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Chapter 1

Introduction

Concrete is a wide spread material, usually associated to building, because of its availability,
its small cost and its simplicity of use. Often associated to reinforce steel bar (but not always)
it ensures primarily the structural behavior of the engineering structure. However concrete is
often used to ensure other functions which are not necessarily of secondary importance. For
example dams are concrete structures where concrete should also be impermeable (at least
the leaking should be controlled). In France the reactor building of nuclear power plants (of
electrical power 1300 MW and 1450 MW) is made of a double-wall of reinforced concrete.
This double-wall containment have to be impermeable to gases up to a pressure of six bar (or
at least they are tested at this pressure) in order to avoid contamination of the environment
by radioactive materials in case of an accident. This secondary function ensured by concrete
structures on those examples is a crucial function and the infrastructure could not be operated
without the guarantee that this function is working. Assessing the state of those structures is
therefore a necessity and the use of non destructive inspection techniques would be the best
way to proceed. The requirements of nuclear safety are very high on the capabilities that non
destructive inspection should achieve: as we will see in the following those expectations could
not be matched with classical methods.

As several key infrastructures are built in concrete and are getting older and older, the issue of
using them safely as long as possible starts to be an important one. This creates active research
in several fields from experimental work in physics and engineering up to applied mathematics.
This is mainly due to the properties of concrete that are very attractive from the building point
of view, but are very complex from the inspection viewpoint.

The first main difficulty is that concrete is by construction a composite material, at any space
scale, and this is true for several types of properties: mechanical, electromagnetic, chemical,... .
Secondly, concrete changes in many ways over time, undergoing moisturising, chemical reactions,

Figure 1.1: On the left dam of and on the right the nuclear power plant of St Alban
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Figure 1.2: pictures of concrete

or cracking - in the form of either large cracks or multiple small ones. Moreover some of those
evolutions are not dangerous and can be described as normal in the "life" of the material. Finally
those degradations are not by themselves of interest to the engineers that are in charge of the
structure. They will prefer to know the speed of the leaking process than the number of cracks
found in one piece of material. All those challenges are creating a fairly recent active field of
research on non destructive testing of concrete material and more globally on the understanding
and modelling of physical processes in this material. A large number of techniques are tested and
studied in order to overcome the aforementioned difficulties and try to formulate at least partial
answers. Some have looked into electromagnetic waves to probe the material (from Electrical
Impedance measurement to Radar and even MRI), or chemical devices and mechanical waves
such as ultrasound measurement.

We are interested in ultrasound measurements because from the operational point of view
they are easy to set up and the waves are directly influenced by the material properties we are
interested in. The main difficulty using ultrasound in concrete is the heterogeneity between
the celerities of the induced waves inside the aggregates and the cement paste. This composite
aspect of concrete can be seen from a simple picture such as figure 1.2 , where one can see
aggregates bonded together by cement paste.

In solids such as concrete the wave propagation can be modelled in the frequency domain by
the equation of linear elasticity,

div(2µe(u) + λdiv(u)Id) + ρω2u = 0

which might be simplified by considering only the longitudinal waves that solve the scalar
wave equation

∆u+ k2nu = 0

We have to use a wavelength of the same size than defects. It happens that the defects we
are interested in are similar in size with the aggregates. This wavelength requirement implies
that the aggregates’ microstructure creates an important and unpredictable scattering which
makes the signature of the defect extremely difficult to find.

To picture how the background masks the signature of the defect (making it more difficult
to spot) we provide an example of measurement of ultrasound in concrete, in figure 1.3. Our



3

Figure 1.3: Recorded field from CEOS experiment

targeted defect size makes impossible the use of techniques relying on estimation of the back-
ground: for example homogenization or random medium techniques do not seem to be suited to
our case of study.

To overcome the lack of clear signature of the defect in the measurement of the scattered
field, the works of [41] and [48] (and the more theoretically oriented work of [6]) use differential
measurement. In these works they compare measurements that are taken at different states of
loading. The loading process will primarily have an influence on cracks, therefore the difference
between the measurements will mainly originate from the defects. All these works rely on
an analysis of the propagation of energy through the material to construct an indicator or
an image of the defect. More precisely the work of [41] relies on the approximation of the
propagation of waves’ energy in an heterogeneous medium by the radiative transfer equation.
Based on this analysis they construct a linearised inversion scheme to reconstruct the parameter
of the radiative transfer equation or diffusion equation and identify a defect (actually a crack)
as a decrease in diffusivity (because the crack is blocking the propagation of energy). They
work on multistatic measurements taken at two different static loading states. This acquisition
method simplified the analysis compared to [48]. Indeed in this work they used a dynamic low
frequency excitation to modify the medium and an ultrasonic (high frequency) wave to probe
it. They then constructed an indicator of defect by looking at roughly the amount of time
that it takes for energy to propagate through the material with respect to the low frequency
wave. Analysing this experiment is much more complicated as the process involves non-linear
interaction between the two waves, through the intermediary of constantly changing cracks
whose scattering properties are affected by the low frequency waves. Clearly these two works
show that differential measurements are feasible and allow to overcome the difficulty introduced
by the heterogeneity in concrete.

Unlike these works we take a more applied maths and inverse problems point of view of the
question. And more precisely in the vast literature of inverse problems for wave equation our
work should be compared to other qualitative or geometrical methods. We choose this class
of methods because in its final algorithmic implementation it does not depend on the type of
defects, which permits to cope with the wide variety of degradations affecting concrete. Moreover
they are simple and efficient in terms of implementation. The disadvantage however is that they



4 Chapter 1. Introduction

are only able to give geometrical information of the defects. We do not work on the fact that
they can also give information on the nature of the obstacle if one has access to several frequency
data [32]. As featured previously several works have used differential measurement to overcome
the heterogeneous nature of concrete. In this thesis we will also overcome the unknown nature of
the material using differential measurement however we won’t need to use an energy framework
to analyse our method. The fact that our analysis relies on the wave equation allows to use
only one frequency of multi static measurement. Since we do not use diffusion approximation,
it might give a better resolution. On the other hand we retain the advantages of working in the
framework of qualitative methods, namely flexibility and scalability in term of final numerical
algorithm. After elaborating a new theoretical framework (chapter 2), we demonstrate that it
permits to compare two different datasets (chapter 3). This comparison leads to the construction
of a differential imaging method. We then extend the previous results to limited aperture data
(chapter 4), and run numerical simulations on concrete-like material (chapter 5). Finally, we
extend the application of the method to anisotropic medium and linear elasticity (chapters 6
and 7). Chapters are organized as follows.

Outline of the Thesis

Chapter 2 : Generalized Linear Sampling Method(GLSM)
In this chapter we restrict ourselves to the scattering of scalar waves by an isotropic obstacle.

We consider plane wave incident field and farfield measurement and a full aperture acquisition. In
this classical setting we revisit the Linear Sampling Method (LSM) first introduced by Colton
and Kirsch in [24] in order to have an exact characterization of the support of the obstacle.
Such a result has already been proven by Arens and Lechleiter in [3] using the theory of the
factorization method. The classical LSM was using the farfield equation as a data fidelity
term with a classical Tikhonov regularization which does not bring any theoretical guarantee.
The factorization method aims at modifying the data fidelity term in order to obtain theoretical
guarantee with a classical Tikhonov regularization. We concentrate instead on the regularization
term in order to obtain an exact characterization while keeping the data fidelity term of the
LSM. We clarify the link with the factorization method more deeply. We also provide an exact
characterization in the case of noisy measurement. Finally our numerical results show superior
reconstruction of the obstacle through our framework.

Chapter 3 : Imaging a change in the medium using differential measurement In
this chapter again we consider the simpler case of the scattering of scalar waves by an isotropic
medium. Our interest is to use two sets of measurement in order to image the change that
appears in-between those measurements. We will in fact obtain an exact characterization of the
connected component that contains the change. To obtain this result we need to strengthen the
connection between the farfield equation and the minimizing sequence we construct within the
GLSM framework. Under assumptions on the physical parameter we were able to demonstrate
that the sequence we construct actually converges to the solution of some interior transmission
problem. Using this asymptotic property of the GLSM we were able to compare the solution
of the GLSM constructed from each data set and to obtain an asymptotical characterization of
the connected part that contains the change. Finally we construct from the data an indicator
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function that takes advantage of this asymptotic behaviour to give an exact characterization.
From the numerical implementation we obtain a method that is equivalent to the computing
cost of applying the GLSM to each set of measurement.

Chapter 4 : GLSM for non symmetric factorization : In this chapter we extend the
GLSM to the case of non symmetric factorization, that arise for example when one considers
limited aperture measurement. First we extend the result on strong convergence to the solution of
the underlying interior transmission problem under the same assumptions as the characterization
of the obstacle. We then propose a method within the GLSM framework to treat the case of
non-symmetric factorization, this method uses an a priori estimate of the area where lies the
obstacle. Under those weak assumptions we obtain the exact characterization of the scatter
and the strong convergence to the solution of the underlying interior transmission problem. In
this chapter we still consider the simpler case of the scattering of scalar waves by an isotropic
medium, however we improve the condition on the physical parameter under which the GLSM
method works. To the best of our knowledge it is the first time that such a result is proven under
assumptions on the physical parameter near the boundary of the obstacle only. As a consequence
of the results of this chapter we treat the case of nearfield data. From the numerical point of view
we introduce a second order method to minimize the GLSM functional which proves to be very
efficient in terms of computation time and discuss the difficulties in the case of non-symmetric
factorization.

Chapter 5 : Application to a concrete like microstructure The contributions of this
chapter are twofolds. First we present the software we built to generate concrete-like microstruc-
tures. This software works using only open source packages and is part of the research project
of EDF R&D on non destructive testing of concrete. It allows to build a microstructure that
occupies a given space in 3D. The microstructure will respect a prescribed distribution of size
which is known a priori (in practice from the conception of concrete). One can mesh such a
geometry and simulate non destructive testing acquisition on this type of medium. Using such
a medium we provide numerical evidence that differential imaging gives promising results on
concrete like microstructure.

Chapter 6 : Extension to Orthoptic media In this chapter we consider the scattering
of scalar waves by an orthoptic medium. The main contribution of this chapter is to extend the
result of chapter 4 under which assumptions the GLSM method works, again we obtain that
the conditions on the physical parameters are restricted to the boundary of the obstacle. We
also discuss the extension of the result we obtain in chapter 3. This result and the result of
chapter 4 on non-symmetric factorization allow us to obtain a complete result in the case of
known heterogeneous background.

Chapter 7 : Extension to Elasticity In this chapter we extend the result of the previous
chapter to linear elasticity. We also introduce the problem of limited polarization, the case when
only one type of polarization is used as sources and measurements. This type of acquisition gives
rise to an interior-exterior transmission problem which we were not able to solve and to a non
symmetric factorization that do not fall into the theory we developed in chapter 4.
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This chapter is the article [5], published in Inverse Problems. From this article we have
slightly modified Theorem 6 to have a little bit more generality. We have also corrected the
proof where we have made a small error that does not affect the rightfulness of the theorem.
Finally we add a numerical example on the determination of interior transmission eigenvalues.
This chapter gives an exact characterization of the support of an obstacle D from multistatic
measurement of the farfield pattern of the scattered wave generated by a plane wave. Such
measurement can be analyzed using the farfield operator and characterization of the obstacle
can be cast as a range characterization as explained in section 2.2. Therefore the problem is
to demonstrate (in section 2.3) that one can obtain an exact characterization of the range of
a compact operator G as long as one knows F = GH and B = H∗TH, where H is dense
and T is coercive. This characterization is formulated using the minimizer of a cost functional
that involves F as a data fidelity term and B as the regularization term. In section 2.3.2 we
show that our theory shares similarity with the factorization method and we extended it to the
case of noisy measurement in section 2.3.4. Finally we applied our range characterization to
determine the support of an isotropic obstacle that scattered scalar waves and numerical results
demonstrate that our formulation gives good reconstruction results.

2.1 Introduction

This work can be seen as a contribution to the development of so-called qualitative methods
[25, 40, 15] for solving inverse scattering problems for extended targets from fixed frequency
multi-static data. More specifically, we introduce and analyze a new formulation of the so-
called Linear Sampling Method (LSM) [24, 23], that we will refer to as Generalized Linear
Sampling Method (GLSM). GLSM is based on a new exact characterization of the targets shape
in terms of the so-called farfield operator (at a fixed frequency). This characterization is based
on constructing nearby solutions to the farfield equation as minimizing sequences of a special
cost functional and uses two (complementary) factorizations of the farfield operator. The first
one is the basic factorization used in the theoretical justification behind LSM and the second
one is the one used by the factorization method (FM) [39, 40]. This combination allows us for
instance to require less restrictive assumptions than FM. It also turns out that one can establish
a direct link between our method and FM for a special setting of GLSM and this also provides a
direct link with the analysis in [2, 3] justifying the use of LSM in some particular configurations.
Although not directly inspired by them, the GLSM shares some similarities with the so-called
inf-criterion [40] or the formulation of this criterion in [44] as well as the probe method [38, 28].

The main idea behind our method is to explicitly construct the nearby solution of the LSM by
adding to a standard least squares misfit functional a penalty term proportional to an appropriate
norm of the associated Herglotz wave. Using the second factorization of the farfield operator
(as used in FM), we express this term using the measured farfield operator. The main issues to
address are first how to cope with the fact that the penalty term is compact and second how
to address the case of noisy operators. Here comes the role of the first factorization generally
used for LSM. For more details we refer to the third section where the general formulation of
the method is presented as well as the analysis for different configurations. In order to introduce
the main ideas behind GLSM as well as a concrete application, we choose to present the case
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of scalar inverse scattering from inhomogeneous inclusions. We show for this example how the
method can be applied and we also indicate other possible straightforward applications (which
are roughly speaking all cases where FM applies, or more generally where the inf-criterion and
LSM apply).

The impact of our method on the numerical side is twofold. In fact, the analysis of GLSM for
noisy farfield operators suggests a different indicator function for LSM than the one usually used.
This new indicator function is similar to the one proposed in [2] but contains an additional term
that correctly fixes the behavior of the indicator function outside the obstacle for noisy operators.
The superiority of this new indicator function is demonstrated through some numerical results.
The second alternative is to directly use the minimizing sequence constructed by GLSM, which
is computationally more expensive but leads to better results for multi-connected objects. In
fact the second numerical method can be used as a post-processing of the first one since, from
numerical experiments, we observed that only few iterations are needed to update the initial
guess provided by LSM.

The article is organized as follows. In Section 2.2 a model problem is introduced to motivate
GLSM after recalling the basis of the LSM and the factorization method. The theoretical
foundation of the GLSM is given in Section 2.3. Section 2.4 provides an example of application
of GLSM by completely treating the model problem introduced in Section 2.2 and indicating
other possible applications. The last section (Section 2.5) is devoted to the introduction of
two numerical algorithms issued from Section 2.3 along with validating numerical results and
comparing with other algorithms.

2.2 A model problem and motivation for GLSM

In order to introduce the ideas and motivations behind the proposed new algorithm below,
namely GLSM, we choose to present as a model problem the scalar inverse time harmonic
scattering problem from inhomogenous targets. For a wave number k > 0, the total field solves
the Helmholtz equation

∆u+ k2nu = 0 in Rd

with d = 2 or 3 and with n ∈ L∞(Rd) denoting the refractive index such that the support of n−1

is equal to D with D a bounded domain with Lipschitz boundary and connected complement
and such that =(n) ≥ 0. We are interested in the cases where the total field is generated by
plane waves, ui(θ, x) := eikx·θ with x ∈ Rd and θ ∈ Sd−1 (the unit sphere) and we denote by us

the scattered field defined by

us(θ, ·) = u− ui(θ, ·) in Rd,

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r→∞

∫
|x|=r

∣∣∣∣∂us∂r − ikus
∣∣∣∣2 ds = 0.

Our data for the inverse problem will be formed by noisy measurements of so called farfield
pattern u∞(θ, x̂) defined by

us(θ, x) =
eik|x|

|x|(d−1)/2
(u∞(θ, x̂) +O(1/|x|))
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as |x| → ∞ for all (θ, x̂) ∈ Sd−1 × Sd−1. The goal is to be able to reconstruct D from these
measurements (without knowing n) using a new sampling algorithm. The foundation of this
algorithm is inspired by the Linear Sampling Method and the Factorization Method that we
shall briefly review here in the context of this special scattering problem. These methods are
based on the farfield operator F : L2(Sd−1)→ L2(Sd−1), defined by

Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

Let us define for ψ ∈ L2(D), the unique function w ∈ H1
loc(Rd) satisfying

∆w + nk2w = k2(1− n)ψ in Rd,

lim
r→∞

∫
|x|=r

∣∣∂w
∂r − ikw

∣∣2 ds = 0.
(2.1)

By linearity of the forward scattering problem, Fg is nothing but the farfield pattern of w
solution of (2.1) with ψ = vg in D, where

vg(x) :=

∫
Sd−1

eikx·θg(θ)ds(θ), g ∈ L2(Sd−1), x ∈ Rd.

Now consider the (compact) operator H : L2(Sd−1)→ L2(D) defined by

Hg := vg|D, (2.2)

and the (compact) operator G : R(H) ⊂ L2(D)→ L2(Sd−1) defined by

Gψ := w∞,

where w∞ is the farfield of w ∈ H1
loc(Rd) solution of (2.1) and where R(H) denotes the

closure of the range of H in L2(D). Then clearly

F = GH.

The basis of the Linear Sampling Method is the following characterization of D in terms of the
range of G. This characterization is based on the solvability of so called interior transmission
problem defined by (u, v) ∈ L2(D)× L2(D) such that u− v ∈ H2(D) and

∆u+ k2nu = 0 in D,
∆v + k2v = 0 in D,
(u− v) = f on ∂D,
∂
∂ν (u− v) = g on ∂D,

(2.3)

for given f ∈ H
1
2 (∂D) and g ∈ H−

1
2 (∂D). We shall make the following assumption

Hypothesis 1. We assume that k2 ∈ R+ and n ∈ L∞(D) are such that, =(n) ≥ 0 and such
that for all f ∈ H

1
2 (∂D) and g ∈ H−

1
2 (∂D) problem (2.22) has a unique solution (u, v) ∈

L2(D)× L2(D) such that u− v ∈ H2(D).
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It is well known for instance that if in addition, 1/(n− 1) ∈ L∞(D) and <(n− 1) is positive
definite or negative definite in a neighborhood of ∂D, then Hypothesis 1 is verified for all k ∈ R
except a countable set without any finite accumulation point [52]. Defining

φz(x̂) := e−ikx̂·z,

the main ingredient of LSM is the following.

Theorem 1. Under Hypothesis 1, φz ∈ R(G) if and only if z ∈ D.

The proof of this theorem is rather straightforward using the important result of Lemma 1
(see [49]) and the fact that φz is the farfield of Φ(·; z), the fundamental solution of the Helmholtz
equation satisfying the Sommerfeld radiation condition.

Lemma 1. R(H) = {v ∈ L2(D); ∆v + k2v = 0 in D}.

From Theorem 1 one can deduce the following statement, which is the basic theoretical
justification of the LSM.

Theorem 2. Under Hypothesis 1, the operator F is injective with dense range. Moreover, the
following holds.

• If z ∈ D then there exists gεz such that ‖Fgεz−φz‖L2(Sd−1) ≤ ε and lim sup
ε→0

‖Hgεz‖L2(D) <∞.

• If z /∈ D then for all gεz such that ‖Fgεz − φz‖L2(Sd−1) ≤ ε, lim
ε→0
‖Hgεz‖L2(D) =∞.

This theorem thus suggests to use a nearby solution to Fgεz ' φz for different sampling points
z to obtain an indicator of D. Two problematic issues are then raised: the first one is that the
indicator function (provided by the theorem) should be ‖Hgεz‖L2(D) which depends on D and the
second one is that the theorem does not give explicit construction of gεz. In practice, a Tikhonov
regularization is usually used to build a nearby solution (as suggested by the first statement in
Theorem 2) and ‖gεz‖L2(Sd−1) is used in replacement of ‖Hgεz‖L2(D). In [2] it is proved, based on
the Factorization method, that Tikhonov regularization provides the good solution as soon as
=(n) = 0 and in that case one can replace ‖Hgεz‖L2(D) with |Hgεz(z)|. As it will be seen later,
the proposed GLSM gives an alternative solution independent from the Factorization method
(although inspired by this method) and, more importantly, that efficiently treats the case of
noisy operator.

The idea behind GLSM is as simple as reconstructing a nearby solution of the LSM by
using a least squares misfit functional with a penalty term that controls ‖Hgεz‖2L2(D). This is
feasible thanks to the second factorization of the farfield operator, which is the starting point
of the Factorization method. More precisely, for the case under consideration, since the farfield
operator of w has the following expression ([25])

w∞(x̂) = −
∫
D
e−iky.x̂(1− n)k2(ψ(y) + w(y))dy,

one simply has G = H∗Tψ where H∗ : L2(D)→ L2(Sd−1) is the adjoint of H given by

H∗ϕ(x̂) :=

∫
D
e−iky.x̂ϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ Sd−1,
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and where T : L2(D)→ L2(D) is defined by

Tψ := −k2(1− n)(ψ + w), (2.4)

with w ∈ H1
loc(Rd) being the solution of (2.1). Finally we get

F = H∗TH,

which indicates that (Fg, g)L2(Sd−1) = (T (Hg), Hg)L2(D). Therefore, if the operator T sat-
isfies some appropriate coercivity property, the term (Fg, g)L2(Sd−1) would be equivalent to

‖Hgεz‖2L2(D). One then can use
∣∣∣(Fg, g)L2(Sd−1)

∣∣∣ as a penalty term and also as a criterion for
building the indicator function. This is the starting point of GLSM. The detailed formulation
and analysis of the method are given in the next section.

2.3 Theoretical Foundations of GLSM

In this section we shall give the theoretical foundations of the Generalized Linear Sampling
Method. The general framework is given by the following assumptions. We shall denote by
X and Y two (complex) reflexive Banach spaces with duals X∗ and Y ∗ respectively and shall
denote by 〈, 〉 a duality product that refers to 〈X∗, X〉 or 〈Y ∗, Y 〉 duality. We consider two
bounded linear operators F : X → X∗ and B : X → X∗ that are assumed to be bounded.
Moreover we shall assume that the following factorizations hold

F = GH and B = H∗TH (2.5)

where the operators H : X → Y , T : Y → Y ∗ and G : R(H) ⊂ Y → X∗ are bounded, with
R(H) the closure of the range of H in Y .

2.3.1 Formulation of GLSM for noise free measurements

Let α > 0 be a given parameter and φ ∈ X∗. The GLSM (for noisy free measurements) is based
on considering minimizing sequences of the functional Jα(φ; ·) : X → R

Jα(φ; g) := α|〈Bg, g〉|+ ‖Fg − φ‖2 ∀g ∈ X. (2.6)

Indeed this functional has not a minimizer in general. However, since Jα(φ; ·) ≥ 0 one can define

jα(φ) := inf
g∈X

Jα(φ; g). (2.7)

Then the first simple observation is the following.

Lemma 2. Assume that F has dense range. Then for all φ ∈ X∗, jα(φ)→ 0 as α→ 0.

Proof. Since F has dense range, for a given ε > 0 there exists gε such that ‖Fgε − φ‖ < ε
2 . Then

one can choose α0(ε) such for all α ≤ α0(ε), α|〈Bgε, gε〉| < ε
2 so that jα(φ) < ε, which proves

the claim.
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The central theorem for noise free GLSM is the following characterization of the range of G
in terms of F and B.

Theorem 3. We assume in addition that

• G is compact and F = GH has dense range.

• T satisfies the coercivity property

|〈Tϕ, ϕ〉| > µ ‖ϕ‖2 ∀ϕ ∈ R(H), (2.8)

where µ > 0 is a constant independent of ϕ. Let C > 0 be a given constant (independent of α)
and consider for α > 0 and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + C α. (2.9)

Then φ ∈ R(G) if and only if lim sup
α→0

|〈Bgα, gα〉| < ∞ which is true if and only if

lim inf
α→0

|〈Bgα, gα〉| <∞.

Proof. • Assume that φ ∈ R(G). Then, by definition one can find ϕ ∈ R(H) such that
Gϕ = φ. for α > 0, ∃g0 ∈ X such that ‖Hg0 − ϕ‖2 < α. Then by continuity of G,
‖Fg0 − φ‖2 < ‖G‖2α. On the other hand the continuity of T implies

|〈Bg0, g0〉| = |〈THg0, Hg0〉| ≤ ‖T‖ ‖Hg0‖2 < 2 ‖T‖ (α+ ‖ϕ‖2)

From the definitions of jα(φ) and gα we have

α|〈Bg0, g0〉|+ ‖Fg0 − φ‖2 > jα(φ) > Jα(φ, gα)− Cα.

We then deduce from the definition of Jα and previous inequalities

α|〈Bgα, gα〉| ≤ Jα(φ, gα) ≤ Cα+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2.

Therefore lim sup
α→0

|〈Bgα, gα〉| <∞. This also implies lim inf
α→0

|〈Bgα, gα〉| <∞.

• Assume that φ /∈ R(G) and assume (by a contradiction argument) that
lim inf
α→0

|〈Bgα, gα〉| < ∞. Then, (for some extracted subsequence gα) |〈Bgα, gα〉| < A

for some constant A independent of α → 0. The coercivity of T implies that ‖Hgα‖
is also bounded. Since Y is reflexive, then one can assume that, up to an extracted
subsequence, Hgα weakly converges to some ϕ in Y . In fact ϕ ∈ R(H) since the lat-
ter is a convex set. Since G is compact, we obtain that GHgα strongly converges to
Gϕ as α → 0. On the other hand, Lemma 2 and the definition Jα(φ, gα) imply that
‖Fgα − φ‖ ≤ Jα(φ, gα) ≤ jα(φ) + Cα → 0 as α → 0. Since Fgα = GHgα we ob-
tain that Gϕ = φ which is a contradiction. We then conclude that if φ /∈ R(G) then
lim inf
α→0

|〈Bgα, gα〉| =∞. The latter also implies lim sup
α→0

|〈Bgα, gα〉| =∞.
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As indicated in the previous section, the range of the operator G characterizes the inclusion
D. Therefore this theorem would lead to a characterization of D in terms of the operators F
and B. It also stipulates that an indicator function is given by |〈Bgα, gα〉| for small values of α.
Let us note that the parameter α does not play the role of a regularization parameter, since for
foreseen applications, the operator B is in general compact. However, constructing a sequence
(gα) satisfying (2.9) for fixed α > 0 may be viewed as a regularization of the minimization of
Jα(φ; ·) that can be used for numerics. A different regularization procedure that would be more
suited for noisy operators is introduced in the following subsection.

Let us finally remark that in most of the applications that we have in mind, taking B = F

would be sufficient. In this particular case one can state the following straightforward corollary.

Corollary 1. Assume that G(ϕ) = H∗T (ϕ) for all ϕ ∈ R(H) and assume in addition that

• H is compact and F has dense range,

• T satisfies the coercivity property (2.8).

Let C > 0 be a given constant (independent of α) and consider for α > 0 and φ ∈ X∗, gα ∈ X
such that

Jα(φ; gα) ≤ jα(φ) + C α. (2.10)

Then φ ∈ R(G) if and only if lim sup
α→0

|〈Fgα, gα〉| < ∞ which is true if and only if

lim inf
α→0

|〈Fgα, gα〉| <∞.

The assumptions required in this corollary are weaker than the ones required by the Fac-
torization method but are similar to those of so-called inf-criterion (See [40]). Indeed the main
advantage of GLSM with respect to the inf-criterion (as it will explained in the numerical section)
is that it leads to a more tractable numerical inversion algorithms. In some special configurations
there is a direct link between GLSM and the factorization method as explained below.

We also remark that according to Lemma 2 the sequence (gα) provides a nearby solution to
Fg ' φ satisfying

‖Fgα − φ‖ ≤ jα(φ) + C α.

The reader then easily observes from the proof that one obtains the same conclusion in Corollary
1 if we replace the indicator function |〈Fgα, gα〉| by |〈φ, gα〉|. The latter criterion coincides with
the one proposed in [2] and has been analyzed in [2] and [3] based on the (F ∗F )

1
4 method.

2.3.2 Link with the (F ∗F )
1
4 method

We found it useful to indicate a link between the GLSM and the first version of the factorization
method, namely the so-called (F ∗F )

1
4 -method [39]. This method applies when X is a Hilbert

space with a scalar product denoted (·, ·), and F : X → X is compact, normal, injective and
with dense range. Then it is shown that F can be factorized as

F = (F ∗F )
1
4J(F ∗F )

1
4

with J : X → X a coercive operator. Among others, two possibilities are of interest:
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• A first possibility is to apply the GLSM with B = F , H = (F ∗F )
1
4 and G = (F ∗F )

1
4J .

We then obtain that φ ∈ R((F ∗F )
1
4 ) if and only if lim sup

α→0
|〈Fgα, gα〉| < ∞ where gα

satisfies (2.9). Therefore, whenever one can use the range of (F ∗F )
1
4 to characterize the

shape of the scattering object, one can also use GLSM with B = F to obtain a different
characterization.

• Another (more informative) possibility is to apply GLSM with B = (F ∗F )
1
2 . In this case,

using the system (λi, ψi)i≥1 of eigenvalues and eigenvectors of the normal operator F , we
observe that

Jα(φ; g) = α|((F ∗F )
1
2 g, g)|+ ‖Fg − φ‖2

= α
∑
i

|λi||(g, ψi)|2 +
∑
i

(λi(g, ψi)− (φ, ψi))
2.

Hence, Jα(φ; ·) has a minimizer given by

gα =
∑
i

λ̄i(φ, ψi)

α|λi|+ |λi|2
ψi.

It is clear that this gα satisfies (2.9). Let us now define

gFM
α =

∑
i

|λi|
1
2

|λi|+ α
(φ, ψi)ψi,

which is the minimizer of the Tikhonov functional α ‖g‖2 +
∥∥∥(F ∗F )

1
4 g − φ

∥∥∥2
. Then one

observes that the GLSM indicator is nothing but

|((F ∗F )
1
2 gα, gα)| =

∑
i

|λi|(φ, ψi)2

(α+ |λi|)2
=
∥∥gFM

α

∥∥2
.

We finally remark that one obtains a similar link with the so called F# method (when it applies)
and GLSM by taking B = F# and replacing F by F# in the GLSM setting. But when the F#

method applies one can also apply GLSM with only B = F .

2.3.3 Regularized formulation of GLSM

As it will be clearer later, the previous formulation of GLSM has to be adapted to the case of noisy
operators since in general a noisy operator B does not satisfy a factorization of the form (2.5)
(with a middle operator satisfying a coercivity property similar to (2.8)). In order to cope with
this issue we introduce a regularized version of Jα which allows similar range characterization
and where one controls both the noisy criteria and the noisy misfit term. Among several other
options, it turned out that a convenient way to introduce this regularization is to consider for
α > 0 and ε > 0 (that will later be linked with the noise level) and for φ ∈ X∗, the functional
Jεα(φ; ·) : X → R defined by

Jεα(φ; g) = α(|〈Bg, g〉|+ ε ‖g‖2) + ‖Fg − φ‖2 . (2.11)
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Lemma 3. Assume that B is compact. Then for all α > 0, ε > 0 and φ ∈ X∗ the functional
Jεα(φ; ·) has a minimizer gεα ∈ X. If we assume in addition that F has dense range, then

lim
α→0

lim
ε→0

Jεα(φ; gεα) = lim
ε→0

lim sup
α→0

Jεα(φ; gεα) = 0.

Proof. The existence of minimizer is clear: for fixed α > 0, ε > 0 and φ ∈ X∗, any minimizing
sequence (gn) of Jεα(φ; ·) is bounded and therefore one can assume that it is weakly convergent
in X to some gεα ∈ X. The lower semi-continuity of the norm with respect to weak convergence
and the compactness property of B then imply

Jεα(φ; gεα) ≤ lim inf
n→∞

Jεα(φ; gn) ≤ inf
g∈X

Jεα(φ; g),

which proves that gεα is a minimizer of Jεα(φ; ·) on X.
Now assume in addition that F has dense range. By Lemma 2, jα(φ) → 0 as α → 0. Showing
that lim

ε→0
Jεα(φ; gεα) = jα(φ) will then prove that lim

α→0
lim
ε→0

Jεα(φ; gεα) = 0. We observe that

Jεα(φ; g) = Jα(φ; g) + αε‖g‖2 (2.12)

and therefore |Jεα(φ; g) − Jα(φ; g)| → 0 as ε → 0. For η > 0 one can choose g such that
|Jα(φ; g)−jα(φ)| ≤ η/2. For this g one then has for ε sufficiently small |Jεα(φ; g)−Jα(φ; g)| < η/2.
We obtain by triangular inequality that for ε sufficiently small Jεα(φ; g) ≤ jα(φ) + η. We now
observe from the definitions of gεα and jα and from (2.12),

jα(φ) ≤ Jα(φ; gεα) ≤ Jεα(φ; gεα) ≤ Jεα(φ; g),

which proves the claim.
We now prove lim

ε→0
lim sup
α→0

Jεα(φ; gεα) = 0. First consider gε a minimizer on X of the Tikhonov

functional ε2 ‖g‖2 + ‖Fg − φ‖2 and set jε = ε2 ‖gε‖2 + ‖Fgε − φ‖2 which goes to zero as ε goes
to zero (classical result for Tikhonov regularization, see also Lemma 2 which is valid for any
bounded operator B). We have that α ≤ ε, Jεα(g) ≤ ε2 ‖g‖2 + ‖Fg − Φ‖2 + α(|(Bg, g)|. By
taking the upper limit we have

lim sup
α→0

Jεα(gεα) ≤ lim sup
α→0

Jεα(gε) = jε,

which concludes the proof.

Theorem 4. Under the assumptions of Theorem 3 and the additional assumption that B is
compact the following holds. If gεα denotes the minimizer of Jεα(φ; ·) (defined by (2.11)) for
α > 0, ε > 0 and φ ∈ X∗, then φ ∈ R(G) if and only if lim sup

α→0
lim sup
ε→0

|〈Bgεα, gεα〉| < ∞ which

is true if and only if lim inf
α→0

lim inf
ε→0

|〈Bgεα, gεα〉| <∞.

Proof. The proof is similar to the proof of Theorem 3.

• Assume that φ = G(ϕ) for some ϕ ∈ R(H). We consider the same g0 as in the first part
of the proof of Theorem 3 (that depends on α but is independent from ε). Then we choose
ε such that ε‖g0‖2 ≤ 1. Then

Jεα(φ; gεα) ≤ Jεα(φ; g0) ≤ Jα(φ; g0) + α (2.13)
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Consequently

α|〈Bgεα, gεα〉| ≤ Jεα(φ; gεα) ≤ α+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2

which proves lim sup
α→0

lim sup
ε→0

|〈Bgεα, gεα〉| <∞.

• Assume φ /∈ R(G) and assume that lim inf
α→0

lim inf
ε→0

|〈Bgεα, gεα〉| is finite. The coercivity of

T implies that lim inf
α→0

lim inf
ε→0

‖Hgεα‖
2 is also finite. This means the existence of a subse-

quence (α′, ε(α′)) such that α′ → 0 and ε(α′) → 0 as α′ → 0 and
∥∥∥Hgε(α′)α′

∥∥∥2
is bounded

independently from α′. On the other hand, the second part of Lemma 3 (namely the
first limit), indicates that one can choose this subsequence such that Jε(α

′)
α′ (g

ε(α′)
α′ ) → 0

as α′ → 0 and therefore
∥∥∥Fgε(α′)α′ − φ

∥∥∥ → 0 as α′ → 0. The compactness of G implies

that a subsequence of GHgε(α
′)

α′ converges for some Gϕ in X∗. The uniqueness of the limit
implies that Gϕ = φ which is a contradiction.

In this theorem ε should be viewed as the regularization parameter (and not α which is
rather used to construct an indicator function with a limiting process). As indicated by (2.13),
this regularization parameter serves in the construction of the minimizing sequence of Theorem
3.

This theorem with regularization stipulates that a criterion to localize the target is given by
|〈Bgεα, gεα〉| for small values of ε and α. The reader can easily see from the first part of the proof
that the result holds true if we replace this by (|〈Bgεα, gεα〉| + ε‖gεα‖2). This latter criterion is
more suited to the case of noisy measurements as indicated in the section below.

2.3.4 The GLSM for noisy data

In this section we will consider the case where there may be noise in the data. More precisely,
we shall assume that one has access to two noisy operators Bδ and F δ such that∥∥∥F δ − F∥∥∥ ≤ δ‖F‖ and

∥∥∥Bδ −B
∥∥∥ ≤ δ‖B‖

for some δ > 0. We also assume in this section that the operators, B, Bδ F δ and F are compact.
We then consider for α > 0 and φ ∈ X∗, the functional Jδα(φ; ·) : X → R,

Jδα(φ; g) := α(|
〈
Bδg, g

〉
|+ δ‖B‖ ‖g‖2) +

∥∥∥F δg − φ∥∥∥2
∀ g ∈ X, (2.14)

which coincides with a regularized noisy functional Jεα with a regularization parameter ε = δ‖B‖.
According to Lemma 3 one can consider gδα a minimizer of Jδα(φ; g). We first observe (similarly
to in the second part of the proof of Lemma 3)

Lemma 4. Assume in addition that F has dense range. Then for all φ ∈ X∗,

lim
α→0

lim sup
δ→0

Jδα(φ; gδα) = 0.
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Proof. We observe that for all g ∈ X,

Jδα(φ; g) ≤ Jα(φ; g) + (2αδ‖B‖+ δ2‖F‖2) ‖g‖2 . (2.15)

Since (2αδ‖B‖ + δ2‖F‖2) → 0 as δ → 0, then as in the proof of Lemma 3, for any η > 0 (α
fixed), one can choose g ∈ X such that for sufficiently small δ,

Jδα(φ; g) ≤ jα(φ) + η

Consequently, from the definition of gδα,

Jδα(gδα;φ) ≤ jα(φ) + η

This proves the claim, since jα(φ)→ 0 as α→ 0 (by Lemma 2).

Theorem 5. Assume that the assumptions of Theorem 3 and the additional assumptions of this
subsection hold true. Let gδα be the minimizer of Jδα(φ; ·) (defined by (2.14)) for α > 0, δ > 0

and φ ∈ X∗. Then φ ∈ R(G) if and only if lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δ‖B‖
∥∥gδα∥∥2

)
< ∞

which is true if and only if lim inf
α→0

lim inf
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δ‖B‖
∥∥gδα∥∥2

)
<∞.

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.

• Assume that φ = G(ϕ) for some ϕ ∈ R(H). We consider the same g0 as in the first part
of the proof of Theorem 3 (that depends on α but is independent from δ). Choosing δ
sufficiently small such that

(2αδ‖B‖+ δ2‖F‖2) ‖g0‖2 ≤ α

we get
Jδα(φ; gδα) ≤ Jδα(φ; g0) ≤ Jα(φ; g0) + α. (2.16)

Consequently

α

(
|
〈
Bgδα, g

δ
α

〉
|+ δ‖B‖

∥∥∥gδα∥∥∥2
)
≤ Jδα(φ; gδα) ≤ α+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2,

which proves lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δ‖B‖
∥∥gδα∥∥2

)
<∞.

• Assume φ /∈ R(G) and assume that lim inf
α→0

lim inf
ε→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δ‖B‖
∥∥gδα∥∥2

)
is finite.

The coercivity of T implies that

µ
∥∥∥Hgδα(δ)

∥∥∥2
≤ |
〈
Bgδα, g

δ
α

〉
| ≤ |

〈
Bδgδα, g

δ
α

〉
|+ δ‖B‖

∥∥∥gδα∥∥∥2
.

Therefore lim inf
α→0

lim inf
δ→0

∥∥Hgδα∥∥2 is also finite. This means the existence of a subsequence

(α′, δ(α′)) such that α′ → 0 and δ(α′)→ 0 as α′ → 0 and
∥∥∥Hgδ(α′)α′

∥∥∥2
is bounded indepen-

dently from α′. One can also choose δ(α′) such that δ(α′) ≤ α′.
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On the other hand Lemma 4 indicates that one can choose this subsequence such that
J
δ(α′)
α′ (g

δ(α′)
α′ ) → 0 as α′ → 0 and therefore

∥∥∥F δgδ(α′)α′ − φ
∥∥∥ → 0 as α′ → 0 and

α′δ(α′)‖gδ(α
′)

α′ ‖
2 → 0 as α′ → 0. By a triangular inequality and δ(α′) ≤ α′ we then

deduce that
∥∥∥Fgδ(α′)α′ − φ

∥∥∥ → 0 as α′ → 0. The compactness of G implies that a subse-

quence of GHgδ(α
′)

α′ converges for some Gϕ in X∗. The uniqueness of the limit implies that
Gϕ = φ which is a contradiction.

It is clear from the proof of the theorem that any strategy of regularization ε(δ) satisfying
ε(δ) ≥ δ‖B‖ and ε(δ) → 0 as δ → 0 would be convenient to obtain a similar result. From the
numerical perspective this theorem indicates that a criterion to localize the object would be

|
〈
Bδgδα, g

δ
α

〉
|+ δ‖B‖

∥∥∥gδα∥∥∥2

for small values of α. Indeed the theorem only says that this criterion would be efficient for
sufficiently small noise. Building explicit link between the value of α and the noise level δ (in
the fashion of a posteriori regularization strategies) would be of valuable theoretical interest but
this seems to be challenging (due to the compactness of the operator B). One can see from the
proof that adding the term δ‖B‖

∥∥gδα∥∥2 is important to conclude when φ is not in the range of
G. This means that this term is important for correcting the behavior of the indicator function
outside the inclusion, which is corroborated by the numerical experiments below.

2.4 Some applications of GLSM

We turn back to our model problem and consider the notation and assumptions of Section 2.2.
We shall apply GLSM with B = F . The central additional theorem needed for this case is the
following coercivity property of the operator T . This theorem holds true under the following
assumptions on the refractive index.

Hypothesis 2. We assume that n ∈ L∞(Rd), supp(n − 1) = D, =(n) ≥ 0 and there exist
constants n0, α > 0 such that 1 − <(n(x)) + α=(n(x)) ≥ n0 for a.e. x ∈ D or <(n(x)) − 1 +

α=(n(x)) ≥ n0 for a.e. x ∈ D.

We recall that the values of k2 ∈ R+, for which Hypothesis 1 does not hold, form a discrete
set without finite accumulation point. The values k2 ∈ R+ for which Hypothesis 1 does not hold
will be referred in the sequel as transmission eigenvalues.

Theorem 6. Assume that Hypothesis 2 holds and that k2 ∈ R+ is not a transmission eigenvalue.
Then the operator T defined by (2.4) satisfies the coercivity property (2.8) with X = X∗ = L2(D)

and the operator H defined by (2.2).

Proof. For the reader convenience we start by proving a useful (classical) identity related to the
imaginary part of T . With (·, ·) denoting L2(D) scalar product, for ψ ∈ L2(D) and w ∈ H1

loc(Rd)
solution of (2.1),

(Tψ, ψ) = −k2

∫
D

(1− n)(ψ + w)ψ dx. (2.17)
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We remark that by elliptic regularity, w ∈ H2
loc(Rd). Multiplying (2.1) with w and integrating

by part over BR: a ball of radius R containing D,

k2

∫
D

(1− n)(ψ + w)w dx = −
∫
BR

|∇w|2 − k2|w|2dx+

∫
|x|=R

∂w

∂r
w ds.

The Sommerfeld Radiation condition indicates that

lim
R→∞

=
∫
|x|=R

∂w

∂r
w ds = k

∫
Sd−1

|w∞|2ds,

Therefore, taking the imaginary part then letting R→∞ yields

k2=
∫
D

(1− n)(ψ + w)w dx = k

∫
Sd−1

|w∞|2ds.

Consequently, decomposing (ψ+w)ψ = |ψ+w|2− (ψ+w)w, we obtain the important identity,

=(Tψ, ψ) =

∫
D
k2=(n)(|ψ + w|2)dx+ k

∫
Sd−1

|w∞|2ds. (2.18)

We are now in position to prove the coercivity property using a contradiction argument. Assume
for instance the existence of a sequence ψ` ∈ R(H) such that

‖ψ`‖L2(D) = 1 and |(Tψ`, ψ`)| → 0 as `→∞.

We denote by w` ∈ H2
loc(Rd) solution of (2.1) with ψ = ψ`. Elliptic regularity implies that

‖w`‖H2(D) is bounded uniformly with respect to `. Then up to changing the initial sequence, one
can assume that ψ` weakly converges to some ψ in L2(D) and w` converges weakly in H2

loc(Rd)
and strongly in L2(D) to some w ∈ H2

loc(Rd). It is then easily seen (using distributional limit)
that w and ψ satisfy (2.1), and since ψ` ∈ R(H)

∆ψ + k2ψ = 0 in D. (2.19)

Identity (2.18) and |(Tψ`, ψ`)| → 0 imply that w∞` → 0 in L2(Sd−1) and therefore w∞ = 0. The
Rellich theorem and unique continuation principle implies w = 0 outside D and consequently
w ∈ H2

0 (D). With the help of equation (2.19) we get that u = w+ψ ∈ L2(D) and v = ψ ∈ L2(D)

are such that u − v ∈ H2(D) and are solution of the interior transmission problem (2.22) with
f = g = 0. We then infer that w = ψ = 0. Identity (2.17) applied to ψ` and w` implies

|(Tψ`, ψ`)| ≥ k2

∣∣∣∣∫
D

(1− n)|ψ`|2dx
∣∣∣∣− k2

∣∣∣∣∫
D

(1− n)w`ψ` dx

∣∣∣∣ .
Therefore, since

∫
D(1− n)w`ψ`dx→

∫
D(1− n)wψdx = 0, and using the assumptions on n,

lim
`→0
|(Tψ`, ψ`)| ≥ k2n0/2 > 0,

which is a contradiction.
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Let C > 0 be a given constant (independent of α) and consider for α > 0 and z ∈ Rd,
gzα ∈ L2(Sd−1) such that

α|(Fgzα, gzα)|+ ‖Fgzα − φz‖2 ≤ jα(φz) + C α, (2.20)

where

jα(φz) = inf
g∈L2(Sd−1)

(
α|(Fg, g)|+ ‖Fg − φz‖2

)
.

Combining the results of Theorems 6 and 1 and the first claim of Theorem 2, we obtain the
following as a straightforward application of Corollary 1.

Theorem 7. Assume that Hypothesis 2 holds and that k2 ∈ R+ is not a transmission eigenvalue.
Then z ∈ D if and only if lim sup

α→0
|(Fgzα, gzα)| <∞ which is true if and only if lim inf

α→0
|(Fgzα, gzα)| <

∞.

For applications, it is important to rather use the criterion provided in Theorem 5. Consider
F δ : L2(Sd−1)→ L2(Sd−1) a compact operator such that∥∥∥F δ − F∥∥∥ ≤ δ,
then consider for α > 0 and φ ∈ L2(Sd−1), the functional Jδα(φ; ·) : L2(Sd−1)→ R,

Jδα(φ; g) := α(|(F δg, g)|+ δ ‖g‖2) +
∥∥∥F δg − φ∥∥∥2

∀ g ∈ L2(Sd−1). (2.21)

Then as a direct consequence of Theorem 5, we have the following characterization of D.

Theorem 8. Assume that Hypothesis 2 holds and that k2 ∈ R+ is not a transmission eigen-
value. For z ∈ Rd let us denote by gzα,δ the minimizer of Jδα(φz; ·) over L2(Sd−1). Then z ∈ D

if and only if lim sup
α→0

lim sup
δ→0

(∣∣∣(F δgzα,δ, gzα,δ)∣∣∣+ δ
∥∥∥gzα,δ∥∥∥2

)
< ∞ which is true if and only if

lim inf
α→0

lim inf
δ→0

(∣∣∣(F δgzα,δ, gδα,δ)∣∣∣+ δ
∥∥∥gzα,δ∥∥∥2

)
<∞.

The numerical algorithm associated with this theorem is given in next section. Let us note
again as conclusion of this section that the results of Theorems 7 and 8 in fact apply whenever
the so called F# method apply. For instance the result holds true for obstacle scattering with
Dirichlet boundary conditions, Neumann boundary conditions or impedance boundary condi-
tions [40, 21]. One has just to remove assumption 2 and instead of excluding transmission
eigenvalues, one has to exclude the resonant eigenfrequencies associated with the interior prob-
lem. One can also apply GLSM to cracks as a consequence of the work in [12]. For Maxwell’s
equations one can in principle also treat the inverse medium problem but the GLSM method
does not allow to treat (in its current form) the case of inverse obstacle scattering (i.e. for
instance perfectly or imperfectly conducting obstacles).
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2.5 Numerical algorithms issued from GLSM and validation

Minimizing Jδα (defined in equation 2.14) with B = F may be computationally expensive and
not straightforward (see Section 2.5.2). Thus we first propose to use the indicator function of
the GLSM with the solution of the LSM, which can be seen as a generalisation of [3] in the
case of noisy measurement. Then we introduce a second algorithm which is a post processing in
the sense that it uses the solution of the LSM both to initialize the optimization algorithm that
minimize Jδα and to initialise the parameter α.

In order to fix the ideas, we shall restrict ourselves to the two dimensional case and will
introduce the algorithms for the discrete version of GLSM. We identify S1 with the interval
[0, 2π[. In order to collect the data of the inverse problem we solve numerically (2.1) for N

incident fields ui(2πj
N , ·), j ∈ {0...N − 1} using the surface integral equation forward solver

available in [35]. The discret version of F is then the matrix FN := (u∞(2πj
N , 2πk

N ))0≤j,k≤N−1. We
add some noise to the data to build a noisy far field matrix F δN where (F δN)j,k = (FN)j,k(1+σNij)

for σ > 0 and Nij an uniform complex random variable in [−1, 1]2. We denote Φz,N ∈ CN, the
vector defined by Φz,N(j) = φz(

2πj
N ) for 0 ≤ j ≤ N− 1.

2.5.1 The use of GLSM as a new indicator function for the LSM

We introduce the Tikhonov regularized solution of the far field equation

gη,LSM
z,N := argmingNη ‖gN‖2L2(S1) +

∥∥∥F δNgN − Φz,N

∥∥∥2

L2(S1)
,

where the regularization parameter η is chosen using the Morozov discrepancy principle, i.e. η
is defined as the unique solution of∥∥∥F δNgη,LSM

z,N − Φz,N

∥∥∥
L2(S1)

= δ
∥∥∥gη,LSM

z,N

∥∥∥
L2(S1)

.

Solving the same two equations with F
1
2

# or (F ∗F )
1
4 , depending of the nature of the scatter,

instead of F will give the solution of the factorization method gη,FM
z,N . To solve both the LSM

and the FM equations we rely on the singular value decomposition of F δN, which gives an explicit
solution like in 2.3.2.

As proposed in [3],[39] and [24], from these two problems three indicator functions can be
computed:

ILSM(z) =
1∥∥∥gη,LSM

z,N

∥∥∥
L2(S1)

IHLSM(z) =
1√

|Hgη,LSM
z,N (z)|

=
1√

|(Φz,N, g
η,LSM
z,N )L2(S1)|

IFM(z) =
1∥∥∥gη,FM

z,N

∥∥∥
L2(S1)
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As shown in the previous sections, a fourth indicator function is relevant, namely

IGLSM(z) =
1√∣∣∣(F δNgη,LSM

z,N , gη,LSM
z,N )

∣∣∣
L2(S1)

+ δ
∥∥∥gη,LSM

z,N

∥∥∥2

L2(S1)

This indicator is indeed motivated by GLSM. However let us note that since gη,LSM
z,N is not the

minimizer of Jδα(φ; ·) (defined in equation (2.14)) the theory developed here does not apply for
this indicator function (a last indicator function covered by the theory will be built in section
2.5.2 using a more computationally complex method). The numerical experiments presented
below indicate in the same time that this indicator function provides results comparable to the
Factorization method.

We will present two simulations: a first one where two ellipses have Dirichlet boundary
conditions and the other one where n = 2 + 0.5i in one ellipse and 2 + 0.1i. In both examples

N = 100 and we will consider ‖F
δ
N−FN‖
‖FN‖ = 0, 1 and 5%.

Figures 2.1 and 2.2 show the results of the four indicator functions. First we see that IHLSM

is not robust to noise, the area outside the obstacle shows artefact where the indicator function
is greater than inside the obstacle. This is an expected result since as stated at the end of 2.3.1
one can easily replace |〈Fgα, gα〉| by |〈φ, gα〉|, which is not a valid indicator function in the
presence of noise. Finally ILSM recover with less precision the border of the shape than IFM

and IGLSM which exhibit comparable results.
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Figure 2.1: IHLSM (first line), ILSM (second line), IFM (third line) and IGLSM (forth line)
applied to the Dirichlet scatters for 0, 1 and 5% of noise (from left to right)
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Figure 2.2: IHLSM (first line), ILSM (second line), IFM (third line) and IGLSM (forth line)
applied to penetrable scatters for 0, 1 and 5% of noise (from left to right))

2.5.2 Minimizing Jδα: a post-processing

In order to apply Theorem 8, we should find the minimizer of Jδα(φ; ·) (defined in equation (2.14)).
There are two main difficulties in this theorem. First, we do not have an analytic solution of
the minimizer thus we will rely on an optimisation algorithm and as already mentioned in 2.3.4
and second we do not have an a priori method to link α to the noise level. Because of the good
performance of the Morozov discrepancy principle we look for an heuristic that stays close to
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this principle. Since we have α(|(F δg, g)|+ δ ‖g‖2) ≤ α(
∥∥F δ∥∥+ δ) ‖g‖2, we choose:

α =
ηLSM

‖F δ‖+ δ

where ηLSM is the parameter found when one applies the Morozov discrepancy principle to the
Tikhonov formulation of the LSM.

Remark 1. The inequality |(F δg, g)| ≤
∥∥F δ∥∥ ‖g‖2 we use to find the previous heuristic will

reduce the strength of the penalty term compared to the Tikhonov-LSM. Moreover the fact that
this inequality is coarser for eigenvector corresponding to small eigenvalue means that the penality
term will be smaller for points outside the obstacle. This is shown by figure 2.3, where we see
that after the optimisation process the solution deviates from the Morozov discrepancy principle
mainly outside the obstacle.

Figure 2.3:
∥∥F δNgN − Φz,N

∥∥ − δ ‖gN‖ after minimisation on the Dirichlet scatters with 5% of
noise.

Minimizing Jδα(φ; ·) in CN is not an easy task since it is a not differentiable nor a convex
cost functionnal. However we can hope that gη,LSM

z,N will be close to a minimum which makes it
worth to try a gradient method. As explained in [50] gradient method extended well for complex
variable if one looks at Jδα(φ; gN) as a function of two variables, gN and ḡN, knowing that one
can compute the gradient of Jδα with respect to gN :

∇ḡNJ
δ
α(φ; gN, ḡN) := α(

F δNgN · ḡN

|F δNgN · ḡN|
F δNgN + δgN) + F δ∗N (F δNgN − ΦN)

where · is the standard scalar product between vectors. We do not change the absolute value
with a differentiable surrogate because, with the initial guess we use it is not necessary, this is
supported by the fact that for the unperturbed operator F the coercivity implies that |(Fg, g)|
is never zero when g is not zero.

Finally to do the optimization we use the non-linear conjugate gradient implemented in [51]
with a modified Hestenes-Stiefel heuristic to update the direction descent, which is described
in algorithm 1. We choose drastic stopping rules in order to ensure the convergence of the
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algorithm however we observe that convergence occurs before those stopping rules are satisfied.
The design of a tailored method and set of parameters to minimize Jδα would be an interesting
perspective for this work.

Algorithm 1 Minimizing Jδα
for all z do
g0 = gη,LSM

z,N and α = ηLSM(z)

‖F δN‖+δ
while

∥∥gt+1 − gt
∥∥ ≤ 10−10

∥∥gt∥∥ or Jδα(gt+1)− Jδα(gt) ≤ 10−10Jδα(g0) or t < 200 do
∆gt = −∇gJδα(gt, ḡt)

βtHS = max(0,−<(∆gt>(∆gt −∆gt−1))

<(st−1>(∆gt −∆gt−1))
)

st = ∆gt + βtHSs
t−1

τ t = arg minτ∈R J
δ
α(gt + τst)

gt+1 = gt + τ tst

t← t+ 1

gα,GLSM
z,N = gt

The result of this optimization performed for each z, gives us a new set: gα,GLSM
z,N which

ultimately creates a new indicator function:

IGLSMoptim(z) =
1√∣∣∣(F δNgα,GLSM

z,N , gα,GLSM
z,N )

∣∣∣+ δ
∥∥∥gα,GLSM

z,N

∥∥∥2

Figures 2.4 and 2.5 show that this post processing increases the quality of the reconstruction
especially in the space in-between the two scatters. Moreover figure 2.6 shows that the improve-
ment on an isolated scatter, a kite of contrast n = 2 + 0.5i, is less impressive (i.e. we do not
improve the reconstruction of the non-convex part of the kite).

Remark 2. In the (less general) case where the F# method is valid, one could choose Bδ =

F δ# = |<(F δ)| + |=(F δ)| in equation (2.14). We know that F δ# is a positive and self-adjoint
operator then one can drop the absolute value in the definition of Jδα :

Jδα(φ; g) := α(
∥∥∥(F δ#)

1
2 g
∥∥∥2

+ δ# ‖g‖2) +
∥∥∥F δg − φ∥∥∥2

and find gα,GLSM
z,N easily by solving the following (iteration-free) problem:

α((F δ#)
1
2
∗(F δ#)

1
2 gN + δ#gN ) + F δ∗(F δgN − ΦN ) = 0.
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Figure 2.4: IGLSM (first line) and IGLSMoptim (second line) applied to the Dirichlet scatters for
1 and 5% of noise (from left to right)
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Figure 2.5: IGLSM (first line) and IGLSMoptim (second line) applied to the penetrable scatters
for 1 and 5% of noise (from left to right)

Figure 2.6: IGLSM and IGLSMoptim (from left to right) with 1% of noise
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Figure 2.7: The mean value for z inside the obstacle of ‖Hgαz ‖
2
L2(D) (black), |〈Fgz,α, gz,α〉| (red),

‖gzα‖ (blue) and |〈F#g
z,α, gz,α〉| (green)

2.6 Determination of the transmission eigenvalue from far field
data

In [16] it is shown that the norm of Hgαz can not stay bounded if k is an interior transmission
eigenvalue. This result relies on the hypothesis that F has dense range even at an interior
transmission eigenvalue (assuming this is related to the existence of non scattering waves [8]).
When k is not a transmission eigenvalue we extensively use the fact that |〈Bgz,α, gz,α〉| actually
controls the norm of Hgαz . If we take B = F#, in [43] they demonstrate that T# is coercive even
if k is a transmission eigenvalue. If we take B = F , this control depends on the coercivity of T
which we only prove when k is not a transmission eigenvalue. Therefore we can conclude that the
sequence we have construct using the GLSM framework will give us an exact characterization
of the interior transmission eigenvalue as the failure of the indicator function only when B =

F#. However when B = F as we have an exact characterization of the support of the scatter
when k is not a transmission eigenvalue value we can compute ‖Hgαz ‖

2
L2(D) after determining D

from the data. In figure 2.7 we show the mean value of |〈Fgz,α, gz,α〉|, ‖gzα‖, ‖Hgαz ‖
2
L2(D) and

|〈F#g
z,α, gz,α〉| for z inside a sphere (same example as in [32]).

For the convenience of the reader we reproduce the theorem given in [16] when n − 1 does
not change sign in all D. We denote gz,α, the minimizing sequence of the GLSM cost functional
with B = F#.

Theorem 9. Let k be a transmission eigenvalue and assume that F has dense range. Then
for almost every z ∈ D, lim inf

α→0
lim inf
δ→0

‖Hgαz ‖
2
L2(D) or lim inf

α→0
lim inf
δ→0

|〈F#g
z,α, gz,α〉| cannot be

bounded.

Proof. Assume that for a set of points z ∈ D which has a positive measure, µ ‖Hgαz ‖
2
L2(D) ≤
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〈F#g
z,α, gz,α〉| ≤M (where M may depend on z but not on α and δ). Therefore we deduce that

there exist vz such that Gvz = φ∞z . We can then deduce that vz and uz solve :
∆uz + k2nuz = 0 in D,
∆vz + k2vz = 0 in D,
(uz − vz) = Φz on ∂D,
∂
∂ν (uz − vz) = ∂

∂νΦz on ∂D,

(2.22)

and introduced wz = uz−vz−θz which is an element of V = {u ∈ H2(D), u = 0, ∂∂νu = 0 on ∂D}
that solves a fourth order problem which is equivalent to the following variational formulation
[16][equation (10)] on which the Fredholm alternative holds:∫

D

1

n− 1
{(∆ + k2n)(uz − θz)}{(∆ + k2)ϕ}dx = 0 for all ϕ ∈ V0(D). (2.23)

where θz ∈ H2(D) is a lifting function that verifies θz = Φz and ∂
∂ν θz = ∂

∂νΦz on∂D. Since k is
an interior transmission eigenvalue, we introduce w0 ∈ V any interior transmission eigenfunction.
The Fredholm alternative leads to∫

D

1

n− 1
{(∆ + k2n)(θz)}{(∆ + k2)w0}dx = 0 for all ϕ ∈ V0(D). (2.24)

Integrating by parts we obtain:

∫
∂D

1

n− 1
(∆ + k2n)w0

∂Φ(· , z)
∂ν

ds−
∫
∂D

∂

∂ν

(
1

n− 1
(∆ + k2n)w0

)
Φ(· , z) ds = 0, (2.25)

where these integrals have to be understood in the sense of H∓1/2 (resp. H∓3/2) duality pairing.
Defining ψ(x) := 1

n−1(∆+k2n(x))w0(x) in D then, ψ is in L2(D) and satisfies (∆+k2)ψ(x) = 0

in D. Classical interior elliptic regularity results and the Green’s representation theorem implies
that

ψ(z) =

∫
∂D

(
ψ(x)

∂Φ(x, z)

∂ν
− ∂ψ(x)

∂ν
Φ(x, z)

)
dsx for z ∈ D. (2.26)

Equation (2.25) and the unique continuation principle now show that ψ = 0 in D. Therefore
(∆ + k2n(x))u0(x) = 0 in D. Since u0 ∈ V one deduces from Green’s representation theorem
that u0 = 0 in D, which is a contradiction.





Chapter 3

Identifying defects in an unknown
background using differential

measurements

VS

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 A model problem and motivation . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 A modified version of the GLSM for noisy measurements . . . . . . . . 37
3.4 Identification of modifications in a given unknown background . . . . . 40

3.4.1 Comparison of ITP solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Characterization of ΩT and D̃0 in terms of F and F0 . . . . . . . . . . . . . 44
3.4.3 The case of noisy operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Asymptotic behaviour of the indicator function inside D . . . . . . . . . 54

Except for section 3.6, this chapter is made of the article published in Inverse Problems
and Imaging [4]. The main theoretical contribution of this chapter is to give a clear connection
between the GLSM framework introduced in the previous chapter and the solution to the interior
transmission problem. To do so we slightly adapt, in section 3.3, the GLSM cost functional to
be able to prove the strong convergence of the sequence of minimizer to the solution of the
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underlying interior transmission problem. One application of this result is to be able to give
the asymptotic behaviour of the indicator function inside the obstacle (section 3.6). More
importantly it allows one to compare the solution of two different data sets, for example data
taken on the same unknown medium before and after the appearance of a defect. In section
3.4, we consider the case of an unknown medium made of several disjoint parts and obtain an
exact characterization of the connected parts that have been modified. Thanks to the strong
convergence results of section 3.3 we are able to construct from the data an indicator function
that images the connected parts of the unknown medium that have been modified by the defect.
In section 3.5 we illustrate this behaviour on simulated data.

3.1 Introduction

We are interested in the design of a numerical inversion algorithm capable of identifying defects
in an unknown background from multistatic measurements of waves at a fixed frequency. The
original motivation of our work is the identification of defects in concrete like materials using
ultrasounds, but the methodology that we propose can be applied to a wider range of non de-
structive testing applications. The two main specificities of our setting are the following. We
first assume that the background is made of finitely many disjoint unknown inhomogeneities
with a size larger or comparable to the wavelength of the probing wave as shown in figure 3.1.
The material properties of these inhomogeneities are also not known a priori and therefore one
cannot obtain reliable estimators of the background Green function. This setting implies in par-
ticular that classical qualitative/imaging methods cannot be directly applied (see for instance
[45, 33, 25, 40, 15, 30, 10, 11, 6] and references therein). In order to overcome this lack of a pri-
ori information, we second assume that two sets of measurements, respectively corresponding to
defect-free and defect-containing backgrounds, are available. Our approach then relies on a spe-
cial combination of the indicator functions provided by the generalized linear sampling method
GLSM (introduced in [5]) when applied to the two sets of measurements independently. The
link between these indicator functions and solutions to so-called interior transmission problems
allows us to introduce an additional filtered difference term that is capable of characterizing the
components of the background that have non empty intersections with these defects.

In these first investigations we shall consider the scalar time harmonic wave equation and
address the case where the measurements are given by the full aperture far field measurements
associated with incident plane waves. We first recall the basis of the GLSM algorithm and specify
the link between the indicator function and the solution to an appropriate interior transmission
problem under some additional convexity assumptions. The analysis of the noisy measure-
ments case also requires a slight modification of the regularizing scheme introduced in [5]. We
then introduce a filtered difference term associated with the farfield operator of the defect free
background. The analysis of this term relies on the well posedness of some specific interior
transmission problems which (implicitly) imposes restrictions on the refraction indexes of the
background and the defect(s) as well as on their geometry. Under those hypotheses we con-
struct an indicator function that gives exact characterization of the defects support and the
components of the background that have non empty intersections with these defects. We shall
analyze both the noise free and the noisy cases. In practice, the construction of the indicator



3.2. A model problem and motivation 35

function requires the minimization of a convex functional that turns out to be quadratic for
special choices of the penalty terms.

We numerically test and validate our method in a two dimensional setting. We compare
different strategies to build the indicator function provided by the theory and test the robustness
of the method against the complexity of the background.

The article is organized as follows. In Section 3.2 a model problem is introduced and the
main results of the GLSM are recalled in Section 3.3. The theoretical analysis of our method is
given in Section 3.4. The last section (Section 3.5) is devoted to the introduction of numerical
algorithms issued from Section 3.4 along with validating numerical results.

3.2 A model problem and motivation

We choose to consider as a model problem the scalar inverse time harmonic scattering problem
from inhomogenous media. The goal would be to identify a local change in the index of refraction
between two measurements campaigns. The first set of measurements then corresponds with
our background medium defined by its refractive index n0. We assume that this index has
the following properties : n0 ∈ L∞(Rd), =(n0) ≥ 0 and n0 = 1 in Rd \ D0 where D0 is a
union of simply connected bounded domains with Lipschitz boundaries and such that Rd \D0

is connected. The second set of measurements is obtained for a medium with a refractive index
n that satisfies similar properties as n0 and n = 1 in Rd \ D where D is a union of simply
connected bounded domains with Lipschitz boundaries and such that Rd \D is connected. We
shall later further assume that D0 ⊂ D and denote by Ω ⊂ D the smallest union of simply
connected domains such that D = Ω ∪ D0, n = n0 in Rd \ Ω. The domain Ω is the target we
want to retrieve without knowing n0 and n.

For a wave number k > 0, the respective total fields u0 ∈ H1
loc(Rd) and u ∈ H1

loc(Rd)
associated with these two set of measurements solve the following Helmholtz equations:

∆u0 + k2n0u0 = 0 and ∆u+ k2nu = 0 in Rd

with d = 2 or 3. We are interested in the cases where the total field is generated by plane waves,
ui(θ, x) := eikx·θ with x ∈ Rd and θ ∈ Sd−1 (the unit sphere) and we denote by us0 and us the
scattered fields defined by

us0(θ, ·) = u0 − ui(θ, ·) and us(θ, ·) = u− ui(θ, ·) in Rd,

which are assumed to be satisfying the Sommerfeld radiation condition,

lim
r→∞

∫
|x|=r

∣∣∣∣∂us0∂r
− ikus0

∣∣∣∣2 ds = 0 and lim
r→∞

∫
|x|=r

∣∣∣∣∂us∂r − ikus
∣∣∣∣2 ds = 0.

Our data for the inverse problem will be formed by noisy measurements of so called farfield
patterns u∞0 (θ, x̂) and u∞(θ, x̂) defined by

us0(θ, x) =
eik|x|

|x|(d−1)/2
(u∞0 (θ, x̂) +O(1/|x|))
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us(θ, x) =
eik|x|

|x|(d−1)/2
(u∞(θ, x̂) +O(1/|x|))

as |x| → ∞ for all (θ, x̂) ∈ Sd−1×Sd−1. The goal is to be able to reconstruct an approximation of
Ω from these measurements (without knowing n0 and n) using a new sampling algorithm. The
algorithm takes advantage of the recently introduced algorithm GLSM [5] applied to each set of
measurements. We therefore need to consider the two farfield operators F0 and F : L2(Sd−1)→
L2(Sd−1), respectively defined by

F0g(x̂) :=

∫
Sd−1

u∞0 (θ, x̂)g(θ)ds(θ) and Fg(x̂) :=

∫
Sd−1

u∞(θ, x̂)g(θ)ds(θ).

Let us define for ψ0 ∈ L2(D0), the unique function w0 ∈ H1
loc(Rd) satisfying

∆w0 + n0k
2w0 = k2(1− n0)ψ0 in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∣∂w0

∂r
− ikw0

∣∣∣∣2 ds = 0.
(3.1)

and for ψ ∈ L2(D) we denote by w ∈ H1
loc(Rd) the unique solution of the same equations with

n0 replaced by n and ψ0 replaced by ψ. By linearity of the forward scattering problem, F0g

(resp. Fg) is nothing but the farfield pattern of w0 (resp. w) with ψ0 = vg in D0 (resp. ψ = vg
in D), where

vg(x) :=

∫
Sd−1

eikx·θg(θ)ds(θ), g ∈ L2(Sd−1), x ∈ Rd.

Now consider the (compact) operators H0 : L2(Sd−1) → L2(D0) and H : L2(Sd−1) → L2(D)

respectively defined by
H0g := vg|D0 and Hg := vg|D, (3.2)

and the (compact) operators G0 : R(H0) ⊂ L2(D0) → L2(Sd−1) and G : R(H) ⊂ L2(D) →
L2(Sd−1) respectively defined by

G0ψ0 := w∞0 and Gψ := w∞

where w∞0 (resp. w∞) is the farfield of w0 (resp. w) and R(H0) (resp. R(H)) denotes the
closure of the range of H0 in L2(D0) (resp. H in L2(D)). Then clearly

F0 = G0H0 and F = GH.

This is the first factorization needed by GLSM. We recall that [49]

R(H) = {v ∈ L2(D); ∆v + k2v = 0 in D},

and one has a similar characterization for R(H0). On the other hand, since the farfield patterns
of w0 and w respectively have the following expressions ([25])

w∞0 (x̂) = −
∫
D0

e−iky·x̂(1− n0)k2(ψ0(y) + w0(y))dy,
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w∞(x̂) = −
∫
D
e−iky·x̂(1− n)k2(ψ(y) + w(y))dy,

one simply has G0 = H∗0T0ψ and G = H∗Tψ, where H∗0 : L2(D0) → L2(Sd−1) and H∗ :

L2(D)→ L2(Sd−1) are respectively the adjoints of H0 and H given by

H∗0ϕ(x̂) :=

∫
D0

e−iky·x̂ϕ(y)dy, ϕ ∈ L2(D0), x̂ ∈ Sd−1,

H∗ϕ(x̂) :=

∫
D
e−iky·x̂ϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ Sd−1,

and where T0: L2(D0)→ L2(D0) and T : L2(D)→ L2(D) are defined by

Tψ0 := −k2(1− n0)(ψ0 + w0) and Tψ := −k2(1− n)(ψ + w), (3.3)

with w0, w ∈ H1
loc(Rd) being obtained from ψ and ψ0 as indicated in (3.1). Finally we get

F0 = H∗0T0H0 and F = H∗TH, (3.4)

which give the second factorization needed by GLSM. As we shall later observe, other factoriza-
tions are possible and are more suited for the analysis of our method.

3.3 A modified version of the GLSM for noisy measurements

In this section we will review the case of noise free data as it is presented in [5] and complement
it with an explicit convergence result, then give a slightly modified version of the noisy case
in order to ensure an additional property needed in section 3.4. We present the method in an
abstract form. We denote by X and Y two (complex) reflexive Banach spaces with duals X∗ and
Y ∗ respectively and shall denote by 〈·, ·〉 a duality product that refers to 〈X∗, X〉 or 〈Y ∗, Y 〉
duality. We consider two linear operators F : X → X∗ and B : X → X∗ that are assumed to
be bounded. Moreover we shall assume that the following factorizations hold

F = GH and B = H∗TH (3.5)

where the operators H : X → Y , T : Y → Y ∗ and G : R(H) ⊂ Y → X∗ are bounded, where
R(H) is the closure of the range of H in Y . Note that we allow the operator B to be different
from F , which will be exploited in numerical algorithms introduced later. Let α > 0 be a
given parameter and φ ∈ X∗. The GLSM (for noise free measurements) is based on considering
minimizing sequences of the functional Jα(φ; ·) : X → R

Jα(φ; g) := α|〈Bg, g〉|+ ‖Fg − φ‖2 ∀g ∈ X. (3.6)

We observe that if F has dense range then, for all φ ∈ X∗,

jα(φ) := inf
g∈X

Jα(φ; g)→ 0 as α→ 0. (3.7)

The central theorem in the case of noise free measurement is then the following characterization
of the range of G in terms of F and B (see [5, Theorem 3]).
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Theorem 10. We assume in addition that

• G is compact and F = GH has dense range and is injective,

• T satisfies the coercivity property

|〈Th, h〉| > µ ‖h‖2 ∀h ∈ R(H), (3.8)

where µ > 0 is a constant independent of h. Consider for α > 0 and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) (3.9)

where p(α)
α is bounded with respect to α. Then

• φ ∈ R(G) implies lim sup
α→0

|〈Bgα, gα〉| <∞,

• φ /∈ R(G) implies lim inf
α→0

|〈Bgα, gα〉| =∞.

If we suppose in addition that h 7→
√
|〈Th, h〉| is a uniformly convex function on R(H) and that

p(α)
α → 0 as α→ 0, then φ ∈ R(G) if and only if lim

α→0
|〈Bgα, gα〉| <∞. In the case φ = Gϕ, the

sequence Hgα converges strongly to ϕ in Y .

Proof. The first part of the theorem has been proved in [5]. We shall prove the convergence of
Hgα to ϕ when φ = Gϕ for ϕ ∈ Y . The coercivity of T combined with the first part of the
theorem imply that ‖Hgα‖2 is bounded. Second, from (3.6) and (3.9) and the injectivity of G
we infer that the only possible weak limit of (any subsequence of) Hgα is ϕ. Thus the whole
sequence Hgα weakly converges to ϕ. Since ϕ ∈ R(H) we have

jα(φ) = inf
g∈X)

Jα(g, φ) = inf
h∈R(H)

(
α|〈Th, h〉|+ ‖Gh− φ‖2

)
≤ α|〈Tϕ, ϕ〉|.

Thus
|〈Bgα, gα〉| ≤ |〈Tϕ, ϕ〉|+

p(α)

α
,

which implies (as p(α)
α → 0)

lim sup
α→0

|〈THgα, Hgα〉| ≤ |〈Tϕ, ϕ〉|. (3.10)

The uniform convexity of h 7→
√
|〈Bh, h〉| and the continuity and coercivity properties of T

ensure that R(H) equipped with
√
|〈Th, h〉| is a uniformly convex Banach space. We deduce

from (3.10) and the weak convergence that Hgα strongly converges to ϕ (see for instance [14,
Chap. 3, Prop. 3.32]).

For practical applications one needs to consider the case with noisy data. More precisely, we
shall assume that one has access to two noisy operators Bδ : X → X∗ and F δ : X → X∗ such
that ∥∥∥F δ − F∥∥∥ ≤ δ‖F‖ and

∥∥∥Bδ −B
∥∥∥ ≤ δ‖B‖
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for some δ > 0. We also assume that the operators, B, Bδ F δ and F are compact.
Let η ∈]0, 1[ be a constant parameter. We define for α > 0 and φ ∈ X∗ the regularized

functional

Jδα(φ; g) := α|
〈
Bδg, g

〉
|+ α1−ηδ‖B‖ ‖g‖2 +

∥∥∥F δg − φ∥∥∥2
∀ g ∈ X. (3.11)

As indicated in Remark 3 below, this functional coincides with the one introduced in [5] for
η = 0. It exhibits qualitatively similar properties: e.g., due to the compactness of Bδ it has a
minimizer

gδα = arg min
g∈X

Jδα(φ; g) (3.12)

and we also have
lim
α→0

lim sup
δ→0

Jδα(φ; gδα) = 0. (3.13)

Theorem 11. Assume that the first two assumptions of Theorem 10 hold true. Let gδα be the
minimizer of Jδα(φ; ·) (defined by (3.11)) for α > 0, δ > 0 and φ ∈ X∗.

Then

• φ ∈ R(G) implies lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δα−η‖B‖
∥∥gδα∥∥2

)
<∞.

• φ /∈ R(G) implies lim inf
α→0

lim inf
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ δα−η‖B‖
∥∥gδα∥∥2

)
=∞.

Moreover, when φ ∈ R(G) we also have

lim sup
α→0

lim sup
δ→0

δ‖B‖
∥∥∥gδα∥∥∥2

= 0. (3.14)

If in addition the last assumptions of Theorem 10 hold true and Gϕ = φ, then there exists δ0(α)

such that for all δ(α) ≤ δ0(α), Hgδ(α)
α converges strongly to ϕ as α goes to zero.

Proof. The proof follows the lines of the proof of [5, Theorem 5].

• Assume that φ = G(ϕ) for some ϕ ∈ R(H). We consider g0 (that depends on α but is
independent from δ) such that ‖Hg0 − ϕ‖2 < α. Choosing δ sufficiently small such that

(αδ‖B‖+ α1−ηδ‖B‖+ δ2‖F‖2) ‖g0‖2 ≤ α

we get
Jδα(φ; gδα) ≤ Jδα(φ; g0) ≤ Jα(φ; g0) + α. (3.15)

Consequently

α

(
|
〈
Bδgδα, g

δ
α

〉
|+ α−ηδ‖B‖

∥∥∥gδα∥∥∥2
)
≤ Jδα(φ; gδα) ≤ α+ 2α ‖T‖ (α+ ‖ϕ‖2) + α‖G‖2,

which proves lim sup
α→0

lim sup
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ α−ηδ‖B‖
∥∥gδα∥∥2

)
< ∞. We also have, as a

consequence of the inequalities above, that

δ‖B‖
∥∥∥gδα∥∥∥2

≤ Cαη
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which proves lim sup
α→0

lim sup
δ→0

δ‖B‖
∥∥gδα∥∥2

= 0.

Now assume that the last assumptions of Theorem 10 hold true. We recall that

Jδα(φ; g) ≤ Jα(φ, g) + (αδ‖B‖+ α1−ηδ‖B‖+ δ2‖F‖2) ‖g‖2 .

If we use the sequence gα from Theorem 10, and choose δ0(α) small enough such that
lim sup
α→0

(αδ0(α)‖B‖+α1−ηδ0(α)‖B‖+ δ0(α)2‖F‖2)‖gα‖
2

α = 0. Then, from the convergence

properties of sequence Hgα, we clearly obtain for δ(α) ≤ δ0(α),

lim sup
α→0

|
〈
Bg

δ(α)
α , g

δ(α)
α

〉
| ≤ |〈Tϕ, ϕ〉|.

We then conclude as in the proof of Theorem 10 that Hgδ(α)
α converges strongly to ϕ as α

goes to zero.

• Assume φ /∈ R(G) and assume that lim inf
α→0

lim inf
δ→0

(∣∣〈Bδgδα, g
δ
α

〉∣∣+ α−ηδ‖B‖
∥∥gδα∥∥2

)
is fi-

nite. The coercivity of T and α < 1 implies that

µ
∥∥∥Hgδα(δ)

∥∥∥2
≤ |
〈
Bgδα, g

δ
α

〉
| ≤ |

〈
Bδgδα, g

δ
α

〉
|+ α−ηδ‖B‖

∥∥∥gδα∥∥∥2
.

Therefore lim inf
α→0

lim inf
δ→0

∥∥Hgδα∥∥2 is also finite. This means the existence of a subsequence

(α′, δ(α′)) such that α′ → 0 and δ(α′)→ 0 as α′ → 0 and
∥∥∥Hgδ(α′)α′

∥∥∥2
is bounded indepen-

dently from α′. One can also choose δ(α′) such that δ(α′) ≤ α′1−η.

On the other hand Equation (3.13) indicates that one can choose this subsequence such
that Jδ(α

′)
α′ (g

δ(α′)
α′ ) → 0 as α′ → 0 and therefore

∥∥∥F δgδ(α′)α′ − φ
∥∥∥ → 0 as α′ → 0 and

α′1−ηδ(α′)‖gδ(α
′)

α′ ‖
2 → 0 as α′ → 0. By a triangular inequality and δ(α′) ≤ α′1−η we

then deduce that
∥∥∥Fgδ(α′)α′ − φ

∥∥∥ → 0 as α′ → 0. The compactness of G implies that

a subsequence of GHgδ(α
′)

α′ converges for some Gϕ in X∗. The uniqueness of the limit
implies that Gϕ = φ which is a contradiction.

Remark 3. The treatment of noisy cases has been done in [5] with η = 0. This choice does not
guarantee the extra property (3.14) which is needed to ensure the convergence of our algorithm
in Section 3.4.

3.4 Identification of modifications in a given unknown back-
ground

We first recall how GLSM can be applied to F (resp. F0) in order to image D (resp. D0).
Since the treatment is the same for F and F0 we present it only for F . The first step is to
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obtain a characterization of D in terms of the range of the operator G. This characterization is
linked to solutions to so-called interior transmission problems (ITP). For a Lipschitz bounded
domain D, an index of refraction n as in Section 3.2 and two boundary data f ∈ H

3
2 (∂D)

and g ∈ H
1
2 (∂D) we define the interior transmission problem ITP(D, f, g, n) as the problem of

seeking (u, v) ∈ L2(D)× L2(D) such that u− v ∈ H2(D) and

ITP(D, f, g, n) :


∆u+ k2nu = 0 in D,
∆v + k2v = 0 in D,
(u− v) = f on ∂D,
∂
∂ν (u− v) = g on ∂D.

(3.16)

We denote by σ(D,n) the set of transmission eigenvalues that we define here as the set of wave
numbers k ∈ R for which ITP(D, f, g, n) is not well posed for all f ∈ H

3
2 (∂D) and g ∈ H

1
2 (∂D).

It is known for instance that if 1/(n− 1) ∈ L∞(D) and <(n− 1) is positive definite or negative
definite in a neighborhood of ∂D, then σ(D,n) is a countable set without any finite accumulation
point [52]. Defining

φz(x̂) := e−ikx̂·z, (3.17)

the farfield of Φ(·; z), the fundamental solution of the Helmholtz equation satisfying the Som-
merfeld radiation condition, we have the following theorem [15].

Theorem 12. Assume that k /∈ σ(D,n). Then G is compact, injective with dense range and
φz ∈ R(G) if and only if z ∈ D. Moreover, if z ∈ D then G(v) = φz if and only if there exists
u ∈ L2(D) such that (u, v) is a solution of ITP(D,Φz,

∂Φz
∂ν , n).

We recall also that under some hypotheses on n, for instance those in Hypothesis 3, the
operator T satisfies the coercivity property (3.8) if k /∈ σ(D,n) [5]. Using equations (3.4) one
can apply the theory in Section 3.3 with B = F and deduce a characterization of D (resp. D0)
from the knowledge of F (resp. F0).

Hypothesis 3. The index of refraction n and the domain D satisfy n ∈ L∞(Rd), supp(n−1) =

D, =(n) ≥ 0 and there exist two constants n∗ > 0 and α ≥ 0 such that 1−<(n(x))+α=(n(x)) ≥
n∗ for a.e. x ∈ D or <(n(x))− 1 + α=(n(x)) ≥ n∗ for a.e. x ∈ D.

However, the choice ofB = F does not guarantee the convexity assumption required to ensure
the strong convergence of the Herglotz waves to solutions of interior transmission problems (see
conclusions of Theorems 10 and 11). This property is needed to treat the case of differential
measurements. This is why, in the latter case, we will rather use B = F# := |<(F )| + |=(F )|
under slightly stronger assumptions on the refractive index.

3.4.1 Comparison of ITP solutions

The main ingredient of our algorithm is based on the following results on the solutions of the
interior transmission problems related to D and D0. Let us first further specify the assumptions
on these domains. We suppose that D0, D and Ω are the smallest domains with connected
complement that respectively verify supp(n0−1) ⊂ D̄0, supp(n−1) ⊂ D̄ and supp(n−n0) ⊂ Ω̄.
We also assume that D0 ⊂ D which implies in particular that D = Ω ∪D0. We denote by D0,i,
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i = 1, . . . ,M0 and Di, i = 1, . . . ,M the simply connected components of respectively D0 and D.
We introduce F = {i such that ∃j D0,i = Dj and D0,i ∩ Ω = ∅} and define D̂0 :=

⋃
i∈F

D0,i which

is the part of D0 that has not been modified between the two measurements campaigns. We set
D̃0 := D0 \ D̂0.
We then define G =

{
i such that Di ∩ D̃0 6= ∅

}
and set D̃ :=

⋃
i∈G

Di which represents the

component of D that intersects with D̃0. We then set Ω̃ := Ω ∩ D̃ and Ω̂ := D \
{
D̃ ∪ D̂0

}
.

One can remark that D̃ = D̃0 ∪ Ω̃ and that we have the following non-intersecting partitions
(See Fig. 3.1, 3.2 and 3.3)

D = D̃ ∪ Ω̂ ∪ D̂0, Ω = Ω̂ ∪ Ω̃ and D0 = D̂0 ∪ D̃0.

As we shall later observe, our algorithm will not exactly recover Ω (shaded region in Fig. 3.2)
but rather reconstruct either D̃0 (shaded region in Fig. 3.1) or the bigger domain

ΩT := Ω ∪ D̃0 = Ω̂ ∪ D̃.

containing Ω (shaded region in Fig. 3.3).

D̂0
D̃0

D̃0

Figure 3.1: Sketch of a possible configuration for D0 (the part D̃0 is shaded).

D̂0

D̃0

D̃0

Ω̃

Ω̂

Ω̃

Figure 3.2: Sketch of a possible configuration for D. The defect Ω is represented by the shaded
region (D̃ = Ω̃ ∪ D̃0).
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Figure 3.3: Sketch of ΩT (shaded region) associated with D0 (Fig. 3.1) and Ω (Fig. 3.2).

Let us denote by ITP(D, f, g, n, n′) the problem ITP(D, f, g, n) where the equation for v is
replaced with

∆v + k2n′v = 0 in D, (3.18)

and by σ(D,n, n′) the set of associated transmission eigenvalues (defined similarly to σ(D,n)).

Theorem 13. Assume that k /∈ σ(D,n) ∪ σ(D0, n0) ∪ σ(Ω̃, n, ñ) where ñ is defined in D̃ ⊃ Ω̃

by:

ñ :=

{
n0 in D̃0,

1 in D̃ \ D̃0.
(3.19)

Let z ∈ D and consider (u, v) ∈ L2(D)×L2(D) (resp. (u0, v0) ∈ L2(D0)×L2(D0)) solutions of
ITP(D,Φz,

∂Φz
∂ν , n) (resp. ITP(D0,Φz,

∂Φz
∂ν , n0)). Then:

• If z ∈ D̂0 then v = v0 in D0.

• If z ∈ D̃0, then v 6= v0 in D0.

Proof. We first consider the case where z ∈ D̂0. InD\D̂0, the function Φz satisfies ∆Φz+k
2Φz =

0 and therefore the ITP solutions in this domain are given by v = v0 = −Φz and u = u0 = 0.
On the other hand, by definition of D̂0, n = n0 in D̂0 meaning that ITP(D̂0,Φz,

∂Φz
∂ν , n) ≡

ITP(D̂0,Φz,
∂Φz
∂ν , n0) and thus v = v0 in D̂0.

We now consider the case z ∈ D̃0. Using the same arguments as above we have v = v0 in
D0 \ D̃0. Let us assume that v = v0 in D̃0 (and conclude using a contradiction argument).

We now introduce ũ defined on D̃:

ũ :=

{
u0 in D̃0,

v + Φz in D̃ \ D̃0.
(3.20)

Since we suppose that v = v0 in D̃0 and using the boundary conditions satisfied by u0 − v0 on
∂D̃0, we obtain that the jump of ũ and the jump of its normal derivative are zero on ∂D̃0\∂D̃ (the
trace of ũ and the trace of its normal derivative on ∂D̃0 are defined as elements of respectively
H−1/2(∂D̃0) and H−3/2(∂D̃0)). Therefore, ũ ∈ L2(D̃) and is solution to the Helmholtz equation
with index of refraction ñ. Moreover, by construction, the Cauchy data of u − ũ are equal to
zero on ∂D̃. In addition, in the domain D̃0, u − ũ = u − u0 = u − v − (u0 − v0) ∈ H2(D̃0)

and in D̃ \ D̃0, u − ũ = u − v − Φz ∈ H2(D̃ \ D̃0). The continuity of the Cauchy data of
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u− ũ across ∂D̃0 \ ∂D̃ then implies u− ũ ∈ H2(D̃) . Finally we have that (u, ũ) are solution of
ITP(D̃, 0, 0, n, ñ).

In order to finish the proof we need to look at two cases. Let us introduce the simply
connected domain D̃0,i where z belongs. First we suppose that D̃0,i is not included in any
simply connected part of Ω. Then clearly ∂D̃ ∩ ∂D̃0 has a non zero measure, which means that
ITP(D̃, 0, 0, n, ñ) is not well posed (n and ñ are both equal to n0 on this part of the boundary).
The equality of the Cauchy data means that u = ũ in D̃0 \ Ω̃, where Ω̃ = Ω ∩ D̃. This yields
that the Cauchy data of u − ũ are equal to zero on ∂Ω̃. Consequently (u, ũ)|Ω̃ are solution of
ITP(Ω̃, 0, 0, n, ñ). Our hypothesis on k implies u = ũ = 0 in Ω̃, which implies that u = 0 in Ω̃.
Using a unique continuation argument we get u = 0 in D̃. This yields that the Cauchy data of
v and −Φz coincides on ∂D̃ which give v0 = v = −Φz in D̃0 \ {z}. We obtain a contradiction
since v0 = v0 − u0 ∈ H2(D̃0) while Φz /∈ H2(D̃0).

The second case is when D̃0,i ⊂ Ω̃i ⊂ D̃i, where Ω̃i ⊂ Ω̃ and D̃i are simply connected
components of respectively Ω and D̃. Since the interior transmission problems of discon-
nected components are independent from each other, we already have that (u, ũ) are solution of
ITP(D̃i, 0, 0, n, ñ). In the cases where Ω̃i is not equal to D̃i (for example when D̃0,i 6= D̃i ∩ D̃0)
one can use the same reasoning as for the first case (replacing D̃ by D̃i and Ω̃ by Ω̃i) to infer
that (u, ũ) are solution of ITP(Ω̃i, 0, 0, n, ñ). Therefore ũ0 = 0 in Ω̃i. This yields that the
Cauchy data of v0 and −Φz coincide on ∂D̃0,i which gives v0 = −Φz in D̃0,i \ {z}. We obtain a
contradiction since v0 = v0 − u0 ∈ H2(D̃0,i) while Φz /∈ H2(D̃0,i).

Remark 4. The assumption of Theorem 13 is to be understood as an implicit assumption on n
and n0. This theorem is indeed meaningful only when σ(D,n) ∪ σ(D0, n0) ∪ σ(Ω̃, n, ñ) forms a
discrete set without finite accumulation points. We remark that the latter is true when <(n− 1),
<(n0−1) and <(n− ñ) are positive definite quantities in a neighborhood of respectively ∂D, ∂D0

and ∂Ω̃. We also remark that if D̃0,i ⊂ Ωi and ∂D̃0,i∩∂Ωi has a non zero surface measure, then
σ(Ω̃, n, ñ) = R and therefore one has to exclude this configuration.

3.4.2 Characterization of ΩT and D̃0 in terms of F and F0

We assume in this section that hypotheses of Theorem 13 on the wave number k hold true.
We shall also assume that one can respectively obtain from F and F0 two operators B and
B0 : L2(Sd−1) → L2(Sd−1) such that B0 = H∗0TB0H0, B = H∗TBH where TB0 and TB are
respectively defined on L2(D0) and L2(D) and satisfy the coercivity and uniform convexity
assumptions of Theorem 10.

An example of such construction is B = |<(F )|+ |=(F )| and B0 = |<(F0)|+ |=(F0)|. It is for
instance shown in [40] that under Hypothesis 4, the operator B = H∗T#H, with T# a strictly
positive and selfadjoint operator which satisfies the coercivity property (3.8) if k /∈ σ(D,n). It

is then clear that h 7→
√
|〈T#h, h〉| =

∥∥∥T 1/2
# h

∥∥∥2

L2(D)
satisfies the uniform convexity assumption.

Similar considerations apply to B0.

Hypothesis 4. The index of refraction n and the domain D satisfy n ∈ L∞(Rd), supp(n−1) =

D, =(n) ≥ 0 and there exist constants n∗ > 0 and <((n(x)− 1)) ≥ n∗ for a.e. x ∈ D.
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Remark 5. If =n(x) > γ > 0 in D, then one can simply use B = =F . A similar comment
applies to n0, D0, B0 and F0.

In the following (·, ·) and ‖·‖ will respectively denote the L2 scalar product and the associated
norm (the domain is not indicated if clear from the context).

For a point z ∈ Rd and φz given by (3.17), we consider the two functionals defined on
L2(Sd−1) by

J0,α(φz; g) = α|(B0g, g)|+ ‖F0g − φz‖2

and
Jα(φz; g) = α|(Bg, g)|+ ‖Fg − φz‖2

and denote by gα0,z and gαz two sequences of L2(Sd−1) respectively satisfying (like in (3.9)),

J0,α(φz; g
α
0,z) ≤ inf

g∈L2(Sd−1)
J0,α(φz; g) + p(α) (3.21)

and
Jα(φz; g

α
z ) ≤ inf

g∈L2(Sd−1)
Jα(φz; g) + p(α), (3.22)

where p(α)
α goes to 0 as α → 0. For g and g0 in L2(Sd−1), we introduce the key quantities will

be used in the following :

A(g) := |(Bg, g)|, A0(g) := |(B0g, g)| and the coupling term

D(g, g0) := |(B0(g − g0), g − g0)|.
(3.23)

Theorem 14. For gαz and gα0,z satisfying (3.22), (3.21), we have the following results.

• If z ∈ D̂0 then lim
α→0
D(gαz , g

α
0,z) = 0.

• If z ∈ D̃0 then 0 < lim
α→0
D(gαz , g

α
0,z) <∞.

• If z ∈ Ω \ D̃0 then lim
α→0
D(gαz , g

α
0,z) =∞.

Proof. For fixed z ∈ D (resp. z ∈ D0), we denote by (u, v) (resp (u0, v0)) the solution of
ITP(D,Φz,

∂Φz
∂ν , n) (resp. of ITP(D0,Φz,

∂Φz
∂ν , n0)).

• If z ∈ D̂0 we actually know from the application of Theorem 10 that Hgαz → v in L2(D)

and H0g
α
0,z → v0 in L2(D0). Therefore, using the boundedness of TB0 and the fact that

D0 ⊂ D,
D(gαz , g

α
0,z)→

∣∣∣(TB0(v − v0), (v − v0))L2(D0)

∣∣∣ as α→ 0. (3.24)

Theorem 13 indicates that v = v0 in D0 which proves the desired result.

• If z ∈ D̃0, we still have Hgαz → v in L2(D) and Hgα0,z → v0 in L2(D0) and therefore (3.24)
still holds. However, this time v 6= v0 in D0 (according to Theorem 13). The coercivity
and continuity of TB0 imply (for some constant µ0 > 0)

µ0 ‖v − v0‖2L2(D0) ≤
∣∣∣(TB0(v − v0), (v − v0))L2(D0)

∣∣∣ ≤ ‖TB0‖ ‖v − v0‖2L2(D0)

which gives the desired result.
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• If z ∈ Ω\ D̃0, we still have that Hgαz → v in L2(D) but
∥∥H0g

α
0,z

∥∥
L2(D0)

is now unbounded.
Since

µ0

∥∥H0g
α
0,z −H0g

α
z

∥∥2

L2(D0)
≤
∣∣(B0(gαz − gα0,z), (gαz − gα0,z)

)∣∣
we clearly get lim

α→0
D(gαz , g

α
0,z) =∞.

Let us introduce the two functionals

IT (g, g0) :=
1√

A(g) (1 +A(g)D(g, g0)−1)
(3.25)

IMB(g, g0) :=
1√

A0(g0) +A(g) (1 +A0(g0)D(g, g0)−1)
. (3.26)

The previous Theorem together with the application of Theorems 10 and 12 can be used to
prove that IT (gαz , g

α
0,z) and IMB(gαz , g

α
0,z) respectively provide some indicator functions of ΩT

and D̃0 (the subscript "MB" stands for modified background since D̃0 corresponds to the simply
connected components of D0 that have non empty intersections with Ω).

Corollary 2. For those gαz and gα0,z satisfying (3.22) and (3.21), we have the following charac-
terizations:

• z ∈ ΩT if and only if lim
α→0
IT (gαz , g

α
0,z) > 0.

• z ∈ D̃0 if and only if lim
α→0
IMB(gαz , g

α
0,z) > 0.

Proof. Theorems 10 and 12 imply that z ∈ D (respectively z ∈ D0) if and only if lim
α→0
A(gαz ) <

∞ (respectively lim
α→0
A0(gα0,z) < ∞). These results imply that lim

α→0
IT (gαz , g

α
z ) = 0 (resp.

lim
α→0
IMB(gαz , g

α
0,z) = 0) when z ∈ Rd \ D (resp. z ∈ Rd \ D0). The first point of theorem

14 imply that for z ∈ D̂0, lim
α→0
IT (gαz , g

α
z ) = 0 (resp. lim

α→0
IMB(gαz , g

α
0,z) = 0). Equations (3.25)

and (3.26) and the fact that Rd = {Rd \ D} ∪ D̂0 ∪ D̃0 ∪ {Ω \ D̃0} together with the last two
points of theorem 14 conclude the proof.

3.4.3 The case of noisy operators

We shall extend here the result of previous section to the case of noisy operators. In addition
to the assumptions of Section 3.4.2, we suppose that one has access to F δ, F δ0 , Bδ and Bδ

0 that
are compact operators on L2(Sd−1) and satisfy

‖B −Bδ‖ ≤ δ, ‖B0 −Bδ
0‖ ≤ δ, ‖F − F δ‖ ≤ cδ and ‖F0 − F δ0 ‖ ≤ cδ

for some constant c > 0, where δ plays the role of some upper bound on the norm of the absolute
noise level in Bδ and Bδ

0. Following Theorem 11, we consider for z ∈ Rd and φz given by (3.17),
the functions gα,δ0,z and gα,δz in L2(Sd−1) defined by
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gα,δ0,z := arg min
g∈L2(Sd−1)

[
α
(
|
(
Bδ

0g, g
)
|+ α1−ηδ ‖g‖2

)
+
∥∥∥F δ0 g − φz∥∥∥2

]
, (3.27)

gα,δz = arg min
g∈L2(Sd−1)

[
α
(
|
(
Bδg, g

)
|+ α1−ηδ ‖g‖2

)
+
∥∥∥F δg − φz∥∥∥2

]
(3.28)

where η ∈ (0, 1) is fixed and α is a small parameter. Similarly to (3.23) we define

Aα,δ(g) := |
(
Bδg, g

)
|+ α−ηδ ‖g‖2 , Aα,δ0 (g) := |

(
Bδ

0g, g
)
|+ α−ηδ ‖g‖2 ,

Dδ(g, g0) := |
(
Bδ

0(g − g0), g − g0

)
|+ δ ‖g − g0‖2 .

(3.29)

Theorem 15. For gα,δ0,z and gα,δz defined by (3.27) and (3.28) we have the following results:

• If z ∈ D̂0 then lim
α→0

lim inf
δ→0

Dδ(gα,δz , gα,δ0,z ) = 0.

• If z ∈ D̃0 then 0 < lim
α→0

lim inf
δ→0

Dδ(gα,δz , gα,δ0,z ) <∞.

• If z ∈ Ω \ D̃0 then lim
α→0

lim inf
δ→0

Dδ(gα,δz , gα,δ0,z ) =∞.

Proof. Let z ∈ D0. From Theorem 11 and Theorem 12 (applied respectively to (F δ, Bδ) and
(F δ0 , Bδ

0)) one deduces the existence of a sequence δ(α) such that Hgα,δ(α)
z → v in L2(D) where v

is the solution of the ITP (D,Φz,
∂Φz
∂ν , n) and H0g

α,δ(α)
0,z → v0 in L2(D0) where v0 is the solution

of ITP (D0,Φz,
∂Φz
∂ν , n0) (it is obvious from Theorem 11 that one can choose a same subsequence

δ(α) for Hgα,δz and H0g
α,δ
z ). Following the same proof as for Theorem 14 we deduce (using

Theorem 13) that
lim
α→0
D(gα,δ(α)

z , g
α,δ(α)
0,z ) = 0

for z ∈ D̂0 and

0 < lim
α→0
D(gα,δ(α)

z , g
α,δ(α)
0,z ) =

∣∣∣(TB0(v − v0), (v − v0))L2(D0)

∣∣∣ <∞
for z ∈ D̃0. Obviously

|D(g, g0)−Dδ(g, g0)| ≤ 4δ(‖g0‖2 + ‖g‖2).

Therefore, using Theorem 11 we deduce that

D(gα,δ(α)
z , g

α,δ(α)
0,z )−Dδ(α)(gα,δ(α)

z , g
α,δ(α)
0,z )→ 0 as α→ 0.

This proves the first two statements of the theorem (using the fact that the above considerations
apply for any subsequence of (F δ, Bδ) and (F δ0 , Bδ

0)).
For z ∈ Ω \ D̃0, the statement of the theorem follows from the coercivity property

µ0

∥∥∥H0g
α,δ
0,z −H0g

α,δ
z

∥∥∥2

L2(D0)
≤ Dδ(gα,δz , gα,δ0,z )

(for some constant µ0 > 0) and the fact that (using the first part of Theorem 11)

lim sup
α→0

lim inf
δ→0

∥∥∥H0g
α,δ
z

∥∥∥2

L2(D0)
<∞,
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while
lim inf
α→0

lim inf
δ→0

∥∥∥H0g
α,δ
0,z

∥∥∥2

L2(D0)
=∞.

We now consider

Iα,δT (g, g0) =
1√

Aα,δ(g) (1 +Aα,δ(g)Dδ(g, g0)−1)
(3.30)

Iα,δMB(g, g0) =
1√

Aα,δ0 (g0) +Aα,δ(g)
(

1 +Aα,δ0 (g0)Dδ(g, g0)−1
) . (3.31)

The previous Theorem together with the application of Theorems 11 and 12 imply the following
characterizations.

Corollary 3. For gα,δ0,z and gα,δz defined by (3.27) and (3.28) we have

• z ∈ ΩT if and only if lim
α→0

lim inf
δ→0

Iα,δT (gα,δz , gα,δ0,z ) > 0.

• z ∈ D̃0 if and only if lim
α→0

lim inf
δ→0

Iα,δMB(gα,δz , gα,δ0,z ) > 0.

Proof. Theorems 11 and 12 imply that z ∈ D (respectively z ∈ D0) if and only if
lim
α→0

lim inf
δ→0

Aα,δ(gα,δz ) < ∞ (respectively lim
α→0

lim inf
δ→0

Aα,δ0 (gα,δ0,z ) < ∞). The results are then
straightforwardly deduced using Theorem 15.

3.5 Numerical results

In order to fix the ideas, we shall limit ourselves to the two dimensional case and will introduce
the algorithms for the discrete setting. We identify S1 with the interval [0, 2π[. In order to collect
the data of the inverse problem we solve numerically (3.1) for N incident fields ui(2πj

N , ·), j ∈
{0...N − 1} using the surface integral equation forward solver available in [35]. The discrete
version of F is then the matrix F := (u∞(2πj

N , 2πk
N ))0≤j,k≤N−1. We add some noise to the

data to build a noisy far field matrix F δ where (F δ)j,k = (F )j,k(1 + σNij) for σ > 0 and
Nij an uniform complex random variable in [−1, 1]2. We similarly generate F δ0 . In all our
simulation we use a relative noise level of 1%. We denote by φz ∈ CN, the vector defined by
φz(j) = exp(−ik(z1 cos(2πj

N ) + z2 sin(2πj
N )) for 0 ≤ j ≤ N− 1.

The analysis of previous sections applied with Bδ = F δ] := |<(F δ)| + |=(F δ)| suggests to
consider

gGLSM
z := argming∈L2(S1)

(
α
∥∥∥(F δ] )

1
2 g
∥∥∥2

L2(S1)
+ α1−ηδ ‖g‖2L2(S1) +

∥∥∥F δg − φz∥∥∥2

L2(S1)

)
.

The minimizer is explicitly given by

gGLSM
z = (αF δ] + α1−ηδId+ F δ∗F δ)−1F δ∗φz.
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We similarly construct gGLSM
0,z using F δ0 . In our numerical simulations we choose η = 0 (which

corresponds to the one used in [5]) as we were not able to find an automatic way to choose its
value and do not observe a significant influence of this parameter. We recall that the theory
works for all 0 < η < 1 and that the condition η > 0 is purely technical. The numerical
simulations show that the reconstructions are not sensitive to this parameter. However the
choice of α is important. Unfortunately, for the noisy case, we have no theory that relates the
choice of α to the noise parameter δ. A heuristic choice is given by (3.34). Then (as in section
3.4) we introduce the following quantities

AGLSM(z) =
∥∥∥(F δ] )

1
2 gGLSM
z

∥∥∥2
+ α−ηδ

∥∥gGLSM
z

∥∥2
,

AGLSM
0 (z) =

∥∥∥(F δ0,])
1
2 gGLSM

0,z

∥∥∥2
+ α−ηδ

∥∥gGLSM
0,z

∥∥2
,

DGLSM(z) =
∥∥∥(F δ] )

1
2 (gGLSM

z − gGLSM
0,z )

∥∥∥2
+ δ

∥∥gGLSM
z − gGLSM

0,z

∥∥2

and construct the two indicator functions (see Corollary 3)

IGLSM
T (z) =

1√
AGLSM(z)(1 +AGLSM(z)DGLSM(z)−1)

, (3.32)

IGLSM
MB (z) =

1√
AGLSM

0 (z) +AGLSM(z)(1 +AGLSM
0 (z)DGLSM(z)−1)

. (3.33)

Finally we will also look at the performance of the GLSM in reconstructing D and D0 using
respectively the following indicator functionals:

IGLSM(z) =
1√

AGLSM(z)
, IGLSM

0 (z) =
1√

AGLSM
0 (z)

.

Similarly to [5] a heuristic choice of α in the GLSM algorithm that roughly keeps the same
level of regularization as for the Tikhonov regularization would be

α =
αLSM∥∥∥F δ] ∥∥∥+ δα−ηLSM

, (3.34)

where αLSM is computed using the Morozov principle on the Tikhonov regularization. This is
the choice we adopt in our numerical simulations. In the examples shown below, we consider a
background medium made of several inclusions of constant index of refraction n0. The targets Ω

(represented with dashed lines) are inclusions of constant index of refraction n and their support
can intersect the support of n0. The scale on all the graphs is normalized by the wavelength.

We first consider an example where D = D0, meaning that Ω ⊂ D0. Figure 3.4 shows that
the numerical simulation exhibit the behavior demonstrated in Corollary 3, i.e. one is capable
of selecting the component of D0 that contains Ω.
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Figure 3.4: (n0, n) = (2, 3) from left to right and top to bottom : IGLSM
0 , IGLSM, IGLSM

T and
IGLSM

MB

A more complicated case corresponds with D 6= D0. In our examples, Ω is made in this case
of two components: a first one included in D0 and a second one that does not intersect with D0.
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Figure 3.5 shows that the result predicted by the theory is still valid.

Figure 3.5: (n0, n) = (2, 3) from left to right and top to bottom : IGLSM
0 , IGLSM, IGLSM

T and
IGLSM

MB

Our theory works also for absorbing background components (this case was excluded in the
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study of known inhomogeneous background [33]). The results presented in figure 3.6 shows
that we still obtain good reconstructions for this case that also exhibit a larger spacing between
heterogeneities. Finally, let us mention that one would obtain similar numerical results if g0,z

and gz have been computed using the classical Tikhonov-Morozov regularization of the LSM
equation ([5]) or (and) one uses Bδ = F δ instead of Bδ = F δ#. However, this scheme is not
covered by the theoretical part of this paper.
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Figure 3.6: (n0, n) = (2 + 0.5i, 3) from left to right and top to bottom : IGLSM
0 , IGLSM , IGLSM

T

and ILSM
MB
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∂D

z z∗

Figure 3.7: The area in blue is the area on which we do the integration.

3.6 Asymptotic behaviour of the indicator function inside D

In this section we would like to give an insight on what type of reconstruction one might expect
from the GLSM. This result is far from a resolution analysis but it gives the asymptotic behaviour
of our indicator function inside D, such an approach have been proposed in [3]. One might think
of this result as the best indicator function that this technique may attain. First it shows that
the GLSM framework cannot provide a step like image of the support of the obstacle in the
sense that the imaging functional tends to infinity as z goes to the boundary of D from inside.

From previous section we know that using GLSM framework for z inside D we construct
a sequence of Herglotz wave functions that strongly converge to the solution vz of the interior
transmission problem (3.16) with (f, g) = (Φz,

∂
∂νΦz).

The scattered field associated to vz defined by usz = uz − vz can be extend outside D as
usz = Φz and it verifies the Lippman Schwinger equation:

usz(x) =

∫
D
k2(1− n)uz(z)Φ(x, z)dz

In [25][Theorem 8.2 p. 269] Colton and Kress give the boundness of the volume potential
operator from L2(D) to H2(G) where G is a bounded domain, which implies

‖usz‖H2(G) ≤ C
∥∥k2(1− n)uz

∥∥
L2(D)︸ ︷︷ ︸

=‖Tvz‖L2(D)

≤ C‖T‖‖vz‖ (3.35)

We should now specify G. Our first requirement would be to choose a domain which do
not intersect D in order to exploit the fact that usz = Φz outside D. Since Φz exhibits radial
symmetry it would be easier to choose G as an angular portion of an annulus of center z. If we
suppose D to be Lipschitz, there exist R and θ such that for all z∗ ∈ ∂D one can found a cone
of radius R, summit z∗ and angle 4θ such that this cone do not intersect D. We consider z such
that |z − z∗| = ε. We thus extract the portion of cone depicted in figure 3.7, and call it Cz. It
is a portion of the cone of center z, with half-angle θ∗ = arctan( R sin(θ/2)

δ+R cos(θ/2)) and radius between

R1 = δ tan(θ)R2

tan(θ) cos(θ)−sin(θ/2))R+δ tan(θ) and R2 = (δ2 +R2 + 2δR cos(θ/2))
1
2 . We will be considering
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the case when z → z∗ which means ε goes to 0. First we see that R1 = O(ε), R1 = O(1) and
θ = O(1). In order to apply (3.35) in Cz we first need to compute the H2 norm of Φz and
extract its leading term.

• In 2D Φz = i
4H

(1)
0 (kr) where r = |x − z|, we have the asymptotic expansion Φz =

1
2π ln(1

r ) + i
4 −

1
2π ln(k2 )− C

2π +O(r2ln(1
r )) as r goes to 0 . We concentrate on the leading

term ∫
Cz\D

|Φz|2 ≈
∫
Cz

1

(2π)2
ln(

1

r
)2rdrdθ

≈ 2θ∗

4(2π)2
(R2

2(2 ln2(R2)− 2 ln(R2) + 1)−R2
1(2 ln2(R1)− 2 ln(R1) + 1))

∫
Cz

|∇Φz|2 ≈
∫
Cz

1

(2π)2r
drdθ +O() =

2θ∗

(2π)2
(ln(R2)− ln(R1))

∫
Cz

|∇2Φz|2 ≈
∫
Cz

1

(2π)2r3
drdθ +O() =

2θ∗

(2π)2
(

1

R2
1

− 1

R2
2

)

• in 3D Φz = exp(ikr)
r where r = |x− z|, the formulas below become∫

Cz

|Φz|2 =

∫
Cz

1

r2
r2sin(θ)drdθdψ = (cos(θ1)− cos(θ2))∆ψ(R2 −R1)

∫
Cz

|∇Φz|2 =(cos(θ1)− cos(θ2))∆ψ

∫
Cz

| ike
ikr

r
− eikr

r2
|2r2dr

=(cos(θ1)− cos(θ2))∆ψ

∫
Cz

(
1

r2
+ k2)dr

=(cos(θ1)− cos(θ2))∆ψ(
1

R2
1

− 1

R2
2

+ k2R2 − k2R1)

∫
Cz

|∇2Φz|2 =(cos(θ1)− cos(θ2))∆ψ

∫
Cz

|−2ikeikr

r2
+ 2

eikr

r3
− k2eikr

r
|2r2dr

=(cos(θ1)− cos(θ2))∆ψ

∫
Cz

(
4

r4
+ k4)dr

=(cos(θ1)− cos(θ2))∆ψ(
4

R3
1

− 4

R3
1

+ k4R2 − k4R1)

If we keep only the leading terms and apply those formula to (3.35) we obtain :

1

εd
≤ C2‖T‖2‖vz‖2 ≤ C2 ‖T‖2

µ
|(Tv, v)| (3.36)
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where d = 2 or 3 is the dimension. Therefore we saw that our method will at best (when the
regularization parameter α and the noise level δ go to zero) give an indicator function with a
known behaviour near the boundary (unfortunately not step like).
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The analysis in chapters 2 and 3 extensively rely on the symmetric factorization of the farfield
operator F in order to conclude on both the characterization of the domain shape and also on
the strong convergence of Herglotz waves to the solutions of ITP. For the latter we even require a
uniform convexity for the middle operator T . In this chapiter we will concentrate on extending
the analysis to the cases of non symmetric factorizations of F such as the one that appears
for limited aperture measurements, that we take as our model problem in section 4.1. Before
adressing the case of non symmetric factorizations, we shall first propose in section 4.2.1 a new
setting for the GLSM for which the strong convergence of Herglotz waves to the solutions of
ITP is guaranteed without the assumption of uniform convexity. Our new framework is valid
for the case B = F . In section 4.2.2 we extend the new setting of GLSM to non symmetric
factorizations. In section 4.3 we give a new proof of the coercivity of the middle operator T
under a much weaker assumption on the index of refraction n: we basically require that n does
not change sign only in a neighborhood of the boundary of the inhomogeneity. We then discuss
the model of nearfield measurement which is an other type of setting for the inverse problem
where non symmetric factorizations occur. Finally we give some numerical results for limited
aperture data and introduce a second order scheme to optimize the GLSM functional.

As mentioned in the general introduction, we tried to make each chapter selfcontained and
therefore some repetitions for notation and setting are observed at the introductory sections
(and sometimes in the proofs).

4.1 A model problem for limited aperture data

Similarly to previous chapters for a wave number k > 0, the total field solve the following scalar
wave equation:

∆u+ k2nu = 0 in Rd

with d = 2 or 3 and with n ∈ L∞(Rd) denoting the refractive index such that the support of
n − 1 is included inside D with D a bounded domain with Lipschitz boundary and connected
complement and such that =(n) ≥ 0.

We are interested in the cases where the total field is generated by plane waves, ui(θ, x) :=

eikx·θ with x ∈ Rd and θ ∈ Γs (Γs ⊂ Sd−1 the unit sphere) and we denote by us the scattered
field defined by

us(θ, ·) = u− ui(θ, ·) in Rd,

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r→∞

∫
|x|=r

∣∣∣∣∂us∂r − ikus
∣∣∣∣2 ds = 0.

Our data for the inverse problem will be formed by noisy measurements of the so called farfield
pattern u∞(θ, x̂) defined by

us(θ, x) =
eik|x|

|x|(d−1)/2
(u∞(θ, x̂) +O(1/|x|))
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as |x| → ∞ for all (θ, x̂) ∈ Γs × Γm, where Γm is a subset of Sd−1 possibly different from Γs.
The goal is to be able to reconstruct D from these measurements (without knowing n). We shall
extend the results of chapters 2 and 3 to the case of farfield operators F : L2(Γs) → L2(Γm),
defined by

Fg(x̂) :=

∫
Γs

u∞(θ, x̂)g(θ)ds(θ), x̂ ∈ Γm

where Γs 6= Γm. Let us define, for ψ ∈ L2(D), the unique function w ∈ H1
loc(Rd) satisfying

∆w + nk2w = −k2(n− 1)ψ in Rd,

lim
r→∞

∫
|x|=r

∣∣∂w
∂r − ikw

∣∣2 ds = 0.
(4.1)

By linearity of the forward scattering problem, Fg is nothing but the farfield pattern of w
solution of (4.1) with ψ = vg in D, where

vg(x) :=

∫
Γs

eikx·θg(θ)ds(θ), g ∈ L2(Γs), x ∈ Rd.

Now consider the (compact) operator Hs : L2(Γs)→ L2(D) defined by

Hsg := vg|D, (4.2)

and the (compact) operator Gm : R(Hs) ⊂ L2(D)→ L2(Γm) defined by

Gmψ := w∞|Γm (4.3)

where w∞ is the farfield of w ∈ H1
loc(Rd) solution of (4.1) and where R(Hs) denotes the closure

of the range of Hs in L2(D). Then clearly

F = GmHs

One can still decompose F to get the second factorisation of the farfield operator. More precisely,
for the case under consideration, since the farfield pattern of w has the following expression ([15])

w∞(x̂) = −
∫
D
e−iky.x̂(1− n)k2(ψ(y) + w(y))dy,

one simply has Gm = H∗mTψ, where H∗m : L2(D)→ L2(Γm) is the adjoint of Hm (defined as Hs

but on Γm) given by

H∗mϕ(x̂) :=

∫
D
e−iky.x̂ϕ(y)dy, ϕ ∈ L2(D), x̂ ∈ Γm,

and T : L2(D)→ L2(D) is defined by

Tψ := −k2(1− n)(ψ + w), (4.4)

with w ∈ H1
loc(Rd) being the solution of (4.1). Finally we get

F = H∗mTHs, (4.5)

This factorization is not "symmetric" in the sense that H∗m 6= H∗s in general. This is the main
challenge in the case of limited aperture.
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Remark 6. First we should stress that T does not depend on the aperture. This middle operator
does even not depend on the type of sources and measurements that are used (this will be briefly
discussed in Section 4.4). Second, when Γs = Γm we clearly have Hm = Hs and then we end
up with a setting similar to the full aperture case, F = H∗sTHs. The GLSM as formulated in
chapter 2 then applies to this special case that correspond in physical experiments to sources and
receivers on symmetric opposite sides of the target (as shown in figure 4.1).

D

ui

Figure 4.1: The arrow goes from the sources to the measurement. In this case the factorization
is symmetric.

4.2 Theoretical foundation of the GLSM for limited aperture

In this section we shall give the theoretical foundation of the extension of the Generalized Linear
Sampling Method to non symmetric factorizations. We will adopt an abstract framework as we
want to use the results for other cases such as in Section 4.4 and in Section 6.4. In Section
4.1 we saw that the factorization of the farfield operator in the limited aperture problem lacks
of symmetry. This symmetry is of primary importance in the GLSM framework of Chapter
2. It seems to us that it is not possible to restore this symmetry by carefully designing an
operator B as it appears in the theory for GLSM. This approach has been adopted in the case
of known heterogeneous background and near field data as in Section 4.4 (see also [33] and [19]
for the case of the Factorization method). For a general setting we will only rely on the choice
B = F (i.e. Γs = Γm). We already saw that in this setting one cannot guarantee the strong
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convergence of Herglotz waves to the solution of the interior transmission problem (when the
sampling point is inside D). This is why we shall first modify the setting of GLSM so that one
obtain this convergence result even in the case B = F (the strong convergence result which is
essential for Chapter 3). The idea is to add an extra (carefully chosen) penalty term that is
inspired from difficulties encountered in establishing the overmentioned convergence result in
the classical setting of GLSM.

4.2.1 A new formulation of the GLSM for symmetric factorizations

Analysis of the noiseless case

We denote as usual by X and Y two (complex) reflexive Banach spaces with duals X∗ and Y ∗

respectively and shall denote by (, ) a duality product that refers to (X∗, X) or (Y ∗, Y ) duality.
We consider the linear operator F : X → X∗. Moreover we shall assume that the following
factorization holds

F = H∗TH (4.6)

where the operators H : X → Y and T : Y → Y ∗ are bounded. We denote by G : R(H) ⊂ Y →
X∗ the linear operator H∗T restricted to R(H).

Let α > 0 be a given parameter and φ ∈ X∗.
The new GLSM (for noise free measurements) is based on considering minimizing sequences

of the functional Jα(φ; ·) : X → R

Jα(φ; g) := α|(Fg, g)|+ α1−η|(Fg − φ, g)|+ ‖Fg − φ‖2 ∀g ∈ X, (4.7)

where η ∈ ]0, 1] is a fixed parameter.
Following the lines of the proofs in Chapter 2 we first observe that

jα(φ) := inf
g∈X

Jα(φ; g)→ 0 as α→ 0. (4.8)

for all φ ∈ X∗ if one assumes that F has dense range. In that case, for a given ε > 0 there exists
gε such that ‖Fgε − φ‖ < ε

2 . Then one can choose α0(ε) such for all α ≤ α0(ε), α|(Fgε, gε)| +
α1−η|(Fg − φ, g)| < ε

2 so that jα(φ) < ε, which proves (4.8).
One then can prove the following characterization of the range of G in terms of F (compare

with Theorem 3 of Chapter 2).

Theorem 16. We assume the following:

• H is compact, G is injective and F = H∗TH is injective with dense range.

• T satisfies the coercivity property

|(Th, h)| > µ ‖h‖2 ∀h ∈ R(H), (4.9)

where µ > 0 is a constant independent of h. Consider for α > 0 and φ ∈ X∗, gα ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α) (4.10)

where p(α)
α is bounded with respect to α. Then
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• φ ∈ R(G) implies lim sup
α→0

|(Fgα, gα)| <∞,

• φ /∈ R(G) implies lim inf
α→0

|(Fgα, gα)| =∞.

In the case φ = Gϕ, the sequence Hgα converges strongly to ϕ in Y as α goes to zero.

Proof. Assume that φ ∈ R(G) and let ϕ ∈ R(H) such that Gϕ = φ. For α > 0 one can choose
∃g0 ∈ X such that ‖Hg0 − ϕ‖2 < α2. Then by continuity of G, ‖Fg0 − φ‖2 < ‖G‖2α2. On the
other hand the continuity of T implies

|(Fg0, g0)| = |(THg0, Hg0)| ≤ ‖T‖ ‖Hg0‖2 < 2 ‖T‖ (α2 + ‖ϕ‖2)

and

|(Fg0 − φ, g0)| = |(T (Hg0 − ϕ), Hg0)| ≤ ‖T‖ ‖Hg0 − ϕ‖ ‖Hg0‖ < 2 ‖T‖α(α+ ‖ϕ‖).

From the definitions of jα(φ) and gα we have

α|(Fg0, g0)|+ α1−η|(Fg0 − φ, g0)|+ ‖Fg0 − φ‖2 > jα(φ) > Jα(φ, gα)− p(α).

We then deduce from the definition of Jα the fact that η ∈ ]0, 1] and previous inequalities

α|(Fgα, gα)| ≤ Jα(φ, gα) ≤ p(α) + 2α ‖T‖ (α2 + ‖ϕ‖2) +α2‖G‖2 + 2 ‖T‖α2−η(α+ ‖ϕ‖). (4.11)

Therefore lim sup
α→0

|(Fgα, gα)| <∞.

The coercivity of T implies that ‖Hgα‖2 is bounded. From (4.8) and (4.10) and the injectivity
of G we infer that the only possible weak limit of (any subsequence of) Hgα is ϕ. Thus the
whole sequence Hgα weakly converges to ϕ. On the other hand we have that :

‖Hgα − ϕ‖2 ≤ |(T (Hgα − ϕ), Hgα − ϕ)|
≤ |(T (Hgα − ϕ), Hgα)|+ |(T (Hgα − ϕ), ϕ)|
≤ |(Fgα − φ, gα)|+ |(T (Hgα − ϕ), ϕ)|

The last term goes to zero due to the weak convergence. The first term goes to zero since
equation (4.11) implies that |(Fgα − φ, gα)| ≤ αη. Therefore we conclude that Hgα strongly
converges to ϕ.

We now consider the case φ /∈ R(G). Assume that lim inf
α→0

|(Fgα, gα)| <∞. Then, (for some

extracted subsequence gα) |(Fgα, gα)| < A for some constant A independent of α → 0. The
coercivity of T implies that ‖Hgα‖ is also bounded and therefore one can assume that, up to
an extracted subsequence, Hgα weakly converges to some ϕ in Y . In fact ϕ ∈ R(H) since the
latter is a convex set. Since G is compact, we obtain that GHgα strongly converges to Gϕ
as α → 0. On the other hand, (4.8) and the definition of Jα(φ, gα) imply that ‖Fgα − φ‖ ≤
Jα(φ, gα) ≤ jα(φ) + Cα → 0 as α → 0. Since Fgα = GHgα we obtain that Gϕ = φ which is a
contradiction. We then conclude that if φ /∈ R(G) then lim inf

α→0
|(Fgα, gα)| =∞. The latter also

implies lim sup
α→0

|(Fgα, gα)| =∞.
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Remark 7. The extension proposed in Theorem 16 requires indeed less assumptions than the
one proposed in chapter 3. However the result from 3 is still interesting for practical applications
(when applicable) since it uses a convex cost functional which is easier to minimize numerically.

Analysis of the noisy case

Let F δ : X → X∗ be the operator associated with noisy farfield measurements such that∥∥∥F δ − F∥∥∥ ≤ δ‖F‖
for some δ > 0. We assume that the operators F δ and F are compact.

Again let η ∈]0, 1] be a fixed parameter. We define for α > 0 and φ ∈ X∗ the regularized
functional

Jδα(φ; g) := α|
(
F δg, g

)
|+α1−η|

(
F δg − φ, g

)
|+α1−ηδ‖F‖ ‖g‖2 +

∥∥∥F δg − φ∥∥∥2
∀ g ∈ X. (4.12)

As indicated in Chapter 2, this functional has a minimizer

gδα = arg min
g∈X

Jδα(φ; g) (4.13)

and we also have
lim
α→0

lim sup
δ→0

Jδα(φ; gδα) = 0. (4.14)

Theorem 17. Assume that the first two assumptions of Theorem 16 hold true. Let gδα be the
minimizer of Jδα(φ; ·) (defined by (4.12)) for α > 0, δ > 0 and φ ∈ X∗.

Then

• φ ∈ R(G) implies lim sup
α→0

lim sup
δ→0

(∣∣(F δgδα, gδα)∣∣+ δα−η‖F‖
∥∥gδα∥∥2

)
<∞.

• φ /∈ R(G) implies lim inf
α→0

lim inf
δ→0

(∣∣(F δgδα, gδα)∣∣+ δα−η‖F‖
∥∥gδα∥∥2

)
=∞.

Moreover, when φ ∈ R(G) we also have

lim sup
α→0

lim sup
δ→0

δ‖F δ‖
∥∥∥gδα∥∥∥2

= 0.

If Gϕ = φ, then there exists δ0(α) such that for all δ(α) ≤ δ0(α), Hgδ(α)
α converges strongly to

ϕ as α goes to zero.

Proof. The proof follows the lines of the proof of Theorem 16.
Assume that φ = G(ϕ) for some ϕ ∈ R(H). We consider g0 (that depends on α but is

independent from δ) such that ‖Hg0 − ϕ‖2 < α2. Choosing δ sufficiently small such that

(αδ‖F‖+ α1−ηδ‖F‖+ α1−ηδ‖F‖+ δ2‖F‖2) ‖g0‖2 ≤ α

we get
Jδα(φ; gδα) ≤ Jδα(φ; g0) ≤ Jα(φ; g0) + α. (4.15)
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Consequently

α

(
|
(
F δgδα, g

δ
α

)
|+ α−ηδ‖F δ‖

∥∥∥gδα∥∥∥2
)
≤ Jδα(φ; gδα) ≤ Cα,

which proves lim sup
α→0

lim sup
δ→0

(∣∣(F δgδα, gδα)∣∣+ α−ηδ‖F δ‖
∥∥gδα∥∥2

)
<∞. We also have, as a conse-

quence of the inequalities above, that

δ‖F‖
∥∥∥gδα∥∥∥2

≤ Cαη,

which proves lim sup
α→0

lim sup
δ→0

δ‖F δ‖
∥∥gδα∥∥2

= 0. We also have

|
(
F δgδα − φ, gδα

)
| ≤ Cαη

which proves, with the estimate on δ‖F‖
∥∥gδα∥∥2 given above above,

lim sup
α→0

lim sup
δ→0

|
(
Fgδα − φ, gδα

)
| = 0.

We then conclude as in the proof of Theorem 16 that Hgδ(α)
α converges strongly to ϕ as α

goes to zero.
Now assume that φ /∈ R(G) and lim inf

α→0
lim inf
δ→0

(∣∣(F δgδα, gδα)∣∣+ α−ηδ‖F‖
∥∥gδα∥∥2

)
is finite.

The coercivity of T and α < 1 implies that

µ
∥∥∥Hgδα(δ)

∥∥∥2
≤ |
(
Fgδα, g

δ
α

)
| ≤ |

(
F δgδα, g

δ
α

)
|+ α−ηδ‖F‖

∥∥∥gδα∥∥∥2
.

Therefore lim inf
α→0

lim inf
δ→0

∥∥Hgδα∥∥2 is also finite. This means the existence of a subsequence

(α′, δ(α′)) such that α′ → 0 and δ(α′) → 0 as α′ → 0 and
∥∥∥Hgδ(α′)α′

∥∥∥2
is bounded indepen-

dently from α′. One can also choose δ(α′) such that δ(α′) ≤ α′1−η.
On the other hand Equation (4.14) indicates that one can choose this subsequence such

that J
δ(α′)
α′ (g

δ(α′)
α′ ) → 0 as α′ → 0 and therefore

∥∥∥F δgδ(α′)α′ − φ
∥∥∥ → 0 as α′ → 0 and

α′1−ηδ(α′)‖gδ(α
′)

α′ ‖
2 → 0 as α′ → 0. By a triangular inequality and δ(α′) ≤ α′1−η we then

deduce that
∥∥∥Fgδ(α′)α′ − φ

∥∥∥→ 0 as α′ → 0. The compactness of G implies that a subsequence of

GHg
δ(α′)
α′ converges for some Gϕ in X∗. The uniqueness of the limit implies that Gϕ = φ which

is a contradiction.

4.2.2 A formulation for non symmetric factorizations

In this section we shall extend the theoretical foundations of the Generalized Linear Sampling
Method to the case of non symmetric factorisation. In this case the general framework is given
by the following assumptions. We shall denote by X1, X2 and Y three (complex) reflexive
Banach spaces with duals X∗1 , X∗2 and Y ∗ respectively and shall denote by (, ) a duality product
that refers to (X∗1 , X1), (X∗2 , X2) or (Y ∗, Y ) duality. We also set X := X1 ×X2. We consider
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a linear operator F : X2 → X∗1 that is assumed to be bounded. Moreover we shall assume that
the following factorizations hold

F = U∗TV (4.16)

where the operators V : X2 → Y , T : Y → Y ∗ and U : X1 → Y are bounded. We set
G : RY (V ) ⊂ Y → X∗1 the restriction of U∗T to where RY (V ) where RY (V ) is the closure of
the range of V in Y (and similar notation for U).

Moreover we assume the existence of a space Ŷ such that U and V can be extended to
bounded operators V : X2 → Ŷ and U : X1 → Ŷ such that

‖V g2 + Ug1‖Y ≤ ‖V g2 + Ug1‖Ŷ , ∀(g1, g2) ∈ X. (4.17)

We finally assume that

RY (V ) = RY (U) and RŶ (V ) = RŶ (U). (4.18)

Typically one has X2 = L2(Γs), X1 = L2(Γm), Y = L2(D), Ŷ = L2(Σ) with D ⊂ Σ (or L2

replaced with other Sobolev spaces). For the purpose of the inverse problem of determining D,
the domain Σ is assumed to be known and therefore the operators V : X2 → Ŷ and U : X1 → Ŷ

are also known a priori.

Analysis of the noiseless case

Let α > 0 be a given parameter and φ ∈ X∗1 . We redefine the functional Jα as Jα(φ; ·) : X =

X1 ×X2 → R

Jα(φ; g) := α|(Fg2, g1)|+ α1−η ‖V g2 − Ug1‖2Ŷ + α1−η|(Fg2 − φ, g1)|+ ‖Fg2 − φ‖2 (4.19)

for all g = (g1, g2) ∈ X where η ∈ ]0, 1[ is again a fixed parameter. We also define

jα(φ) := inf
g∈X

Jα(φ; g). (4.20)

Then again the first simple observation is the following.

Lemma 5. Assume that F has dense range. Then for all φ ∈ X∗1 , jα(φ)→ 0 as α→ 0.

Proof. Since F has dense range, for a given ε > 0 there exists gε2 such that

‖Fgε2 − φ‖ ≤ ε/3. (4.21)

Using (4.18) and (4.17) we can choose gε1 such that:

‖V gε2 − Ugε1‖
2
Y < ‖V gε2 − Ugε1‖

2
Ŷ
< ε/3 (4.22)

One then can choose α small enough such that

α|(Fgε2, gε1)|+ α1−η|(Fgε2 − φ, gε1)| ≤ ε/3. (4.23)

Together with equations (4.23) and (4.22) the latter inequality implies

jα(φ) ≤ Jα(gε, φ) ≤ ε

for sufficiently small α where gε = (gε1, g
ε
2).



66 Chapter 4. GLSM for non-symmetric factorization

The central theorem for non symmetric factorizations of F is the following characterization
of the range of G in terms of F and U and V as operators with values in Ŷ .

Theorem 18. We assume that

• G : RY (V ) ⊂ Y → X∗1 is injective and that F has dense range.

• T satisfies the coercivity property

|(Tϕ, ϕ)| > µ ‖ϕ‖2 ∀ϕ ∈ R(U) = R(V ), (4.24)

where µ > 0 is a constant independent of ϕ. Let p(α) be a given function such that p(α)
α = O(1)

and consider for α > 0 and φ ∈ X∗1 , gα = (gα1 , g
α
2 ) ∈ X such that

Jα(φ; gα) ≤ jα(φ) + p(α). (4.25)

Then φ ∈ R(G) implies lim sup
α→0

|(Fgα2 , gα1 )1| + α−η ‖V gα2 − Ugα1 ‖
2
Ŷ
< ∞ and φ /∈ R(G) implies

lim inf
α→0

|(Fgα2 , gα1 )1|+α−η ‖V gα2 − Ugα1 ‖
2
Ŷ

=∞. In the case φ = Gϕ, the two sequences V gα2 and
Ugα1 converge strongly to ϕ in Y .

Proof. The proof follows again roughly the same steps and ideas as the proof of similar results for
the case of symmetric factorizations. We start with the case φ ∈ R(G). We consider ϕ ∈ RY (V )

such that Gϕ = φ and hα2 ∈ X2 such that ‖V hα2 − ϕ‖
2
Y ≤ α2. According to (4.18) and (4.17),

there exists hα1 ∈ X1 such that:

‖V hα2 − Uhα1 ‖
2
Y < ‖V hα2 − Uhα1 ‖

2
Ŷ
< αη. (4.26)

We also have
|(Fhα2 , hα1 )1| =|(TV hα2 , Uhα1 )|

≤|(TV hα2 , V hα2 )|+ |(TV hα2 , Uhα1 − V hα2 )|
≤ ‖T‖ ‖V hα2 ‖

2
Y + ‖T‖ ‖V hα2 ‖Y

√
αη

(4.27)

and

|(Fhα2 − φ, hα1 )| = |(T (V hα2 − ϕ), Uhα1 )| ≤ ‖T‖ ‖V hα2 − ϕ‖ ‖Uhα1 ‖ < 2 ‖T‖α(α+ ‖ϕ‖+
√
αη).

The two previous inequalities and the definitions gα and jα(φ) lead to

α(|(Fgα2 , gα1 )1|+ α−η ‖V gα2 − Ugα1 ‖
2
Ŷ

+ α−η|(Fhα2 − φ, hα1 )|) ≤ jα(φ) + p(α) ≤ Cα,

where C is bounded independently of α. This implies the first part of the Theorem. We also
have

‖V gα2 − Ugα1 ‖
2
Ŷ
≤ Cαη (4.28)

and
|(Fgα2 − φ, gα1 )| ≤ Cαη. (4.29)

We shall prove now the convergence of V gα2 to ϕ when φ = Gϕ for ϕ ∈ Y . The coercivity of T
implies

µ ‖V gα2 ‖
2
Y ≤ |(TV gα2 , V gα2 )| ≤ |(TV gα2 , V gα2 ) + (TV gα2 , Ug

α
1 − V gα2 )|+ |(TV gα2 , Ugα1 − V gα2 )|
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On the one hand

|(TV gα2 , V gα2 ) + (TV gα2 , Ug
α
1 − V gα2 )| = |(Fgα2 , gα1 )1| ≤ C

and on the other hand

|(TV gα2 , Ugα1 − V gα2 )| ≤ ‖T‖ ‖V gα2 ‖Y ‖V g
α
2 − Ugα1 ‖Ŷ ≤ ‖T‖Cα

η ‖V gα2 ‖Y

These inequalities show that ‖V gα2 ‖Y is bounded. Second, from Lemma 5 and (4.25) and the
injectivity of G we infer that the only possible weak limit of (any subsequence of) V gα2 in Y is
ϕ. Thus the whole sequence V gα2 weakly converges to ϕ in Y . Following the idea of proof of
Theorem 16 we use the formula:

|(T (V gα2 − ϕ), V gα2 − ϕ)| ≤ |(T (V gα2 − ϕ), ϕ)|+ |(T (V gα2 − ϕ), V gα2 − Ugα1 )|︸ ︷︷ ︸
≥‖T‖(‖V gα2 ‖+‖ϕ‖)‖V gα2−Ugα1 ‖Y

+|(Fgα2 − φ, gα1 )|

The first term on the right hand side goes to zero thanks to the the weak convergence, the
second terms goes to zero thanks to (4.28) and the third term goes to zero thanks to (4.29). The
coercivity of T implies that V gα2 converges strongly to ϕ in Y . The strong convergence of Ugα1
to ϕ in Y is a direct consequence of (4.28).

We now consider the case φ /∈ R(G) and assume that lim inf
α→0

|(Fgα2 , gα1 )1| +

α−η ‖V gα2 − Ugα1 ‖
2
Ŷ

< ∞. Then, (for some extracted subsequence gα) |(Fgα2 , gα1 )1| +

α−η ‖V gα2 − Ugα1 ‖
2
Ŷ
≤ A for some A independent of α as α goes to 0. Using the same rea-

soning as in the first part of the theorem this implies that ‖V gα2 ‖Y is bounded. We then obtain
a contradiction exactly in the same way as in the proof of the second part of Theorem 16.

Analysis of the case with noise

We now consider the case of noisy data and/or non exact models. The noise in the data is
modeled with an operator F δ such that∥∥∥F δ − F∥∥∥ ≤ δ ‖F‖
for some δ > 0. We can also assume error in the "model" by considering perturbed operators
U δ, V δ and right hand sides φδ such that∥∥∥U δ − U∥∥∥ ≤ δ ‖U‖ , ∥∥∥V δ − V

∥∥∥ ≤ δ ‖V ‖ and
∥∥∥φδ − φ∥∥∥ ≤ δ ‖φ‖ .

We introduce the counterpart of (4.19) in the noisy case (for a constant η ∈]0, 1[) :

Jδα(φ; g) := α|
(
F δg2, g1

)
1
|+ δα1−η ‖F‖ (‖g1‖2X1

+ ‖g2‖2X2
) + α1−η|

(
F δg2 − φ, g1

)
1
|

+ α1−η
∥∥∥V δg2 − U δg1

∥∥∥2

Ŷ
+
∥∥∥F δg2 − φδ

∥∥∥2

X∗1
∀g = (g1, g2) ∈ X.

(4.30)

One can first remark that
Jδα(φ; g) ≤ Jα(φ; g) + n(δ, α, g), (4.31)
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where
n(δ, α, g) =δ(α+ α1−η) ‖F‖ (‖g1‖2X1

+ ‖g2‖2X2
) + δ2(‖F‖ ‖g2‖2X2

+ α1−η(‖U‖2 ‖g1‖2X1
+ ‖V ‖2 ‖g2‖2X2

) + ‖φ‖2).
(4.32)

Lemma 6. For all α, δ > 0 the functional Jδα(φ; ·) has a minimizer gα,δ. In addition we have
that:

lim
α→0

lim
δ→0

Jδα(φ, gα,δ) = lim
δ→0

lim sup
α→0

Jδα(φ, gα,δ) = 0.

Proof. The existence of a minimizer is clear: for a fixed α > 0, δ > 0 and φ, any minimizing
sequence gn of Jδα(φ; ·) is bounded and therefore there exists a weakly convergent subsequence
to some gα,δ. The lower semi-continuity of the norm with respect to the weak convergence and
the compactness property of the operators then imply:

Jδα(φ, gα,δ) ≤ lim inf
n→+∞

Jδα(φ, gn) ≤ inf
g
Jδα(φ, g)

which proves that gα,δ is a minimizer of Jδα(φ; ·). Equation (4.31) together with a choice of δ
such that, for any ε > 0:

n(δ, α, gε) ≤ ε

where gε is the same as introduced in the proof of Lemma 6, we finally get that:

Jδα(φ, gα,δ) ≤ 2ε.

We can then state the theorem that characterise the range of G in the case of noisy data (as
the noise goes to 0).

Theorem 19. Let gα,δ be the minimizer of Jδα(·, φ) (defined by (4.30)), we denote

R(gα,δ, α, δ) = |
(
F δgα,δ2 , gα,δ1

)
1
|+ δα−η ‖F‖ (

∥∥∥gα,δ1

∥∥∥2

X1

+
∥∥∥gα,δ2

∥∥∥2

X2

) + α−η
∥∥∥V δg2 − U δg1

∥∥∥2

Ŷ

then

• φ ∈ R(G) implies lim sup
α→0

lim sup
δ→0

R(gα,δ, α, δ) <∞

• φ /∈ R(G) implies lim inf
α→0

lim inf
δ→0

R(gα,δ, α, δ) =∞

Moreover, when φ ∈ R(G), we also have

lim sup
α→0

lim sup
δ→0

δ‖F‖(
∥∥∥gα,δ1

∥∥∥2

X1

+
∥∥∥gα,δ2

∥∥∥2

X2

) = 0. (4.33)

If Gϕ = φ, then there exists δ0(α) such that for all δ(α) ≤ δ0(α), V gα,δ(α)
2 and Ugα,δ(α)

1

converge strongly to ϕ as α goes to zero.
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Proof. The case φ ∈ R(G): We consider the same hα as in the first part of the proof of Theorem
18 (that only depends on α). If we choose δ(α) such that :

n(δ(α), α, hα) ≤ α

then we get
Jδα(gα,δ, φ) ≤ Cα+ α.

Consequently we have
R(gα,δ, α, δ) ≤ C

which proves the first assertion of the theorem. We also have, as a consequence of the inequalities
above, that

δ‖F‖(
∥∥∥gα,δ1

∥∥∥2

X1

+
∥∥∥gα,δ2

∥∥∥2

X2

) ≤ Cαη

which proves lim sup
α→0

lim sup
δ→0

δ‖F‖(
∥∥∥gα,δ1

∥∥∥2

X1

+
∥∥∥gα,δ2

∥∥∥2

X2

) = 0. For the same reason if η > 0 we

have lim sup
α→0

lim sup
δ→0

∥∥V δg2 − U δg1

∥∥2

Ŷ
= 0.

Now assume that the last assumptions of Theorem 18 hold true. We recall that

Jδα(φ; g) ≤ Jα(φ, g) + n(δ, α, g).

If we use the sequence hα from Theorem 18, and choose δ0(α) small enough such that,
lim sup
α→0

n(δ0(α), α, hα) = 0.

Then, from the convergence properties of the sequences V gα,δ2 and Ugα,δ1 , we clearly obtain
for δ(α) ≤ δ0(α) that the quantity

(
TV gα,δ2 , V gα,δ2

)
is bounded. To conclude as in the proof

of Theorem 18 that V gα,δ2 and Ugα,δ1 converges strongly to ϕ as α goes to zero we just need to
remark that

‖V g2 − Ug1‖2Ŷ ≤
∥∥∥V δg2 − U δg1

∥∥∥2

Ŷ
+ δ2 ‖U‖ ‖g1‖2X1

+ δ2 ‖V ‖ ‖g2‖2X2
→ 0

and
|(Fg2 − φ, g1)1| ≤ |

(
F δg2 − φ, g1

)
1
|+ δ‖F‖(‖g1‖2X1

+ ‖g2‖2X2
)→ 0.

The case φ /∈ R(G): Assume that lim inf
α→0

lim inf
δ→0

R(gα,δ, α, δ) is finite. We then have :

|
(
Fgα,δ2 , gα,δ1

)
1
| ≤ |

(
F δgα,δ2 , gα,δ1

)
1
|+ δ ‖F‖

∥∥∥gα,δ1

∥∥∥
X1

∥∥∥gα,δ2

∥∥∥
X2

≤ |
(
F δgα,δ2 , gα,δ1

)
1
|+ δ

2
‖F‖

∥∥∥gα,δ1

∥∥∥2

X1

+
δ

2
‖F‖

∥∥∥gα,δ2

∥∥∥2

X2

.
(4.34)

The assumption also implies that
∥∥∥V gα,δ2 − Ugα,δ1

∥∥∥2

Ŷ
staya bounded, meaning that, similarly to

the second part of the proof of Theorem 18, that
∥∥∥V gα,δ2

∥∥∥2

Y
stays bounded. This leads to the

same contradiction as in the case of noise free measurements.
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4.3 Application to inverse scattering

The purpose of this section is to apply the result of section 4.2 to the case described in section
4.1. This will be possible if D ⊂ Σ where Σ is some bounded known domain. We then define
Ŷ from section 4.2 to be L2(Σ) and set V = Hs and U = Hm. We shall also revisit Theorem
6 and significanlty weaken the required conditions on the coercivity of T , which turned out to
finally be the same as the one under which the interior transmission problem is well posed [52].

4.3.1 Preliminary results

As in Chapter 2 the basis of the GLSM is the characterization of the obstacle D in term of
the range of Gm. This characterization is based on the solvability of the following interior
transmission problem for u, v ∈ L2(D) such that u− v ∈ H2(D),

∆u+ k2nu = 0 in D,
∆v + k2v = 0 in D,
(u− v) = f on ∂D,
∂
∂ν (u− v) = g on ∂D,

(4.35)

for a given f ∈ H
1
2 (∂D) and g ∈ H−

1
2 (∂D). Similarly to Chapter 2 we should make the following

assumption

Hypothesis 5. We assume that k2 ∈ R+ is such that for all f ∈ H
1
2 (∂D) and g ∈ H−

1
2 (∂D)

problem (4.35) has a unique solution in (u, v) ∈ L2(D)× L2(D) and u− v ∈ H2(D).

We recall that it is known that if n−1 positive definite or negative definite in a neighborhood
of ∂D, Hypothesis 5 is verified for all k ∈ R except a countable set without finite accumulation
point.
Defining

φz(x̂) := e−ikx̂·z for x̂ ∈ Γm

we have:

Theorem 20. Under Hypothesis 5, φz ∈ R(Gm) (for Gm defined in (4.3)) if and only if z ∈ D.

The proof of this theorem is rather straightforward using the result of Lemma 7 (see [40])
and the fact that φz is the farfield of Φ(·, z), the fundamental solution of the Helmholtz equation
satisfying the Sommerfeld radiation condition.

Lemma 7. R(Hs) = {v ∈ L2(D) s.t. ∆v + k2v = 0 in D}

In order to apply the theory developped in Section 4.2 it remains to prove that T is coercive
which will be done in the following under weaker assumptions than in Theorem 6. Let C > 0

be a given constant (independent of α) and consider α > 0 and z ∈ Rd, gz,α = (gz,α1 , gz,α2 ) ∈
L2(Γm)× L2(Γs) such that :

Jα(φz, g
z,α) = α|(Fgz,α2 , gz,α1 )1|+ α1−η ‖Hsg

z,α
2 −Hmg

z,α
1 ‖

2
L2(Σ)

+α1−η|(Fgz,α2 − φz, gz,α1 )1|+ ‖Fg
z,α
2 − φz‖2

≤ jα(φz) + Cα,
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where η ∈]0, 1[ and
jα(φz) = inf

g∈L2(Γm)×L2(Γs)
Jα(φz, g)

.
Combining the results of Theorems 18 and 20 we obtain the following theorem:

Theorem 21. Assume that Hypothesis 5 holds and that T verifies

|(Th, h)| ≥ µ ‖h‖L2(D)

for h ∈ R(Hs). Then z ∈ D if and only if lim sup
α→0

|(Fgz,α2 , gz,α1 )1| +

α−η ‖Hsg
z,α
2 −Hmg

z,α
1 ‖

2
L2(Σ) <∞.

Moreover, if z ∈ D then the sequence of Herglotz wave functions associated to gz,α converges
strongly to the solution v of (4.35) with (f, g) = (Φz,

∂Φz
∂ν ) as α goes to zero.

For applications, it is rather important to rather use the criterion provided in Theorem 19.
Consider F δ : L2(Γs)→ L2(Γm) a compact operator such that:∥∥∥F δ − F∥∥∥ ≤ δ.

Then consider for α > 0 and φ ∈ L2(Γm) the functional Jδα(φ, ·) : L2(Γs)× L2(Γm)→ R,

Jδα(φz, g) = α|
(
F δg2, g1

)
1
|+ α1−η ‖Hsg2 −Hmg1‖2L2(Σ) + α1−ηδ ‖g‖2

+α1−η|
(
F δg2 − φz, g1

)
1
|+
∥∥∥F δg2 − φz

∥∥∥2

where η ∈]0, 1[. Then as a direct consequences of Theorem 19 we obtain the following charac-
terization of D,

Theorem 22. Assume that the hypothesis of Theorem 21 hold true. For z ∈ Rd denote by gz,α,δ

the minimizer of Jδα(φ, ·) over L2(Γs)× L2(Γm). Then z ∈ D if and only if

lim sup
α→0

lim sup
δ→0

|
(
F δgz,α,δ2 , gz,α,δ1

)
1
|+ α−η

∥∥∥Hsg
z,α,δ
2 −Hmg

z,α,δ
1

∥∥∥2

L2(Σ)
+ α−ηδ

∥∥∥gz,α,δ∥∥∥2
<∞.

If z ∈ D, there exists δ0(α) such that for all δ(α) ≤ δ0(α), Hgz,α,δ(α) converges strongly to
the solution v of (4.35) with (f, g) = (Φz,

∂Φz
∂ν ) as α goes to zero.

4.3.2 A coerciviy result when n− 1 changes sign inside D

In this subsection we provide a important extension of Theorem 6. First let us recall the equality
related to the imaginary part of T

Lemma 8. We have the following identity, for ψ ∈ L2(D) and T defined in (4.4) :

=(Tψ, ψ) = k

∫
Sd−1

|w∞|2 + k2

∫
D
=(n)|w + ψ|2.
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Proof. The proof is similar to the one done in theorem 6. We recall that for any ψ ∈ L2(D)

there is a unique w ∈ H1
loc(Rd) that solves (4.1). The definition of T (4.4) gives:

(Tψ, ψ) = −k2

∫
D

(1− n)|ψ + w|2 + k2

∫
D

(1− n)(ψ + w)w̄ (4.36)

Using (4.1) and integrating by parts over a ball BR such that D ⊂ BR we have:

−
∫
BR

∇w · ∇w − k2ww +

∫
∂BR

∂w

∂r
w = k2

∫
D

(1− n)(w + ψ)w

Substituting in (4.36), taking the imaginary part and letting R to +∞ prove the lemma.

The coercivity of T is given by the following theorem.

Theorem 23. Let Ω be an open regular domain strictly included in D such that Rd \ Ω is
connected. Assume that there exist α, c ∈ R∗+ such that either <(n − 1) + α=(n) ≥ c or
<(1 − n) + α=(n) ≥ c in D ⊂ Ω. Then there exists µ such that the operator T defined in 4.4
verified

|(Tψ, ψ)| ≥ µ ‖ψ‖2L2(D) ∀ψ ∈ R(Hs)

Proof. Assume for instance the existence of a sequence ψ` ∈ R(Hs) such that

‖ψ`‖L2(D) = 1 and |(Tψ`, ψ`)| → 0 as `→∞.

We denote by w` ∈ H2
loc(Rd) the solution of

∆w` + nk2w` = −k2(n− 1)ψ` in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂w`∂r − ikw`
∣∣∣2 ds = 0.

(4.37)

Elliptic regularities imply that ‖w`‖H2(D) is bounded uniformly with respect to `. Then up to
changing the initial sequence, one can assume that ψ` weakly converges to some ψ in L2(D) and
w` converges weakly in H2

loc(Rd) and strongly in L2(D) to some w ∈ H2
loc(Rd). It is then easily

seen (using distributional limit) that w and ψ satisfies (4.37), and since ψ` ∈ R(Hs)

∆ψ + k2ψ = 0 in D. (4.38)

Lemma 8 and |(Tψ`, ψ`)| → 0 imply that w∞` → 0 in L2(Sd−1) and therefore w∞ = 0. The
Rellich theorem and unique continuation principle imply w = 0 outside D and consequently
w ∈ H2

0 (D). With the help of equation (4.38) we get that u = w+ψ ∈ L2(D) and v = ψ ∈ L2(D)

are such that u − v ∈ H2(D) and are solution of the interior transmission problem (4.35) with
f = g = 0. We then infer that w = ψ = 0 (under Hypothesis 5).

We introduce a function n0 ∈ L∞(Rd) with non negative imaginary part that is equal to n in
D\Ω and satisfies either <(n0−1)+α=(n0) ≥ c or <(1−n0)+α=(n0) ≥ c in D. n0−1 ≥ c > 0

in all D (and n0 = 1 outside D). Let us then introduce the intermediate (scattered) field
us0,` ∈ H2

loc(Rd) that solves:
∆us0,` + n0k

2us0,` = k2(1− n0)ψ` in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂(us0,`)

∂r − ik(us0,`)
∣∣∣2 ds = 0.

(4.39)
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We denote by u0,` = us0,` +ψ` the associated total field. We also introduce us` (field scattered by
D for an incident field given by u0,`) which solves:

∆us` + nk2us` = k2(n0 − n)u0,` in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂us`∂r − ikus`∣∣∣2 ds = 0.
(4.40)

Clearly
w` = us0,` + us` .

Using the same argument as for w` we get that us0,` converges strongly to zero in L2(D). Since Ω

is strictly included inside D, we have that u0,` is bounded in H2(Ω) (by interior elliptic regularity
applied to ψ`). Therefore u0,` converges weakly to zero in L2(D) but strongly in L2(Ω). We
then conclude that us` converges strongly to zero in L2(D). Finally we can decompose:

|(Tψ`, ψ`)| = k2

∣∣∣∣∫
D

(1− n)(us` + u0,`)ψ`dx

∣∣∣∣
= k2

∣∣∣∣∫
D

(1− n0)u0,`ψ`dx+

∫
D

(1− n)us`ψ`dx+

∫
Ω

(n0 − n)u0,`ψ`dx

∣∣∣∣
≥ k2

∣∣∣∣∫
D

(1− n0)u0,`ψ`dx

∣∣∣∣− k2

∣∣∣∣∫
D

(1− n)us`ψ`dx+

∫
Ω

(n0 − n)u0,`ψ`dx

∣∣∣∣
Therefore

|(Tψ`, ψ`)| ≥ k2

∣∣∣∣∫
D

(1− n0)|ψ`|2dx
∣∣∣∣− k2

∣∣∣∣∫
D

(1− n0)us0,`ψ`dx

∣∣∣∣
− k2

∣∣∣∣∫
D

(1− n)us`ψ`dx

∣∣∣∣− k2

∣∣∣∣∫
Ω

(n0 − n)u0,`ψ`dx

∣∣∣∣ . (4.41)

Previous strong convergence results imply that all terms on the right side of the inequality except
the first one go to zero as `→∞. One then conclude with a contradiction exactly in the same
way as in the proof of Theorem 6 using the properties of n0.

Remark 8. To the best of our knowledge it is the first time that a coercivity result for T is given
when n changes sign inside the domain. This proof requires the same set of hypothesis as the
one needed in order to prove the solvability of the related interior transmission problem (except
for a countable set of frequencies).

Remark 9. The strong convergences results for Herglotz waves when the samplin point is inside
D in Theorems 21 and 22 allows us to apply the results from Chapter 3. This means that one
can apply the algorithm for differential measurements imaging with limited aperture data (using
obvious adaptation of the cost functional as proposed in this Chapter).

4.4 Extension to near field data

We concentrated in the previous sections on incident plane waves and farfield measurement
and raise the problem of non symmetric factorization in the case of limited aperture. The
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theory we developed in section 4.2 is concerned with non symmetric factorizations of any type.
There are two interesting cases for applications where one may have to deal with non symmetric
factorization. In this section we consider the case of near field imaging and we will postpone the
case of known heterogeneous background to Chapter 6 in order to treat the more general case
of anisotropic background.

The total field is generated by point sources and the scattered field is recorded on a surface
of Rd (usually where the point source lies). If we denote by ∂Ω the surface where lie the sources,
we should consider an incident field ui(y, x) := Φ(y, x) with x ∈ Rd and y ∈ ∂Ω. We introduce
N : H−

1
2 (∂Ω)→ H

1
2 (∂Ω) defined by

Ng :=

∫
∂Ω
us(y, x)g(y)ds(y), g ∈ H−

1
2 (∂Ω), x ∈ H

1
2 (∂Ω), (4.42)

where us(y, ·) is defined in 4.1 for an incident field ψ = ui(y, ·.) We introduce the compact
operator S : H−

1
2 (∂Ω)→ L2(D) (which plays the role of Hs) defined by

Sg :=

∫
∂Ω

Φ(y, x)g(y)ds(y), g ∈ H−
1
2 (∂Ω), x ∈ D (4.43)

and the (compact) operator G : R(S) ⊂ L2(D)→ H
1
2 (∂Ω) defined by

Gψ := w|∂Ω,

where R(S) denotes the closure of the range of S in L2(D) and w is defined as in section 4.1.
Then clearly

N = GS. (4.44)

In the case under consideration, since the scattered field has the following expression :

w(x) = −
∫
D

Φ(y, x)(1− n)k2(ψ(y) + w(y))dy,

one simply has G = S̄∗Tψ where S̄∗ : L2(D) → L2(∂Ω) is the conjugate of the adjoint of S
given by:

S̄∗ϕ(x) =

∫
D

Φ(y, x)ϕ(y)dy, x ∈ Γ,

and T is defined by (4.4). Finally we get

N = S̄∗TS. (4.45)

As for the limited aperture case this factorization is non symmetric.

Point sources and point measurements on the same surface

The case where the point sources and the measurements are on the same surface can be solved
without relying on the theory developed in section 4.2.2. At the cost of computing an operator
C (introduced in the following) such that :

B = CF = H∗TH,
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one can rely on the theory of section 4.2.1. In [40] an inf-criterion is proposed to tackle the case
of near field full aperture, through the use of the corresponding farfield operator. We propose
to adapt this idea to the setting of the GLSM and to revisit its analysis to avoid the use of the
corresponding farfield operator. To do so we need to introduce the following operator, which is
closely connected to S and a technical lemma.

S∂Ω : H−
1
2 (∂Ω)→ H

1
2 (∂Ω), S∂Ω(f)(x) =

∫
Γ

Φ(x, y)f(y)ds(y), x ∈ ∂Ω (4.46)

Lemma 9. If k2 is not a Dirichlet eigenvalue of the Laplace operator in Ω, we have that:

S∗∂ΩS
−1
∂ΩS̄

∗ = S∗

Proof. If k2 is not a Dirichlet eigenvalue of the Laplace operator in Ω, we have that S̄S−1,∗
∂Ω S∂Ω

and S solves the Helmholtz equation in Ω. Straightforward calculations provide that S∗∂Ω = S̄∂Ω

and that they share the same boundary values on ∂Ω. Thus those two operators are equal and
taking the adjoint concludes the proof of this lemma.

Using (4.45) we found
B = S∗∂ΩS

−1
∂ΩN = S∗TS

Remark 10. Finally we should point out that in [37] it was shown that if Ω is a ball the operator
C reduces to the conjugation operator.

From this factorization one can either uses the framework developed in chapters 2 and 3 or
in section 4.2.1 or the factorization method developed in [40].

Point sources and measurements lying on different surfaces

One can consider a limited aperture nearfield measurement by considering that the point sources
are located on Γs ⊂ ∂Ω and the measurements are done on Γm ⊂ ∂Ω. In this case similarly to
the farfield case we obtain a factorization :

N = S̄∗mTSs. (4.47)

Let G := S̄∗mT restricted to the closure of the range of Ss. As for the farfield case we have the
following result which is proven in [40],

Lemma 10. If Hypothesis 5 is verified, Φz ∈ R(G) if and only if z ∈ D.

Lemma 11. If k is not a dirichlet eigenvalue of Ω we have that Ss is dense in {v ∈
L2(D) s.t. ∆v + v = 0 in D}

As already pointed out the operator T is not changed by the type of incident wave and
measurement therefore it keeps the coercivity property proven in section 4.3.

The two previous lemmas, the coercivity of T and (4.47) are all the required ingredients
to apply the framework of 4.2.2 with V = Ss, U = S̄m and F = N . We therefore obtain the
following corollary for the GLSM with nearfield measurements.
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Corollary 4. Assume that Hypothesis 5 hold, that D ⊂ Σ and that T is a coercive operator.
Then z ∈ D if and only if

• |(Ngz,α2 , gz,α1 )1| + α−η
∥∥Ssgz,α2 − S̄mgz,α1

∥∥2

L2(Σ)
remains bounded for gz,α1 and gz,α2 defined

as in Section 4.2 with φ = φz

• R(gz,α,δ, α, δ) (defined in Theorem 19) remains bounded for gz,α,δ defined as in Section 4.2
with φ = φz, V = Ss and U = S̄m.

Moreover we have that one can extract a subsequence from the sequence of herglotz wave functions
associated to gz,α (resp. gz,α,δ )which will converge strongly to the solution v of (4.35) with
(f, g) = (Φz,

∂Φz
∂ν ) as α goes to zero (resp. as α and δ go to zero for δ ≤ δ0).

4.5 Numerical Algorithm and results

In order to fix the ideas, we shall restrict ourselves to the two dimensional case and will introduce
the algorithms for the discrete version of GLSM. We identify S1 with the interval [0, 2π[. In
order to collect the data of the inverse problem we solve numerically (4.1) for N incident fields
using the surface integral equation forward solver available in [35]. The discrete version of F is
then the matrix FN. We add some noise to the data to build a noisy far field matrix F δN where
(F δN)j,k = (FN)j,k(1 + σNij) for σ > 0 and Nij an uniform complex random variable in [−1, 1]2.
We denote Φz,N ∈ CN, the vector defined by Φz,N(j) = φz(

2πj
N ) for 0 ≤ j ≤ N− 1.

4.5.1 Symmetric case

First we will look at the result given when Γm = Γs. This setting could be seen as a reference
image as it does not introduce any new regularization term based on apriori knowledge (the
choice of Σ). Moreover it can be formulated as a convex functional if one introduces F δ# =

|<(F δ)|+ |=(F δ)|, we introduce:

gz,α,δ# = arg min
g∈CN

α
∥∥∥(F δ#)

1
2 g
∥∥∥2

+ α1−ηδ ‖g‖2 +
∥∥∥F δg − φz∥∥∥2

This minimization is solved using the normal equation:

gz,α,δ# = (αF# + α1−ηδId+ F δ,∗F δ)−1F δ,∗φz

And finally we use the following indicator function to retrieve the D

I#(z) =
1∥∥∥(F δ#)

1
2 gz,α,δ#

∥∥∥2
+ α−ηδ

∥∥∥gz,α,δ#

∥∥∥2

To compare with setting where Γm 6= Γs we also introduced :

gz,α,δ = arg min
g∈CN

α|
(
F δg, g

)
|+ α1−ηδ ‖g‖2 + α1−η|

(
F δg − φz, g

)
|+
∥∥∥F δg − φz∥∥∥2
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and consider the following indicator function:

I(z) =
1

|
(
F δgz,α,δ, gz,α,δ

)
|+ α−ηδ ‖gz,α,δ‖2

.

Computing gz,α,δ is much more challenging as the functional is not convex nor differentiable. In
chapter 2, we used a first order gradient method, we improved the efficiency of this scheme by
using a second order method. We give the formula of the gradient and the hessian explicitly in
the more general case were Γm 6= Γs. However, we need a starting point for our descent method,
point that we obtain by using the original LSM with Tikhonov regularization :

gz,β,δ0 = arg min
g∈CN

β ‖g‖2 +
∥∥∥F δg − φz∥∥∥2

where we choose β such that δ
∥∥∥gz,β,δ0

∥∥∥ =
∥∥∥F z,β,δ0 − φz

∥∥∥. From this choice of β as in chapter 2

we set α = β

‖F#‖ or β
‖F‖ .

We consider two examples one with two ellipses and one with a kite shape obstacle. The axis
are labelled as multiple of the wave length of index of refraction n = 0.2. And we consider four
apertures : [0, 2π[, [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[ with a noise of one percent. All the
results for full aperture are gather in figure 4.2. In figures 4.3 and 4.4, we show the results of I#

and I. In chapter 2 we observe that the optimization increases the quality of the results only
when the two obstacles where close too each other and did not bring any improvement for the
single kite. In figures 4.5 and 4.6 we show that improvement can be seen even for single obstacle
and the improvement of optimization gets higher with smaller aperture.
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Figure 4.2: Results for full aperture.From up to down and left to right : I#, I and I without
optimization, for the Kite and I#, I and I without optimization, for 2 ellipses.
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Figure 4.3: On the left I# and on the right I. From up to down the aperture is : [π/2, 3π/2[,
[3π/4, 5π/4[ and [7π/8, 9π/8[.
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Figure 4.4: On the left I# and on the right I. From up to down the apertures are : [π/2, 3π/2[,
[3π/4, 5π/4[ and [7π/8, 9π/8[
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Figure 4.5: I computed without optimization on the left and with on the right. From up to
down the apertures are : [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[.
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Figure 4.6: I computed without optimization on the left and with on the right. From up to
down the apertures are : [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[.

We also consider the case of differential measurement for limited aperture data. We consider
a medium made of three disjoint component and we will consider three apertures : [π/2, 3π/2[,



4.5. Numerical Algorithm and results 83

[3π/4, 5π/4[ and [7π/8, 9π/8[. Figure 4.7 shows that the differential imaging method still work
with limited aperture however it deteriorates faster with the aperture than the GLSM classical
imaging functional.

Figure 4.7: The first image is the medium, with the defect that appears depicted with a dashed
line. The three other images show IT.From up to down and left to right, the apertures are :
[π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[.
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4.5.2 NonSymetric case

D

Figure 4.8: The arrow goes from the sources to the measurement in a backscattering manner.

D

Figure 4.9: The arrow goes from the sources to the measurement.



4.5. Numerical Algorithm and results 85

We consider the case where Γm 6= Γs. In this case we have to define gz,α,δ as the minimizer of a
non convex nor differentiable cost functional,

gz,α,δ = arg min
g∈CN×CN

α|
(
F δg2, g1

)
|+ α1−ηδ ‖g‖2 + α1−η|

(
F δg2 − φz, g1

)
|

+ α1−η ‖Hsg2 −Hmg1‖2 +
∥∥∥F δg2 − φz

∥∥∥2
,

and we introduced the indicator function:

I(z) =
1

|
(
F δgz,α,δ2 , gz,α,δ1

)
|+ α−ηδ ‖gz,α,δ‖2 + α−η

∥∥∥Hsg
z,α,δ
2 −Hmg

z,α,δ
1

∥∥∥2 .

To minimize the cost functional we will rely on a second order descent method. We will
choose the starting point of the descent , g0, as

gz,β2,δ0,2 = arg min
g∈CN

β2 ‖g‖2 +
∥∥∥F δg − φz∥∥∥2

gz,β1,δ0,1 = arg min
g∈CN

β1 ‖g‖2 +
∥∥∥Hmg −Hsg

z,β,δ
0,2

∥∥∥2

where we choose β2 such that δ
∥∥∥gz,β2,δ0,2

∥∥∥ =
∥∥∥F z,β2,δ0,2 − φz

∥∥∥ and β1 such that
∥∥∥gz,β1,δ0,1

∥∥∥ =
∥∥∥gz,β2,δ0,2

∥∥∥.
This second choice is purely arbitrary, our purpose in setting β1 is to avoid, gz,β1,δ0,1 to have
an overwhelming norm which will dominate numerically all other quantities (or a very small
influence).

The minimization of Jδα causes numerical problem. Indeed first numerically we have to be
careful on the balance between the terms : ‖g1‖2 and ‖Hmg1 −Hsg2‖ because Hm is compact.
This is even more important as Hsg2 is not in the range of Hm. Since the theory does not give
a strategy to set α, we proposed three equivalent strategies. Those strategies are based on the
same idea that

∥∥∥gz,β1,δ1

∥∥∥ and
∥∥∥gz,β1,δ2

∥∥∥ should have the same order of magnitude. With a slight
change of notation we have:

Jδα(g1, g2) =α|
(
F δg2, g1

)
|+ α1δ ‖g1‖2 + α2δ ‖g2‖2 + α1−η|

(
F δg2 − φz, g1

)
|

+ α3 ‖Hsg2 −Hmg1‖2 +
∥∥∥F δg2 − φz

∥∥∥2

First one should remark that we have used the same parameter, η in front of all the terms
but it could have been chosen with a different value for each term (as long as it stays between 0

and 1 for the theory). We use again our heuristic to set α = β2
‖F‖ . We choose a specific balance

between the terms involving g1 and Hmg1. We decide to choose α1 = α2 = α and β1 = αδ/α3

and therefore keep the regularizing power used to find the initial guess. The parameters set, we
used a newton method to minimize Jδα.

A second solution we have experienced is to alternatively minimize Jδα as a function of g2

with α3 = α1 = 0 and to minimize the same Tikhonov functional we used to find an initial guess
g1. This will impose

∥∥∥gz,β1,δ1

∥∥∥ =
∥∥∥gz,β2,δ2

∥∥∥ and limit the number of parameters to set.
A third solution closely related to our heuristic for symmetric factorization, we have set α3

to 1 and α1 = α2 = α where α is chosen to be equal to max(β1, β2)/
∥∥F δ∥∥
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Figure 4.10: The three proposed methods for an aperture of Γm = [π/4, 5π/4[ and Gammas =

−Γm .

All those three methods give similar results as shown on figure 4.10. In the following we will
show only the results of the first method. In order to perform the Newton method we need to
compute the gradient and the Hessian which we explicit in the following for the original cost
functional, both gradient and Hessian can be easily derive from those formulas. If · is the dot
product without conjugate, t the transposition and by ∗ the classical transpose-conjugate, we
can rewrite Jδα(φ, ·) :

α|ḡt · (F δg)|+α1−η|ḡt · (F δg−φ)|+ δα1−η
∥∥∥F δ∥∥∥ g∗ ·g+α1−η(Hg)∗ · (Hg)+(F δg−φ)∗ · (F δg−φ)

where we use the matrix:

F δ =

[
0 F δN
0 0

]
and H =

[
Hm −Hs

]
and g =

[
g2

g1

]
and φ =

[
Φz

0

]
Using this notation we can compute following the framework of [50] the gradient
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δα1−η
∥∥∥F δ∥∥∥ g + F δ∗(F δg − φ) + α1−ηH∗Hg + α

ḡt · (F δg)F δg + (ḡt · (F δg))F δ∗g

|ḡt · (F δg)|

+ α1−η (ḡt · (F δg − φ))(F δg − φ) + (ḡt · (F δg − φ))F δ∗g

|ḡt · (F δg − φ)|

and the Hessian,

δα1−η
∥∥∥F δ∥∥∥ Id+ F δ∗F δ + α1−ηH∗H + α

ḡt · (F δg)F δ + (ḡt · (F δg))F δ∗ + F δgg∗F δ∗ + F δ∗gg∗F δ

|ḡt · (F δg)|

− α(ḡt · (F δg)F δg + (ḡt · (F δg))F δ∗g)(ḡt · (F δg)F δg + (ḡt · (F δg))F δ∗g)∗

2|ḡt · (F δg)|
3
2

+ α1−η (ḡt · (F δg − φ))F δ + (ḡt · (F δg − φ))F δ∗ + (F δg − φ)(g∗F δ∗ − φ∗) + F δ∗gg∗F δ

|ḡt · (F δg − φ)|

− α1−η ((ḡt · (F δg − φ))(F δg − φ) + (ḡt · (F δg − φ))F δ∗g)((ḡt · (F δg − φ))(F δg − φ) + (ḡt · (F δg − φ))F δ∗g)∗

2|ḡt · (F δg − φ)|
3
2

.

We apply those techniques to the case of back scattering data which is when Γm = −Γs, for
apertures Γs = [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[. The result are shown in figures 4.11
for the kite example and 4.12 for a domain Σ which occupies the whole image and the smallest
rectangle that contains D. We also consider the case of Γs being either [π/2, 3π/2[, [3π/4, 5π/4[

and [7π/8, 9π/8[ and Γm being either [0, π[, [π/4, 3π/4[ and [3π/8, 5π/8[. The results are shown
in figures 4.13 and 4.14. On those simulation the size of Σ has no clear impact therefore we will
only show simulation for the large grid.

Figures 4.15,4.16,4.17,4.18,4.19 and 4.20 consider backscattering data from aperture of the
same size as previously, but rotated around the obstacle. We see the strong dependency with
the mean direction of the aperture. The fact that the results are coherent with the aperture
we consider lets us think that non symmetric aperture is intrinsically worst than symmetric
one. Connected to that subject in [27] they study invisibility for a finite number of incident
direction and demonstrate that imposing invisibility in symmetric direction is equivalent to
impose invisibility in all direction. Meaning that there is more information inside symmetric-
factorization like farfield operator than any other setting of sources and measurements.
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Figure 4.11: I computed on the left with a large Σ and with on the right with a small one.
From up to down the apertures are : Γs = [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[
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Figure 4.12: I computed on the left with a large Σ and with on the right with a small one.
From up to down the apertures are : Γs = [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[.
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Figure 4.13: I computed on the left with a large Σ and with on the right with a small one. From
up to down the apertures are :Γs = [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[ and Γm = [0, π[,
[π/4, 3π/4[ and [3π/8, 5π/8[
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Figure 4.14: I computed on the left with a large Σ and with on the right with a small one.
From up to down the apertures are :
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Figure 4.15: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs[3π/4, 7π/4[, [π, 2π[ and [−π/2, π/2[ and Γm = Γs + π
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Figure 4.16: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs = [π, 3π/2[, [5π/4, 7π/4[ and [7pi/4, π/4[ and Γm = Γs + π
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Figure 4.17: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs = [7π/8, 9π/8[, [11π/8, 13π/8[ and [−π/8, π/8[ and Γm = Γs + π
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Figure 4.18: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs = [3π/4, 7π/4[, [π, 2π[ and [−π/2, π/2[ and Γm = Γs + π
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Figure 4.19: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs = [π, 3π/2[, [5π/4, 7π/4[ and [7π/4, π/4[ and Γm = Γs + π
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Figure 4.20: I computed with Σ equals the full grid. From left to right and up to down the
aperture are : Γs = [7π/8, 9π/8[, [11π/8, 13π/8[ and [−π/8, π/8[ and Γm = Γs + π

We should mention that we have tried to use differential measurement with backscattering
data but it did not work. At this point we do not know if this failure is due to the numerical
difficulties in balancing the regularization term or to the intrinsic difficulties of this setting.

We believe that the numerical results could be improve if we have a better understanding of
the optimal balance between all regularization terms. One may also think of an iterative scheme
that will improve Σ using previously computed indicator function. An other way to simplify
numerical simulation will be to have a term that enforce g1 with a data fidelity term similar to
the farfield equation.
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This chapter is divided into two main parts. In the first one we explain how we generate
concrete like microstructures using the CAO software Salomé. This part of the thesis takes
the form of a software that also can be used in the departement STEP of EDF R&D for other
projects on concrete and non destructive testing. This software offers the possibility to fill a
chosen volume with aggregates that respect a given distribution of size, which is assumed to be
known from the engineering of concrete. In the second part of this chapter we give numerical
examples of the application of the differential imaging technique introduced in chapter 3. We
shall consider examples related to a change in the index of refraction of the medium and as a
perspective we shall also numerically test the method for cracks that appeared between the two
measurements campaigns. We give numerical results for both full and limited apertures.
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5.1 Numerical generation of concrete like microstructures

The software that simulates realistic microstructures of concrete can generate a microstructure
made of aggregates that follow a given size distribution. This microstructure can fill a given space
in 3D. This space can be complex due to the presence of others inclusions such as reinforcing
bars or defects. One should then be able to mesh the whole medium with proper labelling of
the different components. The latter step is important for instance if one would like to use some
finite element method to simulate wave propagation in the concrete structure.

This software is developed in Python as a module of the open-source CAO software Salomé.
Its purpose is to construct numerically a realistic distribution of aggregates which we will call
microstructure. The numerical microstructure should follow a given statistical distribution of
size as this property is known in practice (and even mandatory through standards). We will also
assume that the space is occupied by the aggregates uniformly with respect to their size. The
algorithm takes as input a given region in space and a given statistical distribution of size. The
global strategy is to fill the space from large to small aggregates by choosing random positions
and by ensuring that aggregates do not intersect with the boundary of the domain and with
previously inserted aggregates.

This strategy can be applied if one is able to test easily for intersections in 3D and if one
has a fast generator of shapes of a given size.

5.1.1 Examples of Geometries

The "user-friendly" interface of Salomé makes it possible to easily specify a given canonical
geometry. It also allows one to include interior components such as reinforcing steel bars in the
case of concrete. We use this function to also insert defects that will not intersect the aggregates.
The addition of structures inside the exterior shape before filling the space with aggregates is
relevant for reinforcing steel bars. However this strategy seems more arguable for defects. We
proceed in this way for three reasons. First it is more convenient from the practical point of view
to put the defect in a known position. Second, considering rules on how one should incorporate
defects inside a microstructure goes far beyond the scope of this thesis. Third, if the defect has
a small volume, its influence on the microstructure would be negligible.
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Figure 5.1: On the left we see a structure with 4 small grey cylinders and a red arc which are
placed before the insertion of some aggregates. On the right we see an L-shape domain filled
with aggregates.

5.1.2 Generation of shapes

We rely on previous works in the department of materials at EDF R&D to choose what might
be an admissible shape for an aggregate. We consider two types of aggregates that feature two
possible shape generation algorithms. We choose, as Julie Escoda’s PhD [29], the radius of the
larger sphere strictly included inside a shape as the characteristic size value that is used in the
given distribution of size.

Figure 5.2: The cumulative distribution of size of aggregates. r is the radius of the largest ball
strictly include inside the aggregate.

First we consider the case where one has a library of shapes. In our case we (have the chance
to) use the library created by Julie Escoda during her PhD [29]. The generation of aggregate is
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then easy as it reduces to choose (randomly) one of the shapes and to adjust its volume to the
desired one. We should stress that there are two possible representations for a polyhedron: It
can be stored either as the intersection of half spaces (meaning that one stores a plan and a side)
or as a set of points and vertices. The second representation induces a significant gain of time
in the test of intersections (using the intersection procedure describe below). The library was
translated into this second representation as an offline computation, we also computed offline
the radius for all shapes in the library.

The other possibility, proposed in the thesis of Francis Lavergne [42], is to generate the shape
randomly when needed. In this setting he chose to generate points from lognormal distribution
and to then construct a shape by taking the convex hull of the randomly generated points.
Playing with the parameter of the lognormal distribution allows one to have different shapes of
aggregates. For example, if one draws a large number of points from the lognormal distribution,
the obtained shape is more likely to be smooth. From an implementation point of view, those
steps (drawing points and taking the convex hull) can be done very efficiently using inbuilt
function from SciPy package of Python. To adjust the shape to the desired size in order to
comply with the distribution of size we need to have an efficient way to compute the radius of
the larger sphere strictly included inside the shape. Finding this radius for a convex polyhedron
can be cast to a Linear Programming problem as shown in [13] and can solved efficiently using
the open source package LPSOLVE. To summarize, the algorithm to generate a shape "centered"
at the origin is the following:

1. We randomly draw two angles θ ∼ U([0; 2π[) and φ ∼ U([0; π[), which gives a direction
D = [sin θ cosφ, sin θ sinφ, cos θ].

2. We draw from a lognormal distribution a distance from the origin, d ∼ Log −N (µ, σ2).

3. We obtain a point P = [d sin θ cosφ, d sin θ sinφ, d cos θ].

4. Repeat the previous steps N times and compute the convex hull of those points.

5. Use a linear program to determine the radius of the largest sphere contained inside the
convex hull.

6. Build a Salomé object and compute its bounding box.

Finally we construct this shape as a polyhedron in the CAO framework of Salomé.
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Figure 5.3: Smoother aggregates on the left, they are generated using more random points before
taking their convex hull.

5.1.3 Insertion of aggregates

In the previous subsection we saw how we created the shapes aggregates. To obtain a microstruc-
ture that will follow a given distribution of radii we entirely fill the given volume (which might
be complicated) starting from the largest radius to the smallest one. The algorithm follows these
steps for each radius of the distribution

1. From the distribution and the proportion of aggregates compute the volume occupied by
each class of aggregate.

2. Scale a shape (randomly generated as explained in 5.1.2) to comply with the current size
of the distribution.

3. Draw at random uniformly a position in space for the shape.

4. Verifies that the current shape does not intersect any existing object (given exterior and
interior objects or previously set aggregates)

• If there is no intersection, then the shape is included as part of the microstructure
and start again until all the distribution is finished.

• If there is an intersection, then try another position or change the shape (after too
many failures the algorithm just stops)

As we do not expect any specific position for the shape, we draw the position at random from
a uniform distribution. The fact that we have to check for intersection with all existing objects
requires an efficient procedure. In practice we actually use the built in distance function between
two CAO object of Salomé and fix a minimal distance between objects bellow which we consider
that there is an intersection. This minimal distance has no physical significance as far as we
know.
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Clearly our strategy will induce a bias when fitting the distribution as we only stop when
we have reached the prescribe value, this induces a slight excess in the volume occupied by each
class of aggregates. Moreover we can see on the figures that the presence of boundary induces
that there is less large aggregates near them as there is less space available near a boundary.
This fact is indeed a direct consequence of the filling procedure but it seems that this is also the
case in real concrete.

Figure 5.4: Two examples of microstructure

5.1.4 2D cut and meshing

Since our simulations are in 2D, we are interested in creating 2D configurations of concrete.
These are simply obtained by taking the intersection of the 3D configuration with a plane. The
obtained 2D cut is then meshed according to the frequency range of the numerical simulation
and the physical parameters inside the object. In order to have a manageable mesh we also
truncate the distribution of aggregates in order to avoid too small aggregates (with respect to
the wavelength).
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celerity longitudinal shear
mortar 4300m.s−1 2500m.s−1

aggregate 5700m.s−1 3200m.s−1

Table 5.1: Celerity of the two phases of concrete

Figure 5.5: Cut of a microstructure by a plane on the left and a mesh of the 2D intersection (for
visualization purposes the mesh is coarse)

Currently the mesh is labelled according to the material properties which means that the
label of the region reflects the physical parameters that will used in the numerical simulation.

5.2 Numerical simulation and results related to concrete like mi-
crostructures

We restrict ourselves to two dimensions and to the scalar wave equation. In this setting taking
the value of the celerity of pressure wave in concrete (Table 5.1), for a refractive index of one in
cement paste we obtain a refractive index of 0.57 in the aggregates. We consider the medium
shown in figure 5.7 and a frequency of 200kHz. This choice of frequency is motivated by the
size of the defect we are looking for the experimental value used in [41] and the fact that taking
a larger frequency is not realistic as the absorption in concrete gets higher above 500kHz, as
shown in figure 5.6.
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Figure 5.6: Experimental results of the absorption in concrete for a range of frequency [48].

For those numerical values the distribution of aggregates we consider occupies an area of ap-
proximately twelve by twelve centimeters, for a wavelength of approximately 2.1 centimeter. We
used a finite element method implemented in FreeFem++ [36] to simulate the scattering of plane
waves by such a medium. We implemented in FreeFem++ the variational formulation solved by
the scattered field, us. The domain of computation will be a ball BR that contains D and we
used a Dirichlet-to-Neumann operator on the boundary of BR to approximate the Sommerfeld
radiation condition verified by us. For the Dirichlet-to-Neumann operator we used the imple-
mentation of Nicolas Chaulet from [22]. Finally the variational formulation we implemented
is:

∫
BR

−∇us∇ψ + k2nusψ +

∫
∂BR

DtN(us)ψ =

∫
D
k2(1− n)uiψ

where the field is discretized using P1 nodal finite elements. Figure 5.7 shows the distribution
of the index n in the domain of computation BR.
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Figure 5.7: The index of refraction used for the simulation

Let us consider a change in the medium index of refraction for two aggregates. This type of
defect is covered by the theory presented in chapter 3. In figure 5.8 we show the aggregates that
have been modified, the index of refraction inside these two aggregates is equal to 10% of the
other aggregates index.We denote by F δ0 and F δ the multi-static noisy farfield operator associated
with measurement before and after the change in the index of refraction of the aggregates. From
chapter 3 we should consider :

gα,δ,z0 = argmin
g
α|
(
F δ0 g, g

)
|+ αγ |

(
F δ0 g − φz, g

)
|+ α1−γδ‖F‖ ‖g‖2 +

∥∥∥F δ0 g − φz∥∥∥2

gα,δ,z0 = argmin
g
α|
(
F δg, g

)
|+ αγ |

(
F δg − φ, g

)
|+ α1−γδ‖F‖ ‖g‖2 +

∥∥∥F δg − φ∥∥∥2
.

As in chapter 4 we compute both minimizers using the second order scheme and we choose α
using our heuristic from the Tikhonov-Morozov regularization. Finally we used the following
imaging functional in order to retrieve the connected component that contains the change in the
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index of refraction.

A(z) = |
(
F δgα,δ,z, gα,δ,z

)
|+ α−γδ

∥∥∥gα,δ,z∥∥∥2
,

A0(z) = |
(
F δ0 g

α,δ,z
0 , gα,δ,z0

)
|+ α−γδ

∥∥∥gα,δ,z0

∥∥∥2
,

D(z) = |
(
F δ0 (gα,δ,zz − gα,δ,z0 ), (gα,δ,zz − gα,δ,z0 )

)
|+ δ

∥∥∥gα,δ,zz − gα,δ,z0

∥∥∥2

I(z) =
1√

A0(z) +A(z)(1 +A0(z)D(z)−1)
.

In figure 5.9 we show the results obtained by applying the GLSM framework to each set of
measurement independently (plot of A(z)−

1
2 and A0(z)−

1
2 ) . Clearly the aggregates are not

separated by the indicator function as they are close to each other with respect to the wavelength.
In figure 5.10 we show the result obtained using the indicator function that combined both
measurement (plot of I(z)). We see that we localize the defect exactly and detect the fact that
there are two components. However, the shape is not accurately reconstructed.

Figure 5.8: The modified aggregates
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Figure 5.9: On the left the image obtain from the background dataset and on the right from the
dataset with the modified aggregates
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Figure 5.10: The differential indicator function for a change in the index of refrac-
tion of two aggregates figure 5.9.From left to right and up to down the apertures are :
[0, 2π[, [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[

5.3 Conclusion and perspectives

5.3.1 Numerical experiment with cracks

Defects in concrete are usually cracks therefore in the following we will consider the case of
cracks either inside or outside the aggregates.

In figure 5.11 we show a crack with Neumann boundary conditions that appears inside an
aggregate. This type of defect is not covered by the theory presented in this thesis. We believe
that the coercivity of T should be verified in this case as the crack is stricly included inside the
aggregates. The analysis of chapter 3 has to be done for a crack which will lead to the solvability
of the interior transmission problem for a crack inside. Such an interior transmission problem has
not been studied yet, the result of [17] on interior transmission problem with Dirichlet inclusion
inside and the study of interior transmission problem using integral equation method [26] might
be adapted to the case of cracks. In figure 5.12 we show that we localize correctly the crack but
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with significant artefacts.

Figure 5.11: The modified medium with a crack inside one of the aggregates ( located in the
upper part of the figure))
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Figure 5.12: The indicator function for differential measurement associated to the defect shown in
figure 5.11. From left to right and up to down the aperture are: [0, 2π[, [π/2, 3π/2[, [3π/4, 5π/4[

and [7π/8, 9π/8[
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Figure 5.13: The modified medium with a crack outside the aggregates ( located in the middle
of the figure))

Finally we consider a crack outside the aggregates: Figure 5.13. Imaging of cracks in the
vacuum using the factorization method has been studied in [12]. In this paper the factorization
and the coercivity of T have been proven. In our case the crack is surrounded with aggregates
therefore the coercivity of T will have to be proven in this case (there might be issues similar to
the one in section 6.2.2). Since the crack is outside the aggregates as long as the coercivity of T
is verified the theory of chapter 3 is valid if we sample with Φz. However in [12] they explained
that one should consider the GLSM cost functional with ∂νΦ∞z instead of Φz, the analysis of
chapter 3 should be verified. To respect their results on cracks, we minimized the GLSM cost
functional for both ∂xΦ∞z and ∂yΦ∞z and we choose the orientation of the derivative of Φ∞z for
each z :

(uz, vz) = arg min
u,v∈R+ s.t.u2+v2=1

|
(
F δ(ugα,δ,zx + vgα,δ,zy , ugα,δ,zx + vgα,δ,zy

)
|+ δ

∥∥∥ugα,δ,zx + vgα,δ,zy

∥∥∥2

Figures 5.15 and 5.14 show the result of the differential imaging and what we obtain if the crack
is not surrounded by aggregates.
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Figure 5.14: The reconstructed crack when there is no aggregates for a full aperture
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Figure 5.15: TThe indicator function for differential measurement associated to the de-
fect shown in figure 5.13. From left to right and up to down the apertures are :
[0, 2π[, [π/2, 3π/2[, [3π/4, 5π/4[ and [7π/8, 9π/8[

5.3.2 Perspectives

In this chapter we have presented the software that have been built to generate concrete-like
microstructure and mesh them. As shown in Figure 5.16 which is taken from a piece of concrete
from the mock up VERCORS, we omitted an important third phase in terms of volume which
are the pores. In this figure we have segmented the pores using an image processing code that
uses the shade to discriminate between pores and other contrasted structure in the image. Pores
create a second microstructure made of voids in the figure which are actually mainly filled with
water inside concrete. The software can with slight modification cope with this second type of
objects, the modified algorithm will work similarly filling the space from large objects (either
aggregates or pores) to small ones with the additional phase attribute to all objects. It would
be also possible to choose pores from one type of shape and aggregates to another if one has
a priori information on the properties of each phase. The main question is whether we will be
able, using our current filling scheme, to obtain the density of objects we see on those pictures.
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Figure 5.16: On the left we saw a picture of concrete and on the right the same image with a
segmentation of pores

If we would like to mimic realistic microstructure we should study statistically the existence of
long range correlation. For example on picture 5.17 we see that the orientation of the aggregates
is not random but rather exhibit some pattern that we believe is a consequence of flow of liquid
concrete. We believe such property could be enforced into our current code by using a uniform
distribution in space but an a priori distribution of orientation within the volume.

Figure 5.17: On this image we saw how the right border influence the distribution of the aggre-
gates compared to the part on the left under the horizontal (metallic) structure where we can
see some preferred orientation of the aggregates.

As we already pointed out, it seems realistic to numerically fill a space where lies already
existing reinforcing bars, especially as one bias of our algorithm is to put more small aggregates
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near the boundary like in real concrete however it is questionable to insert the defect before
filling the volume with aggregates (especially if it has a large size).

Figure 5.18: A scheme of the Interfacial Transition Zone and a typical variation of the elastic
parameter µ and κ inside.

Finally we simplify concrete by modeling it as a two phases material. Actually each aggregate
is surrounded by a small layer with different property which is referred to as the Interfacial
Transition Zone (ITZ) (Figure 5.18 extracted from [46]). This ITZ has a real impact on the
material as it changes the macroscopic behavior of concrete from a mechanical point of view.
This property and the fact that defects appear first in this area supported the fact that we should
take it into account in terms of non destructive testing. If we model this zone using Generalized
Impedance Boundary conditions, it will only impact the current software by a careful labelling
of the mesh in order to assign easily the Generalized Impedance Boundary condition in the finite
element code. The main difficulty will certainly come from the actual modeling and numerical
implementation and from the study of this type of scatterer within the framework of the GLSM
for differential measurement (a study of this type of boundary and of the associated factorization
method can be found in [21]).

Another aspect that is allowed by this software is to do numerical analysis of the differential
imaging method with respect to the distribution of size, type of shapes, material properties,
type of acquisition, overall size of the medium, etc... Such numerical experiments will be carried
out in the near future in order to prepare an experiment on real data.
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In this chapter we concentrate on the cases where the medium inside D may be anisotropic.
The interest we have in looking at this type of media is two fold. First it provides a simplified
version of the elasticity problem that will be addressed in a next chapter and second it can be
seen as an appropriate model for non destructive testing of coarse-grained steel.

In Section 6.1 we introduce the scalar wave equation for orthotropic media and demonstrate
that the farfield operator can be factorized in a similar way as for the isotropic case (although
with some additional technicalities). The obtained factorization does not require any correlation
between the supports of the isotropic parameters and the anisotropic ones (which then may be
different). In Section 6.2 we demonstrate that the GLSM can be applied to such medium. The
main point that has to be checked is the coercivity of the middle operator (denoted T ) which
is shown to hold true if the contrasts have fix (and compatible) sign in a neighborhood of the
boundary of D. Following an idea of Kirsch and Grinberg [40] we also consider the application
of GLSM to some cases where T cannot be coercive. These considered configurations are those
where D is made of disjoint parts where the sign of the contrasts are different between at least
two of the connected components. The GLSM allows us to treat this case without knowing
the contrast sign in each component (but we still need to be able to regroup the components
that have the same contrast sign). Finally we discuss the case of known heterogeneous media in
Section 6.4 and of differential measurements in Section 6.3.

6.1 Model Problem

Similarly to Chapter 2 for a wave number k > 0, the total field solves the following scalar wave
equation:

div(A∇u) + k2nu = 0 in Rd

with d = 2 or 3 and with n ∈ L∞(Rd) denoting the refractive index such that the support of
n − 1 is included into Dn with Dn a bounded domain with Lipschitz boundary and connected
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complement and such that =(n) ≥ 0. We assume that A is at least in L∞(Rd)d×d and that the
support of A− Id is included into DA with DA a bounded domain with Lipschitz boundary and
connected complement and such that =(Aζ · ζ̄) ≤ 0 and <(A)ζ · ζ̄ ≥ c|ζ|2 for ζ ∈ Cd and for
some positive constant c. We introduce a domain D such that Dn ∪DA ⊂ D with D a bounded
domain with Lipschitz boundary and connected complement. In the following we will assume
that the connected component of D will either have boundary where A is not equal to Id or n
is not equal to one if A is identically equal to Id. Therefore we will have Dn ∪DA = D.

We are interested in the cases where the total field is generated by plane waves, ui(θ, x) :=

eikx·θ with x ∈ Rd and θ ∈ Γs (Γs ⊂ Sd−1 the unit sphere) and we denote by us the scattered
field defined by

us(θ, ·) = u(θ, ·)− ui(θ, ·) in Rd,

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r→∞

∫
|x|=r

∣∣∣∣∂us∂r − ikus
∣∣∣∣2 ds = 0.

Our data for the inverse problem will be formed by noisy measurements of so called farfield
pattern u∞(θ, x̂) defined by

us(θ, x) =
eik|x|

|x|(d−1)/2
(u∞(θ, x̂) +O(1/|x|))

as |x| → ∞ for all (θ, x̂) ∈ Γs × Γm, where Γm is a subset of Sd−1 possibly different from
Γs. The goal is to be able to reconstruct D from these measurements (without knowing n and
A). Therefore the goal is to extend the results of Chapters 2 and 3 to the farfield operator
F : L2(Γs)→ L2(Γm), defined by

Fg(x̂) :=

∫
Γs

u∞(θ, x̂)g(θ)ds(θ), x̂ ∈ Γm

Let us define for ψ ∈ {f ∈ L2(D) s.t f |DA ∈ H1(DA), the unique function w ∈ H1
loc(Rd)

satisfying 
div(A∇w) + nk2w = −k2(n− 1)ψ − div((A− Id)∇ψ) in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∣∂w∂r − ikw
∣∣∣∣2 ds = 0.

(6.1)

By linearity of the forward scattering problem, Fg is nothing but the farfield pattern of w
solution of (6.1) with ψ = vg in D , where

vg(x) :=

∫
Γs

eikx·θg(θ)ds(θ), g ∈ L2(Γs), x ∈ Rd.

We introduce X(D) = {(f, g) ∈ L2(D) × L2(DA) s.t. g = ∇f in DA}, we identify X and its
adjoint. Finally we consider the norm on X(D) defined by

‖(f, g)‖X = ‖f‖L2(D) + ‖g‖L2(DA) = ‖f‖H1(DA) + ‖f‖L2(Dn)
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Now consider the (compact) operator Hs : L2(Γs)→ X defined by

Hsg :=

[
vg|Dn
∇vg|DA

]
, (6.2)

and the (compact) operator Gm : R(Hs) ⊂ X → L2(Γm) defined by

Gm

[
ψ

∇ψ

]
:= w∞|Γm (6.3)

where w∞ is the farfield of w ∈ H1
loc(Rd) solution of (6.1) and where R(Hs) denotes the closure

of the range of Hs in X. Then clearly

F = GmHs

One can also decompose Gm to get the second factorisation of the farfield operator. More
precisely, for the case under consideration, since the farfield pattern of w has the following
expression ([15]):

w∞(x̂) = −
∫
Dn

e−iky.x̂(1− n)k2(ψ(y) + w(y))dy −
∫
DA

(A− Id)∇ye−iky.x̂ · ∇(ψ(y) + w(y))dy,

one simply has Gm = H∗mTψ, where H∗m : X → L2(Γm) is the adjoint of Hm (defined similarly
to Hs with Γs replaced by Γm) given by

H∗m

[
ϕ

∇ϕ

]
(x̂) :=

∫
Dn

e−iky.x̂ϕ(y)dy +

∫
DA

(A− Id)∇ye−iky.x̂ · ∇ϕdy, ϕ ∈ X, x̂ ∈ Γm,

and T : X → X is defined by

T

[
ψ

∇ψ

]
:=

[
−k2(1− n)(ψ + w)

−(A− Id) · (∇ψ(y) +∇w(y)

]
, (6.4)

with w ∈ H1
loc(Rd) being the solution of (6.1)(with ψ1 = ψ and ψ2 = ∇ψ). Finally we get

F = H∗mTHs, (6.5)

Remark 11. Similarly to Chapter 4 we remark that T is independent of the type of incident
waves (either plane waves, point sources or more complicated ones such as the one from known
heterogeneous background).

6.2 The application of GLSM

The factorization (6.5) is again “non symmetric” because of the limited aperture setting. This
configuration is covered by Theorem 4.2. The main point that needs to be checked is the
coercivity of T . Indeed if T is coercive one can apply Theorems 21 and 22 to image the defect.
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6.2.1 Range characterization

First we assume that our obstacle D will be composed of several disjoint simply connected
components. Those components will either have A = Id and n 6= 1 or A 6= Id in a neighborhood
of their boundaries. As in Chapter 2 a key ingredient of the GLSM the characterization of the
obstacle D in term of the range of Gm. This characterization is based on the solvability of the
interior transmission problem (for given regular boundary values f and g):

divA∇u+ k2nu = 0 in D,
∆v + k2v = 0 in D,
(u− v) = f on ∂D,
∂
∂ν (u− v) = g on ∂D,

(6.6)

where (u, v) ∈ Y(D) and Y(D) is a space of solutions that will be specified later. We will assume
that the following hypothesis holds true.

Hypothesis 6. We assume that k2 ∈ R+ is such that problem (6.6) has a unique solution for
all regular (C∞(∂D)) functions f and g.

This hypothesis and the interior transmission problem stated above are incomplete in the
sense that we did not specify Y(D). This space actually depends on the properties of A and
n. For example if we assume that Dn ⊂ DA = D, (6.6) can be studied for (u, v) ∈ Y(D) =

H1(D)×H1(D). In this case we know from [9] that hypothesis 6.6 is for instance true if A− Id
and n− 1 have the same sign and do not change sign in a neighborhood of ∂D. The case where
DA = ∅ has already been discussed in Chapter 4: System (6.6) holds for (u, v) ∈ L2(D)×L2(D)

such that u − v ∈ H2(D). In this case Hypothesis 6 is true if n − 1 does not change sign in a
neighborhood of ∂D. The case where n = 1 in a neighborhood of ∂D has been less studied in
the literature and the only case where we know that hypothesis 6 is true is when A − Id does
not change sign in all D and n = 1 in D. Finally when A = Id in a neighborhood of ∂D, but
not in all D, and n− 1 does not change sign in a neighborhood of ∂D, there is no clearly stated
result in the literature about this case. Let us mention however that surface integral method
applied to (6.6) (as proposed in [26]) would be an appropriate tool to study this case.
As in the previous chapter we set

φz(x̂) := e−ikx̂·z

and consider a known domain Σ such that D ⊂ Σ. We denote by X̂(Σ) := {(f, g) ∈ L2(Σ) ×
L2(Σ) s.t. g = ∇f inΣ} which can be identified with H1(Σ). Let C > 0 be a given constant
(independent of α) and consider α > 0 and z ∈ Rd, gz,α ∈ L2(Γm)× L2(Γs) such that :

Jα(φz, g
z,α) = α|(Fgz,α2 , gz,α1 )|+ α1−γ ‖Hsg

z,α
2 −Hmg

z,α
1 ‖

2
X̂(Σ) + α1−γ |(Fgz,α2 − φz, gz,α1 )|

+ ‖Fgz,α2 − φz‖2

≤ jα(φz) + Cα,
(6.7)

where γ ∈]0, 1[ and
jα(φz) = inf

g∈L2(Γm)×L2(Γs)
Jα(φz, g).

Combining the results of Theorems 18 and 20 we obtain the following theorem:
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Theorem 24. Assume that Hypothesis 6 holds and that T verifies

|(Th, h)| ≥ µ ‖h‖2X(D)

for all h ∈ R(Hs). Then z ∈ D if and only if lim sup
α→0

|(Fgz,α2 , gz,α1 )| +

α−γ ‖Hsg
z,α
2 −Hmg

z,α
1 ‖

2
X̂(Σ) < ∞. Moreover, we have that the sequence of Herglotz wave func-

tions associated with gz,α converges strongly to the solution v of (6.6) with (f, g) = (Φz,
∂Φz
∂ν ) as

α goes to zero.

For the noisy case, consider F δ : L2(Γs)→ L2(Γm) a compact operator such that:∥∥∥F δ − F∥∥∥ ≤ δ.
Then consider for α > 0 and φ ∈ L2(Γm) the functional Jδα(φ, ·) : L2(Γs)× L2(Γm)→ R,

Jδα(φz, g) = α|
(
F δg2, g1

)
|+α1−γ ‖Hsg2 −Hmg1‖2H1(Σ)+α

1−γδ ‖g‖2+α1−γ |
(
F δg2 − φz, g1

)
|+
∥∥∥F δg2 − φz

∥∥∥2

where γ ∈]0, 1[. Then as a direct consequence of Theorem 19 we obtain the following asymptotic
characterization of D.

Theorem 25. Assume that Hypothesis 6 holds and that T verifies

|(Th, h)| ≥ µ ‖h‖2X(D)

for (h1, h2) ∈ R(Hs). For z ∈ Rd let us denote by gz,α,δ the minimizer of Jδα(φ, ·) over L2(Γs)×
L2(Γm).

Then z ∈ D if and only if lim sup
α→0

lim sup
δ→0

|
(
F δgz,α,δ2 , gz,α,δ1

)
|+α−γ

∥∥∥Hsg
z,α,δ
2 −Hmg

z,α,δ
1

∥∥∥2

X̂(Σ)
+

α−γδ
∥∥gz,α,δ∥∥2

<∞.
Moreover, there exists δ0(α) such that for all δ(α) ≤ δ0(α), Hgz,α,δ(α) converges strongly to the
solution v of (6.6) with (f, g) = (Φz,

∂Φz
∂ν ) as α goes to zero.

In the following subsection we will extend the coercivity result of Chapter 4. If we consider
the connected components of D then we assume that they can be split into two categories. The
first one is such that A − Id does not equal zero on a neighborhood of the boundary and the
second one is such that A−Id = 0 and n−1 does not vanish on a neighborhood of the boundary.
We will give a coercivity result for each of those two configurations and then merge them into
a combined condition on n and A under which we have the coercivity of T defined in (6.4). We
first state a classical identity.

Lemma 12. We have the following identity, for ψ = (ψ1, ψ2) ∈ L2(Dn) × L2(DA)d and T

defined in (6.4) :

=(Tψ, ψ) = k

∫
Sd−1

|w∞|2 −
∫
DA

=(A)(∇(w) + ψ2) · (∇(w) + ψ2) + k2

∫
Dn

=(n)|w + ψ1|2.
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Proof. We recall that for any ψ = (ψ1, ψ2) ∈ L2(Dn) × L2(DA)d there exists a unique w ∈
H1
loc(Rd) that solves (6.1). The definition of T (6.4) gives:

(Tψ, ψ) =−
∫
DA

(A− Id)(ψ2 +∇w) · (ψ2 +∇w)− k2

∫
Dn

(1− n)|ψ1 + w|2

+

∫
DA

(A− Id)(ψ2 +∇w) · (∇w) + k2

∫
Dn

(1− n)(ψ1 + w)w̄

(6.8)

Using (6.1) and integrating by parts over a ball BR such that D ⊂ BR we have:

−
∫
BR

∇w · ∇w− k2ww+

∫
∂BR

∂w

∂r
w =

∫
DA

(A− Id)(∇w+ψ2) · ∇w+ k2

∫
Dn

(1− n)(w+ψ1)w

Substituting in (6.8), taking the imaginary part and letting R to +∞ prove the lemma.

The case where DA ( Dn

We first consider the case where DA ( Dn which can be seen as an extension of Theorem 23
that treats the case DA = ∅. The Herglotz wave operator reduces to Hg = [vg|D,∇vg|DA ].

Theorem 26. If D̄A ( Dn = D and if there exist α, c ∈ R∗+ such that either <(n−1)+α=(n) ≥
c or <(1− n) + α=(n) ≥ c in a neighborhood of ∂D, then there exists µ such that the operator
T defined in 6.4 verifies

|(Tψ, ψ)| ≥ µ ‖ψ‖2X(D) ,

for all ψ ∈ R(Hs).

Proof. We introduce n0 such that n0 = n in some domain V ⊂ D and there exist α, c ∈ R∗+
such that either <(n0 − 1) + α=(n0) ≥ c or <(1 − n0) + α=(n0) ≥ c in D. We introduce
Ω = supp(n0)∪DA. By assumption we have that Ω ( D and we can choose V such that V ∩Ω.

Lemma 12 implies that w∞ → 0 in L2(Sd−1) and therefore w∞ = 0. The Rellich theorem and
the unique continuation principle imply that w = 0 outside D. Thus we have that u and v solve
the interior transmission eigenvalue problem. Hypothesis 6 implies that that u = v = w = 0.
We introduce the intermediate scattered fields

∆us0,` + k2nus0,` = −k2(n0 − 1)ψ` in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂(us0,`)

∂r − ik(us0,`)
∣∣∣2 ds = 0

(6.9)

and 
div(A∇us`) + k2nus` = −div((A− Id)∇u0,`)− k2(n− n0)u0,` in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂(us0,`)

∂r − ik(us`)
∣∣∣2 ds = 0.

(6.10)

We have that u0,` ∈ H2(Ω) (for the same reason as in Theorem 23) which implies its strong
convergence to zero in H1(Ω) together with the continuity of the forward scattering problem
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for us` , we deduce that us` converges strongly to zero in H1
loc(Rd). Finally the interior elliptic

regularity implies that ψ` strongly converges to zero in H1(Ω). We have,

(Tψ`, ψ`) =−
∫
D

(1− n0)u0,`ψ` − sign(<(1− n0))

∫
Ω
|∇ψ`|2 −

∫
Ω

(A− Id)∇(u0,` + us`)∇ψ`

−
∫
D

(1− n)us`ψ` −
∫

Ω
(1− n0)u0,` + sign(<(1− n0))

∫
Ω
|∇ψ`|2 − ψ`.

Using the strong convergence results we deduce that the last four terms go to zero. Treating the
first term on the right hand side as in Theorem 23 leads to a contradiction.

The case Dn = ∅ and D = DA

We now consider the case where Dn = ∅ and D = DA rather than the case Dn ⊂ DA = D in
order to lighten the notation. The reader can easily see that the latter case can be treated in a
similar way. In the following, ‖‖X(D) will refer to the H1 norm of the Herglotz wave function in
D.

Theorem 27. If Dn = ∅, D = DA, A is C1 in a neighborhood of ∂D that we denote by V and
if there exist α, c ∈ R∗+ such that either <(A− Id)− α=(A) ≥ c or <(Id−A)− α=(A) ≥ c in
V there exists µ such that the operator T defined in 6.4 verifies

|(Tψ, ψ)| ≥ µ ‖ψ‖2X

for all ψ ∈ R(Hs).

Proof. We introduce A0 such that A0 = A inside V and A0 is such that either <(A0 − Id) −
α=(A0) ≥ c or <(Id−A0)− α=(A0) ≥ c in D. Since we suppose that A is C1 inside V we can
choose A0 to be C1 inside all D. We also introduce Ω = supp(A−A0), by construction Ω ( D.

We will proceed by a contradiction argument, therefore we assume:

‖ψ`‖X(D) = 1 and |(Tψ`, ψ`)| → 0 as `→∞

and that ψ` weakly converges in H1(D) to ψ that satisfies

∆ψ + k2ψ = 0 in D.

The solution w` satisfying (6.1) with v = ψ` weakly converges inH1(D) to w ∈ H1(Rd) satisfying
(6.1) with v = ψ.

Lemma 12 implies that w∞ → 0 in 2(Sd−1) and therefore w∞ = 0. The Rellich theorem and
unique continuation theorem imply that w = 0 outside D. Thus we have that u and v solve the
interior transmission eigenvalue problem. Hypothesis 6 implies that that u = v = w = 0. Let
us introduce the intermediate (scattered) field us0,` that solves:

div(A0∇us0,`) + k2us0,` = −div((A0 − Id)∇ψ`) in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂(us0,`)

∂r − ik(us0,`)
∣∣∣2 ds = 0.

(6.11)
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We denote by u0,` = us0,` + ψ` the total field. We also introduce us` that solves:
div(A∇us`) + k2us` = −div((A−A0)∇u0,`) in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂us`∂r − ikus`∣∣∣2 ds = 0.
(6.12)

We clearly have

|(Tψ`, ψ`)| =
∣∣∣∣∫
D

(A− Id)∇(us` + u0,`)∇ψ`dx
∣∣∣∣

=

∣∣∣∣∫
D

(A0 − Id)∇u0,`∇ψ`dx+

∫
D

((A− Id)∇us`∇ψ`dx+

∫
Ω

(A−A0)∇u0,`∇ψ`dx
∣∣∣∣

≥
∣∣∣∣∫
D

(A0 − Id)∇u0,`∇ψ`dx
∣∣∣∣− ∣∣∣∣∫

D
((A− Id)∇us`∇ψ`dx+

∫
Ω

(A−A0)∇u0,`∇ψ`dx
∣∣∣∣

≥
∣∣∣∣∫
D

(A0 − Id)∇u0,`∇ψ`dx
∣∣∣∣− ∣∣∣∣∫

D
(Id−A)∇us`∇ψ`dx

∣∣∣∣− ∣∣∣∣∫
Ω

(A−A0)∇u0,`∇ψ`dx
∣∣∣∣

(6.13)
Since u0,` ∈ H1(D) satisfies div(A0∇u0,`)+k2u0,` = 0 inD, we infer by interior elliptic regularity
that u0,` ∈ H2(Ω) (from [31] and the fact that A0 is C1) and therefore converges strongly to
zero in H1(Ω).
By continuity of the forward scattering problem verified by us` and the strong convergence of
u0,` in H1(Ω), we deduce that us` strongly converges to zero in H1(D). We therefore deduce
that for ` large enough (6.13) becomes:

|(Tψ`, ψ`)| ≥
1

2

∣∣∣∣∫
D

(A0 − Id)∇u0,`∇ψ`dx
∣∣∣∣ (6.14)

To treat |(T0ψ`, ψ`)| =
∣∣∫
D(A0 − Id)∇u0,`∇ψ`dx

∣∣ we need to consider two cases depending
on the compatibility of the sign of A0 − Id and Id (as in [19]). First we consider the case when
there exist α, c ∈ R+,∗ such that <(A0 − Id) − α=(A0) ≥ c > 0. Since us0,` solves (6.11) we
deduce that:

(T0ψ`, ψ`) = −
∫
D

(A0 − Id)∇u0,`∇u0,` + |u0,`|2 −
∫
Rd
|∇us0,`|2 + |us0,`|2 +

∫
D
|u0,`|2

+

∫
Rd
|us0,`|2 + ik

∫
Sd−1

|us0,`|2 (6.15)

The weak convergence of us0,` in H1
loc(Rd) and u0,` in H1(D) imply the strong convergence in

L2
loc(Rd) and L2(D) respectively. Therefore the last three terms in the equality above go to zero.

Moreover (6.14) implies that |(T0ψ`, ψ`)| go to zero. Therefore the first term in (6.15) goes also
to zero. From the convergence to zero of its imaginary part we deduce that ∇u0,` goes to zero
on the support of =(A0). From the real part we deduce that the remaining part of ‖u0,`‖2H1(D)

goes to zero as well as
∥∥∥us0,`∥∥∥2

H1
loc(Rd)

. This implies that ‖ψ`‖2H1(D) → 0 which is a contradiction.

Then we consider the case when there exist α, c ∈ R+,∗ such that <(Id−A0)−α=(A0) ≥ c > 0.
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We cannot use (6.15) since the term involving u0,` and us0,` do not have the same sign. From
the definition of T0 we have:

(T0ψ`, ψ`) = −
∫
D

(A0 − Id)∇ψ`∇ψ` + |ψ`|2 −
∫
D

(A0 − Id)∇us0,`∇ψ` +

∫
D
|ψ`|2.

Using equation (6.1) verified by us0,` we have:

(T0ψ`, ψ`) =−
∫
D

(A0 − Id)∇ψ`∇ψ` + +

∫
Rd
Ā0∇ūs0,`∇us0,`

− 2i

∫
D
=(A0)∇us0,`∇ψ` − ik

∫
Sd−1

|u∞0,`|2

=−
∫
D
<(A0 − Id)∇ψ`∇ψ` +

∫
Rd
<(A0)∇ūs0,`∇us0,`

− i
∫
D

(=(A0)∇ψ`∇ψ` + =(A0)∇us0,`∇ūs0,` + 2=(A0)∇us0,`∇ψ`)− ik
∫
Sd−1

|u∞0,`|2

=−
∫
D
<(A0 − Id)∇ψ`∇ψ` +

∫
Rd
<(A0)∇ūs0,`∇us0,`

− i
∫
D

(=(A0)(∇ψ` +∇us0,`)(∇ψ` +∇ūs0,`) + 2i=(=(A0)∇us0,`∇ψ`)− ik
∫
Sd−1

|u∞0,`|2

=

∫
D
<(Id−A0)∇ψ`∇ψ` + |ψ`|2 +

∫
Rd
<(A0)∇ūs0,`∇us0,` + |us0,`|2 + 2

∫
D
=(=(A0)∇us0,`∇ψ`)

− i
∫
D

(=(A0)(∇ψ` +∇us0,`)(∇ψ` +∇ūs0,`)−
∫
D
|ψ`|2 − ik

∫
Sd−1

|u∞0,`|2 −
∫
Rd
|us0,`|2

The last three terms go to zero and we will denote them by CT . Then

|(T0ψ`, ψ`)| ≥
1√
2
|
∫
D
<(Id−A0)∇ψ`∇ψ` + |ψ`|2 +

∫
Rd
<(A0)∇ūs0,`∇us0,` + |us0,`|2

+ 2

∫
D
=(=(A0)∇us0,`∇ψ`)|+

1√
2

∣∣∣∣∫
D

(=(A0)(∇ψ` +∇us0,`)(∇ψ` +∇ūs0,`)
∣∣∣∣− |CT |

From this last inequality we see that the first term will control the norm of the incident field
and scattered field in the region where =(A0) is equal to zero and the second term ensures that
the total field is zero in the region where =(A0) is equal to zero. It implies that the total field is
equal to zero in all D and therefore by linearity of the forward scattering problem the scattered
field is also equal to zero meaning that ψ` is equal to zero which is a contradiction.

Remark 12. One can weaken the regularity assumption on A in V (e.g. example piecewise C1)
as long as one obtain an interior regularity property (e.g. u0,` ∈ Hs(Ω) where s is strictly larger
than one) which implies strong convergence through compact embeddings [34].

A final coercivity result

We introduce D =
⋃
iD

i
n ∪

⋃
iD

i
A where the Di are simply connected disjoint component. We

assume that A− Id is not zero in the neighborhood of the boundary Di
A and A− Id equals zero

in the neighborhood of the boundary Di
n. With those notation and the result of Theorems 27

and 26 we can give the final result under Hypothesis 6 in the case of many disjoint scatter.
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Theorem 28. Assume A has C1 regularity in Di
A∩V and there exist c > 0 and α > 0 such that

either <(A− Id)− α=(A) ≥ c > 0 in
⋃
iD

i
A ∩ V and <(1− n) + α=(n) ≥ c > 0 in

⋃
iD

i
n ∩ V

or <(Id−A)− α=(A) ≥ c > 0 in
⋃
iD

i
A ∩ V and <(n− 1) + αIm(n) ≥ c > 0 in

⋃
iD

i
n ∩ V is

verified. We have that T defined by (6.4) verifies:

|(Tψ, ψ)| ≥ µ ‖ψ‖2X

where ψ ∈ R(Hs).

Proof. We set D1 =
⋃
iD

i
A and D2 =

⋃
iD

i
n. In this case we have that

(Tψ, ψ) = (Tψ|D1 , ψ|D1) + (Tψ|D2 , ψ|D2)

By the linearity of the forward scattering problem, if we introduce the two total fields associated
to the two incidents waves ψ1 = ψ|D1 in D1 and 0 in D2 and ψ2 = ψ|D2 in D2 and 0 in D1,
denoted u1 = us1 + ψ1 and u2 = us2 + ψ2. Then we have:

(Tψ, ψ) =(T1ψ1, ψ1)D1
+ (T2ψ2, ψ2)D2

−
∫
D1

(A− Id)∇us2 · ∇ψ̄1 + k2(1− n)us2ψ̄1

−
∫
D2

k2(1− n)us1ψ̄2 + (A− Id)∇us1 · ∇ψ̄2

where T1 and T2 are the operators corresponding to D1 and D2 respectively. We clearly see that
the last two terms go to zero (by compactness argument). Therefore using the same argument
as in the previous sections we have the coercivity of T if T1 and T2 have the same sign. The
sign of T1 and T2 are given in the proofs of Theorems 27 and 26 respectively, which allows us to
conclude.

6.2.2 A priori known regions with different contrast signs

As we discussed in Section 6.2.1, the operator T is coercive under hypothesis on the physical
parameter of the medium in the neighborhood of the boundary of D. However when there are
several disjoint components, even if the operator T associated with a single part of D is coercive,
the operator T associated with all of D might loose coercivity if the hypothesis of Theorem 28
are not verified. This problem is similar to the case of a mixture of Dirichlet and Neumann
obstacles. In this section we would like to highlight that similarly to [40], it is possible to solve
this problem if one has an a priori knowledge of subregions where contrast signs are incompatible.
More precisely, we suppose that there exist two disjoint regions D− =

⋃
iD

i
n,− ∪

⋃
iD

i
A,− and

D+ =
⋃
iD

i
n,+∪

⋃
iD

i
A,+ such that for a neighborhood V of ∂D we have <(A−Id)−α=(A) ≥ c >

0 in
⋃
iD

i
A,+∩V and <(1−n)+α=(n) ≥ c > 0 in

⋃
iD

i
n,+∩V , and <(Id−A)−α=(A) ≥ c > 0

in
⋃
iD

i
A,− ∩ V and <(n− 1) + αIm(n) ≥ c > 0 in

⋃
iD

i
n,− ∩ V . Moreover we assume that we

know a priori two regions Σ− and Σ+ such that D− ⊂ Σ− and D+ ⊂ Σ+. We then introduce
two cost functionals:

J+
α (φ; g) :=α|(Fg2, g1)|+ α1−γ ‖Hsg2 −Hmg1‖2X̂(Σ+)

+ α1−γ |(Fg2 − φ, g1)|+

α1−γ(‖Hsg2 + Φz‖2X̂(Σ−)
+ ‖Hmg1 + Φ∞z ‖

2
X̂(Σ−)

) + ‖Fg2 − φ‖2

∀g = (g1, g2) ∈ L2(Γs)× L2(Γm)

(6.16)
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J−α (φ; g) :=α|(Fg2, g1)|+ α1−γ ‖Hsg2 −Hmg1‖2X̂(Σ−)
+ α1−γ |(Fg2 − φ, g1)|+

α1−γ(‖Hsg2 + Φz‖2X̂(Σ+)
+ ‖Hmg1 + Φz‖2X̂(Σ+)

) + ‖Fg2 − Φ∞z ‖
2

∀g = (g1, g2) ∈ L2(Γs)× L2(Γm)

(6.17)

Similarly to what we have done in Section 4.2, we can introduce g+
α and g−α two minimizing

sequences of those functionals.

Theorem 29. Under the hypothesis that k is not an interior transmission eigenvalue and
that A and n verify the hypothesis above, we have the following characterization of D:

• for z ∈ Σ+ we have that z ∈ D+ if and only if |
(
Fg+

α,2, g
+
α,1

)
| +

α−γ
∥∥∥Hsg

+
α,2 −Hmg

+
α,1

∥∥∥2

X̂(Σ+)
+ α−γ(

∥∥∥Hsg
+
α,2 + Φz

∥∥∥2

X̂(Σ−)
+
∥∥∥Hmg

+
α,1 + Φz

∥∥∥2

X̂(Σ−)
) stays

bounded.

• for z ∈ Σ− we have that z ∈ D− if and only if |
(
Fg−α,2, g

−
α,1

)
| +

α−γ
∥∥∥Hsg

−
α,2 −Hmg

−
α,1

∥∥∥2

X̂(Σ−)
+ α−γ(

∥∥∥Hsg
−
α,2 + Φz

∥∥∥2

X̂(Σ+)
+
∥∥∥Hmg

−
α,1 + Φz

∥∥∥2

X̂(Σ+)
) stays

bounded.
Moreover when z ∈ D+ (resp. D−) we can extract a sequence from g+

α (resp. g−α ) such
that the corresponding herglotz waves strongly converge to the solution of associated interior
transmission problem.

Proof. The proof is the same for Σ+ and Σ−. We give details only for Σ+.
If z ∈ D+, we know that there exists v such that Φ∞z = Gv and that v solves the interior
transmission problem with (f, g) = (Φz,

∂Φz
∂ν ). The interior transmission problem is independent

on each disjoint set, particularly it can be analyzed separately in D+ and D−. In D− we know
that v = −Φz and u = 0. Therefore the denseness of the ranges of Hs and Hm and the fact that
z /∈ Σ− implies that one can construct g0,1 such that :

‖Hsg0,1 − v‖X(D+) ≤ α

and
‖Hsg0,1 − v‖X(D−) ≤ ‖Hsg0,1 + Φz‖X̂(Σ−) ≤ α

where we have used the space X(D−) and X(D+) which are defined as X(D) but for D− and
D+ respectively. For the same reason we can construct g0,2

‖Hsg0,1 −Hmg0,2‖X̂(Σ+∪Σ−) ≤ α

which implies that

α

[
|
(
Fg+

α,2, g
+
α,1

)
|+ α−γ

∥∥∥Hsg
+
α,2 −Hmg

+
α,1

∥∥∥2

X̂(Σ+)
+ α−γ(

∥∥∥Hsg
+
α,2 + Φz

∥∥∥2

X̂(Σ−)
+
∥∥∥Hmg

+
α,1 + Φz

∥∥∥2

X̂(Σ−)
)

]
≤ J+

α (Φ∞z ; g0) ≤ Cα.
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If z ∈ Σ+ \ D̄+ and |
(
Fg+

α,2, g
+
α,1

)
| + α−γ

∥∥∥Hsg
+
α,2 −Hmg

+
α,1

∥∥∥2

X̂(Σ+)
+

α−γ(
∥∥∥Hsg

+
α,2 + Φz

∥∥∥2

X̂(Σ−)
+
∥∥∥Hmg

+
α,1 + Φz

∥∥∥2

X̂(Σ−)
) remains bounded, then∥∥∥Hmg

+
α,1

∥∥∥2

X(D−)
≤
∥∥∥Hmg

+
α,1

∥∥∥2

X̂(Σ−)
≤ Cαγ + ‖Φz‖2X̂(Σ−)

,∥∥∥Hsg
+
α,2

∥∥∥2

X(D−)
≤
∥∥∥Hsg

+
α,2

∥∥∥2

X̂(Σ−)
≤ Cαγ + ‖Φz‖2X̂(Σ−)

,

and∥∥∥Hsg
+
α,2 −Hmg

+
α,1

∥∥∥2

X(D)
≤
∥∥∥Hsg

+
α,2 −Hmg

+
α,1

∥∥∥2

X̂(Σ+)
+
∥∥∥Hsg

+
α,2 + Φz

∥∥∥2

X̂(Σ−)
+
∥∥∥Hmg

+
α,1 + Φz

∥∥∥2

X̂(Σ−)

≤ 2Cαγ

Following the idea of the proof of Theorem 28 we can split the operator T using T+ and T− which
are associated to obstacles D+ and D− alone. Those operators are coercive as demonstrated in
Theorem 28.(

THsg
+
α,2, Hsg

+
α,2

)
D

=
(
T+Hsg

+
α,2, Hsg

+
α,2

)
D+

+
(
T−Hsg

+
α,2, Hsg

+
α,2

)
D−

+ C

where C is a compact term. To explicitly define this term we introduce ψ+ = Hsg
+
α,2 in D+

and 0 elsewhere and ψ− = Hsg
+
α,2 in D− and 0 elsewhere, and us+ and us− the scattered fields

associated to D+ alone and D− alone.

|C| =| −
∫
D+

(A− Id)∇us− · ∇ψ̄+ + k2(1− n)us−ψ̄+ −
∫
D−

k2(1− n)us+ψ̄− + (A− Id)∇us+ · ∇ψ̄−|

≤C
∥∥∥Hsg

+
α,2

∥∥∥
X(D−)

∥∥∥Hsg
+
α,2

∥∥∥
X(D+)

where the inequality comes from the continuity of the forward scattering problem.
Combining those decomposition and the previous inequalities

µT+

∥∥∥Hsg
+
α,2

∥∥∥2

X(D+)
− C ‖T−‖ ‖Φz‖2X̂(Σ−)

− C ‖Φz‖2X̂(Σ−)

∥∥∥Hsg
+
α,2

∥∥∥
X(D+)

≤ |
(
THsg

+
α,2, Hsg

+
α,2

)
|

≤ |
(
THsg

+
α,2, Hmg

+
α,1

)
|+
∥∥∥Hsg

+
α,2 −Hmg

+
α,1

∥∥∥2

X̂(Σ+∪Σ−)

From which we conclude that
∥∥∥Hsg

+
α,2

∥∥∥2

X(D+)
is bounded which is a contradiction.

Remark 13. This functional shares some similarity with the case of limited aperture data in the
sense that it uses an additional term to correct for the non coercivity of T (as we did for the non
symmetric factorization). However for the case of limited aperture the a priori information is
rather weak as we could set up Σ as being almost the whole space. For this case it is a very strong
assumption since it assumes that we have a priori information on the location of the obstacles.
In the approach proposed by Kirsch and Grinberg they also need to know what type of obstacle
will be inside each region. However in our approach we do not need to know this apriori, we
could have D− ⊂ Σ+ and D+ ⊂ Σ−.
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6.3 Analysis of differential measurements imaging

The result from Chapter 3 on the treatment of differential measurements relies on two main
arguments: First the strong convergence of Herglotz waves to the solution of the underlying
interior transmission problem (one for the background and one for the perturbed medium) and
a careful comparison of ITP solutions between the two configurations of the medium. This
comparison is possible if one can use a unique continuation principle and assume the solvability
of an interior transmission problem.

The strong convergence of the sequence of Herglotz wave functions has been studied in the
previous sections and basically relies on two sets of hypothesis: the first one ensures the solv-
ability of the associated interior transmission problem and the second one ensures the coercivity
of T . Unique continuation principle introduces a complementary hypothesis on A (for example
W 1,∞). We suppose in the following that all those hypothesis hold true.

Giving the proof of Theorem 13, the case of orthotropic medium will be either identical if
we assume the solvability of all transmission eigenvalues that would appear in the proof or very
painful, unclear and "combinatorial" if we want to specify the associated transmission problems
since one has to go through all possible geometrical settings (as in Chapter 3) and all possible
cases for A or A0 (being equal to Id or not) and the same for n and n0 (since each configuration
requires to look for specific functional spaces and conditions on the parameters). We will rather
highlight some specific cases that are either easy to handle or give rise to ITP that are not
covered by existing literature.

We introduce the notation:

ITP (D, f, g, A,A0, n, n0) ≡


divA∇u+ k2nu = 0 in D,
divA0∇v + k2n0v = 0 in D,
(u− v) = f on ∂D,
(A∇u−A0∇v) · n = g on ∂D,

(6.18)

and denote by σ(D,A,A0, n, n0) the associated set of transmission eigenvalues.

The algorithm proposed in Chapter 3 exploits two sets of measurements that we will de-
note F and F0 related to the perturbed medium and the background. From those two sets
we can compute independently two sequences (indexed by α), gα,z0 and gα,z, which lead to
sequences Hgα,z and H0g

α,z
0 that converge strongly to v and v0 where (u, v) and (u0, v0) are

solutions of ITP (D,Φz, ∂νΦz, A, Id, n, 1) and ITP (D0,Φz, ∂νΦz, A0, Id, n0, 1). In the following
two examples we will see what are the hypothesis that should be needed to compare v and v0.
We will denote Ω the domain with Lipschitz boundary and connected complement such that
{supp(n− n0) ∪ supp(A−A0)} ⊂ Ω.
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The case Ω strictly included in D0

Ω

D0

Figure 6.1: Schematic of the perturbation Ω

As a first case let us assume that D0 and D are simply connected and that Ω ( D0 (which means
that D0 = D). In this case the perturbation that appears in between the two measurements
takes place strictly inside a previously existing obstacle. To have convergence of the sequence of
Herglotz wave functions that minimizes the GLSM cost functional to v and v0, we should have k /∈
{σ(D0, A0, Id, n0, 1)∪σ(D,A, Id, n, 1)}. This is a reasonable assumption if σ(D0, A0, Id, n0, 1)∪
σ(D,A, Id, n, 1) is discrete and countable with +∞ as only accumulation point.

We know from [9] that σ(D0, A0, Id, n0, 1) ∪ σ(D,A, Id, n, 1) is discrete for a solution in
H1(D)×H1(D) if A− Id and 1− n have the same sign in a neighborhood of ∂D and A0 − Id
and 1−n0 have the same sign in a neighborhood of ∂D0. We will assume that this is the case. In
the proof of Theorem 13 we proceed using a contradiction argument, assuming that v = v0 inside
D0. From this equality we deduce that the Cauchy data of u and u0 are identical on ∂D0 = ∂D.
Then using a unique continuation argument (that’s why we need some assumption on A and
A0) we deduce that u and u0 solve ITP (Ω, 0, 0, A,A0, n, n0). To conclude that u = u0 = 0 we
need to assume that k /∈ σ(Ω, A,A0, n, n0) which again is realistic if σ(Ω, A,A0, n, n0) is discrete.
The latter problem has not been studied yet but it seems that a necessary condition (using the
T-coercivity approach [9]) will be that A − A0 and n0 − n should have the same sign near the
boundary of Ω.

If we assume that A = A0 in Ω, again the discreteness of σ(Ω, A,A0, n, n0) has not been
studied. Following the work of [52] for n − n0 that does not change sign in a neighborhood of
∂Ω, it seems that the correct functional space could be u, u0 ∈ L2(Ω) and u − u0 ∈ H2(Ω).
One immediately sees that above we assumed that u, u0 ∈ H1(D), which means that to have
u−u0 ∈ H2(Ω) using some elliptic regularity arguments one should assume that A and A0 have
C1 regularity in a domain that strictly contains Ω.

Considering the case of Ω ⊂ D0 we quickly end up with an interior transmission problem
that has not been clearly studied in the literature. Some of those problems might be treated
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using already known techniques. However there is a tricky interplay between the spaces used
to study ITP (D0,Φz, ∂νΦz, A0, Id, n0, 1) and ITP (D,Φz, ∂νΦz, A, Id, n, 1) and the space one
should use to study the solvability of ITP (Ω, 0, 0, A,A0, n, n0).

The case of Ω intersecting D0

Ω

D0

Figure 6.2: Schematic of the perturbation Ω

Let us assume that D0 and D are simply connected and that Ω ∩ D0 6= 0 (which means that
D0 and Ω have non empty intersection). As in Chapter 3, we will assume that ∂D0 ∩ ∂Ω is
of measure zero. Similarly to the previous section and Chapter 3 we obtain using the unique
continuation principle that u and ũ0 solves ITP (Ω, 0, 0, A, Ã0, n, ñ0) where we define:

ũ0 =

{
u0 in D0

v + Φz in D \D0
, Ã0 =

{
A0 in D̃0

Id in D \D0
, ñ0 =

{
n0 in D0

1 in D \D0
.

If we assume that A− Id and 1− n have the same sign in a neighborhood of ∂D and A0 − Id
and 1 − n0 have the same sign in a neighborhood of ∂D0, we have that σ(D0, A0, Id, n0, 1) ∪
σ(D,A, Id, n, 1) is discrete. As in the previous subsection we conjecture that A−A0 and n0−n
having the same sign near the boundary of Ω is a sufficient condition for σ(Ω, A, Ã0, n, ñ0) to
be discrete. Because Ω shares some boundary with D and D shares some boundary with D0,
we can deduce from the previous assumption that either A > A0 > Id and n < n0 < 1 in
neighborhood of ∂D or A < A0 < Id and n > n0 > 1 in neighborhood of ∂D.

Considering other cases of contrast as in the previous subsection induces ITPs that are not
solved in the literature and that exhibit complex interplay between the three possible different
functional settings (known in the literature) for ITPs.
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6.4 The case of known inhomogeneous backgrounds

In many applications the obstacle we try to image is embedded in a known heterogeneous
background. Such configurations has been studied initially in [45] for electrical impedance
tomography and then extended to isotropic Helmholtz equation in [33] and to anisotropic scalar
waves in [19]. As for the near field case, the goal of those methods is to find an operator
that will restore the symmetry of the second factorization in order to apply the factorization
method. Since they consider incident plane waves they have restricted themselves to the case
where Γs = Γm (for reasons already discussed in Section 4.3). Using the framework of Section
4.2.2 we can extend their results to the case where Γs 6= Γm.

Even for full aperture measurements, the symmetry of the farfield operator has been suc-
cessfully restored only when there is no absorption in the known heterogeneous medium and
the support of the obstacle is inside the support of the background medium. In the following
we would like to introduce the different quantities related to the case of known heterogeneous
backgrounds. We consider a known background medium of physical parameters A0 and n0 and a
unknown medium of physical parameters A and n. We introduce Ω such that support of n− n0

and A − A0 is include inside Ω̄. Moreover we assume that Ω is such that it has a Lipschitz
boundary and connected complement in Rd. We measure the farfield pattern of the scattered
field us(d̂, ·) generated by A and n for an incident plane wave ψ(d̂, ·) for several directions. We
denote by F the farfield operator associated to this medium. The condition on those directions
of incidence and measurement can be either in the setting of full or limited aperture. Because
the background medium is known we can also compute the far field pattern of us0(d̂, ·) associated
to A0 and n0 for ψ(d̂, ·). Therefore one has access to the farfield operator F0 of the background
medium. Those two scattered fields solve:

div(A∇us) + nk2us = −k2(n− 1)ψ − div((A− Id)∇ψ) in Rd,

lim
r→∞

∫
|x|=r

∣∣∂us
∂r − iku

s
∣∣2 ds = 0.

(6.19)


div(A0∇us0) + n0k

2us0 = −k2(n− 1)ψ − div((A0 − Id)∇ψ) in Rd,

lim
r→∞

∫
|x|=r

∣∣∣∂us0∂r − ikus0∣∣∣2 ds = 0.
(6.20)

If we introduce w = us − us0 and the total fields u0 = us0 + ψ and u = us + ψ, then after
straightforward calculations we end up with

div(A0∇w) + n0k
2w = −k2(n− n0)u− div((A−A0)∇u) in Rd,

div(A∇w) + nk2w = −k2(n− n0)u0 − div((A−A0)∇u0) in Rd,

lim
r→∞

∫
|x|=r

∣∣∂w
∂r − ikw

∣∣2 ds = 0.

(6.21)

From those equations it is natural to introduce the following operators, H : L2(Γs) → X(Ω)

defined by

Hg :=

[ ∫
S u0(d̂, x)g(d̂)

∇
∫
S u0(d̂, y)g(d̂)

]
x ∈ Ωn and y ∈ ΩA, (6.22)
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which plays the role of the Herglotz operator, and K∗ : X(Ω)→ L2(Γm) defined by

K∗ϕ = K∗
[
ϕ

∇ϕ

]
(x̂) :=

∫
Ωn

Φ∞n0
(y, x̂)ϕ(y)dy +

∫
ΩA

(A− Id)∇yΦ∞n0
(y, x̂) · ∇ϕdy, ϕ ∈ X(Ω)

which plays the role of the adjoint Herglotz operator, and

T

[
ψ

∇ψ

]
:=

[
−k2(n0 − n)(ψ + w)

−(A−A0) · (∇ψ(y) +∇(w(y))

]
, (6.23)

with w ∈ H1
loc(Rd) being the solution of (6.21)(with ψ = u0). We therefore obtain the following

factorization
F − F0 = W = K∗TH.

We see that we obtain again a non symmetric factorization. In order to apply the GLSM
framework to this setting we should relate the range of G = K∗T restricted to RH to the
support of Ω and then study the coercivity of T . To do so we need to introduce the following
interior transmission problem defined for u and v in H1(Ω),

divA∇u+ k2nu = 0 in Ω,

∆A0v + k2n0v = 0 in Ω,

(u− v) = f on ∂Ω,

(A∇u−A0∇v) · n = g on ∂Ω.

(6.24)

We assume that k is such that this problem is well posed.

Lemma 13. If k is such that (6.24) is well posed the we have that Φ∞0,z ∈ R(G) if and only if
z ∈ Ω.

Proof. The proof of this lemma is exactly the same as in the case of the vacuum as long as one
can use the unique continuation principle in the background medium.

The following lemma states an similar result as in Lemma 8 for the case of known background

Lemma 14. We have the following identity, for ψ = (ψ1, ψ2) ∈ L2(Ωn)×L2(ΩA)d and T defined
in (6.23) :

=(Tψ, ψ) = k

∫
Sd−1

|w∞|2−
∫

ΩA

=(A−A0)(∇(w)+ψ2) ·(∇(w) + ψ2)+k2

∫
Ωn

=(n−n0)|w+ψ1|2

We introduce Ω =
⋃
i Ωi

n ∪
⋃
i Ωi

A where the Ωi are simply connected disjoint components.
We assume that A−A0 is not zero in the neighborhood of the boundary Ωi

A and A− Id equals
zero in the neighborhood of the boundary Ωi

n. We denote V neighborhood of ∂Ω, Ω1 =
⋃
i Ωi

A,
Ω2 =

⋃
i Ωi

n.

Theorem 30. We assume that k is not a transmission eigenvalue of 6.24, =(A− A0) ≤ 0 and
=(n− n0) ≥ 0 and A and A0 are of regularity C1 in

⋃
i Ωi

A ∩ V and there exist c > 0 and α > 0

such that either <(A−A0)−α=(A−A0) ≥ c > 0 in
⋃
i Ωi

A∩V and <(n0−n)+α=(n−n0) ≥ c > 0
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in
⋃
i Ωi

n∩V or <(A0−A)−α=(A−A0) ≥ c > 0 in
⋃
i Ωi

A∩V and <(n−n0)+αIm(n−n0) ≥ c > 0

in
⋃
i Ωi

n ∩ V is verified. Then we have that T defined in (4.4) satisfies

|(Tψ, ψ)| ≥ µ ‖ψ‖2X(Ω)

for all ψ ∈ R(H).

The proof is again identical to the one of Section 4.3. As the background medium is known
it is possible to compute H and K as operators from L2(Sd−1) to X̂(Σ)× X̂(Σ)d where Σ is an
a priori region such that Ω ⊂ Σ. We can then finally state the exact characterization of Ω as a
corollary of Theorems 18 and 19. One can apply Theorems 18 and 19 with U = K, V = H and
Ŷ = X̂(Σ), where Ω ⊂ Σ.
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In this chapter we consider the scattering problem for linear elasticity. It turns out that
in the case of full data, the formalism for previously introduced sampling methods is close to
the one used in Chapter 6 and therefore we conclude in Sections 7.1 and 7.2 that the results
from the previous chapters can be easily extended. In Section 7.4 we discuss the case of partial
polarization data. The use of partial polarization data introduces new original problems that are
still unsolved by the writing of this manuscript and constitute interesting perspectives. First the
interior transmission problem is replaced with a problem that couples an interior transmission
problem with an exterior one together with conditions on the polarization of the interior incident
field and exterior scattered field. We were not able to demonstrate that this problem is of
Fredholm type. The second problem arises when one considers that one polarization is used
for the incident wave and the other polarization of the scattered field is measured. In this case
the farfield pattern have a non symmetric factorization that does not verify the hypothesis of
Chapter 4.

7.1 Model problem

We are interested in the inverse time harmonic scattering problem for linear elasticity. For a
frequency ω > 0 the total field, u, solves Navier equation:

div(2µe(u) + λdiv(u)Id) + ρω2u = 0
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where e(u) := 1
2(∇u + ∇u>) is the strain tensor, λ ∈ L∞(Rd) and µ ∈ L∞(Rd) are the

Lamé constants and ρ ∈ L∞(Rd) is the density. For the sake of simplicity we suppose that
those physical parameters are such that the supports of the contrasts λ̃ = λ − λ0, µ̃ = µ − µ0

and ρ̃ = ρ − ρ0 are all equal to D with D a bounded domain with Lipschitz boundary and
connected complement. Moreover we assume that =(ρ̃) ≥ 0,=(3λ̃ + 2µ̃) ≤ 0, =(µ̃) ≤ 0 and
=(ρ0) = =(λ0) = =(µ0) = 0. Finally for the sake of simplicity we restrict ourselves to the case
where the supports of µ̃, λ̃ and ρ̃ are exactly D̄.

We are interested in the case where the total field is generated by plane waves. There are
several types of plane waves considering the direction of incidence and the type of polarization.
To have a unified representation we consider the extension of vector elastic fields to dyadic elastic
fields. Using this representation a dyadic elastic plane wave with direction of incidence d̂ is :

ui(d̂, x) := eikpx.d̂d̂⊗ d̂+ eiksx.d̂
(
I − d̂⊗ d̂

)
A vector elastic field is then obtained by taking the dot product between the dyadic field and the
desired polarization vector p̂: ui(d̂, x) = ui(d̂, x) · p̂ := eikpx.d̂(d̂ · p̂)d̂+eiksx.d̂(θ̂d̂ · p̂)θ̂d̂+eiksx.d̂(ϕ̂d̂ ·
p̂)ϕ̂d̂ with x ∈ R3, d̂, θ̂d̂, ϕ̂d̂ ∈ S2 (formed an orthonormal system) and kp = ω

√
ρ0

2µ0+λ0
and

ks = ω
√

ρ0
µ0
. The extension to dyadic fields does not impact nor interact with the differential

operator, it is only a convenient way to gather in one notation all the possible polarizations.
Thus one can retrieve the corresponding vector field by simply projecting (dotted to the right)
on the corresponding polarizations.

We denote by us the scattered field and denote by us(d̂, ·) := u− ui(d̂, ·) its dyadic counter
part. We can introduce the pressure and shear parts of the scattered field :

us
p = − 1

k2
p

grad divus

us
s =

1

k2
s

curl curlus

Using those two quantities we can formulate the radiation condition (also called Kupradze con-
dition) verified by us: 

lim
R→+∞

∫
|x|=R

∣∣∣∣∂us
p

∂r
− ikpus

p

∣∣∣∣2 ds = 0

lim
R→+∞

∫
|x|=R

∣∣∣∣∂us
s

∂r
− iksus

s

∣∣∣∣2 ds = 0

(7.1)

Our data for the inverse problem will be formed by the noisy measurements of the so called
farfield pattern defined by the following asymptotic expansion :

us(d̂, x) =
ekp|x|

|x|
d−1
2

u∞p (d̂, x̂) +
eks|x|

|x|
d−1
2

u∞s (d̂, x̂) +O(1/|x|)

with u∞s the shear-part (transverse waves) and u∞p pressure-part (normal waves). They define
the farfield pattern u∞ = u∞p + u∞s .
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Let us define for all v ∈ H1(D)d the unique function w ∈ H1
loc(Rd)d satisfying{

div(2µe(w) + λdiv(w)Id) + ρω2w = −div(2µ̃e(v) + λ̃div(v)Id)− ρ̃ω2v

w satisfies (7.1)
(7.2)

The incident field is given by the Herglotz wave:

vg(x) :=

∫
d̂∈Sd−1

eikpx.d̂gp(d̂) + eiksx.d̂gs(d̂)

where g ∈ L2(Sd−1)d can be uniquely decomposed into g = gp+ gs, with gp ∈ Lp(Sd−1) and gs ∈
Ls(Sd−1) and Lp(Sd−1) and Ls(Sd−1) respectively defined as {g ∈ L2(Sd−1)d s.t. g(d̂) × d̂ = 0}
and {g ∈ L2(Sd−1)d s.t. g(d̂) · d̂ = 0}. Using the dyadic form this can be written:

vg(x) :=

∫
d̂∈Sd−1

ui(x, d̂) · (gs(d̂) + gp(d̂))

By linearity of the forward scattering problem the farfield pattern of w solution of (7.2) (with
v = vg) is given by :

w∞(x̂) := Fg(x̂) :=

∫
d̂∈Sd−1

u∞(x̂, d̂) · (gs(d̂) + gp(d̂))

where F : L2(Sd−1)d → L2(Sd−1)d is called the farfield operator and where w∞ is the farfield of
w.

Now we introduce the compact operator (closely related to vg) H : L2(Sd−1)d → X(D),
where X(D) = {(f, g, h) ∈ L2(D)d × L2(D)× L2(D)d×d s.t. g = div(f) and h = e(f)}, defined
by

Hg(x) =

 vg(x)

div(vg)(x)

e(vg)(x)

 =

 vg(x)

ikp
∫
d̂∈Sd−1 e

ikpx.d̂d̂ · gp(d̂)∫
d̂∈Sd−1 e

ikpx.d̂ikpd̂⊗ gp(d̂) + eiksx.d̂iksd̂⊗ gs(d̂)

 (7.3)

for x ∈ D.

Remark 14. Using the Korn inequality

‖f‖H1(D)d ≤ C(‖e(f)‖L2(D)d×d + ‖f‖L2(D)d), (7.4)

on the third element of Hg we can conclude that the first element of Hg, namely vg, is in H1(D).
One other useful inequality relating the second and the third components of Hg is:

‖div(f)‖L2(D) ≤ 3 ‖e(f)‖L2(D)d×d (7.5)

We can also define the compact operator G : R(H) ⊂ X → L2(Sd−1)d defined by

Gv := w∞.

We then clearly have that:
F = GH.
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This factorization together with lemma 15 leads to the Linear Sampling Method for elastic
waves, more details about this can be found in [1].

The Green tensor fundamental solution of the Navier equation in free space is defined (in
dyadic form)

Γ(x, y) =


1
µ0

eiks|x−y|

4π|x−y| Id−
i

4µ0k2s
∇x ⊗∇x

[
H1

0 (kp|x− y|)−H1
0 (ks|x− y|)

]
in 2D

1
µ0

eiks|x−y|

4π|x−y| Id−
1

µ0k2s
∇x ⊗∇x

[
eikp|x−y|

4π|x−y| −
eiks|x−y|

4π|x−y|

]
in 3D

for x ∈ Rd \ {y}. And it has the following farfield:

Γ∞p (x̂, y) =


eiπ/4

(λ0+2µ0)
√

8πkp
e−ikpx̂·yx̂⊗ x̂ in 2D

k2p
4πρ0ω2 e

−ikpx̂·yx̂⊗ x̂ in 3D

Γ∞s (x̂, y) =

{
eiπ/4

µ0
√

8πks
e−iksx̂·y(Id− x̂⊗ x̂) in 2D

k2s
4πρ0ω2 e

−iksx̂·y(Id− x̂⊗ x̂) in 3D

The farfield pattern of w, solution of (7.2) also solves:{
div(2µ0e(w) + λ0div(w)Id) + ρ0ω

2w = −div(2µ̃e(v + w) + λ̃div(v + w)Id)− ρ̃ω2(v + w)

w satisfies (7.1)
(7.6)

Using the fundamental solution of the elasticity system, w can be expressed through the following
Lippmann-Schwinger type equation:

w(x) =

∫
D
ρ̃ω2Γ(x, z)(w+ v)− λ̃divz(Γ(x, z))div(w+ v)− 2µ̃ez(Γ(x, z)) : e(w+ v)dV (z) (7.7)

Taking the asymptotic expansion of the previous expression one simply has that G = H∗T where
H∗ : X → L2(Sd−1)d is the adjoint of H defined by:

H∗[f, div(f), e(f)](x̂) =

∫
D

Γ∞(x̂, z)f(z) + divzΓ
∞(x̂, z)div(f)(z) + e(Γ∞(x̂, z)) : e(f)(z)dV (z)

(7.8)
and where T : X → X is defined by

T (f) =

 ρ̃ω2(w + f)

−λ̃(div(w) + div(f))

−2µ̃(e(w) + e(f))

 (7.9)

with w defined as the weak radiating solution to : div(2µe(w) + λdiv(w)Id) + ρω2w =

−div(µ̃e(f) + λ̃div(f)Id)− ρ̃ω2f .
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7.2 Preliminary results for sampling methods

As for the acoustic case, sampling methods rely on the solvability of the interior transmission
problem. For the Navier equations it takes the following form:

div(2µ0e(v) + λ0div(v)Id) + ρ0ω
2v = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

u− v = 0 ∂D

Tn(u)− T 0
n(v) = 0 ∂D

(7.10)

where
Tn(u) := 2µn · ∇u+ λdiv(u)n + µn× curl(u)

is the surface stress vector and n is the outwardly directed unit normal on ∂D (T 0
n is defined

similarly for the background medium corresponding with µ0, λ0 and ρ0).
The functional spaces that should be used to study the ITP depend on the value of the contrast
λ̃, µ̃ and ρ̃. In [7] a study of the problem for different kind of material properties is given. In our
case we assume that λ̃, µ̃ and ρ̃ have the same support and therefore the appropriate solution
space is (u, v) ∈ H1(D)d × H1(D)d. The values of ω for which this problem has a non trivial
solution are the interior transmission eigenvalues. As in the case of Helmholtz equation we state
the two important lemmas related to the range of G and the coercivity of T .

Lemma 15. For any polarization p ∈ Sd−1 and if ω is not an interior transmission eigenvalue,
Γ∞(·, z) · p ∈ R(G) if and only if z ∈ D. Moreover if z ∈ D and Gϕ = Γ∞(·, z) · p we have that
the first component of ϕ, ϕ1 ∈ H1(D) (because of ϕ ∈ R(H)) and u ∈ H1(D) solve

div(2µ0e(ϕ1) + λ0div(ϕ1)Id) + ρ0ω
2ϕ1 = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

u− v = Γ(·, z)p ∂D

Tn(u)− T 0
n(v) = T 0

n(Γ(·, z)p) ∂D

(7.11)

Lemma 16. Under the hypothesis that ω is not an interior transmission eigenvalue and that
either

• there exist α, c > 0 such that <(λ̃) ≤ 0 and <(2µ̃+ 3λ̃)− α=(2µ̃+ 3λ̃) ≥ c > 0 in D,

• there exist α, c > 0 such that <(λ̃) ≥ 0 and −<(2µ̃+ 3λ̃)− α=(2µ̃+ 3λ̃) ≥ c > 0 in D,

the operator T verifies:
|(Th, h)| ≥ c ‖h‖2X ,

for h ∈ R(H).

Proof. First we prove an identity related to the imaginary part of T . Multiplying (7.6) with w
and integrating by parts over BR, a ball of radius R containing D,

−
∫
BR

[
2µ0|e(w)|2 + λ0|div(w)|2 − ρ0ω

2|w|2
]
dx+

∫
|x|=R

T 0
n(w)w

=

∫
D

[
2µ̃e(v + w)e(w) + λ̃div(v + w)div(w)− ρ̃ω2(v + w)w

]
.

(7.12)
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One can easily show that the radiation condition implies that :∫
|x|=R

T 0
n(w)w = ikp(λ0 + 2µ0)

∫
|x|=1

w∞p w
∞
p ds+ iksµ0

∫
|x|=1

w∞s w
∞
s ds+O(

1

R
)

Therefore, taking the imaginary part and letting R→∞ yields:

=(

∫
D

2µ̃e(v + w)e(w) + λ̃div(v + w)div(w)− ρ̃ω2(v + w)w

= −
∫
Rd

[
2=(µ0)|e(w)|2 + =(λ0)|div(w)|2

]
dx+

∫
Rd
=(ρ0)ω2|w|2dx

+ kp(λ0 + 2µ0)

∫
Sd−1

w∞p w
∞
p ds+ ksµ0

∫
Sd−1

w∞s w
∞
s ds

(7.13)

Consequently decomposing (v + w)v = |v + w|2 − (v + w)w, we obtain the following important
identity,

=(Tv, v) =

∫
D

[
−2=(µ̃)|e(v + w)|2 −=(λ̃)|div(v + w)|2 + =(ρ̃)ω2|v + w|2

]
−
∫
Rd

[
2=(µ0)|e(w)|2 + =(λ0)|div(w)|2

]
dx

+

∫
Rd
=(ρ0)ω2|w|2dx+ kp(λ0 + 2µ0)

∫
Sd−1

w∞p w
∞
p ds+ ksµ0

∫
Sd−1

w∞s w
∞
s ds

(7.14)
From physical considerations, we know that =(3λ + 2µ) ≤ 0, =(µ) ≤ 0 and =(ρ) ≥ 0 and by
assumption we have =(λ0) = 0; =(µ0)) = 0 and =(ρ0) = 0. If =(λ) ≤ 0 we immediately conclude
that =(Tv, v) ≥ 0. If =(λ) > 0 using (7.5) we can also obtain that =(Tv, v) ≥ 0.
To prove the coercivity property we use a contradiction argument. Assume for instance the
existence of a sequence v` ∈ R(H) (to avoid complicated notation we will omit the subscript 1

in v`,1) such that:

‖v`‖X = 1 and |(Tv`, v`)| → 0 as l→∞.

We denote by w` the solution of (7.2) for v = v`. Using inequality (7.4) we have that ‖v`‖H1(D)d

is also bounded and bounded away from 0 independently from `. Then up to changing the initial
sequence, one can assume that v` weakly converges to some v in H1(D)d. Elliptic regularity
implies that ‖w`‖H1(D)d is bounded uniformly with respect to `. It is then easily seen that w
and v satisfy (7.2) and since v` ∈ R(H), v satisfies

div(2µ0e(v) + λ0div(v)Id) + ρ0ω
2v = 0

Identity (7.14) and |(Tv`, v`)| → 0 implies that w∞ = 0. The Rellich theorem and the unique
continuation principle imply that w = 0 outside D. Therefore u = w + v ∈ H1(D) and v are
solution of the interior transmission problem (7.10). Since we exclude the interior transmissions
eigenvalues w = u = v = 0.
First we consider the case where <(2µ̃+ 3λ̃)− α|=(2µ̃+ 3λ̃) > 0 and <(λ̃) ≤ 0. Identity (7.12)
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implies that:

(Tv`, v`) =−
∫
D

[
2µ̃|e(v` + w`)|2 + λ̃|div(v` + w`)|2 + |v` + w`|2

]
−
∫
Rd

[
2µ0|e(w`)|2 + λ0|div(w`)|2 + |w`|2

]
+

∫
Rd

(ρ0ω
2 + 1)|w`|2dx+

∫
D

(ρ̃ω2 + 1)|v` + w`|2

+ ikp(λ0 + 2µ0)

∫
Sd−1

|w∞p,`|2ds+ iksµ0

∫
Sd−1

|w∞s,`|2ds

(7.15)
The terms on the second line goes to zero due to the compact embedding from H1(D)d to
L2(D)d, H1

loc(Rd)d to L2
loc(Rd)d and H1

loc(Rd)d to L2(Sd−1)d. Putting all these terms under the
notation CT we get:

|(Tv`, v`)| ≥ |
∫
D

[
2µ̃|e(v` + w`)|2 + λ̃|div(v` + w`)|2 + |v` + w`|2

]
+

∫
Rd

[
2µ0|e(w`)|2 + λ0|div(w`)|2 + |w`|2

]
| − |CT |

≥ 1√
2

(

∫
D

[
2<(µ̃)|e(v` + w`)|2 −<(−λ̃)|div(v` + w`)|2 + |v` + w`|2

]
+

∫
Rd

[
2µ0|e(w`)|2 + λ0|div(w`)|2 + |w`|2

]
dx

+ |
∫
D

2=(µ̃)|e(v` + w`)|2 + =(λ̃)|div(v` + w`)|2| − |CT |

If =(λ̃) ≤ 0 we find that

|(Tv`, v`)| ≥
1√
2

(

∫
D

[
<(2µ̃+ 3λ̃)|e(v` + w`)|2 + |v` + w`|2

]
+

∫
Rd

[
2µ0|e(w`)|2 + λ0|div(w`)|2 + |w`|2

]
dx

−
∫
D

2=(µ̃)|e(v` + w`)|2 + =(λ̃)|div(v` + w`)|2|)− |CT |

If =(λ̃) > 0 we find that

|(Tv`, v`)| ≥
1√
2

(

∫
D

[
<(2µ̃+ 3λ̃)|e(v` + w`)|2 + |v` + w`|2

]
+

∫
Rd

[
2µ0|e(w`)|2 + λ0|div(w`)|2 + |w`|2

]
dx

−
∫
D
=(2µ̃+ 3λ̃)|e(v` + w`)|2)− |CT |

which finally leads (independently of the sign =(λ̃)) for ` large enough (using (7.4)) to the same
reasoning as in the proof of Theorem 27: the region where =(2µ̃ + 3λ̃) is not zero will control
some part of the total field and the real part will control the remaining part of the total field.
This implies that v` strongly converges to zero in H1(D)d, which is a contradiction.
Now we consider the case −<(2µ̃+3λ̃)−α=(2µ̃+3λ̃) < 0 and <(λ̃) > 0. We cannot use identity
(7.15) as the sign of the contrast and the sign of the background physical parameter will not be
compatible. Instead we will use:

(Tv`, v`) = −
∫
D

[
2µ̃|e(v`)|2 + λ̃|div(v`)|2 − ρ̃ω2|v`|2

]
−
∫
D

[
2µ̃e(w`)e(v̄`) + λ̃div(w`)div(v̄`)− ρ̃ω2w`v̄`

]
dx
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Using equation (7.2) and integrating by parts we have:

−
∫
BR

2µe(w)e(w̄)+λdiv(w)div(w̄)−ρww̄+

∫
∂BR

T 0
n(w)w̄ =

∫
D

2̃µe(v)e(w̄)+λ̃div(v)div(w̄)−ρ̃vw̄

Now taking the conjugate and combining the two previous equations we get

(Tv`, v`) =−
∫
D

[
2µ̃|e(v`)|2 + λ̃|div(v`)|2 − ρ̃ω2|v`|2

]
−
∫
D

[
2µ̃e(w`)e(v̄`) + λ̃div(w`)div(v̄`)− ρ̃ω2w`v̄`

]
dx∫

D
2µ̃e(v̄`)e(w`) + λ̃div(v̄`)div(w`)− ρ̃v̄`w` +

∫
BR

2µ̄e(w̄`)e(w`) + λ̄div(w`)div(w̄`)− ρ̄w`w̄`

−
∫
∂BR

T 0
n(w`)w`

By letting R→∞ and collecting the “compact terms” under the name CT (for the same reason
as above) we finally obtain a formula similar to (7.15) but with the desired sign,

(Tv`, v`) =−
∫
D

[
2µ̃|e(v`)|2 + λ̃|div(v`)|2 − |v`|2

]
+

∫
Rd

2µ̄|e(w`)|2 + λ̄|div(w`)|2 + |w`|2

− 2i

∫
D

[
2=(µ̃)e(w`)e(v̄`) + =(λ̃)div(w`)div(v̄`)

]
dx+ CT.

=

∫
D
−<(2µ̃)|e(v`)|2 −<(λ̃)|div(v`)|2 +

∫
Rd

2<(µ)|e(w`)|2

+ <(λ)|div(w`)|2 + 2

∫
D
=(=(2µ)e(w`)e(v`)) + =(=(λ)div(w`)div(v`))

− i
∫
D
=(2µ)e(w` + v`)e(w` + v`) + =(λ)div(w` + v`)div(w` + v`).

From this inequality, using (7.4) and the hypothesis on the physical parameters, we deduce as
in the first case that |(Tv`, v`)| control the total field v` +w`. Therefore when ` goes to infinity
the total field v` + w` goes to zero in H1(D)d which implies that the scattered field w` goes to
zero in H1(D)d (by continuity of the forward scattering problem (as in theorem 27)), implying
that the incident field v` also goes to zero in H1(D)d which is a contradiction.

Remark 15. If one considers the full anisotropic elastic wave equation, the total field will solve:
div(C : e(u)) + ρω2u = 0. The result of section 4.3 on the coercivity of T can be extended by
doing the same type of calculations with C instead of A. Therefore in addition to the fact that ω
is not an interior transmission eigenvalue, one can obtain the coercivity of T from assumptions
on the sign of C − Id and ρ− 1 only on a neighborhood of the boundary of D.

7.3 GLSM for elastic waves

We can apply the theory of Chapter 4 in order to obtain a theorem that gives an exact
characterization of D in terms of farfield data. The framework developed in this chapter allows
one to deal with non-symmetric factorization that appears for example when one consider
the case of limited aperture data meaning that one is using only a subset of Sd−1 as incident
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directions but all polarizations within this subset. We did not consider the case of limited
aperture in section 7.1 in order to avoid complicated notation. To state the more general result
we consider Πs the projector from L2(Sd−1)d onto L2(Θs)

d, where Θs is the set of incident
directions of the sources (and similarly for the measurement we introduce Πm). Using these two
projectors the farfield operator for the limited aperture case is Π∗mH

∗THΠs where T and H are
defined by (7.9) and (7.3). Lemma 15 remains valid if one considers the range of Π∗mH

∗T instead
of H∗T . Since R(HΠs) = R(H) the middle operator T is not modified in the case of limited
aperture data and therefore lemma 16 remains valid. We can deduce from those remarks that
the result from chapter 4 can be applied, if we know a priori a bounded region Σ such thatD ∈ Σ.

If we denote V = HΠs, U = HΠm, and F = Π∗mH
∗THΠs, we introduce the following cost

functional for g = (g1, g2) ∈ L2(Θm)d × L2(Θs)
d:

Jα(Γ∞z p; g) := α|(Fg2, g1)`2(Θm)d |+ α1−γ ‖V g2 − Ug1‖2H1(Σ)d + α1−γ |(Fg2 − φ, g1)`2(Θm)d |

+ ‖Fg2 − Γ∞z p‖
2
`2(Θm)d

with a fixed parameter γ ∈]0, 1[ and a positive parameter α that is supposed to go to 0. We
introduce

jα(Γ∞z p) := inf
g∈L2(Θm)d×L2(Θs)d

Jα(Γ∞z p; g)

and gz,pα such that:
Jα(φ; gz,pα ) ≤ jα(Γ∞z p) + p(α)

where 0 < p(α) ≤ Cα for some constant C.

Corollary 5. Under the hypothesis of previous Sections of this chapter and the result from
Theorem 18 we have the following characterization of D

• z ∈ D implies lim sup
α→0

|(Fgα,z,p2 , gα,z,p1 )1|+ α−γ ‖V gα,z,p2 − Ugα,z,p1 ‖2H1(Σ)d <∞

• z /∈ D implies lim inf
α→0

|(Fgα,z,p2 , gα,z,p1 )1|+ α−γ ‖V gα,z,p2 − Ugα,z,p1 ‖2H1(Σ)d =∞.

In the case φ = Gϕ, the sequences V gα2 and Ugα1 converge strongly to ϕ1 in H1(D)d.

Remark 16. The noisy case will follow as in Chapter 4. Similar result can be obtained if the
supports of λ̃, µ̃ and ρ̃ are different or in the case of the fully non isotropic elastic wave equation.

7.4 Partial polarization

In the case of partial polarization only some polarizations are used as incident waves and
only some (others) are measured. Longitudinal and transversal elastic waves can be decou-
pled through the Helmholtz decomposition in homogeneous elastic medium, therefore it seems
natural to consider the case of limited polarizations as the fact of using either one of those
two types of waves as incident field and measuring also only one type. We can decompose the
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operator H as H = Hp +Hs where Hp (resp. Hs) is the compression part (resp. shear part) of
the Herglotz wave defined by:

HPp(g) = Hpgp(x) = Hpg(x) =



∫
d̂∈Sd−1

eikpx.d̂(d̂ · g(d̂))d̂

ikp

∫
d̂∈Sd−1

eikpx.d̂d̂ · g(d̂)∫
d̂∈Sd−1

eikpx.d̂ikp(g(d̂) · d̂)d̂⊗ d̂

 (7.16)

Hsgs(x) =


∫
d̂∈Sd−1

eiksx.d̂
(

(g(d̂) · θ̂)θ + (g(d̂) · φ̂)φ̂
)

0
1

2

∫
d̂∈Sd−1

eiksx.d̂iks

(
(g(d̂) · θ̂)(d̂⊗ θ̂ + θ̂ ⊗ d̂) + (g(d̂) · φ̂)(d̂⊗ φ̂+ φ̂⊗ d̂)

)

(7.17)

where Pp (resp. Ps) is the projector from L2(Sd−1)d onto Lp(Sd−1) (resp. Ls(Sd−1)). Those
Herglotz operators are dense in the space of shear waves and longitudinal waves. We recall that
the farfield of w associated with an incident field v of either type solves:

w∞(x̂) =

∫
D
ρ̃ω2Γ∞(x̂, z)(w + v)− λ̃divz(Γ

∞(x̂, z))div(w + v)− 2µ̃ez(Γ
∞(x̂, z))e(w + v)dV (z)

(7.18)
where Γ∞ = Γ∞p + Γ∞s . Moreover we have for the longitudinal part,

Γ∞p (x̂, y) =
k2
p

4πρ2
0

e−ikpx̂·yx̂⊗ x̂

div(Γ∞p )(x̂, y) =
−ik3

p

4πρ2
0

e−ikpx̂·yx̂

e(Γ∞p )(x̂, y) =
−ik3

p

4πρ2
0

e−ikpx̂·yx̂⊗ x̂⊗ x̂

and for the shear part,

Γ∞s (x̂, y) =
k2
s

4πρ2
0

e−iksx̂·y(I − x̂⊗ x̂)

div(Γ∞s )(x̂, y) = 0

e(Γ∞s )(x̂, y) =
−ik3

s

8πρ2
0

e−iksx̂·y(θ̂ ⊗ (x̂⊗ θ̂ + θ̂ ⊗ x̂) + φ̂⊗ (x̂⊗ φ̂+ φ̂⊗ x̂))

Using those equations one can easily verify that H∗ = H∗s +H∗p where H∗s (resp. H∗p ) is defined
as H∗ in (7.8) with the s-part of the Green tensor (resp. p-part). Therefore the farfield operator
associated with longitudinal incident plane waves and measurements of the farfield shear part
is given by Fsp = H∗sTpHp. The middle operator Tp is defined using the same set of equations
that we used to define T , however Tp should be considered as an operator from R(Hp) into X.
MoreoverR(Hp) ⊂ R(H) therefore the coercivity property is still verified for limited polarization
(under the same hypothesis as in Lemma 16 ).
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7.4.1 Full incident polarizations and partially measured polarizations

First we state the following intermediate lemma which gives a characterization of the support
of D in terms of the range of H∗pT defined as an operator from R(H) to L2(Sd−1) (in lemma 15
we use the range of H∗T = (Hp +Hs)

∗T )

Lemma 17. For any polarization p ∈ Sd−1 and if ω is not a interior transmission eigenvalue,
Γ∞s (·, z)p ∈ R(H∗sT ) or Γ∞p (·, z)p ∈ R(H∗pT ) if and only if z ∈ D.

Proof. If z ∈ D and for any polarization p, we introduce ϕ ∈ R(H) (and ϕ1 its first component)
and u ∈ H1(D) such that


div(2µ0e(ϕ1) + λ0div(ϕ1)Id) + ρ0ω

2ϕ1 = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

u− ϕ1 = Γp(·, z)p ∂D

Tn(u)− T 0
n(ϕ1) = T 0

n(Γp(·, z)p) ∂D

(7.19)

Clearly from those equations we have that H∗pTϕ = Γ∞p (·, z)p (and the same for the shear
part: H∗sTϕ = Γ∞s (·, z)p). If z /∈ D and for any polarization p, we assume that H∗sTϕ =

Γ∞s (·, z)p. Therefore by the Rellich lemma Γs(·, z)p defines the shear part of scattered field w
in Rd \ {D ∪ {z}}. Therefore,

curl(Γs(·, z)p) = curl(w) ∈ L2
loc(Rd \D),

which is a contradiction because curl(Γs(·, z)p) is not in L2
loc(Rd \D)d. For longitudinal waves

the same reasoning yields to div(Γp(·, z)p) ∈ L2
loc(Rd \D) which is impossible.

The coercivity of T and the result of Lemma 17 are the first mandatory results in order to
apply the framework of the GLSM. The other crucial ingredient is the existence of a term, built
from the data, that controls the norm of the Herglotz wave function. From the previous chapters
this term (for compressional wave measurement) will be of the form

(
H∗pTHg, (P )pg

)
= (THpgp, Hpgp) + (THsgs, Hpgp) = (THg, Hg)− (THg, Hsgs)

From this obvious decomposition we see that this term will allow a control over the norm of
Hp(P )pg and not Hg if we are able to have a control over the norm of Hsgs. As we have a priori
no way to infer the value of the shear part of ϕ1 (defined in the previous lemma as a solution
to the interior transmission problem), our only possible control over Hsg is through ‖Hsg‖H1(Σ)

where D is included in Σ (following the idea of chapter 4). Such a control will induce that there
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is a solution to the following problem:



div(2µ0e(v) + λ0div(v)Id) + ρ0ω
2v = 0 D

curl(v) = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

div(2µ0e(w) + λ0div(w)Id) + ρ0ω
2w = 0 Rd \D

div(w) = 0 Rd \D
u− v = w + Γp(·, z)p ∂D

Tn(u)− T 0
n(v) = T 0

n(Γp(·, z)p+ w) ∂D

lim
R→+∞

∫
|x|=R

∣∣∣∣∂w∂r − iksw
∣∣∣∣2 ds = 0

(7.20)

This problem is actually central in the case of Limited polarization both for the sources and the
measurements. We will discuss in the next session how this problem arises. The case of shear
part measurement will be similar.

7.4.2 Partial polarization for sources and measurements

In Lemma 17 we considered the operator H∗pT . However if one has only access to p-wave as
incident fields the corresponding operator is H∗pTp. In the proof of this lemma the reasoning
for the case z /∈ D is still valid however when z ∈ D the solution of the interior transmission
problem is clearly not in the closure of the range of Hp (resp. Hs). The specific problem we
should study to exhibit a solution in R(Hp) that creates a scattered field equals to Γ∞p (·, z)p is
the following exterior-interior transmission problem:



div(2µ0e(ϕ1) + λ0div(ϕ1)Id) + ρ0ω
2ϕ1 = 0 D

curl(ϕ1) = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

div(2µ0e(ws) + λ0div(ws)Id) + ρ0ω
2ws = 0 Rd \D

div(ws) = 0 Rd \D
u− ϕ1 = Γp(·, z)p+ ws ∂D

Tn(u)− T 0
n(ϕ1) = T 0

n(Γp(·, z)p) + T 0
n(ws) ∂D

lim
R→+∞

∫
|x|=R

∣∣∣∣∂ws∂r
− iksws

∣∣∣∣2 ds = 0

(7.21)

We so far did not succeed in verifying a Fredholm property for this problem. In the following
we will denote ϕ1 = v and ws = w to simplify the notation and exhibit some difficulties we
encountered in studying such a problem.
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7.4.3 Variational formulation of the Int-ext transmission problem, a poten-
tial approach

If we can introduce v = ∇p and w = curl(q), then without source term the system can be
rewritten as: 

∆p+ k2
pp = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

curlcurl(q)− k2
sq = 0 Rd \D

u · n− ∂p

∂n
= curl(q) · n ∂D

u× n−∇p× n = curl(q)× n ∂D

Tn(u)− T 0
n(∇p) = T 0

n(curl(q)) ∂D

lim
R→+∞

∫
|x|=R

|curlq × x̂− iksq|2 ds(x) = 0

(7.22)

The natural spaces will be p ∈ H1(D), u ∈ H1(D)d and q ∈ Hcurl,loc(Rd \D)

From [47], we have the formula:

∇u · n =
∂uΓ

∂n
+
u · n
∂n

n

=curl(u)× n+∇Γ(u · n)−Ru+ div(u)n− divΓ(uΓ)n− (u · n)div(n)n

curl(q) · n = curlΓq and ∇p× n = ∇Γp× n

Using this formula we can compute the stress vectors:

T 0
n(∇p) =(λ0 + 2µ0)div(∇p)n+ 2µ0(∇Γ(∇p · n)−R∇p− divΓ(∇pΓ)n− (∇p · n)div(n)n)

=− ρ0ω
2pn+ 2µ0(∇Γ(u · n)−∇ΓcurlΓq −R∇p

− divΓ(∇pΓ)n− (u · n)div(n)n+ curlΓqdiv(n)n)

T 0
n(curl(q)) =µ0curlcurl(q)× n+ 2µ0(∇Γ(curlΓq)−R(n× (curlq × n))

− divΓ(n× (curlq × n))n− (curlΓq)div(n)n)

=ρ0ω
2q × n+ 2µ0(∇ΓcurlΓq −R(n× (u× n)) +R(n× (∇Γp× n))

− divΓ(uΓ)n+ divΓ(∇Γp)n− (curlΓq)div(n)n)

Which finally give

Tn(u) =T 0
n(curl(q)) + T 0

n(∇p)
=ρ0ω

2(q × n− pn) + 2µ0(∇Γ(u · n)−RuΓ − divΓ(uΓ)n− (u · n)div(n)n)

If we take (u′, p′, q′) ∈ H where H = {(u′, p′, q′) ∈ H1(D)d ×H1(D) ×Hcurl,loc(R \D} and
integrate by parts :

0 =

∫
D
−∇p∇p′ + k2

ppp
′ +

∫
∂D

(u · n− curlΓq)p
′ (7.23)

0 =

∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′) +

∫
∂D

Tn(u)u′ (7.24)
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0 =

∫
BR\D̄

curl(q)curl(q′)− k2
sqq
′ +

∫
∂D

(u× n)q′ − (∇p× n)q′ −
∫
∂BR

(curl(q)× n)q′ (7.25)

These variational formulations and the formula of Tn(u) can be combined either to simplify
the boundary term (if p = p′, u = u′ and q = q′) ((7.24) + ((7.25) + (7.23))ρ0ω

2) :

0 =

∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ + ρ0ω

2

∫
D
−∇p∇p′ + k2

ppp
′

+ ρ0ω
2

∫
BR\D̄

curl(q)curl(q′)− k2
sqq
′

+

∫
∂D

2µ0(∇Γ(u · n)u′ − divΓ(uΓ)nu′ − (u · n)(u′ · n)div(n)

−R(uΓ)u′ −
∫
∂D

ρ0ω
2(curlΓ(q)p′ + (∇p× n)q′

+

∫
∂D

ρ0ω
2((u× n)q′ + p′n · u)−

∫
∂D

ρ0ω
2((u′ × n)q + pn · u′)−

∫
BR

ρ0ω
2(curlq × er)q′

or to obtain the same sign in front of the leading order volume term ((7.24)+((7.23)−(7.25))ρ0ω
2:

0 =

∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ + ρ0ω

2

∫
D
−∇p∇p′ + k2

ppp
′

− ρ0ω
2

∫
BR\D̄

curl(q)curl(q′)− k2
sqq
′

+

∫
∂D

2µ0(∇Γ(u · n)u′ − divΓ(uΓ)nu′ − (u · n)(u′ · n)div(n)−R(uΓ)u′

−
∫
∂D

ρ0ω
2(curlΓ(q)p′ − (∇p× n)q′

+

∫
∂D

ρ0ω
2(−(u× n)q′ + p′n · u)−

∫
∂D

ρ0ω
2((u′ × n)q + pn · u′) +

∫
BR

ρ0ω
2(curlq × er)q′

These variational formulations make sense as they involves boundary duality products. We were
not able to demonstrate Fredholm property for these variational formulations because in each
of them there are non compact terms with different signs.
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7.4.4 Variational formulation of the Int-ext transmission problem, an full
field approach

We also tried to obtain a variational formulation without using potential representation. The
problem is: 

div(2µ0e(v) + λ0div(v)Id) + ρ0ω
2v = 0 D

curl(v) = 0 D

div(2µe(u) + λdiv(u)Id) + ρω2u = 0 D

div(2µ0e(w) + λ0div(w)Id) + ρ0ω
2w = 0 Rd \D

div(w) = 0 Rd \D
u− v = w ∂D

Tn(u)− T 0
n(v) = T 0

n(w) ∂D

lim
R→+∞

∫
|x|=R

∣∣∣∣∂w∂r − iksw
∣∣∣∣2 ds = 0

(7.26)

An solution space would be (u, v, w) ∈ H = {(u, v, w) ∈ H1(D)d×H1(D)d×H1
loc(Rd\D̄) s.t. u−

v = w on ∂D and div(w) = 0 and curl(w) = 0}. The variational formulations for these equations
are respectively

0 =

∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ +

∫
∂D

Tn(u)u′

0 =

∫
D
−2µ0e(v) : e(v′)− λ0div(v)div(v′) + ρ0ω

2vv′ +

∫
∂D

T 0
n(v)v′

0 =

∫
BR\D̄

−2µ0e(w) : e(w′)− λ0div(w)div(w′) + ρ0ω
2ww′ −

∫
∂D

T 0
n(w)w′ +

∫
∂BR

T 0
n(w)w′

We can combine these three equalities in order to eliminate the boundary terms. If we substitute
w by u− v in the boundary terms we obtain:∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ +

∫
D
−2µ0e(v) : e(v′)− λ0div(v)div(v′) + ρ0ω

2vv′

+

∫
BR\D̄

−2µ0e(w) : e(w′)− λ0div(w)div(w′) + ρ0ω
2ww′ +

∫
∂BR

T 0
n(w)w′

+

∫
∂D

Tn(u)v′ + T 0
n(v)u′

Substituting v by u− w leads to a sign incompatibility for volume integrals.∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ −

∫
D
−2µ0e(v) : e(v′)− λ0div(v)div(v′) + ρ0ω

2vv′

+

∫
BR\D̄

−2µ0e(w) : e(w′)− λ0div(w)div(w′) + ρ0ω
2ww′ +

∫
∂BR

T 0
n(w)w′

+

∫
∂D

Tn(u)w′ + T 0
n(w)u′
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Similarly to the previous equality substituting u by v + w leads to a sign incompatibility in
volume integrals.

−
∫
D
−2µe(u) : e(u′)− λdiv(u)div(u′) + ρω2uu′ +

∫
D
−2µ0e(v) : e(v′)− λ0div(v)div(v′) + ρ0ω

2vv′

+

∫
BR\D̄

−2µ0e(w) : e(w′)− λ0div(w)div(w′) + ρ0ω
2ww′ +

∫
∂BR

T 0
n(w)w′

+

∫
∂D

T 0
n(v)w′ + T 0

n(w)v′

7.4.5 Comments on the GLSM for limited polarization

As already discussed, the coercivity of Tp is a direct consequence of the coercivity of T . Finally
in the case of longitudinal incident waves and measurements of the p-part of the farfield, we will
have:

|
(
H∗pTpHpg, g

)
| = |(TpHpg, Hpg)| ≥ µ ‖Hpg‖2

and similarly in the case of transversal incident waves and measurement of the s-part of the
farfield we will have:

|(H∗sTsHsg, g)| = |(TsHsg, Hsg)| ≥ µ ‖Hsg‖2

If we suppose that problem (7.21) is solvable we will obtain a lemma similar to 17 that will give
a characterization of D using the range of H∗pTp. Therefore we will have the desired term in
order to apply the framework from the GLSM. However, in the case of incident p-waves and
measured s-waves, F = H∗sTpHp and we will obtain:

(H∗sTpHpg2, g1) = (TpHpg2, Hpg2)− (TpHpg2, Hpg2 −Hsg1)

It is impossible to control Hpg2−Hsg1 on a larger geometrical domain as we did for the limited
aperture case because Hs is not dense in the range of Hp (they are actually completely different
as one gives rise to the curl-free field and the other to div-free field).

7.5 Conclusion

In this chapter we have extended our previous results to the case of elastic waves. The GLSM
framework can be applied with assumptions on the material properties which are similar to
the acoustic case. Our work on non-symmetric factorization can also be extended to the case
of elastic waves. In elasticity the notion of polarization can be considered and it is therefore
natural to study the case of partial polarization data. This type of data raises issues on the
key ingredient of sampling methods: the range characterization of D. Instead of the interior
transmission problem we have this time an interior-exterior problem which we tried to study
using variational techniques without success. The second problem is that the regularization
term that comes naturally in the GLSM framework does not have the required property if
one is sending one type of polarization and measuring the other one. The design of a suited
regularization term in this case remains an open problem.
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Conclusion

First we will synthesize the results and discuss the perspectives directly related to the work
presented in this thesis. Then we will step back on our work to discuss further research issues
related to non-destructive testing of concrete.

In chapter 2, we proposed a new mathematical justification of the linear sampling method.
Our justification is based on the design of a well suited regularization term. This method shows
improvement in the numerical experiment we have carried out. In chapters 3 and 4 we further
investigated our method and we were able to obtain a strong convergence result for the sequence
of Herglotz wave function to the solution of the so-called interior transmission problem. We
also demonstrated that these results hold in the case of noisy data. Using regularization, it
is natural to look for a priori rule to choose the regularization parameter with respect to the
noise. However several technical problems arise that makes classical techniques such as Morozov
principle, difficult to apply to our setting. Connected to regularization techniques convergence
rate and stability results would be of great interest as they will help understanding the behaviour
of our differential measurement imaging functional that relies on the strong convergence of the
Herglotz wave functions. Stability result might also help to provide a better understanding of
the behaviour of our indicator functions outside the obstacle.

In chapter 4 we concentrate on extending the GLSM framework to the case of non symmetric
factorization. This issue is important as it contains the case of limited aperture data. Our
theory works under the small assumption that one knows a priori a domain that contains the
heterogeneity. Numerical examples of this chapter show that the GLSM functional improves the
results over a Tikhonov regularization and that differential imaging works only for symmetric
factorization. The numerical results show that the non symmetric case is more difficult. It is
known that having symmetric factorization is favourable however we believe our results might
be improved because the cost functional we use is difficult to handle numerically. Clearly results
such as stability and convergence rate will help to choose properly the weights in the numerical
implementation of the GLSM.

In chapter 3, we proposed a method to do differential imaging in a heterogeneous medium
regardless of a priori on the properties of the material or the wavelength. The analysis is based
on the comparison of the solutions to the interior transmission problems that arise from each
measurement. An imaging functional is then proposed to exploit this comparison thanks to the
strong convergence results of the GLSM. As already discussed more results from regularization
theory of the GLSM functional is needed to understand more deeply the type of image one might
expect. Extension to other type of scattering medium calls for a careful analysis of the related
interior transmission problem such as the one depicted in chapter 6 for anisotropic medium and
in chapter 5 for cracks.

The results from chapters 6 and 7 show that the GLSM theory is flexible and easy to extend
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to other scattering settings. The case of limited polarization in elasticity raises a lot of interesting
problems both from the theoretical and application point of view. We left open the design of a
proper regularization term within the GLSM framework in the case of polarization of different
kind for sources and measurements but more importantly the range characterization at the heart
of sampling methods is still an open problem for limited polarization as we were not able to
solve the interior-exterior transmission problem that arises in that case.

If we step back on our work and go back to non destructive testing in concrete like material,
we have proposed and analysed a method to use differential measurement in order to do imaging
in concrete that do not rely on any approximation of the behavior of waves. Simulation on
concrete like material show promising results both on heterogeneous medium and cracks (which
are not covered by the current theory). As theoretical analyses of the resolution of the technique
seems to be out of reach, an extensive numerical study of its limitations in terms of sizes both
of the defect and of the region to probe should be carried out. Ultimately if those numerical
studies are conclusive an experimental mock up will be considered.

From the application point of view even if differential measurement is interesting, it would
be interesting to see if one might infer the farfield operator of the background from a priori
knowledge such as the distribution of aggregates in order to create imaging techniques that do
not need two sets of measurements. Connection with the study of waves in random media [30]
[10] might give fruitful idea on how to infer the farfield operator.

Application to concrete raises a lot of new research items. We believe that looking into the
inter-facial transition zone that we briefly discussed in chapter 5 would be necessary as it is an
important aspect of the material and as the majority of the defects took place inside this area.
From a modelling view point it seems possible to take into account this property of concrete,
the fact that it will verify the property required by the GLSM framework is rather unclear.
The second important aspect of the application we did not look into is the type of defect. We
believe that the content of this thesis would be applicable for cracks of size comparable to the
wavelength however networks of small cracks might need to consider other techniques. It might
be interesting to look at techniques related to assessing the properties of the medium using
transmission eigenvalue, homogenization such as the one performed in [18] and [20] might be an
interesting path to explore.

In this thesis we develop the GLSM method and try by studying the limited aperture case to
get closer to the hypothesis of non destructive testing measurement. As the data from ultrasound
measurement are in the time domain, we believe that looking to the time domain linear sampling
method will be important to get closer to the type of data available in practice.
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Qualitative method for heterogeneous media

Abstract: This thesis focuses on non destructive testing of concrete using ultrasonic waves, and thus examines imaging
in complex heterogeneous media. We assume that measurements are multistatic, which means that we record the total
field on different points by using several sources. For this type of data we wish to build methods that are able to image
inclusions or defects that contributed to the measured field. We focus in this work on the extension of so called sampling
methods to deal with the over-mentioned application where the main additional difficulty is the lack of knowledge of
the reference media (media without defects, also referred to as background media). The first part of this thesis consists
of a new theoretical analysis of the Linear Sampling Method leading to new mathematically sound formulation of this
method. Such analysis is done in the framework of regularization theory, and our main contribution is to provide and
analyze a regularization term that ensures exact characterization of the shape in terms of measured data. We also prove
that one is able to reconstruct from regularized solutions a sequence of functions that strongly converges to the solution
of the so-called interior transmission problem. This result gives a central place to the interior transmission problem
as it allows describing the asymptotic behaviour of our regularized problem. More importantly it also allows us to
compare solutions coming from two different datasets. Based on the result of this comparison, we manage to produce
an image of the connected components of the background that contain the defects appearing between two measurement
campaigns and this is regardless of background “microstructure”. This strategy is well suited for applications to concrete-
like backgrounds as shown on several numerical examples with realistic concrete-like microstructures. Finally, we extend
our theoretical results to the case of limited aperture, anisotropic medium and elastic waves, which correspond to the
real physics of the ultrasounds.
Keywords: Inverse problems, Sampling Method.

Méthodes qualitative pour les milieux hétérogènes

Résumé : Motivée par le contrôle non destructif par ultrasons du béton cette thèse s’intéresse à la problématique
de l’imagerie à l’aide d’ondes dans des milieux hétérogènes. On se place dans un contexte de mesures multistatiques,
c’est-à-dire qu’il est possible de disposer du champ total en plusieurs points de mesure excités par des sources
indépendantes. Il est alors proposé de développer des méthodes pour réaliser une image de l’inclusion ou du défaut
qui a contribué au champ mesuré. Plus précisément on souhaite étendre les méthodes de sampling pour traiter cette
application dans le cas où on manque de connaissance sur le milieu de référence (le milieu sans défaut). La première
partie de cette thèse a consisté en une nouvelle analyse théorique de la Linear Sampling Method qui a conduit à une
nouvelle formulation plus rigoureuse. Cette analyse est faite dans le cadre de la théorie de la régularisation, notre
principale contribution est d’avoir proposé et analysé un terme de régularisation qui assure une caractérisation exacte
de la forme du défaut en fonction des données mesurées. Nous avons également démontré que l’on peut construire à
partir des solutions du problème régularisé une suite de fonction qui converge fortement vers la solution du problème
de transmission intérieure. Cette propriété donne un rôle central au problème de transmission intérieure dans le sens
où il permet de décrire le comportement limite de notre solution régularisé. Plus encore cela permet de comparer les
solutions provenant de deux campagnes de mesure différentes. Pour ce faire, une méthode permettant de construire une
image de la composante connexe du milieu qui contient le défaut qui est apparu entre deux campagnes de mesure est
proposée et ce indépendamment du milieu dans lequel le défaut est apparu. Cette méthode d’imagerie différentielle
est particulièrement adaptée aux milieux constitués d’un ensemble d’hétérogénéités disjointes, ce qui correspond au cas
du béton. Des résultats numériques illustrent son application sur un milieu constitué d’une microstructure simulant le
béton. Finalement, nous montrons que nos résultats, développés dans un cadre d’ondes acoustiques en milieu isotrope
avec une émission/acquisition en ouverture totale, s’étendent aux mesures en ouverture limitée, aux milieux anisotropes
et aux ondes élastiques qui correspondent à la physique réelle des ultrasons.
Mots-clés : Problèmes inverses, Sampling Méthodes.
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