an efficiency of 93 (2) %. The indistinguishable case
corresponds then to a time f; such that ts — t;; = ty, — to estimated at t; — t,, =~ 550 us. The

1012 = 9.3cm/s as defined in Section 3.3. We estimate that the first atoms are produced approximatively 300 us
(corresponding to to, see Fig. 5.8) after switching on the lattice.
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Figure 5.9: Schematic representation of the atomic HOM experiment. a) The time diagram shows the evolution of the
atomic pairs along the vertical axis (blue and red lines). Between ty and t, t,, and t,, and after t;, the atoms move under the
influence of gravity (drawing not to scale). At t,,, the twin atom velocities are swapped using Bragg diffraction on an optical
lattice. At time ts, when the atomic trajectories cross again, the same lattice is applied for half the amount of time in order to
realise a beam-splitter. b) In the centre-of-mass frame of reference, the trajectories of the atoms resemble those of the photons in
the HOM experiment. A joint detection arises either when both atoms are transmitted through the beam-slitter (upper panel) or
when both are reflected (lower panel). If the two particles are indistinguishable, these processes end in the same final quantum
state and the probability of coincidence detection results from the addition of their amplitudes. For bosons these amplitudes
have same modulus but opposite signs, thus their sum vanishes and so also the probability of coincidence detection.

difficulty of determining the exact value of t; comes essentially from the uncertainty associated
to the instant at which the first pairs are produced, to. Since the population of beam a and b are
rather small, we estimate that the first pairs are produced at the end of the lattice application.
Furthermore, both mirror and 50:50 beam-splitter have durations that are not negligible with
respect to t;, — to. This increases the uncertainty associated to the instant t; for which particles
are made indistinguishable.

After time-of-flight, the atoms hit the MCP and their arrival time is recorded. The velocity
vector of each atom after application of the 50:50 beam-splitter is recovered as discussed in
Subsection 2.1.2. The analysis is then performed by extracting the cross-correlation between the
two atomic beams c and d, where, k. = k; and k; = k;. The interferometer scheme corresponds
to the one represented in Fig. 5.9a) where gravity induces parabolic trajectories on the particles.
In the beam-splitter frame of reference, one retrieves the well known massless interferometric
scheme represented in Fig. 5.9b).

We roughly estimate the 50:50 beam-splitter time application corresponding to indistinguishable
paths to t; — t,, = T = 550 (100) ys.

5.3 Analysis and measurement of the HOM effect

Atoms fall on the detector and the cross-correlation between beam c and d given by
7?2

@y = 2N J = ——
Gy (@) = PRUON(D) = 5o

f P [ Prgile, Dy, D), (52)
Qy de
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is obtained for different values of 7, with Qy, = Qy, = [LQLLZ] (k?at) corresponding to the
volume of integration and 1 the detection efficiency. We chose not to normalise the cross-
correlation for ease of comparison with the original HOM realisation. The result shown in

Fig. 5.10 corresponds to the optimised integration volume of Qy = [0.04:82 X 0.028] (kf’at). The

cross-correlation function Gfi) decreases from 0.060(8) to 0.019(4) at T = 79 = 550 us. The
value of 1¢ is coherent with the expected overlap between the two clouds, ts = 2t;; ~ 550 us.

In order to quantify the visibility of the HOM-dip, the following definition

v=1-2_Y% (5.3)

—1- —Ind. (5.4)

is used, where if V > 0.5 the effect cannot be explained classically (see Chapter 1). This threshold
is represented by the red shaded area and corresponds to the maximum interference contrast
obtained for two classical waves with random phases at the input ports. From the values of

Gg}) (Tp) and Gézg) ,we recover a value of V = 0.65 (7) , two standard deviations above the classical
limit 2.
This effect can only correspond to a quantum two-particle destructive interference and shows

that the atomic pairs have more-than-classical correlations and that one can coherently manip-
ulate the input state.

Along this Section we will discuss in detail the analysis lying beneath this result.

5.3.1 Analysis: momentum selection

In order to optimise the destructive interference effect, one looks at the correlation between
atoms with momenta k. and k; as discussed previously. By fixing the initial condensate quasi-
momentum at —0.57 quat, we generate two atomic beams a2 and b with distributions centred
at 0.73(1) kit and 1.27 (1) ki5¢ in the laboratory frame of reference. This corresponds to a
momentum difference equal to 0.54 (2) ki, consistent with the beam-splitter periodicity kpms =
0.55 kiat. This mismatch comes from our difficulty in measuring the central distribution of beam
b and is due to the losses associated to beam b that tend to distort its profile along the vertical

z—axis. In Section 5.5 we will see that this mismatching may partially explain the obtained
HOM-dip width.

The value of k. and k; used for the analysis are determined in the following way. As we
have seen in Section 3.3, the two atomic beams, a and b, have different populations. After
application of the 50:50 beam-splitter, however, their population are mixed and should be equal
after averaging over several realisations. Consequently, the analysis is performed between the
central distributions of beams ¢ and d for which the maximum population is detected. The
issue that one can face is that the central distributions do not correspond to the two correlated
modes. For this purpose, we allow ourselves to displace slightly the two boxes of analysis in
order to maximise the HOM-dip visibility. This displacement has always to be smaller than
the cross-correlation length in order to verify Eq. (5.1). In practise, the centers of the analysis

Mt is important to note that, for our experiment, from realisation to realisation, the phase of the beam-splitter
was randomly chosen. This allows us to directly compare the recovered dip in the cross-correlation as a function
of T to the expected classical threshold. We will show in Section 5.4, however, that this threshold value is in fact
overvalued and that one can estimate the real threshold knowing the auto and cross-correlations of beams z and b.
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Figure 5.10: Atomic HOM-dip in the cross-correlation function. The correlation Gg) between the output ports of the
beam-splitter, defined in Eq. (5.2), was measured as a function of the propagation duration T = t; — t,, between the mirror
and the beam-splitter. The HOM-dip is directly visible as a marked reduction of the correlation when t equals the duration
of propagation t,, — to =~ 500 us between the source and the mirror, corresponding to symmetric paths between the source and
the beam-splitter. A Gaussian fit (blue line) precisely locates the dip at T = 550 (50) us, with a half-width at half-maximum
of 70 (40) us, where the uncertainty corresponds to the 68 % confidence interval. The measured visibility is V = 0.65(7) .
It is two standard deviations beyond the classical-to-quantum threshold represented by the red shaded area, which takes into
account the experimental uncertainty over the background correlation value. Each data point was obtained from an averaged
over about 500 to 1000 repetitions of the experiment. Error bars denote the standard deviation of the statistical ensemble. The
mean detected atom number was constant over the range of values of T displayed here.
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Figure 5.11: 2D determination of the optimised centred analysis {k,, ky}. Upper panels, from left to right, 2D momenta
distribution for the detected atom number on the yz—plane, integrated over a length of 0.048ky, along the x—axis, for
T = 150, 550, 900 us. Bottom panels, from left to right: 2D cross-correlation between momentum k., k. for an integration
volume of Qy = [0.048% x 0.028] (k,3) for T = 150, 550, 900 us. The red shaded square correspond to the integration length
on the longitudinal z—axis. The bin size is of 0.014 ki on both axis.

volume correspond to k. = 0.740kj, and kg = 1.275Kky,, as represented in Fig. 5.7. In order to
avoid the contribution of several modes, we are also selective on the integration volume, as
discussed earlier. The idea is to guarantee that only two modes are selected.
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In Fig. 5.11, top panels, the 2D momentum distribution on the yz—plane for both distin-
guishable case (left and right panels) and indistinguishable case (center panel) are represented.
In all three cases, it is possible to distinguish the two atomic beams ¢ and d as well as diffracted
atoms from the condensate by the beam-splitter along the z—axis. The diffraction probability is
very weak but, since the population of the BEC is much larger than the number of produced
pairs, the diffracted fraction is still clearly visible. However, since the BEC diffracted atoms are
well separated from the pairs in momentum space they do not tarnish the analysis on the pairs.

No noticeable pair population difference is visible on the 2D distribution in accordance
with the fact that on averaged both distinguishable and indistinguishable situations have the
same density distributions. The 2D cross-correlation function (bottom canvas), defined by
Eq. (5.2), is estimated for a fixed volume of integration corresponding to Oy » = [LZ X Li] =
[0.028>< 0.0482] (kf’at) and centred on C. = (0, 0, k) (kiat) and C4 = (0, 0, kz) (kiat). One can
immediately see that, for most sets of {ky; kz}, the cross-correlation is weaker when 7 = 550 us
in accordance to the expected time t;, — o ~ 550 us. The minimum value of Gg}), inside the
atomic beams, occurs when k. = 0.740kj,; and k; = 1.275 kyy, corresponding to the values of k.
and k; with maximum averaged populations.

The central positions, k. = 0.740 kst and k; = 1.275kja¢ optimise the HOM-dip visibility and
hereafter we will always place the center of our analysis volume on C; = (0, 0, 0.740) (kiat) and
Ci = (0, 0, 1.275) (kyat)-

5.3.2 Analysis: optimisation of the integration volume

With the value of k. and k; fixed, one can now try to optimise the signal by changing the volume
of integration. This corresponds to adapt the pinhole size to our mode size as often performed
in quantum optics [206].

Since the correlation varies with time 7, one can estimate the contrast by fitting the cross-
correlation as a function of T with the empirical Gaussian function

_ _(T—r }2
GO(r) = G2 (1 Ve e ) (5.5)

where Ggg)_ corresponds to the background correlation obtained for distinguishable particles

and V to the visibility of the HOM-dip. In Fig. 5.12, left panel, the visibility is represented as
a function of the integration volume Qy. For each (L,; L;) set, corresponding to a volume
Qv = [Li_[z], one gets the related visibility. One can see that for smaller integration volumes
the visibility increases until reaching saturation. For large volumes, the visibility decreases as a
consequence of the multimode source contribution (as discussed in detail in Subsection 5.1.2).

The visibility of the HOM-dip can be compared to the situation in which two coherent
beams with undetermined relative phase are recombined on a 50:50 beam-splitter. The obtained
reduction of the cross-correlation in this situation, see Chapter 1, corresponds to the classical-
to-quantum threshold and can be written as

1
v =—, 5.6
thres. 140 ( )

with & corresponding to
G? 4 @
e (5.7)

2,/G2cY
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Figure 5.12: 2D representation of the visibility V and ratio to the classical threshold R for different integration
volumes. Left panel, 2D representation of V as a function of the integration volume Qy = [L X L.](k},). For smaller
volumnes one observe an increased visibility until it saturates while for larger volumes the visibility decreases to zero. The bin
size corresponds to 0.004 k,, in both directions. Right panel, 2D representation of R as a function of the integration volume
Qy=[L2xL] (ch31 > ). For smaller integration volumes the ratio increases to its maximum value of 1.5. The red boxes indicate
the values of L; and L, corresponding to the cuts shown in Fig. 5.13.

see Appendix D for complementary information. If the incoming pairs have the same autocor-
relation value, then 6 = 1. This is usually true for particles produced in pairs and one recovers
the threshold value of Viyes = 0.5. In our system, beam b has a lower population than beam
a and, consequently, 6 # 1. This changes the value of 6 and, as a consequence, the classical
threshold is no longer 0.5. The threshold value Vipyes is obtained as a function of Qy and the
ratio R between the obtained HOM-dip visibility and the visibility threshold

1%

R=——,
Vth:es

(5.8)

is represented in Fig. 5.12 (right panel). One sees that for small volumes of integration the
HOM-dip visibility is almost twice as large than the threshold value and tends to zero for
increasing volumes.

In order to quantitatively identify the optimised zone the 2D plots of Fig. 5.12 are projected
along the vertical z— and transverse y—axis as represented in Fig. 5.13. Canvas a) and c)
correspond to a situation for which the integration length on the z—axis is kept constant at
L, = 0.028kjat and the integration length on the transverse direction, £, is varied (the cut
corresponds to the horizontal red boxes of Fig. 5.12). One finds an optimum value at £, =
0.048 kit for which we obtain an optimised visibility, respectively to the signal-to-noise ratio, of
V =0.65(7) and aratio R = 1.44(20) . Canvas b) and d) correspond to the inverse situation, for
which £, = 0.048, is kept constant, and L; is varied (corresponds to the vertical red boxes of
Fig. 5.12). We thus obtain the optimised value of V = 0.65(7) for £, = 0.028 kj,t. The optimised
volume of integration is obtained by performing the same method for all different fixed values

of Land L.

The optimised result corresponds to the one represented here for which we obtain V' =
0.65(7) and a threshold value equal to Vipes = 0.45(4). The ratio between the HOM-dip
visibility and the threshold result corresponds to R = 1.44(20) . These results are obtained for
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Figure 5.13: Evolution of both the visibility and the visibility / threshold ratio as a function of the integration
volume Qy = [L3 x L:](k;,). a) and c) The integration length on the z—axis is kept constant at L. = 0.028k,. The
visibility V and the ratio R given by Eq. (5.8) are respectively shown as a function of the integration length on the transverse
direction, L, . b) and d) The integration length on the perpendicular directions x and y is kept constant at £, = 0.048k,. V
and R are respectively plotted as a function of the integration length on the longitudinal z—axis, L.

a volume of integration Qy equal to Qy = [0.028 x 0.048 2] (kfat). We represent in Fig. 5.14, the
correlation dip as a function of T with the adapted threshold value of 0.45 (4) in green.

To see more directly the effect of the integration volume, we show in Fig. 5.15 the evolution of
GE?(’I) for two different integration volumes. Fig. 5.15a) corresponds to the optimised volume
discussed so far, Qy = [0.028 x 0.048 2] (kfat), while Fig. 5.15b) corresponds to a larger volume
of inte gration Qy = [0.0483] (kfat). It is possible to see that for an increased inte gration volume
the HOM-dip width decreases. The dip width passes from 70(30) us to 40(20) us. Also the
background correlation increases with the volume of integration which is expected since the

number of detected atoms also increases. The visibility, on the other hand, decreases from
0.65(7) t00.39(7) .

The optimised volume of integration gives complementary information about the mode size
of our source [207-209]. Along the vertical direction the length of integration £; = 0.028 ki
is slightly larger than the correlation function width obtained in Section 3.4. Transversally,
however, the integration length is comparable to the mode size recovered from the auto-
correlation function.

The HOM-dip visibility has been optimised as a function of the integration volume. The volume
for which the signal-to-noise ratio is maximal corresponds to Qy = [0.028 x 0.048 2] (kf’at).

5.3.3 Analysis: population stability

When comparing the non-normalised cross-correlation as a function of T, an important point
is to guarantee that the populations in beam ¢ and d are stable over the entire experimental
realisation.

In contrast to quantum optics experiments, the cycle rate of cold atoms experiments is much
longer. Each data point of Fig. 5.10 corresponds to an acquisition time of approximatively
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Figure 5.14: Cross-correlation between beams ¢ and d as a function of 7 with the adapted threshold value.
Representation of the cross-correlation as a function of T with the respective classical-to-quantum threshold value deduced from

Eq. (5.6) in green. One can see that the minimum value of GS)(T) is three standard deviations below this threshold.
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Figure 5.15: Experimental observation of the destructive interference effect for two different integration volumes.
Reduction of the cross-correlation between ports c and d as a function of . For T ~ 550 us ~ 7o, one retrieves the minimum
cross-correlation value corresponding to the indistinguishable paths scenario. a) Evolution of GS) as a function of T for

a volume of integration Qy = [0.048% x 0.028] (k} ). b) Evolution of GE? as a function of T for a volume of integration
Qy = [0.048°] (K2,).

12 hours. To give an idea, for the original HOM experiment each data point corresponds to an
acquisition time of 10 min. [54]. This means, in our case, that over the entire realisation of the
experimental curve, which took approximatively two and half weeks, the number of produced
atoms in beams a4 and b needed to be constant.

In Fig. 5.16a) and b), the number of detected atoms in both output ports c and d is represented
asa function of 7. One can see that the population in both beams is rather stable with an averaged
number of atoms in beam c equal to 0.18 (1) , and 0.19 (1) in beam d. Furthermore, we compare
the stability of the mean averaged product

2
-y = e [ Predatne) - )
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Figure 5.16: Stability of the output population over propagation duration. a) Averaged atom number detected in V.
as a function of the propagation time T. The mean value of n. is 0.19 with a standard deviation of 0.01. b) Averaged atom
number detected in “V; as a function of the propagation time T. The mean value of n, is 0.18 with a standard deviation of 0.01.
¢) The cross-correlation between the output ports c and d (solid blue circles), corresponding to the HOM-dip, is compared to the
product of the averaged density populations {n.)-(na) (open gray circles). The product of the averaged population is constant
while the cross-correlation exhibits a dip around T = 550 ps.

with the integrated cross-correlation

2
G = Fkdkg{ni Ny, ) -
od vldv, Jay, Jay, o kalthelig)

If the HOM-dip was due to a population reduction as a function of 7, then the curve (n.) - (n;)

would present the same dip as the cross-correlation ij‘i). This is, however, clearly not the case
as one can see in Fig. 5.16¢).

One can also represent the normalised cross-correlation as a function of 7. This is shown in
Fig. 5.17 where it is possible to see that the reduction of coincidence counts is still present and

that the minimum correlation value lies below the classical threshold value of Gg&es =0.81(7).

In conclusion, although the data corresponds to a very long acquisition period, the averaged
atom number is rather stable over 7 and the HOM-dip cannot be classically interpreted by a
variation of the population.

The visibility gives us information about the input state, in particular, if the incoming atoms
are strongly correlated. Experimentally, we observed an optimised visibility of 0.65(7) which
allows us to exclude any possible simple classical explanation of our result 3. The most important
results of the analysis until now are summarised in Table 5.1.

5.4 Dip visibility: theoretical estimation

For an incoming state corresponding to a two-mode Fock state with one atom per mode, [1, 1),
it is expected that the cross-correlation function reaches the minimum value of zero as function
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Figure 5.17: Normalized cross-correlation function as a function of T. The dip is still present although the cross-
correlation is now averaged by the population product of beam c and d.

Optimised integration volume

Integration length along the vertical axis £;(kjat) 0.028

Integration length along the transverse axis L, (kjat) 0.048

Maximum visibility V 0.65(7)
Threshold visibility Vinres 0.45(4)
Ratio between observed visibility and threshold R 1.44 (20)
0 defined by Eq. (5.7) 1.15(5)

Table 5.1: HOM-dip result for the optimised volume of integration.

of 7. Itis clear from Fig. 5.10 that this does not happen here. Two factors may be responsible for
this effect, either the detected particles are not fully indistinguishable or the number of atoms
contained in the integration volume exceed unity for each beam.

It is possible, for perfect]y indistinguishable particles, to determine the expected visibility.
For this, one only needs to measure the auto and cross-correlations before application of the 50:50
beam-splitter. In our experiment, this consists in performing the same experimental procedure
as for the HOM experiment but without application of the mirror or the beam-splitter. The
visibility 1% corresponds then, as seen in Chapter 1, to

G®@ 1
V= ab - (5.9)
(2) (2) 2 1+ (6/C)Y
G + Gy +2GY (6/C)
c®,c@ c®
wi = ——==an = —2— (demonstrations can be found in endix D). In Section 3.4,
ith & =t dC L (d i be fi din Appendix D).InS 4

2,/G2GY NSl
see Fig. 3.26, one saw that for £, = 0.028 and L, = 0.048, C reaches the value 1.75(2)
and, for the same volume of integration, 6 = 1.15(5) . The expected visibility for perfectly
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Figure 5.18: Evolution of the HOM-visibility V as a function of the averaged population (n). For (n) — 0, the
maximum dip-visibility of 1 is obtained for the case of a state obtained through spontaneous parametric down-conversion. For
(n) — oo, the visibility decreases to the classical threshold of 0.5. In the graphic representation, we stop at (n) = 4 for which
the visibility has already decreased to V = 0.53,

indistinguishable atoms is then equal to

Vexpect. = (1 +1.15(5) /1.75(2) )™
=0.60(1) .

This value agrees with the measured visibility V = 0.65(7) .

The finite value of Gg}) at the center of the dip is not due to a weak indistinguishability. Therefore,
the observed result must be explained by the population of the two incoming beams.

5.4.1 Pair population

As discussed in Chapter 1, for a simple model where the produced atomic state corresponds
to a twin-Fock state obtained through parametric down-conversion, the dip visibility can be
related to the averaged population via the relation

V:1—%. (5.10)
2+m

For averaged populations higher than one, (n) > 1, the visibility is strongly reduced, as it is
shown in Fig. 5.18, and tends to the asymptotic value of 0.5 for (1) — oo.

From Eq. (5.10), it is then possible to extract the expected visibility at a given value of (n).
This can be used in order to understand our experimental result. Nonetheless, itis important to
keep in mind that this comparison is only qualitative, since, as seen in Section 3.4, the produced
atomic pairs have different populations and their correlations do not correspond to those of a
state generated by parametric down-conversion.
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Figure 5.19: Probability of the detected atom number before application of the beam-splitter and after the beam-
splitter in the distinguishable and indistinguishable case. Probability of detecting n atoms in either beams a (left panels)
or b (right panels) before the beam-splitter (upper canvas), after the beam-splitter in the case of distinguishable particles (mid
canvas) and for the case of indistinguishable particles (bottom canvas). The probability is obtained for an ensemble of 1000
experimental realisations. In all three cases, the probability of detecting zero particles is dominant (between 80 to 90%) and the
probability of detecting two particles is at most a factor four weaker than the probability of detecting one particle. Before the
beam-splitter, one can see that the probabilities are not the same between beam a and b due population imbalance between the
two beams.

Determination of the averaged population in beam a and b.

Let us assume an initial Poisson law distribution such that the probability of having n atoms in
either ports a or b corresponds to
N" n
P(n) = e
with N the averaged number of atoms (1) = N. The probability of detecting p atoms among N,
knowing that the efficiency of detection is 7 can be written as

N NG -
Paep) = ) e (=)' ( p)- (5.11)
n=0 "

Knowing the value of the detection efficiency, it is possible to retrieve the real averaged
population. The value of  has been probed through the measurement of sub-shot noise variance
and estimated to be equal or higher than n = 0.25 (5) , as discussed in Section 3.4.2. The real
averaged population is then obtained by ﬁtﬁng the probabilities of detecting p atoms, over 1700
identical realisations, via Eq. (5.11) with N as free parameter. The experimental probabilities of
detecting 0, 1, 2 or 3 atoms, inside volume Qy = [0.[}1482 x 0.028 (kf’at), are shown in Fig. 5.19 for
beam a and b. One can see, for instance, that the probability of detecting zero atoms is higher in
beam b than in beam a. This reflects the population asymmetry between the beams. By fitting
those distributions, the averaged populations of beam a and b are recovered.
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Pop. Det. Beam a Pop. Det. Beam b
P(0) P(1) P(2) P(0) P(1) P(2)
Exp. | 0.82(3) | 0.16(1) | 0.021(4) | 0.90(3) | 0.090(9) | 0.005(6)

Theor. Pop. Det. Beam a Theor. Pop. Det. Beam b
n PO) | PQ) PQ2) P(0) P(1) P(2) N | N

0.15 | 0.82(3) | 0.16(2) | 0.016(5) | 0.90(2) | 0.094(6) | 0.005(2) | 1.3(2) | 0.7(1)
0.25 | 0.82(2) | 0.16(2) | 0.016(3) | 0.90(2) | 0.090(11) | 0.005(2) | 0.8(1) | 0.5(1)
035 | 0.81(3) | 0.17(2) | 0.018(5) | 0.90(4) | 0.094(10) | 0.005(3) | 0.6(1) | 0.3(1)

Table 5.2: Average population per atomic beam. The upper part of the table shows the experimental probabilities of
detecting 0, 1 and 2 particles for both atomic beam a and b. These probabilities are extracted from the number of atoms detected
over 1700 identical experimental realisations. In order to retrieve the real population distribution, we assume that the statistical
distribution follow a Poisson law where the free parameter is the averaged population N, for beam a and Ny for beam b. Since the
value of the detection efficiency 1 plays a crucial role in the real population determination, we repeat this analysis for different
values of ) from 0.15, 0.25 and 0.35. This is shown in the lower part of the table where we adjust the population averaged of
both beam a and b in order to fit the values of P(0, 1, 2). For each value of 1), we extract the values of N, = (n,) and Ny, = (1)
corresponding to the real populations which best fit the experimental results.

The values of N = {(n) are summarised in Table 5.2 for different values of the detection
efficiency n = 0.15, 0.25 and 0.35. We extract a value of (1n;) = 0.8(3) and (1) = 0.5(3)
where the uncertainties are essentially due to the uncertainty on the detection efficiency 7. This
corresponds, using Eq. (5.10), to an expected visibility V' = 0.65(8) with uncertainty coming
essentially from population differences between the two beams. Since Eq. (5.10) is based on the
fact that the incoming modes have symmetric populations our comparison corresponds to a
very rough estimation. Nonetheless, this simple interpretation seems to agree with our results.

5.4.2 Evolution of the signal to noise ratio of the HOM-dip visibility with (1)

As we have seen so far, the visibility of the HOM-dip depends on the averaged population (1)
as described by Eq. (5.10). However a smaller population translates into a higher probability of
having zero particles at the input port. An interferometer with zero particles per input port is
useless in terms of statistical uncertainty and, consequently, the error associated to the visibility
increases when one reduces (n). For an infinite number of realisations this would not be an
issue since one would always detect an event after M — oo repetitions. The problem is that, in
the real world, one cannot perform an infinite number of repetitions. The question is then to
know if an optimal situation, in term of signal-to-noise ratio, exists.

Consider that the experiment is performed a finite number of times M and that the pairs
correspond to the result ofa spontaneous parametric down-conversion process. The incoming
pairs are then described by the state

o tanh” ()
) = Zn‘ cosh () " ™M

and the visibility can then be written, as showed in Chapter 1, as

_ 1
V=1

- 1
2+m
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Figure 5.20: Optimisation of the signal-to-noise ratio for the HOM-visibility as a function of the averaged
population (n). Representation of the visibility as a function of the averaged pair population (n) in the case of a parametric
down-conversion state. The blue area corresponds to the expected standard deviation for M repetitions of the same experiment.
a) M = 1000 repetitions, b) M = 500 repetitions. One can see an optimised value of « for (n) = 0.2 — 0.6 atoms per mode.

with the associated uncertainty

v

(1).
This uncertainty depends on the averaged population uncertainty, 6(n), defined by

(n) ((n) +1)
r—|M r
where the uncertainty corresponds to the square root of the variance for a distribution cor-

responding to a spontaneous two-mode state obtained via parametric down-conversion. The
uncertainty 0V is then given by

5(n) = (5.12)

sp - Vmm+D 2
VM (&) + 1)

(5.13)

In the extreme situation (1) — 0, the uncertainty 6V tends to zero which is totally against what
one would intuitively expect.

To take into account the reduction of effective realisations, Mg , we subtract to M the number
of events where the detected particles is equal to 0. The effective number of realisations is then
equal to

Meg. = M(1 = Pger. (0)) ,

where Pget.(0) corresponds to the probability of detecting zero particles either one of the two
ports, and is equal to

00 nh? (A 2
Pget.(0) = Z (- H)P %'
P

The value of 6V is then given by

(n) (n) +1) 2

oV = | .
VM (1 = Pger.(0)) (4(ny +1)

(5.14)
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Figure 5.21: Signal-to-noise ratio of the HOM-dip above threshold of 0.5. We represent the signal-to-noise ratio of the
HOM-dip as a function of the averaged population (n) in the case of 1000 identical experimental realisations. The gray line at
1.0 indicates that the visibility is at one standard deviation from the threshold value.

In Fig. 5.20, the evolution of V, with uncertainty oV, represented by the blue area, is rep-
resented as a function of (1), for the case of M = 1000, Fig. 5.20a), and M = 500, Fig. 5.20b).
One can see that if M is sufficiently large, the optimised value of V is recovered for the lowest
possible values of (n). This guarantees that the probability of having more than one particle
per input channel is as weak as possible. For the case of our experiment, (n) = 0.5 - 0.8 ~ 0.65
and one recovers, from this model, a visibility of V = 0.635(35) with the uncertainty given
by Eq. (5.14). Compared to the experimental value of V' = 0.65(7) , we see that the value of
1% agrees, however, the uncertainty seems to be underestimate in our calculation. For higher
values of (1) the visibility decreases to the asymptotic value of one half and the error bars get
smaller. In a real experiment, however, one is more interested in guaranteeing the optimised
signal-to-noise ratio.

In Fig. 5.21, we represent the signal-to-noise ratio determined by

B V-05

1%
If @ =1, the visibility is one standard deviation above the classical threshold of 0.5. One can
then see for increasing values of (1) that the signal-to-noise ratio increases to an asymptotic
value depending on M. This means that for a fixed number of repetitions the signal-to-noise
ratio tends to increase when (1) gets larger. This seems contra-intuitive to the basic explanation
of the HOM-experiment. For the average population used in our experimental realisation,
(n) = 0.65, and knowing that the number of realisations varies between 500 to 1000, one would
expect a signal-to-noise ratio equal to 4.3 which is two times larger than the one measured
experimentally and equal to 2. This difference might be explained from the fact that our input
state does not correspond exactly to a spontaneous parametric down-conversion state or, due
to fluctuations of the BEC density that would lead to average population fluctuations.

’

In real experiments with acquisition time constraints, the signal-to-noise ratio of the HOM-dip
visibility increases with the average population. Our choice of (n) = 0.5-0.8 =~ 0.65 seems
appropriate to investigate the HOM visibility. This intermediate regime guarantees a good
signal-to-noise ratio and, on the other hand, allows us to measure a visibility well above the 0.5
threshold value.

Increasing the number of atoms per atomic beams, however, might increases secondary
four-wave mixing processes that translate into losses in our system. This would tend to weaken
the HOM effect.

In Table 5.3, we summarise some quantities that have been extracted from our experimental
results and that are going to be useful in the next section, namely, the density width of beams
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Clouda | Cloud b | Cloudc | Cloudd

Density center (ki) 073(1) | 1.27(2) | 0.735(7) | 1.272(8)
Density width at 1/ ye' (kia)

21006(1) |0.06(1) | 0.08(2) | 0.08(2)
£ 10082 |0.08(2) | 010(3) |0.012(3)
70082 |0.08(2) | 010(3) |0.012(3)

Cauchy integration volume Qy (k). )

L 0.048 0.048
Ly 0.048 0.048
L, 0.028 0.028

Correlation coefficient C 1.75(20)
6 from Eq. (5.9) 1.15(5)
HOM-dip visibility V from Eq. (5.9) 0.6(1)
HOM integration volume Qy (k},,)
Ly 0.048 0.048
Ly 0.048 0.048
L, 0.028 0.028
HOM-integration center (ki) 0.740 1.275
HOM-dip visibility V 0.65(7)
Average number of atoms detected inside Qy 0.21 0.13 0.19 0.18
Averaged population 0.84 0.52 0.76 0.72
HOM-dip V from Eq. (5.10) 0.64(8)
with (n) = 0.5-0.8
HOM-dip V from Eq. (5.10) for (n) = 0.65 0.64(2)

and uncertainty given by Eq. (5.14)

Table 5.3: Summary of the HOM analysis.

before and after the interferometric scheme, the integration volume in order to optimise the
HOM-dip visibility, the averaged population and the HOM-dip visibility among others.

5.5 HOM-dip width: some explanation

From the HOM-dip, one can determine how different is the input state from a twin-Fock state
with one atom per mode. However, this is not the only information that can be recovered
from this experiment. For example, the main interest of the original HOM experiment was to
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determine the size of the photon wavepacket [54]. Through the measurement of the dip width,
the wavepacket size was recovered with a precision of 1fs. In this Section, the HOM-dip width
in our experiment is discussed. We will show that as for the original experiment of 1987, the
HOM-dip width is mostly determined by the filtering methods.

5.5.1 Prediction of the width

The general expression of G@(t) assuming a 50:50 beam-splitter and perfect mirror can be
written as (see Appendix D for more details on this calculation)

@ (1= +dr—t) + At 4 .
G (T) _[(ﬂk +k|,m5 kb kbms k+kbms akb kb ) (e‘arl’ ¢'l ¢' ¢2)akaakbakﬂ+kbms Igk!:_kbms)

_ (@ t(¢1 ¢1+¢'2 arl)Z)a o “;b e ak,; akb) + (ak a ak,; akb)]

+7 [(ﬂk B o By By kye) + AE L Ak, O] (5.15)
with
$1=—(Ps —Pm) — + Koms)” — %(kﬁ — (ko + kbms)?), (5.16a)
1= —¢pm— 2njk2 I (k2 = (ka + koms)?), (5.16b)
2 = (s = ) - ﬁ(kb — Koms)” - jr;t—””;(kf, ~ (kp = koms)?), (5.16¢)
= bm - zfﬂ ky + 2—?:(1(?, — (k= koms)?) - (5.16d)

This means that the indistinguishable case, corresponding to the application time t,, leads to
avalue of Tp = ts0 — tm = tm.

The extreme cases

@) _ 5t 5t -
From Eq. (5.15), one can identify the autocorrelation contribution G, = (@ @ A g Ak, Ak k)
(2) it at
and G’ = (4 @ g Ak, Ax, 4k, ) as well as the cross-correlations
(2} ~t - A A
G - (ak akbak ﬂkb) - (akb—kbmsaka+kbmsakb_kbms aka+kbms)

and

(2) ot At oA
G - (ak ak akb —Kbms Igkﬁ"'kl':»ms) ( ka"'kbms kb Kbms kb ﬂkﬂ')

where k, = k; + kpms. The cross-correlation between the output ports of the beam-splitter can
then be rewritten as

GA(r) = [c‘"1 +Go) ] + c @11 - cos(6)] (5.17)
with 8 = @1+ 2 — ¢} — ¢ = 2 [Koms(ka +Kbms — k)] (T — tm) and T = 5 — ty. For the indistin-

guishable case, 7 is equal to t,, thus cos(6) = 1, and the minimum value of the cross-correlation
function is reached corresponding to

@y L~@ , ~2
Gea (10) = 7 (Gud +Gy))-
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On the other hand, if T — oo, the cosine term averages to zero in the volume of integration and
one extracts the distinguishable value of Gf), given by

-(2) 1@, ~2\,1~0
GP(c0) = 4((3 + Gl )+2cab

Multimode scenario

From the single mode picture, one can not define a width since the wavepacket is infinitely long
[76]. Mathematically, this means that the oscillating term

h
cos (9) = Cos a (kbms(ka + Kpms — kb)) (T - tm) ’

is always equals to 1, since k; + kpms — kp = 0.

For a multimode source, however, the cross-correlation depends on (kg + kpms — kp)(T — tm),
and, after inte gration over k, will evolve with 7. Along the transverse direction, we will assume
that the integration length is sufficiently small so that all the functions at play are uniform and,
as a consequence, only integration along the vertical z—axis is going to determine the width of
the HOM-dip. This reduces the problem to a 1D treatment that is easier to treat.

From Eq. (5.17), one can identify five fundamental quantities that can provide insights on
the dip width (see Table 5.3 and Table 5.4), in particular:

e the autocorrelation widths associated to C(z) and G(Z) (01, and 0y, respectively), although
they are not directly linked to the oscillation term and have a negligible influence;

e the cross-correlation width associated to ijj) (o0);
e the density width, since the cloud has a finite size in momentum space (0y, and oy, );

e the stability of the beam-splitter which relates to a width in momentum space of the
diffraction momentum kpms. This width has been probed in Chapter 4 to be smaller than
the autocorrelation width;

e and the lengths of integration £, for beam k;, and £, for beam ky, along the z—axis that
are identical and equal to £, /2.

The integrated cross-correlation function between portscand d can then be written, assuming
a Gaussian description for the correlations and density, as

bms,c+Lz /2 dk ac+La bc+£b
G? (T, kac,k ( )NN dk
G i Meas. (T Kac/ kic) = 7 b 2 -
2 _ -
xexp( k= ko) ) P{_ (ke 2kb) ]exp [_(kbms 2kbms,.:) }
20y, 20, 20,
1l @ — kac)? (kp = kyc)?
X {Z Zoa (0) exp[ 2%1 ]+gbb O)exp( be
@ ((ka + ky)/2 ~ 1)2
+E 8. (0)ex ( 207 —cosO)|¢, (5.18)

with k, and k;, the central positions for the two atomic beams, k,c and k¢ the central position
around which the integration is performed and gf;:?, gii) and g%)

functions given by the analysis performed before the beam-splitter.

the normalised correlation
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Local Cross
Cloud k; | Cloud k,
Correlation : 0, (kiat) | 0.012(2) | 0.010(2) | 0.025(3)
Density: 0,42 (kiat) | 0.06(1) 0.06 (2)

Table 5.4: Width at 1/ \/e for the density and correlation functions.

£, — 0.028k;,; C L, —0.048k;,,

Tl L
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Figure 5.22: Experimental observation of the destructive interference effect for two different integration volumes.
Reduction of the cross-correlation between ports c and d as a function of . For T ~ 550 us ~ 1, one retrieves the minimum
cross-correlation value corresponding to the indistinguishable paths scenario. a) Evolution of GS) as a function of T for

a volume of integration Qy = [0.048% x 0.028] (k},). b) Evolution of GE? as a function of T for a volume of integration
Qv = [0.048%] (K2,).

5.5.2 Comparison with the experimental results

Consider the situation of our experimental analysis discussed in Section 5.3.1. In this case,
the beam-splitter corresponds to a diffraction in momentum space equal to kpms = 0.55Kiat
with an estimated uncertainty equal to ogys = 1 X 1072 kyye (see Chapter 4). The centers of
the two volumes of analysis k,c = 0.740kj, and kpc = 1.275kj,; correspond to the ones used
in the HOM-analysis discussed in Subsection 5.3.1. The values of the half-widths are given in
Table 5.3 and Table 5.4 (see Subsection 3.5 for more details). The only free parameter is then the
integration volume which is defined by our analysis.

Consider the two cases discussed earlier and represented in Fig. 5.22, where the left panel
corresponds to L; = 2L, = 2L, = 0.028kjy and the right panel to the integration length
L, = 0.048 kj5t. A Gaussian fit gives, for the second case, a width smaller than for the first case
(0HOM,£,=0.028 ~ 70(30) us and ogom,£,-0.048 ~ 45(10) us). The visibility is also smaller since
the situation corresponds to a sum of distinguishable and indistinguishable paths, even when
T = T¢, as schematically represented in Fig. 5.7

One can then try to estimate the theoretical width of the HOM-dip from Eq. (5.18) assuming
2L,y = 0.028Kkjy and 2L, = 0.048kj,t. The result is represented in Fig. 5.23a) and b) where
for both cases the dip is centred around 7¢ = 550 us. In the first case, £, = 0.028 kj,, the
theoretical HOM-dip prediction, 122 us, is wider than the one measured, 70 (30) us. For the
second situation, £ = 0.048 kit one expects a width of 100 us still far away from the measured
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Figure 5.23: Theoretical prediction for the HOM-dip width. a) Evolution of G® as a function of T for a volume of
integration of Qy = [0.048 x 0.028] (k;,) obtained by Eq. (5.18). b) Evolution of G® as a function of T for a volume of
integration of Qy = [0.048%] (k?,). These two curves are the theoretical predictions of the experimental situation represented in
Fig. 5.22a) and b) respectively with the center of integration zones defined by C. = (0, 0, 0.74) (ki) and C4 = (0, 0, 1.275) (ki)
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Figure 5.24: Direct comparison between the experimental HOM-dip and the theoretical prediction. We compare
the obtained result for the HOM-dip via integration of Eq. (5.18) for k,c = 0.74ky, and kyc = 1.275k, with the HOM-dip
obtained experimentally. Two situations are considered: a) with L, = 0.028 k; and b) with L, = 0.048 k.

value of 45 (10) us.

Two observations can be made. The first is that in both cases the dip is wider than the
one observed experimentally. This difference might come from the uni-dimensionality of our
analysis. Indeed, we assumed that the transverse overlap was perfect and that integration along
the transverse axis had no influence on the width. As shown in Chapter 4 the beam-splitter
lattice is slightly tilted on the x—axis, thus the overlap is not perfect. This would irremediably
translate into a thinner dip. Also, the fact that both mirror and 50:50 beam-splitter are pulses of
duration length equal to 100 us and 50 us, respectively, lead to a ﬂoating averaged over G(Z)('r)
which is not taken into account by our model.

Second, the volume of integration seems to determine the HOM-dip width. For a broader
volume of integration, we find that not only the background value Gﬁ)(m) increases as expected
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L, = 0.028 k5 L, =0.048 k¢
Otheo. (Kiat) 122 (4) 100 (3)
Oexp. (kiat) | 70/(30) 45(10)
Ratio between width for £; = 0.028 and £, = 0.048
Otheo. (Kiat) 1.22(5)
Oexp. (Kiat) 1.56 (75)

Table 5.5: Comparison between the experimental HOM-dip width and the theoretically predicted one.

since the number of atoms under analysis increases, but also the dip gets thinner and smaller
in concordance to the experimental results shown in Fig. 5.22. One explanation is that that for
larger volumes, one averages over paths that are both distinguishable and indistinguishable,
even for T = 1, which tends to squeeze the curve of G@(t). For the case of a vanishing local
correlation and broad cross-correlations function, one can assume that the only varying term

corresponds to (1 — cos 6). Then G‘(:?(T) simplifies to

GB(1) = 1 NaNy(1 = asinc(Lkmy 17 = b))} (5.19)

with 7 = f; — £, and a a coefficient proportional to kpms, kac and kpc. The cross-correlation
corresponds then to a sinus cardinal function whose width at 1/ Ve'is inversely proportional
to the integration length. For smaller integration volumes, the dip get larger as observed both
experimentally, (Fig. 5.22) and theoretically (Fig. 5.23).

From this analysis, one is able to recover the qualitative behaviour of the HOM-dip. Namely,
we have seen that for larger integration volumes the dip gets thinner and weaker which agrees
with the experimental observations. The widths of the observed HOM-dip do not match exactly
the expected values as shown in Table 5.5. Nevertheless, one can see that our description follows
correctly the evolution of the width as a function of the integration length. This is shown by
the agreement between the widths ratio of £; = 0.028 and 0.048 k5t from both theoretical and

experimental results.

Different effects on G?(t)

One can now study the dependence of the HOM-dip width as a function of the different quan-
tities at play, meaning, the correlations functions, density and matching conditions between
ka + kpms and kg,

Let us consider the effect of both the cross- and local correlation widths. Fig. 5.25a) corre-
sponds to the situation in which the integration length is equal to £, = 0.028 k5, 0. = 0.025 kK,
01z = 0.010Kkyat, opp = 0.010Kyat, 0bms = 0.010kia¢ and the central positions of the volume of
analysis are k,c = 0.740kjo¢ and kjpc = 1.275Kj. This corresponds to the analysis performed in
the Subsection 5.3.1 and Subsection 5.5.2.

The theoretical HOM-dip presents a contrast of 0.65 and a half-width at 1/+/e’ equal to
122 us. We compare this situation to Fig. 5.25b) where k,c is now equal to 0.8 k. Since the two
clouds under analysis belong to different modes and, in this sense, are not indistinguishable, one

expects a flat dependence of Gf:? with 7. Although there is a slight oscillation around 7 —t, = 0
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Figure 5.25: Theoretical HOM-dip estimations for different initial parameters. a) Same parameters as the ones used
in Fig. 5.23a). b) Same as a) but with k,c = 0.8k, instead of 0.74k,,. c) Same as a) but for oy, = oy, = 0.050k;,, instead of
01, = 0.010ky. d) Same as a) but for 0. = 0.050ky,, instead of o, = 0.025 k.

which is completely negligible, the result shows no significant reduction of G @) as a function of
T.

Fig. 5.25c) and d) are similar to the case a), but this time for an autocorrelation width
01a = op = 0.050kj (canvas c) ) and o, = 0.050kjy (canvas d)). For the case of a larger

autocorrelation function, the only effect is a reduction of the background correlation CE) due to

the fact that the integrated value of the autocorrelation functions decreases. Case d), however,
leads to both a reduction of the background correlation value as well as a reduction of the
visibility. This is due to the fact that the integrated cross-correlation decreases and, as a

C()ruse(1llellce
2 [ ~(2 2

gets smaller, leading to a weaker visibility as discussed in Section 1.2.

The HOM-dip width s, for our experimental conditions, defined by the integration volume and
the central positions of the analysis, {kac; kpc}. The fundamental properties of the pairs, such as
the auto- and cross-correlations contribute poorly.

5.6 Coalescence effect

The HOM effect can also be viewed as a coalescence effect, in the sense that two photons will
always emerge together at one of the two output ports. This translates into the creation of a
maximally entangled state

1
—2 (lOC: 2d) + |2C; Od)) E

[)out = 77

5.6.1 Autocorrelation measurement

In order to detect this coalescence effect, one has to perform an auto-correlation measurement
at one of the two output ports. In quantum optics, one cannot directly measure this quantity
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Figure 5.26: Schematic representation of the experiment described in Ref. [206]. The experiment allows one to determine
the autocorrelation of the output ports c and d. Another beam-splitter is placed on the path of the output port c and through the
cross-correlation measurement between the output ports of the new beam-splitter the autocorrelation of c is recovered. Figure
copied from Ref. [206]

since the dead time of one photodiode is larger than the time difference between two photons.
In order to get rid of this problem, it is usual in quantum optics to place in one of the two output
ports another beam-splitter and to look at the joint probability between the two new output
ports [79, 206]. This is represented in Fig. 5.26, where a 50:50 beam-splitter is placed at the exit
portc.

The autocorrelation of one of the output ports (let us consider only the case of port c)
evolves between the distinguishable case and the indistinguishable case as follow (see more
informations in Section D.4)

@ _l-@

Geopis = 5Cu - (5.20a)
2 2

G214 =69, (5.20b)

and corresponds to an increase of Gg)(’r) when 7 = 7p. In the case of the photonic experiment,
it is difficult to perform both measurements, that is the cross-correlation between ports ¢ and
d and the autocorrelation of each port, at the same time. On the contrary, in our experiment,
the MCP detector has a dead time much smaller than the arrival time difference between the
two atoms. Thus, one can directly compare the cross-correlation between ports ¢ and d, to the
autocorrelation at each output port.

In Fig. 5.27, we represent the normalised cross-correlation (blue circles) as well as the nor-
malised autocorrelation at the output portcand d 4 (green circles) as a function of 7. Itis possible
to identify an increase on the autocorrelation function with maximum slightly displaced when
compared to the cross-correlation dip and amplitude. The blue line indicates the empirical
Gaussian fit from which the visibility is obtained. One can now try to predict the expected
width of the autocorrelation function. The autocorrelation for the output port c can be written

“We averaged the autocorrelation functions of port ¢ and d.
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Figure 5.27: Cross and autocorrelation for output ports of the beam-splitter. Comparison between the normalized
cross-correlation as a function of T between ports c and d (blue circles) and the normalised averaged value of the autocorrelation
of port c and d as a function of T (green circles). The blue line corresponds to the a Gaussian fit applied to the cross-correlation
function. The dashed green line corresponds to the symmetric fit which should correspond to the expected result for the
autocorrelation function as a function of T.

as

2y 1/ @ ), 1 e Fiky, ’
G2 = I (G2 +G) + §Ci ) (1 + cos( T (ka — k) (T - t,,,))) . (5.21)

The autocorrelation at the output portc, G( ) measured over the volume Qy, with integration
length £, along the vertical z—axis, is then equal to (the same calculation holds for Cffi})

bms,c+Lz/2 dk oc+La kbC+~£b

2
G2 (k) = () Moy f ,
& kbms c_n£21{2 kbC -£b

kac)2) oxp [_ (kb - kbc)2 ] exp [_ (kbms — kbms,.:)2]

202 203% 2(:%mS

1 (ka = kac)? (ks — hy)?
il -5 ) oo 52

(ks + Kkp/2 — 1)2
(g%}( Jex p(—;%‘g)[l + cos 91)} (5.22)

xexp(

where 8 = k"mLsh(ka —ky)(T — ty). If one assumes that the integration length £, is small when
compared to the typical width of the functions at play, then cﬁﬁ’ rewrites simply in terms of

) n 2 s e+ Lz /2 dky, kac+La bc+Lp
G? = (_) NNy f e f dk, dky, (1 + cos 9) (5.23)
L ks L2 Lz I s k- L

which leads to cf,i) = 2NN, (1 + asinc?( 2,,,[4(’1 —t ))) and, in this sense, the evolution of G(Z)
is the symmetric function of the cross-correlation described by Eq. (5.19). Thus, the width and
the amplitude of the bump must be equal to those of the dip. However, this is not the observed
result as one can see in Fig. 5.27, where the green dashed line indicates the expected result
for the autocorrelation as a function of 7. The center of the bump is shifted respectively to
the cross-correlation dip which is unexpected. This discrepancy will be further studied in the
future.
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5.6.2 Conditional probability

Another proof of the coalescence effect can come from the direct measurement of the conditional
probability of detecting n atoms in port ¢ having detected m atoms in port d. This probability
P(n|m) is represented for both the indistinguishable situation (blue histogram) 7 = 150 us (see
Fig. 5.28) and for the distinguishable situation (red histogram) 7 = 550 us (see Fig. 5.29). Since
the averaged population is rather small, for most of the realisations no atomic count is registered
in neither one of the two output ports. For this reason, we zoom on the joint probability P(2|0),
P(0|2) and P(1]1) for the indistinguishable case (see Fig. 5.31) as well as for the distinguishable
one (see Fig. 5.30).

We note that for indistinguishable paths, the conditional probability P(1|1) reduces, while the
probability of having two atoms in one of the output ports and zero on the other one increases.
This reduction of the coincidence probability corresponds to the HOM effect. The asymmetry
between P(0]2) and P(2|0) may come from the fact that we did not averaged over sufficient
realisations to recover a symmetric situation (for the distinguishable case it corresponds to an
average over 500 realisations and for the indistinguishable case over 1000 realisations.)

However, one has to keep inmind that these probabilities are obtained for detected atoms and
do not correspond to the real distributions. Since it is difficult to recover the initial conditional
probabilities, this result is only useful as a qualitative estimation of the coalescence at play in
this experiment.
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5.7 Others way to measure the destructive interference: variance of
the population difference

Although originally centred on the reduction of the cross-correlation between ports ¢ and d,
the HOM effect can also be studied through other quantities as for example the normalised
variance of the difference between the two clouds ¢ and d. This will be discussed in this section
and constitutes a complementary measurement to the cross-correlation analysis.

The variance of the difference between the two output ports c and d corresponds to (see
Section 3.4.2 and Appendix D.5 for more details)

2
+ t T t 2
, <(akfakc - akdakd) ) - (.akcakr - akdakd) 6524
cd = ’ -
(a ay,) + (ay k)

and can be re-written for the case of identical populations between c and d, (a;(r a) = (a;fdakd) =
{n) as
G2 +G% -26?

Vea = 1.
cd 2(n) +

In the case of distinguishable particles, Gg(m) = cﬁ?( o) = G(Z)(m) and one finds a nor-
malised variance equal to

Vi = 1. (5.25)

While for the case of indistinguishable particles, we have
1
G2 (t0) = G)(z0) = i ~ (G2 +6®)+c®

ab ’
@\ _ L2, ~2
Geg (0) = 1 (Gaa +Gyy)

and

Ving, = 1+ %Cﬁ? (5.26)

One can see that this normalised variance of the difference increases for the case of in-
distinguishable particles. As a function of 7, it is then expected to measure a bump around
T = Tg.

The visibility of the variance Vy corresponding to

- Vind.
Vy =
VDis.

-1, (5.27)

is then equal, for the case of particles generated through spontaneous parametric down-
conversion, to

. 1 -@
Vy = w G2 _ﬁm) (1+2(n)), (5.28)

and it scales linearly with ().
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For a finite detection efficiency 7, the detected value of the variance is equal to (see Sec-
tion 3.4.2)

Vi, =nV +(1-1),

leading to the expressions

Gt
Vind,, det. = [mq] +1, (5.29a)
VDis, det. = 1. (5.29b)
The visibility of the bump is then equal to
o _ S
Vv = ) n=n1+2n)). (5.30)
When compared to the cross-correlation visibility
po1-_ 1
2+ 0

one immediately sees that both quantities are preferably applied to distinct situations:

e Large populations: (n) — oo, V — 0.5 while Vy grows linearly with n(n). In this situation,
it is advantageous to measure the visibility of the variance rather than the visibility of the
cross-correlation;

e Small populations: (1) — 0, V tends to the maximum value of 1 while Vy reaches its
minimum value of 7. Then for a lower number of particles, it is preferable to look at the
cross-correlation.

It is important to note that the situation in which (1) — oo is rather distinct from the original
HOM experiment. The coincidence count will no longer go to zero as it is reported in Ref. [82]
and discussed in Subsection 1.1.1. These situations are closer to the squeezed experiments
performed in the domain of spin states as for example in Refs. [53, 210].

The variance of the population difference, V, as a function of 7 has also been experimentally
probed in our experimental set-up. Since it is preferable to have more than a particle per input
port, the pair production rate was increased, by increasing the lattice duration. The obtained
average population was then equal to (n) ~ 2. From Eq. (5.30) one would expect to obtain a
visibility of 1 (1 + 2(n)) approximatively equal to 1.

For this experimental sequence, contrary to the description made in Section 5.2, the Raman
transfer from sub-level m j = 1to the sub-level m; = 0 was performed after the interferometric
scheme. As a consequence, the time between the pair production and the application of the
mirror was on the order of t,, — to ~ 250 (50) us. By varying the time delay 7 between the mirror
and the 50:50 beam-splitter, one observes the evolution of V as shown in Fig. 5.32c). One sees
that when the atoms are made indistinguishable, that is 7 ~ 250 us, the variance increases for
ks = 1.275 (and k. = 0.74) (see Fig. 5.32a)). The value of the visibility Vy is equal to 1.0(2)
which agrees with the expected result of Eq. (5.30). The width of the bump, on the other hand,
is two times larger than the width of the cross-correlation between ports c and d as a function
of 7. This can be understood by looking at the evolution of V over 7, without integration over
ks b (see Appendix D.5 for the demonstration), which is equal to

V(t)=1+ %cfjf [1 + cos (%(T — tw)(ka + Kpms — kb))] . (5.31)
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Figure 5.32: Variance as a function of t. a) Evolution of the variance as a function of the momentum vector component
along the vertical axis k for indistinguishable paths. b) Evolution of the variance as a function of the momentum vector
component along the vertical axis k for distinguishable paths. c) Evolution of the variance V as a function of 1. An increase
of the variance appears clearly when the paths are indistinguishable. The contrast of approximatively 1 is coherent with the
averaged number of atoms (n) = 2 and the detection efficiency 1 = 0.25.

One notices that the oscillating term has now a periodicity two times larger than the cross-
correlation (see Eq. (5.17)), leading to a broader width after integration.

The visibility of the variance gives insight on the macroscopic (high number of particles)
particle-interference. This study deviates from the original HOM experiment and approach the
thematic of atomic interferometry in momentum space. This domain is very well developed in
the topic of spin squeezing [53, 210-212] or with trapped atoms [213-215] and has applications
in metrology [216, 217]. However, in our case, particles are moving in real space which can, in
the future, open the way to inertial measurements interferometry with non-classical states.

5.8 Role of the interactions

Finally, in contrast to photons, atoms interact with each other. Let us consider the role of
interactions in the HOM effect. In Ref. [109], the effect of interactions on the dip-visibility was
studied in detail. It was shown that the interactions are responsible for an effective Coulomb
potential and that the visibility decreases rapidly when the interaction potential is large when
compared to the frequency of the two photon Rabi oscillation.

In the experiment discussed so far, the frequency Qg is equal to 6 kHz while the chemical
potential of the pairs is almost negligible since the pairs are weakly populated — the total
number of atoms in both clouds does not exceed thirty atoms. Assuming that the cloud has a
size comparable to the one of the condensate °, the chemical potential is then equal to 400 Hz
and we obtain a ratio of

7
2hQOg

= 0.033. (5.32)

>The expansion effect is not considered, but it will only lower the effect of interactions
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W/ 240

Figure 5.33: HOM-visibility as a function of the interactions. Evolution of the HOM-visibility V as a function of the
ratio between the chemical potential and the 2-photon Rabi frequency. Figure copied from [109].

As it can be seen in Fig. 5.33, for a ratio of 0.033, the interactions will not induce changes on the

expected visibility. We can then safe]y neglect the influence of the interactions on the observed
HOM signal.

5.9 Conclusion

Along this chapter the atomic realisation of the HOM experiment has been discussed. We have
shown how to combine the different blocks discussed in Chapter 2, Chapter 3 and Chapter 4 in
order to perform the analogue experiment with atoms.

The visibility of the HOM-dip 0.65(7) presented in Section 5.3 was compared to the classi-
cal visibility threshold of 0.45(4) above which the result cannot be explained through simple
classical models. Hereupon, our experimental visibility can only be explained via quantum me-
chanics and demonstrates the ability of producing pairs of atoms with stronger-than-classical
correlations in momentum space and to manipulate them coherently. The value of the ob-
tained visibility has been compared to theoretical models assuming that the incoming state
was obtained through parametric down-conversion (see Section 5.4). The agreement between
this ideal model and our results is rather good, showing that simple theoretical arguments can
qualitatively describe our experiment. However, the HOM-dip width has proved to be harder
to fully understand. The qualitative model presented in Section 5.5 gives some intuition to the
experimental result but does not fully describe our observations.

Furthermore, we have shown, that our experiment allows us to observe directly both the
reduction on the cross-correlation between the two output ports ¢ and d as well as the au-
tocorrelation of each port, although the later behaves unexpectedly when compared to the
cross-correlation value as a function of 7.

Finally, we pointed out the fact that through the measurement of the variance of the difference
of population, information about many particles-interference effect can be retrieved. This kind
of measurements could be useful for future tests of inertial measurements using pairs of atoms
in momentum space.
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Conclusion and perspectives

We develop all those long-winded ideas
which can just interpret the reality of our
lives in different ways, without really
extending our body of worthwhile
knowledge about the big things.

Irvine Welsh, Trainspotting

For the past years, the metastable helium experiment of the laboratory Charles-Fabry has
been at the forefront of development in the domain of atomic pair source in momentum space.
Atomic pairs were first produced by collision between two condensates in 2007 [48]. From
this experiment it has been shown that the pairs are correlated in a non classical way via
measurement of sub-shot noise variance [51] and later through Cauchy-Schwarz inequality
violation [96]. Other pair production mechanism has been developed via matter wave analogue
to the dynamical Casimir effect in 2012 [39] and pair creation in momentum space via dynamical
instabilities in 2013 [108]. The last technique allowed us to produce a stable and tunable source
of atomic pairs in momentum space with non-classical correlations. The goal of these years of
investigation has been the accomplishment of milestone experiments of quantum optics with
matter-waves. In this manuscript, we report the first realisation of the atomic HOM experiment
using the atomic pairs developed in Ref. [108].

In this thesis, we have described the different steps towards the realisation of the atomic HOM
experiment. In Chapter 1, the basic theoretical background for the HOM experiment for both
photons and atoms are explained. From the knowledge of quantum optics, we identified the
necessary points to address and predicted the difficulties towards its experimental realisation
with an atomic source. Despite the conceptual interest of the HOM experiment, we shown that
this experiment can also be used to probe the purity of our atomic source and how far it stands
from a two-mode squeezed state with one particle per mode. The HOM experiment is also the
first evidence of the mode matching of our non-classical atomic pairs.

In Chapter 2, a brief description of the experimental status at the beginning of this work
was performed showing the imperfections that were necessary to address. In order to improve
the stability of the condensate, a horizontal trap was added as discussed in Section 2.2. This
addition provided us a more stable and tunable initial source of atoms.

The pair production mechanism obtained via dynamical instabilities of a condensate placed
on a moving lattice is discussed in Chapter 3. The geometrical alignment of the lattice has been
changed in order to decouple the vertical axis from the transverse directions allowing us to
retrieve an experimental situation closer to the 1D description of the system. In Section 3.3, we
have provided the theoretical and experimental steps behind the pair creation process, such as
phase-matching conditions, momentum spread and relative population of the atomic pairs.

In Chapter 4, the experimental realisation and characterisation of the atomic beam-splitter
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has been explained in great detail. Particular attention was given to the resonance conditions
and how to perform the calibration on the atomic pairs. We have also showed that the beam-
splitter does not add noise to the initial state formed by the atomic pairs. Besides, we have
shown how to use the atomic 50:50 beam-splitter in order to perform autocorrelation measure-
ments in analogy to quantum optics. This confirmed previous experimental results where the
autocorrelation was directly obtained from the atomic distribution of the cloud.

In Chapter 5, the first experimental realisation of the atomic HOM was discussed. We
retrieved a visibility of 65 + 7%, that cannot been explained with classical waves, showing the
quantumness of our state. We attribute the non-maximal visibility to the average population
which lies around 0.8 atoms. In Section 5.5, we showed that the half-width at 1/+/e of the
HOM-dip is equal to 70 (40) psand compared it to a simple theoretical prediction. An educated
guess for the discrepancy between the experimental and theoretical results would rely on the
measured transverse angle of the atomic beam-splitter (0.8° along the x—axis) leading to a
reduction of the spatial overlap between the pairs.

The HOM effect is of fundamental interest in order to study the state describing the atomic
pairs. The resultis a proof that one can, with this experimental set-up, create a twin particle
source for quantum interferometry. The possibility of applying such system to the case of
macroscopic atomic beams in momentum space is discussed in Section 5.7. This could open
the door to quantum interferometry similar to what is performed in the domain of spin squeez-
ing with the advantage that the particles are not trapped and, so, could be used for inertial
measurements.

Perspectives - test of Bell’s inequalities

Although historically antecedent to the HOM experiment, the violation of Bell's inequalities
is a conceptual more complicated phenomenon [9, 16-18]. The Bell’s inequality test based on
the gedanken experiment of Einstein, Podolsky and Rosen [1], corresponds to the translation
of an epistemological problem to the domain of experimental physics. The problem raised by
Einstein and co-authors shows the profound abstract nature of quantum mechanics. In their
paper, the following question was asked: Can quantum-mechanical description of physical reality
be considered complete? The question was centred on the fact that "In quantum mechanics in the
case of two physical quantities described by non-commuting operators, the knowledge of one
precludes the knowledge of the other.".

The situation can be easily explained considering that one creates a pair of entangled particles
travelling away from each other. The particles are described by the same quantum state, this
means, that one cannot describe each particle independently of the other. Suppose then the
situation in which after a certain time ¢, one of the two particles is read. For the case of photons,
for example, the situation is often represented by the measurement of the polarisation after a
certain travelling time ¢ [218]. Once the measurement is performed, the answer on one of the
two-particles immediately fixes the result on the other particle. The question raised by Einstein,
Podolsky and Rosen, is how can information be instantly exchanged between the two particles
knowing that nothing can travel faster than the speed of light? One solution would be that
a hidden information, not described by quantum mechanics, would immediately fix the result
of the two particles when they are still close to each other. This would mean that quantum
theory is not complete which was exactly the point of view of the Copenhagen interpretation
[2]. Quantum mechanics however, would argue that although the measurement of the two
particles is 100% dependent of each other, this strong correlation would only appear once we
compare the result of the two measurements and, in this sense, no information had travelled
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Figure 6.1: Schematic representation of an experimental realisation of Bell’s inequality test. Several modes are
outcoming from the initial source, mode a correlated with b, @’ with b’ and a’* with b"’. The mirror and beam-splitter are
calibrated such that a and b overlap on the beam-splitter. This implies that mode a’ overlap with mode b” and a” with b'.

faster than light.

Bell transformed this question to an algebraic prediction [6]. The local realism defended by
Einstein and co-authors, translated then in the verification of a certain inequality, denominated
of Bell’s inequality. A violation of such inequality would irremediably proof that the description
of the system by quantum mechanics is complete and that the particles are entangled. This
has been proved to be true in several experiments, since the first Bell’s inequality test using
polarisation of entangled photons [9, 16, 17] to tests violations based on phase and momentum
variables [18].

The main goal in the near future would be test Bell’s inequality in our experimental set-
up. The steps towards this result would resemble very much to the 1990’s Rarity and Tapster
experiment [18]. In our case, particles are entangled in momentum space and the inequality can
be sorted out by playing with the relative phase of the pairs [219]. The experimental situation of
Bell’s inequalities violation corresponds, in its simpler form, to the one represented in Fig. 6.1.
Two modes described by the momenta {k, ky} and {k.», kp} are created at time fy = 0. The
interferometric scheme is such that the modes are mixed, this meaning that ks is recombined
with kp» and k;» with k. Furthermore, the mirror for ky and kp» imprints a phase ¢p on
the atomic beams while the beams k;» and ky get a different phase @p1. The same happens
with the 50:50 beam-splitter, with a phase ¢s and @s, respectively. This is easily performed
experimentally by applying the two laser pulses at different times and changing the relative
phase between the laser beams meanwhile.

The Bell’s inequalities can be written from a parameter S introduced in late 60’s, see Ref. [7],
and known as the Clauser-Horne-Shimony-Holt (CHSH) parameter such that if

IS|> 2, (6.1)

with S being a function dependent of the correlations between the different output ports, the
state is entangled and local hidden-variables cannot explain real measurements, see Appendix E
for details calculations.

Let us assume that the state is described by two independent parametric down-conversion
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with sinhZ{/’L) = (n) = (m). The expression of S can, after some calculations, be written as [219]

e ()
5= 2@{1 +3(n))

For {n) = 0, S reaches the maximum value of S = 2 \ff and for increasing average populations,
(n) — oo, S decreases to the asymptotic value of S = % \ff . Thus, the Bell’s inequality is violate
when the number of particles is small. The behaviour of S as a function of (1) is represented
in Fig. 6.2. One can see that for an average population above 0.26 the CHSH’s parameter is
smaller than 2 and one does no longer violated the inequality. Once again, the importance of
having a low population number in the pairs is essential to increase the degree of violation of
the inequality. The reduction of the average population is even stronger than the one needed
for the HOM experiment which will lead to even longer acquisition time in order to increase
the signal-to-noise ratio.

Other questions, concerning the quantum efﬁciency, the change in the two mirror or beam-
splitter phases timing, can still lead to loopholes where hidden variables could explain the
result through local realism. However, in our experiment these questions would probably be
rather difficult to address experimentally. This experiment, nonetheless, can explore interesting
regimes for theories of gravitational decoherence [219-222] and can therefore be of main interest
for the theoretical construction of quantum gravity.

In summary, with the results of the HOM experiment in mind, the realisation of the Bell’s
inequality test seems rather straightforward to perform. The only experimental difficulty, at
the moment, is relative to the control of the phase of both mirror and beam-splitter. This phase
determines the value of 6. It is fundamental to guarantee a stability of ¢u — ¢s and puy — @5
well below 711/4. As discussed in Chapter 4, the study of this stability has already been initiated
during the presented work and further tests are being carried on. It is also important to have
in mind, as a side note, that not only the phase of both mirror and beam-splitter determines the
value of 0 but also the contribution of both time difference t; — 2t; and the energy conservation
kﬁ,, + kﬁ,, - kﬁ, - ki, (see more informations in Appendix E). As for the HOM experiment, an
integration will be performed in momentum space in order to increase the signal-to-noise ratio
and, consequently, the contribution of kﬁ,, + kg,, - kﬁ - k;, will not be zero. Nevertheless, since
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it is associate with t; — 2t;;, by choosing ts = 2t;, it is possible to cancel out this term. This is
ensured, once more, via the results of our HOM experiment discussed in this manuscript.
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Appendix A

Speed of sound expression in the case
of a quasi-1D Bose-Einstein condensate

We present a continuation of the work presented in Ref. [64] allowing to the determine the speed
of sound of the condensate c in the intermediate quasi-1D regime. Although the determination
of the speed of sound is well known for both 3D and 1D systems, its determination in the
intermediate regime, of interest in our work, is here reported.

Starting from the dispersion relation

|
4mth2a
Er(z) = JE;( (Ek +2 HUJ{(Z)

m

where Ey is the kinetic energy given by

2K

k= om

and 1 4(z) is the linear peak density
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The chemical potential can then be written as
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where fi[n1p(z)] = o1 [mp(z)]/ (Aw, ), see Subsection 2.2.3.

The speed of sound is usually introduced in the dispersion relation by

& = VER(Ex + 2mc?).

By looking at the previous equations, one finds

o, [ 1)
c(z) = \/W(P[MD(Z)]— m .
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The value of ¢ can be obtained by integrating n(z) over z, so one ﬁna]ly retrieves

hw, L L o 1
c= mlN_MLdz[(1+§(1_z2))_m], (A1)

Table A.1 summarises the different results of the speed of sound as function of the typical
trapping frequencies of our experimental set-up.

w, =2nx 1275Hz
w;,=2nxXx7Hz | w;=2nX93Hz | w; =21t x 170Hz
Nat =3x 104 Na = 5% 10* Na =7 x 10%

¢ (cm/s) 1.14 2.28 2.8

Table A.1: Typical values of the speed of sound c. The typical values of the speed of sound in our set-up are given
following Ref. [64].
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Appendix B

Characterisation of the crossed dipole
trap

The crossed dipole trap corresponds to one [’G laser, at 1550 nm with maximum power 5W, split
in two independent optical paths with independent acousto-optic modulators (see Fig. B.1). The
effective maximum power on the atoms is equal to 2 W. Most of the optical power is distributed
on the vertical beam and around 10% to the horizontal beam. Both beams are red shifted
with respect to the atomic transition 235, — 2P (wavelength of 1083 nm) with their frequency
shifted 80 MHz with respect to each other, in other to avoid low frequency modulation of the
trap intensity 1. One beam propagates along the vertical z—axis corresponding to the “original”
trap described in Ref. [150] and the second on the horizontal plane and forms an angle of
8.6 ° with respect to the x—axis, defined by the magnetic trap (see Fig. B.1 and Fig. B.2). The
typical power used for the crossed dipole trap is 600 mW for the vertical trap and 30 mW for
the horizontal trap.

For the vertical beam, the waist is 43(1.5) yum. This value was indirectly obtained by
parametric excitation of the cloud [168]. However, this measurement does not agree with
an independent, geometrical measurement realised on the optical bench. This consisted in
measuring the waist of the beam at different positions after the lens. It was then expected a
waist on the atoms of 35 um [150]. This difference is probably due to aberrations introduced
either by the window of the science chamber or by accidental modifications of the optical path
during the final alignment. For more details in these calculations please see Ref. [150]

For the horizontal beam, the same geometric calibration of the waist has been carried out.
Several measurements of the spot size were performed after a lens of focal 400 mm as a function
of the relative position to the focal plane as shown in Fig. B.3. The data is fitted by the function

2
w(x)=wp|1 +[ sz] ,
nwg

with w (x) corresponding to the spot size at a position x, wy the waist radius of the beam and
A the wavelength. From this fit, it was extracted a value of wy = 58 (1) um corresponding
to the theoretical expected waist of the horizontal trap beam on the focal plane. The lowest
experimental measured value of the waist was equal to 65 um. Since we did not measure the
waist at x = 0, one can only guarantee, that even in the presence of aberrations, the minimum
waist must be, at least, of 65 um.

'If the modulation intensity is close to a trapping frequency, this induces parametric excitation of the cloud. Since
the typical frequencies of our trap are on the order of the kHz, a detuning of 80 MHz between both trapping beams
guarantees that we avoid the resonance.


http://www.ipgphotonics.com/products_15_micron_lasers_cw_elr-lp_series.htm
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Vertical optical bench
See J-C. Jaskula thesis for more details

z
y Science chamber
<= M2
L —
X
\ J f=400mm - 5,
F810 APC 1550nm

7\.‘2
— < U

Horizontal dipole trap bench

Figure B.1: Schematic representation of the optical bench for the horizontal beam trap. The laser beam is split in
two with one part used for the vertical dipole trap described in Ref. [150] and the other injected into a polarisation-maintaining
optical fiber taking the beam to another optical bench. There, the beam goes through an acousto-optic modulator where it is
diffracted into the +1 order with an efficiency of 90%. The optical power on the order +1 is set by increasing the RF power on
the acousto-optic modulator. Order +1 is detuned by 40 MHz with respect to the order 0. The beam is then split with 1% of
the power sent to a photodiode in order to lock the horizontal beam intensity. The other part is again injected and the output
collimator corresponds to a FS810APC from Thorlabs leading to a diameter beam of 7 mm. The beam goes then by a focus lens
of 400 mm leading to a waist on the atoms of 82u m.

Vertical
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Crossed dipole
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Horizontal
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Figure B.2: Schematic representation of the crossed dipole trap.

However, as for the case of the vertical trap, this value does not correspond to the measured
value on the atoms. Indeed, one retrieves from parametric excitation a waist of 82 (4) um [168].
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' 1s. During this time, a small fraction of the atoms

—~ 06 L | aretransferred in the vertical dipole trap. The mag-
g netic trap is then switched off and the atoms are kept
A, 04t +{  inthe vertical trap for 3s. The horizontal beam is
turned on in 1 s and kept at its maximum intensity.

0.2 | 7 The vertical trap is then switched off and 200 ms

0 e _\ later the horizontal trap is also switched off. By

, , , , , looking at the number of atoms remaining inside

0 1 2 3 4 5 the horizontal trap one can infer the alignment be-

Time (s) tween the two traps.

This systematic difference could point on the direction of the role played by the science chamber
window, although, at the moment no concluding test has been performed.

Alignment protocol

In order to overlap the two beams, the experimental sequence represented in Fig. B.4 is applied.
The atoms are adiabatically loaded in the vertical dipole trap from the magnetic trap by ramping
up the intensity of the vertical beam in 1 s. When the intensity reaches its maximum value,
the magnetic trap is switched off and the atoms only remain in the vertical trap. The non
transferred atoms fall due to gravity and are lost. The intensity of the beam is then adiabatically
ramped down to a given final value. At this moment, the root-mean-square size of the cloud
is 200 — 300 um along the vertical axis and 5 um transversally, given by the temperature of the
cloud and the trapping frequencies. The horizontal beam is then adiabatically turned on and
when its maximum value is reached the vertical beam is switched off.

If the horizontal beam overlaps perfectly and if atoms are cold enough to not escape from
the horizontal trap, then all of them are transferred to the horizontal trap and no atom is lost.
The horizontal beam is then switched off and, after time-of-flight, we record the atoms on the
MCP.

The alignment with the horizontal trap is then scanned by moving the vertical position of the
horizontal beam. To do so, we move the vertical position of the lens which is fixed on a 3—axis
stage. A typical transferred population ratio as a function of the horizontal beam position is
plotted in Fig. B.5. The width of the transfer profile is a convolution between the size of the
cloud and the waist of the horizontal beam. The fact that the population transfer does not rise
up to 1 is due to several reasons. First, the typical temperature of the cloud in the vertical trap
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Figure B.6: Usual loading sequence of the
atoms in the crossed dipole trap. Both optical
. . . . | beams intensities are turned on adiabatically in 1s
during which they are superposed to the magnetic
trap. After this adiabatic loading of the atoms, the
magnetic trap is switched off in a few ms. The hori-

vert. beam

5 061 . zontal beam is kept at its maximum intensity while

8 the vertical undergoes an adiabatic decrease of its
o, 0.4 | B . . . . .

intensity leading to evaporative cooling of the ther-

02 L _ mal cloud. After the evaporation, the vertical trap

/ alone cannot trap the atoms, and, as a consequence,

0 | | | | | the remaining atoms have to be in the crossed re-

0 1 5 3 4 5 gion. The condensate is then created in the potential

formed by the two beams with trapping frequencies
given by second derivatives of Eq. (B.1).

Time (s)

(500nK) is comparable to the trap depth of the horizontal trap (1 uK) and, consequently, some
atoms escape from the new trap. Second, we observed the presence of residual magnetic fields
which induce oscillations along the long axis of the horizontal trap. When the vertical trap is
turned off the atoms are only confined by the horizontal beam. If a magnetic gradient induces
a force along its propagation axis, where the trapping potential is weaker, then the atoms start
to oscillate in the trap. If the perturbations are strong enough to push atoms outside of the
trapping potential it can result in losses. When both dipole traps are on, however, the residual
magnetic force is completely negligible compared to the vertical confinement created by only
the vertical beam.

B.1 Crossed dipole trap potential

In order to create an attractive or repulsive potential via light-matter interaction, one can take
advantage of the induced dipole of the electromagnetic field [151].

The final loading sequence corresponds to the scheme of Fig. B.6. Both beams are adiabat-
ically ramped on in 1s, after which the magnetic trap is switched off. The horizontal beam
is maintained at a constant final value while the vertical beam performs an evaporation ramp
until it reaches a final value, which is kept constant. The final power of the vertical beam allows
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Crossed dipole trap potential
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Figure B.7: Representation of the dipole potential felt by the atoms. a) Dipole potential as a function of z for the case
of the vertical beam. The dipole potential only compensates gravity and no well is visible. b) Dipole potential as a function of z
for the case of a crossed beam situation. A well appears at z = 0 which corresponds to the crossing of the two beams.

one to compensate the gravity potential at the position of the horizontal beam but cannot form
a trapping potential alone along the longitudinal direction. This corresponds, for a waist of
Wyert = 43.0(5) ym, to an optical power of Pyey = 585 mW and results in the potential profile
displayed in Fig. B.7a). When the horizontal beam is added the potential presents a well centred
atz = 0 as shown in Fig. B.7b) with

Exp |- 2654¥) Exp _pren))
Pl an((E2)) w}{[(xh_) "
Vopt(x, Y,2) = Vyert Y —mgz + Vhor > , (B.1)
(E2) +1 () +1
where
371c® 2Pyert r r
Vvert = ———5— — .
2&)0 Wyt @Wo — Wdip @o + Wdip
and
Veo = _311(:: 2131;,r ( r . r )
2wy mwy  \@o — @dip W0 + Wdip

with I' = 2t X 1.6 MHz corresponding to the width of the transition 23S; — 2°P,, wg the
frequency of the transition, wgip the frequency of the electromagnetic field, wyert the waist of

the vertical beam, zyert = (nwﬁen) //’Ldip the vertical beam Rayleigh length, xpor = (nwﬁor) //’Ldip
the horizontal beam Rayleigh length, wye, the horizontal beam waist and zp = 2.3 mm the
central position of the vertical waist. The usual approximation where the term I'/(wg + Wgip) 1S
neglected cannot be performed since the wavelength of the laser Adgip = 1550 nm is not close to

the resonant wavelength A9 = 1083 nm.

As seen previously, Wyert. = 43 um while Wy, = 82 um. In the inset, we can see that the well,
for a horizontal beam power of 30 mW, is very shallow, with a depth of only 400 nK. A shallow
well has its own advantages since it is very easy for atoms with non zero speed to escape from
the trap. It is important to note that the transverse confinement is almost unchanged since
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Figure B.8: Determination of the horizontal beam waist. Indirect measurement of the horizontal beam waist via the
evolution of the trapping frequency along the vertical z—axis as a function of the horizontal beam power. The red shaded area
corresponds to the theoretical estimation of the frequency evolution using Eq. (B.2) for wy,, ranging from 78 um to 88 ym. In
inset the dipole trap depth is represented as a function of the horizontal beam power. The horizontal blue line corresponds to the
residual thermal cloud temperature.

the contribution of the horizontal beam is negligible when compared to the vertical one. It
is the inverse situation along the vertical axis where the horizontal trap defines the conﬁning
potential.

Determination of the horizontal beam waist

One can use the produced potential in order to indirectly measure the waist of the horizontal
beam. By scanning the longitudinal frequency as a function of the horizontal beam power,
through the oscillation of the BEC in the dipole trap (see Subsection 2.2.5), one retrieves a curve
which can be fitted by the theoretical value

]
1 32V0pt(0r Oxz)
w, = \/ e F (B.2)

assuming an harmonic potential and where Vipi(x, y, z) is defined by Eq. (B.1). For steeper
potentials, the oscillation frequency increases. Since the waist of the vertical beam has been
independently calibrated, the only free parameter is then the value of the horizontal beam waist

whor-

The resultis plotted in Fig. B.8. The blue circles correspond to the experimental measurement
of the longitudinal frequency for powers Ppor = 110mW, 75mW and 30 mW. The horizontal
beam waist is then estimated at wnor = 82 (4) um where the uncertainty is due to the fact that
for lower optical power, the atoms reach the edges of the trap, as shown in the inset of Fig. B.8.
Consequently, the oscillation is modified by the anharmonicity of the trap and, for low optical
powers, the speed given by the atoms start to be equal to the trap depth and the harmonic
approximation does not hold any more. This invalidates the fitting curve described by Eq. (B.2)
and the point at 30 mW lays outside the prediction.

180



Crossed dipole trap potential

Minimum potential position (mm)

600.0 700.0 800.0
Power (mW)

Figure B.9: Determination of the vertical dipole trap beam waist. Indirect measurement of the vertical dipole trap
beam waist on the atoms via the alignment of the horizontal beam with the vertical one as a function of the vertical beam
power. Since, gravity tends to lower the position of the potential minimum, this changes as a function of the beam power. By
scanning the power of the vertical beam and retrieving its displacement by the transfer of population with the horizontal trap,
one estimates the waist of the vertical beam.

Determination of the vertical beam waist

As for the horizontal beam waist determination, one can also extract information of the vertical
trap via Eq. (B.1). Due to the gravity, the position of the potential well minimum depends on
the vertical beam power and, as the power decreases the potential minimum moves to negative
positions. By changing the vertical beam power, one induces a shift of the minimum potential
position and, consequently, of the vertical position of the cloud. The alignment of the horizontal
arm is performed as before, by changing the vertical position of the lens. Now, for each power
value of the vertical beam, one retrieves a different optimised alignment between the two beams
as shown in Fig. B.9 (blue dots). The experimental results can be fitted by Eq. (B.2) with wyert.
as free parameter. The reference frame origin corresponds to the retrieved experimental value
at 800 mW.

InFig. B.9, the experimental points are compared to the theoretical minimum trap position for
different vertical waist. The shaded red area corresponds to the expected theoretical evolution,
for a waist varying from 43.5 ym to 42.5 ym and assuming that the measured power corresponds
to the value on the atoms. It is possible to see that our experimental points fit well in between
this two theoretical predictions giving us an estimation of the waist of 43.0 (5) um. This value
agrees with the previous measurements described in Ref. [142].
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Appendix C

Raman transfer set-up for a metastable
Helium experiment

In our experimental procedure, after the optical trap has been switched off, transfer tothem =0
state is done. This is necessary due to the presence of stray magnetic fields in the vacuum
chamber that otherwise would lead to a severe deformation of the atomic distribution during
the long free fall. The transfer is achieved by introducing a two-photon coupling between
the m = 1 state, in which the atoms are initially, and the m = 0 state using two laser beams
resultant from a single source emitting at 1083 nm and detuned by 600 MHz from the 235, to
23P, transition as shown in Fig. C.1. The optical polarisation of the first beam is set horizontally
in order to perform the 7 transition and the other beam is vertically polarised guaranteeing the
o~ transition. Because the vertical polarisation beam is decomposed into ¢~ and ot, the power
is two times larger than for the other laser beam.

The frequency difference of the laser beams is chirped across the two-photon resonance so
as to realise an adiabatic fast passage transition (the frequency change is 300 kHz in 300 us).
We have measured the fraction of transferred atoms to be 94 %. This is calibrated by looking at
the detected number of atoms in state m j= 1 without Raman transfer and by compare it with
the remaining population in the m j= 1 state after transfer as shown in Fig. C.2. The transfer
efficiency corresponds then simply to the ratio between the populations of both situations. The
remaining 6 % stay in the m = 1 state and are pushed away from the integration volumes by the
stray magnetic field gradients.

Since the relative angle between the two laser beams is non zero, a small velocity vector is
given to the transferred atoms. This corresponds to an increase of the speed along the vertical
direction of 0.2 viat. This is accounted in the condition of resonance of Bragg diffraction.



Raman transfer set-up for a metastable Helium experiment

600 MHz

m; = -1

Figure C.1: Representation of the atomic transition 2°S; —2°Py used for the Raman transfer. The energetic difference
between the sublevels m; = +11is due to amagnetic bias field of 3 G. This corresponds to an energy difference of 2mxfix 8.2 MHz.
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Figure C.2: Raman efficiency calibration. a) Remaining atom number in the state m; = 1 after applying the Raman
transfer. The number of detected atoms is 272, averaged over 40 realisations. b) Detected number of atoms in the state m; = 1
without applying a Raman transfer. The number of atoms is, in average, 2910. However, this number is probably a low
estimation since the cloud seems to saturate the detector (see Subsection 2.1.2.)
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Appendix D

Detailed calculations for the HOM
experiment

D.1 Beam-splitter scattering matrix

In order to describe the evolution of the atomic pairs a 2 X 2 matrix description will be adopted.
This corresponds to a Rabi oscillation between two external states via the application of a
shallow optical lattice. An optical lattice is created via the interference of two laser beams that
give rise to a spatial periodic modulation of light intensity. For an atom shinned by both laser
beams this corresponds to a periodic potential as seen in Chapter 3. In the weak depth regime,
the periodic potential leads to a coupling between an atom with momentum kpms to an atom
with momentum —kppms, where kpms is the periodicity of the beam-splitter lattice in momentum
space. This corresponds, effective]y, to a two-state interaction Hamiltonian, described in the
center of mass frame of reference by

. 0 Q2
H=n|_ . (D.1)
Q2 0
where |Q)| = Qg corresponds to the two-photon Rabi frequency. This frequency corresponds to
a complex number and its phase, defined as

é? = Q/|Q|, (D.2)

plays an important role. It corresponds to the phase difference between the two interfering
laser beams and, in all the manuscript, is randomly chosen.

The Hamiltonian (D.1) gives rise to a coherent transfer of population between the external
state kbms and —kpms. This is used in the case of the atomic pairs to realise an atomic 50:50
beam-splitter and mirror. As seen in Chapter 4, the beam-splitter corresponds to a lattice
with periodicity in momentum space equal to 0.55kj,;. The atomic beams a and b are then
created with a momentum difference of 0.55kj,. The mirror exchanges the two atomic beams
in momentum space as represented in Fig. D.1 and the beam-splitter swaps their momenta as
schematically described in Fig. D.2.

The eigenvalues and eigenvectors of the Hamiltonian D.1 are defined as

Ec=101/2, )= %(la) ) (D.3a)

1 .
E,=-101/2, ly)= ﬁ( —¢lay + b)), (D.3b)
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Figure D.1: Schematic representation of the atomic
mirror on the atomic beams. The two input arrows in blue
and red colour represent respectively beam b with momentum
distribution centred on ky = 1.29 qiy and beam a with mo-
mentum distribution centred on k, = 0.74 qiy. If the mirror
resonance is sufficiently wide, the two beams are entirely ex-
changed after the atomic mirror. Such that the initial blue
atom is now centred on 0.74 ki, and the red one at 1.29 ki,
In our notation at the output of the beam-splitter the beam
centred at 0.74 k;,, is called c and the one at 1.29 k;,, d.
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Figure D.2: Schematic representation of the atomic
beam-splitter on the atomic beams. The two input arrows
in blue and red colour represent respectively beam b with
momentum distribution centred on k, = 1.29 qiy and beam a
with momentum distribution centred on k, = 0.74 Q. If the
beam-splitter resonance is sufficiently wide the two beams are
equally swapped after the atomic beam-splitter. Such that the
half the population of blue beam is now centred on 0.74 Xk,
and the other half stays at 1.29 k. The same thing happens
with red atoms. At the output of the beam-splitter the beam
centred at 0.74 Xy is called c and the one at 1.29 ki d.

and, consequently, the time evolution of field operators 4 and 33, corresponding to the input

fields of the beam-splitter can be written as

2y = %(Ix) —eityy) -

|b)=%(e*’¢|x)+|y>) — %(*"i Do) 1INy ).

D.1.1 50:50 beam-splitter

1, . o
_Z(e—mwzlx) _ e“¢d'ﬂ|‘f2|y)) ’

(D.4a)

(D.4b)

For the case of a 50:50 beam-splitter, as seen in Chapter 4, the time interaction corresponds to

Qgt = /2 which transforms Eq. (D.4b) into

oy 5 %((1—f)|x>—e—*'¢(1+f)|y>)ﬂc)z%(m)—fe—*’ﬂb)), (D.5a)
by TR (0= rily) == (it ). (©5)

where ¢ and d stand for the output field operators of the beam-splitter, such that the transfor-

mation is given by

(o™

1

=~

\/T ie'Ps

ieiPs

=

=

1
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Field operator evolution

with ¢ps = ¢ + 7, the phase associated to the beam-splitter operation. The scattering matrix Sis
then defined as
2 1 1 ie"iPs D6)
V2'|  ieits 1| '

D.1.2 Mirror

The time interaction corresponding to a complete exchange of momenta corresponds to Qrt = 7
and matchs the mirror situation. The evolution of the operators 2 and b can then be written as

DR %(—Ix%e“'ﬂy)):w): —ie ), (D.72)
by 2= %(—e"‘*”lx)ﬂy)) =|d)= —ié?la). (D.7b)

Finally, one obtains the transformation associated to the mirror, such that,

é 0 iem|fg

’

a lidew o ||b
leading to the scattering matrix M,
0 ie"iPm

M= , , (D.8)

ie'Pm 0

with ¢pr = ¢ + 7 the phase associated to the mirror operation. The phase has been named ¢um
in order to differentiate it from the 50:50 beam-splitter ¢bs. As seen in Chapter 4, for small time
differences between the application of the mirror and the 50:50 beam-splitter, the stability of the
phase is sufficient to observe interference fringes after integrating over several experimental
realisations. In this sense, one can consider that although the absolute phase is randomly
defined, the difference between the phases is stable. For real interferometers, all terms would

only depend of this difference and not of the absolute value. Nevertheless, this is untrue in our
situation as discussed in the next section.

D.2 Field operator evolution

In order to determine the interference effect, we start by looking at the temporal evolution of
the operators 4, and 4, standing for the atoms with momenta k, and k; at the output ports of
the beam-splitter. This corresponds to changing the previous notation, such that 2 = 4 and

b=y,

The two atomic beams move apart from each other since their speed is different. At time f,,
the mirror is applied, such that their momenta is exchanged making the two beams recombine
on a 50:50 beam-splitter at time {5 as represented in Fig. D.3.

At time t, the operators can simply be written as

k2

iy () = dy (tsr)e ) (D.9a)
k2

g, (1) = g, (t)e T C), (D.9b)
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Figure D.3: Schematic representation of atomic the HOM experiment. The two beams a and b in red and blue
respectively, produced at time t = 0 move apart from each other. At time t = t,, their momenta are exchanged such that beam
a is now blue, and beam b is red. The two atomic beam are then recombined on the 50:50 beam-splitter at time t,.. After the
beam-splitter the atoms exit in either beam c with momentum k. = k, or beam d with momentumky = ky. If t; —t,, = T =t,,
then the two beams are indistinguishable after the beam-splitter.

with t5 corresponding to the application time of the 50:50 beam-splitter. The beam-splitter
operation corresponds to the scattering matrix

a_ 1 1 ie~iPs
VI its 1

where we attribute a local phase ¢s. In the same manner, the mirror is also associated to a
scattering matrix

N 0 je~iPm
M ,
ielPm 0

with ¢m the phase associated to it. It is important to note that the phase of the mirror or

beam-splitter is completely random from one realisation to the other while their relative phase
is maintained constant.

The operators can then be written as

k2
iz (tts)

i, (t) = — [ie9% ik, — € ] S (D.10a)
iﬁkzb{f ts)

. e ImV s e L, o

g, (t) = 5 |69 e — €% 1, |, (D.10b)

where kpms corresponds to the momentum given by the beam-splitter lattice. The phases
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¢1, ¢, 2 and ¢, correspond to

¢1 = —(Ps — Pm) — jriﬁ(i’c + Kpms)® — zt—n’:’(kﬁ — (ka + koms)?), (D.11a)
¢ =—¢m— % ki + m,,, (G = (Ka +Koms)?) (D.11b)
ﬁ m
$2 = (s — ¢m) - _(kb Kome)? — 5 5 K2 — (kp — koms)?), (D.11¢)
, ht; ﬁtm
2 =M~ %kﬁ + %(kg — (kp = kbms)?) - (D.11d)

The detection is performed at a time t which as no importance in the calculation of the
cross-correlation between the output ports of the beam-splitter as we are going to see.

D.3 Cross-correlation and HOM-dip

The cross-correlation function after application of the 50:50 beam-splitter corresponds to

where, experimentally, () corresponds to a statistical average over N experimental realisations
with N — co. Using Eq. (D.39), one obtains the following expression
1 .l r r
G = ) — (Ot est 4

_[(ak(;+kbms ky—Kpms akﬂ+kbms akb_kbms bakﬂ+kbms akb_kbms)

- (e i1y +P2—¢))pt A st Ok ko ky) + (ak ak Ok, Ok, )]

~F oF N ~F A a” oA
*2 [(“k B, K e “kb—kbm)+(ﬂkbakﬂ+kbmsﬂkb ke, +epms? 1+ (D.13)

where for the resonant situation k; + kpms = kp, One can write

C(2}
2 1 2 2
G = gA+ =5 [1-Re [ e di-o)]] 4 [c( '+ Gy |- (D.14)
The first term corresponds to
A = Re[(@G ool | ol i, )] (D.15)

and depends on the phase

B) = b1+ P2 — P = 2bs — ) — 20m — % [ (ks = Koms)* = (ko + Koms)” = (k3 = K2)] (¢ = 2tn),

which depends of the absolute phase ¢n. As we said before, this phase is kept random, such
that after averaging over the different realisations it washes out.

D.3.1 Visibility without assumption of the incoming state

In order to experimentally Verify that this is the case one can re-write the cross-correlation for
indistinguishable particles as

@ _1ico, oy, 1
Grog = 7 (Gad +Gyy) + 54, (D.16)
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Figure D.4: Evolution of A as a function of the integration volume Qy. Left panel: 2D representation of A as a function
of the integration volume Qy = [L2 X L.]. The length of L, is increased by values of 0.04k,, as well as the length L, .
Right canvas: top; Evolution of A as a function of L. for a fixed value of L, = 0.048 k. For short integration length along
the z—axis, one finds a value of A = 0. One the since of the integration increases A decreases towards negative values as a
consequence of the mixing between indistinguishable and distinguishable particles. Right canvas: bottom; Evolution of the
cross-correlation for the indistinguishable case as a function of L. In both cases, the red circles indicates the optimised volume
of integration for which A is still approximatively null.

and, consequently, the value of A can be extracted from 2 [Gg’ﬂi - i(@ﬁ) + Gﬁ))] with Gﬁ}d_

corresponding to the experimental value of Gi‘?(r = 550 us). The value of A is then determined
as a function of the integration volume Qy as shown in Fig. D.4 left panel.

Fig. D.4 shows the evolution of A for different integration volumes defined by the integration
length on the transverse direction and longitudinal one, L, and £, respectively. A cut along

L, is performed for both Gii)m qand A for a fixed integration length on the transverse direction
L, = 0.048kp. Itis possibl!e to note that for small integration volume, A — 0 and tends to
decreases towards negative values when the volume of integration increases. This is related
to the fact that with an increased volume of integration different modes start to be taking
into account as discussed in Subsection 5.1.2. Thus the value of Gt(;)('r = 550 us) does not
correspond any more to the indistinguishable case which invalidate the use of Eq. (D.16). The
integration volume corresponding to the optimised volume of integration described in the main
text is identified by the red circle (£, = 0.028kj). For this volume, we can extract a value of

A=-28x%x10"3 +6.0 x 103 which is, taking into account the error bars, negligible.

Although the goal here was to demonstrate that A — 0, one can note that for a well defined
phase, the measurement of A gives important information on the phase difference between the
particles, via ¢, — ¢, and on the produced state through the measurement of non symmetric
components leading to a quantum state tomography [223].

D.3.2 Indistinguishable and distinguishable cases

Let us consider the two extreme cases corresponding to either perfect indistinguishable paths
or distinguishable ones. The two cases can be seen as:

e Indistinguishable case, ks + kbms = ks;
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e Distinguishable case, k; + kbms # kp such that k; + kbms and k;, corresponds to different
modes.

For the indistinguishable case Gt(fi) can be re-written as
C(z) {(ak A, g, ) —Re [(d(¢1+¢’2 P92t ak ax, ﬂkb)]}

o [(ak iy By, ax,) + @y ay g, d,)] (D.17)

with ¢1 + ¢2 — (p’l - ¢)’2 = 0 and, consequently,

@ _ 1~ , ~@
Ga =13 (G2 +c2) (D.18)

where Gﬁ) and Gﬁ) stand for the autocorrelation of k; and k;, this means, the autocorrelations
before the mirror and the 50:50 beam-splitter.

The distinguishable situation corresponds to k; + kpms # kp such that the term

ke
P1+ P2 = P = P = 2 (Kims + ka — kp) 2tm — L) (D.19)

oscillates quickly over time. Thus, this term vanishes and one retrieves

o_lio, o, 10
Go =7 (Gad +G)) + 3Gy (D.20)

The HOM-dip visibility corresponds then to

(2) 2)

vo1- ch Ind. _ 2G,,
- 2) v (2) (2)
Ccd Dis. G““ + be + 2Cab

and can be related to the Cauchy-Schwarz inequality coefficient, C = CQ) / ,HG(z) Gﬁ) , such
that

1

V=1rs/c

with the coefficient 6 standing for
GP +GP
2,/G2GY

One sees that for the case of an input state |1,, 1;), the autocorrelation before the beam-
splitter is equal to zero and one finds, after the beam-splitter, a vanishing coincidence count. In
this situation, the visibility is equal to one.

D.3.3 HOM-dip width

In the case of a multimode source of atomic pairs, a finite width of the HOM-dip can appear as
a consequence of the different modes contributions. Since the measurement corresponds to an
integration over a certain volume in momentum space, one can retrieve the theoretical width

by integrating G (ka, ky) over k, and k.
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The cross-correlation can, in the general case, be written as

Gc2) = [cf’*) cf’*)]+ 3 G [1 - cos(6)] (D.21)

withO = d1+ o — @] — ¢ = % (kbms(kz + kbms — kp)) (ts — 2t,,). One can already see that several
widths will be at play, in particular,

e the autocorrelation width associated to Gﬁ) and Gﬁ) (olcg and olcy, respectively) although,
since it does not influence the visibility itself, has negligible influence;

e the cross-correlation width associated to ijj) (aoCr);
e the density width since the cloud has a finite size in momentum space (onk, and onkp);

o the stability of the beam-splitter which relates into a width in momentum space of the
different possible kpms. This width opms has been proved in Chapter 4 to be smaller than
the autocorrelation width.

With this in mind, one can writes the most general solution of Cgf) as

@ n bms, C+Lz/2 dk
ch Measured i‘a N“Nb A £.)2 A £b
bms, C— BC—

(ka - kaC)2) ( (kb - kbC)2] [ (kbms - kbms,C)2]
72 ex exp - 5
2onk; 2cr1vzk.b 20

bms
1@ _ka—kcl\ . @ _ (ky = kye)?
) [4 [&m © exp( 20lc2 ) + 8y O)exp [ 20’1(’%

ko +kp)/2 — 1)2
((2’(0) ( (( +2;:():/r2 ))(l—cosﬁ))] (D.22)

aC+£a
dka

bC+~£b

X exp (—

with L, = L, = L;/2 standing for the integration length along the z—axis around the central
momenta under study k,c and kjc.

Consider the case in which the integration volume (£, = £, = £;) is much smaller than all
the widths associated to GE?. In this case, one can assume that the functions are constant and

that the only varying term corresponds to (1 — cos 0). c?

o, Measured simplifies then into

ijl)('f ,Measured) = P> N, Ny{1 - aSinC2(-£zkbm5£

St = tuD) (D.23)

with T = t; —t,, and & a coefficient proportional to kpms. Thus, the width of the measured cross-
correlation depends only of the volume of inte gration. For smaller volumes of integration, the
dip will get larger.

D.4 Autocorrelation and coalescence effect

The same treatment can be applied to the coalescence effect. For this purpose, we look at the

evolution of cﬁ? or Cg as a function of 7. In this situation, one considers the momenta k, and
k; corresponding of two different modes at the output port c. The operator evolution can then
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be written as

e—i’;"é(f—as)
V2
k2

e_tﬁq(f_fs} .y .

iy () = ——— (fak;+kbmse*@1 — ay e ) (D.24b)

V2’

i, (1) = (i8k, s €% = a1, €91), (D.24a)

with
(05— M) = 5 (e + Kome) = P2 — (ki + Kipm)?) (D:252)
(‘pl - (PS (pM m a bms 'm a bms) ) s
h 5 (1.0 h m ey r ’
1= (s — Pa) — i(k + Kome)? = 2 — (K] + Kom)?), (D.25b)
ht,
$1 =M — 5 kg - 2m (ko + koms? ~ K2, (D.25¢)
_ ﬁtS f2 ’ 2 ”2
_()b 2??1 a 2?,” ((k kbms) _ka ) (D25d)

The autocorrelation of beam ¢ thus simplifies into
2) _
Gy = (ak ak, g, Ag,) (D.26)

and, with the same argument as before !, the autocorrelation is given by

]- ﬁk ms ’
(62 +62) + 26 (1 cos( om0~ ) (027)

1
cc Z
For the case of distinguishable atoms at the entrance of the 50:50 beam-splitter, meaning T — oo,
once integrated over ka the cosinus term tends to zero and the autocorrelation is equal to

@ _ Lic® ;@) 4160
G! Z(C c) —G

which corresponds to the same expression of the cross-correlation between ports ¢ and d for
distinguishable particles. One can understand this result through the simple picture of two
distinguishable particles entering a beam-splitter. The probability of having one particle on
each output port is 1/2 while the probability of having 2 particles on either one of the output
ports is also 1/2. Thus, the probability of detecting either 2 or 1 particle in one of the output
ports is equal.

For indistinguishable atoms at the entrance of the 50:50 beam-splitter, (k, — k})(T — t,,) = 0,
the situation is rather different. The autocorrelation is then equal to

@ _ (-0, @), c®
G? = Z(C +G2)+ G, (D.28)

which strongly differs of the cross-correlation result G(Z) =7 (G(z) + G(z)) This signal corre-
sponds to the increased probability of having 2 parhcles in either one of the output ports.

'We consider that the absolute phase of the mirror or beam-splitter is randomly chosen for each experimental
realisation
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D.4.1 Width of the autocorrelation measurement

The experimental measurement translates into an integration of the autocorrelation described

by
2 bms, c+Lz/2 dk act+La bct+Ly
Gg;)Measured = (i) NaNb f bms f dkaf dkb
' L koms L2 Lz Jhe-ta Jhe-1

N e 5 (Koms — Koms, )2
ST o i b
bms
11 @ _ (ka — kac)? %) (k= kec)®
) [4 [GM © exp( 20103 ) " be O)exp ZGIcg
1 ka +kp/2 — 1)
+5 (ij;)(O) exp (—%) (1 + cos 3))] (D.29)

with 9 = Homs g, _ gy,

One notes that in this situation the width of the dip is going to be determined by the volume
of integration and the correlations width.

D.5 Variance of the population difference

Another variable that can help to translate the effect of the destructive interference at play is
the evolution of the normalised variance of the difference as a function of 7. The variance of the
difference corresponds to

2
o <(a;ﬂak,, - ﬁIb%) ) — (af iy, — af g, .
@f a,) + (@} i) '

which simplifies, for the case of a random phase ¢y, into

- L (6@, c®_rc®
V_1+m((3“ +Gyy —2GY)) (D.31)

with (1) the averaged population in both output ports c and d. Thus, the two limiting cases
correspond to:

¢ Distinguishable case, V = 1;
e Indistinguishable case, V =1+ ﬁGﬁ).

Once again, it is possible to re-write the observable as a function of the distinguishability
criterion T as

V=1+ aGii) [cos (%(T — tm)(ka — K, + kg + kpms — kb)) X COS (kb:ﬁ (T = tm) (K, + kpms — kb))]

(D.32)
which, in the limit of k; = kj, simplifies into
V=1+ %Gﬁ] [1 + cos (%(r — t)(Ka + kims — iq,))] . (D.33)
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One can directly see from this result that the oscillation period is twice higher that the one of
the cross-correlation. Consequently, the rise of V will be twice larger, after inte gration along k,
and kj, than the dip of Gg. Thus, the measured value of the normalised variance can be written
as

2 .
VMeasured = Vg, + ﬁcﬁ) [4.{2(1 +2a Smcz{ﬂcbms’f))] ) (D.34)

with Vgg standing for the background value of the variance. Since for the case of a parametric
amplification Gﬁ) =2(n)? + (n) the rise of V goes up to the value of

V=1+ )y

= (2 + 2(n)) (D.35)

As seen in Section 3.4.2, the detection efficiency affects the measured value of the variance
with Vper = nV + (1 — 1)) which implies that after the beam-splitter for the indistinguishable
case

Vbet, nd. = (1 = 1) + 021 +(n))) = 1+ 1+ 2(m)n. (D.36)

For the distinguishable case, the variance is still equal to
VDet, Dis. = 1.

The visibility for the variance of the difference as a function of 7, corresponding to

_ V]_nd
Vv = - —
VDis.

1, (D.37)

is then equal to

Vv =n(1+2ny). (D.38)

D.6 Effect of the beam-splitter transmittance

In the last sections, it was assumed that both the mirror and the 50:50 beam-splitter had perfect
coefficients of reflectivity and transmittance, this meaning, that the reflectivity was total for
the mirror and of 50% for the 50:50 beam-splitter. However, this is not true as it has been
shown in Eq. (4) where we showed that the reflectivity of the mirror is equal to 93% and the
transmittance of the 50:50 beam-splitter to 49%. What is the impact of these small imperfections
on the visibility of the HOM-dip?

Let us model the 50:50 beam-splitter and mirror by the fo]lowing scattering matrix

3 1 t rei¢s
V2'|  —reits |
and
. 1 T Re iom
M=_—— , ,
V2'|  —Reitm T*
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with t, r the transmittance and reflectivity coefficients of the 50:50 beam-splitter and R, T the
coefficients for the mirror. Two things are to be keptin mind. First, even if the mirror or the 50:50
beam-splitter have 1mperfect10ns they are rather small. This implies certain approximations
suchas T <« 1 or |r| = |t| Second, it is important to remember that the absolute phase of
either the 50:50 beam-splitter or mirror are randomly chosen from one realisation to the other
and that cross-correlation corresponds to an average over N realisations. This means that, on
average, any oscillatory term depending of the absolute value of either ¢s or ¢um will vanish.
Nevertheless, as we saw in Chapter 4, the relative phase of the beam-splitter ¢s — ¢ is rather
stable, and thus, only the terms depending on the phase difference are kept.

Applying the new matrices M and S, one recovers the expressions for dx, and d,

i, () = e DRt |k, (FTe = rR*e71) + i iy, (FRET#1 + 1T 1), (D.39a)
k2 ) y »
i, (f) = ez ) |k, (FTe 9 — rRe2) — iy, (KR + 7 Te %), (D.39b)
with
fik2
= —ts, D.40
(pl 2m ( a)
2
¢y = %tg, (D.40b)
2m
7i k2
P1= ((PS - qu) + _(kﬂ + kbms)z(ts —tm) + gtm ' (D.40c)
_ ik
P2 = ((PM f,bS) + _(kb - kbms) (ts - tm) i —tm, (D.4Ud)
ﬁ(ka + kbms)
1=t , D.40
(pl 2m + ¢)5 ( e)
fi(kp — kbms)?
=——F 1t~ ¢s, D.40f
¢2 m ¢'S ( )
, h ka
1= oM+ 5 - (ka +Koms) 't + 5. (ts = tm), (D.40g)
) i fik?
Py = ~pn + 5 (kp — Koms) 't + - (ts = ). (D.40h)

Applying Egs. (D.39) and Eqgs. (D.40) to the cross-correlation G(Z)

the first orderin T,

(ak ak Ak, g, (t)) one gets, to

G2 =GO (141 IRI* + I IRI*) — (2IRf* 2 |# cos 61 — 2(|t* — |r%)(cos 6, + cos 63) R rR°IT)|

+ [Ir? [E7 IRF* — IR tRr*T cos 64 (|t — |r2) | (G2 + Gi7) , (D.41)
with
ﬁkbms

6, = (kp = kbms — ko)(T = ), (DA42a)

Fkpms
6, = (¢m — Ps) + b [(kp = koms)(T = tm) — (Kbms + 2ka)tm] , (D.42b)
65 = (¢s — Pur) + b“‘s [~ (kbms + ka)(T = tm) = (Kbms — 2kp)tm] , (D.42c)

ﬁk ms
64 = (¢s — Pm) + b T (koms + 2Ka), (D.42d)
(D.42¢)
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Figure D.5: Influence of the beam-splitter transmittance on the HOM-dip visibility. The visibility of the HOM-dip
is plotted as a function of the transmittance of the beam-splitter |t{>. One can see that the visibility is rather stable over the
possible values of |t|.
where 7 = t; — t,,,.

One sees that not only the terms assoaated to T are small since T < 1, but also that they
are inevitably associated to the difference |t| - |r| which also tends to be negligible. In good
approximation, for our experimental conditions these terms are completely negligible and one
retrieves the simpler expression

G?=c% [|t|4 IR* + |r* IRI* = 2|R[* 712 |#? cos 91] + P 1R IR (cﬁ) + cﬁ}) ) (D.43)

which tends to the expected value whenr =t =1/ \/f and R=1,

1
6% = 16@ 1 - cos 09 + 2 (2 + Q).

The dip visibility V can then be written as

7 =1- ‘g;[“d' = — (D.44)
Gapis. (G2 +C2)+ G(Z)(h;lﬁ::; )
which for the ideal input state [1,, 1;) translates into
o 201
=200 D.45
Ir* + 11* (D49

Fig. D.5 shows the evolu‘uon of V w1th the transmission probability |t| assummg that the
energy is conserved such that |r| + |t| = 1. One can conclude that even if |t| vary between 0.4
to 0.6, the visibility varies only between 0.92 and 1.00. In our case, since |t| varies between 0.49
and 0.51, the effect on the HOM-visibility is completely negligible.

In this sense, we conclude that, based on the calibration of both the mirror and 50:50 beam-
splitter performed in Subsection 4.2, the imperfections of our interferometric scheme do not
play any major role on the observed HOM effect.
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Appendix E

Detailed calculations for test of Bell’s
inequality

The situation of Bell’s inequalities violation corresponds, in its simpler form, to the one repre-
sented in Fig. E.1. Two pairs with momenta {ky, ki } and {k,~, k;} are created at time t; = 0. The
interferometric scheme is such that the pairs are mixed, this meaning, ky is recombined with
ky» and kg» with k. The phase difference between the mirror and the beam-splitter is extremely
well defined while the absolute phase of both is randomly chosen from one realisation to the
other. The mirror pulse for ky and kj» imprints a phase ¢ on the atomic beams while the
beams k,» and kj are imprinted with a phase @p. The same thing happens with the 50:50
beam-splitter, with phases ¢s and @g, respectively. This is easily performed experimentally by
applying the two pulses at different times and changing the relative phase between the laser
beams in the meanwhile. We also assume that the phase differences ¢y — @p and ¢s — @5 are
well defined.

Figure E.1: Schematic representation of an experimental realisation of Bell’s inequality test Several modes are
out-coming from the initial source, mode a correlated with b, a’ with b’ and a” with b”. The mirror and beam-splitter are
calibrated such that a and b overlap on the beam-splitter. This implies that mode a’ overlap with mode b” and a” with b'.



Detailed calculations for test of Bell’s inequality

Consider the time evolution of the field operators ay ,, dx,, , @, and dx,,

Tk (L)

iy, (1) = \F [zd%'akﬂ,”bm - d’fﬁiaka,] ) (E.1a)
—tﬁk H(f t ) s .
OE T [se“ol’r’ika,, o — e*%akﬂ,,] ) (E.1b)
e iky (k) . .
iy, (t) = T[e’¢ Aty ke e*qf'zakb,], (E.lc)
. g_ihkb”{f_fs) . S
iy () = — = [i€9% ko, — €21y | (E.1d)
with
m,,, A(ts — by
01 = (na — ps) — i %(kaf +home)?, (E22)
o fitw 2 Alts—tm) . 2
(Pl’ = (PM m (ka’ +kbms) 2m (k ) (Ezb)
Bitwm o Hilts— tm
02 =~ = g5) — 20 =PI g2, (B2
ﬁf ﬁ ts - tm
P2 = out— 3"k — ko — i 2, (E.2d)
ity o ts
= (M — ¢s )— T ( )(ka” Kbms)*, (E.2e)
htm s~ Im
P = 08— Ol + i) %(kw)% (E2f
A(ts — by
@2 = — (M — ¢s) — ks, — %U%“ — kbms)*, (E.2g)
Bt ts — b
P2 = Omt— 2k~ e — T 2. (B.2h)

The resonant situation for which beam a’ is recombined with beam V' and beam b with a’,
such that,

ka” + kbms = kb” ’

ka’ +kbms = kb’ .

The violation of Bell’s inequalities is deduced from the parameter S known as the Clauser—
Horne-Shimony-Holt (CHSH) parameter [7]

§ = |[E(6rr) — E(Or) + E(O1R) + E(OLR)l, (E.3)
with
G‘z)(e) +GR(0) - G©6) - G(0)
G20 +GR©6) + GL(O) + cgf(e)'
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where

GEN(0) = (ax,,, (1) a, (1), () dx,, (1)), (E.5a)
GR(O) = (ax,, (), (1), (1) ax,, (1)), (E.5b)
‘2’ 2(6) = (), (), (1) dg,, (1)) (E.5¢)
‘”(6) = (A, (B, (), (B dy,, (1)), (E.5d)
(E.5¢)
and
Or = /4,
O = 3m/4,
Ovr = -1/4,
Our = 1/4.

The value of S is bound, for any non-entangled state, between —2 and 2 such that any measure-
ment of |S| > 2 indicates the presence of entanglement.

The cross-correlation can be written, assuming that the absolute phase of the each mirror is
undefined, as

® L PR @ ) ) 0,54 &
Gi©) =1 |Gk, + Ceniy + ok, + Gy, + 2Re [ a1 i, 0 ] (E.6a)
@ 11~ @ @ 2) o
G2(0) = 121Gk * Coniy + G + c}w ., +2Re [e‘ T )] (E.6b)
2 17 2 2 2
c2e) = I c,ﬁ },k, + c,ﬁ ) bt c}%} + c}%’{ v, —2Re[d%G] ab a, iy, )] (E.6¢)
@ L PR @ @ 2) 005t 4t
G (©) =1 |Gk, + Geniy + Ginr, + i, — 2Re [0 0y, &, )] (E.6d)
(E.6e)
where
0 = (P2 + Q2 — P2 — @2) = (P1 + Q1 — P17 — P1) = (P17 + P2r — P1 — P2) = (P17 + P2 — P1 — P2)
f
= 2(¢m =~ @m) + (@5 = Ps) + 5 —(ts = 2tw) (2 +K2 -1 -K2,).
This leads to the expression
2Re [eff’ @, a i, r’ika,)]
)= 2) 2) @) @ E7)
(Gkafkbf + Gka-”kb" ) + (Cka”kaf + Gkb"kbf)
and to
@ it ay, i)
5S=2v2 = L - & {2; =Y (E.8)
(G Kok T Gy koky T Ckbf’kb’ + Gkﬂ’kb’)
If one is able to determine the value of (a “; i, ﬁk;), corresponding to the probability of

creating a pair (kz», ky») knowing that a pair (kafkbf) exists, S can be easily predicted.

This result is completely free from any assumptions on the produced state. The fact that
the absolute phase of both ¢ and ¢y is randomly chosen for each experimental realisation
guarantees that any asymmetric contribution of G® washes out.
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Particular solution for a parametric conversion state

Assuming that the state is described by two independent parametric conversion state, such that

B tanh" (A1) tanh™(A,)
p) = Z cosh(A;) & cosh(Az)

|n, n, m, m),

with sinhZ(/’Ll) = (n) and SiI’LhZ(/’Lz) = {m), one finds for the autocorrelation that

2 G
Cka” k. kw ={nymy,

and the cross-correlation terms can be written as

cff) ot cff) b = (1) (L 20n)) + (m) (1 +2(m).

E(6) then becomes

2Re [ *B(a ; [y, O, )] 2Re [e"ﬂ(a;n" a;wakb, fr,)
B (G(z) + G(z) ) ( c®@ c®@ ) - 2n)(m) + (n)(2n) + 1) + (m)(2(m) + 1)’
kﬂ’ky "kb" H’k ) kb"kbd’

which simplifies in the case of a symmetric average population (n) = (m) to
Re [e"ﬂ(a;“" i} g, i)
(m)(3(n) + 1)

E(6) =

The unknown term left is then the numerator (&; ”riIb" dx, ax,). From Ref. [87], it is possible to

express this term for the parametric conversion state as
N A
(“ka,, A, Uiy g,y =)y (1 +(n)) .

Then the expression of E(0) can finally be expressed as

_ cos(0) (1 +(n))
E(6) = T q+3my)
leading to
) ) B B (I +(m)
= [E(r/4) ~ E(=3n/4) + E(-n/4) + E(n/4) = 2V2 (50

which reaches a maximum value of S = 22 ~ 2.8 for {(n) = 0 and decreases to S = % V2 '~ 093
for (n) — oo. Thus, the CHSH's inequality is violated when the number of particles is reduced
and verified for increasing averaged densities. As for the HOM experiment, it is preferable to
work with very weak average particle number per input beam. The threshold value, above
which the inequality is no longer violated, corresponds to an average population (1) = 0.26.
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The Cauchy-Schwarz (CS) inequality—one of the most widely used and important inequalities in
mathematics—can be formulated as an upper bound to the strength of correlations between classically
fluctuating quantities. Quantum-mechanical correlations can, however, exceed classical bounds. Here we
realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and
demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones
of the collision halo. The correlated atoms have large spatial separations and therefore open new
opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.

DOI: 10.1103/PhysRevLett.108.260401

The Cauchy-Schwarz (CS) inequality is ubiquitous in
mathematics and physics [1]. Its utility ranges from proofs
of basic theorems in linear algebra to the derivation of the
Heisenberg uncertainty principle. In its basic form, the CS
inequality simply states that the absolute value of the inner
product of two vectors cannot be larger than the product of
their lengths. In probability theory and classical physics,
the CS inequality can be applied to fluctuating quantities
and states that the expectation value of the cross correlation
(I,I,) between two quantities I; and I, is bounded from
above by the autocorrelations in each quantity,

K1) = V(ﬁz)(f%)-

This inequality is satisfied, for example, by two classical
currents emanating from a common source.

In quantum mechanics, correlations can, however, be
stronger than those allowed by the CS inequality [2-4].
Such correlations have been demonstrated in quantum
optics using, for example, antibunched photons produced
via spontaneous emission [5], or twin photon beams gen-
erated in a radiative cascade [6], parametric down conver-
sion [7], and optical four-wave mixing [8]. Here the
discrete nature of the light and the strong correlation (or
anticorrelation in antibunching) between photons is re-
sponsible for the violation of the CS inequality. The vio-
lation has even been demonstrated for two light beams
detected as continuous variables [8].

In this work we demonstrate a violation of the CS
inequality in matter-wave optics using pair-correlated
atoms formed in a collision of two Bose-Einstein conden-
sates (BECs) of metastable helium [9-12] (see Fig. 1). The
CS inequality which we study is a multimode inequality,
involving integrated atomic densities, and therefore is
different from the typical two-mode situation studied in

(1
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260401-1

quantum optics. Our results demonstrate the potential of
atom optics experiments to extend the fundamental tests of
quantum mechanics to ensembles of massive particles.
Indeed, violation of the CS inequality implies the possi-
bility of (but is not equivalent to) formation of quantum
states that exhibit the Einstein-Podolsky-Rosen (EPR) cor-
relations or violate a Bell’s inequality [3]. The EPR and
Bell-state correlations are of course of wider significance

FIG. 1 (color online). Diagram of the collision geometry.
(a) Two cigar-shaped condensates moving in opposite directions
along the axial direction z shortly after their creation by a Bragg
laser pulse (the anisotropy and spatial separation are not to
scale). (b) Spherical halo of scattered atoms produced by four-
wave mixing after the cloud expands and the atoms fall to the
detector 46 cm below. During the flight to the detector, the
unscattered condensates acquire a disk shape shown in white
on the north and south poles of the halo. The (red) boxes 1 and 2
illustrate a pair of diametrically symmetric counting zones
(integration volumes) for the average cross-correlation and au-
tocorrelation functions, e 1?2) and (_j'f) (i = 1, 2) (see text), used in
the analysis of the Cauchy-Schwarz inequality.

© 2012 American Physical Society
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to foundational principles of quantum mechanics than
those that violate a CS inequality. Nevertheless, the im-
portance of understanding the CS inequality in new physi-
cal regimes lies in the fact that: (i) they are the simplest
possible tests of stronger-than-classical correlations, and
(i1) they can be viewed as precursors, or necessary comn-
ditions, for the stricter tests of quantum mechanics.

The atom-atom correlations resulting from the collision
and violating the CS inequality are measured after long
time-of-flight expansion using time- and position-resolved
atom detection techniques unique to metastable atoms
[13]. The 307 ms long expansion time combined with a
large collision and hence scattering velocity results in a
~6 cm spatial separation between the scattered, correlated
atoms. This separation is quite large compared to what has
been achieved in recent related BEC experiments based on
double-well or two-component systems [l14-16], trap
modulation techniques [17], or spin-changing interactions
[18,19]. This makes the BEC collisions ideally suited to
quantum-nonlocality tests using ultracold atomic gases and
the intrinsic interatomic interactions.

In a simple two-mode quantum problem, described by
boson creation and annihilation operators & and a; (i =
1, 2), the Cauchy-Schwarz inequality of the form of Eq. (1)
can be formulated in terms of the second-order correlation

functions, G,(-zl (:Ahj) = (‘Jr J'&Ja,) and reads [2-4]

(2] [G(Z]G(Z]]]ﬂ (2)

or simply G%] = G( in the symmetric case of Gm = Gm

Here, Gm Gg‘;], A; = a]a; is the particle number opera-
tor, and the double colon%; 1nd1calf: normal ordering of the
creation and annihilation operators, which ensures the
correct quantum-mechanical interpretation of the process
of detection of pairs of particles that contribute to the
measurement of the second-order correlation function
[2]. Stronger-than-classical correlation violating this in-
equality would require G2 >[GPGF1'2, or GY >
Gm in the symmetric case.

The situation we analyze here is counterintuitive in that
we observe a peak cross correlation (for pairs of atoms
scattered in opposite directions) that is smaller than the
peak autocorrelation (for pairs of atoms propagating in the
same direction). In a simple two-mode model such a ratio
of the cross correlation and autocorrelation satisfies the
classical CS inequality. However, in order to adequately
treat the atom-atom correlations in the BEC collision
problem, one must generalize the CS inequality to a multi-
mode situation, which takes into account the fact that the
cross correlations and autocorrelations in matter-wave op-
tics are usually functions (in our case of momentum). The
various correlation functions can have different widths and
peak heights, and one must define an appropriate integra-
tion domain over multiple momentum modes to recover an

inequality that plays the same role as that in the two-mode
case and is actually violated, as we show below.

The experimental setup was described in Refs. [11,12].
Briefly, a cigar-shaped BEC of metastable helium,
containing approximately ~10° atoms, trapped initially
in a harmonic trapping potential with frequencies
(wy, wy, w,)/27 = (1500, 1500, 7.5) Hz, was split by
Bragg diffraction into two parts along the axial (z-) direc-
tion [see Fig. 1(a)], with velocities differing by twice the
single photon recoil velocity v, = 9.2 cm/s. Atoms in-
teract via binary, momentum conserving s-wave collisions
and scatter onto a nearly spherical halo [see Fig. 1(b)]
whose radius in velocity space is about the recoil velocity
[11,20]. The scattered atoms fall onto a detector that
records the arrival times and positions of individual atoms
[13] with a quantum efficiency of ~10%. The halo diame-
ter in position space at the detector is ~6 cm. We use the
arrival times and positions to reconstruct three-
dimensional velocity vectors v for each atom. The unscat-
tered BECs locally saturate the detector. To quantify the
strength of correlations corresponding only to spontane-
ously scattered atoms, we exclude from the analysis the
data points containing the BECs and their immediate vi-
cinity (|vz| < 0.5v,..) and further restrict ourselves to a
spherical shell of radial thickness 0.9 <wv,/v,. < 1.1
(where the signal to noise is large enough), defining the
total volume of the analyzed region as V.

Using the atom arrival and position data, we can mea-
sure the second-order correlation functions between the
atom number densities 7A(k) at two points in momentum
space, G?(k, k') = (:A(k)Aa(k'):) (see Supplementary
Material [21]), with k denoting the wave vector k =
mv/h and Kk the momentum. The correlation measure-
ments are averaged over a certain counting zone (integra-
tion volume V) on the scattering sphere in order to get
statistically significant results. By choosing k' to be nearly
opposite or nearly collinear to k, we can define the aver-
aged back-to-back (BB) or collinear (CL) correlation func-
tions,

G (Ak) = fd3k6(2‘(k —k + Ak), 3)

G&(Ak) = fv dPkGO(k, k + AK), “4)

which play a role analogous to the cross-correlation and

autocorrelation functions, Gm and Gf], in the simple two-
mode problem discussed above. The BB and CL correla-
tions are defined as functions of the relative displacement
Ak, while the dependence on k is lost due to the averaging.

The normalized BB and CL correlations functions,
g%(&k) and gg]_(Ak), averaged over the unexcised part
of the scattering sphere "V gy, are shown in Fig. 2. The BB
correlation peak results from binary, elastic collisions be-

tween atoms, whereas the CL correlation peak is a variant
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FIG. 2 (color online). Normalized back-to-back (a) and
collinear (b) correlation functions, g](;z];(Ak} and gg)_(Ak}, in
momentum space integrated over Vg, corresponding to |k_| <
0.5k, and 0.9 <k,/k,. <1.1, where k.. = mv,./h is the
recoil momentum. The data are averaged over 3600 experimen-
tal runs. Because of the cylindrical symmetry of the initial
condensate and of the overall geometry of the collision, the
dependence on the k, and k, components should physically be
identical and therefore can be combined (averaged); the corre-
lation functions can then be presented as two-dimensional sur-
face plots on the (k, k,,) plane. The two-dimensional plots were
smoothed with a nearest neighbor running average. The data
points along the k, and k,, projections (corresponding to thin
slices centered at k,, =0 and k, = 0, respectively) are not
smoothed. The solid lines show the Gaussian fits to these
projections. The peak height of the back-to-back correlation
function is ~1.2 while that of the collinear correlation function
is ~1.4, apparently confirming the Cauchy-Schwarz inequality.
The widths of the two distributions are, however, very different
(0gx = Oppy = 0.21k,., ogp . =~0.01%,., whereas o¢, =
oy = 0.036ky., ocy; = 0.002k,.) and a multimode formula-
tion of the Cauchy-Schwarz inequality, which relates the relative
volumes of the correlation functions, is violated.

of the Hanbury Brown and Twiss effect [22,23]—a two-
particle interference involving members of two different
atom pairs [9,10,24,25]. Both correlation functions are
anisotropic because of the anisotropy of the initial collid-
ing condensates.

An important difference with the experiment of Ref. [9]
is that the geometry in the present experiment (with

vertically elongated condensates) is such that the observed
widths of the correlation functions are not limited by the
detector resolution. Here we now observe that the BB and
CL correlations have very different widths, with the BB
width being significantly larger than the CL width. This
broadening is largely due to the size of the condensate in
the vertical direction (~ 1 mm). The elongated nature of
the cloud and the estimated temperature of ~200 nK also
means that the condensates correspond in fact to quasicon-
densates [26] whose phase coherence length is smaller than
the size of the atomic cloud. The broadening of the BB
correlation due to the presence of quasicondensates will be
discussed in another paper [27], but we emphasize that the
CS inequality analyzed here is insensitive to the detailed
broadening mechanism as it relies on integrals over corre-
lation functions. This is one of the key points in consider-
ing the multimode CS inequality.

Since the peak of the CL correlation function corre-
sponds to a situation in which the two atoms follow the
same path, we can associate it with the autocorrelation of
the momentum of the particles on the collision sphere.
Similarly, the peak of the BB correlation function corre-
sponds to two atoms following two distinct paths and
therefore can be associated with the cross-correlation func-
tion between the respective momenta. Hence we realize a
situation in which one is tempted to apply the CS inequal-
ity to the peak values of these correlation functions. As we
see from Fig. 2, if one naively uses only the peak heights,
the CS inequality is not violated since gz (0) < g&(0) and
hence Gi(0) < Gg]_({)) due to the nearly identical nor-
malization factors (see Supplementary Material [21]).

We can, however, construct a CS inequality that is
violated if we use integrated correlation functions, Gg],
that correspond to atom numbers N; = IV.- kat(k)a(k)
(i = 1,2) in two distinct zones on the collision halo [21],

65 == [ @k [ eGP

The choice of the two integration (zone) volumes V; and

Vj determines whether the Gg]-funclion corresponds to
the BB (i # j) or CL (i = j) correlation functions, Egs. (3)
and (4).

The CS inequality that we can now analyze for violation
reads G2 < [G?GZ1'/2. To quantify the degree of vio-
lation, we introduce a correlation coefficient,

~(2) 12 A2
Cc= (522‘/[(32,‘ 52]]”21 (6)
which is smaller than unity classically, but can be larger
than unity for states with stronger-than-classical
correlations.

In Fig. 3 we plot the correlation coefficient C determined

from the data for different integration zones V and V5,

but always keeping the two volumes equal. When "V, and
"V, correspond to diametrically opposed, correlated pairs
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FIG. 3 (color online). Correlation coefficient C as a function of
the number of zones M = V,./V, into which we cut the
scattering sphere. C = 1 corresponds to violation of the Cauchy-
Schwarz inequality. The scattering sphere was cut into 8 polar
and from 2 to 80 azimuthal zones; the resulting arrangement of
zones for M = 16 and 32 is illustrated in the upper panel. The
observed values of C for pairs of correlated diametrically oppo-
site zones (shown as darker red stripes in the upper panel as an
example) were averaged to get one data point for a given M; the
data points for such zones are shown as red circles, for uncorre-
lated (neighboring) zones—as blue squares. The error bars show
the standard deviation of the mean over the number of zone
pairs. The (green) thick solid curve is the theoretical prediction
(see Supplementary Material [21] ) calculated using the experi-
mental parameters and a stochastic Bogoliubov approach
[20,28].

of zones (red circles), C is greater than unity, violating the
CS inequality, while for neighboring, uncorrelated pairs
(blue squares) the CS inequality is not violated. The figure
also shows the results of a quantum-mechanical calculation
of C using a stochastic Bogoliubov approach (green thick
solid curve) [20,21,28]. The calculation is for the initial
total number of atoms N = 85000 and is in good agree-
ment with the observations. The choice of large integration
volumes (small number of zones M) results in only weak
violations, while using smaller volumes (large M) in-
creases the violation. This behavior is to be expected (see
Supplementary Material [21]) because large integration
zones include many, uncorrelated events which dilute the
computed correlation. The saturation of C, in the current
arrangement of integration zones—with a fixed number of
polar cuts and hence a fixed zone size along z which always
remains larger than the longitudinal correlation width—
occurs when the tangential size of the zone begins to
approach the transverse width of the CL correlation func-
tion. If the zone sizes were made smaller in all directions,
we would recover the situation applicable to the peak
values of the correlation functions (and hence no CS
violation) as soon as the sizes become smaller than the
respective correlation widths (see Eq. (S11) in the
Supplementary Material [21]).

We have shown the violation of the CS inequality using
the experimental data of Ref. [11] in which a sub-
Poissonian variance in the atom number difference
between opposite zones was observed. Although the two
effects are linked mathematically in simple cases, they are
not equivalent in general [8,21]. Because of the multimode
nature of the four-wave mixing process, we observe
stronger (weaker) suppression of the variance below the
shot-noise level for the larger (smaller) zones (see Fig. 3 of
[11]), whereas the degree of violation of the CS inequality
follows the opposite trend. This difference can be of im-
portance for other experimental tests of stronger-than-
classical correlations in inherently multimode situations
in matter-wave optics.

The nonclassical character of the observed correlations
implies that the scattered atoms cannot be described by
classical stochastic random variables [29]. Our experiment
is an important step toward the demonstrations of increas-
ingly restrictive types of nonlocal quantum correlations
with matter waves, which we hope will one day culminate
in the violation of a Bell inequality as well. In this case, the
nonclassical character of correlations will also defy a
description via a local hidden variable theory [4,29].
Nonoptical violations of Bell’s inequalities have so far
only been demonstrated for pairs of massive particles
(such as two trapped ions [30] or proton-proton pairs in
the decay of 2He [31]), but never in the multiparticle
regime. The BEC collision scheme used here is particularly
well-suited for demonstrating a Bell inequality violation
[32] using an atom optics analog of the Rarity-Tapster
setup [33].
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‘We have modulated the density of a trapped Bose-Einstein condensate by changing the trap stiffness,
thereby modulating the speed of sound. We observe the creation of correlated excitations with equal
and opposite momenta, and show that for a well-defined modulation frequency, the frequency of the
excitations is half that of the trap modulation frequency.
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Although we often picture the quantum vacuum as con-
taining virtual quanta whose observable effects are only
indirect, it is a remarkable prediction of quantum field
theory that the vacuum can generate real particles when
boundary conditions are suddenly changed [1-4]. Known
as the dynamical Casimir effect, a cavity with accelerating
boundaries generates photon pairs. Recent experiments
have demonstrated this effect in the microwave regime
using superconducting circuits [5,6]. Hawking radiation
[7] is another situation characterized by spontaneous pair
creation and work on sonic analogs to the Hawking
problem [8] has led to the realization that Bose-Einstein
condensates (BEC) are attractive candidates to study such
analog models [9-11], because their low temperatures
promise to reveal quantum effects. Here we exhibit an
acoustic analog to the dynamical Casimir effect by modu-
lating the speed of sound in a BEC. We show that corre-
lated pairs of elementary excitations, both phononlike and
particlelike, are produced, in a process that formally
resembles parametric down-conversion [4,12].

The first analyses of the dynamical Casimir effect
considered moving mirrors, but it has been suggested that
a changing index of refraction could mimic the effect
[13,14]. Our experiment is motivated by a suggestion in
Ref. [12] that one can realize an acoustic analog to the
dynamical Casimir effect by changing the scattering length
in an interacting Bose gas. The change in the interaction
strength is analogous to an optical index change: the speed
of sound (or light) changes. Seen in a more microscopic
way, the ground state of such a gas is the vacuum of
Bogoliubov quasiparticles whose makeup is interaction
dependent. Changing the interaction strength projects this
old vacuum onto a new state containing pairs of the new
quasiparticles [12], which appear as pairwise excitations.
Instead of changing the interaction strength, we have sim-
ply modified the confining potential, which in turn changes
the density. Sudden changes such as these have also been
suggested as analogs to cosmological phenomena [15-17].

We study two situations, in the first the confining poten-
tial is suddenly increased and in the second the potential
is modulated sinusoidally. The sinusoidal modulation of
the trapping potential was studied in Refs. [18-20] in the

0031-9007/12/109(22)/220401(5)
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context of the observation of Faraday waves. Our results
on sinusoidal modulation are similar to this work and we
have extended it to observe correlated pairs of Bogoliubov
excitations. We produce these excitations in both the
phonon and particle regimes, and observe correlations in
momentum space. Parametric excitation of a quantum gas
was also studied in optical lattices in which the optical
lattice depth was modulated [21,22], although in that
experiment, the excitation was observed as a broadening
of a momentum distribution.

The experimental apparatus is the same as that described
in Refs. [23,24] and is shown schematically in Fig. 1(a).
We start from a BEC of approximately 10° metastable
helium (He*) atoms evaporatively cooled in a vertical
optical trap to a temperature of about 200 nK. The trapped
cloud is cigar shaped with axial and radial frequencies of
7 and 1500 Hz. In the first experiment we raise the trapping
laser intensity by a factor of 2 with a time constant
of 50 wus using an acousto-optic modulator [see inset to
Fig. 1(b)]. The trap frequencies thus increase by V2. The
compressed BEC is held for 30 ms before the trap laser is
switched off (in less than 10 us). The cloud falls onto a
position sensitive, single atom detector which allows us to
measure the atom velocities [25]. After compression, the
gas 18 excited principally in the vertical direction: trans-
versely we only observe a slight heating (about 100 nK).
Figure 1(b) shows a single shot distribution of vertical
atom velocities relative to the center of mass and integrated
horizontally, while Fig. 1(c) shows the same distribution
averaged over 50 shots. These distributions are more than 1
order of magnitude wider than that of an unaffected BEC.
The individual shots show a complex structure which is not
reproduced from shot to shot, as is seen from the washing
out of the peaks upon averaging.

We consider the correlations between atoms with verti-
cal velocities v, and v., by constructing a normalized
second-order correlation function, g@(v,, v}) [25], aver-
aged over the x-y plane and shown in Fig. 2(a). The plot
exhibits two noticeable features along the v, = v, and
vl = —wv, diagonals. The former reflects the fluctuations
in the momentum distribution, as in the Hanbury Brown—
Twiss effect [26], except that this cloud is far from thermal

© 2012 American Physical Society
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Effects of time-varying potentials. (a) Schematic view of the experiment. Pairs of Bogoliubov quasiparticles

are created by varying the trap stiffness. After the flight to the detector these excitations appear as a broadening or sidebands on the
atom cloud in the vertical (z) direction. In the following plots we convert arrival times to relative velocities and average over the
transverse dimensions. (b) Single shot velocity distribution for a cloud which was subjected to a sudden increase in the trap stiffness.
The inset shows the time evolution of the trap stiffness. (c) Asin (b) but averaged over 50 shots. (d) Single shot velocity distribution for
a cloud which was subjected to a weak, sinusoidal modulation of the trap stiffness at 2.17 kHz. The inset shows the time evolution of

the trap stiffness. (e) As in (d) but averaged over 780 shots.

equilibrium. The v!, = —wv, correlation is a clear signature
of a correlation between quasiparticles of opposite veloc-
ities. A projection of this off-diagonal correlation is shown
in Fig. 2(b). At low momentum, the excitations created by
the perturbation are density waves (phonons) which in
general consist of superpositions of several atoms traveling
in opposite directions. In the conditions of our clouds, a
phonon is adiabatically converted into a single atom of the
same momentum during the release by a process referred to
as “phonon evaporation” [27]. Therefore in the phonon
regime as well as in the particle regime, we interpret the
back-to-back correlation in Fig. 2(a) as the production of
pairs of Bogoliubov excitations with oppositely directed
momenta as predicted in the acoustic dynamical Casimir
effect analysis [12].

To further study this process, we replace the compres-
sion by a sinusoidal modulation of the laser intensity
I(t) = I(1 + 8 cosw,,t) [inset of Fig. 1(d)]. We choose &
such that the trap frequencies are modulated peak to peak
by about 10%. The modulation is applied for 25 ms
before releasing the condensate. Figures 1(d) and 1(e)
show, respectively, single shot and averaged momentum
distributions resulting from the modulation. One sees that
the momentum distribution develops sidebands, approxi-
mately symmetrically placed about the center. Figure 3(a)
shows the normalized correlation function, plotted in the

same way as in Fig. 2(a), for a modulation frequency
wp, /27 = 2170 Hz. We again observe antidiagonal corre-
lations as for a sudden excitation except that the correla-
tions now appear at a well-defined velocity, which
coincides with that of the sidebands [see Fig. 3(b)].

We have examined sinusoidal modulation for frequen-
cies w,, /27 between 900 and 5000 Hz and observed
excitations similar to those in Fig. 3. We summarize our
observations in Fig. 4(a) in which we plot the excitation
frequency as a function of the sideband velocity. We also
plot the locations of the peaks in the correlation functions
on the same graph. For modulation frequencies much
above 2 kHz, the antidiagonal correlation functions are
quite noisy preventing us from clearly identifying correla-
tion peaks. This noise may have to do with the proximity
of the parametric resonance with the transverse trap fre-
quency ( ~ 3 kHz) [19].

A weakly interacting quantum gas obeys the well-known
Bogoliubov—-de Gennes dispersion relation between the
frequency wy and wave vector k:

2\2

wy = aqfc’k* + (%) , (1)

with @ =1 and ¢, the sound velocity. This relation
describes both phonons (long wavelength excitations)
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FIG. 2 (color online). Density correlations after a sudden
compression. (a) Normalized correlation function g®(v,, v%) of
the data in Fig. 1(c) (50 shot average). The signal on the diagonal
results from the density fluctuations in the cloud. The antidiag-
onal line indicates the creation of correlated quasiparticles with
opposite momenta, and is the signature of the dynamical Casimir
effect. (b) Antidiagonal correlation function g@(v,, vl = —v,).
The smooth line shows the result of smoothing the data over a
window of about 1 cm/s. The correlations apparently persist
over a scale comparable to that of the density distribution. (c)
Correlation function along the dashed line and integrated over a
region indicated by the dotted arrows, as a function of v, =
vl — v_. The dips on either side of the peak may be related to the
effect reported in [32].

whose dispersion is linear and free particles, whose disper-
sion is quadratic. If our observation indeed corresponds to
the creation of pairs, we expect the total excitation energy
to be shared between the two excitations. Momentum con-
servation, on the other hand, requires that the two energies
be equal, implying w,, = 2wy. Therefore the relation
between the modulation frequency and the sideband veloc-
ity should also be given by Eq. (1) but with &« =2 and
k = mv_/h. Fitting the points in Fig. 4(a) to (1) with a and
¢ as free parameters, we obtain @ = 2.2 = 0.3. The fitted
sound velocity, 8 + 3 mm/s, is consistent with the value
one can calculate from the trap parameters and the esti-
mated number of atoms [25].

We can further corroborate our interpretation of pairwise
excitations by a method more direct and robust than the 2

|
density (a.u.)

L
l}
-
ff‘
o A
=1
-3
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-1.5 -1 -I‘.II.S [1] D.IS 1 1.
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FIG. 3 (color online). Density correlations after a periodic
modulation. (a) Normalized correlation function g@ (v, v!)
measured after sinusoidal modulation of the trap frequency at
a frequency w,,/27 = 2.17 kHz, averaging over 243 experi-
mental shots. We observe a strong correlation between well-
defined, oppositely directed velocities. (b) Plot of the density
distribution (blue) and of the antidiagonal velocity correlation
function, g (v_, vl = —v,) (red).

parameter fit to the data in Fig. 4(a). In Fig. 4(b), we
compare the dispersion relation resulting from modulation
with that obtained by Bragg scattering. Bragg scattering
produces single excitations of quasiparticles at a definite
energy and momentum [28]. We excited the BEC with
two lasers in the Bragg configuration to determine the
frequency for a given k vector [25]. Then, under the same
experimental conditions, using sinusoidal trap laser modu-
lation, we excited the BEC at various frequencies and
found the corresponding velocities. The lower curve in
Fig. 4(b) is a fit to the Bragg data in which we fix a = 1
and fit the speed of sound. The upper curve is a fit to the
trap modulation data in which we set the speed of sound
to that found in the first fit and we allowed « to vary. This
second fit yields a = 2.07 *0.2. The fitted speed of
sound for this data set (about 13 mm/s) is higher than in
the data of Fig. 4(a), because during these runs the number
of atoms in the condensate was larger.

An even more dramatic confirmation of our interpreta-
tion would be the observation of sub-Poissonian intensity
differences in the two sidebands, as was observed in the
experiment of Ref. [5], as well as in Refs. [29]. The latter
experiment modulated the center of a trapped, one dimen-
sional gas producing transverse excitations which in turn
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FIG. 4 (color online). Dispersion relation observed by modu-
lating the trap depth. (a) The orange squares show the sideband
velocity determined from the density distributions. The green
triangles are derived from the correlation functions of the same
data. The curve is a fit to the dispersion relation (1) as described
in the text. Only the solid squares were included in the fit: these
points were all taken on the same day, whereas the open squares
were taken under slightly different trap conditions, with possibly
different density. The error bars are statistical estimates based on
the fits to the velocity distributions such as in Fig. 3(b).
(b) Comparison between trap modulation and Bragg scattering.
The black circles are observations of the dispersion relation by
Bragg spectroscopy. The orange squares are found as in (a),
and clearly show that the corresponding frequency is about a
factor of 2 higher than in the Bragg data at a given velocity. The
curves show the two fits discussed in the text. The vertical error
bars on the Bragg data are determined by fits to the Bragg
resonances.

produced twin beams. Equivalently, one could ask whether
the Cauchy-Schwarz inequality is violated [30], indicating
a nonclassical correlation. Comparing intensity differences
in the sidebands we observe a reduction of the fluctuations
compared to uncorrelated regions of the distribution.
However, we observe no sub-Poissonian fluctuations or
Cauchy-Schwarz violation, probably because of a back-
ground under the sidebands [see Fig. 1(d)]. The back-
ground is due to atoms spilling out of the trap before
release.

Another difference between our experiment and an ideal
realization of the dynamical Casimir effect is that the
temperature is not negligible. This means that the pair
generation did not arise from the vacuum but rather from
thermal noise. For our temperature of 200 nK, the thermal
occupation of the mode of frequency 2 kHz is 1.6. In
the absence of a thermal background, the normalized

correlation function would show an even higher peak.
Using the perturbative approach of Ref. [12], one can
show that g@(v,, v, = —wv,) is a decreasing function of
the temperature, since thermal quasiparticles are uncorre-
lated and only dilute the correlation.

Many authors have discussed the relationship of the
dynamical Casimir effect to Hawking and Unruh radiation
(see [4] for a recent review). It has also been pointed out
that the two-particle correlations arising in the sonic
Hawking problem constitute an important potential detec-
tion strategy [10,31], although the above authors discussed
correlations in position space. The present study has con-
firmed the power of correlation techniques, and shown in
addition that momentum space is a good place to look for
them. We expect that a similar approach can be applied to
Hawking radiation analogs as well as the general problem
of studying the physics of curved spacetime by laboratory
analogies.
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We use a one-dimensional optical lattice to modify the dispersion relation of atomic matter waves. Four-wave

mixing in this situation produces atom pairs in two well-define beams. We show that these beams present a

narrow momentum correlation, that their momenta are precisely tunable, and that this pair source can be operated

in the regimes of low mode occupancy and of high mode occupancy.

DOI: 10.1103/PhysRevA.87.061603

In quantum optics, the existence of mechanisms to produce
photon pairs, such as parametric down-conversion, enabled the
realization of several fundamental experiments on quantum
mechanics. For example, the violation of Bell’s inequalities
[1] or the Hong-Ou-Mandel effect [2] reveal the surpris-
ing properties of quantum correlations in entangled photon
pairs. These fascinating properties have found applications in
quantum information and communications [3]. In analogy to
photon pairs, there have been several recent demonstrations
of correlated atom-pair production [4-10]. In particular,
momentum correlations of spatially separated samples is an
important requirement for the demonstration of an atomic
Einstein-Podolsky-Rosen state [11,12] and the violation of
Bell’s inequalities. Such momentum correlations were demon-
strated for atom pairs produced by molecule dissociation [4]
or by spontaneous four-wave mixing in free space through
the collision of two Bose-Einstein condensates (BECs) [5,13].
In these experiments the pairs which were produced lay on
a spherical shell. This geometry is disadvantageous because
many spatial modes are populated, and if one wishes to use
Bragg diffraction to manipulate and recombine the pairs on
a beam splitter [11.14], the vast majority of the pairs are
unusable.

On the other hand, if pair production is concentrated in
a small number of modes, experimenters can make more
efficien use of the generated pairs. One can then choose to
work either with low mode occupation, the well-separated
pair regime, or with high mode occupation, referred to as
the squeezing regime in Ref. [15]. An example of twin
beams generated in the latter regime is described in Ref. [6].
The squeezing regime is well suited to the study of highly
entangled multiparticle systems and for investigations of atom
interferometry below the standard quantum limit [16,17]. The
source we study in this Rapid Communication can be operated
in both regimes. We use atomic four-wave mixing in a one-
dimensional (1D) optical lattice, which results in production
of atom pairs in two well-define beams, as proposed in
Ref. [18] and demonstrated in Ref. [19]. We show that these
beams present a narrow momentum correlation, that their
momenta are precisely tunable, and that we can control their
intensities.

*bonneau@lens.unifi.it Present address: INO-CNR, via G. Sansone
1. 50019 Sesto Fiorentino - Firenze, Italy.

Present address: Harvard-Smithsonian Center for Astrophysics,
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In atom optics, four-wave mixing corresponds to scattering
into new momentum classes subject to energy and momentum
conservation. In a wave picture, the conservation requirements
can be thought of as phase-matching conditions. The presence
of an optical lattice modifie the free-space atomic dispersion
relation and therefore, for a range of initial quasimomenta
ko [20], the 1D scattering event 2kg — k; + kp is allowed, as
shown in Fig. 1(a). Thus, beginning from a BEC at kg, atom
pairs are spontaneously generated along the lattice axis with
well-define quasimomenta k; and k;. We refer to this process
as four-wave mixing, but it can also be viewed as a special case
of a dynamical instability [21,22], which was studied in the

E(k;) / Erec
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FIG. 1. (Color online) (a) 1D pair creation process in an optical
lattice with period Ay /2: The dispersion relation in the firs Bloch
band (green solid curve) allows scattering of atoms from a BEC with
quasimomentum ky (open red circle) in the lattice frame into pairs
with quasimomenta ki (fille orange circle) and k> (fille blue circle),
so that phase-matching conditions given by energy and momentum
conservations are fulfilled The example here is for a lattice depth
Vo = 0.725Erc and ko = —0.65kec, with ke = 271 /AL, the recoil
momentum and Eg, = k% /2m = h x 44 kHz the recoil energy.
(b) Vertical single-shot momentum distribution (integrated over the
total transverse distribution) measured for these conditions. The three
main peaks correspond to the initial BEC and to the macroscopically
populated beams centered at k1 and k>, which are mainly projected in
the f rst Brillouin zone (in white) when the lattice is switched off. As
expected, small diffraction peaks at kg + 2k and ky — 2k are also
visible, due to the proximity of kg and k; to the band edge.

©2013 American Physical Society
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FIG. 2. (Color online) Experimental setup and sequence: (1)
Initially. a BEC of metastable helium is trapped in a vertical optical
potential with a 43 pm waist. (2) An optical lattice is suddenly
applied in the presence of the trap. It is tilted by 7° with respect to
the trap axis, and is focused on the BEC with a 200 pum waist. (3)
After the dipole trap and optical lattice switch off, the cloud expands
and falls on the 3D resolved single atom detector. Given the values of
the vertical and transverse Thomas-Fermi radii (0.5 mm and 3 pm),
the arrival time and position reflec the 3D momentum distribution,
provided the momenta are well above 3 x 10 epec along z and
2 x 107 %k, transversely.

context of coherence [23,24] and atomic [25] losses appearing
for a BEC moving in a lattice.

The experiment is performed on *He atoms in the m, = 1
sublevel of the 2 3S; metastable state. The experimental setup
and sequence are shown in Fig. 2. After evaporative cooling
in an elongated, vertical dipole trap with frequencies v; =
1.5 kHz and v, = 6.5 Hz [26]. we produce a BEC (or more
precisely a quasi-BEC [27]) with about 10° atoms. We then
apply a 1D optical lattice with a depth Vy = 0.725E .. This
lattice is tuned 19 nm to the blue of the 1083 nm 235;-23P
transition of helium. It is formed by two counterpropagating
17 mW beams with 200 pm waists and whose relative detuning
8v can be varied using acousto-optic modulators. We thus
control the value of ko/ kree = h 6V /4 Efec, the BEC’s momen-
tum in the lattice frame. The lattice is held on for a duration
Tr = 2 ms, and suddenly switched off, simultaneously with
the optical trap. To avoid magnetic perturbation of the cloud
during free fall, we apply an rf pulse that transfers 50% of
the atoms to the fiel insensitive m, = 0 sublevel [26]. The
atoms remaining in m, = 1 are subsequently removed by a
strong magnetic gradient. After a 307 ms mean time of fight,
the m, = 0 atoms fall on a microchannel plate detector, which
permits 3D reconstruction of the atomic cloud [28].

As shown in Fig. 1(b), we observe three main density peaks
after the time of fight. The tallest is the initial BEC. The two
others are formed by atoms scattered into momentum classes
centered in k1 and k;, whose values are consistent with those
expected from the phase-matching conditions illustrated in
Fig. 1(a). Since the optical lattice is switched off abruptly,
the Bloch states of momenta kp, k. and k; are projected onto
plane waves, mainly in the frst Brillouin zone due to the
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low lattice depth. Each of the beams at k; and k; contains
about 10? detected atoms, which we estimate to correspond
to about 2 x 103 atoms per beam. We also detect some atoms
between the beams, which result from scattering into excited
transverse modes [29]. Due to the low overlap between the
transversely excited states and the initial wave function, this
transverse excitation is far less efficien than the previously
described 1D process. In addition, scattered atoms can also
undergo secondary scattering contributing to the background
between the beams.

In the following, we focus on the two beams. Using them
for quantum atom optics experiments or for interferometry
will require recombining them. It is therefore crucial to
know the width of their correlation. From the 3D-momentum
distribution n(k), we computed the normalized second-order
cross-correlation function,

_nd9nk))
(n(K) (n(k)’
where k belongs to beam 1 and k' to beam 2. The BEC is
not exactly at rest in the optical trap, but exhibits shot-to-shot
momentum fluctuation on the order of 1072 k.. We correct
for these fluctuation by recentering separately the single shot
momentum distributions n(k) around k; and ko, using the
shift obtained from Gaussian fit to the peak at k; and to
the diffraction peak at kg + 2kre.. This correlation function
exhibits a peak for k; > k; and k] =~ k; [Figs. 3(a) and 3(b)].
The presence of this peak indicates that the two atomic beams
are indeed correlated.

We wish to determine the number of modes present in
each beam, and how many of these modes are correlated.
We therefore examine the local second-order correlation
function of a single beam, gf)(k,k’), which is obtained as
in Eq. (1) but with both k and k’ belonging to beam 1. This
correlation function, plotted in Figs. 3(c) and 3(d), exhibits
bunching for k; ~ k; >~ k;, due to density fluctuation [as
in the Hanbury-Brown-Twiss (HBT) effect [30]]. Similar
bunching is observed at kp. If we suppose that the widths
of the local correlation defin the size of a single mode, we
can compare them to those of the density (longitudinal rms:
4 x 10 2k transverse rms: 4 X 10_1km). We see that about
10 longitudinal and 3 transverse modes are populated. Thus the
mode population is, roughly, 70 atoms/mode. For comparison,
in the case of free-space four-wave mixing [31], starting from
a similar initial BEC, 10° modes were populated, with only
about 0.02 atoms/mode.

It appears in Fig. 3 that, while in the transverse direction,
the cross and local correlations have similar widths [Figs. 3(a)
and 3(c)], the cross correlation is 5 times broader than the
local one along the vertical axis [Figs. 3(b) and 3(d)]: each
mode is correlated with several modes of the other beam.
If one uses two such beams as inputs to a beam splitter,
this broadening amounts to a loss of coherence, and the
interference contrast would be reduced. We emphasize that
the observed widths may be broadened by other effects, and
so their numerical ratio is not exactly equal to the number of
correlated modes. For the local correlation, we estimate that
the finit vertical resolution of the microchannel plate detector
contributes notably to the observed width. This resolution
comes about because the surface which define the atom arrival

gDk K) = 1)
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FIG. 3. (Color online) (a) and (b) Cuts along y and z of
the integrated. normalized cross-correlation function of the two
beams, ggj(Ak) = [dk; g“g)(ki,kj + AK). The integration over the
momentum distribution k; is performed on a box with dimensions
Ly, = Ly, = 0.4kgee and Ly, =5 x 1072k centered on beam 1,
k; +K; = (ky + k3) €;. and the cuts have a thickness 10 2k (1.5 x
10 M) along z (x and y). The bunching, due to the correlation
between the two beams, has a longitudinal (transverse) width g, , =
1.8 X 10 2kpee (0c,y = 1.6 x 107 k). (c) and (d) Cuts along y and
z of the integrated, normalized local correlation function of beam
1. gf)(Ak) = [dk; gf)(ki,ki + AK). The integration region is the
same as for the cross correlation. and the cuts have a thickness
2.5 x 10 2 kpee (0.1kg) along z (x and y). The bunching, due to
the HBT effect, has a longitudinal (transverse) width o; ; = 3.7 x
103 kyee (07,5 = 1.3 x 107 k). Cauts along x (not shown here) have
the same widths and amplitudes as cuts along y. These correlation
functions are calculated using 850 experimental realizations, with
ky = —0.65kg. a lattice depth Vj = 0.725E ... and a lattice duration
T, = 2 ms. In all plots, the horizontal error bars indicate the bin size
and the vertical ones correspond to the statistical 1o uncertainties.
The solid lines are Gaussian fit to the data from which we extract
the correlation widths.

time is not fla but consists of tilted channels which intercept
the atoms at different heights. The width shown in Fig. 3(d)
is consistent with this interpretation. For the cross correlation,
the observed width is broadened by the fact that the vertical
source size is not negligible [32]. Note also that the limited
coherence of the initial quasi-BEC plays a role in the cross
correlation width [32].

The use of an optical lattice permits control over the output
beam momenta. Changing the detuning §v between the lattice
beams results in varying the value of kj. In Fig. 4, we plot the
mean vertical momenta k; and k; of both beams, measured for
different kg, as well as the expectation (solid line) based on the
phase-matching conditions illustrated in Fig. 1(a). We obtain
a fair agreement over a large range, even though the solid line
presents a small shift in comparison to the data points and
does not reproduce the observed shape for high values of ky.
However, as already observed for four-wave mixing in free
space [33], phase-matching conditions can be influence by
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FIG. 4. (Color online) Measured mean momenta ky and k; of the
beams (black dots, in units of k) as a function of kg (initial BEC
momentum in the lattice frame) for a depth Vp = 1.05E and a
duration T; = 1.5 ms of the lattice. The solid line shows the phase-
matching curve expected without interactions, while the dashed line
includes the mean fiel [see Eq. (2)].

mean-fiel effects. A simple correction to the phase-matching
curve is found just by adding the mean fiel to the energy
conservation condition: Since the two atoms of a scattered
pair are distinguishable from the atoms of the initial BEC,
the mean-fiel energy experienced by each of them is not gng
(with g = 47h%a/m. a and m the scattering length and the
mass of He* and ng ~ 1013 atoms/cm? the BEC density), but
2gny. so that the energy conservation condition reads:

2E(ko) +2gno = E(ky) + E(ky) + 4gno, 2)

where the energy E(k) is given by the dispersion relation in
the frst Bloch band of the lattice without interaction. As seen
in Fig. 4 (dashed line), this correction leads to very good
agreement with the experimental data, and accounts for the
shift of the phase-matching curve and the change of its shape.
A more exact calculation of the phase-matching conditions,
inspired by Ref. [21], confirm the accuracy of Eq. (2) in our
experimental conditions and will be given in Ref. [34].

Another degree of freedom results from the fact that pair
creation only takes place while the lattice is on. We can thus
tune the beam populations with the lattice duration 7; . In the
example of Fig. 5 these populations increase exponentially
with Ty during a few hundred ps, and then reach a plateau.
This saturation could be explained by several mechanisms
such as the decrease of spatial overlap between condensate and
scattered beams [19], multimode effects [35], and secondary
scatterings from the beams. Condensate depletion is at most
about 20% and should be of little importance in the saturation.
For small T;, there is no discernible population difference
between both beams. By contrast, we observe that at large T,
the population of beam 1 is almost twice that of beam 2, a
phenomenon also noticed in Ref. [19]. This may be due to
k being in a dynamically unstable region while atoms with
quasimomentum k; can only undergo secondary scattering to
excited transverse modes.

At intermediate T, we observe negligible losses due to
secondary scattering and high mode population (around 60
atoms per mode at T;, = 0.2 ms in the example of Fig. 5). The
resulting beams should contain strongly correlated pairs. In
an attempt to verify a nonclassical correlation, we examined
atom number difference between the two beams. By selecting
two regions around the centers of the two beams, we do indeed
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FIG. 5. (Color online) Dependence of the population of beam 1
(orange fille circles) and beam 2 (blue open circles) on the lattice
duration T}, for ko = —0.67krec and for a lattice depth Vp = 1.05E.
The gray line is an exponential 't of the detected population in beam
2 for T; < 0.3 ms, which gives a time constant of 0.1 ms and an
offset of 11.5 detected atoms. This offset is due to the small thermal
part of the source cloud with quasimomenta k; and k,. For a lower
lattice depth, as for the data of Fig. 3, the temporal evolution is a few
times slower [21]. Inset: same data with linear scale.

observe a sub-Poissonian number difference [6,31], as shown
in Fig. 6. The observed variance is consistent with that ob-
served in Ref. [31]. and is limited in large part by the quantum
efficien y of the detector. Other features of the variance are
puzzling, however. First the minimum of the dip in the variance
occurs when the center of region 1 is shifted by 0.1k with
respect to the center of the density distribution in beam 1.
Second, in the transverse plane, the size of the regions over
which the variance is reduced is nearly an order of magnitude
smaller than the transverse width of the correlation function.
We plan to investigate these effects in future experiments.

To conclude, we have demonstrated an efficien process for
the production of correlated atom pairs. We have control over
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FIG. 6. (Color online) Normalized variance of atom number
difference between two regions selected close to beams 1 and 2.
The data are the same as those of Fig. 3. Regions are vertical
cylinders of radius 2.5 x 10 %k, and height 8.5 x 10 2k. They
are centered on the two beams in the transverse plane. Along the
vertical axis, the center momentum (in the lattice frame) of region 1
is scanned, whereas region 2 is f xed. A variance below unity indicates
sub-Poissonian fluctuations

both the fina momenta and the intensity of the correlated
beams. We characterize the width of the correlation in
momentum and fin evidence of sub-Poissonian fluctuation
of population difference. This source should be useful in
multiple particle interference experiments both in the regime
of well-isolated pairs [12] and in the regime of large occupation
numbers [11].
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Second-order coherence of superradiance from a Bose-Einstein condensate
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‘We have measured the two-particle correlation function of atoms from a Bose-Einstein condensate participating
in a superradiance process, which directly reflect the second-order coherence of the emitted light. We compare
this correlation function with that of atoms undergoing stimulated emission. Whereas the stimulated process

produces correlations resembling those of a coherent state, we fin that superradiance, even in the presence
of strong gain, shows a correlation function close to that of a thermal state, just as for ordinary spontaneous

emission.

DOI: 10.1103/PhysRevA.90.013615

Ever since the publication of Dicke’s 1954 paper [1]. the
problem of the collective emission of radiation has occupied
many researchers in the field of light scattering, lasers, and
quantum optics. Collective emission is characterized by a
rate of emission which is strongly modifie compared to
that of individual atoms [2]. Tt occurs in many different
contexts: hot gases, cold gases, solids and even planetary
and astrophysical environments [3]. The case of an enhanced
rate of emission, originally dubbed superradiance, is closely
connected to stimulated emission and gain and, as such,
resembles laser emission [4]. Lasers are typically characterized
by high phase coherence but also by a stable intensity,
corresponding to a Poissonian noise, or a fla second-order
correlation function [5]. Here we present measurements
showing that the coherence properties of superradiance, when
it occurs in an ultracold gas and despite strong amplifie
emission, are much closer to those of a thermal state, with
super-Poissonian-intensity noise.

Research has shown that the details of collective emission
depend on many parameters such as the pumping configura
tion, dephasing and relaxation processes, sample geometry,
presence of a cavity, etc., and, as a result, a complex
nomenclature has evolved including the terms superradiance,
superfluorescence amplifie spontaneous emission, mirrorless
lasing, and random lasing [2.4,6-9], the distinctions among
which we do not attempt to summarize here. The problem
has recently seen renewed interest in the fiel of cold
atoms [10-25]. This is partly because cold atoms provide a
reproducible, easily characterized ensemble in which Doppler
broadening effects are small and relaxation is generally limited
to spontaneous emission. Most cold-atom experiments differ in
an important way from the archetypal situation f rst envisioned
by Dicke: instead of creating an ensemble of excited atoms at
a well-define time and then allowing this ensemble to evolve
freely, the sample is typically pumped during a period long
compared to the relaxation time and emission lasts essentially
only as long as the pumping. The authors of Ref. [10], however,

*Current address: Vienna Center for Quantum Science and Technol-
ogy. Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria.

fCurrent address: Laboratoire Kastler Brossel, Université Pierre
et Marie Curie—FEcole normale supérieure—CNRS, 4 place Jussieu,
75005 Paris, France.

{christoph.westbrook(@institutoptique. fr

1050-2947/2014/90(1)/013615(5)

013615-1

PACS number(s): 03.75.Kk, 42.50.Lc, 67.10.Jn

have argued that there is a close analogy to the Dicke problem,
and we follow them in designating this process superradiance.

In the literature on superradiance there has been relatively
little discussion about the coherence and correlation properties
of the light. The theoretical treatments we are aware of
show that the coherence of collective emission can be quite
complicated but does not resemble that of a laser [2,13,20,26—
28]. These results, however, were obtained for simple models
that do not include all parameters relevant to laboratory
experiments. Experimentally, a study performed on Rydberg
atoms coupled to a millimeter-wave cavity [29] showed a
thermal mode occupation, and an experiment in a cold atomic
vapor in free space [24] observed a nonfla second-order
correlation function. In the present work, we show that even if
the initial atomic state is a Bose-Einstein condensate (BEC),
the second-order correlation function looks thermal rather than
coherent.

Such behavior, which may seem counterintuitive, can be
understood by describing superradiance as a four-wave mixing
process between two matter waves and two electromagnetic
waves. The initial state consists of a condensate, a coherent
optical pump beam, and empty modes for the scattered atoms
and the scattered photons. If we make the approximation that
the condensate and the pump beam are not depleted and can
be treated as classical fields the matter-radiation interaction
Hamiltonian is given by

H =) i g gy + X G i) $))
1

where &L,j (Ga,;) and &;]L ; (@pn,i) denote atom and photon

creation (annihilation) operators for a specifi pair of momenta
i fi ed by energy and momentum conservation and ¥; is a
coupling constant. Textbooks [30] show that, starting from
an input vacuum state, this Hamiltonian leads to a product
of two-mode squeezed states. When one traces over one of
the two modes, o = {at,i} or {ph,i}. the remaining mode B
has a thermal occupation with a normalized two-particle or
second-order correlator

~t oAt o~
Apazdga
MZZ’ 2)

whereas it is unity for a laser. The problem has also been treated
for four-wave mixing of matter waves [31]. We emphasize

©2014 American Physical Society
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that, when starting from initially empty modes, the occupation
remains thermal regardless of the gain.

In the experiment, we start from initially nearly motionless
atoms of a BEC and observe their recoil upon photon emission.
To the extent that each recoil corresponds to the emission
of a single photon, we can obtain essentially the same
information about the radiation from such measurements as
by observing it directly. In doing this, we are following the
approach pioneered in experiments such as [10] and [29]
and followed by many others, which uses highly developed
atom detection and imaging techniques to glean most of the
experimental information about the process. We are able to
make time-integrated measurements of the emission, resolved
in transverse and longitudinal momentum as well as in polar-
ization, and reconstruct the two-particle correlation function
of the recoiling atoms or, equivalently, the second-order
correlation function of the scattered light. We show that in the
configuratio of our experiment, the second-order correlation
is close to that of a thermal sample and very different from the
correlation properties of the initial, condensed atomic state.

We use helium in the 23Sy, m = 1 state confine ina crossed
dipole trap [see Fig. 1(a)] with frequencies of 1300 Hz in the
x and y directions and 130 Hz in the (vertical) z direction.
The dipole trap wavelength is 1.5 pum. The atom number is
approximately 50 000, and the temperature of the remaining
thermal cloud 140 nK. A 9-G magnetic fiel along the y axis
define a quantization axis. After producing the condensate, we
irradiate it with a laser pulse of 2.4 W/cm? tuned 600 MHz to
the red of the 23§; — 2 3P, transition at A = 1083 nm and with
natural linewidth 1.6 MHz. The excitation beam propagates

BEC (a) (b)
= | n

® 600 MHz

B
T ] I.
¥ L

- . _m=+1 " 326 MHz
' m=0
— T
MCP 2°§4

FIG. 1. (Color online) (a) Sketch of the experiment. A 9-G
magnetic fiel B applied along the y axis define the quantization
axis. The excitation beam propagates with an angle of 10° (not shown)
relative to the x axis and its polarization is linear, with the same
angle relative to the z axis. After emission, the atoms fall 46 cm
to a position-sensitive microchannel plate (MCP). The atom cloud
forms a sphere with enhanced occupation of the endfir modes. (b)
Atomic level scheme. The atoms, initially in the 238;, m = 41 state,
are excited to the 23P, state. From there, they can decay with equal
branching ratios to the three sublevels of the ground state. We detect
only the atoms which scatter into the m = 0 state.

PHYSICAL REVIEW A 90, 013615 (2014)

with an angle of 10° relative to the x axis and its polarization is
linear, with the same angle relative to the z axis [see Fig. 1(a)].
The pulse length is 5 us and it is applied with a delay t after
switching off the trap. The expansion of the cloud during this
delay is a convenient way to vary both the optical density
and the anisotropy of the sample at constant atom number.
The absorption dipole matrix element is of the 6~ form and
thus one-half of the laser intensity is coupled to the atomic
transition corresponding to a Rabi frequency of 56 MHz. The
excited atoms decay with equal branching ratios to the three
ground states. During the pulse, less than 10% of the atoms are
pumped into each of these states. Because of the polarization
selection rules, the atoms which are pumped into the m =
0 state cannot reabsorb light from the excitation laser. By
focusing on these atoms, we study the regime of “Raman
superradiance” [15,32], by which we mean that an absorption
and emission cycle is accompanied by a change in the internal
state of the atom. When the trap is switched off, the atoms fall
toward a microchannel plate detector which detects individual
atoms with three-dimensional imaging capability and a 10%
to 20% quantum efficien y [33]. A magnetic-fiel gradient is
applied to sweep away all atoms except those scattered into
the m = 0 magnetic sublevel. The average time of f ight to the
detector is 310 ms and is long enough that the atoms’ positions
atthe detectorreflec the atomic momenta after interaction with
the excitation laser. Conservation of momentum then requires
that these atoms lie on a sphere with a radius equal to the
recoil momentum kp. = 27 /L. Any additional scattering of
light, whether from imperfect polarization of the excitation
laser or from multiple scattering by the atoms, will result in the
atoms lying outside the sphere. We see no significan signal
from such events, but in order to completely eliminate the
possibility of multiple scattering we restrict our analysis of the
data to the spherical shell with inner radius 0.8 kg and outer
radius 1.2 kg..

We excite atoms in an elongated BEC in such a way
that an allowed emission dipole can radiate along the long
axis. In an anisotropic source, collective emission builds up
more efficient] in the directions of highest optical thickness.
Superradiance is therefore expected to occur along the long
axis of the BEC, in so-called “endfire modes [10,34]. An
important parameter, then, is the Fresnel number of the
sample [2], F = ZRJE_ /AR, where R and R; are the horizontal
and vertical Thomas-Fermi radii of the condensate. The
Fresnel number distinguishes between the diffraction limited
(F < 1) and the multimode superradiance regimes (F > 1).
In our case, R} ~ 5 pum and R, =~ 50 pum, yielding a Fresnel
number of about unity.

Typical cuts through the atomic momentum distribution in
the yz plane are shown in Fig. 2, for T = 500 us (left) and
T ~ 0 (right). In both cases, the spherical shell with radius
1 krec appears clearly. For the short delay, when the atomic
sample remains dense and anisotropic, we observe strong
scattering in the endfir modes at the top and bottom poles
of the sphere. In addition to this change in the profil of the
distribution, we measure an increase in the fofal number of
atoms on the sphere by a factor of ~5 from T = 500 us to
T &~ 0. Because each atom has scattered a single photon, this
increase directly reflect an increase in the rate of emission
in the sample and therefore demonstrates the collective nature
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FIG. 2. (Color online) Momentum distribution of scattered
atoms in the yz plane (containing the emission dipole). Both
panels show the distribution in the yz plane, integrated between
ky = £0.1 ke and summed over 100 shots. See the Supplemental
Information for a cut in the xz plane [35]. Left: Excitation laser
applied 500 ws after the trap switch-off. Only the radiation pattern
for a y-polarized dipole is visible. Right: Excitation laser applied
immediately after the trap switch-off. Strong superradiance is visible
in the vertical. endfir modes.

of the scattering process. At long delays, the condensate has
expanded sufficient] that the optical thickness and anisotropy
have fallen dramatically, suppressing the collective scattering.
By looking at the number of scattered atoms in the x direction
(perpendicular to the plane in Fig. 2), we have verifie that,
away from the endfir modes, the rate of emission varies by
less than 10% for different delays [35].

To see the distribution in a more quantitative way, we show
in Fig. 3 an angular plot of the atom distribution in the yz plane.
Data are shown for three delays t before application of the

oT“OpS

o 1=200ps
°t=500ps }

b
<

>
oo

Normalized atom signal

Polar angle (radian)

FIG. 3. (Color online) Angular distribution of scattered atoms in
the yz plane (containing the emission dipole) for different values of
the delay T before the excitation pulse. From bottom to top: light-gray
(green) circles correspond to T = 500 ps; dark-gray (blue) circles, to
T = 200 ps: and light-gray (red) circles, to T = 0 ps. Data for T =
0 and 500 ps are the same as those shown in Fig. 2. Images were
integrated along the x axis between 0.1 ke, and only atoms lying
inside a shell with inner radius 0.8 ke and outer radius 1.2 ke Were
taken into account. The delays r = 0, 200, and 500 ps correspond to
peak densities of 28, 2, and 0.4x 10!® m—3 and to aspect ratios of 10,
5, and 2.5, respectively. The endfir modes are located at £ /2. The
half-width at half-maximum of the highest peak is 0.14 rad. Error
bars are shown, denoting the 68% confidenc interval.
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excitation pulse. For the 500-us delay, the angular distribution
follows the well-known “sin® 8” linear dipole emission pattern,
with the angles & = 0 and 7 corresponding to the orientation
of the dipole along the y axis [35]. For the 200-us delay, the
superradiant peaks are already visible at the top of the dipole
emission profile For the shortest delay, the half-width of the
superradiant peaks is 0.14 ke, or 0.14 rad, consistent with
the diffraction angle and the aspect ratio of the source. In the
vertical direction, the superradiant peaks are 10 times narrower
than in the horizontal direction [35].

In the strongly superradiant case, we observe large and
uncorrelated fluctuation of the heights of the two superradiant
peaks on a shot-to-shot basis. These fluctuation directly reflec
the fluctuation of the population of the superradiant modes.
We investigate these fluctuation further by measuring the
normalized two-particle correlation function of the scattered
atoms, define as

(: AK)AK + AK) )
(k) (a(k + Ak))

Here, i is the atomic density and : : denotes normal ordering.
In practice, this function is obtained from a histogram of
pair separations AK normalized to the autoconvolution of
the average particle momentum distribution [36,37]. Figure 4
shows the experimentally measured correlation functions
integrated over the momentum along two of three axes, both

g?(Ak) =

3)

g9(Ak,)

—
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FIG. 4. (Color online) Correlation functions along the (a) z and
(b) y axis for T & 0. Darker (blue) circles correspond to superradiant
peaks (define by |k;| > 0.95 k). Lighter (orange) circles corre-
spond to atoms from the scattering sphere away from the superradiant
peaks (define by |k;| < 0.92 k). Solid lines are Gaussian fit
constrained to approach unity at large separation. Filled gray circles
correspond to a fraction of the initial condensate transferred to the
m = 0 state via a stimulated Raman transfer. The dashed gray line
shows unity. Error bars denote the 68% confidenc interval.
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for the superradiant peaks and on the scattering sphere away
from the peaks [35].

We see that in both cases the correlation function at zero
separation reaches a value close to 2. This shows clearly
that, despite strong amplifie emission in the endfir modes,
the atoms undergoing a superradiant process have statistics
comparable to that of a thermal sample. As emphasized in the
introductory section, these large fluctuation can be simply
understood by modeling the superradiant emission as a four-
wave mixing process; they arise from the fact that the emission
is triggered by spontaneous emission. For the superradiant
peaks, the correlation actually is slightly larger than 2. Similar
behavior has appeared in some models [20,38], but these
models may not be directly applicable to our situation.

Figure 4 also shows that the correlation widths of the
superradiant modes are somewhat broader than those of the
atoms scattered in other modes. The effect is a factor of about
1.5 in the vertical direction and about 1.25 in the horizontal
direction [35]. The broadening indicates that the effective
source size for superradiance is slightly smaller than that for
spontaneous scattering. A decreased vertical source size for
superradiance is consistent with the observations in Refs. [39]
and [40], which showed that the superradiant emission is
concentrated near the ends of the sample. In the horizontal
direction, one also expects a slightly reduced source size
relative to the atom cloud since the gain is higher in the center,
where the density is higher. The fact that the correlation widths
are close to the widths of the momentum distribution [35]
indicates that the superradiant peaks are almost single mode as
expected for samples with a Fresnel number close to unity [2].

The spontaneous superradiant scattering process should
be contrasted with stimulated Raman scattering. In terms of
the model described by Hamiltonian (1), stimulated Raman
scattering corresponds to seeding one of the photon modes
with a coherent state. In this case, vacuum fluctuation do
not initiate the scattering process, and the resulting mode
occupation is not thermal but coherent. To study stimulated
scattering, we applied the excitation beam together with
another beam polarized parallel to the magnetic fiel and
detuned by the Zeeman shift (25 MHz) with respect to the
o-polarized beam, inducing a stimulated Raman transition.
The laser intensities were adjusted to transfer a similar number
of atoms to the m = 0 state as in the superradiance experiment.
The normalized correlation functions in this situation, shown
in Fig. 4, are very nearly fla and equal to unity as we expect
foraBEC [36,41.42]. The complementary experiment, seeding

PHYSICAL REVIEW A 90, 013615 (2014)

the afomic mode with a coherent state has also been observed
to produce a coherent amplifie matter wave [43,44]. As a
side remark, we have also observed that the superradiant atom
peaks are 2.8 times narrower in the vertical direction than the
vertical width of the transferred condensate [35]. We attribute
this to a longitudinal gain narrowing effect [27].

We also investigated the influenc of several other ex-
perimental parameters on the second-order coherence of the
superradiant emission: We have excited the atomic sample with
a longer and stronger pulse (10 us, 3.2 W/em?), so that the
initial condensate was entirely depleted. We have explored the
Rayleigh scattering regime, in which the atoms scatter back to
their initial internal state. We also changed the longitudinal
confinemen frequency of the BEC to 7 Hz, leading to a
much higher aspect ratio. These different configuration led
to two-particle correlation functions which were very similar
to the one discussed above. We believe that similar fluctuation
will occur in superradiance from a thermal cloud provided that
the gain in the medium is large enough. We were unable to
confir this experimentally in our system, precisely because
of the vastly reduced optical density. However, noncoherent
intensity fluctuation have been observed using magneto-
optically trapped atoms [24]. This seems to confir our
interpretation that the large fluctuation of the superradiant
mode occupation is an intrinsic property of superradiant
emission, reflectin the seeding by spontaneous emission. The
only way to suppress these fluctuation would be to restrict the
number of scattering modes to one by means of a cavity and
to saturate the gain by completely depleting the atomic cloud.
The occupation of the superradiant mode would then simply
reflec that of the initial atomic sample.

An interesting extension of the techniques used here
is to examine superradiant Rayleigh scattering of a light
pulse short enough and strong enough to populate oppositely
directed modes [45]. It has been predicted [13,14,46] that
the modes propagating in opposite directions are entangled,
similar to those produced in atomic four-wave mixing [47-49].
A similar measurement technique should be able to reveal
them.
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Quantum mechanics is a very successful and still intriguing theory, introducing
two major counter-intuitive concepts. Wave-particle duality means that objects
normally described as particles, such as electrons, can also behave as waves, while
entities primarily described as waves, such as light, can also behave as particles.
This revolutionary idea nevertheless relies on notions borrowed from classical phys-
ics, either waves or particles evolving in our ordinary space-time. By contrast, en-
tanglement leads to interferences between the amplitudes of multi-particle states,
which happen in an abstract mathematical space and have no classical counter-
part. This fundamental feature has been strikingly demonstrated by the violation

4

of Bell’s inequalities'™. There is, however, a conceptually simpler situation in

which the interference between two-particle amplitudes entails a behaviour im-
possible to describe by any classical model. It was realised in the Hong, Ou and
Mandel (HOM) experiment®, in which two photons arriving simultaneously in the
input channels of a beam-splitter always emerge together in one of the output
channels. In this letter, we report on the realisation, with atoms, of a HOM ex-
periment closely following the original protocol. This opens the prospect of testing
Bell’s inequalities involving mechanical observables of massive particles, such as

T

momentum, using methods inspired by quantum optics®’, with an eye on theor-

8-11

ies of the quantum-to-classical transition® . Our work also demonstrates a new

way to produce and benchmark twin-atom pairs'?!® that may be of interest for

quantum information processing'* and quantum simulation®.



A pair of entangled particles is described by a state vector that cannot be factored as a
product of two state vectors associated with each particle. Although entanglement does not
require that the two particles be identical?, it arises naturally in systems of indistinguishable
particles due to the symmetrisation of the state. A remarkable illustration is the HOM ex-
periment, in which two photons enter in the two input channels of a beam-splitter and one
measures the correlation between the signals produced by photon counters placed at the two
output channels. A joint detection at these detectors arises from two possible processes: either
both photons are transmitted by the beam-splitter or both are reflected (Fig. 1c). If the two
photons are indistinguishable, both processes lead to the same final quantum state and the
probability of joint detection results from the addition of their amplitudes. Because of ele-
mentary properties of the beam-splitter, these amplitudes have same modulus but opposite
signs, thus their sum vanishes and so also the probability of joint detection (Refs. [16, 17] and
Methods). In fact, to be fully indistinguishable, not only must the photons have the same
energy and polarisation, but their final spatio-temporal modes must be identical. In the HOM
experiment, it means that the two photons enter the beam-splitter in modes that are the exact
images of each other. As a result, when measured as a function of the delay between the arrival
times of the photons on the beam-splitter, the correlation exhibits the celebrated ‘HOM dip’,

ideally going to zero at null delay.

In this letter, we describe an experiment equivalent in all important respects to the HOM
experiment, but performed with bosonic atoms instead of photons. We produce freely propagat-
ing twin beams of metastable Helium 4 atoms'®, which we then reflect and overlap on a beam-
splitter using Bragg scattering on an optical lattice (Ref. [19] and Fig. 1). The photon counters
after the beam-splitter are replaced by a time-resolved, multi-pixel atom-counting detector?’,
which enables the measurement of intensity correlations between the atom beams in well defined
spatial and spectral regions. The temporal overlap between the atoms can be continuously
tuned by changing the moment when the atomic beam-splitter is applied. We observe the
HOM dip when the atoms simultaneously pass through the beam-splitter. Such a correlation
has no explanation in terms of classical particles. In addition, a quantitative analysis of the vis-
ibility of the dip also rules out any interpretation in terms of single-particle matter waves. Our

observation must instead result from a quantum interference between multi-particle amplitudes.



Our experiment starts by producing a Bose-Einstein condensate (BEC) of metastable He-
lium 4 atoms in the 2 381, m = 1 internal state. The BEC contains 5 to 6 x 10* atoms and is
confined in an elliptical optical trap with its long axis along the vertical (2) direction (Fig. 1a).
The atomic cloud has radii of 58 and 5 pm along the longitudinal and transverse (L) directions,
respectively. A moving optical lattice, superimposed on the BEC for 300 ps, induces the scat-
tering of atom pairs (hereafter referred to as twin atoms) in the longitudinal direction through
a process analogous to spontaneous four wave mixing (Refs. [18, 21, 22] and Methods). One
beam, labelled a, has a free-space velocity v, ~ 12.1cms™! in the laboratory frame of reference
and the other beam, labelled b, has a velocity v, ~ 7.0cms™! (Fig. 1b,c). The twin atom
beams clearly appear in the velocity distribution of the atoms, which is displayed in Fig. 2.
The visible difference in population between the beams probably results from secondary scat-
tering processes in the optical lattice, leading to the decay over time of the quasi-momentum
states'®. After the optical lattice has been switched off (time ¢;), the twin atoms propagate
in the optical trap for 200 pus. At this moment, the trap itself is switched off and the atoms
are transferred to the magnetically insensitive m = 0 internal state by a two-photon Raman

transition (Methods).

From here on, the atoms evolve under the influence of gravity and continue to move apart
(Fig. 1b). At time t2 = t; + 500 ps, we deflect the beams using Bragg diffraction on a second
optical lattice, so as to make them converge. In the centre-of-mass frame of reference, this
deflection reduces to a simple specular reflection (Fig. 1c and Methods). At time t3 ~ 2t; — 4,
we apply the same diffraction lattice for half the amount of time in order to realise a beam-
splitting operation on the crossing atom beams. Changing the time ¢3 allows us to tune the
degree of temporal overlap between the twin atoms. Fig. 1c shows the atomic trajectories
in the centre-of-mass frame of reference and reveals the close analogy with a photonic HOM
experiment. The atoms end their fall on a micro-channel plate detector located 45cm below
the position of the initial BEC and we record the time and transverse position of each atomic
impact with a detection efficiency n ~ 25% (Methods). The time of flight to the detector is
approximately 300 ms, long enough that the recorded signal yields the three components of the
atomic velocity. By collecting data from several hundred repetitions of the experiment under

the same conditions, we are able to reconstruct all desired atom number correlations within



variable integration volumes of extent Av, x Av?. These volumes play a similar role to that
of the spatial and spectral filters in the HOM experiment and can be adjusted to erase the
information that could allow tracing back the origin of a detected particle to one of the input

channels.

The HOM dip should appear in the cross-correlation between the detection signals in the

output channels of the beam-splitter (Ref. [16] and Methods):
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Here, a, and a! denote the annihilation and creation operators of an atom with three-dimensional
velocity v, respectively, (-) stands for the quantum and statistical average and V.4 designate
the integration volumes centred on the output atom beams ¢ and d (Fig. 1¢). We have measured
this correlation as a function of the duration of propagation 7 = t3 — t, between the mirror and
the beam-splitter (Fig. 3) and for various integration volumes (see supplementary material).
We observe a marked reduction of the correlation when 7 is equal to the duration of propaga-
tion from the source to the mirror (t3 —ty ~ t, —t;) and for small enough integration volumes,
corresponding to a full overlap of the atomic wave-packets on the beam-splitter. Fitting the

data with an empirical Gaussian profile yields a visibility:
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where the number in parenthesis stands for the 68 % confidence interval. As we shrink the integ-
ration volumes, we observe that the dip visibility first increases and then reaches a saturation
value, as is expected when the integration volumes become smaller than the elementary atomic
modes. The data displayed in Fig. 3 were obtained for Av, = 0.3cms™! and Av; = 0.5cms™},

which maximises the reduction of the correlation while preserving a statistically significant

number of detection events (see supplementary material).

The dip in the cross-correlation function cannot be explained in terms of classical particles,
for which we would have no correlation at all between the detections in the output channels.

When the atoms are viewed as waves however, demonstrating the quantum origin of the dip



necessitates a deeper analysis. The reason is that two waves can interfere at a beam-splitter
and give rise to an intensity imbalance between the output ports. If, in addition, the coherence
time of the waves is finite, the cross-correlation can display a dip similar to the one observed in
our experiment. But once averaged over the phase difference between the beams, the visibility
is bounded from above and cannot exceed 0.5 (Refs. [23, 24] and Methods). In our experiment,
this phase difference is randomised by the shot-to-shot fluctuations of the relative phase between
the laser beams used for Bragg diffraction (Methods). Since our measured visibility exceeds
the limit for waves by two standard deviations, we can safely rule out any interpretation of our
observation in terms of interference between two ‘classical’ matter waves or, in other words,

between two ordinary wave functions describing each of the two particles separately.

Two contributions may be responsible for the non-zero value of the correlation function at
the centre of the dip: the detected particles may not be fully indistinguishable and the number
of particles contained in the integration volume may exceed unity for each beam (Refs. [23, 25]
and Methods). The effect of the atom number distribution can be quantified by measuring the
intensity correlations of the twin atom beams upstream of the beam-splitter (Fig. 1c), which
bound the visibility of the dip through the relation:

G + Gy

Vinax = 1 —
- GR +GP +2G)

(3)

where G, Gg) and Gﬁ) are defined according to Eq. 1 (Ref. [24] and Methods). Here, one
immediately sees that the finite probability of having more than one atom in the input channels
will lead to finite values of the auto-correlations G((,f]), Gé? and therefore to a reduced visibility.
We have performed the measurement of these correlations following the same experimental
procedure as before, except that we did not apply the mirror and beam-splitter. We find non-
zero values G4 = 0.016(5), G5 = 0.047(9), and G2 = 0.048(7), yielding Vinax = 0.60(10),
where the uncertainty is the standard deviation of the statistical ensemble. Because of the good
agreement with the measured value, we conclude that the atom number distribution in the input
channels entirely accounts for the visibility of the HOM dip. For the present experiment we
estimate the average number of incident atoms to be 0.5(1) in V, and 0.8(2) in V, corresponding

to a ratio of the probability for having two atoms to that for having one atom of 0.25(5) and



0.40(10), respectively (Methods). Achieving much smaller values is possible, for instance by

reducing the pair production rate, but at the cost of much lower counting statistics.

Although multi-particle interferences can be observed with particles emitted or prepared
independently 262 twin particle sources are at the heart of many protocols for quantum
information processing!* and quantum simulation!®. The good visibility of the HOM dip in
our experiment demonstrates that our twin atom source produces beams which have highly
correlated populations and are well mode matched. This is an important achievement in itself,
which may have the same impact for quantum atom optics as the development of twin photon

sources using non-linear crystals had for quantum optics (see for instance Ref. [30]).
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Figure 1 | Schematic of the experiment. a, A Bose-Einstein condensate (BEC,
white oval) of metastable Helium 4 atoms is trapped in an elongated optical trap (red
shaded area). A moving optical lattice, here depicted in blue, is superimposed on the
BEC and triggers the scattering of atom pairs along the z-axis. When this lattice and the
trap are switched off, the atoms fall towards a micro-channel plate detector located 45 cm
below the initial position of the BEC (drawing not to scale). b, The time diagram shows
the evolution of the twin atom vertical coordinates (blue and red lines). Between ¢; and
ty, ty and t3, and after t3, the atoms move under the sole influence of gravity (drawing
not to scale). At ty, the twin atom velocities are swapped using Bragg diffraction on an
optical lattice. At time t3, when the atomic trajectories cross again, the same lattice is
applied for half the amount of time in order to realise a beam-splitter. c, In the centre-
of-mass frame of reference, the trajectories of the atoms resemble those of the photons
in the Hong-Ou-Mandel experiment. A joint detection arises either when both atoms
are transmitted through the beam-slitter (upper panel) or when both are reflected (lower
panel). If the two particles are indistinguishable, these processes end in the same final
quantum state and the probability of joint detection results from the addition of their
amplitudes. For bosons these amplitudes have same modulus but opposite signs, thus
their sum vanishes and so also the probability of joint detection.
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Figure 2 | Velocity distribution of the twin atoms. a, Two-dimensional velocity
distribution of the twin atom beams emitted by the source. The red shaded area, drawn
here only for the lower beam, labelled b in Fig. 1b and ¢, shows the integration volume used
for computing the correlation function displayed in Fig. 3. The distribution corresponds to
an average over about 1,100 measurements and is not corrected for the limited detection
efficiency. The velocities are given relative to the laboratory frame of reference. The
size of each pixel is 0.25cms ! in the transverse directions (z and y) and 0.15cms™! in
the longitudinal (z) direction and an integration over 2 pixels is performed along the y
direction. b,c, Cuts of the two-dimensional velocity distribution through the centre of
the lower beam along the longitudinal (b) and transverse (c) directions. The data points
result from the average over 2 pixels along the direction perpendicular to the cut. The
full width at half-maximum of the distribution, obtained from a Gaussian fit, is about
1.4cms™! along both the longitudinal and transverse directions. The red shaded area
again shows the integration volume.
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Figure 3 | HOM dip in the cross-correlation function. The correlation Gi? between
the output ports of the beam-splitter, defined in Eq. 1, was measured as a function of
the duration of propagation 7 = t3 — t2 between the mirror and the beam splitter. The
HOM dip is directly visible as a marked reduction of the correlation when 7 equals the
duration of propagation t, —t; ~ 500 ps between the source and the mirror, corresponding
to symmetric paths between the source and the beam-splitter, i.e. when one cannot
distinguish between the two diagrams of Fig. lc. A Gaussian fit (blue line) precisely
locates the dip at 7 = 550(50) ps, with a full-width at half-maximum of 150(40) ps, where
the uncertainty corresponds to the 68 % confidence interval. The measured visibility
is V' =10.65(7). It is two standard deviations beyond the classical-to-quantum threshold
represented by the red shaded area, which takes into account the experimental uncertainty
over the background correlation value. Each data point was obtained from an average
over about 500 to 1,400 repetitions of the experiment. Error bars denote the standard
deviation of the statistical ensemble. The mean detected atom number was constant over
the range of values of 7 displayed here (see supplementary material).
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Methods

Twin atom source

The twin atom beams result from a scattering process between pairs of atoms from the BEC
occurring when the gas is placed in a moving one-dimensional optical lattice. The experimental
set-up has been described in Ref. [18]. The lattice is formed by two laser beams derived from
the same source emitting at the wavelength A = 1,064nm. In contrast to our previous work,
the axis of the optical lattice was now precisely aligned with the long axis of the optical trap
confining the atoms. The laser beams intersect with an angle of § = 166°, their frequency
difference is set to 100.5kHz and the lattice depth to 0.4 E... This constrains the longitudinal
wave-vector of the twin atoms to the values k, , = 0.75 k. and k,p = 1.30 ke in order to
fulfil the conservation of quasi-momentum and energy in the frame co-propagating with the
lattice. Here, k. = 2msin(f/2)/A is the recoil wave-vector along the longitudinal axis gained
upon absorption of a photon from a lattice laser and Ere. = h%kZ_./2m is the associated kinetic
energy, with A the reduced Planck constant and m = 6.64 x 102" kg the mass of an Helium 4
atom. The observed velocities of the twin atom beams coincide with the expected values above,
using the relation v = hk/m. The optical lattice is turned on and off adiabatically so as to

avoid diffraction of the atoms during this phase of the experiment.

Transfer to the magnetically insensitive internal state

Transfer to the m = 0 state after the optical trap has been switched off is made necessary
by the presence of stray magnetic fields in the vacuum chamber that otherwise would lead
to a severe deformation of the atomic distribution during the long free fall. The transfer is
achieved by introducing a two-photon coupling between the m = 1 state, in which the atoms
are initially, and the m = 0 state using two laser beams derived from a single source emitting at
1,083 nm and detuned by 600 MHz from the 23S, to 2*Py transition. The frequency difference
of the laser beams is chirped across the two-photon resonance so as to realise an adiabatic fast
passage transition (the frequency change is 300 kHz in 300 ps). We have measured the fraction

of transferred atoms to be 94%. The remaining 6 % stay in the m = 1 state and are pushed

11



away from the integration volumes by the stray magnetic field gradients.

Atomic mirror and beam-splitter

The mirror and beam-splitter are both implemented using Bragg scattering on a second optical
lattice. This effect can be seen as a momentum exchange between the atoms and the laser beams
forming the lattice, a photon being coherently absorbed from one beam and emitted into the
other. In our experiment, the laser beams forming the lattice have a waist of 1 mm and are
detuned by 600 MHz from the 23S, to 2P, transition (they are derived from the same source as
the beams used for the Raman transfer). In order to fulfil the Bragg resonance condition for the
atom beams, the laser beams are made to intersect at an angle of 32° and the frequency of one
of the beams is shifted by 53.4 kHz. In addition to this fixed frequency difference, a frequency
chirp is performed to compensate for the acceleration of the atoms during their free fall. The
interaction time between the atoms and the optical lattice was 100 ps for the mirror operation
(m-pulse) and 50 ps for the beam-splitter operation (m/2-pulse). The resonance condition for
the momentum state transfer is satisfied by all atoms in the twin beams but only pairs of
states with a well defined momentum difference are coupled with each other. We measured the
reflectivity of the mirror and the transmittance of the beam-splitter to be 0.95(2) and 0.49(2),

respectively. Spontaneous scattering of photons by the atoms was negligible.

Detection efficiency

Our experiment relies on the ability to detect the atoms individually. The detection efficiency
is an essential parameter for achieving good signal to noise ratios, although it does not directly
influence the visibility of the HOM dip. Our most recent estimate of the detection efficiency
relies on the measurement of the variance of the atom number difference between the twin
beams. For this we use the same procedure as described in Ref. [18], but with an integration
volume that includes the entire velocity distribution of each beam. We find a normalised
variance of 0.75(5), well below the Poissonian floor. Since for perfectly correlated twin beams
the measured variance would be 1 — 7, we attribute the lower limit of 25(5) % to our detection

efficiency. This value for 7 is a factor of about 2 larger than the lower bound quoted in Ref. [31].
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The difference is due to the change of method employed for transferring the atoms from the
m = 1 to the m = 0 state after the optical trap has been switched off. We previously used
a radio-frequency transfer with roughly 50% efficiency whereas the current optical Raman

transfer has close to 100 % efficiency.

Distribution of the number of incident atoms

We have estimated the average number of incident atoms in each input channel of the beams-
splitter, n, and np, by analysing the distribution of detected atoms in the integration volumes
V, and V,. We fitted these distributions by assuming an empirical Poissonian law for the
distribution of incident atoms and taking into account the independently calibrated detection
efficiency. The values of n, and n; given in the main text are the mean values of the Poissonian
distributions that best fit the data. The probabilities for having one or two atoms in each of
the input channels of the beam splitter was obtained from the same analysis. The uncertainty

on these numbers mostly stems from the uncertainty on the detection efficiency.

The HOM effect

The HOM effect appears in the correlator (al_al ay,ay,) of Eq. 1. The simplest way to calculate
such a correlator is to transform the operators and the state vector back in the input space
before the beam-splitter and to use the Heisenberg picture. The transformation matrix between
the operators ay,(t3), av,(t3) and ay,(t3), av,(ts) can be worked out from first principles. For

the Bragg beam-splitter, and using a Rabi two-state formalism, we find:

1, . .
av,,.:ﬁ(w‘bavaﬂ%v,,),
1

iy, = —= (v, +i€?ay,) |
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where ¢ is the relative phase between the laser beams forming the optical lattice. In the ideal

case of an input state with exactly one atom in each channel, |1y,, 1y,), we therefore obtain:

1 , ,
lavatve ltva 1) [ = 71| (i€ a3, +ie7 a5, +avaiv, + i aviv,) [va, 1) [|© - (5)
1
= 70+ (1 +2)105,,00) | (6)
—0. (7)

meaning that the probability of joint detection is strictly zero. The detailed calculation above
makes clear that the perfect destructive interference between the two-particle state amplitudes
associated with the two diagrams of Fig. 1c is at the heart of the HOM effect. By contrast, input
states containing more than one atom per channel are transformed into a sum of orthogonal

states and the interference can only be partial. Taking |2y,,2y,), for instance, yields:

oy |
vy, 1260, 20,) || = 5 || (i€ 03, +ie7 a5, + buyy, + 1 duyiv,) 1260, 20,) | (8)
= € 100, 20) + 867 20,,00) + VE(148) [, 1) [P (9)

iy y
= 9 ”eﬁ’fj Ov,,2v,) +e ¢ 12v,, Ov,) “2 (10)

—1. (11)

Finally, we note that losses in one of the incident beams, for instance beam a, can be mod-
elled by a fictitious beam-splitter with a transmission coefficient 7. In the above calculation,
these losses would therefore only manifest by an additional factor v/T in front of every operator

ay,, leaving unaffected the destructive interference that gives rise to the HOM effect.

Visibility of the HOM dip

A slightly less general form of Eq. 3 has been derived in Ref. [24] assuming a two-mode squeezed
state as an input state. The same calculation can be performed for an arbitrary input state.

Leaving aside the integration over the velocity distribution, we find that the cross-correlation

14



for indistinguishable particles can be expressed as:
c%) V(6@ 6@ L A) | A=22Re[e?(t ol ay,d
cd |indisc. = Z( aa + bb + ) 1 :2?}' e[e <a'vaavaa’vbavb)] ? (12)
whereas that of distinguishable particles reads
1
Qs = 7 (Gg;) +G2 + QGE;)) . (13)

Here, the correlators appearing in the right-hand side are taken at time ¢, that is immediately
after the the atom beams have been produced. The term A corresponds to an interference
between single-particle matter waves. It depends on both the relative phase between the atom
beams and the relative phase between the laser beams used for Bragg diffraction. The latter
is counted once for the atomic mirror and once for the atomic beam-splitter. Twin beams
with perfect correlations in their population would have a fully random relative phase. In our
experiment however, the population imbalance between the atom beams could entail a residual
phase coherence. Instead, the relative phase between the laser beams was left uncontrolled and
its value was randomly distributed between two repetitions of the experiment. As a result,
the term A must average to zero and the visibility of the HOM dip be given by Eq. 3, as
observed in the experiment. Following Ref. [24], we also note that Eq. 3 entails the ultimate

bound for waves interfering on the beam-splitter: because waves must fulfil the Cauchy—Schwarz

inequality, Gﬁ) <4/ G%)Gé?, the visibility of the classical dip cannot exceed 0.5.

The above results holds true for a finite integration over the atomic velocity distribution
if two conditions are met: (i) It must remain impossible to distinguish the atoms entering
the beam-splitter through channel a from the atoms entering through channel b once they have
exited the beam-splitter; (ii) The transformation matrix of the beam-splitter must keep the same
form after integration. In our experiment, the second condition is naturally satisfied because
the Bragg diffraction only couples atomic states with a well defined momentum difference and

we fulfil the first condition by reducing the integration volume as much as it is necessary.
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Supplementary material

Optimization of the Hong-Ou-Mandel dip

The visibility of the Hong-Ou-Mandel dip is plotted in Fig. S1 as a function of the longitudinal
(a) and transverse (b) integration volume. The red dots identify the integration volume used
in Fig. 3 of the main text and correspond to a compromise between signal to noise ratio and
visibility amplitude. As we shrink the integration volumes, the dip visibility first increases and
then reaches a saturation value, meaning that the integration volume becomes smaller than

32-34

the elementary atomic modes . Reducing further the integration volume only leads to an

increase of the statistical uncertainty.

The visibility V' is obtained by fitting the cross-correlation function G,(:?(T) measured in the

experiment with the empirical function:

flr)= G%(l — Vexp ( —(r— 79)2/20'2)) ,

where the background correlation G?  the center of the dip 79 and the width of the dip o are

bg 7

all left as free parameters.
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Figure S1 | Visibility as a function of the integration volume. a, Visibility as a
function of the longitudinal integration interval Av,. The transverse integration interval
is kept constant at Av, = 0.48cms™! . b, Visibility as a function of the transverse
integration interval Av,. The longitudinal integration interval is kept constant at Av, =
0.28 cms™!. The red points mark the values discussed in the main text.

Stability of the atom number in the output ports

The mean detected atom number in the output ports ¢ and d is plotted as function of 7 in
Fig. S2. The mean atom number is constant as function of 7 within the statistical uncertainty.
To easily compare the atom number fluctuations to the variation of the cross-correlation across
the HOM dip, the product of the averaged populations (n.)-(n;) and the cross-correlation GE;)
are displayed together as a function of 7 in Fig. S2c. In contrast to the cross-correlation, it is
impossible to identify a marked reduction of (n.)-(ng) around 7 = 550 ps. This confirms our

interpretation of the dip as a destructive two-particle interference.
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Figure S2 | Stability of the output population over propagation duration. a,
Averaged atom number detected in V, as a function of the propagation time 7. The mean
value of n, is 0.20 with a standard deviation of 0.01. b, Averaged atom number detected
in V; as a function of the propagation time 7. The mean value of ng is 0.19 with a
standard deviation of 0.01. ¢, The cross-correlation between the output ports ¢ and d
(solid blue circles), corresponding to the HOM dip, is compared to the product of the
average density populations (n.)-(ng) (open gray circles). The product of the averaged
population is constant while the cross correlation exhibits a dip around 7 = 550 ps.
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