
HAL Id: tel-01225843
https://pastel.hal.science/tel-01225843

Submitted on 6 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modularization of security software engineering in
distributed systems

Gabriel Serme

To cite this version:
Gabriel Serme. Modularization of security software engineering in distributed systems. Cryptography
and Security [cs.CR]. Télécom ParisTech, 2013. English. �NNT : 2013ENST0063�. �tel-01225843�

https://pastel.hal.science/tel-01225843
https://hal.archives-ouvertes.fr

�

�

�

�

�

2013-ENST-0063

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Gabriel SERME
le 05 Novembre 2013

La modularisation de la sécurité informatique

dans les systèmes distribués

Jury
M. Mario SÜDHOLT, Professeur, Département Informatique, École des Mines de Nantes Président
M. Frédéric CUPPENS, Professeur, Télécom Bretagne Rapporteur
M. Ludovic MÉ, Enseignant-chercheur - HDR, Supelec Rapporteur
Mme Mireille BLAY-FORNARINO, Professeur, Laboratoire I3S, CNRS - UNS Examinatrice
M. Refik MOLVA, Professeur, EURECOM Examinateur
M. Yves ROUDIER, Maître de Conférences, Eurecom Directeur de thèse
M. Anderson SANTANA de OLIVEIRA, Docteur, SAP Labs Invité

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

Acknowledgments

I would like to first acknowledge my academic supervisor, Yves Roudier, for his guidance, sup-

port as well as time and advice throughout the thesis. He is the one together with Jean-Christophe

Pazzaglia from SAP Research who enable me to work on my thesis.

A thesis is the result of many years of work that could not come out without support from

many people. I’ve been lucky to meet so many great people coming from different fields, and

from different environments. Fulfill such a journey requires a balance in professional activities

and spare time, although the limit between both tends to blur over time.

My first thought goes to Cedric Ulmer, Paul and Azzedine. I started a thesis after working

and discussing with them, and they constantly provided me valuable advices. I owe my deepest

gratitude to Anderson, as my thesis would also not have been possible without his daily support.

I am indebted to my many of my colleagues to support me. I would like to mention, al-

though the list is not exhaustive, Wihem, Cedric, Laurent, Jakub, Gilles, and all my colleagues

from SAP Research and Eurecom. I am grateful also to all PhDs’: Sabir, Giancarlo, Theodoor,

Joern, Corentin, Matteo, Samuel, Ahmad and Mehdi. We had great time with all the students

and apprentices from the Nemea community. A special mention goes to Julien, Peng, Yann who

worked as intern for our project, and a big thank you to Olivier and Aurelien.

A personal attention to Sylvine and Gwenaelle.

Finally, it is a pleasure to thank those I bothered with my thesis: my roommates Stephane

and Francois. Another thank you for the numerous people I met at SAP (Sophia-Antipolis but

also worldwide) and at Eurecom.

I’m thankful to my family (especially mother, father, brother, brother, brother) and to all my

friends.

Last, but definitely not least, I would like to thank Julie for all these years at my side. She

handled all situations, and supported me whether I was in a bad mood, anxious, or nervous. She

has been comprehensive and I congratulate her for still supporting me.

i

ii

Contents

Résumé 1

1 Introduction 16

1.1 Background . 16

1.2 Overview . 17

1.3 Problem Statement . 18

1.4 Contributions . 19

1.5 Organization of the thesis . 19

2 Modularization of cross-cutting concerns 20

2.1 Software Engineering . 20

2.2 Aspect-Oriented Software Development . 23

2.3 Security Implication in the Software Development Life Cycle 31

2.4 Security Requirements . 32

2.5 Security and aspects . 33

2.6 Service Oriented Architecture . 41

I Modularization of defensive security 45

3 Vulnerability remediation with modular patches 48

3.1 Introduction . 48

3.2 Agile management of vulnerabilities . 51

3.3 A flexible architecture . 52

3.4 Static analysis process . 54

3.5 Assisted remediation with a security aspect library 58

3.6 Evaluation . 64

3.7 Related work . 70

3.8 Summary . 72

4 Automation of input validation verification in application 74

4.1 Introduction . 74

4.2 Aspect-based modularization with enhanced data-types 77

4.3 Use case . 83

iii

4.4 Validation . 86

4.5 Related work . 90

4.6 Language approach for security modularization 93

II Modularization of constructive security 95

5 Service framework modularization for message-based security 97

5.1 Introduction . 97

5.2 Motivation . 98

5.3 REST Security . 104

5.4 Evaluation of REST security protocol . 111

5.5 Related Work . 115

5.6 Summary . 116

6 Modularization of privacy in cloud platform around persistance layer 118

6.1 Introduction . 119

6.2 Privacy-Aware Applications in the Cloud . 121

6.3 Privacy Enhanced Application Programming 123

6.4 Related Work . 128

6.5 Summary . 130

III Conclusion and perspectives 131

7 Conclusion 132

8 Perspectives: towards a cross-layer and parametric aspect system 134

8.1 Motivation . 134

8.2 Requirements . 139

8.3 Aspect System and Language . 140

8.4 Related work . 142

8.5 Conclusion . 144

Bibliography 145

iv

List of Figures

2.1 Programming paradigms categorization presented in [USB09] 22

2.2 cross-cutting concern visualization with the AJDT eclipse plugin for a deliberate

vulnerable application . 25

2.3 Application execution output result . 28

2.4 Class diagram of the example. The aspect and the base application are in black.

The weaving addition are in red. 29

2.5 Software Development Life-Cycle . 32

2.6 WS-Security standards . 43

3.1 Vulnerability remediation process. The two first blocks correspond to the static

analysis component. The two last blocks correspond to the remediation compo-

nent. The last one corresponds to assisted processing component 51

3.2 Architecture . 53

3.3 AST view example of a class . 55

3.4 Static Analysis Activity Diagram . 56

3.5 Code Analysis result . 58

3.6 Gathering context for vulnerability protection 60

3.7 Example of result with code pro analytix . 67

3.8 Example of result with lapse . 68

3.9 Example of result with bigbro . 69

4.1 Solution components . 78

4.2 Components and ideal roles . 80

4.3 Internal activity diagram . 82

5.1 OAuth generic flow . 101

5.2 Domains of the scenario with hierarchical reference monitors per domain . . . 102

5.3 Overhead of SOAPmessages compared to REST. For each scenario and security,

the REST size represents the base 100 . 113

5.4 Average processing time comparison for the different scenarios 114

6.1 Privacy aware PaaS components . 120

6.2 Excerpt of a PPL policy rule . 123

6.3 Excerpt of a PPL policy condition . 123

v

6.4 JPA entity class annotation indicating persistency of private information 124

6.5 Annotating private data usage class with PII meta-information 125

6.6 Enforcement components . 126

6.7 SQL transformation example . 128

8.1 Architecture of the solution . 140

8.2 Application layers . 141

vi

List of Tables

3.1 List of detected vulnerabilities with potential origin and potential remediation. . 59

3.2 Comparison of static analysis tools on several projects. It presents the detected

vulnerabilities for the different categories when applicable. SLOCmeans Source

Line of Codes. 66

4.1 Number of vulnerabilities detected by the arachni (arach.) and w3af web ap-

plication security scanners with a black-box approach on original and protected

wavsep application. 90

5.1 REST security protocol headers . 106

5.2 Benchmark environment . 112

8.1 Extensive list of source origins with their potential actors 142

8.2 Constructs for the language . 143

vii

viii

Résumé

Intégrer les problématiques de sécurité au cycle de développement logiciel représente encore un

défi à l’heure actuelle, notamment dans les logiciels distribués. La sécurité informatique requiert

des connaissances et un savoir-faire particulier, ce qui implique une collaboration étroite entre

les experts en sécurité et les autres acteurs impliqués. La programmation à objets ou à base

de composants est communément employée pour permettre de telles collaborations et améliorer

la mise à l’échelle et la maintenance de briques logicielles. Malheureusement, ces styles de

programmation s’appliquent mal à la sécurité, qui est un problème transverse brisant la modu-

larité des objets ou des composants. Nous présentons dans cette thèse plusieurs techniques de

modularisation pour résoudre ce problème. Nous proposons tout d’abord l’utilisation de la pro-

grammation par aspect pour appliquer de manière automatique et systématique des techniques

de programmation sécurisée et ainsi réduire le nombre de vulnérabilités d’une application. Notre

approche se focalise sur l’introduction de vérifications de sécurité dans le code pour se protéger

d’attaques comme les manipulations de données en entrée. Nous nous intéressons ensuite à

l’automatisation de la mise en application de politiques de sécurité par des techniques de pro-

grammation. Nous avons par exemple automatisé l’application de règles de contrôle d’accès

fines et distribuées dans des web services par l’instrumentation des mécanismes d’orchestration

de la plate-forme. Nous avons aussi proposé des mécanismes permettant l’introduction d’un

filtrage des données à caractère privée par le tissage d’aspects assisté par un expert en sécurité.

Pour terminer, nous proposons un nouveau type de point d’insertion d’aspects (pointcut) centré

sur le flot d’information dans un logiciel distribué et permettant d’unifier l’implantation de nos

techniques de modularisation de la sécurité.

Introduction

La thèse apporte un point de vue industriel à la modularisation des propriétés de sécurité au

niveau de la programmation d’applications. La sécurité est omniprésente et implique des mesures

rigoureuses tout au long du cycle de développement d’un logiciel. Il s’agit de spécifier cor-

rectement et mettre en œuvre des propriétés de sécurité de manière cohérente. La sécurité est

généralement considérée comme une préoccupation non fonctionnelle et transversale, indépen-

dante des préoccupations métiers de l’application. Mais la sécurité revêt différentes facettes et

peut avoir des ramifications fortes avec l’application, ce qui rend difficile la modularisation.

L’évolution rapide des applications d’entreprise apporte une nouvelle dimension à la sécu-

rité. Au cours de la dernière décennie, les applications d’entreprise ont évolué vers plus de

1

connectivité. Par conséquent, elles exposent leurs données à travers plusieurs canaux de com-

munications tels que des applications web, des applications orientées services, des applications

mobiles, ainsi que des applications dites dans les nuages (cloud computing). Cette connectiv-

ité permet une plus grande flexibilité pour créer de nouveaux marchés, de nouveaux produits,

et pour favoriser la collaboration inter-partenaire. Et ce, malgré la complexité toujours plus

poussée des systèmes d’informations. Mais cette connectivité apporte aussi une exposition sup-

plémentaire aux données d’entreprise, ce qui rend encore plus complexe la gestion de la sécurité.

Des évènements récents présentent des attaques à fort impact. Les attaques surviennent dans

tout type d’environnement: grandes entreprises, organisations, particulier, mais aussi et de plus

en plus fréquemment des institutions et des pays pour les attaques les plus sophistiquées. Les

attaques ont tendance à provenir de groupes organisés. Les groupes ont à leur disposition de

nombreux outils pour pénétrer un système et obtenir les informations ou les ressources recher-

chées. Ces techniques, comme de l’ingénierie sociale, de l’exploitation de failles informatiques,

mais aussi le vol de matériel ou de ressource numérique forment des attaques contre lesquelles

il est difficile de se prémunir. Les entreprises ont besoin d’audits et de suivis réguliers dans la

gestion de leurs ressources pour détecter dès que possible des intrusions afin de réagir correcte-

ment.

Dans cette thèse, nous couvrons un type d’attaque parmi celles énoncées. Nous nous intéres-

sons aux attaques qui utilisent les manquements au moment de la programmation. Ces attaques,

bien que moins structurées, n’en demeurent pas moins complexes et omniprésente. Il existe des

outils pour automatiser un certain nombre d’attaques qui peuvent ainsi être contrôlées par des

individus ou des groupes qui sont à la recherche de gloire, de récompenses, ou simplement de

connaissances. Les menaces peuvent généralement être atténuées par le respect de politiques de

sécurité ainsi que par l’application de bonnes pratiques de programmation. Le problème dans

ce cas est de proposer un ensemble d’outils et de méthodes pour assurer l’application correcte

des politiques et d’appliquer les bonnes pratiques de programmation lors du développement

des applications. Ces pratiques sont fortement dépendantes de l’environnement utilisé. Ainsi,

en fonction du langage de programmation choisi, du système d’exploitation utilisé, du serveur

d’application retenu, ainsi que des différents protocoles de communication adoptés, les bonnes

pratiques de programmation auront des spécificités. Chacun de ces éléments doit être pris en

considération pour garantir l’absence de vulnérabilités et la bonne mise en œuvre des propriétés

de sécurité.

Nous avons commencé avec le constat que les applications sont de plus en plus omniprésente

dans notre environnement, allant de périphériques embarqués à des applications distribuées.

Les différents types de logiciels, quels que soient leur environnement, doivent respecter des

contraintes de qualité. L’industrie se concentre d’abord sur la production d’application offrant de

la valeur ajoutée dans un domaine fonctionnel spécifique. Il peut s’agir d’applications pour aider

à la décision, faciliter la gestion de ressources, mais il peut aussi s’agir de produits pour faciliter

le développement de nouvelles applications. Chacun de ces produits possède des spécifications

pour décrire les besoins fonctionnels qui sont le cœur de métier de ces logiciels. En plus de ces

besoins fonctionnels, les éditeurs de logiciels doivent respecter plusieurs contraintes lorsqu’ils

architecturent et développent ces solutions: les politiques internes, le droit juridique, les besoins

non fonctionnels, etc. Ces besoins non fonctionnels sont des spécifications qui ne portent pas

2

sur les besoins directs de l’application. Ils sont présents pour assurer la bonne exécution de

l’application dans son environnement. En général, les besoins non fonctionnels sont tels que

l’utilisabilité, l’intégrité, la fiabilité, la performance, etc. Une autre préoccupation qui revient

souvent dans la littérature comme un besoin non fonctionnel est la sécurité dont nous allons

traiter dans cette dissertation.

Nous allons voir dans les chapitres suivants que la sécurité a plusieurs facettes. Elle est

généralement considérée comme une préoccupation non fonctionnelle qui est entrecroisé dans

l’application. Plusieurs outils peuvent aider à introduire de la sécurité dans l’application (tels que

des bibliothèques tierces, le support par l’environnement d’exécution de primitives, une protec-

tion en provenance du système d’exploitation, des filtres applicatifs, etc.). En réalité, la sécurité

a des ramifications plus profondes. Les propriétés de sécurités devant être introduite au sein de

l’application couvrent des besoins fonctionnels, mais aussi des besoins non fonctionnels. Les

entreprises doivent développer des produits avec toutes les exigences de sécurités correctement

implémentées et orchestrées tout en respectant les différentes contraintes mentionnées ci-dessus.

Problème traité

Le problème du développement d’applications sécurisé a évolué au fil des années. Le problème

est connu et un certain nombre de solutions ont émergé, mais on observe toujours des vulnéra-

bilités introduites par les développeurs au sein des applications. Nous abordons le problème de

l’intégration non invasive et systématique de la sécurité au sein des applications lors de la phase

de développement, tout en respectant les contraintes de temps induit par les contraintes indus-

trielles lors de l’élaboration des logiciels. Les exigences de sécurité proviennent des politiques

de sécurité en place pour respecter les normes de qualité des logiciels, mais aussi de différentes

réglementations. Les propriétés de sécurité de ces systèmes affectent différentes couches qui

sont fortement interconnectés. La sécurité d’un système est affectée par plusieurs décisions au

cours du développement des logiciels. Il commence à partir de la définition des besoins de

sécurité. En supposant que les exigences sont correctement posées et décrites, les développeurs

reçoivent une liste de spécification à respecter, tout en développant. Ils doivent maintenir une

qualité lors de l’introduction des mécanismes de sécurité répondant aux exigences de sécurité.

Malgré la littérature apportée par la discipline sur la manière d’intégrer au mieux les mécanismes

de sécurité, les développeurs introduisent encore des vulnérabilités qui affectent les systèmes.

L’introduction de failles de sécurité par le développeur dépend de plusieurs facteurs: le

manque de connaissances sur les mécanismes de sécurité, la mauvaise interprétation des spé-

cifications ou de l’architecture du logiciel, la mauvaise configuration des frameworks et des

bibliothèques, ou même quelques défauts de refactorisation non détecté avant la mise en pro-

duction. Il existe la possibilité d’avoir un développeur qui introduit délibérément des portes

dérobées ou des défauts dans l’application, même si cela reste rare. Il est important de noter que

le coût pour corriger une vulnérabilité de sécurité, s’il est pris comme un défaut de logiciel, croît

de manière exponentielle au fur et à mesure de l’avancement de l’application (développement,

tests, production, etc.). L’exposition des vulnérabilités logicielles devient effective lorsqu’un

défaut est mis en production, et que ce défaut peut entraîner une exploitation de l’application à

l’insu de ce qui a été spécifié. En d’autre termes, il s’agit de faiblesses qui restent présentent

3

alors que l’application est censée répondre à tous les besoins qui ont été spécifiés.

Afin de limiter le nombre de défaut introduit involontairement, nous proposons d’accompagner

les développeurs en leur donnant des méthodes et des outils. Nous avons défini un ensemble de

besoins de sécurité, provenant d’un sous-ensemble de politiques internes que l’on peut retrouver

en entreprise, mais également provenant d’exigences que nous avons observés dans les bonnes

pratiques de programmation. Les exigences visent principalement les vulnérabilités des appli-

cations web, bien que l’on puisse généraliser le problème à tous les défauts que l’on rencontre

dans le cadre de systèmes distribués. Dans la première partie de la thèse, nous limitons la

liste des exigences aux défauts qui sont introduits lors du développement du code applicatif.

Nous sommes intéressés par la détection et la prévention de toutes les manipulations d’entrée:

cross-site scripting, injection SQL, manipulation de chemin d’accès, injection de commandes,

pollution de paramètre HTTP, et tout type d’injection qui en découle. Dans la deuxième partie,

nous proposons de simplifier l’ajout de propriétés de sécurités que nous appelons “construc-

tive”. Ainsi, nous fournissions des outils pour que les développeurs utilisent de mécanismes de

sécurités, au niveau de l’environnement d’exécution ou au niveau de la plateforme. Les contri-

butions gèrent des propriétés telles que la responsabilité, ce qui implique l’ordonnancement de

plusieurs mécanismes différents, ainsi que de la gestion de la protection de la vie privée et de la

communication dans les systèmes distribués.

La modularisation permet aux entreprises de proposer des logiciels qui sont conformes aux

différentes régulations en vigueur dans les pays où sont commercialisés ces logiciels, en appli-

quant les contraintes de sécurité de manière tardive. Par exemple, la gestion de la confidential-

ité des données personnelles est différente d’un pays à l’autre. Bien que la solution que nous

développons dans ce qui suit puisse être appliquée dans plusieurs contextes, nous les avons mis

en œuvre dans un contexte de systèmes distribués. Nous ciblons plus particulièrement les sys-

tèmes interconnectés dans un style architectural qui est souvent désigné comme une architecture

orientée services (SOA). Nous apportons aussi des solutions pour des plateformes de cloud com-

puting, ce qui implique que nous devons non seulement cibler les applications, mais aussi les

infrastructures et la plateforme.

La thèse discute donc du développement de logiciels sécurisés dans les environnements dis-

tribués. Nous avons développé des techniques pour améliorer la flexibilité dans la gestion des

propriétés de sécurité au moment du développement applicatif. Nous appliquons le concept de

préoccupation transversale, principalement promue par le paradigme de développement à partir

d’aspect (AOP). Ce paradigme permet d’améliorer la flexibilité à la fois dans la définition des

propriétés de sécurité, mais aussi dans son exécution. Nous différons la mise en œuvre con-

crète des propriétés de sécurité dans l’application. Nous commençons par collecter les points

impactant au niveau du code source de l’application, puis nous injectons les comportement de

sécurité pour obtenir des logiciels qui respectent à la fois les bonnes pratiques de programma-

tion sécurisés, mais aussi les différents besoins fonctionnels de sécurités qui peuvent survenir

(gestion de l’authentification et des autorisations, gestion de la vie privée, gestion de la confi-

dentialité et de l’intégrité des données, etc.).

Dans la suite du résumé, nous décrivons plus en détail les différentes contributions qui sont

exposées dans la thèse, afin de répondre à la modularisation des propriétés de sécurité en milieu

industriel: modularisation des techniques pour de la sécurité constructive, et modularisation des

4

techniques pour de la sécurité défensive. Nous introduisons une séparation dans les catégories de

sécurité afin de distinguer la sécurité qui répond aux besoins fonctionnels tels que la vie privée,

la confidentialité, etc. de la sécurité qui limite l’exploitation de vulnérabilités logicielles. Les

contributions proposent de faciliter la gestion des propriétés de sécurité tout au long du cycle

de vie de sécurité avec un accent tout particulier sur la phase de développement. La prochaine

section présente deux contributions relatives à la modularisation de la sécurité défensive. Ces

deux contributions ont la même finalité, c’est à dire modulariser du code de sécurité qui limite

la possibilité d’exploiter une application, mais dont la méthode de protection diffère. Ensuite,

la section suivante présente deux autres contributions relatives à la modularisation de la sécurité

constructive. Ce sont deux approches différentes, qui présentent deux types de propriétés dans

des environnements différents que l’on peut modulariser pour en simplifier l’intégration par les

développeurs. Enfin, une dernière section présente les conclusions que l’on retire de cette thèse,

qui ouvre sur une perspective d’unification des approches présentées.

Modularisation de la sécurité défensive

La modularisation de la sécurité défensive peut être simplifiée à l’analyse et l’application des

bonnes pratiques de sécurité au niveau du code applicatif. Les bonnes pratiques de sécurité

sont un ensemble de méthodes, de règles, de processus, de concepts et théories qui doivent être

bien partagés entre les différents acteurs évoluant autour du développement du logiciel. Les

personnes impliquées dans la définition et la mise en œuvre d’un tel système doivent partager

la même vision globale en termes de sécurité, et aussi se former afin de détecter et réagir aux

nouvelles menaces. Il existe plusieurs sources pour partager ces connaissances, avec des portées

différentes. Les gouvernements et institutions publient des recommandations pour maintenir une

sécurité des systèmes d’information. Ils éditent aussi les lignes directrices en matière de sécu-

rité informatique. Par exemple, le gouvernement français a une structure dédiée qui propose

des documents, des analyses et des informations autour de la sécurité de l’information. Le gou-

vernement allemand pour sa part propose une structure similaire en qualité d’Office fédéral de

la sécurité de l’information. L’Europe dispose aussi d’une agence afin d’améliorer la transmis-

sion d’information sur cette problématique entre les différentes nations. L’agence publie aussi

des guides pour sensibiliser le grand public aux problématiques de sécurité, à destination des

citoyens, des entreprises, ou encore du secteur public, etc.. Un institut renommé est le “National

Institute of Standards and Technology” (NIST). Il fournit des conseils dans plusieurs domaines

de l’ingénierie de la sécurité de l’information. Des institutions indépendantes existent aussi qui

élaborent des guides de bonnes pratiques.

En plus de toutes ces institutions, il y a des consortiums qui se structurent avec un objec-

tif commun pour partager des connaissances. Ils centralisent les meilleures pratiques dans des

domaines spécifiques. Dans le domaine de la sécurité, il y a des groupes tels que le CERT qui

décrit des approches pour une meilleure sécurité du système de l’information: des outils et des

techniques pour évaluer et mesurer les vulnérabilités. Le CERT a d’abord été une équipe de

l’Université Carnegie Mellon, et forme maintenant une équipe dédiée à la réponse des menaces

sur internet et dans le monde de l’informatique. OWASP est un projet open-source pour la sécu-

rité des applications web. C’est une communauté pour les sociétés, les chercheurs, et les partic-

5

uliers ayant plusieurs événements régionaux pour partager les connaissances et comprendre les

dernières avancées en termes de menaces. Son champ d’application se limite à des applications

web et à service. Une autre organisation diffuse les bonnes pratiques dans l’environnement du

cloud computing. Ainsi, ils publient des documents spécifiques à la sécurité de l’informatique

dans les nuages par exemple.

Bien que de nombreuses organisations éditent des guides pour la gestion de la sécurité de

l’information, les failles de sécurité sont encore répandues dans les applications, et en particulier

les applications web et dans les nuages. Ces types d’applications sont spécialement exposés à

un public plus large avec une forte médiatisation des attaques. Elles interagissent avec les util-

isateurs et recueillent un vaste ensemble de données liés à la vie privée. Développer ce type

d’applications nécessite une attention particulière lors de l’édition des spécifications. Ensuite, il

faut implémenter de manière rigoureuse les besoins de l’application. Il est nécessaire d’éliminer

au maximum les vulnérabilités qui pourraient être introduite lors du développement avant la mise

en production de l’application. Il existe plusieurs stratégies pour s’assurer que des applications

fonctionnent correctement et sont sécurisées. L’environnement informatique est hétérogène et

donne aux développeurs de nombreuses possibilités: frameworks, bibliothèques, langages de

programmation, serveurs d’applications, etc. Ces éléments permettent de fournir de la flexi-

bilité, performance et sécurité, bien qu’il soit parfois nécessaire de faire un compromis. Une

application web devra par exemple vérifier les données en entrée, qui aura un impact sur la per-

formance de l’application. La modularisation de la sécurité permet de savoir à quels endroits les

vérifications sont effectuées, et ainsi avoir une meilleure vision des points de contrôle. Dans ce

qui suit, nous présentons un premier travail où nous utilisons l’environnement de développement

de l’utilisateur afin de détecter et de protéger les vulnérabilités communément rencontrées dans

les applications web. Ensuite, nous proposons une autre approche qui généralise et rend plus

souple l’automatisation de la validation d’entrée dans des applications web.

Contribution 1

Les failles de sécurité sont fréquemment rencontrées dans les applications en dépit de l’existence

de méthodes pour les éviter depuis plusieurs années. Afin de détecter les failles de sécurité ou-

bliées par les développeurs, des solutions complexes sont entreprises comme l’analyse statique

de code source, souvent après la phase de développement. Le problème de ce type de solution

une fois que le développement est terminé réside dans la décorrelation entre le contexte appli-

catif et le rapport d’état indiquant la localisation des problèmes dans le code: les personnes en

charge de la correction ont toutes les difficultés pour comprendre l’architecture et les raisons qui

ont mené à un code source en particulier. Ensuite, des vulnérabilités peuvent être trouvées, sans

pour autant qu’une protection systématique soit appliquée.

Dans la discussion de la thèse, cette contribution introduit un plugin intégré à l’environnement

de développement de l’utilisateur (dans ce cas, Eclipse) pour aider les développeurs à détecter et

corriger des vulnérabilités au niveau applicatif à l’aide de la programmation orientée aspect, et

ceci, le plus tôt possible dans le cycle de vie de développement du logiciel. La solution est une

combinaison d’analyse statique au cours de la phase de développement suivi de la génération

de code de protection. Nous utilisons l’interaction des développeurs avec l’outil intégré pour

obtenir plus de connaissances sur l’état de l’application à un endroit donné. Ceci nous permet

6

de modulariser le code de sécurité et ainsi avoir une meilleure vue d’ensemble sur les différents

aspects de sécurité appliqués. Le résultat permet d’obtenir des logiciels plus robustes avant leur

livraison en production, et surtout une flexibilité accrue par l’application d’aspects le plus tard

possible au sein de l’application.

La manière de corriger plusieurs vulnérabilités de sécurité en utilisant une combinaison en-

tre un analyseur statique qui aide les développeurs à détecter les vulnérabilités et une correction

semi-automatique de ces résultats avec AOP présente plusieurs avantages. Il permet à plusieurs

acteurs de respecter des contraintes complexes à mettre en œuvre en temps normal. Première-

ment, les experts en sécurité sont en mesure de propager des mises à jour du code de protection

aux équipes de développement. Les développeurs peuvent ainsi plus facilement détecter et cor-

riger des bugs de sécurité. Les acteurs peuvent interagir étroitement pour décider des meilleures

solutions à implémenter pour une situation donnée. Les développeurs bénéficient de cette ap-

proche en ayant un outil opérationnel déjà configuré pour leur environnement de développe-

ment. Ils peuvent se concentrer sur l’écriture de leur code fonctionnel et, de temps en temps,

vérifier le respect des bonnes pratiques de programmation ainsi que l’absence de vulnérabilité

dans leur code applicatif. Les codes de protection de sécurité sont souvent parsemés et surtout

entremêlés au sein du code applicatif, ce qui tend à avoir des contrôles de sécurité répartis dans

toute l’application. L’utilisation d’une solution unifiée dans la gestion de l’application des codes

de protection permet d’avoir une vue d’ensemble. Ceci est plus efficace et permet une plus

grande productivité des développeurs. L’automatisation de la détection et de l’application de

code de protection permet une application plus large et cohérente de la sécurité dans toutes les

applications. L’utilisation d’AOP facilite le déploiement et le changement de code de protection

de sécurité. Enfin, le fait que le processus se fasse au cours de la phase de développement permet

de détecter au plus tôt d’éventuels problèmes.

Le plugin Eclipse que nous avons développé lors de cette contribution permet, sous un an-

gle de vue éducatif, une meilleure prise de conscience des problèmes de sécurité d’un point de

vue du développeur. Il est important de noter que la correction apportée par le plugin ne cou-

vre pas forcément toutes les problématiques liées aux besoins de sécurité. L’application peut

se retrouver avec quelques vulnérabilités non corrigeable par notre approche. Notre approche

permet de limiter les bugs de sécurité introduit au moment de l’écriture du code. Les éléments

qui ne peuvent pas être vérifiés par notre solution se trouvent être des besoins de sécurité dont

nous discutons plus loin dans la thèse: authentification, autorisations, etc.. En outre, nous en-

courageons les développeurs à creuser les rapports de vulnérabilités que nous fournissons: la

correction automatique proposé est un premier pas, qu’il est possible d’améliorer. Nous voulons

que les développeurs apprennent les bonnes pratiques pour avoir de nouveaux réflexes lors de

l’écriture de futures applications.

Cette contribution propose une approche de la programmation pour modulariser de la sécu-

rité. Nous commençons à partir du code source d’une application et essayons d’injecter du

code de protection à des endroits appropriés. Cet outil intégré a plusieurs avantages mentionnés

ci-dessus, mais il souffre de limitations dues à des décisions que nous avons prises. Par exem-

ple, quand nous développons un outil comme le plug-in Eclipse, nous visons une plate-forme

et un langage de programmation, ce qui limite volontairement le champ d’application. L’outil

lui-même est un prototype que nous avons validé sur des projets en interne à SAP et que nous

7

avons comparé par rapport aux logiciels commerciaux. Dans plusieurs cas, l’approche agile

qui consiste à faire des vérifications régulières sur le code, puis d’appliquer les corrections des

vulnérabilités conduit à une réduction des faux positifs et l’absence de faux négatifs. Ceci est

permis car le moteur de détection de vulnérabilité est affiné au fur et à mesure des analyses. En

outre, fournir une assistance intégrée pour corriger les vulnérabilités est novatrice et nous nous

concentrons maintenant sur l’amélioration du code de protection ainsi que de l’interaction qu’il

peut y avoir entre plusieurs aspects de sécurités.

Contribution 2

Dans cette seconde contribution, nous nous intéressons au problème de validation d’entrée sys-

tématique pour application web, afin d’apporter des contre-mesures efficaces à plusieurs types

d’attaque par injection. La solution s’appuie sur des annotations java qui fournissent des méta-

données concernant les paramètres d’entrée de l’application. Cette information est ensuite util-

isée pour injecter automatiquement du code de validation dans l’application cible, en utilisant

une approche orientée aspect. La solution permet de réduire les risques d’oubli et de maintenir

la logique de sécurité indépendamment de la logique applicative. La différence avec le précé-

dent chapitre repose principalement sur la méthode pour recueillir les points où injecter le code

de sécurité. Alors que dans la solution précédente, nous avons utilisé un analyseur statique,

nous utilisons maintenant des annotations dans le code source de l’application pour donner plus

d’information sur le contexte.

Beaucoup d’applications web et de services web sont sujets à des vulnérabilités sur la vali-

dation des entrées. Des exemples bien connus de cette classe de vulnérabilités comprennent les

XSS (Cross-Site Scripting), SQL injection, injection de commandes, etc.. Bien que les vulnéra-

bilités sur la validation des entrées sont bien connues et ont été étudiées, les vulnérabilités sont

parmi les plus répandues dans les classements. Plusieurs institutions listent ces problématiques,

comme OWASP qui édite chaque année le classement des dix failles les plus critiques sur les

applications web. Les vulnérabilités sur la validation des entrées ont une origine commune: une

vérification incorrecte des données d’entrée fournis par les clients de l’application qui résulte en

un mauvais état. Les attaques par injection, qui exploitent ces vulnérabilités, sont des attaques

dans lesquelles un attaquant crée un jeu de donnée en entrée qui permet de contrôler à distance

le comportement de l’application web pour ainsi exécuter du code non voulu, ou contrôler des

pans de l’application. Ces attaques peuvent avoir des conséquences dévastatrices, allant de la

fuite d’informations à une escalade de privilège dans laquelle l’attaquant peut prendre le contrôle

complet du système attaqué.

Prévenir les attaques est une tâche complexe. Malgré la présence d’outils pour détecter les

vulnérabilités, les failles sont encore très répandues dans les applications web et le nombre de

vulnérabilités signalées continue de croître. En outre, la complexité de la majorité des attaques

exploitant cette classe de vulnérabilités n’a pas réellement augmenté, ce qui indique que même

les protections les plus basiques et donc largement documentées ne sont pas prises en compte.

Afin d’éviter ces vulnérabilités, chaque entrée lue par le programme doit subir un processus

de validation et de nettoyage. Nous nous concentrons sur la validation d’entrée qui est essen-

tiellement, le processus d’ajouter du sens à la donnée qui entre. Il faut s’assurer que les entrées

respectent un ensemble de contraintes afin d’obtenir une entrée bien formé. Selon le type de

8

données, des contrôles supplémentaires peuvent être nécessaires: ne contenir que des caractères

autorisés, vérifier la longueur d’une chaîne de caractères afin qu’elle reste dans certaines limites,

ou encore de valider qu’un nombre soit compris dans une fourchette prévue par les spécifica-

tions.

Une des raisons qui fait que la présence de nombreuses vulnérabilités de validation des

entrées est toujours hautement critique est le fait que les techniques pour remédier à ces vul-

nérabilités reposent sur la bonne écriture du code de vérification par le développeur. Bien que

de nombreux frameworks encadrent l’écriture du code pour limiter ces types de vulnérabilités

et fournissent des bibliothèques contenant des fonctions de validation et désinfection, ceux-ci

doivent encore être appelés explicitement à partir de la logique applicative afin de valider ou

désinfecter les données en entrée. Cela a deux inconvénients: d’abord, les développeurs sont

susceptible d’oublier d’écrire ces vérifications (ou ils ignorent le problème). Ensuite, il est diffi-

cile de maintenir, mettre à jour et faire évoluer la logique applicative indépendamment des codes

de vérifications: l’appel aux fonctions de validation serait disséminé dans de nombreux modules

de code, et complètement entremêlé avec le code métier. En outre, les fonctionnalités de vali-

dation intégrées dans les frameworks n’ont pas le degré de granularité nécessaire pour gérer la

validation d’un grand nombre de types de données différents qu’une application est susceptible

de gérer.

Nous présentons dans cette seconde contribution une méthode innovante et des outils pour

limiter la principale cause de vulnérabilités. La première phase requiert que le développeur ap-

plicatif annote dans le code les différentes entrées du programme afin d’ajouter des informations

plus précises sur son typage. Cette approche est légère et permet d’enrichir les informations de

type concernant les entrées de l’application. Ensuite, des experts de sécurité peuvent écrire du

code modulaire qui vérifie les données à partir du typage indiqué. Ainsi, les fonctions de valida-

tion sont modulaires et sont intégrés dans le code existant à l’aide de la programmation orientée

aspect. Les principaux avantages de notre solution sont l’utilisation de ce type de programma-

tion pour injecter le code sans que les développeurs applicatifs aient à apprendre un nouveau

paradigme de programmation. Ensuite, nous obtenons un haut degré d’automatisation et perme-

ttront d’ajouter des vérifications de sécurité avec un effort mineur. Le développeur applicatif n’a

pas non plus besoin d’écrire du code de sécurité et peut se concentrer sur son code métier. La

solution est extensible: les développeurs applicatifs peuvent définir de nouveaux types de don-

nées spécifiques à leur environnement. Les aspects de validation peuvent être écrits par eux ou

par des experts en sécurité. Enfin, l’application considère la sécurité et la validation des entrées

dès la phase d’architecture, ce qui permet d’avoir plus de souplesse pour gérer le tout.

Modularisation de la sécurité constructive

La modularisation de la sécurité constructive peut être simplifiée à la modularisation des préoc-

cupations de sécurité de l’entreprise. Ce sont des préoccupations qui sont spécifiés comme des

besoins fonctionnels. Elles permettent à l’application de fonctionner correctement dans son en-

vironnement tout en respectant tous les besoins en sécurité. En général, les préoccupations à

introduire au sein de l’application sont complexes, ce qui peut entraîner un développeur mal-

informé à introduire des bugs qui peuvent ensuite se transformer en vulnérabilité exploitable

9

par des personnes extérieures. Les concepts autour de la sécurité informatique sont nombreux.

Ainsi, il y a plusieurs types de sécurité qui peuvent être affectés. Les développeurs, afin de re-

specter les spécifications, doivent donc utiliser plusieurs mécanismes de sécurité qui doivent être

correctement injectés dans l’application. Les propriétés sont de l’ordre de l’authentification et

l’autorisation au sein de l’application. Cela va aussi plus loin comme la gestion de la vie privée,

la confidentialité des données, l’intégrité des messages, etc. Ce sont des préoccupations qui sont

souvent exposées à travers des politiques de sécurité.

Dans ce qui suit, nous présentons deux nouvelles contributions qui montrent une modular-

isation de ces préoccupations de sécurité en deux couches différentes de l’infrastructure util-

isée dans les applications distribuées. La première contribution présente une modularisation

au niveau d’une plateforme qui fournit des services informatiques. Elle permet de simplifier

l’utilisation de politiques de sécurité en rendant les règles agnostiques à la technologie sous-

jacente. Dans un environnement à service, enclin à l’utilisation de services basé sur SOAP ou

basé sur le paradigme REST, il est ainsi possible de définir des règles de haut niveau qui sont

ensuite vérifiées et exécutées lors de l’exécution. Nous introduisons un protocole de sécurité

pour la sécurité des messages REST pour l’occasion, afin de fournir un équivalent à des briques

de sécurité pour les messages qui existent déjà pour les services basé sur SOAP. Ainsi, nous

fournissons au niveau de la plateforme de services de nouveaux mécanismes tels que le chiffre-

ment et la signature afin de pouvoir transmettre des jetons en toute sécurité, rendre confidentiel

et intègre les données qui transitent. La deuxième contribution présente une architecture pour

simplifier la gestion des données liées à la vie privée sur une plateforme qui fournit des appli-

cations dans les nuages. Nous permettons aux clients qui développent des applications pour

cette plateforme d’utiliser de nouveaux mécanismes qui permettent de modulariser des spécifi-

cations souvent soumises à régulations. Ces deux approches se basent dans le cadre de systèmes

distribués, où les systèmes d’exécutions communiquent à travers plusieurs canaux, et où intervi-

ennent généralement plusieurs domaines administratifs qui nécessite une entente entre tous les

acteurs.

Contribution 3

La modularisation de la sécurité informatique peut être obtenue en modifiant la façon dont la

sécurité est injectée dans l’application. Au lieu de figer l’implémentation de la sécurité au cœur

d’une application, nous pouvons obtenir une sécurité plus flexible et modulaire en laissant la

plate-forme injecter de la sécurité à des endroits définis. Cette notion est désignée comme

l’inversion de contrôle et permet de gérer l’orchestration des problématiques transversales au

niveau du conteneur de l’application. Il est alors possible de définir la sécurité en tant que com-

posant et de différer son application au sein du code au moment où l’on en a besoin, et compte

tenu du contexte spécifique de l’application.

Dans cette contribution, nous proposons d’introduire un nouveau modèle de sécurité des

messages de services de type REST, afin de transporter tout en protégeant les ressources. Cette

contribution est issue d’une réflexion globale pour pouvoir appliquer de la sécurité de manière

transparente dans un système où plusieurs domaines collaborent. Il manquait une couche de

sécurité pour les services REST équivalente à la couche de sécurité définie pour les services

basé sur SOAP. Ces types de services sont utilisés pour échanger les informations, et nous

10

avions besoin de décrire des mécanismes de haut niveau qui peuvent avoir des implications

sur les services. Les propriétés de sécurité apportées par cette approche peuvent être facilement

introduites par des politiques de sécurité. Pour améliorer la flexibilité des transformations néces-

saire à l’ajout des propriétés de sécurité, nous proposons un module accessible au niveau de la

couche d’infrastructure de service web, ou au niveau d’un moniteur de référence.

La sécurité et la fiabilité des applications distribuées nécessitent une forte confiance dans le

protocole de communication utilisé pour accéder aux ressources. Les plus grands fournisseurs

de services et acteurs du web se tournent vers les services basés sur REST au détriment de ceux

basés sur SOAP. REST propose une facilité de consommation des ressources sans encapsulation

spécifique, mais manque d’une description des métadonnées comme pour une description de

la sécurité associée au service. Actuellement, la sécurité des services REST repose sur une

implémentation au cas par cas (dont la mise en œuvre est sujette à erreur) ou sur la sécurité de

la couche de transport (offrant une faible flexibilité dans l’application de plusieurs propriétés

à grain fin). Nous introduisons des mécanismes pour sécuriser la communication de service

REST en permettant d’appliquer des propriétés de sécurité de manière flexible et à grain fin sur

les ressources qui sont contenues dans les messages HTTP.

Nous présentons dans cette contribution une approche pour fournir une sécurité des services

REST qui puisse être équivalente à celle décrite par les spécifications de WS-Security. Notre

solution respecte la philosophie REST tout en minimisant la charge de traitement pour les con-

sommateurs de ces services, et sans interférer dans l’orchestration des services déjà en place.

Nous fournissons des mécanismes qui permettent de préserver la confidentialité des messages et

de les signer avec une granularité fine. Le traitement effectué sur les messages est une alterna-

tive valide aux approches similaires, qui considèrent seulement l’encapsulation dans des canaux

sécurisés (encapsulation SSL par exemple) et donc au niveau de la couche de transport pour les

services REST. L’avantage de notre approche est de déporter la complexité pour les consom-

mateurs de services à l’environnement d’exécution qui est alors capable de traiter et vérifier les

propriétés de confidentialité et les signatures, sans pour autant changer le contenu des messages

quand ce n’est pas nécessaire.

En outre, la solution que nous proposons permet de construire de nouvelles collaborations

entre les différents systèmes. Nous présentons deux cas dans lesquels REST-security montre

une meilleure flexibilité: fournir des moyens pour transmettre des jetons en toute sécurité, et

une application facile des propriétés dans un flux de messages qui transitent par des moniteurs

de référence pour valider et appliquer des politiques de sécurité. Ceci est rendu possible car nous

modifions une sous-partie des messages, sans impacter le reste de la ressource. Les propriétés

de sécurité sont propagées avec la ressource, ce qui nous permet d’obtenir une sécurité de bout

à bout et non pas d’un point à un autre. Nous fournissons également une évaluation de la per-

formance compte tenu de plusieurs cas d’utilisation afin d’analyser l’impact de la protection des

messages sur la performance des services web. L’analyse comprend des scénarios hétérogènes

et compare différents mécanismes de sécurité entre eux. Les résultats montrent que les perfor-

mances avec et sans sécurité des services REST sont plus efficaces de n’importe quel point de

vue, mais qui s’explique aussi par la nature de ce service: les services REST sont beaucoup

moins coûteux en terme de ressource utilisée et consommé au détriment d’une description un

peu moins poussée. Enfin, les services REST sont destinés à exposer des ressources, alors que

11

les services basés sur SOAP exécutent des appels distants à des méthodes. Le protocole que

nous proposons est auto-descriptif, donc toutes les informations de sécurité sur les messages

sont exprimées, et le destinataire peut ainsi effectuer les vérifications et transformations sur le

message.

Lamodularisation des propriétés de sécurité peut être introduit soit sur la couche d’application

ou sur des moniteurs de références entre différents domaines distribués. Bien que nous n’utilisons

pas les aspects pour injecter les préoccupations de sécurité, nous nous appuyons sur des points

extérieurs à une application pour détecter l’état de la sécurité en place, et de réagir en con-

séquence.

Contribution 4

Dans cette contribution, nous proposons la modularisation d’une des propriétés de sécurité que

nous avons vue dans d’autres chapitres: le respect des données liées à la vie privée. La modular-

isation est appliquée au niveau de la plateforme sur un serveur d’application dans le cloud. Les

plateformes sur le cloud sont nombreuses, et elles proposent une flexibilité plus grande par rap-

port à des solutions déployées et gérées par des clients: les plateformes dans le cloud proposent

des solutions à la demande et flexibles pour de nombreuses situations. Elles permettent à leurs

utilisateurs de gérer la complexité de la configuration, l’installation, et surtout mise à l’échelle

du trafic. En échange de la flexibilité, les clients acceptent de déléguer le contrôle de données

avec la plateforme. La sécurité du fournisseur de la plateforme est un facteur de différenciation

dans le choix d’une plateforme appropriée pour héberger leurs applications. Le rôle du four-

nisseur de plateforme est alors de fournir des moyens fiables et efficaces pour aider leurs clients

à gérer la sécurité de leurs applications. Fournir une solution modulaire et complète pour à la

fois la plateforme et les utilisateurs est difficile. Nous définissons au niveau de la plateforme de

nouvelles API et des outils pour appliquer les besoins de l’application en termes de respect de la

vie privée.

Le respect de la vie privée dans le cloud computing est une préoccupation importante pour

les différents acteurs qui utilisent les services, mais aussi qui fournissent les services. Dans ce

contexte, la conformité avec les politiques de sécurité en vigueur sur la protection des données

personnelles est essentielle, mais difficile à réaliser. Par exemple, la mise en œuvre des contrôles

de confidentialité est sujette à divers types d’erreurs.

Dans ce chapitre, nous présentons comment l’application de la politique de confidentialité

peut être facilitée par une plateforme. Les développeurs d’applications qui doivent être déployés

sur cette plateforme dans le cloud ont à leur disposition des annotations java qui enrichissent

le modèle de données. Les annotations indiquent dans le code les données personnelles, ce

qui permet à un système s’appuyant sur la programmation orientée aspect (AOP) de facilement

détecter ces endroits. L’évaluation des préférences définies par l’utilisateur sur la gestion de

ses données par l’application est réalisée par des composants de confiance fournis par la plate-

forme. Cela permet aux développeurs d’éviter la charge de la conception et de l’implémentation

de mécanismes pour gérer les contraintes liées à la vie privée.

Dans cette contribution, nous présentons une solution pour simplifier la gestion des données

liées à la vie privée dans les applications web déployées sur une plateforme dans le cloud. Nous

12

donnons plus de contexte au niveau de l’application via des annotations et les traitements ap-

pliquées par la plateforme pour respecter la gestion des données liées à la vie privée est presque

transparente d’un point de vue du développeur (la principale tâche est de placer les annotations

dans le code applicatif). Ensuite, nous injectons du code au niveau de l’application pour inter-

cepter les requêtes vers la base de données et ainsi filtrer les ressources contenant des données

sensibles. Les applications qui sont déployées indiquent comment et où des informations per-

sonnelles sont manipulées. Les composants de la plateforme permettent de gérer correctement

la manipulation des données sensibles.

Les avantages de notre approche sont que les détails d’implémentation sont cachés au développeur

qui n’a qu’à se concentrer sur le développement de son code applicatif. Il est possible d’utiliser

notre approche avec des applications existantes en ajoutant des annotations, mais sans plus de

modifications. Les applications sont compatibles pour plusieurs plateformes du moment que les

composants fournissant la gestion des données liées à la vie privée soient présent.

Conclusion

Dans le cadre de la thèse, j’ai développé plusieurs contributions liées au développement sécurisé

d’applications. Initialement, les solutions ciblaient les applications orientées services, mais

nous avons observé que les techniques et concepts s’appliquaient à une catégorie plus vaste

d’applications. L’encapsulation correcte du comportement suivi de l’application des probléma-

tiques transversales dans les applications, composants, plates-formes, ainsi que tous les éléments

d’un système d’information est le résultat de nombreuses années de recherche. Les solutions ap-

portées par la recherche et l’industrie sont de plus en plus matures au fil du temps. Elles perme-

ttent de bien séparer les différentes problématiques des logiciels: code métier, code technique,

code transversal; ainsi, le comportement du programme s’adapte plus facilement à plusieurs

environnements. La thèse s’inscrit dans un contexte industriel, où la sécurité est une problé-

matique majeure. Les développeurs doivent respecter plusieurs types de besoins: ils doivent

mettre en œuvre des comportements métier, c’est à dire respectant les besoins fonctionnels,

mais aussi s’occuper de besoins non fonctionnels qui sont tout aussi important pour la qualité

du logiciel. Ces besoins se trouvent être généralement transverse à l’application, entremêlé et

dispersé au sein du code. Nous utilisons des technologies existantes liées à l’ingénierie logicielle

et à la modularisation de propriétés transversales afin de les adapter à des besoins de sécurité.

La sécurité est un domaine complexe, et nous nous concentrons sur l’automatisation de bonnes

pratiques de programmation, mais aussi à la modularisation de propriétés de sécurité nécessaire

aux applications d’entreprise.

Les contributions peuvent être séparées en deux catégories: les contributions qui abor-

dent la programmation sécurisée, et les contributions qui introduisent des propriétés de sécu-

rité qui sont généralement indiquées dans les spécifications de l’application. Nous aidons les

développeurs dans le développement de logiciels sécurisés avec le minimum d’effort dans la

première approche. Nous fournissons des outils directement intégrés dans l’environnement des

développeurs afin de minimiser les erreurs manuelles et éviter les pièges les plus courants. Les

contributions sont une application directe des bonnes pratiques de programmation sécurisée

dans lesquelles nous offrons des contrôles au niveau de l’application des comportements au

13

sein de l’application. Dans le second type de contribution, nous proposons d’introduire des

propriétés de sécurité. Ainsi, nous proposons des méthodes au niveau de la plateforme utilisée

par l’application. L’environnement d’exécution fournit de nouveaux mécanismes de sécurité qui

peuvent être utilisés de manière modulaire par les développeurs. La problématique diffère d’une

analyse où il faut combiner plusieurs outils pour recueillir les exigences de sécurité, les faire

respecter dans l’application, et vérifier leur correcte application lors de l’exécution. Nous avons

développé un langage de politique de sécurité agnostique de la technologie utilisée sous-jacente,

pour laquelle nous avons développé des extensions sécurisées pour des services REST. Cela sig-

nifie que les politiques de sécurité permettent de définir un niveau de sécurité dans un système.

Il est possible d’orchestrer les différents composants du système et d’exécuter des mécanismes

afin d’accroître la sécurité sans la nécessité de connaître les solutions utilisées. La spécialisation

est déportée à l’exécution pour offrir une plus grande souplesse dans l’application de la sécurité.

Enfin, dans une dernière contribution, nous avons également montré la nécessité de fournir des

composants au niveau de la plateforme pour permettre de mieux gérer les contraintes de gestion

de la vie privée. Ces composants sont souhaitables pour offrir une approche cohérente au lieu

de laisser les développeurs implémenter une nouvelle solution, sujette à erreur.

Les différentes contributions montrent la diversité des approches de la modularisation des

propriétés de sécurité. A partir de ces travaux, nous avons observé les pièges courants pour

lesquels nous proposons de nouvelles directions. Nous distinguons deux types de sécurité, que

nous exprimons en tant que “sécurité défensive” et “sécurité constructive”. Les deux types de

sécurité sont complètement différents. Généralement les deux se retrouvent entremêlés et dis-

séminés au sein de l’application, mais les approches pour intégrer ces deux types de sécurité sont

différentes. L’approche orientée aspect est traditionnellement un cas d’utilisation indiqué dans

la littérature pour introduire de la sécurité au sein de l’application. En fait, il existe plusieurs

degrés de représentation, en fonction des propriétés. La programmation orientée aspect est par-

ticulièrement indiquée quand on peut facilement détecter des points de tissage. Les applications

que nous avons analysées ont des points fixes et faciles à détecter, tels les entrées d’applications

web. Mais quand il s’agit d’analyse et de suivi de flot d’information, la détection de ces points

devient plus difficile avec les langages d’aspects, et les décisions ne peuvent être prises que

lors de l’exécution. Dans ce cas, nous devons fournir des solutions sur mesure, et généralement

à un niveau d’abstraction plus haut pour respecter la sémantique du programme et fournir la

meilleure solution pour le problème donné. La gestion des propriétés de sécurité au niveau du

programme seul peut mener à des incohérences. Les programmes sont interconnectés et évolu-

ent dans des environnements complexes qui diffèrent: configuration, politiques de sécurités,

plateformes, etc. L’encapsulation de comportements de sécurité doit être adaptée à la nature des

programmes. Afin de remédier à ces inconvénients, nous décrivons dans la suite un point de vue

que nous souhaiterions adopter dans des travaux futurs.

Les langages d’aspect ont évolué au fil des avancées pour faciliter leur intégration au sein

de l’application. De nouvelles primitives ont été définies dans ces langages pour permettre

aux développeurs d’aspect d’écrire des cas d’utilisation complexes. Par exemple, les langages

d’aspects qui couvrent le langage Java ont intégré les nouvelles spécifications du langage Java

pour pouvoir décrire des comportements lorsque des annotations sont utilisées. Les langages

d’aspects courant sont pour la plupart confinés à leur environnement d’exécution locale. Le

14

problème est que les préoccupations transversales couvrent différentes couches administratives,

mais aussi différentes couches techniques qui peuvent être distribués sur plusieurs systèmes. Il

est difficile de proposer en une solution qui permette une interaction souple entre les différents

acteurs et qui assurent la définition et l’application des propriétés de sécurité à travers toutes les

couches. Nous présentons dans la suite les spécifications nécessaire à l’élaboration d’un sys-

tème que nous souhaiterions réaliser: une application cohérente et systématique des propriétés

transversales de sécurité à travers les différentes couches et différents domaines. Nous cher-

chons de nouvelles primitives pour les langages d’aspect afin de fournir de nouvelles extensions

à ce qui existe. Cela signifie que nous devons fournir des outils pour le système d’aspect. Le

but recherché est de pouvoir augmenter l’information liée aux ressources qui rentrent et sortent

de l’application. Ce langage aurait pu nous aider s’il avait été disponible lors de l’élaboration de

nos précédentes contributions.

L’approche se place dans un environnement distribué, qui est composé de composants dis-

tribués dans plusieurs domaines. Chacun de ces domaines a un environnement d’exécution qui

lui est propre. L’application (en cours d’exécution sur un environnement d’exécution locale)

échange des messages avec les autres composants externes, qui ont tous une configuration de

sécurité particulière. Afin de renforcer la confiance dans les données qui transitent entre ces

intermédiaires, et afin de faciliter la vérification et la transformation des propriétés de sécurité,

nous définissons de nouveaux outils et moyens pour intercepter les données à l’aide d’aspects.

Nous extrayons les informations de sécurité liées aux ressources afin de les proposer via les prim-

itives que nous définissons aux développeurs d’aspect. Cela permet aux développeurs d’aspect

de réagir sur des évènements survenant au sein de l’application (données chiffrées en local sur le

point de sortir par exemple), mais cela permet aussi d’ajouter de manière transparente des méta-

informations de sécurité aux ressources. Notre solution propose d’extraire les informations sur

la couche de communication et de les rendre disponible à la couche applicative. A l’inverse

la solution permet, lorsque des ressources sortent du champ applicatif à destination d’un do-

maine distant d’extraire le contexte de sécurité de la ressource sortante et de la propager sur la

couche de communication. Cette approche ouvre de nouvelles possibilité de collaboration entre

les différents acteurs, et ce de manière automatisée dans un bon nombre de cas qu’il n’était pas

possible de réaliser précédemment.

15

Chapter 1

Introduction

1.1 Background

The thesis brings an industrial point of view to the modularization of security concerns in en-

terprise applications. Security is pervasive in our environment and implies rigorous steps in

the development lifecycle to correctly specify and implement security properties in a consistent

manner. Security is usually referred to as a non-functional and cross-cutting concern that is in-

dependent from application core concerns, bringing overhead all along the development. But

security has different facets and might have deep relationship with the application, making it

hard to properly modularize it in all situations.

The fast evolution of enterprise applications brings a new dimension to security. In the course

of the past decade, enterprise applications have evolved towards more connectivity. Hence, they

expose their data through several means such as web applications, service oriented applications,

cloud applications, mobile applications, etc.. This interconnection provides greater flexibil-

ity to create new businesses, to collaborate with partners, and to integrate their solution in the

ever-complex enterprise landscape. But it also brings additional exposure to their business data

through heterogeneous technological stacks, making it even more complex to consistently cover

security. Recent events present security breaches with high impact. Attacks have been directed

towards major companies, large organizations, but also institutions and countries. The attacks

tends to originate from organized groups. The attacks get successful although complexity dif-

fers. They can be extremely complex, in which attackers use several means to penetrate a system

and obtain what they want, such as social engineering, zero-day exploit, stealing of cryptogra-

phy keys, robbery, etc.. In such case, it is hardly possible to protect sensitive resources, and

companies need to perform regular audits on their processes to detect as soon as possible some

intrusion to properly react. There is also another kind of attack that we are covering in this the-

sis, that are some attacks directed towards technical stacks of heterogeneous IT systems. They

are less structured, in the sense that they necessitate less organization in time and in means. It

exists several tools and frameworks to perform this kind of attacks, that can be controlled by

individuals or groups that are looking for fame, rewards, knowledge, etc.. These attacks can

generally be mitigated by respecting security policies and applying best practices. The problem

in this case, is to propose a set of tools and methods to ensure the correct enforcement of security

16

policies and best practices at several layers of the computing stack. For instance, an application

will be running on an execution platform, coded in a specific programming language, using

some frameworks and using various communication protocols. Each of these elements has to

be considered to ensure the absence of vulnerabilities and the proper implementation of security

properties.

We have started with the idea that applications are increasingly pervasive in our environment,

ranging from embedded devices to large-scale distributed applications supporting economical

exchange across countries. The different types of software, no matter their environment, need to

respect quality constraints. The industry first focuses on delivering high quality products, pro-

viding added-value in a specific functional area. It can be products to support business process,

to sell solutions and services, to ease exchange between individuals, or even products to facil-

itate development of new applications. Each of these products have specifications to describe

the functional concerns that are the core business of the software owners. In addition to the

functional concerns, the industry has to respect several guidelines when architecting and devel-

oping solutions: internal policies, law, regulations, non-functional specifications, etc.. These are

concerns that address specifications for undirect business need. They are present to ensure the

correct execution of the application in its environment. We often referred to these concerns as

non-functional concerns. In general, the non-functional concerns are such as usability, integrity,

reliability, performance, etc. [CPL09]. Last, but not least, a concern that often comes in literature

as a non-functional concern is security.

We are going to see in the next chapters that security has several faces. It is generally con-

sidered as a non-functional concern that crosscut the application, that one can address straight-

forwardly, and that has several tools or frameworks that perform security (such as third-party li-

braries, execution environment support, operating system protection, application gateway, etc.).

In reality, security conceals a large range of requirements from functional concerns to non-

functional concerns. Companies have to develop products with all these concerns correctly

orchestrated.

1.2 Overview

The thesis discusses how to develop secure software in distributed environments. For this pur-

pose, we have developed techniques to enhance flexibility in operational development of secu-

rity. We apply the concept of cross-cutting concern, mainly promoted by the Aspect-Oriented

software development [KLM+97] paradigm to enhance flexibility in the definition of security

properties. We defer the concrete enforcement of security properties in the application to first

collect the location impacts in the source code of a program, then to later react at the application

level scope to adapt the security enforcement code to the final execution environment.

We propose with the support of several contributions to address the modularization of secu-

rity properties in industrial environment, that address both techniques for constructive security,

and techniques for defensive security. We introduce a separation in security categories as we

differentiate security that addresses business needs such as privacy, confidentiality, authenticity,

and sometimes safety, from security that addresses protection against the exploitation of soft-

wares’ vulnerabilities by malicious users. The contributions propose to ease the management of

17

security properties along the security lifecycle, with a focus on development. With this respect,

we propose contributions to protect application from vulnerabilities, and contributions to ease

the integration of security properties in applications.

1.3 Problem Statement

The problem of secure development has evolved over the years. It is now at a mature stage,

but we observe that vulnerabilities introduced by developers are still prevalent. We tackle the

problem of achieving a non-invasive and systematic application of security, while respecting the

time constraints of the industrial environment when developing software. The security require-

ments are coming from security policies in place to respect software quality standards, but also

from external regulations. The security properties of such systems affect different layers that

are heavily interconnected. The security of a system is impacted by several decisions along the

software development. It starts from the definition of security requirements. Assuming that the

requirements are correctly elicited and specified, the developers are given a list of rules to respect

while developing. They have to maintain a certain quality of coding when introducing the se-

curity mechanisms fulfilling the security requirements. Despite the numerous resources brought

by the secure development discipline to correctly implement security mechanisms, developers

still introduce vulnerabilities that affect systems.

The introduction of security vulnerabilities by the developer depends on several factors: the

lack of knowledge about security mechanisms, the misinterpretation of the specifications or of

the software’s architecture, the misconfiguration of the frameworks and libraries, or even some

refactoring defects when going from testing and development to production [KYL09]. There

also exists the possibility of having an internal developer who deliberately introduces backdoors

or defects in the application. It is important to notice that the cost to correct a security vulner-

ability, if taken as a software defect [oST] will exponentially grow while software development

progresses. The exposure of software vulnerabilities becomes effective when the application is

released to the production stage, in other words, when the application is supposed to fulfill all

the goals it has been developed for, and the application is exposed to the intended audience.

In order to mitigate the unintentional defects, we first propose to accompany the developer

with methods and tools. To clarify the situation, we have defined an internal set of security

requirements, coming from a subset of internal policies in place at SAP, but also general re-

quirements we have observed in best practices [OWA, Roo07, CM07]. The requirements target

primarily the web application vulnerabilities, but also all defects one encounters when dealing

with distributed systems. In this first part, we have restricted the list to requirements impact-

ing the development. We are interested in detecting and preventing all input manipulations:

cross-site scripting, SQL injection, path manipulation, remote shell injection, HTTP parameter

pollution, and any kind of protocol injection. In the second part, we propose to cover secu-

rity properties related to constructive security, and to present several security mechanisms. The

contributions cover properties such as accountability, which imply the correct enforcement of

several mechanisms, as well as privacy and communication protection within distributed sys-

tems.

The correct modularization allows companies to propose software products that are compli-

18

ant in the many regions the applications are commercialized in, by applying late binding to the

properties. For instance, the privacy of personal data will differ from one country to another,

with potentially different cryptographic restrictions to protect resources. Although the solution

we develop in the following can be applied in several contexts, we have developed them in

a context of distributed systems. We are targeting inter-connected systems in an architectural

style that is often referred to as Service-Oriented Architecture (SOA). We are also bringing so-

lutions to the growing deployment of cloud computing systems, that not only target applications

but also infrastructure and platform.

1.4 Contributions

The contributions of this thesis are manifold. They can be summarized as follows:

• Review and identification of security problems for distributed systems with Aspect-Oriented

Programming

• Detection of security vulnerabilities with corrective patch applied in AOP, to help the

development of secure web applications. It lead to publications [GEKS11, SGEKSDO12,

SSO13]

• Modularization of security concerns like privacy for distributed platforms. It lead to pub-

lications [YSSSdO12, DSI+12b, SSdOMR12]

• Proposition of a cross-layer aspect system

1.5 Organization of the thesis

The thesis is organized to present the aforementioned contributions in the area of secure software

engineering for distributed applications. The next chapter introduces the different concepts we

are referring to throughout the thesis. We have divided the thesis into two parts. The first part

presents modularization of defensive security which is the introduction of programming aspects

for security. It covers contributions related to secure programming with the assistance of Aspect-

Oriented paradigm. The second part presents the modularization of constructive security which

can be simplified to the modularization of business security concerns to propose more flexibility

in the application of security properties. In the conclusion part, we present the definition of a

cross-layer and parametric aspect system, which would be our next step towards modularization

of security properties across layers.

19

Chapter 2

Modularization of cross-cutting

concerns

This dissertation describes a contribution to the secure engineering discipline, that promotes the

separation of concerns in application development of security modules. It allows to better archi-

tect solutions, but also to bring flexibility in the application of security policies. In the following,

we briefly introduce the origin and goals of separation of concerns, through the presentation of

the Aspect-Oriented programming discipline. Then, we present the security processes that are

generally defined within the application development to produce secure applications.

2.1 Software Engineering

The software engineering discipline is vast and promotes concepts to properly manage software

development from its early existence. The field has developed over time several techniques and

methodologies to produce software with a focus on delivery time and quality. It gives guidelines

to manage specifications, to gather and elicit requirements, to define an architecture with design

of components and interfaces, to provide procedure for testing, to maintain software, to manage

configuration, to review processes around management, to define security and safety, etc..

The primarily goal is to translate real-world concerns to software, letting customers express-

ing needs that are then translated to applications that runs on computers. The whole process

is complex and involving heterogeneous actors. It is also still evolving, with new methods to

better manage systems. The definition of software is made in terms of a set of requirements,

that represent the business goal of the application. The translation of these business needs in

software is realized using a programming language. A set of concepts also govern programming

engineering.

At the beginning, the programs were defined as structured instructions executed sequentially.

The Figure 2.1 shows an evolution of programming paradigms these past decades, that diverged

in two main dimensions. The first dimension represents an advanced conceptualization of com-

ponents through the programming language. For instance, programming languages started to

conceptually define separation of concerns to virtually manage piece of software independently.

20

The major evolution that raised in the eighties was the evolution from structured programming to

object-oriented programming. The object-oriented programming is a paradigm that has several

objects which encapsulate common behaviors. It promotes flexibility and reuse of concerns. The

data is accessed through interfaces defined by the objects. In short, good object-oriented design

might be achieved by applying five main principles. These principles have been compiled by

Robert Cecil Martin [Mar99] :

Single responsibility principle promotes the encapsulation of one concern ine one class. The

reason is to clearly define responsibilities, to have independent classes and avoid the in-

troduction of side-effects when modifying a class dealing with more than one concern.

Open-closed principle indicates that classes should be open for extension, but closed for mod-

ifications. It means that the design of a class should be complete. New features would not

modify directly the source code, but rather pass through the creation of a new class. In

such situation, code reuse could be achieved through inheritance.

Liskov substitution principle comes from Barbara Liskov [Lis88] and defines a notion of sub-

stitutability for types. It is also called behavioral subtyping and provides standard require-

ments in the definition of method signature for the sub-class hierarchy. For instance, it

states that "objects in a program should be replaceable with instances of their subtypes

without altering the correctness of that program". It lays the foundation for design by

contract.

Interface segregation principle promotes the smallest dependency possible by splitting large

interface in smaller and more specific ones. It allows to decouple concerns and thus ease

code refactoring.

Dependency inversion principles states that high and low level modules should depend upon

abstractions. Abstractions should not depend upon details, but details should depend upon

abstraction. It promotes the separation of layers by specifying abstract notions from which

the code will depend at a certain level. It allows then to abstract notions and decouple any

relation to concrete/technical low-level code.

Although the separation is clearly defined, the object-oriented paradigm has some limita-

tions. First, the paradigm works well for local systems, but suffers from a certain scalabil-

ity when addressing distributed systems. Distributed applications rely on additional layers to

manage and moke object communications. Second, the encapsulation provides protection and

control to the internal data of an object, but software development requires additional code to

manage cross-cutting concerns. These concerns can not be encapsulated like in an object, as it

represent a concern that is highly tied to the code. We say that it is scattered and tangled to the

application. It is generally technical code, such as code to manage transactions, caching, and in

some cases security. All of the tangled code breaks the principle of having classes responsible

of one concern, dealing with abstractions rather than low levels.

In the separation of structure and behavior, Gregor Kiczales and the Xerox Team [KLM+97]

introduced the Aspect-Oriented programming paradigm in late nineties, with the goal to untangle

the code into cross-cutting, loosely coupled aspects. We further discuss this paradigm in next

section.

21

Figure 2.1: Programming paradigms categorization presented in [USB09]

22

2.2 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) is a whole discipline around the concept of

aspect. It describes approaches to software modularization and composition, and gather tech-

niques and methodologies to incorporate the aspect concepts. The set of software development

techniques include requirement engineering, analysis and design, architecture, testing, and pro-

gramming. The last point is the core of AOSD, but requires support of the aforementioned

techniques with either tools, or methodologies. The preliminary steps elicit requirements that

represent cross-cutting concerns. In software, there are several concerns that can be either func-

tional or non-functional. It means that some concerns are business related, while other are related

to the correct execution of the program and are generally implied by some technical choices: en-

vironment, programming language, framework, platform, etc. These concerns are sometimes

translated in programming pieces that are scattered and tangled over the code. Such concerns

are good candidate to be implemented with aspects.

There are several use cases that are discussed. For instance, the benefit of adopting Aspect-

Oriented Software Development in Business Application Engineering [PCG+08] for large com-

panies lies in overcoming several challenges in the context of specific products. AOSD is not

bound to a particular language, and needs several tools and methods for the particular environ-

ment of the company: debugging tools, processes that respect existing business process, exten-

sion to languages, flexible mechanisms, etc. Also, AOSD does not necessarely fits all projects,

and needs to be introduced slowly. For instance, Robinson and al. [LSM05] present the rela-

tion between AOSD and security in the area of application security management, in which the

application handle security policy and needs to enforce specific behavior. they differentiate the

business logic from the security management logic, the security enforcement logic and the com-

munication logic. They show that AOSD fits the use case by using an interaction specification

language describing behavioral dependencies between components, and runtime adaptation in

the interaction scheme.

AOSD refers to the general concept of aspect that is implemented in a particular language.

We are discussing the aspect paradigm through the presentation of Aspect-Oriented Program-

ming. The term Aspect-Oriented-Programming [KLM+97] (AOP) has been coined around 1995

by a group led by Gregor Kiczales, with the goal to bring proper separation of concerns for cross-

cutting functionalities. Roots for foundations can be traced back to adaptive programming, or

composition filters [Lop05]. O. Selfridge introduced a notion that can be related to AOP as

"demons that record events as they occur, recognize patterns in those events, and can trigger

subsequent events according to patterns that they care about" [Sel58]. But the approach has then

derived to become a discipline apart.

It is a paradigm to ease programming concerns that crosscut and pervade applications. The

aspect concept is composed of several advice/pointcut couple. Pointcuts allow to define where

(points in the source code of an application) or when (events during the execution of an appli-

cation) aspects should apply modifications. Pointcuts are expressed in pointcut languages and

often contain a large number of aspect-specific constructs that match specific structures of the

language in which base applications are expressed, such a pattern language based on language

syntax. Advices are used to define modifications an aspect may perform on the base application.

23

Advices are often expressed in terms of some general-purpose language with a small number

of aspect-specific extensions, such as the proceed construct that allows the execution of the be-

havior of the base application that triggered the aspect application in the first place. The main

advantage using this technology is the ability to intervene in the execution without interfering

with the base program code, thus facilitating maintainability.

Aspect Oriented Programming goal is to intervene in first class language execution. Most

of current languages are related to programming languages such as the well known AspectJ.

AspectJ is a java-based language that allows different weaving scheme and provides the most

recent progress related to AOP features. Through the definition of a pointcut based on a pointcut

language, one can represents an aspect that enhance base classes. It is possible either to enhance

business objects with inter-type declarations, or adding a specific behavior when conditions are

met. The language heavily relies on program syntax to wrap behavior respectively Before,

Around, or After a method execution. But AspectJ is not the only language. It exists nowa-

days a language for several common programming languages, but also other domain-specific

languages.

For example, AO4BPEL represents the willingness to provide a clear definition of cross-

cutting concerns for business processes described with the BPEL language. cross-cutting con-

cerns are normally tangled and scattered across the code, such as Activities and Tasks within

the business process that are composed with other services, with no distinction between the real

business code and the concerns. In order to provide functionality that pervades and crosscutt

several business process, Charfi [Cha07] focused on modularity of workflow process specifica-

tions. It allows, with a language extension to describe non-functional requirements separately.

The approach is similar to Aspect concept for object language but translated for business process

languages. The defined aspect language is able to represent concerns such as logging, transac-

tion or security. Charfi proposes deployment mechanisms to ensure correct application of non

functional requirements, based on an XPath pointcut language describing where and when to

inject behavior in business process. The BPEL engine is responsible of interpreting deployment

descriptor and weave cross-cutting concerns.

2.2.1 A pointcut-advice model

AspectJ is the foundation language for cross-cutting concern definition and implementation for

java programs. It relies on a so-called pointcut-advice model for the definition of cross-cutting

concerns, such as many of other aspect-languages. It allows to clearly separate the definition of

the cross-cutting concern to the definition of their weaving points in the application.

The pointcut model in AspectJ defines boolean expressions that matches some points in a

target application (the application in which one want to inject the cross-cutting concerns). The

boolean expressions can be combined and mostly relies on the syntax of the application. For

instance, the pointcut model defines method call, construct call, method execution, construction

execution, advice execution, within method code, field getter and setter, static class instantiation,

within class, this, target, args primitives. It makes it possible to select and filter several points

from a target application, that are called joinpoints. The joinpoints are the concrete points that

are selected when applying a pointcut boolean expression. The pointcut model is the first part of

an aspect, and its expressivity can be extended through several works. For instance, Masuhara

24

Figure 2.2: cross-cutting concern visualization with the AJDT eclipse plugin for a deliberate

vulnerable application

and al. defined a new primitive called dflow [MK03] to quickly select points in the application

to track a dataflow. Another example comes from Belblidia thesis in which she defines two new

primitives getlocal, setlocal [Bel08] that allows to track local variables from within a method

body, thus observe the propagation of information flow from the aspect language. The Figure 2.2

presents a view that is produces by the AJDT eclipse plugin for AspectJ. It shows the actual

joinpoints that applies in the context of an application for several concerns. The different colors

present different concerns - hence aspects. With a simple pointcut language, one can defined

cross-cutting concerns that apply at several points in the application.

The second part is the advice model. The advice defines the actual concern, meaning the

code that executes in order to fulfill functional concern. There is several means to inject the

context of the application in an advice. For instance, it is possible to access variables, parameters,

or instances of the base applications. The aspects might either be independent or completely

modify the application flow. Typical aspect use cases that are completely independent from the

application are logging aspects. They need to access context to extract information and log them.

This technical code is best described as an aspect when you want to log common information,

such as every time a web application executes a method. In some cases, you want from within

an advice to modify the return of a method, an instances, or some variables. For example, you

can want to provide mock up application with aspects, that always replace some functionality

of your application on test platform. Also, you would need to modify variable content with

safe-content after security check.

The pointcut-advice model provides an elegant approach to describe cross-cutting concerns

that apply to components, such as objects, or any type of container. A problem has neverthe-

25

less been encoutered in the practical use of aspects, which is called the fragile pointcut prob-

lem [SK04]. The problem occurs on specific pointcut languages, upon evolution of an appli-

cation. As the set of aspects is separated from the application, aspects use pointcut languages

to determine the joinpoints. Most of the pointcut languages propose a syntax-based approach

to write pointcut. It the pointcuts get desynchronized from the syntax of an application (i.e, a

package is renamed, or an object type change its name), the aspects can no longer interact with

the base application.

The binding between the application and the advice is complex, but is not the only weak

points. De Fraine et al. [FSJ08] present StrongAspectJ which provides flexible and safe binding

between the advice and its corresponding pointcut. The problem in this case is related to the

type system used by the advice/pointcut. They enhance the existing pointcut model to recover

type safety for both generic and non-generic pointcut/advice declarations.

In the next sections, we provide concrete examples of the pointcut-advice model with the

AspectJ language.

2.2.2 AspectJ

We illustrate the usage of the Aspect-Oriented programming concept through AspectJ examples.

AspectJ is one of the many implementation dedicated for the java language. It is also the primary

language created by Gregor Kiczales and its team in Xerox parc. Since, it represents the most

updated language, back-porting several of concepts developed in the scope of the research in the

field.

We represent a base program example in the Listing 1. A base program traditionally provides

the functional concerns of an application. These concerns are those defined by the business

users during the design of the application, either through careful specification or requirements

documents, or through other communication means. In this example, we are presenting a simple

execution of methods with some latency. The program, for demonstration purpose only does

nothing else than a loop with a delay.

AspectJ and aspect-oriented programming in general manipulates indirectly languages. They

introduce several instructions that are not directly represented in a first-class language. For in-

stance, developers and aspect writers write java lines of code independently. Then, through an

additional step called weaving in aspect terminology, they unify the concerns together. In such

case, the syntax of the base program does not change, but its semantic will when the aspects are

added to the program. The modification are introduced in this case in java-bytecode. In order

to compare the effects of aspects static compilation, we presents in Listing 1 the correspond-

ing instructions obtained after compilation in Java 1.7(check http://docs.oracle.com/

javase/specs/jvms/se7/html/index.html).

The code presented in Listing 2 represents a cross-cutting concern defined in AspectJ. The

java annotations add information for AspectJ system to interpret correctly the different methods.

In this case, it presents a concern called aroundMethod which is inserted in the program execu-

tion flow, every time a method is called from a place which is not the aspect module. The aspect

itself monitors execution time of the base application, and displays a message for each method

execution. An output result is given in Figure 2.3.

26

Listing 1 Simple class counting with delay and its equivalent bytecode

public class Simple {

public static void main(String[]argv) {

countFast(1000);

countSlow(1000);

}

public static void countSlow(int value) {

count(value,5);

}

public static void countFast(int value) {

count(value,0);

}

private static void count(int value, int delay) {

for (int i=0;i<value;i++) {

try {

Thread.sleep(delay);

} catch (Exception e) {}

}

}

}

public class Simple {

//...

public static void countSlow(int);

0: iload_0

1: iconst_5

2: invokestatic #4 // Method count

5: return

public static void countFast(int);

0: iload_0

1: iconst_0

2: invokestatic #4 // Method count

5: return

private static void count(int, int);

0: iconst_0

1: istore_2

2: iload_2

3: iload_0

4: if_icmpge 22

7: iload_1

8: i2l

9: invokestatic #5 // Method Thread.sleep

12: goto 16

15: astore_3

16: iinc 2, 1

19: goto 2

22: return

}

In order to properly implement new concerns into the base application, AspectJ adopts dif-

ferent strategies. It is for instance possible to weave the concerns either statically or dynamically.

In the following, we have compiled statically the two java classes (Simple.java and WhereDoes-

TheTimeGo.java) and apply the static weaving approach. We can achieve the same result by

loading the aspects at the beginning of the application execution. It is realized thanks to java

bootstraping, intercepting calls to methods and injecting when detecting a pattern match the

loaded concerns. In our case, the static weaving renders bytecode application with the different

concerns already inlined in the application. We present in Figure 2.4 an UML class diagram

of the base application and the aspect module. We differentiate in this picture the different el-

ements that are added by the weaving process in the application. The black elements are class

diagram representing the base application and the cross-cutting concern. The red elements are

the addition when compiling and weaving the aspects into the application. Several inner classes,

and several wrappers around the concerned methods are added to execute at runtime the desired

properties.

We provide a last listing, to observe the change at the bytecode level. The Listing 3 con-

tains therefore several new constructs compared to the compilation with no aspects. To keep

high modularity in the aspect concern, AspectJ transforms the bytecode to obtain a separation

between the actual concern and the original source code. Therefore, for the countSlow function,

the original method content remain unchanged in the bytecode, but the call to the method as

additional wrappers to execute matching aspects at the joinpoint.

27

Listing 2 A cross-cutting concern to display the time spent in methods.

import org.aspectj.lang.ProceedingJoinPoint;

import org.aspectj.lang.annotation.Around;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Pointcut;

@Aspect

public class WhereDoesTheTimeGo {

@Pointcut ("execution(* *(..)) && !within(WhereDoesTheTimeGo)")

void methodsOfInterest() {}

private int nesting = 0;

@Around ("methodsOfInterest()")

public Object aroundMethod(ProceedingJoinPoint thisJoinPoint)

throws Throwable {

nesting++;

long stime=System.currentTimeMillis();

Object o = thisJoinPoint.proceed();

long etime=System.currentTimeMillis();

nesting--;

StringBuilder info = new StringBuilder();

for (int i=0;i<nesting;i++) {

info.append(" ");

}

info.append(thisJoinPoint+" took "+(etime-stime)+"ms");

System.out.println(info.toString());

return o;

}

}

Figure 2.3: Application execution output result

28

Figure 2.4: Class diagram of the example. The aspect and the base application are in black. The

weaving addition are in red.

29

Listing 3 Result of weaving on application bytecode for the countSlow function.

public class Simple {

//...

public static void countSlow(int);

Code:

0: iload_0

1: istore_1

// Field Lorg/aspectj/lang/JoinPoint$StaticPart;

2: getstatic #82

5: aconst_null

6: aconst_null

7: iload_1

// Method org/aspectj/.../Conversions.intObject

8: invokestatic #88

// Method org/aspectj/.../Factory.makeJP

11: invokestatic #55

14: astore_2

// Method WhereDoesTheTimeGo.aspectOf

15: invokestatic #75

18: iconst_2

// class java/lang/Object

19: anewarray #3

22: astore_3

23: aload_3

24: iconst_0

25: iload_1

// Method org/aspectj/.../Conversions.intObject

26: invokestatic #88

29: aastore

30: aload_3

31: iconst_1

32: aload_2

33: aastore

// class Simple$AjcClosure3

34: new #92

37: dup

38: aload_3

// Method Simple$AjcClosure3."<init>"

39: invokespecial #93

// int 65536

42: ldc #63

// Method .../AroundClosure.linkClosureAndJoinPoint

44: invokevirtual #69

// Method WhereDoesTheTimeGo.aroundMethod

47: invokevirtual #79

50: pop

51: return

static final void countSlow_aroundBody2(

int, org.aspectj.lang.JoinPoint);

Code:

0: iload_0

1: iconst_5

// Method count

2: invokestatic #26

5: return

//...

}

public class Simple$AjcClosure3

extends org.aspectj.runtime.internal.AroundClosure {

public Simple$AjcClosure3(java.lang.Object[]);

Code:

0: aload_0

1: aload_1

// Method org/aspectj/.../AroundClosure."<init>"

2: invokespecial #10

5: return

public java.lang.Object run(java.lang.Object[]);

Code:

0: aload_0

// Field org/aspectj/.../AroundClosure.state

1: getfield #14

4: astore_2

5: aload_2

6: iconst_0

7: aaload

// Method org/aspectj/.../Conversions.intValue

8: invokestatic #20

11: aload_2

12: iconst_1

13: aaload

// class org/aspectj/lang/JoinPoint

14: checkcast #22

// Method Simple.countSlow_aroundBody2

17: invokestatic #28

20: aconst_null

21: areturn

}

30

2.3 Security Implication in the Software Development Life Cycle

The secure software development lifecycle gather techniques and methodology to follow in ad-

dition to the software development lifecycle to produce high quality solutions, respecting com-

pliance and quality level to avoid flaws and vulnerability when developing applications. At the

early age of software development, the complexity and time to write a single piece of software

was too high to let someone abuse of a system. With the rapid and growing usage of application

for any kind of problems, people started to exploit software logic to bypass some internal limi-

tations. Then, when systems became ubiquitous and inter-connected, a new category of people

have been given access to mass systems. Software are complex pieces designed and developed

by individuals and automated tasks. Sometimes, without the possibility to control entirely the

process, some errors are introduced in the application. It goes from architecture flaws, where

specifications represent a subset of the real-environment, letting some unknown behavior at the

mercy the luck. It can also be software weaknesses, that when exposed to some attackants

can introduce security vulnerabilities. These vulnerabilities can be detected and exploited by a

large range of attackers. The rapid growing of systems and complexity to manage several teams

together to timely deliver softwares combined to the structuration of governments, groups of

security experts, talented system hackers and a whole range of malicious users lead to the emer-

gence of a new discipline in computer science. The aim is to not only produce softwares, but

produce high quality softwares compliant with regulations in place, internal company policies,

etc. Furthermore, the lifecycle involves several actors from the early gathering of specifications

to the final stage of testing, deployment, and detection. In this section, we detail the different

steps that are traditionally accepted as being part of the so-called SDLC (Security Development

Lifecycle).

The global picture is presented in Figure 2.5. It presents several points around the traditional

software development lifecycle in which actors interact to augment the system coverage with se-

curity properties. This Figure is the starting point for the numerous contributions of this thesis,

as it brings an approach to ease integration of security at different points over the security devel-

opment lifecycle. We try to makes more flexible and completely modular the security properties

with clear separation of concerns from business code to technical code, and from security code

to business code.

The overall vision of the thesis starts from the design and development of web applications

to assist concerned stakeholders in their tasks to properly implement secure applications. It also

touches the branch of application testing through careful review and assistance in correction in

an integrated plugin. The thesis has some important implications at the runtime: the solutions

separate concerns during the development of the application, and then delay the final binding

of security code with business and technical code to the last moment: deployment or execution.

In some cases, we have bundle security out of the direct application, and preferred to offer it as

a service, wrapping around the application. It is the case for instance with service framework

security and platform security.

The field is also known as security hardening, and pertains different levels: code level hard-

ening, software process hardening, design level hardening, and operating environment harden-

ing. The achievement of these levels render systems resilient to attacks.

31

Figure 2.5: Software Development Life-Cycle

2.4 Security Requirements

The engineering of the requirements for software application, systems, or components cover

several functional and non-functional definitions. Among them, we can identify requirements

such as quality, interoperability, performance, portability, availability, reliability, usability, and

security requirements. Security requirements are one of the most difficult to deal with, as re-

quirement engineers are not used to complexity and diversity of security. They lack of security

architectural overview, and often confuse security mechanisms and security properties. There

are several kinds of security requirements, that we specify in the following with our specific

needs throughout the thesis.

Identification Requirements specifies the extent to which the application shall identify the

actors before interacting with them. This requirements often goes along with authentication

in order to properly know the involved actors. In industry, the identification steps is generally

mandatory to render services.

Authentication Requirements specifies the verification that apply to validate the identity of

involved actors. In industry again, and in most of our use-cases, the application shall verify

the identity of all of its users before granting the system access. In some cases, we restrict

authentication to critical sections, where sensitive or personal data is manipulated.

32

Authorization Requirements specifies the access and usage control of authenticated users

and actors. The authorization needs both a correct authentication and identification of the users,

in order to grant the execution of critical part of system.

Immunity Requirements specifies the protection against infection. Although this require-

ments generally apply for virus infection, in our use-cases we define some requirements to pro-

tect against injection attacks. For instance, we indicate an application shall be immune against

injection attacks that are frequent in web application and service-oriented applications.

Integrity Requirements specifies the extent to which application shall ensure the consistency

of data. The requirements permits the detection of any alteration or deletion of data. In our

industrial use cases, the integrity applies to communication, whom we prevent unauthorized

users to manipulate data.

Non-repudiation Requirements specifies to which extent an application shall capture evi-

dences of interaction with actors. The non-repudiation is fundamental to avoid deny of actors

for having participated in a conversation with the application. It generally tracks information

such as the identity of the involved actor, as well as actions or data in manipulation throughout

the interaction.

Privacy Requirements specifies how an application or component deals with sensitive and

personal data. The data are generally under regulations and have a specific lifetime. Also, the

privacy requirements keep information private from unauthorized actors, and is a good way to

respect the "need-to-know" principle.

There are a couple of additional security requirements categories that we are not addressing

along the thesis. It is for example survivability requirements to survive the alteration or loss of

system or part. Physical protection requirements that address physical locations and plans to

avoid robbery and deterioration of hardware. Intrusion detection requirements provides spec-

ifications to detect and record attempt to access application by unauthorized parties. Security

auditing requirements which specifies to which extent an application shall collect and report the

state of its security. Finally, system maintenance security requirements propose plans to properly

manage migration and upgrade with no conflict with existing security requirements.

2.5 Security and aspects

AOP has been proposed to represent functionalities of a software in a decorrelated fashion, so

that they can be incorporated anytime, and at any location. Several languages exist to describe

the behavior of the functionalities, and to bind the behavior to the actual code. In the follow-

ing, we are calling them advice language and pointcut language. Over the past decades, these

languages evolved to incorporate new primitives to ease definition of location. They have also

exposed through an API context of an application to be reused inside aspects. These languages

33

have been used to represent several cross-cutting concerns : logging, transactions, and some

security concerns. In the past, these concerns where encapsulated in applications with intro-

duction of explicit calls. AOP render the binding of these properties more transparent from an

engineering point of view.

There is a long list of already identified cross-cutting concerns [Mic, Paw02]. Authentica-

tion & Authorization code, that tends to appear before critical sections. Database encryption to

provide systematic encryption of data prior of its storage but also decryption after data access.

Data integrity to ensure at multiple points the correctness and freshness of the data. Session

management that pervades a whole application to expose a context. Digital signature that pro-

vides identification and integrity of data. Persistence and transaction are technical elements who

are present prior access to a data-layer, and that manage lifecycle of transaction independently

from the remaining of the application. Monitoring and custom logging is highly scattered and

tangled to the application code. Caching of data objects might appear at different place in the

code. The configuration management provides technical code to retrieve and store configuration

of an application. Exception treatment are sometimes cross-cutting an application, when the

exception are not related to the business code but rather manages technical errors. The manage-

ment of state such as automata is also a cross-cutting element as the internal logic of the state is

not directly related to the application.

There has been several work talking about Aspect-Oriented Programming for security. The

premises of the decoupling of security mechanisms from the base programs have been intro-

ducedway before the emergence of aspect-oriented solutions. The "metaobject protocol [KDRB91]

(MOP) defines specifications of a set of generic functions for accessing and manipulating core

structure of an object. It defines the notion of meta classes that represent how a class is structured

and behaves. The meta classes are responsible of the overall behavior of an object system. The

concepts behind metaobject protocols are intensively used in introspection, in which it is possi-

ble to consult information about object’s methods, or inheritence structure. Metaobject protocols

also define the premises to intercession, which is the ability to modify the behavior of an exist-

ing object. The notion of introducing security with meta-object protocols is tackled by Braga et

al. [BDR00]. They outline a metaobject protocol for secure composition of cryptography-aware

meta objects. Their goal is to enable the definition of secure composition in a decoupled man-

ner and orchestrate the cryptographic mechanisms in a control environment. By reducing the

coupling in the application, they transparently introduce security in an order they control. For

instance, they provide several mechanisms that can be mutually exclusive if introduce at once,

and they show that a careful handling at the meta-level allows to control the order of secure

composition, as well as the possibility to evolve the application on the fly. In a nutshell, they

achieve inversion of control to centralize security requirements in a module through reflection

mechanisms.

There are different strategies in which metaobject protocols can be used to define security

enforcement. One needs to control how metaobject protocol interact with the base program and

control somehow the permissions. The work from Caromel and al. [CV01] proposes to study the

possible type of MOP strategies and their implication in security. They assume a component-

based application, in which java security applies: protection domains are specified to limit the

scope of permissions for principals. According to their classification, it exists four categories of

34

Meta-Object Protocol (MOP):

• Compile-time MOPs. It reflects on language constructs available at compile-time. The

meta-level code is executed at compile-time in order to perform a translation on the source

code of a program.

• Load-time MOPS. It reflects on the bytecode and make use of a modified class loader in

order to modify the bytecode at the moment it is loaded into the JVM. They operate on

bytecode rather than java source code.

• VM-based runtime MOPs. It accesses to runtime information, such as method invocation,

read or write operations on fields, etc. It reacts on events to execute meta-level objects.

• Proxy-based runtime MOPS. It introduces hooks into the program to access specific run-

time events, such as method invocation.

The type of MOPs depends on the time of reflection shift. The type of MOPs impacts the

constraints on permission sets, meaning that the strategy of reflection will impact the propagation

of security from the meta-level objects to the base level components.

Viega and al. [VBC01] focuses on the application of aspect-oriented programming to the se-

curity domain. They discuss the motivation and principle to achieve consistent security through-

out an entire application. As aspect-oriented programming defines a new paradigm to separate

cross-cutting concerns, they anticipate simplification in the separation of security module from

the base application. The tasks are split with clear separation between stakeholders, security

policies can be define once and the system takes care of the coherency and the enforcement

within the application. They tackle the language expressiveness of such system: wildcarding

that allows one system designer to express point of application of the security modules, context

gathering that allows transmission of context from the base program to the security aspect, order

of aspect composition that can change the semantic of the application. They list several possi-

bility in applying AOP to security that they partially discusses through C-language example:

• Perform error checking on security-critical callas

• Implement buffer overflow protection, or inserting special code at function entry and exit

• Log data that may be relevant to security

• Replace generic socket code with SSL socket code

• Insert code at startup that goes through a set of lock-down procedures that most program-

mers would not add to their programs

• Specify privileged sections of a program and request privileges when needed

The transition between meta-object protocols and aspect-oriented programming to tackle se-

curity requirements is discussed to learn lessons from MOP and understand how aspects can

benefits from such mature discussions [WS02]. The different experiments that have been made

with meta-object protocols can be applied to aspects. They both tackle security as a cross-cutting

35

concern, to increase the flexibility of enforcement mechanisms. MOPs correct enforcement de-

pends upon all accesses to the object being controlled by a reference monitor. Such approach

might not prevent against local use to bypass reference monitor checks on specific objects. One

needs to guarantee the complete mediation of the system to ensure that all calls are correctly

redefined through the meta-objects. The implementations should also be protected against tam-

pering: it can be achieved by relying on operating system controls, or using code signature to

verify the integrity of the implementation. A last lesson from MOP is the verification process

that should allow verification, analysis and testing of modules. Meta-object protocol defines

standard and very general interfaces that makes it possible to test them independently of the

base level application. The advantages of aspects over MOPs, according to the paper, is that

they offer domain specific language. It is easier to define high level application abstractions,

that make direct expressive modeling to the security designers. A second advantage is the ex-

pressiveness of the weaving language. Pointcuts are expressive and sophisticated. Unlike MOPs

which rely on a binding specification language, pointcut languages does not need to introspect

the base program to gather the context.

In the following, we introduce several works that also address security with aspect-oriented

programming. We distinguish twomain categories in the different works: security with AOP, and

AOP for security. The main distinction is that the first category introduces security mechanisms

using aspect techniques, while the second extends AOP approaches to provide security construct

included in the aspect system. The foundation of aspect-oriented programming for application-

level security has been debated in a 2004 workshop attached to the main AOSD conference.

2.5.1 Security Engineering With AOP

Security is one of the several domains that aspect-oriented programming aim to address. Re-

searchers started at the early stage of aspect-oriented programming design to think about security

ease of management with modular cross-cutting concerns. In this section, we present various

works that addresses security engineering, starting from the architecture of secure software sys-

tems to the secure programming enhancement for enterprise systems.

In the early workshop on aspect for application-level security, Ron Bodkin introduces a posi-

tion paper to present enterprise security aspects [Bod04]. The main scenarios the author develop

to highlight interesting use case of aspect for enterprise security are authentication and access

control properties. The author lists the different scenario that one can encounter in enterprise

environment, such as database authentication, role base access control, audit, encryption, fil-

tering, etc. From these scenarios, the author focus on some use cases to outline problems and

opportunities in applying aspect to security. He also states few development areas , such as the

development of more expressive pointcuts (for predicting control flow and tracking data flow)

or extension of the aspect for a better integration in third party systems (distributed systems,

external librairies, etc.). Even with the tools available at that time, security with aspects already

offers benefits: code is compact, separation of role is clear.

The problematic of security engineering is discussed in Bart de Win’s thesis [Win04]. He

explains why it is so difficult to address security during the software development process. Se-

curity is pervasive: it appears anytime anywhere. Each single piece of code that is written

36

need to be secure, in the sense that a developer would think of all potential situations to avoid

abuse of the program. Security also crosscut the application, even tough attempts to modularize

security concerns have been going on. On top of this, the recommendation to build secure sys-

tem require to build it from the very beginning. But, as the author mention, security comes from

unanticipated risks and changes. Laws and policies can change, as well as threats within an envi-

ronment. Changing a part of the application will often lead to a change in security requirements.

The focus of the thesis is on the relation between business logic and security requirements, to

achieve strict modularization of security. The author compares interception-based and weaving-

based techniques, and shows that both approaches provide better security with each merits and

deficiencies. More precisely, according to the author, interception is suited for situations that

require coarse-grained but flexible composition whereas weaving provides rigorous, but more

fine-grained support. The listed advantages of AOSD are numerous: support for advanced mod-

ularization leads to easier development with better separation of roles, the security binding is

easier to modify and verify as it is centralized, explicit modularization leads to reusability in

security mechanisms, and the explicit and late composition strategy of AOSD enables more

flexible composition scenarios.

A couple of years before, Wohlstadter and al. [WTD02, WJD03] propose a framework for

cross-cutting concerns in distributed and heterogeneous systems. The challenge in such diverse

environment is to tackle complex implementation that crosscut the variety of systems, languages,

platforms and OSs. From the different approaches already identified to deal with cross-cutting

features (namely language-based, middleware-based and container-based approaches), the au-

thors propose an approach that combine pieces of code in heterogeneous systems. They provide

cross-cutting functions called adaplets, that are placed at the points where the application inter-

acts with the middleware. In the course of their examples, they provide reliability, performance,

and security use cases. The adaplets propose contract for client and server extension, and reuse

partially notions of the AspectJ language. For instance, a service architect can declare a cer-

tain number of advices to be available on client side or on server side, declare pointcuts, etc.

The authors also defined several features for the approach: modeling, type-checking through an

enhanced-IDL and code generation. Their pointcut-based binding allows static transformation

(weaving) or dynamic wrapping. Finally, to address the distributed and heterogeneous aspect,

adaplets on client-side and server-side communicate through CORBA messages to exchange in-

formation. In the scope of security, they can transparently introduce security protocol to request

for request authorization to perform some client actions.

Some efforts have been made to modularize security and provide maximal resuability. Hence,

Huang and al. [HWZ04] propose security functions in a reusable and generic security aspect li-

brary. The goal is to provide the basic reusable components developers need in the phase of

security implementation. The library is called JSAL and is implemented in AspectJ. It provides

four independent categories of security aspects: encryption/decryption, authentication, autho-

rization and security audit. This library encapsulate code that refers to the numerous security

packages of java security, such as Java Cryptography Extension API (JCE) and Java Authen-

tication and Authorization Service (JAAS). The security behavior is encapsulated in abstract

classes, letting the developer determine the exact pointcut on application’s integration. Whereas

the contribution represent a first step towards reusable and generic security aspect library, the

37

authors lack of a method to address evolution of the application, as well as evolution of the

security aspects.

Aspect-Oriented security is debated in a work that compares advantages and disadvantages

of the approach with container-based security [SZ03]. It augments the flexibility of security

in environments that are container-based, such as application servers. Security in application

servers is generally provided and managed by containers. More precisely, the different com-

ponents representing the application do not have to execute specific security actions when the

container provide the security for them. The security is centralized in container’s configuration.

The application server typically provides identification of a principal and its authentication, that

does not need extra code. While addressing access control (role-based authorization for exam-

ple), the container might provide some functionality, but generally needs modification in the

components’ code. The paper shows that container provide no support or standard solution for

accountability in audit. Therefore, additional code in components is to be provided. The contri-

bution shows that identification and authentication of a principal in a typical J2EE application

can be modularized with few efforts in an aspect. The access control follows the same behavior.

The accountability and audit of the code can also be put in cross-cutting modules with no com-

ponents’ code modification. The authors state that combination of container-based security and

aspect-oriented security is complementary for maximal flexibility.

Industrial approaches of aspect leads to the development of new languages for specific needs.

AspectJ2EE [Coh04, Coh07] is a language developed along a thesis that address the problematic

of cross-cutting concerns in middleware framework such as application servers. The language

is voluntary less general and complicated than AspectJ, and focus on the large scale distributed

applications. It introduces parameterized aspects for flexibility and reusability of aspects. The

aspect’s code is weaved in a novel stage: deployment of the application. The authors claim

several advantages to this approach: preserving the object model, better management of aspect

applicability, and semantic model is more understandable hence maintainable. The approach

proposes a standard library of core aspects:

• Lifecycle aspect

• Persistence aspect

• Security aspect

• Transaction aspect

Aspect for java security has been discussed in a master thesis [Far01]. Java security relates

to the security model of the java language and java execution platform. The work address java

application like applets, that run through several layers of protection to provide features to se-

cure the environment against trusted or untrusted applets running on local machine. The author

define a security aspect for java to define strong security models through security policies and

specifying security restrictions.

The notion of decoupling security concerns to the application and architecting secure soft-

ware systems using aspect-oriented approach is discussed in a survey [DS06]. The survey pro-

vides an exhaustive list of the different approaches. As the paper expresses, the properties to

38

respect when designing, developing and implementing secure system in which developers and

software engineers aim to produce secure systems are:

• The security-related properties in a system should be abstracted out of the main system to

improve clarity, maintainability, manageability and reuse.

• Legacy source code with known or potential security vulnerabilities should be able to be

patched with a minimal amount of new code. It should also be possible to avoid modifying

the original code.

• When applicable, security-related properties should be reusable across different applica-

tions.

The survey discusses the different approaches, including design solutions, architecting frame-

works, approaches with secure coding, etc. In the discussion part, the author expresses a state-

ment that security cross the different layers of the computing stack, and AOP can help address

the concern across layers. Also, security is not a localized concern. It is a distributed concern

present across the network. Aspects can help in addressing distributed concerns, like mentioned

in [NSV+06].

2.5.2 Secure AOP

In this section, we present several approaches that extend the general aspect-oriented approach to

propose security as feature built-in in the aspect parts. The solutions develop specific languages

or techniques.

Under the supervision of Mourad Debbabi, two thesis propose an aspect-oriented frame-

work for security hardening. Although one is oriented on an applied approach [Mou08], the

other poses semantic foundation [Bel08]. In the course of the thesis, they develop a complete

framework to overcome the difficulty of AOP usage in software development for systematic se-

curity hardening. They propose a pattern-based approach that limits the need of high expertise

in security to secure software. They also propose a programming-independent language called

SHL to propose security hardening plan and security hardening patterns, that combined together

creates security hardening aspects.

They have defined new pointcut primitives to augment expressivity of pointcuts. For in-

stance, they define pointcut to match data-flow, but also points relative to control-flow:

• GAFlow In the scope of control flow graph, which are potentially cyclic directed graph

that represent the calling structure of a program, GAFlow computes from a list of join-

points a unique joinpoint. The output joinpoint is "the closest common ancestor that is (1)

the closest common parent node of all the nodes specified in the input set and (2) through

which all the possible paths that reach them pass."

• GDFlow. It also operates on control flow graph and computes a unique joinpoint from a list

of joinpoints. The output joinpoint "(1) is the common descendant of the selected nodes

and (2) constitutes the first common node reached by all the possible paths emanating

from the selected nodes."

39

They present several primitives that are useful for security. The primitives have been sug-

gested in different works

• Predicted Control Flow [Kic01] pointcuts identify join points based on the predicted be-

havior at the current join point.

• Dataflow Pointcut [MK03]. The pointcut identifies join points based on the origins of

values.

• Loop Pointcut [HG06] is a loop join point model that demonstrates the need for a more

complex join point in AspectJ. Their approach to recognize loops is based on a control-

flow analysis at the bytecode level.

• Pattern Matching Wildcard to perform pattern matching.

• Type Pattern Modifiers. Patterns are used inside primitive pointcut designators to match

signatures and consequently to determine the required join points

• Local Variables. It would gives access to local variable that are created within a method,

and not only parameter or return object of a function.

• Synchronized Block Joinpoint.

Belblidia proposes a semantic for the java virtual machine language bytecode [Bel08], and a

semantic for the AspectJ weaving. Then, she provides at the practical level an implementation

for two new AspectJ pointcut: getlocal, setlocal and dflow that matches local variable in function

and dataflow in the information flow.

A recurrent use case for AOP is the access control strategy. Mariscal and al. [PMMD05]

formalize a compilation mechanisms for security specifications. It translate representation of

role-based access control in aspect-oriented code for security enforcement. The formal model

gives some basis to evolve the model in future. The model translates role slices, which is a record

of the permissions for methods in a system. The translation outputs a policy database, and an ac-

cess control aspect for the enforcement part. The control usage is also part of multilevel security

strategy. Aspect-oriented has been applied to usage control [PE07] to facilitate the introduction

of the security logic with a non-intrusive approach. The claim is that this technique allows to

abstract the different features one need to put in the application, which ease the management and

evolution of the features.

Sewe and all. [SBM08] worked the applicability of several aspect-oriented languages to ef-

fective java security, regarding the security model in java language. They indicates that security

with AOP is not trivial, and that the languages does not fully take the security model in account.

They also argue security implications in case of inability to address some issues related to the

class loading. A protection domain may be erroneously assigned when advice is inlined in the

application, and the separation of namespace can not be guaranteed.

We have seen that many extensions are proposed to better control application of aspects

within a base program. In addition to verify that pointcut languages are expressive enough to

describe cross-cutting concerns, one need to provide proof of correct mapping of aspects in

40

the program. The work of Balzarotti and al. [BM04] propose an analysis of aspect-oriented

composition using program slicing.

All these works demonstrate an high interest in securing systems using the aspect-oriented

paradigm. The works tackle the different aspects of software engineering, to either enhance de-

sign of application with the numerous cross-cutting concerns, either to enhance the applicability

of aspects solutions in system with a fine-grained control of side effects.

2.6 Service Oriented Architecture

The thesis deals with distributed systems, although we are mainly referring to the service ori-

ented architectures. In few paragraphs, we introduce the terminologies we are using in the thesis.

Service Oriented Architectures (SOA) enable a world of loosely-coupled and interoperable soft-

ware components towards reusability. Nowadays, the main entity used to represent a software

service is a Web Service. Web-Services represent a paradigm defined by W3C as "a software

system designed to support interoperable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP messages,

conveyed using HTTP with an XML serialization in conjunction with other Web-related stan-

dards" [BHM+04]. Web Services can also be addressed through other transport mechanisms

such as JMS or ESBs. The Web Service standards stack goes beyond the atomic service, and

proposes different approaches depending on the level of abstraction. Service behavior can be

defined when linking different services together, e.g., with BPEL4WS or BPMN 2.0 [HS04]. It

allows definition of service composition to realize a so-called business process.

In the following, we describe standards that are commonly used with Web Services, namely

WSDL and SOAP for WS-* related standards. We also present RESTful services that are getting

widely used for lightweight resource consumption and other means.

2.6.1 WSDL

WSDL 2.0 is a language based on the XML format, which provides a model for describing

Web services [CMRW07] . Means for expressing service interfaces are at the core of all service

models, and WSDL provides very flexible, highly-extensible, and well designed methods for

doing this. This description is done in two fundamental stages: an abstract and a concrete one.

At an abstract level, WSDL 2.0 provides the structure description of the messages sent to

and received by a Web service, such as data types, messages patterns and method description.

"An operation associates a message exchange pattern with one or more messages. A message

exchange pattern identifies the sequence and cardinality of messages sent and/or received as well

as who they are logically sent to and/or received from. An interface groups together operations

without any commitment to transport or wire format".

At a concrete level, "a binding specifies transport and wire format details for one or more

interfaces. An endpoint associates a network address with a binding. Finally, a service groups

together endpoints that implement a common interface." It means WSDL contains information

41

of how messages are mapped to a concrete network protocol - a so-called binding - so that these

messages can be exchanged in an interoperable fashion.

2.6.2 SOAP

SOAP is "a lightweight protocol intended for exchanging structured information in a decen-

tralized, distributed environment. It uses XML technologies to define an extensible messaging

framework providing a message construct that can be exchanged over a variety of underlying

protocols" [GHM+07].

The protocol specifies the exchange of structured information in the implementation of Web

services. SOAP uses the HTTP for RPCs, hiding the HTTP semantics from SOAP applications.

In fact, ”SOAP treats HTTP as a lower-level communication protocol” and uses its own seman-

tics [Man05]. The major goal while designing SOAP have been simplicity and extensibility. The

focus has been put on specifying a model for message exchange and operation execution with no

specific treatment of reliability, security or other concerns that are normally directly addressed

in distributed protocols. Nevertheless, these concerns are covered thanks to the extensibility.

2.6.3 REST

The term REpresentational State Transfer (REST) was coined by Roy Fielding in his PhD dis-

sertation [Fie00]. "REST provides a set of architectural constraints that, when applied as a

whole, emphasizes scalability of component interactions, generality of interfaces, independent

deployment of components, and intermediary components to reduce interaction latency, enforce

security, and encapsulate legacy systems". R. Fielding describes the software engineering prin-

ciples guiding REST and the interaction constraints chosen to retain those principles, contrasting

them to the constraints of other architectural styles.

In REST, everything is a resource. A resource can be thought of as a distant object one can

interact with, but not manipulate directly. This is similar in spirit to object oriented programming

where everything is an object, but the approach is fundamentally different. Every resource,

identified by a unique identifier, is interacted with using a universally predefined set of verbs.

These verbs are defined for every resource globally. On the web, the unique name is the Uniform

Resource Identifier (URI) and the verbs are the standard HTTP methods as POST, GET, PUT

and DELETE. The research community is having several opinions on how these methods can

be mapped to the CRUD operations. For instance, these methods can respectively associated

with the CREATE, READ, UPDATE and DELETE operations. Each method has clear defined

semantics that can be relied upon.

2.6.4 WS-* Security

The most common nowadays is the primitive stack associated to security model named WS-

Security. This standard provides quality of protection through integrity, confidentiality and au-

thentication on messages with SOAPmessaging enhancements. It allows one to sign and encrypt

part of messages, that are at the XML Format to have a fine-grained control on a end-to-end

communication. Credentials are then transmitted securely in the form of security tokens.

42

Figure 2.6: WS-Security standards

The initial roadmap has been submitted in 2002 to the OASIS consortium and the first ver-

sion was ratified in 2004, with a version 1.1 in 2006. The core standards use several token

profiles, such as UserName Token Profile [LKa06c], X.509 Token Profile [LKa06d], Kerberos

Token Profile [LKa06a], and SAML Token Profile [LKa06b]. These tokens are the different

means to serialize and transmit credentials across platform in a consistent manner.

Using WS-Security allows one to cover different scenarios with a same standard, such as

providing an end-to-end security instead of a point-to-point. The latest release improves perfor-

mance as all security mechanisms are ported to the Transport Layer (mostly TLS) or even the

communication protocol (IPSec for example). The drawbacks are a less precise and fine-grained

control on what is being transmitted. With a point-to-point protection, one can intercept a mes-

sage in plain text before final delivery of the application and modify it without further detection.

Also the transport layer protection provides security at the transport level rather than at a mes-

sage level and allows to encrypt and sign only necessary elements in a large XML-document set.

WS-Security can then be viewed as run-time declaration of how content is formatted, and what

steps are required to process it, during messages exchange.

The web-service stack also proposes a declarative approach during the modeling phase.

In a typical SOA, where the client and the service may not be in the same security domain,

policies enforce security rules on the outgoing (client side) and incoming (service) messages.

WS-SecurityPolicy [LKa09] is an OASIS standard. It describes how senders and receivers can

specify their security requirements and capabilities. For example, a service can specify that it

requires a SAML token and signed message in the incoming SOAP request. WS-Security Policy

is based on WS-Policy (a W3C Recommendation). WS-Policy is fully extensible and does not

place limits on the types of requirements and capabilities that may be described. It also defines

a mechanism for attaching or associating service policies with SOAP messages.

43

44

Part I

Modularization of defensive security

45

The modularization of defensive security can be simplified to the evaluation and enforcement

of secure programming best practices. In reality, best practices are a set of methodologies, pro-

cesses, rules, concepts and theories that have to be properly defined and exchanged. All people

involved in the definition and implementation of a system have to share the same overall vision

in term of security, and also to up-scale in order to detect and react to new threats. There are sev-

eral sources to exchange such knowledge, with different scopes. Government and cross-national

institutions are publishing guide for information security, or IT security guidelines. For example,

the french government has a dedicated structure [Age13] to propose documents in french with

guides, news around information security. The German government proposes a similar structure

in quality of the "Federal Office for Information Security" [Bun08]. Europa has an agency to

improve network and information security across europe nations. It publishes guides such as se-

curity awareness [Eur09] to the destination of citizens, businesses, public sector, etc. One of the

most significant worldwide institute is the National Institute of Standards and Technology [oST]

(NIST). It provides guidance for several field of engineering with information security among

the covered fields. Independent institutions also exists, such as the Information Security Forum

since 1989 dedicated to investing, clarifying and resolving key issues in information security

and risk management, by developing best practice methodologies, processes and solutions. They

have published guides such as Standard good practices for information security [Inf12] to the

benefits of they members, world-leading organizations and businesses.

In addition to all these institutions, there are groups that structured themselves to pursue a

common goal of knowledge sharing and centralization of best practices for specific areas. In the

area of internet security, there are groups such as the CERT Coordination Center that provides

approach for better system security, such as tools and techniques for threat and vulnerability

evaluation [CER]. The CERT was initially a team at Carnegie Mellon University, but now desig-

nate a team dedicated to respond to internet and computing incident. OWASP [OWA, Fou] is an

open-source project for web-application security. It is a community for corporations, academia,

and individuals with several regional events to share knowledge and understand latest threats.

Its scope limits to web-applications and related. Another organization promotes the use of best

practices for providing security assurance in cloud-computing: the Cloud Security Alliance orga-

nization. [Clo09]. They publish documents specific to cloud security, such as security guidance.

Although numerous organizations edit guides for proper information security management,

security vulnerabilities are still prevalent in applications, and specifically web and cloud appli-

cations. These type of applications are specially exposed to a larger audience with high press

coverage. They interact with users and collect large set of data subject to privacy, thus regula-

tions. Developing such type of applications require carefulness in specification of the applica-

tion, then rigorous enforcement of security properties. Finally, application needs built-in quality

to remove from the development stage any vulnerability that can be exploited later on. In term

of development, there are several strategies to ensure working and safe applications, that highly

depends on IT environment: frameworks, libraries, programming language, application servers,

etc.. These pieces provide advantages and drawback. It is generally a trade-off between flexibil-

ity, performance and security. Whereas flexibility is given at some points, rigorous verification

needs to propagate. For instance, a web application taking input from its users will have to prop-

erly verify the data, and format it regarding the actual usage. Modularization of security helps to

46

understand when security behavior is applied within the components of the application. These

are additional points of control injected in the application to properly ensure the non-exploitation

of the application by non-authorized users for example. In the following, we present a first work

where we leverage user’s development environment to detect and protect against common vul-

nerabilities in web applications. Then, we propose another approach that generalizes and render

flexible the automation of input validation in applications.

47

Chapter 3

Vulnerability remediation with

modular patches

Security vulnerabilities are commonly encountered in systems despite the existence of best prac-

tices for several decades. In order to detect the security vulnerabilities missed by developers,

complex solutions are undertaken like static analysis, often after the development phase. The

problem of solutions after the development resides in the loss of context: people in charge of

correction have all the difficulties to understand the architecture and the reasons behind partic-

ular pieces of code. Although vulnerabilities are found, there is also an absence of systematic

protection against them. In this chapter, we introduce an integrated Eclipse plug-in to assist

developers in the detection and mitigation of security vulnerabilities using Aspect-Oriented Pro-

gramming early in the development life-cycle. The work is a combination of static analysis and

protection code generation during the development phase. We leverage the developer interaction

with the integrated tool to obtain more knowledge about the system, and to report back a better

overview of the different security aspects already applied. We discuss the challenges for such a

code correction approach. The result is a solution to assist developers in order to obtain software

with higher security standards. The whole solution, combining static analysis and remediation,

proposes a better approach in terms of integrated security with clear modularization of secu-

rity code. It contributes to the secure programming best practice enforcement, with enhanced

flexibility.

3.1 Introduction

After more than decade of existence, cross-site scripting (XSS), SQL Injection, and other of

types of security vulnerabilities associated with input validation can cause severe damage once

exploited. Scholte et al. [SBK11] conducted an empirical study that shows that the number of

reported vulnerabilities is not decreasing. Listing 4 provides an example of how a developer can

introduce a vulnerability within a few lines of code.

48

Listing 4 Vulnerable java code in a servlet class.

1 package com.sap.research.nce;

2

3 import javax.servlet.ServletException;

4 import javax.servlet.http.HttpServlet;

5 import javax.servlet.http.HttpServletRequest;

6 import javax.servlet.http.HttpServletResponse;

7

8 import org.json.JSONException;

9 import org.json.JSONObject;

10

11 /**
12 * Servlet implementation class RestSevices

13 */

14 public class RestServices extends HttpServlet {

15

16 protected void doGet(HttpServletRequest request,

17 HttpServletResponse response) throws ServletException, IOException {

18 System.out.println("doGet on RestServices");

19 PrintWriter writer = response.getWriter();

20

21 String title = request.getParameter("title");

22 long seed;

23 try {

24 seed = Long.parseLong(request.getParameter("seed"));

25 } catch (NumberFormatException e) {

26 seed = 1000;

27 }

28

29 //potential SQL Injection

30 Connection con = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigbro");

31 Statement statement = con.createStatement();

32 String parameter = request.getParameter("parameter");

33 String query = "SELECT * from user where ID=’"+parameter+"’";

34 statement.executeQuery(query);

35

36 try {

37

38 JSONObject root = new JSONObject();

39

40 JSONObject obj = new JSONObject();

41 obj.accumulate("serviceName", "BarChartService");

42

43 Random rand = new Random(seed);

44 JSONObject objarray;

45 for (int i = 0; i < 3; ++i) {

46 objarray = new JSONObject();

47 objarray.accumulate("year", 2000 + i);

48 objarray.accumulate("problem", rand.nextInt(101));

49 objarray.accumulate("return", rand.nextInt(101));

50 objarray.accumulate("buy", rand.nextInt(101));

51 obj.accumulate("sales", objarray);

52 }

53

54 response.setContentType("application/json");

55 root.accumulate("Result", obj);

56 writer.print(root.toString(2) + "{ \"title\" : ");

57 //XSS vulnerability at this point

58 writer.print(title);

59 writer.print("}");

60

61 } catch (JSONException e) {

62 e.printStackTrace();

63 }finally{

64 writer.flush();

65 writer.close();

66 }

67 }

68

69 }

49

The Listing presents two distinct vulnerabilities. From line 32 to 35, the application get a

parameter from a HTTP request, and uses it to construct manually a query. The problem occurs

as there is no verification of the input, and the query is executed as is. A malicious user can

forge the parameter to control the result of the query. These lines have no consequences on

the direct output, but one can still inject data or control the underlying database. The second

vulnerability is present at line 58. A JSON object is populated with values coming from an

HTTP parameter, and the object is written to the response with no particular treatment. One can

control the parameter and exploit this XSS vulnerability.

While computer security is primarily a matter of secure design and architecture, it is also

known that even with the best designed architectures, security bugs will still show up due to

poor implementation. Thus, fixing security vulnerabilities before shipment can’t be considered

optional anymore. Most of the reported security vulnerabilities are simply forgotten by devel-

opers, thought to be some benign code. Such mistakes can remain unaudited for years until they

end up being exploited by hackers.

The software development lifecycle introduces several steps to audit and test the code pro-

duced by developers in order to detect security bugs,ranging from code review tools for early

detection of security bugs to penetration testing. The tools are used to automate some tasks nor-

mally handled manually or requiring complex processing and data manipulation. They are able

to detect several errors and software defects, but developers have to face heterogeneous tools,

each one with a different process to make it run correctly, and they have to analyze their results,

merge them, and fix the source code accordingly. For instance, code scanner tools are usually

designed to be independent from the developers’ environment. Therefore, they gain in flexibil-

ity but lose comprehensiveness and the possibility to interact with people experienced with the

application code. Thus, tools produce results that are not directly linked to application defects.

For example, code scanner tools trigger false positives, which are not actual vulnerabilities.

Our contributions are twofold. First, we focus on static code analysis, an automated ap-

proach to perform code review integrated in developer’s environment. This technique analyzes

the source code and/or binary code without executing it and identifies anti-patterns that lead to

security bugs. We focus on security vulnerabilities caused by missing input validation, the pro-

cess of validating all the inputs to an application before using it. Although our tool handles other

kinds of vulnerabilities, here we discuss on three main vulnerabilities caused by missing input

validation, or an incorrect validation of the input: cross-site scripting (also called XSS), Direc-

tory Path Traversal, and SQL Injection. Second, we provide an integrated assisted remediation

process that employs Aspect-Oriented Programming for semi-automatic vulnerability correc-

tion. The combination of these mechanisms improves the quality of the software with respect to

security requirements.

Figure 3.1 presents the interaction between the two phases: the static analysis phase allows

scanning the code in order to identify and classify the different vulnerabilities found. It is de-

scribed in details in Section 3.4. The measurement is performed directly by developers who

decide what to remediate directly within the development environment. The full remediation

process is given in Section 3.5 .

We present the contribution in following sections: Section 3.2 presents the overall agile

approach to conduct code scanning and correct vulnerability during the development phase.

50

Figure 3.1: Vulnerability remediation process. The two first blocks correspond to the static

analysis component. The two last blocks correspond to the remediation component. The last

one corresponds to assisted processing component

Then, Section 3.3 presents the architecture we adopt to combine the static analysis with the code

correction component. Section 3.4 describes the static analysis process with its integration in

the developers’ environment. Then, we explain techniques for assisted remediation along with

pros and cons in Section 3.5. Finally, we discuss an evaluation of the methodology compared

to other solutions in Section 3.6, and we present a summary in Section 3.8. This work has been

awarded in [SGEKSDO12].

3.2 Agile management of vulnerabilities

Agile approaches to software development require the code to be refactored, reviewed and tested

at each iteration of the development lifecycle. While unit testing can be used to check the ful-

fillment of functional requirements during iterations, checking emerging properties of software

such as security or safety is more difficult. We aim to provide each developer with a simple way

to do daily security static analysis on his code. That would be properly achieved by providing

a security code scanner integrated in the development environment (we selected Eclipse IDE

in our case), and a decentralized architecture that allows security experts to assist the develop-

ers. Typically, that would include verifying false positives and correspondingly adjusting the

code scanner test cases, or assisting in reviewing the solutions for the fixes. It brings several

advantages over the approach in which the static analysis phase takes place only at the end. The

expertise of the context in which the code was developed lies in development groups. Therefore,

the interaction between development team and security experts makes it faster and easier to find

and to apply corrections to the security functionalities. The experts provide support on a case-

by-case basis for a better tuning of false positive detection across teams and reducing final costs

of maintenance: solving security issues into the development phase can reduce the number of

issues that the security experts should analyze at the end.

Maintaining the separation of roles between the security experts performing the code scan-

ning and the team members developing the application raises a critical complication, typically,

from a time perspective, due to the human interaction between security experts and develop-

ers. If such an approach would have to scale to what most of the agile approaches describe, the

amount of iterations between developers and experts would need to be reduced. That could be

reduced by up-skilling the developers and reducing their interactions with the security experts

51

for the analysis of the security scans of the project, which is simplified by the introduction of

our tool.

Our incentive is to harvest the advantages acquired by using our approach in an agile and

decentralized static analysis process early in the software development lifecycle. It raises secu-

rity awareness for the developers at the development time and reduces maintenance costs. A tool

covering the previous needs should fulfill several requirements:

• easy-to use for users non-expert in security

• domain specific with integration into the developers’ daily environment, to maximize its

adoption and to avoid additional steps to run the tool

• adjustable to maximize project knowledge and reduce false positives and negatives

• collaborative feedbacks to adjust accuracy of the scan over time.

• supportive to assist developers in correcting and understanding issues.

• educative to help developers understanding errors, steps to correct existing error, and tech-

niques to prevent future vulnerability

We have developed an Eclipse plugin, presented in [GEKS11], made of components leveraging

an agile and decentralized organization for static analysis. It gives direct access to detected flaws

and global overview on system vulnerabilities. The developer analyzes its code and reviews

vulnerabilities when necessary.

3.3 A flexible architecture

Figure 3.2 represents the architecture of our prototype. We consider two main stakeholders in-

volved in the configuration and usage of the prototype. Security experts and developers have to

communicate and collaborate. Their role is to configure altogether the knowledge database in

order to avoid false positives and negatives, and to provide better accuracy during the analysis

phase. The security experts have two main tasks. First, they update the knowledge base, adding

to its classes or methods that can be considered as trusted for one or more vulnerabilities. Sec-

ond,they analyze queries from developers to enhanced the knowledge database . The analysis

is on possible trusted objects for one or more security vulnerabilities; they must analyze them

more in detail and, if these objects are really trusted they tag them as trusted into the knowledge

base. We better explain the different concepts and tasks in Section 3.4.

The second role is the developer, interacting directly with the static analysis engine to ver-

ify vulnerabilities in the application code and libraries under its responsibility. The remaining

libraries have to be covered by the security experts group. The developer at this stage doesn’t

need to understand the complexity of security properties. The knowledge base is shared among

developers. It contains all the security knowledge about trust: objects that do not introduce

security issues into the code. Security experts and developers with understanding of security

patterns maintain and keep under control the definitions used by all developers in an easy way

using one admin web application or some web-services. In this way, the code scanner testing

52

Figure 3.2: Architecture

rules are harmonized for the whole application or even on a project-basis. The knowledge base

allows developers to run a static analysis that is perfectly adapted to the context of their project.

In industrial scale projects, daily scans are recommended. In order to facilitate this task,

we wrote a plugin for Eclipse that uses an abstract syntax tree (AST) generated by the JDT

compiler - the compiler that Eclipse provides as part of the Java Development Tools platform,

to simplify the static analysis process. The plugin accesses the knowledge database via web-

services making it possible for each developer to run the code scanner independently. We detail

the scanner component in the next section.

The overall process is to find in applications where security checks are not performed, or not

properly applied, leading to potential vulnerabilities. We use a specific taxonomy to describe

security related code concepts Entry points are points from an application where injection during

an attack can start. These are points that are not directly created by the application, but rather

points opened to external components, thus susceptible to bring untrusted data and objects within

the application. These entry points are present in external libraries, web applications dealing

with forms and parameters, databases accesses, file system interactions, application arguments,

property files, objects from web services, etc. In contrast, exit points are points of the application

where data reach an outside domain, not under the control of the application anymore. These exit

points are the result of application execution, like web pages, database writes, filesystem writes,

etc. As we are going to see in the next sections, the purpose of our approach is to find in the

control flow connecting entry points to exit points, which ones are introducing or propagating

objects with potential leaks. A vulnerability is declared when an these objects are connected to

53

an exit point. These objects will later be described as untrusted objects.

3.4 Static analysis process

Static analyze can report security bugs even when scanning small pieces of code. Another family

of code scanners is based on dynamic analysis techniques that acquire information at runtime.

Unlike static analysis, dynamic analysis requires a running executable code. Static analysis

scans all the source code while dynamic analysis can verify certain use cases being executed.

The major drawback of static analysis is that it can report both false positives and false negatives.

The former detects a security vulnerability that is not exploitable, while the latter means that it

misses to report certain security vulnerabilities. Having false negatives is highly dangerous as

it gives one a sense of protection while vulnerability is present and can be exploited, whereas

having false positives primarily slows down the static analysis process. Modern static analysis

tools, similarly to compilers, build an abstract syntax tree that represents the abstract syntactic

structure of the code from the source code and analyze it.

3.4.1 Static analysis process

In a nutshell, our process allows developers to run a check on their code to uncover potential

vulnerabilities by checking for inputs that have not been validated. It finds information flows

connecting an entry point to an exit point that does not use a trusted object for the considered

vulnerabilities. The process uses an abstract syntax tree of the software in conjunction with the

knowledge base to identify the vulnerable points. The Figure 3.3 shows an excerpt of an AST

tree for a class type. It gives a structured tree that one can handle with all required information

regarding the syntax of a program. Each object has an object type. This type has its own

information, such as parameters for a method, or interface information for a type, etc.

The static analysis works on the Document Object Model (DOM) generated by the Eclipse

JDT component able, which can handle all constructs described in the Java Language Specifi-

cation [GJSB05]. Figure 3.4 presents the different analysis steps performed from the moment

developer presses the analysis button to the display of results. The static analysis process is

described as follows:

• The engine contacts the knowledge database in order to retrieve the up-to-date and most

accurate configuration from the shared platform. If the developer cannot retrieve the con-

figuration, it can still work independently with the latest local configuration.

• The process identifies all entry points of interest in the accessible source code and libraries.

The analysis is based on the previously mentioned AST. We are gathering the different

variables and fields used as well as the different methods. We apply a first filter with

pattern-matching on the potential entry points: a method call or a new object instantiation

might be tagged as returning trusted inputs.

• For each entry point, the control flow is followed to create the connections between meth-

ods, variables and fields to discover all the exit points. For instance, the engine visits

54

Figure 3.3: AST view example of a class

assignments, method invocations, and construction of new objects with the variables and

fields detected during the entry point gathering.

• Once the different exit points have been collected, we evaluate the risk of having security

55

Figure 3.4: Static Analysis Activity Diagram

vulnerabilities in the code. We check for an absence of validation in the flow for the

different kinds of vulnerabilities. For instance, if the flow from an entry point to an exit

point passes through a method or a class, which is known to validate SQL input, the flow is

tagged as trusted for this specific vulnerability. Of course, the tag runs from the moment

where the method validates for the vulnerability to a novel composition with potential

vulnerable code, or until it reaches an exit point.

3.4.2 Multiple vulnerability analysis

In the previous section, we have presented the global analysis process. In this section, we dis-

cuss more in-depth the notion of trusted object and vulnerability propagation for the different

vulnerabilities we address. The Listing 3.1 presents some source code vulnerable to cross site

scripting. The vulnerability propagates from the request parameter to the object query, which

is then written in the response. The problem of identifying security vulnerabilities caused by

errors in the input validation can be translated into finding an information flow connecting an

56

entry point and an exit point that does not use a trusted object for the considered vulnerabilities.

1 /** This servlet proposes XSS example. */

2 public class EchoServlet extends HttpServlet {

3 protected void doGet(HttpServletRequest req, HttpServletResponse resp) {

4 PrintWriter writer = resp.getWriter();

5 String query = req.getParameter("query") ;

6

7 resp.setContentType("text/html");

8 writer.print("<html><h1>Results for ");

9 writer.print (query);

10 writer.print("</h1></html>");

11 writer.flush();

12 writer.close();

13 }

14 }

Listing 3.1: Vulnerability propagation of a cross site scripting

We define an input as a data flow from any class, method or parameter into the code being

programmed that is external from the application. We also define as entry point any object

into the source code where an untrusted input enters to the program being scanned, like the

query input from Listing 3.1. In an analogous way we define as output any data flow that goes

from the code being programmed into external objects or method invocations. Our approach

relies on our trusted object definition, which impacts the detection accuracy. A trusted object

is a class or a method that can sanitize all the information flows from an entry point to an

exit point for one or more security vulnerabilities. We implemented the trust definitions into

the centralized knowledge base presented in the previous section. The knowledge database

represents definitions using a trusting hierarchy that follows the package hierarchy.

Security experts can tag classes, packages or methods as trusted for one or more security

vulnerabilities, according to their analysis, feedbacks from developers, or static analysis results.

Obviously, defining a trusted element in the trust hierarchy also adds all the elements below it:

trusting a package trusts all the classes and methods into it and trusting a class trusts all the fields

and methods in it. A trusted object can sanitize one or more security vulnerabilities (e.g., the

sanitization method can be valid for both SQL Injection and cross site scripting). This approach

enables developers and security experts to define strong trust policies with regards to the system

they are securing.

Defining a trusted object is a strong assertion as it taints a given flow as valid and free from

a given vulnerability. The definition process to trust a class, a package, or a method must be

supervised: it influences the risk evaluation accuracy. The object must not introduce a specific

vulnerability into the code. This is the reason why developers report feedback and security

experts take the decision. The experts can also analyze, manage, and update the base if the class,

package or method is considered trusted. This phase allows system tuning that is related to a

given organization and leads to fewer false positives. There should have no false negatives, as

our approach will first detect all possible problems, that are eliminated with fine-grained control

with the knowledge base.

57

Figure 3.5: Code Analysis result

The detected vulnerabilities (Figure 3.5 gives an example of the result of an analysis in the

tool) are mainly caused by lack of input validation: SQL Injection, Directory Path Traversal, and

Cross Site Scripting. The engine also detects a more general Malformed Input vulnerability that

represents any input that is not validated using a standard implementation. The engine can be

easily extended to support new kinds of vulnerabilities caused by missing input validation. The

administrator needs to add the definition of the new vulnerability to the centralized knowledge

base (and, if exists, adding trusted objects that mitigate the vulnerability), and to create a new

class extending an interface, that implements the checks to be done on the result of the static

analysis to detect the vulnerability.

3.5 Assisted remediation with a security aspect library

Performing a static analysis is already integrated in quality processes in several companies. Yet,

the actual identification of vulnerabilities does not mean they are correctly mitigated. Given

this problem, we can have several approaches: (i) refactoring the code, (ii) applying a proxy to

inbound and outbound connections, and finally the solution we adopted, (iii) generate protection

code linked to the application being analyzed.

Software refactoring requires the developer to understand the design of the application and

its potential threats, in order to manually rewrite part of the code to implement the refactoring.

The refactoring improves the design, performance, and manageability of the code, but is difficult

to achieve. It costs time and is error prone. Up to six distinct activities have been observed

in [MT04]: (i) identify where the software should be refactored (ii) determine which refactoring

should be applied to the identified places (iii) guarantee that the applied refactoring preserves

behaviour (iv) apply the refactoring (v) assess the effect of the refactoring (vi) maintain the

consistency between the refactored program code and other software artifacts. The impacted

code is generally scattered across the application, and some part can be left unchecked easily.

This can lead to an inconsistent state where the application does not reflect the intended goal.

Software refactoring is one of the most powerful vulnerability remediation approache due to its

flexibility in terms of code rewriting and architecture evolution.

The proxy solution is equivalent to a gray-box approach, with no in-depth visibility of inter-

nal processes. It can be burdensome to put in place, especially when the environment is under

control of a different entity than the development team. For instance, on cloud platforms, de-

velopers can deploy their application but have limited management capabilities, leading to the

58

Vulnerability Origin Potential Remediation

Cross-Site Script-

ing

Server does not validate

input coming from ex-

ternal source

Validate input and filter or encode prop-

erly the output depending on the usage:

the encoding differs from HTML content to

Javascript content for example

SQL Injection Server does not validate

input and use it directly

in a construct of a SQL

Query

Use a parameterized query or a safe API. Es-

cape special characters. Validate the input

used in the construction of query

Directory Path

Traversal

Application server is

misconfigured, or the

file-system policy con-

tains weaknesses

Enclose the application with strict policies,

that restrict access to the filesystem by de-

fault. Filter and validate the input prior to

direct file access

Other malformed

input

Misvalidation Validate input, determine the origin and pos-

sible manipulation from externals

Table 3.1: List of detected vulnerabilities with potential origin and potential remediation.

impossibility to apply a filter on the application. The lack of flexibility and the absence of small

adjustments make it complicated to adopt at the development phase.

In this work we provide a protection inlined with the application. It means that the protection

code is directly applied to the application to slightly modify the execution flow on vulnerable

points. This solution has several advantages due to the underlying technology we use: Aspect-

Oriented Programming paradigm (AOP) [KLM+97], which is a paradigm to ease programming

concerns that crosscut and pervade applications. In the next section, we describe our methodol-

ogy and provide a comprehensive list of its advantages and drawbacks.

3.5.1 Methodology

Our methodology comprises the automatic discovery of weaknesses in the code. In addition,

we integrate a protection phase tied to the analysis process which guides developers through the

correct and assisted correction of the vulnerabilities previously detected. The protection phase

uses information from the static analysis engine to know what vulnerabilities have to be cor-

rected. Then the phase uses inputs from the developer to extract knowledge about the context,

Figure 3.6 gives an example of the feedback asked from the developer and of the tooling support-

ing this feedback. These steps are necessary for our methodology to gather application context,

therefore places in the application where to inject security correction. The security correction

uses AOP. The goal is to bring a proper separation of concerns for cross-cutting functionalities

such as security. Code related to a concern is maintained separately from the base application.

The main advantage of using this technology is the ability to intervene in the control flow of a

program without interfering with the base program code.

The list of vulnerabilities we cover are in Table 3.1. The table highlights the potential origin

vulnerabilities and some of known remediation techniques. These vulnerabilities are known and

59

subject to high attention. For instance, they have been in in the OWASP Top Ten [OWA10] for

several years now, but also in the MITRE Top 25 Most Dangerous Software Errors [MIT11]. Al-

beit several approaches exist to remediate the vulnerabilities, we have chosen to apply escaping

and validation techniques with aspect-orientation to consistently remediate the problems.

Figure 3.6: Gathering context for vulnerability protection

By adopting this approach, we reduce the time to correct vulnerabilities by applying semi-

automatic and pre-defined mechanisms to mitigate them. We use the aspect component to apply

the protection code which is mostly tangled and scattered over an application.

Correcting a security vulnerability is not trivial. Different refactorings are possible depend-

ing on the issue. For instance, the guidelines for secure programming recommand SQL prepared

statement to prevent SQL Injection. Yet, developers might be constrained by their frameworks

to forge SQL queries by themselves. Therefore, developers would have to try another approach

such as input validation and escaping of special characters.

60

Listing 5 Example of correction snippet generated for a malformed input

1 package sap.nce.research.security.aspects;

2

3 import org.aspectj.lang.ProceedingJoinPoint;

4 import org.owasp.esapi.ESAPI;

5 import org.owasp.esapi.Logger;

6 import org.owasp.esapi.errors.IntrusionException;

7

8 public aspect Validation {

9

10 private final Logger logger = ESAPI.log();

11

12 pointcut mainMethod(String s) :

13 (cflow(execution(void com.sap.research.nce.RestServices.doGet

14 (*..HttpServletRequest, *..HttpServletResponse)))

15 && (execution(String javax.servlet.http.HttpServletRequest

16 .getParameter(java.lang.String)) && args (s)))

17 && !within(Validation)

18 ;

19

20 java.lang.String around(String s) : mainMethod(s) {

21 s = proceed(s);

22 String sanitized = "";

23 try{

24 sanitized = ESAPI.encoder().canonicalize(s);

25 }catch (IntrusionException e){

26 //in case of wrong encoding, log the error but still accept at this time

27 logger.error(logger.SECURITY_FAILURE,

28 "Canonicalization failed. Try without strict mode on : " + s);

29 sanitized = ESAPI.encoder().canonicalize(s, false);

30 }

31 //add ESAPI.validator if needed

32 logger.info(logger.SECURITY_SUCCESS,

33 "In " + thisJoinPointStaticPart.getSignature() + "Sanitized to " + sanitized);

34

35 return sanitized;

36 }

37

38

39 /***
40 * encoding

41 * @param s : the string object which needs encoding

42 * @param target : the encoding scheme we have to apply

43 */

44 pointcut encodingPointcut(java.lang.String s) :

45 (cflow(execution(void com.sap.research.nce.RestServices.doGet

46 (HttpServletRequest, HttpServletResponse)))

47 && execution(void java.io.PrintWriter.print(java.lang.String)) && args (s)

48 && !within(Validation)

49 ;

50

51 java.lang.String around(java.lang.String s) : encodingPointcut(s) {

52 String encoded;

53 encoded = proceed (s);

54 encoded = ESAPI.encoder().encodeForHTML(encoded);

55

56 logger.info(logger.SECURITY_SUCCESS,

57 "In " + thisJoinPointStaticPart.getSignature()

58 + "Encoded " + s + " to (HTML) : " + encoded);

59 return encoded;

60 }

61

62 }

61

We assist developers by providing them an automated solution. For the previously mentioned

correction, our integrated solution would propose to mitigate the vulnerability with an automatic

detection of incoming, unsafe and unchecked variables. The developer does not need to be a

security expert to correct vulnerabilities as our approach provides interactive steps to generate

AOP protection code, like in Listing 5. The listing is an example that was generated for one

of our test application. It consists of an aspect that contains two parts: sanitization of data,

or encoding for a specific target format of the data. From line 12 to 18, the aspect defines

one pointcut indicating which method needs data sanitization. From line 20 to 35, the actual

protection code is written in an advice. The protection code uses a third-party library, although

we can envision any code. From line 44 to 50, another pointcut is defined to match encoding

joinpoints: points in the application that need special encoding. The advice from line 51 to 60

encode the content for an HTML target. The advice is yet statically generated by the tool, and

the HTML information has been indicated through the assisted step of the plugin.

Although semi-automation simplifies the process to introduce protection code, the technique

can introduce several side-effects if the developers are not following closely what is generated.

The plugin gives the developer an overview of all corrected vulnerabilities, allowing him to

visually manage and re-arrange them in case of need. Currently, the prototype does not analyze

the interactions between the different protection code generated. By adopting this approach,

we allow better a understanding of the different vulnerabilities affecting the system from a user

point of view, and we guide the developer towards a better compliance of its application with

best practices and corporate policies. The protection code can be deployed by team of security

expert and modified without refactoring.

3.5.2 Security-aspect library limitation

The use of AOP in the remediation of vulnerabilities bring us more flexibility. One can evolve

the protection library, making the security solution independent from the application. But this

approach also brings us some limitations we discuss in this section.

Firstly, the language is designed to modify the application control flow. One of the lim-

itations we have is related to the deep modification we need to perform in order to replace a

behavior. For example, let us suppose that we would like to validate a SQL query written man-

ually in the application. We are able to weave validation and escaping code, but we can hardly

modify the application to construct a parameterized query. For instance, the modification would

pertain several line of codes, and would concern functional code rather than crosscutting con-

cern. The pointcut language could not handle such case, and aspect-oriented programming does

not cover such case.

Secondly, the aspects cover the application in whole. When more than one aspect is involved,

the cross-cutting concerns can intersect. Therefore, we need to analyze aspect interaction and

prevent an annihilation of the behavior we intended to address. We further discuss this limitation

in next section.

Thirdly, the evolution of the program leads to a different distribution of vulnerabilities. The

vulnerabilities are detected after the static analysis phase. We are not yet addressing this problem

of evolution to maintain the relation between the aspects and the application. This differs from

the fragile pointcut problem inherent of aspect using pointcut languages referring to the syntax

62

of the base language: the evolution affects the application as a whole, by introducing new entry

points and exit points that need to be considered, or introducing methods that validate a flow for

a given vulnerability.

The fourth constraint is that aspect weaving has no specific certification. The actual protec-

tion library is defined globally, but applied locally, with a late binding to the application. The

protection code is the same everywhere, but we put strong trust in the protection library by as-

suming that aspects are behaving properly with the actual modification of the flow to mitigate

the vulnerabilities.

Finally, the fifth constraint is user acceptance. Since the developers rely on a cross-cutting

solution, the code itself does not reflect the exact state of the application. The point where the

aspect interferes with the base application is not displayed in the code. We address this limitation

with the strong interaction with the developer’s environment. The Eclipse plugin provides a

mean to display remediation code in place at a given time.

3.5.3 Solution pertinence

The choice of using aspect-oriented injection of security protection code relies on a correct

detection of vulnerabilities and specification from a developer. The developer is an involved and

implicated stakeholder that uses our solution to improve the overall solution quality.

Compared with other approaches, we provide a built-in solution with an efficient static anal-

ysis phase to collect vulnerability points in the application, in which to immediately propose

corrections or guidance. We have intentionally reduced the separation between the two phases,

as we are in a still flexible phase: the application is still under development and thus subject to

frequent changes, refactoring, etc. Developers are left with some decisions, but the decisions are

limited to the minimal interaction in order to let him correct most of the problems with minimal

efforts.

Minimal efforts for the developer doesn’t mean absence of reflection. We trust and leverage

developer capacity to understand the problem, and our efforts are to highlight the problem and

quickly enable a solution. The developer’s knowledge is required to decide on these situations

in which our analysis might fail, although we have general guidelines. The interference between

several security code is problematic in our approach. We intensively rely on aspect-oriented

programming, and thus refer to the notions of pointcut-advice model. It means we are using

tools of a language - AspectJ, for instance, to syntactically detect points in the application in

which we are weaving the security code that mitigate the vulnerability. One single joinpoint

might inject several security snippets to correct different vulnerabilities. The order of injection

is crucial to the correct anticipation of the application’s behavior. For instance, we are proposing

security code to validate and sanitize an input, or security code to encode content in order to

normalize its data for a given usage. If one combines these different security codes, one ends up

with different results:

• sanitize + encode : generally, the process one wans to achieve which validates the data

and modifies it according to their future usage.

• encode + sanitize : this situation might lead to undo the encoding phase. For example,

an html element is encoded once, and then decoded to be used by the application.

63

• sanitize+ sanitize : you over control the data, with no real side effects.

• encode + encode : you loose the control over the data, having situations in which the

client application is not able to properly interpret the data. For instance, imagine you get

the following string from a database to display it as an html content : "html <- value". A

first encoding will replace html entities to get "html <- value" which renders properly

on browser. A second encoding on this text will produce "html &lt;- value" which

renders incorrectly.

These situations already require user decisions, and are simple when located at a single

joinpoint. The problem grows with a complete application in which we have to inject security

code in all of a call-tree hierarchy as depicted in Figure 3.6. The decision of weaving security

code at a certain point might introduce side effects, such as a desirable behavior is no longer

possible. For instance, the situation in which we get and store a data in a backend and later

use it in both an HTML element and in JSON output triggers two security alerts: cross site

scripting and malformed input. If we inject our protection code before the retrieval of data from

the backend, we achieve an incomplete protection and introduce a side-effect. The encoding

code that we introduce will modify the data in HTML, or JSON valid data (depending on the

developer’s decision), and will mutually exclude the possibility to retrieve original data. The

problem in such a situation is to control the point of application in the AST and decide of the

best emplacement for aspect weaving. For this purpose, there are several alternatives. We have

decided to represent graphically the interaction in the plugin, but we envision in future works to

introduce work like in Hannousse et al. [HDA11]. They propose to detect potential interferences

among aspects by formally modeling interactions between aspectualized components.

3.6 Evaluation

In order to test the accuracy of the methodology as well as the pertinence of the solution, we have

defined a protocol to test several security tools and understand their capabilities at vulnerability

detection of these different frameworks. We evaluated different java web applications, that are

for some deliberately insecure, or that simply contains some known flaws.

Webgoat Webgoat [MO12] is one famous test application for web application security. The

application has been developed by the OWASP consortium to create deliberate vulnera-

bilities in the application. For the sake of performance, we have decided to use a partial

version of this project in our tests. The platform is specialized in web application vul-

nerabilities such as malformed inputs, cross site scripting, cross site request forgery, SQL

injection, session fixation, etc.

Insecure InsecureWebApp [Ist05] is another OWASP project. It is a web application that in-

cludes common web application vulnerabilities. It is a target for automated and manual

penetration testing, source code analysis, vulnerability assessments and threat modeling.

The project proposes to guide user through user story to understand the vulnerabilities and

how they can be fixed in the code.

64

Roller Roller [Apa04] is an Apache Project. It was featured in onjava.com. Roller is the open

source blog server that was driving Sun Microsystem’s blogs.sun.com employee blogging

site, the Javalobby’s JRoller Java community site, and hundreds of other sites. We have

tested an old version that was in the test bench of Ben Livshits [Liv].

Testbench Testbench is a web application project we have crafted in order to test several test

cases. It contains servlets and web applications that deliberetely contain SQL injection,

cross site scripting, malformed input, directory path traversal, etc.

Personal Blog This java web application project also comes from the Ben Livshits test bench.

PersonalBlog [PCE05] is a light-weight personal blogging application that is suitable for

installing on your own host provider. It’s written in Java and uses a variety of J2EE

technologies, including: Servlets, Jsp, Jdbc, Hibernate, Struts, Tiles and Log4j.

Several tools are capable of static analysis on Java programs. We have decided to test tools

that were correctly integrated in the Eclipse IDE. The following list describes the two solutions

we have tested in comparison of our approach.

Bigbro Bigbro is our tool, from which we test the static analysis part. The tool was not specif-

ically tuned for the projects, thus running with the default settings. One needs to pay

attention to the fact that the results might contain several false positive. With the correct

definition of trusted packages and untrusted packages in the knowledge database, that are

specific to an application, the static analysis would reduce the number of false positive

drastically.

LAPSE Lapse [LL05] (Lightweight Analysis for Program Security in Eclipse) is a tool de-

signed and developed by Ben Livshits during its PhD. thesis at Standford. He was focus-

ing on web application vulnerabilities, with also an enhanced integration into the Eclipse

plugin. LAPSE is designed to help with the task of auditing Java J2EE applications for

common types of security vulnerabilities found in Web applications. It helps to quickly

gather taint sources, taint sinks and find the path between sources and sinks. It is similar

to the type of detection we propose, but we are proposing some additional categories.

Codepro analytix The project [Goo12] is a Java software testing tool for Eclipse developers

who are concerned about improving software quality and reducing developments costs

and schedules. The Java software audit features assist the developer in reducing errors

as the code is being developed and keeping coding practices in line with organizational

guidelines". Among the different modules for code quality, there is a specific module for

security audit. It provides warnings as well as critical reports for several vulnerability

sources.

Table 3.2 presents the raw results that we obtain when we perform the static analysis on the

different projects. The evaluation is currently limited to human-sized projects with a number of

code source lines going up to 30k lines. The number of classes from the application are obtained

through code pro analytix, or bigbro that both provide the information. The number of source

65

lines is also gathered by the two tools, but we have preferred to use the sloccount project 1 to

normalize the numbers.

The categories XSS, SQL, and Malformed input are common to the different tools, with

some distinctions for directory path traversal. There is some disparity on the malformed input

category as different notions are falling into this category.

Project Nb classes SLOC Tool XSS SQL Malformed Input Path Traversal Total

Webgoat (par-

tial project)
58

java=7525;

jsp=3448

bigbro 8 162 282 29 481

lapse 3 13 61 N.A 77

codepro 4 29 3 2 38

Roller 275
java=30874;

jsp=2806

bigbro 41 18 135 2 196

lapse 47 6 112 N.A 165

codepro 14 9 10 72 105

Testbench 6 java=181

bigbro 6 2 4 1 13

lapse 5 2 10 N.A 17

codepro 2 2 0 1 5

Personal blog 38
java=3049;

jsp=1469

bigbro 0 38 81 3 122

lapse 0 2 41 N.A 43

codepro 0 2 0 0 2

Insecure 15
java=678;

jsp=395

bigbro 7 8 20 0 35

lapse 3 13 69 N.A 84

codepro 2 7 1 0 10

Table 3.2: Comparison of static analysis tools on several projects. It presents the detected vulnerabilities

for the different categories when applicable. SLOC means Source Line of Codes.

An example of the static analysis display in terms of result is presented in Figure 3.7 for Code

pro analytix. It presents the result of the security audit, with the different warning regarding

programming advices, along with critical reports such as SQL Injection, or cross site scripting.

The tool provides a complete explanation of the vulnerability, as well as different locations in the

analyzed source code. The analysis result for a LAPSE scan is provided in Figure 3.8. It presents

the different suspicious calls detected by the analysis. For instance, the Webgoat analysis has

several command injection, cross-site scripting, as well as other vulnerabilities. In Table 3.2

for the Insecure webapp project, the reported numbers are not complete as the analysis failed

with some exceptions. The exceptions minor, therefore we provide the analysis result in the

table. Bigbro results are shown in Figure 3.9. The summary view try to quickly indicates the

problems, their origin, and it gives helper to correct the detected vulnerabilities. The helpers are

directly available in the source code editor provided by eclipse, and give hints.

1Source Line of Codes (SLOC) is obtained by using sloccount program from http://www.dwheeler.com/

sloccount/

66

Figure 3.7: Example of result with code pro analytix

6
7

Figure 3.8: Example of result with lapse

6
8

Figure 3.9: Example of result with bigbro

6
9

The different projects have the goal to provide a quick overview of potential vulnerabilities in

applications or web applications. They all encourage code quality and leverage the developer’s

ability to understand and correct the mistakes. The pertinence of the results (detection accuracy

in the different categories) has not been completely tested, but a simple and quick overview

allows to direct the developer towards vulnerable code. The developer is also redirected to

pertinent documentation to understand and correct the vulnerability. Among tools, the higher

detection rate does not mean that the tool performs better as several false positives might appear.

We prefer to guarantee a solution free of false negative, then we can tune the results to limit the

number of false positives.

3.7 Related work

The goal of static analysis is to determine whether tainted data, that is data that originate from

possibly malicious users, reaches sensitive sinks (e.g. vulnerable points in the program) without

being properly sanitized. For this purpose, data flow analysis techniques that operate on the

control flow graph are used. Static analysis can be applied in cases where the source code or the

bytecode is available. The advantage is that it is not necessary to execute the program to detect

injection vulnerabilities. They analyze the application based on a model they abstract from the

application. Unfortunately, approaches based on static analysis suffer from false positives and

false negatives. This is due to imprecise approximations of the control and data flow available

at runtime. In addition, false positives might result from some runtime validation at which the

security label of the data (tainted/untainted) is not changed after the validation.

3.7.1 Static analysis

The literature related to static analysis is abundant. We provide in this section a quick review

on approaches and position our work with regards to the developed techniques. A first approach

consists in detecting common mistakes through pattern matching and string analysis in source

code, like in [VBKM00, GSD04, WS04, CMS03]. The approach has been developed to provide

offline and quick techniques to support code review. The downside of this approach is the limited

analysis: they mostly read the code, looking for patterns. For instance, some tools are looking

for strcat function in C language to report them as unsafe function. More complex techniques

arisen to provide in-depth, contextual, and flow-sensitive analysis [LWLa05, LM10, BCF+08]

There are also several commercial tools, such as Fortify [HP12] or CodeProfiler [Vir12]. They

propose a large range of techniques to easily embed code review process, especially static anal-

ysis directly in developers environment. The target of these solutions is mainly large industries.

The WebSSARI project [HYH+04] pioneered vulnerability detection in web application

with runtime protection. WebSSARI uses a combination of static and dynamic analysis to de-

tect vulnerabilities in PHP code. Jovanovic et al. designed Pixy [JKK06b, JKK06a], a static

analyzer tool that features a high-precision data flow analysis engine. This engine is flow-

sensitive, interprocedural, context-sensitive, and performs alias analysis or literal analysis. An-

other approach that aims at overcome some of the limitations of WebSSARI is the work by

Xie and Aiken [XA06]. Their approach performs an interprocedural analysis, which is able

70

to model conditional branches and supports dynamic typing. The work by Wassermann and

Su [WS07] employs a string-analysis based approach to detect SQL Injection vulnerabilities. It

tracks the source of string values and ensures that user-supplied input is isolated within a SQL

query. [WS08] presents a static analysis approach to detect Cross-Site Scripting vulnerabilities.

It also employs string analysis techniques.

Several tools are based on the Eclipse’s platform and detect vulnerabilities in web applica-

tions. Livshit et al. [LL05] developed a technique to review major web application flaws through

a query language, to follow tainted object propagation in source code. We can also mention the

SSVChecker tool [DFH06] that combines several external security detection tools to aggregate

results and provide easy to review interface from the IDE. A bunch of Eclipse plugins have also

been developed to enhance code quality [Uni12] or to verify the adherence to organizational

guidelines [Goo12]. While the focus is on quality, these tools can detect some security vulnera-

bilities. Recent work from Xie et al. [XCLM11] studies programmers’ behaviors to understand

their needs, and proposes an IDE support for web application security. Their integration of se-

curity protection code is made through the refactoring of some part of the code. It consists of

input validations and other checks.

3.7.2 Detection and protection with AOP

Compared to the aforementioned techniques, we aim at a better integration into the daily de-

velopment lifecycle with our tool, and propose an integrated correction with good accuracy as

we leverage the developer’s knowledge about the development context. More specifically, we

leverage aspect-oriented techniques to clearly separate business code from security code.

Hermosillo et al. [HGSD07] use AOP to protect against web vulnerabilities (XSS and SQL

Injection). They use AspectJ - the mainstream AOP language, to intercept method calls in an

application server then perform validation on parameters. Viega et al. [VBC01] present a simple

use case for the use of AOP for software security. Masuhara et al. [MK03] introduce an aspect

primitive for dataflow, allowing to detect vulnerabilities like XSS. More recently, Masuhara et

al. introduced a design and implementation of AspectShield [SW13] in order to mitigate the

most common web applications. They leverage AOP to clearly separate concerns. They identify

vulnerabilities from an external tool (Fortify in this case), to then produce aspects with control

points at the detected places where vulnerability might be exploited. Their solution comprises

what we offer in our approach, but they are a bit less flexible than ours, due to the binding from

Fortify to AspectShield. In our case, the static analysis process is part of the whole process.

It means that we provide the process is integrated and maintained by us, which makes it easier

to correctly bind security aspects to the application. Furthermore, AspectShield covers SQL-

injection and Cross site scripting vulnerabilities, whereas we provide an extension system to

map new vulnerabilities.

Our approach reduces the overhead brought by the detection of vulnerability patterns at

runtime and allows a wider range of vulnerability detection. Our integrated approach differs

also from the state of the art, as the aforementioned approaches use either external tools or

manual processing to understand the architecture and to decide where to apply aspects/security

validation. Our approach also brings more awareness to the developer as he obtains a visual

indication of what is applied at which place in his application.

71

A combination of detection and protection is found in Deeprasertkul et al. [DBO05]’s ap-

proach. It detects faults through pre-compiled patterns. Faults are corrected using a correction

module. The difference with our approach lies in the detection of faults rather than security

vulnerabilities. Faults are different than security vulnerabilities as they are not introducing se-

curity breaches. They rather introduce defects in the application. Also, the correction module

fixes the faults statically and prevents further modifications of the introduced code. A recent

work conducted by Yang et al. [YAM+11] uses static analysis to determine the security points

where to deploy protection code with aspects, for distributed tuple space systems. These two

approaches suffer from the same limitations as the ones presented in the previous paragraph,

which is a lack of visual support from the tool, and a loss of context: people responsible in

correcting the problems detected are not familiar with the architecture and technical choices. It

is worth mentioning the work from Hafiz et al. [HAJ09], in which the authors propose several

techniques to correct data injection through program transformations. They have listed several

cases along with transformations to realize security policies. Their work can benefit from our

overall methodology to propose multiple corrections once vulnerability has been identified.

3.8 Summary

We presented how to overcome several security vulnerabilities using a combination between a

static analyzer that assists developers to report security vulnerabilities and a semi-automated

correction of these findings with AOP. The usage of an integrated tool to provide support for

security bugs detection and mitigation has several advantages. It benefits several stakeholders

at the same time. First, security teams are able to distribute the maintenance of the code to the

people writing their code and let them mitigate security bugs whenever they are detected. They

can interact closely to decide of the best solutions for a given situation, and apply security across

development teams. Developers benefit from this approach, having an operational tool already

configured for their development. They can focus on writing their functional code and, from

time to time, verify the accuracy of their implementation. Security concerns are often cross

cutting the application, which tends to have security checks spread around application. Using

one central tool to have an overview is more efficient and productive, and gives the possibility

to track all applied protection code. The automation allows a broader and consistent application

of security across applications. The use of AOP eases the deployment and change of security

protection code, in a single environment and during the development phase. The overall vision

we would like to achieve in the future is the specification and maintenance of security concerns

in one central place, and usage by developers of these concerns by defining some places in

application where they should be active.

We have designed an Eclipse plugin for an improved awareness of security concerns from

a developer point of view. It is important to notice that correcting vulnerabilities doesn’t make

the whole system secure. It only means the code tends to be free of security bugs. Other parts

of the application, such as authentication flow, authorization checks, etc. are not covered by our

analysis. Besides, we encourage developers to look further in vulnerabilities’ descriptions, as

the automated correction proposed might not be the best choice in all situations. We do not want

developers to believe our solution is bullet-proof. It leads to a false sensation of security, which

72

is the opposite of our goal.

This contribution brings a programming approach to the modularization of security. We

start from the source code of an application and try to inject security code at correct places.

Such integrated tool has several benefits mentionned above, but it suffers from limitations due

to implementation decisions. For instance, when we are developing a tool such as an Eclipse

plug-in, we are targeting a platform and a language, thus voluntarily restricting the scope of

application. From the tool itself, we have designed a working prototype that we have validated

on projects internally at SAP and compared to commercial software. In several cases, the agile

approach that consists in daily code scan and vulnerability remediation leads to a reduction of

false positives and an absence of false negatives. Also, the approach of providing support for

correcting the vulnerability is novel and we focus now on improving accuracy of the protection

code as well as the accuracy of interaction between the several security snippets we introduce

with aspects.

73

Chapter 4

Automation of input validation

verification in application

We address the problem of modular input validation for web services as a countermeasure to

several kinds of code injection attacks. The solution relies on annotations that provide meta-data

concerning the application’s input parameters. This information is then used to automatically

insert validation code in the target application, using an aspect-oriented approach. The solution

allows to mitigate risks and to maintain security functionality separated from the application

logic. The difference with the previous chapter mainly relies on the method to gather points

where to inject security. Whereas in previous solution we were using a static analyzer, we now

leverage annotations in the application source code to indicate specific meta-data.

4.1 Introduction

Many web applications and web services are prone to input validation vulnerabilities. Well

known instances of this class of vulnerabilities include Cross-Site Scripting, SQL Injection,

and Command Injection. Although Input Validation vulnerabilities are well-known and have

been well studied in the past decade, Input Validation Vulnerabilities such as SQL Injection

and Cross-Site scripting dominate the charts for many years now. One well-known security

awareness program is the Top Ten Project hosted by the Open Web Application Security Project

(OWASP)1. It aims to identify some of the most critical risks facing organizations by publishing

lists of these risks. In the past decade, several versions of this list have been released. SQL

Injection and Cross-Site scripting vulnerabilities have always been among the top positions on

this list.

Input validation vulnerabilities all have the same root cause: an improper sanitization of

user-supplied input that results from invalid assumptions made by the developer about the input

of the application. Injection attacks, that exploit input validation vulnerabilities, are attacks

in which an attacker creates inputs containing special characters and/or markers that alter the

behavior of the targeted application in some undesired way. Such attacks can have devastating

1https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

74

consequences, ranging from information leakage to privilege escalation in which the attacker

can gain full control of the system under attack.

Injection attacks, also called code injection attacks, can take several forms:

• SQL injection is the insertion of a SQL query via the input data from the client to the

application. Via this attack, one can obtain sensitive data from the database, to modify it,

or to execute administrative operations on it.

• Command Shell injection allows to insert and to execute commands specified by an at-

tacker from the input to a vulnerable application, making it possible to execute unwanted

system commands.

• Cross-site scripting (XSS) attacks: In this type of attack, malicious scripts are injected

into the otherwise benign and trusted web sites. Cross-site scripting (XSS) attacks occur

when an attacker uses a web application to send malicious code, generally in the form

of a browser side script, to a different end user. Cross-Site scripting vulnerabilities are

quite widespread and occur whenever a web application uses input from a user, that is not

validated or encoded, and that is propagated in the output of the application.

• Other kinds of injection are possible, but the mitigation strategy is similar and covered in

this work. We can mention for instance XML and XPath injection, which occur when a

web site uses user-supplied information to construct an XPath query for XML data. By

sending intentionally malformed information into the web site, an attacker can find out

how the XML data is structured, or access data that he may not normally have access to.

He may even be able to elevate his privileges on the web site if the XML data is being

used for authentication (such as an XML based user file).

Preventing input validation vulnerabilities is a complex task. Scholte et al. have shown

in [SBK11] that despite security awareness programs and tools for detecting input validation

vulnerabilities, this class of vulnerabilities is still very prevalent across web applications and the

number of reported vulnerabilities is not decreasing. Moreover, the complexity of the attacks

exploiting this class of vulnerabilities has not been increasing.

In order to prevent input validation vulnerabilities, every input read by the program must un-

dergo a validation and sanitization process. We focus on input validation which is, essentially,

the process of assigning a semantic meaning to unstructured and untrusted inputs of an applica-

tion, and ensuring that those inputs respect a set of constraints describing a well-formed input.

Depending on the data type, additional validation checks might be necessary. For example, a

string might contain only allowed characters. As another example the length of a string should

stay within certain boundaries. As a third example, the validation process for numerical input

might check if the value stays within the expected range and if the value is signed or not.

One of the reasons behind the prevalence of input validation vulnerabilities is that the ap-

plication of any techniques to prevent them relies entirely on the developers. Although several

frameworks do provide libraries containing validation and sanitization functions, these still need

to be explicitly called from the application logic in order to validate or sanitize the input pro-

vided by users. This has two distinct and important disadvantages: first, developers simply

75

forget (or ignore) to use the already available input validation functionalities. Second, it is hard

to maintain, update and evolve the application logic independently - since validation function

calls would be scattered all along the application code. Moreover, the validation functionalities

built in web application frameworks do not have the necessary degree of granularity to handle

the validation of a large number of different datatypes that an application typically handles.

Since preventing input validation vulnerabilities relies entirely on developers, prevention

techniques that are part of the design and implementation phases of the software development

lifecycle will help in making web applications and web services more secure. We develop in

this work a method that prevents input validation vulnerabilities through strictly separating in-

put validation code from application code. In this way, the assignment of data types to input

can be enforced while maintaining consistency between the input validation and the application

logic. More specifically, it consists in the non-invasive use of Aspect-Oriented Programming

for the automatic generation of input validation code, without altering the business logic of the

concerned application.

The term Aspect-Oriented-Programming [KLM+97] (AOP) has been coined around 1995

by a group led by Gregor Kiczales, with the goal to bring proper separation of concerns for

cross cutting functionalities. As we have explained in previous chapters, the aspect paradigm is

uses advice and pointcut. Pointcuts allow to define where (at which points in the source code of

an application) or when (based on which events during the execution of an application) aspects

should apply modifications. Pointcuts are expressed in pointcut languages and often contain a

large number of aspect-specific constructs that match specific structures of the language in which

base applications are expressed, such as a pattern language based on language syntax. Advices

are used to define the modifications an aspect may perform on the base application. Advices

are often expressed in terms of some general-purpose language with a small number of aspect-

specific extensions, such as the proceed construct that allows the execution of the behavior of

the base application that triggered the aspect application in the first place.

The solution that we have designed has a very high intrinsic business value, especially within

SAP landscape. Many customers around the world expose back-end software functionalities

through web services. Providing this kind of automation would improve the overall security of

software and also the protection of customer data. It is even more important as applications as

a service (such as SAP Business By Design) are spreading, with the release of numerous web

applications highly exposed to security risks.

The next sections are organized as follows:

• Section 4.2 details the components and method of our solution.

• Section 4.3 presents a concrete example.

• Section 4.4 presents some evaluation using black-box tools to uncover vulnerabilities.

• Section 4.5 discusses related work that we can compare to our technique in this domain.

• Section 4.6 summarizes the advantages of our solution.

76

4.2 Aspect-based modularization with enhanced data-types

4.2.1 Architecture and methodology

Our solution comprises a methodology and a tool for mitigating input validation vulnerabilities.

The methodology requires that the application developers annotate source code of the applica-

tion components to be protected. Annotations are a simple way to extend a given programming

language in a non-invasive way. In our case, the annotations indicate what the input parameters

are and their corresponding enhanced data-types individually. After the programs are annotated,

the tool will generate new executable or object code, using aspect-oriented programming tech-

niques [KLM+97]. The obtained code will intercept the execution flow whenever an input is

received in order to check whether the input is in conformity to some pre-defined format. In the

case an incorrect input is read by the application, then a programming exception is raised.

The methodology we propose assumes that all input parameters in the code must be anno-

tated by the developer, otherwise the application will not be executed. However, this feature

can be turned off, allowing the developers to partially annotate the code, or to disregard com-

pletely the annotation phase. In other words, annotating all input parameters in the source code

is mandatory by default.

Correctly annotating the input parameters is critical as it ensures the future verification of all

incoming data. An incorrect validation mechanism can compromise the risk mitigation process.

In order to correctly bind the parameters and variables of interest, we adopt a semi-automatic

approach combining user-based knowledge as well as an automatic detection of data types. We

have not implemented this part, which as then been covered in [SRBK12]. The automatic de-

tection of data type can come from several sources, for instance by using information gathered

from model repositories, database schemas, and so on.

4.2.2 Definition of enhanced data types at the design phase

At the design phase the developer has to define the enhanced data types, also called Global Data

Types, that are used across the application. Enhanced data types have business semantics and

convey more precision on the expected user inputs. Therefore, these data types differ from the

basic primitive and built-in types of the programming language. Examples of enhanced data

types are types with business semantic that are specific. A mail address is more specific than a

string, as one can define constraints. It is also the case for phone number, addresses etc. These

enhanced types are added as an intermediate layer between the language types and our model,

in order to obtain a fine-grained and stronger typing related to variables and parameters used in

the application.

For instance, in a declaration such as String email; the developer would add the an-

notation @Email String email; indicating that only strings obeying a certain pattern for

email addresses shall be accepted. The actual validation of an input can take several form, such

as pattern validation, but also check of mail existence, etc. Here, we consider that the set of

enhanced data types is extensible as well as the corresponding validation functionalities for each

extended data types.

The tool is built from three main components as illustrated in Figure 4.1. The pointcut

77

interface adaptor keeps a mapping between enhanced types and validation functions. This com-

ponent can also extract data-type information from external knowledge bases to add meta-data

information necessary to the input validation. Examples of external information sources are

service repositories, such as the SAP Enterprise Services Repository, database schemas, WSDL

files, etc. These sources can provide information about the type structure used in the application

parameters, such that we can infer enhanced data types associated to them. In these knowledge

bases one can find further information, such as the required length for data fields, or enumerated

values, which can be useful to gain accuracy in the input data validation.

Figure 4.1: Solution components

4.2.3 An aspect-based tool for validation

The solution comprises different phases using several components to correctly implement an

automatic validation during the execution of the application. The Figure 4.2 presents the differ-

ent components that we use in our approach, along with the optimal separation of roles in the

78

processing of concerns. The numbers also present the order of development required to achieve

the solution. In an optimal situation, there are two teams communicating to elaborate together

the exchange interface of the application. They define in the application a business model layer

that defines all business objects, and then they agree upon enhanced data types. The develop-

ers are responsible for developing the application, and can use enhanced data types when they

introduce new entry points in the application. The developers can also use enhanced data-types

in the business model, while building the application. Security experts are responsible of pro-

viding a validation library for the enhanced data types that they can adapt to the business model

specificities.

Security experts propose a set of enhanced data types, that can be extended over time. The

list of enhanced data types can also be extended by any developer, although a security expert

would have the most appropriate role to provide clear and accurate information to mitigate risks.

Beside the optimal situation, we have designed this approach to fit in an already defined

application. The business model can hardly evolve, which benefits to a non-intrusive approach

using the enhanced data types. Our non-intrusiveness is made possible by the annotation han-

dling in existing classes, that do not modify the control flow of the application, and do not

necessitate code refactoring.

The Aspect Engine is responsible for the detection of validation points during the execution

of the application. The Aspect Engine is capable of modifying the application control flow. It

takes into account the type annotations and inserts data validation code whenever there is an

assignment for an input parameter, called validation point, that is, whenever data is read from

untrusted sources or received from clients. A validation point refers to the validation of a spe-

cific parameter or variable from the base application. Upon detection of a validation point, the

Aspect Engine extracts the parameter’s enhance data-type that is indicated in an annotation and

looks for a corresponding validation library for the specified type. If the aspect finds a corre-

sponding library, it applies the validation mechanisms defined in the validation module. The

last component in the architecture consists of an extensible aspect library where the validation

functions for each enhanced data type are given. This library maps each enhanced data type

(Global Data Types), for example types present in SAP’s Enterprise Service Repository (ESR),

to validation functions that are represented as advices in the library. The implementations of

validation functions have a standardized interface in order to ensure compatibility and ease the

introduction of new validation functions. We provide concrete examples in the coming sections.

The regular process to create a new enhanced data type is the following. When someone

identifies a specific data type, he creates an identifier name for it. This name is released among

the application developers and stakeholders. The Listing 6 is an example used in our application

to share data types as a Java enum.

79

Figure 4.2: Components and ideal roles

Listing 6 Available enhanced data types presented in a Java enum. These types can be used by

developers in dedicated annotations

public enum DataType {

FLIGHT_NUMBER,

DATE,

EMAIL,

NAME,

ID,

TITLE,

SSN,

PHONE,

ADDRESS,

SALARY,

}

The enhanced data types can be used to taint variables and parameters along the base ap-

plication. The Listing 7 shows the different use of our method: the annotations can apply to a

method parameter, a constructor argument, or a class variable. It provides a large range of possi-

bility from application to business model tainting. The listing present a Customer object that has

several fields: a name, a firstname, and an email. The value of the fields change in several places,

and we would like to cover the different possibilities with our approach. We use code annotation

at three different places to showcase three different situations in which our approach can indi-

cate a need for input validation. The first possibility is at line 6, which is field annotation. Such

annotation will allow us to attach a tag to the field and later detect any change to the field value.

For instance, any affectation to this field will be seen by an aspect engine. Such positioning is

desirable when a developer want to monitor all changes to a field object. In other situations, he

still has two other possibilities. At line 9, a second possibility is to annotate a method parameter.

In our case, it happens that the method is also the email setter, but the behavior is thoroughly

different. Any method in an application can be annotated this way. For instance, the behavior is

desirabled when one wants to tag parameters coming from a servlet, from property files, etc. A

third possibility, shown at line 13 is to tag a constructor’s parameter. Even if there are less cases,

one might still want to tag inputs to apply a validation during instantiation of an object.

80

Listing 7 Business model can be annotated in several places

1 public class Customer {

2

3 private String name;

4 private String firstname;

5

6 @Type(DataType.EMAIL)

7 private String email;

8

9 public void setEmail(@Type(DataType.EMAIL) String email) {

10 this.email = email;

11 }

12

13 public Customer(String name, String firstname,

14 @Type(DataType.EMAIL) String email) {

15 this.name = name;

16 this.firstname = firstname;

17 this.email = email;

18 }

19

20 /* ... */

21

22 }

In parallel of tagging through annotations to augment the type system information of the

application, security experts can rely upon the enhanced data types (acting as the exchange in-

terface layer) to develop corresponding validation aspects and put them in the validation library.

The validation behaviour is represented by several code advices. It is possible to define multiple

validation aspects to a single identifier in the validation library. Having several validation mech-

anisms for a similar enhanced data type in the validation library will enforce as many validation

as mechanisms present in the library.

In most cases, the behaviour to validate a type can be given in terms of regular expressions.

For instance, a telephone number might check length and digits with a pattern. The handling

of regular expressions is frequently provided as a built-in functionality in many programming

languages. The downside of such expressions, is that they depends on application context: sev-

eral format of telephone number exists depending on customer’s area for example. When it

comes to complex types (as opposed to a phone number which represent one element), a com-

plete validation can be introduced by the validation library as the business model is available

from security experts (who write validation code). The validation can therefore validate com-

plex business types, and validate them through different means: functional validation, additional

technical checks, etc. For instance, one can verify existence of an e-mail address by contact-

ing a mail transfer agent, or wire transfer validation might involve third parties services. More

sophisticated attack vectors would require advanced pattern matching, therefore the valid input

would need to be specified through XML-Schema validation, for example. This would allow

for a more expressive class of languages to be accepted as input, that is, context-free languages.

Once the advice code for a specific enhanced data type is created, one needs to encapsulate the

validation code into an aspect and deploy the validation library.

In Figure 4.3, we represent the activity diagram of the solution we have implemented. We

consider that aspects are inserted at deploy time into the target application. We assume at this

81

Figure 4.3: Internal activity diagram

82

point that several aspects exist in the validation library. The second assumption is that the ap-

plication about to run has accurate tagging through annotation with enhanced data types. In

this implementation the Aspect Engine is a specialized class loader which bootstraps all target

applications. The first action of the Aspect Engine is to search for available aspects in the aspect

library. As the application code is loaded, the Aspect Engine discovers the points in the code that

will need a validation and also the applicable validation aspects at those points. If no annotation

for an input parameter is found, the application execution is aborted. This behavior can of course

be adapted, depending on the desired strategy. The Aspect Engine will also abort the execution

if there is no validation aspect corresponding to a used enhanced data-type.

Next, the Aspect Engine will proceed with the execution of the application code and ob-

serve the application execution until it reaches a validation point. At this point, it detects an

enhanced data type annotation used by the base application and searches among the loaded val-

idation library one or more corresponding validation aspects. The Aspect Engine then applies

the validation function for the parameter found. It finally loops to monitor application execution

to cycle until the end of the application. These steps correctly enforce input validation in the

application, albeit the application itself has been slightly modified to enhance type system of in-

put parameters through annotation tags. The mechanisms to enforce the validation of the types

is managed independently and use aspects mechanisms to apply a systematic protection in the

aspectized application.

4.3 Use case

In order to illustrate the technical solution we have developed, we apply the concept to a subset

of the loan scenario we have developed in [DGM+10]: the application contains components to

manage customers. A manager has the responsibility to create, read, update, delete managers. It

can perform these actions through web-services and web-applications. The server application is

object-oriented, allowing to easily encapsulate behaviors related to the customer’s manipulation.

In order to provide a consistent and systematic validation of customer’s fields, we decide to test

our solution in this environment.

Listing 8 presents a servlet in java. We enhance the data type of the servlet at several points

to properly execute a validation mechanism at runtime. At these points, the concrete validation

mechanism are not yet defined nor linked to the application, but we provide additional informa-

tion to later let the program verify automatically the input. Thus, the actual binding is deferred

for a maximal flexibility and to provide concrete mechanisms related to the actual environment

the application runs in. The actual locations to enhance data-type are manifold. The example

shows various points in comments. The possibilities are:

• Field attribute. It allows to indicate an enhanced data type to a class attribute. This

method is to choose when applicable as all classes and services manipulating an object will

transparently execute the type verification. The application is notified when a modification

to this field is run, i.e., when a new assignment occurs.

• Constructor attribute indicates an enhanced data type on a constructor parameter, thus a

verification should takes place at the object construction the correctness of the element.

83

• Method attribute indicates an enhanced data type on a method parameter. It is a general-

ization of the constructor parameter, but that can be applied to any situation.

Listing 8 StatusServlet.java with enhanced type

1 public class StatusServlet extends HttpServlet {

2

3 public static void test(@Type(DataType.ID) String value) {

4 /** */

5 }

6

7 public static void test2(@Type(DataType.STRING2) String value) {

8 /** */

9 }

10

11 /**
12 * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse

13 * response)

14 */

15 protected void doGet(

16 @Type(DataType.STATUS_ARGS) HttpServletRequest request,

17 HttpServletResponse response) throws ServletException, IOException {

18 test(request.getParameter("arg1"));

19 test2(request.getParameter("arg2"));

20 }

21

22 }

The tagging is yet defined manually, but there are some mean to automatically infer the

correct enhanced type from several data-model information: database schemas linked with the

application, data type description in documentation, constraints expressed in external framework

to assist the modification of the business objects, etc.. These components have already provide a

data description with specific constraints. One can use these definitions to verify at the applica-

tive level that data is properly formatted. The existence of enhanced data types are validated

during the compilation process, although they are considered as a virtual and intermediate layer.

The Listing 9 shows the definition of Java annotations . In the left part, we present the defini-

tion of the @V alidation annotation, which takes an object of type DataType. This annotation

indicates what DataType the currently annotated class validates. The right part presents the

@Type annotation which is the annotation used for tagging inputs in application.

Listing 9 Annotation definition

/***

* This annotation indicates what type is

* covered by the validation functions

*/

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.TYPE})

public @interface Validation {

DataType value();

}

/***

* Type annotation is to indicate in the code

* of which type is a given parameter

*/

@Retention(RetentionPolicy.RUNTIME)

@Target({ElementType.PARAMETER, ElementType.FIELD})

public @interface Type {

DataType value () default DataType.STRING;

}

We present in the following an example of a validation class to verify correctness of the field

in Listing 10. The validation class is indicated to mitigate vulnerabilities for a given enhanced

data type thanks to the @V alidation annotation at line 6. In this case, it validates an email

84

field, introduced in previous section in Listing 7. The validation class is one of the possible

implementation. It heavily relies on the application context, and can change. For instance, we

can envision an automatic verification of the email field through the sending of a mail to confirm

the mail reality and user’s legitimate request. Such a request brings additional cost in term of

performance or delay, but can be worth spending depending on the legal compliance, or business

policies. The validation code which is executed if one of the doProcessmethods, depending on

the Java type of the input being validated. One can validate an email from a string, like at line 27,

or from a complex object, like at line 34. For instance if an application is using a Customer input

and that an enhanced data-type is defined to valide this input, the shown validation class for email

will verify the customer’s mail.

Listing 10 Validation class example for the Email enhanced data-type

1 package validation;

2 import java.util.regex.*;

3 import annotation.Validation;

4 import data.Customer;

5

6 @Validation(DataType.EMAIL)

7 /**
8 * For example <a>http://en.wikipedia.org/wiki/Email_address#Syntax

9 */

10 public class ValidationEmail implements ValidationInterface {

11

12 /**
13 * Excellent recap from http://www.regular-expressions.info/email.html,

14 * then adapted

15 */

16 final String emailpattern = "[\\w!#$%&’*+/=?^_‘{|}~-]+(?:\\.[\\w!#$%&’*+/=?^_‘{|}"

17 "~-]+)*@(?:[a-zA-Z0-9](?:[A-Za-z0-9-]*[A-Za-z0-9])?\\.)+[a-zA-Z]{2,}+\\.?";

18 final Pattern p = Pattern.compile(emailpattern);

19

20 /**
21 * Validate an email string.

22 * The policy is :

23 * the email has no value -> no validation is performed

24 * the email has a value -> a validation check is performed and raise an

25 * exception if not correctly formatted

26 */

27 public boolean doProcess(String email) throws Exception {

28 if (0 == email.trim().length())

29 return true;

30 Matcher m = p.matcher(email.trim());

31 return m.matches();

32 }

33

34 public boolean doProcess(Object o) throws Exception {

35 if (o instanceof Customer)

36 return doProcess(((Customer) o).getEmail());

37 return doProcess(o.toString());

38 }

39 }

Listing 11 presents an excerpt of what is present in the validation aspect. The validation

aspect is the enforcement part which unify the different components: application and validation

library. It is executed upon detection of enhanced data-type tagging during execution of the

85

application, which trigger a code a retrieve the input value and validate it against the indicated

enhanced data type. The three pointcuts presented here are those for setter detection, constructor

argument detection, and method parameter detection.

Listing 11 Excerpt of the validation aspect to present the annotation detection with aspectJ.

1 @Pointcut("execution(* *(.., @annotation.Type (*), ..))")

2 public void pointcutMethodDataTypeAnnotedParams() {

3 }

4

5 @Pointcut("execution(*.new(.., @annotation.Type (*), ..))")

6 public void pointcutConstructorDataTypeAnnotedParams() {

7 }

8

9 @Pointcut("set(@annotation.Type * *) && args(val)")

10 public void pointcutFieldDataTypeAnnotedParams(Object val) {

11 }

4.4 Validation

In order to evaluate our solution, we have chosen to apply it to existing vulnerable applica-

tions and to verify the actual benefits of our technique. We protect against a whole range of

vulnerability that are derived from a common weakness: improper input validation [MIT09].

We can measure how exposed the sensitive assets are, as we are able to count the number of

vulnerabilities that can be exploited, first in absence of our solution, second in presence of our

solution.

The solution that we propose makes a static analysis difficult and potentially incomplete.

There are different limitations brought by both the approach and the implementation. The ap-

proach itself uses techniques to defer the introduction of the protection code to the last moment.

While it brings more flexibility to have a late change or a hot-swap change of protection libraries,

this prevents a static analysis based on source code or prior the final deployment to correctly an-

alyze the application. In the first case, the source code available from the the static analysis

component represents the application with enhanced data type annotations. There is no trace of

the validation mechanisms, which are developed separately. In the second case, i.e., the deploy-

ment of validation mechanisms, the static analysis can access both the application binary with

enhanced data-types and the validation mechanisms that will be executed at several determined

points in the application. Even in such case, with a flexible static anlayzer, there is a dose of

uncertainty, due to the rate of false positives and negatives that can limit the usefulness of the

methodology. Therefore, we use a different technique to evaluate our approach.

The evaluation of our approach is measured by the ability to mitigate security risks while

allowing the correct execution of the web applications. To validate the correct mitigation of

security vulnerabilities, we apply a rigorous testing to deliberately insecure web applications,

and compare the results prior to and after the correction. We verify that our correction does

not break the normal flow of the application manually, and by intensively testing the validation

library.

We have chosen a black-box approach for testing, as it allows to analyze the potential appli-

86

cation attack surface available externally. Furthermore, the aspect-oriented approach has several

strategies for injecting validation, such as the static weaving or the load-time weaving of cross

cutting concerns (validation code) into the application. A white-box analysis would introduce

several layers of complexity, whereas we are only interested in an overall protection rate. There

are several tools trying to abuse software inputs to exploit certain parts of a system. Even though

the solution better suits web-based applications, with the traditional set of SQL injections, cross-

site scripting, cross-site request forgery, etc., it can also be used in regular applications. Tools

are either fuzzing tools or web application scanners with a more or less smart behavior to handle

stateful requests and to deepen the test coverage.

We have decided to use two specific tools specialized in web application security and audit.

They are classically introduced in penetration testing phase to support automated analysis and

collect of security vulnerabilities.

4.4.1 Penetration testing tools

Arachni

Arachni [Las13] is a web application security scanner framework. It comes as an open-source

Ruby framework to assist testers and administrators evaluating the security of web applications.

It provides all features going from web application crawling using a spider module to deep

packet analysis using blind SQLmodule for example. The application is able to activate modules

for common web application vulnerabilities: code injection (through several channels), cross-

site scripting, cross-site request forgery, path traversal, remote and local file inclusion, SQL

injection, etc..

W3AF

W3AF [Ria11] is a web application attack and audit framework. It helps in finding and exploring

web application vulnerabilities written in Python. It comes with several modules to crawl the

application and analyze common vulnerabilities. The set of vulnerability is similar to the ones

covered by Arachni, with additional modules.

4.4.2 Analysis

We have applied our methodology to concrete insecure web application, using the wavsep

project [Che12] to support our tests. The project we have chosen is designed to evaluate web

application security scanner and deliberately contains vulnerabilities: path traversal, remote file

inclusion, reflected XSS, blind and direct SQL injection, plus additional other tests. The down-

side of this project is from an analysis point of view. It defines separate projects with JSP pages

as a different test case for a given vulnerability. It means there is no specific data model with

business value. Hence, the annotations in our case would require several adaptations. An exam-

ple of such JSP is defined in Listing 12. The code is used to display a form to let user enters

information. Then, the code rends the user input within the HTML of the page. The problem oc-

curs from line 25 to line 28: a reflective cross script scripting occurs if one enters html specific

characters. For instance, a userinput <script>alert(document.cookie);</script> would render

87

on client’s browser and execute. Such a problem has serious consequences on real-world web

applications, as one attacker can force a web browser to point to the vulnerable JSP to execute

code under attacker’s control. It leads to stealing of session of the attacked browser, denial of

service targeting other web sites, etc.

Listing 12 Vulnerable JSP from the wavsep project.

1 <%@ page language="java" contentType="text/html; charset=ISO-8859-1"

2 pageEncoding="ISO-8859-1"%>

3 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

4 "http://www.w3.org/TR/html4/loose.dtd">

5 <html>

6 <head>

7 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

8 <title>Case 4 - RXSS via tag injection into the scope of an HTML comment</title>

9 </head>

10 <body>

11

12 <%

13 if (request.getParameter("userinput") == null) {

14 %>

15 Enter your input:

16 <form name="frmInput" id="frmInput" action="Case04-Tag2HtmlComment.jsp"

17 method="POST">

18 <input type="text" name="userinput" id="userinput">

19 <input type=submit value="submit">

20 </form>

21 <%

22 }

23 else {

24 try {

25 String userinput = request.getParameter("userinput");

26 out.println("The reflected value is within an html comment: "

27 + "<!--" + userinput + "-->");

28 out.flush();

29 } catch (Exception e) {

30 out.println("Exception details: " + e);

31 }

32 } //end of if/else block

33 %>

34

35 </body>

36 </html>

The evaluation of our methodology with this project is a good example of how we can ad-

dress input validation in different applications. JSP are transformed to obtain compiled servlets.

The methodology has first been defined for web applications with business model to factorize

input validation behavior. The wavsep project allow us to showcase that even with reflected

servlets, we can still benefit from our approach to write validation mechanisms once and apply

them at several places in the application. For instance, the project contains 61599 lines of code

in JSPs, and 563 lines of code in Java. There are also more than a thousand JSP files (we count

1787 for all JSP files, but the project has developped 1134 JSP files containing vulnerabilities).

A manual approach to validate the input of all these JSPs would take ages.

The first action is to add enhanced data-types if necessary to cover cases that are not already

defined in our validation library. The enhanced data-types are efficient when applications use

88

a consistent data model. As the wavsep provides no data model, but reflected use of input

parameters through the request.getParameter() function of the HTTPServletRequest object, we

have adapted the enhanced data-types and the pointcut interface adaptor module.

The web application uses the following custom types, among others: username, password,

target, msgid, transactionDate, minBalance, description, etc.. We enhanced the validation library

with these types. Listing 13 presents a class validation following our methodology for the Name

enhanced data-type. The validation consists of a pattern to accept from two to fifteen word

characters.

Listing 13 Simple validation for a Name data type (used for username for example).

1 @Validation(value = DataType.NAME)

2 public class ValidationName implements ValidationInterface {

3

4 final Pattern p = Pattern.compile("\\w{2,15}");

5 @Override

6 public boolean doProcess(String str) throws Exception {

7 Matcher m = p.matcher(str);

8 return m.matches();

9 }

10 }

As this project contains too many different JSP files, we have decided to use another mean to

indicates the sensitive inputs that we need to protect with the validation library. Therefore, rather

than a manual annotation with @Type to indicate the enhanced data-type, we created an aspect.

The aspect defines a pointcut that wraps around the request.getParameter() calls, as shown in

Listing 14 from line 1 to 3. The advice that is executed determines the actual enhanced data-type

from the parameter name, from line 7 to 9. Then, it uses the validation library to validate the

value, or to detect any conflict between the claimed enhanced data-type and the real value.

Listing 14 Custom adaptation of our methodology to wrap getParameter() inputs for validation.

1 @Pointcut("call(* *..HttpServletRequest.getParameter(..))")

2 public void pointcutGetParameter() {

3 }

4

5 @Around("pointcutGetParameter()")

6 public String wavsepCustom(final ProceedingJoinPoint jp) throws Throwable {

7 String paramName = (String) jp.getArgs()[0];

8 String value = (String) jp.proceed(new Object[] { paramName });

9 DataType type = DataType.valueOf(paramName);

10 validate(type, value);

11 return value;

12 }

We provide in Table 4.1 the details of our executions. We launched the test application on

a Tomcat servlet container, with and without the validation library, and performed tests through

both Arachni and W3af. We retain only the vulnerabilities flagged as critical/high, and don’t

report the medium or informational issues. The miscellaneous category includes either unclas-

sified vulnerabilities reported as is by w3af, or phishing vector and code injection detected by

Arachni.

89

Original Protected

SQL Injection
arac. 214 3

w3af 107 0

Cross Site Scripting
arac. 185 0

w3af 119 0

Directory Path Traversal
arac. 662 0

w3af 231 0

Remote File Inclusion
arac. 120 0

w3af 0 0

Miscellaneous
arac. 44 0

w3af 552 278

Table 4.1: Number of vulnerabilities detected by the arachni (arach.) and w3af web application

security scanners with a black-box approach on original and protected wavsep application.

To enable our validation library in web applications, we have configured AspectJ to provide a

load-time weaving of aspects at the startup of the web application. The results show a reduction

of the detected vulnerabilities. Albeit it doesn’t mean the application is free of bugs, we can

confidently claim that we achieved a pretty high coverage of this specific application. It has

been possible as we spent some time analyzing inputs and systematically providing a validation

library for all type of inputs. Especially, we have adopted an automated approach that shows

how we can adapt our methodology to benefit from aspects.

4.5 Related work

To the best of our knowledge, the solution we develop is the first one that addresses the prob-

lem of enforcing input validation through a strict separation between data type definitions and

application logic with the given environment we have. However, in the past decade, much

research effort has been spent on making web applications and web services more secure. Re-

searchers have focused on detection mechanisms including static analysis, dynamic taint anal-

ysis and client-side security mechanisms. In addition to detection techniques, researchers have

also worked on techniques to prevent security vulnerabilties. We give an overview of the differ-

ent techniques below. The static analysis has been widely discussed in previous chapter. Refer

to Section 3.7 at Page 70 to get related works for static analysis.

4.5.1 Dynamic Taint Analysis

In contrast to static analysis, dynamic taint analysis checks the program at runtime. In gen-

eral, approaches based on dynamic tainting assign meta-data to user-supplied inputs. All user-

supplied data is set to be tainted. When operations are performed on the input data, this meta-

data is preserved. After the sanitization of user-supplied data, the data is set to be ‘untainted’.

This allows the detection if untrusted data reseaches a sensitive sink.

90

Nguyen-Tuong [NTGG+05] and Pietraszek [PVB05] worked both independently from each

other on dynamic taint propagation. They proposed an extension to the PHP interpreter that

tracks tainted input data. The extension proposed by Pietraszek can either prevent the execution

of code or sanitize the input. The approach proposed by Halfond et al. [HOM06] introduces

positive tainting, in this case, only trusted data are tracked.

Dynamic tainting has also its problems. First of all, the technique has a relative large over-

head in terms of performance. Moreover, the input data has to be untainted after a sanitization

function. As [BCF+08] shows, implementing sanitization functionality is far from trivial. Fur-

thermore, preventing second order attacks is difficult as it requires the tracking of data through

persistent data stores.

4.5.2 Client-Side Security Mechanisms

Unfortunately, not all developers of web applications protect effectively and in-time their appli-

cations against input manipulation attacks. It exists some client-side solutions to protect users

of these web applications. Several approaches exist that aim to provide client-side protection,

which are components in the middle (in between the client application and the server applica-

tion).

In [IEKY04], the authors propose a client-side proxy that detects the use of special characters

such as ‘<’ in HTTP traffic. When the proxy detects that the application response reflects these

presumably malicious requests, the traffic is blocked. Also Noxes [KKVJ06] is based on the

concept of a client-side proxy firewall. However, this work aims to improve the user experience

of personal firewalls by introducing some heuristics. In [VNJ+07], the authors propose the use

of browser plugin that uses static and dynamic tainting techniques to check whether sensitive

data are sent to a different domain than where the Javascript code is downloaded from.

BEEP [JSH07] tries to achieve client-side security by design. It is a policy-based mechanism

that forces the browser to execute only those scripts that are explicitly allowed to run as specified

by the policy.

4.5.3 Prevention Techniques

Besides the solutions to detect code injection vulnerabilities, there exist several approaches that

prevent code injection vulnerabilities based on the sanitization of data. Data sanitization is

the process of transforming data such that the resulting data only contains safe characters. In

contrast to the traditional practice of sanitization checks that a developer has to implement in an

ad-hoc way, these frameworks and/or language extensions ensure that documents and/or queries

are automatically protected. Thus, injection vulnerabilities are prevented by construction or by

design.

William Robertson et al. propose in [RV09] a framework that statically enforces a separation

between the structure (code) and content (data) of a software. In the framework, an (X)HTML

document is represented by nodes that are connected to each other. The document is a tree of

nodes and each node is an instantiation of the Node type. As a result, the document is strongly

typed. Once the document is constructed, a rendering function converts the document into a

91

string that can be sent to the client. The rendering function automatically sanitizes unsafe char-

acters. The framework also allows developers to specify dynamic SQL queries using an embed-

ded domain-specific language. The only way to execute SQL queries and construct documents

is through the interfaces provided by the framework. In this way, sanitization is enforced.

In [JBGP10], Johns et al. propose a datatype to enforce the separation between data and

code. With this approach, the developer is forced to use the ELET datatype to construct for-

eign code. Once the developer has specified the foreign code using the ELET datatype, a pre-

processor translates the foreign code to an API representation in the hosting language. Data

provided by the hosting language can be inserted in the foreign code by using a special function.

The main limitation of this approach is that the dynamic construction of foreign code within the

foreign code (e.g. JavaScript’s eval function) is not supported. Moreover, the dynamic creation

of identifier tokens in the foreign language is not supported. In [JB07], Johns et al. proposes

a mechanism to secure web applications implemented using an interpreted language. A pre-

processor marks foreign code found in the source code as legitimate. After the work performed

by the interpreter, a post-processor identifies all the foreign code that has been injected by the

user/attacker and masks it such that it will not be executed. The main problem with this approach

is that the pre- and post-processors introduce false positives and false negatives.

These approaches are related to concrete implementations. We consider in this work that the

problem comes from a insufficient typing of the data. Type system of the programming language

used is important as it can influence the detection of type errors. For instance, if a developer uses

type system which is considered to be sound, a well-typed program would not cause type errors.

4.5.4 Input Validation

Several web application frameworks (and persistence layer frameworks) support input validation

through the use of annotations. Frameworks such as Spring MVC [Sou11], Hibernate [JBo11]

and Struts 2 [Fou11] support a limited set of input validation types. Hibernate is based on the JSR

303 Bean Validation standard [BP09]. In contrast to our work, the set of possible input validation

types cannot be extended. Furthermore, these frameworks do not support the enforcement of

validation functions, e.g. a developer is not forced to validate input. The solutions proposed

in [BP09] and in [Hoo05] allow a complete decoupling of validation code and application logic.

However, also these solutions do not force the developer to specifiy the inputs along with the

types resulting in less secure applications and a decreased level of quality of data.

Besides frameworks supporting input validation, there exist web application firewalls that

are capable of performing input validation. Web application firewalls are placed in front of the

web application or web service and all HTTP traffic is routed through the firewall. A firewall

can block known malicious requests (blacklist-approach) or only allow known benign requests

(whitelist-approach). Scott et al. proposed in [SS02] to secure web applications using web

application firewalls. Since then, the technique has been commercialized and many vendors

offer application-level firewalls as appliances [Imp11, Inc11, Tru11]. In contrast to our approach,

web application firewalls do not allow to establish and maintain consistency between the input

validation specification and the application code. Moreover, application-level firewalls support

a very limited set of input types which is not extensible.

92

The correction of input manipulation often includes sanitization. The correctness of such

sanitization process is important, as an incorrect solution would let the developers think they

are protected. This problematic is addressed in Balzarotti et al. [BCF+08]. They introduce an

analysis of the sanitization process to detect incorrect or incomplete sanitization. They provide

for such purpose a tool called Saner.

4.6 Language approach for security modularization

We present a novel method and tool to prevent from the major cause of vulnerabilities to applica-

tions nowadays, which is the acceptance of malicious input. By adding simple and precise type

annotations to existing code, The solution brings a lightweight approach to enrich type informa-

tion concerning the expected input for an application. The solution derives validation functions

that are modularly integrated into existing code. The main originalities of our solution can be

summarized as follows

• Non-invasive use of aspect-oriented programming, which discharges the developers from

learning a new programming paradigm

• High degree of automation and the increase program security with minor effort. Moreover,

developer applying our innovation does not require security knowledge

• Extensibility: allowing developers to create business-specific enhanced data types and

their validation aspects

• Modular integration of new security functionality without disrupting existing code

• Security is adopted by design, considering that annotations to all input parameters must

be provided, but, in order to provide more flexibility to the solution, an administrator can

disable the obligation to annotate all code.

Moreover, we have also created internally a small demonstrator that proves the feasibility of

the concept.

93

94

Part II

Modularization of constructive security

95

The modularization of constructive security can be simplified to the modularization of busi-

ness security concerns. These are concerns that are specified to make the application working

in its environment. Generally, the concerns are not trivial and developers are prone to introduce

either bugs or vulnerabilities as they are not familiar with these concepts. The type of security

properties affected is large, and usually involves security mechanisms that needs to be correctly

defined and injected in the application. One vision of security architecture for distributed sys-

tems Authentication, Authorization and Accounting (AAA) gives a first glance of properties. But

we cover a larger range, such as privacy, confidentiality and integrity of messages, etc. These

concerns are often exposed through security policies.

In the following, we present two specific contributions showing modularization of security

properties at two different layers of the stack for distributed applications. The first contribution

introduces a security protocol for message security, including transmission of token securely,

confidentiality and integrity of transiting data. This particular protocol targets light and said-

to-be flexible web service using HTTP transport layer as an applicative layer: RESTful ser-

vices. The second contribution present an architecture to provide seamlessly integrated privacy

within cloud platform, which ease the integration of such security concerns for both the platform

provider and the application developers that will deploy application on the cloud.

Both of these approaches are in the context of distributed systems, hence systems executing

in different environments that communicate through communication mediums. All of these

components are possibly under different administrative domains.

96

Chapter 5

Service framework modularization for

message-based security

The modularization of security can be achieved by changing the way security is injected into

the application. Instead of waiting a complete definition of security inlined within the applica-

tion, we can obtain a flexible and modular security by letting the platform inject the security in

pre-defined points. This notion is often referred to as the inversion of control pattern, that let

containers decide and manage the orchestration of dependencies and cross-cutting concerns. It

is then possible to define security and provide late binding, taking in account custom needs in

the specific context the application is executing in.

In this contribution, we propose to introduce a new message security model for RESTful

services that allows to carry authentication tokens and protect resources in a fine-grained manner.

The security properties brought by this approach can be easily introduced by security policies.

To enhance the flexibility in transformation, we propose a module that intervene in the web

service framework layer, or as a reference monitor.

The security and dependability of cloud applications require strong confidence in the com-

munication protocol used to access web resources. The mainstream service providers nowadays

are shifting to REST-based services in the detriment of SOAP-based ones. REST proposes

a lightweight approach to consume resources with no specific encapsulation, thus lacking of

meta-data descriptions for security requirements. Currently, the security of RESTful services

relies on ad-hoc security mechanisms (whose implementation is error-prone) or on the transport

layer security (offering poor flexibility). We introduce the REST security protocol to provide an

end-to-end secure service communication, and explain to which extent it allows flexible security.

5.1 Introduction

With the growing interest of cloud computing, systems are getting inter-connected faster, as

applications and cloud API’s make intensive usage of RESTful services to expose resources to

consumers. There has been a shift from SOAP-based services to more lightweight communica-

tion, based on REST which allowed a number of advancements in the way resources are used on

97

the web. As REST web services are self-described, resources can be manipulated through a set

of verbs already provided in the communication protocol, accelerating the adoption of the REST

philosophy. On the other hand, REST suffers from the absence of meta-descriptions, specially

concerning security requirements.

Different solutions have been developed to provide a common way to address service de-

scription and communication. For SOAP-based web services, the standard defines envelopes to

transmit requests and responses. In contrast, the REST concepts coined by Roy Fielding in his

Ph.D. dissertation [Fie00] simplify access to web services by reusing existing and widespread

standards instead of adding new layers to the communication stack. The reuse of HTTP protocol

contributed to the large industry adoption of RESTful services, supported by the simple CRUD

set of operations (Create, Read, Update, Delete).

RESTful services suffer from the lack of a specific security model, unlike SOAP-based ser-

vices which rely on the message security model defined in WS-Security [OAS06] standard.

Especially, the security of existing RESTful API’s rely on transport layer security and on some

home-made message protection mechanism. The former protects efficiently point-to-point com-

munication channels, but becomes a burden for mobile systems, as the TLS channel need to be

frequently reset. It is also difficult to have multiple parties involved in a secure communication,

as each of the peers would require to rely on each other entity. The latter can be error-prone, as

security protocols are difficult to design and implement. Thus, a custom security might lead to

inconsistencies, incompatibility with other standards, etc..

In this chapter we provide a security protocol to make message security implementation as

lightweight and efficient as possible, and yet to respect the REST principles. We show how

message signature and encryption can address communication security for RESTful services

at a fine-grained level. We then present the interest of such protocol in presence of multiple

stakeholders spanning several administrative domains. We present results of the benchmark we

conducted on our implementation and compare it to the equivalent realization using SOAP and

WS-Security.

The chapter is organized as follows: Section 5.2 presents the motivations for such an ap-

proach, Section 5.3 introduces the REST security protocol and the threat model we aim to

mitigate. In Section 5.4, we position our protocol with regards to WS-Security via a benchmark.

Then we discuss related works in Section 5.5 and conclude in Section 5.6.

5.2 Motivation

REST-Security provides tools to enhance flexibility of many use cases in which RESTful ser-

vices are exposed. In a nutshell, it allows business owners to define security properties for

application, disregarding the actual implementation of the web services layer. In this section,

we present the motivation of such a protocol through two different use-cases, in which REST-

Security provides key advantage, by removing unnecessary specifications from protocols, or by

facilitating enforcement of multi-party security policies.

REST security protocol is a pendant of WS-Security, which already provides a set of tools

and methods to encapsulate security behavior in dedicated modules. It is possible to define

the security of messages, per service. The service framework is responsible to interpret the

98

configuration of security and verify incoming messages to detect policy conflict, but also to

take action and modify outgoing messages to add required security tokens or perform security

transformations.

The novelty comes with the flexibility that we introduce with the new security protocol, but

also in the way we envision the transmission of security metadata across the application. Usually,

the security of messages is configured at the service framework level. The notion of protection

is therefore limited to the transport and the service framework itself. The business application

that handles the request has no specific information on the origin of the message, nor its validity.

Some frameworks propose the propagation of principal identity to the business application, but

the notion of integrity, confidentiality in the transmission as well as the signature is lost in transit.

Such behavior renders the handling of security properties at the business level problematic. For

instance, one might have a business rule of non-repudiation with proof of receipt that certifies

the receiver has received the message. The acknowledgment contains cryptographic proofs that

are carried along the message, and then generally interpreted by the service framework.

We would like to introduce at this stage another layer of flexiblity, that provide security

proofs to the business application, disregarding the underlying technology used for message se-

curity. The REST security protocol and web service security framework would provide accurate

concrete mechanisms, that one can use to define security properties. The security properties are

propagated to the business application, with the use of aspect-oriented techniques. We further

discuss the mechanisms in the perspective part of the conclusion in Section 8.

In the following, we intend to present two situations in which a flexible security protocol

would benefit.

5.2.1 OAuth 2.0 token protection

The OAuth 2.0 web authorization protocol allows services to act on behalf of users when inter-

acting with other services. It avoids sharing username and passwords across services, thus, in

principle protecting users from several threats. However, it is known that the implementation of

this kind of authorization protocol is complex, and potentially leads to vulnerable web services.

OAuth 2.0 proposes a multi-party environment in which the client (resource owner) uses its

credentials to request protected resources held by the server. If a third-party wants to access

these protected resources in accordance with the resource owner, then the resource owner has to

share its credentials with the third-party. This situation may lead to several undesired behaviors,

such as resource owner’s credential’s multiple storage (at the third-party location), complete

access to the protected resources (no limitation of rights to third-party) or difficulty of right’s

revocation (the resource owner needs to change its credentials). OAuth’s purpose is to mitigate

these concerns by granting access without credentials sharing.

The initial protocol has been defined by Hammer et al. in a standard defined by the IETF

as OAuth 1.0 [Ha10]. The current version is OAuth 2.0 [Rea12] and is a disruptive evolution

in which major companies have been involved to cover different use cases. The original author

Eran Hammer withdrew its name from the specifications, and OAuth 2.0 presents a framework

rather than a security protocol. The development is already mature and target industrial use-

cases, which is the reason why we chose to focus on OAuth 2.0. For readability reasons when

99

we are referring to OAuth 2.0 we will simply speak about OAuth, and when needed we will

specify the version.

The OAuth protocol defines four different roles:

• The resource owner is an entity that holds protected assets. This entity is capable of

granting access to the assets under its control.

• The resource server is the server that hosts the resource owner’s protected assets.

• The client is the third party entity that needs to access the protected assets on behalf of the

resource owner.

• The authorization server is the server that issue authorization claims and generally verify

authentication and authorization of the different entities involved.

The general flow defined by OAuth is depicted in Figure 5.1. The flow starts when a client

(mobile application, third-party service, any application which needs to access resources of a

resource owner) needs to access resources on a resource server that he doesn’t own. To access

these resources, the client request an authorization to the resource owner (step A). The resource

owner generally gets an authorization grant by getting one from the authorization server and

send it back (step B). As an alternative, the client can directly request the authorization grant

from the authorization server. In step C, the client requests an access token by authenticating

with the authorization server and presenting the authorization grant. If the authorization grant is

validated by the authorization server, an access token is issued and sent back to the client (step

D). At this point, the client has an access token that indicates that a resource owner allows the

client to access a certain number of its resources on a specific server. The client can use this

access token to access the resources (step E). The resource server validates the token an send

back requested information (step F).

Cherreau et al. [CDR+13] present relevant problems faced by OAuth 2.0 implementations.

For instance, OAuth uses the concept of bearer token that is defined as "A security token with the

property that any party in possession of the token (a "bearer") can use the token in any way that

any other party in possession of it can. Using a bearer token does not require a bearer to prove

possession of cryptographic key material (proof-of-possession)". The specification also details

"TLS (Transport Layer Security) is mandatory to implement and use with this specification;

other specifications may extend this specification for use with other protocols". It means that

to convey bearer token, the services need to communicate through a secure channel to avoid

disclosure of tokens, thefts, replay attacks, etc.

The author of OAuth argues against using only transport layer security. It provides a po-

tential false sensation of security [Ham10]. For instance, there are issues occurring during im-

plementation, like several developers who do not try to understand the rational behind transport

layer security and break the hierarchy of trust (for example, they try to disable verification of

certificate authority). Such activation would void any effort in protecting tokens. In addition,

several attacks target the transport layer security with success. For instance, the latest attack use

a simple trick to extract content from a secure HTTPS channel [GHP13]. BREACH (Browser

Reconnaissance and Exfiltration via Adaptive Compression of Hypertext) approach takes ad-

vantage of HTTPS compression to byte by byte extract some part of the user provided content,

100

Figure 5.1: OAuth generic flow

through HTTP responses. They adapted the approach from another approach which was target-

ing HTTP requests, the CRIME security exploit [RD12].

With the REST security protocol framework, we are given new tools to protect these sensitive

tokens, and thus propose an automatic protection of certain tokens along the HTTP messages.

We do not intend to replace completely the transport layer security required in the protocol, but

we aim to extend use cases in which you can transmit securely tokens to propose new possibil-

ities for service providers and consumers. For instance, the protocol can handle other security

constraints. We can think of carrying encrypted basic authentication tokens, signed P3P claims,

or even convey authorization token decisions. We position the REST security protocol as an

alternative to transmit securely data over the wire.

5.2.2 Flexible enforcement of security properties with cross-domain collabora-

tion

The definition of the protocol comes to fill a gap in existing scenario involving RESTful services.

The definition of security, on a fine-grained basis is hardly possible, and makes the transmission

and securisation of tokens difficult. It leads to situations in which specifications to newly defined

protocols force the usage of secure transport channel, like we have seen in the previous section.

In other situations, the secure transport channel is not sufficient to respect security policies and

attach security properties to flows. For instance, we have introduced in [DGM+10] a loan

origination scenario in which several parties have to collaborate to complete a business process.

The parties have their own specific environment, with their own security adaptations. In order

to collaborate, they need to agree upon a common process to handle security. We discus the

security properties and requirements that affect this system in [SdOS12].

For the specific needs that we have in our scenario, we have developed a security policy

language described in [DSI+12a]. HiPoLDS stands for A Hierarchical Security Policy Language

101

for Distributed Systems. It has been designed to enable the specification of security policies in

distributed systems in a concise, readable, and extensible way. HiPoLDS design focuses on

decentralized execution environments under the control of multiple stakeholders. It represents

policy enforcement through the use of distributed reference monitors, which control the flow

of information between services. We are going to see in this section how the REST security

protocol protocol would assist the scenario’s needs in this kind of environment.

Figure 5.2: Domains of the scenario with hierarchical reference monitors per domain

The domains are presented in Figure 5.2. There are a total of four domains: the customer

domain, the government domain, the credit bureau domain, and the bank domain. The security

rules are handled by reference monitor in this approach. The reference monitors can either

verify the status of messages going through, or modify the messages to respect the security

policy. For example, the top level runtime monitor in the Bank domain hierarchy is referred to

as {{rmBank}}. The monitor has no visibility of the architecture of the outside world, but it can

detect some properties carried along the messages, or already known by the monitor (i.e range

of addresses corresponding to a specific actor). With respect to the internal domain, the monitor

{{rmBank}} is able to communicate with its direct sub-components, but might not know their

architecture. This grey-box view is important to define global rules that are then enforced locally.

102

The bank reference monitor needs to address several security requirements according to a

policy that we have defined:

• Non repudiation : An external party shall receive a proof of receipt when sensitive loan

operations are performed

• Confidentiality : An incoming or outgoing loan resource needs to remain confidential

between requester and receiver.

• Signature : an incoming or outgoing loan object needs to carry a proof of authenticity

• Separation of duty : the platform needs to guarantee that at least two individuals are

involved in the verification of loans.

• Logging : The runtime monitor shall log incoming and outgoing messages that has for

origin or destination a domain outside the bank

Such security policy description is translated in an HiPoLDS rule, which is a domain specific

language. The detail of the language is explained in [DSI+12a]. For example, for a message

that contains loan information, the message should carry proof of integrity and the resource itself

should only be disclosed to the Bank and the Government. Such a requirement would translate

to the following HiPoLDS abstract rule:

m : message, x : loan-info ǫ m.contents

→ x is confidential(Bank,Government),

m is integrity_verified

(5.1)

The policy language specifies the security requirements, in a hierarchical way, and for dis-

tributed domains. These domains are not all under the same administrative domains. They have

to collaborate all together to process messages, add security proofs when they manipulate data,

but they would not put a blind trust in their partner. For instance, if a document requires the

successive validation of three different actors (a bank, a government agency, and a customer),

each of the actors would put a signature and transfer the document to the next actor. Such a

situation requires the signature to be attached to the document. The REST security protocol

allows to transmit the document with several security proofs attached to it without additional

processing. The tokens in this case would convey multiple signature for the different actors

at the same time. The elegant approach comes from the possibility for the different actors to

simply get the document, sign it, and transfer it to the next actor. They don’t need to interpret

signature of the previous actors. They don’t need to verify authenticity of other signatures: as

the signature is attached to the resource (the document), any party can verify the validity of the

document at any time. The tokens, transmitted in headers of the documents are flexible enough

to allow quick signature and verification from the different involved parties. In addition, the

security verification and transformations can be introduced directly by the reference monitors.

Another possibility with the REST security protocol is to encrypt partial content of re-

sources. In the context of cross-domain business processes, it allows new interactions such

103

as a first actor which partially encrypt a document for an intermediate, and the remaining of

the document is encrypted for a different recipient. A second actor would affix a signature to

validate the message authenticity before transmitting it to the other actors. These behaviors, that

one can describe with HiPoLDS security policy language can be enforced transparently thanks

to reference monitors. We describe in [DSI+13] the details of the enforcement architecture.

5.3 REST Security

In the following, we present the materialization of the protocol to secure messages and resources

in case of RESTful services. We provide Encryption, Signature and their combination. We

do not aim to provide an equivalent of Secure Conversation from the WS-Security standards

for RESTful services, as it relates to some transport layer security for HTTP which is already

addressed in protocols such as TLS.

5.3.1 Message Security Model

We specify an abstract message security model based on confidentiality and digital signatures to

protect RESTful messages. The associated threat model is exactly the same as the one described

in Web-Service Security standard [OAS06]: “The message could be modified or read by attacker

or an antagonist could send messages to a service that, while well-formed, lack appropriate

security claims to warrant processing”. For instance, a malicious attacker can intercept messages

on any intermediary between peers. We want messages to carry tokens for non-repudiation (via

digital signatures), to provide data confidentiality by encrypting its content, and to have replay

attack protection.

The need to develop our own security for RESTful services comes from the frequent possibil-

ity to have man-on the middle attack on secure channels. The mechanisms to provide confiden-

tiality, integrity and non-repudiation for most of the RESTful services exposed by the industry

rely on transport layer security over the application protocol, such as HTTPS. There are several

attacks, or even programmatic mistakes that render the layer less secure. For instance, there

has been high coverage of SSL-attacks such as BEAST or CRIME that render possible plaintext

recovery from a partial controlled environment, as well as other attacks such as SSL stripping

or other manipulation regarding spoofing or man on the middle attacks [Jee13]. Georgiev et al.

present a paper in which they explain some basic failure of SSL-validation in general applica-

tions, which is the fundation step of the whole PKI infrastructure [GIJ+12].

Although secure channel provide a first defense line against most eavesdropping use cases,

the client and server can not guarantee the security from end to end, but rather from point to

point. In a multi-party environment, which is a frequent use case in modern computing commu-

nication and routing of internet, several hops trust each other to transmit the information from

one location to another one. The secure channel blur the intermediates to deliver the message

to a server, from which we don’t know the exact processing. With our approach, it would be

possible to intermediate to add secure tokens to messages, in addition to already existing ones.

It make senses in hierarchical environments that require high control on data coming in and out.

For instance, security policies in large companies can benefit from this approach by allowing

104

enforcement of security properties at different places in the company infrastructure landscape.

We have already presented such need in the previous section.

5.3.2 PKI-based message exchange

We assume that a PKI landscape is in place and that certificates have been exchanged between

clients and servers prior to the communication. In this way we are able to transmit a certifi-

cate identifiers within the messages instead of full certificates, what would bring unnecessary

overhead.

In order to distinguish a certificate on both client and server sides, we rely on a unique

identifier, called Certificate ID, known to all entities. The Certificate ID is the aggregation

of a serial number and an issuer name. The RFC 5280 [IET08] specifies that serial numbers

“MUST be unique for each certificate issued by a given CA, i.e., the issuer name and serial

number identify a unique certificate”. The issuer name in our case can be represented by the

Distinguished Name of a X509 certificate.

5.3.3 The REST Security principle

The principle of our protocol is to propose secure communication at the message level with the

minimum overhead: we try to respect the philosophy of RESTful services and to reuse HTTP

protocol to its full advantage. For example, we take into account the specificity of HTTP verbs

in the design of the protocol. The REST security protocol is closely related to the WS-Security

standard: it proposes a fine-grained approach to provide authenticity, non repudiation, and con-

fidentiality to messages. But the approach targets another type of service. We claim that our

approach is complementary to provide consistent application of security policies, disregarding

the type of service being addressed. When comparing both approaches, we can highlight the

reduced development effort and also less computation at runtime. This is a consequence of the

optimization in the message size while we have performed, yet respecting the compatibility with

service’s definition and implementation.

We propose a set of HTTP-headers for transmitting meta-data, unlike WS-Security which

modifies messages to add its own container describing the security meta data. The headers are

described in Table 5.1. They start with a prefix “X-JAG” to distinguish them from other applica-

tion headers. The main difference with the WS-Security approach, is that we are agnostic about

the information format. WS-* services use a strict approach to determine the transformations

of XML-based messages to ensure the correct handling by interpreters at both sides. In our ap-

proach, we consider the information as a set of multiparts, and protocol headers. It allows us to

gain flexibility in terms of fine-grained signature and encryption of attached documents, and/or

to restrict visibility of a number of headers.

In the following, we present the REST security protocol process. For illustration purposes,

we present the interaction trace produced by the request of a RESTful service in the Listing 5.1.

A client requests customer information to the service and expects a JSON-encoded result. One

can notice the expected result can be in any format accepted by the server (e.g., XML, YAML,

105

Header keys Value

X-JAG-CertificateID Unique identifier for a certificate

X-JAG-DigestAlg Algorithm used to obtain digest

X-JAG-DigestValue Value of the digest(s)

X-JAG-SigAlg Algorithm used to obtain the signature

X-JAG-SigValue Value of the signature(s)

X-JAG-EncAlg Algorithm used to encrypt headers and messages’ part

X-JAG-EncKeyAlg Algorithm used to encrypt the symmetric key

X-JAG-EncKeyValue Encrypted value of the symmetric key

X-JAG-MultiParts Designation of headers and messages’ part

Table 5.1: REST security protocol headers

plain text, audio file, binary content, etc.). The response produced by the application server starts

at line 6 .

1 GET /customer/123 HTTP/1.1

2 Accept: application/json

3 Host: 127.0.0.1:8080

4 Connection: keep-alive

5

6 HTTP/1.1 200 OK

7 Server: Apache-Coyote/1.1

8 Content-Type: application/json

9 Content-Length: 77

10

11 {"Customer":{"firstname":"Gabriel","id":123,"lastname":"Serme","title":"Mr

"}}

Listing 5.1: RESTful request and response

5.3.4 Message Signature

Providing digital signature along with requests gives confidence on the data being transmitted.

A server might need information on the authenticity of a message to launch internal orders and

to render the service correctly. A digital signature brings non-repudiation: a requester cannot

deny the request. Also, the service cannot later repudiate the response if it includes signed

token linked to the initial request. Additionally, digital signature protects from unintentional or

malicious modifications during the transmission.

Algorithm 1 presents the steps to attach signature information to the message after a “digest

then encrypt” processing. It starts with a message m or part of it, with: the digest algorithm,

the signature algorithm, the Certificate Id of the sender, and the private key of the sender. The

algorithms can be decided by the sender itself, or imposed by the server policy. In our imple-

mentation, we allow the client to decide about the algorithm to be used, but the server can deny

access if its policy considers the protection to be insufficient. We have defined a “digest then

106

encrypt” function over the message payload, security parameters, and header information. The

digest always takes as input the timestamp to obtain a different value over time and thus prevent

future replay attacks. The algorithm vary slightly depending on the concrete signature algorithm.

The values are then attached to the message along with algorithm information.

Algorithm 1 Signature of REST messages

Require: m is a message, sig is a signature algorithm name, dig is a digest algorithm name, cid

is a Certificate Id, pk is the sender private key, urlpath the requested path, hds are headers

element to protect, ts is the current timestamp

dv ← digest(m.payload, ts, dig)

url← ‘’

if m is a request then

url← urlpath

end if

bytes← concat(dv, url, sig, dig, cid, hds)

digV alue← digest(bytes, ts, dig)

m.sigV alue← encrypt(digV alue, sig, pk)

m.{url, sig, dig, cid, hds, ts}← url, sig, dig, cid, hds, ts

In Algorithm 2, we present the signature verification function. It starts from a messagem, or

part of it, and with the public key of the sender. The steps are the reverse of the previous “digest

then encrypt” algorithm. We first calculate the digest value of a set of headers and the payload.

Then, we retrieve the digest value calculated by the sender. The encrypted value is transmitted

along with the message, on a specific header. When we decrypt the value, we are then able

to detect any corruption in the payload and headers but also to guarantee message safety and

authenticity, as it has been digitally proved by the sender.

Algorithm 2 Verification of REST Signature

Require: m is a message, Pk is the sender public key

dv ← digest(m.payload,m.ts,m.dig)

bytes← concat(dv,m.url,m.sig,m.dig,m.cid,m.hds)

calculatedDigest← digest(bytes,m.ts,m.dig)

retrievedDigest← decrypt(m.sigV alue,m.sig, Pk)

if retrievedDigest ≡ calculatedDigest then

return true

end if

return false

The Listing 5.2 presents a HTTP trace with concrete headers and payload value. The request

starts at line 1 and the response starts at line 10. We can observe for example that message

request is issued by a sender identified as the 4102th certificate issued by the CESSA Authority.

This sender protects the request of the customer 123. The response is given by another peer,

107

1 GET /sign/customer/123 HTTP/1.1

2 Accept: application/json

3 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP Labs France, C=FR;4102

4 X-JAG-DigestAlg: w3.org/2000/09/xmldsig#sha1

5 X-JAG-DigestValue: 2jmj7l5rSw0yVb/vlWAYkK/YBwk=

6 X-JAG-SigAlg: w3.org/2000/09/xmldsig#rsa-sha1

7 X-JAG-SigValue: CwgrRTaC0oGBMpLPF6m<...>+gjtCMnuC+2svEdI5zJvITbM=

8 Host: 127.0.0.1:8080

9

10 HTTP/1.1 200 OK

11 Server: Apache-Coyote/1.1

12 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP Labs France, C=FR;4

13 X-JAG-DigestAlg: w3.org/2000/09/xmldsig#sha1

14 X-JAG-DigestValue: RUAYhPTuXqwChvIGrclAyRtA22Y=

15 X-JAG-SigAlg: w3.org/2000/09/xmldsig#rsa-sha1

16 X-JAG-SigValue: pmpc347XG/8a9QIFWYaHHsbt79hCwF<...>G/buHnjsHQvZhaggilRuM=

17 Content-Type: application/json

18 Content-Length: 77

19

20 {"Customer":{"firstname":"Gabriel","id":123,"lastname":"Serme","title":"Mr

"}}

Listing 5.2: Signed request and response

identified as the 4th certificate issued by the CESSA Authority, on line 12. The request and

response are here signed, which allows the party consuming the message to verify the identity

of the producer and the validity of the security token, to detect if the message has been tam-

pered with. A replay attack can be avoided by binding the messages to elements with unique

characteristics: MAC, timestamp , session related nonce, etc..

5.3.5 Message Encryption

Message encryption provides confidentiality to sensitive assets so that no eavesdropping and data

modification happen during messages transmission. In requests, several assets are transmitted,

such as payload, session headers in cookies, etc. In our approach, we focus on payload and

header protection mainly. We envisage extensions to address parameter encryption in GET

requests in future versions of the protocol. The encryption has the property to modify the payload

and headers, unlike signature which needs read-only access to the message. The encryption

mechanism is also process-intensive.

The Algorithm 3 processes the payload of a message, or part of it for encryption. The PKI

environment gives us mechanisms to share information between actors: the public and private

keys. However, asymmetric algorithms are too heavy in order to perform an encryption on

large amounts of data. Instead, we generate a symmetric key for encryption, using the function

generateSymmetricKey that takes two parameters: A symmetric algorithm like AES with

indication on the exact parameters, and the current timestamp that will be used to generate

the symmetric key. This second parameter can be seen as a salt value. The generated key is

small enough to be encrypted with an asymmetric algorithm and sent with the message. Thus,

the message contains an encrypted symmetric key for the receiver, the encrypted payload, and

108

several headers expressing the algorithm used for encryption.

Algorithm 3 Encryption of a REST message

Require: m is a message, Pk is the receiver public key, enc is a symmetric algorithm name,

aenc is an asymmetric algorithm name, hds are headers element to protect, ts the current

timestamp

skey ← generateSymmetricKey(enc, ts)

m.payload← encrypt(m.payload, skey)

for all name, value← hds do

hds[name]← encrypt(value, skey)

end for

m.keyV alue← encrypt(skey, aenc, Pk)

m.{enc, aenc, hds, ts}← enc, aenc, hds, ts

The Algorithm 4 presents the reverse operation with respect to the above algorithm, to be

executed on the receiver side. The procedure is performed on an encrypted message m or part

of it. The message usually contains meta-information about encrypted parts and algorithms used

for key encryption and data encryption. Otherwise, these information should result of a previous

agreement between the sender and the receiver. To decrypt the data, the receiver retrieves the

symmetric key and uses it to replace the headers and the payload.

Algorithm 4 Decryption of a REST message

Require: m is a message, pk is the receiver private key

skey ← decrypt(m.keyV alue,m.aenc, pk)

for all name, value← m.hds do

m.hds[name]← decrypt(value,m.enc, skey)

end for

m.payload← decrypt(m.payload,m.enc, skey)

The Listing 5.3 presents a HTTP trace where the request does not contain custom informa-

tion apart from the Certificate Id. The service has been configured to send back all messages

encrypted. The service then processes and encrypts the message content for the requester. In the

Listing, the payload is protected and no eavesdropping can be performed during the transmis-

sion. The protection mechanisms described in the previous section for replay attacks are also

apply here.

5.3.6 Signature and Encryption

Signature combined with encryption is an important feature. Signature alone brings non-repudiation

to the system, but an attacker can still read the content of messages and remain unnoticed. Pro-

viding encryption-only brings data confidentiality, but do not prevent against data tampering:

any intruder can replace the payload and security tokens with its own, as there is no binding

109

1 GET /encrypt/customer/123 HTTP/1.1

2 Accept: application/json

3 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP Labs France, C=FR;4102

4 Host: 127.0.0.1:8080

5

6 HTTP/1.1 200 OK

7 Server: Apache-Coyote/1.1

8 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP Labs France, C=FR;4

9 X-JAG-EncKeyValue: RHvEjpmkt2QF3ZPCtqFbflDzA48<...>/

UYNCYPbB265W2ZjYhL5VQSyv1Xs3Skm0=

10 X-JAG-EncAlg: w3.org/2001/04/xmlenc#aes128-cbc

11 X-JAG-EncKeyAlg: w3.org/2000/09/xmldsig#rsa-sha1

12 Content-Type: application/json

13 Content-Length: 101

14

15 eIdV39/XV/IHgPNWB2Hpo2jWglsI9p<...>k5c4+vVs9d53o6OEoh7M0bybmtGwdZE=

Listing 5.3: Encrypted payload during a request

with the proof of identity. For this purpose, the combination of encryption and signature at

the message level provides confidence that data is kept confidential from intruders, and that no

modification have been made to it. The signature testifies authenticity of the encrypted content,

and only the receiver can retrieve the original data. In the current version of our work, we do

not address ordering between the two mechanisms, therefore it is not yet possible to encrypt a

signature.

5.3.7 Multiparts

We consider the case where one request or response message contains several parts. It is the case

for example when forms are submitted with several fields containing user data, or when several

files are attached along the same request. In such case, we might have general-purpose infor-

mation and sensitive-information. To encrypt sensitive information, we need a mechanism that

specifies the format of the different parts. We have several choices: we can apply the security

requirements on the entire request/response of the RESTful service, or just on some parts/ele-

ments. HTTP makes usage of the Multipurpose Internet Mail Extensions (MIME) standard1 to

separate the content in several parts. We can take advantage of this usage to distinguish parts of

the data along requests. Therefore, if a request contains multiple parts, we can choose to sign

and encrypt some of them without affecting the others.

The approach differs from what is implemented in WS-Security standards and S/MIME

standard. In our approach, we are independent from the actual content-type, and proposes to

gather in one place all security meta-data. WS-* standards deal with XML-based content, so

they propose a fine-grained approach at the XML-data level. Our approach is more general, and

provides resource-grained encryption and signature. The Listing 5.4 highlights this principle.

It represents the signature for the first multipart element identified by <root>. In a multipart

environment, the meta-information vary depending on the part subject to encryption or signature.

1http://www.ietf.org/rfc/rfc2045

110

1 PUT /sign/customer/111/file HTTP/1.1

2 Content-Type: multipart/form-data; boundary="uuid:7d156074-35"; start="<

root>";

3 X-JAG-CertificateID: CN=CA CESSA, <...>O=SAP Labs France, C=FR;4102

4 X-JAG-DigestAlg: w3.org/2000/09/xmldsig#sha1

5 X-JAG-DigestValue: 0;8X3Ci4M+bhWKMg+f83CXoXXjjns=

6 X-JAG-SigAlg: w3.org/2000/09/xmldsig#rsa-sha1

7 X-JAG-SigValue: 0;lcj7v4UAMxFOkhBoX+8<...>NKo393OQ=

8 X-JAG-Multiparts: 0;<root>

9 Host: 127.0.0.1:8080

10 Transfer-Encoding: chunked

11

12 --uuid:7d156074-35

13 Content-Type: application/octet-stream

14 Content-Transfer-Encoding: binary

15 Content-ID: <root>

16 Content-Disposition: attachment;filename=data.dat

17 <..binary content..>

18

19 <.. HTTP Response ..>

Listing 5.4: Multipart signature example

The header X-JAG-Multiparts contains a set of multipart elements and some headers referenced

by identifiers. These identifiers are used to reference digest and signature values in the other

security headers.

5.4 Evaluation of REST security protocol

The REST security protocol is close to the WS-Security standard. WS-Security [OAS06] de-

scribes enhancements to SOAP messaging to provide protection through message integrity, con-

fidentiality, and single message authentication. More precisely, it is an open format for signing

and encrypting message parts leveraging XML Digital Signature and XML Encryption proto-

cols, for supplying credentials in the form of security tokens, and for securely passing those

tokens in a message. As explained in previous sections, the REST security protocol has been

designed to be an equivalent alternative to WS-Security for RESTful services, with some differ-

ences in the way messages are secured and possible applications. In this section, we present few

indicators to compare REST-Security, both in term of performance and configuration.

5.4.1 Environment & Methodology

In order to position the protocol performance with respect to the state of the art, we have run sev-

eral performance tests to compare WS-* and RESTful based services. In order to have a clear

methodology and to reproduce performance tests, the evaluation has been made on the same

environment to eliminate network side-effects. We limited resource starvation on the server to

obtain accurate data. The Table 5.2 lists server characteristics. In order to compare the differ-

ent services, we evaluate them in a single framework proposing coverage of both JAX-RS and

111

Processor Intel Core i7-2600 @ 3.40GHz

Installed RAM 16 GB

Hard Drive Seagate ST3500413AS Barracuda 7200 500 GB

Application Server Tomcat 7.0.21

Server JVM Memory -Xmx 8000m

WS framework CXF 2.4.2

Server certificate RSA 1024

Client’s certificates RSA 4096

Table 5.2: Benchmark environment

JAX-WS specifications. The CXF service framework2 allows us to compare the complexity of

the two kinds of web services under the same conditions.

We have defined and implemented three scenarios, corresponding to real-use cases. In this

way, we simulate several scenarios in order to evaluate and compare performance, message size,

etc. The three scenarios correspond to:

Simple Get In the following, we identify this scenario with the acronym Get. The scenario

retrieves information without further processing. It is materialized by the invocation of a method

in WS-* to retrieve customer information, from customer identifier. In RESTful services, the

client requests a customer through a GET action, and the service renders the customer in the

requested format.

Modify Post In the following, we identify this scenario with the acronym Post. In this sce-

nario, the data is transmitted in the request phase, and the response phase is just an indicator of

the success or failure. Some additional processing is made on background to modify objects on

the server. The modification of a remote resources is materialized by a method invocation with

WS-* services, whereas it is a POST request in REST.

Large payload In the following, we identify this scenario with the acronym Large or Big. It

corresponds to the transmission of large amount of data between client and server. The size of

messages brings out the real impact of the protocol. Each operation gives rise to accurate obser-

vation of the cost in terms of size and performance. It is materialized by a method invocation

for a customer document in the input for WS-* services, and by a PUT request in the RESTful

version. The reply contains indication of success or failure.

The different scenarios provide heterogeneous tests to verify several properties of the REST

security protocol, in different conditions. They cover the most problematic situation one can face

in a real production environment. They are a good basis for protocol comparison. For each of the

2http://cxf.apache.org/index.html

112

scenarios, we have configured and run several tests with different security capabilities: signa-

ture, encryption, signature & encryption and no-security acting as the baseline. The experiments

were performed couple of times to ensure consistent and valid results for comparison. The REST

security implementation uses the same cryptographic algorithms as in the WS-Security configu-

ration. For instance, both SOAP and REST services are set to use the “Basic128Rsa15” security

algorithms suite: it determines the algorithms for digest, symmetric encryption, asymmetric

encryption, as well as key derivation algorithms and key-wrap algorithms.

5.4.2 Size comparison

The Table 5.3 indicates the measurement in size to compare REST and WS-* services in the

different scenarios. It lists the incoming and outgoing message sizes with distinction between

headers and payload size. The results correspond to the different scenarios, with an equivalence

between the Get and Post scenarios in terms of total size. The Large scenario sends a resource

of around 3311kB. In the Get scenario, a client sends a request to the server in order to retrieve a

customer object. In SOAPmessages, the request is embedded in a SOAP envelope. The envelope

grows with the type of security used. For each type, the SOAP headers comprise secure data to

indicate the type of algorithm, the encrypted or signed parts, and sometimes full certificates. In

REST messages, the request is directly represented by the HTTP verb used to query the server.

Therefore, no additional payload is necessary than the actual data plus some meta-data headers.

Figure 5.3: Overhead of SOAP messages compared to REST. For each scenario and security, the

REST size represents the base 100

The Figure 5.3 highlights the global overhead using SOAP with any security mechanisms

for the different scenarios. The REST size represents 100 for each scenario and security. We

compare then the message overhead of different security mechanisms with its REST equivalent.

For example, a SOAP-signed message size with the Get scenario represents around 460 when its

counterpart in REST is 100. In the figure, we distinguish a second dimension: the origin of the

overhead - from incoming message or outgoing message. The message increase for the previous

scenario is half due to the incoming message, and second half by the outgoing message. In all

113

tests, the usage of SOAP services instead of REST services is less efficient in terms of message

size. The minimal overhead impact in all scenarios is 33%, which is the case where message

payload is really large. We can explain it by the minimal impact of SOAP overhead compared to

the actual data to transmit. This number is the result of our measurements, where the size of mes-

sages (including incoming and outgoing payload and headers) is larger when WS-* services are

used compared to REST services, with all security mechanisms. The experimental cases where

REST security protocol is the most efficient compared to WS-Security is on encryption of small

set of data. The Get and Post scenarios present high SOAP overhead when data to transmit is

small. For such cases, SOAP adds to much meta-data compared to the actual information, which

multiply up to eight times the message size for a request and response in our measurements.

5.4.3 Processing performance comparison

In this paragraph, we present the processing performance comparison. The server has a certifi-

cate with RSA 1024 bits key, and the different clients have RSA 4096 bits. The difference of

key size for the clients and the server impacts the time of processing depending on actions per-

formed by the different actors. This behavior is directly linked to the performance of asymmetric

algorithm that differs from encryption and decryption [Dai09]. For instance, the encryption al-

gorithm is straightforward has it uses a small value for the exponentiation (typically 0x10001).
The decryption algorithm requires more computation as the exponent is of the size of the private

key (1024 or 4096 bits in our benchmarks). Thus, the server can decrypt faster than clients at

the cost of less security. The calculated factor shows server decryption is around 20 times faster

than client decryption. In our benchmarks, it impacts the performance comparison between the

different scenarios we have defined. For instance, the server processes messages from the Get

scenario with one encryption (fast operation) when messages from the Post scenario needs to be

decrypted (slow operation) which lowers the processing time and throughput.

Figure 5.4: Average processing time comparison for the different scenarios

We have calculated the average processing time calculated under the same conditions. Each

scenario has been launched for 60 seconds, with a single client emitting requests. The client

114

sends messages sequentially to not overload the server and to extract the optimal processing

time. The Figure 5.4 depicts the differences between the different scenarios. The difference

between REST and SOAP average processing time differs depending on the algorithm scheme

and scenario used. In the Get and Post scenarios, REST is twice more efficient than SOAP when

cryptography is used. It can be explained by the ratio of data related to XML format and SOAP

meta-information that impact size of messages. For thin SOAP messages, the ratio doubles the

size compared to REST messages. The time spent to process message is directly impacted by

this size. For large messages, the encryption scheme is shown to be slower than signature.

We can notice differences in term of performance with regards to encryption and signature,

depending on the size of data to be processed. Although SOAP encryption is always more costly

than SOAP signature, REST shows better performances with encryption when amount of data

remains low like in the Get and Post scenarios. If the data size growths, signature is faster than

encryption.

5.5 Related Work

In this section, we present some security models adopted by existing web services to expose

their REST API’s. Then, we provide alternative approaches to address REST security and per-

formance issues.

The security model adopted by Amazon S3 [Ama06] supports authentication and custom

data encryption over HTTP requests. The requests are issued with a token to prevent unau-

thorized users from accessing, modifying or deleting the data. The token conveys a signature

value calculated per request which transmits a proof of identity, ensuring the authenticity of the

request, similar to our protocol. The data encryption can be performed by the client itself, or

by the server prior storage. The communication is supposed secured through SSL endpoints.

Our approach brings more flexibility as actors decide of resources and headers to protect and

transform. The server benefits of the PKI environment to render services to its clients without

the need to generate and maintain a set of secret keys. The clients can also enable the REST

security protocol with different service providers by simply uploading their public key.

The other models adopt a slightly different approach, making intensive usage of the OAuth

2.0 protocol. Yahoo [Yah] uses OAuth Authorization protocol (OAuth Core 1.0 [Ha10]) which is

a simple, secure protocol to publish and share protected data when several actors require access

to the resource. Yahoo demands the usage of an API Key to sign requests and provide end-user

authentication. Twitter [Twi11] leverages the transport layer security by exposing REST APIs

over SSL. Facebook [Fac12] requires the OAuth 2.0 protocol [Rea12] for authentication and au-

thorization. They distribute SSL Certificates to consumers so that they can create signed requests

and force users to use HTTPS. The Dropbox model [Dro12] allows third-party applications to

use their services on behalf of users. Their model forces the requests through SSL and requires

additional authenticity checks on messages. Like the previous approaches, they are combining

transport layer security and application security. In our approach, we simplify the access of re-

sources by unifying security at the message level. For instance, performing a request to retrieve

a file with Dropbox transmits content metadata in an header. This content can be visible when

the packet reaches the endpoint of a SSL tunnel, whereas our approach protects the header until

115

its consumption.

The idea of having RESTful security as an equivalent of WS-Security has been expressed

in a blog entry [Las10], using a similar approach but with no implementation and concrete

specification. An approach to sign and encrypt multiparts have been drafted in [GMCF95]. They

do not refer to REST services, but rather propose a model integrated to the multipart separation

content to describe meta-information. Our approach benefits from multipart to split the payload

in several resources, but we prefer centralizing security meta-data in headers to avoid service

disruption, and to incorporate other field protection: headers, parameters, etc.. Our lightweight

approach modifies content only when necessary.

Pautosso et al. [PZL08] describe the differences between REST services and “big” services

with a number of architectural decisions about which type of service is more appropriate. We

have used this work to compare security of both approaches and to provide an extension to

REST services for more security. The work in [RS07] addresses attacks targeting SOAP-based

services. Although attacks are based on the XMLmessage format, we advocate that the approach

presented can be easily introduced in our implementation using particular header fields to inform

about the document structure.

Optimizing service consumption in terms of performance has been addressed for a long

time. The problem is rather to balance usability and composability while allowing cross-cutting

concerns such as security to protect the messages with a variable level of granularity. We can

mention work on Fast Web Services [SPGK+03] which defines binary-based messages to lower

bandwidth and memory consumption. The price is the loss of self-description so that interme-

diaries cannot process the messages. In [STT05], Suzumura et al. propose a different approach,

which is based on SOAP messages. They boost performance by considering partial regions

of messages that differ from previously processed ones. Albeit the approach gives interesting

results, they can not help with encrypted SOAP messages in the current state of the protocol.

5.6 Summary

We have presented a novel approach to provide security for RESTful services equivalent to WS-

Security. Our solution respects the REST philosophy by minimizing the processing overhead

to service consumers, without interfering in the service composition already in place. We are

able to keep messages confidential and to sign them with a fine granularity. The custom and

ad-hoc processing on a per-message basis is a valid alternative to the existing approaches, which

consider mainly transport layer security for securing all REST services. The advantage of our

approach is to hide the complexity for the consumers, with no pollution on request parameters,

while still carrying security tokens processable and verifiable by recipients.

In addition, the REST security protocol allows us to build new secure collaborations be-

tween systems. We have presented two cases in which REST security protocol shows benefits:

providing proofs for the transmission of other tokens that are part of a flow, and easy application

of security properties in a flow of messages that pass through reference monitors to validate and

enforce security policies. This is made possible as we propose to work on part of the messages,

with custom security to specific business purposes. Also, the security properties are propagated

with the resource as we provide an end-to-end application of security.

116

We also conducted a performance evaluation considering several use-cases to analyze the

impact of message protection to the performance of the web services. The analysis comprises

heterogeneous scenarios to compare different security mechanisms among them, but also the

behavior of the application server when dealing with RESTful services versus SOAP-based web

services. The results show that RESTful services are processed more efficiently from any point

of view, which is inherent to the service’s purpose. RESTful services are oriented to handle

resources, whereas SOAP-based services forge requests for operation invocation. The protocol

is self-descriptive, so all information about the message verifications and transformations are

specified to let the recipient informed about the message state.

The modularization of security properties can be introduced on either the application layer

or in between distributed systems, through gateways or proxies. Although we don’t use aspects

to introduce the security concerns, we rely on points external to an application to detect the

security in place, and react in consequence. This work is a first step towards a larger platform

that taint messages and propagate resource state across layers and across systems. We introduce

it in the perspective part of the conclusion (Section 8).

117

Chapter 6

Modularization of privacy in cloud

platform around persistance layer

In this contribution, we propose the modularization of a different security properties than we

have seen in other chapters: privacy. The modularization is provided down to the platform level

on a cloud application server. Cloud platform providers compete to propose the best solution

for their customer. The attractivity of cloud platforms is growing as they propose on-demand

and flexible solutions for many situations. They free their users from managing complexity of

configuration, installation, and above all scaling of network traffic. In exchange of the contract

with these platforms, the customers agree to delegate data control with the platform. Security of

the cloud platform provider is a key differentiator in the choice of a suitable platform to host their

applications. The role of the platform provider is then to release reliable and security capabilities

to help their clients. Providing a modular and consistent process to properly ensure security for

both platform and users is complex, and thus we bring our solution for a modularization of

privacy concerns down to the platform. It means that the cloud platform provides new APIs and

tools to gather privacy requirements of the application to enforce privacy during the runtime of

the application.

Privacy in cloud computing is a major concern for individuals, governments, service and

platform providers. In this context, the compliance with regards to policies and regulations

about personal data protection is essential, but hard to achieve, as the implementation of privacy

controls is subject to diverse kinds of errors. In this chapter we present how the enforcement of

privacy policies can be facilitated by a Platform as a Service. Cloud applications developers can

use non-obtrusive annotations in the code to indicate where personally identifiable information

is being handled, leveraging the aspect-oriented programming (AOP) features. Subsequently

the evaluation of user defined preferences is performed by trustful components provided by the

platform, liberating developers from the burden of designing custom mechanisms for privacy

enforcement in their software.

118

6.1 Introduction

In order to speed up the deployment of business applications, and to reduce overall IT capital

expenditure, many cloud providers nowadays offer the Platform as a Service (PaaS) solutions as

an alternative to leverage the advantages of cloud computing. We can mention for instance SAP

NetWeaver Cloud, Google App Engine, or VMware Cloud Foundry, to cite a few. PaaS brings

an additional level of abstraction to the cloud landscape, by emulating a virtual platform on top

of the infrastructure, generally featuring a form of mediation to the underlying services akin to

middleware in traditional communication stacks.

As the consequence of that shift, we observe that more and more personally identifiable

information (PII) is being collected and stored in cloud-based systems. This is becoming an

extremely sensitive issue for citizens, governments, and companies, both using and offering

cloud platforms. The existing regulations, which already established several data protection

principles, are being extended to assign new responsibilities to cloud providers with respect to

private data handling.

The provision of privacy preserving services and tools will be one of the arguments favoring

the choice of one PaaS provider over the other when a company is hesitating where to deploy

new cloud application. The proposed reform of the European data protection regulation points

out that privacy-aware applications must protect personal data by design and by default: “Ar-

ticle 22 takes account of the debate on a ’principle of accountability’ and describes in detail

the obligation of responsibility of the controller to comply with this Regulation and to demon-

strate this compliance, including by way of adoption of internal policies and mechanisms for

ensuring such compliance. Article 23 sets out the obligations of the controller arising from the

principles of data protection by design and by default. Article 24 on joint controllers clarifies

the responsibilities of joint controllers as regards their internal relationship and towards the data

subject1.”

The correct enforcement of privacy and data usage control policies has been recently subject

of several incidents reported about faulty data handling, perhaps on purpose, see for instance the

cases of Facebook2.

Therefore, addressing compliance requirements at the application level is a competitive ad-

vantage for cloud platform providers. In the specific cases where the cloud platform provider

is also considered a joint controller, a privacy-aware architecture will address the accountability

requirement for the PaaS provider with regards to the next generation of regulations. Such archi-

tecture can enable compliance also for the Software as a Service delivery model, if we assume

the software was built over a privacy-aware platform. On the other hand, this could be hardly

achieved in the context of Infrastructures as a Service, since there would be no interoperability

layer on which the privacy controls can rely on.

In order to achieve this, the PaaS must implement some prominent, possibly standardized,

privacy policy framework (such as EPAL[AHK+03], P3P[Cra03]), where privacy preferences

can be declared in a machine-readable form, and later enforced automatically. In such a setting,

1http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_

11_en.pdf
2http://mashable.com/2011/10/21/facebook-deleted-data-fine/

119

the privacy enforcement controls could be easily incorporated into new deployment landscape

accelerating the development process of compliant applications. Furthermore the cloud plat-

form can offer the guaranties ensuring the correct implementation of the enforcement compo-

nents. This could be offered either via a certification mechanism or an audit of an existing cloud

landscape that would be executed by the governing entities.

In this contribution we present work towards the implementation of privacy-aware services

in a PaaS. We aim to empower the cloud platform with capabilities to automatically enforce

the privacy policy that is result of the end-user consent over the application provider privacy

policy. End-user policies and service provider terms of use are defined in a state of the art

privacy and usage control language [BNP11]. In order to leverage the provided implementation

of privacy-aware services, cloud application developers need to introduce simple annotations to

the code, prior to its deployment in the cloud. These indicate where PII is being handled, towards

automating privacy enforcement and enabling compliance by design and by default. The idea

is outlined in Figure 6.1, and consists of design-time steps (declaring policies, annotation of

the code and deployment in the cloud); and run-time steps (including policy matching, privacy

control and obligation execution).

Figure 6.1: Privacy aware PaaS components

The enforcement mechanisms are provided by the platform with the help of a new approach

for aspect-oriented programming where aspects can be manipulated at the process and at the

platform levels [ISR+11]. That approach gives a possibility to maintain a more flexible configu-

ration of the enforcement mechanisms. The mechanisms interpret end-user preferences regard-

ing handling of the PII, presented in form of opt-in or opt-out choices among available privacy

policies of a cloud application, and later perform the required actions (filtering, blocking, dele-

tion, etc). We experimented on a Java-based Platform as a Service, SAP NetWeaver Cloud, to

demonstrate how privacy preferences can be handled automatically thanks to the use of sim-

120

ple Java annotation library provided in our prototype. The platform provider can make in this

way an important step towards providing built-in compliance with the personal data protection

regulations transparently, as we describe in the next sections.

The remainder of the contribution is organized as follows: in Section 6.2 we present our

use case and we give a brief overview of the privacy policy language we adopt in this work,

Section 6.4 brings a discussion on related works, in Section 6.3 we introduce the technical

architecture allowing to enforce privacy on multiple PaaS layers and Section 7 presents future

perspectives along with summary of the contribution.

6.2 Privacy-Aware Applications in the Cloud

In this section we present our use case involving multiple stakeholders accessing users’ PII in

the cloud, as well as some background on privacy policy language that we used.

6.2.1 Use case

In our use case we consider a loyalty program offered by a supermarket chain, accessible via a

mobile shopping application that communicates with back-end application deployed on the PaaS

cloud offering. The supermarket’s goal is to collect the information about consumers’ shopping

behavior that results in the creation of a consumer profile. This profile could then be used to

provide consumers more precise offers and bargains. Supermarket’s business partners may also

want to access this information in order to propose personalized offers to the mobile shopping

application users themselves.

The back-end application for the supermarket loyalty program is developed using Java pro-

gramming language and uses the cloud persistency service to store application data. The inter-

face to access the persistency service is based on Java Persistence API (JPA)3, which is nowadays

one of the most common ways of accessing a relational database from Java code.

The supermarket employees can access detailed results of database queries regarding the

consumers’ shopping history and also create personalized offers, via a web-based portal. More-

over, the cloud application exposes web services through which third parties interact with the

back-end system to consume collected data: both for their own business analysis, but also to

contact directly the consumers for marketing purposes.

The interface for the consumers makes it possible to indicate privacy preferences with re-

spect to the category of products (health care, food, drinks, etc) that one wants to share his

shopping habits about. The consumer can also indicate whether he permits the supermarket to

share personally identifiable information with its business partners, among other usages. This

choices are then reflected by the private data access control mechanism that we will describe in

Section 6.3.

3http://docs.oracle.com/javaee/5/tutorial/doc/bnbpz.html

121

6.2.2 Background: Privacy Policy Language

The users of the mobile shopping application are asked to provide various kinds of personal

information, starting from basic contact information (addresses, phone, email) to more complex

data such as shopping history or lifestyle preferences. Service providers describe how users’

data are handled using a privacy policy, which is explicitly presented to users during the data

collection phase.

We adopt the PrimeLife4 Policy Language (PPL) [BNP11], which extends XACML with

privacy-related constraints for access and data usage. PPL policy is then used by the application

to record its privacy policy. It states how the collected data will be used, by whom, and how it

could be shared. On the other hand, the end-user also selects among the possible choices as to the

conditions of the data usages, that are derived from privacy policies specific to the application.

This user opt-in/opt-out choice is managed by the application and as such is not part of the

generic enforcement mechanism developed by us. Before disclosing personal information, the

user can match his preferences against the privacy policy of the service provider with the help of

a policy matching engine. The result of the matching process is an agreed policy, which is then

translated into the set of simple rules that are stored together with users’ data inside the cloud

platform’s database servers.

In summary a PPL policy defines the following structures [BNP11]:

• Access Control Elements: inherited from the XACML attribute-based access control mech-

anism to describe a shared resource (in our case PII) in general, as well as entities (sub-

jects) that can obtain access to the data.

• Data Handling Preferences: expressing the purpose of data usage (for instance marketing,

research, payment, delivery, etc.) but also downstream usage (understood here as sharing

data with third parties, e.g. advertising companies), supporting a multi-level nested policy

describing the data handling conditions that are applicable for any third party retrieving

the data from a given service.

• Obligations: specify the actions that should be carried out with respect to the collected

data, e.g. notification to the user whenever his data is shared with a third party, or deletion

of the credit card number after the payment transaction is finished, etc. Obligations in

PPL can be executed at any moment throughout whole lifetime of the collected data and

can affect future data sharing transactions, e.g. with third parties.

An excerpt of a policy is shown in Figure 6.2. It shows part of a policy rule, stating the con-

sent to use the data collected for three distinct purposes (described using P3P purpose ontology),

but forbids downstream usage.

Consumer opt-in/opt-out choice is linked with PPL policy rule via XACML conditions that

we adopted for this purpose. We have reused EnvironmentAttributeDesignator elements syntax

to refer to the actual recorded consumer choice in the application data model, as shown in Figure

6.3. The location is provided as the AttributeId value and can be read as TABLE_NAME:COLUMN_NAME

of the database table where this choice is stored (CONSUMER_CONSENT) as well as a foreign

4www.primelife.eu

122

Figure 6.2: Excerpt of a PPL policy rule

Figure 6.3: Excerpt of a PPL policy condition

key to the product category table (CATEGORY_ID) that is used to join products table. This

information is used when enforcement mechanism is put in place to take consumer consent

into account whenever information about consumer’s shopping history (for certain product cat-

egories) is requested. This policy definition of how user consent is linked to the rest of the

application data model is left in charge to the application developer as he is the one possessing

full knowledge of the application domain.

6.3 Privacy Enhanced Application Programming

We have designed a framework able to modify, at the deployment time, the architectural elements

(such as databases, web service frameworks, identity management, access control, etc) enriching

it with the further components in order to enforce user privacy preferences. In this landscape

the new applications deployed on the modified platform can benefit from privacy-aware data

handling.

6.3.1 Programming Model

The privacy-aware components are integrated seamlessly with cloud application at the deploy-

ment time, so that the enforcement of privacy constraints is done afterwards automatically. They

mediate access to the data sources, enforcing privacy constraints. In this case we are taking full

123

Figure 6.4: JPA entity class annotation indicating persistency of private information

benefit of the uniform database access in the PaaS landscape that is exposed via standard Java

database interfaces such as JDBC (Java Database Connectivity) or JPA.

Usually the application code handling privacy related data is scattered and tangled over the

application, being difficult to handle and to maintain if any changes in the privacy policy are

introduced. As we observed in the existing applications the operations, which are performed on

the private user data to ensure that privacy policies are enforced, are typically cross-cutting con-

cerns in aspect-oriented programming paradigm. Inspired by this, we designed a process for the

application developer that contributes to simplifying a way the data protection compliance could

be achieved. It consists of adding meta-information to the application code via Java annotation

mechanism in the JPA entity classes. Entity class in JPA terms is the one that is mapped into a

database structure (usually a table, but also more complex type of mappings exist, e.g. to map

object inheritance hierarchy) and enables the objects of that class to be persisted in a database.

We provide also a second type of annotations, for the methods that make use of a private data,

to indicate the purpose of the data usage.

The modifications to the code are non-intrusive, in the sense that the application business

functions flow will stay exactly the same as before, except for the data set it will operate on, that

will be obtained from database by adhering to the privacy policy. The changes are as transparent

as possible from the application point-of-view as new platform components propose the same set

of API as in the traditional platforms (in our case this API is JPA) and additional functionality

is obtained via non-obtrusive code annotations that in principle could be easily removed in case

described features are not required or not available.

This approach adds value with respect to legacy applications while allowing privacy man-

agement when needed. Another advantage is that the cloud service provider can easily move to

another cloud platform without being locked into the certain vendor, apart from the fact that the

guarantees given by the platform about private data handling could not be the same.

The platform we used to develop our prototype offers the enterprise level technologies avail-

able for Java in terms of web services and data persistency (JEE, JPA). In most of the examples

we present along the use case we assume that the application developer will likely use a frame-

work such as the JPA to abstract the database access layer.

In our approach developers are required to add annotations to certain constructs, such as

@PII annotation in the JPA entity class (Figure 6.4). This annotation indicates that the class

comprises one or more fields having private data (that usually are represented in database as

columns) or that all fields are to be considered as PII (thus whole database table row needs to

be either filtered or kept during the privacy enforcement, as JPA entity is by default mapped to a

database row).

In the business code that is handling the private data we propose to use two other annotations

to indicate class and method that processes PII sets. An example of annotated code is shown in

124

Figure 6.5: Annotating private data usage class with PII meta-information

Figure 6.5. In this figure the method annotation holds the information that the shopping history

list items will be processed for marketing purpose.

In summary our library provides three different annotations:

@PII: It is a flag to indicate personally identifiable information inside a JPA entity class defi-

nition. Such information is usually stored in a database as a table or a column. In Figure

6.4 this annotation involves the scope of the class declaration, see lines 2 and 3.

@PiiAccessClass: This annotation should be put in the class to indicate where it contains access

methods to personal data (see line 5 in Figure 6.5). We assume that PII access method

performs queries to the database that are requesting private user data.

@Info: This annotation is applied to PII access method, to describe the purpose or set of pur-

poses of the query performed in that method (see lines 9 and 10 in Figure 6.5).

We expect the application developers to use this annotations to mark each usage of personal

data as well as to indicate correct purposes. Ultimately they seek compliance to regulations,

therefore we trust them to correctly indicate via the annotations the intended usage of the data.

One can envisage that automated code scanners and manual reviews can take place during an

audit procedure in order to check whether the annotations are rightfully used.

6.3.2 Implementation

In this section we detail the components of our prototype architecture. Technically our code

components are packaged as several OSGi (Open Services Gateway initiative framework5) bun-

dles. A bundle is a component which interacts with the applications running in the cloud plat-

form. Some of them are to be directly deployed inside the PaaS cloud landscape and managed

by the cloud provider while the other are part of the library to be used by the cloud application

developers. Cloud providers can easily install or uninstall bundles using the OSGi framework

without causing side effects to applications themselves (e.g. no application restart is required if

some of the bundles are stopped). In the context of our scenario, we have three main bundles

managed by the cloud provider (JDBC Wrapper, Annotation Detector and SQL Filter) and one

additional bundle (Policy Handler) that is providing a translation from an application privacy

policy file written in the PPL language into an internal representation stored in the Constraints

5http://www.osgi.org

125

Figure 6.6: Enforcement components

Database. The diagram in Figure 6.6 presents the architecture of the system, which we are going

to describe in more details in the following subsections.

JDBC Wrapper

The Wrapper intercepts all queries issued by the cloud application directly or by the third parties

which want to consume the collected data containing shopping history of the fidelity program

participants. This component is provided on the platform as an alternative to the default JDBC

driver in order to enforce consumers’ privacy preferences. Actually the wrapper makes use of

the default driver to eventually send the modified SQL calls to database.

JDBC Wrapper bundle implements the usual interfaces for the JDBC driver and overrides

specific methods important to the Java Persistence API, necessary to track the itinerary of SQL

queries. As a matter of fact, it is wrapping all JDBC methods that are querying the database,

intercepting SQL statements and enriching them with proper conditions that adhere to privacy

policy (e.g. by stating in the WHERE clause conditions that refer to the consumer consent table).

In order to identify the purpose of each query, its recipient and the tables referred, we retrieve the

call stack within the current thread thanks to the annotations described in the previous section.

We look for the PII access class, then we look for the method that sends the request to get the

further parameters that help properly enforce privacy control.

Annotation Detector

First task of this component is to scan Java classes at the deployment time and look for the

JPA entities that are containing privacy-related annotation in its definition (@PII). List of such

classes is then stored inside the server session context. Information about entities considered

126

as PII is used to determine which database calls need to be modified in order to help preserve

consumer privacy preferences.

In the second run the annotation detector scans the application bytecode in order to gather in-

formation concerning the operation that the application intends to perform on the data, annotated

with @PiiAccessClass and @Info annotation. It is important to recall that the annotations

are not a “programmatic” approach to indicate purpose, as they are independent from the code,

which can evolve on its own. The assumption is that developers want to reach compliance, thus

the purpose is correctly indicated, in contrast to [BBL05], where it is assumed that end-users

themselves indicate the purposes of the queries they perform. The cloud platform provider can

instrument the annotation detector with a configuration file where the required annotations are

declared. The detector can recognize custom annotations and stores information about related

entity class in the runtime for future use.

SQL Filter

This component allows us to rewrite original queries issued to the database by replacing the

requested data set with a projection of that data set that takes into account consumers’ privacy

choices. SQL Filter modifies only the FROM part of a query, implementing an adapted version

of the algorithm for disclosure control described in [LAE+04], also similar to the approaches

described in [AKSX03], [MT06], and [RMSR04].

The query transformation process makes the use of the pre-processed decisions generated by

the Policy Handler that concerns each possible combination of the triple purpose, recipient and

PII table.

The transformation of the SQL query happens at the runtime. Consumer’s privacy pref-

erences are enforced thanks to the additional join conditions in the query, relating data sub-

ject consent, product category and filtering rules. The output is a transformed SQL query that

takes into account all stated privacy constraints and is still compatible with the originally issued

SQL query (it means that the result set contains exactly the same type of data, e.g. number

of columns and their types). From a business use-case perspective, it was always possible to

visualize relevant data, e.g. shopping history information, etc, without disclosing personal data

when user didn’t give his consent. The process is illustrated in Figure 6.7. It depicts the process

of query modification when application is accessing data from the SHOPPING_HISTORY ta-

ble (top-left corner of this figure). Original query (bottom-left) is transformed so that it takes

into account the information derived from privacy policy that was put by the Policy Handler

in the CONSUMER_CONSENT table (top-center). This table stores the association between

the consumers and the different product categories with which these consumers opt to reveal

their shopping history. Modified query (bottom-right) yields the data set of the same structure

as original query but without disclosing the information that consumers declined to share, as it

can be seen in the RESULT table (top-right).

The negotiated privacy policies are stored under the form of constraints together with the data

in the database component provided by the cloud infrastructure. Whenever a query is launched

by the application, we use the information collected by the annotation detector in order to modify

queries on the fly, thus using the constraints to filter out the data that is not allowed to appear in

the query results.

127

Figure 6.7: SQL transformation example

This approach is interesting because the behavior of the application itself is not modified.

The impact on the performance of the system is minor, as the policy enforcement is actually

pushed into a database query and also the complexity of this query transformation algorithm is

low, as shown in previous works [LAE+04]. The work in [AKSX03] brings some performance

evaluation for the same kind of transformations. We advocate that the ability to implement

privacy controls is more important than these performance questions when dealing with private

data in cloud computing.

6.4 Related Work

There are many similarities between our approach and the work described in [MT06]. It pro-

poses a holistic approach for systematic privacy enforcement for enterprises. First, we also build

on the state of the art access control languages for privacy, but here with an up-to-date approach,

adapted for the cloud. Second, we leverage on the latest frameworks for web application and

service development to provide automated privacy enforcement relying on their underlying iden-

tity management solutions. We also have similarities on the way privacy is enforced, controlling

access at the database level, which is also done in [AKSX03].

Although the query transformation algorithm is not the main focus of our work, the pre-

vious art on the topic [CNS99, RMSR04, BBL05] present advanced approaches for privacy

preserving database query over which we can build the next versions of our algorithm. Here

we implemented an efficient approach for practical access control purposes, but we envisage to

enrich the approach with anonymization in the future.

On the other hand, we work in the context of the cloud, where a provider hosts applica-

tions developed by other parties, which can in their turn communicate with services hosted in

other domains. This imposes constraints outside of the control of a single service provider. We

128

went further in the automation, by providing a reliable framework to the application developer

in order to transfer the complexity of dealing with privacy preferences to the platform provider.

Our annotation mechanism provides ease of adoption without creating dependencies with re-

spect to the deployment platform. More precisely, no lock in is introduced by our solution.

However, changes in the database schema that involves PII data require an application to be

redeployed in the platform in order to process the eventually new annotations. An alternative is

to approach [TS12] to provide sticky policies in the cloud.

The work in [Lan02] presents an approach based on privacy proxies to handle privacy rele-

vant interactions between data subjects and data collectors. Proxies are implemented as SOAP

based services, centralizing all PII. The solution is interesting, but it is not clear how to adapt the

proxy to specific data models corresponding to particular applications in a straightforward way.

Our work is aligned with the principles defended in [PC09], in particular we facilitate many

of the tasks the service designers must take into consideration when creating new cloud-based

applications. In [MP09], a user-centric approach is taken to manage private data in the cloud.

Control is split between client and server, which requires cooperation by the server, otherwise

obfuscated data must be used by default. This is a different point of view from our work, where

we embed the complexity of the privacy enforcement in the platform itself.

Automated security policy management for cloud platforms is discussed in [Lan10]. Using

a model driven approach, cloud applications would subscribe to a policy configuration service

able to enforce policies at run-time, enabling compliance. The approach is sound but lacks of

fine-grained management for privacy policies, as it is not clear how to deal with personal data

collection and usage control.

In this work, we use privacy policy based on the data owner’s preferences, to then monitor

use of sensitive data and filter out the results. We have decided to let the application developer

in charge of linking user consent to the rest of the application data, so that no specific adminis-

tration model for the privacy policies is defined. In reality, the application hosted by the cloud

platform needs to address a combination of security policies coming from the cloud platform,

the application’s policy and the user consents. For such approach, we can benefit from Ajam et

al. [ACBC10] which propose three administration enforcement approaches of the privacy poli-

cies. From their work, we would have to define several types of context and clarify the different

policies from the different entities.

In [IKC09], cryptographic co-processors are employed to ensure confidentiality of private

data protection. The solution is able to enforce rather low level policies using cryptography as

an essential mechanism, without explicit support to design new privacy compliant applications.

Several works exist on privacy protection in Web 2.0 and peer-to-peer environments, such as in

[TSGW09], where an access control mechanism is adopted for social networks. Some of these

ideas can be reused in the context of cloud applications, but our approach differentiates from

this line of work in the sense we empower the cloud applications developers with ready to use

mechanisms provided directly by the cloud platform.

In [CW07], aspect-oriented programming is used as well to enforce privacy mechanisms

when performing access control in applications. The work adopts a similar approach to ours,

but privacy mechanisms are created in a per-application basis. In our approach, by targeting the

platform as a service directly, we are able to facilitate enforcement in multiple applications.

129

In [Oul13], the author presents an approach that enforces the security and privacy require-

ments based on pre-processing of the queries to the data-sources. Although the technologies are

not the same, we used the same approach to rewrite queries. The author go into the problem

in depth, as they propose a model to enforce privacy and security policies without changing the

implementation of their services. They adapt the response of the services with a fine grained

control of information disclosed by services: depending on the call issuer and the purpose of the

invocation, they adapt the response.

6.5 Summary

We presented a solution to simplify the process of enabling personal data protection in Java web

applications deployed on Platform as a Service solution. We augment cloud applications with

meta-data annotations and private data-handling policies which are enforced by the platform

almost transparently from the developer perspective (the major overhead is only in placing the

right annotations in the code). We differentiate ourselves from other approaches by proposing

tools at the application layer. We intercept set of queries and base our adaption from the resource

description. The description is directly inlined in the application.

The cloud consumer applications indicate how and where personally identifiable information

is being handled. We adapt the platform components with privacy enforcement mechanisms able

to correctly handle the data consumption, in accordance with an agreed privacy policy between

the data subject and the cloud consumer.

The advantages of our approach can be summarized as follows: the implementation details

of the privacy controls are hidden to the cloud application developer; compatibility with legacy

applications, since the annotations do not interfere with the existing code; cloud applications can

gracefully move to other platform providers that implement privacy-aware platforms in different

ways. Sensible changes in the database schema, specifically those modifying PII, require the

application to be redeployed in the cloud, possibly with new annotations.

Some future directions include the orchestration of other components such as event monitors,

service buses, trusted platform modules, etc, in order to provide real-time information to users

about the operations performed on their personal data. We would also be able to provide k-

anonymization We plan to generalize our approach to enforce other kinds of policies, such as

service level agreements, separation of duty, etc.

An important improvement of this work is the integration of advanced k-anonymization

[Swe02] process at the database access level. Such solution would be more adapted to business

applications than access control, since the end-users could obtain more meaningful information,

without fully disclosing the identities of the data subjects.

130

Part III

Conclusion and perspectives

131

Chapter 7

Conclusion

In the course of the thesis, I have developed several contributions related to the secure develop-

ment of applications in a broad range. Initially, it was targetting service-oriented applications,

but we have observed that the techniques and concepts were applying to the discipline of soft-

ware engineering. The proper encapsulation of behavior, and application of cross-cutting con-

cerns in applications, components, platforms, as well as every piece of computer system is the

result of decades of research. The field is becoming more mature over the time, by differenti-

ating business code, technical code, and adapting behavior of the program to several environ-

ments. The thesis falls in an industrial context, where operational safety is central. It means

that developers have several constraints in their application, being both the implementation of

business-specific concerns, i.e., how to make the ERP creating business value to its customers,

but also transverse concerns. We leverage existing technologies related to software engineering

and cross-cutting modularization to adapt them towards secure softwares. Security is a com-

plex field, whom we concentrate on automation of secure programming best practices, but also

modularization of business security concerns.

The contributions can be separated in two categories: contributions that address secure pro-

gramming, and contributions that introduce security properties into application’s landscape. We

first assist developers in writing secure software with the minimal effort. We provide the tools

directly integrated into developers’ landscape to minimize the human factor and avoid the com-

mon pitfalls. The contributions are a direct application of secure programming best practices

in which we provide additional checks and boundaries to offer additional services. In the sec-

ond type of contributions, we propose to introduce security properties at a different level of

abstraction. Instead of developers’ assistance, we provide methods at the platform level. The

problematic differs from a single programming language, and one needs to combine several tools

to gather security requirements, enforce them in the application, and verify their correct appli-

cation during execution. We have developed a security policy language agnostic of concrete

technology, and highlighted the usage with a newly REST-services framework. It means that

the security policies where capable of orchestrating the components and augment their security

without the need to know the concrete service technology used. The specialization is deferred

to the last moment to provide greater flexibility in application of security. In another contribu-

tion, we have also demonstrated the need of platform-wide components to the direct application

132

of privacy. Such components are desirable to offer a consistent approach to properties that are

generally custom made, therefore error prone.

The different contributions show the variety of approaches in modularizing security prop-

erties. From these works, we have observed common pitfalls for which we propose further di-

rections. First, security properties were discussed as they are one single domain which crosscut

application, and in which methodologies applies without distinction. In reality, we differenti-

ate two kind of security, that we express as defensive security and constructive security. The

two kinds of security are completely different. The two generally crosscut the application, but

methodologies to handle their enforcement are different. Second, aspect-oriented approach have

been proposed as one solution to cover all security cases. In fact, there are shade of differences

depending on the scope of the security properties. Aspect-oriented programming is best when

one can easily detect the weaving points . The applications we were analyzing does have points

such as inputs that are fixed and easy to detect. But when it comes to analysis in the dataflow, de-

tection becomes harder with several decisions that can be taken at runtime only. In such case, we

need to provide custom solutions, and generally think at a meta level to respect program seman-

tic and provide the best solution to the specific problem. Third, tackling security properties at

the program-level only might lead to inconsistencies. Programs are inter-connected and evolve

in complex landscape with different configuration, policies, environments. The encapsulation of

security behavior needs to be adapted to the distribute nature of programs.

In order to overcome these pitfalls, we describe in the following a perspective towards cross-

layer and parametric aspect system.

133

Chapter 8

Perspectives: towards a cross-layer and

parametric aspect system

Aspect languages have evolved over the years to ease the integration of aspects in application.

New pointcut primitives have been defined to allow aspect developers to describe complex use

cases. The architecture of aspects has also evolved to follow the new java language specifi-

cations, such as annotations. Yet, the aspect languages are confined to their local execution

environment. The problem is that cross-cutting concerns span different administrative layers,

but also different technical layers. It is difficult to propose at the same time a solution that al-

lows flexible interaction between actors and that ensure definition and enforcement of security

properties across layers. We present in the following requirements for a solution that what we

would like to achieve: consistent and systematic application of cross-cutting security properties

across layers. For this purpose, we advocate new constructs in aspect languages to provide new

extension to existing pointcut languages and new context exposition for advices. It also means

that we have to provide tools for the aspect system. In a nuthsell, we would like to attach more

information to resources when going in and out the application. It provides means to aspect sys-

tem to work on resources into the execution environment of the platform, but also to share the

state of a resource with other applications. In the following, we provide a first section to present

the motivation that conducted to this work. Then, we give requirements for a language that we

briefly present. Then, we express how such a language would have assisted us in the course of

the previous contributions.

8.1 Motivation

Aspect systems are powerful to model cross-cutting concerns and apply them on an application.

Belblidia [Bel08] has presented in her thesis several AspectJ extensions that have been sug-

gested by the community and by her lab to express security issues that cannot be handled with

the AspectJ language. We already introduced some in the previous sections, like the dataflow

pointcut, which allows the detection of an input value in the application that is propagated to a

sink. Masuhara introduced such approach to protect against XSS, although there is no current

134

implementation and that the pointcuts need to explicitly declare propagation of data flow. The

other extensions are oriented towards more expressivity from an aspect developer point of view:

a predicted control flow pointcut, a loop pointcut, inline wildcard in pattern matching, local

variables tracking (and not only parameters of methods and return types), etc.

All of these extensions are there to enhance existing pointcut language with new primitives

in pointcut. In the contributions we have presented in the previous chapters, we also suffer from

aspect expressiveness limitations. In the following, we go through the different contributions of

the thesis and highlight the limitations we experienced with the state of the art aspect languages.

Finally, we present snippets of code to present our vision to handle such problems.

8.1.1 Towards static analysis replacement

In Chapter 3, we presented a solution that use a static analysis phase to gather points in the

application where vulnerabilities might occur.

The tools and methods that we provide in our solution allows developers to have an overview

on the application they develop, and quickly gather vulnerabilities. We have presented guided

steps towards mitigation of the vulnerabilities, depending on the detected categories and by

analyzing the paths between vulnerability sources (entry points) and sinks (exit points).

Using Aspect-Oriented programming for automation of validation library is a natural choice

as we introduce cross-cutting concerns in applications: security transformations in the applica-

tion are scattered and tangled in the application, which makes them difficult to address one by

one. The solution we have developed generates aspects, and builds the list of vulnerability pro-

tection by adding new joinpoints to a particular aspect. There are several pointcuts: one for each

of the couple (category, type), in which category represents a malformed input vulnerability, or

cross-site scripting, etc., and in which the type represents the correction module type to apply in

order to correct the problem. Examples of such correction modules are encodeForJavascript.

Our vulnerability detection approach relies on a built-in detection algorithm to pass directly the

static analysis results to the correction part (validation). The two parts of our approach are ded-

icated components, from which the detection component extracts sensitive points in a program,

and elicit the points where security transformation can be injected. The validation component

uses the output of the previous component to forge a specific pointcut.

We have adopted this approach because of the lack of straightforward information flow and

data flow interception with aspects. The mainstream pointcut language of AspectJ allows a

partial detection of information flow that we abused by recomposing the hierarchy of calls. In

these situations, our problem is the correlation between the pointcut language and the program

syntax. We rely on a specific component to statically analyze the program and elicit sensitive

points, whereas we would like to write a single pointcut that retrieve the sensitive points for us.

The problem is that such pointcut is not yet addressed. The closest approach with aspects, the

dflow pointcut, requires us to indicate entry points and sinks in advance, which we are not aware

of.

We present hereafter two snippets that present how we would use such constructs to propose

an inline analysis of the data through the pointcut language, to directly select joinpoints in which

security protection is injected. Hence, such a construct would limit the dependencies to external

static analysis tool and would provide higher coherence wihtin the security coverage.

135

Listing 15 presents the first construct that categorizes data when passing through an entry

point. Our underlying system needs to follow the propagation of the data, hence following

the dataflow to propagate the tag information. Listing 16 presents another usage of the new

constructs to build and control the tags.

Listing 15 Dataflow tagging with the new construct

@Pointcut("call(* javax.persistence.Query.get*(..)) && settag(EntryPoint.REPOSITORY)")

public void pointcutTagDataSource() {

}

@Pointcut("call(* javax.xml.ws.Dispatch.invoke*(..)) && settag(EntryPoint.WEBSERVICE)")

public void pointcutTagWebServiceDispath() {

}

//...

Listing 16 Intercepting and tagging with the new constructs

@Pointcut("call(* com.sap.businessmodel.accounting.cashflow.*(..))"

"&& hastag(EntryPoint.WEBSERVICE) && settag(Business.ACCOUNTING)")

public void pointcutTagAccounting() {

}

Listing 17 presents the second step. Once the data has been tagged by our system, we can

define new pointcuts that, depending on the applied tag and the control flow, determine new

joinpoints with en enhanced expressivity. The pointcut would allow parameters passing to the

advice to enable complete context retrieval: control flow history including entry points, tags that

have been applied, etc.

Listing 17 Parametric advice with new construct

@Around("hastag(EntryPoint.WEBSERVICE) && call(java.io.PrintWriter.print(arg)) && String(arg)")

public void doApplyValidationField(final JoinPoint jp

, final ControlFlow flow, String value)

throws Exception {

final Signature signature = jp.getSignature();

final ControlFlowHistory history = flow.getHistoric();

final List<Tag> tags = flow.getTags(value);

}

These small snippets are for example purpose only to indicate what kind of interaction one

would like with new primitives.

8.1.2 Automated source classification for input verification

The model and tools we present in this contribution are close to the type of pointcut constructs

we would like to introduce in this thesis. In Chapter 4, we are combining different techniques,

and delegating manual processing to the developer for few tasks, such as annotating code in

the application to indicate enhanced data-types. The goal is to have a consistent view on data

meta-information for a systematic validation of inputs. The manual processing can be easily

automated with our pointcut constructs that observe entry points of a program and decide of the

correct verification code to introduce.

136

Our focus is to augment aspect expressivity to let an aspect developer intercept points in

the application where he can introduce the verification code for a given data-type. The actual

type of the input is a-priori not known in the context of the application. This is the reason for

which we were annotating the source code. With our approach, we would like to replace the

annotation phase by an automated discovery of the actual enhance data-types. There are sources

that provide complete description of the type, such as a database schema, or an xml schema. But

the information might also comes from a policy file, or directly from a client along the data. In

any case, our solution would give the possiblity to extract information from elements outside of

the scope of the application to integrate the context into the application.

Then, an aspect developer would create aspects that rely on this information. For this pur-

pose, we need a system that intercept elements between layers (technical layers such as reposi-

tories, controller, service framework, communication, etc.).

8.1.3 Cross-layer context passing

In Chapter 5, we introduce REST Security, which allows flexible application of security on

messages. It simplifies the problem of handling security properties in the context of multiple

actor collaboration. We presented use cases in which REST Security provides novel approach.

The enforcement of security properties in cross-domain collaboration is implemented thanks

to dedicated reference monitors. Although reference monitors fill the requirements to analyze

traffic and apply security transformations, one would need to preserve the resource state in term

of security. For instance, a security policy would force a resource to come encrypted in an

application, and the reference monitor would transparently decrypt it. The problem in such case,

is that we loose the transformation history. The application which handle the resource is unable

to know if the resource was actually protected, and from which moment the resource has been

transformed in clear text.

Such behavior can benefit to the handling of any resource on the application. At anytime,

a developer would be able to retrace the history of actions, its provenance, etc. We need to

have mechanisms that pass context through layers, and that allow us to propagate the context

during the execution of an application. We would also be able to investigate an automated way

to configure services to enable security transformations when necessary, i.e. when the resource

is sensitive or contains restricted information.

8.1.4 Inference protection

The work we have presented in Chapter 6 does not allow us to prevent inference of data, as

we don’t collect enough context to detect such inference. In [BBA+13], the authors present a

privacy preserving composition execution system. This approach is interesting as it allows the

composition of several services to provide results that respect a k-anonymization. They target

data Services, which are somehow atomic services to access data source. Instead, we position

our solution to run at the application layer, while still communicating with data-source layers

and service layer.

In the approach described in Chapter 6, we are relying on custom declaration from develop-

ers or administrators in order to provide privacy for customer’s of the application that is hosted in

137

a cloud platform. The problematic when we introduce such solution is to ensure to the different

stakeholders that they can provide protection against data inference to their customers. It means

that we need to have protection against a person or a group of persons that correlate application’s

results to extract personal identifier data.

We would like to assert that privacy requirement is fully respected without leaving the ap-

plication level. The problem is that for inference protection, we need to gather several requests

coming in the application and analyze them.

The requirements to achieve such detection is to have a system capable of capturing the

numerous requests and responses during the application’s execution. In the following (cf List-

ing 18, we are highlighting a potential implementation that could rely on our set of pointcut

and advice proposal. In a natural language, the protection against such attack would lead to the

following process

• Determine identity of the requestor and the query intent

• Tag the data extracted from the table

• Compare the data from the history of extracted data

• Allow or deny access in case of data leakage risk

Listing 18 Example of protection against data inference with data access for several purposes

1 @Pointcut("within(@PiiAccessClass *) && call(@Info * *(..))")

2 public void pointcutPiiPurpose(){}

3

4 @Before("pointcutPiiPurpose()")

5 public void setRequestorIdentity(JoinPoint joinpoint, ControlFlow flow){

6

7 User user = (User) SecurityContextHolder.getContext().getAuthentication().getPrincipal();

8 Purpose purpose = getPurposeForCurrentJointPoint(joinpoint);

9 flow.addPrincipal(user, joinpoint);

10 flow.setTag(joinpoint, "Purpose", purpose);

11 }

12

13

14 @AfterReturning(pointcut="pointcutPiiPurpose()", returning="list")

15 public void setDataFlowInformation(JoinPoint joinpoint, ControlFlow flow, List<ShopHistory> histories){

16 flow.setTag(joinpoint, EntryPoint.REPOSITORY, histories);

17 }

18

19 @Pointcut("hastag(EntryPoint.REPOSITORY, purpose)")

20 public void pointcutTaggedData(){}

21

22 @Before("pointcutTaggedData()")

23 public void verifyInference(JoinPoint joinpoint, ControlFlow flow, History history){

24 Purpose purpose = flow.getTag("Purpose");

25 if (!history.containsPrincipal(flow.getPrincipal(data)))

26 return;

27

28 Purpose previousPurpose = history.getTags(flow.getPrincipal(data)).getTag("Purpose")

29 if (purpose != previousPurpose)

30 throw new DataLeakInformationException("Principal user already access some data with different purpose");

31

32 }

33 }

Although we haven’t implemented the solution presented above, it gives few indicators

and prerequisites to handle such problematic. The Listing 18 describes at line 1 a pointcut

to detect methods annotated with the @Info annotation and that are contained in a class with

138

@PiiAccessClass annotation. The corresponding advice that get principal information is pre-

sented at line 5. In our snippet, we also tag the control flow context. The advice at line 14

indicates that a specific object has for origin a repository. At line 23, another advice is executed

when data is loaded from a repository and that there is a specific purpose associated.

8.2 Requirements

In the previous sections, we have presented several motivations towards new constructs for

pointcuts and for a complete aspect system that cross-cut layers. The requirements were first

discussed in [ISR+11].

The aspect model we envision is based on the pointcut-advice model for aspects, with some

important extensions to be applied. The pointcut-advice model is characterized by three main

abstractions: aspects, pointcuts and advice that together provide means for the concise definition

and efficient implementation of so-called cross-cutting functionalities of a base application, such

as security, that cannot typically be modularized with existing structuring and encapsulation

mechanisms, such as services or components. We address these requirements by the following

set of major characteristics that the aspect model has to fulfill. These characteristics are for

most of them general in the sense that they apply to all three basic aspect abstractions (aspects,

pointcuts and advice) - except if stated otherwise in the following:

• Basic abstractions and relations: The pointcut language should enable referencing all

relevant abstractions of the model and the concrete infrastructures; the advice language

allows to manipulate these entities. Relevant relationships between them include relations

between adjacent abstraction levels or the ability to protect some of them using certain

security mechanisms, such as access control, while others may not be modified by that

security mechanism.

• Composition model: The aspect model should provide a gray-box composition model,

i.e., aspects may access parts of application implementations. However, such access can

be restricted by explicit fine-grained conditions on the structure and behavior of the under-

lying base system. The aspect model will therefore provide strong control over invasive

composition. Corresponding conditions will be defined as part of evolution tasks through

the aspects that realize them. The conditions may then be integrated before execution in

the runtime representations of aspects or the underlying infrastructure, or enforced, possi-

bly at execution time, on implementations.

• Dynamic application: Aspects should be applicable dynamically even though static appli-

cation strategies may also be used, especially for the introduction of security mechanisms

that would suffer from an excessive overhead. Many current aspect models only support

a static or load-time application of aspects, which severely limits their applicability for

many composition tasks. Our model therefore significantly broadens the use of aspects

to many real-world scenarios that involve highly dynamic applications. Another general

characteristic of our model is that the model enables the aspect-based definition of service

evolutions whose (security) properties can be formally analyzed.

139

• Protocol support: The pointcut language should include direct support for matching (parts

of) protocols that govern the collaboration (choreography etc.) between entities of the

model. The advice language permits the manipulation of protocols.

• Local state: Aspects may contain local state that can be used to modify state of the base

application. Aspect definitions may, however, restrict the kind of state that can be defined

and used.

Even though our solution is not fully developed yet, we highlighted the need for a new

approach to ease cross-layer propagation of resource state. Aspect-based techniques meet our

requirements to express and apply concerns that are normally difficult to address as their impact

is scattered in a distributed environment.

8.3 Aspect System and Language

Despite the advances and the flexibility of the solutions we propose in this thesis, we lack of

a correct aspect support in some situations. For instance, the analysis of the different projects

we conducted lead us to a situation in which pointcuts were not expressive enough, and advices

were not carrying enough information to treat the problems. In situation of security issues, it is

important to work on a snapshot view of the application context. The aspect system give us tools

to quickly introduce some code tangled and scattered over the application.

We establish some foundations to new pointcut primitives with an underlying system to

monitor data flow, while integrating the solution in the existing aspect languages. The Figure 8.1

provides an overview of the interaction between the components of the solution.

Figure 8.1: Architecture of the solution

140

The execution environment depends on the actual implementation. It is generally a JVM

for java applications, but it can also be an application server. The important notion is to have a

component with clear boundaries between the external domain and the internal domain. A first

adaptation is processed for all inputs that go from external domain to the internal domain. The

first point builds if necessary the state of the resource that is coming into the application, and

passes the created context to the execution environment. The execution environment launches

the application, which is itself under a constant monitoring. The monitoring component is able

to store information either in a static way, or per request (equivalent to ThreadLocal in java).

The monitoring component can behave like an aspect engine. The goal for this monitoring

component is to maintain an history of transformations and propagation of resources within

the application. When resource gets out of the application, the execution environment has the

possibility to attach meta-information to the resource. The information can be the result of an

analysis or taken from the monitor of the application.

An aspect system using these components would

1. detect inputs and classify input source

2. expose data state as a selector through new pointcut primitive. The primitive can be pa-

rameterized

3. expose application context and history of the dataflow at a specific joinpoint, when writing

an advice

Figure 8.2: Application layers

The Figure 8.2 presents the traditional layers of an application. The layers intensively use

data from external sources. Detecting all inputs to classify them is not necessarily trivial. We list

141

in Table 8.1 the different source of origins of the external inputs. We also associate the potential

actors that can provide these inputs. The trust level highly depends on the actor that provide

the input. For instance, an administrator has potentially more weight than a client. Although a

developer should verify all inputs, the most sensitive are the one from the clients.

Input Actor

program arguments developers or architects or system users

http parameters clients

property files developers

system properties architects or system users

databases developers or administrators

local and remote filesystem system users

command line input system users

inter process communication developers

Table 8.1: Extensive list of source origins with their potential actors

Each of the input source might introduce some data, that is defined out of the scope of the

application. From a security point of view, these data could not be trusted as they are issued by

a domain external to the application domain we are taking care of. A new construct would be

necessary, part of the aspect language, to support the simple tagging of data provenance.

We provide in Table 8.2 a list of constructs we would like to have in our system. These

constructs are there to allow aspect developers to write pointcuts that maintain a context with

several tags associated to resources within an application. The different components that we

have presented in 8.1 are there to gather data, data that is used by the aspect system to determine

if a pointcut matches or not.

The language would define two kinds of context. Request context is a context that is valid

for the execution of one request. For example, if the execution environment detects that an input

message contains a signature, it will attach a tag to the message. Then, in the application, one

aspect developer might create a pointcut that verifies that a resource contains a signature to match

only necessary joinpoints. Application context requests are tags that are valid for longer than a

request. They can be assimilated to static tags, that are valid for the lifetime of the application.

For example, in the case of the privacy use case we were describing in the previous section, to

protect against inference of data, one aspect developer can use global tags to maintain context

across requests.

8.4 Related work

Dynamic taint propagation in java is widely explained in [HCF05]. They present a solution

that goes from sources to sinks through propagation means. Like our approach, the sources

are identified in advance. The propagation mechanisms are the derivation of any tainted string

to a new string. And the sinks are methods that consumes input or derivative of a user input.

Although we adopt the same approach for the execution platform taint propagation, we approach

142

Construct Context Definition

settag(tagname, resource) request context associate a tag with name tagname to the ap-

plication flow. One can attach a resource to

the tag.

gettag(tagname) request context retrieve a resource associated to the tag with

name tagname

hastag(tagname, resource) request context determine if a tag is set for the current appli-

cation flow or attached to the given resource.

setglobaltag(tagname, resource) application context associate a tag with name tagname to the ap-

plication. One can attach a static resource to

the tag.

getglobaltag(tagname) application context retrieve a static resource associated to the tag

with name tagname

hasglobaltag(tagname, resource) application context determine if a tag is set for the application or

attached to the given static resource.

Table 8.2: Constructs for the language

the problem a bit differently. Our goal is not only to detect the problems, but to let aspect

developers introducing any advice on this points. The work from Haldar et al. restricts the

analysis to the execution environment. For our approach, we are in a distributed scenario in

which we need to propagate the information from and to external consumers.

Another approach that is close to ours is from Suh et al. [SLZD04]. The authors are in-

terested in secure program execution via dynamic information flow tracking. Their approach

involves the collaboration of several layers altogether: operating system tags potential malicious

data, that is then tracked in program execution. At the end, some restriction might be enforced to

mitigate specific attacks. Hiet et al. [HTMM08] tackle the problem to detect intrusion detection

rather than sensitive data, but the overall approach is similar. They combine several layers and

components. They use two monitors, at the operating system level (Blare) and at the application

level (JBLare) to track information flow. In top of these monitoring components, they allow

policy-based detection of the attacks. Hauser et al.[HTFM13] continue in the same direction

to provide intrusion detection based on taint marking. Our proposal approach would generalize

a step further the composition between the different layers. We intend to combine distributed

components to share automatically and transparently information about data. In addition, we are

interessted in giving enough tools to the developers to correct the problem, but we don’t want to

directly apply a policy. We prefer to build a solid intermediate layer (the aspect pointcuts) to let

any aspect developer the care to enforce security policies.

In [ABA+12], the authors aim to provide an end-to-end security auditing approach for ser-

vice oriented architecture. They use the concept of dynamic taint analysis by introducing anal-

ysis components in the flow of messages. From the messages, they can decide if there are

violations of security policies. Although they introduce aspect-oriented programming (JBoss

implementation) in their solution, they do not address the same problem as we are. They use

AOP to instrument communication methods and thus, intercept service invocation. Yet, they are

143

able to extract audit information from the traffic, but they don’t connect the communication layer

with the application layer. In our approach, we are interested to give tools and means to both de-

velopers within the application, but also for external components (reference monitors, auditing

frameworks, etc.) that can access the security meta-data that we provide to further react.

8.5 Conclusion

We have presented in this chapter an approach to give new tools to aspect developers. We place

ourselves in a distributed environment, that is composed of external components and a local

execution environment. The application (running on the local execution environment) is com-

municating with several external parties, that all have potential security needs. In order to en-

hance trust in data that pass through all these intermediaries, and in order to facilitate verification

and transformation of security properties, we define new tools and means to intercept data with

aspects, extract security extra-information, and propose the extracted information to the aspect

developers. We therefore allow local aspect developers to react on application events (encrypted

data comes in, a locally modified data is about to gets out), as the system transparently attaches

security meta-data to resources. Our solution wraps the application to extract information from

the communication layer to the application layer when data comes in, and reverse the process

when data goes out. Such approach opens new automatic collaborations between actors that are

not always possible.

144

Bibliography

[ABA+12] Mehdi Azarmi, Bharat K. Bhargava, Pelin Angin, Rohit Ranchal, Norman

Ahmed, Asher Sinclair, Mark Linderman, and Lotfi Ben Othmane. An end-

to-end security auditing approach for service oriented architectures. In SRDS,

pages 279–284. IEEE, 2012.

[ACBC10] Nabil Ajam, Nora Cuppens-Boulahia, and Frédéric Cuppens. Privacy admin-

istration in distributed service infrastructure. In Sushil Jajodia and Jianying

Zhou, editors, SecureComm, volume 50 of Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering,

pages 53–70. Springer, 2010.

[Age13] Agence Nationale de la Sécurité des systèmes d’information. Centre

d’expertise gouvernemental de réponse et de traitement des attaques informa-

tiques. http://www.ssi.gouv.fr, 2013.

[AHK+03] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise privacy

authorization language (epal). Research report, 3485, 2003.

[AKSX03] Rakesh Agrawal, J. Kiernan, Ramakrishnan Srikant, and Y. Xu. Implementing

p3p using database technology. In Data Engineering, 2003. Proceedings. 19th

International Conference on, pages 595 – 606, march 2003.

[Ama06] Amazon. Amazon Simple Storage Service REST Security Model.

http://docs.amazonwebservices.com/AmazonS3/latest/

dev/RESTAPI.html, 2006.

[Apa04] Apache Foundation. Apache roller. http://rollerweblogger.org/

project/, 2004.

[BBA+13] Mahmoud Barhamgi, Djamal Benslimane, Youssef Amghar, Nora Cuppens-

Boulahia, and Frédéric Cuppens. Privcomp: a privacy-aware data service com-

position system. In Giovanna Guerrini and Norman W. Paton, editors, EDBT,

pages 757–760. ACM, 2013.

[BBL05] Ji-Won Byun, Elisa Bertino, and Ninghui Li. Purpose based access control of

complex data for privacy protection. In Proceedings of the tenth ACM sympo-

145

sium on Access control models and technologies, SACMAT ’05, pages 102–

110, New York, NY, USA, 2005. ACM.

[BCF+08] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin

Kirda, Christopher Kruegel, and Giovanni Vigna. Saner: Composing static

and dynamic analysis to validate sanitization in web applications. In Proceed-

ings of the 2008 IEEE Symposium on Security and Privacy, pages 387–401,

Washington, DC, USA, 2008. IEEE Computer Society.

[BDR00] Alexandre M. Braga, Ricardo Darab, and Cecília M. F. Rubira. A meta-object

protocol for secure composition of security mechanisms. In Peri Tarr, Lodewijk

Bergmans, Martin Griss, and Harold Ossher, editors, Workshop on Advanced

Separation of Concerns (OOPSLA 2000), October 2000.

[Bel08] Nadia Belblidia. An aspect oriented approach for security hardening : semantic

foundations. 2008.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Mike Cham-

pion, Christopher Ferris, and David Orchard. Web services architecture.

http://www.w3.org/TR/ws-arch/, 99(7):1–100, January 2004.

[BM04] David Balzarotti and Mattia Monga. Using program slicing to analyze aspect

oriented composition. In Curtis Clifton, Ralf Lämmel, and Gary T. Leavens, ed-

itors, FOAL: Foundations Of Aspect-Oriented Languages, pages 25–30, March

2004.

[BNP11] Laurent Bussard, Gregory Neven, and Franz-Stefan Preiss. Matching privacy

policies and preferences: Access control, obligatons, authorisations, and down-

stream usage. In Jan Camenisch, Simone Fischer-Hübner, and Kai Rannenberg,

editors, Privacy and Identity Management for Life, pages 117–134. Springer

Berlin Heidelberg, 2011.

[Bod04] Ron Bodkin. Enterprise security aspects. In De Win et al. [DSJB04].

[BP09] E. Bernard and S. Peterson. Jsr 303: Bean validation, bean validation expert

group, March 2009.

[Bun08] Bundesamt für Sicherheit in der Informationstechnik. Information security

management systems, 05 2008.

[CDR+13] Ronan-Alexandre Cherreau, Rémi Douence, Jean-Claude Royer, Mario Sud-

holt, Anderson Santana de Oliveira, Yves Roudier, and Matteo Dell’Amico.

Reference monitors for security and interoperability in oauth 2.0. 6th Inter-

national Workshop on Autonomous and Spontaneous Security, SETOP 2013,

Egham, U.K., September 2013.

[CER] CERT. Operationally Critical Threat, Asset, and Vulnerability Evaluation (OC-

TAVE). http://www.cert.org/octave/.

146

[Cha07] Anis Charfi. Aspect-Oriented Workflow Languages. PhD thesis, TU Darmstadt,

July 2007.

[Che12] Shay Chen. The web application vulnerability scanner evaluation project - v1.2.

https://code.google.com/p/wavsep/, July 2012.

[Clo09] Cloud Security Alliance. Security guidance for critical areas of focus

in cloud computing v2.1. http://www.cloudsecurityalliance.

orgcsaguide.pdf, 12 2009.

[CM07] S. M. Christey and R. A. Martin. Vulnerability type distributions in cve.

http://cwe.mitre.org/documents/vuln-trends/index.html, 2007.

[CMRW07] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-

awarana. Web Services Description Language (WSDL) Version 2.0 Part 1:

Core Language. Technical report, W3C, June 2007.

[CMS03] Aske Simon Christensen, Anders Moller, and Michael I. Schwartzbach. Pre-

cise analysis of string expressions. In Proc. 10th International Static Analysis

Symposium, SAS’03, pages 1–18. Springer-Verlag, 2003.

[CNS99] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate

queries using views. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, PODS ’99, pages 155–

166, New York, NY, USA, 1999. ACM.

[Coh04] Tal Cohen. AspectJ2EE = AOP + J2EE Towards an Aspect Based, Pro-

grammable and Extensible Middleware Framework. In European Conference

on Object-Oriented Programming, 2004.

[Coh07] Tal Cohen. Applying Aspect-Oriented Software Development to Middleware

Frameworks. PhD thesis, Technion - Israel Institute of Technology, 2007.

[CPL09] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling: Founda-

tions and applications. chapter On Non-Functional Requirements in Software

Engineering, pages 363–379. Springer-Verlag, Berlin, Heidelberg, 2009.

[Cra03] L.F. Cranor. P3p: making privacy policies more useful. Security Privacy, IEEE,

1(6):50 – 55, nov.-dec. 2003.

[CV01] Denis Caromel and Julien Vayssière. Reflections on mops, components, and

java security. In Jørgen Lindskov Knudsen, editor, ECOOP, volume 2072 of

Lecture Notes in Computer Science, pages 256–274. Springer, 2001.

[CW07] Kung Chen and Da-Wei Wang. An aspect-oriented approach to privacy-aware

access control. In Machine Learning and Cybernetics, 2007 International Con-

ference on, volume 5, pages 3016 –3021, aug. 2007.

147

[Dai09] Wei Dai. Crypto++ 5.6.0 benchmarks. http://www.cryptopp.com/

benchmarks.html, 2009.

[DBO05] Prattana Deeprasertkul, Pattarasinee Bhattarakosol, and Fergus O’Brien. Auto-

matic detection and correction of programming faults for software applications.

Journal of Systems and Software, 78(2):101–110, 2005.

[DFH06] Josh Dehlinger, Qian Feng, and Lan Hu. Ssvchecker: unifying static security

vulnerability detection tools in an eclipse plug-in. In Proc. OOPSLA Workshop

on eclipse technology eXchange, Eclipse’06, pages 30–34. ACM, 2006.

[DGM+10] R. Douence, H. Grall, I. Mejía, et al. Survey and requirements analysis.

Deliverable D1.1, The CESSA project, June 2010.

http://cessa.gforge.inria.fr/lib/exe/fetch.php?media=publications:d1-1.

.

[Dro12] Dropbox. REST API. https://www.dropbox.com/developers/

reference/api, 2012.

[DS06] Josh Dehlinger and Nalin Subramanian. Architecting secure software systems

using an aspect-oriented approach: A survey of current research, 2006.

[DSI+12a] Matteo Dell’Amico, Gabriel Serme, Muhammad Sabir Idrees, Anderson San-

tana de Oliveira, and Yves Roudier. Hipolds: A security policy language for

distributed systems. In Ioannis G. Askoxylakis, Henrich Christopher Pöhls, and

Joachim Posegga, editors, WISTP, volume 7322 of Lecture Notes in Computer

Science, pages 97–112. Springer, 2012.

[DSI+12b] Matteo Dell’Amico, Gabriel Serme, Muhammad Sabir Idrees, Anderson San-

tana de Olivera, and Yves Roudier. Hipolds: A security policy language for

distributed systems. In Workshop in Information Security Theory and Practice.

WISTP 2012, jun. 2012.

[DSI+13] Matteo Dell’Amico, Gabriel Serme, Muhammad Sabir Idrees, Anderson San-

tana de Oliveira, and Yves Roudier. Hipolds: A hierarchical security policy

language for distributed systems. Inf. Sec. Techn. Report, 17(3):81–92, 2013.

[DSJB04] Bart DeWin, Viren Shah, Wouter Joosen, and Ron Bodkin, editors. AOSDSEC:

AOSD Technology for Application-Level Security, March 2004.

[Eur09] European Network and Information Security Agency. How to raise information

security awareness, November 2009.

[Fac12] Facebook. Facebook Authentication. http://developers.facebook.

com/docs/authentication/, 2012.

[Far01] Andrés Farías. Towards a security aspect for java. 2001.

148

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, 2000. Chair-Taylor„ Richard N.

[Fou] OWASP Foundation. The open web application security project (owasp founda-

tion) owasp testing guide v3.0. http://www.owasp.org/index.php/

OWASP_Testing_Project.

[Fou11] The Apache Software Foundation. Struts 2, 2011.

[FSJ08] Bruno De Fraine, Mario Südholt, and Viviane Jonckers. Strongaspectj: flexible

and safe pointcut/advice bindings. In Theo D’Hondt, editor, AOSD, pages 60–

71. ACM, 2008.

[GEKS11] Marco Guarnieri, Paul El Khoury, and Gabriel Serme. Security vulnerabilities

detection and protection using eclipse. In Proceedings of ECLIPSE-IT 2011,

aug. 2011.

[GHM+07] M. Gudgin, M. Hadley, N. Mendelsohn, J.J.Moreau, H. F. Nielsen, A. Kar-

markar, and Y. Lafon. SOAP version 1.2 part 1: Messaging framework (second

edition). W3C recommendation, W3C, April 2007.

[GHP13] YOEL GLUCK, NEAL HARRIS, and ANGELO PRADO. Breach: Reviving

the crime attack. In BlackHat, 2013.

[GIJ+12] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,

and Vitaly Shmatikov. The most dangerous code in the world: validating ssl

certificates in non-browser software. In ACM Conference on Computer and

Communications Security, pages 38–49, 2012.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification.

http://docs.oracle.com/javase/specs/, January 2005.

[GMCF95] J. Galvin, S. Murphy, S. Crocker, and N. Freed. Security multiparts for

mime: Multipart/signed and multipart/encrypted. Technical report, IETF, Net-

work Working Group, October 1995. http://tools.ietf.org/html/

rfc1847.

[Goo12] Google. Codepro analytix. http://code.google.com/

javadevtools/codepro/, June 2012.

[GSD04] Carl Gould, Zhendong Su, and Premkumar T. Devanbu. Jdbc checker: A static

analysis tool for sql/jdbc applications. In ICSE, pages 697–698. IEEE Com-

puter Society, 2004.

[Ha10] Eran Hammer and al. The oauth 1.0 protocol. http://tools.ietf.org/html/rfc5849,

April 2010.

149

[HAJ09] Munawar Hafiz, Paul Adamczyk, and Ralph Johnson. Systematically eradi-

cating data injection attacks using security-oriented program transformations.

In Proceedings of the 1st International Symposium on Engineering Secure

Software and Systems, ESSoS ’09, pages 75–90, Berlin, Heidelberg, 2009.

Springer-Verlag.

[Ham10] Eran Hammer. Oauth bearer tokens are a terrible idea.

http://hueniverse.com/2010/09/oauth-bearer-tokens-are-a-terrible-idea/,

September 2010.

[HCF05] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic taint propagation

for java. In ACSAC, pages 303–311. IEEE Computer Society, 2005.

[HDA11] Abdelhakim Hannousse, Rémi Douence, and Gilles Ardourel. Static analysis

of aspect interaction and composition in component models. In Ewen Denney

and Ulrik Pagh Schultz, editors, GPCE, pages 43–52. ACM, 2011.

[HG06] Bruno Harbulot and John R. Gurd. A join point for loops in AspectJ. In Aspect-

Oriented Software Development, pages 63–74, 2006.

[HGSD07] Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, and Laurence Duchien.

Aprosec: an aspect for programming secure web applications. In ARES, pages

1026–1033. IEEE Computer Society, 2007.

[HOM06] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using posi-

tive tainting and syntax-aware evaluation to counter sql injection attacks. In

Proceedings of the 14th ACM SIGSOFT international symposium on Foun-

dations of software engineering, SIGSOFT ’06/FSE-14, pages 175–185, New

York, NY, USA, 2006. ACM.

[Hoo05] J. Hookom. Validating objects through metadata, January 2005.

[HP12] HP. Fortify 360. https://www.fortify.com/, June 2012.

[HS04] Richard Hull and Jianwen Su. Tools for design of composite web services.

In Proceedings of the 2004 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’04, pages 958–961, New York, NY, USA, 2004.

ACM.

[HTFM13] Christophe Hauser, Frédéric Tronel, Colin Fidge, and Ludovic Mé. Intru-

sion detection in distributed systems, an approach based on taint marking.

In IEEE ICC2013 - IEEE International Conference on Communications, Bu-

dapest, Hongrie, July 2013.

[HTMM08] Guillaume Hiet, Valérie Viet Triem Tong, Ludovic Mé, and Benjamin Morin.

Policy-based intrusion detection in web applications by monitoring java infor-

mation flows. In Mohamed Jmaiel and Mohamed Mosbah, editors, CRiSIS,

pages 53–60. IEEE, 2008.

150

[HWZ04] Minhuan Huang, Chunlei Wang, and Lufeng Zhang. Toward a reusable and

generic security aspect library. In De Win et al. [DSJB04].

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,

and Sy-Yen Kuo. Securing web application code by static analysis and runtime

protection. In WWW ’04: Proceedings of the 13th international conference on

World Wide Web, pages 40–52, New York, NY, USA, 2004. ACM.

[IEKY04] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi. A proposal and imple-

mentation of automatic detection/collection system for cross-site scripting vul-

nerability. In Advanced Information Networking and Applications, 2004. AINA

2004. 18th International Conference on, volume 1, pages 145 – 151 Vol.1,

2004.

[IET08] IETF. Internet x.509 public key infrastructure certificate and certificate re-

vocation list (crl) profile. http://tools.ietf.org/html/rfc5280#

section-4.1.2.2, 2008.

[IKC09] Wassim Itani, Ayman I. Kayssi, and Ali Chehab. Privacy as a service: Privacy-

aware data storage and processing in cloud computing architectures. In DASC,

pages 711–716. IEEE, 2009.

[Imp11] Imperva. The securesphere web application firewall, 2011.

[Inc11] Barracuda Networks Inc. The barracuda web application firewall, 2011.

[Inf12] Information Security Forum. The standard of good practice for information

security, 09 2012.

[ISR+11] Muhammad Sabir Idrees, Gabriel Serme, Yves Roudier, Anderson Santana

de Oliveira, Hervé Grall, and Mario Südholt. Evolving security requirements

in multi-layered service-oriented-architectures. In Joaquín García-Alfaro,

Guillermo Navarro-Arribas, Nora Cuppens-Boulahia, and Sabrina De Capitani

di Vimercati, editors, DPM/SETOP, volume 7122 of Lecture Notes in Com-

puter Science, pages 190–205. Springer, 2011.

[Ist05] IsthmusGroup, Madison Wisconsin. Insecurewebapp. insecurewebapp.

sf.net, October 2005.

[JB07] Martin Johns and Christian Beyerlein. Smask: preventing injection attacks in

web applications by approximating automatic data/code separation. In Pro-

ceedings of the 2007 ACM symposium on Applied computing, SAC ’07, pages

284–291, New York, NY, USA, 2007. ACM.

[JBGP10] Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim Posegga.

Secure code generation for web applications. In ESSoS, pages 96–113, 2010.

[JBo11] JBoss. Hibernate validator, 2011.

151

[Jee13] Zubair Jeelani. An insight of ssl security attacks. International Journal of

Research in Engineering and Applied Sciences, 3:52–61, March 2013.

[JKK06a] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static anal-

ysis tool for detecting web application vulnerabilities (short paper). In SP ’06:

Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 258–

263, Washington, DC, USA, 2006. IEEE Computer Society.

[JKK06b] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Precise alias analy-

sis for static detection of web application vulnerabilities. In PLAS ’06: Pro-

ceedings of the 2006 workshop on Programming languages and analysis for

security, pages 27–36, New York, NY, USA, 2006. ACM.

[JSH07] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection at-

tacks with browser-enforced embedded policies. In Proceedings of the 16th

international conference on World Wide Web, WWW ’07, pages 601–610, New

York, NY, USA, 2007. ACM.

[KDRB91] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. The art of

the metaobject protocol. The MIT press, 1991.

[Kic01] Gregor Kiczales. Aspect-Oriented Programming - The Fun Has Just Be-

gun. In Vanderbilt Workshop, New Visions for Software Design & Productiv-

ity: Research & Applications. Participant White Papers, Vanderbilt University,

Nashville, TN, 2001.

[KKVJ06] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.

Noxes: a client-side solution for mitigating cross-site scripting attacks. In

SAC’06, pages 330–337, 2006.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP, volume 1241 of Lec-

ture Notes in Computer Science, pages 220–242. Springer Berlin / Heidelberg,

1997.

[KYL09] Kaarina Karppinen, Lyly Yonkwa, and Mikael Lindvall. Why developers insert

security vulnerabilities into their code. International Conference on Advances

in Computer-Human Interaction, 0:289–294, 2009.

[LAE+04] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,

Yirong Xu, and David J. DeWitt. Limiting disclosure in hippocratic databases.

In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J. Miller,
José A. Blakeley, and K. Bernhard Schiefer, editors, VLDB, pages 108–119.
Morgan Kaufmann, 2004.

152

[Lan02] Marc Langheinrich. A privacy awareness system for ubiquitous computing en-

vironments. In Gaetano Borriello and Lars Holmquist, editors, UbiComp 2002:

Ubiquitous Computing, volume 2498 of Lecture Notes in Computer Science,

pages 315–320. Springer Berlin / Heidelberg, 2002.

[Lan10] Ulrich Lang. Openpmf scaas: Authorization as a service for cloud & soa appli-

cations. In CloudCom, pages 634–643. IEEE, 2010.

[Las10] Francois Lascelles. RESTful Web services and signatures.

http://flascelles.wordpress.com/2010/10/02/

restful-web-services-and-signatures/, October 2010.

[Las13] Tasos Laskos. Arachni 0.4.2 - web application security scanner framework.

http://www.arachni-scanner.com/, April 2013.

[Lis88] Barbara Liskov. Data Abstraction and Hierarchy. Sigplan Notices, 1988.

[Liv] Ben Livshits. Description of securibench applications. http://suif.

stanford.edu/~livshits/work/securibench/descr.html,

2005.

[LKa06a] Kelvin Lawrence, Chris Kaler, and al. Kerberos Token Profile 1.1.

http://www.oasis-open.org/committees/download.php/

16788/wss-v1.1-spec-os-KerberosTokenProfile.pdf, 2006.

[LKa06b] Kelvin Lawrence, Chris Kaler, and al. SAML Token Profile 1.1.

http://www.oasis-open.org/committees/download.php/

16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf, 2006.

[LKa06c] Kelvin Lawrence, Chris Kaler, and al. UsernameToken Profile 1.1.

http://www.oasis-open.org/committees/download.php/

16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf, 2006.

[LKa06d] Kelvin Lawrence, Chris Kaler, and al. X.509 Certificate Token Pro-

file 1.1. http://www.oasis-open.org/committees/download.

php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf, 2006.

[LKa09] Kelvin Lawrence, Chris Kaler, and al. Ws-securitypolicy 1.3.

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/

v1.3/os/ws-securitypolicy-1.3-spec-os.html, 2009.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in

java applications with static analysis. In SSYM’05: Proceedings of the 14th

conference on USENIX Security Symposium, pages 18–18, Berkeley, CA, USA,

2005. USENIX Association.

153

[LM10] Yin Liu and Ana Milanova. Static information flow analysis with handling of

implicit flows and a study on effects of implicit flows vs explicit flows. In

Proceedings of the 2010 14th European Conference on Software Maintenance

and Reengineering, CSMR ’10, pages 146–155, Washington, DC, USA, 2010.

IEEE Computer Society.

[Lop05] Cristina Videira Lopes. AOP: A historical perspective (What’s in a name?).

pages 97–122. Addison-Wesley, Boston, 2005.

[LSM05] Nicolas Loriant, Marc Séegura-Devillechaise, and Jean-Marc Menaud. Soft-

ware security patches: Audit, deployment and hot update. In Yvonne Coady,

Eric Eide, David H. Lorenz, and Olaf Spinyzck, editors, Proceedings of the

Fourth AOSD Workshop on Aspects, Components, and Patterns for Infrastruc-

ture Software, March 2005.

[LWLa05] Monica S. Lam, John Whaley, V. Benjamin Livshits, and al. Context-sensitive

program analysis as database queries. In Symposium on Principles of database

systems, PODS’05, pages 1–12. ACM, 2005.

[Man05] Anne Thomas Manes. Rest and soap and document-oriented ser-

vices. http://atmanes.blogspot.com/2005/09/rest-and-soap-and-document-

oriented.html, 2005.

[Mar99] Robert C Martin. Designing object oriented applications using uml, 2d, 1999.

[Mic] Microsoft Corporation. Crosscutting concerns. http://msdn.

microsoft.com/en-us/library/ee658105.aspx.

[MIT09] MITRE. Cwe-20: Improper input validation. http://cwe.mitre.org/

data/definitions/20.html, January 2009.

[MIT11] MITRE. CWE/SANS Top 25 Most Dangerous Software Errors. http://

cwe.mitre.org/top25, September 2011.

[MK03] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-

oriented programming. In Atsushi Ohori, editor, APLAS, volume 2895 of Lec-

ture Notes in Computer Science, pages 105–121. Springer, 2003.

[MO12] Bruce Mayhew and OWASP Community. Webgoat 5.4. https://code.

google.com/p/webgoat/, April 2012.

[Mou08] Azzam Mourad. An aspect-oriented framework for systematic security harden-

ing of software. 2008.

[MP09] Miranda Mowbray and Siani Pearson. A client-based privacy manager for

cloud computing. In Jan Bosch and Siobhán Clarke, editors, COMSWARE,

page 5. ACM, 2009.

154

[MT04] T. Mens and T. Tourwe. A survey of software refactoring. Software Engineer-

ing, IEEE Transactions on, 30(2):126 – 139, February 2004.

[MT06] Marco Casassa Mont and Robert Thyne. A systemic approach to automate

privacy policy enforcement in enterprises. In George Danezis and Philippe

Golle, editors, Privacy Enhancing Technologies, volume 4258 of Lecture Notes

in Computer Science, pages 118–134. Springer, 2006.

[NSV+06] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De

Fraine, and Davy Suvée. Explicitly distributed AOP using AWED. In Aspect-

Oriented Software Development, pages 51–62, 2006.

[NTGG+05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David

Evans. Automatically hardening web applications using precise tainting. In

SEC, pages 295–308, 2005.

[OAS06] OASIS. Web Services Security : SOAPMessage Security 1.1. http://www.

oasis-open.org/committees/wss, February 2006.

[oST] National Institute of Standards and Technology. NIST. http://nist.

gov/.

[Oul13] Said Oulmakhzoune. Enforcement of Privacy Preferences in Data Services:

A SPARQL Query Rewriting Approach. PhD thesis, LUSSI - Dépt. Logique

des Usages, Sciences Sociales et de l’Information (Institut Mines-Télécom-

Télécom Bretagne-UEB), Lab-STICC - Laboratoire en sciences et technolo-

gies de l’information, de la communication et de la connaissance (UMR CNRS

6285 - Télécom Bretagne - Université de Bretagne Occidentale - Université de

Bretagne Sud), april 2013. Th. doct. : Informatique, Institut Mines-Télécom-

Télécom Bretagne-UEB, UMR CNRS 6285 - Télécom Bretagne - Université

de Bretagne Occidentale - Université de Bretagne Sud, april 2013.

[OWA] OWASP. OWASP Top 10. http://www.owasp.org/index.php/

Category:OWASP_Top_Ten_Project.

[OWA10] OWASP. OWASP Top Ten Project. http://www.owasp.org/index.

php/OWASP_Top_Ten_Project, 2010.

[Paw02] Renaud Pawlak. Jac (java aspect components). http://jac.ow2.org/,

2002.

[PC09] Siani Pearson and Andrew Charlesworth. Accountability as a way forward

for privacy protection in the cloud. In Martin Gilje Jaatun, Gansen Zhao, and

Chunming Rong, editors, CloudCom, volume 5931 of Lecture Notes in Com-

puter Science, pages 131–144. Springer, 2009.

[PCE05] Matthew Payne, Emerson Cargnin, and Niel Eyde. Personal blog. http:

//sourceforge.net/projects/personalblog/, April 2005.

155

[PCG+08] Christoph Pohl, Anis Charfi, Wasif Gilani, Steffen Göbel, and Birgit Grammel.

Adopting Aspect-Oriented Software Development in Business Application En-

gineering. In 7th International Conference on Aspect-Oriented Development,

2008.

[PE07] Keshnee Padayachee and Jan H. P. Eloff. An aspect-oriented approach to

enhancing multilevel security with usage control: An experience report. In

Sio Iong Ao, Oscar Castillo, Craig Douglas, David Dagan Feng, and Jeong-

A. Lee, editors, IMECS, Lecture Notes in Engineering and Computer Science,

pages 1060–1065. Newswood Limited, 2007.

[PMMD05] Jaime A. Pavlich-Mariscal, Laurent Michel, and Steven A. Demurjian. A for-

mal enforcement framework for role-based access control using aspect-oriented

programming. In Lionel C. Briand and Clay Williams, editors, MoDELS, vol-

ume 3713 of Lecture Notes in Computer Science, pages 537–552. Springer,

2005.

[PVB05] Tadeusz Pietraszek, Chris V, and En Berghe. Defending against injection at-

tacks through context-sensitive string evaluation. In In Recent Advances in

Intrusion Detection (RAID, 2005.

[PZL08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services

vs. “big” web services: making the right architectural decision. In WWW, pages

805–814. ACM, 2008.

[RD12] Juliano Rizzo and Thai Duong. The crime attack. In Ekoparty, 2012.

[Rea12] David Recordon and Dick Hardt et al. The oauth 2.0 authorization framework.

http://tools.ietf.org/html/rfc6749, October 2012.

[Ria11] Andres Riancho. W3af 1.0 - open source web application security scanner.

http://w3af.org/, May 2011.

[RMSR04] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending

query rewriting techniques for fine-grained access control. In Proceedings

of the 2004 ACM SIGMOD international conference on Management of data,

SIGMOD ’04, pages 551–562, New York, NY, USA, 2004. ACM.

[Roo07] SANS Institute InfoSec Reading Room. XML Firewall Architec-

ture and Best Practices for Configuration and Auditing. http:

//www.sans.org/reading_room/whitepapers/firewalls/

xml-firewall-architecture-practices-configuration-auditing_

1766, 2007.

[RS07] Mohammad Ashiqur Rahaman and Andreas Schaad. Soap-based secure con-

versation and collaboration. In ICWS, pages 471–480. IEEE Computer Society,

2007.

156

[RV09] William Robertson and Giovanni Vigna. Static enforcement of web applica-

tion integrity through strong typing. In Proceedings of the 18th conference on

USENIX security symposium, SSYM’09, pages 283–298, Berkeley, CA, USA,

2009. USENIX Association.

[SBK11] Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Quo vadis? a study

of the evolution of input validation vulnerabilities in web applications. In Pro-

ceedings of Financial Cryptography and Data Security 2011, Lecture Notes in

Computer Science, February 2011. To Appear.

[SBM08] Andreas Sewe, Christoph Bockisch, and Mira Mezini. Aspects and class-based

security: a survey of interactions between advice weaving and the java 2 se-

curity model. In Proceedings of the 2nd Workshop on Virtual Machines and

Intermediate Languages for emerging modularization mechanisms, VMIL ’08,

pages 3:1–3:7, New York, NY, USA, 2008. ACM.

[SdOS12] Anderson Santana de Oliveira and Gabriel Serme. Use-case analysis

and aspect requirements. Deliverable D3.2, The CESSA project, April

2012. http://cessa.gforge.inria.fr/lib/exe/fetch.php?

media=publications:d3-2.pdf.

[Sel58] O. G. Selfridge. Pandemonium: a paradigm for learning. In Mechanisation

of Thought Processes. In Proceedings of a Symposium Held at the National

Physical Laboratory, pages 513–526, London, 1958. HMSO.

[SGEKSDO12] Gabriel Serme, Marco Guarnieri, Paul El Khoury, and Anderson Santana

De Oliveira. Towards assisted remediation of security vulnerabilities. In The

Sixth International Conference on Emerging Security Information, Systems and

Technologies, 2012. SECURWARE 2012, aug. 2012.

[SK04] Maximilian Störzer and Christian Koppen. Pcdiff: Attacking the fragile point-

cut problem, abstract. In European Interactive Workshop on Aspects in Soft-

ware, Berlin, Germany, September 2004.

[SLZD04] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure pro-

gram execution via dynamic information flow tracking. ACM Sigarch Com-

puter Architecture News, 32:85–96, 2004.

[Sou11] Spring Source. Spring web mvc, 2011.

[SPGK+03] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E. Pelegri-

Llopart. Fast web services. Sun Developer Network, 2003.

[SRBK12] Theodoor Scholte, William K. Robertson, Davide Balzarotti, and Engin Kirda.

Preventing input validation vulnerabilities in web applications through auto-

mated type analysis. In Xiaoying Bai, Fevzi Belli, Elisa Bertino, Carl K. Chang,

Atilla Elçi, Cristina Cerschi Seceleanu, Haihua Xie, and Mohammad Zulker-

nine, editors, COMPSAC, pages 233–243. IEEE Computer Society, 2012.

157

[SS02] David Scott and Richard Sharp. Abstracting application-level web security. In

Proceedings of the 11th international conference on World Wide Web, WWW

’02, pages 396–407, New York, NY, USA, 2002. ACM.

[SSdOMR12] Gabriel Serme, Anderson Santana de Oliveira, Julien Massiera, and Yves

Roudier. Enabling message security for restful services. In 19th International

Conference on Web Services, jun. 2012.

[SSO13] Gabriel Serme, Theodoor Scholte, and Anderson Santana De Oliveira. Enforc-

ing input validation through aspect-oriented programming. In SETOP 2013,

6th International Workshop on Autonomous and Spontaneous Security, 12-13

September 2013, Rhul, Egham, UK, Rhul, UNITED KINGDOM, 09 2013.

[STT05] Toyotaro Suzumura, Toshiro Takase, and Michiaki Tatsubori. Optimizing web

services performance by differential deserialization. In ICWS, pages 185–192.

IEEE Computer Society, 2005.

[SW13] Bojan Simic and James Walden. Eliminating sql injection and cross site script-

ing using aspect oriented programming. In International Symposium on Engi-

neering Secure Software and System (ESSoS 13), Paris, France, February 2013.

[Swe02] L. Sweeney. k-anonymity: A model for protecting privacy. International Jour-

nal on Uncertainty Fuzziness and Knowledgebased Systems, 10(5):557–570,

2002.

[SZ03] Pawel Slowikowski and Krzysztof Zielinski. Comparison study of aspect-

oriented and container managed security. In Jan Hannemann, Ruzanna

Chitchyan, and Awais Rashid, editors, Analysis of Aspect-Oriented Software

(ECOOP 2003), July 2003.

[Tru11] Trustwave. Trustwave webdefend - web application firewall, 2011.

[TS12] Slim Trabelsi and Jakub Sendor. Sticky policies for data control in the cloud. In

Nora Cuppens-Boulahia, Philip Fong, Joaquín García-Alfaro, Stephen Marsh,

and Jan-Philipp Steghöfer, editors, PST, pages 75–80. IEEE, 2012.

[TSGW09] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. Lockr:

better privacy for social networks. In Jörg Liebeherr, Giorgio Ventre, Ernst W.

Biersack, and S. Keshav, editors, CoNEXT, pages 169–180. ACM, 2009.

[Twi11] Twitter. Security Best Practices. https://dev.twitter.com/docs/

security-best-practices, 2011.

[Uni12] University of Maryland. Findbugs. http://findbugs.sourceforge.

net, July 2012.

[USB09] Cedric Ulmer, Gabriel Serme, and Yohann Bonillo. Enabling web object ori-

entation with mobile devices. In Mobility Conference. ACM, 2009.

158

[VBC01] John Viega, J. T. Bloch, and Pravir Ch. Applying aspect-oriented programming

to security. Cutter IT Journal, 14:31–39, 2001.

[VBKM00] John Viega, J. T. Bloch, Y. Kohno, and Gary McGraw. Its4: A static vulner-

ability scanner for c and c++ code. In ACSAC, pages 257–. IEEE Computer

Society, 2000.

[Vir12] Virtual Forge. Codeprofilers. http://www.codeprofilers.com/,

June 2012.

[VNJ+07] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher

Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic

data tainting and static analysis. February 2007.

[Win04] Bart De Win. Engineering application-level security through aspect-oriented

software development. March 2004.

[WJD03] Eric Wohlstadter, Stoney Jackson, and Premkumar T. Devanbu. DADO: en-

hancing middleware to support crosscutting features in distributed, heteroge-

neous systems. In International Conference on Software Engineering, pages

174–186, 2003.

[WS02] Ian S. Welch and Robert J. Stroud. Security and aspects: A metaobject protocol

viewpoint. In Yvonne Coady, Eric Eide, David H. Lorenz, Mira Mezini, Klaus

Ostermann, and Roman Pichler, editors, First AOSD Workshop on Aspects,

Components, and Patterns for Infrastructure Software (AOSD-2002), March

2002.

[WS04] Gary Wassermann and Zhendong Su. An analysis framework for security in

web applications. In Proc. FSE Workshop on Specification and Verification of

Component-Based Systems, SAVCBS’04, pages 70–78, 2004.

[WS07] Gary Wassermann and Zhendong Su. Sound and precise analysis of web appli-

cations for injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’07,

pages 32–41, New York, NY, USA, 2007. ACM.

[WS08] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting

vulnerabilities. In ICSE ’08: Proceedings of the 30th international conference

on Software engineering, pages 171–180, New York, NY, USA, 2008. ACM.

[WTD02] Eric Wohlstadter, Brian Toone, and Prem Devanbu. A framework for flexible

evolution in distributed heterogeneous systems. In Proceedings of the Work-

shop on Principles of Software Evolution, pages 39–42. ACM Press, 2002.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in

scripting languages. In Proceedings of the 15th conference on USENIX Security

Symposium - Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

159

[XCLM11] Jing Xie, Bill Chu, Heather Richter Lipford, and John T. Melton. Aside:

Ide support for web application security. In Robert H’obbes’ Zakon, John P.

McDermott, and Michael E. Locasto, editors, ACSAC, pages 267–276. ACM,

2011.

[Yah] Yahoo. OAuth Authorization Model. http://developer.yahoo.com/

oauth/.

[YAM+11] Fan Yang, Tomoyuki Aotani, Hidehiko Masuhara, Flemming Nielson, and

Hanne Riis Nielson. Combining static analysis and runtime checking in se-

curity aspects for distributed tuple spaces. In Wolfgang De Meuter and Gruia-

Catalin Roman, editors, COORDINATION, volume 6721 of Lecture Notes in

Computer Science, pages 202–218. Springer, 2011.

[YSSSdO12] Peng Yu, Jakub Sendor, Gabriel Serme, and Anderson Santana de Oliveira.

Automating privacy enforcement in cloud platforms. In Javier Herranz Roberto

Di Pietro, editor, 7th International Workshop on Data Privacy Management.

Springer, sep. 2012.

160

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

La modularisation de la sécurité informatique

dans les systèmes distribués

Gabriel SERME

RESUME : Intégrer les problématiques de sécurité au cycle de développement logiciel représente en-
core un défi à l’heure actuelle, notamment dans les logiciels distribués. La sécurité informatique requiert des
connaissances et un savoir-faire particulier, ce qui implique une collaboration étroite entre les experts en

sécurité et les autres acteurs impliqués. La programmation à objets ou à base de composants est communé-

ment employée pour permettre de telles collaborations et améliorer la mise à l’échelle et la maintenance de

briques logicielles. Malheureusement, ces styles de programmation s’appliquent mal à la sécurité, qui est un

problème transverse brisant la modularité des objets ou des composants. Nous présentons dans cette thèse

plusieurs techniques de modularisation pour résoudre ce problème.

Nous proposons tout d’abord l’utilisation de la programmation par aspect pour appliquer de manière au-

tomatique et systématique des techniques de programmation sécurisée et ainsi réduire le nombre de vul-

nérabilités d’une application. Notre approche se focalise sur l’introduction de vérifications de sécurité dans le

code pour se protéger d’attaques comme les manipulations de données en entrée. Nous nous intéressons

ensuite à l’automatisation de la mise en application de politiques de sécurité par des techniques de program-

mation. Nous avons par exemple automatisé l’application de règles de contrôle d’accès fines et distribuées

dans des web services par l’instrumentation des mécanismes d’orchestration de la plate-forme. Nous avons

aussi proposé des mécanismes permettant l’introduction d’un filtrage des données à caractère privée par le

tissage d’aspects assisté par un expert en sécurité.

MOTS-CLEFS : securité, programmation orientée aspect, modularisation, architecture orientée service

ABSTRACT : Addressing security in the software development lifecycle still is an open issue

today, especially in distributed software. Addressing security concerns requires a specific know-

how, which means that security experts must collaborate with application programmers to de-

velop secure software. Object-oriented and component-based development is commonly used

to support collaborative development and to improve scalability and maintenance in software

engineering. Unfortunately, those programming styles do not lend well to support collaborative

development activities in this context, as security is a cross-cutting problem that breaks object

or component modules. We investigated in this thesis several modularization techniques that

address these issues.

We first introduce the use of aspect-oriented programming in order to support secure program-

ming in a more automated fashion and to minimize the number of vulnerabilities in applications

introduced at the development phase. Our approach especially focuses on the injection of se-

curity checks to protect from vulnerabilities like input manipulation. We then discuss how to au-

tomate the enforcement of security policies programmatically and modularly. We first focus on

access control policies in web services, whose enforcement is achieved through the instrumen-

tation of the orchestration mechanism. We then address the enforcement of privacy protection

policies through the expert-assisted weaving of privacy filters into software. We finally propose

a new type of aspect-oriented pointcut capturing the information flow in distributed software to

unify the implementation of our different security modularization techniques.

KEY-WORDS : security, aspect-oriented programming, modularization, service-oriented archi-

tecture

