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Abstract

In telecommunications, rate-reliability and encoding-decoding computa-
tional complexity (floating point operations - flops), are widely considered
to be limiting and interrelated bottlenecks. For this reason, any attempt
to significantly reduce complexity may be at the expense of a substantial
degradation in error-performance. Establishing this intertwined relationship
constitutes an important research topic of substantial practical interest. This
dissertation deals with the question of establishing fundamental rate, reliabi-
lity and complexity limits in general outage-limited multiple-input multiple-
output (MIMO) communications, and its related point-to-point, multiuser,
cooperative, two-directional, and feedback-aided scenarios. Our interest in
the outage-limited (non ergodic) setting (reduced or no channel state infor-
mation at the transmitter, i.e., reduced or no CSIT), stems from the pivotal
role of non-ergodic scenarios in modern wireless communications. These in-
clude scenarios of delay-limited data transmission in the absence of CSIT, or
more importantly scenarios that consider quick and high rate communication
of CSIT in the absence of channel reciprocity (over the feedback link), as well
as transmission of CSIT in a multiuser setting, by each of the receivers back
to their transmitters, in the presence or absence of channel reciprocity. The
crucial role of such scenarios brings to the fore the need for maximal reliabi-
lity, in the presence of the inevitable computational constraints. Finally we
explore a large subset of the family of linear lattice encoding methods, and
we consider the two main families of decoders ; maximum likelihood (ML)
based and lattice-based decoding. Algorithmic analysis focuses on the effi-
cient bounded-search implementations of these decoders, including a large
family of sphere decoders.

Specifically, the presented work provides high signal-to-noise (SNR) ana-
lysis of the minimum computational reserves (flops or chip size) that allow
for a) a certain performance with respect to the diversity-multiplexing gain
tradeoff (DMT) and for b) a vanishing gap to the uninterrupted (optimal)
ML decoder or a vanishing gap to the exact implementation of (regularized)
lattice decoding. The vanishing gap condition guarantees that the decoder’s
error curve is arbitrarily close, given a sufficiently high SNR, to the opti-
mal error curve of exact solutions, which is a much stronger condition than
DMT optimality which only guarantees an error gap that is subpolynomial
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iv Abstract

in SNR, and can thus be unbounded and generally unacceptable for practi-
cal implementations. In some cases, the presented performance-complexity
guarantees hold for a very broad setting of channel statistics, MIMO settings
and lattice implementations.

Applying the methods of the derived complexity exponent and of the
DMT, the work establishes the rate-reliability-complexity tradeoff of both
ML-based sphere decoding as well as regularized (i.e., MMSE-preprocessed)
lattice decoding. Specifically the work derives the complexity exponent for a
given achievable DMT, as well as the achievable DMT for a given constraint
on the computational resources. The derived complexity exponent describes
the asymptotic rate of exponential increase of complexity, exponential in the
number of codeword bits. This complexity exponent, albeit much reduced
compared to that of an exhaustive ML decoder, still reveals a very consi-
derable complexity. The same exponent reveals how this complexity can be
modulated down to the complexity of linear receivers, at the expense of a
specific amount of DMT loss. Interestingly we will see that sacrificing perfor-
mance does not always pay back in terms of complexity reductions. Another
conclusion is that, for a relatively broad setting of practical interest, the fa-
milies of ML-based and regularized lattice sphere decoding behave identically
(in terms of error and complexity exponents). Furthermore the work rein-
forces the role of halting policies that allow for complexity savings by being
selective as to when to decode and when to suspend operations. Interestin-
gly enough, such policies allow for a complexity that is not monotonically
increasing in the rate.

The above described exponential complexity tends to render such trans-
ceiver algorithms inapplicable to several MIMO scenarios. This served as
motivation to explore other decoders, and to provide the first ever lattice de-
coding solution and halting policy, that jointly achieve a vanishing gap to the
exact implementation of regularized lattice decoding with a complexity that
is subexponential in the number of codeword bits as well as in the rate. This
work was able to, for the first time, rigorously demonstrate and quantify the
pivotal role of lattice reduction as a special complexity reducing ingredient in
MIMO systems. We here note that while lattice reduction has indeed allowed
here for near-optimal behavior at very manageable complexity (with respect
to lattice decoding), it is the case that there exist scenarios for which these
same lattice reduction methods cannot be readily applied. Such problematic
cases include the ubiquitous scenario where outer binary codes are employed.
It is for this exact reason that analysis of non LR-aided schemes remains of
strong interest.

The work then addresses the fundamental question of establishing the
rate-reliability-complexity ramifications of feedback. This setting is very im-
portant because it can offer near ergodic behavior (high diversity), even at
high multiplexing gains. We focus on two fundamental questions. The first
question asks what is the complexity savings that feedback provides for a gi-
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ven fixed rate-reliability performance, and the second question asks what is
the complexity costs of achieving the full rate-reliability benefits of feedback.
The analysis and the constructed feedback schemes tell us how to properly
utilize a finite number of feedback bits to alleviate the adverse effects of com-
putational constraints, as those seen in the derived rate-reliability-complexity
tradeoffs of the previous chapters. Emphasis is placed on MIMO-ARQ feed-
back schemes, although we do also consider feedback with antenna selection.

Finally we present preliminary work on extending the rate-reliability-
complexity analysis to simple instances of the multiple access, relay, and
bidirectional channels, where again we identify the computational reserves
that guarantee a DMT optimality, as well as address user/relay selection
criteria and communication protocols that provide improved joint reliability-
complexity performance in the presence of computational constraints.

The above methodology can be applied to quantify the rate-reliability-
complexity performance of novel or existing coding schemes, decoders, as
well as cooperative and multiuser protocols. Despite the serious efforts to
resolve each problem in their most general form, the current work leaves out
ample space for exponential reductions in complexity, and improvements in
the joint performance-complexity measure, both on the side of decoders, as
well as for encoders, protocols or feedback schemes.
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Résumé

Dans les télécommunications, le débit-fiabilité et la complexité de l’en-
codage et du décodage (opération à virgule flottante-flops) sont largement
reconnus comme représentant des facteurs limitant interdépendants. Pour
cette raison, tout tentative de réduire la complexité peut venir au prix d’une
dégradation substantielle du taux d’erreurs. Cette thèse traite de l’établisse-
ment d’un compromis limite fondamental entre la fiabilité et la complexité
dans des systèmes de communications outage-limités à entrées et sorties mul-
tiples (MIMO), et ses scénarios point-à-point, utilisateurs multiple, bidirec-
tionnels, et aidés de feedback. Nous explorons un large sous-ensemble de la
famille des méthodes d’encodage linéaire Lattice, et nous considérons deux
familles principales de décodeurs : les décodeurs à maximum de vraisem-
blance (ML) et les décodeurs Lattice. L’analyse algorithmique est concentrée
sur l’implémentation de ces décodeurs ayant comme limitation une recherche
bornée, ce qui inclue une large famille de sphère-décodeurs.

En particulier, le travail présenté fournit une analyse à haut rapport
Signal-à-Bruit (SNR) de la complexité minimum (flops ou taille de puce
électronique) qui permet d’atteindre a) une certaine performance vis-à-vis
du compromis diversité-gain de multiplexage et b) une différence tendant
vers zéro avec le non-interrompu (optimale) ML décodeur, ou une différence
tendant vers zéro comparé à l’implémentation exacte du décodeur (régula-
risé) Lattice. L’exposant de complexité obtenu décrit la vitesse asymptotique
d’accroissement de la complexité, qui est exponentielle en terme du nombre
de bits encodés. L’exposant de complexité, quoique beaucoup plus réduit
que le décodeur optimal exhaustif comporte toujours une complexité consi-
dérable.

La complexité exponentielle décrite ci-dessus tend à rendre tout algo-
rithme d’émission-réception inapplicable au cas de plusieurs sources MIMO.
Ceci fournit la motivation pour explorer d’autres décodeurs et pour appor-
ter la première solution de décodage Lattice avec des consignes d’arrêt, qui
atteint une différence tendant vers zéro comparée à l’implémentation exacte
du décodeur Lattice régularisé avec une complexité qui est sous-exponentiel
vis-à-vis du nombre de bits encodés ainsi que vis-à-vis du débit. Ce travail
a permis de démontrer rigoureusement pour la première fois et de quanti-
fier le rôle crucial de la réduction Lattice en tant que méthode réduisant la
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viii Résumé

complexité dans les systèmes MIMO.
Ce travail adresse ensuite la question fondamentale de l’impact du feed-

back sur la relation débit-fiabilité-complexité. Ce scenario est très important
car il offre un comportement presque ergodique (forte diversité), même à
haut degré de multiplexage. Nous nous concentrons sur deux questions fon-
damentales. La première question consiste à se demander quelle est la réduc-
tion de complexité que le feedback permet pour une performance donnée en
terme de compromis débit-fiabilité, et la seconde question est de se deman-
der quel est le cout en terme de complexité pour atteindre la performance
maximale en terme de compromis débit-fiabilité avec du feedback. L’analyse
et les méthodes de feedback développées nous montrent comment utiliser ef-
ficacement un nombre fini de bits de feedback pour réduire les effets négatifs
dus aux contraintes de complexité, comme celles vues dans le compromis
débit-fiabilité-complexité dans les chapitres précédents.

Enfin, nous présentons un travail préliminaire sur l’extension de l’analyse
du compromis débit-fiabilité-complexité à des cas simples d’accès multiples,
de relai, et de canaux bidirectionnels, où nous mettons encore en évidence
quelle est la complexité minimum qui garantie un DMT optimal. Nous identi-
fions aussi des critères de sélection des utilisateurs/relais et des protocoles de
communication qui permettent une amélioration conjointe des performances
fiabilité-complexité en présence de contrainte de complexité.
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Throughout the dissertation, we use the bold uppercase letters, e.g., H,
to refer to matrices, while bold lowercase letters, e.g., h, to refer to column
vectors. We use .

= to denote exponential equality, i.e., we write f
.
= ρB to
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ρ→∞

log f(ρ)

log ρ
= B,

.
≤ and

.
≥ are defined similarly. Other notational

conventions are summarized as follows :
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Chapter 1

Introduction

1.1 Multiple Antenna Systems : Error Performance
and Complexity

In wireless communications there is an ever increasing demand to support
higher data rates, better quality of service (such as error-performance, co-
verage) and a large number of users, while maintaining the transmit power
and bandwidth. This entails considering novel technologies like multiple-
input multiple-output (MIMO) communication systems that can improve
both, the data rate and the error-performance for the given transmit power
and bandwidth, but at the cost of a potentially more challenging decoding
task for the receiver. Specifically for the brute force maximum likelihood
(ML) decoder 1 the decoding complexity grows exponentially in the number
of codeword bits as 2RT for some coding duration T . This number of bits
generally increase with the dimensionality.

In MIMO scenarios with large signal dimensionality, ML computatio-
nal costs can be prohibitively large. This motivates the use of suboptimal
transceiver designs, whose sub-optimality can often entirely negate the re-
liability benefits of MIMO. Most of the present day MIMO receivers employ
low computational complexity linear MIMO detection schemes (zero-forcing
(ZF), minimum mean square error (MMSE), successive interference cancel-
lation (SIC)) which have been shown to be highly suboptimal (cf. [1]). The
recent computational speed advancements have paved the way for the use of
state-of-art MIMO decoders employing non-linear MIMO detection schemes

1. The ML decoder is strictly speaking the only optimal decoder, in the sense that it
minimizes the probability of codeword error (irrespective of the code), and it is arguably
the slowest possible decoder, in the sense that it has to visit all possible codewords.

1
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based on more advanced bounded search algorithms, generally referred to
as sphere decoders (SD). Such decoders can provide complexity savings over
the brute force ML implementation, at the expense of a small gap to the
optimal error performance (cf. [2–7]). This variability of algorithms brings
to the fore the natural question as to what is the relationship between com-
plexity and reliability. Answering this question can be challenging, especially
since the algorithmic complexity tends to fluctuate randomly with the chan-
nel, noise and code word realizations. This randomness also brings to the
fore the potential of trading off computational complexity for error perfor-
mance by selectively choosing when to decode and when not to. Generally
though any attempt to significantly reduce complexity may be at the ex-
pense of a substantial degradation in error-performance. In the delay-limited
outage-limited MIMO settings, establishing this intertwined relationship of
the complexity and error performance constitutes an important research to-
pic of substantial practical interest.

1.2 Complexity characterization in outage-limited
MIMO

The complexity measure here is simply the amount of computational re-
serves (floating point operations - flops) that one is allowed to use during
the decoding of any given codeword. Given the aforementioned fluctuating
nature of the instantaneous algorithmic complexity (fluctuating with, for
example, the fading realization), it becomes clear that the presence of com-
putational constraints, can cause error performance degradation, as a result
of what can be perceived as a decoding outage caused whenever the run-time
constraints are violated (Fig. 1.1).
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Figure 1.1 – Instantaneous algorithmic complexity fluctuations
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1.2.1 Complexity Exponent

We denote the complexity constraint by Nmax, where as stated, Nmax

specifically describes the computational resources, in flops per T channel
uses, that the transceiver is endowed with, in the sense that after Nmax

flops, the transceiver must simply terminate, potentially prematurely and
before completion of its task. In establishing a meaningful representation
of the above, we draw from Zheng and Tse’s diversity multiplexing tradeoff
(DMT), which quantifies the relationship between rate (R) and probability of
error Perr, in the high SNR measure of multiplexing gain r = R/ log snr and
the diversity gain d(r) = − limsnr→∞ logPerr/ log snr. In the same spirit
of high-SNR tail analysis (SNR will be henceforth denoted as ρ), we here
consider the complexity exponent, defined here as

c(r) := lim
ρ→∞

logNmax

log ρ
.

We observe that c(r) > 0 implies a complexity that is exponential in the
rate.

1.2.2 On the suitability and applicability of the complexity
measure and the complexity exponent

A reasonable question at this point would pertain as to why the computa-
tional resources Nmax scale with ρ and are dependent on r, to which we note
that the complexity of decoding is generally dependent on the density and
cardinality of the codebook, which in turn depends on ρ and r. Furthermore
this dependence of the complexity exponent (and by extension of Nmax) on r,
reflects a potential ability to regulate the computational resources depending
on the rate.

In further arguing that the above representation is a natural one (ra-
ther than a forced one), we also quickly note that c(r) captures the entire
complexity range

0 ≤ c(r) ≤ rT

of all reasonable transceivers, with c(r) = 0 corresponding to the fastest
possible transceiver (requiring a subexponential number of flops per T chan-
nel uses), and with c(r) = rT corresponding to the optimal but arguably
slowest, full-search uninterrupted ML decoder 2.

2. We here note that strictly speaking, a encoder-decoder may potentially introduce a
complexity exponent larger than rT . In such a case though, this encoder-decoder may be
substituted by a lookup table implementation of encoder and an unrestricted ML decoder
in the presence of a canonical code with multiplexing gain r, i.e., with the cardinality of
codebook |Xr| = 2RT = ρrT . This encoder-decoder will jointly require resources that are a
constant multiple of |Xr|

.
= ρrT as it has to construct and visit all possible |Xr| codewords,

at a computational cost of a bounded number of flops per codeword visit. It is noted that
the number of flops per visited codeword is naturally independent of ρ.
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In terms of the suitability of the asymptotic setting, i.e., the suitability of
the complexity exponent and the chosen scale of refinement, this is the scale
that best captures the entirety of the complexity problem. Similar to the
case of the probability of error, which varies from 1 to the values that scale
as K1 · ρ−z, bringing to the fore an error exponent d(r) ∈ [0, z] (here K1 is a
subpolynomial function of ρ), in the case of complexity, we have a variation
from 1 flop to a maximum complexity that scales as K22

RT = K2 · ρrT flops
(again K2 is essentially a constant), which naturally brings to the fore a
complexity exponent c(r) ∈ [0, rT ].

One can then argue that having the complexity cost share the same scale
as the probability of error, is not a forced choice but rather a natural conse-
quence of the fact that both the probability of error as well as the code
size are naturally polynomial functions of ρ, and (in the case of complexity)
exponential functions of R = r log ρ. As a result the above error and com-
plexity exponents could be meaningfully combined to form a measure of the
overall rate-reliability-complexity capabilities of different transceivers. One
such measure could for example take the form of a joint reliability-complexity
measure Γ(r), d(r) − γc(r), for some weighing factor γ ≥ 0. The measure
could be applied to describe, for example, the high-SNR error capabilities of
a particular encoder-decoder per unit power and per chip area. We note that
in nicely traversing the above reliability and complexity exponent tradeoffs,
what is important is to find proper encoding-decoding policies can regulate
complexity at a limited error performance loss. Such regulation could span
the two extremes of brute force ML decoding to the highly inefficient linear
receivers. A special ingredient in traversing this tradeoff will be the halting
or regulating policies that we will employ.

1.2.3 Vanishing Gap

Finally, towards refining our above mentioned exponent analysis (DMT
and complexity exponent), we first note that DMT analysis fails to capture
potentially infinite (subpolynomial to SNR) gaps to the optimal error per-
formance. Towards this we are also interested in decoders that achieve a
vanishing gap to the brute force ML performance. This vanishing gap ap-
proach is a much stronger condition than DMT optimality which remains
insensitive to error gaps that could be unbounded.

In terms of error-performance gaps, one could consider the gap of a given
decoder Dr to ML, i.e, the gap between the error performance Pe of Dr to
the optimal error performance P (̂sML 6= s) of the brute force ML decoder,
where s denotes the transmitted symbol vector and where ŝML denotes brute
force ML estimate of the transmitted symbol vector s. Given a certain com-
putational constraint Nmax

.
= ρc for Dr, this gap is quantified in the high
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SNR regime to be

g(c), lim
ρ→∞

Pe

P (̂sML 6= s)
. (1.1)

A vanishing gap g(c) = 1 means that with Nmax
.
= ρc flops, Dr can asymp-

totically have near identical error performance as the optimal ML decoder.
Similarly, when considering any other baseline decoder, such as the regu-

larized (MMSE-preprocessed) lattice sphere decoder, we would be interested
in the performance gap to the exact implementation of this lattice decoder.
As before, in the presence of Nmax

.
= ρcL flops for the lattice sphere decoder,

we would have a vanishing gap when

g(cL), lim
ρ→∞

PL

P (̂sL 6= s)
= 1 (1.2)

where PL describes the error probability of the preprocessed lattice sphere
decoder, and where P (̂sL 6= s) would describe the error probability of the
exact solution of MMSE-preprocessed lattice decoder.

One of our interests is to capture the minimum complexity that allows
for a vanishing gap to either full ML or full (regularized) lattice decoding.
We will study this and specifically expand the work of [7] to a very broad
setting.

Remark 1 (Comments on vanishing gap approach : a heuristic interpreta-
tion). The comments in this remark are not rigorous but do not affect at all
any of our analysis, but rather present heuristic insights on the utility of the
vanishing gap approach.

Consider, for a fixed code and rate, the error curves (x axis is SNR, y
axis is the probability of error) corresponding to two different decoders. For
example let the first decoder be the optimal (uninterrupted) ML decoder. Let
the second decoder be an approximate implementation of the first decoder. Let
P (ρ) and Pap(ρ) denote the actual probability of error curves, for increasing
ρ, respectively for the optimal and suboptimal decoders (P (ρ) ≤ Pap(ρ) for
all ρ). Furthermore consider the following two assumptions.

Assumption 1 : There exists an SNR value ρ1 (resp. ρ2) after which the
error-curve slope d

dρP (resp. d
dρPap) is monotonically non-decreasing.

Assumption 2 : There exists an SNR value ρ0 at which the error-curve
slope d

dρP of the first (ML) decoder attains its maximum value in the mono-
tonic region, i.e., attains a value d

dρP |ρ0 = maxρ≥ρ1
d
dρP.

Given the above two assumptions, one can see that the guarantee on the
vanishing gap implies that the two error curves coincide for any ρ ≥ ρ0, i.e.,

P (ρ)

Pap(ρ)
= 1, ∀ρ ≥ ρ0.
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We here caution the reader that it is conceivably easy to violate the above
two conditions, for example by employing a decoding policy that alternates,
for different values of SNR, between two different decoders, or by employing
codes with specific distance distributions that may for example result in er-
ror floors. Despite this though, when the transceiver structure remains un-
changed, the two assumptions accept substantial validation by most empirical
observations, but have not been proven to be true.

Furthermore consider a third assumption, which asks that for any SNR
value in the monotonic region ρ ≥ max{ρ1, ρ2}, the error-curve slope of the
exact (first) decoder, is not smaller than that of the approximate solution,
i.e.,

d

dρ
P ≥ d

dρ
Pap, ∀ρ ≥ max{ρ1, ρ2}.

Then the three assumptions, together with the guarantee on the vanishing
gap, jointly imply that the error curves of the exact and approximate decoder,
match at (and after) the potentially much lower SNR value of max{ρ1, ρ2},
i.e., jointly imply that

P (ρ)

Pap(ρ)
= 1, ∀ρ ≥ max{ρ1, ρ2}.

Such values can indeed be moderate as they do not immediately relate to the
faithfulness of asymptotic approximations, but are rather the starting points
of monotonic regions. This exposition suggests that under some assumptions,
a vanishing performance gap guarantee could carry over to finite SNR re-
gions.

1.3 Dissertation Outline and main Contributions

We proceed with a summary of what is to come, focusing on the results
that offer more insight rather than focusing on the results with the broadest
scope, which will be presented in the chapters themselves. We hope that our
work can give concise insight on pertinent questions such as :
• What is the complexity price to pay for near-optimal implementation

of MIMO, multiuser and cooperative communications ?
• How does feedback reduce complexity ?
• What policies can regulate complexity at a limited performance loss ?
• How do complexity-constraints affect reliability in different MIMO set-

tings ?
• How big of a MIMO system (how many transmit antennas or tones or

relays or mac users) can your DSP chip sustain ?
• How should multiple users behave in the presence of complexity constraints ?
• What is the role of antenna selection in reducing complexity ?
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• What are the cooperative protocols that perform best in the presence
of computational constraints ?

Channel Model, Encoders and Decoders - Chapter 2

The next chapter presents the channel model, the lattice designs and ba-
sic decoders of interest, as well as provides motivation for the delay-limited
outage-limited setting and its relevance to present day communication sce-
narios.

Complexity for ML decoding - Chapter 3

The purpose of this chapter is two-fold. The first is to extend the scope
of the complexity analysis in previous work (cf. [7]), to a very broad setting
of lattice designs, decoding policies and fading statistics. This extension is
important in allowing us to explore interesting MIMO settings. The second
is to provide meaningful rate-reliability-complexity measures and tradeoffs.
The corresponding mathematical exposition is for the general MIMO case,
whereas the single-letter expressions are derived for the quasi-static MIMO
channel. All the results hold for ML-based decoding, and the algorithmic
analysis considers the efficient family of ML-based sphere decoding algo-
rithms. The derived complexity exponents of these algorithms describe the
sufficient, and in many cases necessary, computational resources required for
ML based SD to achieve either a specific DMT performance, or to achieve a
vanishing gap to (uninterrupted) ML.

Albeit possibly premature at this point, we note that the results suggest
complexity ramifications given a choice of lattice designs, fading statistics
and sphere decoding ordering policies. The concepts of lattice designs (and
specifically full-rate lattice designs), as well as of ordering policies, are com-
monly used but they will certainly be discussed in detail later on. We also
note that a common theme in this research is that we will often derive uni-
versal complexity upper bounds that hold irrespective of the above choices,
and then there are tightening results for relatively broad settings.

General MIMO setting Theorem 1 considers the general m×n (n ≥ m)
MIMO 3 channel setting

y =Hx+w,

and considers ML based decoding. In what follows, I(µ) will denote the rate

function of µ,(µ1, · · · , µm), µj ,− log σj(H
HH)

log ρ , j = 1, · · · ,m, correspon-
ding to the ordered singular values σj of the channel. We also recall that
rT log ρ is the total number of bits.

3. Slightly less conclusive results hold for the n ≥ m case.
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Theorem 1 : The complexity exponent of achieving a diversity gain d(r) is
upper bounded as

c̃(r),max
µ

m∑

i=1

min

(
rT

m
− 1

2
(1− µi),

rT

m

)+

(1.3a)

s.t. I(µ) ≤ d(r), (1.3b)

µ1 ≥ · · · ≥ µm ≥ 0, (1.3c)

for all families of fading statistics 4, all full rate (or below full rate) lattice
designs, and all static or dynamic decoding ordering policies.

Then Proposition 1 establishes conditional tightness of the above.

Proposition 1 : Irrespective of channel fading statistics and of the full-rate
lattice code applied, there exists a fixed decoding order for which the above
universal upper bound is tight.

With respect to establishing sufficient resources for achieving a vanishing
gap to ML, Corollary 1a simply applies the above theorem after setting
d(r) = dml to be the optimal DMT of uninterrupted ML decoding of the
specific (potentially suboptimal) code.

Corollary 1a : The complexity exponent required by SD for achieving a vani-
shing gap to optimal ML is upper bounded as

c̃(r),max
µ

m∑

i=1

min

(
rT

m
− 1

2
(1− µi),

rT

m

)+

(1.4a)

s.t. I(µ) ≤ dml(r), (1.4b)

µ1 ≥ · · · ≥ µm ≥ 0, (1.4c)

irrespective of statistics and ordering policies.

Quasi-static MIMO Transitioning to the specific case of the nT × nR

(nR ≥ nT ) quasi-static point-to-point MIMO channel (with T uses over
channel HC ∈ CnR×nT ), where now µ denotes the (asymptotics of) the
singular values ofHC , we have Theorem 3 establishing the following universal
upper bound.

Theorem 3 The SD complexity exponent of achieving a diversity gain d(r) is

4. Strictly speaking, this holds for the broad family of statistics that accept the large
deviation principle [8].
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upper bounded as

c̃(r),max
µ

T

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

(1.5a)

s.t. I(µ) ≤ d(r), (1.5b)

µ1 ≥ · · · ≥ µnT ≥ 0, (1.5c)

for any full rate lattice code.

Furthermore it is worth noting that, directly from Proposition 1, we know
that irrespective of the fading statistics and of the full-rate code, there exists
a fixed decoding order for which the above universal upper bound is tight.

From Theorem 3 we can now establish a universal upper bound on the
complexity to achieve the DMT optimal performance d∗(r) of the nT × nR

(nT ≤ nR) MIMO channel.

Theorem 4 The SD complexity exponent of achieving the optimal DMT d∗(r)
is upper bounded as

c(r) ≤ c̄(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
, (1.6)

where c̄(r) is a piecewise linear function that, for integer values of r, takes
the form

c̄(r) =
T

nT
r(nT − r), r = 0, 1, · · · , nT .

This holds for any set of fading statistics, all DMT optimal full rate code
designs, and for any decoding order policy.

Due to the fact that complexity is increasing in d(r), the above can be
used as a universal upper bound for all full rate codes. This is described
below.

Corollary 4a : The SD complexity exponent is upper bounded as in Theorem 4
for any full rate code, all fading statistics and all decoding order policies.

We note that, as it turns out, this is the tightest upper bound that can
hold for all (full-rate) codes and fading statistics (cf. Proposition 1). This up-
per bound is already useful in itself as it establishes that the SD complexity
exponent is much lower than the worst-case SNR exponent rT associated
with the brute force ML decoding, irrespective of the codes, channels or
ordering policies. For example, a comparison of brute force complexity ex-
ponent with the above derived bound is depicted in Fig. 1.2 for nT = T = 2.

Tightness of universal upper bound Remaining in the nT ×nR (nR ≥
nT ) quasi-static MIMO channel, and focusing on the case of i.i.d. Rayleigh
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Figure 1.2 – Comparison of brute force ML complexity exponent with the
universal upper bound for ML-based SD

fading statistics, Theorem 6 establishes that the above universal upper bound
is in fact tight for almost all DMT optimal full-rate lattice designs, irrespec-
tive of the ordering policies. Specifically it says that if the design is chosen
at random (each element of the lattice generator matrix is chosen in an i.i.d.
manner from a continuous distribution) but held fixed, then with probability
one in the choice of the code, the above bound in Theorem 4 is tight.

Theorem 6 : For the i.i.d. Rayleigh quasi-static MIMO channel, and irres-
pective of the fixed or dynamically changing decoding ordering policy, the
complexity exponent of the ML-based sphere decoder almost surely, in the
choice of the DMT optimal lattice code, matches the universal upper bound
in Theorem 4.

Rate-reliability-complexity tradeoff : achievable DMT in the pre-

sence of computational constraints The above derivations suggest that
under some conditions, the complexity exponent can decrease with a reduc-
tion in the desired diversity gain. Careful study will show that such a tradeoff
is not always successful, that reductions in d(r) are not necessarily rewar-
ded with a reduction in the complexity, and that there are ranges of d(r)
for which c(r) remains fixed. We seek to understand the achievable diversity
gain in the presence of computational constraints. Theorem 7 gives a gene-
ral expression for this complexity-constrained DMT for the general MIMO
setting, and for any set of fading statistics. Focusing on the i.i.d quasi-static
Rayleigh fading nT × nR (nR ≥ nT ) MIMO channel, and on DMT optimal
lattice designs (achieving d∗(r)), Corollary 8a gives a lower bound on the
complexity-constrained DMT. The bound is tight for the case of DMT opti-
mal layered codes 5.

5. We will refer to layered codes in more detail later on. We note that all currently
known DMT optimal lattice designs belong in the family of layered codes
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Corollary 8a : The complexity-constrained DMT of sphere decoding any DMT
optimal lattice design using maximally Nmax

.
= ρcD(r) flops, is lower bounded

irrespective of the decoding ordering policy as dD(r) = min{d∗(r), dD(r, cD(r))}
where

dD(r, cD(r)) =
K∑

j=1

(nR − nT + 2j − 1)

+ (nR − nT + 2K + 1)(
cD(r)

T
+ 1− (K + 1)r

nT
),

where K =
⌊
nT cD(r)

rT

⌋
. Furthermore in the presence of DMT optimal layered

lattice designs, the above described DMT is the exact complexity constrained
DMT given by the natural sphere decoding ordering.

Example 1. The complexity-constrained DMT of sphere decoding the 2× 2
Golden code ( [9]) over the i.i.d. Rayleigh channel, is illustrated in Fig. 1.3.
The upper line in Fig. 1.3 (a) describes the complexity exponent that would
have been needed by the 2×2 perfect code to achieve the optimal DMT (upper
line in Fig. 1.3(b)). The lower line in Fig. 1.3 (a) describes the complexity
exponent that would have been needed by the weaker coding design of V-
BLAST to achieve its own optimal DMT (middle line in Fig. 1.3(b)). This
same lower line in Fig. 1.3 (a) also describes the complexity limitations that
we are assigning to the 2×2 perfect code, which now, due to these complexity
limitations, is achieving a much reduced DMT (lowest line in Fig. 1.3(b)).
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Figure 1.3 – Rate-reliability-complexity tradeoff for 2× 2 perfect codes.

Complexity of regularized lattice decoding - Chapter 4

Our interest in lattice decoding stems from the derived proofs of high
complexity required in ML based decoding, as well as indications and proofs
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that lattice decoding can, in some cases, achieve near-ML performance. This
chapter achieves two main results. The first result proves the rate-reliability-
complexity equivalence between ML-based SD and regularized lattice SD 6

over a broad and common setting of interest, and the second is to provide the
first ever solution (decoder and computational halting policy) that achieves
a vanishing gap to the exact implementation of regularized lattice decoding
at a complexity that is subexponential in the rate.

Equivalence of ML-based SD and regularized lattice SD The work
will quantify the complexity of regularized lattice decoding and its rate-
reliability-complexity equivalennce to ML based SD.

Theorem 10 : For the quasi-static nT × nR (nR ≥ nT ) i.i.d. Rayleigh fading
MIMO channel, the complexity exponent for regularized lattice (sphere) de-
coding any full-rate threaded lattice design at any regulated DMT, is equal to
the complexity exponent of ML-based SD (Theorem 3), for any fixed layer-
preserving ordering including the natural decoding ordering.

We clarify that even though both (ML and lattice based) decoders are
DMT optimal, the above result incorporates more than just DMT optimal
decoding, in the sense that it shows that any timeout policy will tradeoff
d(r) with c(r) identically for ML-based and lattice-based sphere decoding.
In other words the decoders share the same d(r) and c(r) capabilities, irres-
pective of the timeout policy.

Furthermore, remaining in the setting of the nT × nR (nR ≥ nT ) i.i.d.
Rayleigh fading quasi-static MIMO channel, Corollary 10b establishes that
the above equivalence in fact holds for almost all DMT optimal full-rate
lattice designs, and does so for a very general setting.

Corollary 10b : Irrespective of the fixed or dynamically changing decoding
order, the complexity exponent for MMSE preprocessed lattice sphere decoding
any (fixed but) randomly and uniformly chosen code (from an ensemble of
DMT optimal full-rate linear lattice designs) almost surely, in the choice of
DMT optimal lattice code, matches the complexity exponent of ML-based SD,
and does so irrespective of the regulated DMT.

Furthermore Corollary 10d reveals the surprising fact that there exists
no statistical channel behavior that will allow the removal of the bounding
region (lattice decoding) to cause unbounded increases in the complexity of
the decoder, i.e., reveals that this complexity bound holds even if the channel
statistics are such that the channel realizations cause the decoder to always
have to solve the hardest possible lattice search problem. We give this result
in its refined form which holds for the quasi-static MIMO channel.

6. A ‘regularized’ lattice decoder is simply a generalization of the known MMSE-
preprocessed lattice decoder.
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Corollary 10d The complexity exponent of regularized lattice SD is upper
bounded by

c(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
(1.7)

which for integer r simplifies to

c(r) =
T

nT
r(nT − r), (1.8)

for all fading statistics, all decoding ordering policies, all target DMT values
and all full-rate lattice designs.

Vanishing gap to exact regularized lattice decoding at a subexpo-

nential complexity With provable evidence of the very high complexity
of regularized lattice decoding, we turn to the powerful tool of lattice reduc-
tion (LR) and seek to understand its effects on computational complexity.
The main result is the following, and it holds for a very broad setting of
MIMO scenarios, lattice designs and fading statistics.

Theorem 12 : LR-aided MMSE-preprocessed lattice sphere decoding with a
computational constraint activated at Nmaxρ

x flops, for any x > 0, allows
for a vanishing gap to the exact solution of regularized lattice decoding.

The above implies subexponential complexity in the sense that the com-
plexity scales slower than any conceivable exponential function. This work
constitutes the first proof that subexponential complexity need not come
at the cost of exponential reductions in lattice decoding error performance.
This work was also able to, for the first time, rigorously demonstrate and
quantify the pivotal role of lattice reduction as a special complexity reducing
ingredient in MIMO systems.

We here note that while lattice reduction has indeed allowed here for
near-optimal behavior at very manageable complexity (with respect to lattice
decoding), it is the case that there exist scenarios for which these same
lattice reduction methods cannot be readily applied. Such problematic cases
include the ubiquitous scenario where inner binary codes are employed. It
is for this exact reason that analysis of non LR-aided schemes remains of
strong interest.

Feedback-Aided Complexity of ML and Lattice Decoding - Chap-

ter 5

The work then addresses the fundamental question of establishing the
rate-reliability-complexity ramifications of feedback. This setting is very im-
portant because it can offer near ergodic behavior (high diversity), even at
high multiplexing gains. We focus on two fundamental questions. The first



14 Chapter 1 Introduction

question asks what is the complexity savings that feedback provides for the
optimal DMT (d∗(r)) 7, and the second question asks what is the complexity
costs of achieving the full rate-reliability benefits of feedback. The analy-
sis and the constructed feedback schemes tell us how to properly utilize a
finite number of feedback bits to alleviate the adverse effects of computatio-
nal constraints, as those seen in the derived rate-reliability-complexity tra-
deoffs of the previous chapters. Emphasis is placed on MIMO-ARQ feedback
schemes, although we do also consider feedback with antenna selection.

All the presented results hold for ML-based decoding as well as MMSE-
preprocessed lattice decoding.

Feedback-aided complexity of achieving the optimal DMT For the
setting of the nT × nR (nR ≥ nT) i.i.d. regular fading MIMO-ARQ channel
with L rounds of ARQ and with T channel uses per round (cf. [10]), the
following focuses on the case of LT = nT and upper bounds the minimum
feedback-aided complexity that guarantees, with the assistance of ARQ, the
DMT optimal d∗(r). Before proceeding with the result it is worth noting
that, as it turns out, the halting policies that decide when to decode and not
to decode during the intermediate rounds, play a crucial role in reducing the
derived complexity. We proceed with the result.

Theorem 13 : Let c(r) be the minimum complexity exponent required to
achieve d∗(r), minimized over all lattice designs, all ARQ schemes with
L ≤ nT rounds of ARQ and total delay LT = nT, and all halting and deco-
ding order policies. Then

c(r) ≤ cred(r) =
1

nT

[
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

]
,

which is a piecewise linear function that, for integer multiplexing gain values,
takes the form

cred(r) =
1

nT
r(nT − r), for r = 0, 1, · · · , nT .

To note the complexity reduction, we recall from Theorem 5 and Corol-
lary 5a that in the absence of feedback, the complexity exponent associated
to the same d∗(r) took the form

c(r) = r(nT − r), (1.9)

(for integer r = 0, 1, · · · , nT ), whereas we have just seen that, for example,
in the presence of L = nT rounds of ARQ, the same DMT is achieved with

7. We stress here that d∗(r) denotes the optimal DMT of the MIMO channel without
feedback.
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a much reduced feedback-aided complexity of at most

c(r) ≤ 1

nT
r(nT − r).

After that, Propositions 3,4 will present a very simple MIMO ARQ
scheme that achieves d∗(r) with c(r) ≤ cred(r).

Example 2. Figure 1.4 considers the case of nT = 3 ≤ nR and Rayleigh
fading, and compares the above complexity upper bound in the presence of
feedback (L-rounds, minimum delay), to the equivalent complexity exponent
in (1.9) of achieving the same DMT optimal d∗(r) without ARQ feedback
(Perfect codes and natural, fixed decoding ordering).
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Figure 1.4 – Complexity reductions using ARQ feedback.

In regard to the feedback reduction for asymmetric (nR < nT) channels,
Theorem 14 and Proposition 5 will describe the corresponding upper com-
plexity bound and very simple ARQ schemes that achieve this bound for the
case of nR ≤ nT, and specifically the case where nR|nT (i.e., nT is an integer
multiple of nR).

The complexity cost of achieving the optimal feedback-aided DMT

d∗(r/L) For establishing the complexity of harvesting the full rate-reliability
benefits of ARQ feedback, we again focus on the nT ×nR (nR ≥ nT ) MIMO-
ARQ channel with i.i.d. regular fading statistics. As before all presented
results hold for ML-based decoding as well as MMSE-preprocessed lattice
decoding. The following holds for the case where nR ≥ nT and the case
where L|nT (i.e., nT is an integer multiple of L). As has been shown in [10],
the optimal feedback-aided DMT performance is given by d∗(r/L).

Theorem 15 : Let c(r) be the minimum complexity exponent required to
achieve the optimal L-round MIMO-ARQ DMT d∗(r/L), for any given L|nT

(i.e., nT is an integer multiple of L), where the complexity is minimized over
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all lattice designs, all halting policies and all decoding order policies. Then

c(r) ≤ cdmd(r),
1

L

[
r
(
nT −

⌊ r
L

⌋
− 1

)
+

(
LnT

⌊ r
L

⌋
− r(nT − 1)

)+
]
,

where cdmd(r) is a piecewise linear function that, for r being an integer mul-
tiple of L, takes the form

cdmd(r) =
rnT

L2

(
L− r

nT

)
.

Immediately after that, Proposition 6 will present very simple MIMO
ARQ scheme that achieves d∗(r/L) with c(r) ≤ cdmd(r).

Other bounds, ARQ schemes, decoding policies and lattice designs are
presented later on in the same chapter. The same chapter also presents se-
veral examples for furthering intuition.

Complexity reductions due to antenna selection We here explore
another method that feedback might reduce complexity. We will specifically

focus on antenna selection schemes. Such schemes employ log2

(
nT

lT

)
bits of

CSIT to reduce an nT ×nR MIMO system to a smaller and more manageable
lT×lR system with generally reduced computational requirements. This part
of the thesis will analyze the complexity ramifications of antenna selection,
focusing on the case where the performance, after antenna selection, remains
DMT optimal (d(r) = d∗nT×nR

(r)). Our work here is preliminary, and it
builds only on the greedy selection algorithms in [11]. In this setting, for

Nr = arg min
N ′∈{1,··· ,nT }

[(
arg min

p∈{0,··· ,N ′−1}

(nT − p)(nR − p)

N ′ − p

)
= ⌈r⌉

]
, (1.10)

we have the following that holds for the i.i.d. Rayleigh fading nT ×nR (nR ≥
nT ) MIMO setting. As before we consider ML based decoding as well as
MMSE-preprocessed lattice decoding.

Proposition 8 The minimum, over all antenna selection algorithms, all lattice
designs and all halting and decoding order policies, complexity exponent c(r)
required to achieve the optimal DMT d∗nT×nR

(r), is upper bounded as

c(r) ≤ cas(r) =
(
r(Nr − ⌊r⌋ − 1) + (Nr⌊r⌋ − r(Nr − 1))+

)
,

which, for the Nr as above, is a piece-wise linear function that, for integer
values of multiplexing gain r, takes the form

cas(r) = r(Nr − r), for r = 0, 1, · · · , nT. (1.11)

The proper DMT optimal antenna selection scheme that achieves the
above bound is also presented in the same chapter.
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Complexity analysis for multiuser, cooperative, and bidirectional

settings - Chapter 6

The work in this chapter is preliminary and it extends the rate-reliability-
complexity analysis to simple instances of the multiple access, relay, and
bidirectional channels, where again we identify the computational reserves
that guarantee a DMT optimality, as well as address user/relay selection
criteria and communication protocols that provide improved joint reliability-
complexity performance in the presence of computational constraints.

Multiple access channels This work establishes bounds on the com-
plexity requirements for achieving the optimal MAC-DMT over an i.i.d. Ray-
leigh fading symmetric multiple access channel (MAC) with K-users, each
having the same multiplexing gain r, each having a single transmit antenna,
and where the destination has nR ≤ K receive antennas. In some cases the
bounds are shown to be tight. The upper bound on complexity is described
below, and as before it holds for ML-based decoding and for regularized lat-
tice decoding. In what follows, K0 = K if K is odd, and K0 = K +1 if K is
even.

Theorem 16 : The minimum, over all lattice designs and halting and decoding
order policies, complexity exponent c(r) required to achieve the optimal DMT
of MAC, is upper bounded as

c(r) ≤ cmac(r) =

{
cv(r) for r ≤ nR

K+1 ,

cf (r) for nR
K+1 < r ≤ nR

K ,
(1.12)

where

cv(r) = max
µ

(K − 1)r +

nR∑

i=1

(
r − (1− µi)

+
)+

s.t.
nR∑

i=1

(K − nR + 2i− 1)µi ≤ nR(1− r),

µ1 ≥ · · · ≥ µnR ,

where

cf (r) = (K − 1) rK0 +K0

(
r(nR − ⌊Kr⌋ − 1) + (⌊Kr⌋ − r(K − 1))+

)
,

which is a piece-wise linear function that, for r = 0, 1
K , · · · , nR

K , takes the
form

cf (r) = (K − 1) rK0 +K0r(nR −Kr), for r = 0,
1

K
, · · · , nR

K
.
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Nice intuition can be deducted from the result in Proposition 9 which
will describe encoding-decoding policies that achieve the optimal MAC-DMT
with c(r) ≤ cmac(r). For the specific case of nR = 1, the bound in (1.12)
takes the simple form

cmac(r) =

{
(K − 1)r for r ≤ 1

K+1 ,

(K − 1)K0r for 1
K+1 < r ≤ 1

K .

Cooperative relay channels Again preliminary, this work establishes
very early results on the complexity of achieving the optimal DMT of a
cooperative network with a source, n− 1 relays and a destination, each ha-
ving single transmit/receive antenna and communicating over i.i.d. Rayleigh
fading. This is done only for the orthogonal amplify-and-forward (OAF) pro-
tocol. The upper bound on complexity is described below.

Proposition 10 : The minimum, over all lattice designs and halting and deco-
ding order policies, complexity exponent c(r) required by ML-based decoding
to achieve the optimal DMT , is upper bounded as

c(r) ≤ coaf (r) =
2n− 1

n
r(n− ⌊(2n− 1)r⌋ − 1)

+

(
⌊(2n− 1)r⌋ − 2n− 1

n
r(n− 1)

)+

,

which is a piecewise linear function that, for r = 0, 1
2n−1 , · · · , n

2n−1 , takes the
form

coaf (r) = (2n− 1)r(1− 2n− 1

n
r).

Proposition 10 also describes encoding-decoding policies that achieve the
optimal DMT of OAF with c(r) ≤ coaf (r).

For bidirectional channels, Theorem 17 and Theorem 18 describe the
optimal DMT of the non-separated two-way relay channel with asymmetric
fading and given the decode-and-forward protocol. Using this, Section 6.3.3
presents the complexity analysis and the joint reliability-complexity measure
for some of the related two-way protocols.

Finally Chapter 7 presents conclusions and thoughts about future work.



Chapter 2

MIMO Channels, Lattice Code

Designs and Bounded Search

Decoders

This chapter presents system model describing the underlying MIMO
channel model along with the description of encoding and decoding schemes
considered for the rate, reliability and complexity tradeoff studies. In this
dissertation we consider the general setting of delay-limited outage-limited
MIMO communications, where communication takes place between several
transmitting and receiving nodes, where the transmitting nodes generally
do not have substantial information on the forward channel state, whereas
receiving nodes have considerable information about the channels (coherent
communications). This setting captures several pertinent communication sce-
narios in modern wireless communications. These include scenarios of delay-

Figure 2.1 – Outage-limited channel model - no CSIT

limited data transmission in the absence of channel state information at
the transmitter (no CSIT) as shown in Fig. 2.1, or more importantly sce-
narios that consider quick and high rate communication over the feedback
link of CSIT in a multi-user setting in the absence of channel reciprocity as

19
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shown in Fig. 2.2 , as well as the multi-user interference channel shown in
Fig. 2.3 where interference management solutions require global CSIT, i.e.,
each transmitter is required to have channel state information of all forward
links and even in the presence of channel reciprocity, CSIT required through
feedback scales with the number of users.

Figure 2.2 – Mutliuser MIMO downlink : In the absence of reciprocity
each receiver is required to transmit CSIT over feedback link.

Figure 2.3 – Schematic for multi-user interference channel

The CSIT is meant to communicate large amounts of information (that
naturally scale with the capacity of the channel) at high rate, firstly because
any delays directly reduce the degrees of freedom for the forward channel
communication, and secondly so that the CSIT information does not be-
come obsolete. Furthermore, the presence of multiple users make these delay
limitations more severe because global CSIT need to be shared among all
transmitters and receivers in the network, which scales with the number of
users. Also the presence of multiple users, brings to the fore the need for
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high reliability because effect of erroneous communication of CSIT can carry
through for a substantially long time and may potentially render the outage-
limited feedback link as the reliability bottleneck of the entire transmission.
Thus, the transmission of CSIT over the feedback link in a multi-user setting
asks for reliable communication of large amounts of information at high rate
under the risk of outage from the receiver to the transmitter.

The stringent requirements on delay and high performance can be met
by employing DMT optimal lattice designs (cf. [12–16]) that offer high re-
liability with relatively short delays. Also, for these codes computationally
efficient ML-based sphere decoding solutions can be used to provide a vani-
shing gap to brute force ML performance. The very long coding structures,
such as for example turbo codes [17], polar codes [18] and low-density parity
check (LDPC) codes [19] known to have excellent performance over different
channels, often fail to meet these stringent delay requirements. Interesting
work on such long codes, as well as their decoding performance and com-
plexity, can be found in [20], see also [21], [22], [23] and a plethora of other
works.

2.1 Channel model

We consider the general m× n MIMO channel representation given by

y =
√
ρHx+w, (2.1)

where x ∈ Rm, y ∈ Rn and w ∈ Rn respectively denote the transmitted co-
dewords, the received signal vectors, and the additive white Gaussian noise
with unit variance, where the parameter ρ takes the role of the signal to
noise ratio (SNR), and where the fading matrix H ∈ Rn×m is assumed to
be random, with elements drawn from arbitrary statistical distributions. We
consider that one use of (2.1) corresponds to T uses of some underlying
“physical” channel. We further assume the transmitted codewords x to be
uniformly distributed over some codebook X ∈ Rm, to be statistically inde-
pendent of the channel H, and to satisfy the power constraint

E{‖x‖2} ≤ T. (2.2)

We consider the rate,

R =
1

T
log |X|, (2.3)

in bits per channel use (bpcu), where |X| denotes the cardinality of X.
The model in (2.1) is known to encompass many pertinent communica-

tion scenarios such as quasi-static MIMO, MIMO orthogonal frequency divi-
sion multiplexing (MIMO-OFDM), MIMO automatic repeat request (MIMO-
ARQ), inter symbol interference (ISI) etc. Each of the above models intro-
duces its own structure on H and x, its own error performance limits, and
generally its own requirements on coding and decoding schemes.
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We now proceed to provide few specific MIMO channel models and es-
tablish their equivalence to the system model presented in (2.1).

2.1.1 Quasi-static MIMO

The general nT × nR point-to-point quasi-static MIMO channel is given
by

YC =
√
ρHCXC +WC , (2.4)

where XC ∈ CnT×T , YC ∈ CnR×T and WC ∈ CnR×T represent the trans-
mitted, received and noise signals over a period of T time slots, where the
fading matrix HC ∈ CnR×nT is assumed to be random, with elements drawn
from arbitrary distribution.

After vectorization the real values representation of (2.4) takes the form

y =
√
ρHx+w, (2.5)

where

H = IT ⊗HR ∈ R2nRT×2nTT ,HR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]
,

x = (xT1 , · · · ,xTT )T ∈ R2nTT with xt = [Re{Xt,C}T, Im{Xt,C}T]T,

w = (wT
1 , · · · ,wT

T )
T ∈ R2nRT with wt = [Re{Wt,C}T, Im{Wt,C}T]T,

y = (yT1 , · · · ,yTT )T ∈ R2nRT with yt = [Re{Yt,C}T, Im{Yt,C}T]T,

for t = 1, · · · , T , where Xt,C , Yt,C and Wt,C are t-th column of XC , WC

and YC respectively.

2.1.2 MIMO-orthogonal frequency division multiplexing

A natural extension of the quasi-static MIMO channel is the nT × nR

parallel, or MIMO-OFDM channel. In this setting

Yl
C =

√
ρHl

CX
l
C +Wl

C , l = 1, · · · , L, (2.6)

where Xl
C = [xl,1C , · · · ,xl,TC ] ∈ CnT×T denotes the complex space-time block

codeword transmitted over the l-th sub-channel in the T time-slots, and
where Hl

C ∈ CnR×nR is the channel matrix for the l-th sub-channel. Similar
to the flat fading quasi-static channel in (2.4), it is clear by the linearity of
(2.6) that the parallel or MIMO-orthogonal frequency division multiplexing
(MIMO-OFDM) channel can be rewritten according to (2.1).
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2.1.3 MIMO-automatic repeat request (MIMO-ARQ)

Another extension of the quasi-static MIMO channel is nT × nR MIMO
with ARQ signaling. Under ARQ signaling, each message symbol from source
is associated with a unique block [X1

C X2
C · · ·XL

C ] of matrices, each Xi
C ∈

CnT×T , i = 1, · · · , L, in such a way that it is possible to uniquely decode the
message symbol given [X1

C X2
C · · ·Xℓ

C ] for any ℓ = 1, · · · , L. For the long-
term static channel model, which assumes that the channel encountered over
the L ARQ rounds are identical received signal Yℓ

C after ℓ-th ARQ round is
given by

Yℓ
C =

√
ρHCX

ARQ,ℓ
C +Wℓ

C , ℓ = 1, · · · , L, (2.7)

where XARQ,ℓ
C = [X1

C X2
C · · ·Xℓ

C ] ∈ CnT×ℓT denotes the complex space-time
block code transmitted over ℓ rounds, and where HC ∈ CnR×nT is same as in
(2.4). Again, it is clear by the linearity of (2.7) that the MIMO-ARQ channel
can be rewritten according to (2.1).

Similarly ISI and MIMO-OFDM channels can be rewritten according to
(2.1) as shown in Appendix 2A.

2.2 Encoding

We consider the general class of lattice codes defined by a generator
matrix G and a shaping region R

′
. Specifically for a rate R that scales with

SNR as a function of the multiplexing gain r = R/ log ρ ≥ 0, a (sequence of)
full-rate linear (lattice) code(s) Xr is given by

Xr = Λr ∩ R
′
,

where R
′
is a compact convex subset of Rκ that is independent of ρ, where

Λr , ρ
−rT
κ Λ,

and where
Λ,{Gs | s ∈ Zκ},

where Zκ denotes the κ dimensional integer lattice, and where G ∈ Rm×κ

is full rank and independent of ρ. For full-rate code κ = min{m,n}. In
our analysis we consider only those lattice designs where generator matrix
G remains fixed for all multiplexing gain values. The vectorized codewords
take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ

rT
κ R, (2.8)

where R ⊂ Rκ is a natural bijection of the shaping region R
′

that pre-
serves the code, and contains the all zero vector 0. For simplicity we consider
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R,[−1, 1]κ to be a hypercube in Rκ, although this could be relaxed without
affecting the analysis and the results presented in this dissertation, as long as
the constellation is the same for all si, i = 1, · · · , κ. The presented general
definition of lattice codes covers most of the codes in [9,12–16,24–37]. In this
work a specific class of threaded algebraic space times codes [12] is conside-
red to present several closed form expression for complexity exponent over
quasi-static MIMO channels. The cyclic division algebra (cf. [13, 25]) ba-
sed threaded (layered) code designs are the only currently known explicit
constructions capable of achieving the DMT for all values of nT (nR ≥ nT)
and simultaneously over all r ∈ [0, nT]. All these codes have a common
threaded (layered) structure. Specifically an d × d threaded code is built
from d component codes mapped cyclically in threads (or layers) to the co-
dewords X. For example, in the special case of quasi-static MIMO channel
with d = nT = T = 4, the thread structure is given by




1 4 3 2
2 1 4 3
3 2 1 4
4 3 2 1




where the numbers 1, 2, 3, 4 indicate the thread to which a particular entry
of X belongs. In general, symbol j in thread l is mapped to [X]j,k where k =
mod (j − l, d) + 1 and where mod (•, d) denotes the modulo d operation.
In the specific case of perfect codes [15,28], the code takes the form

lay(X) = θ



B0C

. . .
BdC






s(1)

...
s(d)




where
Bi = Diag{ 1, · · · , 1︸ ︷︷ ︸

d−i entries

, γ, · · · , γ︸ ︷︷ ︸
i entries

}, for i = 0, 1, · · · , d− 1

are full rank diagonal matrices incorporating a properly chosen thread-separating
scalar γ ∈ C, where C ∈ Cd×d is a (unitary) full rank generator matrix for
the component code of each thread, sl ∈ Sd

r are the constellation symbols of
thread l, and where lay(X) denotes the matrix to vector operation obtained
by stacking the elements of X according to their thread. In this thesis we
refer to this stacking as thread-wise grouping or layer-preserving ordering.

2.3 Decoding

Combining (2.1) and (2.8) yields the equivalent system model

y =Ms+w, (2.9a)

where M,ρ
1
2
− rT

κ HG ∈ Rn×κ. (2.9b)
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Let QR = M be the thin QR factorization of the code-channel matrix
M and r,QHy, then the equivalent system model in (2.9a) is represented
by

r = Rs+QHw,

and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

‖r−Rŝ‖2 , (2.10)

where (2.10) is an optimization problem suitable for the sphere decoder.

2.3.1 Sphere decoder (SD)

The sphere decoding algorithm is a branch-and-bound search on a regular
tree. In the settings of coherent delay-limited outage-limited MIMO channels,
SD algorithm complexity fluctuates with the fading channel realizations. In
the worst case the sphere decoder is in essence forced to perform a complete
search over the entire codebook, and its complexity is same as that of the
brute force ML decoder. In the presence of constraints on the computational
reserves that may be allocated to decoding, the algorithm is faced with the
prospect of encountering channel realizations that force it to violate its run-
time constraints, thus having to declare decoding outages that inevitably
increase the error probability. The decoder can regulate the computational
costs and error performance with the proper selection of decoding policies
specifying when to decode and when not to. If a small gap to the optimal
error performance is acceptable then sphere decoder algorithms [2–7, 38–48]
have been known to require reduced computational resources. These sphere
decoding solutions can be employed to decode a linear code from real lattices
(cf. [3–5]) or complex lattices (cf. [49]) and allow for efficient optimal or near
optimal decoding of a large number of high rate space-time codes [4,7,41,47].

The detailed descriptions and most implementation issues of the SD al-
gorithm are found in [2] and the semi-tutorial papers [3–5]. In order to intro-
duce notations that will be required for the subsequent complexity analysis
presented in the next chapters, we present important SD algorithm details.

2.3.2 Sphere Decoding Algorithm

As shown in Fig. 2.4 the sphere decoder solves ML problem in (2.10) by
recursively enumerating all lattice vectors ŝ ∈ Sκr within a given sphere of
radius ξ > 0, i.e., it identifies as candidates the vectors ŝ that satisfy

‖r−Rŝ‖2 ≤ ξ2. (2.11)

The algorithm specifically uses the upper-triangular nature of R to re-
cursively identify partial symbol vectors ŝk, k = 1, · · · , κ, for which

‖rk −Rkŝk‖2 ≤ ξ2, (2.12)
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r

ξ

Figure 2.4 – Schematic for sphere decoder with search radius ξ.

where ŝk and rk respectively denote the last k components of ŝ and r, and
where Rk denotes the k × k lower-right submatrix of R. Clearly any set of
vectors ŝ ∈ Sκr , with common last k components that fail to satisfy (2.12),
may be excluded from the set of candidate vectors that satisfy (2.11).

The enumeration of partial symbol vectors ŝk is equivalent to the traversal
of a regular tree with κ layers – one layer per symbol component of the
symbol vectors, such that layer k corresponds to the kth component of the
transmitted symbol vector 1 s. A sample tree illustrating lattice points search
in a κ = 4 dimensional sphere is shown Fig. 2.5.

k = 1 

k = 2 

k = 3 

k = 4 

Figure 2.5 – Sample tree illustrating lattice points search in a κ = 4
dimensional sphere.

There is a one-to-one correspondence between the nodes at layer k and
the partial vectors ŝk. We say that a node is visited by the sphere decoder if
and only if the corresponding partial vector ŝk satisfies (2.12), i.e., there is

1. We will henceforth refer to the symbol vector s ∈ Sκ
r corresponding to the transmit-

ted codeword x = ρ
−rT
κ Gs (cf. (3.2)) , simply as the transmitted symbol vector.
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a bijection between the visited nodes at layer k and the set

Nk ,{ŝk ∈ Skr | ‖rk −Rkŝk‖2 ≤ ξ2}. (2.13)

Consequently the total number of visited nodes (in all layers of the tree) is
given by

NSD =
κ∑

k=1

Nk, (2.14)

where Nk , |Nk| is the number of visited nodes at layer k of the search tree.

Complexity of sphere decoder

The total number of visited nodes (that scales polynomially with ρ) is
commonly taken as a measure of the sphere decoder complexity ( [3,5,7]). It
is easy to show that in the scale of interest the SD complexity exponent c(r)
would not change if instead of considering the number of visited nodes, we
considered the number of flops spent by the decoder. To see this, we consider
that the cost of visiting a node, is independent of ρ. Once at a visited node,
this same bounded cost includes the cost of establishing which children-nodes
not to visit in the next layer.

The sphere decoder complexity (i.e., the number of visited nodes) is a
random variable with a distribution that depends on a number of parame-
ters, e.g., the system dimensions, the SNR, the transmission rate, the code
generator matrix, and the search radius. This randomness must be consi-
dered when properly analyzing the sphere decoder complexity, unless one
resorts to a worst-case analysis, which can be same as that of the brute force
ML decoder and is unnecessarily pessimistic. In the next chapter we will des-
cribe decoding policies that take into account this randomness to estimates
computational reserves required by SD algorithm to achieve vanishing gap
to ML performance.

Sphere decoder search radius

The search radius of the sphere decoder affects both its error performance
as well as the total number of visited nodes by the sphere decoder. In choosing
this radius, we note that for the transmitted symbol vector s, the metric in
(2.10) satisfies

‖r−Rs‖2 = ‖QHw‖2,

which means that if ‖QHw‖ > ξ, then the transmitted symbol vector is
excluded from the search, resulting in a decoding error. For ξ =

√
z log ρ it

can be shown that
P
(
‖QHw‖2 > ξ2

) .
= ρ−z.
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We can set ξ =
√
z log ρ, for some z > d(r) such that

P
(
‖QHw‖2 > ξ2

)
<̇ ρ−d(r),

which implies a vanishing probability of excluding the transmitted informa-
tion vector from the search, and a vanishing degradation of performance. If
instead of fixed radius, we considered adaptive radius updates, the resulting
complexity exponent would be the same (cf. [7]).

Decoding order policies

A sphere decoder can employ different decoding ordering policies, i.e.,
fixed decoding ordering and dynamic decoding ordering. The sphere deco-
der implementation with dynamic decoding ordering offers the possibility
to choose specific set of column permutation matrices that minimize the
complexity exponent of the sphere decoder by minimizing number of nodes
visited by the sphere decoding algorithm for each channel realization. A par-
ticular decoding order is obtained by permuting the columns of generator
matrix G, i.e., replacing G with GΠ where Π ∈ Rκ×κ is a permutation ma-
trix. Note that choosing a different permutation matrix does not change the
underlying code. Instead, the effect such a permutation would have is that
it would change the order in which the symbols in s are enumerated by the
sphere decoder. For fixed decoding ordering the column permutation matrix
Π remains fixed for the entire duration of communication. The special case
of Π = I is the natural decoding ordering for any given code. For the case of
layered codes (cf. [50], [15], [14], etc.), another set of decoding orderings will
be those that preserve the layered structure of the codes.

For dynamic decoding orderings the column permutation matrix Π is
channel dependent and changes dynamically with the channel realizations.

Appendix 2A : Inter-symbol-interference (ISI) chan-
nel model

From multi-path to OFDM

Consider the L tap SISO frequency selective channel {h0, · · · , hL−1} and
consider Nc symbols x = [x0, x1, · · · , xNc−1]. Let

z = F−1x = [z0, z1, · · · , zNc−1],

where F−1 denotes the Nc-point inverse DFT (modulation step). Add cyclic
prefix to get

u = [zNc−L+1, zN−c−L+2, · · · , zNc−1, z0, z1, · · · , zNc−1],
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Nc > L,Nc <∞. Transmit u sequentially in time. The received signal is

rm =
√
ρ
L−1∑

l=0

hlum−l + wm, m = 1→ Nc + L− 1.

After ignoring the first L symbols (guard-band), we have

r = [rL, rL+1, · · · , rNc+L−1]
†
Nc×1,

w = [wL, wL+1, · · · , wNc+L−1]
†
Nc×1,

and
r =

√
ρh ∗ z+w,

where ∗ denotes circular convolution. Proceed to take the Nc-point DFT to
get

y =F r,

=
√
ρF (h ∗ z) + w̃,

where w̃ = Fw. Let

z̃ := DFT(z) = F · z =




z̃0
z̃1
...

z̃Nc−1


 ,

where F is the Nc-point DFT matrix, and where

z̃j :=
1√
Nc

Nc−1∑

m=0

zmexp(−2ıπm/Nc), j = 0, ..., Nc − 1.

Hence
DFT[(h⊗ z)j ] =

√
NcDFT(h)j ·DFT(z)j = h̃j z̃j ,

where h̃j :=
1√
Nc

∑Nc−1
m=0 hmexp(−2ıπm/Nc), j = 0, ..., Nc − 1, thus

yj =
√
ρh̃j z̃j + w̃j , j = 0, ..., Nc − 1,

i.e.,



y1
y2
...

yNc


 =

√
ρ




h̃1
h̃2

. . .
h̃Nc




︸ ︷︷ ︸
HC




z̃1
z̃2
...

z̃Nc


+




w̃1

w̃2
...

w̃Nc


 .

Thus,

y =
√
ρHC z̃+ w̃ =

√
ρHCF z+ w̃ =

√
ρHCFF−1x+ w̃ =

√
ρHCx+ w̃,

which can be rewritten according to (2.1).
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From MIMO-ISI to MIMO-OFDM

Consider the nT×nT L-tap MIMO channel {G0, · · · ,GL−1}, and Nc ≥ L
tones. Let n := nTNc. Let x(k) be the n × 1 vector corresponding to
the kth time slot, and let z′(k) := (F−1 ⊗ InT )x(k) ∈ Rn come from
tone modulation. After adding cyclic prefix, we get u′(k) = A1z

′(k) ∈
R(L+Nc)nt , where A1 :=

([
0 IL

INc

]

︸ ︷︷ ︸
∈R(L+Nc)×Nc

⊗InT

)
∈ R(L+Nc)nT×NcnT . Se-

quentially transmit (L + Nc) times, the nT -tuples (in space) of u′(k). The
received signal is r′(k) =

√
ρG′u′(k) + v′(k) + Gisiu

′(k − 1), where G′ :=


G0

G0

. . .
GL−1

. . .
GL−1 · · · G0




is a Toeplitz matrix. Let r(k) = A2r
′(k),

denote the action of nulling/dropping the first L nT -tuples of r′(k), where

A2 :=

([
0Nc×L INc

]
⊗ InR

)
. Proceed to take the Nc-point DFT to get

y(k) = (F ⊗ Inr)r(k),

= (F ⊗ InR)A2r
′(k),

=
√
ρ(F ⊗ InR)A2G

′u′(k) + (F ⊗ InR)A2v
′(k),

=
√
ρ(F ⊗ InR)A2G

′A1z
′(k) + (F ⊗ InR)A2v

′(k),

=
√
ρ(F ⊗ InR)A2G

′A1(F ⊗ InR)x(k) + (F ⊗ InR)A2v
′(k).

Given that A2G
′A1 is circulant, and given that left-right DFT, IDFT dia-

gonalizes circulant matrices, we get

y(k) =




H(0)nR×nT

. . .
H(Nc − 1)nR×nT




︸ ︷︷ ︸
HC

x(k) + v(k),

where HC = (F⊗InR)A2G
′A1(F⊗InR) and where v(k) = (F⊗InR)A2v

′(k).
For k = 1→ T , it takes the form



y(1)

...
y(T )


 =

√
ρ(HC ⊗ IT )



x(1)

...
x(T )


+



v(1)

...
v(T )


 ,

which can be easily rewritten according to (2.1).



Chapter 3

Complexity of Maximum

Likelihood Decoding

3.1 Introduction

The purpose of this chapter is two-fold. The first task is to extend the
scope of the complexity analysis in previous work (cf. [7]), to a very broad set-
ting of lattice designs, decoding policies and fading statistics. This extension
is important in further exposition. The second task is to provide meaningful
rate-reliability-complexity measures and tradeoffs. The mathematical expo-
sition is for the general MIMO case, and the single-letter expressions are
derived for the quasi-static MIMO channel. All the results hold for ML-
based decoding, and the algorithmic analysis considers the efficient family of
ML-based sphere decoding algorithms. The derived complexity exponents of
these algorithms describe the sufficient, and in many cases necessary, com-
putational resources required for ML based SD to achieve either a specific
DMT performance, or to achieve a vanishing gap to (full) ML.

Before proceeding with the analysis, we note that the choice of lattice
designs and fading statistics may conceivably play a crucial role in defining
the complexity behavior of different decoders. Another aspect that could have
substantial complexity ramification is that of the sphere decoding ordering
policies. We here provide universal upper bounds on complexity that hold
irrespective of such choices on lattice designs, fading statistics and decoding
ordering policies. We then proceed to establish the tightness of these bounds
in a very broad setting (of designs, statistics, and ordering policies). Even
though this tightness appears in a very broad setting, it still remains to
be shown whether any of these choices can in fact substantially reduce the

31
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complexity behavior.
We consider the general m×n point-to-point MIMO channel, which can

be represented as

y =
√
ρHx+w, (3.1)

where x ∈ Rm, y ∈ Rn and w ∈ Rn respectively denote the transmitted
codewords, the received signal vectors, and the additive white Gaussian noise
with unit variance, where ρ denotes the signal to noise ratio (SNR), and
where the fading matrix H ∈ Rn×m is assumed to be random, with elements
drawn from arbitrary statistical distributions.

For the lattice codes described in the previous chapter, the codewords
take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ

rT
κ R, (3.2)

where R ⊂ Rκ is a natural bijection of the shaping region R
′

that pre-
serves the code, and contains the all zero vector 0. For simplicity we consi-
der R,[−1, 1]κ to be a hypercube in Rκ, although this could be relaxed.
Combining (3.1) and (3.2) yields the equivalent system model

y =Ms+w, (3.3a)

where M,ρ
1
2
− rT

κ HG ∈ Rn×κ. (3.3b)

Let QR = M be the thin QR factorization of the code-channel matrix
M and r,QHy, then the equivalent system model in (3.3a) is represented
by

r = Rs+QHw,

and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

‖r−Rŝ‖2 , (3.4)

which is then solved by the sphere decoder which recursively enumerates all
candidate vectors ŝ ∈ Sκr within a given search sphere of radius ξ > 0. We
can set a fixed search radius ξ =

√
z log ρ for some z > d(r) such that

P
(
‖QHw‖2 > ξ2

)
<̇ ρ−d(r), (3.5)

which implies a vanishing probability of excluding the transmitted informa-
tion vector from the search.

Rate-reliability-complexity tradeoff

In the high SNR regime, a given encoder Xr and decoder Dr are said to
achieve a multiplexing gain r and diversity gain dD(r) if (cf. [51])

lim
ρ→∞

R(ρ)

log ρ
= r, and − lim

ρ→∞
logPe

log ρ
= dD(r) (3.6)
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where Pe denotes the probability of codeword error with a ML-based sphere
decoder Dr employing time-out policies.

As stated before for Nmax denoting the amount of computational reserves,
in floating point operations (flops) per T channel uses, that the transceiver
is endowed with, the complexity exponent then takes the form

c(r) := lim
ρ→∞

logNmax

log ρ
. (3.7)

In order to establish the complexity exponent (c(r)) that describes the
computational resources required to achieve a vanishing gap to brute force
ML performance we quantify, in the high SNR regime, the ML-based SD the
error performance gap as

g(c), lim
ρ→∞

Pe

P (̂sML 6= s)
= 1, (3.8)

where P (̂sML 6= s)
.
= ρ−d(r) describes the error probability of the brute force

ML decoder.
Now we proceed to identify the amount of computational reserves requi-

red to achieve a vanishing gap to the brute force ML performance. While
this issue was first addressed and partially answered in [7] for the specific
settings of i.i.d. Rayleigh fading quasi-static channels with specific chan-
nel dimensions, specific codes, and specific permutation orderings, we here
provide answers for the most general MIMO settings, i.e., all fading distri-
butions from rational numbers, all channel dimensions, all MIMO scenarios
and all full-rate and below-full-rate lattice codes. After that Section 3.3 will
present the joint reliability-complexity measure that can be used to compare
worth of encoding-decoding policies, and Section 3.4 presents rate-reliability-
complexity tradeoff for ML-based decoders.

3.2 Complexity analysis ML-based sphere decoding

As discussed in the previous chapter the total number of visited nodes is
commonly taken as a measure of the sphere decoder complexity. We recall
that the total number of visited nodes (in all layers of the tree) is given by

NSD =
κ∑

k=1

Nk, (3.9)

where Nk denotes the number of visited nodes at layer k that corresponds
to the kth component of the transmitted symbol vector s and is given by
Nk , |Nk| where

Nk ,{ŝk ∈ Sκr | ‖rk −Rkŝk‖2 ≤ ξ2}.
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Before proceeding further we want to clarify that the analysis presented
here is specific to sphere decoding, and that it does not account for any other
ML based solutions that could, under some (arguably rare) circumstances,
be more efficient. A classical example of such rare circumstances would be a
MIMO scenario, or equivalently a set of fade statistics, that always generate
diagonal channel matrices. Another example would be having codes drawn
from orthogonal designs which introduce very small decoding complexity,
but which are provably shown to be highly suboptimal except for very few
unique cases like the 2× 1 quasi-static MIMO case [52]. 1

3.2.1 Complexity for vanishing gap to ML performance

We are interested in the ML-based SD complexity required to achieve a
vanishing performance gap to brute force ML. We recall that a ML-based SD
with run-time constraints, in addition to making the ML errors (ŝML 6= s),
also makes errors when the run-time limit of ρx flops for x > c(r) becomes
active, as well as when the fixed search radius ξ causes Nκ = ∅. Consequently
the corresponding performance gap to the brute force ML decoder, takes the
form (cf. (3.8))

g(x) = lim
ρ→∞

P ({ŝML 6= s} ∪ {NSD ≥ ρx} ∪ {Nκ = ∅})
P (̂sML 6= s)

.

To bound the above gap, we apply the union bound along with the fact that
(see Section 2.3.2)

P (Nκ = ∅) ≤ P
(
‖QHw‖ > ξ

)
,

to get that

g(x) ≤ lim
ρ→∞

P (̂sML 6= s) + P (NSD ≥ ρx) + P
(
‖QHw‖ > ξ

)

P (̂sML 6= s)
.(3.10)

We recall that we set the search radius ξ =
√
z log ρ, for some z > d(r) such

that P
(
‖QHw‖ > ξ

)
<̇ ρ−d(r), it then follows that

lim
ρ→∞

P
(
‖QHw‖ > ξ

)

P (̂sML 6= s)
= 0. (3.11)

1. Conjecture : We here conjecture that for a nT ×nR quasi-static MIMO, in the limit
of a large number nT of transmit antennas, and given encoding drawn from orthogonal
designs, the complexity of ML decoding one degree of freedom scales exponentially with
at least nT/2. This conjecture is supported by the fact that, as nT increases, orthogonal
designs maximally allow for 1/2 degrees of freedom, at a delay of T = O(2nT /2) (cf. [52]),
and by the fact that square orthogonal designs with T ≈ nT, allow for approximately
lognT

nT

degrees of freedom, at a decoding complexity that scales as O(nT). We remind the

reader that the number of degrees of freedom is, in our setting, generally equal to κ/2T , or
equivalently equal to the maximum achievable multiplexing gain that allows for positive
diversity gain. To put the above conjecture in perspective, we note that for brute force ML
decoding, in the presence of uncoded (V-BLAST, T = 1) BPSK symbols (nT of them),
the complexity required per one degree of freedom scales as O(2nT).
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Thus a vanishing gap to the brute force ML decoding (g(x) = 1) requires
that

lim
ρ→∞

P (NSD ≥ ρx)

P (̂sML 6= s)
= 0.

Now going back to (3.7), and having in mind appropriate timeout poli-
cies that guarantee a vanishing gap, the complexity exponent c(r) can be
bounded as c(r) ≤ c(r) ≤ c(r), where

c(r), inf{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
> d(r)}, and (3.12a)

c(r), sup{x | − lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
< d(r)}. (3.12b)

We note that c(r) in (3.12a) denotes a sufficient condition that guarantee
a vanishing performance gap to optimal performance, while c(r) in (3.12b)
denotes a necessary condition for a vanishing gap to optimal performance.

3.2.2 Complexity for fixed decoding order

In this section we consider ML-based SD employing fixed decoding order.
We first establish an upper bound that holds irrespective of the any fixed
or dynamically changing decoding order and then provide a lower bound
that matches this upper bound for any fixed decoding order. The complexity
results presented here are valid for all channel dimensions and for all-rate
lattice codes. For simplicity of analysis without loss of any generality 2 we
consider the case of m ≤ n and κ = m. We define µi,− log σi(H

HH)
log ρ , i =

1, · · · ,m, where σi(H
HH) denotes i-th singular value of the channel matrix

HHH. It follows that

σi(R) = σi(M),

≥ ρ
1
2
− rT

κ σmin(G)σ(i)(H)),

.
= ρ

−rT
κ

+ 1
2
(1−µi), i = 1, · · · , κ, (3.13)

2. For the considered case n ≥ m and full-rate codes (κ = m), generator matrix G ∈
Rm×m is full-rank and square matrix, but for n < m and full-rate codes (κ = n), generator
matrix G is full-rank but not a square matrix. In order to have uniformity in analysis, for
the case of n < m, we can substitute G with a new generator matrix G̃ = Ũ

T
G ∈ Rn×n

which is full-rank and square matrix, and where Ũ ∈ Rm×n has orthogonal columns, this
substitution results in a new channel matrix H̃ = HŨ ∈ Rn×n such that the code-channel
matrix remains unaltered, i.e., Ms = ρ

1

2
− rT

κ HGs = ρ
1

2
− rT

κ HŨG̃s = ρ
1

2
− rT

κ H̃G̃s. As no
explicit assumption is made regarding the fading distribution of H, the complexity analysis
and results will directly apply for n < m with new matrices H̃ and G̃. The analysis for
the below-full-rate code (κ < min{m,n}) can be handled by making similar substitutions.
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where the asymptotic equality is due to the fact that σmin(G)
.
= ρ0. We

recall from (3.9) that the total number of the visited nodes for any given
channel realization µ = (µ1, · · · , µm) takes the form

NSD(µ) =
κ∑

k=1

Nk(µ),

where from [7, Lemma 1]

Nk(µ) ≤
k∏

i=1

[√
k +min{ 2ξ

σi(Rk)
, 2
√
kρ

rT
κ }

]
.

From the interlacing property of singular values of sub-matrices [53] we have
that σi(Rk) ≥ σi(R). It follows that

Nk(µ)
.
≤ ρ

∑k
i=1 min ( rTκ −

1
2
(1−µi),

rT
κ )

+

.

Consequently, we have that

NSD(µ)
.
≤ ρ

∑κ
i=1 min ( rTκ −

1
2
(1−µi),

rT
κ )

+

. (3.14)

Now let

T(x),

{
µ|

κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

≥ x

}
, (3.15)

and note that for any y < x, then (3.14) and µ /∈ T(y) jointly imply that
NSD < ρx, which in turn implies that P (µ /∈ T(y)) ≤ P (NSD < ρx) and
consequently that P (µ ∈ T(x)) ≥ P (NSD ≥ ρx). Thus for any y < x it
follows that

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ − lim

ρ→∞
log P (µ ∈ T(y))

log ρ
. (3.16)

In evaluating the right hand side of (3.16) we note that T(y) is a closed set
and thus, applying the large deviation principle (cf. [8]), we have that

− lim
ρ→∞

log P (µ ∈ T(y))

log ρ
≥ inf

µ∈T(y)
I(µ), (3.17)

where µ,(µ1, · · · , µκ) satisfies the large deviation principle with rate func-
tion I(µ). Consequently from (3.16) and (3.17), it follows that

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ inf

µ∈T(y)
I(µ). (3.18)
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This lower bound specified in (3.18) holds for any y < x. Consequently to
get the tightest possible bound, we need to find supy<x infµ∈T(y) I(µ). As
infµ∈T(y) I(µ) is non-decreasing and left-continuous in y, it follows that

sup
y<x

inf
µ∈T(y)

I(µ) = inf
µ∈T(x)

I(µ).

Consequently, it follows that

− lim
ρ→∞

log P (NSD ≥ ρx)

log ρ
≥ inf

µ∈T(x)
I(µ), (3.19)

which in conjunction with (3.12a) gives that

c(r) ≤ c̃(r), inf{x| inf
µ∈T(x)

I(µ) > d(r)},

=sup{x| inf
µ∈T(x)

I(µ) ≤ d(r)},

=max{x| inf
µ∈T(x)

I(µ) ≤ d(r)}, (3.20)

where the above follows from the aforementioned fact that− lim
ρ→∞

log P(NSD≥ρx)
log ρ

(and by extension also infµ∈T(x) I(µ)) is continuous and nondecreasing in x,
and from the fact that T(x) is a closed set. Consequently c̃(r) takes the form

c̃(r),max
µ

x (3.21a)

s.t.
κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

≥ x, (3.21b)

I(µ) ≤ d(r), (3.21c)

µ1 ≥ · · · ≥ µκ ≥ 0. (3.21d)

Furthermore since T(x) is a closed set, the maximum x in (3.21) must be
such that (3.21b) is satisfied with equality, in which case the upper bound
c̃(r) can be obtained as the solution to a constrained maximization problem
according to

c̃(r),max
µ

κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

s.t. I(µ) ≤ d(r),

µ1 ≥ · · · ≥ µκ ≥ 0.

This results in following theorem
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Theorem 1. The complexity exponent of sphere decoding any full-rate lattice
code at d(r) is upper bounded, irrespective of the fading statistics and fixed
or dynamically changing decoding orderings, as c(r) ≤ c̃(r) where

c̃(r),max
µ

κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

(3.22a)

s.t. I(µ) ≤ d(r), (3.22b)

µ1 ≥ · · · ≥ µκ ≥ 0, (3.22c)

Let d(r) = dml be the optimal DMT of uninterrupted ML decoding of
the specific (potentially suboptimal) code. Then we have the following

Corollary 1a. The complexity exponent of achieving a vanishing gap to
optimal ML is upper bounded as

c̃(r),max
µ

m∑

i=1

min

(
rT

m
− 1

2
(1− µi),

rT

m

)+

(3.23a)

s.t. I(µ) ≤ dml(r), (3.23b)

µ1 ≥ · · · ≥ µm ≥ 0, (3.23c)

irrespective of the full-rate code, the channel statistics and the ordering poli-
cies.

The above holds directly from Theorem 1.

Lower Bound on Complexity

In this section we establish that c(r) = c̃(r), i.e., the sphere decoder visits
a total number of nodes that is close to ρc̃(r) with a probability that is large
compared to the probability of decoding error P (̂sML 6= s)

.
= ρ−d(r).

For µ∗ = (µ∗1, · · · , µ∗κ) being one of the maximizing vectors such that
I(µ∗) = d(r), the upper bound takes the form

c̃(r) =
κ∑

i=1

min

(
rT

κ
− 1

2
(1− µ∗i ),

rT

κ

)+

.

Furthermore given the monotonicity of the rate function I(µ), and the fact
that the objective function in (3.22) does not increase in µi beyond µi = 1,
we may also assume without loss of generality that µ∗i ≤ 1 for i = 1, · · · , κ.
It then follows that

c̃(r) =
κ∑

i=1

(
rT

κ
− 1

2
(1− µ∗i )

)+

. (3.24)
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We let q ∈ [1, κ] be the largest integer for which rT
κ − 1

2(1−µ∗q) > 0, in which
case (3.24) takes the form

c̃(r) =

q∑

i=1

(
rT

κ
− 1

2
(1− µ∗i )

)
. (3.25)

We quickly note that without loss of generality we can assume that q ≥ 1
as otherwise c(r) = c(r) = 0. Consequently it is the case that µ∗i > 0 for
i = 1, · · · , q.

We proceed to define three events Ω1, Ω2 and Ω3 which we will prove to
be jointly sufficient so that the total number of nodes visited by the sphere
decoder, employing a channel dependent fixed decoding order, is close to
ρc̃(r). These events are given by

Ω1,{µ∗i − 2δ < µi < µ∗i − δ, j = 1, · · · , q
0 < µi < δ, i = q + 1, · · · , κ},

(3.26)

for a given small δ > 0,
Ω2,

{
‖w‖2 < ξ2

}
, (3.27)

Ω3,

{
‖s‖ < 1

2
ρ

rT
κ

}
. (3.28)

Note also that by choosing δ sufficiently small, and using the fact that µ∗i > 0
for i = 1, · · · , q, we may without loss of generality assume that Ω1 implies
that µi > 0 for all i = 1, · · · , κ.

We begin the proof by first showing that in the presence of events Ω1, Ω2

and Ω3 we can remove the boundary constraints of ML-based SD in (3.4),
which allows us to lower bound on the number of nodes visited at layer k as
(cf. [7, Lemma 1])

Nk ≥
k∏

i=1

[
2ξ√

kσi(Rk)
−
√
k

]+
. (3.29)

For boundary removal we let x̂k ∈ Sk∞ be an arbitrary point in the k-
dimensional infinite constellation that satisfies the sphere constraint at layer
k, i.e.

‖rk −Rkŝk‖ ≤ ξ. (3.30)

Note that rk = Rksk + wk, where sk denotes the last k components of
the transmitted sysmbol vector s ∈ Sκr and where wk denotes the last k
components of QHw. It follows that

‖rk −Rkŝk‖ =‖Rk(sk − ŝk) +wk‖,
≥σ1(Rk)‖(̂sk − sk)‖ − ‖wk‖,
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substituting this back in (3.30) implies that

‖ŝk‖ ≤
1

σ1(Rk)
(ξ + ‖wk‖) + ‖sk‖. (3.31)

From (3.13), (3.26) and fact that µ∗1 ≤ 1 it further follows that

σ1(Rk) ≥ σ1(R)
.
≥ ρ−

rT
κ
+ δ

2 .

As ξ
.
= ρ0 and ‖wk‖ ≤ ‖QHw‖ ≤ ξ (cf. (3.27)) it follows that

1

σ1(Rk)
(ξ + ‖wk‖)

.
≤ ρ

rT
κ
− δ

2 .

Also from (3.28), ‖sk‖ ≤ ‖s‖ ≤ 1
2ρ

rT
κ , substituting this in (3.31) gives that

‖ŝk‖ ≤ ρ
rT
κ .

This implies that x̂k ∈ Skr . Thus, any integer point that satisfies the sphere
constraint must also belong to the constellation and it allows for the removal
of the boundary constraints of ML-based SD in (3.4).

In the following, and up until (3.41), we will work toward upper bounding
σi(Rk) for the case of q ∈ [1, κ−1], the case of q = κ is treated separately later
on. Towards this we first consider a Greedy QR decomposition (cf. [11]) of
M resulting in a column permutation matrix Π such that MΠ = Q̃R̃ where
Π = Π1 · · ·Πp and unitary matrix Q̃, Q̃1 · · · Q̃p is obtained by applying
p (p,κ − q) recursive steps of Greedy QR decomposition. The diagonal
elements of R̃ satisfy r̃11 ≥ · · · ≥ r̃pp. Let M|p ∈ Rn×p contains the first p
columns of MΠ. It then follows that

M|p,MΠp = Q̃R̃p, (3.32)

where, Πp and R̃p denote the sub matrices consisting of the first p columns
of Π and R̃ respectively. Now let Rp be the p × p upper triangular matrix
consisting of the first p rows of R̃p, then we get that

σi(M
H
|pM|p) = σi(R

H
p Rp), i = 1, · · · , p.

For RH
p Rp, having diagonal entries r̃211 ≥ · · · ≥ r̃2pp and singular values

σ1(R
H
p Rp) ≤ · · · ≤ σp(R

H
p Rp), from [54, Theorem 2.3] we have that

k∏

i=1

r̃2ii ≤
k∏

i=1

σp−i+1(R
H
p Rp), k = 1, · · · , p.

Consequently, it follows that

k∏

i=1

r̃2ii ≤
k∏

i=1

σp−i+1(M
H
|pM|p), k = 1, · · · , p. (3.33)
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From [11, Lemma 4.3] regarding the Greedy QR decomposition, we have that

r̃2kk ≥
σκ−k+1(M

HM)

κ− k + 1
, k = 1, · · · , p,

and it follows that

k∏

i=1

r̃2ii ≥
k∏

i=1

σκ−i+1(M
HM)

κ− i+ 1
, k = 1, · · · , p. (3.34)

From (3.33) and (3.34) we have that

k∏

i=1

σp−i+1(M
H
|pM|p) ≥

k∏

i=1

σκ−i+1(M
HM)

κ− i+ 1
, k = 1, · · · , p.

Consequently, using [53, Theorem 4.3.15] which gives that σp−k+1(M
H
|pM|p) ≤

σκ−k+1(M
HM), it can be shown recursively that

σp−k+1(M
H
|pM|p) ≥ σκ−k+1(M

HM)
k∏

i=1

1

κ− i+ 1
, k = 1, · · · , p. (3.35)

Now using (3.35) along with the fact that σp−k+1(M
H
|pM|p) ≤ σκ−k+1(M

HM),
k = 1, · · · , p (cf. [53, Theorem 4.3.15]), we have that

σp−k+1(M
H
|pM|p)

.
= σκ−k+1(M

HM), k = 1, · · · , p.

Consequently, for k = p it follows that

σ1(M
H
|pM|p)

.
= σq+1(M

HM), (3.36)

where we have used the fact that q = κ − p. Recalling that σ1(M
HM) ≤

· · ·σm(MHM), we have that

σ1(M
H
|pM|p) ≥σi(MHM) for i = 1, · · · , q. (3.37)

The above inequality allows us to apply Lemma 3 from [7], which in turn
gives that

σi(Rk) ≤
[
σκ(M)

σ1(M|p)
+ 1

]
σi(M)

.
=

[
σκ(M)

σq+1(M)
+ 1

]
σi(M), (3.38)

for i = 1, · · · , q, where exponential equality follows from (3.36). From (3.13)
we have that

σi(M)
.
= ρ

−rT
κ

+ 1
2
(1−µi), i = 1, · · · , κ. (3.39)
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Furthermore (3.26) gives that

σi(M)
.
≤ρ− rT

κ
+δ+ 1

2
(1−µ∗i ) for i = 1, · · · , q, (3.40a)

σκ(M)
.
≤ρ− rT

κ
+ 1

2
(1−µκ) ≤ ρ

1
2
− rT

κ , (3.40b)

σq+1(M)
.
=ρ−

rT
κ
+ 1

2
(1−µq+1) ≥ ρ−

rT
κ
+ 1

2
(1−δ). (3.40c)

Substituting (3.40) in (3.38) gives that

σi(Rk)
.
≤ ρ−

rT
κ
+ 3

2
δ+ 1

2
(1−µ∗i ), i = 1, · · · , q. (3.41)

Consequently, going back to (3.29), we have that
[

2ξ√
kσi(Rk)

−
√
k

]+ .
≥ ρ(

rT
κ
− 3

2
δ− 1

2
(1−µ∗i )). (3.42)

As a result, for k = q with q ∈ [1, κ− 1] we have that

Nq

.
≥ ρ(

∑q
i=1 (

rT
κ
− 1

2
(1−µ∗i ))− 3

2
qδ) = ρ(c̃(r)−

3
2
qδ), (3.43)

where the last equality follows from (3.25). For the case of q = κ, from (3.29)
and (3.40a) we have that

Nq

.
≥ ρ

∑κ
i=1(

rT
κ
−δ− 1

2
(1−µ∗i )) = ρ(c̃(r)−κδ). (3.44)

Consequently for q ∈ [1, κ] we have that NSD

.
≥ ρc̃(r)−Kδ for small δ > 0,

where K ∈ {32q, κ}.
We note that (3.26)-(3.28) jointly imply that NSD

.
≥ ρc̃(r)−Kδ. For some

δ′ , Kδ + δ1, where δ > δ1 > 0, it follows that

P
(
NSD ≥ ρc̃(r)−δ

′
)
≥ P (Ω1 ∩ Ω2 ∩ Ω3)

.
= P(Ω1) , (3.45)

where exponential equality follows from the independence of the events Ω1,
Ω2 and Ω3 and from the fact that P (Ω2)

.
= ρ0 (cf.(3.5)) and P (Ω3)

.
= ρ0.

For any r > 0 in which case the the subset of the constellation defined by
Ω3 contains an asymptotically deterministic and strictly positive fraction of
the full constellation. With Ω1 being an open set, we have that

− lim
ρ→∞

P (Ω1)

log ρ
≤ inf

µ∈Ω1

I(µ) = I(µ̃) < I(µ∗) = d(r), (3.46)

where µ̃ = {µ∗1 − 2δ · · · , µ∗q − 2δ, 0, · · · , 0}, where the last inequality follows
from the monotonicity of the rate function I(µ) and where the last equality
follows from the fact that, by definition, I(µ∗) = d(r).

Consequently (3.45) and (3.46) along with the definition of the lower
bound in (3.12b) imply that c(r) = c̃(r), for arbitrarily small δ > 0. The fol-
lowing proposition directly holds corresponding to a vanishing performance
gap.
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Proposition 1. Irrespective of channel fading statistics and of the full-rate
code applied, for every realization of channel there exists a channel dependent
column permutation matrix Π such that the ML-based sphere decoder with
decoding order Π has the complexity exponent c(r) = c̃(r) where

c̃(r) = max
µ

κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

(3.47a)

s.t. I(µ) ≤ d(r), (3.47b)

µ1 ≥ · · · ≥ µκ ≥ 0. (3.47c)

This proposition also establishes that c̃(r) is the tightest upper bound
that can hold for any full-rate code and ML-based sphere decoder with fixed
decoding order. To show the dependence of Π on M , we henceforth use
ΠM instead of Π. Under the assumption that each column permutation ma-
trix ’appears’ with non-zero probability, then for every column permutation
matrix Πκ ∈ Rκ×κ we have that P (ΠM = Πκ)

.
= ρ0, where probability

is taken over random M . Then the following theorem is a consequence of
Proposition 1.

Theorem 2. For any full-rate code and fading distribution such that
P (ΠM = Πκ) > ǫ ∀ Πκ for some ǫ > 0, the SD complexity exponent is
c(r) = c̃(r) for any fixed decoding order.

After establishing complexity exponent for the general MIMO case, in the
following we consider the specific case of quasi-static MIMO channels and
derive the single-letter expressions for complexity exponent for decoding over
the quasi-static MIMO channels.

3.2.3 Quasi-static MIMO with fixed decoding order

Complexity upper bound

Recalling the equivalence of quasi-static MIMO channel and general MIMO
from Section 2.1.1 and transitioning to the specific case of the nT × nR

(nR ≥ nT ) quasi-static point-to-point MIMO channel (with T uses over chan-
nel HC ∈ CnR×nT ), where now µ denotes the (asymptotics of) the singular

values of HC , i.e., µj ,− log σj(H
H
CHC)

log ρ , j = 1, · · · , nT , where µ1 ≥ · · · ≥ µnT

and where µ,(µ1, · · · , µnT ) satisfy the large deviation principle with rate
function I(µ), the following holds directly from Theorem 1.

Theorem 3. The SD complexity exponent of achieving a diversity gain d(r)
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is upper bounded as

c̃quasi(r),max
µ

T

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

(3.48a)

s.t. I(µ) ≤ d(r), (3.48b)

µ1 ≥ · · · ≥ µnT ≥ 0, (3.48c)

irrespective of the full rate lattice code.

Furthermore it is worth noting that, directly from Proposition 1, we know
that irrespective of the fading statistics and of the full-rate code, there exists
a fixed decoding order for which the above universal upper bound is tight.

From Theorem 3 we can now establish a universal upper bound on the
complexity to achieve the DMT optimal performance d∗(r) of the nT × nR

(nT ≤ nR) MIMO channel.

Theorem 4. The SD complexity exponent of achieving the optimal DMT
d∗(r) is upper bounded as

c(r) ≤ c̄(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
, (3.49)

where c̄(r) is a piecewise linear function that, for integer values of r, takes
the form

c̄(r) =
T

nT
r(nT − r), r = 0, 1, · · · , nT .

This holds for any set of fading statistics, all DMT optimal full rate code
designs, and for any decoding order policy.

The proof for this theorem is given in Appendix 3A.

Universal upper bound

Furthermore we can see from (3.48) that, regardless of the fading statis-
tics and the corresponding I(µ), the upper bound on complexity exponent is
non-decreasing in d(r) and is hence maximized when d(r) is itself maximized,
i.e., it is maximized in the presence of DMT optimal encoding and decoding.
Combining it with the fact that the corresponding maximization problem in
(3.48) does not depend on the fading distribution, other than the natural
fact that its tail must vanish exponentially fast. The following corollary then
holds for all full-rate codes.

Corollary 4a. For nT ×nR (nR ≥ nT ) quasi-static MIMO channel, the SD
complexity exponent is upper bounded as in Theorem 4 for any full rate code,
all fading statistics and all decoding order policies. This takes the form

c(r) ≤ c̄(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
. (3.50)



3.2 Complexity analysis ML-based sphere decoding 45

which, for integer r, simplifies to

T

nT
r(nT − r), r = 0, 1, · · · , nT .

This is the tightest upper bound that can hold for all (full-rate) codes
and fading statistics (cf. Proposition 1).

SISO and SIMO systems

Corollary 4b. For quasi-static SISO and SIMO systems, irrespective of the
fading statistics and given any full-rate code of arbitrary DMT performance,
the ML-based sphere decoder has zero complexity exponent.

This corollary follows directly from the universal upper bound as a special
case for nT = 1.

Tightness of complexity upper bound

For quasi-static MIMO channels following theorem holds directly from
Theorem 2 which describes complexity exponent for decoding over general
MIMO channels.

Theorem 5. For nT × nR (nR ≥ nT ) quasi-static MIMO channel with any
full-rate code and fading distribution such that P (ΠM = Πκ) > ǫ ∀ Πκ,
for some ǫ > 0, the complexity exponent of the ML-based sphere decoder with
any fixed decoding order is given by

cquasi(r) = max
µ

T

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

(3.51a)

s.t. I(µ) ≤ d(r), (3.51b)

µ1 ≥ · · · ≥ µnT ≥ 0. (3.51c)

Complexity for DMT optimal codes

Corollary 5a. For nT × nR (nR ≥ nT ) quasi-static MIMO channel with
DMT optimal codes, the complexity exponent for ML-based SD with fixed
decoding order takes the form

cnT×nR(r) =
T

nT

[
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

]
, (3.52)

which is a piece-wise linear function that, for integer values of multiplexing
gain r, takes the form

cnT×nR(r) =
T

nT
r(nT − r), for r = 0, 1, · · · , nT .
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This corollary follows directly from universal upper bound and Theorem 5
and holds under the same settings as described in Theorem 5.

Example 3. For the specific case of decoding threaded minimum delay (T =
nT ) DMT optimal codes over nT × nR (nR ≥ nT ) MIMO, the complexity
exponent takes the form

cnT×nR(r) = r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+,

which again is a piece-wise linear function that, for integer values of multi-
plexing gain r, takes the form

cnT×nR(r) = r(nT − r), for r = 0, 1, · · · , nT .

The Fig 3.1 describes the complexity exponents that are needed by the 2× 2
(nT = T = 2) and 3 × 3 (nT = T = 3) threaded minimum delay codes to
achieve the optimal DMT.
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Figure 3.1 – The complexity exponent c(r) for decoding threaded
minimum delay DMT optimal codes over nT × nR (nR ≥ nT ) MIMO

V-BLAST

Corollary 5b. For n × n i.i.d. Rayleigh MIMO channel with V-BLAST,
the complexity exponent for ML-based SD with fixed decoding order takes the
form

cv(r) =
r
⌊√

n− r
⌋

n

+

(

r

n
− 1 +

n− r − (
⌊√

n− r
⌋
)2

2
⌊√

n− r
⌋
+ 1

)+

. (3.53)

The proof for this corollary is given in Appendix 3B. For example, the
complexity exponent that is needed to achieve the optimal DMT for V-
BLAST over n× n i.i.d. Rayleigh channel for n = 2, 3, 4 is shown in Fig 3.2.
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Figure 3.2 – The complexity exponent c(r) for decoding V-BLAST over
n× n i.i.d. Rayleigh channel

MISO systems

Proposition 2. The minimum, over all lattice designs and halting and deco-
ding order policies, complexity exponent c(r) required by ML-based decoding
to achieve the optimal DMT of nT × 1 MISO channel, is upper bounded as

c(r) ≤ cmiso(r) =
[
r(nT − ⌊nT r⌋ − 1) + (⌊nT r⌋ − r(nT − 1))+

]
,

which is a piece-wise linear function that, for r = 0, 1
nT

, · · · , 1, takes the form

cmiso(r) = nT r(1− r).

The proof for this proposition is given in Appendix 3C. The comparison of
the MISO complexity exponent upper bound with the complexity exponent
for nT ×nR (nR ≥ nT ) quasi-static MIMO channel with DMT optimal codes
in (3.52) reveals that

cmiso(r) =
cnT×nR(nT r)

nT
.

For example, the upper bound on complexity exponent for decoding over
nT × 1 MISO for nT = 2, 3 is shown in Fig 3.3.

3.2.4 Complexity for dynamically changing decoding order

In the previous section we established complexity requirements for the
fixed decoding order implementation of SD. It turns out that for the fixed
decoding order implementation, the complexity exponent meets the univer-
sal upper bound. A natural improvement can be a sphere decoder employing
dynamically changing decoding orders. In this section we wish to quantify
the advantages, if any, of using dynamically changing decoding order imple-
mentations.
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Figure 3.3 – The complexity exponent c(r) for decoding diagonal DMT
optimal codes over nT × 1 MISO

The results of analysis presented in this section establish that for any
randomly picked lattice code (randomly and uniformly drawn from an en-
semble of lattice designs), irrespective of the fixed or dynamically changing
decoding order, the complexity exponent of the ML-based sphere decoder
almost surely, in the choice of the lattice code, matches the upper bound
derived in the previous section. For the analysis presented in this section
we consider slightly restricted quasi-static MIMO model with i.i.d. Rayleigh
fading statistics.

Theorem 6. For the i.i.d. Rayleigh quasi-static MIMO channel, and ir-
respective of the fixed or dynamically changing decoding ordering policy, the
complexity exponent of the ML-based sphere decoder almost surely, in the
choice of the DMT optimal full-rate lattice code, matches the universal upper
bound in Theorem 4.

The proof for this theorem is given in Appendix 3D. At this point we want
to clarify that Theorem 6 does not imply that dynamic decoding ordering
policies can not reduce complexity exponent for any DMT optimal code. For
any given specific DMT optimal code finding dynamically changing decoding
orders that can guarantee reduction in the complexity exponent as compared
to the universal upper bound in Theorem 4, remains a challenging open
problem.

3.3 Reliability-Complexity Measure

Aforementioned complexity characterization provides basis to quantify
the performance of specific encoders/decoders. A joint reliability-complexity
measure, described as Γ(r), d(r) − γc(r) for γ ≥ 0, can be used as a mea-
ningful unified performance metric to compare the worth of encoders and
decoders. The weight factor γ compares the price of flop vs error and can be
derived from the system design requirements (what is more critical - error
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performance or computational resources), e.g., high γ signifies scarcity of
computational resources.

Example 4. Figure 3.4 depicting the joint reliability-complexity measure for
2×2 perfect codes and V-BLAST over 2×2 MIMO system clearly illustrates
that a policy that employs perfect codes up to multiplexing gain of r = 4

4+γ
and then switches to V-BLAST scheme results in a preferable reliability-
complexity measure. In this dissertation all the joint reliability-complexity
measure results, except for this section, unless stated clearly consider the
metric with γ = 1, i.e., Γ(r), d(r)− c(r). In the Fig. 3.4 (b) the diversity-
complexity tradeoff of 2 × 2 perfect codes and V-BLAST is shown as dotted
lines for γ = 0.2 and as solid lines for γ = 2. The figure suggests that for
very low values of γ using perfect codes will result in uniformly better joint
reliability-complexity measure.
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Figure 3.4 – Reliability-Complexity Measure

3.4 Rate-Reliability-Complexity Tradeoff

In this section we present rate-reliability-complexity tradeoff for ML-
based SD. The motivation for using ML-based SD is evident from the fact
that it can achieve vanishing gap to ML error performance with significantly
smaller computational reserves as established in the previous section. The
scenarios where ML-based SD is used in the absence of sufficient computatio-
nal reserves required to achieve vanishing gap, there exists a rate-reliability-
complexity tradeoff describing the optimal diversity performance that can
be achieved in such scenarios. This tradeoff analysis is of particular interest
for the scenarios involving transceiver designs (like software defined radios)
where computational reserves might vary with time and render it insufficient
to achieve a vanishing performance gap.

From the concise closed form expressions for complexity exponent pro-
vided in Theorem 2 and Theorem 6, it is evident that one can potentially
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tradeoff diversity gain with complexity exponent, i.e., complexity exponent
can decrease with reduction in diversity gain. Careful study though will show
that such a tradeoff is not always successful, that reductions in d(r) are not
necessarily rewarded with a reduction in the required complexity, and that
there are ranges of d(r) for which c(r) remains fixed. Such ranges can be
described relatively concisely.

Example 5. For a nT×nR (nR ≥ nT ) quasi-static MIMO system a diversity
gain,

d(r) ∈





nT−⌊r⌋−1∑

j=1

aj ,

nT−⌊r⌋−1∑

j=1

aj + anT−⌊r⌋(1−
r

nT
)





with aj , j = 0, · · · , nT denoting the coefficients of rate function I(µ), re-
quires computational reserves denoted by c(r) = rT

nT
(nT − ⌊r⌋ − 1), e.g., for

a 2 × 2 MIMO system for 0 ≤ r ≤ 1, all diversity gains d(r) ∈ [1, 4 − 3r
2 ]

shown with shaded area in Fig. 3.5 (a) require the same complexity exponent
r as shown as a line in Fig. 3.5 (b). Although premature at this point, we
hasten to note that any attempt to reduce complexity exponent below specified
c(r) = rT

nT
(nT − ⌊r⌋ − 1) results in a reduction in achievable diversity gain,

causing it to sink below
∑nT−⌊r⌋−1

j=1 aj.
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Figure 3.5 – The figure depicts the diversity gain region for which the
required complexity exponent is given by c(r).

The practical implication of this result is that any small reduction in
the the complexity exponent might result in potentially high error perfor-
mance loss. The complexity and diversity gain relationship can be succinctly
described by a rate-reliability-complexity tradeoff which identifies optimal
diversity gain achievable in the presence of any run-time constraint impo-
sed due to the unavailability of enough computational resources required to
achieve a vanishing gap.



3.4 Rate-Reliability-Complexity Tradeoff 51

Theorem 7. For any full-rate code with ML-based diversity gain d(r) and
any fading distribution such that P (ΠM = Πκ) > ǫ ∀ Πκ, for some ǫ > 0,
the achievable diversity performance dD(r) for ML-based SD with any fixed
decoding order and a run-time constraint ρcD(r) flops is uniquely described by

dD(r) = min{d(r), dD(r, xD)} ∀ cD(r) ≥ 0, (3.54)

where dD(r, xD), limǫ→0+ dD(r, cD(r) + ǫ), and where

dD(r, cD(r) + ǫ), inf I(µ)

s.t.
κ∑

i=1

(
rT

κ
− 1

2
(1− µi)

)+

≥ cD(r) + ǫ,

1 ≥ µ1 ≥ · · · ≥ µκ ≥ 0.

The proof for this theorem is given in Appendix 3E.

3.4.1 Quasi-static MIMO channels

For an nT×nR (nR ≥ nT ) quasi-static MIMO, the following holds directly
holds from Theorem 7

Theorem 8. For any full-rate code and any fading distribution such that
P (ΠM = Πκ) > ǫ ∀ Πκ, for some ǫ > 0, the achievable diversity perfor-
mance dD(r) for ML-based SD with any fixed decoding order and a run-time
constraint ρcD(r) flops is uniquely described by

dD(r) = min{d(r), dD(r, cD(r))} ∀ cD(r) ≥ 0,

where d(r) is the optimal diversity gain (of uninterrupted brute force ML,
for the given code), where dD(r, x), limǫ→0+ dD(r, cD(r) + ǫ), and where

dD(r, cD(r) + ǫ), inf I(µ)

s.t. T

nT∑

j=1

(
r

nT
− (1− µj)

)+

≥ cD(r) + ǫ,

1 ≥ µ1 ≥ · · · ≥ µnT ≥ 0,

Focusing on the quasi-static i.i.d Rayleigh fading nT × nR (nR ≥ nT )
MIMO channel, and on DMT optimal lattice designs (achieving the optimal
DMT d∗(r)), the following Corollary gives a lower bound on the complexity-
constrained DMT. The bound is tight for the case of DMT optimal layered
lattice designs, which we will refer to in more detail later on, and which are
currently the only known DMT optimal lattice designs. The corollary follows,
after basic algebraic manipulation, directly from Theorem 8 and [7, Theorem
5].
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Corollary 8a. The best possible complexity-constrained DMT of ML-based
decoding any DMT optimal lattice design using maximally Nmax

.
= ρcD(r)

flops, is lower bounded as dD(r) = min{d∗(r), dD(r, cD(r))} where

dD(r, cD(r)) =
K∑

j=1

(nR − nT + 2j − 1)

+ (nR − nT + 2K + 1)(
cD(r)

T
+ 1− (K + 1)r

nT
),

where K =
⌊
nT cD(r)

rT

⌋

, irrespective of the decoding ordering policy. Further-
more in the presence of DMT optimal layered lattice designs, the above des-
cribed DMT is the exact complexity constrained DMT given by the natural
sphere decoding ordering.

The following directly holds directly from the Corollary 8a.

Corollary 8b. For a nT ×nR (nR ≥ nT ) i.i.d. Rayleigh fading channel with
a DMT optimal threaded code and ML-based SD employing natural decoding
order with a run-time constraint of ρ0 flops, the achievable diversity gain is
uniquely described by dD(r) = min{d∗(r), dD(r, cD(r))}, where d∗(r) is the is
the optimal DMT of channel and where dD(r, cD(r)) = (nR−nT +1)(1− r

nT
).

In the following we present several clarifying examples corresponding to
Corollary 8a under the natural decoding order.

Example 6. Figure 3.6 presents achievable diversity gain for 2× 2 Perfect
code (cf. [15]) over i.i.d. Rayleigh channel in the presence of a fixed run-
time constraint. The upper solid line in Fig. 3.6 (a) describes the complexity
exponent that would have been needed by the 2 × 2 perfect code to achieve
the optimal DMT (upper solid line in Fig. 3.6(b)). The lower straight line in
Fig. 3.6 (a) describes the complexity limitations that we are assigning to the
2×2 perfect code, which now, due to these complexity limitations, is achieving
a much reduced DMT (blue line in Fig. 3.6(b)) wherever the complexity limit
becomes active.

Example 7. Figure 3.7 presents achievable diversity gain for 2× 2 Perfect
code (cf. [15]) over i.i.d. Rayleigh channel in the presence of a run-time
constraint that allows for computational resources required by V-BLAST to
achieve its own optimal DMT. The upper line in Fig. 3.7 (a) describes the
complexity exponent that would have been needed by the 2 × 2 perfect code
to achieve the optimal DMT (upper line in Fig. 3.7(b)). The lower line in
Fig. 3.7 (a) describes the complexity exponent that would have been needed by
V-BLAST to achieve its own optimal DMT (middle line in Fig. 3.7(b)). This
same lower line in Fig. 3.7 (a) also describes the complexity limitations that
we are assigning to the 2×2 perfect code, which now, due to these complexity
limitations, is achieving a much reduced DMT (lowest line in Fig. 3.7(b)).
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Figure 3.6 – Achievable diversity gain for 2× 2 Perfect code in the
presence of a complexity hardbound of ρ
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Figure 3.7 – Achievable diversity gain for 2× 2 Perfect code in the
presence of a complexity hardbound that only allows for the computational

resources required by 2× 2 V-BLAST.

Example 8. Figure 3.8 presents achievable diversity gain for 3× 3 Perfect
code (cf. [15]) over i.i.d. Rayleigh channel again in the presence of fixed run-
time constraints. The upper solid line in Fig. 3.8 (a) describes the complexity
exponent that would have been needed by the 3× 3 perfect code to achieve the
optimal DMT (upper solid line in Fig. 3.8(b)). The middle blue line and
lowest red line in Fig. 3.8 (a) describe the complexity limitations that we
are assigning to the 3 × 3 perfect code, which now, due to these complexity
limitations, is achieving a much reduced DMT (middle blue line and lowest
red line respectively in Fig. 3.8(b)) wherever the complexity limits become
active.
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Figure 3.8 – Achievable diversity gain for 3× 3 Perfect code in the
presence of a complexity hardbound of ρ

3
2 flops and ρ flops.

Discussion on rate-reliability-complexity tradeoff results

As we see in Fig. 3.6, Fig. 3.7 and Fig. 3.8 that the effect of run-time
constraint ρcD(r) on the performance of DMT optimal codes is more severe
at lower multiplexing gains, this phenomenon can be explained by unders-
tanding the behavior of the decoding policies in different multiplexing gain
regions.

In high multiplexing gain region, say close to maximum multiplexing gain
(for nT − 1 ≤ r ≤ nT ), the optimizing vector µ∗ for optimal DMT is of the
form

µ∗1 = nT − r, µ∗2 = · · · = µ∗nT
= 0.

and results in the complexity exponent c(r) required to achieve optimal
DMT. Any small reduction in complexity exponent c(r) by some positive
constant ǫ > 0 will result in a new optimal solution µ̃∗1 = nT − r − ǫ, µ̃∗2 =
· · · = µ̃∗nT

= 0 and the achievable diversity gain is reduced by (nR−nT +1)ǫ.
However, in the low multiplexing gain region, for say multiplexing gain close
to zero (for 0 ≤ r ≤ 1), the optimizing vector for optimal DMT is of the
form

µ∗1 = · · · = µ∗nT−1 = 1, µ∗nT
= 1− r.

Again the identical small reduction in complexity exponent by ǫ > 0 will
result in a new optimal solution µ̃∗1 = · · · = µ̃∗nT−2 = 1, µ̃∗nT−1 = 1 −
ǫ, µ∗nT

= 0, that corresponds to a reduction in achievable diversity gain by
(nR+nT +1)(1−r)+(nR+nT −1)ǫ, which is much larger than the reduction
at higher multiplexing gains.

The result of Theorem 6 allows for a meaningful rate-reliability-complexity
tradeoff that holds, almost surely in the random choice of the DMT optimal
full-rate lattice design, and which holds irrespective of the decoding ordering
policy. This tradeoff is defined in the following
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Theorem 9. With probability one in the random choice of a full-rate lattice
design, the achievable diversity performance dD(r) for ML-based SD with a
run-time constraint ρcD(r) flops, is uniquely described by

dD(r) = min{d(r), dD(r, x)} ∀ cD(r) ≥ 0, (3.56)

where d(r) is the optimal diversity gain (of uninterrupted brute force ML,
for the given code), where dD(r, x), limǫ→0+ dD(r, cD(r) + ǫ), and where

dD(r, cD(r) + ǫ), inf I(µ)

s.t. T

nT∑

j=1

(
r

nT
− (1− µj)

)+

≥ cD(r) + ǫ,

1 ≥ µ1 ≥ · · · ≥ µnT ≥ 0,

and where the above holds irrespective of the fixed or dynamically changing
decoding order.

The proof follows directly from the footsteps of the proof of Theorem 7
and the lower bound proof for Theorem 6.

Appendix 3A : Proof of Theorem 4

For DMT optimal performance we have that

c̃quasi(r) = max
µ

T

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

s.t.
nT∑

j=1

(1− µj)
+ ≥ r,

µ1 ≥ · · · ≥ µnT ≥ 0.

For any r ∈ [k, k + 1), solution to
∑nT

j=1 µj ≤ nT − r results in a µ∗ given
by

µ∗1 = · · · = µ∗nT−k−1 = 1,

µ∗nT−k = k + 1− r,

µ∗nT−k+1 = · · · = µ∗m = 0.

A sample optimization problem solution for 0 ≤ r ≤ 1 and nT = 2 is shown
in Fig. 3.9. Substituting the above solution back into the objective function
of the maximization problem of (3.48) proves Theorem 4. �
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Appendix 3B : Proof of Corollary 5b

For n× n i.i.d. Rayleigh MIMO channel with V-BLAST, the complexity
exponent for ML-based SD with fixed decoding order takes the form

cv(r) = max
µ

T
n∑

j=1

min
( r

n
− (1− µj),

r

n

)+

s.t.
n∑

j=1

(2j − 1)µj ≤ n− r,

µ1 ≥ · · · ≥ µn ≥ 0.

For any r, solution to
∑n

j=1(2j − 1)µj ≤ n− r results in a µ∗ given by

µ∗1 = · · · = µ∗p = 1,

µ∗p+1 =
n− r − p2

2p+ 1
,

µ∗p+2 = · · · = µ∗n = 0,

where p,
⌊√

n− r
⌋
. Substituting the above solution back into the objective

function of the maximization problem of (3.48) proves Corollary 5b. �
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Appendix 3C : Proof of Proposition 2

Let us consider a nT ×1 quasi-static MISO channel hT = [h1 h2 · · · hnT ]
with a DMT optimal code θXmiso, where θ2 = ρ1−r and where

Xmiso =








ℓ0 0 · · · 0
0 σ(ℓ0) · · · 0
...

...
. . .

...
0 0 · · · σnT−1(ℓ0)







, (3.58)

where ℓ0 ∈ AQAM (β1, · · · , βnT ) (see below (3.59)) and where σ is the gene-
rator of the cyclic Galois group Gal(L/F) with L being a degree-nT cyclic
Galois extension field of F = Q(i), where Q(i) = {a + ib|a, b,∈ Q}. Q is
the set of all rational numbers. Let OF and OL denote the ring of algebraic
integers in F and L, respectively. Let {β1, · · · , βnT } be an integral basis for
OL/OF and for M even, let AQAM denote the M2−QAM constellation given
by AQAM = {a+ ib||a|, |b| ≤M − 1, a, b, odd} and

AQAM (β1, · · · , βnT ) =

{
∑

i

aiβi|ai ∈ AQAM

}

. (3.59)

The received signal vector yT = [y1 y2 · · · ynT ] for nT ×1 quasi-static MISO
channel with the space-time code θXmiso is given by

yT = θhTXmiso +w
T ,

where w is the noise vector. The equivalent system model for this MISO
system takes the form

y =θ








h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hnT














ℓ0
σ(ℓ0)
· · ·

σnT−1(ℓ0)






+w,

=θHmisoGmisos+w,

where the code generator matrix Gmiso ∈ CnT×nT is such that Gmisos =
[ℓ0σ(ℓ0) · · ·σnT−1(ℓ0)]T and where

Hmiso =








h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hnT







.

For i.i.d. Rayleigh fading channel we define µj ,− log σj(H
H
misoHmiso)
log ρ , j =

1, · · · , nT . Following the footsteps of the complexity analysis presented in
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Section 3.2.2 the upper bound complexity exponent takes the form

cmiso(r) = max
µ

nT∑

j=1

min (r − (1− µj), r)
+ (3.60a)

s.t.
nT∑

j=1

µj ≤ nT (1− r), (3.60b)

µ1 ≥ · · · ≥ µnT ≥ 0. (3.60c)

The solution to this optimization problem is given by

cmiso(r) =
[
r(nT − ⌊nT r⌋ − 1) + (⌊nT r⌋ − r(nT − 1))+

]
, (3.61)

which is a piece-wise linear function that, for r = 0, 1
nT

, · · · , 1, takes the form

cmiso(r) = nT r(1− r).

This proves Proposition 2. �

Appendix 3D : Proof of Theorem 6

The general nT × nR point-to-point quasi-static MIMO channel is given
by

YC =
√
ρHCXC +WC , (3.62)

where XC ∈ CnT×T , YC ∈ CnR×T and WC ∈ CnR×T represent the trans-
mitted, received and noise signals over a period of T time slots, where the
fading matrix HC ∈ CnR×nT is assumed to be random, with i.i.d. Rayleigh
fading statistics. After vectorization the real values representation of (3.62)
takes the form

y =
√
ρHx+w, (3.63)

where

H = IT ⊗HR ∈ R2nRT×2nTT ,HR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]

,

x = (xT1 , · · · ,xTT )T ∈ R2nTT with xt = [Re{Xt,C}T, Im{Xt,C}T]T,

w = (wT
1 , · · · ,wT

T )
T ∈ R2nRT with wt = [Re{Wt,C}T, Im{Wt,C}T]T,

y = (yT1 , · · · ,yTT )T ∈ R2nRT with yt = [Re{Yt,C}T, Im{Yt,C}T]T,
for t = 1, · · · , T , where Xt,C , Yt,C and Wt,C are t-th column of XC , WC

and YC respectively.
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For the lattice codes described in the previous chapter, the codewords
take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ

rT
κ R, (3.64)

where R ⊂ Rκ is a natural bijection of the shaping region R
′
that preserves

the code, and contains the all zero vector 0 and for full-rate code κ = 2nTT .
For simplicity we consider R,[−1, 1]κ to be a hypercube in Rκ, although this
could be relaxed. Combining (3.63) and (3.64) yields the equivalent system
model

y =Ms+w, (3.65a)

where M,ρ
1
2
− r

2nT HG ∈ Rn×κ. (3.65b)

Let QR =M be the thin QR factorization of the modified code-channel
matrix M and r,QHy, then the equivalent system model in (3.65a) is
represented by

r = Rs+QHw,

and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

‖r−Rŝ‖2 , (3.66)

which is then solved by the sphere decoder which recursively enumerates all
candidate vectors ŝ ∈ Sκr within a given sphere of radius ξ > 0.

We define µj ,− log σi(H
H
CHC)

log ρ , j = 1, · · · , nT , where µ1 ≥ · · · ≥ µnT . For
full-rate code it follows that

σi(M) ≤ ρ
1
2
− r

2nT σmax(G)σi(H),

.
= ρ

− r
2nT

+ 1
2
(1−µl2T (i)), i = 1, · · · , 2nTT, (3.67)

where the asymptotic equality is due to the fact that σmax(G)
.
= ρ0 and

where l2T (i),
⌈

i
2T

⌉
.

The upper bound c̃(r) holds irrespective of the fixed or dynamically chan-
ging decoding order. For quasi-static MIMO the upper bound in (3.24) takes
the form

c̃(r) = T

nT∑

j=1

min

(
r

nT
− (1− µ∗j )

)+

, (3.68)

where µ∗ = (µ∗1, · · · , µ∗nT
) is one of the maximizing vectors such that I(µ∗) =

d(r).
In order to establish a lower bound that matches the upper bound in

(3.68) irrespective of the decoding ordering policy, we define the following
lemma.
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Lemma 1. Let Gp be the matrix consisting of any 2pT columns of the (fixed
but) randomly chosen generator matrix G where entries of G are indepen-
dently chosen from a continuous distribution over the real numbers. Let Vp

be the matrix consisting of the 2p columns of the unitary matrix V cor-
responding to the 2p largest singular values of HR, where V is such that
HR = UΣVH , where

Σ, diag{σ1(HR), · · · , σ2nT (HR)}

and VVH = I. Then almost surely, in the choice of G we have that

rank((IT ⊗VH
p )Gp) = 2pT. (3.69)

It then follows that for any fixed or dynamically changing column permutation
matrix Π, and for G|p denoting the first 2pT columns of the matrix GΠ, it
holds that

P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

) .
= ρ0, u > 0. (3.70)

Proof. For vHi , i = 1, · · · , 2pT denoting the 2pT linearly independent rows
of the matrix IT ⊗VH

p with rank 2pT and for gi, i = 1, · · · , κ denoting the
κ linearly independent columns of the full rank matrix G, then

(IT ⊗VH
p )G =



vH1 g1 . . . vH1 gκ

...
. . .

...
vH2pTg1 . . . vH2pTgκ


 .

Since vHi , i = 1, · · · , 2pT are fixed and linearly independent, any 2pT co-
lumns of (IT⊗VH

p )G are linearly independent (rank((IT⊗VH
p )Gp) = 2pT ),

with probability one. This in turn implies that, given such linear lattice codes
that are drawn with probability one, there exists a unitary matrix Vp such
that irrespective of the fixed or dynamically changing column permutation
matrix Π, it is the case that

rank
(
(IT ⊗ (Vp)

H)G|p
)
= 2pT.

Consequently, it follows that

σ1
(
(IT ⊗ (Vp)

H)G|p
)
> 0.

Now, by the continuity of singular values [53], it follows for sufficiently small
u > 0 that

P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

)
> 0,
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which implies 3 that

P
(
{σ1

(
(IT ⊗VH

p )G|p
)
≥ u}

) .
= ρ0

as (IT ⊗ (Vp)
H)G|p is independent of ρ. This proves Lemma 1.

To tighten the lower bound and show that c(r) = c̃(r), we will use
Lemma 1 to show that, irrespective of the ordering policy, the sphere de-
coder visits a total number of nodes that approaches ρc̃(r), and does so with
probability that is large compared to the ML error probability. We consider
the codes that satisfy (3.69) and which appear almost surely as shown in
Lemma 1.

Towards this we let q ∈ [1, κ] be the largest integer for which r
nT
− (1−

µ∗q) > 0, in which case (3.68) takes the form

c̃(r) = T

q∑

j=1

(
r

nT
− (1− µ∗j )

)
. (3.71)

We quickly note that without loss of generality we can assume that q ≥ 1
as otherwise c(r) = c(r) = 0. Consequently it is the case that µ∗j > 0 for
j = 1, · · · , q.

We proceed to define four events Ω4, Ω5, Ω6 and Ω7 which we will prove
to be jointly sufficient so that that at layer k = 2qT , for some q ∈ [1, nT ]
the total number of nodes visited by sphere decoder is close to ρc̃(r). These
events are given by

Ω4,{µ∗j − 2δ < µj < µ∗j − δ, j = 1, · · · , q
0 < µj < δ, j = q + 1, · · · , nT },

(3.72)

for a given small δ > 0,

Ω5,{σ1
(
(IT ⊗VH

p )G|p
)
≥ u}, (3.73)

for some given u > 0 independent of ρ, where for p,nT − q,

Ω6,
{
‖w‖2 < ξ2

}
, (3.74)

Ω7,

{
‖s‖ < 1

2
ρ

rT
κ

}
. (3.75)

Note also that by choosing δ sufficiently small, and using the fact that µ∗j > 0
for j = 1, · · · , q, we may without loss of generality assume that Ω4 implies
that µj > 0 for all j = 1, · · · , nT .

3. In light of the fact that event Vp has zero measure, what the continuity of eigenvalues
guarantees is that we can construct a neighborhood of matrices around Vp which are full
rank, and which have a non zero measure. We also note that the matrices Vp can be created
recursively, starting from a single matrix V2nT

.
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Similar to Section 3.2.2 it can be shown that in the presence of events
Ω4, Ω6 and Ω7 we can remove the boundary constraints of ML-based SD in
(3.4), which allows us to lower bound on the number of nodes visited at layer
k as (cf. [7, Lemma 1])

Nk ≥
k∏

i=1

[
2ξ√

kσi(Rk)
−
√
k

]+
. (3.76)

In the following, and up until (3.83), we will work towards upper boun-
ding σi(Rk) so that we can then lower bound Nk. Towards this let

M|p, ρ
1
2
− r

2nT HG|p ∈ R2nRT×2pT

contain the first 2pT columns of M, and note that

(M|p)
HM|p = ρ

1− r
nT GH

|pH
HHG|p,

and by substituting for H we get

(M|p)
HM|p = ρ

1− r
nT GH

|p (IT ⊗HH
RHR)G|p. (3.77)

Since

HH
RHR = V(diag{σ1(HH

RHR), · · · , σ2nT (H
H
RHR)})VH ,

= V(diag{σ1(HH
RHR), · · · , σ2nT (H

H
RHR)}

− σ(2q+1)(H
H
RHR)V(diag{0, · · · , 0︸ ︷︷ ︸

2q

, 1, · · · , 1︸ ︷︷ ︸
2p

})VH

+ σ(2q+1)(H
H
RHR)V(diag{0, · · · , 0︸ ︷︷ ︸

2q

, 1, · · · , 1︸ ︷︷ ︸
2p

})VH ,

hence we have that

HH
RHR � σ(2q+1)(H

H
RHR)V(diag{0, · · · , 0︸ ︷︷ ︸

2q

, 1, · · · , 1︸ ︷︷ ︸
2p

})VH ,

= σ(2q+1)(H
H
RHR)VpV

H
p , (3.78)

where A � B denotes that A−B is positive-semidefinite. Since σi(H
HH) ∈

R and since the Kronecker product induces singular value multiplicity, from
(3.78) it follows that

(M|p)
HM|p � ρ

1− r
nT σ(2q+1)(HRH

H
R )G

H
|p (IT ⊗VpV

H
p )G|p.

With respect to the smallest singular value of (M|p)
HM|p we have

σ1((M|p)
HM|p) ≥ ρ

1− r
nT σ(2q+1)(HRH

H
R )σ1

(
GH
|p (IT ⊗VpV

H
p )G|p

)
,
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and consequently, given that HR ∈ Ω5, we have that

σ1(M|p) ≥ uρ
1
2
− r

2nT σl2(2q+1)(HC),

.
= ρ

1
2
− r

2nT
−µq+1

2 ,

≥ ρ
1
2
− r

2nT
− δ

2 . (3.79)

Furthermore (3.72) and (3.67) give that for i = 1, · · · , 2qT then

σi(M)
.
≤ ρ

− rT
κ
+δ+ 1

2
(1−µ∗

l2T (i)
)
. (3.80)

Given that µ∗j > 0 for j = 1, · · · , q, then for sufficiently small δ and for
i = 1, · · · , 2qT , we have that

−rT

κ
+
1

2
(1− δ)+ ≥ −rT

κ
+ δ +

1

2
(1− µ∗l2T (i))

+,

which means that for sufficiently small δ, a comparison of (3.79) and (3.80)
yields

σi(M) < σ1(M|p), for i = 1, · · · , 2qT.
The above inequality allows us to apply Lemma 3 in [7], which in turn gives
that

σi(Rk) ≤
[
σκ(M)

σ1(M|p)
+ 1

]
σi(M), for i = 1, · · · , 2qT. (3.81)

Furthermore (3.26), (3.81) and (3.67) give that

σi(M)
.
≤ρ−

r
2nT

+δ+ 1
2
(1−µ∗

l2T (i)
) for i = 1, · · · , 2qT, (3.82a)

σκ(M)
.
≤ρ−

r
2nT

+ 1
2
(1−µ∗

l2T (2nT T )
) ≤ ρ

1
2
− rT

κ , (3.82b)

σ1(M|p)
.
≥ρ−

r
2nT

+ 1
2
(1−µ∗

l2T (2qT+1)
) ≥ ρ−

rT
κ
+ 1

2
(1−δ). (3.82c)

Substituting (3.82) in (3.81) gives that

σi(Rk)
.
≤ ρ

− r
2nT

+ 3
2
δ+ 1

2
(1−µ∗

l2T (i)
)
, i = 1, · · · , q. (3.83)

Consequently, going back to (3.76), we have that

[
2ξ√

kσi(Rk)
−
√
k

]+ .
≥ ρ

(

r
2nT

− 3
2
δ− 1

2
(1−µ∗

l2T (i)
)
)

. (3.84)

As a result, for k = 2qT with q ∈ [1, nT − 1] we have that

N2qT

.
≥ ρ

(

∑2qT
i=1

(

r
2nT

− 1
2
(1−µ∗

l2T (i)
)
)

−3qTδ
)

= ρ(c̃(r)−3qTδ),
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where the last equality follows from (3.71).
For the case of q = nT , it can be shown that

N2qT

.
≥ ρ

T
∑nT

j=1

(

r
nT
−2δ−(1−µ∗j )

)

= ρ(c̃(r)−2nTTδ).

Consequently for q ∈ [1, nT ] we have that NSD

.
≥ ρc̃(r)−Kδ for small δ >

0, where K ∈ {3qT, 2nTT}. We note that (3.72)-(3.75) jointly imply that
NSD

.
≥ ρc̃(r)−Kδ. For some δ′ , Kδ + δ1, where δ > δ1 > 0, it follows that

P
(
NSD ≥ ρc̃(r)−δ

′
)
≥ P (Ω4 ∩ Ω5 ∩ Ω6 ∩ Ω7)

.
= P(Ω4) , (3.85)

where exponential equality follows from the independence of the events Ω4,
Ω5, Ω6 and Ω7 for i.i.d. Rayleigh fading statistics (cf. [55]) and from the fact
that P (Ω5)

.
= ρ0 (cf. (3.70)), P (Ω6)

.
= ρ0 (cf.(3.5)) and P (Ω7)

.
= ρ0.With

Ω4 being an open set, we have that

− lim
ρ→∞

P (Ω4)

log ρ
≤ inf

µ∈Ω4

I(µ) = I(µ̃) < I(µ∗) = d(r), (3.86)

where µ̃ = {µ∗1 − 2δ · · · , µ∗q − 2δ, 0, · · · , 0}, where the last inequality follows
from the monotonicity of the rate function I(µ) and where last equality
follows from the fact that, by definition, I(µ∗) = d(r). Consequently (3.85)
and (3.86) along with the definition of the lower bound in (3.12b) imply that
c(r) = c̃(r), for arbitrarily small δ > 0. This proves Theorem 6. �

Appendix 3E : Proof of Theorem 7

For a ML-based SD with run-time constraint ρcD(r) flops, (3.10) and
(3.11) tell us that for some xD > cD(r), it is then the case that

Pe

.
≤max{P (̂sML 6= s) ,P (NSD ≥ ρxD)}.

Combining this with the trivial lower bound

max{P (̂sML 6= s) ,P (NSD ≥ ρxD)} ≤ Pe,

gives that

Pe
.
= max{P (̂sML 6= s) ,P (NSD ≥ ρxD)}. (3.87)

If we can derive the precise optimum SNR exponent for P (NSD ≥ ρxD) then
we have the DMT performance of SD implemented with run-time constraint
ρcD(r) flops. Let

dhb(r),− lim
ρ→∞

log P (NSD ≥ ρxD)

log ρ
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denotes the precise optimum SNR exponent for P (NSD ≥ ρxD), then in the
presence of complexity hardbound at ρxD flops, the achievable diversity gain
dD(r) is given by

dD(r) = min{d(r), dhb(r)}.
We recall that from (3.15) and (3.19)

dhb(r) ≥ inf
µ∈T(xD)

I(µ).

It then follows that

dhb(r) ≥ dD(r, xD), (3.88)

where dD(r, xD), limǫ→0+ dD(r, cD(r) + ǫ) and where

dD(r, cD(r) + ǫ), inf I(µ) (3.89a)

s.t.
κ∑

j=1

(
rT

κ
− 1

2
(1− µi)

)+

≥ cD(r) + ǫ,

1 ≥ µ1 ≥ · · · ≥ µκ ≥ 0.

Let µ̃∗ be one of the maximizing vectors of the optimization problem in
(3.89). It then follows that

dD(r, xD) = I(µ̃∗). (3.90)

In the following we derive a upper bound on dhb(r) and show that it
matches the lower bound dD(r, xD). Going back to (3.90) with 0 ≤ µ̃∗i ≤ 1,
we let q be the largest integer for which rT

κ − (1 − µ̃∗q) > 0, and similar to
Section 3.2.2 we define the set Ω1−hb as

Ω1−hb,{µ̃∗j − 2δ < µj < µ̃∗j − δ, j = 1, · · · , q
0 < µj < δ, j = q + 1, · · · , nT },

(3.91)

for a given small δ′ > 0. Then from (3.45) it follows that

P
(

NSD ≥ ρcD(r)+ǫ−δ′
) .
≥P (Ω1−hb) . (3.92)

Choosing ǫ > δ′ > 0, for xD > cD(r) gives that

P (NSD ≥ ρxD) ≥ P
(

NSD ≥ ρcD(r)+ǫ−δ′
)

,

and it follows that

P (NSD ≥ ρxD)
.
≥P (Ω1−hb) , (3.93)
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We now compute P (Ω1−hb) similar to P (Ω1) in (3.46), to get that

P (Ω1−hb)
.
≥ ρ−dD(r,xD).

Substituting this in (3.93) gives that

P (NSD ≥ ρxD)
.
≥ ρ−dD(r,xD).

Consequently, we have that dhb(r) ≤ dD(r, xD). This along with (3.88) gives
that dhb(r) = dD(r, xD). Thus, it follows that

dD(r) = min{d(r), dD(r, xD)}.

This proves Theorem 7. �



Chapter 4

Complexity of Lattice

Decoding

4.1 Introduction

The complexity analysis of the ML-based sphere decoding solutions pre-
sented in this work has revealed that, to achieve a vanishing gap to ML
solutions, these decoders generally require computational resources that, al-
beit significantly smaller than those required by an exhaustive ML decoder,
again grow exponentially in the rate and the dimensionality, and remain
prohibitive for several MIMO scenarios. As an indicative example of this
increased complexity we recall that such SD algorithms, when applied for
decoding a large family of high-performing codes including all known full-
rate DMT optimal codes, over the nT × nR ( nR ≥ nT) quasi-static MIMO
channel, introduce a complexity exponent 1 of the form

c(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
. (4.1)

The exponent, which simplifies to c(r) = T
nT

r(nT − r) for integer values of
r, reaches at r = nT/2 (for even values of nT) an overall maximum value of
nTT/4 which, for the aforementioned codes is equal to κ/8, corresponding to
complexity in the order of 2

1
8
κ log ρ = ρκ/8 =

√
|X|. At any fixed multiplexing

gain, these required computational resources can be seen to be in the order of

1. Although premature at this point, we hasten to note this complexity indeed holds
irrespective of the radius updating policy, irrespective of the decoding ordering, and as we
will see later on, holds even in the presence of MMSE preprocessing.

67
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2
RT (

nT−r

nT
) flops which reveals a complexity that is exponential in the number

of codeword bits, and a corresponding exponential slope of nT−r
nT

.

4.1.1 Transition to lattice decoding for reducing complexity

This high complexity required by ML-based decoding solutions, serves as
further motivation for exploring other families of decoding methods. A natu-
ral alternative is lattice decoding obtained by simply removing the constel-
lation boundaries of the ML-based search, an action that loosely speaking
exploits a certain symmetry which in turn may yield faster implementations
and takes the general form

x̂L = arg min
x̂∈Λr

‖y −√ρHx̂‖2 . (4.2)

Naturally when x̂L /∈ Xr, the decoder declares an error.
The use of lattice decoding, and specifically of preprocessed lattice de-

coding in MIMO communications has received substantial attention from
works like [3], [5] and [56], where the latter proved that lattice decoding in
the presence of MMSE preprocessing achieves the optimal DMT for specific
MIMO channels and statistics, and for DMT-optimal random codes. The use
of lattice decoding as an alternative to computationally expensive ML based
solutions, was recently further validated on the one hand by the aforemen-
tioned work in [7] which revealed the large computational disadvantages of
ML based solutions, and on the other hand by the work in [57] which fur-
ther confirmed the performance advantages of lattice decoding by showing
that regularized (MMSE-preprocessed) 2 lattice decoding achieves the opti-
mal DMT performance, for almost all MIMO scenarios and fading statistics,
and all non-random lattice codes, irrespective of the codes’ ML performance

It is the case though that even with lattice decoding, the computational
complexity can be prohibitive : finding the exact solution to the lattice deco-
ding problem is generally an non-deterministic polynomial-time (NP) hard
problem (cf. [38]). At the same time though, the other extreme of very early
terminations of lattice decoding, such as linear solutions, have been known
to achieve computational efficiency at the expense though of a very sizable,
and often unbounded, gap to the exact solution of the lattice decoding pro-
blem. In this work we explore lattice decoding solutions that, in conjunction
with terminating policies, strike the proper balance between this exponential
complexity and exponential gap.

The aforementioned extreme complexity of exact lattice decoding so-
lutions, in conjunction with the potentially unbounded error-performance

2. We will interchangeably use MMSE-preprocessed decoder and regularized decoder,
with the first term being more commonly used, and with the second implying a more
general family of decoders (cf. [57]). Even though in the asymptotic setting of interest,
the two accept the same results throughout the work, some extra error-performance gains
can be achieved by proper optimization of the regularized decoder (cf. [58]).
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degradation (gap) of very early terminations (as opposed to exact imple-
mentations) of lattice decoding, bring to the fore the need for approximate
lattice decoding solutions that better balance the very sizable complexity
and gap. Specifically for any simplified variant Dr of the baseline (exact)
MMSE-preprocessed lattice decoder, this gap can, in the high SNR regime,
be quantified as

gL(c), lim
ρ→∞

Pe

P (x̂L 6= x)
(4.3)

where P (x̂L 6= x) describes the probability of error of the exact MMSE-
preprocessed lattice decoder, where Pe denotes the probability of error of Dr,
and where c (i.e., c(r)) is the complexity exponent that describes the (asymp-
totic rate of increase of the) computational resources required to achieve this
performance gap. The clear task has remained for some time to construct de-
coders that optimally traverse this tradeoff between g and c, i.e., that reduce
the performance gap to the exact lattice decoding solution, with reasonable
computational complexity. Equivalently for Nmax(g) denoting the computa-
tional resources in flops required to achieve a certain gap g to the baseline
exact MMSE-preprocessed lattice decoder, the above task can be described,
in the high SNR regime, as trying to minimize

lim
ρ→∞

logNmax(g)

log ρ
.

This will be achieved later on.
In Section 4.2 we first show that the computational complexity required

by the MMSE-preprocessed (unconstrained) lattice sphere decoder, asymp-
totically matches the complexity of the (constrained) ML-based (MMSE-
preprocessed or not) sphere decoders, and is commonly exponential in the
dimensionality and the number of codeword bits. This is established for a
large class of codes of arbitrary error-performance, a large class of fading
statistics, and specifically for the quasi-static MIMO channel – for example
the complexity required for DMT optimal lattice sphere decoding, in the
presence of a large family of DMT optimal codes, takes the previously seen
simple piecewise linear form in (4.1). We also provide a universal upper bound
on the complexity of regularized lattice sphere decoding, which holds irres-
pective of the lattice code applied and irrespective of the fading statistics.
This upper bound again takes the form in (4.1), matching that in the case
of constrained ML-based sphere decoding, thus revealing the surprising fact
that there exists no statistical channel behavior that will allow the removal
of the bounding region to cause unbounded increases in the complexity of
the decoder 3.

3. In other words, this complexity bound holds even if the channel statistics are such
that the channel realizations cause the decoder to always have to solve the hardest possible
lattice search problem.
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With provable evidence of the very high complexity of regularized lattice
decoding, in Section 4.3 we turn to the powerful tool of lattice reduction (LR)
and seek to understand its effects on computational complexity. While there
has existed a general agreement in the community that lattice reduction
does reduce complexity, cf. [4], this has not yet been supported analytically
in any relevant communication settings. In fact, and quite opposite to com-
mon wisdom, it was recently shown that for a fixed radius sphere decoding
implementation of the naive lattice decoder [59], LR does not improve the
sphere decoder complexity tail exponent.

What this work shows is that lattice reduction reduces an ML-like expo-
nentially increasing complexity, to very manageable subexponential values.
We specifically proceed to prove that the LR-aided regularized lattice deco-
der, implemented by a fixed-radius sphere decoder and timeout policies that
occasionally abort decoding and declare an error, achieves

gL(ǫ) = 1, lim
ρ→∞

logNmax(g)

log ρ
= 0 ∀ǫ > 0, g ≥ 1,

i.e., achieves a vanishing gap to the exact implementation of regularized
lattice decoding and does so with a complexity exponent that vanishes to
zero, which in turn implies subexponential complexity in the sense that the
complexity scales slower than any conceivable exponential function. It is
noted that this vanishing gap approach serves the practical purpose of an
analytical refinement over basic diversity analysis which generally fails to
address potentially massive gaps between theory and practice.

4.2 Regularized Lattice Sphere Decoding

We proceed to describe the preprocessed lattice decoder, its sphere deco-
ding implementation, and for a practical setting of interest that includes the
quasi-static MIMO channel and common codes, to establish the decoder’s
computational complexity.

4.2.1 Lattice sphere decoding

We again start with the general m × n point-to-point multiple-input
multiple-output model given by

y =
√
ρHx+w (4.4)

For the class of lattice codes considered here, the codewords take the form

x = ρ
−rT
κ Gs, s ∈ Sκr ,Zκ ∩ ρ

rT
κ R, (4.5)
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where R ⊂ Rκ is a natural bijection of the shaping region R
′
that preserves

the code, and where R contains the all zero vector 0. Combining (4.4) and
(4.5) yields the equivalent model

y =Mrs+w (4.6)

where

Mr = ρ
1
2
− rT

κ HG ∈ Rn×κ (4.7)

is a function of the multiplexing gain 4 r.
Consequently the corresponding naive lattice decoder in (4.2) takes the

form (see for example [57], also [4])

ŝL = arg min
ŝ∈Zκ

‖y −Mŝ‖2 . (4.8)

As a result though of neglecting the boundary region, the above decoder
declares additional errors if ŝL /∈ Sκr , resulting in possible performance costs.
These costs motivated the use of MMSE preprocessing which essentially
regularizes the decision metric to penalize vectors outside the boundary
constraint Sκr (cf. [57]). A pictorial representation of the MMSE-preprocessed
lattice is shown in Fig. 4.1.

(a) Transmitted lattice (b) Received lattice (c) Regularized lattice

Figure 4.1 – 2-dimensional lattice for regularized lattice decoder

Specifically the MMSE-preprocessed lattice decoder is obtained by imple-
menting an unconstrained search over the MMSE-preprocessed lattice, and
takes the form

ŝr−ld = arg min
ŝ∈Zκ

‖Fy −Rŝ‖2 , (4.9)

where F and R are respectively the MMSE forward and feedback filters such
that F = R−HMH , where

RHR =MHM+ α2
rI, (4.10)

4. For simplicity of notation we will, in most cases, denote Mr with M.
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where αr = ρ
−rT
κ and where R is an upper-triangular matrix. For r,Fy,

the model transitions from (4.6) to

r = R−HMHMs+R−HMHw

= R−H(RHR− α2
rI)s+R

−HMHw

= Rs− αr
2R−Hs+R−HMHw

= Rs+w′ (4.11)

where

w
′
= −α2

rR
−Hs+R−HMHw (4.12)

is the equivalent noise that includes self-interference (first summand) and
colored Gaussian noise. Consequently the corresponding regularized lattice
decoder takes the form

ŝr−ld = arg min
ŝ∈Zκ

‖r−Rŝ‖2 , (4.13)

which is then solved by the sphere decoder which recursively enumerates all
lattice vectors ŝ ∈ Zκ within a given sphere of radius ξ > 0.

We recall that there is a one-to-one correspondence between the nodes at
layer k and the partial vectors ŝk. We say that a node is visited by the sphere
decoder if and only if the corresponding partial vector ŝk satisfies (2.12), i.e.,
there is a bijection between the visited nodes at layer k and the set

Nk ,{ŝk ∈ Zk | ‖rk −Rkŝk‖2 ≤ ξ2}. (4.14)

Consequently the total number of visited nodes (in all layers of the tree) is
given by

NSD =
κ∑

k=1

Nk, (4.15)

where Nk , |Nk| is the number of visited nodes at layer k of the search tree.
Again, the total number of visited nodes is taken as a measure of the sphere
decoder complexity.

In choosing this radius, we note that for the transmitted symbol vector
s, the metric in (4.21) satisfies

‖r−Rs‖2 = ‖w′‖2,
which means that if ‖w′‖ > ξ, then the transmitted symbol vector is excluded
from the search, resulting in a decoding error. As Lemma 3 will later argue
taking into consideration the self-interference and non-Gaussianity of w

′
, we

can set ξ =
√
z log ρ, for some z > dL(r) such that

P
(
‖w′‖2 > ξ2

)
<̇ ρ−dL(r),

which implies a vanishing probability of excluding the transmitted informa-
tion vector from the search, and a vanishing degradation of performance.
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4.2.2 Complexity of regularized lattice decoding

Regarding complexity, we note that the MMSE-preprocessed lattice sphere
decoder differs from its ML-based equivalent in two aspects : the presence of
MMSE preprocessing and the absence of a bounding region to constrain the
search. These two aspects are generally perceived to have an opposite effect
on the complexity. On the one hand, MMSE preprocessing, which we recall
from (4.14) to introduce unpruned sets

Nk ,{ŝk ∈ Zk | ‖rk −Rkŝk‖2 ≤ ξ2}, k = 1, · · · , κ,

is associated to reduced complexity in lattice-based SD solutions (cf. [59])
due to the resulting penalization of faraway lattice points (cf. [57]). On the
other hand, the absence of boundary constraints can be associated to increa-
sed complexity as it introduces an unbounded number of candidate vectors.
We proceed to show that in terms of the complexity exponent, under com-
mon MIMO scenarios and codes, these two aspects exactly cancel each other
out, and that consequently MMSE-preprocessed lattice sphere decoding in-
troduces a complexity exponent that matches that of ML-based sphere de-
coding, which it self is shown here to also match the complexity exponent of
ML-based SD in the presence of MMSE preprocessing 5.

In light of this, in this section only, we mainly focus on the widely consi-
dered nT × nR (nR ≥ nT ) i.i.d. and quasi-static MIMO setting and on the
large but specific family of full-rate (κ = 2min{nT, nR}T = 2nTT ) threaded
codes (cf. [12–15]), which includes all known DMT optimal codes as well as
uncoded transmission (V-BLAST).

We proceed with the main result of the section, which applies to the case
of the nT × nR (nR ≥ nT ) quasi-static MIMO channel with i.i.d. Rayleigh
fading statistics, and which applies under the natural detection ordering
(cf. [5, 7]).

Theorem 10. Under natural decoding ordering, the complexity exponent of
regularized lattice sphere decoding any full-rate threaded code, is equal to the
complexity exponent of ML-based SD with or without MMSE preprocessing.

The proof for this theorem is given in Appendix 4A. We clarify that even
though all three decoders are DMT optimal, the above result incorporates
more than just DMT optimal decoding, in the sense that any timeout po-
licy will tradeoff d(r) with c(r) identically for ML-based and lattice-based
sphere decoding. In other words the three decoders share the same d(r) and
c(r) capabilities, irrespective of the timeout policy. Furthermore, considering
different SD detection orderings (cf. [5]), the following extends the range of

5. We clarify that ML-based SD in the presence of MMSE preprocessing, corresponds
to unpruned sets Nk ∩ Sk

r where Sk
r is the k-dimensional set resulting from the natural

reduction of Sκ
r from (4.5).
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codes for which the ML-based and lattice-based SD share a similar com-
plexity.

Corollary 10a. Given any full-rate code of arbitrary DMT performance,
there is always at least one non-random fixed permutation of the columns
of G, for which the complexity exponent of the MMSE-preprocessed lattice
sphere decoder matches that of the ML based sphere decoder.

The proof follows from the proof of Theorem 10 and from Theorem 4
in [7].

Corollary 10b. Irrespective of the fixed or dynamically changing decoding
order, the complexity exponent for MMSE preprocessed lattice sphere decoding
any (fixed but) randomly and uniformly chosen code (from an ensemble of
DMT optimal full-rate lattice designs) over the quasi-static MIMO channel
with i.i.d. Rayleigh fading statistics almost surely, in the choice of DMT
optimal lattice design, matches the complexity exponent of ML-based SD with
or without MMSE preprocessing.

The proof follows from the proof of Theorem 10 and from Lemma 1.
This corollary establishes the fact that ML and (MMSE-preprocessed) lattice
decoding share the same complexity exponent for a very broad setting, which
includes almost any code (randomly and uniformly drawn from an ensemble
of lattice designs) and all decoding order policies. The following focuses on
a specific example of practical interest.

Corollary 10c. The complexity exponent for DMT optimal MMSE prepro-
cessed lattice sphere decoding of minimum delay (T = nT ) DMT optimal
threaded codes over the quasi-static MIMO channel with i.i.d. Rayleigh fa-
ding statistics, takes the following form

cr−ld(r) = r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+. (4.16)

The proof follows directly from Theorem 10 and Corollary 5a.
Further evidence that connects the complexity behavior of MMSE prepro-

cessed (unconstrained) lattice-based SD, with that of its ML-based (constrai-
ned) counterpart, now comes in the form of a non-trivial universal bound that
is shared by the two methods. This is particularly relevant because uncons-
trained lattice decoding could conceivably require unbounded computational
resources given the unbounded number of candidate lattice points. Specifi-
cally the following universal upper bound on the complexity, presented in
Corollary 4a for the ML case, is shown here to apply also to the lattice ba-
sed sphere decoders. The bound holds irrespective of the lattice code applied
and irrespective of the fading statistics. The generality with respect to the
fading statistics is important because it guarantees that no set of fading sta-
tistics, even those that always generate infinitely dense lattices, can cause
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an unbounded increase in the complexity due to removal of the boundary
constraints.

Corollary 10d. For any decoding ordering policy, and set of fading statistics
and any full-rate lattice design, the complexity exponents of regularized lattice
SD is upper bounded as

cr−ld(r) ≤ c(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
(4.17)

which simplifies to

c(r) =
T

nT
r(nT − r) (4.18)

for integer r.

The proof for this corollary is given in Appendix 4B.
Coming back to the main focus of the work, we recall that Theorem 10 re-

vealed that for common practical scenarios of interest, MMSE-preprocessed
lattice decoding introduces very high complexity that often matches the ex-
ponential complexity of ML based solutions. In the following, and after rever-
ting to the most general setting of MIMO scenarios, statistics and full-rate
lattice codes, we show how proper utilization of lattice sphere decoding and
LR techniques can indeed reduce the complexity exponent to zero, at an
error-performance cost that vanishes in the high SNR limit.

4.3 LR-aided Regularized Lattice Sphere Decoding

Lattice reduction techniques have been typically used in the MIMO set-
ting to improve the error performance of suboptimal decoders (cf. [60], [61],
see also [62], [63]). In the current setting the LR algorithm, which is em-
ployed at the receiver after the action of MMSE preprocessing, modifies the
search of the MMSE-preprocessed lattice decoder, from

ŝrld = arg min
ŝ∈Zκ

‖r−Rŝ‖2

(cf. (4.13)), to the new

s̃lr−rld = arg min
ŝ∈Zκ

‖r−RTŝ‖2 , (4.19)

by accepting as input the MMSE-preprocessed lattice generator matrix R,
and producing as output the matrix T ∈ Zκ×κ which is unimodular mea-
ning that it has integer coefficients and unit-norm determinant, and which
is designed so that RT is (loosely speaking) more orthogonal than R. As a
result of this unimodularity, we have that T−1Zκ = Zκ, and consequently
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(a) Received lattice (b) Regularized lattice (c) LR-Regularized lattice

Figure 4.2 – 2-dimensional lattice for LR-aided regularized lattice decoder

the new search in (4.19) corresponds to yet another lattice decoder, referred
to as the LR-aided MMSE-preprocessed lattice decoder, which operates over
a generally better conditioned channel matrix RT. A pictorial representation
of the LR-aided MMSE-preprocessed channel matrix is shown in Fig. 4.2.

Finally with sphere decoding in mind, the LR algorithm is followed by the
QR decomposition 6 of the new lattice-reduced MMSE-preprocessed matrix
RT, resulting in a new upper-triangular model

r̃ = R̃s̃+w′′ (4.20)

and the new LR-aided MMSE-preprocessed lattice search, which accepts the
application of the sphere decoder, and which takes the form

s̃lr−rld = arg min
ŝ∈Zκ

∥∥∥r̃− R̃ŝ
∥∥∥
2
, (4.21)

where Q̃R̃ = RT corresponds to the QR-decomposition of RT, where R̃ is
upper-triangular, where r̃, Q̃Hr, s̃ = T−1s, and where w′′ = Q̃Hw′.

At the very end,

ŝlr−rld = Ts̃lr−rld, (4.22)

allows for calculation of the estimate of the transmitted symbol vector s in
(4.6).

We note here that this (exact) solution of the LR-aided MMSE preproces-
sed lattice decoder defined by (4.21), (4.22), is identical to the exact solution

6. A more proper statement would be that the QR decomposition is performed by the
LR algorithm it self.
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of the MMSE-preprocessed lattice decoder given by (4.13), because

min
ŝ∈Zκ

‖r−Rŝ‖2 = min
ŝ∈Zκ

∥∥r−RTT−1ŝ
∥∥2

(a)
= min

ŝ∈Zκ

∥∥∥r− Q̃R̃T−1ŝ
∥∥∥
2

(b)
= min

ŝ∈Zκ

∥∥∥r̃− R̃T−1ŝ
∥∥∥
2

= min
ŝ∈T−1Zκ

∥∥∥r̃− R̃ŝ
∥∥∥
2

(c)
= min

ŝ∈Zκ

∥∥∥r̃− R̃ŝ
∥∥∥
2
, (4.23)

where (a) follows from the fact that Q̃R̃ = RT, (b) follows from the rota-
tional invariance of the Euclidean norm, and (c) follows from the fact that
T−1Zκ = Zκ.

While though the two lattice decoding solutions (with and without LR)
provide identical error performance in the setting of exact implementations,
we proceed to rigorously prove that, in terms of complexity, lattice reduction
techniques, and specifically a proper utilization of the LLL algorithm [64],
can provide dramatic improvements.

4.3.1 Complexity of LR-aided regularized lattice decoding

We are here interested in establishing the complexity of the LR-aided re-
gularized lattice sphere decoder. Given that the costs of implementing MMSE
preprocessing and of implementing the linear transformation in (4.22) are
negligible in the scale of interest 7, we limit our focus on establishing the
cost of lattice reduction, and then the cost of the SD implementation of the
search in (4.21). Starting with the SD complexity, as in (4.14), we identify
the corresponding unpruned set at layer k to be

Nk ,{ŝk ∈ Zk | ‖r̃k − R̃kŝk‖2 ≤ ξ2}, (4.24)

and in bounding the size of the above, we first focus on understanding the
statistical behavior of the k × k lower-right submatrices R̃k of matrix R̃
(k = 1, · · · , κ), where we recall that R̃ is the upper triangular code-channel
matrix, after MMSE preprocessing and LLL lattice reduction. Towards this,
and for dL(r − ǫ) denoting the diversity gain of the exact implementation
of the regularized lattice decoder at multiplexing gain r − ǫ, we have the
following lemma on the smallest singular value of R̃k.

7. Even though the work here focuses on decoding, we can also quickly state the obvious
fact that the cost of constructing the codewords is also negligible in the scale of interest
because it again only involves a finite-dimensional linear transformation (cf. (4.5)).
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Lemma 2. The smallest singular value σmin(R̃k) of submatrix R̃k, k =
1, · · · , κ, satisfies

P
(
σmin(R̃k)

.
< ρ

−ǫT
κ

) .
≤ ρ−dL(r−ǫ), for all r ≥ ǫ > 0. (4.25)

The proof for this lemma is given in Appendix 4C. To bound the cardina-
lity Nk of Nk (cf. (4.24)), and eventually the total number NSD =

∑κ
k=1Nk

of lattice points visited by the SD, we proceed along the lines of the work
in [7], making the proper modifications to account for MMSE preprocessing,
for the removal of the bounding region, and for lattice reduction.

Towards this we see that, after removing the boundary constraint, Lemma
1 in [7] tells us that

Nk , |Nk| ≤
k∏

i=1

[√
k +

2ξ

σi(R̃k)

]
,

where
σmin(R̃k) = σ1(R̃k) ≤ · · · ≤ σk(R̃k)

are the singular values of R̃k. Consequently we have that

Nk ≤
[√

k +
2ξ

σmin(R̃k)

]k
.

(4.26)

As a result, for any R̃k such that

σmin(R̃k)
.
≥ ρ

−ǫT
κ , (4.27)

and given that ξ =
√
z log ρ for some finite z, then

Nk

.
≤

(
√
k +

2
√
z log ρ

ρ
−ǫT
κ

)k
.
= ρ

ǫTk
κ , (4.28)

which guarantees that the total number of visited lattice points is upper
bounded as

NSD =
κ∑

k=1

Nk

.
≤

κ∑

k=1

ρ
ǫTk
κ

.
= ρǫT . (4.29)

Consequently, directly from Lemma 2, we have that

P
(
NSD ≥̇ ρǫT

)
≤̇ ρ−dL(r−ǫ). (4.30)

A similar approach deals with the complexity of the LLL algorithm, which is
known (cf. [65]) to be generally unbounded. The LLL-based lattice reduction



4.3 LR-aided Regularized Lattice Sphere Decoding 79

algorithm is applied here in the presence of specific time-out policies which
will limit the otherwise unbounded complexity of the LLL algorithm by ti-
ming out and declaring an error whenever the number of LLL flops exceeds
a certain threshold.

Specifically drawing from [57, Lemma 2], under the natural assumption
of power-limited channels 8 (cf. [57]), under the natural assumption that
dL(r − ǫ) > dL(r) for all ǫ > 0, and for NLR denoting the number of flops
spent by the LLL algorithm, one can readily conclude that

P (NLR ≥ γ log ρ) ≤̇ ρ−dL(r−ǫ), (4.31)

for any γ > 1
2(dL(r − ǫ)). Consequently the overall complexity

N
.
= NSD +NLR,

in flops, for the LR-aided MMSE preprocessed lattice sphere decoder, satisfies
the following

P
(
N≥̇ρǫT

) .
= P

(
{NSD≥̇ρǫT } ∪ {NLR≥̇ρǫT }

)
.
≤ ρ−dL(r−ǫ). (4.32)

Now going back to (3.12a), and having in mind appropriate timeout policies
that specifically guarantee a vanishing gap to the exact solution of regula-
rized lattice decoding, we can see that the complexity exponent clr−rld(r) is
upper bounded as

clr−rld(r) = inf{x | − lim
ρ→∞

log P (N ≥ ρx)

log ρ
> dL(r)}. (4.33)

Applying (4.32) we see that for any positive ǫ1 < ǫ, it is the case that

clr−rld(r) = inf{ǫ | − lim
ρ→∞

log P
(
N ≥ ρǫT+ǫ1

)

log ρ
> dL(r)} (4.34)

which vanishes arbitrarily close to zero, resulting in a zero complexity ex-
ponent, and in the aforementioned subexponential complexity. The following
theorem then holds.

Theorem 11. LR-aided MMSE-preprocessed lattice sphere decoding intro-
duces a zero complexity exponent.

8. This is a moderate assumption that asks that E
{

‖H‖2F
}

.

≤ ρ. We note that this
holds true for any telecommunications setting.
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4.3.2 Gap to the exact solution of regularized lattice deco-
ding

We here prove that the LR-aided regularized lattice sphere decoder and
the associated time-out policies that guarantee a vanishing complexity ex-
ponent, also guarantee a vanishing gap to the error performance of the exact
lattice decoding implementation. This result is motivated by potentially ex-
ponential gaps in the performance of other DMT optimal decoders (cf. [57]),
where these gaps may grow exponentially up to 2

κ
2 (cf. [66]) or may poten-

tially be unbounded [67].
Towards establishing this gap, we recall that the exact MMSE prepro-

cessed lattice decoder in (4.9) makes errors when ŝr−ld 6= s. On the other
hand the LLL-reduced MMSE-preprocessed lattice sphere decoder with run-
time constraints, in addition to making the same errors (ŝlr−rld 6= s), also
makes errors when the run-time limit of ρx flops becomes active, i.e., when
N ≥ ρx, as well as when a small search radius causes Nκ = ∅. Consequently
the corresponding performance gap to the exact regularized decoder, takes
the form

gL(x) = lim
ρ→∞

P ({ŝlr−rld 6= s} ∪ {N ≥ ρx} ∪ {Nκ = ∅})
P (̂sr−ld 6= s)

.

To bound the above gap, we apply the union bound and the fact that

P (Nκ = ∅) ≤ P
(
‖w′′‖ > ξ

)

to get that

gL(x) ≤ lim
ρ→∞

P (̂slr−rld 6= s)

P (̂sr−ld 6= s)
+ lim

ρ→∞
P (N ≥ ρx)

P (̂sr−ld 6= s)

+ lim
ρ→∞

P (‖w′′‖ > ξ)

P (̂sr−ld 6= s)
. (4.35)

Furthermore from (4.23) we observe that

P (̂slr−rld 6= s) = P (̂sr−ld 6= s) , (4.36)

and from (4.32) we recall that

P
(
N≥̇ρǫT

) .
≤ ρ−dL(r−ǫ)

which implies that for any x > 0 it holds that

lim
ρ→∞

P (N ≥ ρx)

P (̂sr−ld 6= s)
= 0. (4.37)

Finally the last term in (4.35) relates to the search radius ξ, and to the
behavior of the noise w

′′
which was shown in (4.12), (4.20) to take the form

w′′ = Q̃H
(
−α2

rR
−Hs+R−HMHw

)
. (4.38)
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The following lemma accounts for the fact that w
′′

includes self interfe-
rence and colored noise, to bound the last term in (4.35).

Lemma 3. There exist a finite z > dL(r) for which a search radius ξ =√
z log ρ guarantees that

lim
ρ→∞

P (‖w′′‖ > ξ)

P (̂sr−ld 6= s)
= 0. (4.39)

The proof for this lemma is given in Appendix 4D.
Consequently combining (4.36), (4.37) and (4.39) gives that gL(x) =

1, ∀x > 0. The following directly holds.

Theorem 12. LR-aided MMSE-preprocessed lattice sphere decoding with a
computational constraint activated at ρx flops, allows for a vanishing gap to
the exact solution of MMSE-preprocessed lattice decoding, for any x > 0.
Equivalently the same LR-aided decoder guarantees that

gL(ǫ) = 1 and lim
ρ→∞

logNmax(g)

log ρ
= 0 ∀ǫ > 0, g ≥ 1,

for all fading statistics, all MIMO scenarios, and all full-rate lattice codes.

Summary

The work identified the first lattice decoding solution that achieves, in
the most general outage-limited MIMO setting and the high rate and high
SNR limit, both a vanishing gap to the error-performance of the (DMT
optimal) exact solution of preprocessed lattice decoding, as well as a compu-
tational complexity that is subexponential in the number of codeword bits.
The proposed solution employs lattice reduction (LR)-aided regularized lat-
tice sphere decoding and proper timeout policies. As it turns out, lattice
reduction is a special ingredient that allows for complexity reductions ; a
role that was rigorously demonstrated here for the first time, by proving
that without lattice reduction, for most common codes, the complexity cost
for asymptotically optimal regularized lattice sphere decoding is exponential
in the number of codeword bits, and in many cases it in fact matches the
complexity cost of ML sphere decoding.

In light of the fact that, prior to this work, a vanishing error performance
gap was generally attributed only to near-full lattice searches that have ex-
ponential complexity, in conjunction with the fact that subexponential com-
plexity was generally attributed to early-terminated (linear) solutions which
have though a performance gap that can be up to exponential in dimen-
sion and/or rate, the work constitutes the first proof that subexponential
complexity need not come at the cost of exponential reductions in lattice
decoding error performance.
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Appendix 4A : Proof of Theorem 10

We begin by providing an upper bound on the complexity exponent
of MMSE-preprocessed (unconstrained) lattice sphere decoding, where this
bound holds for the general quasi-static MIMO channel, for all fading sta-
tistics and for any full-rate lattice code. We then proceed to provide a lower
bound on the complexity exponent of the same decoder, where this bound,
under the extra assumptions of i.i.d. Rayleigh fading statistics and of laye-
red codes, will in fact match the above mentioned upper bound to prove the
theorem and the associated corollaries. We recall from Section 2.1.1 that any
nT × nR (nR ≥ nT ) quasi-static point-to-point MIMO channel corresponds
to the general MIMO channel model. Specifically, from (3.63) for quasi-static
channel the real-valued model takes the form

y =
√
ρHx+w (4.40)

as in (4.4) with m = 2nTT , n = 2nRT , and where

H = IT ⊗HR. (4.41)

As before the vectorized codewords x, associated to the full-rate code, take
the form

x = ρ
−rT
κ Gs, s ∈ Zκ, (4.42)

where κ = 2nTT = m, which allows us to rewrite the model as

y =Ms+w, (4.43)

for

M = ρ
1
2
− rT

κ HG = ρ
1
2
− rT

κ (IT ⊗HR)G. (4.44)

Finally the corresponding coherent MMSE-preprocessed lattice decoder for
s can be expressed, as in (4.13), to be

ŝr−ld = arg min
ŝ∈Zκ

‖r−Rŝ‖2 , (4.45)

where r = QH
1 y and where R ∈ Rm×m and Q1 ∈ Rn×m are obtained by

considering the thin QR decomposition of an equivalent representation of
the MMSE-preprocessed lattice decoder (cf. [68])

Mreg ,

[
M
αrI

]
=

[
Q1

Q2

]
R = QR ∈ R(n+m)×m (4.46)

where Q1 = R−1M ∈ Rn×m, Q2 = αrR
−1 ∈ Rm×m, αr = ρ

−rT
κ and where

RHR =MHM+ α2
rI.
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Upper bound on complexity of regularized lattice SD

In establishing the upper bound, we consider Lemma 1 in [7], which we
properly modify to account for MMSE preprocessing and for the removal of
the constellation boundaries, and get that the number Nk of nodes visited at
layer k by the MMSE-preprocessed lattice sphere decoder, is upper bounded
as

Nk = |Nk| ≤
k∏

i=1

[√
2k +

2ξ

σi(Rk)

]
, (4.47)

where σi(Rk), i = 1, · · · , k denote the singular values of Rk in increasing
order.

Towards lower bounding σi(Rk), we note that

σi(Rk) ≥ σi(R) = σi(M
reg) =

√
α2
r + σi(MHM), (4.48)

where the first inequality makes use of the interlacing property of singular
values of sub-matrices [53]. Furthermore for

µj ,−
log σj(H

H
CHC)

log ρ
, j = 1, · · · , nT (4.49)

and µ1 ≥ · · · ≥ µnT , we see that σj(HC) = ρ−
1
2
µj , and from (4.44) that

σi(M) ≥ ρ
1
2
− rT

κ σmin(G)σ(i)(IT ⊗HR))

.
= ρ

1
2
− rT

κ σl2T (i)(HC)

= ρ
−rT
κ

+ 1
2
(1−µl2T (i)), (4.50)

where l2T (i),
⌈

i
2T

⌉
, and where the asymptotic equality is due to the fact

that σmin(G)
.
= ρ0. Substituting from (4.50) in (4.48) we now have that

σi(Rk)
.
≥ ρ

−rT
κ

+ 1
2
(1−µl2T (i))

+

, i = 1, · · · , κ. (4.51)

Corresponding to (4.47) we see that

[√
2k +

2ξ

σi(Rk)

]
.
≤ ρ(

rT
κ
− 1

2
(1−µl2T (i))

+)
+

,

for any i = 1, · · · , 2nTT , and from (4.47) we have that

Nk(µ)
.
≤ ρ

∑k
i=1 (

rT
κ
− 1

2
(1−µl2T (i))

+)
+

, (4.52)
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where µ = (µ1, · · · , µnT ). It follows that

NSD(µ) =
κ∑

k=1

Nk(µ)
.
≤

κ∑

k=1

ρ
∑k

i=1 (
rT
κ
− 1

2
(1−µl2T (i))

+)
+

.
= ρ

∑κ
i=1 (

rT
κ
− 1

2
(1−µl2T (i))

+)
+

.
= ρ

T
∑nT

j=1

(

r
nT
−(1−µj)

+
)+

, (4.53)

where the last asymptotic equality is due to the multiplicity of the singular
values.

Following the footsteps of the complexity analysis in Section 3.2.2 an
upper bound on the complexity exponent cr−ld(r) can be obtained as the
solution to a constrained maximization problem according to

cr−ld(r) ≤ cr−ld(r),max
µ

T

nT∑

j=1

(
r

nT
− (1− µj)

+

)+

(4.54a)

s.t. I(µ) ≤ dL(r), (4.54b)

µ1 ≥ · · · ≥ µnT ≥ 0. (4.54c)

Equivalently for µ∗ = (µ∗1, · · · , µ∗nT
) being one of the maximizing vec-

tors 9, i.e., such that µ∗ ∈ T(x) and I(µ∗) = dL(r), then cr−ld(r) takes the
form

cr−ld(r) = T

nT∑

j=1

(
r

nT
− (1− µ∗j )

+

)+

. (4.55)

As we will now show, the above bound is also shared by the ML-based
sphere decoder, with or without MMSE preprocessing, irrespective of the full-
rate code and the fading statistics. Directly from Corollary 5, and taking into
consideration that MMSE-preprocessed lattice decoding is DMT optimal for
any code [57], we recall that the equivalent upper bound for the ML-based
sphere decoder, without MMSE preprocessing, takes the form

cquasi(r),max
µ

T

nT∑

j=1

min

(
r

nT
− 1 + µj ,

r

nT

)+

(4.56a)

s.t. I(µ) ≤ dL(r), (4.56b)

µ1 ≥ · · · ≥ µnT ≥ 0. (4.56c)

Comparing (3.22) and (4.56) we are able to conclude that both the objective
functions (3.22a) and (4.56a) as well as both pairs of constraints are identical.

9. In general, (3.22) does not have a unique optimal point because (a)+ is constant in
a for a ≤ 0.
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To see this, we first note that for 0 ≤ µj ≤ 1, then

min

(
r

nT
− 1 + µj ,

r

nT

)+

=

(
r

nT
− 1 + µj

)+

,

(
r

nT
− (1− µj)

+

)+

=

(
r

nT
− 1 + µj

)+

,

and furthermore we note that for µj > 1, then

min

(
r

nT
− 1 + µj ,

r

nT

)+

=

(
r

nT
− (1− µj)

+

)+

=
r

nT
,

which proves that cquasi(r) and cr−ld(r) are identical.
In considering the case of MMSE-preprocessed ML SD, it is easy to see

that the summands in the objective function in (4.56a) will be modified

to take the form min
(

r
nT
− (1− µj)

+, r
nT

)+
which can be seen to match

(3.22a) for all µj ≥ 0, which in turn concludes the proof that the upper
bound cr−ld(r) for MMSE-preprocessed lattice SD is also shared by the ML-
based sphere decoder, with or without MMSE preprocessing, irrespective of
the full-rate code, and for all fade statistics represented by monotonic rate
functions.

Lower bound on complexity of regularized lattice SD

We will here, under the extra assumptions of i.i.d. Rayleigh fading statis-
tics and of layered codes with natural decoding order, provide a lower bound
that matches the upper bound in (4.55). The same bound and tightness will
also apply to any full-rate code, under the assumption of a fixed, worst case
decoding ordering.

The goal here is to show that at layer k = 2qT , for some q ∈ [1, nT],
the sphere decoder visits close to ρcr−ld(r) nodes with a probability that is
large compared to the probability of decoding error P (sL 6= s)

.
= ρ−dL(r),

which from the expression of the complexity exponent (3.12b), will prove
that cr−ld(r) = cr−ld(r).

Going back to (4.55), we let q be the largest integer for which

r

nT
− (1− µ∗q)

+ > 0, (4.57)

in which case (4.55) takes the form

cr−ld(r) = T

q∑

j=1

r

nT
− (1− µ∗j )

+. (4.58)

We recall from (4.49) that µj = − log σj(H
H
CHC)

log ρ , j = 1, · · · , nT , and that
µ∗ ∈ T(x) satisfies I(µ∗) = dL(r) and maximizes (4.54). We also note that
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without loss of generality we can assume that q ≥ 1 as otherwise cr−ld(r) =
0 (cf. (4.55)). Consequently it is the case that µ∗j > 0 for j = 1, · · · , q.
Furthermore given the monotonicity of the rate function I(µ), and the fact
that the objective function in (4.54a) does not increase in µj beyond µj = 1,
we may also assume without loss of generality that µ∗j ≤ 1 for j = 1, · · · , nT .

We proceed to define two events Ω1 and Ω2 which we will prove to be
jointly sufficient so that, at layer k = 2qT , the sphere decoder visits close to
ρcr−ld(r) nodes. These are given by

Ω1,{µ∗j − 2δ < µj < µ∗j − δ, j = 1, · · · , q
0 < µj < δ, j = q + 1, · · · , nT },

(4.59)

for a given small δ > 0, and

Ω2,{σ1
(
(IT ⊗VH

p )G|p
)
≥ u}, (4.60)

for some given u > 0, where for p,nT − q then G|p denotes the first 2pT
columns of G, and where Vp denotes the last 2p columns of V obtained by
applying the singular value decomposition on HR, i.e., HR = UΣVH , where

Σ, diag{σ1(HR), · · · , σ2nT (HR)}

with σ1(HR) ≤ · · · ≤ σ2nT (HR) and VVH = I. Hence, VH
p corresponds to

the 2p largest singular values of HR.
Note also that by choosing δ sufficiently small, and using the fact that

µ∗i > 0 for i = 1, · · · , q, we may without loss of generality assume that Ω1

implies that µj > 0 for all j = 1, · · · , nT .
Modifying the approach in [7, Theorem 1] to account for MMSE pre-

processing and unconstrained decoding, the lower bound on the number of
nodes visited at layer k by the sphere decoder, is given by

Nk ≥
k∏

i=1

[
2ξ√

kσi(Rk)
−
√
k

]+
. (4.61)

In the following, and up until (4.67), we will work towards upper bounding
σi(Rk) so that we can then lower bound Nk.

Towards this let

Mreg
|p ,

[

ρ
1
2
− rT

κ HG|p
αrI|p

]

∈ R2(nR+nT )T×2pT

contain the first 2pT columns of Mreg from (4.46), and note that

(Mreg
|p )HMreg

|p = ρ1−
2rT
κ GH

|pH
HHG|p + α2

rI ,
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and that from (4.41) we get

(Mreg
|p )HMreg

|p = ρ1−
2rT
κ GH

|p (IT ⊗HH
RHR)G|p + α2

rI.

Since

HH
RHR = V(diag{σ1(HH

RHR), · · · , σ2nT (H
H
RHR)})VH

= V(diag{σ1(HH
RHR), · · · , σ2nT (H

H
RHR)}

− σ(2q+1)(H
H
RHR)Vdiag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH

+ σ(2q+1)(H
H
RHR)V(diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH ,

we have that

HH
RHR � σ(2q+1)(H

H
RHR)V(diag{0, · · · , 0

︸ ︷︷ ︸

2q

, 1, · · · , 1
︸ ︷︷ ︸

2p

})VH

= σ(2q+1)(H
H
RHR)VpV

H
p

where the last equality follows from the fact that Vp contains the last 2p
columns of V and where A � B denotes that A−B is positive-semidefinite.
Since σi(H

HH) ∈ R and since the Kronecker product induces singular value
multiplicity, it follows that

(Mreg
|p )HMreg

|p � ρ1−
2rT
κ σ(2q+1)(H

H
RHR)G

H
|p (IT ⊗VpV

H
p )G|p + α2

rI.

With respect to the smallest singular value of (Mreg
|p )HMreg

|p we have

σ1((M
reg
|p )HMreg

|p ) ≥ ρ1−
2rT
κ σ(2q+1)(H

H
RHR)σ1

(

GH
|p (IT ⊗VpV

H
p )G|p

)

+ α2
r

and consequently, given that HR ∈ Ω2, we have that

σ1(M
reg
|p ) ≥ ρ−

rT
κ

√

u2ρσl2(2q+1)(H
H
CHC) + 1

.
= ρ−

rT
κ ρ

1
2
(1−µq+1)+

≥ ρ−
rT
κ
+ 1

2
(1−δ)+ , (4.62)

where the first inequality follows from (4.60), the exponential equality follows
from (4.49) and from the fact that u > 0 is fixed and independent of ρ, and
the last inequality follows from (4.59).

From (4.44) we have that

σi(M
reg) ≤ ρ

−rT
κ

√

(1 + ρ(σκ(G)σl2T (i)(HC))2)

.
= ρ

−rT
κ

+ 1
2
(1−µl2T (i))

+

, i = 1, · · · , 2nTT, (4.63)
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where the asymptotic equality follows from the fact that σκ(G) is fixed and
independent of ρ. Furthermore (4.59) gives that for i = 1, · · · , 2qT then

σi(M
reg)

.
≤ ρ

− rT
κ
+δ+ 1

2
(1−µ∗

l2T (i)
)+
, (4.64)

where we have made use of the fact that µ∗j ≤ 1 for j = 1, · · · , nT .
Given that µ∗j > 0 for j = 1, · · · , q, then for sufficiently small δ and for

i = 1, · · · , 2qT , we have that

−rT

κ
+
1

2
(1− δ)+ ≥ −rT

κ
+ δ +

1

2
(1− µ∗l2T (i))

+,

which means that for sufficiently small δ, a comparison of (4.62) and (4.64)
yields

σi(M
reg) < σ1(M

reg
|p ), i = 1, · · · , 2qT.

The above inequality allows us to apply Lemma 3 in [7], which in turn gives
that

σi(Rk) ≤
[

σκ(M
reg)

σ1(M
reg
|p )

+ 1

]

σi(M
reg), i = 1, · · · , 2qT. (4.65)

Setting i = κ in (4.63) upper bounds the maximum singular value of
Mreg as

σκ(M
reg)

.
≤ ρ−

rT
κ
+ 1

2
(1−µnT

)+ ≤ ρ
1
2
− rT

κ , (4.66)

where the last inequality is due to the fact that µj ≥ 0. Consequently com-
bining (4.66) and (4.62) gives that

[

σκ(M
reg)

σ1(M
reg
|p )

+ 1

]

.
≤ ρ

1
2
δ,

which together with (4.64) and (4.65) gives that

σi(Rk)
.
≤ ρ

− rT
κ
+ 3

2
δ+ 1

2
(1−µ∗

l2T (i)
)+
, i = 1, · · · , 2qT. (4.67)

Consequently, going back to (4.61), we have that
[

2ξ√
kσi(Rk)

−
√
k

]+ .
≥ ρ

(

rT
κ
− 3

2
δ− 1

2
(1−µ∗

l2T (i)
)+

)

> 0 (4.68)

and furthermore for i = 1, · · · , 2qT , we have that rT
κ − 3

2δ− 1
2(1−µ∗l2T (i))

+ > 0
directly from definition of q and for sufficiently small δ. As a result, for
k ≤ 2qT we have that

Nk

.
≥

k∏

i=1

ρ

(

rT
κ
− 3

2
δ− 1

2
(1−µ∗

l2T (i)
)
)

(4.69)

= ρ
∑k

i=1

(

rT
κ
− 1

2
(1−µ∗

l2T (i)
)+

)

− 3
2
kδ
, (4.70)
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and setting k = 2qT we have that

N2qT = ρ

(

∑2qT
i=1

(

rT
κ
− 1

2
(1−µ∗

l2T (i)
)+

)

−3qTδ
)

(4.71)

= ρ(T
∑q

j=1 (
rT
κ
−(1−µ∗j )+)−3qTδ) (4.72)

= ρ(cr−ld(r)−3qTδ), (4.73)

where the last equality follows from (4.58). Consequently

NSD ≥ N2qT

.
≥ ρcr−ld(r)−3qTδ,

for small δ > 0. Given that δ can be chosen arbitrarily small, and given that
events Ω1 and Ω2 occur, then the number of nodes visited by the SD at layer
2qT is arbitrarily close to the upper bound of ρcr−ld(r).

Now we just have to prove that − lim
ρ→∞

P
(

N
.
≥ ρcr−ld(r)−3qTδ

)

log ρ
< dL(r).

Toward this we note that as (4.59) and (4.60) imply that N
.
≥ ρcr−ld(r)−3qTδ,

it follows that

P
(

N
.
≥ ρcr−ld(r)−3qTδ

)

≥ P (Ω1 ∩ Ω2) = P (Ω1) P (Ω2)

where the equality follows from the i.i.d. Rayleigh assumption on the entries
inHC , which makes the singular values ofHH

CHC independent of the singular
vectors of HH

CHC [55], and which in turn also implies independence of the
singular values of HH

CHC (event Ω1) from the singular vectors of HH
RHR

(event Ω2).
We now turn to [7, Lemma 2] and recall that for the layered codes as-

sumed here, as well as for any full-rate design and some non-random fixed
decoding ordering (corresponding to a permutation of the columns of G),

there exists a unitary matrix V
′

p such that rank
(

(IT ⊗ (V
′

p )
H)G|p

)

= 2pT

i.e., that

σ1

(

(IT ⊗ (V
′

p )
H)G|p

)

> 0.

However, by continuity of singular values [53] it follows for sufficiently small
u > 0 (cf.(4.60)) that P (Ω2) > 0, which implies 10 that P (Ω2)

.
= ρ0 as Ω2 is

independent of ρ. This in turn implies that

P
(

N
.
≥ ρcr−ld(r)−3qTδ

) .
≥P (Ω1) . (4.74)

10. In light of the fact that event V
′

p has zero measure, what the continuity of eigenvalues

guarantees is that we can construct a neighborhood of matrices around V
′

p which are full

rank, and which have a non zero measure. We also note that the matrices V
′

p can be

created recursively, starting from a single matrix V
′

nT
.
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With Ω1 being an open set, we have that

− lim
ρ→∞

P (Ω1)

log ρ
≤ inf

µ∈Ω1

I(µ),

=

q
∑

j=1

(nR − nT |+ 2j − 1)(µ∗j − 2δ),

= dL(r)− 2(|nT − nR|+ q)qδ,

< dL(r), (4.75)

where the above follows from the monotonicity of the rate function

I(µ) =

nT∑

j=1

(nR − nT + 2j − 1)µi,

evaluated at

{µ∗1 − 2δ · · · , µ∗q − 2δ, 0, · · · , 0} = arg inf
µ∈Ω1

I(µ),

and also follows from the fact that, by definition, I(µ∗) = dL(r).
Consequently from (4.74) we have that

− lim
ρ→∞

P
(

N
.
≥ ρcr−ld(r)−3qTδ

)

log ρ
< dL(r), (4.76)

and directly from the definition of the complexity exponent, we have that
cr−ld(r) ≥ cr−ld(r) − 3qTδ. As the bound holds for arbitrarily small δ > 0,
it follows that cr−ld(r) = cr−ld(r). Directly from Corollary 5 which analyzes
the ML-based complexity exponent cquasi(r), together with the fact that the
ML-based sphere decoder, with or without MMSE preprocessing, shares the
same upper bound cr−ld(r) as the MMSE-preprocessed lattice decoder, gives
that cquasi(r) = cr−ld(r), which in turns implies that

cr−ld(r) = cquasi(r).

This establishes Theorem 10. �

Appendix 4B : Proof of Corollary 10d

We can see from (4.54) that, regardless of the fading statistics and the
corresponding I(µ), the exponent cr−ld(r) is non-decreasing in dL(r) and
is hence maximized when dL(r) is itself maximized, i.e., it is maximized in
the presence of DMT optimal encoding and decoding. Combined with the
fact that the corresponding maximization problem does not depend on the
fading distribution, other than the natural fact that its tail must vanish
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exponentially fast, results in the fact that, for any full-rate code and statis-
tical characterization of the channel, the complexity of MMSE-preprocessed
lattice SD is universally upper bounded as (cf. Corollary 4a)

T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
. (4.77)

This proves Corollary 10d. �

Appendix 4C : Proof of Lemma 2

For RH
r Rr = MH

r Mr + α2
rI (cf. (4.10)) 11, it follows by the bounded

orthogonality defect of LLL reduced bases that there is a constant Kκ > 0
independent of Rr and ρ, for which (cf. [64] and the proof in [69])

σmax(R̃
−1
r ) ≤ Kκ

λ(Rr)
(4.78)

where

λ(Rr), min
c∈Zκ\0

‖Rrc‖ (4.79)

denotes the shortest vector in the lattice generated by Rr. As a result we
have that

σmin(R̃r) ≥
λ(Rr)

Kκ
. (4.80)

Looking to lower bound σmin(R̃r), we seek a bound on λ(Rr). Towards this
let r′ = r − γ for some r ≥ γ > 0, in which case for s being the transmitted
symbol vector, and for any ŝ ∈ Zκ such that ŝ 6= s, it follows that

‖r−Rr′ ŝ‖ = ‖(r−Rr′s) +Rr′(s− ŝ)‖
≤ ‖(r−Rr′s)‖+ ‖Rr′(s− ŝ)‖ (4.81)

and

‖Rr′(s− ŝ)‖ ≥ ‖r−Rr′ ŝ‖ − ‖(r−Rr′s)‖
= ‖r−Rr′ ŝ‖ − ‖w‖. (4.82)

From (4.82) it is clear that to find a lower bound on λ(Rr′), we need to
lower bound ‖r − Rr′ ŝ‖ for all ŝ ∈ Zκ and upper bound ‖w‖. Let us, for
now, assume that ‖w‖2 ≤ ρb. To lower bound ‖r−Rr′ ŝ‖, we draw from the

11. Note the transition to the notation reflecting the dependence of R on r.
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equivalence of MMSE preprocessing and the regularized metric (cf. equation
(45) in [57]), and rewrite

‖r−Rr′ ŝ‖2 = ‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2 − c, (4.83)

where c,yH [I −MH
r′ (M

H
r′Mr′ + α2

r′I)
−1Mr′ ]y ≥ 0. We now note that for

ŝ = s then ‖y −Mr′s‖2+α2
r′ ‖s‖2 = ‖w‖2 ≤ ρb, and since the left hand side

of (4.83) cannot be negative, and furthermore given that c is independent of
ŝ, we conclude that c ≤ ρb.

We will now proceed to lower bound ‖y −Mr′ ŝ‖2+α2
r′ ‖ŝ‖2 and then use

(4.83) to lower bound ‖r −Rr′ ŝ‖. Towards lower bounding ‖y −Mr′ ŝ‖2 +
α2
r′ ‖ŝ‖2 we draw from Theorem 1 in [57] and we let B be the spherical region

given by
B,{d ∈ Rκ| ‖d‖2 ≤ Γ2}

where the radius Γ > 0 is independent of ρ and is chosen so that d1+d2 ∈ R

for any d1,d2 ∈ B. The existence of the set B follows by the assumption
that 0 is contained in the interior of R. Now let

νr′ , min
d∈ρ r′T

κ B∩Zκ:d 6=0

1

4
‖Mr′d‖2 ,

and for given γ > ζ > 0 choose b > 0 such that

2ζT

κ
> b > 0.

This may clearly be done for arbitrary ζ > 0. We will in the following
temporarily assume that νr′+ζ ≥ 1 and prove that, together with ‖w‖2 ≤ ρb,

the two conditions are sufficient for λ(R̃r′)
.
≥ ρ

ζT
κ to hold.

In order to bound the metric for ŝ ∈ Zκ where ŝ 6= s, we note that

νr′+ζ ≥ 1 implies that ∀d ∈ ρ
(r′+ζ)T

κ B ∩ Zκ,d 6= 0 it is the case that

1

4

∥∥Mr′+ζd
∥∥2 ≥ 1

1

4

∥∥∥∥ρ
1
2
− (r′+ζ)T

κ HGd

∥∥∥∥
2 (a)

≥ 1

1

4

∥∥∥ρ
1
2
− r′T

κ HGd
∥∥∥
2

≥ ρ
2ζT
κ

where (a) follows from the fact that Mr = ρ
1
2
− rT

κ HG. Consequently

1

4
‖Mr′d‖2 ≥ ρ

2ζT
κ , ∀d ∈ ρ

(r′+ζ)T
κ B ∩ Zκ,d 6= 0. (4.84)

As R is bounded, and as ζ > 0, it holds that R ⊂ 1
2ρ

ζT
κ B for all ρ ≥ ρ1,

for a sufficiently large ρ1. This implies that s ∈ 1
2ρ

(r′+ζ)T
κ B for ρ ≥ ρ1 since

s ∈ ρ
r′T
κ R.
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For s,d ∈ 1
2ρ

(r′+ζ)T
κ B∩Zκ, there exists an ŝ ∈ ρ

(r′+ζ)T
κ B∩Zκ, ŝ 6= s, such

that ŝ = d+ s. Hence for any ŝ ∈ ρ
(r′+ζ)T

κ B ∩ Zκ, we have from (4.84) that

1

4
‖Mr′ (̂s− s)‖2 =

1

4
‖Mr′d‖2 ≥ ρ

2ζT
κ . (4.85)

As ‖w‖2 ≤ ρb, it follows that 1
4 ‖Mr′d‖2 ≥ ‖w‖2 for large ρ, and that

‖y −Mr′ ŝ‖2 = ‖Mr′(s− ŝ) +w‖2
.
≥ ρ

2ζT
κ . (4.86)

Consequently

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2

.
≥ ρ

2ζT
κ . (4.87)

On the other hand if ŝ /∈ ρ
(r′+ζ)T

κ B, then by definition of B we have that
α2
r′ ‖ŝ‖2 ≥ 1

4Γ
2ρ

2ζT
κ , and consequently that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2 ≥

1

4
Γ2ρ

2ζT
κ . (4.88)

From (4.87) and (4.88) we then conclude that

‖y −Mr′ ŝ‖2 + α2
r′ ‖ŝ‖2

.
≥ ρ

2ζT
κ . (4.89)

Given (4.87) and (4.89), for any ŝ ∈ Zκ such that ŝ 6= s, it is the case that
‖y −Mr′ ŝ‖2+α2

r′ ‖ŝ‖2
.
≥ ρ

2ζT
κ , which combined with c ≤ ρb allows for (4.83)

to give that

‖r−Rr′ ŝ‖2
.
≥ ρ

2ζT
κ . (4.90)

Applying (4.79) and (4.82), we have

λ(Rr′) ≥ ‖r−Rr′ ŝ‖ − ‖w‖
.
≥ ρ

ζT
κ − ρ

b
2

.
= ρ

ζT
κ (4.91)

where the exponential inequality follows from (4.90). Furthermore we know
that

λ(Rr) = ρ
−γT
κ λ(Rr′)

.
≥ ρ

−ǫT
κ (4.92)

where ǫ = γ − ζ, r ≥ ǫ > 0, and from (4.80) and (4.92) it follows that
σmin(R̃r)

.
≥ ρ

−ǫT
κ .
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We now note that the above implies that for νr′+ζ ≥ 1 and ‖w‖2 ≤ ρb

then σmin(R̃r)
.
≥ ρ

−ǫT
κ , and thus applying the union bound yields

P
(
σmin(R̃r)

.
< ρ

−ǫT
κ

)
= P

(
(νr′+ζ < 1) ∪ (‖w‖2 > ρb)

)

≤ P
(
νr′+ζ < 1

)
+ P

(
‖w‖2 > ρb

)
.

We know from the exponential tail of the Gaussian distribution that
P
(
‖w‖2 > ρb

)
.
= ρ−∞ and from [57, Lemma 1] that P

(
νr′+ζ < 1

) .
≤ ρ−dML(r

′+ζ).
Hence

P
(
σmin(R̃r)

.
< ρ

−ǫT
κ

) .
≤ ρ−dML(r−ǫ)

for all r ≥ ǫ > 0.
The association with the singular values

σ1(R̃r,k) ≤ · · · ≤ σk(R̃r,k)

is made using the interlacing property of singular values of sub-matrices,
which gives that

σi(R̃r,k) ≥ σi(R̃r), i ≤ k = 1, · · · , κ, (4.93)

and for k = 1, · · · , κ, that

P
(
σmin(R̃r,k)

.
< ρ

−ǫT
κ

) .
≤ ρ−dML(r−ǫ).

Finally from the DMT optimality of the exact implementation of the regu-
larized lattice decoder [56], [57], we have that

P
(
σmin(R̃r,k)

.
< ρ

−ǫT
κ

) .
≤ ρ−dL(r−ǫ).

This proves Lemma 2.�

Appendix 4D : Proof of Lemma 3

For a search radius that grows as ξ =
√
z log ρ

.
= ρ0, we first prove that

for z > dL(r)

P
(
‖w′‖2 > ξ2

)
<̇ ρ−dL(r).

From (4.12) and (4.46) the equivalent term for MMSE-preprocessed lat-
tice decoding is given by

w
′
= −α2

rR
−Hs+R−HMHw

= −αrQ
H
2 s+Q

H
1 w. (4.94)
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Consequently we calculate

P
(
‖w′‖ > ξ

)
≤ P

(
{‖ − αrQ

H
2 s‖+ ‖QH

1 w‖} > ξ
)

(a)
= P

({
‖ − αrQ

H

[
0
s

]
‖+ ‖QH

[
w
0

]
‖
}

> ξ

)

≤ P

({
sup
s∈Sκr

‖ − αrs‖+ ‖w‖
}

> ξ

)

(b)

≤ P ({K + ‖w‖} > ξ)

= P (‖w‖ > {ξ −K})
(c)

≤ P
(
‖w‖2 > z1 log ρ

)

<̇ ρ−dL(r) (4.95)

where (a) follows from the MMSE-preprocessed equivalent channel repre-
sentation in (4.46), where the inequality in (b) follows for some fixed K > 0
independent of ρ such that K ≥ sups∈Sκr ‖ − αrs‖, where the inequality
in (c) follows for some arbitrary z > z1 > 0 independent of ρ such that
(ξ − K)2 ≥ z1 log ρ and where the last asymptotic inequality follows for
some z1 > dL(r) > 0. Consequently

P
(
‖w′′‖ > ξ

)
= P

(
‖Q̃Hw

′‖ > ξ
)
<̇ ρ−dL(r)

and as a result

lim
ρ→∞

P
(
‖w′′‖ > ξ

)

P (̂sr−ld 6= s)
= 0.

This proves Lemma 3. �
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Chapter 5

Feedback-Aided Complexity of

ML and Lattice Decoding

5.1 Introduction and MIMO-ARQ signaling

The work in the previous chapters has focused on deriving complexity
exponents for the case where there is no feedback information sent to the
transmitter (no CSIT). Such feedback is known to improve the rate-reliability
performance in MIMO systems. What we show here is that feedback also
changes the required computational complexity. We focus on two funda-
mental questions. The first question asks what is the complexity savings
that feedback provides for a given fixed rate-reliability performance, and
the second question asks what is the complexity costs of achieving the full
rate-reliability benefits of feedback. The analysis and the constructed feed-
back schemes tell us how to properly utilize a finite number of feedback bits
to alleviate the adverse effects of computational constraints, as those seen
in the derived rate-reliability-complexity tradeoffs of the previous chapters.
Emphasis is placed on MIMO-ARQ feedback schemes, although we do also
consider feedback with antenna selection.

In the MIMO-ARQ setting (Fig. 5.1), communication of a certain mes-
sage is divided into rounds, each of duration T . At the end of each ARQ
round, the receiver feeds back to the transmitter a single bit (known as an
ACK or a NACK response). An ACK implies that the receiver has success-
fully decoded, in which case the transmitter moves on to the next information
message. On the other hand, upon receiving a NACK, the transmitter re-
transmits a (possibly different) encoded version of the same message. There
can be up to L such ARQ rounds.

97



98 Chapter 5 Feedback aided Complexity

Figure 5.1 – Schematic for MIMO-ARQ system

5.1.1 Reliability and complexity implications of feedback :
from DMT to the improved DMD

The work in [10] has quantified the benefits of such a MIMO-ARQ
scheme, and has shown that it can increase the rate-reliability performance,
elevating it from the optimal DMT d∗(r) of the MIMO channel without feed-
back, up to a much improved 1 d∗( rL). This optimal performance d∗(r/L) is
generally referred to as the optimal DMD tradeoff (diversity multiplexing
delay tradeoff, cf. [10]). Figure 5.2 illustrates these performance gains for the
case of L = 4-round ARQ over the Rayleigh fading 4× 4 MIMO channel. A
practical implication of such feedback schemes is that in the presence of a
moderate number of transmit and receive antennas, and a moderate number
of (L − 1) bits of feedback, one can enjoy near ergodic behavior (i.e., very
substantial diversity), even for rates close to the ergodic capacity (high r).
Such gains may entail though increased complexity. While the complexity
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Figure 5.2 – Optimal DMT and DMD for 4× 4 MIMO.

implications will be clarified later on, loosely speaking, to achieve the op-
timal DMD d∗(r/L) for specific settings, the last round decoding must be

1. We focus on the quasi-static case and on the case of no power adaptation.
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sufficiently reliable, something that can happen only if the associated lattice
designs encountered by the decoder in the last round are themselves suffi-
ciently strong, which in turn implies even more heavily packed and complex
coding schemes for the intermediate rounds (cf. [36]).

The other side of the coin is that, if one were willing to sacrifice some
of the feedback reliability gains, this aforementioned complexity may be re-
duced even below the original complexity corresponding to the case of no
feedback, i.e., below the complexity corresponding quantified by the com-
plexity exponents derived in Theorem 5 and Corollary 5a.

With the above in mind, we seek to understand the computational costs
that allow for a) the optimal DMT d∗(r) and b) the optimal DMD d∗(r/L),
both with the assistance of L-rounds of ARQ feedback. Specifically we will
derive bounds on the minimum complexity exponent required by ML and
lattice based SD to achieve the optimal DMT d∗(r) and the optimal DMD
(d∗(r/L)), where this complexity is minimized over all lattice designs (which
must vary accordingly depending on the setting), all ARQ schemes (L ≤
nT), all policies of computational halting, as well as all policies on decoding
ordering. The results are presented for ML-based (sphere) decoding as well as
(MMSE-preprocessed) lattice decoding. The derivations focus on ML-based
decoding, but extend automatically to the lattice decoding case, as we have
learned from Chapter 4. The validity of the presented results depends on
the existence of actual schemes that meet them. These schemes will be here
provided, together with the associated lattice designs, decoders, as well as
halting and ordering polices.

5.1.2 MIMO-ARQ signaling

We here present the general nT × nR MIMO-ARQ signaling setting, and
focus on the details which are necessary for our exposition. For further un-
derstanding of the MIMO-ARQ channel, the reader is referred to [10], see
also [36].

Under ARQ signaling, each message is associated to a unique block
[X1

C X
2
C · · ·XL

C ] of signaling matrices, where eachXi
C ∈ CnT×T , i = 1, · · · , L,

corresponds to the nT × T matrix of signals sent during the ith round. The
accumulated code matrix at the end of round ℓ, ℓ = 1, · · · , L, takes the form
XARQ,ℓ

C = [X1
C X2

C · · ·Xℓ
C ] ∈ CnT×ℓT . We note that the signals XARQ,L

C

are drawn from a lattice design that ensures unique decodability at every
round 2.

In the quasi-static case of interest, the received signal accumulated at the
end of the ℓ-th round takes the form

Yℓ
C =

√
ρHCX

ARQ,ℓ
C +Wℓ

C , ℓ = 1, · · · , L, (5.1)

2. Loosely speaking, unique decodability means that, for any ℓ = 1, · · · , L, the corres-
ponding X

ARQ,ℓ
C carries all bits of information.
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where HC ∈ CnR×nT .
We proceed with quantifying the complexity reductions due to ARQ feed-

back. After that Section 5.3 will consider the complexity that allows for
harvesting the full rate-reliability benefits of ARQ feedback, and Section 5.4
presents similar results for the antenna selection case. The rest of the sections
are dedicated to proofs of the main results.

5.2 Complexity reduction using ARQ feedback

We here seek to analyze the complexity reductions due to MIMO ARQ
feedback. Specifically for d∗(r) denoting the optimal DMT of the nT × nR

MIMO channel in the absence of feedback, we here seek to describe the
complexity exponent required to meet the same d∗(r) with the assistance
now of an L-round ARQ scheme. This exponent is to be compared with the
exponent in Theorem 5 and Corollary 5a which describes the complexity
that guarantees the same rate-reliability performance (d∗(r)) but without
feedback.

The following holds for the nT × nR (nR ≥ nT) i.i.d. regular fading 3

MIMO channel.
All the presented results hold for ML-based decoding as well as MMSE-

preprocessed lattice decoding.

Theorem 13. Let c(r) be the minimum complexity exponent required to
achieve d∗(r), minimized over all lattice designs, all ARQ schemes with L ≤
nT rounds of ARQ, all halting policies and all decoding order policies. Then

c(r) ≤ cred(r),
1

nT

[
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

]
,

which is a piecewise linear function that, for integer r, takes the form

cred(r) =
1

nT
r(nT − r), for r = 0, 1, · · · , nT .

The proof of the above theorem will be presented later on, together with
the proofs for the upcoming Propositions 3 and 4, and it will include the de-
rivation of the upper bound, and the constructive achievement of this bound
which is presented in Propositions 3,4. The constructive part of the proof is
based on designing ARQ schemes and implementations (lattice designs and
halting policies) that meet the bound. We proceed with these propositions

3. The i.i.d. regular fading statistics satisfy the general set of conditions as described
in [70], where a) the near-zero behavior of the fading coefficients h is bounded in probability
as c1|h|

t ≤ p(h) ≤ c2|h|
t for some positive and finite c1, c2 and t, where b) the tail behavior

of h is bounded in probability as p(h) ≤ c2e
−b|h|β for some positive and finite c2, b and β,

and where c) p(h) is upper bounded by a constant K.
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where we identify cases for which the above complexity bound suffices to
achieve d∗(r) with the help of feedback.

An important aspect in ARQ schemes is knowing when to decode and
when not to decode across the different rounds. Towards this we have the
following definition.

Definition 1 (Aggressive intermediate halting policies). We define aggres-
sive intermediate halting policies to be the family of policies that halt decoding
in the first round whenever the minimum singular value of the channel scales
as ρ−ǫ for some ǫ > 0, which do not decode in the second to the L-1 round,
and which decode at the last round iff a) they have not decoded in the first
round and b) the channel is not in outage with respect to the effective rate of
ARQ scheme.

Furthermore we will henceforth use the term minimum delay ARQ scheme
to refer to any ARQ scheme with T = 1. We will also use the term ARQ-
compatible, minimum delay, NVD, rate-1 lattice designs to refer to the family
of nT × nT lattice designs XARQ,L

C with κ = 2nT, with non-vanishing de-
terminant (NVD) 4 for r ≤ 1, and with all the information appearing in all
rounds.

Proposition 3. A minimum delay ARQ scheme with L = nT rounds achieves
d∗(r) with c(r) ≤ cred(r), irrespective of the ARQ-compatible, minimum de-
lay, NVD, rate-1 lattice design, for any aggressive intermediate halting policy,
and any sphere decoding order policy.

The following describes a very simple MIMO ARQ coding implementa-
tion that achieves d∗(r) with c(r) ≤ cred(r). The proof of this proposition
will appear later on, and is crucial in the achievability part of the proof of
Theorem 13.

Proposition 4. The minimum delay ARQ scheme with L = nT rounds,
implemented with any aggressive intermediate halting policy, any sphere de-
coding order policy, and a rate-1 lattice design XARQ,L

C drawn from the center
of perfect codes (cf. [13,25]) 5, achieves d∗(r) with c(r) ≤ cred(r).

Theorem 13 has quantified the computational reserves that are sufficient
to achieve DMT optimality. These computational reserves can be seen to be

4. A code has a non-vanishing determinant if, without power normalization, there is a
lower bound on the minimum determinant that does not depend on the constellation size.
The determinant of any non-normalized difference matrix is lower bounded by a constant
independent of ρ (see [25]).

5. For general lattice designs derived from cyclic division algebra (CDA) (cf. [13, 25]),
F and L are number fields, with L a finite, cyclic Galois extension of F of degree n. Let
σ denote a generator of the Galois group Gal(L/F). Let z be an indeterminate satisfying
lz = zσ(l), ∀ l ∈ L and zn = γ for some non-norm element γ ∈ F∗. Then the set of all
elements of the form

∑n−1
i=0 zili forms a CDA D(L/F, σ, γ) with center F and maximal

subfield L. The mentioned codes are limited in the center of the division algebra and take
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smaller than those required to achieve the same optimal DMT d∗(r) without
feedback, and in the presence of any known minimum delay DMT optimal
designs. Specifically, in the absence of ARQ, the latter designs have been
shown in Theorem 5 and Corollary 5a to require a complexity exponent of

c(r) = r(nT − r), (5.3)

(for integer r = 0, 1, · · · , nT ), whereas we have just seen that, for example,
in the presence of nT rounds of ARQ, the same DMT is achieved with a
much reduced

c(r) ≤ 1

nT
r(nT − r).

We proceed with a few examples.

Example 9 (Corresponding to Theorem 13 and Proposition4). For the ge-
neral nT × nR setting with nR ≥ nT, and for r = nT/2, the computational
resources required to achieve the optimal d∗(r) with existing DMT optimal
(minimum delay) non-feedback schemes (cf. Corollary 5a), scales as

Nmax
.
= ρn

2
T/4

.
= 2RnT/2,

whereas the feedback aided complexity required by the feedback scheme in
Proposition4 scales as

Nmax
.
= ρnT/4 .

= 2R/2.

Generally, given a rate that scales linearly with min{nT, nR}), in the absence
of feedback the complexity exponent of achieving d∗(r) scales with n2

T, whereas
the feedback aided complexity exponent scales with nT.

Example 10. Figure 5.3 considers the case of nT = 4 ≤ nR and Rayleigh
fading, and compares the above complexity upper bound in the presence of
feedback (L-rounds, minimum delay), to the equivalent complexity exponent
in (5.3) of achieving the same DMT optimal d∗(r) without ARQ feedback
(Perfect codes and natural, fixed decoding ordering).

Example 11. Figure 5.4 considers, for the same 4× nR channel nR ≥ nT,
the joint performance-complexity measures

Γ(r) = d(r)− c(r)

for the above feedback aided and non-aided schemes of the previous example.
Naturally the feedback aided scheme exhibits a uniformly increased measure.

the simple form

X
ARQ,L
C =















f0 γfnT−1 · · · γf1
f1 f0 · · · γf2
f2 f1 · · · γf3
...

...
. . .

...
fnT−1 fnT−2 · · · f0















∈ C
nT×nT , (5.2)

where fi belong to the QAM constellation.
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Figure 5.3 – Complexity reduction with minimum delay ARQ schemes.
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Figure 5.4 – Joint performance-complexity measures with minimum delay
ARQ schemes.

5.2.1 Feedback reduction for asymmetric channels : nR ≤ nT

We now consider the case of nR ≤ nT, and specifically the case where
nR|nT (i.e., nT is an integer multiple of nR), to observe again how simple
implementations offer substantial reductions in complexity. In terms of sta-
tistics, the results hold for any i.i.d. regular fading distribution. As before
the results apply to ML-based decoding as well as to MMSE-preprocessed
lattice decoding.

Theorem 14. In the MIMO ARQ channel with nR|nT, the minimum com-
plexity exponent c(r) required to achieve d∗(r), minimized over all lattice de-
signs, all halting policies, and all minimum delay ARQ schemes with L ≤ nT

rounds of ARQ, is bounded as

c(r) ≤ cred(r), =
1

nR

[
r(nR − ⌊r⌋ − 1) + (nR ⌊r⌋ − r(nR − 1))+

]
,

which is a piecewise linear function that, for integer r, takes the form

cred(r) =
1

nR
r(nR − r), for r = 0, 1, · · · , nR.
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Applying as the constructive part of the proof of the above theorem, the
following describes a very simple MIMO ARQ block-diagonal repetition co-
ding implementation that achieves d∗(r) with a much reduced c(r) ≤ cred(r).

Proposition 5. A minimum delay ARQ scheme with L = nT rounds, imple-
mented with any aggressive intermediate halting policy, any sphere decoding
order policy, and a rate-nR

nT
block-diagonal repetition lattice design XARQ,L

C

where the (rate-1) block component code is drawn from the center of nR×nR

perfect codes, achieves d∗(r) with c(r) ≤ cred(r) from Theorem 14.

Of interest is the special MISO-ARQ case of nR = 1, where the above
described scheme will allow for a zero complexity exponent, and for a com-
plexity that scales as a subpolynomial function of ρ and as a subexponential
function of the number of codeword bits and of the rate.

Corollary 14a. Over the nT × 1 MISO channel, the minimum delay ARQ
scheme with L = nT rounds, implemented with a rate- 1

nT
repetition QAM

design XARQ,L
C , achieves d∗(r) with c(r) = 0.

This corollary follows directly from Theorem 14.
We proceed with a few examples.

Example 12 (Corresponding to Theorem 14 and Proposition 5). For the
4× 2 MIMO channel with an L = 2-round ARQ, applying a lattice design of
the form

XARQ,L
C =







f0 γf1 0 0
f1 f0 0 0
0 0 f0 γf1
0 0 f1 f0






∈ C4×4,

where f0, f1 ∼ QAM , together with an aggressive intermediate halting policy
for the first round decoder, and with any sphere decoding ordering policy, can
achieve the optimal d∗(r) of the 4 × 2 channel, and can do so with compu-
tational resources of Nmax

.
= ρcred(r) flops, which for integer r translates to

Nmax
.
= ρ

1
nR

r(nR−r) = ρ
r
2
(2−r).

Example 13 (Corresponding to Theorem 14 and Proposition 5). Figure 5.5
compares two schemes : the 2 × 2 MIMO channel (minimum delay, DMT
optimal lattice design), and the 4 × 2 minimum delay MIMO-ARQ channel
with L = nT = 4, 3 bits of feedback, and the implementation of Proposi-
tion 5. We see a considerably reduced complexity of the feedback aided scheme
(Fig. 5.5(a), lower line) which, at the same time, achieves a much higher
DMT performance (Fig. 5.5(b), upper line) than its non-feedback counter-
part.
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Figure 5.5 – Complexity reduction nR|nT i.i.d. Rayleigh channel with
ARQ feedback

Example 14 (Corresponding to Corollary 14a). For the nT× 1 MISO case,
the corresponding feedback-aided complexity is shown in Corollary 14a to be
subexponential in the rate and the number of codeword bits. This dramatic
reduction is depicted in Fig. 5.6 which compares it with the corresponding
complexity (required to achieve the same d∗(r)) in the absence of feedback.
This is done for the case of nT = 3.
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Figure 5.6 – Complexity reduction for MISO channel with one bit
feedback.

We proceed with the second question of interest.

5.3 Complexity for harvesting the full rate-reliability
benefits of feedback

As shown in [10], the presence of L-rounds of ARQ can improve the
DMT performance, from the optimal d∗(r) achieved without feedback, to the
DMD optimal d∗(r/L) which offers closer to ergodic behavior even at high
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multiplexing gains. We here study the complexity implications of achieving
this DMD optimal performance d∗(r/L).

The following holds for i.i.d. regular fading statistics. For now we will
focus on the case where nR ≥ nT and the case where L|nT (i.e., nT is an
integer multiple of L). As before all presented results hold for ML-based
decoding as well as MMSE-preprocessed lattice decoding.

Theorem 15. Let c(r) be the minimum complexity exponent required to
achieve the optimal L-round MIMO-ARQ DMD d∗(r/L), for any given L|nT,
where the complexity is minimized over all lattice designs, all halting policies
and all decoding order policies. Then

c(r) ≤ cdmd(r),
1

L

[

r
(

nT −
⌊ r

L

⌋

− 1
)

+
(

LnT

⌊ r

L

⌋

− r(nT − 1)
)+
]

,

where cdmd(r) is a piecewise linear function that, for r being an integer mul-
tiple of L, takes the form

cdmd(r) =
rnT

L2

(

L− r

nT

)

.

For a clarifying example see Example 15 and Fig. 5.7.
An important note is in order here with respect to the above theorem. We

specifically note that one can clearly construct arbitrarily inefficient schemes
that meet the optimal d∗(r/L) with a complexity that far exceeds the derived
bound on the minimized complexity. For that case, we will be able to say
that such a scheme is provably suboptimal in terms of complexity. At the
same time, there might exist schemes that do better than the above upper
bound. In such a case we will have a tightening of the bound.

A second important note is that the bound is proven valid because there
do exist ARQ schemes and implementations (lattice designs and policies)
that in fact meet this bound. These designs and policies will be shown in
Proposition 6 to provide for DMD optimal ARQ schemes.

These above mentioned constructed schemes happen to incur minimum
possible overall delay. This brings us to a third important note. As stated,
it is entirely conceivable that the bound in the theorem can be tightened.
This is because the bound is met, as we will see in the next proposition, by
ARQ schemes that incur an overall delay that remains fixed at a minimum of
TL ≤ nT. This limitation partially explains why the complexity described by
the bound decreases with L, despite the substantial increases in the DMD.
In brief, given a fixed LT , an increasing L results in a decreasing T for the
first round, which nicely translates to complexity savings.

As a result, in the presence of a choice for any L|nT, L ≥ 2, the choice
of L = nT surprisingly minimizes the above bound. For this special case, we
have the following.
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Corollary 15a. The minimum, over all lattice designs and halting and deco-
ding order policies, complexity exponent c(r) required to achieve the optimal
DMD d∗(r/nT) of the (L = nT)-round ARQ, is upper bounded as

c(r) ≤ cDMD(r) =

(

1− 1

nT

)

r. (5.4)

From Corollary 15a we can see that Nmax
.
= ρ

nT−1

nT
r suffices to achieve the

DMD optimal d∗(r/nT). This translates to Nmax
.
= 2

nT−1

nT
R for any r, and

approaches Nmax
.
= 2R for increased values of nT. From the same corollary

it is also easy to see that the presence (and proper utilization) of feedback,
while guaranteeing a much increased DMT performance (d∗(r/L) > d∗(r)),

also results in a provably reduced complexity for any r ≤ n2
T

nT+1 , compa-
red to the c(r) required to achieve the reduced d∗(r) without feedback (cf.

Corollary 5a). On the other hand, in the small region of n2
T

nT+1 ≤ r ≤ nT,
this feedback-aided complexity Nmax

.
= 2R does not vanish and exceeds the

complexity of the no feedback case which, as r increases, can vanish by em-
ploying halting policies that capitalize on the fact that d∗(r) also vanishes.
For a clarifying example see Example 16 and Fig. 5.8.

With respect to the achievability of Theorem 15 and Corollary 15a, and
under the same conditions as above, we identify cases for which the derived
complexity bounds suffice to achieve d∗(r/L). The presented schemes also
happen to incur the minimum possible overall delay, minimized over all de-
lays that could allow for DMD optimality. The implementation considers
ARQ-compatible, minimum-delay, full-rate NVD lattice designs (cf. [36])
which exist for all cases of interest here.

Proposition 6. An L-round (L|nT) MIMO ARQ scheme achieves d∗(r/L)
with c(r) ≤ cdmd(r), for any ARQ-compatible square (LT = nT) NVD lattice
design, for a search radius ξ >

√

d∗( r
nT
) log ρ, for any aggressive interme-

diate halting policy, and any decoding order policy.

We proceed with a few clarifying examples.

Example 15 (Corresponding to Theorem 15). Figure 5.7 shows the com-
plexity bounds from Theorem 15, describing the derived sufficient complexity
resources for achieving the optimal DMD d∗(r/L) for the cases of 6 × nR,
L = 2, 3, 6.

Example 16 (Corresponding to Corollary 15a). Figure 5.8 plots the com-
plexity bounds from Corollary 15a describing the derived sufficient complexity
resources for achieving the optimal DMD d∗(r/L) for the cases of 2 × nR,
L = nT = 2 and of 3 × nR, L = nT = 3. These are compared with the
corresponding complexity exponents that guarantee d∗(r) in the absence of
feedback.
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Figure 5.7 – Complexity exponent for 6× nR (nR ≥ 6) DMD-optimal
MIMO system. L = 2 (top line), L = 3 and L = 6 (lowest line).
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Figure 5.8 – Upper bound on complexity exponent for DMD optimal
performance

Example 17 (Comparing Corollary 15a to Theorem 13). Figure 5.9 plots the
complexity bound from Corollary 15a (upper dotted line) describing the deri-
ved sufficient complexity resources for achieving the optimal DMD d∗(r/L),
and compares this with the (much reduced) complexity bound from Theo-
rem 13 describing the derived sufficient complexity resources for achieving
the optimal DMT d∗(r) for the case of 4× nR, L = nT = 4.

The question arises as to whether it is better to use the scheme that
provides for d∗(r) with reduced complexity (upper line in Fig. 5.9, corres-
ponding to Theorem 13), or the scheme that provides for the much improved
d∗(r/L) = d∗(r/nT) but does so with much increased complexity (upper line
in Fig. 5.9, corresponding to Corollary 15a). Towards deciding this, one must
first decide what is the price of flops, compared to the price of errors. A mea-
ningful joint rate-reliability-complexity measure could for example be chosen
to take the form Γ(r) = d(r)− γ(r) where γ reflects the relative cost of chip
size vs reliability ; the higher the γ the more importance is placed on compu-
tational efficiency rather than reliability. The cases of γ = 1 and γ = 10 are
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respectively shown in Figures 5.10(a) and 5.10(b). We observe that if the
price of flops, compared to the price of errors, justifies a γ > 10, then the
computationally efficient DMT (not DMD) achieving scheme with L = nT

rounds, seems to be a better choice.
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Figure 5.9 – Complexity exponent for 4× nR MIMO system
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Figure 5.10 – Joint reliability-complexity measure for DMT and DMD
optimal ARQ schemes

Example 18 (Drawing from Corollary 15a). In an nT × nR MIMO setting
(nR ≥ nT), consider a legacy system that achieves d∗(r), that does not have
an ARQ mechanism, and which is limited to computational resources that
suffice only to achieve this DMT optimality (Theorem 5, Corollary 5a, dotted
line in Fig. 5.11(a)). What if, for the same exact system, and the same
resources, we are now given the ARQ option with L = nT bits of feedback.
One way to utilize this would be to limit ARQ to the region of r ≤ n2

T
nT+1

(achieving d∗(r/nT)) and switch it off otherwise (going down to d∗(r)). In

terms of implementation, for r ≤ n2
T

nT+1 , one could simply decode after the
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first time slot, employing an aggressive intermediate halting policy in the
first round, and then wait nT− 1 slots to decode if and only if out of outage.
For r >

n2
T

nT+1 , to switch off ARQ, the only thing that would change would
be the intermediate halting policy that would now never decode. Figure 5.11
illustrates the above for the case of nT = 3.
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Figure 5.11 – Achieving partial DMD with reduced computational
resources. 3× nR MIMO system. The left figure shows the complexity

exponent of the proposed scheme, interrupted for high r to not exceed the
complexity exponent of the feedback scheme.

5.3.1 Complexity costs for DMD optimality : the case of L >

nT

For completeness we present bounds on the minimum required complexity
to achieve the DMD optimal d∗(r/L) provided by L bits of feedback. The
following holds for the nT × nR (nR ≥ nT ) MIMO-ARQ channel with i.i.d.
regular fading statistics.

Proposition 7. The minimum, over all lattice designs and halting and deco-
ding order policies, complexity exponent c(r) required to achieve the optimal
DMD d∗(r/L) of the (L > nT)-round ARQ, is upper bounded as

c(r) ≤ cDMD(r) =

(

1− 1

L

)

nTr. (5.5)

The above described bound is sufficient for DMD optimality given any ARQ-
compatible, T = nT, full-rate NVD lattice design, any aggressive interme-
diate halting policy, any decoding order policy, and given a search radius
ξ >

√
d∗( rL) log ρ.
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We note that the above designs exist for all nT and all L ≥ nT (cf. [36]).
We also note that for all known existing lattice design implementations (cf.
[36]), the bound is tight for at least one fixed decoding order.

Example 19 (Corresponding to Proposition 7). We consider the complexity
cost of achieving DMD optimality (d∗(r/L)) for the example cases of nT = 2
and nT = 3, and for a fixed number L = 4 of bits of feedback, and we compare
this complexity (upper line in Fig. 5.12(a)-(b) for 2×2 and 3×3 respectively,
see Proposition 7) with the complexity cost of achieving the optimal DMT
d∗(r) without feedback (lower line in Fig. 5.12(a)-(b) for 2 × 2 and 3 × 3
respectively, see Theorem 5, Corollary 5a).
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Figure 5.12 – Plot corresponding to Proposition 7

We proceed with a different utilization of feedback, and briefly study the
complexity ramifications of antenna selection.

5.4 Complexity reduction using antenna selection

Transmit/receive antenna selection (Fig. 5.13) is a means of utilizing
CSIT feedback to reduce the system size while maintaining high DMT per-

formance. Such selection schemes employ log2

(
nT

lT

)

bits of CSIT to reduce

an nT ×nR MIMO system to a smaller and more manageable lT × lR system
with generally reduced computational requirements. The extend of system re-
duction is naturally limited by the rate-reliability requirements. We will here
explore the complexity ramifications of antenna selection, and focus on the
case where the performance, after antenna selection, remains DMT optimal
(d(r) = d∗nT×nR

(r)). Our work here is preliminary, and it builds on the greedy
selection algorithms in [11]. This scheme, in the presence of a requirement
for achieving d∗nT×nR

(r), places a reduction constraint on min{lT , lR} =: Nr

where this constraint takes the form

Nr = arg min
N ′∈{1,··· ,nT }

[(
arg min

p∈{0,··· ,N ′−1}

(nT − p)(nR − p)

N ′ − p

)
= ⌈r⌉

]
. (5.6)
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Figure 5.13 – Antenna selection

Naturally Nr depends on r ; it increases with r up to a certain point after
which there is no antenna pruning (Nr = nT).

The following holds for the i.i.d. Rayleigh fading nT × nR (nR ≥ nT )
MIMO setting. As before we consider ML based decoding as well as MMSE-
preprocessed lattice decoding. Furthermore the results also describe the com-
plexity that guarantees, given any specific antenna selection policy, a vani-
shing gap to the optimal ML performance, and a vanishing gap to the exact
implementation of regularized lattice decoding.

Proposition 8. The minimum, over all antenna selection algorithms, all lat-
tice designs and all halting and decoding order policies, complexity exponent
c(r) required to achieve the optimal DMT d∗nT×nR

(r), is upper bounded as

c(r) ≤ cas(r) =
(
r(Nr − ⌊r⌋ − 1) + (Nr⌊r⌋ − r(Nr − 1))+

)
,

which, for the Nr in (5.6), is a piece-wise linear function that, for integer
values of multiplexing gain r, takes the form

cas(r) = r(Nr − r), for r = 0, 1, · · · , nT. (5.7)

The above described bound cas(r) is sufficient to achieve the optimal DMT
d∗nT×nR

(r), given the square (lT = lR = Nr) greedy antenna selection algo-
rithm 6 in [11], given any Nr×Nr full-rate NVD (CDA) lattice design, given

a sphere decoder with a search radius ξ >
√
d∗nT×nR

(r) log ρ, a decoding hal-

ting policy that decodes iff out of outage of the original (unpruned system),
and any decoding order policy. Furthermore, given the above implementation
and natural decoding ordering, the above described bound is also necessary.

Example 20. For the 4× 4 MIMO channel, and given a target of d∗4×4(r),
we compare the previously derived ARQ-aided complexity with the current

6. It is easy to show that the complexity of implementing the greedy algorithm does
not affect the complexity exponent.
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complexity described above. We first note that no meaningful antenna selec-
tion can take place with less than three bits of feedback. For fairness we also
consider an L = 4-round ARQ system which also employs L− 1 = 3 bits of
feedback 7. The above result reveals (see Fig. 5.14) that the ARQ-aided com-
plexity is uniformly less than that of the specific implementation of antenna
selection, which in fact yields no complexity reduction for any r > 2 (Nr = 3
for r ≤ 2 and Nr = 4 for r > 2) with respect to the complexity exponent that
would have been needed (perfect code implementation) to achieve the optimal
DMT d∗4×4(r) without feedback (dotted blue line, Theorem 5, Corollary 5a).
The lowest line corresponds to ARQ (Theorem 13).
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Figure 5.14 – Complexity savings : antenna selection vs ARQ

Remark 2. It is interesting to observe that the expression in (5.7) surprisin-
gly corresponds to the complexity of achieving the DMT optimal performance
d∗lT×lR(r) of the lT × lR pruned system, rather than the actual achieved (tar-
get) DMT performance d∗nT×nR

(r) > d∗lT×lR(r). This is surprising because,
whereas complexity is generally increasing with d(r) (for a fixed system di-
mensionality), in our case there seems to be no complexity penalty on this
DMT increase from d∗lT×lR(r) to d∗nT×nR

(r). The explanation for this lies in
the fact that, despite having less freedom to halt (as compared to the case
of a target d∗lT×lR(r)), the decoder operates over improved channels (com-
plements of the antenna selection algorithm), which are generally associated
with reduced lattice search complexity.

We proceed with the proofs for the whole chapter.

7. The rationale here is that the case of L = 1 entails no feedback.
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5.5 Proof of Theorem 13

Now we proceed to prove Theorem 13. We first establish necessary condi-
tions for ARQ signaling to achieve optimal DMT of non-feedback system.
For an nT × nR (nR ≥ nT ) MIMO system any DMT optimal signaling must
satisfy two conditions

Condition 1 : To achieve maximum diversity gain of nT .nR, the total
number of channel uses need to be greater than or equal to nT , i.e., LT ≥ nT ,
where T is the number of channel uses in each ARQ round. For minimum
delay (T = 1) L-round ARQ schemes with L ≤ nT, it then follows that
L = nT .

Condition 2 : To achieve maximum multiplexing gain rmax = nT (as
nR ≥ nT ), the total number of integers transmitted needs to be greater than
or equal to 2nTT , which means that κ ≥ 2nT .

It can be seen from (3.9) that the complexity of sphere decoder

NSD =
κ∑

k=1

Nk

increases with κ. Thus, for minimum delay L-round ARQ schemes with
L ≤ nT tightest upper bound on the complexity exponent is established
by considering T = 1, L = nT and κ = 2nT . Setting T = 1 and L = nT

implies use of at least rate-1 lattice designs for L-round ARQ scheme for
achieving DMT performance of d∗(r) for 0 ≤ r ≤ nT . We will later show
that encoding-decoding policy described in Proposition 3 and Proposition 4
achieve DMT performance of d∗(r) for T = 1, L = nT and κ = 2nT , which
in turn implies that limρ→∞ r = r1, where r1 is the multiplexing gain for the
first round of ARQ.

Having established the necessary parameters κ and L we proceed to prove
the upper bound in the Theorem. Following the footsteps of the proof of
Theorem 1 we can show that for decoding full-rate code at the end of first
round the total number of visited nodes is given by

NSD(µ)
.
≤ ρ

∑nT
j=1 min

(

r
nT
−(1−µj),

r
nT

)+

,

where µj = − log σj(H
H
CHC)

log ρ , j = 1, · · · , nT with µ1 ≥ · · · ≥ µnT and where
we have made use of the fact that r = r1. Recalling that first round decoding
is performed iff σ1(H

H
CHC) > ρ−ǫ for some ǫ > 0, the upper bound on the

complexity exponent for first round decoder can be obtained as the solution
to a constrained maximization problem according to

c1(r), max
{µ1<ǫ, µ1≥···≥µnT

≥0}

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

,
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which simplifies (in the limit ǫ→ 0) to take the form

c1(r) = 0.

To establish the L-th round complexity cost, we proceed with the system
model given by

YL
C = θHCX

ARQ,L
C +WL

C ,

where for rate-1 lattice designs we have θ2 = ρ1−rL where rL = r
L denotes

multiplexing gain for L-th round of ARQ. The vectorized real valued repre-
sentation of L-th round system model takes the form

yL = θHLxL +wL, (5.8)

where

HL = IL ⊗HR ∈ R2nRL×2nTL,HR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]

,

xL = (xT1 , · · · ,xTT )T ∈ R2nTL with xt = [Re{Xt,C}T, Im{Xt,C}T]T,
wL = (wT

1 , · · · ,wT
T )

T ∈ R2nRL with wt = [Re{Wt,C}T, Im{Wt,C}T]T,
yL = (yT1 , · · · ,yTT )T ∈ R2nRL with yt = [Re{Yt,C}T, Im{Yt,C}T]T,

for t = 1, · · · , L, where Xt,C , Yt,C and Wt,C are t-th column of XARQ,L
C ,

WL
C and YL

C respectively. The vectorized codeword xL takes the form (cf.
(3.2))

xL = Gs, s ∈ Sκr ,Zκ ∩ ρ
rL
2 R, (5.9)

where R ⊂ Rκ is a natural bijection of the shaping region R
′

that pre-
serves the code, and contains the all zero vector 0. For simplicity we consi-
der R,[−1, 1]κ to be a hypercube in Rκ, although this could be relaxed.
Combining (5.8) and (5.9) yields the equivalent system model

yL =MLs+wL, (5.10a)

where ML,ρ
1
2
− rL

2 HLG ∈ R2nRL×κ. (5.10b)

Let G = [ΓT
1 ΓT

2 · · ·ΓT
L]

T , where Γi ∈ C2nT×2nT , for i = 1, · · · , L.
Then the equivalent code-channel matrix (ML) takes the form

ML =ρ
1
2
− rL

2








HR 0 · · · 0
0 HR · · · 0
...

...
. . .

...
0 0 · · · HR















Γ1

Γ2
...
ΓL







, (5.11)

=ρ
1
2
− rL

2 [ΓT
1H

T
R ΓT

2H
T
R · · ·ΓT

L1H
T
R]

T . (5.12)
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In order to compute the singular values of ML we note that

(ML)H(ML) =ρ1−rL(ΓH
1 H

H
RHRΓ1 + Γ

H
2 H

H
RHRΓ2 + · · ·+ ΓH

LH
H
CHCΓL),

�ρ1−rLΓH
1 H

H
RHRΓ1, (5.13)

where A � B denotes that A − B is positive-semidefinite. Without loss
of generality we can assume that Γ1 is full-rank. It then follows that the
singular values of ML can be lower bounded as

σi((M
L)H(ML)) ≥ρ1−rLσi(ΓH

1 H
H
RHRΓ1),

.
≥ρ1−rL−µι2(i) . (5.14)

where we have made use of the fact that σmin(Γ1)
.
= ρ0 and where ι2(i),

⌈
i
2

⌉
.

Let QR =ML be the thin QR factorization of the code-channel matrix
ML and r,QHyL, then the equivalent system model in (5.10a) is represen-
ted by

r = Rs+QHwL,

and the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

‖r−Rŝ‖2 , (5.15)

which is then solved by the sphere decoder which recursively enumerates all
candidate vectors ŝ ∈ Sκr within a given sphere of search radius ξ =

√
z log ρ,

for some z > d∗( rL).
To establish an upper bound on the complexity exponent for L-th round

decoding, we note that σi(R) = σi(M
L) and recall from [7, Lemma 1] that

the number of nodes visited at layer-k of the SD is upper bounded as

Nk(µ) ≤
k∏

i=1

[√
k +min{ 2ξ

σi(R)
, 2
√
kρ

rL
2 }
]

,

=
k∏

i=1

[√
k +min{ 2ξ

σi(M)
, 2
√
kρ

rL
2 }
]

,

.
≤ρ

∑k
i=1 min ( rL

2
− 1

2
(1−µι2(i)

),
rL
2 )

+

.

Consequently, the total number of nodes visited by SD is upper bounded as

NSD(µ) =
κ∑

k=1

Nk(µ),

.
≤ρ

∑κ
i=1 (

rL
2
− 1

2
(1−µι2(i)

),
rL
2 )

+

. (5.16)

Following the footsteps of the proof of Theorem 1 in Section 3.2.2, the upper
bound on the complexity exponent for the L-th round decoding of minimum
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delay L-round ARQ schemes achieving d∗(r) can be obtained as the solution
to a constrained maximization problem according to

cred(r),max
µ

nT∑

i=1

min

(
r

nT
− (1− µi),

r

nT

)+

(5.17a)

s.t. I(µ) ≤ d∗(r), (5.17b)

µ1 ≥ · · · ≥ µnT ≥ 0, (5.17c)

where we have made use of the fact that L = nT and rL =
r
L . The solution

to this optimization problem takes the form

cred(r) =
1

nT

[
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

]
,

which for integer multiplexing gain values simplifies to

cred(r) =
1

nT
r(nT − r), for r = 0, 1, · · · , nT .

For the proof to be complete we must now prove that the family of ARQ
schemes, halting policies and lattice designs can indeed achieve the desired
DMT d∗(r). To achieve this we make use of following lemma

Lemma 4. For an i.i.d. regular fading channel, a minimum delay ARQ
scheme with L = nT rounds achieves d∗(r) for all ARQ-compatible, minimum
delay, NVD, rate-1 lattice designs, all intermediate aggressive halting policies
and a sphere decoder with search radius ξ >

√
d∗( rL) log ρ.

The proof for lemma is given in Appendix 5A. In the presence of Lemma 4
and upper bound cred(r), it is direct to see that a minimum delay ARQ
scheme with L = nT rounds achieves d∗(r) with c(r) ≤ cred(r), irrespective
of the ARQ-compatible, minimum delay, NVD, rate-1 lattice design, for any
aggressive intermediate halting policy, and any decoding order policy. This
proves Theorem 13, Proposition 3 and Proposition 4. �

5.6 Proof of Theorem 14

To prove this theorem we first prove Proposition 5. We proceed to consi-
der minimum delay ARQ scheme with L = nT rounds, implemented with
any aggressive intermediate halting policy, any decoding order policy, and a
rate-nR

nT
block-repetition lattice design XARQ,L

C where the (rate-1) block com-
ponent code is drawn from the center of nR × nR perfect codes. Let lattice
design θXARQ,L

C is given by

XARQ,L
C =








X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X







∈ CnT×nT , (5.18)
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where θ2 = ρ
1− r1

nR , and where block component code X ∈ CnR×nR . The L-th
round received signal is given by

YL
C = θHCX

ARQ,L
C +WL

C ,

where θ2 = ρ
1−nT rL

nR , where we have made use of the fact that rL =
r1
nT

. Let

HC =
[

H1 · · · HnT
nR

]

∈ CnR×nT ,

where Hi ∈ CnR×nR , for i = 1, · · · , nT
nR

. After substituting for HC and

XARQ,L
C we get that

YL =θ
[

H1 · · · HnT
nR

]








X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X







+WL

C ,

=θ






H1
...

HnT
nR




X+WL

C ,

=θH̃CX+WL
C ,

where H̃C = [HT
1 · · · HT

nT
nR

]T ∈ CnT×nR .

We observe that the lattice design in (5.18) converts the system into an
equivalent channel H̃C with inverted channel dimensions. It follows that for
this equivalent channel H̃C the system parameters are given by n′T = nR,
n′R = nT , L′ = n′T , T ′ = 1, L′ = n′T and r′L =

nT
nR

rL. Since for the new system
we have n′R ≥ n′T , the upper bound and its achievability can be established
by following the footsteps of the proof of Theorem 13. After making pro-
per substitutions in (5.17) the upper bound on complexity exponent can be
obtained as the solution to a constrained maximization problem according
to

cred(r) = max
µ

nR∑

j=1

(
nT

nR
rL − (1− µj)

)+

s.t. I(µ) ≤ d∗(r),

1 ≥ µ1 ≥ · · · ≥ µnR ≥ 0,

where we have made use of the fact that d∗(r′L.L
′) = d∗(rL.L) = d∗(r). The

solution to this optimization problem takes the form

cred(r) =
1

nR

[
r(nR − ⌊r⌋ − 1) + (nR ⌊r⌋ − r(nR − 1))+

]
,
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which is a piecewise linear function that, for integer multiplexing gain values,
takes the form

cred(r) =
1

nR
r(nR − r), for r = 0, 1, · · · , nR.

This proves Proposition 5 and Theorem 14. �

5.7 Proof of Theorem 15 and Corollary 15a

We first establish necessary conditions for ARQ signaling to achieve DMD
optimality over nT ×nR (nR ≥ nT ) MIMO-ARQ channel. Any L round ARQ
signaling scheme that achieves optimal DMD performance must satisfy two
conditions

Condition 1 : To achieve maximum diversity gain of nT .nR, the total
number of channel uses needs to be greater than or equal to nT , i.e., LT ≥ nT ,
where T is the number of channel uses in one ARQ round.

Condition 2 : For a full-rate lattice design with nR ≥ nT , we have that
κ ≥ 2nTLT ≥ 2n2

T .
It can be seen from (3.9) that the complexity of sphere decoder

NSD =
κ∑

k=1

Nk

increases with κ. Also, for L-th round decoder which operates over a full-
rate DMT optimal code XARQ,L

C the complexity exponent in (3.52) indicates
that complexity increases with the number of channel uses LT . Thus, tightest
upper bound on the complexity exponent is established by considering LT =
nT and κ = 2n2

T .
Having established the necessary parameters κ and L we proceed to prove

the upper bound in the Theorem. In order to establish decoding complexity
for the first round decoding we proceed with the vectorized real valued re-
presentation of ℓ-th round signal model in (5.1), which takes the form

yℓ =
√
ρHℓxℓ +wℓ, (5.19)

where

Hℓ = IℓT ⊗HR ∈ R2nRℓT×2nT ℓT ,HR =

[
Re{HC} −Im{HC}
ImHC} Re{HC}

]

,

xℓ = (xT1 , · · · ,xTT )T ∈ R2nT ℓT with xt = [Re{Xt,C}T, Im{Xt,C}T]T,

wℓ = (wT
1 , · · · ,wT

T )
T ∈ R2nRℓT with wt = [Re{Wt,C}T, Im{Wt,C}T]T,

yℓ = (yT1 , · · · ,yTT )T ∈ R2nRℓT with yt = [Re{Yt,C}T, Im{Yt,C}T]T,
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for t = 1, · · · , ℓT , where Xt,C , Yt,C and Wt,C are t-th column of XARQ,ℓ
C ,

Wℓ
C and Yℓ

C respectively.
For the lattice codes described in Chapter 2 and ℓ-th round multiplexing

gain rℓ, the vectorized codewords take the form

xℓ = ρ
−rℓTℓ

κ Gs, s ∈ Sκr ,Zκ ∩ ρ
rℓTℓ
κ R, (5.20)

where Tℓ = ℓT , and where R ⊂ Rκ is a natural bijection of the shaping region
R
′
that preserves the code, and contains the all zero vector 0. For simplicity

we consider R,[−1, 1]κ to be a hypercube in Rκ, although this could be
relaxed. We note that for ℓ-th ARQ round rℓTℓ = rT for ℓ = 1, · · · , L, where
r is the effective multiplexing gain of ARQ signaling and we will later argue
that for the DMD optimal scheme limρ→∞ r = r1. Combining (5.19) and
(5.20) yields the equivalent system model

yℓ =Mℓs+wℓ, (5.21a)

where Mℓ,ρ
1
2
− rT

κ HℓG ∈ R2nRℓT×κ. (5.21b)

For the complexity analysis we need a square and full-rank generator
matrix (see Section 3.2.2), we proceed to consider a new generator matrix G′

obtained by adding κ−2nT ℓT linearly independent rows toG, such thatG′ ∈
Rκ×κ is full-rank and square matrix. This substitution calls for a new channel
matrix H′ ∈ Rn×κ obtained by appending κ − 2nT ℓT columns containing
zeros to Hℓ, such that the code-channel matrix M remains unaltered. The
combined code-channel matrix then takes the form

Mℓ = ρ
1
2
− rT

κ H′G′. (5.22)

As discussed before, to implement ML-based SD for first L − 1 rounds
decoder needs to perform MMSE-preprocessing. Let QℓRℓ = M̃ℓ be the thin

QR factorization of the MMSE-preprocessed code-channel matrix M̃ℓ,

[
Mℓ

αI

]

,

where α = ρ
−rT
κ , then (5.21a) yields

rℓ = Rℓs+ w̃ℓ,

where rℓ = (Rℓ)−H(Mℓ)Hyℓ, where (Rℓ)H(Rℓ) = (Mℓ)H(Mℓ) + α2I, and
where the equivalent noise term

w̃ℓ = −α2(Rℓ)−Hs+ (Rℓ)−H(Mℓ)Hwℓ.

Consequently, the ML decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

∥
∥
∥rℓ −Rℓŝ

∥
∥
∥

2
, (5.23)
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which is then solved by the sphere decoder which recursively enumerates all
candidate vectors ŝ ∈ Sκr within a given sphere of radius ξ =

√
z log ρ, for

some z > d∗( rL).

Following the similar approach as in Section 3.2.2, for µi,− log σi(H
H
CHC)

log ρ ,
for i = 1, · · · , nT , it follows that

σi(R
ℓ) = σi(M̃

ℓ) =
√

α2 + σi((Mℓ)H(Mℓ)),

which results in

σi(R
ℓ)

.
≥
{

ρ
−rT
κ for i = 1, · · · , κ− 2nT ℓT,

ρ
−rT
κ

+ 1
2
(1−µι2ℓT (i−(κ−2nT ℓT )))

+

for i = κ− 2nT ℓT + 1, · · · , κ.
(5.24)

where we have made use of the 2ℓT multiplicity of the singular values of
Hℓ and the fact that σmin(G

′)
.
= ρ0 and where ι2ℓT (i),

⌈
i

2ℓT

⌉
. We recall

from (2.14) that the total number of the visited nodes for any given channel
realization µ = (µ1, · · · , µm) takes the form

NSD(µ) =
κ∑

k=1

Nk(µ),

where from [7, Lemma 1]

Nk(µ) ≤
k∏

i=1

[√
k +min{ 2ξ

σi(Rℓ
k)
, 2
√
kρ

rT
κ }
]

.

From the interlacing property of singular values of sub-matrices [53] we have
that σi(R

ℓ
k) ≥ σi(R

ℓ). It follows that

Nk(µ) ≤
k∏

i=1

[√
k +min

{
2ξ

σi(Rℓ)
, 2
√
kρ

rT
κ

}]

.

Consequently, we have that

NSD(µ) ≤
κ∑

k=1

{
k∏

i=1

[√
k +min

{
2ξ

σi(Rℓ)
, 2
√
kρ

rT
κ

}]}

,

.
≤ρ(1−

2nT ℓT

κ
)rT+

∑2nT ℓT
i=1 min ( rTκ −

1
2
(1−µι2ℓT (i))

+, rT
κ )

+

,

=ρ(1−
2nT ℓT

κ
)rT+ℓT

∑nT
j=1 (

2rT
κ
−(1−µj)

+)
+

, (5.25)

where we have made use of the fact that

min

(
2rT

κ
− (1− µj)

+,
2rT

κ

)+

=

(
2rT

κ
− (1− µj)

+

)+

.
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After substituting κ = 2n2
T and LT = nT in (5.25) we have that

NSD(µ)
.
≤ ρ

(L−ℓ) rnT
L2 +

ℓnT
L

∑nT
j=1

(

r
LnT

−(1−µj)
+
)+

.

Recalling that first round decoding is performed iff σ1(H
H
CHC) > ρ−ǫ for

some ǫ > 0, for a given L the upper bound on the complexity exponent for
first round (c1(r)) can be obtained as the solution to a constrained maximi-
zation problem according to

c1(r) := max
{µ1<ǫ, µ1≥···≥µnT

≥0}
(L− 1)

rnT

L2
+

nT

L

nT∑

j=1

(
r

LnT
− (1− µj)

+

)+

,

which simplifies to take the form

c1(r) = (L− 1)
rnT

L2
.

For a given L, the upper bound on the complexity exponent of the L-
th round decoder (cL(r)) which operates over a full-rate DMT optimal code
XARQ,L

C follows from (3.52). After making proper substitutions for total num-
ber of channel uses LT and effective multiplexing gain rL = r

L , the upper
bound takes the form

cL(r) :=
1

L

[

r
(

nT −
⌊ r

L

⌋

− 1
)

+
(

LnT

⌊ r

L

⌋

− r(nT − 1)
)+
]

,

which is a piece-wise linear function that, for multiplexing gain values equal
to the integer multiples of L, takes the form

cL(r) =
rnT

L2

(

L− r

nT

)

.

The upper bound on the overall complexity exponent of ARQ signaling then
takes the form

cDMD(r) = max (c1(r), cL(r)).

It turns out that for all feasible values of L such that L|nT , cL(r) ≥ c1(r).
It then follows that

cDMD(r) = cL(r).

For the proof to be complete we must now prove that the family of ARQ
schemes, halting policies and lattice designs can indeed achieve the desired
DMT d∗(r/L). To achieve this we make use of following lemma

Lemma 5. For an i.i.d. regular fading channel, an L rounds ARQ scheme
over achieves d∗(r/L) for all ARQ-compatible, minimum delay, NVD, full-
rate lattice designs, all intermediate aggressive halting policies and a sphere
decoder with search radius ξ >

√
d∗( rL) log ρ.
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The proof for lemma is given in Appendix 5B. In the presence of Lemma 5
and upper bound it is direct to see that an L-round (L|nT) MIMO ARQ
scheme achieves d∗(r/L) with c(r) ≤ cdmd(r), for any ARQ-compatible
square (LT = nT) NVD lattice design, for a search radius ξ >

√

d∗( r
nT
) log ρ,

for any aggressive intermediate halting policy, and any decoding order policy.
This proves Proposition 6 and Theorem 15. �

For L = nT, we have that

c1(r) = cL(r) =

(

1− 1

nT

)

r.

It then follows that

cDMD(r) =

(

1− 1

nT

)

r.

This proves Corollary 15a. �
Note on decoding policy : We here note that the statement of Theorem 15

also holds for a decoding policy where decoding is performed after each
ARQ round instead of decoding only after first and last round. For this
decoding policy, the decoder of intermediate rounds ℓ = 1, · · · , L− 1 should
apply aggressive halting strategy that allows decoding with ACK iff the
minimum singular value of channel σ1(HH

CHC) > ρ−ǫ for some ǫ > 0 and
NACK otherwise. For L-th round the decoding is performed as before, i.e.,
whenever channel is not is outage. For intermediate rounds the complexity
upper bound follows from (5.25), for a given L this upper bound on the
complexity exponent for ℓ-th round can be obtained as the solution to a
constrained maximization problem according to

cℓ(r) := max
{µ1<ǫ, µ1≥···≥µnT

≥0}
(L− ℓ)

rnT

L2
+

ℓnT

L

nT∑

j=1

(
r

LnT
− (1− µj)

+

)+

,

which simplifies to take the form

cℓ(r) = (L− ℓ)
rnT

L2
.

We can easily see that c1(r) > c2(r) > · · · > cL−1(r). Consequently, the
overall complexity exponent of ARQ signaling remains unchanged. The DMD
achievability again holds directly from Lemma 5.

5.8 Proof of Proposition 7

The DMD optimality of any L > nT ARQ-compatible, T = nT, full-rate
NVD lattice design, any aggressive intermediate halting policy, any decoding
order policy, and given a search radius ξ >

√
d∗( rL) log ρ is direct from [36,
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Proof of Theorem 9] and Lemma 5. In order to prove the claim of proposition
we now look to establish the upper bound on the complexity exponent. The
full-rate DMD optimal lattice designs with L ARQ rounds transmit κ =
2Ln2

T integers in each round of T = nT channel uses.
In order to establish complexity cost of the first round decoding we follow

the footsteps of the proof of Theorem 15. Following from (5.25) with κ =
2Ln2

T and T = nT , the first round decoding the total number of visited nodes
is given by

NSD(µ)
.
≤ ρ

(1− 1
L
)rnT+nT

∑nT
j=1

(

r
LnT

−(1−µj)
+
)+

, (5.26)

Recalling that first round decoding is performed iff σ1(H
H
CHC) > ρ−ǫ for

some ǫ > 0, for a given L the upper bound on the complexity exponent for
first round can be obtained as the solution to a constrained maximization
problem according to

c1(r), max
{µ1<ǫ, µ1≥···≥µnT

≥0}
(L− 1)

rnT

L
+ nT

nT∑

j=1

(
r

LnT
− (1− µj)

+

)+

,

which simplifies to take the form

c1(r) =

(

1− 1

L

)

rnT .

For a given L, the upper bound on the complexity exponent of the L-th
round decoder which operates over a full-rate DMT optimal code XARQ,L

C

can be obtained as the solution to a constrained optimization problem

cL(r) = max
µ

LnT

nT∑

j=1

min

(
r

LnT
− (1− µj),

r

LnT

)+

s.t.
nT∑

j=1

(1− µj)
+ ≥ r

L
,

µ1 ≥ · · · ≥ µnT ≥ 0.

The solution to this optimization problem takes the form

cL(r) = r
(

nT −
⌊ r

L

⌋

− 1
)

+
(

LnT

⌊ r

L

⌋

− r(nT − 1)
)+

, (5.27)

which is a piece-wise linear function that, for multiplexing gain values equal
to the integer multiples of L, takes the form

cL(r) = r
(

nT −
r

L

)

.
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For L ≥ nT , the complexity exponent cL(r) simplifies to take the form

cL(r) =

(

1− 1

nT

)

rnT .

The upper bound on overall complexity exponent is given by

cDMD(r) = max (c1(r), cL(r)),

which for the case of L ≥ nT , takes the form

cDMD(r) =

(

1− 1

L

)

rnT .

Furthermore, following the footsteps of the proof of Proposition 1 it can be
shown that irrespective of ARQ-compatible, T = nT, full-rate NVD lattice
design, any aggressive intermediate halting policy, and given a search radius
ξ >

√
d∗( rL) log ρ there exists one fixed decoding order for which upper

bound cDMD(r) is met. This proves Proposition 7.�

5.9 Proof of Proposition 8

The antenna selection algorithm in [11] guarantees that Nr singular va-
lues of the Nr ×Nr pruned system are exponentially equal to the Nr largest
singular values of the full system, i.e.,

σ̃k
.
= σk+(nT−Nr), k = 1, · · · , N, (5.28)

where σk denotes singular values for the full system and σ̃k denotes singu-
lar values for the pruned system. The DMT performance of pruned system
matches with the optimal DMT of full system up to multiplexing gain thre-
shold P , where

P = argmin
p

(nR − p)(nT − p)

N − p
,

subject to 0 ≤ P ≤ Nr − 1, p ∈ Z.

For any given operating multiplexing gain r, the complexity exponent is
minimized by selecting the smallest number Nr such that P = ⌈r⌉, i.e.,

Nr = arg min
N ′∈{1,··· ,nT }

[(

arg min
p∈{0,··· ,N ′−1}

(nT − p)(nR − p)

N ′ − p

)

= ⌈r⌉
]

.

It is shown in [11, Theorem 4.1] that Nr × Nr achieve optimal DMT d∗(r)
with lattice designs of [14] with T = Nr. In these settings of the complexity
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exponent of ML-based SD with fixed decoding order is given by (cf. Theo-
rem 5)

cas(r) = max
µ

Nr

Nr∑

j=1

min

(
r

Nr
− (1− µ(j+nT−Nr)),

r

Nr

)+

s.t.
nT∑

j=1

µj ≤ nT − r,

µ1 ≥ · · · ≥ µnT ≥ 0. (5.29)

Solution to this optimization problem takes the form

cas(r) =
(
r(Nr − ⌊r⌋ − 1) + (Nr⌊r⌋ − r(Nr − 1))+

)
. (5.30)

Furthermore, following the footsteps of the proof of Proposition 1 it can be
shown that there exists at least one fixed decoding order for which upper
bound cas(r) is met. Also, from [7, Theorem 5] it follows that ML-based
decoding with the natural decoding order meets the upper bound cas(r).
This proves Proposition 8. �

Appendix 5A : Proof of Lemma 4

To prove DMT optimality for ARQ-compatible, minimum delay, NVD,
rate-1 lattice designs with intermediate aggressive halting policies and a
sphere decoder with search radius ξ2 = z log ρ, for some z > d∗( rL), it is
sufficient to show
• that with high probability there will be just a single ARQ round, i.e.,
P
(
A1

) .
= ρ−T, where T > 0 ∀ 0 ≤ r ≤ nT ,

• the error probability of the first decoder applied to the task of ML
sphere decoding the ST code XARQ,1

C is no larger than that incurred
by the ML sphere decoder applied to the task of decoding the ST code
XARQ,L

C , i.e., P (r)ARQ,1

.
≤P (rL)ARQ,L, and

• the full-length ST code XARQ,L
C in L-th round achieves diversity gain

dARQ,L(rL) = d∗(rL.L) = d∗(r) with rL =
r
L .

Towards proving the first condition above, we recall that in the presence
of an aggressive intermediate halting policy, the decoder of first round sends
NACK iff σ1(H

H
CHC) ≤ ρ−ǫ for some ǫ > 0 and ACK otherwise. Thus, the

probability of a NACK being received at the end of the first round is given
by

P
(
A1

)
= P

(
σ1(H

H
CHC) ≤ ρ−ǫ

)
.
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For i.i.d. regular fading channel HC , from [70] it follows that

P
(
σ1(H

H
CHC) ≤ ρ−ǫ

) .
≤

∫

A

ρ−I(µ) .
= ρ−I(µ

∗),

where asymptotic equality comes from Varadhan’s lemma [71], where 8

I(µ) =

nT∑

j=1

(nR − nT + 2j − 1)µi +
nRnT t

2
µnT ,

A = {µ | µ1 ≥ ǫ, µi ≥ 0, for i = 2, · · · , nT },
and where

µ∗ = arg inf
A

I(µ).

It follows that I(µ∗) = (nR − nT + 1)ǫ and consequently, we have that

P
(
A1

) .
≤ ρ−(nR−nT+1)ǫ.

It proves that P
(
A1

) .
≤ ρ−T with T > 0 ∀ 0 ≤ r1 ≤ nT . It also implies that

limρ→∞ r = r1. It is in the proof of this condition that we make use of the
fact that communication takes place over i.i.d. regular fading statistics, rest
of the proof holds irrespective of the fading statistics.

For second condition we need to show that P (r)ARQ,1

.
≤P (rL)ARQ,L. For

first decoder with aggressive halting policy it follows that

d2e(HC ,∆X
ARQ,1
C ) =‖θHC∆X

ARQ,1
C ‖2,

≥σ1(HH
CHC)‖θ∆XARQ,1

C ‖2,
.
≥ρ1−

r
nT
−ǫ
,

where we have made use of the fact that ‖θ∆XARQ,1
C ‖2

.
≥ ρ

1− r
nT (cf. [36,

Proof of Theorem 5]). Note that δ := 1− r
nT
− ǫ > 0 for 0 ≤ r ≤ nT − ǫ. In

the limit ǫ → 0 whenever first decoder sends ACK the minimum euclidean
distance d2e(HC ,∆X

ARQ,1
C ) > ρδ, δ > 0 for 0 ≤ r ≤ nT . This implies that

whenever ACK is sent only one received codeword can be inside the search
sphere of radius ξ =

√
z log ρ. Thus, from the definition of first decoder it is

clear that error probability of the first decoder is the probability of the event
that
• θHCX

ARQ,1
C is not included in the search sphere of radius ξ centred

around Y 1
C , or

• θHCX̂
ARQ,1
C is the unique matrix included in the sphere for some er-

roneous codeword θX̂ARQ,1
C .

8. Recall that parameter t was introduced as a parameter that regulates the near zero
behavior of the random variable.
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Now P (r)ARQ,1 can be upper-bounded by the probability that θXARQ,1
C was

transmitted and the additive noise was such that θHCX
ARQ,1
C is not in the

search sphere of the corresponding received matrix Y 1
C . We thus have

P (r)ARQ,1 ≤ P
(
‖W1

C‖2F > ξ2
)
.

We note that search radius ξ2 = z log ρ, for some z > d∗( rL), it then follows
that

P
(
‖W1

C‖2F > ξ2
)
<̇ ρ−d

∗( r
L
)

which implies that probability of excluding the transmitted codeword from
the search is exponentially smaller than probability of error for the L-th
round, i.e.,

P (r)ARQ,1 <̇ P (rL)ARQ,L .

To satisfy third condition we prove that dARQ(rL) ≥ d∗(r) by proving
that P (rL)ARQ,L

.
≤ ρ−d

∗(rL.L). For this purpose we proceed to consider the
pairwise error probability (PEP) of the decoder when the channel is not
in outage for rate r1. Let ν1 ≥ · · · ≥ νnT be the ordered eigenvalues of
(∆XARQ,L

C )(∆XARQ,L
C )H . then using the mismatched eigenvalue bound [14]

we have that

d2e(HC ,∆X
ARQ,L
C ) =θ2Tr(HC

(

∆XARQ,L
C

)(

∆XARQ,L
C

)H
HH

C ),

.
≥θ2

nT∑

i=1

ρ−µiνi,

≥θ2
nT∑

i=nT−J
ρ−µiνi, 1 ≤ J < nT ,

(a)
.
≥θ2





nT∏

i=nT−J
ρ−µi





1
J+1





nT∏

i=nT−J
νi





1
J+1

,

(b)
.
≥θ2





nT∏

i=nT−J
ρ−µi





1
J+1 (

1

ρ(nT−J−1)rL

) 1
J+1

,

=ρ
J+1−nT rL−

∑nT
i=nT−J

µi

J+1 , (5.31)

where (a) follows from arithmetic mean-geometric mean inequality and (b)
follows from the facts that the product of the eigenvalues is equal to the
determinant, the non-vanishing determinant property which implies that
det{(∆XARQ,L

C )(∆XARQ,L
C )H}

.
≥ ρ0 and the fact that the eigenvalues of a

matrix are upper bounded by the trace. We will now show that if the block
fading channel (HC) is not in outage for rate r1, that for some J , 1 ≤ J < nT ,
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J +1−nT rL−
∑nT

i=nT−J µi > 0. If the block fading channel is not in outage
for rate r1 + ǫ, ǫ > 0, we must have

log det{InT + ρHH
CHC} ≥(LrL + ǫ) log ρ,

⇒
nT∑

i=1

(1− µi)
+ ≥LrL + ǫ.

Let nT − J be the smallest index i for which µi < 1, then for L = nT we
have that

nT∑

i=nT−J
(1− µi) ≥nT rL + ǫ,

⇒ J + 1− nT rL −
nT∑

i=nT−J
µi ≥ǫ.

By taking the limit as ǫ → 0 we see that the probability of error is negli-
gible in no outage region of HC . Consequently, from (5.13) probability of
error is negligible in no outage region of ML. Again from (5.13) the outage
probability for the channel ML can be upper bounded as

P (O)
.
≤P

(
log det{InT + ρHH

CHC} ≤ LrL log ρ
)
,

.
=ρ−d

∗(LrL).

It follows that P (rL)ARQ,L

.
≤ ρ−d

∗(rL.L). Thus the lattice design XARQ,L
C

achieves diversity gain

dARQ,L(rL) ≥ d∗(rL.L) = d∗(r).

This proves Lemma 4. �

Appendix 5B : Proof of Lemma 5

To prove DMD optimality for ARQ-compatible, minimum delay, NVD,
full-rate lattice designs with intermediate aggressive halting policies and a
sphere decoder with search radius ξ2 = z log ρ, for some z > d∗( rL), it is
sufficient to show
• that with high probability there will be just a single ARQ round, i.e.,
P
(
A1

) .
= ρ−T, where T > 0 ∀ 0 ≤ r ≤ nT ,

• the error probability of the first decoder applied to the task of ML
sphere decoding the ST code XARQ,1

C is no larger than that incurred
by the ML sphere decoder applied to the task of decoding the ST code
XARQ,L

C , i.e., P (r)ARQ,1

.
≤P (rL)ARQ,L, and
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• the full-length ST code XARQ,L
C achieves diversity gain dARQ,L(rL) =

d∗( rL).
Towards proving the first condition above, we recall that in the presence

of an aggressive intermediate halting policy, the decoder of first round sends
NACK iff σ1(H

H
CHC) ≤ ρ−ǫ for some ǫ > 0 and ACK otherwise. Thus, the

probability of a NACK being received at the end of the first round is given
by

P
(
A1

)
= P

(
σ1(H

H
CHC) ≤ ρ−ǫ

)
.

For i.i.d. regular fading channel HC , from [70] it follows that

P
(
σ1(H

H
CHC) ≤ ρ−ǫ

) .
≤

∫

A

ρ−I(µ) .
= ρ−I(µ

∗),

where asymptotic equality comes from Varadhan’s lemma [71], where

I(µ) =

nT∑

j=1

(nR − nT + 2j − 1)µi +
nRnT t

2
µnT ,

A = {µ | µ1 ≥ ǫ, µi ≥ 0, for i = 2, · · · , nT },
and where

µ∗ = arg inf
A

I(µ).

It follows that I(µ∗) = (nR − nT + 1)ǫ and consequently, we have that

P
(
A1

) .
≤ ρ−(nR−nT+1)ǫ.

It proves that P
(
A1

) .
≤ ρ−T with T > 0 ∀ 0 ≤ r1 ≤ nT . It also implies that

limρ→∞ r = r1. It is in the proof of this condition that we make use of the
fact that communication takes place over i.i.d. regular fading statistics, rest
of the proof holds irrespective of the fading statistics.

For second condition we need to show that P (r)ARQ,1

.
≤P (rL)ARQ,L. For

first decoder with aggressive halting policy it follows that

d2e(HC ,∆X
ARQ,1
C ) =‖θHC∆X

ARQ,1
C ‖2,

≥σ1(HH
CHC)‖θ∆XARQ,1

C ‖2,
.
≥ρ1−

r
nT
−ǫ
,

where we have made use of the fact that ‖θ∆XARQ,1
C ‖2

.
≥ ρ

1− r
nT (cf. [36,

Proof of Theorem 5]). Note that δ := 1− r
nT
− ǫ > 0 for 0 ≤ r ≤ nT − ǫ. In

the limit ǫ → 0 whenever first decoder sends ACK the minimum euclidean
distance d2e(HC ,∆X

ARQ,1
C ) > ρδ, δ > 0 for 0 ≤ r ≤ nT . This implies that

whenever ACK is sent only one received codeword can be inside the search
sphere of radius ξ =

√
z log ρ. Thus, from the definition of first decoder it is

clear that error probability of the first decoder is the probability of the event
that
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• θHCX
ARQ,1
C is not included in the search sphere of radius ξ centered

around Y 1
C , or

• θHCX̂
ARQ,1
C is the unique matrix included in the sphere for some er-

roneous codeword θX̂ARQ,1
C .

Now P (r)ARQ,1 can be upper-bounded by the probability that θXARQ,1
C was

transmitted and the additive noise was such that θHCX
ARQ,1
C is not in the

search sphere of the corresponding received matrix Y 1
C . We thus have

P (r)ARQ,1 ≤ P
(
‖w̃1‖2 > ξ2

)
.

where w̃1 = −α2(R1)−Hs+ (R1)−H(M1)Hw1, where w1 is the real valued
representation of noise vector W1

C . Let
[
Q1

1

Q1
2

]
R1 = Q1R1 ∈ R(2nRT+κ)×κ, (5.32)

where Q1
1 = (R1)−1(M1) ∈ Rn×m and Q1

2 = αr(R
1)−1 ∈ Rm×m, then it

follows that

w̃1 = −α2(R1)−Hs+ (R1)−H(M1)Hw1

= −αr(Q
1
2)

Hs+ (Q1
1)

Hw1.

Consequently we calculate

P
(
‖w̃1‖ > ξ

)
≤ P

(
{‖ − αr(Q

1
2)

Hs‖+ ‖(Q1
1)

Hw1‖} > ξ
)
,

(a)
= P

({
‖ − αr(Q

1)H
[
0
s

]
‖+ ‖(Q1)H

[
w1

0

]
‖
}

> ξ

)
,

≤ P

({
sup
s∈Sκr

‖ − αrs‖+ ‖w1‖
}

> ξ

)
,

(b)

≤ P
(
{K + ‖w1‖} > ξ

)
,

= P
(
‖w1‖ > {ξ −K}

)
,

(c)

≤ P
(
‖w1‖2 > z1 log ρ

)
,

<̇ ρ−d
∗( r

L ).

where (a) follows from (5.32), where the inequality in (b) follows for some
fixed K > 0 independent of ρ such that K ≥ sups∈Sκr ‖ − αrs‖, where the
inequality in (c) follows for some arbitrary z > z1 > 0 independent of ρ such
that (ξ−K)2 ≥ z1 log ρ and where the last asymptotic inequality follows for
some z1 > d∗( rL) > 0.

Thus, the probability of excluding the transmitted codeword from the
search is exponentially smaller than probability of error for the L-th round,
i.e.,

P (r)ARQ,1 <̇ P (rL)ARQ,L .
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Consequently, it follows that the degradations caused by MMSE-preprocessing
in first round are not visible in the overall performance.

For third condition we note that the L-th round code is DMT optimal
and is operating with effective multiplexing gain rL. It then follows that
dARQ,L(rL) = d∗(rL) which implies that dARQ,L(rL) = d∗( rL). This proves
Lemma 5. �



Chapter 6

Complexity analysis for

multiuser, cooperative and

bidirectional networks

The work in this chapter is preliminary. We here present preliminary work
on extending the rate-reliability-complexity analysis to simple instances of
the multiple access, relay, and bidirectional channels, where again we iden-
tify the computational reserves that guarantee a DMT optimality, as well
as address user/relay selection criteria and communication protocols that
provide improved joint reliability-complexity performance in the presence of
computational constraints.

We begin with the multiple access channel (MAC).

6.1 Multiple Access Channel

The work considers the symmetric MAC with K single-antenna transmit-
ters and a receiver having nR antennas shown in Fig. 6.1. We consider that
each user operates at a multiplexing gain r, and that the receiver employs
a joint ML (or joint lattice) decoder. The emphasis on joint decoders stems
from their DMT optimality for symmetric MAC (cf. [72,73]). These joint ML
or lattice decoders are implemented as bounded search sphere decoder (SD)
algorithms with a search radius ξ :=

√
z log ρ, for a properly chosen z > 0,

and where ρ denotes the signal to noise ratio.
In order to establish complexity requirements for the symmetric MAC,

we quickly recall that the optimal DMT performance of the MAC system

133
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Figure 6.1 – Symmetric multiple access channel with K-users

under consideration is given by (cf. [72])

d∗mac(r) =

{
nR(1− r) for r ≤ nR

K+1 ,

d∗(Kr) for nR
K+1 < r ≤ nR

K ,
(6.1)

where d∗(r) denotes the optimal DMT of K ×nR channel. We note that the
DMT region d∗mac(r) can be divided into two regimes, which are referred to
as the lightly-loaded regime (r ≤ nR

K+1) where DMT is independent of multi-
user interference, and the heavily-loaded regime ( nR

K+1 < r ≤ nR
K ) where

specific lattice designs are required to achieve the DMT optimality (cf. [72]).
For K < nR, the MAC system always stays in the lightly loaded regime,
and the DMT performance of the MAC is the same as if only a single user
is active ; hence our interest is in the case of K ≥ nR, which we henceforth
consider.

We focus on establishing upper bounds on the complexity exponent that
guarantees DMT optimal ML-based (or lattice-based) decoding. This will
be achieved by considering specific codes, decoders and halting policies, as
these are presented in upcoming Proposition 9. It is interesting to note that
for some ordering policies, these bounds are tight. The following holds for
i.i.d. Rayleigh fading statistics.

Theorem 16. For the K × nR (K ≥ nR) MAC, the minimum, over all
lattice designs and halting and decoding order policies, complexity exponent
c(r) required to achieve the optimal DMT d∗mac(r), is upper bounded as

c(r) ≤ cmac(r) =

{
cv(r) for r ≤ nR

K+1 ,

cf (r) for nR
K+1 < r ≤ nR

K ,
(6.2)
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where

cv(r) = max
µ

(K − nR)r +

nR∑

i=1

(
r − (1− µi)

+
)+

s.t.
nR∑

i=1

(K − nR + 2i− 1)µi ≤ nR(1− r),

µ1 ≥ · · · ≥ µnR ,

where

cf (r) = (K − nR) rK0

+K0

(
r(nR − ⌊Kr⌋ − 1) + (⌊Kr⌋ − r(K − 1))+

)
,

which is a piece-wise linear function that, for r = 0, 1
K , · · · , nR

K , takes the
form

cf (r) = K0Kr(1− r),

and where K0 = K for K odd and K0 = K + 1 for K even.

Proposition 9. The above described bound cmac(r) is sufficient to achieve
the optimal DMT d∗mac(r), with uncoded QAM symbols for r ≤ nR

K+1 , lattice
designs given in [73] for nR

K+1 < r ≤ nR
K , given a sphere decoder with a search

radius ξ >
√
d∗mac(r) log ρ, a decoding halting policy that halts decoding if

Nmax ≥ ρx for x > cmac(r), and any decoding order policy. Furthermore
there exists a fixed decoding order policy for which the above described bound
is also necessary.

The proofs for Theorem 16 and Proposition 9 are presented in Appendix
6A. To provide more meaningful insights regarding the upper bound presen-
ted in Theorem 16, we present examples for two specific cases with nR = 1
and nR = K.

Example 21. For the specific case of nR = 1, the bound in (6.2) takes the
simple form

cmac(r) =

{
(K − 1)r for r ≤ 1

K+1 ,

(K − 1)K0r for 1
K+1 < r ≤ 1

K .

Figure 6.2 describes the upper bounds for the K = 4 and K = 5 user cases
with single antenna receiver (nR = 1).
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Figure 6.2 – Complexity bounds for K-user MAC with nR = 1

Example 22. For the specific case of nR = K, the optimal DMT of (6.1)
can be achieved by V-BLAST (cf. [72]). The complexity exponent for this
case takes the form (cf. (6.18))

cmac(r) =r
⌊√

K(1− r)
⌋

+


r − 1 +

K(1− r)− (
⌊√

K(1− r)
⌋
)2

2
⌊√

K(1− r)
⌋
+ 1




+

.

Figure 6.3 describes the upper bounds for the K = 3 and K = 4 user cases
with nR = K.
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Figure 6.3 – Complexity exponent for K-user MAC with nR = K.

6.2 Relay channels with orthogonal amplify-and-
forward protocol (OAF)

We consider a cooperative network with a source, n − 1 relays and a
destination, each having single transmit/receive antenna as shown in the
Fig. 6.4. In this work we establish very early and preliminary results on the
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Figure 6.4 – System model for relay channel

complexity of achieving the optimal DMT of a cooperative network with a
source, n − 1 relays and a destination, each having single transmit/receive
antenna and communicating over i.i.d. Rayleigh fading. This is done only for
the orthogonal amplify-and-forward (OAF) protocol. For DMT optimal OAF
protocol the source transmits a signal to the relays and to the destination for
n channel uses. Over the next n− 1 channel uses, each relay applies a linear
transformation to the received signal and simultaneously transmits it to the
destination, while source remains silent. The orthogonal amply-and-forward
protocol is shown in Fig. 6.5. The optimal DMT of OAF protocol when the

Figure 6.5 – System model for relay channel

number of relay is n− 1 is given by

doaf (r) =

{
n
(
1− (2n−1)r

n

)
, for 0 ≤ r ≤ 1

2 ,

1− r, for 1
2 < r ≤ 1.

The upper bound on complexity is described below, and as before it holds
for ML-based decoding and for regularized lattice decoding. The following
holds for i.i.d. Rayleigh fading statistics.

Proposition 10. The minimum, over all lattice designs and halting and de-
coding order policies, complexity exponent c(r) required to achieve the optimal
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DMT doaf (r), is upper bounded as

c(r) ≤ coaf (r) =
2n− 1

n
r(n− ⌊(2n− 1)r⌋ − 1)

+

(
⌊(2n− 1)r⌋ − 2n− 1

n
r(n− 1)

)+

,

which is a piecewise linear function that, for r = 0, 1
2n−1 , · · · , n

2n−1 , takes the
form

coaf (r) = (2n− 1)r(1− 2n− 1

n
r).

The above described bound coaf (r) is sufficient to achieve the optimal DMT
doaf (r), with lattice designs and OAF protocol of [34], given a sphere deco-
der with a search radius ξ >

√
doaf (r) log ρ, a decoding halting policy that

halts decoding if Nmax ≥ ρx for x > coaf (r), and any decoding order policy.
Furthermore there exists a fixed decoding order policy for which the above
described bound is also necessary.

The proof for Proposition 10 is presented in Appendix 6B. The com-
plexity exponent for single and two relay case in shown in Fig. 6.6.
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Figure 6.6 – Complexity performance of OAF

It is clear that decoding complexity scales exponentially with the number
of relay used in communication. In the presence of complexity constraints
a subset of relays can be selected (say set of n∗ relays) to keep decoding
complexity within the allocated computational resources while achieving the
optimal DMT of smaller relay network. A schematic depicting the relay se-
lection scheme is shown in in Fig. 6.7.
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Figure 6.7 – Relay cluster selection in the presence of run-time constraints

6.3 Two-way relay channel (TRC)

In this section we demonstrate how reliability-complexity measure could
be utilized as a unified performance metric to compare worth of different
communication protocols over a non-separated two-way relay channel (TRC).
In a TRC communication nodes exchange messages with cooperation of an
intermediate relay node employing intelligent two-way relaying strategies
[74], [75]. The fundamental advantage of TRC over classical one-way relay
channels is that the duplexing loss due to half-duplex constraint (a node
cannot transmit and receive simultaneously) can be avoided.

We consider a TRC with an asymmetric fading channel model, which
corresponds to a very pertinent communication scenario where source-relay
links are statistically different from the direct link between sources. In our
channel model, the source relay links are i.i.d. Rayleigh distributed but the
direct link between sources is left more general as i.i.d. Nakagami-m (c.f. [76])
distributed (Nakagami-m includes Rayleigh for m = 1). We refer to this
channel model as a non-separated two-way relay channel (ns-TRC) because
of existence of direct link between sources. This model is more general than
many TRC scenarios considered in previous works (c.f. [77], [78], [79], [80],
[81]). We assume that all the channels are frequency flat, quasi-static, and
they are all independent of each other. We assume perfect channel state
information (CSI) at the receiver (CSIR) of each link, but no CSI at the
transmitters (CSIT).

The system model consists of two source nodes A and B who want to
exchange information in the presence of an assisting relay node R as shown
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Figure 6.8 – non-separated Two-way Relay Channel model

in Fig. 6.8. The relay employs decode-and-forward (DF) strategy and does
not have any information of its own to transmit. Each node uses a single
antenna and operates under half-duplex constraint. Note that this system
model is statistically symmetrical with respect to the two source nodes.

Communication between nodes A and B takes place via a four-phase
hybrid broadcast (HBC) protocol as shown in Fig. 6.8 with the direction of
arrow indicating the transmit/receive mode of each node. For instance, in
the first phase node A transmits while all other nodes listen. We denote the
fraction of time-slot allocated for the ith phase with ∆i, and hence

∑
∆i = 1.

The third and the fourth phase are called multiple access channel (MAC)
phase and broadcast channel (BC) phase respectively. Note that this is the
most general scheduling possible, with the half-duplex constraint imposed.

The relative phase durations affect both the error performance as well
as the achievable transmission rates. We want to investigate for any possible
gains in the achievable DMT and reliability-complexity measure using four-
phase HBC protocol, as compared to three-phase time division broadcast
(TDBC) protocol. TDBC protocol is obtained by removing third MAC phase
from the HBC protocol.

6.3.1 Diversity-Multiplexing Tradeoff

The following holds for four-phase protocol for ns-TRC DF channel.

Lemma 6. For the asymmetric fading model, the DMT for a static four-
phase protocol with fixed phase-durations ∆1,∆3,∆4 satisfying ∆1 = ∆2 and
∆1 ≥ m∆4, is

d4−ph(∆i, r) = min{(d1(r) + d2(r)), d3(r)}. (6.3)
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where

d1(r) = m(1− r

∆1
) for 0 ≤ r ≤ ∆1, (6.4)

d2(r) =

{
1− r

∆1+∆3
for 0 ≤ r ≤ ∆1

1 + ∆1−2r
∆1+∆3

for ∆1 < r ≤ ∆1 +
∆3
2 ,

(6.5)

d3(r) =

{
1 +m− r

∆4
for r ≤ ∆4

m(1 + ∆4−r
∆1

) for ∆4 < r ≤ ∆1 +∆4

(6.6)

The proof for this lemma is presented in Appendix 6C.

Remark 3. • For a static protocol with ∆1 < m∆4, the DMT expression
is similar as in Theorem 6, but with

d3(r) =

{
1 +m− mr

∆1
for r ≤ ∆1

1 + ∆1
∆4
− r

∆4
for ∆1 < r ≤ ∆1 +∆4

• For m = 1, we get the DMT for symmetric Rayleigh fading model.

In order to obtain optimal DMT of ns-TRC DF system, we need to solve
the following problem for any r :

dOPT (r) = max
∆1,∆3,∆4

d4−ph(∆i, r)

subject to 2∆1 +∆3 +∆4 = 1, ∆i ≥ 0. (6.7)

Optimal DMT for m ≥ 1

The optimal DMT achievable for m ≥ 1, which is a situation that can be
interpreted as the direct link having similar or a more stable fading statistic
compared to source-relay links, is given by :

Theorem 17. For the given system settings with m ≥ 1, optimal DMT is

dOPT (r) =

{

1 +m− (2m+ 3)r for r ≤ 1
(2m+3)

m(1+m)(1−2r)
r+m for 1

(2m+3) < r ≤ 1
2

, (6.8)

and it can be achieved using TDBC protocol with

∆1 =

{
(m+1)
(2m+3) for r ≤ 1

(2m+3)
r+m
1+2m for 1

(2m+3) < r ≤ 1
2

(6.9)

∆2 = ∆1, ∆3 = 0 and ∆4 = 1− 2∆1.

Corollary 17a. For the Rayleigh fading case (m = 1), the optimal DMT
dOPT (r) is attained by an orthogonal three-phase TDBC protocol.

The proofs for Theorem 17 and Corollary 17a are presented in Appendix
6D.
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Optimal DMT for 1
2 ≤ m < 1

Now we consider the case 1
2 ≤ m < 1, which corresponds to the case

where direct link between sources is less stable compared to source-relay
links.

Theorem 18. For the given system settings with 1
2 ≤ m < 1, optimal DMT

is

dOPT (r) = 1 +m− r

κ
for r ≤ κ, (6.10)

where,

κ =
(2 +m)− (1−m)∆3 −X

3 + 2m
,

X =
√

(m2 + 4)∆2
3 + (2m2 + 2m− 4)∆3 + (m+ 1)2

and it can be achieved using HBC protocol with

∆3 =
(1−m)(2 +m− 2

√
m)

4 +m2
, ∆4 = κ,

and
∆2 = ∆1 =

1−∆3 −∆4

2
.

The proof for Theorem 18 is presented in Appendix 6E. For κ < r ≤ 1
2 ,

we do not have a closed form expression for the optimal DMT, however, this
optimization problem can be solved using linear programming. A discussion
on this optimization problem is presented in Appendix 6E. Numerical results
are shown in Fig. 6.9 for m = 1

2 . Theorem 18 establishes DMT optimality
of HBC protocol for the case where direct link between sources is less stable
compared to source-relay links.

6.3.2 Complexity Analysis

The overall complexity of the communication protocol is the sum total
of the number of flops spent in each phase of the communication, i.e., the
total complexity of the communication protocol takes the form

Nprotocol =

p
∑

i=1

Ni,

where Ni is the number of flops spent during phase i, and where p is the
total number of phases for the protocol. Let Ni

.
= ρci(r), where ci(r) is the

complexity exponent for i-th phase, then the overall complexity exponent for
the protocol is given by

cprotocol(r) = max{c1(r), · · · , cp(r).} (6.11)
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Figure 6.9 – DMT Comparison

Complexity of TDBC protocol

In order to perform complexity analysis for the TDBC and HBC pro-
tocols, we first define the decoding operations that are required for these
protocols. For TDBC protocol in first phase SISO decoding is performed at
node B and relay R (c1,tdbc(r) = 0), in the second phase again SISO decoding
is performed at node A and relay R (c2,tdbc(r) = 0). In the third phase each of
the source nodes A and B perform decoding after removing self-interference
term, which is again equivalent to SISO decoding (c3,tdbc(r) = 0). Hence, the
overall complexity for TDBC protocol is the is given by (cf. (6.11))

cTDBC(r) = 0.

Complexity of HBC protocol

For HBC protocol, the first two rounds and the last round are similar
to TDBC protocol, i.e., c1,hbc(r) = c2,hbc(r) = c4,hbc(r) = 0, but there is an
additional third round where decoding is performed at relay R over a multiple
access channel with sources nodes A and B. The complexity exponent for this
third round is given by (cf. Theorem 16)

c3,hbc(r) =

{

∆3r for r ≤ 1
3 ,

3∆3r for 1
3 < r ≤ 1

2 .

It follows that the overall complexity exponent for the HBC takes the form
(cf. (6.11))

cHBC(r) =

{

∆3r for r ≤ 1
3 ,

3∆3r for 1
3 < r ≤ 1

2 .
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6.3.3 Reliability-Complexity Measure for HBC and TDBC
Protocols

The question arises as to whether it is best to use the TDBC protocol
that provides smaller DMT (line marked with circles in Fig. 6.9) for 1

2 ≤
m < 1 with zero complexity exponent, or the HBC protocol that provides
for higher DMT (line marked with stars in Fig. 6.9) but does so with much
increased complexity. Towards deciding this, one must first decide what is
the price of flops, compared to the price of errors, and design a joint rate-
reliability-complexity measure. Such a measure could for example be chosen
to take the form Γ(r) = d(r) − γc(r) where again γ compares the price of
flop vs error. As shown in Fig. 6.10 the reliability-complexity measure (with
γ = 1) reveals that even for the statistically weaker direct link (12 ≤ m <
1) the TDBC protocol provide higher reliability-complexity performance as
compared to HBC protocol. In fact for all γ ≥ 1 TDBC protocol results in
higher reliability-complexity measure.
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Figure 6.10 – Reliability-Complexity Measure

Summary

The analysis indicates that for a DMT optimal protocol, duration of MAC
phase decreases with improvement in direct link fading stability relative to
source-relay links. For m ≥ 1, which is a situation that can be interpreted as
the direct link having similar or a more stable fading statistic compared to
source-relay links, the optimal DMT is shown to be achieved by the ortho-
gonal three-phase TDBC protocol. The operational meaning of this result is
that the MAC phase of HBC protocol is not necessary to achieve optimal
performance, this results in a simplification of the communication protocol.
For less stable direct link (12 ≤ m < 1), the MAC phase of HBC protocol is
necessary to achieve optimal DMT but a simpler TDBC protocol achieves
preferable joint reliability-complexity performance.
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Appendix 6A : Proof of Theorem 16

In the following we establish an upper bound on the minimum complexity
exponent c(r) required by ML-based decoding to achieve optimal DMT of
MAC. The joint ML decoder sees a K×nR equivalent MIMO-MAC channel
with sum multiplexing gain rt = Kr, the optimal DMT in terms of sum rate
rt can be described as

djoint(rt) =

{

nR(1− rt
K ) for rt ≤ nRK

K+1 ,

d∗(rt) for nRK
K+1 < rt ≤ nR.

(6.12)

For complexity analysis we proceed with representation equivalent MIMO-
MAC channel HC ∈ RnR×K with T channel uses (cf. (3.63))

y =Ms+w, (6.13a)

where M,ρ
1
2
− rtT

κ HG ∈ R2nRT×κ, (6.13b)

where H = IT ⊗ HR ∈ R2nRT×2KT , HR is real valued representation of
HC and where G ∈ R2KT×κ. As κ = 2KT > 2nRT , we need MMSE-
preprocessing to have SD implementation of ML decoding. Let QR = M̃ be
the thin QR factorization of the MMSE-preprocessed code-channel matrix

M̃,

[
M
αI

]

where α = ρ
−rt
2K , then (6.13a) yields

r = Rs+w′,

where r = R−HMHy, and where w′ = −α2R−Hs + R−HMHw. The ML
decoder for this system takes the form

ŝML = arg min
ŝ∈Sκr

‖r−Rŝ‖2 , (6.14)

that is implemented by the sphere decoder which recursively enumerates
all candidate vectors ŝ ∈ Sκr within a given search sphere of radius ξ =√
z log ρ, for some z > d∗mac(r). To compute an upper bound on the com-

plexity exponent, we follow the approach similar to Chapter 3 and define
µi,− log σi(H

H
CHC)

log ρ with µ1 ≥ · · · ≥ µnR . It then follows that

σi(R) = σi(M̃) =
√

α2 + σi(MHM),

which results in

σi(R)
.
≥







ρ
−rt
2K for i = 1, · · · , 2T (K − nR),

ρ
−rt
2K

+ 1
2
(1−µι2T (i−2T (K−nR)))

+

for i = 2T (K − nR) + 1, · · · , 2KT,

(6.15)

where we have made use of the fact that σmin(G)
.
= ρ0 and where ι2T (i),

⌈
i
2T

⌉
.
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SD Complexity

The total number of visited nodes is commonly taken as a measure of the
SD complexity (cf. [7]). For any given channel realization µ,(µ1, · · · , µm),
this total number of visited nodes is given by

NSD(µ),
κ∑

k=1

Nk(µ).

where from [7, Lemma 1] we know that

Nk(µ) ≤
k∏

i=1

[√
k +min{ 2ξ

σi(Rk)
, 2
√
kρ

rtT
κ }
]

.

From the interlacing property of singular values of sub-matrices [53] we have
that σi(Rk) ≥ σi(R). It follows that

Nk(µ) ≤
k∏

i=1

[√
k +min

{
2ξ

σi(R)
, 2
√
kρ

rtT
κ

}]

.

Consequently, we have that

NSD(µ) ≤
κ∑

k=1

{
k∏

i=1

[√
k +min

{
2ξ

σi(R)
, 2
√
kρ

rtT
κ

}]}

,

.
≤ρ(1−

nR
K

)rtT+
∑2nRT

i=1 min ( rt
2K
− 1

2
(1−µι2T (i))

+,
rt
2K )

+

,

=ρ(1−
nR
K

)rtT+T
∑nR

i=1(
rt
K
−(1−µi)

+)
+

, (6.16)

where for the last equality we made use of the 2T multiplicity of the singular
values of H, and of the fact that

min
( rt
K
− (1− µ1)

+,
rt
K

)+
=
( rt
K
− (1− µ1)

+
)+

.

Following the footsteps of the complexity analysis in Chapter 3 for the
MMSE-preprocessed channel matrix R, the upper bound on the complexity
exponent can be obtained as the solution to a constrained maximization
problem according to c(r) ≤ cmac(rt), where

cmac(rt),max
(µ)

(

1− nR

K

)

rtT + T

nR∑

i=1

( rt
K
− (1− µi)

+
)+

(6.17a)

s.t. I((µ)) ≤ djoint(rt), (6.17b)

µ1 ≥ · · · ≥ µnR , (6.17c)

where µ = (µ1, · · · , µκ) satisfies the large deviation principle with rate func-
tion I(µ).



6.3 Two-way relay channel (TRC) 147

Multiplexing gain region rt ≤ nRK
K+1

Towards establishing tight complexity bounds, we vary the dimensiona-
lity of the codes, and by noting that uncoded QAM is optimal for rt ≤ nRK

K+1 ,
we get for the same multiplexing gain region that

cmac(rt) = max
µ

(

1− nR

K

)

rt +

nR∑

i=1

( rt
K
− (1− µi)

+
)+

s.t.
nR∑

i=1

(K − nR + 2i− 1)µi ≤ nR(1−
rt
K
),

µ1 ≥ · · · ≥ µnR .

For the case of nR = 1, the above simplifies to

cmac(rt) =

(

1− 1

K

)

rt,

and for the case of nR = K it simplifies to

cmac(rt) =
rt ⌊
√
nR − rt⌋
nR

+

(
rt
nR

− 1 +
nR − rt − (⌊√nR − rt⌋)2

2 ⌊√nR − rt⌋+ 1

)+

. (6.18)

Multiplexing gain region nRK
K+1

< rt ≤ nR

For nRK
K+1 < rt ≤ nR, we consider the DMT optimal lattice designs pro-

posed in [73]. These designs incur T = K0 and κ = 2KK0, where K0 = K
for K odd and K0 = K + 1 for K even. Consequently, the upper bound for
nRK
K+1 < rt ≤ nR is given by

cmac(rt) = max
µ1

(1− nR

K
)rtT + T

nR∑

i=1

( rt
K
− (1− µi)

+
)+

s.t. I((µ)) ≤ d∗(rt),

µ1 ≥ · · · ≥ µnR .

It can be shown that the solution to this optimization problem takes the
form

cmac(r) =
(

1− nR

K

)

rtK0

+
K0

K

(
rt(nR − ⌊rt⌋ − 1) + (K ⌊rt⌋ − rt(K − 1))+

)
,
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of a piece-wise linear function that, for integer rt, is of the form

cmac(r) =
K0

K
rt(K − rt).

Recalling that rt = Kr, results in the bound specified in the theorem.
Furthermore, following the footsteps of the proof of Proposition 1 it

can be shown that with QAM symbols for r ≤ nR
K+1 , lattice designs gi-

ven in [73] for nR
K+1 < r ≤ nR

K , given a sphere decoder with a search ra-
dius ξ >

√
dmac(r) log ρ, a decoding halting policy that halts decoding if

Nmax ≥ ρx for x > cmac(r), there exists one fixed decoding order for which
the above described bound is also necessary. This proves Theorem 16 and
Proposition 9. �

Appendix 6B : Proof of Proposition 10

Let hSD, hSRj and hRjD, for j = 2, · · · , n, denote the channel fading
coefficients for source-destination channel, source-to-jth relay channel and
jth relay-to-destination channel respectively. The induced channel model for
this OAF protocol takes the following form (cf. [34]) :

Hoaf =








hSD 0 · · · 0
0 hSR2hR2D · · · 0
...

...
. . .

...
0 0 · · · hSRnhRnD







. (6.19)

The overall system model takes the form

y = θ








hSD 0 · · · 0
0 hSR2hR2D · · · 0
...

...
. . .

...
0 0 · · · hSRnhRnD







x+w, (6.20)

where θ2 = ρ1−
2n−1

n
r, for the DMT optimal performance the code vector x

is given by (cf. [34])

x = [ℓ0σ(ℓ0) · · ·σnT−1(ℓ0)]
T ,

where ℓ0 ∈ AQAM (β1, · · · , βnT ) (see below (6.21)) and where σ is the gene-
rator of the cyclic Galois group Gal(L/F) with L being a degree-nT cyclic
Galois extension field of F = Q(i), where Q(i) = {a + ib|a, b,∈ Q}. Q is
the set of all rational numbers. Let OF and OL denote the ring of algebraic
integers in F and L, respectively. Let {β1, · · · , βnT } be an integral basis for
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OL/OF and for M even, let AQAM denote the M2−QAM constellation given
by AQAM = {a+ ib||a|, |b| ≤M − 1, a, b, odd} and

AQAM (β1, · · · , βnT ) =

{
∑

i

aiβi|ai ∈ AQAM

}

. (6.21)

Following the footsteps of the complexity analysis presented in Section 3.2.2

and defining µj ,−
log σj(H

H
oafHoaf )

log ρ , j = 1, · · · , n, the complexity exponent
required to achieve a vanishing performance gap is upper bounded as

c(r) ≤ coaf (r) = max
µ

n∑

j=1

min

(
2n− 1

n
r − (1− µj), r

)+

(6.22a)

s.t.
n∑

j=1

µj ≤ n(1− 2n− 1

n
r), (6.22b)

µ1 ≥ · · · ≥ µn ≥ 0. (6.22c)

The solution to this optimization problem takes the form

coaf (r) =
2n− 1

n
r(n− ⌊(2n− 1)r⌋ − 1) + (⌊(2n− 1)r⌋ − 2n− 1

n
r(n− 1))+,

(6.23)

which for r = 0, 1
2n−1 , · · · , n

2n−1 simplifies to

coaf (r) = (2n− 1)r(1− 2n− 1

n
r).

The comparison of the OAF complexity exponent in (6.23) with the com-
plexity exponent for n × 1 quasi-static MISO channel Proposition 2 reveals
that

coaf (r) = cmiso(
2n− 1

n
r).

Furthermore, following the footsteps of the proof of Proposition 1 it can be
shown that with lattice designs and OAF protocol of [34], given a sphere
decoder with a search radius ξ >

√
doaf (r) log ρ, a decoding halting policy

that halts decoding if Nmax ≥ ρx for x > coaf (r), there exists one fixed
decoding order for which the above described bound is also necessary. This
proves Proposition 10. �

Appendix 6C : Proof of Lemma 6

Proof. (sketch) We here derive the DMT d4−ph(∆i, r) for a static four-phase
protocol with fixed phase durations. We are interested in the case where both
source nodes transmit with the same rate R, and also, both demand the same
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DMT performance. Since the system model is symmetric with respect to the
two source nodes, there is no loss of generality in making the two phase
durations ∆1 and ∆2 equal.

To analyze the system performance for fixed phase durations, we define
the average error probability Pe = P [{EA ∪ EB}], where EA and EB, defined
later, denote the error events at the receive node A and B respectively.

In order to analyze the information flow from source node A to B, we
define the following error event EB,{EB,1 ∪ {ER,3 ∩ EB,4}}, where denotes
complement of , and where
• EB,1 - occurs if B is able to decode message from A at the end of phase

1.
• ER,3 - occurs if R is able to decode message from A and B at the end

of phase 3.
• EB,4 - occurs if B is able to decode message from A at the end of phase

4, conditioned on the occurrence of event ER,3.
Note that EB,1 ⊂ EB,4 . Error event corresponding to EA can be similarly
defined by interchanging A and B in the above expressions. With these de-
finitions, we have the upper bound

P [EB] = P [EB,1 ∪ {ER,3 ∩ EB,4}]
= P [EB,1 ∩ {ER,3 ∪ EB,4}]
= P [{EB,1 ∩ ER,3} ∪ {EB,1 ∩ EB,4}]
= P [{EB,1 ∩ ER,3} ∪ EB,4]

(f)

≤ P [{EB,1 ∩ ER,3}] + P [EB,4]

= P [EB,1]P [ER,3] + P [EB,4], (6.24)

where (f) follows from union bound, . We also have a lower bound,

max{P [EB,1]P [ER,3], P [EB,4]} ≤ P [EB]. (6.25)

Bounds corresponding to EA can be obtained similarly by replacing B with
A in the expressions (6.24) and (6.25).

Now, since

max{P [EA], P [EB]} ≤ Pe ≤ P [EA] + P [EB], (6.26)

if we can derive the precise optimum SNR exponents for each of the P [EB,1],
P [ER,3] and P [EB,4] defined above and also show that P [EA]

.
= P [EB], then

we have the DMT expression for the static four phase protocol.
Toward this end, we define the outage events for information flow from

A to B. Let X
(i)
J denote the transmit signal, Y (k)

J denote the receive signal
for any node J ∈ {A,B,R}, in the i-th and the k-th phase, i, k ∈ {1, 2, 3, 4}.
The outage event OJ,k for the respective error event EJ,k is defined as :
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OB,1,{hAB : ∆1I(X
(1)
A ;Y

(1)
B |hAB) < R}, (6.27)

OR,3 ={OR,3,1 ∪ OR,3,2}
OR,3,1,

{

(hAR, hBR) : ∆1I(X
(1)
A ;Y

(1)
R |hAR)

+∆3I(X
(3)
A ;Y

(3)
R |X(3)

B , hAR) < R
}

,
(6.28)

OR,3,2,

{

(hAR, hBR) : ∆1I(X
(1)
A ;Y

(1)
R |hAR)

+∆2I(X
(2)
B ;Y

(2)
R |hBR)

+∆3I(X
(3)
A , X

(3)
B ;Y

(3)
R |hAR, hBR) < 2R

}

,

(6.29)

OB,4,

{

(hAB, hRB) : ∆1I(X
(1)
A ;Y

(1)
B |hAB)

+∆4I(X
(4)
R ;Y

(4)
B |hRB) < R

}

.
(6.30)

Again, OB,4 ⊂ OB,1, where hJK denotes channel from node J to node
K (J,K ∈ {A,B,R}). The corresponding events for information flow from
B to A are similarly defined by interchanging A and B in all the mutual
information expressions. Now we claim that

P [EB,1]
.
= P [OB,1]

.
= ρ−d1(r),

P [ER,3]
.
= P [OR,3]

.
= ρ−d2(r),

P [EB,4]
.
= P [OB,4]

.
= ρ−d3(r). (6.31)

To prove (6.31), one can follow similar analysis as in [51,72,81]. For each
of the events OJ,k and EJ,k defined above, we have

P (OJ,k) ≤ P (EJ,k) ≤ P (OJ,k) + P (EJ,k|OJ,k). (6.32)

Then, for sufficiently long, independent random Gaussian encoding at
every transmitter, joint maximum-likelihood decode-and-forward relaying at
the relay node, we show that

P [EB,1|OB,1]
.
= P [OB,1]

.
= ρ−d1(r), (6.33)

P [ER,3|OR,3]
.
= P [OR,3]

.
= ρ−d2(r), (6.34)

P [EB,4|OB,4]
.
= P [OB,4]

.
= ρ−d3(r). (6.35)

In particular, (6.33) follows from DMT for single antenna point-to-point
transmission [51], (6.34) follows from the DMT for MAC [72] and (6.35)
follows from the DMT for parallel channels [81]. These along with (6.32)
gives

P [EB]
.
= ρ−min{(d1(r)+d2(r)),d3(r)}, (6.36)
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where, (6.36) follows from (6.24), (6.25) and Varadhan’s lemma [71]. Due
to symmetry we have P [EA]

.
= P [EB] and applying Varadhan’s lemma to

(6.26), we can write

Pe
.
= ρ−min{(d1(r)+d2(r)),d3(r)}. (6.37)

This completes the proof of Lemma 6.

Appendix 6D : Proof of Theorem 17

From Lemma 6 we have :

d1(r) + d2(r)

=

{

1 +m− mr
∆1
− r

∆1+∆3
for r ≤ ∆1

1 + ∆1
∆1+∆3

− 2r
∆1+∆3

for ∆1 < r ≤ ∆1 +
∆3
2

(6.38)

We are looking at dOPT = max∆i min{d1(r) + d2(r), d3(r)} under the
sum-constraint and the positivity constraints in (6.7). First we prove that
any optimal protocol must have ∆3 = 0, for m ≥ 1.

This can be proved by contradiction - suppose (∆∗i ) maximizes the DMT
(dOPT (r)) with ∆∗3 > 0. Now consider the four phase protocol with new
phase durations ∆1 = ∆∗1 +

∆∗3
2 , ∆4 = ∆∗4 and ∆3 = 0. These new phase

durations are in the feasible set (6.7), and substituting these in (6.38) and
(6.6) we get

d1(∆i, r) + d2(∆i, r) ≥ d1(∆
∗
i , r) + d2(∆

∗
i , r) and

d3(∆i, r) ≥ d3(∆
∗
i , r)

for all values of r. This contradicts the optimality of (∆∗i ) and show that for
m ≥ 1 any optimal protocol must have ∆3 = 0.

The optimization problem in (6.7) can now be written as

dOPT (r) = max
∆1,∆4

d4−ph(∆1,∆4, r)

subject to 2∆1 +∆4 = 1, ∆1,∆4 ≥ 0,

where we now have

d1(r) + d2(r) = (m+ 1)

(

1− r

∆1

)

for 0 ≤ r ≤ ∆1.

Since we are looking at a max-min problem, for any given multiplexing
gain r, the optimal DMT is achieved when the two DMT curves d1(r)+d2(r)
and d3(r) meet at r. When ∆1 < m∆4 it is easy to see that the curves meet
only at r = 0. So we only need to consider the case ∆1 ≥ m∆4. Now we have

d3(r) =

{

1 +m− r
∆4

for r ≤ ∆4

m(1 + ∆4−r
∆1

) for ∆4 < r ≤ ∆1 +∆4
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The expression for d3(r) suggests that the optimization can be divided
in to two exclusive cases : (i) r ≤ ∆4 (ii) ∆4 < r ≤ ∆1.

Case r ≤ ∆4

With d1(r) + d2(r) = d3(r), and all other constraints, it is straight-
forward to check that the optimum solution must satisfy ∆1 = (m + 1)∆4.
Substituting this in the sum-constraint, we get

∆4 =
1

(2m+ 3)
, ∆1 =

(m+ 1)

(2m+ 3)
,

and optimum DMT as dOPT (r) = 1 +m− (2m+ 3)r for any r ≤ 1
(2m+3) .

Case 1
(2m+3) < r ≤ 1

2

Again with d1(r) + d2(r) = d3(r), we get

∆1 =
r +m

1 + 2m
, ∆3 = 0, and ∆4 = 1− 2∆1.

and optimum DMT as

dOPT (r) =
m(1 +m)(1− 2r)

r +m
for 1

(2m+3) < r ≤ 1
2 .

This proves Theorem 17. Also, for all values of r and m = 1, we have proved
that ∆3 = 0 is optimal, which proves Corollary 17a. �

Appendix 6E : Proof of Theorem 18

Again we are looking at a max-min problem, for any given multiplexing
gain r, the optimal DMT is achieved when the two DMT curves d1(r)+d2(r)
and d3(r) meet at r. Solving for d1(r) + d2(r) = d3(r) from (6.38) and (6.6)
and sum constraint 2∆1 +∆3 +∆4 = 1, we get

∆3 =
(1−m)(2 +m− 2

√
m)

4 +m2
, ∆4 = κ,

and

∆1 =
1−∆3 −∆4

2

and optimum DMT as dOPT (r) = 1 + m − r
κ for r ≤ κ. This proves

Theorem 18. �
Optimization problem for κ < r ≤ 1

2
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For κ < r ≤ 1
2 , again, optimal DMT is computed by solving for d1(r) +

d2(r) = d3(r) from (6.38) and (6.6) and sum constraint 2∆1+∆3+∆4 = 1.
Now we have,

∆1 =
m+ r − (3m+ 1)∆3 + Y

2(2m+ 1)
, (6.39)

where,

Y =
√

(m+ r − (3m+ 1)∆3)2 + 4m(2m+ 1)∆3(1−∆3).

Substituting for ∆1 and ∆4 = 1 − 2∆1 − ∆3, the optimization problem in
(6.7) can now be written as,

min
0≤∆3≤1−r

f(∆3, r),

where

f(∆3, r) =
m+ r − (3m+ 1)∆3 + Y

1− r −∆3
.

This optimization problem can be solved using linear programming.



Chapter 7

Conclusions and Future Work

This dissertation deals with the question of establishing fundamental
rate-reliability-complexity limits in general MIMO, cooperative and mul-
tiple access communications. The work succinctly described the high-SNR
fundamental tradeoff among rate, reliability and computational complexity
in the form of the achievable DMT for a given complexity exponent, which
is a fundamental (not heuristic) measure originating from this work. The
work then proceeded to constructively meet these high-SNR limits by iden-
tifying fast, reliable and efficient MIMO and cooperative encoders, decoders,
and protocols that optimally tradeoff the DMT performance with the com-
plexity exponent. This approach constitutes, to the best of our knowledge,
the first time that the complexity-performance tradeoff has been succinctly
quantified. Specifically we have been able to identify the general complexity-
performance tradeoff for a broad family of ML-based and lattice based de-
coders, as well as provide the first ever lattice decoding solution, and the
corresponding activation policy that jointly achieve a vanishing gap to the
exact implementation of (regularized) lattice decoding with complexity that
is subexponential in the rate. The derived reliability and complexity guaran-
tees hold for most multiple-input multiple-output scenarios, all reasonable
fading statistics, all channel dimensions and all-rate lattice codes.

In a nutshell, we provided simple answers and insights to the following
pertinent complexity issues :
• Computational reserves required to achieve a vanishing gap to ML or

(regularized) lattice decoding performance.
• Impact of computational constraints on the system reliability for ML-

based decoding implementations.
• Encoding-decoding policies that can regulate complexity at a limited
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performance loss.
• Complexity costs of ripping full rate-reliability benefits of ARQ feed-

back and also the use of ARQ feedback to reduce decoding complexity.
• Joint reliability-complexity measure that can be used to compare worth

of encoding-decoding policies.
• The role of antenna selection in reducing decoding complexity.
• Multiple/cooperative users selection/scheduling in the presence of com-

plexity constraints.

Future Work

The work presented methodology that can be applied to quantify the
rate-reliability-complexity performance of novel or existing coding schemes,
decoders, as well as cooperative and multiuser protocols. One interesting
scenario where this rate-reliability-complexity tardeoff can be applied is ca-
pacity scaling analysis for the large networks [82–84]. In large networks de-
coding complexity will also scale exponentially with cluster size and in the
presence of computational constraints, optimal capacity scaling might not be
achievable. Another interesting application could be use of rate-reliability-
complexity tardeoff for enhancing the physical layer security [85,86].

Despite the serious efforts to resolve each problem in their most general
form, the current work leaves out ample space for exponential reductions in
complexity, and improvements in the joint performance-complexity measure,
both on the side of decoders, as well as for encoders, protocols or feedback
schemes. One such interesting open problem is finding dynamically chan-
ging decoding orders that provide guaranteed reductions in the decoding
complexity for DMT optimal threaded CDA based codes.



Chapter 8

French Summary

Dans les télécommunications, le débit-fiabilité et la complexité de l’en-
codage et du décodage (opération à virgule flottante-flops) sont largement
reconnus comme représentant des facteurs limitant interdépendants. Pour
cette raison, tout tentative de réduire la complexité peut venir au prix d’une
dégradation substantielle du taux d’erreurs. Cette thèse traite de l’établisse-
ment d’un compromis limite fondamental entre la fiabilité et la complexité
dans des systèmes de communications outage-limités à entrées et sorties mul-
tiples (MIMO), et ses scénarios point-à-point, utilisateurs multiple, bidirec-
tionnels, et aidés de feedback. Nous explorons un large sous-ensemble de la
famille des méthodes d’encodage linéaire Lattice, et nous considérons deux
familles principales de décodeurs : les décodeurs à maximum de vraisem-
blance (ML) et les décodeurs Lattice.

8.1 Systèmes à antennes multiples : performance en
terme d’erreur de décodage et de complexité

Avoir une transmission des données à haut débit, une meilleure qualité
de service en terme de reduction d’erreurs de décodage et de covarage, et
avec un grand nombre d’utilisateurs ; tout en gardant la même puissance de
transmission et la même bande passante est une demande qui ne cesse d’aug-
menter en communications sans fil. Cela exige de considérer des nouveaux
technologies comme les systèmes de communications à entrées-sorties mul-
tiples (MIMO) qui peuvent améliorer les deux demandes, le débit des données
et la reduction d’erreur de décodage pour une puissance de transmission et
une bande passante données, mais cela au coût d’une tâche de décodage plus
laborieuse à la reception. Spécifiquement, pour le decodeurde maximum de
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vraisemblance force brute 1 la complexité de décodage augmente exponen-
tiellement en mot de code bit comme 2RT pour une durée de codage T . En
général, ce nombre de bits augmente avec la dimension.

Dans les scénarios MIMO avec des signaux de dimensions élevées, le calcul
de maximum de vraisemblance peut être très coûteux. Cela donne toujours la
motivation pour utiliser des designs émetteur-récepteur sous-optimaux dont
la sous-optimalité peut souvent annuler la fiabilité du système MIMO. La
plupart des récepteurs MIMO de nos jours utilisent des régimes de détection
MIMO linéaires de complexité réduite (zero-forcing (ZF), minimum mean
square error (MMSE), successive interference cancellation (SIC)) dont la
sous-optimalité a été prouvée trés élevée (cf. [1]).

Les avancées récentes de vitesse de calcul ont permis l’utilisation de dé-
codeurs MIMO qui emploient des méthodes de détection non-linéaires qui à
leur tour se basent sur les algorithmes de recherche bornée, connus sous le
nom de décodeurs sphérique. Ces décodeurs sont plus performants que ceux
qui utilisent ML mais en introduisant plus d’erreur. (cf. [2–7]).

La diversité de ces algorithmes nous mènent à poser la question concer-
nant la relation entre complexité et fiabilité. La réponse à cette question
n’est pas triviale, vu que la complexité algorithmique fluctue aléatoirement
avec le canal, le bruit et les réalisations de codeword. Ce comportement aléa-
toire met en évidence la possibilité d’introduire plus d’erreur pour améliorer
la complexité. En général, toute tentative visant l’optimisation de la com-
plexité algorithmique est au détriment de fiabilité de transmission. Dans le
cadre de MIMO à délai limité ou de MIMO à panne limitée, la définition et
la compréhension de cette relation étroite entre complexité et fiabilité consti-
tuent un sujet de recherche très important dont l’apport pratique est très
intéressant.

8.2 Caractérisation de complexité en MIMO avec
une outage-limitée

Ici la complexité est estimée par le nombre d’opérations calculatoires (en
termes d’opérations arithmétiques et de flops) qu’on peut utiliser pendant le
décodage d’un codeword. Quand on prend en compte la nature fluctuante de
la complexité algorithmique instantanée, ca devient évident que la présence
de limitations calculatoires peut entrainer une dégradation de fiabilité. Ceci
peut être interprété comme une panne de décodage liée à la violation du
délai de temps d’exécution. (Fig. 8.1).

1. le décodeur ML est strictement le seul décodeur optimal en terme de minimization
de probabilité d’erreur par mot de code, et il est le plus lent dans le sens qu’il doit visiter
tous les mots de code possibles.



8.2 Caractérisation de complexité en MIMO avec une outage-limitée159

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

5

Channel Realizations

N
u
m

b
e
r 

o
f 
F

L
O

P
S

Decoding Complexity

Required number of FLOPS

Run−time constraint

Figure 8.1 – Fluctuations de complexité algorithmique instantanées

8.2.1 Exponentiel de complexité

Soit Nmax la contrainte de complexité, qui décrit les capacités calcula-
toires en flops d’un émetteur-récepteur qui a le droit à utiliser le canal T fois.
Après Nmax flops, l’émetteur-récepteur doit tout simplement s’arrêter, éven-
tuellement avant l’achèvement de sa tache. Pour représenter ce qu’on a dis-
cuté ci-dessus, on utilise le compromis de la diversité de multiplexage proposé
par Zheng and Tse qui quantifie la relation entre le débit (R) et la probabilité
d’erreur Perr quand on mesure le gain de multiplexage r = R/ log snr et le
gain de diversité d(r) = limsnr→∞ logPerr/ log snr dans un environnement
a SNR élevé. Dans le même cadre du tail-analyse de SNR-élevé (le SNR sera
noté désormais ρ), on définit l’exposant de complexité comme suit :

c(r) := lim
ρ→∞

Nmax

log ρ
.

On observe qu’un c(r) > 0 implique que la complexité est une fonction
exponentielle du débit.

8.2.2 Pertinence et applicabilité de la mesure de complexité
et l’exposant de la complexité

En ce qui concerne l’adéquation de la configuration asymptotique, à sa-
voir l’adéquation de l’exposant de complexité et de l’échelle choisie de raffi-
nement, c’est l’échelle qui capture mieux l’intégralité du probléme de com-
plexité. Comme dans le cas de la probabilité d’erreur, qui varie de 1 jusqu’au
K1 · ρ−z, mettant en évidence un exposant d’erreur d(r) ∈ [0, z] (ici K1

est une fonction sous-polynomiale de ρ), dans le cas de la complexité, on
a une variation de 1 flop pour une complexité maximale qui évolue comme
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K22
RT = K2 ·ρrT flops (K2 est essentiellement une constante), ce qui donne

un exposant de complexité c(r) ∈ [0, rT ].
Ayant le coût de complexité et la probabilité d’erreur de la même échelle,

n’est pas un choix forcé, mais ça correspond à une conséquence triviale du fait
que la probabilité d’erreur ainsi que la taille du code sont des fonctions natu-
rellement polynomiales de ρ, et (dans le cas de la complexité) exponentielles
de R = r log ρ. En conséquence, l’erreur, mentionnée ci-dessus, et les expo-
sants de la complexité pourraient être combinées pour former une mesure des
capabilités taux-fiabilité-complexité des différents émetteurs-récepteurs. Une
telle mesure pourrait par exemple prendre la forme d’une mesure commune
sur la fiabilité-complexité Γ(r), d(r)− γc(r), pour un facteur pesant γ ≥ 0.
La mesure pourrait être appliquée pour décrire, par exemple, les capacités
d’erreur high-SNR d’un codeur-décodeur particulier par unité de puissance
et surface sur la puce.

On note que, en observant les compromis entre la fiabilité et la com-
plexité mentionnés ci-dessus, le plus important est de trouver les procedures
appropriées de codage-décodage qui peuvent régulariser la complexité en
conservant une perte limitée de performance. Une telle réglementation pour-
rait étendre les deux extrêmes de décodage brute force ML aux récepteurs
linéaires inefficaces. En observant ce compromis, un élément necessaire serait
le halting ou bien les procedures de régulation que nous allons utiliser.

8.2.3 Vanishing écart

Pour raffiner notre analyse de l’exposant, mentionnée ci-dessus (DMT et
la complexité de l’exposant), nous notons d’abord que l’analyse de DMT ne
parvient pas à capturer potentiellement les écarts infinis (sous-polynomiale
à SNR) à la performance optimale. Nous sommes également intéressés aux
décodeurs qui permettent d’atteindre un vanishing écart à la performance
ML. Cette approche de vanishing écart est une condition plus forte que
l’optimalité de DMT qui reste insensible aux écarts d’erreur qui pourraient
être illimités.

En termes d’écarts d’erreur-performance, on pourrait envisager l’écart
d’un décodeur donné Dr à ML, c-à-d, l’écart entre la performance Pe de Dr

et la performance optimale P (̂sML 6= s) du décodeur brute force ML. Étant
donnée une certaine contrainte de calcul Nmax

.
= ρc pour Dr, cet écart est

quantifié dans le régime de high-SNR d’être :

g(c), lim
ρ→∞

Pe

P (̂sML 6= s)
.

Un vanishing écart g(c) = 1 signifie que, avec Nmax
.
= ρc flops, Dr peut

asymptotiquement avoir une performance identique à celle du décodeur brute
force ML optimal.
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De même, lorsqu’on considère tout autre décodeur de base, comme par
exemple le décodeur de lattice sphere regulariseé (MMSE-prétraité), nous
serions intéressés à l’écart de performance qu’à l’implémentation exacte de
ce décodeur. Comme précédemment, en présence de Nmax

.
= ρcL flops pour

le décodeur de lattice sphere, nous avons un vanishing gap lorsque :

g(cL), lim
ρ→∞

PL

P (̂sL 6= s)
= 1

où PL décrit la probabilité d’erreur du décodeur de lattice sphere prétraité,
et P (̂sL 6= s) décrit la probabilité d’erreur de la solution exacte du décodeur
de lattice sphere MMSE-prétraité.

Un de nos intérêts est de capturer la complexité minimale qui permet
un vanishing écart pour plein ML ou plein décodage de lattice (régularisé).
Nous allons étudier cela et en particulier développer le travail de [7] dans un
cadre plus large.

Remark 4 (Commentaires sur l’approche de vanishing écart : une inter-
pretation heuristique). Les commentaires dans cette remarque ne sont pas
rigoureux, mais n’affectent pas notre analyse, et présentent plutôt des heu-
ristiques sur l’utilité de l’approche de vanishing gap.

Si on considère, pour un code et un taux fixes, les courbes d’erreur (l’axe
x represente le SNR, l’axe y est la probabilité d’erreur) correspondants à deux
décodeurs différents. Par exemple, supposant que le premier décodeur soit un
décodeur ML optimal (sans interruption). Supposant que le second décodeur
soit une implémentation approximative du premier décodeur.

Soit P (ρ) et Pap(ρ) désignant la probabilité réelle des courbes d’erreur,
pour accroître ρ, respectivement, pour les décodeurs optimales et sous-optimales
(P (ρ) ≤ Pap(ρ) pour tout ρ). En outre, supposant que les deux hypothèses
suivantes soient justes.

Hypothèse 1 : Il existe une valeur SNR ρ1 (resp. ρ2), après laquelle la
pente de la courbe d’erreur d

dρP (resp. d
dρPap) est monotoniquement non

décroissante.
Hypothèse 2 : Il existe une valeur SNR ρ0 pour laquelle la pente de la

courbe d’erreur d
dρP de la première (ML) décodeur atteint sa valeur maximale

dans la région monotone, c-à-d, atteint une valeur de d
dρP |ρ0 = maxρ≥ρ1

d
dρP.

Compte tenu des deux hypothèses mentionnées ci-dessus, on observe que
la garantie sur vanishing écart implique que les deux courbes d’erreurs coïn-
cident pour tout ρ ≥ ρ0, c-à-d,

P (ρ)

Pap(ρ)
= 1, ∀ρ ≥ ρ0.

Nous ici nous avisons le lecteur qu’il est concevable facile de violer les
deux conditions ci-dessus, par exemple en employant une politique de déco-
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dage qui alterne, pour différentes valeurs de SNR, entre deux décodeurs dif-
férents, ou en utilisant des codes à distance avec des distributions spécifiques
qui peuvent être par exemple entraîner étages d’erreur. Malgré cela, cepen-
dant, lorsque la structure émetteur-récepteur demeure inchangée, les deux
hypothèses accepter la validation importante par la plupart des observations
empiriques, mais n’ont pas été prouvées pour être vrai.

En outre envisager une troisième hypothèse, qui demande que pour toute
valeur SNR dans la région monotone ρ ≥ max{ρ1, ρ2}, la pente d’erreur
exacte courbe de la (première) décodeur, n’est pas plus petite que celle de la
solution approximative, c-à-d,

d

dρ
P ≥ d

dρ
Pap, ∀ρ ≥ max{ρ1, ρ2}.

Ensuite, les trois hypothèses, conjointement avec la garantie sur vanishing
écart, conjointement impliquent que les courbes d’erreur du décodeur exacte
et approximative, correspondent au (et après) la valeur potentiellement beau-
coup plus faible SNR de max{ρ1, ρ2}, c-à-d, conjointement impliquent que

P (ρ)

Pap(ρ)
= 1, ∀ρ ≥ max{ρ1, ρ2}.

Ces valeurs peuvent en effet être modérée, car ils ne se rapportent pas immé-
diatement à la fidélité des approximations asymptotiques, mais sont plutôt
des points de départ des régions monotones. Cette exposition suggère que,
dans certaines hypothèses, une garantie sur vanishing écart pourrait se ré-
percuter à finies régions SNR.

8.3 Contribution majeure et plan de thèse

Nous procédons dans le reste de ce résumé à une synthèse de la probléma-
tique, en se concentrant sur les résultats qui offrent une meilleure perspicacité
plutôt que de se concentrer sur les résultats avec plus large champ d’applica-
tion, qui sera présenté dans les sections qui suivent. Nous espérons que notre
travail peut donner un aperçu sur des questions pertinentes telles que :
• Quel est le prix à payer pour une complexité quasi-optimale lors de

l’implémentation des communications coopératives MIMO et multi-
utilisateurs ?

• Comment le retour d’information pourra réduire la complexité ?
• Quelles politiques peuvent réduire la complexité pour une perte des

performances limitées ?
• Comment les contraintes de complexité peuvent affecter la fiabilité

dans des milieux MIMO différents ?
• Quelle est la taille du système MIMO (nombre d’antennes d’émission,

nombre de relais ou nombre d’utilisateurs MAC) pour que la puce DSP
peut être configuré ?



8.3 Contribution majeure et plan de thèse 163

• Comment les utilisateurs multiples doivent se comporter en présence
de contraintes de complexité ?

• Quel est le rôle de la sélection d’antenne dans la réduction de la com-
plexité ?

• Quels sont les protocoles de coopération qui obtiennent les meilleurs
résultats en présence des contraintes de calcul ?

Modèle de canal, codeurs et décodeurs - Chapitre 2

Ce chapitre présente le modèle du système décrivant le modèle de canal
MIMO sous-jacent ainsi que la description de l’encodage et de décodage
régimes considérés comme des études de compromis du taux, de fiabilité et
de la complexité. Dans cette thèse nous considérons le cadre général de la
retard-limités outage-limités systèmes de communications MIMO. Ce réglage
capture plusieurs scénarios de communication modernes pertinentes dans les
communications sans fil.

Figure 8.2 – Outage-limités systèmes de communications - no CSIT

Il s’agit notamment des scénarios de retard-limités de transmission de
données en l’absence d’informations d’état de canal à l’émetteur (pas CSIT)
comme le montre la Fig. 8.2, ou, plus important scénarios qui tiennent
compte de la communication rapide de la vitesse et à haute au cours de
la lien rétroaction de la CSIT dans un cadre multi-utilisateur en l’absence
de réciprocité de canal comme indiqué sur la Fig. 8.3, ainsi que le canal
d’interférence multi-utilisateur représenté sur la Fig. 8.4 où les solutions de
gestion des interférences exigent mondiale CSIT, c-à-d, chaque émetteur est
nécessaire de disposer d’informations d’état de canal de tous les liens vers
l’avant et même en présence de réciprocité du canal, la CSIT nécessaire à
travers les échelles de rétroaction avec le nombre d’utilisateurs.

Nous explorons un large sous-ensemble de la famille des méthodes d’en-
codage linéaire Lattice, et nous considérons deux familles principales de dé-
codeurs : les décodeurs à maximum de vraisemblance (ML) et les décodeurs
Lattice. L’analyse algorithmique est concentrée sur l’implémentation de ces
décodeurs ayant comme limitation une recherche bornée, ce qui inclue une
large famille de sphère-décodeurs.
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Figure 8.3 – Mutliuser MIMO downlink - en l’absence de réciprocité de
canal

Figure 8.4 – Schématique pour canal d’interférence multi-utilisateur

Complexité pour un décodage ML - Chapitre 3

Ce chapitre a un double intérêt. Le premier intérêt consiste à étendre
l’analyse de la complexité des précédents travaux ( [7]), dans un cadre plus
large de modèles en lattice, des politiques de décodage et de statistiques
à la décoloration. Cette extension est important dans le sens qu’elle nous
permettra d’explorer les paramètres intéressants du modèle MIMO. Le se-
cond intérêt est de fournir un taux de fiabilité de complexité, de mesures
et des compromis significatives. Le développement mathématique correspon-
dant est pour le cas MIMO général, tandis que les expressions d’une seule-
lettre sont dérivées pour le canal quasi-statique MIMO. Tous les résultats
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sont valables pour la base ML de décodage, et l’analyse algorithmique consi-
dère que la famille ML efficace des algorithmes basés sur décodage par sphère.
Les exposants issus de la complexité de ces algorithmes décris le suffisante,
et dans de nombreux cas, les ressources de calcul nécessaires requises pour le
ML basée sur SD pour atteindre soit une performance DMT spécifique, ou
à obtenir un écart de fuite pour (sans interruption) le ML.

Peut-être prématuré à ce stade, nous notons que les résultats suggèrent
des ramifications de la complexité pour un choix de design en lattice, les sta-
tistiques de décoloration et politiques en sphère de décodage de commande.
Les concepts de designs en lattice (et en particulier designs en lattice à taux
plein), ainsi que les politiques de commande, sont couramment utilisés, mais
ils vont certainement être discuté en détail plus tard.

Nous notons également que le thème commun dans cette recherche est
que nous allons souvent obtenir des bornes supérieures universelles de la
complexité qui détiennent indépendamment des choix ci-dessus, et par la
suite un contraction de résultats pour les paramètres relativement larges.

Réglage MIMO général Théorème 1 Considerant le cas général pour
m× n (n ≥ m) MIMO 2 de la spécification du canal :

y =Hx+w,

et considerant un ML basée sur le décodage. Dans ce qui suit, I(µ) repré-

sentera la fonction du débit de µ,(µ1, · · · , µm), µj ,− log σj(H
HH)

log ρ , j =
1, · · · ,m, correspondant à des valeurs ordonnées singuliers σj du canal. Nous
rappelons aussi que rT log ρ est le nombre total de bits.

Théorème 1 : L’exposant de la complexité de la réalisation d’un gain
de diversité d(r) est supérieure délimitée comme pour toutes les familles de
statistiques de déperdition 3, tous les taux plein (ou en dessous du taux plein)
conçoit en lattice, et toutes les politiques statiques ou dynamiques de décodage
de commande.

c̃(r),max
µ

m∑

i=1

min

(
rT

m
− 1

2
(1− µi),

rT

m

)+

(8.1a)

s.t. I(µ) ≤ d(r), (8.1b)

µ1 ≥ · · · ≥ µm ≥ 0, (8.1c)

2. des résultats moins concluants considère le cas n ≥ m.
3. Strictement parlant, ceci est valable pour la grande famille des statistiques qui ac-

ceptent le principe de grandes déviations [8].
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Puis Proposition 1. Établit l’étanchéité conditionnelle de ce qui précède

Proposition 1 : Indépendamment des statistiques canal à évanouissement et
du code en lattice, plein taux appliqué, il existe un ordre fixe de décodage pour
lesquels la partie supérieure au-dessus universelle liée est serré.

En ce qui concerne l’établissement des ressources suffisantes pour at-
teindre un écart de fuite à ML, Corollaire 1a applique simplement le théorème
ci-dessus après la mise en d(r) = dml pour être le DMT optimale ininterrom-
pue de ML décodage du spécifique (potentiellement sous-optimale) du code.

Corollaire 1a : L’exposant la complexité requise par SD pour atteindre un
écart de fuite à ML optimale est supérieure délimitée comme

c̃(r),max
µ

m∑

i=1

min

(
rT

m
− 1

2
(1− µi),

rT

m

)+

(8.2a)

s.t. I(µ) ≤ dml(r), (8.2b)

µ1 ≥ · · · ≥ µm ≥ 0, (8.2c)

indépendamment de statistiques et les politiques de commande.

Quasi-statique MIMO La transition vers le cas spécifique de la nT ×nR

(nR ≥ nT ) quasi-statique point-à-point de canal MIMO (avec T utilise sur
le canal HC ∈ CnR×nT ), où maintenant µ désigne le (asymptotique de) les
valeurs singulières de HC , nous avons Théorème 3 instituant la suivante
universelle borne supérieure.

Théorème 3 : L’exposant la complexité SD de parvenir à un gain de diversité
d(r) est supérieure délimitée comme

c̃(r),max
µ

T

nT∑

j=1

min

(
r

nT
− (1− µj),

r

nT

)+

(8.3a)

s.t. I(µ) ≤ d(r), (8.3b)

µ1 ≥ · · · ≥ µnT ≥ 0, (8.3c)

pour n’importe quel code en lattice à taux plein.

En outre, il convient de noter que, directement à partir de Proposition 1,
nous savons que, indépendamment de la déperdition des statistiques et du
code à taux plein, il existe un ordre fixe de décodage pour lesquels la partie
supérieure au-dessus universelle liée est serré.

D’après Théorème 3 , nous pouvons maintenant établir une limite supé-
rieure universelle liée à la complexité, pour atteindre la performance optimale
de DMT d∗(r) de nT × nR (nT ≤ nR) pout le canal MIMO.
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Théorème 4 : L’exposant de la complexité SD, pour d’atteindre la DMT op-
timale d∗(r) est délimitée comme

c(r) ≤ c̄(r) =
T

nT

(
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

)
,

où c̄(r) est une fonction linéaire par morceaux qui, pour les valeurs entières
de r, prend la forme

c̄(r) =
T

nT
r(nT − r), r = 0, 1, · · · , nT .

Cela vaut pour n’importe quel ensemble de statistiques d’évanouissement,
tous les DMT optimales, et de toute politique de l’ordre de décodage.

En raison du fait que la complexité est de plus en plus d(r), ce qui pré-
cède peut être utilisé comme une borne supérieure universelle à destination
de tous les codes à taux plein. Cette procédure est décrite ci-dessous.

Corollary 4a :L’exposant la complexité SD est majorée comme dans Théo-
rème 4 pour n’importe quel code à taux plein, toutes les statistiques d’éva-
nouissement et toutes les politiques ordre de décodage.

Nous notons que, comme il s’avère, ce n’est le plus serré limite supérieure
qui peut contenir tous les codes (à taux plein) et les statistiques fading (cf.
Proposition 1). Cette limite supérieure est déjà utile en soi, car il établit que
l’exposant de la complexité SD est beaucoup plus faible que le pire des cas
SNR exposant rT associé à la brute de décodage ML vigueur, quelles que
soient les codes, les canaux ou les politiques de commande. Par exemple,
une comparaison de l’exposant vigueur de la complexité brute avec la borne
ci-dessus dérivée est représentée sur Fig. 8.5 pour nT = T = 2.

Etanchéité de la borne supérieure universelle En restant dans le
nT × nR (nR ≥ nT ) quasi-statique canal MIMO, et en se concentrant sur le
cas de i.i.d. Statistiques Rayleigh, Théorème 6 établit que la limite supérieure
ci-dessus universelle est en effet serré pour presque tous les DMT optimaux
en lattice à taux plein, quelles que soient les politiques de commande. Plus
précisément, il dit que si la conception est choisi au hasard (chaque élément
de la matrice génératrice réseau est choisi de manière iid d’une distribution
continue), mais maintenu fixe, puis avec une probabilité dans le choix du
code, ce qui précède liée au Théorème 4. est serré

Théorème 6 : Pour un canal Rayleigh MIMO quasi-statique i.i.d., et quelle
que soit l’ordre de décodage, fixe ou dynamique, l’exponentiel de complexité
de la sphère du décodeur basé sur ML, dans le choix du code DMT Lattice
optimal , correspond presque sûrement à la bande supérieure universelle dans
Théorème 4.



168 Chapter 8 French Summary

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Multiplexing Gain (r)

C
o
m

p
le

x
it
y
 e

x
p
o
n
e
n
t 
c
(r

)

Complexity exponent (T=2)

ML−based SD

brute force ML

Figure 8.5 – Comparaison de l’exposant vigueur de la complexité brute
ML avec la partie supérieure universelle à destination de ML à base de SD

Débit-Fiabilité-complexité compromis : DMT réalisable en pré-

sence des contraintes de calculs Les dérivations précédentes suggèrent
que,sous certaines conditions,l’exponentiel en complexité peut décroître avec
une réduction dans le gain désiré de diversité. Une étude prudente montrera
plus tard que un tel compromis n’est pas toujours réussi, que des réductions
en d(r) ne donnent pas nécessairement une réduction en complexité, et qu’il
y a des gammes de d(r) pour lesquelles c(r) reste fixe. On cherche à com-
prendre le gain de diversité réalisable en présence des contraintes de calcul.
Théorème 7 donne une expression générale de ce DMT avec contrainte de
complexité pour un cadre MIMO général, et pour tout ensemble de statis-
tiques évanouissantes. En se concentrant sur le canal MIMO Rayleigh éva-
nouissant, i.i.d. et quasi-statique nT ×nR (nR ≥ nT ), et sur les designs DMT
Lattice optimaux (réalisant d∗(r)), Corollaire 8a donne une borne infèrieure
pour le DMT avec contrainte de complexité. La borne est serrée pour le cas
des codes DMT à couches optimales 4.

Corollaire 8a : La contrainte de la complexité DMT de décodage par
sphère de n’importe quelle conception DMT utilisant au maximum Nmax

.
=

ρcD(r) flops, est minoré indépendamment de la politique de décodage de com-

4. Nous reviendrons sur les codes à couches plus en détails dans la suite. On remarque
que tous les designs DMT Lattice optimaux connus jusqu’à présent appartiennent à la
famille des codes à couches
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mande en tant que dD(r) = min{d∗(r), dD(r, cD(r))} avec

dD(r, cD(r)) =
K∑

j=1

(nR − nT + 2j − 1)

+ (nR − nT + 2K + 1)(
cD(r)

T
+ 1− (K + 1)r

nT
),

avec K =
⌊
nT cD(r)

rT

⌋
. De plus, en présence de conceptions optimales du lattice

en couches, la DMT décrite en dessus correspond à la complexité de DMT à
contraintes donnée par le décodage-ordonnancement naturel en sphère.

Example 23. La complexité de DMT à contraintes de décodage en sphère
de 2× 2 du Golden code ( [9]) sur canal du Rayleigh i.i.d. est illustrée par la
Fig. 8.6. La ligne en haut sur Fig. 8.6 décrit l’exposant de complexité qu’un
code idéal de 2 × 2 pourrait exiger pour atteindre le DMT optimal. La ligne
en milieu sur Fig. 8.6 (b) décrit l’exposant de complexité qu’un codage moins
optimal du VBLAST pourrait exiger pour atteindre son DMT optimal.Cette
même ligne sur Fig. 8.6 (a) décrit aussi les limitations de complexité qu’on
a attribué un code idéal 2 × 2, qui maintenant à cause de ces limitation ne
peut réaliser quŠun DMT réduit (ligne en bas Fig. 8.6(b)).
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Figure 8.6 – Compromis de taux de fiabilité-complexité pour des codes
2× 2 parfaits.

Complexité du décodage en lattice régularisé- Chapitre 4

Notre intérêt en décodage par lattice découle du fait que le décodage à
base de ML exige une grande complexité et que le décodage par lattice atteint
parfois des performances comparables a celles du décodage ML. Ce chapitre
permet d’aboutir à deux principaux résultats. Le premier résultat prouve
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l’équivalence taux-fiabilité-complexité entre SD basé sur ML et SD lattice
régularisé 5, et le second est de fournir la première solution (décodeur et pro-
cedure de calcul) qui permet d’obtenir un vanishing gap à l’implementation
exacte de décodage de lattice regularisé à une complexité sous-exponentielle
en termes de taux.

Equivalence de ML-based SD et lattice SD régularisé Ce travail
permettra de quantifier la complexité de décodage de lattice regularisé et de
son équivalence taux-fiabilité-complexité à SD basé sur ML.

Théorème 10 : Pour la quasi-statique nT ×nR (nR ≥ nT ) i.i.d. canal MIMO
Rayleigh avec fading, l’exposant de complexité du lattice régularisé (sphère)
décodant toute conception d’un “full-rate threaded lattice” pour tout DMT ré-
gulée, est égal à l’exposant de complexité de SD basé sur ML (Théorème 3),
pour tout ordre fixé “layer-preserving” comprenant l’ordre naturel de déco-
dage.

On précise ici que, même si les deux décodeurs (ML et le décodeur basé
sur lattice) sont DMT optimales, le résultat ci-dessus intègre plus qu’un
simple décodage optimal DMT, dans le sens où il montre que toute procedure
de délai sera un compromis entre d(r) et c(r) identiquemet pour les décodages
basé sur ML ou basé sur lattice sphere. En d’autres termes, les décodeurs
partagent les mêmes capacités d(r) et c(r), indépendamment de la procedure
de temporisation.

Par ailleurs, pour le réglage de nT × nR (nR ≥ nT ) i.i.d. canal MIMO
quasi-statique Rayleigh avec fading, Corollaire 10b démontre que l’équiva-
lence ci-dessus est valable pour pratiquement tous les DMT optimaux à
conception full-rate lattice, et ce, pour un réglage très général.

Corollaire 10b : Indépendamment de l’ordre de ayant fixe ou dynamique,
l’exposant de complexité de MMSE preprocessed lattice sphere, décodant tout
(fixe, mais) code aléatoirement et uniformément choisi (à partir d’un en-
semble de DMT optimal à conception full-rate linear lattice) presque sûre-
ment, dans le choix DMT optimal lattice code, correspond à l’exposant de
complexité de SD basé sur ML, et indépendamment de la DMT réglementé.

De plus, Corollaire 10d révèle le fait surprenant qu’il n’existe pas de
comportement de canal statistique qui permettra la suppression de la région
de limites (décodage de lattice) pour provoquer des augmentations illimi-
tées dans la complexité du décodeur, c-à-d, cette limite de complexité existe,
même si les statistiques du canal sont tels que les réalisations de canaux qui
provoquent le décodeur d’avoir toujours á résoudre le problème le plus dur
de la recherche de lattice. Nous donnons ce résultat sous sa forme la plus

5. Un décodeur de lattice “régularisé” est une généralisation du décodeur de lattice
MMSE-prétraité.
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raffinée qui correspond ai canal MIMO quasi-statique.

Corollaire 10d : L’exposant de la complexité de lattice régularisé SD est ma-
jorée par :

c(r) =
T

Nt

(
r(Nt − ⌊r⌋ − 1) + (Nt ⌊r⌋ − r(Nt − 1))+

)
(8.4)

qui, pour l’entier r simplifie à

c(r) =
T

Nt
r(Nt − r), (8.5)

pour toutes les statistiques avec fading, toute procedure d’ordre de décodage,
toutes les valeurs cibles de DMT et tous les conceptions de full-rate lattice.

Ecart d’erreur pour un décodage régularisé en lattice à une com-

plexité sous-exponentielle Avec la preuve démontrable de la complexité
très élevé de la régularisation de décodage en lattice, nous nous tournons
vers l’outil de réduction de réseau (LR) et chercher à comprendre ses effets
sur la complexité algorithmique. Les résultats principaux seront présentés,
et ils sont valables pour un cadre très large de scénarios MIMO, des designs
en lattice et des statistiques à la décoloration.

Théorème 12 : Le décodage en sphère lattice du LR-assistée par MMSE-
prétraité avec une contrainte de calcul activé à Nmax = ρx, pour x > 0,
permet un écart de fuite à la solution exacte de régularisation de décodage en
lattice.

La complexité sous-exponentielle ci-dessus implique en ce sens que les
échelles de complexité plus lent que toute les fonctions exponentielle ima-
ginables. Ce travail constitue la première preuve que la complexité sous-
exponentielle n’intervient pas au coût de réduction de la performance de
décodage. Ce travail a également été en mesure de, pour la première fois,
rigoureusement démontrer et de quantifier le rôle central de la réduction de
réseau comme une complexité particulière et de réduire l’ingrédient dans les
systèmes MIMO.

Notant aussi que, si la réduction de réseau a en effet permis un comporte-
ment quasi-optimale à la complexité très maniable (par rapport au décodage
en lattice), c’est le cas qu’il existe des scénarios pour lesquels ces mêmes
méthodes ne peuvent pas être facilement appliqués. Ces cas peuvent inclure
le scénario omniprésente, où les codes binaires internes sont employés. C’est
pour cette raison précise que l’analyse des régimes LR non-assistés reste d’un
grand intérêt.
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L’impact du feedback sur complexité de ML et les décodeurs lattice

- Chapitre 5

Le travail aborde ensuite la question fondamentale de l’établissement des
taux de fiabilité de la complexité de la feedback. Ce paramètre est très im-
portant car il peut offrir près de comportement ergodique (grande diversité),
même à d’importants quels gains de multiplexage. Nous nous concentrons
sur deux questions fondamentales.

La première question demande ce qui est des économies de la complexité
que la feedback prévoit de la DMT optimale ((d∗(r)) 6, et la seconde question
demande ce qui est des coûts de la complexité de la réalisation des pleins
avantages et de la fiabilité du taux de retour. L’analyse et les systèmes de
feedback construits nous dira comment utiliser correctement un nombre fini
de bits de feedback pour atténuer les effets néfastes des contraintes de calcul,
comme ceux observés dans les dérivés de taux de fiabilité de complexité des
arbitrages dans les chapitres précédents. L’accent est mis sur les régimes
de feedback MIMO-ARQ, bien que nous ne considérons pas également la
feedback avec la sélection d’antenne.

Tous les résultats présentés sont valables pour ML-base de décodage ainsi
que MMSE-prétraité lattice de décodage.

Commentaires assistée par la complexité de la réalisation de l’DMT

optimale Pour le réglage de la nT × nR (nR ≥ nT) régulière d’évanouis-
sement MIMO-ARQ canal avec des rondes L de ARQ et avec le canal T
utilise par tour (cf. [10]), ce qui suit se concentre sur le cas de LT = nT et
supérieure délimite le minimum feedback assistée par la complexité qui ga-
rantit, avec l’aide de l’ARQ, la DMT optimale d∗(r). Avant de procéder avec
le résultat, il est intéressant de noter que, comme il s’avère, les politiques
qui décident quand à décoder et à ne pas décoder au cours des tours inter-
médiaires, jouent un rôle crucial dans la réduction de la complexité dérivée.
Nous procédons avec le résultat.

Théorème 13 : Soit c(r) est l’exposant de la complexité minimum requis
pour atteindre d∗(r), minimisé sur tous les modèles de lattice, tous les régimes
ARQ avec L ≤ nT rounds de ARQ et le retard total de LT = nT, et tout
stopper et politiques ordre de décodage. puis

c(r) ≤ cred(r) =
1

nT

[
r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+

]
,

qui est une fonction linéaire par morceaux que, pour des valeurs de gain de
multiplexage entiers, prend la forme

cred(r) =
1

nT
r(nT − r), for r = 0, 1, · · · , nT .

6. Nous signalons ici que d∗(r) désigne la DMT optimale du canal MIMO sans feedback.
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A noter la réduction de la complexité, nous rappelons Théorème 5 et Co-
rollaire 5a que dans l’absence de feedback, l’exposant la complexité associée
à la même d∗(r) a pris la forme

c(r) = r(nT − r), (8.6)

(pour l’entier r = 0, 1, · · · , nT ), alors que nous venons de voir que, par
exemple, en présence de L = nT rounds de ARQ, le DMT même est réalisée
avec un très réduite feedback assistée par la complexité d’au plus

c(r) ≤ 1

nT
r(nT − r).

Apres cela, Proposition 3,4 va présenter un schéma très simple de MIMO
ARQ qui atteint d∗(r) avec c(r) ≤ cred(r).

Example 24. Figure 8.7 traite le cas nT = 3 ≤ nR dans le cas d’un canal
de Rayleigh, et compare la borne supérieur pour complexité qui est décrite ci-
dessus en présence de feedback (L-étapes, délai minimum), avec l’exposant
de complexité équivalent dans (8.6) pour atteindre le même DMT optimal
d∗(r) sans ARQ feedback (codes parfaits et naturel, ordre de décodage fixe).

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Multiplexing Gain (r)

C
o

m
p

le
x
it
y
 e

x
p

o
n

e
n

t 
c
(r

)

Complexity reduction via feeback in 3x3 MIMO 

minimum delay ARQ scheme

Perfect code

Figure 8.7 – Réductions de complexité à l’aide du retour d’informations
ARQ.

Concernant la réduction de feedback pour les canaux asymétrique (nR <
nT), Théorème 14 et Proposition 5 décrivent la borne supérieur correspon-
dante pour la complexité et des schémas très simple pour l’ARQ qui at-
teignent cette borne pour le cas nR ≤ nT, et particulièrement pour le cas
nR|nT (i.e., nT est un entier multiple de nR).
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Example 25 (Correspondant à Theorem 14 et Proposition 5). Figure 8.8
compare deux régimes : le 2× 2 canal MIMO (délai minimum, DMT concep-
tion réseau optimal), et le montant de 4 × 2 délai minimum MIMO-ARQ
canal avec L = nT = 4, 3 bits de feedback, et la mise en oeuvre de Propo-
sition 5. Nous voyons une complexité considérablement réduite de la voie de
retour aidé (Fig. 8.8(a), ligne inférieure) qui, dans le même temps, réalise
une performance DMT beaucoup plus élevé (Fig. 8.8(b), la ligne supérieure)
que son homologue.
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Figure 8.8 – Réduction de complexité pour nR|nT canal de Rayleigh i.i.d.
avec ARQ feedback

Example 26 (Correspondant à Corollary 14a). Pour le nT × 1, correspon-
dant feedback assistée par la complexité est montré dans Corollary 14a être
sous-exponentielle dans le tarif et le nombre de bits de mots de code. Cette
réduction spectaculaire est représentée dans Fig. 8.9 qui la compare à la com-
plexité correspondante (nécessaire pour atteindre le même d∗(r)) en l’absence
de feedback. Ceci est fait pour le cas de nT = 3.

Complexité nécessaire pour atteindre le DMT optimal en présence

de feedback d∗(r/L) Pour établir la complexité liée a l’obtention du bé-
néfice maximum débit-fiabilité de l’ARQ feedback, nous nous concentrons
une fois de plus sur le canal ARQ MIMO nT × nR (nR ≥ nT ) avec des sta-
tistiques i.e. régulières. Comme précédemment, tous les résultats présentés
sont valides pour le cas du décodage ML ainsi que pour le cas du décodage
à base de lattice MMSE-prétraité. Le résultat suivant est valide pour le case
où nR ≥ nT et le cas ou L|nT (i.e., nT est un entier multiple de L). Comme
il a été montré dans [10], les performances optimales du DMT avec feedback
sont données par d∗(r/L).
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Figure 8.9 – Réduction de complexité pour canal de MISO avec un bit
feedback.

Théorème 15 : Soit c(r) l’exposant de complexité minimum nécessaire
pour atteindre le DMT optimal pour un canal L-étapes MIMO-ARQ d∗(r/L),
pour tout L|nT (i.e., nT est un entier multiple de L), quand la complexité
est minimisée sur toutes les conceptions possibles de lattice, tous les critères
dŠarrêt, et tous les ordres de décodage. Alors,

c(r) ≤ cdmd(r),
1

L

[

r
(

nT −
⌊ r

L

⌋

− 1
)

+
(

LnT

⌊ r

L

⌋

− r(nT − 1)
)+
]

,

où cdmd(r) est une fonction affine par morceau, qui, pour le cas de r étant
un entier multiple de L, prend la forme

cdmd(r) =
rnT

L2

(

L− r

nT

)

.

Corollary 15a : Le minimum, sur toutes les conceptions de lattice, tous
les critères dŠarrêt, et tous les ordres de décodage, qui est nécessaire pour
atteindre le optimal DMD d∗(r/nT) de (L = nT)-round ARQ, est borné
supérieurement par

c(r) ≤ cdmd(r) =

(

1− 1

nT

)

r.

Suivant directement ce résultat, Proposition 6 va présenter des schémas
très simple de MIMO ARQ qui atteignent d∗(r/L) avec c(r) ≤ cdmd(r).
DŠautres bornes, schémas ARQ, types de décodages, et conceptions de lattice
seront présentés plus tard dans le même chapitre. Ce même chapitre présente
aussi plusieurs exemples pour approfondir l’intuition du lecteur.



176 Chapter 8 French Summary

Example 27 (Correspondant à Theorem 15). Figure 8.10 montre les limites
de la complexité de Theorem 15, décrivant les ressources suffisantes de la
complexité dérivées pour atteindre l’optimal DMD d∗(r/L) pour les cas de
6× nR, L = 2, 3, 6.
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Figure 8.10 – Complexité exposant pour 6× nR (nR ≥ 6) pour atteindre
l’optimal DMD. L = 2 (top line), L = 3 and L = 6 (lowest line).

Example 28 (Correspondant à Corollary 15a). Figure 8.11 parcelles les
bornes de complexité de Corollary 15a décrivant les ressources suffisantes de
la complexité dérivées pour atteindre l’optimal DMD d∗(r/L) pour les cas des
2 × nR, L = nT = 2 et 3 × nR, L = nT = 3. Ces résultats sont comparés
avec les exposants de la complexité correspondants qui garantissent d∗(r) en
l’absence de feedback.

Réductions de complexité due à la sélection d’antennes Nous ex-
plorons ici une autre méthode avec laquelle le feedback peut réduire la com-
plexité. Nous nous concentrons particulièrement sur des schémas de sélection

d’antennes. Ces schémas utilisent log2

(
nT

lT

)

bits de CSIT pour réduire le sys-

tème MIMO nT × nR en un système de dimensions plus réduites lT × lR, et
ainsi plus gérable avec en général des besoins en terme de complexité plus
réduits. Cette partie de la thèse va analyser la complexité de la sélection
d’antennes en se concentrant sur le cas ou les performances, après sélection
d’antennes, restent optimal en terme de DMT (d(r) = d∗nT×nR

(r)). Ce tra-
vail est préliminaire, et est basé seulement sur les algorithmes de sélection
incrémentielle [11]. Dans cette configuration, pour
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Figure 8.11 – Borne supérieure sur les exposants de la complexité pour
atteindre l’optimal DMD.

Nr = arg min
N ′∈{1,··· ,nT }

[(
arg min

p∈{0,··· ,N ′−1}

(nT − p)(nR − p)

N ′ − p

)
= ⌈r⌉

]
, (8.7)

Nous avons le résultat suivant qui est valide pour les canaux MIMO de
Rayleigh i.i.d. nT × nR (nR ≥ nT ) . Comme précédemment, nous considé-
rons le décodage ML ainsi que le décodage a base de lattice MMSE-prétraités.

Proposition 8 L’exposant de complexité c(r) minimum sur tous les al-
gorithmes de sélection d’antennes, toutes les conceptions de lattice, tous les
critères d’arrêt, et tous les ordres de décodage, qui est nécessaire pour at-
teindre le DMT optimal d∗nT×nR

(r) est borné supérieurement par

c(r) ≤ cas(r) =
(
r(Nr − ⌊r⌋ − 1) + (Nr⌊r⌋ − r(Nr − 1))+

)
,

qui est, pour le Nr ci-dessus, une fonction affine par morceau, qui, pour
valeurs entières de gain de multiplexage r, prend la forme

cas(r) = r(Nr − r), for r = 0, 1, · · · , nT. (8.8)

Le schéma de sélection d’antennes optimal en terme de DMT qui atteint
la borne supérieur ci-dessus est aussi présenté dans le même chapitre.

Analyse de complexité pour multi-utilisateurs, cooperative et bidirectionnel-

Chapitre 6

Le travail dans ce chapitre est préliminaire et étend l’analyse débit-
fiabilité-complexité aux simples examples des canaux à accés multiples, relais
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et bidirectionnels, où encore nous identifions les précautions de calculs qui
garantissent un DMT optimal , nous adressons également le critère de sé-
lection utilisateur/relais et les protocoles de communications qui améliorent
la performance conjointe fiabilité-complexité en présence de contraintes de
calculs.

Canaux à accès multiples Dans ce travail, on établit les bornes exigées
en terme de complexité pour réaliser le MAC-DMT optimal sur un canal Ray-
leigh évanouissant i.i.d. à accès multiple (MAC) avec K-utilisateurs, ayant
chacun le même gain de muliplexage r, ayant chacun un seul antenne de
transmission, et où la destination a nR ≤ K antennes de réception. dans
certains cas, les bornes sont montrées être étroites. La borne supérieure de
complexité est décrite en dessous, et comme avant, elle est valable pour le
décodage basé sur ML et pour le décodage Lattice régularisé. Dans ce qui
suit, K0 = K si K est impair, and K0 = K + 1 si K est pair.

Théorème 16 : Le minimum, sur tous les modèles de Lattice et de halting
et l’ordre de décodage, l’exponentiel de complexité c(r) exigée pour atteindre
le DMT optimal de MAC, est borné supérieurement comme le suivant

c(r) ≤ cmac(r) =

{
cv(r) for r ≤ nR

K+1 ,

cf (r) for nR
K+1 < r ≤ nR

K ,
(8.9)

où

cv(r) = max
µ

(K − 1)r +

nR∑

i=1

(
r − (1− µi)

+
)+

s.t.
nR∑

i=1

(K − nR + 2i− 1)µi ≤ nR(1− r),

µ1 ≥ · · · ≥ µnR ,

où

cf (r) = (K − 1) rK0 +K0

(
r(nR − ⌊Kr⌋ − 1) + (⌊Kr⌋ − r(K − 1))+

)
,

est une fonction linéaire par morceaux telle que, pour r = 0, 1
K , · · · , nR

K , elle
prend la forme

cf (r) = (K − 1) rK0 +K0r(nR −Kr), for r = 0,
1

K
, · · · , nR

K
.

Une intuition subtile est déduite du résultat de Proposition 9 qui va
décrire la politique de codage/décodage qui atteind le MAC-DMT optimal
avec c(r) ≤ cmac(r).
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Example 29. Pour le cas spécifique où nR = 1, la borne dans (8.9) prend
la forme simple

cmac(r) =

{
(K − 1)r for r ≤ 1

K+1 ,

(K − 1)K0r for 1
K+1 < r ≤ 1

K .

Figure 8.12 décrit les limites supérieures de cas de K = 4 et K = 5 utilisa-
teurs avec récepteur à antenne unique (nR = 1).
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Figure 8.12 – Limites supérieures de complexité pour K-utilisateurs MAC
avec nR = 1

Canaux à relais coopératives Encore préliminaire, ce travail établit des
premiers résultats dans la complexité d’atteindre le DMT optimal d’un ré-
seau coopérative avec une source, n − 1 relais et une destination, ayant
chacun une seule antenne transmetteur/récepteur et communicant sur un
canal Rayleigh évanouissant i.i.d.. Cela est fait seulement pour le protocole
amplify-and-forward (OAF) orthogonal. la borne supérieure de complexité
est décrite en dessous.

Proposition 10 : Le minimum, sur tous les modèles Lattice et halting et po-
litiques d’ordre de décodage, l’exponentiel de complexité c(r) exigée par le
décodage basé sur ML pour atteindre le DMT optimal , est borné supérieure-
ment comme le suivant

c(r) ≤ coaf (r) =
2n− 1

n
r(n− ⌊(2n− 1)r⌋ − 1)

+

(
⌊(2n− 1)r⌋ − 2n− 1

n
r(n− 1)

)+

,
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qui est une fonction linéaire par morceaux telle que, pour r = 0, 1
2n−1 , · · · , n

2n−1 ,
elle prend la forme

coaf (r) = (2n− 1)r(1− 2n− 1

n
r).

Proposition 10 décrit aussi les politiques de codage-décodage qui réalisent
le DMT optimal de OAF avec c(r) ≤ coaf (r). L’exposant la complexité des
cas de seul et deux relais en montre dans Fig. 8.13.
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Figure 8.13 – Complexité des OAF

Pour les canaux bidirectionnels, Théorème 17 and Théorème 18 décrivent
le DMT optimal du relais canal à deux-chemins non-séparables avec asymé-
trique évanouissant et protocole décodage-et-forward donné. Utilisant cela,
Section 6.3.3 présente l’analyse de complexité et la mesure de fiabilité-complexité
conjoint pour certains protocoles à deux-chemins.

Conclusions et perspectives - Chapitre 7

Cette thèse traite de la question de la création fondamentaux taux de
fiabilité de complexité limites en général MIMO, les communications d’accès
de coopération et multiples. Le travail décrit succinctement le compromis
de haut SNR fondamentale entre le taux, la fiabilité et la complexité de
calcul sous la forme de la DMT réalisable pour une donnée emph expo-
sant la complexité, qui est un droit fondamental (non heuristique) mesure
en provenance de ce travail. Le travail a ensuite procédé à répondre à ces
limites de manière constructive à haute-SNR en identifiant MIMO rapide,
fiable et efficace et des encodeurs de coopération, de décodeurs, et les pro-
tocoles de façon optimale compromis la performance DMT avec l’exposant
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la complexité. Cette approche constitue, au mieux de notre connaissance, la
première fois que le compromis complexité-performances a été quantifiée de
façon succincte. Plus précisément, nous avons pu identifier le général de la
complexité-performances compromis pour une grande famille de ML à base
de lattice et de décodeurs à base, ainsi que de fournir la première solution de
lattice de décodage, et la politique d’activation correspondant qui, ensemble,
obtenir un écart de fuite à la la mise en oeuvre exacte de (régularisé) lat-
tice de décodage de la complexité qui est sous-exponentielle dans le tarif. La
fiabilité et les garanties provenant de la complexité valent pour la plupart
Multiple-Input Multiple-output scénarios, toutes les statistiques raisonnables
décoloration, toutes les dimensions des canaux et des codes en lattice tous
les taux.

Perspectives Le travail présenté méthodologie qui peut être appliquée
pour quantifier la performance du taux de fiabilité de complexité du roman
ou de systèmes de codage existants, décodeurs, ainsi que des protocoles de
coopération et multi-utilisateurs. Un scénario intéressant où cette tardeoff
taux de fiabilité de complexité peut être appliquée est mise à l’échelle d’ana-
lyse des capacités des grands réseaux [82–84]. Dans les grands réseaux de la
complexité de décodage sera également l’échelle de façon exponentielle avec
la taille de cluster et en présence de contraintes de calcul, mise à l’échelle
capacité optimale peut ne pas être réalisable. Une autre application intéres-
sante pourrait être l’utilisation du taux de fiabilité de complexité tardeoff
pour améliorer la sécurité de la couche physique [85,86].

Malgré les efforts sérieux pour résoudre chaque problème dans leur forme
la plus générale, les travaux en cours laisse de côté suffisamment d’espace
pour des réductions exponentielles dans la complexité, et des améliorations
dans la commune la performance de la complexité mesure, à la fois sur le côté
de décodeurs, ainsi que pour les codeurs, protocoles ou les schémas de feed-
back. Une telle problématique intéressante ouvert est de trouver changeant
dynamiquement des commandes de décodage qui permettent des réductions
garantis dans la complexité de décodage pour les codes de l’ADC DMT op-
timales filetés base.
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