N

N

Amélioration de la sécurité par la conception des
logiciels web
Theodoor Scholte

» To cite this version:

Theodoor Scholte. Amélioration de la sécurité par la conception des logiciels web. Web. Télécom
ParisTech, 2012. Frangais. NNT: 2012ENST0024 . tel-01225776

HAL Id: tel-01225776
https://pastel.hal.science/tel-01225776
Submitted on 6 Nov 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/tel-01225776
https://hal.archives-ouvertes.fr

Parislech

INSTITUT DES SCIERCES ET TECHNOLOGIES TELECOM

PARIS INSTITUTE OF TECHRNOLOGY ’ .
) .
ParisTech

= A

2012-ENST-024

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Réseaux et Sécurité »

présentée et soutenue publiquement par

Theodoor SCHOLTE
le 11/5/2012

Securing Web Applications by Design

Directeur de these : Prof. Engin KIRDA

Jury

Thorsten HOLZ, Professeur, Ruhr-Universit at Bochum, Germany Rapporteur
Martin JOHNS, Senior Researcher, SAP AG, Germany Rapporteur
Davide BALZAROTTI, Professeur, Institut EURECOM, France Examinateur
Angelos KEROMYTIS, Professeur, Columbia University, USA Examinateur
Thorsten STRUFE, Professeur, Technische Universit at Darmstadt, Germany Examinateur

TELECOM ParisTech

école de I'Institut Télécom - membre de ParisTech

Acknowledgements

This dissertation would not have been possible without the support of many
people. First, I would like to thank my parents. They have thaught and
are teaching me every day a lot. They have raised me with a good mixture
of strictness and love. I believe that they play an important role in all the
good things in my life.

I am very grateful to prof. Engin Kirda. It is through his lectures that
I have become interested in security. He has been an extraordinary advi-
sor, always available to discuss. After he moved to the United States, he
continued to be the person ‘next door’, always available to help me out. Fur-
thermore, I would like to thank prof. Davide Balzarotti and prof. William
Robertson. Completing this dissertation would not have been possible with-
out their continuous support.

Thanks to my good friends Jaap, Gerben, Roel, Inge, Luit, Ellen and
others I probably forget to mention. Over the years, we have shared and
discussed our experiences of the professional working life. More importantly,
we had a lot of fun. Although we lived in different parts of Europe, we
managed to keep in touch as good friends do. Thanks to my ‘local’ friends:
Claude, Luc, Alessandro, Marco, Leyla, Simone, Gerald and Julia. You
have lightened up the years of hard work with activities such as drinking
or brewing beer, barbecuing, climbing and skiing. I would like to thank my
friends in particular for the moral support as personal life has not always
been easy.

I would like to thank my colleagues at SAP, in particular Anderson,
Gabriel, Henrik, Sylvine, Jean-Christophe, Volkmar and Agnes. Thank you
all for your support and creating a good working environment.

Thanks to the staff at EURECOM, in particular to Gwenéelle for helping
me and always being there when needed.

Finally, thanks to prof. Davide Balzarotti, prof. Thorsten Holz, prof.
Angelos Keromytis, prof. Thorsten Strufe and Martin Johns for agreeing to
be reporters and examinators.

il

Contents

1 Introduction 1
1.1 Motivation 2
1.2 Research Problems 6
1.3 Thesis Structure 7

2 Related Work 9
2.1 Security Studieso 9

2.1.1 Large Scale Vulnerability Analysis 9
2.1.2 Evolution of Software Vulnerabilities 10
2.2 Web Application Security Studies 15
2.3 Mitigating Web Application Vulnerabilities 16
2.3.1 Attack Prevention 16
2.3.2 Program Analysis 20
2.3.3 Black-Box Testing 22
2.3.4 Security by Construction 23

3 Overview of Web Applications and Vulnerabilities 25

3.1 Web Applications 25
3.1.1 Web Browser 26
3.1.2 Web Server 27
3.1.3 Communication 28
3.1.4 Session Management, 33

3.2 Web Vulnerabilities 33
3.2.1 Input Validation Vulnerabilities 33
3.2.2 Broken Authentication and Session Management . . . 39
3.2.3 Broken Access Control and Insecure Direct Object

References 42
3.2.4 Cross-Site Request Forgery 43

4 The Evolution of Input Validation Vulnerabilities in Web
Applications 45
4.1 Methodology 45

4.1.1 Data Gathering 46

4.1.2 Vulnerability Classification 47

4.1.3 The Exploit Data Set 47
4.2 Analysis of the Vulnerabilities Trends 48
4.2.1 Attack Sophistication 49
4.2.2 Application Popularity 54
4.2.3 Application and Vulnerability Lifetime 56
4.3 Summary . . o. ... 60
Input Validation Mechanisms in Web Applications and Lan-
guages 63
5.1 Data Collection and Methodology 64
5.1.1 Vulnerability Reports 64
5.1.2 Attack Vectors 65
5.2 Analysis 65
5.2.1 Language Popularity and Reported Vulnerabilities . . 66
5.2.2 Language Choice and Input Validation 68
5.2.3 Typecasting as an Implicit Defense 70
5.2.4 Input Validation as an Explicit Defense 71
5.3 Discussion L Lo 72
5.4 Summary oL e 73
Automated Prevention of Input Validation Vulnerabilities
in Web Applications 77
6.1 Preventing input validation vulnerabilities 78
6.1.1 Output sanitization 78
6.1.2 Input validation 79
6.1.3 Discussion 80
6.2 IPAAS 80
6.2.1 Parameter Extraction 81
6.2.2 Parameter Analysis 81
6.2.3 Runtime Enforcement 83
6.2.4 Prototype Implementation 84
6.2.5 Discussion 85
6.3 Evaluation. 86
6.3.1 Vulnerabilities 0oL 86
6.3.2 Automated Parameter Analysis 87
6.3.3 Static Analyzer 88
6.3.4 Impact. 89
6.4 Summary Lo 90
Conclusion and Future Work 91
7.1 Summary of Contributions 91
7.1.1 Evolution of Web Vulnerabilities 92

7.1.2 Input Validation as Defense Mechanism 92

7.1.3 Input Parameter Analysis System 93

7.2 Critical Assessment 94
7.3 Future Work 95
8 French Summary 97
8.1 Résumé 97
8.2 Introduction. 98
8.2.1 Problématiques de recherche 101

8.3 L’évolution des vulnérabilités de validation d’entrée dans les
applications Web oo 0oL 103
8.3.1 Meéthodologie oo 103
8.3.2 L’analyse des tendances vulnérabilités 106
8.3.3 Discussion 111

8.4 Les mécanismes pour valider 'entrée des données dans les
applications Web et des Langues 112
8.4.1 Méthodologie 113
84.2 Analyse 114
8.4.3 Discussion 118

8.5 Prévention automatique des vulnérabilités de validation d’en-
trée dans les applications Web 000 118
8.5.1 Extraction des parametres 119
8.5.2 Analyse des parametres 120
8.5.3 Runtime Environment 121
8.6 Conclusion 122
A Web Application Frameworks 125

Bibliography 129

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

5.1

5.2
5.3
5.4

Number of web vulnerabilities over time.

Example URL.
Example of a HT'TP request message.
Example of an HT'TP response message.
HTTP response message with cookie.
HTTP request message with cookie.
Example SQL statement.
Cross-site scripting example: search.php
Directory traversal vulnerability.
HTTP Response vulnerability.
HTTP Parameter Pollution vulnerability.
Cross-site request forgery example.

Buffer overflow, cross-site scripting and SQL injection vulner-

abilities over time. L0000
Prerequisites for successful attacks (in percentages).
Exploit complexity over time.
Applications having XSS and SQLI Vulnerabilities over time.
The number of affected applications over time.
Vulnerable applications and their popularity over time.
Popularity of applications across the distribution of the num-

ber of vulnerability reports.
Reporting rate of Vulnerabilities
Time elapsed between software release and vulnerability dis-

closure in years. Lo

Average duration of vulnerability disclosure in years over time.

Distributions of popularity, reported XSS vulnerabilities, and
reported SQL injection vulnerabilities for several web pro-
gramming languages.
Example HTTP request.
Data types corresponding to vulnerable input parameters. . .

Structured string corresponding to vulnerable input parameters.

ix

29
30
31
32
32
34
35
37
37
38
43

48
50
50
53
54
55

56
57

59
59

66
69
74
75

6.1
6.2

8.1
8.2

8.3
8.4

8.5

8.6
8.7

8.8

HTML fragment output sanitization example.
The IPAAS architecture.

Nombre de vulnérabilités web au fil du temps.
Les Buffer overflow, cross-site scripting and SQL injection
vulnérabilités au fil du temps.
La complexité des exploits au fil du temps.
Temps écoulé entre la version du logiciel et a la divulgation
de vulnérabilité au cours des années.
La durée moyenne de divulgation des vulnérabilités dans les
années au fil dutemps. L
Exemple de requéte HTTP.
Les types de données correspondant & des parametres d’entrée
vulnérables. o
L’architecture IPAAS.

List of Tables

1.1 Largest data breaches. 3
4.1 Foundational and non-foundational vulnerabilities in the ten

most affected open source web applications. 58
4.2 The attack surface. L. 60
5.1 Framework support for various complex input validation types

across different languages.o oL 72
6.1 IPAAS types and their validators. 82
6.2 PHP applications used in our experiments. 85
6.3 Manually identified data types of vulnerable parameters in

five large web applications. L. 86
6.4 Typing of vulnerable parameters in five large web applications

before static analysis. oL, 87
6.5 Results of analyzing the code. 88
6.6 Typing of vulnerable parameters in five large web applications

after static analysis.o 0oL 88
6.7 The number of prevented vulnerabilities in various large web

applications. 89
8.1 Les plus grandes fuites de données. 99
8.2 Vulnérabilités fondamentales et non-fondamentales dans les

dix les plus touchés ouverts applications Web source. 110
8.3 TPAAS types et leurs validateurs. 120
A.1 Web frameworks analyzed 127

X1

Chapter 1

Introduction

Global Internet penetration started in the late 80’s and early 90’s when an
increasing number of Research Institutions from all over the world started
to interconnect with each other and the first commercial Internet Service
Providers (ISPs) began to emerge. At that time, the Internet was primarily
used to exchange messages and news between hosts. In 1990, the number
of interconnected hosts had grown to more than 300.000 hosts. In the same
year, Tim Berners-Lee and Robert Cailliau from CERN started the World
Wide Web (WWW) project to allow scientists to share research data, news
and documentation in a simple manner.

Berners-Lee developed all the tools necessary for a working WWW in-
cluding an application protocol (HTTP), a language to create web pages
(HTML), a Web browser to render and display web pages and a Web server
to serve web pages. As the WWW provided the infrastructure for publishing
and obtaining information via the Internet, it simplified the use of the In-
ternet. Hence, the Internet started to become tremendously popular among
normal non-technical users resulting in an increasing number of connected
hosts.

Over the past decade, affordable, high-speed and ‘always-on’ Internet
connections have become the standard. Due to the ongoing investments in
local cell infrastructure, Internet can now be accessed from everywhere at
any device. People access the Internet using desktops, notebooks, Tablet
PCs and cell phones from home, office, bars, restaurants, airports and other
places.

Along with investments in Internet infrastructure, companies started to
offer new types of services that helped to make the Web a more compelling
experience. These services would not have been realized without a techno-
logical evolution of the Web. The Web has evolved from simple static pages
to very sophisticated web applications, whose content is dynamically gener-
ated depending on the user’s input. Similar to static web pages, web appli-
cations can be accessed over a network such as the Internet or an Intranet

8000
7000
6000 —
5000
4000 -

3000 — -
2000

1000 e

0 -——7—-"/7//-

2002 2003 2004 2005 2006 2007 2008 2009

Number of all vulnerabilities

—#— Number of web-related

Figure 1.1: Number of web vulnerabilities over time, data obtained from
NVD CVE [78].

using a Web browser and it generates content depending on the user’s in-
put. The ubiquity of Web browsers, the ability of updating and maintaining
web applications without distributing and installing software on potentially
thousands of computers and their cross-platform compatibility, are factors
that contributed to the popularity of web applications.

The technological evolution of the Web has dramatically changed the
type of services that are offered on the Web. New services such as social
networking are introduced and traditional services such as e-mail and online
banking have been replaced by offerings based on Web technology. Notably
in this context is the emerging strategy of software vendors to replace their
traditional server or desktop application offerings by sophisticated web ap-
plications. An example is SAP’s Business ByDesign, an ERP solution offered
by SAP as a web application.

The technological evolution has impacted the way how people nowa-
days use the Web. Today, people critically depend on the Web to perform
transactions, to obtain information, to interact, have fun and to socialize
via social networking sites such as Facebook and Myspace. Search engines
such as Google and Bing allow people to search and obtain all kinds of in-
formation. The Web is also used for many different commercial purposes.
These include purchasing airline tickets, do-it-yourself auctions via Ebay
and electronic market places such Amazon.com.

1.1 Motivation

Over the years, the World Wide Web has attracted many malicious users
and attacks against web applications have become prevalent. Recent data
from SANS Institute estimates that up to 60% of Internet attacks target

Records ‘ Date ‘ Organizations

130.000.000 | 2009-01-20 | Heartland Payment Systems, Tower Federal
Credit Union, Beverly National Bank

94.000.000 | 2007-01-17 | TJX Companies Inc.

90.000.000 | 1984-06-01 | TRW, Sears Roebuck

77.000.000 | 2011-04-26 | Sony Corporation

40.000.000 | 2005-06-19 | CardSystems, Visa, MasterCard,
American Express

40.000.000 | 2011-12-26 | Tianya

35.000.000 | 2011-07-28 | SK Communications, Nate, Cyworld

35.000.000 | 2011-11-10 | Steam (Valve, Inc.)

32.000.000 | 2009-12-14 | RockYou Inc.

26.500.000 | 2006-05-22 | U.S. Department of Veterans Affairs

Table 1.1: Largest data breaches in terms of disclosed records according
to [31].

web applications [23]. The insecure situation on the Web can be attributed
to several factors.

First, the number of vulnerabilities in web applications has increased
over the years. Figure 1.1 shows the number of all vulnerabilities compared
to the number of web-related vulnerabilities that have been published be-
tween 2000 and 2009 in the Common Vulnerabilities and Exposures (CVE)
List [78]. We observe that as of 2006, more than half of the reported vul-
nerabilities are web-related vulnerabilities. The situation has not improved
in recent years. Based on an analysis of 3000 web sites in 2010, a web site
contained on average 230 vulnerabilities according to a report from White-
Hat Security [105]. Although not all web vulnerabilities pose a security risk,
many vulnerabilities are exploited by attackers to compromise the integrity,
availability or confidentiality of a web application.

Second, attackers have a wide range of tools at their disposal to find web
vulnerabilities and launch attacks against web applications. The advanced
functionality of Google Search allows attackers to find security holes in the
configuration and programming code of websites. This is also known as
Google Hacking [12, 72]. Furthermore, there is a wide range of tools and
frameworks available that allow attackers to launch attacks against web
applications. Most notably in this context is the Metasploit framework [85].
This modular framework leverages on the world’s largest database of quality
assured exploits, including hundreds of remote exploits, auxiliary modules,
and payloads.

Finally, attackers do have motivations to perform attacks against web
applications. These attacks can result into, among other things, data leak-
age, impersonating innocent users and large-scale malware infections.

An increasing number of web applications store and process sensitive
data such as user’s credentials, account records and credit card numbers.
Vulnerabilities in web applications may occur in the form of data breaches
which allow attackers to collect this sensitive information. The attacker may
use this information for identity theft or he can sell it on the underground
market. Stealing large amounts of credentials and selling them on the un-
derground market can be profitable for an attacker as shown by several
studies [124, 13, 39, 104]. Security researchers estimate that stolen credit
card numbers can be sold for a price ranging between $2 to $20 each [13, 39].
For bank accounts the price range per item is between $10 and $1000 while
for e-mail passwords the range is $4 to $30 [39] per item.

Vulnerable web applications can also be used by attackers to perform
malicious actions on the victim’s behalf as part of phishing attack. In these
types of attacks, attackers use social engineering techniques to acquire sen-
sitive information such as user’s credentials or credit card details and/or let
the user perform some unwanted actions thereby masquerading itself as a
trustworthy entity in the communication. Certain flaws in web applications
such as cross-site scripting make it easier for an attacker to perform a suc-
cessful phishing attack because in such attack, a user is directed to the bank
or service’s own web page where everything from the web address to the
security certificates appears to be correct. The costs of phishing attacks are
significant, RSA estimates that the losses of phishing attacks world wide in
the first half year of 2011 amounted over more than 520 million Dollars [94].

Legitimate web applications that are vulnerable can be compromised
by attackers to install malware on the victim’s host as part of a drive-by-
download [84]. The installed malware can take full control of the victim’s
machine and the attacker uses the malware to make financial profit. Typi-
cally, malware is used for purposes such as acting as a botnet node, harvest-
ing sensitive information from the victim’s machine, or performing other
malicious actions that can be monetized. Web-based malware is actively
traded on the underground market [124]. While no certain assessments ex-
ist on the total amount of money attackers earn with trading virtual assets
such as malware on the underground market, some activities have been ana-
lyzed. A study performed by Mcafee [64] shows that compromised machines
are sold as anonymous proxy servers on the underground market for a price
ranging between $35 and $550 a month depending on the features of the
proxy.

Attacks against web applications affect the availability, integrity and
confidentiality of web applications and the data they process. Because our
society heavily depends on web applications, attacks against web applica-
tions form a serious threat. The increasing number of web applications that
process more and more sensitive data made the situation even worse. Ta-
ble 1.1 reports on the largest incidents in terms of exposed data records in

the past years. While the Web is not the primary source of data breaches,
it still accounts for 11 % of the data breaches which is the second place.
Although no overall figures exist on the annual loss caused by data breaches
on the Web, the costs of some data breaches have been estimated. In 2011,
approximately 77 million users accounts on the Sony Playstation Network
were compromised through a SQL injection attack on two of Sony’s prop-
erties. Sony estimated that it would spent 171.1 million Dollars in dealing
with the data breach [102].

To summarize, the current insecure state of the Web can be attributed to
the prevalence of web vulnerabilities, the readily available tools for exploit-
ing them and the (financial) motivations of attackers. Unfortunately, the
growing popularity of the Web will make the situation even worse. It will
motivate attackers more as attacks can potentially affect a larger number
of innocent users resulting into more profit for the attackers. The situation
needs to be improved because the consequences of attacks are dramatic in
terms of financial losses and efforts required to repair the damage.

To improve the security on the Web, much effort has been spent in the
past decade on making web applications more secure. Organizations such
as MITRE [62], SANS Institute [23] and OWASP [79] have emphasized
the importance of improving the security education and awareness among
programmers, software customers, software managers and chief information
officers. Also, the security research community has worked on tools and
techniques to improve the security of web applications. These tools and
techniques mainly focus on either reducing the number of vulnerabilities in
applications or on preventing the exploitation of vulnerabilities.

Although a considerable amount of effort has been spent by many dif-
ferent stakeholders on making web applications more secure, we lack quan-
titative evidence whether this attention has improved the security of web
applications. In this thesis, we study how web vulnerabilities have evolved
in the past decade. We focus in this dissertation on SQL injection and cross-
site scripting vulnerabilities as these classes of web application vulnerabili-
ties have the same root cause: improper sanitization of user-supplied input
that result from invalid assumptions made by the developer on the input
of the application. Moreover, these classes of vulnerabilities are prevalent,
well-known and have been well-studied in the past decade.

We observe that, despite security awareness programs and tools, web
developers consistently fail to implement existing countermeasures which
results into vulnerable web applications. Furthermore, the traditional ap-
proach of writing code and then testing for security does not seem to work
well. Hence, we believe that there is a need for techniques that secure web
applications by design. That is, techniques that make web applications au-
tomatically secure without relying on the web developer. Applying these
techniques on a large scale should significantly improve the security situa-

tion on the web.

1.2 Research Problems

The previous sections illustrates that web applications are frequently tar-
geted by attackers and therefore solutions are necessary that help to improve
the security situation on the web. Understanding how common web vulner-
abilities can be automatically prevented, is the main research challenge in
this work.

In this thesis, we tackle the following research problems with regard to
the security of web applications:

e Do developers create more secure web applications today than they used
to do in the past?

In the past decade, much effort has been spent by many different
stake-holders on making web applications more secure. To date, there
is no empirical evidence available whether this attention has improved
the security of web applications. To gain deeper insights, we perform
an automated analysis on a large number of cross-site scripting and
SQL injection vulnerability reports. In particular, we are interested
in finding out if developers are more aware of web security problems
today than they used to be in the past.

e Does the programming language used to develop a web application in-
fluence the exposure of those applications to vulnerabilities?

Programming languages often contain features which help program-
mers to prevent bugs or security-related vulnerabilities. These features
include, among others, static type systems, restricted name spaces and
modular programming. No evidence exists today whether certain fea-
tures of web programming languages help in mitigating input valida-
tion vulnerabilities. In our work, we perform a quantitative analysis
with the aim of understanding whether certain programming languages
are intrinsically more robust against the exploitation of input valida-
tion vulnerabilities than others.

o [s input validation an effective defense mechanism against common
web vulnerabilities?

To design and implement secure web applications, a good understand-
ing of vulnerabilities and attacks is a prerequisite. We study a large
number of vulnerability reports and the source code repositories of
a significant number of vulnerable web applications with the aim of
gaining deeper insights into how common web vulnerabilities can be
prevented. We will analyze if typing mechanisms in a language and

input validation functions in a web application framework can po-
tentially prevent many web vulnerabilities. No empirical evidence is
available today that show to which extend these mechanisms are able
to prevent web vulnerabilities.

e How can we help application developers, that are unaware of web ap-
plication security issues, to write more secure web applications?

The results of our empirical studies suggest that many web application
developers are unaware of security issues and that a significant number
of web vulnerabilities can be prevented using simple straight-forward
validation mechanisms. We present a system that learns that data
types of input parameters when developers write web applications.
This system is able to prevent many common web vulnerabilities by
automatically augmenting otherwise insecure web development envi-
ronments with robust input validators.

1.3 Thesis Structure

We start by giving an overview of the related work on vulnerability studies,
program analysis techniques to find security vulnerabilities, client-side and
server-side defense mechanisms and techniques to make web applications se-
cure by construction.

Chapter 3 gives an overview of web vulnerabilities. First, we give an
overview of several web technologies to support our discussion on web appli-
cation security issues. Then, we present different classes of input validation
vulnerabilities. We explain how they are introduced and how to prevent
them using existing countermeasures.

In Chapter 4, we study the evolution of input validation vulnerabilities in
web applications. First, we describe how we automatically collect and pro-
cess vulnerability and exploit information. Then, we perform an analysis of
vulnerability trends. We measure the complexity of attacks, the popularity
of vulnerable web applications, the lifetime of vulnerabilities and we build
time-lines of our measurements. The results of this study have been pub-
lished in the International Conference on Financial Cryptography and Data
Security 2011 [99] and the journal Elsevier Computers & Security [100].

In Chapter 5, we study the relationship between a particular program-
ming language used to develop web applications and the vulnerabilities com-
monly reported. First, we describe how we link a vulnerability report to a
programming language. Then, we describe how we measure the popularity
of a programming language. Furthermore, we examine the source code of
vulnerable web applications to determine the data types of vulnerable input.
The results of this study have been published in the ACM Symposium on
Applied Computing conference 2012 (ACM SAC 2012) [101].

Chapter 6 presents IPAAS, a completely automated system against web
application attacks. The system automatically and transparently augments
web application development environments with input validators that result
in significant and tangible security improvements for real web applications.
We describe the implementation of the IPAAS approach of transparently
learning types for web application parameters, and automatically applying
robust validators for these parameters at runtime. The results have been
published in the IEEE Signature Conference on Computers, Software, and
Applications 2012 (COMPSAC 2012).

In Chapter 7, we summarize and conclude this thesis. Also, we show
future directions for research and provide some initial thoughts on these
research directions.

Chapter 2

Related Work

In the past years, we have observed a growing interest on knowledge about
the overall state of (web) application security. Furthermore, a lot of effort
has been spent on techniques to improve the security of web applications. In
this Chapter, we first discuss studies that analyzed general security trends
and the life cycle of vulnerabilities in software. Then, we document stud-
ies that analyzed the relationship between the security of web applications
and the features provided by web programming languages or frameworks.
Finally, we give an overview of techniques that can detect or prevent vul-
nerabilities in web applications or can mitigate their impact by detecting or
preventing attacks that target web applications.

Where applicable, we compare the related work with our work presented
in this thesis.

2.1 Security Studies

In the past years, several studies have been conducted with the aim of getting
a better understanding of the state of software security. In this section, we
give an overview of these studies.

2.1.1 Large Scale Vulnerability Analysis

Security is often considered as an arms race between crackers who try to find
and exploit flaws in applications and security professionals who try to pre-
vent that. To better understand the security ecosystem, researchers study
vulnerability, exploit and attack trends. These studies give us insights in the
exposed risks of vulnerabilities to our economy and society. Furthermore,
they improve the security education and awareness among programmers,
managers and CIOs. Security researchers can use security studies to focus
their research on a narrower subset of security issues that are prevalent.
Several security trend analysis studies have been conducted based on

9

CVE data [20, 75]. In [20], Christey et al. present an analysis of CVE data
covering the period 2001 - 2006. The work is based on manual classification
of CVE entries using the CWE classification system. In contrast, [75] uses
an unsupervised learning technique on CVE text descriptions and introduces
a classification system called ‘topic model’. While the works of Christey et
al. and Neuhaus et al. focus on analyzing general trends in vulnerabil-
ity databases, the work presented in this thesis specifically focuses on web
application vulnerabilities, and, in particular, cross-site scripting and SQL
injection. In contrast to the works of Neuhaus et al. and Christey et al., we
have investigated the reasons behind the trends.

Commercial organizations such as HP, IBM, Microsoft and Whitehat
collect and analyze security relevant data and publish regularly security risk
and threat reports [17, 22, 27, 105]. These security reports give an overview
of the prevalence of vulnerabilities and their exploitation. The data on which
the studies are based, is often collected from a combination of public and
private sources including vulnerability databases and honeypots. The study
presented in [17], analyzes vulnerability disclosure trends using the X-Force
Database. The authors identify that web application vulnerabilities account
for almost 50 % of all vulnerabilities disclosed in 2011 and that cross-site
scripting and SQL injection are still dominant. Although the percentage
of disclosed SQL injection vulnerabilities is decreasing, a signature-based
analysis on attack data suggests that SQL injection is a very popular attack
vector. The security risks report of Hewlett Packard [22] identifies that the
number of web application vulnerabilities submitted to vulnerabilities such
as OSVDB [55] is decreasing. However, the actual number of vulnerabilities
discovered by static analysis tools and blackbox testing tools on web applica-
tions respectively public websites is increasing. A threat analysis performed
by Microsoft [27] shows that the number of disclosed vulnerabilities through
CVE is decreasing. Common Vulnerability Scoring System (CVSS) [65] is
an industry standard for assessing the severity of vulnerabilities. Their vul-
nerability complexity analysis based on CVSS data shows that the number
of vulnerabilities that are easily exploitable is decreasing, while the number
of complex vulnerabilities remains constant.

2.1.2 Evolution of Software Vulnerabilities

Our economy and society increasingly depends on large and complex soft-
ware systems. Unfortunately, detecting and completely eliminating vulner-
abilities before these systems go into production is an utopy. Although tools
and techniques exist that minimize the number of vulnerabilities in software
systems, it is inevitable that defects slip through the testing and debugging
processes and escape into production runs [2, 73]. Economical incentives
for software vendors also contribute to the release of insecure software. To
gain market dominance, software should be released quickly and building in

security protection mechanisms could hinder this. These factors affects the
reliability and security of software and impacts our economy and society.

Life-cycle of vulnerabilities

To assess the risk exposure of vulnerabilities to economy and society, one has
to understand the life cycle of vulnerabilities. Arbaugh et al. [5] proposed
a life cycle model for vulnerabilities and identified the following phases of a
vulnerability:

e RBirth. This stage denotes the creation of a vulnerability. This typ-
ically happens during the implementation and deployment phases of
the software. A vulnerability that is detected and repaired before
public release of the software is not considered as a vulnerability.

e Discovery. At this stage, the existence of a vulnerability becomes
known to a restricted group of stakeholders.

e Disclosure. A vulnerability may be disclosed by a discoverer through
mailing lists such as Bugtraq [106] and CERTs [19]. As we study
publicly disclosed vulnerabilities in this thesis, vulnerability disclosure
processes become of interest. We will outline this in the next section.

e Patch. The software vendor needs to respond on the vulnerability by
developing a patch that fixes the flaw in the software. If the software
is installed on the customers’ systems, then the vendor needs to re-
lease the patch to the customers such that they can install it on their
systems.

e Death. Once all the customers have installed the patch, the software
is not vulnerable anymore. Hence, the vulnerability has disappeared.

This model was applied to three cases studies which revealed that sys-
tems remain vulnerable for a very long time after security fixes have been
made available. In Chapter 4, we study the evolution of a particular class
of vulnerabilities: input validation vulnerabilities in web applications. We
looked in this study how long input validation vulnerabilities remain in soft-
ware before these vulnerabilities are disclosed while Arbaugh et al. looked
at the number of intrusions after a vulnerability has been disclosed.

Vulnerability Disclosure

The inherent difficulty of eliminating defects in software causes that soft-
ware is shipped with vulnerabilities. After the release of a software system,
vulnerabilities are discovered by an individual or an organization (e.g. inde-
pendent researcher, vendor, cyber-criminal or governmental organization).

Discoverers have different motivations to find vulnerabilities including al-
truism, self-marketing to highlight technical skills, recognition or fame and
malicious intents to make profit. These motivations suggest that it is more
rewarding for white hat and black hat hackers — i.e. hackers with benign re-
spectively malicious intents — to find vulnerabilities in software that is more
popular.

The relationship between the application popularity and its vulnerabil-
ity disclosure rate has been studied in several works. In [2], the authors
examined the vulnerability discovery process for different succeeding ver-
sions of the Microsoft Windows and Red Hat Linux operating systems. An
increase in the cumulative number of vulnerabilities somehow suggests that
vulnerabilities are being discovered once software starts gaining momentum.
An empirical study conducted by Woo et al. compares market share with
the number of disclosed vulnerabilities in web browsers [120]. The results
also suggest that the popularity of web browsers leads to a higher discovery
rate. While the study of Woo et al. focus on web browser, we focus on web
applications and discovered that popular web applications have an higher
incidence of reported vulnerabilities.

After a vulnerability is discovered, the information about the vulnerabil-
ity eventually becomes public. Vulnerability disclosure refers to the process
of reporting a vulnerability to the public. The potential harms and ben-
efits of publishing information that can be used for malicious purposes is
subject of an on-going discussion among security researchers and software
vendors [32]. We observe that software vendors have different standpoints on
how to handle information about security vulnerabilities and adopt different
disclosure models. We discuss them below.

o Security through Obscurity. This principle attempts to use secrecy of
design and implementation of a system to provide security. A system
that relies on this principle may have vulnerabilities, but its owners
believe that if flaws are unknown it is unlikely to find them.

Proponents of this standpoint argue that as publishing vulnerability
information gives attackers the information they need to exploit a
vulnerability in a system, it causes more harm than good. As there
is no way to guarantee that cybercriminals do not get access to this
information by other means, this is not a very realistic standpoint.

e Full Disclosure. In contrast to the Security through Obscurity stance, Full
Disclosure attempts to disclose all the details of a security problem to
the public. The vulnerability disclosure includes all the details on
how to detect and to exploit the vulnerability. This is also known as
the Security through Transparency which is also advocated by Kerck-
hoffs [49] who states that ‘the design of a cryptographic system should

not require secrecy and should not cause ‘inconvenience’ if it falls into
the hands of the enemy’.

Proponents of this disclosure model argue that everyone gets the in-
formation at the same time and can act upon it. Public disclosure mo-
tivates software vendors to react quickly upon it by releasing patches.
However, full disclosure is also controversial. With immediate full dis-
closure, software users are exposed to an increased risk as creating and
releasing a patch before disclosure is not possible anymore.

e Responsible Disclosure. In this model, all the stakeholders agree to a
period of time before all the details of the vulnerability go public. This
period allows software vendors to create and release a patch based on
the information provided by the discoverer of the vulnerability.

The discoverer provides the vulnerability information to the software
vendor only, expecting that the vendor start to produce a patch. The
software vendor has incentives to produce a patch as soon as possible
because the discoverer can revert to full disclosure at any time. Once
the patch is ready, the discoverer coordinates the publication of the
advisory with the software vendor’s publication of the vulnerability
and patch.

To study the relationship between the disclosure model and the secu-
rity of applications, Arora et al. conducted an empirical analysis on 308
vulnerabilities selected from the CVE dataset [6]. The authors compared
this vulnerability data with attack data to investigate whether vulnerability
information disclosure and patch availability influences attackers to exploit
these vulnerabilities on one hand and on software vendors to release patches
on the other. The results of this study suggest that software vendors react
more quickly in case of instant disclosure and that even if patches are avail-
able, vulnerability disclosure increases the frequency of attacks. Rescorla
shows in [87] that even if patches are made available by software vendors,
administrators generally fail to install them. This situation does not change
if the vulnerability is exploited on a large scale. Cavusoglu et al. found
that the vulnerability disclosure policy influences the time it takes for a
software vendor to release a patch [18]. In our study, we did not measure
the impact of vulnerability disclosure. However, we used the information
of disclosed vulnerabilities to measure their prevalence, the complexity and
their lifetimes.

Zero-day Vulnerabilities

To conduct malicious activities, attackers exploit vulnerabilities that are
unknown to the software vendor. This class of vulnerabilities is called zero-
day vulnerabilities. This class of vulnerabilities is alarming as users and

administrators cannot effectively defend against them. Many techniques
exist to reduce the probability of reliably exploiting (zero-day) vulnerabili-
ties in software. These techniques include intrusion detection, application-
level firewalls, Data Execution Prevention (DEP) and Address Space Layout
Randomization (ASLR). To increase the reliability of software in terms of
vulnerabilities and bugs, software vendors have adopted initiatives such as
Secure Software Development Life Cycle Processes and made them part of
their software development life cycle.

Frei et al. performed a large vulnerability study to better understand
the state and the evolution of the security ecosystem at large [33]. The work
focuses on zero-day vulnerabilities and shows that there has been a dramatic
increase in such vulnerabilities. Also, the work shows that there is a faster
availability of exploits than of patches.

Improving Software Security

In order to make investment decisions on software security solutions, it is
desirable to have quantitative evidence on whether an improved attention to
security also improves the security of those systems. One of the first empir-
ical studies in this area investigated whether finding security vulnerabilities
is a useful security activitity [88]. The author analyzed the defect rate and
did not find a measurable effect of vulnerability finding.

To explore the relationship between code changes and security issues,
Ozment et al. [80] studied how vulnerabilities evolve through different ver-
sions of the OpenBSD operating system. The study shows that 62 percent
of the vulnerabilities are foundational; they were introduced prior to the re-
lease of the initial version and have not been altered since. The rate at which
foundational vulnerabilities are reported is decreasing, somehow suggesting
that the security of the same code is increasing. In contrast to our study,
Ozment el al’s study does not consider the security of web applications.

Clark et al. present in [21] a vulnerability study with a focus on the
early existence of a software product. The work demonstrates that re-use
of legacy code is a major contributor to the rate of vulnerability discovery
and the number of vulnerabilities found. In contrast to our work, the paper
does not focus on web applications, and it does not distinguish between
particular types of vulnerabilities.

To better identify whether it is safe to release software, several works
have focused on predicting the number of remaining vulnerabilities in the
code base of software. To this end, Neuhaus et al. proposed Vulture [76]; a
system that can predict new vulnerabilities using the insight that vulnerable
software components such as functional calls and imports share similar past
vulnerabilities. An evaluation on the Mozilla code base reveals that the
system can actually predict half of the future vulnerabilities. Yamaguchi
et al. [122] proposes a technique called vulnerability extrapolation to find

similar unknown vulnerabilities. It is based on analyzing API usage patterns
which is more fine grained than the technique on which Vulture is based.

2.2 Web Application Security Studies

Web applications have become a popular way to provide access to services
and information. Millions of people critically depend on web applications
in their daily lives. Over the years, web applications have evolved towards
complex software systems that exhibit critical vulnerabilities. Due to the
popularity, the ease of access and the sensitivity of the information they pro-
cess, web applications have become an attractive target for attackers and
these critical vulnerabilities are actively being exploited. This causes finan-
cial losses, damaged reputation and increased technical maintenance and
support. To improve the security of web applications, tools and techniques
are necessary that reduce the number of vulnerabilities in web applications.
To drive the research on web application security, several studies have been
conducted that analyze the security of web applications, frameworks and
programming languages.

To measure the overall state of web application security, Walden et al.
measured the vulnerability density of a selection of open source PHP web
applications over the period 2006 until 2008 [25, 115]. In this period, the
source code repositories of these applications where mined and then the code
was exercised by static analysis to find vulnerabilities. While vulnerability
density of the aggregate source code decreased over the time period, the vul-
nerability density of eight out of fourteen applications increased. However,
the vulnerability density is still above the average vulnerability density of a
large number of desktop- and server- C/C++ applications which somehow
suggests that the security of web application is more immature. An analysis
on the vulnerability type distribution learns that the share of SQL injection
vulnerabilities decreased dramatically while the share of cross-site scripting
vulnerabilities increased in this period. The observation of the decrease of
SQL injection vulnerabilities in an application’s code base is consistent with
our study on the evolution of input validation vulnerabilities presented in
Chapter 4. Compared to the study of Walden et al., our analysis is per-
formed on a larger scale as it uses NVD CVE data as data source.

Although design flaws and configuration issues are causes of vulnera-
bilities, most web application vulnerabilities are a result of programming
errors. To better understand which tools and techniques can improve the
development of secure web applications, several studies explored the rela-
tionship between the security of web applications and programming lan-
guages, frameworks and tools.

Fonseca et al. studied how software faults relate to web application secu-
rity [29, 107]. Their results show that only a small set of software fault types

is responsible for most of the XSS and SQL injection vulnerabilities in web
applications. Moreover, they empirically demonstrated that the most fre-
quently occurring fault type is that of missing function calls to sanitization
or input validation functions. Our work on input validation mechanisms in
web programming languages and frameworks, presented in Chapter 5 of this
thesis, partially corroborates this finding, but also focuses on the potential
for automatic input validation as a means of improving the effectiveness of
existing input validation methods.

In [118], Weinberger et al. explored in detail how effective web applica-
tion frameworks are in sanitizing user-supplied input to defend applications
against XSS attacks. In their work, they compare the sanitization function-
ality provided by web application frameworks and the features that popular
web applications require. In contrast to our work presented in Chapter 5,
their focus is on output sanitization as a defense mechanism against XSS,
while we investigate the potential for input validation as an additional layer
of defense against both XSS and SQL injection.

Finifter et al. also studied the relationship between the choice of devel-
opment tools and the security of the resulting web applications [28]. Their
study focused in-depth on nine applications written to an identical spec-
ification, with implementations using several languages and frameworks,
while our study is based on a large vulnerability data set and examined
a broader selection of applications, languages, and frameworks. In contrast
to our study in Chapter 5, their study did not find a relationship between
the choice of development tools and application security. However, their
work shows that automatic, framework-provided mechanisms are preferable
to manual mechanisms for mitigating vulnerabilities related to Cross-Site
Request Forgery, broken session management and insecure password stor-
age. Walden et al. studied a selection of Java and PHP web applications to
study whether language choice influences vulnerability density [114]. Similar
to Finifter et al., the result was not statistically significant.

2.3 Mitigating Web Application Vulnerabilities

In the past decade, security researchers have worked on a number of tech-
niques to improve the security of web applications. Generally, the related
work has focused on classes of techniques that prevent the exploitation of
vulnerabilities, techniques based on program analysis to detect vulnerabil-
ities and the secure construction of web applications. We will discuss each
of these classes in a separate section.

2.3.1 Attack Prevention

Due to legacy or operational constraints, it is not always possible to create,
deploy and use secure web applications. Developers of web applications do

not always have the necessary security skills, sometimes it is necessary to
reuse insecure legacy code and in other cases it is not possible to have access
to the source code. To this end, various techniques have been proposed to
detect the exploitation of web vulnerabilities with the goal of preventing
attacks against web applications. In this section, we discuss web application
firewalls and intrusion detection systems. These techniques are common in
the sense that they analyze the payload submitted to the web application.

Input Validation

To mitigate the impact of malicious input data to web applications, tech-
niques have been proposed for validating input. Scott and Sharp [103] pro-
posed an application-level firewall to prevent malicious input from reaching
the web server. Their approach required a specification of constraints on
different inputs, and compiled those constraints into a policy validation pro-
gram. Nowadays, several open source and commercial offerings are available
including Barracuda Web Application Firewall [9], F5 Application Security
Manager ASM [26] and ModSecurity [111]. In contrast to these approaches,
our approach presented in Chapter 6 is integrated in the web application
development environment and automatically learns the input constraints.

Automating the task of generating test vectors for exercising input vali-
dation mechanisms is also a topic explored in the literature. Sania [54] is a
system to be used in the development and debugging phases. It automat-
ically generates SQL injection attacks based on the syntactic structure of
queries found in the source code and tests a web application using the gen-
erated attacks. Saxena et al. proposed Kudzu [97], which combines symbolic
execution with constraint solving techniques to generate test cases with the
goal of finding client-side code injection vulnerabilities in JavaScript code.
Halfond et al. [36] use symbolic execution to infer web application interfaces
to improve test coverage of web applications. Several papers propose tech-
niques based on symbolic execution and string constraint solving to automat-
ically generate cross-site scripting and SQL injection attacks and input gen-
eration for systematic testing of applications implemented in C [16, 51, 50].
We consider these mechanisms to be complementary to the approach pre-
sented in Chapter 6, in that they could be used to automatically generate
input to test our input validation solution.

Intrusion Detection

An intrusion detection system (IDS) is a system that identifies malicious
behavior against networks and resources by monitoring network traffic. IDSs
can be either classified as signature-based or anomaly-based:

e Signature-based detection. Signature-based intrusion detection sys-
tems monitors network traffic and compares that with patterns that

are associated with known attacks. These patterns are also called sig-
natures. Snort [92] is an open source intrusion detection system which
is by default configured with a number of ‘signatures’ that support
the detection of web-based attacks. One of the main limitations of
signature-based intrusion detection is that it is very difficult to keep
the set of signatures up-to-date as new signatures must be developed
when new attacks or modifications to previously known attacks are
discovered. Almgren et al. proposed in [3] a technique to automat-
ically deduce new signatures by tracking hosts exhibiting malicious
behavior, combining signatures and by generalizing signatures. Noisy
data are a result of software bugs and corrupt data can cause a sig-
nificant number of false alarms reducing the effectiveness of intrusion
detection systems. Julisch [48] studied the root causes of alarms and
identified that a few dozens of root causes trigger 90 % of the false
alarms. In [112], Vigna et al. present WebSTAT: a stateful intru-
sion detection system that can detect more complex attacks such as
cookie stealing and malicious behavior such as web crawlers that ignore
the robots.txt file.

e Anomaly-based detection. Anomaly-based intrusion detection systems
first build a statistical model describing the normal behavior of the
network traffic. Then, the system can determine network traffic that
significantly deviates from the model and identify that as anomalous
behavior. Kruegel et al. [56, 57| proposed an anomaly-based detection
system to detect web-based attacks. In this system, different statisti-
cal models are used to characterize the parameters of HI'TP requests.
Unfortunately, anomaly-based detection systems are prone to produce
a large number of false positives and/or false negatives. As the detec-
tion of web attacks are relatively rare events, false positives form a big
problem. In addition, anomaly-based intrusion detection systems are
often not able to identify the type of web-based attack it has detected.
To improve existing anomaly-based detection systems, Robertson et
al. [91] proposed a technique which generalizes anomalies into a signa-
ture such that similar anomalies can be classified as false positives and
dismissed. Heuristics are used to infer the type of attack that caused
the anomaly.

While intrusion detection systems focus on detecting attacks against web
applications that have already been deployed, our focus in this thesis is on
improving the secure development of web applications. To that end, we pro-
pose in Chapter 6 a system that prevents the exploitation of input validation
vulnerabilities in web applications as part of the application development
environment.

Similar to our approach, an intrusion detection and prevention system
prevents attacks. To stop an attack, such a system may change the payload,

terminate the connection or reconfigure the network topology (e.g. recon-
figuring a firewall). If used with the purpose of protecting web applications,
an intrusion detection and prevention system can be considered as a special
form of a web application firewall.

Client-Side XSS Prevention

Client-side or browser-based mechanisms such as Noncespaces [34], Noxes [52],
BEEP [44], DSI [74], or XSS auditor [10] relies on the browser infrastructure
to prevent the execution of injected scripts. Noncespaces [34] prevents XSS
attacks by adding randomized prefixes to trusted HT'ML content. A client
side policy checker parses the response of the server and checks for injected
content that does not correspond to the correct prefix. Unfortunately, this
policy checker has significant impact on the performance of rendering web
pages.

BEEP [44] is a policy-based system that prevents XSS attacks on the
client-side by whitelisting legitimate scripts and disabling scripts for certain
regions of the web page. The browser implements a security hook which
enforces the policy that has to be embedded in each web page. Although
the system can prevent script injection attacks, it cannot prevent against
other forms of unsafe data usage (e.g. injecting malicious iframes). BEEP
requires also changes to the source code of a web application, a process that
can be complicated and error-prone. The goal of DSI [74] is to preserve
the integrity of document structure. On the server-side, dynamic content is
separated from static content and these two components are assembled on
the client-side, thereby preserving the document structure intended by the
web developer.

Kirda et al. proposed Noxes [52], a client-side firewall that stops leak-
ing sensitive data to the attackers’ servers by disallowing the browser from
contacting URLs that do not belong to the web application’s domain. Some
browser-based XSS filters have been proposed to detect injected scripts.
These filter include: Microsoft Internet Explorer 8 [93], noXSS [86] and
NoScript [61]. The aim of these approaches is to block reflected XSS at-
tacks by searching for content that is present both in HI'TP requests and in
HTTP responses. These approaches are either prone to a large number of
false positives or lack performance. XSS auditor [10] attempts to overcome
these issues by detecting XSS attacks after HTML parsing but before script
execution.

Each of these aforementioned approaches requires that end-users upgrade
their browsers or install additional software; unfortunately, many users do
not regularly upgrade their systems [113].

Server-Side XSS or SQL Injection Prevention

Research effort has also been spent on server-side mechanisms for detecting
and preventing XSS and SQL injection attacks. Many techniques focus on
the prevention of injection attacks using runtime monitoring. For example,
Wassermann and Su [110] propose a system that checks at runtime the syn-
tactic structure of a SQL query for a tautology. AMNESIA [37] checks the
syntactic structure of SQL queries at runtime against a model that is ob-
tained through static analysis. Boyd et al. proposed SQLrand [14], a system
that prevents SQL injection attacks by applying the concept of instruction-
set randomization to SQL. The system appends to aach keyword in a SQL
statement a random integer, a proxy server intercepts the randomized query
and performs de-randomization before submitting the query to the database
management system. XSSDS [46] is a system that aims to detect cross-site
scripting attacks by comparing HTTP requests and responses. While these
systems focus on preventing injection attacks by checking the integrity of
queries or documents, we focus in this thesis on the secure development
of web applications using input validation. Recent work has focused on
automatically discovering parameter injection [7] and parameter tampering
vulnerabilities [83].

Ter Louw et al. proposed BLUEPRINT [59], a system that enables the
safe construction of parse trees in a browser-agnostic way. BLUEPRINT
requires changes to the source code of a web application, a process that can
be complicated and error-prone. In contrast, the IPAAS approach presented
in Chapter 6 does not require any modifications to the application’s source
code. Furthermore, it is platform- and language-agnostic.

2.3.2 Program Analysis

Program analysis refers to the process of automatically analyzing the be-
havior of a computer program. Computer security researchers use program
analysis tools for a number of security-related activities including vulnera-
bility discovery and malware analysis. Depending on whether the program
during the analysis is executed, program analysis is classified as static anal-
ysis or dynamic analysis. In this section, we discuss related work that has
applied program analysis techniques to find input validation vulnerabilities
in web applications.

Static Analysis

Analyzing software without executing it, is called static analysis. Static
analysis tools perform an automated analysis on an abstraction or a model
of the program under consideration. This model has been extracted from
the source code or binary representation of the program. It has been proven
that finding all possible runtime errors in an application is an undecidable

problem; i.e. there is no mechanical method that can truthfully answer if
an application exhibits runtime errors. However, it is still useful to come up
with approximate answers.

Static analysis as a tool for finding security-critical bugs in software has
also received a great deal of attention. WebSSARI [41] was one of the first
efforts to apply classical information flow techniques to web application se-
curity vulnerabilities, where the goal of the analysis is to check whether a
sanitization routine is applied before data reaches a sensitive sink. Several
static analysis approaches have been proposed for various languages includ-
ing Java [58] and PHP [47]. Statically analyzing web applications has a
number of limitations. Many web applications rely on values that cannot
be statically determined (e.g. current execution path, current system date,
user input). This hinders the application of static analysis techniques. In
addition, web applications are often implemented in dynamic weakly-typed
languages (e.g. PHP). This class languages make it difficult to infer the
possible values of variables by static analysis tools. These limitations result
in practice into imprecision [121].

The TPAAS approach presented in Chapter 6 incorporates a static anal-
ysis component as well as a dynamic component to learn parameter types.
While our prototype static analyzer is simple and imprecise, our evaluation
results are nevertheless encouraging.

Dynamic Analysis

In contrast to static analysis, dynamic analysis is performed by executing
the program under analysis on a real or virtual processor. Dynamic analysis
can only verify properties over the paths that have been explored. Therefore,
the target program must be executed with a sufficient number of test inputs
to achieve adequate path coverage of the program under analysis. The use of
techniques from software testing such as code coverage can assist in ensuring
that an adequate set of behaviors have been observed.

Approaches based on dynamic analysis to automatically harden web ap-
plications have been proposed for PHP [82] and Java [35]. Both approaches
hardcode the assertions to be checked thereby limiting the types of vulner-
abilities that can be detected. In contrast, RESIN [123] is a system that
allows application developers to annotate data objects with policies describ-
ing the assertions to be checked by the runtime environment. This approach
allows the prevention of directory traversal, cross-site scripting, SQL injec-
tion and server-side script injection. Similar to RESIN, GuardRails [15]
also requires the developer to specify policies. However, the policies are
assigned to classes instead of objects. Hence, developers do not have to as-
sign manually a policy to all the instances of a class as it is the case with
RESIN. Although these approaches can work at a finer-grained level than
static analysis tools, they incur runtime overhead. All these approaches aim

to detect missing sanitization functionality while the focus of this thesis is
the validation of untrusted user input.

Sanitization Correctness

While much research effort has been spent on applying taint-tracking tech-
niques [47, 58, 77, 82, 117, 121] to ensure that untrusted data is sanitized
before its output, less effort has been spent on the correctness of input val-
idation and sanitization. Because taint-tracking techniques do not model
the semantics of input validation and sanitization routines, they lack preci-
sion. Wassermann proposed a technique based on static string-taint analysis
that determines the set of strings an application may generate for a given
variable to detect SQL injection vulnerabilities [116] and cross-site scripting
vulnerabilities [117] in PHP applications.

Balzarotti et al. [8] used a combination of static and dynamic analysis
techniques to analyze sanitization routines in real web applications imple-
mented in PHP. The results show that developers do not always implement
correct sanitization routines. The BEK project [40] does not focus on taint-
tracking, but proposes a language to model and a system to check the cor-
rectness of sanitization functions.

Recent work has also focused on the correct use of sanitization routines
to prevent cross-site scripting attacks. Scriptgard [98] can automatically
detect and repair mismatches between sanitization routines and context. In
addition, it ensures the correct ordering of sanitization routines.

2.3.3 Black-Box Testing

Black-box web vulnerability scanners are automated tools used by computer
security professionals to probe web applications for security vulnerabilities
without requiring access to the source code. These tools mimic real at-
tackers by generating specially crafted input values, submitting that to the
reachable input vectors of the web application and observing the behav-
ior of the application to determine if a vulnerability has been exploited.
Web vulnerability scanners have become popular because they are agnos-
tic to web application technologies, the ease of use and the high degree of
automation these tools provide. Examples of web vulnerability scanners in-
clude: Acunetix WVS [1], HP Weblnspect [38], IBM Rational AppScan [42],
Burp [60] and w3af [89]. Unfortunately, these tools also have limitations. In
particular, these tools do not provide any garantuee on soundness and, as a
matter of fact, several studies have shown that web vulnerability scanners
miss vulnerabilities [4, 81, 119].

Independent from each other, Bau et al. [11] and Doupe et al. [24] stud-
ied the root causes behind the errors that web vulnerability scanners make.
Both identified that web vulnerability scanners have difficulties in finding

more complex vulnerabilities such as stored XSS and second order SQL in-
jection. To discover these more complex vulnerabilities, web vulnerability
scanners should implement improved web crawling functionality and im-
proved reverse engineering capabilities to keep better track of the state of
the application.

2.3.4 Security by Construction

Until now, the discussion on related techniques for securing web applica-
tions has concentrated around techniques to prevent web attacks and the
analysis of web applications to find vulnerabilities. These techniques can
be used to protect web applications when developers use insecure program-
ming languages to develop a web application. With insecure programming
languages, vulnerabilities occur in source code because the default behavior
of these languages is unsafe: the developer has to apply manually an input
validation or an output sanitization routine on data before it can be used
to construct a web document or SQL query. Security by construction refers
to a set of techniques that aim to automatically eliminate issues such as
cross-site scripting and SQL injection by providing safe behavior as default.
The use of these techniques can automatically result in more secure web ap-
plications without much effort from the developer. In this section, we give
an overview of these techniques.

Several works have leveraged the language’s type system to provide auto-
mated protection against cross-site scripting and SQL injection vulnerabili-
ties. In the approach of Robertson et al. [90], cross-site scripting attacks are
prevented by generating HT'TP responses from statically-typed data struc-
tures that represent web documents. During document rendering, context-
aware sanitization routines are automatically applied to untrusted values.
The approach requires that the web application constructs HI'ML content
using special algebraic data types. This programmatic way of writing client-
side code hinders developer acceptance. In addition, the approach is not
easily extensible to other client-side languages than HTML, e.g. JavaScript
and Flash. In contrast, Johns et al. [45] proposed a special data type which
integrates embedded languages such as SQL, HTML and XML in the im-
plementation language of the web application. The application developer
can continue to write traditional SQL or HTML/JavaScript code using the
special data type. A source-to-source code translator translates the data
assigned to the special datatype to enforce a strict separation between data
and code with the goal of mitigating cross-site scripting and SQL injection
vulnerabilities. While these approaches focus on automated output saniti-
zation, our focus is on automated input validation. In contrast to output
sanitization, input validation does not prevent all cross-site scripting and
SQL injection vulnerabilities. However, the IPAAS approach presented in
Chapter 6 can secure legacy applications written using insecure languages

and it has shown to be remarkably effective in preventing cross-site scripting
and SQL injection vulnerabilities in real web applications.

Recent work has focused on context-sensitive output sanitization as coun-
termeasure against cross-site scripting vulnerabilities. To accurately defend
against cross-site scripting vulnerabilities, sanitizers need to be placed in the
right context and in the correct order. Scriptgard [98] employs dynamic anal-
ysis to automatically detect and repair sanitization errors in legacy .NET
applications at runtime. Since the analysis is performed per-path, the ap-
proach relies on dynamic testing to achieve coverage. Samuel et al. [96]
propose a type-qualifier based mechanism that can be used with existing
templating languages to achieve context-sensitive auto-sanitization. Both
approaches only focus on preventing cross-site scripting vulnerabilities. As
we focus on automatically identifying parameter data types for input valida-
tion, our approach presented in Chapter 6 can help preventing other classes
of vulnerabilities such as SQL injection or, in principle, HT'TP Parameter
Pollution [7].

Chapter 3

Overview of Web

Applications and
Vulnerabilities

Web applications have become tremendously popular due to the cross-platform
compatibility, the ease of rolling out and maintaining web applications with-
out the need to install software on potentially thousands of computers.

Unfortunately, web applications are also frequently targeted by attack-
ers. Every day, security professionals and hackers discover new vulnerabili-
ties in web applications affecting the security of those applications. Hackers
have an increasing list of weaknesses in the web application structure at their
disposal, which they can exploit to accomplish a wide variety of malicious
tasks.

The goal of this dissertation is to come up with novel techniques that
help developers to create secure web applications. In order to design and
implement secure web applications, an understanding of the web application
paradigm as well as of web vulnerabilities and how they are exploited is
required.

In this Chapter, we first provide an overview on the foundations of web
applications. Then, we give an overview of web application vulnerabilities
and we discuss their countermeasures.

3.1 Web Applications

In order to explain web application related vulnerabilities, we first need to
get a better understanding of the working of web applications. In this sec-
tion, we give an overview of the web application paradigm and technologies
involved.

Web applications can be considered as a specific variant of client-server
software as it is software that is typically distributed over a Web server and

25

a Web browser. The Web server implements the application’s logic. The
client-side of the web application implements the user interface. It consists
of HTML, JavaScript and CSS components that are received and interpreted
by the Web browser. Web browser and web server communicate with each
other via the HT'TP protocol. As the HT'TP protocol is a stateless protocol,
separate mechanisms are required to manage sessions in web applications. In
this section, we explore specific topics related to web browsers, web servers,
the client/server communication and session management.

3.1.1 Web Browser

In this section, we discuss several browser related web technologies that are
relevant in the context of this thesis.

e HyperText Markup Language (HTML) is the markup language for web
pages. The language provides the means to create structured web
documents through HTML elements. These elements are the build-
ing blocks of web pages. An element is often structured as follows:
a start tag, the content and then an end tag. Tags are enclosed in
angle brackets, for example is used to specify an image element.
Some HTML elements do not contain content or an end tag; these
elements are called empty elements. HIML documents can embed im-
ages, videos and scripts. The embedding of scripts allows manipulating
the behavior of web pages and it makes web pages more interactive.
HTML can also be used to create interactive forms which are used to
submit user-supplied data to a web server.

e Cascading Style Sheets (CSS) is a presentation language for web pages.
The language can be used to describe the presentation semantics of a
document written in a markup language. Although HTML can also
be used to describe presentation semantics, CSS allows to separate
document content from document presentation which improves the
maintainability and extensibility of web applications.

e JavaScript is a scripting language and, in the context of the web ap-
plication paradigm, primarily used as client-side scripting language to
achieve a richer user experience. In order to use Javascript scripts
within web pages, scripts need to be imported using the <script>
HTML tag. The language relies on a runtime environment (e.g. Web
browser) and enables programmatic access to objects within this run-
time environment by invoking functions that are part of APIs. Com-
mon examples of programmatic access to objects in the browser are
HTTP Cookies and the XMLHttpRequest object which is commonly
used in AJAX web applications. AJAX is a set of client-side tech-
niques that allow to create asynchronous web applications that send

and retrieve data from a web server in the background, without inter-
fering with the display and behavior of the display of the existing web

page.

Web browsers use an internal model to render documents. This model is
equivalent to the Document Object Model (DOM), a platform- and language-
independent way for representing HTML and XML content. Many imple-
mentations of DOM allow client-side languages to manipulate the model
through an Application Programming Interface (API).

3.1.2 Web Server

Traditionally, web applications were nothing more than a set of static HTML
files that could be fetched from a Web server and then were rendered and
displayed by a Web browser. The introduction of Common Gateway Inter-
face (CGI) changed this situation. CGI is a standard method for web servers
to delegate the generation of web pages to an executable. The executable
can be written in any language supported by the web server, e.g. C/C++
but also scripting languages such as Perl and Python are supported as long
as a suitable interpreter has been installed on the web server.

With CGI, each request to an executable causes the creation of a new
process on the web server. As the time to create and destroy a process might
take much more processing time than the generation of the web page itself,
performing small computations result into significant overhead. Therefore,
several alternative approaches to CGI have been proposed. Examples in-
clude web server-specific techniques such as Apache modules, IS ISAPI
plug-ins and FastCGI. Also, complete new architectures for dynamic web-
sites, that execute code as part of the web server process, have been pro-
posed. These solutions span threads instead of creating processes upon
requests. Hence, they have lower runtime overhead compared to solutions
that require the creation and destruction of processes. Examples of these
solutions include Java Enterprise Edition and Microsoft ASP.NET.

Structure

Apart from developments in server-side techniques, also the structure of web
applications has evolved over time. While traditionally web applications
consisted of only a presentation layer which resides on the client machine,
nowadays web applications commonly employ a three tier approach. These
three tiers are called: presentation, application and storage. The first tier
is the Front End which is the HT'ML, JavaScript and CSS content rendered
by the web browser. The Front End web server serves the static content
and cached dynamic content. The application tier is implemented by an
application server (ASP.NET, CGI, Coldfusion, Java EE, Perl, PHP, Ruby

On Rails). A back-end database hosted on a database management system
implements the the storage tier.

For more complex web applications, it may be beneficial to use an n-
tiered approach by splitting up the application tier where the business logic
resides in smaller chunks. For example, the application tier can be split up
in a logical layer and a data access layer. The data access layer provides an
interface to access data from a database. Then, the logical layer can process
the data by invoking the data access layer.

Development

Web applications are implemented using a combination of different pro-
gramming languages. The client-side part of an application is typically
implemented using a combination of HTML, Cascading Style Sheets and
Javascript. The application-logic that resides on the server can be imple-
mented in ASP.NET, CGI, Coldfusion, Java EE, Perl, PHP, Ruby On Rails.

To facilitate the rapid development of web applications, web application
frameworks are available. These frameworks implement functionality com-
mon to web applications and allow programmers to reuse that functionality
avoiding development overhead. For example, web application frameworks
provide libraries for database access, input validation, authentication and
session management and templating. Web application frameworks are avail-
able for a wide variety of different programming languages. Examples of web
application frameworks include: Play, Struts2, Symfony, Django, Ruby On
Rails and Yii.

The use of web application frameworks can potentially reduce the num-
ber of errors in web applications as it allows the developer to concentrate
on application’s functionality rather than on non-functional properties and
a framework makes the code simpler. Also, by providing common secu-
rity functionality, the number of vulnerabilities can potentially be reduced
resulting in more secure web applications.

3.1.3 Communication

In this section, we discuss several concepts related to web browser and web
server communication that are relevant to the content of this thesis.

Uniform Resource Locators (URLs)

Uniform Resource Locators (URLs) provide the means to identify and locate
a resource. HTTP URLs (RFC 1738) are a specific type of URLs and, as
they are part of HT'TP requests, they are key to the communication be-
tween browser and server. A web application exposes one or more resources
and all those resources can be identified and located through HTTP URLs.

http://library.eurecom.fr/scripts/loans.php7userID=5&itemID=3#details

ORI) 3) (4) ()

Figure 3.1: Example URL.

Examples of resources include: server-side scripts (e.g. PHP scripts), client-
side scripts (e.g. JavaScript files), markup (e.g. HTML files), graphics (e.g.
JPEG files) and stylesheets (e.g. CSS files).

The syntax of an URL consists of the following: the scheme name (http
in the case of an HTTP URL), followed by a colon, two slashes, then a
domain name (alternatively, IP address), a port number, the path of the
resource to be fetched or the program to be run, then, for programs such as
Common Gateway Interface (CGI) scripts, a query string and a fragment
identifier. Note that the port number and fragment identifier are optional
fields. If the port number is omitted, a default port number is used which
is 80 for HT'TP and 443 for HTTPS. The fragment identifier specifies, if
present, a position in a resource or document.

The example in Figure 3.1 shows an HTTP URL pointing to a resource
in a library loan web application. This HT'TP URL is structured as follows:
http defines the protocol to be used (1); library.eurecom.fr is the host-
name and destination location of the URL (2); the resource is located on
the server at the following path /scripts/loans.php (3); the querystring
7userID=5&itemID=3 represents two attribute-name/value pairs separated
by an ampersand that contain the data to be sent to the web server (4); the
fragment identifier #details specifies the position in the requested docu-
ment to which the browser jumps after rendering the web page (5).

A resource may contain references to other resources. In these cases, rel-
ative URLs instead of absolute URLs can be used. In contrast to relative
URLs, absolute URLs such as the one shown in Figure 3.1 are independent
of its context. Relative URLs point to files or directories from the current
context.

The HTTP Protocol

The HTTP protocol functions as a request and response protocol. A web
browser or another user agent submits an HT'TP request message to a web
server for a given resource identified by a URL. The web server in turn
responds with a HTTP response message. The response message contains
completion status of the request and in its body may contain the content
requested by the user agent.

Figure 3.2 shows an illustrative example of an HT'TP request message.
The HTTP request message consists of the following components:

POST http://library.eurecom.fr:80/login.php HTTP/1.1

Host: 1library.eurecom.fr

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:8.0.1)
Accept: text/html

Accept-Language: en-us,en

Accept-Encoding: gzip, deflate

Accept-Charset: IS0-8859-1,utf-8

username=johndoe&password=secret

Figure 3.2: Example of a HI'TP request message.

A request line containing the request type (POST), the requested re-

source identified by the URL http://library.eurecom.fr:80/login.

and the version of the HT'TP protocol in use: HTTP/1.1.

e HTTP request headers such as Acccept and Accept-Encoding indi-
cating the media type respectively encodings supported by the user
agent.

e An empty line.

e A message body containing the parameters of the POST request. This
message body is optional.

The HTTP protocol supports nine different actions that can be per-
formed on an identified resource in a request. These actions are called
HTTP request methods and are the following: HEAD, GET, POST, PUT,
DELETE, TRACE, OPTIONS, CONNECT and PATCH. The GET and
POST methods are the most commonly used ones on the web. GET re-
quests are meant to retrieve a representation of the specified resource and
they should not be used to alter the state of the server. A GET request
can be used to send information to the server by including a querystring
containing attribute-value pairs in the requested URL. POST requests are
typically used to submit data to a web server and, in contrast to GET re-
quests, POST requests can be used to create or update new resources on
the web server.

Figure 3.3 shows an illusive example of an HT'TP response message sent
by the web server. The HTTP response message consists of the following
components:

e An HTTP response status code. The status code 200 indicates that
the processing of the request has succeeded. Several alternative status

php

HTTP/1.1 200 OK

Date: Mon, 23 Jan 2012 13:12:36 GMT

Server: Apache

X-Powered-By: PHP/5.2.9

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: mno-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: mno-cache

X-Transfer-Encoding: chunked

Content-Type: text/html

Content-length: 34735

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">

</html>

Figure 3.3: Example of an HTTP response message.

codes exist such as 301, indicating that the resource has been moved to
anew URL; 400, the request could not be understood by the web server
due to malformed syntax; 401, the request requires authentication and
404, the web server has not found any matching resource with the
requested URL.

e HTTP response headers such as Expires indicating the time/date on
which the response is considered to be stale, the Content-Type field
specifies the internet media type of the content in the message body
and the Content-length field specifies the length of the content in
the message body.

e An empty line.

e The message body. The message body contains the requested content
such as an HTML document, an image or some client-side script.

The HTTP protocol is a stateless protocol which means that each request
is handled as an isolated transaction and is independent from any previous
request. As a consequence, web application developers need to implement
session management mechanisms to manage state in web applications.

HTTP Cookies

HTTP Coookies or simply cookies are used to exchange state information
between web browser and web server. State information can range from

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: mname=valuel

Figure 3.4: HTTP response message with cookie.

GET /loans.php HTTP/1.1
Host: 1library.eurecom.fr
Cookie: name=value2
Accept: */x*

Figure 3.5: HTTP request message with cookie.

user preferences to shopping cart contents. The only requirement is that
the information can be represented in plain text as the web browser on the
user’s computer stores cookie information in plain text. The exchange of
cookies between web browser and web server happens as part of standard
HTTP request and response messages.

Cookies have several different purposes including personalization, track-
ing of users on the web and session management. A cookie may be used
to remember the information of a user that visited a particular website and
show relevant content to the user in the future. For example, a cookie can be
used to store search queries. Another application for cookies is the tracking
of users. A website may store a unique identifier in a cookie. Then, each
time the user visits the website, the cookie is stored along with the URL and
date/time of the request in a logfile. By analyzing the logfile, the website’s
owner can obtain detailed information about the user including the sequence
of webpage views. Finally, cookies can be used by a web application to im-
plement session management mechanisms which we will show in the next
section.

A cookie can be set, read and updated on both client-side and server-
side. Figure 3.4 shows an HTTP response in which the web application
sets a cookie with the name name and value valuel. The web browser may
respond to such HTTP response by updating the value of the cookie and
sending a subsequent request as shown in Figure 3.5. Web browsers handle
cookies per domain name. Cookies may contain sensitive information and,
for security reasons, web browsers implement the Same Origin Policy. This
prevents web pages from accessing cookies that belong to other domains
than the origin domain to which the cookies correspond to. Hence, cookies
cannot be shared across multiple domains.

3.1.4 Session Management

Many web applications need to keep track of user’s activity across multiple
HTTP sessions. Session management is a technique to be implemented by
the application developer to maintain state via the otherwise stateless HT'TP
protocol. For example, a web application may require a user to authenticate.
Then, session management allows a user to submit the credentials once and
to remain authenticated during multiple page requests for resources of the
web application.

Session information is identified and stored on the web server by a session
identifier which is generated as a result of a request to a resource on the
web server. The web server stores the session information such as session
identifier, username, account number, shopping basket content in memory,
in flat-files on local disk or in a database.

During a user’s session, the session identifier is exchanged as part of
HTTP request and response messages between web browser and web server.
As described in the previous section, cookies can be used to exchange state
information including session identifiers. Besides the use of cookies for hold-
ing session identifiers, there are alternative mechanisms to identify sessions.
These include the tracking of IP addresses, the use of querystrings and
hidden fields in HTML forms to hold session identifiers. In the latter two
cases, the web server needs to generate web pages containing hyperlinks with
querystrings respectively hidden form fields holding the session identifier.

3.2 Web Vulnerabilities

Web applications have become attractive targets for attackers due to the
large degree of authority they possess, their significant user populations,
and the prevalence of vulnerabilities they contain [53]. Similar to vulnera-
bilities in traditional software applications, many classes of vulnerabilities
in web application are a result of defects that are introduced during the de-
velopment lifecycle. Some vulnerabilities affect web technologies only, other
classes of vulnerabilities are very common to web applications. In this sec-
tion, we explore a number of common classes of web vulnerabilities that are
caused by programming errors. We describe each vulnerability along with
countermeasures.

3.2.1 Input Validation Vulnerabilities

Input validation vulnerabilities are caused by improper input validation. In
the essence, input validation is the process of ensuring that data, that has
been received from an external source, is clean, correct, useful and does not
contain any malicious content. For example, in a library loan administration
system, input validation might be used to check that the ISBN number of

statement = "SELECT * FROM users WHERE password = ‘" + passWord +
"> AND username = ‘" + userName + "’ ;"

Figure 3.6: Example SQL statement.

a book, contains 9, 10 or 13 digits and consists of 4 or 5 parts. Although
performing input validation checks is in principle a simple task, performing
correct and complete validation of all input to the web application is a
complex task in practice. Hence, many web applications in the wild contain
input validation vulnerabilities.

In the remainder of this section, we discuss several classes of input vali-
dation vulnerabilities.

SQL Injection

Code injection can also be used to read and modify arbitrary values on
a back-end database which is called SQL injection, when the database is
accessed through SQL, or XPath injection when XPath is used to read or
write values to the database. To illustrate a SQL injection vulnerability,
Figure 3.6 shows a typical example of a SQL statement to authenticate
users of a web application. More specifically, users of the web applica-
tion enter their credentials using an HTML form and the SQL statement
is used to retrieve the users that have the given username and password.
Now, if the ‘userName’ variable is crafted in a specific way by a malicious
user, the SQL statement may do other things than intended by the de-
veloper. Consider for example an input such as > UNION SELECT * FROM
users WHERE ’1°=’1 for the variable ‘userName’ and an empty password
field, then the SQL statement SELECT * FROM users WHERE password = "
AND username = " UNION SELECT * FROM users WHERE ’1°=’1’; is ren-
dered. This input may force the web application to authenticate the user as
the condition ’1°=1" is satisfied.
One can distinguish different types of SQL injection attacks:

e Reflected attacks are the simplest forms of SQL injection attacks. An
attacker can inject SQL code in a parameter of an HTTP request mes-
sage, the parameter of an HT'TP request is used in the web application
to construct a SQL statement using string operations without proper
encoding or sanitization. Hence, the submission of SQL code leads to
a modified SQL statement that is executed on the back-end database
while processing the HT'TP request.

e With stored attacks, the injected SQL code is first saved on the server.

echo "<p>You searched for: " + searchTerm + "<p>";

Figure 3.7: Cross-site scripting example: search.php

Then, the injected code is executed after performing a subsequent
HTTP request.

e Blind SQL injection might be used when the results of a SQL injection
attack are not made visible by the web application to the attacker.
The webpage containing the vulnerability may display different data
depending on the logical expression in the SQL statement resulting
from the injection. A variant on this is the timing attack in which the
attacker submits time-taking operations as part of SQL statements
and verifies whether the response time of the web server is affected.

Cross-Site Scripting

Cross-site scripting (XSS) is a particular class of input validation vulner-
abilities that allows attackers to inject client-side code such as HT'ML or
Javascript into web pages viewed by other users. As a result, attackers may
gain elevated privileges to sensitive page content viewed by the victims,
steal authentication credentials by injecting keylogging scripts or steal sen-
sitive session data by, for example, accessing cookie data. Figure 3.7 shows a
HTML fragment of a web page (search.php) displaying the results of a search
query. The web script constructs the web page by concatenating HTML and
the variable ‘searchTerm’ that represents the search term entered by the
user. Consider now that a user clicks on the following hyperlink provided by
the attacker: http://www.eurecom.fr/search.php?searchTerm=<script
type="text/javascript">window.open(’http://attacker.com/
upload.php?credentials=’+document.cookie) ;</script>. Then, the web
page is opened containing a piece of malicious Javascript that uploads the
sensitive content of the user’s cookie to the server of the attacker.
Cross-Site scripting vulnerabilities come in different flavors:

e In non-persistent or reflected cross-site scripting attacks, client-side
script is supplied as part of a HT'TP query parameter or HTML form
field. The victim submits the request with the injected code, the
web application constructs a web page using parameter data from the
request without proper encoding and the web server returns a web
page containing the injected code.

Phishing attacks often leverage on reflected cross-site scripting vul-
nerabilities. The attacker sends an e-mail containing a hyperlink to
the victim. This hyperlink points to a vulnerable parameter in the
web application, the value of this parameter is set to some malicious

scripting code. When, the victim receives the e-mail and clicks on the
hyperlink, the victim is directed to the vulnerable entrypoint of the
web application and the injected code is sent to the web server. As a
result, the malicious code is executed in the trust relationship between
browser and web server.

e Persistent or stored cross-site scripting attacks have often more seri-
ous consequences than non-persistent cross-site scripting attacks. In
this form of attack, the attacker sends the scripting code to the web
application as part of an HTTP request and the application saves the
scripting code into persistent storage. As the web application uses this
data from persistent storage to construct a web page, users requesting
this page receive the malicious script which the browser will execute.
A persistent cross-site scripting vulnerability potentially allows an at-
tacker to inject malicious script only once and to affect potentially
thousands of visitors. Also in social networking sites such as Myspace,
Facebook and Twitter, persistent cross-site scripting vulnerabilities
can be used to install cross-site scripting worms that replicate them-
selves across accounts.

e In contrast to the above classes of cross-site scripting attacks, a DOM-
based cross-site scripting attack does not rely on server-side code to
construct web pages. In many Web 2.0 applications, HI'ML is written
dynamically. Typically, a piece of Javascript on the client-side creates
and updates web content by manipulating the Document Object Model
(DOM). The content to be shown is often retrieved from the web server
by the client-side script accessing the XMLHttpRequest object and then
updating the DOM. A DOM-based cross-site scripting vulnerability
occurs if no encoding function is applied on the data prior to updating
the DOM-tree.

Directory Traversal and Open Redirects/Forwards

In a directory traversal attack, an attacker can traverse to parent directories
with the ultimate goal of gaining access to files on the web server that are not
intended to be accessible. To illustrate the attack, Figure 3.8 shows a PHP
code snippet containing a directory traversal vulnerability. Suppose that this
script is installed on a Linux server. If an attacker invokes the script on the
web server with the parameter having the value ../../../../etc/passwd,
then the PHP script will return the contents of the UNIX /etc/passwd file.

Open redirect and open forward vulnerabilities are essentially variants
of the directory traversal vulnerability. The vulnerability occurs when input
from an untrusted source is used to determine the location where the user
should be forwarded/redirected to. This vulnerability allows attackers to
redirect users to a destination web site that is specified within a request

<7php
$template = ’default.php’;
if(iss)et($_GET[’template’])) {
$template = $_GET[’template’]

}

include(’ /www/sites/eurecom/templates/’ . $template)
7>

Figure 3.8: Directory traversal vulnerability.

<7php

$username = $_GET[’username’];

setrawcookie(’user’,$username) ;
7>

Figure 3.9: HT'TP Response vulnerability.

to the web application. As part of a phishing attack, attackers can trick
victims into submitting a request which would redirect or forward the user
to a malicious web page.

HTTP Response Splitting

An HTTP response splitting attack is similar to an open redirect/forward
attack in the sense that an attacker can also trick a user into opening a
malicious web page. Figure 3.9 shows an example of an HTTP response
splitting vulnerability. The vulnerability exists because the input from the
GET parameter is not sanitized when using it to set a cookie value. In an
HTTP response splitting attack, the attacker submits malicious input that
is crafted in two parts. In the first part, the attacker terminates the HT'TP
response with a carriage return followed by a line feed (e.g. the string ‘\r\n’
should do the trick). Then, the second part of the malicious input is used to
construct an arbitrary number of HT'TP responses over which the attacker
has full control.

HTTP Parameter Pollution

As the name suggests, HTTP parameter pollution (HPP) attacks pollute
the parameters of a web application. In an HPP attack, an attacker injects
encoded query string delimiters along with parameter-name/value pairs in
a query string which makes it possible to add new parameters or override

<7php
echo "<a href=\"item.php7action=create&id="

. $_GET[’id’] . " \">Create";
echo "<a href=\"item.php?action=view&id=
" . $_GET[’id’] . " \">View";
echo "<a href=\"item.php7action=delete&id=
" . $_GET[’id’] . " \">Delete";

7>

Figure 3.10: HT'TP Parameter Pollution vulnerability.

existing ones. This may result in altering the normal or intended behavior of
the application. Furthermore, HPP can be used to bypass input validation
mechanisms such as web application firewalls.

HPP vulnerabilities may occur client-side or server-side. In client-side
HPP vulnerabilities, the injection causes the web application to return a
web page with hyperlinks containing the injected parameters. Figure 3.10
shows a vulnerable PHP script which generates hyperlinks. In the normal
behavior of the application, each hyperlink represents a different action.
However, the attacker can inject a malicious string that delimits the query
string and adds a second parameter called action with a value. If the
string 1&action=delete is injected in the parameter id, all the resulting hy-
perlinks will look like <a href="item.php?action=create&id=1&action=
delete">Create where the first action parameter and the text of the
hyperlinks are similar to the ones shown by Figure 3.10. As PHP always
selects the last parameter, the only action the user can perform is delete.
Server-side HPP vulnerabilities work similar as client-side HPP vulnerabil-
ities, with the difference that then the behavior of the server-side code is
altered.

Countermeasures

Several mechanisms exist to mitigate input validation vulnerabilities. These
mechanisms focus on the secure handling of input and output such as:

e Input validation. Input validation is the process of ensuring that the
input to a system is correct, meaningful and secure. It uses validation
routines or checks that are implemented as part of a data dictionary
or explicit application logic. We can distinguish different forms of
input validation such as data type checks (e.g. string or integer), digit
checks (e.g. Luhn and ISBN check), allowed characters checks (e.g. a
username) and allowed range checks (e.g. month should be between
1 and 12). Chapters 5 and 6 contain a more elaborate description on

input validation.

o Qutput sanitization. Output sanitization processes content that is
about to output in such a way that dangerous characters, submitted
to the applications, are made safe. Dangerous characters are encoded
or escaped meaning that they are translated to another representation
using an encoding function prior to its use in the output. Typically,
programming languages have libraries containing encoding functions
that can be used to prevent different types of input validation vulnera-
bilities. For example, to prevent SQL injection vulnerabilities in PHP
scripts, the function mysql_real_escape_string() may be used to
escape user-supplied input prior to its use in MySQL database queries.
In contrast to the prevention of SQL injection vulnerabilities, defend-
ing against cross-site scripting vulnerabilities requires contextual out-
put sanitization. There are several encoding schemes that can be used
depending on the location of where the untrusted content is placed
in the web document including HTML entity encoding, CSS encoding,
URL encoding and Javascript encoding. An example of a function used
to perform HTML entity encoding in PHP is the htmlspecialchars ()
function.

e Prepared statements and web templates. In code injection attacks,
user-supplied data is executed as code. Several mechanisms focus on
the prevention of code injection by strictly separating data from code.
Prepared statements are used to execute SQL queries or updates on a
database. These statements take the form of a template in which the
constant values are combined with unspecified values or the parame-
ters or placeholders. During each execution, the parameter is substi-
tuted with the actual value. Prepared statements are not only resilient
against SQL injection attacks, in many cases they also contribute to
greater performance as the overhead of compiling and optimizing the
SQL query occurs only once.

Web templating systems are typically used to separate content from
presentation with the goal of developing and deploying web applica-
tions that are maintainable and flexible. The separation of content and
presentation is also used by web template systems such as Django [30]
and Google’s ctemplate [43] to provide protection against cross-site
scripting vulnerabilities by automatically applying sanitizers to un-
trusted content.

3.2.2 Broken Authentication and Session Management

Authentication and session management include all aspects of authenticating
users and managing their sessions. Web applications need to administer user

accounts in order to be able to authenticate users. Once a user is authenti-
cated, sessions must be established and maintained by the web application
to keep track of the user’s requests. Session management mechanisms are
provided by web application frameworks. However, web application devel-
opers often implement their own session handling mechanisms which must
be done in a secure way. This section discusses common issues related to
user account management and session management capabilities.

Managing User Accounts

Although strong authentication methods such as cryptographic tokens and
biometrics are available, users typically authenticate themselves to web ap-
plications using cost-effective solutions such as a combination of a username
and password. In order to prevent attackers from breaking into accounts,
web applications need to handle account data including usernames and pass-
words in a secure manner. The OWASP project [79] identifies the following
best practices for managing user credentials:

e Password storage. Web applications need to store passwords securely
by either encrypting or hashing the passwords prior to storing them
in persistent storage. Hashing is preferred over encryption as it is not
reversible. Certain situations require encryption. Then, cryptographic
keys must be protected.

e Password strength. Web applications need to pose certain restrictions
on passwords such as minimum length and complexity. This mitigates
the risk of dictionary attacks and brute force attacks [108, 109].

e Password use. Users must handle their credentials with care. Writing
down the credentials on a note increases the risk of loss or theft of cre-
dentials. To mitigate the risks of password cracking, web applications
should implement mechanisms such as a maximum number of login
attempts, enforce regular password change, inform the user by other
channels (e.g. e-mail or SMS) of successful and failed login attempts.
A web application should not detail the reasons for authentication
failure (e.g. whether the username or password did not match).

o Account listings. Web applications should avoid listing information of
other accounts including usernames. This would make it easier for an
attacker to log on using a certain username.

e Browser caching. Credentials should not be cached by the browser.
Auto completion on password form fields should be disabled.

e Secure transit. Credentials and session identifiers should be encrypted
when sending it to the web server using a mechanism such as SSL.

At least the logon transaction should be protected. However, ideally,
the whole user session should be encrypted using SSL to avoid the
interception of session identifiers.

Managing Sessions

Attackers exploit weaknesses in session management to hijack the sessions
of other users resulting in unauthorized access to web applications. Hence,
web applications need to implement session management in a secure manner
such that attacker cannot take over the ownership of a session. Attackers
use different methods to perform session hijacking:

e Session fixation. In session fixation attacks, attackers try to set the
session identifier of a victim to a particular identifier that is known by
the attacker. The attacker waits until the victim logs in. Once logged
in, the attacker can perform actions on behalf of the victim.

e Session ID theft. Sessions can be hijacked once the attacker has ob-
tained a valid session identifier. There are different ways for stealing
the session identifier. An attacker can use packet sniffing to retrieve
the session identifier from unencrypted traffic. Often, the login trans-
action itself uses SSL encrypted link but once the user is authenticated
the communication with the web site is unencrypted which allows at-
tackers to intercept the session identifier.

If the attacker has physical access to the client machine or the web
server, he can retrieve the session identifier from files stored on the
machine. Web applications may exchange session identifiers between
client and server as part of a parameter of a GET request. Then,
the session identifiers are visible in the browser and they are stored in
the log files of the web server which makes it easier for an attacker to
access the session data. Thus, sending session identifiers as part of a
cookie is preferred.

o (Cross-site scripting. As mentioned in the previous section, cross-site
scripting vulnerabilities allow to execute malicious code in the trust
relationship of the victim’s computer and web application. The ma-
licious code may obtain the session identifier from, for example the
cookie, and send it to the attacker.

Web application developers can implement a combination of countermea-
sures against session hijacking. First, the web application should change the
session identifier when the user logs in or even renew the identifier at ev-
ery request. Then, if the attacker tries to use the identifier that has been
fixed, this identifier is not valid anymore as it has been replaced by a new
one. Second, the web application should store session identifiers in cookies

rather than using GET/POST parameters. Storing the session identifier
in GET/POST parameters results into the leakage of session information
through referrer headers and log files (e.g. web proxy cache and browser
history). Finally, web applications should encrypt the communication be-
tween browser and server using SSL to avoid the interception of session
identifiers through network sniffing.

3.2.3 Broken Access Control and Insecure Direct Object Ref-
erences

Web applications implement access control mechanisms to control who can
interact with particular resources. Examples of resources include files, di-
rectories, database records, object keys and URLs. Unfortunately, web ap-
plications do not always verify if the user is authorized for the target object.

Many web applications require users to pass certain checks before they
are granted access to certain resources. However, by forced browsing, an
attacker can get direct access to these URLs that are ‘deeper’ down in the
website. Thus, by directly invoking certain URLs, the attacker bypasses
certain checks and gets access to resources he should not have access to.

Internal resources of web applications are often exposed to users through
references. By tampering the URLs or the parameters of a web application,
an attacker changes the reference and bypasses an access control policy.
Since the attacker obtains access by changing the parameter’s value that
references an internal object, the vulnerability is also known as Insecure
Direct Object References.

An Insecure Direct Object References vulnerability is often input valida-
tion vulnerabilities as well and vise versa. For example, directory traversal
and open redirect /forward vulnerabilities are input validation vulnerabilities
but are also classical examples of a Insecure Direct Object References vul-
nerability because objects (e.g. websites) are referred to without checking
whether the user has permission to access the web page. Another well-known
instance in which input validation overlaps with an Insecure Direct Object
References vulnerability is the use of unverified data in a SQL call. In this
scenario, an attacker obtains unauthorized access to information stored in a
database by modifying the HT'TP request.

Countermeasures

Preventing insecure direct object references requires that each accessible
resource is protected. This can be accomplished in two ways:

e Use references to objects specific to a user or a user’s session. These
indirect references cause that objects can only be accessed authorized
users. The web application should map the per-user indirect reference
to actual objects such as files, URLs and database records.

http://library.eurecom.fr/returnitem.php?itemid=345

Figure 3.11: Cross-site request forgery example.

e The web application should check access control. Upon each request
for a resource, an access control check should be performed by the web
application to verify if the user is authorized to access that particular
resource.

3.2.4 Cross-Site Request Forgery

In cross-site request forgery attacks, end-users perform unwanted actions in
a web application. Attackers use social engineering techniques to trick the
user into executing a request resulting in an unwanted action. The malicious
request uses the identity and authorizations of the victim to perform the
action on the victim’s behalf. A successful attack exploits the trust that a
web application in the user agent has.

To illustrate cross-site request forgery, Figure 3.11 shows a URL in the
fictive Eurecom library web application. The returnitem.php script in this
example, is part of a web application that is used by the librarian when items
are returned. Only librarians have the privileges to perform this action. To
this end, the web application implements user authentication and sessions.
Sessions are supported through the use of cookies. Consider now that the
librarian has been authenticated to the web application and the session
identifier is stored in a cookie. If a user does not want to return a borrowed
book (with item identifier 345), he can try to trick the librarian to open the
link as shown in Figure 3.11. When the librarian opens the link, the web
application would not require any further authentication and the application
brings the system into a state reflecting that the item has been returned.

To mitigate the risks of cross-site request forgery attacks, user should
avoid the use of ‘remember me’ and should use ‘log out’ functionality in
web applications. This in addition to preventative techniques implemented
by web application developers. A preventative technique commonly used
in web applications is to include a user-specific and unique token in each
web request. Whenever the web application generates a response for the
client, the web application can augment HTML forms and/or local URLs
with tokens. Each legitimate request the client makes, contains the token
which the web application verifies. Hence, attackers do not have any chance
as they cannot put the right token in the submission.

Chapter 4

The Evolution of Input
Validation Vulnerabilities in
Web Applications

A considerable amount of effort has been spent by many different stake-
holders on making web applications more secure. However, we lack quanti-
tative evidence that this attention has improved the security of web applica-
tions over time. In this Chapter, we study how common classes of web vul-
nerabilities have evolved in the last decade. In particular, we are interested
in finding out if developers are better at creating secure web applications to-
day than they used to be in the past. We measure the exploit complexity to
understand whether vulnerabilities require nowadays more complex attack
scenarios to exploit vulnerabilities that are a result of insufficient counter-
measures. Furthermore, we study how individual applications are exposed
to vulnerabilities. We examine whether popular web applications are more
exposed to vulnerabilities than non-popular applications. By measuring the
lifetime of vulnerabilities in applications, we try to get an understanding of
the difficulty of finding vulnerabilities.

Our study focuses on SQL injection and cross-site scripting vulnerabil-
ities as these classes of web application vulnerabilities have the same root
cause: improper sanitization of user-supplied input that results from invalid
assumptions made by the developer on the input of the application. More-
over, these classes of vulnerabilities are prevalent, well-known and have been
well-studied in the past decade. Thus, it is likely that there is a sufficient
number of vulnerability reports available to allow an empirical analysis.

4.1 Methodology

To be able to answer how cross-site scripting and SQL injection vulner-
abilities have evolved over time, it is necessary to have access to signifi-

45

cant amounts of vulnerability data. Hence, we had to collect and classify a
large number of vulnerability reports. Furthermore, automated processing
is needed to be able to extract the exploit descriptions from the reports. In
the next sections, we explain the process we applied to collect and classify
vulnerability reports and exploit descriptions.

4.1.1 Data Gathering

One major source of information for security vulnerabilities is the CVE
dataset, which is hosted by MITRE [67]. According to MITRE’s FAQ [69],
CVE is not a vulnerability database but a vulnerability identification system
that ‘aims to provide common names for publicly known problems’ such
that it allows ‘vulnerability databases and other capabilities to be linked
together’. Each CVE entry has a unique CVE identifier, a status (‘entry’
or ‘candidate’), a general description, and a number of references to one
or more external information sources of the vulnerability. These references
include a source identifier and a well-defined identifier for searching on the
source’s website. Vulnerability information is provided to MITRE in the
form of vulnerability submissions. MITRE assigns a CVE identifier and a
candidate status. After the CVE Editorial Board has reviewed the candidate
entry, the entry may be assigned the ‘Accept’ status.

For our study, we used the CVE data from the National Vulnerability
Database (NVD) [78] which is provided by the National Institute of Stan-
dards and Technology (NIST). In addition to CVE data, the NVD database
includes the following information:

e Vulnerability type according to the Common Weakness Enumeration
(CWE) classification system [68].

e The name of the affected application, version numbers, and the ven-
dor of the application represented by Common Platform Enumeration
(CPE) identifiers [66].

e The impact and severity of the vulnerability according to the Common
Vulnerability Scoring System (CVSS) standard [65].

The NIST publishes the NVD database as a set of XML files, in the
form: nvdcve-2.0-year.xml, where year is a number from 2002 until 2010.
The first file, nvdcve-2.0-2002.xml contains CVE entries from 1998 until
2002. In order to build timelines during the analysis, we needed to know
the discovery date, disclosure date, or the publishing date of a CVE entry.
Since CVE entries originate from different external sources, the timing infor-
mation provided in the CVE and NVD data feeds proved to be insufficient.
For this reason, we fetched this information by using the disclosure date

from the corresponding entry in the Open Source Vulnerability Database
(OSVDB) [55].

For each candidate and accepted CVE entry, we extracted and stored the
identifier, the description, the disclosure date from OSVDB, the CWE vul-
nerability classification, the CVSS scoring, the affected vendor /product /version
information, and the references to external sources. Then, we used the refer-
ences of each CVE entry to retrieve the vulnerability information originating
from the various external sources. We stored this website data along with
the CVE information for further analysis.

4.1.2 Vulnerability Classification

Since our study focuses particularly on cross-site scripting and SQL injec-
tion vulnerabilities, it is essential to classify the vulnerability reports. As
mentioned in the previous section, the CVE entries in the NVD database
are classified according to the Common Weakness Enumeration classifica-
tion system. CWE aims to be a dictionary of software weaknesses. NVD
uses only a small subset of 19 CWEs for mapping CVEs to CWEs, among
those are cross-site scripting (CWE-79) and SQL injection (CWE-89).

Although NVD provides a mapping between CVEs and CWEs, this map-
ping is not complete and many CVE entries do not have any classification
at all. For this reason, we chose to perform a classification which is based
on both the CWE classification and on the description of the CVE entry. In
general, we observed that a CVE description is formatted according to the
following pattern: {description of vulnerability} {location description of the
vulnerability} allows {description of attacker} {impact description}. Thus,
the CVE description includes the vulnerability type.

For fetching the cross-site scripting related CVEs out of the CVE data,
we selected the CVEs associated with CWE identifier ‘CWE-79’. Then, we
added the CVEs having the text ‘cross-site scripting’ in their description by
performing a case-insensitive query. Similarly, we classified the SQL injec-
tion related CVEs by using the CWE identifier ‘CWE-89’ and the keyword
‘SQL injection”.

4.1.3 The Exploit Data Set

To acquire a general view on the security of web applications, we are not
only interested in the vulnerability information, but also in the way each
vulnerability can be exploited. Some external sources of CVEs that provide
information concerning cross-site scripting or SQL injection-related vulner-
abilities also provide exploit details. Often, this information is represented
by a script or an attack string.

An attack string is a well-defined reference to a location in the vulner-
able web application where code can be injected. The reference is often a

8000 30
7000

A — %
cooo [N > A
4000 / 15 / \ /\ —
3000 / 10 /- &(?Q\‘/A

2000 /
0 +—— T =T T T T T T 1 0 T T T T T

o~ o0 <
o o 1=

S
~ I I

2000 b
2001 B
2005

© ~ 0
S o o
S o
N N ~

2009

—&— Total Number of Vulnerabilities Number of SQL Injection CVEs —&— Percentage of SQL Injection CVEs Percentage of XSS CVEs

—— Number of XSS CVEs —— Number of Buffer Overflow CVEs| A Percentage of Buffer Overflow CVEs

(a) Vulnerability trends in numbers (b) Vulnerability trends in percentages

Figure 4.1: Buffer overflow, cross-site scripting and SQL injection vulnera-
bilities over time.

complete URL that includes the name of the vulnerable script, the HT'TP
parameters, and some characters to represent the placeholders for the in-
jected code. In addition to using placeholders, sometimes, real examples of
SQL or Javascript code may also be used. Two examples of attack strings
are:

http://[victim] /index.php?act=delete&dir=&file=[XSS]
http://[victim] /index.php?module=subjects&func=viewpage&pageid=[SQL]

At the end of each line, note the placeholders that can be substituted with
arbitrary code by the attacker.

The similar structure of attack strings allows our tool to automatically
extract, store and analyze the exploit format. Hence, we extracted and
stored all the attack strings associated with both cross-site scripting and
the SQL injection CVEs. addtoresethypothesischapter

4.2 Analysis of the Vulnerabilities Trends

The first question we wish to address in this study is whether the number
of SQL injection and cross-site scripting vulnerabilities reported in web ap-
plications has been decreasing in recent years. To answer this question, we
automatically analyzed the 39,081 entries in the NVD database from 1998
to 2009'. We had to exclude 1,301 CVE entries because they did not have
a corresponding match in the OSVDB database and, as a consequence, did
not have a disclosure date associated with them. For this reason, these CVE

L At the time of our study, a full vulnerability dataset of 2010 was not available. Hence,
our study does not cover 2010.

entries are not taken into account for the rest of our study. Of the remain-
ing vulnerability reports, we identified a total of 5349 buffer overflow entries,
5413 cross-site scripting entries and 4825 SQL injection entries.

Figure 4.1a shows the number of vulnerability reports over time and
figure 4.1b shows the percentage of reported vulnerabilities over the total
CVE entries.

Our first expectation based on intuition was to observe that the number
of reported vulnerabilities follow a classical bell shape, beginning with a
slow start when the vulnerabilities are still relatively unknown, then a steep
increase corresponding to the period in which the attacks are disclosed and
studied, and finally a decreasing phase when the developers start adopting
the required countermeasures. In fact, the graphs show an initial phase
(2002-2004) with very few reports about cross-site scripting and SQL injec-
tion vulnerabilities and many reports about buffer overflow vulnerabilities.
This phase is followed by a steep increase in input validation vulnerability
reports in the years 2004, 2005 and 2006 and overtakes the number of buffer
overflow vulnerability reports. Note that this trend is consistent with his-
torical developments. Web security started increasing in importance after
2004, and the first XSS-based worm was discovered in 2005 (i.e., “Samy
Worm” [71]). Hence, web security threats such as cross-site scripting and
SQL injection started receiving more focus after 2004 and, in the meantime,
these threats have overtaken buffer overflow problems. Unfortunately, the
number of reported cross-site scripting and SQL injection vulnerabilities has
not significantly decreased since 2006. In other words, the number of cross-
site scripting and SQL injection vulnerabilities found in 2009 is comparable
with the number reported in 2006. In the rest of this section, we will for-
mulate and verify a number of hypotheses to explain the possible reasons
behind this phenomenon.

4.2.1 Attack Sophistication

Hypothesis 1 Simple, easy-to-find vulnerabilities have now been replaced
by complex vulnerabilities that require more sophisticated attacks.

The first hypothesis we wish to verify is whether the overall number of
vulnerabilities is not decreasing because the simple vulnerabilities discov-
ered in the early years have now been replaced by new ones that involve
more complex attack scenarios. In particular, we are interested in finding
out whether the prerequisites for an attack have changed over time. We
were inspired by bug reports corresponding to the vulnerabilities to look at
the prerequisites for attacks. By investigating the bug reports of web appli-
cations, we found out that in some of these cases, software developers are
aware of a vulnerability but are unwilling to fix it because the vulnerability
is only exploitable in certain scenarios and the risk is minimal. One example

70 8

60 — L 7 S
6

50 —
S /‘\/

40
4

30 3

20) et

10 .___._,/*/4—’_‘ 1 —

0 T T T T T | 0 T T T T T |
2004 2005 2006 2007 2008 2009 2004 2005 2006 2007 2008 2009
—&— Remote Authenticated Attacker —&— Remote Authenticated Attacker
The User has to be tricked into doing PHP's Magic Quotes Functionality
(a) Cross-site scripting (b) SQL injection

Figure 4.2: Prerequisites for successful attacks (in percentages).

100% 100%

80% — 1 1 80% — 1
60% — 1 0 60% —1 1
40% +— 1 0 40% +— 0
Ml N B 3

0% - 0% -
2005 2006 2007 2008 2009 2005 2006 2007 2008 2009
Percentage of XSS CVEs with simple attack strings Percentage of SQLI CVEs with simple attack strings
M percentage of XSS CVEs with complex attack strings B Percentage of SQLI CVEs with complex attack strings
(a) Cross-site scripting (b) SQL injection

Figure 4.3: Exploit complexity over time.

of such a scenario is a vulnerability in the administration interface of a web
application which is only expoitable by an administrator. Moreover, some
vulnerabilities are only exploitable when the user is tricked into performing
some action via a phishing attack, for example. Software developers may
also decide not to fix SQL injection vulnerabilities if certain configuration
settings can prevent the exploitation.

To determine the prerequisites for successful attacks, we searched for par-
ticular phrases in the descriptions of the CVE entries. For cross-site scripting
vulnerabilities, we looked at the occurrence of the following phrases:

e ‘remote authenticated’ to identify whether the attacker needs to be
authenticated.

e ‘trick’, ‘tricked’, ‘tricking’, ‘crafted link’, ‘crafted url’, ‘malicious url’,
‘malicious link’, ‘malicious website’; ‘crafted website’, ‘malicious email’,

‘malicious e-mail’; ‘crafted email’, ‘crafted e-mail’, ‘malicious message’,
‘crafted message’ to identify whether the attacker needs to deceive the
victim into performing some action.

For SQL injection vulnerabilities, we looked for occurrence of the follow-
ing keywords:

e ‘remote authenticated’ to identify whether the attacker needs to be
authenticated.

e ‘without magic quotes_gpc enabled’, ‘magic_ quotes gpc is disabled’
to determine whether disabling PHP’s magic__quotes functionality al-
lows a SQL injection attack.

Figures 4.2a and 4.2b plot the percentage of vulnerabilities requiring the
given prerequisite over the total number of cross-site scripting or SQL injec-
tion vulnerabilities in the given year, respectively. Figure 4.2a suggests that
at least 50 percent of the cross-site scripting vulnerabilities require some
involvement from the victim. We observe that since 2005, there has been
a slight increase of SQL injection vulnerabilities that can only be exploited
when the controversial magic_quotes feature is disabled. This trend is con-
sistent with PHP’s development roadmap, which intends to deprecate the
feature in PHP version 5.3.0 and remove it in version 6.0. Another trend
we observed is a slight increase in vulnerabilities that require an attacker
to be authenticated. Although the trend is not significant, it may suggest
that developers have started to pay attention to the security of functionality
accessible by everyone but fail to secure the functionality used by (website)
administrators. Since the trends on prerequisites are not significant, we do
not consider them as being the reason behind the steadily increasing in-
put validation vulnerabilities trends. We are also interested in discovering
whether the complexity of exploits has increased. Our purpose in doing this
is to identify those cases in which the application developers were aware of
threats but implemented insufficient, easy-to-evade sanitization routines. In
these cases, an attacker has to craft the malicious input more carefully or
has to perform certain input transformations (e.g., uppercase or character
replacement).

One way to determine the “complexity” of an exploit is to analyze the
attack string and to look for evidence of possible evasion techniques. As
mentioned in Section 4.1.3, we automatically extract the exploit code from
the data provided by external vulnerability information sources. Sometimes,
these external sources do not provide exploit information for every reported
cross-site scripting or SQL injection vulnerability, do not provide exploit
information in a parsable format, or do not provide any exploit information
at all. As a consequence, not all CVE entries can be associated with an
attack string. On the other hand, in some cases, there exist several ways of

exploiting a vulnerability, and, therefore, many attack strings may be asso-
ciated with a single vulnerability report. In our experiments, we collected
attack strings for a total of 2632 distinct vulnerabilities.

To determine the exploit complexity, we looked at several characteristics
that may indicate an attempt from the attacker to evade some form of input
sanitization. The selection of the characteristics is inspired by so-called
injection cheat sheets that are available on the Internet [63][95].

In particular, we classify a cross-site scripting attack string as complex
(in contrast to simple) if it contains one or more of the following character-
istics:

e Different cases are used within the script tags (e.g., ScRiPt).
e The script tags contain one or more spaces (e.g., < script>)

e The attack string contains ‘landingspace-code’ which is the set of at-
tributes of HTML-tags (e.g., onmouseover, or onclick)

e The string contains encoded characters (e.g.,))

e The string is split over multiple lines
For SQL injection attack strings, we looked at the following characteristics:

e The use of comment specifiers (e.g., /**/) to break a keyword
e The use of encoded single quotes (e.g., ‘%27’ ‘'’; ‘4#39’, ‘Ju==")

e The use of encoded double quotes (e.g., ‘%22’, ‘"’, ‘"’, ‘Ig==")

If none of the previous characteristics is present, we classify the exploit
as “simple”. Figures 4.3a and 4.3b show the percentage of CVEs having one
or more complex attack strings?. The graphs show that the majority of the
available exploits are, according to our definition, not sophisticated. In fact,
in most of the cases, the attacks were performed by injecting the simplest
possible string, without requiring any tricks to evade input validation.

Interestingly, while we observe a slight increase in the number of SQL
injection vulnerabilities with sophisticated attack strings, we do not observe
any significant increase in cross-site scripting attack strings. This may be a
first indication that developers are now adopting (unfortunately insufficient)
defense mechanisms to prevent SQL injection, but that they are still failing
to sanitize the user input to prevent cross-site scripting vulnerabilities.

Although cross-site scripting and SQL injection vulnerabilities share the
same root cause, it seems that there is more awareness of SQL injection

2The graph starts from 2005 because there were less than 100 vulnerabilities having
exploit samples available before that year. Hence, results before 2005 are statistically less
significant.

1200 0 | | T T T
X 2004 2005 2006 2007 2008 2009

1000 0,1
800 0,2
600 /,0\\‘ \ -0,3
400 04
200 (/‘//A*/‘\‘ 0,5
0 ‘ ‘ : 06

T T 1
2004 2005 2006 2007 2008 2009 0,7

—&— Number of applications having 1 or more SQLI vulnerabilities

-0,8

Number of applications having 1 or more XSS vulnerabilities 09

—— Number of applications having both types of vulnerabilities disclosed —— Correlation between XSS affected applications and SQLI affected
in the given year applications

(a) The number of applications over time. (b) Correlation coefficient over time.

Figure 4.4: Applications having XSS and SQLI Vulnerabilities over time.

vulnerabilities than of cross-site scripting vulnerabilities. It is interesting to
further investigate whether there is a relationship between the occurrence
of the two types of vulnerabilities in web applications. This gives an answer
to the question whether a developer who fails to implement countermea-
sures against SQL injection also fails to implement countermeasures against
cross-site scripting. In order to answer this question, we started by ex-
tracting vulnerable application and vendor names from a total of 8854 SQL
injection and cross-site scripting vulnerability reports in the NVD database
that are associated to one or more CPE identifiers. Then, we measured the
correlation between cross-site scripting and SQL injection vulnerabilities.
Although correlation cannot be used to infer a causal relationship between
SQL injection and cross-site scripting vulnerabilities, it can indicate the
potential existence of this causal relationship.

Figure 4.4 shows the correlation between applications affected by both
cross-site scripting and SQL injection vulnerabilities. More specifically, we
measured the number of applications affected by both types of vulnerabil-
ities (Figure 4.4a) and the correlation coefficient over time (Figure 4.4Db).
Figure 4.4b plots p(X,Y) with X = 0 or 1 indicating whether the appli-
cation was affected by a cross-site scripting vulnerability and ¥ = 0 or 1
indicating whether the application was affected by an SQL injection vul-
nerability. The graph shows a strong negative correlation, meaning that
the occurrence of cross-site scripting vulnerabilities is correlated with an
absence of SQL injection vulnerabilities in an application. As Figure 4.4b
shows, the negative correlation tends to become stronger over time. This
might indicate that developers are aware of implementing countermeasures
against SQL injection but fail to do so for cross-site scripting vulnerabilities.

1400 1600

1400 /\

1200

1200

- el
- /} by (X AN

T T T T T T
2002 2003 2004 2005 2006 2007 2008 2009 2002 2003 2004 2005 2006 2007 2008 2009

—&— XSS vulnerability reports —&—sQll vulnerability reports
Applications with 1 XSS vulnerability report Applications with 1 SQLI vulnerability report
—&— Applications with 2 XSS vulnerability reports —— Applications with 2 SQLI vulnerability reports
—=&— Applications with 3 or more XSS vulnerability reports —e— Applications with 3 or more SQLI vulnerability reports
—l-Vendors with 1 or more XSS vulnerability reports —l- Vendors with 1 or more SQLI vulnerability reports

(a) Cross-site scripting affected applications. (b) SQL injection affected applications.

Figure 4.5: The number of affected applications over time.

To conclude, the available empirical data suggests that increased attack
complexity is not the reason behind the steadily increasing number of vul-
nerability reports. Furthermore, the data suggest that applications become
more resilient against SQL injection rather than cross-site scripting vulner-
abilities.

4.2.2 Application Popularity

Since complexity does not seem to explain the increasing number of reported
vulnerabilities, we decided to focus on the type of applications. Figures 4.5a
and 4.5b plot the number of applications and vendors that are affected by a
certain number of vulnerabilities over time. Both graphs clearly show how
the increase in the number of vulnerabilities is a direct consequence of the
increasing number of vulnerable applications and their vendors. In fact, the
number of web applications with more than one vulnerability report over
the whole time frame is quite low, and it has been slightly decreasing since
2006.
Based on these findings, we formulated our second hypothesis:

Hypothesis 2 Popular applications are now more secure while new vulner-
abilities are discovered in new, less popular, applications.

The idea behind this hypothesis is to test whether more vulnerabilities
were reported about well-known, popular applications in the past than are
today. That is, do vulnerability reports nowadays tend to concentrate on
less popular, or recently developed applications?

100% 100%
s0%-— — — 1 —1 11— 0% — o —
60% — - — - B B 60% 1 |
RS . B e

wr —— B
20%

20% - R -
0% -

2004 2005 2006 2007 2008 2009 0% =

2004 2005 2006 2007 2008 2009
Percentage of Vulnerable Applications being Not Popular
Percentage of Vulnerable Applications being Not Popular

. A .
Percentage of Vulnerable Popular Applications being Popular W Percentage of Vulnerable Applications being Popular

(a) Cross-site scripting (b) SQL injection

Figure 4.6: Vulnerable applications and their popularity over time.

The first step in exploring this hypothesis consists of determining the
popularity of these applications in order to be able to understand if it is
true that popular products are more aware of (and therefore less vulnerable
to) cross-site scripting and SQL injection attacks.

We determined the popularity of applications through the following pro-
cess:

1. Using Google Search, we performed a search on the vendor and appli-
cation names within the Wikipedia domain.

2. When one of the returned URLs contained the name of the vendor or
the name of the application, we flagged the application as being ‘pop-
ular’. Otherwise, the application was classified as being ‘unpopular’.

3. Finally, we manually double-checked the list of popular applications in
order to make sure that the corresponding Wikipedia entries described
software products and not something else (e.g., when the product name
also corresponded to a common English word).

After the classification, we were able to identify 676 popular and 2573
unpopular applications as being vulnerable to cross-site scripting. For SQL
injection, we found 328 popular and 2693 unpopular vulnerable applica-
tions. Figure 4.6 shows the percentages of popular applications associated
with one or more vulnerability reports. The trends support the hypothesis
that SQL injection vulnerabilities are indeed moving toward less popular
applications — maybe as a consequence of the fact that well-known products
are more security-aware. Unfortunately, according to Figure 4.6a, the same
hypothesis is not true for cross-site scripting: in fact, the ratio of well-known
applications vulnerable to cross-site scripting has been relatively constant
in the past six years.

100% - 100%
90% -
80% -
70% -
60% |
50% -
40% -
30%
20% -
10% -

0%
1 2 3 4 5 6 7 8 9 10or 1 2 3 4 5 6 7 8 9 10or
more more

B Popular Applications Not Popular Applications B Popular Applications Not Popular Applications

80%

60% -

40% -

20% -

0% -

(a) Cross-site scripting (b) SQL injection

Figure 4.7: Popularity of applications across the distribution of the number
of vulnerability reports.

Even though the empirical evidence also does not support our second
hypothesis, we noticed one characteristic that is common to both types of
vulnerabilities: as shown in Figures shown in Figures 4.7a and 4.7b, popu-
lar applications typically have a higher number of reported vulnerabilities.
There may be many possible reasons to explain this. For example, one pos-
sible explanation might be that popular applications are more frequently
targeted by attackers, as the application has more impact on potential vic-
tims and thus more vulnerabilities are being reported. Another possible
explanation could be that developers of popular applications are more se-
curity aware or that these applications are better analyzed. Hence, the
application meets higher security standards.

The results, shown in Figures 4.7a and 4.7b, suggest that it would be
useful to investigate how these vulnerabilities have evolved in the lifetime of
the applications.

4.2.3 Application and Vulnerability Lifetime

So far, we determined that a constant, large number of simple, easy-to-
exploit vulnerabilities are still found in many web applications today. Also,
we determined that the high number of reports is driven by an increasing
number of vulnerable applications and not by a small number of popular
applications. Based on these findings, we formulate our third hypothesis:

Hypothesis 3 Even though the number of reported vulnerable applications
is growing, each application is becoming more secure over time.

This hypothesis is important, because, if true, it would mean that web appli-
cations (the well-known products in particular) are becoming more secure.

350

300

250
200 -

150 +—
100

0 E—

T T T T
0-60 61- 121- 181- 241- 301- 361- 421- 481- 541- 601- 661-
120 180 240 300 360 420 480 540 600 660 720
days elapsed since
B Number of Reports in 2002 - 2003 ™ Number of Reports in 2004 - 2005 last vulnerability
™ Number of Reports in 2006 - 2007 M Number of Reports in 2008 - 2009 disclosure

(a) Cross-site scripting

0-60 61- 121- 181- 241- 301- 361- 421- 481- 541- 601- 661-
120 180 240 300 360 420 480 540 600 660 720
days elapsed since las
B Number of Reports in 2003-2004 Number of Reports in 2004-2005 vulnerability
B Number of Reports in 2006-2007 M Number of Reports in 2008-2009 disclosure

(b) SQL injection

Figure 4.8: Reporting rate of Vulnerabilities

To verify this hypothesis, we studied the frequency of vulnerability reports
of applications affected by cross-site scripting and SQL injection vulnerabil-
ities.

One way to examine the security of an application is to measure the rate
at which vulnerabilities are being reported. The frequency of vulnerability
reports about an application can be estimated by measuring the time be-
tween them. We applied an analogous metric from reliability engineering,
the time between-failures (TBF') [70], by defining a vulnerability report as
a failure. Figures 4.8a and Figure 4.8b plot the reporting rates of cross-site
scripting vulnerabilities and SQL injection vulnerabilities, respectively. The
graphs clearly show a steep increase in the reporting rates between 2002 and
2007 and a slight decrease after 2007. In order to verify the hypothesis more
precisely, it is also necessary to look at the duration or lifetime of cross-
site scripting and SQL injection vulnerabilities. We studied the lifetimes of
cross-site scripting and SQL injection vulnerabilities in the ten most-affected
open source applications according to the NIST NVD database. By analyz-

H Foundational [Non-Foundational ‘ H Foundational [Non-Foundational ‘

bugzilla 4 7 bugzilla 1 8
drupal 0 22 coppermine 1 3
joomla 5 4 el07 0 3
mediawiki 3 21 joomla 4 0
mybb 9 2 moodle 0 3
phorum 3 5 mybb 9 3
phpbb 4 2 phorum 0 4
phpmyadmin 14 13 phpbb 3 0
squirrelmail 10 4 punbb 4 2
wordpress 6 9 wordpress 0 4
Total i 58 { 89 \ Total || 22 { 30
(a) Cross-site scripting (b) SQL injection

Table 4.1: Foundational and non-foundational vulnerabilities in the ten most
affected open source web applications.

ing the change logs for each application, we extracted the version in which
a vulnerability was introduced and the version in which a vulnerability was
fixed. In order to obtain reliable insights into the vulnerability’s lifetime,
we excluded vulnerability reports that were not confirmed by the respective
vendor. For our analysis, we used the CPE identifiers in the NVD database,
the external vulnerability sources, the vulnerability information provided by
the vendor. We also extracted information from the version control systems
(CVS, or SVN) of the different products.

Table 4.1a and Table 4.1b show a total of 147 cross-site scripting and
52 SQL injection vulnerabilities in the most affected applications. The ta-
bles distinguish between foundational and non-foundational vulnerabilities.
Foundational vulnerabilities are vulnerabilities that were present in the first
version of an application, while non-foundational vulnerabilities were intro-
duced after the initial release.

We observed that 39% of the cross-site scripting vulnerabilities are foun-
dational and 61% are non-foundational. For SQL injection, these percent-
ages are 42% and 58%. These results suggest that most of the vulnerabilities
are introduced by new functionality that is built into new versions of a web
application. Finally, we investigated how long it took to discover the vul-
nerabilities. Figure 4.9a and Figure 4.9b plot the number of vulnerabilities
that were disclosed after a certain amount of time had elapsed after the
initial release of the applications. The graphs show that most SQL injection
vulnerabilities are usually discovered in the first few years after the release of
the product. For cross-site scripting vulnerabilities, the result is quite differ-
ent. Many foundational vulnerabilities are disclosed even 10 years after the
code was initially released. This observation suggests that it is very prob-
lematic to find foundational cross-site scripting vulnerabilities compared to

40 14

35 12 1
30 °
e 10 \
20 \\

15
10 AN

o N A o
|~
?

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

—&— Disclosure Duration of Foundational SQLI Vulnerabilities
—&— Disclosure Duration of Foundational XSS Vulnerabilities a

Disclosure Duration of Non-Foundational SQLI
Vulnerabilities

Disclosure Duration of Non-Foundational XSS Vulnerabilities

(a) Cross-site scripting (b) SQL injection

Figure 4.9: Time elapsed between software release and vulnerability disclo-
sure in years.

10 4

N . 4 -

0,5
0 T T T T T | 0 T T T T T |
2004 2005 2006 2007 2008 2009 2004 2005 2006 2007 2008 2009
—4&— Average disclosure duration of foundational XSS —&— Average disclosure duration of foundational SQLI
vulnerabilities vulnerabilities
Average disclosure duration of non-foundational XSS Average disclosure duration of non-foundational SQLI
vulnerabilities vulnerabilities
(a) Cross-site scripting (b) SQL injection

Figure 4.10: Average duration of vulnerability disclosure in years over time.

SQL injection vulnerabilities. This is supported by the fact that the average
elapsed time between the software release and the disclosure of foundational
vulnerabilities is 2 years for SQL injection vulnerabilities, while for cross-site
scripting this value is 4.33 years.

Figures 4.10a and 4.10b plot the average elapsed time between software
release and the disclosure of vulnerabilities over time. These results show
that cross-site scripting vulnerabilities are indeed harder to find than SQL
injection vulnerabilities and that foundational cross-site scripting vulnera-
bilities become even more difficult to find over time. Also note, that there are
no foundational SQL injection vulnerabilities reported in 2009. We believe
that difference between cross-site scripting and SQL injection vulnerabilities
concerning the lifetime is caused by the fact that the attack surface for SQL

Vulnerable applications reporting about scripts: 1871
Vulnerable scripts: 2499
Average (vulnerable scripts / applications): 1.34
Vulnerable applications reporting about parameters: 1905
Vulnerable parameters: 9304
Average (vulnerable parameters / applications): 4.88

(a) Cross-site scripting

Vulnerable applications reporting about scripts: 2759
Vulnerable scripts: 3548
Average (vulnerable scripts / applications): 1.29
Vulnerable applications reporting about parameters: 1902
Vulnerable parameters: 6556
Average (vulnerable parameters / applications): 3.45

(b) SQL injection

Table 4.2: The attack surface.

injection attacks is much smaller when compared with cross-site scripting
attacks. Therefore, it is interesting to further investigate the size of the
attack surface of vulnerable applications.

From the CVE descriptions, we extracted the scripts and parameters that
are vulnerable to cross-site scripting or SQL injection and we counted them.
By measuring the average number of vulnerable scripts and parameters per
application for both cross-site scripting and SQL injection vulnerabilities,
we get insights into the size of the attack surface. Table 4.2a and 4.2b shows
the number of applications that are associated with vulnerabilities related
to the affected scripts and/or parameters for cross-site scripting and SQL
injection vulnerabilities, respectively. In addition, the number of affected
scripts and parameters is shown. We observe that the average number of
vulnerable scripts and parameters per application is indeed larger for cross-
site scripting vulnerabilities than for SQL injection vulnerabilities. Thus,
the results confirm the intuition that the difference in vulnerability lifetime
between cross-site scripting and SQL injection vulnerabilities is caused by
the size of the attack surface. We believe that the attack surface of SQL in-
jection vulnerabilities is smaller because it is easier for developers to identify
(and protect) all the sensitive entry points in the code (e.g. code concerning
database access) of the web application than for cross-site scripting vulner-
abilities.

4.3 Summary

Our findings in this study show that the complexity of cross-site scripting
and SQL injection attacks related to the vulnerabilities in the NVD database
has not been increasing. Neither the prerequisites to attacks nor the com-

plexity of exploits have changed significantly. Hence, this finding suggests
that the majority of vulnerabilities are not due to sanitization failure, but
rather due to the absence of input validation. Despite awareness programs
provided by MITRE [67], SANS Institute [23] and OWASP [79], application
developers are still not implementing effective countermeasures.

Furthermore, our study suggests that a major reason why the number
of web vulnerability reports has not been decreasing is because many more
applications of different vendors are now vulnerable to flaws such as cross-
site scripting and SQL injection. Although cross-site scripting and SQL
injection vulnerabilities share the same root cause, we could not find any
significant correlation between applications affected by cross-site scripting
and by SQL injection vulnerabilities. In fact, the small negative correlation
tends to become stronger. By measuring the popularity of the applications,
we observed a trend that SQL injection vulnerabilities occur more often in
an increasing number of unpopular applications.

Finally, when analyzing the most affected applications, we observe that
years after the initial release of an application, cross-site scripting vulner-
abilities concerning the initial release are still being reported. Note that
this is in contrast to SQL injection vulnerabilities. By measuring the attack
surface of cross-site scripting and SQL injection vulnerabilities, we found
out that the attack surface of SQL injection vulnerabilities is much smaller
than for cross-site scripting vulnerabilities. Hence, SQL injection problems
may be easier to find because only a relatively small part of the application’s
code is used for database access.

The empirical data we collected and analyzed for this study supports
the general intuition that web developers consistently fail to secure their ap-
plications. The traditional practice of writing applications and then testing
them for security problems (e.g., static analysis, blackbox testing, etc.) does
not seem be working well in practice. Hence, we believe that more research
is needed in securing applications by design. That is, the developers should
not be concerned with problems such as cross-site scripting or SQL injec-
tion. Rather, the programming language or the platform should make sure
that the problems do not occur when developers produce code (e.g., similar
to solutions such as in [90] or managed languages such as C# or Java that
prevent buffer overflow problems).

Chapter 5

Input Validation Mechanisms
in Web Applications and
Languages

In the previous Chapter, we have shown that many web applications are still
prone to common classes of vulnerabilities. The complexity of exploits have
not been increasing over time and most exploits are still simple by nature.
Clearly, web developers often fail to apply existing countermeasures and a
new class of solutions is required to help to improve the security situation
on the web.

To develop a web application, tools and programming languages are
required. The programming language chosen to develop an application has
a direct effect on how a system is to be created and the means that are
required to ensure that the resulting application behaves as expected and is
secure. In this Chapter, we study the relationship between the programming
language and web vulnerabilities that are commonly reported.

An important property of a programming language is the type system
that is being used. A type system classifies program statements and expres-
sions according to the values they can compute, and it is useful for statically
reasoning about possible program behaviors. Some popular web languages
such as PHP and Perl are weakly-typed, meaning that the language implic-
itly converts values when operating with expressions of a different type.

The advantage of weakly-typed languages from a web developer’s point
of view is that they are often easy to learn and use. Furthermore, they
allow developers to create applications quickly as they do not have to worry
about declaring data types for the input parameters of a web application.
Hence, most parameters are treated as generic "strings' even though they
might actually represent an integer value, a boolean, or a set of specific
characters (e.g., an e-mail address). As a result, attacks are often possible if
the validation is poor. For example, an attacker could inject scripting code

63

(i.e., a string) into the value of a parameter that is normally used by the
application to store an integer.

In order to gain deeper insights into the reasons behind common vul-
nerabilities in web applications, we analyze in this Chapter around 3,933
cross-site scripting (XSS) and 3,758 SQL injection vulnerabilities affecting
applications written in popular languages such as PHP, Python, ASP, and
Java. For more than 800 of these vulnerabilities, we manually extract and
analyze the code responsible for handling the input, and determined the
type of the affected parameter (e.g., boolean, integer, or string). Further-
more, we study 79 web application frameworks available for many popular
programming languages.

5.1 Data Collection and Methodology

In order to study the characteristics of vulnerable web applications, it is
necessary to have access to a significant amount of vulnerability data. Hence,
we collected and classified a large number of vulnerability reports according
to the methodology described in Section 4.1. These vulnerability reports
were used to identify the programming language each web application was
developed in. Furthermore, we used the vulnerability reports we gathered
to semi-automatically extract vulnerable input parameters from the source
code of web applications. Finally, by automatically collecting data from a
number of open source project hosting services, we were able to estimate
the popularity of web programming languages.

In the following, we discuss our methodology for extracting information
from vulnerability reports, project hosting services, and open source web
applications.

5.1.1 Vulnerability Reports

To study the relationship between programming language and vulnerable
web applications, we automatically analyzed cross-site scripting and SQL
injection—related CVEs. As mentioned in section 4.1, many CVE entries
contain a description of the location of a vulnerability in the web applica-
tion. In general, vulnerability reports use fully—qualified filenames to identify
the vulnerable script. We used the filename extension to classify whether an
application is written in PHP (.php), ASP/ASP.NET! (.asp, .aspx), Cold-
Fusion (.cfm), Java (.jsp), Perl (.pl), and Python (.py).

The programming language of some applications could not be determined
in an automated fashion as the corresponding vulnerability reports did not
provide any information concerning the vulnerable scripts. In these cases,

We chose to determine the platform instead of the language as we could not automat-
ically identify whether an application was implemented in C# or Visual Basic.

we manually determined the programming language by performing search
queries and analyzing the source code of the web application.

5.1.2 Attack Vectors

We analyzed the source code of a significant number of vulnerable web ap-
plications with the aim of understanding to what extent data typing and
validation mechanisms could help in preventing cross-site scripting and SQL
injection vulnerabilities. In order to obtain a test set of applications with
a high number of vulnerable input parameters, we chose to focus our study
on 20 popular open source PHP web applications that contained the highest
incidence of cross-site scripting vulnerabilities, and on 20 with the highest
incidence of SQL injection vulnerabilities. The 28 applications belonging to
the two, largely overlapping, sets are: claroline, coppermine, deluxebb, dru-
pal, €107, horde, jetbox, joomla, mambo, mantis, mediawiki, moodle, mybb,
mybloggie, papoo, phorum, phpbb, phpfusion, phpmyadmin, pligg, punbb,
runcms, serendipity, squirrelmail, typo3, webspell, wordpress, and xoops.

For each of these applications, we manually examined the corresponding
vulnerability reports to identify the specific application version and any
example of attack inputs. Given this information, we downloaded the source
code of each application and linked the input vectors to the application’s
source code to determine an appropriate data type. We repeated this process
for a total of 809 vulnerability reports.

In the process of linking vulnerability reports to source code, we first
used the version of the source code that was known to be vulnerable. Then,
we repeated the process and linked the vulnerability reports to source code
in which the vulnerabilities were patched. To determine the data type of the
vulnerable input parameter, we manually analyzed how each vulnerability
was patched and how the value of the input parameter was used throughout
the web application.

5.2 Analysis

In this section, we present the results of our empirical study, and draw
conclusions from an analysis of the data. In particular, we first examine
whether certain languages are more prone to cross-site scripting and SQL
injection vulnerabilities. Then, we analyze the type of the input parameters
that commonly serve as attack vectors, and we compare them with particular
features provided by the web programming languages, or by the application
frameworks available to them.

100:? . B mUnknown
Zg%j Ruby

70% & Python
60% @ Coldfusion
50% B C/CHt
ig: M ASP.NET
20% B Classic ASP
10% M Java

0% H Perl

Popularity XSS sQL B PHP

Figure 5.1: Distributions of popularity, reported XSS vulnerabilities, and re-
ported SQL injection vulnerabilities for several web programming languages.

5.2.1 Language Popularity and Reported Vulnerabilities

A central question of this paper concerns whether the choice of programming
language used to develop web applications influences the exposure of those
applications to cross-site scripting and SQL injection vulnerabilities. To
that end, we performed a comparison of the distribution of popular web
programming languages to the distribution of reported cross-site scripting
and SQL injection vulnerabilities for each of those languages.

Language popularity was calculated by crawling open source project
hosting services such as Google Code, Sourceforge, and Freshmeat. For
each of these services, we identified web application projects by filtering on
project tags using values such as “cms”, “dynamic content”, and “message
board”. These projects were classified according to the primary development
language by using each service’s built-in search functionality.

The vulnerability data was drawn from the NVD [78] by automatically
classifying reports according to the language of the affected application. For
each report, our analysis checked whether the report concerned an cross-site
scripting or SQL injection vulnerability. Our analysis identified 5,413 cross-
site scripting and 4,825 SQL injection CVE entries out of a total of 39,081
entries. Because 104 of these entries did not correspond to any CPE values
identifying vulnerable applications, these were excluded from that set. The
resulting set of CVE entries used in our analysis was composed of 5,361
cross-site scripting and 4,773 SQL injection reports.

These vulnerability reports correspond to 3,933 and 3,758 applications
vulnerable to cross-site scripting respectively SQL injection. An automated
classification of the vulnerability reports was able to classify 3,254 and 2,187

of the cross-site scripting and SQL injection CVE affected applications, re-
spectively, as implemented in a particular programming language. The re-
mainder of the vulnerable applications were manually classified.

The distributions of language popularity and vulnerability reports are
shown in Figure 5.1. The graph shows the statistics for 9 popular pro-
gramming languages. Unfortunately, for 3.8% of SQL injection and 19%
of cross-site scripting vulnerability reports, we were not able to automati-
cally determine the primary development language of the application. These
cases, represented by the “Unknown” category in Figure 5.1, are often re-
lated to commercial products for which the software companies do not pro-
vide information about the development language on their websites.

Under the null hypothesis — that is, that the choice of programming lan-
guage does not influence the exposure of applications to cross-site scripting
and SQL injection vulnerabilities — one would expect the relative distri-
butions of popularity and reported vulnerabilities to be roughly equivalent.
However, the histogram shows that this is not always the case.

The result for PHP-based applications is an illustrative example. 52% of
the applications in our test set were developed in PHP, a value that also cor-
responds to the share of reported cross-site scripting vulnerabilities in PHP
applications. Therefore, it may seem that PHP is intrinsically no more or
less vulnerable than other languages to this kind of attack. However, PHP-
related vulnerabilities comprised almost 80% of the SQL injection reports
from our collection of CVE entries. A similar, but opposite trend mismatch
can be observed for many other languages. For example, although 10% of
the applications in our dataset were written in Java, we found that only 0.5%
of SQL injection vulnerabilities are associated with Java-based applications.
Clearly, Java applications seem to be less prone to both cross-site scripting
and SQL injection vulnerabilities. These differences are too common and
too large to be considered statistically insignificant.

This is also shown by Pearson’s chi-square tests which we used to assess
the goodness of fit. We tested the hypothesis that the language popularity
and the number of vulnerabilities per language is not significantly different.
For cross-site scripting, we found chi-square 48.4 and for SQL injection we
found chi-square 138. The degree of freedom is 8. Looking these numbers
up in the chi-square table shows that both probabilities are less than 0.001
meaning that the hypothesis is not true. Thus, the data suggests that the
number of cross-site scripting respectively SQL injection vulnerabilities for
a given language is not determined by the popularity of that language.

Note that there may be many possible reasons to explain the discrepan-
cies. For example, one possible explanation might be that Java developers
are simply more careful than those that favor other languages, and that
PHP developers are instead worse, on average, at applying known defense
techniques to prevent SQL injection. On the other hand, it might also be

that certain languages, as well as the web development frameworks available
for those languages, are intrinsically more resistant to — or provide better
defenses against — cross-site scripting and SQL injection vulnerabilities.

Another possible reason could be that the web development frameworks
available for a certain language provide a better set of functionality (or a
better API for that functionality) to properly sanitize the user inputs, thus
making the life easier for the web developers. In the rest of the section,
we explore in more detail these possibilities by analyzing the impact of the
language type system on the security of the application, and the functionality
provided by common application frameworks that can be used to prevent
cross-site scripting and SQL injection vulnerabilities.

5.2.2 Language Choice and Input Validation

As we saw from Figure 5.1, the choice of programming language clearly has
an influence on the exposure of applications developed in those languages
to cross-site scripting and SQL injection vulnerabilities. While there are
several plausible explanations for this phenomenon, one likely hypothesis is
that some programming languages are intrinsically more robust against the
introduction of web application vulnerabilities. In the following, we examine
a particular mechanism by which a language or framework might mitigate
the potential for web application attacks.

Input Validation

One defensive mechanism that is critical for the correct functioning of appli-
cations is input validation. In the abstract, input validation is the process
of assigning semantic meaning to unstructured and untrusted inputs to an
application, and ensuring that those inputs respect a set of constraints de-
scribing a well-formed input. For web applications, inputs take the form
of key-value pairs of strings. The validation of these inputs may be per-
formed either in the browser using Javascript, or on the server. Since there
is currently no guarantee of the integrity of computation in the browser,
security-relevant input validation should be performed on the server, and,
therefore, we restrict our discussion of input validation to this context.

To elucidate the input validation process for server-side web applications,
consider the pedagogical HTTP request shown in Figure 5.2. This figure
shows a typical structure for a payment submission request to a fictional
e-commerce application. As part of this request, there are several input
parameters that the controller logic for /payment/submit must handle: cc,
a credit card number; month, a numeric month; year, a numeric year; save,
a flag indicating whether the payment information should be saved for future
use; token, an anti-CSRF token; and SESSION, a session identifier. Each of
these request parameters requires a different type of input validation. For

POST /payment/submit HTTP/1.1
Host: example.com

Cookie: SESSION=cbb8587c63971b8e
[...]

cc=1234567812345678&month=8&year=2012&
save=false&token=006bf047a6c97356

Figure 5.2: Example HTTP request.

instance, the credit card number should be a certain number of characters
and pass a Luhn check. The month parameter should be an integer value
between 1 and 12 inclusive. The year parameter should also be an integer
value, but can range from the current year to an arbitrary year in the near
future. The save flag should be a boolean value, but as there are different
representations of logical true and false (e.g., {true, false}, {1,0}, {yes,no}),
the application must consistently recognize a fixed set of possible values.

Input validation, in addition to its role in facilitating program correct-
ness, is a helpful tool to prevent the introduction of vulnerabilities into web
applications. Were there an attacker to supply the value

year=2012’; INSERT INTO admins(user, passwd)
VALUES(’foo’, ’bar’);--

to our fictional e-commerce application as part of a SQL injection vulner-
ability to escalate privileges, proper input validation would recognize that
the malicious value was not a valid year, with the result that the application
would refuse to service the request.

Input validation can occur in multiple ways. Validation can be performed
implicitly — for instance, through typecasting a string to a primitive type
like a boolean or integer. For the example attack shown above, a cast from
the input string to an integer would result in a runtime cast error, since
the malicious value is not a well-formed integer. On the other hand, input
validation can be performed explicitly, by invoking framework-provided val-
idation routines. Explicit validation is typically performed for input values
exhibiting complex structure, such as email addresses, URLSs, or credit card
numbers.

In this respect, the choice of programming language and framework for
developing web applications plays an important role in the security of those
applications. First, if a language features a strong type system such that
typecasts of ill-formed input values to certain primitive types will result in
runtime errors, the language can provide an implicit defense against the
introduction of vulnerabilities like cross-site scripting and SQL injection.

Second, if a language framework provides a comprehensive set of input val-
idation routines for complex data such as email addresses or credit card
numbers, the invocation of these routines can further improve the resilience
of a web application to the introduction of common vulnerabilities.

5.2.3 Typecasting as an Implicit Defense

To quantify the extent to which typecasting of input values to primitive
types might serve as a layer of defense against cross-site scripting and SQL
injection vulnerabilities, we performed an analysis over vulnerability reports
for a test set of web applications. Specifically, we examined the source code
of these applications to determine the whether the vulnerable input has a
primitive type. Where we could not directly identify the type, we looked at
the modifications made to the source code to resolve the vulnerability.

We extracted all the input parameters of the applications through the
approach described in Section 5.1.2. Following this approach, we were able
to link 270 parameters corresponding to cross-site scripting attack vectors,
and 248 parameters corresponding to SQL injection vectors to the source of
of the test set of applications.?

Figures 5.3a and 5.3b show an overview of the types corresponding to
input parameters vulnerable to cross-site scripting and SQL injection. Most
of the vulnerable parameters had one of the following types: boolean, nu-
meric, structured text, free text, enumeration, or union. Booleans can take
either logical true or false values. Examples of numeric types are integers or
floating point numbers. By “structured text”, we mean that the parameter
is a string and, additionally, there is an expected structure to the string.
A real name, URL, email address, or a username in a registration form are
examples of this type. In contrast, the “free text” type denotes arbitrary,
unstructured strings. Input parameters corresponding to the enumeration
type should only accept a finite set of values that are known in advance.
Examples are genders, country names, or a select form field. Finally, a
union type denotes a variable that combines multiple types (e.g., a value
that should either be a numeric value or a boolean value).

Only about 20% of the input validation vulnerabilities are associated
with the free text type. This means that in these cases, the application
should accept an arbitrary text input. Hence, an input validation vulner-
ability of this type can only be prevented by sanitizing the user-supplied
input.

Interestingly, 35% of the input parameters vulnerable to cross-site script-
ing are actually numeric, enumeration, or boolean types (including lists of
values of these types), while 68% of the input parameters vulnerable to SQL
injections correspond to these simple data types. Thus, the majority of

2Many CVE reports do not mention any attack vectors. Hence, we excluded them for
this analysis.

input validation vulnerabilities for these applications could have been pre-
vented by enforcing the validation of user-supplied input based on simple
data types. We believe that the large number of parameters vulnerable to
SQL injection that correspond to the numeric type is caused by the phe-
nomenon that many web applications use integers to identify objects and
use these values in the application logic that interacts with the backend
database (e.g. to identify users, messages, or blog posts).

5.2.4 Input Validation as an Explicit Defense

In Section 5.2.2 we argued that a comprehensive support for input valida-
tion in popular web application frameworks can improve the resilience of a
language to the introduction of cross-site scripting and SQL injection vul-
nerabilities. Even though developers must remember to explicitly use these
validation functions for every possible input of the application, the fact that
the right functions are already provided by the framework greatly simplifies
the process.

To verify the extension of the support offered by common frameworks,
we first need to extract the different classes of structured text responsible
for most of the attack against web applications. Figures 5.4a and 5.4b show
a detailed overview of which particular “structured text” is responsible for
most of the cross-site scripting and SQL injection vulnerabilities. The graph
shows that web applications would benefit from input validation routines
that are able to sanitize complex data such as URLs, usernames, and email
addresses, since these data classes are often used as attack vectors.

However, implementing them and systematically analyzing them for cor-
rectness and safety is not a simple task. Therefore, one should expect this
functionality to be provided by many application frameworks. In our exper-
iments, we analyzed 78 open source web application frameworks for several
web programming languages, including: PHP, Perl, Python, Ruby, .NET,
and Java®. These frameworks were selected on the basis of factors such as
popularity as well as the size and activity level of the developer and user
communities. For each framework, we classified the kinds of validation func-
tions for complex input values that are exposed to developers.

Partial results of this classification are shown in Table 5.1. We observe
that almost 20% of the frameworks we studied do not provide any validation
functionality at all. In fact, of the 78 frameworks we analyzed, only 37
provided any support for validation of complex input data, though these
frameworks supported a wide variety of different data types — 31 in all.®

Unfortunately, there is a mismatch between the set of validation func-
tions normally provided by these frameworks and the common attack vectors

3The web frameworks that have been analyzed are listed in appendix A
“In the interests of space, in Table 5.1 we summarize only those validation functions
that appeared in five or more frameworks.

Language PHP Perl Python Ruby .NET Java Total
Frameworks 21 4 2 0 3 7 37 (100%)
Email 16 2 1 0 3 7 29 (78%)

Date 13 4 2 0 2 3 24 (64%)

URL 11 1 2 0 2 5 21 (57%)
Alphanumeric 10 2 1 0 1 0 14 (38%)
Phone 7 1 0 0 0 1 9 (24%)
Time 6 1 2 0 0 0 9(24%)
Password 4 3 0 0 0 2 9 (24%)
IP Address 6 1 1 0 0 0 8 (22%)
Filename 4 2 1 0 0 0 7(19%)
Credit card 3 0 0 0 1 3 7 (19%)

Table 5.1: Framework support for various complex input validation types
across different languages.

reported in Figures 5.4b and 5.4a. For example, 43% of the frameworks do
not provide any way to automatically validate URLs that are often used for
cross-site scripting attacks.

5.3 Discussion

Our empirical results from Section 5.2 indicate that the implicit validation
resulting from casting input data to primitive types observed in applications
written in strongly-typed languages is, indeed, correlated to a decreased ex-
posure to cross-site scripting and SQL injection vulnerabilities. Additionally,
the data indicates that the availability of explicit validation functions is also
correlated with a reduced count of reported vulnerabilities.

As a result, we can conclude that there is empirical evidence to support
the general intuition that input validation serves as an effective layer of
defense against cross-site scripting and SQL injection vulnerabilities. In
fact, it is likely that the increased usage of strongly-typed languages and
explicit input validation functions for web programming would have similar
benefits for other classes of vulnerabilities, as well as more general software
faults.

Note, however, that we observe that input validation is not a panacea
for eradicating vulnerabilities in web applications. For example, a particular
drawback of the explicit input validation for complex input data is that the
developer is responsible for applying the appropriate validator to each and
every possible user input that is not already covered by implicit typecasting.
Unfortunately, this is, as operational experience has demonstrated in the

case of web application output sanitization, an arduous and error-prone
task [99].

Therefore, we advocate that, analogous to the case of framework support
for automatic output sanitization, web development languages and frame-
works should support the automatic validation of web application inputs as
an additional security measure against both cross-site scripting and SQL
injection vulnerabilities, as well as other security-relevant application logic
flaws.

An automatic input validation policy can take several concrete forms.
One such instantiation would be to enrich the type system of an appro-
priate strongly-typed web programming language, such that the language
could infer the proper validation routines to apply for a wide variety of
common input data. Another possibility would be framework support for a
centralized policy description that explicitly enumerates the possible input
vectors to an application, as well as the appropriate validation functions to
apply. The investigation of these avenues for automatic input validation is
promising research work.

5.4 Summary

Web applications have become an important part of the daily lives of millions
of users. Unfortunately, web applications are also frequently targeted by
attacks such as cross-site scripting and SQL injection.

In this Chapter, we presented our empirical study of more than 10.000
web application vulnerabilities and more than 70 web application develop-
ment frameworks with the aim of gaining deeper insights into how common
web vulnerabilities can be prevented. In the study, we have focused on the
relationship between the specific programming language used to develop web
applications, and the vulnerabilities that are commonly reported.

Our findings suggest that many SQL injection and cross-site scripting
could easily be prevented if web languages and frameworks would be able to
automatically validate input based on common data types such as integer,
boolean, and specific types of strings such as e-mails and URLs.

list of
enumeration
1%

union types
0%

list of boolean
list of union

3%
0%
list of number
1% boolean
3%

list of freetext
1% enumeration

12%

list of structured
text
0%

(a) cross-site scripting vulnerabilities.

list of number union types

7% 1% boolean
4%

list of freetext
1%
enumeration

list of structured 10%

text
1%

freetext
7%

(b) SQL injection vulnerabilities.

Figure 5.3: Data types corresponding to vulnerable input parameters.

bbcode tag
8%

date
0%

filename
9%

hostname
1%
ip
2%
password
2%
path
3%
search realname
6% e
(a) cross-site scripting vulnerabilities.
bbcode tag alphanumeric
o
0% % date
4%
filename
4%
hostname

url
5%

0%

ip

2%

password
9%

path

0%

\realname

4%

(b) SQL injection vulnerabilities.

Figure 5.4: Structured string corresponding to vulnerable input parameters.

Chapter 6

Automated Prevention of
Input Validation
Vulnerabilities in Web

Applications

In the previous chapters we have analyzed a large number of input validation
vulnerability reports to understand why they are still very prevalent and how
those vulnerabilities can be prevented. Application developers often fail to
implement any countermeasures against those vulnerabilities and many of
them can be prevented if web programming languages and frameworks would
enforce the validation of user-supplied input using common data types.

In this Chapter, we present IPAAS, a novel technique for preventing the
exploitation of cross-site scripting and SQL injection vulnerabilities based on
automated data type detection of input parameters. IPAAS automatically
and transparently augments otherwise insecure web application development
environments with input validators that result in significant and tangible
security improvements for real systems. Specifically, IPAAS automatically
(i) extracts the parameters for a web application; (ii) learns types for each
parameter by applying a combination of machine learning over training data
and a simple static analysis of the application; and (iii) automatically applies
robust validators for each parameter to the web application with respect to
the inferred types.

IPAAS is transparent to the developer and helps therefore developers
that are unaware of web application security issues to write more secure
applications than they otherwise would do. Furthermore, our technique is
not dependent on any specific programming language or framework. This
allows IPAAS to improve the security of legacy applications and/or appli-
cations written in insecure languages. Unfortunately, due to the inherent
drawbacks of input validation, IPAAS is not able to protect against all kind

7

<div class="msg">
<hl style="${msg.style}">${msg.title}</h1>
<p>${msg.body}</p>

</div>

Figure 6.1: HTML fragment output sanitization example.

of cross-site scripting and SQL injection attacks. However, our experiments
show that TPAAS is a simple and effective solution that greatly improves
the security of web applications.

6.1 Preventing input validation vulnerabilities

Input validation and sanitization are related techniques for helping to ensure
correct web application behavior. However, while these techniques are re-
lated, they are nevertheless distinct concepts. Sanitization — in particular,
output sanitization — is widely acknowledged as the preferred mechanism
for preventing the exploitation of cross-site scripting and SQL injection vul-
nerabilities. In this section, we highlight the advantages of input validation,
and thereby motivate our approach we present in following sections.

6.1.1 Output sanitization

One particularly promising approach to preventing the exploitation of in-
put validation vulnerabilities is robust, automated sanitization of untrusted
input. In this approach, sanitizers are automatically applied to data com-
puted from untrusted data immediately prior to its use in document or query
construction [90, 96, 118].

As an example of output sanitization, consider the web template frag-
ment shown in Figure 6.1. Here, untrusted input is interpolated as both
child nodes of the h1 and p DOM elements, as well as in the style attribute
of the h1 element. At a minimum, a robust output sanitizer should ensure
that dangerous characters such as ‘<’ and ‘&’ should not appear un-escaped
in the values to be interpolated, though more complex element white-listing
policies could also be applied. Additionally, the output sanitizer should be
context-aware; for instance, it should automatically recognize that ‘"’ char-
acters should also be encoded prior to interpolating untrusted data into an
element attribute. The output sanitizer described here would be able to
prevent attacks that might bypass input validation. For instance, an in-
put verified to be valid might nevertheless be concatenated with dangerous
characters during processing before being interpolated into a document.

Output sanitization that is automated, context-aware, and robust with
respect to real browsers and databases is an extremely attractive solution to
preventing cross-site scripting and SQL injection attacks. This is because
it provides a high degree of assurance that the protection system’s view
of untrusted data used to compute documents and queries is identical to
the real system’s view. That is, if an output sanitizer decides that a value
computed from untrusted data is safe, then it is almost certainly the case
that that data is actually safe to render to the user or submit to the database.

Unfortunately, output sanitization is not a panacea. In particular, in
order to achieve correctness and complete coverage of all locations where
untrusted data is used to build HTML documents and SQL queries, it is
necessary to construct an abstract representation of these objects in order
to track output contexts. This generally requires the direct specification
of documents and queries in a domain-specific language [90, 96], or else
the use of a language amenable to precise static analysis. While new web
applications have the option of using a secure-by-construction development
framework or templating language, legacy web applications do not have
this luxury. Furthermore, many web developers continue to use insecure
languages and frameworks for new applications.

6.1.2 Input validation

In contrast to output sanitization, another approach to preventing cross-
site scripting and SQL injection injection vulnerabilities is the use of input
validation.

As explained in Chapter 5, input validation is fundamentally the process
of ensuring that program input respects a specification of legitimate values
(e.g., a certain parameter should be an integer, or an email address, or a
URL). Any program that accepts untrusted input should incorporate some
form of input validation procedures, or input validators, to ensure that the
values it computes are sensible. The validation should be performed prior to
executing the main logic of the program, and can vary greatly in complexity.
At one end of the spectrum, programs can apply what we term implicit
validation due to, for instance, typecasting of inputs from strings to integers
in a statically-typed language. On the other hand, programs can apply
explicit validation procedures that check whether program input satisfies
complex structural specifications, such as the Luhn check for credit card
numbers.

In the context of web applications, input validation should be applied to
all untrusted input; this includes input vectors such as HT'TP request query
strings, POST bodies, database queries, XHR calls, and HTML5 postMes-

sage invocations.

6.1.3 Discussion

Input validation is more general than output sanitization in the sense that
input validation is concerned with the broader goal of program correctness,
while sanitization has the specific goal of removing dangerous constructs
from values computed using untrusted data. Sanitation procedures, or sani-
tizers, focus on enforcing a particular security policy, such as preventing the
injection of malicious JavaScript code into an HTML document. While rigor-
ous input validation can provide a security benefit as a side-effect, sanitizers
should provide strong assurance of protection against particular classes of
attacks. Input validation in isolation, on the other hand, cannot guarantee
that an input it considers safe will not be transformed during subsequent
processing into a dangerous value prior to being output into a document or
query. Hence, input validation provides less assurance that vulnerabilities
will be prevented than output sanitization.

We note, however, that despite these drawbacks, input validation has
significant benefits as well. First, even though input validation is not nec-
essarily focused on enforcing security constraints, rigorous application of
robust input validators has been shown to be remarkably effective at pre-
venting cross-site scripting and SQL injection attacks in real, vulnerable web
applications. For instance, in the previous chapter, we have demonstrated
that robust input validation would have been able to prevent the majority of
XSS and SQL injection attacks against a large corpus of known vulnerable
web applications.

Second, it is comparatively simple to achieve complete coverage of un-
trusted input to web applications as opposed to the case of output sanitiza-
tion. Web application inputs can be enumerated given a priori knowledge
of the language and development framework, whereas context-aware output
sanitization imposes strict language requirements that often conflict with
developer preferences. Consequently, input validation can be applied even
when insecure legacy languages and frameworks are used.

6.2 IPAAS

In this section, we present IPAAS (Input PArameter Analysis System), an
approach to securing web applications against cross-site scripting and SQL
injection attacks using input validation. The key insight behind TPAAS is
to automatically and transparently augment otherwise insecure web appli-
cation development environments with input validators that result in signif-
icant and tangible security improvements for real systems.

IPAAS can be decomposed into three phases: (i) parameter extraction,
(ii) type learning, and (iii) runtime enforcement. An architectural overview
of IPAAS is shown in Figure 6.2. In the remainder of this section, we describe
each of these phases in detail.

Extraction phase Analysis and training phase

‘ HTTP
.| requests —» HTTP Request Parser X Validators
L — o | Analysis

— " Engine
HTTP
Code
Y| resPO'{‘/s,ef —> HTML Parser Scanner
-
Se!'ver- / Runtime
side validation
(\ o Validation
N //“ Engine
o N
[Input Validation ¢
\ Policies //

Figure 6.2: The IPAAS architecture. A proxy server intercepts HTTP mes-
sages generated during application testing. Input parameters are classified
during an analysis phase according to one of a set of possible types. After
sufficient data has been observed, IPAAS derives an input validation policy
based on the types learned for each application input parameter. This policy
is automatically enforced at runtime by rewriting the application.

6.2.1 Parameter Extraction

The first phase is essentially a data collection step. Here, a proxy server
intercepts HTTP messages exchanged between a web client and the appli-
cation during testing. For each request, all observed parameters are parsed
into key-value pairs, associated with the requested resource, and stored in
a database. Each response containing an HI'ML document is processed by
an HTML parser that extracts links and forms that have targets associated
with the application under test. For each link containing a query string,
key-value pairs are extracted similarly to the case of requests. For each
form, all input elements are extracted. In addition, those input elements
that specify a set of possible values (e.g., select elements) are traversed to
collect those values.

6.2.2 Parameter Analysis

The goal of the second phase is to label each parameter extracted during the
first phase with a data type based on the values observed for that parameter.
The labeling process is performed by applying a set of validators to the test
inputs.

Type Validator

boolean (0|1)|(truelfalse)|(yes|no)
integer (+|-)7[0-9]+

float (+[-)7[0-9]1+(\+.[0-9]+)7

URL RFC 2396, RFC 2732
token static set of string literals
word [0-9a-zA-ZQ -]+
words [0-9a-zA-Z@ - \r\n\t]+
free-text none

Table 6.1: IPAAS types and their validators.

Validators

Validators are functions that check whether a value meets a particular set of
constraints. In this phase, IPAAS applies a set of validators, each of which
checks that an input belongs to one of a set of types. The set of types and
regular expressions describing legitimate values are shown in Table 6.1. In
addition to the types enumerated in Table 6.1, TPAAS recognizes lists of
each of these types.

Analysis Engine

TPAAS determines the type of a parameter in two sub-phases. In the first,
types are learned based on values that have been recorded for each parame-
ter. In the second, the learned types are augmented using values extracted
from HTML documents.

Learning In the first sub-phase, the analysis begins by retrieving all the
resource paths that were visited during application testing. For each path,
the algorithm retrieves the unique set of parameters and the complete set
of values for each of those parameters observed during the extraction phase.
Each parameter is assigned an integer score vector of length equal to the
number of possible validators.

The actual type learning phase begins by passing each value of a given
parameter to every possible type validator. If a validator accepts a value,
the corresponding entry in that parameter’s score vector is incremented by
one. In the case that no validator accepts a value, then the analysis engine
assigns the free-text type to the parameter and stops processing its values.

After all values for a parameter have been processed, the score vector
is used to select a type and, therefore, a validator. Specifically, the type
with the highest score in the vector is selected. If there is a tie, then the
most restrictive type is assigned; this corresponds to the ordering given in

Table 6.1.

The second sub-phase uses the information extracted from HTML doc-
uments. First, a check is performed to determine whether the parameter is
associated with an HTML textarea element. If so, the parameter is im-
mediately assigned the free-text type. Otherwise, the algorithm checks
whether the parameter corresponds to an input element that is one of a
checkbox, radiobutton, or select list. In this case, the observed set of
possible values are assigned to the parameter. Moreover, if the associated
element is a checkbox, a multi-valued select, or the name of the parameter
ends with the string [], the parameter is flagged as a list.

The analysis engine then derives input validation policies for each pa-
rameter. For each resource, the path is linked to the physical location of
the corresponding application source file. Then, the resource parameters are
grouped by input type (e.g., query string, request body, cookie) and serial-
ized as part of an input validation policy. Finally, the policy is written to
disk.

Static Analysis The learning sub-phases described above can be aug-
mented by static analysis. In particular, IPAAS can use a simple static
analysis to find parameters and application resources that were missed dur-
ing the learning phase due to insufficient training data. This analysis is, of
course, specific to a particular language and framework. We describe our
prototype implementation of the static analysis component in Section 6.2.4.

6.2.3 Runtime Enforcement

The result of the first two phases is a set of input validation policies for
each input parameter to the web application under test. The third phase
occurs during deployment. At runtime, IPAAS intercepts incoming requests
and checks each request against the validation policy for that resource’s pa-
rameters. If a parameter value contained in a request does not meet the
constraints specified by the policy, then IPAAS drops the request. Other-
wise, the application continues execution.

A request may contain parameters that were not observed during the
previous phases, either in the learning sub-phases or static analysis. In
this case, there are two possible options. First, the request can simply be
dropped. This is a conservative approach that might, on the other hand,
lead to program misbehavior. Alternatively, the request can be accepted and
the new parameter marked as valid. This fact could be used in a subsequent
learning phase to refresh the application’s input validation policies.

6.2.4 Prototype Implementation

Parameter extraction We have implemented a prototype of the IPAAS
approach for PHP. Parameter extraction is performed by a custom OWASP
WebScarab extension, and HTML parsing performed by jsoup. WebScarab
is a client-side interceptor proxy, but this implementation choice is of course
not a restriction of TPAAS. The extractor could have easily been imple-
mented as a server-side component as well, for instance as an Apache filter.

Type learning The parameter analyzer was developed as a collection of
plugins for Eclipse and makes use of standard APIs exposed by the platform,
including JFace and SWT. The Java DOM API was used to read and write
the XML-based input validation policy files.

Static analyzer We implemented a simple PHP static analyzer using the
Eclipse PHP Development Tools (PDT). The analyzer scans PHP source
code to extract the set of possible input parameters. There are many ways
in which a PHP script can access input parameters. In simple PHP appli-
cations, the value of an input parameter is retrieved by accessing one of the
following global arrays: $_GET, $_POST, $_COOKIE, or $_REQUEST. However,
in more complex applications, these global arrays are wrapped by special
library functions that are specific to each web application.

In order to collect input parameters for PHP, our static analyzer per-
forms pattern matching against source code and records the name of input
parameters. The location of the name of an input parameter can be spec-
ified in a pattern. A pattern can be specified as a piece of PHP code and
is attached to one or more input vectors (e.g., $_GET). For example, the
pattern optional_param(’$’, ’x°’) specifies a pattern that we used to ex-
tract input parameters from the source code of the Moodle web application.
The analyzer makes a best-effort attempt to find all occurrences of function
invocations of optional_param having two parameters. The value in the
first argument is recorded, and the second argument is a “don’t care” that
is ignored. The analyzer can capture the names of input parameters in a
similar way when the input parameter is accessed via an array.

To perform the pattern matching itself, the analyzer transforms the pat-
tern and the PHP script to be analyzed into an abstract syntax tree (AST).
Then, the static analyzer tries to match the pattern AST against the AST
for the PHP script. For each match found in the source code, the analyzer
then traverses the script’s control flow graph (CFG) to check whether the
match is reachable from the entry point of the script. For example, when
an optional_param function invocation is observed, the analyzer checks
whether a potential call chain exists from the invocation site to the script
entry point. CFG traversal is recursive, including inclusions of other PHP
files using the require and include statements.

Application | PHP Files | Lines of Code

Joomla 1.5 450 128930
Moodle 1.6.1 1352 365357
Mybb 1.0 152 42989
PunBB 1.2.11 70 17374
Wordpress 1.5 125 29957

Table 6.2: PHP applications used in our experiments.

Runtime enforcement The runtime component is implemented as a
PHP wrapper that is executed prior to invoking a PHP script using PHP’s
autoprepend mechanism. The PHP XMLReader library is used to parse
input validation policies. The validation script checks the contents of all
possible input vectors using the validation routines corresponding to each
parameter’s learned type.

6.2.5 Discussion

The TPAAS approach has the desirable property that, as opposed to auto-
mated output sanitization, it can be applied to virtually any language or
development framework. TPAAS is can be deployed in an automated and
transparent way such that the developer need not be aware that their appli-
cation has been augmented with more rigorous input validation. While the
potential for false positives does exist, our evaluation results in Section 6.3
suggest that this would not be a major problem in practice.

However, our current implementation of IPAAS has a number of limita-
tions. First, type learning can fail in the presence of custom query string
formats. In this case, the IPAAS parameter extractor might not be able to
reliably parse parameter key-value pairs.

Second, the prototype implementation of the static analyzer is fairly
rudimentary. For instance, it cannot infer parameter names from variables
or function invocations. Therefore, if an AST pattern is matched and the
argument that is to be recorded is a non-terminal (e.g., a variable or function
invocation), then the parameter name cannot be identified. In these cases,
the location of the function invocation is stored along with a flag indicating
that an input parameter was accessed in a dynamic way. This allows the
developer the opportunity to identify the names of the input parameters
manually after the analyzer has terminated, if desired.

Parameter Type | Joomla Moodle MyBB PunBB Wordpress Total
xss sqli | xss sqli | xss sqli | xss sqli | xss sqli ‘ XSS sqli
word | 2 4 5 10 | 11 14 | 16 2 5 0 39 (36%) 30 (25%)
integer | 1 7 0 28| 6 23] 6 3 4 2 17 (16%) 63 (53%)
free-text | 3 2 4 0 5 1 4 0 | 13 0 29 (27%) 3 (3%)
boolean | 1 0 0 1 1 4 5 0 0 0 7 (6%) 5 (4%
enumeration | 1 2 0 0 3 8 1 2 0 1 5(5%) 13 (11%)
words | 2 1 0 1 0 0 2 0 1 0 5 (5%) 2 (2%
URL | O 0 0 0 1 0 1 0 3 0 5 (5%) 0 (0%)
list | O 0 0 1 1 2 1 1 0 0 2 (2%) 4 (5%
Total | 10 16 | 9 41 | 28 52 | 36 8 | 26 3 ‘ 109 120

Table 6.3: Manually identified data types of vulnerable parameters in five
large web applications.

6.3 Evaluation

To assess the effectiveness of our approach in preventing input validation
vulnerabilities, we tested our TPAAS prototype on five real-world web ap-
plications shown in Table 6.2. Each application is written in PHP, and
the versions we tested contain many known, previously-reported cross-site
scripting and SQL injection vulnerabilities.

To run our prototype, we created a development environment by import-
ing each application as a project in Eclipse version 3.7 (Indigo) with PHP
Development Tools (PDT) version 3.0 installed.

6.3.1 Vulnerabilities

Before starting our evaluation, we extracted the list of vulnerable param-
eters for reach application by analyzing the vulnerability reports stored
in the Common Vulnerabilities and Exposures (CVE) database hosted by
NIST [78]. For each extracted parameter, we manually verified the exis-
tence of the vulnerability in the corresponding application. In addition, we
manually determined the data type of the vulnerable parameter.

Table 6.3 summarizes the results of the manual analysis, and shows,
for each web application, the number of vulnerable parameters having a
particular data type. The dataset resulting from this analysis contains 109
cross-site scripting and 120 SQL injection vulnerable parameters.

According to Table 6.3, more than half of the SQL injections are associ-
ated with integer parameters, while the majority of the cross-site scripting
vulnerabilities are exploited through the use of parameters of type word.
Interestingly, only a relatively small number of vulnerabilities are caused by

Parameter Type | Joomla Moodle MyBB PunBB Wordpress Total
xss sqli | xss sqli | xss sqli | xss sqli | xss sqli ‘ XSS sqli
word | 2 4 1 0 5 7 12 1 1 0 21 (19%) 12 (10%)
integer | 1 6 0 2 2 8 5 1 3 0 1 (10%) 17 (14%)
free-text | 3 2 1 0 4 0 2 0 | 10 0 (18%) 2 (2%)
boolean | 1 O | 0 O | 1' 3| 4 o0 | 1! 1t 7 (6%) 4 (3%)
enumeration | 1 2 0 0 1 3 1 2 0 1 3 (3%) 8 (6%)
words | 2 0 0 0 0 0 1 0 0 0 3 (3%) 0 (0%)
URL | O 0 0 0 1 0 0 0 1 0 2 (2%) 0 (0%)
list | O 0 0 0 0 1 0 0 0 0 0 (0%) 1 (1%)
unknown | 0 0 2 0 2 1 1 0 1 0 6 (6%) 1 (1%)
Correctly Identified | 10 14 | 4 2 |15 20 |26 4 | 16 1 71 (65%) 41 (34%)
Wrongly Identified | - - - - 1 3 - - 1 1 2 (1.8%) 4 (3.3%)

(*) number reported as superscript indicate the parameters identified with
an incorrect type.

Table 6.4: Typing of vulnerable parameters in five large web applications
before static analysis.

free-text or similarly unconstrained parameters. This supports our hy-
pothesis that IPAAS can be used in practice to automatically prevent the
majority of input validation vulnerabilities.

6.3.2 Automated Parameter Analysis

In order to automatically label parameters with types, IPAAS requires a
training set containing examples of benign requests submitted to the web
application. We collected this input data by manually exercising the web
application and providing valid data for each parameter.

The results of our automated analysis are summarized in Table 6.4. For
each application, the table reports the number of vulnerable parameters
having a particular type. The results show that less than half of the param-
eters could be identified automatically. For most, our system was able to
assign the correct type. However, in a few cases, the parameter was part of
a request or serialized in a response, but had no value assigned to it. Hence,
the type could not be identified. These parameters are reported as having
type unknown.

Finally, IPAAS wrongly assigned the type boolean instead of integer
to two cross-site scripting and four SQL injection vulnerable parameters.
These misclassifications are caused by the overlap between boolean and
integer validators. In fact, parameters having values of “0” and “1” can be
considered of type boolean as well as integer (i.e., if only the values “0”

Joomla Moodle MyBB PunBB Wordpress
xss sqli ‘ xss sqli ‘ xss sqli ‘ xss sqli ‘ XSS sqli

Type

Total
‘ XSS sqli

Detected by static analysis

3 9 | 6 40 | 28 46 | 24 8 | 23 1

94 (86%) 104 (8

Missed during type analysis | 0 2 2 37 |10 18 | 10 4 6 0 8 (26%) 61(51°
Table 6.5: Results of analyzing the code.
Type | Joomla Moodle MyBB PunBB Wordpress Total
xss sqli | xss sqli | xss sqli | xss sqli | xss sqli ‘ XSS sqli
word | 2 4 4 7 10 10 | 15 1 5 0 36 (33%) 2 (18%)
integer | 1 7 0 25| 6 21 5 3 4 2 6 (156%) 58 (48%)
free-text | 3 2 3 0 4 1 2 0 10 0 22 (20%) 3 (3%)
boolean | 1 0 0 1 1 3 4 0 0 0 6 (6%) 4 (3%)
enumeration | 1 2 0 0 3 8 1 2 0 1 5((5%) 13 (11%)
words | 2 1 0 1 0 0 2 0 1 0 5 (5%) 2 (2%)
URL | O 0 0 0 1 0 0 0 2 0 3 (3%) 0 (0%)
list | O 0 0 0 0 1 0 0 0 0 0 (0%) 1 (1%)
unknown | 0 0 0 0 1 0 1 0 0 0 2 (2%) 0 (0%)
Total | 10 16 7T 34 |26 44 |30 6 | 22 3 ‘ 95 (87%) 103 (86%)

Table 6.6: Typing of vulnerable parameters in five large web applications
after static analysis.

and “1” are observed during training, the analysis engine gives priority to the
type boolean). Collecting more data for each parameter by exercising the
same functionality of a web application multiple times can result in different
values for the same parameter. Hence, collecting more training data would
increase the probability that our algorithm makes the correct classification.

6.3.3 Static Analyzer

To improve the detection ratio of the vulnerable parameters, we ran our
static analyzer on the source code of each application.

Table 6.5 shows the number of vulnerable parameters that were identified
with the help of the static analyzer. The tool was able to find 86% of the
cross-site scripting and 87% of the SQL injection affected parameters. By
comparing these input parameters with the ones that were detected by the
analysis engine, we see that 26% of the cross-site scripting and 51% of the
SQL injection affected parameters were missed by the analysis engine, but
were found by the static analyzer. Hence, the static analyzer component
can help in achieving a larger coverage of the type analysis, and, thus, help

Application | Vulnerabilities Prevented Vulnerabilities
XSS sql ‘ XSS sqli

Joomla | 10 16 7 (70%) 14 (88%)
Moodle | 9 41 4 (44%) 34 (83%)
MyBB | 28 52 21 (75%) 43 (83%)
PunBB | 36 8 27 (75%) 6 (75%)
Wordpress | 26 3 12 (46%) 3 (100%)

Total | 109 120 ‘ 71 (65%) 100 (83%)

Table 6.7: The number of prevented vulnerabilities in various large web
applications.

prevent a larger number of vulnerabilities.

Based on these results, we collected more input data by testing the func-
tionality of each web application using the data from the static analyzer.
Then, we ran IPAAS again to determine the data types of the newly discov-
ered parameters, and we manually verified whether the types were correctly
identified. The results are shown in Table 6.6. In this case, we obtained
better coverage, with 87% of cross-site scripting and 86% of SQL injection
affected parameters being properly identified. In addition, none of the pa-
rameters were misclassified.

Although the static analyzer helps significantly in achieving a higher
coverage, a few parameters were still missed during analysis. This problem
could be improved by employing a more precise static analysis. Also, we
believe that unit testing might serve as an additional source of test input
data to help improve IPAAS’ coverage.

6.3.4 Impact

To assess the extent to which TPAAS is effective in preventing input vali-
dation vulnerabilities in practice, we manually tested whether it was still
possible to exploit the aforementioned vulnerabilities while IPAAS was en-
abled. During our tests, we explored different ways to perform the attacks,
and to evade possible sanitization and validation routines as reported by
XSS and SQL cheatsheets available on the Internet.

Table 6.7 shows the number of cross-site scripting and SQL injection
vulnerabilities that are prevented by IPAAS. We observe that most of the
SQL injection vulnerabilities and a large fraction of cross-site scripting vul-
nerabilities became impossible to exploit with the input validation policies
that were automatically extracted in our last experiment in place.

The results of this analysis are consistent with our observation that the
majority of input validation vulnerabilities on the web can be prevented

by labeling the parameter with a data type that properly constrains the
range of legitimate values. If a parameter is assigned to an unknown or
unrestricted type such as free-text, our system will still accept arbitrary
input. In these cases, the vulnerability is not prevented by our system.

The difference in the number of prevented cross-site scripting and SQL
injection vulnerabilities is mainly due to the relatively large number of
integer parameters that are vulnerable to SQL injection, while many cross-
site scripting vulnerabilities are due to injections in free-text parameters.
We believe that the large number of parameters vulnerable to SQL injection
that correspond to the type integer is caused by the phenomenon that web
applications frequently use integers to identify records.

6.4 Summary

Web applications are popular targets on the Internet, and well-known vul-
nerabilities such as cross-site scripting and SQL injection are, unfortunately,
still prevalent. Current mitigation techniques for cross-site scripting and
SQL injection vulnerabilities mainly focus on some aspect of automated
output sanitization. In many cases, these techniques come with a large run-
time overhead, lack precision, or require invasive modifications to the client
or server infrastructure.

In this Chapter, we identified automated input validation as an effective
alternative to output sanitization for preventing cross-site scripting and SQL
injection vulnerabilities in legacy applications, or where developers choose
to use insecure legacy languages and frameworks. We presented the IPAAS
approach, which improves the secure development of web applications by
transparently learning types for web application parameters during testing,
and automatically applying robust validators for these parameters at run-
time.

The evaluation of our implementation for PHP demonstrates that IPAAS
can automatically protect real-world applications against the majority of
cross-site scripting and SQL injection vulnerabilities with a low false positive
rate. As IPAAS ensures the complete and correct validation of all input to
the web application, IPAAS can in principle prevent other classes of input
validation vulnerabilities as well. These classes include Directory Traversal,
HTTP Response Splitting and HT'TP Parameter Pollution.

Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

To understand how to improve the security of web applications, insights into
how vulnerabilities in real web applications have evolved and how they can
be prevented become of interest. In this dissertation we claim that, in order
to improve the security of web applications, common web vulnerabilities such
as cross-site scripting and SQL injection have to be automatically prevented
using input validation techniques.

Our study on the evolution of input validation vulnerabilities in web ap-
plications in Chapter 4 demonstrates that these classes of vulnerabilities are
still very prevalent. Measurements on a large number of input validation vul-
nerabilities provided insights into whether developers are better at writing
secure web applications today than they used to be in the past. The results
of this study suggest that web developers are still failing to implement ex-
isting defense mechanisms against input validation vulnerabilities and that
there is a need for techniques that secure web applications by design. That
is, techniques that prevent these classes of vulnerabilities automatically and
work transparently to developers.

The tools, web frameworks and programming languages that are used to
develop a web application have a direct impact on how the system is to be
created and, as such, also determines the means that are necessary to secure
the resulting application. To understand how to secure web applications,
we explore in Chapter 5 the relationship between the web programming
language used to develop a web application and vulnerabilities that are
commonly reported. In particular, we identify and quantify the importance
of typing mechanisms in web programming languages and frameworks for
the security of web applications.

We used the insights from the empirical studies presented in Chapters 4
and 5, to build a system that improves the secure development of web ap-
plications by automatically and transparently augmenting web development

91

environments with robust input validators. We show that this approach
improves the security of real web applications significantly.
This thesis made the following contributions:

7.1.1 Evolution of Web Vulnerabilities

Covering more than 10.000 vulnerabilities published between 2004 and 2009,
we perform an automated analysis to understand whether an increased de-
velopers’ attention has improved the security of web applications over the
years. We measured the complexity of vulnerabilities and exploits, the pop-
ularity of vulnerable applications, the lifetimes of vulnerabilities and we
identified trends. Measurements on the complexity of exploits show no sig-
nificant changes which suggests that vulnerabilities are caused by an absence
of sanitization routines rather than insufficiently implemented sanitization
routines. We show that more vulnerabilities are reported about popular
applications. We observe that the number of web vulnerability reports is
not decreasing because many more applications written by different devel-
opers are vulnerable. Furthermore, we show that more vulnerabilities are
reported about applications that are popular than about applications that
are not popular. Finally, the lifetimes of vulnerabilities suggest that it is
harder to find cross-site scripting vulnerabilities than SQL injection vulner-
abilities.

The empirical data we collected and analyzed suggest that developers
consistently fail to implement existing countermeasures against input val-
idation vulnerabilities. We believe that this can be attributed mainly to
informational (developers are not aware) or motivational (developers do not
care) factors. Because of these reasons, we believe that the traditional ap-
proach of writing code and then testing for security does not work. Hence,
we believe that there is a need for novel techniques that secure web appli-
cations by design. Application developers should not have to take care of
implementing sanitization functionality while writing secure web applica-
tions; rather the programming language or platform should automatically
do this.

7.1.2 Input Validation as Defense Mechanism

Measurements on the source code of 28 applications prone to 809 vulnera-
bilities provided insights into whether input validation can be an effective
defense mechanism against common web vulnerabilities such as cross-site
scripting and SQL injection. Input validation may prevent an attacker from
injecting scripting code (i.e. a string) into a parameter which is normally
used by an application to store - for example - an integer. Hence, input
validation can potentially prevent many vulnerabilities. We determined the
data type of more than 500 vulnerable parameters and we identified that

only 20 % of the vulnerable input parameter have to accept arbitrary text
input. While these vulnerabilities can only be prevented using output san-
itization, the remaining 80 % of vulnerabilities can be prevented using val-
idators that enforce data types such as numeric, enumeration, boolean types
or specific types of strings. Furthermore, an analysis based on 78 web ap-
plication frameworks showed us that there is a mismatch between the set of
validation functions normally provided by these frameworks and commonly
reported attack vectors. Hence, the use of validation functionality provided
by existing frameworks is not sufficient to develop secure web applications.

To conclude, our findings suggest that the majority of SQL injection
vulnerabilities and a significant fraction of cross-site scripting vulnerabilities
can be prevented if web applications would automatically perform input
validation based on common data types such as integer, boolean, and specific
types of strings such as e-mails and URLs.

7.1.3 Input Parameter Analysis System

We proposed TPAAS, a novel technique that prevents the exploitation of
cross-site scripting and SQL injection vulnerabilities based on input valida-
tion. IPAAS automatically detects types of input parameters and transpar-
ently augments web platforms with input validators during the development
of web applications.

We identify that input validation is not a panacea for preventing all cross-
site scripting and SQL injection vulnerabilities for two reasons. First, web
applications may have to accept arbitrary input in certain cases. Second,
input validation in isolation cannot guarantee that input, which is consid-
ered as safe, will be not transformed to a dangerous value by application
processing before outputting it in a web document or database query.

Although TPAAS is based on input validation, IPAAS has significant ad-
vantages. As the technique is transparent to developers, it helps developers
that are unware of security issues to write more secure web applications
than they otherwise would do. The IPAAS approach does not require the
use of specific programming languages or frameworks. Consequently, the
approach can be used to secure legacy and novel applications written in
insecure languages.

We implemented IPAAS for PHP and tested it on five real web appli-
cations. Our evaluation using real attack data shows that IPAAS - despite
the drawbacks inherent to input validation - is remarkably effective in pre-
venting cross-site scripting and SQL injection vulnerabilities in real web
applications. Therefore, we can conclude that during the implementation
phase of a web application, IPAAS improves the security of the applica-
tion significantly. Thus, by using IPAAS, web applications become more
secure by design.

7.2 Critical Assessment

Despite the automated and manual analysis of a large number of vulnera-
bilities, our studies have some limitations:

e Static lexical matching. The vulnerability classification is partially
based based on static lexical matching. Furthermore, this technique is
also used for our analysis on the complexity of vulnerabilities. Iden-
tifying and analyzing vulnerabilities by searching for combinations of
keywords may result into false positives or false negatives due to two
factors. First, there is the possibility of having vulnerability reports
containing semantically equivalent but lexical divergent expressions
for the same concepts. Second, languages do change over time: neolo-
gisms may be accepted and after a period of time these are succeeded
by other terms. Both factors skew data and may impact the results of
our analysis.

To get an understanding of the impact on our analysis, we measured
the number of cross-site scripting and SQL injection vulnerabilities
that are incorrectly classified as cross-site scripting or SQL injection
vulnerabilities (e.g. the false positive rate). The false positive rate
was measured by manually analyzing a sample of 50 vulnerabilities for
each year between 2002 and 2009. In total, we manually analyzed 358
cross-site scripting vulnerabilities and 324 SQL injection vulnerabili-
ties, representing 6.6 % and 6.7 % of the cross-site scripting and SQL
injection classified vulnerabilities, respectively.

In the sample, we found 10 false positives for cross-site scripting vul-
nerabilities (2,8 %) and 7 false positives for SQL injection (2,2 %).
When manually analyzing the vulnerabilities, we did not find any evi-
dence that the keywords we searched for during the vulnerability com-
plexity analysis were used in other contexts than in the contexts we
were looking for. Thus, our vulnerability classification and complexity
analysis did not result in a significant number of false positives.

Since the NVD dataset is a large dataset, we were unable to perform
a manual analysis to measure the false negative rate — that is, the
number of cross-site scripting or SQL injection vulnerabilities that
were not classified as such. We expect that false positives are likely to
occur more often in earlier years than in recent years as the language to
describe cross-site scripting and SQL injection vulnerabilities becomes
more mature over the years.

e Availability of information. Depending on the disclosure model that is
used, vulnerabilities may or may not be disclosed. Even if the vulner-
ability is disclosed, not all information concerning the vulnerability is
published. For example, with responsible disclosure, a software vendor

may decide not to publish the information that is needed for an at-
tacker to exploit a vulnerability. In these cases, we were neither able
to measure the exploit complexity nor able to analyze the data type
of the affected input parameters.

Furthermore, there is more data openly available than what we used
for our measurements on exploit complexity. For an analysis of this
scale, we could only consider exploit data that we could process auto-
matically. We collected this data from different Security Information
Providers who did not always provide the data in a parsable format.

To summarize, the sometimes limited availability of information and
the use of non-standard formats for publishing vulnerability and exploit
information skew data and may impact the results of our analysis.

7.3 Future Work

In this dissertation, we have looked at vulnerabilities that occur on the
server-side of the web application. However, client-side code may also con-
tain vulnerabilities. Examples of client-side scripting vulnerabilities include
DOM-based cross-site scripting, code injection and open-redirect vulnerabil-
ities. With the advent of Web 2.0, an increasing number of web applications
critically depend on client-side code written in JavaScript, Flash, Flex or
Silverlight to provide a richer user experience.

These client-side technologies are under active development. For ex-
ample, web browsers have started to implement the HTML5 standard, the
next major version of HTML. HTML5 provides new language features such
as <video>, <audio> and <canvas> elements as well as functionality to in-
tegrate Scalable Vector Graphics. These new features provide new attack
vectors for traditional attacks such as script injection. Furthermore, HTML5
offers new APIs to allow, among other things, cross-document/channel com-
munication, cross-origin resource sharing and client-side persistent storage.
The insecure usage of these APIs introduce new security issues that can
be exploited by hackers. Examples include as data leakage through cross-
directory attacks on the Web Storage API and the execution of malicious
code from foreign domains via the Cross-Document Messaging API.

We believe that due to the growing popularity of rich client-side func-
tionality, web applications will become increasingly vulnerable to client-side
scripting vulnerabilities. As client-side code process sensitive data, vulner-
abilities in client-side code can be critical and attacks may have a serious
impact. Therefore, we believe that future work should address this class of
vulnerabilities.

Understanding the details of client-side vulnerabilities and attacks is a
prerequisite for the design and implementation of secure web applications.

To gain deeper insights into these vulnerabilities and to create awareness,
we believe that large scale measurements need to be performed. To improve
the security of web applications, we believe that future work should focus
on automated detection techniques to find client-side vulnerabilities. In
addition to these techniques, we are also interested in if and how languages
and frameworks can be improved to prevent client-side vulnerabilities by
design.

Chapter 8

French Summary

8.1 Résumé

L’internet est devenu un environnement omniprésent dans le monde du tra-
vail et du loisir. Des millions de personnes utilisent I’Internet et les appli-
cations web tous les jours pour s’informer, effectuer des achats, se divertir,
socialiser et communiquer. La popularité sans cesse croissante des applica-
tions web ainsi que des services associés entrainent 1’exécution de nombreuses
transactions critiques, qui soulevent des questions de sécurité. Du fait de
cette croissance, des efforts ont été entrepris durant cette derni‘ere décennie
pour rendre les applications web plus stires. Des organisations ont travaillé
sur I'importance de faire comprendre aux utilisateurs les enjeux de sécurité.
Les chercheurs en sécurité se sont concentrés sur 1’élaboration d’outils et
de techniques pour améliorer la sécurité des applications web. Malgré ces
efforts, de récents rapports provenant de l'institut SANS estiment que plus
de 60 % des attaques commises sur I'Internet ciblent les applications web en
se concentrant sur les vulnérabilités inhérentes aux problémes de validation,
comme le Cross-Site Scripting (XSS) ou les injections SQL (SQLi).

Dans cette these, nous avons conduit deux études de recherche empi-
rique, analysant un grand nombre d’application web vulnérables. Le but est
de comprendre les mécanismes complexes entrainant des vulnérabilités in-
troduites par une mauvaise ou une absence de validation, et ainsi de retracer
I’évolution de ces dernieres lors de la derniere décennie écoulée. Nous avons
assemblé une base de données contenant plus de 10.000 rapports de vulnéra-
bilités depuis I’an 2000. Ensuite, nous avons analysé ces donnees pour déter-
miner si les développeurs ont pris conscience des problématiques de sécurité
web de nos jours, comparé a la période ou ces applications émergeaient.
Puis nous avons analysé 1’étroit lien entre le langage de programmation uti-
lisé pour développer ’application web et le nombre de vulnérabilité reporté.
Nos analyses montrent que la complexité des attaques n’a pas drastique-
ment évolué, et que de nombreuses attaques simples subsistent. Nos études

97

8000
7000
6000 N~
5000

4000 /‘/
3000

2000

1000 /

0 ‘ :

2002 2003 2004 2005 2006 2007 2008 2009

Number of all vulnerabilities

—#— Number of web-related

FIGURE 8.1: Nombre de vulnérabilités web au fil du temps, les données
obtenues de NVD CVE [78].

montrent aussi que la plupart des injections SQL et des XSS peuvent étre
évitées en utilisant un mécanisme de validation basé sur un ‘common data
type’.

Avec ces résultats empiriques comme base, nous présentons notre solu-
tion TPAAS qui aide les développeurs novice en termes de sécurité a écrire
des applications sécurisées par défaut. La solution propose une technique
novatrice qui prévient I'exploitation des injections SQL et des XSS en se ba-
sant sur la détection automatique du typage des parametres d’entrée. Nous
montrons par ailleurs que cette technique améliore de maniére probante la
sécurité des applications web.

8.2 Introduction

Au fil des années, le World Wide Web a attiré de nombreux utilisateurs
malveillants et les attaques contre les applications Web sont devenues pré-
valentes. Récents rapports provenant de I'institut SANS estiment que plus de
60 % des attaques commises sur 'Internet ciblent les applications web [23].
La situation précaire sur le Web peut étre attribuée a plusieurs facteurs.
Tout d’abord, le nombre de vulnérabilités dans les applications Web a
augmenté au fil des ans. La figure 8.1 montre le nombre de toutes les vul-
nérabilités par rapport au nombre de vulnérabilités liées au web qui ont été
publiés entre 2000 et 2009 dans les Common Vulnerabilities and Exposures
(CVE) Liste [78]. Nous observons que, de 2006, plus de la moitié des vul-
nérabilités signalées sont vulnérabilités liées au web. La situation ne s’est
pas améliorée ces dernieéres années. Basé sur une analyse de 3000 sites web
réalisés en 2010, un site Web contenait en moyenne 230 vulnérabilités selon
un rapport de sécurité WhiteHat [105]. Bien que pas tous les vulnérabilités

Records ‘ Date ‘ Organizations

130.000.000 | 2009-01-20 | Heartland Payment Systems, Tower Federal
Credit Union, Beverly National Bank

94.000.000 | 2007-01-17 | TJX Companies Inc.

90.000.000 | 1984-06-01 | TRW, Sears Roebuck

77.000.000 | 2011-04-26 | Sony Corporation

40.000.000 | 2005-06-19 | CardSystems, Visa, MasterCard,
American Express

40.000.000 | 2011-12-26 | Tianya

35.000.000 | 2011-07-28 | SK Communications, Nate, Cyworld

35.000.000 | 2011-11-10 | Steam (Valve, Inc.)

32.000.000 | 2009-12-14 | RockYou Inc.

26.500.000 | 2006-05-22 | U.S. Department of Veterans Affairs

TABLE 8.1: Les plus grandes fuites de données en termes de documents
divulgués selon [31].

web posent un risque pour la sécurité, de nombreuses vulnérabilités sont ex-
ploitées par des attaquants afin de compromettre l'intégrité, la disponibilité
ou la confidentialité d’une application web.

Deuxiemement, les attaquants ont une large gamme d’outils a leur dis-
position pour trouver des vulnérabilités Web et lancer des attaques contre
les applications Web. Les fonctionnalités avancées de Google Search permet
a des attaquants de trouver des failles de sécurité dans le code de configu-
ration et la programmation de sites Web. Ceci est également connu comme
Google Hacking [12, 72]. De plus, il existe un large éventail d’outils et de
cadres disponibles qui permettent aux attaquants de lancer des attaques
contre les applications Web. Tres connu dans ce contexte est le framework
Metasploit [85]. Ce cadre s’appuie sur le plus grand modulaire base de don-
nées du monde de la qualité des exploits assurée, y compris des centaines
d’exploits a distance, modules auxiliaires, et des charges utiles.

Finalement, les attaquants ont des motivations pour effectuer des at-
taques contre les applications Web. Ces attaques peuvent entrainer dans,
entre autres choses, les fuites de données, usurper l'identité d’utilisateurs
innocents et les infections de logiciels malveillants a grande échelle.

De plus en plus applications Web stockent et traitent des données sen-
sibles telles que les informations d’identification utilisateur, les dossiers de
compte et numéros de carte de crédit. Des vulnérabilités dans applications
Web peuvent se produire sous la forme de violations de données qui per-
mettent attaquants pour recueillir cette information sensible. L’attaquant
peut utiliser cette information pour le vol d’identité ou il peut le vendre
sur le marché clandestin. Voler de grandes quantités d’informations d’iden-
tification et de les vendre sur le marché clandestin peut étre rentable pour

un attaquant comme le montre par plusieurs études [124, 13, 39, 104]. Les
chercheurs en sécurité estiment que vol de numéros de cartes de crédit peut
étre vendu pour un prix compris entre $ 2 a § 20 chacun [13, 39]. Pour les
comptes bancaires de la gamme de prix par article situe entre $ 10 et $ 1000
tandis que pour les mots de passe e-mail 'intervalle est $ 4 & $ 30 [39] par
article.

Applications Web légitimes qui sont les plus vulnérables peuvent étre
compromis par des attaquants afin d’installer des logiciels malveillants sur
I'héte de la victime dans le cadre d'un drive-by-download [84]. Le malware
installé peut prendre le controle complet de la machine de la victime et
I’agresseur utilise le logiciel malveillant de réaliser des profits financiers. En
regle générale, les logiciels malveillants est utilisé a des fins telles que agissant
comme un noeud botnet, la récolte des informations sensibles de la machine
de la victime, ou d’effectuer d’autres actions malveillantes qui peuventétre
monétisés. Web malveillants est activement négociées sur le marché clan-
destin [124]. Bien qu’aucune évaluation de certaines existent sur le montant
total de 'argent des attaquants gagnent avec la négociation d’actifs virtuels,
tels que les logiciels malveillants sur le marché clandestin, certaines activités
ont été analysées. Une étude réalisée par McAfee [64] montre que les ma-
chines compromises sont vendus comme des serveurs proxy anonymes sur
le marché souterrain pour un prix compris entre $ 35 et $ 550 par mois en
fonction des caractéristiques de la procuration.

Les attaques contre les applications Web sur la disponibilité, I'intégrité
et la confidentialité des applications Web et les données qu’ils traitent. Parce
que notre société dépend en grande partie sur les applications web, les
attaques contre les applications Web constituent une menace sérieuse. Le
nombre croissant d’applications web qui traitent des données de plus en
plus sensibles a rendu la situation encore pire. Tableau 8.1 montre des rap-
ports sur les grandes catastrophes en termes d’enregistrements de données
exposées dans les dernieres années. Alors que le Web n’est pas la principale
source de violations de données, il représente encore 11 % des violations de
données qui est la deuxieme place. Bien qu’aucun chiffres globaux existent
sur la perte annuelle causée par les fuites de données sur le Web, les cortits
de certaines violations de données ont été estimées. En 2011, environ 77
millions de comptes utilisateurs sur le réseau Sony Playstation ont été com-
promis par un attaque injection de SQL sur deux propriétés de Sony. Sony a
estimé qu’il serait passé 171.1 millions de dollars pour faire face a la violation
de données [102].

Pour résumer, 'état actuel d’insécurité du Web peut étre attribuée a
la prévalence de vulnérabilités web, les outils sont disponibles pour les ex-
ploiter et les motivations (financieres) des attaquants. Malheureusement, la
popularité croissante du Web rendra la situation encore pire. Il va motiver
les attaquants plus que les attaques peuvent potentiellement affecter un plus

grand nombre d’utilisateurs innocents qui en résultent dans plus de profits
pour les attaquants. La situation doit étre améliorée, car les conséquences
des attentats sont dramatiques en termes de pertes financieres et les efforts
nécessaires pour réparer les dégats.

Pour améliorer la sécurité sur le Web, beaucoup d’efforts ont été dépensés
dans la derniére décennie pour rendre les applications Web plus sécurisé. Des
organisations comme MITRE [62], SANS Institute [23] et OWASP [79] ont
souligné I'importance de 'amélioration de la formation a la sécurité et la
sensibilisation parmi les programmeurs, les clients logiciels, les gestionnaires
et les agents logiciels principaux de I'information. En outre, la communauté
de recherche en sécurité a travaillé sur les outils et techniques pour améliorer
la sécurité des applications Web. Ces outils et techniques se concentrent
principalement sur les deux réduire le nombre de vulnérabilités dans les
applications ou sur la prévention de ’exploitation des vulnérabilités.

Bien qu'une quantité considérable d’efforts ont été dépensés par de nom-
breux intervenants différents pour rendre les applications Web plus sécurisé,
nous manquons de preuves quantitatives de savoir si cette attention a amé-
lioré la sécurité des applications web. Dans cette theése, nous étudions com-
ment les vulnérabilités web ont évolué dans la dernieére décennie. Nous nous
concentrons dans cette these sur SQL injection et les vulnérabilités cross-
site scripting comme ces classes de vulnérabilités des applications Web ont la
méme cause : la validation des données fourni par 'utilisateur. De plus, ces
classes de vulnérabilités sont répandus, bien connu et ont été bien étudiée
dans la derniére décennie.

Nous observons que, malgré les programmes de sensibilisation a la sécu-
rité et les outils, les développeurs web échouent systématiquement a mettre
en ceuvre des contre-mesures existantes qui se traduit dans les applications
web vulnérables. De plus, 'approche traditionnelle de ’écriture de code et
tester ensuite pour la sécurité ne semble pas bien fonctionner. Par consé-
quent, nous croyons qu’il ya un besoin de techniques qui assurent des ap-
plications web par la conception. Ce sont des techniques qui rendent les
applications Web sécurisé automatiquement sans compter sur le dévelop-
peur web. L’application de ces techniques a grande échelle devrait améliorer
sensiblement la situation sécuritaire sur le Web.

8.2.1 Problématiques de recherche

Les sections précédentes montre que les applications Web sont fréquemment
la cible par des attaquants et donc des solutions sont nécessaires qui aident
a améliorer la situation sécuritaire sur le Web. Comprendre comment les
vulnérabilités web commun peuvent étre automatiquement empéché, c’est
le défi principal de recherche dans ce travail.

Dans cette these, nous abordons les problemes de recherche suivantes en
ce qui concerne la sécurité des applications Web :

o Les développeurs créent des applications Web plus sécurisées aujour-
d’hui qu’ilshabitude de faire dans le passé ?

Dans la dernieére décennie, beaucoup d’efforts ont été dépensés par
de nombreux intervenants différents pour rendre les applications Web
plus sécurisé. A ce jour, il n’existe aucune preuve empirique dispo-
nible si cette attention a amélioré la sécurité des applications web.
Pour obtenir un apergu plus approfondi, nous effectuons une analyse
automatisée sur un grand nombre de rapports de vulnérabilité cross-
site scripting et SQL injection. En particulier, nous sommes intéressés
a en savoir si les développeurs sont plus conscients des probléemes de
sécurité web aujourd’hui qu’auparavant d’étre dans le passé.

e Le langage de programmation utilisé pour développer une application
web influence sur ’exposition de ces applications a des vulnérabilités ¢

Les langages de programmation contiennent souvent des caractéris-
tiques qui aident les programmeurs pour empécher des bogues ou des
vulnérabilités liées a la sécurité. Ces caractéristiques comprennent,
entre autres, les systemes de type statique, des espaces de noms res-
treints et de la programmation modulaire. Il n’existe aucune preuve,
aujourd’hui, si certaines caractéristiques des langages de programma-
tion Web aider a atténuer les vulnérabilités de validation d’entrée.
Dans notre travail, nous effectuons une analyse quantitative dans le
but de comprendre si certains langages de programmation sont in-
trinsequement plus robuste contre I'exploitation des vulnérabilités de
validation d’entrée que les autres.

e La wvalidation d’entrée d’un mécanisme de défense efficace contre les
vulnérabilités web courantes ?

Pour concevoir et implémenter des applications Web sécurisées, une
bonne compréhension des vulnérabilités et des attaques est une condi-
tion préalable. Nous étudions un grand nombre de rapports de vul-
nérabilité et les référentiels de code source d’un nombre important
d’applications web vulnérables, dans le but d’acquérir une compré-
hension plus profonde de la fagon dont les vulnérabilités web commun
peuvent étre évités. Nous allons analyser si les mécanismes de typage
dans un langage et des fonctions de validation d’entrée dans un cadre
d’application web peut potentiellement prévenir les vulnérabilités web
de nombreux. Aucune preuve empirique est disponible des aujourd’hui
ce spectacle dans lequel étendre ces mécanismes sont en mesure de
prévenir les vulnérabilités web.

o Comment pouvons-nous aider les développeurs d’applications, qui ne
connaissent pas de problemes de sécurité des applications web, da écrire
des applications Web plus sécurisées ¢

Les résultats de nos études empiriques donnent a penser que de nom-
breux développeurs d’applications web ne sont pas conscients des ques-
tions de sécurité et qu'un nombre significatif de vulnérabilités web peut
étre évitée en utilisant de simples mécanismes de validation directe.
Nous présentons un systeme qui apprend que les types de données de
parametres d’entrée lorsque les développeurs d’écrire des applications
Web. Ce systéme est en mesure de prévenir de nombreuses vulnérabi-
lités web communs en augmentant automatiquement autrement vul-
nérables environnements de développement Web avec les validateurs
d’entrée robustes.

8.3 L’évolution des vulnérabilités de validation d’en-
trée dans les applications Web

Des efforts considérables ont été consacrés par de nombreux intervenants
différents pour rendre les applications Web plus sécurisé. Cependant, nous
manquons de preuves quantitatives que cette attention a amélioré la sécurité
des applications Web au fil du temps. Dans cette section, nous étudions com-
ment les classes ordinaires de vulnérabilités web ont évolué dans la derniere
décennie. En particulier, nous sommes intéressés a en savoir si les dévelop-
peurs sont mieux a la création d’applications Web sécurisées aujourd’hui
qu’ils habitude d’étre dans le passé. Nous mesurons la complexité exploit
pour comprendre si des vulnérabilités exigent des scénarios d’attaque au-
jourd’hui plus complexes a exploiter les vulnérabilités qui sont le résultat de
la contre-mesures insuffisantes. Par ailleurs, nous étudions comment les ap-
plications individuelles sont exposées & des vulnérabilités. Nous examinons
si les applications web les plus populaires sont les plus exposés a des vul-
nérabilités que les applications non-populaires. Par mesurer la durée de vie
des vulnérabilités dans les applications, nous essayons d’obtenir une com-
préhension de la difficulté de trouver des vulnérabilités.

Notre étude se concentre sur les vulnérabilités cross-site scripting et SQL
injection comme ces classes de vulnérabilités des applications Web ont la
méme cause : désinfection incorrecte des données fourni par I'utilisateur qui
résulte de hypotheses invalides par le développeur. De plus, ces classes de
vulnérabilités sont répandus, bien connu et ont été bien étudiée dans la
derniére décennie. Ainsi, il est probable qu’il y ait un nombre suffisant de
rapports de vulnérabilité disponibles pour permettre une analyse empirique.

8.3.1 Meéthodologie

Pour pourra répondre comment vulnérabilités cross-site scripting et SQL
injection ont évolué au fil du temps, il est nécessaire d’avoir acces a d’im-
portantes quantités de données sur les vulnérabilités. Par conséquent, nous

avons eu a recueillir et a classer un grand nombre de rapports de vulnérabi-
lité. Par ailleurs, il est nécessaire d’extraire les descriptions d’exploits dans
les rapports automatisé. Dans les sections suivantes, nous expliquons le pro-
cessus que nous s’applique a collecter et classer les rapports de vulnérabilité
et d’exploiter descriptions.

Collecter des données

Une source majeure d’information pour les failles de sécurité est le jeu de
données CVE, qui est hébergé par MITRE [67]. Selon FAQ MITRE [69],
CVE n’est pas une base de données de vulnérabilité, mais une identification
de la vulnérabilité systéeme qui ‘vise a fournir des noms communs pour les
problemes connus du public qui permet’ et qui permet ‘bases de données
de vulnérabilité et des capacités d’autres d’étre reliés entre eux’. Chaque
entrée possede un identifiant CVE unique, un statut (‘entry’ ou ‘candida-
te’), une description générale, et un certain nombre de références a une
ou sources d’information les plus externes de la vulnérabilité. Ces références
comprennent un identificateur de source et un identifiant de bien défini pour
la recherche sur les la source de site Web.

Pour notre étude, nous avons utilisé les données de la National Vul-
nerability Database (NVD) [78] qui est fourni par le National Institute of
Standards and Technology (NIST). Le NIST publie la base de données NVD
comme un ensemble de fichiers XML, sous la forme :nvdcve-2.0-year.xml,
lorsque I'année est un nombre a partir de 2002 jusqu’en 2010. Le premier
fichier, nvdcve-2.0-2002.xml contient des entrées CVE a partir de 1998
jusqu’en 2002. Afin de construire des délais lors de l'analyse, nous avons
besoin de connaitre la date de la découverte, date de la divulgation, ou la
date de publication d’une entrée de CVE. Depuis entrées CVE proviennent
de différentes sources externes, les informations de synchronisation fourni
dans les données CVE et NVD nourrit se sont avérées insuffisantes. Pour
cette raison, nous chercher ces informations en utilisant la date de divulga-
tion de I’entrée correspondante dans la Open Source Vulnerability Database
(OSVDB) [55].

Pour chaque entrée CVE, nous avons extrait et stocké l'identifiant, la
description, la date de divulgation de OSVDB, la vulnérabilité de classifi-
cation (CWE), la notation CVSS, vendeur / produit / informations sur la
version, et les références au sources exteérnes. Puis, nous avons utilisé les
références de chaque entrée CVE pour récupérer 'information sur la vul-
nérabilité provenant de l'externe diverses sources. Nous avons stocké ces
données du site avec les informations CVE pour une analyse ultérieure.

Classification des Vulnérabilités

Depuis notre étude se concentre particulierement sur des vulnérabilités de
cross-site scripting et SQL injection, il est essentiel de classer le les rapports
de vulnérabilité. Comme mentionné dans la section précédente, les entrées
CVE dans la base de données NVD sont classés selon le systeme de classifi-
cation Faiblesse énumération commune. CWE vise a étre un dictionnaire des
faiblesses des logiciels, il ya des entrées pour cross-site scripting (CWE-79)
et pour SQL injection (CWE-89).

Bien que NVD fournit un mappage entre CVEs et CWES, cette car-
tographie est pas compléte et de nombreuses entrées CVE n’ont pas de
classification du tout. Pour cette raison, nous avons choisi d’effectuer une
classification qui est basée a la fois sur la classification CWE et sur la des-
cription de I'entrée CVE. En général, nous avons observé que la description
CVE est formaté selon le schéma suivant : {description de la vulnérabilité}
{description de I'emplacement de la vulnérabilité} allows {description de
lattaquant} {description des impacts}. Ainsi, la description CVE comprend
le type de vulnérabilité.

Pour obtenir les CVEs cross-site scripting a des données CVE, nous avons
sélectionné les CVEs associé a I'identifiant CWE ‘CWE-79’. Puis, nous avons
ajouté les CVEs avec le texte cross-site scripting dans leur description en
effectuant une requéte insensible a la casse. De méme, nous avons classé les
CVEs SQL injection connexes en utilisant l'identifiant CWE ‘CWE-89’ et
le mot-clé ‘SQL injection’.

Les données des Exploits

Pour acquérir une vision générale sur la sécurité des applications Web, nous
ne sommes pas seulement intéressés par I'information la vulnérabilité, mais
aussi dans la fagon dont chaque vulnérabilité peut étre exploitée. Certaines
sources externes de CVEs qui fournissent des informations concernant cross-
site scripting ou SQL injection liées vulnérabilités fournissent également des
détails exploit. Souvent, cette information est représentée par un script ou
un attack string. An ‘attack string’ est une référence bien défini & un em-
placement dans le application web vulnérable ou le code peut étre injecté.
La référence est souvent une URL complete qui inclut le nom du script vul-
nérable, les parametres HT'TP, et certains caracteres pour représenter les
espaces réservés pour le code injecté. En plus d’utiliser des espaces réservés,
parfois, des exemples réels de SQL ou du code Javascript peut également
étre utilisé. Deux exemples ‘attack strings’ sont les suivants :

http://[victim] /index.php?act=delete&dir=&file=[XSS]
http://[victim] /index.php?module=subjects&func=viewpage&pageid=[SQL]

7000 N ’/./‘ 2
o [N e S
4000 / . 15 / \ /\ —
3000 / /- W\/‘

/ 10 / ~

2000

0 +—— T =T T T T T T 1 0 T

2000 b
2001 B

o o)
S o o =3
S =3 =} =

g ~ I

< wn
o =}
=} S
~ ~ I

2006

~ Y
=} o
~ I

2009

o~ o0 <
o o 1=

S
~ I I

© ~ 0
S o o
S S o
N N ~

2005
2009

—&— Total Number of Vulnerabilities Number of SQL Injection CVEs —&— Percentage of SQL Injection CVEs Percentage of XSS CVEs
—— Number of XSS CVEs —— Number of Buffer Overflow CVEs| A— Percentage of Buffer Overflow CVEs

(a) Les tendances des vulnérabilités dans des(b) Les tendances des vulnérabilités dans des
nombres pourcentages

FIGURE 8.2: Les Buffer overflow, cross-site scripting and SQL injection vul-
nérabilités au fil du temps.

A la fin de chaque ligne, notez les espaces réservés qui peuvent étre substitués
avec un code arbitraire par 'attaquant.

La structure similaire des ‘attack strings’ permet a notre outil pour ex-
traire automatiquement, stocker et analyser le format exploit. Par consé-
quent, nous extraites et stockées toutes les ‘attack strings’ associés aux CVEs
cross-site scripting et SQL injection.

8.3.2 L’analyse des tendances vulnérabilités

La premiere question que nous souhaitons aborder dans cette étude est de
savoir si le nombre des vulnérabilités de SQL injection et cross-site scripting
signalés dans les applications web a été diminué ces derniéres années. Pour
répondre a cette question, nous avons automatiquement analysé les 39,081
entrées dans la base de données NVD 1998 & 2009'. Nous avons dii exclure
1,301 entrées CVE parce qu’ils n’ont pas de résultat correspondant de la
base de données OSVDB et, en conséquence, fait pas de date de divulga-
tion qui leur sont associés. Pour cette raison, ces entrées CVE ne sont pas
pris en compte pour le reste de notre étude. Parmi les autres rapports de
vulnérabilité, nous avons identifié un total de 5349 vulnérabilités de ‘buffer
overflow’, 5413 vulnérabilités de ‘cross-site scripting’ et 4825 vulnérabilités
de ‘SQL injection’.

Figure 8.2a indique le nombre de rapports de vulnérabilité au fil du
temps et de la figure 8.2b montre le pourcentage de vulnérabilités signalées
au cours des entrées totales CVE.

Notre premiere espérance basée sur l'intuition a été de constater que le

! Au moment de notre étude, un ensemble de données de vulnérabilité compléte de 2010
n’était pas disponible. Par conséquent, notre étude ne couvre pas 2010.

100% e g 100% e g
80% — ——f — 0 1 80% — o ——1 ——f 1 1 —
60% — ——f — 1 60% — 1
0% +— 1 0 0%
"Annm R 7o 3
0% 0%
2005 2006 2007 2008 2009 2005 2006 2007 2008 2009
Percentage of XSS CVEs with simple attack strings Percentage of SQLI CVEs with simple attack strings
M Percentage of XSS CVEs with complex attack strings B Percentage of SQLI CVEs with complex attack strings
(a) Cross-site scripting (b) SQL injection

FIGURE 8.3: La complexité des exploits au fil du temps.

nombre de vulnérabilités signalées suivre une forme de cloche classique, en
commencant par un démarrage lent lorsque les vulnérabilités sont encore
relativement inconnue, puis une augmentation abrupte correspondant a la
période dans laquelle les attaques sont décrits et étudiés, et enfin une phase
diminue lorsque les développeurs commencent a adopter des contre-mesures
nécessaires. En fait, les graphiques montrent une phase initiale (2002-2004)
avec tres peu de rapports sur les vulnérabilités de cross-site scripting et
SQL injection et de nombreux rapports sur les vulnérabilités de buffer over-
flow. Notez que cette tendance est cohérente avec 1’évolution historique. La
sécurité Web a commencé a augmenter en importance apres 2004, et le pre-
mier ‘worm’ basé sur cross-site scripting a été découvert en 2005 (Samy
‘worm’ [71]). Par conséquent, les menaces de sécurité Web, tels que cross-
site scripting et SQL injection a commencé a recevoir plus d’attention apres
2004 et, dans l'intervalle, ces menaces ont dépassé les problemes de buffer
overflow. Malheureusement, le nombre des vulnérabilités de SQL injection
et cross-site scripting rapporté n’a pas sensiblement diminué depuis 2006.
En d’autres termes, le nombre des vulnérabilités cross-site scripting et SQL
injection trouvé en 2009 est comparable avec le nombre rapporté en 2006.
Dans le reste de cette section, nous allons formuler et de vérifier un certain
nombre d’hypotheses pour expliquer les raisons qui pourraient expliquer ce
phénomene.

Sophistication attaque

Hypotheése 1 Simple, facile a trowver vulnérabilités ont maintenant été
remplacé par des vulnérabilités compleres qui exigent plus sophistiqué at-
taques.

La premiére hypotheése que nous souhaitons vérifier est de savoir si le

nombre total de vulnérabilités ne diminue pas parce que les vulnérabilités
découvertes simples dans les premieres années ont été remplacés par de nou-
veaux qui impliquent des scénarios d’attaque plus complexes.

En particulier, nous sommes intéressés a trouver si la complexité des
exploits a augmenté. Notre but en faisant cela est d’identifier les cas dans
lesquels les développeurs d’applications étaient au courant des menaces, mais
mis en ceuvre insuffisantes, faciles a échapper a des routines de désinfection.
Dans ces cas, un attaquant doit élaborer I'entrée malveillante avec plus de
soin ou doit effectuer des transformations d’entrée de certains (par exemple,
en majuscules ou en substitution de caractere).

Une fagon de déterminer la complexité d’un exploit est d’analyser le ‘at-
tack string’ et de chercher des preuves de techniques d’évasion possibles.
Comme mentionné dans la section 8.3.1, nous extraire automatiquement le
code d’exploitation a partir des données fournies par des sources externes
d’information de vulnérabilité. Parfois, ces sources externes ne fournissent
pas d’exploiter l'information pour tous rapportés vulnérabilité cross-site
scripting ou SQL injection, ne fournissent pas d’exploiter I'information dans
un format analysable, ou ne fournissent pas toute l'information exploit du
tout. En conséquence, toutes les entrées ne peuvent étre CVE associée a
une ‘attack string’. D’autre part, dans certains cas, il existe plusieurs fa-
cons d’exploiter une vulnérabilité, et, par conséquent, de nombreux ‘attack
strings’ peuvent étre associé a un rapport sur la vulnérabilité unique. Dans
nos expériences, nous avons recueilli des ‘attack strings’ pour un total de
2632 vulnérabilités distinctes.

Pour déterminer la complexité exploit, nous avons examiné plusieurs ca-
ractéristiques qui peuvent indiquer une tentative de 'attaquant de se sous-
traire a une certaine forme de désinfection. La sélection des caractéristiques
est inspiré par ce qu’on appelle des feuilles de triche injection qui sont dis-
ponibles sur I'Internet [63][95].

En particulier, nous classons une cross-site scripting ‘attack string’ aussi
complexe (en la différence de simples) si elle contient une ou plusieurs de ce
qui suit caractéristiques :

e Différents cas sont utilisés dans les balises de script (ScRiPt)

e Les balises de script contiennent un ou plusieurs espaces (< script>)

La ‘attack string’ contient ‘landingspace-code’, qui est I’ensemble des
attributs de HTML-tags (onmouseover ou onclick par exemple)

La chaine contient des caractéres codés ())

e La chaine est répartie sur plusieurs lignes

Pour les ‘attack strings’ de SQL injection, nous avons examiné les caracté-
ristiques suivantes :

e L’utilisation de prescripteurs commentaire (/**/) pour briser une mot-
clé.

e L’utilisation de guillemets simples codées (‘%27’, ‘'’; ‘'’, ‘Ju==")

e L’utilisation de guillemets doubles codées (‘%22’, ‘"’, ‘"’, ‘Ig==")

Si aucune des caractéristiques précédentes est présente, nous classons
I’exploitation comme ‘simple’.

Les figures 8.3a et 8.3b montrent le pourcentage des CVEs ayant une ou
plusieurs ‘attack string’ complexes?. Les graphiques montrent que la majo-
rité des exploits disponibles sont, selon notre définition, pas sophistiqué. En
fait, dans la plupart des cas, les attaques ont été effectuées en injectant la
‘attack string’ la plus simple possible, sans nécessiter de trucs pour échapper
a la validation des entrées.

On observe une légere augmentation du nombre de vulnérabilités SQL
injection avec des ‘attack strings’ sophistiqués, mais nous n’observons pas
la méme pour les ‘attack strings’ cross-site scripting. C’est peut-étre une
premiere indication que les développeurs sont en train d’adopter (malheu-
reusement insuffisante) mécanismes de défense pour empécher SQL injection,
mais que n’ils sont pas arrive toujours a adopter des mécanismes de défense
contre les vulnérabilités cross-site scripting.

Application et la vie de vulnérabilité

Dans cette étude, nous avons déterminé que une constante, un grand nombre
de simples, faciles a exploiter les vulnérabilités se trouvent encore dans beau-
coup d’applications web d’aujourd’hui. Selon ces résultats, nous formulons
une seconde hypothese :

Hypothése 2 Méme si le nombre de cas déclarés est de plus en plus les
applications vulnérables, chaque application est de plus en plus sir au fil du
temps.

Cette hypothese est importante, parce que, si elle est vraie, cela signifie-
rait que les applications Web (les produits bien connus en particulier) sont de
plus en plus sécurisé. Pour vérifier cette hypothese, nous avons étudié la du-
rée ou la durée de vie des vulnérabilités cross-site scripting et SQL injection.
Nous avons étudié les durées de vie des vulnérabilités cross-site scripting et
SQL injection dans les dix plus affectés applications open source en fonction
de la base de données du NIST NVD. Pendant une analyse des journaux de
modifications pour chaque application, nous avons extrait la version dans

2Le graphe commence & partir de 2005 parce qu’il y avait moins de 100 vulnérabilités
ayant des échantillons d’exploits disponibles avant cette année. Donc, les résultats avant
2005 sont statistiquement moins significative.

H Fondamentale [Non-Fondamentale ‘ H Fondamentale [Non-Fondamentale ‘

bugzilla 4 7 bugzilla 1 8
drupal 0 22 coppermine 1 3
joomla 5 4 el07 0 3
mediawiki 3 21 joomla 4 0
mybb 9 2 moodle 0 3
phorum 3 5 mybb 9 3
phpbb 4 2 phorum 0 4
phpmyadmin 14 13 phpbb 3 0
squirrelmail 10 4 punbb 4 2
wordpress 6 9 wordpress 0 4
Total i 58 { 89 \ Total || 22 { 30
(a) Cross-site scripting (b) SQL injection

TABLE 8.2: Vulnérabilités fondamentales et non-fondamentales dans les dix
les plus touchés ouverts applications Web source.

laquelle une vulnérabilité a été introduit et la version dans laquelle une vul-
nérabilité a été fixé. Afin d’obtenir des données fiables sur la durée de vie
de la vulnérabilité, nous exclus les rapports de vulnérabilité qui n’ont pas
été confirmées par le fournisseur concerné. Pour notre analyse, nous avons
utilisé les identifiants CPE dans la base de données NVD, les sources de
vulnérabilité externe, les informations vulnérabilité fournie par le vendeur.
Nous avons également extrait les informations des systemes de controle de
version (CVS, SVN ou) des différents produits.

Tableau 8.2a et le tableau 8.2b montrent un total de 147 vulnérabili-
tés de cross-site scripting et 52 vulnérabilités de SQL injection dans les
applications les plus affectées. Les tableaux distinguent entre les vulnéra-
bilités fondamentale et non-fondamentale. Foundational vulnerabilities are
vulnerabilities that were present in the first version of an application, tandis
que les non-fondamentaux vulnérabilités ont été introduites apres la version
initiale.

Nous avons observé que 39% des vulnérabilités cross-site scripting sont
fondamentale et 61% sont non-fondatmentale. Pour SQL injection, ces pour-
centages sont respectivement de 42% et 58%. Ces résultats suggerent que la
plupart des vulnérabilités sont introduites par une nouvelle fonctionnalité
qui est intégrée dans les nouvelles versions d’une application web.

Enfin, nous avons étudié pendant combien de temps qu’il a fallu pour
découvrir les vulnérabilités. Figure 8.4a et la figure 8.4b parcelle le nombre
de vulnérabilités qui ont été divulgués apreés un certain laps de temps s’est
écoulé apres la publication initiale des applications. Les graphiques montrent
que la plupart des vulnérabilités SQL injection sont généralement décou-
vertes dans les premieres années apres la sortie du produit. Pour les vulné-
rabilités cross-site scripting, le résultat est différent. De nombreux vulnéra-

40 14

35 12 1
30 °
e 10 \
20 \\

15
10 AN

o N A o
|~
?

[, N

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

—&— Disclosure Duration of Foundational SQLI Vulnerabilities
—&— Disclosure Duration of Foundational XSS Vulnerabilities a

Disclosure Duration of Non-Foundational SQLI
Vulnerabilities

Disclosure Duration of Non-Foundational XSS Vulnerabilities

(a) Cross-site scripting (b) SQL injection

F1GURE 8.4: Temps écoulé entre la version du logiciel et & la divulgation de
vulnérabilité au cours des années.

bilités fondamentales sont communiqués méme 10 ans apres le code a été
initialement publié. Cette observation suggere que c’est tres problématique
pour trouver des vulnérabilités cross-site scripting fondamentale par rapport
a des vulnérabilités SQL injection. Cette hypothese est étayée par le fait que
le temps moyen écoulé entre la version du logiciel et de la divulgation des
vulnérabilités fondamentales est de 2 ans pour les vulnérabilités SQL injec-
tion, tandis que pour les vulnérabilités cross-site scripting cette valeur est
de 4,33 ans.

8.3.3 Discussion

Nos résultats de cette étude montrent que la complexité des attaques cross-
site scripting et SQL injection liées a des vulnérabilités dans la base de
données NVD n’a pas cessé d’augmenter. Ni les conditions préalables a des
attaques, ni la complexité des exploits ont changé de maniere significative.
Par conséquent, ce résultat suggere que la majorité des vulnérabilités ne
sont pas dus a 1’échec de désinfection, mais plutét en raison de I’absence de
validation. Malgré les programmes de sensibilisation fournis par MITRE [67],
SANS Institute [23] et OWASP [79], les développeurs d’applications ne sont
pas encore mise en ceuvre de contre-mesures efficaces.

Les données empiriques que nous avons recueillies et analysées pour cette
étude prend en charge 'intuition générale que les développeurs web échouent
systématiquement a sécuriser leurs applications. La pratique traditionnelle
de I’écriture d’applications, puis de les tester pour les problemes de sécurité
(par exemple, l'analyse statique, les tests blackbox, etc) ne semble pas bien
fonctionner dans la pratique. Par conséquent, nous croyons que davantage de
recherches sont nécessaires dans la sécurisation des applications de par leur

10

6 /
4 .

2 /V

T T T T T
2004 2005 2006 2007 2008 2009

—&— Average disclosure duration of foundational XSS
vulnerabilities
Average disclosure duration of non-foundational XSS
vulnerabilities

: ~
3,2 /
RN /
L / N
1 / o
11 J
0,5
0

T T T T T
2004 2005 2006 2007 2008 2009
—&— Average disclosure duration of foundational SQLI
vulnerabilities

Average disclosure duration of non-foundational SQLI
vulnerabilities

(a) Cross-site scripting (b) SQL injection

FiGure 8.5: La durée moyenne de divulgation des vulnérabilités dans les
années au fil du temps.

conception. Autrement dit, les développeurs ne devraient pas étre concernés
par des probléemes tels que xss ou sql. Au contraire, le langage de pro-
grammation ou de la plate-forme devrait veiller a ce que les problemes ne
se produisent pas lorsque les développeurs produire du code (par exemple,
semblable & des solutions telles que dans [90] ou gérés langages tels que C#
ou Java qui empéchent les probléemes comme ‘buffer overflow’.

8.4 Les mécanismes pour valider I’entrée des don-
nées dans les applications Web et des Langues

Pour développer une application Web, des outils et des langages de pro-
grammation sont nécessaires. Le langage de programmation choisi pour dé-
velopper une application a un effet direct sur la facon dont un systéeme doit
étre créé et les moyens qui sont nécessaires pour s’assurer que ’application
résultante se comporte comme prévu et est sécurisé. Dans cette section, nous
étudions la relation entre le langage de programmation et des vulnérabilités
Web qui sont fréquemment rapportés.

Une propriété importante d’un langage de programmation est le systeme
de typage qui est utilisé. Un systeme de typage classe des instructions de
programme et des expressions selon les valeurs qu’ils peuvent calculer, et il
est utile pour statiquement raisonnement sur les comportements possibles
du programme. Certains langages du web populaires tels que PHP et Perl
sont faiblement typés, ce qui signifie que la langue convertit implicitement
les valeurs quand on opeére avec des expressions d'un type différent.

L’avantage des langues faiblement typés du point un développeur web
de vue, c’est qu’ils sont souvent faciles & apprendre et a utiliser. De plus, ils

permettent aux développeurs de créer des applications plus rapidement qu’ils
n’ont pas a se soucier de déclarer les types de données pour les parameétres
d’entrée d’une application web. Par conséquent, la plupart des parametres
sont considérés comme génériques "strings', méme si elles pourraient en fait
représenter une valeur entiére, un booléen, ou un ensemble de caracteres
spécifiques (par exemple, une adresse e-mail). En conséquence, les attaques
sont souvent possible que si la validation est mauvaise. Par exemple, un
attaquant pourrait injecter code de script (c’est a dire un string) dans la
valeur d'un parametre qui est normalement utilisé par 'application pour
stocker un nombre entier.

Afin d’obtenir une compréhension plus profonde des raisons de vulnéra-
bilités dans les applications Web, nous analysons dans ce chapitre autour
de 3933 cross-site scripting et 3,758 SQL injection vulnérabilités affectant
des applications écrites en langues populaires tels que PHP, Python, ASP
et Java. Pour plus de 800 de ces vulnérabilités, nous avons manuellement
extraire et d’analyser le code responsable de la gestion de 'entrée, et dé-
terminé le type du parametre affecté (par exemple, booléen, entier, ou une
‘string’).

8.4.1 Meéthodologie

Nous avons analysé le code source d’un nombre important de web vulné-
rables applications dans le but de comprendre dans quelle mesure a typage
et mécanismes de validation pourrait aider a prévenir vulnérabilités de cross-
site scripting et de SQL injection. Afin d’obtenir un ensemble de test d’appli-
cations avec un nombre élevé de parametres d’entrée vulnérables, nous avons
choisi de concentrer notre étude sur 20 applications open source populaires
web PHP qui contenaient la plus forte incidence des vulnérabilités cross-site
scripting, et le 20 avec la plus forte incidence de vulnérabilités SQL injection.
Les 28 applications appartenant a deux, en grande partie recouvrement, les
ensembles sont les suivants : claroline, coppermine, deluxebb, drupal, 107,
horde, jetbox, joomla, mambo, mantis, mediawiki, moodle, mybb, myblog-
gie, papoo, phorum, phpbb, phpfusion, phpmyadmin, pligg, punbb, runcms,
serendipity, squirrelmail, typo3, webspell, wordpress, et xoops.

Pour chacune de ces applications, nous avons manuellement examiné le
correspondant la vulnérabilité rapports pour identifier la version de I'appli-
cation spécifique et toute par exemple des entrées d’attaque. Compte tenu
de cette information, nous avons téléchargé le code source de chaque appli-
cation et reliés les vecteurs d’entrée en code source de la demande de pour
déterminer une typage de données approprié. Nous avons répété ce processus
pour un total de 809 rapports de vulnérabilité.

Au établit un lien entre rapports de vulnérabilité au code source, nous
avons d’abord utilisé la version du code source qui a été connu pour étre
vulnérable. Puis, nous avons répété le processus et établit le lien entre les

POST /payment/submit HTTP/1.1
Host: example.com

Cookie: SESSION=cbb8587c63971b8e
[...]

cc=1234567812345678&month=8&year=2012&
save=false&token=006bf047a6c97356

FIGURE 8.6: Exemple de requéte HT'TP.

rapports de vulnérabilité du code source dans laquelle les vulnérabilités ont
été corrigées. Pour déterminer le type de données du parametre d’entrée
vulnérables, nous avons manuellement analysé la fagon dont chaque vulné-
rabilité a été corrigé et comment la valeur du parametre d’entrée a été utilisé
tout au long de I'application Web.

8.4.2 Analyse

Un mécanisme de défense qui est essentiel pour le bon fonctionnement des
applications est la validation des entrées. Dans ’abstrait, de validation d’en-
trée est le processus d’attribution de la signification sémantique aux intrants
non structurées et non fiable a une application, et veiller a ce que ces entrées
de respecter un ensemble de contraintes décrivant une entrée bien formé.
Pour les applications Web, les entrées prennent la forme de paires clé-valeur
des ‘strings’. La validation de ces entrées peut étre effectuée soit en le naviga-
teur en utilisant Javascript, ou sur le serveur. Comme il n’existe actuellement
aucune garantie de l'intégrité de calcul dans le navigateur, la validation des
entrées relevant de la sécurité doit étre effectuée sur le serveur, et, par consé-
quent, nous limitons notre discussion sur la validation des entrées dans ce
contexte.

Pour élucider le processus de validation d’entrée pour les applications
web co6té serveur, examiner la demande HTTP pédagogique illustré a la
figure 8.6. Cette figure montre une structure typique pour une demande
de soumission de paiement & une fiction application e-commerce. Dans le
cadre de cette demande, il ya plusieurs parametres d’entrée que la logique
de commande pour /payment/submit doit gérer : cc, un numéro de carte
de crédit ; month, un mois numérique ; year, une année numérique ; save, un
indicateur indiquant si les informations de paiement doivent étre enregistrés
pour une utilisation future; token, une token anti-CSRF ; et SESSION, un
identificateur de session. Chacun de ces parametres de la requéte nécessite
un autre type de validation d’entrée. Par exemple, le numéro de carte de
crédit devrait étre un certain nombre de caractéres et de passer un test de
Luhn. Le parameétre mois devrait étre une valeur entiere entre 1 et 12 in-

clus. Le parametre année devrait aussi étre une valeur entiere, mais peut
varier de ’année en cours & une année d’arbitraire dans un proche avenir.
L’indicateur de sauvegarde doit étre une valeur booléenne, mais comme il
ya différentes représentations de la vraie logique et fausse, (par exemple,
{true, false}, {1,0}, {yes,no}), la demande doit toujours reconnaitre un en-
semble fixe de valeurs possibles.

La validation des entrées, en plus de son réle dans la facilitation de la
correction du programme, est un outil utile pour empécher I'introduction de
vulnérabilités dans les applications web. Y at-il un attaquant de fournir la
valeur :

year=2012’; INSERT INTO admins(user, passwd)
VALUES(’foo’, ’bar’);--

a notre fiction application e-commerce dans le cadre d’une vulnérabilité
SQL injection pour élever ses privileges, de validation d’entrée appropriée
serait de reconnaitre que la valeur malveillant n’était pas une année valide,
avec le résultat que la demande serait refuser de traiter la demande.

La validation des entrées peut se produire de multiples facons. La va-
lidation peut étre effectuée implicitement — par exemple, par typecasting
une ‘string’ & une type primitif, comme un booléen ou nombre entier. Pour
I'attaque par exemple montré ci-dessus, un casting de la ‘input string’ a un
nombre entier se traduirait par une erreur de cast de I’exécution, puisque la
valeur malveillant n’est pas un entier bien formé. D’autre part, de validation
d’entrée peut étre exécutée de facon explicite, en invoquant des routines de
validation fournis par le cadre. La validation explicite est généralement effec-
tuée pour les valeurs d’entrée présentant la structure complexe, comme les
adresses e-mail, URL, ou numéros de carte de crédit. a cet égard, le choix du
langage de programmation et un cadre pour développer des applications Web
joue un role important dans la sécurité de ces applications. Tout d’abord,
si une langue dispose d’un systeme de type fort de telle sorte que transty-
pages de valeurs d’entrée mal formées a certains types primitifs se traduira
par des erreurs d’exécution, la langue peut constituer une défense implicite
contre 'introduction de vulnérabilités comme cross-site scripting et SQL in-
jection. Deuxiémement, si un cadre pour les langues fournit un ensemble
complet de routines de validation d’entrée pour les données complexes telles
que les adresses e-mail ou numéros de carte de crédit, I'invocation de ces
routines peuvent en outre améliorer la résilience d’une application web a
I'introduction de vulnérabilités courantes.

Typecasting comme une défense implicite

Afin de quantifier la mesure dans laquelle transtypage de valeurs d’entrée
a des types primitifs pourraient servir comme une couche de défense contre
les vulnérabilités cross-site scripting et SQL injection, nous avons effectué

une analyse sur les rapports de vulnérabilité pour un ensemble de test d’ap-
plications web. Particulierement, nous avons examiné le code source de ces
applications afin de déterminer si U'entrée de la vulnérabilité a un type pri-
mitif. Lorsque nous ne pouvions identifier directement le type, nous avons
examiné les modifications apportées au code source pour résoudre la vulné-
rabilité.

Nous avons extrait tous les parametres d’entrée des applications grace
a Papproche décrit dans la section 8.4.1. We extracted all the input para-
meters of the applications through the approach described in Section 8.4.1.
Following this approach, we were able to link 270 parameters corresponding
to cross-site scripting attack vectors, and 248 parameters corresponding to
SQL injection vectors to the source of of the test set of applications.?

Figures 8.7a et 8.7b montrent un apercu des types correspondant a des
parametres d’entrée vulnérables a cross-site scripting et SQL injection. La
plupart des parametres vulnérables était I'un des types suivants : boolean,
numeric, structured text, free text, enumeration, ou union. Les Booleans
peuvent prendre soit logiques valeurs vraies ou fausses. Des exemples de
types numériques sont des nombres entiers ou a virgule flottante. Par “struc-
tured text”, nous entendons que le parametre est une chaine et, en outre, il
ya une structure attendue a la ‘string’ Un vrai nom, URL, adresse e-mail,
ou un nom d’utilisateur dans un formulaire d’inscription sont des exemples
de ce type. En revanche, le type “free text” texte désigne arbitraires, les
‘strings’ non structurées. Les parametres d’entrée correspondant au type de
recensement ne devrait accepter un ensemble fini de valeurs qui sont connus
a 'avance. Les exemples sont les genres, les noms de pays, ou un champ de
formulaire de sélection. Finalement, un type d’union indique une variable
qui combine plusieurs types (par exemple, une valeur qui devrait étre soit
une valeur numérique ou une valeur booléenne).

Seulement environ 20% des vulnérabilités de validation d’entrée sont
associés avec le type de texte libre. Cela signifie que dans ces cas, la demande
devrait accepter une entrée de texte arbitraire. Ainsi, une vulnérabilité de
validation d’entrée de ce type ne peut étre empéchée par la désinfection de
I’fourni par la validation d’entrée.

Intéressant de noter que 35% des parametres d’entrée vulnérables aux
attaques cross-site scripting sont en réalité numérique, le dénombrement, ou
les types booléens (y compris les listes de valeurs de ces types), tandis que
68% des parametres d’entrée vulnérables aux SQL injection correspondent &
ces types de données simples. Ainsi, la majorité des vulnérabilités de valida-
tion d’entrée pour ces applications auraient pu étre évités par ’application
de la validation de 'utilisateur fourni par ’entrée en fonction des types de
données simples. Nous croyons que le grand nombre de parametres vulné-

3Many CVE reports do not mention any attack vectors. Hence, we excluded them for
this analysis.

list of
enumeration
1%

union types
0%

list of boolean
3% list of union

0%

list of number
boolean

1%
3%
list of freetext
1% enumeration
12%

list of structured
text
0%

(a) Vulnerabilités cross-site scripting

list of number union types

7% 1% boolean
4%

list of freetext
1%
enumeration

list of structured 10%

text
1%
freetext
7%

(b) Vulnerabilités SQL injection

FIGURE 8.7: Les types de données correspondant a des parametres d’entrée
vulnérables.

rables a SQL injection qui correspondent au type numérique est causée par
le phénomene que beaucoup d’applications web utilisent des nombres entiers
pour identifier les objets et utiliser ces valeurs dans la logique de I’application
qui interagit avec la base de données back-end (par exemple pour identifier
les utilisateurs, des messages ou blogs).

8.4.3 Discussion

Les résultats de notre étude suggerent que la majorité des vulnérabilités
cross-site scripting et SQL injection peut étre prévenue par la validation
implicite résultant d’incantation réduit a des types primitifs observés dans
les applications écrites dans des langages fortement typés. En particulier,
pour les vulnérabilités SQL injection, la distribution simple des parameétres
a des nombres entiers et les booléens permettrait d’éliminer plus de la moitié
des vulnérabilités existantes. Cela peut expliquer pourquoi les applications
écrites en Java sont moins vulnérables a ces classes d’attaques.

Parametres d’entrée vulnérables qui doivent accepter d’entrée arbitraire,
et donc le cas doit étre désinfecté par cas par le développeur, sont dans la
pratique une large minorité. Par conséquent, nous préconisons que, ana-
logue a l'affaire de cadre de soutien pour ’auto-assainissement, langages
de développement web ou de cadres devraient soutenir la validation auto-
matique des entrées de l'application Web en tant que mesure de sécurité.
Une politique d’alimentation automatique de validation peut prendre plu-
sieurs formes concrétes, telles que l'intégration dans le systéme de type de
la langue, le cadre soutenu par I'annotation de parametres d’entrée, ou une
description de la politique centralisée appliquées au niveau du cadre.

Les résultats de notre étude empirique suggerent que de nombreuses vul-
nérabilités SQL injection et cross-site scripting pourraient facilement étre
évités si les langages du web et des cadres serait en mesure de valider auto-
matiquement ’entrée en fonction des types de données courants tels que les
numéros entiers, booléen, et certains types de ‘strings’ telles que e-mails et
les URL.

8.5 Prévention automatique des vulnérabilités de
validation d’entrée dans les applications Web

Dans cette section, nous présentons IPAAS (Input PArameter Analysis
System), une approche pour la sécurisation des applications Web contre les
cross-site scripting et SQL injection attaque a l'aide de validation d’entrée.
L’insight de TPAAS est de fagon automatique et transparente d’augmen-
ter autrement vulnérables environnements de développement d’applications
Web avec des validateurs d’entrée qui se traduisent par des améliorations de
sécurité importantes et tangibles pour les systemes réels.

Extraction phase Analysis and training phase

‘ HTTP
.| requests —» HTTP Request Parser X Validators
N — o | Analysis

T Engine
Y| | re;;g:;ei F—» HTML Parser S(C:::::er
-
Ser!/er- / Runtime
Side validation
(o 4 M
“’/ﬂmui Validalio;l\

N Policies / ¢
- ,/

FicUre 8.8: L’architecture IPAAS. The IPAAS architecture. A proxy in-
tercepte HT'TP messages générés au cours des essais d’application. Les pa-
rametres d’entrée sont classés au cours d’une phase d’analyse selon 1'une
quelconque d’un ensemble de types possibles. Apres suffisamment de don-
nées a été observée, IPAAS dérive d'une politique de validation d’entrée en
fonction des types tirés pour chaque parametre d’entrée 'application. Cette
politique est automatiquement appliquée a ’exécution par la réécriture de
I’application.

IPAAS peut étre décomposée en trois phases : (i) l'extraction de pa-
rametres, (i) de type l'apprentissage, et (iii) 'application d’exécution. Un
apergu de 'architecture IPAAS est illustré a la figure 8.8. Dans le reste de
cette section, nous décrivons chacune de ces phases en détail.

8.5.1 Extraction des parametres

La premiére phase est essentiellement une étape de collecte de données.
Ici, un proxy intercepte les messages du serveur HI'TP échangées entre un
client web et I’application au cours des essais. Pour chaque demande, tous les
parametres observés sont analysés en paires clé-valeur, associée a la ressource
demandée, et stockées dans une base de données. Chaque réponse contenant
un document HTML est traitée par un parseur HI'ML qui extrait des liens
et des formes qui ont des objectifs liés a ’application testée. Pour chaque
lien contenant une chaine de requéte, paires clé-valeur sont extraits comme
dans le cas des demandes. Pour chaque formulaire, tous les éléments d’entrée
sont extraites. De plus, ces éléments d’entrée qui spécifient un ensemble de
valeurs possibles (par exemple, select éléments) sont traversées de collecter
ces valeurs.

Type Validator

boolean (0|1)|(truelfalse)|(yes|no)
integer (+|-)7[0-9]+

float (+[-)7[0-9]1+(\+.[0-9]+)7

URL RFC 2396, RFC 2732
token static set of string literals
word [0-9a-zA-ZQ -]+
words [0-9a-zA-Z@ - \r\n\t]+
free-text none

TABLE 8.3: IPAAS types et leurs validateurs.

8.5.2 Analyse des parametres

L’objectif de la deuxieme phase consiste a étiqueter chaque parametre ex-
traite lors de la premiere phase avec un type de données sur la base des
valeurs observées pour ce parametre. Le processus de marquage est réalisé
en appliquant un ensemble de validation a des entrées de test.

Les valideurs

Validateurs sont des fonctions qui vérifient si une valeur correspond a un
ensemble particulier de contraintes. Dans cette phase, IPAAS applique un
ensemble de validation, dont chacun vérifie qu'une entrée appartient a I'un
d’un ensemble de types. L’ensemble des types et des expressions régulieres
décrivant les valeurs légitimes sont présentés dans le tableau 8.3. En plus
des types énumérés dans le tableau 8.3, IPAAS reconnait les listes de chacun
de ces types.

Systéme d’analyse

IPAAS détermine le type d’un parameétre dans deux sous-phases. Dans la
premiere, les types sont tirés fondée sur des valeurs qui ont été enregistrés
pour chaque parametre. Dans le deuxieme, les types sont tirés augmenté en
utilisant les valeurs extraites des documents HTML.

L’apprentissage Dans la premiere sous-étape, ’analyse commence par la
récupération de tous les chemins des ressources qui ont été visitées pendant
le test d’application. Pour chaque chemin, I'algorithme récupeére I’ensemble
unique de parametres et I’ensemble complet de valeurs pour chacune de ces
parametres observés au cours de la phase d’extraction. Chaque parametre est
attribué un vecteur résultat entier de longueur égale au nombre de validation
possibles.

La phase d’apprentissage type réel commence par passage de chaque
valeur d’'un parametre donné a chaque type possible de validation. Si un
validateur accepte une valeur, I’entrée correspondante dans le vecteur score
de ce parametre est incrémenté par un. Dans le cas ou aucun validateur
accepte une valeur, puis le moteur d’analyse assigne la free-text de type
au parametre et arréte le traitement des valeurs.

Apres toutes les valeurs d’un parametre ont été traitées, le vecteur score
est utilisé pour sélectionner un type et, par conséquent, un validateur. Plus
précisément, le type avec le score le plus élevé dans le vecteur est choisi. Si
il ya une égalité, puis le type le plus restrictif est affecté, ce qui correspond
a l'ordre donné dans le tableau 8.3.

La seconde sous-phase utilise les informations extraites de documents
HTML. Tout d’abord, une vérification est effectuée afin de déterminer si le
parametre est associé a un fichier HI'ML, textarea élément. Si c’est le cas,
le parametre est immédiatement attribué le free-text type. Sinon, l'algo-
rithme vérifie si le parametre correspond a une input élément qui fait partie
d’une case a cocher, bouton radio, ou select liste. Dans ce cas, I’ensemble
de valeurs observées sont possibles assignée au parametre. Ailleurs, si 1’élé-
ment associé est une case a cocher, un multi-valeurs select, ou le nom du
parametre se termine par la ‘string’ [1, le parametre est marqué comme une
liste.

Le systéme d’analyse en déduit alors la politique de validation d’entrée
pour chaque parametre. Pour chaque ressource, le chemin est 1ié a 'empla-
cement physique du fichier source de I’application correspondante. Puis, les
parametres de ressources sont regroupées par type d’entrée (par exemple,
query string, request body, cookie) et sérialisé dans le cadre d’une politique
de validation d’entrée. Enfin, la politique est écrite sur le disque.

Analyse statique Les sous-phases de formation décrites ci-dessus peuvent
étre complétées par une analyse statique. En particulier, IPAAS pouvez uti-
liser une simple analyse statique de trouver des parametres et des ressources
d’application qui ont été manquées au cours de la phase d’apprentissage en
raison de données insuffisantes de formation. Cette analyse est, bien sfr,
spécifique & un langage de programmation particulier et le cadre.

8.5.3 Runtime Environment

Le résultat des deux premieres phases est un ensemble de politiques de vali-
dation d’entrée pour chaque parametre d’entrée a 'application Web en cours
de test. La troisieme phase se produit au cours du déploiement. a ’exécution,
IPAAS intercepte les demandes entrantes et vérifie chaque requéte contre la
politique de validation des parametres qui ressource. Si une valeur de para-
metre contenue dans une demande ne répond pas aux contraintes spécifiées

par la politique, puis IPAAS chute de la demande. Sinon, ’application conti-
nue d’exécution.

Une demande peut contenir des parametres qui n’ont pas été observées
pendant les phases précédentes, soit dans le sous-phases d’apprentissage ou
de I'analyse statique. Dans ce cas, il ya deux options possibles. Il s’agit d’une
approche conservatrice qui pourrait, d’autre part, conduire a débordements
programme. Sinon, la demande peut étre acceptée et le nouveau parametre
marquée comme valide. Ce fait pourrait étre utilisé dans une phase d’ap-
prentissage a la suite de rafraichir les politiques de ’application de validation
d’entrée.

8.6 Conclusion

Pour comprendre comment améliorer la sécurité des applications Web, des
idées sur la fagon dont les vulnérabilités des applications Web réelles ont
évolué et comment elles peuvent étre évitées devenue d’intérét. Dans cette
these, nous affirmons que, en vue d’améliorer la sécurité des applications
Web, les vulnérabilités web courantes telles que cross-site scripting et SQL
injection doivent étre automatiquement empéchée en utilisant des techniques
de validation d’entrée.

Notre étude sur I’évolution des vulnérabilités de validation d’entrée dans
les applications web dans le chapitre 4 démontre que ces classes de vul-
nérabilités sont encore trés répandues. Mesures sur un grand nombre de
vulnérabilités de validation d’entrée fourni des indications pour savoir si les
développeurs sont mieux a ’écriture d’applications Web sécurisées aujour-
d’hui qu’elles ne 'habitude d’étre dans le passé. Les résultats de cette étude
suggerent que les développeurs web sont toujours pas a mettre en ceuvre
les mécanismes de défense contre les vulnérabilités existantes de validation
d’entrée et que il ya un besoin de techniques que les applications Web sé-
curisées par la conception. C’est, techniques qui empéchent ces classes de
vulnérabilités automatiquement et fonctionne de facon transparente pour
les développeurs.

Les outils, de cadres Web et langages de programmation qui sont utilisés
pour développer une application web ont un impact direct sur la facon dont
le systeme doit étre créé et, en tant que telle, détermine également les moyens
qui sont nécessaires pour assurer ’application résultante. Pour comprendre
comment sécuriser des applications Web, nous explorons dans le chapitre 5
la relation entre le langage de programmation Web utilisé pour développer
une application web et les vulnérabilités qui sont fréquemment rapportés.
En particulier, nous identifier et de quantifier I'importance des mécanismes
de typage des langages de programmation web et des cadres pour la sécurité
des applications Web.

Nous avons utilisé les connaissances a partir des études empiriques pré-

sentées dans les chapitres 4 et 5, pour construire un systéme qui améliore
le développement sécurisé des applications Web en automatique et trans-
parente des environnements de développement Web augmentant avec vali-
dateurs d’entrée robustes. Nous montrons que cette approche améliore la
sécurité des applications Web réelles de maniere significative.

Appendix A

Web Application

Frameworks
Framework Version ‘ Programming Language / Platform
flow3 1.0.0-alphal4-build46 | php
php fat-free 1.4.4 php
alloy 0.6.0 php
php on trax 0.16.0 php
jelix 1.2.1.1 php
quickframework 1.4.1 php
jasper 1.9.2 php
ez components 2009.2.1 php
caffeine 1.0 php
drupal 7.0 php
xajax 0.5 php
wasp 1.2 php
cakephp 1.3.7 php
joomla 1.6.1 php
fusebox 5 php
modx 2.0.8pl php
smarty 3.0.7 php
solarphp 1.1.2 php
runcms 2.2.2 php
codeigniter 2.0.0 php
symfony 1.4.9 php
adventure 1.13 php
nanoajax 0.0.2 php
qcodo 0.4.20 php
lamplighter 2.0.1 php
php.mvc 1.0 php

125

fastframe 3.4 php
yii 1.1.6 php
€-X00ps 2.5.0 php
lithium 0.9.9 php
studs 0.9.8 php
kohana 3.1.1.1 php
horde 3.3.11 php
recess 0.2 php
lightve 1.0.4 php
seagull 0.6.8 php
tekuna 0.2.202 php
kumbiaphp 1.0b1 php
nubuilder 11.02.18 php
catalyst 5.80032 perl
dancer 1.3 perl
cgi::application 4.31 perl
Rose-HTML-Objects | NA perl
Reaction NA perl
interchange 5.6.3 perl
mason 1.45 perl
continuity 1.3 perl
mojo 1.12 perl
web.py 0.34 python
zope 3.4.0 python
web2py 1.93.2 python
django 1.2.5 python
rails 3.0.5 ruby
sinatra 1.2.1 ruby
iowa 0.99.2.19 ruby
camping 2.1 ruby
merb 1.1.2 ruby
castle 2.5 .net
dotnetnuke 5.6.1 .net
spring.net 1.3.1 .net
maverick.net 1.2.0.1 .net
clockwork 3.0.4.2 .net
bistro 0.9.2 .net
click 2.2.0 java
struts 2 2.2.1.1 java
myfaces 2.04 java
mojarra 2.1.0 java

play 1.1.1 java
google web toolkit 2.2.0 java
echo2 2.1.1 java
spring mvc 3 java
grails 1.3.7 java
jboss seam 2.2.1 java
wicket 1.4.16 java
tapestry 5.2.4 java
dwr 2.0.6 java
jvx webui 0.8 java
webflow 2.3.0 java

Table A.1: Web frameworks analyzed

Bibliography

1]

2]

3]

[4]

Acunetix. Acunetix web vulnerability scanner.
http://www.acunetix.com/vulnerability-scanner/, 2012.

Omar H. Alhazmi, Yashwant K. Malaiya, and Indrajit Ray. Security
vulnerabilities in software systems: A quantitative perspective. In
Sushil Jajodia and Duminda Wijesekera, editors, DBSec, volume 3654
of Lecture Notes in Computer Science, pages 281-294. Springer, 2005.

Magnus Almgren, Hervé Debar, and Marc Dacier. A Lightweight Tool
for Detecting Web Server Attacks, pages 157-170. 2000.

AnantaSec. Ananta security blog. http://anantasec.blogspot.com/,
2009.

William A. Arbaugh, William L. Fithen, and John McHugh. Windows
of vulnerability: A case study analysis. Computer, 33:52-59, December
2000.

Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang.
Impact of vulnerability disclosure and patch availability - an empirical
analysis. In In Third Workshop on the Economics of Information
Security, 2004.

Marco Balduzzi, Carmen Torrano Gimenez, Davide Balzarotti, and
Engin Kirda. Automated discovery of parameter pollution vulnerabil-
ities in web applications. In NDSS’11, 8th Annual Network and Dis-
tributed System Security Symposium, 6-9 February 2011, San Diego,
California, USA, 02 2011.

Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic,
FEngin Kirda, Christopher Kriigel, and Giovanni Vigna. Saner: com-
posing static and dynamic analysis to validate sanitization in web
applications. In Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 2008.

129

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

Inc. Barracuda Networks. Barracuda web application fire-
wall. http://www.barracudanetworks.com/ns/products/web-site-
firewall-overview.php, 2011.

Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions
considered harmful in client-side xss filters. In WWW ’10: Proceedings
of the 19th international conference on World wide web, pages 91-100,
New York, NY, USA, 2010. ACM.

Jason Bau, Elie Bursztein, Divij Gupta, and John C. Mitchell. State
of the art: Automated black-box web application vulnerability testing.
In IEEE Symposium on Security and Privacy, pages 332-345. IEEE
Computer Society, 2010.

Justin Billig, Yuri Danilchenko, and Charles E. Frank. Evaluation
of google hacking. In Proceedings of the 5th annual conference on
Information security curriculum development, InfoSecCD ’08, pages

27-32, New York, NY, USA, 2008. ACM.

Nick Bilton. How credit card data is stolen and sold.
http://bits.blogs.nytimes.com/2011/05/03/card-data-is-stolen-and-
sold/, May 2011.

Stephen W. Boyd and Angelos D. Keromytis. Sqlrand: Preventing
sql injection attacks. In Markus Jakobsson, Moti Yung, and Jianying
Zhou, editors, Applied Cryptography and Network Security, Second
International Conference, ACNS 2004, Yellow Mountain, China, June
8-11, 2004, Proceedings, volume 3089 of Lecture Notes in Computer
Science, pages 292-302. Springer, 2004.

Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Za-
veri, and David Evans. Guardrails: a data-centric web application
security framework. In Proceedings of the 2nd USENIX conference on
Web application development, WebApps’l1, pages 1-1, Berkeley, CA,
USA, 2011. USENIX Association.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX conference on Operating
systems design and implementation, OSDI’08, pages 209-224, Berke-
ley, CA, USA, 2008. USENIX Association.

Bryan Casey, Carsten Hagemann, David Merrill, Jens Thamm, Ashok
Kallarakkal, Jason Kravitz, John Kuhn, John C. Pierce, Jon Larimer,
Leslie Horacek, Marc Noske, Marc van Zadelhoff, Mark E. Wallis,
Michelle Alvarez, Mike Warfield, Ory Segal, Patrick Vandenberg, Pete

[25]

Allor, Phil Neray, Ralf Iffert, Randy Stone, Ryan McNulty, Scott
Moore, Scott Van Valkenburgh, Tom Cross, and Vidhi Desai. Ibm
x-force 2011 mid-year trend and risk report. Technical report, IBM,
2011.

Hasan Cavusoglu, Huseyin Cavusoglu, and S. Raghunathan. Emerging
issues in responsible vulnerability disclosure. In Proceedings of WITS
2004, 2004.

US CERT. Cyber security bulletins. http://www.us-
cert.gov/cas/bulletins/, 2012.

S. M. Christey and R. A. Martin. Vulnerability type distributions in
cve. http://cwe.mitre.org/documents/vuln-trends/index.html, 2007.

S. Clark, S. Frei, M. Blaze, and J. Smith. Familiarity breeds contempt:
The honeymoon effect and the role of legacy code in zero-day vulnera-
bilities. In Annual Computer Security Applications Conference, 2010.

Mike Dausin, Adam Hils, Dan Holden, Prajakta Jagdale, Jason Jones,
Rohan Kotian, Jennifer Lake, Mark Painter, Taylor Anderson McKin-
ley, Alen Puzic, and Bob Schiermann. The 2011 mid-year top cyber
security risks report. Technical report, Hewlett-Packard, 2011.

Rohit Dhamankar, Mike Dausin, Marc Eisenbarth, and James King.
The top cyber security risks. http://www.sans.org/top-cyber-security-
risks/, 2009.

A. Doupe, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An
Analysis of Black-box Web Vulnerability Scanners. In Proceedings of
the Conference on Detection of Intrusions and Malware and Vulnera-
bility Assessment (DIMVA), Bonn, Germany, July 2010.

Maureen Doyle and James Walden. An empirical study of the evo-
lution of php web application security. In Proceedings of the 7th In-
ternational Workshop on Security Measurements And Metrics, Banff,
Canada, September 2011.

Inc. F5 Networks. F5 big-ip application security manager (asm).
http://www.f5.com/solutions/security /web-application/, 2011.

Joe Faulhaber, David Felstead, Paul Henry, Jeff Jones, Ellen Cram
Kowalczyk, Jimmy Kuo, John Lambert, Marc Lauricella, Aaron Mar-
gosis, Michelle Meyer, Anurag Pandit, Anthony Penta, Dave Probert,
Tim Rains, Mark E. Russinovich, Weijuan Shi, Adam Shostack, Frank
Simorjay, Hemanth Srinivasan, Holly Stewart, Matt Thomlinson, Jeff
Williams, Scott Wu, and Terry Zink. Microsoft security intelligence
report volume 11. Technical report, Microsoft, 2011.

[28]

[34]

[35]

Matthew Finifter and David Wagner. Exploring the Relationship Be-
tween Web Application Development Tools and Security. In USENIX
Conference on Web Application Development (WebApps). USENIX
Association, June 2011.

J. Fonseca and M. Vieira. Mapping software faults with web security
vulnerabilities. In Proceedings of the IEEE Internation Conference on
Dependable Systems and Networks, pages 257-266, June 2008.

Django Software Foundation. Django.
https://www.djangoproject.com/.

Open Security Foundation. Osf datalossdb.
http://www.datalossdb.org/, 2012.

Stefan Frei. Security Econometrics - The Dynamics of (In)Security.
PhD thesis, ETH Zurich, sep 2009.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner.
Large-scale vulnerability analysis. In LSAD ’06: Proceedings of the
2006 SIGCOMM workshop on Large-scale attack defense, pages 131—
138, New York, NY, USA, 2006. ACM.

Matthew Van Gundy and Hao Chen. Noncespaces: Using randomiza-
tion to enforce information flow tracking and thwart cross-site script-
ing attacks. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2009, San Diego, California, USA, 8th
February - 11th February 2009, 2009.

Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint
propagation for java. In Proceedings of the 21st Annual Computer
Security Applications Conference, pages 303-311, Washington, DC,
USA, 2005. IEEE Computer Society.

W. Halfond, S. Anand, and A. Orso. Precise Interface Identification
to Improve Testing and Analysis of Web Applications. In Proceedings
of the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2009), Chicago, Illinois, USA, July 20009.

William G.J. Halfond and Alessandro Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In Proceedings of
the IEEE and ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, Nov 2005.

Hewlett-Packard. Hp webinspect.
https://www.fortify.com/products/web__inspect.html, 2012.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[47]

Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning more
about the underground economy: a case-study of keyloggers and drop-
zones. In Proceedings of the 1th European conference on Research in

computer security, ESORICS’09, pages 1-18, Berlin, Heidelberg, 2009.
Springer-Verlag.

Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena,
and Margus Veanes. Fast and precise sanitizer analysis with bek.
In Proceedings of the 20th USENIX conference on Security, SEC’11,
pages 1-1, Berkeley, CA, USA, 2011. USENIX Association.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-
Tsai Lee, and Sy-Yen Kuo. Securing web application code by static
analysis and runtime protection. In Proceedings of the 13th interna-
tional conference on World Wide Web, WWW ’04, pages 40-52, New
York, NY, USA, 2004. ACM.

IBM. Rational appscan. http://www-
01.ibm.com/software/awdtools/appscan/, 2012.

Google Inc. ctemplate. http://code.google.com/p/ctemplate/.

Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injec-
tion attacks with browser-enforced embedded policies. In WWW ’07:
Proceedings of the 16th international conference on World Wide Web,
pages 601-610, New York, NY, USA, 2007. ACM.

Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim
Posegga. Secure code generation for web applications. In Fabio Mas-
sacci, Dan S. Wallach, and Nicola Zannone, editors, £550S, volume
5965 of Lecture Notes in Computer Science, pages 96-113. Springer,
2010.

Martin Johns, Bjorn Engelmann, and Joachim Posegga. Xssds: Server-
side detection of cross-site scripting attacks. In Proceedings of the
2008 Annual Computer Security Applications Conference, ACSAC 08,
pages 335-344, Washington, DC, USA, 2008. IEEE Computer Society.

Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A
static analysis tool for detecting web application vulnerabilities (short
paper). In SP ’06: Proceedings of the 2006 IEEE Symposium on Secu-
rity and Privacy, pages 258263, Washington, DC, USA, 2006. IEEE
Computer Society.

Klaus Julisch. Clustering intrusion detection alarms to support root
cause analysis. ACM Trans. Inf. Syst. Secur., 6:443-471, November
2003.

[49]
[50]

[52]

Auguste Kerckhoffs. La cryptographie militaire, January 1883.

Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and
Michael D. Ernst. HAMPI: A solver for string constraints. In ISSTA
2009, Proceedings of the 2009 International Symposium on Software
Testing and Analysis, pages 105-116, Chicago, IL, USA, July 21-23,
2009.

Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D.
Ernst. Automatic creation of SQL injection and cross-site scripting
attacks. In ICSE’09, Proceedings of the 31st International Conference
on Software Engineering, Vancouver, BC, Canada, May 20-22, 2009.

Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jo-
vanovic. Noxes: a client-side solution for mitigating cross-site script-
ing attacks. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 330-337, New York, NY, USA, 2006. ACM.

D.V. Klein. Defending against the wily surfer - web-based attacks and
defenses. In Proceedings of the 1st USENIX Workshop on Detection
Symposium and Network Monitoring, Santa Clara CA, April 1999.

Yuji Kosuga, Kenji Kono, Miyuki Hanaoka, Miho Hishiyama, and
Yu Takahama. Sania: Syntactic and semantic analysis for automated
testing against sql injection. In ACSAC, pages 107-117. IEEE Com-
puter Society, 2007.

Jake Kouns, Kelly Todd, Brian Martin, David Shettler, Steve Tornio,
Craig Ingram, and Patrick McDonald. The open source vulnerability
database. http://osvdb.org/, 2010.

C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks.
In Proceedings of the 10" ACM Conference on Computer and Commu-
nication Security (CCS '03), pages 251-261, Washington, DC, October
2003. ACM Press.

C. Kruegel, G. Vigna, and W. Robertson. A Multi-model Approach to
the Detection of Web-based Attacks. Computer Networks, 48(5):717—
738, August 2005.

V. Benjamin Livshits and Monica S. Lam. Finding security errors in
Java programs with static analysis. In Proceedings of the 14th Usenix
Security Symposium, pages 271-286, August 2005.

Mike Ter Louw and V. N. Venkatakrishnan. Blueprint: Robust pre-
vention of cross-site scripting attacks for existing browsers. In Pro-
ceedings of the 2009 30th IEEE Symposium on Security and Privacy,
pages 331-346, Washington, DC, USA, 2009. IEEE Computer Society.

[60]

[61]

[62]

PortSwigger Ltd. Burp scanner.
http://portswigger.net/burp/scanner.html, 2011.

Giorgio Maone. Noscript. http://www.noscript.net.

Bob Martin, Mason Brown, Alan Paller, and Dennis Kirby.
2010 cwe/sans top 25 most dangerous software errors.
http://cwe.mitre.org/top25/, 2010.

Ferruh Mavituna. Sql injection cheat sheet.
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/, 2009.

McAfee. Mcafee threats report: Third quarter 2011. Technical report,
McAfee Labs, 2011.

Peter Mell, Karen Scarfone, and Sasha Romanosky. A com-
plete guide to the common vulnerability scoring system version 2.0.
http://www.first.org/cvss/cvss-guide.html, 2007.

MITRE. Common platform enumeration (cpe). http://cpe.mitre.org/,
2010.

MITRE. Common vulnerabilities and exposures (cve).
http://cve.mitre.org/, 2010.

MITRE. Common weakness enumeration (cwe).
http://cwe.mitre.org/, 2010.

MITRE. Mitre fags. http://cve.mitre.org/about/fags.html, 2010.

M.J. Mondro. Approximation of mean time between failure when a
system has periodic maintenance. Reliability, IEEE Transactions on,
51(2):166 —167, jun 2002.

Nate Mook. Cross-site scripting worm hits myspace.
http://betanews.com/2005/10/13/cross-site-scripting-worm-hits-
myspace/, October 2005.

Tyler Moore and Richard Clayton. Evil searching: Compromise and
recompromise of internet hosts for phishing. In Roger Dingledine and
Philippe Golle, editors, Financial Cryptography and Data Security,
volume 5628 of Lecture Notes in Computer Science, pages 256—272.
Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-03549-4_ 16.

J.D. Musa, A. Ianino, and Okumuto K. Software Reliability Measure-
ment Prediction Application. McGraw-Hill, 1987.

[74] Yacin Nadji, Prateek Saxena, and Dawn Song. Document structure
integrity: A robust basis for cross-site scripting defense. In Proceedings
of the Network and Distributed System Security Symposium, NDSS
2009, San Diego, California, USA, 8th February - 11th February 2009,
2009.

[75] Stephan Neuhaus and Thomas Zimmermann. Security trend analysis
with cve topic models. In Proceedings of the 21st IEEE International
Symposium on Software Reliability Engineering, November 2010.

[76] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and An-
dreas Zeller. Predicting vulnerable software components. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, ed-
itors, ACM Conference on Computer and Communications Security,
pages 529-540. ACM, 2007.

[77] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley,
and David Evans. Automatically hardening web applications using
precise tainting. In Ryoichi Sasaki, Sihan Qing, Eiji Okamoto, and
Hiroshi Yoshiura, editors, SEC, pages 295-308. Springer, 2005.

[78] NIST. National vulnerability = database version 2.2.
http://nvd.nist.gov/, 2010.

[79] OWASP. Owasp top 10 - 2010, the ten
most critical web application security risks.

https://www.owasp.org/index.php/Category:OWASP_ Top_ Ten_ Project,
2010.

[80] Andy Ozment and Stuart E. Schechter. Milk or wine: does software
security improve with age? In USENIX-SS5°06: Proceedings of the
15th conference on USENIX Security Symposium, Berkeley, CA, USA,
2006. USENIX Association.

[81] H. Peine. Security test tools for web applications. Technical Report
048.06, Fraunhofer IESE, January 2006.

[82] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against in-
jection attacks through context-sensitive string evaluation. In Alfonso
Valdes and Diego Zamboni, editors, RAID, volume 3858 of Lecture
Notes in Computer Science, pages 124-145. Springer, 2005.

[83] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrow-
icz, and V.N. Venkatakrishnan. NoTamper: Automatic Blackbox De-
tection of Parameter Tampering Opportunities in Web Applications.
In CCS’10: Proceedings of the 17th ACM conference on Computer and
communications security, Chicago, Illinois, USA, 2010.

[84]

[91]

Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and
Fabian Monrose. All your iframes point to us. In Proceedings of the
17th conference on Security symposium, pages 1-15, Berkeley, CA,
USA, 2008. USENIX Association.

Rapid7. Metasploit. http://www.metasploit.com, 2012.

Jeremias Reith. Internals of NOXSS.
http://www.noxss.org/wiki/Internals, October 2008.

Eric Rescorla. Security holes... who cares? In Proceedings of the 12th
conference on USENIX Security Symposium - Volume 12, pages 66,
Berkeley, CA, USA, 2003. USENIX Association.

Eric Rescorla. Is finding security holes a good idea? I[IEFEE Security
and Privacy, 3:14-19, January 2005.

Andres Riancho. w3af - web application attack and audit framework.
http://w3af.sourceforge.net/, 2011.

W. Robertson and G. Vigna. Static enforcement of web application
integrity through strong typing. In Proceedings of the 18th conference
on USENIX security symposium, pages 283-298. USENIX Association,
2009.

W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. Using Gener-
alization and Characterization Techniques in the Anomaly-based De-
tection of Web Attacks. In Proceeding of the Network and Distributed
System Security Symposium (NDSS), San Diego, CA, February 2006.

Martin Roesch. Snort - lightweight intrusion detection for networks.
In Proceedings of the 13th USENIX conference on System adminis-
tration, LISA 99, pages 229-238, Berkeley, CA, USA, 1999. USENIX
Association.

David Ross. Ie 8 xss filter. http://blogs.technet.com/srd/archive/2008/08 /18 /ie-
8-xss-filter-architecture-implementation.aspx, August 2008.

RSA. Cyber security awareness month fails to deter phishers. Tech-
nical report, RSA, 2011.

RSnake. Xss (cross site scripting) cheat sheet esp: for filter evasion.
http://ha.ckers.org/xss.html, 2009.

Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive
auto-sanitization in web templating languages using type qualifiers.
In Proceedings of the 18th ACM conference on Computer and com-
munications security, CCS ’11, pages 587-600, New York, NY, USA,
2011. ACM.

[97]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen
McCamant, and Dawn Song. A symbolic execution framework for
javascript. In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP 10, pages 513-528, Washington, DC, USA, 2010.
IEEE Computer Society.

Prateek Saxena, David Molnar, and Benjamin Livshits. Scriptgard:
Automatic context-sensitive sanitization for large-scale legacy web ap-
plications. In Proceedings of the Conference on Computer and Com-
munications Security, October 2011.

Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Quo Vadis?
A Study of the Evolution of Input Validation Vulnerabilities in Web
Applications. In Proceedings of the International Conference on Fi-
nancial Cryptography and Data Security, Bay Gardens Beach Resort,
Saint Lucia, 2011.

Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things
changed now? a study of the evolution of input validation vulnerabil-
ities in web applications. Elsevier Computers €9 Security, 2012.

Theodoor Scholte, Davide Balzarotti, William Robertson, and Engin
Kirda. An Empirical Analysis of Input Validation Mechanisms in Web
Applications and Languages. In Proceedings of the 27th ACM Sym-
posium On Applied Computing (SAC 2012), Riva del Garda, Italy.,
March 2012.

Mathew J. Schwartz. Sony data breach cleanup to cost $171 million.
Information Week, May 2011.

David Scott and Richard Sharp. Abstracting application-level web
security. In Proceedings of the 11th international conference on World
Wide Web, WWW ’02, pages 396-407, New York, NY, USA, 2002.
ACM.

Panda Security. Panda security report the cyber-crime black market:
Uncovered. Technical report, Panda Security, 2011.

WhiteHat Security. Whitehat website security statistic report. Tech-
nical report, WhiteHat Security, 2011.

SecurityFocus. Bugtraq. http://www.securityfocus.com, 2012.

Nuno Seixas, Jose Fonseca, Marco Vieira, and Henrique Madeira.
Looking at Web Security Vulnerabilities from the Programming Lan-
guage Perspective: A Field Study. In Proceedings of the International
Symposium on Software Reliability Engineering, pages 129-135. IEEE
Computer Society, 2009.

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

R. Shirey. Request for Comments: 2828. Technical report, The Inter-
net Society, May 2000.

R. Shirey. Request for comments: 4949. Technical report, The Internet
Society, 2007.

Zhendong Su and Gary Wassermann. The essence of command in-
jection attacks in web applications. In Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’06, pages 372-382, New York, NY, USA, 2006.
ACM.

Trustwave. Modsecurity: Open source web application firewall.
http://www.modsecurity.org/, 2011.

G. Vigna, W. Robertson, V. Kher, and R.A. Kemmerer. A Stateful In-
trusion Detection System for World-Wide Web Servers. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC
2003), pages 34-43, Las Vegas, NV, December 2003.

W3Counter. Web browser market share trends.
http://www.w3counter.com/trends, 2011.

J. Walden, M. Doyle, R. Lenhof, and J. Murray. Java vs. php: Se-
curity implications of language choice for web applications. In In-
ternational Symposium on Engineering Secure Software and Systems

(ESS0S), February 2010.

James Walden, Maureen Doyle, Grant A. Welch, and Michael Whe-
lan. Security of open source web applications. In Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement, ESEM ’09, pages 545553, Washington, DC, USA,
October 2009. IEEE Computer Society.

Gary Wassermann and Zhendong Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation, San Diego, CA, June 2007. ACM Press New
York, NY, USA.

Gary Wassermann and Zhendong Su. Static Detection of Cross-Site
Scripting Vulnerabilities. In Proceedings of the 30th International Con-
ference on Software Engineering, Leipzig, Germany, May 2008. ACM
Press New York, NY, USA.

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew
Finifter, Richard Shin, and Dawn Song. An Empirical Analysis of

[119]

[120]

[121]

[122]

[123]

[124]

XSS Sanitization in Web Application Frameworks. Technical report,
UC Berkeley, 2011.

A. Wiegenstein, F. Weidemann, M. Schumacher, and S. Schinzel. Web
application vulnerability scanners - a benchmark. Technical report,
Virtual Forge GmbH, October 2006.

S.W. Woo, O.H. Alhazmi, and Y. K. Malaiya. An analysis of the
vulnerability discovery process in web browsers. In Proceedings of the

10th International Conference on Software Engineering and Applica-
tions, Dallas, TX, Nov 2006.

Yichen Xie and Alex Aiken. Static detection of security vulnerabilities
in scripting languages. In USENIX-55°06: Proceedings of the 15th con-
ference on USENIX Security Symposium, Berkeley, CA, USA, 2006.
USENIX Association.

Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. Vulnerability ex-
trapolation: Assisted discovery of vulnerabilities using machine learn-
ing. In Proc. of 5th USENIX Workshop on Offensive Technologies
(WOOT), August 2011.

Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
Improving application security with data flow assertions. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems prin-
ciples, SOSP 09, pages 291-304, New York, NY, USA, 2009. ACM.

Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui
Han, and Wei Zou. Studying malicious websites and the underground
economy on the chinese web. In Workshop on the Economics of Infor-
mation Security (WEIS’08), 2008.

