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Abstract

Homology theory provides new and powerful solutions to address the coverage hole
problem in wireless sensor networks (WSNs). They are based on two combinatorial
objects named Cech complex and Rips complex. Cech complex can detect all cov-
erage holes, but it is very difficult to construct. Rips complex is easy to construct
but it may be not accurate in some situations.

In the first part of this thesis, we choose the proportion of the area of holes
missed by Rips complex as a metric to evaluate the accuracy of homology based
coverage hole detection. Closed form expressions for lower and upper bounds of the
proportion are derived. Simulation results are well consistent with the analytical
lower and upper bounds, with maximum differences of 0.5% and 3%. In addition,
we extend the analysis to the sphere case.

In the second part, we first propose a graph based distributed algorithm to
detect non-triangular holes. This algorithm exhibits high complexity. We thus
propose another efficient homology based distributed algorithm. This algorithm
only requires 1- and 2-hop neighbour nodes information and has the worst case
complexity O(n?) where n is the maximum number of 1-hop neighbour nodes. It
can accurately detect the boundary cycles of about 99% coverage holes in about
99% cases.






Résumé

La théorie de 'homologie fournit des solutions nouvelles et efficaces pour régler le
probléme de trou de couverture dans les réseaux de capteurs sans fil. Ils sont basés
sur deux objets combinatoires nommés complexe de Cech et complexe de Rips. Le
complexe de Cech peut détecter I'intégralité des trous de couverture, mais il est trés
difficile a construire. Le complexe de Rips est facile a construire, mais il est imprécis
dans certaines situations.

Dans la premiére partie de cette thése, nous choisissons la proportion de la surface
de trous manqués par le complexe de Rips comme une mesure d’évaluer ’exactitude
de la détection de trou de couverture basée sur 'homologie. Des expressions fermées
pour les bornes inférieures et supérieures de la proportion sont dérivés. Les résul-
tats de simulation sont bien compatibles avec les bornes inférieure et supérieure
d’analyse, avec des différences maximales de 0.5% et 3%. En outre, nous étendons
I’analyse au cas de la sphére.

Dans la deuxiéme partie, nous proposons d’abord un algorithme distribué basé
sur les graphes pour détecter les trous non triangulaires. Cet algorithme présente
une grande complexité. Nous proposons donc un autre algorithme distribué plus
efficace basé sur ’homologie. Cet algorithme ne nécessite que des informations de 1-
et 2-saut nceuds voisins et a la complexité O(n?) oi n est le nombre maximum de
neeuds voisins a 1 saut. Il peut détecter avec précision les cycles frontiéres d’environ

99% des trous de couverture dans environ 99% des cas.

Vil
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Chapter 0

Résumé long en francais

0.1 Introduction

0.1.1 Motivations

Les récents progreés des communications sans fil et des micro-systémes électro-mécaniques
ont permis le développement des réseaux de capteurs [1|. Un réseau de capteurs se
compose d'un ensemble de nceuds disposant de capacités de calcul et de transmission
réduites. Chacun capteur posséde néanmoins des fonctionnalités de mesure et de
communication avec des nceuds voisins. Ces capteurs sont déployés dans un domaine
a superviser. Plusieurs types de mesures peuvent étre effectuées : température,
luminosité, intensité sonore, pression .... Les réseaux de capteurs ont beaucoup
d’applications, qui peuvent étre généralement classés en deux catégories: la supervi-
sion et la surveillance [2]. Les applications de surveillance concernent essentiellement
les personnes, les animaux et les véhicules [3, 4, 5, 6, 7, 8, 9]. Les applications de
supervision sont liées & la ’habitat, 'environnement. [10, 11, 12, 13, 14, 15, 16, 17],
I'eSanté [18, 19, 20, 21, 22|, la télé-médecine [23, 24, 25, 26| et le controle de trafic
[27, 28, 29, 30, 31, 32].

La couverture est un probléeme fondamental dans les réseaux de capteurs. Elle
peut étre considérée comme une mesure de la qualité de service d'un réseau de
capteurs [33]. Basé sur les objectifs de couverture, les auteurs de [34] ont classé la
couverture en trois catégories: la couverture d’une zone géographique, la couverture
d’un point spécifique et la couverture d’obstacle. Pour qui concerne le probléme
de la couverture de zone, 1'objectif principal du réseau de capteurs est de couvrir
I'intégralité des points de la zone. Dans le probléme de couverture du point, I’'objectif

est de couvrir un ensemble de points spécifiques. Le but de la couverture d’obstacle



est de minimiser la probabilité de pénétration non détectée a travers la barriére
formée par des capteurs sans fil. Dans cette thése, nous nous concentrons sur le

probléme de couverture de la zone.

Dans les applications liées a la couverture de zone, le domaine ciblé doit étre étre
entiérement couvert. Cependant, les trous de couverture peuvent se former pour de
nombreuses raisons, telles que le déploiement aléatoire des capteurs, I’épuisement
de I'énergie de capteurs ou la destruction de capteurs. Par exemple, dans les ap-
plications de surveillance de volcan, le domaine ciblé est généralement hostile ou
inaccessible pour les humains. Dans de telles situations, les capteurs doivent étre
déployées de facon aléatoire par des hélicoptéres ou d’autres types de véhicules. Avec
le déploiement aléatoire, nocuds de capteurs peuvent se regrouper a un endroit et
laisser des trous de couverture a d’autres. En outre, méme si dans le déploiement
initial, le domaine ciblé est entiérement couvert par des nceuds de capteurs, des
trous de couverture peuvent apparaitre avec le temps: extinction, pannes, et de-
struction physique de capteurs. Par conséquent, il est d’'une importance primordiale
de disposer de mécanismes permettant de détecter et de localiser les trous de cou-
verture. Certains nceuds mobiles peuvent alors étre déployés pour rétablir la cou-
verture [35, 36]. Par ailleurs, la connaissance des frontiéres des trous de couverture
est également trés utile dans la conception de fonctionnalités des réseaux, telles que

le routage point a point et les mécanismes de collecte de données [37].

De nombreuses approches ont été proposées pour la détection de trou de couver-
ture dans les réseaux de capteurs sans fil. Elles peuvent généralement étre classés
en trois catégories: (i) les approches basées sur la localisation, (ii) les approches
basées sur la distance, et (iii) les approches basées sur la connectivité. Les ap-
proches basées sur la localisation et la distance peuvent découvrir tous les trous
de couverture avec une bonne précision mais nécessitent soit des informations de
localisation précises soit des informations de distance précise, ce qui est difficile
a obtenir dans de nombreux scénarios. Les approches basées sur la connectivité
ont donc regu une attention considérable ces derniéres années. En particulier, les
approches basées sur I’homologie ont attiré notre attention. Ghrist et ses collabora-
teurs ont introduit deux outils combinatoires : le complexe de Cech et le complexe
de Rips-Vietoris (qu’on désignera par le terme complexe de Rips dans la suite de
ce document). Ces deux objets sont utilisés pour détecter les trous de couverture
[38]. Une solution centralisée pour certains scénarios simples a été proposée par ses
deux auteurs. Néanmoins, la conception d’un algorithme distribué efficace pour la

détection de trous de couvertures, en se basant uniquement sur des informations de



connectivité, demeure une question ouverte.

Conscients des limites du travail existant pour la détection de trous de couverture
dans les réseaux de capteurs sans fil, nos travaux analysent plus en détail I'utilité de
la théorie d’homologie. Nos travaux ont permis d’élaborer de nouveaux algorithmes
distribués plus adaptés au probléme de la detection des trous de couverture dans un

réseau de capteurs sans fil.

0.1.2 Contributions

Nos contributions sont de deux ordres: (1) la précision de la détection de trous de
couverture basée sur I’homologie et (2) des algorithmes distribués pour la détection

de trous de couverture.

0.1.2.1 La précision de la détection de trous de couverture basée sur

I’homologie

Le complexe de Cech détecte I'intégralité des trous de couverture, mais il est difficile
a construire. Le complexe de Rips est facile & construire, mais est imprécis dans
certaines situations. Nous avons d’abord analysé la relation entre le complexe de
Cech et le complexe de Rips en termes de trous de couverture pour les réseaux de
capteurs sans fil sur un domaine ciblé plan. Nous choisissons la proportion de la
surface de trous manqués par le complexe de Rips comme une mesure d’exactitude
de la détection de trous de couverture basée sur I’lhomologie. Nous avons montré que
cette proportion est liée au ratio entre les rayons de communication et de détection
de chaque capteur (noté respectivement par R, et R,). Nous avons ensuite analysé
cette proportion dans trois cas et pour chaque cas, des expressions fermées pour
les bornes inférieure et supérieure ont été dérivés. Les résultats de simulation sont
compatibles avec les bornes inférieure et supérieure calculés analytiquement, avec
des différences maximales de 0.5% et 3%.

En outre, nous avons étendu l'analyse au cas de la sphére. Les résultats de
simulation montrent que le rayon de la sphére a peu d’impact sur la proportion
quand il est beaucoup plus grand que les rayons de communication et de détection

de chaque capteur.

0.1.2.2 Algorithmes distribués pour la détection de trou de couverture

Nous avons proposé un algorithme distribué basé sur les graphes pour détecter les

trous de couverture. L’algorithme se compose de quatre étapes: découverte des



voisins, découverte des nceuds frontiéres, découverte des cycles frontiéres, sélection
des cycles. Dans I'étape de la découverte des voisins, chaque nceud obtient des
informations de tous ses 1- et 2-saut voisins. Dans ’étape de la découverte des
neeuds frontiéres, chaque noeud détermine s’il s’agit d’un nceud frontiére ou non en
vérifiant 'existence d’un cycle Hamiltonien dans son graphe de voisinage. S’il existe,
il est considéré comme un nceud non frontiére. Dans le cas contraire, il est supposé
étre un noeud frontiére. Apreés cela, certains nceuds frontiéres sont choisis au hasard
pour lancer le processus de découverte des cycles frontiéres et de nombreux cycles
seront trouvés. Mais ces cycles trouvés peuvent ne pas étre minimum ou certains
d’entre eux étre liés aux mémes trous de couverture. Donc, il est nécessaire de faire
des choix parmi ces cycles, ce qui se fait dans I’étape finale.

L’algorithme proposé ci-dessus présente une grande complexité. Nous avons
donc cong¢u un algorithme plus efficace basé sur 'homologie. L’idée de base de
cet algorithme est la suivante: pour le complexe de Rips d'un réseau de capteurs,
nous essayons de supprimer des sommets et des arétes sans changer 1’homologie
tout en rendant le complexe de Rips moins dense. Ensuite, il devient plus facile de
trouver des cycles frontiéres. La nouveauté de cet algorithme réside dans le critére
de suppression d’'un sommet ou d'une aréte. A chaque tentative de suppression,
'algorithme vérifie si 'homologie change. Cet algorithme a la complexité O(n?) ou
n est le nombre maximum de noeuds voisins & 1 saut et n est fini. Il est distribué et
ne nécessite que des informations de 1- et 2-saut nceuds voisins. Il peut détecter avec
précision les cycles frontiéres d’environ 99% des trous de couverture dans environ
99% des cas.

0.2 Contexte mathématique

La théorie de I’homologie fournit des solutions nouvelles et puissantes pour les prob-
léemes d’identification des trous de couverture dans les réseaux de capteurs sans fil. Le
principe de la théorie de 'homologie consiste a analyser les propriétés topologiques
de certains domaines par des calculs algébriques. Les principaux objets sont connus
comme des complexes simpliciaux, qui sont la généralisation du graphe. Le groupe
d’homologie est un invariant topologique qui peut faire la distinction entre les es-
paces topologiques en mesurant le nombre de trous dans cet espace. Ces concepts
étant relativement moins connus, il est donc nécessaire d’introduire un certain nom-
bre de concepts fondamentaux. Pour une présentation détaillée, le lecteur pourra se
reporter a [39, 40, 41].



0.2.1 Définitions

Etant donné un ensemble de sommets V', un k-simplexe o est un ensemble non-
ordonné {vg,v1,...,vx} C V ou v; # v; pour tout i # j, k est la dimension du
simplexe. Un 0-simplexe est un sommet, un 1-simplexe est une aréte, un 2-simplexe
est un triangle avec son intérieur inclus et un 3-simplexe est un tétraédre avec son
intérieur inclus, voir la Figure 1. Tout sous-ensemble de {vg, vy, ..., vx} est appelé
une face de 0. Un complexe simplicial X est un ensemble de simplexes qui satisfait
a deux conditions: (1) toute la face d'un simplexe de X est aussi dans X, (2)
I'intersection de deux simplexes oy et 05 est une face de oy et sigmas. Un complexe
simplicial abstrait est la description purement combinatoire de la notion géométrique

d’un complexe simplicial et n’a donc pas besoin de la seconde condition.

14 12
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Figure 1: Un exemple de simplexes

La dimension d'un complexe simplicial X est la plus grande dimension de tout
simplexe dans X. Un sous-complexe de X est un complexe simplicial X*) ¢ X, on
k indique la dimension de X ).

Par exemple, dans le complexe simplicial représenté sur la Figure 2, il contient
six 0-simplexes {1}, {2}, ..., {6}, huit 1-simplexes {1, 2}, {1,6},{2,3},{2,6}, {3,4},
{3,5},{4,5},{5,6} et un 2-simplexe {1,2,6}.

2 3
4
1
6 5

Figure 2: Un exemple de complexe simplicial

Soit X un complexe simplicial abstrait. On peut définir une orientation pour

chaque k-simplexe dans X. Notons le k-simplexe {vg, v1, -+ , v} avec comme ordre



[vo, v1, -+ ,v]. Un changement d’orientation correspond a un changement de signe

sur le CoefﬁCith comme
[U())"' y Uiyt rt 3 Uy 77)]6] :_[1}07"' yUjy sy Uy o 7vk]

Ensuite, on peut définir le groupe des chaines, la différentielle de carré nul, le

groupe des cycles et le groupe des bords.

Definition 0.1. Pour un complexe simplicial abstrait X, pour chaque entier k > 0,
le k-iéme groupe des chaines Cy(X) est l'espace vectoriel formé par l’ensemble des

k-simplezes orientés de X. Si k est plus grand que la dimension de X, Cy(X) est 0.

Definition 0.2. La différentielle de carré nul Oy est la transformation linéaire Oy, :
Cr(X) = C—1y(X) qui agit sur les éléments de base de Cy(X) via

k
Oelvo, -+ o) =D _(=1)'[vo, -+, Vi1, Vig1, - -+, k)
=0

ot la somme est la somme algébrique.

Prenons I'exemple de la Figure 2, en tenant compte de 'orientation, nous sup-
posons qu'’il contient six 0-simplexes [1], [2], . .., [6], huit 1-simplexes [1, 2], [1, 6], [2, 3],
12,6],[3,4],[3,5],[4, 5], [5, 6] et un 2-simplexe [1, 2, 6]. Selon la définition 0.2, on peut
voir que le bord du 2-simplexe [1, 2, 6] est la somme de trois 1-simplexes [1, 2], [2, 6]
et [6,1], comme illustré sur la Figure 3(a). Mais le bord de la somme de trois
1-simplexes [3,4], [4,5] et [5, 3] est 0, sur la Figure 3(b).

Definition 0.3. Le k-iéme group des cycles de X est Z(X) = ker 0.
Definition 0.4. Le k-iéme group des bords de X est B(X) = im01.

Un calcul simple montre que 0y 0 Jx+1 = 0. Il s’ensuit que B(X) C Zx(X). Les
relations de Ci(X), Z,(X), Bx(X) sont montrées dans la Figure 4.

Ensuite, on peut bien définir le groupe d’homologie et sa dimension.

Definition 0.5. Le k-ieme groupe d’homologie de X est [’espace vectoriel quotient

Hi(X) =
Definition 0.6. Le k-iéeme nombre de Betti de X est la dimension de Hy(X):
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Figure 3: Illustrations de bord

Ck+1( CdX) Cir(X)
\\
Nad
Figure 4: Un exemple montrant les relations de Cy(X), Zx(X), Br(X)

Les nombres de Betti sont utilisés pour compter le nombre de trous de différentes
dimensions dans X. Par exemple, 3y indique le nombre de trous de dimension 1,
qui est le nombre de composantes connexes. Et §; compte le nombre de trous dans

le plan.

On prend 'exemple dans la Figure 2, les différentielles associées a X sont faciles

A obtenir sous forme matricielle:



[1,2] [L6] [2,3] [2,6] 3,4 [3,5] [4,
-1 -1 0 0 0 0
-1 -1 0 0 0

-1 -1 0

o o O =
_ o O O
=}
|
—_

Ensuite on peut obtenir

By = dimker 0y — dimimod; =6 —5=1
B1 = dimker 9; — dimimd, =3 —1=2

0.2.2 Complexes simpliciaux abstraits pour les réseaux

Pour le probléme de la couverture dans les réseaux de capteurs sans fil, les deux
complexes simpliciaux abstraits plus utiles sont le complexe de Cech et le complexe
de Rips.

Le complexe de Cech est défini comme suit [38].

Definition 0.7 (Complexe de Cech). Etant donné une collection d’ensembles U, le
compleze de Cech de U, C’(U), est le complexe simplicial abstrait dont les k-simplexes

correspondent aux intersections non-vides de k + 1 éléments distincts de U.

Le complexe de Cech capture la topologie de la collection d’ensembles, comme

illustré par le théoréme suivant.

Theorem 0.1 (Théoréme de Cech). Le complex de Cech complex d’une collection

d’ensembles convexes a le type d’homotopie de ['union des ensembles.



Malheureusement, le complexe de Cech est trés difficile & construire. Donc, un
autre complexe plus facilement calculable nommeé le complexe de Rips est introduit.

Il est défini comme suit.

Definition 0.8 (Complexe de Rips). Soient (M,d) un espace métrique, V un en-
semble fini de points dans M et € un réel positif, le compleze de Rips de V, R (V), est
le complexe simplicial abstrait dont les k-simplexes sont les (k + 1)-tuples de points

de V qui sont de distance inférieure a € deur d deuz.

Le complexe de Rips peut étre construit avec la seule connaissance du graphe
de connectivité du réseau et donne une approximation de la couverture par des
calculs algébriques simples. Mais le complexe de Rips peut manquer des trous de
couverture. En fait, il existe les relations suivantes entre le complexe de Cech et le

complexe de Rips [42].

Theorem 0.2. Soit V un ensemble fini de points dans R? et C’G(V) le complexe de
Cech de la couverture de 'V par des boules de rayon €. Ensuit, il y a
y € d

/ > 2d+1)
R (V) € C(V) C Rae(V) whenever ¢ ~\ 2@+

0.3 Précision de la détection de trou de couverture

basée sur ’homologie dans le plan

0.3.1 Introduction

Le complexe de Cech et le complexe de Rips sont deux outils utiles pour la détection
de trous de couverture. Le complexe de Cech est assez difficile a construire et le
complexe de Rips est facile & construire. Les approches basées sur 1’homologie
utilisent généralement le complexe de Rips pour détecter les trous de couverture.
Néanmoins, le complexe de Rips peut manquer quelques trous de couverture dans
certaines situations. Dans ce qui suit, nous choisissons la proportion de la surface
de trous manqués par le complexe de Rips comme une mesure de précision de la
détection de trous de couverture basée sur I’homologie pour les réseaux de capteurs
sans fil dans le plan.

Nous avons d’abord analysé la relation entre le complexe de Cech et le complexe
de Rips en termes de trous de couverture. Nous trouvons que leur relation est liée

au ratio entre les rayons de la communication et de détection. Les trous manqués



par le complexe de Rips doivent étre délimités par un triangle. Nous définissons
ainsi le concept de trous triangulaires et de trous non-triangulaire.

Par la suite, nous obtenons des formes fermées pour les bornes inférieures et
supérieures de la proportion de la surface de trous triangulaires.

Enfin, des simulations ont été menées et elles ont montré que les résultats de
simulation sont bien compatibles avec les bornes analytiques inférieure et supérieure,

avec des différences maximales de 0.5% et 3%.

0.3.2 Modéles et définitions

On considére un ensemble de capteurs fixes (appelé aussi nceuds) déployé sur un
domaine ciblé plan modélisé par un processus de Poisson d’intensité \. La propa-
gation radio est supposé isotrope. Chaque capteur controle une région a l'intérieur
d’un cercle de rayon Rg et peut communiquer avec d’autres capteurs dans un cer-
cle de rayon R.. Soit V l'’ensemble de emplacements de capteurs dans un réseau
de capteurs sans fil et § = {s,, v € V} I'ensemble des disques de détection de ces
capteurs: pour un emplacement v, s, = {x € R? : ||z — v|| < R,}. Ensuite, selon la
définition 0.7, le complexe de Cech du réseau de capteurs sans fil, noté Cg, (V), peut
étre construit comme suit: un k-simplexe [vg, vy, - - - , v appartient & C_ (V) chaque
fois que NF_ys,, # (). De méme, selon la définition 0.8 et nous considérons ici I'espace
métrique (R?, d), le complexe de Rips, noté Rg, (V), peut étre construit comme suit:
un k-simplexe [vg, vy, - -+, vg] appartient a Rg_ (V) chaque fois que ||v; — vp,|| < R.
pour tout 0 <[ <m < k.

La figure 5 montre un réseau de capteurs, son complexe de Cech et deux com-
plexes de Rips pour deux valeurs différentes de R.. En fonction du ratio de R.
sur Ry, le complexe de Rips et le complexe de Cech peuvent étre proches ou plutot
différents. Dans cet exemple, pour R. = 2R, le complexe de Rips voit le trou en-
touré par des noeuds 2, 3, 5, 6 comme dans le complexe de Cech tandis qu'il n’est pas
visible dans le complexe de Rips pour R. = 2.5R,. Dans le méme temps, le trou de
couverture entouré par les nceuds 1,2,6 n’est pas présent dans les deux complexes
de Rips.

En fait, le théoréme de Cech (Theorem 0.1) indique que tout trou de couverture
peut étre trouvé dans le complexe de Cech. En outre, selon le Theorem 0.2, soit
d=2,¢=R,et € =R, il y a des relations suivantes entre le complexe de Cech et

le complexe de Rips:

R (V) C Cr.(V) C Rop.(V), whenever R, < V3R, (1)

10



Figure 5: (a) Un réseau de capteurs sans fil, (b) le complexe de Cech, (c) le complexe
de Rips pour R, = 2R;, (d) le complexe de Rips pour R. = 2.5R;

Selon (1), certaines relations entre le complexe de Cech et le complexe de Rips
en termes de trous de couverture peuvent étre dérivées comme illustré dans les

corollaires suivants. Pour plus de commodité, on définit v = R./R;.

Corollary 0.3. Quand v < /3, s’il n’y a pas de trou dans le complexe de Rips

Re.(V), il n'yaura aucun trou dans le complexe de Cech Cg (V).

Corollary 0.4. Quand v > 2, s’il y a un trou dans le complexe de Rips Rg_ (V), il

y aura un trou dans le complexe de Cech Cgr, (V).

Corollary 0.5. Quand V3 < v < 2, il n'y a pas de relation garantie entre le
compleze de Rips Rp, (V) et le complexe de Cech Cr (V) en termes de trous.

D’aprés ce qui précéde, nous pouvons constater que pour qu'un trou dans un
complexe de Cech ne soit pas vu dans un complexe de Rips, il faut et il suffit qu'il
soit délimité par un triangle. Basé sur cette observation, une définition formelle de

‘trou triangulaire’ et de 'trou non-triangulaire’ est donnée comme suit.

Definition 0.9 (Trou triangulaire et non-triangulaire). Pour une paire de complexes
Cr.(V) et Ry (V) d'un réseau de capteurs, un trou triangulaire est une région non
couverte délimitée par un triangle formé par les trois neuds vy, vi, vy, 0U Vg, V1, Vs
peuvent former un 2-simplexe qui apparait dans Ry, (V) mais pas dans Cg, (V). Tous

les autres trous sont non-triangulaires.

De la définition 0.9, nous pouvons voir dans la Figure 5 que quand R, = 2R,,

il y a seulement un trou triangulaire délimitée par le triangle formé par les nceuds
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1, 2 et 6. Lorsque R. = 2.5R,, il existe deux trous triangulaires supplémentaires,

délimitées par des triangles formés par des nceuds 2, 3, 6 et 3, 5, 6 respectivement.

0.3.3 Des bornes sur la proportion de la surface de trous

triangulaires

Dans cette section, les conditions dans lesquelles n’importe quel point sur le domaine
ciblé est dans un trou triangulaire sont d’abord donnés. Trois cas différents sont pris
en compte pour le calcul de la proportion. Pour chaque cas, les bornes supérieures

et inférieures de la proportion sont dérivées.

Lemma 0.6. Pour tout point sur le domaine ciblé, il est a ['intérieur d’un trou

triangulaire si et seulement si les deux conditions suivantes sont satisfaites:
1. la distance entre le point et son neud le plus proche est plus grande que R;.

2. le point est a l'intérieur d’un triangle formé par trois neuds avec la distance

par paire inférieure ou égale a R,.

Lemma 0.7. S7il existe un point O qui est a l'intérieur d’un trou triangulaire, alors
R, < R./\/3.

Lemma 0.8. Si O est a l'intérieur d’un trou triangulaire et | désigne la distance

entre O et son voisin le plus proche, nous avons Ry < | < RC/\/§.

Un processus de Poisson homogéne est stationnaire, donc sans tenir compte de
Deffet frontiére [43], tout point a la méme probabilité d’étre dans un trou triangulaire
que l'origine O. Cette probabilité dans une configuration homogeéne est aussi égale
a la proportion de la surface de trous triangulaires.

Nous considérons la probabilité que I'origine O soit & 'intérieur d’un trou tri-
angulaire. Puisque la longueur de chaque aréte dans le complexe de Rips doit étre
au plus R., seuls les nceuds dans R, de l'origine peuvent contribuer au triangle
qui délimite un trou triangulaire qui contient 1’origine. Par conséquent, nous avons
seulement besoin de considérer le processus de Poisson restreint a la la boule fermée
B(O, R.), qui est aussi un processus de Poisson homogéne d’intensité A. On note ce
processus ®. En outre, T'(z,y, z) désigne la propriété que l'origine O est a I'intérieur
du trou triangulaire délimitée par le triangle avec des points x, y, z en tant que som-
mets. Quand ng, ny, ny sont des points du processus O, T'(ng, ny,ny) est également

utilisé pour désigner le cas ou le triangle formé par les nceuds ng, ny, no délimite un
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trou triangulaire qui contient l'origine. En outre, nous utilisons 7" (ng, ny, ny) pour
désigner le cas ot les noeuds ng, ny, ne ne peuvent pas former un triangle qui délimite
un trou triangulaire qui contient 1'origine.

Soit 79 = 79(P) le nceud dans le processus ¢ qui est plus proche de l'origine. Il
y a deux cas a considérer lorsque l'origine a étre a I'intérieur d’un trou triangulaire.
Le premier cas est que le nceud 7y peut contribuer a un triangle qui délimite un
trou triangulaire qui contient 1’origine. Le deuxiéme cas est que le nceud 7y ne peut
pas contribuer & un triangle qui délimite un trou triangulaire qui contient 1’origine,
mais trois autres nceuds peuvent former un triangle qui délimite un trou triangulaire
qui contient l'origine. Ainsi, la probabilité que 'origine soit a 'intérieur d’un trou

triangulaire peut étre définie comme

p2a(A) = P{O is inside a triangular hole}
=P{ U T (ng,n1,n9)}

{no,n1,n2}CP
Pl U TComm)} o)
{n1,m2}CO\{70(®)}

ou

p%‘?f(A) = P{ U T(nilanﬂani?;) | T’(To,nm,nzﬁ)}
{ni1, mis ;SO\ {70(®)}

désigne la probabilité que le noeud 7y ne puisse contribuer a un triangle qui délimite
un trou triangulaire qui contient 1’origine, mais trois autres nceuds peuvent former
un triangle qui délimite un trou triangulaire qui contient 1’origine.

Dans les parties suivantes, nous allons analyser cette probabilité dans trois cas

différents.
Theorem 0.9. Quand 0 < v < /3, pag(\) = 0.

Theorem 0.10. Quand v/3 <y <2, on a pag(N) < pag(N) < paau(N), ot

) R:/V3 eu(ro) Rafrospn) o
Poar(A) =27 / rodro/ d(pl/ e Mo
s wi(ro) o (2)

% 6—/\\S+(7”07<»01)\(1 _ €—>\|5’(7“(>77“17<;>1)|)T1dr1

et

) Re/V3 ou(ro) Ri(ro,1) o2
Padu(A) =2\ / 7"OdTO/ d<p1/ e o

eu(ro) 70
% e—/\|S+(ro,<p1)\(1 _ e—/\|S*(ro,r0,ap1)|)rldrl + p;eélc()\)
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et

©1(rg) = 2arccos(R./(2r))
©u(ro) = 2arcsin(R./(2rg)) — 2 arccos(R./(2r))

R1<TO> <P1) = min \/RE - 7“(% sin’ ©1 — To COS Y1,
VR2 — r2sin? (1 + ¢y(ro)) + 7o cos(r + @i(ro)))

Ri(r0,)
| 7”07801 ’—/ )/ rdrdy
(ro

wi(ro) pR2(ro,r1,01,02)
|S (T07T1701 | _/ /

021
cos(R./R) — cos 6y cos b

sin #; sin 6,
Ry(rg,71,01,02) = min(\/Rz —rd sin? @y — r( cos O,

VR2 — r2sin®(6, — 0,) + ry cos(6y — 1))

rdrdfs

09 = 0, — arccos

Sec

PiF(N) est obtenu par des simulations.

Theorem 0.11. Quand v > 2, on a pog(A) < p2a(N) < paau(N), ot

RC/Q T R (7”07801)
p2dl(/\) :277'/\2{/ 7”0d7”0/ dgpl/ ! 6—>\7r'r(2)
0 0o

s

x e NS roenl(1 _ NS~ Corienly, gy

Re/V3 Pu(ro) Ri(roe1) Aorr2
+ ngrg/ dgpl/ e o
Rc/2 @i(ro) o

« e*/\\S“'(rOv@l)‘(l _ e*/\|S_(r0,T1,s01)|)r1dr1}

et
R./2 T R/ (ro,e1)
p2du()\) :271')\2{/ TodT(]/ d901/ 1 6_)\7”%
R 0 70
% e*A|S+(7"0,<P1)|(1 _ e*A|S_(T0,T07<P1)|>7n1d7»1
Re/V3 @u(ro) Ri(ro,p1) A2
+ Todro/ d‘ﬂl/ e "o
Rc/2 (Pl("no) 7o
x e S0Pl (] _ e*>\|5_(7“0ﬂ“07901)|>7nld701} ()
et

R, (ro, ¢1) = min(y/R2 — r3sin® @y — ro cos ¢y, / R2 — & sin® ¢y + o cos ¢ )
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P3F(N) est obtenu par des simulations.

0.3.4 L’évaluation des performances

Dans les simulations, un disque centré a l'origine de rayon R, est considéré. La
probabilité que l'origine soit & l'intérieur d’un trou triangulaire est calculée. Les
capteurs sont déployés de fagon aléatoire dans le disque selon un processus de Poisson
homogeéne d’intensité \. Le rayon de détection R, de chaque noeud est 10 métres et
v est choisi entre 2 et 3 avec un intervalle de 0.2. Ainsi, le rayon de communication
R, varie de 20 a4 30 métres avec un intervalle de 2 métres. A est sélectionnée de 0.001
4 0.020 avec un intervalle de 0.001. Pour chaque ~, 107 simulations sont exécutés

sous chaque A pour vérifier si l'origine est a 'intérieur d’un trou triangulaire.

La probabilité poq(A) obtenue par des simulations est présentée avec la borne
inférieure et la borne supérieure dans la Figure 6(a) et 6(b) respectivement. Les

résultats de simulation pour pi () sont présentés dans la Figure 6(c).

On peut voir que pour une valeur de 7, pag(\) présente un maximum & une valeur
de seuil \. de l'intensité. En fait, pour A < A., le nombre de nceuds est faible. Par
conséquent, la probabilité que 'origine soit a l'intérieur d’un trou triangulaire est
relativement faible aussi. Avec I'augmentation de A, la connectivité entre les noeuds
devient plus forte. Par conséquent, la probabilité que l'origine soit a I'intérieur d’un
trou triangulaire augmente. Cependant, quand l'intensité atteint la valeur de seuil,
l'origine est recouverte avec une probabilité maximale. pag(A) diminue pour A > A..

Les simulations montrent également que \. diminue avec 'augmentation de ~.

D’autre part, on peut voir sur la Figure 6(a) et 6(b) que, pour une intensité fixe
A, p2q(A) augmente avec les augmentations de . C’est parce que Ry fixé, plus R.
est important, plus haut la probabilité que chaque triangle contienne un trou de

couverture est importante.

Enfin, on peut voir sur la Figure 6(a) que la probabilité obtenue par des sim-
ulations est conforme & la borne inférieure. La différence maximale entre eux est
d’environ 0.5%. La Figure 6(b) montre que la probabilité obtenue par simulations
est également compatible avec la borne supérieure. La différence maximale est

d’environ 3%.
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Figure 6: La proportion de la superface de trous triangulaires (a) les résultats de
simulation et des bornes inférieures, (b) les résultats de simulation et des borne
supérieures, (c) les résultats de simulation pour piy(A)
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0.4 Précision de la détection de trou de couverture

basée sur ’homologie sur la sphére

Dans cette section, nous étendons ’analyse sur la précision de la détection de trou
de couverture basée sur I’homologie aux réseaux de capteurs sans fil sur la sphére.
L’idée est la méme que celle pour 'analyse de la précision dans le plan. La différence
est que un trou dans un complexe de Cech manqué par un complexe de Rips doit étre
délimitée par un triangle sphérique. Nous définissons ainsi ces trous comme des trous
triangulaires sphériques. On choisit la proportion de la surface de trous triangulaires
sphériques comme une métrique pour évaluer la précision de la détection de trou de
couverture basée sur ’homologie sur la sphére. Puisque le calcul est similaire, nous
donnons simplement les résultats ici.

Supposons les capteurs déployés aléatoirement sur une sphére de rayon R selon
un processus de Poisson homogéne d’intensité A. Tous les capteurs ont le méme
rayon de détection R, et de communication R., Ry < R, R. < R.

Soit ps(A) désigne la proportion de la surface de trous triangulaires sphériques,

nous avons les résultats suivants.
Theorem 0.12. Quand 0 < R. < Rarccos([3cos*(Rs/R) — 1]/2), ps(\) = 0.

Theorem 0.13. Quand Rarccos([3cos?(Rs/R) — 1]/2) < R. < 2R,, on a py(\) <
Ps(A) < psu(A), ot

9 4 o . 2¢m (6o) 014 (00,51) X
ps(A) = 27N R / sin Godﬁo/ dgpsl/ sin 6,
Rs/R 21 —¢m (00) 0o (3)

% 6—>\‘C(N,R90)|€—>\‘5+(907<p31)|(1 - €—>\‘57(60,91,<p51)|)d01

et
54 Oou 2¢m (6o) 01u(00,p51)
Psu(A) = 2TA°R / sin OgdHO/ dgosl/ sin 6,
RS/R 27"_4;0m(90) 0o
« e NCWNRO)| =NS*Bopun)l (1 — =NS™ @ooiea)) g, 4 pee( )
et

fou = arccos /[1 4 2 cos(R./R)]/3
©m(0o) = arccos[(cos(R./R) — cos®f)/ sin® ;)
01u(00, ps1) = min{b1,1 (0o, ¥s1), O1u2(bo, @s1) }
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0141(00, ps1) = arccos [COS(RC/R)/\/I — sin® 0 sin® gpsl} + arctan(cos s tan )

O1u2(0o, ps1) = arccos {COS(RC/R)/\/l — sin? f sin® (g1 — gom(eo))}

+ arctan(cos(ps; — @m (o)) tan by)
|C(N, Rby)| = 2mR*(1 — cos ;)

Ps1 Glu(ao,tp) 9 .
15 (0o, ps1)| :/ / R*sin 0dfdy

27 —@m (00) /6o

gom(eo) /92u(007917¢51:¢2)

1S7 (00,61, pa1)| = / R?%sin 0yd0,dp,

21(00,01,951) /0o

cos(R./R) — cos 6y cos b

sin 01 sin 90

(0o, 01, ps1) = ps1 — arccos

92u(807 91, Ps1, 802) = min{01u1<907 902)7 92u2(007 91, Ps1, 902)}
O2u2 (0o, 01, ps1, p2) = arccos {COS(RC/R)/\/l — sin? f sin®(py — cpsl)}

+ arctan(cos(ps — ps1) tan 6;)

sec

pe(N) est obtenu par des simulations.

Theorem 0.14. Quand R, > 2R, on a pg(A) < ps(A) < psu(N), ot

Re 2 07, (00,0s1)
m(N) = 27r)\2R4{/R2R Sin90d90/ d%l/ e sin 0,
?s iy 6o

_ _ + _ -
« = MOW.RB)| =NS* (ospan)l (1 _ =AIS™ 60 f1.20)]) g,
Oow

| O1u(Bo,ps1) A|C(N,Rf,
+ 51n90d90/ dsosl/ sin §; e AN W Eoo)|
RC/QR 271'—4,01% (00) 60

x e NS ol (1 _ 67A|sf(eo,el,%1)\)d91}

24Pm(00)

et

Rc

=c 2 07, (00.0s1)
pu(N) = 27T/\2R4{/;R sin90d90/ ds%l/a ' sin 0,
i - N
« e MW R G=AIS* ool (1 — ¢=MS™ G000y g,
Oou 2¢m (6o) 014 (00,051)
+ sin«%d@o/ dgpsl/ sin §, e MNEW:Eoo)|
Re¢/2R 21— pm (00) 0o

y e*/\\S+(90,<ps1)|(1 B e’A‘S_(GO’HO’“"“)')dGl} 4 ()

18



et

01 (00, 1) = min{ 01,1 (6o, s1), 0140(00, 0s1) }

0.2 (60, ps1) = arccos [COS(RC/R)/\/l — sin® 0y sin? 41 | — arctan(cos @ tan )

SecC

p3e(N) est obtenu par des simulations.

Theorem 0.15.
lim pgy(A) = paar(N)

R—o0

ot psi(A) et paai(N\) sont présentés dans (2) et (3).

0.4.1 L’évaluation des performances

Une sphére centrée a l'origine de rayon R est considérée dans les simulations. La
probabilité que le point de coordonnées sphériques (R,0,0) soit a I'intérieur d’un
trou triangulaire sphérique est calculée. Les capteurs sont déployés aléatoirement
sur la sphére selon un processus de Poisson homogéne d’intensité A. Le rayon de
détection R, de chaque nceud est 10 métres et le rayon de communication R, est
choisi de 20 a 30 métres avec un intervalle de 2 métres. Soit v = R./R;, alors 7y varie
de 2 a 3 avec un intervalle de 0.2. En outre, A est sélectionnée de 0.001 & 0.020 avec
un intervalle de 0.001. Pour chaque paire de ()\,~), 107 simulations sont exécutées
pour vérifier si le point de coordonnées sphériques (R, 0,0) est a 'intérieur d'un trou

triangulaire sphérique.

0.4.1.1 Impact de R, et R.

Puisque I'on suppose R, < Ret R. < R, on choisit R = 10R, pour analyser I'impact
de R4 et R, sur la probabilité que n'importe quel point soit a 'intérieur d’un trou
triangulaire sphérique. Dans cette configuration, la probabilité p,(\) obtenue par
des simulations est présentée avec les bornes inférieure et supérieure dans la Figure
7(a) et 7(b) respectivement. On peut voir que ces résultats sont similaires a ceux
de la section 0.3.4.

0.4.1.2 Impact de R

Pour mieux comprendre 'impact de R sur la probabilité que n’importe quel point
est a l'intérieur d’'un trou triangulaire sphérique, on choisit R & 5R,, 10R, et 100R;.

En outre, nous voulons aussi connaitre la différence de la probabilité sous les cas
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Figure 7: La proportion de la surface de trous triangulaires sphériques sous R = 10 R,
(a) les résultats de simulation et des bornes inférieures, (b) les résultats de simulation
et des bornes supérieures

sphérique et plan. Par conséquent, les résultats de simulation, des bornes inférieures
et supérieures de la probabilité pour les sphéres avec des rayons 5R,, 10R,, 100R et

le plan sont présentés dans la Figure 8(a), 8(b) et 8(c) respectivement. Les résultats

sec
S

sont présentés dans la Figure 9.

de simulation pour p3*°()\) les sphéres avec des rayons bR, 10R,, 100R, et le plan

On peut voir sur la Figure 8 que les résultats de simulations, bornes inférieures
et supérieures pour les sphéres avec des rayons bR, 10R,, 100R, et le plan sont

trés proches les uns avec les autres. Il se trouve plus que dans les cas ci-dessus,
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Figure 8: La comparaison de la proportion de la surface de trous triangulaires
sphériques (a) la comparaison des résultats de simulation, (b) la comparaison des
bornes inférieures, (c) la comparaison des bornes supérieures
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Figure 9: Les résultats de simulation pour p3*°(\)

les différences maximales entre les résultats de simulation, les bornes inférieures
et supérieures sont si petites qu’elles peuvent étre négligées. Par conséquent, cela
signifie aussi que le rayon de la sphére a peu d’impact sur la probabilité que n’importe
quel point sur la sphére soit a l'intérieur d’'un trou triangulaire sphérique quand il

est beaucoup plus grand que les rayons de communication et de détection.

0.5 La détection de trou de couverture basée sur les
graphs

Dans cette section, on présente un algorithme basé sur les graphes pour trouver
cycles frontiéres de trous de couverture non-triangulaires dans un réseau de capteurs.
Dans cet algorithme, on congoit une méthode pour détecter les noeuds frontiéres en
vérifiant s’il existe un cycle Hamiltonien dans leurs graphes voisins. Aprés cela,
certains noeuds sont choisis au hasard pour lancer le processus de recherche des

cycles frontiéres.

0.5.1 Modéles et hypothéses

On consideére un ensemble de capteurs fixes déployés sur un domaine ciblé. Comme
d’usage, la propagation radio est supposée isotrope. Chaque capteur contréle une
région a l'intérieur d'un cercle de rayon R et peut communiquer avec d’autres

capteurs dans un cercle de rayon R.. En outre, les hypothéses sont posées :
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1. Il existe des capteurs situés sur la frontiére externe du domaine cible. Ils sont
nommeés capteurs de frontiére et d’autres capteurs sont désignés comme des

capteurs internes. Chaque capteur de frontiére a deux voisins de cloture.

2. Bien que les capteurs ne soient pas conscients de leurs emplacements, chaque
capteur peut savoir s’il s’agit d’un nceud de frontiére ou d’un nceud interne en

utilisant les mécanismes présentés dans [44] ou [45].

3. Les capteurs internes sont déployés dans le domaine ciblé plan en fonction d’un

processus de Poisson homogéne d’intensité \.

4. Chaque capteur a une identité unique. Le réseau a une seule composante

connexe.

A partir sur ces hypothéses, nous pouvons utiliser un graphe G(V, E) pour
représenter le réseau de capteurs sans fil, ot V' représente tous les nceuds du réseau
de capteurs sans fil. Pour deux nceuds, si ils peuvent communiquer avec l'autre, une
aréte les connecte sur le graphe. Pour tout nceud v; € V, son graphe de voisinage

est le sous-graphe de G(V, F) induit par tous ses voisins.

0.5.2 Un algorithme distribué basé sur les graphes

Le processus de notre algorithme peut étre résumé comme suit.

1. Chaque capteur obtient l'information de ses 1- et 2-saut noeuds voisins et
construit un graphe de voisinage. Ensuite, le complexe de Rips du réseau de

capteurs peut étre construit, comme le montre dans la Figure 10(a).

2. Basé sur le graphe de voisinage, chaque noeud peut déterminer si’l peut étre
un nceud frontiére ou non en vérifiant s’il existe un cycle Hamiltonien dans
son graphe de voisinage. S’il existe, le noeud est considéré comme un noeud
non-frontiére. Dans le cas contraire, il est supposé étre un noeud frontiére. Les

résultats sont montrés dans la Figure 10(b~c).

3. Lorsque chaque noeud a déterminé s’il s’agit d’un nceud frontiére ou pas, il
peut diffuser cette information a ses voisins. Ensuite, chaque nceud connait
I’état de ses voisins. Aprés cela, certains noeuds peuvent initier le processus
pour trouver des cycles frontiéres, comme les nceuds désignés par diamant vert
dans la Figure 10(d~e).
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4. 11 est possible que certains cycles trouvées a ’étape 3 ne soient pas minimaux
pour les cycles liés au méme trou. Il est donc nécessaire de réduire et faire
des choix parmi tous les cycles trouvés. Le résultat est montré dans la Figure
10(f).

(d) () (f)

Figure 10: Les procédures du algorithme distribué basé sur les graphes. (a) le
complexe de Rips d'un réseau de capteurs sans fil, (b~c) découverte des noeuds
limites, (d~e) découverte des cycles limites, (f) sélection des cycles

0.6 La détection de trou de couverture basée sur

I’homologie

Dans cette section, on présente un algorithme distribué efficace basé sur ’lhomologie
pour détecter le trou de couverture. L’idée de base de cet algorithme est le suivant:
pour le complexe de Rips d'un réseau de capteurs, on essaie de supprimer des som-
mets et des arétes sans changer ’homologie tout en rendant le complexe de Rips

moins dense et presque plan. Ensuite, il est facile de trouver les cycles frontiéres.
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0.6.1 Modéles et définitions

Nous utilisons les mémes modéles pour les noeuds comme dans la Section 0.5. En
outre, nous avons besoin de donner quelques définitions qui seront utilisés dans le
processus de cet algorithme.

On dit que un i-simplexe [v;9, V1, ..., v;;] fait partie d'un j-simplexe [v;, vj1, ..., V5]
st [vio, Vi1, ., Vii] C [Vjo, V1, ..., vj;]. Alnsi, le sommet [v] ou [v;] fait partie de I'aréte
[vo, v1]. L’aréte [vg, v;] fait partie du 2-simplexe [vg, v1, v2]. En outre, E(v) désigne
tous les arétes dont le noeud [v] est une partie et 7'(v) désigne tous les 2-simplexes

dont le neeud [v] est une partie.

Definition 0.10 (Indice d'un 2-simplexe). L’indice d’un 2-simplexe A est la plus

grande dimension du simplexe dont le 2-simplexe fait partie, noté Ix.

Definition 0.11 (Poids d'un nceud). Le poids d’un neeud de cloture est 0. Pour
chaque neud interne v, s’il existe une aréte dans E(v) qui ne fait pas partie d’un
2-simplexe, Le poids w, du neeud v est 0; sinon, le poids est ['indice minimum de

tous les 2-simplexes dans T'(v), c’est-a-dire w, = minpecre) Ia.

Le poids d’un nceud interne est un indicateur de la densité de ses noeuds voisins.
Si le poids d’un nceud interne est 0, le nceud doit étre sur le bord d’un trou de
couverture. Plus le poids est élevé, plus la probabilité que le nceud ne soit pas sur
le bord dun trou de couverture est grande.

On utilise également la définition de graphe simplement connecté comme dans
[46]. Soit G un graphe simple avec ensemble de sommets V(G) et d’arétes E(G).
Un cycle C' est un sous-graphe de G s’il est connectée et chaque sommet de C' est
de degré deux. Le longueur d’un cycle C' est le nombre de ses arétes, noté |E(C')].
L’espace de cycle C'(G) d'un graphe G contient tous les cycles de G. L’ajout de deux
cycles C et Cy est défini comme C7 @ Cy = (E(Cy) U E(Cy)) \ (E(C1) N E(CY)).
Le sous-espace de cycle du triangle Cp(G) de G est 1'ensemble de tous les cycles
3-longueur dans C'(G).

Definition 0.12 (Graphe simple connectivité). Un graphe connexe G est simple-
ment connecté si son espace de cycle C(G) est vide, ou pour chaque cycle C' dans
C(Q), il existe un ensemble de cycles 3-longueur Ty C Cr(G) afin que C = Y rer, T

Soit X un ensemble de sommets (ou d’arétes) dans un graphe G, on utilise G[X|
pour désigner le sous-graphe induit de sommet (ou d’aréte) par X. Les voisins d'un

sommet v dans G est noté Ng(v). Le graphe des voisins I'g(v) d'un sommet v est
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noté G[Ng(v)]. Le graphe des voisins I'(e) d'une aréte e = (u, v) est défini comme
G[Ng(u) N Ng(v) U {u,v}] —e. L’ensemble de voisins d'un k-simplexe [vg, v1, ..., Ug]

est défini comme N, No(v;).

Definition 0.13 (Suppression d’un k-simplexe dans un complexe de Rips). Un k-
simpleze [vg, vy, -+ , v est supprimé dans un complexe de Rips R(V) signifie que
le simpleze et tous les simplexes dont le simplexe est une partie sont supprimés a

partir de R(V).

Basé sur les définitions ci-dessus, on peut donner la définition de la transforma-

tion HP (Homologie Préservée).

Definition 0.14 (La transformation HP). Une transformation HP est une combi-
naison séquentielle de suppressions de sommets (ou aréte) définie comme suit: un
sommet (ou une aréte) x de G est supprimable si le graphe voisin U'¢(z) (1) a deuz

ou plusieurs sommets; (2) est connecté et (3) est un graph simple connectivité.

Theorem 0.16. Les transformations HP ne modifient pas le nombre de trous de

couverture dans le complexe de Rips d’un réseau de capteurs sans fil.

0.6.2 Un algorithme distribué basé sur ’homologie

L’algorithme contient cing composants: le calcul de poids, suppression de sommets
et d’arétes, détection d’arétes frontiéres, découverte de cycles frontiéres élémentaires

et minimisation des cycles frontiéres, comme indiqué sur la figure 11.

—
Découverte de
Le calcul de cycles frontieres
poids élémentaires
Suppression de Minimisation de
sommet et aréte cycles frontieres
Détection Fin

d'aréte fronticre

Figure 11: Diagramme de ’algorithme

Un exemple est utilisé pour illustrer les procédures de cet algorithme dans la
Figure 12. Pour un réseau de capteurs sans fil avec quelques trous de couverture,

le complexe de Rips du réseau de capteurs sans fil est d’abord construit, illustré a
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§)) (k) (1)
Figure 12: Les procédures de l'algorithme. (a) le complexe de Rips d'un réseau
de capteurs, (b) aprés suppression de sommet, (c~d) suppression d’aréte, (e~j)

détection d’aréte frontiere, (k) découverte de cycles frontiéres élémentaires, (1) min-
imisation de cycles frontiéres
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la Figure 12(a), alors l'algorithme vise a découvrir des cycles frontiéres minimales
de tous les trous. Dans la phase de calcul de poids, chaque noeud calcule son poids
indépendamment selon la définition 0.11. Aprés I'obtention du poids, chaque nceud
détermine s’il peut étre supprimé ou non selon certaines régles définies ci-aprés.
Figure 12(b) montre le résultat de la suppression de sommet. En outre, un noeud
particulier décide si une certaine aréte peut étre supprimée ou non. Figure 12(b~c)
montre le processus de cette suppression d’aréte spéciale. Aprés le deuxiéme phase,
de nombreuses arétes frontiéres peuvent étre trouvées, comme la ligne rouge illustrée
a la Figure 12(d). Mais il est possible que d’autres arétes frontiéres n’aient pas été
trouvés. Ensuite, dans le troisiéme phase, tous ou presque toutes les arétes frontieéres
seront trouvées aprés la suppression de certains arétes, voir la Figure 12(e~j). Par la
suite, les cycles frontiéres élémentaires peuvent étre facilement découverts, comme
le montre dans la Figure 12(k). Il est possible que les cycles frontiéres trouvés ne
soient pas minimaux. Dans ce cas, les cycles frontiéres ils seront minimisés dans la

derniére phase de l'algorithme comme indiqué sur la Figure 12(1).

0.6.2.1 Calcul de poids

Dans ce composant, chaque nceud calcule son poids. Le poids de noeud de cloture est
0. Pour tout noeud interne, théoriquement, il doit construire tous les simplexes dont
il fait partie. Comme on considére les réseaux de capteurs sur un domaine ciblé plan,
chaque nceud interne a juste besoin de construire tous ses 1-simplexes et 2-simplexes
et leurs voisins. Pout tout noeud v, soit E(v) 'ensemble de ses 1-simplexes et T'(v)
I'ensemble de ses 2-simplexes. Pour tout e € E(v), soit n(e) 'ensemble de voisins
de e. Pour tout t € T'(v), soit n(t) 'ensemble de voisin de ¢t. Ensuite, le poids de

neeud v peut étre calculé comme dans 1’algorithme 1.

Algorithm 1 Calcul de poids (pour noeud interne v)

Begin
if Jde € E(v),n(e) est vide then
w, =0
else if 3t € T'(v),n(t) est vide then
W, = 2
else
Wy = 3
end if
END
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0.6.2.2 Suppression de sommet et aréte

Dans ce composant, on effectue un nombre maximal de suppressions de sommets
sans changer le nombre de trous de couverture dans le réseau de capteurs original et
on supprime également des arétes spéciales si ces arétes existent. Pour la suppression
de sommets, on ne considére que les noeuds internes, les noeuds de cloture ne seront
jamais supprimés. Dans la partie suivante, on utilise sommet et noeud de maniére
interchangeable.

(1) Suppression de sommet

Si le poids d'un sommet est inférieur a 3, il ne doit jamais étre supprimé. Sinon,
le sommet continue & vérifier 8’il est supprimable ou non en fonction de la transfor-
mation HP. Aprés la vérification, le sommet diffuse un message indiquant qu’il peut
étre supprimé ou non. Aprés avoir recu le statut de tous ses voisins, chaque sommet
supprimable continue a vérifier s’il doit étre supprimé. On peut trouver que le poids
de chaque sommet supprimable doit étre 3. On suppose que le sommet avec une
identité inférieure a la priorité doit étre supprimé en premier. Donc, chaque sommet
supprimable a juste besoin de vérifier si son identité est la plus basse parmi tous ses
voisins supprimables. Si c’est le cas, il devrait étre supprimé. Sinon, il ne doit pas
étre supprimé. L’algorithme 2 donne la procédure détaillée pour la suppression de
sommet. La procédure de suppression de sommet se termine jusqu’a ce que aucun
sommet ne puisse étre supprimé dans le complexe de Rips. La Figure 12(b) donne

le résultat initial aprés la suppression de sommet.

Algorithm 2 Suppression de sommet (pour nceud interne v)

Begin

if w, < 3 then
noeud v ne peut pas supprimé

else if noeud v n’est pas supprimable en fonction de la transformation HP then
neeud v ne peut pas supprimé

else if l'identité de noeud v est la plus bas parmi tous ses voisins supprimables.

then
neeud v est supprimé

end if
END

(2) Suppression d’aréte
Apreés la suppression de sommets, on trouve une chose intéressante. Les Arétes
n’ayant pas de voisins doivent étre sur le bord de trous, comme I’aréte commune

de trous de couverture 7 et 8 dans la Figure 12(b). L’aréte ayant un seul voisin se
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trouve sur le bord d’un trou de couverture avec une grande probabilité, comme les
arétes rouges sur la Figure 12(b). Mais il est possible qu'il existe certaines de ces
arétes spéciales qui ne se trouvent pas sur le bord, comme ’aréte bleu entre les trous
de couverture 1 et 2 dans la Figure 12(b). Nous essayons de supprimer ces arétes
spéciales. Puisque I'aréte a un seul voisin, la suppression de ’aréte ne créera pas un

nouveau trou.

On appelle arétes frontiére des arétes ayant au plus un voisin. Ensuite, nous
concevons une régle pour suppresser les arétes frontiéres spéciales. Si un sommet v
n’a qu’'une seul aréte frontiére vx et vx a un seul voisin y et la suppression de vz
ne fera pas v avoir une nouvelle aréte frontiére, alors vx peut étre supprimé. Cela
peut étre facilement réalisé en vérifiant si vy a plus de deux voisins. La Figure 12(d)

montre le résultat aprés la suppression d’aréte.

0.6.2.3 Détection d’aréte frontiére

Aprés la suppression de sommets et d’arétes, nous pouvons trouver que presque
toutes les arétes frontiéres se situent sur le bord de trous. On peut également voir
que certaines arétes situées sur le bord n’ont pas été trouvés. Dans ce composant,
nous essayons de trouver les arétes autant que possible. Dans tous les cas, ces arétes
ont deux ou plusieurs voisins. Si on définit les nceuds ayant une ou plusieurs arétes
frontiéres comme nceuds frontiéres et d’autres noeuds comme noeuds non-frontiéres,
puis on essaie de supprimer certaines arétes reliant les noeuds non-frontiéres et les
neeuds frontiéres en fonction de la transformation HP, telles que les arétes vertes
illustrées sur la Figure 12(e). Apreés cela, il est possible que certaines nouvelles
arétes frontiéres soient reconnues et des arétes spéciales illustrées dans la Section
0.6.2.2 sont également identifiés, comme les arétes bleues présentées dans la Figure
12(f). Dans ce cas, on peut toujours utiliser la régle dans la Section 0.6.2.2 pour
les supprimer. Il est encore possible que certaines arétes se trouvant sur le bord
n’aient pas été découvertes. Ce cas se produit généralement lorsque certains noeuds
frontiéres sont des voisins et les arétes qui les relient ont plus d’un voisin. Dans ce cas,
on supprime aléatoirement certaines de ces arétes en fonction de la transformation
HP, comme les arétes vertes sur la Figure 12(g). De cette fagon, presque toutes les

arétes frontiéres peuvent étre trouvées.
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0.6.2.4 Découverte de cycles frontiéres élémentaires

Apreés la détection des arétes frontieres | il est facile de découvrir les cycles fron-
tieres élémentaires. Nous pouvons choisir au hasard des nceuds qui ont deux arétes
frontiéres comme initiateurs. Chaque nceud lance un processus pour trouver le cycle
frontiére élémentaire en envoyant un message le long de I'un de ses arétes frontiéres.
Quand il regoit le message en retour le long de 'autre aréte frontiére, il découvre
un cycle frontiére élémentaire. De cette fagon, tous les cycles frontiéres élémentaires

peuvent étre trouvés, comme les cycles indiqués par des couleurs différentes sur la
Figure 12(k).

0.6.2.5 Minimisation de cycles frontiéres

Il est possible que certains cycles frontiéres élémentaires trouvés ne soient pas min-
imum, nous avons donc besoin de minimiser ces cycles. Ceci peut étre réalisé en
vérifiant s’il existe un chemin plus court entre deux noeuds quelconques dans le cy-
cle. De cette fagon, nous pouvons obtenir presque la plupart des cycles minimum

entourant les trous de couverture.

0.6.3 L’évaluation des performances

2 comme le domaine ciblé. Le rayon

On choisit une région carrée de 100 x 100 m
de détection R, de chaque noeud est 10 métres. Le rayon de communication R, est
20 meétres et ainsi v = 2. Il y a des capteurs de frontiére le long des arétes du carré
avec 20 metres de distance entre voisins. D’autres capteurs internes sont déployés de

fagon aléatoire dans la région basée sur un processus Poisson homogéne d’intensité

A

0.6.3.1 Complexité

La complexité de calcul de chaque étape de I'algorithme est illustré dans Table 1.

Table 1: La complexité de chaque étape de I'algorithme

Etape Complexité
Le calcul de poids O(n?)
Suppression de sommet et aréte O(n?)
Détection d’aréte fronticre O(n?)
Découverte de cycles frontiéres élémentaires O(1)
Minimisation de cycles frontieres O(1)
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0.6.3.2 Comparaison avec P’algorithme basé sur localisation

Afin d’évaluer la précision de notre algorithme HBA, on le compare a ’algorithme
basé sur localisation LBA proposée dans [47]. Soit A 0.008, 0.010 et 0.012 respec-
tivement. Pour chaque intensité, 1000 simulations sont effectuées. Les résultats de
simulation montrent que lorsque A est 0.008, il y a neuf fois parmi les 1000 fois ot
notre algorithme ne peut pas trouver tous les trous de couverture non-triangulaires.
Dans chacun des neuf fois, un seul trou de couverture est manqué. Il y a 7363 trous
non-triangulaires au total et 7354 ceux-ci trouvés par notre algorithme. Lorsque A
est 0.010 et 0.012, une seule fois parmi les 1000 fois ot notre algorithme ne peut pas
trouver tous les trous de couverture. Et & ce moment, un seul trou de couverture
est manqué. Lorsque A est 0.010, il y a 6114 trous non-triangulaires au total et
6113 ceux-ci trouvés par notre algorithme. Lorsque A est 0.012, il y a 4613 trous
non-triangulaires au total et 4612 ceux-ci trouvés. Les résultats sont présentés dans
le Table 2. Tous ces résultats montrent que notre algorithme peut trouver environ

99% des trous de couverture dans environ 99% des cas.

Table 2: Comparaison avec l’algorithme basé sur localisation

nombre de trous nombre de trous nombre de trous

A non-triangulaires non-triangulaires non-triangulaires

trouvés par HBA | manqués par HBA | trouvés par LBA
0.008 7354 9 7363
0.010 6113 1 6114
0.012 4612 1 4613
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Chapter 1

Introduction

1.1 Motivations

Recent advancements in wireless communications and Micro-Electro-Mechanical
System (MEMS) have enabled the development of wireless sensor networks (WSNs)
[1]. A WSN consists of a number of tiny sensor nodes each capable of sensing,
data processing and communicating with neighbouring nodes. These sensor nodes
are deployed in the target field to collectively monitor physical phenomena, such as
heat, light, sound, pressure, motion. WSNs have lots of applications, which can be
generally classified into two categories: tracking and monitoring [2]. Tracking appli-
cations include tracking humans, animals and vehicles [3, 4, 5, 6, 7, 8, 9]. Monitoring
applications include habitat and environmental monitoring [10, 11, 12, 13, 14, 15,
16, 17], structural health monitoring [18, 19, 20, 21, 22|, health-care monitoring
[23, 24, 25, 26] and traffic monitoring [27, 28, 29, 30, 31, 32].

Coverage is a fundamental problem in WSNs. It can be considered as the measure
of quality of service of a sensor network [33|. Based on the coverage objectives, the
authors in [34] classified coverage into three types: area coverage, point coverage and
barrier coverage. As for the area coverage problem, the main objective of the sensor
network is to cover an area. While in the point coverage problem, the objective is
to cover a set of points. The aim of barrier coverage is to minimize the probability
of undetected penetration through the barrier formed by wireless sensor networks.
In this thesis, we focus on area coverage problem.

In applications related to area coverage, the target field is usually required to be
fully covered. However, coverage holes may be formed due to many reasons, such as
random deployment, energy depletion or destruction of sensors. For example, in the

volcano monitoring applications, the target field is usually hostile or unapproachable
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for human beings, under such situations, sensor nodes have to be deployed randomly
by helicopters or other kinds of vehicles. With random deployment, sensor nodes
may cluster at some place while leaving coverage holes at some other places. Fur-
thermore, even if in the initial deployment, the target field is fully covered by sensor
nodes. With time goes by, some nodes may deplete their battery power more quickly
than others, which may cause a coverage hole. In addition, some nodes may be de-
stroyed by a natural disaster. Therefore, it is of paramount importance to detect
and localize coverage holes. On one hand, it can facilitate the full coverage of target
field. After coverage holes are localized, some moving nodes can de deployed in the
coverage hole areas to patch them [35, 36]. On the other hand, knowing coverage
hole boundaries is also very helpful in the design of basic networking functionalities,
such as point-to-point routing and data gathering mechanisms [37].

Many approaches have been proposed for coverage hole detection in WSNs. They
can be generally classified into three categories: (i) location based approaches, (ii)
range based approaches, and (iii) connectivity based approaches. Location based
and range based approaches can discover all coverage holes with good accuracy but
require either precise location information or accurate distance information, which
is difficult to obtain in many scenarios. So connectivity based approaches received
considerable attention in recent years. Particularly, homology based approaches
attracted our attention. Ghrist and his collaborators introduced two combinatorial
tools, Cech complex and Vietoris-Rips complex (we abbreviate it to Rips complex in
this thesis), to detect coverage holes [38]. They proposed a centralized solution for
some simple scenarios, but designing an efficient distributed algorithm for coverage
hole detection with only connectivity information is still an open issue.

Realizing the limitations of existing work for coverage hole detection in WSNs, we
try to further analyse the usefulness of homology theory for coverage hole detection

and design some distributed algorithms to detect coverage holes in WSNs.

1.2 Objectives and contributions

1.2.1 Objectives

The main objectives are to design algorithms for coverage hole detection in WSNs,

which have the following properties.

e (Connectivity based. Location based and range based approaches require either

precise location information of nodes or accurate distance information between
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neighbouring nodes. Such requirement is either expensive or impractical in
many scenarios, which substantially limits their applicability. So we aim to

design connectivity based approaches.

o Distributed. Usually, there is no central unit in a WSN to control all the
nodes. So it is required to design distributed algorithms, especially for large

scale sensor networks.

e FEfficient. Since sensor nodes have only limited capabilities, the complexity
of the proposed algorithms should be low as much as possible so that sensor
nodes can implement them efficiently, which can extend the lifetime of the

sensor networks.

e Can discover boundary cycles. A boundary cycle of a coverage hole is a cy-
cle connecting all the nodes surrounding the coverage hole. After discovering
boundary cycles of coverage holes, we can deploy more nodes in these regions
to cover them. It is thus important to detect boundary cycles. Many of the
above presented approaches only detect boundary nodes, which may be not
sufficient to discover the boundary cycles of coverage holes. For location based
approaches, it is possible to find exact boundary cycles after detecting bound-
ary nodes, as presented in [47]. But for range based approaches, detecting
boundary nodes is not sufficient to discover the exact boundary cycles in some
cases, which will be illustrated in Section 2.1.4. Therefore, we aim to design

algorithms which can discover boundary cycles.

1.2.2 Contributions

Our contributions are twofold: (1) accuracy of homology based coverage hole detec-
tion and (2) distributed algorithms for coverage hole detection. These works have

been published in some conferences or submitted to some journals, as summarized
in Table 1.1.

1.2.2.1 Accuracy of homology based coverage hole detection

Cech complex can fully capture coverage holes but it is difficult to construct. Rips
complex is easy to construct but may miss some holes. We first analysed the re-
lationship between Cech complex and Rips complex in terms of coverage holes for
WSNs on a planar target field. Then we chose the proportion of the area of holes

missed by Rips complex as a metric to evaluate the accuracy of homology based
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Table 1.1: Summary of publications
Titles Contributions
IEEE GLOBECOM 2011 | Graph based algorithm, see Chapter 5
Accuracy of homology based coverage
IEEE 1CC 2012 hole detection on plane, see Chapter 3
IEEE Transactions on Accuracy of homology based coverage
Wireless Communications | hole detection on sphere, see Chapter 4
IEEE/ACM Transactions Accuracy o‘f homology based coverage
on Networkin hole detection on plane and homology
& based algorithm, see Chapter 3 and 6

coverage hole detection. We showed that such proportion is related to the ratio
between communication and sensing radii of each sensor (denoted respectively by
R. and R,). We then analysed this proportion in three cases and for each case,
closed form expressions for lower and upper bounds were derived. Simulations re-
sults are well consistent with the analytical lower and upper bounds, with maximum
differences of 0.5% and 3%. This part of work has been published in ICC 2012 [48].

In addition, we extended the analysis to the sphere case. Simulation results show
that the radius of sphere has little impact on the proportion when it is much larger
than communication and sensing radii of each sensor. This part of work has been

submitted to IEEE Transactions on Wireless Communications [49].

1.2.2.2 Distributed algorithms for coverage hole detection

We first proposed a graph based distributed algorithm to detect coverage holes.
The algorithm consists of four steps: neighbour discovery, boundary nodes discov-
ery, boundary cycles discovery, cycles selection. In the step of neighbour discovery,
each node obtains all its 1- and 2-hop neighbours information. In boundary nodes
discovery step, each node determines whether it is a boundary node or not by check-
ing the existence of a Hamiltonian cycle in its neighbour graph. If there exists, it
is considered to be a non-boundary node. Otherwise, it is assumed to be a bound-
ary node. After that, some boundary nodes are randomly selected to initiate the
boundary cycles discovery process and many cycles will be found. But these found
cycles may not be minimum or some of them bound the same coverage holes. So it
is required to make choices among these cycles, which is done in the final step. This
part of work has been published in GLOBECOM 2011 [50].

The above proposed algorithm exhibits high complexity. So we designed a more

efficient homology based algorithm. The basic idea of this algorithm is that for the
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Rips complex of a WSN, we try to delete some vertices and edges without changing
the homology while making the Rips complex more sparse and nearly planar. Then
it is easier to find boundary cycles. The novelty of this algorithm lies in the rule
we proposed to decide for each vertex or edge whether its deletion can change the
homology or not. This algorithm has the worst case complexity O(n?) where n is
the maximum number of 1-hop neighbour nodes and n is finite. It is distributed and
requires only 1- and 2-hop neighbour nodes information. It can accurately detect
the boundary cycles of about 99% coverage holes in about 99% cases. This part of
work has been submitted to IEEE/ACM transactions on networking [51].

1.3 Organization

The rest of this thesis is organised as follows. Chapter 2 gives a survey about the
coverage hole detection approaches and introduces homology theory briefly. Chapter
3 analyses the accuracy of homology based coverage hole detection for WSNs on a
planar target field. It first identifies the relation between Cech complex and Rips
complex on plane in terms of coverage holes. Then the lower and upper bounds of
the accuracy are derived. Chapter 4 extends the ideas in Chapter 3 to WSNs on
the sphere. Chapter 5 introduces a graph based distributed coverage hole detection
algorithm. Chapter 6 further presents an efficient homology based distributed algo-
rithm for coverage hole detection. Finally, Chapter 7 provides concluding remarks

and some possible future research directions.
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Chapter 2

Related Work and Mathematical
Background

Many approaches have been proposed for coverage hole detection in WSNs. They
can be generally classified into three categories: (1)location based approaches; (2)
range based approaches and (3) connectivity based approaches. The connectivity
based approaches can be further classified into graph based and homology based
according to the tools they adopt. The former two types of approaches attract less
attention since they require either precise location information of nodes or accurate
distance information between neighbouring nodes which is very difficult to obtain in
many scenarios. Connectivity based approaches attract a great deal of attention as
they only need connectivity information which is easy to obtain. In this category,
homology based approaches attract particular attention due to its powerful tools for
coverage hole detection, which is also our interest.

In this chapter, we consider location based, range based and graph based ap-
proaches as traditional approaches and first give a survey about them and describe
their pros and cons in Section 2.1. Then we give a brief introduction to homology

theory before presenting homology based approaches in Section 2.2.

2.1 Traditional approaches

2.1.1 Location based approaches

The location based approaches can further be classified into two cases according to

the boundary node detection methods they adopted.
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2.1.1.1 Polygon based approaches

In [35, 52, 53, 54|, the Voronoi diagram was used to detect boundary nodes. The
Voronoi diagram of a collection of nodes partitions the space into polygons called
Voronoi polygons. Every point in a given polygon is closer to the node in this
polygon than to any other node. So if some portion of a Voronoi polygon is not
covered by the node inside this polygon, it will not be covered by any other node,
which implies a coverage hole. However, it is known from computational geometry
that the Voronoi polygon of boundary nodes can not be locally computed in general
[55]. Realising such a problem, the authors in [56, 57| proposed to use localized
Voronoi polygons for boundary node detection. In the scheme, each node constructs
its localized Voronoi polygon. If its localized Voronoi polygon is infinite or it is finite
but with some vertices uncovered by the node, then the node must be a boundary

node.

2.1.1.2 Perimeter based approaches

Different from polygon based approaches, perimeter based approaches detect bound-
ary nodes by checking whether the perimeter of the node’s sensing disk is covered
by its neighbours or not. In [58], it is proved that a sensor node does not border
a coverage hole if its sensing border is entirely covered by the sensing ranges of its
neighbours. Another boundary node detection approach proposed in [59, 60| simpli-
fies the previous border checking approach by only checking intersection points on
the sensing border. A point is called an intersection point between nodes u and v if
it is an intersection point of the sensing borders of v and v. A node is a boundary
node if and only if there exists at least one intersection point which is not covered by
any other neighbours. Based on that criterion, some other algorithms were proposed
in [47, 61] to discover boundary nodes. Furthermore, the authors also proposed a

distributed algorithm to discover the exact boundary cycles of coverage holes in [47].

2.1.2 Range based approaches

The range based approaches attempt to identify boundary nodes based on relative
distance between neighbouring nodes. They also follow the ideas of either polygon
based or perimeter based approaches. In [62, 63|, a localized Voronoi polygon based
boundary node detection algorithm was proposed, which is similar as that in [56, 57].

The difference lies in that the localized Voronoi polygon is constructed using location
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information of nodes in [56, 57| while it is constructed based on directional and
distance information between neighbouring nodes in [62, 63].

In [44], the author followed the idea of perimeter based approaches. He proposed
a coverage verification algorithm based on distances between neighbouring nodes.
In the algorithm, each node first calculates a set of segments. Each segment is
a part of its sensing border that is covered by one of its intersecting neighbours.
After that, the node verifies whether its entire sensing border is covered by the
set of segments. If yes, it implies the node is not a boundary node. Otherwise, it
is a boundary node. Recently, in [64], the same author proposed another simpler
algorithm for coverage verification. He assumed that the transmission radius of each
sensor is at least four times larger than its sensing radius. The assumption implies
that for any node, every pair of its intersecting neighbours are also neighbours of
each other. The algorithm uses this property to determine the relative locations of
all the intersecting neighbours of any node and uses it to verify coverage. But if the
assumption is not satisfied, the algorithm will not work. In addition, a more general
scheme was proposed in [65] for verifying k-coverage of a d-dimensional target field
for an arbitrary positive integer k& and d € {1,2,3}. The scheme transforms the
k-coverage verification problem in d dimension to a number of coverage verification
problems in (d — 1) dimension by dimension reduction technique. It then uses the

same ideas as that in [44, 64] to verify k-coverage in one dimension.

2.1.3 Graph based approaches

Graph based approaches usually detect coverage holes based on graph theory. In
[66, 67], a set of active nodes is selected using some distance information. Then
for each active node, it checks whether there exists a 3MeSH ring in its neighbour
graph. A 3MeSH ring is defined as a closed polygon formed by nodes in neighbour
graph, which can not be triangulated by these nodes. If there exists a 3MeSH ring,
then the node is a non-boundary node, otherwise, it is a boundary node. After all
boundary nodes are detected, boundary cycles are then discovered through signaling
protocols. This approach is not purely based on connectivity information, it needs
some distance information. In addition, it can detect holes with up to ten edges
with proper complexity, but for holes with more than ten edges, the complexity will
be higher.

More recently, some distributed algorithms were proposed to detect topological

hole [68, 69] or to recognise boundary in sensor networks by using only connectivity

41



information [37, 45, 46, 70, 71]. These algorithms may be useful for coverage hole
detection. In [68, 69], Funke et al proposed a simple distributed algorithm to identify
nodes near the boundary of the target field and holes. The basic idea is to construct
iso-contours based on hop count from a root node and identify where the contours
are broken. Following their ideas, two boundary detection algorithms were proposed
in |72] and [73]. In [70], Kroller et al proposed to recognise boundary by searching
for some specific structures called flower and augmenting cycle. The success of their
algorithm critically depends on the identification of at least one flower structure,
which may not always be the case especially in a sparse network [37]. In [74], Saukh
et al introduced the concept of patterns and proposed a fully distributed algorithm
for boundary recognition based on that concepts. Their approach is applicable for
both dense and sparse deployments. In [75], a distributed algorithm based solely on
connectivity information was proposed to detect holes and boundaries. The basic
idea is to use multidimensional scaling (MDS) [76] to compute virtual coordinates
of nodes, and then use a geometrical method to detect boundary nodes. But the
running time of MDS is high. In [37], Wang et al exploited a special structure
called "cut" in the shortest path tree to detect boundary nodes and connect them
to boundary cycles. As their basic objective is to identify the global topology of the
underlying environment where sensors are deployed, some holes may be neglected
by their algorithm. In order to identify holes with any size, Dong et al [46] proposed
a fine grained boundary recognition approach. The basic idea is to first extract the
skeleton of the sensor network, and then to identify primary boundary cycles, finally
to minimize these boundary cycles. As their algorithm involves many communica-

tions in the whole network, the control overhead is significant.

Fekete et al [77] proposed a statistical method to detect boundary nodes based on
the assumption that nodes on the boundaries have much less average degrees than
nodes in the interior of the network. Another statistical approach was proposed in
[78] by computing the restricted stress centrality of a node. Nodes in the interior
tend to have a higher centrality than nodes on the boundary. Similarly, Li et al |79]
exploited two centrality measures in graph theory, called betweenness and closeness,
to identify boundary nodes. It is observed that boundary nodes usually have lower
betweenness or higher closeness than their neighbouring nodes. These statistical

approaches usually require very high node density.

In summary, these boundary recognition approaches suffer from one or more
following disadvantages if used for coverage hole detection. (1) They only detect

coarse boundary nodes and do not consider boundary cycles. (2) They can only
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detect large coverage holes. (3) The complexity is high. (4) High density of nodes

is required.

2.1.4 Remarks on these approaches

To summarize, Table 2.1 gives some typical traditional approaches and their char-
acteristics and Table 2.2 presents the pros and cons of the traditional coverage hole

detection approaches.

Table 2.1: Characteristics of typical traditional approaches for coverage hole detec-

tion

Centralized . Discover
References Category /Distributed Complexity | boundary
cycles

Fang et al [52] | Location based | Centralized NA No
Zhang et al [57] | Location based | Distributed NA No
Huang et al [58] | Location based | Distributed | O(nlogn) No
Tong et al [47] | Location based | Distributed NA Yes
Zhang et al [62] | Range based Distributed NA No
Bejerano [44] Range based Distributed O(n?) No
Li et al [66] Graph based Distributed O(n?) Yes
Wang et al|37] Graph based Distributed NA Yes
Dong et al[46] Graph based Distributed NA Yes

Table 2.2: Summary of traditional coverage hole detection approaches in WSNs
Approaches pros cons
accurately detect
boundary nodes and

) need precise location
Location based P

L .
boundary cycles mformation

accurately detect | need accurate dis-
boundary nodes, dis- | tance information,

Range based

cover most boundary | may falsely detect

cycles boundary cycles
Graph based iny neec} connectivity | may miss coverage
information holes

Generally speaking, the performance of location based approaches and range
based approaches is highly dependent on the accuracy of location or distance infor-
mation. When accurate location information is available, location based approaches

can not only detect all boundary nodes but also discover all boundary cycles. But
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Target field Target field

Target field

(b)

Figure 2.1: Examples illustrating that it is not sufficient to only detect boundary
nodes in order to discover boundary cycles

in practice, such accurate information is often difficult to obtain, which restricts
their applications. With precise distance information, range based approaches can
accurately detect all coverage hole boundary nodes. But it may not be sufficient
to find boundary cycles of coverage holes. For example, in Figure 2.1(a), it can be
seen that all the nodes in the two WSNs are boundary nodes, but there are three
coverage holes in the left WSN and only two coverage holes in the right WSN. It is
also possible to associate a node to a wrong hole. Consider another example in Fig-
ure 2.1(b), the correct boundary cycles for the two coverage holes should be cycles
formed by nodes 1, 2, 4, 5, 6, 7, 8 and by nodes 1, 3, 4, 9, 10, 11, 12. But from the
local point of view of nodes 2 and 3, they can not determine which coverage hole
they are bordering. So they may wrongly find the boundary cycles formed by nodes
1,3,4,5,6,7 8 and by nodes 1, 2, 4, 9, 10, 11, 12.

Some graph based approaches may not be directly used to detect coverage holes,

but they can really provide some helpful insights for distributed algorithm design.

2.2 Homology based approaches

Homology based approaches attempt to detect coverage holes based on homology

theory. The principle of homology theory consists in analysing topological properties
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of some domain by algebraic computations. The main objects are known as simplicial
complexes, which are generalization of graphs. Homology group is a topological
invariant that can distinguish between topological spaces by measuring the number
of holes in a topological space. These concepts may be relatively less known, so it

is necessary to give a basic introduction first.

2.2.1 Mathematical background

In this section, we give a brief introduction to homology theory, see |39, 40, 41| for
a thorough introduction to this subject. We first give the definitions of simplex and
simplicial complex. After that, homology group is defined following definitions of
chain group, cycle group and boundary group. Finally, the two most useful simplicial

complexes of networks are introduced and their relations are presented.

2.2.1.1 Simplicial complex

Given a set of points V', a k-simplex o is an unordered set {vg, vq,...,vx} C V where
v; # v; for all @ # j, k is the dimension of the simplex. In geometric realisation, a
0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle with its interior
included and a 3-simplex is a tetrahedron including its interior, see Figure 2.2. Any
subset of {vg, v1, ..., vx} is called a face of 0. A simplicial complex X is a collection of
simplices which satisfies two conditions: (1) any face of a simplex from X is also in
X; (2) the intersection of any two simplices o7 and o5 is a face of both o7 and o5. An
abstract simplicial complex is a purely combinatorial description of the geometric

notion of a simplicial complex and therefore does not need the second condition.

Vo V3
0]
Vo Vi
o o—
1)
1 %] i 1}

%
0-simplex 1-simplex 2-simplex 3-simplex

Figure 2.2: An example of simplices

The dimension of a simplicial complex X is the largest dimension of any simplex
in X. A subcomplex of X is a simplicial complex X*) < X, where k indicates the
dimension of X ®).

For example, in the simplicial complex shown in Figure 2.3, it contains six 0-

simplices {1}, {2},...,{6}, eight 1-simplices {1, 2}, {1,6},{2,3},{2,6}, {3,4},{3,5},
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{4,5},{5,6} and one 2-simplex {1,2,6}.

2 3

5

Figure 2.3: An example of simplicial complex

2.2.1.2 Homology group

Let X denote an abstract simplicial complex. One can define an orientation for
every k-simplex in X. Denote the k-simplex {vg, vy, , v} with an ordering by
[vo, v1, -+ ,vg], and a change in the orientation corresponds to a change in the sign
of the coefficient like

[U()v'” y Uiy m e 3 Ugy s 7Uk}:_[U07"' yUjy e Uy e ,'Uk]

Then we can define chain group, boundary map, cycle group, boundary group

and finally homology group.

Definition 2.1. Given an abstract simplicial complex X, for each k > 0, the k-
chain group Ci(X) is the vector space spanned by the set of oriented k-simplices of
X. If k is larger than the dimension of X, Cx(X) is defined to be 0.

Definition 2.2. The boundary map Oy is defined to be the linear transformation
O : Cp(X) = Ce—1)(X) which acts on the basis elements of Ci(X) via

k
ak[v(b T JUk] - Z(_l)z[/u07 MR 7 P OF A Jvk]
i=0

where the sum s algebraic summation.

Still consider the example shown in Figure 2.3, taking into account the orien-
tation, we assume that it contains six O-simplices [1],[2],...,[6], eight 1-simplices
[1,2],[1,6],[2,3],[2,6],[3,4],[3, 5], [4,5], [5,6] and one 2-simplex [1,2,6]. According

to Definition 2.2, we can see that the boundary of the 2-simplex [1, 2, 6] is the sum
of three 1-simplices [1,2],[2,6] and [6, 1], as illustrated in Figure 2.4(a). While the
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boundary of the sum of three 1-simplices [3,4], [4, 5] and [5, 3] is 0, shown in Figure
2.4(b).

(b)
Figure 2.4: Ilustrations of boundary

Definition 2.3. The k-cycle group of X is Zp(X) = ker 0.
Definition 2.4. The k-boundary group of X is Bx(X) = im0Oyy1.

From Definition 2.3 and 2.4, we can see that Z(X) contains all the k-chains
with no boundary and By (X) contains all the k-chains which are a boundary of one
(k + 1)-chain. A simple calculation demonstrates that dy o Jxr1 = 0, which means
that a boundary has no boundary. It follows that B(X) C Z;(X). The relations
of Cr(X), Zr(X), Bx(X) are shown in Figure 2.5.

Then we can well define the homology group.
Definition 2.5. The k-th homology group of X is the quotient vector space

Z(X)

H(X) = B.(X)

Definition 2.6. The k-th Betti number of X is the dimension of Hy(X):

By = dim Hy,(X) = dim Zy(X) — dim By(X).
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Ck+1 (X) Ck— 1 (X)

R0 2

Figure 2.5: An example showing the relations of Cy(X), Zx(X), Br(X)

From Definition 2.5, we can see that the k-th homology group Hy(X) is a set of
equivalence classes of k-cycles. For any two k-cycles z and 2/, they are in the same
equivalence class if and only if z — 2’ € B (X), that is their difference is a boundary
of one (k + 1)-chain. The Betti numbers are used to count the number of different
dimensional holes in X. For example, [, indicates the number of 1-dimensional
holes, that is the number of connected components. And ; counts the number of

holes on the plane.

Consider the example in Figure 2.3, we use matrices to describe boundary maps,
then we can get that 0y is the null function on the set of 1-simplices, d; and 0, are

given as follows.

[1,2] [1,6] [2,3] [2,6] [3,4] [3,5] [4,5] [5,6]
/-1 -1 0o 0o 0 0 0 0
2t 0o -1 -1 0 0 0 0
N R N 0
Tl o 0 00 0 -1 0
51 0 o 0o o0 1 1
e\ o 1 0o 1 0o 0 1
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1,2 [ 1
[1,6]| -1
2,3]] 0
b — 2,6]| 1
3,4 o
3,5/ 0
[4,5]] 0
[5,6) \ 0

Then we can obtain

fo = dimker dy — dimimd; =6 —5 =1
f1 = dimker 0y — dimimody, =3 —1 =2

Bo denotes the number of connect components and [3; denotes the number of holes.
It can be seen from Figure 2.3 that there are two holes surrounded by nodes 2, 3, 5,

6 and 3, 4, 5 respectively.

In above discussions, we only consider computation of the number of holes, with-
out considering the localization of holes. Actually, it is possible to localize holes by
computing non-trivial generators of the homology groups. But the standard com-
putation usually exhibits high complexity, which is of quintic order in the number
of simplices [38]. In [80], the authors proposed to use the Laplacian operators on
chain complexes to detect and localize holes. The Laplacian operator £, is defined

from the boundary operators and their transposes:

Ly = OprOfy + 050k (2.1)

Then it is shown that the k-th Betti number is the dimension of the null space of
L and the eigenvectors corresponding to the zero eigenvalues represent homology
classes of the k-th homology group. For any k-simplex, it corresponds to a norm of
its corresponding eigenvector component, by sequentially select the k-simplices with
the highest norm, we may find the boundary cycles. But the found boundary cycles
may not be true when two holes close to each other. We still use the example in

Figure 2.3 to explain it.

According to (2.1), we can obtain
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2 -1 0 0 0 -1
-1 3 -1 0 0 -1
Lo = 0o -1 3 -1 -1 0
o o0 -1 2 -1 O
o o0 -1 -1 3 -1
-1 -1 0 0 -1 3
30 -10 0 O 0 O
0o 3 0 0 0 0 0 1
-10 2 1 -1 -1 0 O
o= o 0 1 3 0 0 0 1
0o 0 -10 2 1 -1 0
o 0o -1o0o 1 2 1 -1
o o o0 o0 -1 1 2 -1
0 1 1 0 -1 -1 2
Lo =3

It is easy to compute that £, has one zero eigenvalue and the corresponding

eigenvector is

0.4082
0.4082
0.4082
0.4082
0.4082
0.4082

Vo

It can be seen that all vertices have the same norms in their corresponding
eigenvector components, which means any vertex can be a generator of the homology
group.

Similarly, we can find that £; has two zero eigenvalues and the corresponding

eigenvectors are

0.0306 —0.1800
—0.0306 0.1800
0.0918 —0.5400
V= —0.0612 and Vy = 0.3600
—0.5386 —0.2768
0.6304 —0.2632
—0.5386 —0.2768
0.0918 —0.5400

We choose the three edges which have the highest norms in V. Then we can
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find that they represent the hole bounded by three edges [3, 4], [4, 5] and [5, 3] in
Figure 2.3. But from V5, if we sequentially choose the edge with the highest norm,
we may find the cycle formed by edges |2, 3|, [3, 4], |4, 5], |5, 6] and |6, 2| in Figure
2.3. The cycle bounds two holes in Figure 2.3. It means that the cycle found is not
accurate. In addition, we can see that £y has no zero eigenvalue, which means that

there is no 3-dimensional hole in Figure 2.3.

2.2.1.3 Abstract simplicial complexes for networks

For the coverage problem in WSNs, the two most useful abstract simplicial complexes

are Cech complex and Rips complex. The Cech complex is defined as follows [38].

Definition 2.7 (Cech complex). Given a collection of sets U, Cech complex of U,
VC(U), 15 the abstract simplicial complex whose k-simplices correspond to nonempty

intersections of k + 1 distinct elements of U.

The Cech complex captures the topology of the collection of sets as illustrated
by the following theorem.

Theorem 2.1 (Cech theorem). The Cech complex of a collection of conver sets has

the homotopy type of the union of the sets.

Unfortunately, it is very difficult to compute Cech complex even if the precise
information about the relative locations of sensors is provided because of its high
complexity. So another more easily computable complex named Rips complex is

introduced. It is defined as follows.

Definition 2.8 (Rips complex). Given a metric space (M,d), a finite set of points
V on M and a fized radius €, the Rips complex of V, R.(V), is the abstract simplicial
complex whose k-simplices correspond to unordered (k + 1)-tuples of points in 'V

which are pairwise within distance € of each other.

The Rips complex can be constructed with the sole knowledge of the connec-
tivity graph of the network and gives an approximate coverage by simple algebraic
calculations. But Rips complex may miss some coverage hole. In fact, there exist

following relations between Cech complex and Rips complex [42].

Theorem 2.2. Let V be a set of points in R and C.(V) be the Cech complex of the
cover of V by balls of radius €. Then there is

~ 6 d
! o > 2d+1)
R (V) C C(V) C Roe(V) whenever ¢ ~\ 2@+
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According to Theorem 2.2, the relation between Cech complex and Rips complex

in terms of coverage holes can be derived, which will be presented in Chapter 3.

2.2.2 Homology based approaches

As a pioneer work, in [38], Ghrist and his collaborators introduced homology to
detect coverage holes. They first introduced a combinatorial object, Cech complex,
which fully characterizes coverage properties of a WSN (existence and location of
holes). Unfortunately, this object is very difficult to construct even if the precise
information about the relative locations of sensors is available. Thus, they intro-
duced another more easily computable complex, Rips complex. This complex can be
constructed with the sole knowledge of the connectivity graph of the network and
gives an approximate coverage by simple algebraic calculations. Then their work
is followed by [42, 81, 82, 83], where a relative homological criterion for coverage
is presented. As regards implementation in real WSNs, these homology based ap-
proaches are necessarily centralized, which makes them impractical in large scale
sensor networks.

The first steps of implementing the above ideas in a distributed way were taken
in [80]. It is shown that combinatorial Laplacians are the right tools for distributed
computation of homology groups, and thus can be used for decentralized coverage
verification. The combinatorial Laplacians can be used to detect absence of holes
or a single hole. But when there are multiple holes close to each other in WSNs; it
is not clear how to distinguish them, as shown in Section 2.2.1.2. To address such
limitations, a gossip like decentralized algorithm was proposed in [84] to compute
homology groups, but its convergence is slow.

In [85, 86], the authors first presented a decentralized scheme based on combina-
torial Laplacians to verify whether there is a coverage hole or not in a WSN. For the
case when there are coverage holes, they further formulated the problem of localizing
coverage holes as an optimization problem for computing a sparse generator of the
first homology group of the Rips complex corresponding to the sensor network. But
it is possible that some cycle found by their algorithm contains multiple holes next
to each other. For the purpose of coverage verification, a distributed algorithm for
homology computation was proposed in [87] based on reduction and co-reduction
of simplicial complex. But they did not consider the problem of localising coverage

holes.

Following the ideas of homology based approaches, two divide and conquer based
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algorithms were proposed in [88] and [89] respectively. In [88], the Rips complex
of a sensor network is first planarized by eliminating some crossing edges using the
scheme proposed in [90, 91]. Then the planar simplicial complex is divided into
subcomplexes. In each subcomplex, it is recursively divided until the holes are
found. But the process of planarization needs location information of nodes. In
[89], the network is iteratively divided into small partitions. And in each partition,
it verifies whether there are coverage holes by checking the first homology group of
the Rips complex corresponding to this partition. If it is non-trivial, this partition
is divided again. Otherwise, it means there is no coverage hole in this partition. As
they used the algorithm in [84] to check the first homology group of Rips complex,
the scheme also suffers from the same problem as that in [84].

Table 2.3 gives some typical homology based approaches and their characteristics.
All these homology based approaches assume that the communication radius of each
sensor R, is no larger than /3 times the sensing radius of the sensor R,. For this
point, there are two aspects to be illustrated: (1) if this assumption is satisfied,
Rips complex can be used for coverage verification. According to Theorem 2.2, let
d=2,e =R, and ¢ = R,, we can see if there is no coverage hole in Rips complex
Re(V), there must be no coverage hole in the corresponding WSN. But as pointed
out in [83], it is also possible that some coverage holes are detected in Rips complex
while there is in fact no holes in corresponding WSN, as shown in Figure 2.6. (2)
If this assumption is not satisfied, Rips complex may miss some coverage holes, see
Figure 2.7. Therefore, although homology theory has the great potential to solve

coverage hole problem in WSNs, much work is needed for further research.

Table 2.3: Characteristics of homology based approaches for coverage hole detection

Centralized Discover

References Category /Distributed Complexity | boundary
cycles

Ghrist et al [38] | Homology based | Centralized NA Yes
Z;[ng]mmad ot Homology based | Distributed NA Yes
;lle[mélflg)]az—Salehl ot Homology based | Distributed NA Yes
Kanno et al [88] | Homology based | Distributed NA Yes
S?ggf akunta et Homology based | Distributed NA Yes
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Figure 2.6: An example of Rips complex falsely detects a coverage hole, assume
R. = R,

® v

Figure 2.7: An example of Rips complex missing a coverage hole, assume R, = 2R,
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Chapter 3

Accuracy of Homology based

Coverage Hole Detection on Plane

3.1 Introduction

As discussed in Chapter 2, Cech complex and Rips complex are two useful tools
for coverage hole detection. But Cech complex is rather difficult to construct while
Rips complex is easy to construct, so homology based approaches usually use Rips
complex to detect coverage holes. In addition, these homology based approaches
always assume that the communication radius R, of a sensor is no larger than /3
times the sensing radius R, of the sensor. But if this assumption is not satisfied, Rips
complex may miss some special coverage holes (these holes are defined as triangular
holes). It is thus of paramount importance to determine the proportion of the area
of such triangular holes to evaluate the accuracy of homology based coverage hole
detection. There is not much work on the proportion of the area of triangular holes.
Some recent work [92, 93, 94, 95| provided some results on coverage probability but
with a different point of view. In [92, 93], the fraction of the area covered by sensors
was analysed. In [94], the authors studied how the probability of coverage changes
with the sensing radius or the number of sensors. In [95], a point on a plane is
defined to be tri-covered if it lies inside a triangle formed by three nodes, and the
probability of tri-coverage is analysed. None of them considered triangular holes.
In this chapter, we focus on homology based coverage hole detection for WSNs on
plane. Firstly, we identify the relationship between Cech complex and Rips complex
in terms of coverage holes. We find that their relationship depends on the ratio

between communication and sensing radii and the holes missed by Rips complex
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must be bounded by a triangle, we thus define them to be triangular holes and
other holes to be non-triangular.

Secondly, we use the proportion of the area of triangular holes as a metric to
evaluate the accuracy of homology based coverage hole detection. Such proportion
is also related to the ratio between communication and sensing radii of each sensor.
So for different ratios, we derive the closed form expressions for lower and upper
bounds of the proportion.

Finally, extensive simulations have been run and it is shown that simulation re-

sults are well consistent with our analytical lower and upper bounds, with maximum
differences of 0.5% and 3%.

3.2 Models and definitions

Consider a collection of stationary sensors (also called nodes) deployed on a planar
target field according to a homogeneous Poisson point process with intensity A\. The

Poisson point process is defined as follows.

Definition 3.1. A Poisson point process ® with intensity A on a Borel set B(X) is
characterized by two fundamental properties:

1) For any subset A of B(X), the number of nodes in A, n(A), is a random variable
following Poisson distribution with parameter A|A|: P(n(A) = k) = e_)‘|A|(’\‘,€L!Dk,
where |A| is the area of A.

2) For any disjoint sets Ay, Ay of B(X), the random variables n(A;) and n(Asy) are

independent.

As usual, isotropic radio propagation is assumed. Each sensor monitors a region
within a circle of radius R; and may communicate with other sensors within a circle
of radius R,.. Let V denote the set of sensor locations in a WSN and 8§ = {s,, v € V}
be the collection of sensing disks of these sensors: for a location v, s, = {x € R? :
|z —v|| < R,}. Then, according to Definition 2.7, the Cech complex of the WSN,
denoted by Cg,(V), can be constructed as follows: a k-simplex [vg, vy, - - -, vz] belongs
to Cg, (V) whenever Nf_ys,, # 0. Similarly, according to Definition 2.8, we consider
here the metric space (R? d), then the Rips complex, denoted by Rg.(V), can be
constructed as follows: a k-simplex [vg, v, - - - , vg] belongs to Ry, (V) whenever ||v; —
Um|| < R forall 0 <l <m <k.

Figure 3.1 shows a WSN, its Cech complex and two Rips complexes for two

different values of R.. Depending on the ratio R. over R, the Rips complex and
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the Cech complex may be close or rather different. In this example, for R, = 2R;,
the Rips complex sees the hole surrounded by nodes 2, 3, 5, 6 as in the Cech complex
whereas it is missed in the Rips complex for R. = 2.5R,. At the same time, the true

coverage hole surrounded by nodes 1,2, 6 is missed in both Rips complexes.

Figure 3.1: (a) A WSN, (b) Cech complex, (c¢) Rips Complex under R, = 2R,, (d)
Rips Complex under R, = 2.5R,

In fact, the Cech theorem (Theorem 2.1) indicates that any coverage hole can be
found in Cech complex. Furthermore, according to Theorem 2.2, let d = 2, € = R,

and € = R,, there are following relations between Cech complex and Rips complex:

R (V) C Cr.(V) C Rop.(V), whenever R, < V3R, (3.1)

According to (3.1), some relationships between Cech complex and Rips complex
in terms of coverage holes can be derived as illustrated in the following corollaries.

For convenience, define v = R./R,.

Corollary 3.1. When v < /3, if there is no hole in Rips complex R (V), there

must be no hole in Cech complexr Cr_ (V).

Proof. 1f there is no hole in Rg (V), it means that Rg (V) can be triangulated.
Since v < V3 means R, < \/§Rs, according to the first inclusion in (3.1), we have
Rr. (V) € Cgr.(V). Consequently, Cech complex Cg, (V) can also be triangulated.
And when R, < V/3R,, each triangle must be covered by the sensing ranges of its
vertex nodes [42]. So there is no hole in C_ (V). O
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Corollary 3.2. When v > 2, if there is a hole in Rips complex Ry (V), there must
be a hole in Cech complex Cr, (V).

Proof. If there is a hole in Rg_(V), there must be a cycle with more than three edges
in Ry, (V) that can not be triangulated, as the cycle formed by nodes 2, 3, 5, 6 in
Figure 3.1(c). Since v > 2 means R. > 2R;, according to the second inclusion in
(3.1), we can see that Cg, (V) C Rar. (V) C Rg, (V). Consequently, there must also
be a cycle in Cg, (V) which can not be triangulated. And there is a coverage hole in
the cycle. O

Corollary 3.3. When /3 < v < 2, there is no guarantee relation between Rips
complex R, (V) and Cech complex Cr, (V) in terms of holes.

From Corollary 3.1, a sufficient condition for coverage verification can be derived,
which has been figured out in [86]. But it is not a necessary condition. It is possible
that there is no hole in Cg,_(V), while there is a hole in Rp_ (V). From Corollary 3.2,
we can find a necessary condition for the existence of a hole in Cg, (V). Corollary
3.3 indicates that when there is no hole in R, (V), it is possible that there is a hole
in Cg, (V). When there is a hole in Rg,_(V), it is also possible that Cp_ (V) contains
no hole.

From the discussions above, we can find that a hole in a Cech complex not seen
in a Rips complex must be bounded by a triangle. Based on this observation, a

formal definition of 'triangular hole’ and 'non-triangular hole’ is given as follows.

Definition 3.2 (Triangular and non-triangular hole). For a pair of complexes Cg, (V)
and Rg, (V) of a WSN, a triangular hole is an uncovered region bounded by a triangle
formed by three nodes vy, v1, vy, where vy, v1,vo can form a 2-simplex which appears

in Rp, (V) but not in Cr, (V). Any other holes are non-triangular.

From Definition 3.2, we can see from Figure 3.1 that when R. = 2R, there is
only one triangular hole that bounded by the triangle formed by nodes 1, 2 and 6.
When R, = 2.5R;, there are two additional triangular holes, bounded by triangles
formed by nodes 2, 3, 6 and 3, 5, 6 respectively.

3.3 Bounds on proportion of triangular holes

In this section, the conditions under which any point on the target field is inside a

triangular hole are first given. From the discussion in Section 3.2, it is found that the
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proportion of the area of triangular holes is related to the ratio . Three different
cases are considered for the proportion computation. For each case, the upper and

lower bounds of the proportion are derived.

3.3.1 Preliminary

Lemma 3.4. For any point on the target field, it is inside a triangular hole if and

only if the following two conditions are satisfied:
1. the distance between the point and its nearest node is larger than R;.

2. the point is inside a triangle formed by three nodes with pairwise distance less

than or equal to R..

Lemma 3.5. If there exists a point O which is inside a triangular hole, then Ry <

R./V3.

Proof. According to the definition of triangular holes, if there exists a triangular
hole, then there must be a 2-simplex which is in Rg, (V) but not in Cg, (V). If
R, > R.//3, then according to the first inclusion in (1), we have Rp_(V) C Cq.(V),
it means that there are no 2-simplices which are in Rz, (V) but not in Cg, (V), there
is a contradiction, so Ry < R./V/3. O

Lemma 3.6. If O is inside a triangular hole and | denotes the distance between O
and its closest neighbour, we have Ry < [ < RC/\/§.

Proof. Ry < [ is a direct corollary from Lemma 3.4. We only need to prove | <
R./+/3. 1f point O is inside a triangular hole, it must be surrounded by a triangle
formed by sensors with pairwise distance less than or equal to R.. Assume it is
surrounded by a triangle NoN;Ns, as in Figure 3.2. The closest neighbour of O
is not necessarily in the set {Ng,Ni,Ny}. If I > R./v/3, then dy > | > R./\/3,
dy > 1> R./V3 and d, > | > R./v/3. In addition, since a + 8 + ¢ = 2,
there must be one angle no smaller than 27/3. Without loss of generality, assume
a > 27/3, then according to the law of cosines, d%, = d% + d% — 2dydycosa >
R?/3 + R%*/3 — 2/3R.R.cos(2m/3) = R?. So dypy > R.. Since Ny and N, are
neighbours, dgs < R.. There is a contradiction. Therefore | < R,/ V3. O]

A homogeneous Poisson point process is stationary, thus without considering
border effect [43], any point has the same probability to be inside a triangular hole

as the origin O. This probability in a homogeneous setting is also equal to the
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Figure 3.2: Hlustration of O being inside a triangular hole

proportion of the area of triangular holes. We borrow part of the line of proof from

[95] where a similar problem was analysed.

We consider the probability that the origin O is inside a triangular hole. Since
the length of each edge in the Rips complex must be at most R,., only the nodes
within R, from the origin can contribute to the triangle which bounds a triangular
hole containing the origin. Therefore, we only need to consider the Poisson point
process constrained in the closed ball B(O, R..), which is also a homogeneous Poisson
point process with intensity A\. We denote this process as ®. In addition, T'(z, vy, 2)
denotes the property that the origin O is inside the triangular hole bounded by the
triangle with points z,y, z as vertices. When ng,ny,no are points of the process
&, T(ng,ny,m2) is also used to denote the event that the triangle formed by the
nodes ng, ni, ng bounds a triangular hole containing the origin. In addition, we use
T'(ng,n1,n2) to denote the event that the nodes ng,ny, ny can not form a triangle

which bounds a triangular hole containing the origin.

Let 79 = 79(®) be the node in the process ® which is closest to the origin. There
are two cases for the origin to be inside a triangular hole. The first case is that
the node 7y can contribute to a triangle which bounds a triangular hole containing
the origin. The second case is that the node 75 can not contribute to any triangle
which bounds a triangular hole containing the origin but other three nodes can form

a triangle which bounds a triangular hole containing the origin. So the probability
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that the origin is inside a triangular hole can be defined as

paa(A) = P{O is inside a triangular hole}

= P{ U T(no,n17n2)}
{no,n1,n2}CP® (32)

= P{ U T<T07n17n2)} +p;edc<>\)
{n1,m2}C@\{10(®)}

where

p%if(k) = P{ U T(”ilanz’%nﬁ) | T/(7—07ni4;ni5)}
{ni1, mis JCP\{m0(®)}

denotes the probability that 7y can not contribute to any triangle which bounds a
triangular hole containing the origin but other three nodes can form a triangle which
bounds a triangular hole containing the origin.

In the following parts, we will analyse this probability in three different cases.

3.3.2 Case 0<~vy<+V3

Theorem 3.7. When 0 < v < /3, paa(A) = 0.

Proof. 1t is a direct corollary from Lemma 3.5. ]

3.3.3 Case V3 <vy<2

Theorem 3.8. When /3 < v < 2, we have pag(A) < pag(N) < paau(N), where

2 I%C/\/g SOU«(TO) Ry (7”07901) Y 2
poar(A) =27 / rodro/ dgpl/ e "o
s @i(ro) ro (33)

% G—MS+(T07<¢01)\(1 _ 6—/\|57(T07T17<P1)|)Tldrl

and
) R./V3 ou(ro) R1(r0,1) Norr2
Padu(A) =2\ / 7“odro/ d@l/ e "o
s QDl(To) 70 (34)
% 6—>\|5+(T07<P1)\(1 _ 6—>\|57(T0,T0,¢1)|)7«1d7«1 +p;‘jic(/\)
and

©i1(r9) = 2arccos(R./(2r)) (3.5)
(o) = 2arcsin(R./(2ry)) — 2arccos(R./(2r9)) (3.6)
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Ry (1o, 1) = min(\/Rz — 12 sin? o1 — 19 cos @,
\/R2 — 12 sin?(ip1 + @i(r0)) + ro cos(r + vi(r0))) (3.7)

Ri(ro,)
‘ 7“07901 ’—/ / rdrdye
(ro) Jro

wi(ro) pRa2(ro,r1,01,02)
|S™ (1o, 71, 01) |—/ / rdrdfs,
92[ 70

cos(R./R) — cos b cos b
sin 01 sin 90

Ry(ro,r1,61,0) = min(\/RE — 13 sin® 0y — 1q cos Oy,

\/Rg —r? sin2(92 —01) +rycos(fy — 6))

0y = 6, — arccos

SeC

P3F(N) is obtained by simulations.

Proof. We first prove the lower bound. It can be obtained from (3.2) that

pgd(A) > P{ U T(Tg, ni, TLQ)}
{n1,n2}CP\{70(®)}
So for the lower bound, we only consider the case that the closest node 75 must
contribute to a triangle which bounds a triangular hole containing the origin.
Using polar coordinates, we assume the closest node 7 lies on (dy, 7). It is well

known that the distance dj is a random variable with distribution
Fu(ro) = P{dg <o} =1— ¢ 8
Then the probability density function of dy can be found as
fao(r0) = 2mXrge ™6 (3.8)

From Lemma 3.6, we can obtain R. < dy < R,/ V/3, then the above probability

can be written as

P{ U T(T07n17n2)}
{n1,n2}CP\{70(®)}
R./V3 (3.9)
= P{ U  T((ro,m),n1,n2)} fa,(ro)dro

A {n1,na}Ce7

where @] is the restriction of ® in B(O, R.)\B(O,ry).
Once the node 7y is determined, the other two nodes must lie in the different half

spaces: one in Ht = R* x (0, 7) and the other in H~ = Rt x (—m,0). Assume n; lies
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in H* and ny lies in H~. Since the distance to 7y is at most R., n; and n, must also
lie in the ball B(r, R.). Furthermore, the distance to the origin is at most R, and
larger than dj, they should also lie in the region A = B(O, R.)\B(O, dy). Therefore,
ny must liein G = H N B(m, R.) N A and ne must liein G~ = H~ N B(m, R.) N A.
In addition, considering the distance between n; and ny should be at most R. and
the origin should be inside the triangle formed by 79, n; and no, ny must lie in the
shadow region AT = G N B(Ms, R..), shown in Figure 3.3. M, is one intersection
point between the circle C(O, dy) and the circle C(y, R.), such intersection point

must exist in this case since R, = yR; < 2R, < 2d.

\/

Figure 3.3: Illustration of region A" in the case /3 < v < 2

Ordering the nodes in A" by increasing polar angle so that 71 = (dy, ¢1) has the
smallest angle ;. And assume the nodes 7y, 71 and another node 7, € G~ can form
a triangle which bounds a triangular hole containing the origin, then 75 must lie to
the right of the line passing through 71 and O, denoted by H"(y;) which contains
all points with polar angle ¢ € (¢1 — 7, ¢1). In addition, the distance to 7 is at

most R, so the node 7, must lie in the region 5™, as illustrated in Figure 3.4.
S™(10,m1) = S™(do, dy, 1) = G~ (VH (1)) B(m1, Re)

Here we need to obtain the density of node 7. Considering the way 71 was

defined, there should be no nodes with a polar angle less than ¢y, that is to say no
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\/

Figure 3.4: Tllustration of regions ST and S~ in the case v/3 < v < 2

nodes are in the region
S+(7'0,T1) = S+(d07901> = A+ﬂH+(901)

Since the intensity measure of the Poisson point process in polar coordinates is

Ardrdp, the density F,, of 71 can be expressed as

E, (dry, dpy) = Arye= NS ol g, dp, (3.10)

The integration domain D(dy) with respect to parameters (dy, ¢1) can be easily

obtained. From the construction of the region A™*, we can get ¢;(r¢) = 2 arccos(R./(2dy))

and @, (r9) = 2arcsin(R./(2dy)) — 2 arccos(R./(2dp)). So ¢i(ro) < v1 < ¢u(ro) and
do < di < Ry(dp, 1), where

Ri(do, 1) = min(\/Rg — d3sin® p; — dg cos 1,
VR2 — d3sin® (o1 + @i(70)) + do cos(r + @u(ro)))

Assume only 79, 71 and nodes in S~ (79, 71) can contribute to the triangle which
bounds a triangular hole containing the origin, we can get a lower bound of the
probability that the origin is inside a triangular hole. It is a lower bound because
it is possible that 7 can not contribute to any triangle which bounds a triangular

hole containing the origin, but some other nodes with higher polar angles in the
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region A' can contribute to such a triangle. For example, in Figure 3.5, if there is
no node in S~ but there are some nodes in S’~, then 7 can not contribute to any
triangle which bounds a triangular hole containing the origin, but 7{ can form such

a triangle with 79 and another node in S’~. Based on the assumption, we have
P{ U T((ro,m),n1,n9)} > P{ U T((ro,m), 71,n2)}
{n1,na}Cor, n2C®1 (S~ (10,71)

— //D(TO) P{ U T((ro,m), (11, 1), n2) } Fy, (dry, der) (3.11)

na L (S (ro,r1,¢1)

= [} PRS0, 00)) > O} (dry o)
T0

\/

Figure 3.5: Illustration of regions S’* and S~ in the case v/3 < v < 2
Therefore, from (3.8), (3.9), (3.10) and (3.11), the lower bound shown in (3.3)

can be derived.

Next we will prove the upper bound. As discussed in Section 3.3.1, there are
two cases for the origin being inside a triangular hole. As for the second case that
the closest node 75 can not but some other nodes can contribute to a triangle which
bounds a triangular hole containing the origin, it is not easy to obtain a closed form
expression for such probability, so we can get it by simulations. Simulation results
show that this probability is less than 0.0025 % at any intensity A when v/3 < v < 2.
So we still focus on the probability of the first case.

For the lower bound, we only considered the case that 71 contributes to a triangle

which bounds a triangular hole containing the origin. For the upper bound, we
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need to further consider the case that 7; can not but some other nodes in A™ can
contribute to such a triangle, shown in Figure 3.5. Assume the node 7/ = (d}, ¢})
with the second smallest polar angle in A* can contribute to such a triangle, it

means that there is no node in S~ (dp, dy, 1) but there is at lease one node in the

region S/_(d(b d17 P1; d,17 90/1) = S_(d(b dllu (pll)\S_(d()? dlu 901>
Then the density of the pair (71, 7]) is given as

Fr (dry, dpy, dr', do)) = Ny T'e_)‘ls do"pll)‘drldgoldrlldgoll (3.12)

The probability that 7; can not but 7{ can form a triangle which bounds a tri-
angular hole containing the origin with 7y and another node in S~ (dy, dy, ¢1, d}, ¢©})

can be expressed as

P{ U T((TOaﬂ-)vT{’HZ) | Tl((’l“o,ﬂ'),Tl,TLg)}
{n2,m3}C0L (S~ (70,m1)

= [[[] P, (5~ (rorig) = 0} (3.13)

X P{CI)TO(S/ (TO’ 1L, ¥1, TIl’ (10/1)) > O}Fﬁﬂ'{ (drla d(Pl, drlla dg0/1)
= [[[] e Comel (1 = NS Cona AN E, (i, diy, dr, dig))

As we can see from Figure 3.5, as long as 7; has a higher polar angle than 7

has, the sum of |S~ (7o, 7], ©})| and |S"~ (79,71, 1,77, ¢))| will be always smaller than

|S™(ro, r0, ¢1)]-

Therefore we can get from (3.13)

P{ U T((ro,m),71,n2) | T'((ro, ), 71,n3)}
{nQ’n?)}gq);“O ﬂ 57(7—077—1) (314)

< ////(6—)\|5_(T0,r1,<ﬁ1)| _ €_>\‘S_(TO’TO7@1)‘)F71,T{ (dTl, d@l, drllv dgp’l)

Furthermore, let 5™ (do, @1, ¢]) = St (do, ¥})\S™ (do, 1), then

// Are =ALS (dop1,9) |dr'1dg0'1 — 1 — ¢ NATST (o)l (3.15)

It is the complement of the probability that no node is in the region A™\S™(dy, ¢1).
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From (3.11), (3.12), (3.14) and (3.15), we can obtain

P{ U T((ro,m), T1,n2)}

naCPL ﬂS T0,T1)

+P{ U T<<T0’7T)7T{’n2) | T/((T0=W>7Tlvn3)} (316)

{n2,n3}C®} (S~ (r0,71)

< // (1 _ e—le’(ro,ro,w)l)Fﬁ(drh d<,01)
D(ro)

Similarly, we can further consider the case that neither of 7y and 7| can contribute
to a triangle which bounds a triangular hole containing the origin, but other nodes
with even higher polar angle can contribute to such a triangle. In this way, we can
get the same result as (3.16).

Therefore, it can be derived that

PLU L Tlnmmm)} < [ (1= 0meE, @y (317

{n1, ng}gib’ro

From (3.2), (3.8), (3.9), (3.10) and (3.17), we can get the upper bound shown in
(3.4).

Here we need to compute the areas of S*(rg, ¢1), S~ (10,71, 1) and S~ (rg, 7o, ¥1)-
In fact, the areas |S™(ro, ¢1)|, |S™ (10,71, ¢1)| and |S™(rg, 70, ¢1)| have very similar

expressions. For example, the area |S™(rg, ¢1)| can be expressed as

Ri(rop) 1 e 5 )
Stropl = [ [ rdrdp =5 [T [Biro.0) —rilde (319
lTO o

w1(ro)

When ¢, < 7/2 — arccos(R./(2r9)),

1S*(ro, 1) = (o, 1) — I(r0, @i(r0))

where

2 . 2 R2 R2 . .
I(TOAD):TOST SO—I— 590_2carcsin7"022190_7"055n90 R? — 13 sin ‘P—%

When 7/2 — arccos(R./(2r0)) < ¢1 < vu(r0),
+ - R -~ e
|S* (ro, 1) = 2|ST (ro, /2 — arccos(—)| — | St (rg, 7 — 2arccos(—) — 1|
2’/’0 2T0

Similarly, |S™(ro, 71, ¢1)| and |S™(ro, ro, ¢1)| can be obtained. The detailed com-
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putation is presented in Section A.1 of Appendix A. O]

3.3.4 Case vy >2

Theorem 3.9. When v > 2, we have pag () < pag(A) < pagu(N), where

R./2 T R/ (ro,¢1)
pgdl(/\) :271'/\2{/ TodT’o/ dg&l/ e e_/\ﬂrg
0 0

s

x e S0Vl (1 _ NS ot o0y

Re/V3 u(ro) Ri(ro,e1) Nrr2
+ Todro/ d@l/ e o
Rc/2 L)QZ(T‘U) To

(3.19)

« e*/\\SﬂL(ro:sOl)\(l _ e*/\|S*(ro,r1,<p1)|)7a1dr1}

and

) Re/2 TF Ri(roer) | o
Podu(A) =27\ {/ rodro/ dgpl/ e
0 )

&)

s e NS (roenl(1 _ o=~ Coroenly g

}%c/\/g Pu (TO) Ry (7.0»‘101) A2
+ T‘odro/ d%/ e o
R./2 w1(ro) ro

(3.20)

x e NS o0l 6—A|S*<ro,ro,m)|)ﬁdﬁ} (N

and

R,(ro, 1) = min(y/R2 — r2sin® ¢, — ro cos @1, V R2 — 18 sin® @1 + 7 cos ¢1)

P35 (N) is obtained by simulations.

In this case, we can use the same method as in Section 3.3.3 to get the lower
and upper bounds, shown in (3.19) and (3.20) respectively. But we need to consider
two situations R, < dy < R./2 and R./2 < dy < R./+/3. In the first situation,
dy < R./2 means that the ball B(O,dp) is included in the ball B(r, R.). The
illustrations for the regions A*, S*, S~, 5" and S~ in this situation are shown in
Figure 3.6(a) and 3.6(b) respectively. In addition, the lower limit of integration for
¢1 is 0 and the upper limit is 7. The computation of the area |S™(ro,¢1)| is the
same as that in Section 3.3.3, but the computation of the area |S™(ro,71,¢1)] is a
little different, which is shown in Section A.2 of Appendix A. The second situation is
the same as that in Section 3.3.3. Furthermore, simulation results show that p5(\)

is less than 0.16% at any intensity when 2 < v < 3.
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(b)

Figure 3.6: Tllustrations of regions in case v > 2. (a) the regions A%, St and S~
(b) the regions S and S'~

3.4 Performance evaluation

This section first introduces simulation settings. Simulation results are then pre-

sented and compared with analytical lower and upper bounds.
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3.4.1 Simulation settings

A disk centered at the origin with radius R, is considered in the simulations. The
probability that the origin is inside a triangular hole is computed. Sensors are
randomly distributed in the disk according to a homogeneous Poisson process with
intensity A. The sensing radius R, of each node is set to be 10 meters and + is chosen
from 2 to 3 with interval of 0.2. So the communication radius R, ranges from 20 to
30 meters with interval of 2 meters. A is selected from 0.001 to 0.020 with interval
of 0.001. For each v, 107 simulations are run under each A\ to check whether the

origin is inside a triangular hole.

3.4.2 Performance evaluation

The probability psq(A) obtained by simulations is presented with the lower bound
and upper bound in Figure 3.7(a) and 3.7(b) respectively. Simulation results for

SeC

V25%)
3.3 and 3.4 respectively.

(M) are shown in Figure 3.7(c). The detailed values are given in Table 3.1, 3.2

It can be seen that for any value of v, psy(A) has a maximum at a threshold
value \. of the intensity. As a matter of fact, for A < A., the number of nodes
is small. Consequently the probability of the origin being inside a triangular hole
is relatively small too. With the increase of A, the connectivity between nodes
becomes stronger. As a result, the probability of the origin being inside a triangular
hole increases. However, when the intensity reaches the threshold value, the origin
is covered with maximum probability. psy(A) decreases for A > \.. The simulations
also show that A\. decreases with the increase of ~.

On the other hand, it can be seen from Figure 3.7(a) and 3.7(b) that for a fixed
intensity A, pog(A) increases with the increases of 4. That is because R; is fixed.
Then the larger R. is, the higher is the probability of each triangle containing a
coverage hole.

Furthermore, the maximum probability increases quickly with v ranging from
2.0 to 3.0. These results can be used for planning of WSNs, which will be discussed
in Section 3.4.3.

Finally, it can be found in Figure 3.7(a) that the probability obtained by simula-
tions is very well consistent with the lower bound. The maximum difference between
them is about 0.5% according to Table 3.3. Figure 3.7(b) shows that probability
obtained by simulations is also consistent with the upper bound. The maximum

difference between them is about 3% according to Table 3.3.
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Figure 3.7: Proportion of the area of triangular holes (a) simulation results and
lower bounds, (b) simulation results and upper bounds, (c¢) simulation results for

Pii (A)
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Table 3.1: pogi(A), paau(A) and simulation results for pog(A) under v = 2.0,2.2 (%)
A 7 =20 v =22

P2ai(N) | p2a(A) | paau(N) | paar(N) | p2a(N) | padu(N)
0.001 | 0.0005 | 0.0006 | 0.0011 | 0.0126 | 0.0126 | 0.0239
0.002 | 0.0031 | 0.0035 | 0.0061 | 0.0677 | 0.0694 | 0.1264
0.003 | 0.0074 | 0.0075 | 0.0144 | 0.1534 | 0.1553 | 0.2828
0.004 | 0.0124 | 0.0127 | 0.0242 | 0.2443 | 0.2545 | 0.4456
0.005 | 0.0171 | 0.0184 | 0.0335 | 0.3210 | 0.3335 | 0.5779
0.006 | 0.0210 | 0.0228 | 0.0411 | 0.3734 | 0.3921 | 0.6636
0.007 | 0.0236 | 0.0245 | 0.0462 | 0.3996 | 0.4222 | 0.7028
0.008 | 0.0250 | 0.0262 | 0.0487 | 0.4023 | 0.4267 | 0.6987
0.009 | 0.0252 | 0.0280 | 0.0493 | 0.3866 | 0.4139 | 0.6637
0.010 | 0.0245 | 0.0269 | 0.0479 | 0.3583 | 0.3886 | 0.6082
0.011 | 0.0231 | 0.0265 | 0.0451 | 0.3225 | 0.3512 | 0.5412
0.012 | 0.0213 | 0.0239 | 0.0418 | 0.2834 | 0.3080 | 0.4697
0.013 | 0.0192 | 0.0219 | 0.0372 | 0.2440 | 0.2673 | 0.3989
0.014 | 0.0170 | 0.0200 | 0.0330 | 0.2066 | 0.2275 | 0.3348
0.015 | 0.0148 | 0.0166 | 0.0285 | 0.1724 | 0.1902 | 0.2764
0.016 | 0.0127 | 0.0145 | 0.0250 | 0.1421 | 0.1591 | 0.2249
0.017 | 0.0108 | 0.0124 | 0.0211 | 0.1158 | 0.1284 | 0.1817
0.018 | 0.0091 | 0.0109 | 0.0179 | 0.0935 | 0.1042 | 0.1445
0.019 | 0.0076 | 0.0087 | 0.0146 | 0.0749 | 0.0836 | 0.1147
0.020 | 0.0063 | 0.0076 | 0.0122 | 0.0595 | 0.0654 | 0.0898

Table 3.2: pagi(N), paau(A) and simulation results for pog(A) under v = 2.4,2.6 (%)
\ v=24 v =2.6

paar(N) | paa(N) | Pagu(N) | paar(N) | p2a(N) | p2au(N)
0.001 | 0.0622 | 0.0629 | 0.1130 | 0.1820 | 0.1848 | 0.3241
0.002 | 0.3147 | 0.3211 | 0.5597 | 0.8661 | 0.8917 | 1.4929
0.003 | 0.6739 | 0.6994 | 1.1729 | 1.7466 | 1.8157 | 2.9153
0.004 | 1.0157 | 1.0610 | 1.7301 | 2.4854 | 2.6147 | 4.0217
0.005 | 1.2643 | 1.3270 | 2.1078 | 2.9277 | 3.0995 | 4.5933
0.006 | 1.3957 | 1.4734 | 2.2785 | 3.0654 | 3.2670 | 4.6651
0.007 | 1.4192 | 1.5096 | 2.2701 | 2.9631 | 3.1675 | 4.3771
0.008 | 1.3596 | 1.4508 | 2.1301 | 2.7047 | 2.9082 | 3.8832
0.009 | 1.2451 | 1.3417 | 1.9113 | 2.3655 | 2.5394 | 3.3036
0.010 | 1.1011 | 1.1887 | 1.6561 | 2.0021 | 2.1450 | 2.7223
0.011 | 0.9469 | 1.0256 | 1.3974 | 1.6515 | 1.7763 | 2.1887
0.012 | 0.7960 | 0.8616 | 1.1523 | 1.3345 | 1.4309 | 1.7273
0.013 | 0.6567 | 0.7089 | 0.9325 | 1.0607 | 1.1363 | 1.3408
0.014 | 0.5334 | 0.5776 | 0.7440 | 0.8316 | 0.8874 | 1.0286
0.015 | 0.4275 | 0.4660 | 0.5859 | 0.6448 | 0.6862 | 0.7813
0.016 | 0.3389 | 0.3674 | 0.4559 | 0.4953 | 0.5253 | 0.5894
0.017 | 0.2660 | 0.2880 | 0.3522 | 0.3775 | 0.3979 | 0.4411
0.018 | 0.2070 | 0.2228 | 0.2697 | 0.2859 | 0.2985 | 0.3288
0.019 | 0.1600 | 0.1733 | 0.2054 | 0.2153 | 0.2246 | 0.2440
0.020 | 0.1229 | 0.1329 | 0.1551 | 0.1614 | 0.1680 | 0.1800
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Table 3.3: poai(A), paau(A) and simulation results for pog(A) under v = 2.8,3.0 (%)
\ v =2.38 v =3.0

Padi(N) | P2a(A) | Padu(A) | p2ar(N) | paa(N) | p2au(N)
0.001 | 0.4110 | 0.4194 | 0.7212 | 0.7912 | 0.8105 | 1.3722
0.002 | 1.8301 | 1.8947 | 3.0740 | 3.2854 | 3.4145 | 5.3836
0.003 | 3.4664 | 3.6261 | 5.5778 | 5.8312 | 6.1158 | 9.0434
0.004 | 4.6489 | 4.9111 | 7.1727 | 7.3642 | 7.7864 | 10.8372
0.005 | 5.1793 | 5.5055 | 7.6722 | 7.7633 | 8.2559 | 10.8698
0.006 | 5.1464 | 5.4880 | 7.3298 | 7.3343 | 7.8099 | 9.8046
0.007 | 4.7371 | 5.0501 | 6.5004 | 6.4488 | 6.8510 | 8.2590
0.008 | 4.1314 | 4.4196 | 5.4764 | 5.3967 | 5.7198 | 6.6504
0.009 | 3.4638 | 3.6929 | 4.4427 | 4.3604 | 4.5967 | 5.1905
0.010 | 2.8193 | 2.9963 | 3.5068 | 3.4344 | 3.6102 | 3.9673
0.011 | 2.2434 | 2.3763 | 2.7126 | 2.6547 | 2.7753 | 2.9872
0.012 | 1.7540 | 1.8577 | 2.0687 | 2.0235 | 2.1000 | 2.2259
0.013 | 1.3527 | 1.4175 | 1.5586 | 1.5263 | 1.5781 | 1.6483
0.014 | 1.0319 | 1.0866 | 1.1647 | 1.1422 | 1.1734 | 1.2141
0.015 | 0.7804 | 0.8102 | 0.8662 | 0.8497 | 0.8744 | 0.8920
0.016 | 0.5862 | 0.6093 | 0.6395 | 0.6293 | 0.6417 | 0.6538
0.017 | 0.4378 | 0.4527 | 0.4713 | 0.4645 | 0.4706 | 0.4785
0.018 | 0.3256 | 0.3343 | 0.3467 | 0.3419 | 0.3479 | 0.3498
0.019 | 0.2413 | 0.2450 | 0.2541 | 0.2512 | 0.2541 | 0.2557
0.020 | 0.1783 | 0.1836 | 0.1858 | 0.1843 | 0.1862 | 0.1868

Table 3.4: Simulation results for p3(\)
Simulation results for pi(A\) under different v (%)
2.0 2.2 24 2.6 2.8 3.0
0.001 0 0.0001 | 0.0004 | 0.0012 | 0.0024 | 0.0051
0.002 | 0.0001 | 0.0008 | 0.0037 | 0.0100 | 0.0208 | 0.0377
0.003 | 0.0002 | 0.0025 | 0.0116 | 0.0277 | 0.0556 | 0.0884
0.004 | 0.0004 | 0.0059 | 0.0219 | 0.0512 | 0.0899 | 0.1323
0.005 | 0.0008 | 0.0090 | 0.0321 | 0.0702 | 0.1121 | 0.1501
0.006 | 0.0012 | 0.0117 | 0.0409 | 0.0808 | 0.1172 | 0.1454
0.007 | 0.0015 | 0.0156 | 0.0474 | 0.0830 | 0.1109 | 0.1229
0.008 | 0.0017 | 0.0170 | 0.0490 | 0.0803 | 0.0995 | 0.0977
0.009 | 0.0021 | 0.0181 | 0.0475 | 0.0723 | 0.0809 | 0.0714
0.010 | 0.0023 | 0.0185 | 0.0436 | 0.0615 | 0.0621 | 0.0512
0.011 | 0.0022 | 0.0180 | 0.0399 | 0.0502 | 0.0455 | 0.0346
0.012 | 0.0025 | 0.0165 | 0.0344 | 0.0410 | 0.0339 | 0.0218
0.013 | 0.0020 | 0.0140 | 0.0285 | 0.0309 | 0.0232 | 0.0145
0.014 | 0.0020 | 0.0134 | 0.0238 | 0.0233 | 0.0158 | 0.0086
0.015 | 0.0016 | 0.0118 | 0.0192 | 0.0171 | 0.0116 | 0.0056
0.016 | 0.0019 | 0.0098 | 0.0148 | 0.0130 | 0.0069 | 0.0034
0.017 | 0.0016 | 0.0087 | 0.0118 | 0.0090 | 0.0047 | 0.0020
0.018 | 0.0015 | 0.0066 | 0.0091 | 0.0064 | 0.0034 | 0.0010
0.019 | 0.0010 | 0.0057 | 0.0070 | 0.0046 | 0.0020 | 0.0006
0.020 | 0.0010 | 0.0043 | 0.0050 | 0.0028 | 0.0010 | 0.0003
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3.4.3 Discussions on applications

In this chapter, we only consider triangular holes. For non-triangular holes, we as-
sume they can be detected and covered by additional nodes. Under this assumption,
our analytical results can be used for planning of WSNs. For example, a WSN is
used to monitor a planar target field and the ratio v = 2, according to the analytical
upper bounds, we can see that the maximum proportion of the area of triangular
holes under v = 2 is about 0.05%, which can be neglected. It means that as long
as the planar target field can be triangulated by nodes, we can say the target field
is covered. But if 7 = 3 and at least 95% of the target field should be covered,
then it means that the proportion of the area of triangular holes can be at most 5%.
From the analytical upper bounds of v = 3, it can be seen that when the intensity
A = 0.009, the upper bound is about 5%, so in order to cover at least 95% of the
target field, the intensity of nodes should be larger than 0.009. Although in our
simulations, we only consider 7y between 2.0 and 3.0, similar results can be obtained

for any other values of ~.

3.5 Chapter summary

In this chapter, we have considered the accuracy of homology based coverage hole
detection on plane. We first derive the relationship between Cech complex and Rips
complex in terms of coverage holes, which shows that their relationship is related
to the ratio between communication and sensing radii of each sensor. Based on the
relationship, the situations when Rips complex may miss coverage holes are iden-
tified. We find that the holes missed by Rips complex are always bounded by a
triangle, so define them to be triangular holes. Furthermore, we use the proportion
of the area of triangular holes to evaluate the accuracy of homology based coverage
hole detection on plane. Sensors are assumed to be randomly deployed on a planar
target field according to a homogeneous Poisson point process. Under such homoge-
neous configuration, without considering border effect, the proportion of the area of
triangular holes is equivalent to the probability of any point in the target field being
inside a triangular hole. Then we consider the probability in three different cases of
the ratio between communication and sensing radii. For each case, the closed form
expressions for the lower and upper bounds of the probability are derived. Simu-
lation results are well consistent with the analytical lower and upper bounds, with

maximum differences of 0.5% and 3%.
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Chapter 4

Accuracy of Homology based

Coverage Hole Detection on Sphere

4.1 Introduction

In Chapter 3, the accuracy of homology based coverage hole detection on plane has
been analysed. But in some real applications, such as volcano monitoring [14] and
forest monitoring [15], the target fields are complex surfaces. So it is also important
to consider the coverage hole detection problem of WSNs on surfaces. On the other
hand, from theoretical point of view, the coverage on 3D surfaces is quite a different
problem from its counterpart in 2D plane. As sphere is the simplest case of 3D
surfaces, we choose it as the first step for the accuracy analysis of homology based
coverage hole detection in this chapter. The relationship between Cech complex and
Rips complex on sphere is different from that on plane. Similar as on plane, the
holes missed by Rips complex on sphere are always bounded by a spherical triangle
and are thus defined to be spherical triangular holes. We also use the proportion
of the area of spherical triangular holes to evaluate the accuracy of homology based
coverage hole detection on sphere. There is not much work on the proportion of
the area of spherical triangular holes. In [96], the authors proposed the surface
coverage model and derived the expected coverage ratio under stochastic deployment
on 3D surface. In [97], the expected coverage ratio under stochastic deployment on
3D rolling terrains was derived. Nevertheless, none of these research considered

spherical triangular holes.

In this chapter, we first analyse the relationship between Cech complex and Rips

complex in terms of coverage holes on sphere. we find that a hole in a Cech complex
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missed by a Rips complex must be bounded by a spherical triangle. Based on that,
a formal definition of spherical triangular hole is given.

Second, we choose the proportion of the area of spherical triangular holes as
a metric to evaluate the accuracy of homology based coverage hole detection on
sphere. Such proportion is analysed under a homogeneous setting and it is related
to the communication and sensing radii of each sensor. Three cases are considered
for the computation of such proportion. For each case, closed form expressions for
lower and upper bounds of the proportion are derived.

Third, extensive simulations are performed to evaluate impacts of communication
and sensing radii, radius of sphere on proportion of the area of spherical triangular
holes. It is shown that simulation results are well consistent with the analytical
lower bound, with a maximum difference of 0.5%, and consistent with the analytical
upper bound, with a maximum difference of 3%. Furthermore, simulation results
show that the radius of sphere has little impact on the proportion when it is much

larger than communication and sensing radii.

4.2 Models and definitions

Consider a collection of stationary sensors (also called nodes) deployed randomly on
a sphere S? with radius R according to a homogeneous Poisson point process with
intensity A. For any two points p; and py on S?, the distance between them d(py, ps)
is defined to be the great circle distance, which is the shortest distance between any
two points on the surface of a sphere measured along a path on the surface of the
sphere. As usual, isotropic radio propagation is assumed. All sensors have the same
sensing radius R, and communication radius R, on S%. It means for any sensor
located at v on S§?, any point p on S* with d(v,p) < R, is within the sensing range
of the sensor; and for any two sensors located at v;, v; on S?, they can communicate
with each other if d(v;,v;) < R.. In addition, we assume Ry < R, R. < R.

On sphere, we also use Cech complex and Rips complex to capture coverage holes.
Before constructing them, we need to point out that the realisation of k-simplex on
sphere is different from that in Euclidean space R?. The realisation of 0-, 1-, 2- and
3-simplex in R? has been shown in Figure 2.2, here we give the realisation of 0-,
1- and 2-simplex on a sphere S? in Figure 4.1. We can see that on a sphere S?, a
O-simplex [vo] is a vertex , a 1-simplex [vg, v1] is the shorter arc of the great circle
passing through vy and vy, a 2-simplex [vg, v1, V9] is a spherical triangle vyv vy With

its interior included.
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0-simplex I-simplex 2-simplex

Figure 4.1: 0-, 1- and 2-simplex on sphere

Then we can construct Cech complex and Rips complex. Let V denote the set of
sensor locations in a WSN on S? with radius R and 8§ = {s,, v € V} denote the collec-
tion of sensing ranges of these sensors: for a location v, s, = {x € S* : d(z,v) < R,}.
According to Definition 2.7, the Cech complex of the WSN on sphere, denoted by
Cr.(V), can be constructed as follows: a k-simplex [vg, vy, - - - , vy] belongs to Cg, (V)
whenever Nf_s,, # (. Similarly, according to Definition 2.8, we consider here the
metric space (S%,d), then the Rips complex, denoted by Rz, (V), can be constructed
as follows: a k-simplex [vg, vy, - - -, vg] belongs to Ry (V) whenever d(v;, v,,) < R, for
all 0 <! <m < k. In addition, since we consider only coverage holes on the sphere
S?, it is sufficient to construct 2-dimensional Cech complex and 2-dimensional Rips
complex of the WSN, denoted as Cv’l(i) (V) and fR% (V) respectively.

Figure 4.2 shows a WSN, its Cech complex and two Rips complexes for two
different values of R.. Depending on the relation of R, and R, the Rips complex and
the Cech complex may be close or rather different. In this example, for R, = 2R,, the
Rips complex sees the hole surrounded by 2,3, 5,6 as in the Cech complex whereas
it is missed in the Rips complex for R. = 2.5R,. At the same time, the true coverage
hole surrounded by 1, 2,6 is missed in both Rips complexes.

Theorem 2.2 in Chapter 2 presents the relationship between Cech complex and
Rips complex in Euclidean space, but that is not true for sphere. So we derive the

relationship between C’%(V} and ngc) (V) on sphere as follows.

Lemma 4.1. Let V denote the set of node locations in a WSN on S* with radius
R, all nodes have the same sensing radius Ry and communication radius R., Ry <

R, R. < R, then
325{26) (V) C 01(%28) (V) C Rg%s (V), whenever R. < Rarccos([3cos*(R,/R) — 1]/2) (4.1)

Proof. The second inclusion is trivial because for any k-simplex [vg, vy, -+ ,vx] €
Cv’gg)(\?), it means the sensing ranges of these nodes have a common intersection,

so the pairwise distance d(v;,v;) < 2R, for all 0 < ¢ < j < k, which means
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Figure 4.2: (a) A WSN, (b) Cech complex, (¢) Rips Complex under R, = 2R,, (d)
Rips Complex under R, = 2.5R,

[vo, v1, -+, k) € RS, (V).

As for the first inclusion, it is clear that iRgC)(V) and C’%(V) contain the same 0-
simplices. It is also easy to see that all 1-simplices in ngc)(V) must also be in CV’J(QQS)(V)
since for any 1-simplex [v;, v;] with distance d(v;, v;) < R, < Rarccos([3 cos?*(Rs/R)—
1]/2) < Rarccos(2cos*(Rs/R) — 1) = 2R,, it means that the sensing ranges of the
two nodes have a common intersection. So we only need to prove that all 2-simplices
in ngj (V) must be in C’ﬁ)(\?). It is equivalent to say that for any three nodes with
pairwise great circle distance no larger than R, their sensing ranges must have a
common intersection.

Assume a 2-simplex [vg, vy, 5] € ngc) (V), then the three nodes vy, v, and vy must
determine a plane o. We consider the spherical cap on S? cut off by the plane .
Since R. < R, the spherical cap must be on a hemisphere. It is easy to see that the
intersection of the plane o and sphere S? is a circle ¢. Let O; be the center of circle
¢, O be the center of S?, P be the intersection of line OO; and S%.

Using spherical coordinates, we assume the point P has a spherical coordinate
(R,0,0). P may be inside' or outside the spherical triangle vyv,vy, which is shown
in Figure 4.3(a) and 4.3(b) respectively.

It can be seen that P has the same great circle distance to vy, v; and vs, denoted

Tt also includes the case that P is on one arc of the spherical triangle vovivs.
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Figure 4.3: Illustrations of P and spherical triangle vyvjve: (a) P is inside the
spherical triangle vovive, (b) P is outside the spherical triangle vov;vy

by d,. If P is inside the spherical triangle vov;vq, as shown in Figure 4.3(a), then we
can prove d, < R,. Since P lying inside the spherical triangle vyv;ve means 3+ v+
d = 27, there must be one angle no smaller than 27 /3. Without loss of generality,
assume 5 > 27 /3. According to the spherical law of consines, we have cos(f) =
C°S<d°;{§>(;;;§)<dp/m < —1/2 = cos(do /R) < [3cos?(d,/R) — 1]/2. In addition, dg, <
R. < Rarccos([3cos?*(Rs/R) — 1]/2) = cos(dop1/R) > [3cos*(Rs/R) — 1]/2, and
0 < do1/R,d,/R < /2, so we have [3cos*(R,/R) — 1]/2 < [3cos?*(d,/R) — 1]/2 =

d, < R,, which means the point P is a common intersection of sensing ranges of

v, v1 and vy, S0 [vg, vy, Vo] € C‘ﬁi)(v)-

If P is outside the spherical triangle vov, vy, as shown in Figure 4.3(a), it indicates
that the spherical triangle vyvivs must be contained in half of the spherical cap.
Assume vy, v; and vy have spherical coordinates (R, 0, ¢y), (R,0,¢1) and (R, 6, ps),
where 0 € (0,7/2), 00 < ¢1 < 9, then we have v1 — @, Y2 — p1, 02 — o € (0,7).
Using doq, d12,dgo to denote the pairwise great circle distances between vg, v1, v,

then according to the spherical law of consines, we have

cos(dgy /R) = cos® 0 + sin® 0 cos(p1 — o) (4.2)
cos(dia/R) = cos® 0 + sin® 0 cos(pa2 — ¢1) (4.3)
cos(dpz/ R) = cos? 0 + sin  cos(pa — pp) (4.4)

In addition, we use o to denote the angle between two arcs vgv; and vgvs, M to

denote the middle point of the arc vgvs and dgyy, dq s to denote great circle distances
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between vy, v; and M. It can be seen dyy = dp/2. Similarly, we have

cos(dia/R) — cos(dp1/R) cos(dpz/ R)

_ 45
cos o sin(dor /R) sin(doa/ F) (4.5)
oS d—léw = cos Ci{o; cos Cg)}]\g + sin d;; Ccos d;;; cos o (4.6)

From (4.5) and (4.6), we can obtain

dlM _ COS(dOl/R) + COS(d12/R)

4.7
"R 2 cos(dp/(2R)) (4.7)
Consequently
dinm dopr  COS dT%l + cos ‘% — cos d% —1
‘R - 4.8
oS R oS R 2 cos(doz/(2R)) (4.8)
From (4.2), (4.3), (4.4) and (4.8), we get
cos dl—M — COoS dowr = sin” 6 cos S SH; FL55 sin 2255 (4.9)
R R cos 5%

Since 0 < @1 — g, P2 — 1,02 — o < 7 and 0 < dypr/ R, dors /R, doo/ R < /2, it
can be obtained from (4.9) dyy; < doy < R./2 < Rg, which means the point M is a
common intersection of the sensing ranges of vy, v; and vy, so [vg, v1, V2] € C*,(,-fj (V). It
means all 2-simplices in Rﬁj(\?) must be in 01({23 (V). Consequently the first inclusion

is proved. O

According to (4.1), some relationships between Cech complex and Rips complex

in terms of coverage holes can be derived as illustrated in the following corollaries.

Corollary 4.2. When R, < Rarccos([3cos*(Rs/R) — 1]/2), if there is no hole in
ngc) (V), there must be no hole in Cv'l(;i) (V).

Corollary 4.3. When R, > 2R;, if there is a hole in ngz (V), there must be a hole
in C(V).

Corollary 4.4. When Rarccos([3cos?*(Rs/R) — 1]/2) < R. < 2R, there is no

guarantee relation between jo(\?) and C’gj (V) in terms of holes.

From the discussions above, a hole in a é}i’(\?) not seen in a ngc) (V) must be
bounded by a spherical triangle. Based on this observation, a formal definition of

spherical triangular hole is given as follows.
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Definition 4.1 (Spherical triangular hole). For a pair of complezes C’I(i)(\?) and
ngz (V) of a WSN, a spherical triangular hole is an uncovered region bounded by
a spherical triangle formed by three nodes vy, v, vs, where vy, vy, vs can form a 2-

simplex which appears in ngc) (V) but not in C’}(_—i) (V).

From Definition 4.1, we can see from Figure 4.2 that when R. = 2R, there is
one spherical triangular hole bounded by the spherical triangle formed by nodes 1,
2 and 6. And when R, = 2.5R,, there are two additional spherical triangular holes,
bounded by spherical triangles formed by nodes 2,3,6 and 3, 5, 6 respectively.

4.3 Bounds on proportion of spherical triangular

holes

In this section, the conditions under which any point on S? with radius R is inside
a spherical triangular hole are first given. From the discussions in Section 4.2, it
is found that the proportion of the area of spherical triangular holes is related to
the relation of R. and R,. Three different cases are considered for the proportion
computation. For each case, closed form expressions for lower and upper bounds of

the proportion are derived.

4.3.1 Preliminary

Lemma 4.5. For any point on S?, it is inside a spherical triangular hole if and only

if the following two conditions are satisfied:

1. the great circle distance between the point and its closest node is larger than

R;.

2. the point is inside a spherical triangle formed by three nodes with pairwise great

circle distance less than or equal to R..

Lemma 4.6. If there exists a point O which is inside a spherical triangular hole,

then R, < Rarccos/[1 + 2cos(R./R)]/3.

Proof. According to Definition 4.1, if there is a point O inside a spherical triangular
hole, then there exists a 2-simplex o € .'jo (V) while o ¢ C”I(%QS)(V), SO jo(\?) 7
C*}i’(\?). According to (4.1), we have R. > Rarccos([3cos?(Rs/R) — 1]/2) = R, <
Rarccos /[ + 2cos(R./R)]/3. O
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Lemma 4.7. Let O be a point inside a spherical triangular hole and | denote the
great circle distance between O and its closest neighbour, then
R, <1< Rarccos/[1 +2cos(R./R)]/3.

The proof is similar as that of Lemma 4.1.

Since we assume nodes are distributed on S? according to a homogeneous Poisson
point process with intensity A, any point has the same probability to be inside a
spherical triangular hole without considering border effect [43]. This probability
in a homogeneous setting is also equal to the proportion of the area of spherical

triangular holes.

We use spherical coordinates (R,6,y) to denote points on S? with radius R,
where 6 is polar angle and ¢ is azimuth angle. We consider the probability of
the point N with spherical coordinates (R,0,0) being inside a spherical triangular
hole. Since the communication radius of each sensor is at most R,, only the nodes
within R, from the point N can contribute to the spherical triangle which bounds
a spherical triangular hole containing N. Therefore, we only need to consider the
Poisson point process constrained on the spherical cap C(N, R.) which is also a
homogeneous Poisson point process with intensity A, where C'(N, R.) denotes the
spherical cap centered at point N and the maximum great circle distance between
N and points on the spherical cap is R.. We denote this process as ®. In addition,
Ts(z,y, z) denotes the property that the point N is inside the spherical triangular
hole bounded by the spherical triangle with points x, y, z as vertices. When ng, ny, no
are points of the process ®, Ty(ng, n1,n2) is also used to denote the event that the
spherical triangle formed by the nodes ng, n1,ns bounds a spherical triangular hole
containing the point N. In addition, we use T7(ng, n1,n2) to denote the event that
the nodes ng,n1,no can not form a spherical triangle which bounds a spherical

triangular hole containing the point N.

Let 70 = 79(®) be the node in the process ® which is closest to the point N.
There are two cases for the point N to be inside a spherical triangular hole. The
first case is that the node 7y can contribute to a spherical triangle which bounds a
spherical triangular hole containing the point N. The second case is that the node
To can not contribute to any spherical triangle which bounds a spherical triangular
hole containing the point N but other three nodes can form a spherical triangle

which bounds a spherical triangular hole containing the point N. So the probability
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that the point N is inside a spherical triangular hole can be defined as

ps(A) = P{N is inside a spherical triangular hole}

:P{ U Ts(n07n17n2>}
{no,nl,ng}gcb (410)

=P{ U T(70,n1,m2) } + P5(N)
{n1,n2}CP\{70(®)}

where

piec(k) = P{ U Ts(nil,nz’z,nw) | Té(7—07ni47ni5)}
{ni1, i }CP\{70(®)}

denotes the probability that the node 7y can not contribute to any spherical tri-
angle which bounds a spherical triangular hole containing the point N but other
three nodes can form a spherical triangle which bounds a spherical triangular hole

containing the point N.

4.3.2 Case 0 < R. < Rarccos([3cos?(Rs/R) — 1]/2)

Theorem 4.8. When 0 < R, < Rarccos([3cos*(Rs/R) — 1]/2), ps(\) = 0.

Proof. According to (4.1), when 0 < R, < Rarccos([3 cos*(Rs/R)—1]/2), ngc) (V) C
C’I(i)(\?), it means that every 2-simplex in ngc)(V) must be in C’]({QS) (V), so there is no
spherical triangular holes which means ps(\) = 0. O

4.3.3 Case Rarccos([3cos?(Rs/R) —1]/2) < R. < 2R,

Theorem 4.9. When R arccos([3 cos?(Rs/R) —1]/2) < R, < 2R, we have py(\) <
Ps(A) < psu(N), where

9 4 90u X QLPTVL(QO) elu(g()#’sl) .
psi(A) = 2TA°R / sin 90d60/ dgpsl/ sin 0,
0o

/R 2m—pm (60) (4.11)
x ¢ NOW R =ASH 0. ean)l (1 _ o=AIS~(0.01.00)1) g,
and
2 4 9071. . 2@777,(90) elu(e(),(Psl) .
Psu(A) = 2TN°R / sin Hodﬁo/ d(psl/ sin 6,
s/R 21— om (60) 6o (4.12)

% e—)\\C(N,RGOHe—)\|S+(90,<p81)|(1 o e—)\|S’(00,90,g051)\)d91 + pseC(A)

S
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and

B, = arccos \/[1 + 2 cos(R./R)]/3

©m(0y) = arccos[(cos(R./R) — cos® )/ sin? 6]

Oru (0o, @s1) = min{b1u1 (6o, s1), Oruz(0o, Ps1) }

0141 (0o, ps1) = arccos {COS(RC/R)/\/l — sin? @ sin? @sl} + arctan(cos @, tan )

O1u2(00, ps1) = arccos {COS(RC/R)/\/l —sin? 6, sin2(3031 — @m(eo))}

+ arctan(cos(ps1 — ©m (o)) tan by)
|C(N, Rby)| = 2mR*(1 — cos ;)

Ps1 01u(00,)
5 (00 )| = [ [ R sinodody

27 —@m (00) 6o

B ©m(0o) 024, (00,01,051,92)
1500, 01, 0.1)| = [ /

©21(00,01,51)

R2 sin 92 d‘gg dg02
)

cos(R./R) — cos 6 cos b

sin 0, sin 6,

92u(90, 01, Ps1 802) = min{elul(eoa @2), 92u2(907 01, @s1, 802)}
O2u2 (0o, 01, ps1, p2) = arccos {COS(RC/R)/\/l — sin® 0 sin? (g — @q1)

9021(907 01, 9051) = (g1 — arccos

+ arctan(cos(ps — @g1) tan by)

Sec

p3e(A) is obtained by simulations.

Proof. We first prove the lower bound. It can be obtained from (4.10) that

ps()\) > P{ U TS<TO7n17n2)}
{n1,n2}C@\{70(®)}

So for the lower bound, we only consider the first case that the closest node
To must contribute to a spherical triangle which bounds a spherical triangular hole
containing the point N.

Using spherical coordinates, we assume the closest node 7 lies on (R, ap,0) and

use |S| to denote the area of the set S, then we can get the distribution of aq as
F.,(0o) = Plag < b) = 1 — e ACW: R (4.13)

since the event agy > y means that the spherical cap C(N, Rf,) does not contain

any nodes from the process, which is given by the Poisson probability e A¢®:f %)l
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Furthermore, |C(N, Rfy)| can be given as
6o 27
IC(N, Rby)| = / R?sin 6dypdf = 27 R (1 — cos ) (4.14)
0o Jo
From (4.13) and (4.14), we can get the density of 7y
F.,(dfy) = 2r AR? sin fye A1)l 49, (4.15)
The integration range for #, can be easily obtained. According to Lemma

4.7, we have R, < Ry < Rarccos /[l +2cos(R./R)]/3, so Ry/R < 0y < 0, =
arccos \/[1 + 2 cos(R./R)]/3.

Therefore the probability of the first case can be given as

P{ U Ts<707n17n2)}
{n1,n2}C@\{70(®)}
Bou (4.16)
= P{ U TS((R, 90,0),n1,n2)}Fao(d00)

Rs/R {m.na}C®)

where @ is the restriction of ® in C(N, R.)\C(N, Rbj).

Once the node 7y is determined, the other two nodes must lie in the different half
spaces: one in H™ = R* x (0,7/2) x (7, 27) and the other in H~ = R* x (0,7/2) x
(0,7). Assume n; lies in H* and ny lies in H~. Since the great circle distance to 7
is at most R., ny and ny must also lie in the spherical cap C(7y, R.). Furthermore,
the great circle distance to the point N is at most R, and larger than R, they
should also lie in the region A = C(N, R.)\C(N, Ray). Therefore, n; must lie in
Gt = H"NC(m, R:.) N A and ny must lie in G~ = H~ N C(79, R.) N A. In addition,
considering the great circle distance between n; and ny should be at most R, and
the point N should be inside the spherical triangle formed by 79, n; and ns, n; must
lie in the shadow region At = Gt N C(Ma, R,.), shown in Figure 4.4. M; and M,
are two intersection points between bases of spherical caps C (N, Rag) and C'(79, R.),

such intersection points must exist in this case since R, < 2R, < 2Ray.

Ordering the nodes in A" by increasing azimuth angle so that 7 = (R, 01, ps1)
has the smallest azimuth angle ;. And assume the nodes 7y, 7y and another
node 7, € GG~ can form a spherical triangle which bounds a spherical triangular
hole containing the point N, then 7 must lie to the right of the great circle passing
through 71 and N, denoted by H™ () which contains all points with azimuth angle

¢ € (ps1 — T, ¢s1). In addition, the great circle distance to 71 is no larger than R.,
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Figure 4.4: Tllustration of region AT in the case Rarccos([3cos?*(Rs/R) — 1]/2) <
R. <2R;

so the node 7 must lie in the region S7, as illustrated in Figure 4.5.
S (10,11) =S (g, bh, 051) = G~ ﬂH+(§051) ﬂC(TL R.)

Here we need to obtain the density of node 7. Considering the way 71 was
defined, there should be no nodes with an azimuth angle less than ¢, in AT, that

is to say no nodes are in the region
S+(7'0,7'1) = S+(Oéo’§0s1) = A" ﬂH+(9051)

Since the intensity measure of the Poisson point process in spherical coordinates

is AR%sin 0dfdyp, the density F,, of 7; can be given as
F, (dfy, dps) = AR? sin 0N (@021l 49, dop (4.17)

Then we derive the integration domain D(ag) with respect to parameters (01, @s1 ).
Assume the point M, has the spherical coordinate (R, ag, m), om € (0,7). Since
the great circle distance between 79 and M, is R., then according to the spherical law
of consines, we have cos % = cos? ag + sin® ag cos g, = P (ag) = arccos|(cos % —
cos? ap)/(sin? a)]. It can be seen that points M; and @ have the spherical coordi-

nates (R, ap, 27— () and (R, ag, 2¢0m () respectively, where () is one intersec-
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Figure 4.5: Illustration of regions S™ and S~ in the case Rarccos([3 cos?(Rs/R) —
1]/2) < R. < 2R,

tion point between bases of spherical caps C(NV, Rayp) and C(Ms, R.). Thus the inte-
gration range for g is 27 — @ (o), 20m(a0)]. In addition, assume any point with

great circle distance R, to 7y has the spherical coordinate (R, 0, ¢;), still using the

spherical law of consines, we can obtain cos % = oS ag cos 0y + sin o sin 0; cos p; =

cos(Rc/R)
\/1fsin2 ag sin? ©t
point with great circle distance R, to M has the spherical coordinate (R, 0}, ¢}), we
cos(R:/R)
ao sin’ (¢} —pm(ao))
Then the integration range for 6; is [0y, 01, (a0, @s1)], where 01, (ag, ps1) = min

{elul (Oé(), 9051)7 91u2(a07 @sl)}a Hlul (Ofo, (;031) = et(aﬂv 9051) and 91u2(a07 9051) = 92(0407 9051)'
Furthermore, |S™ (g, ps1)| can be expressed as

0 (v, 1) = arccos| ] + arctan(cos ¢y tan o). Similarly, assume any

have 0;(a, ¢}) = arccos| | + arctan(cos(¢] — om(ap)) tan ap).

1—sin?

©s1 01u(c0,p) 5 .
|ST (v, 0s1)| :/ / R? sin Odfdp (4.18)
21 —@m () Y ag

Assume only 79, 77 and nodes in S~ (g, 71) can contribute to the spherical triangle
which bounds a spherical triangular hole containing the point N, we can get a lower
bound of the probability that the point NV is inside a spherical triangular hole. It is
a lower bound because it is possible that 7, can not contribute to a spherical triangle
which bounds a spherical triangular hole containing point /N, but some other nodes

with higher azimuth angles in the region A" can contribute to such a spherical
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triangle. For example, in Figure 4.6, if there is no node in S~ but there are some
nodes in S, then 7; can not contribute to any spherical triangle which bounds
a spherical triangular hole containing point N, but 7, can form such a spherical

triangle with 73 and another node in S'~.

Based on the assumption, we have

P{ U TS((R7 607())’”17”2)}

{m,m}Q@gO

>P{ U Ts((R7 90,0),7’17712)}
nng,@o (S~ (r0,71)
://D(g )P{ U TS((R, 90a0>7(R7 0179081)7n2)}F7'1(d917d9051) (419)

n2C®y (S~ (60,01,051)

://D(e )P{%O(S*(@o,@usosl)) > 0}, (dfy, dpy,)

://D(9 )(1 _ 6_)‘|S_(90791,<P51)‘)F7_1<d017 dps)
0

where [S™(0y, 01, ps1)| can be expressed as

QOm(GO) 0211,('90:01’@517902) 2 .
/ R? sin 0ydf,d e, (4.20)

|57 (00,61, 0s1)| :/

9021(6()791,‘P31) 60

and

cos(R./R) — cos B cos b

sin 64 sin 6,

02u<007 01, Ps1, 902) = min{91u1(907 902), 92u2(907 01, Ps1, 902)}
O2u2(00, 01, ps1, p2) = arccos {COS(Rc/RV\/l — sin? o sin2(g02 — %1)}

©21(0o, 61, 0s1) = ps1 — arccos

+ arctan(cos(ps — ps1) tan 6;)

Therefore, from (4.15), (4.16), (4.17) and (4.19), the lower bound shown in (4.11)

can be derived.

Next we will prove the upper bound. As discussed in Section 4.3.1, there are two
cases for the point N being inside a spherical triangular hole. As for the second case
that the closest node 79 can not but some other nodes can contribute to a spherical
triangle which bounds a spherical triangular hole containing the point N, we also get
it by simulations as the case on plane. Simulation results show that this probability is
less than 0.003% at any intensity A when R arccos([3 cos?(R,/R)—1]/2) < R. < 2R,.
So we still focus on the probability of the first case.
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Figure 4.6: Illustration of regions S'* and S'~ in the case R arccos([3 cos?(Rs/R) —
1]/2) < R. < 2R,

For the lower bound, we only considered the case that 71 contributes to a spherical
triangle which bounds a spherical triangular hole containing point N. For the upper
bound, we need to further consider the case that 7 can not but some other nodes in
AT can contribute to such a spherical triangle, shown in Figure 4.6. Assume the node
71 = (R, 0, ¢;) with the second smallest azimuth angle in A™ can contribute to such
a spherical triangle, it means that there is no node in S~ (v, 61, ps1) but there is at

least one node in the region S" (v, 01, vs1, 01, ¢%) = S~ (o, 07, ¢'1)\S™ (v, 01, ©s1)-

Then the density of the pair (71, 7]) is given as

Fry (dfy, dipsi, dB7, dly) = N*R*sin 0, sin e " 02)ldo, dp,doydy),,  (4.21)

The probability that 7; can not but 7{ can form a spherical triangle which

bounds a spherical triangular hole containing point N with 75 and another node
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in S (ag, b1, vs1,07, ¥.;) can be given as

P{ U Ts((R7 907(])77—{777'4) | Ts/(<R7 90,0),7’1,713)}
{ng,n4}§<1>;90 NS~ (r0,71)

://// P{®, (S (00,01, 0a)) = 0}

X P{CI)/GO (S,_ (907 elv Psls 9/1’ 90;1)) > O}FH,T{ (delv dcpsla dglh d@;l)

= [[[] N5 e (1 NS OGN E (s, 1 )
(4.22)

As we can see from Figure 4.6, as long as 7{ has a higher polar angle than 7
has, the sum of |S™ (v, 01, ps1)| and [S" (ap, b1, @51, 07, ©%;)| will be always smaller
than [S™ (v, o, @s1)]-

Therefore we can get from (4.22)

P{ U Ts((R7 e070)77-{7n4> ’ Ts/((R7 9070)77-17,”3)}
{nana}Cy (S~ (70,71) (4.23)

< ////<€—/\|S*(9o701,gos1)\ _ e—/\|5*(90,eo,ws1)\)FTM{ (dOy, depyy, d6,, dg')
Let SH_(eOa Ps1; 90;1) = S+<907 ()0;1)\54_ (907 3081)7 then
/ / AR sin @, ¢S 0wl gyt g =1 — e NATNS Copan)l < 1 (4.24)

It is the complement of the probability that no node is in the region AT\S™(6y, ¢s1).
From (4.19), (4.21), (4.23) and (4.24), we can obtain

L U T((R6,0),7,m)}

n2C®y (S~ (r0,71)

+P{ U Tu((R,60,0),7,n4) | TL((R,60,0),71,n3)}
{n37n4}91>’90
msf(‘ro,ri)

< // (1 _ e—AIS*(Ho,Go,sosl)l)Fﬁ(dgh dtpsﬂ
D(6o)

(4.25)

where [S™(0y, 0y, ps1)| has the similar expression as (4.20).

Similarly, we can further consider the case that neither of 7, and 7| can contribute
to a spherical triangle which bounds a spherical triangular hole containing point NV,
but other nodes with even higher azimuth angle can contribute to such a spherical

triangle. In this way, we can get the same result as (4.25).
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Therefore, it can be derived that

P{ U TS<(R, 90,0),%1,712)}
{n1m2}Cof (4.26)

< // (1 — e M5 boes DN B (df,, dipsy)
D(6o)

From (4.10), (4.15), (4.16), (4.21) and (4.26), the upper bound shown in (4.12)

can be derived. ]

4.3.4 Case R, > 2R,

Theorem 4.10. When R. > 2R, we have pg(\) < ps(A) < psu(A), where

Rc

b1 2 9’111(90,9051)
m(N) = 27T)\2R4{/R sin@odeo/ dgosl/ sin 0,

its 60
% e*MC(N,Pb@o)l6*>\|S+(90,<P51)|(1 _ 6*>\|S_(90,917<Ps1)\)d91
4.27)
90u 2¢m(90) 91u(907¥>s ) (
+ sin@odeo/ dgpsl/ 1 sin ;e MW 100
R./2R 2m—pm (0o) 0o

X e NS G0l (1 _ e—A\s-wo,el,«pSl)gd@l}

and

R,

55 21 07, (00.ps1)
pu(N) = 27T)\2R4{/RR sin@onO/ dgpsl/ sin 0,

s 00
5 e*/\|C(N,R90)|e*)\\S+(00,4p51)|(1 _ efx\sf(eo,eo,gosln)del
Bou 01 (00,p51)
+ sin@odeo/ dgpsl/ sin 0 e~ MCW.Rbo)|
Rc/2R 2m—pm(0o) 0o
% 67/\|S+(90’(p51)‘<1 _ e*/\‘s_(90,90;</?s1)|>d91} +pzec<)\>

(4.28)

2¢m (00)

and

01 (60, 1) = min{ 01,1 (6o, s1), 0140(00, 0s51) }

0.2 (60, ps1) = arccos {COS(RC/R)/\/l — sin? § sin? 4,031} — arctan(cos p, tan )

p¢(N) is obtained by simulations.

We can use the same method as in Section 4.3.3 to get the lower and upper
bounds, shown in (4.27) and (4.28) respectively. But we need to consider two situa-
tions Ry/R < 0y < R./(2R) and R./(2R) < 0 < 0, = arccos \/[1 + 2cos(R./R)]/3.
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Figure 4.7: Tllustrations of regions in case R. > 2R,. (a) the regions A, ST and
S~, (b) the regions S"" and S~

In the first situation, 6y < R./(2R) means that the spherical cap C(V, Rfy) is com-
pletely included in the spherical cap C(7, R.). The illustrations for the regions
AT ST S7 S and S’ are shown in Figure 4.7(a) and 4.7(b) respectively. In ad-
dition, the integration range for ¢y is [r, 27]. The second situation is the same as
that in Section 4.3.3. Furthermore, simulation results show that p3*¢(\) is less than

s

0.16% at any intensity when 2R, < R, < 3 and R, < R, R. < R.
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4.3.5 Case R — o0

Intuitively, when R — oo, the cases on sphere should be the same as those on plane,
which will be proved in this section. We choose the case Rarccos([3cos?(Rs/R) —
1]/2) < R. < 2R, on sphere and the case v3 < v = R./R, < 2 on plane for

proof. For other cases, the proof is similar. For convenience, let 6y = ro/R, 0, =

/R, o5 =T+ ¢1.

Lemma 4.11.
]%im Rarccos([3cos?(Ry/R) —1]/2) = V3R,
—00

Proof. According to I’'Hopital’s rule, we have

é%Rarccos([i% cos’(R,/R) — 1]/2)
R lim arccos([3 cos?(z) — 1]/2)

z—0 €T
3cosxsinx

QHO V1= ([Bcos?(z) — 1]/2)2
6cosxsinx

=R, lim = V3R,
@’HO\/ 3 —3cos?z)(1+ 3cos?x)

(letz = R,/R)

O
Lemma 4.11 means that when R — oo, the condition R arccos([3cos?(R,/R) —
1]/2) < R, < 2R, is equivalent to the condition v/3 < v = R./R, < 2.
Lemma 4.12.
}%1_1)1;0 Rby, = }%E}I;ORarccos VI +2cos(R./R)|/3 = R./V3
Proof. According to I’Hopital’s rule, we have
I%im Rarccos \/[1 + 2cos(R./R)]/3
—00
142 3
R lim arccos \/[1 + 2 cos(z)]/ (letx = R./R)
z—0 €T
_R_lim 1 sin x
xﬁo\/?;— 1+ 2cos(x)] /1 + 2cos(z)
sin x
=R./V3lim ———— = R./V3
/\/_xlg% V2 —2cosz /\/_
O
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Lemma 4.13. Let 6y = ro/R, then we have

I%im ©m(0y) = Rlim arccos|(cos(R./R) — cos® f)/ sin® 6]

=1 — 2arccos(R./(2rg)) = 7 — ¢i(1o)

where (1) is shown in (3.5).

Proof. According to I’'Hopital’s rule, we have

I%i—{%o arccos|(cos(R./R) — cos® 0y)/ sin® 6]

(cos(R./R) — cos*(ro/R))/ sin*(ro/R))

_ arccos( lim R./R?sin(R./R) — 2rq/R?sin(ry/R) cos(ro/R)
R—00 —2ro/R?sin(ro/R) cos(ro/R)

, R.sin(R./R
arCCOS(Rl—{I;o 2rg sin(rg/R) )

=arccos(l — R?/(2r}))

=arccos( lim
R—o0

)

Meanwhile, we have cos(m — 2arccos(R./(2r¢))) = 1 — R?/(2r2) and 0 < 7 —
2arccos(R./(2ry)) < m, so m — 2arccos(R./(2ry)) = arccos(1 — R?/(2r2)).

As from (3.5), we know ¢;(rg) = 2arccos(R,./(2r9)), Consequently

}%im arccos|(cos(R./R) — cos® )/ sin® fy] = 7 — 2 arccos(R./(2r0))

= — pi(ro)

Lemma 4.14. Let 0y = 19/ R, ps1 = 7 + 1, we have
cos(R./R)
\/1 — sin? 6, sin? Vs1

= \/Rg — 13 sin? o) — 19 cos

} + arctan(cos g tan 6p))

]%i_rgo ROy, (0o, 0s1) = }%1_{20 R(arccos {
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Proof. Still using I’Hopital’s rule, we have

lim R(arccos {COS(R /R) /\/1 — sin? 0 sin 9051} + arctan(cos pg; tan b))

R—o0

arccos {COS(RC/R)/\/l — sin®(ry/R) sin’ 9051}

II%E};O /R + 7' COS P41
— R2 (R Rc To Rc To To ) +
= 11m sin 7—7C057SIH7COS7SIH s To COS Pg
o [ _eeinm BRI RTRTR Pat) T EOR A
1— 51n2(r0/R sm Ps1

— im R.sin(R./R) — rqsin(rg/R) sin? g, M
R—oo \ [sin®(R,/R) — sinQ(ro/R) sin® ¢
~ lim R2 — 7"0 sin? Ps1
R Ry/sin?(R./R) — sin®(ro/R) sin® 4

:\/Rz — 13 sin? g1 + 79 COS Py = \/RS — 12 sin? 1 — 19 cos @y

+ 7 COS g1

According to Lemma 4.13 and 4.14, we can get the following lemma.

Lemma 4.15. Let 0y = 9/ R, 51 = 7 + 1, we have

]%H)rolo R01u2(907 (1051>

{ cos(R./R)

\/1 —sin? 6, sin2(<P51 — ©m(6o))
:\/Rg —rd sin2(gol + i(ro)) + 1o cos(p1 + ¢i(ro))

= lim R(arccos
R—o0

} + arctan(cos(ps1 — ©m(0o)) tan b))

According to Lemma 4.14 and 4.15, we obtain the lemma as follows.
Lemma 4.16. Let 0y =r9/R, ps1 = 7 + 1, we have
]%1_{1;10 RO1.(00, 1) = }%I_{I;O Rmin{01,1 (00, ¥s1), Oru2(bo, 0s1)} = Ri(ro, 1)
where Ry(ro, 1) is shown in (3.7).
Lemma 4.17. Let 0y = r9/R, ps1 = 7 + 1, we have
- + _ g+
I%E};o ST (00, ps1)| = [ST (1o, 1)

where |ST (6o, vs1)| and |ST(ro, p1)| are shown in (4.18) and (3.18).
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Proof. From (4.18), we have

Ps1 01 (00,)
ST (00, ps1)| = / / R?sin 0dfdyp

27r_807n (90) 00

Let 0 =7/R and ¢ = 7 + ¢/, then use Lemma 4.13 and 4.16, we get

Ps1—T Relu(eo,ﬂ'—i-tp')
/ Rsin(r/R)drdy’

lim [S* (0, ps1)| = lim
R—oo

R—oo T—Pm (90) ROy

@1 Ri(ro,¢")
:/ / rdrdy’ = S (ro, 01)|
wi(ro) Jro

1(ro

Similarly, we can get the following lemma.

Lemma 4.18. Let 0y = 19/R, 0, =r1/R, ps1 = 7 + @1, we have
]%i_{{.lo 1S™ (6o, 01, 051)| = |S™(ro, 71, 1)

where |S™(0y, 01, ps1)| and |S™ (19,71, p1)| are shown in (4.20) and (A.1).
From the lemmas above, we can get the theorem as follows.

Theorem 4.19.
lim psl()\> = p2dl()\)

R—o0

where pg(X) and pag (M) are shown in (3.3) and (4.11).

Proof. Let 0y =ro/R,01 =11/R, 051 =T+ 1.
First, from (4.14), it is easy to check

}%i_{%o |C(N, Rby)| = }%H)I;o 21 R*(1 — cos(ro/R)) = 7ry
From (3.5) and (3.6), we can get @, (ro) = 7 — 2p;(ro).
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Then, using the lemmas above, we can obtain from (4.11)

RGO’M 2<P’m(00) R91u(90,¢51)
im 27r)\2/ Rsin LROd’I“()/Q dgosl/ RsinE

=1
R—o0 s T—om (00) Réo R
a2 |Gt e
N )\7”‘06 AlS (90,%1)\(1 —e AlS (90,91,@51)|)d7~1

9 Re/V3 @u(ro) Ra(roer) | o
=21\ / TodT'g/ dgpl/ e o

s w1(ro) 0

Aim pg(X)

« 6—>\|5+(T0,<P1)|(1 _ e—MS—(ro,m,m)l)TldTl

= paair(A)

The upper bound can be proved similarly.

4.4 Performance evaluation

In this section, simulation settings are first given. Then simulation results are com-

pared with analytical lower and upper bounds under different settings of R, R, R.

4.4.1 Simulation settings

A sphere centered at the origin with radius R is considered in the simulations. The
probability of the point with spherical coordinate (R,0,0) being inside a spherical
triangular hole is computed. Sensors are randomly distributed on the sphere accord-
ing to a homogeneous Poisson point process with intensity A. The sensing radius
R, of each node is set to be 10 meters and communication radius R, is chosen from
20 to 30 meters with interval of 2 meters. Let v = R./Rs, then ~ ranges from 2 to
3 with interval of 0.2. In addition, A is selected from 0.001 to 0.020 with interval of
0.001. For each pair of (),v), 107 simulations are run to check whether the point

with spherical coordinate (R, 0,0) is inside a spherical triangular hole.

4.4.2 Impact of R, and R,

As illustrated in Section 4.2, Ry, < R and R. < R, here we choose R = 10R,
to analyse the impact of Ry and R. on the probability of any point being inside a
spherical triangular hole. Under this configuration, the probability ps(\) obtained
by simulations is presented with the lower and upper bounds in Figure 4.8(a) and

4.8(b) respectively.
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(b)

Figure 4.8: Proportion of the area of spherical triangular holes under R = 10R; (a)
simulation results and lower bounds, (b) simulation results and upper bounds

It can be seen that for any value of v, ps(A) has a maximum at a threshold
value \. of the intensity. As a matter of fact, for A < A., the number of nodes is
small. Consequently the probability of any point being inside a spherical triangular
hole is relatively small too. With the increase of A, the connectivity between nodes
becomes stronger. As a result, the probability of any point being inside a spherical
triangular hole increases. However, when the intensity reaches the threshold value,
the probability is up to its maximum. ps(\) decreases for A > A.. The simulations

also show that A, decreases with the increase of ~.

On the other hand, it can be seen from Figure 4.8(a) and 4.8(b) that for a fixed
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intensity A, ps(A) increases with the increases of 7. That is because when Rj is fixed,
the larger R, is, the higher is the probability of each spherical triangle containing a
coverage hole.

Furthermore, the maximum probability increases quickly with v ranging from 2.0
to 3.0. These results can also provide some insights for planning of WSNs, which
will be discussed in Section 4.4.4.

Finally, it can be found in Figure 4.8(a) that the probability obtained by simula-
tions is very well consistent with the lower bound. The maximum difference between
them is about 0.5%. Figure 4.8(b) shows that probability obtained by simulations
is also consistent with the upper bound. The maximum difference between them is
about 3%.

4.4.3 Impact of R

Although we assume Ry < R and R, < R, to better understand the impact of R
on the probability of any point being inside a spherical triangular hole, we choose
R to be bR,,10R, and 100R,. In addition, we also want to know the difference of
the probability under spherical and 2D planar cases. Therefore, simulation results,
lower and upper bounds of the probability under spheres with radii 5R,, 10R,, 100 R,
and 2D plane are shown in Figure 4.9(a), 4.9(b) and 4.9(c) respectively. Simulation
results for p3*°(\) under spheres with radii 5Rg, 10R, 100 R and 2D plane are shown
in Figure 4.10. The detailed values are presented in Appendix B.

It can be seen from Figure 4.9 that simulations results, lower and upper bounds
under spheres with radii 5R,, 10R,, 100Rs and 2D plane are very close with each
other. More precisely, the maximum difference of simulations results under spheres
with radii 5R, and 10R; is about 0.045%, which is about 0.06% under spheres with
radii 5R, and 100R, and is about 0.03% under spheres with radii 10R, and 100R,. In
addition, the maximum differences of simulation results between 2D planar case and
spherical cases with radii 5R,, 10R,, 100R, are 0.05%, 0.03% and 0.02% respectively.
It means the larger the radius of sphere is, the more closer are the simulation results
under sphere and 2D plane, it is because the larger the radius of sphere is, the more
likely of the local of each node on the sphere to be planar.

With respect to lower and upper bounds, it is found that under any two spheres
with radii 5R,, 10R,, 100R,, the maximum difference of lower and upper bounds are
0.06% and 0.12% respectively. Furthermore, under spheres with radii 5R,, 10R,, 100 R,

and 2D plane, the maximum difference of lower bounds is also 0.06%, and that of
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upper bounds is also 0.12%. More importantly, under sphere with radius 100R, and
2D plane, the maximum difference of lower bounds is 5 x 107 and that of upper
bounds is 2.5 x 107°. It means the probabilities under cases of sphere with radius
100R, and 2D plane are nearly the same, which is quite logical since when the radius
of sphere is much more larger than the sensing radius of any node, the local of any
node can be considered to be planar.

It can be further found that under above cases, the maximum differences of
simulation results, lower and upper bounds are all so small that they can be ne-
glected. Consequently, it also means that the radius of sphere has little impact on

the probability of any point on the sphere to be inside a spherical triangular hole.

4.4.4 Discussions on applications

Similar to the case on plane, our analytical results can also be used for planning of
WSNs. For example, a WSN is used to monitor a mountain and the ratio v = 2,
according to the analytical upper bounds, we can see that the maximum proportion
of the area of spherical triangular holes under v = 2 is about 0.06 %, which can
be neglected. It means that as long as the surface of mountain can be spherically
triangulated by nodes, we can say the mountain is covered. But if v = 3 and at
least 95% of the surface of the mountain should be covered, then it means that the
proportion of the area of spherical triangular holes can be at most 5%. From the
analytical upper bounds of v = 3, it can be seen that when the intensity A = 0.009,

the upper bound is about 5%, so in order to cover at least 95% of the mountain, the
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intensity of nodes should be larger than 0.009. Furthermore, our results can also be

used in the scenarios when using satellite to cover the whole earth.

4.5 Chapter summary

In this chapter, we consider the accuracy of homology based coverage hole detection
on sphere. First, the relationship between Cech complex and Rips complex on
sphere is derived, which is different from that on plane. After that, the situations
when Rips complex may miss coverage holes are identified and we find that the
holes missed by Rips complex are always bounded by a spherical triangle. So we
define them to be spherical triangular holes and use the proportion of the area of
spherical triangular holes to evaluate the accuracy of homology based coverage hole
detection on sphere. We consider a homogeneous case that nodes are randomly
distributed on a sphere according to a homogeneous Poisson point process. Under
such a setting and without considering border effect, the proportion of the area of
spherical triangular holes is equivalent to the probability of any point on the sphere
being inside a spherical triangular hole. Based on that, three different cases are
considered and for each case, the closed form expressions for the lower and upper
bounds of the probability are derived. Simulation results are well consistent with
the analytical bounds. More importantly, it is shown that the radius of sphere has
little impact on the probability as long as it is much larger than communication and

sensing radii of each sensor.
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Chapter 5

Graph based Distributed Coverage
Hole Detection

5.1 Introduction

For triangular holes, we have computed the proportion of their area to evaluate the
accuracy of homology based coverage hole detection approaches in Chapter 3. For
non-triangular holes, we aim to design algorithms to detect them. As discussed in
Section 2.1.3, graph based approaches usually only detect boundary nodes without
discovering boundary cycles. In this chapter, we aim to design a graph based algo-
rithm to find boundary cycles of non-triangular coverage holes in a WSN. In this
algorithm, we design a method to detect boundary nodes by checking whether there
exists a Hamiltonian cycle in their neighbour graphs. After that, some nodes are
randomly selected to initiate the process to find boundary cycles. It is possible that
some of the found cycles are not minimum or bound the same coverage holes, so it
is necessary to make some choices among these cycles. Comparing our algorithm
with a location based approach, we find that our algorithm can accurately discover

the boundary cycles of more than 95% coverage holes when the intensity is low.

5.2 Models and assumptions

Consider a collection of stationary sensors deployed randomly on a planar target
field. As usual, isotropic radio propagation is assumed. Each sensor monitors a
region within a circle of radius R; and may communicate with other sensors within

a circle of radius R..
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In addition, some other assumptions are as follows.

1.

4.

5.

There are sensors located on the external boundary of the target field. They
are known as fence sensors and other sensors are referred to as internal sen-
sors. Each fence sensor has two fence neighbours. This is also the general

assumption in many homology based algorithms [38, 42, 82, 86].

. Although sensors are not aware of their locations, every sensor can know

whether it is a fence or an internal node by using the mechanisms presented
in [44] or other methods as in [45]. In fact, it is a conventional assumption
adopted by many existing range based methods [44, 98] or connectivity based
methods [45, 86].

. Internal sensors are distributed on the planar target field according to a ho-

mogeneous Poisson point process with intensity A.
Each sensor has an unique ID.

The network has only one connected component.

Base on these assumptions, we can use a graph G(V, F) to represent the WSN,

where V' denotes all the nodes of WSN, for any two nodes, if they can communicate

with each other, an edge connects them in the graph. For any node v; € V, its

neighbour graph is the sub-graph of G(V,FE) induced by all its neighbours. In

addition, we give the definition of equivalent transformation which will be used in

the algorithm and the performance evaluation part.

Definition 5.1 (Equivalent transformation). An equivalent transformation is a se-

quential combination of vertex insertion, deletion or replacement as follows:

e vertex insertion. For a cycle < vy, va, ..., 05, Vis1,. ..,V >, a vertex v' can be

inserted in the cycle if v' is a neighbour of v; and v;,1 in the cycle.

e vertex deletion. For a cycle < vy,vy, ..., v >, a vertex v; in the cycle can be

deleted if its two neighbouring vertices in the cycle are neighbours.

e vertex replacement. For a cycle < vy, vq, ..., v, >, a vertex v; in the cycle can

be replaced by v' if v’ is a neighbour of v; and its two neighbours or v',v; and

two neighbours of v; have at least one common neighbour.

Figure 5.1 presents an example showing vertex insertion, deletion and replace-

ment.
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Figure 5.1: Examples of equivalent transformations

5.3 Graph based distributed algorithm

In this section, we will propose a graph based distributed algorithm to find boundary
cycles of coverage holes in WSNs. The general steps of the algorithm are given first
and the details of each step are presented in the following parts.

The entire process of our algorithm can be summarized as follows.

1. Each sensor gets its 1- and 2-hop neighbours information and constructs a
neighbour graph. Then the Rips complex of the WSN can be constructed, as
shown in Figure 5.2(a).

2. Based on the neighbour graph, each node can determine whether it can be a
boundary node or not by checking whether there exists a Hamiltonian cycle in
its neighbour graph. If there exists, the node is assumed to be a non-boundary
node. Otherwise, it is assumed to be a boundary node. The results are shown
in Figure 5.2(b~c).

3. When each node has determined whether it is a boundary node or not, it
can broadcast this information to its neighbours. Then each node knows the
status of its neighbours. After that, some nodes can initiate boundary cycles
discovery process to find cycles bounding holes, such as the nodes denoted by

green diamond in Figure 5.2(d~e).
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© T (0

Figure 5.2: Procedures of graph based distributed algorithm. (a) Rips complex of a
WSN, (b~c) boundary nodes discovery, (d~e) boundary cycles discovery, (f) cycles
selection

4. Tt is possible that some cycles found in step 3 are not minimum or some cycles

bound the same hole. So it is necessary to minimize and make choices among
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all cycles found. The result is shown in Figure 5.2(f).

Each step is described in more detail in the following parts.

5.3.1 Neighbour discovery

In this step, each node needs to obtain all its 1- and 2-hop neighbours information.
This can be easily achieved by two broadcasts of hello message. In the first one, each
node broadcasts its id. When it gets all the ids of its 1-hop neighbours, each node
continues to broadcast a hello message containing the ids of its 1-hop neighbours.
After receiving the neighbour list of its neighbours, each node can construct its
neighbour graph. Assume I D; denotes the id of i-th node, G;(V;, E;) is the neighbour
graph of node ID;, where V; denotes the set containing ids of its 1-hop neighbours
and E; is the set containing all the edges between its 1-hop neighbours. Notice
that ID; is not included in V;. After that, the Rips complex corresponding to the
WSN can be constructed. As the WSN is on a planar target field, it is sufficient to
construct a 2-dimensional Rips complex of the WSN in order to find coverage holes.
All 0- and 1-simplices can be easily obtained. As for 2-simplices, any three nodes
which are neighbours of each other can form a 2-simplex. A Rips complex can be
built according to this rule, shown in Figure 5.2(a). In addition, the 1- and 2-hop

neighbours information will also be used in the step of cycles selection.

5.3.2 Boundary nodes discovery

After each node knows its 1- and 2-hop neighbours, it needs to determine whether
it is a boundary node or not. we propose a method based on Hamiltonian cycle
for the verification. For each internal node ID;, if it has less than three neighbours
or there exist no Hamiltonian cycles in its neighbour graph G;(V;, E;), this node is
considered to be a boundary node. Otherwise, it is considered as a non-boundary
node. For fence nodes, the node itself should be added to its neighbour graph and
verify whether there exists a Hamiltonian cycle in the new graph. So the problem
here is to find a method to search a Hamiltonian cycle in a graph. In general, it
is a NP-complete problem. However, considering the graph in our problem is the
neighbour graph of a node, it usually contains a small number of nodes, so it is
possible to use an exhaustive search method to check the existence of a Hamiltonian
cycle in a graph.

Figure 5.2(b) shows the result of boundary nodes detection, nodes denoted by

red stars are boundary nodes. We call the method as Hamiltonian cycle based
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boundary node detection (denoted by HC). We can see from the figure that some
nodes lying on the boundary of a hole are not recognized. It is also possible that some
boundary nodes found by the algorithm are not lying on the boundary of a hole (such
case does not happen in this example). In order to find more boundary nodes, we
aim to use the boundary nodes detected by the method HC. After some boundary
nodes have been found, each boundary node broadcasts a message indicating its
status (boundary) to its neighbours. So each node gets the status of its neighbours.
Considering that any boundary node should have at least two boundary neighbours
and the two neighbours should not be neighbours, we select the boundary nodes
that have only one boundary neighbour or have more boundary neighbours but
these neighbours are neighbours of each other. Each such node v chooses one of its
non-fence neighbours which has the minimum degree and is not a neighbour of any
boundary neighbour of v, and set the neighbour to be a boundary node. The process
of adding boundary nodes is repeated for the new added nodes and until no nodes
can be added. We call the method as improved Hamiltonian cycle based boundary
node detection (denoted by IHC). According to this rule, more true boundary nodes
can be found, such as the nodes denoted by blue stars in Figure 5.2(c). It is also
possible that some nodes are wrongly detected as boundary nodes, such as the nodes
denoted by magenta stars in Figure 5.2(c). This case is usually due to the fact that
nodes near the external boundary of the target field have a relatively lower number

of neighbours.

5.3.3 Boundary cycles discovery

After determining the status (boundary), each boundary node broadcasts a message
indicating its status to its neighbours. Then, each node knows the status of its 1-hop
neighbours. The next step is to find the cycles bounding holes. Since the algorithm
is distributed, there is no central unit to select some nodes to initiate the process.
Considering the fact that any internal node whose neighbour graph has more than
one connected components must lie on the boundary of at least two coverage holes,
we choose such nodes with higher priority to initiate the process. In addition, any
other node which has no boundary neighbours or has the minimum id among all its
boundary neighbours can also initiate the process. Figure 5.2(d) shows the result of
selection. Nodes denoted by green diamonds are initiators.

Each selected node initiates the process by broadcasting a message. As seen from

Figure 5.2(c), some nodes lying on the boundary are not recognized as boundary
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nodes. Given that only boundary nodes continue broadcasting when they receive
a broadcast message, it is possible that some holes can not be discovered. But if
all nodes, no matter boundary nodes or not, broadcast the message, the message

complexity will be high. So the structure of the message is designed as in Table 5.1.

Table 5.1: Message structure
node seq | type
ids 0,1or2

The element node seq contains the ids of nodes that have received and for-
warded the message. The element type indicates the type of message. We define
three types of messages, denoted by 0, 1 and 2. 0 indicates that the last node in
node seq is a boundary node. 1 indicates that the last node is a non-boundary
node and 2 indicates that the last two nodes are non-boundary nodes. Furthermore,
we set a probability p(0 < p < 1) for non-boundary nodes. When a non-boundary
node receives a broadcast message with type 0, it will broadcast the message with
probability p and set the message type as 1. When a non-boundary node receives a
type 1 message, it will broadcast with probability p? and set the message type as 2.
If a non-boundary node receives a type 2 message, it will neglect it. Any boundary
node will set the message type as 0 when it broadcasts a message. In addition, for
any fence node, if it is not a boundary node, it will not forward any message. When
broadcasting a message, each node attaches its id to the node seq of the message
sequentially. In this way, the message contains all the ids of nodes from an initiating
node to the current one. In addition, the node also keeps the message, showing that
it has been visited by the path initiated by the initiator.

Whenever a node receives a message, it needs to first verify whether its id has
been in the node seq of the message. If so, the nodes deletes the message. Oth-
erwise, it continues to check whether the message has the same initiator as some
message kept by the node. If not, it means that the message is new and the node will
broadcast the message as illustrated in the last paragraph. If yes, the node needs
to verify whether the two messages can form a cycle. We use m,, and m, to denote
the new message and the message kept by the node. If the first ids in node seqs of
m,, and m, are the same and node seqs of m,, and m, have no other common ids,
the last id in the node seq of m, and the second last id in the node seq of m,*
are not neighbours, then a cycle can be formed and the node keeps the cycle. It

is possible that the cycle found is not minimum, this can be processed by the next

Lthe id of current node has been in mg
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step illustrated in Section 5.3.4. Furthermore, if the length of node seq in m,, plus
one is less than the length of node seq in m,, it means their exists a shorter path
between the initiator of the message and the node, so the node replaces m, by m,,
and broadcasts m,, as illustrated in the last paragraph. In addition, in order to re-
duce the message complexity, when any initiating node receives a message initiated
by another node, it will delete the message if the other initiator has higher id than
itself.

After the above process, some boundary cycles can be found and it is also possible
some cycles have not been discovered because there is no initiator selected in those
cycles. In this case, some node can further be randomly selected to initiate the
boundary cycles discovery process, such as the node denoted by green diamond in

coverage hole 1 in Figure 5.2(e).

To better understand the process of the algorithm, we use an example in Figure
5.3 to explain it. The Rips complex of a WSN is shown in Figure 5.3(a). According
to the rule defined in the step of boundary nodes discovery, we can see that nodes 1,
2, 4,5, 13, 14 and 16 are boundary nodes based on Hamiltonian cycle verification,
shown in Figure 5.3(b). Then node 16 has only one boundary neighbour, so it chooses
one node from its non-fence neighbours which has the minimum degree and is not
connected with node 1. In this way, node 7 is set to be a boundary node, shown
in Figure 5.3(c). Then nodes 1 and 5 are selected as initiators, shown in Figure
5.3(d), since the id of node 1 is smaller than its boundary neighbours and node 5
has two connected components in its neighbour graph. They broadcast a message
containing their ids respectively and set the message type as 0 because they are
both boundary nodes. When their neighbours receive the messages, they can decide
whether to transmit the message or not. For example, neighbours of node 5 (nodes
2,4, 6,7, 8, 14) receive the message. As nodes 6 and 8 are non-boundary internal
nodes, they can choose to broadcast the message with probability p, assume node 8
chooses to transmit the message but node 6 not. Since the other neighbours of node
5 are boundary nodes, they will broadcast the message. This process is shown in
Figure 5.3(e) (the message type is not shown in the figure). The node sequence in
a red bracket indicates that a node receives a message but has not transmitted the
message. Then in the next round, nodes 2, 4, 7, 8, 14 and 16 will broadcast (any non-
boundary fence node does not broadcast any message). We assume they broadcast
sequentially. The result of this round is shown in Figure 5.3(f), assuming nodes 6
and 8 choose to not transmit any message. The node sequence in a black bracket

indicates the message kept by the node. Node 1 will not transmit any message since
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it is an initiator and its id is smaller than any other initiators. After that, nodes
3, 5, 7 and 13 will continue broadcasting. And in this process, node 7 can find a
cycle <1, 16, 7, 5, 2> and node 13 can find another cycle <5, 4, 13, 14>, shown in
Figure 5.3(g). Similarly, node 5 will find the cycle <1, 2, 5, 7, 16> and node 14 will
find the cycle <5, 14, 13, 4> in the next round, shown in Figure 5.3(h). Since the
two sequences [1, 2, 5] and [1, 2, 4, 13] have two common nodes, node 14 will not
form a cycle and just broadcast the message containing the sequence [1, 2, 5|. After
that, no node will continue broadcasting messages. Until now, four cycles have been
found. We can see that some of them actually bound the same coverage holes. So

cycles selection should be performed, which will be illustrated in next section.

5.3.4 Cycles selection

After last step, many boundary cycles have been found. But it is possible that some
cycles are not minimum or bound the same holes or even are not really bounding
a hole. So it is necessary to analyse these cycles and make choices. This can be
realized distributively by each node in the cycle. For any node in a cycle, it first
checks whether there exists a shorter path between itself and other nodes in the
cycle by using its 1- and 2-hop neighbours information. If there exists, the node
can shorten the cycle. After that, it continues to check whether the cycle bounds
the same hole as another cycle found before. For any two cycles, if one cycle can be
converted to another one by the equivalent transformation presented in Definition
5.1, they are considered to bound the same hole. In addition, it is possible that
some non-minimum cycle can not be minimized since each node has only its 1-
and 2-hop neighbours information. It is also possible that some cycle bounds more
than one holes. To this end, for any two cycles ¢y, co with length larger than 7, if
lc1 Nea| > 1/2|eq| or |eg Neg| > 1/2|es|, we delete the cycle with larger length since
it is highly possible that the cycle with larger length bounds more than one holes
in this case. It is also possible that a false cycle can not be deleted. We investigate
such error probability in Section 5.4.3. Consider the example in Figure 5.3, four
cycles have been found in the last step. In this step, the cycles found by nodes are
transmitted to the nodes in the cycles and each node checks whether there exists a
shorter path or whether two cycles are the same. After doing this, nodes can find
the two cycles <5, 4, 13, 14> and <5, 14, 13, 4> are the same, the two cycles <1,
16, 7, 5, 2> and <1, 2, 5, 7, 16> are also the same. So only one of them is kept.
The result is shown in Figure 5.3(i).
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Figure 5.3: An example illustrating the process of this algorithm. (a) Rips complex
of a WSN, (b~c) boundary nodes discovery, (d~h) boundary cycles discovery, (i)

cycles selection

5.4 Simulations and performance evaluation

In this section, simulation settings are first given and probabilities of boundary nodes

detection and boundary cycles detection are then presented.
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5.4.1 Simulation settings

The target field is assumed to be a 100 x 100 m? square area. The sensing radius
R, of each node is 10 meters. The communication radius R, is set to be 20 meters.
There are fence sensors located along the edges of the square with 20 meters distance
between neighbours. Other internal sensors are randomly distributed in the area
according to a homogeneous Poisson point process with intensity A. Under such
settings, we approximately obtain that A should be at least 0.006 for the WSN to be
connected with high probability according to the results in [99] based on percolation
theory. So we set A to be 0.006, 0.008 and 0.01 in our simulations.

5.4.2 Probability of boundary nodes detection

A key step of our algorithm is boundary nodes detection and we propose two meth-
ods (denoted by HC and IHC respectively) to detect them. Here we want to have
an idea about how many boundary nodes detected by our methods are true or false.
First, we use the location based approach in [47] to find all boundary nodes. Then
we delete those nodes which only bound a triangular hole since our algorithm only
detect non-triangular holes. We use success probability p;““ to denote the ratio be-
tween the number of true boundary nodes detected by our methods and the number
of boundary nodes detected by the location based approach. Similarly, error prob-
ability py"" is used to denote the ratio between the number of false boundary nodes
detected by our methods and the number of boundary nodes detected by the location
based approach. Simulation results for success and error probabilities are shown in
Figure 5.4(a) and (b) respectively, which are the average of 1000 simulations. It can
be seen from Figure 5.4(a) that when A is lower, p;““® of the two methods are rela-
tively higher. That is because when A is lower, there are fewer number of nodes in
neighbour graphs and it is more accurate to detect boundary nodes by checking the
existence of a Hamiltonian cycle in neighbour graphs. From Figure 5.4(b), we can
see that when using improved Hamiltonian cycle based boundary nodes detection,

py’" increases largely. The larger the density is, the larger is the increase.

5.4.3 Probability of boundary cycles detection

In order to evaluate the accuracy of our algorithm, we compare it with the loca-
tion based algorithm (denoted as LBA) proposed in [47]|. Since the location based

algorithm can discover both triangular and non-triangular coverage holes, but our
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Figure 5.4: (a) Success probability of boundary nodes detection p;“c, (b) error

err

probability of boundary nodes detection pj

algorithm can only detect non-triangular coverage holes, we do not consider those
triangular coverage holes in the comparison. As it is possible that there exist shorter
paths in boundary cycles found by LBA, we first shrink them using 1-hop neighbour
information of boundary nodes. After that, we compare those boundary cycles with
what our algorithm finds. Two boundary cycles are considered to surround the same
coverage hole if one cycle can be converted to another one by equivalent transfor-
mations presented in Definition 5.1. We can see from Definition 5.1 that equivalent
transformations only need 1-hop neighbours information. We emphasize that only
1-hop neighbours information can be used in the comparison in order to evaluate the
accuracy of boundary cycles found by our algorithm. For example, if one cycle ¢
found by our algorithm can not be converted to another cycle ¢, found by LBA using
only 1-hop neighbours information but can be converted by using 2-hop neighbours

information, we consider the cycle ¢; is not accurate and the corresponding coverage
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hole is not found.
Based on the method presented above, we choose p to be 0.5 and 0.8. For each

A, we run 1000 simulations. We also use success and error probabilities, denoted

succ

by p3““¢ and p

Eerr

7. to evaluate the accuracy of our algorithm for boundary cycles

detection, which are shown in Figure 5.5(a) and (b) respectively. The detailed

values are presented in Table 5.2.
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C

succ

sue¢ increases when p increases from 0.5 to

From Figure 5.5(a), we can see that p
0.8. That is because when p is larger, there are more non-boundary nodes broad-
casting messages, which can increase the number of boundary cycles detected. In
addition, we can see that p has a larger impact on the probability when A is higher.
It is because when A is higher, more nodes lying on the boundary are not recognized,

these nodes may broadcast messages when p is higher.
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Table 5.2: Number of boundary cycles

succ err

A p ne’ nfb N DPe Dc

0.5 | 7213 | 347 | 216 | 0.9709 | 0.0467
0-006 0.8 | 7322 | 399 | 107 | 0.9856 | 0.0537 7429

0.5 | 6994 | 421 | 330 | 0.9549 | 0.0575
0.008 0.8 | 7202 | 507 | 122 | 0.9833 | 0.0692 7324

0.5 | 5690 | 362 | 514 | 0.9172 | 0.0583
0.010 0.8 | 5977 | 471 | 227 | 0.9634 | 0.0759 6204

nLd

“number of correct cycles found by our algorithm
bnumber of false cycles found by our algorithm
‘number of cycles missed by our algorithm
dnumber of cycles found by LBA

5.5 Chapter summary

In this chapter, we have proposed a graph based algorithm to detect boundary cycles
of coverage holes in a WSN. The algorithm includes four steps. In the first step,
each node obtains its 1- and 2-hop neighbours information. After that, each node
determines that it is a boundary node or not by checking whether there exists a
Hamiltonian cycle in its neighbour graph. Then some boundary nodes are randomly
selected to initiate the process to discover boundary cycles. The cycles found may
not be minimum or bound the same coverage holes, so cycles selection is performed
in the final step. We compare our algorithm with a location based approach, which
shows that our algorithm can accurately find boundary cycles of more than 95%
coverage holes when the intensity is low. But the algorithm has high complexity
since each node needs to check the existence of a Hamiltonian cycle in its neighbour
graph by exhaustive search, and the error probability of boundary cycle detection
is high when the intensity is high, so we aim to design an efficient and accurate
algorithm for coverage hole detection in WSNs, which will be presented in Chapter
6.
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Chapter 6

Homology based Distributed

Coverage Hole Detection

6.1 Introduction

In last chapter, we have proposed a graph based coverage hole detection algorithm,
but that algorithm has high complexity. In this chapter, we aim to design an efficient
distributed coverage hole detection algorithm. We design such an algorithm based
on homology theory. The basic idea of this algorithm is that for the Rips complex
of a WSN, we try to delete some vertices and edges without changing the homology
while making the Rips complex more sparse and nearly planar. Then it is easy to
find boundary edges, each of which is part of at most one triangle!. Finally such
edges are connected in some order to form the boundary cycles.

The main contributions of this chapter are in three aspects. First, we define a
rule for each vertex or edge to decide whether its deletion will change the homology
of the Rips complex of the original WSN or not. Each vertex or edge can make such
decision independently and only needs its 1-hop neighbour information.

Second, we propose a homology based algorithm to discover boundary cycles
of coverage holes. In the algorithm, each node computes its weight independently.
The weight of a node is a density indicator of its surrounding nodes. The larger
the weight is, the higher is the probability that the node is not on the boundary
of a coverage hole. Then some vertices and edges are deleted without changing
the homology of Rips complex. After this process, the Rips complex becomes much

sparser and nearly all boundary edges can be found by just checking whether the edge

'In this chapter, a triangle means a 2-simplex
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is part of at most one triangle or not. Then coarse boundary cycles are discovered
by connecting boundary edges in some order and exact boundary cycles are further
found by minimizing coarse boundary cycles.

Third, extensive simulations are performed to evaluate the performance of our
algorithm. Analysis shows that the worst case complexity of our algorithm is O(n?),
where n is the maximum number of neighbours of each node. Comparisons with a
boundary recognition algorithm show that our algorithm is more efficient and easy
to implement in a distributed way. Comparisons with a location based algorithm
further show that our algorithm can accurately detect the boundary cycles of about

99% coverage holes in about 99% cases.

6.2 Models and definitions

We use the same models for nodes as last chapter. In addition, we need to give some
definitions that will be used in the process of this algorithm.

We say that a i-simplex [v;o, Vi1, ..., vy 1s part of a j-simplex [vjo, vj1, ..., vj;] if
[Vio, Vi1, -, Vii] C [Vj0, V)1, ..., Vjj]. So the vertex [vg] or [v;] is part of the edge [vo, v1].
The edge [vg, v1] is part of the triangle [vg, v1, v5]. In addition, we use E(v) to denote
all the edges that the node v is part of and 7'(v) to denote all the triangles that the

node v is part of.

Definition 6.1 (Index of a triangle). The index of a triangle /\ is the highest
dimension of the simplex that the triangle is part of, denoted by Ix.

Definition 6.2 (Weight of a node). The weight of a fence node is defined to be 0.
For any internal node v, if there exists one edge in E(v) which is not part of any
triangle, the weight w, of node v is set to be 0; if not, the weight is the minimum

index of all the triangles in T'(v), that is w, = minacr) Ia.

The weight of an internal node is an indicator of the density of its surrounding
nodes. If the weight of an internal node is 0, the node must be on the boundary of a
coverage hole. The larger the weight is, the higher is the probability that the node
is not on the boundary of a coverage hole.

We also use the definition of simple-connectedness graph as in [46]. Let G be a
simple graph with vertex set V(G) and edge set F(G). A cycle C is a sub-graph
of GG if it is connected and each vertex in C has degree two. The length of a cycle
C' is the number of its edges, denoted by |E(C)|. The cycle space C(G) of a graph
G contains all the cycles in G. The addition of two cycles C and Cs is defined as
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C1®Cy= (E(C1)UE(Cy))\ (E(Cy) N E(Cy)). The triangle cycle subspace Cr(G)
of G is the set of all 3-length cycles in C(G).

Definition 6.3 (Simple-Connectedness Graph). A connected graph G is of simple
connectedness if its cycle space C(G) is empty, or for any cycle C in C(G), there
exists a set of 3-length cycles Ty C Cr(G) such that C = Y peq, T

Let X be a vertex (or edge) set in a graph G, we use G[X| to denote the vertex-
induced (or edge-induced) sub-graph by X. The neighbours of a vertex v in G is
denoted by Ng(v). The neighbour graph I'¢(v) of vertex v is denoted as G[Ng(v)].
The neighbour graph I'¢(e) of an edge e = (u,v) is defined as G[Ng(u) N Ng(v) U
{u,v}] — e. The neighbour set of k-simplex [vg, vy, ..., v} is defined as NF_, Ng(v;).

Definition 6.4 (Deletion of a k-simplex in Rips complex). A k-simplez [vg, vy, - -, vg]
is deleted in a Rips complex R(V) means that the simplex and all simplices which

the simplex is part of are deleted from R(V).

Based on definitions above, we can give the definition of HP (Homology Preserv-

ing) transformation.

Definition 6.5 (HP Transformation). A HP transformation is a sequential combi-
nation of vertex (or edge) deletion as follows: a vertex (or edge) x of G is deletable
if neighbour graph U'g(x) (1) has two or more vertices; (2) is connected and (3) is a

stmple-connectedness graph.

Theorem 6.1. HP transformations do not change the number of coverage holes in
Rips complex of a WSN.

Proof. In order to prove HP transformations do not change the number of coverage
holes in Rips complex of a WSN, we only need to prove that in the process of HP
transformations, there is no new coverage holes created and no two coverage holes
merged. If a new coverage hole is created when a vertex v (or edge e) is deleted, then
the boundary cycle of the new coverage hole must be a cycle in I'¢(v) (or I'g(e)),
which means I'g(v) is not a simple-connectedness graph. It is contrary to the third
condition in HP transformation, so there is no new coverage hole created. On the
other hand, if two coverage holes are merged when a vertex v (or edge €) is deleted,
then the neighbour graph I'g(v) (I'g(e)) must not be connected, which is contrary
to the second condition in HP transformation. So there are no two coverage holes
merged. Consequently, the number of coverage holes will not be changed in the

process of HP transformation. O
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6.3 Homology based distributed algorithm

Our algorithm includes five components: weight computation, vertex and edge dele-
tion, boundary edge detection, primary boundary cycles discovery and boundary

cycles minimization, as shown in Figure 6.1.

( Start

Weight Coarse boundary
computation cycles discovery
Vertex and edge Boundary cycles
deletion minimization
/ —¢—
Boundary edge ( End A
detection \ /

Figure 6.1: Flow chart of the algorithm

An example is used to illustrate the procedures of this algorithm in Figure 6.2.
For a WSN with some coverage holes, the Rips complex of the WSN is first con-
structed, shown in Figure 6.2(a), then the algorithm aims to discover minimum
boundary cycles of all holes. In weight computation component, each node com-
putes its weight independently according to Definition 6.2. After obtaining the
weight, each node continues to determine whether it can be deleted or not according
to some rules defined hereafter. Figure 6.2(b) shows the result of vertex deletion.
Furthermore, some special node will decide whether some edge can be deleted or
not. Figure 6.2(b~c) shows the process of such special edge deletion. After the
second component, many boundary edges can be found, as the red line shown in
Figure 6.2(d). But it is possible that some other boundary edges have not been
found. Then in the third component, all or nearly all boundary edges will be found
after deleting some edges, see Figure 6.2(e~j). Then coarse boundary cycles can be
easily discovered, as shown in Figure 6.2(k). It is possible that the found boundary
cycles are not minimum. In this case, coarse boundary cycles will be minimized in

the final component as shown in Figure 6.2(1).

6.3.1 Weight computation

In this component, each node computes its weight. For any fence node, its weight

is 0. For any internal node, theoretically it needs to construct all the simplices it

120



(i) (k) ()
Figure 6.2: Procedures of the boundary detection algorithm. (a) Rips complex of a

WSN, (b) after vertex deletion, (c~d) edge deletion, (e~j) boundary edge detection,
(k) coarse boundary cycles discovery, (1) boundary cycles minimization
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is part of. As we consider WSNs on a planar target field, each internal node only
needs to construct all its 1-simplices and 2-simplices and their neighbours. This
can also reduce the computation complexity. In order to do this, the node needs to
obtain all its 1- and 2-hop neighbours information. This can be easily achieved by
two broadcasts of hello message. In the first one, each node broadcasts its id. When
it gets all the ids of its 1-hop neighbours, each node continues to broadcast a hello
message containing the ids of its 1-hop neighbours. After receiving the neighbour
list of its neighbours, the node can obtain its E(v), the set of edges (1-simplices)
and T'(v), the set of triangles. It can also get the neighbours of each simplex. For
any e € F(v), let n(e) denote the neighbour set of e. For any t € T'(v), let n(¢)
denote the neighbour set of t. Then the weight of node v can be computed as in
Algorithm 3.

Algorithm 3 Weight computation (for internal node v)

Begin
if Jde € E(v),n(e) is empty then
w, = 0
else if 3t € T'(v),n(t) is empty then
W, = 2
else
Wy = 3
end if
END

6.3.2 Vertex and edge deletion

In this component, we conduct maximal vertex deletion without changing the num-
ber of coverage holes in the original WSN and also delete some special edges if such
edges exist. For vertex deletion, we only consider internal nodes, fence nodes will
never be deleted. In the following part, we use vertex and node interchangeably.

(1) vertex deletion

From the definition of weight, we can see that the higher the weight is, the
higher is the probability that the sensing range of the node is fully covered by its
neighbours, consequently the probability that the node does not lie on the boundary
is higher. Meanwhile, if the deletion of a vertex may create a new coverage hole,
it must not be deleted no matter how high the weight is. So we have such a rule
for vertex deletion. If the weight of a vertex is smaller than 3, it should never be

deleted. Otherwise, the vertex continues to check whether it is deletable or not
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according to the HP transformation. After the verification, the vertex broadcasts a
message indicating that it can be deleted or not. After receiving the status of all its
neighbours, each deletable vertex continues to check whether it should be deleted.
It can be found that the weight of any deletable vertex must be 3. We assume that
the vertex with lower ID has the priority to be deleted first. So each deletable vertex
just needs to check whether its ID is the lowest among all its deletable neighbours. If
so, it should be deleted. Otherwise, it should not be deleted. Algorithm 4 gives the
detailed process for vertex deletion. According to the rule, it can be seen that two
neighbouring vertices will not be deleted simultaneously, so each vertex can make
the decision independently. When a vertex is deleted, it broadcasts a message to its
neighbours. All its neighbours will modify their simplices according to Definition
6.4 and compute their weights again. The procedure of vertex deletion terminates
until no vertex can be deleted in the Rips complex. Figure 6.2(b) gives the initial

result after vertex deletion.

Algorithm 4 Vertex deletion (for internal node v)
Begin
if w, < 3 then
node v can not be deleted
else if node v is not deletable according to HP transformation then
node v can not be deleted
else if the ID of node v is the smallest among all its deletable neighbours then

node v is deleted
end if

END

(2) edge deletion

After vertex deletion, we find one interesting thing. Edges having no neighbours
must be on the boundary of holes, such as the common edge of coverage holes 7 and
8 in Figure 6.2(b). The edge having only one neighbour lies on the boundary of a
coverage hole with high probability, such as the red edges shown in Figure 6.2(b).
But it is possible that there exist some special such edges not lying on the boundary,
such as the blue edge between coverage holes 1 and 2 in Figure 6.2(b). We try to
delete such special edges. Since the edge has only one neighbour, deleting the edge
will not create a new hole.

We call edges having at most one neighbour as boundary edges. Then we design
a rule for deleting special boundary edges. If a vertex v has only one boundary edge

vr and vx has only one neighbour y and deletion of vz will not make v have a new
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boundary edge, then vz can be deleted. This can be easily achieved by checking
whether vy has more than two neighbours, shown in Algorithm 5. After vz is deleted,
the nodes v, x and y need to update their simplices according to Definition 6.4 and
recompute their weights. According to this rule, nearly all boundary edges which
does not lie on the boundary of any holes can be deleted. But it is also possible
that some edges lying on the boundary are also deleted, such as the blue edges in
coverage holes 3, 4, 5 and 6 in Figure 6.2(b). This is not a big issue, because deletion
of such edges will not create new holes and just enlarge the current coverage holes.
It can be solved in the boundary cycles minimization component. In addition, after
edge deletion, it is possible that some vertices can be deleted again, such as the
vertex denoted by red square in Figure 6.2(b~c). If such a case happens, we can
continue to do vertex deletion until no more vertex or edge can be deleted. Figure
6.2(d) shows the result after edge deletion.

Algorithm 5 Edge deletion (for internal node v)
Begin

if v has only one boundary edge vx and vz has one neighbour y then
N(vy) = neighbour set of vy
if |[N(vy)| > 2 then
vx can be deleted
end if
end if

END

6.3.3 Boundary edge detection

After deleting some vertices and edges, we can find that nearly all boundary edges
lie on the boundary of holes. It can also be found that some edges lying on the
boundary have not been found. In this component, we try to find such edges as
many as possible. In all cases, such edges have two or more neighbours. If we
consider the nodes having one or more boundary edges as boundary nodes and
other nodes as non-boundary nodes, then we try to delete some edges connecting
non-boundary nodes and boundary nodes according to the HP transformation, such
as the green edges shown in Figure 6.2(e). After that, it is possible that some new
boundary edges are recognized and some special edges illustrated in Section 6.3.2
are also identified, as the blue edges shown in Figure 6.2(f). In this case, we can still
use the rule to delete them. It is still possible that some edges lying on the boundary

have not been discovered. Such case usually occurs when some boundary nodes are
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neighbours and edges connecting them have more than one neighbours. In this case,
we randomly delete some of such edges according to the HP transformation, such
as the green edges in Figure 6.2(g). After that, some new boundary edges can be
recognized, as shown in Figure 6.2(h).

But it is possible that the new found boundary edges can not construct a correct
cycle with other boundary edges, as the magenta edges in coverage holes 2 and 4 in
Figure 6.2(h). Such case is often due to the fact that two boundary edges cross with
each other. It is found from numerous simulations that there are mainly three cases
of crossing boundary edges, as shown in Figure 6.3, red lines denote boundary edges
and black ones denote non-boundary edges. Similarly, we define some rules to delete
such edges. We take node v as an example, in the top part of Figure 6.3(a), the two
red lines connecting v and its neighbours are deleted, as shown in the bottom part
of Figure 6.3(a). For the cases in Figure 6.3(b) and (c), the red line connecting v
and its neighbour is deleted, as shown in the bottom part of Figure 6.3(b) and (c).
According to such rules, some boundary edges can be deleted, such as the black bold
edges in coverage hole 2 in Figure 6.2(i). It is also possible that certain boundary

edges are deleted incorrectly. It is not a big issue as explained in last section.
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Figure 6.3: Illustration of crossing boundary edges

In addition, there exists also another case that a false boundary edge is found,
as the blue edge in Figure 6.4. To this end, we can define a similar rule to delete
them. For any internal node v, if it has two boundary neighbour nodes u and w, the
edge vu and vw are not boundary edges and wu is a boundary edge, if the deletion
of the edge wu can make at least one of the two edges vu and vw be a boundary
edge, then wu can be deleted. According to such rule, the false boundary edge can
be deleted and some correct boundary edge may also be deleted, as the black bold
edge in coverage hole 3 in Figure 6.2(i). Similarly, it is not a big issue.

In general, after the process above, nearly all boundary edges can be found, as

shown in Figure 6.2(j). But there exists one special case as in Figure 6.5. In this
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Figure 6.4: Illustration of false boundary edges

case, some edges lying on the boundary can not be detected. It can be solved in the

next component.

Figure 6.5: Special case when some boundary edges can not be detected

6.3.4 Coarse boundary cycles discovery

After boundary edges are detected in the former component, it is easy to discover
the coarse boundary cycles. For two coarse boundary cycles, there are possible
three types of relation: (1) having common boundary edges. It means two coarse
boundary cycles have at least one common edges. (2) having common nodes. It
indicates that two coarse boundary cycles does not have common edges but have at
least one common node. (3) separated. Two coarse boundary cycles have neither
common edges nor common nodes.

For two coarse boundary cycles with a common boundary edge uv, we can choose
one node from u and v having three boundary edges as an initiator, for example,
u is selected and u has three boundary edges uv, uxr and uy. Then, u initiates the

coarse boundary cycles discovery process by sending a message to v. The message
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contains the ID of u. When v receives this message, it records the ID of the initiator
and sets u as its father node. After that, v continues to send the message along its
other boundary edges. Each node receiving the message makes the same process
until node u receives the message along its two other boundary edges ux and wuy.
Then node u sends a message to x and y respectively noticing them to form coarse
boundary cycles. Then node = sends a message containing its ID to its father node,
its father node does the same thing until the message arrives at node u. Then a coarse
boundary cycle is formed. Similarly, node y does the same thing and another cycle
can be formed. After forming coarse boundary cycles, node u informs the sequence
to the nodes in the cycles. For two coarse boundary cycles with common nodes or
separated, we just need to randomly choose one node which has two boundary edges
as an initiator. Then the node initiates the process to find the coarse boundary cycle
by sending a message along one of its boundary edges. When it receives the message
coming back along the other boundary edge, it discovers one coarse boundary cycle.
In this way, all coarse boundary cycles can be found, as the cycles indicated by
different colours in Figure 6.2(k).

As for the special case shown in Figure 6.5, when the node v receives a message
from its boundary neighbour node, it broadcasts the message to all its neighbours
except its father node. If its neighbour node is a boundary node, then the message
can be sent along the boundary edges. If its neighbour node is not a boundary node
but it has boundary neighbour nodes, then it can send the message to its boundary
neighbour nodes. Else, it will not transmit the message again. In this way, the
message goes along boundary edges most of the time and can return to the original

node sending the message.

6.3.5 Boundary cycles minimization

It is possible that some coarse boundary cycles found are not minimum, so we need
to minimize such cycles. This can be achieved by checking whether there exists a
shorter path between any two nodes in the cycle. Since each node has its 1- and
2-hop neighbours information, it can locally check the existence of a shorter path
in the cycle. If there exists, we shorten the cycle and continue to do the same
verification until no such case exists. After that, it is still possible some cycle has
not been minimized, such as the coverage hole 2 in Figure 6.2(k). So we use the
following 2-hop shrinking process to make the cycle as shorter as possible. For any

four adjacent nodes in the cycle, say a, b, ¢, d, if there exists one node x which is one
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common neighbour of nodes a, b, ¢, d, then the cycle can be shortened by using = to
replace nodes b and c.

In this way, we can nearly obtain most minimum cycles surrounding coverage
holes. It is also possible that in some cases, we can not get the minimum cycles

since each node only has its 1- and 2-hop neighbours information.

6.4 Performance evaluation

In this section, we first give simulation settings and then analyse the complexity of
our algorithm. After that, we compare our algorithm with one boundary recognition

algorithm and another location based coverage hole detection algorithm.

6.4.1 Simulation settings

For performance evaluation of the algorithm, we choose a 100 x 100 m? square
area as the target field. The sensing radius R, of each node is 10 meters. The
communication radius R, is set to be 20 meters and so v = 2. There are fence
sensors locating along the edges of the square with 20 meters distance between
neighbours. Other internal sensors are randomly distributed in the area according

to a homogeneous Poisson point process with intensity A.

6.4.2 Complexity

The computation complexity of each step in the algorithm is shown in Table 6.1.
In the weight computation component, each node only needs to check all its 2-
simplices, so the computation complexity is O(n?), where n is the number of its

1-hop neighbours.

Table 6.1: Complexity of each step in the algorithm

Step Complexity
Weight computation O(n?)
Vertex and edge deletion O(n?)
Boundary edge detection O(n?)
Coarse boundary cycles discovery o(1)
Boundary cycles minimization O(1)

In vertex deletion part, each node needs to check whether it is deletable or not

according to HP transformation. This can be done by checking all its cycles in its
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neighbour graph. It can build a spanning tree in its neighbour graph and check
all fundamental cycles in the spanning tree. There are £ — n 4+ 1 fundamental
cycles, where E is the number of edges in its neighbour graph, so the worst case
computation complexity is O(n?). Since the node needs to recompute its weight and
recheck whether it is deletable when any one of its neighbour is deleted, so the total
worst case computation complexity is O(n?). As for the edge deletion, the node only
needs to do simple verification as shown in Algorithm 5, the complexity is O(1).

In the boundary edge detection component, the non-boundary nodes need to
check whether the edge connecting itself with its boundary neighbours can be deleted
or not according to HP transformation. So the worst case computation complexity
is O(n?), the actual complexity is much less than that since for one edge, there
are usually very few nodes in its neighbour graph. The boundary nodes also need
to check whether the edges connecting itself and its boundary neighbours can be
deleted or not, so the complexity is also O(n?). In addition, the boundary nodes
need to check whether there exist special cases as illustrated in Section V.D. The
worst case computation complexity for such process is O(n?). So the complexity of
this step is O(n?).

As for the final two components, each node only needs to broadcast some mes-
sages and do some local computations, the complexity is O(1). So the total worst

case computation complexity for our algorithm is O(n?).

6.4.3 Comparison with boundary recognition algorithm

As discussed in Chapter 2, many boundary recognition algorithms have been pro-
posed. Among them, the algorithm proposed in [46] is the most promising for
coverage hole detection. So we want to compare it with our algorithm. We use
BR (Boundary Recognition algorithm) and HBA (Homology Based Algorithm) to
denote their algorithm and our algorithm respectively.

We first introduce the algorithm BR briefly. In BR, a FGP (Fundamental Group
Preserving) transformation is defined. The algorithm includes four components:
skeleton extraction, primary boundary cycles and refined inner boundary cycles
and refined outer boundary cycle. In skeleton extraction, maximal vertex and edge
deletion are performed according to FGP transformation and a skeleton graph is
obtained. In this component, each node needs its k-hop neighbour information
(k > 2). After that, the skeleton graph is separated into primary boundary cycles.

Each primary boundary cycle contains one hole. Then primary boundary cycles are
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refined into tightest inner boundaries. For each boundary cycle (| it is extended
in the graph of the WSN according to FGP transformation and a maximal graph
G¢ which is topologically equivalent to C' is obtained. Then one vertex v in G
is selected and v is extended in G¢ to obtain a subgraph G, of G¢. The edges in
G¢ but not in G, are considered as gap edges and they found that any cycle in
G surrounding the hole must contain at least one gap edge. So for each gap edge,
a shortest cycle containing the gap edge is obtained. Among all these cycles, the
shortest cycle is considered as the tightest inner boundary cycle. As we only consider
the inner boundary, the component refined outer boundary cycle is not discussed
here.

Comparing the two algorithms BR and HBA, we can find that they have the same
worst case computation complexity. But our algorithm is more easy to implement
in a distributed way for the following reasons. First, for the vertex deletion part, in
our algorithm HBA, each node can independently decide whether it can be deleted
or not. But in BR, it is possible that two nodes with k-hop distance can not be
deleted simultaneously, so they need to interact with each other. Second, in order
to find the minimum boundary cycles, the node in our algorithm HBA only needs
to do some local verifications. But in BR, nearly all nodes in the whole WSN may
be involved, which is neither efficient nor scalable for large scale WSNs.

In addition, for the WSNs which have largely separated coverage holes, our
algorithm is more efficient. This is because in BR, the skeleton graph is required
to be connected in the process of skeleton extraction. If the coverage holes are
largely separated, they have to be enlarged much in order to keep the connectivity
of skeleton graph. There is no such requirement in our algorithm. Figure 6.6 gives

an example to show this.

6.4.4 Comparison with location based algorithm

In order to evaluate the accuracy of our algorithm HBA, we compare it with the
location based algorithm LBA proposed in [47]. We use the same way as discussed in
Section 5.4.3 to do the evaluation. We set A to be 0.008, 0.010 and 0.012 respectively.
For each intensity, 1000 simulations are performed. Simulation results show that
when A is 0.008, there are nine times among the 1000 times when our algorithm
can not find all non-triangular coverage holes. In each of the nine times, only one
coverage hole is missed. There are 7363 non-triangular holes in total and 7354 ones
found by our algorithm. When X is 0.010 and 0.012, only one time among the 1000
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Figure 6.6: (a) Rips complex of a WSN, (b) coarse boundary cycles found by HBA,
(c) primary boundary cycles found by BR

times when our algorithm can not find all coverage holes. And in that time, only
one coverage hole is missed. When A is 0.010, there are 6114 non-triangular holes
in total and 6113 ones found by our algorithm. When X is 0.012, there are 4613
non-triangular holes in total, of which 4612 ones are found. The results are shown
in Table 6.2. All these results show that our algorithm can find about 99% coverage

holes in about 99% cases.

131



Table 6.2: Number of non-triangular holes

number of number of number of
\ non-triangular non-triangular non-triangular
holes found by | holes missed by | holes found by
HBA HBA LBA
0.008 7354 9 7363
0.010 6113 1 6114
0.012 4612 1 4613

6.5 Chapter summary

In this chapter, we have proposed a homology based distributed algorithm to de-
tect boundary cycles of coverage holes in WSNs. The algorithm includes five com-
ponents: weight computation, vertex and edge deletion, boundary edge detection,
coarse boundary cycles discovery and boundary cycles minimization. The Rips com-
plex of the WSN is first constructed. Then in weight computation, and each node
computes its weight independently. The weight of a node is a density indicator of its
surrounding nodes. The larger the weight is, the higher is the probability that the
node is not on the boundary of a coverage hole. In vertex and edge deletion part,
we define a rule for each vertex or edge to decide whether its deletion will change
the homology or not and some vertices and edges are deleted without changing the
homology of Rips complex. After this process, the Rips complex becomes much
sparser. In boundary edge detection part, nearly all boundary edges can be found
by just checking whether the edge is part of at most one triangle or not. Then
coarse boundary cycles are discovered by connecting boundary edges in some order
and exact boundary cycles are further found by minimizing coarse boundary cycles.
Our algorithm is with the worst case computation complexity O(n?), where n is the
maximum number of neighbours of each node. We also compare our algorithm with
a boundary recognition algorithm and a location based algorithm, which shows that

our algorithm is efficient and accurate to discover boundary cycles of coverage holes.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize our major contributions and discuss future research

directions.

7.1 Major contributions

This work aims at studying the applications of homology theory for coverage hole
detection in WSNs. Two main aspects have been studied, namely accuracy of ho-
mology based coverage hole detection and distributed algorithms for coverage hole

detection. Specifically, the main contributions can be summarized as follows.

e Accuracy of homology based coverage hole detection

We first analysed the relationship between Cech complex and Rips complex
in terms of coverage holes for WSNs on a planar target field. Their relation
depends on the ratio v between communication radius and sensing radius of
each sensor. When v < /3, Rips complex does not miss any coverage holes.
While v > v/3, Rips complex may miss coverage holes and the holes missed
by Rips complex are always bounded by triangles. Thus we defined them to

be triangular holes and other holes to be non-triangular.

Furthermore, we chose the proportion of the area of triangular holes as the
metric to evaluate the accuracy of homology based coverage hole detection.
Such proportion is related to . Then we analysed the proportion in three
cases and for each case, closed form expressions for lower and upper bounds
of the proportion are derived. Simulations results are well consistent with the
analytical lower and upper bounds, with maximum differences of 0.5% and 3%.

In addition, we extended the analysis to the sphere case. Simulation results
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show that the radius of sphere has little impact on the proportion when it
is much larger than communication and sensing radii of each sensor. More

importantly, our analytical results can be used for planning of WSNs.

Distributed algorithms for coverage hole detection

For non-triangular holes, we proposed two algorithms to detect them. The
first algorithm detects boundary nodes by checking whether there exists a
Hamiltonian cycle in the neighbour graph of each node. Since it is a NP-
complete problem to check the existence of a Hamiltonian cycle, the complexity

of the algorithm is very high.

The second algorithm we proposed is more efficient and can work in both sparse
and dense WSNs. The basic idea is that for the Rips complex of a WSN, we
try to delete some vertices and edges without changing the homology while
making the Rips complex more sparse and nearly planar, then it is easy to find
boundary cycles of coverage holes. Comparisons with a boundary recognition
algorithm and a location based algorithm show that our algorithm is efficient
and can accurately detect 99% coverage holes in 99% cases. Although in
some special cases, our algorithm can not detect the accurate coverage hole
boundary, it can still provide some useful information for repairing coverage

holes.

In addition, there also exist some limitations in our work. First, for sensing

and communication models of sensor nodes, we consider only the boolean model.

Second, in the algorithms we proposed, we always assume nodes can receive messages

correctly, without considering packet error or loss. These problems need further

consideration in our future work.

Future research directions

This work mainly focuses on the applications of homology theory for coverage hole

detection in WSNs on 2D plane and sphere. Homology theory can also be applied

in 3D WSNs. In addition, it has also potential applications in cellular networks.

e Coverage hole detection in 3D WSNs

For 2D WSNs, we only need to consider 2-dimensional Rips complex for cov-

erage hole detection. For 3D WSNs, we will need to consider 3-dimensional
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Rips complex for coverage hole detection. According to the relationship be-
tween Cech complex and Rips complex, we know that Rips complex may also
miss coverage holes for 3D WSNs. The holes missed by Rips complex must be
surrounded by tetrahedrons. So it is also essential to analyse the accuracy of
Rips complex for coverage hole detection in 3D WSNs. Furthermore, we can
also design distributed algorithms to detect boundaries of coverage holes. The
difference lies in that the boundary of a coverage hole in 2D WSNs is a cycle
formed by edges, while it is a polyhedron formed by triangles in 3D WSNs.
It is more challenging since we need to define a new rule for any vertex, edge
or triangle to determine whether its deletion will change the homology of the

Rips complex.

Coverage preserving node scheduling for WSNs

For WSNs with very high density, the target field is often over covered. In
order to extend the lifetime of WSNs, it is usually required to turn off some
redundant nodes while preserving coverage. Although the homology based
algorithm proposed in this thesis is mainly for coverage hole detection, it
can also be used for node scheduling. It can be seen that when the WSN
contains no coverage holes, some nodes can be switched off without changing
the coverage according to the rule defined in the algorithm. This is because
our algorithm does not change the homology in the process. This problem
has been investigated in a centralized way by our group [100]. But the energy
constraint of each node has not been considered in the investigation, which

can be our future work.

Auto-planning in heterogeneous networks

Future heterogeneous networks will have more and more small cells overlaid
by macro cells. The massive deployment of small cells faces a number of chal-
lenges, among which interference management is of utmost importance. The
theory of algebraic topology can be both used to analyse the expected char-
acteristics of network where spatial features are important but also to devise
some new operating algorithms. One problem we have in mind of that is the
automatic frequency planning in heterogeneous network. The problem is to
allocate frequency bands dynamically so that the interferences are the least
possible while guaranteeing a maximum coverage. We expect the algebraic
topology can be useful for such a task. Indeed, one can construct two sim-

plicial complexes: one representing coverage as before, the other representing
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exclusion regions in the sense of cognitive radio, the exclusion region of a
given BS means that any other BSs within this region can not use the same
frequency sub-bands simultaneously. Using our previously defined algorithms
[51, 100], we think that we can define frequency allocations satisfying as much

as possible the two criteria.
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Appendix A

Computation of Area |[S™(rg, 1, ©1)]

A.1 Area |S (rg, 71, 01)| in case V3 < v < 2

Here we give the detailed computation of the area | S~ (1o, 71, ¢1)| in case v/3 < v < 2.
The region S~ (rg,71, 1) is shown in Figure A.1.

Figure A.1: Illustration of the region S~ (rg, 1, 1) in the case V3<y<2

[t can be seen from Figure A.1 that the area [S™(rg, r1, ¢1)| can be expressed as

_ B2 Ra(70,m1,61,) 1 B2 9 5
S (o)l = [ de | rdr =5 [ 1R300 0) = rEldp (A
0 o 0
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2 2
ro +ri—Rg
2ror1

Re

, Bo = —p; = —2arccos o and

where 3y = ¢1 — arccos

R2(T07 1, $1, 90) = mln( R2 - T(2) Sin2 @ — TpCOS Y,

(A.2)

\/R2 r? sin’ (¢ — 1) +r1c08(0 — 1))

In addition, we need to obtain ;. For clear understanding, we give the triangle

formed by 79,7 and N in Figure A.2.

7 (rb ¢1)

N (v, B1)

Figure A.2: For the computation of (;

First, we can get

d = /12 + 1% + 2ror; cos ¢

then
ré+d* —r?
o = arccos ———
27“0(1
As
N d
a1 + a9 = arccos
b 2R.
So it can be obtained
7“8 +d? - r%
vy = arccos — arccos ———
QRC 27’0d

and

ryN = \/7"8 + R2 — 2rq R, cos iy
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Consequently, we can get [, as follows

2 2 2

2roT N

(1 = arccos s

It can be seen from Figure A.1 that when fy < ¢ < 4

Ro(ro, 71,91, %) = VR — ¥ sin®(p — 1) + 11 cos(p — 1)

and when ) < ¢ < [

Ry(ro, 71,01, 9) = VR2 — r§sin® ¢ — rycos ¢

So (A.1) can be changed to

3 1 (P 9
15 (r0. . 00] =5 [ B30 n) —rildee
0

1 rh :
:2/,3 {[\/RE - 7’% Slnz(gp _ @1) +ry COS(QD o 901)]2 B Tg}d(p
0

(A.3)
1 P 2 22 2 .2
+ 5 {[\/m 70 COS ¢ rotde
B1
:I/(Tlaﬂl - 901) - f’(ﬁ;ﬁo - @1) + ](T0;52) - ](7“0751)
where
26092 R? 2 . . 2
I'(ri,¢) = h Slj S0+ ;0+7Carcsin rlzngp rls;mp Rg—r%sin290—%
2 o3 2 R2 R2 : : 2
I(m:@):roszl L. Sw—farcsinrozmp—rosén(p Rz—rgsin2%0—%

Replace r1 by ro in (A.3), we can get the area of S~ (rg, ro, ¢1).

A.2 Area |S™(rg,71,%1)| in case v > 2
As illustrated in Section 3.3.4, two situations should be considered in case 7 > 2.

They are R, < dy < R./2 and R./2 < dy < R./v/3. When R./2 < dy < R./\/3,
the computation of |S™(rg, 71, ¢1)] is the same as that in Appendix A.1. So we only
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compute the area |S™(rg, 71, ¢1)| in the situation Ry < dy < R./2 in this part.

The area |S~(rg, 71, ¢1)| can also be expressed as

B 0 Ra(10,71,1,%) 1 0 9 9
1S™(ro, 71, 1) :/ d@/ rdr = */ [R5(ro, 71,91, 9) — 5lde
Bo 0 2 J,

where Ry(ro, 71,1, ) is shown in (A.2) and

5_{901_7T itry <R.—rg
) =

ré+r}—R2 .
(1 — arccos W otherwise

The two cases for 3, are illustrated in Figure A.3.

(a) (b)

Figure A.3: Tllustration of two cases for fy(r0,71, ¢1)

Furthermore, since the upper limit of integral for ¢ is 0, we need to check the

value of Ry(ro, 1, 901u 0).
It R2(T07T17 £1,0) = \/RQ _ r% sin? ¢ +71 cos 1, it means that when 8y < ¢ <0,

Ro(ro, 71,01, ¢ \/R2 77 sin?(ip — 1) + 11 cos(¢ — 1), which is shown in Figure

AA4.
Then we can get the area |S™(rg, 71, ¢1)| as

1 /0 :
\57(7"0,7”1,%)‘ = 2//3 {[\/RE - 7”% Sm2(<P - <P1) + 7y COS(@ - 801)]2 — rﬁ}dw
0

= I/(Tla —901) - [/(7“1750 - 901)
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Figure A.4: Illustration of Ry(rg, 71, ¢1,0)

where

2 . 2 2 . .
risin2¢  Rip . rsing  rysing
L + —— + —“arcsin

4 2 2 R, 2

2
N To®
R2 —r?sin® ¢ — —02

I,(Tlv 90) -

If Ry(r0,71,¢1,0) = R.— 1p, which is the case in Figure A.3, then we can obtain

f1 as in Section A.1 and the area [S™ (7o, 71, ¢1)| as follows.

\S_(To,7"17901)\ = [/(7’1,@1 - 901) - I’(ﬁ,ﬁo - 901) +I(7”0,0) - [(7"0,51)
= 11(7”1,51 — 1) — [/(7’1,50 — 1) — I(ro, 1)

where

2
X ro®
R2 —r3sin® ¢ — 0

2

B rdsin2p  R*p R? . Tosing  rosing
= — —= arcsin —

4 2 2 R, 2

I(ro, @)
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Appendix B

Detailed Values of Simulation

Results and Bounds on Sphere

Table B.1: py(A), psu(A) and ps(A) under R = 5R,, v = 2.0,2.2 (%)
A\ v =20 v =22

psl()‘) ps(/\) psu()‘) psl(/\) ps()‘) psu(/\)
0.001 | 0.0006 | 0.0006 | 0.0011 | 0.0126 | 0.0134 | 0.0239
0.002 | 0.0032 | 0.0032 | 0.0063 | 0.0678 | 0.0694 | 0.1265
0.003 | 0.0076 | 0.0076 | 0.0148 | 0.1537 | 0.1558 | 0.2835
0.004 | 0.0128 | 0.0129 | 0.0249 | 0.2451 | 0.2531 | 0.4463
0.005 | 0.0177 | 0.0185 | 0.0345 | 0.3223 | 0.3395 | 0.5807
0.006 | 0.0216 | 0.0226 | 0.0421 | 0.3753 | 0.3934 | 0.6673
0.007 | 0.0244 | 0.0257 | 0.0476 | 0.4020 | 0.4285 | 0.7064
0.008 | 0.0258 | 0.0275 | 0.0503 | 0.4052 | 0.4342 | 0.7047
0.009 | 0.0260 | 0.0288 | 0.0508 | 0.3898 | 0.4216 | 0.6688
0.010 | 0.0253 | 0.0280 | 0.0494 | 0.3617 | 0.3902 | 0.6127
0.011 | 0.0239 | 0.0264 | 0.0466 | 0.3258 | 0.3550 | 0.5468
0.012 | 0.0220 | 0.0248 | 0.0432 | 0.2866 | 0.3131 | 0.4756
0.013 | 0.0199 | 0.0229 | 0.0389 | 0.2471 | 0.2684 | 0.4054
0.014 | 0.0176 | 0.0204 | 0.0344 | 0.2094 | 0.2248 | 0.3395
0.015 | 0.0154 | 0.0175 | 0.0302 | 0.1750 | 0.1915 | 0.2799
0.016 | 0.0133 | 0.0150 | 0.0259 | 0.1443 | 0.1591 | 0.2284
0.017 | 0.0113 | 0.0131 | 0.0219 | 0.1178 | 0.1314 | 0.1842
0.018 | 0.0095 | 0.0108 | 0.0184 | 0.0952 | 0.1088 | 0.1472
0.019 | 0.0079 | 0.0096 | 0.0155 | 0.0763 | 0.0853 | 0.1166
0.020 | 0.0066 | 0.0079 | 0.0127 | 0.0607 | 0.0686 | 0.0919
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Table B.2: pg(A), psu(N) and ps(A) under R = 5R,, v = 2.4,2.6 (%)
\ vy=24 v =2.6

Psi(A) | ps(A) | psu(N) | ps(A) | ps(A) | psu(N)
0.001 | 0.0617 | 0.0621 | 0.1120 | 0.1800 | 0.1810 | 0.3198
0.002 | 0.3130 | 0.3227 | 0.5556 | 0.8582 | 0.8779 | 1.4759
0.003 | 0.6710 | 0.6972 | 1.1663 | 1.7340 | 1.8110 | 2.8902
0.004 | 1.0128 | 1.0594 | 1.7231 | 2.4720 | 2.6030 | 3.9935
0.005 | 1.2626 | 1.3281 | 2.1023 | 2.9173 | 3.0835 | 4.5714
0.006 | 1.3957 | 1.4748 | 2.2780 | 3.0599 | 3.2596 | 4.6534
0.007 | 1.4211 | 1.5142 | 2.2720 | 2.9628 | 3.1745 | 4.3775
0.008 | 1.3632 | 1.4612 | 2.1344 | 2.7089 | 2.9099 | 3.8895
0.009 | 1.2502 | 1.3520 | 1.9185 | 2.3731 | 2.5526 | 3.3164
0.010 | 1.1070 | 1.1988 | 1.6665 | 2.0117 | 2.1574 | 2.7370
0.011 | 0.9532 | 1.0349 | 1.4068 | 1.6620 | 1.7819 | 2.2050
0.012 | 0.8024 | 0.8729 | 1.1615 | 1.3451 | 1.4413 | 1.7422
0.013 | 0.6629 | 0.7189 | 0.9421 | 1.0706 | 1.1447 | 1.3552
0.014 | 0.5391 | 0.5847 | 0.7523 | 0.8407 | 0.9024 | 1.0404
0.015 | 0.4327 | 0.4723 | 0.5932 | 0.6527 | 0.6998 | 0.7922
0.016 | 0.3434 | 0.3673 | 0.4616 | 0.5020 | 0.5313 | 0.5982
0.017 | 0.2698 | 0.2929 | 0.3578 | 0.3832 | 0.4079 | 0.4488
0.018 | 0.2103 | 0.2276 | 0.2740 | 0.2905 | 0.3057 | 0.3342
0.019 | 0.1627 | 0.1753 | 0.2088 | 0.2191 | 0.2300 | 0.2481
0.020 | 0.1251 | 0.1371 | 0.1583 | 0.1645 | 0.1726 | 0.1840

Table B.3: pg(N), psu(A) and ps(N) under R = 5R,, v = 2.8,3.0 (%)
\ v=2.8 v =3.0

psl<)‘) ps()‘) psu()‘) psl(/\> ps()‘) psu()‘)
0.001 | 0.4052 | 0.4128 | 0.7082 | 0.7780 | 0.7935 | 1.3416
0.002 | 1.8091 | 1.8711 | 3.0291 | 3.2417 | 3.3616 | 5.2894
0.003 | 3.4351 | 3.5920 | 5.5143 | 5.7720 | 6.0728 | 8.9249
0.004 | 4.6179 | 4.8769 | 7.1119 | 7.3111 | 7.7338 | 10.7383
0.005 | 5.1564 | 5.4688 | 7.6306 | 7.7284 | 8.2208 | 10.8076
0.006 | 5.1347 | 5.4757 | 7.3086 | 7.3200 | 7.7953 | 9.7798
0.007 | 4.7361 | 5.0693 | 6.4998 | 6.4513 | 6.8566 | 8.2651
0.008 | 4.1386 | 4.4233 | 5.4859 | 5.4106 | 5.7332 | 6.6721
0.009 | 3.4763 | 3.7200 | 4.4633 | 4.3806 | 4.6133 | 5.2202
0.010 | 2.8346 | 3.0127 | 3.5300 | 3.4568 | 3.6285 | 3.9983
0.011 | 2.2594 | 2.4024 | 2.7364 | 2.6767 | 2.8028 | 3.0159
0.012 | 1.7695 | 1.8684 | 2.0897 | 2.0436 | 2.1208 | 2.2512
0.013 | 1.3667 | 1.4476 | 1.5780 | 1.5438 | 1.5944 | 1.6691
0.014 | 1.0442 | 1.0911 | 1.1804 | 1.1570 | 1.1919 | 1.2311
0.015 | 0.7908 | 0.8212 | 0.8782 | 0.8619 | 0.8807 | 0.9062
0.016 | 0.5948 | 0.6169 | 0.6501 | 0.6392 | 0.6463 | 0.6644
0.017 | 0.4449 | 0.4592 | 0.4792 | 0.4723 | 0.4838 | 0.4868
0.018 | 0.3313 | 0.3397 | 0.3529 | 0.3481 | 0.3535 | 0.3565
0.019 | 0.2458 | 0.2544 | 0.2590 | 0.2561 | 0.2565 | 0.2608
0.020 | 0.1819 | 0.1832 | 0.1899 | 0.1881 | 0.1899 | 0.1908
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Table B.4: Simulation results for p3*°(\) when R = 5R;

N Simulation results for pg.(A) under different v (%)

2.0 2.2 24 2.6 2.8 3.0

0.001 0 0.0001 | 0.0004 | 0.0014 | 0.0026 | 0.0051
0.002 | 0.0001 | 0.0008 | 0.0036 | 0.0103 | 0.0220 | 0.0391
0.003 | 0.0002 | 0.0028 | 0.0114 | 0.0297 | 0.0583 | 0.0924
0.004 | 0.0004 | 0.0055 | 0.0218 | 0.0518 | 0.0931 | 0.1382
0.005 | 0.0008 | 0.0098 | 0.0317 | 0.0715 | 0.1175 | 0.1544
0.006 | 0.0010 | 0.0124 | 0.0425 | 0.0832 | 0.1216 | 0.1491
0.007 | 0.0015 | 0.0153 | 0.0481 | 0.0880 | 0.1169 | 0.1292
0.008 | 0.0018 | 0.0184 | 0.0491 | 0.0833 | 0.1018 | 0.1022
0.009 | 0.0021 | 0.0181 | 0.0482 | 0.0762 | 0.0861 | 0.0756
0.010 | 0.0022 | 0.0177 | 0.0460 | 0.0641 | 0.0660 | 0.0544
0.011 | 0.0023 | 0.0184 | 0.0406 | 0.0530 | 0.0492 | 0.0367
0.012 | 0.0026 | 0.0174 | 0.0349 | 0.0424 | 0.0359 | 0.0236
0.013 | 0.0024 | 0.0158 | 0.0297 | 0.0327 | 0.0257 | 0.0153
0.014 | 0.0022 | 0.0138 | 0.0244 | 0.0238 | 0.0170 | 0.0092
0.015 | 0.0022 | 0.0115 | 0.0197 | 0.0183 | 0.0117 | 0.0065
0.016 | 0.0019 | 0.0099 | 0.0146 | 0.0136 | 0.0078 | 0.0034
0.017 | 0.0016 | 0.0083 | 0.0124 | 0.0099 | 0.0048 | 0.0020
0.018 | 0.0014 | 0.0069 | 0.0092 | 0.0065 | 0.0034 | 0.0013
0.019 | 0.0013 | 0.0056 | 0.0071 | 0.0044 | 0.0021 | 0.0007
0.020 | 0.0010 | 0.0047 | 0.0055 | 0.0033 | 0.0013 | 0.0004

Table B.5: pg(A), psu(A) and ps(A) under R = 10R,, v = 2.0,2.2 (%)
A\ v =2.0 v =22

psl()\) Ps()\) psu()\) psl()\) ps()\) psu()‘)
0.001 | 0.0005 | 0.0006 | 0.0011 | 0.0126 | 0.0127 | 0.0239
0.002 | 0.0031 | 0.0031 | 0.0061 | 0.0677 | 0.0689 | 0.1265
0.003 | 0.0074 | 0.0081 | 0.0145 | 0.1535 | 0.1571 | 0.2829
0.004 | 0.0125 | 0.0134 | 0.0245 | 0.2445 | 0.2519 | 0.4454
0.005 | 0.0173 | 0.0183 | 0.0337 | 0.3213 | 0.3331 | 0.5782
0.006 | 0.0211 | 0.0224 | 0.0412 | 0.3739 | 0.3895 | 0.6652
0.007 | 0.0238 | 0.0251 | 0.0465 | 0.4001 | 0.4232 | 0.7034
0.008 | 0.0252 | 0.0279 | 0.0492 | 0.4030 | 0.4318 | 0.6990
0.009 | 0.0254 | 0.0278 | 0.0498 | 0.3874 | 0.4138 | 0.6649
0.010 | 0.0247 | 0.0273 | 0.0483 | 0.3591 | 0.3900 | 0.6089
0.011 | 0.0233 | 0.0255 | 0.0456 | 0.3233 | 0.3524 | 0.5424
0.012 | 0.0214 | 0.0241 | 0.0419 | 0.2841 | 0.3122 | 0.4708
0.013 | 0.0193 | 0.0221 | 0.0378 | 0.2448 | 0.2680 | 0.4008
0.014 | 0.0171 | 0.0196 | 0.0332 | 0.2073 | 0.2293 | 0.3355
0.015 | 0.0149 | 0.0174 | 0.0291 | 0.1730 | 0.1899 | 0.2775
0.016 | 0.0129 | 0.0148 | 0.0250 | 0.1426 | 0.1587 | 0.2259
0.017 | 0.0110 | 0.0127 | 0.0213 | 0.1163 | 0.1294 | 0.1820
0.018 | 0.0092 | 0.0109 | 0.0178 | 0.0939 | 0.1056 | 0.1453
0.019 | 0.0077 | 0.0091 | 0.0150 | 0.0752 | 0.0813 | 0.1151
0.020 | 0.0064 | 0.0069 | 0.0123 | 0.0598 | 0.0664 | 0.0902
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Table B.6: pg(A), psu(A) and ps(N) under R = 10R,, v = 2.4,2.6 (%)
A vy=24 v =2.6

Psi(A) | ps(A) | psu(N) | ps(A) | ps(A) | psu(N)
0.001 | 0.0621 | 0.0633 | 0.1126 | 0.1815 | 0.1844 | 0.3229
0.002 | 0.3143 | 0.3233 | 0.5584 | 0.8640 | 0.8882 | 1.4891
0.003 | 0.6731 | 0.6924 | 1.1711 | 1.7433 | 1.8151 | 2.9093
0.004 | 1.0149 | 1.0584 | 1.7291 | 2.4819 | 2.6077 | 4.0144
0.005 | 1.2638 | 1.3277 | 2.1059 | 2.9249 | 3.0912 | 4.5867
0.006 | 1.3957 | 1.4768 | 2.2784 | 3.0639 | 3.2581 | 4.6614
0.007 | 1.4196 | 1.5107 | 2.2698 | 2.9629 | 3.1699 | 4.3798
0.008 | 1.3604 | 1.4585 | 2.1296 | 2.7056 | 2.9030 | 3.8841
0.009 | 1.2463 | 1.3429 | 1.9124 | 2.3673 | 2.5450 | 3.3067
0.010 | 1.1025 | 1.1897 | 1.6593 | 2.0044 | 2.1548 | 2.7270
0.011 | 0.9484 | 1.0268 | 1.3993 | 1.6540 | 1.7771 | 2.1923
0.012 | 0.7975 | 0.8690 | 1.1540 | 1.3371 | 1.4297 | 1.7307
0.013 | 0.6582 | 0.7169 | 0.9358 | 1.0631 | 1.1390 | 1.3452
0.014 | 0.5348 | 0.5824 | 0.7457 | 0.8338 | 0.8946 | 1.0318
0.015 | 0.4288 | 0.4649 | 0.5876 | 0.6467 | 0.6926 | 0.7843
0.016 | 0.3400 | 0.3706 | 0.4575 | 0.4969 | 0.5281 | 0.5911
0.017 | 0.2669 | 0.2874 | 0.3528 | 0.3789 | 0.3971 | 0.4428
0.018 | 0.2078 | 0.2266 | 0.2704 | 0.2870 | 0.3027 | 0.3301
0.019 | 0.1607 | 0.1715 | 0.2054 | 0.2162 | 0.2276 | 0.2451
0.020 | 0.1234 | 0.1331 | 0.1556 | 0.1621 | 0.1693 | 0.1812

Table B.7: pg(N), psu(A) and ps(A) under R = 10R,, v = 2.8,3.0 (%)
\ v=2.8 v =3.0

psl<)‘) ps()‘) psu()‘) psl(/\> ps()‘) psu()‘)
0.001 | 0.4095 | 0.4171 | 0.7178 | 0.7878 | 0.7988 | 1.3641
0.002 | 1.8247 | 1.8936 | 3.0625 | 3.2742 | 3.4057 | 5.3602
0.003 | 3.4583 | 3.6133 | 5.5592 | 5.8160 | 6.1184 | 9.0140
0.004 | 4.6408 | 4.8961 | 7.1570 | 7.3505 | 7.7578 | 10.8118
0.005 | 5.1732 | 5.5014 | 7.6589 | 7.7541 | 8.2506 | 10.8531
0.006 | 5.1432 | 5.4654 | 7.3267 | 7.3304 | 7.8045 | 9.7974
0.007 | 4.7367 | 5.0489 | 6.5027 | 6.4492 | 6.8548 | 8.2604
0.008 | 4.1330 | 4.4019 | 5.4781 | 5.4000 | 5.7205 | 6.6557
0.009 | 3.4668 | 3.6944 | 4.4466 | 4.3653 | 4.6061 | 5.1974
0.010 | 2.8230 | 2.9974 | 3.5140 | 3.4399 | 3.6109 | 3.9742
0.011 | 2.2473 | 2.3838 | 2.7199 | 2.6601 | 2.7777 | 2.9941
0.012 | 1.7578 | 1.8524 | 2.0745 | 2.0285 | 2.1101 | 2.2329
0.013 | 1.3561 | 1.4223 | 1.5644 | 1.5306 | 1.5815 | 1.6539
0.014 | 1.0349 | 1.0834 | 1.1698 | 1.1458 | 1.1735 | 1.2186
0.015 | 0.7830 | 0.8180 | 0.8687 | 0.8527 | 0.8779 | 0.8950
0.016 | 0.5883 | 0.6091 | 0.6427 | 0.6317 | 0.6456 | 0.6561
0.017 | 0.4396 | 0.4597 | 0.4734 | 0.4664 | 0.4736 | 0.4804
0.018 | 0.3270 | 0.3373 | 0.3480 | 0.3434 | 0.3487 | 0.3516
0.019 | 0.2424 | 0.2491 | 0.2553 | 0.2524 | 0.2560 | 0.2568
0.020 | 0.1792 | 0.1815 | 0.1870 | 0.1852 | 0.1870 | 0.1879
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Table B.8: Simulation results for p3*°(\) when R = 10R;

N Simulation results for pg.(A) under different v (%)

2.0 2.2 2.4 2.6 2.8 3.0

0.001 0 0.0001 | 0.0003 | 0.0011 | 0.0024 | 0.0048
0.002 | 0.0001 | 0.0009 | 0.0034 | 0.0106 | 0.0210 | 0.0386
0.003 | 0.0002 | 0.0025 | 0.0115 | 0.0286 | 0.0538 | 0.0901
0.004 | 0.0005 | 0.0055 | 0.0227 | 0.0513 | 0.0905 | 0.1335
0.005 | 0.0007 | 0.0088 | 0.0316 | 0.0696 | 0.1109 | 0.1503
0.006 | 0.0010 | 0.0126 | 0.0414 | 0.0808 | 0.1207 | 0.1455
0.007 | 0.0015 | 0.0153 | 0.0469 | 0.0870 | 0.1150 | 0.1245
0.008 | 0.0018 | 0.0162 | 0.0475 | 0.0805 | 0.0995 | 0.0988
0.009 | 0.0022 | 0.0181 | 0.0471 | 0.0732 | 0.0811 | 0.0720
0.010 | 0.0023 | 0.0179 | 0.0448 | 0.0633 | 0.0645 | 0.0512
0.011 | 0.0024 | 0.0180 | 0.0397 | 0.0505 | 0.0478 | 0.0349
0.012 | 0.0023 | 0.0164 | 0.0340 | 0.0411 | 0.0350 | 0.0230
0.013 | 0.0023 | 0.0148 | 0.0297 | 0.0322 | 0.0248 | 0.0151
0.014 | 0.0019 | 0.0131 | 0.0236 | 0.0237 | 0.0173 | 0.0091
0.015 | 0.0019 | 0.0120 | 0.0193 | 0.0177 | 0.0113 | 0.0053
0.016 | 0.0017 | 0.0100 | 0.0149 | 0.0127 | 0.0077 | 0.0031
0.017 | 0.0016 | 0.0082 | 0.0112 | 0.0091 | 0.0049 | 0.0019
0.018 | 0.0013 | 0.0068 | 0.0087 | 0.0065 | 0.0032 | 0.0013
0.019 | 0.0013 | 0.0056 | 0.0063 | 0.0047 | 0.0020 | 0.0005
0.020 | 0.0010 | 0.0043 | 0.0049 | 0.0032 | 0.0012 | 0.0005

Table B.9: pg (), psu(A) and ps(A) under R = 100R,, v = 2.0,2.2 (%)
A\ v =2.0 v =22

PN | psN) | psuN) | pa(N) | ps(N) | Psu(N)
0.001 | 0.0006 | 0.0006 | 0.0011 | 0.0126 | 0.0130 | 0.0239
0.002 | 0.0031 | 0.0031 | 0.0061 | 0.0677 | 0.0698 | 0.1264
0.003 | 0.0078 | 0.0078 | 0.0144 | 0.1534 | 0.1578 | 0.2828
0.004 | 0.0129 | 0.0129 | 0.0243 | 0.2443 | 0.2547 | 0.4451
0.005 | 0.0187 | 0.0187 | 0.0334 | 0.3209 | 0.3385 | 0.5778
0.006 | 0.0226 | 0.0226 | 0.0408 | 0.3733 | 0.3920 | 0.6644
0.007 | 0.0247 | 0.0247 | 0.0461 | 0.3995 | 0.4243 | 0.7028
0.008 | 0.0273 | 0.0273 | 0.0487 | 0.4022 | 0.4281 | 0.6985
0.009 | 0.0278 | 0.0278 | 0.0492 | 0.3865 | 0.4168 | 0.6645
0.010 | 0.0271 | 0.0271 | 0.0477 | 0.3582 | 0.3864 | 0.6079
0.011 | 0.0257 | 0.0257 | 0.0451 | 0.3224 | 0.3477 | 0.5405
0.012 | 0.0238 | 0.0238 | 0.0414 | 0.2833 | 0.3099 | 0.4701
0.013 | 0.0218 | 0.0218 | 0.0373 | 0.2440 | 0.2659 | 0.4001
0.014 | 0.0193 | 0.0193 | 0.0330 | 0.2066 | 0.2272 | 0.3350
0.015 | 0.0172 | 0.0172 | 0.0289 | 0.1724 | 0.1900 | 0.2758
0.016 | 0.0149 | 0.0149 | 0.0249 | 0.1421 | 0.1572 | 0.2250
0.017 | 0.0127 | 0.0127 | 0.0211 | 0.1158 | 0.1297 | 0.1817
0.018 | 0.0108 | 0.0108 | 0.0177 | 0.0935 | 0.1054 | 0.1447
0.019 | 0.0086 | 0.0086 | 0.0148 | 0.0748 | 0.0838 | 0.1151
0.020 | 0.0074 | 0.0074 | 0.0122 | 0.0595 | 0.0672 | 0.0903
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Table B.10: pgy(A), psu(A) and pg(A) under R = 100R,, v = 2.4,2.6 (%)
A vy=24 v =2.6

Psi(A) | ps(A) | psu(N) | ps(A) | ps(A) | psu(N)
0.001 | 0.1847 | 0.0634 | 0.1129 | 0.1847 | 0.1847 | 0.3243
0.002 | 0.8858 | 0.3206 | 0.5596 | 0.8858 | 0.8858 | 1.4928
0.003 | 1.8142 | 0.6908 | 1.1724 | 1.8142 | 1.8142 | 2.9170
0.004 | 2.6096 | 1.0587 | 1.7303 | 2.6096 | 2.6096 | 4.0212
0.005 | 3.0924 | 1.3243 | 2.1080 | 3.0924 | 3.0924 | 4.5932
0.006 | 3.2566 | 1.4775 | 2.2798 | 3.2566 | 3.2566 | 4.6655
0.007 | 3.1608 | 1.5086 | 2.2689 | 3.1608 | 3.1608 | 4.3784
0.008 | 2.8923 | 1.4484 | 2.1290 | 2.8923 | 2.8923 | 3.8844
0.009 | 2.5444 | 1.3401 | 1.9116 | 2.5444 | 2.5444 | 3.3054
0.010 | 2.1512 | 1.1832 | 1.6566 | 2.1512 | 2.1512 | 2.7228
0.011 | 1.7772 | 1.0236 | 1.3970 | 1.7772 | 1.7772 | 2.1908
0.012 | 1.4286 | 0.8615 | 1.1524 | 1.4286 | 1.4286 | 1.7273
0.013 | 1.1334 | 0.7100 | 0.9333 | 1.1334 | 1.1334 | 1.3414
0.014 | 0.8922 | 0.5779 | 0.7435 | 0.8922 | 0.8922 | 1.0291
0.015 | 0.6854 | 0.4626 | 0.5853 | 0.6854 | 0.6854 | 0.7821
0.016 | 0.5240 | 0.3705 | 0.4564 | 0.5240 | 0.5240 | 0.5892
0.017 | 0.4017 | 0.2894 | 0.3520 | 0.4017 | 0.4017 | 0.4410
0.018 | 0.2998 | 0.2256 | 0.2698 | 0.2998 | 0.2998 | 0.3283
0.019 | 0.2279 | 0.1749 | 0.2054 | 0.2279 | 0.2279 | 0.2439
0.020 | 0.1689 | 0.1334 | 0.1553 | 0.1689 | 0.1689 | 0.1803

Table B.11: pg(A), psu(A) and ps(A) under R = 100R;, v = 2.8,3.0 (%)
\ v=2.8 v =3.0

psl<)‘) ps()‘) psu()‘) psl(/\> ps()‘) psu()‘)
0.001 | 0.4109 | 0.4188 | 0.7215 | 0.7911 | 0.8086 | 1.3723
0.002 | 1.8300 | 1.8796 | 3.0737 | 3.2851 | 3.4049 | 5.3829
0.003 | 3.4661 | 3.6178 | 5.5773 | 5.8308 | 6.1097 | 9.0459
0.004 | 4.6485 | 4.9135 | 7.1730 | 7.3637 | 7.7923 | 10.8368
0.005 | 5.1789 | 5.4868 | 7.6722 | 7.7628 | 8.2563 | 10.8698
0.006 | 5.1460 | 5.4754 | 7.3318 | 7.3339 | 7.7878 | 9.8022
0.007 | 4.7368 | 5.0488 | 6.5032 | 6.4484 | 6.8581 | 8.2612
0.008 | 4.1311 | 4.4128 | 5.4758 | 5.3964 | 5.7122 | 6.6519
0.009 | 3.4635 | 3.6919 | 4.4426 | 4.3602 | 4.5862 | 5.1919
0.010 | 2.8191 | 2.9994 | 3.5084 | 3.4342 | 3.6076 | 3.9679
0.011 | 2.2432 | 2.3784 | 2.7148 | 2.6545 | 2.7726 | 2.9887
0.012 | 1.7539 | 1.8533 | 2.0699 | 2.0234 | 2.1079 | 2.2273
0.013 | 1.3526 | 1.4219 | 1.5597 | 1.5262 | 1.5761 | 1.6480
0.014 | 1.0318 | 1.0794 | 1.1654 | 1.1421 | 1.1773 | 1.2141
0.015 | 0.7803 | 0.8173 | 0.8662 | 0.8496 | 0.8703 | 0.8916
0.016 | 0.5861 | 0.6069 | 0.6396 | 0.6292 | 0.6436 | 0.6538
0.017 | 0.4378 | 0.4551 | 0.4713 | 0.4644 | 0.4714 | 0.4784
0.018 | 0.3255 | 0.3356 | 0.3464 | 0.3418 | 0.3490 | 0.3498
0.019 | 0.2412 | 0.2498 | 0.2541 | 0.2512 | 0.2555 | 0.2558
0.020 | 0.1783 | 0.1832 | 0.1860 | 0.1843 | 0.1848 | 0.1868
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Table B.12: Simulation results for pi*°(\) when R = 100R;
A

Simulation results for pg.(A) under different v (%)
2.0 2.2 2.4 2.6 2.8 3.0
0.001 0 0.0001 | 0.0003 | 0.0014 | 0.0028 | 0.0054
0.002 | 0.0001 | 0.0008 | 0.0037 | 0.0101 | 0.0208 | 0.0374
0.003 | 0.0002 | 0.0026 | 0.0112 | 0.0297 | 0.0556 | 0.0916
0.004 | 0.0005 | 0.0055 | 0.0224 | 0.0511 | 0.0908 | 0.1327
0.005 | 0.0007 | 0.0090 | 0.0325 | 0.0705 | 0.1127 | 0.1508
0.006 | 0.0010 | 0.0126 | 0.0424 | 0.0817 | 0.1197 | 0.1436
0.007 | 0.0015 | 0.0157 | 0.0465 | 0.0847 | 0.1142 | 0.1256
0.008 | 0.0018 | 0.0170 | 0.0481 | 0.0818 | 0.0992 | 0.0996
0.009 | 0.0021 | 0.0190 | 0.0481 | 0.0743 | 0.0811 | 0.0731
0.010 | 0.0021 | 0.0183 | 0.0443 | 0.0622 | 0.0639 | 0.0520
0.011 | 0.0023 | 0.0174 | 0.0396 | 0.0525 | 0.0478 | 0.0362
0.012 | 0.0022 | 0.0170 | 0.0346 | 0.0411 | 0.0352 | 0.0235
0.013 | 0.0021 | 0.0153 | 0.0294 | 0.0316 | 0.0244 | 0.0143
0.014 | 0.0020 | 0.0137 | 0.0234 | 0.0239 | 0.0165 | 0.0088
0.015 | 0.0020 | 0.0113 | 0.0187 | 0.0180 | 0.0118 | 0.0053
0.016 | 0.0018 | 0.0099 | 0.0153 | 0.0129 | 0.0072 | 0.0035
0.017 | 0.0016 | 0.0087 | 0.0117 | 0.0090 | 0.0048 | 0.0020
0.018 | 0.0013 | 0.0068 | 0.0092 | 0.0061 | 0.0032 | 0.0011
0.019 | 0.0012 | 0.0061 | 0.0071 | 0.0046 | 0.0021 | 0.0008
0.020 | 0.0010 | 0.0048 | 0.0053 | 0.0032 | 0.0012 | 0.0004
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Homologie Simpliciale et Couverture Radio
dans un Réseau de Capteurs

Feng YAN

RESUME : La théorie de 'homologie fournit des solutions nouvelles et efficaces pour régler le probleme
de trou de couverture dans les réseaux de capteurs sans fil. lls sont basés sur deux objets combinatoires
nommés complexe de Cech et complexe de Rips. Le complexe de Cech peut détecter l'intégralité des trous
de couverture, mais il est trés difficile a construire. Le complexe de Rips est facile a construire, mais il est
imprécis dans certaines situations.

Dans la premiere partie de cette thése, nous choisissons la proportion de la surface de trous manqués par
le complexe de Rips comme une mesure d’évaluer I'exactitude de la détection de trou de couverture basée
sur I’'homologie. Des expressions fermées pour les bornes inférieures et supérieures de la proportion sont
dérivés. Les résultats de simulation sont bien compatibles avec les bornes inférieure et supérieure d’analyse,
avec des différences maximales de 0.5% et 3%. En outre, nous étendons I'analyse au cas de la sphére.

Dans la deuxieéme partie, nous proposons d’abord un algorithme distribué basé sur les graphes pour dé-
tecter les trous non triangulaires. Cet algorithme présente une grande complexité. Nous proposons donc un
autre algorithme distribué plus efficace basé sur 'lhomologie. Cet algorithme ne nécessite que des informa-
tions de 1- et 2-saut nceuds voisins et a la complexité O(n?) ol n est le nombre maximum de nceuds voisins
a 1 saut. Il peut détecter avec précision les cycles frontieres d’environ 99% des trous de couverture dans
environ 99% des cas.

MOTS-CLEFS : Homologie simpliciale, trou de couverture, réseaux de capteurs sans fil

ABSTRACT : Homology theory provides new and powerful solutions to address the coverage hole pro-
blem in wireless sensor networks (WSNs). They are based on two combinatorial objects named C
plex and Rips complex. Cech complex can detect all coverage holes, but it is very difficult to const
complex is easy to construct but it may be not accurate in some situations.

In the first part of this thesis, we choose the proportion of the area of holes missed by Rips ¢
a metric to evaluate the accuracy of homology based coverage hole detection. Closed form expre
lower and upper bounds of the proportion are derived. Simulation results are well consistent with the
lower and upper bounds, with maximum differences of 0.5% and 3%. In addition, we extend the
the sphere case.

In the second part, we first propose a graph based distributed algorithm to detect non-triangular
algorithm exhibits high complexity. We thus propose another efficient homology based distributed
This algorithm only requires 1- and 2-hop neighbour nodes information and has the worst case
O(n?) where n is the maximum number of 1-hop neighbour nodes. It can accurately detect the
cycles of about 99% coverage holes in about 99% cases.

KEY-WORDS : Homology theory, coverage hole, wireless sensor networks
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