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Abstract

Simplicial complex representation gives a mathematical description of the topology of
a wireless sensor network, i.e., its connectivity and coverage. In these networks, sensors
are randomly deployed in bulk in order to ensure perfect connectivity and coverage. We
propose an algorithm to discover which sensors are to be switched off, without modification
of the topology, in order to reduce energy consumption. Our reduction algorithm can be
applied to any type of simplicial complex and reaches an optimum solution. For random
geometric simplicial complexes, we find boundaries for the number of removed vertices,
as well as mathematical properties for the resulting simplicial complex. The complexity
of our reduction algorithm boils down to the computation of the asymptotical behavior
of the clique number of a random geometric graph. We provide almost sure asymptotical
behavior for the clique number in all three percolation regimes of the geometric graph.

In the second part, we apply the simplicial complex representation to cellular networks
and improve our reduction algorithm to fit new purposes. First, we provide a frequency
auto-planning algorithm for self-configuration of SON in future cellular networks. Then,
we propose an energy conservation fot the self-optimization of wireless networks. Finally,
we present a disaster recovery algorithm for any type of damaged wireless network. In this
last chapter, we also introduce the simulation of determinantal point processes in wireless
networks.







Résumé

La représentation par complexes simpliciaux fournit une description mathématique de
la topologie d'un réseau de capteurs, c’est-d-dire sa connectivité et sa couverture. Dans
ces réseaux, les capteurs sont déployés aléatoirement en grand nombre afin d’assurer une
connectivité et une couverture parfaite. Nous proposons un algorithme qui permet de
déterminer quels capteurs mettre en veille, sans modification de topologie, afin de réduire
la consommation d’énergie. Notre algorithme de réduction peut étre appliqué a tous les
types de complexes simpliciaux, et atteint un résultat optimal. Pour les complexes simplici-
aux aléatoires géométriques, nous obtenons des bornes pour le nombre de sommets retirés,
et trouvons des propriétés mathématiques pour le complexe simplicial obtenu. En cher-
chant la complexité de notre algorithme, nous sommes réduits a calculer le comportement
asymptotique de la taille de la plus grande clique dans un graphe géométrique aléatoire.
Nous donnons le comportement presque str de la taille de la plus grande clique pour les
trois régimes de percolation du graphe géométrique.

Dans la deuxiéme partie, nous appliquons la représentation par complexes simpliciaux
aux réseaux cellulaires, et améliorons notre algorithme de réduction pour répondre & de
nouvelles demandes. Tout d’abord, nous donnons un algorithme pour la planification au-
tomatique de fréquences, pour la configuration automatique des réseaux cellulaires de la
nouvelle génération bénéficiant de la technologie SON. Puis, nous proposons un algorithme
d’économie d’énergie pour 'optimisation des réseaux sans fil. Enfin, nous présentons un
algorithme pour le rétablissement des réseaux sans fil endommagés aprés une catastro-
phe. Dans ce dernier chapitre, nous introduisons la simulation des processus ponctuels
déterminantaux dans les réseaux sans fil.
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French detailed summary

L’objectif de ce chapitre est de résumer de maniére détaillée en francais le travail
présenté en anglais dans ce manuscrit.

0.1 Introduction

0.1.1 Motivation

L’utilisation des réseaux de capteurs sans fil a considérablement augmenté pendant
ces derniéres années. En effet, ils sont utiles dans tous les domaines ou la surveillance et
Pobservation jouent un réle. Cela va de la surveillance de zone de combat au dénombre-
ment ciblé en agriculture, en passant par le controle de 'environnement. Qui plus est,
la miniaturisation et le faible coiit des circuits électroniques ont permis la naissance de
capteurs multifonctions & bas cotit. Les capteurs sont ainsi déployés afin de superviser ou
récupérer des informations sur un domaine donné. Le facteur clef pour la qualité de service
d’un réseau de capteurs sans fils est donc sa topologie. En deux dimensions, la topologie
d’un réseau comprend sa connectivité et sa couverture. Par exemple, la connectivité d’un
réseau de capteurs est nécessaire pour compter les traversées sur une ligne de capteurs,
ou les entrées dans une domaine borné par des capteurs. Dans un cas plus général, les
capteurs ont besoin d’ étre connectés pour transférer les données collectées & un serveur
central, étant donné que ces derniers n’ont pas de grandes capacités de mémoire. Ensuite,
la couverture d’un réseau de capteurs défini le domaine surveillé, la plupart du temps, une
couverture totale est exigée.

La premiére approche a la gestion des réseaux de capteurs sans fil est de découvrir sa
qualité de service, c’est-a-dire sa topologie. Pour connaitre la topologie d’un réseau, une
solution est de déployer les capteurs selon un schéma régulier (hexagonal, grille, losanges,
triangulaire...) comme dans [10]. Cependant, le domaine ciblé ne permet pas toujours un
déploiement si précis. De plus, il est possible que la topologie d’un réseau de capteurs soit
modifiée avec le temps : des capteurs peuvent étre détruits, ne plus avoir de batterie, ou
encore les communications peuvent étre perturbées par le climat. Une seconde approche
est ensuite de considérer un déploiement aléatoire, qui peut ainsi générer des amas de
capteurs, aussi bien que des trous de couvertures. Il y a donc beaucoup de littérature sur le
probléme de couverture dans les réseaux de capteurs sans fil déployés aléatoirement. Parmi
les méthodes les plus populaires, on peut citer les méthodes basées sur la localisation :
par exemple dans [33| ou la localisation exacte de chacun des capteurs est nécessaire.
On peut aussi citer les méthodes basées sur les distances entre capteurs : comme dans
[92] ou la couverture est calculée a partir de celles-ci. Cependant, ces deux méthodes
nécessitent des informations géométriques qui ne sont pas toujours disponibles. En fait,
elles rencontrent les mémes problémes que le déploiement selon un schéma régulier : le




12 FRENCH DETAILED SUMMARY

domaine ciblé ne permet pas forcément une localisation précise ou des mesures de distances,
et ces paramétres peuvent étre modifiés par le temps.

C’est pourquoi les méthodes basées sur la connectivité entre capteurs paraissent plus
intéressantes vu qu’elles ne nécessitent pas d’informations géométriques. Dans [37], Ghrist
et al. ont présenté le complexe de Rips-Vietoris, défini comme le complexe des cliques du
graphe de voisinage des capteurs, qui détermine la couverture via I’homologie du complexe.
Le calcul de la couverture par ’homologie simpliciale est réduit & de simples manipula-
tions d’algebre linéaire. [24], [67] ou [94] utilisent I’homologie simpliciale comme outil pour
un opérateur afin d’ évaluer la qualité d’un réseau. Une version distribuée de ces al-
gorithmes est présentée dans [89] afin de détecter les trous de couverture. D’un autre
cOté, ’lhomologie simpliciale sur les configurations aléatoires a aussi été abordée mathéma-
tiquement en recherche. Les moments de plusieurs caractéristiques d’homologie simpliciale
peuvent étre obtenus pour un processus ponctuel binomial, cf [51], ou pour un processus
de Poisson, cf [26].

0.1.2 Contributions et plan

Le manuscrit en anglais est organisé comme suit. Premiérement, le sujet de thése
est introduit dans le Chapitre 1. Puis, nous rappelons dans le Chapitre 2 des notions
nécessaires en homologie simpliciale pour la compréhension du manuscrit. Ce chapitre est
donné en francgais dans la Section 0.2. Une section sur les travaux connexes est incluse
dans la rédaction en anglais.

Dans le Chapitre 3, traduit en frangais dans la Section 0.3, nous avons pour but de
réduire la consommation d’énergie dans les réseaux de capteurs sans fil en mettant en veille
les capteurs en surnombre. Nous utilisons les complexes simpliciaux aléatoires pour fournir
une représentation précise et transposable de la topologie d’un réseau de capteurs sans fil.
Etant donné un complexe simplicial, nous proposons un algorithme qui réduit le nombre
de ses sommets, sans modifier sa topologie (i.e. connectivité et couverture). Nous donnons
aussi des résultats de simulations pour les cas usuels, principalement les complexes de
couverture permettant de représenter les réseaux de capteurs sans fil. Nous montrons que
I’algorithme atteint un équilibre de Nash. De plus, nous trouvons une borne supérieure et
une borne inférieure pour le nombre de sommets retirés, la complexité de 'algorithme, et
I’ordre maximal du complexe final dans le cas du probléme de couverture.

Les autres résultats de cette thése sont résumés en frangais dans la Section 0.4.

En calculant la complexité de I'algorithme de réduction, on est ramené a la recherche
du comportement de la taille du plus grand simplexe du complexe géométrique aléatoire.
En vocabulaire de théorie des graphes, cela se traduit par la recherche du comportement du
cardinal de la clique maximum du graphe géométrique aléatoire. Dans le Chapitre 4, nous
décrivons son comportement asymptotique lorsque le nombre de sommets tend vers 'infini.
Ce comportement dépend du régime de percolation dans lequel le graphe se trouve. Les
comportements asymptotiques presque stirs sont explicités dans chacun des trois régimes.
Nous donnons aussi les comportements asymptotiques de caractéristiques du graphe en
lien avec le cardinal de la clique maximum : le nombre chromatique, le degré maximum,
et la taille du stable maximum.

La représentation par complexes simpliciaux n’est pas utiles que pour les réseaux de
capteurs sans fil, mais aussi pour tous les types de réseaux sans fil ou la connectivité et
la couverture sont des facteurs clef. En particulier, nous avons choisi de considérer les
réseaux cellulaires, et dans les Chapitres 5, 6, et 7 nous appliquons la représentation par
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complexes simpliciaux aux réseaux cellulaires, et améliorons notre algorithme de réduction
pour complexes simpliciaux pour atteindre de nouveaux objectifs.

Les réseaux cellulaires LTE supportent la technologie SON (Self-Organizing Network).
En particulier la Release 8 propose la détection automatique des voisins : chaque eNode-
B maintient une table de voisinage dynamique. Cette nouveauté renforce l'usage de la
représentation par complexes simpliciaux. Dans le Chapitre 5, nous sommes intéressés
par 'implémentation de la fonction de configuration automatique pour la planification
des fréquences des réseaux cellulaires du futur. Nous donnons un algorithme pour la
planification automatique des fréquences qui appelle plusieurs instances de notre algorithme
de réduction pour complexes simpliciaux afin de minimiser le nombre de fréquences utilisées
tout en maximisant la couverture de chaque fréquence.

Dans le chapitre 6, notre algorithme de réduction pour complexes simpliciaux est mod-
ifié significativement pour ’optimisation automatique des réseaux cellulaires en heures
creuses. En effet, une des fonctions d’optimisation automatique de la technologie SON est
la possibilité de mettre en veille certaines stations de base d’un réseau pendant les heures
creuses. Cependant, notre algorithme ne peut pas directement étre appliqué étant donné
que la qualité de service requise n’est plus la simple couverture, comme pour un réseau de
capteurs, mais dépend du trafic utilisateur. L’algorithme de réduction est donc amélioré
pour qu’'un réseau puisse satisfaire n’importe quelle qualité de service tout en consom-
mant un minimum d’ énergie. Nous présentons notre algorithme d’ économie d’ énergie et
discutons ses performances.

Enfin, dans le Chapitre 7, nous proposons un algorithme pour la réparation de réseaux
sans fil aprés un désastre. Nous considérons un réseau endommagé avec des trous de cou-
verture qui doivent étre restaurés. Nous proposons un algorithme de recouvrement aprés
un désastre qui ajoute des sommets en surnombre pour couvrir la totalité du domaine,
puis utilise notre algorithme de réduction pour atteindre un résultat optimal avec un nom-
bre minimal de sommets ajoutés. Pour I’ajout des nouveaux sommets, nous proposons
I'utilisation de processus ponctuels déterminantaux qui créent de la répulsion entre les
sommets, et facilite ainsi intrinséquement l’identification des trous de couverture. Nous
comparons dans un premier temps différentes méthodes d’ajout de sommets : déterminan-
tal et classiques. Puis dans un second temps, nous comparons ’algorithme en entier avec
I’algorihme glouton pour le probléme de couverture d’ensembles.

La manuscrit est conlut par le Chapitre 8, dans lequel les contributions majeures sont
rappelées, et les ouvertures possibles discutées.

Finalement, deux annexes sont incluses sur des collaborations qui ne rentrent pas di-
rectement dans le sujet principal du manuscrit. Dans I’Annexe A, le calcul de Malliavin est
appliqué pour calculer les moments de caractéristiques du complexe simplicial géométrique
basé sur un processus de Poisson. Nous proposons dans I’Annexe B une méthode nova-
trice pour la simulation du processus déterminantal de Ginibre avec un nombre donné de
sommets sur un compact.

0.2 Homologie simpliciale

0.2.1 Définitions

Pour représenter un réseau de capteurs, la premiére idée est un graphe géométrique. Les
capteurs sont représentés par des sommets, et une aréte est tracée dés que deux capteurs
peuvent communiquer entre eux. Cependant, la représentation par graphe a quelques
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limitations. Premiérement, il n’y a aucune notion de couverture. Les graphes peuvent
étre généralisés a des objets combinatoires génériques appelés complexes simpliciaux. Les
graphes permettent de modéliser les relations binaires, alors que les complexes simpliciaux
peuvent modéliser des relations d’ordre supérieur. Un complexe simplicial est un objet
combinatoire constitué de sommets, arétes, triangles, tfrehédres, et leurs équivalents n-
dimensionnels. Etant donné un ensemble de sommets V' et un entier k£, un k-simplexe
est un sous-ensemble non-ordonné de k + 1 sommets [vg,v1...,v;] ot v; € V et v; # v;
pour tout ¢ # j. Ainsi, un O-simplexe est un sommet, un l-simplexe est une aréte, un
2-simplexe un triangle, un 3-simplexe un tétrahédre, etc, comme on peut voir sur la Figure
1 par exemple.

0-simplexe 1-simplexe 2-simplexe

Figure 1: Exemple de k-simplexes.

Tout sous-ensemble de sommets inclus dans ’ensemble des k£ + 1 sommets d’un k-
simplexe constitue une face de ce k-simplexe. Ainsi, un k-simplexe a exactement k + 1
(k — 1)-faces, qui sont des (k — 1)-simplexes. Par exemple, un tétrahédre a quatre 3-faces
qui sont des triangles. La notion inverse de face est coface : si un simplexe S; est une face
d’un simplexe plus grand S5, alors S est une coface de S7. Un complexe simplicial est un
ensemble de simplexes fermé pour 'inclusion des faces, i.e. toutes les faces d’un simplexe
sont dans ’ensemble des simplexes, et quand deux faces s’intersectent, leur intersection est
un simplexe commun. Un complexe simplicial abstrait est la description purement combi-
natoire d’un complexe simplicial géométrique, et ainsi n’a pas la propriétd’intersection des
simplexes. Pour plus de détails sur la topologie algébrique, nous nous reportons a [40].

Pour le reste de cette dissertation, I'adjectif “abstrait” de complexe simplicial abstrait
pourra étre omis pour une lecture plus fluide. Cependant, tous les complexes simpliciaux
de ce travail sont des complexes simpliciaus abstraits.

On peut définir une orientation pour un simplexe. Un changement d’orientation cor-
respondrait & un changement de signe sur le coefficient. Par exemple, si on échange deux
sommets v; et v; :

[V0, -y Uiy ooy Uy ooy U] = —[V05 o, Uy oo, Uiy e, VR
Ensuite, on définit I’espece vectoriel des k-simplexes muni d’un endomorphisme, appelé
différentielle de carré nul:

Definition 1. Pour un complexe simplicial abstrait X, pour chaque entier k, Ci(X) est
I’espace vectoriel formé par l’ensemble des k-simplexes orientés de X.

Definition 2. La différentielle de carré nul Oy est la transformation linéaire Oy : Cy —
Ck—1 qui agit sur les éléments de base [vg, ..., vx| de Cy via

k

Oklvo, ..., vk] = Z(—l)i[voy e Vi1, Vil - - Uk
=0
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La différentielle sur tout k-simplexe est les cycle de ses k — 1-faces. Cette différentielle
donne naissance & un complexe de chaines : une suite d’espaces vectoriels et de transfor-
mations linéaires.

Ok 0 5] Ok—
R O B oy Dy 0y 22 o B0,

Finalement, on définit :

Definition 3. Le k-iéme groupe des bords de X est Bp(X) = im Oxy1.
Definition 4. Le k-iéme groupe des cycles de X est Zp(X) = ker 0.

Si on applique la différentielle & un cycle, elle donne le cycle de ce cycle, ce qui est
I’élément nul comme on peut le voir sur la Figure 2. Ainsi un résultat classique dit que
pour tout entier k,

ak o 6k+1 =0.
Il s’ensuit que By, C Zj.

V2 U2 U2

[ ]

0o v'(\ Vo
[ ] [ ]
U1 U1 U1

[vo,v1,v2] 22 [vo,v1] + [v1,v2] P40y —wg + w9 — vy

—i—[vg, Uo] +vg—v2 =0
Figure 2: La différentielle appliquée a un 2-simplexe.

On peut maintenant définir le k-iéme groupe d’homologie et sa dimension :

Definition 5. La k-iéme homologie de X est défini comme étant le quotient du noyau de
la différentielle par son image :

_ Z(X)
By(X)
Definition 6. Le k-iéme nombre de Betti de X est la dimension de sa k-iéme homologie :

B = dim Hy, = dim Z;, — dim By.

Hy(X)

On peut calculer les nombres de Betti dans un cas simple par exemple. Soit X un
complexe simpliciale formé de 5 sommets [vg],...,[v4], 6 arétes [vg, v1], [vo,v2], [v1,v2],
[v1,v4], [V2, V3] et [vs,v4], et un triangle [vg, v1,ve]. X est représenté dans la Figure 3.

U3

V2

v
Vo 4

U1

Figure 3: Représentation géométrique de X.
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Les différentielles associées & X sont facile & obtenir sous forme matricielle :

[vov1]  [vove] [vive] [viva] [v2vs]  [vsvd]

] / -1  —1 0 0 0 0
]| 1 0o -1 -1 0 0
81 = [’02] 0 1 1 0 —1 0 y
[vs] 0 0 0 0 1 -1
[v4] 0 0 0 1 1
[vo, v1, V2]

[vg, v1] 1

['U(], ’Ug] —1

o, vg] 1

% = [v1, v4] 0

[’1)2, 1)3] 0

[v3, V4] 0

La différentielle 9y est 'endomorphisme nul sur I'espace des sommets. On peut donc
en déduire les nombres de Betti :

Bo(X) = dimkerdy — dimim o,

= 5—4
=1
B1(X) = dimkerd; — dimim 0y
= 2-1
= 1

0.2.2 Complexes simpliciaux abstraits

Il existe plusieurs types de complexes simpliciaux abstraits célébres. Nous nous con-
centrons sur deux complexes particuliers.

Definition 7 (Complexe de Cech). Soient (X,d) un espace métrique, w un ensemble fini
de points dans X, et € un réel positif. Le complexe de Cech de paramétre € de w, noté Ce(w),
est le compleze simplicial abstrait dont les k-simplexes sont les (k + 1)-tuples de points de
w pour lesquels l'intersection des k + 1 boules de rayon € centrées sur les sommets est non
vide.

Ainsi le complexe de Cech caractérise la couverture d’'un domaine, c¢’ets la représenta-
tion que ’on va utiliser pour représenter un réseau de capteurs sans fil.
Cependant, le complexe de Cech est complexe a simuler, il existe une approximation :

Definition 8 (Complexe de Rips-Vietoris). Soient (X, d) un espace métrique, w un ensem-
ble fini de points dans X et € un réel positif. Le complexe de Rips-Vietoris de paramétre € de
w, noté Re(w), est le complexe simplicial abstrait dont les k-simplexes sont les (k+1)-tuples
de points de w qui sont de distance inférieure a € deux a deu.




17

On peut voir un exemple de représentation d’un réseau de capteurs par un complexe
de Rips-Vietoris dans la Figure 4.

Seule l'information de graphe est nécessaire pour construire le complexe de Rips-
Vietoris. De la méme maniére il ets possible de construire un complexe simplicial & partir
de n’importe quel graphe. Chaque k-simplexe est alors inclus dans le complexe si toutes
ses (k — 1)-faces le sont déja. Le complexe ainsi défini est appelé le complexe de cliques
d’un graphe donné.

35

05 [ 2-simplexe
[ Izsimplexe
I 4-sirrp lewe
% 05 1 5 2 25 3 35 7 O s5-simplexe
I -5 lexe
I 7-simplexe

Figure 4: Un réseau de capteurs sans fil et son complexe de Rips-Vietoris associé.

En général, contrairement au complexe de Cech, le complexe de Rips-Vietoris n’est
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pas topologiquement équivalent & la couverture d’un domaine. Cependant, il existe des
relations entre ces deux complexes :

Lemma 1. Soit w un ensemble fini de points sur R?, et e un réel positif. On a
Rz (W) C Ce(w) C Rae(w).

Une démonstration de ce lemme peut étre lue dans [25].

On peut aisément vérifier que le complexe de Cech C. (w) et le complexe de Rips-Vietoris
Roe(w) different seulement sur des triangles spécifiques. Par exemple, si on considére
I’ensemble de trois sommets avec leurs disques de communication de rayon e :

N

Alors leur représentation par le complexe de Cech sera trois 1-simplexes et aucun 2-

simplexes :

V2

V1
Figure 5: Complexe de Cec C,(w)
Cependant, comme le complexe de Rips-Vietoris est entiéremnt construit & partir de

la description du graphe, il y a un 2-simplexe dés qu’il y a trois 1-simplexes reliant trois
0-simplexes :

U1
Figure 6: Complexe de Rips-Vietoris Rae(w)

L’absence de 2-simplexe du complexe de Cech peut étre observée dans le complexe de
Rips-Vietoris Rz (w):
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V2

Vo
U1

Figure 7: Complexe de Rips-Vietoris R/ (w)

Pour les complexes simpliciaux de couverture, que sont le complexe de Cech et le
complexe de Rips-Vietoris, les nombres de Betti représentent le nombre de trous de k
dimensions. En effet, le k-iéme nombre de Betti 8 compte le nombre de cycles de k-
simplexes qui ne sont pas remplis par des (k+ 1)-simplexes. Par exemple, 3y est le nombre
de trous 0-dimensionels, c’est-a-dire le nombre de composantes connexes. Et (31 est le
nombre de trous dans le plan, puis 32 est le nombre de vides & l'intérieur d’une surface 3-D
donnée. En dimension d, le k-iéme nombre de Betti pour k > d n’a aucun sens géométrique.

0.3 Algorithme de réduction pour complexes simpliciaux

0.3.1 Introduction

Les capteurs sont des systémes autonomes : ils ne sont pas branchés électriquement
ni reliés entre eux. Leur autonomie est donc un probléme majeur, et I’économie d’énergie
un point crucial dans la gestion des réseaux de capteurs sans fil. Il existe méme plusieurs
définitions pour la durée de vie d’un réseau de capteurs sans fil, comme expliqué dans [29].
Notre approche de la durée de vie du réseaux est plutot naive : nous considérons une
image statique du réseau. Pour contrebalancer la sensibilité d’un réseau de capteurs aux
trous de couverture ou aux composantes déconnectées, une solution bien connue est de
déployer un nombre excessif de capteurs. En utilisant plus de capteurs que nécessaire
pour couvrir un domaine ou connecter un réseau, on assure une couverture redondante et
I’entiére connectivité. Cependant, cette solution a un colit en matériel, en maintenance,
aussi bien qu’en autonomie. Ainsi, une approche naive pour améliorer la durée de vie d’un
réseau de capteurs sans fil et réduire la consommation d’énergie serait donc logiquement
de mettre certains capteurs en veille, comme ils sont en surnombre. Cependant, si cela est
fait au hasard, cela peut modifier la topologie du réseau en créant un trou de couverture,
ou en cassant la connectivité.

C’est pourquoi nous proposons ici un algorithme qui retourne I’ensemble des capteurs
qui peuvent étre mis en veille sans modification de la topologie du réseau. Etant donné un
complexe simplicial, notre algorithme enléve les sommets selon un ordre optimisé, tout en
gardant la topologie du complexe intacte. Un exemple d’une exécution de ’algorithme est
donnée en Figure 8.

Nous montrons que 'algorithme atteint un équilibre de Nash : chaque sommet du com-
plexe simplicial final est nécessaire au maintien de I’homologie. Cela signifie que ’agorithme
atteint un optimum local. Nous évaluons une borne inférieur et une borne supérieure pour
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Figure 8: Un réseau de capteurs avant et aprés ’exécution de 'algorithme de couverture.

le nombre de sommets retirés. La complexité en moyenne de 'algorithme est analysée pour
deux types de complexes simpliciaux aléatoires : le complexe de cliques d’ Erdos-Rényi, et
les complexes géométriques basés sur un processus de Poisson. Nous montrons que cette
complexité est polynomiale dans le premier cas, et exponentielle dans le deuxiéme. Nous
donnons aussi des caractéristiques du complexe simplicial final pour le cas de 'application
a la couverture des réseaux de capteurs sans fil.

C’est le premier algorithme de réduction basé sur la représentation par complexes
simlpiciaux, utilisant I’homologie, qui vise & économiser de ’énergie des les réseaux de
capteurs sans fil. Une approche usuelle a la gestion de ’énergie dans les réseaux est
I'utilisation du graphe de connectivité, comme dans le probléme de I'’ensemble dominant
[43]. Cependant, les graphes sont des objets a deux dimensions. Un sommet connait ses
voisins, mais il n’y a pas de repr/’esentation des intéractions entre ceux-ci. Ainsi, il n’y
a pas de notion de couverture dans les graphes. Les complexes simpliciaux permettent de
représenter ces relations d’ordre supérieur, et sont donc plus adaptés a la représentation
des réseaux de capteurs. Plusieurs travaux peuvent paraitre relier d’un premier abord &
notre travail, mais ils ne font pas exactement la méme chose. Dans [30,50], les auteurs
utilisent la réduction des complexes de chaine pour calculer I’homologie, réduisant ainsi
le domaine couvert, ce qui le rend inapplicable au probléme de couverture. La réduction
de complexes témoins, qui est la réduction & un nombre donné de sommets, est utilisée
dans [23] pour calculer des invariants topologiques. Dans ce dernier papier, comme dans
les articles de réduction des complexes de chaine, les auteurs utilisent la réduction pour
calculer 'homologie, alors que nous utilisons ’homologie pour réduire de maniére optimale
un complexe simplicial. Finalement, les auteurs de [17] propose une approche basée sur la
théorie des jeux pour la gestion de ’énergie, o ils définissent une fonction de couverture.
Cependant, cette méthode nécessite des informations de localisation précises, ainsi que la
connaissance de la couverture. De plus, les auteurs identifient des solutions sous-optimales,
qui ne garantissent pas une couverture intacte.

N

Le reste de cette section est organisée comme suit. La Section 0.3.2 est dévouée a
la description de notre algorithme de réduction. Des résultats de simulation sont donnés
dans la Section 0.3.3. Finalement, dans la Section 0.3.4, nous discutons des propriétés
mathématiques de ’algorithme.
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0.3.2 Algorithme

Dans cette section, nous présentons 1’algorithme de réduction qui donne quels capteurs
peuvent étre mis en veille dans un réseau de capteurs sans modification de sa topologie.
Dans cet algorithme on utilise 'homologie simpliciale pour représenter le réseau de capteurs
sans fil sans information de localisation, et pour caractériser sa topologie. Mais on utilise
aussi 'information venant de la représentation par complexes simpliciaux pour identifier les
capteurs redondants, 'idée générale étant de retirer les capteurs appartenant aux simplexes
les plus grands.

L’algorithme a besoin de deux entrées. Tout d’abord on a besoin du complexe simplicial
abstrait entiérement décrit, c’est-a-dire avec tous les simplexes explicités. Avec seulement
un complexe simplicial, la réduction optimale sans modification de I’homologie sera toujours
de réduire le complexe a un unique sommet. C’est pourquoi on a aussi besoin en deuxiéme
entrée d’une liste de sommets qui doivent étre conservés par l'algorithme de réduction. On
appelle ces sommets les sommets critigues. On enléve ensuite des sommets non critiques
et leurs faces un par un du complexe simplicial sans modification de la topologie, i.e. sans
modification des nombres de Betti. A la sortie, on obtient le complexe simplicial final et
la liste des sommets retirés.

Il y a autant de groupes d’homologie non nuls, soit de nombres de Betti non nuls, que
de tailles de simplexes dans le complexe simplicial abstrait. Ainsi on peut définir différents
algorithms suivant le nombre de nombres de Betti qui doivent étre inchangés. On note kg
le nombre de nombres de Betti que ’algorithme prend en compte.

Dans le cas de 'application aux réseaux de capteurs sans fil, le complexe simplicial ab-
strait sera typiquement un complexe de Cech ou de Rips-Vietoris en deux dimensions. Les
seuls nombres de Betti d’un complexe de Cech ou de Rips-Vietoris qui ont une interpréta-
tion géométrique sont [y et 51 en deux dimensions. On considére donc deux algorithmes :

e Le premier algorithme, appelé 'algorithme de connectivité, maintient seulement la
connectivité du complexe simplicial, et ne prend pas en compte la couverture. La
topologie du complexe est alors spécifiée par le nombre de composantes connectées
,30 et ko =1.

e Le deuxiéme algorithme, algorithme de couverture, prend en compte & la fois la
connectivité et la couverture, i.e. il conserve le nombre de composantes connexes (3,
et le nombre de trous de couverture S, et kg = 2. Cet algorithme est le cas général
en deux dimensions.

The list of critical vertices can be viewed as a list of active sensors that have to stay
connected as they are, or extremity sensors of a line-shaped network for the connectivity
algorithm. In the coverage algorithm, the critical vertices will be the vertices lying on the
boundary of the area that is to stay covered, that includes both the external boundary and
the holes boundary. We need all the boundary vertices in order to not shrink the area, nor
enlarge coverage holes. While the external boundary vertices are quite easy to discover:
using the convex hull, or directly defined by the network manager; the hole boundary
vertices are more tricky to obtain. the authors of [89] propose an algorithm in order to
find them. But in the main application of our algorithm: power consumption reduction
in wireless sensor networks, we consider that there are too many sensors to cover an area
that we want to reduce the number: therefore we consider that there is no coverage hole.
So the discovery of the hole boundary vertices is not a problem.
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La liste des sommets critiques peut étre vue comme une liste de capteurs actifs qui
doivent rester connectés comme ils sont, ou des capteurs aux extrémités d’un réseau en
ligne pour 'algorithme de connectivité. En ce qui concerne 'algorithme de couverture, les
sommets critiques seront les capteurs déployés sur la frontiére de la zone qui doit rester
couverte, cela inclut & la fois la frontiére externe et le contour des trous de couverture.
On a besoin de tous les sommets de bordure afin de ne pas réduire la zone, ou augmenter
les trous de couverture. Les sommets de la bordure externe sont assez facile & obtenir :
en utilisant ’enveloppe convexe, ou méme par définition de 'opérateur de réseau dnas le
cas d’un réseau de capteurs. Les sommets en bordure de trous de couverture peuvent étre
assez complexes a localiser. Les auteurs de [89] propose un algorithme afin de les trouver.
Dans l’application principale de notre algorithme : I’économie d’énergie dans les réseaux
de capteurs sans fil, on considére qu’il y a des capteurs en surnombre dont on veut réduire
le nombre : donc on considére qu’il n’y a pas de trou de couverture. Ainsi la recherche des
sommets en bordure de trous n’est pas un probléme.

On définit maintenant I’hypothése de domaine entier pour 'application aux réseaux de
capteurs, i.e. quand l'algorithme de réduction est appliqué & un complexe de Cech ou de
Rips-Vietoris en moins de deux dimensions :

Definition 9 (Hypothése de domaine entier). En dimension d < 2, on définit si kg = d,
pour un compleze de Cech ou de Rips-Vietoris avec By = 1 et si ko = 2, B1 = 0, Uhypothése
de domaine entier qui est satisfaite lorsque tous les sommets du comlexe simplicial abstrait
sont dans le méme domaine géométrique définie par les sommets critiques.

Pour Ualgorithme de connectivité en une dimension, cela signifie que les sommets cri-
tiques sont deuxr sommets extrémes et les autres sommets doivent étre sur le méme chemin
reliant les deux sommets critiques.

Pour l’algorithme de couverture, cela signifie que les sommets critiques sont les sommets
de bordure et tous les autres sommets sont a lintérieur de [’aire définie par les sommets
critiques.

On peut remarquer qu’il est toujours possible de satisfaire I’hypothése de domaine entier
en enlevant avant ’algorithme de réduction, tous les sommets qui ne sont pas dans le chemin
défini par les sommets critiques pour l'algorithme de connectivité en une dimension, ou
les sommets qui ne sont pas a l'intérieur de ’enveloppe convexe des sommets critiques en
deux dimensions.

0.3.2.1 Degrés

La premiére étape de I'algorithme est le calcul d’un nombre, qu’on appelle degré, défini
pout tout kg-simplexe, ot kg est le nombre de nombre de Betti a conserver. Afin de
connecter des sommets, on a seulement besoin de 1-simplexes, pour couvrir un domaine, on
a de la méme maniére seulement besoin de 2-simplexes. Ainsi les simplexes plus grands, i.e.
les simplexes avec plus que kg + 1 sommets sont superflus pour le probléme de connectivité
ou de couverture pour les kg premiers nombres de Betti. On essaye de caractériser la
superficialité des kg-simplexes avec la définition suivante :

Definition 10. Pour ko entier, le degré d’un ko-simplexe [vo,v1,...,vy,] est la taille de
sa plus grande coface :

Dlvg,v1, ..., = max{d | [vo, v1,...,vk] C d-simplexe}.
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Par définition on a Duvg,v1,. .., vg,] > ko.
Pour la suite, on note s;(X) ou simplement sj le nombre de k-simplexes du complexe
simplicial X. On note aussi Dy, ... ,Dsk0 les sy, degrés d'un complexe simplicial. Ils sont

calculés selon I’Algorithme 1.

Algorithm 1 Calcul des degrés

for i =1— s, do
Soient (vo, ..., vk,) les sommets du i-éme ko-simplexe
k =k
while (vo, ..., vg,) sont sommets d’'un (k4 1)-simplexe do

k=k+1

end while
D, =k

end for

return D,...,D

» Mg

On peut voir un exemple de valeurs pour le degré de 2-simplexes dans la Figure 9 :
quand un 2-simplexe est isolé son degré est 2, quand c’est la face d’un tétrahédre il devient

3.

V2 V2 U3

V1 V1
Vo Vo
D[UO,Ul,UQ] =2 D[UO,Ul,UQ] =3

Figure 9: Exemple de valeurs de degrés de 2-simplexes.

0.3.2.2 Indices

Le but de I'algorithme est de retirer des sommets, et non pas des kg-simplexes, donc on
doit faire descendre 'information de superficialité des kg-simplexes au niveau des sommets,
a laide d’un indice. On considére un sommet sensible si son retrait entraine un changement
dans les nombres de Betti du complexe. Un sommet est aussi sensible que son kg-simplexe
le plus sensible. Donc l'indice d’'un sommet est le minimum des degrés des kg-simplexes
dont il est sommet :

Definition 11. L’indice d’un sommet v est le minimum des degrés des ko-simplexes dont
il ets sommet :

I[v] = min{D[vg, v1,..., k] | v € [vo,v1,...,Vk]},

Si un sommet v n'est le sommet d’aucun ko-simpleze alors I[v] = 0.
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Soient v1,v2,...,vs, les sommets du complexe simplicial, le calcul des s indices est
fait de la maniére décrite dans I’Algorithme 2.

Algorithm 2 Calcul des indices
fori=1— sg do
I [Uz] =0
for j =1 — s, do
if v; est sommet du j-iéme kg-simplexe then
if I[v;] == 0 then
I[’Uz] = Dj
else
I[v;] = min{/[v;], D;}
end if
end if
end for
end for
return I[vi], ..., I[vs]

On peut voir dans la Figure 10 un exemple de valeur pour les indices des sommets d’un
complexe simplicial. Les sommets d'un kg-simplexe sont plus sensible que les sommets
n’appartenant qu’a des simplexes plus grands.

U2 U3

Vg

U1
Vo
Dlvy, v1,v2] = D[vg, v1,v3] = Dlvg, v, v3] = D[v1, v2,v3] =3
Dlvy,vs,v4] =2
Ivo)=1[v2]=3 and I[v1]=1I[vs]=1I[v4] =2

Figure 10: Exemple de valeurs d’indices de sommets.

L’indice d’un sommet est ainsi un indicateur de la densité de sommets autour de lui :
un indice de kg indique qu’au moins une de ses kg-cofaces n’est pas la face d’un simplexe
plus grand. Tandis qu’un indice plus élevé indique que toutes ses kg-cofaces sont les faces
de simplexes plus grands. L’idée dénérale de I’algorithme est donc de retirer les sommets
de plus grand indice.

Remark 1. Un indice de 0 indique que le sommet n’appartient & aucun ko-simplexe :
c’est-a-dire que le sommet est isolé au kg-ieme degré. Pour ko = 1, cela signifie que le
sommet est déconnecté de tous les autres. Pour ko = 2, le sommet est seulement relié aux
autres sommets par des arétes au plus, il ets donc dans un trou de couverture. Lorsque
Uhypothése de domaine entier est vérifiée, ces cas-la n’existent pas.
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0.3.2.3 Ordre optimisé

L’algorithme enléve maintenant les sommets du complexe simplicial initial suivant un
ordre optimisé. On commence par calculer les kg premiers nombres de Betti en utilisant
I’algébre linéaire. Puis, les degrés de tous les kg-simplexes et les indices de tous les sommets
sont calculés comme expliqués dans la section précédente. Les sommets critiques de la liste
donnée en entrée sont affectés d’un indice négatif afin de les identifier comme inenlevables.
Les indices nous donnent ensuite un ordre pour le retrait successif des sommets : plus
I'indice d’un sommet est grand, plus le sommet est spuperficiel pour I’homologie kg-iéme
du complexe. Ainsi, les sommets de plus grand indice sont candidats au retrait : un est
choisi aléatoirement. Le retrait d’'un sommet entraine le retrait de toutes ses faces.

A chaque retrait de sommet, on doit vérifier que ’homologie n’a pas été modifiée. On
calcule les k¢ premiers nombres de Betti a I'aide des différentielles de carré nul & chaque
retrait de sommet. Ce calcul est instantané vu que le complexe est déja construit, et seules
les matrices d’adjacence sont néessaires. Si le retrait du sommet modifie I’homologie, le
sommet est remis dans le complexe. De plus, son indice devient temporairement négatif
pour ne pas que le sommet soit choisi au prochain tirage pour le retrait suivant. Les indices
temporaires sont recalculées au prochain retrait effectif de sommet.

Sinon, si le retrait ne modifie pas ’homologie, celui-ci est confirmé. Les degrés modifiés
des kO-simplexes et les indices des sommets sont recalculés. On peut remarquer que seule-
ment les sommets d’indice maximum peuvent avoir leur indice modifié, comme expliqué
dans le Lemme 2. De plus, afin d’améliorer la performance de I'algorithme il ets possible
de seulement calculer les degrés impactés par le retrait. Il suffit de marquer les k-simplexes
qui sont les plus grandes cofaces de kg-simplexes. Et quand I'une d’elles disparait, le degré
de ses kg-faces peuvent étre modifiés.

Lemma 2. Quand un sommet d’indice I, est retiré du compleze, seulement les sommets
max )
partageant un Inax-simplexe avec celui-ci, et d’indice Inmax peuvent avoir leur indice modifié.

Proof Soit w le sommet retiré d’indice Iax, et soit v un sommet quelconque du complexe
simplicial.

Si v ne partage pas de simplexe avec w, aucun des degrés de ses ko-simplexes ne sera
modifié, par conséquent son indice ne sera pas modifié non plus.

Ainsi, on peut considérer que le plus grand simplexe commun de v et w est un k-
simplexe, k > 0. Si k < ko, alors le retrait de w et de ce k-simplexe n’a aucune conséquence
sur I'indice de v par définition. Puis si kg < k < Inax alors w est d'indice k& < Ipax, ce
qui est absurde. On peut donc supposer que k > I .. Soit 'indice de v est strictement
inférieur & I,.x est vient d’un simplexe non partagé avec w, et n’est donc pas affecté par
le retrait de w. Ou alors, si 'indice de v est Iy, il peut toujours venir d’un simplexe non
partagé avec w, auquel cas il ne change pas. Ou si 'indice de v vient d'un Iax-simplexe
commun avec w, alors 'indice de v est modifié. C’est le seul cas ou il I'est.

L’algorithme continue de retirer des sommets jusqu’a ce que tous les sommets restant
soient inenlevables, atteignant ainsi un résultat optimal. Tous les sommets sont inenlev-
ables quand tous les indices sont strictements inférieurs a kg. Par définition d’un indice,
cela veut dire que tous les indices sont soit nuls, soit négatifs (temporairement ou non).

Certaines choses peuvent étre améliorées avec I'’hypothése de domaine entier dans le
cas de 'application aux réseaux de capteurs sans fil. Tout d’abord, la condition d’arrét
peut étre améliorée & ce que I« soit inférieur ou égal a kg :
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Lemma 3. Sous U’hypothése de domaine entier, [’algorithme peut s’arréter lorsque tous les
indices sont inférieurs ou égaux a ko.

Proof On suppose que les données satisfont I'hypothése de domaine entier. Soit v un
sommet d’indice I(v) = ko, cela signifie qu’au moins une de ses kg-cofaces n’a pas de
(ko + 1)-coface. Le retrait de ce sommet entrainerait en particulier le retrait de ce ko-
simplexe. Comme 'algorithme doit conserver ’homologie que tout le domaine géométrique
défini par les sommets critiques sans le réduire, ce retrait entrainerait la création d’un trou
ko-dimensionnel, et donc une incrémentation de Bj,—1.

Pour l'algorithme de connectivité, le retrait d’une aréte qui n’est pas le c6té d’un
triangle entraine une déconnexion dans le chemin reliant les deux sommets critiques. Pour
I’algorithme de couverture, le retrait d’un triangle qui n’est pas une face de tétrahédre
entraine la création d’un trou de couverture dans la zone entourée par les sommets critiques.

Puis sous ’hypothése de domaine entier dans le cas de 'application aux réseaux de
capteurs sans fil, tous les sommets inenlevables temporairement (d’indice négatif) le sont
définitivement :

Lemma 4. Sous U’hypothése de domaine entier, quand le retrait d’un sommet modifie
I’homologie du complexe, elle la modifiera toujours.

Proof Sous I’hypothése de domaine entier, la distantce entre les sommets critiques ne peut
pas diminuer, ni I'aire de la zone entre eux réduire. Comme la taille du domaine n’est pas
modifiée, comme dans le peuve du Lemme 3, le retrait d'un sommer qui a entrainé une
modification d’un nombre de Betti entrainera toujours le méme changement.

Remark 2. On peut omettre l'ordre optimisé des sommets, et seulement retirer tous les
sommets d’indice strictement supérieur a kg quand I’homologie n’est pas modifiée. Le calcul
des degrés est alors limité au choix plus grand que kg ou non. En faisant cela, on perd l’ordre
optimisé pour le retrait des sommets. Dans ce cas, l'algorithme peut alors étre distribué,
chaque noeud peut faire tourner un algorithme décentralisé avec pour seule information :
ses voisins et leurs relations entre euzx. Cela a été fait dans [91].

On donne dans I’Algorithme 3 ’algorithme entier pour la conservation des kg premiers
nombres de Betti.
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Algorithm 3 Algorithme de réduction
Require: Complexe simplicial X, liste Lo des sommets critiques.
Calcul de 5y(X), ..., Bry—1(X)
Calcul de D1(X), ..., Dy, (X)
Calcul de I[v1(X)], ..., I[vs,(X)]
for all v € Lo do
Iv] =—-1
end for
Imax = max{I[v1(X)],..., Ivs,(X)]}
while I,,.x > ko do
Tirage de w sommet d’indice [y
X' = X\{w)
Calcul de So(X'), ..., Bro—1(X")
if B;(X") # B;(X) pour un i =0, ..., kg — 1 then

Iw] = -1
else
Calcul de Dy (X'), ... ’DSLO (X")

fori=1— s, do
if I[v;(X")] == Imax then
Calcul de I[v;(X")]
end if
if I[UZ<X/)] == -1 && v; ¢ LC then
Calcul de Iv;(X")]
end if
end for
X=X
end if
Inax = max{I[vi(X)],..., [vs,(X)]}
end while
return X

0.3.3 Simulations

Les simulations présentées ici ont pour but d’illustrer 'algorithme. Les résultats de
I’algorithme sont hautement dépendants des choix de parameétres. Pour l'algorithme de
connectivité le pourcentage de sommets retirés est lié au fait les sommets critiques soient
reliés entre eux sans intermédiaire ou non, et comment. Pour 'algorithme de couverture,
le pourcentage de sommets retirés est lié¢ au rapport entre le nombre initial de sommets
dans le complexe et le nombre de sommets nécessaires pour couvrir la zone définie par les
sommets critiques. On a simulé I'algorithme de réduction sur deux complexes différents.

Tout d’abord on considére le complexe d” Erdds-Rényi, complexe de cliques du graphe
éponyme :

Definition 12 (Complexe d’Erdés-Rényi). Soit n un entier et p un réel dans [0,1], le
complexe d’Erdis-Rényi de parameétres n et p, appelé G(n,p), est un complexe simplicial
abstrait de n sommets. Puis, chaque aréte est incluse avec la probabilité p indépendamment
des autres arétes. Enfin un k-simplexe, avec k > 2, est inclus si et seulement si toutes ses
faces le sont déja.
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On peut voir dans la Figure 11 une réalisation de ’algorithme de réduction conservant
le nombre de composantes connexes [y sur un complexe d’ Erdds-Rényi de paramétre
n = 15 et p = 0.3. Les sommets critiques sont choisis aléatoirement : un sommet est
critique avec probabilité p. = 0.5 indépendamment des autres sommets. Les sommets
critiques sont entourés par des cercles, et les sommets non critiques gardés pour maintenir
la connectivité entre les sommets critiques sont étoilés.

Figure 11: Complexe d’Erdés-Rényi avant et aprés I'algorithm de réduciton pour kg = 1.

Avec les paramétres n = 60 sommets, et p = 0.2, en moyenne sur 1000 configurations,
avec une unique composante connexe, et p, prenant des valeurs entre 0.1 et 0.5 (200 con-
figurations par valeur), Palgorithme a retiré 98% des sommets non critiques :
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pe | Pourcentage de sommets retirés
0.1 94.96%
0.2 97.14%
0.3 98.59%
0.4 99.43%
0.5 99.87%

Puis on choisit d’illustrer le cas de 'application aux réseaux de capteurs sans fil avec
un complexe de Rips-Vietoris en deux dimensions. On simule ’ensemble des sommets avec

un processus de Poisson :

Definition 13. Un processus de Poisson w d’intensité A sur un Borelien X est défini par :

i) Pour tout A € B(X), le nombre de points dans A, w(A), est une variable aléatoire

suivant une loi de Poisson de parameétre AS(A), Pr(w(A) =k) = e)‘s(A)%

k

ii) Pour A, A" € B(X) disjoints, les variables aléatoires w(A) et w(A’) sont indépendantes.

3.5

25

1.5¢

0.5

0.5

Figure 12: Un complexe de Rips-Vietoris avant et aprés l'algorithme de connectivité.
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On peut voir dans la Figure 12 une réalisation de l'algorithme de connectivité sur un
complexe de Rips-Vietoris de paramétre ¢ = 1 basé sur un processus de Poisson d’intensité
A = 4 sur un carré de coté 4, avec des sommets critiques aléatoires. Un sommet est choisi
critique avec probabilité p. = 0.5 indépendamment des autres sommets.

Pour cette configuration de paramétres avec une composante connexe, en moyenne sur
1000 exécutions, l'algorithme de connectivité a retiré 96.01% des sommets non critiques.

On peut voir dans la Figure 13 une réalisation de I’algorithme de couverture sur un
complexe de Rips-Vietoris de paramétre e = 1 basé sur un processus de Poisson d’intensité
A = 4.2 sur un carré de coté a = 2, avec une frontiére fixe de sommets sur le périmétre
du carré. Les sommets critiques sont ceux de la frontiére, satisfaisant ainsi I’hypothése de
domaine entier pour l'algorithme de couverture. Ils sont encerclés sur la figure.
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Figure 13: Un complexe de Rips-Vietoris avant et aprés 'algorithme de couverture.
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Pour assurer la couverture sans trous, on a pris les paramétres suivants : e = 1, A = 5.1
et a = 2, en moyenne sur 1000 configurations, I’algorithme de couverture a retiré 69.35%
des sommets non critiques.

0.3.4 Propriétés mathématiques

La premiére propriété de notre algorithm est que la solution atteinte est optimale. Il
est possible que ce ne soit pas la meilleure solution si il y a plusieurs optima, mais c¢’est un
optimum local. En vocabulaire de théorie des jeux, cela veut dire que 'algorithme atteint
un équilibre de Nash :

Theorem 1 (Equilibre de Nash). L’algorithme de réduction atteint un équilibre de Nash,
défini dans [17] : chaque sommet du complexe simplicial final est nécessaire au maintien
de son homologie.

Proof Dans le complexe simplicial final, chaque sommet est d’indice strictement inférieur
a ko dans le cas général. Par la définition des indices, on différencie alors deux types de
sommets, ceux d’indice —1 et ceux d’indice 0.

Premiérement, les indices négatifs sont attribués aux sommets inenlevables. Soit un
sommet a un indice négatif si c’est un sommet critique, auquel cas il doit rester dans le
complexe par définition. Soit un sommet a un indice négatif car son retrait entraine un
changement dans les nombres de Betti. Et il n’y a eu aucun retrait de sommets depuis,
donc aucun changement dans le complexe simplicial, ainsi ce fait est toujours vrai.

Puis, un sommet d’indice nul est un sommet isolé. S’il est isolé au kg-iéme degré. Son
retrait entraine une diminution de fy,. Par exemple, le retrait d’'un sommet déconnecté
décrémenterait By. Le retrait d’'un sommet dans un trou entrainerait la réunion de deux
ou plus de trous.

Finalement, si les données vérifient I’hypothése de domaine entier, la preuve du Lemme
3 montre que l'algorithme atteint toujours un équilibre de Nash.

Dans un deuxiéme temps, nous avons trouvé une borne inférieure et une borne supérieure
au nombre de sommets retirés par I’algorithme. Le nombre de sommets retirés est au moins
un sommet par valeur d’indice, et au plus tous les sommets d’indices non minimum au début
de I’algorithme :

Theorem 2 (Bornes supérieure et inférieure). Soit Ej, ’ensemble des sommets d’indice
kavant Ualgorithme. Le nombre de sommets retirés M est borné par :

Tmax Imax
Y U <M< Y (Bl
k=ko+1 k=ko+1

ot |Ey| est le cardinal de Ej.

Proof On commence par prouver la borne supérieure. Le nombre maximum de sommets
qui peuvent étre retiréspar l'algorithme est le nombre de sommets dont I'indice est stricte-
ment supérieur 4 ky. C’est une borne supérieure optimale atteinte dans le cas suivant :

Soit un k-simplexe, avec k > kg, ’ensemble du complexe a réduire. , soit n¢ le nombre
de sommets critiques, alors no < k + 1. Les no sommets critiques ont un indice négatif,
les k£ + 1 — n¢ autres sommets ont un indice de k, et ils sont tous retirés.
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I['UQ] =-1 1[1)3] =4 I[UQ] =—1

V9 V3 U2 v3
U1 U1
Vo I[v] = -1 Vo I[v] = -1
Ivg] =4
Before After

Figure 14: Exemple de ce cas avec k = 3 et ng = 2, les deux sommets vy et vs sont retirés
par l'algorithme.

Pour la borne inférieure, on a vu dans le Lemme 2 que le retrait d’un sommet d’indice
Inax peut seulement modifier les indices des sommets d’indices Inax. Dans le pire cas,
le retrait diminue tous les indices qui étaient & I .x, et la valeur de I,.x change, pas
nécessairement pour I, — 1 suivant la répartition des sommets critiques. Ainsi, au moins
un sommet par valeur d’indice peut étre retiré. D’ou le résultat.

La borne inférieure est atteinte dans le cas précédent si ng = k.

Remark 3. Comme vu dans la preuve, les deux bornes supérieure et inférieure sont at-
teintes dans le cas du graphe complet ot tous les sommets sauf un peuvent étre retirés.

Puis, nous avons trouvé quelques caractéristiques sur le complexe simplicial final dans
le cas d’una application aux réseaux de capteurs sans fil. En utilisant la d’efinition suivante
pour un ensemble couvrant :

Definition 14 (Ensemble couvrant). Comme défini [43], un ensemble S CV de sommets
d’un graphe G = (V, E) est un ensemble couvrant si chaque sommet v € V est soit un
élément de S ou adjacent a un élément de S.

Sous ’hypothése de domaine entier, 'ensemble de sommets conservés par 1'algorithme
est un ensemble couvrant de ’ensemble de sommets initial :

Theorem 3. En deux dimensions pour l’algorithme de couverture appliqué & un complexe
de Cech ou de Rips-Vietoris sous 'hypothése de domaine entier, l’ensemble de sommets
conservés est un ensemble couvrant de l’ensemble de sommets du complexe simplicial initial.

Proof Sous I’hypothése de domaine entier, les sommets initiaux sont tous dans le domaine
géométrique défini par les sommets critiques. Pour l'algorithme de couverture, cela sig-
nifie que les sommets initiaux sont tous dans la zone définie par les sommets critiques.
L’homologie du complexe n’est pas modifiée par I’algorithme, donc il n’y a aucun trou de
couverture dans le complexe final. La zone est toujours couverte. Ainsi, chaque point de la
zone est & l'intérieur d’un 2-simplexe. C’est vrai pour chaque sommet du complexe initial,
qui ets alors adjacent & trois sommets restants.

Remark 4. Dans le cas de l'application aux réseaux de capteurs sans fil, tous les capteurs
en veille sont a un saut d’un capteur éveillé.
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Finalement, nous nous intéressons a la complexité de notre algorithme. Si on considére
le nombre de sommets n = sg comme paramétre, alors la complexité de 'implémentation
du complexe simplicial & n sommets est potentiellement exponentielle. En effet, le nombre
de simplexes dans un complexe & n sommets est majoré par 2 — 1. Donc la complexité de
I'implémentation des données est majorée par O(2") par rapport au nombre de sommets
n.

Theorem 4 (Complexité). La complexité de l’algorithme qui conserve ko nombre de Betti
sur le complexe simplicial de sp k-simplexes et n = sg sommets, est majorée par :

c

n25k0 + (n + sg,) Z g,
k=0

—_

avec C' le cardinal de clique maximal du graphe sous-jacent.

Proof Soit C' — 1 la taille du simplexe le plus grand dans le complexe initial, C' étant
connu comme le cardinal de clique maximum du graphe sous-jacent. Pour le calcul des
degrés de tous les kg-simplexes, l'algorithme parcourt au plus tous les k-simplexes pour
ko < k < C'—1 pour vérifier si le kg-simplexe en est une face. Comme il y a s; k-simplexes,
le calcul des degrés est de complexité majorée par sg, ZkC;klO 41 Sk-

Pour le calcul des indices, ’algorithme parcourt pour chacun des n sommets, ses k-
cofaces, ce qui est au plus tous les kp-simplexes. La complexité du calcul des indices a donc
pour majorant nsy,.

Ces calculs sont faits au dbut de Palgorithme. Puis & chaque retrait de sommet, ce qui
arrive au plus n fois :

e Les simplexes des sommets retirés sont détruits : complexité majorée par ZkC;Ol Sk-
e Les nombres de Betti sont recalculés via les matrices d’adjacence qui existent déja.

e Les degrés modifi/’es sont recalculés automatiquement avec la destruction des sim-
plexes.

e Les au plus n —1 indices modifiés sont recalculés: complexité majorée par (n—1)sg,.
Corollary 5. Quand n tend vers Uinfini, la complexité de lalgorithme est O(nFo+12m),

Proof C’est une conséquence directe du Théoréme 4 sachant que le nombre de k-simplexes
Sk peut étre majoré par (kil)’ ko est typiquement petit devant n (1 ou 2 en deux dimen-
sions), et C' est majoré par n.

Remark 5. Comme limplémentation des données est de complexité O(2™), la complexité
de l'algorithme est polynomiale devant la complezité des données.

On peut raffiner ces résultats sur la complexité de I’algorithme pour quelques complexes
simpliciaux spécifiques.

Corollary 6. Pour lalgorithme appliqué & un compleze de Cech Cc(w), défini avec la
norme infinie, basé sur un processus de Poisson d’intensité X sur un tore de coté a en
dimension 2. La complezité de U'algorithme est majorée par O((1 + (2)2)") en moyenne
lorsque n tend vers l'infini.
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Proof Selon [26], on a si sg = n:

E[si_1] = <Z>k2 (f)wl) and,
Cov [sp_1,51-1] = kﬁi <Z> <Z> <’;> (u +2W)2 <2;>2(u¢_1’,

avec u; = k+1—1.
L’utiliser dans la formule du Théoréme 4 donne le résultat.

Corollary 7. La complexité de U’algorithme appliqué & un complexe d’Erdos-Rényi basé
sur le graphe G(n,p) est de lordre de O(n?%0+2)) en moyenne quand n tend vers Uinfini.

Proof Dans le complexe d’Erdos-Rényi,les espérances des nombres de k-simpleces sont

données dans [14] :
n k
E[si_1] = <k>p(2),

B s o] = %(Zxk)(j: Yot

1=0

Le résultat vient alors de la formule de la complexité du Théoréme 4.

0.4 Autres résultats

Dans cette section, nous résumons les autres résultats présentés dans ce manuscrit.

0.4.1 Nombre de clique

En cherchant la complexité de notre algorithme de réduction, on est réduit a calculer le
comportement de la taille du simplexe le plus grand dans un complexe simplicial aléatoire.
En théorie des graphes, cette caractéristique est connue sous le nom de cardinal de la clique
maximum. Le cardinal de clique maximum C est concrétement la taille de la plus grande
clique dans un graphe. Dans le Chapitre 4, on trouve le comportement asymptotique
presque str du cardinal de clique maximum pour le graphe sous-jacent au complexe de
Rips-Vietoris sur un processus ponctuel binomial quand le nombre de points tend vers
I'infini. Ce graphe est le graphe géométrique aléatoire de n sommets, tirés aléatoirement
uniformément, incluant une aréte entre deux sommets quand leur distance, prise avec
la norme uniforme, est inférieure & un paramétre donné r. Les n sommets sont tirés
uniformément sur le tore de coté a en dimension d. Le comportement du cardinal de
clique maximum dépend du régime de percolation dans lequel se trouve le graphe. En
posant 0 = (Z)d, les régimes de eprcolation du graphe géométrique aléatoire sont définis
selon les variations de % devant 6. Dans le régime sous-critique, ot § = 0(%), nous
donnons les intervalles de 6 ot C' prend une valeur donnée asymptotiquement presque
sirement. Dans le régime critique, 6 ~ %, nous montrons que C' croit légérement moins
vite que In n asymptotiquement presque stirement. Finalement, dans le régime sur-critique,
% = 0(6), nous prouvons que C' croit en nf asymptotiquement presque stirement. Nous
nous intéressons aussi au comportement d’autres caractéristiques de graphe reliées : le
nombre chromatique, le degré maximum, et la taille du stable maximum. Ce travail est le

sujet de [28].
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0.4.2 Applications aux réseaux cellulaires

Dans une deuxiéme partie, nous étendons les applications de la représentation par
comlexe simplicial & de nouveaux types de réseaux sans fil : en particuler les réseaux
cellulaires du futur.

0.4.2.1 Configuration

Dans le Chapitre 5, nous présentons un algorithme pour la planification automa-
tique des fréquences, basé sur la représentation par complexes simpliciaux et utilisant
I’algorithme de réduction présenté dans le Chapitre 3. Notre algorithme peut étre ap-
pliqué aux réseaux sans fil aléatoires qui ne sont pas déployés selon un schéma régulier.
L’algorithm minimise le nombre de fréquences planifiées tout en maximisant la couverture
de chacune d’entre elles. Ainsi, un nombre minimum de ressources sont utilisées et ce
de maniére optimale. Cet algorithme de planification automatique de fréquences peut en
particulier étre utilisé pour la configuration automatique des réseaux cellulaires du futur.
Nous présentons aussi sa performance et le comparons a 'algorithme glouton de coloriage.

0.4.2.2 Optimisation

Dans le Chapitre 6, nous proposons un algorithme pour ’optimisation automatique des
réseaux cellulaires du futur pendant les heures creuses. Cet algorithme vient de modifica-
tions significatives de 'algorithme de réduction du Chapitre 3. En effet, nous proposons
un algorithme de conservation d’énergie dont le but n’est plus de réduire le nombre de
sommets sans modification de la topologie. L’algorithme de conservation d’énergie prend
en compte non seulement la couverture, mais aussi le trafic, et est capable de satisfaire
n’importe quelle demande de trafic. La performance de ’algorithme est aussi discutée et
comparée a la solution optimal pas toujours atteignable.

0.4.2.3 Recouvrement

Dans le Chapitre 7, nous présentons un algorithme pour le recouvrement des réseaux
sans fil aprés un désastre. On considére un réseau sans fil endommagé, avec des trous
de couverture et/ou plusieurs composantes non connectés. Nous proposons un algorithme
pour le recouvrement qgiu répare le réseau. Il fournit la liste des positions ol placer les nou-
veaux noeuds de réseau afin de colmater les trous de couverture, et recoller les composantes
déconnectées. Afin de faire cela, on considére tout d’abord la représentation par complexe
simplicial du réseau, puis ’algorithm ajoute de nouveaux sommets, en trop grand nom-
bre, puis fait tourner l’algorithme de réduction du Chapitre 3 pour atteindre un résultat
optimal. Une des nouveautés de ce travail réside dans la méthode proposée pour 'ajout
de nouveaux sommets. Nous utilisons un processus ponctuel déterminantal : le processus
de Ginibre qui crée une répulsion inhérente entre les sommets, et n’a jamais été simulé
auparavent pour les réseaux sans fil. Nous comparons tout d’abord la méthode déter-
minantale avec des méthodes plus classqiues d’ajout de sommets. Puis nous comparons
tout l'algorithme avec 'algorithme glouton pour le probléme d’ensembles couvrants. Ce
chapitre est 'objet de [87].
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Chapter 1

Introduction

1.1 Motivation

Utilization of wireless sensor networks has notably grown in the past few years. In-
deed they can be used in about every field where monitoring and observation play a role.
These range from battlefield surveillance to target enumeration in agriculture, and include
environmental monitoring. Moreover, miniaturization and decreasing costs of electronic
circuits have allowed the creation of low-cost multifunctional sensors. Sensors are thus
deployed in order to oversee or collect data about a given area. Therefore, the key factor
for the quality of service of a wireless sensor network is its topology. In two dimensions, the
topology of a wireless sensor network comprises both its connectivity and its coverage. For
example entire connectivity would be needed if the network is set to oversee the crossings
of a line of sensors, or the entries in a given area bounded by sensors. In a more general
case, sensors need to be connected in order to convey data to a central data center since
they do not have large memory capacity. Then, the coverage of a wireless sensor network
defines the area being monitored; most of the time complete coverage of an area is required.

The first approach to wireless sensor network management is to discover its quality of
service, that is consequently to discover its topology. To guarantee full knowledge of the
topology, one solution is to deploy the sensors according to a regular pattern (hexagon,
square grid, rhombus or equilateral triangle) as in [10]. However the target field does not
always allow such a precise deployment. Furthermore, the topology may not be time-
invariant: sensors could be destroyed, their batteries could die, or their communication
could be disturbed by seasonal changes. Another approach is then to consider a random
deployment that may create clusters of sensors, or on the contrary may leave holes of
coverage. There is thus extensive research on the coverage problem for randomly deployed
wireless sensor networks. Among popular methods, we can cite location-based methods, as
in [33], which require exact location information for the sensors, and ranged-based methods,
in [92], that compute coverage based on the distance between sensors. However, these two
methods require geometrical information on the wireless sensor network which is not always
available. Actually these methods encounter the same problems as deployment along a
regular pattern: the target field may not allow precise location or distance measurement,
and locations as well as distances may not be time-invariant.

That is why connectivity-based schemes seem of greater interest since they do not
require such geometrical knowledge. In [37], Ghrist et al. introduced the so-called Vietoris-
Rips complex, which is the clique complex built from the proximity graph between sensors,
and determines the coverage via the homology of this complex. Coverage computation
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via simplicial homology then boils down to simple linear algebra computations. It is
used in [24], [67] and [94] as a tool for a network operator to evaluate the quality of a
network. A distributed version of some of these algorithms is presented in [89] in order to
detect coverage holes. Meanwhile, simplicial homology on random configurations has also
attracted intensive mathematical research. Moments of simplicial homology characteristics
can be obtained for a binomial point process, see [51], as well as for a Poisson point process,
see [26].

1.2 Thesis contributions and outline

This dissertation is organized as follows. First in Chapter 2, we provide the simpli-
cial homology background necessary for the understanding of this dissertation. We also
included in this chapter the related work to establish some context.

In Chapter 3, we aim at reducing power consumption in wireless sensor networks by
turning off supernumerary sensors. We use random simplicial complexes to provide an
accurate and tractable representation of the topology of wireless sensor networks. Given
a simplicial complex, we present an algorithm which reduces the number of its vertices,
keeping its topology (i.e. connectivity, coverage) unchanged. We also give some simulation
results for usual cases, especially coverage complexes simulating wireless sensor networks.
We show that the algorithm reaches a Nash equilibrium. Moreover we find both a lower
and an upper bounds for the number of vertices removed, the complexity of the algorithm,
and the maximal order of the resulting complex for the coverage problem.

While computing the complexity of the reduction algorithm presented in Chapter 3,
the computation comes down to the investigation of the behavior of the size of the largest
simplex of the random geometric simplicial complex. Translating this to graph theory
vocabulary, this means that we have to investigate the behavior of the clique number of
the random geometric graph. In Chapter 4, we describe its asymptotic behavior when the
number of vertices goes to infinity. This behavior depends on the percolation regimes of the
graph, asymptotically almost sure behaviors are exhibited for the clique number in each
regime. We also investigate the behavior of related graph characteristics: the chromatic
number, the maximum vertex degree, and the independence number.

The simplicial complex representation is not only usable for wireless sensor networks,
but also for any type of wireless networks where connectivity and coverage is a key factor.
In particular, we choose to consider cellular networks, and in Chapters 5, 6 and 7, we
apply the simplicial complex representation to cellular networks, and enhance our reduction
algorithm for simplicial complexes in order to achieve new goals.

LTE cellular networks support some Self-Organizing Network (SON) features. In par-
ticular the 3GPP LTE Rel. 8 features the Automatic Neighbor Relation (ANR) detection:
an eNode-B maintains a dynamic neighbor table. This feature strengthens even more the
use of simplicial complex representation. In Chapter 5, we are interested in the implemen-
tation of SON self-configuration function for the planning of cells frequencies for future
cellular networks. We propose and describe a frequency auto-planning algorithm which
calls several instances of our reduction algorithm for simplicial complexes in order to min-
imize the number of needed frequencies while maximizing the coverage of each frequency.

In Chapter 6, our reduction algorithm for simplicial complexes is significantly modified
for the self-optimization of cellular networks during off-peak hours. Indeed one of the
self-optimization functions of SON is the ability to switch-off some of the base stations of
a network during off-peak periods. However, our algorithm can not be directly applied
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since the desired quality of service is not minimal coverage, as it can be the case in wireless
sensor networks, but depends of the users traffic. The reduction algorithm is thus enhanced
in order for a network to satisfy any required quality of service while using a minimum
energy. We present our energy conservation algorithm and discuss its performance.

Then in Chapter 7, we provide an algorithm for the healing of any wireless network
after a disaster. We consider a damaged wireless network presenting coverage holes, that we
need to restore by patching the holes. We propose a disaster recovery algorithm which adds
supernumerary vertices to cover the entire area, then run an improved reduction algorithm
to reach an optimal result with a minimum number of added vertices. For the addition of
new vertices, we propose the use of determinantal point processes which exhibit repulsion
between vertices, and thus inherently facilitates the identification of coverage holes. We
compare both this vertices addition method to other classic vertices addition methods, and
the whole algorithm to the greedy algorithm for the set cover problem.

This dissertation is concluded in Chapter 8, where major contributions are reminded,
and possible future work is discussed.

Finally I included two appendices on some related research work that does not directly
fit within the scope of this dissertation. Malliavin calculus is applied in Appendix A in order
to compute moments of characteristics of random geometric simplicial complexes based on
Poisson point processes. In Appendix B, we propose a novel method for the simulation
of Ginibre determinantal point processes with a given number of points in a compact set.
Determinantal point processes are random point processes where the particules are not
independent of each other, but repel each others.
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Chapter 2

Related work and mathematical
background

The work presented in this dissertation is at the intersection between different fields:
we represent wireless sensor network using simplicial homology and stochastic geometry
i order to write a reduction algorithm of which we derive properties and enhancements
throughout the thesis. Therefore, we need to investigate in the first section of this chapter
the research work done in the three domains: wireless sensor network, simplicial homology,
and random configurations. In the second section, we introduce the definitions and the-
orems from simplicial homology theory which are necessary for the understanding of this
dissertation.

2.1 Related work

2.1.1 Wireless sensor network representation

Many approaches exist for the representation of wireless sensor networks. Since the
connectivity and the coverage of a wireless sensor network define its quality of service,
the topology have a key role in the choice of representation. The first kind of traditional
approach we can mention is the regular pattern display. With this approach the sensors
are considered to be deployed along a hexagonal, square or triangular lattice. In [10], the
authors propose an optimal deployment pattern in order to achieve coverage and redundant
connectivity.

When sensors positions are not following a regular pattern, one has to consider a way
to discover the sensor network topology. We can differentiate three different points of view.
The first one is a location-based approach. The exact positions of the sensors are known
and the Voronoi diagram is build. Considering the set of vertices of the sensor positions,
for each vertex v, there is a corresponding region, called the Voronoi cell of vertex v,
consisting of all points closer to v than to any other vertex. The Voronoi cells can thus be
build with the bisectors between every two vertices. This approach is used in [33, 88| to
compute coverage. Indeed one only has to check if every point of a Voronoi cell is covered
by the sensor located in v, for every cells. However, the Voronoi diagram is not locally
computable in general. But in [93] the authors propose a way for each node to compute
its localized Voronoi cell.

The second approach to coverage discovery for a random deployment of sensors is
range-based. That is to say that the exact positions of the sensors is not needed, whereas
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the distance between neighboring sensors is used to identify coverage. In [92], the authors
use the localized Voronoi cell computation to discover coverage as previously. Indeed the
Voronoi diagram can be build by using distance information instead of position information.
Another way to check the coverage of an area is for each sensor to check if the perimeter of
its coverage disk is covered by its neighbors. This is used in [11] in a coverage verification
algorithm. This is improved by the same author in [12]: considering the neighboring radius
to be large enough compared to the coverage radius, each sensor can determine the relative
locations of its neighbors.

In recent works, homology is used to discover the coverage of a wireless sensor network.
This is what we can call a connectivity-based approach since only connectivity information
between sensors is needed. Ghrist et al., [25,37], introduced the Cech simplicial complex
which gives an exact mathematical representation of a network topology via homology
groups.

One can easily spot the differences between the approaches presented here. In the
regular pattern approach, sensors need to be deployed along a given lattice. This is not
always achievable in a real life scenario, that is why we prefer random deployments repre-
sentations. Considering a random deployment for sensors, there is three ways to compute
the coverage of the sensor network. Two of them require geometrical information: either
exact position information for the first one, or distance between sensors for the second one.
This geometrical information is not generally easy to obtain. The last approach doest not
require geometrical information, but only connectivity information that sensors can send
themselves. This deficit of information is counterbalanced by an increase in complexity.
Yet, this method provides an exact and tractable mathematical description of the topology
of a network.

2.1.2 Simplicial homology

Simplicial homology lies in the mathematical area of algebraic topology and has been
studied prior to its application to wireless network representation. For a further general
reading about simplicial homology we refer to the book of Hatcher [40].

As a pioneer work, Ghrist et al. introduced the use of simplicial homology to compute
the coverage of a wireless sensor network in [37]. They first present the Cech complex,
a combinatorial object defined in the next section, which characterizes the topology of a
wireless sensor network. Since this object is complex to build, they also introduce the
Vietoris-Rips complex, which is an approximation to the Cech complex.The Vietoris-Rips
complex can be build with only the graph description and provide an exact connectivity
description and an approximate coverage description. In [37], then in [24], they use a
homology criterion for coverage.

There exist many ways to compute the homology of simplicial complexes. First we can
cite persistent homology in which the simplicial complex is build progressively, simplex
by simplex. An algorithm for computing simplicial homology is given in [94], moreover
the persistence of geometric complexes, such as the Vietoris-Rips we are interested in, is
studied in [18]. Persistent homology is applied to the computation of coverage of sensor
networks in [25]. Homology can also be computed in a distributed way, as in [66]. In
this article, the authors use the combinatorial Laplacians in order to detect the absence or
presence of a coverage hole. Then, in [67], it is possible to distinguish between different
coverage holes thanks to a gossip like algorithm. In [89], a distributed algorithm for hole
detection in wireless sensor network is proposed, of which the accuracy is computed in [90].
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Finally there is also some work combining both simplicial homology and random con-
figurations. The expected topological properties of a Cech or a Vietoris-Rips complex are
studied in [51]. Particularly, the author gives the asymptotic behavior for the expectation
of the Betti numbers, which as seen in the next section, count the number of holes. In [26],
the first moments of the number of complete components, called simplices, of the Cech and
Vietoris-Rips complexes are computed.

2.1.3 Random configurations

In the above mentioned work of Kahle [51], the geometric complex is build on a binomial
point process. In a binomial point process, a given number of vertices is sampled uniformly
on a compact set. From the Cech and the Vietoris-Rips complex, we can recover the
underlying graph. With a set of vertices following a binomial point process, this graph is
called the random geometric graph. Random geometric graphs are thoroughly studied in
Penrose’s book [73], where it is shown that their behavior can be studied along percolation
regimes. Particularly weak laws of large number and central limit theorems can be applied
in the subcritical regime [75-77]. While strong las of large numbers are used in [8] to find
some of the graph characteristics behaviors.

Then in [26], the random point process used is the Poisson point process. In this process,
not only the vertices positions are random but also the number of vertices. Indeed, the
number of vertices follow a Poisson distribution, and their positions are uniformly sampled
on the compact set. Poisson point processes have very useful properties, as described
in [78], which allow the authors of [26] to obtain their results. For example, a concentration
inequality exists, and Malliavin calculus can be applied.

2.2 Simplicial homology background

2.2.1 Definitions

When representing a wireless sensor network, one’s first idea will be a geometric graph,
where sensors are represented by vertices, and an edge is drawn whenever two sensors can
communicate with each other. However, the graph representation has some limitations;
first of all there is no notion of coverage. Graphs can be generalized to more generic com-
binatorial objects known as simplicial complexes. While graphs model binary relations,
simplicial complexes represent higher order relations. A simplicial complex is a combi-
natorial object made up of vertices, edges, triangles, tetrahedra, and their n-dimensional
counterparts. Given a set of vertices V' and an integer k, a k-simplex is an unordered subset
of k + 1 vertices [vg, v1 ..., v;] where v; € V and v; # v; for all i # j. Thus, a 0-simplex is
a vertex, a l-simplex an edge, a 2-simplex a triangle, a 3-simplex a tetrahedron, etc. See
Figure 2.1 for instance.

Any subset of vertices included in the set of the k + 1 vertices of a k-simplex is a face
of this k-simplex. Thus, a k-simplex has exactly k + 1 (k — 1)-faces, which are (k — 1)-
simplices. For example, a tetrahedron has four 3-faces which are triangles. The inverse
notion of face is coface: if a simplex S is a face of a larger simplex So, then S5 is a coface
of S1. A simplicial complex is a collection of simplices which is closed with respect to
the inclusion of faces, i.e. all faces of a simplex are in the set of simplices, and whenever
two simplices intersect, they do so on a common face. An abstract simplicial complex is
a purely combinatorial description of the geometric simplicial complex and therefore does
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0-simplex 1-simplex 2-simplex

Figure 2.1: Example of k-simplices.

not need the property of intersection of faces. For details about algebraic topology, we
refer to [40].

For the remainder of this thesis, the “abstract” adjective of abstract simplicial complex
might be dropped for a smoother reading. However all the simplicial complexes in this
thesis are actually abstract simplicial complexes.

One can define an orientation for a simplex, where a change in the orientation corre-
sponds to a change in the sign of the coefficient. For instance if one swaps vertices v; and
Uy

[’U[),...,’UZ‘,...,Uj,...,vk] = —[’Uo,...,'l)j,...,’Ui,...,vk].
Then let us define vector spaces of k-simplices and a boundary map on them:

Definition 15. Given an abstract simplicial complex X, for each integer k, Cyx(X) is the
vector space spanned by the set of oriented k-simplices of X.

Definition 16. The boundary map O is defined to be the linear transformation O : Cj —

Cr—1 which acts on basis elements [vy, ..., vx| of Cy via
k‘ .
On[vo, - ok) =D (=1 [vo, ., vim1, Vi, - v,
i=0

The boundary map on any k-simplex, is the cycle of its (k — 1)-faces. This map gives
rise to a chain complex: a sequence of vector spaces and linear transformations.

Opt2 Ok+1 0, Op—1 0] O
. .—+>Ck+1—+>Ck—’“>Ck,1—>...—1>C0—°>O.

Finally let us define:
Definition 17. The k-th boundary group of X is Bp(X) = im k1.
Definition 18. The k-th cycle group of X is Zi(X) = ker 0.

The boundary map applied to a cycle gives the cycle of this cycle which is zero as can
be seen in Figure 2.2. Therefore a standard result asserts that for any integer k,

3;€ o ak+1 =0.

It follows that B C Zj.
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V2 U2 U2

[ ]
o v'(\ o
[ ] [ ]
(1 U1 U1
[vo, v1,v2] 22 [vo, v1] + [v1,v2) Py — g+ ve — 1y
—i—[vg, Uo] +vg—v2 =0

Figure 2.2: Application of the boundary map to a 2-simplex.

We are now able to define the k-th homology group and its dimension:

Definition 19. The k-th homology group of X is the quotient vector space:

_ Z(X)
By (X)

Definition 20. The k-th Betti number of X is the dimension:

Hy(X)

B = dim H, = dim Z;, — dim By.

The Betti numbers are computed via the boundary maps matrices. These matrices are
obtained directly from the simplicial complex description: the matrix of Jj is equivalent
to the list of the k — 1-faces of the k-simplices of the complex. Since we consider abstract
simplicial complexes, it is not possible to use the incremental algorithm for the Betti
numbers computation.

We can compute the Betti numbers in a simple case as an example. Let X be the
simplicial complex made up of 5 vertices [vo],...,[vs], 6 edges [vy,v1], [vo,ve], [v1,v2],
[v1,v4], [v2,v3] and [vs,v4], and one triangle [vg, v1, v2] represented in Figure 2.3.

v3
V2

V.
Vo 4

U1
Figure 2.3: A geometric representation of X.
The boundary maps associated to the simplicial complex X are easy to obtain in matrix

form:
[vov1]  [vova] [vive] [viva] [vovs]  [vzvd]

wo] / -1 -1 0 0 0 0

]| 1 0 1 -1 0 0
o= [w]| 0 1 1 0 ~1 0o .

ws] [ 0 0 0 0 1 ~1

[wa] \ 0 0 0 1 0 1
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[V, v1, v2]
[’U(), 1)1] 1
[vo, v2] —1
[1)1, 1)2] 1
02 = [v1, v4] 0
[1)2, ’Ug] 0
[v3, v4] 0

The boundary map 0y is the null function on the set of vertices. Then we can compute
the Betti numbers:

Bo(X) = dimkerdy — dimim 0,

= 5—14
= 1
f1(X) = dimkerd; — dimim 0y
= 2—-1
=1

2.2.2 Abstract simplicial complexes

There are several famous types of abstract simplicial complexes, here we focus on two
particular abstract simplicial complexes.

Definition 21 (Cech complex). Given (X,d) a metric space, w a finite set of points in
X, and € a real positive number. The Cech complex of parameter € of w, denoted Ce(w), is
the abstract simplicial complex whose k-simplices correspond to unordered (k+ 1)-tuples of
vertices in w for which the intersection of the k + 1 balls of radius € centered at the k + 1
vertices 1S non-empty.

Thus the Cech complex characterizes the coverage of a domain, this is the representation
that we will use for wireless sensor network.

Although the Cech complex is hard to compute, there exists an approximation:

Definition 22 (Vietoris-Rips complex). Given (X,d) a metric space, w a finite set of
points in X, and € a real positive number. The Vietoris-Rips complex of parameter € of w,
denoted R¢(w), is the abstract simplicial complex whose k-simplices correspond to unordered
(k + 1)-tuples of vertices in w which are pairwise within distance less than € of each other.

We can see an example of wireless sensor network representation by a Vietoris-Rips
complex in Figure 2.4.

Only graph information is required to build a Vietoris-Rips complex. In the same way
we can build an abstract simplicial complex from any graph: each k-simplex is included in
the complex if every one of its (k — 1)-faces already are. That abstract simplicial complex
is called the clique complex of the graph.
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3.5r
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Figure 2.4: A wireless sensor network and its associated Vietoris-Rips complex.

In general, unlike the Cech one, Vietoris-Rips complexes are not topologically equivalent
to the coverage of an area. However, the following gives us the relation between the Cech
and the Vietoris-Rips complexes:

Lemma 5. On R?, given w a finite set of points in X, and € a real positive number,
R\/ge(w) - Ce(w) C Rge(w).

A proof of this lemma can be found in [25].

One can easily verify that the Cech complex C.(w) and the Vietoris-Rips complex
Rae(w) only differ on specific triangles. For example, we can consider this set of 3 vertices
with their communication disks of radii e:
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Then its Cech complex representation is three 1-simplices with no 2-simplex:

V2
Vo j \
U1

Figure 2.5: Cech complex Ce(w)

However, since the Vietoris-Rips complex is entirely build on graph description, it
contains a 2-simplex as soon as there are three 1-simplices linking three O-simplices:

V2
Yo ﬁ \
U1

Figure 2.6: Vietoris-Rips complex Rae(w)

But the absence of 2-simplex in the Cech complex can be seen by building the Vietoris-

Rips complex R /3, (w):
U2
U1

Figure 2.7: Vietoris-Rips complex R s, (w)

For coverage simplicial complexes, as the Cech and the Vietoris-Rips complex, the Betti
numbers represent the number of k-dimensional holes. Indeed the k-th Betti number (5
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counts the number of cycles of k-simplices which are not filled with (k 4 1)-simplices. For
example, [y counts the number of 0-dimensional holes, that is the number of connected
components. And (37 counts the number of holes in the plane, then S5 is the number of
voids inside a given 3-D surface. If we are in dimension d, the k-th Betti number for & > d
has no geometric meaning.
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Part 1

Simplicial complexes reduction
algorithm
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Chapter 3

Reduction algorithm for energy
savings 1n wireless sensor networks

In this chapter, we present the central result of this thesis: a reduction algorithm for
simplicial complexes. The simplicial complex representation is used to provide a mathemat-
ical description of the topology of a wireless sensor network. Then our reduction algorithm
aims at reducing the number of sensors, i.e. vertices, without modifying the topology of the
network, i.e. the Betti numbers of the simplicial complex. We provide a full description
of our algorithm, as well as simulations results. In the last section, some mathematical
properties of the reduction algorithm are presented. This work has been published in [86].

3.1 Introduction

Sensors are autonomous systems: they are neither plugged in nor physically connected
to each other. Battery life is thus a key problem and energy savings a crucial point
in wireless sensor networks management. There even exists a great number of different
definitions for a wireless sensor network lifetime as surveyed in [29]. Our approach to
network lifetime is rather naive: we consider a static image of the network. To overcome
a sensor network sensitivity to coverage holes or disconnected components, a well-known
solution is to deploy an excessive number of sensors. By using more sensors than needed to
cover an area or to connect a network, one ensures redundant coverage or full connectivity.
However, doing so has a cost in hardware, in maintenance, as well as in battery life.
Therefore, a first approach to expand the lifespan of a wireless sensor network and to
reduce power consumption would logically be to put some of the sensors on standby, since
there are too many of them. However, by doing it randomly, one could modify the topology
of the sensor network by creating a coverage hole or breaking the connectivity.

This is why we propose here an algorithm which returns the set of sensors that can be
put in standby without modifying the topology of the network. Given a simplicial complex,
our algorithm removes vertices in an optimized order, keeping the topology of the complex
unchanged. An example of an execution of this algorithm is shown in Figure 3.1.

We show that the algorithm reaches a Nash equilibrium: every vertex in the final
simplicial complex is needed to maintain the homology. This means that the algorithm
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Figure 3.1: A sensor network before and after the execution of the coverage algorithm.

reaches a local optimum. We evaluate a lower and an upper bound for the number of
removed vertices. The average complexity of the algorithm is analyzed for two types
of random simplicial complexes: Erdos-Rényi complexes and Poisson random geometric
complexes. We show that this complexity is polynomial for the former and (slightly)
exponential for the latter, on which we will elaborate in the next chapter. We also provide
some characteristics for the resulting complex in the wireless sensor network coverage
problem.

This is the first reduction algorithm based on simplicial complex representation using
homology aimed at energy savings in wireless sensor networks. A usual approach to power
management in networks is the usage of the connectivity graph, such as in the dominating
graph problem [43]. However, graphs are 2-dimensional objects. One vertex has full
knowledge of its neighbors, but there is no representation of the interaction between these
neighbors. Therefore, there is no notion of coverage in graphs. Simplicial complexes allow
us to represent higher order relations, and are thus more convenient for the representation
of wireless sensor networks. Several works may seem at first glance related to our approach
but they do not exactly fit our purposes. In [30,50], the authors use reduction of chain
complexes to compute homology, reducing the covered domain, which make it inapplicable
to a coverage problem. Witness complexes reduction, which is a reduction to a chosen
number of vertices, is used in [23] to compute topological invariants. In the latter paper,
as in the articles on reduction of chains complexes, the authors use reduction to compute
the homology, whereas we use homology results to reduce optimally a simplicial complex.
Finally, the authors of [17] present a game-theoretic approach to power management where
they define a coverage function. However this method requires precise location information
as well as coverage knowledge. Moreover, authors aim at identifying sub-optimal solutions
that do not guarantee an unmodified coverage.

This chapter is organized as follows: Section 3.2 is devoted to the description of our
reduction algorithm. Some simulation results are given in Section 3.3. Finally in Section
3.4, we discuss the mathematical properties of the algorithm.
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3.2 Reduction algorithm

In this section, we present the reduction algorithm which provides which sensors may
be put on standby in a wireless sensor network without altering the network’s topology. In
this algorithm we use simplicial homology to represent the wireless sensor network without
location information, and to characterize its topology. But we also use information from
the simplicial complex representation to identify the non-needed sensors, the main idea
being to put on standby sensors which are represented by vertices belonging to the largest
simplices.

The algorithm needs two inputs. First it needs the abstract simplicial complex, with
all its simplices specified. With only an abstract simplicial complex, the optimal reduction
with no modification in the homology will always be to reduce the complex to a simple
vertex. That is why the algorithm needs as a second input a list of vertices of the abstract
simplicial complex that have to be kept by the reduction algorithm. We call these vertices
critical vertices. Then the algorithm removes non-critical vertices and their faces one by
one from the simplicial complex without changing its homology, i.e. its Betti numbers. At
the end, we obtain a final simplicial complex, and a list of removed vertices.

There are as many nonzero homology groups, hence nonzero Betti numbers, as sizes
of simplices in the abstract simplicial complex. Therefore it is possible to define different
algorithms following the number of Betti numbers that have to be kept unchanged. We
will denote by ko the number of Betti numbers that the algorithm takes into account.

In the wireless sensor network case, the abstract simplicial complex will typically be
a Cech complex or a Vietoris-Rips complex in two dimensions. The only Betti numbers
of a Cech or a Vietoris-Rips complex that have geometric meaning are fy, and £; in two
dimensions. We thus consider two algorithms:

e The first algorithm, henceforth referred to as the connectivity algorithm, maintains
connectivity within the simplicial complex, and does not take coverage into account,
i.e. it only maintains the number of connected components 5y and kg = 1.

e The second algorithm is the coverage algorithm. It takes into account both connec-
tivity and coverage, i.e. it maintains the number of connected components 5y and
the number of coverage holes 81, and kg = 2. It therefore constitutes the general
case in two dimensions.

The list of critical vertices can be viewed as a list of active sensors that have to stay
connected as they are, or extremity sensors of a line-shaped network for the connectivity
algorithm. In the coverage algorithm, the critical vertices will be the sensors lying on the
boundary of the area that is to stay covered, that includes both the external boundary and
the holes boundary. We need all the boundary vertices in order to not shrink the area, nor
enlarge coverage holes. While the external boundary vertices are quite easy to discover:
using the convex hull, or directly defined by the network manager; the hole boundary
vertices are more tricky to obtain. the authors of [89] propose an algorithm in order to
find them. But in the main application of our algorithm: power consumption reduction
in wireless sensor networks, we consider that there are too many sensors to cover an area
that we want to reduce the number: therefore we consider that there is no coverage hole.
So the discovery of the hole boundary vertices is not a problem.

Let us now define the full domain hypothesis for the wireless sensor network application
case, i.e. when the reduction algorithm is applied to a Cech or a Vietoris-Rips complex in
two or less dimensions:
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Definition 23 (Full domain hypothesis). In dimension d < 2, we define if ko = d, for
a Cech or a Vietoris-Rips complex with By = 1 and, if kg = 2, 1 = 0, the full domain
hypothesis which holds when all the vertices of the abstract simplicial complex lie within the
same geometric domain defined by the critical vertices.

For the connectivity algorithm in one dimension, this means that the critical vertices
are two extremity vertices and all other vertices have to be in the same path linking the two
critical vertices.

For the coverage algorithm in two dimensions, this means that the critical vertices are
boundary vertices and all other vertices have to lie in the area defined by the critical vertices.

We can note that it is always possible to satisfy the full domain hypothesis by removing,
before the reduction algorithm, all vertices not in the path defined by the critical vertices
for the connectivity algorithm in one dimension, or not lying in the convex hull of the
critical vertices in two dimensions.

3.2.1 Degree calculation

The first step of the algorithm is the calculation of a number, which we call the degree,
that we define for every kg-simplex, where kg is the number of Betti numbers to be kept
unchanged. To connect vertices, we only need 1-simplices, and to cover an area, we only
need 2-simplices. Generalizing this idea, we have that we only need kg-simplices to maintain
ko Betti numbers. And larger simplices, i.e. simplices with more than kg + 1 vertices, are
superflous for the ko-th homology (first kg Betti numbers). We intend to characterize the
superfluousness of kg-simplices with the following definition of degree:

Definition 24. For ko an integer, the degree of a ko-simplex [vg, v1, ..., vk, is the size of
its largest coface:

Dlvg,v1,...,v5,] = max{d | [vo,v1, ..., v C d-simplex}.

By definition we have D[vg,v1, ..., vk,] > ko.

For the remainder of the thesis, let s;(X), or si, be the number of k-simplices of the
simplicial complex X. Let Dq,..., DskO denote the sy, degrees of a simplicial complex;
they are computed according to Algorithm 4.

Algorithm 4 Degree calculation

fori=1— s, do
Get (vp, ..., vg,) the vertices of the i-th kp-simplex
k= ko
while (vo, ..., vg,) are vertices of a (k + 1)-simplex do

k=k+1

end while
D;=k

end for

return Dq,...,D

» Mg

We can see an example of values of the degree for 2-simplices in Figure 3.2: The degree
of an alone 2-simplex is 2, when it is the face of 3-simplex it becomes 3.
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Figure 3.2: Example of values of the degree for 2-simplices

3.2.2 Index computation

The goal of the reduction algorithm is to remove vertices and not kg-simplices, so we
bring the superfluousness information of the kg-simplices down to the vertices with an
index. We consider a vertex sensitive if its removal leads to a change in the Betti numbers
of the simplicial complex. Since a vertex is as sensitive as its most sensitive kg-simplex,
the index of a vertex is the minimum of the degrees of the kg-simplices it is a vertex of:

Definition 25. The index of a verter v is the minimum of the degrees of the kg-simplices
it is a vertez of:

I[v] = min{D[vg, v1,...,vk] | v € [vo,v1,...,Vk]},
If a vertex v is not a vertex of any ko-simplex then I[v] = 0.

Let v1,va,...,vs, be the vertices of the simplicial complex, the computation of the sg
indices is done as shown in Algorithm 5.

Algorithm 5 Indices computation
fori=1— sy do
for j =1 — s, do
if v; is vertex of kg-simplex j then
if I[v;] == 0 then
I[Ul] = Dj
else
Iv;] = min{I[v;], D;}
end if
end if
end for
end for
return Ivq], ..., I[vs,]

We can see in Figure 3.3 an example of index values in a simplicial complex. Vertices
of a kg-simplex are more sensitive than vertices of only largest simplices.

The index of a vertex is then an indicator of the density of vertices around the vertex:
an index of kg indicates that at least one of its kg-coface has no (ko + 1)-cofaces, whereas
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Figure 3.3: Example of values of the indices of vertices in a simplicial complex

a higher index indicates that each one of its kg-cofaces is the face of at least one larger
simplex. The main idea of the algorithm is thus to remove the vertices with the greatest
indices.

Remark 6. An index of 0 indicates that the vertex has no ko-coface: the vertex is isolated
up to the ko-th degree. For kg = 1, that means that the vertex is disconnected from any
other vertices. For kg = 2, the vertex is only linked to other vertices by edges, therefore it
1s inside a coverage hole. Under the full domain hypothesis, these vertices should not exist.

3.2.3 Optimized order for the removal of vertices

The algorithm now removes vertices from the initial abstract simplicial complex fol-
lowing an optimized order. We begin by computing the first kg Betti numbers via linear
algebra. Then the degrees of all the kg-simplices and the indices of all the vertices are
computed as explained in the previous section. The critical vertices of the input list are
given a negative index, to flag them as unremovable. Then the indices give us an order for
the removal of vertices: the greater the index of a vertex, the more likely it is superfluous
for the kog-th homology of its simplicial complex. Therefore, the vertices with the greatest
index are candidates for removal: one is chosen randomly. The removal of a vertex leads
to the movaln of all its k-faces for every integer k > 1.

At every vertex removal, we need to ensure that the homology is unchanged. We
compute the first ky Betti numbers thanks to the boundary maps every time a vertex is
removed. This computation is instantaneous since the complex is already built, and only
adjacency matrices defining the complex are needed. If the removal changes the homology,
the vertex is put back in the simplicial complex. Moreover its index is assigned a temporary
negative value so that the vertex is not candidate for the following draw. The temporary
values are recalculated at the next effective removal of a vertex.

Otherwise, if the removal does not change the homology, the removal is confirmed. And
the modified degrees of the kg-simplices and the indices of the vertices are recalculated.
We can note that only the vertices of maximum index can have their indices changed,
as explained in Lemma 6. Moreover, in order to improve the algorithm performance it
is possible to only compute the modified degrees of kg-simplices. It suffices to flag the
k-simplices, k > kg, which are the largest cofaces of kp-simplices. Then when one of them
is deleted, the degrees of its ko-faces have to be recalculated.

Lemma 6. When a verter of index Inmax is removed, only the vertices sharing an Iyax-
simplex with it, and of index L. can have their index changed.
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Proof Let w be the removed vertex of index I.x, and v any vertex of the simplicial
complex.

If v does not share any simplex with w, none of the degrees of its kg-simplex will change,
and neither will its index.

Thus let us consider that the largest common simplex of v and w is a k-simplex, k > 0.
If £ < kg, then the removal of w and this k-simplex has no incidence at all on the index
of v by definition. Next, if kg < k < Ihax then w has an index k < Ij,ax, which is absurd.
We can thus assume that k > I,.x. Either the index of v is strictly less than I, and
thus comes from a simplex not shared with w, therefore it is unmodified by the removal of
w. Or if the index of v is Iihayx, it either still comes from a I,,x-simplex not shared with w
and remains unmodified, or it comes from a common I,,«-simplex. This latter case is the
only case where the index of v can change.

The algorithm goes on removing vertices until every remaining vertex is unremovable,
thus achieving optimal result. Every vertex is unremovable when all indices are strictly
below kg. By the definition of indices, that means when all indices are equal to zero or
negative (temporarily or not).

Some things can be refined with the full domain hypothesis in the wireless sensor
network application case. First the stopping condition can be improved to I.x being
below or equal to kg:

Lemma 7. Under the full domain hypothesis, the algorithm can stop when all vertex indices
are below or equal to ky.

Proof Let us suppose the input data satisfies the full domain hypothesis. Let v be a
vertex of index I(v) = ko, which means that at least one of its kg-cofaces has no (ko + 1)-
coface. The removal of this vertex would lead to the removal of this particular kg-simplex.
Since we need to maintain the homology on the entire geometric domain that is defined by
the critical vertices without shrinking it, this would lead to a kg-dimensional hole, and an
increment of SBy,_1.

For the connectivity algorithm, the removal of an edge which is not the side of a triangle
leads to a disconnectivity in the path linking the critical vertices. For the coverage algo-
rithm, the removal of a triangle which is not the face of a tetrahedron leads to the creation
of a coverage hole inside the area defined by the critical vertices.

Then under the full domain hypothesis in the wireless sensor network application, all
temporarily unremovable vertices (negative index vertices) stay unremovable:

Lemma 8. Under the full domain hypothesis, when the removal of a vertexr modify the
homology, it will always modify it.

Proof In the full domain hypothesis, the distance between the critical vertices can not be
decreased, or the covered domain can not have its area decreased. Since the domain size is
unchanged, as in the proof of Lemma 7, the removal of a vertex that has led to a change
in a Betti number will always lead to the same change.

Remark 7. In the wireless sensor network application case, for the coverage algorithm,
and under the full domain hypothesis, it is possible to omit the optimized order of vertices,
removing every vertex of index strictly greater than ko when the homology is unchanged.
Then the degree calculation and indices computation can be limited to the choice greater
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than ko or mot. Doing that, one loses the optimized order for the vertex removal. In this
case, the algorithm can be distributed, every node can compute a decentralized algorithm
with only the following information: its neighbors and their relations. This has been done
in [91]. this decentralized algorithm is only possible for the coverage algorithm under the
full domain hypothesis, otherwise the reached solution is non optimal.

We give in Algorithm 6 the whole algorithm for the conservation of the first kg Betti
numbers.

Algorithm 6 Reduction algorithm

Require: Simplicial complex X, list L¢ of critical vertices.
Computation of By(X),. .., Br,—1(X)
Computation of D1 (X),..., Dy, (X)
Computation of I[vy(X)],. .., I[vs,(X)]
for all v € L¢ do
Ilv] = -1
end for
Inax = max{I[v1(X)],..., I[vs,(X)]}
while I,,.x > ko do
Draw w a vertex of index Iax
X' = X\{w}
Computation of Bo(X'),. .., Bry—1(X")
if 5;(X') # Bi(X) for some i =0, ..., ko — 1 then

Iw] = -1
else
Computation of Dq(X’),... ’Dsko (X")
fori=1— s do
if I[v;(X")] == Imax then
Recomputation of I[v;(X’)]
end if
if I[v;(X")] == —1 && v; ¢ Lo then
Recomputation of I[v;(X’)]
end if
end for
X=X
end if
Imax = max{I[v1(X)],..., I[vs,(X)]}
end while
return X

3.3 Simulation results

Our simulations aim to illustrate our algorithm. The results are highly dependent on
the chosen parameters: for the connectivity algorithm the percentage of removed vertices
is linked to the fact that the critical vertices are connected without any intermediary in the
simplicial complex or not and how; for the coverage algorithm, it is linked to the ratio of
the initial number of vertices to the number of vertices needed for the coverage of the area
defined by the critical vertices. We simulated our algorithm on two types of complexes.
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First we consider the Erdos-Rényi clique complex of the eponymous random graph:

Definition 26 (Erdos-Rényi complex). Given n an integer and p a real number in [0, 1],
the Erdos-Rényi complex of parameters n and p, denoted G(n,p), is an abstract simplicial
complex with n vertices. Then each edge is included with probability p independent from
every other edge. Then a k-simplex, for k > 2, is included if and only if all of its faces
already are.

We can see in Figure 3.4 one realization of the reduction algorithm keeping the number
of connected components By unchanged on a Erdos-Rényi complex of parameter n = 15
and p = 0.3. The critical vertices are chosen at random: a vertex is critical with probability
pe. = 0.5 independently from every other vertices. Critical vertices are circled, and non-
critical vertices which are kept to maintain the connectivity between critical vertices are
starred.

Figure 3.4: A Erdos-Rényi complex before and after the reduction algorithm for kg = 1.
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With the parameters n = 60 vertices, and p = 0.2, on average for 1000 configurations
with one connected component, with p. taking values between 0.1 and 0.5 (200 configura-
tions each), the algorithm removed 98% of the non-critical vertices:

pe | Percentage of removed vertices
0.1 94.96%
0.2 97.14%
0.3 98.59%
0.4 99.43%
0.5 99.87%

Then we are interested in illustrating the wireless sensor network application with a
Vietoris-Rips complex in two dimensions. We simulate the set of vertices with a Poisson

point process:

Definition 27. A Poisson point process w with intensity A on a Borel set X is defined by:

i) For any A € B(X), the number of vertices in A, w(A), is a random variable following
a Poisson law of parameter AS(A), Pr(w(A) =k) = e’\S(A)()‘Sl(Cif))k,

ii) For any disjoint A, A" € B(X), the random variables w(A) and w(A’) are independent.

We can see in Figure 3.5 one realization of the connectivity algorithm on a Vietoris-
Rips complex of parameter e = 1 based on a Poisson point process of intensity A =4 on a
square of side length 4, with random critical vertices. A vertex is critical with probability
pe = 0.5 independently from every other vertices.

For this parameters configuration with one connected component, on average for 1000
runs, the connectivity algorithm removed 96.01% of the non-critical vertices.
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Figure 3.5: A Vietoris-Rips complex before and after the connectivity algorithm.

We can see in Figure 3.6 one realization of the coverage algorithm on a Vietoris-Rips
complex of parameter ¢ = 1 based on a Poisson point process of intensity A = 4.2 on a
square of side length a = 2, with a fixed boundary of vertices on the square perimeter.
The critical vertices are the boundary vertices, thus satisfying the full domain hypothesis
for the coverage algorithm. They are circled on the figure.

In order to ensure perfect coverage, we chose the following parameters: e =1, A = 5.1
and a = 2, on average for 1000 configurations, the coverage algorithm removed 69.35% of
the non-critical vertices.
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Figure 3.6: A Vietoris-Rips complex before and after the coverage algorithm.

3.4 Mathematical properties

The first property of our algorithm is that the reached solution is optimal. It may not
be the optimum solution if there are multiple optima but it is a local optimum. In game
theory vocabulary that means that the algorithm reaches a Nash equilibrium as defined
in [17].

Theorem 8 (Maximal solution). The reduction algorithm reaches a maximal number for
the number of removed vertices: every vertex in the final simplicial complex is needed to
maintain its homology. No further vertex can be removed without violating the constraints
on the Betti numbers

Proof In the final simplicial complex, every vertex is of index strictly smaller than kg
in the general case. By the definition of the indices, we then differentiate two types of
vertices: vertices of index —1 and 0.
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First, negative indices are given to vertices to flag them as unremovable. Either a
vertex is of negative index because it is a critical vertex, in which case it is required to
stay in the complex. Or a vertex is of negative index if its removal leads to a change in
the Betti numbers. Since there has been no other removal that has changed the complex,
that fact is still true.

Then a vertex of null index is an isolated vertex. If it is isolated up to the ko-th
degree, its removal will decrease the kg-th Betti number. For example, the removal of a
disconnected vertex would decrement 3y. As well the removal of a vertex inside of a hole
would lead to the union of 2 or more holes.

Finally, if the input data satusfies the full domain hypothesis, the proof of Lemma 7
shows that the algorithm still reaches a Nash equilibrium.

Secondly, we are able to find both a lower and an upper bound the number of removed
vertices. The number of removed vertices is at least one vertex removed by index value,
and at most every vertex of non minimal index before the algorithm:

Theorem 9 (Upper and lower bounds). Let Ej be the set of vertices that have indices k
before the algorithm. The number of removed vertices M is bounded by:

Tmax Imax
D lmpo SM< Y |l
k=ko+1 k=ko+1

with |Ey| being the cardinality of Ej,.

Proof Let us begin with the upper bound. The maximum number of vertices the can be
removed by the algorithm is the number of vertices that initially have their index strictly
greater than kg. This is an optimal upper bound since this number of removed vertices is
reached in the following case:

Let a k-simplex, with k > kg, be the initial simplicial complex, and n¢ of its vertices be
the initial critical vertices, necessarily no < k + 1. The n¢ critical vertices have negative
indices, the k + 1 — n¢ other vertices have an index of k£, and they are all removed.

I[UQ] =—1 I[’Ug] =4 I[’UQ] =-—1

V2 V3 (2 U3
U1 U1
oh) I[Ul] =—-1 U.O I[’Ul] =-1
I[Uo] =4
Before After

Figure 3.7: Example of this case with k£ = 3 and ng = 2, the two vertices vy and v3 are
removed by the algorithm.

For the lower bound, we have seen in Lemma 6 that the removal of a vertex of index
Inax can only change the index of vertices of index Iax. In the worst case, it decreases all
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indices Iax and the value of I, changes, not necessarily to I.x — 1 depending on the
critical vertices. Thus we can see, that at least one vertex per index value can be removed,
hence the result.

The lower bound is reached in the previous case if ng = k.

Remark 8. As seen in the proof, both upper and lower bounds are reached and equal in
the case of the complete graph where all but one vertices are removed.

Then, we are able to find some characteristics about the final complex in the wireless
sensor network application case.
If we use the following definition of a dominating set:

Definition 28 (Dominating set). As defined in [43], a set S C V' of vertices of a graph
G = (V,E) is called a dominating set if every vertex v € V is either an element of S or is
adjacent to an element of S.

Under the full domain hypothesis, the final set of vertices is a dominating set of the
initial set:

Theorem 10. In two dimensions for the coverage algorithm applied to a Cech or a
Vietoris-Rips complex under the full domain hypothesis, the set of remaining vertices of
the final complex is a dominating set of the set of vertices of the initial complex.

Proof Under the full domain hypothesis, initial vertices are all in the geometric domain
defined by the critical vertices. For the coverage algorithm that means that initial vertices
lie in the area defined by the critical vertices. The homology of the complex is unmodified
by the algorithm therefore there is no coverage hole in the final complex. The area is still
covered. Then, each point of this area is inside a 2-simplex. This is true for every vertex
of the initial complex, it is thus adjacent to three remaining vertices.

Remark 9. In the wireless sensor network application, that means that every standby
sensor is one-hop away from an awake sensor.

Finally we investigate the complexity of our algorithm. If we consider the number
of vertices n = sy to be the parameter, then the complexity of the implementation of
the simplicial complex is potentially exponential. Indeed, the number of simplices in a
simplicial complex of n vertices is at most 2" — 1. Therefore the data implementation is
at most of complexity O(2") compared to the number of vertices n.

Theorem 11 (Complexity). The complexity of the algorithm to keep ko Betti numbers for
a simplicial complex of s k-simplices and n = sg vertices, is upper bounded by:

Cc—-1
n23k0 + (n + sk,) Z Sk
k=0

with C' being the cligue number of the underlying graph.

Proof Let C' — 1 be the size of the largest simplex in the simplicial complex, C' being
known as the clique number of the underlying graph. For the computation of the degrees
of every ko-simplex, the algorithm traverses at most all the k-simplices for kg < k < C —1
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to check if the kg-simplex is included in it. Since there is s; k-simplices, that means that
the degrees computation complexity is upper bounded by s, ch;ljo 415k

For the computation of the indices, the algorithm traverses, for every one of the n
vertices, its kg-cofaces, which is at most all the kp-simplices. The complexity of the com-
putation of the indices has therefore an upper bound of nsg,.

These computations are done at the beginning of the algorithm. Then at each removal
of vertices, at most n removed vertices:

e The simplices of the removed vertex are deleted: complexity which upper bound is
Cc-1

e The Betti numbers are recomputed via the adjacency matrices which already exist.
e The modified degrees are recomputed automatically with the deletions of simplices.

e The at most n — 1 modified indices are recomputed: complexity which upper bound
is (n —1)sk,-

Corollary 12. When n goes to infinity the complexity of the algorithm is O(nFo12m).

Proof This is a direct consequence of Theorem 11 since the number of k-simplices s can
be upper bounded by (kil)? ko is typically small relative to n (equal to 1 or 2 in two
dimensions), and C' has n for upper bound.

Remark 10. Since the data size is of complexity O(2"), the complexity of the algorithm
18 polynomial relative to the complexity of the data.

We are able to refine the results regarding the complexity of our algorithm for some
specific simplicial complexes.

Corollary 13. If we apply our algorithm to the Cech complex Ce(w), defined with the
maximum norm, based on a Poisson point process of parameter X\ on a torus of side a in
dimension 2. The complexity of the algorithm has for upper bound: O((1 + (2)%)") on
average when n goes to infinity.

Proof According to [26], we have that if s = n:

Elsp 1] = <Z>k2 <2af>2(k_l) and,
it - S (o ()

with u; =k +1 — 1.
Plugging this into the complexity formula of Theorem 11 gives the result.

Corollary 14. The complexity of the algorithm for the Erdés-Rényi complex based on the
graph G(n,p) is of the order of O(nQ(kOH)) on average when n goes to infinity.
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Proof In the Erdos-Rényi complex, the expected values of the number of k-simplices and
of the product of numbers of k-simplices are given in [14]:

Elsp] — (Z>p<s>,
Bl = 3 (D)3 E)-6-6)

1=0

The results then comes from the complexity formula of Theorem 11.

We can see that there are great differences in the complexity of our algorithm depending
on which random simplicial complex it is applied to. This can be explained by the fact that
the two simplicial complexes investigated here have very different behaviors when n goes
to infinity. Indeed, the Erdds-Rényi complex is made of disconnected components when
n tends to infinity with a fixed probability p. However the Cech complex can percolate
depending on parameter e. We can see in the complexity formula of Theorem 11 that the
size of the largest simplex, i.e. the clique number, is of great importance in the complexity:
it can make the latter go from polynomial to exponential. That is why we investigate its
behavior in the next chapter.
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Chapter 4

Clique number of random geometric
graphs

While investigating the complezity of our reduction algorithm, we are reduced to compute
the behavior of the size of the largest simplex in the random simplicial complex. In graph
theory, this characteristic is known as the clique number. The clique number C' of a graph is
namely the largest clique size in the graph. In Chapter /, we find the almost sure asymptotic
behavior of the clique number for the underlying graph of the Vietoris-Rips complex on a
binomial point process as the number of vertices goes to infinity. This graph is the random
geometric graph of n vertices, taken uniformly at random, including an edge beween two
vertices if their distance, taken with the uniform norm, is less than a parameter r. The
n vertices are uniformly sampled on the torus of side a in dimension d. The behavior
of the clique number depends on the percolation regime of the graph. Setting 6 = (g)d,
the percolation regimes of the random geometric graph are defined along variation of%
before 0. In the subcritical regime where 6 = 0(%), we exhibit the intervals of 0 where C
takes the same value asymptotically almost surely. In the critical regime, 0 ~ %, we show
that C' is growing slightly slower than Inn asymptotically almost surely. Finally, in the
supercritical regime, % = 0(0), we prove that C grows as nf asymptotically almost surely.
We also investigate the behavior of related graph characteristics: the chromatic number, the

mazimum vertex degree, and the independence number. This work is the subject of [28].

4.1 Introduction

In this chapter we switch from simplicial homology vocabulary to graph theory vocab-
ulary for a smoother reading.

In graph theory, a clique in a graph is a subset of its vertices where all vertices are con-
nected to each other by an edge, this is the corresponding term to simplex from simplicial
homology. Thus a vertex is a itself a clique of size 1, an edge is a 2-clique and a triangle
is a 3-clique. Cliques are one of the basic concepts of graph theory and are the subjects of
many research articles since the middle of the twentieth century [58]. A maximum clique is
a clique of the largest possible size in a given graph. The clique number of a graph is then
the number of vertices in a maximum clique of this graph. The clique number is a well
known graph characteristic and occurs in various problems. For instance, the NP-complete
clique problem in computer science, which consists in finding either a particular clique such
as a maximum clique or whether there exists a clique larger than a given size in a graph,
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has been highly documented, see [84] for example.

However, the clique number also appears in problems not directly related to graph
theory. As we have seen in the previous chapter, if one considers the simplicial complex
representation for sensor networks, the wireless sensor network is then represented by a
coverage simplicial complex, the Cech complex, in order to have a description of its coverage
and coverage holes. If one wants to implement the full description of the complex, one needs
to implement all of its simplices. The complexity of the data implementation obviously
depends on the size of the largest simplex. As one can easily notice, with a change of domain
vocabulary the size of the largest simplex in a simplicial complex is the clique number of
the underlying graph. So the clique number appears in the complexity of a simplicial
complex implementation. We also encountered it while computing the complexity of our
reduction algorithm presented in the previous chapter. As can be seen in Theorem 11, the
clique number is highly critical there since it can make the complexity of our algorithm go
from polynomial to exponential.

One of the most famous random graph is the Erdés-Rényi model G(n, p) with n vertices
where each edge occurs with probability p. In this model, the probability distribution of the
clique number is known when the number of vertices n goes to infinity and p is fixed [14].
This result was derived from the investigation of Matula in [61], who proved the 2-point
concentration of the clique number distribution. However such results are not yet available
for the random geometric graph G(n,r) of n vertices sampled uniformly and including
an edge between two vertices if their distance is less than r. Indeed, it is necessary to
consider the variations of r depending on n, thus consider different regimes, incrementing
the complexity of the problem. Regimes were also investigated for the Erdos-Rényi model,
considering the variations of p depending on n. In [55], the authors proved the phase
transition at p = % for the connectivity. For the random geometric graph case, Penrose
in [73] distinguished two types of regime transition. One can consider regimes transitions
through percolation, or through connectivity. In [51], Kahle studied the homology of the
clique complex of the random geometric graph in the three regimes delimited by percolation
(subcritical, critical and supercritical), and in the connected regime.

In this chapter, we find the asymptotic behavior of the clique number of a random
geometric graph G(n,r) with the uniform norm when n goes to infinity. Derived from the
stochastic analysis made in [78], the authors of [26] give the explicit moments of the number
of cliques of size k for the random geometric graph on the torus. Thanks to these results, we
are able to find the asymptotic behavior of the clique number for the three regimes defined
by percolation. In the subcritical regime, we find the intervals where the clique number
takes asymptotically almost surely a given finite value. In the critical regime, we show that
the clique number grows slightly slower than Inn asymptotically almost surely. Finally in
the supercritical regime, we prove the growth of the clique number asymptotically almost
surely. We also investigate the behaviors of the related quantities: the chromatic number,
the maximum vertex degree, and the independence number.

To our knowledge, this is the first work including the asymptotical behavior of the clique
number of a random geometric graph for all three regimes. In [39], the authors proved that
monotone properties of random geometric graphs, such as the connectivity of the graph,
have sharp thresholds. In |[74], then in [68] for a weaker assumption, the authors proved a
conjecture of Penrose 73] stating that, in the subcritical regime, the clique number becomes
concentrated on two consecutive integers, as in the Erdés-Rényi model [61]. Moreover, in
the subcritical regime, weak laws of large numbers and central limit theorems [75-77]
have been found by Penrose and Yukich for some functionals in random geometric graphs,
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including the clique number. Finally in the supercritical regime, using the uniform norm,
Appel and Russo [8], were able to find strong laws for the maximum vertex degree and for
cliques. In particular, they found the asymptotical behavior of the clique number in the
supercritical regime via the behavior of the maximum vertex degree. We propose here the
opposite approach and find the same results.

The remainder of this chapter is organized as follows. First in the following section,
we present our model with the definitions necessary to its construction, and the previous
results that have allowed us to write this article. Then Section 4.3 is devoted to the results
we found for the asymptotical behavior of the clique number of a random geometric graph,
separated in three subsections depending on the regime where the graph is lying. Finally,
Section 4.4 is devoted to the investigation on the quantities related to the clique number
in graph theory.

4.2 Model

In order to describe our model of a random geometric graph we need some preliminary
definitions from graph theory and probability. Let us first denote by T¢ the torus of side
a in dimension d.

Definition 29. Let f be the uniform probability density function on the torus T¢, let
T1,T9,... be a set of independent and identically distributed d-dimensional random vari-
ables with common density f, and let X,, = {x1,...,z,}. For the set of n points X,, and
the positive distance r, let us define the random geometric graph G(n,r) as the graph with
n vertices V(G) = X,, and edges E(G) = {[z,y] | d(x,y) < r}.

Definition 30. In a graph, a clique is a subset of vertices such that every two vertices in
the clique are connected by an edge.

Definition 31. The clique number of a graph, that we call C, is the number of vertices in
a clique of the largest possible size in the graph.

Definition 32. We say that G(n,r) asymptotically almost surely has property P if P[G(n,r) €
P] — 1 when n tends to infinity.

For the remainder of this chapter, we consider a random geometric graph G(n,r) of n
vertices sampled following a uniform distribution on the torus T¢ of side @ in dimension
d, and including an edge between two vertices if their distance is less than r. Taking the
torus T¢ instead of the cube [0,a]? allows us to not consider boundary effects. Indeed, if
one samples the vertices on the cube, vertices in the corner do not have the same behavior
as vertices in the center of the cube. Sampling on the torus eliminates the different vertices
behaviors. We denote C' its clique number.

In |26], the authors provide expressions for moments of random variables of the Cech
complex by means of Malliavin calculus. Thanks to their use of the uniform norm the
so-called Cech complex is the exact same as the Vietoris-rips complex, which is the clique
complex of the random geometric graph. Indeed in simplicial homology, instead of consid-
ering only vertices and edges as in graph theory, cliques of n connected vertices are also




72 4. CLIQUE NUMBER OF RANDOM GEOMETRIC GRAPHS

Figure 4.1: Example of a random geometric graph whose vertices are colored following the
size of their largest clique.

considered and called simplices. And the Vietoris-Rips simplicial complex is the complex
whose simplices are the cliques of the random geometric graph. Then we are able to ap-
ply the results of [26] to random geometric graphs, especially in the expressions of the
expectation and the variance of the number of cliques of size k.

In order to use the results from [26], we first need to make a few assumptions:

1. First, we use the uniform norm to calculate the distance between two vertices. Note
that [26] also provides the needed results for the Euclidean norm, however their
expressions are not as tractable as the ones for the uniform norm.

2. Let us take 6 = (ﬁ)d, then we must have 6 < (%)d. This insures that the graph is

a
small on the torus, and that no vertex is its own neighbor.

We can note that the parameter 0 acts as a coverage parameter: if one puts vertices along
a regular grid of side r, one needs % vertices to cover the area of ']I‘g. These assumptions
hold for the remainder of the chapter.

Thus, let N denote the number of cliques of k vertices. Then N7 = n is the number
of vertices, and the results of [26] state that:

Theorem 15 ( [26]). The expectation and variance of the number of k-vertex cliques, for
k> 1, in a random geometric graph G(n,r) on a torus T¢ are given by:

E [N, = (Z) kdok-1, (4.1)

and,

V [Ny = Ek: <2k"_ Z) <2k k_ Z) (f) g—i-1 <2k i 2(";;?2>d. (4.2)
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This result and other results of [26] are given in Appendix A.

In this chapter, we are interested in the asymptotic behavior of the clique number
as n tends to infinity. Throughout the article, we use Bachman-Landau notations. For
non-negative functions f and g we write as n tends to infinity:

o f(n) = o(g(n)) if for every € > 0 there exists ng such that for n > ng, we have
f(n) <eg(n). We say that f is dominated by g asymptotically.

e f(n) = O(g(n)) if there exists k£ > 0 and ng such that for n > ng, we have f(n) <
kg(n). We say that f is bounded by g asymptotically.

e f(n) ~g(n)if f(n) =0(g(n)) and g(n) = O(f(n)). We say that f and g are equal
asymptotically.

e f(n) < g(n)if % = 0(1). We say that f is small compared to g asymptotically.

4.3 Asymptotical behavior

We studied the asymptotical behavior of the clique number under percolation regimes:
these regimes are defined following the variations of # compared to %

4.3.1 Subcritical regime

In this subsection, we consider that § = 0(%). In the subcritical regime for the percola-
tion, the random geometric graph mainly consists of disconnected components as one can
see in Figure 4.2. The clique number is small compared to the number of vertices n when
the latter tends to infinity. Therefore we can focus on k-vertex cliques for k asymptotically

small compared to n.

Figure 4.2: Subcritical regime
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From the exact expressions we had from [26], we can derive asymptotic expressions for
the moments of the number of k-cliques:

Lemma 9. For k > 1 small compared to n, according to Theorem 15,

E [Ni] ~ 00"k, and V [N,] ~ nko* k2,

Proof This is a direct consequence of the subcritical regime hypothesis applied to Equa-
tions 4.1 and 4.2.

In this regime, the random geometric graph G(n,r) is similar to the Erdés-Rényi graph
G(n,p) which we define as follows:

Definition 33. Let n be an integer, and 0 < p < 1. Then the Erdds-Rényi random graph
G(n,p) is the graph of n vertices where each edge occurs with probability p.

When n tends to infinity with p unchanged, the graph G(n,p) is composed of many
disconnected components like the random geometric graph in the subcritical regime. There-
fore our investigation of the asymptotic behavior of the clique number in this regime is
similar to the one exposed in [14] by Bollobas and Erdos. The authors first define ng
and nj, such that the expectation of the number of cliques of size k is respectively upper
bounded by k~(+9) and lower bounded by k'*¢ for ¢ > 0. The values of ny and nj, are
approximated by p~*/2 and (1+ %)p*k/ 2 respectively. This leads to the result:

Theorem 16 ( [14]). For almost every graph G(n,p) there is a constant ¢ such that if
ny, < n < ngqq for some k> c then the clique number C' is C = k.

In the random geometric graph G(n,r) case, we observe the variations of 6 = (£)¢
instead of n, when n tends to infinity. Indeed 6 varies with n, and it makes more sense
to find the intervals of § where the clique number takes a finite value. The first step is to
find the regimes of § where we can bind the expectation of the number of cliques of size k,
integer, in a similar way:

Definition 34. We define for n > 0 and for k > 1:

1+n—d _14n+d
, k k-1 k—1
0, = ————, and Op = ——
nk-1 nk-—1

Then for > 0, thanks to the approximations of Lemma 9 we have:

kl+n7d k-1
k—1
E [N;] > n" ( . ) k4 > g,

ni-1
And for 6 < 6y,

_1+n+d
k—1

k—1
E [Nk] < nk <k> k? < k*(1+77)

nk-1

This leads to our main theorem for the subcritical regime:
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Theorem 17. In the subcritical regime, for k > 1 small compared ton, and 0], < 6 < 041,
the clique number is asymptotically almost surely C = k.

Proof For k£ > 1 small compared to n when n tends to infinity, we can easily check that
if n > k2(+mk  This holds in particular when n tends to infinity and & is fixed. Then we
have that 0511 > 6.

We can now consider ¢ such that ¢, < 6 < 01;. Thanks to the approximations of
Lemma 9, we can, on one hand, find an upper bound for the probability of the non-existence
of cliques of size k:

VING 1 1
E (N> E[Ng] = k0

P[N, = 0,0 > 0;] <

On the other hand, we can find an upper bound for the probability of existence of cliques
of size k + 1:

1

P[Niy1 > 0,0 < Opq1] < E [Ny < W

Finally we have:

1 1

/
P[EIH,Gk <0< 9k+1,c 7é k] < kl4n + (k+ 1)1+T)'

As the sum ) 22, E*7 converges, the Borel-Cantelli theorem implies that with the excep-
tion of finitely many k’s, for all 6 such that ¢, < 6 < 1, one has C' = k. Then when n
goes to infinity, we have asymptotically almost surely that C' = k:

P[C =k, 0} < 0 < 1] — 1,

concluding the proof.

4.3.2 Critical regime

In the critical regime, where 6 ~ %, percolation occurs: disconnected components of
the random geometric graph begin to connect into one sole connected component as seen in
Figure 4.3. The clique number is still rather small compared to n, allowing us to consider
only the k-vertex cliques for k = O(n) when n goes to infinity.

In this regime we have a direct approximation of our variable #, allowing us to compute
an approximation of the expected number of cliques of size k integer from the Equation
4.1.

Lemma 10. For k = O(n), and according to Theorem 15, we have:

1
2, and V [Nj] ~ ——nk? %3,

1
E [N, ~ ——nk®F=
[ k] V2T

Ver
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Figure 4.3: Critical regime

Proof We have from Equation 4.1 that E [N}] = (})0% k<.

After some calculations via the Stirling’s approximation n! ~ v/27n (%)n, we obtain
the result for the expectation.

Thanks to the fact that & = O(n), we can still approximate the variance of Ny by its
dominating term in ¢ = k, and V [Ny] ~ E [Ng].

From that approximation and using the same process as in the previous subsection, we
can write the main theorem of this subsection:

Theorem 18. In the critical regime, the clique number grows asymptotically almost surely
slower than Inn with an arbitrarily small distance:

(Inn)'™" < C <lnn, Vn>0.

Proof First, for £ > Inn, we can find an upper bound for the expectation approximation
of Lemma 10 by:

E [N] < n(In n)d_%_ln".

One can easily check that n(ln n)d_%_ln" — 0. Since P[Ny > 0] < E [Ng], the proba-
bility that there exists k-vertex cliques tends to 0 and:

P[C > k] =P[N; >0 —0 Vk>Inn,

and C < Inn asymptotically almost surely.
Then, for k < (Inn)!~" with > 0, we can now find a lower bound for the expectation
approximation by:

E [Ni] > n(lnn)-nd=3—(am)'=")
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And one can check that n(In n)(l_”)(d_%_(ln ' S foo. Then, thanks to the asymptotic
equivalence of the variance and the expectation of N, we have PN = 0] < E[}Vk]: the
probability that there exists no k-vertex cliques tends to 0, and:

P[C <k]=P[Ny=0] -0 Vk < (Inn)'".

Thus, C' > (Inn)!~7 asymptotically almost surely.

4.3.3 Supercritical regime

In the supercritical regime, % = 0(#), the random geometric graph G(n, ) is connected

and tends to become the complete graph as we can see in the example of Figure 4.4. The
asymptotic behavior of the clique number has already been studied in this regime in [8| by
Appel and Russo. They first find the almost sure asymptotic rate for the maximum vertex
degree. Then by squeezing the clique number between two values of the maximum vertex
degree, they obtain its asymptotic behavior. We propose here an alternative approach,
where the clique number asymptotic rate is used to squeeze the other related quantities
such as the maximum vertex degree.

Figure 4.4: Supercritical regime

In this regime, percolation has occurred, that is to say that the graph is connected and
the number of k-cliques is not asymptotically small anymore compared to n. Therefore an
upper bound via the expected number of k-vertex cliques is not a good enough approach
anymore. Instead, we came back to the definition of the random geometric graph.

For the first step of our exploration, we use a similar argument as in [8]. To cover the
torus TZ, one needs at least [%1 balls of diameter r in dimension d. If one places these

balls along a lattice square grid with spacing 7, one can denote B;, for 1 < ¢ < [%], the
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[%W needed balls centered on the points of the grid and of radius 5. Then the number of
vertices n is smaller than the sum of the number of vertices in each ball B;:

13
n <Y #{B}
=1

where #{B;} is the number of vertices in B;.
Moreover, vertices in the same ball B; are within distance r of each other, therefore
they form a clique. By definition, for every ¢ we have #{B;} < C. Thus we have:

nb
1+6

C > >

—
SR ba
P

When 6 tends to 0, the clique number is asymptotically greater than nf. We can now write
the main result of this subsection:

Theorem 19. In the supercritical regime, the clique number C grows as nf asymptotically
almost surely.

Proof We still have to prove that the clique number is asymptotically almost surely smaller
than nf.

In the random geometric graph G(n,r), a clique of size k occurs when k vertices are
in the same ball of diameter . Without loss of generality we can center the ball on one of
the vertex of the graph. We have:

P[C >nf] = P[Ny > 0]
= PR #{Blx,3)} = nb - 1],
where z is a vertex of the graph G(n,r), and #{B(z, 5)} the number of vertices of G(n,r)
in the ball centered in z and of radius 3.

Let z1,...,z, denote the n vertices of the graph G(n,r), their positions are indepen-
dent, thus we can write:

PEic (L0} #{Blg) >0 -1] < PJ#{Bla, 5)} > 06— 1
i=1

IN

> P#{B(ai,5)} = nb — 1]
i=1
< nP[#{B(z1, g)} > nf —1].
The number of vertices in the ball B(x1, 5) follows a binomial distribution Binom(n —

1,0). Therefore Hoeffding’s inequality implies that:

P[#{B(:m,g)} >nf] < P[#{B(xi,g)} S~ (n—1)(0+ %)]
92

< exp(=2—

).

Then the clique number C' is asymptotically almost surely smaller than nf, concluding the
proof.
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4.4 Other graph characteristics

In this section, for the graph G, we will denote its clique number by C(G). The results
of this section for the supercritical regime were already written in [8]. We choose to present
them nonetheless since we used a different approach: they first computed the behavior of
the maximum vertex degree and derive results for the clique number while we did the
opposite.

4.4.1 Maximum vertex degree

Let us remind the definitions of first the degree of a vertex, then the maximum vertex
degree of a graph:

Definition 35. The degree of a vertex of a graph is the number of edges incident to the
vertex.

Definition 36. The mazimum degree of a graph G, denoted A(G), is the mazximum degree
of its vertices.

By its definition we have the following inequality between the maximum vertex degree
and the clique number of any graph G:

C(G) —1 < A(G). (4.3)

Then if we consider the random geometric graphs G(n,r) and G(n,2r), by doubling the
adjacency distance between two vertices, we ensure that:

A(G(n,r)) < C(G(n,2r)) — 1. (4.4)

Finally we have, for any graph G of n vertices v1,...,v, and Ny edges, the equality
2Ny = > deg v;. For the graph G(n,r), taking the mean, we have then thanks to
Equation 4.1:

2%(n — 1) < E[A(G(n,1))]. (4.5)

Given these relations, we can write our main result regarding the maximum vertex
degree:

Theorem 20. In the subcritical regime, for k > 1 small compared to n and 0 such that
0, < 0 < Opy1, the mazimum vertex degree A(G(n,r)) is asymptotically almost surely
greater than k — 1.

In the critical regime, the maximum vertex degree A(G(n,r)) grows asymptotically al-
most surely faster than (Inn)'=" pour tout n > 0, and slower than 29n8.

In the supercritical regime, the mazimum vertex degree A(G(n, 1)) grows as 29n6 asymp-
totically in mean. It is asymptotically almost sure that A(G(n,r)) grows slower than 29n8.

Proof For the first part of the theorem concerning the subcritical regime, this is a direct
consequence of Theorem 17 and Inequality 4.3.

In the critical regime, we use Inequalities 4.3 and 4.4, and the result from Theorem
18 for C(G(n,r)). Then one has to observe that the graph G(n,2r) is in the supercritical
regime, so C(G(n,2r)) asymptotically almost surely grows as 29nf according to Theorem
19.

In the supercritical regime, using Theorem 19 in Inequalities 4.4 and 4.5 concludes the
proof.
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4.4.2 Chromatic number
Let us first define the well-known chromatic number of a graph:

Definition 37. The chromatic number of a graph G, denoted x(G), is the smallest number
of colors needed to color the vertices of G such that no two adjacent vertices share the same
color.

Since two vertices in the same clique can not have the same color, we have for any
graph G:
C(G) < x(G).

If ones consider a greedy coloring: for each vertex the first available color in the graph is
assigned. Then the number of colors used in this greedy algorithm is A(G) + 1. Thus for
any graph G, x(G) < A(G) + 1. Then we can write, using Inequality 4.4:

C(G(n,m)) < x(G(n,r)) < C(G(n,2r)). (4.6)
And our main result for the chromatic number asymptotical behavior is:

Theorem 21. In the subcritical regime, for k > 1 small compared to n and 0 such that
0, < 6 < Op41,the chromatic number x(G(n,r) is asymptotically almost surely greater than
k.

In the critical regime, the chromatic number x(G(n,r) grows asymptotically almost
surely faster than (Inn)'=" pour tout n > 0, and slower than 29n6.

In the supercritical regime, the chromatic number x(G(n,r) grows asymptotically almost
surely faster than n, and slower than 2%nf.

Proof This is a direct consequence of Inequality 4.6 and our three main Theorems 17, 18,
and 19.
4.4.3 Independence number

Let us remind the notion of independent set in a graph, and derive the concept of
independent number of a graph:

Definition 38. An independent set of a graph is a set of its vertices of which no pair is
adjacent.

Definition 39. The independence number of a graph G, denoted «(G) is the size of the
largest independent set of G.

The independence number and the chromatic number of a graph G are related by the
following inequality proved in [70]:

a(G)x(G) = n, (4.7)

where n is the number of vertices of G.
Then, in the graph G(n,r), to have an independent set of size k, k balls centered on
the independent vertices and of radius r, must be disjoint on the torus TZ:

krd < a.
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This is true for the largest independent set:

a(G(n,r)) < = (4.8)

| =

Thanks to these relations, we obtain our main result for the asymptotical behavior of
the independence number of a random geometric graph:

Theorem 22. In the critical and the supercritical regimes, the independence number
a(G(n,r)) decreases asymptotically almost surely slower than ﬁ, and faster than .

Proof This is a direct consequence of Inequalities 4.7 and 4.8 and Theorem 21.
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Part 11

Applications to future cellular
networks
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Chapter 5

Self-configuration frequency
auto-planning algorithm

From now on, we intend to expand the applications of the simplicial complex repre-
sentation to other types of wireless network, especially future cellular networks. In this
chapter, we present a frequency auto-planning algorithm based on the simplicial complex
representation and using our reduction algorithm presented in Chapter 3. Our algorithm
can be applied to random wireless networks not following a reqular pattern. It aims at min-
1mizing the number of used frequencies while mazximizing the coverage for each frequency.
So that a minimum number of resources is used while they are operated in a optimal way.
This frequency auto-planning algorithm can in particular be used for the self-configuration
of future cellular networks. We also present its performance and compare it to the greedy
coloring algorithm.

5.1 Introduction

Long Term Evolution (LTE) is the 3GPP standard specified in Releases 8 and 9. Its
main goal is to increase both capacity and speed in cellular networks. Indeed, cellular
network usage has changed over the years and bandwidth hungry applications, as video
calls, are now common. Achieving this goal costs a lot of money to the operator. A
solution to limit operation expenditures is the introduction of Self-Organizing Networks
(SON). 3GPP standards have identified self-organization as a necessity for future cellu-
lar networks [1]. A full description of SON in LTE can be found in [44]. SON fea-
tures include self-configuration, self-optimization, and self-healing functions. In particular,
self-configuration functions aims at the plug-and-play paradigm: new transmitting nodes
should then be automatically configured and integrated to the existing network. Upon
arrival of a new node, the neighboring nodes update their dynamic neighbor tables thanks
to the Automatic Neighbor Relation (ANR) feature. This information is equivalent to
the connectivity information in wireless sensor networks, needed to build the simplicial
complex representation.

Among self-configuration functions, we can find the dynamic frequency auto-planning
problem. It is a known problem from spectrum-sensing cognitive radio where equipments
are designed to use the best wireless channels in order to limit interference [42]. The dif-
ferent nodes of the secondary cognitive network have to choose the best frequency to use
in order to maximize the coverage and minimize the interference with the base stations of
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the primary network. The hierarchy in networks makes this solution not directly practi-
cable to future cellular networks. While in earlier releases, static frequency planning was
preferred, it has became a critical point since the network has a dynamic behavior with
arrivals and departures of base stations, and does not always follow a regular pattern with
the introduction of Femtocells and Heterogeneous Networks (HetNet).

In this chapter, we propose a frequency auto-planning algorithm which, for any given
wireless network, provides a frequency planning minimizing the number of frequencies
needed for a given accepted threshold of interference. The algorithm uses the simplicial
complex representation of the network, and calls several instances of the reduction al-
gorithm introduced in Chapter 3 for the allocation of each frequency. Using simplicial
complex representation combined to our reduction algorithm allow us to obtain a homo-
geneous coverage between frequencies.

In cellular network the frequency planning problem was first introduced for GSM net-
works. However the constraints were not the same: the frequency planning was static with
periodic manual optimizations, and in simulations base stations were regularly deployed
along an hexagonal pattern. With the commercialization of Femtocells and the deploy-
ments of outdoor relays and Picocells, cells do not follow a regular pattern anymore and
can appear and disappear at any time. Therefore the frequency planning problem has to
be rethought in an automatic way. A naive idea for frequency auto-planning would simply
be applying the greedy coloring algorithm to the sparse interference graph [47]. However,
even if it reaches an optimal solution for the number of needed frequencies, their utilization
can be disparate: one frequency can be planned for a large number of nodes compared to
another planned for only few of them. Then if the level of interferences increase (more
users, or more powered antennas), this could lead to communication problems for the over-
used frequency, and a whole new planning is needed. While a more homogeneous resource
utilization can be more robust if interferences increase, since there are less nodes using the
same frequency on average. We provide here a frequency auto-planning algorithm which
aims at a more homogeneous utilization of the resources.

The remainder of this chapter is organized as follows. After a section on related work
on self-configuration in future cellular networks, we introduce our frequency auto-planning
algorithm in Section 5.3, principle and full description. Then we provide simulation results
with performance discussion in the Section 5.4.

5.2 Self-configuration in future cellular networks

A complete survey on SON for future cellular networks is given in [4].

Configuration of the different nodes (eNBs, relays, Femtocells) of a cellular network has
to be done during the deployment of the network, but also upon the arrival and departure
of every node. The classic manual configuration done for previous generations of cellular
networks can not be operated in future cellular networks: changes in the network, such
as arrivals and departures, occur too often. Moreover, the commercialization of private
Femtocells leads to the presence in the network of nodes with no access for manual support.
So the future cellular networks are heterogeneous networks with no regular pattern for its
nodes. They need to be able to self-configure themselves. The initial parameter that a
node needs to configure are its IP adress, its neighbor list and its radio access parameters.
IP adresses are out of the scope of this work, but we will discuss the two other parameters.

The neighbor list is the connectivity information we use for the construction of the
simplicial complex which represents the cellular network. The selection of the nodes to put
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on one’s neighbor list can be based on the geographical coordinates of the nodes and take
into account the antenna pattern and transmission power [57]. However, this approach
does not consider changing radio environment, and requires exact location information
which can be easy to obtain for eNBs, but not for Femtocells. The authors of [53] propose
a better criterion for the configuration of the neighbor list: each node scans in real time
the Signal to Interference plus Noise Ratio (SINR) from other nodes. This latter approach
is closer to the connectivity approach used for wireless sensor networks.

Among radio access parameters, we can find frequency but also propagation parameters
since the apparition of beamforming techniques via MIMO. Let us focus on the former
which is the subject of this chapter. The planning of frequency channels for new nodes
that do not interfere with existing nodes while still provide enough bandwidth is still an
open problem. It has been addressed in the cognitive radio field, but these algorithms
usually enable opportunistic spectrum access [69]. However, it is not possible to extend
this type of algorithm to the frequency allocation of new nodes in cellular networks. Indeed,
the new nodes would be part of the primary network, with a quality of service to achieve, so
their frequency allocation needs to be guaranteed and not opportunistic. The algorithm we
propose aims at allocating frequency channels to future cellular networks with non-regular
deployment, so upon the arrival of a new node, the whole network is re-configured.

5.3 Frequency auto-planning algorithm

5.3.1 Main idea

We consider a cellular network that we represent by a geometric simplicial complex:
the transmitting nodes (eNBs, Femtocells, relays...) are represented by vertices, then we
build the Cech complex corresponding to the different coverage radii. The Cech complex
characterizes the topology of the cellular network. In this application we are especially
interested in the characterization of groups of nodes close to each other by simplices.
Indeed, in the frequency planning problem, the goal is to assign to each node a frequency
so that the interference between them is the smallest possible using a minimum number
of frequencies. Here we will only consider co-canal interference: interference between two
nodes using the same frequency. We introduce what we call a rejection radius, this radius
defines around every node a rejection disk. If one node is within the rejection disk of
another node, then we consider that they shall not share the same frequency or the level
of interference will be too high for reliable communication within each one of the two cells.
This rejection radius defines the interference threshold that is acceptable in the cellular
network. It is the interference criterion we will use for our auto-planning algorithm.

The algorithm begins by computing the degrees of triangles and the indices of vertices,
of the simplicial complex representing the cellular network, defined in Chapter 3. Then
we apply a modified version of our coverage reduction algorithm: the order in which the
vertices are removed is still decided by the indices but the stopping condition is not the same
anymore. Indeed we are not interested into achieving optimal coverage anymore. Therefore,
instead of stopping when the maximum index among every remaining vertices is below a
given number, the algorithm stops when there is no more vertices in any rejection disk of
any other vertex. The vertices of the resulting simplicial complex are assigned the first
frequency. Then all the removed vertices are collected, and the corresponding simplicial
complex recovered. This simplicial complex is a subset of the initial simplicial complex so
there is no need to build another simplicial complex from scratch. The next step is then
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to reapply the modified coverage reduction algorithm to this recovered simplicial complex
to obtain a second set of vertices to which we assign the second frequency. The algorithm
goes on until every vertex has an assigned frequency. At the end, we have a frequency
assigned to every node. We ensured that no two nodes sharing the same frequency will be
too close to each other: interference will be under a given threshold. Moreover, the use of
our coverage reduction algorithm with the optimized order for vertices removal allows us
to obtain a homogeneous coverage for every frequency.

5.3.2 Algorithm description

Algorithm 7 Frequency auto-planning algorithm
Require: Set w of N vertices, for each vertex v its coverage radius r,, and its rejection
radius R,.
Computation of the Cech complex X = C, (w)
Computation of Di(X),..., Ds,(X)
Computation of I[vy(X)],. .., I[vs,(X)]
Imax = max{I[v1(X)],..., Ivs,(X)]}
Nplanned =0
Interference = 1
X' =X
i=0
while Npjanned < N do
while Interference == 1 do
Draw w a vertex of index Iax
X' = X'\ {u}
Computation of D1 (X'),..., Dy (X')
fori=1— s, do
if I[v;(X")] == Inax then
Recomputation of I[v;(X")]
end if
end for
@nax = max{I[vy(X")],... ,I[US/O(X’)]}
Interference = 0
for all u,v € X’ do
if ||v — u|| < max(R,, R,) then
Interference = 1
end if
end for
end while
for all v € X’ do
Frequency(v) =1

Nplanned = Nplanned +1
end for
X' =X\X'
t=1+1
end while
return List of assigned frequencies Frequency(v), Vv € w.
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We give in Algorithm 7 the full frequency auto-planning algorithm: it requires the
set of vertices w, and their coverage and rejection radii, then returns the list of assigned
frequencies for every vertex of w.

It is interesting to note that we do not need to compute the Betti numbers of the Cech
complex, since we are not effectively removing vertices so the topology of the network does
not change. However we use the simplicial complex representation information to locate
the vertices too close to each other.

We introduce three parameters in the algorithm description. First of them is the
number of planned vertices: it represents the number of vertices to which we assigned a
frequency already. Then, the ‘Interference’ parameter is a binary number to represent if
there are at least two vertices with potentially the same frequency within the rejection disk
of each other. Finally we also introduce the ‘Frequency’ notation, for every vertex, this is
where we store the frequency assigned to it.

5.4 Simulation results

5.4.1 Performance

For simulation reasons, we only consider the Vietoris-Rips complex in the 2-dimensional
case.

To measure the performance of our algorithm we compare the number of frequencies
our algorithm plans versus the number of frequencies the greedy coloring algorithm plans.
Indeed, the frequency planning can be viewed as a graph coloring problem. We consider
the geometric graph whose edges are added if at least one of its extremity vertex is within
the rejection disk of the other one. Then the optimal number of frequencies to assign is
the chromatic number of the graph. The greedy coloring algorithm provides a coloring for
a given graph assigning the first new color available for each vertex. Therefore, the greedy
coloring algorithm provides a frequency planning with a number of frequency equal to the
maximum vertex degree plus one. The greedy coloring gives especially good results for the
number of used colors for sparse graphs as the interference graph is. However, the greedy
coloring algorithm leads to a disparate utilization of frequencies. Indeed, if there is only
one clique of maximum size, one frequency will be only used for one vertex of this clique,
and for no other vertex in the whole configuration. Therefore, this algorithm could give
good results in a homogeneous network, but not for a cluster network for example. Our
algorithm aims at a more homogeneous utilization of each ressource.

We simulate the set of vertices with a Poisson point process of intensity A = 12 on a
square of side a = 2. The coverage radii are sampled uniformly between a/10 and a?/\,
each rejection radius was equal to half its corresponding coverage radius. The results are
obtained in mean over 1000 configurations. For each realization of the Poisson process,
we compute the number of frequencies planned by the greedy coloring algorithm that we
denote Ny. Then on all realizations with a given N,, we compute the mean number of
frequencies, denoted Ny, planned by our algorithm.

In Table 5.1, we can see the mean number of planned frequencies given the number of
frequencies planned by the greedy coloring algorithm. We also indicate which percentage
of the 1000 simulations these situations represent. We can see that there is a difference
between the two solutions: it is not negligible in the beginning, but it decreases with the
number of frequencies. Thus, our algorithm reaches its optimal performance when the
number of frequencies grows for the same mean number of nodes, that is to say when there
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are clusters of nodes or when the rejection radii are quite large compared to the coverage

radii.

N, 2 3 1 5 6 7
E[N/N,] 373 466 553 621 695 650
Occurrence 1.1% 29.9% 45.6% 19.0% 4.2% 0.2%

Table 5.1: Mean number of planned frequencies E [N¢|N,y| for each given Ny.

We are also interested in highlighting the strong point of our frequency auto-planning
algorithm: the homogeneous utilization of frequencies. So we measure, for the same con-
figuration parameters, the percentage of area covered by each frequency compared to the
total covered area for our frequency auto-planning algorithm and for the greedy coloring
algorithm. The percentages are given in mean over 1000 simulations. For an optimal uti-
lization of frequencies, each frequency should cover the whole area, but it is not always
achievable if there are not enough nodes to cover several times the whole area.

Number of planned frequencies 3 4 5 6 7 8
Frequency 1 77.8% 732% 67.6% 63.4% 59.0% 48.9%
Frequency 2 65.8% 58.6% 58.4% 54.4% 49.2% 45.9%
Frequency 3 37.7% 46.4% 46.7% 46.1% 47.2% 46.8%
Frequency 4 26.4% 34.7% 36.4% 37.2% 43.5%
Frequency 5 18.6% 28.0% 30.6% 36.6%
Frequency 6 16.2% 24.9% 28.6%
Frequency 7 13.2% 17.9%
Frequency 8 11.4%
Occurrence 6.3% 18.4% 30.0% 24.9% 13.6% 4.9%

Table 5.2: Mean percentage of covered area by each frequency with our algorithm

Number of planned frequencies 3 4 5 6 7
Frequency 1 98.1% 97.9% 97.7% 97.9% 98.2%
Frequency 2 57.7% 54.3% 55.7% 55.0% 52.3%
Frequency 3 17.7% 17.3% 19.1% 16.5% 18.0%
Frequency 4 41%  48%  42%  3.8%
Frequency 5 1.7%  12%  1.0%
Frequency 6 0.5%  1.0%
Frequency 7 1.0%
Occurrence 12.3%  44.7% 30.0% 11.3% 1.7%

Table 5.3: Mean percentage of covered area by each frequency with the greedy coloring
algorithm

We can see in Table 5.2 and Table 5.3 the percentage of area covered by each frequency
planned by our algorithm and the greedy coloring algorithm. The results are presented
depending on the number of planned frequencies, we also indicate the number of simulations
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these results concern for statistical relevance. For our algorithm, even if the percentage
decreases with the order in which the frequencies are planned, which is logical, we can see
that a rather homogeneous coverage is provided. Doing that, our algorithm maximizes the
usage of each resource. We can see that for the greedy coloring algorithm, the frequencies
re not all used equally, the first two frequencies are always a lot more planned than the
following, the other frequencies are under-used.

5.4.2 Figures

We propose in this subsection figures illustrating the execution of our frequency auto-
planning algorithm. In the first figure, Figure 5.1, we can see the initial cellular network
and its coverage simplicial complex representation. In the cellular network figure, the black
circles are the coverage radii, while the pink ones are the rejection radii.
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Figure 5.2: Interference relations and frequency planning scheme.
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Then the interference graph is represented in Figure 5.2 next to the frequency planning
scheme obtained by our algorithm for the configuration of Figure 5.1. In the left figure,
vertices that can induce interference to each other are linked by an edge. In the figure on the
right, a different color represent a different frequency. We can see that our algorithm has
planned four frequencies (black, red, green and blue). Finally in Figure 5.3, we represent
the covered area for each frequency of the previously obtained planning.

Figure 5.3: Coverage for each frequency.
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Chapter 6

Self-optimization energy conservation
algorithm

In this chapter, we propose an algorithm for the self-optimization during off-peak hours
mn future cellular networks. This algorithm is issued from significant modifications of the
reduction algorithm for simplicial complezes of Chapter 3. Indeed, we propose an energy
conservation algorithm of which the goal is not to reduce the number of vertices optimally
without modifying the topology anymore. The energy conservation algorithm takes into
account not only coverage, but also traffic, and is able to satisfy any required user demand.
The performance of the algorithm is also discussed and compared to the optimal not always
achievable solution.

6.1 Introduction

Among SON features, we can find the self-optimization functions, which defines the
ability of the network to adapt its behavior to different traffic scenarii. Indeed, in LTE
cellular networks, eNode-Bs (eNB) have multiple configurable parameters. An example
is output power, so cells size can be configured when capacity is the limitation rather
than coverage. Moreover, fast and reliable X2 communication interfaces connect eNBs. So
the whole network has the capability to adapt to different traffic situations. Then, users
traffic can be observed via eNBs and User Equipments (UEs) measurements. Therefore,
the self-optimization functions aim at using this traffic observations to adapt the whole
network, and not only each cell independently, to the traffic situation. As previously, ANR
information is used to build the simplicial complex representation of the network.

One case where self-optimization is often needed is the adaptation to off-peak hours.
Typically a cellular network is deployed to match daily peak hours traffic requirements.
Therefore during off-peak hours, the network is daily under-used. This leads to a huge
unneeded amount of energy consumption. An idea is thus to switch-off some of the eNBs
during off-peak hours, while other eNBs adjust their configuration parameters to keep the
entire area covered. In case of a growth in traffic, the switched-off eNBs could be woken
up to satisfy the users demand.

In this chapter, we enhance our reduction algorithm to satisfy any user traffic. Our
reduction algorithm, as it is presented in Chapter 3,only satisfies perfect connectivity and
coverage. However, in cellular networks, especially in urban areas, coverage is not the
limiting factor, capacity is. So the optimal solution is not optimal coverage anymore, but
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depends on the required traffic. We use simplicial complex representation to represent a
cellular network and its topology. Then we use a modified reduction algorithm to reach an
optimally used network. The performance of our energy conservation algorithm is discussed
and compared to the minimun configuration required by traffic.

The first approach to energy efficiency in under-used wireless network is to switch-
off the non-needed nodes. It is done based on cell traffic for Femtocells in [9]: after a
given period of time in idle mode, the node puts itself on stand-by. However, if one
wants to take into account the whole network, it has to consider the coverage of the
network before disconnecting, which is not the case of Femtocells, which are by definition
redundant to the base stations. Without considerations of traffic, we proposed in Chapter
3 an algorithm that reduce power consumption in wireless networks by putting on standby
some of the nodes without impacting the coverage. We can also cite [17] that proposes
a game-theoretic approach in which nodes are put on standby according to a coverage
function, but unmodified coverage is not guaranteed. In both these works, only coverage is
taken into account. This approach could eventually fit the requirements of cellular network
in non-urban cells, if their deployment has coverage redundancy. But it is not valid for
urban cells, where it is not coverage but capacity that delimits cells.

The remainder of this chapter is organized as follows. First, we provide related work on
self-optimization for future cellular networks in Section 6.2. Then, our self-optimization
algorithm is presented, including a full algorithm description, in Section 6.3. Finally,
performance results and examples of simulation are given in Section 6.4.

6.2 Self-optimization in future cellular networks

In order to ensure that future cellular networks are still efficient in terms of both Quality
of Service (QoS) and costs, the self-configuration is not sufficient. Indeed, future cellular
networks have the ability to adjust their parameters to match different traffic situation.
Periodic optimization based on log reports, and operated centrally is not a effective solution
in terms of speed and costs. That is why we need self-optimization. Self-optimization can
be classified in three types depending on its goal.

First we can consider load balancing optimization. There is multiple ways to adapt
a cellular network to different loads: it is for example possible to adapt the resources
available in different nodes. These schemes were mainly introduced for GSM [21], and
then CDMA [3], but the universal frequency reuse of LTE and LTE-Advanced diminishes
their applicability. Then one can adapt the traffic strategy with admission controls on
given cells and forced handovers [35]. However, as the previous solution, it is not very
suitable for LTE and LTE-A which require hard handover. Finally it is possible to modify
the coverage of a node by changing either its antennas radiation pattern [31] or the output
power [22|. We use this latter approach to reach an optimal result for our algorithm: we
adapt the coverage radius of each node to be the minimum required to cover a given area.

The second type self-optimization is the capacity and coverage adaptation via the use
of relay nodes [49], while the third is interference optimization. Our algorithm could lie in
this third category as the simplest approach towards interference control is switching off
idle nodes [9]. Our algorithm goes a little bit further by adapting the switching-off of the
nodes to the whole network situation, and not only the traffic in a given cell. Indeed, in
case of low traffic, some nodes can cover the area of other ones.
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6.3 Emnergy conservation algorithm

6.3.1 Main idea

We consider a cellular network and represent it by its associated coverage simplicial
complex. Since we want to use a minimum number of nodes, we consider for each one its
maximum coverage radius. Then we construct the Cech complex corresponding to the set
of nodes with their maximum covered cells. In this application, we are not only interested
in the topology of the network but also by the characterization of the clusters of nodes
by simplices. Indeed, we intend to optimize the number of switched-on nodes for the user
traffic requested in a given area. This area will be defined by the nodes that are serving it.

Before beginning the algorithm, we have to define how we will represent user demand.
To do this we will create groups of vertices. These groups have to make sense geomet-
rically: they need to represent clusters of vertices. So, every group will be defined by a
simplex. Then these groups have to be defined such that each vertex is part of one group
exactly. To consider user traffic, we will assign a traffic to each group: for every group of k
vertices/nodes, we will draw uniformly an integer number between zero and k that is the
number of required nodes to keep switched-on. This is what will represent the required
QoS for the cellular network. This QoS metric is quite artificial, but the algorithm can
take into account any QoS in terms of number of ressources required from a given pool
of ressources. This one is the easier to implement if we want to consider that a same
pool of ressources is provided by nodes geographically close to each other with no location
information.

As in Chapter 3, the algorithm begins by the computation of the Betti numbers, since
we do not want to modify the network’s topology by turning off nodes. Then we compute
the triangle degrees and the vertices indices of the coverage reduction algorithm. As
in Chapter 5, the order for the removal of vertices follows the principle of the coverage
reduction algorithm. But the breaking point is different. Instead of stopping when the
area is covered by a minimum number of vertices, the algorithm stops when each group
has been reduced to its required QoS. Then given this configuration of switched-on nodes,
i.e. kept vertices, the algorithm tries to reduce as much as possible the coverage radius
of each node without creating a coverage hole. The order in which the coverage radii are
examined is random. Finally, we obtain a configuration of vertices that defines the nodes
to keep switched-on that is optimal. From the first part of the algorithm, we ensure that
enough nodes are kept on to satisfy the user demand. Then, from the second part, we
ensure that no energy is spend uselessly by optimizing the size of the serving cells.

6.3.2 Algorithm description

We give in Algorithm 8 the full energy conservation algorithm. It requires the set of
vertices w and their coverage radii, then returns the list of kept vertices with their new
coverage radii. We can see that the breaking point of the ‘while’ loop of the algorithm
takes the ‘QoS’ parameter into account. Then a vertex can be removed if and only if it
does not modify the number of connected component and the number of coverage holes,
and it is not needed for the QoS requirements. Coverage radii reduction for each vertex is
done in the last loop.
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Algorithm 8 Energy conservation algorithm
Require: Set w of N vertices, for each vertex v its coverage radius r,.
Computation of the Cech complex X = C,(w)
Creation of the list of boundary vertices L¢
Computation of fy(X) and £1(X)
Computation of D;(X),..., D, (X)
Computation of I[v1(X)], ..., I[vs,(X)]
for all v € Lo do
Iv] =-1
end for
Imax = max{I[v1(X)],..., Ivs,(X)]}
Ngroup =0
for all Simplex S; € X from largest to smallest do
if Vv € Sk, Group(v) == 0 then
Ngroup = Ngroup +1
Vv € SpGroup(v) = Ngroup
Size(Ngroup) = k + 1
Draw QoS(Ngroup) among {0, ..., k+ 1}
end if
end for
while [,,.x > 2 and Size > QoS do
Draw w a vertex of index Iax
X' = X\{u}
Computation of Sy(X"), f1(X")
if By(X') # Bo(X) and f1(X') # fi(X)and Size(Group(w)) < QoS(Group(w))
then
Iw] = -1
else
Size(Group(w)) = Size(Group(w)) — 1

Computation of Dq(X'),... ’DL% (X")
fori=1— s, do
if I[v;(X")] == Iax then
Recomputation of I[v;(X")]
end if
end for
Imax = max{I[vi(X")],..., Ivg (X")]}
X=X
end if
end while
for all v € X taken in random order do
X' =X
while 5y(X’) == fy(X)and 51 (X') == 1(X) do
Reduce r,
end while
X=X
end for

return List of kept vertices v and their coverage radii r,.
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For our simulations, we choose to give advantage to the larger simplices for the con-
stitution of the QoS groups. Thus, the first group will consist of the largest simplex, or
one randomly chosen among the largest ones, then simplices of smaller size will become
groups if none of their 0-face is already part of another group, until every vertex is part
of a group. It is possible to consider other rules for the constitution of the groups, but it
has to follow two conditions: every vertex must pertain to at least a group, and must not
pertain to more than a group. The groups are represented by the variable ‘Group’, that
for each vertex gives its group number. Then ‘QoS’ represents the minimum number of
vertices required for a given group, while ‘Size’ represents its number of vertices.

6.4 Simulation results

For simulation reasons, we only consider the Vietoris-Rips complex in the 2-dimensional
case. We choose the groups to be simplices from the largest to the smallest as in the
algorithm description.

6.4.1 Performance

We compare the performance of our algorithm to an optimal, not always achievable
solution. Indeed we do not know of a energy conservation algorithm that switch-off vertices
during off-peak hours while maintaining coverage. We compare the number of switched-on
vertices after the execution of our energy conservation algorithm, to the number of vertices
needed for the QoS, given by the ‘QoS’ parameter. It is important to note that this optimal
solution is not always achievable since it does not take into account that the area is to stay
covered. Some vertices have to be kept for traffic reasons, while other are kept to maintain
connectivity and/or coverage.

Our simulation results are computed on 1000 configurations of Poisson point processes
of intensity A = 6 on a square of size a = 2 with a fixed boundary of vertices. The coverage
radii are sampled uniformly between a/10 and a?/), except for the boundary vertices for
which it was set to 1/ V/\. For each group the ‘QoS’ number is a sampled integer between
zero and the size of the group. We denote by N, the optimal number of vertices, and by
Ny the number of kept vertices with our energy conservation algorithm. First we compute
the percentage of simulations for which we have a given difference between the obtained
number and the optimal number of kept vertices.

N — N, 0 1 2 3 4 5 6 7 8 —10
Occurrence 8.3% 18.7% 24.5% 21.7% 13.6% 8.6% 3.3% 1.0% 0.3%

Table 6.1: Occurrences of given differences between N and N,.

We can see in Table 6.1 the percentage of simulations in which the number of kept
vertices is different from the optimal number of vertices. For 8.6% of the simulations the
optimal number is reached. In 87.1% of our simulations the difference between the optimal
and the effective number of kept vertices is smaller than 4, and it never exceeds 10. The
number of boundary vertices is 12, these vertices are not removable (in order to never
shrink the covered area). So less than 10 vertices needed to cover the whole area on top of
the needed vertices for the traffic seems plausible.
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To have more advanced comparison, for the 1000 configurations, we compute the op-
timal number of vertices. Then for each optimal number of vertices N, that occurred the
most, we compute the mean number of kept vertices E [N;|N,] over the simulations which
have N, for optimal number. The results are given in Table 6.2. For comparison, we also
compute the difference between N, and N in percent. We finally indicate which percent
of our 1000 simulations these cases occur to show the relevance of these statistical results.

N, 20 21 22 23 24 25 26 27 28
E [Ni|N,] 23.40 24.14 24.91 25.06 26.43 27.37 27.91 28.84 29.56
Difference  17.0% 14.9% 13.2% 8.9% 10.1% 95% 7.3% 6.8% 5.6%
Occurrence 7.0% 7.3% 7.9% 6.9% 6.1% 68% 7.9% 68% 5.4%

Table 6.2: Mean number of kept vertices E [Nj|N,] for a given optimal number N,.

We can see in Table 6.2 that the more vertices are needed, the less difference there is
between our result and the optimal one. Indeed, if more vertices are needed, there is a
great chance that these vertices can cover the whole area.

6.4.2 Figures

We propose in this subsection figures illustrating the execution of our energy conserva-
tion algorithm. In the first figure, Figure 6.1, we can see the initial cellular network and
its coverage simplicial complex representation. The vertices have different coverage radii,
and there is no fixed boundary. The boundary vertices are in red.

Figure 6.1: The cellular network and its coverage representation.

Then for the configuration of Figure 6.1, we represent the groups of nodes in different
colors, and give a table with their corresponding QoS and size in Figure 6.2. The kept
vertices are circled. Finally in Figure 6.3, we can see the final configuration of the cellular
network with the optimized coverage radii and its corresponding simplicial complex for the
configuration of Figure 6.1.




® ®
1.8F ®
B
1.6
@ +
1.4
® +
® +
121
+ ®
+
1 + ) )
0.8 & 5
®
0.6
+
041w +
02f @ ®
® @ @
0 . . . .
0 0.5 1 1.5 2

Color Black Red Blue Green Magenta
QoS 6 5 4 2 0
Size 8 8 5 5 1

Figure 6.2: Groups of QoS.

Figure 6.3: Final configuration.




100 6. SELF-OPTIMIZATION ENERGY CONSERVATION ALGORITHM




101

Chapter 7

Disaster recovery algorithm

In this chapter, we present an algorithm for the recovery of wireless networks after
a disaster. Considering a damaged wireless network, presenting coverage holes or/and
many disconnected components, we propose a disaster recovery algorithm which repairs
the network. It provides the list of locations where to put mew nodes in order to patch
the coverage holes and mend the disconnected components. In order to do this we first
consider the simplicial complex representation of the network, then the algorithm adds
supplementary vertices in excessive number, and afterwards runs the reduction algorithm
from Chapter 3 to reach an optimal result. One of the novelty of this work resides in the
proposed method for the addition of vertices. We use a determinantal point process: the
Ginibre point process which has inherent repulsion between wvertices, and has never been
simulated before for wireless networks representation. We compare both the determinantal
point process addition method with other vertices addition methods, and the whole disaster
recovery algorithm to the greedy algorithm for the set cover problem. This chapter is issued
from [87].

7.1 Introduction

The third and last of the SON functions is self-healing. In future cellular networks,
nodes would be able to appear and disappear at any time. Since the cellular network is
not only constituted of operators base stations anymore, the operator does not control the
arrivals or departures of nodes. But the disappearances of nodes can be more generalized:
for example in case of a natural disaster (floods, earthquakes or tsunamis...). The self-
healing functions aim at reducing the impacts from the failures of nodes must it be in
isolated cases, like the turning off of a Femtocells, or more serious cases where the whole
network is damaged. We are interested in this latter case.

In case of a disaster, a wireless network can be seriously damaged: some of its nodes can
be completely destroyed. However such networks are not necessarily built with redundancy
and then can be sensitive to such damages. Coverage holes can appear resulting in no
signal for communication or no monitoring at all of a whole area. Paradoxically, reliable
and efficient communication and/or monitoring is especially needed in such situations.
Therefore, solutions for damage recovery for the coverage of wireless networks are much
needed. As in Chapter 3, we use simplicial complex representation for wireless network as
a tool to compute mathematically the coverage of the network.

In this chapter, we present a homology based algorithm for disaster recovery of wireless
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networks. We represent wireless networks with Cech simplicial complexes characterizing
their coverage. Given a set of vertices and their coverage radius, our algorithm first adds
supernumerary vertices in order to patch every existing coverage hole and connect every
components, then runs an improved version of the reduction algorithm presented in Chap-
ter 3 in order to reach an optimal result with a minimum number of added vertices. At
the end, we obtain the locations in which to put new nodes. For the addition of new ver-
tices, we first compared three usual methods presenting low complexity: grid positioning,
uniform positioning and the use of the Sobol sequence, a statistical tool built to provide
uniform coverage of the unit square. Then, we propose the use of a determinantal point
process: the Ginibre point process. This process has the ability to create repulsion be-
tween vertices, and therefore has the inherent ability to locate areas with low density of
vertices: namely coverage holes. Therefore using this process, we will optimally patch the
damaged wireless network. The use and simulation of determinantal point processes in
wireless networks is new, and it provides tremendous results compared to classic meth-
ods.We finally compared our whole distaster recovery algorithm performance to the classic
recovery algorithm performance: the greedy algorithm for the set cover problem.

This is the first algorithm that we know of that adds too many vertices then remove
them to reach an optimal result instead of adding the exact needed number of vertices.
This, first, allows flexibility in the choice of the new vertices positions, which can be useful
when running the algorithm in a real life scenario. Indeed, in case of a disaster, every
locations are not always available for installing new nodes and preferring some areas or
locations can be done with our algorithm. The originality of our work lies also in the
choice of the vertices addition method we suggest. On top of flexibility, our algorithm
provides a more reliable repaired wireless network than other algorithms. Indeed, adding
the exact needed number of vertices can be optimal mathematically speaking but it is very
sensitive to the adherence of the nodes positions chosen by the algorithm. To compare
our work to literature, we can see that the disaster recovery problem can be viewed as
a set cover problem. It suffices to define the universe as the area to be covered and the
subsets as the balls of radii the coverage radii. Then the question is to find the optimal
set of subsets that cover the universe, considering there are already balls centered on the
existing vertices. A greedy algorithm can solve this problem as explained in [19]. We can
see in [41] that e-nets also provide an algorithm for the set cover problem via a sampling of
the universe. We can also cite landmark-based routing, seen in [34] and |7], which, using
furthest point sampling, provides a set of nodes for optimal routing that we can interpret
as a minimal set of vertices to cover an area.

The remainder of this chapter is structured as follows: after a section on related work we
present the main idea of our disaster recovery algorithm in Section 7.3. Then in Section 7.4,
we compare usual vertices addition methods. In Section 7.5, we expose the determinantal
method for new vertices addition. Finally in Section 7.6 we compare the performance of
the whole disaster recovery algorithm with the greedy algorithm for the set cover problem.

7.2 Recovery in future cellular networks

The first step of recovery in cellular networks is the detection of failures. The detec-
tion of the failure of a cell occurs when its performance is considerably and abnormally
reduced. In [65], the authors distinguish three stages of cell outage: degraded, crippled
and catatonic. This last stage matches with the event of a disaster when there is com-
plete outage of the damaged cells. After detection, compensation from other nodes can
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occur through relay assisted handover for ongoing calls, adjustments of neighboring cell
sizes via power compensation or antenna tilt. In [5], the authors not only propose a cell
outage management description but also describe compensation schemes. These steps of
monitoring and detection, then compensation of nodes failures are comprised under the
self-healing functions of future cellular networks described in [2].

In this work, we are interested in what happens when self-healing is not sufficient. In
case of serious disasters, the compensation from remaining nodes and traffic rerouting might
not be sufficient to provide service everywhere. In this case, the cellular network needs a
manual intervention: the adding of new nodes to compensate the failures of former nodes.
However a traditional restoration with brick-and-mortar base stations could take a long
time, when efficient communication is particularly needed. In these cases, a recovery trailer
fleet of base stations can be deployed by operators [64], it has been for example used by
AT&T after 9/11 events. But a question remains: where to place the trailers carrying the
recovery base stations. An ideal location would be adjacent to the failed node. However,
these locations are not always available because of the disaster, and the recovery base
stations may not have the same coverage radii than the former ones. Therefore a new
deployment for the recovery base stations has to be decided, in which one of the main goal
is complete coverage of damaged area. This becomes a mathematical set cover problem. It
can be solved by a greedy algorithm [19], e-nets [41], or furthest point sampling [7,34]. But
these mathematical solutions provide an optimal mathematical result that do not consider
any flexibility at all in the choosing of the new nodes positions, and that can be really
sensitive to imprecisions in the nodes positions.

7.3 Main idea

We consider a damaged wireless network presenting coverage holes with a fixed bound-
ary, in order to know the domain to cover, of which we can see an example in Figure 7.1.

Figure 7.1: A damaged wireless network with a fixed boundary.

We consider as inputs the set of existing vertices: the nodes of a damaged wireless
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network, and their coverage radii. We also need a list of boundary nodes, these nodes can
be fictional, but we need to know the whole area that is to be covered. Then we build
the Cech complex characterizing the coverage of the wireless network, the Betti number
1 of the Cech complex counting the number of coverage holes of the wireless network.
We restrict ourselves to wireless networks with a fixed coverage radius r, but it is possible
to build the Cech complex of a wireless networks with different coverage radii using the
intersection of different size coverage balls.

The algorithm begins by adding new vertices in addition to the set of existing vertices
presenting coverage holes. We suggest here the use of three usual methods, and the new
determinantal addition method. As we can see in Section 7.4, it is possible to consider
any vertices addition methods must they be deterministic or random based: flexibility is
one of the greatest advantage of our algorithm. In particular, it is possible to consider a
method with pre-defined positions for some of the vertices in real-life scenarii.

For any non-deterministic method, we choose that the number of added vertices, that
we denote by N, is determined as follows. First, it is set to be the minimum number of
vertices needed to cover the whole area minus the number of existing vertices. This way,
we take into account the number of existing vertices, that we denote by N;. Then the
Betti numbers gy and (1 are computed via linear algebra thanks to the simplicial complex
representation. If there is still more than one connected component, and coverage holes,
then the number of added vertices N, is incremented with a random variable u following
an exponential growth:

o N,:=[%]—N.

2

e After adding the N, vertices, if Sy # 1 or 51 # 0,
Then, N, = N, + u, and u = 2 * u.

The next step of our approach is to run the coverage reduction algorithm from [86|
which maintains the topology of the wireless network: the algorithm removes vertices from
the simplicial complex without modifying its Betti numbers. At this step, we remove some
of the supernumerary vertices we just added in order to achieve an optimal result with a
minimum number of added vertices.

We give in Algorithm 9 the outline of the algorithm. The algorithm requires the set
of initial vertices wj;, the fixed coverage radius 7, as well as the list of boundary vertices
Ly. Tt is important to note that only connectivity information is needed to build the Cech
complex.

7.4 Vertices addition methods

In this section, we propose three vertices addition methods. The aim of this part of
the algorithm is to add enough vertices to patch the coverage of the simplicial complex,
but the less vertices the better since the results will be closer to the optimal solution. We
consider grid and uniform positioning which require minimum simulation capacities and
are well known in wireless networks management. Then we propose the use of the Sobol
sequence, which is a statistical tool built to provide uniform coverage of the unit square.
The grid method is deterministic, so the number of added vertices as well as their position
are set. The uniform method is random, the number of added vertices is then computed
as presented in Section 7.3.
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Algorithm 9 Disaster recovery algorithm
Require: Set of vertices w;, radius r, boundary vertices Ly
Computation of the Cech complex X = C,.(w;)
N, =[%] - N,
Addition of N, vertices to X following chosen method
Computation of fp(X) and 51 (X)
u=1
while Sy # 1 or f1 #0 do
N, =N, +u
U=2%u
Addition of N, vertices to X following chosen method
Computation of fy(X) and £1(X)
end while
Coverage reduction algorithm on X

return List L, of kept added vertices.

7.4.1 Grid

The first method we suggest ensures perfect coverage: the new vertices are positioned
along a square grid in a lattice graph where the distance between two neighboring vertices
is v/2r. The number of vertices is set. Therefore this method is completely independent
from the initial configuration. We can see an example of the grid vertices addition method
on the damaged network of Figure 7.1 in Figure 7.2. Existing vertices are black circles
while added vertices are red plusses.
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Figure 7.2: With the grid addition method.

7.4.2 Uniform

Here, the number of added vertices N, is computed accordingly to the method presented
in Section 7.3, taking into account the number of existing vertices NV;. Then the N, vertices
are sampled following a uniform law on the entire domain. An obtained configuration with
this method on the network of Figure 7.1 is shown in Figure 7.3.
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Figure 7.3: With the uniform addition method.

7.4.3 Sobol sequence

Thanks to this method, we are able to take into account the positions of the new added
vertices. The Sobol sequence is a statistical tool used to provide uniform coverage of the
unit square. Thus, vertices positioned with the Sobol sequences reach complete cover-
age faster than uniform positioning because the aggregation phenomenon is statistically
avoided. The Sobol initialization set is known, for instance on a square the first position
is the middle of the square, then come the middles of the four squares included in the big
square, etc. To randomize the positions drawn, the points are scrambled. Therefore the
complexity of the simulation of this method is really low.
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Figure 7.4: With the Sobol sequence addition method.

For our simulation, we used the set of initialization numbers provided by Bratley and
Fox in [16]. Then we scrambled the points produced with the random method described
in [60]. An example of this method is given in Figure 7.4.
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7.4.4 Comparison

We can compare the vertices addition method presented here along two variables: their
complexity and their efficiency. First, we compare the complexities of the two methods.
They all are of complexity O(N,): computations of N, positions, and the Sobol method
scramble N, positions already known by most simulation tools. For the random methods
we have to add the complexity of computing the coverage via the Betti numbers, which is
of the order of the number of triangles times the number of edges that is O((Ng+N;)®(%)°)
for a square of side a according to [26].

To compare the methods efficiency we count the number of vertices each have to add
on average to reach complete coverage. The grid method being determinist, the number of

added vertices is constant: N, = (Lﬁj +1)2 for a Cech complex or N, = (lg£]+1)? for a

Vietoris-Rips complex which is an approximation of the Cech complex easier to simulate.
We can see in Table 7.1 the mean number of added vertices on 1000 simulations for each
method in different scenarii on a square of side ¢ = 1 with coverage radius r = 0.25,
and a Vietoris-Rips complex. Scenarii are defined by the mean percentage of area covered
before running the recovery algorithm: if there are many or few existing vertices, and
thus few or many vertices to add. We need to note that number of added vertices is
computed following our incrementation method presented in Section 7.3 and these results
only concern the vertices addition methods before the reduction algorithm runs.

Percentage of area initially covered 20%  40% 60%  80%
Grid method 9.00 9.00 9.00 9.00

Uniform method 32.76 29.18 23.71 16.46

Sobol sequence method 29.80 29.04 24.16 15.98

Table 7.1: Mean number of added vertices E [N,]

We can observe that the Sobol sequence method gives better results than the uniform
method except for a 60% of covered area. Since the Sobol sequence partitions uniformly
the area, it takes advantages that there are not too many existing vertices in the scenarii
with small percentage of covered area. The grid method is mathematically optimal for the
number of added vertices to cover the whole area, however it is not optimal in a real life
scenario where positions can not be defined with such precision, and any imprecision leads
to a coverage hole. This method fares even or better both in complexity and in number of
added vertices.

7.5 Determinantal addition method

In this section, we present the determinantal method and compare it to the three
methods presented in Section 7.4.

7.5.1 Definitions

The most common point process in wireless network representation is the Poisson point
process. However in this process, conditionally to the number of vertices, their positions are
independent from each other (as in the uniform positioning method presented in Section
7.4). This independence creates some aggregations of vertices, that is not convenient for
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our application. That is why we introduce the use of determinantal point processes, in
which the vertices positions are not independent anymore. We can see in Figure 7.5 the
differences between points sampled uniformly and sampled with repulsion on the unit disk.
We can see that the independence of vertices positions of the Poisson point process creates
some clusters, while determinantal processes provide a more uniform coverage.

Figure 7.5: Uniform vs determinantal sampling.

General point processes can be characterized by their so-called Papangelou intensity.
Informally speaking, for x a location, and w a realization of a given point process, that
is a set of vertices, ¢(x,w) is the probability to have a vertex in an infinitesimal region
around x knowing the set of vertices w. For Poisson process, ¢(x,w) = 1 for any = and
any w. A point process is said to be repulsive (resp. attractive) whenever c(z,w) > ¢(z, ()
(resp. c(z,w) < ¢(x,()) as soon as w C (. For repulsive point process, that means that
the greater the set of vertices, the smaller the probability to have an other vertex.

Among repulsive point processes, we are in particular interested in determinantal pro-
cesses:

Definition 40 (Determinantal point process). Given X a Polish space equipped with the
Radon measure u, and K a measurable complex function on X2, we say that N is a
determinantal point process on X with kernel K if it is a point process on X with correlation
functions pp(x1,...,x,) = det(K(x;, xj)1<ij<n) for everyn >1 and x1,...,z, € X.

We can see that when two vertices z; and x; tends to be close to each other for i # j,
the determinant tends to zero, and so does the correlation function. That means that
the vertices of N repel each other. There exist as many determinantal point processes as
functions K. We are interested in the following:

Definition 41 (Ginibre point process). The Ginibre point process is the determinantal

point process with kernel K(x,y) = Y poy Bror(x)or(y), where By, k = 1,2,..., are k

a2
e 5 z¥ for x € C and k € N,

independent Bernoulli variables and ¢y (x) =

1
Vrk!

The Ginibre point process is invariant with respect to translations and rotations, mak-
ing it relatively easy to simulate on a compact set. Moreover, the repulsion induced by a
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Ginibre point process is of electrostatic type. The principle behind the repulsion lies in the
probability density used to draw vertices positions. The probability to draw a vertex at
the exact same position of an already drawn vertex is zero. Then, the probability increases
with increasing distance from every existing vertices. Therefore the probability to draw
a vertex is greater in areas the furthest away from every existing vertices, that is to say
in coverage holes. Therefore, added vertices are almost automatically located in coverage
holes thus reducing the number of superfluous vertices.

7.5.2 Simulation

Using determinantal point processes allows us to not only take into account the number
of existing vertices, via the computation of N,, but we also take into account the existing
vertices positions, then every new vertex position as it is added. It suffices to consider
the N; existing vertices as the N; first vertices sampled in the process, then each vertex is
taken into account as it is drawn. The Ginibre process is usually defined on the whole plane
thus we needed to construct a process with the same repulsive characteristics but which
could be restricted to a compact set. Moreover, we needed to be able to set the number of
vertices to draw. Due to space limitations, we will not delve into these technicalities but
they are developed in [27]. We can see a realisation of our simulation for the recovery of
the wireless network of Figure 7.1 in Figure 7.6.
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Figure 7.6: With the determinantal addition method with a Ginibre basis.

7.5.3 Comparison

We now compare the determinantal vertices addition method to the methods presented
in Section 7.4.

As for the complexity, since the determinantal method takes into account the position
of both existing vertices and randomly added vertices, it is the more complex. First taking
into account the existing vertices positions is of complexity O(Nf), then the position
drawing with the rejection sampling is of complexity O(N,(N, + N;)) at most. Thus we
have a final complexity of O(N? + N2 + N,N;)). To which we add the Betti numbers
computation complexity: O((Ng + N;)®(%)°).
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We give in Table 7.2 the comparison between the mean number of added vertices
for the three methods. The simulation parameters being the same as Section 7.4. The
determinantal method provides the best results in all scenarii among the random methods
by far. And it is the best method among all for the most covered scenario.

Percentage of area initially covered 20%  40%  60%  80%
Grid method 9.00 9.00 9.00 9.00

Uniform method 32.76 29.18 23.71 16.46

Sobol sequence method 29.80 29.04 24.16 15.98
Determinantal method 14.07 12.52 9.67 5.73

Table 7.2: Mean number of added vertices E [Ng]

7.6 Performance comparisons

After adding the new vertices, according to Algorithm 9, we run the coverage reduction
algorithm described in Chapter 3. Therefore, from the N, added vertices we keep only what
we call the final number of added vertices Ny < N,. We can see in Figure 7.7 an execution
of the reduction algorithm on the intermediate configuration of Figure 7.6. Removed
vertices are represented by blue diamonds. We now compare the performance results of

26 o o 6 © o
o <& o
o [ Y
1.8 +
+ o o
1.6 + - °
]
o o
140 o -
. o+
o o o +
121 + o
o <&
+ o ©
1¢ o - o
¢ N R
08t ¢ o
+ o+ ©
9 +
o % N
o + o
0al © - AR o
+ +
9
0.2f + ¢ . © o4
n
o ® ® ® o
0 05 1 15 2

Figure 7.7: The coverage reduction algorithm run on the determinantal method example.

the whole disaster recovery algorithm to the most known coverage recovery algorithm: the
greedy algorithm for the set cover problem.

7.6.1 Complexity

The greedy algorithm method lays a square grid of parameter v/2r for the Cech complex
of potential new vertices. Then the first added vertex is the furthest from all existing
vertices. The algorithm goes on adding the furthest potential vertex of the grid from all
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vertices (existing+added). It stops when the furthest vertex is in the coverage ball of an
existing or added vertex. One can note that our algorithm with the grid method gives the
exact same result as the greedy algorithm, number of added vertices and their positions
being exactly the same. Both algorithm lays the same square grid of potential new vertices.
Then the greedy algorithm picks vertices one by one until perfect coverage is reached. While
our algorithm consider all the vertices and removes the non-needed vertices. Then for the
(i + 1)-th vertex addition, the greedy algorithm computes the distances from all N; + 4

existing vertices to all (Lﬁj +1)% — i potential vertices. Therefore the complexity of the

greedy algorithm is in O((N; + Na)(Lﬁj +1)2)).

For the complexity of our algorithm, we consider first the complexity of building the
simplicial complex associated with the network which is in O((N; + N,)©), where C is the
clique number. This complexity seems really high since C can only be upper bounded by
N; + N, in the general case but it is the only way to compute the coverage when vertices
position are not defined along a grid. Then the complexity of the coverage reduction
algorithm is of the order of O((1 4 (£)?)NiTNa) (see Chapter 3). So the greedy algorithm
appears less complex than ours in the general case. However when 7 is small before a or
when the dimension is greater than 2, then the power factor becomes d > 2 and C is a
finite integer, so the trend is reversed.

7.6.2 Mean final number of added vertices

We compare here the mean number of added vertices between our homology algorithm
with the determinantal addition method, and the greedy algorithm.

Results presented in Table 7.3 are simulated in the same conditions as in Section 7.4
and given in mean over 1000 simulations. They concern the final number of added vertices:
the number of added vertices kept after the reduction algorithm, or added with the greedy
algorithm.

Percentage of area initially covered 20% 40% 60% 80%
Greedy algorithm 3.69 330 284 1.83
Homology algorithm 442 3.87 297 1.78

Table 7.3: Mean final number of added vertices E [N¢]

The numbers of vertices added in the final state both with our recovery algorithm and
the greedy algorithm are roughly the same. They both tend to the minimum number
of vertices required to cover the uncovered area depending on the initial configuration.
Nonetheless, we can see that our algorithm performs a little bit worse than the greedy
algorithm in the less covered area scenarii because the vertices are not optimally positioned
and it can be seen when just a small percentage of area is covered, and whole parts of the
grid from the greedy algorithm are used, instead of isolated vertices. In compensation, our
homology algorithm performs better in more covered scenarii.

7.6.3 Smoothed robustness

To show the advantages of our disaster recovery algorithm we choose to evaluate the
robustness of the algorithm when the added vertices positions are slightly moved, i.e.
when the nodes positioning does not strictly follow the theoretical positioning. In order
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to do this, we apply a Gaussian perturbation to each the added vertices position. The
covariance matrix of the perturbation is given by ¥ = ¢2Id with 0> = 0.01, which means
that the standard deviation for each vertex is of ¢ = 0.1. Other simulations parameters
are unchanged, results in Table 7.4 and 7.5 are given in mean over 1000 simulations. First,
we compute the average number of holes 31 created by the Gaussian perturbation in Table
7.4. Then in Table 7.5, we counted the percentage of simulations in which the number of
holes is still zero after the Gaussian perturbation on the new vertices positions.

Percentage of area initially covered 20% 40% 60% 80%
Greedy algorithm 0.68 0.65 0.45 0.35
Homology algorithm 0.62 0.53 0.37 0.26

Table 7.4: Mean number of holes E [f;] after the Gaussian perturbation

Percentage of area initially covered  20%  40%  60%  80%
Greedy algorithm 40.8% 47.7% 61.0% 69.3%
Homology algorithm 50.9% 58.1% 67.9% 75.3%

Table 7.5: Probability that there is no hole P(3; = 0) after the Gaussian perturbation

We can see that the perturbation on the number of holes decreases with the percentage
of area initially covered, since the initial vertices are not perturbed. Our homology algo-
rithm clearly performs better, even in the least covered scenarii, there are less than 50%
of simulations that create coverage holes, which is not the case for the greedy algorithm.
The greedy algorithm also always create more coverage holes in mean than our disaster
recovery algorithm for the same vertices positions perturbation. Therefore our algorithm
seems more fitted to the disaster recovery case when a recovery network is deployed in
emergency both indoor, via Femtocells, and outdoor, via a trailer fleet, where exact GPS
locations are not always available, and exact theoretical positioning is not always followed.
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Chapter 8

Conclusion

This chapter aims at summarizing the major contributions of this thesis in these dif-
ferent fields: wireless networks, simplicial homology and probability theory. Then, in the
second section we discuss the possible further directions of this work.

8.1 Contributions

This thesis focuses on the application of simplicial homology to wireless sensor networks
through the description of a reduction algorithm for simplicial complexes. Therefore this
work has contributed to three different domains: wireless networks, be it cellular or sensor
networks, via the provided applications; simplicial homology via our main algorithm; and
probability via the clique number behavior computations. The main contributions are
detailed below:

e Simplicial complex representation, reduction algorithm applications and
determinantal point process simulation for wireless networks.

The main contribution of this thesis is the development of a reduction algorithm
for simplicial complexes. This algorithm is relevant in regard to the simplicial com-
plex representation of wireless sensor networks. Indeed, considering a wireless sensor
network with superficial nodes, our reduction algorithm provides which sensors can
be switched off without loss of connectivity or coverage inducing potentially con-
siderable power savings. With our algorithm, the sensors can be switched off in an
optimized order; moreover, we proved that the reached solution is an optimum, found
boundaries for the number of switched-off sensors, and properties for the resulting
optimal sensor network.

Furthermore, we applied the simplicial complex representation to other wire-
less networks, namely cellular networks. We introduced a frequency auto-planning
algorithm for the self-configuration of SON in future cellular networks. We incor-
porated traffic considerations to propose an energy conservation algorithm for self-
optimization in LTE. Finally, we presented a disaster recovery algorithm more fitted
to real-life situations than any known solutions, for the healing of a wireless network.

Finally, We introduced the simulation of a determinantal point process, the Gini-
bre point process, and its applications to wireless networks. Indeed the Ginibre point
process exhibits repulsion between vertices, and thus has the inherent ability to locate
areas with less vertices density, like coverage hole.
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e Reduction algorithm for simplicial complexes.

Our reduction algorithm can be applied to any type of simplicial complex. In sim-
plicial homology, reduction algorithm often aims at reducing the number of simplices
of a simplicial complex, in order to compute its homology most of the time. Our
algorithm uses the opposite approach: we first compute the homology and then use
this information as a tool to reduce the number of simplices without modifying the
homology in an optimized order. This is the first reduction algorithm for simplicial
complexes using this approach we know of.

e Clique number in random geometric graph.

While computing the complexity of our algorithm, we investigated the asymptot-
ical behavior of the clique number of a random geometric graph on the torus in any
dimension. This is a well known graph characteristic and a problem often treated.
We applied results from simplicial homology concerning the number of simplices in
a random geometric complex to graph theory and the random geometric graph. We
were able to find the almost sure asymptotical behavior of the clique number of a ran-
dom geometric graph in every three percolation regimes. Moreover we derived results
for related graph characteristics such as the maximum vertex degree, the chromatic
number and the independence number.

8.2 Future research directions

As of future research directions, since the simplicial complex representation for wireless
networks is pretty new, we think there is still much to do. We can in particular develop
two new directions:

e Simplicial complex representation for collaboration networks.

Some pioneer works have begun to propose the use of simplicial complex rep-
resentation for collaboration networks [63] or social structures [52|. It is possible
to generalize the notion of vertex degree in graphs (number of incident edges to a
vertex), to any simplex (number of incident larger simplices to a simplex). We can
also consider our definition of a k-simplex degree in our reduction algorithm: the
size of the largest simplex it is a face of. These generalized degrees would have inter-
pretation in collaboration networks: number of groups of a given size an individual
or a group is part of, size of the largest group an individual or a group is part of.
Moreover, we think that it is possible to estimate these degrees via random walks
on simplicial complexes. Random walks on simplicial complexes are a generalization
of random walks on graph, where it is possible to walk from k-simplex to k-simplex
through & + n-simplices connections [71].

e Persistent homology applications.

Persistent homology has been applied to wireless sensor networks [25], but only
for homology computation reasons. We think that there is inherent interest in the
persistent homology representation. Indeed, let us consider the following problem:
A grid of sensors is deployed in a cell of a cellular network in order to measure
reception. Then we can build a coverage simplicial complex as follows: if k£ sensors
within communication range receive the signal with a SINR above a given threshold,
then a (k — 1)-simplex is drawn. Increasing the threshold would create a family of
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persistent complexes. Therefore, using persistent homology, one would be able to
obtain a coverage map for any acceptable threshold of SINR.
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Appendix A

Simplicial homology of random
configurations |26]

L. Decreusefond, E. Ferraz, H. Randriambololona, A. Vergne

Given a Poisson process on a d-dimensional torus, its random geometric simplicial
complex is the complex whose vertices are the points of the Poisson process and simplices
are given by the Cech complex associated to the coverage of each point. By means of
Malliavin calculus, we compute explicitly the three first order moments of the number of
k-simplices, and provide a way to compute higher order moments. Then, we derive the
mean and the variance of the Fuler characteristic. We use a concentration inequality for
Poisson processes to find bounds for the tail distribution of the Betti number of first order
and the Fuler characteristic in such simplicial complexes.

A.1 Poisson point process and Malliavin calculus

The space of configurations on X = [0, a)?, is the set of locally finite simple point
measures (see [20, 79| for details):

0X — {wzz(s(ggk) o (zp)fEh C X, neNU{oo}},
k=1

where d(x) denotes the Dirac measure at © € X. It is often convenient to identify an
element w of QX with the set corresponding to its support, i.e. > oy 6(z) is identified
with the unordered set {z1, ..., z,}. For A € B(X), we have §(z)(A) = 14(x), so that

w(A) = Y 1a(a),

rEW

counts the number of atoms in A. Simple measure means that w({z}) <1 for any = € X.
Locally finite means that w(K) < oo for any compact K of X. The configuration space
0¥ is endowed with the vague topology and its associated o-algebra denoted by FX. To
characterize the randomness of the system, we consider that the set of points is represented
by a Poisson point process w with intensity measure dA(z) = A dz in X. The parameter A
is called the intensity of the Poisson process. Since w is a Poisson point process of intensity
measure A:
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i) For any compact A, w(A) is a random variable of parameter A(A):

ii) For any disjoint sets A, A" € B(X), the random variables w(A) and w(A’) are inde-
pendent.

Along this paper, we refer E5 [F] as the mean of some function F' depending on w given
that the intensity measure of this process is A. The notations Vary [F] and Covy [F, G|
are defined accordingly. As said above, a configuration w can be viewed as a measure on
X. It also induces a measure on any X", called the factorial measure associated to w of
order n, defined by

w(n)(c) - Z 1C<l’1, Ty xn),
(x1,,Tn)EW
T, FT;

for any C' € X", with the convention that w(™ is the null measure if w has less than n
points. Let f € LY(A®") and let F be a random variable given by

F(w) = Z f(acl,...,azn):/f(xl,...,a:n) dw™ (21, -+, ).
TiEw

T, F#T;

The Campbell-Mecke formula for Poisson point processes states that
Ep [F] = flzr, ..o, @) dA(2y) ... dA(zy).
Xn

In view of this result, it is natural to introduce the compensated factorial measures defined
by :
dw(V(2) = dw(z) — dA(z)

and for n > 2, for any f € L'(A®"),

/f(wu e aa)dw (@, e )

n—1

= [ [ #on )t = Y b)) )~ daan)

j=1
dwl(xn_l)(xl, Cee X))
A real-valued function f : X" — R is called symmetric if
f(xa(l)a SR Jjo(n)) = f(xlv SRR xn)

for all permutations o of &,,. Then the space of square integrable symmetric functions of
n variables is denoted by L?(X,A)°". For f € L*(X, A)°", the multiple Poisson stochastic
integral I,,(f,) is then defined as

L () () = /fn(atl,...,xn) @ (@1, -, a).
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It is known that I,(f,) € L?(Q%,P). Moreover, if f,, € L?(X, A)°" and g,, € L?>(X, A)°™,
the isometry formula

Ex [In(fn)fm(gm)] = n! 1m(n) <fna gm>L2(X,A)°" (A1>
holds true. Furthermore, we have:

Theorem 23. Every random variable ' € L*(QX, P) admits a unique Wiener-Poisson
decomposition of the type

F=Ex[F]+ ) I(fn),
n=1

where the series converges in L?>(QX,P) and, for each n > 1, the kernel f,, is an element

of L*(X,A\)°™. Moreover, by definition Vary [F] = ||F — E, [F] ||%2(QX P) then we have the
1sometry 7
Vary [F] =Y nl || fallF2(x ayen- (A2)
n=1

For f, € L?(X,A)°" and g,, € L?(X,A)°™, we define f, ®§€ gm, 0 < 1 < k, to be the
function:

(yl+17 ey Yny Th+41, - - '7xm)

/Xl FaWts e ) am(Ls  U Thss o zm) dA(L) - dA(y). (A.3)

We denote by f, Oi; gm the symmetrization in n+m — k — [ variables of f, ®€€ Im, 0 <1 < k.
This leads us to the next proposition (see [79] for a proof):

Proposition 1. For f, € L?>(X,A)°" and g,, € L*(X,A)°™, we have

nAm)

2(
In(fn)lm(gm): Z In+m—s(hn,m,s)7
s=0

n\ /m ) .
hn,m,s E Z(’L) <Z> (S—i) n 9; 9Im

$<2¢<2(sAnAm)

where

belongs to LQ(X, A)ertm=s 0 < s <2(mAn).

In what follows, given f € L*(X,A)°? (¢ > 2) and t € X, we denote by f(x,z) the
function on X471 given by (z1,...,24-1) — f(21,...,2q-1,7).

Definition 42. Let Dom D be the the set of random variables F € L*(QX, P) admitting
a chaotic decomposition such that

oo
> aalll fall 72, apen < 00
n=1

Let D be defined by
D : DomD — L} Q¥ x X,P®A)
F=Ex[F]+ ) I.(fo) /> DoF =Y nly 1(fa(x,2)).

n>1 n>1
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It is known, cf. [48], that we also have
D,F(w)=F(wU{z}) — F(w), P®A —a.e.

Definition 43. The Ornstein-Uhlenbeck operator L is given by
o0
LF ==Y nl(fn),
n=1

whenever F € Dom L, given by those F € L*(QX, P) such that their chaos expansion
verifies

oo
Z qzq!anHQL2(X,A)°" < 0o.

n=1

Note that Ep [LF] =0, by definition and (A.1).
Definition 44. For F' € L*(Q%,P) such that Ex [F] = 0, we may define L™ by
L'F=— i lIn(fn).
=1
Combining Stein’s method and Malliavin calculus yields the following theorem, see [72]:

Theorem 24. Let F' € Dom D be such that Ex [F] =0 and Var(F) =1. Then,

|

+/ E\ [|D$F12\DmL*1Fu dA(z).
X

dw (F, N'(0,1)) < Ep H1 + /X[DxF x D,L~'F] dA(z)

Another result from the Malliavin calculus used in this work is the following one, quoted
from [79]:

Theorem 25. Let F' € Dom D be such that DF < K, a.s., for some K > 0 and we denote

IDFl gz i=sup [ IDP@)E d(z) < oo,

Then

z xK
- > 7)< —— ' '
P(F —E\[F] > z) <exp ( 2K tog (1 " HDF”LOO(L2(X7A):P>>> .

A.2 First order moments

Let w denote a generic realization of a Poisson point process on the torus T¢ and C.(w)
the associated Cech complex with e < a/4. A Poisson process in R? of intensity A dilated
by a factor « is a Poisson process of intensity Aa~%. Hence, statistically, the homological
properties of a Poisson process of intensity A, inside a torus of length a with ball sizes € are
the same as that of a Poisson process of intensity Aa~?, inside a torus of length aa with
ball sizes ae. Thus there are only two degrees of freedom among A, a, and €. For instance,
we can set a = 1 and the general results are obtained by a multiplication of magnitude
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a®. Strictly speaking, Betti numbers, Euler characteristic and number of k-simplices are
functions of C.(w) but we will skip this dependence for the sake of notations. We also
define Ny as the number of (k — 1)-simplices.

In this section, we evaluate the mean of the number of (k — 1)-simplices E, [Ny and
the mean of the Euler characteristic Ex [x]. We introduce some notations. Let

A = {(or,. . w) € ([0, ), vi # 03, ¥i £ ).

For any integer k, we define go,@ as:

o : ([0, o)) — {0,1}

. d
e ) s { iy oo (palvis v3) 1 (o) € A,
7 7 0 otherwise.
In words, this means that golgd) (v, --+,vg) = 1if [vg, -+, v is a (k — 1)-simplex and 0

otherwise.

Theorem 26. The mean number of (k — 1)-simplices Ny, is given by

Aa?(A(2¢)D)F—1Ed
k!

E\ [Ng] =
Proof The number of (k — 1)-simplices can be counted by the expression:

1
Ni(w) = m/%&d)(vl, ) dw®oy, ).

According to the Campbell-Mecke formula and since the max-distance can be tensorized,
we have:

2k
EA [Nk] = k'/ QOI(Cd)(’Ul, tev Uk) dvl e dvk
. Xk
d
A (1)
:k'</ kgok (@i, xj) day ... dzg | .
[0,0)
A moment of thought reveals that for any (z1, -+, z1) € A,(:), since € < a/4 < a/2, there
exists a unique index i such that for all j € {1, --- | k}\{i}, one and only one of the two

following conditions holds:
r; <xj <wi+2€o0rx; <Tj+a<x+ e

Let ¢(x1, - -+, xx) denote this index i. Hence, by invariance by translation of the Lebesgue
measure,

/ 80/9)(501', zj) dzy ... dzy
¢t

. k-1
= (k‘ — 1)'/ dxl/ H 1-Tj<-'17]'+1 dao ... doy = a(26)k_1.
0 [x1,2142¢)k—1 j=2
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The very same identity holds for any integral on the set (~1(i) for any i € {1, ---, k}
hence

/ w,&l)(mi, zj) doy ... day, = ka(2e)F 1
[0,a)"
The proof is thus complete.

By depoissonization, we can estimate the mean number of k-simplices for a Binomial
process: a process with n points uniformly distributed over the torus.

Corollary 27. The mean number (k — 1)-simplices Ny, given N1 = n is

n\ g (2 d(k—1)
EA[Nk‘Nl :n]: <k‘>k <CL> .

Proof According to Theorem 26, we have:

Aat(A(2e))F— 1t & gt (Aad)"
S

The principle of depoissonization is then to invert the transform © defined by:

0 : RN — R[)]

An
(p, n>0) —> Zane_)‘—l-
= n!
We have that (Aa?)* = > sk (nﬁi!k)!%e”‘“d. The result follows.

Remark 11. Considering the maximum norm simplifies the calculations. However, even
for the Euclidean norm, it is still possible to find a closed-form expression for Ex [Na] and
E [N3] when we consider the Vietoris-Rips complex in T2. We are limited to small orders
because no formula seems to be known for the area of the intersection of k balls in general
position. For k =2 and 3, the expectations are given by the following formulas:

7(aXe)?

Bafv = T
3v3\ \a2et
Ej [N3s] = 7r(7r—4> .

Consider now the Bell’s polynomial By(x), defined as (see [13]):

n} is the Stirling number of the second kind. An

where n is a positive integer and { A

equivalent definition of B,, can be:
> k1d
"k
By(x)=e*)y ——-
k!
k=0
These polynomials appear rather surprisingly in the computations of the mean value of
the Euler characteristic.
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Theorem 28. The mean of the Euler characteristic of the simplicial complex Cc(w) is
given by

Bl = (o) €09 Ba(-A2)").

Proof Since
1 - o0 o 1 N
< H (N1 =) en y Ne<) or<e™
j=0 k=1 k=1
Ny _ oo _1\k _ oo _1\k
As Ey [eM] < 00, we have Ey [— Y72 | (=1)F Ny | = = 3772 | (=1)FE, [Ny] and

Bald=- Y (-

k=1
B ade—A(20) A0 i (=A(26))F ke
—(2¢)? k!
k=0
a\d o)d
=~ (5) e Bu(=A@2e)")

The proof is thus complete.

If we take d = 1, 2 and 3, we obtain:

Ex [x] = aXe %, for d = 1;
Ey[\]=a Ae“@f) (1= A(2€)?), for d =2;
Ex [\ = a®Xe 9 (1 = 3X(2¢)° + (A(2¢)%)?) , for d = 3.

The next corollary is an immediate consequence of Corollary 27, obtained again by depois-
sonization.

Corollary 29. The expectation of x for a binomial point process with n points is given by:

Ex [x| N = ] = é(— () (f)d(k_l) .

So far, we have not say a word about Betti numbers. It turns out that the preceding
computations lead to a bound of the tail of 5y, the number of connected components.

Theorem 30. Fory > \a?, we have

y — \a? y — \a®
P >q) < - 1 1+ <)
A(/BO_y)_eXp< 5 og( + 27— 1)%\

Proof fy is the number of connected components. Since there are more points than
connected components, Ej [fg] < Ep[N1] = Aa?. According to the definition of D,

sup,cx Difo is the maximum variation of By induced by the addition of an arbitrary
point. If the point z is at a distance smaller than e from w, then D,8y < 0, otherwise,
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DBy =1,50 D;By <1 for any z € X. Besides, this added point can join at most two con-
nected components in each dimension, so in d dimensions it can join at most 2¢ connected
component, which means that Djy ranges from —(2¢ — 1) to 1, and then

IDBoll oo (z2(x,0),p) < SUP/X 1D fol* dA(z) < Xa(27 — 1)%.

Since the function f defined by

fl,y) = exp <—k12];xlog <1+(’f1k—3;)k2>) .

is strictly increasing with respect to z and y for k; > z, it follows from Theorem 25 that:

y — \a? y — \a?
PA(Bo > y) < exp (— 9 log <1 + @ —1)2ad) )

for y > Aa? > E, [Bo).

A.3 Second order moments

We now deal with the computations of the second order moments. The proofs rely on
the chaos decomposition of the number of simplices (see Lemma 11) and the multiplication
formula for iterated integrals (see Proposition 1). The computations are rather technical
and not detailed here. We make the following convention: For any integer k,

/Ogol(ed)(vl, <oy vg) dog ... dug = @,(Cd)(vl, cee UE).
X

Lemma 11. We can rewrite Ny as

k
1 R\ ki (d)
Nk:kﬂ%(z’)A IZ-</ingpk (v1, +-+, vg) dvl...dvk_i>.

Proof For k = 1, the result is immediate with the convention made above. Once we have
seen that

/sz(gd)(vl»---,vk) dw®(or, -+, vy)

k—1

= [{ [0 - im0 — dr) | D, )

7=1
+/ </ cp]id)(vl, ceey k) dA(vk)> dw(k_l)(vl, Cee V1),
X
the result follows by induction.

Theorem 31. The covariance between the number of (k—1)-simplices Ny, and the number
of (I —1)-simplices, Ny for | < k is given by

L dad(A(2¢) )kt (k=) i)
Cova [Ny, Nj] z; Tk i (k+l—z—|—2i+1> :
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Remark 12. As for the first moment it is still possible to find, considering the Fuclidean
norm, a closed-form expression for Varp [Ny]. We did not find a general expression for
any dimension. However, when we consider the Rips-Vietoris complex in T2

2, the variance
of the number of 1-simplices and 2-simplices are given by:

Vary [No] = (2%)2 (g(4)\€2)2 + 7r2(4/\62)3> ,

Since we have an expression for the variance of the number of k-simplices, it is possible
to calculate the variance of the Euler characteristic.

Theorem 32. The variance of the Euler characteristic is:

Vary [x] = Aa®> et (A(26))" T,
n=1

i d (~1)"*d 2(n —i)(n — )\
a= 2 |2 2 (n—j)'(n—z’)'(i+j—n)'<n+ 1—|—i—i—j—n>

j=[(n+1)/2] | i=n—j+1 ' ’ ’

! L 2=
— n4+-———>=— .
(n—j)1%(2j —n)! 1+2j—n
Theorem 33. In one dimension, the expression of the variance of the Euler characteristic
18!

Varp [x] = a (/\672/\6 — 4)\26674)&) :

Theorem 34. If d =2, we have Dx < 2 and thus

x x
P(x —Ear[x] 2 2) <exp (_Z log (1 + M)) :
Proof In two dimensions, the Euler characteristic is given by:

X = Bo — B1+ Ba.

If we add a vertex on the torus, either the vertex is isolated or not. In the first case, it
forms a new connected component increasing By by 1, and the number of holes, i.e. (51,
remains the same. Otherwise, as there is no new connected component, 3y is the same,
but the new vertex can at most fill one hole, increasing 1 by 1. Therefore, the variation
of By — 1 is at most 1.

Furthermore, when we add a vertex to a simplicial complex, we know from Proposi-
tion ?? that Dy < 1 hence Dx < 2. Then, we use Eq. (A.4) to complete the proof.
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A.4 Third order moments

Higher order moments can be computed in a similar way but the computations be-
come trickier as the order increases. We here restrict our computations to the third order
moments to illustrate the general procedure. The proof is not given here.

We are interested in the central moment, so we introduce the following notation for the
centralized number of (k — 1)-simplices: N = Ny — Ep [INg].

Theorem 35. The third central moment of the number of (k — 1)-simplices is given by:
—~3 N3E=1=0gl (BN (KN (KN (0 [j t
Ep [N | = —_— k,i,j,8,t
[ 2 5 OO0 (s aesssn

with s > |i — j|, and J3(k, 1, j, s,t) is an integral depending on k,i,j,s and t, defined below
in the proof.
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Appendix B

Efficient simulation of the Ginibre
process |27]

L. Decreusefond, I. Flint, A. Vergne

The Ginibre point process is one of the main examples of determinantal point processes
on the complex plane. It forms a recurring model in stochastic matrix theory as well as
i practical applications. However, this model has mostly been studied from a probabilistic
point of view in the fields of stochastic matrices and determinantal point processes, and thus
using the Ginibre process to model random phenomena is a topic which is for the most part
unexplored. In order to obtain a determinantal point process more suited for simulation,
we introduce a modified version of the classical kernel. Then, we compare three different
methods to simulate the Ginibre point process and discuss the most efficient one depending
on the application at hand.

B.1 Introduction

Determinantal point processes form a class of point processes which exhibit repulsion,
and model a wide variety of phenomena. After their introduction by Macchi in [59], they
have been studied in depth from a probabilistic point of view in [81,82] wherein we find and
overview of their mathematical properties. Other than modeling fermion particles (see the
account of the determinantal structure of fermions in [83], and also [82] for other examples),
they are known to appear in many branches of stochastic matrix theory (see [82] or the
thorough overview of [6] for example) and in the study of the zeros of Gaussian analytic
functions (see [46]). The Ginibre point process in particular was first introduced in [38]
and arises in many problems regarding determinantal point processes. To be more specific,
the eigenvalues of a hermitian matrix with (renormalized) complex Gaussian entries (which
is a subclass of the so-called Gaussian Unitary Ensemble) are known to form a Ginibre
point process. Moreover, the Ginibre point process is the natural extension of the Dyson
point process to the complex plane. As such, and as explained in [38], it models the
positions of charges of a two-dimensional Coulomb gas in a harmonic oscillator potential,
at a temperature corresponding to § = 2. It should be noted that the Dyson model is
a determinantal point process on R which is of central importance, as it appears as the
bulk-scaling limit of a large class of determinantal point processes, c.f. [15].

Simulation of determinantal point processes is mostly unexplored, and was in fact
initiated in [45] wherein the authors give a practical algorithm for the simulation of de-
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terminantal point processes. Theoretical discussion of the aforementioned algorithm as
well as statistical aspects have also been explored in [56]. In the recent papers [62,85,87],
different authors have used the Ginibre point process to model phenomena arising in net-
working. The reason being that this particular model has many advantages with regards
to applications. It is indeed invariant with respect to rotations and translations, which
gives us a natural compact subset on which to simulate it: the ball centered at the origin.
Moreover, the electrostatic repulsion between particles seems to be fitting for many appli-
cations. Our aim in this paper is to study the simulation of the Ginibre point process form
a practical point of view, and give different methods which will be more or less suited to
the application at hand. The main problem that arises in practice is that although the
eigenvalues of matrices in the GUE ensemble form a Ginibre point process, these eigenval-
ues are not compactly supported, although after renormalization, they tend to a compactly
supported as N tends to infinity (this is known as the circular law in stochastic matrix
theory). Moreover, as will be seen here, truncating to a natural compact and letting N
tend to infinity is not the most efficient way to proceed, even though this operation pre-
serves the determinantal property of the point process. Therefore, our methods will rely
on the modification of the kernel associated with the Ginibre point process. We study in
depth the projection of the kernel onto a compact, its truncation to a finite rank, and in
the last part a combination of both operations. Each of these operations on the kernel will
have different results on the resulting point process, as well as the simulation techniques
involved.

We proceed as follows. We start in Section B.2 by a general definition of a point process,
as well as determinantal point process. In Section B.3, we present more specifically the
Ginibre point process, and prove some probabilistic properties. We discuss the truncation,
and the projection of the Ginibre kernel and gives the basic ideas that will yield different
simulation techniques.

B.2 Notations and general results

B.2.1 Point processes

Let E be a Polish space, O(F) the family of all non-empty open subsets of F and B
denotes the corresponding Borel o-algebra. We also consider A a Radon measure on (E, B).
Let X be the space of locally finite subsets in E, sometimes called the configuration space:

X={(CFE:|AN& < oo for any compact set A C E}.

In fact, X consists of all simple positive integer-valued Radon measures (by simple we
mean that for all z € E, {(z) < 1). Hence, it is naturally topologized by the vague topol-
ogy, which is the weakest topology such that for all continuous and compactly supported
functions f on E, the mapping

E (1,6 =) fy)
yes

is continuous. We denote by F the corresponding o-algebra. We call elements of X con-
figurations and identify a locally finite configuration £ with the atomic Radon measure
Zy€§ €y, where we have written €, for the Dirac measure at y € E.
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Next, let Xy = {£ € X : |[£| < oo} be the space of all finite configurations on E. X is
naturally equipped with the trace o-algebra Fy = F|x,. A random point process is defined
as a probability measure p on (X, F). A random point process p is characterized by its
Laplace transform L, which is defined for any measurable non-negative function f on F
as

L(f) = /X e~ Teec F@) ().

For the precise study of point processes, we also introduce the A-sample measure, as well
as subsequent tools. Most of our notations are inspired from the ones in [36].
Definition 1. The A-sample measure L on (Xy, Fo) is defined by the identity

1

fla)L(da) => " = [ f{z1,. 20}) Mdan) ... M(day),
n. Jgn
n>0

for any measurable nonnegative function f on Xj.
Point processes are often characterized via their correlation function, defined as below.

Definition 2 (Correlation function). A point process u is said to have a correlation func-
tion p : Xy — R if p is measurable and

[ X steuti) = [ fle) ple) Lido),

aCé, aeX)p
for all measurable nonnegative functions f on Xy. For § = {x1,...,x,}, we will sometimes
write p(§) = pp(z1,...,2y) and call p, the n-th correlation function, where here py is a

symmetrical function on E™.

It can be noted that correlation functions can also be defined by the following property,
both characterizations being equivalent in the case of simple point processes.

Proposition B.2.1. A point process p is said to have correlation functions (pp)nen if for
any A, ..., A, disjoint bounded Borel subsets of E,

]E[Zlf[lﬁ(Az)] —/A Pn(T1, ..o xn) A(dzy) .. A(dxy,).

11X XAp

Recall that p; is the mean density of particles with respect to A, and
pn(T1, .. xn) A(dey) . A (day,)

is the probability of finding a particle in the vicinity of each x;, i = 1,...,n. We also need
to define the Janossy density of u, which is defined as follows:

Definition 3. For any compact subset A C E, the Janossy density j is defined (when it
exists) as the density function of pua with respect to Ly .

In the following, we will write j{(x1,...,2n) = ja({z1,...,2,}) for the n-th Janossy
density, i.e. the associated symmetric function of n variables, for a configuration of size
n € N. The Janossy density ja(x1,...,2,) is in fact the joint density (multiplied by a
constant) of the n points given that the point process has exactly n points. Indeed, by
definition of the Janossy intensities, the following relation is satisfied, for any measurable
f : XO — R,

E[f(€)] =Y % /A FUar, - xn))in(z, - za ) A(da1) . .. A(dzn).

n>0
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B.2.2 Determinantal processes

For details on this part, we refer to [81,82]. For any compact subset A C F, we denote
by L?(A, ) the set of functions square integrable with respect to the restriction of the
measure A to the set A. This becomes a Hilbert space when equipped with the usual norm:

10 = [ 1PN

For A a compact subset of E, Py is the projection from L2(E,\) onto L2(A,N\), i.e.,
Pprf = 15. The operators we deal with are special cases of the general set of continuous
maps from L2(E, \) into itself.

Definition 4. A map T from L?(E, \) into itself is said to be an integral operator whenever
there exists a measurable function, which we still denote by T, such that

Tf(z) = /E T(x, y)f(y)d\(w).

The function T : E x E — R is called the kernel of T'.

Definition 5. Let T be a bounded map from L*(E, \) into itself. The map T is said to be
trace-class whenever for a complete orthonormal basis (hn, n > 1) of L*(E, \),

1T =D (1Tl hn) 2 < 0,

n>1

where |T| := /TT*. Then, the trace of T is defined by

trace(T) = Z(Thn, hn)rz-

n>1

It is easily shown that the notion of trace does not depend on the choice of the complete
orthonormal basis. Note that if T is trace-class then T™ also is trace-class for any n > 2
since we have that || 771 < |T|" Y T|l1 (see e.g. [32]).

Definition 6. Let T' be a trace class operator. The Fredholm determinant of (1+T) is
defined by:
+oo (_1 n—1

Det(I+T) = exp (Z T)l trace(T”)> ,

n=1

where 1 stands for the identity operator on L*(E,\).

The Fredholm determinant can also be expanded as a function of the usual determinant,
as can be observed in the following proposition, which can be obtained easily by expanding
the exponential in the previous definition (see [81]):

Proposition B.2.2. For a trace class integral operator T', we have:

+o0o
1
Det(I-T) = n,/ det (T'(ws, 2))1<i,j<ndA(z1) - . . dA(zp).
n_O . n

With the previous definitions in mind, we move onto the precise definition of determi-
nantal point processes. To that effect, we will henceforth use the following set of hypotheses:
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Hypothesis 1. The map T is an Hilbert-Schmidt operator from L*(E, \) into L*(E, \)
which satisfies the following conditions:

i) T is a bounded symmetric integral operator on L*(E, \), with kernel T(.,.).
it) The spectrum of T is included in [0, 1].

i11) The map T is locally of trace class, i.e., for all compact subsets A C E, the restriction
Th := PA\TPy of T to L*(A, \) is of trace class.

For a compact subset A C F, the map J[A] is defined by:
JA] = (I-Ty) ' Ty, (B.1)
so that T" and J[A] are quasi-inverses in the sense that
(I-Tp) (I+J[A]) =1.

For any compact A, the operator J[A] is also a trace class operator in L?(A, A). In the
following theorem, we define a general determinantal process with three equivalent charac-
terizations: in terms of their Laplace transforms, Janossy densities or correlation functions.
The theorem is also a theorem of existence, a problem which is far from being trivial.

Theorem B.2.1 (See [81]). Assume Hypothesis 1 is satisfied. There exists a unique prob-
ability measure pu 7y on the configuration space X such that, for any nonnegative bounded
measurable function f on E with compact support, we have:

Lyz s (f) = Det (T1-T[1 = ¢7/]),
where T[1 — e~ /] is the bounded operator on L?(E, \) with kernel :

(T[1 = e (@,y) = V1 —exp(—f(2))T(2,y) /1 — exp(—f(y))-

This means that for any integer n and any (x1,--- , x,) € E™, the correlation functions
of i, \ are given by:

P, 71,7, my) = det (T (w4, xj))lgi,jgn )

and forn =0, po,7(0) = 1. For any compact subset A C E, the operator J[A] is an Hilbert-
Schmidt, trace class operator, whose spectrum is included in [0, +occ[. For any n € N, any
compact A C E, and any (x1,--- , x,) € A" the n-th Janossy density is given by:

Jir (@1, o, mn) = Det (I=Tx) det (J[A](zi, 5))1<; i<y - (B.2)
Forn =0, we have j3 ;- (§) = Det (I —Ty).

We also need a simple condition on the kernels to ensure proper convergence of the
associated determinantal measure. This is provided by Proposition 3.10 in [81]:

Proposition B.2.3. Let (T("))nzl be integral operators with nonnegative continuous ker-
nels T(”)(x,y), x,y € E. Assume that 7™ satisfy Hypothesis 1, n > 1, and that 7™
converges to a kernel T uniformly on each compact as n tends to infinity. Then, the ker-
nel T defines an integral operator T satisfying Hypothesis 1. Moreover, the determinantal
measure [ 5 converges weakly to the measure pr x as n tends to infinity.
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In the remainder of this section, we shall consider a general determinantal process of kernel
T with respect to a reference measure A on E. We will assume that T satisfies Hypothesis
1. Consider a compact subset A C E. Then, by Mercer’s theorem, the projection operator

Tp can be written as
n>0

for x,y € C. Here, ((pﬁ)neN are the eigenvectors of T and (\y,)nen the associated eigen-
values. Note that since T is trace-class, we have

Z A < 0.

n>0

In this case, the operator J[A] defined in (B.1) can be decomposed in the same basis as
Th.

A
TING) = 3 0o @), (B.4)

n>0

for z,y € A.

Let us conclude this section by mentioning the particular case of the determinantal pro-
jection process. We define a projection kernel (onto {¢,, 0 < n < N} C L?*(E,))) to
be

= pnl@)only), Ya,yeC

where N € N, and (¢y,)nen is an orthonormal family of L?(E, ). We call the associated
determinantal process a determinantal projection process (onto {¢,, 0 < n < N} C
L?(E,\)). In this case, it is known that the associated determinantal process has N points
almost surely, as was first proved in [82]. These determinantal processes are particularly
interesting since they benefit from a specific simulation technique which will be explained
in the next section.

B.3 Simulation of the Ginibre point process

Proofs of this section are not detailed here but are available in the full version of this
article.

B.3.1 Definition and properties

The Ginibre process, denoted by p in the remainder of this paper, is defined as the
determinantal process on C with integral kernel

1 _
K(z1,2) = ;e%e—%(\zlwﬂml%, 21,7 € C, (B.5)

with respect to A := df(z), the Lebesgue measure on C (i.e. df(z) = dxdy, when z =
x 4 1y). It can be naturally decomposed as:

K(21,2) = Y én(21)dn(22), 21,22 €C,
n>0
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‘ 2

where ¢, (z) := \/%efaz 2", for n € N and z € C. It can be easily verified that (¢n)nen
is an orthonormal family of L?(C,d/). In fact, (¢, )nen is a dense subset of L2(C,df). The

Ginibre process p verifies the following basic properties:

Proposition B.3.1. The Ginibre process u, i.e. the determinantal process with kernel K
satisfies the following:

e [ 1s ergodic with respect to the translations on the plane.
® /i 15 isotropic.

e 1(C) = +o0 almost surely, i.e. the Ginibre point process has an infinite number of
points almost surely.

Since p has an infinite number of points almost surely, it is possible to simulate it directly.
Therefore, in the rest of this paper, we are interested in modifying the kernel K in order
to obtain versions of the Ginibre point process which will be usable in applications.

B.3.2 Truncated Ginibre point process
The first idea is to consider the truncated Ginibre kernel, defined for NV € N, by

N-1

KN (21, 20) = Z Pn(21)Pn(22), 21,22 € C. (B.6)

n=0

This is in fact a truncation of the sum in (B.5). We also call uV the associated determi-
nantal point process with intensity measure df. We remark that v — p weakly, when
N — oco. As it is a projection kernel, we have seen in Section B.2 that ;~ has N points al-
most surely. !V is clearly not translation invariant anymore; however, it remains isotropic
for the same reason that p is. Physically, % is the distribution of N polarized electrons in
a perpendicular magnetic field, filling the N lowest Landau levels, as is remarked in [80].
As 1Y has N points almost surely, it is entirely characterized by its joint distribution p
which is calculated in the following proposition.

Proposition B.3.2. Let uN be the point process with kernel given by (B.6). Then, puv
has N points almost surely and its joint density p is given by

N
1 1 _ s~ 2
p(z1,...,28) = —~ — e Xp=1 120l H |2p — 2¢ 2 (B.7)
1<p<g<N
for z1,...,zy € C.

It is also known that the radii of the points of 1/ have the same distribution as independent
gamma random variables. More precisely, we can find in [54] the following result:

Proposition B.3.3. Let {Xy,...,Xn} be the N € N, unordered points, distributed ac-
cording to u¥. Then, {|X1]|,...,|Xn|} has the same distribution as {Y1,...,Yn}, where
for 1 <i< N, Y?~ gammal(i, 1), and the Y; are independent.
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However, it should be noted that this does not yield a practical simulation technique, as
the angle of X1,..., Xy are strongly correlated, and do not follow a known distribution.

We now move on to the problem of simulating a truncated Ginibre point process with
kernel given by (B.6). Since uV has N points almost surely, there is no need to simulate
the number of points. One only needs to simulate the position of the N points. For
this specific case, there is in fact a more natural way of simulating the Ginibre process.
Indeed, it was proven in [38] that the eigenvalues of an N x N hermitian matrix with
complex gaussian entries are distributed according to uV. More precisely, consider a matrix
N := (Npm)i1<nm<n, such that for 1 <n,m < N,

1
V2
where N! N2~ N(0,1), 1 < n,m < N are independent centered gaussian random

variables. Then, the eigenvalues of N are distributed according to V. This is by far the
most efficient way of simulating the truncated Ginibre process.

Ny = (Np +iN2L)

We also remark that we could have applied the general simulation technique in order to
simulate the truncated Ginibre point process. However, the simulation procedure is much
slower than calculating the eigenvalues of an N x N matrix. We still show the results of
the algorithm of a realization of the resulting point process in the following. This allows
proper visualization of the associated densities. We chose a = 3 and N = 8 in this exam-
ple. We plot the densities p; as color gradients before the simulation of the i-th point. We
also mark by red points the previously simulated points. Therefore, the resulting point
process consists of the red points in Figure B.3.4. The steps plotted in the following figure
correspond to ¢ = 7,7 = 4, and i = 1 respectively.

However, one runs into a practical problem when simulating the truncated Ginibre process:
the support of its law is the whole of CV. Recall that the joint law of uV is known to
be given by (B.7) which has support on CN. Moreover, projecting onto a compact subset
randomizes the number of points in the point process. Therefore, this first method is only
useful in applications where point process need not be in a fixed compact.

B.3.3 Ginibre point process on a compact subset

We now consider more specifically the projection of the Ginibre process onto Bg, and
thus we consider the projection kernel Kg := Pg, K Pp,, of the integral operator K onto
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L2(Bgr, dl), where Br := B(0, R) is the closed ball of C of radius R > 0 with center 0. In
this specific case, the kernel of the operator K takes the form:

Kg(z1,22) = Y Aol (21) 08 (22), (B.8)
n>0

where ¢ (z) := Zglnqbn(z)lzegm neN, ze Cand Z]gln € R is a constant depending only
on n. This result does not hold in general, but is due to the fact that (¢Z()),>0 is still an
orthonormal family of L?(Bg,dz). Indeed, for m,n € N,

R T
¢§<z>¢ﬁ<z>dz<z>=z,;;( — [ r"+m+16_r2dr> (1 / ei<n—m>9da>
0

nlm! T

-2 2 [ 2n+1 —r?2
= Zpwln=m ] r e dr
+Jo

v(n+1, R?)
n!

Br

-2
= Z5 lnem

)

where v is the lower incomplete Gamma function defined as
a
v(z,a) == / e tt*ldt,
0

for z € C and a > 0. Hence, in the following, we shall take Zg ,, := 7(%1!’}%2)

the associated eigenvalues are

. Therefore,

A= [ o ane) = 2= Wt LR

n!
As is expected, 0 < A\? <1 for any n € N, R > 0, and A% R—> 1 for any n € N.
—r 00

Now that we have specified the eigenfunctions and associated eigenvalues, the simulation
of the Ginibre process on a compact is that of the determinantal point process with kernel
given by (B.8). Therefore, the general case algorithm fully applies. The time-consuming
step of the algorithm will be the simulation of the Bernoulli random variables. Recall that
the cumulative distribution function of 7' = sup{n € N, / B, = 1} is given by:

)

1+ LR 77 TE+1,R?
Fim) =3 nl 11 il
n<m i=n-+1

for m € N,.

We remark that we can not simulate the Ginibre point process restricted to a compact in
the same way as in the previous section. Indeed, taking a N x N matrix with complex
gaussian entries, and conditioning on the points being in B, /5 yields a determinantal point
process with kernel (B.10), which is not our target point process, as the sum is truncated at
N. Therefore, the method developed in the previous section does not apply here. Hence,
the algorithm is twofold, and the first step goes as follows:
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Algorithm 10 Simulation of the Ginibre process on a compact subset (Step 1)
T'(i+1,R?)

2! )

2
(F(NE]!.,R ))

evaluate numerically R+ HZ>1 for example by calculating

i+1,R?)
Xt In( ), where N is chosen such that In < €, € given by the user.
sample U <« U([0,1]) according to a uniform distribution on [0, 1].
m < 0
while U < R do

m<—m —|—l 1 )
R & it R
end while
for i=0—-m—1 do
B; + Be(M), where here Be()\) is an independent drawing of a Bernoulli
random variable of parameter A
end for
if m >0 then
return {By,...,By_1,1}
end if
if m =0 then
return {1}
end if

; 2
Remark. The series [ [;~,, w, forn € Ny is convergent since it is equal to [ [,~,, (1 —
AE) which is convergent because Y ;50 AF < 0o since the considered operator is locally trace-

class.

We write {By,...,Bmn-1,1} for the value returned by the previous algorithm, with the
convention that {By, ..., By—1,1} = {1} if m = 0. Then by Theorem 7 of [45], the law
of the Ginibre point process on a compact is the same as that of the determinantal point
process of kernel

K (21, 22) ZBk¢n 21)Pn(z2), 21,22 € C.
k=0

Now, we move onto the second part of the algorithm, which is this time straightforward
as it suffices to follow the general simulation algorithm closely. It only remains to notice
that the method described in this section yields a determinantal point process on B /5.
In order to simulate the point process on B, for a > 0, it suffices to apply a homothetic
transformation to the N points, which translates to a homothety on the eigenvectors. To
sum up, the simulation algorithm of the truncated Ginibre process on a centered ball of
radius a > 0 is as follows:

We end this subsection by mentioning the difficulties arising in the simulation under the
density p;, 1 <i < N — 1. As is remarked in [56], in the general case, we have no choice
but to simulate by rejection sampling and the Ginibre point process is no different (except
the case i = N — 1 which is a gaussian random variable). Therefore in practice, we draw a
uniform random variable u on B, and choose p;(u)/sup,ep, pi(y). Note that the authors
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Algorithm 11 Simulation of the Ginibre process on a compact subset (Step 2)

define ¢x(z) = me 30z 212 (X%)F, for z € B, and 0 < k < m.
define v(z) := (¢i,(2),..., i (2), dm(2)), for z € B, and where {igp,... i} = {0 <
i<m-1: B =1}
set N:=k+2
sample Xy from the distribution with density py(z) = ||v(2)|?/N, = € A
set e; = v(Xn)/|[v(Xn)]
fori=N-1—1do
sample X; from the distribution with density

pi(e) = ¢ [Iv (@) - Zrev 2|

set w; = v(X;) = LN (ev(Xi)) ey eni1 = wi/|lwi
end for
return (Xi,...,Xy)

in [56] give a closed form bound on p; which is given by

L | KN (2, Xp)[?
() < = KN — B.
pila) < HP;%%N< e (B.9)
where X;11,...,Xn is the result of the simulation procedure up to step i. In practice

however, the error made in the previous inequality is not worth the gain made by not
evaluating sup,cp, pi(y). Therefore, in our simulations, we have chosen not to use (B.9).

B.3.4 Truncated Ginibre process on a compact subset

In this subsection, we begin by studying the truncated Ginibre point process on a
compact subset, and specifically discuss the optimal choice of the compact subset onto
which we project. We begin by studying the general projection of the truncated Ginibre
process onto a centered ball of radius R > 0 which is again a determinantal point process
whose law can be explicited. To that end, we wish to study Kﬁ[ = PBRKNPBR of the
integral operator K onto L?(Bg,df). The associated kernel is given by

N-1

KR (21,22) = Y Aol (21) 98 (22), (B.10)

n=0

for z1,20 € Br. The question of the Janossy densities of the associated determinantal
process is not as trivial as the non-projected one. Indeed, ,ug does not have NN points
almost surely. However, it is known that it has less than N points almost surely (see
e.g. [82]). Therefore, it suffices to calculate the Janossy densities j%, ey jg to characterize
the law of Mg . These are given by the following proposition:

Proposition B.3.4. The point process M% with kernel given by (B.10) has less than N
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points almost surely, and its Janossy densities are given by

1 k—1 1 .

-k =35 2p)? 2

jR(Zl,...,Zk)—;k pf'e pfl‘ ol | I |ZZ-—Z]‘|
p=0"" 1<i<j<k

Z ’S)\(il,...,’ik)(zlw"7Zk)|27

{i1,..ixg}C{1,...,N}
for0< k<N and z1,...,zr € Bg.

Next, we wish to determine the optimal R > 0 onto which we project the truncated
Ginibre process. In regards to this question, we recall that the particle density of the
general Ginibre process is constant, and

1
pl(Z) - K(zvz) -
T
for z € C. However, the particle density of the truncated Ginibre process is not constant.

If we denote by pY the n-th correlation function of 1%V, then we have

N-1
1 1.2 ]2\2’“
N 1
o (z) = Lerbier YO B
k=0

for z € C. As can be checked easily, we have [ PN (2)dz = N as well as

3=

p(z) <=, VzeC, (B.11)

and in fact it is known that p} (v/Nz) N—> %1| »|<1, which is known as the circular law
— 00 -

in stochastic matrix theory. It therefore appears that it is optimal to project onto B, /5.

Moreover, the following bounds were obtained in [38].

Proposition B.3.5. For |z|?> < N + 1, we have

1T N 1 ez N4+1
R < = |2 .
e (z)_ﬂe N! N+1— |22

For |z|*> > N, we have
1 ez N
N = =z ey
< :
prz) < e N! [z2—N

As was noticed in [38], if we set |z| = /N +u, for —1 < u < 1, both of the right hand
sides of the inequalities in Proposition B.3.5 tend to

]. 672,“2
2v/2um3/? ’

as N tends to infinity. This is obtained by standard calculations involving in particular
the Stirling formula. That is to say, for |z| < VN, and z = VN — u,

1 1 2
N,/ —2u
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Figure B.1: pV(|z]) for N = 600 and |z| around v/N (blue). Upper and lower bounds
obtained in (B.12) and (B.13) (green).

0.6

0.4 |

0.2 -

26

as well as for |z| > V/N, and z = VN 4+ u

P (VN +u) < (B.13)

1 _
— ¢
2v/2um3/2

as N tends to infinity. These bounds exhibit the sharp fall of the particle density around

2| = V.

The previous results yield in particular the next proposition (see [38]).

Proposition B.3.6. Let us write 6(N) := / pN(2) d0(z). Then, we have
|z|>VN

S(N) ~ 1] = (B.14)

as N — oco.

Proposition B.3.6 means that as N — oo, the average number of particles falling outside
of the B JN 18 of the order of V%’ as N tends to infinity. Therefore, from now on, we
will consider the truncated Ginibre process of rank N projected onto B, /5. Assume that
we need to simulate ¢V on a compact subset. Then, we no longer control the number of
points, i.e. there is again a random number of points in the compact subset, as seen in
Figure B.2.

Therefore, our additional idea is to condition the number of points on being equal to V.
As we have calculated previously in Proposition B.3.6, there is a number of particles falling
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Figure B.2: A realization of y/¥ for N = 200 (blue circles) renormalized to fit in the circle
of radius 1 (in red)

1 |-
0.8
0.6

0.4r

outside of the ball of radius B, which grows as \;—N as N — oo. Since the projection

onto B, /5 of the truncated Ginibre process takes the determinantal form (B.10), one can
easily calculate the probability of all the points falling in B /5. Indeed, we have that

i
—
>~
e
I
=l
=
S
+
\t—‘
2

]P)MN( =0) (B.15)

chm

It can be shown that this probability tends to 0 as N tends to infinity. That is, if we are
required to simulate the Ginibre process on a compact conditionally on it having /N points,
the conditioning requires more and more computation time as N tends to infinity.

However, we are not forced to simulate the conditioning on there being N points. Instead,
we introduce a new kernel, as well as the associated point process. We set

N-1
KN (z1,20) = Y 60 (21)0) (22), 21,22 € Br, (B.16)
n=0

and where ¢!V corresponds to the function ¢, restricted to the compact B VN (after renor-
malization). We emphasize that this is in fact |z % conditioned on there being N
points in the compact B VN this result being due to Theorem 7 in [45]. Moreover, the
determinantal point process associated with this kernel benefits from the efficient simula-
tions techniques developed in the previous subsection. Here, the fact that we can explicit
the projection kernel associated with the conditioning is what ensures the efficiency of the
simulation.
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Let us start by proving that u, the associated determinantal process with kernel K}V,
converges to p weakly as IV tends to infinity. This is a consequence of Proposition B.2.3,
as is proved in the following:

Theorem B.3.1. We have that K converges uniformly on compact subsets to K as N
tends to infinity. As a consequence, the associated determinantal measures converge weakly
to the determinantal point process of kernel K.

We now return to the problem of simulating the determinantal point process with kernel
given by (B.16). As it is a projection process, it is efficiently simulated according to the
basic algorithm described in the full version. On the other hand, the time-consuming step
of generating the Bernoulli random variables is not necessary anymore, as we are working
conditionally on there being N points. Lastly, the method described in this section yields
a determinantal point process on By. As before, in order to simulate on B,, we to apply
a homothetic transformation to the N points, which translates to a homothety on the
eigenvectors. To sum up, the simulation algorithm of the truncated Ginibre process on a
centered ball of radius a > 0 is as follows:

Algorithm 12 Simulation of the truncated Ginibre process on a compact

,LMQ N
define ¢p(z) = We 2a2 (a—f)k, forze By and 0 <k <N —1.
define v(z):= (¢o(2),...,0n-1(2)), for z € By.
sample Xy from the distribution with density py(z) = ||v(z)||?/N, = € A
set e = v(Xn)/[[v(Xn)ll
fort=N-1—=1do
sample X; from the distribution with density

1 N—i
pil@) = <[ IV@)2 = Y lejvia)?]
j=1

set w; =v(X;) — Z;-V:_f (ejV(Xi)) ej, en—it1 = Ww;/|[wi
end for
return (Xi,..., Xy)

The resulting process is a determinantal point process of kernel (B.16). Its support is on
the compact B, and has N points almost surely. We now give a brief example of the results
of the algorithm applied for a = 2 and N =9 at steps i = 8, ¢ = 5, and i = 2 respectively.
We have plotted the densities used for the simulation of the next point.
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This determinantal point process presents the advantage of being easy to use in simulations,
as well as having N points almost surely. Moreover, Theorem B.3.1 proves its convergence
to the Ginibre point process as N tends to infinity.
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Topologie algébrique appliquée aux réseaux de capteurs
Anais VERGNE

RESUME : La représentation par complexes simpliciaux fournit une description mathématique de la topologie d’'un réseau
de capteurs, c’est-a-dire sa connectivité et sa couverture. Dans ces réseaux, les capteurs sont déployés aléatoirement en grand
nombre afin d’assurer une connectivité et une couverture parfaite. Nous proposons un algorithme qui permet de déterminer quels
capteurs mettre en veille, sans modification de topologie, afin de réduire la consommation d’énergie. Notre algorithme de réduction
peut étre appliqué a tous les types de complexes simpliciaux, et atteint un résultat optimal. Pour les complexes simpliciaux aléatoires
géométriques, nous obtenons des bornes pour le nombre de sommets retirés, et trouvons des propriétés mathématiques pour
le complexe simplicial obtenu. En cherchant la complexité de notre algorithme, nous sommes réduits a calculer le comportement
asymptotique de la taille de la plus grande clique dans un graphe géométrique aléatoire. Nous donnons le comportement presque
s(r de la taille de la plus grande clique pour les trois régimes de percolation du graphe géométrique.

Dans la deuxieme partie, nous appliquons la représentation par complexes simpliciaux aux réseaux cellulaires, et améliorons
notre algorithme de réduction pour répondre a de nouvelles demandes. Tout d’abord, nous donnons un algorithme pour la planification
automatique de fréquences, pour la configuration automatique des réseaux cellulaires de la nouvelle génération bénéficiant de la
technologie SON. Puis, nous proposons un algorithme d’économie d’énergie pour I'optimisation des réseaux sans fil. Enfin, nous
présentons un algorithme pour le rétablissement des réseaux sans fil endommagés aprés une catastrophe. Dans ce dernier chapitre,
nous introduisons la simulation des processus ponctuels déterminantaux dans les réseaux sans fil.

ABSTRACT : Simplicial complex representation gives a mathematical description of the topology of a wireless sensor network,
i.e., its connectivity and coverage. In these networks, sensors are randomly deployed in bulk in order to ensure perfect connectivity
and coverage. We propose an algorithm to discover which sensors are to be switched off, without modification of the topology, in
order to reduce energy consumption. Our reduction algorithm can be applied to any type of simplicial complex and reaches an
optimum solution. For random geometric simplicial complexes, we find boundaries for the number of removed vertices, as well as
mathematical properties for the resulting simplicial complex. The complexity of our reduction algorithm boils down to the computation
of the asymptotical behavior of the clique number of a random geometric graph. We provide almost sure asymptotical behavior for
the cligue number in all three percolation regimes of the geometric graph.

In the second part, we apply the simplicial complex representation to cellular networks and improve our reduction algorithm to fit
new purposes. First, we provide a frequency auto-planning algorithm for self-configuration of SON in future cellular networks. Then,
we propose an energy conservation fot the self-optimization of wireless networks. Finally, we present a disaster recovery algorithm
for any type of damaged wireless network. In this last chapter, we also introduce the simulation of determinantal point processes in
wireless networks.

TELECOM

ParisTech

/ ParisTec

INSTITUT DES SCIENCES ET TECHNOLOGIE!
PARIS INSTITUTE OF TECHNOLOG



