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Abstract

Solidification microstructures have been the subject of intense theoretical and experimental

research because of the fundamental importance of these structures in the properties of

materials and because these structures represent an excellent example of pattern formation

in nature. Moreover, these structures are significantly influenced by the structure and

the properties of the interfaces in it. In a broader sense, the present thesis examines the

effects of these interfaces on solidification microstructures.

The microstructures arising from the solidification processing possess various types of

boundaries: solid-liquid interfaces, grain boundaries (GB), interphase boundaries (IB).

Whereas solid(S)-liquid(L) interfaces have been investigated extensively, relatively little

attention has been paid to the solid(S)-solid(S) boundaries (GB and IB). Recently, it has

been found that S-S boundary anisotropy can also have a significant influence, particularly

on the overall orientation selection of the growing patterns. More specifically, the present

thesis investigates the effects of GB and IB anisotropy through simulations of solidification

morphologies.

Recently, an efficient quantitative phase-field model has been developed to study the

solidification dynamics in multicomponent, multiphase alloys. This model differs from other

contemporary models in the sense that, chemical potential has replaced the composition

variable to describe the mass conservation equation in the system. This is motivated by the

fact that, at equilibrium, the chemical potential is constant through the interfaces, while

concentration exhibits a jump. This allows us to exploit larger interface thicknesses in the

simulations of microstructures without affecting the quality of the results. For the present

purpose, we have implemented this model, and applied this code to study three problems
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stemming from the directional solidification of lamellar eutectics and polycrystals, with a

particular focus on the effects of the S-S boundary anisotropy.

During thin-film directional solidification experiments on lamellar eutectics in CBr4-

C2Cl6, it has been observed that in the absence of interfacial anisotropy, the solid phases

grow straight next to each other, the IBs are aligned with the growth direction, and

Young’s law is satisfied at the trijunction points. Whereas, in non-faceted substances, the

S-L surface free energy is only weakly anisotropic, the anisotropy of S-S IB can be strong.

This anisotropy depends on the relative orientation of the two solids with respect to each

other. The anisotropy function thus is not an intrinsic property of the material, but differs

between different eutectic grains – that is, portions of the solid in which the orientations

of the two phases remain homogeneous. One may distinguish floating grains with low

anisotropy from locked grains with high anisotropy. In the latter, the IB may remain

“locked” onto a direction of low energy, irrespective of the orientation of the grain with

respect to the temperature gradient. A recent theory uses the anisotropic Young-Herring

condition at the trijunction, to predict the orientations a eutectic grain can possess in a

microstructure. This is the prediction against which we compare our numerical results.

Recent experiments on bulk lamellar eutectics suggest that the (disordered) labyrinthine

eutectic structures, which result from the direction solidification of Al - Cu alloys, never

become ordered in experimentally accessible time scales. These bulk structures contain

multiple eutectic grains and interphases leading to multiple orientations. We attempt to

simulate these microstructures including the influence of the anisotropy along the IBs.

IB-anisotropy tends to align the IBs with the directions of minimal energy. Lamellae

oriented in these directions grow at the expense of the other lamellae, until they eventually

totally outgrow them. In this way, an ordered lamellar structure with a preferred direction

is formed.

Finally, we examine the effect of GB anisotropy on solidification morphologies. This is

motivated by an experimental study on the directional solidification of grain-boundaries

in CBr4-C2Cl6 illustrating that a low-angle GB grows at a fixed angle with respect to the

growth axis. This is true, as long the melt/solid front remains planar or nearly planar. The
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moment that these interfaces break into cellular structures at a certain critical solidification

rate, the angle between the GB and the growth axis starts to decrease until the GB follows

the direction of the temperature gradient. We simulate the growth of bicrystals for various

solidification velocities using a suitable anisotropy function and find that the mobility of

the GB plays an important role in the selection of the growth angle.
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Chapter 1

Introduction

Soilidification is a crystallization process through which a liquid phase transforms into

solid. The use of this process dates back to the historic times when the human civilization

understood the importance of it to cast hunting weapons from a liquid metal mould.

Interestingly, the modern world still uses this process to make these old-purposed weapons;

however, there are so many other uses of it that human civilization cannot live without it.

The importance of solidification is manifold [1, 2, 3]. Engineers use it as a method to cast

objects ranging from a simple pin to a complicated aeroplane engine; these materials are

engineered through casting solidification, and the engineers work on the technical aspects of

the structure-property-processing relationships of the cast objects. Moreover, solidification

is an excellent example for a spontaneous pattern forming process in nature [4, 5]. This

intrigues the scientists to study the theoretical aspects of it. Thus, solidification possesses

great theoretical and technological importance.

In general, there are two basic techniques of solidification processing depending on the

parameters controlling the process [1, 2, 3]. In isothermal solidification of pure materials,

the solidification bath is kept at a constant temperature below the melting point, and the

solid grows freely from this undercooled melt. In directional solidification, a sample is

pulled with fixed velocity through a fixed temperature gradient from a hot to a cold zone.

The microstructures formed in this process are very uniform, which helps us to perform

the parametric study of these microstructures under well-controlled conditions.

1
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In what follows, we first describe the principles of directional solidification and the

morphologies that arise during this process. Then, we talk about the surface tension

anisotropy and its effects on the directional solidification microstructures. This is fol-

lowed by a brief review of the numerical methods through which one can simulate these

microstructures. Finally, an outline of the thesis is given in section 1.7.

1.1 Directional solidification

In experiment, directional solidification is performed in a set-up shown in Fig. 1.1. This

is sometimes referred to as the Bridgman method. In the solidification table, one end is

fixed to a hot zone and the other end to a cold zone, which are kept at fixed temperatures

using a thermostat, above and below the melting point, respectively. This establishes a

fixed temperature gradient (G) in the system. The liquid metal is then placed in between

these zones. As the solidification progresses, solid phases grow towards the hot zone at

a particular growth velocity (V ) set by a motor that pulls the sample towards the cold

zone. These two parameters, G and V , are the major controlling parameters of directional

solidification experiments. Since the solute diffusivity of solids is generally far smaller

than the one of liquids, in common practice the diffusion in the solid is ignored. Moreover,

we are interested in studying the structure of solids near to the S-L interface. Thus, if

we pull the already-formed solid, which is sufficiently away from the interface, backwards

at a constant velocity V , we retain the necessary information around the S-L interface.

Moreover, this keeps the interfaces stationary in the laboratory frame. This is termed

steady-state directional solidification [6, 7].

It is useful to mention that typically the solidification samples are prepared as a

thin-film, i.e. the sample is confined between glass plates spaced typically by 10µm. These

samples are generally an organic material, which solidify at about room temperature.

Even though most organic substances have faceted S-L interfaces, however, for the specific

material considered here, the interfaces are rough so that these interfaces solidify like

metals. In addition, these materials are transparent and, therefore, the solidification

process can be recorded using an optical microscope, as shown in Fig. 1.1. Examples of
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such materials include Succinonitrile (SCN),CBr4-C2Cl6, Pivalic acid (PVA) and a few

others.

Figure 1.1: Experimental directional solidification set up [6]; all details are explained in
the text

1.2 Solidification of single phase alloys

Consider a binary alloy consisting of a solvent and a solute. For low solute concentration,

the phase diagram looks like Fig. 1.2. For simplicity, consider that the Solidus and Liquidus

lines are straight with a Liquidus slope of m < 0. k is the equilibrium partition coefficient

of the alloy and can be defined at any temperature in Fig. 1.2 as:

k =
composition of the solute in the solid

composition of the solute in the liquid
=

cs

cl
(1.1)

Under the above conditions, an alloy of liquid composition c0 initially solidifies into a

solid of composition c0k (at temperature T1). For the phase diagram shown in Fig. 1.2, k

< 1 and, hence, c0k < c0. This excess solute will be rejected from the solid and piles up

locally at the S-L interface. In steady-state conditions, the concentration of the solute at

the interface is c0/k > c0. The solute concentration ahead of the solid decays exponentially

with the distance from the interface and sufficiently far away from the interface, the

composition of the liquid equals the nominal composition of the alloy, i.e. c0. The profile

of such a solute pile-up is shown in Fig. 1.3.
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Figure 1.2: Schematic Phase diagram of a dilute binary alloy

So, the concentration jump at the interface due to the pile up of the excess solute, at

temperature T2, can be written as:

∆c0 =
c0

k
− c0 = c0

(

1−k

k

)

. (1.2)

If TM is the melting temperature and T2 is the interface temperature, then the

undercooling of a flat interface can be expressed as:

∆T0 = T1 −T2 = −m∆c0; (for m < 0) (1.3)

For a curved interface, the interface temperature T2 can be written as,

T2 = TM +mcl − γTM

L
κ− Vn

µk
. (1.4)

The first correction in Eq. (1.4) comes from the phase diagram in Fig. 1.2. The second

correction is due to the Gibbs-Thomson condition for a interface of curvature κ. γSL is

the interface free energy per unit surface area, and L is the latent heat of fusion. The

final correction is due to the departure of the interface from the local thermodynamic

equilibrium condition; µk is the interface mobility and Vn is the growth speed normal to

the interface.
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Cs

Cl

Distance along growth direction, z

C

Figure 1.3: Steady state concentration profile of the solute pile-up ahead of the solidification
front; At temperature T2, cs = c0 and cl = c0/k

As we are considering directional solidification with a constant temperature gradient

G, a linear variation is superimposed on the liquid temperature profile, from which a solid

is growing in the z direction,

T (z) = T2 +Gz. (1.5)

At the interface, i.e. at z = 0 , the temperature is given by T = T2. Under the above

conditions, the steady state diffusion equation describing the system in the laboratory

frame is given by:
∂c

∂t
= D∇2c+V

∂c

∂z
= 0. (1.6)

D is the diffusivity of the solute in the liquid. Applying boundary conditions from the

Fig. 1.3 renders: (z = 0, c = c0/k and z = ∞, c = c0)

c = c0

(

1+
1−k

k
exp(−V z

D
)

)

. (1.7)

Note that, this equation describes the exponential solute profile in the solid front

in Fig. 1.3. Moreover, there is solute mass conservation at the interface, because the

solute rejected at the interface is balanced by the diffusion of the solute in the liquid only
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(one-sided diffusion problem). The corresponding mathematical expression is:

(cl − cs)Vn = −D

(

∂c

∂n

)

z=0

, (1.8)

~n is a unit vector normal to the interface and pointing into the liquid.

1.2.1 Morphological instability

Directionally solidified morphologies

A brief summary of the essential morphologies formed during the directional solidification

is given here. In the limit of low growth velocities, the solute built up ahead of the interface

has sufficient time to diffuse away from the interface and, thus, a planar interface forms

in between the solid and liquid which grows into the liquid with the imposed velocity V .

When the sample is pulled through the temperature gradient (G) with a higher velocity, in

essence, the solute does not have enough time to diffuse away from the interface, and, thus,

the planar interface will not be able to continue growing at the imposed velocity. Thus, an

instability is set up in the system and a cellular structure results. With further increase of

V , a tree-like dendritic morphology prevails with or without side-branches. The effects of

the increasing velocity on the solidification microstructures are shown in Fig. 1.4.

1.2.2 Constitutional supercooling (CS)

Recall from the previous section,

T (z) = T2 +Gz, (1.9)

T2 is the interface temperature and G is the thermal gradient in the liquid. The phase

diagram in Fig. 1.2 describes how the increase in solute content in the liquid decreases the

freezing temperature of the solid. Depending on the thermal gradient in the liquid, there

may exist a thin layer of liquid ahead of the interface, where the temperature is below the

equilibrium liquidus temperature T2. This condition is illustrated in Fig. 1.5 (see line b).
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Figure 1.4: The change of the morphology with increasing velocity for a directionally
solidified transparent organic alloy (pivalic acid-0.076% ethanol) with a temperature
gradient of 2.98 K/mm (adapted from [2]); (a) planar S-L interface, (b)unstable interface
leading to shallow cells (c) cells (d) dendrites

Referring to Fig. 1.5, if the applied thermal gradient (G) is reduced below the Liquidus

gradient GL (line b), there is a layer of liquid around the solid which have lower temperature

than the solid. This is the essence of constitutional supercooling which is given by the

critical GL which equals to the G (line c in Fig. 1.5). Therefore, the critical G to avoid

constitutional undercooling is: G ≥
(

dT
dz

)

c
. This is the classical macroscopic criterion of

CS, introduced by Tiller et al.[9]. In this (experimental) criterion, the presence of an
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Figure 1.5: Diffusion profile ahead of the interace and the corresponding equilibrium
liquidus temperature profile. (a)No constitutional undercooling (c) critical constitutional
undercooling limit (b) constitutional supercooling zone. (adapted from [8])

undercooled region is determined by the G/V ratio, according to the following expression:

G

V
≤ m∆c0

D
. (1.10)

Note that, the left hand side involves the process parameters while on the right

side elements are the materials parameters. There are two ways how one can cross

the constitutional supercooling limit, either by decreasing the thermal gradient G or by

increasing the velocity V . Thus, the G/V ratio determines the equilibrium microstructures

of a solidification system, as shown in Fig. 1.6. The corresponding expression for VCS is

given by:

VCS =
DG

m∆c0
. (1.11)

1.2.3 Mullins-Sekerka instability

As discussed earlier, for low velocity, the solid grows with a planar interface. To develop a

non-planar interface from a planar interface, some perturbations must be locally present to

trigger the growth of an instability. Consider that, a infinitesimal sinusoidal perturbation
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Figure 1.6: The effect of G/V on the solidification microstructures; c0 is the alloy compo-
sition (adapted from [2])

of certain amplitude is introduced to a steady state planar S-L interface profile in the

following way:

c(x,z, t) = c(z, t)+Asin(qx)exp(ωqt) (1.12)

z is the direction of growth of the solid, x is the direction parallel to the interface, A is the

amplitude of the sinusoidal perturbation, and ωq is the growth rate related to the applied

wave-number q, which further relates to the wavelength by q = 2π/λ. Mullins and Sekerka

in their seminal work [10] used a linear stability analysis, which determines whether a

wave of particular wave number will grow or decay. The wavelengths which will grow can

be determined from all the positive ωq in Fig. 1.7. For zero diffusivity in the solid and for

a phase diagram with parallel Solidus and Liquidus lines (k = 1), the expression takes the

following form [11]:

ωql2D
D

= glD

(

1− lD
lT

−d0lDq2 − 1

glD

)

(1.13)

glD = 1+
√

1+(qlD)2

This analysis depends on three length scales. The definition of these length scales, namely,

diffusion (lD), thermal (lT ) and capillary (d0) are given below:

lD =
D

V
, (1.14)
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lT =
(−m)∆c0

G
, (1.15)

d0 =
γSLTM

L(−m)∆c0
. (1.16)

< 0

> 0

0

0 q = 2 / λπ

wq

wq

wq

Figure 1.7: Plot of wq given by Eq. (1.13) for different wavenumbers q (schematic)

This formula describes the basic mechanism of diffusion controlled pattern formation

in crystal growth. In essence, this consists of a destabilizing part, the diffusion length lD,

leading to positive ωq and a stabilizing part controlled by the capillary length d0. The

marginally stable mode is marked by the combinations of d0lD, which are most conveniently

expressed as for a limit of qlD >> 1 and lT >> lD:

λMS = 2π
√

lDd0. (1.17)

This is sometimes referred as the “stability length” for diffusion generated ripples on the

S-L interfaces [5]. Note that, the fastest growing wavelength from the Eq. (1.13) can be

determined as: λf ≈
√

3λMS , which is a useful measure of the typical lengths that arise

during diffusional pattern formation [5, 4] (see Fig. 1.8).

Strictly speaking, among all the parameters related to the morphological instability, G

and γSL are the stabilizing components and V is the destabilizing component to the S-L
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Figure 1.8: Experimental observation of the growth of a planar S-L interface into cells.
The experiment is performed for a sample of 0.25% poly(ethylene oxide) in succinonitrile
with a pulling speed V = 1.34µm/s (adapted from [7])

planar shape. As we increase V , at a critical V , namely CS velocity VCS , stabilizing effects

of G are overcome. This gives the classical macroscopic criteria of CS (Eq. (1.10)). The

Mullins and Sekerka (MS) critical velocity VMS signifies the onset when the stabilizing

effect of the γSL is also overwhelmed. The exact form of Mullins-Sekerka threshold can be

expressed as:

VMS =
D

lT



1+3
(

K

2

)2/3(d0

lT

)1/3


 (1.18)

1.3 Solidification of multiphase alloys: Eutectic solid-

ification

The phase diagram in Fig. 1.9 represents a eutectic phase diagram of a two-component (A

and B) liquid: an alloy of eutectic composition CE solidifies below the eutectic temperature

TE into two chemically distinct solids – one is enriched with A atoms (α-phase) while

the other is with B atoms (β-phase) [12, 13]. In most metallic eutectic systems, the

S-L interfaces of these phases are non-faceted in nature and they appear rough at the

atomic scale. In a eutectic microstructure, these phases appear as lamella-like or rod-like

depending on the volume fraction of the constituting phases [14, 1]. If the volume fraction

of the minor phase is < 0.3, rod-like morphologies appear with the minor phase dispersed
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Figure 1.9: A schematic eutectic phase diagram. CE and TE are the eutectic composition
and temperature, respectively

in the continuous matrix of the major phase, while the minor phase with a volume fraction

of more than 0.3 results in lamellar morphologies (refer to Fig. 1.10). In the present work,

we focus on the lamellar eutectic structures only.

In lamellar solidification, alternate plates of α and β phases appear in the microstruc-

tures and, then, they grow next to each other by the mutual solute diffusion in between

the liquid regions in front of each phase; this is called the co-operative growth or coupled

growth [15]. Note that such growth behaviour exists for rod eutectics also. When both

eutectic components are faceted, the growth conditions are no longer coupled and the

resulting structure is a random mixture of the two phases yielding an irregular eutectic

microstructure, as in Fig. 1.10. Moreover, in the presence of ternary impurities, cellular

eutectic growth occurs and eutectic colonies result [16]. For a three-component ternary

eutectic system, the morphologies which appear can be very complex [17, 18]. Excellent

reviews of eutectic solidification can be found in [1, 2, 3, 19].

A sketch of the mutual solute diffusion paths are shown in Fig. 1.11a. Three phases –

α, β and L – are bounded by two S-L interfaces, αL and βL, and one S-S interface, αβ,

which are shown in Fig. 1.11b. In addition to these, there is an unique singular point

in the microstructure where all the interfaces meet – a trijunction point. At this point,

the surface tension vectors of the respective interfaces balance to zero resulting into a

mechanical equilibrium:

γαLt̂αL +γβLt̂βL +γαβ t̂αβ = 0, (1.19)



1.3 Solidification of multiphase alloys: Eutectic solidification 13

Figure 1.10: Regular and irregular eutectic morphologies (adapted from D. M. Ste-
fanescu [2])

where t̂ij are the unit vectors tangent to the i−j interfaces at the triple-point, and pointing

away from the triple-point. This is sometimes referred to as Young’s law. This law sets

the shapes as well as the contact angles of the S-L interfaces relative to a flat interface [2]

(refer to Fig. 1.11b).

Every eutectic microstructure is defined by a set of length scales. Total undercooling

of the S-L interfaces can be approximately written as [5]:

∆T = TE

{

aI
λ

lD
+aK

d0

λ

}

, (1.20)

where aI and aK are dimensionless constants that depend only on material parameters.

Analogous to Eq. (1.4), the first term in Eq. (1.20) is due to the diffusion and the second

term is due to the S-L interfacial curvature correction (Gibbs-Thomson effect). Plotting

this function with respect to λ, we find a λ corresponding to the minimum undercooling

of the system for which ∂∆T
∂λ = 0 (refer to Fig. 1.12).
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Figure 1.11: Solute diffusion paths leading to the lamellar sequence of α and β phases
(adapted from D. M. Stefanescu [2]))
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Figure 1.12: Front undercooling vs. lamellar spacing for a eutectic front: Jackson-Hunt(JH)
minimum undercooling criteria

λJH ∼
√

lDd0 (1.21)

This has been verified by the experiments [14] as well as by the theories [20, 21]. This

leads to the famous relationship between inter-lamellar spacing and the growth rate V for

a regular eutectic [14]:

λ2V = constant. (1.22)

For Eutectic microstructures, this characteristic inter-lamellar spacing is defined as

λJH (JH stands for Jackson-Hunt). If the processing conditions of eutectic reaction

are such that the length scales of the resulting microstructures are other than λJH ,

then, they are characterized using a function of reduced lamellar spacing Λ = λ/λJH .
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These micro-structures have been well-identified by (quasi-2D) thin-sample directional

solidification experiments [22, 23], and also by numerical simulations [21]. If there are

interactions between multiple lamellae in the system, spacing adjustment processes like

lamella elimination or lamella nucleation are activated in the system until a steady state

is achieved. As we depart further from λJH , a tilt instability is seen with an asymmetry

between phases, inducing a lateral drift of the lamallae [24]. Moreover, in the order of

Λ ≈ 2, oscillatory instabilities appear in the microstructures with a periodicity of 1−λ or

2 − λ [22]. In bulk samples, a zigzag instability is seen at Λ ≥ 1.2, and a wavy lamellae

state results [25]. It is useful to mention here that these stability limits depend on the

composition of the solidifying alloy.

1.4 Surface tension anisotropy: Origin and Effects

A brief account on the microscopic origin of the surface tension for faceted interfaces is

given here. In the context of solidification, ordered solid phases emerge from the disordered

liquid, and, thereafter, grow as stepped atomic layers where each layer is a minimum

energy closed-packed plane [13, 26]. During this process, if a crystal plane forms at an

angle θ to this closed packed plane, it will contain broken bonds in excess of the closed

packed plane due to the atoms at the steps. This is the essence of excess surface free

energy or interfacial energy (γ). In this way, γ can vary across the whole surface of the

crystal depending on the local orientation of a particular atomic plane (Fig. 1.13).

0 θ

γ

+−

Figure 1.13: Variation of surface energy as a function of θ around a facet

Note that, the closed packed orientation (θ = 0) lies at the cusped minimum in the
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γ −θ plot. The classic method for plotting such variation of γ with respect to the interface

orientation (θ) is known as Wulff’s method [27]: constructing a surface about an origin

such that the free energy of each plane is equal to the distance between the surface and the

origin when measured along the normal to the plane. This type of polar representation of

γ is known as γ-plot and has the useful property of being able to predict the equilibrium

shape of a isolated single crystal.

Figure 1.14: Surface tension (γ) profile of an isolated solid, and the equilibrium crystal
shape (adapted from [28])

A minimal representation of the Wulff’s construction is depicted in Fig. 1.14. Here, the

outer envelope describes the (polar) surface tension profile of an isolated solid in which

γ is the measure of the distance between the surface and the center of the crystal O. If

this solid is bounded by several planes of areas A1, A2, A3, etc., with energies γ1, γ2, γ3,

etc., then, the equilibrium crystal shape or the energy minimising shape of this solid is

obtained by minimising
∑

Aiγi under the constraint of constant volume of the crystal.

Note that, a large set of planes can be drawn perpendicular to the n̂γ(n̂) passing through

the γ surface. The equilibrium shape is simply the inner envelope of all these planes, the

dotted polyhedron in Fig. 1.14. In addition, the solid γ(n̂) profile in Fig. 1.14 have cusps,

which, in equilibrium, become flat facets of the polyhedron at a distance minimum to

the centre of the crystal. This represents a minimum energy orientation or favourable
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orientation in the resultant microstructure. However, such Wulff shape only relates the

γ-plot to the equilibrium crystal shape, and, hence, does not include the kinetics of the

process.

(a) A snowflake (b) A dendrite

Figure 1.15

Because of their aesthetics, snowflakes have attracted human curiosity for ages. This is

a naturally abundant crystal, which forms due to a complex interaction between crystal-

lization and anisotropy (refer to Fig. 1.15(a)). In the context of directional solidification

of single-phase alloys, dendrites are another classic example. To obtain a strong crystallo-

graphic morphology like in Fig. 1.15(b), the simplest cubic anisotropic form must include

a four-fold symmetry, in the surface free energy of the underlying (cubic) structure of the

growing solid, which takes the following shape in polar and Cartesian coordinate systems,

respectively,

γ(θ) = γ̄(1+ ǫ4 cos(4θ)) (1.23)

γ(n̂) = γ̄(1+ ǫ4(n̂4
x + n̂4

y)) (1.24)

n̂x and n̂y are the Cartesian components of a unit vector normal to the interface. γ is the

anisotropic surface tension and γ̄ is a constant. ǫ4 is the anisotropy parameter which gives

the strength of the surface tension variations and induces the minimum and maximum



1.4 Surface tension anisotropy: Origin and Effects 18

energy directions in the system. Note that, analytical comparison between the equilibrium

shapes and the calculated Wulff shapes can lead to an useful measure of ǫ4. The polar

form of such γ function is plotted in Fig. 1.16. It is worthwhile to mention here that to

simulate a snowflake, we need a six-fold symmetry in the anisotropic surface tension as

follows:

γ(θ) = γ̄(1+ ǫ6 cos(6θ)) (1.25)

Figure 1.16: Cubic anisotropy with a four-fold symmetry: γ = γ̄[1+0.06cos(4θ)].

Note that, in the previous case, the equilibrium shape is contained well within the

surface tension envelope in Fig. 1.14. This signifies that, all the orientations represented

by the equilibrium shape are energetically stable. Mathematically, this is described by the

positive surface stiffness parameter, γ + d2γ
dθ2 (or, γ +γ′′), θ is the local interface orientation

angle. However, if the magnitude of the anisotropy becomes so large that the energy of

some orientations (θ) becomes very high, these directions are not present in equilibrium

microstructures. They are called missing orientations, which are described by a negative

surface stiffness and can be calculated analytically using the Cahn-Hoffman surface tension

vector (~ξ) construction [29]. This is equivalent to the Wulff-construction in order to

determine the equilibrium shape of a crystal of surface energy γ [29]. A set of ~ξ vectors

define the equilibrium shape of a crystal in an elegant way. The ~ξ-vector is defined as

the gradient of the scalar field r because it applies normal to the γ surface. In polar

coordinate system, unit normal vectors are given by their components cosθ and sinθ for

(Cartesian) x- and y- directions respectively. This leads to the following useful definitions
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in two dimensions:

~ξ = ~∇(n̂γ) (1.26)

~ξ = γn̂+γ′t̂ (1.27)

t̂ =
∂n̂

∂θ
(1.28)







ξx

ξy





 =







γ(θ)cosθ −γ′(θ)sinθ

γ(θ)sinθ +γ′(θ)cosθ





 (1.29)

Consider an isolated particle embedded in a matrix is growing under the influence of an

cubic anisotropy function with a four-fold symmetry. If the strength of the anisotropy is

such that γ +γ′′ remains positive, the corresponding γ function (red) and the equilibrium

shape (blue) is shown using a ~ξ-vector plot in Fig. 1.17; these curves are smooth and

continuous in space. However, if the anisotropy strength becomes so high that γ + γ′′

is no longer positive, there exists a range of high energy orientations, missing from the

equilibrium shape of the crystal: they appear as “ears” in the ~ξ-vector plot [30] (Fig. 1.17).

Note that, the equilibrium shape or the Wulff shape, in the ~ξ-vector representation, is

given by the blue dotted curve without the “ears”. In such situations, the equilibrium

shape becomes convex signifying the onset of sharp corners and edges in the equilibrium

microstructures.

In the present thesis, we describe the surface tension of the system using a ~σ-vector

notation rather than a ~ξ vector. ~σ vector lies in the plane with a line of unit vector (say)

~l. ~l applies along the triple line (normal to the page in 2D) and related to the ~ξ vector in

the following way [31],

~σ = ~ξ ×~l. (1.30)

So, the ~σ (normal to ~ξ) can be written in two dimensions as:

~σ = γt̂−γ′n̂ (1.31)






σx

σy





 =







γ(θ)sinθ −γ′(θ)cosθ

γ(θ)cosθ +γ′(θ)sinθ





 (1.32)
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Figure 1.17: Parametric Plots: Red: γγγ plot; Green:1/γ plot; Blue: ~ξ plot

In essence, the anisotropy function representation in terms of ~ξ-vector or ~σ-vector are

equivalent.

Since anisotropy comes into play in the balance of capillary forces at the interface,

in directional solidification, in addition to the pulling speed and the thermal gradient,

crystalline anisotropy is also an important parameter to determine the steady state

microstructures. In addition to this, changing the angle (θR) between the crystalline

axis and the pulling direction modifies the anisotropy γ(θ) functions operating in the

growth plane [22]. This fact can easily be exploited using a relatively recent experimental

technique known as rotating directional solidification, which is elaborated in Sec. 1.5.

Moreover, atomistics of the emerging interfaces can also influence the evolution of the

solidification microstructures, particularly on the orientation development of the steady

state structures [32]. In other words, the effects of anisotropy in the S-L interfaces may

not bear the same role for S-S interfaces. During dendritic solidification, the crystal

seed grows into the liquid, and the growth direction of it is selected by the anisotropy in

the S-L interface. Such orientation selection during dendritic solidification is illustrated

in experiments as well as in numerical simulations to describe the transition from a
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dendrite to seaweed and fractal-like structure [33, 34, 35, 36, 37, 38]. In addition to these,

competition between different orientations has also been studied to shed some light on the

development of a preferred crystallographic direction during dendritic solidification [39, 40].

However, little is known about the orientation development in lamellar eutectic growth

patterns. A recent experiment by Akamatsu et al. [41] suggests that the orientation

of a growing lamella is influenced by the S-S boundary anisotropy. Motivated by this

work, in the present thesis, we aim to explore the effects of S-S boundary anisotropy on

the directional solidification microstructures. Furthermore, while the measurement of

anisotropic γ functions (Eq. (1.23)) of the S-L interfaces has gained significant attention in

the experiments as well as in the numerical calculations [42, 43, 44], little is known about

these functions for S-S interfaces [45].

S-S boundary surface tension anisotropy plays an important role in eutectic solidification.

First of all, in reality, all eutectic microstructure possess some degrees of anisotropy

depending on the symmetry of the underlying crystal structure of the material. Second,

in anisotropic regime the lamellar growth no longer relies on the simple isotropic energy

considerations or the Young’s law. Hence, the stability of the steady state patterns,

which arise during the eutectic solidification with isotropic energies, as well as the laws of

spacing-selection need to be revisited. Finally, one can obtain plenty of novel morphologies,

in addition to the “normal” lamellar and rod-like morphologies, with a revised dependency

on the phase fractions of the containing phases. In metallic alloys, although the most

important form of the anisotropy is a (cubic) four-fold one, experimental measurements

reveal that there can also be a significant contribution from non-fourfold anisotropies,

particularly, two-fold [46, 6]; this has been investigated in more detail in the present thesis.

It is useful to mention here that, in the presence of S-S boundary anisotropy, surface

tension balance at the triple point does not obey the isotropic Young-condition (Eq. (1.19))

anymore and, instead, follows the anisotropic Young-Herring equation [45]. This combines

the anisotropic ~σ-vector (Eq. (1.31)) along the S-S boundaries with the isotropic surface

tensions (Eq. (1.19)) along S-L boundaries resulting into following expression:
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γαLt̂αL +γβLt̂βL +~σ = 0 (1.33)

This is further detailed in Chapter 3.

1.5 Rotating directional solidification (RDS)

Horizontal directional solidification using the Bridgman method as described in Sec. 1.2.1

can be performed with yet another degree of freedom, i.e., rotating the solidification set-up

placed in a unidirectional thermal gradient while solidification is in progress. A rotating

coordinate frame is attached to the solidification table and the sample is rotated at an

angle of θR with respect to the thermal gradient G.

The details of this experimental method can be found in [41]. We only detail the

essence of this method in Fig. 1.18. A sample is placed in the center of the rotating

solidification table, which is rotated by a motor at a constant angular velocity ω = dθR
dt , or

until a certain orientation θR is reached. A hot block of temperature above the melting

point and a cold block below the melting temperature are placed across the table to

generate a fixed temperature gradient similar to the linear directional solidification. To

initiate growth, the sample is completely melted first and, then, quenched to generate a

number of grains. Once a grain of particular orientation is selected, the growth of it is

followed in the rotating frame with a rotation angle of (say) θR. Note that, after each

half rotation cycle, the sample melts and, hence, a number of runs are needed to obtain a

micrograph like Fig. 1.18d, which contains the solidification history. The essence of this

rotation is schematically shown in Fig. 1.19.

This exciting, relatively recent, technique has many unique advantages over horizontal

directional solidification. The 2-D micrographs obtained in this method are “mathemati-

cally” proved to be analogous to the equilibrium interface shapes or Wulff shapes of the

solid-solid boundaries [45]. In addition, we can follow the change in morphology of the

solidifying grain, as well as the tilt angle of the interfaces with a change in the sample

orientation introduced by a rotation of θR. Note, this method covers all the orientations
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Figure 1.18: A rotating directional solidification run: (a) seed crystal and grain selection
(b)directional solidification (c) start of RDS run (d) after long run. Empty rectangles
are the hot and cold blocks and X is the center of rotation (Adapted from Akamatsu et.
al[41])

between 0 to 2π in the sample plane. Moreover, changing the angle (θR) between the

crystalline axis and the pulling direction induces an effective anisotropy in the growth

plane [22]. Therefore, this method is well suited to examine the S-S boundary anisotropy

driven pattern formation systems, such as lamellar eutectics. This will be illustrated in

chapter 3.

1.6 Numerical methods

There are two basic methods to study solidification microstructures — sharp-interface

and diffuse-interface approaches. In the sharp-interface approach, one needs to implement

the equations described in Sec. 1.2.1 using sharp-interface methods, such as boundary-

integral [4, 21]. This solves for a mathematically sharp interface in between the solid

and liquid using complex boundary conditions at the interface. So, one needs to find the

interface positions explicitly using this approach. The problems of front tracking do not

arise in case of diffuse-interface approaches.
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θ
R

Figure 1.19: Representational rotating coordinate frame

In diffuse interface models, an order parameter φ is introduced to distinguish between

liquid (φ = 0) and solid (φ = 1). φ is a continuous function in space with a relatively smooth

region where 0 < φ < 1 in between the bulk phases describing the interfaces. We need a

free energy description of the system, and minimising this free energy with respect to the

conserved (c) and non-conserved (φ) quantities of the system, we obtain the equations of

motion concerning the microstructure evolution [47, 48, 49, 50].

However, the solidification morphologies obtained using these evolution equations

do not provide a quantitative comparison with a real alloy system. The reason is that

the characteristic natural thicknesses of diffuse S-L interfaces are much smaller than

the solidification patterns. Hence, in order to resolve both scales at the same time, the

thickness of the interfaces has to be enlarged numerically [51]. This may lead to certain

non-physical behaviours in the systems, like solute-trapping. Therefore, in order to use

this model, in a sense of comparison with the experimental results in a quantitative spirit,

one has to relate these model equations to the sharp-interface equations using a proper

asymptotic analysis [52]. The details of these diffuse interface models can be found in

recent reviews [50],[53],[54].

Initially, thermodynamically-consistent “simple” phase-field models with single phase-

field variable were developed to describe the phase transitions in a binary system [55,

56, 57, 58, 59]. In recent times, they have been extended to accommodate arbitrary

number of phases in a multi-component setting, utilizing a vector field description of the

order parameter. These multiphase, multicomponent models have been introduced and
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developed by Steinbach and co-workers [60, 61, 53], Nestler and co-workers [62, 63, 64],

Wheeler [65], Kim et al. [66], Plapp [51], Cogswell and Carter [67] etc. We will adopt

here a quantitative model in the line of Choudhury and Nestler, which uses the chemical

potential instead of the composition to describe the conserved field of the system. The

details of this model are given in chapter 2.

1.7 Thesis Outline and motivation

The goal of this thesis is to study the influence of S-S interface anisotropy on solidification

patterns, with the help of phase-field simulations. Our results will be systematically

compared to experiments.

In chapter 2, at first, the sharp-interface equations are described. Next, we provide an

introduction to the phase-field modeling technique and, then, detail the phase-field model

used in the present work. This is followed by a brief review of the methods used to relate

the phase-field equations to the sharp-interface equations.

Chapter 3 is devoted to the simulations of thin lamellar eutectics. In directional

solidification of binary eutectics, it is often observed that two-phase lamellar growth

patterns grow tilted with respect to the direction z of the imposed temperature gradient

(Fig. 1.20). This crystallographic effect depends on the orientation of the two crystal

phases α and β with respect to z. Recently, an approximate theory was formulated

that predicts the lamellar tilt angle as a function of the anisotropy of the free energy

of the solid(α)-solid(β) interphase boundary. We use two different numerical methods –

phase-field (PF) and dynamic boundary-integral (BI) – to simulate the growth of steady

periodic patterns in two dimensions as a function of the angle θR between z and a reference

crystallographic axis for a fixed relative orientation of α and β crystals, that is, for a

given anisotropy function (Wulff plot) of the interphase boundary. For Wulff plots without

unstable interphase-boundary orientations, the two simulation methods are in excellent

agreement with each other, and confirm the general validity of the previously proposed

theory. When unstable orientations are present in the Wulff plot, it is expected that two

distinct values of the tilt angle can appear for the same crystal orientation over a finite θR
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range. This bistable behaviour, which has been observed experimentally, is well reproduced

by BI simulations, but not by the PF model. Possible reasons for this discrepancy are

discussed.

Figure 1.20: CBr4-C2Cl6 lamellar eutectic formation in the (a) absence of anisotropy (b)
presence of anisotropy (adapted from Akamatsu et al. [41]). The two micrograhs are taken
from two different eutectic grains. Bar: 20 µm.

Chapter 4 deals with bulk lamellar eutectics. We use a phase-field model to simulate

the eutectic microstructures of a generic binary alloy in three dimensions for different

anisotropy functions. Solid-solid interphase anisotropy was found to be sufficient to

describe the dynamics of lamellar eutectic growth in this regime. In the absence of

anisotropy, a labyrinth of lamallae forms. While a four-fold anisotropy produces a wealth

of complex microstructures, two-fold anisotropy produces a regular lamellar array; a possible

mechanism for the development of preferred orientations has been discussed (see Fig. 1.21).

Moreover, we perform simulations with competing eutectic grains in which steady state

morphologies are found to be consistent with the interphase energy considerations. Finally,

a possible mechanism has been proposed in regard to the transformation of labyrinths into

regular arrays.

In Chapter 5, we study the orientation development of a anisotropic GB during unidi-

rectional solidification of a dilute binary alloy. In particular, we increase the solidification

rate V from 0 to cellular-instability threshold, and follow the response of the GB towards

its orientation selection. Below the constitutional supercooling limit, the GB grows at a

finite angle, and then, it follows a gradual or sharp transition towards the growth axis

depending on the intensity of the morphological instability. In this regime, the GB profile

is found to be greatly influenced by the GB mobility. Finally, we shed some light on
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Figure 1.21: Transformation of an disordered lamellar arrays or labyrinths towards a
regular lamellar arrays with a preferred orientation in the bulk eutectic sample (adapted
from Hecht et al. [68])

orientation selection in the presence of multiple GBs with different energy minima.

(a) (b)

Figure 1.22: Orientation of a low-angle GB (a) below CS velocity (b) above MS velocity.
Note that, in figure (b) the bottom part of the GB has been solidified above MS velocity;
then a downward velocity jump in the experiment makes the GB to orient at an angle in
the low velocity regime (adapted from Bottin et al. [69])

Finally, in Chapter 6, an overall conclusion is drawn from the results of the previous

chapters, and a perspective is given for the future work.



Chapter 2

Simulation Methods

In this chapter, we first describe the differences between a sharp-interface and a diffuse-

interface approach in materials modeling techniques. Next, we briefly outline the sharp-

interface method equations. Finally, we describe the basic phase-field method equations

before elaborating on the details of the model used in our present study.

Consider the problem of solidification where a liquid is solidifying into one or several

solids. In this process, one bulk phase (liquid) transforms into other bulk phases (solid)

leaving an intermediate region in between them, which is termed an interface. In sharp

interface approaches, such interfaces are described mathematically as of zero width, and

one needs to solve complex boundary conditions to track this interface. However, the

experimental electron microscopy images or the atomistic simulations using molecular

dynamics methods confirm that the interfacial region is several atomic layers thick. This

means that the interfaces that form in real materials between two bulk phases are smooth

and continuous. This concept has been assimilated in the phase-field modeling techniques,

where interfaces have been given a finite thickness. Hence, the phase-field modeling suits

better for the understanding of microstructure evolution of solids. In this technique, the

whole microstructure is described using a scalar field value φ, which is called the order

parameter. In the context of solidification, the order parameter φ is 0 in the liquid and 1

in the solid and, thus, the region in between is defined by 0 < φ < 1. This range defines an

interface in the microstructure, and the region over which it changes is called the width of

28
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the interface. A schematic representation of a sharp-interface and a diffuse-interface is

presented in Fig. 2.1. A comparison between the sharp interface and the diffuse interface

model equations can be found in [58].

Figure 2.1: (left) A sharp interface and (right) a diffuse interface (adapted from Sin et
al. [47])

2.1 Sharp-interface problem

The sharp interface equations are already described in chapter 1. In the present section,

we explain how these equations are rendered dimensionless and utilized to study a eutectic

solidification problem referring to the phase diagram in Fig. 1.9.

Consider the directional solidification of a binary eutectic alloy in an externally imposed

temperature gradient G along the z axis with a fixed pulling velocity V . We make the

approximation that the temperature field is independent of the S-L front shape (frozen-

temperature approximation), which is a good approximation for thin-sample solidification

in which heat conduction takes mainly place in the sample walls. In a two-dimensional

system (an appropriate model for thin-sample directional solidification) in which the
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temperature gradient is directed along the z axis, the temperature field is hence given by

T (~x,t) = TE +G(z −V t), (2.1)

where we have chosen the origin of the z axis at the eutectic temperature TE at time t = 0,

and ~x is a position vector in the (x,z) plane.

A dimensionless concentration field u is introduced,

u(~x,t) =
c(~x,t)− cE

cβ − cα
, (2.2)

where c(~x,t) is the space- and time-dependent composition of the alloy, and cE , cα, and

cβ are the equilibrium compositions of the three phases (liquid, solid α and solid β) that

are in coexistence at T = TE . In the one-sided model of solidification, this field obeys the

diffusion equation in the liquid with the diffusivity D,

∂tu = D~∇2u, (2.3)

whereas no diffusion takes place in the solid. At the S-L interfaces, the conservation of

solute implies

Vnui = −Dn̂ · ~∇u, (2.4)

where Vn is the normal growth velocity of the interface, ui = (ci −cE)/(cβ −cα) for i = α,β,

and n̂ is the unit normal vector to the interface pointing into the liquid. In writing down

this expression, we have made the simplifying assumption that the concentration differences

between the phases do not depend on temperature (parallel Liquidus and Solidus lines).

For isotropic interfaces, the classic problem of eutectic growth is completed by the

local equilibrium condition,

uint =











−(ζ(x)−V t)/lαT −dα
0 κ, α-L interface

(ζ(x)−V t)/lβT +dβ
0 κ, β-L interface

(2.5)
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Here, ζ(x) indicates the position of the S-L interface in the z direction,

liT =
|mi|(cβ − cα)

G
(2.6)

is the thermal length of phase i, with mi being the liquidus slope at the eutectic point,

di
0 =

γiLTE

Li|mi|(cβ − cα)
(2.7)

is the capillary length of phase i, with Li the latent heat of melting per unit volume and

γiL the surface free energy, and κ is the interface curvature, counted positive for a convex

solid.

Moreover, at the trijunction point, local equilibrium implies the balance of surface

tensions following the Young’s law for isotropic interfaces (Eq. (1.19)). These equations

are exploited in a boundary integral method, described in Chapter 3.

2.2 Basics of Phase Field Method

The evolution of a microstructure from a mother phase to a daughter phase is described

by a free energy functional which combines the free energies of the bulk phases and the

interfaces in between [70]. If the system is defined using an order parameter φ, the minimal

form of the functional becomes [54],

F =
∫

V

[

f(φ,c)+κφ(∇φ)2
]

dV (2.8)

Here, f is the free energy density of the bulk phases and the second term in the

functional is the gradient energy contribution from the interfaces because only at the

interface the gradient of φ is non-zero. κφ is the gradient energy coefficient, a parameter

related to the interface thickness. See Appendix A for an explanation of this coefficient.

The standard procedure is to minimise this free energy functional with respect to the

field variables. There are two basic types of field variables: conserved and non-conserved.

During solidification and other diffusional phase transformations, the overall composition
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of the system remains constant — this is a conserved variable. Whereas, during the process

of grain growth, the order parameter φ representing the grains no longer remains constant

as with time one grain overgrows the other. In this case φ is a non-conserved variable.

For conserved type of phase field modeling, the evolution of the field variables with

time is calculated from the continuity equation of local mass conservation calculating the

divergence of the solute flux ~J in the system. This uses a variational derivative of the

functional in Eq. (2.10).
∂c

∂t
= −∇· ~J (2.9)

∂c

∂t
= ∇·

(

M∇δF
δc

)

(2.10)

M is a mobility parameter. On the other hand, evolution equations for non-conserved field

variables such as order parameter φ are determined from an Allen-Cahn type of equation:

∂φ

∂t
= −M(φ)

δF
δφ

(2.11)

Depending on the physics of the system, these two equations are used to determine the

equilibrium microstructure of an alloy undergoing phase transformations.

2.3 Grand-canonical Multi-phase-field Model

For the present purpose, we have used a recent multi-phase, multi-component, grand-

canonical, phase-field formulation that has been elaborated in [51, 71, 64, 72]. In essence,

we start with a grand-potential functional rather than a free energy functional combining

the interfacial and bulk parts of the free energy of the system and then we minimise this

functional with respect to the field variables to obtain the evolution equations for the

phase fields and the composition fields.

Let us consider a binary alloy that solidifies into α and β solids. The following

formulation considers:

• No solute convection in the liquid (l)



2.3 Grand-canonical Multi-phase-field Model 33

• Solute is transported in the liquid by diffusion only

• Diffusion in the solids is ignored (one-sided model)

• Diffusion of solute in the liquid is described by the chemical potential field µ,

conjugate to the composition variable c

N = 3 phase fields, namely, φα, φβ and φl, equivalent to the local volume fractions,

describe the system and obey the constraint:

N
∑

i=1

φi = 1. (2.12)

The grand potential functional combines the interface and bulk free energies and takes the

following form:

Ω =
∫ [

ǫa(φ,∇φ)+
1

ǫ
w(φ)+ω(T,µ,φ)

]

dV, (2.13)

where ǫ is a length scale parameter related to numerical interface thickness. a(φ,∇φ) is

the gradient energy density which reads as:

a(φ,∇φ) =
∑N

i<j
γ̄ij [ac]

2|qij |2. (2.14)

qij is a vector normal to the ij interface and expressed as:

qij = φi∇φj −φj∇φi. (2.15)

In Eq. (2.14), γ̄ij is a constant and ac is the anisotropy function. Isotropic interfaces are

described by ac = 1. For anisotropic interfaces, ac is a function of local orientation angle θ,

as explained in Chapter 1. Incorporation of anisotropy via ac is detailed in Sec. 2.5.

w(φ) in Eq. (2.13) imparts multi-obstacle potential in the system and is expressed as:

w(φ) =



















16
π2

N
∑

i,j=1
γ̄ijφiφj +

N
∑

i,j,k=1
γijkφiφjφk if φ ∈ Σ

∞ elsewhere,

(2.16)
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Σ is bounded by φi ≥ 0 and
∑N

i φi = 1. γijk is a third order potential term which avoids

appearance of any unwanted “foreign” phases in the binary interfaces.

The function ω in Eq. (2.13) is the grand canonical potential which is obtained using the

Legendre transformations of the concentration-dependent Helmholtz free energy density,

fi, of each phase,

ω(µ,T,φ) =
∑N

i=1
ωi(µ,T )hi(φ). (2.17)

ωi(µ,T ) = fi −µc. (2.18)

The weight function hi in Eq. (2.17) interpolates between phases and satisfies
∑N

i=1 hi(φ) =

1.

hi(φ) = φ2
i (3−2φi)+2φiφjφk. (2.19)

The expressions for the bulk free energies fi are given in Sec. 2.4.

With all the elements of Eq. (2.13) detailed above, we will now derive the equations of

motion for this model. First, the evolution equations for the phase-fields follows Allen-Cahn

dynamics:
∂φi

∂t
= − 1

τǫ

[

δΩ

δφi
−Λ

]

, (2.20)

where τ is the relaxation coefficient, the value of which is chosen to make the interface

kinetics vanish and attain local equilibrium at the interfaces [64]. This can be implemented

as follows where τij applies for the relaxation constant for i− j binary interfaces.

τ =

∑N
i,j=1 τijφiφj
∑N

i,j=1 φiφj
. (2.21)

A correction in the form of Lagrange multiplier Λ, in Eq. (2.20), is added to maintain
∑N

i=1 φi = 1 throughout the system. This can lead some φi values in the system to become

less than 0 or greater than 1. We check this situation using the following procedure. If φi

goes below 0, we replace this with 0 and, similarly, if it goes beyond 1, we replace this

value with 1. This is a standard procedure for an obstacle type of potential (Eq. (2.16))

description of the system.

In Eq. (2.20), we calculate the functional derivatives δΩ
δφi

using the calculus of variations
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in the form of Euler-Lagrange equation which can be extended easily for higher order

derivatives:
δΩ

δφi
=

∂Ω

∂φi
−∇· ∂Ω

∂(∇φi)
+∇2 · ∂Ω

∂(∇2φi)
−·· · (2.22)

Applying Eq. (2.22) to Eq. (2.13) gives the following complete expression to be calculated

to arrive at the evolution equations for the φi (refer Eq. (2.20)):

δΩ

δφi
= ǫ

[

∂a

∂φi
− ∂a

∂(∇φi)

]

+
1

ǫ

∂W (φ)

∂φi
+

∂ω(T,µ,φ)

∂φi
. (2.23)

Next, the evolution equations for the concentration fields are obtained from the temporal

evolution of the chemical potential field µ, which is conjugate to the composition fields ci.

Taking partial derivatives with respect to time t on both sides of Eq. (2.17) gives

∂ω

∂µi
=

N
∑

i=1

∂ωi

∂µi
hi(φ). (2.24)

Following the expression ∂ωi
∂µi

= −ci from Eq. (2.18), we can write

c =
N
∑

i=1

ci(µ,T )hi(φ). (2.25)

Taking partial derivatives with time t on both sides results in

∂c

∂t
=

N
∑

i=1

[

∂ci

∂µ

∂µ

∂t
+ ci

∂hi

∂t

]

. (2.26)

Rearranging the above expression leads to a diffusion-like equation for µ:

∂µ

∂t
=





N
∑

i=1

∂ci

∂µ





−1



∂ci

∂t
−

N
∑

i=1

ci
∂hi(φ)

∂t



 . (2.27)

∂ci
∂t in Eq. (2.27) can be derived from the conservation of solute mass in the system resulting

in a continuity equation:
∂ci

∂t
= −∇· (~Ji −~jat). (2.28)
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A vector ~jat, termed the anti-trapping current, is added to the diffusion flux ~J to counteract

the spurious solute trapping effects arising at the thicker interfaces and thus guarantee

the correct thin interface limit [52]. The origin of this correction is explained in Sec. 1.6.

The expression for diffusion flux ~J which depends on the mobility M of the solute atoms

are given by

~J = −∇· (M∇µ) . (2.29)

M can be expressed in terms of interpolations between different phases as

M =
N
∑

i=1

Migi(φ). (2.30)

g(φ) is a weight function to interpolate the mobility between phases. In our present work,

we choose hi(φ) (Eq. (2.19)) to serve the purpose of g(φ); however, strictly speaking,

the functions to interpolate mobilities and the grand potentials need not be the same.

Finally, the mobility of the solute atoms in the individual phases can be related to the

interdiffusion coefficient multiplied by ∂c/∂µ

Mi = D
∂ci

∂µi
. (2.31)

2.4 Thermodynamic description of the free energy

For the free energies fi in Eq. (2.18) we take parabolic free energies, as detailed in [73, 72]

fi = Ai(T )c2 +Bi(T )c+Ci(T ). (2.32)

A, B and C are constants, which depends on the temperature T and the equilibrium

concentration ceq of the phases. These coefficients can be expressed as follows:
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Ai(T ) =
1

2

∂µ

∂c
,

Bi(T ) = µ−2A2
i ,

Ci(T ) = ωi +Aic
2
eq. (2.33)

The free energies, the first derivatives of the free energies – ∂f
∂c or µ, as well as the second

derivatives of it – ∂f2

∂2c
or ∂µ

∂c can be obtained from the thermodynamic fitting of Eq. (2.33)

at the particular temperature T using CALPHAD databases. In our present purpose,

we choose the coefficients to be equal Aα = Aβ = Al = A, which renders equal slopes for

the Liqidus and Solidus lines of the computed phase diagram. Further simplification

of Aα = Aβ = Al = 1 leads the B and C coefficients to become (for a binary alloy of

comoposition cE undergoing eutectic reaction at an undercooling ∆T resulting solids of

compositions cα and cβ):

Bi = 2(cE − ceq),

Ci = c2
eq − c2

E +
2∆T

m
(cE − ceq). (2.34)

Note that, with this approach, the expressions for the capillary lengths for the α- liquid

and β- liquid interfaces can be given by:

di
0 =

γiL

∂2fl/∂c2

=
γiL

2A
. (2.35)

γiL the surface free energy of i−L interfaces.

2.5 Incorporation of Anisotropy

Referring to Eq. (2.15), in the presence of surface tension anisotropy (say, m - fold), ac is

no longer 1. Instead, it depends on the local orientation angle of an interface: θ, which
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is measured in between the interface normal n̂ and the temperature gradient G. In two

dimensions, ac takes the usual polar form:

ac(θ) = 1+ ǫm cos(mθ), (2.36)

where θ is the local interface orientation angle and ǫm is the degree of anisotropy of the ij

interface. In two dimensions, the interface orientation θ can be simply obtained for an i-j

interface from the Cartesian components of the vector qij = φi∇φj −φj∇φi: we have

tanθ =
q

(y)
ij

q
(x)
ij

. (2.37)

Some simple anisotropy functions ac(θ) can also be directly expressed in terms of qij

instead of θ. Using this, we can approximate the four-fold and two-fold (for example, in

xy plane) anisotropy functions to their lowest order symmetries, respectively, as:

ac = 1− ǫ4[3−4(q̂4
x + q̂4

y)], (2.38)

ac = 1+ ǫ2(q̂2
x − q̂2

y). (2.39)

q̂ is the unit normal vector, and q̂x and q̂y are the Cartesian components of it, respectively.

As explained in Chapter 1, our numerical work is motivated by the rotating directional

solidification experiments. Changing the angle (θR) between the crystalline axis and the

pulling direction rotates the anisotropy within the growth plane (refer to Fig. 1.19). If a

growing crystal is rotated by an angle of θR, in two dimensions the anisotropy function is

changed from ac(θ) to ac(θ − θR). We wish to use an implementation that can easily be

extended to three dimensions and arbitrary rotations. In order to achieve this, we directly

work with the components of the interface normal vector and transform the equations

to the reference system of the crystal with the help of the appropriate rotation matrices,

which are detailed in Appendix B.

Note that, in two dimensions, the Cartesian components of the normal vector qij in

the laboratory frame are given by qx and qy. We rotate these components by an angle of
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θR, which brings it into the reference frame of the crystal,

q′ =







q′
x

q′
y





= R







qx

qy





 (2.40)

where R is a 2-D rotation matrix

R(θR) =







cosθR −sinθR

sinθR cosθR





=







Rxx Rxy

Ryx Ryy





 . (2.41)

In the reference frame of the crystal, the anisotropy can be expressed in the “primed”

vector components, independently of the rotation angle. For example, a simple cubic

anisotropy function is given by

ac(q
′) = 1− ǫ4



3−4





q′
x

4
+ q′

y
4

|q′|4







 , (2.42)

where ǫ4 is the anisotropy strength; a two-fold anisotropy is generated by

ac(q
′) = 1− ǫ2





q′
x

2 − q′
y

2

|q′|2



 (2.43)

for an arbitrary function ac(θ), we may use that tanθ = q′
y/q′

x. Note that, a similar

approach for rotating the normal vector components with an arbitrary angle has been

utilized to incorporate a misorientation between the crystal axes and the thermal gradient

in order to study the directionally solidified inclined structures in thin samples [38].

In order to calculate the functional derivative in Eq. (2.20), repeated use of the chain

rule is made. For instance, we have

∂ac(q
′)

∂φi
=

∂ac

∂q′
x

· ∂q′
x

∂φi
+

∂ac

∂q′
y

·
∂q′

y

∂φi
=
[

∂ac

∂q′
x

∂ac

∂q′
y

]

R







∂xφj

∂yφj





 . (2.44)
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Similarly, we find







∂ac(q′

ij)

∂(∂xφi)
∂ac(q′

ij)

∂(∂yφi)





=







∂ac

∂q′
x
Rxx

∂qx

∂(∂xφi)
+ ∂ac

∂q′
y
Ryx

∂qx

∂(∂xφi)

∂ac

∂q′
x
Rxy

∂qy

∂(∂yφi)
+ ∂ac

∂q′
y
Ryy

∂qy

∂(∂yφi)





= −φβ







∂ac

∂q′
x
Rxx + ∂ac

∂q′
y
Ryx

∂ac

∂q′
x
Rxy + ∂ac

∂q′
y
Ryy





 . (2.45)

In 2-D, |q′| in Eqs. (2.42, 2.43) can be defined as
√

q′2
x + q′2

y . This renders the ∂ac

∂q′

i

components in Eqs. (2.44, 2.45) as follows, for a 4-fold (Eq. 2.42) and 2-fold (Eq. 2.43)

functions, respectively:







∂ac

∂q′
x

∂ac

∂q′
y





= 16 ǫ4







q′3

ij,x

|qij |4
− q′

ij,x.(q′4

ij,x+q′4

ij,y)

|qij |6

q′3

ij,y

|qij |4
− q′

ij,y.(q′4

ij,x+q′4

ij,y)

|qij |6





 , (2.46)







∂ac

∂q′
x

∂ac

∂q′
y





= 2 ǫ2







q′

ij,x

|qij |2
− q′

ij,x.(q′2

ij,x−q′2

ij,y)

|qij |4

− q′

ij,y

|qij |2
− q′

ij,y.(q′2

ij,x−q′2

ij,y)

|qij |4





 . (2.47)

Generally speaking, in three dimensions, we have two variants of rotation in a spherical

coordinate system (see figure 2.2) – (θ,ϕ): ϕ is the azimuthal angle and θ is the polar

angle or the angle of elevation, similar to 2-D rotations.

Figure 2.2: Two angles ϕ and θ represent a spherical coordinate system. xy is the azimuthal
plane. Axis z is the direction of G as well as the growth direction which renders the
azimuthal plane as a transverse plane of the simulation box.

In case of a rotation in the azimuthal plane in three dimensions, this is reduced to a

single rotation variable, say, ϕR in the azimuthal plane. As a result, the corresponding
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anisotropy function ac(ϕ) becomes ac(ϕ − ϕR), and its subsequent transformation to

Cartesian coordinate can be performed using a suitable rotation matrix. Such an elementary

3-D rotation matrix R can be written as:

R =















Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz















=















cosϕR −sinϕR 0

sinϕR cosϕR 0

0 0 1















(2.48)

Note the above rotation matrix essentially implies a 2-D rotation, in xy plane, around a

fixed axis z. Similar invariant rotations can be structured, as above, by changing the axis of

rotation along with possible combinations of (composite) 2-D rotations, which are detailed

in Appendix B. In a similar way, explained before, these rotation matrices are incorporated

in the system of equations via Eq. (2.40). If we make R as the identity matrix, we recover

the equations for an un-rotated coordinate frame (Eq. (2.38)). Therefore, rotation matrix

representation is a generalized way to incorporate anisotropy in numerical simulations.

2.6 Regularized Phase-field model

As explained in Chapter 1, stability of a particular orientation is determined by the surface

stiffness parameter defined by: ac + d2ac

dθ2 (or, ac +a′′
c ). If the magnitude of the anisotropy

strength ǫm (m = 2, 4) becomes very high to make the surface stiffness negative, then the

equilibrium microstructure contains sharp corners and edges. Presence of sharp corners

makes the surface normal as well as the spatial derivatives of the phase field φ discontinuous

around it leaving the phase-field equations derived beforehand ill-posed. This can be

overcome by adding higher order terms in the free energy functional in Eq. (2.13) in order

to penalize the curvature.

In the following, we describe two ways of regularization implementation techniques

and the modified phase-field evolution equations. Egglestone et al. [74] employed a

convexification of the polar plot of 1/ac to remove such ill-posedness. Wheeler [65] linearly

regularized the functional adding a square of the curvature, detailed in sec. 2.6.2. Torabi

et al. [75] employed the Willmore regularization technique in which square of the mean
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curvature is added to the functional, detailed in sec. 2.6.1.

2.6.1 Willmore Regularization

In this approach, we add the following term in the functional Ω (Eq. (2.13)).

F =
β

2

∫

V

1

ǫ3
(w′(φ)− ǫ2∇2φ)2dV (2.49)

β is a length scale parameter over which the equilibrium sharp corners are smoothed

out. w(φ) is the double-obstacle potential given by Eq. (2.16) and w′(φ) = ∂w
∂φ . In the

following way, the Laplacian of φ is broken into pieces and connected to the normal vector

components to obtain the modified phase-field equations,

∇2φ = ∇·∇φ

= ∇·q

= ∇· (φα∇φβ −φβ∇φα)

= φα∇2φβ −φβ∇2φα (2.50)

The variational calculus of the following form is used:

δF

δφα
=

∂F

∂φ
−∇· ∂F

∂(∇φ)
+∇2 · ∂F

∂(∇2φ)
(2.51)

∂F

∂φα
= −β

1

ǫ
m∇2φβ (2.52)

∂F

∂(∇2φα)
= β

1

ǫ
mφβ (2.53)

m = w′(φ)− ǫ2(φα∇2φβ −φβ∇2φα) (2.54)

w′(φ) =
16

π2
φβ (2.55)

w′′(φ) = 0 (2.56)
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∂F

∂(∇2φα)
=

β

ǫ

[

w′(φ)− ǫ2(φα∇2φβ −φβ∇2φα)
]

φβ (2.57)

∂F

∂(∇2φα)
=

β

ǫ

[

16

π2
φ2

β − ǫ2(φαφβ∇2φβ −φ2
β∇2φα)

]

(2.58)

(2.59)

∇
(

∂F

∂(∇2φα)

)

=
16

π2
(2φβ∇φβ)− ǫ2

[

∇φβφα∇2φβ +φβ∇φα∇2φβ (2.60)

+φβφα∇3φβ −2φβ∇φβ∇2φα −φ2
β∇3φα

]

(2.61)

∇2 ∂F

∂(∇2φα)
= ∇·

(

∇ ∂F

∂(∇2φα)

)

(2.62)

These above components update the phase-field equations following Eq. (2.22).

2.6.2 Linear Regularization

This approach does not depend on the potential w(φ) like the previous case, and a simple

Laplacian of phase-field (φ) squared serves the purpose. In this case, the additional term

added to the functional Ω is:

F =
β

2

∫

V

1

ǫ3
(ǫ2∇2φ)2dV (2.63)

Like before, a variational calculus of the following form is used to obtain the components

to replace Eq. (2.22)
∂F

∂φα
= βǫ(φα∇2φβ −φβ∇2φα)∇2φβ (2.64)

∂F

∂(∇2φα)
= βǫ(φα∇2φβ −φβ∇2φα)(−φβ) (2.65)

∇2 ∂F

∂(∇2φα)
= −βǫ(φαφβ∇4φβ −φ2

β∇4φα) (2.66)

In this way, we obtain the regularized phase field evolution equations in order to study

every possible orientations present in the system including the unstable ones.
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2.7 Relation to sharp interface theory

Let us comment on some important features of this model with respect to the sharp

interface model. First, the driving force for phase transformations from (say) i to j phase

is given by the difference of grand potentials between the parent and the child phases:

∆ω(µ,T ) = σijκ, (2.67)

σ is the surface tension between phases and κ is the curvature of i − j interface. In the

sharp interface description this is equivalent to the undercooling ∆T = Γκ, Γ(= σij/L) is

the Gibbs-Thomson coefficient.

Second, the Gibbs-Thomson condition for this kind of grand potential model can be

obtained using a Clausius-Clapeyron like analysis [76]:

∂µ

∂t
=

(

∂ωi
∂T − ∂ωj

∂T

)

(ci − cj)
. (2.68)

Using ∂µ
∂t = ∂µ

∂c
∂c
∂t , we can also obtain the slopes of the phase boundary lines

m = 2A
(ci − cj)

(

∂ωi
∂T − ∂ωj

∂T

) . (2.69)

The Gibbs-Thomson coefficient can similarly be derived as:

Γij =
σij

(

∂ωi
∂T − ∂ωj

∂T

) . (2.70)

Finally, to achieve local equilibrium at the interface, local net kinetics of the solute

atoms must vanish there. This condition has been satisfied using a thin interface analysis of

a pure material solidification problem leading to a relaxation constant τ of i− j interface:

τij = ǫ
(cj − ci)

2

D ∂cj

∂µ

(0.222) . (2.71)
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Details of this analysis as well as the evaluation of the anti-trapping current ~jat can be

found in [64].



Chapter 3

Interphase Anisotropy Effects on

Lamellar Eutectics

3.1 Introduction

It has been known for a long time that the solidification dynamics of eutectic patterns may

strongly depend on the crystal orientation of the two solid phases [77]. Such crystallographic

effects during eutectic growth have been neglected so far, both in theories and models,

in spite of their practical importance [78, 79]. We will focus here on lamellar eutectics.

In previous works [80, 81], a distinction has been made between two types of eutectic

grains. A eutectic grain is defined as a region of substantially uniform crystal orientation

of the two solid phases α and β, and thus with a constant orientation relationship between

the two crystals. On the one hand, in floating (eutectic) grains, the dynamics of the

lamellar solidification front patterns is well described by the standard theory of regular

eutectics. In particular, spatial inhomogeneities of the lamellar spacing are smoothed out

with time by a “spacing-diffusion” process [82, 83] generically present in out-of-equilibrium

pattern forming systems [84]. On the other hand, in locked grains, eutectic lamellae

grow in a direction that is essentially aligned to a certain crystallographic plane, and are

inclined (or tilted) with respect to the main growth axis z [85, 81]. The strength of this

crystallographic locking effect varies between different eutectic grains. In strongly locked

46



3.1 Introduction 47

grains, the spacing-diffusion process is absent [80].

a)#

b)#

Figure 3.1: Lamellar eutectic patterns observed in situ during thin-sample directional
solidification (V = 0.5µms−1) of a eutectic transparent (CBr4-C2Cl6) model alloy. a)
Symmetric steady-state in a “floating” eutectic grain. b) Tilted lamellae in a “locked”
eutectic grain. The growth direction is vertical (liquid on top). Bar: 20 µm.

Examples of floating and locked eutectic patterns observed in thin-sample directional

solidification experiments are shown in Fig. 3.1. The corresponding schematic views of

the interfaces are depicted in Fig. 3.2. In the locked case, tilted lamellar microstructures

are left behind in the solid by a eutectic growth front pattern that drifts laterally at a

constant velocity Vd (the pattern is in a steady state in the traveling reference frame). The

magnitude of the drift velocity can be large, i.e. comparable to the pulling velocity, which

leads to the freezing of strongly tilted lamellae, as shown in Fig. 3.1b. In a steady-state

condition, the (lamellar) tilt angle θt is defined by tanθt = Vd/V . On the basis of in

situ directional solidification observations using thin samples of metallic and transparent

organic eutectic alloys, a conjecture was formulated recently that permits to relate the

value of θt to the anisotropy of the free energy of the interphase boundaries (interfacial

anisotropy) [45, 41]. The main underlying hypotheses are that (i) only the S-S interfaces

are anisotropic (i.e., in a nonfaceted alloy, the anisotropy of the S-L interfaces has a

negligible effect on the lamellar growth dynamics), and (ii) the S-L interface keeps virtually

the same shape – with mirror symmetry about the mid-plane of a lamella – as for standard

(non-tilted) lamellae. The tilted pattern shown in Fig. 3.1b satisfies these conditions. In

essence, under this symmetric-pattern (SP) approximation, the conjectured theory states

that the Cahn-Hoffman surface tension vector ~σ (defined in Sec. 1.4) is aligned with z (Fig.
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3.2b).

γαL 

γβL 

γαβ 

α β

b) 

z 

a) 
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γαL 

σ
 

θsp#

γβL 

Figure 3.2: Schematic repeat units of lamellar eutectic patterns. a) Isotropic system. b)
System with an interfacial anisotropy of the interphase boundary in the symmetric-pattern
(SP) approximation. α, β: solid phases. L: liquid. z: growth direction parallel to the
thermal gradient. x: direction of the isotherms. θsp: SP-approximation lamellar tilt angle.
The lateral drift velocity is given by tan θsp = Vd/V , with V the pulling velocity. Other
symbols: see text.

The goal of the present work is to test the SP approximation by numerical simulations,

in which the anisotropy of the interphase boundaries can be freely chosen. We use two

different numerical models, in two dimensions. The first one is a sharp interface code,

which uses the dynamic boundary-integral (BI) formalism previously developed by Karma

and Sarkissian [21] (refer Sec. 3.3). This method combines an evaluation of the solute

diffusion field by the boundary-integral method with an explicit front-tracking algorithm

for the interface evolution. For simplicity, the S-L interfaces are assumed to be isotropic.

The anisotropy of interphase boundaries is incorporated by changing the local equilibrium

condition at the trijunctions from the Young to the Young-Herring law. The corresponding

model equations are presented in Sec. 2.1 and a brief implementation procedure is given

in Sec. 3.3. The second method is the phase-field model described in Chapter 2.

We characterize a given eutectic grain by the anisotropy function, or Wulff plot (i.e.

the polar plot of the surface free energy) of the interphase boundary. It is important

to note that the details of this function depend solely on the relative orientation of the
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α and β crystals. In two dimensions, changing the in-plane orientation of a eutectic

grain with respect to the growth axis z while keeping the relative αβ orientation fixed

is equivalent to rotate the Wulff plot globally by a single angle θR. Our results can

be classified into two main categories, according to unstable orientations being absent

or present in the Wulff shape, respectively. For all the anisotropy functions that we

have tested and that do not exhibit unstable orientations, the two numerical methods

give almost identical results for the tilt angle θt as a function of the rotation angle θR.

Importantly, the value of θt follows quite closely the variation of θsp vs θR, where θsp is

the tilt angle predicted by the SP-approximation. In addition, a strong locking of the

lamellae onto a certain direction is well reproduced in both BI and PF simulations by

using an anisotropy function with a peaked minimum. Moreover, the tilt angle is found to

be largely independent of the lamellar spacing and the pulling velocity, in good agreement

with the SP approximation. For anisotropies that are large enough to create orientations

that exhibit a Herring instability [86], the two numerical methods give different results. In

the BI simulations, a phenomenon of bistability is observed, that is, for a finite range of

eutectic-grain orientations, there are two stable lamellar patterns with different tilt angles.

Those two branches of steady-state solutions are essentially the same as the ones predicted

by the SP approximation. Manifestations of a bistable behavior have indeed been observed

in thin-sample solidification experiments [45]. In contrast, no such bistability is observed

in the phase-field simulations.

The remainder of the chapter is structured as follows. In Sec. 3.2, we recall some facts

about eutectic grains and anisotropic interfaces, present the equations of and review the

SP-conjecture for the prediction of the tilt angle. In Sec. 3.4, we describe our results for

various choices of the anisotropy function. In Sec. 3.5, we will discuss separately (i) a way

to estimate the accuracy of measurements of the interphase boundary Wulff plot using

experimental observations with the so-called rotating directional-solidification method [41],

and (ii) possible reasons for the absence of hysteretic behavior in the high-anisotropy case

in the PF simulations. Conclusions and perspectives are presented in Sec. 3.6.
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3.2 Background

3.2.1 Anisotropic inter-phase boundaries

A lamellar-eutectic solid consists of eutectic grains made of crystals of the solid phases α and

β with uniform orientations. A (eutectic) grain hence constitutes a heterophase bicrystal.

The relative orientation between the lattices of the two phases (constant within a grain)

determines the interphase boundary energy and its anisotropy, which may therefore vary

between grains. For a description of interphase configurations in directional solidification,

we need to specify the orientation of the bicrystal and that of the interphase boundary with

respect to the temperature gradient and the sample plane of the directional solidification

setup. In two dimensions, two angles with respect to the temperature gradient axis are

sufficient for a complete specification of these orientations.

Consider first a bicrystal in a fixed orientation with respect to the temperature gradient.

Let n̂ be the unit normal vector of the interphase boundary, and θ the angle between

n̂ and the x axis (we have nx = cosθ and nz = sinθ). Furthermore, let the anisotropic

interphase boundary energy be given by

γαβ(θ) = γ̄αβac(θ), (3.1)

where γ̄αβ is a constant and ac(θ) is a dimensionless function.

With their help of Cahn-Hoffman ~ξ and ~σ vectors (defined in Sec. 1.4), the equilibrium

shape of a β inclusion inside an α matrix and the anisotropic equilibrium condition at

trijunction points can be obtained in a simple way. As explained in Chapter 1, the Wulff

plot is defined by ~r(θ) = γαβ(θ)n̂ and the minimum-energy shape (Wulff shape) is traced

by plotting the vector ~ξ(θ). For low anisotropies that satisfy γαβ(θ)+γ′′
αβ(θ) > 0 for all

orientations, the Wulff shape is smooth. If the interface stiffness γαβ(θ) +γ′′
αβ(θ) becomes

negative for a given value of θ, a flat interface of this orientation is unstable with respect

to the formation of a hill-and-valley structure (Herring instability [86]). In this case,

the plot of ~ξ as a function of θ has self-intersections, and the Wulff shape is given by

the inner convex part only (refer to the Fig. 1.17). The other parts, often called “ears”,
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consist of three segments delimited by turning points (see for example Ref. [87] for details

and illustrations). The interface stiffness is negative only on the middle segment, but

all orientations located on the “ears” are missing from the physically observable convex

equilibrium shape.

When the bi-crystal is rotated with respect to its reference configuration by an angle

θR, the interphase energy becomes

γαβ(θ) = γ̄αβac(θ − θR). (3.2)

We choose the reference configuration (θR = 0) such that an interphase orientation of

minimal energy is aligned with the growth direction. Note that positive and negative θR

thus correspond to rotations to the left and to the right with respect to a minimum-energy

direction. Below, we will essentially test two types of anisotropy functions. The first one

is of the standard form used for the modeling of crystals with m-fold symmetry, namely,

am(θ) = 1− ǫm cosmθ , (3.3)

where ǫm is the m-fold anisotropy coefficient. It should be noted that for interphase

boundaries, at which two centrosymmetric crystals meet, a 2-fold anisotropy is always

expected (since two opposite orientation vectors describe the same surface). The second

type of anisotropy function that we will study is motivated by the observation of strong

locking of growth directions onto certain crystallographic planes. This usually occurs when

the two solid phases exhibit an epitaxial orientation relationship [85]. In this case, the

locking planes correspond to sharp cusp-like minima in the γαβ(θ) function. In order to

avoid the additional difficulties related to the regularization of the cusp (see for example

[88]), we prefer to use a deep and narrow, but smooth minimum, which we model by a

Gaussian in the anisotropy function, that is,

ag(θ) = 1− ǫg exp
[

−(θ/wg)2
]

, (3.4)
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where ǫg is the amplitude, and wg is the width of the Gaussian. For both types of

anisotropy, a finite range of forbidden orientations appears for large enough values of the

anisotropy coefficient. In our simulations, we also used linear combinations of the functions

am (with m = 2,4) and ag,

ac(θ) = 1− ǫg exp
[

−(θ/wg)2
]

− ǫ2 cos2θ − ǫ4 cos4θ (3.5)

with various values of the parameters ǫm, ǫg and wg. This form can reproduce well typical

anisotropies that have been obtained from experiments [41] and molecular dynamics

simulations [89]. More details on these anisotropy functions are given in Appendix C using

γ − θ plots, Wulff plots and ~ξ-vector plots.

Let us comment on how the sharp-interface problem introduced previously needs to

be modified in order to take the interphase boundary anisotropy into account. Since we

suppose that the S-L interfaces remain isotropic (which should be a good approximation

for nonfaceted substances), the Gibbs-Thomson conditions, Eq. (2.5), are unchanged. In

addition, since we still assume that there is no diffusion in the solid, we do not need to

write a local-equilibrium condition along the interphase boundaries. Therefore, the only

change that intervenes in the equations is a modification of the local-equilibrium condition

at the trijunction, which becomes a Young-Herring equation, that is,

γαLt̂αL +γβLt̂βL +~σ = 0, (3.6)

with ~σ given by Eq. (1.31). Note that the ~σ vector is not parallel to the interphase

boundary (Fig. 3.3a).

3.2.2 Theoretical predictions for the tilt angle

The SP approximation that allows us to obtain a prediction for the growth angle is based

on the experimental findings presented in Refs.[45, 41]. It was found that, even for lamellae

that grow at a large angle with respect to the temperature gradient, the shape of the S-L

interface is close to the one observed for well-aligned lamellae. More precisely, the “heads”
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Figure 3.3: a) Illustration of the Young-Herring equilibrium condition at the trijunction.
~n and ~t: normal and tangent unit vectors of the interphase boundary. b) Definition of the
tilt angle θt and the angle δ between ~σ and z.

of the lamellae are approximately mirror-symmetric with respect to the mid-plane of the

lamellae, which means that the contact angles of the S-L interfaces at the trijunctions are

nearly the same on both sides of a lamella (to within the resolution of the experiments).

Considering the Young-Herring condition of Eq. (3.6), a strictly symmetric shape is possible

only if the vector ~σ is aligned with the z axis. Using the fact that t̂αβ = (sinθ,−cosθ)

and n̂αβ = (cosθ,sinθ) in the (x,z) plane, the condition that the x component of ~σ is zero

writes

γαβ(θ − θR)sinθ +γ′
αβ(θ − θR)cosθ = 0. (3.7)

For a fixed orientation θR of the eutectic grain, this is a nonlinear equation for the interface

orientation θ, which can easily be solved numerically for arbitrary anisotropy functions

ac(θ). As long as the interface stiffness γαβ(θ) + γ′′
αβ(θ) is positive for all angles, this

equation has a unique solution. For negative stiffness, there are ranges of θR for which

there exist three solutions, of which one corresponds to an orientation that is present

on the equilibrium shape, one to an unstable orientation, and the third to a metastable

orientation with positive stiffness that is missing on the equilibrium shape (belonging to

an “ear”). This is the prediction against which we will compare our numerical results. As

mentioned, we will note θsp the value of θ, solution of Eq. (3.7), which is predicted by the

SP approximation.

As will be seen below, a steady state with tilted lamellae obtained from our simulations

generally does not follow exactly the prediction of Eq. (3.7). The departure from the

conjecture can be quantified by the value of the angle between the ~σ vector and the z
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axis, which we will denote by δ in the following, as illustrated in Fig. 3.3b. The SP

approximation predicts δ = 0.

3.3 Boundary-integral method

For our BI calculations, we have adapted the method developed by Karma and Sarkissian

[21]. In the quasistationary approximation, valid for slow growth velocities, the solute

diffusion equation, Eq. (2.3) can be replaced by the Laplace equation, ~∇2u = 0. The use

of Green’s function techniques then permits to transform this partial differential equation

together with the boundary conditions at the interface into a single integro-differential

equation along the S-L front. The numerical procedure to calculate the time evolution of

the growth front is as follows. The interfaces are discretized with the help of marker points

that are uniformly spaced along the interface. The gradient of the concentration field u,

and thus the interface velocity from Eq. (2.4), is obtained from the boundary-integral

equation for each interface point except for the trijunction points. After having moved

forward the interface points, the new position of the trijunction point is found by solving

Eq. (1.19), with the new positions of the first point on each interface taken as input, and

the position of the trijunction as unknown. This equation is solved by a relaxation scheme.

More details can be found in Ref. [21].

Since, under our hypotheses, the S-L interfaces remain isotropic, the only change that

is necessary to incorporate the S-S interfacial anisotropy in this model is in the calculation

of the trijunction positions. We have replaced Eq. (1.19) by Eq. (3.6); in other words, we

have replaced the vector γαβ t̂αβ by the vector ~σ in the routine that calculates the new

trijunction positions.

3.3.1 Parameters

We have chosen as a convenient test case a model eutectic alloy with symmetric phase

diagram and properties, that is, mα = −mβ, uβ = −uα, and γαL = γβL. In the following,

we will therefore drop the phase indices of all parameters (capillary and thermal lengths)
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for simplicity. We also choose the average value of the S-S interface free energy to

be equal to the S-L one (γ̄αβ = γαL), which would yield trijunction angles of 120◦ for

isotropic interfaces. We will specify the simulation parameters using dimensionless ratios,

normalizing all lengths with the diffusion length

lD =
D

V
. (3.8)

We work at the eutectic composition and in the limit of slow velocities and low temperature

gradients, which implies d0/lD ≪ 1, d0/lT ≪ 1, and the Péclet number Pe = λ/lD ≪ 1,

where λ is the lamellar spacing. It may be useful to mention that the value of the

Jackson-Hunt minimum undercooling spacing λJH under these conditions is given by

λJH ≈ 3.844
√

d0lD. (3.9)

As we shall see below, in the regime that we have investigated, the results depend very

little on the detailed choice of the parameters.

3.4 Results

3.4.1 General remarks

Our standard simulation procedure is as follows: we start from a pre-existing pair of

lamellae (usually taken from a previous steady-state calculation) and slightly change the

rotation angle θR at a predetermined time step. Immediately after the change in θR (within

a solidification distance of less than one lamellar spacing), the lamellae select a new tilt

angle (Figs. 3.4 and 3.5). With the model Wulff plots that we have implemented, and in the

range of control parameters that we have used, the calculations always converged toward a

steady-state pattern. We let the system evolve for typically 3–10 lamellar spacings before

we measure the steady-state tilt angle θt of the interphase boundary. In BI simulations,

the inclination of the interphase boundary (and those of the tangents to the S-L interfaces

at the trijunctions, as well as the ~σ vector) is automatically given as output data of the
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simulation. In PF simulations, θt is measured at a distance from the trijunction of several

times the interface thickness, as imposed by the diffuse nature of the trijunction. It was,

however, not possible, with our PF method, to extract numerically the contact angles in

the moving anisotropic trijunction with a reasonable accuracy. The same is true for the

angle δ that quantifies the departure from the SP approximation.

a) 

b) 

c) 

Figure 3.4: Steady-state lamellar patterns (BI simulations). a) Symmetric pattern without
anisotropy. b) Tilted pattern with anisotropic interphase boundaries (anisotropy function
given by Eq. (3.4); ǫg = 0.2 ; wg = 0.1; θR = 3π/48 ≈ 11.25◦ ; Pe = 0.024 ; θt = 11.0◦). c)
Spatio-temporal diagram showing the steady-state dynamics corresponding to a) and b),
successively, and the brief transient after the anisotropy was turned on.

In Figs. 3.4 and 3.5, we show illustrative examples of drifting patterns calculated with

the BI and the PF codes, respectively. In both cases, we chose anisotropy functions with a

peaked minimum, which can produce locked lamellar patterns for a certain θR range. The

relation between the shape of the anisotropy function and the tilt angles will be detailed

below. For the time being, let us comment on some general features of tilted lamellar

growth patterns.

First, the selection of a new steady-state tilt angle after a change of the rotation angle

θR occurs very rapidly (over a solidification distance of less than λ), so that the interphase

boundary left behind in the solid exhibits a sharp bend, see Figs. 3.4c and 3.5b. Second,

in tilted patterns, the shape ζ(x) of the S-L interfaces most often looks “flatter” than in

the fully isotropic case (Fig. 3.4a,b), in agreement with experimental observations. This

results from the fact that the modulus of ~σ is smaller than the isotropic reference value
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Figure 3.5: Drifting lamellar patterns in the PF model; the anisotropy function is given
by Eq. (3.5) with ǫg = 0.2, wg = 0.1, ǫ2 = 0.0854, and ǫ4 = 0.0221 (the same function as
in Fig. 3.10 below): (a) “locked” tilted state (θt = 29◦, θR = 30◦), (b) transition from a
locked to an unlocked tilted state upon change of θR from 35◦ to 40◦, (c) unlocked tilted
state (θt = 10.8◦, θR = 50◦). Other parameters: d0/lD = 7.9×10−3, lT /lD = 3.167.

of the surface free energy, and hence the dihedral angle between the two S-L interfaces

at a trijunction is larger than in the isotropic case. Third, the S-L interfaces exhibit a

certain degree of asymmetry, a quantitative measure of which can be given by the ratio

[ζ(x) − ζ(−x)]/ζ0, with ζ0 the amplitude of the S-L cap (and x being centered in the

middle of a lamella). In the case of Fig. 3.4b, that quantity is of about 5%. This is

equivalent to stating that (as shown by the BI simulations) the value of δ is not zero.

The sign of δ is opposite to that of θt, which indicates that the diffusion field tends to

oppose the lateral drift of the lamellar pattern (as could be expected given the stability of

non-tilted lamellar pattern for λ close to λJH in the absence of anisotropy).

Before studying the dynamics of tilted-lamellar solidification patterns by varying the

characteristics of the αβ Wulff plot, we have tested the influence of two control parameters,

namely, the lamellar spacing λ, and the Péclet number Pe, on the tilt angle, for a given

crystallographic configuration. Figure 3.6 shows the variation of θt as a function of

λ/λJH for given values of the other control parameters and for a fixed Wulff plot (BI

simulations). In the scanned λ/λJH range, the variations of θt are very small (a fraction

of a degree). Moreover, the angle δ, which characterizes the departure from the SP

approximation remains smaller than 1 degree (in absolute value). This indicates that the

steady-state tilt angle θt is smaller than, but close to the SP-approximation value θsp. It
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can be seen that for small lamellar spacings, δ tends towards zero and θt towards θsp with

decreasing λ. The Jackson-Hunt analysis predicts that for λ = λJH , the contributions of the

interface curvature and the diffusion field to the front undercooling are of equal magnitude,

whereas for smaller spacings capillarity dominates over the composition variations due

to diffusion. Since the SP approximation takes into account only capillary phenomena,

it is not surprising to see that it becomes more accurate in the small-spacing limit. It

should also be mentioned that, in extended systems with isotropic interfaces, a lamellar

elimination instability occurs for spacings below a threshold spacing that is lower than

but close to λJH [83]. The value λ ≈ 1.75λJH at which θt passes through a minimum

(and −δ through a maximum) more or less corresponds to a change of the shape of the

S-L interface, which, for the larger λ values, exhibits a concave part in the center of each

lamella (it may also be noted that, for isotropic interfaces, the lamellar pattern undergoes

an oscillatory instability for λ ≈ 2.2λJH [21]).
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Figure 3.6: Steady-state tilt angle θt obtained from BI simulations as a function of the
reduced lamellar spacing λ/λJH , at constant G and V (d0/lD = 1.9531×10−5, lT /lD = 4).
The angle −δ is also plotted (δ is the angle between ~σ and z). Anisotropy function
ac(θ) = 1−0.05cos[2(θ − θR)] ; θR = π/3 (θsp = 5.3◦).

Figure 3.7 shows the variation of θt with the Péclet number Pe, calculated with the PF

method by varying the diffusion coefficient D in the liquid (this is equivalent to varying

the velocity V ), at fixed λ, d0, and lT . The graph shows a decreasing, essentially linear

variation of θt with Pe. This indicates that the effect of the diffusion field increases when
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Pe increases, and, again, that it is in opposition to the lateral drifting motion of the

pattern. A linear fit of the data indicates that the value of θt extrapolated to Pe = 0

remains slightly smaller than the SP-approximation value (θsp = 9.07◦). Nevertheless, the

variation of θt remains very small over the (relatively large) range of scanned Pe values.
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Figure 3.7: Lamellar tilt angle vs Péclet number at constant λ/d0 = 20.25, d0/lT =
2.496×10−3; ac = 1+0.04cos[4(θ − θR)], θR = 15◦ (θsp = 9.07◦).

In conclusion, the anisotropy-driven lamellar tilt angle is very little sensitive to the exact

values of λ and Pe provided that λ is close to λJH and Pe ≪ 1. Therefore, simulations

performed at a fixed λ value close to λJH , and Pe significantly less than unity are fully

representative of the behavior of the system over a large, experimentally relevant range of

the main control parameters. In the following, the BI simulations were performed with

Pe = 0.024, d0/lD = 1.9531 × 10−5, lT /lD = 4, and the PF simulations with Pe = 0.16,

d0/lD = 7.9×10−3, lT /lD = 3.167. In both cases, γαL = γβL = γ̄αβ = 1.

3.4.2 Anisotropy functions without missing orientations

Figure 3.8 shows the variation of θt as a function of the rotation angle θR, calculated by

both BI and PF, for a simple two-fold anisotropy (m = 2) given by Eq. (3.3). Temperature

gradient, growth velocity, and lamellar spacing were held constant. The results of both

simulation methods follow quite closely the SP approximation, up to differences that do

not exceed a degree. As expected, we find symmetric, non-tilted patterns when either
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the minimum or the maximum of γ is aligned with z. Somewhere in between these

orientations, the value of θt passes thus through a maximum for an orientation that

depends on the anisotropy function. We checked that this maximum increases when the

anisotropy coefficient is increased. Overall, however, the tilt angle remains much smaller

than θR over a full rotation range. In other words, a weak crystallographic anisotropy,

though it has a clearly detectable effect on the dynamics of lamellar eutectic patterns,

is not sufficient to induce a significant locking (θt ≈ θR). For convenience, we will call

“unlocked patterns” such weakly anisotropic tilted lamellar patterns. Let us mention again

that the values of d0/lD, lT /lD and Pe are actually different for BI and PF ; the results

thus demonstrate once more that the influence of all of these parameters is weak in realistic

conditions.

θsp#####

##}#
#

θs#
PF#

BI  "

Figure 3.8: Lamellar tilt angle as a function of the rotation angle θR. Weak, two-fold
symmetry anisotropy of the interphase boundary (ac = 1−0.05cos[2(θ − θR)]). The SP-
approximation angle θsp, and the steady-state angle θt obtained with the BI and PF
simulations are both shown. In this graph, as well as in the following, the represented θR

range is limited to [0,π/2] for obvious symmetry reasons.

Next, we have investigated a situation in which a mild lamellar locking takes place. We

use an anisotropy function according to Eq. (3.5), with ǫg = 0.05, wg = 0.195, ǫ2 = 0.0854,

ǫ4 = 0.0221 (Fig. 3.9). This function was chosen so as to smoothly reproduce the Wulff

plot extracted (assuming the SP approximation) from the experimental data of Figure 7 of

Ref. [41] (see discussion below). The corresponding Wulff shape is an oval with markedly

flattened sides (but without straight facets, and without forbidden orientations). The

variation of θsp with θR is continuous and univalued. The simulation results for θt nicely

follow the SP-approximation curve.
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Figure 3.9: a) Lamellar tilt angle as a function of the rotation angle θR. Mild lamellar
locking effect caused by a shallow, smooth local minimum in the Wulff plot of the interphase
boundary (see text). Same symbols as in Fig. 3.8. Dashed line: slope 1. b) Wulff shape
(θR = 0). c) Partial view of the Wulff shape (dash-dotted line) and the shape reconstructed
from the θt data of Fig. 3.9 under the SP approximation (thin line).

Let us analyze the graph in Fig. 3.9 in more details. The variation of θt is essentially

linear for θR ranging from 0 to about 20 degrees (we recall that for θR = 0, the interphase

boundary plane of minimum energy is aligned with the temperature gradient). However,

the slope is substantially less than 1 [a linear best fit yields a slope of about 0.76 for θsp,

0.73 for θt(BI) and 0.72 for θt(PF)]. In other words, in this regime, the inclination angle

of the interphase boundary remains close to, but departs by a measurable amount from

the minimum-energy plane, which defines a mild locking effect. For rotation angles larger

than, say, 45 degrees in Fig. 3.9, the lamellar growth dynamics escapes the influence

of the Gaussian minimum of the Wulff plot. In this unlocked-pattern region, the value

of θt is solely determined by the cos 2θ and cos 4θ terms in the ac function (in this θR

range, we checked that θt remains equal to 0, as it should, when ǫ2 and ǫ4 are set to

0). In an intermediate θR interval, there is a steep, but smooth transition between a
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nearly-locked and an unlocked behavior. In this crossover range, the departure of θt from

the SP approximation is larger than in the rest of the graph. The value of the angle δ as

it is given by BI simulations more or less follows the same variation as θt as a function

of θR (not shown). It reaches a maximum (of about 2◦) in the crossover region, but this

maximum remains small as compared to the corresponding θt value (≈18◦).

3.4.3 Anisotropy with missing orientations

A strong lamellar-locking effect (Fig. 3.10a) can be reproduced by using an anisotropy

function of the same form as that of Fig. 3.9, but with a deeper and sharper Gaussian

(ǫg = 0.2 and wg = 0.1 ; see Eq. 3.4). This modification of the Wulff plot entails the

appearance of two (quasi) facets, and four ”ears” with long metastable branches and

sharp-edge junctions in the Wulff shape of the interphase boundary (see inset in Fig.

3.10a). Let θu and θl, where θu < θl, be the tilt angle values at which γ + γ′′ = 0 on

the interval [0,π/2] (θu ≈25◦ and θl ≈ 70◦ in the example shown in Fig. 3.10). The

SP approximation predicts three distinct parts in the θsp vs θR curve: (i) an essentially

linear strongly locked branch with a slope close to 1, which runs from θR = 0 to θR = θl;

(ii) an unlocked, although (weakly) anisotropic, branch for θR ranging from θu to π/2;

(iii) an intermediate branch, which connects the end points of the locked and unlocked

branches, and is, presumably, not observable given that the interface boundary is unstable

(γ +γ′′ < 0) along its entire length. In the [θu, θl] interval, two (locked and unlocked) values

of the lamellar tilt angle are possible for a given eutectic-grain orientation. In this bistable

range, there is a value θe of the rotation angle (here, approximately 45.3◦) at which σ

has the same value for both branches – this corresponds to a sharp edge in the convex

equilibrium shape.

Both BI and PF simulations reproduce the two separate locked and unlocked branches

(Fig. 3.10a). They demonstrate, in particular, the existence of a strong locking effect over

a large orientation range, as predicted by the SP approximation. The two methods exhibit,

however, a somewhat different behavior in the bistable interval. In the BI simulations,

starting from the situation where the facet is aligned with the temperature gradient
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Figure 3.10: a) Lamellar tilt angle as a function of the rotation angle θR. Strong lamellar
locking effect with a sharp local minimum in the Wulff plot (see text). Same symbols as in
Fig. 3.8. Inset: Wulff plot (thin line) and Wulff shape (thick line). Dashed lines: unstable
branches. b) Angle δ of ~σ with z as a function of θR (BI simulations). c) Shape of the
lamellar pattern with the largest θt value (≈ 48◦) simulated with the BI code.
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(θR = 0), the system closely follows the locked branch upon increasing θR, up to a limit

angle at which it jumps abruptly to the unlocked branch. The jump occurs well before the

turning point θl, at a value of θR which is close to 45◦. This point can be only attained if

θR is successively increased along the locked branch, and the maximum value of θt depends

on the step size in θR. It is thus clearly initial-condition dependent and has no obvious

connection with the sharp-edge angle θe. This limit value of θt in the simulations is also

compatible with previous in situ observations of tilted lamellar patterns. Reversely, when

θR is decreased stepwise starting from θR = π/2, the system describes the whole unlocked

branch, within numerical accuracy. This hysteresis is expected for a bistable system. It

should be noted that the approach of the limit tilt angle along the locked branch also

corresponds to a steep, apparently diverging increase of the δ angle (Fig. 3.10b). This

indicates that, at large tilt angles, the SP approximation, while it still correctly predicts the

values of the tilt angle, becomes inaccurate with regards to other aspects of the dynamics.

For instance, in contradiction with its basic assumption, the shape of the S-L interface

becomes markedly asymmetric at large tilt angles, as can be seen in Fig. 3.10c.

In contrast with the BI simulations, no hysteresis is observed in the PF simulations.

More precisely, no states on the locked branch have been observed for rotation angles

larger than about 35◦: when θR is increased beyond that value, the lamellae switch to the

unlocked state. The opposite jump from the unlocked to the locked state was found to

occur at the same value of θR (with an uncertainty of about 1◦) in runs that were started

on the unlocked branch and in which the rotation angle was successively decreased. A

refinement of the grid and a decrease in the interface thickness by a factor of two produced

a change in this critical value that did not exceed two to three degrees. In contrast, an

increase of the amplitude ǫg of the Gaussian in the anisotropy function led to a marked

increase of the discontinuous-jump angle.
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3.5 Discussion

3.5.1 Reconstructing the anisotropy function

A practical aim of the present study was to give a numerical support to a recent experimental

work based on a rotating directional solidification (RDS) method [45, 41]. A brief overview

of the method is given in Sec. 1.5. This method uses a standard thin-sample directional

solidification setup, and permits, in addition, to rotate the sample at constant angular

speed about an axis perpendicular to the (two-dimensional) sample. Under a few, not very

restrictive, conditions (zero translation speed, center of rotation placed on the eutectic

isotherm, quasi-two-dimensional and quasistatic nature of the front pattern dynamics),

this is equivalent to continuously varying the rotation angle θR of a given eutectic grain

with respect to the thermal gradient axis, as we have done in the above calculations. More

precisely, the lamellar tilt angle θrds observed over time during a correctly set-up RDS

experiment is equal to the steady-state tilt angle θt at the current value of θR. Moreover,

in the SP approximation, this entails that the RDS trajectories of the trijunction points

are centrosymmetric closed curves homothetic to the section of the Wulff shape of the

interphase boundaries by the sample plane, from which a two-dimensional anisotropy

function of the interphase interface can be derived (see Ref. [45]). The anisotropy function

used in Fig. 3.9 was derived from the RDS pattern of a nearly locked grain by this method.

As a test for the accuracy of this method, we have reconstructed the Wulff shape from the

calculated θt(θR) points under the SP assumption. The two shapes are identical to within

experimental error (a few percents of the position vector), as can be seen in Inset 2 of Fig.

3.9. In conclusion, the errors due to the SP approximation are generally not larger than

the experimental uncertainties, which validates the use of the SP approximation in the

exploitation of the RDS patterns.

3.5.2 Bistability in the numerical simulations

The most important difference between the results of BI and PF simulations is the absence

of bistability in the θt(θR) curves obtained with the PF code. As discussed previously, such
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a bistable behavior should follow from the existence of states of positive stiffness on the

“ears” of the Wulff plot. In addition, there is clear evidence of bistabilty in experimentally

observed RDS patterns of strongly locked grains, as illustrated in Figure 3.11 (also see

Ref. [41]). Therefore, the BI method seems to be in better agreement both with the SP

theory and with experiments.

Figure 3.11: Experimental observation of a coexistence of eutectic-growth domains with
two different tilt angles in a single eutectic grain. Rotating directional solidification of a
thin (10-µm thick) sample of a eutectic CBr4-C2Cl6 alloy. Horizontal dimension: 450 µm.

Whereas quantitative differences between phase-field and sharp-interface models have

often been reported, such a strong qualitative difference between the two methods is a

striking finding. Let us first discuss – and, actually, rule out – one possible source for this

difference. It is well known that PF models need to be regularized for anisotropy functions

that generate missing orientations. Indeed, for orientations with negative stiffness, the

evolution equations for the phase fields become ill-posed. This corresponds, in the free-

boundary problem, to unstable growth modes with arbitrarily high growth rates in the

limit of vanishing wavelengths (absence of stabilization by capillarity). This behavior can

be regularized by a convexification of the polar plot of 1/γ [74], or by the addition of

higher-order derivatives in the free-energy functional [65, 75]. Since the former method

requires a re-calculation of the convexification for each new choice of anisotropy function,

we have preferred to use the latter by following Torabi et al. [75], who have added to the

free energy the square of the mean interface curvature. The details of this procedure is

given in Sec. 2.6.2.

As expected, with the help of this regularization, we have obtained the correct equilib-

rium shape for a β inclusion inside an α matrix, even for anisotropy functions with missing

orientations such as the example used for generating Fig. 3.10. However, this modification
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did not appreciably alter the results for lamellar growth: still no bistable behavior was

observed in the PF model, and the value of the angle at which the “jump” from the locked

to the unlocked branch occurs was not appreciably modified.

We believe that the origin of the difference between BI and PF results is the behavior

of the diffuse trijunctions in the PF model. Indeed, in Ref. [73], it was found by direct

comparison between PF and BI simulations that the dynamics of diffuse trijunctions

deviates from the predictions of sharp-interface models: since the solute diffusivity remains

non-zero within the diffuse interfaces, the S-S interface can actually move close to the

trijunction point, contrary to the assumptions made in the one-sided model of solidification,

in which the diffusivity becomes zero immediately behind the (sharp) interface. Moreover,

a rotation of the trijunction point by a finite angle was observed that persisted even in the

sharp-interface limit [73]. Since such effects are present even for isotropic interfaces, one

may expect them to be even more important here, where the anisotropic surface energy

creates strong “Herring torques”. Indeed, we have observed in our simulations that the S-S

interface tends to slightly change its orientation upon approaching the trijunction region.

Therefore, it is possible that the PF model explores a wider range of orientations within

the trijunction region than the BI model, which could facilitate the switching between

different solution branches.

It should also be noted that the regularization outlined in Sec. 2.6.2 was developed and

validated only for simple interfaces between two phases, and may therefore not be complete

in the vicinity of trijunction points. It is possible that the bistable behavior observed in

the BI simulations could be recovered by a PF model with correctly regularized trijunction

points. However, since the analytic understanding of trijunction points currently is very

limited, it is not clear how such a regularization should be carried out. For all these

reasons, a more detailed study of moving diffuse trijunctions certainly is an interesting

subject for future work.
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3.6 Conclusions and perspectives

We have investigated lamellar eutectic growth with anisotropic S-S interphase boundaries,

using two different numerical methods: a dynamic boundary-integral and a phase-field

code. We have obtained good agreement between our numerical results and the prediction

of a recent approximate theory for the growth direction as a function of anisotropy and

orientation of the growing bicrystal, which uses the symmetric pattern approximation. For

smooth anisotropy functions (no missing orientations), the two methods are in excellent

agreement. If the anisotropy is strong enough to induce missing orientations around a deep

minimum in the γ plot, BI exhibits a bistable regime that is in agreement with theoretical

predictions and experimental observation, but is not found in the PF model.

The numerical simulations demonstrate that the real growth shapes are not exactly

symmetric, but that this departure from the hypothesis that underlies the SP theory leads

only to small differences in the steady-state tilt angle, for various choices of anisotropy

functions. Moreover, these differences are virtually independent of the growth velocity and

local spacing, at least in the regime of slow growth (small Peclet numbers) and for spacings

close to the minimum-undercooling spacing. Since these conditions are found in many

experiments, these results firmly establish the SP theory as a useful tool for predicting the

growth angles of lamellar eutectics. In particular, experiments with the rotating directional

solidification setup can be used to obtain quantitative information on anisotropy functions,

as discussed in Sec. 3.5. It should be noted that in the present numerical study we have

limited ourselves to a symmetric phase diagram and to growth at the eutectic composition;

however, since the tilt angle is mainly fixed by the (anisotropic) capillary effects, we do

not expect major differences for other phase diagrams or compositions.

The important qualitative difference between the predictions of BI and PF simulations

is an interesting finding in itself, since correctly designed PF models are usually a faithful

representation of the corresponding free-boundary problems. While we have not succeeded

in pinpointing the exact origin of the difference between PF and sharp-interface models,

we believe that the key point is the dynamic behavior of diffuse anisotropic trijunctions.

This is an interesting subject for further studies.
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Despite this open problem, in the regime of low anisotropy (without missing orien-

tations), BI and PF simulations show an excellent agreement. This implies that these

models can be used to explore the behavior of anisotropic eutectics beyond steady-state

growth. In particular, it would be interesting to address the effect of anisotropy on

the various instabilities that are known to occur in lamellar eutectics: short-wavelength

oscillations [21, 22], spacing diffusion [82, 83], and the zig-zag instability [90, 91]. Without

any doubt, the stability boundaries will depend on the strength of the anisotropy, but it

seems difficult to predict in which way without the help of numerical simulations. Finally,

it is straightforward to implement anisotropic PF models in three dimensions, which opens

the possibility to explore numerically the anisotropy effects on eutectic growth in bulk

samples, as will be described in the next chapter.



Chapter 4

Interphase Anisotropy Effects on

Bulk Lamellar Eutectics

4.1 Introduction

Despite decades of research, the growth of lamellar eutectics in bulk samples is still

ill-understood. Experiments as well as simulations have been performed to address the

following subjects in regard to the lamellar eutectics: spacing (λ) selection in the stationary

patterns [91]; formation of eutectic maze structures [92]; transition of lamellar pattern

into rods [92]; role of transverse temperature gradients [93]. However, to our knowledge,

the role of crystalline anisotropy on the bulk lamellar eutectics has never been addressed

before.

It is as of yet unknown by which mechanism the preferred orientations develop during

the freezing of metals and alloys [94]. In the context of directional casting, a large

numbers of randomly orientated grains in the chill zone grow into fewer orientations.

These orientations continue to grow in the melt at the expense of other less favourable

orientations, resulting into a columnar structure of favourably oriented grains. Similarly, in

the context of directional eutectic solidification, development of such preferred orientations

leads to periodic lamellar arrays along an unified direction. In the present work, we

investigate the role of anisotropy in the development of such preferred orientations in

70
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bulk lamellar eutectics. In addition, we apply this force in a view to elucidating new

microstructural features, involving: (a) an irregular maze of lamellae or labyrinth, which

may order fully or partially in presence of anisotropy; (b) an ideal lamellar array, which

tends not to form in bulk eutectic microstructures for isotropic surface energies and (c)

a preferred orientation, which is set by competing eutectic grains with anisotropic and

isotropic interphases in which the anisotropic eutectic grain completely overwhelms the

isotropic eutectic grain. Interestingly, this bears a significant perspective through which

one can think of an intricate maze of lamellae transforms into regular lamellar arrays.

In this work, we shed some light on such a mechanism to transform these mazes into

regular lamellar arrays in a bulk composite. Moreover, during materials processing, many

dislocations or fault lines get activated which can instigate a two-fold mechanism in the

operating plane of the eutectic microstructures, leading to a ordered structure [95]. Even

though the mechanism is quite simple, its importance in the formation of a regular lamellar

arrays has never been appreciated before.

The structure of this chapter is as follows. First, we outline the procedural details of

the simulations including parameter estimations in Sec. 4.2. In Sec. 4.3, we present the

results and discuss the possible mechanisms of the microstructural features. Finally, we

conclude in Sec. 4.4 with a possible outlook.

4.2 Simulation Details

4.2.1 Parameters

We consider a generic binary eutectic alloy of symmetric phase diagram with mα = −mβ,

uβ = −uα, and γαL = γβL = γ̄αβ. Three major length scales, namely d0, lD and lT ,

dominate the pattern dynamics. While d0 is an intrinsic materials parameter, lD and lT

are related to the directional solidification parameters. As we deal with a symmetric alloy,

both solid phases present in the system must possess the same values of these lengths;

henceforth, we drop all the indices for the sake of clarity.

As the pattern evolves with time, the length scale coming out of resultant dynamics
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scales as λ ∼
√

d0lD f(lD/lT ) [96]. We work at the eutectic composition and the limit of

low velocities and thermal gradients. In this limit, the evolving (micro-)structure seems to

select a characteristics spacing[14], which scales as

λJH ∼ V −0.5. (4.1)

Hence, the lateral size of the simulation box is taken as ∼ 5λJH , which should be sufficient

to capture a faithful picture of the pattern formation process. Interestingly, all of the

above scaling laws can be described by the dimensionless Péclet number, Pe, defined as

λ/lD. In numerical simulations, we use experimentally similar values of d0/lD ≈ 1.6×10−4,

lT /lD ≈ 6 and d0/λJH ≈ 1.5×10−2, which are well within pe << 1 limit. We express the

time scale t̃ in the units of D/V 2.

Surface tension anisotropy of the individual interfaces are directly incorporated in our

multi-phase-field model, as described in Chapter 2. We use different anisotropy functions

(refer Appendix C) with suitable degrees of anisotropy (ǫm) conforming to the limit of

positive surface stiffness γ +γ
′′

, beyond of which phase-field equations become ill-posed

[75]. This strictly sets the upper limit of ǫm which can be used in the simulations: 1/15 for

4-fold and 1/3 for 2-fold. We vary ǫm in our simulations to study its effects on the evolving

patterns ranging from a strongly anisotropic to a weakly anisotropic one. Moreover, we

primarily focus on the anisotropy of the αβ inter-phase boundary on pattern formation,

as this is supposed to be the major force according to symmetric pattern approximation

[41]. Effect of S-L interfacial anisotropy is considered negligible and, hence, not included

in the scope of the present work.

4.2.2 Procedures

We start with a “random pattern”: an almost equal volume fractions of 4∆x×4∆y ×h

boxes of α and β phases are randomly distributed throughout the simulation domain. h

is the perpendicular distance from the bottom of the simulation domain to the initial

solid front and ∆x and ∆y are the grid spacings in x- and y-directions, respectively. The
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edges of the solid boxes are taken as four times the grid spacing to keep the boxes stable

and make them grow in subsequent microstructural evolution. As the solid advances a

particular distance in the liquid, we pull out a pre-defined length of solid from the bottom

of the box, because there is no diffusion in the solid. Further, such pullback keeps the

front stationary (z = 0) in the laboratory frame; thus, we save a considerable amount of

computation time and storage.

In x- and y-directions we use either periodic or Neumann boundary conditions. In

particular, Neumann boundary condition mimics the directional solidification experiments

in which the sample is confined between two glass plates where the flux of the solute

vanishes. In our simulations, for most of the cases, we put this boundary condition along,

at least, one of the directions to make the boundaries act like a wall and the evolving

solids meet at the boundaries at normal angle. This way, effects of geometrical factors are

minimised during the pattern formation process.

All simulations are carried out in a rectangular box discretized into 160×160×80 grid

cells with ǫ/∆x = ǫ/∆y = ǫ/∆z = 0.75. Besides, we set a numerically interface thickness

value of ǫ/d0 = 1.6, well within the limit in which results become almost independent of

interface thickness.

4.3 Results

4.3.1 Lamellar tilt

We begin with 3-D extensions of our previous work (Chapter 3): anisotropy of the αβ

interphase boundary determines the orientation of the lamellar eutectics in 2-D. If we

include an in plane polar rotation of θR to the crystalline axis of the growing solid with

respect to the temperature gradient, the interphase tilts at a steady state tilt angle of θ to

maintain the local interphase equilibrium at the trijunction (refer Eq. (3.7))

γαβ(θ − θR)sinθ +γ
′

αβ(θ − θR)cosθ = 0 (4.2)
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This is the essence of symmetric pattern approximation [45]. We simulate the growth of

a pair of lamella of spacing λJH , as in Fig. 4.1a, with a smooth anisotropy function in

rotating coordinate frame, where the rotation θR can be applied in the xz− plane or the

yz− plane (refer figure 2.2), parallel to the imposed thermal gradient. We found the tilt of

the lamellae (Fig. 4.1b) is consistent with the approximation given by Eq. (4.2). Moreover,

the tilt angle, the lamellae make with the growth axis for different rotations, closely follow

the solution of this approximation (Fig. 4.2). This, indeed, cements our confidence that

the approximation, which relies only on the interphase boundary anisotropy, works in 2-D

as well as in 3-D.

(a) t̃=0 (b) t̃=9

Figure 4.1: A period of lamellae: (a) untilted and (b) tilted state. Colors of α and β are
red and green, respectively.
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Figure 4.2: Simulated θt excellently follows the theoretically predicted value for an
anisotropy function ac = 1+0.04 cos[4(θ − θR)].
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y

x

z

Figure 4.3: αβ interfaces in the transverse plane (xy) of the solid which is growing in the
z direction. The interfaces are contoured at φα = φβ = 0.5.

4.3.2 Structural selection in single eutectic grain

Eutectic solidification produces a rich variety of microstructures in three dimensions. We

show some exemplary structures for different anisotropy functions and, subsequently,

explain the dynamics for these kind of structural evolution. Moreover, to quantify

these microstructures, we calculate the local orientation angles of the S-S interfaces of a

particular 2-D plane, as in Fig. 4.3, which contains the anisotropy, transverse to the growth

direction. At any interface point, the local interface orientation angle can be defined as:

Θ = tan−1(n̂y/n̂x), n̂y and n̂x are the orthogonal components of an unit normal vector n̂

defined by ∇φi

|∇φ| in which φi signifies the local phase field parameter of the solid i.

At first, for the sake of completeness, we will describe the pattern formation in the

absence of anisotropy when γ̄αβ = γαL = γβL. We begin with a “random pattern” of equal

volume fractions of α and β, as in Fig. 4.4a, and impose periodic boundary conditions

along x- and y- directions. After some time, a complex network of lamellae forms, shown

in Fig. 4.4b. We can see that such labyrinthine structure is locally ordered in many areas,

but globally there is no order at all. This is further clarified with the help of a histogram

of local interface orientation angles in Fig. 4.4c. Moreover, initial phase evolution of such

systems is found to be very fast and towards the end it slows down so much that it seems

the system never reaches an ordered state. In the intermediate stages, the pattern consists
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of many fragments of “broken” lamellae, which must reconnect to form a regular system.

However, such reconnection is hindered for an isotropic system, and we obtain a random

lamellar pattern. Experiments on isotropic organic lamellar eutectic alloy of CBr4 - C2Cl6

have also confirmed the existence of such random lamellar maze patterns which persist

over the entire duration of the experiments [93, 97].

(a) t̃=0 (b) t̃=72
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Figure 4.4: A random pattern isotropically evolves to a random lamellar pattern; colors
of α1 and β1 are red and green, respectively. Fig. 4.4c confirms the random spread in
interface orientation angles in a labyrinth.

In contrast to the isotropic case, if we impart a certain degree of anisotropy to the

system, an ordering is induced in the resultant microstructures. In Figs. 4.5 we show few

exemplary four-fold anisotropic morphologies and it indeed exhibit certain arrangements

of the αβ solids. In Fig. 4.5a, a lamella-like morphology is seen along with a zigzag type of

interfaces with sharp bends or corners which are attributed to high degrees of anisotropy.

These zigzag lamellae can not become fully ordered because of the faults present in the

system (see the green lamella ends) rendering the phases unable to reconnect. For a

smaller degree of anisotropy, a more (wavy) lamella-like configuration could be seen, as in

Fig. 4.5b, yet an ideal lamellar structure seems never possible. Moreover, co-existence of a

lamellar and rod-like structures could also be possible for suitable degrees of anisotropy.

Note, for equal phase fractions with equal interphase energies such patterns are never

seen [92]. Thus, anisotropy in the interphase boundaries modifies the pattern selection

mechanisms in eutectic solidification.

Even though the four-fold symmetry of the anisotropy is the most important one for

metallic alloys, effects from the two-fold anisotropy can be quite significant in the S-S
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(a) t̃=18 (b) t̃=18

Figure 4.5: 4-fold phase evolution for ac = 1 + ǫ4 cos[4(ϕ−ϕR)]: ǫ4 = 6% in Fig. 4.5a and
0.5% in Fig. 4.5b; ϕR = 40◦. Colors of α and β are red and green, respectively.

interface formation during directional solidification [6, 45]. Four-fold is natural for S-L

interfaces because of the interaction between a cubic (solid) and an isotropic (liquid) phase,

whereas two-fold is natural for S-S interfaces because of the interaction between two cubic

solid phases. Moreover, as explained in Chapter 3, at the interphase boundaries, where two

centrosymmetric crystals meet, a 2-fold anisotropy is always expected (since two opposite

orientation vectors describe the same surface). If we apply a two-fold anisotropy in the

transverse plane (xy) of the growing solid or in the plane of the isotherms, we obtain a

perfectly periodic regular lamellar structure (Fig. 4.6). In other words, 2-fold anisotropy

induces a favourable orientation to the lamellar arrangement in the transverse plane of the

growing solid. Note that, the minimum energy directions in Figs. 4.6a,4.6b are selected by

the anisotropic interphase energy ac(ϕ−ϕR) and also by the geometric conditions set at

the boundaries.

We have studied the kinetics and statistics of these regular lamellar microstructures.

In particular, we focus on the time scale over which an absolute random pattern evolves

into a perfectly ordered state and, subsequently, compare the kinetics of such ordering for

varying strengths of anisotropy. At first, we measure the local orientation angles (Θ) of

the corresponding interfaces. We gather the statistics of the interfaces of the sample plane

in terms of Θi and then calculate the standard deviation, ∆Θ, of N interface points with
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(a) ϕR ≈ 40◦ (b) ϕR ≈ 0◦

Figure 4.6: An initial random configuration of Fig. 4.4a with Neumann boundary condition
along one of the directions in the azimuthal plane results into ideal lamellar arrays with a
preferred direction at t̃=36. The anisotropy function being used: ac = 1+0.3 cos[2(ϕ−ϕR)].
Colors of α and β are red and green, respectively.

an average of all Θi, < Θ >, using the expression:

∆Θ =

√

√

√

√

1

N

N
∑

i=1

(Θi− < Θ >)2 (4.3)

In Fig. 4.7, we show the temporal evolution of (log)∆Θ for different strenghts of 2-fold

anisotropy. Two things are evident from this figure: first, variation of ∆Θ or spread in

orientation decreases with time. This suggests that the system is becoming more and

more regular with time by decreasing the number of distinct orientations of the αβ solid

interfaces. Second, as the strength of anisotropy increases, the rate at which the systems

gets ordered is amplified. This can be understood by verifying the variation of slopes that

the temporal orientational variation makes for various strengths of anisotropy in Fig. 4.7.

All of these signify that the characteristics of these systems can be expressed mathematically

by a standard exponential decay equation of the first order: ∆Θ ≈ Aexp(−t/τ); A is a

constant and 1/τ is the decay rate. Note, for ǫ2 of 15%, 20% and 30%, we obtain similar

characteristic decay rates which can be due to a smaller simulation domain.

There are several other interesting features arise from these microstructures. Refer

to the plateau forms for ǫ2 = 10% in Fig. 4.7. This corresponds to a defect or fault
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formation in the microstructure, similar to the one shown in Fig. 4.8a. These faults

are inherent in bulk solidification microstructures and it can significantly reduce the

kinetics of the topological connections between the phases. Mathematically, this can

be explained as follows. As the defects hinder the possible connections between phases

with its counterparts, the orientation distribution (∆Θ) of the evolving (αβ) interfaces

does not evolve any further, and we end up with a stagnant plateau in the temporal ∆Θ

plot. If, somehow, these defects get eliminated from the microstructure, then, a perfect

regular structure is obtained. As the system becomes free from the defects, ∆Θ exhibit

the exponential behaviour with time. This is illustrated in Fig. 4.7, for ǫ2 = 10%, where

removal of defects (see the sharp change in the slope) triggers an exponential decaying of

∆Θ, similar to the non-defect forming systems (ǫ2 = 30%,25% etc.). However, in the long

run, it may also be possible that the defect is stable and can not be eliminated. In that

case, the system can not rearrange itself into a regular array (Fig. 4.8a), and a horizontal

plateau forms in the temporal ∆Θ plot (Fig. 4.8b). This clearly suggests that anisotropy

itself can not remove the defects from microstructures.
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Figure 4.7: Temporal variation of spread in orientation for various strengths of 2-fold
anisotropy

Next, we have examined the effects of 2-fold anisotropy on the interphase boundary

components (αβ, αL, βL) in regard to the origin of the preferable orientations in the

above described regular lamellar structures. Numerically speaking, separately, 2-fold

anisotropy on either S-S or on S-L interfaces bring into existence a perfect lamellae (Figs.
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(a) t̃=36
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Figure 4.8: (a)Formation of a defect in lamellar solidification (b) Spread in orientation
with time

4.9a, 4.9b); the preferred alignment of which is set by anisotropy of either S-S or S-L

anisotropic boundaries. To identify this component, we perform a simulation where both

type of interfaces are equally anisotropic (same ǫ2), yet they experience different azimuthal

rotation angles ϕR. Recall, ϕR (Fig. 2.2) selects the orientations of the resulting αβ

lamellae in the azimuthal plane. In this setting, the S-S interface is not assigned any

kind of rotation (ϕ = 0◦) whereas S-L interfaces are rotated by an arbitrary angle other

than zero (say, ϕ = 40◦). The result is shown in Fig. 4.9b, in which the rotation angle

the resultant pattern selects, corresponds to the minimum energy orientation of the S-S

interface. The statistical distribution of the local interface orientation angles (≈ 0◦) of the

S-S interfaces in Fig. 4.9c indeed proves this point. Thus, qualitatively, it is confirmed

that favourable orientations of the αβ crystals correspond to the minimum of the S-S

interface energy.

4.3.3 Multiple eutectic grains

Until now, we have discussed the development of preferred orientations in a single eutectic

grain consisting of one set of eutectic phases α and β. However, an experimental microstruc-

ture generally contains multiple grains with many chemically and/or physically similar

or dissimilar phases, which triggers even more complex interactions between preferred



4.3 Results 81

(a) t̃=36 (b) t̃=36
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Figure 4.9: An initial random configuration of Fig. 4.4a with isolate boundary condition
along one of the directions: (a) an ideal lamellar arrays with a preferred direction, (b)
arrays are arranged at a zero angle with y axis, (c) histogram of interface orientation angles,
scanned from a plane of Img. 4.9b. Colors of α and β are red and green, respectively.

directions and interfacial energies in between them. Recent experiments by Hecht et al.

[97] suggest that the irregular eutectic maze structures that form in Al - Cu alloys (Fig.

4.4b) never become regular in experimentally accessible time scale unless such mazes are

forced into regular arrays by some factors. Lateral temperature gradient is one of the

factors [93]. The other potential factor can be the anisotropy of the interphase boundaries

[97]. In the Al-Al2Cu binary microstructures, which form during bulk eutectic solidification

of Al-Cu-Ag ternary alloys, the initial phase evolution is labyrinthine which eventually

leads to few locally regular regions. These are locally aligned at favourable directions but

they do not belong to the energy minimum of the interphase orientation relationships.

Once these relationships are established at the growth front, the favourable orientations

outgrow the unfavourable orientations. In this way, the most competitive grain wins in the

multi-grain eutectic solidification process. In the present work, we make a first attempt

towards the understanding of the transformation of mazes into a regular lamellar pattern

using numerical simulations. To study this, minimally, we need two different eutectic

grains, i.e, two sets of α,β phases, labelled as α1β1 and α2β2. These grains are chemically

homogeneous: compositions of α1 and β1 in grain 1 is equivalent to α2 and β2, respectively,

in grain 2. In turn, this makes α1/α2 and β1/β2 behave like grain boundaries (GB), which

are treated as isotropic. The S-S boundaries between α1/β1 are treated as anisotropic

whereas the α2/β2 S-S boundaries are considered isotropic. As we have more phases in

the simulation box now, evolution of initial “random pattern” (Fig. 4.10a) is even more
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violent than the single grain simulations, and it was required to use larger cube edges, in

the order of eight times the grid spacing, to stabilize the evolving structure.

Our primary objective is to study the competition between different orientations

represented by these two grains as well as to address the stability of the interfaces on the

resultant morphologies. For this purpose, we vary the anisotropic α1/β1 interphase energy

using suitable 2-fold anisotropy functions,

ac = 1.0+0.3cos[2(ϕ−ϕR)] (4.4)

ac = 1.6+0.3cos[2(ϕ−ϕR)] (4.5)

The essence of the anisotropy functions are such that for Eq. (4.4) the anisotropic interfaces

possess minimum surface energy when compared to other interfaces in equilibrium. In

contrast, Eq. (4.5) is used to increase the energy of anisotropic interfaces with reference to

isotropic interfaces. In this way, we employ a microscopic orientation competition between

the isotropic and anisotropic interfaces of these grains. Recall, the basis of isotropic surface

energy is set by ac = 1.

In Fig. 4.10, we show the microstructural evolution which corresponds to Eq. (4.4).

Initially a labyrinth of all the phases form and the resultant microstructure is completely

disordered. This further develops into a few local regular arrangements of the anisotropic

α1β1 lamellae at certain places, yet the pattern is still globally disordered (Fig. 4.10b).

These anisotropic local arrangements grow faster and become bigger because of higher

undercooling present in front of them compared to the surrounding isotropic counterparts.

This sets the driving force, and the anisotropic interfaces continue to grow by eating out

the neighbouring isotropic interfaces until they completely outgrow them. And, finally, the

system is left with only α1β1 anisotropic interfaces which are aligned along a minimum

energy direction. This is quantified by a histogram plot of the volume fraction distribution

of the existing phases with time (Fig. 4.11). In brief, surface tension anisotropy along the

interphase boundaries induce a orientation relationship between the anisotropic phases

yielding a regular lamellar array from an irregular eutectic maze (Figs. 4.4b, 4.10b).

However, on the other hand, if the α1β1 anisotropic interfaces possess higher energy
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compared to α2β2 isotropic interfaces (Eq. (4.5)), no anisotropic interface is seen in steady

state and several isolated islands of anisotropic α1β1 phases remain dispersed in the sea

of isotropic α2β2 phases (Fig. 4.12). This confirms that at equilibrium the interfaces

with overall minimum surface energy dominate the microstructure formation. In addition,

compared to the previous situation, in this case, even though there are no anisotropic

α1β1 interfaces exist at the end, still the system can not get rid of these α1β1 bulk phases.

This can be explained as follows. As isotropic grain always give birth to a labyrinth, there

is no distinct set of orientation relationship for α2β2 isotropic interfaces. Whereas, the

anisotropic α1β1 interfaces have specific orientation relationship, however, in this case, it

does not belong to the energy minimum of the inter-phase boundaries. Hence, energetically,

there should be no anisotropic interfaces in the microstructures, yet the isotropic interfaces

can not drive them out in the pattern selection process. In other words, there are two

types of energy involved in this process: one for the interface formation and the other to

align the interfaces at a favourable direction. As the energy required for the formation of

anisotropic interfaces is higher, these interfaces are not stable and hence do not appear

in the microstructures. Moreover, like in the previous case, it is possible to have a set of

preferred orientations by anisotropic interfaces but the energy cost of these directions is

higher. If, somehow, the anisotropic interfaces can be stabilized, for example by reducing

the energy of the favourable directions using Eq. (4.4), then only, these interfaces can

dominate the microstructure formation and subsequently overwhelm the other grains in

the microstructure, resulting into a regular lamellae (like Fig. 4.10).

(a) t̃=0 (b) t̃=9 (c) t̃=54

Figure 4.10: Temporal evolution of two eutectic grains according to Eq. (4.4); colors of α1,
β1, α2 and β2 are red, green, blue and magenta, respectively. Note, interfaces between α1

and β1 are anisotropic.
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Figure 4.11: Histogram plot of volume fraction distribution with time for Fig. 4.11; colors
of α1, β1, α2 and β2 are red, green, blue and magenta, respectively.

4.4 Conclusions and Outlook

We have studied the morphological evolution of a symmetric binary eutectic alloy in presence

of the anisotropy in three dimensions. Anisotropy along the S-S interphase boundaries

dominates the pattern formation in these bulk eutectic solidification microstructures. A

wealth of morphologies can form in three dimensions. In absence of anisotropy, a complex

network of lamellae or a labyrinth forms. If anisotropy (4-fold) is included along the

interphase boundaries, unique patterns like zigzag- and wavy- lamallae appear in the

microstructures. In addition, presence of weak anisotropy (2-fold) in the azimuthal plane

of the growing solid leads to regular lamellar arrays with/without defects along with a

preferred orientation, which is a minimum energy direction.

Next, we present simulation results with two different eutectic grains to study the

competition between different orientations represented by these two grains. We use suitable

2-fold anisotropy functions to scale the interfacial energies between these two grains. In all

steady state microstructures, first of all, it is seen that the existing interfaces belong to the

lowest surface energy. In addition, we also show that the surface tension anisotropy forces

a set of orientation relationships to the underlying crystal structure of the anisotropic

grain. If these interface orientations correspond to the energy minima, then the anisotropic
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Figure 4.12: α1β1 anisotropic grain possess higher interfacial energies compared to α2β2

isotropic grain; t̃ = 56, colors of α1, β1, α2 and β2 are red, green, blue and magenta,
respectively.

grain grow at the expense of the isotropic grain and eventually wipes it out from the

microstructure. Interestingly, this mechanism bears a significant consequence where a

random disordered eutectic maze transforms into a regular lamellar array.

Even though the stability of the steady state patterns which is set by the speed

(V ) - spacing (λ) relationship during the coupled growth of the eutectic solids are well-

known in isotropic systems [21] yet such picture is still incomplete in presence of complex

anisotropic interactions. In addition, the range of phase fractions over which the “normal”

morphologies, namely lamellae and rod, exist in presence of anisotropy needs to be verified.

Lamella-rod transition would be an another interesting problem in this context. One could,

furthermore, simulate a ternary system with an additional component to produce even an

wider variety of fascinating morphologies.



Chapter 5

Influence of grain boundary

anisotropy during directional

solidification

5.1 Introduction

The onset of morphological instability and the subsequent microstructural evolution during

unidirectional solidification, performed at a chosen velocity and fixed thermal gradient, is

a significant aspect in physics and materials science because it is an excellent example to

study interfacial phenomena and because it is an beautiful pattern forming process [2, 1].

Without GB, the instabilities that arise in the interfaces are defined by certain critical

values of the control parameters, either by the pulling speed V or by the temperature

gradient G. This is elaborated in Chapter 1. However, in the presence of grain boundaries,

the picture is more complicated. Because, now, the solute profile ahead of the solid-melt

interface interacts with the GB groove at the trijunction [98]. Along this direction, Coriell

and Sekerka [99] first studied the morphological instability in presence of such GBs and

suggested that the GB groove itself acts as a source of undulation, which evolves into cells

at the same critical values predicted by MS. All these instability limits are successfully

elucidated in numerous experimental and numerical studies [10, 11, 99, 100, 101].

86
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In a microstructure, when two grains grow next to each other, a GB forms with a groove

in between them. The misorientation between these grains distinguishes two different

types of GB attached to the groove: high-angle GB (HAGB) and low-angle GB (LAGB)

or sub-boundary (SB) [102]. These grain boundaries possess quite different physical

properties; for instance, SBs form at the lower temperature and, hence, are relatively dry

and, thus, it can possess significant capillary anisotropy [69]. This adds another level of

complexity to the interactions between the trijunction groove and the solute profiles ahead

of it. Despite decades of research, a very little is known about these complex interactions.

A experimental study by Bottin et al. [69] examined the effects of SB anisotropy on the

orientation selection of the participating grains. They suggested that, if the solidification

velocity remains below the CS limit, SBs grow at a finite angle with respect to the growth

axis. Then, as the velocity exceeds this limit, it can not continue to grow with this drift

angle; an instability is already activated around the trijunction, initiating a breakdown

of the planar solid-melt interface, and, as a result, SBs start to grow towards the growth

direction. Thereafter, as the velocity hits the cellular-instability MS threshold, the nearly

planar interface completely breaks into cellular structures with the formation of shallower

or deeper grooves, accompanied with amplified solute profiles. In this regime, SBs are

found to be growing perpendicular to the growth front.

The corresponding analytical calculations as well as the theoretical approach of the

aforementioned work of Bottin et al. [69] has been meticulously illustrated by Faivre et al.

in a recent work [103]. Interestingly, a recent similar study on lamellar eutectic growth

has been pursued along this direction [72]. In this present work, as a first attempt, we

explore such influence of the SB anisotropy towards the orientation selection in the spirit of

morphological instabilities delimited by the CS and MS critical velocities using numerical

calculations.

We attempt to simulate the growth of a GB in the presence of anisotropy, for different

pulling velocities ranging from 0 to the cellular-instability threshold and beyond. Moreover,

mobility of these boundaries are found to be significantly affecting the steady state

morphologies. Finally, we shed some light on the orientation selection in the presence
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of multiple SBs present in the simulation box. The structure of this chapter is arranged

as follows. In the next section, we provide the necessary background details of our

work regarding the instability limits, physical characteristics of different types of grain

boundaries and the theoretical prediction of the tilt angle of the anisotropic SBs. In

Sec. 5.3, we describe the significant parameters in the phase-field code which controls the

morphological evolution. In Sec. 5.4, results are presented for the evolution of anisotropic

SBs in three different velocity regimes: below CS, above MS and in between these two

limits. Finally, a conclusion is drawn and a short perspective is given in Sec. 5.5.

5.2 Background

5.2.1 Morphological instability

Morphological instability determines the shape of a S-L interface in a crystallization

process. Referring to the Chapter. 1, in essence, below VMS the S-L interfaces grow with

a planar or a nearly planar front. And above VMS , the cellular-instability threshold, the

planar or nearly planar interface completely breaks into cells and then dendrites.

5.2.2 Grain Boundary (GB) and Sub-Boundary (SB)

When two grains with chemically homogeneity impinge on each other, a GB forms in

between them [13, 104] (see Fig. 5.1). At the GB, these grains meet at a dihedral angle

of α and, thus, a groove is formed in response to the force balance of the GB and S-L

boundary tensions.

α = 2 cos−1

(

γgb

2γsl

)

(5.1)

When the angle between these adjoining grains is large enough, the result is a high-angle

GB. The recent experiments of Bottin et al. [69] suggest that these boundaries are wetted

by the liquid and become mobile. Contrary to this, a low-angle GBs or SBs form, which

are essentially dry and are almost immobile. Moreover, because of such wetting, HAGBs
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Figure 5.1: Formation of a GB groove by balancing the surface and GB tensions at the
intersection of a GB with a free surface

are generally isotropic and grows essentially parallel to the growth direction, intersecting

the S-L boundary at right angles. In contrast, sub-boundaries are dry, and can possess

significant amount of capillary anisotropy leading to the lateral drift of the SBs at an angle

with the growth axis [69]. Moreover, these SBs can change their growth directions, or,

precisely, the tilt angles, depending on the interactions with the neighbouring boundaries.

Coriell and Sekerka [99] first studied the effects of such boundaries on the morphological

instabilities. They concluded that the GB itself can provide a built-in distortion to the

S-L interfaces, which remains planar below VMS , and, with increasing velocity, at first,

parallel ridges form around the groove signifying the onset of CS limit, and, then, after

surpassing VMS , cellular or dendritic structure results.

5.2.3 Anisotropic interphase boundaries

As discussed in Sec. 5.2.2 that HAGB’s are isotropic in nature, and grow parallel to the

growth direction. Hence, a local equilibrium exist at the trijunction satisfied by Young’s

law: γ1Lt̂1L +γ2Lt̂2L +γgbt̂ = 0. In contrast, SBs are strongly anisotropic, and, hence, the

trijunction obeys the anisotropic Young-Herring equation [103]. Considering Fig. 5.2, we

arrive at:

γ1Lt̂1L +γ2Lt̂2L +~σ = 0 (5.2)
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Figure 5.2: Anisotropic force balance at a SB trijunction in unidirectional solidification

In order to study the anisotropic behaviour of the SB, one needs to impart a suitable

anisotropy function to the SB, and then, follow the response of this boundary to this

function. One of such function could be of the following shape (Eq. (5.3)), which is

composed of smooth Gaussian minimum, which is an approximation for a cusp, to make it

mathematically differentiable with respect to the interface orientation angle θ (similar to

Eq. (3.4)).

ac(θ) = 1− ǫg exp

[

θ2

w2
g

]

(5.3)

Here, ǫg is the magnitude of the anisotropy and wg is the width of the cusp. The motivation

behind using such anisotropy function is that when the system stays at the cusp, the SB

follows an minimum energy configuration with a certain amount of torque (dγ/dθ) being

present at the trijunction making the SB groove asymmetric. In contrast, the system

remains isotropic while it stays outside of the cusp, i.e., in the horizontal part of the γ − θ

plot (refer Fig. C.3a in appendix C).

5.2.4 Theoretical prediction of the tilt angle

Recall that the Young-Herring condition (Eq. (5.2)) is satisfied at the anisotropic SB

trijunctions. In the spirit of experimental observations related to a straight and a tilted
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SB, the S-L interfaces does not see any change in its shape as it remains almost mirror

symmetric in both the cases. This signifies that, the major effect of anisotropy is included

in the SB itself. Believing this is strictly true, ~σ vector of the SB should direct parallel to

the growth direction z (~σ ‖ z). Under these hypotheses, differentiating the ~σ vector with

respect to the x coordinate must gives zero, resulting into a non-linear equation similar

to Eq. (3.7). This equation gives analytical solutions, in terms of θt, for an arbitrary θR,

against which we will compare our numerical results.

The above analysis is valid as long as the S-L interface is planar or nearly-planar,

indicating that the system is below CS limit. Beyond this limit, the morphological

instabilities come into play (refer Sec. 5.2.1). A recent theoretical study by Faivre et

al. [103] has shed some light regarding the growth direction of the SB in this morphologically

unstable regime. Their work suggests that, as the planar interface starts to break while

reaching the CS limit, the SB can not continue to grow laterally, and the angle it makes

with the growth axis decreases rapidly with the increasing velocity, and when MS velocity

limit is reached, the SB should grow parallel to the growth direction, similar to an isotropic

GB. In essence, for V < VMS , the SB should tilt at a finite angle following Eq. (3.7); for

VMS < V < VMS , the tilt angle should decrease rapidly; and for V > VMS , SB should grow

parallel to the growth direction z. The following figure schematically represents these

three regimes of SB tilt angles in response to the system velocity V .
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Figure 5.3: Schematic representation of the tilt angles (θt) in three different velocity (V)
regimes during directional solidification
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5.3 Method

Recall that, for eutectic solidification, two dissimilar chemical phases, namely α and β,

constitute the system. In contrast, here, we use two grains of the same phase, say α1 and

α2, to make up the system. This way, a GB is introduced in the system between these

grains. Anisotropy is imparted in this S-S boundary and we examine its evolution with

time for different velocities — below CS limit, in between CS and MS limit and above MS

limit — using the standard evolution equations for the phase fields and the composition

fields in a multi-phase-field method, as described in Chapter 2.

5.3.1 Parameters

We constitute a dilute alloy system by considering only the one side of a generic symmetric

eutectic phase diagram. Then, we constitute two phases of same chemical composition of

this dilute alloy to make up the system. These phases share same length scales, which

describe the system, namely, lD, lT and d0. The definitions of these lengths can be found

in Sec. 1.2.3. Moreover, we still use parallel solidus and liquidus lines which signifies the

partition coefficient k = 1.

Recall, GB provides a built-in distortion to the adjoining solid-melt interfaces and we

explore the effects of this deformation to develop into cellular structures, which appear at

a length scale comparable to the MS linear stability theory (refer Sec. 1.2.3). Therefore,

in order to study such behaviour, the system size should be within the marginal stability

limits (onset of positive wk) of MS analysis. In our present work, for the smallest system,

the simulated box has a length of λ/d0 ≈ 20, and, similarly, for the largest system, it is

≈ 40.

Moreover, we examine the intensity of this instability by decreasing the temperature

gradient G or by increasing the solidification rate V . This modifies the thermal (lT ) and

diffusive (lD) length scales of the system. Noting, lT = lD determines the CS limit as

well as the VMS , we have used a minimum value of lT /lD ≈ 1.5, which is above the MS

limit, to simulate cellular structures with shallower grooves. Furthermore, the maximum

value of lT /lD ≈ 30 is used to study deep cells. The corresponding d0/lT values for the



5.4 Results 93

aforementioned lT /lD ratios are ≈ 0.06 and 0.3, respectively. Referring to Eq. (1.17),

the calculated values for λMS for the two systems described above are ≈ 70 and ≈ 160,

respectively.

5.4 Results

We probe the orientation of a anisotropic SB in three different velocity regimes: below

the CS limit, above the MS limit and in between these two limits. In addition, we also

examine the interaction between multiple SBs towards the orientation selection around

these critical limits.

5.4.1 Behaviour of SB below CS

In Fig. 5.4(a), we show the equilibrium orientation of a SB for a situation when the

solidification velocity is below the CS limit. As expected, the solid-melt interface remains

planar or nearly planar in this regime and the anisotropic SB makes a finite angle with

the growth axis z. This tilt angle of the SB is verified with the SP approximation, as

explained in Sec.5.2.4. In Fig. 5.4(b), we present the analytical solutions of the SB tilt

angles using this approximation. Considering the anisotropy function (Eq. (5.3)) used

in our simulations, there exists three branches of analytical solutions. One correspond

to a locked branch, in between 0 ∼ 70 deg rotations: this is a minimum energy plane

along which the boundaries tend to align preferentially. Another stable branch is at zero

angle, in between 15 ∼ 90 deg rotations, to signify the growth of the boundaries parallel to

growth direction. Moreover, in addition to these stable branches, there exists one unstable

branch of negative surface stiffness (γ +γ′′ < 0) connecting the ends of the aforementioned

branches. Therefore, this anisotropy function exposes multiple tilt solutions for a arbitrary

rotation angle imparted on the bi-crystal.

We superimpose the numerically obtained tilt angles of the SB on the analytical curve

in Fig. 5.4(b). We successfully simulate these angles, precisely, 0-20 degrees, on the locked

branch, and 21 - 90 degrees, on the unlocked branch. Even though, our results closely
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follow the SP theoretical prediction, however, we did not find more than one tilt angle

of SB, for a particular rotation angle. Interestingly, below CS regime, sub-boundaries

behave similar to the interphase boundaries in lamellar eutectics [72], as long the solid-melt

interface remains nearly planar. Moreover, in the eutectic study, also, no bi-stable solutions

were found using phase field simulations. Note, in the eutectic case, we obtained solutions

along the locked branch upto ∼ 35 degrees. This discrepancy between eutectic and GB

can be due to the fact that the solute diffusion field is very different when compared to

eutectics: solute is rejected on both sides of the trijunction here, whereas it diffuses from

one side to the other in eutectics.
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Figure 5.4: Below CS: (a) SB tilts at a finite angle with a planar solid-melt interface (b)
numerically obtained SB tilt angles are imposed on the analytical solution of Eq. (3.7)

5.4.2 Above MS

Above MS critical velocity, cellular structure results with shallower or deeper grooves

depending on the value of the ratio G/V . In this regime the degree of distortion around

the SB can be very large, and may lead to a very wavy SB profile, as shown in Fig. 5.5.

Such wavy nature makes it inconvenient to measure the tilt angle of the boundaries. The

behaviour suggests that the PF model equations are ill-posed in this regime. To overcome

such a strong curvature features along SB, we regularize the free energy of the SB with a
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procedure outlined in Sec. 2.6.2.

Figure 5.5: Superimposed snapshot pictures of the interfaces above MS suggests a Herring
instability along the S-S boundary. Note that units of lengths are in grid spacing.

Effect of finite mobility

The effects of the regularization are shown in Fig. 5.6. The first obvious effect is that the

sharp curvature features along the boundaries are gone to end up with a smooth profile.

Moreover, it exposes the intrinsic mobile nature of the grain boundaries between the two

chemically homogeneous phases. The temporal drift of the boundaries (towards left) proves

this point. In these circumstances, we found that the SB behaves in a similar way to as

below CS, i.e., it grows at a finite angle. This signifies that the locked branch remains

locked and the unlocked branch remains unlocked even beyond the MS velocity, in the

presence of finite mobility of the SB. However, the theory predicts that, in this regime, SB

should grow straight to make a zero angle with respect to the growth axis. Interestingly,

even though the SB can not orient itself straight, the trajectory of the trijunction in

the spatio-temporal plot falls onto a nearly straight line (see Fig. 5.6). In essence, the

trijunction, in this case, obeys the theoretical prediction, while the SB behind it does not.

This motivates us to make the boundaries immobile to follow the trijunction trajectory in

the subsequent numerical simulations.
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Figure 5.6: Superimposed snapshot pictures of the interfaces above MS: effects of finite
mobility on the orientation selection of SB. Note that units of lengths are in grid spacing.

Effect of zero mobility

We adopt two ways to imply zero mobility to the SB’s in our numerical simulations.

In our multi-phase-field code, mobility of the individual boundaries can be altered by

modifying the relaxation coefficient (τ) during the evolution of the order parameter in the

Allen-Cahn equation (Compare Eq. (2.11) and Eq. (2.20)). Note that, the mobility varies

inversely proportionally with τ . We use τgb >> τsl to make the kinetics of the SB slower,

compared to the solid-melt interfaces. One more approach to this problem can be pursued

by multiplying a factor to the τ of the solid(1)-solid(2) boundaries as follows:

τ12 =
1

τ12
(1− 1

4
φ1φ2) (5.4)

This essentially makes the mobility zero for the order parameter (φ) contour of 0.5,

which denotes the boundary between phases α1 and α2. We check, these two approaches

essentially give similar picture of the SB dynamics. In our present work, we use the first

approach to modify the SB mobility.

The results for the mobility modification of the SB is shown in Fig. 5.7(a). As expected,

the SB, now, behave like the trijunction, as in the previous case, and follow the straight

trajectory of the trijunction. Moreover, at the beginning, the SB attempts to orient
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towards minimum energy direction set by the anisotropy of the SB; however, the strong

instability gradient set by a velocity far beyond the MS limit force the SB to make a

sharp transition towards the zero angle orientation. Another physical explanation to this

could be that, the SB is unable not drift laterally with the massive liquid present at its

groove and, hence, tilts back towards the straight direction. Thus, we obtain the zero

angle branch of the SB in this regime, as predicted by the theoretical calculations (refer

Fig. 5.3). It is worthwhile to mention here that the asymmetric GB groove profile in

Fig. 5.7(b) forms due to the presence of the system at the cusp of the anisotropy function

leading to a finite torque at the trijunction.

(a) (b)

Figure 5.7: (a)Superimposed snapshot pictures of the interfaces above MS: Effects of zero
mobility on the SB (b) Asymmetry of the GB groove profile

5.4.3 Above CS, Below MS

When the system crosses the CS limit, planar interface starts to break down. Two parallel

ridges or hump forms around the GB groove signifying the onset of CS, and this hump

continues to grow into cells when MS limit is reached. Therefore, the approximation to

predict the SB orientation (~σ||z) deviates strongly as we move further from CS limit, and
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hence, the tilt angle starts to decrease rapidly. It is difficult to quantify the SB orientations

in this regime, because the interface shapes depend strongly on the proximity to these

limits. For example, SB orientation, immediately after the CS limit will not be similar

to the orientation immediately before the MS limit, since the solid-melt interfaces have

been changed significantly, resulting into a different local equilibrium condition at the

trijunction. Therefore, we show one of such orientation map of SB in this regime in Fig. 5.8.

Two things are obvious from this spatio-temporal orientation diagram. SB stays in the

locked state or minimum energy direction for a longer time, and the transition from the

high angle branch to the low angle branch is smoothly varying. Plus, in this regime, the

theoretically predicted tilt angle is rather small yet non-zero. Therefore, the morphologies

formed in this limit pose striking differences in compared to the morphologies formed

above MS velocity.

Figure 5.8: Superimposed snapshot pictures of the interfaces in beween the CS and MS
critical velocity limits

5.4.4 Interaction between SBs

Experimentally, it is seen that the SB in a microstructure interact with the neighbouring

SBs [69]. We present few simulations with interacting SBs to shed some light along this

direction. The interaction is set between SBs, which can be either isotropic or anisotropic,

and the regime we scan is below CS as well as above MS.
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Below MS

We present results for below the CS limit, where one of the SBs is anisotropic and others are

isotropic, in Fig. 5.9. We observe that the isotropic SB grows parallel and the anisotropic

SB drifts at an angle with the growth axis. This is expected, as both SBs are already set

at minimum energy directions, and hence, they do not interact with each other except

the spacing adjustments, in between the grains, to orient the boundaries in the preferred

directions. Moreover, as the solid-melt interfaces grow with a planar front, these preferred

directions can be quantified by the SP approximation theory. When all the boundaries

Figure 5.9: Superimposed snapshot pictures of the interfaces below CS: interaction between
isotropic and anisotropic SBs

are anisotropic, the corresponding result is shown in Fig. 5.10. All the SBs follow the

minimum energy direction set by the anisotropy.

Above MS

Above the MS limit, anisotropic SBs change orientations, and during this dynamical

process, they can interact with the neighbouring boundaries leading to optimal directions

in which the boundaries grow all together. In Fig. 5.11, we show an instance of such

interactions between SBs. Effects of this interaction is obvious in the anisotropic SB, which

changes direction appreciably with time. When the anisotropic SB changes direction, it
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Figure 5.10: Superimposed snapshot pictures of the interfaces below CS: interaction
between anisotropic SBs

attracts the SB close to it leading to an optimal spacing of the individual grains in the

morphology. And, once, the optimal spacing is established for each grains, sub-boundaries

follow their minimum energy directions and grow parallel to the growth direction.

Figure 5.11: Superimposed snapshot pictures of the interfaces above MS: interaction
between isotropic and anisotropic SBs

The results for interaction between anisotropic SBs are presented in Fig. 5.12. As

expected, unable to drift laterally, all the anisotropic boundaries suddenly tilt back towards

the growth axis with all the grains having equal wavelength.
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Figure 5.12: Superimposed snapshot pictures of the interfaces above MS: interaction
between anisotropic SBs

5.5 Conclusions and Outlook

In this present work, we have used a multi-phase-field model to study the effects of strong

capillary anisotropy on the orientation selection of the SBs in directional solidification

of a dilute alloy. More specifically, we have increased the solidification rate V from 0 to

the cellular-instability threshold and beyond to explore three different regimes of interest

— below CS, above MS and in between these two limits. As the theory suggests, if we

increase the velocity from 0 to the cellular-instability threshold (MS), SBs explore an

angular range from a finite angle to a zero angle, and the transition happens in a rapidly

decreasing manner.

Our numerical results suggest that, below the CS limit, SB indeed grows at an angle

with respect to the growth axis with planar solid-melt interfaces ahead of it and this

tilt angle closely follow the SP approximation theory. In contrast, two situations were

observed above MS. For a finite mobility of the SBs, it continue to drift laterally at an

angle prescribed by the SP theory; however, interestingly, the trajectory of the trijunction

in a successive time plot follows a straight line. Since, in this regime, the theoretical tilt

angle is approximated to zero, which is obeyed by the trijunction only, while SB still

enjoys drifting at a finite angle, and, therefore, it can be concluded that the trajectory of
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the trijunction is a more faithful representation of the tilt angle. When a zero mobility

is enforced into the SBs, it obediently follow the trijunction trajectory making a nearly

zero angle with the growth axis. Moreover, in the regime of the velocity in between the

aforementioned limits, angular transition of SB occurs from a finite angle to a zero angle.

This transition is, however, difficult to quantify, because vicinity of either CS or the MS

limit significantly affect the interface shapes, and, hence, the resultant SB orientations.

Qualitatively, this transition was found to be sharper and shorter, as we go from CS to

MS limit. Finally, we shed some light on interacting SBs and it was found that such

interactions can alter the kinetic path of the orientation selection, while the equilibrium

morphology remains the same.

The picture is still unclear in the transition region delimited by CS and MS instability.

This was very difficult to pursue because of numerous factors, such as, interface shapes

(which progressively deform as we approach towards MS resulting different local equilibrium

conditions at the trijunction), mobility, depth of grooves etc., are active in this regime,

and hence, numerous simulations are needed to quantify this transition. However, this can

be a prospective avenue for future work. In addition, meticulous analysis of the SB groove

depth profiles can lead to another promising measure towards the quantification of our

results. Finally, the anisotropy functions we have employed in this work are theoretically

motivated. Hence, we can not compare these results with a real alloy system.



Chapter 6

Overall summary, Conclusions and

Outlook

In this thesis, we use a multi-phase-field model to simulate solidification microstructures

in the presence of anisotropy in two– and three dimensions. In particular, we install S-S

boundary anisotropy in our code to study the development of orientations in the evolving

patterns during S-L phase transitions.

At first, we simulate the growth of an eutectic lamella in the presence of inter-phase

boundary anisotropy, in two dimensions. In the presence of anisotropy, lamellae grow at

an angle with respect to the growth axis. We quantify this angle for different anisotropy

functions, and compare it with a theoretical prediction, which postulates a analytical

solution for an arbitrary rotation applied to the lamellar configuration, while keeping the

relative orientation of the eutectic phases fixed. Two types of anisotropy functions are

used in this study. For “standard” smooth anisotropy functions, the theory predicts a

single solution for a particular rotation angle. Our numerical results closely follow to this

solution. In addition to this, in experiments, it is also observed that lamella can exhibit

multiple tilt angles. To study such systems, we use an anisotropy function in the form of

a deep yet smooth Gaussian to introduce multi-valued solutions for a particular rotation

angle — one for the “crystallographically”-locked high-angle branch, one for the unlocked

low-angle branch and one for an unstable branch. For this anisotropy function, we use
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a sharp-interface boundary integral (BI) code to compare the results obtained using the

PF code. The locked branch is well reproduced by the PF method up to a certain angle

(≈ 35deg). While the PF method can produce only one solution for a single rotation angle,

BI can produce two different solutions for the same rotation angle. Therefore, however,

PF can find the solutions for both the branches, locked and unlocked, yet, it is unable to

find two independent solutions at the same time. The merit of the BI goes to its ability to

reproduce such bi-stable behaviour in these systems. Such physical discrepancies between

the PF and the BI results can roughly be explained as follows. In the sharp interface or BI

code, the trijunction is a point and, hence, can only explore one orientation at a particular

time, whereas in diffuse interface models like PF, trijunction is diffuse and, hence, can

explore a wide range of orientations around it and, once, a particular orientation is selected,

the system can not bypass to other solutions.

Then, we perform simulations in three dimensions to shed some light on the devel-

opment of preferred orientations in bulk solidification microstructures. In the context

of directional eutectic solidification, development of such preferred orientations leads to

periodic lamellar arrays along a unique direction. In the spirit of our previous 2D work,

we have exploited anisotropy along the interphase boundaries as a driving force to develop

these selected orientations. In bulk lamellar eutectics, there exists complex interactions

between multiple eutectic grains and interphases. We study the competition between these

interphase orientations using suitable anisotropy functions. In the absence of anisotropy,

the microstructure contains random lamellar patches, because no orientation is particularly

selected. When anisotropy is imparted, the microstructure begins to order depending on

the underlying crystal structure of the solid. Complex interactions between the interphases

in solid develop a labyrinth or random lamellar pattern in the beginning and, then, a

few locally ordered patches appear with time. Once such locally exist minimum energy

orientation relationships (OR) are established in the plane of isotherms, it continue to

grow overwhelming all the surrounding unfavourable orientations in the microstructure.

In this way, a preferred orientation is selected in the microstructure.

Finally, we repeat our eutectic study in two dimensions, but now, instead of two
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dissimilar chemical phases, we use two chemically homogeneous phases to introduce a GB

in the microstructure. This GB installs an in-built distortion to the solid-melt front, and

we study the interaction of this deformation with the solute diffusion field in the spirit of

morphological instability delimited by the CS and the MS critical velocities. In particular,

we study the orientation selection of a LAGB or SB in these critical velocity limits. It is

worthwhile to mention that, as the experiments suggests, these SBs possess a significant

capillary anisotropy. Therefore, we simulate the growth of an anisotropic SB for different

solidification velocities ranging from 0 to the cellular-instability threshold and measure

the orientation it makes with respect to the growth axis. For a velocity below the CS

limit, the SB grows at a finite angle with respect to the growth axis, and this angle is

characterized in the same essence as the tilt angle is determined for the eutectic case. For

a velocity above the MS limit, the SB grows at an angle of nearly zero, parallel to the

growth axis. And, in between these two limits, a transition occurs from a finite angle to

the zero angle, as we go from the CS to the MS limit. This transition is very difficult to

quantify for numerous reasons. However, qualitatively, the results agree on the fact that,

as we traverse from the CS to the MS limit, the transition becomes quicker, since the

intensity of the instability is amplified with increased solidification rate. These numerically

obtained tilt angles successfully agree a relevant theoretical prediction.

Our work opens many avenues for future research. In the thin-film lamellar eutectic

case, the reasons for the discrepancies between the PF and the BI results, concerning

bi-stability, are still unclear. In the text, we blame the diffusive nature of the trijunction

for this. Hence, a detailed characterization of the trijunction region is necessary, because,

we observe that, the change of orientations is triggered at this particular region forcing

the interphase to select a biased orientation. In addition, a proper regularization in the

trijunction may be helpful to counter the overlapping of high energy unstable orientations

leading to erroneous orientations. A similar study on eutectic alloys with asymmetric

phase diagram could also provide interesting insight in the orientation selection problem.

In the bulk eutectic case, the multi-grain orientation competition is indeed interesting

which can be pursued for further studies to obtain a more detailed understanding in regard
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to the experimental observations. For instance, the time scale over which the orientation

relation (OR) is established in these microstructures from a completely disordered struc-

ture and, then, its becoming into a perfectly ordered structure can be very interesting

prospect towards the production of composite structures in a industrial as well as in

smaller laboratory scale. This priori information can save a lot of time as well as other

significant resources in the production cycle. Plus, comparing the OR-developed simu-

lated microstructures with the relevant experimental observations can produce significant

insights to this grain selection problem [85].

In regard to the GB problem, the orientation selection of the SBs in between the

CS and the MS limits is still a open question. The nature of this transition depends on

numerous factors including the interface shapes, proximity to the critical limits, groove

height, anisotropy etc., which again vary with the instability intensity factors G and

V . Complex interactions between all these factors determine the nature of such angular

transition. If any simplified empirical relationships can be established towards the selection

of a SB orientation, we may obtain a clearer picture in this regime. Moreover, different

anisotropy functions can produce different physical behaviour in the system. For example,

the anisotropy function we work with does not exhibit missing orientations and the

transition happens in a continuous manner. However, for an anisotropy function with

missing orientations, a sharp jump may be possible.

Finally, a little is known about the “true” anisotropy functions in real materials. More

information, from experiments or atomistic simulations, is needed before quantitative

predictions for specific materials can be made.



Appendix A

Anisotropy Implementation

Techniques

Here, we will discuss in more detail several technical points about our phase-field model;

these are mostly known facts, but it seems useful to recall them briefly here in the spirit

of implementing the anisotropy in our model.

Consider a two-phase system characterized by a single phase field φ, with an interfacial

free-energy functional of double-obstacle type

Ω =
∫

[

K (∇φ)2 +Hφ(1−φ)
]

dV (A.1)

where K and H are constants and φ is restricted to the interval [0,1]. The equilibrium

interface profile is given by

φ(x) =



























0 x/W < −π/2

1
2 + 1

2 sin
(

x
W

)

−π/2 ≤ x/W ≤ π/2

1 x/W > π/2

(A.2)

for an interface normal to the x direction centered at the origin, with

W =

√

K

H
. (A.3)
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Furthermore, the standard evaluation of the surface excess free energy (the additional

energy created by the presence of an interface) yields

γ =
π

4

√
KH. (A.4)

Equations (A.3) and (A.4) can be inverted to express the constants K and H in terms of

the surface free energy γ and the length scale ǫ = 4W/π:

K = γǫ, (A.5)

H =
16γ

π2ǫ
. (A.6)

It can easily be verified that this calculation remains valid for a binary interface (an

interface between phases i and j along which φi +φj = 1 and all other phase fields are zero)

in the multi-phase-field setting; therefore, the parameters γij in Eqs. (2.14) and (2.16) are

directly the surface free energies of the respective interfaces.

In order to generate a anisotropy surface free energy that depends on the interface

orientation (θ) according to

γαβ(θ) = γ̄αβac(θ), (A.7)

where γ̄αβ is a constant and ac(θ) is the dimensionless anisotropy function, Eq. (A.4

can still be used, but the coefficients K and/or H need to be orientation-dependent.

The “standard” procedure (see for example [105]) is to keep H constant and to write

K(θ) = K̄a2
c(θ). According to Eq. A.3, this creates variations in the interface thickness

W , which becomes proportional to ac. This can be avoided by letting K(θ) = K̄ac(θ) and

H(θ) = H̄ac(θ). Finally, it is also possible to keep the gradient energy coefficient constant

and to write H(θ) = H̄a2
c(θ), which leads to W ∼ 1/ac(θ).

It should be noted that each of these choices generates different equations of mo-

tion for the phase field. The functional derivative, for any functional of the form
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F =
∫

V f(φ,∇φ,∇2φ) is explicitly given by

δF

δφ
=

∂f

∂φ
−

∑

i=x,y,z

∂i
∂f

∂(∂iφ)
+

∑

i,j=x,y,z

∂2
ij

∂f

∂(∂2
ijφ)

, (A.8)

where ∂iφ denote the Cartesian components of ∇φ. Since the interface orientation θ

can be expressed as a function of ∇φ, the second term on the right-hand-side acts on

any θ-dependent term in the functional. We have implemented the evolution equations

corresponding to the three possibilities outlined above, and have compared the results for

a few selected examples. We have found no significant differences. The results presented

in the main text are obtained with the anisotropy function in the square gradient term

only. In order to treat crystals that are rotated with respect to the temperature gradient

(laboratory frame), we use coordinate transformations involving rotation matrices, as

discussed in Sec. 2.5.



Appendix B

Rotation Matrices in 2-D and 3-D

B.1 2-D

Basic properties of an elementary rotation matrix R are [106, 107]: R is invertible and

detR = 1; mathematically R−1 = RT , or RRT = 1

In 2-D, R can be expressed as:

R(θ) =







cosθ −sinθ

sinθ cosθ





 (B.1)

Above rotation matrix rotates the coordinate axes clockwise. In turn, the axes points are

rotated anti-clockwise.

B.2 3-D

There are two invariants in 3-D rotation system:

• Axis of rotation: keeping an axis fixed while other two axes are rotated around the

fixed axis. This essentially implies a 2D rotation in the rotating plane.

• Angle of rotation: (3 variants) Looking from the -X or -Y or -Z direction expose
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anti-clockwise rotation of the axes points

(i) Fixed axis: if the fixed axis is X then the rotation plane is YZ and (say) the

respective rotation angle is ω

Rx(ω) =















1 0 0

0 cosω −sinω

0 sinω cosω















(B.2)

(ii) Fixed axis: Y gives the rotation plane XZ with a rotation angle: θ

Ry(θ) =















cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ















(B.3)

(iii) Fixed axis: Z; rotation plane: XY; rotation angle: κ

Rz(κ) =















cosκ −sinκ 0

sinκ cosκ 0

0 0 1















(B.4)

(iv) Composite Rotation: Combination of 2D rotations – Rotating around x first

and then around y and lastly around z – produce an unique 3D rotation.

Rc = Rz(κ)Ry(θ)Rx(ω) (B.5)

The resultant 3×3 Rc matrix is fully expressed below:















cosκcosθ cosκsinθ sinω − sinκcosω cosκsinθ cosω +sinκsinω

sinκcosθ sinκsinθ sinω +cosκcosω sinκsinθ cosω − cosκsinω

−sinθ cosθ sinω cosθ cosω















(B.6)
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In a similar fashion, one can obtain the rotation matrices for a clockwise rotation.

In our study, we judiciously choose the rotation matrices to obtain the system of model

equations.



Appendix C

Choice of Anisotropy γ Functions

C.1 4-fold

In polar coordinate system, the standard four-fold surface tension anisotropy is written in

the following form:

γ(θ) = γi(1+ ǫ4cos4θ). (C.1)

θ is the angle between interface normal and the growth axis (say, z). ǫ4 is the strength of

anisotropy in the surface tension and γi is the isotropic part of the surface tension. We

can co-relate this polar form into the Cartesian normal vector descriptions of the system

using nx/qx and ny/qy in a following way:

cos4θ = 2cos22θ −1 (C.2)

= cos22θ − sin22θ

= (2cos2θ −1)2 − (2sinθcosθ)2

= 4cos4θ −4(1− sin2θ)+1−4sin2θ(1− sin2θ)

= 4(cos4θ + sin4θ)−3

∴ γ = γi(1+ ǫ4(4(cos4θ + sin4θ)−3))

∴ γ = γi[1− ǫ4(3−4(cos4θ + sin4θ))]
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Here, cosine and sin (polar coordinate) are the normal vectors in (Cartesian coordinate) x-

and y- directions respectively. If we consider a normal vector in the following form:

qij = φi∇φj −φj∇φi, (C.3)

the corresponding anisotropic surface tension is given by,

γ = γi

[

1− ǫ4(3−4(
q4

x +q4
y

|q|4 ))

]

. (C.4)

|q| =
√

q2
x + q2

y

In the following, Eq. (C.1) is plotted and the corresponding symmetry is presented.
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C.2 2-fold

Polar form of such symmetries:

γ(θ) = γi(1+ ǫ2cos2θ). (C.5)

Applying the similar approach described above, we obtain the reduced form:

γ = γi(1+ ǫ2(cos2θ − sin2θ)). (C.6)
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For a q vector representation of the system anisotropy, γ becomes

γ = γi

[

1+ ǫ2

(

qx
2 −qy

2

|q|2
)]

. (C.7)

In the following, Eq. (C.5) is plotted and the corresponding symmetry is presented.
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C.3 In presence of a cusp

A cusp is defined by a magnitude as well as by the depth, which can be represented using

a normalized Gaussian function [45]. Magnitude of the cusp signifies the strength of the

anisotropy which is designated as ǫg and the depth of it described by parameter wg.

In our work, we use the Gaussian of following form:

γ(θ) = γi

(

1− ǫg exp

[

− θ2

w2
g

])

. (C.8)

For the q vector representation of a system anisotropy it reduces to:

ac(q) = 1− ǫg exp

(

− θ2

w2
g

)

, (C.9)

in which θ can be substituted as tan−1 qy

qx
. In the following, Eq. (C.8) is plotted and the

corresponding symmetric shapes are presented. Note the equilibrium shape of a crystal can

be computed using a combinations of normal n̂ and tangent vectors t̂: γn̂ +γ′t̂. If some
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Figure C.3: (a)γ - θ plot of function C.8 (b) parametric plot of γ (red) and the equilibrium
shape (green) for the parameters listed above

parts of the equilibrium shape comes out of the the γ plot in the form of “ears” as in Fig.

C.3, there are some orientations (θ) present in the system which are unstable (γ + d2γ
dθ2 > 0)

and are termed as missing orientations. Moreover, adjusting the two parameters ǫg and wg

one can tune the anisotropy function to exhibit or not to exhibit the missing orientations

in the system.

C.4 Composite Anisotropy Function

Note, the previous γ function (Fig. C.3a) have two distinctive features: strongly anisotropic

part in the cusp and the horizontal isotropic part. However, one can add another physical

feature in the picture by smoothing out the cusp following a smooth transition between

the anisotropic and the isotropic parts of the γ function as in Fig. C.4a. Such a composite

anisotropy function can be represented using a combinations of the Gaussian and other

smooth anisotropy functions like two-fold and four-fold [45]:

γ(θ) = γi

(

1− ǫg exp

[

− θ2

w2
g

]

− ǫ2 cos[2θ]− ǫ4 cos[4θ]

)

. (C.10)

The definitions of all the elements are the same as before.

In Fig. C.4b, the equilibrium crystal shape is presented using such γ function which

does not exhibit any missing orientations.
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Figure C.4: (a)γ - θ plot of function C.10 (b) parametric plot of γ (red) and the equilibrium
shape (green) for the parameters listed above
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