
HAL Id: tel-01223284
https://pastel.hal.science/tel-01223284v1
Submitted on 2 Nov 2015 (v1), last revised 27 May 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous models of computation: from computability
to complexity

Amaury Pouly

To cite this version:
Amaury Pouly. Continuous models of computation: from computability to complexity. Computational
Complexity [cs.CC]. Ecole Doctorale Polytechnique; Universidad do Algarve, 2015. English. �NNT :
�. �tel-01223284v1�

https://pastel.hal.science/tel-01223284v1
https://hal.archives-ouvertes.fr

ÉCOLE POLYTECHNIQUE
et

UNIDERSIDADE DO ALGARVE

Laboratoire d’Informatique

de l’École Polytechnique

École Doctorale de l’École Polytechnique

THÈSE DE DOCTORAT
par Amaury Pouly

soutenue le 6 juillet 2015

pour obtenir le grade de Docteur de l’École Polytechnique
discipline Informatique

Continuous models of computation:

from computability to complexity

Directeurs de thèse
M. Bournez Olivier Professeur, École Polytechnique
M. Graça Daniel Maître de conférence, Universidade do Algarve

Rapporteurs
M. Asarin Eugene Professeur, Université Paris Diderot
M. Salvy Bruno Directeur de recherche, INRIA
M. Ziegler Martin Professeur, Technische Universität Darmstadt

Examinateurs
M. Formenti Enrico Professeur, Université de Nice-Sophia Antipolis
M. Goubault Eric Professeur, École Polytechnique
M. Grandjean Etienne Professeur, Université de Caen Basse-Normandie

ii

Acknowledgements12

Je remercie tout d’abord Olivier et Daniel, mes Directeurs de thèse, qui m’ont accompagné

durant ces quatre années. Je suis ravi d’avoir pu travailler avec eux tout au long de cette

aventure, ils ont su me conseiller et me guider lorsqu’il le fallait, tout en me laissant une grande

liberté dans ma façon de travailler. Je n’oublierai pas nos nombreuses discussions, parfois

houleuses
3
, desquelles sont toujours ressorties de nouvelles idées, même dans les moments les

plus di�ciles de cette ambitieuse thèse. Je suis sûr qu’ils ne sont pas près d’oublier mes trop

nombreux «Je peau�ne juste quelques détails de la preuve» et «J’ajoute juste un petit résultat»

mais ont heureusement su m’interrompre quand il le fallait.

Je remercie Eugene Asarin, Bruno Salvy et Martin Ziegler qui m’ont fait l’honneur d’être

rapporteurs de ma thèse. Leurs remarques sur ce manuscrit ont permis, je l’espère, de le rendre

plus clair et plus abordable. Je promets dorénavant de typographier correctement mes équa-

tions et mes listes
4
. Je remercie bien évidemment Enrico Formenti, Eric Goubault et Etienne

Grandjean d’avoir accepté de faire partie de mon jury de thèse. Jury qui a, par ailleurs, eu

l’extrême obligeance de me laisser pas moins de 55 minutes pour exposer mes travaux
5
.

Je remercie mon collaborateur Walid ainsi que mes deux stagiaires, Hugo et Yassine, qui

n’ont, je l’espère, pas trop sou�ert de mon encadrement.

Au cours de ces années au laboratoire, j’ai eu le plaisir de rencontrer de nombreuses per-

sonnes que je souhaite remercier, dans aucun ordre particulier. Merci à Daniel, François, Cé-

cile, Julia, Élise, Nicolas, Philippe, Alain, David, Françoise, Aurore, Ben, Johan, Razvan, Olivier,

Jonas, François, Chantal, Victor, Émilie, Florence avec qui j’ai passé de nombreux repas, pauses

café, débats, soirées �lms, jeux de société et même répétitions de soutenance de thèse. Encore

quelques années et j’aurai presque �ni par mettre à la cryptographie
6
. Merci à Amélie et Alice

pour les repas, discussions, cinémas, soirées, courses, de m’avoir converti à l’athlétisme
7

et

les innombrables services que vous m’avez rendus. Merci à Steve et Mathieu pour les footing

très sympas du midi. Thanks to Mahfuza for our co�ee breaks, discussion, meals, cinemas and

other activities, as well as your endless positivism and encouragements.

Il va sans dire que je remercie toutes les personnes m’ayant permis d’e�ectuer mes vaca-

tions et monitorat à Versailles, Polytechnique et Orsay, ainsi que mes collègues enseignants.

Je suis particulièrement reconnaissant envers les personnels administratifs Evelyne, Sylvie

et Catherine.

Je remercie Johanne pour ses nombreux conseils et m’avoir remonté le moral quand il le

fallait.

1
If you don’t read French, don’t give up.

2
Je remercie tous ceux que j’ai oublié a�n de n’oublier personne. Ou pas.

3
Je me laisserai à quali�er notre trio de l’Optimiste, le Sceptique, et le Perfectionniste, en laissant au lecteur

le soin d’assigner les rôles.

4
Pas comme dans cette thèse.

5
Et failli provoquer un arrêt cardiaque dû au stress d’une certaine personne dans l’assemblée.

6
Mais bon la calculabilité reste quand même le meilleur des domaines de l’informatique.

7
Même si cela n’a pas été très dur.

iii

Il me faut évidemment remercier mes colocataires Mikaël
8
, Pierre-Marie

9
, Hélène (et ses

chats), Sylvain, Timothé, Alexandre, Pierre, Philippe
10

et Laure
11

, grâce à qui j’ai passé quatre

très bonnes années. Merci aussi à Bruno, Max, Aisling, Irène, Jill-Jênn, Juvénal, Mathilde,

Tahina pour toutes les discussions et moments passés ensemble.

Je remercie Lucie, Marthe
12

et Laure, pour leur soutien inconditionnel, les discussions, les

conseils et les bons moments passés ensemble.

Je remercie en�n ma famille, pour tous les moments passés ensemble, pour avoir cru en moi

et m’avoir aidé lorsqu’il le fallait. Alors merci à Pascale
13

, Jean-Luc, Arthur, Aloïs, Cécile
14

,

Joseph, Guillaume, Cédric, Danielle, Denise, Albert, Yvonne, Élizabeth, Gabriel, Clémentine,

Julia, Antoine, Patrice.

Et bien évidemment, il faut mentionner le contributeur majeur
15

à cette thèse, à savoir le

café du labo. J’admets avoir basculé du côté Nespresso du café
16

, qui est certes obscur
17

mais

surtout meilleur.

8
Le Rageux.

9
Ma thèse utilise le tiers-exclus et les réels existent.

10
Qui reste stoïque.

11
’Rage.

12
La Fruitesse qui fructidévore les pommes.

13
Un bisou spécial à ma maman qui est la meilleure du monde !

14
Et Mélina.

15
Comme nous l’a enseigné Erdős.

16
What else ?

17
Les capsules propriétaire c’est mal.

42
Pour information, cette thèse en est à la version thesis_v1.4.1

42
.

iv

Contents

1 Introduction 1
1.1 Dynamical Systems . 4

1.2 Numerical Analysis and Di�erential Equations 6

1.3 Computable Analysis . 8

1.4 General Purpose Analog Computer . 9

1.5 Related work . 11

1.6 Notations . 12

2 The PIVP class 17
2.1 Generable functions . 18

2.1.I Unidimensional case . 18

2.1.II Multidimensional case . 21

2.2 Stability properties . 25

2.3 Analyticity of generable functions . 27

2.4 Dependency in the parameters . 29

2.5 Taylor series of the solutions . 31

2.6 Generable zoo . 32

2.6.I Sign and rounding . 33

2.6.II Absolute value, maximum and norm 36

2.6.III Switching functions . 38

2.7 Generable �elds . 41

2.7.I Extended stability . 41

2.7.II How to build a smallest �eld . 43

2.7.III Generable real numbers . 46

3 Solving PIVP 47
3.1 Introduction . 48

3.1.I Related work for general ODEs . 48

3.1.II On the di�culties of unbounded domains 49

3.1.III Contributions . 50

3.2 The generic Taylor method . 51

3.3 The adaptive Taylor algorithm . 53

3.4 Enhancement on the adaptive algorithm . 60

3.5 Extension to Computable Analysis . 62

3.6 Conclusion . 63

4 Computation with PIVP 65
4.1 Introduction . 65

4.2 Computing functions . 67

4.2.I Space-time based complexity . 67

4.2.II Length-based complexity . 70

v

CONTENTS

4.3 Computing with perturbations . 72

4.3.I Robust computability . 72

4.3.II Strong computability . 76

4.4 Computing with variable input . 80

4.4.I Extreme computability . 81

4.4.II Reaching a value . 82

4.4.III Sampling . 85

4.4.IV Equivalence . 87

4.4.V Online computability . 92

4.5 Summary . 95

4.6 Closure properties and computable zoo . 97

4.6.I Generable functions . 97

4.6.II Arithmetic operations . 98

4.6.III Continuity and growth . 99

4.6.IV Composing functions . 99

4.6.V Absolute, minimum, maximum value 100

4.6.VI Rounding . 101

4.6.VII Mixing functions . 104

4.6.VIII Computing limits . 106

4.6.IX Iterating functions . 107

5 PIVP versus Turing computability 111
5.1 Introduction . 111

5.2 Simulating Turing machines . 113

5.2.I Turing Machine . 113

5.2.II Polynomial interpolation . 114

5.2.III Encoding . 115

5.3 Equivalences with Turing computability . 121

5.3.I Equivalence with FP . 121

5.3.II Equivalence with P . 126

5.3.III Equivalence with Computable Analysis 128

6 Piecewise A�ne Systems 135
6.1 Introduction . 135

6.2 Preliminaries . 137

6.2.I Piecewise a�ne functions . 137

6.2.II Decision problems . 138

6.3 Bounded Time Reachability is NP-hard . 138

6.3.I Solving SUBSET-SUM by iteration 138

6.3.II Solving SUBSET-SUM with a piecewise a�ne function 139

6.3.III REACH-REGION-TIME is NP-hard 146

6.4 Bounded Time Reachability is in NP . 146

6.4.I Notations and de�nitions . 146

6.4.II REACH-REGION-TIME is in NP . 147

6.5 Other results . 149

7 Conclusion 151

vi

Chapter 1

Introduction

Fundamental Theorem of Analysis:
any theorem in Analysis can be �tted

onto an arbitrarily small piece of paper

if you are su�ciently obscure.

Quote from Cambridge

One motivation of this thesis is the possibility of giving a machine-independent character-

ization of complexity classes. This has been studied in the �eld of Implicit Complexity, where

complexity classes are typically characterized as function algebras, that is the set of functions

closed under operations like composition, arithmetic, integration, limits and so on. More pre-

cisely, we want to characterize real complexity classes. There are several incomparable notions

of computability over real numbers, like the BSS model [BCSS98] and R-recursive functions

[Moo96, MC04]. In this thesis, we will study Computable Analysis [Bra05a, Ko91, KW95]

which is an approximation theory and has close links to numerical analysis and formal meth-

ods. The approach we follow is that of dynamical systems, in particular with continuous time

and/or space. In this approach, one characterizes computability and complexity classes by

putting restrictions on the allowed systems.

In many ways, this question is related to the so-called (e�ective) Church Thesis, which

states that all discrete and reasonable models of computation have the same computational

power as the Turing machine. This thesis has been shown to hold for many models, and even

formalized in the context of abstract algorithms [BS03, BG03, DG08]. These works inspired

a stronger thesis, known as the e�ective Church Thesis [BDF12], which generalizes the con-

jecture at the complexity level, and the physical Church Thesis [BCPT14], which conjectures

that physically realistic models of computation cannot achieve super-Turing power. How-

ever, there has been some hope that one might be able to present realistic models that might

compute faster than Turing machines in computational complexity terms. Perhaps the most-

well known candidate for such model are quantum computers, �rst introduced by Feynman

in [Fey82]: see for example the famous result on integer factorization in polynomial time of

[Sho97]. The other natural candidates were continuous-time models of computation such as

the General Purpose Analog Computer (GPAC). We will prove that the GPAC does not prove

more computational power than Turing based paradigms.

A fundamental di�culty of continuous-time model is to de�ne a proper notion of complex-

ity. Indeed, it is known that Turing machines can be simulated by various classes of ordinary

di�erential equations or analog models. This can often be done even in real time: the state

y (t) at time t ∈ N of the solution of the ordinary di�erential equation encodes the state after

the execution of t steps of the Turing machine. However, a troubling problem is that many

models exhibit the so-called Zeno’s phenomenon, also known as space-time contraction. This

1

CHAPTER 1. INTRODUCTION

phenomenon results from the possibility of simulating an in�nite number of discrete transi-

tions in a �nite amount of time. This can be used to solve the Halting problem in �nite time

and to show that some models are super-Turing powerful. Many continuous time systems

might undergo arbitrary time contractions to simulate the computation of a Turing machine

in an arbitrary short time (see e.g. [AM98a, EN02, Ruo93, Ruo94, Moo96, Bou97, Bou99, AD90,

CP02, Dav01, Cop98, Cop02]).

Since the introduction of the P and NP complexity classes, much work has been done to

build a well-developed complexity theory based on Turing Machines. In particular, classical

computational complexity theory is based on limiting resources used by Turing machines,

usually time and space. Another approach is implicit computational complexity. The term

“implicit” can sometimes be understood in various ways, but a common point of many of the

characterizations is that they provide (Turing or equivalent) machine-independent de�nitions

of classical complexity.

Implicit characterization theory has gained enormous interest in the last decade [DL12].

This has led to many alternative characterizations of complexity classes using recursive func-

tion, function algebras, rewriting systems, neural networks [SS95], lambda calculus and so on.

However, most — if not all — of these models or characterizations are essentially discrete: in

particular they are based on underlying models working with a discrete time on objects that

are often de�ned in a discrete space.

In 1941, Claude Shannon introduced a model for the Di�erential Analyzer [Bus31], on

which he worked as an operator, called the General Purpose Analog Computer (GPAC) [Sha41].

The Di�erential Analyzer was a mechanical device used mostly in the thirties and the forties

to solve ordinary di�erential equations (ODEs). Electronic versions of this device greatly im-

proved its capabilities but the emergent digital computers eventually replaced all analog com-

puters. Originally it was presented as a model based on circuits (see Figure 1.0.1), where several

units performing basic operations (e.g. sum, integration) are interconnected. Shannon claimed

[Sha41] that functions generated by the GPAC were di�erentially algebraic. Di�erentially al-

gebraic functions satisfy a di�erential equation of the form p (t ,y (t),y′(t), . . . ,y (k) (t)) = 0 for

t ∈ I where p is a polynomial and I an interval.

Years later, Pour-El found an error in the proof [PE74] and rede�ned the GPAC in terms of

quasi-linear di�erential equations. However this approach was again found to be �awed and

�nally �xed by Graça and Costa [GC03] by restricting the set of allowed connections in the

circuit. In this later approach, functions generated by the GPAC are exactly those that satisfy

di�erential equations of the form:

y′(t) = p (y (t)) t ∈ I

where p is a (vector of) polynomials and y is a vector. This class of functions turns out to be

more general than it may seem at �rst. Indeed, not only is it closed under the usual arithmetic

operations but also one can replacep by any such generated function. For example,y′ = sin(y)
is in this class because sin is in this class (see Figure 1.0.2).

Analog computers have since been replaced by their digital counterpart. Nevertheless,

one can wonder if those are really better suited for computation, or if the di�erence only lies

in practical and technological grounds. More precisely, it is natural to try and compare the

GPAC and Turing machines. A few years ago, it was shown [BCGH07, GCB08] that Turing-

based paradigms and the GPAC have the same computational power. So switching to analog

computers would not enable us to solve the Halting problem, or any uncomputable exotic

problem, but it would not result in any loss of computation power. However, this result did

not shed any light on what happens at a computational complexity level. In other words,

analog computers do not make a di�erence about what can be computed, but maybe they

could compute faster than a digital computer.

2

k k

A constant unit

+ u +v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫
w = w0 +

∫ t

t0
u (x) dv (x)

An integrator
1
unit

u
v

Figure 1.0.1: Basic units of the GPAC

−1 ×
∫ ∫

sin(t)




y′(t)= z (t)
z′(t)= −y (t)
y (0)= 0

z (0)= 1

⇒

{
y (t)= sin(t)
z (t)= cos(t)

t

Figure 1.0.2: GPAC computing sine

In this thesis, we give several fundamental contributions to these questions:

• We show that time of a computation, for the GPAC, can bemeasured as the length
of the curve (i.e. length of the solution curve of the ordinary di�erential equation asso-

ciated to the GPAC). This notion of complexity turns out to be equivalent to considering

both time and space, for a suitable notion of space. Unlike discrete models of computation,

there is no relationship between time and space in this model, which means that neither

alone is a good measure of complexity. We prove that the obtained notion is very robust

by giving several equivalent de�nitions.

• We show that the GPAC (or equivalently the class of polynomial initial value
problems) has the same computational power as the Turing machine, both at the

computability and complexity level. More precisely, a GPAC can simulate a Turing ma-

chine and preserve its complexity, and vice versa. Previous attempts at building an analog

equivalent of Turing machines either failed because they considered classes of dynamical

systems that where too general, or because they used a notion of time that was not ro-

bust: see [BC08] for discussions about various attempts. Our work suggests that the class

of polynomial di�erential equations is the right compromise to obtain an interesting and

physically realistic model.

• We also provide a purely analog, machine-independent characterization of P and
Computable Analysis. Indeed, our characterization relies only on a simple and natu-

ral class of ordinary di�erential equations, with polynomial right-hand side. This shows

�rst that (classical) complexity theory can be presented in terms of ordinary di�erential

equations problems. This fact has never been established before. This also shows as a side

e�ect that solving ordinary di�erential equations leads to complete problems, even with

a �xed dimension.

Contents of the thesis
1
The integral

∫
udv is understood in the sense of Riemann-Stieltjes integration

3

CHAPTER 1. INTRODUCTION

• Chapter 1 (Introduction)
In the remaining part of this chapter, we give more details about the General Purpose

Analog Computer (GPAC) and recall some notions and results about other areas involved

in this thesis, such as dynamical systems, numerical analysis, computable analysis and

di�erential equations.

• Chapter 2 (The PIVP class)
This chapter focuses on the particular class of di�erential equations that model the GPAC:

polynomial initial value problems (PIVP), that is to say ordinary di�erential equations of

the form y′(t) = p (y (t)) where p is a (vector of) polynomials and y (t) a vector. We de-

velop a theory of generable functions, which are functions satisfying PIVP as well as some

requirements on their rate of growth. We show that this is closed by many operations,

including composition and ODE solving. In particular, solutions of di�erential equations

of the form y′ = f (y), where f is elementary (in the sense of Analysis), are also included

in this class.

• Chapter 3 (Solving PIVP)
In this chapter, we investigate the complexity of solving ordinary di�erential equations

of the form y′ = p (y) over unbounded time domains, where p is a (vector of) polynomials.

We show that one can compute y at time t with absolute error ε in time polynomial in |t |,

− ln ε , and the length of the curve y between t0 and t :
∫ t

t0

p (y)

 dt . As far as we know,

this is �rst result to take all parameters into account into the complexity and provide a

polynomial time complexity in most of them.

• Chapter 4 (Computation with PIVP)
This chapter introduces a notion of computability with PIVP that generalizes the notion of

generable functions. We introduce a notion of complexity on these systems and show that

the obtained class enjoys many closure properties as well as several equivalent de�nitions.

This provides a natural, robust and machine-independent notion of computability for real

functions.

• Chapter 5 (PIVP versus Turing computability)
In this chapter, we show that the class of PIVP computable functions, with the right pa-

rameters, is equivalent to the polynomial time computable functions from Computable

Analysis. This way, we obtain a purely continuous de�nition of computability and com-

plexity over real numbers. We also give a characterization of the complexity class P in

terms of PIVP only. As far as we know, this is the �rst time P is characterized using ODEs.

• Chapter 6 (Piecewise A�ne Systems)
This chapter focuses on the problem of reachability for piecewise a�ne systems over

[0, 1]
d
. The general reachability problem is known to be undecidable starting from dimen-

sion 2. We investigate the complexity of several decidable variants of reachability prob-

lems and of control problems. We show in particular that the region to region bounded

time versions leads to NP-complete or co-NP-complete problems, starting from dimension

2.

1.1 Dynamical Systems
In their most general formulation, a dynamical system can be described as an evolution rule

that de�nes a trajectory, in the sense of a mapping from a time space to a state (or phase) space.

In this thesis, we will focus on deterministic systems where the evolution rule is deterministic.

4

1.1. DYNAMICAL SYSTEMS

More general system with nondeterministic, or stochastic evolution rules also are well-studied

objects [Arn95].

De�nition 1.1.1 (Dynamical system): A dynamical system is a tuple (T ,X ,Φ) where T is an

additive monoid, X is a set and Φ : U ⊆ T × X → X is a mapping satisfying:

• Φ(0,x) = x

• Φ(t2,Φ(t1,x)) = Φ(t1 + t2,x) if t1, t2, t1 + t2 ∈ U

�

The monoid T is generally described as the time, the set X as the state or phase space and

Φ as the �ow. The state space is typically taken to be included in Rd or more generally a

manifold. Each state de�nes an orbit which is the set of all reachable states using the �ow.

De�nition 1.1.2 (Orbit): The orbit or trajectory Ox is the state space de�ned by

Ox = {Φ(t ,x), t ∈ U } ⊆ X

�

Dynamical systems have received a lot of attention since they provide a natural way to

describe many systems and phenomena. They can be categorized depending on the properties

of the time and state spaces. A �rst distinction is usually made between dynamical system with

discrete and continuous time. In addition to these two classes, hybrid systems are the object of

many recent studies. By combining continuous dynamics with discrete control, hybrid systems

provide a natural framework to study physical systems under computer control for example.

There are many natural questions on dynamical systems, some of which are at the core of

several important �elds in computer sciences. One of the most important domain is that of ver-

i�cation theory, which asks whether a given system satis�es a given property. A particularly

important subdomain is that of reachability problems. More precisely, given a dynamical sys-

tem and an initial region, decide if the system eventually reaches a �nal region. This problem

has many application in concrete systems to check safety properties. Other well-studied prop-

erties include attractors, periodic orbits, mortality (do all orbits go through 0), convergence,

stability [BS02]. Most of these problems are undecidable in the general case, and usually stay

hard in restricted cases [Moo90, Bra95]. When computability is known, further re�nement can

be made to study the computational complexity of these problems. However, those results are

quite challenging to obtain and there are still many gaps to �ll to understand the full picture.

De�nition 1.1.3 (Discrete dynamical system): A discrete dynamical system is a tuple (X , f)
where X is a set and f : X → X is a mapping. The associated dynamical system is (N,X ,Φ)
where Φ(x , t) = f [t](x). The orbit of a point x is Ox = { f

[t](x), t ∈ N}. �

Discrete dynamical systems include a number of well-studied systems from the point of

view of computability theory, such as sequences, cellular automata, shifts, Turing machines,

and many others [BP97, BBEP10]. They form a particularly important class of dynamical

systems which is better understood than the general case. In particular, they have a natu-

ral connection with discrete models of computation [KCG94a]. These results have led to the

so-called Church Thesis, stating that all reasonable discrete models of computation are equiv-

alent. Hence many problems on dynamical systems have been characterized by computational

properties.

5

CHAPTER 1. INTRODUCTION

With a more general point of view, discrete systems form a well-known class of which

many more aspects have been studied and whose merits, for example in experimental sciences,

have no more need to be proved [HSD04].

1.2 Numerical Analysis and Di�erential Equations
Generally speaking, numerical analysis is the study of numerical algorithms for problems com-

ing from mathematical analysis. A typical and very old such problem is to compute an approx-

imation of

√
2, or to compute roots of functions. In general, the goal is to design and analyze

techniques to compute approximate but accurate solutions to problems. Many of these prob-

lems come from real-life applications, such as simulating a car, a plane, or even the weather.

But it can also apply to the more abstract setting of optimization problems, such as body dy-

namics or economics. In this thesis, we restrict ourselves to the case of numerical analysis of

di�erential equations, but this is only a subset of what exists in the literature [Atk89, Lig91].

The study of numerical approximations to the solutions of di�erential equations is a major

�eld in numerical analysis. It is major by its very broad application, since di�erential equations

can model so many physical systems. It is also major by the techniques developed, dating back

to Euler which have led to a very rich literature on the subject [But87]. A particularly di�cult

setting is that of partial di�erential equations [LT03], which we do not consider in this thesis.

A very general setting is that of di�erential algebraic equations (DAE) but we restrict ourselves

to the case of ordinary di�erential equations (ODE). There are two reasons to do so: �rst it is

usually possible to transform, at least locally, a DAE into an ODE, and secondly, ODEs form a

too general class of functions so we focus on a particular subclass of ODEs.

De�nition 1.2.1 (Di�erential Algebraic Equation (DAE)): A di�erential algebraic equation is

a functional equation in y of the form

F (y (t), . . . ,y (n−1) (t), t) = 0 ∀t ∈ I

where I is an interval, d,n ∈ N, F : (Rd)n × R→ Rn and y : I → Rd . �

De�nition 1.2.2 (Ordinary Di�erential Equation (ODE)): An ordinary di�erential equation is

a functional equation in y of the form

y′(t) = f (y (t)) ∀t ∈ I

where I is an interval, d ∈ N, f : Rd → Rd and y : I → Rd . �

De�nition 1.2.3 (Initial Value Problem (IVP)): An initial value problem is a di�erential equa-

tion together with an initial condition of the form y (t0) = y0 where t0 ∈ I and y0 ∈ R
d
. �

The Cauchy-Lipschitz is a particularly important theorem in the study of ordinary di�er-

ential equations, giving existence and uniqueness of solutions with very weak requirements.

Theorem 1.2.4 (Cauchy-Lipschitz): Consider the initial value problem:

y (t0) = y0 y′(t) = f (t ,y (t))

Suppose that on a neighborhood of (t0,y), f is Lipschitz continuous in y and continuous in t .
Then there is a neighborhood of t0 where there exists a unique solution y to this initial value
problem. �

6

1.2. NUMERICAL ANALYSIS AND DIFFERENTIAL EQUATIONS

Numerical analysis of di�erential equations usually focuses on solving initial value prob-

lems (IVP) [But87]. More precisely, given a di�erential equation, an initial condition and a time

t , one wants to compute y (t) where y is the solution to the IVP (if it exists). Over time, many

di�erent methods have been designed to tackle this problem, and there is a general theory to

study the properties of very large classes of methods over compact intervals, called general
linear methods (GLM). Numerical methods usually belong to GLM, which contains two very

important classes of methods called linear multistep method and Runge-Kutta methods. The

former is the result of successive generalizations of the Euler method, while the latter gener-

alizes the classical Runge-Kutta method (also known as RK4).

Numerical methods all share a common set of ideas which can be found in the original Euler

method. Suppose we want to �nd an approximate solution of y (t) that satis�es y′(t) = f (y)
and y (t0) = y0. We choose a time step h and discretize the problem by letting ti = t0 + ih
and yi = y (ti). Euler’s approximation consists in de�ning the sequence ỹ0 = y0 and ỹi+1 =

ỹi +hf (ỹi). The idea is that for a su�ciently small time step, y (ti+1) = y (ti +h) ≈ y (ti)+hy
′(ti)

and we know that y′(ti) = f (ti) since y satis�es the di�erential equation. The Euler method is

said to be a �rst order, one step, linear, explicit method, we detail below what it means.

• First order: y (ti) + hy
′(ti) is a �rst order approximation of y (ti + h), in the sense of Taylor

approximation.

• One step: ỹi+1 is computed using ỹi only.

• Linear: ỹi+1 is a linear combination of ỹi and f (ỹi).

• Explicit: ỹi+1 is given by an explicit formula.

All these points can be, and have been, re�ned, which has led to many families of numerical

methods. We give a brief overview of the possible extensions in each direction.

• Higher order: one can approximate y (ti +h) using a higher order Taylor approximation of

the form

∑k−1

j=0

y (j) (ti)
j! hj , where the order k can either be �xed or variable. The higher the

order, the more accurate the approximation, but the more costly it is to compute.

• Multistep: one can compute ỹi+m from ỹi , . . . , ỹi+m−1. It means the next value is computed

using them last terms which form the history. Under the right conditions, a longer history

gives a better approximation but it introduces many more points to compute and may have

convergence issues.

• Implicit: one can design a method where ỹi+1 is obtained by solving an equation such as

G (ỹi+1, ỹi , f (ỹi),h) = 0 where G can be any function. In this case, the method is implicit
because an equation must be solved in order to �nd ỹi+1. Implicit methods are usually more

expensive but can bring better stability properties at low orders. However, it is unclear

that implicit methods are asymptotically equivalent to explicit methods.

Numerical analysis focuses on both the accuracy and e�ciency of the methods. The former

is most often stated in terms of order. More precisely, a method is said to be of order k if local
error, that is the error made at each step, is a O

(
hk

)
. This is an asymptotic property of the

algorithm when h → 0. The e�ciency can be measured theoretically by an analysis of the

complexity of the algorithm, or practically by measuring the speed of the algorithm on some

benchmarks. In this thesis, we are only interested in the theoretical complexity of solving

di�erential equations.

7

CHAPTER 1. INTRODUCTION

1.3 Computable Analysis
Recursive Analysis was introduced by Turing [Tur36], Grzegorczyk [Grz55] and Lacombe

[Lac55]. It focuses on providing a rich notion of computability in order to give a computa-

tional content to mathematical analysis. In this framework, a real number x is computable if

there exists a computable sequence of rational numbers quickly converging to x . A real func-

tion f is computable if there exists a functional (i.e. operator) that maps quickly converging

sequences to x to quickly converging sequences to f (x). One way to de�ne such functionals

is Type-2 computability [Wei00] and can be extended to functions over abstract domains via

representations. Later work re�ned those approaches with complexity. Computable Analysis

as described by Ker-I Ko [Ko91] builds on the usual complexity theory of Turing machines

to provide a complexity theory for real functions. Recent work [BH05b, BH04, BH05a, BH06]

gives a more algebraic characterization in terms of recursive functions and limit operators,

building on the work of Campagnolo, Moore and Costa [CMC00, CMC02]. Recent work of

Kawamura and Cook [KC10] re�ned the work of Weihrauch and others with a framework for

the complexity of operators. Operator complexity gives a stronger, uniform notion of com-

plexity which is very important in Analysis. Many “weak” complexity results can be lifted to

this stronger framework [KO14].

We would like to mention that other approaches to real computability from Blum, Shub

and Smale [BSS89, BCSS98] and Moore [Moo96] yield very di�erent and in some cases more

powerful models of computations. See [Kaw05] for a comparison of Type-2 computability and

Moore’s recursion for example, and [Bra05b] for some connections between BSS and Com-

putable Analysis.

In this section, we follow Ker-I Ko presentation of Computable Analysis [Ko91]. The most

basic object of this framework is that of real number. Contrary to recursive analysis where

there are multiple equivalent ways of representing a real number, computable analysis re-

quires greater care about the e�ciency of the representation. The usual representation con-

sists in a sequence of quickly converging rational numbers: a real number is seen as the limit

of sequence of rational numbers. The presentation is computable when the sequence is com-

putable, and polynomial time computable when the sequence is polynomial time computable.

Following Weirauch and Kreitz, a real number is seen as a Type 1 object is the sense that it is

a function from integers to rational numbers.

De�nition 1.3.1 (Computable real): A real number x is computable if there is a sequence

of rational numbers (rn)n such that |x − rn | 6 2
−n

for all n, and a Turing machine M such

that M (n) computes rn. Furthermore, x is polynomial time computable if M runs in time

polynomial
2

in n. The set of computable real numbers is usually denoted by Rc and the set of

polynomial time computable real numbers by RP . �

The next basic block of the theory of computable analysis is of course the de�nition of a

computable function. We have seen that a real number is already a function (or Type 1 object),

it is thus natural to see a real function as an operator, mapping one function to another. This is

called a Type 2 function in recursive analysis. Informally, a function f is computable if there is

a machineM, such that for any real numberx and any precisionn, computes an approximation

rx ,n close to f (x) by ±2
−n

. However, x is a real number so we cannot “give” it as an argument

to a machine: it is an in�nite object. The proper concept for formalize this, is that of oracle. We

say that f is computable if for any oracle computing x , the machine equipped with this oracle

computes f (x) – in the sense of the previous de�nition of a computable real number. More

precisely, we say that the oracle computes x if when called on a tape containing an integer

2
From the point of view of classical complexity, it is akin to writing n in unary.

8

1.4. GENERAL PURPOSE ANALOG COMPUTER

n, it writes a rational number rn such that |rn − x | 6 2
−n

. In the case where the computation

takes polynomial time, independently of the oracle, we say that the function is computable in

polynomial time.

De�nition 1.3.2 (Computable function): A function f : [a,b] ⊆ R → R is computable if

there is a machineM such that for any x ∈ I and any oracle O computing
3 x ,MO

computes
45

f (x). Furthermore, f is polynomial time computable ifM runs in polynomial time for all such

oracles for all points in I . �

A crucial observation is that any computable function must be continuous [Ko91]. Fur-

thermore, the modulus of continuity of a computable function on a closed interval must be

computable
6
.

De�nition 1.3.3 (Modulus of continuity): Let f : [a,b] → R be a continuous function. A

modulus of continuity is a function m : N → N such that for any n > 0, and x ,y ∈ [a,b],

|x − y | 6 2
−m(n) ⇒ | f (x) − f (y) | 6 2

−n
. �

Another direct observation is that the restriction of f to (dyadic) rational numbers is re-

cursive. More precisely, if we consider ψ : Q × N → Q such that |ψ (d,n) − f (d) | 6 2
−n

, then

ψ is recursive. One of the most important properties of computable functions is that these

two properties characterize computable functions. These properties also extend to the case of

polynomial time computable functions with the natural requirements.

Theorem 1.3.4 (Alternative de�nition of computable functions): A real function f : [a,b]→

R is computable (resp. polynomial time computable) if and only if there exists a computable
(resp. polynomial time computable7) functionψ : (Q ∩ [a,b]) ×N→ Q and a computable (resp.
polynomial) functionm : N→ N such that:

• m is a modulus of continuity for f

• for any n ∈ N and d ∈ [a,b] ∩ Q, |ψ (d,n) − f (d) | 6 2
−n

�

The complexity of real functions is usually studied over compact intervals such as [a,b]

or [0, 1], but it can also be applied to the case of the whole line R by taking into account the

maximal “size” of the input.

1.4 General Purpose Analog Computer
In 1941, Claude Shannon introduced a mathematical model for the Di�erential Analyzer [Bus31],

on which he worked as an operator, called the General Purpose Analog Computer (GPAC)

[Sha41]. The Di�erential Analyzer was a mechanical device used mostly in the thirties and

the forties to solve ordinary di�erential equations (ODEs). A mechanical version of the Dif-

ferential Analyzer was built for the �rst time at the MIT by Bush in 1931, based on the ideas of

Thomson to connect integrators in order to solve di�erential equations, dating back to 1876.

3
meaning that when called on a tape containing n, it writes a rational number rn such that |rn − x | 6 2

−n

4MO means thatM can call the oracle O by writing on a special tape and entering a special state

5
meaning that for any integer n,MO (n) computes sn such that |sn − f (x) | 6 2

−n

6
in the sense of classical computability for integers, or –equivalently– recursive

7
The second argument of д must be in unary.

9

CHAPTER 1. INTRODUCTION

This machine was a programmable table made up of gears, shafts, drums and tracing tables

(see Figure 1.4.1). It could solve di�erential equations up to order 6, but was huge and slow.

Later versions of the di�erential analyzer were built using electronic circuits and operational

ampli�ers. These versions o�ered greater speed and precision but the emergent digital com-

puters eventually replaced all analog computers.

Figure 1.4.1: Photo of a restored GPAC at the Tokyo University of Science
8

Originally the GPAC was presented as a mathematical model of the Di�erential Analyzer

based on circuits (see Figure 1.0.1), where several units performing basic operations (e.g. sums,

integration) are interconnected. Shannon stated [Sha41] that functions generated by the GPAC

were di�erentially algebraic. Di�erentially algebraic functions satisfy a di�erential equation

of the form p (t ,y (t),y′(t), . . . ,y (k) (t)) = 0 for t ∈ I where p is a polynomial.

Later on, Pour-El found an error in the proof [PE74] and rede�ned the GPAC in terms of

quasi-linear di�erential equations. However this approach was again �awed and �nally �xed

by Graça and Costa [GC03] by restricting the set of allowed connections in the circuit
9
. In this

later approach, functions generated by the GPAC are exactly those which satisfy polynomial

di�erential equations.

De�nition 1.4.2 (GPAC generable function): f : I → R is called GPAC generable if it is a

component (i.e. f = y1) of a solution of

y (0) = y0 y′(t) = p (y (t)) t ∈ I

where p is a vector of polynomials. �

This class of functions turns out to be more general than it may seem at �rst. Indeed, not

only is it closed under the usual arithmetic operations but also one can replace p by any such

generated function. For example, y′ = sin(y) is in this class because sin is in this class (see

Figure 1.0.2).

We have seen that generable functions capture Shannon’s ideas about computability. How-

ever, this notion does not compare really well to existing classes because the object of the com-

putation is really the graph of the function itself, or the orbit in dynamic system terms. This is

8
Adaptation from a online public image, from http://ajw.asahi.com/article/sci_tech/

technology/AJ201412020060 with original photo taken by Hisatoshi Kabata. Copyright CC BY-SA 4.0

9
To avoid badly de�ned circuits

10

http://ajw.asahi.com/article/sci_tech/technology/AJ201412020060
http://ajw.asahi.com/article/sci_tech/technology/AJ201412020060

1.5. RELATED WORK

t

f (x)

q(x)

y (t)

Figure 1.4.4: Graphical representation of a computation on input x

in contrast with classical computability, and especially Computable Analysis, where the orbit

is not as interesting as the “limit” or stable state. For example, the equivalent of the graph for

a Turing machine is the sequence of con�gurations from a given initial con�guration. Using a

generalization of the notion of generable functions, it was shown recently that Turing-based

paradigms and the GPAC
10

have the same computation power [BCGH07, GCB08]. Figure 1.4.4

illustrates this notion of GPAC computability.

De�nition 1.4.3 (GPAC computable function): f : R→ R is called computable if there exists

polynomials p and q such that for any x ∈ R, there exists (a unique) y : I → Rd satisfying for

all t ∈ R+:

• y (0) = q(x) and y′(t) = p (y (t)) I y satis�es a PIVP

• |y1(t) − f (x) | 6 e−t where y1 is the �rst component of y I y1 converges to f (x)

�

1.5 Related work
In this section, we want to mention other related work, some close and some further away

from the topic described in the thesis but very relevant to the context. Most of these are still

under active research.

First and foremost, we would like to mention that there are many results on the decid-

ability or complexity of problems related to dynamical systems, and di�erential equations in

particular. It is known that the solution to an ODE of the form y′ = f (y) is computable if

it is unique and f is computable [CG09]. It is also known that determining if the maximal

interval of existence for PIVP is bounded is undecidable, even when the order and degree

is �xed [GBC07, GBC09]. It has been shown previously that polynomial ODEs are su�-

cient to simulate Turing machines and Computable Analysis [BGZ11, GCB05, GCB08, BGP,

BCGH07]. Other results on the basin of attractions and asymptotic properties are discussed

in [BGZ11, BGPZ13, GZ09, GZ11]. In this work, we will intrinsically make use of robust com-

putations – computations in the presence of perturbations – which were previously stud-

ied in [BGH10, BGH13, AB01]. Recent work also showed that Lipschitz continuous ODE are

PSPACE-hard
11

[Kaw10], and interesting lower bounds have been obtained such as CH hard-

ness for C∞ ODEs [KORZ14].

Another aspect of this work is continuous time computation, which has a rich litterature

and we point to [BC08] for the most recent survey on the subject. In particular we would like

10
See Chapter 4 (Computation with PIVP) for more details on the meaning of computable by a GPAC

11
A function f : [0, 1]→ R is PSPACE-hard if it can be used to solve as an oracle by a Turing machine to solve

any problem in PSPACE.

11

CHAPTER 1. INTRODUCTION

to mention hybrid systems, signal machines [Dur12] and other physically inspired models

[EN02, Fei88, WN05, BCPT14]. We would like to point out that contrary to most models,

the GPAC is not only a physically inspired model, it is the model of an existing machine and,

as such, hopefully captures the computational power of actual devices. Other such models

include quantum-based paradigms [Deu85, Hir01], although most of them are only continuous

in space but discrete in time.

Part of this thesis is also related to the very active �eld of (Computer-Aided) Veri�cation.

It is impossible to mention all the work in this area and many di�erent techniques have been

developed, ranging from bounded model checking to formal veri�cation using logic. Many

positive and negative results have been obtained, as well as very e�cient algorithms, in the

deterministic and probabilistic cases [Var85, CY95, KNSS02, APZ03, HLMP04, Bro99, AMP95,

ASY07, PV94, Pla12]. Typical problems in this area include reachability analysis such as the

one developed in this thesis. We would like to mention that PIVP are a particularly natural

example of Cyber Physical Systems, which have gained much interest in the last decade.

Finally, a closely related �eld is that of formal methods, and series solutions of di�erential

equations in particular. Of particular interest are D-�nite series [Lip89] and CDF-series [BS95]

which are very close to the generable functions in Chapter 2 (The PIVP class). The problem

of quickly computing coe�cients of such series has strong links to the numerical analysis of

di�erential equations which have analytic solutions [WWS
+

06, BCO
+

07].

1.6 Notations

Notations for sets
Concept Notation Comment

Real interval [a,b] {x ∈ R| a 6 x 6 b}

[a,b[{x ∈ R| a 6 x < b}

]a,b] {x ∈ R| a < x 6 b}

]a,b[{x ∈ R| a < x < b}

Line segment [x ,y] {(1 − α)x + αy,α ∈ [0, 1]}

[x ,y[{(1 − α)x + αy,α ∈ [0, 1[}

]x ,y] {(1 − α)x + αy,α ∈]0, 1]}

]x ,y[{(1 − α)x + αy,α ∈]0, 1[}

Integer interval Ja,bK {a,a + 1, . . . ,b}

Natural numbers N {0, 1, 2, . . .}

N∗ N \ {0}

Integers Z {. . . ,−2,−1, 0, 1, 2, . . .}

Rational numbers Q

Dyadic rationnals D {m2
−n,m ∈ Z,n ∈ N}

Real numbers R

Non-negative numbers R+ R+ = [0,+∞[

Non-zero numbers R∗ R∗ = R \ {0}

Positive numbers R∗+ R∗+ =]0,+∞[

Complex numbers C

Set shifting x + Y {x + y,y ∈ Y }

12

1.6. NOTATIONS

Notations for sets
Concept Notation Comment

Set addition X + Y {x + y,x ∈ X ,y ∈ Y }

A �eld K If unspeci�ed, refers to any �eld

Matrices Mn,m (K) Set of n ×m matrices over �eld K

Mn (K) Shorthand for Mn,n (K)

Mn,m Field is deduced from the context

Polynomials K[X1, . . . ,Xn] Ring of polynomials with variables X1, . . . ,Xn and

coe�cients in K

K[An] Polynomial functions withn variables, coe�cients in

K and domain of de�nition An

Fractions K(X) Field of rational fractions with coe�cients in K

Power set P (X) The set of all subsets of X

Domain of de�nition dom f If f : I → J then dom f = I

Cardinal #X Number of elements

Polynomial vector Kn[Ad] Polynomial in d variables with coe�cients in Kn

K[Ad]
n

Isomorphic Kn[Ad]

Polynomial matrix Mn,m (K) [An] Polynomial in n variables with matrix coe�cients

Mn,m (K[An]) Isomorphic Mn,m (K) [An]

Smooth functions Ck
Partial derivatives of orderk exist and are continuous

C∞ Partial derivatives exist at all orders

Real analytic functions Cω
Taylor series converge in the neighborhood of every

point

Complexity classes
Concept Notation Comment

Polynomial Time P Class of decidable languages

FP Class of computable functions

Computable numbers Rc See De�nition 1.3.1 (Computable real)

Polynomial Space PSPACE Class of decidable languages

Polynomial time computable

numbers

RP See De�nition 1.3.1 (Computable real)

Generable rationals RG See De�nition 2.7.14 (Generable real numbers)

GPAC computability AC(ϒ,Ω) See De�nition 4.2.1 (Analog computability)

AP Polynomial computability

Weak computability AW(ϒ,Ω) See De�nition 4.2.7 (Analog weak computability)

AWP Polynomial weak computability

Robust computability AR(ϒ,Ω,) See De�nition 4.3.1 (Analog robust computability)

ARP Polynomial robust computability

Strong computability AS(ϒ,Ω,Θ) See De�nition 4.3.9 (Analog strong computability)

ASP Polynomial strong computability

Online computability AO(ϒ,Ω,Λ) See De�nition 4.4.17 (Online computability)

13

CHAPTER 1. INTRODUCTION

Complexity classes
Concept Notation Comment

AOP Polynomial online computability

Extreme computability AX(ϒ,Ω,Λ,Θ) See De�nition 4.4.2 (Extreme computability)

AXP Polynomial extreme computability

Metric spaces and topology
Concept Notation Comment

p-norm ‖x ‖p *
,

n∑
i=1

|xi |
p+

-

1

p

In�nity norm ‖x ‖ max(|x1 |, . . . , |xn |)

Open ball Br (u) Center is u, radius is r

Closed ball Br (u) Center is u, radius is r

Closure X

Interior X̊

Border ∂X

Notations for polynomials
Concept Notation Comment

Univariate polynomial

d∑
i=0

aiX
i

Multi-index α (α1, . . . ,αk) ∈ N
k

|α | α1 + · · · + αk

α ! α1!α2! · · ·αk !

Multivariate polynomial

∑
|α |6d

aαX
α

where Xα = Xα1

1
· · ·Xαk

k

Degree deg(P) Maximum degree of a monomial, Xα
is of degree |α |,

conventionally deg(0) = −∞

deg(P) max(deg(Pi)) if P = (P1, . . . , Pn)

deg(P) max(deg(Pij)) if P = (Pij)i∈J1,nK,j∈J1,mK

Sum of coe�cients ΣP ΣP =
∑
α |aα |

ΣP max(ΣP1, . . . , ΣPn) if P = (P1, . . . , Pn)

ΣP max(ΣPij) if P = (Pij)i∈J1,nK,j∈J1,mK

A polynomial poly An unspeci�ed polynomial

Miscellaneous functions
Concept Notation Comment

Sign function sgn(x) Conventionally sgn(0) = 0

Integer part function bxc max{n ∈ Z | n 6 x }

14

1.6. NOTATIONS

Miscellaneous functions
Concept Notation Comment

Ceiling function dxe min{n ∈ Z | x 6 n}

Rounding function bxe argminn∈Z |n − x |, unde�ned for x = n + 1

2

Integer part function int(x) max(0, bxc)

intn (x) min(n, int(x))

Fractional part function frac(x) x − intx

fracn (x) x − intn (x)

Composition operator f ◦ д (f ◦ д) (x) = f (д(x))

Identity function id id(x) = x

Indicator function 1X 1X (x) = 1 if x ∈ X and 1X (x) = 0 otherwise

nth iterate f [n] f [0] = id and f [n+1] = f [n] ◦ f

Calculus
Concept Notation Comment

Derivative f ′

nth derivative f (n) f (0) = f and f (n+1) = f (n)
′

Partial derivative ∂i f ,
∂ f
∂xi

with respect to the ith variable

Scalar product x · y
∑n

i=1
xiyi in Rn

Gradient ∇f (x) (∂1 f (x), . . . , ∂n f (x))

Jacobian matrix Jf (x) (∂j fi (x))i∈J1,nK,j∈J1,mK

Taylor approximation Tn
a f (t)

n−1∑
k=0

f (k) (a)

k!

(t − a)k

Big O notation f (x) = O (д(x)) ∃M,x0 ∈ R, | f (x) | 6 M |д(x) | for all x > x0

Soft O notation f (x) = ˜O (д(x)) Means f (x) = O
(
д(x) log

k д(x)
)

for some k

Subvector xi ..j (xi ,xi+1, . . . ,xj)

Matrix transpose MT

Past supremum supδ f (t) supu∈[t ,t−δ]∩R+
f (t)

Partial function f :⊆ X → Y dom f ⊆ X

Restriction f �I f �I (x) = f (x) for all x ∈ dom f ∩ I

Words
Concept Notation Comment

Alphabet Σ, Γ A �nite set

Words Σ∗
⋃

n>0
Σn

Empty word λ

Letter wi ith letter, starting from one

Subword wi ..j wiwi+1 · · ·wj

Length |w |

15

CHAPTER 1. INTRODUCTION

Words
Concept Notation Comment

Repetition wk ww · · ·w︸ ︷︷ ︸
k times

16

Chapter 2

The PIVP class

Graphs of higher degree polynomials

have this habit of doing unwanted

wiggly things.

Quote from Cambridge

In this chapter we study the class of polynomial initial value problems (PIVP) in detail.

We introduce the notion of generable functions which are solutions of a PIVP, and generalize

this notion to several input variables. We will see that this class enjoys a number of stability

properties which makes it suitable for use as a basis for more advanced work. We recall that

a PIVP is a system of di�erential equations of the form:




y′(t)= p (y (t))

y (t0)= y0

t ∈ R (2.0.1)

where p is a vector of polynomials and y (t) is vector. In other words, y′i (t) = pi (y (t)) where pi
is a multivariate polynomial.

This chapter is organized as follows:

• Section 2.1 (Generable functions) will introduce the notion of generable function, in the

unidimensional and multidimensional case.

• Section 2.2 (Stability properties) will give a few stability properties of this class, mostly

stability by arithmetic operations, composition and ODE solving.

• Section 2.3 (Analyticity of generable functions) will show that generable functions are

always analytic

• Section 2.4 (Dependency in the parameters) will give a few results on the dependency of

solutions to PIVP with respect to perturbations.

• Section 2.5 (Taylor series of the solutions) will recall results about the Taylor series of

solutions to PIVP.

• Section 2.6 (Generable zoo) will give a list of useful generable functions, both for later

use in subsequent chapters, and as a way to see what can be achieved with generable

functions.

• Section 2.7 (Generable �elds) will give a few properties of generable �elds which are �elds

with an extra property related to generable functions.

17

CHAPTER 2. THE PIVP CLASS

2.1 Generable functions
In this section, we will de�ne a notion of function generated by a PIVP. This class of functions

is closed by a number of natural operations such as arithmetic operators, composition. In

particular, we will see that those functions are always analytic The major property of this class

is the stability by ODE solving: if f is generable and y satis�es y′ = f (y) then y is generable.

This means that we can design di�erential systems where the right-hand side contains much

more general functions than polynomials, and this system can be rewritten to use polynomials

only.

In this section, K will always refer to a real �eld, for example K = Q. The basic de�nitions

work for any such �eld but the main results will require some assumptions on K. These

assumptions will be formalized in De�nition 2.1.8 (Generable �eld) and detailed in Section 2.7

(Generable �elds).

2.1.I Unidimensional case

We start with the de�nition of generable functions from R to Rn. Those are de�ned as the

solution of some polynomial IVP (PIVP) with an additional boundedness constraint.

De�nition 2.1.1 (Generable function): Let sp : R+ → R+ and f : R → Re . We say that

f ∈ GVALK(sp) if and only if there exists n ∈ N, y0 ∈ K
n

and p ∈ Kn[Rn] such that there is a

(unique) y : R→ Rn satisfying for all time t ∈ R:

• y′(t) = p (y (t)) and y (0) = y0 I y satis�es a di�erential equation

• f (t) = y1..e (t) = (y1(t), . . . ,ye (t)) I f is a component of y

•

y (t)

 6 sp(|t |) I y is bounded by sp

The set of all generable functions is denoted by GVALK =
⋃

sp:R→R+ GVALK(sp). When this

is not ambiguous, we do not specify the �eld K and write GVAL(sp) or simply GVAL. �

Remark 2.1.2 (Uniqueness): The uniqueness of y in De�nition 2.1.1 is a consequence of the

Cauchy-Lipschitz theorem. Indeed a polynomial is a locally Lipschitz function. �

Remark 2.1.3 (Regularity): As a consequence of the Cauchy-Lipschitz theorem, the solution

y in De�nition 2.1.1 (Generable function) is at least C∞. It can be seen that it is in fact real

analytic, as it is the case for analytic di�erential equations in general. �

Remark 2.1.4 (Multidimensional output): It should be noted that although De�nition 2.1.1

de�nes generable functions with output in Re , it is completely equivalent to say that f is

generable if and only if each of its component is (i.e. fi is generable for every i); and restrict

the previous de�nition to functions from R to R only.

Also note that if y is the solution from De�nition 2.1.1, then obviously y is generable. �

Although this might not be obvious at �rst glance, this class generalizes polynomials, and

contains many elementary functions such as the exponential function, as well as the trigono-

metric functions. Intuitively, all functions in this class can be computed e�ciently by classical

machines, where sp measures some “hardness” in computing the function. We took care to

choose the constants such as the initial time and value, and the coe�cients of the polynomial

in K. The idea is to prevent any uncomputability from arising by the choice of uncomputable

real numbers in the constants.

18

2.1. GENERABLE FUNCTIONS

Example 2.1.5 (Polynomials are generable): Let p in Q(π)[R]. For example p (x) = x7 −

14x3 + π 2
. We will show that p ∈ GVALK(sp) where sp(x) = max(|x |, |p (x) |). We need

to rewrite p with a polynomial di�erential equation: we immediately get that p (0) = π 2
and

p′(x) = 6x6 − 42x2
. However, we cannot express p′(x) as a polynomial of p (x) only: we need

access to x . This can be done by introducing a new variable v (x) such that v (x) = x . Indeed,

v′(x) = 1 and v (0) = 0. Finally we get:




p (0)= π 2

p′(x)= 6v (x)6 − 42v (x)2




v (0)= 0

v′(x)= 1

Formally, we de�ne y (x) = (p (x),x) and show that y (0) = (π 2, 0) ∈ K2
and y′(x) = p (y (x))

where p1(a,b) = 6b6 − 42b2
and p2(a,b) = 1. Also note that the coe�cients are clearly in

Q(π)). We also need to check that sp is a bound on

y (x)

:

y (x)

 = max(|x |, |p (x) |) = sp(x)

This shows that p ∈ GVALK(sp) and can be generalized to show that any polynomial in one

variable is generable. �

Example 2.1.6 (Some generable elementary functions): We will check that exp ∈ GVALQ(exp)
and sin, cos, tanh ∈ GVALQ(x 7→ 1). We will also check that arctan ∈ GVALQ(x 7→ max(x , π

2
)).

• A characterization of the exponential function is the following: exp(0) = 1 and exp
′ = exp.

Since

exp

 = exp, it is immediate that exp ∈ GVALQ(exp). The exponential function

might be the simplest generable function.

• The sine and cosine functions are related by their derivatives since sin
′ = cos and cos

′ =

− sin. Also sin(0) = 0 and cos(0) = 1, and ‖sin(x), cos(x)‖ 6 1, we get that sin, cos ∈

GVALQ(x 7→ 1) with the same system.

• The hyperbolic tangent function will be very useful in this chapter. Is it known to satisfy

the very simple polynomial di�erential equation tanh
′ = 1− tanh

2

. Since tanh(0) = 0 and

| tanh(x) | 6 1, this shows that tanh ∈ GVALQ(x 7→ 1).

• Another very useful function will be the arctangent function. A possible de�nition of

the arctangent is the unique function satis�ng arctan(0) = 0 and arctan
′(x) = 1

1+x2
.

Unfortunately this is neither a polynomial in arctan(x) nor in x . A common trick is to

introduce a new variable z (x) = 1

1+x2
so that arctan

′(x) = z (x), in the hope that z sat-

is�es a PIVP. This is the case since z (0) = 1 and z′(x) = −2x
(1+x2)2

= −2xz (x)2 which is

a polynomial in z and x . We introduce a new variable for x as we did in the previous

examples. Finally, de�ne y (x) = (arctan(x), 1

1+x2
,x) and check that y (0) = (0, 1, 0) and

y′(x) = (y2(x),−2y3(x)y2(x)
2, 1). The

π
2

bound on arctan is a textbook property, and the

bound on the other variables is immediate.

�

Not only the class of generable functions contains many classical and useful functions, but

it is also closed under many operations. We will see that the sum, di�erence, product and

composition of generable functions is still generable. Before moving on to the properties of

this class, we need to mention the easily overlooked issue about constants, best illustrated as

an example.

19

CHAPTER 2. THE PIVP CLASS

Example 2.1.7 (The issue of constants): Let K be a �eld, containing at least the rational

numbers. Assume that generable functions are closed under composition, that is for any

two f ,д ∈ GVALK we have f ◦ д ∈ GVALK. Let α ∈ K and д = x 7→ α . Then for any

(f : R → R) ∈ GVALK, f ◦ д ∈ GVALK. Using De�nition 2.1.1 (Generable function), we get

that f (д(0)) ∈ K which means f (α) ∈ K for any α ∈ K. In other words, K must satisfy the

following property:

f (K) ⊆ K ∀f ∈ GVALK

This property does not hold for general �elds. �

The example above outlines the need for a stronger hypothesis on K if we want to be

able to compose functions. Motivated by this example, we introduce the following notion of

generable �eld.

De�nition 2.1.8 (Generable �eld): A �eld K is generable if and only if Q ⊆ K and for any

α ∈ K and (f : R→ R) ∈ GVALK, we have f (α) ∈ K. �

! From now on, we will assume that K is a generable �eld. See Section 2.7 (Generable

�elds) for more details on this assumption.

Example 2.1.9 (Usual constants are generable): In this manuscript, we will use again and

again that some well-known constants belong to any generable �eld. We detail the proof for

π and e:

• It is well-known that
π
4
= arctan(1). We saw in Example 2.1.6 (Some generable elementary

functions) that arctan ∈ GVALQ and since 1 ∈ K we get that
π
4
∈ K because K is a

generable �eld. We conclude that π ∈ K because K is a �eld and 4 ∈ K.

• By de�nition, e = exp(1) and exp ∈ GVALQ, so e ∈ K because K is a generable �eld and

1 ∈ K.

�

Lemma 2.1.10 (Arithmetic on generable functions): Let f ∈ GVAL(sp) and д ∈ GVAL(sp).

• f + д, f − д ∈ GVAL(sp + sp)

• f д ∈ GVAL(max(sp,sp,spsp))

• 1

f ∈ GVAL(max(sp,sp′)) where sp′(t) = 1

| f (t) | , if f never cancels

• f ◦ д ∈ GVAL(max(sp,sp ◦ sp))

Note that the �rst three items only require that K is a �eld, whereas the last item also requires K
to be a generable �eld. �

Proof. Assume that f : R→ Rm and д : R→ Re . We will make a detailed proof of the product

and composition cases, since the sum and di�erence are much simpler. The intuition follows

from basic di�erential calculus and the chain rule: (f д)′ = f ′д + f д′ and (f ◦ д)′ = д′(f ′ ◦ д).
Note that e = 1 for the composition to make sense and e = m for the product to make sense

(componentwise). The only di�culty in this proof is technical: the di�erential equation may

include more variables than just the ones computing f and д. This requires a bit of notation to

20

2.1. GENERABLE FUNCTIONS

∫
f (t) = et

t

Figure 2.1.11: Simple GPAC

∫
x1

∫
x2

+1 д

Figure 2.1.12: GPAC with two inputs

stay formal. Apply De�nition 2.1.1 (Generable function) to f and д to get p,p,y0,y0
. Consider

the following systems:




y (0)= y0

y′(t)= p (y (t))

y (0)= y
0

y′(t)= p (y (t))




zi (0)= y0,iy0,i

z′i (t)= pi (y (t))zi (t) + yi (t)pi (z (t))

ui (0)= fi (y0,1)

u′i (t)= p1
(y (t))p (u (t))

i ∈ J1,mK

Those systems are clearly polynomial. Remember that by de�nition, for any i ∈ J1,mK and

j ∈ J1, eK, fi (t) = yi (t) and дj (t) = zj (t), and as a particular case fi (0) = y0,i and дj (0) = y0,j .

Consequently, zi (t) = fi (t)дi (t) and ui (t) = fi (д1(t)).

Also by de�nition,

y (t)

 6 sp(t) and

y (t)

 6 sp(t). It follows that |zi (t) | 6 |yi (t) | |yi (t) | 6
sp(t)sp(t), and similarly |ui (t) | 6 | fi (д1(t)) | 6 sp(д1(t)) 6 sp(sp(t)).

The case of
1

д is very similar: de�ne д = 1

f then д′ = −f ′д2
. The only di�erence is that we

don’t have an a priori bound on д except
1

| f | , and we must assume that f is never zero for д to

be de�ned over R.

Finally, a very important note about constants and coe�cients which appear in those sys-

tems. It is clear that y0,iy0,i ∈ K because K is a �eld. Similarly, for
1

f we have
1

f (0) =
1

y0,1
∈ K.

However, there is no reason in general for fi (y0,1) to belong to K, and this is where we need

the assumption that K is generable to conclude. �

2.1.II Multidimensional case

We introduced generable functions as a special kind of function from R to Rn. We saw that

this class nicely generalizes polynomials, however it comes with two defects which prevents

other interesting functions from being generable:

• The domain of de�nition is R: this is very strong, since other “easy” targets such as tan,

log or even x 7→ 1

x cannot be de�ned, despite satisfying polynomial di�erential equations.

• The domain of de�nition is one dimensional: it would be useful to de�ne generable func-

tions in several variables, like multivariate polynomials.

The �rst issue can be dealt with by adding restrictions on the domain where the di�eren-

tiable equation holds, and shifting the initial condition (0 might not belong to the domain).

Overcoming the second problem is less obvious.

The examples below give two intuitions before introducing the formal de�nition. The

�rst example draws inspiration from multivariate calculus and di�erential form theory. The

second example focuses on GPAC composition. As we will see, both examples highlight the

same properties of multidimensional generable functions.

21

CHAPTER 2. THE PIVP CLASS

+ h1

∫
∫

×

−2

×
×

∫
x2 h3

×

∫
x1 h2

1

Figure 2.1.13: A more involved multidimensional GPAC

∫
t
u ∫

w
v

{ ×u
v ∫

w
t

×v
u ∫

y
w

{

×
∫

×
∫ + y

w
u

v

+v
u ∫

y
w

{

∫w
u ∫
v

+ y

Figure 2.1.14: GPAC rewriting

Example 2.1.15 (Multidimensional GPAC): The history and motivation for the GPAC is de-

scribed in Section 1.4 (General Purpose Analog Computer). The GPAC is the starting point for

the de�nition of generable functions. It crucially relies on the integrator unit to build inter-

esting circuits. In modern terms, the integration is often done implicitly with respect to time,

as shown in Figure 2.1.11 (Simple GPAC) where the corresponding equation is f (t) =
∫
f , or

f ′ = f . Notice that the circuit has a single “�oating input” which is t and is only used in the

“derivative port” of the integrator. What would be the meaning of a circuit with several such

inputs, as shown in Figure 2.1.12 (GPAC with two inputs) ? Formally writing the system and

di�erentiating gives:

д =

∫
1dx1 +

∫
1dx2 = x1 + x2

dд = dx1 + dx2

Figure 2.1.13 (A more involved multidimensional GPAC) gives a more interesting example to

better grasp the features of these GPAC. Using the same “trick” as before we get:

h2 =
∫

1dx1

h3 =
∫

1dx2

h1 =
∫
−2h2

1
h2dx1 +

∫
−2h2

1
h3dx2

dh2 = dx1

dh3 = dx2

dh1 = −2h2

1
h2dx1 − 2h2

1
h3dx2

It is now apparent that the computed functionh satis�es a special property becausedh1(x) =
p1(h1,h2,h3)dx1 + p2(h1,h2,h3)dx2 where p1 and p2 are polynomials. In other words, dh1 =

p (h) · dx where h = (h1,h2,h3), x = (x1,x2) and p = (p1,p2) is a polynomial vector. We obtain

22

2.1. GENERABLE FUNCTIONS

similar equations for h2 and h3. Finally, dh = q(h)dx where q(h) is the polynomial matrix

given by:

q(h) =
*...
,

−2h2

1
h2 −2h2

1
h3

1 0

0 1

+///
-

This can be equivalently stated as Jh = q(h). This is a generalization of PIVP to polynomial

partial di�erential equations.

To complete this example, note that it can be solved exactly and h1(x1,x2) =
1

x2

1
+x2

2

which

is de�ned over R2 \ {(0, 0)}. �

Example 2.1.16 (GPAC composition): Another way to look at Figure 2.1.13 (A more involved

multidimensional GPAC) and Figure 2.1.12 (GPAC with two inputs) is to imagine that x1 =

X1(t) and x2 = X2(t) are functions of the time (produced by other GPACs), and rewrite the

system in the time domain with h = H (t):

H ′
2
(t) = X ′

1
(t)

H ′
3
(t) = X ′

2
(t)

H ′
1
(t) = −2H1(t)

2H2(t)X
′
1
(t) − 2H (t)2H3(t)X

′
2
(t)

We obtain a system similar to the unidimensional PIVP: for a given choice ofX we haveH ′(t) =
q(H (t))X ′(t) where q(h) is the polynomial matrix given by:

q(h) =
*...
,

−2h2

1
h2 −2h2

1
h3

1 0

0 1

+///
-

Note that this is the same polynomial matrix as in the previous example. The relationship

between the time domainH and the originalh is simply given byH (t) = h(x (t)). This approach

has a natural interpretation on the GPAC circuit in terms of circuit rewriting. Assume that x1

and x2 are the outputs of two GPAC (with input t), then we can build the circuit computing

H using the rule of Figure 2.1.14 (GPAC rewriting). In a normal GPAC, the time t is the only

valid input of the derivative port of the integrator, so we need to rewrite integrators which

violate this rule. This procedure always stops in �nite time. �

De�nition 2.1.17 (Generable function): Let d, e ∈ N, I an open and connected subset of Rd ,

sp : R → R+ and f : I → Re . We say that f ∈ GVALK(sp) if and only if there exists n > e ,

p ∈ Mn,d (K) [Rn], x0 ∈ K
d
, y0 ∈ K

n
and y : I → Rn satisfying for all x ∈ I :

• y (x0) = y0 and Jy (x) = p (y (x)) (i.e. ∂jyi (x) = pij (y (x)))I y satis�es a di�erential equation

• f (x) = y1..e (x) I f is a component of y

•

y (x)

 6 sp(‖x ‖) I y is bounded by sp

�

Remark 2.1.18 (Uniqueness): The uniqueness of y in De�nition 2.1.17 (Generable function)

can be seen as follows: consider x ∈ I and γ a smooth curve
1

from x0 to x with values in I and

consider z (t) = y (γ (t)) for t ∈ [0, 1]. It can be seen that z′(t) = Jy (γ (t))γ
′(t) = p (y (γ (t))γ ′(t) =

1
see Remark 2.1.20 (Domain of de�nition)

23

CHAPTER 2. THE PIVP CLASS

p (z (t))γ ′(t), z (0) = y (x0) = y0 and z (1) = y (x). The initial value problem z (0) = y0 and z′(t) =
p (z (t))γ ′(t) satis�es the hypothesis of the Cauchy-Lipschitz theorem and as such admits a

unique solution. Since this IVP is independent of y, it shows that y (x) must be unique. Note

that the existence ofy (and thus the domain of de�nition) is an hypothesis of the de�nition. �

Remark 2.1.19 (Regularity): In the euclidean space Rn, Ck
smoothness is equivalent to the

smoothness of the order k partial derivatives. Consequently, the equation Jy = p (y) on the

open set I immediately proves that y is C∞. Proposition 2.3.3 (Generable implies analytic)

shows that y is in fact real analytic. �

Remark 2.1.20 (Domain of de�nition): De�nition 2.1.17 (Generable function) requires the

domain of de�nition of f to be connected, otherwise it would not make sense. Indeed, we

can only de�ne the value of f at point u if there exists a path from x0 to u in the domain of

f . It could seem, at �rst sight, that the domain being “only” connected may be too weak to

work with. This is not the case, because in the euclidean space Rd , open connected subsets

are always smoothly arc connected, that is any two points can be connected using a smooth

C1
(and even C∞) arc. Proposition 2.7.4 (Generable path connectedness) extends this idea to

generable arcs, with a very useful corollary. �

Remark 2.1.21 (Multidimensional output): Remark 2.1.4 (Multidimensional output) also ap-

plies to this de�nition: f :⊆ Rd → Rn is generable if and only if each of its component is

generable (i.e. fi is generable for all i). �

Remark 2.1.22 (De�nition consistency): It should be clear that De�nition 2.1.17 (Generable

function) and De�nition 2.1.1 (Generable function) are consistent. More precisely, in the case

of unidimensional function (d = 1) with domain of de�nition I = R, both de�nitions are

exactly the same since Jy = y
′

and Mn,1 (R) = R
n
. �

De�nition 2.1.23 (Polynomially bounded generable function): The class of generable func-

tions with polynomially bounded value is called GPVAL:

f ∈ GPVAL ⇔ ∃sp a polynomial such that f ∈ GVAL(sp)

�

Example 2.1.24 (Generable function): Let f (x1,x2) = x1x
4

2
which is de�ned over R2

. Let

sp(α) = (1+α) (1+α4). We will show that f ∈ GVALQ(sp). De�ne y (x1,x2) =
(
x1x

4

2
,x1,x2

)
,

and check that:

Jy (x1,x2) =
*...
,

x4

2
4x1x

3

2

1 0

0 1

+///
-

=
*...
,

y4

3
3y2y

3

3

1 0

0 1

+///
-

= q(y)

where q ∈ M3,2 (Q) [R3
] is a polynomial matrix. Furthermore, y (0, 0) = (0, 0, 0) ∈ Q3

with

(0, 0) ∈ Q2
. Furthermore,y1(x1,x2) = f (x1,x2). Finally,

y (x1,x2)

 = max(|x1 |, |x2 |, |x1 | |x
4

2
|) 6

(1 + |x1 |) (1 + |x2 |
4) 6 sp(‖x1,x2‖). �

The following example focuses on the second issue mentioned at the beginning of the

section, namely the domain of de�nition.

Example 2.1.25 (Inverse and logarithm functions): We illustrate that the choice of the domain

of de�nition makes important di�erences in the nature of the function.

• Let ε > 0 and de�ne fε : x ∈]ε,∞[7→ 1

x . It can be seen that f ′ε (x) = −fε (x)
2

and fε (1) = 1.

Furthermore, | fε (x) | 6
1

ε thus fε ∈ GVAL(α 7→ 1

ε). So in particular, fε ∈ GPVAL for any

24

2.2. STABILITY PROPERTIES

ε > 0. Something interesting arises when ε → 0: de�ne f0(x) = x ∈]0,∞[7→ 1

x . Then f0
is still generable and | f0(x) | 6

1

|x | . Thus f0 ∈ GVAL(α 7→ 1

α) but f0 < GPVAL. Note that

strictly speaking, f0 ∈ GVAL(sp) where sp(α) = 1

α and sp(0) = 0 because the bound

function needs to be de�ned over R+.

• A similar phenomenon occurs with the logarithm: de�ne дε : x ∈]ε,∞[7→ ln(x). Then

д′ε (x) = fε (x) and дε (1) = 0. Furthermore, |дε (x) | 6 max(|x |, ln ε). Thus дε ∈ GVAL(α 7→
max(α , | ln ε |, 1

ε)), and in particular дε ∈ GPVAL for any ε > 0. Similarly, д0 : x ∈]0,∞[7→

ln(x) is generable but does not belong to GPVAL.

�

2.2 Stability properties
In this section, the major results will the be stability of multidimensional generable functions

under arithmetical operators, composition and ODE solving. Note that some of the results use

properties on K which can be found in Section 2.7.I (Extended stability).

Lemma 2.2.1 (Arithmetic on generable functions): Let d, e,n,m ∈ N, sp,sp : R → R+,
f :⊆ Rd → Rn ∈ GVAL(sp) and д :⊆ Re → Rm ∈ GVAL(sp). Then:

• f + д, f − д ∈ GVAL(sp + sp) over dom f ∩ domд if d = e and n =m

• f д ∈ GVAL(max(sp,sp,spsp)) if d = e and n =m

• f ◦ д ∈ GVAL(max(sp,sp ◦ sp)) ifm = d and д(domд) ⊆ dom f

�

Proof. We focus on the case of the composition, the other cases are very similar.

Apply De�nition 2.1.17 (Generable function) to f and д to respectively get l , ¯l ∈ N, p ∈

Ml ,d (K) [Rl], p̄ ∈ M¯l ,e (K) [R
¯l
], x0 ∈ dom f ∩ Kd , x̄0 ∈ domд ∩ Ke , y0 ∈ K

l
, ȳ0 ∈ K

¯l
, y :

dom f → Rl and ȳ : domд → R
¯l
. De�ne h = y ◦ д, then Jh = Jy (д) Jд = p (h)p̄1..m (ȳ) and

h(x̄0) = y (ȳ0) ∈ K
l

by Corollary 2.7.5 (Generable �eld stability). In other words (ȳ,h) satisfy:




ȳ (x̄0)= y0 ∈ K
¯l

h(x̄0)= y (ȳ0) ∈ K
l




ȳ′= p̄ (ȳ)

h′= p (h)p̄1..m (ȳ)

This shows that f ◦д = z1..m ∈ GVAL. Furthermore,

(ȳ (x),h(x))

 6 max(

ȳ (x)

 ,

y (д(x))

) 6

max(sp(‖x ‖),sp(

д(x)

)) 6 max(sp(‖x ‖),sp(sp(‖x ‖))). �

Our main result is that the solution to an ODE whose right hand-side is generable, and

possibly depends on an external and C1
control, may be rewritten as a GPAC. A corollary of

this result is that the solution to a generable ODE is generable.

Proposition 2.2.2 (Generable ODE rewriting): Let d,n ∈ N, I ⊆ Rn, X ⊆ Rd , sp : R+ → R+
and (f : I × X → Rn) ∈ GVALK(sp). De�ne sp = max(id,sp). Then there exists m ∈ N,
(д : I ×X → Rm) ∈ GVALK(sp) and p ∈ Km[Rm × Rd] such that for any interval J , t0 ∈ K ∩ J ,
y0 ∈ K

n ∩ J , y ∈ C1(J , I) and x ∈ C1(J ,X), if y satis�es:




y (t0)= y0

y′(t)= f (y (t),x (t))
∀t ∈ J

25

CHAPTER 2. THE PIVP CLASS

then there exists z ∈ C1(J ,Rm) such that:




z (t0)= д(y0,x (t0))

z′(t)= p (z (t),x′(t))




y (t)= z1..d (t)

‖z (t)‖6 sp(

y (t),x (t)

)
∀t ∈ J

�

Proof. Apply De�nition 2.1.17 (Generable function) to f get m ∈ N, p ∈ Mm,n+d (K) [Rm],

f0 ∈ dom f ∩ Kd , w0 ∈ K
m

and w : dom f → Rm such that w (f0) = w0, Jw (v) = p (w (v)),
‖w (v)‖ 6 sp(‖v ‖) and w1..n (v) = f (v) for all v ∈ dom f . De�ne u (t) = w (y (t),x (t)), then:

u′(t) = Jw (y (t),x (t)) (y
′(t),x′(t))

= p (w (y (t),x (t))) (f (y (t),x (t)),x′(t))

= p (u (t)) (u1..n (t),x
′(t))

= q(u (t),x′(t))

where q ∈ Km[Rm+d] and u (t0) = w (y (t0)) = w (y0,x (t0)). Note that w itself is a generable

function and more precisely w ∈ GPVALK sp by de�nition. Finally, note that y′(t) = u1..d (t)
so that we get for all t ∈ J :




y (t0)= y0

y′(t)= u1..d (t)




u (t0)= w (y0,x (t0))

u′(t)= q(u (t),x′(t))

De�ne z (t) = (y (t),u (t)), then z (t0) = (y0,w (y0,x (t0))) = д(y0,x (t0)) where y0 ∈ K
n

and

w ∈ GVALK(sp) so д ∈ GVALK(sp). And clearly z′(t) = r (z (t),x′(t)) where r ∈ Kn+m[Rn+m].

Finally, ‖z (t)‖ =

y (t),w (y (t),x (t))

 6 max(

y (t)

 ,sp(

y (t),x (t)

)) 6 sp(

y (t),x (t)

).
�

A simpli�ed version of this lemma shows that generable functions are closed under ODE

solving.

Corollary 2.2.3 (Generable functions are closed under ODE): Let d ∈ N, J ⊆ R an interval,
sp,sp : R+ → R+, f :⊆ Rd → Rd in GVAL(sp), t0 ∈ K ∩ J and y0 ∈ K

d ∩ dom f . Assume
there exists y : J → dom f satisfying for all t ∈ J :




y (t0)= y0

y′(t)= f (y (t))

y (t)

 6 sp(t)

Then y ∈ GVAL(max(sp,sp ◦ sp)) and is unique. �

Our last result is simple but very useful. Generable functions are continuous and continu-

ously di�erentiable, so locally Lipschitz continuous. We can give a precise expression for the

modulus of continuity in the case where the domain of de�nition is simple enough.

Proposition 2.2.4 (Modulus of continuity): Let sp : R+ → R+, f ∈ GVAL(sp). There
exists q ∈ K[R] such that for any x1,x2 ∈ dom f , if [x1,x2] ⊆ dom f then

f (x1) − f (x2)

 6
‖x1 − x2‖ q(sp(max(‖x1‖ , ‖x2‖))). In particular, if f ∈ GPVALK then there exists q ∈ K[R]

such that if [x1,x2] ⊆ dom f then

f (x1) − f (x2)

 6 ‖x1 − x2‖ q(max(‖x1‖ , ‖x2‖)). �

Proof. Apply De�nition 2.1.17 (Generable function) to get d, e,n,p,x0,y0 and y. Let k =
deg(p). Recall that for a matrix, the subordinate norm is given by | | |M | | | = maxi

∑
j |Mij |.

Then:

f (x1) − f (x2)

 =

∫ x2

x1

Jy1..e (x)dx

=

∫
1

0

Jy1..e ((1 − α)x1 + αx2) (x2 − x1)dα

26

2.3. ANALYTICITY OF GENERABLE FUNCTIONS

6

∫
1

0

| | |Jy1..e ((1 − α)x1 + αx2) | | | · ‖x2 − x1‖ dα

6 ‖x2 − x1‖

∫
1

0

max

i∈J1,eK

d∑
j=1

|pij (y ((1 − α)x1 + αx2)) |dα

6 ‖x2 − x1‖

∫
1

0

max

i∈J1,eK

d∑
j=1

Σp max(1,

y ((1 − α)x1 + αx2)

)k)dα

6 ‖x2 − x1‖

∫
1

0

max

i∈J1,eK
dΣp max(1,sp(‖ (1 − α)x1 + αx2‖))

kdα

6 ‖x2 − x1‖

∫
1

0

dΣp max(1,sp(max(‖x1‖ , ‖x2‖)))
kdα

6 ‖x2 − x1‖ dΣp max(1,sp(max(‖x1‖ , ‖x2‖)))
k

�

2.3 Analyticity of generable functions
It is a well-known result that the solution to a PIVP y′ = p (y) (and more generally, an analytic

di�erential equation y′ = f (y) where f is analytic) is real analytic on its domain of de�nition.

In the previous section we de�ned a generalized notion of generable function satisfying Jy =
p (y) which analyticity is less immediate. In this section we go through the proof in detail,

which of course subsumes the result for PIVP.

We recall a well-known characterization of analytic functions. It is indeed much easier to

show that a function is in�nitely di�erentiable and of controlled growth, rather than showing

the convergence of the Taylor series.

Proposition 2.3.1 (Characterization of analytic functions): Let f ∈ C∞(U) for some open
subset U of Rm. Then f is analytic on U if and only if, for each u ∈ U , there are an open ball V ,
with u ∈ V ⊆ U , and constants C > 0 and R > 0 such that the derivatives of f satisfy

|∂α f (x) | 6 C
α !

R |α |
x ∈ V ,α ∈ Nm

�

Proof. See proposition 2.2.10 of [KP02]. �

In order to use this result, we show that the derivatives of generable functions at a point x
do not grow faster than the described bound. We use a generalization of Faà di Bruno formula

for the derivatives of a composition.

Theorem 2.3.2 (Generalised Faà di Bruno’s formula): Let f : X ⊆ Rd → Y ⊆ Rn and д : Y →
R where X ,Y are open sets and f ,д are su�ciently smooth functions2. Let α ∈ Nd and x ∈ X ,
then

∂α (д ◦ f) (x) = α !

∑
(s,β,λ)∈Dα

∂λд(f (x))
s∏

k=1

1

λk !

(
1

βk !

∂βk f (x)

)λk
2
more precisely, for the formula to hold for α , all the derivatives which appear in the right-hand side must

exist and be continuous

27

CHAPTER 2. THE PIVP CLASS

where ∂λ means ∂∑s
u=1

λu and whereDα is the list of decompositions of α . A multi-index α ∈ Nd

is decomposed into s ∈ N parts β1, . . . , βs ∈ N
d with multiplicies λ1, . . . , λs ∈ N

n respectively if
|λi | > 0 for all i , all the βi are distincts from each other and from 0, and α = |λ1 |β1 + · · ·+ |λs |βs .
Note that β and λ are multi-indices of multi-indices: β ∈

(
Nd

)s
and λ ∈

(
Nd

)s
. �

Proof. See [Ma09] or [EM03]. �

Proposition 2.3.3 (Generable implies analytic): If f ∈ GVAL then f is real-analytic on dom f .
�

Proof. Let sp : R → R+, p ∈ Mn,d[Rn] and y : Rn → Rn from De�nition 2.1.17 (Generable

function). It is su�cient to prove thaty is analytic onD = dom f to get the result. Let i ∈ J1,nK,

and j ∈ J1,dK, since Jy = p (y) then ∂jyi (x) = pij (y (x)) and pij is a polynomial vector so clearly

C∞. By Remark 2.1.19 (Regularity), y is also C∞ so we can apply Theorem 2.3.2 (Generalised

Faà di Bruno’s formula) for any x ∈ D, α ∈ Nd and get

∂α (∂jyi) (x) = ∂α (pij ◦ y) (x) = α !

∑
(s,β ,λ)∈Dα

∂λpij (y (x))
s∏

k=1

1

λk !

(
1

βk !

∂βky (x)

)λk
De�ne Bα (x) =

1

α !

∂αy (x)

, and denote by α + j the multi-index λ such that λj = αj + 1 and

λk = αk for k , j. De�ne C (y (x)) = maxi,j,λ (|∂λpij (y (x)) |) and note that it is well-de�ned

because ∂λpij is zero whenever |λ | > deg(pij). De�neD′α = {(s, β, λ) ∈ Dα | |λ | 6 deg(p)}. The

equations becomes:

|∂α (∂jyi) (x) | 6 α !

∑
(s,β ,λ)∈Dα

|∂λpij (y (x)) |
s∏

k=1

1

λk !

�����
1

βk !

∂βky (x)
�����

λk

6 α !C (y (x))
∑

(s,β ,λ)∈D ′α

s∏
k=1

1

λk !

Bβk (x)
|λk |

Note that the right-hand side of the expression doesn’t depend on i . We are going to show by

induction that Bα (x) 6
(
C (y (x))

R

) |α |
for some choice of R. The initialization for |α | = 1 is trivial

because α ! = 1 and Bα (x) =

∂αy (x)

 6 C (y (x)) so we only need R 6 1. The induction step is

as follows:

Bα+j (x) 6 C (y (x))
∑

(s,β ,λ)∈D ′α

s∏
k=1

1

λk !

Bβk (x)
|λk |

6 C (y (x))
∑

(s,β ,λ)∈D ′α

s∏
k=1

1

λk !

(
C (y (x))

R

) |βk | |λk |

6 C (y (x))
∑

(s,β ,λ)∈D ′α

1

λ!

(
C (y (x))

R

)∑s
u=1
|βk | |λk |

6 C (y (x))

(
C (y (x))

R

) |α | ∑
(s,β,λ)∈D ′α

1

λ!

6 C (y (x))

(
C (y (x))

R

) |α |
#D′α

28

2.4. DEPENDENCY IN THE PARAMETERS

Evaluating the exact cardinal ofD′α is complicated but we only need a good enough bound

to get on with it. First notice that for any (s, β , λ) ∈ D′α , we have |λ | 6 deg(p) by de�nition,

and since each |λi | > 0, necessarily s 6 deg(p). This means that there is a �nite number,

denote it by A, of (s, λ) in D′α . For a given λ, we must have α =
∑s

i=1
|λi |βi which implies that

|βij | 6 |α | and so there at most (1+ |α |)ns choices for β , and since s 6 deg(p), #D′α 6 A(1+ |α |)b

where b and A are constants. Choose R 6 1 such that R |α | > A(1 + |α |)b for all α to get the

claimed bound on Bα (x).
To conclude with Proposition 2.3.1 (Characterization of analytic functions), consider x ∈ D.

Let V be an open ball of D containing x . Let M = supu∈V C (y (x)), it is �nite because C is

bounded by a polynomial,

y (x)

 6 sp(x) and V is an open ball (thus included in a compact

set). Finally we get:

∂αy (x)

 6 α !

(M
R

) |α |
�

2.4 Dependency in the parameters
One of the most useful properties of ODEs is the continuous dependency (of the solution) in the

parameters. More formally, the operator (t0,y0,p, t) 7→ y (t) is continuous under reasonable

hypothesis. This is the case for PIVPs and we can quantify this dependency with explicit

bounds. We start with an elementary result about polynomials, in essence an e�ective version

of the Lipschitz constant for polynomials on a compact set.

Lemma 2.4.1 (E�ective Lipschitz bound for polynomials): Let P ∈ R[Rd] and k = deg(P) its
degree. For all a,b ∈ Rd such that ‖a‖ , ‖b‖ 6 M ,

|P (b) − P (a) | 6 kMk−1ΣP ‖b − a‖

where ΣP is the sum of the absolute value of the coe�cients of P . �

Proof. We start with the case of a monomial: P (X) = Xα
where α ∈ Nd . One checks by

induction that:

bα − aα =
d∑
i=1

*.
,

∏
j<i

b
α j
j

+/
-
(bαii − a

αi
i) *.

,

∏
j>i

a
α j
j

+/
-

Since it is well known that for any integer n:

bn − an = (b − a)
n−1∑
i=0

aibn−1−i

We conclude that:

|bα − aα | 6
d∑
i=1

*.
,

∏
j<i

|bj |
α j +/

-
|bαii − a

αi
i |

*.
,

∏
j>i

|aj |
α j +/

-

6
d∑
i=1

M |α |−αi |b − a |
αi−1∑
j=0

Mαi−1

6 ‖b − a‖
d∑
i=1

M |α |−1αi

6 |α | ‖a − b‖ M |α |−1

29

CHAPTER 2. THE PIVP CLASS

In the more general case of P (X) =
∑
|α |6k aαX

α
where k is the degree of P , we get:

|P (b) − P (a) | 6
∑
|α |6k

|aα | |b
α − aα |

6
∑
|α |6k

|aα | |α | ‖a − b‖ M
|α |−1

6 kMk−1ΣP ‖b − a‖

�

We study the dependency of the solution with respect to the initial value and the poly-

nomial. More precisely, we show that for small perturbations of the initial value and the

derivative, the solution does not change much. We even generalize this result to PIVP with an

external control which is itself subject to perturbations.

Theorem 2.4.2 (Parameter dependency of PIVP): Let I = [a,b], p ∈ Rn[Rn+d], k = deg(p),
e ∈ C0(I ,Rd), x ,δ ∈ C0(I ,Rn) and y0, z0 ∈ R

d . Assume that y, z : I → Rd satisfy:




y (a)= y0

y′(t)= p (y (t),x (t))




z (a)= z0

z′(t)= e (t) + p (z (t),x (t) + δ (t))
t ∈ I

Assume that there exists ε > 0 such that for all t ∈ I ,

µ (t) :=

(

z0 − y0

 +
∫ t

a
‖e (u)‖ + kΣpMk−1(u) ‖δ (u)‖ du

)
exp

(
kΣp

∫ t

a
Mk−1(u)du

)
< ε

whereM (t) = ε +

y (t)

 + ‖x (t)‖ + ‖δ (t)‖ . Then for all t ∈ I ,

z (t) − y (t)

 6 µ (t)

�

Proof. Letψ (t) =

z (t) − y (t)

. For any t ∈ I , we have

ψ (t) 6 ψ (0) +

∫ t

a

p (z (u),x (u) + δ (t)) − p (y (u),x (u))

 du +
∫ t

a
‖e (u)‖ du

Apply Lemma 2.4.1 (E�ective Lipschitz bound for polynomials) to get, for N (u) =

y (u)

 +
ψ (u) + ‖x (u)‖ + ‖δ (u)‖ , that:

p (z (u),x (u) + δ (t)) − p (y (u),x (u))

 6 kΣpN k−1(u) (ψ (u) + δ (u))

Putting everything together, we have:

ψ (t) 6 ψ (0) +

∫ t

a
‖e (u)‖ + kΣpN k−1(u) ‖δ (u)‖ du + kΣp

∫ t

a
N k−1(u)ψ (u)du

Apply the Generalized Gronwall’s Inequality, using that the integral of non-negative values is

non-decreasing, to get:

ψ (t) 6

(

z0 − y0

 +
∫ t

a
‖e (u)‖ + kΣpN k−1(u) ‖δ (u)‖ du

)
exp

(
kΣp

∫ t

a
N k−1(u)du

)
De�ne t1 = max

{
t ∈ I | ∀u ∈ [a, t],ψ (u) 6 ε

}
which is well-de�ned as the maximum of a

closed and non-empty set (a belongs to it). Then for all t ∈ [a, t1], N (t) 6 M (t) soψ (t) 6 µ (t).
We will show by contradiction that t1 = b, which proves the result. Assume by contradiction

that t1 < b. Then by continuity of ψ and because ψ (a) = µ (a) < ε , there exists t0 6 t1 such

thatψ (t0) = ε . But then t0 ∈ [a, t1] soψ (t0) 6 µ (t) < ε by hypothesis, which is impossible. �

30

2.5. TAYLOR SERIES OF THE SOLUTIONS

Lemma 2.4.3 (ODE time-scaling): Let d ∈ N, x0 ∈ R
d , p ∈ Rd[Rd], and ϕ ∈ C0(R+,R+).

Assume that y, z : R+ → R
d satisfy for all t ∈ R+:




y (0)= x0

y′(t)= p (y (t))




z (0)= x0

z′(t)= ϕ (t)p (z (t))

Then z (t) = y
(∫ t

0
ϕ (u)du

)
for all t ∈ R+. �

Lemma 2.4.4 (Perturbed time-scaling): Let d ∈ N, x0 ∈ R
d , p ∈ Rd[Rd], e ∈ C0(R+,R

d)

and ϕ ∈ C0(R+,R+). Let ψ (t) =
∫ t

0
ϕ (u)du. Assume that ψ is an increasing function and that

y, z : R+ → R
d satisfy for all t ∈ R+:




y (0)= x0

y′(t)= p (y (t)) + (ψ−1)′(t)e (ψ−1(t))




z (0)= x0

z′(t)= ϕ (t)p (z (t)) + e (t)

Then z (t) = y (ψ (t)) for all t ∈ R+. In particular,
∫ ψ (t)

0

(ψ
−1)′(u)e (ψ−1(u))

 du =

∫ t

0
‖e (u)‖ du

and supu∈[0,ψ (t)]

(ψ

−1)′(u)e (ψ−1(u))

 = supu∈[0,t]
‖e (u)‖
ϕ (u) . �

Proof. Use that ϕ = ψ ′,ψ ′ · (ψ−1)′ ◦ψ = 1 and thatψ ′ > 0. �

2.5 Taylor series of the solutions
It is well-known

3
that solutions of a PIVP are analytic so in particular the Taylor series at any

point converges. This yields the natural question of the rate of convergence of the series, and

the complexity of computing the truncated series.

In the case of a function satisfying a polynomial di�erential equation like (2.0.1), we can

obtain a sharper bound than the one given by the classical Taylor-Lagrange theorem. These

bounds are based on Cauchy majorants of series and we refer the reader to [WWS
+

06] for the

details.

Theorem 2.5.1 (Taylor approximation for PIVP): If y satis�es (2.0.1), k = deg(p) > 2, α =
max(1,

y0

),M = (k − 1)Σpαk−1, t0 = 0 |t | < 1

M then

y (t) −Tn
0
y (t)

 6

α |Mt |n

1 − |Mt |

�

Proof. The equations which we refer to in this proof are to be found in the original article

[WWS
+

06], where h = p and a = y0 in (12). Then in (14), ‖c‖ 6 α and in (23), m = k and

M 6 (k − 1)Σp ‖c‖k−1
. The result then follows from (44). �

The following corollary gives a bound on the maximum variation of the solution of (2.0.1)

on a small interval.

Corollary 2.5.2 (Maximum variation for PIVP): If y satis�es (2.0.1), k = deg(p) > 2, α =
max(1,

y0

),M = (k − 1)Σpαk−1, t0 = 0 and |t | < 1

M then

y (t) − y0

 6

α |Mt |

1 − |Mt |

�

3
See Remark 2.1.3 (Regularity)

31

CHAPTER 2. THE PIVP CLASS

The next problem we face is to compute the truncated Taylor series of the solution over

a small time interval. In this thesis, we will assume that we have access to a subroutine

ComputeTaylor as follows.

Algorithm 2.5.3 Taylor Series algorithm for PIVP

Require: p ∈ Qd[Rd] the polynomial of the PIVP

Require: y0 ∈ Q
d

the initial condition

Require: ω ∈ N the order of the approximation

Require: ε ∈ Q the precision requested

Require: t ∈ Q the time step

1: function ComputeTaylor(p,y0,ω, ε, t)

2: return x . such that

x −T

ω
0
y (t)

 6 ε where y (0) = y0 and y′ = p (y)

3: end function

The complexity of computing this Taylor series has already been analyzed in the litterature.

Let TL(d,p,y0,ω, ε, t) be the complexity of Algorithm 2.5.3 (Taylor series of the solutions).

More precisely, we will refer to the bit-complexity as TLbit and the arithmetic complexity as

TLarith .

In [BGP12] we described a very naive way of implementing Algorithm 2.5.3 (Taylor series

of the solutions) by ways of formal di�erentiation, showing that the bit-complexity is bounded

by

TLbit = O
(
poly((deg(p)ω)d , log max(1, t)Σp max(1,

y0

),− log ε)
)

(2.5.4)

More explicit formulas can be found in [MM93]. Other much more advanced algorithms exist

in the literature like [BCO
+

07] which shows that:

TLarith = ˜O
(
ωdeg(p)d + (dω)a

)
(2.5.5)

(where is a is the matrix multiplication exponent) for the arithmetic complexity. Finally notice

that these algorithms do not need to compute the actual coe�cients of the Taylor series but

only the evaluation of the truncated Taylor series with a certain precision.

2.6 Generable zoo
In this section, we introduce a number of generable functions which will be useful in the next

chapters. This zoo will also illustrate the wide range of generable functions. The table below

gives a list of the functions and their purpose.

We use the term “dead zone” to refer to interval(s) where the generable function does not

compute the expected function (but still has controlled behavior). We use the term “high” to

mean that the function is close to x (an input) within e−µ where µ is another input. Conversely,

the use the term “low” to mean that it is close to 0 within e−µ . And “X” means something in

between. Finally “integral” means that function is of the form ϕx and the integral of ϕ (on

some interval) is between 1 and a constant.

Generable Zoo
Name Notation Comment

Sign sg(x , µ, λ) Compute the sign of x with error e−µ and dead zone

in [−λ−1, λ−1
]. See 2.6.3

Floor ip
1
(x , µ, λ) Compute int1(x) with error e−µ and dead zone in

[−λ−1, λ−1
]. See 2.6.5

32

2.6. GENERABLE ZOO

Generable Zoo
Name Notation Comment

Abs absδ (x) Compute |x | with error δ . See 2.6.14

Max mxδ (x) Compute max(x) with error δ . See 2.6.16

Norm norm∞,δ (x) Compute ‖x ‖ with error δ . See 2.6.18

Round ip∞(x) Compute bxe with error
7

8
|x − bxe |. See 2.6.9

rnd(x , µ, λ) Compute bxe with error e−µ and dead zones in [n −
1

2
+ λ−1,n + 1

2
− λ−1

] for all n ∈ Z. See 2.6.12

Low-X-High lxh[a,b](t , µ,x) Compute 0 when t ∈] − ∞,a] and x when t ∈ [b,∞[

with error e−µ and a dead zone in [a,b]. See 2.6.22

High-X-Low hxl[a,b](t , µ,x) Compute x when t ∈] − ∞,a] and 0 when t ∈ [b,∞[

with error e−µ and a dead zone in [a,b]. See 2.6.22

Low-Integral-Low lil[a,b](t , µ,x) Compute 0 when t < [a,b] with error e−µ and

lil[a,b](t , µ,x) = ϕx with

∫
I
ϕ ∈ [1,K]. See 2.6.24

Periodic L-I-L plil
[a,b],τ (t , µ,x) Same as lil in a τ -periodic fashion. See 2.6.26

Select select[a,b](t , µ,x ,y) Select x (resp. y) when t 6 a (resp. t > b) with error

e−µ and a barycenter inbetween. See 2.6.28.

2.6.I Sign and rounding
We begin with a small result on the hyperbolic tangent function, which will be used to build

several generable functions of interest.

Lemma 2.6.1 (Bounds on tanh): 1 − sgn(t) tanh(t) 6 e−|t | for all t ∈ R. �

Proof. The case of t = 0 is trivial. Assume that t > 0 and observe that 1−tanh(t) = 1− 1−e−2t

1+e−2t =

2e−2t

1+e−2t = e−t 2e−t

1+e−2t . De�ne f (t) = 2e−t

1+e−2t and check that f ′(t) = 2e−t (e−2t−1)
(1+e−2t)2

6 0 for t > 0. Thus

f is a non-increasing function and f (0) = 1 which concludes.

If t < 0 then note that 1− sgn(t) tanh(t) = 1− sgn(−t) tanh(−t) so we can apply the result

to −t > 0 to conclude. �

The simplest generable function of interest uses the hyperbolic tangent to approximate the

sign function. On top of the sign function, we can build a an approximate of the �oor function.

See Figure 2.6.6 (Graph of sg and ip
1
) for a graphical representation.

De�nition 2.6.2 (Sign function): For any x , µ, λ ∈ R de�ne

sg(x , µ, λ) = tanh(xµλ)

�

Lemma 2.6.3 (Sign): sg ∈ GPVAL and for any x ∈ R and λ, µ > 0,

| sgn(x) − sg(x , µ, λ) | 6 e−|x |λµ 6 1

In particular, sg is non-decreasing in x and if |x | > λ−1 then

| sgn(x) − sg(x , µ, λ) | 6 e−µ

�

33

CHAPTER 2. THE PIVP CLASS

x

sg(x , 1, 4) ip
1
(x , 20, 100)

Figure 2.6.6: Graph of sg and ip
1
.

x

ip∞(x)

Figure 2.6.7: Graph of ip∞

Proof. Note that sg = tanh ◦f where f (x , µ, λ) = xµλ. We saw in Example 2.1.6 (Some

generable elementary functions) that tanh ∈ GVAL(t 7→ 1). By Lemma 2.2.1 (Arithmetic

on generable functions), f ∈ GVAL(id). Thus sg ∈ GVAL(α 7→ max(1,α)).
Use Lemma 2.6.1 (Bounds on tanh) and the fact that tanh is an odd function to get the �rst

bound. The second bound derives easily from the �rst. Finally, sg is a non-decreasing function

because tanh is an increasing function. �

De�nition 2.6.4 (Floor function): For any x , µ, λ ∈ R de�ne

ip
1
(x , µ, λ) =

1 + sg(x − 1, µ, λ)

2

�

Lemma 2.6.5 (Floor): ip
1
∈ GPVAL and for any x ∈ R and µ, λ > 0,

| int1(x) − ip
1
(x , µ, λ) | 6

e−|x−1|λµ

2

6
1

2

In particular ip
1
is non-decreasing in x and if |1 − x | > λ−1 then

| int1(x) − ip
1
(x , µ, λ) | < e−µ

�

Another simple generable function uses the sine function to approximate the integer round-

ing function. Of course the approximation is pretty rough, but we can build an arbitrarily good

one by iterating the function many times. See Figure 2.6.7 (Graph of ip∞) for a graphical rep-

resentation.

De�nition 2.6.8 (Imprecise round function): For any x ∈ R de�ne

ip∞(x) = x −
1

2π
sin(2πx)

�

Lemma 2.6.9 (Imprecise round): For any n ∈ Z and |ε | 6 1

4

| ip∞(n + ε) − n | 6
7

8

ε and
����ip∞

(
n +

1

2

− ε
)
− n

���� 6
1

2

−
3

2

ε

Furthermore ip∞ ∈ GPVAL and is an increasing function. �

34

2.6. GENERABLE ZOO

Proof. The �rst statement is a direct consequence of the Taylor-Lagrange inequality:

| ip∞(n + ε) − n | 6
1

2!

ε2
2π sin(2πε) 6

7

8

ε

The second statement comes from the well-known inequality sin(2y) > y for y ∈ [0, π
4

]:

����ip∞
(
n +

1

2

− ε
)
− n

���� =
1

2

− ε −
1

2π
sin(2πε) 6

1

2

− ε −
ε

2

Finally, we saw that sin, id ∈ GPVAL in Example 2.1.6 (Some generable elementary functions)

and since π ∈ K, conclude with Lemma 2.2.1 (Arithmetic on generable functions). �

Lemma 2.6.10 (Imprecise round): For any δ < 1

2
and η > 0, there exists kδ ,η ∈ N and Aδ ,η ∈ R

such that f = ip

[kδ,η]

∞ satis�es:

∀n ∈ Z, |ε | 6 δ , | f (n + ε) − n | 6 η

�

We saw previously how to build a imprecise rounding function. It had the advantage of

being a simple although it is quite imprecise. In the cases where this is not enough, the fol-

lowing function will provide a much better approximation at the cost of being signi�cantly

more complicated to de�ne and use.

De�nition 2.6.11 (Round function): For any x ∈ R, λ > 2 and µ > 0, de�ne

rnd(x , µ, λ) = x −
1

π
arctan(cltan(πx , µ, λ))

cltan(θ , µ, λ) =
sin(θ)√

nz(cos
2 θ , µ, 4λ2)

sg(cosθ , µ, 2λ)

nz(x , µ, λ) = x +
2

λ
ip

1

(
1 − x +

3

4λ
, µ + 1, 4λ

)
�

Lemma 2.6.12 (Round): For any n ∈ Z, λ > 2, µ > 0, | rnd(x , µ, λ) − n | 6 1

2
for all x ∈[

n − 1

2
,n + 1

2

]
and | rnd(x , µ, λ) − n | 6 e−µ for all x ∈

[
n − 1

2
+ 1

λ ,n +
1

2
− 1

λ

]
. Furthermore

rnd ∈ GPVAL. �

Proof. Let’s start with the intuition �rst: consider f (x) = x − 1

π arctan(tan(πx)). It is an exact

rounding function: if x = n + δ with n ∈ N and δ ∈]
−1

2
, 1

2
[then tan(πx) = tan(πδ) and since

δπ ∈]
−π
2
, π

2
[, f (x) = x − δ = n. The problem is that it is unde�ned on all points of the form

n + 1

2
because of the tangent function.

The idea is to replace tan(πx) by some “clamped” tangent cltan which will be like tan(πx)
around integer points and stay bounded when close to x = n + 1

2
instead of exploding. To

do so, we use the fact that tanθ = sinθ
cosθ but this formula is problematic because we cannot

prevent the cosine from being zero, without loosing the sign of the expression (the cosine

could never change sign). Thus the idea is to remove the sign from the cosine, and restore

it, so that tanθ = sgn(cosθ) sinθ
| cosθ | . And now we can replace | cos(θ) | by

√
nz(cos

2 θ), where

nz(x) is mostly x except near 0 where is lower-bounded by some small constant (so it is never

zero). The sign of cosine can be computed using our approximate sign function sg.

Formally, we begin with nz and show that:

35

CHAPTER 2. THE PIVP CLASS

• nz ∈ GPVAL

• nz is an increasing function of x

• For x > 1

λ , | nz(x , µ, λ) − x | 6 e−µ

• For x > 0, nz(x , µ, λ) > 1

2λ

The �rst point is a consequence of ip
1
∈ GPVAL from Lemma 2.6.5 (Floor). The second point

comes from Lemma 2.6.5 (Floor): if x > 1

λ , then 1 − x + 3

4λ 6 1 − 1

4λ , thus | nz(x , µ, λ) − x | 6
2

λe
−µ−1 6 e−µ since λ > 2. To show the last point, �rst apply Lemma 2.6.5 (Floor): ifx 6 1

2λ , then

1−x+ 3

4λ > 1+ 1

4λ , thus | nz(x , µ, λ)−x− 2

λ | 6
2

λe
−µ−1

Thus nz(x , µ, λ) > 2

λ (1−e
−µ−1)+x > 1

λ since

1−e−µ−1 6 1

2
andx > 0. And forx > 1

2λ , by Lemma 2.6.5 (Floor) we get that nz(x , µ, λ) > x > 1

2λ
which shows the last point.

Then we show that:

• cltan ∈ GPVAL, is π -periodic and is an odd function.

• For θ ∈
[
−π

2
+ 1

λ ,
π
2
− 1

λ

]
, | cltan(θ , µ, λ) − tan(θ) | 6 e−µ

The �rst point comes from the fact that sin, cos, sg, nz ∈ GPVAL and we further need the

square-root and division to apply to lower bounded values. It is the case thanks to the re-

sults above about nz since

√
nz(cos

2 θ , µ, 2λ) >
√

1

4λ . This shows that cltan(θ , µ, λ) 6 4λ. The

periodicity comes from the properties of sine and cosine, and the fact that sg is an odd func-

tion. It is an odd function for similar reasons. To show the second point, since it is periodic

and odd, we can assume that θ ∈
[
0, π

2
− 1

λ

]
. For such a θ , we have that

π
2
− θ > 1

λ , thus

cos(θ) > sin(π
2
− θ) > 1

2λ (use that sin(u) > u
2

for 0 6 u 6 π
2

). By Lemma 2.6.3 (Sign) we

get that | sg(cosθ , µ, 2λ) − 1| 6 e−µ . Also cos
2 θ > 1

4λ2
thus by the above results we get that

| nz(cos
2 θ , µ, 4λ2) − cos

2 θ | 6 e−µ and thus
4 |

√
nz(cos

2 θ , µ, 4λ2) − | cosθ | | 6 4λe−µ .
Let n ∈ N and x = n + δ ∈ [n − 1

2
,n + 1

2
]. Since cltan is π -periodic, rnd(x , µ, λ) =

n+δ− 1

π arctan(cltan(πδ , µ, λ)). Furthermore πδ ∈ [−π
2
, π

2
] so cos(πδ) > 0 and sgn(sin(πδ)) =

sgn(δ). Consequently, sg(cos(πδ), µ, 2λ) ∈ [0, 1] by de�nition of sg and

√
nz(cos

2(πδ), µ, 4λ2) >√
cos

2(πδ) because ip
1
> 0. We get that | cltan(πδ , µ, λ) | 6 | sin(πδ) |

cos(πδ) and sgn(cltan(πδ , µ, λ)) =

sgn(δ). Finally,
1

π arctan(cltan(πδ , µ, λ)) = α with |α | 6 | 1π arctan(tan(πδ)) | 6 |δ | and

sgn(α) = sgn(δ) which shows that | rnd(x , µ, λ) − n | 6 δ 6 1

2
.

Finally we can show the result about rnd: since cltan and tan are in GPVAL, then rnd ∈

GPVAL. Now considerx ∈
[
n − 1

2
+ 1

λ ,n +
1

2
− 1

λ

]
, and letθ = πx−πn. Thenθ ∈

[
−π

2
+ π

λ ,
π
2
− π

λ

]
⊆[

−π
2
+ 1

λ ,
π
2
− 1

λ

]
, and since cltan is periodic, then rnd(x , µ, λ) = n+ θ

π −
1

π arctan(cltan(θ , µ, λ).

Finally, using the results about cltan yields: | rnd(x , µ, λ) − n | = 1

π |θ − arctan(cltan(θ , µ, λ) | =
1

π | arctan(tan(θ)) − arctan(cltan(θ , µ, λ) | 6 1

π | tan(θ) − cltan(θ , µ, λ) | 6 e−µ

π 6 e−µ since arctan

is a 1-Lipschitz function. �

2.6.II Absolute value, maximum and norm
A very common operation in our constructions is to compute the absolute value of a number.

Of course this operation is not generable because it is not even di�erentiable. However, a good

enough approximation can be built. In particular, this approximation has several keys features:

it is positive and it is an over-approximation. On top of this, we can build an approximation

of the max function and the in�nite norm function.

4
use that |

√
a −
√
b | 6 |a−b |

2

√
a and for a = nz(cos

2 θ , µ, 2λ),
√
a >

√
1

λ as shown before

36

2.6. GENERABLE ZOO

De�nition 2.6.13 (Absolute value function): For any x ∈ R and δ ∈]0, 1] de�ne:

absδ (x) = δ + tanh(xδ−1)x

�

Lemma 2.6.14 (Absolute value): For any x ∈ R and δ ∈]0, 1] we have:

|x | 6 absδ (x) 6 |x | + δ

Furthermore absδ ∈ GPVAL and is an even function. �

Proof. Since tanh is an odd function, we immediately get that abs is even and abs > 0, and

we can do the reasoning for x > 0 only. By Lemma 2.6.1 (Bounds on tanh) we get that δ +
x > absδ (x) > x + δ − xe−xδ

−1

. A simple study of the x 7→ xe−δ
−1x

function shows that it

is maximum for x = δ which gives δe−1
and concludes the proof. Finally absδ ∈ GPVAL

from Lemma 2.2.1 (Arithmetic on generable functions) and Example 2.1.6 (Some generable

elementary functions). �

De�nition 2.6.15 (Max function): For any x ,y ∈ R and δ ∈]0, 1] de�ne:

mxδ (x ,y) =
y + x + abs2δ (y − x)

2

For any x ∈ Rn and δ ∈]0, 1] de�ne:

mxδ (x) = mxδ/n (x1,mxδ/n (. . . ,mxδ/n (xn−1,xn) . . .))

�

Lemma 2.6.16 (Max function): For any x ,y ∈ R and δ ∈]0, 1] we have:

max(x ,y) 6 mxδ (x ,y) 6 max(x ,y) + δ

For any x ∈ Rn and δ ∈]0, 1] we have:

max(x1, . . . ,xn) 6 mxδ (x) 6 max(x1, . . . ,xn) + δ

Furthermore mxδ ∈ GPVAL. �

Proof. By Lemma 2.6.14 (Absolute value), |y − x | 6 absδ (y − x) 6 |y − x | + δ and the result

follows because max(x ,y) =
y+x+|y−x |

2
. Finally mxδ ∈ GPVAL from Lemma 2.2.1 (Arithmetic

on generable functions). The generalisation to more variables is immediate. �

De�nition 2.6.17 (Norm function): For any x ∈ Rn and δ ∈]0, 1] de�ne:

norm∞,δ (x) = mxδ/2(absδ/2(x1), . . . , absδ/2(xn))

�

Lemma 2.6.18 (Norm function): For any x ∈ Rn and δ ∈]0, 1] we have:

‖x ‖ 6 norm∞,δ (x) 6 ‖x ‖ + δ

Furthermore norm∞,δ ∈ GPVAL. �

Proof. Apply Lemma 2.6.14 (Absolute value) and Lemma 2.6.16 (Max function). �

37

CHAPTER 2. THE PIVP CLASS

x

Figure 2.6.19: Graph of lil[1,3]

x

Figure 2.6.20: Graph of lxh[1,3] and hxl[1,2]

2.6.III Switching functions
Later on, when using generable functions as a model of computation, we will need something

which acts like a select function, which can pick between two values depending on how a

third value compares to a threshold. Problem is that this operation is not continuous, and

thus not generable. As a good �rst step, we build so-called “low-X-high” and “high-X-low”

functions which act as a switch between 0 (low) and a value (high). Around the threshold will

be an small uncertainty zone (X) where the exact value cannot be predicted. See Figure 2.6.20

(Graph of lxh[1,3] and hxl[1,2]) for a graphical representation.

De�nition 2.6.21 (“low-X-high” and “high-X-low”): Let I = [a,b] with b > a, t ∈ R, µ ∈ R,

x ∈ R, ν = µ + ln(1 + x2), δ = b−a
2

and de�ne:

lxhI (t , µ,x) = ip
1

(
t −

a + b

2

+ 1,ν ,
1

δ

)
x hxlI (t , µ,x) = ip

1

(
a + b

2

− t + 1,ν ,
1

δ

)
x

�

Lemma 2.6.22 (“low-X-high” and “high-X-low”): Let I = [a,b], µ ∈ R+, then ∀t ,x ∈ R:

• ∃ϕ1,ϕ2 such that lxhI (t , µ,x) = ϕ1(t , µ,x)x and hxlI (t , µ,x) = ϕ2(t , µ,x)x

• if t 6 a, | lxhI (t , µ,x) | 6 e−µ and |x − hxlI (t , µ,x) | 6 e−µ

• if t > b, |x − lxhI (t , µ,x) | 6 e−µ and | hxlI (t , µ,x) | 6 e−µ

• in all cases, | lxhI (t , µ,x) | 6 |x | and | hxlI (t , µ,x) | 6 |x |

Furthermore, lxhI , hxlI ∈ GPVAL. �

Proof. By symetry, we only prove it for lxh. This is a direct consequence of Lemma 2.6.5

(Floor) and the fact that |x | 6 e ln(1+x2)
. Indeed if t 6 a then t − a+b

2
+ 1 6 1 − δ thus

| lxhI (t ,ν ,x) | 6 |x |e
−ν 6 e−µ . Similarly if t > b then t − a+b

2
+ 1 > 1 + δ and we get a

similar result. Apply Lemma 2.2.1 (Arithmetic on generable functions) multiple times to see

that they are belong to GPVAL. �

Although the “low-X-high” and “high-X-low” can very useful, in some occasion we are not

really interested in the exact value of the function in the “high” part but rather the integral of

non-“low”. In this case, the uncertainty zone of the previous functions in unacceptable because

we cannot control its e�ect. The “low-integral-low” function works around this problem by

ensuring that the integral of the non-“low” part is not too far from the expected value, in a

certain sense. See Figure 2.6.19 (Graph of lil[1,3]) for a graphical representation. We also build

a periodic variant of this function.

38

2.6. GENERABLE ZOO

De�nition 2.6.23 (“low-integral-low”): Let I = [a,b], t ∈ R, µ ∈ R, x ∈ R and de�ne:

lilI (t , µ,x) = lxh[a,a+δ](t ,ν , 1) hxl[b−δ ,b](t ,ν , 1)Kx

where

δ =
b − a

4

ν = µ + 2 + lnK (1 + x2) K =
1

δ

�

Lemma 2.6.24 (“low-integral-low”): Let I = [a,b] with b > a, µ ∈ R+ and x ∈ R. Then there
exists a constant K such that

• | lilI (t , µ,x) | < e−µ for all t < I

• ∃ϕ such that lilI (t , µ,x) = ϕ (t , µ,x)x for all t ∈ I , and for any α : I → R+, β : I → R we
have:

1 6

∫ b

a
ϕ (t ,α (t), β (t))dt 6 K

Furthermore, lilI ∈ GPVAL. �

Proof. Apply Lemma 2.2.1 (Arithmetic on generable functions) multiple times to get that

lilI ∈ GPVAL. Note that it works because K (1 + x2) > K > 0 so ln �
]K ,∞[

∈ GPVAL, see

Example 2.1.25 (Inverse and logarithm functions) for more details.

• If t < a or t > b apply Lemma 2.6.22 (“low-X-high” and “high-X-low”) twice to get

| lilI (t , µ,x) | 6 e−νK |x | 6 e−µ by the choice of ν since |x | 6 e ln(1+x2)
.

• Clearly lilI (t , µ,x) = ϕ (t , µ,x)x with ϕ (t , µ,x) = lxh[a,a+δ](t ,ν , 1) hxl[b−δ ,b](t ,ν , 1)K . Let

α : I → R+, β : I → R. Since ϕ > 0,

∫ b

a
ϕ (t ,α (t), β (t))dt >

∫ b−2δ

a+2δ
ϕ (t ,α (t), β (t))dt .

Apply Lemma 2.6.22 (“low-X-high” and “high-X-low”) to get that

∫ b−δ

a+δ
ϕ (t ,α (t), β (t))dt >

2δ (1− e−ν)2K > 2(1− e−2)2 > 1 since ν > 2. Conversely, applying Lemma 2.6.22 (“low-X-

high” and “high-X-low”) gives that ϕ (t , µ,x) 6 K so

∫ b

a
ϕ (t ,α (t), β (t))dt 6 (b − a)K 6 4.

�

De�nition 2.6.25 (“periodic low-integral-low”): Let t ∈ R,τ ∈ R+, µ,x ∈ R, I = [a,b] ⊆ [0,τ]

with 0 < b − a < τ and de�ne:

plilI ,τ (t , µ,x) = lxhJ (f (t),ν ,K)x

where

δ = b − a ω =
2π

τ
K =

1

4

+
2

δ
t1 =

a + b

2

−
τ

4

ν = µ + 2 + ln(1 + x2) f (t) = sin(ω (t − t1)) J =

[
f (a), f

(
a +

δ

4

)]

�

Lemma 2.6.26 (“periodic low-integral-low”): Let µ,τ ∈ R+, I = [a,b] ([0,τ] and x ∈ R.
Then there exists a constant K and ϕ such that plilI ,τ (t , µ,x) = ϕ (t , µ,x)x and:

• plilI ,τ (·, µ,x) is τ -periodic

39

CHAPTER 2. THE PIVP CLASS

• ∀t < I , | plilI ,τ (t , µ,x) | < e−µ

• for any α : I → R+, β : I → R:

1 6

∫ b

a
ϕ (t ,α (t), β (t))dt 6 K

Furthermore, plilI ,τ ∈ GPVAL. �

Proof. The τ -periodicity is trivial. Using trigonometric identities, observe that

f (t) − f (a) = −2 sin

(
ω
t − b

2

)
sin

(
ω
t − a

2

)
Now it is easy to see that if t ∈ [0,a] thenω t−b

2
,ω t−a

2
∈ [−π , 0] thus f (t) 6 f (a). By the choice

of J and Lemma 2.6.22 (“low-X-high” and “high-X-low”), we get that lxhJ (f (t), µ+2,K) 6 e−ν .

Similarly if t ∈ [b,τ] then ω t−b
2
,ω t−a

2
∈ [0,π] and we get the same result. We conclude the

�rst part of the result using that |xe−ν | 6 e−µ .
Let α : I → R+, β : I → R. Let a′ = a + δ

4
and b′ = b − δ

4
. Since lxh > 0, we have∫ b

a
plilI ,τ (t ,α (t), β (t))dt >

∫ b ′

a′
plilI ,τ (t ,α (t), β (t))dt . Again observe that

f (t) − f (a′) = −2 sin

(
ω
t − b′

2

)
sin

(
ω
t − a′

2

)
Consequently, if t ∈ [a′,b′] then f (t) > f (a′). By the choice of J and Lemma 2.6.22 (“low-X-

high” and “high-X-low”), we get that lxhJ (f (t),ν ,K) > K − e−ν > K − 1

4
since ν > 2. Finally∫ b

a
plilI ,τ (t ,α (t), β (t))dt > (b′ − a′) (K − 1

4
) > 1 and

∫ b

a
plilI ,τ (t ,α (t), β (t))dt 6 (b − a)K by

Lemma 2.6.22 (“low-X-high” and “high-X-low”).

Apply Lemma 2.2.1 (Arithmetic on generable functions) multiple times to get that plilI ,τ ∈

GPVAL. �

De�nition 2.6.27 (Select): Let I = [a,b], t ,x ,y, µ ∈ R, µ ∈ R+ and de�ne:

selectI (t , µ,x ,y) = x + lxhI (t , µ,y − x)

�

Lemma 2.6.28 (Select): Let I = [a,b], t ,x ,y ∈ R and µR+:

• if t 6 a then | selectI (t , µ,x ,y) − x | 6 e−µ

• if t > b then | selectI (t , µ,x ,y) − y | 6 e−µ

• if t ∈ [a,b] then selectI (t , µ,x ,y) = x + α (y − x) where α ∈ [0, 1]

Furthermore selectI ∈ GPVAL. �

Proof. Apply Lemma 2.6.22 (“low-X-high” and “high-X-low”) to get that selectI ∈ GPVAL. If

t 6 a then | lxhI (t , µ,y − x) | 6 e−µ so | selectI (t , µ,x ,y) − x | 6 e−µ . If t > b then | lxhI (t , µ,y −
x) − (y − x) | 6 e−µ so | selectI (t , µ,x ,y) − y | 6 e−µ . If t ∈ [a,b] then look at De�nition 2.6.21

(“low-X-high” and “high-X-low”) to get that selectI (t , µ,x ,y) = x+α (y−x) where α = ip
1
(. . .).

Look at De�nition 2.6.4 (Floor function) to conclude that α ∈ [0, 1]. �

40

2.7. GENERABLE FIELDS

2.7 Generable �elds
In Section 2.1 (Generable functions), we introduced the notion of generable �eld, which are

�elds with an additional stability property. We used this notion to ensure that the class of

functions we built is closed under composition. It is well-known that if we allow any choice

of constants in our computation, we will gain extra computational power because of uncom-

putable real numbers. For this reason, it is wise to make sure that we can exhibit at least one

generable �eld consisting of computable real numbers only, and possibly only polynomial time

computable numbers.

Intuitively, we are looking for a (the) smallest generable �eld, call it RG , in order to mini-

mize the computation power of the real numbers it contains. The rest of this section is dedi-

cated to the study of this �eld. We �rst recall De�nition 2.1.8 (Generable �eld).

De�nition 2.7.1 (Generable �eld): A �eld K is generable if and only if Q ⊆ K and for any

α ∈ K, and (f : R→ R) ∈ GVALK, f (α) ∈ K. �

2.7.I Extended stability

By de�nition of a generable �eld, K is preserved by unidimensional generable functions. An

interesting question is whether K is also preserved by multidimensional functions. This is not

immediate because because of several key di�erences in the de�nition of multidimensional

generable functions. We �rst recall a folklore topology lemma.

Lemma 2.7.2 (O�set of a compact set): Let X ⊆ U ⊆ Rn where U is open and X is compact.
Then there exists ε > 0 such that Xε ⊆ U where the ε-o�set of X is de�ned by Xε =

⋃
x∈X Bε (x).

�

Proof. This is a very classical result: let F = Rn \U , then F is closed so the distance function
5

dF to F is continuous. Since X is compact, dF (X) is a compact subset of R+, and dF (X) is

nowhere 0 because X ⊆ U ⊆ F where U is open. Consequently dF (X) admits a positive

minimum ε . Let x ∈ Xε , then ∃y ∈ X such that

x − y

 < ε , and by the triangle inequality,

ε 6 dF (y) 6

x − y

 + dF (x) so dF (x) > 0 which means x < F , in other words x ∈ U . �

Lemma 2.7.3 (Polygonal path connectedness): An open, connected subset U of Rn is always
polygonal-path-connected: for any a,b ∈ U , there exists a polygonal path6 from a to b in U .
Furthermore, we can take all intermediate vertices in Qn. �

Proof. Let a,b ∈ U , since U is a connected and open subset of Rn, it is path-connected
7

Let

γ : [0, 1] → U be a path from a to b. Let X = γ ([0, 1]), it is compact and connected because γ
is continuous. By Lemma 2.7.2 (O�set of a compact set), there is ε > 0 such that Xε ⊆ U . For

any x ∈ X , de�ne Ux = Bε (x) ⊆ Xε . Then (Ux)x∈X is an open cover of the compact set X , so it

admits a �nite subcover (Uxi)i∈J1,kK where xi ∈ X . Without loss of generality with can assume

that:

• a ∈ Ux1
since the Uxi must cover a ∈ X .

• Uxi ∩Uxi+1
, ∅ for every i ∈ J1,k − 1K since X is connected.

• b ∈ Uxk for the same reason as a.

5
We always use the in�nite norm ‖·‖ in this chapter but it works for any distance

6
A polygonal path is a connected sequence of line segments

7
This is a textbook property.

41

CHAPTER 2. THE PIVP CLASS

For any i ∈ J1,k − 1K, pick yi ∈ Uxi ∩ Uxi+1
∩ Q which is not empty because Q is dense in

R. Consider the polygonal path ϕ joining a,x1,y1,x2, . . . ,yk−1,xk ,b. Then the image of ϕ is

included in Xε ⊆ U because:

• a ∈ Ux1
so the line segment [a,x1] ⊆ Ux1

⊆ Xε .

• yi ∈ Uxi ∩Uxi+1
so [xi ,yi] ⊆ Uxi ⊆ Xε and [yi ,xi+1] ⊆ Uxi+1

⊆ Xε .

• b ∈ Uxk so [xk ,b] ⊆ Uxk ⊆ Xε .

�

Proposition 2.7.4 (Generable path connectedness): An open, connected subset U of Rn is al-
ways generable-path-connected: for any a,b ∈ U ∩Kn, there exists (ϕ : R→ U) ∈ GVALK such
that ϕ (0) = a and ϕ (1) = b. �

Proof. Let a,b ∈ U ∩Kn and apply Lemma 2.7.3 (Polygonal path connectedness) to get a polyg-

onal path γ : [0, 1]→ U from a to b. We are going to build a highly smoothed approximation

of γ . This is usually done using bump functions but bump functions are not analytic, which

complicates the matter. Furthermore, we need to build a path which domain of de�nition is R,

although this will be a minor annoyance only. We ignore the case where a = b which is trivial

and focus on the case where a , b.

LetX = γ ([0, 1]) which is a compact connected set. Apply Lemma 2.7.2 (O�set of a compact

set) to get ε > 0 such that Xε ⊆ U . Without loss of generality, we can assume that ε ∈ Q so

that it is generable.

Assume for a moment thatγ is trivial, that isγ is a line segment from a to b. Let α ∈ N ⊆ K

such that
1

tanh(α) 6 1 + 2ε
‖b−a‖ . It exists because

1

tanh(x) −−−−→x→∞
1. De�ne ϕ (t) = a +

1+µ (t)
2

(b − a)

where µ (t) = tanh((2t−1)α)
tanh(α) . One can check that µ is an increasing function and that µ (0) = −1

and µ (1) = 1. Furthermore, if t > 1, |µ (t) − 1| < 2ε
‖b−a‖ , and conversely, if t < 0, |µ (t) + 1| <

2ε
‖b−a‖ . Consequently, ϕ (0) = a, ϕ (1) = b and ϕ ([0, 1]) is the line segment between a and

b, so ϕ ([0, 1]) ⊆ X . Furthermore, if t < 0,

a − ϕ (t)

 6

���
1+µ (t)

2

��� ‖b − a‖ < ε , and if t > 1,

b − ϕ (t)

 6
���
1−µ (t)

2

��� ‖b − a‖ < ε . We conclude from this analysis that ϕ (R) ⊆ Xε ⊆ U . It

remains to show that ϕ ∈ GVALK. Using Lemma 2.1.10 (Arithmetic on generable functions), it

su�ces to show that tanh ∈ GVALK and
1

tanh(α) ∈ K. Since K is a �eld, we need to show that

tanh(α) ∈ K which is a consequence of K being a generable �eld and tanh being a generable

function. We already saw in Example 2.1.6 (Some generable elementary functions) that tanh ∈

GVALQ ⊆ GVALK.

In the general case where γ is a polygonal path, there are 0 = t1 < t2 < . . . < tk = 1 such

that γ�
[ti ,ti+1]

is the line segment between xi = γ (ti) and xi+1 = γ (ti+1), furthermore we can

always take xi ∈ Q
n
. Note that we can choose any parametrization for the path so in particular

we can take ti =
i
k and ensure that ti ∈ Q for i ∈ J0,kK. Since by hypothesis x0,xn ∈ K

n
, we

get that xi ∈ K
n

and ti ∈ K for all i ∈ J0,kK.

Let us denote by ϕa,bε the path built in the previous case. We are simply going to add

several instances of this path, with the necessary shifting and scaling. Since the errors will

sum up, we will increase the approximation precision of each segment. De�ne ϕ (t) = a +∑k−1

i=1

(
ϕxi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
− xi

)
and consider the following cases:

• if t < 0, then

ϕ

xi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
− xi

 <
ε
k for all i ∈ J1,k − 1K, so

a − ϕ (t)

 < k−1

k ε and

ϕ (t) ∈ Xε

42

2.7. GENERABLE FIELDS

• if t ∈ [tj , tj + 1] for some j, then

ϕ

xi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
− xi

 <
ε
k for all i > j, and conversely

ϕ
xi ,xi+1

ε/k

(
t−ti

ti+1−ti

)
− xi+1

 <
ε
k for all i < j. Finally u = ϕ

x j ,x j+1

ε/k

(
t−tj

tj+1−tj

)
belongs to the line

segment from xj to xj + 1. Since a = x1, we get that

u − ϕ (t)

 6 k−1

k ε and thus ϕ (t) ∈ Xε .

• if t > 1 then

b − ϕ (t)

 < ε for the same reason as t < 0, and thus ϕ (t) ∈ Xε .

We conclude that ϕ (R) ⊆ Xε ⊆ U and one easily checks that ϕ (0) = a and ϕ (1) = b. Fur-

thermore ϕ ∈ GVALK by Lemma 2.1.10 (Arithmetic on generable functions) and because the

xi and ti belong to K (see the details in the case of the trivial path). �

The immediate corollary of this result is thatK is also preserved by multidimensional gen-

erable functions. Indeed, by composing a multidimensional function with a unidimensional

one, we get back to the unidimensional case and conclude that any generable point in the

input domain must have a generable image.

Corollary 2.7.5 (Generable �eld stability): Let (f :⊆ Rd → Re) ∈ GVAL, then f (Kd ∩
dom f) ⊆ Ke . �

Proof. Apply De�nition 2.1.17 (Generable function) to get n ∈ N, p ∈ Mn,d (K) [Rn], x0 ∈

dom f ∩ Kd , y0 ∈ K
n

and y : dom f → Rn. Let u ∈ dom f ∩ Kd . Since dom f is open

and connected, by Proposition 2.7.4 (Generable path connectedness), there exists (γ : R →
dom f) ∈ GVAL such that γ (0) = x0 and γ (1) = u. Apply De�nition 2.1.17 (Generable

function) to γ to get n̄ ∈ N, p̄ ∈ Mn̄,1 (K) [Rn̄], x̄0 ∈ K, ȳ0 ∈ K
n̄

and ȳ : R → Rn̄. De�ne

z (t) = y (γ (t)) = y (ȳ1..d (t)), then z′(t) = Jy (γ (t))γ
′(t) = p (y (γ (t)))γ ′(t) = p (z (t))p̄1..d (ȳ (t))

and z (0) = y (γ (0)) = y (x0) = y0. In other words (ȳ, z) satisfy:




ȳ (0)= x0 ∈ K
d

z (0)= y0 ∈ K
n




ȳ′= p̄ (ȳ)

z′= p (z)p̄1..e (ȳ)

Consequently (z : R→ Re) ∈ GVAL so, by de�nition of a generable �eld, z (K) ⊆ Ke . Conclude

by noticing that z (1) = y (γ (1)) = y (u). �

2.7.II How to build a smallest �eld
To make precise statements about what it means to be the smallest generable �eld, we will

make use of order and lattice theory and Kleene or Knaster-Tarski �xed-point theorem [Tar55].

First we need to de�ne the complete partial order (CPO) which contains our sets. Recall that

the smallest �eld we are looking for is a subset of R but it must also contains at least Q.

De�nition 2.7.6: De�ne L = {X ∈ P (R) |Q ⊆ X } the set of subsets of R containing Q and

⊥ = Q. �

Lemma 2.7.7: The partially ordered set (L, ⊆) is a complete partial order, and even a lattice. Its
least element is ⊥, the supremum of several elements of L is the union and the in�mum is the
intersection: supX =

⋃
x∈X x and inf X =

⋂
x∈X x . �

Proof. The only thing to prove is that L is closed under union and intersection. This is the

case because the union of two subsets of R containing Q also contains Q, and similarly for the

intersection. All the other properties are trivial. �

We will now consider the following operator on L which gives all constants we can build

from a set X using generable functions with constants in X .

43

CHAPTER 2. THE PIVP CLASS

G :




L → L

X 7→
⋃

f ∈GVALX

f (X)

Remark 2.7.8 (G is well-de�ned): One can check that G is well-de�ned. Indeed X ⊆ G (X)
for any X ⊆ R, thus if X ∈ L then G (X) ⊇ X ⊇ Q, so G (X) ∈ L. This stems for the fact that

for any x ∈ X , the constant function u 7→ x belongs to GVALX . �

Another interesting property of G is that its de�nition can be simpli�ed. More precisely,

by rescaling the functions, we can always assume that the image of G is produced by the

evaluation of generable functions at a particular point, say 1, instead of the entire �eld.

Lemma 2.7.9 (Alternative de�nition of G): If X is a �eld then,

G (X) =
{
f (1), f ∈ GVALX

}

�

Proof. Let x ∈ G (X), then there exists f ∈ GVALX and t ∈ X such that x = f (t). Conse-

quently there exists d ∈ N, y0 ∈ Xd
, p ∈ Xd

[Rd] and y : R → Rd satisfying De�nition 2.1.1

(Generable function):

• y′ = p (y) and y (0) = y0

• y1 = f

Consider д(u) = f (ut) and note that д(1) = f (t) = x . We will see that д ∈ GVALX . Indeed,

consider z (u) = y (tu) then for all u ∈ R:

• z (0) = y (0) = y0 ∈ X
d
;

• z′(u) = ty′(tu) = tp (z (u)) = q(z (u)) where q = tp is a polynomial with coe�cients in X
since t ∈ X and X is a �eld

• z1(u) = y1(tu) = д(u)

�

A consequence of this alternative de�nition is a simple proof thatG preserves the property

of being a �eld.

Lemma 2.7.10 (G maps �elds to �elds): If X is a �eld containing Q, then G (X) is a �eld. �

Proof. Let x ,y ∈ G (X), by Lemma 2.7.9 (Alternative de�nition ofG) there exists f ,д ∈ GVALX

such that x = f (1) and y = д(1). Apply Lemma 2.1.10 (Arithmetic on generable functions) to

get that f ± д and f д belong to GVALX And thus x ± y and xy belong to G (X).
Finally the case of

1

x (when x , 0) is slightly more subtle: we cannot simply compute
1

f

because f may cancel. Instead we are going to compute
1

д where д(1) = f (1) but д nevers

cancels.

First, note that we can always assume that x > 0 becauseG (X) is closed under the negation,

and − 1

x =
1

−x . Since f (1) = x > 0 and f is continuous, it means there exists ε > 0 such that

f (t) > 0 for all t ∈ [1− ε, 1+ ε] and we can take ε ∈ Q. De�ne д(t) = f (t)+
(
1+ f (t)2

) (
t−1

ε

)
2

.

It is not hard to see that д(1) = f (1) and that д(t) > 0 for all t ∈ R. Furthermore, д ∈ GVALX

44

2.7. GENERABLE FIELDS

because of Lemma 2.1.10 (Arithmetic on generable functions). Note that we use the part of the

lemma which does not assume that X is a generable �eld !

Using Lemma 2.1.10 (Arithmetic on generable functions), we conclude that
1

д ∈ GVALX

and thus
1

x ∈ G (X). �

Finally, the core of what makes G very special is its �niteness property. Essentially, it

means that if x ∈ G (X) then x really only requires a �nite number of elements in X to be

computed.

Lemma 2.7.11 (Finiteness ofG): For anyX ⊆ R and x ∈ G (X), there exists a �nite Y ⊆ X such
that x ∈ G (Y). �

Proof. Let x ∈ G (X), then there exists f ∈ GVALX and t ∈ X such that x = f (t). Then there

exists y0 ∈ X
d

and a polynomial p with coe�cients in X such that f satis�es De�nition 2.1.1

(Generable function). De�ne Y as the subset of X containing t , the components of y0 and all

the coe�cients of p. Then Y is �nite and f ∈ GVALY . Furthermore t ∈ Y so x ∈ G (Y). �

This consequence of this �niteness property is that G is continuous, because G only re-

quires local (�nite) information to be computed.

Lemma 2.7.12 (Continuity ofG): G is a Scott-continuous function between the CPO (L, ⊆) and
itself. �

Proof. We have to show that G preserves all directed suprema. First, we see that G preserves

all directed subsets
8

becauseG is monotone (also known as order preserving). Indeed, ifA ⊆ B
then G (A) ⊆ G (B) since GVALA ⊆ GVALB . Second, if A is a directed subset with supremum

9

P , thenB = G (A) is a directed subset
10

with supremumQ and we need to show thatQ = G (P),
that is supG (A) = G (supA).

The fact that Q ⊆ G (P) is a well-known consequence of the fact that G is monotone. The

other direction captures the essence of continuity. Let q ∈ G (P), by Lemma 2.7.11 (Finiteness

of G), there exists a �nite subset P f in ⊆ P such that q ∈ G (P f in). Since P = supA =
⋃

A∈A A,

there exists a �nite subset A f in ⊆ A such that P f in ⊆
⋃

A∈Af in A, that is P f in ⊆ supA f in.

Since A is a directed subset and A f in is a �nite, its supremum belongs to A: supA f in ∈ A.

Consequently G (A f in) ∈ B and the moniticity of G yields that q ∈ G (A f in). And since Q is

the supremum of B, we have that G (A f in) ⊆ Q which gives the result. �

A consequence of this result is the existence of a least �xed point for G, as well as an

explicit formula.

Corollary 2.7.13 (G has a least �xed point): G has a least �xed point in the (L, ⊆) CPO, which
is supremum of the ascending Kleene chain:

⊥ ⊆ G (⊥) ⊆ G (G (⊥)) ⊆ . . . ⊆ G[n](⊥) ⊆ . . .

�

Proof. Use Lemma 2.7.12 (Continuity ofG) and Kleene or Knaster-Tarski �xed-point theorem

[Tar55]. �

8
we recall that A ⊆ P (R) is a directed subset if every pair of elements (or equivalently every �nite subset of

A) has an upper bound in A
9
in the (L, ⊆) CPO, the supremum of a subset is always in L

10
because G is monotone

45

CHAPTER 2. THE PIVP CLASS

2.7.III Generable real numbers
We can now formally de�ne our smallest generable �eld. Intuitively, RG contains all the “gen-

erable” real numbers, thus the name. Its existence is given by Corollary 2.7.13 (G has a least

�xed point).

De�nition 2.7.14 (Generable real numbers): The set of generable real numbers is the least

�xed point of G, which we denote by RG . �

Before moving on to the main result of this section, we show thatG preserves polynomial

time computability.

Lemma 2.7.15 (G preserves polytime computability): G maps subsets of polynomial time com-
putable real numbers into themselves, i.e. for any X ⊆ RP , G (X) ⊆ RP . �

Proof. Let X ⊆ RP and x ∈ G (X), f ∈ GVALX and t ∈ X such that x = f (t). We can

apply Theorem 3.5.2 (PIVP complexity) to conclude that x is polynomial time computable,

thus x ∈ RP . Note that although this theorem is in the next chapter, it is independent of the

work in this chapter. �

The main result of this section is, of course, that RG is a generable �eld. But more surpris-

ingly, we show that all the elements of RG are polynomial time computable (in the sense of

Computable Analysis).

Theorem 2.7.16 (RG is generable sub�eld of RP): Generable real numbers form a generable
sub�eld of polynomial time computable real numbers in the sense of Computable Analysis, i.e.
RG is a generable �eld and RG ⊆ RP . �

Proof. From the the structure of the (L, ⊆) CPO, we can derive an explicit expression for RG
using Corollary 2.7.13 (G has a least �xed point). Indeed, in this particularCPO the supremum

is simply the union, so:

RG =
⋃
n>0

G[n](⊥)

Since ⊥ = Q ⊆ RP , iterating Lemma 2.7.15 (G preserves polytime computability) yields that

G[n](⊥) ⊆ RP for all n ∈ N and thus RG ⊆ RP .

The fact thatRG is a �eld comes from the above formula forRG and the repeated application

of Lemma 2.7.10 (G maps �elds to �elds). Finally, the fact it is a generable �eld is a trivial

consequence of RG being a �xed point of G: by de�nition G (RG) = RG , so the image of any

generable number by a generable function is generable. �

46

Chapter 3

Solving PIVP

The whole point of mathematics is to

solve di�erential equations!

Quote from Cambridge

In this chapter we investigate the computational complexity of solving ordinary di�erential

equations (ODEs)y′ = p (y) over unbounded time domains, wherep is a (vector of) polynomials.

Contrarily to the bounded case, this problem has not been well-studied, apparently due to the

“conventional wisdom” that it can always be reduced to the bounded case by using rescaling

techniques. However, as we show in this chapter, rescaling techniques do not seem to pro-

vide meaningful insights on the complexity of this problem, since the use of such techniques

introduces a dependence on parameters that are hard to compute.

We present algorithms that numerically solve these ODEs over unbounded time domains.

These algorithms have guaranteed precision, i.e. given some arbitrarily large time t and error

bound ε as input, they will output a value ỹ that satis�es ‖y (t) − ỹ‖ ≤ ε . We analyze the

complexity of these algorithms and show that they compute ỹ in time polynomial in several

quantities including the time t , the precision of the output ε and the length of the curvey from

0 to t . We consider both algebraic complexity and bit complexity. As far as we know, this is

the �rst time is it proved to be polynomial time computable over unbounded domains for this

large class of ODEs. The restriction to a polynomial right-hand side is necessary to obtain a

large enough, yet tractacle class, see Section 3.1.I (Related work for general ODEs) for more

details.

This chapter is organised as follows:

• Section 3.1 (Introduction) provides an extensive introduction to this problem and a detailed

explanation of why this problem was not solved before;

• Section 3.2 (The generic Taylor method) describes a generic, adaptive, variable order Tay-

lor algorithm and proves necessary conditions for its convergence;

• Section 3.3 (The adaptive Taylor algorithm) instantiates the previous algorithm and proves

that the algorithm is correct and complete;

• Section 3.4 (Enhancement on the adaptive algorithm) explains how to enhance the previ-

ous algorithm to remove the extra “hint” parameter;

• Section 3.5 (Extension to Computable Analysis) extends this result to the case where the

inputs (time, coe�cients) are not rational numbers, using the framework of Computable

Analysis.

47

CHAPTER 3. SOLVING PIVP

3.1 Introduction
The purpose of this chapter is to characterize the computational complexity needed to solve a

polynomial initial-value problem (IVP) de�ned by




y′(t)= p (y (t))

y (t0)= y0

(3.1.1)

over an unbounded domain. Since the system is autonomous, we can assume, without loss of

generality, that t0 = 0. More precisely, we want to compute y (t) with precision 2
−n

, where

t ∈ R, n ∈ N, and a description of p are given as inputs, and y is the solution of (3.1.1).

3.1.I Related work for general ODEs
There are many results about the computational complexity of solving ODEs of the form:




y′(t)= f (t ,y (t))

y (t0)= y0

(3.1.2)

However, with very few exceptions, those results assume that the ODE is solved for t ∈ I =
[a,b], i.e. they assume that the ODE is solved over a compact time domain. This is a very

convenient hypothesis, since aC1
function f is always Lipschitz

1
over a compact set and in this

case the proof of the existence-uniqueness theorem for ODEs (the Picard-Lindelöf theorem)

provides a method (Picard’s iterations) to compute the solution over the compact I .
The introduction of a Lipschitz condition seems to be fundamental when studying the com-

putational complexity of (3.1.2). It is well-known (see e.g. [Ko91, Theorem 7.3]) that if f is not

Lipschitz, then the solution of (3.1.2) can have arbitrarily high complexity, even if f is assumed

to be polynomial-time computable and (3.1.2) has a unique solution. The Lipschitz condition

plays an instrumental role in the complexity because it is used to derive the number of steps

of the algorithm, for example in Picard-Lindelöf theorem it is used to bound the number of

iterations.

It was recently shown [Kaw10], following an open problem from Ko [Ko91, Section 7.2],

that if f is Lipschitz and polynomial-time computable, then the solution of (3.1.2) can still be

PSPACE-complete (but it was already known not to be of higher complexity [Ko91]).

We can conclude from the analysis of these algorithms that the time complexity of solving

(3.1.2), that is of computingy (T)±2
−m

, is bounded by Θ(f ,y0,T ,K ,n), whereK is the Lipschitz

constant. Note thatK depends not only on f , but also on I : if f is de�ned on two domains I1, I2,

(3.1.2) might be solved in less computational time in I1 than in I2, due to a smaller Lipschitz

constant on the �rst domain. Think for example of f (x) = x2
, I1 = [0, 1] and I2 = [0, 10]: the

Lipschitz constants are 1 and 20 respectively.

In the compact case where I is compact and f is C1
-computable, we can always take K to

be any constant greater or equal to

max

t∈[0,T]

‖ f ′(y (t))‖

due to the intermediate value theorem. Therefore, since K is a constant for a �xed compact

domain and T is bounded by a constant, the computational complexity of solving (3.1.2) will

be Θ(f ,y0,n) and we fall into the usual case.

The case where I is unbounded (typically I = R+ or I = R) has already been addressed by

some authors. For example, if the function f in (3.1.2) is Lipschitz over R, then the solution

1
We recall that a function is Lipschitz over I if ‖ f (x) − f (y)‖ ≤ K ‖x − y‖ for some constant K and x ,y ∈ I

48

3.1. INTRODUCTION

of (3.1.2) is computable over R [Abe70], [Abe80], [Ko91]. Of course, requiring a Lipschitz

condition for f over the real line is a very restrictive condition. Alternatively if an e�ective

bound for f is known or a very restricted condition on its growth is met, the solution is also

computable [Ruo96]. However these cases exclude most of the interesting IVPs, and even some

very simple ones like y′ = −y2
, y (1) = 1.

One of the most general result in the �eld is [CG09] which proves that if f is continuous

and computable, and the solution of (3.1.2) is assumed to be unique
2
, then it is computable over

its whole domain, whether it is bounded or not. Moreover, it can even be shown that there

is a computable (and continuous) function f and a computable y0, such that (3.1.2) admits

in�nitely many solutions, but none of them is computable [Abe71], [PER79]. It is also known

that the problem of deciding whether the maximal interval of de�nition of an IVP is bounded

or not is undecidable and that, in general, one cannot compute this interval even when we

know it is bounded [GZB09].

Finally, this problem has been widely studied in Numerical Analysis but the point of view

is usually di�erent and more focused on practically fast algorithms rather than asymptotically

e�cient algorithms. Some work [ISC08, Cor02, Wer79, Smi06] suggests that any polynomial

time algorithm must have variable order
3
, and that adaptive algorithms are theoretically supe-

rior to non-adaptive ones
4
. While adaptive algorithms have been widely studied, high-order

algorithms are not mainstream become there are expensive in pratice. Variable order methods

have been used in [CC82], [JZ05], [Smi06], [BRAB11], [ABBR12] and some polynomial time

algorithms have been obtained over compact domains or over arbitrary domains but with

stronger hypothesis.

In [BGP12] we have shown when f is a polynomial (i.e. y is solution of (3.1.1)) it can be

solved in time polynomial in t , in the precision of the result, and in maxu∈[0,t] ‖y (u)‖
k

where k
is the degree ofp. However this result is in some sense a worst-case scenario: ify (t) “spikes” for

a very brief amount of time, then the resulting complexity will be high. In the present chapter

we improve the bound by showing that an ODE (3.1.5) can be solved in time polynomial in t ,

in the precision of the result, and in

∫ t

0
‖y (u)‖kdu. Therefore even if y (t) “spikes”, as long as

it does it for a very brief period, the running time of our algorithm will still be reasonable.

3.1.II On the di�culties of unbounded domains
There are signi�cant problems when solving ODEs over unbounded domains. From discus-

sions we had with other researchers, it seems that there exists a widely held (false) belief that,

by rescaling techniques, the (time) complexity of solving an ODE (3.1.2) over an unbounded

set I = R should be equal to the complexity of solving (3.1.2) over I = [a,b]. The argument is

as follows.

Let us assume that the computational time needed to solve (3.1.2) over the time interval

I = [0, 1] is Θ(n), where 2
−n

is the precision to which the solution is computed (we assume for

now that f is �xed). Then we can �nd y (t) by using the “rescaled” IVP




x′(u)= t f (tu,x (u))

x (0)= y0

u ∈ [0, 1] (3.1.3)

The solutionx (·) of this problem satis�esx (u) = y (tu) yielding, in particular, x (1) = y (t). Thus

the complexity of �ndingy (t) with precision 2
−n

should be the complexity of �nding x (1) with

the same precision and thus should beΘ(n). However this reasoning is incorrect. The reason is

2
It is known that (3.1.2) can have non unique solutions for some continuous f

3
See Section 1.2 (Numerical Analysis and Di�erential Equations) for a description of typical numerical algo-

rithms

4
This is in contrast with classical results which state the contrary but under usually unrealistic hypothesis

49

CHAPTER 3. SOLVING PIVP

that Θ also depends on the Lipschitz constant valid for the current time interval, and di�erent

rescalings from [0, t1] and [0, t2] into the interval [0, 1] will yield di�erent systems (3.1.3) with

di�erent Lipschitz constants which are very di�cult to predict in advance. Moreover, even if

we could somehow perform the hard task of computing these Lipschitz constants, we still need

to know how the computational complexity of (3.1.2) depends on the value of the Lipschitz

constant on the interval [0, 1].

As a concrete example that the previous argument involving rescaling is incorrect, consider

the quadratic IVP de�ned by




y1(0)= 1

y2(0)= e




y′
1
= y1

y′
2
= y1y2

(3.1.4)

One can check that the solution of this IVP is given by y1(t) = et ,y2(t) = ee
t
. In particular,

for t ∈ I = [0, 1] (or, for that e�ect, on any bounded interval I = [a,b]), one can can compute

the solution y (t) of (3.1.4) with precision 2
−n

in time p (n), where p is a polynomial [MM93].

However time polynomial in n is not enough to compute y (t) for t ∈ R. This is because one

component of the solution of (3.1.4) is y2(t) = ee
t

and simply writing down the integer part of

y2(t) requires time at least et . Consequently, for large enough t , any polynomial time algorithm

will not have the time to write the solution and thus cannot be correct. For this reason, a

dependence on t must also be introduced. It seems that the complexity, in this example, should

instead be something like etp (n) (probably this expression is not exact, but assume without

loss of generality that this is the correct time bound), which is exponential in t . In some sense

et is the time needed to write down the integer part of the solution, while p (n) is the time

needed to write the fractional part up to precision 2
−n

.

The subtlety in the previous example is that in any �xed compact I = [a,b], we can always

say that the complexity isO (p (n)), since the exponential et (which is roughly a local Lipschitz

constant) is bounded by some constant Aa,b = eb , for b > a ≥ 0, which depends on the interval
I = [a,b]. So, for �xed intervals, the constant Aa,b is also �xed and the computational com-

plexity needed to solve (3.1.4) is O (Aa,bp (n)) = O (p (n)), even if b > 1. However, when I = R,

we can no longer hide the dependence in t of the Lipschitz constant and of the computational

time needed to solve (3.1.4) into a constant — this dependency must be explicitly analyzed.

Therefore, in general, the time needed to solve (3.1.2) will depend in a non-obvious manner in

t .
We hope that the reader is now convinced that simply knowing the computational com-

plexity needed to solve an IVP (3.1.2) over a compact domain is not enough to characterize

the computational complexity needed to solve the IVP over an unbounded domain, unless it

explicitely takes into account parameters that are traditionally assumed to be constants.

3.1.III Contributions
In this chapter we analyze the computational complexity of solving the polynomial initial value

problem (3.1.1) over an unbounded time interval I that, for simplicity reasons, we assume to

be the real line: I = R. Recall that a polynomial initial value problem is a di�erential system

of the form:

y′(t) = p (y (t)) (3.1.5)

where each component of p is a polynomial and y (t) is a vector. The reasons to focus on this

class of systems are two-fold. First polynomials are relatively simple functions, with many

properties that we can exploit to produce algorithms that solve (3.1.5) e�ciently over un-

bounded domains. Secondly, this class is very general because many systems of the form

50

3.2. THE GENERIC TAYLOR METHOD

(3.1.2) can be rewritten as (3.1.5). See for example [CPSW05, GBC09] or Chapter 2 (The PIVP

class).

In this chapter we will show that the PIVP (3.1.5) can be solved over an unbounded time

interval in time polynomial in:

• the precision of the output

• the size of the initial condition

• the coe�cients and the degree of the polynomial p

• the length of the solution curve from 0 to t

However the complexity is exponential in the dimension of the system. This is to be expected

because evaluating the truncated Taylor series is polynomial in the number of derivatives but

exponential in the dimension. Unless some breakthrough is achieved in this area, it seems

unlikely to �nd a polynomial time algorithm in the dimension.

Note that we are measuring computational complexity against the length of the solution

curve (instead of the Lipschitz constant for example). This paramater has a natural geometrical

interpretation and suggests that the best we can do to solve (3.1.5) is to “follow” the curve, and

thus the complexity of the algorithm is related to the distance we travel, that is the length of

the curve.

Finally, our algorithm does not need to know in advance a bound on the length of the curve:

it can automatically discover it. In this case, the complexity of the algorithm is not known

in advance but we know that the running time is polynomial in this (unknown) quantity.

Note that this algorithm does not contradict the uncomputability of the maximum interval of

de�nition of the solution. Indeed, if the solution explodes in �nite time, the length of the curve

will be in�nite after a �nite time and thus this algorithm will not terminate for inputs outside

of the interval of de�nition.

3.2 The generic Taylor method
We consider a generic adaptive Taylor meta-algorithm to numerically solve (2.0.1). This is a

meta-algorithm in the sense that we will leave open, for now, the question of how we choose

some of the parameters. The goal of this algorithm is, given as input t ∈ Q and 0 < ε < 1 and

the initial condition of (2.0.1), to compute x ∈ Qd such that

x − y (t)

 < ε .

We assume that the meta-algorithm uses the following values:

• n ∈ N is the number of steps of the algorithm

• t0 < t1 < . . . < tn = t are the intermediate times

• δti = ti+1 − ti ∈ Q are the time steps

• for i ∈ J0,n − 1K, ωi ∈ N is the order at time ti and µi > 0 is the rounding error at time ti
(see (3.2.1))

• ỹi ∈ Q
d

is the approximation of y at time ti

This meta-algorithm works by solving the ODE (2.0.1) with initial condition y (ti) = ỹi
over a small time interval [ti , ti+1], yielding as a result the approximation ỹi+1 of y (ti+1). This

approximation over this small time interval is obtained using the algorithm of Section 2.5

(Taylor series of the solutions), through a Taylor approximation of orderωi (for now we do not

51

CHAPTER 3. SOLVING PIVP

�x the value ωi to analyze its in�uence on the error and time complexity. After this analysis

is done, we can choose appropriate values for ωi — done in Section 3.3). This procedure is

repeated recursively over [t0, t1], [t1, t2], . . . , [ti , ti+1], . . . until we reach the desired time tn = t .
Therefore the meta-algorithm is only assumed to satisfy the following inequality at each step:

ỹi+1 −T
ωi
ti
Φ(ti , ỹi , ·) (ti+1)

 6 µi for some µi (3.2.1)

We will now see what is the in�uence of the choice of the di�erent parameters and under

which circumstances we have

ỹn − y (t)

 < ε .

We have analyzed in Section 2.5 (Taylor series of the solutions) the error made when we

approximated the solution of (2.0.1), over a small time step [ti , ti+1], using a Taylor approxima-

tion. Since the time interval [0, t] is split into time intervals [t0, t1], [t1, t2], . . . (see Section 2.4

(Dependency in the parameters)) we want to understand how the error propagates through

the time interval [0, t] or, more generally, through [0, ti] when we discretize the time over this

interval. Let

y (ti) − ỹi

 6 εi be a bound on the error made by the algorithm at step i . We want

to obtain a bound on εn 6 ε given all the other parameters. A direct consequence of (3.2.1)

and the triangle inequality is that

εi+1 6

y (ti+1) − Φ(ti , ỹi , ti+1)

+

Φ(ti , ỹi , ti+1) −T
ωi
ti
Φ(ti , ỹi , ·) (ti+1)

+ µi

(3.2.2)

The �rst term is usually called the global error: it arises because after one step, the solution

we are computing lies on a di�erent solution curve than the true solution. The second term is

the local (truncation) error: at each step we only compute a truncated Taylor series instead of

the full series. The third error is the rounding error: even if we truncate the Taylor series and

evaluate it, we only have a �nite number of bits to store it.

In order to bound the �rst two quantities, we will rely on the results of the previous sec-

tions. Since those results only hold for reasonable (not too big) time steps, we need to assume

bounds on the time steps. To this end, we introduce the following quantities:

βi = kΣp max(1,

ỹi

)k−1δti

γi =

∫ ti+1

ti

kΣp (ε +

y (u)

)k−1du
(3.2.3)

where δti = ti+1 − ti . It should be clear that the choice of the values for βi and γi comes from

Theorem 2.5.1 (Taylor approximation for PIVP) and Theorem 2.4.2 (Parameter dependency of

PIVP), respectively. We make the following assumption (which is always true if we choose

small enough time steps):

βi < 1 (3.2.4)

Back to (3.2.2), we apply Theorem 2.5.1 (Taylor approximation for PIVP) and Theorem 2.4.2

(Parameter dependency of PIVP) to get

εi+1 6 εie
γi +

max(1,

ỹi

)βωii
1 − βi

+ µi (3.2.5)

We recall the following well-known result, which can be proved by induction:

Lemma 3.2.6 (Arithmetico-geometric sequence): Let (ak)k , (bk)k ∈ RN and assume that u ∈
RN satis�es:

un+1 = anun + bn, n > 0

52

3.3. THE ADAPTIVE TAYLOR ALGORITHM

Then

un = u0

n−1∏
i=0

ai +
n−1∑
i=0

bi

n−1∏
j=i+1

aj

�

We can now apply Lemma 3.2.6 (Arithmetico-geometric sequence) to (3.2.5), since all quan-

tities are positive, therefore obtaining a bound on εn. We further bound it using the fact that∏n−1

j=i+1
aj 6

∏n−1

j=0
aj when ai > 1. This gives a bound on the error done by the generic Taylor

algorithm:

εn 6 ε0e
A +AB

A =
n−1∑
i=0

γi =

∫ tn

t0

kΣp (ε +

y (u)

)k−1du

B =
n−1∑
i=0

max(1,

ỹi

)βωii
1 − βi

+

n−1∑
i=0

µi

(3.2.7)

In other words, assuming that βi < 1 yields a generic error bound on the algorithm. This

leaves us with a large space to play with and optimize the parameters (βi , γi , µi) to get a correct

and e�cient algorithm.

3.3 The adaptive Taylor algorithm
Having done the error analysis of the meta-Taylor algorithm in Section 3.2, we can now set

parameters to obtain an algorithm that solves initial-value problems (2.0.1) e�ciently over

unbounded domains. In order to analyse the algorithm, it is useful to introduce the following

quantity:

Int(t0, t) =

∫ t

t0

kΣp max(1, ε +

y (u)

)k−1du (3.3.1)

This algorithm is simply an instance of the meta-algorithm described in Section 3.2 (The

generic Taylor method) in which we explain how to choose the parameters (size δti of time

intervals [ti , ti+1] and the orderωi of the Taylor approximation used in this time interval). This

algorithm will be parametrized by the choice of a “hint” which we call I , and the number of

steps n.

Equation (3.2.7) suggests that it is advantageous to choose βi smaller than 1 so that βωii
is small and not too small so that the number of steps doesn’t blow up due to (3.2.3). Since

a reasonable choice for this parameter is nontrivial, we introduce another parameter λ to be

�xed later and we assume that βi = λ, except for the last time step which might require a

smaller value to reach exactly on the �nal time. We assume that:

n > 0 I > 0 0 6 λ 6
1

2

(3.3.2)

Let us now establish the other parameters of the algorithm. We de�ne the following values:

δti = min

(
t − ti ,

λ

kΣp max(1,

ỹi

)k−1

)
(3.3.3)

ωi = log
2

6n max(1,

ỹi

)
η

µi =
η

3n
ε0 6

ε

3

e−I η =
ε

I
(3.3.4)

We will now see that under natural constraints on I , the algorithm will be correct.

53

CHAPTER 3. SOLVING PIVP

Lemma 3.3.5 (Algorithm is conditionally correct): If I > Int(t0, tn) then the choices of the
parameters, implied by (3.3.3) and (3.3.4) guarantee that εn 6 ε . �

Proof. We only need to put all pieces together using (3.2.7). Indeed, it is clear that

A 6 Int(t0, tn) 6 I . (3.3.6)

Furthermore the way we chose λ implies βi 6 λ, and together with (3.3.4) and (3.3.1), it implies

that:

βωii
1 − βi

6
λωi

1 − λ
6

2
−ωi

1/2
6

2η

6n max(1,

ỹi

)
Thus:

εn 6 ε0e
A +AB

6
ε

3

e−IeI + I *
,

n−1∑
i=0

η

3n
+

n−1∑
i=0

η

3n
+
-

6
ε

3

+ I
2η

3

6 ε

�

This result shows that if we know Int(t0, t) then we can compute the solution numerically

by plugging I = Int(t0, t) in the algorithm. However, this result does not tell us anything about

how to �nd it. Furthermore, a desirable property of the algorithm would be to detect if the

argument I is not large enough, instead of simply returning garbage. Another point of interest

is the choice of n: if we pick n too small in the algorithm, it will be correct but tn < t , in other

words we won’t reach the target time.

Both issues boil down to the lack of relationship between I and n: this is the point of the

following lemma. We will see that it also explains how to choose λ.

Lemma 3.3.7 (Relationship between n and I): Assume that k > 2 and

1

λ
> 1 +

k

1 − 2kε
I > Int(t0, tn) ε 6

1

4k

Then for all i ∈ J0,n − 1K,
βi (1 − e

−1) 6 Int(ti , ti+1) 6 βie

�

Proof. Note that the hypothesis on ε is mostly to make sure λ is well de�ned. Picku ∈ [ti , ti+1]

and apply Theorem 2.4.2 (Parameter dependency of PIVP) with µ (u) 6 εie
γi 6 ε by de�nition

of ε , to get that:

y (u) − Φp (ti , ỹi ,u)

 6 ε

Furthermore, for any such u, apply Corollary 2.5.2 (Maximum variation for PIVP) to get:

ỹi+1 − Φp (ti , ỹi ,u)

 6

α |M (u − ti) |

1 − |M (u − ti) |

where M = kΣpαk−1
and α = max(1,

ỹi

). Putting everything together we get for ξ = u−ti

δti
using (3.2.3):

y (u) − ỹi

 6 ε +
αM (u − ti)

1 −M (u − ti)
6 ε +

αβiξ

1 − βiξ
6 ε +

αλξ

1 − λξ

54

3.3. THE ADAPTIVE TAYLOR ALGORITHM

Consequently:

ỹi

 −
αλξ

1 − λξ
6 ε +

y (u)

 6 2ε +

ỹi

 +

αλξ

1 − λξ

And since α = max(1,

ỹi

):

ỹi

 −
αλξ

1 − λξ
6 ε +

y (u)

 6 2ε + α

(
1 +

λξ

1 − λξ

)
And a case analysis brings:

max

(
1,α −

αλξ

1 − λξ

)
6 max(1, ε +

y (u)

) 6 max

(
1, 2ε + α +

αλξ

1 − λξ

)
Which can be overapproximated by:

α −
αλξ

1 − λξ
6 max(1, ε +

y (u)

) 6 2ε + α +

αλξ

1 − λξ

And �nally: (
α −

αλξ

1 − λ

)k−1

6 max(1, ε +

y (u)

)k−1 6

(
2ε + α +

αλξ

1 − λ

)k−1

A simple calculation shows that

∫
1

0
(a +bu)k−1du = (a+b)k−ak

bk . Integrating the previous bounds

over [ti , ti+1], we get, for x = λ
1−λ :∫ ti+1

ti

(
α −

αλξ

1 − λ

)k−1

du = αk−1δti
1 − (1 − x)k

kx

Realising that x = 1

1

λ−1

, the hypothesis on λ yields:

x 6
1 − 2kε

k
6

1

k
(3.3.8)

A simple analysis of the function x 7→ 1−(1−x)k

kx shows that it is decreasing on]0, 1

k] and so

sati�es, for x in this interval,

1 − (1 − x)k

kx
> 1 −

(
1 −

1

k

)k
> 1 − e−k ln(1− 1

k) > 1 − e−1

So �nally we get: ∫ ti+1

ti

(
α −

αλξ

1 − λ

)k−1

du > αk−1δti (1 − e
−1) (3.3.9)

On the other side, we get:∫ ti+1

ti

(
2ε + α +

αλξ

1 − λ

)k−1

du = αk−1δti
(2 ε

α + 1 + x)k − (2 ε
α + 1)k

kx

And since α > 1 and bk − ak 6 k (b − a)bk−1
when b > a, we get:∫ ti+1

ti

(
2ε + α +

αλξ

1 − λ

)k−1

du 6 αk−1δti (2ε + 1 + x)k−1

55

CHAPTER 3. SOLVING PIVP

We can now use (3.3.8) to get:∫ ti+1

ti

(
2ε + α +

αλξ

1 − λ

)k−1

du 6 αk−1δti

(
1 +

1

k

)k−1

6 αk−1δtie (3.3.10)

We can now put together (3.3.9) and (3.3.10) using that M = kΣpαk−1
:

δtiM (1 − e−1) 6

∫ ti+1

ti

kΣp max(1, ε +

y (u)

)k−1du 6 δtiMe

which shows the result since βi = Mδti . �

Algorithm 3.3.11 PIVP Solving algorithm

Require: t0 the initial time

Require: y0 ∈ Q
d

the initial condition

Require: p polynomial of the PIVP

Require: t ∈ Q the time step

Require: ε ∈ Q the precision requested

Require: I ∈ Q the integral hint

1: function SolvePIVPVariable(t0,y0,p, t , ε, I)
2: k := max(2, deg(p))

3: ε := min

(
ε, 1

4k

)
4: u := t0
5: Compute ỹ0 such that

ỹ0 − y0

 6 ε

3
e−I

6: ỹ := ỹ0

7: i := 0

8: λ := 1 − k
1−2kε+k

9: N := 1 + I
λ(1−e−1)

10: η := ε
I

11: µ :=
η

3N
12: β := 0

13: while u < t do
14: if i > N then
15: return ⊥ . Too many steps !

16: end if
17: δ := min

(
t − u,

λ

kΣp max(1,

ỹ

)k−1

)
18: β := kΣp max(1,

ỹ

)k−1δ

19: ω := − log
2

η

6N max(1,

ỹ

)
20: ỹ := ComputeTaylor(p, ỹ,ω, µ,δ)
21: u := u + δ
22: i := i + 1

23: if I < ((i − 1)λ + β)e then
24: return ⊥ . unsafe result !

25: end if
26: end while
27: return ỹ
28: end function

56

3.3. THE ADAPTIVE TAYLOR ALGORITHM

Lemma 3.3.12 (Algorithm is correct): Let t ∈ R, I > 0 and ε > 0, and assume that y satis�es
(2.0.1) over [t0, t]. Let x = SolvePIVPVariable(t0,y0,p, t , ε, I), then

• Either x = ⊥ or

x − y (t)

 6 ε

• Furthermore, if I >
e

1 − e−1
Int(t0, t) then x , ⊥

�

Proof. It is clear that the algorithm performs exactly as described in the previous section, in

the sense that it either returns⊥ or ỹn for some n 6 N that satis�es tn = t and N = 1+ I
λ(1−e−1)

.

Now consider the two possible cases.

If I > Int(t0, t) then by Lemma 3.3.5 (Algorithm is conditionally correct), we get that

y (t) − ỹn

 6 ε

so the algorithm is correct if it returns a value instead of ⊥. Furthermore, by Lemma 3.3.7

(Relationship between n and I):

(1 − e−1)
n−1∑
i=0

βi 6 Int(t0, tn) 6 e
n−1∑
i=0

βi (3.3.13)

And since βi 6 λ and βi = λ for i < n − 1 then

((n − 1)λ + βn−1) (1 − e
−1) 6 Int(t0, tn) 6 nλe (3.3.14)

In the case of I > e
1−e−1

Int(t0, t), we further have:

I >
e

1 − e−1
Int(t0, t) > ((n − 1)λ + βn−1)e

Consequently, the �nal test of the algoritm will fail since β in the algorithm is exactly βn−1. So

the algorithm will return ỹn if I > e
1−e−1

Int(t0, t).
Now comes the case of I < Int(t0, t). This case is more subtle because contrary to the

previous case, we cannot directly apply Lemma 3.3.7 (Relationship between n and I) since we

miss the hypothesis on I . We can ignore the case where tN < t because the algorithm returns

⊥ in this case. Since the function u 7→ Int(t0,u) is continuous on [t0, t] and is 0 on t0, we can

apply the intermediate value theorem to get:

∃u ∈ [t0, t[such that I = Int(t0,u)

Since we eliminated the case where tN < t , we know that tn = t for some n 6 N in the

algorithm, so necessarily:

∃i0 ∈ J0,n − 1K such that ti0 6 u < ti0+1

As a consequence of u 7→ Int(t0,u) being an increasing function,

I > Int(t0, ti0)

Now imagine for a moment that we run the algorithm again with �nal time u instead of t . A

close look at the code shows that all variables (which we call t ′i , β
′
i , and so on) will be the same

for i 6 i0 but then t ′i0+1
= u. So we can apply Lemma 3.3.7 (Relationship between n and I) to

this new run of the algorithm on [t0, t
′
i0+1

] to get that

(1 − e−1)
i0∑
i=0

β′i 6 Int(t ′
0
, t ′i0+1

) 6 e
i0∑
i=0

β′i

57

CHAPTER 3. SOLVING PIVP

And since i0 < n then β′i = λ for i < i0, and β′i0 < βi0 because u = t ′i0+1
< t so the equation

becomes:

(1 − e−1)i0λ 6 Int(t0, t
′
i0
) 6 e (i0λ + β

′
i0
) < e (i0λ + βi0)

Which simpli�es to

I < e (i0λ + βi0)

Which leads to

I < e ((n − 1)λ + βn−1)

because either i0 = n − 1 and this trivial, or i0 < n − 1 and then use βi0 < λ.

Notice that this result is actually independent of the run the algorithm, we just used a

“virtual” run of the algorithm to obtain it. Consequently, in the original algorithm, the �nal

test will suceed and the algorithm will return ⊥. �

As we see from this lemma I just needs to be big enough. Otherwise the algorithm will

either return a correct value or an error ⊥. One can reformulate Lemma 3.3.12 (Algorithm is

correct) as:

• Whatever the inputs are, we have a bound on the number of steps executed by the algo-

rithm

• If I is greater than a speci�ed value, we know that the algorithm will return a result (and

not an error, i.e ⊥)

• If the algorithm returns a result x , then this value is correct, that is

x − y (t)

 6 ε .

Notice that the number of steps n of Lemma 3.3.12 (Algorithm is correct) is only the num-

ber of time steps [t0, t1], [t1, t2], . . . , [tn−1, tn] used by our method. But inside each subinterval

[ti , ti−1] we still have to compute the solution of (2.0.1) over this subinterval using the Tay-

lor approximation described in Section 2.5 (Taylor series of the solutions). We recall that

whether we use bit complexity or algebraic complexity, the complexity of �nding this Taylor

approximation is polynomial in the order ω of the method, on the initial condition y0, the

precision n (actually the precision is µ = 2
−n

) and on the description of the polynomial p.

Using this result and the previous theorem, we conclude to the Lemma 3.3.17 (Complexity

of SolvePIVPVariable) about the computational complexity of solving (2.0.1) over unbounded

domains.

In order to bound the complexity, we need to introduce another quantity which is related

to Int but actually closer to what we are really interested in: the length of the curve y. We

recall that the length of the curve de�ned by the graph of a function f between x = a and

x = b is:

length =

∫ b

a

√
1 + (f ′(x))2dx

In the case of the solution of (2.0.1), we note that the derivative of the solution y is given

by p (y). Since the degree of p is k , the length of the solution has a value that has an order of

magnitude similar to the following quantity.

De�nition 3.3.15 (Pseudo-length of a PIVP):

Len(t0, t) =

∫ t

t0

Σp max(1,

y (u)

)kdu

�

58

3.3. THE ADAPTIVE TAYLOR ALGORITHM

Lemma 3.3.16 (Relationship between Int and Len): For any t > t0 in the domain of de�nition
of y and ε 6 1

4k ,
Int(t0, t) 6 2k Len(t0, t)

�

Proof.

Int(t0, t) =

∫ t

t0

kΣp max(1, ε +

y (u)

)k−1du

6 k

∫ t

t0

Σp (ε +max(1,

y (u)

))kdu

6 k (1 + ε)k
∫ t

t0

Σp max(1,

y (u)

)kdu

6 kek log(1+ 1

4k) Len(t0, t)

6 ke
1

4 Len(t0, t)

�

Lemma3.3.17 (Complexity of SolvePIVPVariable): The arithmetic complexity of SolvePIVPVariable

on input (t0,y0,p, t , ε, I) is bounded by

poly

(
kd , I , log Len(t0, t), log

y0

 ,− log ε

)
The bit-complexity of SolvePIVPVariable(t0,y0,p, t , ε, I) is bounded by

poly

(
k, I , log Len(t0, t), log

y0

 , log Σp,− log ε

)d
�

Proof. It is clear that what makes up most of the complexity of the algorithm are the calls to

ComputeTaylor. More precisely, let C be the complexity of the algorithm, then:

Cx = O *
,

n−1∑
i=0

TLx (d,p, ỹi ,ωi , µi ,δti)+
-

where x ∈ {arith,bit } and TLarith and TLbit are the arithmetic and bit complexity of computing

Taylor series. In Section 2.5 (Taylor series of the solutions) and (2.5.4),(2.5.5) precisely, we

explained that one can show that

TLarith = ˜O
(
ωdeg(p)d + (dω)a)

)
TLbit = O

(
poly((deg(p)ω)d , log max(1, t)Σp max(1,

y0

),− log µ)
)

Recalling that k = deg(p) and that all time steps are lower than 1, we get

TLarith = ˜O
(
kd (dω)a

)
TLbit = O

(
poly((kω)d , log Σp max(1,

y0

),− log µ)
)

Consequently, using (3.3.4),

Carith = ˜O *
,

n−1∑
i=0

kdda
(
log

2

6NI max(1,

ỹi

)
ε

)a
+
-

59

CHAPTER 3. SOLVING PIVP

Cbit = O
*.
,

n−1∑
i=0

poly
*.
,

kd ,
(
log

2

6NI max(1,‖ỹi ‖)
ε

)d
,

log(Σp max(1,

ỹi

)),− log
ε

3NI

+/
-

+/
-

But we know that

ỹi

 6 ε +

y (ti)

6 ε +

y0 +

∫ ti

t0

p (y (u))du

6 ε +

y0

 +

∫ ti

t0

p (y (u))

 du

6 ε +

y0

 +

∫ ti

t0

Σp max(1,

y (u)

)kdu

6 ε +

y0

 + Len(t0, ti)

max(1,

ỹi

) 6 1 +

y0

 + Len(t0, t)

Using that ε 6 1

4k , we also have:

N = 1 +
I

λ(1 − e−1)
= 1 +

I

1 − e−1

(
1 +

k

1 − 2kε

)
6 1 + 2I (1 + 2k)

Which gives using that n 6 N and that a 6 3,

Carith = ˜O *
,

n−1∑
i=0

kdda
(
log

2

poly(I ,k,

y0

 , Len(t0, t))

ε

)a
+
-

= poly

(
kd , I ,k, log

(
poly

(
I ,k,

y0

 , Len(t0, t),
1

ε

)))
= poly

(
kd , I , log Len(t0, t), log

y0

 ,− log ε

)

And similarly:

Cbit = O *
,

n−1∑
i=0

poly
*
,
kd ,

(
log

poly(I ,k,

y0

 , Len(t0, t))

ε

)d
, log Σp+

-
+
-

6 poly

(
k, log I , log

y0

 , log Len(t0, t), log Σp,− log ε

)d
�

3.4 Enhancement on the adaptive algorithm
The algorithm of the previous section depends on an “hint” I given as input by the user. Cer-

tainly this is not a desirable feature, since the algorithm is only guaranteed to terminate (with

a correct answer on that case) if

I >

∫ t

t0

kΣp (1 + ε +

y (u)

)k−1du

60

3.4. ENHANCEMENT ON THE ADAPTIVE ALGORITHM

but the user has usually no way of estimating the right-hand side of this inequality (the prob-

lem is that it requires some knowledge about the solution y which we are trying to compute).

However we know that if the hint I is large enough, then the algorithm will succeed in re-

turning a result. Furthermore if it succeeds, the result is correct. A very natural way of solving

this problem is to repeatedly try for larger values of the hint until the algorithm succeeds. We

are guaranteed that this will eventually happen when the hint I reaches the theoretical bound

(although it can stop much earlier in many cases). By choosing a very simple update strategy

of the hint (double its value on each failure), it is possible to see that this process does not cost

signi�cantly more than if we already had the hint.

Algorithm 3.4.1 PIVP Solving algorithm

Require: t0 the initial time

Require: y0 ∈ Q
d

the initial condition

Require: p polynomial of the PIVP

Require: t ∈ Q the time step

Require: ε ∈ Q the precision requested

1: function SolvePIVPEx(t0,y0,p, t , ε)
2: I := 1/2
3: repeat
4: I := 2I
5: x := SolvePIVPVariable(t0,y0,p, t , ε, I)
6: until x , ⊥
7: return x
8: end function

Theorem 3.4.2 (Complexity and correctness of SolvePIVPEx): Let t ∈ R, ε > 0, and assume
that y satis�es (2.0.1) over [t0, t]. Let

x = SolvePIVPEx(t0,y0,p, t , ε)

Then

•

x − y (t)

 6 ε

• the arithmetic complexity of the algorithm is bounded by

poly(kd , Len(t0, t), log

y0

 ,− log ε)

• the bit complexity of the algorithm is bounded by

poly(k, Len(t0, t), log

y0

 , log Σp,− log ε)d

�

Proof. By Lemma 3.3.12 (Algorithm is correct), we know that the algorithm succeeds when-

ever I > e
1−e−1

Int(t0, t). Thus when the I in the algorithm is greater than this bound, the loop

must stop. Recall that the value of I at the ith iteration is 2
i

(i starts at 0). Let q be the number

of iterations of the algorithm: it stops with I = 2
q−1

. Then:

2
q−2 6

e

1 − e−1
Int(t0, t)

61

CHAPTER 3. SOLVING PIVP

Indeed, if it wasn’t the case, the algorithm would have stop one iteration earlier. Using Lemma 3.3.16

(Relationship between Int and Len) we get:

2
q−1 = O (k Len(t0, t)) q = O (log(k Len(t0, t)))

Now apply Lemma 3.3.17 (Complexity of SolvePIVPVariable) to get that the �nal complexity

C is bounded by:

Carith = O
*.
,

q−1∑
i=0

poly(kd , 2i , log Len(t0, t), log

y0

 ,− log ε)+/
-

= O
(
q poly(kd , 2q−1, log Len(t0, t), log

y0

 ,− log ε)

)
= poly(kd , Len(t0, t), log

y0

 ,− log ε)

Similarly:

Cbit = O
*.
,

q−1∑
i=0

poly(k, 2i , log Len(t0, t), log Σp, log

y0

 ,− log ε)d+/
-

= O
(
q poly(k, 2q−1, log Len(t0, t), log

y0

 , log Σp,− log ε)d

)
= poly(k, Len(t0, t), log

y0

 , log Σp,− log ε)d

�

3.5 Extension to Computable Analysis
In this section, we extend the previous result to deal with non-rational inputs. To this end, we

formulate the result in the framework of Computable Analysis.

De�nition 3.5.1 (PIVP solving mapping): Let PIVP the partial map de�ned as follows. For

any d ∈ N, y0 ∈ R
d
, p ∈ Rd[Rd], t0, t ∈ R, PIVP(t0,y0,p, t) = y (t) where y : [t0, t] → R

d
, if it

exists, satis�es y (t0) = y0 and y′(u) = p (y (u)) for all u ∈ [t0, t]. �

Theorem 3.5.2 (PIVP complexity): PIVP has complexity bounded by5

poly(deg(p), Len(t0, t), log

y0

 , log Σp,− log ε)d (3.5.3)

More precisely, there exists a Turing machineM such that for any oracle O for (t0,y0,p, t), and
µ ∈ N,

M

O (µ) − PIVP(t0,y0,p, t)

 6 2

−µ if y (t) exists, and the number of steps of the machine
is bounded by (3.5.3) for all such oracles. �

Remark 3.5.4 (Oracle): In Computable Analysis, oracles are usually used to describe a single

real number, or a tuple. We extend this notion in the immediate way and say that O describes

a sequence (rk)k ∈ R
N

if

O (k, µ) − rk

 6 2

−µ
for any k, µ ∈ N. Then we encode a polynomial

as a sequence containing the degree and the coe�cients. �

Remark 3.5.5 (Operator complexity): Notice that Theorem 3.4.2 (Complexity and correctness

of SolvePIVPEx) provides a full characterization of the complexity of SolvePIVPEx. As a con-

sequence, it could be possible to study and discuss the complexity of the operator (p, t0,y0) 7→
ϕp (t0,y0, t) using the framework of computable analysis (see e.g. [Wei00, KC10]). Indeed, the

space of polynomials and computable real numbers admit nice and well-understood represen-

tations (see e.g.[KMRZ12]), as does the space of analytic functions. �
5
See De�nition 3.3.15 (Pseudo-length of a PIVP) for the expression Len

62

3.6. CONCLUSION

Proof. The idea of the proof is to compute a rational approximation of all the inputs and use

Theorem 3.4.2 (Complexity and correctness of SolvePIVPEx). �

3.6 Conclusion
In this chapter we have presented a method that allows us to solve a polynomial or elemen-

tary ordinary di�erential equation over an unbounded domain using an arbitrary precision.

Moreover our method is guaranteed to produce a result that has a certain precision, where the

precision is also provided as an input to our method.

We analyzed the method and established rigorous bounds on the time it needs to output a

result. In this manner we were able to bound the computational complexity of solving poly-

nomial or elementary ODEs over unbounded domains.

63

CHAPTER 3. SOLVING PIVP

64

Chapter 4

Computation with PIVP

These days, even the most pure and

abstract mathematics is in danger to be

applied.

In this chapter we investigate the possibility of giving a purely continuous (time and space)

de�nition of computability, and in particular of complexity classes. Up until now, it has been

open how to de�ne a notion of complexity on dynamical systems such as PIVP that has good

properties. One can grasp the challenge by noting that PIVP are subject to the Zeno phe-

nomenon. Another way to formulate this is to say that contrary to discrete models of com-

putation, time itself does not yield to a robust notion of complexity. We will see that neither

does space, but that a combination of time and space is su�cient to obtain a robust and well

founded notion.

This chapter is organized as follows:

• Section 4.1 (Introduction) will introduce our model of computation informally and explain

why it is very natural.

• Section 4.2 (Computing functions) will introduce our most basic notions of computability

using either space-time or length as a measure of complexity.

• Section 4.3 (Computing with perturbations) will introduce more advanced notions of com-

putability in the presence of perturbations.

• Section 4.4 (Computing with variable input) will introduce notions of online computability

where the input can change over time.

• Section 4.5 (Summary) summarizes our notions of complexity and relationships between

the classes.

• Section 4.6 (Closure properties and computable zoo) will show some closure properties of

this class, which suggest that this class is a reasonable model of computation. It also gives

a list of useful or remarkable computable functions.

4.1 Introduction
In Section 1.4 (General Purpose Analog Computer), we saw the GPAC is an idealization of

computers initially used to study di�erential equations and simulate physical systems, for

65

CHAPTER 4. COMPUTATION WITH PIVP

t

f (x)

q(x)

y (t)

Figure 4.1.2: Graphical representation of a computation on input x

example the ballistic trajectory of a projectile. As such, it is natural to consider the trajectory

of the system as the computed object. In Chapter 2 (The PIVP class) we expanded this idea

to build the very interesting class of generable functions. However, the GPAC admits a more

natural notion of computation. The idea is that the trajectory of the system is merely a trace

of the computing process and what matters is the result. In this case the result is the �nal,

stable state of the system. From the point of view of di�erential equations, this means that

we require some variables of the system to converge to some value, which we call the result

of the computation. The mapping between the initial state and the stable state is the function

computed by the system.

This process is illustrated in Figure 4.1.2 and formalized in De�nition 4.1.1 (GPAC approximability)

where f is the computed function, x is the input value andq(x) is the initial setup of the system

for input x . On this example, y is the trace of the computation and f (x) = limt→∞y (t).

De�nition 4.1.1 (GPAC approximability): f : R→ R is called computable if and only if there

exists d ∈ N, polynomials p ∈ Kd[Rd] and q ∈ Kd[R] such that for any x ∈ R, there exists (a

unique) y : R+ → R
d

satisfying for all t ∈ R+:

• y (0) = q(x) and y′(t) = p (y (t)) I y satis�es a PIVP

• |y1(t) − f (x) | 6 e−t I y1 converges to f (x)

�

It has been known for some time that the notion of GPAC approximability is more general

than GPAC generability. For example, Euler’s Gamma and Zeta functions are not generable (in

the sense of De�nition 2.1.1) but are approximable (in the sense of De�nition 4.1.1) [Gra04].

More generally, the notion of generable function is too strong because all generable functions

are analytic (see Proposition 2.3.3).

In this chapter, we will develop a theory of complexity for this model. A fundamental

di�culty one faces when we try to talk about time complexity for continuous time models of

computation is that time is a problematic notion for many natural classes of systems. Indeed,

many models exhibit the so-called Zeno’s phenomenon, also called time contraction. This is

easily seen in the case of the GPAC because if f is computable then f ◦exp is also computable,

and f ◦ exp ◦ exp and so on. This means that the time t needed for y1 to reach f (x) with a

certain precision is pointless: we can always make it shorter and shorter and even constant.

The time-contraction phenomenon has been well-studied and is generally considered as

a sign of unrealistic computation. Indeed, such models usually allow to simulate Turing ma-

chines and time contraction can be used to solve problems in constant time, and even the

Halting problem is some cases. For more details see [Ruo93], [Ruo94], [Moo96], [Bou97],

[Bou99], [AD90], [CP02], [Dav01], [Cop98], [Cop02], [AM98a], [EN02].

In this chapter we give a fundamental contribution to this question: time of a computation,

for the GPAC can be measured as the length of the curve (i.e. length of the solution curve of the

ordinary di�erential equation associated to the GPAC), or equivalently, as a couple measuring

66

4.2. COMPUTING FUNCTIONS

both time and “space”. Doing so, we get to well de�ned complexity classes, that we will prove,

in next chapter, to turn out to be the same as traditional complexity classes. Various attempts at

de�ning a clear complexity theory for continuous time models of computation have previously

failed because they considered classes of dynamical systems that where too general, or because

they used a notion of time that was not robust. See [GM02] and [SF98] for examples of natural

analog complexity classes, and more in the survey [BC08].

Note that the idea of a process converging to some value with controlled error is at the

heart of Computable Analysis, where the complexity measure is the one of Turing machines. In

Chapter 5 (PIVP versus Turing computability), we will see that there are strong links between

PIVP computation and Computable Analysis.

Remark 4.1.3 (Generable �eld): In this entire chapter, K will refer to any generable �eld, for

example RG . See Section 2.7 (Generable �elds) for more details. �

4.2 Computing functions
In this section, we introduce our notion of computability and provide examples. We will intro-

duce complexity in two di�erent but equivalent ways: using space-time constraints and using

length-based constraints.

4.2.I Space-time based complexity
As we saw in Chapter 2 (The PIVP class), generable functions have very nice properties, but

those are very limited. For instance, all generable functions are analytic. In order to de�ne a

broader class of functions with the GPAC, we relax the requirements of the de�nition so that

the computed function is somehow the “limit” of a generable function. The basic idea is simple

enough: the initial condition of the system depends on the input x (with a polynomial rela-

tionship), and a set of variables of the system must converge to f (x) where f is the computed

function. Furthermore, another variable of the system must give a bound on the error between

f (x) and the value computed by the system: this variable must converge to 0. Note that this

is, in fact, very similar to the notion of computability for Turing Machines where we have a

sequence of con�gurations and only care about the last con�guration, which is signaled by

entering a special state.

In order to enhance this de�nition with an interesting complexity notion, we need two

ingredients. First we need to introduce some notion of rate of convergence. But this is not

enough by itself because the system can always be rescaled to improve the convergence rate.

To prevent this behavior, we also introduce a bound on the maximum value of the components

of the system, a similar notion to that of space. Taken separately, none of these notions is

admissible, but together they provide a good framework to discuss the complexity of the GPAC.

The intuition is that one can “trade” time for space, so we need to take both into account.

De�nition 4.2.1 (Analog computability): Let n,m ∈ N, f :⊆ Rn → Rm and ϒ,Ω : R2

+ → R+.

We say that f is (ϒ,Ω)-computable if and only if there exists d ∈ N, and p ∈ Kd[Rd],q ∈
Kd[Rn] such that for any x ∈ dom f , there exists (a unique) y : R+ → R

d
satisfying

• y (0) = q(x) and y′(t) = p (y (t)) for all t > 0 I y satis�es a PIVP

• for all µ ∈ R+, if t > Ω(‖x ‖ , µ) then

y1..m (t) − f (x)

 6 e−µ I y1..m converges to f (x)

•

y (t)

 6 ϒ(‖x ‖ , t), for all t > 0 I y (t) is bounded

We denote by AC(ϒ,Ω) the set of (ϒ,Ω)-computable functions. �

67

CHAPTER 4. COMPUTATION WITH PIVP

De�nition 4.2.2 (Analog poly-time): We denote by AP the set of (poly, poly)-computable

functions. �

Remark 4.2.3 (Polynomial versus generable): In this de�nition, we required for simplicity

that p and q be polynomials. It turns out, unsurprisingly, that the class is the same if we

only assume that p,q ∈ GPVAL. This remark also applies to De�nition 4.2.7 (Analog weak

computability). See Proposition 4.5.2 (Polynomial versus generable) for more details. �

In the remaining of this section, we provide several examples of polynomial time com-

putable functions.

Example 4.2.4 (Polynomials are computable): The most trivial example of computable func-

tions are polynomials. Indeed, simply using the versatility in the choice of the initial condition

allows us to compute polynomials in constant time. Let q ∈ K[Rd] be a multivariate polyno-

mial: we will show that q ∈ AP. Let x ∈ Rd and consider the following system for t ∈ R+:

y (0) = q(x) y′(t) = 0

We claim that this system satis�es De�nition 4.2.2 (Analog poly-time):

• The system is of the form y (0) = poly(x) and y′(t) = poly(y (t)) where the polynomials

have coe�cients in K.

• For any t > 0,

y (t) − q(x)

 = 0 so we can take Ω(α , µ) = 0.

• For any t ∈ R+,

y (t)

 =

q(x)

 6 poly(‖x ‖) so we can take ϒ to be a any polynomial

such that ϒ(‖x ‖ , µ) >

p (x)

.

This shows that q ∈ AC(ϒ,Ω). �

Example 4.2.5 (Square root is computable): We will show that

√
· : [1,∞[→ R+ belongs to

AP. The idea of the construction is the following: we use one variable (y2) to store the input

x ∈ R+ and one variable (y1) to converge to

√
x . We do so by increasing y2(t) from 0 as long

as y2(t)
2 6
√
x , the latter being equivalent to y2(t) 6 x = y1(t) which can be expressed using

polynomials. Formally, let x ∈ [1,∞[and consider the following system for t ∈ R+:




y1(0)= 0

y2(0)= x




y′
1
(t)= y2(t) − y1(t)

2

y′
2
(t)= 0

It can be seen that this system admits a unique solution for t ∈ R+ which is:

y1(t) =
√
x tanh(

√
xt) y2(t) = x

We claim that this system satis�es De�nition 4.2.2 (Analog poly-time):

• The system is of the form y (0) = poly(x) and y′(t) = poly(y (t)) where the polynomials

have coe�cients in K.

• For any t > 0, apply Lemma 2.6.1 (Bounds on tanh) to get that

√
x (1−e−

√
xt) 6 y1(t) 6

√
x

thus |y1(t) −
√
x | 6

√
xe−

√
xt 6

√
xe−t because x > 1. De�ne Ω(α , µ) = µ + α and check

that for all µ ∈ R+, if t > Ω(|x |, µ) then |y1(t) −
√
x | 6 e−µ−x+ln

√
x 6 e−µ .

• De�ne ϒ(α , t) = α and check that for any t ∈ R+,

y (t)

 = max(y1(t),x) = x = ϒ(‖x ‖ , t).

This shows that

√
·�

[1,∞[
∈ AC(ϒ,Ω). �

68

4.2. COMPUTING FUNCTIONS

Example 4.2.6 (The error function is computable): Let us recall the de�nition of the error

function for x ∈ R:

erf (x) =
2

√
π

∫ x

0

e−t
2

dt

We will show that erf ∈ AP. The idea of the proof is to note that e−t
2

is a generable function,

so it can be generable using a PIVP. Consequently, erf is also a generable function so we can

be build a system such that y (t) = erf (t), but in order to compute erf (x) we need to stop

this system at time t = x . We do so by rescaling the generable system, so that in essence,

y (t) = erf (x (1−e−t)). This idea, is in fact, not speci�c to erf and we will applied later to show

that most generable functions are computable. Formally, let x ∈ R and consider the following

system for t ∈ R+:




y1(0)= 0

y2(0)= 1

y3(0)= x

y4(0)= x




y′
1
(t)= 2√

π
y3(t)y2(t)

y′
2
(t)= −2y3(t) (y4(t) − y3(t))y2(t)

y′
3
(t)= −y3(t)

y′
4
(t)= 0

It can be seen that this system admits a unique solution for t ∈ R+ which is:

y1(t) = erf (x (1 − e−t) y2(t) = e−x
2 (1−e−t)2 y3(t) = xe−t y4(t) = x

We claim that this system satis�es De�nition 4.2.2 (Analog poly-time):

• The system is of the form y (0) = poly(x) and y′(t) = poly(y (t)) where the polynomials

have coe�cients in K, since

√
π ∈ K because π ∈ K, K is a generable �eld and

√
·�

[1,∞[
∈

GPVAL.

• For any t ∈ R+, | erf (x) − y1(t) | = | erf (x) − erf (x (1 − e−t)) | = 2√
π

����
∫ x

x (1−e−t)
e−u

2

du
���� 6

2√
π

����
∫ x

x (1−e−t)
du

���� 6
2|x |e−t
√
π

. De�ne Θ(α , µ) = µ + α + ln
2√
π

, and let µ ∈ R+, if t > Θ(‖x ‖ , µ)

then | erf (x) − y1(t) | 6 |x |e
−µ−|x | 6 e−µ .

• For any t ∈ R+, |y1(t) | 6 1, |y2(t) | 6 1, |y3(t) | 6 |x | and |y4(t) | 6 |x |. De�ne ϒ(α , t) = 1+α
and then

y (t)

 6 ϒ(‖x ‖ , t).

This shows that erf ∈ AC(ϒ,Ω). �

More examples of computable functions can be found in Section 4.6 (Closure properties

and computable zoo), including some non-di�erentiable functions like the absolute value.

More often that not, especially when proving that a function is computable, it will be useful

to prove a weaker property where the precision of the output is given as a parameter of the

system. More precisely, given an input x and a precision µ, the system should compute f (x)
with error at most e−µ . This is in contrast with the previous notion where given an input x ,

the precision of the output keeps increasing over time.

De�nition 4.2.7 (Analog weak computability): Let n,m ∈ N, f :⊆ Rn → Rm, Ω : R2

+ → R+
and ϒ : R3

+ → R+. We say that f is (ϒ,Ω)-weakly-computable if and only if there exists d ∈ N,

p ∈ Kd[Rd],q ∈ Kd[Rn+1
] such that for any x ∈ dom f and µ ∈ R+, there exists (a unique)

y : R+ → R
d

satisfying for all t ∈ R+:

• y (0) = q(x , µ) and y′(t) = p (y (t)) I y satis�es a PIVP

69

CHAPTER 4. COMPUTATION WITH PIVP

• if t > Ω(‖x ‖ , µ) then

y1..m (t) − f (x)

 6 e−µ I y1..m converges to f (x)

•

y (t)

 6 ϒ(‖x ‖ , µ, t) I y (t) is bounded

We denote by AW(ϒ,Ω) the set of (ϒ,Ω)-weakly-computable functions. �

De�nition 4.2.8 (Analog weak poly-time): Denote by AWP the set of (poly, poly)-weakly-

computable functions. �

Remark 4.2.9 (Limit computability): A careful look at the previous de�nition shows that

analog weak computability is a form of limit computability. Formally, let f : I × R∗+ → R
n
,

д : I → Rn and f : R2

+ → R+ a polynomial. Assume that f ∈ AP and that for any x ∈ I and

τ ∈ R∗+, if τ > f(‖x ‖ , µ) then

f (x ,τ) − f (x)

 6 e−µ . Then д ∈ AWP because the analog

system for f satis�es all the items of the de�nition. �

It is clear, by de�nition that any computable function is weakly-computable by the ex-

act same system. This is summarized by the following proposition in the case of poly-time

computability.

Proposition 4.2.10 (Computable ⊆ weak): AP ⊆ AWP �

4.2.II Length-based complexity
In this section, we introduce an alternative notion of complexity based on the length of curve

instead of the time/space pair. We saw in Chapter 3 (Solving PIVP) that the complexity of

solving a PIVP is related to a quantity that looks like the length of the curve. Intuitively, the

length captures both space and time which explains why it is a robust notion of complexity.

De�nition 4.2.11 (Length of a curve): Let d ∈ N, I be an interval andy ∈ C1(I ,Rn), the length
of y over I is de�ned by:

leny (a,b) =

∫
I

y′(t)

 dt

�

De�nition 4.2.12 (Analog length computability): Let n,m ∈ N, f :⊆ Rn → Rm and Ω :

R2

+ → R+. We say that f is Ω-length-computable if and only if there exists d ∈ N, and

p ∈ Kd[Rd],q ∈ Kd[Rn] such that for any x ∈ dom f , there exists (a unique) y : R+ → R
d

satisfying for all t ∈ R+:

• y (0) = q(x) and y′(t) = p (y (t)) for all t > 0 I y satis�es a PIVP

• for any µ ∈ R+, if leny (0, t) > Ω(‖x ‖ , µ) then

y1..m (t) − f (x)

 6 e−µ I y1..m converges

•

y′(t)

 > 1 I technical condition

We denote by AL(Ω) the set of Ω-length-computable functions. �

Remark 4.2.13 (Technical condition): In order for the equivalence between AP and ALP to

work, we need a technical condition to ensure that the length of the curve grows at least

linearly with time. We could request a weaker condition, such as

p (y (t))

 > 1

poly(t) but it is

unclear if the equivalence holds without such condition. Indeed, if the speed of the system

becomes extremely small, it might take an exponential time to reach a polynomial length. See

Example 4.2.14 (Technical condition) for such an example. �

70

4.2. COMPUTING FUNCTIONS

Example 4.2.14 (Technical condition): De�ne y (t) = e− ln(1+t)
, then y satis�es a PIVP be-

cause y (0) = 1 and y′(t) = z (t)y (t) where z (t) = 1

1+t and z satis�es z (0) = 1 and z′(t) =
−z (t)2. A simple computation shows that the length condition is violated because leny,z (0, t) =∫ t

0

1

(1+u)2
du = 1− 1

1+t . Furthermore, y is clearly computing 0 but extremely slowly because one

has to take t > eµ − 1 so that

y (t) − 0

 6 e−µ . Unfortunately, in this case, the condition on

the length of the curve makes no sense because the length is bounded ! �

Theorem 4.2.15 (Computable = length-computable): AP = ALP �

Proof. In one direction the proof is simple because if the system uses polynomial time and

space then there is a relationship between time and length and we only need to add one variable

to the system to make sure that the technical condition holds. The other direction is more

involved because we need to rescale the system using the length of the curve to make sure it

does not grow faster than a polynomial, this is ensured by the technical condition.

Let f ∈ AC(ϒ,Ω) where ϒ and Ω are polynomials, which we assume to be increasing

functions. Apply De�nition 4.2.1 (Analog computability) to get d,p,q, let k = deg(p) and

de�ne:

Ω∗(α , µ) = Ω(α , µ)
(
1 + Σp max

(
1, ϒ(‖x ‖ ,Ω(α , µ)

)k)
Let x ∈ dom f and consider the following system:




y (0)= q(x)

z (0)= 0




y′(t)= p (y (t))

z′(t)= 1

Note that z (t) = t , this variable is there only to ensure that the length of z grows at least linear.

Let t , µ ∈ R+ and assume that lenz (0, t) > Ω∗(‖x ‖ , µ). We will show that t > Ω(‖x ‖ , µ) by

contradiction. Assume the contrary and letu ∈ [0, t]. By de�nition

y (u), z (u)

 6 1+

y (u)

 6

1 + ϒ(‖x ‖ , t) < 1 + ϒ(‖x ‖ ,Ω(‖x ‖ , µ)) and thus

y′(u), z′(u)

 =

1,p (y (u))

 < 1 + Σp

(
1 +

ϒ(‖x ‖ ,Ω(‖x ‖ , µ))k . Consequently, leny,z (0, t) < t supu∈[0,t]

y′(u), z′(u)

 6 Ω∗(‖x ‖ , µ) which

is absurd. Since t > Ω(‖x ‖ , µ), by de�nition we get that

y1..m (t) − f (x)

 6 e−µ . Finally,

y′(t), z′(t)

 > ‖z′(u)‖ > 1 for all t ∈ R+. This shows that that f ∈ AL(Ω∗) where Ω∗ is a

polynomial.

Let f ∈ AL(Ω) where Ω is a polynomial, which we assume to be an increasing function.

Apply De�nition 4.2.12 (Analog length computability) to get d,p,q, let k = deg(p). Apply

Lemma 2.6.18 (Norm function) to get that д(x) = norm∞,1(p (x)) belongs to GPVAL. Apply

De�nition 2.1.17 (Generable function) to get m, r ,x0 and z0. Let x ∈ dom f . For the analysis,

it will useful to consider the following systems:




y (0)= q(x)

z (x0)= z0




y′(t)= p (y (t))

Jz (x)= r (z (x))

Note that by de�nition z1(x) = д(x). De�neψ (t) = д(y (t)) and
ˆψ (u) =

∫ u

0
ψ (t)dt . Now de�ne

the following system:




ŷ (0)= q(x)

ẑ (0)= z (q(x))

ŵ (0)= 1

д(q(x))




ŷ′(u)= ŵ (u)p (ŷ (u))

ẑ′(u)= ŵ (u)r (ẑ (u))p (ŷ (u))

ŵ′(u)= −ŵ (u)3r1(ẑ (u))p (ŷ (u))

where by r1 we mean the �rst line of r . We will check that ŷ (u) = y (ˆψ−1(u)), ẑ (u) = z (ŷ (u))
and ŵ (u) = (ˆψ−1)′(u). We will use the fact that for any h ∈ C1

, (д−1)′ = 1

д′◦д−1
. Also note that

ˆψ ′ = ψ .

71

CHAPTER 4. COMPUTATION WITH PIVP

• ŷ (0) = y (ˆψ−1(0)) = y (0) = q(x)

• ŷ′(u) = (ˆψ−1)′(u)y′(ˆψ−1(u)) = ŵ (u)p (y (ˆψ−1(u))) = ŵ (u)p (ŷ (u))

• ẑ (0) = z (ŷ (0)) = z (q(x))

• ẑ′(u) = Jz (ŷ (u))ŷ
′(u) = ŵ (u)r (z (ŷ (u)))p (ŷ (u)) = ŵ (u)r (ẑ (u))p (ŷ (u))

• ŵ (0) = 1

ˆψ ′(ˆψ−1 (0))
= 1

ψ (0) =
1

д(q(x))

• ŵ′(u) =
−(ˆψ−1)′(u) ˆψ ′′(ˆψ−1 (u))

(ˆψ ′(ˆψ−1 (u)))2
= −ŵ (u)3ψ ′(ˆψ−1(u)) = ∇д(y (ˆψ−1(u))) · y′(ˆψ−1) and since

∇д(x) = r1(z (x))
T

(transpose of the �rst line of the jaocibian matrix of z because д = z1)

then ŵ′(u) = −ŵ (u)3r1(z (y (ˆψ−1(u))))
T
· p (y (ˆψ−1(u))) = −ŵ (u)3r1(ẑ (u))p (ŷ (u))

We now claim that this system computes f quickly and has polynomial space. First note

that by Lemma 2.6.18 (Norm function),

y′(t)

 6 д(y (t)) 6

y′(t)

 + 1 thus leny (0, t) 6

ˆψ (t) 6 leny (0, t) + t . Thus lenŷ (0,u) =
∫ u

0

ŷ′(ξ)

 dξ =
∫ ˆψ−1 (u)

0

ŵ (ˆψ (t))p (ŷ (ˆψ (t)))

ˆψ ′(t)dt =∫ ˆψ−1 (u)

0

(
ˆψ−1)′(ˆψ (t)) ˆψ ′(t)p (y (t))

 dt =

∫ ˆψ−1 (u)

0

p (y (t))

 dt = leny (0, ˆψ−1(u)) 6 ˆψ (ˆψ−1(u)) 6

u. It follows that

ŷ (u)

 6

ŷ (0)

 + u 6

q(x)

 + u 6 poly(‖x ‖ ,u). Similarly, ‖ẑ (u)‖ =

z (ŷ (u))

 6 poly(‖x ‖ ,u) because z ∈ GPVAL and thus is polynomially bounded. Finally,

‖ŵ ‖ = 1

ψ (ˆψ−1 (u)
= 1

д(ŷ (u)) 6
1

y
′(ˆψ−1 (u))

6 1 because by hypothesis,

y′(t)

 > 1 for all t ∈ R+.

This shows that indeed

(ŷ, ẑ, ŵ) (u)

 is polynomially bounded in ‖x ‖ and u. Now let µ ∈ R+

and t > 1 + Ω(‖x ‖ , µ) then lenŷ (0, t) = leny (0, ˆψ−1(t)) > ˆψ (ˆψ−1(t)) − ˆψ−1(t) > t − ˆψ−1(t) >

1 + Ω(‖x ‖ , µ) − 1

ψ (ˆψ−1 (t))
> Ω(‖x ‖ , µ) because, as we already saw,

ψ (
ˆψ−1(t))

 > 1. Thus by

de�nition,

ŷ1..m (t) − f (x)

 6 e−µ because ŷ (t) = y (ˆψ−1(t)). This shows that f ∈ AP.

�

4.3 Computing with perturbations
We introduced the notion of (weak) computability and saw that this notion is very natural

and quite elegantly formulated. However, the examples of the previous section reveal that it

is very tedious to prove that a function is computable. Furthermore, the di�erential systems

computing such functions are very much like high-precision clocks: they work �awlessly but

the slightest change will break them. In this section, we introduce two new notions of com-

putation that are robust to pertubations. We will see that, quite surprisingly, all computable

systems can be made robust in this sense.

4.3.I Robust computability
The notion of robust computability builds up on the notion of weak computability but this

time the system should tolerate errors up to e−Θ(‖x ‖ ,µ) . The function Θ is a parameter of the

class, like Ω and ϒ, so the system can indicate how much error it can handle. On the other

hand, we relax a little bit the constraint on the system and allow the right-hand side to be

generable instead of polynomial.

De�nition 4.3.1 (Analog robust computability): Let n,m ∈ N, f :⊆ Rn → Rm, Θ,Ω : R2

+ →

R+ and ϒ : R3

+ → R+. We say that f is (ϒ,Ω,Θ)-robustly-computable if and only if there exists

d ∈ N, and (h : Rd → Rd), (д : Rn ×R+ → R
d) ∈ GPVAL such that for any x ∈ dom f , µ ∈ R+,

72

4.3. COMPUTING WITH PERTURBATIONS

e0 ∈ R
d

and e ∈ C0(R+,R
d) satisfying ‖e0‖ +

∫ ∞
0
‖e (t)‖ dt 6 e−Θ(‖x ‖ ,µ) , there exists (a unique)

y : R+ → R
d

satisfying for all t ∈ R+:

• y (0) = д(x , µ) + e0 and y′(t) = h(y (t)) + e (t) I y satis�es a generable IVP

• if t > Ω(‖x ‖ , µ) then

y1..m (t) − f (x)

 6 e−µ I y1..m converges to f (x)

•

y (t)

 6 ϒ(‖x ‖ , µ, t) I y (t) is bounded

We denote by AR(ϒ,Ω,Θ) the set of (ϒ,Ω,Θ)-robustly-computable functions. �

De�nition 4.3.2 (Analog robust poly-time): Denote by ARP the set of (poly, poly, poly)-
robustly-computable functions. �

Remark 4.3.3 (Domain of de�nition of д and h): There is a subtle but important detail in this

de�nition: we more or less replaced the polynomials p and q by generable functions д and h.

It could have been temping to take this opportunity to restrict the domain of de�nition of д
to dom f × R+ and that of h to a subset of Rd where the dynamics takes place. We kept the

entire euclidian space for good reasons. First it makes the de�nition simpler. Second, it makes

the notion stronger and more useful. This last point is important because we are going to use

robust computability (and the next notion of strong computability) in cases where we have

less or no control over the errors and thus over the trajectory of the system. On the downside,

this requires to check that д and h are indeed de�ned over the entire space ! �

The examples below show how to build robustly-computable functions. In the �rst exam-

ple, we only need to de�ne Θ so that it works, whereas in the second case, careful design of

the system is needed for it to be robust.

Example 4.3.4 (Polynomials are robustly-computable): In order to make polynomials robustly-

computable, we will play with the choice of Θ and see that it is enough to make the system

robust. Let q ∈ K[Rd] be a multivariate polynomial: we will show that q ∈ ARP. Let x ∈ Rd ,

µ ∈ R+, e0 ∈ R and e ∈ C0(R+,R). Assume that |e0 | +
∫ ∞

0
|e (t) |dt 6 e−µ and consider the

following system for t ∈ R+:

y (0) = q(x) + e0 y′(t) = e (t)

We claim that this system satis�es De�nition 4.3.2 (Analog robust poly-time):

• The system is of the form y (0) = poly(x) + e0 and y′(t) = poly(y (t)) + e (t) where the

polynomials have coe�cients in K.

• For any t > 0,

y (t) − q(x)

 6 |e0 |+

∫ t

0
|e (u) |du 6 |e0 |+

∫ ∞
0
|e (u) |du 6 e−µ so we can take

Ω(α , µ) = 0.

• For any t ∈ R+,

y (t)

 6

q(x)

 + |e0 | +

∫ t

0
|e (u) |du 6

q(x)

 + 1 6 poly(‖x ‖) so we can

take ϒ to be a any polynomial such that ϒ(‖x ‖ , µ) >

p (x)

 + 1.

This shows that q ∈ AR(ϒ,Ω,Θ) where Θ(α , µ) = µ. �

In the previous example, we saw that we could modify the system of some computable

functions to make them robustly-computable. It appears that this is not a coincidence but a

general fact. To understand how the proof works, one must �rst understand the problem. Let

us consider a computable function f :⊆ Rd → R in AW(ϒ,Θ) and the associated system for

x ∈ dom f and µ ∈ R+:

y (0) = q(x , µ) y′(t) = p (y (t))

73

CHAPTER 4. COMPUTATION WITH PIVP

This system converges to f (x) very quickly:

y1(t) − f (x)

 6 e−µ when t > Ω(‖x ‖ , µ) and

y (t) is bounded:

y (t)

 6 ϒ(‖x ‖ , µ, t). Let us introduce some errors in the system by taking

e0 ∈ R
d

and e ∈ C0(R+,R
d) such that ‖e0‖ +

∫ ∞
0
‖e (u)‖ du 6 e−Θ(‖x ‖ ,µ) for some unspeci�ed

Θ and consider the perturbed system:

z (0) = q(x , µ) + e0 z′(t) = p (z (t)) + e (t)

The relationship between this system and the previous one is given by Theorem 2.4.2 (Param-

eter dependency of PIVP) and can be informally written as:

z (t) − y (t)

 6
(
‖e0‖ +

∫ t

0

‖e (u)‖ du

)
e
∫ t

0
kΣp‖y (u)‖

k−1

du
(4.3.5)

6

(
‖e0‖ +

∫ ∞

0

‖e (u)‖ du

)
e
∫ t

0
kΣpϒ(‖x ‖ ,µ,u)k−1du

using the bound of y (t)

6 ekΣptϒ(‖x ‖ ,µ,t)
k−1−Θ(‖x ‖ ,µ)

assuming that ϒ is increasing

One observes that this bound grows to in�nity whatever we can choose for Θ because of

the dependency in t . On the other hand, we do not need to simulate y for arbitrary large

t : as soon as t > Θ(‖x ‖ , µ) we can stop the system and get a good enough result. Un-

fortunately, one does not simply stop a di�erential system, however we can slow it down

– like we did in Example 4.2.6 (The error function is computable). To this end, introduce

ψ (t) = (1 + Θ(‖x ‖ , µ)) tanh(t) and w (t) = z (ψ (t)). If we show that w satis�es a di�eren-

tial system, then we are almost done. Indeed ψ (t) 6 1 + Θ(‖x ‖ , µ) for all t ∈ R+ and if

t > 1+Θ(‖x ‖ , µ) thenψ (t) > Θ(‖x ‖ , µ), so the system “kind of stop” between Θ(‖x ‖ , µ) and

Θ(‖x ‖ , µ) + 1. Futhermore, if t > 1 + Θ(‖x ‖ , µ) then:

w1(t) − f (x)

 6

z (ψ (t)) − y (ψ (t))

 +

y1(ψ (t)) − f (x)

 use the triangle inequality

6 ekΣpψ (t)ϒ(‖x ‖ ,µ,ψ (t))
k−1−Θ(‖x ‖ ,µ) + e−µ using (4.3.5)

6 ekΣp (1+Θ(‖x ‖ ,µ))ϒ(‖x ‖ ,µ,1+Θ(‖x ‖ ,µ))
k−1−Θ(‖x ‖ ,µ) + e−µ using the bound onψ

6 2e−µ for a suitable choice of Θ

We are left with showing that w (t) = z (ψ (t)) can be be generated by a generable IVP with

perturbations. In the case of no pertubations, this is very easy because w′(t) = ψ ′(t)z′(t) =
x (1− tanh(t))p (z (t)) which is generable. The following lemma extends this idea in the case of

perturbations.

Lemma 4.3.6 (PIVP Slow-Stop): Let d ∈ N, y0 ∈ R
d , T ,θ ∈ R+, (e0,y, e0,A) ∈ R

d+1, (ey, eA) ∈
C0(R+,R

d+1) andp ∈ Kd[Rd]. Assume that ‖e0‖+
∫ ∞

0
‖e (t)‖ dt 6 e−θ and consider the following

system:



y (0)= y0 + e0,y

A(0)= T + 2 + e0,A




y′(t)= 1+tanh(A(t))
2

p (y (t)) + ey (t)

A′(t)= −1 + eA(t)

Then there exists an increasing functionψ ∈ C0(R+,R+) and z : ψ (R+) → R
d such that:

ψ (0) = 0 z (0) = y0 + e0,y z′(t) = p (z (t)) + (ψ−1)′(t)ey (ψ
−1(t))

and y (t) = z (ψ (t)). Furthermore ψ (T + 1) > T and ψ (t) 6 T + 4 for all t ∈ R+. Furthermore,
|A(t) | 6 T + 3 for all t ∈ R+. �

Proof. Let f (t) = 1+tanh(A(t))
2

and note that 0 < f (t) < 1 for all t ∈ R+. Check that we can

integrate A explicitly: A(t) = T + 2 − t + e0,A +
∫ t

0
eA(u)du. De�ne ψ (t) =

∫ t

0
f (u)du then ψ

74

4.3. COMPUTING WITH PERTURBATIONS

is an increasing function because f > 0, so it is a di�eomorphism from R+ onto ψ (R+). Note

that ψ (t) 6 t for all t ∈ R+. Let t > T + 3, then A(t) 6 T + 2 − t + |e0,A | +
∫ t

0
|eA(u) |du 6

T + 2+ e−θ − t 6 T + 3− t 6 0 because θ > 0. Apply Lemma 2.6.1 (Bounds on tanh) to get that

tanh(A(t)) 6 −1 + eT+3−t
and thus f (t) 6 1

2
eT+3−t

for t > T + 3. Integrating this inequality

shows thatψ (t) 6 ψ (T + 3) + 1

2

∫ t

T+3
eT+3−udu 6 T + 3+ 1

2
(1− eT+3−t) 6 T + 4. This shows that

ψ (t) 6 T + 4 for all t ∈ R+.

Let t 6 T + 1, then by the same reasoning, A(t) > T + 2 − t − e−θ > T + 1 − t > 0 thus

tanh(A(t)) > 1 − et−T−1
and f (t) > 1 − 1

2
et−T−1

. Thus ψ (T + 1) >
∫ T+1

0
1 + 1

2
eu−T−1du =

T + 1 + 1

2
(1 − e−1−T) > T .

Finally, apply Lemma 2.4.4 (Perturbed time-scaling) to get that y (t) = z (ψ (t)) where z
satis�es for t ∈ ψ (R+):

z (0) = y (0) z′(t) = p (z (t)) + (ψ−1)′(t)ey (ψ
−1(t))

�

Theorem 4.3.7 (Weak ⊆ robust): AWP ⊆ ARP. �

Proof. Let ϒ∗,Ω∗ be polynomials such that f ∈ AW(ϒ∗,Ω∗). Without loss of generality, we

assume they are increasing functions of both arguments. Apply De�nition 4.2.7 (Analog weak

computability) to get d ∈ N, p ∈ Kd[Rd], q ∈ Kd[Rn+1
] and let k = deg(p). De�ne:

T (α , µ) = Ω∗(α , µ + ln 2)

Θ(α , µ) = kΣp (T (α + 1, µ) + 4) (ϒ∗(α , µ,T (α + 1, µ) + 4) + 1)k−1 + µ + ln 2

Ω(α , µ) = T (α + 1, µ) + 1

Let x ∈ dom f , (e0,y, e0,A) ∈ R
d+1

, (ey, eA) ∈ C0(R+,R
d+1) and µ ∈ R+ such that ‖e0‖ +∫ ∞

0
‖e (t)‖ dt 6 e−Θ(‖x ‖ ,µ) . Apply Lemma 4.3.6 (PIVP Slow-Stop) and consider the following

systems (whereψ is given by the lemma):




y (0)= q(x , µ) + e0,y

A(0)= T (norm∞,1(x), µ) + 2 + e0,A




y′(t)= 1+tanh(A(t))
2

p (y (t)) + ey (t)

A′(t)= −1 + eA(t)




z (0)= q(x , µ) + e0,y

z′(t)= p (z (t)) + (ψ−1)′(t)ey (ψ
−1(t))




w (0)= q(x , µ)

w′(t)= p (w (t))

By de�nition of p and q, if t > Ω∗(‖x ‖ , µ) then

w1..m (t) − f (x)

 6 e−µ . Furthermore,

‖w (t)‖ 6 ϒ∗(‖x ‖ , µ, t) for all t ∈ R+. De�ne T ∗ = T (norm∞,1(x), µ). Apply Lemma 2.6.18

(Norm function) to get that ‖x ‖ 6 norm∞,1(x) 6 ‖x ‖ + 1 and thus T (‖x ‖ , µ) 6 T ∗ 6
T (‖x ‖ + 1, µ). By construction, ψ (t) 6 T ∗ + 4 for all t ∈ R+. Let t ∈ R+, apply Theorem 2.4.2

(Parameter dependency of PIVP) by checking that:

*
,

e0,y

 +

∫ ψ (t)

0

(ψ
−1)′(u)ey (ψ

−1(u))du

+
-
ekΣp

∫ ψ (t)
0

(‖w (u)‖+1)k−1du

6

(

e0,y

 +
∫ t

0

ey (u)

 du

)
ekΣp

∫ ψ (t)
0

(ϒ∗ (‖x ‖ ,µ,u)+1)k−1du
by a change of variable

6 ekΣpψ (t) (ϒ
∗ (‖x ‖ ,µ,ψ (t))+1)k−1−Θ(‖x ‖ ,µ)

by hypothesis on the error

6 ekΣp (T (‖x ‖+1,µ)+4) (ϒ∗ (‖x ‖ ,µ,T (‖x ‖+1,µ)+4)+1)k−1−Θ(‖x ‖ ,µ)
becauseψ is bounded

6 e−µ−ln 2 6 1 by de�nition of Θ

75

CHAPTER 4. COMPUTATION WITH PIVP

Thus

z (ψ (t)) −w (ψ (t))

 6 e−µ−ln 2

for all t ∈ R+. Furthermore, if t > Ω(‖x ‖ , µ) then

ψ (t) > ψ (T (‖x ‖ + 1, µ) + 1) > ψ (T ∗ + 1) > T ∗. By construction ψ (T ∗) > T ∗ so ψ (t) > T ∗ >
T (‖x ‖ , µ) = Ω∗(‖x ‖ , µ+ln 2) thus

z (ψ (t)) − f (x)

 6 e−µ−ln 2
. Consequently,

y (t) − f (x)

 6

z (ψ (t)) −w (ψ (t))

 +

w (ψ (t)) − f (x)

 6 2e−µ−ln 2 6 e−µ .
Let t ∈ R+, then

y (t)

 =

z (ψ (t))

 6

w (ψ (t))

 + e−µ 6 ϒ∗(‖x ‖ , µ,ψ (t)) + 1 6
ϒ∗(‖x ‖ , µ,T (‖x ‖+1, µ)+4)+1 6 ϒ∗(‖x ‖ , µ,Ω∗(‖x ‖+1, µ+ln 2)+4)+1 which is polynomially

bounded in ‖x ‖ and µ. Furthermore |A(t) | 6 T ∗ + 4 6 Ω∗(‖x ‖ + 1, µ + ln 2) + 4 which are both

polynomially bounded in ‖x ‖ , µ.

Finally, (y,A) (0) = д(x , µ) + e0 and (y,A)′(t) = h(y (t),A(t)) + e (t) where д and h belong

to GPVALK because tanh, norm∞,1 ∈ GPVAL. �

Remark 4.3.8 (Polynomial versus generable): The proof of Theorem 4.3.7 (Weak ⊆ robust)

also works if q is generable (i.e. q ∈ GPVAL) instead of polynomial in De�nition 4.2.1 (Analog

computability) or De�nition 4.2.7 (Analog weak computability). �

4.3.II Strong computability
In the previous sections, we introduced the notion of weak computability and saw that con-

trary to what one would expect, this notion is robust to slight pertubations. The notion of

robust computability is a �rst good step toward a compositional approach for the GPAC but it

is not enough. In particular, if we want to compose such systems, we will need to tackle two

related problems. First, what happens if the perturbations are not within the bound given by

Θ ? Second, what happens if the input is not within the domain of de�nition of f ? The notion

of robust computability does not given any information on the behavior of the system in those

cases. In the worst case, the system could explode in �nite time which is not desirable.

To make an analogy with programs, until this point we were assuming that our programs

only received well-formed inputs. We are now trying understand if it possible to make our

programs robust against ill-formed inputs or errors during the computation. Of course, we do

not expect the program to give a correct result under such circumstances, but we expect it to

behave nicely (i.e. not crash). In our setting, the counterpart of a “nice behavior” is for the

system to stay polynomially bounded in ‖x ‖ , µ and t – in other words the ϒ bound should

always hold.

De�nition 4.3.9 (Analog strong computability): Let n,m ∈ N, f :⊆ Rn → Rm, Θ,Ω : R2

+ →

R+ and ϒ : R4

+ → R+. We say that f is (ϒ,Ω,Θ)-strongly-computable if and only if there exists

d ∈ N, and (h : Rd → Rd), (д : Rn × R+ → R
d) ∈ GPVAL such that for any x ∈ Rn, µ ∈ R+,

e0 ∈ R
d

and e ∈ C0(R+,R
d), there is exists (a unique) y : R+ → R

d
satisfying for all t ∈ R+ and

ê (t) = ‖e0‖ +
∫ t

0
‖e (u)‖ du:

• y (0) = д(x , µ) + e0 and y′(t) = h(y (t)) + e (t) I y satis�es a generable IVP

• if x ∈ dom f , t > Ω(‖x ‖ , µ) and ê (t) 6 e−Θ(‖x ‖ ,µ) then

y1..m (t) − f (x)

 6 e−µ

•

y (t)

 6 ϒ(‖x ‖ , µ, ê (t), t) I y (t) is bounded

We denote by AS(ϒ,Ω,Θ) the set of (ϒ,Ω,Θ)-strongly-computable functions. �

De�nition 4.3.10 (Analog strong poly-time): Denote by ASP the set of (poly, poly, poly)-
strongly-computable functions. �

We will now see that any robustly-computable function is in fact strongly-computable.

In other words, any robust system can be made to withstand inputs outside of the domain

76

4.3. COMPUTING WITH PERTURBATIONS

of de�nition and arbitrary large perturbations, without exploding in �nite time, or having

uncontrolled growth.

The idea of the construction is intuitive but technical. Since the system can be subject

to large perturbations, we cannot rely on the robust system to well-behave so the system is

going to monitor itself. More precisely, for a given robust system, we know that any valid

computation satis�es

y (t)

 6 ϒ(‖x ‖ , µ, t). Converly, if at some point

y (t)

 becomes greater

than ϒ(‖x ‖ , µ, t) then something wrong must have happened and the system should stop

immediately to prevent further ill-behavior. Schematically, the system should look like this:

y (0) = д(x) + e0 y′(t) = monitor(y (t))p (y (t)) + e (t)

where monitor(y (t)) is 1 if

y (t)

 6 ϒ(‖x ‖ , µ, t) and 0 otherwise. Of course, this system

is ideal because we can only build continuous approximations of such a monitor, and this

approximation is going to introduce even more errors in the system. Fortunately, we can

control the errors introduced by the monitor and make them small so that the robust system

can handle them. Another issue is that the monitor can never be exactly 0 when

y (t)

 >

ϒ(‖x ‖ , µ, t), but only “very small’. The idea is that small enough is su�cient for the system

to stay bounded as it can be observed on the following toy example:




y (0)= 1

z (0)= 1




y′(t)=
1+tanh(10−y (t))

2
y (t)42

z′(t)= z (t)42

It is clear that z (t) explodes in �nite time. De�neψ (x) = 1+tanh(10−x)
2

x42
so thaty′(t) = ψ (y (t)).

We claim that y (t) is bounded by a polynomial in t . Indeed, observe that for x ∈ R+:

ψ (x) 6
1

2

e10−xx42
using Lemma 2.6.1 (Bounds on tanh)

6 e10−42
42

42
by a function analysis

Consequently:

y (t) = y (0) +

∫ t

0

ψ (y (u))du 6 1 + e10−42
42

42t

Note that in fact y (t) can be shown to be bounded by a (very large) constant but we will not

need such a result in our proof. Furthemore, we claim that there is a relationship between y
and z because:

y (t) = z

(∫ t

0

ϕ (u)du

)
where ϕ (t) =

1 + tanh(10 − y (t))

2

This is where the exact value of ϕ also matters. Indeed, if we are only interested in the be-

haviour of z for z (t) 6 10 then studying z or y is roughly the same because for all t ∈ R+ such

that z (t) 6 10, we have
1

2
6 ϕ (t) 6 1 and thus for all such t :

y (t) = z (ξ (t)) where ξ (t) ∈ [t/2, t]

Of course this is a toy example but the principle works for any z satisfying a PIVP.

On a more technical side, we will need to “apply” De�nition 4.3.1 (Analog robust computability)

over �nite intervals and we need the following lemma to do so.

Lemma 4.3.11 (Finite time robustness): Let f ∈ AR(ϒ,Ω,Θ), I = [0,T], x ∈ dom f , µ ∈ R+,
e0 ∈ R

d and e ∈ C0(I ,Rd) such that ‖e0‖ +
∫
I
‖e (t)‖ dt < e−Θ(‖x ‖ ,µ) . Assume that y : I → Rd

satis�es for all t ∈ I :

y (0) = д(x , µ) + e0 y′(t) = h(y (t)) + e (t)

where д,h come from De�nition 4.3.1 (Analog robust computability) applied to f . Then for all
t ∈ I :

77

CHAPTER 4. COMPUTATION WITH PIVP

•

y (t)

 6 ϒ(‖x ‖ , µ, t)

• if t > Ω(‖x ‖ , µ) then

y1..m − f (x)

 6 e−µ

�

Proof. The trick is simply to extend e so that it is de�ned over R+ and such that:

‖e0‖ +

∫ ∞

0

‖e (u)‖ du 6 e−Θ(‖x ‖ ,µ)

This is always possible because the truncated integral is stricer smaller than the bound. For-

mally, de�ne for t ∈ R+:

ē (t) =



e (t) if t 6 T

e (T)e
e (T)
ε (T−t)

otherwise

where ε = e−Θ(‖x ‖ ,µ) − ‖e0‖ −

∫
I
‖e (t)‖ > 0

One easily checks that ē ∈ C0(R+,R
d) and that:

‖e0‖ +

∫ ∞

0

‖ē (t)‖ dt = ‖e0‖ +

∫ T

0

‖e (t)‖ dt +

∫ ∞

T
e (T)e

e (T)
ε (T−t)dt

= e−Θ(‖x ‖ ,µ) − ε +
[
−εe (T)e

e (T)
ε (T−t)

]∞
T

= e−Θ(‖x ‖ ,µ)

Assume that z : R+ → R
d

satis�es for t ∈ R+:

z (0) = д(x , µ) z′(t) = д(z (t)) + ē (t)

Then z satis�es De�nition 4.3.1 (Analog robust computability) so ‖z‖ (t) 6 ϒ(‖x ‖ , µ) and

if t > Ω(‖x ‖ , µ) then

z1..m (t) − f (x)

 6 e−µ . Conclude by noting that z (t) = y (t) for all

t ∈ [0,T] since e (t) = ē (t). �

Theorem 4.3.12 (Robust ⊆ strong): ARP ⊆ ASP. �

Proof. Let Ω,Θ, ϒ be polynomials and (f :⊆ Rn → Rm) ∈ AR(ϒ,Ω,Θ). Without loss of

generality, we assume that Ω, Θ, ϒ are increasing functions of their arguments. Apply De�ni-

tion 4.3.1 (Analog robust computability) to get d , h and д. Let x ∈ Rn, µ ∈ R+, (e0,y, e0,`) ∈ R
d+1

and (ey, e`) ∈ C0(R+,R
d+1). De�ne ê (t) = ‖e0‖ +

∫ t

0
‖e (u)‖ du, and consider the following

system for t ∈ R+:




y (0)= д(x , µ) + e0,y

y′(t)= ψ (t)h(y (t)) + ey (t)

`(0)= mx1(norm∞,1(x), µ) + 1 + e0,`

`′(t)= 1 + e` (t)

ψ (t) =
1 + tanh(∆(t))

2

∆(t) = ϒ(`(t), `(t), `(t)) + 1 − norm∞,1(y (t))

We will �rst show that the system remains polynomially bounded. Apply Lemma 2.6.16 (Max

function) and Lemma 2.6.18 (Norm function) to get that:

‖`(0)‖ 6 max(‖x ‖ + 1, µ) + 1 +

e0,`

6 poly(‖x ‖ , µ) +

e0,`

78

4.3. COMPUTING WITH PERTURBATIONS

Consequently:

‖`(t)‖ 6 ‖`(0)‖ +

∫ t

0

1 + ‖e` (u)‖ du

6 poly(‖x ‖ , µ) + t +

e0,`

 +

∫ t

0

‖e` (u)‖ du

6 poly(‖x ‖ , µ) + t + ê (t)

6 poly(‖x ‖ , µ, t , ê (t)) (4.3.13)

Since д,h ∈ GPVAL, there exists sp and sp polynomials such that

д(x)

 6 sp(‖x ‖) and

‖h(x)‖ 6 sp(‖x ‖) for all x ∈ Rd and without loss of generability, we assume that sp and sp
are increasing functions. Let t ∈ R+, there are two possibilities:

• If ∆(t) > 0 then norm∞,1(y (t)) 6 1 + ϒ(`(t), `(t), `(t)) so apply Lemma 2.6.18 (Norm

function) and use (4.3.13) to conclude that

y (t)

 6 poly(‖x ‖ , µ, t , ê (t)) and thus:

ψ (t)h(y (t))

 6 sp(

y (t)

) use that tanh < 1

6 poly(‖x ‖ , µ, t , ê (t)) (4.3.14)

• If ∆(t) < 0 then apply Lemma 2.6.1 (Bounds on tanh) to get that ψ (t) 6 1

2
e∆(t) 6 e∆(t) .

Apply Lemma 2.6.18 (Norm function) to get that ∆(t) 6 ϒ(`(t), `(t), `(t)) + 1−

y (t)

 and

thus

y (t)

 6 ϒ(`(t), `(t), `(t)) + 1 − ∆(t) and thus:

ψ (t)h(y (t))

 6 e∆(t)sp(

y (t)

) use the bound onψ

6 e∆(t)sp(ϒ(`(t), `(t), `(t)) + 1 − ∆(t)) use the bound on

y (t)

6 poly(`(t))e∆(t) poly(−∆(t)) use that ϒ is polynomial

6 poly(`(t)) use that e−x poly(x) = O (1) for x > 0 and �xed poly

6 poly(‖x ‖ , µ, t , ê (t)) (4.3.15)

Putting (4.3.14) and (4.3.15) together, we get that:

y (t)

 6

д(x , µ)

 +

e0,y

 +
∫ t

0

ψ (u)h(y (u))

 +

ey (u)

 du

6 sp(

x , µ

) +
∫ t

0

poly(‖x ‖ , µ,u, ê (u))du + ê (t)

6 poly(‖x ‖ , µ, t , ê (t))

We will now analyze the behavior of the system when the error is bounded. De�ne Θ∗(α , µ) =

Θ(α , µ) + 1. De�ne
ˆψ (t) =

∫ t

0
ψ (u)du and note that it is a di�eomorphism sinceψ > 0. Apply

Lemma 2.4.4 (Perturbed time-scaling) to get thaty (t) = z (ˆψ (t)) for all t ∈ R+, where z satis�es

for ξ ∈ ˆψ (R+):

z (0) = д(x , µ) + e0,y z′(ξ) = h(z (ξ)) + ẽ (ξ) where

∫ ˆψ (t)

0

ẽ (ξ)

 dξ =
∫ t

0

ey (u)

 du

Assume that x ∈ dom f and let T ∈ R+ such that ê (T) 6 e−Θ
∗ (‖x ‖ ,µ)

. Then ê (T) < e−Θ(‖x ‖ ,µ)

and for all t ∈ [0,T]:

e0,y

 +

∫ ˆψ (t)

0

‖ẽ ‖ (u)du =

e0,y

 +
∫ t

0

ey (u)

 du

79

CHAPTER 4. COMPUTATION WITH PIVP

6 ê (t) 6 e−Θ(‖x ‖ ,µ)

Apply Lemma 4.3.11 (Finite time robustness) to get for all u ∈ [0, ˆψ (T)]:

‖z (u)‖ 6 ϒ(‖x ‖ , µ,u) (4.3.16)

if u > Ω(‖x ‖ , µ) then

z1..m (u) − f (x)

 6 e−µ (4.3.17)

Apply Lemma 2.6.16 (Max function) and Lemma 2.6.18 (Norm function) to get for all t ∈ [0,T]:

`(t) > mx1(norm∞,1(‖x ‖ , µ)) + 1 −

e0,`

 + t −

∫ t

0

‖e` (u)‖ du

> max(‖x ‖ , µ) + 1 + t − ê (t)

> max(‖x ‖ , µ, t) using that ê (t) 6 1

Consequently, using Lemma 2.6.18 (Norm function), for all t ∈ [0,T]:

∆(t) > ϒ(`(t), `(t), `(t)) −

y (t)

> ϒ(‖x ‖ , µ, t) −

y (t)

 using that `(t) > max(‖x ‖ , µ, t)

= ϒ(‖x ‖ , µ, t) −

z (

ˆψ (t))

 using that y (t) = z (ˆψ (t))

> 0 because
ˆψ (t) ∈ [0, ˆψ (T)]

Consequently for all t ∈ [0,T]:

ˆψ (t) =

∫ t

0

ψ (u)du =

∫ t

0

1 + tanh(∆(u))

2

du >
t

2

De�ne Ω∗(α , µ) = 2Ω(α , µ). Assume that T > Ω∗(‖x ‖ , µ) then
ˆψ (T) > Ω(‖x ‖ , µ) and thus

y1..m (T) − f (x)

 =

z (

ˆψ (T)) − f (x)

 6 e−µ .

Finally, (y, `) (0) = д∗(x , µ)+e0 whereд∗ ∈ GPVAL. Similarly (y, `)′(t) = h∗((y, `) (t))+e (t)
where h∗ ∈ GPVAL. Note again that both h∗ and д∗ are de�ned over the entire space. This

concludes the proof that f ∈ AS(Ω∗, poly,Θ∗). �

4.4 Computing with variable input

The previous notions of computability were essentially “o�ine”, meaning that the system was

given the whole input from the beginning. In the context of real computations, this is some-

what unrealistic because we usually only have access to an approximation of the input, or an

arbitrarily precise approximation via an analog system for example. But certainly, the main

issue of these notions of computability is that they do not compose very well. Indeed, the

input is given as a whole from the beginning but the system never produces the output as the

whole: it only converges to it ! This makes it impossible, or at least not obvious, to compose

two functions by feeding one system with the output of another.

For this reason, we would like to have a better notion of computability where the input is

not known entirely from the beginning but rather some converging approximation. In other

words, we want to design “online” systems that can compute approximation of the output

given an approxiamtion of the input. We will introduce two such notion: one without pertur-

bations and one with pertubations.

80

4.4. COMPUTING WITH VARIABLE INPUT

4.4.I Extreme computability
In this section we introduce our strongest notion of analog computability. In this setting, the

system is provided with an approximate input and, assuming the input is stable and precise

enough, is required to produce a correct output with increasing precision over time. Also,

we require this behavior to hold for any period of time, so the system input can change and

the system will account for this change (with some delay). This gives the system an “online”

behavior because it must adjust to unpredictable changes. To make things more realistic and

more interesting, we even require that the system be robust to small perturbations during the

computation. We will even require the system to withstand arbitrarily large perturbations

without exploding in �nite time, and to work with any initial condition. To support such

extreme requirements, like in the case of robust computability, we allow the right-hand side

to be any (polynomially bounded) generable function. Informally, the system will look like:

y′(t) = д(y (t),x (t), µ (t)) + e (t)

where x (t) is the input, µ (t) is the requested precision and e (t) is the perturbation. The system

must be able to start for any initial condition. Informally we require that if over a su�ciently

large time interval the input is stable (x (t) ≈ x), the precision is roughly stable (µ (t) ∈ [µ, µ+1])

and the error is not too big then y (t) converges to f (x) ± e−µ .
In this de�nition, as well as in the next ones, we will need to measure some bounds based

on the value of some variable during a small (past but still non-negative) time period. We

introduce the following notation for convenience.

De�nition 4.4.1 (Past sup): For any f : R+ → R and δ > 0, de�ne:

supδ f (t) = sup

u∈[t−δ ,t]∩R+

f (u)

�

De�nition 4.4.2 (Extreme computability): Let n,m ∈ N, f :⊆ Rn → Rm, ϒ : R3

+ → R+ and

Ω,Λ,Θ : R2

+ → R+. We say that f is (ϒ,Ω,Λ,Θ)-extremely-computable if and only if there

exists δ > 0, d ∈ N and (д : Rd × Rn+1 → Rd) ∈ GPVALK such that for any x ∈ C0(R+,R
n),

µ ∈ C0(R+,R+), y0 ∈ R
d
, e ∈ C0(R+,R

d) there exists (a unique) y : R+ → R
d

satisfying for all

t ∈ R+:

• y (0) = y0 and y′(t) = д(t ,y (t),x (t), µ (t)) + e (t)

•

y (t)

 6 ϒ

(
supδ ‖x ‖ (t), supδµ (t),

y0

 1[1,δ](t) +

∫ t

max(0,t−δ)
‖e (u)‖ du

)
• For any I = [a,b], if there exists x̄ ∈ dom f and µ̌, µ̂ > 0 such that for all t ∈ I , µ (t) ∈

[µ̌, µ̂], ‖x (t) − x̄ ‖ 6 e−Λ(‖x̄ ‖ ,µ̂) and

∫ b

a
‖e (u)‖ du 6 e−Θ(‖x̄ ‖ ,µ̂) then

y1..m (u) − f (x̄)

 6 e−µ̌

whenever a + Ω(‖x̄ ‖ , µ̂) 6 u 6 b.

We denote by AX(ϒ,Ω,Λ,Θ) the set of (ϒ,Ω,Λ,Θ)-extremely-computable functions. �

De�nition 4.4.3 (Analog extreme poly-time): Denote by AXP the set of (poly, poly, poly, poly)-
extremely-computable functions. �

Remark 4.4.4 (Non-autonomous system): Contrary to all other notions of computability, we

grant extreme systems access to the time, making them non-autonomous. Intuitively, this

seems necessary because the system cannot assume anything about the initial condition or

the perturbations, and yet we require that it “follows” the input in a timely manner. We do not

think it is possible to do this with an perturbed autonomous system. �

81

CHAPTER 4. COMPUTATION WITH PIVP

Remark 4.4.5 (Regularity of the input): It is notable that the second condition of the de�nition

is not

y (t)

 6 ϒ(‖x (t)‖ , µ (t), t) as one could have expected. The reason for this is that we

only require x to be a continuous function but it can have arbitrary quick variations.

For example, consider a GPAC y computing the identity function. We can build a contin-

uous function x such that x (t) = A for t 6 1 and x (t) = 0 for t > 1 + ε . We can always �nd

a su�ciently large A and su�ciently small ε such that y cannot “follow” x quickly enough

to ensure that

y (t)

 6 ϒ(‖x (t)‖ , t) for any �xed ϒ. Indeed, if it were the case, with small

enough ε , we would have y (t + ε) ≈ y (t) ≈ A and x (t + ε) = 0, so A 6 ϒ(0, 1+ ε) for any A and

ε which is absurd.

The intuition behind this issue is that the maximum growth rate of y at a time t is limited

by

y (t)

 and the dimension of the system. If x has a faster changing rate than this bound,

y cannot even follow the variations of x . This is not an issue when the GPAC is computing

a value because x (t) is assumed to be nearly constant (variations are controlled by Λ) but for

the general size bound, we cannot assume anything on x . A simple remedy is give the system

a little bit of time (δ) to take the variations of x into account.

For simplicity, we take δ to be a constant because it can easily be seen that a constant time

is su�cient to adjust to any change (this is mostly a consequence of Lemma 4.4.12 (Reach)).

Over the time interval [t , t − δ], it seems natural and simple to consider the supremum of

the norm (sup
[t ,t−δ]

‖x ‖), but other measures could have been used, like the average norm

(
1

δ

∫ t

t−δ
‖x ‖), without changing the obtained class. Another interpretation is to see δ as the

minimum “sample time” of the system. �

4.4.II Reaching a value
The notion of extreme computability might seem so strong at �rst that one can wonder if

anything is really computable in this sense. In this section, we will introduce a very useful

pattern which we call “reaching a value”. This can be seen as a proof that all constant func-

tion or generable functions are extremely-computable as well as the basic block to build more

complicated such functions. As as introductory example, consider the system:

y′(t) = α − y (t)

This sysem can be shown to converge to α whatever the initial value is. In this section we

extend this system in several non-trivial ways. In particular, we want to ensure a certain rate

of convergence in all situations and we want to make this system robust to perturbations. In

other words, we want to analyze:

y′(t) = α (t) − y (t) + e (t)

where e (t) is a perturbation and α (t) ≈ α .

De�nition 4.4.6 (Reach ODE): Let T > 0, I = [0,T], д,E : I → R, ϕ : I → R∗+. De�ne (4.4.7)

as the following di�erential equation for t ∈ I ,




y′(t)= ϕ (t)X3(д(t) − y (t)) + E (t)

y (0)= y0

where X3(u) = u + u
3

(4.4.7)

�

Lemma 4.4.8 (Reach ODE: integral error): LetT > 0, I = [0,T], д,E ∈ C0(I ,R), ϕ ∈ C0(I ,R∗+).
Assume that ∃η > 0 and д̄ ∈ R such that ∀t ∈ I , |д(t) − д̄ | 6 η. Then the solution y to (4.4.7)

82

4.4. COMPUTING WITH VARIABLE INPUT

exists over I and satis�es:

|y (T) − д̄ | 6 η +

∫ T

0

|E (t) |dt +
1√

exp(2
∫ T

0
ϕ (u)du) − 1

Furthermore, for any t ∈ I :

|y (t) − д̄ | 6 max(η, |y (0) − д̄ |) +

∫ t

0

|E (u) |du

�

Proof. Write f (t ,x) = E (t)+ϕ (t)X3(д(t)−x), theny′(t) = f (t ,y (t)). De�ne I (t) =
∫ t

0
|E (u) |du

and consider:

f+(t ,x) = |E (t) | + ϕ (t)X3 (д̄ + η − (x − I (t)))

f−(t ,x) = −|E (t) | + ϕ (t)X3 (д̄ − η − (x + I (t)))

Since X3 and I are increasing functions, it is easily seen that f−(t ,x) 6 f (t ,x) 6 f+(t ,x). By

a classical result of di�erential inequalities, we get that y−(t) 6 y (t) 6 y+(t) where y−(0) =
y+(0) = y (0) and y′±(t) = f±(t ,y±(t)). Now realise that:

y′+(t) − I
′(t) = ϕ (t)X3(д̄ + η − (y+(t) − I (t)))

y′−(t) + I
′(t) = ϕ (t)X3(д̄ − η − (y−(t) + I (t)))

which are two instances of the following di�erential equation:

x (0) = x0 x′(t) = ϕ (t)X3(x∞ − x (t))

Since ϕ and X3 are continuous, this equation has a unique solution by the Cauchy-Liptchiz

theorem and one can check that the following is a solution:

x (t) = x∞ +
x0 − x∞√

(e2

∫ t
0
ϕ (u)du

− 1) (1 + (x0 − x∞)2) + 1)︸ ︷︷ ︸
:=α (x0,x∞,t)

Furthermore, one can check that for any a,b ∈ R and any t > 0:

• |α (a,b, t) | 6 1√
e2

∫ T
0
ϕ (u)du

−1

• min(0,a − b) 6 α (a,b, t) 6 max(0,a − b)

It follows that:

д̄ − η − I (t) + α (y (0), д̄ − η, t) 6 y (t) 6 д̄ + η + I (t) + α (y (0), д̄ + η, t)

−η − I (t) + α (y (0), д̄ − η, t)) 6 y (t) − д̄ 6 η + I (t) + α (y (0), д̄ + η, t)

Using the �rst inequality on α we get that:

−η − I (t) −
1√

e2

∫ T
0
ϕ (u)du

− 1

6 y (t) − д̄ 6 η + I (t) +
1√

e2

∫ T
0
ϕ (u)du

− 1

Which proves the �rst result. And using the second inequality we get that:

−η − I (t) +min(0,y (0) − (д̄ − η)) | 6 y (t) − д̄ 6 η + I (t) +max(0,y (0) − (д̄ + η))

This proves the second result by case analysis. �

83

CHAPTER 4. COMPUTATION WITH PIVP

Sometimes though, the previous lemma lacks some precision. In particular whenϕ is never

close to 0, where the intuition tells us that we should be able to replace the

∫ t

0
|E (u) |du with

some bound that does not depend on t . The next lemma focuses on this case exclusively.

Lemma 4.4.9 (Reach ODE: worst error): Let T > 0, I = [0,T], д,E : I → R, ϕ : I → R∗+.
Assume that ∃η,ϕmin,Emax > 0 and д̄ ∈ R such that

• ∀t ∈ I , |д(t) − д̄ | 6 η.

• ∀t ∈ I , |E (t) | 6 Emax

• ∀t ∈ I , ϕ (t) > ϕmin

Then the solution y to (4.4.7) exists over I and satis�es for all t ∈ I :

|y (t) − д̄ | 6 η +
Emax

ϕmin
+

1√
exp(2

∫ t

0
ϕ (u)du) − 1

�

Proof. De�ne ψ (t) =
∫ t

0
ϕ (u)du for t ∈ I . Since ϕ (t) > ϕmin > 0 then ψ is an increasing

function and admits an inverse ψ−1
. De�ne for all ξ ∈ [0,ψ (T)], z∞(ξ) = д(ψ−1(ξ)) and

z (ξ) = y (ψ−1(ξ)). One sees that z satis�es

z′(ξ) = X3(z∞(ξ) − z (ξ)) +
E (ψ−1(ξ))

ϕ (ψ−1(ξ))︸ ︷︷ ︸
:=f (ξ ,z (ξ))

for ξ ∈ [0,ψ (T)] and z (0) = y (0). Furthermore, for all such ξ , |z∞(ξ) − д̄ | 6 η and |
E (ψ−1 (ξ))
ϕ (ψ−1 (ξ))

| 6
Emax
ϕmin

. De�ne α = Emax
ϕmin

, f+(x) = X3(д̄+η −x) +α and f−(x) = X3(д̄−η −x) −α . One can check

that f−(x) 6 f (ξ ,x) 6 f+(x) for any ξ and x . Consider the solutions z− and z+ to z′− = f−(z−)
and z′+ = f+(z+) where z−(0) = z+(0) = z (0) = y (0). By a classical result of di�erential

inequalities, we get that z−(ξ) 6 z (ξ) 6 z+(ξ). By shifting the solutions, both are instances of

a system of the form:

x (0) = x0 x′(t) = −X3(x (t)) + ε

Since x 7→ −X3(x)+ε is an increasing function, there exists a unique x∞ such that ε = X3(x∞).
De�ne f (x) = −X3(x)+ε and f ∗(x) = X3(x∞−x). One checks that f ∗(x)− f (x) = 3x∞(x

2−x2

∞),
thus f ∗(x) 6 f (x) if x 6 x∞ and f (x) 6 f ∗(x) if x∞ 6 x . Notice that f (x∞) = 0, so by a

classical result of di�erential equations, x (t) − x∞ must keep constant sign for the entire life

of the solution (i.e. x (t) cannot “cross” x∞). Consider the solutions x− and x+ to x− = f ∗(x−)
and x+ = f ∗(x+) where x−(0) = min(x∞,x0) and x+(0) = max(x∞,x0). Then the previous

remark and a standard result guarantees that x−(t) 6 x (t) 6 x+(t). By theorem the equations

x′± = f ∗(x±) have a unique solution and one can check that the following are solutions:

x±(t) = x∞ +
x±(0) − x∞√

(e2t − 1) (1 + (x±(0) − x∞)2) − 1)

We immediately deduce that |x±(t) − x∞ | 6
1√

e2t−1

and so |x (t) − x∞ | 6
1√

e2t−1

. Let δ∞ be

such that X3(δ∞) = α . Unrolling the de�nitions, we get that |z±(ξ) − д̄ ∓ δ∞ ∓ η | 6
1√

e2t−1

.

So |z (ξ) − д̄ | 6 η + δ∞ +
1√

e2ξ−1

. And �nally, since y (t) = z (ψ (t)), we get that |y (t) − д̄ | 6

η + δ∞ +
1√

e2

∫ t
0
ϕ (u)du

−1

. To conclude, it su�ces to note that if X3(δ∞) = α then δ∞ 6 α since

X3(x) > x for all x . �

84

4.4. COMPUTING WITH VARIABLE INPUT

De�nition 4.4.10 (Reach function): For any ϕ > 0 and y,д ∈ R, de�ne

reach(ϕ,y,д) = 2ϕX3(д − y) where X3(x) = x + x3

�

Remark 4.4.11: It is useful to note that for any ϕ,ψ ∈ R+ and y,д ∈ R,

ϕ reach(ψ ,y,д) = reach(ϕψ ,y,q)

�

Lemma 4.4.12 (Reach): For any I = [a,b], any ϕ ∈ C0(I ,R+), any д,E ∈ C0(I ,R), any y0,д∞ ∈
R and η > 0 such that for all t ∈ I , |д(t) − д∞ | 6 η. Assume that y : I → R satis�es




y (0)= y0

y′(t)= reach(ϕ (t),y (t),д(t)) + E (t)

Then for any t ∈ I ,

|y (t) − д∞ | 6 η +

∫ t

a
|E (u) |du + exp

(
−

∫ t

a
ϕ (u)du

)
whenever

∫ t

a
ϕ (u)du > 1

And for any t ∈ I ,

|y (t) − д∞ | 6 max(η, |y (0) − д∞ |) +

∫ t

0

|E (u) |du

Furthermore, reach ∈ GPVAL. �

Proof. Apply Lemma 4.4.8 (Reach ODE: integral error) and notice that if

∫ t

a
ϕ (u)du > 1, then:√

exp

(∫ t

a
4ϕ (u)du

)
− 1 >

√
(exp

(
2

∫ t

a
ϕ (u)du) + 1

)
(exp

(
2

∫ t

a
ϕ (u)du

)
− 1)

> exp

(∫ t

a
ϕ (u)du

)
√
e2 − 1 > exp

(∫ t

a
ϕ (u)du

)
�

4.4.III Sampling
Another very common pattern in signal processing is known as “sample and hold”, where

we have a variable signal and we would like to apply some process to it. Unfortunately, the

processor often assumes (almost) constant input and does not work in real time (analog-to-

digital converters are typical example). In this case, we cannot feed the signal directly to the

processor so we need some black box that samples the signal to capture its value, and hold

this value long enough for the processor to compute its output. This process is usually used

in a τ -periodic fashion: the box samples for time δ and holds for time τ − δ .

De�nition 4.4.13 (Sample and hold): Let t ∈ R, µ,τ ∈ R+,x ,д ∈ R, I = [a,b] ([0,τ] and

de�ne:

sampleI ,τ (t , µ,x ,д) = plilI ,τ (t , µ̂, reach(µ̌,x ,д))

where

µ̌ =
µ + 1

min(1, |I |)
µ̂ = µ +max(0, ln(τ − |I |))

�

85

CHAPTER 4. COMPUTATION WITH PIVP

Lemma 4.4.14 (Sample and hold): Let τ ∈ R+, I = [a,b] ([0,τ], y : R+ → R, y0 ∈ R,
x , e ∈ C0(R+,R) and µ : R+ → R+ an increasing function. Suppose that for all t ∈ R+:

y (0) = y0 y′(t) = sampleI ,τ (t , µ (t),y (t),x (t)) + e (t)

Then:

|y (t) | 6 2 +

t∫
max(0,t−τ−|I |)

|e (u) |du +max

(
|y (0) |1[0,b](t), supτ+|I | |x |(t)

)
Furthermore:

• if t < I (mod τ) then |y′(t) | 6 e−µ (t) + |e (t) |

• for n ∈ N, if there exists x̄ ∈ R and ν ,ν ′ ∈ R+ such that |x̄ − x (t) | 6 e−ν and µ (t) > ν ′ for
all t ∈ nτ + I then |y (nτ + b) − x̄ | 6

∫
nτ+I
|e (u) |du + e−ν + e−ν

′

• for n ∈ N, if there exists x̌ , x̂ ∈ R and ν ∈ R+ such that x (t) ∈ [x̌ , x̂] and µ (t) > ν for all
t ∈ nτ + I then y (nτ + b) ∈ [x̌ − ε, x̂ + ε] where ε = 2e−ν +

∫
nτ+I
|e (u) |du

• for any J = [c,d] ⊆ R+, if there exists ν ,ν ′ ∈ R+ and x̄ ∈ R such that µ (t) > ν ′ for all
t ∈ J and |x (t) − x̄ | 6 e−ν for all t ∈ J ∩ (nτ + I) for some n ∈ N, then |y (t) − x̄ | 6

e−ν + e−ν
′

+
∫ t

t−τ−|I |
|e (u) |du for all t ∈ [c + τ + |I |,d]

• if there exists Ω : R+ → R+ such that for any J = [a,b] and x̄ ∈ R such that for all ν ∈ R+,
n ∈ N and t ∈ (nτ + I) ∩ [a + Ω(ν),b], |x̄ − x (t) | 6 e−ν ; then |y (t) − x̄ | 6 e−ν for all
t ∈ [a + Ω∗(ν),b] where Ω∗(ν) = max(Ω(ν + ln 3), µ−1(ν + ln 3)) + τ + |I |

�

Proof. Let n ∈ N. Apply Lemma 2.6.26 (“periodic low-integral-low”), Lemma 4.4.12 (Reach)

and Remark 4.4.11 to get that:

• For all t ∈ In = [nτ + a,nτ + b]: y′(t) = ϕ (t) reach(µ̌ (t),y (t),x (t)) + e (t) where

∫
In
ϕ >

1. Since |x (t) − 0| 6 supu∈In
|x (u) | and

∫
In
ϕµ̌ =

∫
In
ϕ

1+µ
|I | > 1 then |y (nτ + b) − 0| 6

supIn
|x (u) | +

∫
In
|e (u) |du + e−1 6 1 + supu∈In

|x (u) | +
∫
In
|e (u) |du.

• For all t ∈ [nτ +b, (n+1)τ +a]: |y′(t) | 6 |e (t) |+e−µ̂ (t) 6 |e (t) |+e− ln(τ−|I |)
thus |y (t)−0| 6∫ t

nτ+b
|e (u) |du + (τ − |I |)e− ln(τ−|I |) + 1 + supu∈In

|x (u) | +
∫
In
|e (u) |du 6 2 + supu∈In

|x (u) | +∫ t

nτ+a
|e (u) |du.

• For all t ∈ In+1: y′(t) = reach(ϕ (t)µ̌ (t),y (t),x (t)) where

∫
In
ϕ > 1. Since |x (t) − 0| 6

supu∈In+1

|x (u) | then |y (t)−0| 6 max(supu∈[(n+1)τ+a,t] |x (u) |, |y ((n+1)τ+a)−0|)+
∫ t

(n+1)τ+a
|e | 6

2 + supu∈[nτ+a,t] |x (u) | +
∫ t

nτ+a
|e (u) |du.

Note that this analysis is a bit subtle: the �rst point does not give a bound on |y (t) | over In, it

only gives a bound on |y (nτ +b) |. On the contrary the two other points give bounds on |y (t) |
over [nτ + b, (n + 1)τ + b] which covers the whole period so by correctly putting everything

together, we get that for all |y (t) | 6 2+ supu∈[t ,t−τ−|I |]∩R+
|x (u) | +

∫ t

t−τ−|I |
|e (u) |du for all t > b.

The case of the initial segment is similar in aspect but uses the other result from Lemma 4.4.12

(Reach):

86

4.4. COMPUTING WITH VARIABLE INPUT

• For all t ∈ [0,a]: |y′(t) | 6 |e (t) | + e−µ̂ (t) 6 |e (t) | + e− ln(τ−|I |)
thus |y (t) | 6

∫ t

0
|e (u) |du +

ae− ln(τ−|I |) + |y0 | 6
∫ t

0
|e (u) |du + 1 + |y0 |

• For all t ∈ [a,b]: y′(t) = reach(ϕ (t)µ̌ (t),y (t),x (t)) + e (t) where

∫
In
ϕ > 1. Since |x (t) −

0| 6 supu∈[a,t] |x (u) | then |y (t) − 0| 6 max(supu∈[a,t] |x (u) |, |y (a) − 0|) +
∫ t

a
|e (u) |du 6

1 +
∫ t

0
|e (u) |du +max(|y0 |, supu∈[a,t] |x (u) |).

Finally, we get that for all t ∈ R+:

|y (t) | 6 2 +

t∫
t−τ−|I |

|e (u) |du +max

(
|y (0) |1[0,b](t), supτ+|I | |x |(t)

)
The �rst extra statement is a trivial consequence of Lemma 2.6.26 (“periodic low-integral-

low”) and the fact that µ̌ (t) > µ (t).
The second extra statement has mostly been proved already and uses Lemma 2.6.26 (“pe-

riodic low-integral-low”) and Lemma 4.4.12 (Reach) again. Let n ∈ N, assume there ex-

ists x̄ ∈ R and ν ∈ R+ such as described. For all t ∈ In = [nτ + a,nτ + b] we have

y′(t) = ϕ (t) reach(µ̌ (t),y (t),x (t)) + e (t) where

∫
In
ϕ > 1. Since |x (t) − x̄ | 6 e−ν and

∫
In
ϕµ̌ =∫

In
ϕ

1+µ
|I | > ν

′
then |y (nτ + b) − x̄ | 6 e−ν +

∫
In
|e (u) |du + e−ν

′

.

The third statement is a consequence of the previous one: since nτ + I is a compact set and

x is a continuous function, it admits a maximum over nτ + I . Apply the previous statement to

x̄+supnτ+I x
2

> x̄ to conclude.

The last extra statement requires more work. Let ν > 0 and n ∈ N such that nτ +a > Ω(ν).
Apply Lemma 2.6.26 (“periodic low-integral-low”), Remark 4.4.11 and Lemma 4.4.12 (Reach)

to get that:

• For all t ∈ In: y′(t) = ϕ (t) reach(µ̌ (t),y (t),x (t)) where

∫
In
ϕ > 1. Since t > nτ + a > Ω(ν)

and t ∈ In then |x (t) − x̄ | 6 e−ν . And since

∫
In
ϕµ̌ =

∫
In
ϕ

1+µ
|I | > 1 + µ (nτ + a) then

|y (nτ + b) − x̄ | 6 e−ν + e−µ (nτ+a) .

• For all t ∈ [nτ + b, (n + 1)τ + a]: |y′(t) | 6 e−µ̂ (t) 6 e−µ̂ (nτ+a) thus |y (t) − x̄ | 6 (τ −
|I |)e−µ̂ (nτ+a) + e−ν + e−µ (nτ+a) 6 e−ν + 2e−µ (nτ+a) .

• For all t ∈ In+1: y′(t) = ϕ (t) reach(µ̌ (t),y (t),x (t)) where

∫
In
ϕ > 1. Since t > nτ +a > Ω(ν)

and t ∈ In then |x (t) − x̄ | 6 e−ν . Thus |y (t) − x̄ | 6 max(e−ν , |y ((n + 1)τ + a) − x̄ |) 6
e−ν + 2e−µ (nτ+a) .

Finally, we get that |y (t) − x̄ | 6 e−ν + 2e−µ (nτ+a) for all t ∈ [nτ + b, (n + 1)τ + b].

De�ne Ω∗(ν) = max(Ω(ν + ln 3), µ−1(ν + ln 3))+τ + |I |. Let ν > 0 and t > Ω∗(ν). Let n ∈ N
such that t ∈ [nτ+b, (n+1)τ+b]. Thennτ+a = (n+1)τ+b−τ−|I | > t−τ−|I | > Ω∗(ν)−τ−|I | >
Ω(ν + ln 3). By the previous reasoning, we get that |y (t) − x̄ | 6 e−ν + 2e−µ (nτ+a) . And since

nτ+a > Ω∗(ν)−τ−|I | > µ−1(ν+ln 3) then µ (nτ+a) > ν+ln 3. Thus |y (t)−x̄ | 6 3e−ν 6 e−ν . �

4.4.IV Equivalence
In this section, we show that if a function is strongly-computable then it is extremely-computable.

The intuitive explanation is that we can build a system that reboots the computation regularly

and converge by slowly increasing the precision of the computation. By rebooting, it can also

account for the changes in the input and can also restart from a safe state in case the system

was heavily perturbed. The robustness if necessary because this process of simulating and

87

CHAPTER 4. COMPUTATION WITH PIVP

rebooting introduces errors in the computation. We will also show that we can rescale any

extreme system so that it converges in constant time.

From a high-level point of view, the proof is not very complicated: the system will follow

a cycle (see Remark 4.4.4 (Non-autonomous system)) formed by four stages. During the �rst

stage, a variable of the system will converge to some value µ̄: typically some average of µ (t).
We need a stable value for the next stage, the only thing that matters is that this value must be

higher than the minimum of µ (t) over the interval. During the second stage, the system will

converge to д(x̄ , µ̄) assuming that the input x (t) is very close to some input x̄ . Of course the

resulting value will have a small error, which will be gracefully handled by the strong system.

During the third stage, the system will simulate the strong system h(x (t)) in an accelerated

fashion to reach the requested precision. Again this simulation will introduce some errors

but those are already dealt with. Finally, during the fourth stage, the system will copy the

computed value to some auxiliary variable. This variable will keep its value nearly constant

when the others are computing, thus producing a nearly constant output.

Theorem 4.4.15 (Strong ⊆ extreme): ASP ⊆ AXP. More precisely if f ∈ ASP then there exists
polynomials ϒ,Λ,Θ and a constant polynomial Ω such that f ∈ AX(ϒ,Ω,Λ,Θ). �

Proof. Let (f :⊆ Rn → Rm) ∈ AS(ϒ,Ω,Θ) where ϒ, Ω Θ are polynomials which we assume,

without loss of generability, to be increasing functions of theirs inputs. Apply De�nition 4.3.9

(Analog strong computability) to get d , h and д.

Let e = 1+d +m, x ∈ C0(R+,R
n), µ ∈ C0(R+,R+), (ν0,y0, z0) ∈ R

e
, (eν , ey, ez) ∈ C

0(R+,R
e)

and consider the following system:




ν (0)= ν0

y (0)= y0

z (0)= z0




ν ′(t)= sample
[0,1],4(t , µ

∗(t),ν (t), µ (t) + ln∆ + 7) + eν (t)

y′(t)= sample
[1,2],4(t , µ

∗(t),y (t),д(x (t),ν (t)))

+ plil
[2,3],4(t , µ

∗(t),A(t)h(y (t))) + ey (t)

z′(t)= sample
[3,4],4(t , µ

∗(t), z (t),y1..m (t)) + ez (t)

where

∆ = 5 ∆′ = ln∆ + 10

µ∗(t) = f∗(1 + norm∞,1(x (t)),ν (t) + 4)

A(t) = 1 + Ω(1 + norm∞,1(x (t)),ν (t))

Λ∗(α , µ) = Θ∗(α , µ) = f∗(α , µ + ∆′)

f∗(α , µ) = µ + ln∆ + Θ(α , µ) + lnq(α + µ)

Let I = [a,b] and assume there exists x̄ ∈ dom f and µ̌, µ̂ ∈ R+ such that for all t ∈ I ,

µ (t) ∈ [µ̌, µ̂], ‖x (t) − x̄ ‖ 6 e−Λ
∗ (‖x̄ ‖ ,µ̂)

and

∫ b

a
‖e (u)‖ du 6 e−Θ

∗ (‖x̄ ‖ ,µ̂)
. Apply Proposition 2.2.4

(Modulus of continuity) to д to get q ∈ K[R], without loss of generality we can assume that

q is an increasing function and q > 1. We will use Lemma 2.6.18 (Norm function) to get that

norm∞,1(x (t)) + 1 > ‖x̄ ‖ because ‖x (t) − x̄ ‖ 6 1. Also note that µ∗,Θ∗,Λ∗ are increasing

functions of their arguments. Let n ∈ N such that [4n, 4n + 4] ⊆ I and t ∈ [4n, 4n + 4]. We will

�rst analyse the variable ν , note that the analysis is extremely rough to simplify the proof.

• if t ∈ [4n, 4n + 1] then µ∗(t) > 0 so apply Lemma 4.4.14 (Sample and hold) to get that

ν (4n+ 1) ∈ [µ̌ + ln∆+ 7− ε, µ̂ + ln∆+ 7+ ε] where ε 6 2e−0 +
∫

4n+1

4n
|eν (u) |du 6 3 because∫ b

a
‖e (t)‖ 6 1. De�ne ν̄ = ν (4n + 1), then ν̄ ∈ [µ̌ + ln∆ + 4, µ̂ + ln∆ + 10︸ ︷︷ ︸

=∆′

]

88

4.4. COMPUTING WITH VARIABLE INPUT

• if t ∈ [4n + 1, 4n + 4] then µ∗(t) > 0 so apply Lemma 4.4.14 (Sample and hold) to get

that |ν ′(t) | 6 e−0 +
∫ t

4n+1
|eν (u) |du and thus |ν (t) − ν̄ | 6 (t − 4n − 1) +

∫ t

4n+1
‖e (u)‖ du 6 4

because

∫ b

a
‖e (t)‖ 6 1. In other words ν (t) ∈ [ν̄ − 4, ν̄ + 4].

Furthermore for t ∈ [4n + 1, 4n + 4] we have:

µ∗(t) > Θ∗(1 + norm∞,1(x (t)),ν (t) + 4) > f∗(‖x̄ ‖ , ν̄)

It will also be useful to note that:

Λ∗(‖x̄ ‖ , µ̂) = Θ∗(‖x̄ ‖ , µ̂) > f∗(‖x̄ ‖ , µ̂ + ∆′)

> f∗(‖x̄ ‖ , ν̄)

We can now analyze y using this property:

• if t ∈ [4n + 1, 4n + 2] then |ν ′(t) | 6 e−µ
∗ (t) + |eν (t) | thus |ν (t) − ν̄ | 6 e−f

∗ (‖x̄ ‖ ,ν̄) +∫
4n+2

4n+1
|eν (u) |du. Furthermore sup

[4n+1,4n+2]
‖x ‖ 6 ‖x̄ ‖ + 1, thus:

д(x̄ , ν̄) − д(x (t),ν (t))

 6 max(|ν (t) − ν̄ |, ‖x (t) − x̄ ‖)q(max(‖x̄ ‖ , |ν̄ |))

6 max

(
e−Θ

∗ (‖x̄ ‖ ,µ̂) + e−f
∗ (‖x̄ ‖ ,ν̄), e−Λ

∗ (‖x̄ ‖ ,µ̂)
)
q(‖x̄ ‖ + ν̄)

6 2e−Θ(‖x̄ ‖ ,ν̄)−ln∆

Also note that

y
′(t) − sample

[1,2],4(t , µ
∗(t),y (t),д(x (t),ν (t)))

 6 e−µ

∗ (t)
by Lemma 2.6.26

(“periodic low-integral-low”). So we can apply Lemma 4.4.14 (Sample and hold) to get that

y (4n + 2) − д(x̄ , ν̄)

 6 2e−Θ(‖x̄ ‖ ,ν̄)−ln∆ + e−f
∗ (‖x̄ ‖ ,ν̄) +

∫
4n+2

4n+1
‖e (u)‖ du 6 4e−Θ(‖x̄ ‖ ,ν̄)−ln∆

.

• if t ∈ [4n+2, 4n+3] then apply Lemma 4.4.14 (Sample and hold) and Lemma 2.6.26 (“peri-

odic low-integral-low”) to getϕ such that

∫
4n+3

4n+2
ϕ (u)du > 1 and

y′(t) − ϕ (t)A(t)h(y (t))

 6
e−µ

∗ (t) +

ey (t)

. De�ne ψ (t) =
∫ t

4n+2
ϕ (u)A(u)du then ψ (4n + 3) > Ω(‖x̄ ‖ , ν̄) since

A(u) > Ω(‖x̄ ‖ , ν̄) for u ∈ [4n + 2, 4n + 3]. Apply Lemma 2.4.4 (Perturbed time-scaling)

over [4n + 2, 4n + 3] to get that y (t) = w (ψ (t)) where w satis�es w (0) = y (4n + 2) and

w′(ξ) = h(w (ξ))+ ẽ (ξ) where ẽ ∈ C0(R+,R
d) satis�es

∫ ψ (t)

0

ẽ (ξ)

 dξ =
∫ t

4n+2

ey (u)

 du 6

e−Θ
∗ (‖x̄ ‖ ,µ̂) 6 e−Θ(‖x̄ ‖ ,ν̄)−ln∆

. Furthermore,

w (0) − д(x̄ , ν̄)

 6 4e−Θ(‖x̄ ‖ ,ν̄)−ln∆

from the

result above. In other words, w (0) = д(x̄ , ν̄) + ẽ0 and w′(t) = д(w (t)) + ẽ (t) where

‖ẽ0‖ +
∫ ψ (t)

0
‖e (u)‖ du 6 5e−Θ(‖x̄ ‖ ,ν̄)−ln∆ 6 e−Θ(‖x̄ ‖ ,ν̄) because ∆ > 5. Apply De�ni-

tion 4.3.9 (Analog strong computability) to get that

w1..m (ψ (4n + 3)) − f (x̄)

 6 e−ν̄ since

ψ (4n + 3) > Ω(‖x̄ ‖ , ν̄).

• if t ∈ [4n+3, 4n+4] then

y′(t)

 6 e−µ
∗ (t)+

ey (t)

 thus

y (t) − y (4n + 3)

 6 e−f
∗ (‖x̄ ‖ ,ν̄)+∫ t

4n+3

ey (u)

 du 6 2e−ν̄ so

y1..m (t) − f (x̄)

 6 3e−ν̄ .

Note that the above reasoning is also true for the last segment [4n,b] ⊆ I in which case

the result only applies up to time b of course. In other words, the results apply as long as

t ∈ [4n, 4 + 4] ∩ I and 4n > a. From this we conclude that if t ∈ [a + 4,b] ∩ [4n + 3, 4n + 3]

for some n ∈ N then

y1..m (t) − f (x̄)

 6 3e−ν̄ . Apply Lemma 4.4.14 (Sample and hold) to get,

using that ν̄ > µ̌ + ln∆ and ∆ > 5, that for all t ∈ [a + 5,b]:

z (t) − f (x̄)

 6 3e−ν̄ + e−f
∗ (‖x̄ ‖ ,ν̄) +

∫ t

t−5

‖e (u)‖ du 6 5e−ν̄

6 e−µ̌

89

CHAPTER 4. COMPUTATION WITH PIVP

To complete the proof, we must also analyze the norm of the system. As a shorthand, we

introduce the following notation:

int
+
δ α (t) =

∫ t

max(0,t−δ)
α (u)du

Apply Lemma 4.4.14 (Sample and hold) to get that:

|ν (t) | 6 2 +

t∫
max(0,t−5)

|eν (u) |du +max

(
|ν0 |1[0,4](t), sup

5
|µ + ln∆ + 7|(t)

)
6 poly

(
|ν0 |1[0,5](t) + int

+
5
|eν |(t), sup

5
µ (t)

)
The analysis of y is a bit more painful, as it uses both results about the sampling function and

the strongly-robust system we are simulating. Let n ∈ N, and t ∈ [4n, 4n + 4]:

• if t ∈ [4n, 4n + 1] then apply Lemma 4.4.14 (Sample and hold) and Lemma 2.6.26 (“pe-

riodic low-integral-low”) to get, using that µ (t) > 0, that

y′(t)

 6 2 + ‖e (t)‖ and thus

y (t) − y (4n)

 6 2 +
∫ t

4n
‖e (u)‖ du.

• if t ∈ [4n+1, 4n+2] then using the result on ν ,

д(x (t),ν (t))

 6 sup

[4n+1,t] poly(‖x ‖ ,ν) 6

poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ (t), sup

6
µ (t), sup

1
‖x ‖ (t)

)
. Apply Lemma 4.4.14 (Sample and

hold) and Lemma 2.6.26 (“periodic low-integral-low”) to get, using that µ (t) > 0 and the

result on ν , that:

y (4n + 2)

 6 sup

[4n+1,4n+2]

д(x ,ν)

 + 2 +

∫
4n+2

4n+1

‖e (u)‖ du

6 poly

(
|ν0 |1[0,5](4n + 2) + int

+
6
‖e ‖ (4n + 2), sup

6
µ (4n + 2), sup

1
‖x ‖ (4n + 2)

)
and also that:

y (t)

 6 max
*
,

sup

[4n+1,t]

д(x ,ν)

 + 2,

y (4n + 1)

+
-
+

∫ t

4n+1

‖e (u)‖ du

6 poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ (t), sup

6
µ (t), sup

1
‖x ‖ (t),

y (4n)

)
• if t ∈ [4n + 2, 4n + 3] then apply Lemma 4.4.14 (Sample and hold), Lemma 2.6.26 (“peri-

odic low-integral-low”), Lemma 2.4.4 (Perturbed time-scaling) and De�nition 4.3.9 (Analog

strong computability) to get that

y (t)

 6 ϒ(0, 0, ê (Â(t)), Â(t)) where Â(t) =

∫ t

4n+2
A(u)du

and ê (Â(t)) =

y (4n + 2) − д(0, 0)

 +
∫ t

4n+2
1 + ‖e (u)‖ du. Since Ω is a polynomial, and

using the result on ν , we get that:

Â(t) 6 sup

[4n+2,t]
poly(‖x ‖ , |ν |)

6 poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ , sup

6
µ (t), sup

1
‖x ‖ (t)

)
and using that 4n + 2 6 t 6 4n + 3:

y (4n + 2) − д(0, 0)

 6

y (4n + 2)

 +

д(0, 0)

6 poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ , sup

7
µ (t), sup

2
‖x ‖ (t)

)
And since ϒ is a polynomial, we conclude that:

y (t)

 6 poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ (t), sup

7
µ (t), sup

2
‖x ‖ (t)

)
90

4.4. COMPUTING WITH VARIABLE INPUT

• if t ∈ [4n + 3, 4n + 4] then apply Lemma 4.4.14 (Sample and hold) and Lemma 2.6.26

(“periodic low-integral-low”) to get, using that µ (t) > 0, that

y′(t)

 6 2+ ‖e (t)‖ and thus

y (t) − y (4n + 3)

 6 2 +
∫ t

4n+3
‖e (u)‖ du.

From this analysis we can conclude that for all t ∈ [0, 2]:

y (t)

 6 poly

(
|ν0 |1[0,5](t) + int

+
6
‖e ‖ (t), sup

6
µ (t), sup

1
‖x ‖ (t),

y (0)

)
6 poly

(
|ν0 | + int

+
6
‖e‖ (t), sup

6
µ (t), sup

1
‖x ‖ (t),

y0

)

and for all n ∈ N and t ∈ [4n + 2, 4n + 6]:

y (t)

 6 poly

(
|ν0 |1[0,5](t) + int

+
9
‖e ‖ (t), sup

9
µ (t), sup

4
‖x ‖ (t)

)
Putting everything together, we get for all t ∈ R+:

y (t)

 6 poly

(

y0,ν0

 1[0,5](t) + int

+
9
‖e ‖ (t), sup

9
µ (t), sup

4
‖x ‖ (t)

)
Finally apply Lemma 4.4.14 (Sample and hold) to get the a similar bound on z and thus on the

entire system. �

An interesting detail about the previous theorem is that the obtained extreme system

always converges in constant time. This is not very surprising since we can often rescale

the time. However this is not entirely trivial either because the system is not autonomous

(y′(t) = д(t , . . .)). Since this can be a very useful property for proofs, we show that this kind

of rescaling is always possible.

Lemma 4.4.16 (AXP time rescaling): If f ∈ AXP then there exists polynomials ϒ,Λ,Θ and a
constant polynomial Ω such that f ∈ AX(ϒ,Ω,Λ,Θ). �

Proof. We go for the shortest proof: we will show that AXP ⊆ AWP and use Theorem 4.3.7

(Weak ⊆ robust) then Theorem 4.3.12 (Robust ⊆ strong) followed by Theorem 4.4.15 (Strong

⊆ extreme) which proves exactly our statement.

The proof that AXP ⊆ AWP is next to trivial because the extreme system and some given

input and precision, we can simply store the input and precision into some variables and feed

them into the system. We make the system autonomous by using a variable to store the time.

Let (f :⊆ Rn → Rm) ∈ AX(ϒ,Ω,Λ,Θ), apply De�nition 4.4.2 (Extreme computability) to

get δ ,d and д. Let x ∈ dom f and µ ∈ R+, and consider the following system:




x (0)= x

µ (0)= µ

τ (0)= 0

y (0)= 0




x′(t)= 0

µ′(t)= 0

τ ′(t)= 1

y′(t)= д(t ,y (t),x (t), µ (t))

Clearly he system of the form z (0) = h(x , µ) and z′(t) = H (z (t)) where h and H belong to

GPVAL (and are de�ned over the entire space). Apply the de�nition to get that:

y (t)

 6 ϒ(‖x ‖ , µ, 0)

And thus the entire system in bounded by a polynomial in ‖x ‖ , µ and t . Furthermore, if

t > Ω(‖x ‖ , µ) then

y1..m (t) − f (x)

 6 e−µ . To conclude the proof, we need to rewrite the

system as a PIVP using Proposition 2.2.2 (Generable ODE rewriting). �

91

CHAPTER 4. COMPUTATION WITH PIVP

4.4.V Online computability

The notion of extreme computability is very strong but it is too complicated in many cases,

as well as hard to understand completely. To this end, we introduce simpler notion of online

computability. This notion can be seen as the online counterpart of De�nition 4.2.1 (Analog

computability). We do not repeat Remark 4.4.5 (Regularity of the input) which also applies to

this notion.

De�nition 4.4.17 (Online computability): Let n,m ∈ N, f :⊆ Rn → Rm and ϒ,Ω,Λ : R2

+ →

R+. We say that f is (ϒ,Ω,Λ)-online-computable if and only if there exists δ > 0, d ∈ N
and p ∈ Kd[Rd × Rn] and y0 ∈ K

d
such that for any x ∈ C0(R+,R

n), there exists (a unique)

y : R+ → R
d

satisfying for all t ∈ R+:

• y (0) = y0 and y′(t) = p (y (t),x (t))

•

y (t)

 6 ϒ

(
supδ ‖x ‖ (t), t

)
• For any I = [a,b], if there exists x̄ ∈ dom f and µ̄ > 0 such that for all t ∈ I , ‖x (t) − x̄ ‖ 6
e−Λ(‖x̄ ‖ ,µ̄) then

y1..m (u) − f (x̄)

 6 e−µ̄ whenever a + Ω(‖x̄ ‖ , µ̄) 6 u 6 b.

We denote by AO(ϒ,Ω,Λ) the set of (ϒ,Ω,Λ)-online-computable functions. �

De�nition 4.4.18 (Analog online poly-time): Denote by AOP the set of (poly, poly, poly)-
online-computable functions. �

In the previous section, we made a big jump from strong computability to extreme com-

putability. In this section, we will show that extreme computability is stronger than online

computability. Although this doesn’t come as a surprise, there is a small subtlety because ex-

treme computability allows systems of the form y′ = д(y,x) where д is generable, whereas

online computability requires strictly a PIVP. We saw in Section 2.2 (Stability properties) that

any generable ODE can be rewritten as a PIVP but in the case of external inputs (like x) it

requires at least C1
smoothness. Unfortunately, De�nition 4.4.17 (Online computability) only

requires a C0
input so we cannot apply this result directly. Example 4.4.19 (C0

input is weak)

exhibit this problem on a toy ODE. To work around this problem, the idea is to use to extra

variables to “smooth” the input and is detailed in Example 4.4.20 (C0
input workaround).

Example 4.4.19 (C0
input is weak): Suppose we want to show that tanh is computable and

consider the following system, for x ∈ C0(R+,R+):

y (0) = 0 y′(t) = tanh(x (t)) − y (t)

It can be seen that if x (t) converges to x then y (t) converges to tanh(x). However this system

does not satis�es De�nition 4.4.17 (Online computability) because tanh is obviously not a

polynomial. However we know that tanh
′ = 1−tanh

2

so we can introduce a new variable z (t) =
tanh(x (t)). A simple computation shows that z (0) = tanh(x (0)) and z′(t) = x′(t) (1 − z (t)2).
Rewriting this system we get:

y (0) = 0 z (0) = tanh(x (0)) y′(t) = z (t) − y (t) z′(t) = x′(t) (1 − z (t)2)

The system becomes polynomial but we have two new problems: x needs to be C1
and the

system is polynomial in x′(t) (instead of x (t)), furthermore the initial condition also depends

on x (0). �

92

4.4. COMPUTING WITH VARIABLE INPUT

Example 4.4.20 (C0
input workaround): Continuing Example 4.4.19 (C0

input is weak), we

want to work around the C1
requirement for x and also remove the dependency in x (0). The

idea is to introduce a new variable x∗ that will replace x . This new variable will be part of the

system and only depends on x . Because x isC0
, x∗ will beC1

by the Cauchy-Liptchiz theorem

and we can even choose the initial value. To keep the properties of the system, we arrange so

that x∗ converges to the same value as x , and adapts to the changes of x . Since x∗ only has

access to x and not x′, it will lag a bit behind x but for convergence this is not an issue. We

illustrate this approach on the previous system and de�ne x∗ as follows:

x∗(0) = 0 x∗′(t) = reach(ϕ (t),x∗(t),x (t))

Notice that, by de�nition, reach is a polynomial: this is crucial for this approach to work.

Furthermore, by Lemma 4.4.12 (Reach), if x (t) converges to x then x∗(t) also converges to x .

However there are a couple details that need to be worked with:

• we have to choose a ϕ that matches the required input convergence rate Λ of the system;

• in the previous system, the value of

y (t)

 depended only on ‖x (t)‖ whereas in the new

system it depends on ‖x∗(t)‖ which in turns depends on supu∈[t ,t−τ (t)]∩R+
‖x (u)‖ . The time

τ (t) corresponds to the time needed to make

∫ t

τ (t)
ϕ (u)du > 1 in Lemma 4.4.12 (Reach).

For any reasonable de�nition of ϕ we can arrange so that τ (t) 6 τ ∗ a constant.

�

Theorem 4.4.21 (Extreme ⊆ online): AXP ⊆ AOP �

Proof. Apart from the issue of the input, the system is quite intuitive: we constantly feed the

extreme system with the (smoothed) input and some precision. By increasing the precision

with time, we ensure that the system will converge when the input is stable. However there is

a small catch: over a time interval I , if we change the precision within a range [µ̌, µ̂] then we

must provide the extreme system with precision based on µ̂ in order to get precision µ̌. Since

the extreme system takes time Ω(‖x ‖ , µ̂) to compute, we need arrange so that the requested

precision doesn’t change too much over periods of this duration to make things simpler. We

will use to our advantage that Ω can always be assumed to be a constant.

Let (f :⊆ Rn → Rm) ∈ AX(ϒ,Ω,Λ,Θ) where ϒ,Ω,Λ and Θ are polynomials, which we

can assume to be increasing functions of their arguments. Apply Lemma 4.4.16 (AXP time

rescaling) to get ω > 0 such that for all α ∈ Rn, µ ∈ R+:

Ω(α , µ) = ω

Apply De�nition 4.4.2 (Extreme computability) to get δ ,d and д. De�ne:

τ = ω + 2 δ ′ = max(δ ,τ + 1)

Let x ∈ C0(R+,R
n) and consider the following systems:




x∗(0)= 0

y (0)= 0

z (0)= 0




x∗′(t)= reach(ϕ (t),x∗(t),x (t))

y′(t)= д(t ,y (t),x∗(t), µ (t))

z′(t)= sample
[ω+1,ω+2],τ (t , µ (t), z (t),y1..m (t))

where

ϕ (t) = ln 2 + µ (t) + Λ∗(2 + x1(t)
2 + · · · + xn (t)

2, µ (t)) µ (t) =
t

τ

93

CHAPTER 4. COMPUTATION WITH PIVP

Let t > 1, since ϕ > 1 then Lemma 4.4.12 (Reach) gives:

x∗(t)

 6 sup
1
‖x ‖ (t) + e−

∫ t
t−1

ϕ (u)du 6 sup
1
‖x ‖ (t) + 1

Also for t ∈ [0, 1] we get that:

x∗(t)

 6 sup

[0,t]
‖x ‖

This proves that ‖x∗(t)‖ 6 sup
1
‖x ‖ (t) + 1 for all t ∈ R+. From this we deduce that:

y (t)

 6 ϒ(supδ

x∗

 (t), supδµ (t), 0)

6 poly(supδ ‖x ‖ (t), t)

Apply Lemma 4.4.14 (Sample and hold) to get that:

‖z (t)‖ 6 2 + supτ+1

y

 (t)

6 poly(supδ ′ ‖x ‖ (t), t)

Let I = [a,b] and assume there exists x̄ ∈ dom f and µ̄ such that for all t ∈ I , ‖x (t) − x̄ ‖ 6
e−Λ(‖x̄ ‖ ,µ̄) . Note that 2 +

∑n
i=1

xi (t)
2 > 1 + ‖x (t)‖ > ‖x̄ ‖ for all t ∈ I . Let n ∈ N such that

n > µ̄+ ln 2 and [nτ , (n+1)τ] ⊆ I . Note that µ (t) ∈ [n,n+1] for all t ∈ In. Apply Lemma 4.4.12

(Reach), using that ϕ > 1, to get that for all t ∈ [nτ + 1, (n + 1)τ]:

x∗(t) − x̄

 6 e−Λ
∗ (‖x̄ ‖ ,n) + e−

∫ t
nτ ϕ (u)du 6 2e−Λ

∗ (‖x̄ ‖ ,n)

6 e−Λ(‖x̄ ‖ ,µ̄+ln 2)

Using the de�nition of extreme computability, we get that for all t ∈ [nτ + 1 + ω, (n + 1)τ] =

[nτ + ω + 1,nτ + ω + 2]:

y1..m − f (x̄)

 6 e−µ̄+ln 2

De�ne J = [a + (1 + µ̄ + ln 2)τ ,b] ⊆ I . Assume that t ∈ J ∩ [nτ + 1, (n + 1)τ] for some

n ∈ N, then we must have (n + 1)τ > (1 + µ̄ + ln 2)τ and thus n > µ̄ + ln 2 so we can

apply the above reasoning to get that

y1..m (t) − f (x)

 6 e−µ̄+ln 2

. Furthermore, we also have

µ (t) >
(1+µ̄+ln 2)τ

τ > µ̄ + ln 2 for all t ∈ J . Apply Lemma 4.4.14 (Sample and hold) to conclude

that for any t ∈ [a + τ + µ̄ + ln 2 + τ + 1,b], we have

z (t) − f (x)

 6 2e−µ̄+ln 2 6 e−µ̄ .

To conclude the proof, we need to rewrite the system as a PIVP using Proposition 2.2.2

(Generable ODE rewriting). Note that this works because we only rewrite the variable y, and

doing so we require that x∗ be a C1
function (which is the case) and the new initial variable

will depend on x∗(0) = 0 which is constant. �

The introduction of online computability was not only useful to give a simpler class than

extreme computability, it also makes easier to see that in fact online computable functions are

computable. This result closes the circle and shows that all our polytime classes are equivalent.

Theorem 4.4.22 (Online ⊆ computable): AOP ⊆ AP. �

Proof. The proof is trivial: given x , we store it in a variable and run the online system. Since

the input has no error, we can directly apply the de�nition to get that the online system con-

verges.

Let (f :⊆ Rn → Rm) ∈ AO(ϒ,Ω,Λ). Apply De�nition 4.4.17 (Online computability) to get

δ ,d,p and y0. Let x ∈ dom f and consider the following system:




x (0)= x

y (0)= y0




x′(t)= 0

y′(t)= p (y (t),x (t))

94

4.5. SUMMARY

We immediately get that:

y (t)

 6 ϒ(supδ ‖x ‖ (t), t) 6 ϒ(‖x ‖ , t)

Let µ ∈ R+ and let t > Ω(‖x ‖ , µ), then apply De�nition 4.4.17 (Online computability) to

I = [0, t] to get that

y1..m (t) − f (x)

 6 e−µ since ‖x (t) − x ‖ = 0. �

4.5 Summary
In the previous sections, we gave give several notions of analog computability. Those notions

are di�erent compromises depending on what we were trying to achieve. We saw several

inclusion results that show that in fact they are all equivalent.

Theorem 4.5.1 (Main equivalence): ALP = AP = AWP = ARP = ASP = AXP = AOP. �

Proof. Apply Theorem 4.3.7, Theorem 4.3.12, Theorem 4.4.15, Theorem 4.4.21, Theorem 4.4.22

to get that:

AP ⊆ AWP ⊆ ARP ⊆ ASP ⊆ AXP ⊆ AOP ⊆ AP

Apply Theorem 4.2.15 to get that AP = ALP. �

Proposition 4.5.2 (Polynomial versus generable): The classes AP and AWP are the same if we
only assume that p,q ∈ GPVAL in De�nition 4.2.1 (Analog computability) and De�nition 4.2.7
(Analog weak computability) respectively. �

Proof. If f ∈ AP or f ∈ AWP with p,q ∈ GPVAL, apply Proposition 2.2.2 (Generable ODE

rewriting) to rewrite the system so that only q ∈ GPVAL and p becomes a polynomial. Use

Remark 4.3.8 (Polynomial versus generable) to conclude that this function thus to ARP and

use Theorem 4.5.1 (Main equivalence) to conclude. �

The tables below summarize in an informal way the computability notions that we intro-

duced. In the entire table, we consider a given function f :⊆ Rn → Rm and some given bounds

ϒ,Ω,Θ,Λ. We begin by an informal reformulation of each de�nition, we also add for each item

a list of the relevant symbols, to help the reader match the formal de�nitions with the informal

ones. We also put some comments on what the de�nitions do not guarantee to help identify

the compromises between the de�nitions.

Informal convention for the symbols
Sym. Name Convention

ϒ Space ϒ provides a bound on the “space” used by the system, that is

y (t)

; bound-

ing the space is crucial for the time complexity to make sense

Ω Time Ω gives the time needed by the system to compute the result with a certain

precision; times only makes sense with respect to a space bound ϒ

Λ Modulus Λ acts as the modulus of continuity for online systems: it gives the maximum

allowed error on the input to reach a certain precision

Θ Error Θ gives the maximum amount of perturbation allowed in the system during

a computation to reach a certain precision

95

CHAPTER 4. COMPUTATION WITH PIVP

Informal reformulation of the de�nitions
Class De�nition Sym.

AC(ϒ,Ω) Computability: the most basic notion
Given input x ∈ dom f :

• y satis�es a PIVP and y (0) depends on x I p,q

• y (t) is bounded by a function of ‖x ‖ and t I ϒ

• y1..m (t) converges quickly to f (x) I Ω

q Unde�ned behavior if x < dom f

q Unde�ned behavior if PIVP is perturbed

AL(Ω) Length computability: length-based complexity
Given input x ∈ dom f :

• y satis�es a PIVP and y (0) depends on x I p,q

• y1..m (t) converges quickly to f (x) I Ω

• convergence rate depends on the length of the curve

q Unde�ned behavior if x < dom f

q Unde�ned behavior if PIVP is perturbed

AW(ϒ,Ω) Weak computability: computability with given precision
Given input x ∈ dom f and µ ∈ R+:

• y satis�es a PIVP and y (0) depends on x and µ I p,q

• y (t) is bounded by a function of ‖x ‖ , µ and t I ϒ

• y1..m (t) converges quickly to f (x) ± e−µ I Ω

q Unde�ned behavior if x < dom f

q Unde�ned behavior if PIVP is perturbed

AR(ϒ,Ω,Θ) Robust computability: weak with small pertubations
Given input x ∈ dom f , precision µ and errors e0, e (t):

• assume e0 and

∫
e (t)dt are very small I Θ

• y satis�es a perturbed PIVP and y (0) depends on x and µ I p,q

• y (t) is bounded by a function of ‖x ‖ and µ I ϒ

• y1..m (t) converges quickly to f (x) ± e−µ I Ω

q Unde�ned behavior if x < dom f

q Unde�ned behavior if perturbation are not small enough

AS(ϒ,Ω,Θ) Strong computability: robust to any pertubations
Given input x ∈ Rn, precision µ and errors e0, e (t):

• y satis�es a perturbed PIVP and y (0) depends on x and µ I д,h

• y (t) is bounded by a function of ‖x ‖ , µ, t and e0 +
∫
e (t)dt I ϒ

• if x ∈ dom f and errors are small, y1..m (t) converges to f (x) ± e−µ I Θ,Ω

AO(ϒ,Ω,Λ) Online computability: real-time computation
Given input x (t):

• y satis�es a PIVP and y′(t) depends on x (t) I p

• y (t) is bounded by a function of ‖x (t)‖ and t I ϒ

96

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

Informal reformulation of the de�nitions
Class De�nition Sym.

• over any interval
1
, if x (t) is very close to x̄ ∈ dom f then y1..m (t)

converges to f (x̄) ± e−µ
I Λ,Ω

q Unde�ned behavior if system is perturbed

AX(ϒ,Ω,Λ,Θ) Extreme computability: online with perturbations
Given input x (t), precision µ (t) and error e (t):

• y satis�es a perturbed PIVP,y (0) can be arbitrary andy′(t) depends

on x (t) and µ (t)
I д

• y (t) is bounded by a function of ‖x (t)‖ , µ (t), ‖e (t)‖ I ϒ

• over any interval
2
, if x (t) is very close to x̄ ∈ dom f , µ (t) is close

to µ̄ and errors are very small then y1..m (t) converges to f (x̄) ± e−µ
I Λ,Ω,Θ

4.6 Closure properties and computable zoo
In this section, we will show several closure properties of the AP class. We will also show

that computable functions are continuous and admit a polynomial modulus of continuity. A

number of useful functions are shown to belong to AP such as the minimum, maximum and

rounding functions. The relationship between generable and computable functions is also

studied.

4.6.I Generable functions
We introduced the notion of GPAC computability as a generalization of GPAC generability. As

such, it seems only natural that any generable function must be computable. This is, however,

a surprisingly non-trivial result. The reason for this is subtle and has to do with the domain

of de�nition.

We recall that a function is generable if it satis�es a PIVP over an open connected sub-

set. The intuition tells us that computing the value of f , a generable function, at point x is

only a matter of �nding a path in the domain of de�nition from the initial value x0 to x , and

simulating the di�erential equation along this path. We saw in Proposition 2.7.4 (Generable

path connectedness) that such a path always exists, and can even be assumed to be generable.

However, the proof is not constructive and we have no easy way of computing such a path

given x . For what we know, it may be possible to build small systems (polynomially bounded)

that have an extremely complicated domain of de�nition.

In full generality, we would like to prove that any function of GPVAL with maximal domain

of de�nition has a computable (or even generable) domain. However this seems like a highly

nontrivial result.

For this reason, we ignore the problem completely and restrict ourselves to the case where

�nding the path is trivial: star domains with a generable vantage point. There are several

reasons to restrict to this class of domains. First it is a well-known notion, in particular in

the �eld of di�erential forms which have close links to generable functions
3
. Another reason

1
Means the following property is true over any time interval J ⊆ R+.

2
See Foonote 1

3
In essence generable functions are a kind of multidimensional exact di�erential forms of degree 1. Notably

Poincaré’s lemma states that on a contractible open subset of Rn , closed forms are exact and star domains are the

simplest case of contractible space.

97

CHAPTER 4. COMPUTATION WITH PIVP

is that we will mostly need this theorem for domains of the form Rn × Rm+ , which happen

to be star domains. Finally, star domains capture the essence of necessary condition for this

theorem to be true: computing paths between points is easy.

De�nition 4.6.1 (Star domain): A set X ⊆ Rn is called a star domain if there exists x0 ∈ X
such that for all x ∈ U the line segment from x0 to x is in X , i.e [x0,x] ⊆ X . Such an x0 is

called a vantage point. �

Theorem 4.6.2 (GPVAL ⊆ AP over star domains): If f ∈ GPVAL has a star domain with a
generable vantage point then f ∈ AP. �

Proof. Let (f :⊆ Rn → Rm) ∈ GVAL(sp) and z0 ∈ dom f ∩ Kn a generable vantage point.

Apply De�nition 2.1.17 (Generable function) to get d,p,x0,y0 and y. Since y is generable and

z0 ∈ K
d
, apply Corollary 2.7.5 (Generable �eld stability) to get that y (z0) ∈ K

d
. Let x ∈ dom f

and consider the following system:




x (0)= x

γ (0)= x0

z (0)= y (z0)




x′(t)= 0

γ ′(t)= x (t) − γ (t)

z′(t)= p (z (t)) (x (t) − γ (t))

First note that x (t) is constant and check that γ (t) = x + (x0 − x)e
−t

and note that γ (R+) ⊆
[x0,x] ⊆ dom f because it is a star domain. Thus z (t) = y (γ (t)) since γ ′(t) = x (t) − γ (t) and

Jy = p. It follows that

f (x) − z1..m (t)

 =

f (x) − f (γ (t))

 since z1..m = f . Apply Proposi-

tion 2.2.4 (Modulus of continuity) to f to get q, and since

γ (t)

 6 ‖x0,x ‖ we have:

f (x) − z1..m (t)

 6 ‖x − x0‖ e
−tq(‖x0,x ‖) 6 e−t poly(‖x ‖)

Finally, ‖z (t)‖ 6 sp(γ (t)) 6 poly(‖x ‖) because sp is a polynomial.

As a �nal remark, one can observe that the issue of the domain is in fact reduced to the

problem of building γ . In the case of a star domain, this is trivial. In the general case, one

would need to show that there is a “generic” such γ that given a point x goes from x0 to x and

stays in the domain of f . �

4.6.II Arithmetic operations
Theorem 4.6.3 (Closure by arithmetic operations): If f ,д ∈ AP then f ±д, f д ∈ AP, with the
obvious restrictions on the domains of de�nition. �

Proof. We do the proof in the case of f + д in details. Let Ω, ϒ,Ω′, ϒ′ polynomials such that

f ∈ AC(ϒ,Ω) and д ∈ AC(ϒ′,Ω′). Apply De�nition 4.2.1 (Analog computability) to f and д to

get d,p,q and d′,p′,q′ respectively. Let x ∈ dom f ∩ domд and consider the following system:




y (0)= q(x)

z (0)= q′(x)

w (0)= q(x) + q′(x)




y′(t)= p (y (t))

z′(t)= p′(z (t))

w′(t)= y′(t) + z′(t)

Let Ω∗(α , µ) = max(Ω(α , µ + ln 2),Ω′(α , µ + ln 2)) and ϒ∗(α , t) = ϒ(α , t) + ϒ′(α , t). Since,

by construction, w (t) = y (t) + z (t), if t > Ω∗(α , µ) then

y1..m (t) − f (x)

 6 e−µ−ln 2

and

z1..m (t) − д(x)

 6 e−µ−ln 2
thus

w1..m (t) − f (x) − д(x)

 6 e−µ . Furthermore,

y (t)

 6 ϒ(‖x ‖ , t)

and ‖z (t)‖ 6 ϒ′(‖x ‖ , t) thus ‖w (t)‖ 6 ϒ∗(‖x ‖ , t).
The case of f − д is exactly the same. The case of f д is slightly more involved: one need

to take w′(t) = y′
1
(t)z1(t) + y1(t)z

′
1
(t) = p1(y (t))z1(t) + y1(t)p

′
1
(z (t)) so that w (t) = y (t)z (t).

98

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

The error analysis is a bit more complicated. First note that

f (x)

 6 1 + ϒ(‖x ‖ ,Ω(‖x ‖ , 0))

and

д(x)

 6 1 + ϒ′(‖x ‖ ,Ω′(‖x ‖ , 0)), and denote by `(‖x ‖) and `∗(‖x ‖) those two bounds

respectively. Let t > Ω(‖x ‖ , µ + ln 2`∗(‖x ‖)) then

y1(t) − f (x)

 6 e−µ−ln 2‖д(x)‖

and simi-

larly if t > Ω′(‖x ‖ , µ + ln 2(1 + `∗(‖x ‖))) then

z1(t) − д(x)

 6 e−µ−ln 2(1+‖ f (x)‖)

. Thus for t
greater than the maximum of both bounds,

y1(t)z1(t) − f (x)д(x)

 6

(y1(t) − f (x))д(x)

 +

y1(t) (z1(t) − д(x))

 6 e−µ because

y1(t)

 6 1 +

f (x)

 6 1 + `(‖x ‖). �

4.6.III Continuity and growth

In this section we will show that all computable functions are continuous. More importantly,

we will show that they admit a polynomial modulus of continuity, in a similar spirit as Propo-

sition 2.2.4 (Modulus of continuity). This result is not very surprising because AP = AOP and

online computability implicitly contains the idea of (modulus of) continuity.

Theorem 4.6.4 (Modulus of continuity): If f ∈ AP then f admits a polynomial modulus of
continuity: there exists a polynomial f : R2

+ → R+ such that for all x ,y ∈ dom f and µ ∈ R+:

x − y

 6 e−f(‖x ‖ ,µ) ⇒

f (x) − f (y)

 6 e−µ

In particular f is continuous. �

Proof. Let f ∈ AP, apply Theorem 4.5.1 (Main equivalence) to get that f ∈ AP ϒΩΛ where

ϒ,Ω and Λ are polynomials. Without loss of generality, we assume Ω to be an increasing

function. Apply De�nition 4.4.17 (Online computability) to get δ ,d,p and y0. Let u,v ∈ dom f
and µ ∈ R+. Assume that ‖u −v ‖ 6 e−Λ(‖u‖+1,µ+ln 2)

and consider the following system:

y (0) = y0 y′(t) = p (y (t),u)

By de�nition,

y1..m (t) − f (u)

 6 e−µ−ln 2

for all t > Ω(‖u‖ , µ + ln 2). For the same reason,

y1..m (t) − f (v)

 6 e−µ−ln 2
for all t > Ω(‖v ‖ , µ + ln 2) because ‖u −v ‖ 6 e−Λ(‖u‖+1,µ+ln2) 6

e−Λ(‖v ‖ ,µ+ln 2)
. Apply both result to t = Ω(‖u‖ + 1, µ + ln 2) to get that

f (u) − f (v)

 6
2e−µ−ln 2

. �

Although this is trivial from the de�nition, it is worth noting that all functions in AP are

polynomially bounded.

Proposition 4.6.5: Let f ∈ AP, there exists a polynomial P such that

f (x)

 6 P (‖x ‖) for all
x ∈ dom f . �

Proof. Assume that f ∈ AC(ϒ,Ω) and apply De�nition 4.2.1 (Analog computability) to get

d,p,q. Let x ∈ dom f and let y be the solution of y (0) = q(x) and y′ = p (y). Apply the de�-

nition to get that

f (x) − y1..m (Ω(‖x ‖ , 0))

 6 1 and

y (Ω(‖x ‖ , 0))

 6 ϒ(‖x ‖ ,Ω(‖x ‖ , 0)) 6
poly(‖x ‖) since ϒ and Ω are polynomials. �

4.6.IV Composing functions

Theorem 4.6.6 (Closure by composition): If f ,д ∈ AP and f (dom f) ⊆ domд then д ◦ f ∈
AP. �

Proof. Let f : I ⊆ Rn → J ⊆ Rm and д : J → K ⊆ Rl . We will show that д ◦ f is computable

by using the fact that both f and д are online-computable. We could show directly that д ◦ f
is online-computable but this would only complicated the proof for no apparent gain.

99

CHAPTER 4. COMPUTATION WITH PIVP

Apply Theorem 4.5.1 (Main equivalence) to get that д is (ϒ,Ω,Λ)-online-computable. Ap-

ply De�nition 4.4.17 (Online computability) to get e,∆, z0 for д. Assume that f is (ϒ′,Ω′)-
computable. Apply De�nition 4.2.1 (Analog computability) to get d,p,q for f . Let x ∈ I and

consider the following system:




y (0)= q(x)

y′(t)= p (y (t))




z (0)= z0

z′(t)= q(z (t),y1..m (t))

De�ne v (t) = (x (t),y (t), z (t)) then it immediately follows that v satis�es a PIVP of the

form v (0) = poly(x) and v′(t) = poly(v (t)). Furthermore, by de�nition:

‖v (t)‖ 6 max(‖x ‖ ,

y (t)

 , ‖z (t)‖)

6 max
*
,
‖x ‖ ,

y (t)

 , ϒ *

,
sup

u∈[t ,t−∆]∩R+

y1..m (t)

 , t+
-

+
-

6 poly
*
,
‖x ‖ , sup

u∈[t ,t−∆]∩R+

y (t)

 , t+
-

6 poly
*
,
‖x ‖ , sup

u∈[t ,t−∆]∩R+

ϒ′ (‖x ‖ ,u) , t+
-

6 poly (‖x ‖ , t)

De�ne x̄ = f (x), ϒ∗(α) = 1 + ϒ′(α , 0) and Ω′′(α , µ) = Ω′(α ,Λ(ϒ∗(α), µ)) + Ω(ϒ∗(α), µ).
By de�nition of ϒ′, ‖x̄ ‖ 6 1 + ϒ′(‖x ‖ , 0) = ϒ∗(‖x ‖). Let µ > 0 then by de�nition of Ω′,
if t > Ω′(‖x ‖ ,Λ(ϒ∗(‖x ‖), µ)) then

y1..m (t) − x̄

 6 e−Λ(ϒ
∗ (‖x ‖),µ) 6 e−Λ(‖x̄ ‖ ,µ) . Apply De�ni-

tion 4.4.17 (Online computability) fora = Ω′(‖x ‖ ,Λ(ϒ∗(‖x ‖), µ)) to get that

z1..l (t) − д(f (x))

 6

e−µ for any t > a + Ω(x̄ , µ). And since t > a + Ω(x̄ , µ) whenever t > Ω′′(‖x ‖ , µ), we get that

д ◦ f is computable. �

4.6.V Absolute, minimum, maximum value
In this section, we will show that basic functions like the absolute value, the minimum and

maximum value are computable. We will also show a powerful result when limiting a function

to a computable range. In essence all these result follow from the fact that the absolute value

belongs to AP, which is surprisingly non-trivial result (see Example 4.6.7).

Example 4.6.7 (Broken way of computing the absolute value): Computing the absolute value

in polynomial time/space is a surprisingly di�cult operation, for unintuitive reasons. This ex-

ample illustrates the problem. A natural idea is to realize that |x | = x sgn(x). To this end,

de�ne f (x , t) = x tanh(xt) which works because tanh(xt) → sgn(x) when t → ∞. Unfortu-

nately,
���|x | − f (x , t)

��� 6 |x |e
−|x |t

which converges very slowly for small x . Indeed, if x = e−α

then
���|x | − f (x , t)��� 6 e−α−e

−α t
so we must take t (µ) = eαµ to reach a precision µ. This is un-

acceptable because it grows with
1

|x | instead of |x |. In particular, it is unbounded when x → 0

which is clearly wrong. �

The sign function is not computable because it not continuous. However, if f is a contin-

uous function that cancels at 0 then sgn(x) f (x) is continuous. We prove an e�ective version

of this remark below. The absolute value will then follows as a special case of this result.

The proof is not di�cult but the idea is not very intuitive. As the example outlines, we

cannot simply compute f (x) tanh(д(x)t) and hope that it converges quickly enough when

100

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

t → ∞. What if we could replace t by et ? It would work of course, but cannot do that. Except

if we can ? The crucial point is to realize that we do not really need to compute tanh(д(x)et)
for arbitrary large t , we only need it to “bootstrap” so that д(x)et ≈ poly(t). This can be done

in a clever way by bounding the growth the function when it becomes too large.

Proposition 4.6.8 (Smooth sign): For any polynomial p : R+ → R+, Hp ∈ AP where

Hp (x , z) = sgn(x)z (x , z) ∈ Up :=
{
(0, 0)

}
∪

{
(x , z) ∈ R∗ × R :

���
z
x

��� 6 ep (‖x ,z‖)
}

�

Proof. Let (x , z) ∈ U and consider the following system:




s (0)= x

y (0)= z tanh(x)




s′(t)= tanh(s (t))

y′(t)=
(
1 − tanh(s (t))2

)
y (t)

First check that y (t) = z tanh(s (t)). The case of x = 0 is trivial because s (t) = 0 and y (t) =
0 = H (x , z). If x < 0 then check that the same system for −x has the opposite value for

s and y so all the convergence result will the exactly the same and will be correct because

H (x , z) = −H (−x , z). Thus we can assume that x > 0.

Apply Lemma 2.6.1 (Bounds on tanh) to get that 1−e−u 6 tanh(u) 6 1 for allu ∈ R+. Thus

tanh(s (t)) > 1 − e−s (t) and by a classical result of di�erential inequalities, s (t) > w (t) where

w (0) = s (0) = x and w′(t) = 1 − e−w (t)
. Again check that w (t) = ln

(
1 + (ex − 1)et

)
. From

this conclude that |z − y (t) | 6 |z |
1+(ex−1)et 6

|z |e−t

ex−1
6 |z |x e

−t 6 ep (‖x ,z‖)−t . Thus |z − y (t) | 6 e−µ

for all t > µ + p (‖x , z‖) which is polynomial in

x , z, µ

. Furthemore, |s (t) | 6 |x | + t because

s′(t) | 6 1 and |y (t) | 6 |z | so the system is polynomially bounded. Finally, the system is of

the form (s,y) (0) = f (x) and (s,y)′(t) = д((s,y) (t)) where f ,д ∈ GPVAL so Hp ∈ AP with

generable functions. Apply Proposition 4.5.2 (Polynomial versus generable) to conclude. �

Theorem 4.6.9 (Absolute value): (x 7→ |x |) ∈ AP. �

Proof. Let p (x) = 0 which is a polynomial, and a(x) = Hp (x ,x) where Hp ∈ AP comes from

Proposition 4.6.8 (Smooth sign). It is not hard to see that a is de�ned overR because (0, 0) ∈ Up

and for any x , 0,
���
x
x

��� 6 1 = ep (|x |) thus (x ,x) ∈ Up . Consequently a ∈ AP and for any x ∈ R,

a(x) = sgn(x)x = |x | which concludes. �

Corollary 4.6.10 (Max, Min): max,min ∈ AP. �

Proof. Use that max(a,b) = a+b
2
+

���
a+b

2

��� and min(a,b) = −max(−a,−b). Conclude with The-

orem 4.6.9 (Absolute value), Theorem 4.6.3 (Closure by arithmetic operations) Theorem 4.6.6

(Closure by composition) �

4.6.VI Rounding

In Section 2.6 (Generable zoo) we saw that it was possible to build a very good generable

rounding function. In this section, we will see that we can do even better with computable

functions. More precisely, we will build a computable function that rounds perfectly every-

where, except on a small, periodic, interval of size e−µ where µ is a parameter. This is the

best can do because of the continuity and modulus of continuity requirements of computable

functions, as show in Theorem 4.6.4 (Modulus of continuity). We will need a few technical

lemmas before getting to the rounding function itself.

101

CHAPTER 4. COMPUTATION WITH PIVP

Remark 4.6.11 (Constant function): Let f ∈ AOP, I a convex subset of dom f and assume

that f is constant over I , with value α . Apply De�nition 4.4.17 (Online computability) to get

d,δ ,p and y0. Let x ∈ C0(R+, dom f) and consider the system:

y (0) = y0 y′(t) = p (y (t),x (t))

If there exists J = [a,b] and M such that for all x (t) ∈ I and ‖x (t)‖ 6 M for all t ∈ J ,
then

y1..m (t) − α

 6 e−µ for all t ∈ [a + Ω(M, µ),b]. This is unlike the usual case where the

input must be nearly constant and it is true because whatever the system can sample from

the input x (t), the resulting output will be the same. Formally, it can seen from the proof of

Theorem 4.4.15 (Strong ⊆ extreme), or buy building a small system around the online-system

that samples the input, even if it unstable. �

Proposition 4.6.12 (Clamped exponential): For any a,b, c,d,x ∈ R such that a 6 b and ` ∈
R+, de�ne h as follows. Then h ∈ AP:

h(a,b, c,d,x) = max(a,min(b, cex + d))

�

Proof. First note that we can assume thatd = 0 becauseh(a,b, c,d,x) = h(a−d,b−d, c, 0,x)+d .

Similarly, we can assume thata = −b andb > |c | becauseh(a,b, c,d,x) = max(a,min(b,h(−|c |−
max(|a |, |b |), |c |+max(|a |, |b |), c,d,x))) and min,max, | · | ∈ AP. So we are left withH (`, c,x) =
max(−`,min(`, cex)) where ` > |c | and x ∈ R. Furthermore, we can assume that c > 0 be-

cause H (`, c,x) = sgn(c)H (`, |c |,x) and it belongs to AP for all ` > |c | and x ∈ R thanks to

Proposition 4.6.8 (Smooth sign). Indeed, if c = 0 then H (`, |c |,x) = 0 and if c , 0, ` > |c | and

x ∈ R, then
���

c
H (`,|c |,x)

��� > e−|x | .
We will show that H ∈ AWP, let ` > c > 0, µ ∈ R+, x ∈ R and consider the following

system:




y (0)= c

z (0)= 0




y′(t)= z′(t)y (t)

z′(t)= (1 + ` − y (t)) (x − z (t))

Note that formally, we should add extra variables to hold x , µ and ` (the inputs). Also note

that to make this a PIVP, we should replace z′(t) by its expression in the right-hand side, we

kept z′(t) to make things more readable. By construction y (t) = cez (t) , and since ` > c > 0,

by a classical di�erential argument, z (t) ∈ [0,x] and y (t) ∈ [0,min(cex , ` + 1)]. This shows

in particular that the system is polynomially bounded in ‖`,x , c‖ . There are two cases to

consider.

• If ` > cex then ` − y (t) = ` − cez (t) > c (ex − ez (t)) > c (x − z (t)) > 0 thus by a classical

di�erential inequalities reasoning, z (t) > w (t) where w satis�es w (0) = 0 and w′(t) =
(x −w (t)). This system can be solved exactly and w (t) = x (1 − e−t). Thus y (t) > cew (t) >
cexe−xe

−t
> cex (1 − xe−t) > cex − cxex−t . So if t > µ + x + c then y (t) > cex − e−µ then

since y (t) 6 cex it shows that |y (t) − cex | 6 e−µ .

• If ` 6 cex then by the above reasoning, ` + 1 > y (t) > ` when t > µ + x + c .

We will modify this sytem to feed y to an online-system computing min(−`,max(`, ·)). The

idea is that when y (t) > `, this online-system is constant so the input does not need to be

stable.

Let G (x) = min(`,x) then G ∈ AOP, apply De�nition 4.4.17 (Online computability) to

get d,δ ,p and y0. Let x , c, `, µ and consider the following system (where y and z are from the

previous system):

w (0) = y0 w′(t) = p (w (t),y (t))

Again, there are two cases.

102

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

• If ` > cex then |y (t) − cex | 6 e−Λ(`,µ) 6 e−Λ(ce
x ,µ)

when t > Λ(`, µ) + x + c , thus |w1(t) −
G (cex) | 6 e−µ when t > Λ(`, µ) +x + c +Ω(`, µ) and this concludes becauseG (cex) = cex .

• If ` 6 cex then by the above reasoning, ` + 1 > y (t) > ` when t > Λ(`, µ) + x + c and thus

|w1(t) − ` | 6 e−µ when t > Λ(`, µ) + x + c + Ω(`, µ) by Remark 4.6.11 (Constant function)

because G (x) = ` for all x > `.

To conclude the proof that H ∈ AWP, note that w is also polynomially bounded. �

De�nition 4.6.13 (Round): Let rnd
∗
∈ C0(R,R) be the unique function such that:

• rnd
∗(x , µ) = n for all x ∈

[
n − 1

2
+ e−µ ,n + 1

2
− e−µ

]
for all n ∈ Z

• rnd
∗(x , µ) is a�ne over

[
n + 1

2
− e−µ ,n + 1

2
+ e−µ

]
for all n ∈ Z

�

Theorem 4.6.14 (Round): rnd
∗
∈ AP. �

Proof. The idea of the proof is to build a function computing the “fractional part” function,

by this we mean a 1-periodic function that maps x to x over [−1+ e−µ , 1− e−µ] and is a�ne at

the border to be continuous. The rounding function immediately follows by subtracting the

fractional of x to x . In the details, building this function is not immediate. The intuition is that

1

2π arccos(cos(2πx)) works well over [0, 1/2 − e−µ] but needs to be �xed at the border (near

1/2), and also its parity needs to be �xed based on the sign of sin(2πx).

Formally, de�ne for c ∈ [−1, 1], x ∈ R and µ ∈ R+:

д(c, µ) = max(0,min((1 − eµ

2
) (arccos(c) − π), arccos(c)))

f (x , µ) =
1

2π
sgn(sin(2πx))д(cos(2πx), µ)

Check that д ∈ AP because of Proposition 4.6.12 (Clamped exponential) and the fact that

arccos ∈ AP because arccos ∈ GPVAL. Then f ∈ AP by Proposition 4.6.8 (Smooth sign).

Indeed, if sin(2πx) = 0 then д(cos(2πx), µ) = 0 and if sin(2πx) , 0, a tedious computa-

tion shows that
���
д(cos(2πx),µ)

sin(2πx)
��� = min

(
(1 − eµ

2
) arccos(cos(2πx))−π

sin(2πx) , arccos(cos(2πx))
sin(2πx)

)
6 2πeµ because

д(cos(2πx), µ) is piecewise a�ne with slope eµ at most (see below for more details).

Note that f is 1-periodic because of the sine and cosine so we only need to analyze if over

[−1

2
, 1

2
], and since f is an odd function, we only need to analyze it over [0, 1

2
]. Let x ∈ [0, 1

2
] and

µ ∈ R+ then 2πx ∈ [0,π] thus arccos(cos(2πx)) = 2πx and f (x , µ) = min((1− eµ

2
) (x − 1

2
), x

2π).
There are two cases:

• if x ∈ [0, 1

2
− e−µ] then x − 1

2
6 −e−µ thus (1 − eµ

2
) (x − 1

2
) > 1

2
− e−µ > x

2π so f (x , µ) = x

• if x ∈ [
1

2
− e−µ , 1

2
] then 0 > x − 1

2
> −e−µ thus (1 − eµ

2
) (x − 1

2
) 6 1

2
− e−µ 6 x

2π so

f (x , µ) = (1 − eµ

2
) (x − 1

2
) which is a�ne

Finally de�ne rnd
∗(x , µ) = x − f (x , µ) to get the desired function. �

103

CHAPTER 4. COMPUTATION WITH PIVP

4.6.VII Mixing functions

Suppose that we have two continuous functions f0 and f1 that partially cover R but such that

dom f0 ∪ dom f1 = R. We would like to build a new continuous function de�ned over R out

of them. One way of doing this is to build a function f that equals f0 over dom f0 \ dom f1,

f1 over dom f1 \ dom f0 and a linear combination of both in between. For example consider

f0(x) = x2
de�ned over] − ∞, 1] and f1(x) = x over [0,∞[. This approach may work from a

mathematical point of view, but it raises severe computational issues: how do we describe the

two domains ? How do we compute a linear interpolation between arbitrary sets ? What is

the complexity of this operation ? This would require to discuss the complexity of real sets,

which is a whole subject by itself.

A more elementary solution to this problem is what we call mixing. We assume that we

are given an indicator function i that covers the domain of both functions. Such an example

would be i (x) = x in the previous example. The intuition is that i describes both the domains

and the interpolation. Precisely, the resulting function should be f0(x) if i (x) 6 0, f1(x) if

i (x) > 1 and a mix of f0(x) and f1(x) inbetween. The consequence of this choice is that the

domain of f0 and f1 must overlap on the region {x | 0 < i (x) < 1}. In the previous example,

we need to de�ne f0 over] − ∞, 1[= {x | i (x) < 1} and f1 over]0,∞] = {x | i (x) > 0}. Several

types of mixing are possible, the simplest being linear interpolation: (1−i (x)) f0(x)+i (x) f1(x).
Formally, we are building the following continuous function:

f (x) =




f0(x) if i (x) 6 0

(1 − i (x)) f0(x) + i (x) f1(x) if 0 < i (x) < 1

f1(x) if i (x) > 1

The main result of this section is to show that if f0, f1 and i are analog-polytime then f is

also analog-polytime.

Essentially, the proof looks very much like the proof of Theorem 4.6.3 (Closure by arith-

metic operations) since the mixing function is a linear interpolation. The tricky detail is that

x does not belong to the domain of de�nition of f0 and f1 all the time. In those cases, we still

run the system “computing” f0 and f1 but we must ensure that invalid outputs are ignored.

De�nition 4.6.15 (Mixing function): Let f0 :⊆ Rn → Rd , f1 :⊆ Rn → Rd and i :⊆ Rn → R.

Assume that {x | i (x) < 1} ⊆ dom f0 and {x | i (x) > 0} ⊆ dom f1, and de�ne for x ∈ dom i:

mix(i, f0, f1) (x) =




f0(x) if i (x) 6 0

(1 − i (x)) f0(x) + i (x) f1(x) if 0 < i (x) < 1

f1(x) if i (x) > 1

�

Theorem 4.6.16 (Closure by mixing): Let f0 :⊆ Rn → Rd , f1 :⊆ Rn → Rd and i :⊆ Rn → R.
Assume that f0, f1, i ∈ AP , that {x | i (x) < 1} ⊆ dom f0 and that {x | i (x) > 0} ⊆ dom f1. Then
mix(i, f0, f1) ∈ AP . �

Proof. We �rst modify i so that it takes values in [0, 1] only. To this end, introduce:

i∞(x) = max(0,min(1, i (x))

Apply Theorem 4.6.6 (Closure by composition) and Corollary 4.6.10 (Max, Min) to get that i∞ ∈
AP. Apply Theorem 4.5.1 (Main equivalence) to get that i∞ is (ϒ∞,Ω∞)-computable and f0, f1

104

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

are (ϒ0,Ω0,Λ0)-online-computable and (ϒ1,Ω1,Λ1)-online-computable, respectively. With-

out loss of generality, we can assume that ϒ and Ω functions are all increasing. Apply Def-

inition 4.2.1 (Analog computability) to i∞ to get d∞,p∞,q∞. Apply De�nition 4.4.17 (Online

computability) to f0 and f1 to get δ 0,d0,y0

0
,p0

and δ 1,d1,y1

0
,p1

respectively. Let x ∈ dom i and

consider the following system:




u (0)= y1

0,1 + q
∞
1
(x) (y1

0,1 − y
0

0,1)

v (0)= q∞(x)

y0(0)= y0

0

y1(0)= y1

0

x (0)= x




u′(t)= (1 −v1(t))y
0

1..d
(t) +v1(t)y

1

1..d
(t)

v′(t)= (ψ (0) +ψ ′(t))p∞(v (t))

y0
′
(t)= p0(y0(t),x (t))

y1
′
(t)= p1(y1(t),x (t))

x′(t)= 0

ψ (t) = Ω∞(norm∞,1(x), t + ϒ
0(norm∞,1(x), t) + ϒ

1(norm∞,1(x), t))

The system looks complicated but most parts of it are straightfoward: x (t) is a constant func-

tion storing the input x , y0
is computing f0(x), y

1
is computing f1(x), v is computing i∞(x)

and u is computing mix(i, f0, f1) (x). Note that we did not write u′(t) directly to make it more

readable but one easily checks that u′(t) can be written as a polynomial in the other variables

of the system. Note that v is an accelerated version of the system for i∞, in other words if

w (0) = q(x) w′(t) = p∞(w (t))

then v (x) = w (ψ (t) + (t − 1)ψ (0)) by Lemma 2.4.3 (ODE time-scaling). We will use the fact

that if t > 1 thenψ (t) + (t − 1)ψ (0) > ψ (t), and that norm∞,1(x) > ‖x ‖ .
One easily checks that the system is bounded by a polynomial: y0

is bounded by ϒ0
, y1

is

bounded by ϒ1
, v is bounded by ϒ∞, x is bounded by ‖x ‖ and �nally u is a sum and product

of the previous variables.

It remains to see that the system correctly computes the mix function. Let µ > 0 and

t > ln 6 + µ, then

ψ (t) + (t − 1)ψ (0) > ψ (t) > Ω∞(‖x ‖ , µ + ln 6 + ϒ1(‖x ‖ , t) + ϒ0(‖x ‖ , t))

If i (x) 6 0 then i∞(x) = 0 and by hypothesis x ∈ dom f0. Thus ‖v1(t) − i
∞(x)‖ =

‖v1(t)‖ 6 e−ϒ
1 (‖x ‖ ,t)−ϒ0 (‖x ‖ ,t))−µ−ln 6

. If also t > Ω0(‖x ‖ , µ) then

y

0

1..d
(t) − f0(x)

 6 e−µ−ln 6
. It

follows, using that xe−x 6 1, that:

u (t) − f0(x)

 6

y

0

1..d (t) − f0(x)

 + ‖u (t)‖

(

y
0

1..d (t)

 +

y
1

1..d (t)

)

6 e−µ−ln 6 + e−ϒ
1 (‖x ‖ ,t)−ϒ0 (‖x ‖ ,t))−µ−ln 6

(
ϒ1(‖x ‖ , t) + ϒ0(‖x ‖ , t))

)
6 e−µ

If i (x) > 1 then i∞(x) = 1 and x ∈ dom f1 and the proof is exactly the same as previously.

If i (x) ∈]0, 1[then i∞(x) = i (x) and x ∈ dom f0 ∩ dom f1. Thus ‖v1(t) − i (x)‖ 6
e−ϒ

1 (‖x ‖ ,t)−ϒ0 (‖x ‖ ,t))−µ−1
so in particular ‖v1(t)‖ 6 2. If also t > max(Ω0(‖x ‖ , µ+ln 6),Ω1(‖x ‖ , µ+

ln 6)) then

y

0

1..d
(t) − f0(x)

 6 e−µ−ln 6
and

y
1

1..d
(t) − f1(x)

 6 e−µ−ln 6
. It follows, using that

xe−x 6 1, that:

u (t) −mix(i, f0, f1) (x)

 =

(1 −v1(t))y

0

1..d (t) +v1(t)y
1

1..d (t) − (1 − i (x)) f0(x) − i (x) f1(x)

6 ‖i (x) −v1(t)‖

f0(x) − f1(x)

 + ‖1 −v1(x)‖

y

0

1..d (x) − f0(x)

+ ‖v1(x)‖

y

1

1..d (t) − f1(x)

105

CHAPTER 4. COMPUTATION WITH PIVP

6 e−ϒ
1 (‖x ‖ ,t)−ϒ0 (‖x ‖ ,t))−µ−ln 6

(
ϒ1(‖x ‖ , t) + ϒ0(‖x ‖ , t))

)
+ 4e−µ−ln 6

6 e−µ

Finally, after di�erentiating the equation foru (t), the system is of the form z (0) = f (x) and

z′(t) = д(z (t)) where f ,д ∈ GPVAL so mix(i, f0, f1) ∈ AP with generable functions. Apply

Proposition 4.5.2 (Polynomial versus generable) to conclude. �

4.6.VIII Computing limits
Intuitively, this model of computation already contains the notion of limit. More precisely, if f
is computable and is such that f (x , t) → д(x) when t → ∞ then д is computable. This is just

a reformulation of equivalence between computability and weak-computability. The result

below extends this result to the case where the limit is restricted to t ∈ N. The optimality of

the assumptions is discussed in Remark 4.6.18 (Optimality).

The idea of the proof is to show that д is weakly-computable and use the equivalence with

computability. Given x and µ, we want to run f on (x , dωe) ∈ I × J where ω = f(‖x ‖ , µ).
Unfortunately we cannot compute the ceiling value in a continuous fashion. The trick is to

run two systems in parallels: one on (x , (rndω)) and one on (x , rnd(ω + 1

2
)). This way one

system will always have a correct input value but we must select which one. If rnd is a good

rounding function around [n− 1

3
,n+ 1

3
], we build the selecting function to pick the �rst system

in [n,n + 1

6
], a barycenter of both in [n + 1

6
,n + 1

3
] and the second system in [n + 1

3
,n + 2

3
] and

so on. The crucial point is that in the region where we mix both system, both have correct

inputs so the mixing process doesn’t create any error. Furthermore, we can easily build such a

continuous selecting function and the mixing process has already been studied in a previous

section.

Theorem 4.6.17 (Closure by limit): Let f : I × J ⊆ Rn+1 → Rm, д : I → Rm and f : R2

+ → R+
a polynomial. Assume that f ∈ AP and that J ⊇ N. Further assume that for all (x ,τ) ∈ I × J
and µ > 0, if τ > f(‖x ‖ , µ) then

f (x ,τ) − д(x)

 6 e−µ . Then д ∈ AP. �

Proof. First note that
1

2
− e−2 > 1

3
and de�ne for x ∈ I and n ∈ N:

f0(x ,τ) = f (x , rnd
∗(τ , 2)) τ ∈

[
n − 1

3
,n + 1

3

]

f1(x ,τ) = f (x , rnd
∗(τ + 1

2
, 2)) τ ∈

[
n + 1

6
,n + 5

6

]

By De�nition 4.6.13 (Round) and hypothesis on f , both are well-de�ned because N ⊆ J . Also

note that their domain of de�nition overlap on [n+ 1

6
,n+ 1

3
] and [n+ 2

3
,n+ 5

6
] for alln ∈ N. Apply

Theorem 4.6.14 (Round) and Theorem 4.6.6 (Closure by composition) to get that f0, f1 ∈ AP.

We also need to build the indicator function: this is where the choice of above values will

prove convenient. De�ne for any τ ∈ R+:

i (x ,τ) = 1

2
− cos(2πτ)

It is now easy to check that:

{(x ,n) | i (x) < 1} = R+ ∩ ∪n∈N
]
n − 1

3
,n + 1

3

[
⊆ dom f0

{(x ,n) | i (x) > 0} = R+ ∩ ∪n∈N
]
n + 1

6
,n + 5

3

[
⊆ dom f1

De�ne for any x ∈ I and µ ∈ R+:

f ∗(x ,τ) = mix(i, f0, f1) (x ,τ)

106

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

We can thus apply Theorem 4.6.16 (Closure by mixing) to get that f ∗ ∈ AP. Note that f ∗ is

de�ned over I × R+. We now claim that for any x ∈ I and µ ∈ R+, if t > 1 + f(‖x ‖ , µ) then

f ∗(x ,τ) − д(x)

 6 2e−µ . There are three cases to consider:

• If τ ∈ [n− 1

6
,n+ 1

6
] for some n ∈ N then i (x) 6 0 so mix(i, f0, f1) (x ,τ) = f0(x ,τ) = f (x ,n)

and since n > τ − 1

6
then n > f(‖x ‖ , µ) thus

f ∗(x ,τ) − д(x)

 6 e−µ .

• Ifτ ∈ [n+1

3
,n+2

3
] for somen ∈ N then i (x) > 1 so mix(i, f0, f1) (x ,τ) = f1(x ,τ) = f (x ,n+1)

and since n > τ − 2

3
then n + 1 > f(‖x ‖ , µ) thus

f ∗(x ,τ) − д(x)

 6 e−µ .

• If τ ∈ [n + 1

6
,n + 1

3
] ∪ [n + 2

3
,n + 5

6
] for some n ∈ N then i (x) ∈ [0, 1] so f ∗(x ,τ) =

(1 − i (x ,τ)) f0(x ,τ) + i (x ,τ) f1(x ,τ) = (1 − i (x ,τ)) f (x , bτ e) + i (x ,τ) f (x ,
⌊
τ + 1

2

⌉
). Since

bτ e ,
⌊
τ + 1

2

⌉
> f(‖x ‖ , µ) then

f (x , bτ e) − д(x)

 6 e−µ and

f (x ,

⌊
τ + 1

2

⌉
) − д(x)

 6 e−µ

thus

f ∗(x ,τ) − д(x)

 6 2e−µ because |i (x ,τ) | 6 1.

It follows thatд is the limit of f ∗ and thusд ∈ AWP (see Remark 4.2.9 (Limit computability))

and one concludes using that AWP = AP. �

Remark 4.6.18 (Optimality): The condition that f be a polynomial is essentially optimal.

Intuitively, if f ∈ AP and satis�es that

f (x ,τ) − д(x)

 6 e−µ whenever τ > f(‖x ‖ , µ) then

f is a modulus of continuity for д. By Theorem 4.6.4 (Modulus of continuity), if д ∈ AP then

it admits a polynomial modulus of continuity so f must be a polynomial. For a formal proof

of this intuition, see examples 4.6.19 and 4.6.20 �

Example 4.6.19 (f must be polynomial in x): Let f (x ,τ) = min(ex ,τ) and д(x) = ex . Triv-

ially f (x , ·) converges to д because f (x ,τ) = д(x) for τ > ex . But д < AP because it is

not polynomially bounded. In this case f(x , µ) = ex which is exponential and f ∈ AP by

Proposition 4.6.12 (Clamped exponential). �

Example 4.6.20 (fmust be polynomial in µ): Let д(x) = −1

lnx for x ∈ [0, e] which is de�ned in

0 by continuity. Observe that д < AP, indeed its modulus of continuity is exponential around

0 because д(e−eµ) = e−µ for all µ > 0. However note that д∗ ∈ AP where д∗(x) = д(e−x) = 1

x
for x ∈ [1,+∞[. Let f (x ,τ) = д∗(min(− lnx ,τ)) and check, using that д is increasing and

non-negative, that: | f (x ,τ) − д(x) | = ��д(max(x , e−τ)) − д(x)�� 6 д(max(x , e−τ)) 6 1

τ . Thus

f(‖x ‖ , µ) = eµ which is exponential and f ∈ AP because (x ,τ) 7→ min(− lnx ,τ) ∈ AP by a

proof similar to Proposition 4.6.12 (Clamped exponential). �

4.6.IX Iterating functions
In this section, we show that iterating a computable function is computable under reasonable

assumptions. Iteration is a powerful operation, which is why reasonable complexity classes

are never closed under unrestricted iteration. In the context of GPAC computability, there are

at least two immediate necessary conditions: the iterates cannot grow faster than a polyno-

mial and the iterates must keep a polynomial modulus of continuity. The optimality of these

conditions is discussed in Remark 4.6.22 and Remark 4.6.23. However there is the subtler is-

sue of the domain of de�nition that comes into play and is discussed in Remark 4.6.24. Our

conditions to iterate a function can be summarized as follows:

• f has domain of de�nition I ;

• there are subsets In of I such that points of In can be iterated up to n times;

• the iterates of f on x over In grow at most polynomially in ‖x ‖ and n;

107

CHAPTER 4. COMPUTATION WITH PIVP

• each point x in In has an open neighborhood in I of size at least e− poly(‖x ‖)
and f has

modulus of continuity of the form poly(‖x ‖) + µ over this set.

Theorem 4.6.21 (Closure by iteration): Let I ⊆ Rm, (f : I → Rm) ∈ AP, η ∈ [0, 1/2[and
assume that there exists a family of subsets In ⊆ I , for all n ∈ N and polynomials f : R+ → R+
and Π : R2

+ → R+ such that for all n ∈ N:

• In+1 ⊆ In and f (In+1) ⊆ In

• for all x ∈ In,

f

[n](x)

 6 Π(‖x ‖ ,n)

• for all x ∈ In, y ∈ Rm, µ ∈ R+, if

x − y

 6 e−f(‖x ‖)−µ then y ∈ I and

f (x) − f (y)

 6 e−µ

De�ne f ∗η (x ,u) = f [n](x) for x ∈ In, u ∈ [n − η,n + η] and n ∈ N. Then f ∗η ∈ AP. �

Proof. We use three variables y, z and w and build a cycle to be repeated n times. At all time,

y is an online system computing f (w). During the �rst stage of the cycle, w stays still and y
converges to f (w). During the second stage of the cycle, z copies y whilew stays still. During

the last stage, w copies z thus e�ectively computing one iterate.

The crucial point is in the error estimation, which we informally develop here. Denote the

kth iterate of x by x [k]
and by x (k)

the point computed after k cycles in the system. Because

we are doing an approximation of f at each step step, the relationship between the two is that

x0 = x [0]
and

x
(k+1) − f (xk)

 6 e−νk+1
where νk+1 is the precision of the approximation, that

we control. De�ne µk the precision we need to achieve at step k :

x

(k) − x [k]

 6 e−µk and

µn = µ. The triangle inequality ensures that the following choice of parameters is safe:

νk > µk + ln 2 µk−1 > f
(

x

[k−1]

)
+ µk + ln 2

This is ensured by taking µk >
∑n−1

i=k f(Π(‖x ‖ , i))+µ+ (n−k) ln 2 which is indeed polynomial

in k , µ and ‖x ‖ . Finally a point worth mentionning is that the entire reasoning makes sense

because the assumption ensures that x (k) ∈ I at each step.

Formally, apply Theorem 4.5.1 (Main equivalence) to get that f ∈ AX(ϒ,Ω,Λ,Θ) where

ϒ,Λ,Θ,Ω are polynomials. Without loss of generability we assume that ϒ,Λ,Θ,f and Π are

increasing functions. Apply Lemma 4.4.16 (AXP time rescaling) to get ω > 1 such that for all

α ∈ R, µ ∈ R+:

Ω(α , µ) = ω > 1

Apply De�nition 4.4.2 (Extreme computability) to get δ ,d and д. De�ne:

τ = ω + 2

We will show that f ∗
0
∈ AWP = AP: let n ∈ N, x ∈ In, µ ∈ R+ and consider the following

system:




`(0)= norm∞,1(x)

µ (0)= µ

n(0)= n




`′(t)= 0

µ′(t)= 0

n′(t)= 0




y (0)= 0

z (0)= x

w (0)= x




y′(t)= д(t ,y (t),w (t),ν (t))

z′(t)= sample
[ω,ω+1],τ (t ,ν (t), z (t),y1..n (t))

w′(t)= hxl[0,1](t − nτ ,ν (t) + t , sample
[ω+1,ω+2],τ (t ,ν

∗(t) + ln(1 + ω),w (t), z (t)))

`∗ = 1 + Π(`,n) ν = nf(`∗) + n ln 6 + µ + ln 3 ν∗ = ν + Λ(`∗,ν)

108

4.6. CLOSURE PROPERTIES AND COMPUTABLE ZOO

First notice that `, µ and n are constant functions and we identify µ (t) with µ and n(t) with

n. Apply Lemma 2.6.18 (Norm function) to get that ‖x ‖ 6 ` 6 ‖x ‖ + 1, so in particular `∗,ν
and ν∗ are polynomially bounded in ‖x ‖ and n. We will need a few notations: for i ∈ J0,nK,

de�ne x [i] = f [i](x) and x (i) = w (iτ). Note that x [0] = x (0) = x . We will show by induction for

i ∈ J0,nK that:

x
(i) − x [i]

 6 e−(n−i)f(`

∗)−(n−i) ln 6−µ−ln 3

Note that this is trivially true for i = 0. Let i ∈ J0,n − 1K and assume that the result is true

for i , we will show that it holds for i + 1 by analyzing the behavior of the sytem during period

[iτ , (i + 1)τ].

• For y andw , if t ∈ [iτ , iτ +ω + 1] then apply Lemma 2.6.22 (“low-X-high” and “high-X-

low”) to get that hxl ∈ [0, 1] and Lemma 4.4.14 (Sample and hold) to get that ‖w′(t)‖ 6

e−ν
∗−ln(1+ω)

. Conclude that ‖w (i) −w (t)‖ 6 e−ν
∗

, in other words

w (t) − x (i)

 6 e−Λ(‖x

(i)‖ ,ν)

since

x

(i)

 6

x

[i]

+1 6 1+Π(‖x ‖ , i) 6 `∗. Thus, by de�nition of extreme computability,

f (x
(i)) − y1..n (u)

 6 e−ν if u ∈ [iτ + ω, iτ + ω + 1] because Ω
(

x

(i)

 ,ν
)
= ω.

• For z, if t ∈ [iτ + ω, iτ + ω + 1] then apply Lemma 4.4.14 (Sample and hold) to get that

f (x
(i)) − z (iτ + ω + 1)

 6 2e−ν .

• For z andw , if t ∈ [iτ +ω+1, iτ +ω+2] then apply Lemma 4.4.14 (Sample and hold) to get

that ‖z′(t)‖ 6 e−ν thus

f (x

(i)) − z (t)

 6 3e−ν . Apply Lemma 2.6.22 (“low-X-high” and

“high-X-low”) to get that

y
′(t) − sample

[ω+1,ω+2],τ (t ,ν
∗ + ln(1 + ω),w (t), z (t))

 6 e−ν−t .

Apply Lemma 4.4.14 (Sample and hold) again to get that

f (x

(i)) −w (iτ + ω + 2)

 6 4e−ν+

e−ν
∗

6 5e−ν .

Our analysis concluded that

f (x

(i)) − z ((i + 1)τ)

 6 5e−ν . Also, by hypothesis,

x

(i) − x [i]

 6
e−(n−i)f(`

∗)−(n−i) ln 6−µ−ln 3 6 e−f(‖x
[i]‖)−µ∗

where µ∗ = (n − i − 1)f(`∗) + (n − i) ln 6 + µ + ln 3

because

x

[i]

 6 `
∗
. Consequently,

f (x
(i)) − x [i+1]

 6 e−µ

∗

and thus:

x
(i+1) − x [i+1]

 6 5e−ν + e−µ

∗

6 6e−µ
∗

6 e−(n−1−i)f(`∗)−(n−1−i) ln 6−µ−ln 3

From this induction we get that

x

(n) − x [n]

 6 e−µ−ln 3
. We still have to analyze the be-

havior after time nτ .

• If t ∈ [nτ ,nτ + 1] then apply Lemma 4.4.14 (Sample and hold) and Lemma 2.6.22 (“low-X-

high” and “high-X-low”) to get that ‖w′(t)‖ 6 e−ν
∗−ln(1+ω)

thus

w (t) − x (n)

 6 e−ν

∗−ln(1+ω)
.

• If t > nτ + 1 then apply Lemma 2.6.22 (“low-X-high” and “high-X-low”) to get that

‖w′(t)‖ 6 e−ν−t thus ‖w (t) −w (nτ + 1)‖ 6 e−ν .

Putting everything together we get for t > nτ + 1 that:

w (t) − x [n]

 6 e−µ−ln 3 + e−ν
∗−ln(1+ω) + e−ν

6 3e−µ−ln 3 6 e−µ

We also have to show that the system does not grow to fast. The analysis during the time

interval [0,nτ + 1] has already been done (although we did not write all the details, it is an

implicit consequence). For t > nτ + 1, have ‖w (t)‖ 6

x
[n]

 + 1 6 Π(‖x ‖ ,n) + 1 which is

polynomially bounded. The bound on y comes from De�nition 4.4.2 (Extreme computability):

y (t)

 6 ϒ
(
supδ ‖w ‖ (t),ν , 0

)
6 ϒ(Π(‖x ‖ ,n),ν , 0) 6 poly(‖x ‖ ,n, µ)

109

CHAPTER 4. COMPUTATION WITH PIVP

And �nally, apply Lemma 4.4.14 (Sample and hold) to get that:

‖z (t)‖ 6 2 + supτ+1

y1..n

 (t) 6 poly(‖x ‖ ,n, µ)

This conclude the proof that f ∗
0
∈ AWP.

We will now tackle the case of η > 0. Let η ∈]0, 1

2
[and de�ne дη (x , µ) = rnd(x , µ, 1

2
− η)

for x ∈ Z +]−η,η[. Apply Lemma 2.6.12 (Round) to get that rnd ∈ GPVAL and Theorem 4.6.2

(GPVAL ⊆ AP over star domains) to get that дη ∈ AP. By de�nition,

дη (x , µ) − n

 6 e−µ

if x ∈ [n − η,n + η] thus we can apply Theorem 4.6.17 (Closure by limit) to get that д∗η (x) =
limµ→∞ дη (x , µ) belongs to AP and д∗η (x) = n for any x ∈ [n − η,n + η]. Now de�ne f ∗η (x ,u) =
f ∗
0
(x ,д∗η (u)) and apply Theorem 4.6.6 (Closure by composition) to conclude. As a �nal remark,

note that д∗η is a pretty good rounding function but we can do much better: see Theorem 4.6.14

(Round) for more details. �

Remark 4.6.22 (Optimality of growth constraint): It is easy to see that without any condition,

the iterates can produce an exponential function. Pick f (x) = 2x then f ∈ AP and f [n](x) =
2
nx which is clearly not polynomial in x and n. More generally, by Proposition 4.6.5, it is

necessary that f ∗ be polynomially bounded so clearly f [n](x) must be polynomially bounded

in ‖x ‖ and n. �

Remark 4.6.23 (Optimality of modulus constraint): Without any constraint, it is easy to build

an iterated function with exponential modulus of continuity. De�ne f (x) =
√
x then f ∈ AP

and f [n](x) = x
1

2
n

. For any µ ∈ R, f [n](e−2
nµ) − f [n](0) = (e−2

nµ)
1

2
n = e−µ . Thus f ∗ has

exponential modulus of continuity in n. �

Remark 4.6.24 (Domain of de�nition): Intuitively we could have written the theorem di�er-

ently, only requesting that f (I) ⊆ I , however this has some problems. First if I is discrete,

the iterated modulus of continuity becomes useless and the theorem is false. Indeed, de�ne

f (x ,k) = (
√
x ,k + 1) and I =

{
(2

n√
e,n),n ∈ N

}
: f �I has polynomial modulus of continu-

ity f because I is discrete, yet f ∗�I < AP as we saw in Remark 4.6.23. But in reality, the

problem is more subtle than that because if I is open but the neighbourhood of each point

is too small, a polynomial system cannot take advantage of it. To illustrate this issue, de�ne

In =
]
0, 2

n√
e

[
×

]
n − 1

4
,n + 1

4

[
and I = ∪n∈NIn. Clearly f (In) = In+1 so I is f -stable but f ∗�I < AP

for the same reason as before. �

Remark 4.6.25 (Classical error bound): The third condition in Theorem 4.6.21 (Closure by

iteration) is usually far more subtle than necessary. In practice, is it useful to note this condition

is satis�ed in f veri�es for some constants ε,K > 0 that

for all x ∈ In,y ∈ R
m, if

x − y

 6 ε then y ∈ I and

f (x) − f (y)

 6 K

x − y

�

Remark 4.6.26 (Dependency of f in n): In the statement of thereom, f is only allowed to

depend on ‖x ‖ whereas it might be useful to also make it depend on n. In fact the theorem is

still true if the last condition is modi�ed to be

x − y

 6 e−f(‖x ‖ ,n)−µ . The proof is straight-

foward: �

110

Chapter 5

PIVP versus Turing computability

What we have is a zoo of functions.

Some of them are in their trees and we

can’t get them down.

In this chapter we give a purely continuous (time and space) de�nition of classical com-

putability, and in particular of well-known complexity classes. Namely, we give a natural

characterization of the P class in terms of PIVP. We also show that the PC[a,b] class is the same

as AP over any interval [a,b]. In other words, we have a characterization of Computable Anal-

ysis in terms of PIVP computability. This is the �rst time such a characterization is obtained.

To do so, an analog simulation of Turing machines is obtained, most notably using our itera-

tion scheme on GPAC computable functions. Using this simulation, we can obtain FP and P,

and Computable Analysis using the limit operation on computable functions.

This chapter is organized as follows:

• Section 5.1 (Introduction) provides some context on the subject.

• Section 5.2 (Simulating Turing machines) explains how to encode and simulate one step

of a Turing machine using GPAC computable functions, in a robust way.

• Section 5.3 (Equivalences with Turing computability) gives a characterization of FP, P and

Computable Analysis in terms of GPAC computable functions and PIVPs.

5.1 Introduction

Since the introduction of the P and NP complexity classes, much work has been done to build

a well-developed complexity theory based on Turing Machines. In particular, classical com-

putational complexity theory is based on limiting resources used by Turing machines, like

time and space. Another approach is implicit computational complexity. The term “implicit”

in “implicit computational complexity” can sometimes be understood in various ways, but a

common point of many of the characterizations is that they provide (Turing or equivalent)

machine-independent alternative de�nitions of classical complexity.

Implicit characterization theory has gained enormous interest in the last decade [DL12].

This has led to many alternative characterizations of complexity classes using recursive func-

tion, function algebras, rewriting systems, neural networks, lambda calculus and so on.

111

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

However, most of — if not all — of these models or characterizations are essentially discrete:

in particular they are based on underlying models working with a discrete time on objects that

are often de�ned in a discrete space.

Models of computation working on a continuous space have also been considered: they in-

clude Blum Shub Smale machines [BCSS98], and in some sense Computable Analysis [Wei00],

or quantum computers [Fey82] which usually feature discrete-time and continuous-space.

Machine-independent characterizations of the corresponding complexity classes have also

been devised: see e.g. [BCdNM05, GM95]. However, the resulting characterizations are still

essentially discrete, since time is still considered to be discrete.

In this chapter, we provide a purely analog machine-independent characterization of com-

plexity classes. Indeed, our characterization relies only on a simple and natural class of or-

dinary di�erential equations (ODEs): P is characterized using ordinary di�erential equations

with polynomial right-hand side. This shows �rst that classical complexity theory can be pre-
sented in terms of ordinary di�erential equations problems. This also shows as a side e�ect

that solving ordinary di�erential equations leads to P-complete problems, even with a �xed

dimension. More importantly, we also provide machine-independent characterization of real
complexity classes, as de�ned by Computable Analysis. This shows that the complexity theory

of real functions, although based on Turing Machines, has a very elegant de�nition in terms

of di�erential equations. All these results have never been established before and are unex-

pected. The only similar results, to our knowledge, are those of [MC06] which characterize P

and NP in the real space using more powerful operators than ODE solving, like limit-taking

and operators that solve partial di�erential equations, and the result in [Kaw10] which shows

that Lipschitz ordinary di�erential equations are polynomial-space complete.

A fundamental di�culty one faces when one tries to talk about time complexity for contin-

uous time models of computation is that time is a problematic notion for many natural classes

of systems: indeed, it is known that Turing machines can be simulated by various classes of

ordinary di�erential equations or analog models. This can be often done even in real time:

the state y (T) at time T ∈ N of the solution of the ordinary di�erential equation encodes the

state after the execution of T steps of the Turing machine. However, a troubling problem is

that many models exhibit the so-called Zeno’s phenomenon, that is to say the possibility of re-

alizing an in�nite number of discrete transitions in a �nite amount of time. This was done in

[EN02] using black holes, as mentioned earlier, to solve the Halting problem. Another exam-

ple is in [AM98b], where it is shown that arithmetical sets can be recognized in �nite time by

piecewise constant derivative systems: basically such constructions are based on a time con-

traction. Actually, many continuous time systems might undergo arbitrary time contractions

to simulate the computation of a Turing machine in an arbitrary short time (see e.g. [Ruo93],

[Ruo94], [Moo96], [Bou97], [Bou99], [AD90], [CP02], [Dav01], [Cop98], [Cop02]).

In this chapter we give a fundamental contribution to this question: time of a computation

for the GPAC can be measured as the length of the curve (i.e. length of the solution curve of the

ordinary di�erential equation associated to the GPAC), or equivalently, as a couple measuring

both time and “space”. Doing so, we get to well de�ned complexity classes, that turn out to be

the same as traditional complexity classes.

This is so natural at the end, that it might seem trivial, and only a statement that continuous

time models of computation do satisfy the e�ective Church Turing thesis. However, various

attempts of de�ning a clear complexity theory for continuous time models of computation

have previously failed. Thus stating that the e�ective Church Turing thesis covers continu-

ous time models of computation such as the GPAC requires at minimum a formal proof. See

[GM02] and [SF98] for examples of natural analog complexity classes, and more in the survey

[BC08].

Somehow, in that spirit, our contribution is to point out that the e�ective Church Turing

112

5.2. SIMULATING TURING MACHINES

thesis indeed holds for continuous time systems, if reasonable is understood as “de�ned by an

ordinary di�erential equation with polynomial right-hand side”, and if time is measured by

“the length of the curve”.

Remark 5.1.1 (Generable �eld): Unless stated, in this entire chapter, K will refer to any gen-

erable �eld, for example RG . See Section 2.7 (Generable �elds) for more details. �

5.2 Simulating Turing machines
In this section, we will show how to encode and simulate one step of a Turing machine with

a computable function in a robust way.

5.2.I Turing Machine
There are many possible de�nitions of Turing machines. The exact kind we pick is usually not

important but since we are going to simulate one with di�erential equations, it is important to

specify all the details of the model. We will simulate deterministic, one-tape Turing machines,

with complete transition functions.

De�nition 5.2.1 (Turing Machine): A TuringMachine is a tupleM = (Q, Σ,b,δ ,q0,q∞) where

Q = J0,m−1K are the states of the machines, Σ = J0,k−2K is the alphabet andb = 0 is the blank

symbol, q0 ∈ Q is the initial state, q∞ ∈ Q is the halting state and δ : Q × Σ→ Q × Σ× {L, S,R}
is the transition function with L = −1, S = 0 and R = 1. We write δ1,δ2,δ3 as the components

of δ . That is δ (q,σ) = (δ1(q,σ),δ2(q,σ),δ3(q,σ)) where δ1 is the new state, δ2 the new symbol

and δ3 the head move direction. We require that δ (q∞,σ) = (q∞,σ , S). �

Remark 5.2.2 (Choice of k): The choice of Σ = J0,k − 2K will be crucial for the simulation, to

ensure that the transition function be continuous. See Lemma 5.2.15 (Encoding range). �

For completeness, and also to make the statements of the next theorems easier, we intro-

duce the notion of con�guration of a machine, and de�ne one step of a machine on con�gu-

rations. This allows us to de�ne the result of a computation. Contrary to many presentations,

our machines not only accept or reject a word, but compute a output word.

De�nition 5.2.3 (Con�guration): A con�guration ofM is a tuple c = (x ,σ ,y,q) where x ∈ Σ∗

is the part of the tape at left of the head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol

under the head and q ∈ Q the current state. More precisely x1 is the symbol immediately at

the left of the head and y1 the symbol immediately at the right. See Figure 5.2.7 for a graphical

representation. The set of con�gurations ofM is denoted by CM . The initial con�guration is

de�ned by c0(w) = (λ,b,w,q0) and the �nal con�guration by c∞(w) = (λ,b,w,q∞) where λ is

the empty word. �

De�nition 5.2.4 (Step): The step function of a Turing machineM is the function, acting on

con�gurations, denoted byM and de�ned by:

M (x ,σ ,y,q) =




(λ,b,σ ′y,q′) if d = L and x = λ

(x2..|x |,x1,σ
′y,q′) if d = L and x , λ

(x ,σ ′,y,q′) if d = S

(σ ′x ,b, λ,q′) if d = R and y = λ

(σ ′x ,y1,y2..|y |,q
′) if d = R and y , λ

where




q′ = δ1(q,σ)

σ ′ = δ2(q,σ)

d = δ3(q,σ)

113

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

σ y1 y2 y3 · · · ykx1x2x3· · ·xl

q

Figure 5.2.7: Example of generic con�gu-

ration c = (x ,σ ,y,q)

σ b a b b bbbbaa

tapesize(bbbaa,σ ,babbb)

Figure 5.2.8: Example of con�guration and

tapesize

�

De�nition 5.2.5 (Result of a computation): The result of a computation ofM on a wordw ∈ Σ∗

is de�ned by:

M (w) =



x if ∃n ∈ N,M[n](c0(w)) = c∞(x)

⊥ otherwise

�

Remark 5.2.6: The result of a computation is well-de�ned because we imposed that when a

machine reaches a halting state, it does not move, change state or change the symbol under

the head. �

5.2.II Polynomial interpolation

In order to implement the transition function of the Turing Machine, we will use a polynomial

interpolation scheme (Lagrange interpolation). But since our simulation may have to deal with

some amount of error in inputs, we have to investigate how this error propagates through the

interpolating polynomial.

De�nition 5.2.9 (Lagrange polynomial): Let d ∈ N and f : G → R where G is a �nite subset

of Rd , we de�ne

L f (x) =
∑
x̄∈G

f (x̄)
∏
y∈G
y,x̄

d∏
i=1

xi − yi
x̄i − yi

�

Lemma 5.2.10 (Lagrange interpolation): For any �nite G ⊆ Kd and f : G → K, L f ∈ AP and
L f �G = f . �

Proof. The fact that L f matches f onG is a classical calculation. Also L f is a polynomial with

coe�cients in K so clearly it belongs to AP. �

Remark 5.2.11 (Robustness of Lagrange interpolation): It is customary to prove robustness of

the interpolation, which means that on the neighborhood ofG, L f is nearly constant. However

this result is a byproduct of the e�ective continuity of L f , thanks to Theorem 4.6.4 (Modulus

of continuity). �

We will often need to interpolate characteristic functions, that is polynomials that value 1

when f (x) = a and 0 otherwise. For convenience we de�ne a special notation for it.

114

5.2. SIMULATING TURING MACHINES

De�nition 5.2.12 (Characteristic interpolation): Let d ∈ N, f : G → R where G is a �nite

subset of Rd , α ∈ R, and de�ne:

D f =α (x) = L fα (x) D f ,α (x) = L1−fα (x) fα (x) =



1 if f (x) = α

0 otherwise

�

Lemma 5.2.13 (Characteristic interpolation): For any �nite G ⊆ Kd , f : G → K and α ∈ K,
D f =α ,D f ,α ∈ AP. �

Proof. Observe that fα : G → {0, 1} and {0, 1} ⊆ K. Apply Lemma 5.2.10. �

5.2.III Encoding
In order to simulate a machine, we will need to encode con�gurations with real numbers.

There are several ways of doing so but not all of them are suitable for use when proving

complexity results. This particular issue is discussed in Remark 5.3.2 (Encoding size). For our

purpose, it is su�cient to say that we will encode a con�guration as a tuple, we store the state

and current letter as integers and the left and right parts of the tape as real numbers between

0 and 1. Intuitively, the tape is represented as two numbers whose digits in a particular basis

are the letters of the tape.

De�nition 5.2.14 (Real encoding): Let c = (x ,σ ,y,q) be a con�guration ofM, the real encod-
ing of c is 〈c〉 = (0.x ,σ , 0.y,q) ∈ Q×Σ×Q×Q where 0.x = x1k

−1+x2k
−2+· · ·+x |w |k

−|w | ∈ Q. �

Lemma 5.2.15 (Encoding range): For any word x ∈ J0,k − 2K∗, 0.x ∈
[
0, k−1

k

]
. �

Proof. 0 6 0.x =
∑|x |

i=1
xik
−i 6

∑∞
i=1

(k − 2)k−i 6 k−2

k−1
6 k−1

k . �

The same way we de�ne the step function for Turing machines on con�gurations, we have

to de�ne a step function that works directly the encoding of con�guration. This function is

ideal in the sense that it is only de�ned over real numbers that are encoding of con�gurations.

De�nition 5.2.16 (Ideal real step): The ideal real step function of a Turing machineM is the

function de�ned over 〈CM〉 by:

〈M〉∞ (x̃ ,σ , ỹ,q) =




(
frac(kx̃), int(kx̃),

σ ′+ỹ
k ,q

′
)

if d = L

(x̃ ,σ ′, ỹ,q′) if d = S(
σ ′+x̃
k , int(kỹ), frac(kỹ),q′

)
if d = R

where




q′= δ1(q,σ)

σ ′= δ2(q,σ)

d = δ3(q,σ)

�

Lemma 5.2.17 (〈M〉∞ is correct): For any machine M and con�guration c , 〈M〉∞ (〈c〉) =
〈M (c)〉. �

Proof. Let c = (x ,σ ,y,q) and x̃ = 0.x . The proof boils down to a case analysis (the analysis is

the same for x and y):

• If x = λ then x̃ = 0 so int(kx̃) = b and frac(kx̃) = 0 = 0.λ because b = 0.

• If x , λ, int(kx̃) = x1 and frac(kx̃) = 0.x2..|x | because kx̃ = x1 + 0.x2..|x | and Lemma 5.2.15

(Encoding range).

115

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

�

The previous function was ideal but this is not enough to simulate a machine: the step

function must be robust to small perturbations and must be computable. For this reason, we

de�ne a new step function with both features and that relates closely to the ideal function.

De�nition 5.2.18 (Real step): For any x̄ , σ̄ , ȳ, q̄ ∈ R and µ ∈ R+, de�ne the real step function

of a Turing machineM by:

〈M〉 (x̄ , σ̄ , ȳ, q̄, µ) = 〈M〉∗ (x̄ , rnd
∗(σ̄ , µ), ȳ, rnd

∗(q̄, µ), µ)

where:

〈M〉
∗ (x̄ , σ̄ , ȳ, q̄, µ) = 〈M〉?

(
x̄ , ȳ,Lδ1

(q̄, σ̄),Lδ2
(q̄, σ̄),Lδ2

(q̄, σ̄), µ
)

where:

〈M〉
?
(
x̄ , ȳ, q̄, σ̄ , ¯d, µ

)
=

*......
,

choose

[
frac

∗(kx̄), x̄ , σ̄+x̄k

]

choose [int
∗(kx̄), σ̄ , int

∗(kȳ)]

choose

[
σ̄+ȳ
k , ȳ, frac

∗(kȳ)
]

q̄

+//////
-

where:

choose[l , s, r] = Did=L (¯d)l + Did=S (¯d)s + Did=R (¯d)r

int
∗(x) = rnd

∗
(
x − 1

2
+ 1

2k , µ + lnk
)

frac
∗(x) = x − int

∗(x)

rnd
∗

is de�ned in De�nition 4.6.13 (Round)

�

Theorem 5.2.19 (Real step is robust): For any machineM, c ∈ CM , µ ∈ R+ and c̄ ∈ R4, if
‖〈c〉 − c̄‖ 6 1

2k2
− e−µ then

〈M〉 (c̄, µ) − 〈M (c)〉

 6 k ‖〈c〉 − c̄‖ . Furthermore 〈M〉 ∈ AP. �

Proof. We begin by a small result about int
∗

and frac
∗
: if ‖x̄ − 0.x ‖ 6 1

2k2
−e−µ then int

∗(kx̄) =
int(k0.x) and

frac
∗(kx̄) − frac(k0.x)

 6 k ‖x̄ − 0.x ‖ . Indeed, by Lemma 5.2.15 (Encoding

range), k0.x = n + α where n ∈ N and α ∈
[
0, k−1

k

]
. Thus int

∗(kx̄) = rnd
∗
(
kx̄ − 1

2
+ 1

2k , µ
)
= n

because α + k ‖x̄ − 0.x ‖ − 1

2
+ 1

2k ∈
[
−1

2
+ ke−µ , 1

2
− ke−µ

]
. Also, frac

∗(kx̄) = kx̄ − int
∗(kx̄) =

k ‖x̄ − 0.x ‖ + kx − int(kx) = frac(kx) + k ‖x̄ − 0.x ‖ .
Write 〈c〉 = (x ,σ ,y,q) and c̄ = (x̄ , σ̄ , ȳ, q̄). Apply De�nition 4.6.13 (Round) to get that

rnd
∗(σ̄ , µ) = σ and rnd

∗(q̄, µ) = q because

(σ̄ , q̄) − (σ ,q)

 6 1

2
−e−µ . Consequently, Lδi (q̄, σ̄) =

δi (q,σ) and 〈M〉 (c̄, µ) = 〈M〉? (x̄ , ȳ,q′,σ ′,d′) where q′ = δ1(q,σ), σ
′ = δ2(q,σ) and d′ =

δ3(q,σ). In particular d′ ∈ {L, S,R} so there are three cases to analyze.

• If d′ = L then choose[l , s, r] = l , int
∗(kx̄) = int(kx),

frac

∗(kx̄) − frac(kx)

 6 k ‖x̄ − x ‖

and

σ ′+ȳ
k −

σ ′+y
k

 6 ‖x̄ − x ‖ . Thus

〈M〉 (c̄, µ) − 〈M〉∞ (〈c〉)

 6 k ‖c̄ − 〈c〉‖ . Conclude

using Lemma 5.2.17 (〈M〉∞ is correct).

• Ifd′ = S then choose[l , s, r] = s so we immediately have that

〈M〉 (c̄, µ) − 〈M〉∞ (〈c〉)

 6

‖c̄ − 〈c〉‖ . Conclude using Lemma 5.2.17 (〈M〉∞ is correct).

• If d′ = R then choose[l , s, r] = r and everything else is similar to the case of d′ = L.

Finally apply Lemma 5.2.10 (Lagrange interpolation), Theorem 4.6.14 (Round), Theorem 4.6.3

(Closure by arithmetic operations) and Theorem 4.6.6 (Closure by composition) to get that

〈M〉 ∈ AP. �

116

5.2. SIMULATING TURING MACHINES

A very useful fact is that we can reencode words, in other words change alphabets, in

polynomial time. We also get for free that we can compute the size of word assuming it does

not have any blank character.

In some cases, we want to reencode words but Corollary 5.2.27 (Reencoding) does not

apply. A very useful such case is a binary alphabet {0, 1} in basis 2. It cannot be decoded in

general for continuity reasons, because there could be arbitrary close encoding with di�erent

decoding. Is it still possible, however, to decode under extra assumptions.

This theorem is a remarkable application of Theorem 4.6.21 (Closure by iteration) and will

push nearly all the assumptions of the theorem to their extreme.

Theorem 5.2.20 (Word decoding): Let k1,k2 ∈ N
∗ and κ : J0,k1 − 1K → J0,k2 − 1K. There

exists a function (decodeκ :⊆ R × N × R→ R) ∈ AP such that for any word w ∈ J0,k1 − 1K∗
and µ, ε > 0:

if ε 6 k−|w |
1

(1 − e−µ) then decodeκ
*.
,

|w |∑
i=1

wik
−i
1
+ ε, |w |, µ+/

-
=

*.
,

|w |∑
i=1

κ (wi)k
−i
2
, #{i |wi , 0}

+/
-
�

Proof. We will iterate a function that works on tuple of the form (x ,x′,n,m, µ) where x is

the remaining part to process, x′ is the processed part, n the size of the processed part, m the

number of nonzero symbols and µ will stay constant. The function will remove the “head” of

x , reencode it with κ and “queue” on x′, increasing n andm if the head is not 0.

In the remaining of this proof, we write 0.xki to denote 0.x in basis ki instead of k . De�ne

for any x ,y ∈ R and n ∈ N:

д(x ,y,n,m, µ) =
(

frac
∗(k1x),y + k

−n−1

2
Lκ (int

∗(k1x)),n + 1,m + Did,0(int
∗(k1x)), µ

)
where:

int
∗(x) = rnd

∗
(
x − 1

2
+ 3e−µ

4
, µ

)
frac

∗(x) = x − int
∗(x)

and rnd
∗

is de�ned in De�nition 4.6.13 (Round). Apply Lemma 5.2.10 (Lagrange interpolation)

to get that Lκ ∈ AP and Lemma 5.2.13 (Characteristic interpolation) to get that Did,0 ∈ AP. It

follows that д ∈ AP. We need by a small result about int
∗

and frac
∗
. For any w ∈ J0,k1K∗ and

x ∈ R, de�ne the following proposition:

A(x ,w, µ) : −k−|w |
1

e−µ

2

6 x − 0.wk1 6 k−|w |
1

(1 − e−µ)

We will show that:

A(x ,w, µ) ⇒



int
∗(k1x) = int(k10.wk1)

���frac
∗(k1x) − frac(k10.wk1)��� 6 k1

���x − 0.wk1
���

(5.2.21)

Indeed, in this case, since |w | > 1:

−k1−|w |
1

e−µ

2
6 k1x − k10.wk1 6 k1−|w |

1
(1 − e−µ)

−k1−|w |
1

e−µ

2
6 k1x −w1 6 k1−|w |

1
(1 − e−µ) + 0.w2..|w |

k1

−e−µ

2
6 k1x −w1 6 k1−|w |

1
− e−µ +

∑|w |−1

i=1
(k1 − 1)k−i

1

−e−µ

2
6 k1x −w1 6 k1−|w |

1
− e−µ + 1 − k1−|w |

1

−1

2
− e−µ

2
6 k1x −

1

2
−w1 6

1

2
− e−µ

−1

2
+ e−µ

4
6 k1x −

1

2
+ 3e−µ

4
−w1 6

1

2
− e−µ

4

117

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

And conclude by applying Theorem 4.6.14 (Round) because int(k10.wk1) = w1. The result on

frac follows trivially. It is then not hard to derive from (5.2.21) applied twice that:

A(x ,w, µ) ∧ A(x′,w, µ′)

⇓

д(x ,y,n,m, µ) − д(x′,y′,n′,m′,ν)

 6 2k1

(x ,y,n,m, µ) − (x′,y′,n′,m′, µ′)

(5.2.22)

It also follows that proposition A is preserved by applying д:

A(x ,w, µ) ⇒ A(frac(k1x),w2..|w |, µ) (5.2.23)

Furthermore, A is stronger for longer words:

A(x ,w, µ) ⇒ A(x ,w1..|w |−1, µ) (5.2.24)

Indeed, if we have A(x ,w, µ) then:

−k−|w |
1

e−µ

2
6 x − 0.wk1 6 k−|w |

1
(1 − e−µ)

−k−|w |
1

e−µ

2
6 x − 0.w1..|w |−1

k1 6 k−|w |
1

(1 − e−µ) +w |w |k
−|w |
1

−k1−|w |
1

e−µ

2
6 x − 0.w1..|w |−1

k1 6 k−|w |
1

(1 − e−µ) + (k1 − 1)k−|w |
1

−k1−|w |
1

e−µ

2
6 x − 0.w1..|w |−1

k1 6 k−|w |
1

(k1 − e
−µ)

−k1−|w |
1

e−µ

2
6 x − 0.w1..|w |−1

k1 6 k1−|w |
1

(1 − e−µ)

It also follows from the de�nition of д that:

A(x ,w, µ) ⇒

д(x ,y,n,m, µ)

 6 max(k1, 1 +

x ,y,n,m, µ

) (5.2.25)

Indeed, ifA(x ,w, µ) then int
∗(k1x) ∈ J0,k1−1K thusLκ (int

∗(k1x)) ∈ J0,k2K andDid,0(int
∗(k1x)) ∈

{0, 1}, the inequality follows easily. A crucial property of A is that it is open with respect to x :

A(x ,w, µ) ∧ |x − y | 6 e−|w | lnk1−µ−ν ⇒ A(y,w, µ − ln
3

2
) (5.2.26)

Indeed, if A(x ,w, µ) and |x − y | 6 e−|w | lnk1−µ−ln 4
we have:

−k−|w |
1

e−µ

2
6 x − 0.wk1 6 k−|w |

1
(1 − e−µ)

−k−|w |
1

e−µ

2
+ y − x 6 y − 0.wk1 6 k−|w |

1
(1 − e−µ) + y − x

−k−|w |
1

e−µ

2
− |y − x | 6 y − 0.wk1 6 k−|w |

1
(1 − e−µ) + |y − x |

−k−|w |
1

e−µ

2
− e−|w | lnk1−µ−ln 4 6 y − 0.wk1 6 k−|w |

1
(1 − e−µ) + e−|w | lnk1−µ−ln 4

−k−|w |
1

(e−µ−ln 4 + e−µ

2
) 6 y − 0.wk1 6 k−|w |

1
(1 − e−µ + e−µ−ln 4)

−k−|w |
1

3e−µ

4
6 y − 0.wk1 6 k−|w |

1
(1 − 3e−µ

4
)

−k−|w |
1

3e−µ

4
6 y − 0.wk1 6 k−|w |

1
(1 − 6e−µ

4
)

−k−|w |
1

e
ln

3

2
−µ

2
6 y − 0.wk1 6 k−|w |

1
(1 − e ln

3

2
−µ)

In order to formally apply Theorem 4.6.21 (Closure by iteration), de�ne for any n ∈ N:

In =
{
(x ,y, `,m, µ) ∈ R2 × R3

+ | ∃w ∈ J0,k1 − 1Kn,A(x ,w, µ)
}

It follows from (5.2.24) that In+1 ⊆ In. It follows from (5.2.23) that д(In+1) ⊆ In. It follows from

(5.2.25) that

д

[n](x)

 6 max(k1, ‖x ‖ + n) for x ∈ In. Now assume that X = (x ,y,n,m, µ) ∈

118

5.2. SIMULATING TURING MACHINES

In, ν ∈ R+ and
1 ‖X − X ′‖ 6 e−‖X ‖−n lnk1−ν

where X ′ = (x′,y′,n′,m, µ′) then by de�nition

A(x ,w, µ) for some w ∈ J0,k1 − 1Kn. It follows from (5.2.26) that A(y,w, µ − ln
3

2
) since

‖X ‖ + n lnk1 > |w | lnk1 + µ. Thus by (5.2.22) we have

д(X) − д(X ′)

 6 2k1 ‖X − X

′‖ which

is enough by Remark 4.6.25 (Classical error bound). We are thus in good shape to apply The-

orem 4.6.21 (Closure by iteration) and get д∗
0
∈ AP. De�ne:

decodeκ (x ,n, µ) = π2,4(x , 0, 0, 0, µ,n))

where π2,4 is the second and fourth projection. Clearly decodeκ ∈ AP, it remains to see that

it satis�es the theorem. We will prove this by induction on the size of |w |. More precisely we

will prove that for |w | > 0:

ε ∈ [0,k−|w |
1

(1 − e−µ)] ⇒ д[|w |](0.wk1 + ε, 0, 0, 0, µ) = (k |w |
1
ε, 0.κ (w)k2, |w |, #{i |wi , 0}, µ)

The case of |w | = 0 is trivial since it will act as the identity function:

д[|w |](0.wk1 + ε, 0, 0, 0, µ) = д[0](ε, 0, 0, 0, µ)

= (ε, 0, 0, 0, µ)

= (k |w |
1
ε, 0.κ (w)k2, |w |, #{i |wi , 0}, µ)

We can now show the induction step. Assume that |w | > 1 and de�ne w′ = w1..|w |−1. Let

ε ∈ [0,k−|w |
1

(1− e−µ)] and de�ne ε′ = k−|w |
1

w |w | + ε . It is clear that 0.wk1 + ε = 0.w′k1 + ε′. Then

by de�nition A(0.w′k1 + ε′, |w |, µ) so

д[|w |](0.wk1 + ε, 0, 0, 0, µ) = д(д[|w |−1](0.w′k1 + ε′, 0, 0, 0, µ))

= д(k |w |−1

1
ε′, 0.κ (w′)k2, |w′|, #{i |w′i , 0}, µ) By induction

= д(k−1

1
w |w | + k

|w |−1

1
ε, 0.κ (w′)k2, |w′|, #{i |w′i , 0}, µ)

= (frac
∗(w |w | + k

|w |
1
ε), Where k−|w |

1
ε ∈ [0, 1 − e−µ]

0.κ (w′)k2 + k−|w
′ |−1

2
Lκ (int

∗(w |w | + k
|w |
1
ε)),

|w′| + 1, #{i |w′i , 0} + Did,0(int
∗(w |w | + k

|w |
1
ε)), µ)

= (k |w |
1
ε, 0.κ (w′)k2 + k−|w |

2
Lκ (w |w |),

|w |, #{i |w′i , 0} + Did,0(w |w |), µ)

= (k |w |
1
ε, 0.κ (w′)k2, |w |, #{i |wi , 0}, µ)

We can now conclude to the result. Let ε ∈ [0,k−|w |
1

(1 − e−µ] then A(0.0wk1 + ε, |w |, µ) so in

particular (0.wk1 + ε, 0, 0, 0, µ) ∈ I |w | so:

decodeκ (0.w
k1 + ε, |w |, µ) = π2,4(д

∗
0
(0.wk1 + ε, 0, 0, 0, µ))

= π2,4(д
[|w |](0.wk1 + ε, 0, 0, 0, µ))

= π2,4(ε, 0.κ (w)k2, |w |, #{i |wi , 0}, µ)

= (0.κ (w)k2, #{i |wi , 0})

�

The previous result is very general and in fact optimal in the sense that no computable (and

thus continuous) function can do better. However for most practical cases, a much simpler

version can be derived, assuming the encoding is sparse, meaning that we encode in base k
but only use symbols from 0 to k − 2 (instead of k − 1).

1
We use Remark 4.6.26 (Dependency of f in n) to allow a dependence of f in n.

119

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

Corollary 5.2.27 (Reencoding): Let k1,k2 ∈ N
∗ and κ : J1,k1 − 2K→ J0,k2 − 1K. There exists a

function (reencκ :⊆ R × N→ R × N) ∈ AP such that for any wordw ∈ J1,k1 − 2K∗ and n > |w |
we have:

reencκ
*.
,

|w |∑
i=1

wik
−i
1
,n+/

-
=

*.
,

|w |∑
i=1

κ (wi)k
−i
2
, |w |+/

-
�

Proof. The proof is immediate: extend κ with κ (0) = 0 and de�ne

reencκ (x ,n) = decodeκ (x ,n, 0)

Since n > |w |, we can apply Theorem 5.2.20 (Word decoding) with ε = 0 to get the result. Note

that stricly speaking, we are not applying the theorem to w but rather to w padded with as

many 0 symbols as necessary, ie w0
n−|w |

. Since w does not contain the symbol 0 so its length

is the same as the number of non-blank symbols it contains. �

Remark 5.2.28 (Nonreversible reencoding): Note that the previous theorem and corrolary

allows from nonreversible reencoding when κ (α) = 0 or κ (α) = k2 − 1 for some α , 0. For

example, it allows one to reencode a word over {0, 1, 2} with k1 = 4 to a word over {0, 1} with

k2 = 2 with κ (1) = 0 and κ (2) = 1 but the resulting number cannot be decoded in general (for

continuity reasons). In some cases, only the more general Theorem 5.2.20 (Word decoding)

provides a way to recover the encoding. �

In the next section, we will need to recover the size of the tape at the end of the compu-

tation. One way to do this is to keep track of the tape size during the computation, but this

usually requires a modi�ed machine and some delimiters on the tape. Instead, we use the pre-

vious theorem to recover the size from the encoding, assuming it does not contain any blank

character.

Corollary 5.2.29 (Size recovery): For any machineM, there exists a function (tsizeM : 〈CM〉×

N→ N) ∈ AP such that for any wordw ∈ (Σ \ {b})∗ and any n > |w |, tsizeM (0.w,n) = |w |. �

Proof. It is an immediate consequence of Corollary 5.2.27 (Reencoding) with k1 = k2 = k and

κ = id where we throw away the reencoding. �

Our last tool is that of “digit extraction”. In Theorem 5.2.20 (Word decoding) we saw that we

can decode a value, as long as we are close enough to a word. In essence, this theorem works

around the continuity problem by creating gaps in the domain of the de�nition. One problem

with this approach is that on rare occasions we really want to extract some information about

the encoding. How is it possible to achieve this without breaking the continuity requirement

? The compromise is to ask for less information. More precisely, instead of computing “the ith

bit of the encoding” we rather compute “cos (x) where x is the ith but of the encoding”. For

simplicity, we will only state this result for the binary encoding.

Theorem 5.2.30 (Extraction): There exists extract ∈ AP such that for any x ∈ R and n ∈ N:

extract(x ,n) = cos(2π2
nx)

�

Proof. The proof relies of the well-known following trigonometric identity:

cos(2x) = 2 cos
2(x) − 1

120

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

Indeed, de�ne for any x ∈ R:

f (x) = 2x2 − 1

Clearly f ∈ AP and it follows that for any x ∈ R and n ∈ N:

cos(2π2
nx) = f [n](cos(2πx))

We now have to show that we can iterate f over [−1, 1] because cos(2πR) = [−1, 1]. This

turns out to be very easy because f ([−1, 1]) = [−1, 1] so the iterates of f over [−1, 1] are

trivially bounded:

���f
[n](x)��� 6 1 x ∈ [−1, 1],n ∈ N

And for any x ∈ [−1, 1], µ > 0 and y ∈ R, if |x −y | 6 e−µ−ln 6
then clearly |y | 6 |x | + 1 6 2 so:

| f (x) − f (y) | = 2|x − y | |x + y | 6 2e−µ−ln 6
3 6 e−µ

This shows that we can apply Theorem 4.6.21 (Closure by iteration) and get f ∗
0
∈ AP. De�ne

for any x ∈ R and n ∈ N:

д(x ,n) = f ∗
0
(cos(2πx),n)

Clearly д ∈ AP since cos(2πR) = [−1, 1] and by construction we have:

д(x ,n) = f [n](cos(2πx)) = cos(2π2
nx)

�

5.3 Equivalences with Turing computability
In this section, we �x an alphabet Γ and all languages are considered over Γ, so in particular

P ⊂ Γ∗. It is common to take Γ = {0, 1} but the proofs work for any �nite alphabet. We will

assume that Γ comes with an injective mapping γ : Γ → N∗, in other words every letter has

an uniquely assigned positive number. By extension, γ applies letterwise over words.

5.3.I Equivalence with FP

We will provide a characterization of FP by introducing a notion of function emulationwith the

GPAC. This characterization builds on our notion of computability introduced in the previous

chapter. More precisely, we can simulate an FP function by iterating the robust step function

built in Section 5.2 (Simulating Turing machines) using Theorem 4.6.21 (Closure by iteration).

In the other direction, we can solve a PIVP using Theorem 3.5.2 (PIVP complexity). At the end

of this section, we also characterize FP as the discrete (i.e. integer) part of AP, since FP can be

seen a set of functions over integers.

De�nition 5.3.1 (Discrete emulation): f : Γ∗ → Γ∗ is called emulable if there exists д ∈ APRG

and k > 1 +max(γ (Γ)) such that for any word w ∈ Γ∗:

д(ψ (w)) = ψ (f (w)) where ψ (w) = *.
,

|w |∑
i=1

γ (wi)k
−i , |w |+/

-
We say that д emulates f with k . �

Remark 5.3.2 (Encoding size): The exact details of the encoding are not extremely important,

however the size of the encoding is crucial. More precisely, the proof heavily relies on the fact

that

ψ (w)

 ≈ |w |. Note that this works both ways:

121

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

•

ψ (w)

 must be polynomially bounded in |w | so that Theorem 3.5.2 (PIVP complexity)

runs in polynomial time in |w |.

•

ψ (w)

 must be polynomially lower bounded in |w | so that we can recover the output

length from the size of its encoding.

�

It is useful to note that the choice of k in the de�nition is not important and can always

be changed. This is useful to alphabet changes. See Lemma 5.3.4 (Emulation reencoding) for

more details.

Theorem 5.3.3 (FP equivalence): f ∈ FP if and only if f is emulable (with k = 2+max(γ (Γ))).
�

Proof. Let f ∈ FP, then there exists a Turing machine M = (Q, Σ,b,δ ,q0, F) where Σ =
J0,k − 2K and γ (Γ) ⊂ Σ \ {b}, and a polynomial pM such that for any word w ∈ Γ∗,M halts in

at most pM (|w |) steps, that isM[pM (|w |)](c0(γ (w))) = c∞(γ (f (w))). Note that we assume that

pM (N) ⊆ N. Also note thatψ (w) = (0.γ (w), |w |) for any word w ∈ Γ∗.
Let µ = ln(4k2) and h(c) = M (c, µ) for all c ∈ R4

. De�ne I∞ = 〈CM〉 and In = I∞ +
[−εn, εn]

4

where εn =
1

4k2+n for all n ∈ N. Note that εn+1 6
εn
k and that that ε0 6

1

2k2
− e−µ .

Apply Theorem 5.2.19 (Real step is robust) to get that h ∈ AP and h(In+1) ⊆ In. In particular

h
[n](c̄) − h[n](c)

 6 kn ‖c − c̄‖ for all c ∈ I∞ and c̄ ∈ In, for all n ∈ N. Let δ ∈

[
0, 1

2

[
and de�ne

J = ∪n∈NIn×[n−δ ,n+δ]. Apply Theorem 4.6.21 (Closure by iteration) to get (h∗ : J → I0) ∈ AP

such that for all c ∈ I∞ and n ∈ N and h∗(c,n) = h[n](c).
Let π3 denote the third projection, that is π3(a,b, c,d) = c , then π3 ∈ AP. De�ne д(y, `) =

π3(h
∗(0,b,y,q0,pM (`))) for y ∈ ψ (Γ∗) and ` ∈ N. Note that д ∈ AP and is well-de�ned.

Indeed, if ` ∈ N then pM (`) ∈ N and if y = ψ (w) = 0.w then (0,b,y,q0) =
〈
(λ,b,w,q0)

〉
=

〈c0(w)〉 ∈ I∞. Furthermore, by construction, for any word w ∈ Γ∗ we have:

д(ψ (w), |w |) = π3 (h
∗(〈c0(w)〉 ,pM (|w |)))

= π3

(
h[pM (|w |)](c0(w))

)
= π3

(〈
C

[pM (|w |)]
M

(c0(w))
〉)

= π3 (
〈
c∞(γ (f (w)))

〉
)

= 0.γ (f (w)) = ψ (f (w))

Furthermore, the size of the tape cannot be greater than the initial size plus the number

of steps, thus | f (w) | 6 |w | + pM (|w |). Apply Corollary 5.2.29 (Size recovery) to get that

tsizeM (д(ψ (w), |w |), |w |+pM (|w |)) = | f (w) | since f (w) does not contain any blank character

(this is true because γ (Γ) ⊂ Σ \ {b}). This proves that f is emulable because д ∈ AP and

tsizeM ∈ AP.

Conversely, assume that f is emulable and apply De�nition 5.3.1 (Discrete emulation) to

get д ∈ AC(ϒ,Ω) where ϒ,Ω are polynomials, and k ∈ N. Let w ∈ Γ∗: we will describe an FP

algorithm to compute f (w). Apply De�nition 4.2.1 (Analog computability) to д to get d,p,q
and consider the following system:

y (0) = q(ψ (w)) y′(t) = p (y (t))

Note that by construction,y is de�ned overR+. Also note, and that is absolutely crucial that

the coe�cients of p,q belong to RP which means that they are polynomial time computable.

And since ψ (w) is a pair of rational numbers with polynomial size (with respect to |w |), then

q(ψ (w)) ∈ RdG ⊆ R
d
P by Theorem 2.7.16 (RG is generable sub�eld of RP).

122

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

The algorithm works in two steps: �rst we compute a rough approximation of the output

to guess the size of the output. Then we rerun the system with enough precision to get the

full output.

Let tw = Ω(|w |, 2) for any w ∈ Σ∗, note that tw ∈ RP and that it is polynomially bounded

in |w | because Ω is a polynomial. Apply Theorem 3.5.2 (PIVP complexity) to compute ỹ such

that

ỹ − y (tw)

 6 e−2

: this takes a time polynomial in |w | because tw is polynomially bounded

and because
2

Len(0, tw) 6 poly(tw , sup
[0,tw]

y

) and by construction,

y (t)

 6 ϒ(

ψ (w)

 , tw)

for t ∈ [0, tw] where ϒ is a polynomial. Furthermore, by de�nition

y (tw) − д(ψ (w))

 6 e−2

thus

ỹ −ψ (f (w))

 6 2e−2 6 1

3
. But since ψ (f (w)) = (0.γ (f (w)), | f (w) |), from ỹ2 we can

�nd | f (w) | by rounding to the closest integer (which is unique because at distance at most
1

3
).

In other words, we can compute | f (w) | in polynomial time in |w |. Note that this implies that

| f (w) | is at most polynomial in |w |.
Let t ′w = Ω(|w |, 2 + | f (w) | lnk) which is polynomial in |w | because Ω is a polynomial and

| f (w) | is at most polynomial in |w |. We can use the same reasoning and apply Theorem 3.5.2

(PIVP complexity) to get ỹ such that

ỹ − y (t ′w)

 6 e−2−| f (w) | lnk

. Again this takes a time

polynomial in |w |. Furthermore,

ỹ1 − 0.γ (f (w))

 6 2e−2−| f (w) | lnk 6 1

3
k−| f (w) |

. We claim that

this allows to recover f (w) unambiguously in polynomial time in | f (w) |. Indeed, it implies

that

k
| f (w) |ỹ1 − k

| f (w) |
0.γ (f (w))

 6

1

3
. Unfolding the de�nition shows thatk | f (w) |

0.γ (f (w)) =∑| f (w) |
i=1

γ (f (w)i)k
| f (w) |−i ∈ N thus by rounding k | f (w) |ỹ1 to the nearest integer, we recover

γ (f (w)), and then f (w). This is all done in polynomial time in | f (w) |, which proves that f is

polynomial time computable. �

An interesting question arises when looking at this theorem: does the choice of k in De�-

nition 5.3.1 (Discrete emulation) matters, especially for the equivalence with FP ? Fortunately

not, as long as k is large enough, as shown in the next lemma.

Lemma 5.3.4 (Emulation reencoding): Assume that д ∈ AP emulates f with k ∈ N. Then for
any k′ > k , there exists h ∈ AP that emulates f with k′. �

Proof. The proof follows from Corollary 5.2.27 (Reencoding). More precisely, ket k′ > k and

de�ne κ : J1,k′K→ J1,kK and κ−1
: J1,kK→ J1,k′K as follows:

κ (w) =



w if w ∈ γ (Γ)

1 otherwise

κ−1(w) = w

In the following, ψ (resp. ψ ′ denotes ψ with basis k (resp. k′). Similarly, 0.w (resp. 0
′.w)

denotes the rational encoding in basis k (resp. k′). Apply Corollary 5.2.27 (Reencoding) twice

to get that reencκ , reencκ−1 ∈ AP. De�ne:

h = reencκ−1 ◦д ◦ reencκ

Note that γ (Γ) ⊆ J1,k−1K∗ ⊆ J1,k′−1K∗ since γ never maps letters to 0 and k > 1+max(γ (Γ))
by de�nition. Consequently for w ∈ Γ∗:

h(ψ ′(w)) = h(0′.γ (w), |w |) By de�nition ofψ ′

= reencκ−1 (д(reencκ (0
′.γ (w), |w |)))

= reencκ−1 (д(0.κ (γ (w)), |w |)) Because γ (w) ∈ J1,k′K∗

= reencκ−1 (д(0.γ (w), |w |)) Because γ (w) ∈ γ (Γ)∗

= reencκ−1 (д(ψ (w))) By de�nition ofψ

2
See De�nition 3.3.15 (Pseudo-length of a PIVP) for the expression Len

123

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

= reencκ−1 (ψ (f (w))) Because д emulates f

= reencκ−1 (0.γ (f (w)), | f (w) |) By de�nition ofψ

= (0′.κ−1(γ (f (w))), | f (w) |) Because γ (f (w)) ∈ γ (Γ)∗

= (0′.γ (f (w)), | f (w) |) By de�nition of κ−1

= ψ ′(f (w)) By de�nition ofψ ′

�

The previous result was for single input function, which is su�cient in theory because

we can always encode tuples of words using a single word or give Turing machines several

input/output tapes. For what follows, it will be useful to have function with multiple in-

puts/ouputs without going through an encoding. We extend the notion of discrete encoding

in the natural way to handle this case.

De�nition 5.3.5 (Discrete emulation): f : (Γ∗)n → (Γ∗)m is called emulable if there exists

д ∈ APRG and k ∈ N such that for any word ~w ∈ (Γ∗)n:

д(ψ (~w)) = ψ (f (~w)) where ψ (x1, . . . ,x`) = (ψ (x1), . . . ,ψ (x`))

andψ is de�ned as in De�nition 5.3.1. �

Remark 5.3.6 (Consistency): It is trivial that De�nition 5.3.5 (Discrete emulation) matches

De�nition 5.3.1 (Discrete emulation) in the case of unidimensional functions, thus the two

de�nitions are consistent with each other. �

Theorem 5.3.7 (Multidimensional FP equivalence): Let f : (Γ∗)n → (Γ∗)m. Then f ∈ FP if
and only if f is emulable. �

Proof. First note that we can always assume thatm = 1 by applying the result componentwise.

Similarly, we can always assume thatn = 2 by applying the result repeatedly. Since FP is robust

to the exact encoding used for pairs, we choose a particular encoding to prove the result. Let

be a fresh symbol not found in Γ and de�ne Γ# = Γ ∪ {#}. We naturally extend γ to γ
which

maps Γ#
to N∗ injectively. Let h : Γ#∗ → Γ∗ and de�ne for any w,w′ ∈ Γ∗:

h#(w,w′) = h(w#w′)

It follows
3

that

f ∈ FP if and only if ∃h ∈ FP such that h# = f

Assume that f ∈ FP, then there exists h ∈ FP such that h# = f . Note that h naturally

induces a function (still called) h : Γ#∗ → Γ#∗
so we can apply Theorem 5.3.3 (FP equivalence)

to get that h is emulable over alphabet Γ#
. Apply De�nition 5.3.1 (Discrete emulation) to get

д ∈ AP and k ∈ N that emulate h. In the remaining of the proof, ψ denotes encoding of

De�nition 5.3.1 for this particular k, in other words:

ψ (w) = *.
,

|w |∑
i=1

γ #(wi)k
−i , |w |+/

-
De�ne for any x ,x′ ∈ R and n,n′ ∈ N:

φ (x ,n,x′,n) =
(
x +

(
γ #(#) + x′

)
k−n−1,n +m + 1

)
3
This is folklore, but mostly because this particular encoding of pairs is polytime computable.

124

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

We claim that φ ∈ AP and that for any w,w′ ∈ Γ∗, φ (ψ (w),ψ (w′)) = ψ (w#w′). The fact that

φ ∈ AP is immediate using Theorem 4.6.3 (Closure by arithmetic operations) and the fact that

n 7→ k−n−1
is analog-polytime-computable

4
. The second fact is follows from a calculation:

φ (ψ (w),ψ (w′)) = φ *.
,

|w |∑
i=1

γ #(wi)k
−i , |w |,

|w ′ |∑
i=1

γ #(w′i)k
−i , |w′|+/

-

=
*.
,

|w |∑
i=1

γ #(wi)k
−i +

*.
,
γ #(#) +

|w ′ |∑
i=1

γ #(w′i)k
−i+/

-
k−|w |−1, |w | + |w′| + 1

+/
-

=
*.
,

|w#w ′ |∑
i=1

γ #((w#w′)i)k
−i , |w#w′|+/

-
= ψ (w#w′)

De�ne G = д ◦ φ, we claim that G emulates f with k . First G ∈ AP thanks to Theorem 4.6.6

(Closure by composition). Second, for any w,w′ ∈ Γ∗, we have:

G (ψ (w,w′)) = д(φ (ψ (w),ψ (w′))) By de�nition of G andψ

= д(ψ (w#w′)) By the above equality

= ψ (h(w#w′)) Because д emulates h

= ψ (h#(w,w′)) By de�nition of h#

= ψ (f (w,w′)) By the choice of h

Conversely, assume that f is emulable. De�ne F : Γ#∗ → Γ#∗ × Γ#∗
as follows for any

w ∈ Γ#∗
:

F (w) =



(w′,w′′) if w = w′#w′′ where w′,w′′ ∈ Γ∗

(λ, λ) otherwise

Clearly F1, F2 ∈ FP so apply Theorem 5.3.3 (FP equivalence) to get that they are emulable.

Thanks to Lemma 5.3.4 (Emulation reencoding), there exists h,д1,д2 that emulate f , F1, f2 re-

spectively with the same k . De�ne:

H = h ◦ (д1,д2)

ClearlyH ∈ AP becauseд1,д2,h ∈ AP. Furthermore,H emulates f ◦F because for anyw ∈ Γ#∗
:

H (ψ (w)) = h(д1(ψ (w)),д2(ψ (w)))

= h(ψ (д1(w)),ψ (д2(w))) Because дi emulates Fi

= h(ψ (F (w))) By de�nition ofψ

= ψ (f (F (w))) Because h emulates f

Since f ◦ F : Γ#∗ → Γ#∗
is emulable, we can apply Theorem 5.3.3 (FP equivalence) to get that

f ◦ F ∈ FP. It is now trivial so see that f ∈ FP because for any w,w′ ∈ Γ∗:

f (w,w′) = (f ◦ F) (w#w′)

and ((w,w′) 7→ w#w′) ∈ FP �

4
Note that it works only because n > 0.

125

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

5.3.II Equivalence with P

We will now use this characterization of FP to give a characterization of P. Instead of simply

using the notion of computability, we will characterize it in terms of PIVP directly. This will

hopefully give a simpler and more natural characterization of P than FP. We choose to measure

the complexity in terms of the length of the curve because it is more natural, but it would be

easy to use the space and time instead. The idea of equivalence is to reuse the equivalence with

FP and the ingredients of the equivalence between AP and ALP from Theorem 4.2.15 (Com-

putable = length-computable). Again, we will make use of Theorem 3.5.2 (PIVP complexity)

but this time, we will really use the length of the curve as a complexity measure.

De�nition 5.3.8 (Discrete recognizability): A language L ⊆ Γ∗ is called recognizable if there

exists d ∈ N, q ∈ RdG[R2
], p ∈ RdG[Rd] and a polynomial Ω : R+ → R+ such that for all w ∈ Γ∗,

there is a (unique) y : R+ → R
d

such that for all t ∈ R+:

• y (0) = q(ψ (w)) and y′(t) = p (y (t)) I y satis�es a di�erential equation

• if |y1(t) | > 1 then |y1(u) | > 1 for all u > t I decision is stable

• if w ∈ L (resp. < L) and leny (0, t) > Ω(|w |) then y1(t) > 1 (resp. 6 −1) I decision

• leny (0, t) > t I technical condition

�

Theorem 5.3.9 (P equivalence): L ∈ P if and only if L is recognizable. �

Proof. The proof is based on the equivalence between AP and ALP, and the FP equivalence.

Indeed, decidability can be seen as the computability of particular functions with boolean

output. The only technical point is to make sure that the decision of the system is irreversible.

To do that, we run the system from the FP equivalence (which will output 0 or 1) for long

enough so that the output is approximate but good enough. Only then will another variable

reach −1 or 1. The fact that the decision complexity is based on the length of the curve also

makes the proof slightly more complicated because the system we build essentially takes a

decision after a certain time (and not length).

Let L ∈ P, then there exists f ∈ FP and two distinct symbols 0̄, 1̄ ∈ Γ such that for any

w ∈ Γ∗, f (w) = 1̄ if w ∈ M and f (w) = 0̄ otherwise. Let dec be de�ned by dec(k−1γ (0̄)) = −2

and dec(k−1γ (1̄)) = 2. Recall that Ldec ∈ AP by Lemma 5.2.10 (Lagrange interpolation). Apply

Theorem 5.3.3 (FP equivalence) to get д and k that emulate f . Note in particular that for any

w ∈ Γ∗, f (w) ∈ {0̄, 1̄} so ψ (f (w)) = (γ (0̄)k−1, 1) or (γ (1̄)k−1, 1). De�ne д∗(x) = Ldec(д1(x))
and check that д∗ ∈ AP. Furthermore, д∗(ψ (w)) = 2 if w ∈ L and д∗(ψ (w)) = −2 otherwise,

by de�nition of the emulation and the interpolation. Let Ω and ϒ be polynomials such that

д∗ ∈ AC(ϒ,Ω) and assume, without loss of generality, that they are increasing functions.

Apply De�nition 4.2.1 (Analog computability) to get d,p,q. Let w ∈ Γ∗ and consider the

following system:




y (0)= q(ψ (w))

v (0)= ψ (w)

z (0)= 0

τ (0)= 0




y′(t)= p (y (t))

v′(t)= 0

z′(t)= lxh[0,1](τ (t) − τ
∗, 1,y1(t) − z (t))

τ ′(t)= 1

τ ∗ = Ω(v2(t), ln 2)

126

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

In this system,y computesд∗ f ,v is a constant variable used to store the input and in particular

the input size (v2(t) = |w |), τ (t) = t is used to keep the time and z is the decision variable.

Let t ∈ [0,τ ∗], then by Lemma 2.6.22 (“low-X-high” and “high-X-low”), ‖z′(t)‖ 6 e−1−t
thus

‖z (t)‖ 6 e−1 < 1. In other words, at time τ ∗ the system has still not decided ifw ∈ L or not. Let

t > τ ∗, then by de�nition of Ω and since v2(t) = ψ2(w) = |w | =

ψ (w)

,

y1(t) − д

∗(ψ (w))

 6
e− ln 2

. Recall that д∗(ψ (w)) ∈ {−2, 2} and let ε ∈ {−1, 1} such that д∗(ψ (w)) = ε2. Then

y1(t) − ε2

 6 1

2
which means that y1(t) = ελ(t) where λ(t) > 3

2
. Apply Lemma 2.6.22 (“low-

X-high” and “high-X-low”) and De�nition 2.6.21 (“low-X-high” and “high-X-low”) to conclude

that z satis�es for t > τ ∗:

z (τ ∗) ∈ [−e−1, e−1
] z′(t) = ϕ (t) (ελ(t) − z (t))

where ϕ (t) > 0 and ϕ (t) > 1 − e−1
for t > τ ∗ + 1. Let zε (t) = εz (t) and check that zε satis�es:

zε (τ
∗) ∈ [−e−1, e−1

] z′ε (t) > ϕ (t) (
3

2
− zε (t))

It follows that zε is an increasing function and from a classical argument about di�erential

inequalities that:

zε (t) >
3

2

−

(
3

2

− zε (τ
∗)

)
e−

∫ t
τ ∗ ϕ (u)du

In particular for t∗ = τ ∗ + 1 + 2 ln 4 we have:

zε (t) >
3

2

− (3

2
− zε (τ

∗))e−2 ln 4(1−e−1) >
3

2

− 2e− ln 4 > 1

This proves that |z (t) | is an increasing function, so in particular once it has reached 1, it stays

greater than 1. Furthermore, if w ∈ L then z (t∗) > 1 and if w < L then z (t∗) 6 1. Also

note that

(y,v, z,w)′(t)

 > 1 for all t > 1. Also note that z is bounded by a constant, by

a very similar reasoning. This shows that if Y = (y,v, z,τ), then ‖Y (t)‖ 6 poly(

ψ (w)

 , t)
because

y (t)

 6 ϒ(

ψ (w)

 , t). Consequently, there is a polynomial ϒ∗ such that ‖Y ′(t)‖ 6 ϒ∗

(this is immediate from the expression of the system), and without loss of generality, we can

assume that ϒ∗ is an increasing function. And since ‖Y ′(t)‖ > 1, we have that t 6 lenY (0, t) 6
t supu∈[0,t] ‖Y

′(u)‖ 6 tϒ∗(

ψ (w)

 , t). De�ne Ω∗(α) = t∗ϒ∗(α , t∗) which is a polynomial becase

t∗ is polynomially bounded in

ψ (w)

 = |w |. Let t such that lenY (0, t) > Ω∗(|w |), then by the

above reasoning, tϒ∗(|w |, t) > Ω∗(|w |) and thus t > t∗ so |z (t) | > 1, i.e. the system has

decided.

The other direction of the proof is easier: assume that L is recognizable by a GPAC. Apply

De�nition 5.3.8 (Discrete recognizability) to get d,q,p and Ω. Let w ∈ Γ∗ and consider the

following system:

y (0) = q(ψ (w)) y′(t) = p (y (t))

We will show that we can decide in time polynomial in |w | whetherw ∈ L or not. Indeed, q is

a polynomial with coe�cients in RG ⊆ RP by Theorem 2.7.16 (RG is generable sub�eld of RP)

and ψ (w) is a rational number so q(ψ (w)) ∈ RdP . Similarly, p has coe�cients in RP . Finally,

note that
5
:

Len(0, t) =

∫ t

0

Σp max(1,

y (u)

)kdu

6 tΣp max
*
,
1, sup

u∈[0,t]

y (u)

k+
-

5
See De�nition 3.3.15 (Pseudo-length of a PIVP) for the expression Len

127

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

6 tΣp max
*
,
1, sup

u∈[0,t]

(

y (0)

 + leny (0, t)
)k+

-
6 t poly(leny (0, t))

6 poly(leny (0, t))

where the last inequality holds because leny (0, t) > t thanks to the technical condition. We can

now apply Theorem 3.5.2 (PIVP complexity) to conclude that we are able to computey (t)±e−µ

in time polynomial in t , µ and leny (0, t). At this point, there is a slight subtlety: intuitively we

would like to evaluatey at time Ω(|w |) but it could be that the length of the curve is exponential

at this time. Fortunately, the algorithm that solves the PIVP works by making small time steps,

and at each step the length cannot increase by more than a constant
6
. This means that we can

stop the algorithm as soon as the length is greater than Ω(|w |). Let t∗ be the time at which

the algorithm stops. Then the running time of the algorithm will be polynomial in t∗, µ and

leny (0, t
∗) 6 Ω(|w |) + O (1). Finally, thanks to the technical condition, t∗ 6 leny (0, t

∗) so this

algorithm has running time polynomial in |w | and µ. Take µ = ln 2 then we get ỹ such that

y (t∗) − ỹ

 6 1

2
. By de�nition of Ω, y1(t) > 1 or y1(t) 6 −1 so we can decide from ỹ1 ifw ∈ L

or not. �

5.3.III Equivalence with Computable Analysis

In this section, we show our main result, that is the equivalence between GPAC/PIVP polyno-

mial time computability, and real polynomial time computability (in the sense of Computable

Analysis). This is probably the most surprising and beautiful result of this thesis. Indeed, it

gives a purely analog and machine-independent characterization of real polynomial time com-

putability, using a realistic model, namely the GPAC. We choose to state this theorem over

intervals, see Remark 5.3.11 (Domain of de�nition) for possible extensions, and limitations.

We now give a high-level overview of the proof. Given x ∈ [a,b] and µ ∈ N, we will com-

pute an approximation of f (x) ± 2
−µ

and take the limit when µ → ∞ using Theorem 4.6.17

(Closure by limit). To compute f , we will use Theorem 1.3.4 (Alternative de�nition of com-

putable functions) which provides us will a polynomial time computable function д that com-

putes f over rationals, and m a modulus of continuity. All we have to do is simulate д with

input x̃ and µ, where x̃ = x ± 2
−m(µ)

because we can only feed the machine with a �nite input

of course. The nontrivial part of the proof is how to obtain the encoding of x̃ from x and µ.

Indeed, the encoding is a discrete quantity whereas x is real number, so by a simple continuity

argument, one can see that no such function can exist. The trick is to proceed as we did for the

limit operation: from x and µ, we can compute two encodingsψ1 andψ2 such that at least one

of them is valid, and we know which one it is. So we are going to simulate д on both inputs

and then select the result. Again, the select operation cannot be done continuously unless we

agree to “mix” both results, i.e. we will compute αд(ψ1) + (1 − α)д(ψ2). The trick is to ensure

that α = 1 or 0 when only one encoding is valid, α ∈]0, 1[when both are valid (by “when” we

mean with respect to x). This way, the mixing will ensure continuity but in fact when both

encodings are valid, the outputs are nearly the same so we are still computing f .

In the other direction, the proof is much easier using Theorem 3.5.2 (PIVP complexity): we

simply simulate the system long enough to get the desired precision and use Theorem 2.7.16

(RG is generable sub�eld of RP) to get that all the coe�cients are polytime computable thus

proving that the solution can be computed in polynomial time.

6
For the unconvinced reader, it is still possible to write this argument formally by running the algorithm for

increasing values of t , starting from a very small value and making sure that at each step the increase in the

length of the curve is at most constant

128

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

Theorem 5.3.10 (Main equivalence): For any a,b ∈ RP and f ∈ C0([a,b],R), f is polynomial
time computable if and only if f ∈ APRP . �

Proof. Assume that the theorem is true for functions in C0([0, 1/2]), then we claim the the-

orem follows. Indeed, if f ∈ C0([a,b],R) is polynomial time computable, then there exists
7

m,M ∈ RP such thatm < f (x) < M for all x ∈ [a,b]. De�ne for α ∈ [0, 1/2]:

д(α) =
f (a + 2α (b − a)) −m

2(M −m)

then clearly д ∈ C0([0, 1/2]) and is polytime computable because a,b,m,M ∈ RP . It fol-

lows that д ∈ APRP and then f ∈ APRP by the closure properties of AP. Conversely, if

f ∈ C0([0, 1/2]) belongs to APRP then there also exists
8 m,M ∈ RP as above and the reasoning

is exactly the same. In the remaining of the proof, we assume that f ∈ C0([0, 1/2]). This

restriction is useful to simplify the encoding used later in the proof.

Let f ∈ C0([0, 1/2]) be a polynomial time computable function. Apply Theorem 1.3.4

(Alternative de�nition of computable functions) to get д andm (we renamedψ to д to avoid a

name clash). Note that д : Q ∩ [0, 1/2] ×N→ Q ∩ [0, 1/2] has its second argument written in

unary. In order to apply the FP characterization, we need to discuss the encoding of rational

numbers and unary integers. Let us choose a binary alphabet Γ = {0, 1} with γ (0) = 1 and

γ (1) = 2 and de�ne for any w,w′ ∈ Γ∗:

ψN(w) = |w | ψQ(w) =
|w |∑
i=1

wi2
−i

Note thatψQ is a bijection from Γ∗ to Q ∩ [0, 1[. De�ne for any w,w′ ∈ Γ∗:

дΓ (w,w
′) = ψ−1

Q (д(ψQ(w),ψN(w
′))

SinceψQ is a polytime computable encoding, then дΓ ∈ FP because it has running time polyno-

mial in the size ofψQ (w) and the (unary) value ofψN(w
′), which are the size ofw andw′ respec-

tively, by de�nition ofψQ andψN. Apply Theorem 5.3.7 (Multidimensional FP equivalence) to

get that дΓ is emulable. Thus there exits h ∈ AP and k ∈ N such that for all w,w′ ∈ Γ∗:

h(ψ (w,w′)) = ψ (дΓ (w,w
′))

whereψ is de�ned as in De�nition 5.3.5, for this speci�c value ofk . De�neκ : J0,k−2K→ {0, 1}
by κ (γ (0)) = 0 and κ (γ (1)) = 1 and κ (α) = 0 otherwise, and de�ne:

ψ ∗Q(x ,n) = reencκ,1(x ,n)

It follows from Corollary 5.2.27 (Reencoding) thatψ ∗
Q
∈ AP and:

ψ ∗Q(ψ (w)) = reencκ,1
*.
,

|w |∑
i=1

γ (wi)k
−i , |w |+/

-
=

|w |∑
i=1

κ (γ (wi))2
−i =

|w |∑
i=1

wi2
−i = ψQ(w)

We can now de�ne:

д∗Γ (x ,n,x
′,n′) = ψ ∗Q(h(x ,n,x

′,n′)

and get that for any w,w′ ∈ Γ∗:

д∗Γ (ψ (w,w
′)) = ψ ∗Q(h(ψ (w,w

′))) = ψ ∗Q(ψ (дΓ (w,w
′)) = ψQ(дΓ (w,w

′)) = д(ψQ(w),ψN(w
′))

7
To see that, observe that any polytime computable function is bounded by a polynomial.

8
By Proposition 4.6.5, functions in AP are bounded by a polynomial.

129

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

Let us summarize what we have done so far: we built д∗Γ ∈ AP that, if provided with the

encoding of w,w′, compute д(ψQ(w),ψN(w
′)). To use this function, we need to be able to

compute, from the input x ∈ [0, 1] and the requested precision µ > 0, words w,w′ such that

|w′| > µ and |x − ψQ(w) | 6 2
−m(ψN (w

′))
so that we can run д∗Γ and get an approximation of

f (x) ± 2
−µ

. The problem is that for continuity reason, it is impossible to compute such w,w′

in general. This is where mixing comes into play: given x and µ, we will compute two pairs

w,w′ and u,u′ such that at least one of them satis�es the above criteria. We will then apply д∗Γ
on both of them and mix the result.

De�ne
9 ι : Γ → J0,k − 1K by ι = γ . Apply Theorem 5.2.20 (Word decoding) and Theo-

rem 5.2.30 (Extraction) to get decodeι, extract ∈ AP. De�ne for any n ∈ N:

u (n) =
(

1−k−n

k−1
,n

)
Clearly u ∈ AP and one checks that u (n) = ψ (0n) because:

ψ (0n) = *
,

n∑
i=1

γ (0)k−i ,n+
-
=

(
1

k
1−kn

1−k ,n
)
= u (n)

Now de�ne for any n ∈ N and relevant
10 x ∈ [0, 1]:

v (x ,n) =
(
decodeι,1(x ,n, 2),n

)
It follows from Theorem 5.2.20 (Word decoding) and the fact that 1 − e−2 > 2

3
that:

if x = ψQ(w) + ε for some w ∈ Γn and ε ∈
[
0, 2−n 2

3

]
then v (x ,n) = ψ (w)

Now de�ne for any n ∈ N and relevant x ∈ [0, 1]:

f0(x ,n) = д
∗
Γ (v (x ,n),u (n))

f1(x ,n) = д
∗
Γ

(
v

(
x + 2

−n−1,n
)
,u (n)

)
i (x ,n) = 1

2
+ extract

(
x + 2

−n 1

6
,n

)
From the domain of de�nition of v , it follows that:⋃

w∈Γn

[
ψQ(w),ψQ(w) + 2

−n 2

3

]
⊆ dom f0

⋃
w∈Γn

[
ψQ(w) − 2

−n−1,ψQ(w) + 2
−n 1

6

]
⊆ dom f1

First o�, check that for any n ∈ N:⋃
w∈×Γn

[
ψQ(w),ψQ(w) + 2

−n
[
= [0, 1[

Check that for any n ∈ N, ε ∈ [0, 2−n[, n ∈ N and w ∈ Γn:

i (ψQ(w) + ε,n) = 1

2
+ cos(2π2

nε + π
3
)

It follows that any n ∈ N, ε ∈ [0, 2−n[, w ∈ Γn and x = ψQ(w) + ε we have:

ε ∈
[
0, 2−n 1

6

[
⇒ i (x ,n) ∈ [0, 1[

9
This is a technicality because decodeι will encode the output in basis k if ι : Γ → J0,k − 1K.

10
We will discuss the domain of de�nition of v right after.

130

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

ε ∈
[
2
−n 1

6
, 2−n 1

2

]
⇒ i (x ,n) 6 0

ε ∈
]
2
−n 1

2
, 2−n 2

3

[
⇒ i (x ,n) ∈]0, 1[

ε ∈
[
2
−n 2

3
, 2−n

[
⇒ i (x ,n) > 1

Thus:

{(x ,n) | i (x ,n) < 1} ⊆ dom f0 {(x ,n) | i (x ,n) > 0} ⊆ dom f1

De�ne for any x ∈ [0, 1/2] and n ∈ N:

д∗(x ,n) = mix(i, f0, f1) (x ,n)

We can thus apply Theorem 4.6.16 (Closure by mixing) to get that д∗ ∈ AP. Note that д∗ is

de�ned over [0, 1[×N which obviously contains [0, 1/2] ×N. We will now see that д∗ approx-

imates f and conclude that f ∈ AWP. To do so, we will show the following statement by a

case analysis, for all x ∈ [0, 1/2] and n ∈ N:

∃y, z ∈ Q ∩ [0, 1/2],α ∈ [0, 1], |x − y |, |x − z | 6 2
−n

and д∗(x ,n) = αд(y,n) + (1 − α)д(z,n)

To see that, �rst note that there exists
11 w ∈ Γn such that

12 x ∈ [ψQ(w),ψQ(w) + 2
−n

]. Fur-

thermore, since x ∈ [0, 1/2], we can always assume that w ∈ {0} × Γn−1
. Write ε = x −ψQ(w),

then there are four possible cases. It will be useful to keep in mind that u (n) = ψ (0n) as

shown previously and that ψN(0
n) = n. Also remember that we showed that д∗Γ (ψ (w,w

′)) =
д(ψQ(w),ψN(w

′)). In almost all cases, we will de�ne y = ψQ(w) and thus |x − y | = ε 6 2
−n

.

• If ε ∈
[
0, 2−n 1

6

[
then i (x ,n) ∈ [0, 1[thus д∗(x ,n) = i (x ,n) f0(x ,n) + (1 − i (x ,n)) f1(x ,n).

By construction of v , v (x ,n) = ψ (w) thus f0(x ,n) = д∗Γ (ψ (w),ψ (0n)) = д∗Γ (ψ (w, 0
n)) =

д(ψQ(w),ψN(0
n)) = д(y,n). Since, x + 2

−n−1 −ψQ(w) ∈ [0, 2−n 2

3
] we similarly have v (x +

2
−n−1,n) = ψ (w) and thus f1(x ,n) = f0(x ,n) = д(y,n). It follows that д∗(x ,n) = д(y,n).

So in this case, z = y ∈ [0, 1/2] and α can be anything.

• If ε ∈
[
2
−n 1

6
, 2−n 1

2

]
then i (x ,n) 6 0 thusд∗(x ,n) = f0(x ,n). By construction ofv ,v (x ,n) =

ψ (w) thus f0(x ,n) = д∗Γ (ψ (w),ψ (0n)) = д∗Γ (ψ (w, 0
n)) = д(ψQ(w),ψN(0

n)) = д(y,n). It

follows that д∗(x ,n) = д(y,n). So in this case, z = y ∈ [0, 1/2] and α can be anything.

• If ε ∈
]
2
−n 1

2
, 2−n 2

3

[
then i (x ,n) ∈ [0, 1[thus д∗(x ,n) = i (x ,n) f0(x ,n)+ (1−i (x ,n)) f1(x ,n).

By construction of v , v (x ,n) = ψ (w) thus f0(x ,n) = д∗Γ (ψ (w),ψ (0n)) = д∗Γ (ψ (w, 0
n)) =

д(ψQ(w),ψN(0
n)) = д(y,n). However, x + 2

−n−1 −ψQ(w) ∈ [2
−n, 2−n (1 + 1

6
)]. Thus de�ne

w′ ∈ Γn such that
13ψQ(w

′) = ψQ(w)+2
−n

and de�ne z = ψQ(w
′). It follows thatx−ψQ(w

′) ∈
[0, 2−n 1

6
] thus v (x + 2

−n−1,n) = ψ (w′) and thus f1(x ,n) = f0(x ,n) = д(z,n). It follows that

д∗(x ,n) = αд(y,n) + (1 − α)д(z,n) where α = i (x ,n) ∈ [0, 1]. Furthermore, |z − x | 6 2
−n

by construction of w′.

• If ε ∈
]
2
−n 2

3
, 2−n

]
then i (x ,n) > 1 thus д∗(x ,n) = f1(x ,n). De�ne w′ ∈ Γn such

that
13ψQ(w

′) = ψQ(w) + 2
−n

and de�ne z = ψQ(w
′). It follows that x −ψQ(w

′) ∈ [0, 2−n 1

2
]

thus v (x + 2
−n−1,n) = ψ (w′) and thus f1(x ,n) = f0(x ,n) = д(z,n). So in this case,

y = z ∈ [0, 1/2] and α can be anything.

11
It may not be unique since we closed the interval on both sides in order to get all of [0, 1/2] with words in

{0} × Γn . If we opened the interval on the right, we would only get [0, 1/2[with such words.

12
The use of this assumption will become later on. Essentially, it is there to ensure that the y we construct

belongs to [0, 1/2] so that we can apply the function д to it.

13
This is always possible, formally if w is seen as a number, written in binary, then w ′ is w + 1.

131

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

We are now in position to conclude thanks to the modulus of continuity of f . Recall that by

de�nition, m is a polynomial such that for any x ,y ∈ [0, 1/2] and k ∈ N, if |x − y | 6 2
−m(k)

then | f (x) − f (y) | 6 2
−k

. Without loss of generality, we can assume
14

that m(N) ⊆ N and

m(n) > n. Now de�ne for any x ∈ [0, 1/2] and n ∈ N:

д∗∗(x ,n) = д∗(x ,m(n + 1))

Clearly д ∈ AP since д ∈ AP and m is a polynomial. Let x ∈ N and n ∈ N. Then we have

shown that there exists y, z ∈ Q ∩ [0, 1/2] and α ∈ N such that |x − y |, |x − z | 6 2
−m(n+1)

and

д∗(x ,m(n+1)) = αд(y,m(n+1))+(1−α)д(z,m(n+1)). By de�nition ofд, |д(y,m(n+1))−f (y) | 6
2
−m(n+1) 6 2

−n−1
since m(n + 1) > 2. Similarly, |д(z,m(n + 1)) − f (z) | 6 2

−n−1
. Furthermore,

| f (y) − f (x) |, | f (z) − f (x) | 6 2
−n−1

. Thus:

|д∗∗(x ,n) − f (x) | 6 α |д∗(y,m(n + 1)) − f (x) | + (1 − α) |д∗(z,m(n + 1)) − f (x) |

6 α (2−n−1 + | f (y) − f (x) |) + (1 − α) (2−n−1 + | f (z) − f (x) |)

6 α2
−n + (1 − α)2−n

6 2
−n

Using Remark 4.2.9 (Limit computability), we have thus shown that f ∈ AWP and since AWP =

AP by Theorem 4.5.1 (Main equivalence), f ∈ AP.

In the other direction, the proof is much easier. Assume that f ∈ AC(ϒ,Ω) where ϒ,Ω are

polynomials which we can assume to be increasing function. Apply De�nition 4.2.1 (Analog

computability) to get d,p and q. Apply Theorem 4.6.4 (Modulus of continuity) to f to get f
and de�ne:

m(n) = 1

ln 2
f(max(|a |, |b]),n ln 2)

It follows from the de�nition that m is a modulus of continuity of f since for any n ∈ N and

x ,y ∈ [a,b] such that |x − y | 6 2
−m(n)

we have:

|x − y | 6 2
− 1

ln 2
f(max(|a |,|b |),n ln 2) = e−f(max(|a |,|b |),n ln 2) 6 e−f(|x |,n ln 2)

Thus | f (x) − f (y) | 6 e−n ln 2 = 2
−n

. We will now see how to approximate f in polynomial

time. Let r ∈ Q and n ∈ N, we would like to compute f (r) ± 2
−n

. By de�nition of f , there

exists a unique y : R+ → R
d

such that for all t ∈ R+:

y (0) = q(r) y′(t) = p (y (t)

Furthermore, |y1(Ω(|r |, µ)) − f (r) | 6 e−µ for any µ ∈ R+ and

y (t)

 6 ϒ(|r |, t) for all t ∈ R+.

Note that the coe�cients of p and q belongs to RG and since RG ⊆ RP by Theorem 2.7.16 (RG
is generable sub�eld of RP), it follows that we can apply Theorem 3.5.2 (PIVP complexity) to

compute y. In the details, one can compute a rational r ′ such that |y (t) − r ′| 6 2
−n

in time:

poly(deg(p), Len(0, t), log

y (0)

 , log Σp,− log 2

−n)d

Recall that in this case, all the parameters d, Σp, deg(p) only depend on f and thus �xed and

that |r | is bounded by a constant. Thus these are all considered constants. So in particular, we

can compute r ′ such that |y (Ω(|r |, (n + 1) ln 2) − r ′| 6 2
−n−1

in time:

poly(Len(0,Ω(|r |, (n + 1) ln 2)), log

q(r)

 , (n + 1) ln 2)

14
Do do so, consider the same polynomial where each coe�cient is the ceiling value of the absolute value of

the corresponding coe�cient ofm, and add the monomial x 7→ x .

132

5.3. EQUIVALENCES WITH TURING COMPUTABILITY

Note that |r | 6 max(|a |, |b |) and since a and b are constants and q is a polynomial,

q(r)

 is

bounded by a constant. Furthermore,

Len(0,Ω(|r |, (n + 1) ln 2)) =

∫
0
Ω(|r |,(n+1) ln 2)

max(1,

y (t)

)deg(p)dt

6

∫
0
Ω(|r |,(n+1) ln 2)

poly(ϒ(‖r ‖ , t))dt

6 Ω(|r |, (n + 1) ln 2) poly(ϒ(|r |,Ω(|r |, (n + 1) ln 2)))dt

6 poly(|r |,n) 6 poly(n)

Thus r ′ can be computed in time:

poly(n)

Which is indeed polynomial time since n is written in unary. Finally:

| f (r) − r ′| 6 | f (r) − y (Ω(|r |, (n + 1) ln 2)) | + |y (Ω(|r |, (n + 1) ln 2)) − r ′|

6 e−(n + 1) ln 2 + 2
−n−1

6 2
−n

This show that f is polytime computable. �

Remark 5.3.11 (Domain of de�nition): The equivalence holds over any interval [a,b] but it

can be extended in several ways. First it is possible to state an equivalence over R . Indeed,

classical real computability de�nes the complexity of f (x) over R as polynomial in n and

p where n is the precision and k the size of input, de�ned by x ∈ [−2
k , 2k]. Secondly, the

equivalence also holds for multidimensional domains of the form I1 × I2 × · · · × In where

Ik = [ak ,bk] or Ik = R. However, extending this equivalence to partial functions requires

some caution. Indeed, our de�nition does not specify the behavior of functions outside of the

domain, whereas classical discrete computability and some authors in computable analysis

mandates that the machine never terminates on such inputs. More work is needed in this

direction to understand how to state the equivalence in this case, in particular how to translate

the “never terminates” part. Of course, the equivalence holds for partial functions where the

behavior outside of the domain is not de�ned. �

133

CHAPTER 5. PIVP VERSUS TURING COMPUTABILITY

134

Chapter 6

Bounded Time Reachability for
Piecewise A�ne Systems

Trying to solve di�erential equations is

a youthful aberration that you will soon

grow out of.

Quote from Cambridge

Reachability for piecewise a�ne systems is known to be undecidable, starting from di-

mension 2. In this chapter we investigate the exact complexity of several decidable variants

of reachability and control questions for piecewise a�ne systems. We show in particular that

the region to region bounded time versions leads to NP-complete or co-NP-complete problems,

starting from dimension 2. This chapter corresponds to the work published in [BBGP14].

This chapter is organized as follows:

• Section 6.1 (Introduction) provides some background in this problem;

• Section 6.2 (Preliminaries) gives the formal de�nitions of the objects and decision problems

involved;

• Section 6.3 (Bounded Time Reachability is NP-hard) shows that the two reachability prob-

lems are NP and co-NP hard respectively;

• Section 6.4 (Bounded Time Reachability is in NP) shows that the same two problems belong

to NP and co-NP respectively;

• Section 6.5 (Other results) mentions similar results for the associated control problems.

6.1 Introduction
A crucial problem in such systems is the reachability question: given a systemH andR0,R ⊆ X ,

determine if there is a trajectory starting from a point of R0 that falls in R. Reachability is

known to be undecidable for very simple functions f . Indeed, it is well-known that various

types of dynamical systems, such as hybrid systems, piecewise a�ne systems, or saturated

linear systems, can simulate Turing machines, see e.g., [KCG94a, HKPV98, Moo91, SS95].

This question is at the heart of veri�cation of systems. Indeed, a safety property corre-

sponds to the determination if there is a trajectory starting from some set R0 of possible initial

states to the set R of bad states. The industrial and economical impact of having e�cient

135

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

computer tools, that are able to guarantee that a given system does satisfy its speci�cation, is

signi�cant. This motivated many researchers to study veri�cation problems, and several re-

sults about those problems are now known. Particularly, many undecidability and complexity-

theoretic results about the hardness of veri�cation of safety properties have been obtained in

the model checking community. However, as far as we know, the exact complexity of natural
restrictions of the reachability question for systems as simple as piecewise a�ne maps are not

known, despite their practical interest.

Indeed, existing results mainly focus on the frontier between decidability and undecidabil-

ity. For example, in the case of hybride system, it is known that reachability is undecidable for

piecewise constant derivative systems of dimension 3, whereas it is decidable for dimension

2 [AMP95]. In the case of discrete systems, it is known that piecewise a�ne maps of dimen-

sion 2 can simulate Turing machines [KCG94b], whereas the question for dimension 1 is still

open and can be related to other natural problems [AS02, ASY01, BC13]. Variations of such

problems over the integers have recently been investigated [BA13].

Some complexity facts follow immediately from these (un)computability results: for ex-

ample, point to point bounded time reachability for piecewise a�ne maps is P-complete as it

corresponds to con�guration to con�guration reachability for Turing machines.

However, there still are many natural variants of reachability questions which complexity

have not yet been established. For example, in the context of veri�cation, point to point reach-

ability is often not su�cient. On the contrary, region to region reachability is a more general

question, whose complexity does not follow from existing results.

In this chapter we choose to restrict to the case of piecewise a�ne maps and we consider

the following natural variant of the problem.

CONTINUOUS BOUNDED TIME: we want to know if region R is reached in less than some

prescribed time T , with f assumed to be continuous

Remark 6.1.1: We consider piecewise a�ne maps over the domain [0, 1]
d
, that is to say we

do not restrict to the integers as in [BA13]. That would make the problem rather di�erent. We

also assume f to be continuous which makes the hardness result more natural. All regions are

assumed to be polyhedrons described with rational coe�cients. �

In an orthogonal way, control of systems or constructions of controllers for systems often

yield dual questions. Instead of asking if some trajectory reaches region R, one wants to know

if all trajectories reach R. The questions of stability, mortality, or nilpotence for piecewise

a�ne maps and saturated linear systems have been established in [BBKT01]. Still in this con-

text, the complexity of the problem when restricting to bounded time or �xed precision is not

known.

This chapter provides an exact characterization of the algorithmic complexity of those two

types of reachability for discrete time dynamical systems. Let PAFd denote the set of piecewise-

a�ne continuous functions over [0, 1]
d
. At the end we get the following picture.

Problem: REACH-REGION
Inputs: two polyhedral regions R0 and R, and a continuous PAFd f
Question: ∃x0 ∈ R0, t ∈ N, f

[t](x0) ∈ R?

Theorem6.1.2 ([KCG94b]): ProblemREACH-REGION is undecidable (and recursively enumerable-
complete). �

Problem: CONTROL-REGION
Inputs: two polyhedral regions R0 and R, and a continuous PAFd f
Question: ∀x0 ∈ R0,∃t ∈ N, f

[t](x0) ∈ R?

136

6.2. PRELIMINARIES

Theorem 6.1.3 ([BBKT01]): Problem CONTROL-REGION is undecidable (and co-recursively
enumerable complete) for d > 2. �

Problem: REACH-REGION-TIME
Inputs: two polyhedral regions R0 and R, a time T ∈ N in unary and a continuous PAFd f
Question: ∃x0 ∈ R0,∃t 6 T , f

[t](x0) ∈ R?

Theorem 6.1.4: Problem REACH-REGION-TIME is NP-complete for d > 2. �

Problem: CONTROL-REGION-TIME
Inputs: two polyhedral regions R0 and R, a time T ∈ N in unary and a continuous PAFd f
Question: ∀x0 ∈ R0,∃t 6 T , f

[t](x0) ∈ R?

Theorem 6.1.5: Problem CONTROL-REGION-TIME is coNP-complete for d > 2. �

All our problems are region to region reachability questions, which requires new proof

techniques. Indeed, classical tricks to simulate a Turing machine using a piecewise a�ne

maps encode a Turing machine con�guration by a point, and assume that all the points of the

trajectories encode (possibly ultimately) valid Turing machines con�gurations.

This is not a problem in the context of point to point reachability, but this can not be

extended to region to region reachability. Indeed, a (non-trivial) region consists mostly in

invalid points: almost all points do not correspond to encoding of Turing machines for all the

encodings considered in references above.

In order to establish hardness results, the trajectories of all (valid and invalid) points must

be carefully controlled. This turns out not to be easily possible using the classical encodings.

Let us insist on the fact that we restrict our results to continuous dynamics. In this context,

this is an additional source of di�culties. Indeed, such a system must necessarily have a sub-

region which dynamics cannot be easily interpreted in terms of con�gurations.

In other words, the di�culty is in dealing with points and trajectories not corresponding

to valid con�gurations or evolutions.

6.2 Preliminaries

6.2.I Piecewise a�ne functions

Let d ∈ N. A convex closed polyhedron in the space [0, 1]
d

is the solution set of some linear

system of inequalities:

A~x ≤ ~b (6.2.1)

with coe�cient matrixA and o�set vector
~b. A function f : [0, 1]

d → [0, 1]
d

is piecewise-a�ne

continuous if:

• f is continuous,

• there exists a sequence (Pi)1≤i≤p of convex closed polyhedron with nonempty interior such

that fi = f �Pi is a�ne, [0, 1]
d =

⋃p
i=1

Pi and P̊i ∩ P̊j = ∅ for i , j.

Let PAFd denote the set of piecewise-a�ne continuous functions over [0, 1]
d
.

In the following discussion we will always assume that any polyhedron P can be de�ned

by a �nite set of linear inequalities, where all the elements ofA and
~b in (6.2.1) are all rationals.

A polyhedron over which f is a�ne we also be called a region.

137

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

6.2.II Decision problems
In this chapter, we will show hardness results by reduction to known hard problems. We give

the statement of these latter problems in the following.

Problem: SUBSET-SUM
Inputs: a goal B ∈ N and integers A1, . . . ,An ∈ N.

Question: ∃I ⊆ {1, . . . ,n},
∑

i∈I Ai = B?

Theorem 6.2.2 ([GJ79]): SUBSET-SUM is NP-complete. �

Problem: NOSUBSET-SUM
Inputs: a witness B ∈ N and integers A1, . . . ,An ∈ N.

Question: ∀I ⊆ {1, . . . ,n},
∑

i∈I Ai , B?

Theorem 6.2.3: NOSUBSET-SUM is coNP-complete. �

Proof. Basically the same proof as Theorem 6.2.2 ([GJ79]) �

6.3 Bounded Time Reachability is NP-hard
In this section, we will show that REACH-REGION-TIME is an NP-hard problem by reduc-

ing SUBSET-SUM to it.

6.3.I Solving SUBSET-SUM by iteration
We will now show how to solve the SUBSET-SUM problem by iterating a function. Consider

an instance I = (B,A1, . . . ,An) of SUBSET-SUM. We will need to introduce some notions

before de�ning our piecewise a�ne function. Our �rst notion is that of con�gurations, which

represent partial summation of the number of I, for a given choice of I.

Remark 6.3.1: Without loss of generality, we will only consider instances where Ai 6 B, for

all i . Indeed, if Ai > B, it will never be part of a subset sum and so we can simply remove this

variable from the problem. This ensures that Ai < B + 1 in everything that follows. �

De�nition 6.3.2 (Con�guration): A con�guration of I is a tuple (i,σ , εi , . . . , εn) where i ∈
{1, . . . ,n + 1}, σ ∈ {0, . . . ,B + 1}, εi ∈ {0, 1} for all i . Let CI be the set of all con�gurations of

I. �

The intuitive understanding of a con�guration, made formal in the next de�nition, is

the following: (i,σ , εi , . . . , εn) represents a situation where after having summed a subset of

{A1, . . . ,Ai−1}, we got a sum σ and εj is 1 if and only if we are to pick Aj in the future.

De�nition 6.3.3 (Transition function): The transition function TI : CI → CI , is de�ned as

follows:

TI (i,σ , εi , . . . , εn) =



(i,σ) if i = n + 1

(i + 1,min (B + 1,σ + εiAi) , εi+1, . . . , εn) otherwise

�

It should be clear, by de�nition of a subset sum that we have the following simulation

result.

138

6.3. BOUNDED TIME REACHABILITY IS NP-HARD

Lemma 6.3.4: For any con�guration c = (i,σ , εi , . . . , εn) and k ∈ {0, . . . ,n + 1 − i},

T [k]

I
(c) = (i + k,min

(
B + 1,σ + Σi+k−1

j=i εjAj

)
, εi+k , . . . , εn)

�

Proof. By induction. �

A consequence of this simulation by iterating TI , is that we can reformulate satis�ability

in terms of reachability.

Lemma 6.3.5: I is a satis�able instance (i.e., admits a subset sum) if and only if there exists a
con�guration c = (1, 0, ε1, . . . , εn) ∈ CI such that T [n]

I
(c) = (n + 1,B). �

Proof. The “only if” direction is the simplest: assume there exists I ⊆ {1, . . . ,n} such that∑
i∈I Ai = B. De�ne εi = 1 if i ∈ I and 0 otherwise. We get that

∑n
i=1

εiAi = B. Apply

Lemma 6.3.4 to get that:

T [n]

I
(1, 0, ε1, . . . , εn) = (n + 1,min

*
,
B + 1, 0 +

n∑
i=1

εiAi
+
-
)

= (n + 1,min(B + 1,B)) = (n + 1,B)

The “if” direction is very similar: assume that there exists c = (1, 0, ε1, . . . , εn) such that

T [n]

I
(c) = (n + 1,B). Lemma 6.3.4 gives:

T [n]

I
(1, 0, ε1, . . . , εn) = (n + 1,min

*
,
B + 1, 0 +

n∑
i=1

εiAi
+
-
)

We can easily conclude that

∑n
i=1

εiAi = B and thus by de�ning I = {i | εi = 1} we get that∑
i∈I Ai = B. Hence, I is satis�able. �

6.3.II Solving SUBSET-SUM with a piecewise a�ne function

In this section, we explain how to simulate the function TI using a piecewise a�ne function

and some encoding of the con�gurations for a given I = (B,A1, . . . ,An).

De�nition 6.3.6 (Encoding): De�ne p =
⌈
log

2
(n + 2)

⌉
, ω =

⌈
log

2
(B + 2)

⌉
, q = p + ω + 1 and

β = 5. Also de�ne 0
? = 1 and 1

? = 4. For any con�guration c = (i,σ , εi , . . . , εn), de�ne the

encoding of c as follows:

〈c〉 = *.
,
i2−p + σ2

−q, 0?β−n−1 +

n∑
j=i

ε?i β
−i+/

-
Also de�ne the following regions for any i ∈ {1, . . . ,n + 1} and α ∈ {0, . . . , β − 1}:

R0 = [0, 2−p−1
] × [0, 1] Ri = [i2−p, i2−p + 2

−p−1
] × [0, β−i+1

] (i > 1)

Ri,α =
[
i2−p, i2−p + 2

−p−1

]
×

[
αβ−i , (α + 1)β−i

]
Ri = ∪α∈NβRi,α

Rlini,1? =
[
i2−p, i2−p + (B + 1 −Ai)2

−q
]
×

[
1
?β−i , 5β−i

]
Rsati,1? = Ri,1? \ R

lin
i,1?

�

139

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

0 1

1

0

R0

Rn+1

R1

R2

B = 2 n = 2 p = 2 ω = 2 β = 5

Figure 6.3.7: Graphical representation of the regions

The rationale behind this encoding is the following. On the �rst coordinate we put the

current number i , “shifted” by as many bits as necessary to be between 0 and 1. Following

i , we put σ , also shifted by as many bits as necessary. Notice that there is one padding bit

between i and σ ; this is necessary to make the regions Ri disjoint from each other. On the

second component, we put the description of the variables εj , written in basis β to get some

“space” between consecutive encodings. The choice of the value 1 and 4 for the encoding of 0

and 1, although not crucial, has been made to simplify the proof as much as possible.

The region R0 is for initialization purposes and is de�ned di�erently for the other Ri . The

regions Ri correspond to the di�erent values of i in the con�guration (the current number).

Each Ri is further divided into the Ri,α which correspond to all the possible values of the next

ε variable (recall that it is encoded in basis β). In the special case of ε = 1, we cut the region

Ri,1? into a linear part and a saturated part. This is needed to emulate the min(σ +Ai ,B + 1) in

De�nition 6.3.3 (Transition function): the linear part corresponds to σ +Ai and the saturated

part to B + 1.

Figure 6.3.7 (Graphical representation of the regions) and Figure 6.3.13 (Zoom on one Ri
with the subregions and formulas) give a graphical representation of the regions.

Lemma 6.3.8: For any con�guration c = (i,σ , εi , . . . , εn), if i = n + 1 then 〈c〉 ∈ Rn+1,0? ,
otherwise 〈c〉 ∈ Ri,ε?i . Furthermore if εi = 1 and σ + Ai 6 B + 1, then 〈c〉 ∈ Rlin

i,1?
, otherwise

〈c〉 ∈ Rsat
i,1?

. �

Proof. Recall that ω =
⌈
log

2
(B + 2)

⌉
so B + 1 < 2

ω
, and q = p + ω + 1. Since σ 6 B + 1 by

de�nition, (n+ 1)2−p 6 〈c〉1 6 (n+ 1)2−p + (B+ 1)2−p−1−ω 6 (n+ 1)2−p + 2
−p−1

. This shows the

result for the �rst component. In the case where σ +Ai 6 B + 1 then σ2
−q 6 (B + 1 −Ai)2

−q

which gives the result for the second part of the result for the �rst component.

If i = n + 1, then 〈c〉2 = 0
?β−p−1

which trivially belongs to [0
?β−n−1, (0? + 1)β−n−1

]. Oth-

erwise, ε?i β
−i 6 〈c〉2 6 ε

?
i β
−i +

∑n+1

j=i+1
1
?β−j 6 ε?i β

−i + 1
?β−i−1 1−βn−i

1−β−1
6 ε?i β

−i + 4β−i−1 β
β−1
6

ε?i β
−i + β−i 6 (ε?i + 1)β−i . This shows the result when i < n + 1, for the second component of

the result. �

We can now de�ne a piecewise a�ne function that will mimic the behavior of TI . The

region R0 is here to ensure that we start from a “clean” value on the �rst coordinate.

140

6.3. BOUNDED TIME REACHABILITY IS NP-HARD

De�nition 6.3.9 (Piecewise a�ne simulation):

fI (a,b) =




(2−p,b) if (a,b) ∈ R0

(a,b) if (a,b) ∈ Rn+1

(a + 2
−p,b − 0

?β−i) if (a,b) ∈ Ri,0?

(a + 2
−p +Ai2

−q,b − 1
?β−i) if (a,b) ∈ Rlin

i,1?

((i + 1)2−p + (B + 1)2−q,b − 1
?β−i) if (a,b) ∈ Rsat

i,1?

�

Lemma 6.3.10 (Simulation is correct): For any con�guration c ∈ CI , 〈TI (c)〉 = fI (〈c〉). �

Proof. Let c = (i,σ , εi , . . . , εn). There are two cases to consider. If i = n+1 thenTI (c) = c , also

by Lemma 6.3.8, 〈c〉 ∈ Rn+1,0? . Thus by de�nition of f , fI (〈c〉) = 〈c〉 = 〈T (c)〉which shows the

result. If i < n + 1, we have three more cases to consider: the case where we don’t take the

value (εi = 0) and the two cases where we take it (εi = 0) with and without saturation.

• If εi = 0 then TI (c) = (i + 1,σ , εi+1, . . . , εn). On the other hand, 〈c〉 = (a,b) = (i2−p +
σ2
−q, 0?β−i +

∑n
j=i+1

εjβ
−j + 0

?β−n−1). By Lemma 6.3.8, 〈c〉 ∈ Ri,0? so by de�nition of f :

fI (〈c〉) = (a + 2
−p,b − 0

?β−i)

= ((i + 1)2−p + σ2
−q,

n∑
j=i+1

εjβ
−j + 0

?β−n−1)

= 〈(i + 1,σ , εi+1, . . . , εn)〉 = 〈TI (c)〉

• If εi = 1 and σ + Ai 6 B + 1 then TI (c) = (i + 1,σ + Ai , εi+1, . . . , εn). On the other hand,

〈c〉 = (a,b) = (i2−p + σ2
−q, 1?β−i +

∑n
j=i+1

εjβ
−j + 0

?β−n−1). By Lemma 6.3.8, 〈c〉 ∈ Rlin
i,1?

so

by de�nition of f :

fI (〈c〉) = (a + 2
−p +Ai2

−q,b − 1
?β−i)

= ((i + 1)2−p + (σ +Ai)2
−q,

n∑
j=i+1

εjβ
−j + 0

?β−n−1)

= 〈(i + 1,σ +Ai , εi+1, . . . , εn)〉 = 〈TI (c)〉

• If εi = 1 and σ + Ai > B + 1 then TI (c) = (i + 1,B + 1, εi+1, . . . , εn). By Lemma 6.3.8,

〈c〉 ∈ Rsat
i,1?

so by de�nition of f :

fI (〈c〉) = ((i + 1)2−p + (B + 1)2−q,b − 1
?β−i)

= 〈(i + 1,B + 1, εi+1, . . . , εn)〉 = 〈TI (c)〉

�

Notice that we have de�ned f over a subset of the entire space and it is clear that this

subspace is not stable in any way
1
. In order to match the de�nition of a piecewise a�ne

function, we need to de�ne f over the entire space or a stable subspace (which contains the

initial region). We follow this second approach and extend the de�nition of f on some more

regions. More precisely, we need to de�ne f over Ri = Ri,0 ∪ Ri,1 ∪ Ri,2 ∪ Ri,3 ∪ Ri,3 and at the

1
For example R1,1 ⊆ f (R0) but f is not de�ned over R1,1.

141

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

i2−p i2−p + 2
−p−1

β−i+1

0

i2−p + (B + 1 −Ai)2
−q

Ri,0 : (a + 2
−p, 0)

Ri,0? : (a + 2
−p,b − 0

?β−i)

Ri,2 : (a + 2
−p, 3β−i − b)

Rlini,3 : (a + 2
−p +Ai2

−q (bβi − 3), 0)
Rsati,3 : (?)

Rlin
i,1?

: (a + 2
−p +Ai2

−q,b − 1
?β−i) Rsat

i,1?
:

((i + 1)2−p + (B + 1)2−q,

b − 1
?β−i)

β−i

2β−i

3β−i

4β−i

(?) : ((i + 1)2−p + 2
−p−1 − (bβi − 3) (2−p−1 − (B + 1)2−q), 0)

Figure 6.3.13: Zoom on one Ri with the subregions and formulas

moment we have only de�ned f overRi,1 = Ri,0? andRi,4 = Ri,1? . Also note thatRi,4 = Rlini,4∪R
sat
i,4

and we de�ne f separately on those two subregions.

In order to correctly and continuously extend f , we will need to further split the region

Ri,3 into linear and saturated parts Rsloi,3 and Rshii,3 : see Figure 6.3.13 (Zoom on one Ri with the

subregions and formulas).

De�nition 6.3.11 (Extended region splitting): For i ∈ {1, . . . ,n} and α ∈ {0, . . . , β−1}, de�ne:

Rlini,3 = Ri,3 ∩

{
(a,b) ���bβ

i − 3 6
2
−p−1 + i2−p − a

2
−p−1 − (B + 1 −Ai)2−q

}
Rsati,3 = Ri,3 \ R

lin
i,3

�

It should be clear by de�nition that Rsati,3 = Rsloi,3 ∪ Rshii,3 and that the two subregions are

disjoint except on the border.

De�nition 6.3.12 (Extended piecewise a�ne simulation):

fI (a,b) =




(a + 2
−p, 0) if (a,b) ∈ Ri,0

(a + 2
−p, 3β−i − b) if (a,b) ∈ Ri,2

(a + 2
−p +Ai2

−q (bβi − 3), 0) if (a,b) ∈ Rlini,3
((i + 3

2
)2−p − (bβi − 3) (2−p−1 − (B + 1)2−q), 0) if (a,b) ∈ Rsati,3

�

This extension was carefully chosen for its properties. In particular, we will see that f is

still continuous, which is a requirement of the piecewise a�ne functions we consider. Also,

the domain of de�nition of f is f -stable (i.e. f (dom f) ⊆ dom f). And �nally, we will see that

f is somehow “reversible”.

Lemma 6.3.14 (Simulation is continuous): For any i ∈ {1, . . . ,n}, fI (Ri) is well-de�ned and
continuous over Ri . �

142

6.3. BOUNDED TIME REACHABILITY IS NP-HARD

Proof. As outlined on Figure 6.3.13 (Zoom on one Ri with the subregions and formulas), we

need to check that the de�nitions of f match at the borders of each subregions of Ri . More pre-

cisely, we need to check that De�nition 6.3.9 (Piecewise a�ne simulation) and De�nition 6.3.12

(Extended piecewise a�ne simulation) agree on all borders.

• (a,b) ∈ Ri,0 ∩ Ri,0? : the �rst component is computed using the same formula so is clearly

continuous, the second component is always 0 on both side of the border because b −
0
?β−i = 0 for b = β−i

• (a,b) ∈ Ri,0? ∩ Ri,2: the �rst component is computed using the same formula so is clearly

continuous, the second component is always β−i on both side of the border because b −
0
?β−i = 3β−i − b = β−i for b = 2β−i

• (a,b) ∈ Ri,2 ∩ R
lin
i,3 : the �rst component is a + 2

−p
and the second component is 0 on both

side of the border because 3β−i − b = bβi − 3 = 0 for b = 3β−i

• (a,b) ∈ Rlini,3 ∩ R
lin
i,1?

: the �rst component is a + 2
−p +Ai2

−q
and the second component is 0

on both side of the border because bβi − 3 = 1 and b − 1
?β−i = 0 for b = 4β−i

• (a,b) ∈ Rlini,3 ∩R
sat
i,3 : the second component is always 0 on both regions so is clearly contin-

uous. From De�nition 6.3.11 (Extended region splitting) one can see that bβi−3 = Y
X holds

on the border where Y = 2
−p−1 + i2−p − a and X = 2

−p−1 − (B + 1 −Ai)2
−q

. Consequently,

if we compute the di�erence between the two expression at the borders, we get:(
(i + 1)2−p + 2

−p−1 − (bβi − 3) (2−p−1 − (B + 1)2−q)
)
−

(
a + 2

−p +Ai2
−q (bβi − 3)

)
= i2−p + 2

−p−1 − a −
Y

X
(2−p−1 − (B + 1)2−q +Ai2

−q)

= Y +
Y

X
X = 0

which proves that they are equal.

• (a,b) ∈ Rsati,3 ∩R
sat
i,1?

: the �rst component is (i+1)2−p+ (B+1)2−q and the second component

is 0 on both side of the border because bβi − 3 = 1 and b − 1
?β−i = 0 for β = 4β−i

• (a,b) ∈ Rlin
i,1?
∩Rsat

i,1?
: the �rst component is (i+1)2−p+ (B+1)2−q on both side of the border

because a = i2−p + (B+1−Ai)2
−q

, and the second component is computed using the same

formula so is clearly continuous

�

Lemma 6.3.15 (Simulation is stable): For any i ∈ {1, . . . ,n}, fI (Ri) ⊆ Ri+1. Furthermore,
f (R0) ⊆ R1 and f (Rn+1) ⊆ Rn+1. �

Proof. We need to examinate all possible cases for (a,b) ∈ Ri . Since Ri =
⋃

4

α=0
Ri,α and that

Ri,α = Rlini,α ∪ R
sat
i,α we indeed cover all cases.

• If (a,b) ∈ R0: then fI (a,b) = (a + 2
−p,b) so fI (R0) = fI ([0, 2

−p−1
] × [0, 1]) = [2

−p, 2−p +
2
−p−1

] × [0, 1] = R1.

• If (a,b) ∈ Rn+1: then fI (a,b) = (a,b) so fI (Rn+1) = Rn+1.

• If (a,b) ∈ Ri,0: then fI (a,b) = (a + 2
−p, 0) so fI (Ri,0) = fI ([i2

−p, i2−p + 2
−p−1

]× [0, β−i]) =
[(i + 1)2−p, (i + 1)2−p + 2

−p−1
] × {0} ⊆ Ri+1.

143

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

• If (a,b) ∈ Ri,1 = Ri,0? : then fI (a,b) = (a + 2
−p,b − 0

?β−i) so fI (Ri,1) = fI ([i2
−p, i2−p +

2
−p−1

] × [β−i , 2β−i]) = [(i + 1)2−p, (i + 1)2−p + 2
−p−1

] × [0, β−i] = Ri+1.

• If (a,b) ∈ Ri,2: then fI (a,b) = (a + 2
−p, 3β−i − b) so fI (Ri,2) = fI ([i2

−p, i2−p + 2
−p−1

] ×

[2β−i , 3β−i]) = [(i + 1)2−p, (i + 1)2−p + 2
−p−1

] × [0, β−i] = Ri+1.

• If (a,b) ∈ Rlini,3 : the image of the second component is always 0 so it’s easy for this one, also

from De�nition 6.3.11 (Extended region splitting), bβi −3 6 2
−p−1+i2−p−a

2
−p−1−(B+1−Ai)2−q

6 2
−p−1+i2−p−a

Ai2−q

because 2
−p−1 − (B + 1)2−q > 0 since (B + 1)2−q 6 2

ω
2
−q 6 2

−p−1
. Consequently, for the

�rst coordinate we get that fI (a,b)1 6 a + 2
−p + Ai2

−q 2
−p−1+i2−p−a

Ai2−q
6 (i + 1)2−p + 2

−p−1
.

Also, since i2−p 6 a 6 i2−p + 2
−p−1

, it is clear that fI (a,b)1 > (i + 1)2−p . So �nally,

fI (R
lin
i,3) ⊆ [(i + 1)2−p, (i + 1)2−p + 2

−p−1
] × {0} ⊂ Ri+1.

• If (a,b) ∈ Rsati,3 : the image of the second component is always 0 so it’s easy for this

one, also from De�nition 6.3.11 (Extended region splitting), bβi − 3 > 2
−p−1+i2−p−a

2
−p−1−(B+1−Ai)2−q

>
2
−p−1+i2−p−a

2
−p−1−(B+1)2−q

becauseAi > 0. Consequently, for the �rst coordinate we get that fI (a,b)1 6

(i + 1)2−p + 2
−p−1 − (2−p−1 − (B + 1)2−q) 2

−p−1+i2−p−a
2
−p−1−(B+1)2−q

6 (i + 1)2−p + 2
−p−1 + i2−p + 2

−p−1 −

a 6 (i + 1)2−p + 2
−p−1

since a 6 i2−p + 2
−p−1

. Also since bβi − 3 6 1 we get that

fI (a,b)1 > (i + 1)2−p + 2
−p−1 − (2−p−1 − (B + 1)2−q) × 1 > (i + 1)2−p + (B + 1)2−q .

So �nally, fI (R
sat
i,3) ⊆ [(i + 1)2−p + (B + 1)2−q, (i + 1)2−p + 2

−p−1
] × {0} ⊂ Ri+1.

• If (a,b) ∈ Rlini,4 = Rlin
i,1?

: then fI (a,b) = (a + 2
−p + Ai2

−q,b − 1
?β−i) so fI (R

lin
i,4) =

fI ([i2
−p, i2−p + (B + 1 − Ai)2

−q
] × [4β−i , 5β−i]) = [(i + 1)2−p + Ai2

−q, (i + 1)2−p + (B +
1)2−q] × [0, β−i] ⊆ Ri+1 because (B + 1)2−q 6 2

−p−1
.

• If (a,b) ∈ Rsati,4 : then fI (a,b) = ((i + 1)2−p + (B + 1)2−q, 0) so fI (R
sat
i,4) = {(i + 1)2−p + (B +

1)2−q} × {0} ⊆ Ri+1.

�

We now get to the core lemma of the simulation. Up to this point, we were only interested

in forward simulation: that is given a point, what are the iterates of x . In order to prove the NP-

hardness result, we need a backward result: given a point, what are the possible preimages

of it. To this end, we introduce new subregions Runsati of the Ri , which we call unsaturated.

Intuitively, Runsati corresponds to the encodings where σ 6 B, that is the sum did not saturate

at B + 1. We also introduce the R f in region, which will be the region to reach. We will be

interested in the preimages of R f in.

De�nition 6.3.16 (Unsaturated regions): For i ∈ {1, . . . ,n + 1}, de�ne

Runsati = [i2−p, i2−p + B2
−q

] × [β−n−1, β−i+1 − β−n−1
]

R f in = [(n + 1)2−p + B2
−q − 2

−q−1, (n + 1)2−p + B2
−q

] × [β−n−1, 2β−n−1
]

�

Lemma 6.3.17 (Simulation is reversible): Let i ∈ {2, . . . ,n} and (a,b) ∈ Runsati Then the only
points ~x such that fI (~x) = (a′,b′) are:

• ~x = (a − 2
−p,b′ + 0

?β−i+1) ∈ Ri−1,0? ∩ R
unsat
i−1

• ~x = (a − 2
−p, βi − b′ + 0

?β−i+1) ∈ Ri−1,2 ∩ R
unsat
i−1

144

6.3. BOUNDED TIME REACHABILITY IS NP-HARD

• ~x = (a − 2
−p −Ai2

−q,b′ + 1
?β−i+1) ∈ Rlin

i−1,1?
∩ Runsati−1

(only if a > 2
−p +Ai2

−q)

�

Proof. First notice that since fI (Ri) ⊆ Ri+1 for all i ∈ {0, . . . ,n}, the only candidates for ~x must

belong to Ri−1. Furthermore, on each a�ne region, there can only be one candidate except if

the function is trivial.

A close look at the proof of Lemma 6.3.15 (Simulation is stable) reveals that:

• fI (Ri−1,0) ⊆ [(i + 1)2−p, (i + 1)2−p + 2
−p−1

] × {0}, which shares no point with Runsati , so

there is no possible candidate

• fI (Ri−1,1) = Ri and there is only one possible candidate

• fI (Ri−1,2) = Ri and there is only one possible candidate

• fI (Ri−1,3) ⊆ [(i +1)2−p, (i +1)2−p +2
−p−1

]× {0} so like Ri−1,0 there is no possible candidate

• fI (R
lin
i−1,4) ⊆ Ri and there is only one possible candidate

• fI (R
sat
i−1,4) ⊆ [(i + 1)2−p + (B + 1)2−q, (i + 1)2−p + 2

−p−1
] × [0, β−i], which shares no point

with Runsati , so there is no possible candidate

It is then only a matter of checking that the claimed formulas work and they trivially do

except for the case of Rlini−1,4 where we need the potential candidate to belong to the region. �

The goal of those results in to show that if there is a point in R f in that is reachable from

R0 then we can extract, from its trajectory, a con�guration that also reaches R f in. Further-

more, we arranged so that R f in contains the encoding of only one con�guration:(n+ 1,B) (see

Lemma 6.3.5).

Lemma 6.3.18 (Backward-forward identity): For any point ~x ∈ R f in, if there exists a point
~y ∈ R0 and an integerk such that f

[k]

I
(~y) = ~x then there exists a con�guration c = (1, 0, ε1, . . . , εn)

such that f [k]

I
(〈c〉) ∈ R f in. �

Proof. De�ne ~y0 = ~y and ~yi+1 = fI (~yi) for all i ∈ {0,k − 1}. Since ~y0 ∈ R0, we immediately

get that ~yi ∈ Ri using Lemma 6.3.15 (Simulation is stable) and in particular, k > n + 1 because

~yk = x ∈ Rn+1,0? .

Now apply Lemma 6.3.17 (Simulation is reversible) starting from ~yn+1 ∈ R
unsat
n+1

: we conclude

that for all i > 1, ~yi ∈ (Ri,1 ∪ Ri,2 ∪ Rlini,4) ∩ Runsatn . De�ne εi = 0 if ~yi ∈ Ri,1 ∪ Ri,2 and 1 if

~yi ∈ Rlini,4 . Write ~yi = (ai ,bi). Again using Lemma 6.3.15 (Simulation is stable) we get that

ai−1 = ai − 2
−p − εiAi2

−q
(just check all three cases). Also since ~x = ~yn+1 ∈ R f in then an+1 ∈

[(n+1)2−p +B2
−q −2

−q−1, (n+1)2−p +B2
−q

]. Finally, ~y0 ∈ R0 so fI (a0,b0) = (2−p, 0) = (a1,b1).
We conclude that a1 = 2

−p
. Putting everything together we get:




an+1= (n + 1)2−p + 2
−q ∑n

i=1
εiAi

an+1∈ [(n + 1)2−p + B2
−q − 2

−q−1, (n + 1)2−p + B2
−q

]

Since the Ai , B are integers and εi ∈ {0, 1}, we get that B =
∑n

i=1
Aiεi . Apply Lemma 6.3.10

(Simulation is correct) on the con�guration to conclude. �

Lemma 6.3.19 (Final region is accepting): For any con�guration c , if 〈c〉 ∈ R f in then c =
(n + 1,B). �

Proof. Write c = (i,σ , εi , . . . , εn), then〈c〉 =
(
i2−p + σ2

−q,
∑n

j=i ε
?
i β
−i + 0

?β−n−1

)
. It implies

that i2−p + σ2
−q ∈ [(n + 1)2−p + B2

−q − 2
−q−1, (n + 1)2−p + B2

−q
] and because i is an integer in

range [0,n + 1] and σ an integer in range [0,B + 1], necessarily i = n + 1 and σ = B. �

145

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

6.3.III REACH-REGION-TIME is NP-hard

We now have all the tools to show that REACH-REGION-TIME is an NP-hard problem.

Theorem 6.3.20: REACH-REGION-TIME is NP-hard for d > 2. �

Proof. Let I = (B,A1, . . . ,An) be a instance of SUBSET-SUM. We consider the instance

J of REACH-REGION-TIME de�ned in the previous section with maximum number of

iterations set to n (the number ofAi), the initial region set to R0 and the �nal region set to R f in.

One easily checks that this instance has polynomial size in the size of I. The two directions

of the proofs are:

• If I is satis�able then use Lemma 6.3.4 and Lemma 6.3.10 (Simulation is correct) to con-

clude that there is a point x ∈ R0 in the initial region such that f [n]

I
(x) ∈ R f in so J is

satis�able.

• If J is satis�able then there exists x ∈ R0 and k 6 n such that f [k]

I
(x) ∈ R f in. Use

Lemma 6.3.18 (Backward-forward identity) and Lemma 6.3.10 (Simulation is correct) to

conclude that there exists a con�guration c = (1, 0, ε1, . . . , εn) such that 〈T [k]

I
(c)〉 = f [k]

I
(〈c〉) ∈

R f in. Apply Lemma 6.3.19 (Final region is accepting) and use the injectivity of the encoding

to conclude that T [k]

I
(c) = (n + 1,B) and Lemma 6.3.5 to get that I is satis�able.

�

6.4 Bounded Time Reachability is in NP

In the previous section we have shown that theREACH-REGION-TIME problem is NP-hard.

We now give a more precise characterization of the complexity of this problem, by proving

that it is NP-complete. Since we have shown its NP-hardness, the only thing that remains to

be shown is that REACH-REGION-TIME belongs to NP. This is done in this section.

6.4.I Notations and de�nitions

For any i = 1, . . . ,d , let πdi : [0, 1]
d → [0, 1] denote the ith projection function, that is,

π (x1, . . . ,xd) = xi . Let дd : [0, 1]
d+1 → [0, 1]

d
be de�ned by дd (x1, . . . ,xd+1) = (x1, . . . ,xd).

For a square matrix A of size (d + 1) × (d + 1) de�ne the following pair of projection functions.

The �rst function h1,d takes as input a square matrix A of size (d + 1) × (d + 1) and returns

a square matrix of size d × d that is the upper-left block of A. The second function h2,d takes

as input a square matrix A of size (d + 1) × (d + 1) and returns the vector of size d given by

[a1,d+1 · · ·ad,d+1]
T

(the last column of A minus the last element).

Let s denote the size function, its domain of objects will be overloaded and understood from

the context. For x ∈ Z, s (x) is the length of the encoding of x in base 2. For x ∈ Q with x =
p
q

we have s (x) = max(s (p), s (q)). For an a�ne function f we de�ne the size of f (~x) = A~x + ~b

(where all entries of A and
~b are rationals) as: s (f) = max(maxi,j (s (ai,j)),max(s (bi))). We

de�ne the size of a polyhedron r de�ned by A~x 6 ~b as: s (r) = max(s (A), s (~b)).

We de�ne the size of a piecewise a�ne function f as: s (f) = maxi (s (fi), s (ri)) where fi
denotes the restriction of f to ri the ith region.

We de�ne the signature of a point ~x as the sequence of indices of the regions traversed by

the iterates of f on ~x (that is, the region trajectory).

146

6.4. BOUNDED TIME REACHABILITY IS IN NP

6.4.II REACH-REGION-TIME is in NP

In order to solve a reachability problem, we will formulate it with linear algebra. However

a crucial issue here is that of the size of the numbers, especially when computing powers of

matrices. Indeed, if taking the nth power of A yields a representation of exponential size, no

matter how fast our algorithm is, it will run on exponentially large instances and thus be slow.

First o�, we show how to move to homogeneous coordinates so that f becomes piecewise

linear instead of piecewise a�ne.

Lemma 6.4.1: Assume that f (~x) = A~x + ~b with A = (ai,j)16i,j6d and let y = A′(~x , 1)T where A′

is the block matrix *
,

A ~b

0 1

+
-
. Then f (x) = дd (A

′(~x , 1)T). �

Remark 6.4.2: Notice that this lemma extends nicely to the composition of a�ne functions:

if f (~x) = A~x + ~b and h(~x) = C~x + ~d then h(f (x)) = дd (C
′A′(~x , 1)T). �

We can now state the main lemma, namely that the size of the iterates of f vary linearly

in the number of iterates, assuming that f is piecewise a�ne.

Lemma 6.4.3: Let d > 2 and f ∈ PAFd . Assume that all the coe�cients of f on all regions
are rationals. Then for all t ∈ N, s (f [t]) 6 (d + 1)2s (f)pt + (t − 1)

⌈
log

2
(d + 1)

⌉
where p is the

number of regions of f . This inequality holds even if all rationals are taken to have the same
denominator. �

Proof. Using Lemma 6.4.1, we get that f [t](~x) = дd (h
[t]([~x 1]

T)), where h is a piecewise linear

function in dimension d + 1 such that s (h) = s (f). We show this result by induction on t for h.

The result then follows for f . In all cases we take all rationals to have the same denominator.

In the case t = 1, it su�ces to see that taking all rationals to have the same denominator

involves multiplying the numerator and denominators by at most the lowest common multiple

of all numbers, which is at most 2
s (f) (p (d+1)2)

. Indeed the greatest number is 2
s (h)

by de�nition,

and there are (d + 1)2 numbers per region (the entries of the matrix).

Assume the result is true for t ∈ N. Let ~y ∈ Qd+1
. Then h[t+1](~y) = Bt+1 · · ·B1~y, where

Bi ’s are the matrices corresponding to some regions of h. In particular, s (Bi) 6 s (h). From the

induction hypothesis we can assume that all rationals have the same denominator and we get

that s (Bt · · ·B1) 6 (d + 1)2s (h)pt + (t − 1)
⌈
log

2
(d + 1)

⌉
. It follows

2
that for any 1 6 i, j 6 d + 1:

s ((Bt+1 · · ·B1)i,j) = s *
,

d+1∑
k=1

(Bt+1)i,k (Bt · · ·B1)k,j+
-

6
⌈
log

2
(d + 1)

⌉
+ s (Bt+1) + s (Bt · · ·B1)

6
⌈
log

2
(d + 1)

⌉
+ s (h) + (d + 1)2s (h)pt + (t − 1)

⌈
log

2
(d + 1)

⌉
6 (d + 1)2s (h)p (t + 1) + t

⌈
log

2
(d + 1)

⌉
This shows the result for the particular region where y belongs. Since the bound does not

depend on y and h[t+1]
has �nitely many regions, it is true for all regions of h[t+1]

. �

Finally, we need some result about the size of solutions to systems of linear inequalities.

Indeed, if we are going to quantify over the existence of a solution of polynomial size, we must

ensure that the size constraints do not change the satis�ability of the system.

2
Use elementary properties of the size function: s (xy) 6 s (x) + s (y), s (x1 + · · · + xk) 6 s (k) +maxk s (xk)

147

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

Lemma 6.4.4 ([Koi94]): Let A be a N × d integer matrix and ~b an integer vector. If the A~x 6 ~b
system admits a solution, then there exists a rational solution xs such that s (xs) 6 (d + 1)L +
(2d + 1) log

2
(2d + 1) where L = max(s (A), s (b)). �

Proof. See Theorem 5 of [Koi94]: s (xs) 6 s
(
(2d + 1)!2L(2d+1)

)
. �

Putting everything together, we obtain a fast nondeterministic algorithm to solveREACH-
REGION-TIME. The nondeterministism allows use to choose a signature for the solution.

Once the signature is �xed, we can write it as a linear program of reasonable size using

Lemma 6.4.3 and solve it. The remaining issue is the one of the size of solution but fortunately

Lemma 6.4.4 ([Koi94]) ensures us that there is a small solution that can be found quickly.

Theorem 6.4.5: REACH-REGION-TIME is in NP. �

Proof. The idea of the proof is to nondeterministically choose a signature for a solution, that

is a sequence of regions for the iterates of the solution. We then build a system of linear

inequalities stating that a point ~x belongs to the initial region and that the iterates match the

signature chosen and �nally that the iterates reaches the �nal region. Using the results of the

previous section, we can build this system in polynomial time and solve it in non-deterministic

polynomial time. Here is an outline of the algorithm:

• Non-deterministically choose t 6 T

• Non-deterministically choose regions s r1, . . . , rt−1 of f

• De�ne r0 = R0 the initial region and rt = R the �nal region

• Build (S) the system A~x 6 ~b stating that the signature of x matches r

• Non-deterministically choose ~xs a rational of polynomial size in the size of (S)

• Accept if A~xs 6 ~b

We have two things to prove. First we need to show that this algorithm indeed has non-

deterministic polynomial running time. Second we need to show that it is correct. Recall that

T is a unary input of the problem.

The complexity of the algorithm is clear, assuming that (S) is of polynomial size. Indeed

verifying that a rational point satis�es a system of linear inequalities with rationals coe�cients

can be done in polynomial time.

We build (S) this way: (S) = ∪ti=1
(Si) where (Si) states that f [i](~x) ∈ ri . Since we choose

a signature of x we know that if x satis�es the system then from Lemma 6.4.1 f [i](~x) =

дd
(
A′i−1

· · ·A′
1
(~x , 1)T

)
where A′j is the matrix corresponding to the region rj . Write Ci =

A′i−1
· · ·A′

1
and de�ne (Si) by the system дd

(
Ci (~x , 1)

T
)
∈ ri . Since ri is a polyhedron, (Si)

is indeed a system of linear inequalities
3
.

We can now see that S is of polynomial size using Lemma 6.4.3. Indeed, s (Ci) 6 s (f [i]) 6
poly(s (f), i), thus s ((Si)) 6 s (Ci) + s (ri) 6 poly(s (f), i) because the description of the regions

is part of the size of f . And �nally s ((S)) 6 poly(s (f), t).
The correctness follows from the construction of the system and Lemma 6.4.4 ([Koi94]).

More precisely we show that ~x ∈ (S) if and only if ∀i ∈ {0, . . . , t }, f [i](~x) ∈ ri . Indeed, (S) ⇔
∀i ∈ {0, . . . , t }, ~x ∈ (Si) and by de�nition (Si) ⇔ f [i](~x) ∈ ri since дd (Ci (~x , 1)

T) = f [i](~x).
Then by Lemma 6.4.4 ([Koi94]), we get that ∃~x ∈ (S) ⇔ ∃~x ∈ (S) and s (~x) 6 poly(s ((S))). �

3
More precisely if ri is de�ned by Pi (~x , 1)

T 6 0 then (Si) is the system PiCi (~x , 1)
T 6 0

148

6.5. OTHER RESULTS

6.5 Other results
In this section, we give succint proofs of the other result mentioned in the introduction about

CONTROL-REGION-TIME. The proof is based on the same arguments as before.

Theorem 6.5.1: Problem CONTROL-REGION-TIME is coNP-hard for d > 2. �

Proof. The proof is exactly the same except for two details:

• we modify f over Rn+1 as follows: divide Rn+1 in three regions: Rlow which is below R f in,

R f inn and Rhiдh which is above R f in. Then build f such that f (Rlow) ⊆ Rlow , f (R f in) ⊆ R f in

and f (Rhiдh) ⊆ Rlow .

• we choose a new �nal region R′
f in
= Rlow .

Let I = (B,A1, . . . ,An) be an instance of NOSUBSET-SUM, let J be the corresponding in-

stance of CONTROL-REGION-TIME we just built. We have to show that I has no subset sum

if and only if J is “controlled”. This is the same as showing that I has a subset sum if and

only if J has points never reaching R′
f in

.

Now assume for a moment that the instance is in SUBSET-SUM (as opposed to NOSUBSET-

SUM), then by the same reasoning as the previous proof, there will be a point that reaches the

old R f in region (which is disjoint from R′
f in

). And since R f in is a f -stable region, this point will

never reach R′
f in

.

And conversely, if the control problem is not satis�ed, necessarily there is a point whose

trajectory went through the old R f in (otherwise if would have reached either Rlow = R′
f in

or

Rhiдh but f (Rhiдh) ⊆ Rlow). Now we proceed as in the proof of Theorem 6.3.20 to conclude that

there is a subset that sums to B, and thus I is satis�able. �

Theorem 6.5.2: Problem CONTROL-REGION-TIME is in coNP . �

Proof. Again the proof is very similar to that of Theorem 6.4.5: we have to build a non-

deterministic machine that accepts the “no” instances. The algorithm is exactly the same ex-

cept that we only choose signatures that avoid the �nal region (as opposed to ending in the

�nal region) and are of maximum length (that is t = T as opposed to t 6 T). Indeed, if there is

a such a trajectory, the problem is not satis�ed. And for the same reasons as Theorem 6.4.5, it

runs in non-deterministic polynomial time. �

149

CHAPTER 6. PIECEWISE AFFINE SYSTEMS

150

Chapter 7

Conclusion

Yeah, I used to think it was just recreational... then I started doin’ it

during the week... you know, simple stu�: di�erentiation, kinematics.

Then I got into integration by parts... I started doin’ it every night: path

integrals, holomorphic functions. Now I’m on diophantine equations

and sinking deeper into trans�nite analysis. Don’t let them tell you it’s

just recreational.

Fortunately, I can quit any time I want.

In this thesis, we gave several fundamental contributions regarding the relationship be-

tween the General Purpose Analog Computer (GPAC), which is a realistic model of computa-

tion, and Turing-based paradigms. In particular:

• We showed that time of a computation, for the GPAC, can be measured as the length of

the curve (of the solution of the ODE). Alternatively, considering both time and space, for

a suitable notion of space, provides an equivalent notion of complexity. Note that unlike

most discrete models, there is no relationship between time and space in this model, which

explains why any robust notion of complexity must consider both time and space. We

proved that both notions of complexity are very robust and we gave several natural and

equivalent de�nitions to illustrate this fact.

• We showed that the GPAC (or equivalently the class of PIVPs) has the same computational

power as the Turing machine at the complexity level. More precisely, any GPAC can be

e�ciently solved by a Turing machine and any Turing machine can be e�ciently simulated

by a GPAC. This equivalence builds on the robust notion of complexity we introduced

and suggests that the class of polynomial di�erential equations is the right compromise

between power and tractability.

• We also gave a purely analog and machine-independent characterization of P and of poly-

nomial time computable real functions. Indeed, our characterization relies solely on poly-

nomial di�erential equations. This shows that even classical complexity classes can be

presented in purely analog terms. As a side e�ect, this shows that solving polynomial

di�erential equations is P-complete.

Despite our best e�orts, we left a number of open problems and interesting questions which

we intend to investigate in the future. We selected a few of the most interesting ones below.

151

CHAPTER 7. CONCLUSION

Open Problem 1 (Complexity of solving PIVP): In Theorem 3.5.2 we saw the complexity of

computing y (t) ± ε where y is the solution of the polynomial initial value problem y (t0) = y0

and y′ = p (y) is bounded by:

poly(deg(p), Len(t0, t), log

y0

 , log Σp,− log ε)d

Is it possible to replace Len(t0, t) by the actual length of the curve
1

? Is it possible to extend

this result to more general ODEs like analytic computable ODEs ? Is it possible to distinguish

between the time and space complexity ? �

Open Problem 2 (Characterization of FPSPACE): In Theorem 5.3.3 we gave an equivalence

between FP and a subset of AP. In can be seen that the proof will generalize to FPSPACE under

two conditions:

• Prove a better bound for the space complexity in Theorem 3.5.2 (PIVP complexity), in

particular it should be logarithmic in Len(t0, t).

• Introduce a class like AP for space, in particular most proofs in this thesis will be the

same except for the subtle issue that the ϒ bound (in De�nitions 4.2.7 ,4.3.1 and 4.4.2 for

example) should not depend on the time t .

�

Open Problem 3 (Characterization of NP): In Theorem 5.3.9 we gave an equivalence between

P and a class of PIVPs. Is it possible to �nd a natural characterization of NP ? One way to

achieve this is to modify the PIVP to add a controller u: y′(t) = p (y (t),u (t)). One can show

without much di�culty that some rather arti�cial restrictions onu are su�cient. For example,

it is enough to require that u ∈ GPVAL. �

More generally, one can wonder if and how it is possible to characterize the entire poly-

nomial hierarchy. However we believe that characterizing a class like linear time will require

substantial work, assuming it is even possible. Similarly, sublinear space will require entirely

di�erent techniques. Most probably the input will have to be given in an online fashion (just

like Turing machines where the input is on a di�erent, special tape) although the details are

unclear.

Open Problem 4 (Length of the curve): Is it possible to use the length of the curve as a

measure of complexity for more general classes of ODEs ? The current proof heavily relies on

the properties of polynomials to work but intuitively, other types of functions could work as

long as they are smooth enough and computable. �

Open Problem 5 (Oracles): Is it possible to introduce a natural notion of oracle in this model

? We think it is possible to do so by introducing an external controller that “reads” some

variables of the system. More precisely, the system would be of the form y′(t) = p (y (t),o(t))
whereo(t) is the output of the oracle and o(t) only depends on a subsetyk ..l of the variables. �

Open Problem 6 (Partial functions): In [Ko91], partial functions are de�ned as those func-

tions that can be computed by a machine over the domain of de�nition, with the additional

property that the machine never halts if the input does not belong to this domain. This is in

contrast with what with have done. Indeed, our notion of computability does not specify the

behavior of the system outside of the domain. Is it possible to de�ne a natural and equivalent

1
Recall that Len is a over-approximation of the length, it particular, there is a gap between those two notions

when the speed (

y ′

) of the system becomes very small

152

notion ? One such idea would be to require that the system explodes in �nite time if the output

is outside of the domain. Another approach would be to make systems output both the result

and the precision, and require that the precision never converges to 0 on bad inputs. �

Finally, we also mention some technical problems of interest but somehow low-level and

more di�cult to state.

Open Problem 7 (Domain of de�nition of generable functions): We introduced generable

functions in De�nition 2.1.17 as solutions of particular polynomial partial di�erential equa-

tions, and we saw in Theorem 4.6.2 that some assumptions on the domain of de�nition were

necessary for a generable function to be computable. Is it true that for any f ∈ GPVALK, there

exist a generable point x0 ∈ dom f ∩Kn and a parametrization γ ∈ GPVALK such that for any

x ∈ dom f , γ (x , 0) = x0, γ (x , 1) = x and γ (x , [0, 1]) ⊆ dom f ? This condition can be relaxed

to

x − γ (x , t)

 6 e−t and γ (x ,R+) ⊆ dom f . �

Open Problem 8 (Technical condition on the length of the curve): In De�nition 4.2.12 (Ana-

log length computability) and De�nition 5.3.8 (Discrete recognizability) we had to introduce

a technical condition on the length of the curve (or equivalently on the speed of the system),

namely that it grows at least linearly with time. Is it possible to remove this condition ? The

rational for this condition is the following: if the speed of the system becomes very small,

the system will need a possibly exponential time to reach the request length. On the other

hand, if it moves slowly, it should be possible to simulate it much faster than real-time. See

Example 4.2.14 (Technical condition) for such an example. Note however that this technical

condition is not really a problem because it is always possible to add an extra variable (the

time for example) so that this condition is always true. �

153

CHAPTER 7. CONCLUSION

154

Bibliography

[AB01] Eugene Asarin and Ahmed Bouajjani. Perturbed Turing machines and hybrid

systems. In 16th Annual IEEE Symposium on Logic in Computer Science, page 269,

2001.

[ABBR12] A. Abad, R. Barrio, F. Blesa, and M. Rodríguez. Algorithm 924: Tides, a Taylor

series integrator for di�erential equations. ACM Trans. Math. Softw., 39(1):5:1–

5:28, 2012.

[Abe70] O. Aberth. Computable analysis and di�erential equations. In A. Kino, J. Myhill,

and R.E. Vesley, editors, Intuitionism and Proof Theory, Studies in Logic and the

Foundations of Mathematics, pages 47–52. North-Holland, 1970.

[Abe71] O. Aberth. The failure in computable analysis of a classical existence theorem

for di�erential equations. Proc. Amer. Math. Soc., 30:151–156, 1971.

[Abe80] O. Aberth. Computable Analysis. McGraw-Hill, 1980.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In

Mike Paterson, editor, Automata, Languages and Programming, 17th International
Colloquium, ICALP90, Warwick University, England, July 16-20, 1990, Proceedings,
volume 443 of Lecture Notes in Computer Science, pages 322–335. Springer, 1990.

[AM98a] Eugene Asarin and Oded Maler. Achilles and the tortoise climbing up the arith-

metical hierarchy. Journal of Computer and System Sciences, 57(3):389–398, De-

cember 1998.

[AM98b] Eugene Asarin and Oded Maler. Achilles and the tortoise climbing up the arith-

metical hierarchy. Journal of Computer and System Sciences, 57(3):389–398, De-

cember 1998.

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli. Reachability analysis of dynamical

systems having piecewise-constant derivatives. Theoretical Computer Science,
138:35–65, 1995.

[APZ03] Tamarah Arons, Amir Pnueli, and Lenore Zuck. Veri�cation by probabilistic

abstraction. In POPL’2003, 2003.

[Arn95] Ludwig Arnold. Random dynamical systems. In Russell Johnson, editor, Dynam-
ical Systems, volume 1609 of Lecture Notes in Mathematics, pages 1–43. Springer

Berlin Heidelberg, 1995.

[AS02] Eugene Asarin and Gerardo Schneider. Widening the boundary between decid-

able and undecidable hybrid systems. In Lubos Brim, Petr Jancar, Mojmír Kretín-

ský, and Antonín Kucera, editors, CONCUR 2002 - Concurrency Theory, 13th Inter-
national Conference, Brno, Czech Republic, August 20-23, 2002, Proceedings, volume

2421 of Lecture Notes in Computer Science, pages 193–208. Springer, 2002.

155

BIBLIOGRAPHY

[ASY01] Eugene Asarin, Gerardo Schneider, and Sergio Yovine. On the decidability of the

reachability problem for planar di�erential inclusions. In Maria Domenica Di

Benedetto and Alberto L. Sangiovanni-Vincentelli, editors, Hybrid Systems: Com-
putation and Control, 4th International Workshop, HSCC 2001, Rome, Italy, March
28-30, 2001, Proceedings, volume 2034 of Lecture Notes in Computer Science, pages

89–104. Springer, 2001.

[ASY07] Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Algorithmic analysis of

polygonal hybrid systems, part i: Reachability. Theoretical Computer Science,
379:231–265, 2007.

[Atk89] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 2nd

edition, 1989.

[BA13] Amir M Ben-Amram. Mortality of iterated piecewise a�ne functions over the

integers: Decidability and complexity. In STACS, pages 514–525, 2013.

[BBEP10] Marie-Pierre Béal, Jean Berstel, Soren Eilers, and Dominique Perrin. Symbolic

dynamics. 2010. to appear in Handbook of Automata.

[BBGP14] Hugo Bazille, Olivier Bournez, Walid Gomaa, and Amaury Pouly. On the com-

plexity of bounded time reachability for piecewise a�ne systems. In Reachability
Problems - 8th InternationalWorkshop, RP 2014, Oxford, UK, September 22-24, 2014.
Proceedings, pages 20–31, 2014.

[BBKT01] Vincent D. Blondel, Olivier Bournez, Pascal Koiran, and John Tsitsiklis. The sta-

bility of saturated linear dynamical systems is undecidable. Journal of Computer
and System Science, 62(3):442–462, May 2001.

[BC08] Olivier Bournez and Manuel L. Campagnolo. New Computational Paradigms.
Changing Conceptions of What is Computable, chapter A Survey on Continuous

Time Computations, pages 383–423. Springer-Verlag, New York, 2008.

[BC13] PaulC. Bell and Shang Chen. Reachability problems for hierarchical piecewise

constant derivative systems. In ParoshAziz Abdulla and Igor Potapov, editors,

Reachability Problems, volume 8169 of Lecture Notes in Computer Science, pages

46–58. Springer Berlin Heidelberg, 2013.

[BCdNM05] Olivier Bournez, Felipe Cucker, Paulin Jacobé de Naurois, and Jean-Yves Marion.

Implicit complexity over an arbitrary structure: Sequential and parallel polyno-

mial time. Journal of Logic and Computation, 15(1):41–58, 2005.

[BCGH07] O. Bournez, M. L. Campagnolo, D. S. Graça, and E. Hainry. Polynomial di�er-

ential equations compute all real computable functions on computable compact

intervals. J. Complexity, 23(3):317–335, 2007.

[BCO
+

07] Alin Bostan, Frédéric Chyzak, François Ollivier, Bruno Salvy, Éric Schost, and

Alexandre Sedoglavic. Fast computation of power series solutions of systems of

di�erential equations. In SODA’07, pages 1012–1021, January 2007.

[BCPT14] Edwin J. Beggs, José Félix Costa, Diogo Poças, and John V. Tucker. An analogue-

digital church-turing thesis. Int. J. Found. Comput. Sci., 25(4):373–390, 2014.

[BCSS98] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.

Springer, 1998.

156

BIBLIOGRAPHY

[BDF12] Olivier Bournez, Nachum Dershowitz, and Evgenia Falkovich. Towards an ax-

iomatization of simple analog algorithms. In Manindra Agrawal, S. Barry Cooper,

and Angsheng Li, editors, Theory and Applications of Models of Computation - 9th
Annual Conference, TAMC 2012, Beijing, China, May 16-21, 2012. Proceedings, vol-

ume 7287 of Lecture Notes in Computer Science, pages 525–536. Spinger-Verlag,

2012.

[BG03] A. Blass and Y. Gurevich. Abstract state machines capture parallel algorithms.

ACM Transactions on Computational Logic (TOCL), 4(4):578–651, 2003.

[BGH10] Olivier Bournez, Daniel S. Graça, and Emmanuel Hainry. Robust computa-

tions with dynamical systems. In Mathematical Foundations of Computer Science,
MFCS’2010, volume 6281 of Lecture Notes in Computer Science, pages 198–208.

Springer, 2010.

[BGH13] Olivier Bournez, Daniel S. Graça, and Emmanuel Hainry. Computation with

perturbed dynamical systems. Journal of Computer and System Sciences, 79(5):714

– 724, 2013.

[BGP] O. Bournez, D. S. Graça, and A. Pouly. Turing machines can be e�ciently simu-

lated by the general purpose analog computer. Submitted for publication.

[BGP12] Olivier Bournez, Daniel S. Graça, and Amaury Pouly. On the complexity of solv-

ing initial value problems. In 37h International Symposium on Symbolic and Al-
gebraic Computation (ISSAC), volume abs/1202.4407, 2012.

[BGPZ13] Olivier Bournez, Daniel S. Graça, Amaury Pouly, and Ning Zhong. Computability

and computational complexity of the evolution of nonlinear dynamical systems.

In The Nature of Computation. Logic, Algorithms, Applications - 9th Conference on
Computability in Europe, CiE 2013, Milan, Italy, July 1-5, 2013. Proceedings, pages

12–21, 2013.

[BGZ11] J. Buescu, D.S. Graça, and N. Zhong. Computability and dynamical systems.

In Mauricio Matos Peixoto, Alberto Adrego Pinto, and David A. Rand, editors,

Dynamics, Games and Science I, volume 1 of Springer Proceedings in Mathematics,
pages 169–181. Springer Berlin Heidelberg, 2011.

[BH04] Olivier Bournez and Emmanuel Hainry. An analog characterization of ele-

mentary computable functions over the real numbers. In Josep Díaz, Juhani

Karhumäki, Arto Lepistö, and Donald Sannella, editors, International Colloquium
on Automata, Languages and Programming (ICALP 2004), volume 3142 of Lecture
Notes in Computer Science, pages 269–280, 2004.

[BH05a] Olivier Bournez and Emmanuel Hainry. Elementary computable functions over

the real numbers and R-sub-recursive functions. Theoretical Computer Science,
348(2-3):130–147, December 2005.

[BH05b] Olivier Bournez and Emmanuel Hainry. Real recursive functions and real exten-

tions of recursive functions. In Maurice Margenstern, editor, Machines, Compu-
tations, and Universality, MCU 2004, volume 3354 of Lecture Notes in Computer
Science, pages 116–127. Springer-Verlag, 2005.

[BH06] Olivier Bournez and Emmanuel Hainry. Recursive analysis characterized as a

class of real recursive functions. 74(4):409–433, 2006.

157

BIBLIOGRAPHY

[Bou97] Olivier Bournez. Some bounds on the computational power of piecewise constant

derivative systems (extended abstract). In ICALP, pages 143–153, 1997.

[Bou99] Olivier Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical

hierarchy. Theoret. Comput. Sci., 210(1):21–71, 1999.

[BP97] Marie-Pierre Béal and Dominique Perrin. Symbolic dynamics and �nite au-

tomata. In Handbook of formal languages, Vol. 2, pages 463–505. Springer, Berlin,

1997.

[Bra95] M. S. Branicky. Universal computation and other capabilities of hybrid and con-

tinuous dynamical systems. Theoret. Comput. Sci., 138(1):67–100, 1995.

[Bra05a] Vasco Brattka. Computability & complexity in analysis. Tutorial donné à Com-
putability in Europe (CIE’2005), 2005.

[Bra05b] Mark Braverman. On the complexity of real functions. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, pages 155–164, 2005.

[BRAB11] R. Barrio, M. Rodríguez, A. Abad, and F. Blesa. Breaking the limits: the Taylor

series method. Appl. Math. Comput., 217(20):7940–7954, 2011.

[Bro99] M. Broucke. Geometric approach to bisimulation and veri�cation of hybrid sys-

tems. volume 1569 of Lecture Notes in Computer Science, pages 61–??, 1999.

[BS95] François Bergeron and Ulrike Sattler. Constructible di�erentially �nite algebraic

series in several variables. Theoretical Computer Science, 144(1–2):59 – 65, 1995.

[BS02] M. Brin and G. Stuck. Introduction to Dynamical Systems. Cambridge University

Press, 2002.

[BS03] E. Börger and R.F. Stärk. Abstract State Machines. Springer, 2003.

[BSS89] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over

the real numbers: NP-completeness, recursive functions and universal machines.

Bull. Amer. Math. Soc., 21(1):1–46, 1989.

[Bus31] V. Bush. The di�erential analyzer. A new machine for solving di�erential equa-

tions. J. Franklin Inst., 212:447–488, 1931.

[But87] J. C. Butcher. The Numerical Analysis of Ordinary Di�erential Equations: Runge-
Kutta and General Linear Methods. Wiley-Interscience, New York, NY, USA, 1987.

[CC82] G. Corliss and Y. F. Chang. Solving ordinary di�erential equations using Taylor

series. ACM Trans. Math. Softw., 8(2):114–144, 1982.

[CG09] P. Collins and D. S. Graça. E�ective computability of solutions of di�erential

inclusions — the ten thousand monkeys approach. Journal of Universal Computer
Science, 15(6):1162–1185, 2009.

[CMC00] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and di�er-

entiability in analog computers. J. Complexity, 16(4):642–660, 2000.

[CMC02] Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. An analog char-

acterization of the Grzegorczyk hierarchy. J. Complexity, 18(4):977–1000, 2002.

158

BIBLIOGRAPHY

[Cop98] B. Jack Copeland. Even Turing machines can compute uncomputable functions.

In C.S. Calude, J. Casti, and M.J. Dinneen, editors, Unconventional Models of Com-
putations. Springer-Verlag, 1998.

[Cop02] B. Jack Copeland. Accelerating Turing machines. Minds and Machines, 12:281–

301, 2002.

[Cor02] Robert M. Corless. A new view of the computational complexity of IVP for ODE.

Numerical Algorithms, 31(1-4):115–124, 2002.

[CP02] C. S. Calude and B. Pavlov. Coins, quantum measurements, and Turing’s barrier.

Quantum Information Processing, 1(1-2):107–127, April 2002.

[CPSW05] D. C. Carothers, G. E. Parker, J. S. Sochacki, and P. G. Warne. Some properties of

solutions to polynomial systems of di�erential equations. Electron. J. Di�. Eqns.,
2005(40), April 2005.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic

veri�cation. Journal of the ACM, 42(4):857–907, July 1995.

[Dav01] E. B. Davies. Building in�nite machines. The British Journal for the Philosophy of
Science, 52:671–682, 2001.

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle and the universal

quantum computer. Proc. R. Soc. Lond. Ser. A, A400:97–117, 1985.

[DG08] N. Dershowitz and Y. Gurevich. A natural axiomatization of computability and

proof of Church’s Thesis. The Bulletin of Symbolic Logic, 14(3):299–350, 2008.

[DL12] Ugo Dal Lago. A short introduction to implicit computational complexity. In

Lectures on Logic and Computation, pages 89–109. Springer, 2012.

[Dur12] Jérôme Durand-Lose. Abstract geometrical computation 7: geometrical accumu-

lations and computably enumerable real numbers. Natural Computing, 11(4):609–

622, 2012.

[EM03] L.Hernàndez Encinas and J.Muñoz Masqué. A short proof of the generalized faà

di bruno’s formula. Applied Mathematics Letters, 16(6):975 – 979, 2003.

[EN02] Gábor Etesi and István Németi. Non-Turing computations via Malament-

Hogarth space-times. International Journal Theoretical Physics, 41:341–370, 2002.

[Fei88] D. G. Feitelson. Optical computing: a survey for computer scientists. MIT Press,

1988.

[Fey82] R. P. Feynman. Simulating physics with computers. Internat. J. Theoret. Phys.,
21(6/7):467–488, 1982.

[GBC07] D. S. Graça, J. Buescu, and M. L. Campagnolo. Boundedness of the domain of def-

inition is undecidable for polynomial ODEs. In R. Dillhage, T. Grubba, A. Sorbi,

K. Weihrauch, and N. Zhong, editors, 4th International Conference on Computabil-
ity and Complexity in Analysis (CCA 2007), volume 202 of Electron. Notes Theor.
Comput. Sci., pages 49–57. Elsevier, 2007.

[GBC09] D. S. Graça, J. Buescu, and M. L. Campagnolo. Computational bounds on poly-

nomial di�erential equations. Appl. Math. Comput., 215(4):1375–1385, 2009.

159

BIBLIOGRAPHY

[GC03] Daniel S. Graça and José Félix Costa. Analog computers and recursive functions

over the reals. Journal of Complexity, 19(5):644–664, 2003.

[GCB05] D. S. Graça, M. L. Campagnolo, and J. Buescu. Robust simulations of Turing

machines with analytic maps and �ows. In S. B. Cooper, B. Löwe, and L. Toren-

vliet, editors, CiE 2005: New Computational Paradigms, LNCS 3526, pages 169–

179. Springer, 2005.

[GCB08] D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial

di�erential equations. Adv. Appl. Math., 40(3):330–349, 2008.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[GM95] Erich Grädel and Klaus Meer. Descriptive complexity theory over the real num-

bers. In Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory
of Computing, pages 315–324, Las Vegas, Nevada, 29May–1June 1995. ACM Press.

[GM02] Marco Gori and Klaus Meer. A step towards a complexity theory for analog

systems. Mathematical Logic Quarterly, 48(Suppl. 1):45–58, 2002.

[Gra04] D. S. Graça. Some recent developments on Shannon’s General Purpose Analog

Computer. Math. Log. Quart., 50(4-5):473–485, 2004.

[Grz55] A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202, 1955.

[GZ09] D. S. Graça and N. Zhong. Computing domains of attraction for planar dynamics.

In C. S. Calude, J. F. Costa, N. Dershowitz, E. Freire, and G. Rozenberg, editors, 8th
International Conference on Unconventional Computation (UC 2009), LNCS 5715,

pages 179–190. Springer, 2009.

[GZ11] Daniel Graça and Ning Zhong. Computability in planar dynamical systems. Nat-
ural Computing, 10(4):1295–1312, 2011.

[GZB09] D.S. Graça, N. Zhong, and J. Buescu. Computability, noncomputability and unde-

cidability of maximal intervals of IVPs. Trans. Amer. Math. Soc., 361(6):2913–2927,

2009.

[Hir01] M. Hirvensalo. Quantum Computing. Springer, 2001.

[HKPV98] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, August

1998.

[HLMP04] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet.

Approximate probabilistic model checking. In Bernhard Ste�en and Giorgio Levi,

editors, Veri�cation, Model Checking, and Abstract Interpretation, 5th International
Conference, VMCAI 2004, Venice, January 11-13, 2004, Proceedings, volume 2937 of

Lecture Notes in Computer Science, pages 73–84. Springer, 2004.

[HSD04] M. W. Hirsch, S. Smale, and R. Devaney. Di�erential Equations, Dynamical Sys-
tems, and an Introduction to Chaos. Academic Press, 2004.

[ISC08] Silvana Ilie, Gustaf Söderlind, and Robert M. Corless. Adaptivity and computa-

tional complexity in the numerical solution of odes. J. Complexity, 24(3):341–361,

2008.

160

BIBLIOGRAPHY

[JZ05] À. Jorba and M. Zou. A software package for the numerical integration of odes by

means of high-order Taylor methods. Experimental Mathematics, 14(1):99–117,

2005.

[Kaw05] Akitoshi Kawamura. Type-2 computability and moore’s recursive functions.

Electronic Notes in Theoretical Computer Science, 120(0):83 – 95, 2005. Proceedings

of the 6th Workshop on Computability and Complexity in Analysis (CCA 2004)

Computability and Complexity in Analysis 2004.

[Kaw10] A. Kawamura. Lipschitz continuous ordinary di�erential equations are

polynomial-space complete. Computational Complexity, 19(2):305–332, 2010.

[KC10] A. Kawamura and S. A. Cook. Complexity theory for operators in analysis. In

Leonard J. Schulman, editor, STOC, pages 495–502. ACM, 2010.

[KCG94a] P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional

dynamical systems. Theoret. Comput. Sci., 132:113–128, 1994.

[KCG94b] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with Low-

Dimensional Dynamical Systems. Theoretical Computer Science, 132:113–128,

1994.

[KMRZ12] A. Kawamura, N. Th. Müller, C. Rösnick, and M. Ziegler. Parameterized uni-

form complexity in numerics: from smooth to analytic, from np-hard to polytime.

CoRR, abs/1211.4974, 2012.

[KNSS02] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Au-

tomatic veri�cation of real-time systems with discrete probability distributions.

Theoretical Computer Science, 282(1):101–150, May 2002.

[Ko91] Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer

Science. Birkhaüser, Boston, 1991.

[KO14] Akitoshi Kawamura and Hiroyuki Ota. Small complexity classes for computable

analysis. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, edi-

tors, Mathematical Foundations of Computer Science 2014, volume 8635 of Lecture
Notes in Computer Science, pages 432–444. Springer Berlin Heidelberg, 2014.

[Koi94] Pascal Koiran. Computing over the reals with addition and order. Theor. Comput.
Sci., 133(1):35–47, 1994.

[KORZ14] Akitoshi Kawamura, Hiroyuki Ota, Carsten Rösnick, and Martin Ziegler. Com-

putational complexity of smooth di�erential equations. Logical Methods in Com-
puter Science, 10(1), 2014.

[KP02] S. G. Krantz and H. R. Parks. A Primer of Real Analytic Functions. Birkhäuser, 2nd

edition, 2002.

[KW95] K. Ko and K. Weihrauch. Computability and complexity in analysis, 1995.

[Lac55] D. Lacombe. Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles III. C. R. Acad. Sci. Paris, 241:151–153, 1955.

[Lig91] W. Light. Advances in Numerical Analysis, chapter Numerical methods for dy-

namical systems. Clarendon press-Oxford, 1991.

161

BIBLIOGRAPHY

[Lip89] L Lipshitz. D-�nite power series. Journal of Algebra, 122(2):353 – 373, 1989.

[LT03] Stig Larsson and Vidar Thomée. Partial di�erential equations with numerical
methods. Texts in applied mathematics. Springer, Berlin, 2003.

[Ma09] Tsoy-Wo Ma. Higher chain formula proved by combinatorics. Electr. J. Comb.,
16(1), 2009.

[MC04] Jerzy Mycka and José Félix Costa. Real recursive functions and their hierarchy.

Journal of Complexity, 20(6):835–857, 2004.

[MC06] J. Mycka and J. F. Costa. Thep , np conjecture in the context of real and complex

analysis. J. Complexity, 22(2):287–303, 2006.

[MM93] N. Müller and B. Moiske. Solving initial value problems in polynomial time. In

Proc. 22 JAIIO - PANEL ’93, Part 2, pages 283–293, 1993.

[Moo90] Cristopher Moore. Unpredictability and undecidability in dynamical systems.

Phys. Rev. Lett., 64:2354–2357, May 1990.

[Moo91] Cristopher Moore. Generalized shifts: unpredictability and undecidability in dy-

namical systems. Nonlinearity, 4(3):199–230, 1991.

[Moo96] Cristopher Moore. Recursion theory on the reals and continuous-time computa-

tion. Theoretical Computer Science, 162(1):23 – 44, 1996.

[PE74] M. B. Pour-El. Abstract computability and its relations to the general purpose

analog computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

[PER79] M. B. Pour-El and J. I. Richards. A computable ordinary di�erential equation

which possesses no computable solution. Ann. Math. Logic, 17:61–90, 1979.

[Pla12] André Platzer. Dynamic logics of dynamical systems. CoRR, abs/1205.4788, 2012.

[PV94] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular di�eren-

tial equations. In Proc. 6th Workshop on Computer-Aided Veri�cation, LNCS 818,

pages 95–104. Springer, 1994.

[Ruo93] Keijo Ruohonen. Undecidability of event detection for ODEs. Journal of Infor-
mation Processing and Cybernetics, 29:101–113, 1993.

[Ruo94] Keijo Ruohonen. Event detection for ODEs and nonrecursive hierarchies. In Pro-
ceedings of the Colloquium in Honor of Arto Salomaa. Results and Trends in Theo-
retical Computer Science (Graz, Austria, June 10-11, 1994), volume 812 of Lecture
Notes in Computer Science, pages 358–371. Springer-Verlag, Berlin, 1994.

[Ruo96] K. Ruohonen. An e�ective Cauchy-Peano existence theorem for unique solu-

tions. Internat. J. Found. Comput. Sci., 7(2):151–160, 1996.

[SF98] H. T. Siegelmann and S. Fishman. Analog computation with dynamical systems.

Phys. D, 120:214–235, 1998.

[Sha41] C. E. Shannon. Mathematical theory of the di�erential analyser. Journal of Math-
ematics and Physics MIT, 20:337–354, 1941.

[Sho97] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM J. Comput., 26:1484–1509, 1997.

162

BIBLIOGRAPHY

[Smi06] Warren D. Smith. Church’s thesis meets the N-body problem. Applied Mathe-
matics and Computation, 178(1):154–183, 2006.

[SS95] H. T. Siegelmann and E. D. Sontag. On the computational power of neural net-

works. J. Comput. System Sci., 50(1):132–150, 1995.

[Tar55] Alfred Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c
J. Math., 5(2):285–309, 1955.

[TG95] A. Turing and J.-Y. Girard. La machine de Turing. Seuil, 1995.

[Tur36] A. M. Turing. On computable numbers with an application to the entschei-

dungsproblem. Proc. London Mathematical Society, 42(2):230–265, 1936. Tra-

duction [TG95].

[Var85] Moshe Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state

programs. In 26th Annual Symposium on Foundations of Computer Science, pages

327–338, Portland, Oregon, 21–23October 1985. IEEE Computer Society Press.

[Wei00] K. Weihrauch. Computable Analysis: an Introduction. Springer, 2000.

[Wer79] A.G. Werschulz. Computational complexity of one-step methods for a scalar

autonomous di�erential equation. Computing, 23(4):345–355, 1979.

[WN05] Damien Woods and Thomas J. Naughton. An optical model of computation.

Theoretical Computer Science, 334(1-3):227–258, 2005.

[WWS
+

06] P. G. Warne, D.A. Polignone Warne, J. S. Sochacki, G. E. Parker, and D. C.

Carothers. Explicit a-priori error bounds and adaptive error control for ap-

proximation of nonlinear initial value di�erential systems. Comput. Math. Appl.,
52(12):1695–1710, December 2006.

163

Titre: Modèles de calcul à temps continu: de la calculabilité à la complexité

Résumé:
En 1941, Claude Shannon dé�nit le General Purpose Analog Computer (GPAC), un modèle de

calcul analogique à temps continu. Le GPAC est un modèle réaliste car il peut être construit

mécaniquement ou bien à l’aide circuit électroniques. Il s’avère que les fonctions calculables

par ce modèle sont exactement les solutions d’une certaine classe d’équations di�érentielles à

second membre polynomial. Bien que les ordinateurs digitaux aient remplacé les ordinateurs

analogiques, la question de savoir si ces modèles sont comparables reste en suspens.

Il y a quelques années, cette thématique est réapparue à l’occasion d’une preuvre montrant

que le GPAC et les machines de Turing ont la même puissance de calcul. Toutefois ce résultat ne

nous aide guère à comprendre la relation entre ces deux modèles au niveau de la complexité des

calculs. En d’autres termes, les ordinateurs analogiques ne calculent pas plus de fonctions que

les ordinateurs classiques, mais il se pourrait qu’ils les calculent plus vite. Cette problématique

est intrinsèquement reliée à celle, fondamentale, de la dé�nition même de la complexité d’un

système à temps et espace continu. En e�et, ces systèmes exhibent le paradoxe troublant de

Zenon, c’est à dire celui de la contraction de l’espace et du temps.

Cette thèse apporte des réponses fondamentales à ces questions. Nous montrons que la

complexité d’un calcul par le GPAC peut être mesurée par la longueur de la courbe ainsi dé�nie.

Nous montrons ensuite que le GPAC et les machines de Turing ont la même puissance de calcul

au niveau de la complexité. En�n nous donnons une caractérisation purement analogique, et

indépendante de toute notion de machine, de la classe P ainsi que de l’analyse récursive.

Title: Continuous models of computation: from computability to complexity

Summary:
In 1941, Claude Shannon introduced a continuous-time analog model of computation, namely

the General Purpose Analog Computer (GPAC). The GPAC is a physically feasible model in

the sense that it can be implemented in practice through the use of analog electronics or me-

chanical devices. It can be proved that the functions computed by a GPAC are precisely the

solutions of a special class of di�erential equations where the right-hand side is a polyno-

mial. Analog computers have since been replaced by digital counterpart. Nevertheless, one

can wonder how the GPAC could be compared to Turing machines.

A few years ago, it was shown that Turing-based paradigms and the GPAC have the same

computational power. However, this result did not shed any light on what happens at a com-

putational complexity level. In other words, analog computers do not make a di�erence about

what can be computed; but maybe they could compute faster than a digital computer. A funda-

mental di�culty of continuous-time model is to de�ne a proper notion of complexity. Indeed, a

troubling problem is that many models exhibit the so-called Zeno’s phenomenon, also known

as space-time contraction.

In this thesis, we give several fundamental contributions to these questions. We show that

the GPAC has the same computational power as the Turing machine, at the complexity level.

We also provide as a side e�ect a purely analog, machine-independent characterization of P

and Computable Analysis.

	1 Introduction
	1.1 Dynamical Systems
	1.2 Numerical Analysis and Differential Equations
	1.3 Computable Analysis
	1.4 General Purpose Analog Computer
	1.5 Related work
	1.6 Notations

	2 The PIVP class
	2.1 Generable functions
	2.1.I Unidimensional case
	2.1.II Multidimensional case

	2.2 Stability properties
	2.3 Analyticity of generable functions
	2.4 Dependency in the parameters
	2.5 Taylor series of the solutions
	2.6 Generable zoo
	2.6.I Sign and rounding
	2.6.II Absolute value, maximum and norm
	2.6.III Switching functions

	2.7 Generable fields
	2.7.I Extended stability
	2.7.II How to build a smallest field
	2.7.III Generable real numbers

	3 Solving PIVP
	3.1 Introduction
	3.1.I Related work for general ODEs
	3.1.II On the difficulties of unbounded domains
	3.1.III Contributions

	3.2 The generic Taylor method
	3.3 The adaptive Taylor algorithm
	3.4 Enhancement on the adaptive algorithm
	3.5 Extension to Computable Analysis
	3.6 Conclusion

	4 Computation with PIVP
	4.1 Introduction
	4.2 Computing functions
	4.2.I Space-time based complexity
	4.2.II Length-based complexity

	4.3 Computing with perturbations
	4.3.I Robust computability
	4.3.II Strong computability

	4.4 Computing with variable input
	4.4.I Extreme computability
	4.4.II Reaching a value
	4.4.III Sampling
	4.4.IV Equivalence
	4.4.V Online computability

	4.5 Summary
	4.6 Closure properties and computable zoo
	4.6.I Generable functions
	4.6.II Arithmetic operations
	4.6.III Continuity and growth
	4.6.IV Composing functions
	4.6.V Absolute, minimum, maximum value
	4.6.VI Rounding
	4.6.VII Mixing functions
	4.6.VIII Computing limits
	4.6.IX Iterating functions

	5 PIVP versus Turing computability
	5.1 Introduction
	5.2 Simulating Turing machines
	5.2.I Turing Machine
	5.2.II Polynomial interpolation
	5.2.III Encoding

	5.3 Equivalences with Turing computability
	5.3.I Equivalence with FP
	5.3.II Equivalence with P
	5.3.III Equivalence with Computable Analysis

	6 Piecewise Affine Systems
	6.1 Introduction
	6.2 Preliminaries
	6.2.I Piecewise affine functions
	6.2.II Decision problems

	6.3 Bounded Time Reachability is NP-hard
	6.3.I Solving SUBSET-SUM by iteration
	6.3.II Solving SUBSET-SUM with a piecewise affine function
	6.3.III REACH-REGION-TIME is NP-hard

	6.4 Bounded Time Reachability is in NP
	6.4.I Notations and definitions
	6.4.II REACH-REGION-TIME is in NP

	6.5 Other results

	7 Conclusion

