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Abstract

The main aim of this thesis is to make formal proofs more universal by expressing them
in a common logical framework. More specifically, we use the lambda-Pi-calculus modulo
rewriting, a lambda calculus equipped with dependent types and term rewriting, as
a language for defining logics and expressing proofs in those logics. By representing
propositions as types and proofs as programs in this language, we design translations
of various systems in a way that is efficient and that preserves their meaning. These
translations can then be used for independent proof checking and proof interoperability.
In this work, we focus on the translation of logics based on type theory that allow both
computation and higher-order quantification as steps of reasoning.

Pure type systems are a well-known example of such computational higher-order
systems, and form the basis of many modern proof assistants. We design a translation
of functional pure type systems to the lambda-Pi-calculus modulo rewriting based on
previous work by Cousineau and Dowek. The translation preserves typing, and in
particular it therefore also preserves computation. We show that the translation is
adequate by proving that it is conservative with respect to the original systems.

We also adapt the translation to support universe cumulativity, a feature that is
present in modern systems such as intuitionistic type theory and the calculus of inductive
constructions. We propose to use explicit coercions to handle the implicit subtyping that
is present in cumulativity, bridging the gap between pure type systems and type theory
with universes à la Tarski. We also show how to preserve the expressivity of the original
systems by adding equations to guarantee that types have a unique term representation,
thus maintaining the completeness of the translation.

The results of this thesis have been applied in automated proof translation tools. We
implemented programs that automatically translate the proofs of HOL, Coq, and Matita,
to Dedukti, a type-checker for the lambda-Pi-calculus modulo rewriting. These proofs
can then be re-checked and combined together to form new theories in Dedukti, which
thus serves as an independent proof checker and a platform for proof interoperability.
We tested our tools on a variety of libraries. Experimental results confirm that our
translations are correct and that they are efficient compared to the state of the art.

Keywords: Lambda calculus, dependent types, Curry-Howard correspondence, rewrit-
ing, deduction modulo





Résumé
L’objectif de cette thèse est de rendre les preuves formelles plus universelles en les
exprimant dans un cadre logique commun. Plus précisément nous utilisons le lambda-Pi-
calcul modulo réécriture, un lambda calcul équipé de types dépendants et de réécriture,
comme langage pour définir des logiques et exprimer des preuves dans ces logiques. En
représentant les propositions comme des types et les preuves comme des programmes dans
ce langage, nous concevons des traductions de différents systèmes qui sont efficaces et qui
préservent leur sens. Ces traductions peuvent ensuite être utilisées pour la vérification
indépendante de preuves et l’interopérabilité de preuves. Dans ce travail, nous nous
intéressons à la traduction de logiques basées sur la théorie des types qui permettent à la
fois le calcul et la quantification d’ordre supérieur comme étapes de raisonnement.

Les systèmes de types purs sont un exemple notoire de tels systèmes calculatoires
d’ordre supérieur, et forment la base de plusieurs assistants de preuve modernes. Nous
concevons une traduction des systèmes de types purs en lambda-Pi calcul modulo
réécriture basée sur les travaux de Cousineau et Dowek. La traduction préserve le typage et
en particulier préserve donc aussi l’évaluation et le calcul. Nous montrons que la traduction
est adéquate en prouvant qu’elle est conservative par rapport au système original.

Nous adaptons également la traduction pour inclure la cumulativité d’univers, qui
est une caractéristique présente dans les systèmes modernes comme la théorie des types
intuitionniste et le calcul des constructions inductives. Nous proposons d’utiliser des
coercitions explicites pour traiter le sous-typage implicite présent dans la cumulativité,
réconciliant ainsi les systèmes de types purs et la théorie des types avec univers à la Tarski.
Nous montrons comment préserver l’expressivité des systèmes d’origine en ajoutant des
équations pour garantir que les types ont une représentation unique en tant que termes,
conservant ainsi la complétude de la traduction.

Les résultats de cette thèse ont été appliqués dans des outils de traduction automa-
tique de preuve. Nous avons implémenté des programmes qui traduisent automatiquement
les preuves de HOL, Coq, et Matita, en Dedukti, un vérificateur de types pour le lambda-
Pi-calcul modulo réécriture. Ces preuves peuvent ensuite être revérifiées et combinées en-
semble pour former de nouvelles théories dans Dedukti, qui joue ainsi le rôle de vérificateur
de preuves indépendant et de plateforme pour l’interopérabilité de preuves. Nous avons
testé ces outils sur plusieurs bibliothèques. Les résultats expérimentaux confirment que nos
traductions sont correctes et qu’elles sont efficaces comparées à l’état des outils actuels.

Mots clés : Lambda calcul, types dépendants, correspondance de Curry-Howard,
réécriture, déduction modulo
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1
Introduction

1.1 Proof systems

Proof systems are programs that allow users to do mathematics on a computer. The
process of writing proofs on a computer is not very different from that of writing programs:
the user writes the statement of a theorem and its proof in a language that the computer
understands. The computer reads the proofs and checks for its correctness, possibly
guiding the user during the writing process. Once a proof is validated, it can be published,
stored in databases, queried for by search engines, edited for revision, etc.

In order for the computer to understand it, a proof must be very detailed, explaining
all the steps of reasoning, according to the rules of a precise formal system. Writing such
formal proofs can be time-consuming, but it is very worthwhile because it allows us to
leverage the incredible power of computers. On one hand, computers are much better
than humans at meticulously applying precise rules and checking very long derivations,
so we can prove things with a much lesser degree of errors. On the other hand, we can
use their computational power to perform long calculations automatically in our proofs.
Many proof systems have been developed over the years, and they are mainly used in
two areas: the formalization of mathematics, and software verification.

17



1.1.1 Formalization of mathematics

Formalizing various mathematical theories inside proof systems requires a lot of work,
because we need to detail the proofs much more than on paper, but it also increases our
confidence. There are theorems whose proofs are so large, or that require exhaustive
computations that are so complex, that they were not accepted by the mathematical
community until they have been completely formalized and proved in a proof system.
Such is the case of the 4-color theorem, which states that any planar map can be colored
such that no two adjacent regions have the same color, using only 4 colors. Stated
in the 1850s, it was only proved in 1976 but the proof was not universally accepted
because it used a computer program for doing large calculations. In 2005, the proof was
formalized by Gonthier and Werner in the Coq proof assistant [Gon05, Gon08], which
helped eliminate doubts in the proof. Other notable examples are the Feit–Thompson
theorem [GAA+13] and the Kepler conjecture [HHM+10, Hal14]. These formalization
efforts are typically accompanied by the development of mathematical libraries [GM10]
that contain collections of well-thought definitions and lemmas that can be reused for
further work.

1.1.2 Software verification

We can also use proof systems to verify programs and software systems, proving that
they are bug-free and that they respect their specification. This is very useful for critical
systems where small errors can lead to huge economical or even human losses, for example
in industrial, medical, and financial systems. Again, the advantages are that computers
are much better than humans at verifying large, complex derivations. The CompCert C
compiler [Ler15] is a verified C compiler that has been proved correct in Coq with respect
to the C specification, from the source language all the way down to the machine code.
Other notable examples include the use of Isabelle/HOL in the formal verification
of the seL4 operating system microkernel [KEH+09], the use of HOL Light by Intel
in the verification of the design of new chips [Har09], and the use of PVS by NASA
to verify airline control systems [Muñ03, MCDB03]. Together with model checking and
abstract interpretation, proof systems constitute one of the pillars of formal methods in
software verification.

1.2 Universality of proofs

Proofs in mathematics are universal, but that is not always the case in proof systems.
Doing proofs on a computer requires a certain level of trust because we cannot verify
most of these proofs ourselves, nor the systems in which they are done. When we write a
proof in one system, we would like to check it independently and reuse it for the benefit
of developments in another system. These two aspects of universality, independent proof
checking and proof interoperability, are not always possible.
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The obstacles can be many:

• The proofs are written in high-level proof scripts, partially proved by tactics or
automatically proved by automated theorem provers. There is a lot of missing
information that requires complex machinery to reconstruct and check.

• The system has complete proof objects but provides no way of accessing them
or presenting them in a way that is readable or usable, or does not have a clear
specification of their meaning or the logic behind them.

• We can retrieve proofs but we need to translate them in the language of the other
systems in order to reuse them. For n systems, we need a number of translations
of the order of n2, unless the translations are composable.

• The translations are inefficient and cannot be composed well.

• The logical formalisms are widely different, and even sometimes incompatible.

A solution to these problems is to translate proofs to a common framework called a
logical framework, which is used to:

1. Specify the language for writing proofs and the rules of the logic in which the proofs
are carried.

2. Check the correctness of the proof, by verifying that each individual step of reasoning
follows the rules of the logic.

The framework must be simple enough to be trustworthy but powerful enough to be able
to express the proofs of various logics efficiently. The benefits of doing so are several:

• We develop tools to retrieve the proof objects from various systems and drive the
effort of providing a better specification for these proof objects.

• We can recheck the proofs in the logical framework, thus increasing our confidence.
Logical frameworks provide a venue for proof systems to produce proof objects that
are relatively independent of the implementation of the system itself.

• We need a number of translations that is only linear in the number of systems,
instead of being quadratic.

• It gives a level playing field in which to study logics. Expressing, or trying to
express, different logics in the same framework gives us better insight on the nature
of these logics, their similarities, and their differences.

• It paves the way for proof interoperability. By having the proofs of different systems
in a common framework, it becomes easier to combine them to form larger theories,
in the same way that libraries written in the C language can be linked with programs
written in OCaml in low-level assembly languages.
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In this thesis, we contribute to the design of these translations, called logical embeddings.
There are various different logics and logical frameworks, based on a variety of different
formalisms. In our work, we focus on those based on type theory. In particular, we use the
λΠ-calculus modulo rewriting as our logical framework and we focus on the embedding
of logics that allow computational and higher-order reasoning.

1.2.1 Computational reasoning

Computation inside proofs can reduce the size of proofs, sometimes by drastic amounts.
Indeed, if a person asserts that the statement

2 + 2 = 4

is true, then we only need to compute the value of 2 + 2 and compare it to the right
hand-side. In this case, the result of 2 + 2 is 4 and therefore the statement is true. On
the other hand, the statement

2 + 2 = 5

is not true, and indeed the value 4 is not equal to 5. In practice, computation allows us
to express the proof of the first statement using one step:

4 = 4
2 + 2 = 4

which is smaller than a non-computational proof that uses the axioms of arithmetic:

2 + 2 = 3 + 1
3 + 1 = 4 + 0 4 + 0 = 4

3 + 1 = 4
2 + 2 = 4 .

Computation in proofs is especially relevant when we deal with logics that reason
about programs, where these steps correspond to program evaluation. On larger or
more complex examples, the gains become significant enough that the proofs of difficult
theorems become tractable. This technique, called proof by reflection [BC04], has been
famously and successfully used in the proof of the 4-color theorem. To express such
proofs in a logical framework, it is thus important to design embeddings that preserve
computation.
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1.2.2 Higher-order reasoning

Higher-order reasoning allows additional forms of quantification and can add a lot of
expressive power to logic. In first-order logic, the universal quantification ∀ is restricted
to usual objects like natural numbers. It can already express a lot of mathematics, but it
has its limits. For example, the induction principle:

[P (0) ∧ ∀n. [P (n)⇒ P (n+ 1)]] =⇒ ∀n.P (n)

cannot be expressed with a finite number of axioms. If we allow ourselves to quantify
over propositions and predicates, we can formulate it as a single axiom:

∀P. [[P (0) ∧ ∀n. [P (n)⇒ P (n+ 1)]] =⇒ ∀n.P (n)]

Similarly, it can be shown that we cannot prove 0 6= 1 in intuitionistic type theory and the
calculus of constructions without the ability to quantify over types [Smi88]. To express
such proofs in a logical framework, it is thus important to design embeddings that can
deal with higher-order reasoning.

While computational embeddings and higher-order embeddings have been the subject
of much previous work, doing both at the same time has rarely been studied before,
and indeed the two are usually incompatible in weak logical frameworks. In this thesis,
we design embeddings that allow both computation and higher-order reasoning. We
proceed in several stages to achieve our end-goal, which is the translation of the calculus
of inductive constructions, the formalism behind the Coq proof system.

1.3 Type theory and logical frameworks

Type theory [Rus08] is an alternative to set theory that was proposed at the beginning
of the 20th century as a solution to avoid the paradoxes of naive set theory exhibited
by Russell. The main idea behind it is to classify mathematical objects into different
classes called types (for example the type nat of natural numbers, the type nat → nat
of functions, etc.), that ensure that all objects have a meaning and that the range of
universal quantification ∀ is bounded to a single type. This simple but powerful idea
found many applications in both logic and computer science.

After many simplifications, Church [Chu40] reformulated type theory using the λ-
calculus, in what is known today as simple type theory (STT). The main innovations in
that theory are that propositions are represented as objects of just another type o, and
that we can write functions that construct these objects in the language of the λ-calculus.
This means that we can quantify over propositions (by quantifying over objects of type
o) and over predicates (by quantifying over functions of type nat → o), which allows
higher-order reasoning. For these reasons, this simple yet expressive system is also known
as higher-order logic (HOL). It has been implemented in many proof assistants, including
HOL4, HOL Light, ProofPower, and Isabelle.
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1.3.1 The Curry–Howard correspondence

Over the years, type theory has evolved to give rise to many systems, all based more or
less on the λ-calculus. In the end of the 1960s, a central idea that has emerged is the
Curry–Howard correspondence [Cur34, dB68, How80], also known as the “propositions-
as-types” principle, which highlights an isomorphism between proofs and programs. A
proposition A in some logic L corresponds to a type JAK in some calculus λL, and a
proof of A in this logic corresponds to a program of type JAK in that calculus. This
correspondence can be summarized by the statement:

Γ `L A ⇐⇒ ∃M. JΓK `λL M : JAK

where M is a straightforward encoding of the proof of A. The implication A ⇒ B
corresponds to the type of functions A→ B, and the various derivation rules of the logic
are in one-to-one correspondence with the typing rules of the calculus.

By viewing proofs as programs in a typed functional language, proof-checking becomes
equivalent to type-checking, and a lot of the knowledge and expertise that we have from
programming languages can be applied to logic, and vice versa. Proofs are no longer
only about programs but they also are programs themselves, and can be manipulated as
such, quantified over, passed around, and executed. This beautiful duality has since been
extended to many logics and systems:

Propositional logic Simply typed λ-calculus
First-order logic λΠ-calculus
Second-order logic System F
Classical logic λ-calculus with call− cc

This correspondence highlights the computational content of proofs, which is important
for constructive logics, i.e. logics that avoid classical reasoning and the use of the law
of excluded middle (A ∨ ¬A), because it allows the extraction of programs from proofs
and allows us to view types as program specifications. Intuitionistic type theory (ITT)
was developed by Martin-Löf [ML73, ML84] as a logic based solely on this idea, and
was proposed as a foundation for constructive mathematics. It is implemented in the
system Agda. The calculus of constructions (CC) was proposed by Coquand and Huet
[CH88] in the late 1980s as a powerful calculus that allows impredicative reasoning.
Later, the work of Luo [Luo90] and Coquand and Paulin [CP90] unified ITT and CC
in what is known today as the calculus of inductive constructions (CIC). This powerful
and expressive theory serves as a basis for several proof assistants including the famous
proof system Coq and Matita. In this thesis, we make heavy use of the Curry–Howard
correspondence and we treat proof systems as typed λ-calculi.
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1.3.2 The logical framework approach

A logical framework in type theory is a system that can define various logics and express
proofs in those logics in such a way that provability corresponds to type inhabitation.
Instead of using a different calculus λL for every logic L, we use a single calculus LF . A
logic L is embedded as a signature ΣL that defines the constructs, axioms, and rules of the
logic, in such a way that a proposition A is provable in L if and only if its corresponding
type is inhabited in this signature:

Γ `L A ⇐⇒ ∃M. ΣL, JΓK `LF M : JAK .

We can thus use the type checker of the framework as a proof checker for different logics.
Several logical frameworks with varying degrees of power and expressivity have

been proposed over the years. The approach was pioneered by de Bruijn [dB68] in the
Automath system in the late 1960s, but it was popularized by Harper, Honsell, and
Plotkin [HHP93] in the system LF, which is a relatively weak but expressive system
that consists of a minimal lambda-calculus with dependent types, also known as the
λΠ-calculus. Through the propositions-as-types principle, it can express a wide variety of
logics. It is implemented in the system Twelf, which is a type-checker and meta-theorem
prover for that calculus. It has been successfully used to embed a wide variety of theories,
including some higher-order ones such as HOL and system F.

In our thesis, we use the λΠ-calculus modulo rewriting [CD07, BCH12], an extension
of the λΠ-calculus with term rewriting. As we will see, the λΠ-calculus is powerful
enough to express computational embeddings, such as for first-order logic, and higher-
order embeddings, such as for higher-order logic. However, it cannot easily and efficiently
express the proofs of theories which are at the same time computational and higher-
order, such as intuitionistic type theory or the calculus of constructions. Therefore,
a logical framework based on it cannot practically express the proofs of Agda, Coq,
and Matita. The λΠ-calculus modulo rewriting, as we will show, can be seen as a
good compromise between the λΠ-calculus and Martin-Löf’s logical framework. It is
implemented in the type checker Dedukti, which we use in our thesis to check the results
of our translations. In Chapter 2, we recall the theory of the λΠ-calculus and discuss its
strength and weaknesses. In Chapter 3, we present the λΠ-calculus modulo rewriting
and its metatheory and show how it alleviates the weaknesses mentioned above.

1.4 Computational higher-order logics

1.4.1 Pure type systems

In the late 1980s, Berardi and Terlouw [Ber89, Ter89] introduced pure type systems as a
general framework for describing various typed λ-calculi. The framework is general enough
to include many popular systems such as the simply typed lambda-calculus, system F,
the calculus of constructions, and even higher-order logic. Because of its generality, it is
the perfect candidate for studying the embedding of various computational higher-order
systems. We briefly recall the theory of pure type systems in Chapter 4.
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This thesis stems from the work of Cousineau and Dowek [CD07], who presented in
2007 a general embedding of pure type systems in the λΠ-calculus modulo rewriting. We
recall and revise their work in Chapter 5, where we show that the embedding preserves
typing and computation. Chapter 6 is devoted to proving the conservativity of this
embedding, a result which was missing from the original paper. More specifically, we
show that an original formula is provable in the embedding only if it is provable in the
original system, thus justifying the use of the λΠ-calculus modulo rewriting as a logical
framework. Traditional techniques fail in this setting, so we propose a new approach
based on reducibility to show that a proof in the embedding reduces to a proof in the
original system. This work has been the subject of a publication at TLCA 2015 [Ass15],
although the proof we present here is more general and can be adapted to the translations
we present later in this thesis.

In Chapter 7, we show how we applied these ideas in the implementation of Holide,
a tool for the automatic translation of HOL proofs to Dedukti, and present experimental
results obtained from translating the OpenTheory standard library. Holide was
started as an internship project, but we continued its development during this thesis. In
particular, we implemented term sharing, an optimization that proved to be crucial for
the efficiency of the translation. This work was presented at PxTP 2015 [AB15].

1.4.2 Universes and cumulativity

In type theory, a universe is a type whose elements are themselves types. In systems
based on the Curry–Howard correspondence, universes allow higher-order quantification
(e.g. over propositions or predicates) and are essential to higher-order reasoning. They
are already present in pure type systems, where they are called sorts.

While a basic embedding of universes can already be found in the embedding of pure
type systems, there are additional features related to universes that are not covered,
namely infinite universe hierarchies and universe cumulativity. Universes are usually
organized in an infinite hierarchy, where each universe is a member of the next one:

Type0 ∈ Type1 ∈ Type2 ∈ · · · .

This stratification is required to avoid paradoxes that would arise from Type ∈ Type. It
is similar to the distinction between sets (or small sets) and collections (or large sets) in
set theory. Cumulativity expresses that each universe is contained in the next one:

Type0 ⊆ Type1 ⊆ Type2 ⊆ · · · .

Infinite hierarchies and cumulativity have become a common part of many logical systems
such as intuitionistic type theory and the calculus of inductive constructions, implemented
in Coq and Matita.
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We present techniques for embedding those two features in the λΠ-calculus modulo
rewriting. To this end, we first generalize the framework of pure type systems to
cumulative type systems (CTS) [Bar99, Las12], which we present in Chapter 8. We
then extend the embedding of pure type systems to cumulative type systems. A major
difficulty is that cumulativity in Coq and Matita is expressed implicitly. To this end, we
base ourselves on a comparison of two popular formulations of universes in intuitionistic
type theory, à la Russell (implicit) and à la Tarski (explicit), and their interaction with
cumulativity. We propose to use explicit coercions to represent cumulativity. In particular,
we show that, in order for the embedding to be complete, coercions need to satisfy a
condition called full reflection that ensures that types have a unique representation
inside universes. This idea was the subject of a publication at TYPES 2014 [Ass14],
although under a different light, as a calculus of constructions with explicit subtyping.
The embedding of cumulative type systems is the subject of Chapter 9. In Chapter 10,
we focus on infinite hierarchies, and show how to represent them using a finite set of
constants and rewrite rules.

This thesis finally culminates with an embedding of the calculus of inductive con-
structions, which we have implemented in two automated translation tools: Coqine,
that translates the proofs of Coq to Dedukti, and Krajono, that translates the proofs
of Matita to Dedukti. We present this translation along with experimental results
obtained from translating various libraries in Chapter 11.

1.5 Contributions

The main contributions of this thesis can be summarized as follows.

1. We revisit the general embedding of pure type systems in the λΠ-calculus
modulo rewriting of Cousineau and Dowek and prove that it is conservative.

2. We extend the embedding to express cumulativity and infinite hierarchies.
We highlight the need to have a unique representation of types inside universes to
preserve the completeness of the embedding.

3. We implement these theoretical results in practical tools for the automatic
translation of the proofs of HOL, Coq, and Matita.

To this, we also add:

0. We provide a critical analysis of the various forms of embeddings in logical frame-
works based on type theory, and discuss the features needed for the embedding of
computational higher-order logics.
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1.6 Preliminary notions and notations

In this thesis, we will consider various systems based on the λ-calculus. We assume the
reader is familiar with the λ-calculus, and more specifically, some typed variant à la
Church, where λ-abstractions are annotated by the type of their domain:

λx : A .M.

In the tradition of pure type systems, we do not distinguish between terms and types,
which therefore belong to the same syntactic category. The type of λ-abstractions are
Π-types, also known as dependent products and dependent function types:

Πx : A .B

which we use to denote polymorphic types, dependent types, etc.
We use standard λ-calculus notation, with term application written as M N . We

use x, y, z to denote variables, M,N,A,B to denote terms, c1, c2, c3 to denote specific
constants, and Γ,∆,Σ to denote contexts. λ-abstractions associate to the right and
applications associate to the left, with application taking precedence over λ-abstraction.
For example,

λx1 : A1 . λx2 : A2 .M N1N2

stands for the term
λx1 : A1 . (λx2 : A2 . ((M N1) N2)) .

We make free use of parentheses to disambiguate. We also use the following shortcut
notations. We write λx .M (with no type annotation) instead of λx : A .M when the
type A is obvious from the surrounding context. We use the following notations:

λx, y : A .M def= λx : A . λx : A .M
Πx, y : A .B def= Πx : A .Πy : A .B
λ~x : ~A .M def= λx1 : A1 . · · ·λxn : An .M
Π~x : ~A .B def= Πx : A1 . · · ·Πxn : An . B

M ~N
def= M N1 · · · Nn

where ~x = x1, . . . , xn, ~A = A1, . . . , An, and ~N = N1, . . . , Nn. We write A → B instead
of Πx : A .B when the variable x does not appear in free in B.

As usual, the variable x is bound in M in the term λx : A .M , and is bound in
B in the term Πx : A .B. We write FV (M) for the set of free variables of a term M .
Terms are identified up to α-equivalence and we use capture-avoiding substitution. A
substitution is written as M {x1\N1, . . . , xn\Nn}, where the term Ni replaces the free
occurrences of the variable xi in the term M , possibly α-renaming binders to avoid
capturing free variables. If σ = {x1\N1, . . . , xn\Nn} is a substitution, we also sometimes
write σ (M) instead of Mσ for the substitution operation.
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Terms are equipped with reduction relations, which we will write using −→ (long
arrows). The reduction relations that we will consider are closed by the subterm relation.
A reduction relation is closed by the subterm relation when M −→M ′ implies C[M ] −→
C[M ′] for any term context C. In other words, evaluation is unrestricted, it can occur
anywhere in the term, in any order. In the systems we will consider, the main reduction
relation will be β-reduction, i.e. the smallest reduction relation −→β that is closed by
the subterm relation such that, for all A,M,N , we have

(λx : A .M) N −→β M {x\N} .

Some of the systems that we will consider also have term rewriting, i.e. a reduction
relation induced by a set of rewrite rules. A rewrite rule is a pair of terms written
M 7−→ N . Given a set of rewrite rules R, the reduction relation −→R is the smallest
reduction relation that is closed by the subterm relation such that, for all (M 7−→ N) ∈ R
and substitution σ, we have

σ (M) −→R σ (N) .

For any reduction relation −→r, we write←−r for its symmetric reduction relation, −→+
r

for its transitive closure, −→∗r for its reflexive transitive closure, and ≡r for its reflexive
symmetric transitive closure. We note that ≡r is a congruence, i.e. an equivalence relation
that is compatible with the structure of terms. We write −→r1r2 for the union of the
relations −→r1 and −→r2 and −→r1−→r2 for their composition.

For a good introduction to λ-calculus and its typed variations, we strongly recommend
Barendregt’s Lambda calculi with types [Bar92]. Chapters 2, 3, 4, and 8 contain mostly
the recollection of standard material, so readers already familiar with their respective
content can skip them, although we strongly recommend reading Sections 2.2–2.4 and
3.3 for an explanation of the main ideas behind this thesis.
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I
Frameworks and embeddings





2
The λΠ-calculus

The λΠ calculus is a typed λ-calculus with dependent types. Known under many names
(λΠ, LF, λP ), it was proposed in a seminal paper by Harper, Honsell, and Plotkin
[HHP93] as a logical framework to define logics and express proofs in those logics. The
calculus is small but powerful enough to express a wide variety of logics. There are two
features that make this possible. First, λ-abstractions allow the convenient and efficient
representation of binders using higher-order abstract syntax (HOAS). Second, Π-types
allow the correct representation of dependencies. It gained a lot of popularity and was
implemented in systems such as Twelf1 [PS99], which has been successfully used as a
logical framework in various projects [App01, SS06].

Our work draws heavily from the λΠ tradition. The λΠ-calculus modulo rewriting
is an extension of this system with rewrite rules, and our embeddings rely on the same
principles. In this chapter, we recall the theory of λΠ and show the main ideas behind its
capability to express logics. In particular, we will show that there are two main categories
of embeddings, along the lines of Geuvers [GB99]: the computational embeddings and
the higher-order embeddings. We will show that they have different properties and that
they are incompatible, thus justifying the extension with rewriting of the next chapter.

1http://twelf.org/
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2.1 Definition
We choose a presentation close to pure type systems, which does not make a distinction
between terms and types. The reason behind this choice is that it leads to less duplication
in the syntax and typing rules. The presentation of Harper et al. [HHP93] uses separate
syntactic categories for objects, types, and kinds, as well as a separate signature Σ for
global constants to better differentiate between the declarations that are part of the
logic specification, and those that are local variable declarations, i.e. free hypotheses and
free term variables. We will not make these distinctions on the syntax level and instead
rely on naming conventions to differentiate between the different classes. The original
presentation can be found in Appendix B.1.

Definition 2.1.1 (Syntax). The syntax of λΠ is given by the following grammar:

sorts s ∈ S ::= Type | Kind
terms M,N,A,B ∈ T ::= x | s | Πx : A .B | λx : A .M |M N

contexts Σ,Γ ∈ G ::= ∅ | Γ, x : A

We try to use letters M,N for objects, letters A,B for types, and the letter K for kinds.
We try to use the letter Σ for the context of global declarations (i.e. constants) that are
proper to the entire logic and Γ for the context of local declarations.

Definition 2.1.2 (Typing). The typing relations

• Γ ` M : A, meaning that the term M has type A in the context Γ,

• Γ ` WF, meaning that the context Γ is well-formed,

are derived by the rules in Figure 2.1. A term A is a well-formed type in Γ when Γ ` WF
and either Γ ` A : s or A = s for some s ∈ S. We write this as Γ ` A WF. It is inhabited
in Γ when ∃M,Γ ` M : A. We write Γ ` M : A : B as a shortcut for Γ ` M : A and
Γ ` A : B. We sometimes write `λΠ instead of ` to disambiguate.

The λΠ-calculus enjoys many of the usual desirable properties for systems of typed
lambda calculus, including confluence, subject reduction, strong normalization, and
decidability of type checking. Since it is an instance of a pure type system and since
we will not use it directly, we will postpone the presentation of these properties to the
chapter on pure type systems (Chapter 4).

2.2 As a first-order logic calculus
The λΠ calculus-can be seen as the calculus of minimal first-order logic through the
Curry–Howard correspondence. First-order logic allows predicates and quantification
over objects, which correspond naturally to dependent types: a universal quantification
∀x.A (x) is interpreted as a dependent function type Πx.A (x) and a proof of ∀x.A (x) is
interpreted as a function taking an object x and producing a proof of A (x).
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∅ ` WF
Empty

Γ ` A : s x 6∈ Γ
Γ, x : A ` WF

Decl

Γ ` WF
Γ ` Type : Kind

Type

Γ ` WF (x : A) ∈ Γ
Γ ` x : A

Var

Γ ` A : Type Γ, x : A ` B : s
Γ ` Πx : A .B : s

Prod

Γ, x : A ` M : B Γ ` Πx : A .B : s
Γ ` λx : A .M : Πx : A .B

Lam

Γ `M : Πx : A .B Γ ` N : A
Γ `M N : B {x\N}

App

Γ ` M : A Γ ` B : s A ≡β B
Γ ` M : B

Conv

Figure 2.1 – Typing rules of the system λΠ
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Consider a signature in first-order logic, with function symbols f of arity nf and
predicate symbols p of arity np. First, we declare in our context Σ a type ι : Type which
is the type of the objects of the logic. We then extend the signature with declarations
f : ιn → ι and p : ιn → Type. The propositions of minimal predicate logic then have a
direct interpretation as types of the λΠ calculus:

Jp (M1, . . . ,Mn)K = p [M1] . . . [Mn]
JA⇒ BK = JAK→ JBK
J∀x.AK = Πx : ι . JAK

where [M ] is the straightforward curried representation of the objects of the logic:

[x] = x

[f (M1, . . . ,Mn)] = f [M1] . . . [Mn]

The contexts are interpreted as:

JA1, . . . , AnK = h1 : JA1K , . . . , hn : JAnK

The proofs of minimal predicate logic correspond to the typing derivations in λΠ: for
any proof of a statement Γ ` A, there is a term M which has type A in the context Γ.
Moreover, the typing derivation of M mirrors the proof:

Γ, A ` B
Γ ` A⇒ B

⇒-intro
Γ, h : A ` M : B

Γ ` λh : A .M : A→ B
Lam

Γ ` A⇒ B Γ ` A
Γ ` B

⇒-elim
Γ ` M : A→ B Γ ` N : A

Γ ` M N : B
App

Γ ` A
Γ ` ∀x.A

∀-intro x
Γ, x : ι ` M : A

Γ ` λx : ι .M : Πx : ι . A
Lam

Γ ` ∀x.A
Γ ` A {x\N}

∀-elim
Γ ` M : Πx : ι . A Γ ` N : ι

Γ ` M N : A {x\N}
App

Notice that both introduction rules are represented by the Lam rule and that both
elimination rules are represented by the App rule. Formally, there is a translation
function [π] such that if π is a proof of Γ ` A then [π] has type JAK in the context Σ, JΓK:

π
Γ ` A ⇐⇒ Σ, JΓK ` [π] : JAK .
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The term [π] is an encoding of the proof and is closely related to its own typing derivation.
The translation function is defined by induction on the proof:[

Γ, A,Γ′ ` A
Hyp

]
= hn (where n = |Γ|)

 π
Γ, A ` B

Γ ` A⇒ B
⇒-intro

 = λhn : A . [π] (where n = |Γ|)

 π
Γ ` A⇒ B

π′

Γ ` A
Γ ` B

⇒-elim

 = [π] [π′]

 π
Γ ` A

Γ ` ∀x.A
∀-intro

 = λx : ι . [π]

 π
Γ ` ∀x.A

Γ ` A {x\N}
∀-elim

 = [π] [N ]

The adequacy of this representation was proved by Geuvers and Barendsen [GB99].
This embedding is computational: cut elimination in the proofs of predicate logic

corresponds to the evaluation of the corresponding proof terms. In the λΠ-calculus, it
corresponds to β-reduction:

π
Γ, A ` B

Γ ` A⇒ B
π′

Γ ` A
Γ ` B −→

π{h\π′}
Γ ` B (λh : A . π) π′ −→β π {h\π′}

π
Γ ` A

Γ ` ∀x.A
Γ ` A {x\N} −→

π{x\N}
Γ ` A (λx : ι . π) N −→β π {x\N}

We say that β-reduction is essential2 in this embedding because a step of β-reduction
is playing the role of a reduction step in the original system. With this embedding,
the strong normalization of β-reduction in λΠ shows that cut elimination terminates in
minimal logic (and therefore that the logic is sound).

2 As opposed to administrative. This terminology comes from the theory of continuation passing style
(CPS) translations [Plo75, DF92], where the translation produces intermediary β-redexes that do not
correspond to any β-redex in the original program.
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2.3 As a logical framework
Instead of interpreting propositions as types, we declare a type of propositions o : Type
and constructors of the type o representing implication and universal quantification:

imp : o→ o→ o,

forall : (ι→ o)→ o.

A predicate symbol p of arity n is now declared as p : ιn → o. The propositions are now
interpreted as terms of type o:

[p (M1, . . . ,Mn)] = p [M1] . . . [Mn]
[A⇒ B] = imp [A] [B]
[∀x.A] = forall (λx : ι . A) .

Notice the use of higher order abstract syntax (HOAS) to represent binding in the
translation of universal quantification. The terms of type o can be thought of as codes
representing propositions. To interpret Γ ` A, we add proof : o→ Type which takes the
code of a proposition to the type of its proofs. We then add constructors for each of the
inference rules of minimal predicate logic:

imp_intro : Πp, q : o . (proof p→ proof q)→ proof (imp p q) ,
imp_elim : Πp, q : o . proof (imp p q)→ proof p→ proof q,
forall_intro : Πp : (ι→ o) . (Πx : ι . proof (p x))→ proof (forall p) ,
forall_elim : Πp : (ι→ o) . proof (forall p)→ Πx : ι . proof (p x) .

A proof of A is now translated as a term of type proof [A]. If we write JAK for proof [A],
the translation becomes:[

Γ, A,Γ′ ` A
Hyp

]
= hn (where n = |Γ|)

 π
Γ, A ` B

Γ ` A⇒ B
⇒-intro

 = imp_intro [A] [B] (λhn : JAK . [π])

 π
Γ ` A⇒ B

π′

Γ ` A
Γ ` B

⇒-elim

 = imp_elim [A] [B] [π]
[
π′
]

 π
Γ ` A

Γ ` ∀x.A
∀-intro

 = forall_intro (λx : ι . [A]) (λx : ι . [π])

 π
Γ ` ∀x.A

Γ ` A {x\N}
∀-elim

 = forall_elim (λx : ι . [A]) [π] [N ]
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The embedding again satisfies the property
π

Γ ` A ⇐⇒ Σ, JΓK ` [π] : JAK .

This embedding is not computational, as it does not preserve reductions. Indeed, it
is straighforward to see that the translation of a cut is a normal form. In fact, the
translation of any proof is a normal form. There are well-typed non-normal forms that
do not belong to the translation, such as

(λp : o . imp_intro p p (λh : proof p . h)) (imp q q)

but those can be reduced to a normal form such as

imp_intro (imp q q) (imp q q) (λh : proof (imp q q) . h)

which is the translation of a proof of (q ⇒ q)⇒ (q ⇒ q).
However, β-reduction is still very important because we need it for the HOAS

representation: a substitution is represented by a function application (such as p x in the
type of forall_elim), and β reduction is necessary for it to give the expected result. We
say that β-reduction is administrative3 in this embedding because a step of β-reduction
does not correspond to anything in the original system, and in fact β-equivalent terms
represent the same proof. With this embedding, the strong normalization of β-reduction
in λΠ has absolutely no bearing on the original logic.

2.4 Limitations of λΠ
We saw two kinds of embeddings, which we call computational embeddings and higher-
order embeddings. The first interprets propositions directly as types and can interpret the
proofs of minimal first-order logic as well as systems that are strictly smaller (e.g. minimal
predicate logic, simply typed λ-calculus, etc.). It is computational because it preserves
reductions. The second interprets propositions as objects and has a predicate proof for
the type of their proofs. It is not computational because it does not preserve reduction
but, since it represents propositions as objects, it can express higher-order quantification
and therefore interpret systems that are strictly larger than λΠ.

For example, we cannot interpret full predicate logic in the first approach because
there is no counter-part for conjunction (∧) and disjunction (∨) in λΠ. However, it is
easy to extend the embedding of the second approach to include those:

and : o→ o→ o,

and_intro : Πp, q : o . proof p→ proof q → proof (and p q) ,
and_elim1 : Πp, q : o . proof (and p q)→ proof p,
and_elim2 : Πp, q : o . proof (and p q)→ proof q,

3See Footnote 2.
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or : o→ o→ o,

or_intro1 : Πp, q : o . proof p→ proof (or p q) ,
or_intro1 : Πp, q : o . proof q → proof (or p q) ,
or_elim : Πp, q, r : o . proof (or p q)→

(proof p→ proof r)→ (proof q → proof r)→ proof r.

Similarly, it is possible to embed higher-order systems such as system F and higher-order
logic (HOL) in λΠ using this approach. In fact, the embedding of system F is very close
the embedding of minimal predicate logic given above: it is obtained by just changing
forall to quantify over propositions instead of objects and changing the type of the other
constants correspondingly. After renaming the constants to fit better with the language
of system F, the embedding of the types becomes:

type : Type,
arrow : type→ type→ type,
forall : (type→ type)→ type.

One should not confuse type (with a lowercase “t”), which is the type of (the representation
of) the types of system F, and Type (with an uppercase “T”), which is the type of the
types of λΠ. The representation of the types of system F as objects is precisely what
allows us to express polymorphism. The embedding of terms becomes:

term : type→ Type,
lam : Πa, b : type . (term a→ term b)→ term (arrow a b) ,
app : Πa, b : type . term (arrow a b)→ term a→ term b,

biglam : Πp : (type→ type) . (Πx : type . term (p x))→ term (forall p) ,
bigapp : Πp : (type→ type) . term (forall p)→ Πx : type . term (p x) .

Again, this embedding is not computational because it does not preserve reduction: if
M −→β M

′ in system F then [M ] 6−→β [M ′] in λΠ. In fact, it is not possible to have a
computational embedding of system F in λΠ without extending the language, assuming
of course that we are interested in an embedding that is correct, that is sound and
complete.4 In that sense, we cannot have an embedding that is both higher-order and
computational.

Why is that a problem? Consider the calculus of constructions, which contains both
higher-order quantification and dependent types. Because of higher-order quantification,
we know we need to follow the second approach. At the same time, we need to account
for the conversion rule:

Γ ` M : A A ≡ B
Γ ` M : B

Conv
.

4These notions will be defined more precisely later.
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In the embedding, we must have JΓK ` [M ] : JAK. However, since the embedding does
not preserve reduction, we have JAK 6≡ JBK. Therefore, JΓK 6` [M ] : JBK, which means
the embedding is incomplete. As soon as we want to encode a logic that is at the
same time computational and higher-order, we have to choose between a computational
embedding (which would be incomplete because it cannot do higher-order quantification)
or a higher-order embedding (which would be incomplete because it does not simulate
computation), unless it is unsound.

There is a third alternative, which is to encode the equivalence of types as a relation
equiv and have a constructor, called a coercion, for the conversion rule:

conv : Πa, b : type . equiv a b→ term a→ term b .

However, these embeddings are very costly because they require encoding the proof of
equivalence inside the proof term. These proofs can be quite large in practice. As a
matter of fact, the technique of proof by reflection [BC04] relies precisely on making use of
the computational power of the logic to avoid them. That technique has been successfully
used in proof assistants, for example in Coq to build useful libraires such as ssreflect
[GLR09] and prove important theorems such as the 4 color theorem [Gon05, Gon08].

To encode rich theories like the calculus of constructions or intuitionistic type theory,
we therefore need a framework that is strictly larger than λΠ that can express embeddings
that are at the same time higher-order and computational. This is where the λΠ-calculus
modulo rewriting comes in. By adding rewrite rules to the framework, we can recover
the computational aspect of the logic, and thus ensure that the embedding is complete.
We show how to do this in Chapter 3.
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3
The λΠ-calculus modulo rewriting

As we saw in the previous chapter, the λΠ-calculus lacks some computational capability
in higher-order embeddings. To recover expressivity, the equivalence relation in the
conversion rule must be enhanced. In this regard, Martin-Löf’s logical framework
[NPS90, Luo94] is the ideal setting, being able to extend the conversion with typed
equations

M ≡ N : A,
read as the two terms M and N of type A are equivalent. This formulation makes express-
ing theories a breeze and serves as the framework in which Martin-Lof’s intuitionistic
type theory is expressed [ML84, ML98].

However, it is a theoretical setting that is not well-suited for implementation. First,
the equivalence is expressed as a typed judgement that is regarded as an integral part of
the derivation tree, instead of as a side condition like in pure type systems:

Γ ` M : A Γ ` B WF Γ ` A ≡ B
Γ ` M : B

Conv
.

This has the advantage of guaranteeing “subject reduction” because the equivalence is
only defined on terms of the same type, instead of on untyped terms like in pure type
systems. On the downside, it is not well-suited for implementation as such, because
keeping track of the types at each step is prohibitively expensive. In practice, an untyped
version is implemented and shown to be equivalent, for example as shown by Adams
[Ada06] and Siles and Herbelin [SH12] in the case of pure type systems.
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More importantly though, solving equations in an arbitrary equation system is
undecidable in general. As a result, the type-checking problem

Γ ` M : A

is undecidable for arbitrary theories, because the proof of equivalence Γ ` A ≡ B is not
encoded in M , A, or Γ.

This is where the λΠ-calculus modulo rewriting (λΠR) comes in. The idea is very
simple: orient the equations into rewrite rules to give direction to the computation.
As long as the resulting rewrite system is well-behaved, that is confluent and strongly
normalizing, type-checking is decidable and there is a correct and complete algorithm
for type-checking. Historically, λΠR originated as a λ-calculus counterpart of deduction
modulo through the Curry–Howard correspondence. Deduction modulo is an extension of
first-order logic with rewrite rules on terms and atomic propositions that was proposed
by Dowek et al. [DHK03, DW03] with the idea that some theories are better expressed
as rewrite rules than as axioms. This is desirable from a constructive point of view as it
gives a computational content to proofs and helps recovering the disjunction and witness
property. Later, Cousineau and Dowek [CD07] introduced the calculus and showed that
it can embed any functional pure type system, leading to its proposal as a universal
proof framework. It has been implemented in the type-checker Dedukti1 together with
a number of translations from other systems [BB12, BCH12, Bur13, CD15, CH15].

The metatheory of the λΠ-calulus modulo rewriting has changed over the years since
its original inception. In this chapter, we present λΠR in its modern incarnation due
largely to the works of Saillard [Sai13, Sai15]. We give conditions on the rewrite rules
that satisfy soundness and completeness, and show how the calculus allows computational
embeddings of higher-order theories such as system F. The embedding of pure type
systems will be given in Chapter 5.

3.1 Definition

Definition 3.1.1 (Syntax). The syntax of λΠR is given by the following grammar:

sorts s ∈ S ::= Type | Kind
terms M,N,A,B ∈ T ::= s | x | Πx : A .B | λx : A .M |M N

contexts Σ,Γ,∆ ∈ G ::= ∅ | Γ, x : A | Γ, R
rewrite rules R ::= ∅ | R,M 7−→ N

We write Γ, x : A := M as a shortcut for Γ, x : A, x 7−→M .

The notion of rewriting traditionally relies on the notion of constants and variables.
Since constants are just represented as variables in the λΠ calculus, the notion of rewriting
needs to be adapted. We differentiate between constants and variables by saying that
constants are variables that appear in the context.

1http://dedukti.gforge.inria.fr/
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Definition 3.1.2. A variable x is free in Γ if x 6∈ dom (Γ).

Definition 3.1.3 (Rewriting). A context Γ induces a reduction relation −→Γ defined as
the smallest relation that is closed by subterms such that if M 7−→ N ∈ Γ then for all
substitution σ of variables free in Γ, σ (M) −→Γ σ (N).

Definition 3.1.4 (Typing rules). The typing relations

• Γ ` M : A, meaning that the term M has type A in the context Γ,

• Γ ` WF, meaning that the context Γ is well-formed,

are derived by the rules in Figure 3.1. A term A is a well-formed type in Γ when Γ ` WF
and either Γ ` A : s or A = s for some s ∈ S. We write this as Γ ` A WF. It is inhabited
in Γ when ∃M,Γ ` M : A. We write Γ ` M : A : B as a shortcut for Γ ` M : A and
Γ ` A : B. We sometimes write `λΠR instead of ` to disambiguate.

Notice that the equivalence relation in the rule Conv is ≡βΓ instead of ≡β, and
that there is a new rule Rew for checking rewrite rules. The derivation rules for the
judgement Γ ` R WF are not shown here and will be explained in the next section. The
following illustrative example shows a small derivation in λΠR that uses conversion.

Example 3.1.5. Let Γ be the context containing the following type a, constant c of
type a, predicate function f , and rewrite rule that defines f on the constant c:

a : Type,
c : a,
f : a→ Type,
f c 7−→ Πy : a . f y → f y .

Then the term M = λx : f c . x c x is well-typed in Γ:

Γ, x : f c ` x : f c
Γ, x : f c ` x : Πy : a . f y → f y

Conv
Γ, x : f c ` c : a

Γ, x : f c ` x c : f c→ f c Γ, x : f c ` x : f c
Γ, x : f c ` x c x : f c

Γ ` M : f c→ f c

Note that the rewrite system is terminating but that the term M would not be well-typed
without the rewrite rule, even if we replace all the occurrences of f c by Πy : a . f y → f y.
This example shows that rewriting is a non-trivial feature that cannot be thought of as
just syntactic sugar.
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∅ ` WF
Empty

Γ ` A : s x 6∈ Γ
Γ, x : A ` WF

Decl

Γ ` R WF
Γ, R ` WF

Rew

Γ ` WF
Γ ` Type : Kind

Type

Γ ` WF (x : A) ∈ Γ
Γ ` x : A

Var

Γ ` A : Type Γ, x : A ` B : s
Γ ` Πx : A .B : s

Prod

Γ, x : A ` M : B Γ ` Πx : A .B : s
Γ ` λx : A .M : Πx : A .B

Lam

Γ `M : Πx : A .B Γ ` N : A
Γ `M N : B {x\N}

App

Γ ` M : A Γ ` B : s A ≡βΓ B

Γ ` M : B
Conv

Figure 3.1 – Typing rules of the system λΠR
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3.2 Basic properties

In general, the system is not well-behaved because of the arbitrary rewrite system −→Γ.
Important properties such as subject reduction and type uniqueness do not hold in
general and type checking is undecidable. However, as long as the rewrite system verifies
some conditions, these properties hold and the system is well-behaved. The Γ ` R WF
judgement ensures that the rewrite rules verify these conditions, so that the system is
well-behaved. We devote the next sections to these conditions. We give the statements
without proof, referring the reader to Saillard’s PhD thesis [Sai15] for an exhaustive
study of the metatheory.

Lemma 3.2.1 (Free variables). If Γ ` M : A then FV (M) ∪ FV (A) ⊆ dom (Γ). If
Γ, x : A,Γ ` WF then FV (A) ⊆ dom (Γ) and x 6∈ dom (Γ).

Lemma 3.2.2 (Substitution). If Γ, x : A,Γ′ ` M : B and Γ ` N : A then Γ,Γ′ {x\N} `
M {x\N} : B {x\N} .

Lemma 3.2.3 (Weakening). If Γ ` M : A and Γ′ ` WF and Γ ⊆ Γ′ then Γ′ ` M : A.

3.2.1 Soundness properties

The soundness of the system consists of two key properties: subject reduction and
uniqueness of types. These properties do not always hold. They follow from two
important conditions: product compatibility and well-typedness of rules.

Definition 3.2.4 (Product compatibility). A congruence relation is product compatible
when for all A1, A2, B2, B2,

Πx : A1 . B1 ≡ Πx : A2 . B2 =⇒ (A1 ≡ A2 ∧B1 ≡ B2) .

A context Γ is product compatible when≡βΓ is product compatible. Product compatibility
follows trivially from the confluence of −→βΓ. However, not all systems considered in
practice satisfy confluence.

Definition 3.2.5 (Rule typing). A rewrite rule M 7−→ N is well-typed in Γ if for any
substitution σ of variables free in Γ,

Γ ` σ (M) : A =⇒ Γ ` σ (N) : A

Once these two conditions are met, the system is sound. In general, these properties are
not decidable. There are some sufficient conditions that can guarantee them. Dedukti
checks for some of these conditions, but does not check confluence for example. A
sufficient but not necessary condition for a rule to be well typed will be given in the next
section when we discuss the notion of pattern in Section 3.2.2.
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In the following, let Γ be a product compatible context with well-typed rewrite rules.

Lemma 3.2.6 (Inversion). The following holds:

Γ ` x : C ⇒ ∃A. Γ `WF ∧ (x : A) ∈ Γ ∧ C ≡ A
Γ ` s1 : C ⇒ Γ `WF ∧ s1 = Type ∧ C ≡ Kind
Γ ` Πx : A .B : C ⇒ ∃s. Γ ` A : Type ∧ Γ, x : A ` B : s ∧ C ≡ s
Γ ` λx : A .M : C ⇒ ∃B, s. Γ, x : A ` M : B ∧ Γ ` Πx : A .B : s ∧ C ≡ Πx : A .B
Γ ` M N : C ⇒ ∃A,B. Γ ` M : Πx : A .B ∧ Γ ` N : A ∧ C ≡ B {x\N}

Lemma 3.2.7 (Correctness of typing). If Γ ` M : A then Γ ` A WF.

Lemma 3.2.8 (Stratification). If Γ ` M : A then either

• Γ ` A : Type, in which case we say that M is an object,

• Γ ` A : Kind, in which case we say that M is a type,

• A = Kind, in which case we say that M is a kind.

We try to use the lettersM,N for objects, A,B for types, and K for kinds. If Γ ` K : Kind
then either K = Type or K = Πx : A .K ′ for some type A and kind K ′.

Theorem 3.2.9 (Subject reduction). If Γ ` M : A and M −→∗βΓ M
′ then Γ ` M ′ : A.

Theorem 3.2.10 (Type uniqueness). If Γ ` M : A and Γ `M : B then A ≡βΓ B.

Corollary 3.2.11. If Γ ` M : A and Γ ` M ′ : A′ and M ≡βΓ M
′ then A ≡βΓ A

′.

Proof. By confluence ∃M ′′ such thatM −→∗ M ′′ andM ′ −→∗ M ′′. By subject reduction,
Γ ` M ′′ : A and Γ ` M ′′ : A′. By uniqueness of types, A ≡ A′.

3.2.2 Completeness properties

In λΠ, the problem of type checking is decidable because −→β is confluent and strongly
normalizing for well-typed terms. In λΠR, the problem is generally undecidable because of
the arbitrary rewrite rules, which can break either confluence or strong normalization. We
focus now on confluence. We will discuss normalization later when we prove conservativity
in Chapter 6.

Because we are in a λ-calculus setting, the usual notion of confluence of −→βΓ is not
sufficient. We need to switch to higher-order rewriting (HOR) [Nip91, MN98], i.e. rewrite
rules that allow function variables to be applied on the left-hand side. This is especially
crucial for λΠR as a logical framework because of the use of HOAS. However, the notion
of rewriting in HOR needs to be adapted because −→βΓ can easily become non-confluent,
as shown by the following example.
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Example 3.2.12 (Non-confluence of traditional rewriting in the presence of applied
function variables). Consider the rewrite rule

D (λx . exp (f x)) 7−→ λx .D f x× exp (f x)

for function derivation. Then D (λx . exp ((λy . y) x)) is a critical pair for −→βΓ since

D (λx . expx)←−β D (λx . exp ((λy . y) x)) −→Γ λx .D (λy . y) x× exp ((λy . y) x)

and it is not joinable.

The common solution is to consider rewriting modulo β, written −→Γ: for a rewrite
rule L 7−→ R, we haveM −→Γ N if there is a substitution σ such thatM ≡β Lσ (instead
of M = Lσ) and N = Rσ. This is justified by the key observation that

M ≡βΓ M
′ ⇐⇒ M ≡βΓ M

′,

which shows that −→βΓ is suitable for checking ≡βΓ. However, higher-order matching
modulo β is undecidable in general. Therefore, the rewrite rules are restricted to a class
of patterns for which matching modulo β is decidable. A standard class of patterns that
satisfies this property was introduced by Miller [Mil91].

Definition 3.2.13 (Pattern). A pattern in Γ is a term P = c ~N where c ∈ dom (Γ) and,
for any variable x that is free in Γ, if x appears in P then it only appears in the form x~y
where ~y is a list of distinct variables that are bound in P . A rule is called a pattern rule
in Γ if its left-hand side is a pattern in Γ.

Example 3.2.14. In the context

Real : Type,
exp : Real→ Real,
D : (Real→ Real)→ (Real→ Real) ,

the term D (λx . exp (f x)) is a pattern but the term D (λx . g (f x)) is not (because g is a
free variable that is not applied to a list of distinct bound variables).

Patterns are useful because they provide a good sufficient condition for a rule to be
well-typed, as well as guarantee the decidability of type-checking.

Theorem 3.2.15 (Sufficient condition for well-typedness of rules). A rule M 7−→ N is
well-typed in Γ if M is a pattern, and ∃∆, A such that dom (∆) ⊆ FV (M) and

Γ,∆ ` M : A ∧ Γ,∆ ` N : A.

Theorem 3.2.16 (Decidability of type-checking). If all the rules of Γ are pattern rules
and −→βΓ is confluent and strongly normalizing, then type-checking is decidable.
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This algorithm is implemented in Dedukti. Checking the confluence and strong
normalization of −→βΓ is undecidable. Therefore, these properties are not checked by
Dedukti. As a result, if these conditions fail, the algorithm will be incomplete. Note
that, as long as product compatibility holds, this would not compromise the soundness
of the algorithm: non-confluence can result in the algorithm giving false negatives and
non-normalization can result in the algorithm not terminating.

To summarize, the role of the judgement Γ ` R WF is to ensure that the rewrite
rules are well-behaved. For soundness, this means:

1. every rule M 7−→ N ∈ R is well-typed in Γ.

2. ≡βΓR is product compatible,

For completeness, this means:

3. every rule M 7−→ N ∈ R is a pattern rule,

4. −→βΓR is confluent,

5. −→βΓR is strongly normalizing for well-typed terms.

Note that points 4 implies point 2. Not all of these properties are checked by Dedukti.
In the rest of this thesis, we will not focus on precise derivation rules for the judgement
Γ ` R WF, and instead discuss these properties on a case by case basis.

Example 3.2.17 (Programming in λΠR). We define natural numbers and addition as:

nat : Type,
zero : nat,
succ : nat→ nat,

plus : nat→ nat→ nat,
plus zero j 7−→ j,

plus (succ i) j 7−→ succ (plus i j) .

We can make plus symmetric in its arguments by adding the following rewrite rules:

plus i zero 7−→ i,

plus i (succ j) 7−→ succ (plus i j) .

Note that the rewrite system is still confluent and strongly normalizing. We define vectors
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of length n and the append function as:

vec : Πn : nat .Type,
nil : vec zero,
cons : Πn : nat . nat→ vecn→ vec (succn) .

append : Πm,n : nat . vecm→ vecn→ vec (plusmn) ,
append zeron nil v 7−→ v,

append (succm) n (consmxu) v 7−→ cons (plusmn) x (appendmnuv) .

The rewrite rules are well-typed thanks to the rewrite rules of plus. For the first rule,
with the context ∆ = n : nat, v : vecn, the left-hand side has type vec (plus zeron) while
the right-hand side has type vecn, and the two types are convertible. For the second rule,
with the context ∆ = m : nat, n : nat, x : nat, u : vecm, v : vecn, the left-hand side has
type plus (succm) n while the right-hand side has type succ (plusmn), and the two types
are convertible. Again, we can make the definition of append symmetric in its arguments
by adding the rewrite rules:

appendm zerou nil 7−→ u,

appendm (succn) u (consnx v) 7−→ cons (plusmn) x (appendmnuv) .

and these rules are also well-typed because of the similar rewrite rules on plus. We can
add add a rewrite rule for the associativity of append:

append (plusmn) k (appendmnuv) w 7−→ appendm (plusnk) u (appendnk v w)

but it requires a similar rule on plus:

plus (plusmn) k 7−→ plusm (plusnk)

for it to be well-typed.
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3.3 Computational higher-order embeddings
In this section, we show how λΠR allows higher-order computational embeddings. Recall
the higher-order embedding of system F from Section 2.3:

type : Type,
arrow : type→ type→ type,
forall : (type→ type)→ type,

term : type→ Type,
lam : Πa, b : type . (term a→ term b)→ term (arrow a b) ,
app : Πa, b : type . term (arrow a b)→ term a→ term b,

biglam : Πp : (type→ type) . (Πx : type . term (p x))→ term (forall p) ,
bigapp : Πp : (type→ type) . term (forall p)→ Πx : type . term (p x) .

In order to recover the preservation of reduction, we can very simply add the rewrite
rules:

app a b (lam a b f) x 7−→ f x

bigapp p (biglam p f) a 7−→ f a.

It is easy to see that the translation now preserves reduction:

[(λx : A .M) N ] = app [A] [B] (lam [A] [B] (λx . [M ])) [N ]
−→Γ (λx . [M ]) [N ]
−→β [M ] {x\ [N ]}
= [M {x\N}]

[(Λα.M) A] = bigapp (λα . [B]) (bigapp (λα . [B]) (λx . [M ])) [A]
−→Γ (λx . [M ]) [A]
−→β [M ] {x\ [A]}
= [M {x\A}] .

One step of β-reduction in system F is simulated by one step of Γ-reduction in the
translation, followed by an administrative β-reduction that takes care of the substitution.

While this solution works and is enough to obtain a computational embedding, there
is another solution that we will consider. The terms of an arrow type A→ B in system
F are represented by terms of type term (arrowAB) in λΠR. The constant app takes a
term of this type and allows us to view it as a term of the arrow type termA→ termB.
Similarly, the constant lam takes a function of type termA→ termB and transforms it
into a term of type term (arrowAB). In fact, these two functions, lam and app, form an
isomorphism between the two types:

term (arrowAB) 
 termA→ termB.
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This is reflected in the rewrite rule expressing β which can be seen as identifying their
composition with the identity:

app a b (lam a b f) 7−→ f,

while the composition in the other direction actually expresses η-reduction:

lam a b (λx . app a bmx) 7−→ m.

The embedding we will consider relies on this idea and takes it further, by identifying
the two types via a rewrite rule:

term (arrowAB) 7−→ termA→ termB.

Now that the two types are equal, not only can we define lam and app as the identity
functions

lam a b f 7−→ f,

app a b f 7−→ f,

but we can get rid of them entirely! Indeed, we can now translate functions of type
term (arrowAB) directly as λ abstractions and applications directly as applications. The
embedding becomes:

type : Type,
arrow : type→ type→ type,
forall : (type→ type)→ type,

term : type→ Type,
term (arrow a b) 7−→ term a→ term b

term (forall p) 7−→ Πa : type . term (p a) .

This context is well-formed, as both members of each rewrite rule are of type type, the
first in the context a : type, b : type and the second in the context p : type → type
(Theorem 3.2.15), and the system is confluent. The translation of terms is now:

[x] = x

[λx : A .M ] = λx : JAK . [M ]
[M N ] = [M ] [N ]
[Λα.M ] = λα : type . [M ]
[M 〈A〉] = [M ] [A] .

Notice the similarity with the direct embedding of first-order logic in Section 2.2. In
some sense, this embedding is a unification of the two embeddings of Chapter 2, since if
we kept lam, we would have

lam [A] [B] (λx . [M ]) ≡ λx : JAK . [M ] .
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Finally, note that in this embedding β-reduction is simulated by β-reduction only:

[(λx : A .M) N ] = (λx . [M ]) [N ]
−→β [M ] {x\ [N ]}
= [M {x\N}]

[(Λα.M) A] = (λx . [M ]) [A]
−→β [M ] {x\ [A]}
= [M {x\A}] .

What are the benefits of this approach? The main advantage compared to the first
one is a more compact representation of terms. Indeed, we no longer need to carry
around explicit type annotations that are needed for the constructors lam, app, biglam,
and bigapp. Because Dedukti is a minimalist system, it has no support for implicit
arguments, so these annotations incur a significant cost in the size of the generated terms
and the time it takes to check them. In fact, we can show that the size of the terms is
quadratically larger without this optimization.

Example 3.3.1 (Quadratic blowup). Consider the type an → a of size n. Its translation
with the first approach is

arrow a (· · · (arrow a a))︸ ︷︷ ︸
n

of size O (n). Consider the term λx1 : a . · · ·λxn : a . xn of size n. Its translation is

lam a an−1 → a︸ ︷︷ ︸
n

λx1 . · · · lam a a︸︷︷︸
1

(λxn . xn)


︸ ︷︷ ︸

n

of size O
(
n2). Similarly, the translation of the term f x · · · x of size n is also of size

O
(
n2).
With the second approach, the size of the translation is O (n) in both cases. We

will therefore prefer it in our embeddings. However, there is no such thing as free lunch.
Because β-reduction is simulated by β reduction, there is no more clear separation between
administrative redexes and essential redexes. As a result, the proof of conservativity
becomes much harder. We discuss this further in Chapter 6.
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4
Pure type systems

Pure type systems are a general class of typed λ calculi. They share a common syntax and
have the same typing rules. Each of those calculi is parameterized by a specification that
describes which types are allowed. The idea was first introduced by Berardi [Ber89] and
Terlow [Ter89] under the name generalized type systems and later simplified, renamed,
and popularized by Geuvers, Nederhof, and Barendregt in the early 90s [Bar92, GN91].

One of the reasons for the popularity of pure type systems is that several important
systems of typed λ-calculus à la Church can be seen as specific instances. These include
the simply typed lambda calculus, the λΠ-calculus, system F, the calculus of constructions,
and even higher-order logic. Subtle differences between these systems can be reduced
to differences in their specifications. Pure type systems provide a convenient way of
describing a wide variety of calculi, allowing the classification and comparison of these
systems with respect to one another.

Another reason for their popularity is that they fit very well in the Curry–Howard
correspondence. Many logical systems correspond to pure type systems, so that the
same classification and comparisons can be applied directly to them as well. For this
reason, they are used as a basis for many proof assistants, such as Automath, Coq,
and Matita. They also provide a link with intuitionistic type theory, on which Agda is
based, which we will later explore in Chapters 8 and 9 when we treat cumulativity.
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We now recall the theory of pure type systems. We refer to the work Geuvers and
Nederhof [GN91] and Barendregt [Bar92] for a detailed and comprehensive presentation.
Our presentation is a slightly adapted and modernized version of the original one. The
main differences are that we only allow sort constants, we do not partition variables
by sorts, and we use a separate context formation judgement Γ ` WF instead of the
weakening rule. This presentation is closer to modern systems such as Coq. The
original results still hold for this presentation. The original presentation can be found in
Appendix B.2.

4.1 Definition

Definition 4.1.1 (Specification). A pure type system (PTS) specification is a triple
P = (S,A,R) where:

• S is a set of constants called sorts,

• A ⊆ S × S is a relation called axioms,

• R ⊆ S × S × S is a relation called rules.

We sometimes write (s1, s2) for the rule (s1, s2, s2). The pure type system associated
with a specification P is written λP. In the following, we assume a fixed specification
P = (S,A,R).

Definition 4.1.2 (Syntax). The syntax of λP is given by the following grammar:

sorts s ∈ S
terms M,N,A,B ∈ T ::= x | s |M N | λx : A .M | Πx : A .B
contexts Γ,∆ ∈ G ::= ∅ | Γ, x : A

Definition 4.1.3 (Typing). The typing relations

• Γ ` M : A, meaning that the term M has type A in the context Γ,

• Γ ` WF, meaning the context Γ is well-formed,

are derived by the rules in Figure 4.1. A term A is a well-formed type in Γ when Γ ` WF
and either Γ ` A : s or A = s for some s ∈ S. We write this as Γ ` A WF. It is inhabited
in Γ when ∃M,Γ ` M : A. We write Γ ` M : A : B as a shortcut for Γ ` M : A and
Γ ` A : B. We sometimes write `λP instead of ` to disambiguate.

Definition 4.1.4 (Top-sorts). A sort s is a top-sort if @s′ ∈ S : (s, s′) ∈ A. The set of
top-sorts is written S>.

Remark 4.1.5. It follows that if Γ ` A WF then either Γ ` A : s for some s ∈ S or A = s
for some s ∈ S>, but not both.
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∅ ` WF
Empty

Γ ` A : s x 6∈ Γ
Γ, x : A ` WF

Decl

Γ ` WF (x : A) ∈ Γ
Γ ` x : A

Var

Γ ` WF (s1 : s2) ∈ A
Γ ` s1 : s2

Sort

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A .B : s3

Prod

Γ, x : A ` M : B Γ ` Πx : A .B : s
Γ ` λx : A .M : Πx : A .B

Lam

Γ `M : Πx : A .B Γ ` N : A
Γ `M N : B {x\N}

App

Γ ` M : A Γ ` B : s A ≡β B
Γ ` M : B

Conv

Figure 4.1 – Typing rules of the system λP
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Definition 4.1.6 (Functional PTS). A PTS specification is functional when A and R
are functional relations, that is when:

• ((s1, s2) ∈ A ∧ (s1, s
′
2) ∈ A) =⇒ s2 = s′2

• ((s1, s2, s3) ∈ R ∧ (s1, s2, s
′
3) ∈ R) =⇒ s3 = s′3

When a specification is functional, the relations A and R are partial functions. We
write A (s1) (resp. R (s1, s2)) for the sort s2 such that (s1, s2) ∈ A (resp. s3 such that
(s1, s2, s3) ∈ R) when they exist.

Definition 4.1.7 (Full PTS). A PTS specification is full when the relation R is total,
that is when:

∀s1, s2 ∈ S × S, ∃s3 ∈ S, (s1, s2, s3) ∈ R

When a specification is functional and full, the relation R is a total function.

Definition 4.1.8 (Complete PTS). A PTS specification is complete when it is full and
has no top-sorts (i.e. S> = ∅). When a specification is functional and complete, the
relations A and R are total functions.

4.2 Examples of pure type systems
Many systems of typed λ calculus à la Church can be described as pure type systems.
Historically, the sorts of these systems have been given many names, such as Type,Kind
in λΠ-calculus, Prop,Type in Coq, and ∗,� in the literature on pure type systems
[Bar92, GN91]. For conciseness and to avoid confusion, we will use the symbolic notation
∗,� in these examples.

Example 4.2.1.

• The simply typed λ-calculus corresponds to the PTS λ→ given by the specifi-
cation:

(→)


S = ∗,�
A = (∗,�)
R = (∗, ∗)


• The λΠ-calculus corresponds to the PTS λP given by the specification:

(P )


S = ∗,�
A = (∗,�)
R = (∗, ∗) , (∗,�)


The rule (∗,�) allows dependent types, i.e. types that depend on terms, e.g. the
type of vectors

Vec : N→ ∗.
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• System F corresponds to the PTS λ2 given by the specification:

(2)


S = ∗,�
A = (∗,�)
R = (∗, ∗) , (�, ∗)


The rule (�, ∗) allows polymorphism, i.e. terms that depend on types, e.g. the
polymorphic identity function

λα : ∗ . λx : α . x : Πα : ∗ . α→ α.

• System Fω corresponds to the PTS λω given by the specification:

(ω)


S = ∗,�
A = (∗,�)
R = (∗, ∗) , (�, ∗) , (�,�)


The rule (�,�) allows type operators, i.e. types that depend on types, e.g. the type
of lists

list : Πα : ∗ . ∗ .

• The calculus of constructions corresponds to the PTS λC given by the specifi-
cation:

(C)


S = ∗,�
A = (∗,�)
R = (∗, ∗, ∗) , (∗,�) , (�, ∗) , (�,�)


It is the union of the all the previous systems. It is a full PTS.

• Minimal intuitionistic higher-order logic can be expressed as the PTS λHOL
given by the specification:

(HOL)


S = ∗,�,4
A = (∗,�) , (�,4)
R = (∗, ∗) , (�, ∗) , (�,�)


The rule (∗, ∗) corresponds to implication (⇒), the rule (�, ∗) corresponds to
universal quantification (∀), and the rule (�,�) corresponds to the functional arrow
of simple types (→).

• The universal pure type system λ∗ is given by the specification:

(∗)


S = ∗
A = (∗, ∗)
R = (∗, ∗)


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It is universal in the sense that there is a PTS morphism (see Section 4.4.2) from
any other PTS to it. This PTS is not strongly normalizing and all its types are
inhabited [Bar92]. It is therefore inconsistent when viewed as a logic.

• Girard’s system U can be expressed as the PTS λU given by the specification:

(U)


S = ∗,�,4
A = (∗,�) , (�,4)
R = (∗, ∗) , (�, ∗) , (�,�) , (4, ∗) , (4,�)


This system can be viewed as an extension of higher-order logic with polymorphic
types. Historically, Girard [Gir72] proved that this pure type system is inconsistent
and used it to show that λ∗ is inconsistent.

• Coquand’s system U− can be expressed as the PTS λU− given by the specification:

(
U−
) 
S = ∗,�,4
A = (∗,�) , (�,4)
R = (∗, ∗) , (�, ∗) , (�,�) , (4,�)


It is a subsystem of system U. Coquand [Coq91] showed that this system is also
inconsistent. Hurkens [Hur95] provides another proof.

4.3 Basic properties
We state the following important properties without proof. Unless otherwise stated,
the complete proofs can be found in the works of Geuvers and Nederhof [GN91] and
Barendregt [Bar92].

Theorem 4.3.1 (Confluence). If M ≡β M ′ then ∃M ′′ such that M −→∗β M ′′ and
M ′ −→∗β M ′′.

Lemma 4.3.2 (Free variables). If Γ ` M : A then FV (M) ∪ FV (A) ⊆ dom (Γ). If
Γ, x : A,Γ ` WF then FV (A) ⊆ dom (Γ) and x 6∈ dom (Γ).

Lemma 4.3.3 (Substitution). If Γ, x : A,Γ′ ` M : B and Γ ` N : A then Γ,Γ′ {x\N} `
M {x\N} : B {x\N} .

Lemma 4.3.4 (Weakening). If Γ ` M : A and Γ′ ` WF and Γ ⊆ Γ′ then Γ′ ` M : A.

Lemma 4.3.5 (Inversion). he following holds:

Γ ` x : C ⇒ ∃A. Γ `WF ∧ (x : A) ∈ Γ ∧ C ≡ A
Γ ` s1 : C ⇒ ∃s2. Γ `WF ∧ (s1, s2) ∈ A ∧ C ≡ s2

Γ ` Πx : A .B : C ⇒ ∃s1, s2, s3. Γ ` A : s1 ∧ Γ, x : A ` B : s2 ∧ (s1, s2, s3) ∈ R ∧ C ≡ s3

Γ ` λx : A .M : C ⇒ ∃B, s. Γ, x : A ` M : B ∧ Γ ` Πx : A .B : s ∧ C ≡ Πx : A .B
Γ ` M N : C ⇒ ∃A,B. Γ ` M : Πx : A .B ∧ Γ ` N : A ∧ C ≡ B {x\N}
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Lemma 4.3.6 (Correctness of typing). If Γ ` M : A then Γ ` A WF.

Theorem 4.3.7 (Subject reduction). If Γ ` M : A and M −→∗β M ′ then Γ ` M ′ : A.

Theorem 4.3.8 (Strengthening [Jut93]). If Γ, x : A,Γ′ ` M : B and x 6∈ FV (Γ′) ∪
FV (M) ∪ FV (B) then Γ,Γ′ ` M : B.

When the pure type system is functional, terms have a unique type up to β-equivalence.

Theorem 4.3.9 (Uniqueness of types). Let P be a functional specification. If Γ ` M : A
and Γ ` M : B then A ≡β B.

Corollary 4.3.10. If Γ ` M : A and Γ ` M ′ : A′ and M ≡β M ′ then A ≡β A′.

Proof. By confluence ∃M ′′ such thatM −→∗ M ′′ andM ′ −→∗ M ′′. By subject reduction,
Γ ` M ′′ : A and Γ ` M ′′ : A′. By uniqueness of types, A ≡β A′.

4.4 Inter-system properties

4.4.1 Subsystems

Definition 4.4.1 (Subsystem). A PTS P = (S,A,R) is a subsystem of P ′ = (S ′,A′,R′)
when S ⊆ S ′, A ⊆ A′, R ⊆ R′, and C ⊆ C′. We write P ⊆ P ′.

Lemma 4.4.2. If P ⊆ P ′ then Γ `λP M : A =⇒ Γ `λP′ M : A.

Lemma 4.4.3 (Compactness). If Γ `λP M : A then there is a finite sub-system P ′ ⊆ P
such that Γ `λP′ M : A.

4.4.2 Morphisms

Definition 4.4.4 (Morphism). Let P = (S,A,R) and P ′ = (S ′,A′,R′) be two PTSs.
A function ϕ : S → S ′ is a PTS morphism when:

1. ∀ (s1, s2) ∈ A, (ϕ (s1) , ϕ (s2)) ∈ A′,

2. ∀ (s1, s2, s3) ∈ R, (ϕ (s1) , ϕ (s2)) ∈ R′,

The function ϕ can be extended to all terms and contexts of P as follows:

ϕ (x) = x

ϕ (M N) = ϕ (M) ϕ (N)
ϕ (λx : A .M) = λx : ϕ (A) . ϕ (N)
ϕ (Πx : A .B) = Πx : ϕ (A) . ϕ (B)

We write ϕ : P → P ′ to say that ϕ is a morphism between P and P ′.
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Lemma 4.4.5. If P ⊆ P ′ then the identity function is a morphism from P to P ′,
i.e. id : P → P ′.

Morphisms preserve β-reductions, β-equivalence, and typing.

Lemma 4.4.6. If ϕ : P → P ′ then

1. M −→β M
′ ⇐⇒ ϕ (M) −→β ϕ (M ′),

2. M ≡β M ′ ⇐⇒ ϕ (M) ≡β ϕ (M ′),

3. Γ `P M : A =⇒ Γ `P′ ϕ (M) : ϕ (A)

Corollary 4.4.7. If ϕ : P → P ′ and P ′ is weakly (resp. strongly) normalizing then P is
weakly (resp. strongly) normalizing.
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5
Embedding pure type systems

In this chapter, we show how to embed pure type systems in the λΠ-calculus modulo
rewriting. The original translation and the proof that it preserves typing are due to
Cousineau and Dowek [CD07]. The embedding is restricted to functional PTSs, as
these satisfy uniqueness of types (Theorem 4.3.9). Indeed, because λΠR also satisfies
uniqueness of types, it is not clear how to embed non-functional PTSs. However, this
is not a real limitation because in practice all useful PTSs are functional.1 We recall
the translation here and reprove the preservation of typing in full detail. Our main
contribution on this topic is a proof of the conservativity of the embedding which we will
give in the next chapter.

1In some systems, such as the calculus of inductive constructions and intuitionistic type theory with
universes à la Russell, terms can have more than one type; for example

` Typei : Typei+j

for all i, j ∈ N. However, this is not due to non-functionality but to another notion called cumulativity.
We show how to treat cumulativity in Chapter 9.
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5.1 Translation

In the following, let P = (S,A,R) be a fixed functional PTS specification. The main
difficulty in the translation is that types in pure type systems can be manipulated as
regular objects, for example taken as an argument or passed as an argument to a function,
as long as they follow the rules of the specification. However, in the λΠ and λΠR, only
objects (i.e. terms whose type is in Type) can be manipulated by functions.

We use an idea similar to universes à la Tarski in intuitionistic type theory. There
are two popular ways of presenting universes: the Russell style and the Tarski style
[ML84, Pal98]. In the Russell style, we make no distinction between terms and types,
similar to pure type systems:

` Ui type
Γ ` A : Ui
Γ ` A type Γ ` Ui : Ui+1

Γ ` A : Ui Γ, x : A ` B : Ui
Γ ` Πx : A .B : Ui

In the Tarski style, we distinguish between types, such as Ui and Πx : A .B, and the
terms of type Ui, which are codes that represent types. There is a code ui that represents
Ui and πx : A.B that represents Πx : A .B. To decode them, there is an operator Ti
that takes an element of type Ui and returns a type.

` Ui type
Γ ` A : Ui

Γ ` Ti (A) type Γ ` ui : Ui+1

Γ ` A : Ui Γ, x : A ` B : Ui
Γ ` πx : A.B : Ui

The decoding is implemented by the equations
Ti+1 (ui) ≡ Ui,

Ti (πx : A.B) ≡ Πx : Ti (A) .Ti (B) .
To represent pure type systems in λΠR, we therefore declare for every sort s a type
Us and a function Ts that decodes the elements of type Us as types. A type A in s
will have two representations, a term representation [A] as an element in Us, and a type
representation JAK. The decoding function Ts makes the link between the two:

Ts [A] ≡ JAK .

The embedding is illustrated in Figure 5.1.
Definition 5.1.1. Let ΣP be the signature containing the declarations

Us : Type ∀s ∈ S,
Ts : Us → Type ∀s ∈ S,
us1 : Us2 ∀ (s1, s2) ∈ A,
πs1,s2 : Πa : Us1 . (Ts1 a→ Us2)→ Us3 ∀ (s1, s2, s3) ∈ R,

and the rewrite rules
Ts2 us1 7−→ Us1 ∀ (s1, s2) ∈ A,
Ts3 (πs1,s2 a b) 7−→ Πx : Ts1 a .Ts2 (b x) ∀ (s1, s2, s3) ∈ R.

We write Σ instead of ΣP when it is not ambiguous. This signature is well-formed.
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s

us Us 

? x:A.B

?x:A.B ? x:A.B
 
T

?PTS

?? R

Figure 5.1 – Embedding of a pure type system in the λΠ-calculus modulo rewriting
using universes à la Tarski. Each type has two representations: as a term (on the left, in
purple) and as a type (on the right, in green), with the decoding function T making the
link between the two.

Lemma 5.1.2 ([CD07]). The relation −→Σ is terminating.

Lemma 5.1.3 (Confluence [CD07]). The relation −→βΣ is confluent.

Lemma 5.1.4 (Well-typedness [CD07]). The rewrite rules of Σ are well-typed.

Definition 5.1.5 (Translation). Let Γ `λP M : A. The translation of M as a term in Γ
is defined by induction on M as

[x]Γ = x

[s1]Γ = us1 where Γ ` s1 : s2

[M N ]Γ = [M ]Γ [N ]Γ
[λx : A .M ]Γ = λx : Ts1 [A]Γ . [M ]Γ,x:A where Γ ` A : s1

[Πx : A .B]Γ = πs3s1,s2 [A]Γ
(
λx . [B]Γ,x:A

)
where Γ ` A : s1

and Γ, x : A ` B : s2.

By inversion (Lemma 4.3.5) and type uniqueness (Theorem 4.3.9), this function is well-
defined. Indeed, if Γ ` A : s and Γ ` A : s′ then s ≡ s′ which implies s = s′. We write
[M ] instead of [M ]Γ when it is not ambiguous.

Definition 5.1.6 (Type translation). Let Γ `λP A WF. The translation of A as a type
in Γ is defined as

JAKΓ = Ts [A]Γ if Γ ` A : s
JsKΓ = Us if s ∈ S>.
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By Remark 4.1.5, inversion (Lemma 4.3.5), and type uniqueness (Theorem 4.3.9), this
function is well-defined. We write JAK instead of JAKΓ when the context is not ambiguous.

Definition 5.1.7 (Context translation). Let Γ `λP WF. The translation of Γ is defined
as

J∅K = ∅
JΓ, x : AK = JΓK , x : JAKΓ .

Remark 5.1.8. If Γ ` M : A then for any Γ′ such that Γ,Γ′ ` WF, [M ]Γ = [M ]Γ′ .
Therefore, if Γ ` WF and (x : A) ∈ Γ then (x : JAKΓ) ∈ JΓK.

Example 5.1.9. We show the example of the embedding of the calculus of constructions
in full detail. Recall from Section 4.2 that the calculus of constructions is given by the
specification

(C)


S = ∗,�
A = (∗,�)
R = (∗, ∗, ∗) , (∗,�) , (�, ∗) , (�,�)

 .
In λΠ, let Σ be the signature containing the declarations

U∗ : Type,
U� : Type,
T∗ : U∗ → Type,
T� : U� → Type,
u∗ : U�,

π∗,∗ : Πa : U∗ . (T∗ a→ U∗)→ U∗,
π∗,� : Πa : U∗ . (T∗ a→ U�)→ U�,

π�,∗ : Πa : U� . (T� a→ U∗)→ U∗,
π�,� : Πa : U� . (T� a→ U�)→ U�,

and the rewrite rules

T� u∗ 7−→ U∗,
T∗ (π∗,∗ a b) 7−→ Πx : T∗ a .T∗ (b x) ,
T� (π∗,� a b) 7−→ Πx : T∗ a .T� (b x) ,
T∗ (π�,∗ a b) 7−→ Πx : T� a .T∗ (b x) ,
T� (π�,� a b) 7−→ Πx : T� a .T� (b x) .

Let Γ be the λC context a : ∗, b : ∗, x : a, f : Πp : (a→ ∗) . p x→ b. Then b is provable in
Γ:

Γ `λC f (λy : a . a) x : b.

Notice that we need both higher-order quantification (in the type of p) and computation
(to convert between (λy : a . a) x and a) for this term to be well typed.
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The translation of Γ is a : U∗, b : U∗, x : T∗ a, f : Πp : (T∗ a→ U∗) .T∗ (p x)→ T∗ b. The
translation of the proof is well-typed in Σ, JΓK:

Σ, JΓK `λΠR f (λy : T∗ a . a) x : T∗ b.

5.2 Completeness
A fundamental propery of the translation is that it preserves computation and typing.
The original proof is due to Cousineau and Dowek [CD07]. We show the proof in full
detail here.

5.2.1 Preservation of substitution

Because pure type systems have the conversion rule, it is necessary for the translation
to also preserve term equivalence. We will see later that this property is crucial for
the preservation of types. It follows from the preservation of reduction, which in turn
depends on the preservation of substitution.

Lemma 5.2.1 (Preservation of substitution). If Γ, x : A,Γ′ `λP M : B and Γ `λP N : A
then [M {x\N}] = [M ] {x\ [N ]}. More precisely,

[M {x\N}]Γ,Γ′{x\N} = [M ]Γ,x:A,Γ′ {x\ [N ]Γ} .

Proof. First note that the statement makes sense because Γ,Γ′ {x\N} ` M {x\N} :
B {x\N} by Lemma 4.3.3. The proof follows by induction on M .

Corollary 5.2.2. If Γ, x : A,Γ′ `λP B WF and Γ `λP N : A then JB {x\N}K =
JBK {x\ [N ]}. More precisely,

JB {x\N}KΓ,Γ′{x\N} = JBKΓ,x:A,Γ′ {x\ [N ]Γ} .

Proof. If B = s for some s ∈ S> then JB {x\N}K = Us = JBK {x\ [N ]}. Otherwise,
Γ ` B : s for some s ∈ S. Then JB {x\N}K = Ts [B {x\N}] = Ts [B] {x\ [N ]} =
JBK {x\ [N ]}.

5.2.2 Preservation of equivalence

Lemma 5.2.3 (Preservation of single-step reduction). If Γ `λP M : A and M −→β M
′

then [M ]Γ −→
+
βΣ [M ′]Γ.

Proof. First note that the statement makes sense because Γ ` M ′ : A by subject reduction
(Theorem 4.3.7). The proof follows by induction on M , using Lemma 5.2.1 for the base
case.

Lemma 5.2.4 (Preservation of multi-step reduction). If Γ `λP M : A and M −→∗β M ′
then [M ]Γ −→∗βΣ [M ′]Γ.
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Proof. By induction on the number of steps.

Lemma 5.2.5 (Preservation of equivalence). If Γ `λP M : A and Γ `λP M ′ : A′ and
M ≡β M ′ then [M ]Γ ≡βΣ [M ′]Γ.

Proof. By confluence (Theorem 4.3.1), there is a term M ′′ such that M −→∗ M ′′
and M ′ −→∗β M ′′. By Lemma 5.2.4, [M ] −→∗ [M ′′] and [M ′] −→∗ [M ′′]. Therefore,
[M ] ≡ [M ′].

Corollary 5.2.6. If A and B are well-formed types in Γ and A ≡β B then JAKΓ ≡βΣ
JBKΓ.

Proof. By confluence, subject reduction, and type uniqueness, either A = s = B for
some s ∈ S> or Γ ` A : s and Γ ` B : s for some s ∈ S. In the first case, we have
JAK = Us = JBK. In the second case, we have JAK = Ts [A] ≡ Ts [B] = JBK.

5.2.3 Preservation of typing

We start with the following technical lemmas before proving the main theorem.

Lemma 5.2.7. If Γ `λP s WF then JΓK `λΠR JsK : Type ⇐⇒ JΓK `λΠR Us : Type.

Proof. Follows from correctness of typing and inversion.

Corollary 5.2.8. If Γ `λP A : s then JΓK `λΠR [A] : JsK ⇐⇒ JΓK `λΠR [A] : Us.

Proof. If s ∈ S> then JsK = Us so the statement is trivially true. Otherwise, we have
JsK = Ts′ us ≡ Us. By Lemma 5.2.7, JΓK ` JsK : Type ⇐⇒ JΓK ` Us : Type. By
conversion, both directions of the lemma are true.

Lemma 5.2.9. If Γ `λP Πx : A .B WF then JΓK `λΠR JΠx : A .BK : Type ⇐⇒ JΓK `λΠR

Πx : JAK . JBK : Type.

Proof. Note that this statement makes sense because, by correctness of types Γ ` Πx :
A .B : s3 for some s3 and, by inversion, Γ ` A : s1 and Γ ` B : s2 for some s1, s2 such
that (s1, s2, s3) ∈ R. The statement follows by correctness of typing and inversion.

Corollary 5.2.10. If Γ `λP M : Πx : A .B then JΓK `λΠR [M ] : JΠx : A .BK ⇐⇒
JΓK `λΠR [M ] : Πx : JAK . JBK.

Proof. We have JΠx : A .BK = Ts3 (πs1,s2 [A] λx . [B]) ≡ Πx : Ts1 [A] .Ts2 [B] = Πx :
JAK . JBK. By Lemma 5.2.9, we have JΓK ` JΠx : A .BK : Type ⇐⇒ JΓK ` Πx : JAK . JBK :
Type. By conversion, both directions of the lemma are true.

Theorem 5.2.11 (Preservation of typing). For all Γ, M , A, if Γ `λP M : A then
Σ, JΓK `λΠR [M ]Γ : JAKΓ. For all Γ, if Γ `λP WF then JΓK `λΠR WF.

Proof. By simultaneous induction on the derivation. The details of the proof can be
found in Appendix A.1.
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Remark 5.2.12. We could have defined the translation of sorts and products as

JsK = Us
JΠx : A .BK = Πx : JAK . JBK

The two definitions are equivalent by Lemmas 5.2.8 and 5.2.10. This one has the advantage
of producing simpler terms, but would have slightly complicated the metatheory. Now
that we have proved the preservation of equivalence and the preservation of typing, we
will use these two definitions interchangeably.

5.3 Alternative embeddings

In this section, we present two other embedings of pure type systems in the λΠ-calculus
modulo rewriting. The novelty of these embeddings is that they use less rewriting at the
level of types. A rewrite rule (M 7−→ N) ∈ Σ is at the level of types when the type of
M and N is in Kind, i.e. when M and N are types. Having less rewriting at the level of
types simplifies the metatheory, in particular to show soundness (see Chapter 6), but
at the same time results in an embedding that is less efficient because of the quadratic
blowup caused by the use of lam and app to represent terms (see Example 3.3.1). As such,
they are less suited for practical use but we include them here for theoretical interest.

5.3.1 Embedding without Π in the rewriting at the level of types

The embedding is similar to that of Section 5.1 but instead of the rewrite rule

Ts3 (πs1,s2 a b) 7−→ Πx : Ts1 a .Ts2 (b x)

we use constructors lam and app to represent terms, as in Section 3.3. To simulate
β-reduction, we add the rewrite rule

app a b (lam a b f) x 7−→ f x.

The signature becomes:

Us : Type ∀s ∈ S,
Ts : Us → Type ∀s ∈ S,
us1 : Us2 ∀ (s1, s2) ∈ A,
πs1,s2 : Πa : Us1 . (Ts1 a→ Us2)→ Us3 ∀ (s1, s2, s3) ∈ R,
lams1,s2 : Πa : Us1 .Πb : (Ts1 a→ Us2) .

(Πx : Ts1 a .Ts2 (b x))→ Ts3 (πs1,s2 a b) ∀ (s1, s2, s3) ∈ R,
apps1,s2 : Πa : Us1 .Πb : (Ts1 a→ Us2) .

Ts3 (πs1,s2 a b)→ Πx : Ts1 a .Ts2 (b x) ∀ (s1, s2, s3) ∈ R,
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with the rewrite rules:

Ts2 us1 7−→ Us1 ∀ (s1, s2) ∈ A,
apps1,s2 a b (lams1,s2 a b f) x 7−→ f x ∀ (s1, s2, s3) ∈ R.

Notice that only the first rule is at the level of types. We do not give the definition of
the translation as it should be straightforward. The main advantage of this embedding is
that it does not use Π in the rewrite rules, and as a result automatically satisfies product
compatibility (Definition 3.2.4), which is an essential property that is usually delicate
to prove in practice. Moreover, conservativity is now much easier to prove, because
we no longer mix essential redexes with administrative ones: since β-reduction is now
simulated by −→Γ instead of −→β, we can easily prove that β-reduction terminates in
λΠR and show conservativity by relating β-normal forms to terms in λP, in the spirit
of the traditional proofs of conservativity in λΠ. See Chapter 6 for a discussion on the
interaction between rewriting, normalization, and conservativity.

5.3.2 Embedding without rewriting at the level of types

A natural follow-up question is: is it possible to completely do away with rewriting at
the level of types? The answer is: yes, it is possible, but only for finite acyclic systems.
The idea is to see Us1 as syntactic sugar and replace it by Ts2 us1 for all (s1, s2) ∈ A
and only really declare us1 in the signature. Of course, since we need to declare us1 in
Us2 , we encounter a circularity problem. Nevertheless, it is still possible for finite acyclic
systems: top-sorts are declared as Us, and all the other sorts are declared sequentially
as us, in topological order of the hierarchy from top to bottom. This solution excludes
system λ∗ (See Example 4.2.1) and systems with infinite hierarchies (see Chapter 8 and
Chapter 10), but is possible for all the other systems of Example 4.2.1 including system
F and the calculus of constructions.

This embedding has the additional advantage of having a slightly easier proof of
termination of β-reduction than the previous one because there is no rewriting at the
level of types. Note however that rewriting inside types, in particular in the conversion
rule, is still necessary for the completeness of the translation.
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6
Conservativity

Conservativity is the converse of the preservation of typing. It states that if a proposition
is provable in the embedding then it is also provable in the original logic: if there is a
term N such that Σ, JΓK `λΠR N : JAK then there is a term M such that Γ `λP M : A. It
is an important property for embeddings in a logical framework. Indeed, we know for
example that the calculus of constructions or simple type theory are consistent, but how
can we guarantee that we cannot prove ⊥ in their embedding? We further motivate this
question with the following example.

Example 6.0.1. Recall from Section 4.2 the PTS λHOL that corresponds to higher
order logic:

(HOL)


S = ∗,�,4
A = (∗,�) , (�,4)
R = (∗, ∗) , (�, ∗) , (�,�)



This PTS is strongly normalizing, and therefore consistent. The PTS λU− is a poly-
morphic extension of λHOL specified by U− = HOL + (4,�,�). It turns out that
λU− is inconsistent: there is a term Ω such that ∅ `λU− Ω : Πα : ∗ . α and which is not
normalizing [Bar92, Coq91, Hur95].
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The polymorphic identity function I = λα : � . λx : α . x is not well-typed in λHOL,
but it is well-typed in λU− and so is its type:

∅ `λU− I : Πα : � . α→ α,

∅ `λU− Πα : � . α→ α : Type.
However, the translation [I] = λα : U� . λx : T� α . x is well-typed in the embedding of
λHOL (which we will refer to as λΠRHOL):

ΣHOL `λΠR [I] : Πα : U� .T� α→ T� α,

ΣHOL `λΠR Πα : U� .T� α→ T� α : Type.
It seems that λΠRHOL, just like λU−, allows more functions than λHOL, although the
type of [I] is not the translation of a λHOL type. Does that make λΠRHOL inconsistent?

This question was an open problem for some time. Recently, Dowek [Dow15] proved
conservativity for the embedding of some specific systems using models of strong nor-
malization, based on previous work by Cousineau [Cou09]. In this chapter, we provide
an original alternative proof that is generic and that works for all functional pure type
systems. To achieve this, we use a novel approach that does not rely on strong normal-
ization and that we call relative normalization. A similar proof has been the subject of a
publication at TLCA 2015 [Ass15], although the proof we present here is more general
and can be adapted to the translations we present later in this thesis.

6.1 Normalization and conservativity

Cousineau and Dowek [CD07] showed conservativity partially, by assuming that λΠRP is
strongly normalizing (i.e. every well-typed term that is well-typed in ΣP normalizes), but
not much is known about normalization in λΠR. The addition of rewriting can break
normalization in a number of ways:

• The relation −→Γ might not terminate on well-typed terms. For example, in:

a : Type,
c : a,
c 7−→ c,

the term c does not terminate.

• The relation −→βΓ might not terminate on well-typed terms. For example, in:

term : Type,
lam : (term→ term)→ term,
app : term→ term→ term,
app (lam f) x 7−→ f x ,

each of the relations −→β and −→Γ terminates but −→βΓ does not in the term
app (lam (λx . appxx)) (lam (λx . appxx)) .

72



• The relation −→β might not terminate on well-typed terms. For example, in:

term : Type,
term 7−→ term→ term,

the term (λx : term . x x) (λx : term . x x) is well-typed but does not terminate.
One might think that this non-termination of β-reduction is caused by the non-
termination of the rewrite system in the type of the term, but that is not necessary
as is shown in the next point.

• The relation −→β might not terminate on well-typed terms, even though −→Γ does
terminate. There are two known examples of this, the first being an adaptation
of Russell’s paradox by Dowek and Werner [DW00] and the second being the
embeddings of system U and system U− shown in Chapter 5.

Lemma 5.2.3 shows that the embedding preserves reduction: if M −→M ′ then [M ] −→+

[M ′]. As a consequence, if λΠRP is strongly normalizing then so is λP , but the converse
might not be true a priori. Cousineau and Dowek’s proof therefore relied on the unproven
assumption that λΠRP is normalizing. This result is insufficient if one wants to consider
the λΠ-calculus modulo rewriting as a general logical framework. Indeed, if the embedding
turns out to be inconsistent then checking proofs in the framework has very little benefit.

One way to address the problem is to prove strong normalization of λΠRP by
constructing a model, for example in the algebra of reducibility candidates [Gir72]. Dowek
[Dow15] recently constructed such a model for the embedding of higher-order logic
(λΠRHOL) and of the calculus of constructions (λΠRC). While correct, this technique
is rather limited. Indeed, proving such a result is, by Lemma 5.2.3, at least as hard as
proving the consistency of the original system. It requires specific knowledge of the PTS
λP and of its models, whose construction can be very involved, for example in the case
of the calculus of constructions with an infinite universe hierarchy (λC∞).

In our proof, we take a different approach and show that λΠRP is conservative in
all cases, even when λP is not normalizing. Instead of showing that λΠRP is strongly
normalizing, we show that it is weakly normalizing relative to λP , meaning that proofs in
the target language can be reduced to proofs in the source language. In the terminology
of Chapter 2, we show that we can eliminate administrative β-redexes to obtain terms
that contain only essential β-redexes. That way we prove only what is needed to show
conservativity, without having to prove the consistency of λP all over again. Together
with the preservation of typing, this result shows that the embedding is sound and
complete with respect to the original system.1

1Which direction is called soundness and which is called completeness is subjective and has been the
subject of much debate by friendly colleagues and ruthless reviewers. In the original presentation [CD07],
preservation of typing is called soundness and conservativity is called completeness. In our work, we prefer
to use the other direction because we take the original system as a reference to which we compare the
embedding. We prioritize using the terms preservation of typing and conservativity to avoid confusion.
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6.2 Proof of conservativity
The exact statement is actually surprisingly tricky to get right. One could attempt to
prove that if JΓK `λΠR [M ] : JAK then Γ `λP M : A. However, that statement would be too
weak because the translation [M ] is only defined for well-typed terms. A second attempt
could be to define inverse translations |M | and ‖A‖ and prove that if Γ `λΠR M : A
then ‖Γ‖ `λP |M | : ‖A‖, but that would not work either because not all terms and
types of λΠRP correspond to valid terms and types of λP, as was shown in Example
6.0.1. Therefore, the property that we want to prove is: if there is a term N such that
JΓK `λΠR N : JAK then there is a term M such that Γ `λP M : A and [M ] ≡ N .

The main difficulty is that some of these illegal terms (with respect to λP) can be
involved in witnessing legal types, as illustrated by the following example.

Example 6.2.1. Consider the context nat : �. Even though the polymorphic identity
function I and its type are not well-typed in λHOL, they can be used in λΠRHOL to
construct a witness for nat→ nat:

ΣHOL, nat : U� `λΠR [I] nat : T� nat→ T� nat.

We can normalize the term [I] nat to λx : T� nat . x which is a term that corresponds to
a valid λHOL term: it is the translation of the term λx : nat . x. However, as discussed
previously, we cannot assume we can always normalize the terms because we do not know
a priori if λΠR is normalizing.

To prove conservativity, we therefore need to address the following issues:

1. The system λΠRP can express more terms than λP.

2. These illegal terms can be used to construct proofs for the translation of λP types.

3. The λΠRP terms that inhabit the translation of λP types can be reduced to the
translation of λP terms.

To this end, we adapt Tait’s reducibility method [Tai67] and define a relation

Γ 
M : A

by induction on the type A, in such a way that the base case, when A is the translation
of a λP type, holds when M is (equivalent to) the translation of a λP term. The main
lemma that we prove is that typing implies reducibility, which we then instantiate to
prove our theorem.

First we prove that the translation is sound with respect to equivalence:

[M ] ≡
[
M ′
]

=⇒ M ≡M ′.

Together with Lemma 5.2.5, this shows that terms are equivalent if and only if their
translations are equivalent. In order to do that, we define an inverse translation |M | such
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that |[M ]| ≡M , and use it to prove this theorem. Note that we will not use the inverse
translation to express the conservativity theorem, as it has issues with η-equivalence.
Indeed, some constants such as πs1,s2 can appear in η-reduced form in some well-typed
terms, in which case it does not correspond to the translation of any valid term. This
problem is well-known and can be hard to deal with, requiring either extending the
λΠ-calculus with η-conversion [HHP93, GB99], or using complex arguments relying on
terms in η-long form [CD07]. We avoid this problem by not using the inverse translation
to state and prove conservativity of the translation. Instead, we define a weak form of
η that we call η− that is sufficient for our needs, and state the conservativity of typing
using the forward translation only.

6.2.1 Conservativity of equivalence

Definition 6.2.2 (Inverse translation). The inverse term translation |M | is partially
defined by induction on M :

|us| = s

|πs1,s2 | = λα : s1 . λβ : α→ s2 .Πx : α . β x
|x| = x

|λx : A .M | = λx : ‖A‖ . |M |
|M N | = |M | |N |

The inverse type translation ‖A‖ is partially defined by induction on A:

‖Us‖ = s

‖TsM‖ = |M |
‖Πx : A .B‖ = Πx : ‖A‖ . ‖B‖
‖λx : A .B‖ = λx : ‖A‖ . ‖B‖
‖AN‖ = ‖A‖ |N |

The definition is partial but it is total on the image of the forward translation. Note that
it is not an exact inverse. In particular, the definition of |πs1,s2 | uses λ-abstractions that
might not be legal in λP because of the η expansion issue mentioned above. However, it
is still an inverse up to equivalence.

Lemma 6.2.3 (Inverse). For all Γ,M,A, if Γ `λP M : A then |[M ]Γ| ≡β M .

Proof. By induction on the structure of M . The details of the proof can be found in
Appendix A.2.

Corollary 6.2.4. For all Γ, A, if Γ `λP A WF then ‖JAKΓ‖ ≡ A.

Proof. If A = s for some s ∈ S> then ‖JAK‖ = ‖Us‖ = s. Otherwise, Γ ` A : s for some
s ∈ S. By Lemma 6.2.3 |[A]| ≡ A. Therefore, ‖JAK‖ = ‖Ts [A]‖ = |[A]| ≡ A.
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Lemma 6.2.5 (Substitution). For all x,M,N , |M {x\N}| = |M | {x\ |N |}.

Proof. By induction on the structure of M .

Corollary 6.2.6. For all x,B,N , ‖B {x\N}‖ = ‖B‖ {x\ |N |}.

We now define weak η-reduction, written as η−, and show that equivalence is preserved
by the inverse translation. We then combine that with the previous results to deduce the
conservativity of equivalence.

Definition 6.2.7 (Weak η-reduction). We define weak η-reduction as the smallest
relation −→η− closed by the subterm relation such that

πs1,s2 AB −→η− πs1,s2 A (λx .B x) .

Lemma 6.2.8. If M −→βη−Σ M ′ then |M | −→∗β |M ′|.

Proof. By induction on the structure of M , using Lemma 6.2.5 for the base cases.

Lemma 6.2.9. If M ≡βη−Σ M ′ then |M | ≡β |M ′|.

Proof. By induction on the derivation of ≡βη−Σ, using Lemma 6.2.8 for the base cases.

Corollary 6.2.10. If A ≡βη−Σ A′ then ‖A‖ ≡β ‖A′‖.

Theorem 6.2.11 (Conservativity of equivalence). If [M ]Γ ≡βη−Σ [M ′]Γ then M ≡β M ′.

Proof. By Lemma 6.2.9 and Lemma 6.2.3, M ≡ |[M ]| ≡ |[M ′]| ≡M ′.

Corollary 6.2.12. If JMKΓ ≡βη−Σ JM ′KΓ then M ≡β M ′.

Before we move one to prove conservativity of typing, we prove the following variants
involving sorts and Π types that will also be useful later.

Lemma 6.2.13. If Γ `λWF A and JAKΓ ≡ Us then A ≡ s.

Proof. By Corollary 6.2.10 and Corollary 6.2.4, A ≡ ‖JAKΓ‖ ≡ s.

Corollary 6.2.14. If Γ `λP M : A and JAKΓ ≡ Us then Γ `λP M : s.

Lemma 6.2.15. If Γ `λP A WF and JAKΓ ≡ Πx : A1 . B1 then ∃A′1, B′1 such that
A ≡ Πx : A′1 . B′1.

Proof. By Corollary 6.2.10 and Corollary 6.2.4, A ≡ ‖JAKΓ‖ ≡ Πx : ‖A1‖ . ‖B1‖.

Corollary 6.2.16. If Γ `λP M : A and JAKΓ ≡ Πx : A1 . B1 then ∃A′1, B′1 such that
Γ `λP M : Πx : A′1 . B′1.
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6.2.2 Conservativity of typing

To define the relation Γ 
M : A by induction, we first define the following measure.

Definition 6.2.17. For any term A, we define:

measure (us) = 0
measure (Ts) = 0

measure (AN) = measure (A)
measure (λx : A .B) = 1 + measure (B)
measure (Πx : A .B) = 1 + max (measure (A) ,measure (B))

Note that this is a partial definition but it is total for the set of well-formed types.

Example 6.2.18. The measure of λα : Us .Πf : (Tα→ Tα→ Tα) .Tα is 4.

Lemma 6.2.19. For all x,B,N , measure (B {x\N}) = measure (B).

Proof. By induction on B.

Definition 6.2.20 (Reducibility). Let Γ ∈ GλP be a well-formed context of λP. For
all terms M,A ∈ TλΠR of λΠR, the relation Γ 
 M : A, meaning that the term M is
reducible with type A in the context Γ, is defined by induction on the measure of A:

• if A = Us or A = TsA1 then ∃M ′, A′ such that
Γ `λP M ′ : A′,
[M ′]Γ ≡βη−Σ M,

JA′KΓ ≡βη−Σ A,

• if A = (λx : A1 . B1) N1 · · · Nn then Γ 
M : B1 {x\N1} N2 · · · Nn,

• if A = Πx : A1 . B1 then ∀ΓN , N such that Γ ⊆ ΓN , ΓN 
M N : B1 {x\N}.

A context ∆ ∈ GλΠR of λΠR is an object context when ΣP ,∆ `λΠR A : Type for all
(x : A) ∈ ∆. For all object context ∆ and substitution σ : dom (∆)→ TλΠR, the relation
Γ 
 σ : ∆ is defined as:

Γ 
 σ (x) : σ (A) ∀ (x : A) ∈ ∆.

Lemma 6.2.21. If Γ `λP M : A then Γ 
 [M ]Γ : JAKΓ.

Proof. By definition, of Γ |= [M ] : Ts [A].

Corollary 6.2.22. For all (x : A) ∈ Γ, Γ 
 x : JAK.

Lemma 6.2.23 (Weakening). If Γ 
M : A and Γ ⊆ Γ′ and Γ′ `λP WF then Γ′ 
M : A.
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Proof. By case analysis on the shape of A.

• Case A = Us or A = TsB. Then it follows from Lemma 4.3.4.

• Case A = Πy : C .D. Let ΓN , N be such that Γ′ ⊆ ΓN and ΓN 
 N : C. Since
Γ ⊆ Γ′, by transitivity we have Γ ⊆ ΓN . By definition of Γ 
 M : Πy : C .D, we
have ΓN 
M N : D {x\N}. Therefore, Γ′ 
M : Πy : C .D.

Lemma 6.2.24. If M ≡βη−Σ M ′ then Γ 
M : A iff Γ 
M ′ : A .

Proof. By induction on the measure of A.

Lemma 6.2.25. If A ≡βη−Σ B then Γ 
M : A iff Γ 
M : B.

Proof. By case analysis on the derivation of A ≡ B, using induction on the measure of
A. The details of the proof can be found in Appendix A.2.

Lemma 6.2.26. For all ∆,M,A, if Σ,∆ `λΠR M : A then for all Γ, σ such that
Γ `λP WF and Γ 
 σ : ∆, Γ 
 σ (M) : σ (A).

Proof. By induction on the derivation. The details of the proof can be found in Ap-
pendix A.2.

Theorem 6.2.27 (Conservativity of typing). If Γ `λP A WF and JΓK `λΠR M : JAK then
there exists M ′ such that Γ `λP M ′ : A and [M ′]Γ ≡βη−Σ M .

Proof. Taking σ to be the identity substitution, by Corollary 6.2.22, we have Γ 
 σ : JΓK.
By Lemma 6.2.26, Γ 
M : JAK. By definition, there exists M ′, A′ such that Γ ` M ′ : A′
and [M ′] ≡ M and JA′K ≡ JAK. By Corollary 6.2.12, A′ ≡ A. Since Γ ` A WF, by
conversion we get Γ ` M ′ : A.

Remark 6.2.28 (Conservativity of the embedding of complete systems). When the PTS
P is complete (Definition 4.1.8), there is an easier proof of conservativity: since all the
products are allowed, a straightforward proof using the inverse translation is possible;
there is no need for reducibility. This can be used for example for the embedding of the
calculus of constructions with infinite hierarchy.
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7
Application: translating HOL to Dedukti

Church’s simple type theory (STT) [Chu40], also known as higher-order logic (HOL), is a
natural deduction system where the objects of discourse are terms of the simply typed
λ-calculus and propositions are terms of a special type. Since propositions are objects
and can be universally quantified, the logic allows higher-order reasoning, hence the name.
The system has been modernized and implemented in a number of theorem provers
including HOL4, HOL Light, HOL Zero, ProofPower-HOL, and Isabelle/HOL,
which are commonly referred to as the theorem provers of the HOL family [Ada10,
Art04, Har09, NWP02, SN08]. These systems are fairly popular and many important
mathematical results have been formalized in them, such as the Jordan curve theorem
[Hal07] and the Kepler conjecture [HHM+10, Hal14].

We applied the ideas of the previous chapters to implement an automatic translation
of HOL proofs to Dedukti. Although HOL is a relatively simple system that does
not require computational embeddings, it still benefits from the more compact term
representation that they provide. Our tool, called Holide, takes HOL proofs written in
the OpenTheory format, which is a format for exchanging HOL proofs, and generates
Dedukti files that can be checked in a specific HOL signature. We used it to successfully
translate and check the OpenTheory standard library. In this chapter, we briefly present
HOL and OpenTheory along with our translation to the λΠ-calculus modulo rewriting.
We describe our implementation and compare it to other available translations based on
experimental results. Part of this work was presented at PxTP 2015 [AB15].
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7.1 HOL
There are many formulations of HOL. The minimal intuitionistic formulation is based on
implication and universal quantification as primitive connectives, but the current systems
generally use a formulation called Q0 [And86] based on equality as a primitive connective.
We take as reference the logical system used by OpenTheory [Hur11], which we now
briefly present.

The terms of the logic are terms of the simply typed λ-calculus, with a base type bool
representing the type of propositions and a type ind of individuals. The terms can contain
constant symbols such as (=), the symbol for equality, or select, the symbol of choice.
The logic supports a restricted form of polymorphism, known as ML-style polymorphism,
by allowing type variables, such as α or β, to appear in types. For example, the type of
(=) is α→ α→ bool.

Types can be parameterized through type operators of the form p(A1, . . . , An). For
example, list is a type operator of arity 1, and list(bool) is the type of lists of booleans.
Type variables and type operators are enough to describe all the types of HOL, because
bool can be seen as a type operator of arity 0, and the arrow → as a type operator of
arity 2. Hence, the type of (=α) is in fact → (α,→ (α, bool())). We still write A→ B
instead of →(A,B) for arrow types, p instead of p() for type operators of arity 0, and
M = N instead of (=)M N when it is more convenient. Types are implicitly assumed to
be well-formed and terms are implicitly assumed to be well-typed.
Definition 7.1.1 (HOL). The syntax of HOL is:

type variables α, β

type operators p

types A,B ::= α | p (A1, . . . , An)
term variables x, y

term constants c

terms M,N ::= x | c | λx : A .M |M N

The propositions of the logic are the terms of type bool and the predicates are the terms
of type A→ bool. We use letters such as φ or ψ to denote propositions. We write φ⇔ ψ
instead of φ = ψ when φ and ψ are propositions. The contexts, denoted by Γ or ∆, are
sets of propositions, and the judgments of the logic are of the form Γ ` φ. The derivation
rules are presented in Figure 7.1.

Example 7.1.2. Here is a derivation of the transitivity of equality. If Γ ` x = y and
∆ ` y = z, then Γ ∪∆ ` x = z:

` ((=) x) = ((=) x)
Refl

∆ ` y = z

` (x = y) = (x = z)
AppThm

` x = y

x = z
EqMp
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` M = M
Refl

` (λx : A .M) x = M
Beta

Γ ` M = N

Γ ` λx : A .M = λx : A .N
AbsThm

Γ ` F = G ∆ ` M = N

Γ ∪∆ ` F M = GN
AppThm

{φ} ` φ
Assume

Γ ` φ = ψ ∆ ` φ
Γ ∪∆ ` ψ

EqMp

Γ ` φ ∆ ` ψ
(Γ− {ψ}) ∪ (∆− {φ}) ` φ = ψ

DeductAntiSym

Γ ` φ
σ (Γ) ` σ (φ)

Subst
` c = M

DefineConst

` P t
` abs (rep y) = y ` P x⇔ (rep (abs x) = x)

DefineTypeOp

Figure 7.1 – Derivation rules of OpenTheory HOL

Type and constant definitions In addition to the primitive types and constants,
HOL supports mechanisms for defining new types and constants in a conservative way.
The rule DefineConst allows us to define a new constant c as equal to another closed
term M . The constant c must be previously undefined. As an example, we can define
the top logical connective as > = ((λx : bool . x) = (λx : bool . x)).

Type definitions are a bit more complicated. Given a type A and a non-empty
predicate P on A, the rule DefineTypeOp defines the type of elements of A that satisfy
P . More precisely, it defines a new type B that is isomorphic to the subset {x : A | P x}.
This mechanism also creates two functions, abs : (A → B) and rep : (B → A) that go
back and forth between the two types. The two constants abs and rep must be previously
undefined. The two conclusions of the rule express the isomorphism between {x : A | P x}
and B. All the new datatypes of HOL (inductive types, etc.) are constructed using this
mechanism [Har95].

Axioms In addition to the core derivation rules, three axioms are assumed:

• η-equality, which states that λx : A .M x = M ,

• the axiom of choice, with a predeclared symbol of choice called select,

• the axiom of infinity, which states that the type ind is infinite.

It is important to note that, from η-equality and AbsThm, we can derive functional
extensionality and, with the axiom of choice, we can derive the excluded middle [Bee85,
Dia75], making this formulation of HOL a classical logic.
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7.2 Translation

Several formalizations of HOL in LF have been proposed [App01, Rab10, SS06] using
the principles of Chapter 2. As explained in Section 2.4, because the λΠ-calculus does
not have polymorphism, we cannot translate propositions directly as types, as doing so
would prevent us from quantifying over propositions, so we have to use a higher-order
embedding. For each proposition φ, we have two translations: one translation [φ] as a
term, and another JφK = proof [φ] as a type. The signature in λΠ typically looks like:

type : Type
prop : type
arrow : type→ type→ type
term : type→ Type
lam : (termα→ termβ)→ term (arrowαβ)
app : term (arrowαβ)→ termα→ termβ

proof : term prop
rule_1 : . . .
rule_2 : . . .

The resulting embedding is not computational. This is not a big problem for HOL
because the logic can be formulated without any notion of reduction, by taking the Q0
formulation, which takes equality as a primitive connective, and stating β-equality as an
axiom. Since the logic does not have dependent types, there is no issue of incompleteness.
However, this approach has a couple of other issues:

• From a practical point of view, the encoding of terms is larger because of the
quadratic blowup (see Example 3.3.1).

• From a constructive point of view, the proofs have no computational content because
they have no notion of reduction.

In our embedding, we add the rewrite rule

term (arrowαβ)→ termα→ termβ ,

which allows us to identify the type term (arrowαβ) with the type termα→ termβ and
thus define an embedding that is computational like in Section 3.3. The encoding of
the terms becomes more compact, as we represent λ-abstractions by λ-abstractions,
applications by applications, etc. For example, the term (λx : α . x)x is encoded as
(λx : termα . x) x. Moreover, we can add reductions to the proofs of HOL, in a way that
is similar to the pure type system formulation of HOL mentioned in Section 4.2.
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This might be beneficial for several reasons:

1. It gives a reduction semantics for the proofs of HOL.

2. It allows compressing the proofs further by replacing conversion proofs (that use
Beta and DefineConst) with reflexivity.

3. Several other proof systems (Coq, Agda, etc.) are based on pure type systems, so
expressing HOL as a PTS fits in the large scale of interoperability.

Other translations have been proposed to automatically extract the proofs of HOL to other
systems such as Isabelle [KK13, OS06], Nuprl [NSM01], and Coq [KW10]. Except
for Kalyszyk and Krauss’ implementation [KK13], these tools suffer from scalability
problems. Our translation is lightweight enough to be scalable and provides promising
results. The implementation of Kalyszyk and Krauss [KK13] is the first efficient and
scalable translation of HOL Light proofs, but its target is Isabelle/HOL, a system
that, unlike Dedukti, is foundationally very close to HOL Light.

7.2.1 Translation of types

We declare a new type called type and three constructors bool, ind and arrow:

type : Type,
bool : type,
ind : type,
arrow : type→ type→ type.

Definition 7.2.1 (Translation of a HOL type as a term). For any HOL type A, we
define [A], the translation of A as a term, to be:

[α] = α

[bool] = bool
[ind] = ind
[A→ B] = arrow [A] [B] .

More generally, if we have an n-ary HOL type operator p, we declare a constant p of
type typen → type, and we translate an instance p (A1, . . . , An) of this type operator to
p [A1] · · · [An].

7.2.2 Translation of terms

We declare a new dependent type called term indexed by a type, and we identify the
terms of type term(arrowAB) with the functions of type termA→ termB by adding a
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rewrite rule. We also declare a constant eq for HOL equality and a constant select for
the choice operator:

term : type→ Type,
eq : Πα : type . term (arrowα (arrowα bool)) ,
select : Πα : type . term (arrow (arrowα bool) α) ,

term (arrow a b) 7−→ term a→ term b.

Definition 7.2.2 (Translation of a HOL type as a type). For any HOL type A, we define
JAK, the translation of A as a type, to be:

JAK = term [A] .

Definition 7.2.3 (Translation of a HOL term as a term). For any HOL term M , we
define [M ], the translation of M as a term, to be:

[x] = x

[M N ] = [M ] [N ]
[λx : A .M ] = λx : JAK . [M ]
[(=A)] = eq [A]
[selectA] = select [A] .

More generally, for every HOL constant c of type A, if α1, . . . , αn are the free type
variables that appear in A, we declare a new constant c of type

Πα1 : type . . . .Παn : type . JAK

and we translate an instance cA1,...,An of this constant to c [A1] · · · [An].

7.2.3 Translation of proofs

We declare a new type proof indexed by a proposition:

proof : term bool→ Type.

Definition 7.2.4 (Translation of HOL propositions as types). For any HOL proposition
φ (i.e. a HOL term of type bool), we define JφK, the translation of φ as a type, to be:

JφK = proof [φ] .

For any HOL context Γ = φ1, . . . , φn, we define

JΓK = hφ1 : Jφ1K , . . . , hφn : JφnK .
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Equality proofs

We declare Refl, FunExt, and AppThm:

Refl : Πα : type .Πx : termα . proof (eqαxx) ,
FunExt : Πα, β : type .Πf, g : term (arrowαβ) .

(Πx : termα . proof (eqβ (f x) (g x)))→ proof (eq (arrowαβ) f g) ,
AppThm : Πα, β : type .Πf, g : term (arrowαβ) .Πx, y : termα .

proof (eq (arrowαβ) f g)→ proof (eqαx y)→ proof (eqβ (f x) (g y)) .

The constant FunExt expresses functional extensionality, which states that if two functions
f and g of type A→ B are equal on all values x of type A, then f and g are equal. We
use it to translate both AbsThm and the axiom of η-equality. Since our encoding is
computational, we prove β-equality by reflexivity.

Definition 7.2.5. The rules Refl, AbsThm, AppThm, and Beta are translated as:[
`M = M

Refl

]
= Refl [A] [M ] (where A is the type of M)

[
(λx : A .M)x = M

Beta

]
= Refl [B] [M ] (where B is the type of M)

[
D1 D2

Γ ∪∆ ` F M = GN
AppThm

]
= AppThm [A] [B] [F ] [G] [M ] [N ] [D1] [D2]

[
D

Γ ` λx : A .M = λx : A .N
AbsThm

]
=

FunExt [A] [B] [λx : A .M ] [λx : A .N ] (λx : JAK . [D]) .

Boolean proofs

We declare the constants PropExt and EqMp:

PropExt : Πp, q : term bool .
(proof q → proof p)→ (proof q → proof p)→ proof (eq bool p q) ,

EqMp : Πp, q : term bool . proof (eq bool p q)→ proof p→ proof q.

The constant PropExt expresses propositional extensionality and, together with EqMp,
states that equality on booleans in HOL behaves like the connective“if and only if ”.
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Definition 7.2.6. The rules Assume, DeductAntiSym, and EqMp are translated as:[
{φ} ` φ

Assume

]
= hφ

[
D1 D2

Γ ∪∆ ` ψ
EqMp

]
= EqMp [φ] [ψ] [D1] [D2]

[
D1 D2

(Γ− {ψ}) ∪ (∆− {φ}) ` φ = ψ
DeductAntiSym

]
=

PropExt [φ] [ψ] (λhψ : JψK . [D1]) (λhφ : JφK . [D2]) .

Substitution proofs

The HOL rule subst derives σ (Γ) ` σ (φ) from Γ ` φ. The substitution can substitute
for both term variables and type variables but type variables are instantiated first. For
the sake of clarity, we split this rule in two steps: one for term substitution of the form
σ = x1\M1, . . . , xn\Mn, and one for type substitution of the form θ = α1\A1, . . . , αm\Am.
In Dedukti, we have to rely on β-reduction to express substitution. We can correctly
translate a substitution M {x1\M1, . . . , xn\Mn} as

(λx1 : B1 . . . . λxn : Bn .M)M1 . . . Mn

where Bi is the type of Mi.

Definition 7.2.7. The ruleSubst is translated to[
D

θ (Γ) ` θ (φ)
TypeSubst

]
= (λα1 : type . . . . λαm : type . [D]) [A1] . . . [Am]

[
D

σ (Γ) ` σ (φ)
TermSubst

]
= (λx1 : JB1K . . . . λxn : JBnK . [D]) [M1] . . . [Mn] .

Constant and type definitions For every constant definition c = M , we declare in
the signature a new constant:

c : A := M

where A is the type of M . We can then derive the rule DefineConst using reflexivity.
Similarly, for every definition of a new type operator p from a predicate P on the type A,
we declare in the signature:

p : typen → type,
abs : Π~α : ~type . JAK→ Jp (α1, . . . , αn)K ,
rep : Π~α : ~type . Jp (α1, . . . , αn)K→ JAK ,
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where α1, . . . , αn are the free type variables that occur in A. We derive the first conclusion
of DefineTypeOp by adding the rule

abs (rep y) 7−→ y .

We were not able to find suitable rewrite rules for deriving the second conclusion of
DefineTypeOp so we declare it as an axiom.

7.3 Completeness
The translation preserves well-formation of types, typing of terms, and correctness of
proofs. We do not give the proofs of the following results, as they are a straightforward
adaptation of the results of Chapter 5.

Lemma 7.3.1 (Preservation of well-formed types). For any HOL type A,

Σ, ~α : ~type `λΠR [A] : type

and
Σ, ~α : ~type `λΠR JAK : Type

where ~α are the free type variables appearing in A.

Lemma 7.3.2 (Preservation of well-typed terms). For any HOL term M of type A,

Σ, ~α : ~type, ~x : ~JAK `λΠR [M ] : JAK

where ~α are the free type variables and ~x : ~A are the free term variables appearing in M .
For any HOL proposition φ,

Σ, ~α : ~type, ~x : ~JAK `λΠR JφK : Type

where ~α are the free type variables and ~x : ~A are the free term variables appearing in φ.

Lemma 7.3.3 (Preservation of valid proofs). For any HOL proof D of Γ ` φ,

Σ, ~α : ~type, ~x : ~JAK, JΓK `λΠR [D] : JφK

where ~α are the free type variables and ~x : ~A are the free term variables appearing in D.

Notice that in the last lemma there can be free type variables and free term variables
that appear in D but not in the statement Γ ` φ. Typically, this is due to the left branch
of the EqMp rule because φ does not appear in the conclusion. Thankfully, we can get
rid of these using substitution. We replace every free type variable that is not in Γ ` φ
by a closed type (e.g. bool) and every free term variable of type A that is not in Γ ` φ by
a closed term of type A (e.g. selectA (λx .>)). This is possible because of the constant
select, which implicitly assumes that every simple type is inhabited. Without it, we
would need to still assume one inhabitant for every free variable in the context.
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7.4 Implementation

7.4.1 Proof retrieval
The members of the HOL family have very similar implementations based on Milner’s
LCF, usually in OCaml or SML. The core idea behind that approach is to represent
theorems as sequents that are members of an abstract datatype thm, i.e. a datatype that
cannot be constructed outside of the kernel. As such, the sequents of type thm can
only come from the kernel and so must be constructed using the derivation rules of the
logic, thus guaranteeing safety without the need to remember the proofs. That approach
reduces memory consumption but hinders the system’s ability to share proofs. This is a
recurrent issue when trying to retrieve proofs of HOL [Hur11, KW10, OS06].

Fortunately, several proposals have already been made to solve this problem [Ada15,
Hur11, KK13, OS06]. Among them is the OpenTheory project, which we chose because
it is the most mature and most well documented. It defines a standard format called the
article format for recording and sharing HOL theorems. An article file contains a sequence
of elementary commands for an abstract machine to reconstruct proofs. Importing a
theorem thus only requires a mechanical execution of the commands. The format of
OpenTheory is limited to the HOL family, and cannot be used to communicate the
proofs of Coq for example. However, it is an excellent starting point for our translation.
Choosing OpenTheory as a front-end has several advantages:

• We cover all the systems of the HOL family that can export their proofs to
OpenTheory with a single implementation. As of today, this includes HOL
Light, HOL4, and ProofPower.1

• The implementation of a theorem prover can change with time, sometimes in
undocumented ways, so the existence of this standard, well-documented proof
format is extremely helpful, if not necessary for a good translation.

• The OpenTheory project also defines a large standard theory library, covering
the development of common datatypes and mathematical theories such as lists and
natural numbers. This substantial body of theories was used as a benchmark for
our implementation.

7.4.2 Holide: HOL to Dedukti

We implemented our translation in an automated tool called Holide2. It works as an
OpenTheory virtual machine that additionally keeps track of the corresponding proof
terms for theorems. The program reads a HOL proof written in the OpenTheory article
format (.art) and outputs a Dedukti file (.dk) containing its translation. We can
run Dedukti on the generated file to check it. All generated files are linked with a
hand-written file hol.dk containing the signature of HOL. The translation process is
illustrated in Figure 7.2.

1Isabelle/HOL can currently read from but not write to OpenTheory.
2https://www.rocq.inria.fr/deducteam/Holide/
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bool . ml

nat . ml

bool . ar t

nat . ar t

bool . dk

nat . dk

hol . dk

OpenTheoryHOL Light Dedukti

holide

l i st . ml l i s t . ar t l i s t . dk

dkcheckhol-light OK / KO

Figure 7.2 – Translation of HOL proofs to Dedukti using Holide

HOL proofs are known to be very large [KK13, KW10, OS06], and we needed to
implement sharing of proofs, terms, and types in order to reduce them to a manageable
size. OpenTheory already provides some form of proof sharing but we found that it was
easier to completely factorize the derivations into individual intermediary steps.

Experimental results We used Holide to translate the OpenTheory standard
library. The library is organized into individual packages, each corresponding to a theory
such as lists or natural numbers. We were able to verify all the generated files. The
results are summarized in Table 7.1. We list the size of both the source files and the files
generated by the translation after compression using gzip. The reason we use the size of
the compressed files for comparison is because it provides a more reasonable measure
that is less affected by syntax formatting and whitespace. We also list the time it takes
to translate and verify each package. These tests were done on a 64-bit Intel Xeon(R)
CPU @ 2.67GHz × 4 machine with 4 GB of RAM.

Overall, the size of the generated files is about 3 to 4 times larger than the source
files. Given that this is an encoding in a logical framework, an increase in the size is to be
expected, and we find this factor reasonable. There are no similar translations to compare
to except the one of Keller and Werner [KW10]. The comparison is difficult because
they work with a slightly different form of input, but they produce several hundreds of
megabytes of proofs. Similarly, an increase in verification time is to be expected compared
to verifying OpenTheory directly, but our results are still reasonable given the nature
of the translation. Our time is about 4 times larger than OpenTheory, which takes
about 5 seconds to verify the standard library. It is in line with the scalable translation
of Kalyszyk and Krauss to Isabelle/HOL, which takes around 30 seconds[KK13]. In
comparison, Keller and Werner’s translation takes several hours, although we should note
that our work greatly benefited from their experience.
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Package OpenTheory Dedukti Translation Verification

unit 5 13 0.2 0

function 16 53 0.3 0.2

pair 38 121 0.8 0.5

bool 49 154 0.9 0.5

sum 84 296 2.1 1.1

option 93 320 2.2 1.2

relation 161 620 4.6 2.8

list 239 827 5.7 3.2

real 286 945 6.5 3.1

natural 343 1065 6.8 3.2

set 389 1462 10.2 5.8

Total 1702 4877 40.3 21.6

Size (kB) Time (s)

Table 7.1 – Translation of the OpenTheory standard theory library using Holide

7.4.3 Extensions

In this section we show some possible extensions that make use of the advantages of
having a translation that preserves computation.

Compressing conversion proofs

One of the reasons why HOL proofs are so large is that conversion proofs have to traverse
the terms using the congruence rules AbsThm and AppThm. Since we now prove
β-equality and constant definitions computationally using reflexivity, large conversion
proofs could be reduced to a single reflexivity step, therefore reducing the size of the
proofs.

Example 7.4.1. The following proof of f(g((λx : A . x)x)) = f(g(x)),

` f = f
Refl

` g = g
Refl

` (λx : A . x) x = x
Beta

` g ((λx : A . x) x) = g x
AppThm

` f (g ((λx : A . x) x)) = f (g x)
AppThm

can be translated simply as ReflB(f(g x)).
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HOL as a pure type system

In our implementation, we represented the rules of HOL using axioms. This means that
proofs lack a computational behavior. As mentioned in Section 4.2, HOL can be seen as a
pure type system called λHOL with three sorts. That formulation corresponds to minimal
constructive higher-order logic, with only implication and universal quantification as
primitive connectives. In particular, it has a very clear computational behavior. However,
that structure is lost in the Q0 formulation used by the actual HOL systems. Our
translation can be adapted to recover that structure.

Instead of equality, we declare implication and universal quantification as primitive
connectives, and we define what provability means through rewriting.

imp : term (arrow bool (arrow bool bool))
forall : Πa : type . term (arrow (arrow a bool) bool)

proof (imp p q) 7−→ proof p→ proof q
proof (forall a p) 7−→ Πx : term a . proof (p x)

However, this time we do not even need to declare constants for the counterparts of rules
like Refl and AppThm because they are derivable. For example, here is a derivation of
the introduction and elimination rules for implication:

imp_intro : Πp, q : term bool . (proof p→ proof q)→ proof (imp p q)
= λp, q : term bool . λh : (proof p→ proof q) . h

imp_elim : Πp, q : term bool . proof (imp p q)→ proof p→ proof q
= λp, q : term bool . λh : proof (imp p q) . λx : proof p . h x

By translating the introduction rules as λ-abstractions, and the elimination rules as
applications, we recover the reduction of the proof terms, which corresponds to cut
elimination in the original proofs.

As for equality, it is also possible to define it in terms of these connectives. For
example, we could use the Leibniz definition of equality, which is the one used by Coq:

eq : Πa : type . term (arrow a (arrow a bool))
= λa : type . λx : term a . λy : term a .

forall (arrow a bool) (Πp : term (arrow a bool) . imp (p x) (p y))

We would still need to assume some axioms to prove all the rules, namely FunExt and
PropExt [KW10], but this definition is closer to that of Coq. Since the PTS λHOL
is a strict subset of the calculus of inductive constructions, we can use this to inject
HOL directly into an embedding of Coq in Dedukti [AC15] (see Section 12.2.3). The
implementation of this extension is the subject of currently ongoing work in the team.
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III
Cumulative and infinite hierarchies





8
Cumulative type systems

Cumulativity is the internalization of the notion of containment. It allows us to view the
members of a universe Typei as members of a higher universe. If we think of the typing
relation M : A as set membership, then the rule

` Typei : Typei+1

expresses that each universe is a member of the next:

Type0 ∈ Type1 ∈ Type2 ∈ · · · .

This stratification is required to avoid paradoxes related to Type ∈ Type (such as in λ∗
from Example 4.2.1). From a set-theoretical point of view, it is similar to the distinction
between sets (or small sets) and collections (or large sets). In contrast, the cumulativity
rule

Γ ` A : Typei
Γ ` A : Typei+1

expresses that each universe is contained in the next:

Type0 ⊆ Type1 ⊆ Type2 ⊆ · · · .
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This feature was first introduced in Martin-Löf’s intuitionistic type theory [ML73,
ML84]. In that theory, universes are built sequentially, one after the other. At each
step, a new universe is introduced containing all the previously existing types, which by
definition includes the members of all previous universes too. This is not surprising from
a set-theoretical point of view since quantifying over all large sets usually includes small
sets too. The feature was later introduced in the calculus of constructions by Coquand
[Coq86] and by Luo in his extended calculus of constructions [Luo89, Luo90].

Cumulativity also has practical applications, as it allows us to write code that is more
generic. Suppose for example we want to define the polymorphic type of lists but that we
want to use it at different levels, so that we can talk about lists of natural numbers, lists of
types, etc. Without cumulativity, we would need to define a type listi : ∀α : Typei.Typei
for every i. By quantifying once over all types that are smaller than some fixed universe
Typej , we would only need to define list : ∀α : Typej .Typej once at a high enough level j
to be able to use it for all types A : Typei with i ≤ j. Of course, this approach is still
limited as we would need to define another type, or “bump” the level of list once we want
to use it at a level higher than j. Several other features have been developed to cope with
this issue, including floating universes and universe polymoprhism [HP89, ST14], but
cumulativity has become an integral part of type theory and is implemented in systems
such as Coq and Matita. Since cumulativity is not a conservative extension, we have to
deal with it if we hope to embed the proofs of those systems.

In this thesis, we generalize the embedding of pure type systems to systems with
cumulativity. To this end, we first generalize the framework of pure type systems. Indeed,
cumulativity is present in many systems in the literature, with myriads of variations in the
typing rules that are not always equivalent. For example, some systems have the cumula-
tivity relation Prop ⊆ Type0, while others have Prop ⊆ Type1, and some have neither, and
these variations are not equivalent. Some systems have the rule (Typei,Typei,Typei) while
some (Typei,Typej ,Typemax(i,j)) and others have (Typei,Typej ,Typek) for all i, j ≤ k,
but all these variations are usually equivalent. We therefore need a common framework
in which to describe and compare these systems.

Cumulative type systems were introduced by Barras [Bar99] as a generalization of
pure type systems with cumulativity. They provide a general framework for studying the
λ-calculus core of many systems with cumulativity, which allows us to give a homogeneous
description and a common metatheory for a wide variety of systems. The metatheory was
first explored by Barras and Gregoire [Bar99, BG05]. Cumulative type systems were later
taken and reformulated by Lasson, who provides an extensive and meticulous study of
their metatheory in his PhD thesis [Las12]. In this chapter, we briefly present cumulative
type systems and the main results of Barras and Lasson on which we will build Chapters
9 and 10. Our goal is to eventually embed both intuitionistic type theory and the calculus
of inductive constructions. We also present a new a bidirectional typing system for
deriving principal types, which we will use for our embedding in the λΠ-calculus modulo
rewriting, and prove that it is sound and complete.
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8.1 Definition

8.1.1 Specification and syntax

Cumulative type systems share the same syntax as pure type systems, with β-equivalence
as the main equivalence relation. Specifications are extended by a new relation C that
describes cumulativity.

Definition 8.1.1 (Specification). A cumulative type system (CTS) specification is a
quadruple P = (S,A, C,R) where

• S is a set of constants called sorts,

• A ∈ S × S is a relation called axioms,

• R ∈ S × S × S is a relation called rules,

• C ∈ S × S is a relation called cumulativity.

We sometimes write (s1, s2) for the rule (s1, s2, s2). The cumulative type system associated
with a specification P is written λP�. In the following, we assume a fixed specification
P = (S,A,R, C).

Definition 8.1.2 (Syntax). The syntax of λP� is given by the following grammar:

sorts s ∈ S
terms M,N,A,B ∈ T ::= x | s |M N | λx : A .M | Πx : A .B
contexts Γ,∆ ∈ G ::= ∅ | Γ, x : A

8.1.2 Subtyping

We define a subtyping relation � that generalizes β-equivalence and includes the cumula-
tivity relation C.

Definition 8.1.3 (Subtyping). The subtyping relation � is given by the rules:

A ≡β B
A � B

(s1, s2) ∈ C∗

s1 � s2

B � C
Πx : A .B � Πx : A .C

A � B B � C
A � C

The relation ≺ is defined as the strict version of �, i.e.

A ≺ B def⇐⇒ A � B ∧A 6≡ B.

Since these relations depend on C, we sometimes write �P and ≺P to disambiguate.
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Notice that we allow covariance in the co-domain of Π. Although this feature is not
present originally in intuitionistic type theory, type inference would be more cumbersome
without it. In particular, λ-abstractions could otherwise be typed in multiple ways that
are not related. Moreover, a variable would not have the same types as its η-expansions.
Notice also that we do not allow contravariance in the domain of Π. The main reason for
that is that it would not behave well with respect to type inference and principal typing.
This is a standard restriction [Luo90, Las12] and is found in Coq [Cdt12] and Matita
[ARCT09] for example.

Lemma 8.1.4. If A � B then either A ≡ B or ∃C1, . . . , Cn, s, s
′ such that

{
A ≡ Πx1 : C1 . · · ·Πxn : Cn . s
B ≡ Πx1 : C1 . · · ·Πxn : Cn . s′

and s ≺ s′.

Proof. By induction on the derivation of A � B.

The subtyping relation behaves well with substitution.

Lemma 8.1.5. If A � B then A {x\N} � B {x\N}.

Proof. By induction on the derivation of A � B.

8.1.3 Typing

Definition 8.1.6 (Typing). The typing relations

• Γ ` M : A, meaning that the term M has type A in the context Γ,

• Γ ` WF, meaning that the context Γ is well-formed,

are derived by the rules in Figure 8.1. A term A is a well-formed type in Γ when Γ ` WF
and either Γ ` A : s or A = s for some s ∈ S. We write this as Γ ` A WF. It is inhabited
in Γ when ∃M,Γ ` M : A. We write Γ ` M : A : B as a shortcut for Γ ` M : A and
Γ ` A : B. We sometimes write λP� instead of ` to disambiguate.

Notice that the conversion rule Conv of pure type systems has been replaced by the
subtyping rule Sub. The rule Sub-sort is required if we want to allow promoting the
type of a term to a top-sort. It is redundant in complete systems such as the calculus of
inductive constructions because they have no top-sorts. Finally, remark that pure type
systems are a special instance of cumulative type systems with C = ∅.
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∅ ` WF
Empty

Γ ` A : s x 6∈ Γ
Γ, x : A ` WF

Decl

Γ ` WF (x : A) ∈ Γ
Γ ` x : A

Var

Γ ` WF (s1 : s2) ∈ A
Γ ` s1 : s2

Sort

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A .B : s3

Prod

Γ, x : A ` M : B Γ ` Πx : A .B : s
Γ ` λx : A .M : Πx : A .B

Lam

Γ `M : Πx : A .B Γ ` N : A
Γ `M N : B {x\N}

App

Γ ` M : A Γ ` B : s A � B
Γ ` M : B

Sub

Γ ` M : A A � s
Γ ` M : s

Sub-sort

Figure 8.1 – Typing rules of the system λP�
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8.2 Basic properties
The properties of cumulative type systems are analogous to those of pure type systems.
We state the following results with no proof. The complete proofs can be found in the
works of Barras and Lasson [Bar99, Las12].

Lemma 8.2.1 (Confluence). If M ≡β M ′ then ∃M ′′ such that M −→∗β M ′′ and M ′ −→∗β
M ′′.

Lemma 8.2.2 (Injectivity of syntax). The following holds:

x ≡β x′ =⇒ x = x′

s ≡β s′ =⇒ s = s′

Πx : A .B ≡β Πx : A′ . B′ =⇒ A ≡β A′ ∧B ≡β B′

λx : A .M ≡β λx : A′ .M ′ =⇒ A ≡β A′ ∧M ≡β M ′

Lemma 8.2.3 (Free variables). If Γ ` M : A then FV (M) ∪ FV (A) ⊆ dom (Γ). If
Γ, x : A,Γ ` WF then FV (A) ⊆ dom (Γ) and x 6∈ dom (Γ).

Lemma 8.2.4 (Substitution). If Γ, x : A,Γ′ ` M : B and Γ ` N : A then Γ,Γ′ {x\N} `
M {x\N} : B {x\N} .

Lemma 8.2.5 (Weakening). If Γ ` M : A and Γ′ ` WF and Γ ⊆ Γ′ then Γ′ ` M : A.

Lemma 8.2.6 (Inversion). The following holds:

Γ ` x : C ⇒ ∃A. Γ `WF ∧ (x : A) ∈ Γ ∧A � C
Γ ` s1 : C ⇒ ∃s2. Γ `WF ∧ (s1, s2) ∈ A ∧ s2 � C
Γ ` Πx : A .B : C ⇒ ∃s1, s2, s3. Γ ` A : s1 ∧ Γ, x : A ` B : s2 ∧ (s1, s2, s3) ∈ R ∧ s3 � C
Γ ` λx : A .M : C ⇒ ∃B, s. Γ, x : A ` M : B ∧ Γ ` Πx : A .B : s ∧Πx : A .B � C
Γ ` M N : C ⇒ ∃A,B. Γ ` M : Πx : A .B ∧ Γ ` N : A ∧B {x\N} � C

Lemma 8.2.7 (Correctness of typing). If Γ ` M : A then Γ ` A WF.

Lemma 8.2.8 (Subject reduction). If Γ ` M : A and M −→∗β M ′ then Γ ` M ′ : A.

8.3 Inter-system properties

8.3.1 Subsystems

Definition 8.3.1 (Subsystem). A CTS P = (S,A,R, C) is a subsystem of P ′ =
(S ′,A′,R′, C′) when S ⊆ S ′, A ⊆ A′, R ⊆ R′, and C ⊆ C′. We write P ⊆ P ′.

Lemma 8.3.2. If P ⊆ P ′ then Γ `λP� M : A =⇒ Γ `λP ′� M : A.

Lemma 8.3.3 (Compactness). If Γ `λP� M : A then there is a finite sub-system P ′ such
that Γ `λP ′� M : A.
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8.3.2 Morphisms

Definition 8.3.4 (Morphism). Let P = (S,A,R, C) and P ′ = (S ′,A′,R′, C′) be two
CTSs. A function ϕ : S → S ′ is a CTS morphism when:

1. ∀ (s1, s2) ∈ A, (ϕ (s1) , ϕ (s2)) ∈ A′,

2. ∀ (s1, s2, s3) ∈ R, (ϕ (s1) , ϕ (s2)) ∈ R′,

3. ∀ (s1, s2) ∈ C, (ϕ (s1) , ϕ (s2)) ∈ C′.

The function ϕ can be extended to all terms and contexts of P as follows:

ϕ (x) = x

ϕ (M N) = ϕ (M) ϕ (N)
ϕ (λx : A .M) = λx : ϕ (A) . ϕ (N)
ϕ (Πx : A .B) = Πx : ϕ (A) . ϕ (B)

We write ϕ : P → P ′ to say that ϕ is a morphism between P and P ′.

Lemma 8.3.5. If P ⊆ P ′ then the identity function is a morphism from P to P ′,
i.e. id : P → P ′.

Morphisms preserve β-reductions, β-equivalence, cumulativity, and typing.

Lemma 8.3.6. If ϕ : P → P ′ then

1. M −→β M
′ ⇐⇒ ϕ (M) −→β ϕ (M ′),

2. M ≡β M ′ ⇐⇒ ϕ (M) ≡β ϕ (M ′),

3. M �P M ′ =⇒ ϕ (M) �P ′ ϕ (M ′),

4. Γ `λP� M : A =⇒ Γ `λP ′� ϕ (M) : ϕ (A)

Corollary 8.3.7. If ϕ : P → P ′ and P ′ is weakly (resp. strongly) normalizing then P is
weakly (resp. strongly) normalizing.

8.3.3 Closures

In cumulative type systems, certain axioms and rules can be redundant because of
cumulativity. For example, the calculus of constructions equipped with the cumulativity
relation (∗,�):

(C�)


S = ∗,�
A = (∗,�)
R = (∗, ∗) , (∗,�) , (�, ∗) , (�,�)
C = (∗,�)


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is equivalent to the CTS:

(
C ′�

)

S ′ = ∗,�
A′ = (∗,�)
R′ = (∗, ∗) , (�, ∗) , (�,�)
C′ = (∗,�)


because the rule (∗,�) can be derived from (∗,�) ∈ C and (�,�) ∈ R:

Γ ` A : ∗ ∗ �′ �
Γ ` A : � Γ, x : A ` B : � (�,�) ∈ R′

Γ ` Πx : A .B : � .

For this reason, we define the following operations on axioms and rules.

Definition 8.3.8 (Cumulative closure). The cumulative closure of a CTS P = (S,A,R, C)
is the CTS P =

(
S,A,R, C

)
where:

S = S
A =

{
(s1, s2) ∈ S2 | ∃s′2 ∈ S, (s1, s

′
2) ∈ A ∧ s′2 � s2

}
R =

{
(s1, s2, s3) ∈ S3 | ∃ (s′1, s′2, s′3) ∈ R, s1 � s′1 ∧ s2 � s′2 ∧ s′3 � s3

}
C = C

Obviously, P ⊆ P. Moreover, all the axioms and rules of P are derivable from those of
P, which gives the following result.

Lemma 8.3.9. For any CTS P, Γ `λP� M : A ⇐⇒ Γ `λP� M : A.

8.4 Principal typing
Not all CTSs are well-behaved with respect to cumulativity. Type uniqueness does not
hold. In practice, we need principal types; that is, the property that all the types of a
well-typed term are supertypes of a single type. Lasson [Las12] determined a criterion for
CTSs to be well-behaved called the local minimum property. It is the equivalent of the
functionality property in PTSs. It is a requirement, together with the well-foundedness
of ≺, for the system to have principal types.

8.4.1 Definition

Definition 8.4.1 (Local minimum). A CTS has the local minimum property if

(s1, s2) ∈ A
(s′1, s′2) ∈ A
r1 � s1 ∧ r1 � s′1

 =⇒ ∃r2, (r1, r2) ∈ A ∧ r2 � s2 ∧ r2 � s′2
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and
(s1, s2, s3) ∈ R
(s′1, s′2, s′3) ∈ R
r1 � s1 ∧ r1 � s′1
r2 � s2 ∧ r2 � s′2


=⇒ ∃r3, (r1, r2, r3) ∈ R ∧ r3 � s3 ∧ r3 � s′3.

The following lemma shows that the local minimum property for CTSs is the equivalent
of the functionality property for PTSs.

Lemma 8.4.2. A pure type system is functional if and only if it has the local minimum
property.

Proof. In pure type systems, A � B ⇐⇒ A ≡ B, so r � s ⇐⇒ r = s.

Definition 8.4.3 (Principal type). A term M has principal type A in the context Γ
when Γ ` M : A and, for all B, if Γ ` M : B then A � B. We write this as Γ |= M ⇒ A,
with the symbol |= to emphasize that this is a semantic property. Note that the principal
type of a term, if it exists, is unique up to β-equivalence.

Lemma 8.4.4. If Γ |= M ⇒ A then, for all B, Γ ` M : B ⇐⇒ (Γ ` B WF ∧A � B).

Proof. The first direction follows by definition of principal types and by correctness of
typing (Lemma 8.2.7), the second by the rules Sub and Sub-sort.

Principal types are not preserved by substitution and reduction. Indeed, the principal
type of a term can decrease after substitution, as shown by the following example.

Example 8.4.5 (Principal types are not preserved). We have x : Type2 |= x ⇒ Type2
and ` Type0 : Type2, however x {x\Type0} = Type0 and Type2 {x\Type0} = Type2 and
6|= Type0 ⇒ Type2.

The following are sufficient conditions for the existence of principal types.

Lemma 8.4.6. If P has the local minimum property and ≺ is a well-founded order then,
for any Γ,M , if M is well-typed in Γ then M has a principal type in Γ.

The well-foundedness of the strict subtyping relation ≺ follows from that of the
cumulativity relation C.

Lemma 8.4.7. If C is a well-founded order then ≺ is a well-founded order.

All cumulative type systems used in practice (pure type systems, intuitionistic type
theory, calculus of inductive constructions) have the local minimum property and are
well-founded. In the rest of this thesis, we will only consider systems that
satisfy these properties.
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8.4.2 Derivation rules

We now present a typing system for deriving principal types. We define a new bidirectional
typing system with two new judgements, Γ ` M ⇒ A (“M has minimal type A”) and
Γ ` M ⇐ A (“M checks against type A”). We show that the first one is equivalent to
Γ |= M ⇒ A and that the second one is equivalent to Γ ` M : A. First, we define a
minified version of P that is functional but still equivalent.

Definition 8.4.8 (Minification). The minification of a CTS P = (S,A,R, C) is the CTS
P = (S,A,R, C) where:

S = S
A = {(s1, s2) ∈ A | ∀s′2 ∈ S, (s1, s

′
2) ∈ A =⇒ s2 � s′2}

R = {(s1, s2, s3) ∈ R | ∀s′3 ∈ S, (s1, s2, s
′
3) ∈ R, s3 � s′3}

C = C

This CTS is functional. Obviously, P ⊆ P . Moreover, since P has principal types, all the
axioms and rules of P are still derivable in P ′. In that sense, minification is the opposite
of the closure operation.

Lemma 8.4.9. The following holds:

• (s1, s
′
2) ∈ A =⇒ ∃s2. (s1, s2) ∈ A,

• (s1, s2, s
′
3) ∈ R =⇒ ∃s3. (s1, s2, s3) ∈ R.

Proof.

• Suppose (s1, s
′
2) ∈ A. Consider the non-empty set S = {s2 | (s1, s2) ∈ A}. Since ≺

is well-founded, S has a minimal element s2. Moreover, for any s′2 ∈ S, by the local
minimum property, there exists r2 such that (s1, r2) ∈ A and r2 � s2 and r2 � s′2.
Since s2 is minimal, we have r2 = s2 � s′2.

• Suppose (s1, s2, s
′
3) ∈ R. Consider the non-empty set S = {s3 | (s1, s2, s3) ∈ R}.

Since ≺ is well-founded, S has a minimal element s3. Moreover, for any s′3 ∈ S, by
the local minimum property, there exists r3 such that (s1, s2, r3) ∈ R and r3 � s3
and r3 � s′3. Since s3 is minimal, we have r3 = s3 � s′3.

Corollary 8.4.10. Γ `λP� M : A ⇐⇒ Γ `λP� M : A .

Proof. All the axioms and rules of λP ′ are in λP (more precisely, P ⊆ P), and all the
axioms and rules of λP are derivable in λP ′ by Lemma 8.4.9.

We can now give the system for deriving principal types. We will first call these types
minimal types and later show that they coincide with principal types.
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Definition 8.4.11 (Minimal typing). The typing relations

• Γ ` M ⇒ A, meaning the term M has minimal type A in the context Γ,

• Γ ` M ⇐ A, meaning the term M checks against type A,

• Γ `⇒ WF, meaning the judgement Γ is well-formed with respect to minimal
typing,

are derived by the rules in Figure 8.2. A term A is a well-formed type in Γ with respect to
minimal typing when Γ `⇒WF and either A = s or Γ ` A⇒ s for some sort s ∈ S, and
we write this as Γ ` A⇒WF. We sometimes write `λP� instead of ` to disambiguate.

Since principal typing is not preserved by substitution and reduction (Example 8.4.5),
special care must be taken when formulating the substitution and subject reduction
lemmas.

Lemma 8.4.12. If Γ ` M ⇐ C then ∃A such that Γ ` M ⇒ A and Γ ` C ⇒WF and
A � C.

Proof. By inspection of the typing rules, the last rule in the derivation of Γ ` M ⇐ C
must be either Check or Check-sort.

Lemma 8.4.13. If Γ, x : A,Γ′ ` M ⇒ B and Γ ` N ⇐ A then Γ,Γ′ {x\N} `
M {x\N} ⇐ B {x\N}.

Proof. By induction on the typing derivation.

Lemma 8.4.14 (Inversion). The following holds:

Γ ` x⇒ C ⇒ ∃A. Γ `⇒WF ∧ (x : A) ∈ Γ ∧A ≡ C
Γ ` s1 ⇒ C ⇒ ∃s2. Γ `⇒WF ∧ (s1, s2) ∈ A ∧ s2 ≡ C
Γ ` Πx : A .B ⇒ C ⇒ ∃s1, s2, s3. Γ ` A⇒ s1 ∧ Γ, x : A ` B ⇒ s2 ∧ (s1, s2, s3) ∈ R ∧ s3 ≡ C
Γ ` λx : A .M ⇒ C ⇒ ∃B, s. Γ, x : A ` M ⇒ B ∧ Γ ` Πx : A .B ⇒ s ∧Πx : A .B ≡ C
Γ ` M N ⇒ C ⇒ ∃A,B. Γ ` M ⇒ Πx : A .B ∧ Γ ` N ⇐ A ∧B {x\N} ≡ C

Proof. By induction on the typing derivation.

Lemma 8.4.15. If Γ ` M ⇒ A then Γ ` A⇒WF.

Proof. By induction on the typing derivation.

Lemma 8.4.16. If Γ ` M ⇒ A and M −→∗β M ′ then Γ ` M ′ ⇐ A.

Proof. By induction on the number of steps. For a single step, by induction on M , using
Lemma 8.4.13 for the base case.
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∅ `⇒WF
Empty

Γ ` A⇒ s x 6∈ Γ
Γ, x : A `⇒WF

Decl

Γ `⇒WF (x : A) ∈ Γ
Γ ` x⇒ A

Var

Γ `⇒WF (s1 : s2) ∈ A
Γ ` s1 ⇒ s2

Sort

Γ ` A⇒ s1 Γ, x : A ` B ⇒ s2 (s1, s2, s3) ∈ R
Γ ` Πx : A .B ⇒ s3

Prod

Γ, x : A ` M ⇒ B Γ ` Πx : A .B ⇒ s

Γ ` λx : A .M ⇒ Πx : A .B
Lam

Γ `M ⇒ Πx : A .B Γ ` N ⇐ A

Γ `M N ⇒ B {x\N}
App

Γ ` M ⇒ A Γ ` B ⇒ s A ≡ B
Γ ` M ⇒ B

Conv

Γ ` M ⇒ A A ≡ s
Γ ` M ⇒ s

Conv-sort

Γ ` M ⇒ A Γ ` B ⇒ s A � B
Γ ` M ⇐ B

Check

Γ ` M ⇒ A A � s
Γ ` M ⇐ s

Check-sort

Figure 8.2 – Minimal-typing rules of the system λP�
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8.4.3 Soundness

We now show the soundness of the typing rules with respect to principal typing, meaning
that if we can derive Γ ` M ⇒ A then A is the principal type of M . First we need a
technical lemma that shows that each individual rule is sound.

Lemma 8.4.17. The following holds:

1. Γ ` WF ∧ (x : A) ∈ Γ =⇒ Γ |= x⇒ A

2. Γ ` WF ∧ (s1, s2) ∈ A =⇒ Γ |= s1 ⇒ s2

3. Γ |= A⇒ s1 ∧ Γ, x : A |= B ⇒ s2 ∧ (s1, s2, s3) ∈ R =⇒ Γ |= Πx : A .B ⇒ s3

4. Γ, x : A |= M ⇒ B ∧ Γ ` Πx : A .B : s =⇒ Γ |= λx : A .M ⇒ Πx : A .B

5. Γ |= M ⇒ Πx : A .B ∧ Γ ` N : A =⇒ Γ |= M N ⇒ B {x\N}

6. Γ |= M ⇒ A ∧ Γ ` B : s ∧A ≡ B =⇒ Γ |= M ⇒ B

7. Γ |= M ⇒ A ∧A ≡ s =⇒ Γ |= A⇒ s

Proof. The details of the proof can be found in Appendix A.3.

Lemma 8.4.18 (Soundness of minimal typing). If Γ ` M ⇒ A then Γ |= M ⇒ A. If
Γ ` M ⇐ A then Γ ` M : A. If Γ `⇒WF then Γ ` WF.

Proof. By induction on the typing derivation, using Lemma 8.4.17.

8.4.4 Completeness

We now show the converse, namely that if a term M has principal type A, then we can
derive Γ ` M ⇒ A. We start with the following technical lemmas.

Lemma 8.4.19. If Γ ` M ⇒ A and A � s then ∃s′ such that Γ ` M ⇒ s′ and s′ � s.

Proof. By Lemma 8.1.4 and confluence, ∃s′ such that A −→∗ s′ and s′ � s. Therefore,
Γ ` M ⇒ s′ by the Conv-sort rule.

Lemma 8.4.20. If Γ ` M ⇒ A and A � Πx : C .D then ∃C ′, D′ such that Γ ` M ⇒
Πx : C ′ . D′ and C ′ ≡ C and D′ ≡ D.

Proof. By Lemma 8.1.4 and confluence, ∃C ′, D′ such that A −→∗ Πx : C ′ . D′ and C ′ ≡ C
and D′ � D. Therefore, Γ ` M ⇒ Πx : C ′ . D′ by the Conv rule.

We also need the following technical lemma.1

1This technical lemma is needed for the Lam case where the Π premise is not present in the conclusion.
The lemma is similar to Lemma 1.2.32, p. 71 of Lasson’s thesis [Las12].
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Lemma 8.4.21. If Γ ` A ⇒ s and Γ ` A′ ⇒ s′ and A′ � A then ∃A′′, s′′ such that
A′ −→∗ A′′ and Γ ` A′′ ⇒ s′′ and s′′ � s.

Proof. By Lemma 8.1.4, there are two cases to consider. The details of the proof can be
found in Appendix A.3.

We can finally prove completeness using the following lemma.

Lemma 8.4.22. If Γ ` M : C then ∃A such that Γ ` M ⇒ A and A � C. If Γ ` WF
then Γ `⇒WF.

Proof. By induction on the typing derivation. The details of the proof can be found in
Appendix A.3.

Corollary 8.4.23 (Completeness). If Γ |= M ⇒ A then Γ ` M ⇒ A. If Γ ` M : A
then Γ ` M ⇐ A.

Proof. If Γ |= M ⇒ A then by Lemma 8.4.22, ∃A′ such that Γ ` M ⇒ A′ and A′ � A.
By soundness (Lemma 8.4.18), we have Γ ` M : A′. By principality, we have A � A′

and therefore A′ ≡ A. If A = s for some s ∈ S then Γ ` M ⇒ A by the Conv-sort
rule. Otherwise, Γ ` A : s for some s ∈ S. By Lemma 8.4.22 and Lemma 8.4.19, ∃s′ such
that Γ ` A ⇒ s′. Therefore, Γ ` M ⇒ A by the Conv rule. The proof of the second
statement is similar.

Theorem 8.4.24 (Soundness and completeness of minimal typing). We have:

• Γ ` M : A ⇐⇒ Γ ` M ⇐ A,

• Γ |= M ⇒ A ⇐⇒ Γ ` M ⇒ A,

• Γ ` WF ⇐⇒ Γ `⇒WF.

Proof. By combining Lemma 8.4.18 and Corollary 8.4.23.

8.5 Examples of CTSs with principal typing

The following important systems can be described as cumulative type systems [Las12] .

• Given an ordinal α, the CTS λPα� is given by the specification:

(
Pα�

)

S = {i | i < α}
A = {(i, i+ 1) | i+ 1 < α}
R = {(i, i, i) | i < α}
C = {(i, i+ 1) | i+ 1 < α}


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It satisfies the following properties:

– principal typing,
– fullness,
– strengthening,
– predicativity,
– strong normalization,
– decidability of type-checking.

The core of intuitionistic type theory (ITT) corresponds to the instance λPω�
where α = ω, which is moreover complete. Lasson [Las12] showed that, for any
predicative CTS λP�, there is an ordinal α and a morphism from λP� to λPα�.
Since morphisms preserve divergence (Corollary 8.3.7), this shows that any such
λP� is also strongly normalizing.

• Given an ordinal α, the CTS λCα� is given by the specification:

λCα



S = {∗} ∪ {i | i < α}
A = (∗, 0) ∪ {(i, i+ 1) | i+ 1 < α}
R = {(∗, ∗, ∗)}∪

{(i, ∗, ∗) | i < α}∪
{(i, i, i) | i < α}

C = {(∗, 0)} ∪ {(i, i+ 1) | i+ 1 < α}


It satisfies the following properties:

– principal typing,
– fullness,
– strengthening,
– weak impredicativity,
– strong normalization,
– decidability of type-checking.

The core of the calculus of inductive constructions (CIC) corresponds to the
instance λCω� where α = ω, which is moreover complete. Lasson [Las12] showed
that, for any weakly impredicative CTS λP�, there is an ordinal α and a morphism
from λP� to λCα�. Since morphisms preserve divergence (Corollary 8.3.7), this
shows that any such λP� is also strongly normalizing.
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9
Embedding cumulativity

In this chapter, we generalize the embedding of Cousineau and Dowek [CD07] presented in
Chapter 5 to cumulative pure type systems. This turns out to be surprisingly challenging.
As we saw in the previous chapter, adding cumulativity breaks several good properties
such as uniqueness of types. While we were able to formalize a notion of minimal types,
they are not preserved by reduction (see Example 8.4.5). Since the λΠ-calculus modulo
rewriting satisfies both uniqueness of types (Theorem 3.2.10) and subject reduction
(Theorem 3.2.9), we must find a way to represent the same term at different types. A
trivial solution is to rewrite Typei+1 to Typei, however that would collapse the universe
hierarchy and lead to an inconsistent system (see λ∗ in Section 4.2).

We treat cumulativity using explicit coercions ↑ that transport terms from one
universe to a larger one. For each s1 � s2, we introduce a coercion ↑s2s1 of type Us1 → Us2 .
These coercions are very similar to the t operators in Martin-Löf’s intuitionistic type
theory [ML73, ML84, Pal98] with universes à la Tarski:

Γ ` A : Ui
Γ ` ti (A) : Ui+1 ,

except that we represent them as constants in curried form. Adding the equations

Ts2
(
↑s2s1 a

)
≡ Ts1 a

then allows us to correctly interpret coerced terms as types.
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The main difficulty lies in trying to maintain the same expressivity as universes à
la Russell. It is commonly believed that the two styles are equivalent. However, this
belief is not well-founded, as we show that naive formulations of universes à la Tarski
are not equivalent to formulations à la Russell in the presence of cumulativity. The
reason is that introducing explicit coercions in a dependently-typed setting can interfere
with convertibility checks, as we illustrate in the following example (for conciseness, we
sometimes abbreviate Typei as i).

Example 9.0.1 (Naive formulations of universes in the Tarski style are not equivalent
to the Russell style). In the context

Γ = p : Type1 → Type1,

q : Type1 → Type1,

f : Πc : Type0 . p c→ q c,

g : Πa : Type1 .Πb : Type1 . p (Πx : a . b)
a : Type0,

b : Type0,

the term f (Πx : a . b) (g a b) has type q (Πx : a . b):

Γ ` f (Πx : a . b) (g a b) : q (Πx : a . b)

but the corresponding Tarski-style translation

f (π0,0 a (λx . b))
(
g
(
↑10 a

) (
↑10 b

))
is ill-typed because T1

(
p
(
π1,1

(
↑10 a

) (
λx . ↑10 b

)))
6≡ T1

(
p
(
↑10 (π0,0 a (λx . b))

))
. The type

corresponding to q (Πx : a . b) is not provable in the Tarski style without adding further
equations!

This result, previously unkown, shows that we need to be careful when adding
coercions if we want to preserve the expressivity of the systems we are embedding. After
some investigation, it turns out that the issue arises when types, because of cumulativity,
have multiple non-equivalent representations as terms in the same universe. This leads us
to add equations for guaranteeing the unique representation of types as terms, a property
also known as full reflection [ML84, Pal98] because it reflects the equality of types in
their term representation. While the equations needed for the predicative universes Typei
have been known for some time [Luo94, Pal98], the equations needed for impredicative
universes such as Prop are less obvious and have not been studied before. In this chapter,
we present a general embedding of cumulative type systems with principal types, and
show precisely which equations are needed to ensure full reflection. The ideas of this
chapter were the subject of a publication at TYPES 2014 [Ass14] although under a
different context, that of a calculus of constructions with explicit subtyping.
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(s1, s2, s3) (s′1, s′2, s′3) Conditions

(Prop,Prop,Prop)
(

Typej ,Typej ,Typej
)

(Typei,Prop,Prop)
(

Typej ,Prop,Prop
)

i ≤ j

(Typei,Prop,Prop)
(

Typej ,Typej ,Typej
)

i ≤ j

(Typei,Typei,Typei)
(

Typej ,Typej ,Typej
)

i ≤ j

Table 9.1 – Rule inclusions for the system λCω�

9.1 Translation

As usual, for a given CTS P, we define a signature ΣP containing the constants and
rewrite rules needed to represent P , and then define a translation of the terms and types
into this signature. As mentioned above, we need the equivalence relation ≡βΣ to ensure
that terms representing the same type are unique in each universe. This is not always
evident or practical to achieve. In this chapter, we only give the necessary equations
and we defer their presentation as rewrite rules to the next chapter. First, we define the
following relation on CTS rules that are useful for defining these equations.

Definition 9.1.1. The rule subtyping relation is the extension of the subtyping relation
defined as:

(s1, s2, s3) �
(
s′1, s

′
2, s
′
3
) def⇐⇒ s1 � s′1 ∧ s2 � s′2 ∧ s3 � s′3.

As an example, the (strict) rule subtyping pairs for λCω� are summarized in Table 9.1.

Definition 9.1.2 (Signature). Let ΣP be the context containing

Us : Type ∀s ∈ S
Ts : Us → Type ∀s ∈ S
us1 : Us2 ∀ (s1, s2) ∈ A
↑s2s1 : Us1 → Us2 ∀ (s1, s2) ∈ C∗

πs1,s2 : Πα : Us1 . (Ts1 α→ Us2)→ Us3 ∀ (s1, s2, s3) ∈ R

We assume ΣP also contains rewrite rules verifying the equations

Ts2 us1 ≡ Us1 ∀ (s1, s2) ∈ A
Ts2

(
↑s2s1 a

)
≡ Ts1 a ∀ (s1, s2) ∈ C∗

Ts3 (πs1,s2 a b) ≡ Πx : Ts1 a .Ts2 (b x) ∀ (s1, s2, s3) ∈ R
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and the following full reflection equations

↑ss a ≡ a

↑s3s2
(
↑s2s1 a

)
≡ ↑s3s1 a

↑s
′
3
s3 (πs1,s2 a b) ≡ πs′1,s′2

(
↑s
′
1
s1 a

) (
λx . ↑s

′
2
s2 (b x)

)
∀ (s1, s2, s3) ∈ R, (s′1, s′2, s′3) ∈ R

(s1, s2, s3) � (s′1, s′2, s′3) .

(9.1)

We sometimes write Σ instead of ΣP when it is not ambiguous.

Because a term can have multiple types, we need a way to translate it in multiple
ways. For this reason, we mutually define two translation functions: a term translation
that relies on minimal typing and translates a term according to its minimal type, and a
cast translation that lifts that to the appropriate type using coercions.

Definition 9.1.3 (Translation functions). For any Γ,M,A such that Γ `λP� M ⇒ A,
the term translation [M ]Γ is defined by induction on M as:

[x]Γ = x

[s1]Γ = us1 where (s1, s2) ∈ A
[M N ]Γ = [M ]Γ [N ]Γ`A where Γ ` M ⇒ Πx : A .B
[λx : A .M ]Γ = λx : JAK . [M ]Γ,x:A
[Πx : A .B]Γ = πs1,s2 [A]Γ

(
λx . [B]Γ,x:A

)
where Γ ` A⇒ s1

and Γ ` B ⇒ s2

and (s1, s2, s3) ∈ R.

For any Γ,M,C such that Γ `λP� M : C, the cast translation [M ]Γ`C is defined as:

[M ]Γ`C = [M ]Γ if Γ ` M ⇒ A and A ≡ C
[M ]Γ`C = ↑s2s1 [M ]s if Γ ` M ⇒ A and A ≡ s1

and C ≡ s2 and s1 ≺ s2

[M ]Γ`C = λx : JAK . [M x]Γ,x:A`B if Γ ` M ⇒ A and A ≡ Πx : A1 . B1

and C ≡ Πx : A1 . B
′
1 and B1 ≺ B′1.

For any Γ, A such that Γ `λP� A WF, the type translation JAKΓ is defined as:

JAKΓ = Ts [A]Γ if Γ ` A : s
JsKΓ = Us if s ∈ S>.

For any Γ such that Γ `λP� WF, the context translation JΓK is defined by induction on Γ
as:

J∅K = ∅
JΓ, x : AK = JΓK , x : JAKΓ .
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9.2 Completeness

Once again, we prove that the translation is complete, meaning that it preserves typing.
This property depends on the preservation of equivalence, which in turn depends on the
preservation of substitution.

9.2.1 Preservation of substitution

Since minimal types are not preserved by substitution (see Example 8.4.5), we must be
careful in the formulation of the substitution lemma. In particular, we must use the cast
translation [M ]`A instead of the term translation [M ] when the type can decrease. We
first relate substitution in the cast translation and in the type translation to substitution
in the term translation using the following two lemmas.

Lemma 9.2.1. If Γ, x : A,Γ′ `λP� B ⇒ s and Γ `λP� N : A then

[B]Γ,x:A,Γ′
{
x\ [N ]Γ`A

}
≡βΣ [B {x\N}]Γ,Γ′{x\N}`s

implies
JBKΓ,x:A,Γ′

{
x\ [N ]Γ`A

}
≡βΣ JB {x\N}KΓ,Γ′{x\N} .

Proof. We have JBK
{
x\ [N ]`A

}
= Ts [B]

{
x\ [N ]`A

}
≡ Ts [B {x\N}]`s. If Γ ` B {x\N} ⇒

s then so Ts [B {x\N}]`s = Ts [B {x\N}] = JB {x\N}K. Otherwise, Γ ` B {x\N} ⇒ s′

for some s′ such that s′ ≺ s. Then Ts [B {x\N}]`s = Ts (↑ss′ [B {x\N}]) ≡ Ts′ [B {x\N}].

Lemma 9.2.2. If Γ, x : A,Γ′ `λP� M ⇒ B and Γ, x : A,Γ′ `λP� M ⇐ C and
Γ `λP� N ⇐ A then

[M ]Γ,x:A,Γ′
{
x\ [N ]Γ`A

}
≡βΣ [M {x\N}]Γ,Γ′{x\N}`B{x\N}

implies
[M ]Γ,x:A,Γ′`C

{
x\ [N ]Γ`A

}
≡βΣ [M {x\N}]Γ,Γ′{x\N}`C{x\N} .

Proof. Since B is the minimal type of M , we have B � C. If B ≡ C then

[M ]`C
{
x\ [N ]`A

}
= [M ]

{
x\ [N ]Γ`A

}
≡ [M {x\N}]`B{x\N}
≡ [M {x\N}]`C{x\N} .

Otherwise, ∃D1, . . . , Dn, s, s
′ such that B ≡ Πx1 : D1 . · · ·Πxn : Dn . s and C ≡ Πx1 :

D1 . · · ·Πxn : Dn . s
′ and s ≺ s′. Then B {x\N} ≡ Πx1 : D′1 . · · ·Πxn : D′n . s and
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C {x\N} ≡ Πx1 : D′1 . · · ·Πxn : D′n . s′ where D′i = Di {x\N}. Therefore,

[M ]`C
{
x\ [N ]`A

}
=
(
λx1 : JD1K . · · ·λxn : JDnK . ↑s

′
s ([M ] x1 . . . xn)

){
x\ [N ]`A

}
= λx1 :

q
D′1

y
. · · ·λxn :

q
D′n

y
. ↑s′s

(
[M ]

{
x\ [N ]`A

}
x1 . . . xn

)
≡ λx1 :

q
D′1

y
. · · ·λxn :

q
D′n

y
. ↑s′s

(
[M {x\N}]`B{x\N} x1 . . . xn

)
≡ [M {x\N}]C{x\N} .

The following key lemma shows that the order in which casts are performed does
not matter. It is crucial for the preservation of substitution. It depends directly on the
uniqueness of names equations.

Lemma 9.2.3. We have:

• If Γ `λP� A⇒ s1 and Γ, x : A `λP� B ⇒ s2 and (s1, s2, s3) ∈ R then

πs1,s2 [A]Γ`s1
(
λx . [B]Γ,x:A`s2

)
≡βΣ [Πx : A .B]Γ`s3 .

• If Γ, x : A `λP� M ⇒ B and Γ ` Πx : A .B ⇒ s then

λy : JAK . [M ]Γ,x:A`B ≡βΣ [λy : A .M ]Γ`Πy:A.B .

• If Γ `λP� M ⇒ Πx : A .B and Γ `λP� N ⇐ A then

[M ]`Πx:A.B [N ]Γ`A ≡ [M N ]Γ`B{x\N} .

Proof. By definition of the cast translation [M ]Γ`A and using the equations in Σ. Note
that this proposition would not be true if ≡βΣ did not satisfy full reflection. In particular,
the first statement depends directly on Equation (9.1).

We can now prove the preservation of substitution by the translation.

Lemma 9.2.4 (Substitution). If Γ, x : A,Γ′ `λP� M ⇒ B and Γ `λP� N ⇐ A then
[M ]

{
x\ [N ]`A

}
≡βΣ [M {x\N}]`B{x\N}. More precisely,

[M ]Γ,x:A,Γ′
{
x\ [N ]Γ`A

}
≡βΣ [M {x\N}]Γ,Γ′{x\N}`B{x\N} .

Proof. First note that the statement makes sense because Γ,Γ′ {x\N} ` M {x\N} :
B {x\N} by 8.2.4. The proof follows by induction on M . The details of the proof can be
found in Appendix A.4.
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Corollary 9.2.5. If Γ, x : A,Γ′ `λP� B WF and Γ `λP� N ⇐ A then JB {x\N}K ≡
JBK

{
x\ [N ]`A

}
. More precisely,

JBKΓ,x:A,Γ′
{
x\ [N ]Γ`A

}
≡ JB {x\N}KΓ,Γ′{x\N} .

Proof. If B = s for some s ∈ S> then JB {x\N}K = JsK = s = s {x\ [N ]} = JBK {x\ [N ]}.
Otherwise, Γ ` B ⇒ s for some s ∈ S. Then JB {x\N}K = Ts [B {x\N}] = Ts [B] {x\ [N ]} =
JBK {x\ [N ]}.

Example 9.2.6. For Example 8.4.5, we have

[x]x:Type2

{
x\ [Type0]`Type2

}
= x

{
x\ ↑Type2

Type1
uType0

}
= ↑Type2

Type1
uType0

= [Type0]`Type2

= [x {x\Type0}]`Type2{x\Type0} .

9.2.2 Preservation of equivalence

Lemma 9.2.7 (Preservation of single-step reduction). If Γ `λP� M ⇒ A andM −→β M
′

then [M ]Γ ≡βΣ [M ′]Γ`A.
Proof. First note that the statement makes sense because Γ ` M ′ ⇐ A by subject
reduction (8.2.8). The proof follows by induction on M , using Lemma 9.2.4 for the base
case.

Lemma 9.2.8 (Preservation of multi-step reduction). If Γ `λP� M ⇒ A andM −→∗β M ′
then [M ]Γ ≡βΣ [M ′]Γ`A.
Proof. By induction on the number of steps, using Lemma 9.2.7.

Lemma 9.2.9 (Preservation of equivalence). If A and B are well-formed types in Γ and
A ≡β B then JAKΓ ≡βΣ JBKΓ.
Proof. If A = s for some S> then we must have B = s, and JAK = Us = JBK. Similarly, if
B = s for some s ∈ S> then A = s and JAK = Us = JBK. Otherwise, we have Γ ` A⇒ s
and Γ ` B ⇒ s′ for some s, s′ ∈ S. By confluence, there exists C such that A −→∗ C
and B −→∗ C. By subject reduction, Γ ` C ⇐ s and Γ ` C ⇐ s′. By the existence of
principal types, ∃s′′ such that Γ ` C ⇒ s′′ and s′′ � s and s′′ � s′. By Lemma 9.2.8,
[A] ≡ [C]`s. Therefore,

JAK = Ts [A]
≡ Ts [C]`s
≡ Ts (↑ss′′ [C])
≡ Ts′′ [C]
= JCK .

Similarly, [B] ≡ [C]`s′ , so JBK ≡ JCK. Therefore, JAK ≡ JBK.
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9.2.3 Preservation of typing

Once again we need the following technical lemmas. The proofs are similar to those of
Lemmas 5.2.7 and 5.2.9.

Lemma 9.2.10. If Γ `λP� s⇒WF then JsKΓ ≡βΣ Us and Σ, JΓK `λΠR JsK : Type ⇐⇒
Σ, JΓK `λΠR Us : Type.

Lemma 9.2.11. If Γ `λP� Πx : A .B ⇒WF then JΠx : A .BK ≡ Πx : JAK . JBK and
Σ, JΓK `λΠR JΠx : A .BK : Type ⇐⇒ Σ, JΓK `λΠR Πx : JAK . JBK : Type.

Lemma 9.2.12. If Γ, x : A,Γ′ `λP� B ⇒WF and Γ `λN�⇐ A then

Σ, JΓK , x : JAKΓ ,
q
Γ′

y
Γ,x:A `λΠR JBKΓ,x:A,Γ′

{
x\ [N ]Γ`A

}
: Type

if and only if

Σ, JΓK , x : JAKΓ ,
q
Γ′

y
Γ,x:A `λΠR JB {x\N}KΓ,Γ′{x\N} : Type.

The following lemmas link the term translation to the cast translation and type
translation respectively.

Lemma 9.2.13. If Γ `λP� M ⇒ A and Γ `λP� B ⇒WF and A � B and Σ, JΓK `λΠR

[M ]Γ : JAKΓ and Σ, JΓK `λΠR JBKΓ : Type then JΓK `λΠR [M ]Γ`B : JBKΓ.

Proof. If A ≡ B then [M ]`B = [M ]. By Lemma 9.2.9, JAK ≡ JBK, and by conversion,
Σ, JΓK ` [M ] : JBK. Otherwise, ∃C1, . . . Cn, s, s

′ such that A ≡ Πx1 : C1 . . . .Πxn : Cn . s
and B ≡ Πx1 : C1 . . . .Πxn : Cn . s′ and s ≺ s′ and Σ, JΓK ` [M ] : Πx1 : JC1K . . . .Πxn :
JCnK .Us. We have [M ]`B = λx1 : JC1K . . . . λxn : JCnK . ↑s

′
s ([M ] x1 · · · xn). Therefore,

Σ, JΓK ` [M ]`B : Πx1 : JC1K . . . .Πxn : JCnK .Us′ . Therefore, Σ, JΓK ` [M ]`B : JBK.

Lemma 9.2.14. If Γ `λP� A⇒ s and JΓK `λΠR [A]Γ : JsK then JΓK `λΠR JAKΓ : Type.

Proof. By Lemma 9.2.10, JΓK ` [A]Γ : US . Therefore, JΓK ` Ts [A]Γ : Type.

We can now prove the main lemma for the preservation of typing.

Lemma 9.2.15. If Γ `λP� M ⇒ A then Σ, JΓK `λΠR [M ]Γ : JAKΓ. If Γ `λP� M ⇐ A
then Σ, JΓK `λΠR [M ]Γ`A : JAK. If Γ `λP�⇒WF then Σ, JΓK `λΠR WF.

Proof. By induction on the typing derivations. The details of the proofs can be found in
Appendix A.4.

Theorem 9.2.16 (Preservation of typing). If Γ `λP� M : C then Σ, JΓK `λΠR [M ]Γ`C :
JCKΓ.

Proof. By Corollary 8.4.23, Γ ` M ⇐ C. By Lemma 9.2.15, Σ, JΓK ` [M ]`C : JCK.
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10
Infinite universe hierarchies

In practice, the systems we consider have an infinite hierarchy of universes, like systems
λPω� and λCω� from Section 8.5. To embed infinite hierarchies in λΠR, we cannot rely on
the embeddings of chapters 5 and 9, because that would lead to an infinite signature Σ. To
deal with this, we could examine which universes are needed in a proof—by Lemma 8.3.3
(Compactness), there must be a finite number of them—and content ourselves with just
those universes. For example, it is common lore that most of the library of Coq needs
only 2 universes [ARCT09]. However, this solution is not very modular because we would
need a different signature for each proof. Another solution is to encode this infinite
hierarchy, which is what we will do here.

While encoding an infinite hierarchy in a finite signature is relatively straightforward,
it is much more difficult to do so in the presence of cumulativity. In particular, equations
for guaranteeing full reflection (Definition 9.1.2) are surprisingly difficult to express in a
finite, confluent, and terminating rewrite system (and usual completion techniques such
as the Knuth–Bendix method fail here). It is not entirely impossible though and there
are various ways to achieve this, in a more or less satisfying way. We propose a solution
that works in practice. We first consider the non-cumulative systems λP∞ and λC∞ to
give an idea on how to encode the infinite hierarchy. We then show how to incorporate
cumulativity and give the signature that we used in our implementations.
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We think this chapter is necessary for someone who wants to replicate our efforts.
We will only focus on giving the finite signatures. The definitions of translations should
be fairly obvious. We do not prove the soundness of the associated embeddings. We
conjecture that the proof of soundness of Chapter 6 and the proof of completeness of
Chapter 9 can be adapted without much trouble.

10.1 Predicative universes
Consider the PTS λP∞ given by the specification

(P∞)


S = N
A = {(i, i+ 1) | i ∈ N}
R = {(i, j,max (i, j)) | i, j ∈ N}


which is a subset of intuitionistic type theory. It is functional but has an infinite number
of sorts. First, we declare the type of natural numbers, that we represent using constants
for zero and the successor function, and the maximum function:

nat : Type,
zero : nat,
succ : nat→ nat,

max : nat→ nat→ nat,
max i zero 7−→ i,

max zero j 7−→ j,

max (succ i) (succ j) 7−→ succ (max i j) .

Instead of indexing the constants U,T, u, π by natural numbers externally as we did
before, we index them internally by terms of type nat:

U : nat→ Type,
T : Πi : nat .U i→ Type,
u : Πi : nat .U (succ i) ,
π : Πi : nat .Πj : nat .Πa : U i . (T i a→ U j)→ U (max i j) .

We need rewrite rules so that

T (succ i) (u i) ≡ U i,
T (max i j) (π i j a b) ≡ Πx : T i a .T j (b x) .

However, the rewrite rules

T (succ i) (u i) 7−→ U i
T (max i j) (π i j a b) 7−→ Πx : T i a .T j (b x)
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are not confluent, because max i j is not a normal form on closed terms. In fact, we don’t
care about the first argument of T; we can replace it by a fresh variable:

T k (u i) 7−→ U i,
T k (π i j a b) 7−→ Πx : T i a .T j (b x) ,

which we will also write as

T_(u i) 7−→ U i,
T_(π i j a b) 7−→ Πx : T i a .T j (b x) .

(10.1)

This system is now confluent. On the other hand, we cannot use Theorem 3.2.15 to show
that it is well-typed because the left-hand side is not well-typed anymore. We therefore
need to use another argument to convince ourselves that the rules are well-typed.

Lemma 10.1.1. The rewrite rules in Equation (10.1) are well-typed.

Proof. We prove that each of the two rules is well-typed according to Definition 3.2.5.
Let Γ be a context such that Σ ⊆ Γ and σ be a substitution of variables free in Γ such
that:

1. σ (T k (u i)) is well-typed. Then we must have σ (i) : nat, so that u (σ (i)) :
U (succ (σ (i))). This implies succ (σ (i)) ≡ σ (k) so that T (σ (k)) (u (σ (i))) : Type.
Then we also have U (σ (i)) : Type.

2. σ (T k (π i j a b)) is well-typed. Then we must have σ (i) : nat, σ (j) : nat, σ (a) :
U (σ (i)), and σ (b) : (T (σ (i)) (σ (a))→ U (σ (j))) so that

π (σ (i)) (σ (j)) (σ (a)) (σ (b)) : U (max (σ (i)) (σ (j))) .

This implies max (σ (i)) (σ (j)) ≡ σ (k) so that

T (σ (k)) (π (σ (i)) (σ (j)) (σ (a)) (σ (b))) : Type .

Then we also have Πx : T (σ (i)) (σ (a)) .T (σ (j)) (σ (b) x) : Type.

Moreoever, this system behaves well with β-reduction. We sketch the proofs for this
particular system to give an idea on how to prove such results.

Lemma 10.1.2. The relation −→Σ is terminating.

Proof. The relation −→Σ strictly decreases the number of u and π constants in the term.
Therefore, it must be terminating.

Lemma 10.1.3. The relation −→βΣ is confluent.

Proof. The rewrite rules are left-linear and do not have critical pairs. Therefore, −→Σ is
locally confluent. By Lemma 10.1.2, it is terminating and hence confluent. Therefore, its
union with −→β is confluent [vO94].
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10.2 Impredicative universe

We now add an impredicative universe ∗. Consider the PTS λC∞ given by the specification

(C∞)



S = {∗} ∪ N
A = {(∗, 0)}∪

{(i, i+ 1) | i ∈ N}
R = {(∗, ∗, ∗)}∪

{(i, ∗, ∗) | i ∈ N}∪
{(∗, j, j) | j ∈ N}∪
{(i, j,max (i, j)) | (i, j) ∈ N}


which is a subset of the calculus of inductive constructions. Instead of parameterizing
the constants U and T by natural numbers, we now parameterize them directly by sorts.

sort : Type,
prop : sort,
type : nat→ sort,

U : sort→ Type,
T : Πs : sort .U s→ Type.

For the constants u and π, we need to find a way to restrict them internally to the axioms
A and rules R of the PTS. One way to do that would be to internalize these relations:

axiom : sort→ sort→ Type,
axiom_prop : axiom prop (type zero) ,
axiom_type : Πi : nat . axiom (type i) (type (succ i)) ,

rule : sort→ sort→ sort→ Type,
rule_prop_prop : rule prop prop prop,
rule_type_prop : Πi : nat . rule (type i) prop prop,
rule_prop_type : Πj : nat . rule prop (type j) (type j) ,
rule_type_type : Πi : nat .Πj : nat . rule (type i) (type j) (type (max i j)) ,

and then use them to index u and π by inhabitants of axiom and rule:

u : Πs1, s2 : sort . axiom s1 s2 → U s2,

π : Πs1, s2, s3 : sort . rule s1 s2 s3 → Πa : U s1 . (T s1 a→ U s2)→ U s3.
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Alternatively, we can take advantage of the PTS’s completeness (Definition 4.1.1) to
define axiom and rule as functions instead of relations, which gives a cleaner and more
compact representation: 1

axiom : sort→ sort,
axiom prop 7−→ type zero,
axiom (type i) 7−→ type (succ i) ,

rule : sort→ sort→ sort,
rule prop prop 7−→ prop,
rule (type i) prop 7−→ prop,
rule prop (type j) 7−→ type j,
rule (type i) (type j) 7−→ type (max i j) ,

u : Πs1 : sort .U (axiom s1) ,
π : Πs1, s2 : sort .Πa : U s1 . (T s1 a→ U s2)→ U (rule s1 s2) .

The rules for T are straightforward:

T_(u s1) 7−→ U s1,

T_(π s1 s2 a b) 7−→ Πx : T s1 a .T s2 (b x) .

10.3 Cumulativity

Finally, we consider the unholy trinity: an infinite hierarchy of predicative universes,
with an impredicative universe, and cumulativity. This is embodied by the CTS λCω�,
given by the specification:

(
Cω�

)



S = {∗} ∪ N
A = {(∗, 0)}∪

{(i, i+ 1) | i ∈ N}
R = {(∗, ∗, ∗)}∪

{(i, ∗, ∗) | i ∈ N}∪
{(∗, j, j) | j ∈ N}∪
{(i, j,max (i, j)) | (i, j) ∈ N}

C = {(∗, 0)}∪
{(i, i+ 1) | i ∈ N}


1Moreover, this allows us to avoid some proof irrelevance issues that can arise when there are multiple

derivations of the same axiom or rule.
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Note that there are several variations for this system, for example with (∗, 1) ∈ A instead
of (∗, 0) (such as in the Coq system [Cdt12]), or without (∗, 0) ∈ C (such as in CCω

[HP89, HP91]), which is why we went to great lengths to give a generic presentation.
The first things we need to add are explicit coercion constants ↑s2s1 , also called lifts,

that transport terms from a lower universe Us1 to a higher one Us2 . However, in order
to give a finite rewrite system that guarantees the uniqueness of names property later,
we found it necessary that these coercions be able to lift several levels at once. In other
words, we must have ↑s2s1 for each (s1, s2) in the transitive closure C∗ instead of just C. At
the same time, we cannot allow any (s1, s2) ∈ S2. How can we do this with a functional
approach that does not rely on an encoding of C∗ as a relation?

In our experience, we found it easiest to define a supremum function sup that computes
the maximum of s1 and s2 with respect to C∗ and let ↑s2s1 transport terms from U s1
to U (sup s1 s2) (which is the same as U s2 when s1 � s2). That way, we ensure that
the coercion is sound for any pair (s1, s2) ∈ S, and moreover it simplifies the rewriting
system for full reflection. We therefore add to our signature:

sup : sort→ sort→ sort,
sup prop prop 7−→ prop
sup (type i) prop 7−→ type i,
sup prop (type j) 7−→ type j,
sup (type i) (type j) 7−→ type (max i j) ,

↑ : Πs1, s2 : sort .U s1 → U (sup s1 s2) ,

and the rewrite rule for T:

T_(↑ s1 s2 a) 7−→ T s1 a.

We then add rewrite rules to ensure full reflection, by orienting the equations in Defini-
tion 9.1.2. Reflexivity and transitivity are straightforward:

↑ s s a 7−→ a,

↑ _ s3 (↑ s1 s2 a) 7−→ ↑ s1 (sup s2 s3) a.

After much trial and error, we found that the best way to orient Equation (9.1):

↑s3 (πs1,s2 a b) ≡ πs′1,s′2 (↑s1 a) (λx . ↑s2 (b x))

is from right to left instead of left to right, and for that reason, to split it in two rewrite
rules (notice the need for higher-order matching and Miller patterns, which can be avoided
in the first rule but are necessary in the second):

π_ s2 (↑ s1 s
′
1 a) (λx . b x) 7−→ ↑ (rule s1 s2) (rule s′1 s2) (π s1 s2 a b) ,

π s1 _ a (λx . ↑ s2 s
′
2 (b x)) 7−→ ↑ (rule s1 s2) (rule s1 s

′
2) (π s1 s2 a b) .
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This might seem surprising at first. The other direction seems more natural, however
it does not give a confluent rewrite system, and we believe it is simply not possible to
make it so with a finite rewrite system. It is not completely unintuitive however, as it
agrees with minimal typing: the coercions ↑ propagate towards the root of the term.
This behavior matches the idea that, when computing minimal types, the cumulativity
rule should be delayed as much as possible.

Finally, we also need to add the following rewrite rules to ensure that the previous
rules are well-typed. These are derivable for closed terms but they are still needed to
ensure well-typedness on open terms too:

sup s s 7−→ s,

sup (sup s1 s2) s3 7−→ sup s1 (sup s2 s3) ,
rule (sup s1 s

′
1) s2 7−→ sup (rule s1 s2) (rule s′1 s2) ,

rule s1 (sup s2 s
′
2) 7−→ sup (rule s1 s2) (rule s1 s

′
2) .

Remark 10.3.1. The left-hand side of the first rule above is non-linear (the variable s
appears twice) and cannot not be linearized without changing its meaning. Non-linear
rules are less efficient to execute and complicate the proofs of confluence.
Remark 10.3.2. This rewrite system is not confluent on terms containing free universe
variables because the critical pair rule (sup s1 s

′
1) (sup s2 s

′
2) is not joinable. However, it is

not a problem in practice because the sorts produced by the translation are always closed.
This critical pair needs a form of associativity and commutativity in order to close, which
cannot be expressed as a traditional terminating rewrite system. A better notion of term
rewriting is needed, for example rewriting modulo associativity and commutativity (AC)
[JK86].
Remark 10.3.3. Even though full reflection is required for the completeness of the
translation, this rewrite system does not satisfy it for all terms. In particular, if s2 ≺ s1
then ↑s2s1 a is another name for a—they have the same type and their image by T is the
same. However, such terms are degenerate and are neither generated by the translation,
nor by reduction. Therefore, they do not affect the completeness of the translation.

As a summary, we give a slightly-optimized complete definition of the signature in
Figures 10.1 and 10.2. We have verified that it is well-typed in Dedukti and used it in
our implementation of the translations of Coq and Matita.
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Natural numbers

nat : Type,
zero : nat,
succ : nat→ nat,

max : nat→ nat→ nat,
max i zero 7−→ i,

max zero j 7−→ j,

max (succ i) (succ j) 7−→ succ (max i j) .

Sorts

sort : Type,
prop : sort,
type : nat→ sort,

axiom : sort→ sort,
axiom prop 7−→ type zero,
axiom (type i) 7−→ type (succ i) ,

sup : sort→ sort→ sort,
sup s1 prop 7−→ s1,

sup prop s2 7−→ s2,

sup (type i) (type j) 7−→ type (max i j) ,

rule : sort→ sort→ sort,
rule s1 prop 7−→ prop,
rule prop s2 7−→ s2,

rule (type i) (type j) 7−→ type (max i j) ,

Figure 10.1 – Finite signature for λCω� (part I)
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Universes

U : sort→ sort,
T : Πs : sort .U s→ Type.

u : Πs1 : sort .→ U s1,

↑ : Πs1, s2 : sort .U s1 → U (sup s1 s2) ,
π : Πs1, s2 : sort .Πa : U s1 . (T s1 a→ U s2)→ U (rule s1 s2) .

T_(u s1) 7−→ U s1,

T_(↑ s1 s2 a) 7−→ T s1 a.

T_(π s1 s2 a b) 7−→ Πx : T s1 a .T s2 (b x) .

Full reflection

sup s s 7−→ s,

sup (sup s1 s2) s3 7−→ sup s1 (sup s2 s3) ,
rule (sup s1 s

′
1) s2 7−→ sup (rule s1 s2) (rule s′1 s2) ,

rule s1 (sup s2 s
′
2) 7−→ sup (rule s1 s2) (rule s1 s

′
2) .

↑ s s a 7−→ a,

↑ _ s3 (↑ s1 s2 a) 7−→ ↑ s1 (sup s2 s3) a.
π_ s2 (↑ s1 s

′
1 a) (λx . b x) 7−→ ↑ (rule s1 s2) (rule s′1 s2) (π s1 s2 a b) ,

π s1 _ a (λx . ↑ s2 s
′
2 (b x)) 7−→ ↑ (rule s1 s2) (rule s1 s

′
2) (π s1 s2 a b) .

Figure 10.2 – Finite signature for λCω� (part II)
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11
Application: translating CIC to Dedukti

One of the main goals of this thesis is the translation of the calculus of inductive
constructions (CIC). This system is an extension of the calculus of constructions with
universes, cumulativity, and inductive types, used as a basis in the famous theorem prover
Coq1 [Cdt12] and in Matita2 [ARCT11]. We have implemented the translation of CIC
in two automated tools: Coqine, which translates the proofs of Coq to Dedukti, and
Krajono, which translates the proofs of Matita to Dedukti.

A first prototype implementation of Coqine was already written by Boespflug
and Burel [BB12], however that version lacked support for the universe hierarchy and
cumulativity. Our implementation is a new version written from scratch that translates
these features correctly. Krajono is a completely new implementation effort. While the
main theoretical basis has been covered in the previous chapters and in Boespflug and
Burel’s work, we found that in practice there are a lot of additions and subtle deviations
that make the implementations difficult:

• Modules (Coq)

• Local let definitions (Coq and Matita) and fix definitions (Coq)

• Floating universes (Coq and Matita)

• Universe polymorphism (Coq)

• Proof irrelevance (Matita)
1https://coq.inria.fr/
2http://matita.cs.unibo.it/
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We tried to accomodate these features as best as possible. However, we found that some
of them can be very difficult, if not downright impossible, to translate in a satisfactory
way. For these reasons, we think it would be good to share the lessons we learned from
our implementation effort.

In this chapter, we will go over the remaining details of the translation and briefly
discuss the implementations and our experimental results. We assume the reader is
familiar with at least one of the two systems, which are fairly similar. The Coq reference
manual [Cdt12] contains a good exposition to CIC. For Matita, we used the detailed
description of its kernel by Asperti et al. [ARCT09]. In addition to those reference
documents, we also studied the source code of the kernel of each system. Indeed, we
found it hard to decouple the formal system from its implemantation, which can change
throughout the versions and can deviate from published descriptions (in the case of Coq,
sometimes significantly) but which at the same time is the de facto standard.

11.1 Inductive types
One of the most important features in CIC compared to the calculus of constructions is
inductive types [CP90], which allows the definition of datatypes and of functions over
these datatypes. In their paper on Coqine [BB12], Boespflug and Burel show how to
embed inductive types in the λΠ-calculus modulo rewriting. Our own implementations
of the translations of Coq and Matita are based on that embedding, so we will briefly
discuss it here. We will not present the embedding formally and in detail. Stating the
rules for inductive definitions in their general and complete form is very tedious, because
we have to include mutual inductive types, parameters, real arguments, etc. We instead
take concrete examples to illustrate the embedding and compare it to other alternatives.
Remark 11.1.1 (Coinductive types). We have purposely not treated coinductive types
as they break subject reduction [Gim96, Our08]. Since we only work with systems that
satisfy subject reduction in the λΠ-calculus modulo rewriting (Theorem 3.2.9), it is not
clear how to encode the coinductive types of CIC in a way that is sound and complete.

11.1.1 Inductive types and eliminators

We take as example natural numbers and, for simplicity, place ourselves at first in the
calculus of constructions.3 First we need constants for the type and the constructors:

nat : Type,
zero : nat,
succ : nat→ nat,

We also need an elimination mechanism, i.e. a way to define functions, predicates, and
proofs by induction. This is much less straightforward to formalize and there are several

3This will allow us to omit the U and T operators, and use types directly as terms. Since we know we
can embed the calculus of constructions (see Chapter 5), this is not a problem.
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approaches for it. The first (I) is to use primitive eliminators, i.e. combinators for defining
primitive recursive functions as in Gödel’s system T:

nat_elim : Πp : (nat→ U) . p zero→
(Πn : nat . p n→ p (succ nat))→
Πn : nat . p n.

nat_elim p x f zero 7−→ x,

nat_elim p x f (succn) 7−→ f n (nat_elim p x f n) .

There is a primitive eliminator for each inductively defined dataype. We can use the
eliminator to define functions, predicates, and proofs:

plus := nat_elim (λx : nat . nat→ nat) (λy : nat . y)
(λx : nat . λf : (nat→ nat) . λy : nat . succ (f y)) .

In CIC, instead of using primitive eliminators, the elimination mechanism is decom-
posed into two constructs, match and fix, similar to what is found in modern functional
programming languages such as OCaml. The first construct allows pattern matching
and case analysis while the second allows the construction of fixpoints. In that setting,
the definition of plus would look like:

plus := fix (λplus : nat→ nat→ nat . λx : nat .
matchx (nat→ nat)
(λy : nat . y)(
λx′ : nat . λy : nat . succ

(
plus x′ y

)))
.

Syntactic conditions, called well-guardedness, ensure that the recursive calls are well-
founded so that the resulting functions are well-defined. This second approach (II) is more
intuitive and easier to use than primitive eliminators, which in particular do not handle
deep matching (pattern matching several levels at once) very well [Cdt12]. Gimenez
[Gim95] proved that the two approaches are equivalent in the calculus of constructions,
and indeed, in Coq, primitive eliminators are derived from match and fix for every
inductive type. However, the syntactic conditions for guardedness are very tricky to
get right and interact poorly with other features (e.g. impredicativity). They are often
sources of soundness bugs in Coq [Dén13].

Yet another way (III), more natural when we have rewriting, is to define functions
directly by rewriting:

plus : nat→ nat→ nat.

plus zero y 7−→ y

plus (succx) y 7−→ succ (plusx y)

131



Notice how the rewrite rules allow both pattern matching (plus is applied to constructors
on the left-hand side) and recursion (plus appears on the right-hand side). Conditions for
ensuring coverage, confluence, and normalization must be used to ensure the soundness of
the calculus. Some techniques have been developed for this purpose [Bla03, Bla05, JLA15]
but in practice this approach is less used than the other two.

11.1.2 Eliminators in the λΠ-calculus modulo rewriting

In our implementation, we use a mix of approaches II and III: we declare a constant
match_nat that allows pattern matching on natural numbers by providing the branches
for the different cases as arguments. An appropriate rewrite system for that constant
gives it the proper reduction behavior. However, we cannot do the same for fix_nat
because the resulting system would be unsound. Indeed, the termination of fix in CIC
is ensured by purely syntactic conditions that we cannot express using types in the
λΠ-calculus modulo rewriting. When we declare fix_nat, we have no choice but to give
it a general rewrite rule such as:

fix a f 7−→ f (fix a f) ,

which would be unsound because we can use it to make non-decreasing recursive calls.
Instead, we defer the declaration of rewrite rules to each fixpoint: for each fixpoint in
the source program, we declare a constant and rewrite rules that simulate its behavior in
the λΠ-calculus modulo rewriting. For plus, it would give something like:

plus : nat→ nat→ nat.

plusx 7−→ matchx (nat→ nat)
(λy : nat . y)
(λx′ : nat . λy : nat . succ (plus x′ y)) .

If the original fixpoint is well-guarded, then this rewrite system is sound. Note however
that, using this approach, we do not check for the well-guardedness of the function in
Dedukti, so we must still trust Coq or Coqine on this one.

There is still a problem with the definition we gave above: the rewrite system is not
terminating, since the left-hand side plusx also appears on the right-hand side. This is
a common problem; in CIC, it is solved by restricting the rule to the case where the
term that instantiates x starts with a constructor. We cannot express this using term
rewriting, so we must resort to something else. There are several solutions to this. One
is to create a copy of the inductive type that acts as a wrapper around the constructors:

nat : Type,
pre_nat : Type,
zero : pre_nat,
succ : nat→ pre_nat,
nat_constr : pre_nat→ nat.
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We can then restrict the rewrite rule to the case where x begins with a wrapper:

plus (nat_constr x) 7−→ match (nat_constr x) (nat→ nat)
(λy : nat . y)
(λx′ : nat . λy : nat . succ (plus x′ y)) .

Another solution is to achieve this restriction by making the constructors zero and
succ appear on the left-hand side of the rule (as in approach III). However, as noted by
Boespflug and Burel [BB12], because of dependent elimination, this requires higher-order
unification which is undecidable. A workaround is to duplicate the arguments, the first
copy being used for typing and the second for pattern matching:

plusx 7−→ plus_filter xx
plus_filter x zero 7−→ . . .

plus_filter x (succx′) 7−→ . . .

To avoid duplication, we can factorize this mechanism in what we call a filter function.
For each inductive type, we declare a filter function whose sole purpose is to freeze
computation and only resume when its argument begins with a constructor:

filter_nat : Πp : (nat→ Type) . (Πx : nat . p x)→ (Πx : nat . p x) .

filter_nat p f zero 7−→ f zero,
filter_nat p f (succx) 7−→ f (succx) .

We can then define the plus function by calling the filter function:

plusx 7−→ filter_nat (λx : nat . nat→ nat) (λx : nat .match_natx · · · ) x

It is not clear which solution is the best. The first duplicates constructors, increasing
the size of the terms, while the other duplicates function arguments. Our implementation
currently uses the filters solution. In our opinion, the most satisfying approach would
be to transform functions defined using match and fix into primitive eliminators using
the transformation of Gimenez [Gim95]. However, this transformation is very heavy and
further work is required to see if it is feasible and/or practical. We also note that there
is yet another approach, which is to derive inductive types using other constructs such
as well-ordered types (W-types) [ML84] or as done by Chapman et al. [CDMM10]. The
advantage of that method is that it defines inductive types once and for all—we do not
need to add rewrite rules for each inductive type—but it is also the heaviest.
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11.2 Other features

11.2.1 Modules

Coq has an extensive module system, that includes nested modules, functors, aliasing,
subtyping, etc. This feature allows the programming of theories in a modular way that
encourages abstraction and code reuse. Although it is a conservative extension of the
core CIC, it is directly handled by the kernel, so our translation needs to take care of it.

The translation of modules has already been covered in Boespflug and Burel’s work
[BB12], so we will not dwell on it here. The most straightforward solution is to eliminate
modules, by flattening nested modules, parameterizing the entries of functors, and
instantiating them in functor applications. This approach works in theory but is not ideal
because it leads to a lot of duplication. Another approach would be to encode modules
in a more faithful way using records and Σ-types, which we know how to represent in the
λΠ-calculus modulo rewriting: they can be represented as inductive types, but there are
also more direct and efficient representations that can handle subtyping as well [CD15].
This approach requires further investigation to see if it works well for Coq modules. At
the time of writing, modules are not yet completely supported in our re-implementation
of Coqine. The Matita system does not have modules.

11.2.2 Local let definitions and local fixpoints

Coq and Matita both support local let...in... definitions. We implement these
using globally defined constants. For every expression letx : A = N inM in the context
Γ = x1 : A1, . . . , xn : An, we lift the definition to the top-level and we add a constant
declaration and a rewrite rule to the global context:

x : JΓK→ JAK Γ
x [Γ] 7−→ [N ]Γ

We then translate each occurrence of x in M by x [Γ]. It is straightforward to see that
these occurrences are equivalent to [N ]Γ and that the translation is therefore correct.

Local fixpoint definitions are more subtle and are only supported by Coq. For every
expression fix f : A = N inM , we can combine the technique of lifting of let definitions
with the translation of fixpoints of Section 11.1.2. However, it can cause problems of
convertibility: if two equivalent terms containing the same fixpoint definition appear in
two different places in the source program, they should be considered equivalent after
translation, but if we are not careful and lift the fixpoint twice using two different global
constants, the resulting terms will not be equivalent, because the constants can appear
in their definition on the right-hand side. Therefore, we need to cache the definition of
fixpoints and reuse the same global constants for equivalent local fixpoint definitions.
This then introduces another problem, because the same local fixpoint definition can
appear in different contexts Γ1 and Γ2, so we must know how to generalize and instantiate
them using a single context Γ.
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We have not yet solved this problem, and we have found that it does occur in
practice, for example in the standard library of Coq, where two definitions of the plus
function should be considered equivalent but are not in our translation. Local fixpoint
definitions are specific to Coq, and are one of the features that have been described as
problematic in the description of the Matita kernel [ARCT09]. In that document, a
global program transformation that lifts and eliminates local fixpoint definitions based on
caching heuristics is briefly described, which seems like a good starting point for further
work.

11.2.3 Floating universes

Coq has a feature which allows users to omit the level of the Typei universe and just
write Type instead. The kernel infers appropriate levels while maintaining consistency. It
does so by representing universes as abstract universe expressions while maintaining and
solving a set of universe level constraints.

In our implementation, we ask the kernel for the constraint graph and assign to each
universe variable a concrete level that satisfies the constraints. This has the downside
that we need to translate the whole graph every time a new constraint is added that
changes the relationship between the universes (e.g. when a new constraint enforces that
a universe variable is now strictly higher than another one). Unfortunately, there is
no solution that can solve this lack of modularity completely. Indeed, universe floating
breaks weakening: there exists Γ1,Γ2,Γ3 such that Γ1,Γ2 ` WF and Γ1,Γ3 ` WF but
Γ1,Γ2,Γ3 6` WF.

Example 11.2.1 (Floating universes break weakening). Suppose module A contains:
Definition MyType1 := Type.
Definition MyType2 := Type.

and module B contains:
Require Import A.
Definition b : MyType1 := MyType2.

and the file C contains:
Require Import A.
Definition c : MyType2 := MyType1.

Then modules A and B can be checked:
$ coqchk A B
...
Modules were successfully checked

and modules A and C can be checked:
$ coqchk A C
...
Modules were successfully checked
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but the three modules A, B, and C cannot be checked at the same time:
$ coqchk A B C
...
Error: Universe inconsistency.

The entailment relation Γ ` M : A in Coq must be understood as “there exists an
instantiation of universe variables such that the constraints graph is acyclic and M has
type A in the context Γ”, and these side-conditions may be incompatible between different
contexts. Since the λΠ-calculus does satisfy weakening, this example shows that there
is no solution that can translate universe floating in a modular way while maintaining
consistency.

Surprisingly, this problem also affects Matita, even though that system uses explicit
universes: the user has to explicitly specify the universe variables and the constraints
between the universes variables that are used, in the style of Courant [Cou02]. However,
nothing prevents a user from adding constraints at any point in the program, thus
changing the constraint graph. For these reasons, we advise the users of Coqine and
Krajono to load all the modules that need to be translated before translating them, so
that the constraints are stabilized.

11.2.4 Universe polymorphism

The Coq system recently started to support universe polymorphism, which is a feature
that allows reusing the same constant and inductive type definitions at multiple universe
levels. To avoid inconsistencies, only a restricted form of polymorphism, called prenex
polymorphism, is allowed: universe variables can be abstracted at the beginning of the
type of globally defined and inductive constants, and their use must be fully instantiated.
One example that was previously impossible and that is now allowed is the self-application
of the polymorphic identity function:
Coq < Definition id (a : Type) : a -> a := fun x => x.
id is defined

Coq < Check (id (forall a : Type, a -> a) id).
id (forall a : Type, a -> a) (fun a : Type => id a)

: forall a : Type, a -> a

This is because the type of id can be seen as the universe-polymorphic type

∀i.Πa : Typei . a→ a

and the term id (Πa : Type . a→ a) id can be seen as the term

id (j + 1)
(
Πa : Typej . a→ a

)
(id j) .

As we can see, the two occurrences of id are instantiated with two different levels (j + 1)
and j, which maintains consistency.
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This then gives an intuitive translation of universe polymorphism. Indeed, in the
light of the encoding of Chapter 10, we get universe polymorphism “for free”, by using
the abstraction and application mechanisms of the λΠ-calculus modulo rewriting:

id : Πi : nat .Πa : U (type i) .T (type i) a→ T (type i) a
:= λi : nat . λa : U (type i) . λx : T (type i) a . x.

Then, if j is a term of type nat, we have

id (j + 1) A (id j) : Πa : U (type j) .T (type j) a→ T (type j) a

where A = π (type (j + 1)) (type j) (u (type j)) (λa . · · · ) is the term representation of
the type of id j. Just as in Chapter 6, there is no term representing the product type
Πi : nat . · · · in any universe, which ensures that this representation is adequate.

However, the terms we are manipulating now contain free variables for universes and/or
universe levels. As we mentioned in Section 10.3, our rewrite system is not confluent on
open universe terms. For this reason, we do not support universe polymorphism in our
implementation. We note that there is also the solution that duplicates the definitions of
constants and inductive types for each fully instantiated occurence, which is less desirable
but works in theory.

11.3 Implementation

11.3.1 Coqine: Coq to Dedukti

Coqine4 (Coq in Dedukti) is a tool for the automatic translation of Coq proofs to
Dedukti. A primary version was previously developed by Bospflug and Burel [BB12]
as a fork of the Coq kernel. However, this original version suffered from a number of
problems:

• It supported neither the infinite universe hierarchy nor universe cumulativity. There
were only 2 universes Prop and Type, with no inclusion between the two. To make
matters worse, the implementation included a rule Type : Type to collapse the
universe hierarchy. Therefore, it was able to translate most of the proofs of Coq
but the embedding was inconsistent.

• Being a fork of the Coq kernel was an obstacle for the maintainability of the code,
as changes brought to the kernel between versions had to be manually integrated
in the source code. For example, the first version of Coqine was written for Coq
version 8.3, and it was very difficult to port it to version 8.4 because the kernel
code was duplicated and modified without restriction.

4https://gforge.inria.fr/projects/coqine/
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We re-implemented Coqine completely from scratch as a Coq plugin. The plugin
architecture is easier to maintain and allows for a better abstraction, by restricting
itself to the kernel API. Overall, we found the API to be mostly sufficient. Some
limitations had to be circumvented using clever tricks—for example, printing universes to
examine their structure—but eventually we were able to write what we needed without
modifying the kernel. It is our belief that this new version is better suited for long-term
maintainability. More importantly, the new implementation integrates our results on
universe hierarchies and cumulativity from chapters 9 and 10, therefore yielding an
embedding that is consistent.

The plugin takes a list of Coq libraries (.vo) as arguments. It traverses the structure
of the modules associated to the libraries and translates their content Dedukti files
(.dk). Because several features are currently not supported well by the plugin (namely
module functors, anonymous fixpoints, universe polymorphism, etc.) we were not able to
translate a significant part of the standard library. Nonetheless, we were able to translate
the Init library and parts of the Logic library, as well as hand-crafted examples. We also
used Coqine as part of a small interoperability case study [AC15] (See Section 12.2.3).

11.3.2 Krajono: Matita to Dedukti

Krajono5 (meaning “pencil” in Esperanto) is a tool for the automatic translation of the
proofs of Matita to Dedukti. Because Matita does not have a rich plugin system like
that of Coq, we implemented this tool as a fork of the Matita compiler. To alleviate
the resulting lack of maintainability mentioned above, we modified the code of Matita
as least as possible, to install our hooks and to uncover the features that are necessary
for our translation. In the end, we only needed to modify the kernel in one place, to
make accessible the function that checks equivalence, since only the function that checks
subtyping was available to the public.6

Since Matita makes it a point to not have a lot of the features of Coq that were
problematic to us (namely modules, anonymous fixpoints, universe polymorphism), we
were able to translate a much more significant part of the standard library. We did
encounter one obstacle though, and that is proof irrelevance. This feature is a modification
of the conversion check that considers all terms inhabiting certain propositions to be
equal:

∀i ∈ {1, . . . , n} .
(
Mi ≡M ′i ∨Mi : Ai : Prop

)
cM1 · · · Mn ≡ cM ′1 · · · M ′n

It is non-conservative and, in particular, allows proving Streicher’s axiom K. Unfortunately,
it does not seem that proof irrelevance can be encoded in the λΠ-calculus modulo rewriting
in a way that is sound and complete. For these reasons, we deactivated the proof of
Lemma K in the standard library and turned it back into an axiom. Fortunately, no
further proof depended on it in our benchmark.

5https://www.rocq.inria.fr/deducteam/Krajono/
6We cannot test equivalence by checking A � B ∧B � A because the kernel does not support checking

subtyping of arbitrary terms, for simplicity and efficiency reasons [ARCT09].
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We tested our implementation on the arithmetic library which we used as our main
benchmark. We were able to successfully translate and check each file in that library.
The results are presented in Figure 11.1. As we can see, when compiled, the size of the
generated code is around 4 times larger than the original code, which is fairly respectable
for such a translation. Unfortunately, there is no other work to compare to. Similarly,
we see that the verification time in Dedukti is around 3 times longer than the original
verification time in Matita.

Upon closer inspection though, we notice that most of the time is spent on the file
factorial.ma. After some investigation, it turned out that all the time is spent verifying
a single theorem, le_fact_10, which states a numerical property about the factorial
of the number 10. We are currently investigating this discrepancy and, at the time of
writing, we still do not know its origin exactly. We suspect it comes from some clever
heuristics in the Matita kernel that allows it to avoid normalizing such large terms in
some conversion checks. If we remove that theorem, the total verification time drops
to 127.8 seconds. That is about one third of the verification time of Matita, although
to be fair the verification time of Matita includes the processing of proof scripts and
tactics, i.e. proof search instead of just proof checking (Matita does not offer any way
of decoupling the two). These experiments were performed on a 64-bit Intel Xeon(R)
CPU @ 2.67GHz × 4 machine with 4 GB of RAM.
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File Matita Dedukti Matita Dedukti

arithmetics/bigops.ma 357886 3093447 13.1 1.1

arithmetics/binomial.ma 107207 321836 8.9 0.2

arithmetics/bounded_quantifiers.ma 16833 34302 0.7 0

arithmetics/chebyshev/bertrand.ma 136049 391600 15.1 4.6

arithmetics/chebyshev/bertrand256.ma 60464 151251 11.4 100.7

arithmetics/chebyshev/cheb..._psi.ma 40142 87933 3 0.1

arithmetics/chebyshev/cheb..._theta.ma 68763 180347 3.6 0.2

arithmetics/chebyshev/factorization.ma 145476 404735 8.1 1

arithmetics/chebyshev/psi_bounds.ma 139793 491258 18.9 0.9

arithmetics/chinese_reminder.ma 68050 297282 70.9 0.2

arithmetics/congruence.ma 49880 114767 1.3 0.1

arithmetics/div_and_mod.ma 142484 407073 38.4 0.1

arithmetics/exp.ma 35500 63873 10.2 0

arithmetics/factorial.ma 120377 527390 11.4 1285

arithmetics/fermat_little_theorem.ma 40948 101381 21.1 0.2

arithmetics/gcd.ma 124201 391963 59 0.2

arithmetics/iteration.ma 9402 9599 0.7 0

arithmetics/log.ma 52920 91783 5.7 0.1

arithmetics/lstar.ma 37167 112547 0.8 0

arithmetics/minimization.ma 103919 339775 12.6 0.1

arithmetics/nat.ma 246845 562027 58.3 0.2

arithmetics/ord.ma 109807 293024 6.8 0.2

arithmetics/permutation.ma 72502 216218 1.4 0.1

arithmetics/pidgeon_hole.ma 26013 55472 6.2 0.1

arithmetics/primes.ma 121816 249941 26.5 15.9

arithmetics/sigma_pi.ma 77985 220514 16.6 0.1

arithmetics/sqrt.ma 64365 149516 2.1 0.1

basics/bool.ma 35895 85276 0.3 0

basics/lists/list.ma 279000 1877314 3.6 0.6

basics/logic.ma 103974 316733 0.4 0.1

basics/relations.ma 33602 49277 0.2 0

basics/types.ma 166035 552920 0.5 0.1

Total 3195300 12242374 437.7 1412.3

Compiled size (B) Verification time (s)

Figure 11.1 – Translation of the arithmetic library using Krajono
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12
Conclusion

With this thesis, we showed how to embed computational higher-order logics in the
λΠ-calculus modulo rewriting. We presented a translation of pure type systems in this
framework and proved that it is sound and complete. We then showed how to embed
universe cumulativity, by generalizing the previous translation to cumulative type systems,
and presented ways to deal with infinite universe hierarchies. Finally, we combined the
previous features to give an embedding of the calculus of inductive constructions. We
implemented these ideas in automated tools for the translation of the proofs of HOL,
Coq, and Matita.

12.1 Related work

12.1.1 Logical embeddings

Our focus in this thesis was on the theoretical aspects of logical embeddings, and in
particular to exhibit connections between typed lambda calculi. Our approach follows
the LF tradition [HHP93] of using a relatively weak logical framework based on type
theory for expressing logics, and draws heavily from the works of Barendregt and Geuvers
[Bar92, Geu93, GB99] on defining sound and complete translations between calculi, of
which we see this thesis as a continuation. As far as we are aware, this is the first
time such work has been done for the calculus of inductive constructions. The idea
of using explicit subtyping for cumulativity is inspired from intuitionistic type theory
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[ML84, Pal98]. A similar idea for the calculus of constructions was hinted at by Herbelin
and Spiwack [HS14], but this is the first time it is treated formally and completely for
the full hierarchy of universes.

12.1.2 Proof interoperability

The topics of interoperability and translations of proofs to a common framework are not
new. Several projects have been proposed with goals more or less similar to those of
Dedukti but using different approaches.

Logosphere The Logosphere project1 aims at building a large library of formal proofs
coming from different provers. It uses Twelf as a logical framework. The approach
is slightly different from ours in that the connections between the different logics are
formalized in LF as theory morphisms, and the logic programming engine of Twelf
is leveraged to execute them and translate the proofs. The main connection that was
achieved this way is between HOL and Nuprl [SS06].

ProofCert The ProofCert project2 aims at developing a universal proof checking
framework. It uses a formalism based on focused sequent calculus that can support
various forms of reasoning, including classical, intuitionistic, linear, modal, temporal, etc.
Its focus is on checking proof certificates [CM15, Chi15, CMR13a, CMR13b] and as such
allows proof search and proof reconstruction, unlike Dedukti. Various forms of proof
formats can be handled by this framework, including sequent calculus, natural deduction,
resolution, etc. A checker called Checkers3 is currently being developed in λProlog.
At the time of writing, it supports proofs coming from the E theorem prover.

LATIN, MMT, HETS The Logic Atlas and Integrator (LATIN) project4 [CHK+11]
aims at developing tools and techniques for the interfacing of different systems. It uses
two tools: MMT [Rab13] and HETS [MML07]. The first tool is a module system for
mathematical theories that focuses on connecting mathematical libraries, including ones
coming from Mizar, HOL Light, and PVS. It formalizes logics as theories and translations
as theory morphisms. The second tool focuses on connecting systems, including including
HOL and LF, but also programming languages such as Haskell and Maude, as well as
model checkers, SAT solvers, and automated theorem provers. It is based on model theory,
in which it formalizes logics as institutions and translations as institution morphisms.
Recent work aimed at unifying the two approaches [CHK+12].

1http://www.logosphere.org/
2https://team.inria.fr/parsifal/proofcert/
3https://github.com/proofcert/checkers
4https://latin.omdoc.org/
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12.2 Future work

12.2.1 Improving the translations

HOL and Holide We already mentioned in Chapter 7 taking into account the theory
files (.thy) of OpenTheory to obtain a modular translation of theories. Other than
that, we could modify Holide to accept other forms of input. OpenTheory is a good
tool but it still not universally adopted, and the export of proofs is not fully automated;
manual tinkering is required to control which theorems are exported and how the proofs
are factorized. This means that it is still not usable for large developments such as
Flyspeck. Holide was written for OpenTheory, but its ideas are not limited to it. It
would be worthwhile to adapt it to read the proof format used by Kalyzik and Krauss
[KK13] to translate Flyspeck from HOL Light to Isabelle, or the newer Common
HOL proof format [Ada15].

CIC and Coqine/Krajono There is still room for a lot of work in this area. A first
improvement would be to add support for Coq modules in our new version of Coqine.
We mentioned in Chapter 11 two possible ways of doing that, by flattening them or by
translating their structure using Σ-types.

The translation of local fixpoint definitions must also be corrected, along the lines of
Asperti et al. [ARCT09]. Ideally though, we would like to see the transformation into
primitive eliminators of Gimenez [Gim95] implemented for both tools, as the thorny issue
of inductive elimination has been the subject of much debate in the community, and there
is general interest in seeing if this approach is at least possible. If the transformation
is not too inefficient and if clever features are implemented to hide it from the user, we
could envision an alternative implementation of the checkers of Coq or Matita where
the kernel uses only primitive eliminators, for simplicity and safety reasons, while the
user writes his code freely as usual.

Along with universe polymorphism, these missing features make Coqine hard to use,
although we were able to successfully use it for practical applications (see Section 12.2.3).
On the other hand, Krajono is much more usable in its current form, but handling proof
irrelevance is still an open problem. Finally, we note that the use of explicit coercions for
cumulativity is relevant outside of the direct scope of this thesis, and that similar ideas
are currently in consideration for the next version of Coq.

12.2.2 Designing new embeddings

Limits of rewriting Adding rewriting to the λΠ-calculus turned out to be very
powerful, but the work in this thesis already pushes against its limits. Ideally, what we
want to express are equational theories, and it is not always possible to express them as
a rewrite system in a satisfactory way. Richer forms of rewriting could be explored to
alleviate this problem. As an example, rewriting modulo AC [JK86] could be useful for
universe polymorphism (see Remark 10.3.2) and for intersection types (see below).
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Intersection types Intersection types [CDC78] are usually presented in the Curry style
and they are notoriously difficult to express in the Church style. Recent developments
[HS15, Sta13] indicate that it is possible to represent something very similar using first-
order logic and rewriting, but they use rewriting modulo AC, and further work is needed
to see if they can lead to a well-behaved and practical embedding.

Linear logic The contexts of the λΠ-calculus modulo rewriting are not linear, so it is
difficult to design embeddings of linear logic [Gir87] that are shallow, i.e. where variables
are represented by variables. It is easy to design embeddings that are complete but
unsound or vice versa. Further work is needed to see if the framework needs to be
modified in order to accommodate linear types, or if it is somehow already possible to
embed them in the framework, as it is, in a way that is sound and complete.

12.2.3 Interoperability in Dedukti

We motivated this thesis by the problem of interoperability, but a lot of work still needs
to be done before that can be completely achieved. Indeed, what we have done so far is
present translations of different systems in separate embeddings but there are still many
challenges:

1. We do not provide backward translations from Dedukti to the original systems,
so we cannot take a proof in one system and translate it to another one by going
through Dedukti.

2. The translation of different systems use different signatures for the embeddings,
which express the different logics that are used. We need a way to combine these
signatures, either by merging them into unifying theories or by writing functions
for interfacing between them. However, this might not always be possible without
introducing inconsistencies, as the different logics might be incompatible.

3. Each system formalizes and represents data-types differently (e.g. real numbers
as limits of converging sequences vs. axiomatic real numbers) and states theorems
differently from the others. How can we relate the real numbers of one system with
the real numbers of another one? How can we know if the equivalent of a theorem
we are interested in is available in the libraries of a system so that we can reuse it?
There are no tools that help us in doing so easily.

Coincidentally, we believe that these obstacles are listed in order of increasing importance.
We do not consider the first point to be much of a problem. Theoretically, back translations
are possible, thanks to the conservativity property. However, we don’t think they are
necessary, as we see the logical framework as a low-level system to which we compile
proofs and in which we link proofs together, similar to how some modern programming
languages are compiled to and linked in low-level frameworks (assembly, .NET, etc.).
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The second point is more important, and requires a careful analysis of the logics in
question in order to avoid inconsistencies. For example, we mentioned in Chapter 7 that
we can modify the translation of HOL to make it closer to its PTS formulation and to
make it compatible with Coq. The implementation of such transformations is the subject
of a currently ongoing internship in the team. Moreover, even if some logical theories
are incompatible as a whole, theorems seldom use all the features of the logic. We can
therefore analyze the portions that are used and determine if they are compatible. This
is the realm of reverse mathematics.

Finally, the third point requires long-term involvement in the development of systems
and libraries, and falls outside the scope of this thesis. However, we strongly believe it
is the most important obstacle to the interoperability of proof systems. In a separate
work [AC15], we have experimented with linking the translation of HOL and Coq in
Dedukti5. After analyzing and unifying the two theories, we used Holide to translate the
theory of natural numbers from OpenTheory to Dedukti, and Coqine to translate lists
and a sorting algorithm from Coq to Dedukti. We then linked the results together within
Dedukti to obtain a sorting algorithm for Coq lists of HOL natural numbers, together
with a proof that it respects its specification. All the files were successfully checked by
Dedukti. While this small experiment was successful, we found that a lot of manual work
was required to interface the two developments together and to relate the datatypes and
the theorems of each embedding to the other. We therefore need more tools that help
with interfacing the translations of different systems in order for this approach to scale
well. Nonetheless, the experiment shows that the logical framework approach is indeed
possible, and serves as a stepping stone for future work on interoperability.

5Our experiment is available online at: http://dedukti-interop.gforge.inria.fr/.
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Appendix





A
Proof details

A.1 Proofs of Chapter 5

Theorem (5.2.11). For all Γ, M , A, if Γ `λP M : A then Σ, JΓK `λΠR [M ]Γ : JAKΓ. For
all Γ, if Γ `λP WF then JΓK `λΠR WF.

Proof. By simultaneous induction on the derivation.

1. ∅ ` WF
Empty

.
Then J∅K = ∅ and ∅ ` WF.

2.
Γ ` A : s x 6∈ Γ

Γ, x : A ` WF
Decl

.
Then JΓ, x : AK = JΓK , x : JAK. By induction hypothesis, JΓK ` [A] : JsK. By
Corollary 5.2.8, JΓK ` [A] : Us. Therefore, JΓK ` JAK : Type. Therefore, JΓ, x : AK `
WF.

3.
Γ ` WF (x : A) ∈ Γ

Γ ` x : A
Var

.
Then [x] = x. By induction hypothesis, JΓK ` WF. Since (x : A) ∈ Γ, we have
(x : JAK) ∈ Γ. Therefore, JΓK ` x : JAK.
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4.
Γ ` WF (s1 : s2) ∈ A

Γ ` s1 : s2
Sort

.
Then [s1] = us1 . By induction hypothesis, JΓK ` WF. Since (s1, s2) ∈ A, we have
(us1 : Us2) ∈ Σ. Therefore, JΓK ` us1 : Us2 . By Corollary 5.2.8, JΓK ` us1 : Js2K .

5.
Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R

Γ ` Πx : A .B : s3
Prod

.
Then [Πx : A .B] = πs1,s2 [A] (λx . [B]). By induction hypothesis, JΓK ` [A] : Js1K
and JΓK , x : JAK ` [B] : Js2K. By Corollary 5.2.8, JΓK ` [A] : Us1 and JΓK , x :
JAK ` [B] : Us2 . Therefore, JΓK ` πs1,s2 [A] (λx . [B]) : Us3 . By Corollary 5.2.8,
JΓK ` πs1,s2 [A] (λx . [B]) : Js3K.

6.
Γ, x : A ` M : B Γ ` Πx : A .B : s

Γ ` λx : A .M : Πx : A .B
Lam

.
Then [λx : A .M ] = λx : JAK . [M ]. By induction hypothesis, JΓK , x : JAK `
[M ] : JBK. Therefore, JΓK ` λx : JAK . [M ] : Πx : JAK . JBK. By Corollary 5.2.10,
JΓK ` λx : JAK . [M ] : JΠx : A .BK.

7.
Γ `M : Πx : A .B Γ ` N : A

Γ `M N : B {x\N}
App

.
Then [M N ] = [M ] [N ]. By induction hypothesis, JΓK ` [M ] : JΠx : A .BK and
JΓK ` [N ] : JAK. By Corollary 5.2.10, JΓK ` [M ] : Πx : JAK . JBK. Therefore, JΓK `
[M ] [N ] : JBK {x\ [N ]}. By Lemma 5.2.1, JBK {x\ [N ]} = JB {x\N}K. Therefore,
JΓK ` [M ] [N ] : JB {x\N}K.

8.
Γ ` M : A Γ ` B : s A ≡β B

Γ ` M : B
Conv

.
By induction hypothesis, JΓK ` [M ] : JAK and JΓK ` JBK : Type. By Corollary 5.2.6,
JAK ≡ JBK. By conversion, JΓK ` [M ] : JBK.

A.2 Proofs of Chapter 6

Lemma (6.2.3). For all Γ,M,A, if Γ `λP M : A then |[M ]Γ| ≡β M .

Proof. By induction on the structure of M .

• Case M = x. Then|[x]| = |x| = x.

• Case M = s. Then |[s]| =
∣∣∣us′s ∣∣∣ = s.
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• Case M = Πx : A1 . B1. By induction hypothesis, |[A1]| ≡ A1 and |[B1]| ≡ B1.
Therefore,

|[Πx : A1 . B1]| = |πs1,s2 [A1] (λx . [B1])|
= (λα . λβ .Πx : α . β x) |[A1]| (λx . |[B1]|)
≡ Πx : |[A1]| . |[B1]|
≡ Πx : A1 . B1.

• Case M = λx : A1 .M1. By induction hypothesis, |[A1]| ≡ A1 and |[M1]| ≡ M1.
Therefore,

|[λx : A1 .M1]| = |λx : Ts [A1] . [M1]|
= λx : |[A1]| . |[M1]|
≡ λx : A1 .M1.

• Case M = M1N1. By induction hypothesis, |[M1]| ≡M1 and |[N1]| ≡ N1. There-
fore,

|[M1N1]| = |[M1] [N1]|
= |[M1]| |[N1]|
≡M1N1.

Lemma (6.2.25). If A ≡βη−Σ B then Γ 
M : A iff Γ 
M : B.

Proof. By case analysis on the derivation of A ≡ B, using induction on the measure of
A. In each case, we show Γ 
M : A =⇒ Γ 
M : B, the other direction being similar.

• Base cases:

– Case Ts2 us1 −→ Us1 . By definition, there exists M ′, A′ such that Γ ` M ′ : A′
and [M ′] ≡M and JA′K ≡ Ts2 us1 . Then JA′K ≡ Us1 . Therefore, Γ 
M : Us1

– Case Ts3 (πs1,s2 A1B1) −→ Πx : Ts1 A1 .Ts2 (B1 x). By definition, there exists
M ′, A′ such that Γ ` M ′ : A′ and [M ′] ≡ M and JA′K ≡ Ts3 (πs1,s2 A1B1).
Then JA′K ≡ Πx : Ts1 A1 .Ts2 (B1 x). By Corollary 6.2.16, there exists A′1
and B′1 such that A′ ≡ Πx : A′1 . B′1 and Γ ` M ′ : Πx : A′1 . B′1. Therefore,
JA′K ≡ JΠx : A′1 . B′1K. By product compatibility, this means that JA′1K ≡
Ts1 A1 and JB′1K ≡ Ts2 (B1 x). Let ΓN , N be such that Γ ⊆ ΓN and ΓN 

N : Ts1 A1. By definition, there exists N ′, A′′1 such that ΓN ` N ′ : A′′1 and
[N ′] ≡ N and JA′′1K ≡ Ts1 A1. Then JA′′1K ≡ JA′1K. By Corollary 6.2.12 and
conversion, A′′1 ≡ A′1 and Γ ` N : A′1. Therefore, Γ ` M ′N ′ : B′1 {x\N ′}.
By Corollary 5.2.2, JB′1 {x\N ′}K = JB′1K {x\ [N1]}. Then JB′1 {x\N ′}K ≡
Ts2 (B1 x) {x\N}. Therefore, Γ′ 
 M N : Ts2 (B1 x) {x\N}. Therefore, Γ 

M : Πx : Ts1 A1 .Ts2 (B1 x).
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– Case (λx : A1 . B1) N1 · · · Nn −→ B1 {x\N1} N2 · · · Nn. Follows from the
definition of Γ 
M : (λx : A1 . B1) N1 · · · Nn.

• Structural cases:

– Case Πx : A1 . B1 ≡ Πx : A′1 . B1 with A1 ≡ A′1 and B1 ≡ B′2. Let ΓN , N such
that Γ ⊆ ΓN , and Γ 
 N : A′1. By induction, Γ 
 N : A1. By definition,
Γ 
 M N : B1 {x\N}. By induction Γ 
 M N : B′1 {x\N}. Therefore,
Γ 
M : Πx : A′1 . B′1.

– Case TsA1 ≡ TsA′1 with A1 ≡ A′1. By definition, there is M ′ and A′′1 such
that Γ ` M ′ : A′′1 and [M ′] ≡ M and JA′′1K ≡ A1. Therefore, JA′′1K ≡ A′1.
Therefore, Γ 
M : TsA′1.

– Case (λx : A1 . B1) N1 · · · Nn ≡ (λx : A′1 . B′1) N ′1 · · · N ′n with A1 ≡ A′1, B1 ≡
B′1, and Ni ≡ N ′i . By definition, Γ 
M : B1 {x\N1} N2 · · · Nn. By induction,
Γ 
M : B′1 {x\N ′1} N ′2 · · · N ′n. Therefore, Γ 
 (λx : A′1 . B′1) N ′1 · · · N ′n.

• Equivalence cases:

– Case A ≡ A (reflexivity) is straightforward.
– Case B ≡ A with A ≡ B (symmetry) is straightforward.
– Case A ≡ C with A ≡ B and B ≡ V (transitivity) is straightforward.

Lemma (6.2.26). For all ∆,M,A, if Σ,∆ `λΠR M : A then for all Γ, σ such that
Γ `λP WF and Γ 
 σ : ∆, Γ 
 σ (M) : σ (A).

Proof. By induction on the derivation.

•
∆ ` WF (x : A) ∈ Γ

∆ ` x : A
var

Then Γ 
 σ (x) : σ (A) by definition of Γ 
 σ : ∆.

•
∆ ` WF (us1 : Us2) ∈ Σ

∆ ` us1 : Us2
var

Then us1 ≡ [s1] and Us2 ≡ Js2K and (s1, s2) ∈ A. Since Γ ` WF, we have Γ ` s1 : s2.

•
∆ ` WF (πs1,s2 : Πα : Us1 . · · · ) ∈ Σ

∆ ` πs1,s2 : Πα : Us1 . (Πx : Ts1 α .Us2)→ Us3
var

Let ΓA, A be such that Γ ⊆ ΓA and ΓA 
 A : Us1 . By definition and Corollary 6.2.14,
there is A′ such that ΓA ` A′ : s1 and [A′] ≡ A. We need to show that ΓA 

πs1,s2 A : (Πx : Ts1 A .Us2) → Us3 . Let ΓB, B be such that ΓA ⊆ ΓB and ΓB 

B : Πx : Ts1 A .Us2 . By Lemma 4.3.4, ΓB ` A′ : s1. Therefore, ΓB, x : A′ ` WF.
By Lemma 6.2.23, ΓB, x : A′ 
 B : Πx : Ts1 A .Us2 . By Corollary 6.2.22, we
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have ΓB, x : A′ 
 x : JA′K. Since A ≡ [A′], we have TsA ≡ JA′K. Therefore,
ΓB, x : A′ 
 x : Ts1 A. Therefore, ΓB, x : |A′| 
 B x : Us2 . By definition and
Corollary 6.2.14, there is B′ such that ΓB, x : A′ ` B′ : s2 and [B′] ≡ B x.
Therefore, ΓB ` Πx : A′ . B′ : s3 and[

Πx : A′ . B′
]
≡ πs1,s2

[
A′
] (
λx : Ts1

[
A′
]
.
[
B′
])

≡ πs1,s2 A (λx : Ts1 A .B x)
≡ πs1,s2 AB.

Therefore, ΓB 
 πs1,s2 AB : Us3 .

•
∆ ` A1 : Type ∆, x : A1 ` M1 : B1

∆ ` λx : A1 .M1 : Πx : A1 . B1
lam

Without loss of generality, we can assume x is fresh. We have σ (λx : A1 .M1) =
λx : σ (A1) . σ (M1) and σ (Πx : A1 . B1) = Πx : σ (A1) . σ (B1). Let ΓN , N be such
that Γ ⊆ ΓN and ΓN 
 N : σ (A1). Define ∆x = ∆, x : A1 and σx = σ [x := N ].
Then ΓN 
 σx : ∆x. By induction hypothesis, ΓN 
 σx (M1) : σx (B1). Since
(λx : σ (A1) . σ (M1)) N −→β σ (M1) {x\N} = σx (M1), by Lemma 6.2.24, ΓN 

(λx : σ (A1) . σ (M1)) N : σ (B1) {x\N}.

•
∆ ` M1 : Πx : A1 . B1 ∆ ` N1 : A1

Γ ` M1N1 : B1 {x\N1}
app

Without loss of generality, we can assume x is fresh. We have σ (M) = σ (M1) σ (N1)
and σ (B1 {x\N1}) = σ (B1) {x\σ (N1)}. By induction hypothesis, Γ 
 σ (M1) :
Πx : σ (A1) . σ (B1) and Γ 
 σ (N1) : σ (A1). By definition, Γ 
 σ (M1) σ (N1) :
σ (B1) {x\σ (N)}.

•
∆ ` M : B ∆ ` A : Type B ≡ A

∆ ` M : A
conv

By induction hypothesis, Γ 
 σ (M) : σ (B). Since A ≡ B, we have σ (A) ≡ σ (B).
By lemma Lemma 6.2.25, Γ 
 σ (M) : σ (A).

A.3 Proofs of Chapter 8

Lemma (8.4.17). The following holds:

1. Γ ` WF ∧ (x : A) ∈ Γ =⇒ Γ |= x⇒ A

2. Γ ` WF ∧ (s1, s2) ∈ A =⇒ Γ |= s1 ⇒ s2

3. Γ |= A⇒ s1 ∧ Γ, x : A |= B ⇒ s2 ∧ (s1, s2, s3) ∈ R =⇒ Γ |= Πx : A .B ⇒ s3

4. Γ, x : A |= M ⇒ B ∧ Γ ` Πx : A .B : s =⇒ Γ |= λx : A .M ⇒ Πx : A .B
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5. Γ |= M ⇒ Πx : A .B ∧ Γ ` N : A =⇒ Γ |= M N ⇒ B {x\N}

6. Γ |= M ⇒ A ∧ Γ ` B : s ∧A ≡ B =⇒ Γ |= M ⇒ B

7. Γ |= M ⇒ A ∧A ≡ s =⇒ Γ |= A⇒ s

Proof.

1. We have Γ ` x : A by the Var rule. Suppose Γ ` x : C. By inversion, there exists
A′ such that (x : A′) ∈ Γ and A′ � C. By injectivity of Γ (Lemma 8.2.3), we must
have A′ = A. Therefore, A � C.

2. We have Γ ` s1 : s2 by the Sort rule. Suppose Γ ` s1 : C. By inversion, there
exists s′2 such that (s1, s

′
2) ∈ A and s′2 � C. By definition of A (Definition 8.4.8),

s2 � s′2. By transitivity, s2 � C.

3. We have Γ ` Πx : A .B : s3 by the Prod rule. Suppose Γ ` Πx : A .B : C. By
inversion, there exist s′1, s′2, s′3 such that Γ ` A : s′1 and Γ, x : A ` B : s′2 and
(s′1, s′2, s′3) ∈ R and s′3 � C. By principality (Definition 8.4.3), we have s1 � s′1 and
s2 � s′2. By the local minimum property (Definition 8.4.1), there exists s′′3 such
that (s1, s2, s

′′
3) ∈ R and s′′3 � s′3. By definition of R (Definition 8.4.8), s3 � s′′3.

By transitivity, s3 � C.

4. We have Γ ` λx : A .M : Πx : A .B by the Prod rule. Suppose Γ ` λx : A .M : C.
By inversion, there exists B′ such that Γ, x : A ` M : B′ and Γ ` Πx : A .B′ : s′
and Πx : A .B′ � C. By principality (Definition 8.4.3), B � B′ and so Πx : A .B �
Πx : A .B′. By transitivity, Πx : A .B � C.

5. We have Γ ` M N : B {x\N} by the App rule. Suppose Γ ` M N : C. By
inversion, there exist A′, B′ such that Γ ` M : Πx : A′ . B′ and Γ ` N : A′ and
B′ {x\N} � C. By principality (Definition 8.4.3), we have Πx : A .B � Πx : A′ . B′
and so A ≡ A′ and B � B′. By substitution (Lemma 8.1.5), B {x\N} � B′ {x\N}.
By transitivity, B {x\N} � C.

6. We have Γ ` M : B by the Conv rule. Suppose Γ ` M : C. By principality,
A � C. By transitivity, B � C.

7. If A = s′ for some s′ ∈ S> then s′ = s and we are done. Otherwise, ∃s′ such that
Γ ` A : s′. By confluence, A −→∗ s. By subject reduction, Γ ` s : s′. Therefore,
Γ ` M : s by the Conv rule. Suppose Γ ` M : C. By principality, A � C. By
transitivity, s � C.

Lemma (8.4.21). If Γ ` A ⇒ s and Γ ` A′ ⇒ s′ and A′ � A then ∃A′′, s′′ such that
A′ −→∗ A′′ and Γ ` A′′ ⇒ s′′ and s′′ � s.

Proof. By Lemma 8.1.4, there are two cases to consider.
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• If A ≡ A′ then by confluence ∃A′′ such that A −→∗ A′′ and A′ −→∗ A′′. By
subject reduction (Lemma 8.2.8), Γ ` A′′ ⇐ s. By Lemma 8.4.12, ∃s′′ such that
Γ ` A′′ ⇒ s′′ and s′′ � s.

• Otherwise, ∃C1, . . . , Cn, r, r
′ such that A ≡ Πx1 : C1 . · · ·Πxn : Cn . r and A′ ≡

Πx1 : C1 . · · ·Πxn : Cn . r′ and r′ � r. By confluence, ∃D1, . . . , Dn such that
A −→∗ Πx1 : D1 . · · ·Πxn : Dn . r and A′ −→∗ Πx1 : D1 . · · ·Πxn : Dn . r’. By
subject reduction (Lemma 8.2.8), Γ ` Πx1 : D1 . · · ·Πxn : Dn . r ⇐ s and Γ ` Πx1 :
D1 . · · ·Πxn : Dn . r

′ ⇐ s′. By inversion and the local minimum property, we can
show that ∃s′′ such that Γ ` Πx1 : D1 . · · ·Πxn : Dn . r

′ ⇒ s′′ and s′′ � s.

Lemma (8.4.22). If Γ ` M : C then ∃A such that Γ ` M ⇒ A and A � C. If Γ ` WF
then Γ `⇒WF.

Proof. By induction on the typing derivation.

• Case Empty. Then ∅ `⇒WF.

• Case Decl. By induction hypothesis and Lemma 8.4.19, Γ `⇒WF and ∃s′ such
that Γ ` A⇒ s′. Therefore, Γ, x : A `⇒WF.

• Case Var. By induction hypothesis, Γ `⇒WF. Therefore, Γ ` x⇒ A.

• Case Sort. By induction hypothesis, Γ `⇒WF. By Lemma 8.4.9, ∃s′2 such that
(s1, s

′
2) ∈ A. Therefore, Γ ` s1 ⇒ s′2 and s′2 � s2.

• Case Prod. By induction hypothesis and Lemma 8.4.19, ∃s′1, s′2 such that Γ `
A ⇒ s′1 and Γ, x : A ` B ⇒ s′2 and s′1 � s1 and s′2 � s2. By the local minimum
property, ∃r3 such that (s′1, s′2, r3) ∈ R and r3 � s3. By Lemma 8.4.9, ∃s′3 such
that (s′1, s′2, s′3) ∈ R. Therefore, Γ ` Πx : A .B ⇒ s′3 and s′3 � r3 � s3.

• Case Lam. By induction hypothesis and Lemma 8.4.19, ∃B′, s′ and such that
Γ, x : A ` M ⇒ B′ and Γ ` Πx : A .B ⇒ s′ and B′ � B and s′ � s. By inversion
of minimal types (Lemma 8.4.14), ∃s′1, s′2 such that Γ ` A ⇒ s′1 and Γ, x : A `
B ⇒ s′2 and (s′1, s′2, s′) ∈ R. By correctness of minimal types (Lemma 8.4.15) and
Lemma 8.4.21, ∃B′′ and s′′2 such that B′ −→∗ B′′ and Γ, x : A ` B′′ ⇒ s′′2. By
conversion, Γ, x : A ` M ⇒ B′′. By the local minimum property and Lemma 8.4.9,
∃s′′ such that (s′1, s′′2, s′′) ∈ R. Therefore, Γ ` Πx : A .B′′ ⇒ s′′. Therefore,
Γ ` λx : A .M : Πx : A .B′′ and Πx : A .B′′ ≡ Πx : A .B′ � Πx : A .B.

• Case App. By induction hypothesis and Lemma 8.4.20, ∃A′, B′ such that Γ `
M ⇒ Πx : A′′ . B′ and Γ ` N ⇒ A′ and A′ � A and A′′ ≡ A and B′ � B.
By correctness of minimal types (Lemma 8.4.15) and inversion of minimal types
(Lemma 8.4.14), we have Γ ` A′′ ⇒ s1 for some s1. Therefore, Γ ` N ⇐ A′′ by the
Check rule. Therefore, Γ ` M N ⇒ B′ {x\N}. By substitution (Lemma 8.1.5),
B′ {x\N} � B {x\N}.
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• Case Sub. By induction hypothesis, ∃A′ such that Γ ` M ⇒ A′ and A′ � A. By
transitivity, A′ � B.

• Case Sub-sort. By induction hypothesis, ∃A′ such that Γ ` M ⇒ A′ and A′ � A.
By transitivity, A′ � s.

A.4 Proofs of Chapter 9

Lemma (9.2.4). If Γ, x : A,Γ′ `λP� M ⇒ B and Γ `λP� N ⇐ A then [M ]
{
x\ [N ]`A

}
≡βΣ

[M {x\N}]`B{x\N}. More precisely,

[M ]Γ,x:A,Γ′
{
x\ [N ]Γ`A

}
≡βΣ [M {x\N}]Γ,Γ′{x\N}`B{x\N} .

Proof. First note that the statement makes sense because Γ,Γ′ {x\N} ` M {x\N} :
B {x\N} by 8.2.4. The proof follows by induction on M .

• Case M = x. Then B ≡ A. We have A {x\N} = A because x 6∈ A. Therefore,

[x]
{
x\ [N ]`A

}
= x

{
x\ [N ]`A

}
= [N ]`A
= [x {x\N}]`A{x\N} .

• Case M = y 6= x. Then we have (y : B {x\N}) ∈ Γ,Γ′ {x\N}. Therefore,

[y]
{
x\ [N ]`A

}
= y

{
x\ [N ]`A

}
= y

= [y]`B{x\N}
= [y {x\N}]`B{x\N} .

• Case M = s1. Then B ≡ s2 where (s1 : s2) ∈ A. Therefore,

[s1]
{
x\ [N ]`A

}
= us1

{
x\ [N ]`A

}
= us1
= [s1]`B
= [s1 {x\N}]`B{x\N} .
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• Case M = Πy : C .D. Then B ≡ s3 where Γ ` C ⇒ s1 and Γ, y : C ` D ⇒ s2 and
(s1, s2, s3) ∈ R. Therefore,

[Πy : C .D]
{
x\ [N ]`A

}
= (πs1,s2 [C] (λy . [D]))

{
x\ [N ]`A

}
= πs1,s2

(
[C]

{
x\ [N ]`A

}) (
λy . [D]

{
x\ [N ]`A

})
≡ πs1,s2 [C {x\N}]`s1

(
λy . [D {x\N}]`s2

)
by induction hypothesis

≡ [Πy : C {x\N} . D {x\N}]`s3
by lemma 9.2.3

= [(Πy : C .D) {x\N}]`s3{x\N} .

• Case M = λy : C .M1. Then B ≡ Πy : C .D where Γ, y : C ` M1 ⇒ D. Therefore,

[λy : C .M1]
{
x\ [N ]`A

}
= (λy : JCK . [M1])

{
x\ [N ]`A

}
= λy : JCK

{
x\ [N ]`A

}
. [M1]

{
x\ [N ]`A

}
≡ λy : JC {x\N}K . [M1 {x\N}]`D{x\N}

by induction hypothesis and lemma 9.2.1
≡ [λy : C {x\N} .M1 {x\N}]`Πy:C{x\N}.D{x\N}

by lemma 9.2.3
= [(λy : C .M1) {x\N}]`(Πy:C.D){x\N} .

• Case M = M1M2. Then B ≡ D {y\M2} where Γ ` M1 ⇒ Πy : C .D and
Γ ` M2 ⇐ C. Therefore,

[M1M2]
{
x\ [N ]`A

}
=
(
[M1] [M2]`C

){
x\ [N ]`A

}
= [M1]

{
x\ [N ]`A

}
[M2]`C

{
x\ [N ]`A

}
≡ [M1 {x\N}]`(Πy:C.D){x\N} [M2 {x\N}]`C{x\N}
by induction hypothesis and lemma 9.2.2

= [M1 {x\N} M2 {x\N}]`D{x\N}{y\M2{x\N}}

by lemma 9.2.3
= [(M1M2) {x\N}]`D{y\M2}{x\N} .

Lemma (9.2.15). If Γ `λP� M ⇒ A then Σ, JΓK `λΠR [M ]Γ : JAKΓ. If Γ `λP� M ⇐ A
then Σ, JΓK `λΠR [M ]Γ`A : JAK. If Γ `λP�⇒WF then Σ, JΓK `λΠR WF.

Proof. By induction on the typing derivations.
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1. ∅ ` WF
Empty

.
Then J∅K = ∅ and Σ ` WF.

2.
Γ ` A⇒ s x 6∈ Γ

Γ, x : A ` WF
Decl

.
Then JΓ, x : AK = JΓK , x : JAK. By induction hypothesis, Σ, JΓK ` [A] : JsK. By
Lemma 9.2.14 JΓK ` JAK : Type. Therefore, Σ, JΓK , x : JAK ` WF.

3.
Γ `⇒WF (x : A) ∈ Γ

Γ ` x⇒ A
Var

.
Then [x] = x. By induction hypothesis, Σ, JΓK ` WF. Since (x : A) ∈ Γ, we have
(x : JAK) ∈ JΓK. Therefore, Σ, JΓK ` x : JAK.

4.
Γ `⇒WF (s1 : s2) ∈ A

Γ ` s1 ⇒ s2
Sort

.
Then [s1] = us1 . By induction hypothesis, Σ, JΓK ` WF. Since (s1, s2) ∈ A, we have
(us1 : Us2) ∈ Σ. Therefore, Σ, JΓK ` us1 : Us2 . By Lemma 9.2.10, Σ, JΓK ` us1 : Js2K .

5.
Γ ` A⇒ s1 Γ, x : A ` B ⇒ s2 (s1, s2, s3) ∈ R

Γ ` Πx : A .B ⇒ s3
Prod

.
Then [Πx : A .B] = πs3s1,s2 [A] (λx . [B]). By induction hypothesis, Σ, JΓK ` [A] : Js1K
and Σ, JΓK , x : JAK ` [B] : Js2K. By Lemma 9.2.10, Σ, JΓK ` [A] : Us1 and
Σ, JΓK , x : JAK ` [B] : Us2 . Therefore, Σ, JΓK ` πs1,s2 [A] (λx . [B]) : Us3 . By
Lemma 9.2.10, Σ, JΓK ` πs1,s2 [A] (λx . [B]) : Js3K.

6.
Γ, x : A ` M ⇒ B Γ ` Πx : A .B ⇒ s

Γ ` λx : A .M ⇒ Πx : A .B
Lam

.
Then [λx : A .M ] = λx : JAK . [M ]. By induction hypothesis, Σ, JΓK , x : JAK `
[M ] : JBK. Therefore, Σ, JΓK ` λx : JAK . [M ] : Πx : JAK . JBK. By Lemma 9.2.11,
Σ, JΓK ` λx : JAK . [M ] : JΠx : A .BK.

7.
Γ `M ⇒ Πx : A .B Γ ` N ⇐ A

Γ `M N ⇒ B {x\N}
App

.
Then [M N ] = [M ] [N ]`A. By induction hypothesis, Σ, JΓK ` [M ] : JΠx : A .BK and
Σ, JΓK ` [N ]`A : JAK. By Lemma 9.2.11, Σ, JΓK ` [M ] : Πx : JAK . JBK. Therefore,
Σ, JΓK ` [M ] [N ]`A : JBK

{
x\ [N ]`A

}
. By Corollary 9.2.5 and Lemma 9.2.12,

Σ, JΓK ` [M ] [N ]`A : JB {x\N}K.

8.
Γ ` M ⇒ A Γ ` B ⇒ s A ≡β B

Γ ` M ⇒ B
Conv

.
By induction hypothesis, Σ, JΓK ` [M ] : JAK and Σ, JΓK ` [B] : JsK. By Lemma 9.2.14,
Σ, JΓK ` JBK : Type. By Lemma 9.2.9, JAK ≡ JBK. By conversion, Σ, JΓK ` [M ] :
JBK.
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9.
Γ ` M ⇒ A A ≡β s

Γ ` M ⇒ s
Conv-sort

.
By induction hypothesis, Σ, JΓK ` [M ] : JAK. By Lemma 9.2.9, JAK ≡ JsK. By
conversion, Σ, JΓK ` [M ] : JBK.

10.
Γ ` M ⇒ A Γ ` B ⇒ s A � B

Γ ` M ⇐ B
Check

.
By induction hypothesis, Σ, JΓK ` [M ] : JAK and Σ, JΓK ` [B] : JsK. By Lemma 9.2.14,
Σ, JΓK ` JBK : Type. By Lemma 9.2.13, Σ, JΓK ` [M ]`B : JBK.

11.
Γ ` M ⇒ A A � s

Γ ` M ⇐ s
Check-sort

.
By induction hypothesis, Σ, JΓK ` [M ] : JAK. By Lemma 9.2.13, Σ, JΓK ` [M ]`B :
JsK.
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B
Original presentations

B.1 The λΠ-calculus

Syntax

type constants a, p
term constants c, f
term variables x, y

kinds K ::= Type | Πx : A .K
types A,B ::= a | Πx : A .B | λx : A .B | AN
objects M,N ::= x | c | λx : A .M |M N

contexts Γ,∆ ::= ∅ | Γ, x : A
signatures Σ ::= ∅ | Σ, a : K | Σ, c : A

Typing

The different judgments are:

• Σ ` WF, the signature Σ is well-formed

• Σ | Γ ` WF, the context Γ is well-formed in the signature Σ
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∅ ` WF
Sig-Empty

Σ | ∅ ` K WF a 6∈ Σ
Σ, a : K ` WF

Sig-Kind

Σ | ∅ ` A : Type c 6∈ Σ
Σ, c : A ` WF

Sig-Type

Σ ` WF
Σ | ∅ ` WF

Ctx-Empty

Σ | Γ ` A : Type x 6∈ Γ
Σ | Γ, x : A ` WF

Ctx-Type

Σ | Γ ` WF
Σ | Γ ` Type : Kind

Kind-Type

Σ | Γ ` A : Type Σ | Γ, x : A ` K WF
Σ | Γ ` Πx : A .K WF

Kind-Prod

Figure B.1 – Original typing rules of the system λΠ (part I)

• Σ | Γ ` K WF, the kind K is well-formed in the context Γ and signature Σ

• Σ | Γ ` A : K, type A has kind K in the context Γ and signature Σ

• Σ | Γ ` M : A, object M has type A in the context Γ and signature Σ

The typing rules are shown in Figures B.1 and B.2.

Notes

This presentation suffers from a lot of duplication in the syntax and typing rules. An
upside is that we do not need to check the sort of the product type in the λ rule because
we already know the sorts: they are given by the syntactic category. Another advantage
is that definitions and proofs by induction on the structure of the syntax are easier, since
we know at all times what is an object, what is a type, and what is a kind.
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Σ | Γ ` WF (a : K) ∈ Σ
Σ | Γ ` a : K

Type-Const

Σ | Γ ` A : Type Σ | Γ, x : A ` B : Type
Σ | Γ ` Πx : A .B : Type

Type-Prod

Σ | Γ, x : A ` B : K
Σ | Γ ` λx : A .B : Πx : A .K

Type-Lam

Σ | Γ ` B : Πx : A .K Σ | Γ ` N : A
Σ | Γ ` BN : K {x\N}

Type-App

Σ | Γ ` A : K Σ | Γ ` K ′ WF K ≡β K ′

Σ | Γ ` A : K ′
Type-Conv

Σ | Γ ` WF (c : A) ∈ Σ
Σ | Γ ` c : A

Const

Σ | Γ ` WF (x : A) ∈ Γ
Σ | Γ ` x : A

Var

Σ | Γ, x : A ` M : B
Σ | Γ ` λx : A .M : Πx : A .B

Lam

Σ | Γ `M : Πx : A .B Σ | Γ ` N : A
Σ | Γ `M N : B {x\N}

App

Σ | Γ ` M : A Σ | Γ ` B : s A ≡β B
Σ | Γ ` M : B

Conv

Figure B.2 – Original typing rules of the system λΠ (part II)
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B.2 Pure type systems

Syntax

constants c ∈ O
terms M,N,A,B ∈ T ::= x | c |M N | λx : A .M | Πx : A .B
contexts Γ,∆ ∈ G ::= ∅ | Γ, x : A

Specifications

• S ⊆ O

• A ⊆ O × S

• R ⊆ S × S × S

Typing

There is only the typing judgment Γ ` M : A and there is no context formation judgment.
The typing rules are shown in Figure B.3.

Notes

This presentation allows special constants which are not sorts but which have a predefined
sort type. This allows the definition of the simply typed λ calculus with only one sort ∗
instead of two sorts ∗,� by using special constants for base types, but that disallows
the addition of additional type variables in the context. For example, the simply typed
λ-calculus with one base type ι corresponds to the PTS λ→ι:

(→ι)


S = ∗
A = (ι, ∗)
R = (∗, ∗)


Another difference is that this presentation does not use a separate context formation
judgment, relying instead on a weakening rule.
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(s1 : s2) ∈ A
∅ ` s1 : s2

Start

Γ ` A : s x 6∈ Γ
Γ, x : A ` x : A

Var

Γ ` M : B Γ ` A : s x 6∈ Γ
Γ, x : A ` M : B

Weak

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A .B : s3

Prod

Γ, x : A ` M : B Γ ` Πx : A .B : s
Γ ` λx : A .M : Πx : A .B

Lam

Γ `M : Πx : A .B Γ ` N : A
Γ `M N : B {x\N}

App

Γ ` M : A Γ ` B : s A ≡β B
Γ ` M : B

Conv

Figure B.3 – Original typing rules of the system λP
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