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ABSTRACT

Visual-based event mining in Social Media

Trad Mohamed Riadh

Broadly understood, events are things that happen, things such births, wed-

dings and deaths. Among these moments, are those we record and share with

friends. Social media sites, such as Flickr or Facebook, provide a platform for

people to promote social events and organize content in an event centric manner.

The ease of capturing and publishing on social media sites however, has led

to significant impact on the overall information available to the user. The number

of social media documents for each event is potentially very large and is often

disseminated between users. Defining new methods for organizing, searching and

browsing media according to real-life events is therefore of prime interest for main-

taining a high-quality user experience.

While earlier studies were based solely on text analysis and essentially focused

on news documents, more recent work has been able to take advantage of richer

multimedia content available, while having to cope with the challenges that such a

benefit entails. And as the amount of content grows, research will have to identify

robust ways to process, organize and filter that content. In this dissertation we

aim to provide scalable, cloud oriented techniques for organizing social media do-

cuments associated with events, notably in scalable and distributed environments.

To identify event content, we develop a visual-based method for retrieving

events in photo collections, typically in the context of User Generated Content.



Given a query event record, represented by a set of photos, we aim at retrieving

other records of the same event, typically generated by distinct users.

Matching event records however, requires defining a similarity function that

captures the multi-facet similarity between event records. Although records of the

same event often exhibit similar facets, they may differ in several aspects. Records

of the same event, for instance, are not necessarily located at the same place (e.g.

an eclipse, tsunami) and can be recorded at different times (e.g. during a festival).

Importantly, we show how using visual content as complementary information

might overcome several limitations of state-of-the-art approaches that rely only

on metadata.

The number of social media documents for each event is potentially large.

While some of their content might be interesting and useful, a considerable amount

might be of little value to people interested in learning about the event itself. To

avoid overwhelming users with unmanageable volumes of event information, we

present a new collaborative content-based filtering technique for selecting relevant

documents for a given event. Specifically, we leverage the social context provided

by the social media to objectively detect moments of interest in social events.

Should a sufficient number of users take a large number of shots at a particular

moment, then we might consider this to be an objective evaluation of interest at

that moment.

With our record-based event retrieving paradigm, we provide novel approaches

for searching, browsing and organizing events in social media. Overall, the work

presented in this dissertation provides an essential methodology for organizing so-

cial media documents that reflect event information, with a view to improving

browsing and search for social media event data.
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March on. Do not tarry. To go forward is to move toward perfection.

March on, and fear not the thorns, or the sharp stones on life’s path.

Gibran Khalil Gibran





Résumé

1 Motivations

L’évolution du web, de ce qui était typiquement connu comme un moyen de

communication à sens unique en mode conversationnel, a radicalement changé

notre manière à traiter l’information.

Des sites de médias sociaux tels que Flickr et Facebook, offrent des espaces

d’échange et de diffusion de l’information. Une information de plus en plus riche,

abondante mais aussi personnelle, i.e. capturée par l’utilisateur, et qui s’organise,

le plus souvent, autour d’événements de la vie rélle.

Ainsi, un événement peut être perçu comme un ensemble de vues personnelles

et locales, capturées par les utilisateurs ayant pris part à l’événement. Identifier

ces différrentes instances permettrait, dès lors, de reconstituer une vue globale

de l’événement. Plus particulièrement, lier différentes instances d’un même événe-

ment profiterait à bon nombre d’applications tel que la recherche, la navigation

ou encore le filtrage et la suggestion de contenus.

vii



2 Problématiques

L’objectif principal de cette thèse est l’identification du contenu multimédia,

associé à un événement dans de grandes collections d’images.

Plus particulièrement, on s’intéresse au contenu généré par l’utilisateur et pu-

blié dans les médias sociaux. Un tel contenu est le plus souvent, diffus, partagé par

différents utilisateurs, il peut être hétérogǹe, bruité et pour la plus part non annoté.

Pour mieux illustrer la motivation derrière l’identification du contenu d’événe-

ments dans les médias sociaux, considérons une personne souhaitant assister au

festival de musique "Rock en Seine" dans le parc du chaâteau de Saint-Cloud. Dans

ce sens, et avant de prendre sa décion, elle entreprend une recherche concernant

les éditions des années précédentes. Le site de l’événement contient des informa-

tions de base, le programme, la billetterie et même si il y figure des médias des

éditions précédentes, elle ne reflètent pas l’ambiance du festival. Cette couverture

large rend les sites de médias sociaux une source inestimable d’informations.

Après avoir assisté à l’événement, un utilisateur peut vouloir prolonger son

expérrance en visionnant des médias capturés par d’autres utilisateurs. En télé-

chargeant le contenu qu’il a capturé lors de l’événement un utilisateur peut avoir

accès au contenu généré par d’autre participants. L’utilisateur peut alors revivre

l’événement en naviguant dans les photos prises par d’autres utilisateurs, il peut

par ailleurs enrichir sa propre collections de médias ou encore contribuer à enrichir

le contenu global disponible sur le web.

Dans un contexte plus professionnel, détecter automatique le fait qu’un grand

nombre d’utilisateurs s’intéressent à un même événement peut être utile pour

orienter les journalistes vers des événements imprévus, ou encore approcher des

utilisateurs pour récupérer du contenu.



Dans de tels scénarios, l’information spatiale et temporelle associée au contenu

a un rôle majeur. Cependant, dans ce qui suit, nous montrons que l’utilisation du

contenus visuel est indispensable. En effet, des instances distinctes d’un événement

ne sont pas nécessairement localisées au même endroit et peuvent être enregistrées

à des moments différents. Certains événement, naturels par example, on des éten-

dues spatiales vastes, dans ces cas, l’utilisations des métadonnées n’est pas assez

discriminante. Ceci est encore valable pour les événement colocalisés, typiquement

dans des lieux très fréquentés comme les gares, les centres commerciaux ou les

lieux touristiques. Dans de tels environnements, les médias générés portent les

même signatures temporelles et spatiales, nonobstant le fait qu’ils soient associés

à des événements distincts. Plus généralement, plusieurs instances d’un événement

peuvent être enregistrées à des moments différents. Enfin, les informations spatiales

et temporelles ne sont pas toujours disponibles ou pourraient être biaisées.

3 Contributions

3.1 Événement et instances d’événement

Dans le premier chapitre de cette thèse, nous dressons un état de l’art sur la

définition de la notion d’événement dans la littérature. Bien que la plus part de ces

définitions s’accordent sur les principales facettes pour la caractérisation d’événe-

ments (intervenants, lieux, temps, ...), elles ignorent le contexte social associé aux

médias décrivant un événement.

Ainsi, et partant de l’hypothèse cadre de cette thr̀se que chaque média dé-

crivant un événements est généré par un utilisateur, un événement peut être vu

comme l’ensemble de ces vues personnelles et locales, capturées par les différents

utilisateurs.

Dans ce qui suit, on désigne par enregistrement l’ensemble des médias générés



par un utilisateur au cours d’un événement.

3.2 Recherche d’événements par similarité visuelle

Afin d’identifier les différentes instances d’un même événement, nous propo-

sons une méthode de recherche par similarité visuelle dans des collections d’images.

Étant donné un enregistrement requête d’images d’un événement, notre mé-

thode vise à identifier d’autres enregistrements du même événement, typiquement

générés par d’autres utilisateurs. L’appariement d’instances d’événements requiert

néansmoins la définition d’une mesure de simimilarité capable de capturer la si-

milarité multi-facette entre les enregistrements.

Cependant, bien que différents enregistrement d’un même événement présentent

le plus souvent des caractéristiques similaires, ils peuvent néansmoins être diffé-

rents sur certains aspects. Les enregistrements d’un même événement, par exemple,

ne sont pas nécessairement localisés au même endroit (e.g. une éclipse, un tsu-

nami) et peuvent être capturés à des moments différents (e.g. lors d’un festival).

Par ailleurs, les informations tel que les coordonnées spatiales ou temporelles sont,

le plus souvent manquante ou biaisées. Ceci limite leur utilisation.

Afin de palier à de telles limites, nous proposons une stratégie en deux étapes

combinant à la fois continu visuel et le contexte associé aux médias jusqu’alors

non exploités. Une première étape vise à identifier un premier ensemble d’enre-

gistrements, visuellement similaires à l’enregistrement constituant requête. Une

deuxième étape vise à filtrer et à reclasser les enregistrements via un recordage

spatio-temporel avec l’enregistrement requète.

Identifier les différentes instances d’un événement peut s’avérrer utile pour di-

verses applications notamment pour l’identification de contenu d’un événement

dans une collection d’images ou encore la génération automatique de contenu et



nécessitent le plus souvent la construction de graphes de similarités entre les dif-

férents enregistrements.

3.3 Construction scalable et distribuée du graphe de similarité

visuelle

L’appariement d’enregistrements d’événements requiert l’appariement par contenu

visuel entre images appartenants à différents enregistrements.

Une solution naïve, serait de chercher les k-images les plus similaires visuelle-

ment à chaque image de l’enregistrement requête. Une telle approche peut s’avérer

coûteuse si l’on considérait la construction du graphe de similarité sur l’ensemble

des enregistrements d’une collection d’images.

Le principal problème de la construction d’un tel graphe est le temps de calcul.

La complexité de l’approche naïve est certes linéaire en nombre d’images, mais la

recherche reste coûteuse, à moins de fortement dégrader la qualité au profit de la

vitesse en effectuant des recherches approximatives. Là encore, le coût de la re-

cherche reste tributaire du choix des fonctions de hachages. Par ailleurs, de telles

approches restent difficilement distribuables du fait qu’elle requièrent la duplica-

tion des données sur les unités de traitement et le plus souvent leur chargement

en mémoire et donc, passent difficilement à l’échelle.

D’autres approchent sont alors envisageables. Dans [16] , Chen et al. proposent

de subdiviser l’ensemble des données puis de construire les graphes associés pour

enfin les combiner en une solution finale au problème. Ici, le problème réside dans

le choix des différentes partitions.

Dans [31], Dong et al. proposent de partir d’une solution aléatoire et partant

du principe qu’un plus proche voisin d’un plus proche voisin est potentiellement

un plus proche voisin, converger vers une solution au problème en un nombre faible



d’itérations. Cependant, un tel algorithme reste difficilement distribuable.

La solution que nous proposons découle d’une analyse ascendante du problème.

Une solution à la fois distribuable et scalable exige de petites unités de traitement.

Par ailleurs, calculer la similarité entre les objets peut s’avérer coûteux. Ceci

est d’autant plus vrai lorsqu’il s’agit de traiter de très grandes collections d’objets.

Ici nous considérons que le nombre de fois que deux objets sont mappés dans une

même bucket est une estimation pertinente de la similarité entre ces deux objets.

3.4 Sélection de contenu

Le nombre de documents associés à un événement dans les médias sociaux est

potentiellement grand. Filtrer un tel contenu peut s’avérer bénéfique pour des ap-

plications tel que la recherche, la navigation ou encore l’organisation de contenus.

Plus particulièrement, nous nous intéressons à la sélection de contenus perti-

nents pour la génération automatique de résumés d’événements.

Plusieurs travaux se sont intéressés à définir des mesures capables de capturer

l’importance d’un document de manière objective. Plustôt que de s’attarder à la

définition et à l’évaluation d’une telle mesure, nous considérons que le nombre

de photos capturées, se rapportant à une même scènes, par différents utilisateurs

comme une mesure objective de son importance.

Une approche naïve consiste à compter le nombre d’images prises sur un inter-

valle de temps donné et localisées avec des coordonnées spatiales bien déterminése.

Cependant, les métadonnées associées au contenu sont souvent absentes ou biai-

sées. On pourrait par ailleurs compter le nombre d’images visuellement similaires.

Cependant le contenu visuel est le plus souvent non discriminant. Pour pallier

à cette limite, nous effectuons un recordage spatio-temporel des enregistrements



d’un même événement, puis comptons le nombre d’image visuellement similaires

entre les différents enregistrements (i.e. qui contribuent à l’appariement de deux

enregistrements).

Génération automatique de résumé

Nous ramenons le problème de génération automatique de résumé à celui de

produire un classement sur les documents d’un événement. L’ensemble des images

sélectionnées est ensuite traité afin d’en éliminer les doublons.

Alternativement, l’ensemble des images est filtré pour produire des résumés

personnalisés en fonction de la qualité des images ou encore les droits associés.

Suggestion de contenu

Un contenu est dit intéressant, d’un point de vue utilisateur, s’il renseigne sur

des aspects de l’événement, autres que ceux capturés par l’utilisateur. Suggérer

du contenu, reviendrait, dès lors, à proposer du contenu pertinent, visuellement

différent du contenu capturé par l’utilisateur.

Organisation de la thèse

Cette thèse s’organise comme suit :

Dans le Chapitre 2, nous examinons différentes définitions de la notion d’évé-

nement dans la littérature, puis proposerons une définition alternative qui tient

compte à la fois du contenu visuel et du contexte.

Le Chapitre 3 présente notre méthode de recherche d’événements basée sur le

contenu visuel dans les collections d’images.

Le Chapitre 4 présente notre approche pour la construction scalable et distribuée



des Graphe des K plus proches voisins et son implémentation dans le framework

Hadoop.

Dans le Chapitre 5, nous présentons notre méthode collaborative pour la sélection

de contenu pertinent dans de grandes collections d’images. Plus particuliérement,

nous nous intŕesserons aux problèmes de génŕation automatique de résumés d’évé-

nements et suggestion de contenus dans les médias sociaux.

Le Chapitre 6 dresse un état-de-l’art des problématiques abordées dans cette

thèse.

Le bilan des contributions, la conclusion et les perspectives sont présentés dans le

Chapitre 7.
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Chapitre 1

General Introduction

Problem Statement

Social Media sites such as Flickr and Facebook, have changed the way we share

and manage information within our social networks. The shift on the Web, from

what was typically a one-way communication, to a conversation style interaction

has led to many exciting new possibilities.

The ease of publishing content on social media sites brings to the Web an ever

increasing amount of user generated content captured during, and associated with,

real life events. Social media documents shared by users often reflect their perso-

nal experience of the event. Hence, an event can be seen as a set of personal and

local views, recorded by different users. These event records are likely to exhibit

similar facets of the event but also specific aspects. By linking different records of

the same event occurrence we can enable rich search and browsing of social media

events content. Specifically, linking all the occurrences of the same event would

provide a general overview of the event. In this dissertation we present a content-

based approach for leveraging the wealth of social media documents available on

the Web for event identification and characterization.
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To better illustrate the motivation behind event content identification in social

media, consider a person who is planning to attend the “Rock en Seine” annual mu-

sic Festival in Château de Saint-Cloud’s Park. Before buying a ticket, the person

could do some research upon which he will make an informed decision. The event’s

website contains basic information about the festival and the tickets available. Al-

though the event website contains stage pictures and videos of prior instances of

the event, they do not reflect the general atmosphere of the event. User-generated

content may, however, provide a better overview of prior occurrences of the event

from an attendee’s perspective. Such wide coverage makes social media sites an

invaluable source of event information.

After attending the event, the user may be interested in retrieving additio-

nal media associated to the event. By simply uploading his/her own set of event

pictures a user might for example access to the community of the other event’s

participants. The user can then revive the event by browsing or collecting new

data complementary to his/her own view of the event. If some previous event’s

pictures were already uploaded and annotated, the system might also automati-

cally annotate the set or suggest some relevant tags to the user.

In a more professional context, automatically detecting the fact that a large

number of amateur users did record data about the same event would be very help-

ful for professional journalists in order to cover breaking news. Finally, tracking

events across different media also has a big potential for historians, sociologists,

politicians, etc.

Of course, in such scenarios, time and geographic information provided with

the contents has a major role to play. Our claim is that using visual content

as complementary information might solve several limitations of approaches that

rely only on metadata. First of all, distinct instances of the same event are not

necessarily located in the same place or can be recorded at different times. Some



events might, for example, have wide spatial and temporal extent such as a vol-

cano eruption or an eclipse, so that geo-coordinates and time stamps might be

not discriminant enough. This lack of discrimination can be problematic even for

precisely located events, typically in crowded environments such as train stations,

malls or tourist locations. In such environments, many records might be produced

at the same time and place while being related to very distinct real-world events.

Furthermore, in a broader interpretation of the event concept, several instances

of an event might be recorded at different times. Finally, location and time in-

formation is not always available or might be noisy. The Flickr data used in our

experiments notably does not contain any geographic information and contains

noisy time information.

Our problem is more similar to the MediaEval Social Event Detection Task 1,

which aims to develop techniques to discover events and detect media items that

are related to either a specific social event or an event-class of interest. However,

our approach exhibits some fundamental differences from the traditional social

event detection task that originate from the focus on content distribution across

event participants.

To match event occurrences in social media, we develop a new visual-based

method for retrieving events in photo collections, typically in the context of User

Generated Content. Given a query event record, represented by a set of photos,

our method aims at retrieving other records of the same event, typically genera-

ted by distinct users. Similarly to what is done in state-of-the-art object retrieval

systems, we propose a two-stage strategy combining an efficient visual indexing

model with a spatiotemporal verification re-ranking stage to improve query per-

formance. Visual content is used in a first stage to detect potential matches, while

geo-temporal metadata are used in a second stage to re-rank the results and the-

refore estimate the spatio-temporal offset between records.

1. http ://www.multimediaeval.org/mediaeval2011/SED2011/



The number of social media documents for each event is potentially very large.

While some of their content might be interesting and useful, a considerable amount

might be of little value to people interested in learning about the event itself. To

avoid overwhelming users with unmanageable volumes of event information, we

present a new collaborative content-based filtering technique for selecting relevant

documents for a given event. Specifically, we leverage the social context provided

by the social media to objectively detect moments of interest in social events.

Should a sufficient number of users take a large number of shots at a particular

moment, then we might consider this to be an objective evaluation of interest at

that moment.

As the amount of user generated content increases, research will have to develop

robust ways to process, organize and filter that content. In this dissertation we

present scalable techniques for organizing social media documents associated with

events, notably in distributed environments

Contributions

The research described in this thesis led to the following results :

1. A new visual-based method for retrieving events in photo collections.

2. A scalable and distributed framework for Nearest Neighbors Graph construc-

tion for high dimensional data.

3. A collaborative content-based filtering technique for selecting relevant so-

cial media documents for a given event.

Outline

This chapter informally introduces the questions investigated in this thesis.

The remaining part of this thesis is structured as follows :



Chapter 2 discusses several alternative definitions of events in the literature and

provides the event definitions that we use in this dissertation.

Chapter 3 presents our new visual-based method for retrieving events in photo

collections.

Chapter 4 describes our large scale K-Nearest Neighbors Graph construction

technique that we considered for event graph construction.

Chapter 5 presents our collaborative content-based content selection technique.

Specifically, we address the problem of event summarization and content sugges-

tion in social media.

Chapter 6 reviews the literature that is relevant to this dissertation.

Chapter 7 presents our conclusions and discusses directions for future work.

Publications

The work presented in this manuscript has led to the following publications :

Conferences

— M. R. Trad, A. Joly, and N. Boujemaa. Large scale visual-based event

matching. In Proceedings of the 1st ACM International Conference on

Multimedia Retrieval, ICMR ’11, pages 53 :1–53 :7, New York, NY, USA,

2011. ACM.

— M. R. Trad, A. Joly, and N. Boujemaa. Distributed knn-graph approxima-

tion via hashing. In Proceedings of the 2nd ACM International Conference

on Multimedia Retrieval, ICMR ’12, pages 43 :1–43 :8, New York, NY, USA,



2012. ACM.

— R. Trad, Mohamed, A. Joly, and N. Boujemaa. Distributed approximate

KNN Graph construction for high dimensional Data. In BDA - 28e journées

Bases de Données Avancées - 2012, Clermont-Ferrand, France, Oct. 2012.

— R. Trad, Mohamed, A. Joly, and B. Nozha. Large scale knn-graph approxi-

mation. In The 3rd International Workshop on Knowledge Discovery Using

Cloud and Distributed Computing Platforms (KDCloud, 2012) jointly held

with IEEE ICDM 2012, Brussels, Belgium, December 2012.



Chapitre 2

Events in Social Media

Introduction

Broadly understood, events are things that happen, things such births and

deaths, celebrations and funerals, elections and impeachments, smiles, shows and

explosions. Yet although the definition and characterization of an “event” has re-

ceived substantial attention across various academic fields [105, 13], it is not clear

what precisely constitutes an event.

Often, an event is described as an abstract concept [13], or defined within the

context of a very specific domain. In this chapter, we survey a number of definitions

from various domains, particularly that of social media (Section 1) and draw on

them to define an event with respect to our work (Section 2).

1 Events in the literature

While previous research on events has focused solely on textual news docu-

ments [61, 63], more recent efforts have been concerned with a richer content

[66, 82, 90]. In this section, we look at various efforts to define events in the

context of social media through four different tasks : Topic Detection and Tra-

cking in news documents (Section 1.1), event extraction from unstructured text
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(Section 1.2), multimedia event detection (Section 1.3) and social event detection

(Section 1.4).

1.1 Topic Detection and Tracking

The Topic Detection and Tracking (TDT) initiative was first intended to ex-

plore techniques for identifying events and tracking their reappearance and evolu-

tion in a text document stream. Within the TDT context, an event was initially

defined as “some unique thing that happens at some point in time” [3]. This defi-

nition was further extended to include location as well [104], defining an event as

“something that happens at some specific time and place”.

Under this definition, the World Trade Center attacks that took place on Sep-

tember 11, 2001 is an event. However, the media also reported the subsequent

collapse of the World Trade Center towers. Here, it is unclear whether the events

should be considered as separate events or whether they form part of one single

event.

To address such an ambiguity, an amended definition was proposed in [2] sta-

ting that an event is “a specific thing that happens at a specific time and place

along with all necessary preconditions and unavoidable consequences”. Although

this definition makes some clarifications regarding event boundaries, it does not

cover all possible types of event, since some of the necessary preconditions and

unavoidable consequences may be ambiguous, unknown or subject to debate.

Although the TDT-inspired definitions of an event introduce some useful concepts,

they do not cover all possible types of events.

1.2 Event Extraction

Event extraction from unstructured data such as news messages is a task that

aims at identifying instances of specific types of events, and their associated attri-

butes [42].



The Automatic Content Extraction 1 (ACE ), for instance, defines an event

“as a specific occurrence involving participants”. However, rather than defining

all possible events abstractly, events are defined according to their expression in

unstructured text and provides a set of corresponding predefined templates along

with their specific pre-defined attributes (time, place, participants, etc.). An event

is identified via a keyword trigger (i.e. the main word which most clearly expresses

an event’s occurrence) and detects the corresponding set of attributes. A tem-

plate of the “attack” event subtype applied to the sentence “A car bomb exploded

Thursday in a crowded outdoor market in the heart of Jerusalem, killing at least

two people, police said.” is presented in Table 2.1.

Attribute Description Example

Attacker The attacking/instigating agent demonstrators
Target The target of the attack Israeli soldiers

Instrument The instrument used in the attack stones and empty bottles
Time When the attack takes place yesterday
Place Where the attack takes place a Jewish holy site at the town’s entrance

Table 2.1 – Attack event template and sample extracted attributes 2.

The ACE event definition makes the implicit assumption that events should

have one or more participants. Yet, not all events have a clearly defined set of

participants, thus limiting its practical use. The same remark applies for the time

and place attributes. Although they were not mentioned in this definition, they

are also present in almost al of the predefined templates.

As opposed to the TDT inspired definitions, the ACE-inspired definition is

specific and restricted to a small class of events. Besides, this definition is only

applicable to supervised event detection tasks, where the classes of events are

known a priori. One drawback is that events such as Festivals and Concerts cannot

be represented since there are no corresponding templates.

1. http ://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf
2. http ://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf



1.3 Multimedia Event Detection

Multimedia Event Detection (MED) as part of the TREC Video Retrieval Eva-

luation 3 aims to develop event detection techniques to enable a quick and accurate

search for user-defined events in multimedia collections. An event, according to the

MED 4 2010, is “an activity-centered happening that involves people engaged in

process-driven actions with other people and/or objects at a specific place and

time”.

Contrarily to the above described event detection tasks, the use of media asso-

cisated human-annotated textual context features (e.g., title, tags) is not allowed.

Each event has a corresponding Òevent kitÓ consisting of a name, a definition, an

evidential description (Table 2.2) and a set of illustrative video examples.

Event Name Assembling a shelter

Definition One or more people construct a temporary or semi-
permanent
shelter for humans that could provide protection from the
elements

Evidential Description primarily outdoor settings during the day or
night

Scene
Objects/People cutting and digging tools, tent poles and flys, tents, stakes,

tree limbs, tree branches
Activities clearing land, cutting trees and branches, gathering flooring

material, assembling a tent, lashing limbs together, staking
down poles

Exemplars

Table 2.2 – Example of an “event kit” for the MED task 5.

1.4 Social Event Detection

Similar to the MED event detection task, the Social Event Detection (SED)

task aims to discover events and their related media items. Extracting such events

from multimedia content has been the focus of numerous efforts as part of the

3. http ://trecvid.nist.gov/
4. http ://www.nist.gov/itl/iad/mig/med10.cfm
5. http ://projects.ldc.upenn.edu/havic/MED10/EventKits.html



MediaEval 2011 Social Event Detection (SED) [75] task. The SED guidelines 6

define the social aspect of an event but do not provide a precise definition of the

event. According to SED, social events are “events planned by people and attended

by people”. It also requires the social media be “captured by people”.

Although the MediaEval 2011 Social Event Detection task did not provide a

precise event definition, the proposed methods only exploited some known event

features, namely, event title, venue and time. These attributes were also used in

[102, 91] to define an event according to its context, a set of facets (image, who,

when, where, what) that support the understanding of everyday events.

2 Events in social media

Going back to the September 11 example, according to some definitions, it

might be considered to be an event, but it is not an event in social media until it

has a corresponding realization in social media documents. Instead of providing

an abstract, ambiguous, or arguable definition of an event, we extend previous

definitions to include at least one single document. In our work, we focus solely

on user generated pictures of events. Formally, we define an event as :

Definition 1 An event in social media is a real world occurrence e with (1) an

associated time period Te, (2) a set of documents De about the occurrence, and (3)

one or more features that describe the occurrence.

The time period Te in our definition delimits the event occurrence in time.

Several records of the same event might however be time coded differently (i.e. time

shifts, wide and temporal extent of the event), and so time offsets should therefore

be tolerated. Moreover, documents related to an event could be produced before

or after its occurrence. For instance, in our “Rock in Rio Festival 2012” example, a

photograph of a participant at the Lisbon Portela Airport represents the author’s

experience in the context of the event and will, therefore, be associated with the

6. http ://www.multimediaeval.org/mediaeval2011/SED2011/



event for our purposes. Here, it is worth noticing that upload time often differs

from the event time period and may not preserve the temporal coherence of the

documents.

The document set in our definition (Definition 1) refers to a set of social media

documents, which can be represented using a variety of associated context features

(e.g., title, tags, signatures, timestamp). Within the context of social media, each

document is typically associated to at least one user, the one who first uploaded the

picture. A single image, however, may tell different stories, with different people

through different events. Hence, we associate each image with the user who shared

the document, regardless of its provenance.

The features set in our definition may include information such as the event

title, location or the set of participants. As discussed above, such a definition is

prone to ambiguity as it does not include all possible types of events. However, we

believe that such attributes can be relaxed when considering visual information

about the event. Thus, according to our event definition, events in social media

include widely known occurrences such as earthquakes, and also local and private

events such as festivals and weddings.

Most often, images shared by users reflect their personal experience of the

event. In this connection, an event occurrence can be seen as a set of personal and

local views, recorded by different users. These event records are likely to exhibit

similar facets of the event but also specific aspects. Linking different records of

the same occurrence would provide a general overview of the event.

Definition 2 An event record is a set of images (1) shared by a user, (2) reflecting

his/her own experience of a given event.

Non-event content, of course, is prominent on social media sites. In our work,

we make the assumption that event-related documents are shared in separate

albums (i.e. records). However, our approach can generally be extended to handle

less structured content. In [82] for instance, the authors present an approach for

grouping photos that belong to the same event within Facebook albums using



clustering algorithms on their upload time.

3 Related tasks

Considering the fact that event related documents are often distributed among

different users (i.e. event records), we extend existing tasks to support local expe-

riences of the event.

3.1 Event matching

Given a query event record, represented by a set of photos, the event matching

task aims to retrieve other records of the same event, typically generated by dis-

tinct users. Linking different occurrences of the same event would enable a number

of applications such as search, browsing and event identification.

Matching event records, requires defining a similarity function that measures

the multi-facet similarity between event records. Although records of the same

event often exhibit similar facets, they may differ in several aspects. Records of

the same event, for instance, are not necessarily located at the same place (eclipse,

tsunami) and can be recorded at different times (festival). This lack of discrimi-

nation can be problematic even for precisely located events, typically in crowded

environments such as train stations, shopping malls or touristic areas. In such envi-

ronments, many records might be produced at the same time and place while being

related to very distinct real-world events. Designing such a similarity function is,

thus, a tricky task.

In Chapter 3, we show how using visual content as complementary information

might solve several limitations of approaches that rely only on metadata. To the

best of our knowledge, none of the existing studies have addressed the problem of

linking different occurrences of the same real-word event. This is in contrast to the

literature which considers an event as a set of documents, regardless of their social

context. The state-of-the-art presented in Section 1 is related to the more general

problem of identifying documents of the same event, i.e. the different occurrences



of the event.

According to our definition, event-related records can be seen as a connected

subgraph of the records Nearest Neighbors Graph, ideally a complete graph of the

event records. In Chapter 4, we present a distributed framework for approximate

K-NNG construction to address the more general problem of identifying documents

of the same event in very large scale contexts.

3.2 Content Selection

Events in social media are likely to have huge amounts of associated content.

For instance, as of October 2012, the 2012 Rock in Rio Festival has over 6,000

associated Flickr photos. This is not limited to world renowned events, but is also

true for smaller events that could feature up to dozens to hundreds of different

documents. Being able to rank and filter event content is crucial for a variety of

applications such as content suggestion and event summarization.

In this connection, the content selection task aims at selecting relevant docu-

ments for people who are seeking information about a given event. Nevertheless,

selecting the most interesting images often involves some decision-making, based

on various criteria.

Most state-of-the-art approaches reduce the problem of selecting images from

photo collections to an optimization problem under quality constraints. Choosing

the right combination of these criteria is a challenging problem in itself.

Most significantly, with a few exceptions, existing work often ignores the social

context of the images. Obviously, should a sufficient number of users take a large

number of shots at a particular moment, then we might consider this to be an

objective evaluation of interest at that moment.

In Chapter 5, we present a visual-context based approach for detecting mo-

ments of interest and subsequently, interesting shots (Section 1.1). We then address

the problem of content suggestion and event summarization separately.



Content Suggestion

The content suggestion task is related to the content selection task, but instead

of selecting a set of potentially interesting documents, it aims to present a given

user only documents that provide additional information about the event.

Recently, there has been a body of work on content suggestion (Section 2) but

none has considered the use of the social context provided by the media sites. Here,

we link the content suggestion problem to the previously introduced event mat-

ching task to present a novel approach for suggesting and sharing complementary

information between people who attended or took part in the same event (Section

1.3).

Event Summarization

The event summarization task aims to construct a minimal yet global summary

of the event.

The problem of summarizing event-related documents has been extensively

addressed across different domains (Section 2), from free text documents (system

logs) to more richer data representations (images, sound and videos). Many com-

plex systems, for instance, employ sophisticated record-keeping mechanisms that

log all kinds of events that occurred in the systems.

Still, event related documents in social media are often produced and even

uploaded by distinct users resulting in data redundancy (London 2012 Olympic

Opening Ceremony shots shared by different people) and duplication (the same

picture shared by distinct users). In Section 1.2, we show how to leverage document

redundancy between distinct users to produce high quality event summaries.

4 Conclusion

Although information such as location and time eliminate ambiguity in event

definitions, they are also restrictive as they do not apply to all possible types of



events. Our claim is that using visual content as complementary information might

relax some conditions on such attributes. This is particularly true in social media,

where textual data are very rare, and metadata noisy but where visual content is

abundant.



Chapitre 3

Event Identification in Social

Media

Events are a natural way for referring to any observable occurrence grouping

people in a specific time and place. Events are also observable experiences that

are often documented by people through different media. This notion is poten-

tially useful for connecting individual facts and discovering complex relationships.

Defining new methods for organizing, searching and browsing media according to

real-life events is therefore of prime importance for ultimately improving the user

experience.

In this chapter we introduce a new visual-based method for retrieving events

in photo collections, typically in the context of User Generated Contents. Given

a query event record, represented by a set of photos, our method aims to retrieve

other records of the same event, typically generated by distinct users. In Section 1,

we first discuss the interest and implications of such a retrieval paradigm. Section 2

introduces our new visual-based event matching technique and its implementation

in the MapReduce framework (Section 3). Section 4 reports results on a large

dataset for distinct scenarios, including event retrieval, automatic annotation and

tags suggestion. The bulk of this chapter appeared in [94].
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1 Towards event centric content organization in social

media

Multimedia documents in User Generated Content (UGC) websites, as well

as in personal collections, are often organized into events. Users are usually more

likely to upload or gather pictures related to the same event, such as a given

holiday trip, a music concert, a wedding, etc. This also applies to professional

contents such as journalism or historical data that are even more systematically

organized according to hierarchies of events.

Given a query event record represented by a set of photos, our method aims to

retrieve other records of the same event, notably those generated by other actors

or witnesses of the same real-world event. An illustration of two matching event

records is presented in Figure 3.1. It shows how a small subset of visually similar

and temporally coherent pictures might be used to match the two records, even

if they include other distinct pictures covering different aspects of the event. Ap-

plication scenarios related to such a retrieval paradigm are numerous. By simply

uploading their own record of an event users might, for example, gain access to

the community of other participants. They can then revive the event by browsing

or collecting new data complementary to their own view of the event. If some

previous event’s records had already been uploaded and annotated, the system

might also automatically annotate a new record or suggest some relevant tags.

The proposed method might also have nice applications in the context of citizen

journalism. Automatically detecting the fact that a large number of amateur users

did indeed record data about the same event would be very helpful for professional

journalists in order to cover breaking news. Finally, tracking events across different

media has a big potential for historians, sociologists, politicians, etc.

Of course, in such scenarios, time and geographic information provided with

the contents has a major role to play. Our claim is that using visual content as

complementary information might overcome several limitations of approaches that



Figure 3.1 – Two events records of an Alanis Morissette concert

rely only on metadata. First of all, distinct records of the same event are not ne-

cessarily located at the same place or can be recorded at different times. Some

events might, for example, have wide spatial and temporal coverage such as a vol-

cano eruption or an eclipse, so that geo-coordinates and time stamps might not be

sufficiently discriminant. This lack of discrimination can be problematic even for

precisely located events, typically in crowded environments such as train stations,

malls or tourist locations. In such environments, many records might be produced

at the same time and place while being related to very distinct real-world events.

Furthermore, in a wider meaning of the event concept, several instances of an

event might be recorded at different times, e.g. periodical events or events such as

“a trip to Egypt” illustrated in Figure 3.2. Finally, location and time information is

not always available or might be noisy. The Flickr dataset used in the experiments

reported in this chapter notably does not contain any geographic information and

contains noisy time information (as discussed in Section 4).

Finally, our work is, to some extent, related to object retrieval in picture col-

lections. Our method is indeed very similar to state-of-the-art large-scale object

retrieval methods combining efficient bag-of-words or indexing models with a spa-

tial verification re-ranking stage to improve query performance [79, 53]. We might

give the following analogy : images are replaced by event records (picture sets), lo-

cal visual features are replaced by global visual features describing each picture of

a record, spatial positions of the local features are replaced by the geo-coordinates



Figure 3.2 – Two records of the event "a trip in Egypt"

and time stamps of the pictures. Matching spatially and temporally coherent event

records is finally equivalent to retrieving geometrically consistent visual objects.

2 Visual based Event Matching

We first describe the proposed method in the general context of event records

composed of a set of geo-tagged and time coded pictures. We further restrict our-

selves to time coded only pictures since our experimental dataset did not include

geo-tags.

We consider a set of N event records Ei, each record being composed of Ni

pictures Iij captured from the same real-world event. Each picture is associated

with a geo-coordinate xi
j and a time stamp tij resulting in a final geo-temporal

coordinate vector Pi
j = (xi

j , t
i
j). The visual content of each image Iij is described

by a visual feature vector Fi
j ∈ R

d associated with a metric d : Rd
× R

d
→ R.

Now let Eq be a query event record represented by Nq pictures, with associated



visual features Fq
j and geo-temporal metadata Pq

j . Our retrieval method works as

follows :

STEP 1 - Visual Matching : Each query image feature Fq
j is matched to the

full features dataset thanks to an efficient similarity search technique (see Section

3). It typically returns the approximate K-nearest neighbors according to the used

metric d (i.e the K most similar pictures). When multiple matches occur for a gi-

ven query image feature and a given retrieved record, we only keep the best match

according to the feature distance. The visual matching step finally returns a set

of candidate event records Ei, each being associated with M q
i picture matches of

the form (Iqm, Iim).

STEP 2 - Stop List : Only the retrieved records with at least two image matches

are kept for the next step, i.e

{Ei | M
q
i ≥ 2}1≤i≤N

STEP 3 - Geo-temporal consistency : For each remaining record, we com-

pute a geo-temporal consistency score by estimating a translation model between

the query record and the retrieved ones. The resulting scores Sq(Ei) are used to

produce the final records ranking returned for query Eq. The translation model

estimation is based on a robust regression and can be expressed as :

∆̂(Eq, Ei) = argmin
∆

Mq
i∑

m=1

ρθ
(
Pq

m − (Pi
m +∆)

)
(3.1)

where Pq
m and Pi

m are the geo-temporal coordinates of the m-th match (Iqm, Iim).

The cost function ρθ is typically a robust M -estimator allowing outliers to be

rejected with a tolerance θ (in our experiments we used Tukey’s robust estimator).

The estimated translation parameter ∆̂ should be understood as the spatial and

temporal offset required to register the query event record Eq with the retrieved



event record Ei. Once this parameter has been estimated, the final score of an

event Ei is finally computed by counting the number of inliers, i.e the number of

visual matches that respect the estimated translation model :

Sq(Ei) =

Mq
i∑

m=1

(∥∥∥Pq
m − (Pi

m + ∆̂)
∥∥∥ ≤ θ

)
(3.2)

where θ is a tolerance error parameter, typically the same as the one used during

the estimation phase. In practice, we use a smooth counting operator to get a better

dynamic on resulting scores. When we restrict ourselves to temporal metadata (as

was done in the experiments), Equation 3.1 can be simplified to :

δ̂(Eq, Ei) = argmin
δ

Mq
i∑

m=1

ρθ
(
tqm − (tim + δ)

)
(3.3)

where δ̂ represents the estimated temporal offset between Eq and Ei and θ is now

a temporal tolerance error whose value is discussed in the experiments. Since δ is a

single mono-dimensional parameter to be estimated, Equation 3.3 can be resolved

efficiently by a brute force approach testing all possible solutions δ.

Final scores then become :

Sq(Ei) =

Mq
i∑

m=1

(∣∣∣tqm − (tim + δ̂)
∣∣∣ ≤ θ

)
(3.4)

STEP 4 - Prior constraints : Depending on the application context, major

improvements in effectiveness might be obtained by adding prior constraints on

the tolerated values for ∆̂. Rejecting events with too large spatial and/or temporal

offset from the query record is indeed a good way to reduce the probability of false

alarms. In our experiments we study the impact of such a constraint on the estima-

ted temporal offsets. Concretely, we reject from the result list all retrieved event

records which have an estimated offset above a given threshold δmax (regardless

of the matching score Sq(Ei)).



3 Enabling scalability

To allow fast visual matching in large picture datasets, we implemented a

distributed similarity search framework based on Multi-Probe Locality Sensitive

Hashing [69, 53] and the MapReduce [28] programming model.

3.1 Multi-Probe LSH

To process the Nearest Neighbors search efficiently, we use an approximate

similarity search structure, namely Multi-Probe Locality Sensitive Hashing (MP-

LSH) [69, 53]. MP-LSH methods are built on the well-known LSH technique [24],

but they intelligently probe multiple buckets that are likely to contain results. Such

techniques have been proved to overcome the over-linear space cost drawback of

common LSH while preserving a similar sub-linear time cost (with complexity

O(Nλ)).

Now, let F be the dataset of all visual features F ∈ R
d (i.e. the one extracted

from the pictures of the N event records Ei). Each feature F is hashed with a hash

function g : Rd → Z
k such that :

g(F) = (h1(F), ..., hk(F)) (3.5)

where individual hash functions hj are drawn from a given locality sensitive ha-

shing function family. In this work we used the following binary hash function

family which is known to be sensitive to the inner product :

h(F) = sgn (W.F) (3.6)

where W is a random variable distributed according to N (0, I). The hash codes

produced gi = g(Fi) are thus binary hash codes of size k.

At indexing time, each feature Fi is mapped into a single hash table T accor-



ding to its hash code value gi. As a result, we obtain a hash table of Nb buckets

where Nb ≤ 2k.

At query time, the query vector Fq is also mapped onto the hash table T

according to its hash code value gq. The multi-probe algorithm then selects a set

of Np buckets {(bj)}j=1..Np as candidates that may contain objects similar to the

query according to :

dh(gq,bj) < δMP (3.7)

where dh is the hamming distance between two binary hash codes and δMP is the

multi-probe parameter (i.e. a radius of hamming space).

A final step is then performed to filter the features contained in the selected

buckets by computing their distance to the query and keeping the K Nearest

Neighbors.

3.2 The MapReduce framework

MapReduce is a programming model introduced by Google to support dis-

tributed batch processing on large data sets. A MapReduce job splits the input

dataset into independent chunks which are processed by the map tasks in a parallel

manner. The framework sorts the outputs of the maps, which are then input to the

reduce tasks. Chunks are processed based on key/value pairs. The map function

computes a set of intermediate key/value pairs and, for each intermediate key, the

reduce function iterates through the values that are associated with that key and

outputs 0 or more values. The map and Reduce tasks scheduling is performed by

the framework. In a distributed configuration, the framework assigns jobs to the

nodes as slots become available. The number of map and reduce slots as well as

chunk size can be specified for each job, depending on the cluster size. With such a

granularity, large data sets processing can be distributed efficiently on commodity

clusters.



3.3 Multi-Probe LSH in the MapReduce framework

The hash table T in the MapReduce framework is stored in a text file where

each line corresponds to a single bucket. Each bucket is represented by a <

key, value > pair :

< b, ((id(F1),F1), (id(F2),F2), . . . ) > (3.8)

where b is the hash code of the bucket and id(F) the picture identifier associated

to feature F.

In order to be processed by the MapReduce framework, the table T has to be

divided into a set of splits. The number of splits is deduced by the MapReduce

framework according to a set of input parameters as the number of available slots

and the minimal input split size which is related to the file system block size.

However, in order to be entirely processed by a mapper, a bucket cannot spill over

different splits.

Since MapReduce is mainly dedicated to batch processing, setting up tasks

could be expensive due to process creation and data transfer. Therefore, our imple-

mentation processes multiple queries at a time, typically sets of pictures belonging

to the same records.

The hash codes of all query features are computed and passed to the map

instances to be executed on the different slots. The number of map instances is

computed by the MapReduce framework according to the number of input splits.

Each map process iterates over its assigned input split and for each query

selects the candidate buckets that are likely to contain similar features according

to Equ.3.7. It then computes the distance to each feature within the selected

buckets. For each visited feature Fi, the mapfunction outputs a < key, value >



pair of the form :

< id(Fq), (dist(Fq,Fi), id(Fi)) > (3.9)

where dist(Fq,Fi) denotes the distance between Fq and Fi.

For each query identifier id(Fq) the reduce instance sorts the set of emitted

values for all map instances and filters the K-nearest neighbors.

Figure 3.3 gives the average response time per K-NN search according to the

total number of queries batched within the same MapReduce job. It shows that

the MapReduce framework becomes profitable from about 50 grouped queries.

The average response time becomes almost constant for more than 400 grouped

queries. In our experiments, the number of images per event record ranges from

about 5 to 200. That means that using the MapReduce framework is still reaso-

nable for the online processing of a single event record.

Finally, many MapReduce implementations materialize the entire output of each

map before it can be consumed by the reducer in order to ensure that all maps

successfully completed their tasks. In [22], Condel et al. propose a modified Ma-

pReduce architecture that allows data to be pipelined between operators. This

extends the MapReduce programming model beyond batch processing, and can

reduce completion times while improving system utilization for batch jobs as well.

4 Experiments

We evaluated our method on a Flickr image dataset using last.fm tags as

real-world events ground truth. It was constructed from the corpus introduced by

Troncy et al. [95] for the general evaluation of event-centric indexing approaches.

This corpus mainly contains events and media descriptions and was originally

created from three large public event directories (last.fm, eventful and upcoming).

In our case, we only used it to define a set of Flickr images labeled with last.fm



Figure 3.3 – Processing time per image according to query size

tags, i.e. unique identifiers of music events such as concerts, festivals, etc. The

images themselves were not provided in the data and had to be crawled resulting

in some missing images. Unfortunately, in this corpus, only a small fraction had

geo-tags so that we evaluated our method using only temporal metadata. We used

the EXIF creation date field of the pictures to generate the time metadata used

in our method. Only about 50% of the crawled images had such a valid EXIF

(others had empty or null date fields). In Table 3.1, we report the statistics on

the original, crawled and filtered dataset. To gather the pictures in relevant event

records, we used both the last.fm identifier and the Flickr author field provided

with each picture. An event record is then defined as the set of pictures by a given

author having the same LastFM label. Our final dataset contains 41, 294 event

records related to 34, 034 distinct LastFM events.

Table 3.1 – Test dataset Vs Original dataset

Total Crawled Filtered

photos 1 667 317 1637585 828902

users 23 060 22676 10257



4.1 Experimental settings

We used 6 global visual features to describe a picture’s visual content (including

HSV Histogram[34], Hough histogram[34], Fourier histogram[34], edge orientation

histogram[34]). Each feature was L2-normalized and hashed into a 1024 bits hash

code using the same hash function as the one used to construct the hash table

(see Equ.3.6). The 6 hash codes were then concatenated into a single hash code of

6144 bits. We used the Hamming distance on these hash code as visual similarity.

From the full set of 41, 294 event records in the dataset, the only queries we kept

were the records being tagged with last.fm events and having at least 7 records in

the dataset. We finally got 172 query records Eq. This procedure was motivated

by the fact that a very large fraction of events were represented by only one record

and therefore not suitable for experiments.

In all the experiments, we used a leave-one-out evaluation procedure and mea-

sured performances with 2 evaluation metrics : Mean Average Precision (MAP)

and Classification Rate (CR). MAP is used in most information retrieval evalua-

tions and measures the ability of our method to retrieve all the records related

to the same event as the query event. Classification rate is obtained by using our

method as a nearest neighbors classifier. The number of occurrences of retrieved

events is computed from the top 10 returned records and we keep the event with

the maximum score as the best prediction. It measures the ability of our method

to automatically label some unknown query event record. We extend this measure

to the case of multiple labels suggestion. In addition to the best retrieved event

we also return the following events by decreasing scores (i.e. decreasing number

of occurrences found within the top-10 returned records). In this case, the success

rate is measured by the percentage of query records where the correct event was

retrieved among all suggested event tags. It measures the performance of our me-

thod in the context of tags suggestion rather than automatic annotation.



Finally, we used the Hadoop 1 MapReduce implementation on a 5-node cluster.

Nodes are equipped with Intel Xeon X5560 CPUs as well as 48Gb of RAM.

4.2 Results

Parameters discussion

In Figure 3.4, we report the mean average precision for varying values of the

θ parameter (Eq. 3.3) and different numbers of K-nearest neighbors used during

the visual matching step. The results show that MAP values are at their optimal

for θ ∈ [300, 1800] seconds. This optimal error tolerance value is coherent with

the nature of the events in the last.fm corpus. Picture records of concerts indeed

usually range from one to several hours. On the other hand, below 5 minutes,

real-world concert scenes are too ambiguous to be discriminated by their visual

content (or at least with the global visual features used in this study). In what

follows, we fix θ to 1800 as an optimal value.

Figure 3.4 – Influence of temporal error to tolerance θ

We now study the impact of adding a prior constraint δmax on the estimated

temporal offsets δ̂. Most events in last.fm dataset being music concerts, it is un-

1. http ://hadoop.apache.org/mapreduce/



likely that the temporal offset between two records would reach high values. We

therefore study the impact of rejecting all retrieved records having a temporal off-

set higher than δmax. Figure 3.5 displays the new MAP curves for varying values of

δmax. It shows that the mean average precision can be consistently improved from

about 0.08 without any constraint to 0.18. The optimal value for δmax is about

86,400 seconds which is exactly 1 day. That means that the records of a single

real-word event might have a temporal offset of up to 1 day. The interpretation

is that the EXIF creation date field is noisy due to the different reference times

of the devices used (users from different countries, default device settings, etc.).

It is worth noting that our method is by its very nature robust to such tempo-

ral offsets since we mainly consider temporal coherence rather than absolute time

matching. On the other hand, rejecting records with temporal offsets higher than

1 day allows many visual false positives to be rejected.

Figure 3.5 – Influence of temporal offset thresholding (δmax) on MAP

Figure 3.6 displays the results of the same experiment but for the classification

rate (using a 10-NN classifier on retrieved records) rather than the mean average

precision. This evaluates the ability of our method to automatically annotate a

query event record rather than its ability to retrieve all records in the dataset.

Here again the optimal classification rates are obtained when δmax=1 day. Fur-



Figure 3.6 – Influence of temporal offset thresholding (δmax) classification rates

thermore, we see that the classification rate always increases with the number K

of closest visual matches (returned for each query image). The interpretation is

that increasing K improves recall without degrading precision too much thanks

to the selectivity of our temporal consistency re-ranking step. We verified this by

studying the recall and the precision independently.

Figure 3.7 displays both precision and recall for increasing values of K. The

results confirm the above conclusion that increasing values of K improves recall wi-

thout compromising much of the precision. This shows the ability of our temporal

consistency re-ranking step to efficiently surface relevant records.

(a) Precision (b) Recall

Figure 3.7 – Precision and recall for increasing values of k



Event suggestion in the MapReduce framework

All the previous experiments were made using an exhaustive search for the

k-NN search. In this section, we evaluate the performance of our full framework

using MapReduce and the Multi-Probe LSH. As parameters, we used the optimal

values discussed in the previous section (i.e. δmax=86.400, K=3000 and θ=1800).

Table 3.2 displays the class rates using an exhaustive search as seen in the

previous section as well as class rates using a Multi-Probe LSH-based similarity

search for different values of δMP .

Table 3.2 – Suggestion rates

# of suggested events tag 1 2 3 4 5 10

Exhaustive 0.60 0.66 0.69 0.71 0.72 0.73
MP-Delta 0 0.39 0.48 0.50 0.51 0.52 0.54
MP-Delta 1 0.45 0.55 0.57 0.58 0.59 0.63
MP-Delta 2 0.48 0.59 0.61 0.65 0.66 0.69
MP-Delta 4 0.51 0.61 0.63 0.67 0.67 0.70
MP-Delta 8 0.61 0.67 0.70 0.72 0.72 0.74
MP-Delta 16 0.59 0.66 0.69 0.71 0.72 0.73

As one might expect, all class rates values increase accordingly with the num-

ber of probes (i.e increasing δMP values) to surprisingly perform better than the

exhaustive search for δMP=8. Overall, in the best case, our method is able to

suggest the correct event tag over 5 suggestions with a 72% success rate. Such

performances are clearly acceptable from an application point of view.

Figure 3.8 displays the average search time per query for both distributed and

centralized search. We compare the K-NN processing time per image for a cen-

tralized setting (number of map slots = 1) to the processing time in a distributed

scheme (20 map slots available on the network) for both exact and approximate

similarity search. Although the multi-probe might reduce the effectiveness of our



Figure 3.8 – K-NN search time per image (k = 4000)

method, it might significantly reduce the search time by an order of magnitude.

4.3 Dicussion

On event matching

From an application point of view, the identification rates achieved are clearly

acceptable for event search and identification. Yet, we believe that the identifica-

tion rate can be further improved with more information such as geotags and user

generated annotations (people tags, contextual annotations, etc).

Obviously, linking different records of the same event would also enable the

discovery of event related documents in social media. Furthermore, this would en-

able the discovery of more complex relationships and patterns between the event.

In order to handle such date sets effectively, our method should hence, scale ac-

cordingly.

On scalability

The performance gain achieved by Multi-Probe LSH over exhaustive search

is nonetheless still less than the one obtained in usual centralized settings. First,

in MapReduce approaches, probing multiple buckets generates more network ove-



rhead in addition to data transfers across the network. The second reason is due to

bucket occupation. In fact, imbalanced buckets generate imbalanced map chunks

leading to disproportionate map execution times.

While recent efforts have overcome some of the Hadoop MapReduce Frame-

work limitations and more recently the Apache Hadoop NextGen MapReduce

(YARN) 2, computing the K-Nearest Neighbors for each image is time and space

consuming even if they are processed in a parallel and/or distributed manner since

it often implies distance computation or approximation.

In Chapter 4, we address the problem of computing the images K-Nearest

Neighbors in a fully decentralized, scalable and space-adaptive manner.

5 Conclusion

In this chapter we presented a new visual-based method for retrieving events in

photo collections, that might also be used for event tag suggestion or annotation.

Our method proved to be robust to temporal offsets since we mainly rely on

temporal coherence rather than absolute time matching. As one result, we are

able to suggest the correct event tag with a success rate of at least 60% and even

72% if we allow multiple suggestions.

The proposed method is scalable, since it relies on efficient approximate simi-

larity search techniques based on the MapReduce framework. We also investigated

multi-probe techniques trading accuracy for efficiency, which might lead to a loss

of 8.3% class rate compared to a gain of 58.6% in processing time.

2. http ://hadoop.apache.org/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html



Chapitre 4

A distributed Framework for

k-NN Graphs construction

Efficiently constructing the K-Nearest Neighbor Graph (K-NNG) of large and

high dimensional datasets is crucial for many applications with feature-rich ob-

jects, such as images or other multimedia content. In this chapter we investigate

the use of high dimensional hashing methods for efficiently approximating the K-

NNG in distributed environments. We first discuss the importance of balancing

issues on the performance of such approaches and show why the baseline approach

using Locality Sensitive Hashing does not perform well. Our new KNN-join me-

thod is based on RMMH, a recently introduced hash function family based on

randomly trained classifiers. We show that the resulting hash tables are much

more balanced and that the number of resulting collisions can be greatly reduced

without degrading quality. We further improve the load balancing of our distribu-

ted approach by designing a parallelized local join algorithm. We show that our

method outperforms state-of-the-art methods in centralized settings and that it

is efficiently scalable given its inherently distributed design. Finally, we present

a distributed implementation of our method using a MapReduce framework and

evaluate its performance on a large dataset.
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1 Problem Statement

Given a set X of N objects, the K-Nearest Neighbor Graph consists of the ver-

tex set X and the set of edges connecting each object from X to its K most similar

objects in X under a given metric or similarity measure. Efficiently constructing

the K-NNG of large datasets is crucial for many applications involving feature-rich

objects, such as images, text documents or other multimedia content. Examples in-

clude query suggestion in web search engines [85], collaborative filtering [1], visual

objects discovery [80] and event detection in multimedia User Generated Contents.

The K-NNG is also a key data structure for many established methods in data

mining [12], machine learning [10] and manifold learning [103]. Overall, efficient

K-NNG construction methods would extend a large pool of existing graph and

network analysis methods to large datasets without an explicit graph structure.

In this chapter we investigate the use of high dimensional hashing methods

for efficiently approximating the K-NNG, notably in distributed environments.

A decade after the first LSH [37], hashing methods have indeed attracted increa-

sing interest for efficiently solving Nearest Neighbors problems in high-dimensional

feature spaces. Embedding high-dimensional feature spaces in very compact hash

codes makes it possible to scale up many similarity search applications (from 10

to 1000 times larger datasets) [38, 55, 101]. One advantage of hashing methods

over trees or other structures is that they simultaneously allow efficient indexing

and data compression. Hash codes can indeed be used to gather features into

buckets but also to approximate exact similarity measures by efficient hash code

comparisons (typically a hamming distance on binary codes). Memory usage and

processing costs can therefore be drastically reduced.

Unfortunately, recent studies [107, 31] have shown that the performances of

usual hashing-based methods are not as good as expected when constructing the

full K-NNG (rather than only considering individual top-K queries). Recently,

Dong et al.[31] even show that LSH and other hashing scheme can be outperfor-

med by a radically different strategy purely based on query expansion operations



[31], without relying on any indexing structure or partitioning method. Our work

provides evidence to support hashing based methods by showing that such obser-

vations might be mitigated when moving to more recent hash function families.

Our new KNN-join method is notably based on RMMH [55], a recent hash

function family based on randomly trained classifiers. In this chapter, we discuss

the importance of balancing issues on the performance of hashing-based similarity

joins and show why the baseline approach using Locality Sensitive Hashing (LSH)

and collisions frequencies does not perform well (Section 2). We then introduce

our new K-NNG method based on RMMH (Section 3). To further improve load

balancing in distributed environments, we finally propose a distributed local join

algorithm and describe its implementation within the MapReduce framework.

2 Hashing-based K-NNG construction

2.1 Notations

Let us first introduce some notations. We consider a dataset X of N feature

vectors x lying in a Hilbert space X. For any two points x,y ∈ X , we denote as

κ : X2 → R a symmetric kernel function satisfying Mercer’s theorem, so that κ

can be expressed as an inner product in some unknown Hilbert space through a

mapping function Φ such that κ(x,y) = Φ(x).Φ(y).

If we denote by NK(x) the set of the K nearest neighbors of x in X according

to κ, then the K-Nearest Neighbor Graph on X is a directed graph GK(X , E)

connecting each element to its K Nearest Neighbors, thus :

E = {(u,v),u ∈ X ,v ∈ NK(u)}

We generally denote by H, a family of binary hash functions h : X → {−1, 1}. If

we consider hash function families based on random hyperplanes we have :

h(x) = sgn (w.x + b)



where w ∈ X is a random variable distributed according to pw and b is a scalar

random variable distributed according to pb. When working in the Euclidean space

X = R
d and choosing pw = N (0, I) and b = 0, we get the popular LSH function

family sensitive to the inner product [15, 60]. In this case, for any two points

q,v ∈ R
d we have :

Pr [h(q) = h(v)] = 1−
1

π

cos−1

(

q.v

‖q‖ ‖v‖

)

Thus, the collision probability of any two items increases with their inner product

(κ(q,v) = q.v). More generally, any LSH function family has the property :

Pr [h(q) = h(v)] = f (κ(q,v)) (4.1)

where f(κ) is the sensitivity function, increasing with κ.

2.2 LSH based K-NNG approximation

Let us consider L hash tables, each constructed from the concatenation of p

hash functions built from an LSH family H. The collision probability of any two

items q,v in one table is :

Pr [h(q) = h(v)] = [f (κ(q,v))]p (4.2)

where h(q) and h(v) denote p-length binary hash codes.

The total number of collisions in any set of L hash tables, denoted as nq,v, is a

random variable distributed according to a binomial distribution with parameters

L (the number of experiments) and fp (the probability of success of each Bernouilli

experiment). The expected number of collisions in L hash tables is therefore :

n̄q,v = E[nq,v] = L. [f (κ(q,v))]p



The empirical number of collisions in L tables, denoted as n̂q,v, can be seen as an

estimator of this value. And since the sensitivity function f is supposed to be an

increasing function with κ, it is easy to show that :

κ(q,v1) < κ(q,v2)⇔ E[n̂q,v1
] < E[n̂q,v2

] (4.3)

The top-K neighbors of any item x ∈ X according to κ can therefore be approxi-

mated by the top-K items ranked according to their collision frequency with x (as

suggested in [64]). Consequently the whole K-NNG on X can be approximated

by simply counting the number of collisions of item pairs, without any distance

computation.

More formally, we define the hashing based approximation of a K-NNG GK(X , E),

as a new directed graph ĜK(X , Ê) where Ê is a set of edges connecting any item x

to its K most frequently colliding items in the L hash tables. In practice, since the

number of collisions is a discrete variable, more than K items might have the same

number of collisions and have to be kept in the graph produced. The hash-based

approximation of a K-NNG should therefore rather be seen as a filtering step of

the all-pairs graph. A brute-force refinement step can be applied on ĜK(X , Ê) to

get a more accurate approximation during a second stage.

2.3 Balancing issues of LSH-based K-NNG

The LSH-based K-NNG approximation is very attractive in the sense that it

does not require any kernel (or metric) computation. It simply requires building

L hash tables and post-processing all collisions occurring in these tables. Unfortu-

nately, balancing issues strongly affect the performance of this scheme in practice.

The cost of the method is, in fact, mainly determined by the total number of

collisions in all hash tables, i.e.

TH(X , L, p) =
L∑

l=1

2p∑

b=1

nl,b.(nl,b − 1)

2
(4.4)



where nl,b is the number of items in the b-th bucket of the l-th table. For an ideally

balanced hash function and p ∼ log2(N), the cost complexity would be O(L.N).

But for highly unbalanced hash functions, the cost complexity tends rather to be

O(L.N2) because the most filled buckets concentrate a large fraction of the whole

dataset (i.e. nl,b = αN). To illustrate the potential impact of LSH balancing

issues, Table 4.1 provide some real statistics computed on one of the datasets used

in our experiments (see section 5), compared to a perfectly balanced hash function

(L=128, p=16). It shows that the number of collisions to be processed is 3 orders

of magnitude greater than the perfectly balanced hash function, resulting in an

intensive computing cost. The poor balancing performance is confirmed by a very

bad Gini coefficient and a low entropy. Overall, several authors have confirmed

that LSH-based methods for approximating K-NN Graphs are not very efficient

[31, 107]. Balancing however was not identified as being critical to improve the

efficiency of hash-based K-NNG approximations.

Hash function Perfect LSH

Nb of collisions TH(X , L, p) 4.82 ∗ 106 7.57 ∗ 109

Entropy 16 7.58

Gini coeff. 0 0.94

Max bucket size 12 100751

Nb of non empty buckets 65 536 11 070

Table 4.1 – Balancing statistics of LSH vs. perfectly balanced hash function

3 Proposed method

We now describe our K-NNG approximation method. It can be used either as a

filtering step (combined with a brute-force refinement step applied afterwards), or

as a direct approximation of the graph, depending on the quality of the application

required. The method holds for centralized settings as well as for distributed or

parallelized settings, as discussed below.



3.1 Random Maximum Margin Hashing

Rather than using classical LSH functions, our method is based on Random

Maximum Margin Hashing (RMMH, [55]), an original hash function family in-

troduced recently and one that is suitable for any kernelized space (including the

classical inner product). In addition to its nice embedding properties, the main

strength of RMMH for our problem is its load balancing capabilities. The claim

of this method is actually that the lack of independence between hash functions

is the main issue affecting the performance of data dependent hashing methods

compared to data independent ones. Indeed, the basic requirement of any hashing

method is that the hash function provide a uniform distribution of hash values,

or at least one that is as uniform as possible. Non-uniform distributions increase

the overall expected number of collisions and therefore the cost of resolving them.

The uniformity constraint should therefore not be relaxed too much, even if we

aim to maximize the collision probability of close points.

The main originality of RMMH is to train purely random splits of the data, re-

gardless of the closeness of the training samples (i.e. without any supervision). The

authors showed that such a data scattering approach makes it possible to generate

consistently more independent hash functions than other data-dependent hashing

functions. Moreover, the use of large margin classifiers allows good generalization

performances to be maintained.

Concretely, the method works by learning a set of randomly trained classifiers

from a small fraction of the dataset. For each hash function, M training points are

selected at random from X and are then randomly labeled (half of the points

with −1 and the other half with 1). If we denote as x+j the resulting M
2 positive

training samples and as x−

j the M
2 negative training samples, each hash function

is then computed by training a binary classifier hθ(x) such that :

h(x) = argmax
hθ

M
2∑

j=1

hθ(x
+
j )− hθ(x

−

j ) (4.5)



Using a Support Vector Machine (SVM) as a binary classifier, we get :

h(x) = sgn

(

m
∑

i=1

α
∗

i κ(x
∗

i ,x) + bm

)

(4.6)

where x∗i are the m support vectors selected by the SVM (x∗i ∈
{

x+
j ,x

−

j

}

).

In the linear case (κ = inner product), this simplifies to :

h(x) = sgn (w.x + b) (4.7)

with w =
∑m

i=1 α
∗

ix
∗

i and the hash function is much faster to compute.

3.2 RMMH-based K-NNG approximation

Our K-NNG approximation algorithm now works in the following way :

— STEP1 - Hash tables construction : For each item x ∈ X , we compute

L p-length binary hash codes h(x) (using L.p distinct RMMH functions)

and insert them in L distinct hash tables.

— STEP2 - Local joins : Non-empty buckets of each hash table are pro-

cessed independently by a local join algorithm. For each non-empty bucket

b, the local join algorithm generates the nc = nb.(nb−1)
2 possible pairs of

items computed from the nb items contained in the bucket. Notice that

this algorithm ensures that buckets can be processed separately and there-

fore facilitate the distribution of our method. Each emitted pair is simply

coded by a pair of integer identifiers (idi, idj) such that idi < idj (as a

coding convention) with 0 < i < nb − 1 and 0 < i.nb + j < nc − 1.

— STEP3 - Reduction : All pairs (idi, idj) are mapped onto an accumulator

in order to compute the occurrence of each pair (within the TH emitted

pairs). Notice that the occurrence matrix produced does not depend on the

mapping sequence so that each pair can be inserted independently from

the other ones, at any time during the algorithm. This ensures that this

reduction step can be easily distributed.



— STEP4 - Filtering : Once the full occurrence matrix has been computed,

it is filtered in order to keep only the most similar items to each candidate

item and compute our approximate graph ĜK(X , Ê). This is done by scan-

ning each line of the occurrence matrix and maintaining a priority queue

according to the number of occurrences of each pair. Since the number of

occurrences is a discrete priority value, all items having the same frequency

are pulled together from the queue, so we finally get more than K most

similar items for each candidate item. Notice that each line of the matrix

can be processed independently from the other ones. This ensures that this

filtering step can be easily distributed.

We recall here that the hashing-based K-NNG produced by the above algorithms

could still be refined by a brute-force algorithm applied on the remaining pairs. We

use such a refinement step in some of our experiments so as to make comparisons

possible with the state-of-the-art results of [31].

3.3 Split local joins

Although local joins can be easily distributed, large buckets still affect the

overall performance. The local join algorithm has quadratic space complexity

(nc = nb.(nb−1)
2 = O(n2

b)) and is therefore, likely to raise memory exceptions

as well as expensive swapping phases. Moreover, we want our distributed frame-

work to support a wide variety of hash functions, even those with lower balancing

capabilities such as LSH. In the following, we extend the local join algorithm to

process large buckets in parallel and/or distributed architectures with guarantees

on the runtime and memory occupation.

In practice, if the number of collisions generated by a given local join exceeds

a fixed threshold (i.e. nc > cmax), then the local join is split into ns = ⌈ nc

cmax
⌉

sub-joins, each being in charge of at most cmax collisions.

Algorithm 1 shows the pseudo-code of the basic local join.

Since the number of generated pairs at iteration k is n − k, the number of



Algorithm 1 Local Join

Require: bucket b = {idi}1<i<nb
, start, end.

Ensure: local collisions set C.

1: C ← ∅
2: for i← start, . . . , end do
3: for j ← i+ 1 . . . , nb do
4: C ← C ∪ (bi, bj)
5: end for
6: end for

generated pairs of an s-length iteration block starting at the ith iteration of the

external loop is :

s−1∑

k=0

(nb − i− k) =
1

2
∗ s2 + (nb − i−

1

2
) ∗ s (4.8)

which must be less than or equal to cmax. The thus defined inequality has two

roots of opposite signs s1 and s2 (s1 > s2) ; we require s to be equal to ⌊s1⌋ as

long as s+ i remains less than or equal to s, nb − i otherwise.

Algorithm 2 gives the pseudo-code for the enhanced local-join with the split

strategy. It first computes the starting iteration of each iteration block (lines 3-10),

local joins are then spawned concurrently across processing units (lines 11-13).

3.4 MapReduce Implementation

As explained in the previous section, all the steps of our hashing-based K-NNG

approximation framework can be easily distributed. In this work, we implemented

it under the Hadoop MapReduce framework [27]. This is probably not the most

efficient implementation, but it is highly scalable and easily deployable into large

computing clouds. A first MapReduce job performs the hash tables construction

STEP1 and then, a second MapReduce job computes STEP2 and STEP3 (using

the split local join strategy). STEP4 was not implemented under MapReduce

within our experiment but this could be easily done by using the occurrence matrix

line numbers as input keys to a third job.



Algorithm 2 Distributed and/or parallel Local Join

Require: bucket b = {idi}1<i<nb
, capacity cmax

Ensure: distributed collisions set

1: l ← ∅ //starting iterations list
2: k ← 1

3: while k < nb do

4: s1 ← ⌊12 − nb + k +
√

(nb − k − 1
2)

2 + 2.cmax⌋

5: if s1 > nb − k then
6: s1 ← nb − k
7: end if
8: l ← l ∪ s1
9: k ← k + s1

10: end while

11: for i ← 1 . . . , |l|− 1 do
12: Local Join(b, l[i], l[i+ 1]− 1)
13: end for

Hash table construction (STEP1)

The first MapReduce job splits the input dataset X into independent chunks

of equal sizes to be processed in parallel. A mapper iterates over the set of its

assigned object features and computes L.p hash values for each feature according

to Equation 4.6. Hash values are concatenated into L p-length hash codes corres-

ponding to L bucket identifiers for the L hash tables). Each hash code is then

emitted along with the table identifier (intermediate key) and the associated fea-

ture identifier (intermediate value).

The Reduce function merges all the emitted identifiers for a particular interme-

diate key (i.e. bucket identifier within a specific table). The resulting buckets are

provided as input to the second MapReduce job.

Occurrence matrix computation (STEP2 & 3)

The second job processes buckets separately. The map function generates all

possible pairs of identifiers of the processed bucket and issues each pair (interme-



diate key), possibly with a null intermediate value. The reduce function counts

the number of intermediate values for each issued pair. For efficiency reasons,

map outputs are combined locally before being sent to the reducer. This requires

intermediate values to store the cumulated pair occurrences. With such an opti-

mization, the mapper issues each pair along with its initial occurrence. Combine

and reduce functions simply sum the intermediate values for each issued pair.

4 Experimental setup

This section provides details about the experimental setup, including datasets,

performance measures, default parameters and system environment. Experimental

results are reported in Section 5.

4.1 Datasets & Baselines

Our method was evaluated on 3 datasets of different dimensions and sizes :

Shape : a set of 544-dimensional feature vectors extracted from 28775 3D poly-

gonal models from various sources.

Audio : a set of 54387 192-dimensional feature vectors extracted from the DARPA

TIMIT collection.

Flickr : we use the same dataset as described in section 4.

All feature vectors were L2 normalized and compressed into 3072-dimensional

binary hash codes using RMMH and LSH. Table 4.2 summarizes the salient infor-

mation of these datasets.

The shape and audio datasets were first used in [32] to evaluate the LSH

method and more recently in [31] to evaluate the NN-Descent algorithm against

the Recursive Lanczos Bisection[17] and LSH. We rely on these datasets to evaluate

our method against the NN-Descent method [31] (which outperforms previous

approximate KNNG methods).

Finally, we use the Flickr dataset to study in more detail the performances of



our method in the context of a larger dataset (in size and dimensionality), related

to the context of this dissertation (i.e. event mining).

Datasets # Objects Dimension

Shape 28 775 544

Audio 54 387 192

Flcikr 828 902 793

Table 4.2 – Dataset summary

4.2 Performance measures

We use recall and precision to measure the accuracy of our approximate KNN

Graphs against the exact KNN Graphs. The exact K-NN Graphs were computed

on each dataset using a brute-force exhaustive search to find the K-NN of each

node. The default K is fixed to 100. The default similarity measure between fea-

ture vectors is the inner product. Note that, since all features are L2-normalized,

the inner product K-NNG is equivalent to the Euclidean distance K-NNG. The

recall of an approximate K-NNG is computed as the number of correct Nearest

Neighbors retrieved, divided by the number of edges in the exact K-NNG. Simi-

larly, we define the precision of an approximate K-NNG as the number of exact

Nearest Neighbors retrieved, divided by the total number of edges in the approxi-

mate K-NNG.

The efficiency of our method is evaluated with the following metrics :

— Number of generated pairs : is used as an architecture-independent measure

of the cost of our method to study the impact of the different parameters

and hash functions used.

— Gini coefficient : is used to measure the load balancing of the hash tables

used. Low Gini coefficients reflect good bucket balancing, while high values

reveal large disparities in feature distribution. We should mention here that

a null value reflects a uniform distribution in the hash space. In [81], the



authors show that the Gini coefficient is the most appropriate statistical

metric for measuring load balancing fairness. For a better understanding

of the impact of unfair feature balancing on the running time, we also

report some statistics on the average maximum bucket size and the average

number of non-empty buckets.

— Scan-Rate : is used as an architecture and method-independent measure of

the filtering capabilities of approximate KNNG construction methods. It is

defined in [31] as the ratio of the number of item pairs processed by the

algorithm to the total number of possible pairs (i.e N(N−1)
2 ).

— CPU Time : is used to compare the overall efficiency of our method against

the NN-descent method.

— Min, Max and Average Map running times are used to evaluate the perfor-

mances that can be achieved on large clusters.

4.3 System environment

We implemented our approach on the Hadoop 1 MapReduce framework.

MapReduce-based experiments were conducted on a 6-node cluster, each node

being equipped with four 2.8 Ghz Quad Core Intel Xeon CPU and 48 Gbytes

of memory. The number of configured map, respectively reduce slots is hardware-

dependent and is limited by the amount of available memory as well as the number

of supported parallel threads per node. In order to avoid expensive context switches

and memory swaps, we require each node to host at most 8 map slots and 3 reduces

in parallel.

The NN-Descent code is the same as in [31] and was provided by the authors.

It is an openMp parallelized implementation and runs only in centralized settings.

To allow fair comparison, we used an openMp-based centralized version of our code

rather than the MapReduce implementation. It iteratively performs steps 1 to 4

(Section 3.1) and finally applies a brute-force refinement step on the remaining

pairs. Centralized experiments were conducted on an X5675 3.06 Ghz processor

1. http ://hadoop.apache.org/mapreduce/



server with 96 Gbytes of memory.

5 Experimental results

We first evaluate the impact of the hash functions used on load distributions

(Section 5.1). We then evaluate the overall performance of our method in cen-

tralized settings (Section 5.2) and compare it against the NN-Descent algorithm

(Section 5.2).

The last part serves to validate our method in the MapReduce framework(Section

5.3).

5.1 Hash functions evaluation

We first evaluate the ability of RMMH to produce fair load distributions in

the hash tables. This was not addressed in the original work of Joly et al. [55].

In Figure 4.1, we report the Gini coefficient for different values of M , i.e. the

main parameter of RMMH (Section 3.1). The plots show that hash tables produ-

ced by RMMH quickly converge to fair load balancing when M increases. Gini

coefficients below 0.6 are, for instance, known to be a strong indicator of a fair

load distribution [44]. As a proof of concept, very high values of M even provide

near-perfect balancing. As we will see later, such values are not usable in practice

since too much scattering of the data also degrades the quality of the approximate

graph generated. The parameter M is actually aimed at tuning the compromise

between hash functions independence and the generalization capabilities of the

method [55].

In Table 4.3, we report some statistics for LSH based hashing. Although LSH

achieves correct balancing on the Shape and Audio datasets, it performs consis-

tently worse on the Flickr dataset. For typical values of M greater than 15, RMMH
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outperforms LSH on the 3 datasets.

Shape Audio Flickr

Gini 0.60 0.63 0.94
# non-empty buckets 6656 14917 11071
Avg. Max. bucket size 594 468.039 100751

Table 4.3 – Bucket Balancing Statistics - LSH-Based Hashing

This can be further verified in Figures 4.2 and 4.3 as the maximal bucket size

per dataset decreases inversely to the number of non-empty buckets.
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Figure 4.4 plots the number of collisions to be processed for increasing values of

L and different hash functions. The results show that the RMMH based approach

generates up to two orders of magnitude fewer collisions than the LSH-based ap-
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proach for typical values of M greater than 15. The number of generated pairs for

both the Shape and Audio datasets does not exceed 109 pairs and therefore, can

be processed in centralized settings. Conversely, the number of generated pairs for

the Flickr dataset for intermediate values of M is high and cannot be handled

in centralized settings. We recall here that the cost of storing one single pair is

10 bytes (2 integers for feature identifiers and 1 short for the collision frequency).

The cost of processing 109 pairs is about 9.5 Gbytes. As a consequence, the default

value of M for the Flickr dataset is fixed to 50. In the following, unless otherwise

stated, the default value of M is 10.

In the following section, we use the Shape and Audio datasets to compare

against the state-of-the-art technique applied in centralized settings. Results on

the Flickr datasets are reported in 5.3 to evaluate the ability of our method to

scale up in both dimensionality and dataset sizes.

5.2 Experiments in centralized settings

In this section, we first evaluate the overall performance of our method in cen-

tralized settings on only the Audio and Shape datasets (Section 5.2) to allow a

fair comparison with the NN-Descent algorithm (Section 5.2) that could not run

on the Flickr dataset.
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Figure 4.4 – Total number of collisions

Overall performance of our method and parameter discussion

Figure 4.5 summarizes the recall of our method on both Shape and Audio da-

tasets for different hash functions and index sizes (i.e. the number L of hash tables

used). The best results are observed for small values of M . The results also show

high recall values even with a small number of hash tables (L = 16 and L = 20

respectively for 90% recall) whereas higher recall values require a higher number of

hash tables (128 hash tables for M = 10, whereas only 64 hash tables are required

for M = 10 for 99% recall).

Note that high recall values can be achieved using different values of M . As

discussed in 5.1, the higher M is, the fewer collisions are generated and the more

hash tables are needed. Figure 4.6 plots the scan rate for different hash functions
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Figure 4.5 – Recall vs #number of hash tables used

and index sizes. The results show that 99% recall can be achieved while conside-

ring less than 0.05 of the total N ∗ (N − 1)/2 comparisons (for M = 20) for both

datasets. It is worth noticing that even with small values of M , and therefore low

generalization properties (M = 5), the scan rate did not exceed several percent

of the total number of comparisons. This suggests that intermediate values of M

generate more accurate approximations of the KNN Graph as they require fewer

comparisons for the same degree of accuracy. In practice, intermediate values of

M with a high number of tables appears to be a reasonable trade-off between

accuracy and approximation cost. Conversely, very high values of M degrade the

accuracy of the KNNG approximation.
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Figure 4.7 plots the total CPU time for different values of L (M = 10). For a

better understanding of processing costs, we also report the running time of the

different phases. The results show a correlation between the different phases. The

greater the number of hash tables, the more collisions are generated along with

irrelevant pairs.
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Figure 4.7 – Running Time - RMMH

In Table 4.4, we compare RMMH against LSH in both efficiency and effecti-

veness. RMMH clearly outperforms LSH with fewer hash tables. Actually, none of

the LSH-based settings achieved better results than RMMH.

Shape Audio

L Recall Time Recall Time

RMMH 128 0.994 3.078 0.982 5.440

LSH 128 0.967 2.616 0.903 3.912
LSH 144 0.973 2.715 0.914 4.234
LSH 160 0.978 2.972 0.925 4.518
LSH 176 0.982 3.042 0.934 4.942
LSH 192 0.984 3.358 0.941 5.382

Table 4.4 – Total Running Time - LSH vs RMMH (M = 10)

Table 4.5 summarizes the Recall, Scan Rate and CPU time for different values

of the minimum collision frequency considered in the approximate graph. Note

that threshold values cannot exceed the number of hash tables used. The results

show that low collision thresholds saved more than 50% of feature comparisons on



both datasets for less than a 4% recall loss.

Shape Audio

thresold Rec. SR CPU Rec SR CPU

1 0,995 0,087 3,078 0,983 0,069 5,440
2 0,981 0,043 1,817 0,951 0,026 3,051
4 0,929 0,022 1,271 0,861 0,009 2,008
8 0,772 0,011 1,124 0,661 0,003 1,814

Table 4.5 – Impact of the filtering parameter (M = 10, L = 128)

Comparison with the State-of-the-art

The same datasets were used in [32] to evaluate the NN-Descent approach

against Recursive Lanczos Bisection and LSH. We used the same NN-Descent

settings in our set of experiments ((ρ = 0.5) for speed and (ρ = 1) for accuracy).

We use M = 10 and two different thresholds for the post-processing phase

(t = 1 (default) and t = 2) and up to 192 hash tables for high recall rates, as

discussed in Section 5.2. Table 4.6 summarizes the recall and CPU time of both

methods under those defined settings.

The results show that our approach yields similar results to the NN-Descent

algorithm for both recall rates and CPU costs using the default threshold (i.e.

a minimum collision frequency equal to 1). Although our method performs many

fewer comparisons than the NN-Descent approach, the results show similar running

times considering the Local Joins and Reduction costs. Higher threshold values are

likely to further reduce the scan rate and CPU costs accordingly.

By putting a threshold on the frequency collisions, our method achieves both

higher recall and faster speed (t = 2). Actually, our frequency-based approximation

beats the NN-Descent high-accuracy setting in all cases. Here again, the results

suggest that higher threshold values achieve better approximations of the KNN

Graph.

As a conclusion, our method achieves similar or better performances than

the most efficient state-of-the-art approximate K-NNG construction method in



centralized architectures. And in contrast to this method, our method has the

advantage of being easily distributable and therefore much more scalable, as shown

in the next section.

Shape Audio

ρ Rec. CPU S.R. Rec. CPU S.R.

NND 1 0,978 2,044 0,096 0,942 3,387 0,054

NND 0.5 0,958 2,33 0,057 0,903 4,834 0,033

t L Rec. CPU S.R. Rec. CPU S.R.

Ours 1 64 0,976 1,943 0,060 0,943 3,288 0,044

Ours 1 128 0,995 3,078 0,087 0,983 5,440 0,069

Ours 1 144 0,996 3,278 0,093 0,986 5,874 0,073

Ours 1 160 0,997 3,630 0,097 0,989 6,162 0,078

Ours 1 176 0,998 3,696 0,102 0,991 6,703 0,083

Ours 1 192 0,998 3,943 0,107 0,992 6,854 0,087

Ours 2 64 0,925 1,026 0,027 0,857 1,591 0,013

Ours 2 128 0,981 1,817 0,043 0,951 3,051 0,026

Ours 2 144 0,986 2,054 0,047 0,959 3,225 0,028

Ours 2 160 0,989 2,173 0,050 0,966 3,683 0,031

Ours 2 176 0,991 2,351 0,053 0,972 4,116 0,034

Ours 2 192 0,993 2,597 0,057 0,976 4,335 0,036

Table 4.6 – Comparison with State-of-the-art

Table 4.7 shows the impact of varying K (i.e. the number of Nearest Neighbors

considered in the exact K-NNG) on both datasets (L = 128 and M = 10). It shows

that high recall values can be obtained on both smaller(K = 1) and larger graphs

(K = 20) whereas a sufficiently large K is needed for the NN-Descent to achieve

recall rates (> 90%) as stated in [31].

K 1 5 10 20 100 Scan-rate

Shape 0.999 0.998 0.997 0.994 0.978 0.086

Audio 0.996 0.991 0.988 0.982 0.957 0.069

Table 4.7 – Recall for varying values of K

5.3 Performance evaluation in distributed settings

We recall that the experiments described here were carried out on the Flickr

dataset (See Section 4.1).

Table 4.8, shows the impact of the split local join strategy on the number

of map tasks for different values of parameter M. Despite the bucket balancing



achieved, the average maximum bucket size is still high. When the initial balancing

of the hash tables is weak, large buckets are split into small balanced ones that

fit the computational constraints resulting in a higher number of map tasks. On

the other hand, the number of additional map tasks decreases as M increases to

finally generate as many map tasks as the basic local join (i.e. the load balancing

achieved by RMMH is already near perfect).

M 10 40 70 100

Gini 0.87 0.71 0.63 0.56

Basic Join 1161 1229 1260 1279

Split Join 9310 1256 1261 1280

Table 4.8 – Number of map tasks

In Table 4.9, we report statistics on map running times. Given a sufficient

number of nodes, (i.e. map slots ≥ the number of map tasks), the total proces-

sing time for a K-NNG construction would be of the same order of magnitude as

the processing time of its longest map task.

M 10 40 70 100

Avg. 43 21 10 7

Worst 146 40 20 9

Table 4.9 – Map running time (in seconds)

Figure 4.8, displays the Recall/Precision curves for varying values of parame-

ter M . Once again, the best results are observed for intermediate values of M

between 15 and 70. This confirms the observations in [55] about the stability of

this parameter and its expected optimal values. Very high values of M are likely to

scatter similar objects and therefore, impact the recall. Conversely, low balanced

buckets would lead to low precision rates. In the following, we fix the training

parameter of RMMH to M = 50. In Figure 4.9, we report the Recall/Precision

curves for varying numbers of hash tables. The results show that precision and

recall rates increase along with the number of hash tables. In this experiment,

we do not use any refinement step after constructing our approximate K-NNG,

so relatively low precision could be drastically improved by a brute-force post-
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processing. To better evaluate the filtering capacity of our method, Figure 4.10
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plots the Recall/Scan-rate curves for increasing L values. Once again, it shows that

increasing the number of tables always improve the trade-off between recall and

scan-rate. With L = 128, 72% recall can be achieved while considering only 0.014

of the all pairs graph. Higher recall values could be achieved with more tables. But

this is not required in many applications where approximate Nearest Neighbors

can be as good as exact Nearest Neighbors from the document’s content point of

view [55].

Table 4.10 shows the impact of varying K on the Flickr dataset (L = 128 and

M = 50). It shows that high recall values can be obtained on smaller graphs (e.g.

K=1) and that very large graphs (K=1000) can still be well approximated with

fair recall values about 50%.
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K 1 5 10 40 100 1K Scan-rate

Flickr 0.93 0.88 0.86 0.79 0.72 0.51 0.012

Table 4.10 – Recall for varying values of K

6 Conclusion

This chapter introduced a new hashing-based K-NNG approximation tech-

nique, which is easily distributable and scalable to very large datasets. To the best

of our knowledge, no other work has reported full K-NN graphs results on such

large datasets. Our study provides some evidence that balancing issues explain the

low performances obtained with a classical LSH-based approach for approximating

K-NN graphs. It also shows that using alternative new hash functions that handle

hash table uniformity can definitely change those conclusions. Finally, we descri-

bed a distributable implementation of our method under a MapReduce framework

and improved the load balancing of this scheme through a split local join strategy

avoiding memory overlaps.

In the following chapter, we show how the presented framework can be used in

the context of event-based content suggestion through the construction of image

similarity graphs. More importantly, we show how the collision scheme used can

be leveraged to combine both the k-Nearest Neighbors Graph construction and

the filtering step needed for the event k-Nearest Neighbors Graph construction.





Chapitre 5

Event-based Content Suggestion

and Summarization in Social

Media

Social media sites such as Flickr or Facebook contain large amounts of social

multimedia documents relating real-world events. While some of their content

might be interesting and useful, a considerable amount might be of little value

to people interested in learning about the event itself. Applications such as event

summarization, browsing and content suggestion would benefit from such identified

content, ultimately improving the user experience. Selecting the most salient social

media content for a particular event, however, is a challenging task, considering

the fact that such User Generated Content is often distributed between a large

number of different users. In this chapter, we address the general issue of selecting

high quality content for an event.

We first present a new collaborative content based filtering technique for se-

lecting quality documents for a given event (Section 1.1). We then extend our

technique to support the more specific problems of event summarization (Section

1.2) and content suggestion (Section 1.3) in social media. Section 2, introduces a
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scalable framework for building the event graph that we considered in this chapter.

Section 3.1 reports results on the LastFM dataset used in the previous chapters.

1 Content suggestion and summarization in UGC

Recent studies have addressed the general issue of selecting relevant content, or

summarizing an event. Very often, selecting the most interesting images involves

some decision-making, based on various criteria. Alternatively, the problem of se-

lecting relevant content can be reduced to an optimization problem under quality

constraints [6, 93]. Nevertheless, these constraints vary greatly with the summa-

rization context. Generally, state-of-the-art content selection and summarization

techniques exploit the metadata associated to media such as time, location, title

and description. In practice, such information is not always available or might be

noisy.

To address the limitations of existing approaches, we leverage the social context

provided by the social media to objectively detect moments of interest in social

events. Our work is based on the assumption that, should a sufficient number of

users take a large number of shots at a particular moment, then we might consider

this to be an objective evaluation of interest at that moment. Of course, in such

scenarios, location and time information provided with the contents have a major

role to play. In practice, however, location and time information are not always

available or might be noisy. In this chapter, we make use of the visual based event

matching technique presented in Chapter 3, to fill in for bad or missing metadata

associated to media.

1.1 Content Selection

For this content selection problem, we assume that we are given an event

and a corresponding set of social media documents that are associated with the

event, organized into records. Such identified record clusters can be obtained from

the event k-NN Graph (Figure 5.1) described in Section 2 or by using metadata
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associated to the media such as time, location and tags when available.

Figure 5.1 – A k-NN record graph of 10 event records.
C1 = an event cluster of 4 event records related mostly to the social event E1 (U1@E1, U2@E1,
U4@E1 and U3@E3). C2 = an event cluster of 2 event records related to the social event E3

(U1@E3 and U2@E3).

Event clusters may, however, be noisy and contain records associated with some

other events. This is particularly true in the case of co-located events where a set

of people may be interested in the same event but also share images of other local

events. Hence, records from different events are likely to share a subset of visually

similar images and thus, appear within the same cluster. Figure 5.1 illustrates the

situation described above. The event cluster C1 contains 4 records related mostly

to the social event E1, it also includes an occurrence (Record 3) of the social event

E3. Conversely, distinct records may reflect different aspects of the event and,

thus, be scattered between clusters. In our work, we assume that each record can

be associated at most, with one single social event. However, our approach can

generally be extended to handle less structured content.

Moreover, a single user record may relate to different events and thus, be

associated with various events. For instance, the “my ICMR 2012” event record

(Figure 5.2), containing images of my trip in the context of the International

Conference on Multimedia Retrieval in 2012, may also include images of the “2012

Tiananmen celebration in Hong Kong” and images of our "trip to Lantau Island"



as well. Although these images relate to different events, they were taken in the

context of "my trip to the ICMR conference" and may be considered as part of

the same event. In this connection, images of the Tiananmen celebration might

be of little interest to people who are seeking information about the ICMR 2012

event. Similarly, the ICMR pictures are likely to be of little value to people who

are seeking information about the Tiananmen celebration ceremony.

Figure 5.2 – A photo collage of my 2012 ICMR photo album of co-located events.

Pictures of the ICMR banquet, however, are likely to interest people seeking

information about the event. We define the content selection problem as follows :

Definition 3 Given an event e and a set of associated social media documents De,

our goal is to select a subset of documents from De that are the most relevant to

the event, and which include useful details for people who are seeking information

about the event.

Our approach relies on the observation that widely covered moments are likely

to reflect key aspects of the event as they reflect a common interest. Should a

sufficient number of users take a large number of shots at a particular moment, then

we might consider this to be an objective evaluation of interest at that moment.

Given a cluster C of n identified event records and their associated set of media

documents Ic, our method counts, for each image I ∈ Ic, the number S(I) of



temporally consistent visual matches with another image within a different record

of the same cluster (i.e. the number of times that I contributed to a link with a

record within the cluster). More formally, let G be the graph having elements from

Ic and whose edges link pairs of temporally and visually consistent images from

Ic. The S(I) score represents the in-degree centrality of I. The result is a ranked

subset of images of Ic.

1.2 Event Summarization

We formalize our event summarization problem as that of producing a ranking

on the event media documents. Specifically, given a cluster Ci (relating to an event

Ei) of n event records Uj@Ei and their associated set of media documents Ic, we

first compute the S(i) score for each element in Ic. We then select the top-K

documents accordingly as a candidate set for generating an event summary. In

our experiments, since the average number of images per event cluster is relatively

small (from tens to hundreds), we make K big enough to include all the images

in the event clusters. Going back to the record map illustrated in Figure 5.1, the

E1 summary is generated by ranking the images of C1 records in decreasing order

of their in-degree centrality.

Alternatively, the resulting set may be post-processed to produce customized

event summaries, thus, improving the user experience. In practice, we provide users

with a set of predefined filters, so that, for example, the removal of visually similar

images (possible using the images K-Nearest Neighbors Graph) or maximize the

time span (when temporal information is available) of the images for a wider

coverage of the event. Since the number of images retained may decrease, we refer

to the size of the pruned summary as Ssummary.

1.3 Content Suggestion

Here, the goal is to present a given user only documents that provide additional

information about the event. Given a set of Nq images (i.e. a record of a user), the



recommendation system first identifies the corresponding event and then, returns

a ranked list of images from the repository.

In practice, the event record is submitted to the system and matched with

records from the repository using the visual-based event matching technique des-

cribed in Section 2. To suggest images to the user, we follow two possible scenarios.

In one scenario, we do not have any information about the retrieved records. In

this scenario, the set of suggested images is that of the first retrieved event record.

Depending on the system requirements, a threshold on the retrieved records can be

tuned to improve the overall precision, respectively recall, of the recommendation

system.

Alternatively, all event records in the repository are clustered in an offline

phase. Finally, the recommendation system, returns the list of images of the iden-

tified event records ordered by their score (Section 1.1).

To illustrate both scenarios, let us consider the record graph in Figure 5.1 and

a query record that matches with a record from C1. In the first scenario, the set

of suggested images is that of the matched record. In the second scenario, the

set of suggested images is expanded to include images from C1 ordered by their

decreasing score.

In both scenarios, images which are visually similar to the query images are

removed from the answer set, as they would not provide any additional informa-

tion.

2 Building the Records Graph

The experiments in Section 4.2 show that big values of k are needed to achieve

both good precision and recall. However, a large proportion of the records retrie-

ved are discarded while applying the spatio-temporal constraints the registered

records. Here, the idea is to discard records with large spatial and/or temporal

offset from the query record prior to the geo-temporal re-ranking step (Step 3)

hence, combining both the visual matching (Step 1) and prior filtering (Step 4)



steps.

In Chapter 4, we presented a framework for large scale nearest neighbors graph

construction. Candidate pairs of visually similar images are first produced using

our hash-based Nearest Neighbors collision scheme (Step 2). A threshold of the

number of collisions is then used in order to keep only the most similar pairs

of images (Step 4). Eventually, a refinement step on the the remaining pairs is

performed to determine the k-nearest neighbors of each image using a distance-

based similarity function.

Although the number of generated pairs is relatively low, it is still has an

impact on the amount of data transferred. The idea here is to limit the set of

emitted pairs to those that fit the specified spatio/temporal constraints (Step 4)

and thereby also limiting the number of similarity computations performed in the

refinement step. Algorithm 3 gives the pseudo-code for the enhanced local-join.

Algorithm 3 V isual and temporal Local Join

Require: bucket b = {idi}1<i<nb
, start, end.

Ensure: local collision set C.

1: C ← ∅
2: for i ← start, . . . , end do
3: for j ← i+ 1 . . . , nb do
4: if Pbi −Pbj ≤ δmax then
5: C ← C ∪ (bi, bj)
6: end if
7: end for
8: end for

The approximate event Nearest Neighbors Graph is computed by applying

Step 2 and 3 on the approximate image k-Nearest Neighbors obtained using the

modified local join algorithm.

3 Experiments

We evaluated our content selection technique on an 828,902 Flickr images

dataset, the same as was used in [94]. We first describe the experimental settings



(Section 3.1). Experimental results are reported in Section 3.2.

3.1 Experimental setup

Data

The KNN-Graph on the records set was built using the exact image’s Nearest

Neighbors on the global features and the default δ and θ parameters as in Section

4.2.

From the full set of 34,034 events, the only events we kept were those having

at least 2 related records in the dataset. The resulting graph contains 11,785 event

records from 4,525 different sub-events. We used the LastFM tags associated to the

images to build event records clusters and compute the S(i) score of the related

images.

Evaluation

We conducted a user-centric evaluation on 10 different subjects. Each user was

asked to evaluate a set of 20 event summaries chosen at random from a set of 168

events, each having at least 5 associated event records. A 1 to 5 scale was used

to score the overall quality of the summary, where a score of 5 signifies strong

relevance and clear usefulness, and a score of 1 signifies no relevance and no use-

fulness. Similarly, a 1 to 5 score was used to score the images of the summary

individually. The number of images displayed was limited to the top 7 ranked

images so that summaries could fit into web browsers. For each event, we report

the event summary and the average of the recommended images. Figure 5.3 illus-

trates the web-based application used for this purpose.

The KNN-Graph on the records is evaluated using the optimal values from

sections 4.2 and 5 (i.e. δmax=86.400, K=3000, θ=1800, M = 50) as described in

Section 4.1.



Figure 5.3 – Snapshot of the user-centric evaluation GUI

3.2 Results

We first evaluate the ability of the proposed method to suggest relevant content.

Figure 5.4 shows the score distribution of the suggested images. The results show

that 39% of the suggested images were rated with the highest score while only 5%

had the lowest. Overall, 68% of the scored images were judged good enough to

represent the event they belonged to.
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Figure 5.4 – Score distribution of the suggested images

Looking at the results in more detail, we concluded that, without much sur-

prise, the worst rated images are generally those displaying only a few people

not directly participating in the main event itself (friends of the photographer, a



lunch break, etc.) or images of very poor quality. On the other hand, the top-rated

images are usually good quality images where the artist(s) is(are) clearly visible

and/or where the scene presents a specific interest. This can be observed in Fi-

gures 5.5 and 5.6, where close-up photos of the artists rated considerably higher

than photos of the scene and the venue as well as these 3 events were co-located

in Hong-Kong at the same period. Although the Pukkelpop festival art work shot,

captured dining the event (Figure 5.5 first image with past events dates), seems to

have no particular interest at first glance, it rated 3,33 on average as it provides

information about the past events.

Figure 5.5 – Pukkelpop Festival 2007 summary. The first image was rated at
3.33 on average whereas the remaining images rated at 4.33, 4.33, 4 and 4.33 on
average, respectively.

In Figure 5.7, we compare the event summary score (given by users) to the

image-based event score (the average score of the suggested images). The results

show that the two scoring methods yield very similar results. None of the rated

events had a score of 1, while 65% to 73 % scored higher than 4. Although the

two reported scores were similar, the results show some variation. A higher image-

based score, for instance, reflects a limited event coverage despite the quality of

the suggested images (Figure 5.8). Conversely, a higher summary score reflects

wide coverage of the event (Figure 5.6). Still, the average summary score was

3.75, respectively 3.94, which reflects the effectiveness of our scoring approach and



Figure 5.6 – Haldern Pop Festival - August 13-19, 2009 Summary. All of the
images were rated at 4.5 on average.

subsequently, the summarization technique.
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Figure 5.7 – Event summary vs image-based score distribution.

Detailed user statistics of the user study are presented in Table 5.1. The re-

sults show consistency between the images and the events score for each user.

Although the events scores ranged from 2 to 5 for most users, the average event

score was high. This suggests that our approach was able to present comprehensive

summaries for users, who may well have different requirements and expectations.

In Figure 5.9 we report the average scores for varying event cluster sizes. The

results show that the effectiveness of our technique increases with the size of event



Figure 5.8 – Radiohead @ Victoria Park - June 24, 2008 Summary. The event
summary was rated at 3 while the image based score was at 2.

Avg Image Avg Event Worst Event Best Event

score score rating rating

U1 4.06 4 2 5

U2 3.69 3.63 2 5

U3 3.97 3.85 3 5

U4 3.73 3.7 2 5

U5 4.38 4 2 5

U6 4.09 4 3 5

U7 3.66 3.72 2 5

U8 3.67 3.8 2 5

U9 3.34 3.31 2 5

U10 4.09 3.95 2 5

Mean 3.87 3.79 2.2 5

Table 5.1 – User-centric evaluation of the image relevance scores

clusters (i.e. the number of records) as more information is available. The results

also show that only a relatively small number of records is needed to generate a

representative summary of the event.

Figures 5.10 and 5.11 show the impact of the near duplicate pictures removal

step (Section 1.2). Duplicate images are removed within the summary and possibly

replaced by the next images in the ranked set of the selected images, thus providing

a wider and enhanced coverage of the event.
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Figure 5.10 – An event Summary without duplicate pictures removal filter

Figure 5.11 – An event summary showing the impact of the duplicate pictures
removal filter

Building the Events K-NN Graph

In Figure 5.12, we report the mean average precision for varying values of k and

the number of hash functions used. The results show that MAP values increases

along with the number of hash functions used, as the number of generated collisions

increases. Similarly, the results show that the mean average precision increases

rapidly along with the number of Nearest Neighbors retrieved, to level out for

high values of k. In our experiments, the number of Nearest Neighbors retrieved

is relatively low resulting in a constant mean average precision for high values of



k. In the following, unless otherwise stated, the number of hash tables used is 10.
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Figure 5.12 – Mean Average Precision vs k

In Figure 5.13, we report the precision and recall curves for increasing values

of k. The results show that the recall increases rapidly along with the number

of Nearest Neighbors retrieved. Converserly, the overall precision decreases as the

number of retrieved neighbors increases. Overall, the reported results show a large

gap between precision and recall. Most importantly, Figure 5.13 show that the

recall increases twice as fast as the precision decreases. This suggests that higher

recall can be achieved without a significant loss in precision. In the following, we

study the impact of the selectivity of the hash functions used on both precision

and recall.
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Figure 5.13 – Recall and Precision vs k

Figure 5.14 shows the influence of the selectivity of the hash functions used on

the recall and precision. The results show that high recall values can be achieved

without a substantial loss in precision. Specifically, Figure 5.14a shows higher recall



for decreasing values of M as as the selectivity of the hash functions decreases.

Similarly, Figure 5.15 shows higher recall for decreasing size of the hash functions

used as multiple buckets are merged.
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Figure 5.14 – Influence of the hash functions selectivity on the recall and precision

Figure 5.15, shows the combined effect on both recall and precision. Although

recall improved significantly, the achieved precision is sill low. In the following, we

fix the training parameter of RMMH to M = 10 and the Hash Size of the hash

functions used to 12 and study the impact of the filtering parameter on both recall

and precision.
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Figure 5.15 – Recall and Precision vs Hash Size (M = 10)

Figure 5.16 shows the impact of the filtering parameter on both recall and

precision. By putting a threshold on the frequency collisions, our method achieves

higher precisions but at lower recall resulting in a better balance between precision

and recall.
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Figure 5.16 – ROC curve for various collisions thresholds

Such performances are clearly acceptable from an application point of view as

shown in Figure 5.2. Overall, in the best case, our method is able to identify the

correct event with a 56% success rate and to suggest the correct event tag over 5

suggestions with a 92% success rate.

Table 5.2 – Suggestion rates

# of suggested events tag 1 2 3 4 5 6 7 8 9 10

Suggestion rate 0.56 0.75 0.84 0.88 0.89 0.9 0.91 0.9 0.91 0.92

4 Conclusion

Events in social media often have vast amounts of associated content. In order

to avoid overwhelming their users with too much information, social media sites

need to select and prioritize content.

In this chapter, we presented a new content-based filtering technique to select

high quality content. Unlike state-of-the-art methods, our record-based technique

provides an objective evaluation of moments of interest during social events. A

user-centric evaluation revealed that some users tend to prefer stage photos while

others see more value in more diversified content. Overall, the proposed technique



has performed well, reporting the most captured moments for a set of users. We

argue that such information can be used to characterize communities of users, and

more generally, social networks.





Chapitre 6

Related Work

This chapter reviews the literature that is relevant to this dissertation. Sec-

tion 1 describes efforts on event identification in social media related to the event

retrieval task presented in Chapter 3. Section 2 discusses related research on or-

ganizing and presenting social media content, including content suggestion and

summarization, which we addressed in Chapter 5. Section 3 and Section 4 res-

pectively, provide an overview of approximate nearest neighbors search techniques

and large-scale k-Nearest Neighbors Graph construction that we considered for

the event graph construction framework presented in Chapter 4.

1 Event Identification in Social Media

While earlier studies aiming at event discovery were based solely on text analy-

sis and essentially focused on news documents [61, 63], more recent work on social

media has been able to take advantage of richer multimedia content, while having

to cope with the challenges that such a benefit entails.

In [4], the authors present a clustering framework to group images based firstly

on geographical coordinates and then visual features to depict different views of

the same scene. Similarly, in [77], a framework to detect landmarks and events to

improve the user browsing and retrieval experience is proposed. The work presen-
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ted in [36] attempts to identify public events by using both the spatio-temporal

context and photo content. Although these methods performed well on real word

datasets, their scope remains conceptually limited due to the properties of the

EXIF data, which considerably restricts query formulation. Moreover, despite the

fact that such properties are becoming more widespread, they are far from being

universally available, notably in professional devices, or removed (such as for Fli-

ckr and Facebok).

Several recent studies have tried to compensate for such missing information. For

instance, [11] presents a classifier-based method, where items that are geotagged

are used to build a set of initial clusters that correspond to events. The items of

each identified cluster are then used to train a classifier that augments each cluster

with non-geotagged items. More recent work also extended item description with

information from user-supplied tags along with external data sources and APIs

such as the Google MAP API. In [82], the authors make the assumption that all

items that have been uploaded by the same user in the same day belong to the

same event. Such heuristics make sense. However, their use may introduce some

bias in return.

Other related efforts have used some online sources to retrieve structure infor-

mation that is related to an event. The work of [91] exploited the user context

to annotate the images according to four event related facets (where, when, who,

what) by a graph model that uses the Wordnet [71] ontology. In [99], a sequence of

clustering and filtering operations is applied. The textual, temporal and location

features are first used to cluster images. The resulting clusters are then filtered with

regard to the temporal, location and textual constraints. A visual classifier is then

used to filter clusters. This final step, however, requires manual labeling of images.

Similarly, in [66], the authors propose an approach that builds a classifier using

explicit event descriptions from online catalogues and performs post-processing

on the visual features to clean the classified data. In [76], the clustering step is

based solely on the location and temporal information. Each event produced by

the clustering step is then enriched by making use of the metadata of the photos



associated with it, including pictures by the same users or within a fixed radius

of the venue. In [67], the description of events and their associated multimedia

items is retrieved from structured online sources and expressed using the LODE

[90] and Media Ontology respectively. Here, multimedia documents that contain

specific machine tags are used to train classifiers which are then used to prune

results from general textual queries. Although ontologies provide a common des-

cription of real world-events, their practical use is still limited by the number of

searchable properties as well as the lexical ambiguity of textual based queries. In

[82], the authors introduce an approach to detect photos belonging to the same

event which are distributed between several friends and albums in Facebook using

visual, tag-based, friendship-based and structural-based features.

In general, many of the approaches that have been proposed to tackle the problem

of event identification in multimedia collections have used some form of online

source to retrieve structured information that is related to either the event or

media. While this is acceptable if it leads to an enhancement of the results, it

may not always be possible as most social events do not have a formal description

in some online source. Therefore such methods should only be used for pruning

results. Although some of these efforts make use of certain visual properties, very

few rely primarily on visual features. Our work differs in that it essentially relies

on visual features to identify event-related items while incorporating additional

external information when such information is available.

2 Event summarization

In the computer vision community, [96] and [72] provide an extensive review

of key-frame extraction and video summarization. In [56], broadcasted videos of

a an entire basketball season in the USA and the corresponding metadata are

used to create summary videos from different aspects, like summaries of the whole

championship, of only one team or even a single player. In [33], the authors present

an approach for summarizing rushes video based on the detection of repetitive



sequences, using a variant of the Smith-Waterman algorithm to find matching

subsequences.

Other recent efforts have addressed the problem of presenting and summarizing

web images. In [98], the authors create a “picture collage”, a bidimensional spatial

arrangement of the input that maximizes the visibility of salient regions. Rother

et al. [84] summarize a set of images with a “digital tapestry”. A large output

of images is produced, stitching together salient and spatially compatible blocks

from the input image set. In both cases, however, the set of images to appear has

already been selected, and the visual layout is to be determined.

In social media, early work focused on extracting quality Twitter messages

[25, 30] and summarizing or otherwise presenting Twitter event content [6], an

effort related to ours but using fundamentally different data. In [25, 30], the authors

analyzed Twitter messages corresponding to large-scale media events to improve

event analytics and visualization. In [6], Becker et al. address the problem of

selecting tweets with regard to quality, relevance and usefulness.

Selecting the most representative social media documents from large collections

of social media documents is becoming a prominent issue in the multimedia com-

munity. Early work focused solely on metadata associated to media [21, 47, 88, 59].

In [29], the authors make use of community annotations, such as ratings and the

number of views, to produce video summaries of social events using both video

and image content.

In [21] a hierarchy of images is constructed using only textual caption data, and

the concept of subsumption. Jaffe et al. [47] summarize a set of images using only

tags and geotags. Here, the authors use the correlations between geotags and tags

to produce "tag maps", where tags and related images are placed on a geographic

map at a scale corresponding to the range over which the tag appears. In [88], the

author, relies on Flickr tags, which are typically noisier and less informative than

captions. All of these approaches could be used to further organize our summaries.

However, none of them take advantage of the visual information in the images to

fill in for bad or missing metadata. Hence, in [59], the authors propose a method



to generate representative views of landmarks by diversifying image features and

user tags.

Content summarization, however, turns out to be a very subjective process. In

[87], Savakis et al. show that selecting personal photos from a collection depends

greatly on user-preferences. In [93], Sinha et al. address the problem of summari-

zing personal photos present in web archives or personal storages with high qua-

lity, diversity and coverage constraints. Here, the authors reduce the problem of

selecting images from photo collections to an optimization problem under quality,

diversity and coverage constraints. A framework, based on spatial patterns, for

automatically selecting a summary set of photographs from a large collection of

geo-referenced photos is presented in [47]. Here, the authors make the assumption

that more photographs are taken at locations that provide views of some inter-

esting object or landmark by a large number of photographers. Although these

efforts make use of certain visual properties, very few make use of the social media

information associated to media, such as tags of individuals [82] and ownership

[94].

More generally, research on content selection, and event summarization has

benefited from recent work on event identification and retrieval in social media.

In a notable effort, Liu et al. present a method combining semantic inferencing

and visual analysis to automatically find media (photos and videos) illustrating

events. In [94] , we presented a new visual-based technique for retrieving events

in photo collections, typically in the context of User Generated Content. Given a

query event record, represented by a set of photos, the proposed method aims to

retrieve other records of the same event, typically generated by distinct users. One

advantage of this approach is that it essentially relies on visual features to match

records of the same event while incorporating additional external information when

such information is available.



3 Large-scale k-NN Graph construction

Initially, the K-NNG problem can be seen as a nearest neighbors search pro-

blem where each data point itself is issued as a query. The brute-force approach,

consisting of N exhaustive scans of the whole dataset, has the cost O(N2). Its

practical usage is therefore limited to very small datasets. Building an index and

iteratively processing the N items in the dataset with approximate Nearest Neigh-

bors search techniques is an alternative option that might be more efficient (Section

4).

In addition to the usual approximate Nearest Neighbors search methods, some

recent studies focus more specifically on the K-NNG construction problem as a

whole, i.e. not by processing iteratively and independently the N top-K queries,

but by trying to exploit shared operations across all queries. In the text retrieval

community, recent studies [5, 107] focused on the ǫ-NNG construction in which one

is only interested in finding pairs whose similarity exceeds a predefined threshold.

In [107], the authors present a permutation based approach both to filter candi-

date pairs and to estimate the similarity between vectors. However, their approach

is only applicable on sparse vectors. Very recently, Dong et al. [31], proposed the

NN-Descent algorithm, an approximate K-NNG construction method purely ba-

sed on query expansion operations and applicable to any similarity measure. The

algorithm starts by picking an approximation of K-NN for each object, it itera-

tively improves that approximation by comparing each object against its current

neighbors’ neighbors, and then stops when no improvement can be made. Their

experiments show that their approach is more efficient than other state-of-the-art

approaches. However, designing an efficient distributed version of this method is

not trivial, limiting its practical scalability as it requires the entire dataset to be

loaded into a centralized memory. A comparison with their results was provided

in Chapter 4.



4 Nearest Neighbors search

Early tree-based indexing methods for Nearest Neighbors (NN) search such as

R-tree [43], SR-tree [57], M-tree [20] or more recently cover-tree [9] return accurate

results, but they are not time efficient for data with high dimensionality [100].

4.1 Curse of dimensionality

A particular but well-studied case of the nearest neighbor search problem is in

the Euclidian space where the data lives in a d-dimensional space R
d under the

Euclidean distance function.

When d = 1, predecessors queries can be used to efficiently perform nearest

neighbour queries. A straightforward but efficient solution is to sort the data at

indexing time, and then, perform a binary search at query time. This achieves

linear spacey and polylograithmic time complexity.

The d = 2 case leads to one of the most classical structures in computational

geometry, the Voronoi diagram[26]. Here, the plane is partitioned into polygonal

regions, each representing the set of points that are closer to a point from the

dataset to any other point from the dataset. At query time, one just need to

locate the region containing a given query.

While the latter approach achieves O(n) and O(n log(n)) space and time com-

plexity, respectively, its generalisation have O(n[d/2]) space complexity. In practice,

such a space bound is impractical for datasets of a few million points for d ≥ 3.

Several data structures have been proposed for low values of d. Kd-trees, in-

troduced were first such structure in 1975 by Bentley et al. [8]. In [35], such a

structure is used to accelerate k-nearest neighbour queries using ball-rectangle in-

tersection tests. Ever since, many approximate NN methods were then proposed

including randomized kd-trees [92], hierarchical k-means [73] or approximate spill-

trees [65, 50]. Although these methods provided little improvement over a linear

time algorithm that compares a query to each point from the database, they are



not time efficient for data with high dimensionality [100].

Since, several approaches have been proposed to overcome space and time

limitations using approximation. One of the most popular approximate nearest

neighbor is LSH. In that formulation, we are no longer interested in the exact

k-nearest neighbors trading accuracy for time and space efficiency.

4.2 Approximate similarity search

Approximate nearest-neighbor algorithms have been shown to be an interesting

way of dramatically improving the search speed, and are often a necessity [106, 19]

Locality-Sensitive Hashing

One of the most popular approximate nearest neighbor search algorithms used

in multimedia applications is Locality-Sensitive Hashing (LSH) [37, 46]. The basic

method uses a family of locality-sensitive hash functions composed of linear pro-

jections over randomly selected directions in the feature space. The principle is

that nearby objects are hashed into the same hash bucket with a high probability,

for at least one of the hash functions used. LSH has achieved very good time effi-

ciency for high dimensional features and has been successfully applied in several

multimedia applications including visual local features indexing [58], songs inter-

section [14] or 3D object indexing [70]. Following this success, hashing methods

have been gaining increasing interest.

Multi-Probe LSH

One drawback of the basic scheme is that, in practice, it requires a large num-

ber of hash tables (L) to achieve good search accuracy. In [74], Panigrahy et al.

proposed an entropy-based LSH scheme to reduce the number of hash tables requi-

red by using both the original query point and randomly perturbed nearby points

as additional queries.



To make better use of a smaller number of hash tables, Lv, et al. [68] not

only considers the bucket pointed by the query point, but also examines “nearby”

buckets. Here, instead of perturbed query objects, the authors generates pertur-

bed hash tables. However, this method still suffers from the need of building hash

tables at different radiuses in order to achieve good search accuracy.

Whereas the latter are based on the simple likelihood criterion that a given bu-

cket contains query results, in [54], the authors define a more reliable a posteriori

probabilistic model taking account some prior about the queries and the searched

objects. This prior knowledge allows a more accurate selection of buckets to be

probed.

So far, hashing techniques are categorised into two groups : Data inde-

pendent hashing functions in which the hashing function family is defined

uniquely and independently from the data to be processed [18, 83, 89, 48] and more

recently in [52] and [51], and data dependent hashing functions in which the

hash functions rely on some features sampled in the dataset [101, 60, 78, 86, 55].

Efficiency improvements of data dependent methods over independent ones have

been shown in several studies [49, 101, 86, 55]. RMMH [55], the family used in

this work, was designed to overcome two limitations of previous data dependent

methods : (i) it is usable for any Mercer Kernel (ii) it produces more independent

hashing functions.

Whereas most of the latter approaches have tackled the approximate nea-

rest neighbours problem in the euclidian space some recent work addressed the

problem using x2 distance which is believed to achieve better results in image

retrieval context. In [41, 40], the authors present a new LSH scheme adapted to

x2 distance for approximate nearest neighbours search in high-dimensional spaces

that achieves better accuracy than euclidean scheme for an equivalent speed, or



equivalent accuracy but with a high gain in terms of processing speed.

Recently, there have been several efforts to improve the load balancing of the

generated hash functions. For unsupervised hashing, principled linear projections

like PCA Hashing (PCAH) [97] and its rotational variant [39] were suggested for

better quantization rather than random projections. Nevertheless, only a few or-

thogonal projections are good for quantization as the variances of data usually de-

cay rapidly, as pointed out by [97]. In [45], the authors present a novel hypersphere-

based hashing function, spherical hashing, to map more spatially coherent data

points into a binary code compared to hyperplane-based hashing functions. In-

tuitively, hyperspheres provide much stronger power in defining a tighter closed

region in the original data space than hyperplanes. For example, while d + 1 hy-

perplanes are needed to define a closed region for a d-dimensional space, a single

hypersphere can form such a closed region even in an arbitrarily high dimensional

space.



Conclusion

Summary of Contributions

As people continue to author and share event-related content in social media,

the opportunity for leveraging such information increases. Social media web sites

such as Flickr and Facebook, provide a playground not only for people to publish

their content but also for applications that build on these useful sources of infor-

mation. While some of event related content might be interesting and useful, a

considerable amount might be of little value to people, ultimately impacting the

user experience.

In this dissertation, we presented a visual-based event matching paradigm

which serves as a stepping stone for various applications that build on events,

and their associated documents, in social media. In Chapter 3, we addressed the

problem of identifying events in social media web sites. By linking different oc-

currences of the same event, we can annotate the query with tags from previously

identified and/or annotated occurrences. Ultimately, linking different occurrences

of the same event would enable rich search and browsing of social media events

content. Specifically, linking all the occurrences of the same event would provide

a general overview and description of the event.

To avoid overwhelming applications, or users, with unmanageable volumes of

event-related content, we presented a new collaborative content-based filtering
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technique for selecting quality documents for a given event (Chapter 5). Sub-

sequently, we addressed the more specific problems of event summarization and

content suggestion in social media.

To improve our content selection framework, we developed a scalable and dis-

tributed framework for k-Nearest Neighbors Graph construction (Chapter 4) based

on RMMH. Our work provides some evidence that balancing issues explain the

low performances obtained with a classical LSH-based approach for approximating

K-NN graphs. It also shows that using alternative new hash functions that handle

hash tables uniformity can definitely change those conclusions. We finally descri-

bed a distributable implementation of our method under a MapReduce framework

and further improved the load balancing of this scheme through a split local join

strategy to accommodate memory requirements.

Future Work

Identifying communities

By linking different occurrences of the same event, we can identify communities

of users who share a comment interest in a specific event or a particular group of

events, ultimately extending the event experience and allowing users to socialize

and share their experience.

Collaborative event recommendation

Obviously, people attending the same event are likely to have similar tastes

and preferences. By connecting users accordingly, we can discover more complex

relationships between users, as well as the events themselves. A user graph could

for instance be obtained straightforwardly from our event records graph.



A dedicated framework for k-NN Graph Construction

The k-NN graph construction framework developed in this dissertation (Section

3) is at the core of our content suggestion and event identification techniques.

Although the technique presented is scalable, the Hadoop-based implemen-

tation suffers from some technical limitations. Most importantly, the C++ API

requires data to be serialized in order to be sent to and from the mappers res-

pectively, the reducers. A dedicated framework would allow data to be handled

natively, hence, improving the overall performance.

Further work remains to be carried out on automatic parameters tuning and

varying hash sizes through a rigorous theoretical analysis of our method. Other

perspectives include : query expansion strategies, hash functions evaluation and

metadata management.

Finally, the technique presented could extend a large pool of existing graph and

network analysis methods to large datasets without an explicit graph structure.

Further work will be carried out towards extending our framework to support

large-scale data mining techniques.

Distributed event records Graph construction

So far, we have presented a scalable framework for k-NN Graph Construc-

tion. However, the event records Graph construction, from the image similarity

graph, is still centralized. A short-term perspective of this work is to distribute

the construction of the event records Graph.

New record similarity metrics

So far, we have only considered the use of temporal meta-data, taking into

account the fact that spatial information is rarely available. Further work should

be carried out to include additional, more abundant meta-data such as textual

annotations.
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Découverte d’événements par contenu visuel dans les médias
sociaux

Mohamed Riadh TRAD

RESUME : L’évolution du web, de ce qui était typiquement connu comme un moyen de communication à
sens unique en mode conversationnel, a radicalement changé notre manière à traiter l’information. Des sites de
médias sociaux tels que Flickr et Facebook, offrent des espaces d’échange et de diffusion de l’information. Une
information de plus en plus riche, mais aussi personnelle, et qui s’organise, le plus souvent, autour d’événements
de la vie réelle. Ainsi, un événement peut être perçu comme un ensemble de vues personnelles et locales, capturées
par différents utilisateurs. Identifier ces différentes instances permettrait, dès lors, de reconstituer une vue globale
de l’événement. Plus particulièrrements, lier différentes instances d’un même événement profiterait à bon nombre
d’applications tel que la recherche, la navigation ou encore le filtrage et la suggestion de contenus.

L’objectif principal de cette thèse est l’identification du contenu multimédia, associé à un événement dans de
grandes collections d’images. Une première contribution est une méthode de recherche d’événements basée sur le
contenu visuel. La deuxième contribution est une approche scalable et distribuée pour la construction de graphes
des K plus proches voisins. La troisième contribution est une méthode collaborative pour la sélection de contenu
pertinent. Plus particuliérement, nous nous intéresserons aux problèmes de génération automatique de résumés
d’événements et suggestion de contenus dans les médias sociaux.

MOTS-CLEFS : Recherche d’événements, résumés d’événements, graphes des plus proches voisins.

ABSTRACT : The ease of publishing content on social media sites brings to the Web an ever
increasing amount of user generated content captured during, and associated with, real life events.
Social media documents shared by users often reflect their personal experience of the event. Hence, an
event can be seen as a set of personal and local views, recorded by different users. These event records
are likely to exhibit similar facets of the event but also specific aspects. By linking different records
of the same event occurrence we can enable rich search and browsing of social media events content.
Specifically, linking all the occurrences of the same event would provide a general overview of the event.

In this dissertation we present a content-based approach for leveraging the wealth of social media
documents available on the Web for event identification and characterization. To match event occur-
rences in social media, we develop a new visual-based method for retrieving events in huge photo
collections, typically in the context of User Generated Content. The main contributions of the thesis
are the following : (1) a new visual-based method for retrieving events in photo collections, (2) a sca-
lable and distributed framework for Nearest Neighbors Graph construction for high dimensional data,
(3) a collaborative content-based filtering technique for selecting relevant social media documents for
a given event.

KEY-WORDS : Event matching, event mining, event summarization, nearest neighbors graph.


