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Preface

The field of nonlinear spectroscopy has matured rapidly but still has much potential for further
exploration and exploitation. The applications in chemistry, biology, medicine, materials
technology, and especially in the field of communications and information processing are
numerous. Alfred Nobel would have enjoyed this interaction of physics and technology.

Nicolaas Bloembergen, Nobel Lecture, 1981

Only one year after the invention of the laser in 1960, researchers showed that laser light could be
converted from one color to another. Using a red ruby laser light and a quartz crystal, Frankel and
coworkers have demonstrated the possibility to create an ultraviolet radiation from red light. This
was the first demonstration of a nonlinear optical phenomenon.
More than 50 years after the first experimental observation of second-harmonic generation, the theo-
retical description of second-harmonic generation is still under debate, whereas it is well understood
from an experimental point of view. This is the gap that this thesis aims to fill.
More precisely, the goal of this work is to improve the theoretical description and understanding of
the generation of second-harmonic from the surfaces of crystalline semiconductors.
When applying an external electric field to a dielectric material, electric dipoles are created at a mi-
croscopic level. These dipoles are responsible for the apparition, inside the material, of an induced
field. The fluctuations of the electric field at a microscopic level, the density fluctuations or any kind
of microscopic inhomogeneities must be taken into account when describing the optical properties
of a system. These effects are often referred as “local-field effects”.
These local-field effects have been widely studied in the past and in particular their effects on the
optical properties of bulk materials are now well established. In the case of surfaces, the theoretical
description and the numerical simulations are more intricate than for bulk materials. The abrupt
change in the electronic density leads to a huge variation of the electric field at the interface with
vacuum. As a result, strong effects of the local-field are expected, in particular in the direction per-
pendicular to the plane of the surface.
The goal of this thesis is to quantify how important these effects are for the linear and second-order
optical properties of surfaces.
This thesis is organised in four parts. The Part I focuses on the theoretical background, necessary to
understand the development reported in this thesis.
Part II presents the first theoretical results of this thesis, improving the microscopic description of
second-harmonic generation at crystal surfaces. A macroscopic theory of second-harmonic genera-
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tion from crystal surfaces is developed in Part III, in order to account for local-field effects.
The last part of this thesis, Part IV, is dedicated to the application of the theory developed to silicon
surfaces. The numerical simulations have been focused on the Si(001) surface, and the macroscopic
formalism developed during this thesis has been applied to three surface reconstructions, namely the
clean Si(001)2×1, the monohydride Si(001)2×1:H and the dihydride Si(001)1×1:2H surfaces. Compar-
ison with available experimental results is also reported.
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Abbreviations

AFM Atomic Force Microscope
BZ Brillouin zone
BSE Bethe-Salpeter equation
(TD)DFT (Time-Dependent) Density-Functional Theory
EFISH Electric Field Induced Second-Harmonic
HEG Homogeneous Electron Gas
HK Hohenberg-Kohn
IPA Independent-Particle Approximation
KS Kohn-Sham
LDA Local-Density Approximation
LF Local-fields
LRC Long-Range Contribution
RA Reflectance Anisotropy
RPA Random Phase Approximation
SHG Second-Harmonic Generation
TD Time Dependent
XC Exchange-Correlation
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Notations

General
r A point in 3-D space, (x, y, z)

t An instant in time
ω A frequency (time Fourier transform)
k A vector in reciprocal space
q A vector inside the first Brillouin zone
G A reciprocal lattice vector, also referred as G-vector
f [n] A functional f of the function n

(TD)-DFT and response functions
Etot Ground-state total energy
n0(r) Ground-state electronic density
n(r, t) TD electronic density
j(r, t) TD electronic current
Ψ Interacting many-body wave-function
φi Single-particle or Kohn-Sham wave-function
χ

(1)
0 , χ(0)

ρρ Independent-particle density-density response function
χ(1), χ(1)

ρρ Fully interacting density-density response function
χ

(2)
0 , χ(0)

ρρρ Independent-particle density-density-density response function
χ(2), χ(2)

ρρρ Fully interacting density-density-density response function

Varia
η Positive infinitesimal
c Speed of light in the vacuum
ε0 Vacuum permittivity
↔
1 Unit dyadic

If not stated differently, atomic units are used throughout this thesis.
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Background
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1. Introduction

Fig. 1.1: Sketch of the second-
harmonic generation process

The aim of this chapter is twofold. In a first part, I present the non-
linear optics and in particular second-harmonic generation. Some
examples of the applications of second-harmonic generation are pre-
sented, showing how important this phenomenon is for many fields
of physics, biology, etc.
The second part of this chapter is dedicated to the connection be-
tween the microscopic and the macroscopic description of the light-
matter interaction. In particular, I will present how we can define the
measurable macroscopic quantities and how we can link them to the
microscopic quantities describing the system. Also, I will show that
within the long-wavelength approximation, the calculation of optical properties can be restricted to
the calculation of the longitudinal response to a longitudinal perturbation.

1.1 Historical background

The first nonlinear optical process which has been observed experimentally is the Kerr effect, named
after John Kerr who discovered it in 1877 [1]. This Kerr effect corresponds to a change in the refractive
index of a material, proportionally to the square of the applied electric field. Later, it has been discov-
ered in 1893 by Friedrich Carl Alwin Pockels that a birefringence can also be induced proportionally
to the electric field. This effect is nowadays known as the Pockels effect or the linear electro-optic ef-
fect; by opposition to the Kerr effect which is sometimes referred as the quadratic electro-optic effect.
But this is only in 1961, with the discovery of Second-Harmonic Generation (SHG) by Peter Franken
and its colleagues [2], that the field of nonlinear optics really starts to exist. Using a quartz crystal,
they managed to double the frequency of the red light of a ruby laser, halving its wavelength from
694.2 nm to an ultraviolet wavelength of 347.1 nm. The discovery of second-harmonic generation is
important for two reasons. First, an ordinary light is non-coherent, so a laser was required for gener-
ating harmonics. This explains the gap in time between the discovery of Kerr and Pockels effects and
the one of the second-harmonic generation. Second, it was the first nonlinear phenomenon where a
coherent output was obtained from a coherent input.
From the discovery of SHG, the field of nonlinear optics grew quickly. In 1962, Bass et al. discovered
the optical rectification, where a quasi-static polarization is induced by an electric field [3]. In 1967,
New et al. observed in gases for the first time the third-harmonic generation [4]. The same year, Lee
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Chapter 1. Introduction

et al. discovered that applying a dc-electric field to a nonlinear medium was changing the intensity
of the second-harmonic generation [5], a process which is now referred as the Electric Field Induced
Second-Harmonic Generation (EFISH). Numerous other nonlinear optical effects have also been dis-
covered since 1961 and the discovery of the second-harmonic generation; and nowadays nonlinear
optics is used in many fields of the physics, biology or chemistry but also in neurosciences, in surgery,
in data transmission and more recently for producing x-ray laser radiations.

1.2 Second-harmonic generation

In the case of a weak excitation, of frequency ω, the electric polarization P is related to the electric
field E by the relation

Pi(ω) =
∑
j

χ
(1)
ij (ω)Ej(ω), (1.1)

where Pi and Ej are Cartesian components of P and E with i, j ∈ {x, y, z}.
This relation defines the linear dielectric susceptibility χ(1). This regime corresponds to the linear
optics, where the response is proportional to the perturbing electric field. The tensor χ(1) describes
the absorption of light, the reflection at surfaces as well as the loss functions.
When the perturbing electric field is more intense, nonlinear effects are no more negligible and we
must account for them.
It is possible to generalize the expression Eq. (1.1) (where we have omitted position and frequency
arguments for sake of simplicity)

Pi =
∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + . . . (1.2)

where χ(2)
ijk is a third rank tensor (meaning a 3 indices tensor and so 27 components), which charac-

terizes the second-order nonlinear susceptibility. Due to the symmetric role of the electric fields, this
tensor follows the permutation rule χ(2)

ijk = χ
(2)
ikj .

If we consider the incident fields as being the superposition of two fields oscillating respectively at
frequencies ω1 and ω2, it is possible to obtain many phenomena, summarized in Tab. 1.1.
The χ(3)

ijkl tensor describes new phenomena such as the four-waves mixing or the Kerr effect. If the

Second-order process Definition

Frequency doubling χ(2)(−2ω1, ω1, ω1)

Optical rectification 2χ(2)(0, ω1,−ω1)

Sum frequency 2χ(2)(−ω1 − ω2, ω1, ω2)

Frequency difference 2χ(2)(−ω1 + ω2, ω1, ω2)

Tab. 1.1: List of different effects that can occur when two beams oscillating respectively at frequencies
ω1 and ω2 propagate in a medium which exhibits a non-zero second-order nonlinear susceptibility. In
this table, we use the convention where the emitted signal is denoted with a minus sign. Nevertheless
this convention is not used in this thesis.

perturbation is not so intense, we can expect the expansion in power of the electric field Eq. (1.2) to
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1.2 Second-harmonic generation

converge, and thus to have |χ(2)
ijk| � |χ

(3)
ijkl|. This is not the case for strong laser-fields, e.g., the High-

Harmonic Generation (HHG), where a lot of harmonics are obtained with a similar intensity [6]. In
this thesis, the perturbing laser-field is considered to be weak enough that the expansion Eq. (1.2)
converges.
As suggested by the title of this thesis, among all possible nonlinear phenomena, only the second-
order nonlinear process where ω1 = ω2 = ω, and known as the second-harmonic generation, will
be considered. The second-harmonic generation process can be explained in a very simple version
by the sketch presented in Fig. 1.1. In this picture, two virtual states are involved, i.e., they do not
correspond to the energy levels of the system. The sketch in Fig. 1.1 describes the absorption of two
photon at the frequency ω and the relaxation to the ground-state by the emission of a photon, whose
frequency is 2ω; due to the conservation of energy.
Obviously, this simple view could not be used to describe real crystals, which are many-body sys-
tems; with more levels involved, and where electrons are interacting with the other electrons and
with the holes. How these many-body effects affect the second-harmonic generation from surfaces is
the primary question that this thesis aims to address.

1.2.1 Applications of second-harmonic generation

Here I give some applications of second-harmonic generation. The goal is not to give an exhaustive
list of all possible applications but to show how important this phenomenon is for many domains of
science, including physics, chemistry or biology.

Frequency conversion

The major application of second-harmonic generation is the frequency conversion. SHG is thus able
to extend the available coherent light sources to shorter wavelengths. Nowadays it is almost im-
possible to imagine an experimental optical set-up including lasers without a nonlinear crystal. The
number of available laser frequencies being limited, second-harmonic generation is an easy and pow-
erful way for generating new laser frequencies.
As a consequence, the search of new nonlinear crystals with a high SHG efficiency is still an inten-
sive area of research, as shown by the literature published on this subject recently [7–11]. But more
recently, a new area of research has emerged, focusing on new ways for obtaining second-harmonic
generation; for novel applications. Among these new applications, we find for instance the on-chip
integrated components with enhanced second-harmonic generation, as nanowires [12, 13]; or new
materials such as layered Transition-Metal Dichalcogenide (TMDs) [14–16].

Second-harmonic microscopy, biological tissues and neurones imaging

One of the most interesting properties of SHG is its sensitivity to the symmetries of the system and in
particular to the inversion symmetry. Along the years, numerous applications have emerged, where
second-harmonic generation plays the key role. Among them, we find the second-harmonic mi-
croscopy, where one uses centro-symmetric substrates in order to image non-centrosymmetric par-
ticles or molecules, see Fig. 1.2(a-b). By shining the substrate with a laser and collecting only the
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Chapter 1. Introduction

Fig. 1.2: (a) SHG imaging of collagen in 20 µm rat-foot flexor tendon cryosections. From Ref. [17]. (b)
SHG measurements of membrane potential in pyramidal neurons from hippocampal cultures and
neocortical brain slices. From Ref. [18]. (c) SHG image of discrete triangular islands of MoS2 crystals.
From Ref. [19].

second-harmonic signal, one obtains a high-sensitivity microscope, detecting single nanoparticles,
e.g. Refs. [20, 21].
This sensitivity is also used for imaging biological tissues and in particular, for the collagen fibres;
which are made of two distinct types of collagen, one being centro-symmetric, the other one not. This
is a major advantage for the second-harmonic generation over the linear optical techniques which are
unable to provide us with a contrast between the different kinds of collagen [17, 22].
The same idea is used in neuroscience to study neurones, with a high resolution SHG imaging [18].

Characterization of thin films, interfaces and surfaces

The use of the sensitivity to symmetries of SHG is not only restricted to biology and neurosciences.
Surface science makes also an extensive use of SHG for the characterization of thin films [23–25],
interfaces [26–29], surfaces [30–34], and more recently monolayer materials as TMDs [15, 19], see
Fig. 1.2(c). In these cases, the second-harmonic generation is used as an in situ, non-invasive and
non-destructive probe. Various techniques have been developed, allowing real-time monitoring of
semiconductors growth, surface reconstruction determination, etc.
The experimental set-up is sketched in Fig. 1.3. A great force of SHG is that in experiments, one
can vary the incoming polarization, choose the angle of incidence, select the out-going polarization
or rotate the sample. This gives access to a lot of information and, going further, it is possible to
identify specific fingerprints of some structures, see, for instance for surfaces, Ref. [35]. In SHG
surface applications, the main condition is that the bulk material used is centro-symmetric. As a
consequence, the second-harmonic signal originates only from the symmetry-breaking regions as
defects, interfaces and, more importantly, surfaces.

1.2.2 Second-harmonic generation related phenomena

Some phenomena are related to the second-harmonic generation and in particular to the propagation
of the pump and harmonic waves inside the medium.

6



1.3 Microscopic-macroscopic connection

Fig. 1.3: An SHG experiment for probing the structural properties of an interface. Taken from Ref. [36]

Pump depletion

The pump depletion is a phenomenon that occurs when the conversion to second-harmonic inside
the nonlinear medium becomes important, with respect of the linear absorption of light. When this
is the case, the intensity of the pump decreases quickly inside the medium. As a consequence, the
observed second-harmonic signal intensity is lower than expected, because only a small region of
the material contributes to the SHG signal. However, this thesis focuses on the calculation of the
second-order nonlinear susceptibility χ(2) and not on the propagation of the pump or the harmonic
light inside the medium. As the pump depletion does not affect the second-order susceptibility, this
phenomena is not discussed in this thesis.

Finite linewidth effects

The laser sources have always a finite line-width. In particular, the line-width of the pumping laser,
have a influence on the emitted second-harmonic signal. The effects of the finite line-width of a laser
source can always be obtained by considering a superposition of monochromatic waves. Therefore,
only strictly monochromatic waves are considered in this thesis and no effect of the finite line-width
of the interacting waves is discussed in this thesis.

1.3 Microscopic-macroscopic connection

Throughout this thesis, I will extensively discuss about microscopic and macroscopic quantities. The
microscopic quantities to which I refer are quantities that fluctuate in space at the scale of the micro-
scopic world. The fluctuations of the charges and of the electromagnetic field are of the order of 0.1
nm or less. This number is small in comparison to the associated numbers for the optical probes used
in experiments; e.g., the infra-red wavelength of a Ti:sapphire laser being 780 nm.
Thus in experiments, all microscopic quantities are averaged by measurement devices in space and
all the fluctuations vanish. Therefore, the physical or measurable quantities are macroscopic quan-
tities which are smooth and slowly varying in space. Some examples of these quantities are the
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Chapter 1. Introduction

transmission/reflection coefficients, the absorption spectra or the loss functions. In the case of the
generation of second-harmonic by reflection of light on a surface, the measurable quantities are the
reflection coefficients, as explained more in details in Chap. 2.
The measurable quantities, or macroscopic quantities, are entirely determined by the microscopic
quantities. The procedure which links the microscopic quantities (described by microscopic Maxwell
equations, see Eqs. B.1) to the macroscopic quantities (macroscopic Maxwell equations, Eqs. B.9) is
called the macroscopic averaging.
The question of the definition of this averaging procedure is not simple and requires some care. Dif-
ferent definitions can be found in the literature, e.g., Refs. [37–40]. As pointed out in Ref. [39], this
procedure depends on the nature of the system. In this thesis we adopt the approach of R. Del Sole
and E. Fiorino [38] for dealing with periodic systems.

1.3.1 Local-fields

When applying an external electric field Eext to a dielectric material, electric dipoles are created at a
microscopic level. These dipoles are responsible for the apparition, inside the material, of an induced
field Eind. The total electric field felt by electrons is microscopic and is thus given by these two con-
tributions; E = Eext + Eind. Taking into account the effects due to the presence of the induced field,
but also due to the density fluctuations or any kind of microscopic inhomogeneities, is a challenging
task. These effects are often referred as the local-field effects.
In the case of bulk materials, the local-field effects have been widely studied and in particular their ef-
fects on the optical properties are now well established. Their effects on optical properties of surfaces
is still an open question, mainly because the theoretical description and the numerical simulations in
the case of surfaces are more intricate than for bulk materials. The abrupt change in the electronic
density at the interface with vacuum leads to a huge variation of the electric field. As a result, strong
effects of the local field are expected, in particular in the direction perpendicular to the plane of the
surface. This thesis aims to quantify how important these effects are for the linear and the second-
order optical properties of surfaces.

1.3.2 Macroscopic quantities

From a theoretical point of view, the inclusion of the local-field effects is closely related to the macro-
scopic averaging mentioned previously. In this thesis, the inclusion of the local-field effects follows
the formalism of Ref. [38], which has been extended to the second-order by Luppi et al. in Ref. [41]
and Huebener et al. in Ref. [42,43]. The first step in this approach is to define a perturbing field, such
as

EP = Eext + Eind,T = E−Eind,L, (1.3)

where E is the total microscopic field, Eext is the external field and Eind,T and Eind,L are respectively
the transverse and the longitudinal components of the field induced by the external perturbation.
In this thesis, I will focus on two macroscopic quantities, the macroscopic dielectric tensor and
second-order susceptibility tensor. The macroscopic dielectric tensor is defined as the link between
the macroscopic first-order electric displacement and the macroscopic total electric field. In frequency
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1.3 Microscopic-macroscopic connection

space reciprocal space, this relation reads as

D
(1)
M (q;ω) =

↔
εM (q;ω)EM (q;ω). (1.4)

The macroscopic second-order susceptibility is defined as the link between three measurable quan-
tities, the macroscopic second-order polarization P

(2)
M and the two macroscopic incoming total elec-

tric fields EM ,

P
(2)
M (q;ω) =

∑
q1,q2

∫
dω1dω2

↔
χ

(2)

M (q,q1,q2;ω1, ω2)EM (q1;ω1)EM (q2;ω2)δq,q1+q2δ(ω − ω1 − ω2).

(1.5)
Note that the delta functions ensure the conservation of the energy and the conservation of the mo-
mentum.

The first-order polarization is related to the perturbing electric field via the quasi-polarisability

tensor, denoted
↔
α̃

(1)

. The time Fourier transform of this definition reads as [38]

P(1)(r;ω) =

∫
d3r1

↔
α̃

(1)

(r, r1;ω)EP (r1;ω). (1.6)

Similarly, the second-order polarization is given by

P(2)(r;ω) =

∫
d3r1d

3r2

∫
dω1dω2δ(ω − ω1 − ω2)

↔
α̃

(2)

(r, r1, r2;ω1, ω2)EP (r1;ω1)EP (r2;ω2), (1.7)

where
↔
α̃

(2)

is the second-order quasi-polarisability [41]. Assuming a periodic crystal, it is possible to
perform the space Fourier transform of Eq. (1.6) and Eq. (1.7)

P
(1)
G (q;ω) =

∑
G1

[ ↔
α̃

(1)

(q;ω)
]
GG1

EP
G1

(q;ω), (1.8a)

P
(2)
G (q;ω) =

BZ∑
q1q2

∑
G1G2

∫
dω1dω2δq,q1+q2δ(ω − ω1 − ω2)

×
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
GG1G2

EP
G1

(q1;ω1)EP
G2

(q2;ω2). (1.8b)

where q, q1 and q2 are vectors in the first Brillouin zone (BZ), G, G1, and G2 are reciprocal lattice

vectors, and the notations PG(q;ω) and
[ ↔
α̃

(1)

(q;ω)
]
GG1

stand respectively for P(q + G;ω) and
↔
α̃

(1)

(q + G,q + G1;ω).

In reciprocal space, the macroscopic averaging procedure consists in keeping only the G = 0 com-
ponent [44], or, following the idea of Refs. [39, 40], this procedure is defined by a projector on the
averaged part, denoted Pa, whose expression in reciprocal space is Pa = δG0.
In Eqs. (1.8), the first- and second-order microscopic polarizations are explicit functions of the per-
turbing field, whereas the macroscopic ones depend upon the macroscopic total electric field. To

9



Chapter 1. Introduction

express the microscopic polarizations in terms of the total electric field, we use the relation between
the perturbing field and the total electric field obtained from Maxwell equations [41], which reads as

EP
G(q;ω) = EG(q;ω) + 4π

q + G

|q + G|
PLG(q;ω), (1.9)

where PL is the longitudinal part of the polarization (see App. B.3 for the definition of the longi-
tudinal and transverse parts). After some algebra that the interested reader can find detailed in
Ref. [41, 45], we obtain the expression of the macroscopic dielectric tensor

↔
εM (q;ω) =

↔
1 +4π

[ ↔
α̃

(1)

(q;ω)
]
00

[
↔
1 +4π

q

q

q

q

[ ↔
α̃

(1)

(q;ω)
]
00

1− 4π
[
α̃(1),LL(q;ω)

]
00

]
, (1.10)

with α̃(1),LL the longitudinal-longitudinal part of
↔
α̃

(1)

and of the expression of the macroscopic
second-order susceptibility

↔
χ

(2)

M (q,q1,q2;ω1, ω2) =

[
↔
1 +4π

[ ↔
α̃

(1)

(q;ω)
]
00

1− 4π
[
α̃(1),LL(q;ω)

]
00

q

q

q

q

]
.
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
000

:

×

[
↔
1 +4π

q1

q1

q1

q1

[ ↔
α̃

(1)

(q1;ω1)
]
00

1− 4π
[
α̃(1),LL(q1;ω1)

]
00

][
↔
1 +4π

q2

q2

q2

q2

[ ↔
α̃

(1)

(q2;ω2)
]
00

1− 4π
[
α̃(1),LL(q2;ω2)

]
00

]
.

(1.11)

1.3.3 Comparison with the Lorentz model

A well-known model for the local-field correction is the Lorentz model, which has been intensively
discussed in the literature, see Refs. [46–48] and references therein. Therefore it is interesting to
compare the results obtained with this model to the exact results obtained above.
In the Lorentz model of the local field, the local field at any point of a crystal is given by the sum of
the applied external field and an induced field created by neighbouring dipoles

Eloc(ω) = Eext(ω) + Edip(ω),

with Edip(ω) = 4π
3 P(ω) for a cubic media [46].

In that case, the polarization, up to the second-order, is given by [49]

P(ω) =
[
1− 4π

3
α(1)(ω)

]−1(
α(1)(ω)Eext(ω)+

↔
α

(2)
(ω, ω1, ω2)Eloc(ω1)Eloc(ω2)

)
, (1.12)

where α(1) and
↔
α

(2)
are first- and second-order polarisabilities. When neglecting the contribution

of P(2) to Eloc, we obtain the expression of the macroscopic dielectric function and second-order
susceptibility in the Lorentz model [49]

εLorentz(ω) = 1 + 4πα(1)(ω)
[ 1

1− 4π
3 α

(1)(ω)

]
, (1.13a)

10



1.4 Longitudinal-transverse and optical limit

↔
χ

(2)

Lorentz (ω, ω1, ω2) =
[ 1

1− 4π
3 α

(1)(ω)

] ↔
α

(2)
(ω, ω1, ω2)

[ 1

1− 4π
3 α

(1)(ω1)

][ 1

1− 4π
3 α

(1)(ω2)

]
. (1.13b)

These expressions are very similar to the exact expressions Eq. (1.10) and Eq. (1.11), and in particular,
the terms in the brackets account equally for the local-field effects in both cases. Moreover, if we as-
sume the cubic symmetry, the dielectric tensor reduces to its longitudinal-longitudinal-longitudinal
part [41].

↔
χ

(2)

M (q,q1,q2;ω1, ω2) = εLLM (ω)
↔
α̃

(2),LLL

(q,q1,q2;ω1, ω2)εLLM (ω1)εLLM (ω2), (1.14)

whereas the Lorentz model gives [50, 51]

↔
χ

(2)

Lorentz (ω, ω1, ω2) =

[
εLorentz(ω) + 2

3

]
↔
α

(2)
(ω, ω1, ω2)

[
εLorentz(ω1) + 2

3

] [
εLorentz(ω2) + 2

3

]
(1.15)

Interestingly, the Lorentz model is found to give very similar analytical expression of the local-field
correction, compared to the exact expressions obtained from the macroscopic-microscopic connec-
tion. Nevertheless, in the latter, no approximation has been introduced, in particular concerning the
symmetry of the system, whereas the Lorentz model is restricted to a cubic symmetry. Moreover,
the Lorentz model contains the polarisabilities (i.e., responses to the applied external field) whereas
the the macroscopic-microscopic connection yield formulae containing the quasi-polarisabilities (i.e.,
responses to the perturbing field). Note that the Lorentz model for the local field can be improved by
replacing the Lorentz factor ε+2

3 by a more realistic expression, see for instance, Ref. [52].
Even if the Lorentz model has been used to investigate experimentally the local-field effects, e.g., in
a dense atomic vapor [53], it is numerically valid only in the low-energy region, far from resonances
and is not really used in practice.

1.4 Longitudinal-transverse and optical limit

The optical limit and the dipole approximation play an important role in the ab initio description of
optical properties. Here I report some important results, for the linear and nonlinear second-order
optical properties, related to the optical limit, also called long-wavelength approximation.

1.4.1 Dielectric tensor

Let us consider a periodic, non-magnetic (H = B) crystal, without external charges.
In the longitudinal-transverse basis (see App. B.3 for the definition of longitudinal and transverse
fields), the dielectric tensor reads as1

↔
εM (q;ω) =

(
εLLM (q;ω) εLTM (q;ω)

εTLM (q;ω) εTTM (q;ω)

)
. (1.16)

1Here εLLM is a scalar, εLTM and εTLM are vectors and εTTM is a 2×2 matrix.
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Chapter 1. Introduction

Inserting the definition of the macroscopic dielectric function into Maxwell equations (see Eqs B.19)
yields the equation of propagation for the macroscopic electric field

|q|2ET (q;ω) =
ω2

c2

↔
εM (q;ω)E(q;ω), (1.17)

where q is the momentum of the photon.
This equation gives directly the familiar normal modes [38, 39, 54]. If the electric field is purely
longitudinal (E = EL), we obtain the condition of propagation of the plasmon, εTLM (q;ω) = 0.
In the case of a purely transverse electric field, we obtain the dispersion relation of the photon,

|ω2 ↔ε
TT

M (q;ω)− c2q2
↔
1 | = 0.

It is worthwhile to notice that the dispersion relation of the photon involves only transverse com-
ponents of

↔
εM . This is in contrast with the Time-Dependent Density-Functional Theory (presented

later in Chap. 3), which gives access to the longitudinal-longitudinal (LL) part of the dielectric tensor
only. Nevertheless, we can show that the LL part of the dielectric tensor is sufficient for accessing
every interesting quantity, within the long-wavelength approximation.
Let us consider the long-wavelength limit.2 This approximation corresponds to a vanishing momen-
tum, q→ 0. Any quantity can therefore be expanded in terms of power of q. The dipole approxima-
tion corresponds to the truncation of this expansion at the lowest-order in q.

The tensors
↔
εM (q;ω) and

↔
α̃

(1)

(q,q;ω) are analytic; their limit for q → 0 does not depend on the

direction of q. Let us denote these limits
↔
εM (ω) and

↔
α̃

(1)

(ω).3

Let us now assume that the tensor
↔
α̃

(1)

(ω) is diagonalisable, meaning that the crystal exhibits three
principal axis ni. This is the case for all the crystal classes but monoclinic and triclinic crystals [55].
In the case of monoclinic and triclinic crystals, the tensor can still be diagonal, but this is not true in
general.
In the basis of the principal axis, and within the long-wavelength limit, the dielectric tensor is found

to be diagonal, from Eq. (1.10) and using the relation ni.
↔
α̃

(1)

= α̃
(1)
ii ni; with the i-th component of the

dielectric tensor εiiM , given by

εiiM (ω) = ni.
↔
εM (ω).ni =

1

1− 4πα̃LL(ni;ω)
, (1.18)

whereas εijM (ω) = 0 for i 6= j.
Thereby, the dielectric tensor and the quasi-polarisability are diagonal in the same basis, and the
components are given by

εiiM (ω) = εLLM (q→ 0;ω),
q

|q|
= ni. (1.19)

2The range of validity of this approximation can be easily estimated. Assuming the lattice parameter of silicon (a0 ∼
5.4Å) as the characteristic length of the system, the long-wavelength limit corresponds to λ� a0. If we choose the energy
of the photon to be smaller than 22.5eV , the wavelength is already such that λ > 10a0. This approximation is perfectly
suitable for the low-energy region of the optical spectra.

3Proving the analyticity of the dielectric tensor is far from been simple or obvious, see Ref. [38].
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1.4 Longitudinal-transverse and optical limit

Let us consider now that the tensor
↔
α̃

(1)

(ω) is not diagonalisable, as it is the case for monoclinic and
triclinic symmetries. For these crystals, the components of the dielectric tensor can still be computed
from the LL part of the dielectric tensor. To illustrate that, I take the example of a monoclinic crystal
whose basal plane is perpendicular to the z-axis. In this special case, the dielectric tensor reads as

↔
εM (ω) =

ε
xx
M (ω) εxyM (ω) 0

εxyM (ω) εyyM (ω) 0

0 0 εzzM (ω)

 . (1.20)

Computing the LL part of
↔
εM (ω) for q =

nx±ny√
2

gives

q.
↔
εM (ω).q =

εxxM (ω) + εyyM (ω)

2
± εxyM (ω). (1.21)

We obtain easily that

εxyM (ω) =
1

2

(
εLLM (q

nx + ny√
2

;ω)− εLLM (q
nx − ny√

2
;ω)
)
, q → 0, (1.22)

whereas the εiiM (ω) elements are obtained using Eq. (1.19).
Therefore, in the dipole approximation, within the long-wavelength limit, the dielectric tensor can
be entirely computed from LL calculations. It is worthwhile to notice that this result is true for
any symmetry class and valid independently of the level of approximation used for computing the
dielectric tensor.
From the knowledge of the entire dielectric tensor in one basis, the dielectric tensor can be computed
in any basis. Obviously, this result is no more valid out of the dipole approximation.

Longitudinal-transverse coupling

In the basis of the principal axis (if the dielectric tensor is diagonalisable), and within the long-
wavelength limit, there is no longitudinal-transverse coupling (εTLM (q→ 0;ω) = 0) and no transverse-
longitudinal coupling (εLTM (q → 0;ω) = 0). Indeed, if the macroscopic electric field is longitudinal
(transverse), and propagates along (perpendicular to) a principal axis, the macroscopic electric dis-
placement DM obtained is along (perpendicular to) the same principal axis, and is also longitudinal
(transverse).
Nevertheless, a longitudinal-transverse coupling is non-vanishing in other basis than the principal
axis basis, even if the dielectric tensor is diagonalisable;4 except for the cubic symmetry, for which
the dielectric tensor is diagonal in any basis.

Cubic crystals

The distinction between the transverse and the longitudinal parts of the dielectric tensor in the long-
wavelength limit, i.e., for a vanishing momentum, is meaningless. This can be illustrated easily with

4Also, if q 6= 0, the principal axis depend on q and are not aligned a priori with q. Therefore it is no more possible to
calculate the entire dielectric tensor from longitudinal calculations if q 6= 0.
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Chapter 1. Introduction

the example of cubic crystals. Indeed, in any basis, as the longitudinal-transverse couplings vanish,
we have the two equations

DM (q→ 0;ω) =
↔
εM (ω)EM (q→ 0;ω),

DT
M (q→ 0;ω) =

↔
ε
TT

M (q→ 0;ω)ET
M (q→ 0;ω),

q

|q|
= nj (1.23)

that can be projected on the principal axis ni, with i 6= j, yielding

DT,i
M (q→ 0;ω) = εiiM (ω)ET,iM (q→ 0;ω),

DT,i
M (q→ 0;ω) = εTT,iiM (q→ 0;ω)ET,iM (q→ 0;ω).

q

|q|
= nj (1.24)

Using Eq. (1.18), we obtain that

εTT,iiM (qnj;ω) = εLLM (qni;ω), q → 0 and i 6= j. (1.25)

This result is valid as soon as the dielectric tensor is diagonalisable, but for cubic crystals, this relation

becomes
↔
ε
TT

M (q→ 0;ω) = εLLM (q→ 0;ω)
↔
1 , for any q, because all the directions are equivalent. This

shows that the denomination longitudinal or transverse loses its meaning in the long-wavelength
limit. This result has been discussed by P. Noziéres and D. Pines in Ref. [56], in the special context of
the random-phase approximation. Nevertheless, as pointed out in Ref. [57], this result is general and
is not restricted to some specific approximations on the calculation of the dielectric tensor.

1.4.2 Second-order susceptibility

Similar considerations for the second-order susceptibility are beyond the scope of this thesis. Already,
the link between the components of χ(2)

M and its longitudinal-longitudinal-longitudinal (LLL) part is
non-trivial. In this section, I show how it is possible to obtain the components of the second-order
susceptibility from its LLL part only, that we can compute from Time-Dependent Density Functional
Theory (see Chap. 3).
Let us assume the analyticity of the second-order susceptibility χ(2)

M (q,q1,q2;ω, ω1, ω2) and the second-
order quasi-polarisability α̃(2)(q,q1,q2;ω, ω1, ω2)5. It is thus possible to define χ(2)

M (ω, ω1, ω2) and
α̃(2)(ω, ω1, ω2) as their respective limits for q1 → 0 and q2 → 0.

The different components of
↔
χ

(2)

M can be obtained from Eq. (1.11). There is in total four groups of com-
ponents for χ(2)

M , organised by group of indices. Their calculation from the longitudinal-longitudinal-
longitudinal (LLL) part of the dielectric tensor only is not obvious, and depends on the symmetries
of the crystal. We omit here the frequency dependence in second-order tensor for conciseness.

Components: χ(2)
M,iii

The diagonal elements of the susceptibility tensor are given by

χ
(2)
M,iii = ni. χ

(2)
M : ni.ni = εiiM (2ω)α

(2)
iii ε

ii
M (ω)εiiM (ω),

5The analyticity of the χ(2)
M tensor will be proven in Chap. 7.
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1.4 Longitudinal-transverse and optical limit

which are obviously related to the LLL part of susceptibility

χ
(2)
M,iii = χ

(2)LLL
M (2q,q,q), q→ 0,

q

|q|
= ni.

These diagonal components can always be computed from the LLL part of the tensor, regardless of
the symmetries of the system.

Components: χ(2)
M,iij = χ

(2)
M,iji

Using the relations

(ni + nj). χ
(2)
M : ni.nj = χ

(2)
M,iij + χ

(2)
M,jij ,

(ni − nj). χ
(2)
M : ni.nj = χ

(2)
M,iij − χ

(2)
M,jij ,

we can obtain
2χ

(2)
M,iij = χ

(2)LLL
M (ni + nj,ni,nj) + χ

(2)LLL
M (−ni + nj,−ni,nj) (1.27)

Therefore, the components of χ(2)
M,iij = χ

(2)
M,iji can always be computed from the LLL part of the tensor,

regardless the symmetries of the crystal; at the cost of computing two longitudinal responses.

Components: χ(2)
M,ijj

Using q1

|q1| = ni and q2

|q2| =
ni+nj√

2
, we obtain that

1

2

(
χ

(2)
M,iij + χ

(2)
M,ijj + (1 +

√
2)(χ

(2)
M,jji + χ

(2)
M,jjj)

)
= χ

(2),LLL
M (q1 + q2,q1,q2, 2ω, ω;ω) (1.28)

By combining this expression with the two previous results, it is possible to calculate the components
ijj of the second-order susceptibility tensor. Note that in general, the terms on the left-hand side are
not all non-zero for the same symmetry and therefore, this equation get simpler for many of the
symmetries.

Components: χ(2)
M,ijk = χ

(2)
M,ikj , i 6= j 6= k

There is no simple general expression for obtaining these components from the longitudinal part of
the second-order susceptibility tensor. However, for some symmetry classes, these components can
be easily obtained, e.g., cubic crystals. In that case, the only non-zero components are the χ(2)

M,ijk. By
choosing q1

|q1| = q2

|q2| = q
|q| =

ni+nj+nk√
3

, we obtain that

χ
(2)
M,ijk(2ω, ω, ω) =

1

6
χ

(2)LLL
M (2q,q,q; 2ω, ω, ω).

Obviously, the choices presented here are not unique are clever choices can be found, based on the
specific symmetries of the crystal considered.
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1.5 Present work

The study of optical properties of surfaces is driven by one main motivation: understanding how
the presence of the surface modifies the bulk optical properties and related spectroscopic techniques.
This fundamental question has many practical implications: optical spectroscopies are now used
routinely, e.g., for monitoring and controlling of the surface growth in real time [58]; moreover, it is
now well established that physical properties of nano-scaled systems are strongly influenced by their
surface behavior [59].

Over the last years, experimental and theoretical approaches have considerably advanced, deepen-
ing our understanding of the processes occurring at the surface of materials. However, these optical
properties result of an intricate interplay of numerous effects and achieving a correct theoretical de-
scription of surfaces is far from being simple. First of all, the atomic relaxation at the interface with
vacuum is responsible for a change in the electronic properties of the material, creating for instance
surface states that can be located in the gap of the material [60]. The local-field and other effects re-
lated to many-particle physics, such as electron-hole interactions, occurring in all spectroscopic mea-
surements must be properly included. Their precise description for surfaces is nevertheless quite
involved [61].

In this thesis, the optical properties of surfaces are computed using the common approach which
relies on the super-cell technique and the slab geometry. Unfortunately, the definition of a surface
dielectric tensor (or second-order susceptibility) is still unclear, and the difference between the optical
response of a thin film (made of two surfaces) and the optical response of a semi-infinite system,
with a single surface, has not really being investigated so far, in particular when local-field effects are
included.

The aim of this thesis is to clarify the definition of the surface optical properties and to give the
theoretical background needed for computing linear and second-order optical properties of a single
surface, from calculations performed in slab geometry. The Chap. 5 and Chap. 6 are dedicated to
the theory behind the calculation of the surface second-harmonic spectra in super-cell geometry, at a
microscopic level.

A macroscopic formalism, allowing us to obtain the first and second-order optical properties of
surfaces is then developed in Chap. 7, allowing us to include the local-field effects. Chap.8 presents
how we can treat a truly isolated slab, from a periodic super-cell approach.
I present in Chap 9, for the first time, ab initio calculations of the local-field effects on surface second-
harmonic generation spectra. Also, an insight of the excitonic effects on the surface second-harmonic
spectra is presented in Chap. 10.

Summary

As a summary, I have presented in this chapter the phenomenon of second-harmonic generation,
several of its applications and some related phenomena. Then I have presented how the macroscopic
quantities, directly related to quantities measured in experiments depend on the microscopic quanti-
ties, fluctuating on the nanoscale. I have also discussed about the longitudinal and transverse parts of
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1.5 Present work

the optical responses, showing in particular that within the long-wavelength limit, the longitudinal
response to longitudinal perturbations is sufficient for describing the first- and second-order optical
properties of any crystals. Finally, the scope and the organisation of the thesis have been presented.
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2. Second-harmonic generation in reflection

The properties of the nonlinear media, i.e., the intensity and polarization
dependence of SHG, are often measured in reflection for bulk materi-
als [62, 63], interfaces [64–69], and layered materials [70, 71]. In such a
set-up, a monochromatic laser, oscillating at the frequency ω, reflects on
the surface of a material, yielding two waves. One is a fraction of the
fundamental light, reflected following the Fresnel laws. The other one is
the second-harmonic emitted by the nonlinear medium and oscillating at the frequency 2ω. A filter
is used to discard between the reflected fundamental light and the second-harmonic signal, which
contains the information concerning the material investigated. Thus, by controlling the polarizations
or the angle of incidence, one can easily probe the nonlinear or symmetry properties of a wide class
of materials.
The first theoretical description of second-harmonic generation from surfaces is due to Bloembergen
and Pershan [72], followed by papers from Tom et al. [64], and Mizhahi and Sipe [73]. Along the
years, the generation of second-harmonic from surfaces has been widely studied, resulting in a theo-
retical description, which is a generalization of Fresnel reflection coefficients for the case of the SHG.
The second-harmonic reflection coefficients or generalized reflection coefficients, denoted R, are de-
fined as the ratio of the reflected second-harmonic intensity to the square of the fundamental intensity

R(ω) =
Iout(2ω)

Iin(ω)2
, (2.1)

where the intensity I(ω) is related to the electric field by the relation I(ω) = c
2π |E(ω)|2.

In the most general case, these reflection coefficients depend upon the input polarization, the mea-
sured polarization, the incidence angle and the azimuthal angle in the plane of the surface.
In experiments, the fundamental and reflected waves are often p-polarized or s-polarized. In that
case and in order to distinguish between the four different possible combinations of polarizations, R
is annotated with two letters ( s or p ), the first one standing for the polarization of the fundamental
wave and the second one for the reflected wave.1

For instance, Rsp denotes the second-harmonic reflection coefficient obtained for a s-polarized inci-
dent wave and p-polarized reflected wave.2

1Any other possible polarization will be labelled by α, as explained in Fig. 2.1(a).
2Sometimes, one can also find in the literature a q-polarized light, corresponding to the polarization at 45° between

s and p. Also, the reader must be careful when comparing with the literature because some authors use the opposite
convention.
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Chapter 2. Second-harmonic generation in reflection

Despite the growing interest in SHG, the literature remains unclear concerning the derivation of the
reflection coefficients, ant it is not always easy to understand what is the phenomenological treat-
ment in the derivation of that coefficients, an exception been Ref. [73].
The aim of this chapter is to present a comprehensive derivation of the expressions of the different
reflection coefficients, for both surface and bulk contributions, based on the work of Ref. [73].

Modelling the experiment

The experiment is modelled by a semi-infinite medium as represented in Fig. 2.1. The z-axis is chosen
to be perpendicular to the surface plane. The upper half-space (z > 0) corresponds to the vacuum re-
gion whereas the lower half-space is filled with the probed medium. The angle between the incident
beam and the normal to the surface (z-axis) is denoted θi (see Fig. 2.1(a)). In the surface plane (x− y
plane), the azimuthal angle, i.e., the angle between the projection of the incident beam and the x-axis,
is called φ. The formalism presented here is a macroscopic formalism, therefore the medium is con-
sidered to be homogeneous and isotropic for the linear properties, implying that only one refracted
ray is propagating. The dielectric tensor

↔
εM (r, r′;ω) is thus replaced by a macroscopic dielectric

function, denoted ε(ω). 3

As shown by Bloembergen and Pershan in Ref. [72], the harmonic waves reflected and transmitted
at the boundary of a nonlinear medium follow a generalized Fresnel law. In the case of SHG, this
leads to a reflected wave propagating along a direction that exhibits the same angle to the normal,
denoted θr, than the fundamental light. Therefore, we only keep θ = θi = θr in our notations.
Following Ref. [73], we express any electric field E(r) for z 6= 0, as the sum of two waves, an upward-

Fig. 2.1: (a) SHG geometry in reflection from a surface. θ is the incidence angle and φ is the azimuthal
angle. α is the polarization angle in the plane of incidence: the p-polarization corresponds to α =
0° and the s-polarization corresponds to α = 90°. Adapted from Ref. [74]. (b) A sheet of nonlinear
polarization is considered at z = 0−, surrounded by an isotropic and homogeneous linear medium,
characterised by a macroscopic dielectric function ε(ω). (c) Representation of the ŝ, p̂ and q̂ vectors,
as explained in the text.

propagating wave and a downward-propagating wave, denoted respectively E+(r) and E−(r).
The electric field reads as

E(r) = E+(r)Θ(z) + E−(r)Θ(−z), z 6= 0, (2.2)
3Taking into account the anisotropy of the dielectric tensor is simple but makes the notations heavier.
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2.1 Second-order polarization induced by incident light

where Θ(z) is the Heaviside function, Θ(z) = 1 as z > 0 and 0 elsewhere.
The wave-vectors for upward/downward propagating waves are written as

qi+(ω) = q||(ω)κ̂ + qi⊥(ω)ẑ,

qi−(ω) = q||(ω)κ̂− qi⊥(ω)ẑ,
(2.3)

where κ̂ is the in-plane unit vector defined by κ̂ = cos(φ)x̂ + sin(φ)ŷ and i can be the medium (m)
or the vacuum (v). We define q|| to be the in-plane component of the wave-vector and q⊥ the out-of-

plane component of the wave-vector. Here qi(ω)2 = εi(ω)
(
ω
c

)2and qi⊥(ω) =
(
εi(ω)ω

2

c2
− q2
||(ω)

)1/2
=

ω
c

(
εi(ω)− sin2(θ)

)1/2, qi⊥ being chosen to have Im[qi⊥] ≥ 0 and Re[qi⊥] ≥ 0 if Im[qi⊥] = 0. This conven-
tion allows us to be sure that the wave associated with qi+ is upward propagating and that the one
associated with qi− is downward-propagating.
The s and p polarizations are defined by the following unit vectors

ŝ = κ̂× ẑ,

p̂i± =
(q||ẑ∓ qi⊥κ̂)

qi
.

This is illustrated in Fig. 2.1(c). For conciseness, we omit the frequency dependence here.
One can easily check that we have the following relations

ŝ× q̂i± = p̂i±,

q̂i± × p̂i± = ŝ,

p̂i± × ŝ = q̂i±,

(2.4)

where q̂i± = qi±/q
i. Thus (̂s; q̂i+; p̂i+) and (̂s; q̂i−; p̂i−) are direct basis.

Therefore, the wave associated with q̂i+ (respectively q̂i−) only propagates along ŝ and p̂i+ (respec-
tively p̂i−).
From Maxwell equations, the upward and the downward propagating waves read as

Ei
+(r;ω) = (Eis+(ω)̂s + Eip+(ω)p̂i+(ω))eiq

i
+(ω)r,

Bi
+(r;ω) =

√
εi(ω)(Eip+(ω)̂s− Eis+(ω)p̂i+(ω))eiq

i
+(ω)r,

Ei
−(r;ω) = (Eis−(ω)̂s + Eip−(ω)p̂i−(ω))eiq

i
−(ω)r,

Bi
−(r;ω) =

√
εi(ω)(Eip−(ω)̂s− Eis−(ω)p̂i−(ω))eiq

i
−(ω)r.

z 6= 0 (2.5)

2.1 Second-order polarization induced by incident light

In this section, we will give the expression of the second-order polarization induced by the incident
field. Let us denote the incident field in the vacuum Ein(ω). The polarization of that field is denoted
êin(ω) which can be ŝ or p̂−(ω); depending if the field is s- or p-polarised. This incident field reads as

Ein(r;ω) =
(
Esin(ω)̂s + Epin(ω)p̂v−(ω)

)
ei(q||(ω)r||−qv⊥(ω)z) = êin(ω)|Ein(ω)|ei(q||(ω)r||−qv⊥(ω)z). (2.6)
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Chapter 2. Second-harmonic generation in reflection

Polarisation Reflection Transmission

s rsij(ω) =
qi⊥(ω)−qj⊥(ω)

qi⊥(ω)+qj⊥(ω)
tsij(ω) =

2qi⊥(ω)

qi⊥(ω)+qj⊥(ω)

p rpij(ω) =
qi⊥(ω)εj(ω)−qj⊥(ω)εi(ω)

qi⊥(ω)εj(ω)+qj⊥(ω)εi(ω)
tpij(ω) =

2qi⊥(ω)
√
εj(ω)εi(ω)

qi⊥(ω)εj(ω)+qj⊥(ω)εi(ω)

Tab. 2.1: Fresnel coefficients in reflection and in transmission for s- and p-polarized lights.

At the interface with the medium, this field is transmitted. The change in phase and amplitude of the
wave at the boundary is described by the Fresnel transmission coefficients (see Tab. 2.1). tpolij denotes
the transmission coefficient where pol is the polarization and can be s or p, and i and j can be the
medium (m) or the vacuum (v). The field inside the medium, denoted Eω(r), is given by

Eω(r) =
(
Esin(ω)tsvm(ω)̂s + Epin(ω)tpvm(ω)p̂m− (ω)

)
ei(q||(ω)r||−qm⊥ (ω)z) = êω|Ein(ω)|ei(q||(ω)r||−qm⊥ (ω)z),

(2.7)
where the change in direction of the field has been taken into account by replacing qv⊥(ω) by qm⊥ (ω),
p̂v−(ω) by p̂m− (ω) and êin(ω) by êω. Here êω =

[
ŝtsvm(ω)̂s + p̂m− (ω)tpvm(ω)p̂v−(ω)

]
êin(ω).

This incident field in the medium, Eω, leads to the apparition of a second-order polarization in the
medium, denoted P(2), which is given by

P(2)(r; 2ω) =

∫ 0

−∞
d3r′

∫ 0

−∞
d3r′′

↔
χ

(2)
(r, r′, r′′;ω, ω) : Eω(r′)Eω(r′′), (2.8)

where
↔
χ

(2)
is the macroscopic second-order susceptibility of the medium.

Introducing the expression of the field inside the medium, Eω, in Eq. (2.8) gives directly

P(2)(r; 2ω) =

∫ 0

−∞
d3r′

∫ 0

−∞
d3r′′

↔
χ

(2)
(r, r′, r′′;ω, ω) : êωêω|Ein|2e

i(q||(ω)(r′||+r′′||)−q
m
⊥ (ω)(z′+z′′))

. (2.9)

2.2 Harmonic field inside the material

In this section, we consider the non-linearity to originate only from the surface region. The bulk
contribution to the generation of second-harmonic is treated later in Sec. 2.4. The expression of the
polarization Eq. (2.9) is general and no approximation has been introduced at that stage. Following
Ref. [73], instead of using Eq. (2.9), we consider a second-order polarization having the following
form

P(2)(r; 2ω) =
↔
χ

(2)S
(ω, ω) : êωêω|Ein|2e2i(q||(ω)r||−qm⊥ (ω)z)δ(z − z0), (2.10)

where the second-order susceptibility is replaced by a second-order surface susceptibility
↔
χ

(2)S
, as-

sumed to be local and homogeneous in the plane of the surface. Moreover, the surface polarization is
assumed to be a polarization sheet located at z = z0. This is where the phenomenological treatment
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2.2 Harmonic field inside the material

stems. In order to ease notations, we define the quantity P(2ω) as

P(2)(r; 2ω) = P(2ω)e2i(q||(ω)r||−qm⊥ (ω)z)δ(z − z0), (2.11)

where P(2ω) =
↔
χ

(2)S
(ω, ω) : êωêω|Ein(ω)|2.

This second-order polarization becomes a source term in Maxwell equations that leads to the second-
harmonic field created at the surface of the medium. The reflected harmonic light will thus be given
by the solution of the upward-propagating second-harmonic wave in presence of the second-order
polarization as a source term.
As pointed out by Mizrahi et al. [73], the position of the polarization sheet (z0 = 0− or z0 = 0+) only
results in a change of the normalisation factor in front of the expression of the reflection coefficients,

and does not modify the weight of the different components of the
↔
χ

(2)S
tensor in the expression of

the reflection coefficients. Throughout this thesis, I use formulae derived for a second-order polar-
ization sheet located at z0 = 0−.
From the macroscopic Maxwell equations (B.9), without magnetisation and in presence of a polariza-
tion of the form Eq. (2.11), we get the following set of equations

∇×B(r; 2ω)− iΩ̃ε(2ω)E(r; 2ω) = 4πiΩ̃P(2)(r; 2ω),

∇×E(r; 2ω)− iΩ̃B(r; 2ω) = 0,
(2.12)

where Ω̃ = 2ω
c .

The physical solution of the Maxwell equations inside the medium (which excludes exponentially
diverging waves) has the following form

E2ω(r) =
[
Em

+ (2ω)Θ(z − z0)e−iq
m
⊥ (2ω)z0 + Em

− (2ω)Θ(z0 − z)eiq
m
⊥ (2ω)z0 + E(2ω)δ(z − z0)

]
eiq||(2ω)r|| ,

(2.13a)

B2ω(r) =
[
Bm

+ (2ω)Θ(z − z0)e−iq
m
⊥ (2ω)z0 + Bm

− (2ω)Θ(z0 − z)eiq
m
⊥ (2ω)z0 + B(2ω)δ(z − z0)

]
eiq||(2ω)r|| .

(2.13b)

We now search for the coefficients Ems±(2ω) and Emp±(2ω) of Eq. (2.5), considering the following rela-
tions

E = Esŝ + Eκκ̂+ E⊥ẑ,

∇Θ(z − z0) = ẑδ(z − z0),

∇δ(z − z0) = ẑδ′(z − z0),

(2.14)

with δ′ being the derivative of the Dirac δ distribution. Considering that different orders of singular-
ities ( δ and δ′ ) must cancel separately, we obtain from the equation ∇×E(r; 2ω)− iΩ̃B(r; 2ω) = 0,

Emp+ + Emp− + i
q||q

m

qm⊥
Ez − i

Ω̃qm

qm⊥
Bs = 0,

Ems+ − Ems− − iΩ̃Bκ = 0,

Eκ = Es = B⊥ = 0.

(2.15)
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Chapter 2. Second-harmonic generation in reflection

Doing the same for the equation ∇×B(r; 2ω)−iΩ̃ε(2ω)E(r; 2ω) = 4πiΩ̃P(r; 2ω) leads to the relations

Emp+ − Emp− = −4πi
Ω̃

ε1/2
Pκ,

Ems+ + Ems− = 4πi
Ω̃qm

ε1/2qm⊥
Ps,

E⊥ = −1

ε
P⊥,

Bs = Bκ = 0.

(2.16)

Putting everything together leads to the expression of the wanted coefficients

Ems±(2ω) = Ems (2ω) =
2πiΩ̃2

qm⊥ (2ω)
ŝ.P(2ω),

Emp±(2ω) =
2πiΩ̃2

qm⊥ (2ω)
p̂±(2ω).P(2ω).

(2.17)

2.3 Reflected harmonic light from a surface

Knowing the expression of the upward-propagating second-harmonic field, we can now look at the
expression of the reflected harmonic light in the vacuum. Assuming the expression Eq. (2.17) for the
coefficients of the second-harmonic field, the electric field oscillating at the frequency 2ω and induced
in the medium, denoted E2ω(r), reads as

E2ω(r) =
2πiΩ̃2

qm⊥ (2ω)
P(2ω)ei(q||(2ω)r||−qm⊥ (2ω)z). (2.18)

At the interface with the vacuum, this upward-propagating field is transmitted into the vacuum,
yielding the field Eout(r; 2ω); which is the second-harmonic field measured during the experiment.
We obtain that

Eout(r; 2ω) =
2πiΩ̃2

qm⊥ (2ω)
ê2ωP(2ω)ei(q||(2ω)r||−qm⊥ (2ω)z), (2.19)

with ê2ω = êout(2ω)
[
ŝtsmv(2ω)̂s + p̂v+(2ω)tpmv(2ω)p̂m+ (2ω)

]
, êout(2ω) being the measured polariza-

tion. The intensity of the second-harmonic field in the vacuum is finally given by

Iout(2ω) =
c

2π
|Eout(2ω)|2 =

8π3

c

∣∣∣∣∣ Ω̃2

qv⊥(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ê2ω.
↔
χ

(2)S
(ω, ω) : êωêω

∣∣∣∣2 I2
in(ω). (2.20)

Inserting the definition of the Ω̃ and qv⊥(2ω), the general form of the reflection coefficients is found to
be

R(θ, φ, ω) =
32π3ω2

c3

1

cos2(θ)

∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ê2ω.
↔
χ

(2)S
(ω, ω) : êωêω

∣∣∣∣2 . (2.21)
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2.3 Reflected harmonic light from a surface

We obtain in the S.I. unit system gives

R(θ, φ, ω) =
ω2

2c3ε0

1

cos2(θ)

∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ê2ω.
↔
χ

(2)S
(ω, ω) : êωêω

∣∣∣∣2 . (2.22)

This reflection coefficient has a unit in the S.I. system of cm2/W . One has to be careful here that
the second-order susceptibility is label with the S superscript because it is a surface second-order
susceptibility, expressed in the S.I. unit system in pm2/V , whereas the second-order susceptibility is
expressed in pm/V in the S.I unit system.
In order to obtain the expression of the different reflection coefficients used in the literature, we
have to replace êin(ω) and êout(2ω) by the wanted polarizations; e.g., the Rps coefficient (sometimes
referred in the literature as p-in s-out), is obtained by choosing êin(ω) = p̂v−(ω) and êout(2ω) = ŝ.
In that case, Eq. (2.22) becomes

Rps(θ, φ, ω) =
32π3ω2

c3

1

cos2(θ)

∣∣tsmv(2ω)tpvm(ω)2
∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣̂s.↔χ(2)S
(ω, ω) : p̂m− (ω)p̂m− (ω)

∣∣∣∣2 . (2.23)

Then, from Eq.(2.4), and using the definition of κ̂, we obtain that

ŝ = sin(φ)x̂− cos(φ)ŷ,

p̂m± (ω) =
c√
ε(ω)ω

[
∓qm⊥ (ω) cos(φ)x̂∓ qm⊥ (ω) sin(φ)ŷ + q||(ω)ẑ

]
.

(2.24)

Notice that in the case of an arbitrary input polarization with an angle α, see Fig. 2.1(a), we have
êin(ω) = cosαp̂v−(ω) + sinαŝ.
I consider now the special case of a 4mm or higher symmetry surface, where the only non-zero com-
ponents of the χ(2)S tensor are χ(2)S

‖‖⊥ = χ
(2)S
xxz = χ

(2)S
yyz , χ(2)S

⊥‖‖ = χ
(2)S
zxx = χ

(2)S
zyy and χ(2)S

⊥⊥⊥ = χ
(2)S
zzz .

This symmetry corresponds, for instance, to the case of the Si(001)1x1:2H (dihydride) silicon sur-
face. The same components also appear in the expressions of the reflection coefficients for the clean
Si(001)2×1 and the Si(001)2×1:H surfaces (see Chapter. 4 for more details concerning these surfaces),
even if they have less symmetries than the dihydride surface. 4

From the previous equations, we obtain the expressions for the four reflection coefficients

Rpp(θ, ω) =
32π3ω2

c3
tan2 θ

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin2 θχ

(2)S
⊥⊥⊥(ω) +

c2

ω2
qm⊥ (ω)2χ

(2)S
⊥‖‖ (ω)− c2

ω2
qm⊥ (2ω)qm⊥ (ω)χ

(2)S
‖‖⊥ (ω)

∣∣∣∣2, (2.25a)

4As explained by Sipe et al. in Ref. [75], these two surfaces exhibit a macroscopic averaged symmetry, which is different
from the single domain symmetry. For instance, the Si(001)2×1 surface has an equal population (1×2) and (2×1) domains
with a m-symmetry. It results in an averaged p2mm symmetry for this surface, due to the size of the laser spot, compared
to the small size of a single domain. Even if one was able to produce large enough domain, bigger than the laser spot size,
this does not correspond to industrial Si surfaces, which are of major interest. This averaged symmetry is confirmed by
experimental measurements performed by Rotational Anisotropy SHG (RASHG), where one can analyse the symmetries
of a surface.
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Chapter 2. Second-harmonic generation in reflection

Rsp(θ, ω) =
32π3ω2

c3
tan2 θ

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣χ(2)S
⊥‖‖ (ω)

∣∣∣∣2, (2.25b)

Rps(ω) = Rss(ω) = 0. (2.25c)

Due to the symmetries, the two coefficients associated with a measured s-polarization are zero. More-
over, Rpp andRsp do not depend on the azimuthal angle φ, due to the in-plane isotropy of the surface
(4mm symmetry class). This last point has been used in Ref. [76, 77] to separate the contributions to
the signal from the surface and from the bulk part of the material, for the dihydride surface. The
careful reader will also note that theRpp coefficient contains contributions from all the non-zero com-
ponents. The expressions of these coefficients, obtained without assuming any symmetry, and in the
case of other symmetries are given in App. C.

2.4 Bulk contribution

So far, I do not have discussed the contribution coming from the bulk part of the material to the
reflected signal. There are three different cases in which the bulk can contribute to the reflected har-
monic waves: i) The case of the non-centrosymmetric bulk. In that case, the signal is dominated by
the bulk dipolar contribution. ii) The case of centrosymmetric material, where the dipolar contribu-
tion vanishes, but not the quadrupolar contribution. The quadrupolar contribution has been found
non-negligible in some cases; compared to the surface signal [78–80]. iii) A material, having or not
the inversion symmetry, under an electric field, and therefore producing an Electric Field Induced
Second-Harmonic (EFISH) contribution. This last point will not be discuss here but is discussed ex-
tensively in Ref. [81]. All these cases can be treated using the same approach than presented in the
previous sections of this chapter. Following Ref. [73], I first consider a general expression for the
nonlinear polarization in the medium, given by

P(2)(r; 2ω) =
↔
χ

(2)
(ω, ω) : Eω(r)Eω(r) + γB(ω)∇[Eω(r).Eω(r)], (2.26)

where Eω(r) is the fundamental electric field inside the material,
↔
χ

(2)
is the bulk second-order suscep-

tibility tensor and γB serves for describing the quadrupolar response of the bulk part of the material.
Here I have chosen a simple expression for the quadrupolar contribution, where only the isotropic
part has been considered. More precise expressions for the quadrupolar part can be obtained by
adding extra terms, as done in Ref. [64] for instance.
Introducing the expression of Eω(r) in the expression of the polarization gives

P(2)(r; 2ω) =

(
↔
χ

(2)
(ω, ω) + γB(ω)

[
2iq‖(ω)κ̂− 2iqm⊥ (ω)ẑ

])
: êωêω|Ein|2e2i(q||(ω)r||−qm⊥ (ω)z). (2.27)

As explained in Ref. [73], this polarization can be seen as the sum of individual sheets of polarization,
as introduced previously, located at a distance z from the surface. This allows us to use the same for-
malism as introduced previously for describing the harmonic field generated inside the medium. At
the interface with the vacuum, the field is modified according to the Fresnel coefficients. The electric
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field that reaches the detector is thus Eout(z; 2ω) = Eout(z = 0+; 2ω)eiq
v
⊥(2ω)z = Eout(2ω)eiq

v
⊥(2ω)z ,

with

Eout(2ω) =
2πiΩ̃2

qm⊥ (2ω)
ê2ω

∫ 0

−∞
dz′e−iq

m
⊥ (2ω)z′P(2)(z′; 2ω)

=
2πiΩ̃2

qm⊥ (2ω)
ê2ω

(
i
↔
χ

(2)
(ω, ω)− 2γB(ω)

[
q‖(ω)κ̂− qm⊥ (ω)ẑ

]
qv⊥(2ω) + 2qv⊥(ω)

)
: êωêω|Ein|2e2iq||(ω)r||

where e−iq
m
⊥ (2ω)z′ describes the propagation in the medium from the polarization sheet located at−z′

to the interface at 0−. The second line comes from the fact that we consider an absorbing medium (see
Ref. [73]). The coefficients are identical to the one defined in the case of a surface polarization. In the
following, I focus on the example of a cubic symmetry for a medium that lack inversion symmetry.
This is for instance the case of GaAs and the expression presented bellow has been used in Ref. [63]
for extracting the xyz component from its experimental reflection spectrum. The contribution of the
quadrupolar term in a centro-symmetric material can be obtained similarly.
In the case of a cubic material, the second-order susceptibility has only one non-zero component,
χ

(2)
xyz . The reflection coefficients in that case have the general form

R(θ, φ, ω) =
32π3ω2

c3

1

cos2 θ

∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)[qm⊥ (2ω) + 2qm⊥ (ω)]

∣∣∣∣2 ∣∣∣∣ê2ω ↔χ
(2)

(ω, ω) : êωêω
∣∣∣∣2 , (2.28)

or in the S.I. unit sytem5,

R(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)[qm⊥ (2ω) + 2qm⊥ (ω)]

∣∣∣∣2 ∣∣∣∣ê2ω ↔χ
(2)

(ω, ω) : êωêω
∣∣∣∣2 . (2.29)

The expressions of the four usual reflection coefficients are given in App. C.

Conclusion

In this chapter, I have reported the derivation of the expressions of the generalized reflection coef-
ficients. They describe how the second-harmonic light is generated by reflection of a fundamental
light on a surface. We have seen that a second-order polarization is induced by the incident light and
how that polarization, acting as a source term for the Maxwell equations, yields a second-harmonic
field, reflected from the surface. This formalism allows us to treat both bulk and surface dipolar con-
tributions and also the other bulk contributions such as the bulk quadrupolar and the EFISH; for any
combination of input and output polarizations of the light. Moreover, if we want to obtain the con-
tributions coming from the bulk medium and its surface at the same time, the reflection coefficients
can be obtained by the mean of Eq. 2.19, using an effective polarization given by

Peff(2ω) =

(
↔
χ

(2)S
(ω, ω) +

i
↔
χ

(2)
(ω, ω)− 2γB(ω)

[
q‖(ω)κ̂− qm⊥ (ω)ẑ

]
[qm⊥ (2ω) + 2qm⊥ (ω)]

)
: êωêω|Ein|2. (2.30)

5Notice that in this expression,
↔
χ

(2)

is a bulk second-order susceptibility, expressed in pm/V in the S.I. unit system.
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Chapter 2. Second-harmonic generation in reflection

To conclude, we have presented here a simple model for the generation of second-harmonic in reflec-
tion from surfaces. Some features are missing and can be added to account, for instance, for multiple
reflections from a cover oxide layer [82], the anisotropy of the linear medium or corrections to the
Fresnel reflection coefficients due to the presence of the surface [83].
Nevertheless, the difficulty here is not contained in such possible improvements of the description
of the reflection of light but in a quantitative ab initio description of the macroscopic second-order
response function of the surface part of the material. In the next chapter, I briefly present the (time-
dependent) density-functional theory and how this framework allows us to compute the second-

order susceptibility tensor
↔
χ

(2)
from the perturbation theory.
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3. (Time-Dependent) Density-Functional
Theory in a nutshell

Sometimes one can improve the theories in the sense of discovering a
quicker, more efficient way of doing a given calculation.

Sir John Anthony Pople, Nobel prize co-winner for the DFT

This chapter aims to review the fundamental background of the Density-Functional Theory (DFT)
and Time-Dependent Density-Functional theory (TDDFT). This exact theories give respectively ac-
cess to the ground-state and excited states of the many-body systems. The ground-state gives access
to numerous properties of the system such as the total energy, the electron density or the correlation
functions.
The optical properties, as many other properties, are not properties of the ground-state and require
the knowledge of the excited states. For obtaining the excited states, one can use the Time-Dependent
Density-Functional Theory (TDDFT), which has been proven to give reliable results for the calcula-
tion of linear and nonlinear optical properties of bulk materials [84] and interfaces [29].
If the interaction that drives the system out of its ground-state is small, the time-dependent pertur-
bation theory can simplify the task associated to calculation of optical properties.
This chapter is organised as follows. As excitations in the frame of this thesis are restricted to small
perturbations of the entire system, I first discuss how within the framework of time-dependent per-
turbation theory, one can obtain the linear and the second-order response functions, describing the
linear and nonlinear optical properties. Then I briefly review the static and time-dependent Density-
Functional Theory, as well as some common approximations. Finally, some numerical details related
to the calculation performed during this thesis are presented.

3.1 Time-dependent perturbation theory

In perturbation theory, the interaction between light and electrons is treated as a perturbation. This
perturbation induces a response inside the system. More precisely it induces a current and a density,
respectively denoted jind and nind.
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Chapter 3. (Time-Dependent) Density-Functional Theory in a nutshell

3.1.1 Induced current and induced density

As it is customary for a perturbative approach, the two induced quantities are expended in power
of the perturbation. The first-order terms describe the linear response of the system and are denoted
respectively j

(1)
ind and n

(1)
ind. Similarly, the second-order induced current and density, denoted j

(2)
ind and

n
(2)
ind, describe the nonlinear second-order phenomena, such as second-harmonic generation.

We start by considering the total single-electron Hamiltonian H(t) that reads as

H(t) = H0 +HI(t),

where H0 is the unperturbed time-independent Hamiltonian and HI(t) is the time-dependent inter-
action Hamiltonian due to the interaction of the electrons with the electromagnetic field. We switch
on the perturbation adiabatically at t0 = −∞. The interaction Hamiltonian is made of a first-order
contribution plus a second-order contribution, such as HI(t) = H

(1)
I (t) +H

(2)
I (t), with [44]

H
(1)
I (t) =

∫
d3rn̂(r)φP (r, t)− 1

c

∫
d3r̂j(r)AP (r, t), (3.1a)

H
(2)
I (t) =

1

2c2

∫
d3rn̂(r)AP (r, t)2, (3.1b)

where φP is the scalar potential, AP the vector potential, and n̂ and ĵ are respectively the density and
the current operators, defined by

n̂(r) =
∑
i

δ(r− ri), (3.2a)

ĵ(r) =
1

2

∑
i

[piδ(r− ri) + δ(r− ri)pi] . (3.2b)

To obtain the induced current and the induced density, it is necessary to evaluate the expectation val-
ues of these operators with respect to the Schrödinger many-body wave-functions Ψ(t). For deriving
these expressions, it is common in perturbation theory to use the interaction representation, where
the wave-functions ΨI(t) are given by

ΨI(t) = eiH0(t−t0)Ψ(t0), i
∂

∂t
ΨI(t) = eiH0(t−t0)HIe

−iH0(t−t0)ΨI(t) = HI,IΨI(t), (3.3)

where HI,I describes the interaction in interaction representation.
From perturbation theory, up to second-order, using the Baker-Hausdorff theorem [85], we obtain
that

jind(r, t) = 〈ΨI(t)|̂jind(r, t)|ΨI(t)〉

= 〈̂jind(r, t)〉 − i
∫ t

t0

dt′〈
[̂
jind(r, t), HI,I(t

′)
]
〉 −

∫ t

t0

dt′
∫ t′

t0

dt′′〈
[[̂

jind(r, t), HI,I(t
′)
]
, HI,I(t

′′)
]
〉, (3.4)

where we use the notation 〈Ô〉 = 〈Ψ0(t0)|Ô|Ψ0(t0)〉, Ψ0 being the ground-state many-body wave-
function. A similar formula holds for the induced density. From the general expression of the in-
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duced current, it is easy to obtain the expression of, says, the first-order induced current [44]

j
(1)
ind(r, t) = −1

c
〈n̂(r)〉AP (r, t) +

i

c

∫
d3r′

∫
dt′θ(t− t′)〈

[̂
jI(r, t), ĵI(r

′, t′)
]
〉AP (r′, t′)

− i
∫
d3r′

∫
dt′θ(t− t′)〈

[̂
jI(r, t), n̂I(r

′, t′)
]
〉φP (r′, t′).

The expressions of the second-order induced current or first- and second-order induced density are
not shown for conciseness, but can be obtained in a similar way.
It is interesting to define response functions [44], which link the perturbation to the response and
contains all the physics that we want to describe. At the first- and the second-order, the response
functions have the general form [41, 44]

χAB(r, t, r′, t′) = iθ(t− t′)〈
[
ÂI(r, t), B̂I(r

′, t′)
]
〉, (3.6a)

χABC(r, t, r1, t1, r2, t2) = θ(t− t1)θ(t− t2)T 〈
[[

ÂI(r, t), B̂I(r1, t1)
]
, ĈI(r2, t2)

]
〉, (3.6b)

where A, B and C can be j or n, and T is the time-ordering operator. For instance, if we choose
A = B = C = j, we get at first-order the so-called current-current response function χjj and at
second-order the current-current-current response function χjjj. From Eqs. (3.6), it is obvious that the
response functions are causal and that

χAB(r, t, r′, t′) = 0 for t′ > t,

χABC(r, t, r1, t1, r2, t2) = 0 for t1 > t or t2 > t.

Also, if we replace the operators in Eqs. (3.6), by their Schrödinger representation, we obtain that the
response functions are invariant by translation in time

χAB(r, t, r′, t′) = χAB(r, r′, t− t′) for t′ > t,

χABC(r, t, r1, t1, r2, t2) = χABC(r, r1, r2, t− t1, t− t2) for t1 > t or t2 > t.

In total there are 4 response functions at the first-order and 8 at the second-order, leading to rela-
tively complex expressions for the induced quantities. However it is possible to rearrange all the
terms, using gauge-invariance [44, 45], and by introducing the expression of the perturbing electric
field EP .1 After some algebra that the interested reader can find in Ref. [45], the induced current and
the induced density are given in frequency space by 2

j
(1)
ind(r;ω) =

i

ω
〈n̂(r)〉EP (r;ω)− i

ω

∫
d3r′χjj(r, r

′;ω)EP (r′;ω), (3.9a)

1The perturbing field is given by

EP (r;ω) =
iω

c
AP (r;ω)− ∂

∂r
φP (r;ω).

2For obtaining these expressions, one must first use the fact that χAB(r, t, r
′, t′) = χAB(r, r

′, t − t′) and
χABC(r, t, r1, t1, r2, t2) = χABC(r, r1, r2, t− t1, t− t2). Indeed, in absence of strong perturbing field, the system is station-
ary in time and the response depends only on the time difference between the moment of the response and the imposition
of perturbation [54].
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j
(2)
ind(r;ω) = − 1

2ω1ω2

∫
d3r1d

3r2

∫
dω1dω2δ(ω − ω1 − ω2)EP (r1;ω1)EP (r2;ω2)

×

[
χjjj(r, r1, r2;ω1, ω2) + 2χρj(r, r1;ω1)δ(r− r2)− iδ(r− r2)

(ω1 + ω2)

∂

∂r1
χjj(r, r1;ω1 + ω2)

]
, (3.9b)

n
(1)
ind(r;ω) =

i

ω

∫
d3r′χρj(r, r

′, ω)EP (r′;ω), (3.9c)

n
(2)
ind(r;ω) =

i

2

∫
d3r1

∫
dω1dω2

δ(ω − ω1 − ω2)

(ω1 + ω2)ω1ω2

∂

∂r1
χρj(r, r1;ω)EP (r1;ω1).EP (r1;ω2)

− 1

2

∫
d3r1d

3r2

∫
dω1dω2

δ(ω − ω1 − ω2)

ω1ω2
χρjj(r, r1, r2;ω1, ω2)EP (r1;ω1)EP (r2;ω2). (3.9d)

Only few response functions, among all possible response functions, are finally involved in the
expressions of the induced current and the induced density. Indeed, the first-order responses are
described only by the two response functions χjj and χρj, whereas one must also include χjjj and χρjj
in order to describe the second-order responses. All the other response functions can be obtained
from these four ones. With these expressions, one can describe any perturbation of the system at
first- and second-order.

3.2 Density-Functional Theory (DFT)

Before presenting the Density-Functional Theory, I start with the quantum description of system and
a basic approximation, commonly used in quantum mechanics, the Born-Oppenheimer approxima-
tion. Then I review the basements of the Density-Functional Theory (DFT), which are the Hohenberg-
Kohn theorems and the Kohn-Sham method.

3.2.1 Many-body Hamiltonian

In this thesis, the matter is quantified and the light is treated classically. The starting point of the
quantum treatment of the matter is to consider a system of interacting electrons and nuclei. The
system is considered to be non-magnetic. Relativistic and quantum electrodynamics effects are ne-
glected. The static many-body Hamiltonian associated to such a system is given by

Ĥ({r,R,p,P}) =
∑
i

pi
2

2me
−
∑
i,I

ZIe
2

|ri −RI|
+

1

2

∑
i 6=j

e2

|ri − rj|
+
∑
I

PI
2

2MI
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ|
, (3.10)

where the electrons are represented by the coordinates ri, the momenta pi, and a mass me. Nuclei
are represented by the coordinates RI, the momenta PI, and a mass MI .
The fundamental Hamiltonian can be written as the sum of the different contributions

Ĥ = T̂e + V̂eN + V̂ee + T̂N + V̂NN , (3.11)
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where T̂e and T̂N are the kinetic energies of the electrons and of the nuclei respectively, V̂ee is the
electron-electron Coulomb interaction

V̂ee =
1

2

∑
i 6=j

e2

|ri − rj|
, (3.12)

that excludes the self-interaction term (i 6= j) and V̂eN and V̂NN are electron-nuclei and nuclei-nuclei
Coulomb interactions.
The task associated with solving the many-body problem represented by Eq. (3.10) is too complicated
to be treated numerically even for a small system of few ten of electrons. Therefore some approxi-
mations are required. One excellent approximation for many purposes, and especially for all the
calculations of this thesis, is the well-known Born-Oppenheimer approximation [86].

Born-Oppenheimer approximation

The fundamental Hamiltonian given by Eq. (3.10) treats at the same footing electrons and nuclei.
Nevertheless, they are quite different and in particular the mass of a proton (mp ∼ 1.67.10−27kg)
is about 1800 times bigger than the mass of the electron (me ∼ 9.31.10−31kg). The approximation
introduced in 1927 by Born and Oppenheimer [86] consists in decoupling the motion of electrons
and nuclei and to assume that the motion of the nuclei is slow in comparison to that of the electrons.
The nuclei are thus considered to be fixed or frozen, giving also the name of adiabatic approximation for
the Born-Oppenheimer approximation. As the mass of nuclei is set to infinity, the kinetic energy of
nuclei is zero. The eigenvalue problem to solve, assuming the Born-Oppenheimer approximation, is
given by

Ĥe({r,R,p,P})ϕR({r}) = ERϕR({r}), (3.13)

where ϕR({r}) are the wave-functions of the electrons assuming fix nuclei and Ĥe({r,R,p,P}) =

T̂e + V̂ee + V̂eN . This equation describes a system of interacting electrons in presence of an external
potential due to the frozen nuclei at positions {R}.
Using the Born-Oppenheimer approximation, we turn the many-body problem described by Eq. (3.10)
into a many-electron problem represented by Eq. (3.13); which still represents a formidable problem
to solve. In the following, I always assume the Born-Oppenheimer approximation. The nuclei po-
sitions are parameters of the calculations and the subscript R is now omitted for conciseness. The
Hamiltonian representing the electronic problem will be written from now on as

Ĥe({r,p}) =
∑
i

pi
2

2
+
∑
i

V̂ext(ri) +
1

2

∑
i 6=j

1

|ri − rj|
, (3.14)

with V̂ext the electrons-nuclei interaction potential.

3.2.2 Hohenberg-Kohn theorems

In their paper [87] published in 1964, Hohenberg and Kohn laid the foundations of the Density-
Functional Theory (DFT). They proved two theorems that are presented here. The proofs of those
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two theorems are not reported here but a detailed proof can be found, for instance, in Refs. [88, 89].

The density as the key quantity

The first theorem of Hohenberg and Kohn states the following: [89]
The ground-state density n0(r) of a bound system of interacting electrons in some external potential V̂ext(r)

determines this potential uniquely.
This theorem implies that the ground-state wave-function and thus the expectation value of any
physical observable is a unique functional of the electron density n(r). Unique means here: de-
fined up to an additive constant. Originally this theorem has been demonstrated for non-degenerate
states, then it has been extended to a wide class of systems including systems with degenerate states
(Levy [90] and Leibs [91]), spin-polarised systems (spin density-function theory, Ref. [92, 93]). This
theorem has also been extended to finite temperature by Mermin [94], thus proving that entropy,
specific heat, etc. are functionals of the equilibrium density [88].

The functional that determines the ground-state

The second theorem, directly related to the first one, states that:
The total energy is a functional of the electronic density, which is minimized by the ground-state density.
The total energy for a given density n(r) is

Etot[n] = 〈Ψ|T̂e + V̂ee + V̂ext|Ψ〉 = FHK [n] +

∫
d3rV̂ext(r)n(r), (3.15)

where T̂e, V̂ee and V̂ext have been defined previously. Here, FHK [n] is a universal functional in the sense
that it does not depends on the external potential felt by electrons. It is important to note that this
second theorem does not tell us how to find the total energy. It is also remarkable to note that this
theorem can be seen as an exact formulation of the semi-classical Thomas-Fermi theory, proposed in
1927, where all the properties of the system are determined only by the density [95, 96].

3.2.3 Kohn-Sham self-consistent equations

In 1965, Walter Kohn and his post-doc fellow, Lu Sham, published a fundamental paper [97], where
they presented a method that became the most practical implementation of the DFT. Their idea was to
apply the Hohenberg-Kohn theorem to a fictitious system of non-interacting particles exhibiting the
same electronic density as the fully-interacting electronic system. The universal functional FHK [n] of
the fully interacting system is proven to be

FHK [n] = 〈Ψ|T̂e + V̂ee|Ψ〉 = TKSe [n] + EHartree[n]|Ψ〉+ Exc[n], (3.16)

where TKSe [n] is the kinetic energy of the non-interacting, or so-called Kohn-Sham, electronic sys-
tem, EHartree[n] is the Hartree energy, and Exc is the so-called exchange-correlation (xc) energy, de-
fined by this equation. More importantly, the fictitious system is described by the Hamiltonian of an
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independent-particle system of the form of

He,i(ri)φi(ri) = Eiφi(ri), He,i(ri) = −∇
2
i

2
+ V̂eff(ri), (3.17)

where i refer to the i-th electron, φi(ri) being the single-particle wave-function of this latter. The
effective potential is given by

V̂eff(r) = V̂ext(r) +

∫
d3r′

n(r′)

|r− r′|
+ V̂xc(r), V̂xc(r) =

δExc[n(r)]

δn(r)

∣∣∣
n=n0

. (3.18)

Here, V̂xc(r) is the exchange-correlation potential. This potential enters in the self-consistent Kohn-
Sham equations [97], formed by Eq. (3.18) and Eq. (3.17), which are inspired by the Hartree self-
consistent equations. This exchange-correlation potential contains everything we do not know about
the system and contains all the many-body effects, e.g., the difference of kinetic energy between the
auxiliary and the real systems, or the Pauli’s exclusion principle. Together with the Hohenberg-Kohn
theorems, this theorem forms the basement of the DFT in practice. Knowing the exact effective poten-
tial, the ground-state is found by solving self-consistently the Kohn-Sham equations, starting from a
test density and by minimizing the total energy.
This theory is formally exact but the exchange-correlation energy is not known. Nevertheless, this
object can be approximated and a lot of approximations have been so far proposed and tested on
various kinds of systems. The major advantage of the Kohn-Sham approach is that the exchange-
correlation energy can be approximated more easily than the kinetic energy for instance. In particular,
the exchange-correlation energy is well approximated by local or semi-local functional of the density.
In next section, I present one of the most common approximations for the exchange-correlation en-
ergy in condensed matter, which is the Local-Density Approximation (LDA), proposed by Kohn and
Sham themselves in Ref. [97].

3.2.4 The local-density approximation (LDA)

Exchange-correlation energy Exc

The exchange-correlation energy has the general form

Exc[n] =

∫
d3rn(r)exc[n](r), (3.19)

where exc[n](r) is the energy per electron at the point r and depending upon the density at all point.
The idea behind the local-density approximation is to replace the functional of the density exc[n](r)

by eHEG
xc (n(r)), which is exchange-correlation energy per electron of the homogeneous electron gas

(HEG). Thereby, in the LDA, the exchange-correlation energy is given by

ELDA
xc [n] =

∫
d3rn(r)eHEG

xc (n(r)). (3.20)

35



Chapter 3. (Time-Dependent) Density-Functional Theory in a nutshell

Exchange-correlation energy V̂xc

The effective potential that enters in the self-consistent Kohn-Sham equations (Eqs. (3.18) and (3.17))
requires the knowledge of the exchange-correlation potential, not of the exchange-correlation energy.
The functional derivative of the exchange-correlation energy Eq. (3.19) gives the exchange-correlation
potential of the form

V̂xc(r) = exc[n](r) + n(r)
δexc[n](r)

δn(r)

∣∣∣
n=n0

, (3.21)

where exc[n](r) is defined in (3.19).
Therefore the exchange-potential is easily obtained in the local-density approximation by replacing
exc[n](r) by eHEG

xc (n(r)). In that case, the functional derivative is replaced by an ordinary derivative,
as eHEG

xc is a function of the density, and no more a functional.
The exchange-correlation potential in LDA reads as

V̂xc(r) =
[
eHEG

xc + n
∂eHEG

xc
∂n

]
(r). (3.22)

The LDA exchange term is known and reads as V̂x(r) = 4
3e

HEG
x (n(r)). Unfortunately, even in the

simple case of the homogeneous electron gas, the correlation part is unknown and must to be fitted
on quantum Monte Carlo simulations [98–100].
This approximation became, along the years, the most used functional for DFT calculations on ex-
tended systems. In particular, the LDA has been successfully applied to a wide range of systems, far
beyond its expected range of validity. As an example, the bound lengths obtained within the LDA
agree with experiment within a few percent.
Other functionals have also been proposed to overcome some known failures of the LDA. Among
them, one finds the generalized-gradient approximations (GGA) [101–103], the optimized effective
potentials (OEP) [104] which can include the exact-exchange (EXX) [105] or the hybrid function-
als [106]. Nevertheless, as I will discuss later, the quality of approximation of the exchange-correlation
potential is not the most important criteria for obtaining quantitative results for optical properties of
extended systems. As, the LDA is more than enough for the purpose of this thesis, all the numeri-
cal DFT calculations presented in this thesis have been performed with the Teter-Pade parametriza-
tion [107] of the LDA functional.

3.3 Time-Dependent Density-Functional Theory (TDDFT)

As discussed above, the calculation of the optical properties of a system requires the knowledge of
the excited states; which could not be obtained by the DFT [84]. For accessing these states, I used the
Time-Dependent Density-Functional Theory, together with the time-dependent perturbation theory
for describing the optical properties of the surfaces I am interested in. The framework of TDDFT has
been rigorously introduced by Runge and Gross [108], where they replaced the time-independent
external potential of DFT by a time-dependent one. A review of TDDFT and of the recent devel-
opments can be found in Refs. [84, 109]. In this section, I first present the Runge-Gross theorems
which are the basis of TDDFT, then the time-dependent Kohn-Sham equations that allow practical
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implementations of TDDFT.

3.3.1 Runge-Gross theorems

As previously mentioned, we assume the Born-Oppenheimer approximation and we reduce the
many-body problem to a many-electron problem with an external potential. To this external static
potential, we add a time dependent contribution, describing the external perturbation, which drives
the system out of its ground state.
The evolution of a many-electron system is described by a time-dependent Schrödinger equation

i
∂

∂t
Ψ({r}, t) = Ĥ({r}, t)Ψ({r}, t), Ĥ({r}, t) =

∑
i

(
− ∇

2

2
+ V̂ext(ri, t)

)
+

1

2

∑
i 6=j

1

|ri − rj|
, (3.23)

where V̂ext(ri, t) is the time-dependent external potential.3 The electronic density of such many-
electron system is denoted n(r, t). We consider that the external perturbation is switched on adiabat-
ically at t = t0.
For such a system, Runge and Gross proved in their paper that [108]
The time-dependent density n(r, t) of a system of interacting electrons evolving from an initial state |Ψ0〉 in
some time-dependent external potential V̂ext(r, t) which is Taylor expandable around t = t0, determines this
potential uniquely.
The density can be obtained by solving the Schrödinger equation and therefore, there is a one to one
correspondence between the time-dependent electronic density and time-dependent external poten-
tial. This theorem plays the same role as the Hohenberg-Kohn theorem of DFT. Similarly to the
Hohenberg-Kohn theorem, unique means here: defined up to a time-dependent additive constant.
The first Runge-Gross theorem states that any physical observable4 of the many-electron system is
a functional of the time-dependent density. The total energy is no more conserved and the search
of minima of the total energy has to be replaced by the search of extrema of a quantum mechanical
action, defined by analogy to the action in classical mechanics: [108]
For a given initial state |Ψ0〉, the action A[n] becomes stationary at the density n0(r, t) corresponding to the
external potential V̂ext(r, t).
Nevertheless, the action defined here is an unknown functional, and is the analogue of the total
energy in static density-functional theory.

3.3.2 Time-dependent Kohn-Sham equations

In their paper, Runge and Gross suggested the use of an auxiliary system of independent particles
to simplify the problem of finding the action, leading to a time-dependent version the Kohn-Sham
equations (see theorem 4 of Ref. [108])
The exact time-dependent density of the system can be computed from the single-particle orbitals φj(r, t) ful-

3In this expression, the external potential is local, but the same equation and formalism holds for a non-local potential,
as for instance within the pseudo-potential approximation. The effect of non-local potentials will be discussed in Chap. 6.

4depending on time, but neither on its derivatives or integrals.
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filling the time-dependent Schrödinger equation(
i
∂

∂t
+

1

2
∇2
)
φj(r, t) = V̂eff[n,Ψ0](r, t)φj(r, t), (3.24)

with an effective one-particle potential 5

V̂eff[n,Ψ0](r, t) = V̂ext(r, t) +

∫
d3r′

n(r′, t)

|r− r′|
+
δAxc[n,Ψ0]

δn(r, t)
. (3.25)

These two equations define a self-consistent scheme, with a time-dependent effective potential, which
is a generalization of the time-independent effective potential of Kohn-Sham equations (see Eq. 3.18).
Here Axc[n,Ψ0] is the exchange-correlation part of the action [108]. By analogy with the static case, a
time-dependent exchange-correlation potential V̂xc can be defined, as V̂xc[n,Ψ0] = δAxc[n,Ψ0]

δn(r,t)

∣∣
n=n0

.

3.4 Perturbation theory and TDDFT

From the TDDFT, we know that the (induced) density of the fully interacting system is equal to the
(induced) density of the non-interacting Kohn-Sham system. By applying the formalism of pertur-
bation theory to the Kohn-Sham system, it is possible to obtain the induced quantities and, going
further, to link the response functions of the fully-interacting system to the non-interacting response
functions. In this case, the ground-state is known, from the DFT, and so the response functions of
the auxiliary system are also known. One can then obtain the response functions of the real system,
which then can be used to compute the measurable quantities.
Nevertheless there are few limitations to this approach. First, only the induced density and the lon-
gitudinal part of the current can be obtained.6 Second, in TDDFT, the perturbation is described by
a scalar potential. This implies that only the response to a longitudinal perturbation can be com-
puted. Therefore, it is possible to access directly in TDDFT to only two response functions, which
are the density-density response function χρρ and density-density-density response function χρρρ.7

The response functions which describe the optical properties of a system should give the induced
current (which gives the polarization) from a transverse perturbation. This apparent contradiction
vanishes if the perturbation is of long-wavelength, as already explained in Sec. 1.4. As within the
long-wavelength approximation, the longitudinal response of the system is sufficient for describing
its optical properties, the two density response functions are enough for describing the linear optics
and second-harmonic generation. In this section, I show how it is possible to compute these two
response functions starting from the response functions of the Kohn-Sham system.
For that, we follow the approach of Ref. [54], extended to second-order in Ref. [111], and we start by

5The assumption that it is possible to define such an effective potential is known as the “non-interacting v-
representability” [84] and is not obvious. At least, we know that such a potential is unique, from the Runge-Gross theorem.
In this thesis, we only apply TDDFT from Kohn-Sham wave-functions, obtained from DFT using a smooth approximate
energy functional. This ensures that an effective potential can always be found [84].

6It is possible to access to the entire current, using the Time-Dependent Current Density-Functional Theory (TD-
CDFT) [109, 110] instead of the TDDFT, but this will not be discussed in this thesis.

7From these two response functions, the others or at least their longitudinal parts can be obtained, from the gauge
invariance and the conservation of charges, see Ref. [44].
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considering the effective potential of Eq. 3.25,

V̂eff[n](r, t) = V̂ext(r, t) +

∫
d3r′

n(r′, t)

|r− r′|
+ V̂xc[n(r, t)](r, t). (3.26)

The density of the system reads as

n(r, t) = n(0)(r, t) + n
(1)
ind(r, t) + n

(2)
ind(r, t), (3.27)

where n(0)(r, t) is the unperturbed density. Inserting this expression in Eq. (3.26), yield

V̂eff[n](r, t) = V̂
(0)

eff (r, t) + V̂
(1)

eff (r, t) + V̂
(2)

eff (r, t), (3.28)

where

V̂
(0)

eff (r, t) = V̂
(0)

xc (r, t) +

∫
d3r′

n(0)(r′, t)

|r− r′|
,

V̂
(1)

eff (r, t) = V̂
(1)

ext (r, t) + V̂
(1)

xc (r, t) +

∫
d3r′

n
(1)
ind(r′, t)

|r− r′|
,

V̂
(2)

eff (r, t) = V̂
(2)

ext (r, t) + V̂
(2)

xc (r, t) +

∫
d3r′

n
(2)
ind(r′, t)

|r− r′|
.

Here the V̂ (i)
xc (r, t) are obtained by expending V̂xc[n] around the ground-state density

V̂xc[n](r, t) = V̂xc[n
(0)](r, t) +

∫
dt′
∫
d3r′fxc(r, t, r

′, t′)
(
n

(1)
ind(r′, t′) + n

(2)
ind(r′, t′)

)
+

∫
dt′dt′′

∫
d3r′d3r′′gxc(r, t, r

′, t′, r′′, t′′)n
(1)
ind(r′, t′)n

(1)
ind(r′′, t′′),

(3.30)

with 8

fxc(r, t, r
′, t′) =

δV̂xc[n](r, t)

δn(r′, t′)

∣∣∣
n=n0

(3.31a)

gxc(r, t, r
′, t′, r′′, t′′) =

δfxc[n](r, t, r′, t′)

δn(r′′, t′′)

∣∣∣
n=n0

(3.31b)

Density-density response function

Let us start with the first-order induced density. This induced density n(1)
ind is related to the first-order

part of the external potential V̂ (1)
ext by the fully-interacting density-density response function

n
(1)
ind(r, t) =

∫
d3r′

∫
dt′χ(1)

ρρ (r, t, r′, t′)V̂
(1)

ext (r, t′). (3.32)

8Here fxc is causal [111, 112]. However, being a second derivative of the exchange-correlation action, it must respect
Schwartz’s theorem and must be symmetric on time. This is called the symmetric-causality paradox. This apparent con-
tradiction can be solved using a Keldysh contour [113].
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By analogy, the induced density of the non-interacting system is related to the first-order part of the
effective potential V̂ (1)

eff by

n
(1)
ind(r, t) =

∫
d3r′

∫
dt′χ

(1)
0 (r, t, r′, t′)V̂

(1)
eff (r, t′). (3.33)

To avoid unnecessary complicated equations, we introduce the four-vector notation

1 ≡ (r1, t1),

∫
d1 ≡

∫
d3r1

∫
dt1.

Inserting the expression of the effective potential into Eq. (3.33) gives

n
(1)
ind(1) =

∫
d2χ

(1)
0 (1,2)V̂

(1)
ext (2) +

∫
d2

∫
d3χ

(1)
0 (1,2)

(
v(2− 3) + fxc(2,3)

)
n

(1)
ind(3), (3.34)

with v(2− 3) = δ(t2−t3)
|r2−r3| .

In this expression, we have to replace n(1)
ind(3) by its expression given by Eq. (3.32). This leads to a

second expression for n(1)
ind(1) (Eq. (3.32) being the first) which must be identical for all r. This means

that the argument of V̂ (1)
ext under the integral must be the same [54]

χ(1)
ρρ (1,2) = χ

(1)
0 (1,2) +

∫
d3

∫
d4χ

(1)
0 (1,3)

(
v(3− 4) + fxc(3,4)

)
χ(1)
ρρ (4,2). (3.35)

This equation links the response function of the fully-interacting system with the response of the
independent-particle system. This equation is often referred in the literature as a Dyson equation.
The response function χ(1)

ρρ serves for computing all the measurable quantities at first-order, e.g., the
macroscopic dielectric function.

Density-density-density response function

The case of the second-order response function is more intricate. The second-order induced density
is given by

n
(2)
ind(1) =

∫
d2

∫
d3χ(2)

ρρρ(1,2,3)V̂
(1)

ext (2)V̂
(1)

ext (3, )

=

∫
d2

∫
d3χ

(2)
0 (1,2,3)V̂

(1)
eff (2)V̂

(1)
eff (3, ) +

∫
d2χ

(1)
0 (1,2)V̂

(2)
eff (2).

(3.36)

where χ
(2)
ρρρ is the density-density-density response function and χ

(2)
0 is the independent-particle

second-order susceptibility. We insert the expression of Eqs. (3.32) and (3.36) into this equation. The
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argument of V̂ (1)
ext V̂

(1)
ext leads to the second-order Dyson equation [41, 45]

χ(2)
ρρρ(1,2,3) =

∫
d4d5χ

(2)
0 (1,4,5)

[
δ(4− 2) +

∫
d6fuxc(4,6)χ(1)

ρρ (6,2)
]

×
[
δ(5− 3) +

∫
d7fuxc(5,7)χ(1)

ρρ (7,3)
]

+

∫
d4d5d6χ

(1)
0 (1,4)gxc(4,5,6)χ(1)

ρρ (5,2)χ(1)
ρρ (6,3)

+

∫
d4d5χ

(1)
0 (1,4)fuxc(4,5)χ(2)

ρρρ(5,2,3).

(3.37)

Here, we introduced the notation fuxc(1,2) = v(1 − 2) + fxc(1,2) for convenience. From χ
(2)
ρρρ, we

can obtain the macroscopic second-order susceptibility, as explained in Sec. 1.3, using the relation
between the quasi-polarisability and the density-density-density response function, which reads in
the reciprocal space as

q.
[ ↔
α̃

(2)

(q,q1,q2;ω, ω)
]
000

: q1q2 =
−i
2
χ(2)
ρρρ(q,q1,q2;ω, ω) (3.38)

Notice that the knowledge of the first-order non-interacting and fully-interacting response functions
χ

(1)
0 and χ(1)

ρρ is mandatory.

Exchange-correlation kernels

In order to solve the Dyson equations Eqs. (3.35) and (3.37), some approximations are needed. In-
deed, the two exchange-correlation kernels fxc and gxc are unknown. The simplest approximation
that one can imagine consists in setting to zero fxc and gxc and neglecting the effect of v. This re-
moves all the interactions between the electrons, giving the name of independent-particle approxi-
mation (IPA) to this approximation.
By neglecting the exchange-correlation kernels, we obtain the so-called random-phase approxima-
tion (RPA) [41, 84]

fRPA
xc = gRPA

xc = 0.

In this case, all the exchange and correlation effects are considered to carry a random phase, which
cancel each other and only the Coulomb interaction remains in the Dyson equation [88]. This approx-
imation includes the effect of the local field (see Chap. 1). The RPA leads to quite accurate results for
numerous materials and will be used in this thesis to improve the theoretical description of genera-
tion of second-harmonic from surfaces.
As mentioned previously, the most used approximation for DFT is the LDA. One can thus insert the
expression of V̂ LDA

xc into the definition of fxc. One can then derive the local and adiabatic TDLDA
exchange-correlation kernel (see Ref. [84] and references therein)

fTDLDA
xc (r, t, r′, t′) = δ(r− r′)δ(t− t′)∂

2eHEG
xc (r)

∂n2(r, t)

∣∣∣
n=n0

, gTDLDA
xc = 0. (3.39)
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Other kernels can be defined from DFT kernels. A review of these kernels can be found in Refs. [84,
112] and references therein.
As a general result, it is found that the quality of the approximation of the exchange-correlation
potential is really important for a correct description of optical properties of finite systems [112]. In
general, the RPA and the TDLDA give reliable results for finite systems [84].
On the contrary, the most critical approximation in order to obtain reliable results for the optical
properties of extended systems is the approximation of fxc. TDLDA for instance is known to fail
in the calculation of the optical properties of solids. This is partially explained by the fact that the
TDDLA does not reproduce the correct asymptotic behaviour expected for the exchange-correlation
kernel [84]. To overcome this, another approximation can be introduced, called the α-kernel. This
kernel allows us accounting for the long-range contribution (LRC) of the kernel. In reciprocal space,
this static LRC kernel reads as

fLRC
xc (q) = − α

q2
, gLRC

xc = 0,

where α is a material-dependent parameter [114].

3.5 TDDFT in practice

The DFT and TDDFT equations can be treated numerically in various ways. In this thesis, in order to
treat extended systems, the numerical calculations have been performed using a plane-wave basis-
set. The ground-state is determined using the ABINIT code [115] which is based on a plane-wave
basis-set and uses norm-conserving pseudo-potentials. As already mentioned, I assume the local
density approximation for the numerical calculations of the ground-state properties of the surfaces
investigated during this thesis. The DP code [116] and 2light code [117] were used for obtaining re-
spectively the linear optical properties and the second-harmonic generation spectra. In the following,
a short introduction to some numerical details is given.

3.5.1 Plane-waves and surfaces

Thanks to Bloch’s theorem, the plane-wave basis-set is perfectly suitable for 3-dimensions periodic
systems. Any Bloch state [118], |n,k〉, labelled by the band index n and the crystal momentum k,
reads as

φnk(r) = 〈r̂|n,k〉 = unk(r)eikr =
1√
NkΩc

∑
G

unk(G)ei(k+G)·r, (3.40)

where
unk(G) =

∫
Ωc

d3re−iGrunk(r), (3.41)

and unk(r) are cell periodic. Ωc is the volume of the unit cell and Nk is the number of k-points
considered, giving the number of repetitions of the unit-cell and thus V = NkΩc is the volume of the
crystal considered. The G-vectors are the discrete reciprocal lattice vectors of the crystal.
The treatment in a plane-wave basis is eased by the Fast Fourier Transform, which provides a very
numerically efficient way to switch between real and Fourier spaces.
The number of plane-waves considered, meaning the size of the basis used, requires some cares. This
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number has to be converged for obtaining the ground-state total energy but also for the response
functions or any quantity of interest. In the case of the response functions, less plane-waves are in
general needed than for the total energy, so one can optimize the calculation of the response functions
by reducing the number of plane-waves with respect to the ground-state calculation.
The number of plane-waves is usually not given and instead one refers to a cutoff energy Ecut that
limits the maximal number of plane-waves such as

(k + G)2

2
< Ecut. (3.42)

The main goal of this thesis being the investigation of optical properties of surfaces, the choice of
plane-waves as a basis-set for treating surfaces is not obvious. Indeed a surface is periodic in 2 dimen-
sions (the plane of the surface) and is aperiodic in the other one. The surfaces and other non-periodic
systems are in fact routinely represented by means of the so-called super-cells [119]. These super-
cells are cells made by the addition of atomic layers, representing the matter, with some amount of
vacuum. The number of atomic layers gives the size of the thin film, or slab, described. If one wants
to describe a single surface of a semi-infinite medium instead of a thin film, this number of layers has
to be converged with respect to some surface quantities, e.g., the surface total energy or some surface
optical properties.
The size of the vacuum region is also quite important to converge and must be chosen wisely. The
vacuum region must be large enough to isolate a system from its replicas, always present due to the
periodicity; but a larger vacuum region means also a bigger number of plane-waves required for de-
scribing the system.
All the problems related to the description of surfaces by the mean of super-cells are at the heart of
this thesis and will be discuss further all along the chapters of Parts II and III.

k-points and G-vectors

In the Fourier space, any vector can be expressed as a sum of a q-vector restricted to the first Brillouin
zone plus a G-vector which is a reciprocal lattice vector, whose size is fixed by the periodicity of the
system. The sampling of the first Brillouin zone is an important issue for the calculation of many
quantities such as the total energy. Response functions require also to be converged in number of
G-vectors. These two parameters have to be converged carefully. In this thesis, the k-points are
distributed on a regular grid that covers the entire Brillouin zone. These k-points can be shifted or
not. The use of shifted k-points can in some cases speed-up the convergence. By avoiding the high-
symmetry points of the BZ, less k-points are needed. Otherwise, high-symmetry points contribute
too much to the quantity of interest, when using low-density grids. When increasing the number of
k-points, the two grids should always give the same result. These shifted k-points are sometimes
called in the literature off-symmetry k-points.

3.5.2 Core electrons and pseudo-potentials

Even considering that electrons are independent and non-interacting, as it is the case for the Kohn-
Sham system, numerous electrons have to be treated numerically. This is limiting for the possibilities
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of numerical simulations. One can try to reduce the number of electrons to be taken into account in
simulations by introducing a new kind of approximation.
The core electrons, by opposition to the valence electrons are tightly bounds to the nuclei and do
not affect the chemical bonding, nor the low-energy region of optical spectra. From that simple
observation originates the idea that core electrons and valence electrons can be treated separately.
The spirit of the pseudo-potential approximation is to treat separately some electrons of a system.
Instead of considering that electrons are affected by the true potential, some electrons are assumed to
feel a pseudo potential which includes the effects of the ions of the crystal plus the effects of the other
electrons.

Fig. 3.1: Taken from [119].

There are two classes of pseudo-potentials. i) The ionic pseudo-
potentials where core electrons are treated together with nuclei, as
a pseudo-ion. So the electronic system is only composed of valence
electrons. ii) The total pseudo-potentials where all electrons minus
one are including with the nuclei and only one electron is considered.
The ionic pseudo-potentials are in general more transferable and this
is the kind of pseudo-potential which is implemented in the ABINIT
code [115]. More precisely I used during this thesis norm-conserving,
Kleinman-Bylander separable form [120], pseudo-potentials.
The use of pseudo-potentials is also interesting as it allows us to reduce the number of plane-waves
required for describing the system, because it replaces the real valence wave-functions, which are
quickly varying close to the nuclei, by smooth pseudo wave-functions which equal the real valence
wave-functions after a certain distance from the nuclei (denoted rc in Fig. 3.1).
The price to pay when using a pseudo-potential is that the pseudo-potential contains in general a
nonlocal contribution. This has some implications, e.g., the electron momentum p̂ = −i∇ which is
no more proportional to the electron velocity. Indeed, v̂ = i[Ĥ, r̂] = p̂ + i[V̂ nl, r̂], where V̂ nl is the
nonlocal part of the pseudo-potential.
Using the explicit separable form of Kleinman-Bylander pseudo-potential, this non-local contribu-
tion can be computed and included in the optical responses [121]. This nonlocal contribution to the
surface second-harmonic spectra will be discussed widely in Chap. 6.

Summary

In this chapter, I have reviewed the density-functional theory approach for solving the many-body
problem. I have first presented how from time-dependent perturbation theory, we can define the
response functions, which allows us to compute the measurable quantities.
Then I have presented the density-functional theories. In both static and time-dependent cases, the
electronic density of the system is the key quantity. From the density, one obtains the potential
whereas from the potential, one obtains the wave-functions and thus the density.
Thanks to the TDDFT, the density response functions of the real, fully-interacting system are linked
to the non-interacting density response functions of the Kohn-Sham auxiliary system. These non-
interacting response functions are obtained from the ground-state; the latter being obtained by solv-
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ing self-consistently the static Kohn-Sham equations of DFT.
Finally numerical details of the implementation used for solving the equations of (TD)DFT have been
given.
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4. Silicon and its (001) surface

Silicon is the most used semiconductor in microelectronics and merging Si-based microelectronics
with photonics is required to overcome the fundamental limits reached by modern microelectronics.
Lot of hybrid technologies or on-chip optical networks have been presented as possible evolutions of
microelectronics. In that context, all-optical chips require nonlinear optics and in particular second-
harmonic generation. Due to the inversion symmetry of the bulk silicon, only third-harmonic gen-
eration is possible in the dipole approximation, and one could not consider using bulk silicon for
obtaining second-harmonic generation. By breaking this inversion symmetry, the surfaces of silicon
appear as an interesting choice for obtaining SHG in nano-manufactured all-Silicon devices, where
the surface-to-volume ratio increases [122].
In this chapter, I will briefly review some fundamental properties of silicon and present some appli-
cations of its surfaces in the context of second-harmonic generation. The different reconstructions of
the Si(001) surface used to test the theoretical development of this thesis are then presented. Relevant
experimental characteristics of bulk and surfaces are also provided here.

4.1 Silicon

Silicon is the eighth most common element in the universe by mass. The crystalline structure of
silicon is diamond-like cubic structure (see Fig. 4.1). It is solid at room temperature and has a dark
grey colour. From the electronic point of view, the silicon is characterized by an atomic number of 14
and an electronic shell of [Ne]3s23p2 leading to four covalent bonds and a sp3 hybridation. Some of
its experimental parameters are given in Tab. 4.1. Note that the spin-orbital splitting value is rather
small and thus the spin effects will be neglected throughout this thesis.
For the present work, an important property of the crystalline bulk silicon is the symmetries of its
structure and among all those symmetries, the inversion symmetry. As explained previously, in
the dipole approximation, this symmetry prohibits the second-order processes as SHG. The major
use of silicon now-a-days is obviously microelectronics, were integrated circuits are made on top
of a crystalline silicon wafer. A lot of techniques have been developed for designing, producing and
controlling silicon surfaces or nano-objects. From an experimental point of view, the silicon, due to its
importance, has been widely investigated and numerous possible novel applications have emerged.
In the next section, I present some of the novel applications of silicon and its surfaces, showing how
important Si surfaces are in those new applications.
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Fig. 4.1: Crystalline struc-
ture of bulk silicon. From
Ref. [123].

Experimental parameters Values (300K) Values (0K)

Lattice parameter (Å) 5.4310a 5.430g

Indirect band-gap (eV) 1.1242b 1.1701b

Direct band-gap (eV) 3.318c 3.354c

Dielectric constant 11.7f 11.4d

Spin-orbital splitting (eV) 0.04e, 0.044c
aRefs. [124, 125]. bRef. [126]. cRef. [127].
dRef. [128]. eRef. [129]. fRef. [130].
gRefs. [131, 132].

Tab. 4.1: Some experimental constants of silicon.

4.2 The role of silicon surfaces in novel applications

Here I do not present an exhaustive list of novel applications but I show how Si surfaces have a par-
ticular importance in that novel applications.
Most of the effort devoted to novel applications using silicon is oriented toward photonics. The
advantages of all-Silicon devices will not be discuss here and are out of the scope of this thesis. Nev-
ertheless, one can keep in mind that silicon photonics appears as a natural choice for on-chip optical
networks and all-optical data management, because of the high availability of silicon on earth, its
low cost of fabrication and the extensive theoretical and experimental knowledge accumulated over
the years.
A key point for achieving all-optical devices is the possibility of handling nonlinear second-order pro-
cesses such as SHG. The second-harmonic generation in reflection from planar silicon surfaces has
been widely studied from both experimental (see Ref. [32,33,133,134]) and theoretical (Ref. [135–141])
point of view. However, the new applications are more oriented toward the nano-manufacturing of
the devices. New properties or the enhancement of already existing properties are often related
to the enhancement of the surface-to-volume ratio in nano-objects. Therefore, the surfaces of Si
appear as an crucial key for handling the silicon photonics, and in particular for the SHG on Si-
based devices. Among the ways proposed in the literature for obtaining a SHG from silicon, we
find nano-particles [142], micro-cavities [143], nano-pillars [122] or more recently strained silicon
wave-guides [13]. In those nano-objects, the surface properties can become relatively important with
respect the bulk properties, making the understanding of Si surfaces of major importance. Besides
the realisation of Si-based photonic devices, Si is used in novel technologies as, for instance, the sili-
con nano-crystals based memory devices [144–146] or photovoltaic applications [147–150]. Note that
a fine control of the characteristics of the nano-crystals is required to obtain the best performances of
the nano-crystal based devices. In that context, SHG is used as a non-destructive and non-invasive
probe, e.g., Refs. [151, 152] where authors have applied SHG for probing the interface of Si nano-
crystals embedded inside a SiO2 matrix, which are used in the aforementioned memory devices.
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4.3 The (001) surface of silicon

4.3.1 Surface notations

The different surface reconstructions are named, in Wood notations, by a letter, which can be c or
p; standing respectively for centred or primitive. To that letter, one adds two numbers, e.g., p(2×1),
where the two numbers indicate how many times the bulk-like unit-cell is repeated along the two
in-plane lattice vectors for obtaining the unit-cell associated to the reconstruction. The more atoms
are involved, the bigger the reconstructed unit-cell is. In the case of the p(2×1) reconstruction, the cell
is twice longer in the first in-plane direction than in the second. If no letter is present, the reader has
to understand that it as a primitive cell, because the p letter is sometimes omitted. More information
concerning Wood notations can be found in Ref. [153].

4.3.2 The (001) surface of silicon

In this thesis, I was interested in the some specific silicon surfaces. I have chosen to apply my theoret-
ical developments to the (001) surfaces of Silicon for two main reasons. First, most of the electronic
devices are grown on top of wafers with a cubic cleavage on the (001) plane, making this surface
of main interest from the point of view of industrial applications. Among that industrial applica-
tions, one find the micro-fabrication process steps such as the doping or the ion implantation, the
photo-lithographic patterning, the etching, the deposition of various materials and the laser ablation.
Second, this surface exhibits simple reconstructions, making possible a study by means of ab initio
methods. By simple reconstructions, one has to understand 1×1 or 2×1 reconstructions, keeping in
mind that a 2×1 reconstruction obliges us already to double the number of atoms used for a calcula-
tion, increasing the already impressive burden associated with the ab initio calculation of SHG from
surfaces.

The smallest reconstructions of the clean (001) surfaces are presented in Fig. 4.2. Fig. 4.2 (a) repre-
sents the ideal surface, referred also as the bulk-terminated surface. In that bulk-terminated surface,
the top-most atoms are missing two neighbouring Si atoms, thus two covalent bounds, leading to
what is called two “dangling” bonds per Si surface atoms. Due to the dangling bonds, this surface
is not favourable in energy and, depending on the temperature and on the experimental conditions,
the atoms reconstruct into different structures as the p(2×1) with asymmetric dimers (Fig. 4.2(b)), the
p(2×2) with alternated dimers (Fig. 4.2(c)) or the c(4×2) structure (Fig. 4.2(d)). A careful study of the
energy associated with these different reconstructions can be found in Ref. [154]. As a summary, the
p(2×1) is the most favourable structure at room temperature, whereas the c(4×2) is the most stable
reconstruction at low temperature [153]. The phase transition p(2×1)→ c(4×2) takes place around
200K [155]. Due to its simplicity and the fact that at room temperature, the p(2×1) surface is the
most stable, I have decided to choose this surface reconstruction for representing the clean surface of
Si(001). Details concerning the asymmetric dimers are given in the following section.
Finally, it is important to mention that the Si(001) surface exhibits vicinal surfaces, which have been
extensively studied [156–158]. Such surfaces are Si(001) surfaces with a small miscut (of few degrees)
towards the crystallographic directions [110] or [111]. Nevertheless these surfaces require a study in
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Fig. 4.2: Top view of different possible reconstructions of the Si(001) surface. (a) Ideal surface. (b)
The p(2×1) reconstruction with asymmetric dimers. (c) The p(2×2) reconstruction with alternated
asymmetric dimers. (d) The c(4×2) reconstruction. Details concerning these surfaces are given in the
text. The top-most atoms are displayed in white. Red dashed lines correspond to the smallest cell
needed for mapping the entire surface.

themselves and will not be investigated in this present thesis.
In next section, the reconstructions used latter in this thesis are presented more in details.

4.4 Geometries and reconstructions

During this thesis, I have investigated three specific reconstructions of the silicon surface, along the
cleavage direction (001). Most of the effort has been devoted to the clean Si(001)2×1 surface. Two
other surfaces, obtained by the adsorption of hydrogen, namely the monohydride and the dihydride
surfaces, have been also investigated and are presented in that section.

4.4.1 Asymmetric dimers vs. Symmetric dimers

The 2×1 reconstruction of the clean Si(001) surface is known to be the most stable reconstruction
at room temperature [153]. This reconstruction arises from the dimerization of Si top-most surface
atoms, halving the number of dangling bonds (see Fig. 4.3(a) and (b)). It has been proposed two
models for the dimers, the symmetric dimers model where the dimers are parallel to the surface and
the asymmetric dimers model where dimers are buckled. The idea of the asymmetric dimers origi-
nates from Chadi [159], who found from tight-binding calculations that the Si(001)2×1 surface with
symmetric dimers was metallic, in disagreement with experimental results published the same year,
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Fig. 4.3: (a) Atomic Force Microscope (AFM) image of the clean Si(001)2×1 surface, from Ref. [162].
(b) Schematic view of the Si(001)2×1 surface. Picture from NIST Surface Structure Database. (c)
Evolution of opinions about the structure of clean Si(001) surface, taken from Ref. [163]. Symmetric
dimers dominates between the first observation of mostly symmetric dimers at room temperature
(1985) and first observation of mostly buckled dimers at low temperature (1992). In the upper panel,
the value of the buckling angle obtained from theoretical and experimental studies is reported, with
a clear correlation. The middle panel report the support for each model, measured by the number
of published papers. The theoretical and experimental preference (lower panel) is measured by the
difference between the number of papers supporting either model.

obtained by angle-resolved photo-emission spectroscopy (ARPES) [160].
From that seminal paper, lot of effort has been devoted to investigate the character of the dimers of
that surface. As a summary, one can keep in mind that the asymmetric dimers are found to be more
favourable in total energy by 0.1 eV per unit cell [161], and that they give the correct semiconducting
character of the surface.
One can think that the metallic character obtained by tight-binding or LDA calculations can be
changed by a GW correction, which opens the underestimated band-gap of LDA calculations, but
it has been shown in Ref. [161] that the GW band-structure obtained assuming symmetric dimers
is also metallic. As a conclusion, one can see on Fig. 4.3(c) that it is now well admitted from both
theoretical and experimental communities that dimers of the Si(001)2×1 are asymmetric.

Fig. 4.4: Side view of the
asymmetric dimer. dl is
the dimer length and db
the dimer buckling. θb is
the buckling angle.

The clean Si(001) surface used in this thesis corresponds to the
Si(001)2×1 surface with asymmetric dimers. Its point group is m and the
corresponding space group is p1m1. The dimers are along the [11̄0] crys-
tallographic direction (x-axis) and the dimer rows are along the [110] di-
rection (y-axis). Thus the surface is invariant under only one symmetry,
which is y → −y. The dimers are characterized by two values, which are
the dimer-bond length and the dimer buckling, as reported in Fig. 4.4. Al-
ternatively to the buckling value, the dimers can be characterized by the
buckling angle. The values of the dimer bond-length and buckling angle
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Method Dimer-bond length dB (Å) Buckling angle θb(°) Ref.

LEED 2.24± 0.08 19± 2 [164]
Surface x-ray diffraction 2.37± 0.06 20± 3 [165]
X-ray diffraction 2.67± 0.07 20± 3 [166]

Tab. 4.2: Experimental values obtain from various experimental methods as Low-Energy Electron
Diffraction (LEED) or (surface) X-ray diffraction. As a comparison, the bulk bond length is 2.35Å.

can be determined by a variety of methods. Results are summarized in Tab. 4.2 and the evolution
in time of the measured and predicted values of the buckling angle is reported in the top panel of
Fig. 4.3(c).

4.4.2 Monohydride and Dihydride surfaces

The interaction between the silicon surfaces and the hydrogen atoms is of main technological im-
portance due to the chemical vapour deposition (CVD) growth [167] and also for the passivation of
the etched silicon wafers [168]. Thus, a comprehensive understanding of the interaction of hydrogen
with the silicon surfaces is essential for semiconductor growth and processing. Moreover, the hydro-
gen is the simplest ad-atom and it can serve as a prototype for describing the physical interaction of
the Si surfaces with more complex ad-atoms.

Fig. 4.5: Side view of different possible recon-
structions of the hydrogenated Si(001) surface. (a)
Monohydride or Si(001)2×1:H surface. (b) Dihy-
dride or Si(001)1×1:2H surface. The H atoms are
displayed in black. Red dashed lines correspond
to the smallest cell needed for mapping the entire
surface.

This justifies the choice of hydrogenated sur-
faces for the application of theoretical develop-
ments of this thesis.
The adsorption of hydrogen on the clean
Si(001)2×1 surface leads, in general 1, to two pos-
sible surfaces, depending on the amount of hy-
drogen used and the experimental conditions of
growth.
The Si(001)2×1:H surface, also referred as the
monohydride surface, has a 2×1 reconstruction,
in which the Si dimers are intact and only one of
the two dangling bounds of the Si dimer is H sat-
urated. The dimers of this surface are symmetric
(see Fig. 4.5 (a)), meaning that they are parallel
to the surface, by opposition to the asymmetric
dimers of the clean surface aforementioned. The
Si-Si dimer bond-length has been found to be of
2.47 ± 0.02Å by surface x-ray diffraction [172],
showing that the bond between the dimer atoms
is weakened and lengthened in the monohy-

1A trihydride reconstruction also exists under specific conditions. [169]
Also a mixture of monohydride and dihydride can reconstruct in a 3×1 ordered reconstruction. [170, 171]
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dride structure, as we compare to the clean surface using similar experimental techniques. This
surface can be obtained experimentally by adsorption of hydrogen at high temperature, where the
2×1 organisation is preserved [34, 169]. This surface is also referenced as the surface with a coverage
of 1 mono-layer (ML) of hydrogen.
The space group of this surface is p2mm. The dimers are chosen to be along the same direction as the
clean surface. As the dimer are symmetric, the system is also invariant under the symmetry x→ −x.

The Si(001)1×1:2H surface (see Fig. 4.5(b)), also referred as the dihydride surface, is obtained by
saturating all the dangling bonds of the Si(001) surface with hydrogen atoms and can be obtained
experimentally if enough H (2ML) is added to the surface, so breaking dimers [34, 169]. Thus this
surface preserves the bulk symmetries and the hydrogenated surface so obtained is an ideally bulk-
terminated surface where hydrogen atoms saturate all the dangling bounds. The Si-H bond length
is found experimentally to be 1.48Å, from the SiH4 molecule [173]. By opposition to the two other
surfaces, this surface has a 1×1 reconstruction, leading to different symmetries for the χ(2) tensor;
due to its space group p4mm.
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Part II

Microscopic theory of second-harmonic
generation from crystal surfaces
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5. Microscopic theory of
surface second-harmonic generation

Fig. 5.1: From the slab
geometry (a) to the semi-
infinite medium (b).

Second-harmonic generation (SHG) is considered to be a versatile tool to
study many kinds of surfaces [65–67], interfaces [68, 69] and nanostruc-
tures [174–176]. The theoretical description of the phenomenon is well
established for bulk materials and interfaces and gives reliable results
[29, 41, 177, 178], but a rigorous theoretical description of the SHG from
surfaces is still missing. This can be easily understood because it is not
possible to compute directly the surface second-harmonic generation by
the usual ab initio approaches for surfaces. This is that particular problem
I want to address in this chapter.

The best model that one can imagine for representing a surface is a
semi-infinite crystal that fills half of the space, say for instance z>0, with
its surface parallel to the x-y plane; as sketched in Fig. 5.1(b). Unfortu-
nately, it is difficult, if not impossible, to treat numerically a semi-infinite crystal. The standard
approach, which is the one adopted in this thesis, consists in replacing the semi-infinite medium by
a finite slab of matter, i.e., a thin film, in order to mimic the semi-infinite crystal [119], see Fig. 5.1(a).
This slab is periodic in the plane, as the surface that we want to treat. In the direction perpendicular
to the plane of the surface, the slab, together with some vacuum, is repeated, in order to fill all the
space. This approach is called the super-cell approach. It has been successfully applied to surfaces,
for computing linear differential spectroscopies, e.g., the reflectance anisotropy; leading to quantita-
tive results [179–181].
Describing a surface by a slab of thickness 2L is a perfectly valid approach for representing a semi-
infinite crystal, under two conditions. i) The spectra originating from one half of the slab can be
obtained, independently of the other half of the slab. This means that the presence of the back sur-
face does not affect the optical response of the front surface, and vice versa. ii) One is able to take the
limit L → ∞, as sketched in Fig. 5.1. This last point is easily done in practice, by increasing L up to
the point where the surface spectroscopical quantities are converged.1

In the case of linear optics, the optical response of the half-slab is obtained by dividing by two the
full slab response, at least within the IPA [182].

1Surface spectroscopical quantities means there is no contribution from the bulk part. Linear differential spectroscopies
and SHG from centro-symmetric crystal surfaces are valid surface spectroscopical quantities in this context.
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Problems arise when applying this technique to the calculation of the second-harmonic generation.
The slab of matter being surrounded by vacuum, it exhibits two surfaces. If the slab is symmetric,
as exemplified in Fig. 5.2, the full slab exhibits artificial inversion symmetry and does not yield any
SHG signal.

Fig. 5.2: A symmetric
slab exhibits an artificial
centro-symmetry

If the slab is non-symmetric, the SHG computed is non-zero, but the
spectra so obtained results from the destructive interferences between the
two surface contributions.2 It can be shown that there is no general com-
bination of slabs and surfaces that allows us to obtain the contribution
arising from a single surface, independently of the other one.
In this chapter, I present how it is possible to obtain the second-harmonic
generation spectra from half of the slab, in super-cell geometry. First I
present the theory behind the extraction procedure, which gives access to
the contribution of a single surface. Then a relevant test-case is presented,
showing the consistency of the method. In Sec. 5.2, the accuracy of the ex-
traction and potential sources of errors are discussed. Finally, the spatial
construction of the spectra is analysed.
In all this chapter, the second-order surface susceptibility is considered, at
the level of the Independent-Particle Approximation (IPA). The local-field
effects are treated later, in Chap. 7.

5.1 Extracting the surface second-harmonic generation spectra

In this chapter, we consider the surface of a centrosymmetric crystal, such as silicon. In this case, only
the surface region contributes to the signal. The second-harmonic generation from half of the slab
reduces to only the surface region. I thus refer to the extracted spectra equally as the surface spectra
or the half-slab spectra.
The first atomistic calculations of second-harmonic generation from a surface have been performed
by L. Reining et al. [183]. In this paper, authors assumed that the electric field of the incident light has
a z dependence denoted C(z) and they replaced some matrix elements of the momentum, defined as
p̂ = i[Ĥ, r̂], by matrix elements of the modified momentum

P =
C(z)p̂ + p̂C(z)

2
. (5.1)

Then, they computed the probability of SHG in the velocity gauge by modifying the interaction be-
tween the electrons and the incident photons, and so introducing the modified momentum matrix
elements defined by Eq. (5.1). Two matrix elements are thus modified in this approach, correspond-
ing to the two impinging photons involved in SHG process.
Later, some authors (see Ref. [135–141]) have applied a similar technique, i.e., using the same modi-
fied momentum, but for computing the IPA second-order susceptibility χ(2)

0 (and no more the proba-
bility of SHG). They adopted a different approach, modifying only one matrix element, arguing that

2This is a major difference with linear optical properties where the contributions originating from the two surfaces
interfere positively.
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5.1 Extracting the surface second-harmonic generation spectra

the field corresponding to emitted photon must be modified (or equivalently to the dielectric polar-
ization) and not the field corresponding to the two impinging photons. However the literature does
not provide us with any reason for choosing one of those two methods nor a proof of one of those
methods.
In this section, I will prove the second method to be the correct way for extracting the half-slab spec-
tra; without using any phenomenological argument such as the emitted or impinging photons.
The microscopic second-order susceptibility is given, in the velocity gauge and within the independent-
particle approximation by [184]

χ
(2)
0,αβγ(ω, ω) =

i

2V ω3

∑
n,n′,n′′

BZ∑
k

〈nk|pα|n′k〉
(
〈n′k|pβ|n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ|nk〉

)
(En,k − En′,k + 2ω + 2iη)

×
[

fnn′′

(En,k − En′′,k + ω + iη)
+

fn′n′′

(En′′,k − En′,k + ω + iη)

]
,

(5.2)
where V is the volume of the crystal, fnn′′ = fn − fn′′ with fn3 and En,k being respectively the Fermi
occupation number for the Bloch state n at the point k in the BZ, and its energy. The frequency of the
impinging light is ω, and η is a small imaginary number that turns on adiabatically the electric field.
Here, α, β and γ are Cartesian coordinates.
Thereby, according to all the previous references except Ref. [183], the surface second-order suscepti-
bility should be computed using the formula

χ
(2)Cz1
0,αβγ (ω, ω) =

i

2V ω3

∑
n,n′,n′′

BZ∑
k

〈nk|Pα|n′k〉
(
〈n′k|pβ|n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ|nk〉

)
(En,k − En′,k + 2ω + 2iη)

×
[

fnn′′

(En,k − En′′,k + ω + iη)
+

fn′n′′

(En′′,k − En′,k + ω + iη)

]
,

(5.3)
where P is defined by Eq. (5.1).
Let us call this modification Cz1, because only one matrix element is modified in this formula. On
the other hand, the susceptibility is obtained according to Ref. [183] thanks to the formula

χ
(2)Cz2
0,αβγ (ω, ω) =

i

2V ω3

∑
n,n′,n′′

BZ∑
k

〈nk|pα|n′k〉
(
〈n′k|Pβ|n′′k〉〈n′′k|Pγ |nk〉+ 〈n′k|Pγ |n′′k〉〈n′′k|Pβ|nk〉

)
(En,k − En′,k + 2ω + 2iη)

×
[

fnn′′

(En,k − En′′,k + ω + iη)
+

fn′n′′

(En′′,k − En′,k + ω + iη)

]
.

(5.4)
This modification will be referred as Cz2, because two momentum matrix elements are modified.
Notice that the key point for the extraction of the spectra in both approaches is based on the modified
momentum P .
With those two unproven methods, the literature does not really provide the reader with a rigorous

3The system is a cold semiconductor with filled band, at T=0K. The occupation numbers are thus independent of the
momentum k.
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theoretical description of the second-harmonic generation from surface. Some questions have to be
addressed. Is one of these two methods correct? Is there a different way to extract the spectra from
half of the slab? If one of these two approaches is correct, what justifies the choice of Eq. (5.1) as a
expression for P? Answering to these different questions is the aim of this chapter and in particular
of this section.
Using the argument of the gauge invariance, I will first prove that the modification denoted Cz1 al-
lows the gauge invariant whereas this is not the case for other possible modifications of the formula.
Then, in section 5.1.2, I will derive the Cz1 formula and prove that the expression of the modified
momentum can be rigorously obtained, e.g., from the density-matrix formalism and the perturbation
theory; by integrating the microscopic current over the region of the slab limited by the aforemen-
tioned C(z) function.

5.1.1 Gauge invariance

The gauge invariance is an intrinsic property of the response functions [44]. This implies some prop-
erties on the χ(2)

0 tensor. Here I will focus on one necessary condition to be gauge invariant, which is
the non-divergence of the χ(2)

0 tensor as ω goes to zero.
Expressed in the velocity gauge, as in Eq. 5.2, there is an apparent divergence as the frequency ω goes
to zero. However, Sipe and co-workers proved in Ref. [185] that the formula can be expressed in a
non-divergent form, in the length gauge, and that all the divergent terms vanish.
The natural property of the tensor to be non-divergent must be fulfilled in an exact description of
microscopic surface second-harmonic generation. Therefore, the modified formula allowing us to
extract half of the slab response, must respect this property. As we will see, this is not the case for
all the possible modifications of the formula, and only the Cz1 formula fulfils the non-divergence
condition, and therefore allows the gauge invariance.
The Sipe and co-workers gauge transformation is based on the following expansion

1

ω3(Enn′(k) + 2ω)

[
fnn′′

(Enn′′(k) + ω)
+

fn′n′′

(En′′n′(k) + ω)

]
=
A
ω3

+
B
ω2

+
C
ω

+ F(ω), (5.5)

where

A =
1

Enn′(k)

[
fnn′′

Enn′′(k)
+

fn′n′′

En′′n′(k)

]
, (5.6a)

B =
fnn′′

Enn′(k)Enn′′(k)

[
2

En′n(k)
+

1

En′′n(k)

]
+

fn′n′′

Enn′(k)En′′n′(k)

[
2

En′n(k)
+

1

En′n′′(k)

]
, (5.6b)

C =
fnn′′

Enn′(k)Enn′′(k)

[
4

En′n(k)2
+

2

En′n(k)En′′n(k)
+

1

En′′n(k)2

]
+

fn′n′′

Enn′(k)En′′n′(k)

[
4

En′n(k)2
+

2

En′n(k)En′n′′(k)
+

1

En′n′′(k)2

]
, (5.6c)

F(ω) =
16

E3
n′n(k)(Enn′(k) + 2ω)

[
fnn′′

(En′n(k)− 2En′′n(k))
+

fn′n′′

(En′n(k)− 2En′n′′(k))

]
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+
fnn′′

E3
n′′n(k)(2En′′n(k)− En′n(k))(Enn′′(k) + ω)

+
fn′n′′

E3
n′n′′(k)(2En′n′′(k)− En′n(k))(En′′n′(k) + ω)

,

(5.6d)

where Enn′(k) = En,k − En′,k.
To be non-divergent, the terms associated with A, B and C must be zero.
Here, I do not assume any explicit expression for P and I only assume that p̂ and P behave similarly
under time-reversal symmetry and thus that 〈n,−k|P |n′,−k〉 = −〈n,k|P |n′,k〉.

Cz1 modification

Following Ref. [185], it is straightforward to show that the terms associated with A and C are zero,
invoking the time-reversal symmetry. In order to prove that the term associated with B is zero, we
must define the second-rank tensor

↔
T (k) =

∑
n,n′ /∈Dn

fnn′
〈n,k|P |n′,k〉〈n′,k|p|n,k〉

E2
n′n(k)

.

Using the k.p perturbation theory, and after some algebra, we obtain

1

2

(
∂Tαβ

∂kγ
+
∂Tαγ

∂kβ

)
=

∑
n,n′ /∈Dn

fnn′∆̃
α
nn′(k)

{
〈n,k|pβ|n′,k〉〈n′,k|pγ |n,k〉

}
E2
n′n(k)

−
∑
n,n′

(
3fnn′〈n,k|Pα|n′,k〉{〈n′,k|pβ|n,k〉∆γ

n′n(k)}
E3
n′n(k)

+
fnn′〈n,k|C(z)δαγ |n′,k〉〈n′,k|pβ|n,k〉

E2
n′n(k)

)
−

∑
n,n′,n′′

n′ /∈Dn
n′′ /∈{DnDn′}

βn,n′,n′′(k)〈n,k|Pα|n′,k〉{〈n′,k|pβ|n′′,k〉〈n′′,k|pγ |n,k〉},

(5.7)

with ∆̃α
nn′(k) = 〈n,k|Pα|n,k〉 − 〈n′,k|Pα|n′,k〉, and{

〈n,k|pβ|n′,k〉〈n′,k|pγ |n,k〉
}

=
1

2

(
〈n,k|pβ|n′,k〉〈n′,k|pγ |n,k〉+ 〈n,k|pγ |n′,k〉〈n′,k|pβ|n,k〉

)
.

In order to obtain Eq.(5.7), we have used the following sum-rule

∂

∂kγ
〈n,k|Pα|n′,k〉 = i

∑
m/∈{DnDn′}

[
〈n,k|rγ |m,k〉〈m,kPα|n′,k〉 − 〈n,k|Pα|m,k〉〈m,k|rγ |n′,k〉

]
−〈n,k|C(z)δαγ |n′,k〉+ i〈n,k|rγ |n′,k〉∆̃α

n′n, (5.8)

that can be derived from the k.p perturbation theory. HereDn are all the possible degenerate n-states.
Using the time-reversal symmetry, we obtain that

1

2

(
∂Tαβ

∂kγ
+
∂Tαγ

∂kβ

)
= −

∑
n,n′,n′′

n′ /∈Dn
n′′ /∈{DnDn′}

βn,n′,n′′(k)〈n,k|Pα|n′,k〉{〈n′,k|pβ|n′′,k〉〈n′′,k|pγ |n,k〉}. (5.9)
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Using the fact that
↔
T (k) is a periodic function throughout the BZ, its integral over the full BZ is zero.

The βn,n′,n′′(k) term corresponds to the B term of Eq. (5.6b); which is integrated over the full BZ. We
thus prove that the term associated with B, in the case of the formula Cz1, is zero which is a necessary
condition for the formula Cz1 to be gauge invariant.

Cz2 modification

Similarly to the previous case, the terms associated toA and C are zero from time-reversal symmetry.
The term associated to B contains two modified matrix elements. The sum-rule Eq. (5.8) yields only
one modified momentum matrix element on the right-hand side. In order to allow the gauge invari-
ance, one must define a second-rank tensor, and takes its derivative. The only possible choice for
obtaining two modified momentum matrix elements from the derivative of a second-order tensor, is
to define the following tensor

↔
T (k) =

∑
n,n 6=n′

fnn′
〈n,k|P |n′,k〉〈n′,k|P |n,k〉

E2
n′n(k)

. (5.10)

More precisely, due to the structure of B, only the specific combination of derivative of that tensor
1
2

(
∂T bc

∂ka + ∂T cb

∂ka

)
would give the correct coordinates associated with the modified momentum matrix

elements. Any other combination does not yield the correct coordinates associated with P . Unfor-
tunately, it is not possible to recover the expected B term from this expression. The conclusion is the
formula Cz2 is not gauge invariant, due to the fact that B term is non-vanishing.

Other possible modifications

We have, up to now, considered only Cz1 and Cz2 as possible modifications for the expression of
the second-order susceptibility tensor. But is there any other possible modifications? One can think
for instance to modify one matrix element but not the first one, or to modify two matrix elements
but not the two last one. First, this is meaningless because this breaks the intrinsic permutation rule
of the indices of the χ(2)

0 tensor, χ(2)
0,αβγ = χ

(2)
0,αγβ . Second, in each cases, applying the time-reversal

symmetry to the A and C terms does not make them vanish.
The last possible option could be to modify all matrix elements. In that case, due to the sum-rule
Eq. (5.8), the B term will not be zero, because any derivative of a second-order tensor will leave, at
least, one unmodified momentum matrix element.

Conclusion

To conclude, I have proven that the only modified expression of the microscopic second-order sus-
ceptibility tensor, which includes the cut-function C(z) while allowing gauge invariance, is the Cz1
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modified quantity; which will now be denoted χ(2)S
0 , and which is given by

χ
(2)S
0,αβγ(ω, ω) =

i

2V ω3

∑
n,n′,n′′

BZ∑
k

〈nk|Pα|n′k〉
(
〈n′k|pβ|n′′k〉〈n′′k|pγ |nk〉+ 〈n′k|pγ |n′′k〉〈n′′k|pβ|nk〉

)
(En,k − En′,k + 2ω + 2iη)

×
[

fnn′′

(En,k − En′′,k + ω + iη)
+

fn′n′′

(En′′,k − En′,k + ω + iη)

]

Nevertheless, at this stage, I do not have proven that this modified formula gives the correct
second-harmonic generation spectra. Moreover, the analytical expression of the modified momen-
tum has still not been given. The only thing that I have proven at this point is that gauge invariance
imposes only one way to modify the formula. The interesting point is that this choice corresponds to
the choice of the majority of authors in the literature. I will now show the expression of P .

5.1.2 Density-matrix formalism and perturbation theory

In Ref. [139], Mendoza et al. derived from a microscopic approach the modification Cz1 for the
linear optical properties; by integrating the polarization (and therefore the microscopic current) over
the surface region. Here I briefly reproduce their derivation for the linear case and I extend it to the
case of the second-harmonic generation. The potential is assumed here to be local. The specificities
related to non-local operators are treated in next chapter.
For a system perturbed by an external electric field, Sipe et al. [186] have shown, from perturbation
theory, that the corrections to density matrix due to the perturbing field, denoted here cmn(k, t), are
given at first- and second-order in the perturbing electric field, by

c(1)
mn(k, t) =

∫
dω
∑
β

fnmr
β
mn(k)

(Emn(k)− ω − iη)
EPβ (ω)e−i(ω+iη)t (5.11a)

c(2)
mn(k, t) =

i

4

∫
dω1dω2

∑
βγ

1

(Emn(k)− (ω1 + ω2 + 2iη))

[
fnmr

β
mn;γ(k)

(Emn(k)− ω1 − iη)
− fnmr

β
mn(k)∆γ

mn(k)

(Emn(k)− ω1 − iη)2

−i
∑
p

( fnpr
γ
mp(k)rβpn(k)

(Epn(k)− ω1 − iη)
− fpmr

β
mp(k)rγpn(k)

(Emp(k)− ω1 − iη)

)
+ (βγ12⇔ γβ21)

]
EPβ (ω1)EPγ (ω2)e−i(ω1+ω2+2iη)t

(5.11b)

where EP (ω) =
∫
dtEP (t)exp(iωt), EP being the perturbing field, see Chap. 1.

Here, Emn(k) = Em,k − En,k are energy differences between the bands m and n for a momentum k

in the BZ, ∆γ
mn is defined as ∆γ

mn(k) = pγmm(k)− pγnn(k) and rβmn;γ is given by

rβmn;γ(k) =
−[rβmn(k)∆γ

mn(k) + rγmn(k)∆β
mn(k)]

Emn(k)
− i
∑
p

Emp(k)rβmp(k)rγpn(k)− Epn(k)rγmp(k)rβpn(k)

Emn(k)
.

(5.12)
Even if the expression (5.11b) is general for all the second-order phenomena, I will restrict myself to
the case of second-harmonic generation.
Following Ref. [139], we write the mean value of the microscopic current density integrated over the
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full BZ 4

< j(1)(r, t) > =

∫
d3k

8π3

∑
mn

c(1)
mn(k, t)jnm(k; r), (5.13a)

< j(2)(r, t) > =

∫
d3k

8π3

∑
mn

c(2)
mn(k, t)jnm(k; r), (5.13b)

where jnm(k; r) is a matrix element of the microscopic current operator given by [187]

jnm(k; r) =
−i
2

[ψ∗nk(r)∇ψmk(r)− ψmk(r)∇ψ∗nk(r)]. (5.14)

Rather than integrating over the full slab, we integrate over a part of the slab, defined by C(z). The
surface microscopic induced current density JSind is given at the i-th order by

< J
(i)S
ind (t) >=

∫
d3rC(z) < j(i)(r, t) >=

∫
d3k

8π3

∑
mn

c(i)
mn(k, t)

∫
d3rC(z)jnm(k; r). (5.15)

We now compute the last integral in Eqs. (5.15).∫
d3rC(z)jnm(k; r) =

1

2

∫
d3rC(z)[ψ∗nk(r)(−i∇)ψmk(r) + ψmk(r)(i∇)ψ∗nk(r)]

=

∫
d3rψ∗nk(r)

C(z)p̂ + p̂C(z)
2

ψmk(r)

= Pnm(k), (5.16)

where p̂ = −i∇.
Here an integration by part is performed on the second term of the right-hand side of the first line.
Notice that we obtain the expression of a matrix element of the modified momentum mentioned
before.
The next step consists in linking explicitly c(1)

mn and c
(2)
mn, given by expressions (5.11a) and (5.11b), to

the linear and second-order susceptibilities.

First-order response

Using Eq.(5.16) and Eq.(5.15), we obtain5

< J
(1)S,α
ind (t) >=

∫
dω
∑
β

∫
d3k

8π3

∑
mn

fnmPαnm(k)pβmn(k)

Emn(k) (Emn(k)− ω − iη)
EPβ (ω)e−i(ω+iη)t. (5.17)

4At this point of the derivation, one must not replace the integral over the Brillouin zone by a sum because an integration
by part will be performed later.

5Position matrix elements are linked to the momentum matrix elements by the relation

rnm(k) =
pnm

iEnm(k)
, n /∈ Dm,

where Dm are all the possible degenerate m-states. The occupation numbers prevent from having n ∈ Dm.
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5.1 Extracting the surface second-harmonic generation spectra

We now use the following definition, where χ(1)S
0 is the first-order surface susceptibility, linking the

surface polarization at first order to the electric field.6

< J
(1)S,α
ind (t) >= −i

∫
dω
∑
β

(ω + iη)χ
(1)S
0,αβ(ω)EPβ (ω)e−i(ω+iη)t.

After simple algebra, one obtains that

χ
(1)S
0,αβ(ω) =

1

V

∑
mn

BZ∑
k

fnm〈n,k|Pα|m,k〉〈m,k|pβ|n,k〉
E2
mn(k) (Emn(k)− ω − iη)

, (5.18)

where we replaced the integral over the BZ by a sum. We obtain exactly the same formula as in
[188], except that the first momentum matrix element is replaced by a matrix element of the modified
momentum (5.1).
Thus we showed that computing the first-order microscopic susceptibility for a surface yield the Cz1
formula Eq. (5.3). Moreover, the expression of the modification P , given by Eq.(5.1), is obtained
analytically.

Second-harmonic generation

The case of SHG is more difficult to tackle.
Combining Eq. (5.16) and Eq. (5.15), and identifying to the surface susceptibility defined by

< J
(2)S
ind,α(t) >= −i

∫
dω
∑
βγ

(ω + iη)χ
(2)S
0,αβγ(ω, ω)EPβ (ω)EPγ (ω)e−2i(ω+iη)t, (5.19)

we obtain that

χ
(2)S
0,αβγ(ω, ω) =

−i
(ω + iη)

∫
d3k

8π3

∑
mn

1

(Emn(k)− 2ω − 2iη)

[
fnmPαnm(k)

[
pbmn(k)∆c

mn(k) + pcmn(k)∆b
mn(k)

]
(Emn(k)− ω)E2

mn(k)

+
∑
p

fnmPαnm(k)
[
Emp(k)pβmp(k)pcpn(k)− Epn(k)pcmp(k)pbpn(k)

]
Emp(k)Epn(k)Emn(k)(Emn(k)− ω − iη)

+
fnmPαnm(k)pβmn(k)∆c

mn(k)

Emn(k)(Emn(k)− ω − iη)2

+
∑
p

( fnpPαnm(k)pcmp(k)pbpn(k)

Emp(k)Epn(k)(Epn(k)− ω − iη)
−

fpmPαnm(k)pbmp(k)pcpn(k)

Emp(k)Epn(k)(Emp(k)− ω − iη)

)
+ (βγ ⇔ γβ)

]
.

(5.20)
This expression is divergent as 1

(ω+iη) , but after some tedious algebra, we obtain a non-divergent
formula. The derivation proceeds as follow. The following term

A =
−i

2(ω + iη)

∫
d3k

8π3

∑
mn

fnmPanm(k)pbmn(k)∆c
mn(k)

ωmn(k)(ωmn(k)− 2ω − 2iη)(ωmn(k)− ω − iη)2
,

is not satisfactory because it contains a term with (ωmn(k)−ω−iη)−2. In order to overcome this term,
we expand A into partial fraction and we use a relation given by Sipe and co-workers in Ref. [186]

6The total electric field and the perturbing electric field are equals in the independent-particle approximation.
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for any function g
∂g(ωmn)

∂ka
=
∂ωmn
∂ka

∂g(ωmn)

∂ωmn
= ∆a

mn

∂g(ωmn)

∂ωmn
.

Then after performing integration by parts, all the terms are factorized and simplified using time-
reversal symmetry. The 1

(ω+iη) divergence vanishes naturally when applying the time-reversal sym-
metry on the remaining expression. For convenience, we split this expression into two contributions,
one giving the two-bands contribution, where only two bands are involved and a second one, giving
the contribution which involves three bands.

χ
(2)S
0,αβγ(ω, ω) = χ3bnd

αβγ (ω) + χ2bnd
αβγ (ω), (5.21)

with

χ3bnd
αβγ (ω) =

i

2V

∑
nmp

BZ∑
k

〈n,k|Pα|m,k〉
(
〈m,k|pβ|p,k〉〈p,k|pγ |n,k〉+ 〈m,k|pγ |p,k〉〈p,k|pβ|n,k〉

)
(2Epn(k)− Emn(k))

×

[
16fnm

E3
mn(k)(Emn(k)− 2ω − 2iη)

+
fpn

E3
pn(k)(Epn(k)− ω − iη)

+
fmp

E3
pm(k)(Emp(k)− ω − iη)

]
,

(5.22a)

χ2bnd
αβγ (ω) =

i

V

∑
nm

BZ∑
k

fnm〈n,k|Pα|m,k〉
(
〈m,k|pβ|n,k〉〈m,k|∆γ |n,k〉+ 〈m,k|pγ |n,k〉〈m,k|∆β|n,k〉

)
ω4
mn(k)

×
[

8

(Emn(k)− 2ω − 2iη)
− 1

2(Emn(k)− ω − iη)

]
. (5.22b)

We have replaced integral by a sum over the full BZ. We obtain a formula for χ(2)S
0 expressed in

the length gauge similar to the expressions of χ(2)
0 that one can find in the literature, e.g., Ref. [189];

except that the momentum matrix element associated with the Cartesian coordinate α of the polar-
ization has been replaced here by a modified momentum matrix element.
Thereby we have derived explicitly the Cz1 expression, without any approximation on the second-
order susceptibility. As in the case of linear optical properties, we recovered the analytical expression
of P as given by Eq.(5.1); proving thus the correctness of the approach assumed by authors in litera-
ture.
Together with the previous result, we have established a rigorous derivation of the extraction of the
surface second-harmonic generation. We have proven that it exists an unique way to modify the ex-
pression of the χ(2)

0 tensor. Then we have proven that integrating over a region of the system defined
by a cut-function C(z), instead of the entire system, leads to modified momentum P of the literature.
Next section is dedicated to the numerical validation of this approach.

5.1.3 Tight-binding results - Numerical Validation

Tight-binding

The tight-binding (TB) method, using a sp3d5s∗ basis-set, [190, 191] gives reliable results for the elec-
tronic structure and the optical properties of solids. As the qualitative effects of the extraction of

66



5.1 Extracting the surface second-harmonic generation spectra

the second-harmonic generation spectra do not depend on the scheme used to calculate the energies
and velocity matrix elements, I decided to use this nearest-neighbour semi-empirical tight-binding
scheme to determine the electronic structure of the surfaces in this section. Thereby, we obtain very
well converged spectra as a function of the size of the slab, with an easy numerical implementation
of the function C(z). During this thesis, I have implemented a tight-binding code for computing the
linear and nonlinear optical properties of bulk materials and surfaces. This code has been used to
test the theory presented in the first part of this chapter. Notice that only the numerical results of this
chapter are obtained with this tight-binding code, whereas the rest of this thesis contains only the
result of ab initio calculations.

Atomic positions and numerical details

Fig. 5.3: A slab with an front
clean Si(001)2×1 surface and a
back dihydride surface. The
dangling bonds are H (small
balls) saturated. This image
depicts 20 Si atomic layers
with one H atomic layer.

The surfaces have been studied with the experimental lattice con-
stant of 5.43 Å. We assume that ab initio atomic positions can be
used directly for tight-binding calculations without performing any
other relaxation. Structural optimizations were performed with the
ABINIT code [115]. The geometry optimizations have been carried
out in slabs of 12 atomic layers where the central four layers where
fixed at the bulk positions. The structures were relaxed until the
Cartesian force components were less than 5 meV/Å. The energy
cut-off used was 20 Ha and I used Trouiller-Martin LDA pseudo-
potentials. The geometry optimization for the clean surface gives
a dimer buckling of 0.721 Å, and a dimer length of 2.301 Å. For
the Si(001)1×1:2H dihydride surface, we have obtained a Si-H bond
distance of 1.48 Å. These results are in good agreement with previ-
ous theoretical studies [192,193], as well as experimental values (see
Chap. 4).

The Si-Si parameters for the tight-binding code are taken from
Ref. [194], and the H-H and Si-H parameters are taken from
Ref. [195]. The parameters correspond to the values of the matrix
elements of the Hamiltonian for the different orbitals of the chosen
basis, at a fixed atomic distance. If the two orbitals are located on
different atoms, we refer to them as inter-atomic terms. For two or-
bitals located on the same atom, we speak about intra-atomic terms.
Intra-atomic matrix elements are important for obtaining quantita-
tive optical properties in TB [196]. As the intra-atomic matrix elements do not exist in the literature
for the sp3d5s∗ basis set, I optimised these parameters, imposing the Thomas-Reiche-Kuhn [197, 198]
sum rule to be fulfilled. I also checked that for a smaller basis set (sp3s∗), the values given in the liter-
ature for Si bulk are recovered with our approach. The values of intra-atomic matrix elements used
in the surface calculations are given in Table 5.1. We checked that a slight change in the intra-atomic
matrix elements does not induce any important change in the resulting optical spectra. Therefore, for
the surfaces, we used the Si intra-atomic matrix elements optimized for the bulk material. Finally, to
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Chapter 5. Microscopic theory of surface second-harmonic generation

〈s|d|px〉 〈s∗|d|px〉 〈px|d|dxy〉 〈px|d|d3z2−r2〉 〈pz|d|d3z2−r2〉

Si 0.636 0.247 0.309 0.203 0.258

Tab. 5.1: Intra-atomic matrix elements for bulk Si. Other intra-atomic matrix elements are obtained
by symmetry.

Non-zero components

Clean Surface yyx=yxy xyy xxx yyz=yzy xxz=xzx zxx zyy xzz zzx=zxz zzz
Dihydride Surface xxz=xzx yyz=yzy zxx zyy zzz

Tab. 5.2: Non-zero components for the different surfaces. Clean surface denotes a clean silicon surface
with asymmetric dimers reconstruction. Dihydride surface denotes a silicon surface with 2 H atoms
per Si surface atoms with the bulk in-plane symmetries preserved.

account for the deformation potential induced by the modified bond-length at the surface, we used
a generalized Harrison scaling law [199], whose parameters for Si are also given in Ref. [194].
The tight-binding calculations have been performed using super-cells composed of 36 atomic layers
and a 256 off-symmetry k-points grid has been used to sample the 2D Brillouin zone. We used the
same amount of vacuum that the amount of matter in the super-cell. The results are found to be
converged with those parameters. A Lorentzian broadening of 100 meV has been used.

The Clean-Dihydride slab

Here, we present a relevant test case to check the consistency of our approach. We have selected a
clean Si(001) surface with a 2×1 surface reconstruction. The different silicon surfaces have already
been presented in Chap. 4. The slab for such a surface could be chosen to be centrosymmetric by
creating the front and back surfaces with the same 2×1 reconstruction. The fact that the clean surface
has an asymmetric reconstruction breaks symmetries between x-axis (defined in crystallographic di-
rection as [11̄0]) and y-axis ([110]). On the contrary, the hydrogen saturated surface is ideally bulk
terminated, thus preserving the in-plane symmetries between the x and y axis. We choose to termi-
nate one of the surfaces with hydrogen producing an ideal terminated bulk Si surface. The H atoms
simply saturate the dangling bonds of the bulk-like Si atoms at the surface, as seen in Fig. 5.3. We
take the z coordinate pointing out of the surface and the x direction is parallel to the dimers. The
idea behind this slab configuration is that the crystalline symmetry of the H terminated surface im-
poses that χ2H

xxx = 0. The 2×1 surface has no such restrictions, so χ2×1
xxx 6= 0. Therefore, the full-slab

xxx component, calculation without selecting only one surface, i.e., without using the C(z) function,
equals the clean surface xxx component

χfull-slab
xxx = χ2×1

xxx − χ2H
xxx = χ2×1

xxx . (5.23)

In total, five components can be calculated using the same technique, see Tab. 5.2. I want to stress
that we are able to compute here five components of clean 2×1 surface without any modification of the
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formula, as the full slab calculation yield in this case the interference between a zero and a non-zero
signal. We can then compare these exact spectra with the extracted spectra corresponding to the half
of a symmetric slab with two clean 2×1 surfaces. The result of the comparison is reported in Fig. 5.4.
Our extraction perfectly reproduces the exact spectra in the low energy region. For higher energies,
the two calculations present slight deviations but remain very similar. This proves the correctness of
our approach, which reveals a really good agreement with exact spectra.
Small discrepancies can be attributed to convergence problems or to interferences between the front
and the back surfaces. In next section, the possible sources of discrepancies are discussed.

5.2 Discussions

5.2.1 Numerical accuracy

The fact that the extraction of the spectra is possible and that it should recover the exact full-slab
calculation relies on two implicit assumptions. The first assumption is that the two surfaces are in-
dependent and non-interacting. The validity of this assumption can be checked easily by computing
the same component of the tensor χ(2)S

0 extracted from different super-cells. In Fig. 5.5, I compared
the zzz component of the second-order susceptibility tensor for the clean (left panel) and dihydride
(right panel) surfaces. The red curves correspond to the extraction of the spectra from a symmetric
slab, i.e., with two identical surfaces. The black curves correspond to the extraction from an asymmet-
ric slab, i.e., the front and the back surfaces are different. Here I chose the zzz component, because
this is the biggest component in magnitude, and therefore, potential interference effects should be
strengthened for this component.

The two obtained spectra for the clean and the dihydride surfaces are in a very good agreement.
Indeed, the effect of the back termination on the front surface spectra is negligible. Notice that the
discrepancy between the full slab and half slab spectra in Fig.5.4 is of the same order than the dis-
crepancy between the spectra of Fig. 5.5.
The second assumption made is that the five components of Fig. 5.4 are numerically zero for the di-
hydride surface. The extraction of those five components for the dihydride surfaces yields as a result
(not shown) a small but non-zero spectra.7 Extracting those five components for the dihydride sur-
face from a clean-dihydride slab, we obtain a spectra whose magnitude is three order of magnitude
greater than our numerical zero.
Few reasons here can explain this result. Maybe the most reasonable reason is that the shifted k-point
grid breaks the symmetries between the x and y axis and the number of k-points should be increased
for improving the agreement between the different spectra. However, considering a good balance
between the complexity of the calculation and the accuracy, the precision obtained by converging the
number of k-point, conduction bands and more importantly the number of atomic layers is always
more than a few percent. This is confirmed in the next section by a study of convergence of the zzz
component of the clean silicon surface.
To conclude, the numerical accuracy has been investigated by analysing the possible interference ef-

7The numerical zero has been established for bulk systems to be at 10−5 atomic units for the SHG tight-binding code.
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Fig. 5.4: Comparison of |χ(2)S
0 | for five components. Black curves: full slab calculations from a Clean-

Dihydride 2x1 super-cell. Red curves: extracted half-slab calculations from a Clean-Clean symmetric
super-cell.
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Fig. 5.5: Comparison between |χ(2)
0,zzz| spectra for the clean (left panel) and the dihydride (right panel),

extracted from a two different type of slabs. The curves are explained in the text. DiH stands for
dihydride surface here.

fects between the front and back surfaces of the slab. The error introduced by the extraction (2-3%)
on the spectra is rather negligible and, more importantly, smaller than the error introduced by the
convergence parameters.

5.2.2 Convergence in atoms

An atomic layer is defined as a part of the slab containing atoms at the same height, or almost at the
same height, in case of a surface reconstruction. For a 2×1 cell for instance, a layer is composed of 2
atoms. The slab is so divided into atomic layers. For instance, a 72 Si atoms super-cell is composed
of 36 layers for the full slab or equally, 18 layers for the half-slab. Hydrogen atoms are not taken into
account for layers counting and are including in the topmost layer.
The results presented up to here have always been obtained from slabs made of 36 atomic layers.
Here I report the convergence in number of atomic layers for the zzz component of the clean surface.
Other components are found to converge similarly in atoms and therefore are not reported here. In
order to compare the spectra obtained for different number of atoms, the different spectra have been
expressed in pm2/V .

For helping the understanding of the convergence, Tab. 5.3 shows the static values of |χ(2)S
0 | with

respect to the number of atomic layers in the half-slab. Using the criteria of less than 5% of error on
static limit value, I found that the convergence is reached at 16 layers (64 atoms, ∼21.7Å); and that
the spectra obtained for 12 layers (48 atoms, ∼16.3Å) is good enough to obtain quantitative results.
We have checked that this result is very similar to the ab initio convergence in atoms, also performed
during this thesis. This ab initio convergence can be found in Ref. [200]; where 12 atomic layers also
yield a quantitative result and where 16 layers yield the converged SHG spectra.
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Fig. 5.6: Convergence of |χ(2)S
0,zzz| in number of atomic layers. The

numbers of layers indicated correspond to the numbers of atomic
layers in half of the slab. To be converted in numbers of atoms,
they have to be multiplied by 2 because the clean surface has two
atoms per layer, and by another factor of 2 for the two half of the
slab.

N. layers Static value
[×10−19 pm2/V]

8 7.17
10 8.70
12 9.39
14 9.07
16 9.85
18 9.91
24 9.96
30 9.95

Tab. 5.3: Static value of |χ(2)S
0,zzz|

for the clean surface.

5.2.3 Two-bands contribution

In the special case of α = β = γ and when the first momentum matrix element is not a modified
momentum matrix element, the two-bands contribution, given by Eq. (5.22b), reads as

χ2bnd
ααα (ω) =

i

V

∑
nn′

BZ∑
k

fnm〈n,k|pα|n′,k〉〈n′,k|pα|n,k〉〈n′,k|∆α|n,k〉
E4
n′n(k)

[
16

(En′n(k)− 2ω)
− 1

(En′n(k)− ω)

]
.

From the time-reversal symmetry, one obtains that χ2bnd
ααα (ω) = 0. This property can be used in SHG

codes to optimise the calculation of χ(2)
0 for the components such as α = β = γ.

One could be interested by proving an equivalent result for the surface two-band contribution. In the
surface case, 〈n,k|pα|n′,k〉 is replaced by 〈n,k|Pα|n′,k〉. Thus, the two momentum matrix elements
are now a momentum matrix element and a modified momentum matrix element. There are no more
equivalent by the time-reversal symmetry. Therefore, if we want to compute the half-slab spectra, the
two-bands contribution must always be computed.

5.2.4 Symmetric or asymmetric slab

In this section, we use the fact that the half-slab and the full-slab spectra in the linear spectra dif-
fer only by a factor of 2. In Fig.5.7, a comparison between the linear full slab and extracted spectra
of the clean Si(001) surface is reported. In the left panel, the total spectra divided by two (full slab
calculation from the clean-clean slab) is compared with the extracted spectra from the clean-clean
slab. In the right panel, the same total spectra divided by two is compared with the extracted spectra
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Fig. 5.7: Top panels: Comparison between linear spectra obtained from two different systems, a
symmetric slab ( clean-clean ) and an asymmetric slab ( clean-dihydride ), using the tight-binding
code. Total refers to full slab calculation from the clean-clean slab. Bottom panels: difference between
full slab over two and half slab calculations.

from a clean-dihydride slab. The quantity reported is Im(εxx − εyy), in order to overcome the bulk
contribution. The bulk being isotropic, this allows us to discuss only about the surface contribution.
Notice that this quantity is close to the reflectance anisotropy spectroscopy (RAS).
In the linear case, if the spectrum is computed from a symmetric slab, i.e., front and back surfaces
being identical; we obtain exactly, by extraction, one half of the total spectra. This is verified in the
lower left panel, showing the difference of the two spectra. This has already been pointed out, see,
for instance Ref. [182]. On the contrary, if the spectrum is extracted from an asymmetric slab, there is
a small but visible discrepancy between the two spectra.
Even if it is not possible to access as easily to the SHG surface spectra, we expect that using a symmet-
ric slab leads to better results in SHG too. In Chap. 7, it is proven analytically that the slab must be
chosen symmetric if one wants to be able to compute the macroscopic second-harmonic generation.

5.2.5 Tight-binding picture of Cz1

Let us consider a basis of orbitals, localized on atoms. This basis-set of orbitals is assumed to be
orthogonal. Any Bloch state can be expressed in this basis as

|n,k〉 =
∑
i

∑
αi

cnαi(k)|α, i〉,

where i refers to the atoms and αi is the orbitalsα attached to the atom i, and cnαi(k) are the coefficients
of the Bloch state |n,k〉, in the orbital basis.
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In this basis, a matrix element of the momentum can be written as [201, 202]

〈n,k|p̂|n′,k〉 =
∑
i,j

∑
αi,βj

cn†αi (k)cn
′
βj

(k)∇αi,βj . (5.24)

Starting from (5.3), it is possible to rewrite that formula as

χ
(2)S
0,abc(ω) = − 1

2V ω3

∑
n,n′,n′′,k

Im(PPart,an,n′ (k)(pbn′,n′′(k)pcn′′,n(k) + pcn′,n′′(k)pbn′′,n(k)))

En,k − En′,k + 2ω + 2iη[
fnn′′

En,k − En′′,k + ω + iη
+

fn′n′′

En′′,k − En′,k + ω + iη

]
, (5.25)

with

PPart
n,n′ (k) = 〈nk|C(z)p̂|n′k〉 =

∑
i,j

C(zi)
∑
αi,βj

cn†αi (k)cn
′
βj

(k)∇αi,βj ,

where C(zi) is 1 if the atom i, located at the height zi, is inside the half-slab defined by C(z). Here we
defined ∇αi,βj = 〈α, i|∇Ĥ0|β, j〉. For obtaining this expression, we explicitly used the tight-binding
expression of the matrix elements given by Eq. (5.24); and therefore Eq. (5.25) is only valid in the
tight-binding limit.
We can now write more explicitlyPPart,an,n′ (k)(vbn′,n′′(k)vcn′′,n(k)+vcn′,n′′(k)vbn′′,n(k)) in the tight-binding
formalism.
So putting all together, we get

PPart,an,n′ (vbn′,n′′v
c
n′′,n + vcn′,n′′v

b
n′′,n) =

∑
i

C(zi)
∑
j

∑
αiβj

cn†αic
n′
βj
∇aαiβj (v

b
n′,n′′v

c
n′′,n + vcn′,n′′v

b
n′′,n). (5.26)

Inserting Eq. (5.26) into Eq. (5.25), we obtain a formula where it appears explicitly a sum over the
atoms in front of the expression, weighted by the cut-function C(z) evaluated at the height zi of the
atoms. Therefore χ(2)S

0 is constructed by adding the individual contributions of each atom. Each
atom playing an independent role, we can decide how to construct a spectra. For instance, the half-
slab spectra can be computed choosing C(z) as the indicator function of the half-slab. Or it can
be constructed by adding the individual contributions of the atomic layers forming the half-slab,
computed separately. Mathematically, this function C(z) describes a partition over the atoms. A direct
consequence is the possibility to perform a layer-by-layer analysis of the surface second-harmonic
generation spectra. Therefore in next section, I exploit this result to analyse the spatial construction
of the second-harmonic spectra.

5.2.6 Spatial construction of the SHG spectra

As mentioned above, the extraction procedure results to be a partition over the atoms, and each layer
can be computed and analysed separately. The main motivation of this section is the understanding
of the spatial construction of the SHG spectra.
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Fig. 5.8: Layer-by-layer analysis of the |χ(2)S
0,zzz| for the clean Si(001)2×1 surface.

In Fig. 5.8, we present our layer-by-layer analysis of |χ(2)S
0,zzz|, computed for the clean silicon surface.

In fact we analysed the spatial construction of the spectra. For a fixed size of the slab, we increase
the number of layers contributing to the spectra, up to the half-slab. This analysis is performed on
a slab containing 40 atomic layers in total. Here only blocks of 4 layers are considered, because we
want to consider only block of centro-symmetric matter, to avoid possible spurious effects. This is
another difference with linear case where each layer can be analysed separately (see, for instance,
Ref. [192]). The spectrum quickly converges inside the material. The contribution of the atomic lay-
ers decays while going deeper in the slab, as one can expect for a spectra that originates only from
the surface. The first 8 atomic layers yield already a qualitative result. Moreover, we found that the
discrepancy between this spectrum and the half-slab (“layers 1..20”) originates from the layers 8 to
12. The surface SHG spectrum originates mostly from the first 12 topmost layers, which corresponds
to a surface region of ∼16.3Å.
The number of atoms is a major concern for atomistic simulations. Thus it is important to under-
stand why the convergence requires so much atomic layers. Two possible reasons can explain that
slow convergence in atoms. The first possibility is that the surface wave-functions spread over a
wide region and this region determines the size of the slab to use in the simulations. Alternatively,
the region contributing to the spectra can be wider than the extension of the surface wave-functions;
due to the non-locality of the surface optical properties that allows surface-states bulk-states transi-
tions to occur with bulk states located far from the surface. A detailed discussion on surface-bulk
contributions can be found, for instance, in Ref. [203].
In order to determine which statement is correct, I have calculated the size of the region where the
slab density and bulk density are different. In the vocabulary of Ref. [204], this region is called the
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Chapter 5. Microscopic theory of surface second-harmonic generation

Fig. 5.9: Top panel: Variation of the number of electrons par Bohr along the z direction. This value is
obtained by averaging the electronic density in the x−y plan for the entire cell. Bottom panel: relative
differences between the bulk and the slab densities of the above panel. Note the change in the scale.
The slab is composed of 16 atomic layers in total, with asymmetric dimers as surface reconstruction
on both sides.

density surface region; by opposition to the optical surface region, where the optical properties of the
surface are different from bulk optical properties.
Using the density obtained from an ab initio DFT calculation, it is possible to determine the depth
of the density surface region. In order to present quantitative results, the density has been averaged
in the plane perpendicular to the surface normal. The resulting quantity is shown in Fig. 5.9. The
density of the upper-most layers differs slightly from the value in the deeper layers and quickly re-
covers the bulk density in the deeper layers. Using as a criteria that the slab and the bulk density are
identical if the relative difference is smaller than 0.5% (black dashed line, lower panel), I found that
the density surface region is about 8.5 Å.8

By comparing this value to the optical surface region size (estimated above to be∼16.3Å), we directly
obtain that the optical surface region is wider than the density surface region; as already found in
Ref. [205] for the semi-classical infinite barrier model. Physically, this originates from the fact that the
optical properties of surfaces are non-local and by consequence, the optical response lives on a wider
region than the density surface region. This allows the aforementioned bulk-states surface-states

8This value of 0.5% is here fixed by the numerical noise on the signal and under this value, the two signals can be
considered as equal.
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transitions to occur deeper inside the material than the density surface region. Even if the changes
of the density induced by the presence of the surface (and therefore the surface wave-functions) are
well described, the correct description of the optical properties of surfaces requires more layers to be
converged.

Conclusions

In this chapter, I have investigated the theory behind the calculation of the surface second-harmonic
generation within the super-cell approach. More precisely, we have seen how it is possible to extract
the spectrum containing only the contribution of a single surface, within the independent-particle
approximation.
We have first analysed the different choices offered by the literature in order to access the SHG spec-
tra in super-cell geometry. Invoking the gauge invariance, we have reduced to one the number of
possible formulae for extracting the spectra. This formula have then been derived by integrating the
microscopic current over half of the slab. In the case of clean Si(001) surface, we found that when it
is possible to access to the exact spectra, our method reproduce surprisingly well the correct spectra,
thus validating our approach. Interestingly, we have recovered the formula adopted by the majority
of the literature, validating their choice.
I have also discussed about numerical accuracy of the extraction procedure, showing that a small
error of 2-3% is expected. It has been verified by tight-binding calculations on silicon surfaces that
the two surfaces of a finite slab are independent. Using the fact that our approach turns to be a
partition over the atoms in the tight-binding limit, we have analysed the spatial construction of the
spectra, performing a layer-by-layer analysis. The calculations show that surface spectra originates
from the top-most atomic layers and that the contribution decays when going far from the surface.
More precisely, I found that the spectra mainly originates from the 12 topmost layers. Going further
I explained that the number of atomic layers required for a converged calculation is governed by
the non-locality of the response function χ(2)S

0 and not by the spatial extension of the surface wave-
functions.

To conclude, the calculation of the surface second-harmonic generation is now based on a solid
theoretical ground. Nevertheless, only the microscopic response can be described by the theory pre-
sented in this chapter. In the next chapter, the microscopic theory is improved by the inclusion of the
effects of nonlocal operators. The macroscopic theory of surface second-harmonic generation is then
presented in Chapter 7.
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second-harmonic generation

The most used framework for ab initio calculations, density-functional theory within the local-density
approximation [97], underestimates the energy band gap of semiconductors. It is now well under-
stood that solving the DFT equations using a Kohn-Sham scheme should not yield the correct band-
gap [88]. In this context, the so-called GW approximation [112] is known to correct the electronic gap
of most semiconductors [206]. However, this can be a very expensive calculation and thus one uses
the much simpler scissors operator scheme [207–209], which is still a nonlocal operator. This allows
us to “open” the DFT gap to its correct experimental or GW value for most bulk semiconductors.
This approximation has already been used in the calculation of the linear optical properties of sur-
faces [210, 211], thus improving the agreement with the experimental results.
DFT calculations are often based on the use of pseudopotentials; and as mentioned previously, this
is the case for all the ab initio calculations of this thesis. As it will be discussed in this chapter, the
presence of a nonlocal part of the pseudopotential introduces corrections to the momentum operator
of the electron that have to be included with care in the surface second-harmonic susceptibility [212].
For the bulk counterpart, see, for instance, Ref. [213]. For linear optical properties of surfaces includ-
ing the cut-function C(z), see, for instance, Ref. [121].
Therefore, within the independent-particle approximation, the most complete approach for the calcu-
lation of the surface second-harmonic susceptibility is one which includes (i) the scissors correction,
(ii) the contribution of the nonlocal part of the pseudopotential, and (iii) the cut function C(z) intro-
duced in the previous chapter. Therefore the goal of this chapter is to derive a new expression within
the length-gauge for the surface second-harmonic susceptibility tensor that includes the aforemen-
tioned contributions. The inclusion of these three contributions opens the possibility to study surface
SHG with more versatility and to provide accurate results.
Partial account of this work has already been published in Ref. [200]. Here, I give a detailed descrip-
tion of the theory and the method of calculation; in particular I present the evaluation of the density
surface response function using perturbation theory, starting from the second-order induced current.
By opposition to Ref. [200], here I do not use the density-matrix formalism. This gives an other way
for obtaining the surface second-order susceptibility, but more interestingly, it opens the way to go
beyond the IPA. As explained in Chap. 3, the density-density-density response function computed
within the independent-particle approximation enters as the key ingredient for computing the fully-
interacting density-density-density response function.
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In this chapter, I first present the relevant steps for deriving the surface second-order susceptibility
tensor χ(2)

0 . This derivation includes the addition of the terms mentioned above that have been ab-
sent in previous works. Then I compare results from before and after adding the different nonlocal
contributions.

6.1 Nonlocal operators and perturbation theory

6.1.1 Nonlocal operators in TDDFT

We assume the IPA, a classical electromagnetic field, quantum-mechanical matter and we neglect
local-field and excitonic effects.
The unperturbed Hamiltonian, describing the system in absence of any interaction, includes in some
cases nonlocal operators. As explained in the introduction of this chapter, I focus on two nonlocal
operators, one originating from the pseudo-potential approximation and the second one accounting
for the screening of particles inside the materials.
This unperturbed Hamiltonian is used to solve the Kohn-Sham equations (see Chap. 3). As in this
thesis I work within the local-density approximation, the Hamiltonian is labelled with the corre-
sponding LDA superscript. Any other approximation can be used (like the generalized-gradient
approximation) and the derivation remains the same.
Then,

ĤLDA
0 (r̂, p̂) =

p̂2

2
+ V̂eff(r̂), (6.1)

with p̂ = −i∇ its canonical momentum, and V̂eff the effective potential, where we neglect spin-orbit
terms.
To be general in our derivation of χ(2)

0 , we assume a nonlocal contribution as it is customary for most
pseudopotentials, and then we replace the local effective potential V̂eff(r̂) with

V̂eff(r̂, p̂) = V̂ l(r̂) + V̂ nl(r̂, p̂), (6.2)

where V̂ l(r̂) and V̂ nl(r̂, p̂) are the local and nonlocal parts, respectively. The argument (r̂, p̂) is equiv-
alent to the explicit (r̂, r̂′) nonlocal notation [212]. In case of a local potential, i.e., V̂eff = V̂ l(r̂), like
that of all-electron schemes, we simply omit the contribution of V̂ nl(r̂, p̂) from the results that we
have derived.
It is well known that the use of the LDA leads to an underestimation of the band-gap. A standard
procedure to correct for this is to use the “scissors approximation”, where the conduction bands are
rigidly shifted in energy so that the band-gap corresponds to the accepted experimental electronic
band-gap [207–209]. This is often in fairly good agreement with the GW band-gap based on a more
sophisticated calculation [214]. The LDA wave-functions are used since they produce band structures
with dispersion relations similar to those predicted by the GW approximation. One might wonder if
this approximation is still valid for the surface states. Taking the clean Si(001) surface as an example,
one clearly see in Fig. 6.1 that the GW surface states exhibit the same dispersion as the LDA ones.
Mathematically, the scissors operator Ŝ is a nonlocal operator which is added to the unperturbed or
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Fig. 6.1: Calculated surface states of Si(001)2×1 using LDA (dashed lines) and GW (solid lines). Sym-
bols corresponds to photoemission experiments [215]. Reproduced from [215].

unscissored Hamiltonian HLDA
0 ,

ĤΣ
0 (r̂, p̂) = ĤLDA

0 (r̂, p̂) + Ŝ(r̂, p̂), (6.3)

where

Ŝ(r̂, p̂) = ∆
∑
n

BZ∑
k

(1− fn,k)|n,k〉〈n,k|, (6.4)

with ∆ the rigid (k-independent) energy correction to be applied. The unscissored and scissored
Hamiltonians satisfy

HLDA
0 (r̂, p̂)φn,k(r̂) = En(k)φn,k(r̂),

HΣ
0 (r̂, p̂)φn,k(r̂) = EΣ

n (k)φn,k(r̂),

where the scissor-shifted energies EΣ
n (k) are given by

EΣ
n (k) = En(k) + (1− fn,k)∆.

We emphasize that the scissored and unscissored Hamiltonians have the same eigenfunctions, where
φn,k(r̂) = 〈r̂|n,k〉 = eik.̂run,k(r̂), are the real-space representations of the Bloch states |n,k〉 labelled
by the band index n and the crystal momentum k, and un,k(r̂) are cell-periodic.

6.1.2 Coupling nonlocal operators to the electromagnetic field

In presence of a nonlocal operator, the treatment of the coupling to the electromagnetic field requires
great care.
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Let us consider the total single-electron Hamiltonian Ĥ(t) that reads as

Ĥ(t) = Ĥ0 + ĤI(t),

where H0 is the unperturbed one-particle time-independent Hamiltonian (see Eq. 6.3), and HI(t)

is the time-dependent potential energy due to the interaction of the electron with the perturbing
electromagnetic field.
The interaction Hamiltonian in the presence of a nonlocal potential V̂ nl is given by [212]

ĤI(t) = φ̂P (t)− 1

2c

[
p̂ÂP (t) + ÂP (t)p̂

]
+

1

2c2
ÂP (t)2 + V̂ A

nl (t), (6.5)

where φP is the scalar potential, AP the vector potential, and

〈r|V̂ A
nl |r′〉 = V nl(r, r′)

∞∑
k=1

1

k!

(
i

c

∫ r

r′
AP (x, t). dx

)k
. (6.6)

Here, we are interested in a perturbative treatment of the interaction, therefore, the interaction Hamil-
tonian is expanded in power of AP (r̂, t).
First- and second-order terms, which are required to treat the linear and the second-order nonlinear
optical properties, are given by

H
(1)
I (r, r′, t) = φP (r, t)− 1

2c

[
pAP (r, t) + AP (r, t)p

]
+ Vnl(r, r

′)
i

c

∫ r

r′
AP (x, t). dx,

H
(2)
I (r, r′, t) =

1

2c2
AP (r, t)2 − Vnl(r, r

′)
1

c2

(∫ r

r′
AP (x, t). dx

)2

.

To overcome integrals, I assume the long-wavelength limit; which corresponds to the replacement
AP (r, t) → AP (t). Using the fact that V̂ nl(r, r′)(r − r′) = [̂r, V̂ nl] and using the definition of the
velocity operator v̂ = p̂− i[̂r, V̂ nl], we obtain after simple algebra that

Ĥ
(1)
I (t) = φP (t)− 1

c
v̂AP (t),

Ĥ
(2)
I (t) =

−i
2c2

[AP (t)r̂,AP (t)v̂].

(6.7)

These two expressions are very close to the usual one, obtained in absence of nonlocal operators.
Here as a result, one obtains that in presence of nonlocal operators, the momentum operator p̂ must
be replaced by the velocity operator v̂ in the expression of the first- and second-order terms of the
interaction Hamiltonian.
Knowing the first- and second-order interaction Hamiltonians, it is possible to derive from perturba-
tion theory, the expression of the second-order susceptibility. This is the aim of the next section.
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6.1.3 Surface second-order susceptibility

In order to derive an expression for the density-density-density response function, two ways are
possible. On the one hand, it is possible to derive the surface response function from the second-
order density. The formula is simple to obtain but taking analytically the long-wavelength limit
is quite complicated to handle. On the other hand, it is possible to derive the expression for the
surface response function from the second-order induced current. Taking the long-wavelength limit
of this expression is almost straightforward but the obtained expression is apparently divergent as
1
ω3 , and must be worked out if one want to use it in practice. We know that for going beyond the IPA
in the framework of TDDFT, the density response function is needed; but we also know that from
gauge-invariance, the two quantities are related. Then, we decided to use the current-current-current
response function as a starting point, for taking the long-wavelength limit.

The second-order induced current is related to the electric field by

j
(2)
ind(r; 2ω) = −i2ω

∫
dr′dr′′α̃(2)(r, r′, r′′;ω, ω)EP (r′;ω)EP (r′′;ω), (6.8)

where α̃(2) is the second-order quasi-polarisability [41]. Here EP is the perturbing field as defined by
Eq. (1.3). Notice that in the case of longitudinal fields, this field is exactly the external field Eext.
The surface induced current is obtain by replacing j

(2)
ind(r; 2ω) by C(z)j(2)

ind(r; 2ω). The surface quasipo-
larisability is then related, in reciprocal space and within the optical limit, to the independent-particle
density-density-density response function by

q̂α̃S(2)(0, 0, 0;ω, ω)q̂1q̂2 =
−i
4
χ(0)S
ρρρ (q̂, q̂1, q̂2;ω, ω), (6.9)

with q = q1 + q2 and q̂ = q
q .

From perturbation theory, and using the expressions Eqs. (6.7), we obtain that

χ(0)S
ρρρ (q̂, q̂1, q̂2;ω, ω) =

−2

V ω3

∑
nn′n′′

BZ∑
k

〈n,k|q̂VΣ|n′,k〉〈n′,k|q̂1v̂Σ|n′′,k〉〈n′′,k|q̂2v̂Σ|n,k〉
(EΣ

n,k − EΣ
n′,k + 2ω + 2iη){

(fn,k − fn′′,k)

(EΣ
n,k − EΣ

n′′,k + ω + iη)
+

(fn′,k − fn′′,k)

(EΣ
n′′,k − EΣ

n′,k + ω + iη)

}

+
2i

V ω3

∑
nn′

BZ∑
k

(fn,k − fn′,k)
〈n,k|

[
q̂R, q̂1v̂Σ

]
|n′,k〉〈n′,k|q̂2v̂Σ|n,k〉

(EΣ
n,k − EΣ

n′,k + ω + iη)

+
i

V ω3

∑
nn′

BZ∑
k

(fn,k − fn′,k)
〈n,k|q̂VΣ|n′,k〉〈n′,k|

[
q̂1r̂, q̂2v̂Σ

]
|n,k〉

(EΣ
n,k − EΣ

n′,k + 2ω + 2iη)

+
1

V ω3

∑
n

BZ∑
k

fn,k〈n,k|
[
q̂r̂,
[
q̂1r̂, q̂2VΣ

]]
|n,k〉+ (q̂1 ↔ q̂2),

(6.10)
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where we have introduced the following definitions

VΣ =
v̂ΣC(z) + C(z)v̂Σ

2
,

R = C(z)r̂.
(6.11)

In presence of the nonlocal part of the pseudopotential and a scissors operator, the velocity v̂Σ is
given by

v̂Σ = p̂ + v̂nl + v̂S = v̂ + v̂S,

v̂nl = −i[̂r, V̂ nl],

v̂S = −i[̂r, Ŝ].

(6.12)

It is important to note first that in absence of any nonlocal operator, the Eq. (6.10) reduces to its first
term only; which is the expression previously obtained (see Eq. 5.3). By opposition to the expressions
of the interaction Hamiltonian, where the nonlocal operators accounts only for the replacement p̂→
v̂Σ, in the case of the surface susceptibilities, extra-terms must be including.
Even if Eq. (6.10) allows us in principle to compute the surface density-density-density response
function, this expression is not satisfactory for two reasons. i) The expression Eq. (6.10) is apparently
divergent as 1

ω3 ; which prohibits numerical implementations. ii) This expression contains matrix
elements of v̂Σ. This last remark comes from the fact that the matrix elements of v̂ and v̂Σ (as
defined by Eq. (6.12)) are related each others

r̂nn′(k) =
v̂Σ
nn′

iEΣ
nn′(k)

=
v̂nn′

iEnn′(k)
, n /∈ Dn′ ,

where we defined EΣ
nm(k) = EΣ

n (k)− EΣ
m(k) and Dm are all the possible degenerate m-states.

After tedious algebra, reported in App. E, one finally obtains a non-divergent expression of the sur-
face second-order susceptibility, where the matrix elements of v̂Σ have been analytically replaced by
matrix elements of v̂. The final expression reads as

χ(0)S
ρρρ = χ3bnd

I + χ3bnd
II + χ2bnd

l + χ2bnd
nl , (6.13)

where

χ3bnd
I (q̂, q̂1, q̂2, ω, ω) =

2i

V

∑
n 6=n′ 6=n′′

BZ∑
k

〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n′′,k〉〈n′′,k|q̂2r̂|n,k〉

×

{
(En,k + En′,k − 2En′′,k)

Enn′(k)

4(fn,k − fn′,k)

EΣ
nn′(k)(EΣ

nn′(k) + 2ω + iη)

+
(2En,k − En′,k − En′′,k)

En′′n(k)

(fn,k − fn′′,k)

EΣ
nn′′(k)(EΣ

nn′′(k) + ω + iη)

+
(2En′,k − En,k − En′′,k)

En′n′′(k)

(fn′,k − fn′′,k)

EΣ
n′n′′(k)(EΣ

n′′n′(k) + ω + iη)

}
+ (q̂1 ↔ q̂2) (6.14a)
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χ3bnd
II (q̂, q̂1, q̂2;ω, ω) =

4i

V

∑
n 6=n′ 6=n′′

BZ∑
k

〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n′′,k〉〈n′′,k|q̂2r̂|n,k〉
(2EΣ

n′′n(k)− EΣ
n′n(k))

×

{
2(fn,k − fn′,k)

(EΣ
nn′(k) + 2ω + 2iη)

−
(fn,k − fn′′,k)

(EΣ
nn′′(k) + ω + iη)

+
(fn′,k − fn′′,k)

(EΣ
n′′n′(k) + ω + iη)

}
+ (q̂1 ↔ q̂2) (6.14b)

χ2bnd
l (q̂, q̂1, q̂2;ω, ω) =

−2

V

∑
n6=n′

BZ∑
k

(fn,k − fn′,k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n,k〉q̂2∆n′n

EΣ
nn′(k)2

×

{
8(Enn′(k) + EΣ

nn′(k))

EΣ
nn′(k)(EΣ

nn′(k) + 2ω + 2iη)
+

(2Enn′(k)− EΣ
nn′(k))

EΣ
nn′(k)(EΣ

nn′(k) + ω + iη)

}
+ (q̂1 ↔ q̂2) (6.14c)

χ2bnd
nl (q̂, q̂1, q̂2;ω, ω) =

−2

V

∑
nn′

BZ∑
k

(fn,k − fn′,k)

Enn′(k)EΣ
nn′(k)

{
〈n,k|[q̂R, q̂1v̂]|n′,k〉〈n′,k|q̂2r̂|n,k〉

(EΣ
nn′(k) + ω + iη)

+
4〈n,k|q̂R|n′,k〉〈n,k|[q̂1r̂, q̂2v̂]|n′,k〉

(EΣ
nn′(k) + 2ω + iη)

}
+ (q̂1 ↔ q̂2) (6.14d)

where we defined ∆n′n = v̂n′n′ − v̂nn and

〈n,k|R|n′,k〉 =
〈n,k|V |n′,k〉
iEnn′(k)

, n /∈ Dm.

It is interesting to note that each specific contribution incorporated in that expressions (the scissors
operator, the nonlocal part of the pseudo-potential, and the cut-function C(z)) play separate and
independent roles. The cut-function C(z) here only affects the matrix element related to q. The
scissors operator only affects the energies and finally, the nonlocal part of the pseudo-potential is
accounted for by computing matrix elements of v̂, instead of p̂.
As already pointed out in Ref. [41] for the bulk susceptibility, the scissored and unscissored energies
are both present in the expression of χ(0)S

ρρρ , showing that the scissors operator is non-trivial for second-
order susceptibility.
By opposition, the expression for the surface first-order density response function χ(0)S

ρρ is given by

χ(0)S
ρρ (q̂;ω) =

1

V

∑
nn′

BZ∑
k

(fn,k − fn′,k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂r̂|n,k〉

(EΣ
n,k − EΣ

n′,k + ω + iη)
, (6.15)

where only scissored energies appear, resulting in a rigid shift of the spectra by ∆.
The expression of the second-order susceptibility is now satisfactory for various reasons. First, be-
cause this form is non-divergent. Second, for practical implementations, the scissors and the nonlocal
part of the pseudo-potential can be easily switch on and off by replacing EΣ

n (k) by En(k) in the first
case and v̂ by p̂ in the second. Finally, the bulk formula is obtained by replacing R by r̂. Thus, by
implementing only one formula, it is possible to treat easily all the possible different combinations
of the three contributions. This is that expression which has been implemented in the TDDFT code
2light [117]. The analytical expression of V is given in App. D.
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6.2 Numerical results

The self-consistent ground-state and the Kohn-Sham states were calculated using the plane-wave
ABINIT code [115]. We used Troullier-Martins pseudopotentials [216] that are fully separable nonlo-
cal pseudopotentials in the Kleinman-Bylander form [120]. The contribution of the nonlocal part of
the pseudo-potential to v̂ and V is carried out using the DP code [116].
The vacuum size is equivalent to one quarter the size of the slab, avoiding the effects produced
by possible interaction between the replicas of the slab always present in the repeated super-cell
scheme [217].
Spin-orbit, local-field, and electron-hole attraction effects on the SHG process are all neglected at
this point. Although these are important factors in the optical response of a semiconductor, their
efficient calculation is theoretically and numerically challenging. They will be treated later in this
thesis. In order to obtain χ2bnd

nl , we must evaluate the commutator of r̂ and v̂nl. Computing second-
order derivatives of the nonlocal part of the pseudo-potential is required thus making the numerical
procedure very time consuming. This adds significantly to the already lengthy time needed for the
calculation of the v̂nl contribution that is proportional only to the first order derivatives. Memory
requirements are also increased for both v̂nl and [̂r, v̂nl]. However, the contribution from [̂r, v̂nl] is
very small [218] and therefore we neglect entirely χ2bnd

nl from now on.1

For a given slab of 32 atomic layers, we find the converged spectra to obtain the relevant parame-
ters. The most important of these are: an energy cutoff of 10 Ha, an equal number of conduction and
valence bands, and a set of 244 k-points. The k-points are used for the linear analytic tetrahedron
method for evaluating the 3D Brillouin-zone (BZ) integrals where special care was taken to exam-
ine the double resonances of Eq. (6.14) [219]. Note that the Brillouin zone for the slab geometry
collapses to a 2D zone, with only one k-point along the z axis. All spectra were calculated with a
Gaussian smearing of 0.15 eV. The reader should note that numerical results presented here are the
same results as published in Ref. [200].

6.2.1 Half-slab vs. full slab

In Fig. 6.2, we compare χfullslab
0,xxx versus χhalf−slab

0,xxx for the four different possibilities between including
or not including the effects of v̂nl or the scissors correction ∆. For these results, we chose ∆= 0.5 eV,
that is, the GW gap reported in Refs. [215, 220]. This is justified by the fact that the surface states
of the clean Si(001) surface are rigidly shifted and maintain their dispersion relation with respect to
LDA according to the GW calculations of Ref. [220]. We see that for all four instances the difference
between responses is quite small. Indeed, when the value |χ(2)

0,xxx| is large, the difference between the
two is very small; when the value is small the difference increases only slightly, but the spectra is so
close to zero that it is negligible. These differences would decrease as the number of atomic layers
increases. As already explained in the previous chapter, we remark here that 32 layers in the slab is
more than enough to confirm that the extraction of the surface second-harmonic susceptibility from
the 2×1 surface is readily possible using the formalism contained in Eq. (6.13).

1This approximation is valid for [̂r, v̂nl] but could not be applied to [̂r, v̂S]. This is why it is important to first replace
analytically v̂Σ by v̂.
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6.2 Numerical results

Fig. 6.2: ab initio spectra of χfullslab
0,xxx and χhalf−slab

0,xxx for a slab with 32 atomic Si layers plus one H layer.
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Fig. 6.3: |χ2×1
0,xxx| versus the photon energy for a slab with 32 atomic Si layers plus one H layer, with

and without the contribution from v̂nl. Spectra are obtained with ∆= 0.5 eV.

6.2.2 Results for χ2×1
0,xxx

We proceed to explain some of the features seen in |χ2×1
0,xxx| that are obtained by calculating |χhalf−slab

0,xxx |.
First, from Fig. 6.2, we note a series of resonances that derive from 1ω and 2ω terms in Eq. (6.14).
Notice that the 2ω resonances start below Eg/2 where Eg is the band gap (0.53 eV for LDA and
1.03 eV if the scissor is used with ∆= 0.5 eV). These resonances come from the electronic states of
the 2×1 surface, that lie inside the bulk band gap of Si and are the well known electronic surface
states [220]. In Fig. 6.3, we see that the effect of v̂nl reduces the value of |χ2×1

0,xxx| by 15%-20% showing
the importance of this contribution for a correct calculation of surface SHG, in agreement with a
similar analysis for bulk semiconductors [213]. However, the inclusion of v̂nl does not change the
spectral shape of |χ2×1

0,xxx|; this also can be confirmed from the cases of zero scissors correction from
Fig. 6.2. To see the effect of the scissors correction, we take two different finite values for ∆. The
first one with a value of ∆= 0.5 eV, used in the above results, is the “average” GW gap taken from
Ref. [220] that is in agreement with Ref. [215]. The second one with a value of ∆ = 0.63 eV is the
“average” gap taken from Ref. [221], where more k-points in the Brillouin zone were used to calculate
its GW value. From Fig. 6.4, we note that the scissors correction shifts the spectra from its LDA
value to higher energies as expected. However, contrary to the case of linear optics [222] the shift
introduced by the scissors correction is not rigid, as pointed out in Ref. [219]. This is because the
second-harmonic optical response mixes 1ω and 2ω transitions (see Eq. (6.14)), and accounts for the
non-rigid shift. The reduction of the spectral strength is in agreement with the previous calculations
for bulk systems [41, 219, 223].
When we compare |χ2×1

0,xxx| for the two finite values of ∆, we see that the first two peaks are almost
rigidly shifted with a small difference in height while the rest of the peaks are modified substantially.
This behaviour comes from the fact that the first two peaks are almost exclusively related to the
2ω resonances of Eq. (6.14). The other peaks are a combination of 1ω and 2ω resonances and yield
a more modified spectrum. We mention that for large band-gap materials, the 1ω and 2ω would
be split showing a small interference effect, but still the 2ω would strongly depend on the surface
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6.2 Numerical results

Fig. 6.4: |χ2×1
0,xxx| vs the photon energy for a slab with 32 atomic Si layers plus one H layer, for two

different values of the scissors correction, with v̂nl included.

states. This way we see that small changes in the value of the scissors shift can in general affect the
surface second-harmonic generation spectrum quite dramatically. In Ref. [224], the authors already
remarked that nonlinear optical response of bulk materials is more sensitive to the correction to the
electronic structure of the material (GW or scissors operator correction) than the linear case. In the
case of semiconducting surfaces, the problem is even more intricate due to the presence of electronic
surface states. The high sensitivity of surface SHG to the energy position of surface-states, as seen
in Fig. 6.4, makes surface SHG a good benchmark spectroscopical tool for testing the validity of the
inclusion of many-body effects and, in particular, the quasi-particle correction to the electronic states.

Summary

I have presented in this chapter how to properly include the effects of nonlocal operators on the
nonlinear susceptibility tensor of surfaces.
I have derived a formula for the second-harmonic susceptibility of surfaces including the effect of
two nonlocal operators, namely the nonlocal part of the pseudo-potential and the scissors operator.
The first one accounts for the non-locality of the pseudo-potential and changes the spectral weight
up to 15-20%. This does not describe any new physics but allows one to make a correct use of the
formula when using a pseudo-potential.
This second operator allows us to include a many-body effect due to the screening of the particles in
materials, called quasi-particle correction, in its simplest form. We have demonstrated how this effect
can change the line-shape of the spectra in an non-obvious way. As shown for bulk second-harmonic
generation, this operator does not yield a rigid shift, by opposition to the case of linear optics. These
two effects bring us a step closer to the reality.
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Part III

Local-field effects in surface optical
properties

91





7. Ab initio macroscopic linear and
second-order optical properties of
crystal surfaces:
From the slab to the single surface

DON’T PANIC.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

As we have seen, the efficient approach for computing optical properties of surfaces relies on the
super-cell approach and a slab geometry. However, this approach suffers intrinsically from the fact
that a slab is composed of two surfaces. The definition of a surface dielectric tensor (or second-order
susceptibility) remains unclear and the difference between the optical response of a thin film (made of
two surfaces) and the optical response of a semi-infinite system, with a single surface, has not really
being investigated so far, in particular when local-field effects are included. In the linear case, the two
surfaces of a slab interfere constructively, making the mapping between slab calculations and surface
optical properties possible. However, as explained in Chap. 5, the direct calculation of the second-
order optical properties is not possible in slab geometry, due to the destructive interferences between
the two surfaces of the slab. Even at the simple level of independent-particle approximation, we
have to introduce a cut-function, denoted here C(z), for being able to compute the second-harmonic
generation from surfaces (see Chap. 5 and Chap. 6).
This chapter aims to give the theoretical background for computing the macroscopic optical proper-
ties of a single surface, from calculations performed in slab geometry.
I refer in that chapter to the optical properties of half of the slab equally as half-slab or surface optical
properties. In SHG, only the surface region contributes to the signal, justifying the use of the term
surface optical properties for the optical properties computed from half of the slab.
This chapter is organised as follows. I first present how we can obtain from the microscopic compo-
nents of the polarization, the in-plane averaged dielectric tensor

↔
εm (q||, z, z

′;ω), keeping explicitly
the spatial fluctuations along the z direction [40]. From that expression, I give an expression for
that surface macroscopic dielectric tensor in the optical limit. I thus show that the longitudinal-
longitudinal part of the macroscopic dielectric tensor can be computed from Time-Dependent Den-
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sity Functional Theory (TDDFT).
The second part of this chapter is dedicated to the extension of that calculation to the macroscopic
surface second-order response and follows the same organisation. Some properties of those new
surface response functions are finally discussed in Sec. 7.5.

7.1 Macroscopic dielectric tensor of crystal surfaces

In this section, I present in detail the derivation of the macroscopic dielectric tensor of half of a peri-
odic system. Let us consider a system of electrons, perturbed by an external field Eext. Following the
paper of R. Del Sole and E. Fiorino [38], we express the polarization as the response to a perturbing
field EP , defined as

EP = Eext + Eind,T = E−Eind,L,

where E is the total microscopic field, and Eind,T and Eind,L are respectively, the transverse and the
longitudinal components of the field induced by the external perturbation.

The polarization is related to the perturbing field via the quasi-polarisability
↔
α̃ and reads in Fourier

space as [38]

PG(q;ω) =
∑
G′

[ ↔
α̃ (q;ω)

]
GG′

EP
G′(q;ω), (7.1)

where the notation PG(q) stands for P(q + G) and
[ ↔
α̃ (q)

]
GG′

for
↔
α̃ (q + G,q + G′).

It is shown in Ref. [38], that the polarization can be expressed as a response to the total electric field
using the expression

PG(q;ω) =
[ ↔
α̃ (q;ω)

]
G0

↔
Ar (q;ω)E0(q;ω), (7.2)

where
↔
Ar (q;ω) =

↔
1 +4π q

q
q
q

[↔
α̃(q;ω)

]
00

1−4π[α̃LL(q;ω)]00
.

This formula is the starting point of this section. It is general and perfectly valid for any periodic
system.
Let us consider a super-cell, containing N atomic layers of thickness Lz and the same amount of
vacuum. In order to average over a selected region of the slab, we express the polarization in a
mixed-space (details can be found in App. A), where the in-plane periodicity is treated in reciprocal
space and the out-of-plane direction is treated in real space.
Let us consider a function f of one variable in space. In real space, f is a function of the position
vector r and reads f(r). In reciprocal space, f is a function of a reciprocal vector k, that we can split,
for periodic systems as super-cells, into a vector q belonging to the BZ plus a reciprocal lattice vector
G, and reads f(q + G). In the mixed-space, the in-plane periodicity is treated in reciprocal space
whereas the out-of-plane direction is treated in real space. Therefore a function f reads in this space
f(q|| + G||, z) or fG||(q||, z), where q|| is a vector in the 2D BZ, G|| is an in-plane reciprocal-lattice
vector and z is the coordinate in the out-of-plane direction.
The definitions of the corresponding Fourier transforms can be found in the App. A.
Using Def. A.16,

PG||(q||, z;ω) =
1

2Lz

∑
qz ,Gz

ei(qz+Gz)zPG(q;ω). (7.3)
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From the definition of the electric displacement, we obtain that

DG||(q||, z;ω) = EG||(q||, z;ω) + 4πPG||(q||, z;ω). (7.4)

Inserting Eq. (7.2) and Eq. (7.3) into Eq. (7.4), we obtain for G|| = 0 that

D0(q||, z;ω) = E0(q||, z;ω) +
4π

2Lz

∑
qz ,Gz

ei(qz+Gz)z
[ ↔
α̃ (q;ω)

]
Gz0

↔
Ar (q;ω)E0(q;ω)

=

∫
dz′

(
↔
1 δ(z − z′) +

4π

2Lz

∑
qz ,Gz

ei(qz+Gz)z
[ ↔
α̃ (q;ω)

]
Gz0

↔
Ar (q;ω)e−iqzz

′

)
E0(q||, z

′;ω), (7.5)

where we used the relation E0(q;ω) =
∫
dz′e−iqzz

′
E0(q||, z

′;ω).
Therefore, the in-plane averaged macroscopic dielectric tensor, relating D0(q||, z;ω) to E0(q||, z;ω) is
given by

↔
εm (q||, z, z

′;ω) =
↔
1 δ(z − z′) +

4π

2Lz

∑
qz ,Gz

ei(qz+Gz)z
[ ↔
α̃ (q;ω)

]
Gz0

↔
Ar (q)e−iqzz

′
. (7.6)

Fig. 7.1: The C(z) funtion.

This quantity still contains the microscopic fluctuations along the z
direction [40]. This allows us to define the surface macroscopic dielectric
function, as the macroscopic average of the dielectric tensor over half of
the system.
The surface macroscopic dielectric tensor reads as

↔
ε
S

M (q;ω) =
1

Lz

∫ Lz

−Lz
dz

∫ Lz

−Lz
dz′C(z) ↔εm (q||, z, z

′;ω)e−iqz(z−z′), (7.7)

where C(z) is a cut-function equal to 1 on half of the system and 0 else-
where, as previously introduced in Chap. 5. This is illustrated in Fig. 7.1.
The choice of C(z) will be discussed later in the chapter.
This dielectric tensor, called here surface dielectric tensor, fully accounts
for all the surface-induced modification of the bulk material; at the mi-
croscopic level with the modification of the electronic structure, includ-
ing possible surface states, and at a macroscopic level, including prop-
erly the (surface) local-field effects.
This result can be related to previous works on the microscopic optical
properties of surfaces (see, for instance, Refs. [182, 192]) in which the
microscopic optical properties of surfaces are defined thanks to a cut-
function, weighting the polarization emitted by the system as the re-
sponse to an external perturbation.
Nevertheless the present result is different by two aspects. First, we have
here a macroscopic formalism. We used a macroscopic averaging for in-
troducing C(z), meaning that the cut-function is introduced properly in
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the expression, with a clear derivation from the macroscopic Maxwell equations. The second point,
more subtle, concerns the normalisation. As Eq. (7.7) is an average, we normalise there by half of
the super-cell height, when averaging over half of the super-cell, leading to a well defined surface
dielectric tensor.
Putting everything together, we obtain an expression for the macroscopic surface dielectric tensor

↔
ε
S

M (q;ω) =
↔
1 +

4π

Lz

∑
Gz

C̃(−Gz)
[ ↔
α̃ (q;ω)

]
Gz0

↔
Ar (q;ω) =

↔
1 +4π

↔
α̃
S

(q,q;ω)
↔
Ar (q;ω), (7.8)

where
↔
α̃
S

is defined by the last part of the equation. Using the definition of
↔
Ar, we get directly that

↔
ε
S

M (q;ω) =
↔
1 +4π

↔
α̃
S

(q,q;ω) + (4π)2

↔
α̃
S

(q,q;ω)q
q

q
q

[ ↔
α̃ (q;ω)

]
00

1− 4π
[
α̃LL(q;ω)

]
00

. (7.9)

This result is very similar to Del Sole and Fiorino expression for the dielectric tensor of bulk ma-
terials (see Eq. (25) of Ref. [38]), except that we have here a surface quantity. In Ref. [38], authors
also obtained an expression for the macroscopic dielectric tensor. Their expression is very similar to
Eq. (7.6). Nevertheless, they obtained an expression defined thanks to an integral operator, which
plays the same role as

↔
Ar in Eq. (7.6) (see Eq.(45) of Ref. [38]).

We also remark that not all ingredients of that formula are modified by the presence of the surface.
This expression is general, in the sense that it gives access to all the components of the dielectric
tensor. However, as explained in Chap. 1, it is possible to calculate the entire dielectric tensor in the
optical limit only from longitudinal-longitudinal (LL) calculations. Therefore, in the following we
focus only on the LL part of the surface dielectric tensor in the optical limit, as it corresponds to the
scope of this chapter.

7.2 Optical limit for the surface macroscopic dielectric function

For the following, we restrict our discussion to the optical limit, which corresponds to a perturbation
with a vanishing momentum. This is valid for the low-energy region of the spectra where we are
precisely interested in.
The key quantity in the optical limit is the longitudinal-longitudinal part of the macroscopic dielectric
function εS,LLM . Only this quantity can be evaluated in the framework of TDDFT, where the electronic
density is the fundamental physical quantity.
From Eq. (7.9), the LL part of the surface macroscopic dielectric tensor reads as

εS,LLM (q̂;ω) = 1 + lim
q→0

4πα̃S,LL(q,q;ω)

1− 4π
[
α̃LL(q;ω)

]
00

, q̂ =
q

q
. (7.10)

Here, the quasi-polarisability α̃ is related to response functions by [44]

↔
α̃ (r, r′;ω) = − 1

ω2

(
χ

(1)
jj (r, r′;ω)−

↔
1 〈ρ〉δ(r− r′)

)
,
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where χ(1)
jj is the current-current response function and ρ is the electronic density of the system.

Starting from the expression of the surface averaged quasi-polarisability, we can show easily that

↔
α̃
S

(q,q;ω) =
1

Lz

∫
dz1

∫
dz2e

−iqzz1C(z1)
[ ↔
α̃ (q||, z1, z2;ω)

]
00
eiqzz2 .

We define χ(1)S
jj (q,q;ω) in the same way. Thus, we get

↔
α̃
S

(q,q;ω) = − 1

ω2

(
χ

(1)S
jj (q,q;ω)−

↔
1 〈ρS〉

)
.

From this result, we obtain an expression for the LL part of the surface macroscopic dielectric tensor
expressed in terms of response functions

εS,LLM (q̂;ω) = 1− lim
q→0

4π

ω2

(
q
q . χ

(1)S
jj (q,q;ω). q

q − 〈ρ
S〉
)

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

, (7.11)

where we used explicitly the link between the longitudinal-longitudinal part of the quasi-polarisability
and the density-density response function χ(1)

ρρ [38]. Also, we have here 〈ρS〉 = 〈ρ(r)C(z)〉 = 〈ρ〉
2 .

As explained in App. F.1, we can show from the conservation of charges, in presence of a cut-function,
and under two restrictions, that

ω2χSρρ(q,q;ω) = q. χSjj(q,q;ω).q− 〈ρS〉. (7.12)

That two restrictions are i) the cut-function C(z) is a step function, centred at the center of the slab
and ii) the slab has a mirror plan perpendicular to the z-axis. The direct consequences are that i) one
must use a symmetric slab and ii) it is not possible to perform a layer-by-layer analysis. Physically,
this is meaningful, because in a fully interacting system, it is not possible to define the response of
an unique layer and the symmetry restriction together with the step function correspond to a case
where we can only consider separately the response of the two halves of the whole slab.
I want to stress here that this choice for the cut-function is the one that most of the authors used for
surface linear [182,192,225] and second-harmonic generation [139,203,226–228] calculations; with an
exception for Refs. [138, 183], where the cut-function has been chosen smooth.
From that, it results an expression of the LL part of the surface dielectric tensor depending only of
the density-density response function of the system and its surface average

εS,LLM (q̂;ω) = 1− lim
q→0

4π

q2

χ
(1)S
ρρ (q,q;ω)

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

= 1− lim
q→0

v0(q)
χ

(1)S
ρρ (q,q;ω)

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

. (7.13)

This equation is the main result of this section. We have derived an expression for the longitudinal-
longitudinal part of the surface dielectric tensor which depends only on the density-density response
function and its surface average. This makes that result possible, on principle, to be evaluated within
the framework of TDDFT. Nevertheless, we have introduced a new quantity χ

(1)S
ρρ , that we do not
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know how to evaluate explicitly. This is the purpose of the next session.
Notice that if we choose C(z) to be 1 everywhere, we recover the expression of the LL part of the di-
electric function used for bulk materials [84], showing the consistency of our approach. We also note
here that χ(1)S

ρρ and χ
(1)S
jj are not response functions; but they correspond to the surface macroscopic

average of response functions.

7.3 Calculation of εS,LLM in TDDFT

The last equation requires, for being evaluated, the expression of the two quantities χ(1)S
ρρ (q,q;ω) and

χ
(1)
ρρ (q,q;ω), in the optical limit. The latter can be computed easily in TDDFT, but not the first one.

Eq. (7.13) can be rewritten as

εS,LLM (q̂;ω) = 1− lim
q→0

v0(q)
1

Lz

∑
Gz
C̃(−Gz)

[
χ

(1)
ρρ (q;ω)

]
Gz0

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

. (7.14)

From now on, we assume the random-phase approximation.Under this approximation, the response
function of the fully interacting system χ

(1)
ρρ is related to the independent-particle or Kohn-Sham

response function χ(0)
ρρ of the (auxiliary) system by a Dyson-like equation, see Sec. 8.3.2,

[
χ(1)
ρρ (q;ω)

]
GG′

=
[
χ(0)
ρρ (q;ω)

]
GG′

+
∑
G1

[
χ(0)
ρρ (q;ω)

]
GG1

vG1(q)
[
χ(1)
ρρ (q;ω)

]
G1G′

. (7.15)

Alternatively, one can introduce the response function to the total macroscopic classical potential χ̄ρρ
defined by [112, 229][

χ̄ρρ(q;ω)
]
GG′

=
[
χ(0)
ρρ (q;ω)

]
GG′

+
∑
G1

[
χ(0)
ρρ (q;ω)

]
GG1

v̄G1(q)
[
χ̄ρρ(q;ω)

]
G1G′

, (7.16)

which implies that

[
χ(1)
ρρ (q;ω)

]
GG′

=
[
χ̄ρρ(q;ω)

]
GG′

+
[
χ̄ρρ(q;ω)

]
G0
v0(q)

[
χ(1)
ρρ (q;ω)

]
0G′

, (7.17)

where v̄G(q) = vG(q) if G 6= 0 and 0 if G = 0.
From Eq. (7.17), we obtain directly that χ̄G0 = χG0

1+v0χ00
, leading to

εS,LLM (q̂;ω) = 1− lim
q→0

v0(q)
1

Lz

∑
Gz

C̃(−Gz)
[
χ̄ρρ(q;ω)

]
Gz0

= 1− lim
q→0

v0(q)χ̄Sρρ(q,q;ω). (7.18)

For obtaining the quantity χ̄S(q,q;ω), we have to solve the equation

χ̄Sρρ(q,q;ω) = χ(0)S
ρρ (q,q;ω) +

∑
G1 6=0

χ(0)S
ρρ (q,q + G1;ω)v̄G1(q)

[
χ̄ρρ(q;ω)

]
G10

, (7.19)

which is not a matrix equation, by opposition to Eq. (7.15) or Eq. (7.16). This makes the direct res-
olution of this equation intricate. In order to solve that equation in a clever way, we introduce two
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matrices,
[
χ̄S(q;ω)

]
GG′

and
[
χ

(0)S
ρρ (q;ω)

]
GG′

.
We define the matrix

[
χ

(0)S
ρρ (q;ω)

]
GG′

as

[
χ(0)S
ρρ (q;ω)

]
0G′

= χ(0)S
ρρ (q,q + G′;ω),[

χ(0)S
ρρ (q;ω)

]
GG′

=
[
χ(0)
ρρ (q;ω)

]
GG′

, G 6= 0.
(7.20)

This corresponds to the replacement of the first line of the matrix
[
χ

(0)
ρρ

]
GG′

by χ
(0)S
ρρ (q,q + G′;ω).

The matrix
[
χ̄Sρρ(q;ω)

]
GG′

is defined similarly. From Eq. (7.19) and Eq. (7.16), and using the relation
v̄G1

[
χ̄ρρ(q;ω)

]
G10

= v̄G1

[
χ̄Sρρ(q;ω)

]
G10

, we obtain directly a matrix equation linking
[
χ̄Sρρ(q;ω)

]
GG′

to
[
χ

(0)S
ρρ (q;ω)

]
GG′

,

[
χ̄Sρρ(q;ω)

]
GG′

=
[
χ(0)S
ρρ (q;ω)

]
GG′

+
∑
G1

[
χ(0)S
ρρ (q;ω)

]
GG1

v̄G1

[
χ̄Sρρ(q;ω)

]
G1G′

. (7.21)

Therefore, we have obtained a Dyson-like equation linking the matrix
[
χ̄Sρρ
]
GG′

to the matrix
[
χ

(0)S
ρρ

]
GG′

;
the latter being obtained from time-dependent perturbation theory. From Eq. (7.18),

[
χ̄Sρρ
]
00

gives di-
rectly εS,LLM . Finally, we note that we can rework the expression of the surface macroscopic dielectric
function for obtaining that

εS,LLM (q̂;ω) = lim
q→0

1(
1− v(q)χ

(0)S
ρρ (q,q;ω)

)−1

G=G′=0

. (7.22)

It is worthwhile to note that this expression is very similar to the expression for bulk crystals in the
RPA, except that the independent-particle response function χ

(0)
ρρ has been replaced by χ

(0)S
ρρ . The

expression of the full matrix
[
χ

(0)S
ρρ

]
GG′

is given in App. I, together with numerical results. Let us
emphasize that this result allows us to describe how a surface affects the optical response of a ma-
terial; with the convenience and efficiency of a super-cell calculation, assuming that the slab is thick
enough do describe correctly the surface region. It was not obvious also that the surface dielectric
function is obtained by solving the same equations than for bulk materials and in particular that the
only change at the end of the day is χ(0)

ρρ → χ
(0)S
ρρ . Also we note that χ̄Sρρ is an auxiliary matrix and

only the head of this matrix has a physical meaning.

7.4 Macroscopic second-order tensor of crystal surfaces

Let us consider now, instead of a linear polarization P = α̃EP , a polarization composed of two
contributions, a linear contribution P(1) associated to α̃(1) plus a second-order (in the perturbing
field) contribution P(2) associated to α̃(2). The aim of this section is to obtain an expression for the
macroscopic surface second-order response function, following the approach used for the surface
dielectric tensor.
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7.4.1 Microscopic components of the polarization

In order to be able to extend the linear calculation to the case of the second-harmonic generation, we
need all the microscopic components of the second-order polarization P

(2)
G and not only the macro-

scopic one P
(2)
0 . Therefore, we do not follow here the derivation of Ref. [41].

In reciprocal space, the first- and second-order polarizations are given by [41]

P
(1)
G (q;ω) =

∑
G1

[ ↔
α̃

(1)

(q;ω)
]
GG1

EP
G1

(q;ω), (7.23a)

P
(2)
G (q;ω) =

BZ∑
q1,q2

∑
G1,G2

∫
dω1dω2δ(ω − ω1 − ω2)δq,(q1+q2)

×
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
GG1G2

EP
G1

(q2;ω1)EP
G2

(q2;ω2), (7.23b)

where
↔
α̃

(1)

and
↔
α̃

(2)

are respectively the first- and second-order quasi-polarisabilities [41, 44]. In the
following, we always have ω = ω1 + ω2 and q = q1 + q2.
From Maxwell equations, we obtain that

EP
G(q;ω) = EG(q;ω) + 4π

q + G

|q + G|
q + G

|q + G|
.PG(q;ω). (7.24)

We note that this relation contains the first-order in polarization P(1) but also the second-order po-
larization P(2).
The perturbing field is the macroscopic applied perturbation and is of long wavelength, leading to
EP

G(q;ω) = δG0EP
0 (q;ω).

Inserting Eq. (7.24) into the expression of P
(1)
G , we obtain that

P
(1)
G (q;ω) =

[ ↔
α̃

(1)

(q;ω)
]
G0

E0(q;ω) + 4π
[ ↔
α̃

(1)

(q;ω)
]
G0

q

|q|
q

|q|

(
P

(1)
0 (q;ω) + P

(2)
0 (q;ω)

)
. (7.25)

We can solve that equation for P
(1)
0 (q;ω) + P

(2)
0 (q;ω), obtaining that

P
(1)
0 (q;ω) + P

(2)
0 (q;ω) =

↔
Al (q;ω)

([ ↔
α̃

(1)

(q;ω)
]
00

E0(q;ω) + P
(2)
0 (q;ω)

)
,

where we have introduced the tensor
↔
Al

↔
Al (q;ω) =

(
↔
1 −4π

[ ↔
α̃

(1)

(q;ω)
]
00

q

|q|
q

|q|

)−1

=
↔
1 +4π

[ ↔
α̃

(1)

(q;ω)
]
00

1− 4π
[
α̃(1),LL(q;ω)

]
00

q

|q|
q

|q|
.

Inserting the expression of P
(1)
0 (q;ω) + P

(2)
0 (q;ω) into Eq. (7.25) yields

P
(1)
G (q;ω) =

[ ↔
α̃

(1)

(q;ω)
]
G0

↔
Ar (q;ω)E0(q;ω)+4π

[ ↔
α̃

(1)

(q;ω)
]
G0

q

|q|
q

|q|
↔
Al (q;ω)P

(2)
0 (q;ω), (7.26)

100



7.4 Macroscopic second-order tensor of crystal surfaces

where
↔
Ar (q;ω) is the tensor already defined in the Sec. 7.1.

From the first-order of Eq. (7.24), we obtain that EP
0 (q;ω) =

↔
Ar (q;ω)E0(q;ω); [41] which can be

combined with the expression of the second-order polarization for obtaining

P
(2)
G (q;ω) =

BZ∑
q1,q2

∫
dω1

∫
dω2δ(ω − ω1 − ω2)δq,(q1+q2)

×
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
G00

↔
Ar (q1, ω1)

↔
Ar (q2, ω2)E0(q2;ω1)E0(q2;ω2).

(7.27)

Thus, we have all the ingredients for obtaining the microscopic components of the full polarization.
Finally, the total polarization is given by

PG(q;ω) =

BZ∑
q1q2

δq,(q1+q2)

∫
dω1

∫
dω2δ(ω − ω1 − ω2)

×
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
G00

↔
Ar (q1;ω1)

↔
Ar (q2;ω2)E0(q1;ω1)E0(q2;ω2)

+
[ ↔
α̃

(1)

(q;ω)
]
G0

↔
Ar (q;ω)E0(q;ω) + 4π

[ ↔
α̃

(1)

(q;ω)
]
G0

q

|q|
q

|q|
↔
Al (q;ω)P

(2)
0 (q;ω).

(7.28)
By opposition to the result of Ref. [41], we have obtained here the expression of all the microscopic
components of the total polarization. This allows us to obtain the z dependence of the second-order
polarization, as explained in the next section.

7.4.2 Macroscopic surface response function

Inserting the expression Eq. (7.28) into Eq. (7.4), gives the in-plane averaged dielectric tensor

↔
εm (q||, z, z

′;ω) =
↔
1 δ(z − z′) +

4π

2Lz

∑
qz ,Gz

ei(qz+Gz)z
[ ↔
α̃

(1)

(q;ω)
]
Gz0

↔
Ar (q;ω)e−iqzz

′
,

plus the in-plane averaged second-order polarization

P
(2)
0 (q||, z;ω) =

4π

2Lz

∑
qz ,Gz

ei(qz+Gz)z
[ ↔
α̃

(1)

(q;ω)
]
Gz0

q

|q|
q

|q|
↔
Al (q;ω)P

(2)
0 (q;ω)

+
1

2Lz

BZ∑
q1,q2

δq,(q1+q2)

∫
dω1

∫
dω2δ(ω − ω1 − ω2)

∑
qz ,Gz

ei(qz+Gz)z

×
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
Gz00

↔
Ar (q1;ω1)

↔
Ar (q2;ω2)E0(q1;ω1)E0(q2;ω2).

(7.29)

An important point here is that Eq. (7.29) contains P
(2)
0 (q;ω) on the right-hand side. The dependency

in the total electric field is not explicit; and it is not straightforward, from Eq. (7.29), to identify the
second-order macroscopic response function in the mixed-space.
In order to find a more suitable expression for the second-order response function in the mixed-space,

101



Chapter 7. Ab initio macroscopic linear and second-order optical properties of crystal surfaces:
From the slab to the single surface

we replace P
(2)
0 (q;ω) by its expression, using Eq. (7.27).

P
(2)
0 (q||, z;ω) =

1

2Lz

BZ∑
q1,q2

δq,(q1+q2)

∫
dω1

∫
dω2δ(ω − ω1 − ω2)

∑
qz ,Gz

ei(qz+Gz)z

×

(
4π
[ ↔
α̃

(1)

(q;ω)
]
G0

q

|q|
q

|q|
↔
Al (q;ω)

[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
000

+
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
G00

)
↔
Ar (q1;ω1)E0(q1;ω1)

↔
Ar (q2;ω2)E0(q2;ω2).

(7.30)

This approach for obtaining the second-order polarization is intricate but it avoids the problem of
defining the inverse of an integral operator, as done in Ref. [38].
Simple algebra gives

[ ↔
α̃

(1)

(q;ω)
]
G0

q

|q|
q

|q|
↔
Al (q;ω) =

[ ↔
α̃

(1)

(q;ω)
]
G0

q
|q|

q
|q|

1− 4π [α̃LL(q;ω)]00

. (7.31)

By inserting the expression of the fields, and by defining the in-plane averaged second-order suscep-

tibility tensor
↔
χ

(2)

m by

P
(2)
0 (q||, z;ω) =

∫
dω1

∫
dω2δ(ω − ω1 − ω2)

∫
dz1

∫
dz2

BZ∑
q1,q2

δq,(q1+q2)

↔
χ

(2)

m (q||, z,q1||, z1,q2||, z2;ω1, ω2)E0(q1||, z1;ω1)E0(q2||, z2;ω2),

(7.32)

we obtain that

↔
χ

(2)

m (q||, z,q1||, z1,q2||, z2;ω1, ω2) =
1

2Lz

∑
qz ,qz1,qz2

∑
Gz

δqz ,(qz1+qz2)e
i(qz+Gz)z

×

[
4π
[ ↔
α̃

(1)

(q;ω)
]
G0

q
|q|

q
|q|

1− 4π [α̃LL(q;ω)]00

[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
000

+
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
Gz00

]
×e−iqz1z1e−iqz2z2

↔
Ar (q1;ω1)

↔
Ar (q2;ω2). (7.33)

The surface macroscopic second-order response function reads as

↔
χ

(2)S

M (q,q1,q2;ω1, ω2) =
1

2L2
z

∫ Lz

−Lz
dzdz1dz2e

−iqzzC(z)
↔
χ

(2)

m (q||, z,q1||, z1,q2||, z2;ω1, ω2)eiqz1z1eiqz2z2 ,

(7.34)
where C(z) is the same cut-function as the one introduced in Sec. 7.1.
This quantity describes the second-order response of a single surface of a slab in super-cell geometry.
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Putting everything together, we obtain after some algebra that

↔
χ

(2)S

M (q,q1,q2;ω1, ω2) =

[
4π
↔
α̃

(1)S

(q;ω)

1− 4π [α̃LL(q;ω)]00

q

|q|
q

|q|
[ ↔
α̃

(2)

(q,q1,q2;ω1, ω2)
]
000

+
↔
α̃

(2)S

(q,q1,q2;ω1, ω2)

]
↔
Ar (q1;ω1)

↔
Ar (q2;ω2).

(7.35)

This equation is the equivalent of Eq. (7.9) for the second order, where both surface (
↔
α̃

(2)S

) and bulk

(
↔
α̃

(2)

) response functions are present. Notice that if we choose C(z) = 1, we obtain
↔
χ

(2)S

M =
↔
Al
↔
α̃

(2)↔
Ar
↔
Ar,

which is the result for the bulk materials, see, Chap. 1 and Ref. [41].

7.4.3 Optical limit for the macroscopic surface second-order susceptibility

The expression Eq. (7.35) gives access to the full second-order susceptibility tensor, but it could not
be computed directly in the framework of the TDDFT. For the following, we restrict our discussion
to the optical limit. The key quantity at second-order in that case is the longitudinal-longitudinal-
longitudinal (LLL) part of the macroscopic second-order susceptibility tensor, see Chap. 1.
In the case of surfaces, the LLL part of the macroscopic second-order susceptibility tensor reads as

χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) = εLLM (q1;ω1)εLLM (q2;ω2)

×

[(
εS,LLM (q;ω)− 1

)[
α̃(2),LLL(q,q1,q2;ω1, ω2)

]
000

+ α̃(2)S,LLL(q,q1,q2;ω1, ω2)

]
,

(7.36)

where we used the expression of
↔
Ar and that εLLM (q;ω) = 1

1+v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

.

We obtain from the conservation of charges, in the presence of the cut-function, and under the two
same restrictions we already introduced for the linear response, see App. F.1,

α̃(2)S,LLL(q,q1,q2;ω1, ω2) =
−i

2|q||q1||q2|
χSρρρ(q,q1,q2;ω1, ω2).

It results that the LLL part of the surface second-order response tensor depends only upon surface
average of the density-density-density response function of the system. The LLL part of the macro-
scopic surface second-order susceptibility tensor reads as

χ
(2)S,LLL
M (q,q1,q2, ω1, ω2) =

−i
2|q||q1||q2|

εLLM (q1;ω1)εLLM (q2;ω2)

×

[
− v0(q)χ̄Sρρ(q,q;ω)

[
χρρρ(q,q1,q2;ω1, ω2)

]
000

+ χSρρρ(q,q1,q2;ω1, ω2)

]
,

(7.37)

where we used the fact that within the RPA, εS,LLM (q;ω)− 1 = −v0(q)χ̄Sρρ(q,q;ω).
This equation is the main result of this section. We have derived an expression for the LLL part of
the surface second-order susceptibility tensor which depends only on the density-density-density
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response function and its surface average. This equation is the equivalent of Eq. (7.13) obtained for
the linear case. As in the linear case, we have to find a Dyson-like equation for the second-order
surface quantity. This is the aim of the next section.

7.4.4 Calculation of χ(2)S,LLL
M in TDDFT

The derivation of the macroscopic surface dielectric response relies on the knowledge of one quantity,
namely the response function to the total macroscopic classical potential χ̄Sρρ. In App. F.2, I obtained
two Dyson equations for the second-order response function to the total macroscopic classical poten-
tial, denoted χ̄ρρρ.
In reciprocal space, Eq. (F.11a) reads as[

χ(2)
ρρρ(q,q1,q2;ω1, ω2)

]
GG′G′′

=
∑

G1G2

[
χ̄ρρρ(q,q1,q2;ω1, ω2)

]
GG1G2

×
[
δG1,G′ + δG1,0v0(q1)

[
χ(1)
ρρ (q1;ω1)

]
0G′

][
δG2,G′′ + δG2,0v0(q2)

[
χ(1)
ρρ (q2;ω2)

]
0G′′

]
+
[
χ̄ρρ(q;ω)

]
G0
v0(q)

[
χ(2)
ρρρ(q,q1,q2;ω1, ω2)

]
0G′G′′

,

(7.38)

and we obtain from surface macroscopic averaging that

χ(2)S
ρρρ (q,q1,q2;ω1, ω2) =

[
χ̄ρρ(q;ω)

]
00
v0(q)

[
χ(2)
ρρρ(q,q1,q2;ω1, ω2)

]
000

+χ̄Sρρρ(q,q1,q2;ω1, ω2)
[
1 + v0(q1)

[
χ(1)
ρρ (q1;ω1)

]
00

][
1 + v0(q2)

[
χ(1)
ρρ (q2;ω2)

]
00

]
.

(7.39)

The quantity χ̄Sρρρ(q,q1,q2;ω1, ω2) is given in RPA by (see App. F.2)

χ̄Sρρρ(q,q1,q2;ω1, ω2) =
∑
G4

[
χ(0)S
ρρ (q;ω)

]
0G4

v̄G4(q)
[
χ̄ρρρ(q,q1,q2;ω1, ω2)

]
G400

+
∑

G3G1

χ(0)S
ρρρ (q,q1 + G1,q2 + G3;ω1, ω2)

×
[
δG10 + v̄G1(q1)

[
χ̄ρρ(q1;ω1)

]
G10

][
δG30 + v̄G3(q2)

[
χ̄ρρ(q2;ω2)

]
G30

]
.

(7.40)

Inserting Eq. (7.39) into Eq. (7.37) yields

χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) =

−i
2|q||q1||q2|

χ̄Sρρρ(q,q1,q2;ω1, ω2). (7.41)

This equation is the second-order equivalent of Eq. (7.18).
Again, we found that the surface response function to the total macroscopic classical potential is
naturally related to surface macroscopic quantity. This exhibits the tight relation between the macro-
scopic quantities and the response functions to the total macroscopic classical potential. Indeed, it
was already known that the bulk linear optical properties was obtained by the response to the total
potential as well as the response to the total macroscopic classical potential. Here I have generalised
this result by showing that the linear and nonlinear optical properties of bulk and surfaces can be ob-
tained from the response functions to the total macroscopic classical potential. Note that this result
is new, interesting, and has never been discussed for surfaces nor nonlinear optical properties.
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We have transformed the problem of computing χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) into the problem of

computing χ̄Sρρρ(q,q1,q2;ω1, ω2). In order to solve the equation Eq. (7.40), we follow the approach
previously used for the linear calculation, defining the matrices

[
χ̄Sρρρ

]
GG′G′′

and
[
χ

(0)S
ρρρ

]
GG′G′′

,
where we replace the first line of the matrices

[
χ̄ρρρ

]
GG′G′′

and
[
χ

(0)
ρρρ

]
GG′G′′

by χ̄Sρρρ(q,q1 + G′,q2 +

G′′;ω1, ω2) and χ
(0)S
ρρρ (q,q1 + G′,q2 + G′′;ω1, ω2) respectively. From Eq. (7.38) and Eq. (7.39), we

obtain that

χ̄SGG′G′′ =
∑
G4

χ
(0)S
GG4

v̄G4χ̄
S
G4G′G′′ +

∑
G3G1

χ
(0)S
GG3G1

[
δG1G′ + v̄G1χ̄G1G′

][
δG3G′′ + v̄G3χ̄G3G′′

]
, (7.42)

that we can solve for obtaining

χ̄S000 =
∑

G4G3G1

(
Id− χ(0)S v̄

)−1

0G4

χ
(0)S
G4G3G1

[
δG1G′ + v̄G1χ̄G10

][
δG3G′′ + v̄G3χ̄G30

]
,

yielding an expression for the LLL part of the surface macroscopic second-order susceptibility tensor,

χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) =

−i
2|q||q1||q2|

∑
G4G3G1

[
Id− χ(0)S

ρρ (q;ω)v̄(q)
]−1

0G4

×
[
χ(0)S
ρρρ (q,q1,q2;ω1, ω2)

]
G4G3G1

[
Id+ v̄(q1)χ̄ρρ(q1;ω1)

]
G10

[
Id+ v̄(q2)χ̄ρρ(q2;ω2)

]
G30

.

(7.43)

This results is the main result of this chapter. It allows us to compute the macroscopic surface
second-order response function in the random-phase approximation, and including the effect of
local-fields. This result has been obtained without introducing any new approximation than the
random-phase approximation and the long-wavelength approximation. Expressed as Eq. (7.43), this
formula requires only the knowledge of the two matrices

[
χ

(0)S
ρρ

]
GG′

and
[
χ

(0)S
ρρρ

]
GG′G′′

, thus opening
the way to simple numerical implementations.
It is worthwhile to notice that Eq. (7.43) proves that the long-range, non-analytical part of the Coulomb
interaction does not affect the LLL part of the macroscopic second-order response tensor. The same
conclusion is straightforwardly obtained for the bulk material, by putting C(z) = 1. Therefore, we
shown that the macroscopic second-order susceptibility is an analytic function of q1. This remarkable result
is an extension of the already known equivalent result for linear dielectric tensor of bulk materials.
This analyticity has also been pointed out by Del Sole and Fiorino for the surface linear response in
Ref. [38], but has never been reported for the case of second-order response function, neither for bulk
or surface cases. Note that our result is general and is applicable to any crystal, independently of its
symmetries.
The expression of the full matrix

[
χ

(0)S
ρρρ

]
GG′G′′

is reported in App. I, together with numerical cal-
culations, presenting for the first time the effects of local-fields on the spectra of second-harmonic
generation from semiconductor surfaces.

1To be more rigorous, we have only shown here that the function is Taylor expandable in q.
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7.5 Properties of the surface macroscopic quantities

In this section, I discuss some properties of the surface macroscopic second-order susceptibility.

A more familiar form

The expression Eq. (7.43) does not have the same form as the macroscopic second-order response
function for bulk materials [41]. In particular, the role of the dielectric functions that appear in the
expression of the LLL part of the macroscopic surface second-order response function is not clear
from Eq. (7.43). To make it more obvious, we define the quantity

[
χ̂S(q,q1,q2;ω1, ω2)

]
GG′G′′

=
[
χ̄S(q,q1,q2;ω1, ω2)

]
GG′G′′

×
[
δG1,G′ + δG1,0v0(q1)

[
χ(1)
ρρ (q1;ω1)

]
0G′

][
δG2,G′′ + δG2,0v0(q2)

[
χ(1)
ρρ (q2;ω2)

]
0G′′

]
+
[
χ̄S(q;ω)

]
G0
v0(q)

[
χ̂S(q,q1,q2;ω1, ω2)

]
0G′G′′

,

(7.44)

which gives, once averaged for the surface,

[
χ̄S(q,q1,q2;ω1, ω2)

]
000

= εS,LLM (q;ω)
[
χ̂S(q,q1,q2;ω1, ω2)

]
000

. (7.45)

Therefore, Eq. (7.41) can be rewritten as

χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) =

−i
2|q||q1||q2|

εS,LLM (q;ω)
[
χ̂Sρρρ(q,q1,q2;ω1, ω2)

]
000

εLLM (q1;ω1)εLLM (q2;ω2),

(7.46)
where χ̂Sρρρ is obtained by solving the matrix equation

[
χ̂S(q,q1,q2;ω1, ω2)

]
GG′G′′

=
∑

G2G1

[
χ(0)S(q,q1,q2;ω1, ω2)

]
GG1G3

×
[
δG1G′ + vG1(q1)

[
χ(1)
ρρ (q1;ω1)

]
G1G′

][
δG2G′′ + vG2(q1)

[
χ(1)
ρρ (q1;ω2)

]
G2G′′

]
+
∑
G1

[
χ(0)S
ρρ (q;ω)

]
GG1

vG1(q)
[
χ̂S(q,q1,q2;ω1, ω2)

]
G1G′G′′

.

(7.47)

This new expression for χ(2)S,LLL
M exposes more the physical meaning of the surface averaging.

The two last dielectric functions are not modified by the presence of the surface as the incoming
fields are allowed to go everywhere in the system. On the contrary, the radiated field experiences
only a screening from the surface dielectric function, meaning from the region where it is emitted.
Notice also that this form simplifies the implementation of the formalism presented in this chapter
in any TDDFT code for bulk second-harmonic generation. Finally, the formalism being valid for
any ω1 and ω2, it is not restricted to the second-harmonic generation and can also be applied to any
second-order optical process.
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7.5 Properties of the surface macroscopic quantities

Independent-particle approximation

In the independent-particle approximation, i.e., neglecting local-field effects, we keep only the matrix
elements corresponding to G = 0. In this case, the solution of Eq. (7.47) becomes trivial

[
χ̂S(q,q1,q2;ω1, ω2)

]
000

=

[
χ

(0)S
ρρρ (q,q1,q2;ω1, ω2)

]
000

1−
[
χ

(0)S
ρρ (q;ω)

]
00
v0(q)

×
[
1 + v0(q1)

[
χ(1)
ρρ (q1;ω1)

]
00

][
1 + v0(q2)

[
χ(1)
ρρ (q2;ω2)

]
00

]
.

(7.48)

Inserting this result into the expression of the macroscopic second-order surface susceptibility gives
after simple algebra

χ
(2)S,LLL
M (q,q1,q2;ω1, ω2) =

−i
2|q||q1||q2|

[
χ(0)S
ρρρ (q,q1,q2;ω1, ω2)

]
000

, (7.49)

where
[
χ

(0)S
ρρρ

]
000

is the surface average of the independent-particle response function, as already
computed in Chap. 6. Therefore this new formalism, in addition to fully taking into account the
local-fields, yields in the independent-particle approximation the previously introduced microscopic
formalism (see Chap. 5 and Chap. 6).

Conclusions

In conclusion, in this chapter I have presented the detailed derivation of the ab initio formalism I
developed for calculating the macroscopic optical response of crystal surfaces, at first- and second-
order. In this formalism, only one single surface contributes to the optical responses, thanks to the
formalism of the extraction of the surface spectra introduced in Chap.5.
In particular, I have presented how we can evaluate the macroscopic surface second-order suscepti-
bility χ(2)S

M , and therefore include the local-field effects on the surface second-harmonic generation
spectra.
This approach is based on TDDFT and is valid for any crystal surfaces represented by means of a
super-cell with slab geometry. In our formalism, we first derived a relation between the macroscopic
surface averaged quantities and the microscopic components of the linear and second-order response
functions. Then, we considered the case of the long-wavelength limit where every quantities can be
reduced to the calculation of the longitudinal response to longitudinal perturbation without loos-
ing information (see Chap. 1). In that case, I have shown that in the random-phase approximation,
the macroscopic surface quantities are expressed only in terms of microscopic components of the
surface averaged independent-particle response functions χ(0)S

ρρ and χ
(0)S
ρρρ . Moreover, we found that

the long-range non-analytical part of the Coulomb potential does not affect the macroscopic second-
order susceptibility, for both bulk material and surfaces.
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8. Local-field effects for linear optical
properties of thin-films and surfaces

Fig. 8.1: Electronic density of a slab
with two Si(001)2×1 surfaces, in the x-z
plan [230].

The fluctuations of the electric field at the atomic scale, the
so-called local-fields (LF), play a key role in the physics of
surfaces. As already explained in Chap. 1, strong effects
of local-fields are expected perpendicularly to the surface
plane, due to the abrupt change in the electronic density.
The impact of local-fields on surface optical spectra has
been discussed for years, especially in the context of the
so-called intrinsic or bulk-originated effects [231,232]. An-
alytic expressions for the surface response have been pre-
sented, but their numerical evaluation have often been re-
stricted to simple cases [39, 40, 233, 234]. More recently, ac-
curate calculations have been performed on complex sur-
faces [235–237], but most of the efforts have been dedi-
cated to in-plane components.
Surprisingly, no effort has been devoted to investigate the effect of local-fields on the out-of-plane
dielectric response of surfaces, ε⊥, while the local-field effects are expected to be stronger in the out-
of-plane direction. The out-of-plane component is of particular importance for many phenomena,
such as transmission or reflection at non-grazing light incidence and for all polarizations (except for
the simple case of s-polarised light), when both in- and out-of-plane components mix.
In this chapter, I will show that the state-of-the-art approach for computing optical properties of sur-
faces in reciprocal space, namely the super-cell approach, fails to compute the surface optical proper-
ties when including the effect of LF. In a second part, I will present a new scheme for the evaluation of
these optical properties in a surface-adapted space, where the surface is treated as an isolated system.
From this approach, I will derive in the last part of this chapter, another new approach that allows us
to properly account for the local-field effects on the optical properties of surfaces in reciprocal space.
In this chapter, the distinction between a thin-film and a surface is discussed.
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

8.1 Local-field effects and super-cells

In order to investigate the LF effects on optical properties of surfaces, we have chosen a slab with two
clean Si(001)2×1 surfaces as a model system. 1 The surface has been studied with the experimental
lattice constant of 5.43 Å and N = 16 atomic layers (32 atoms), corresponding to a slab of thickness
21.72 Å. Dielectric functions have been calculated using the TDDFT code DP [116].
The optical dielectric function is given, in reciprocal space, by

εM (ω) = lim
q→0

1

ε−1
G=G′=0(q;ω)

. (8.1)

Here q denotes a vanishing wave-vector and G, G′ are reciprocal lattice vectors of the crystal. The in-
verse of the microscopic dielectric matrix is given by ε−1

GG′(q;ω) = δGG′+v(q+G)χ
(1)
GG′(q;ω), where

v(q+G) = 4π/|q+G|2 is the Coulomb potential and χ(1) the density response function. In frequency
and reciprocal space, one has to solve a Dyson-like matrix equation for obtaining χ(1)

GG′(q;ω)

χ
(1)
GG′(q;ω) = χ

(1)
0,GG′(q;ω) +

∑
G′′G′′′

χ
(1)
0,GG′′(q;ω)KG′′G′′′(q;ω)χ

(1)
G′′′G′(q;ω). (8.2)

In principle, the kernel K contains two terms, the Coulomb potential v and the exchange-correlation
kernel fxc. In the following of this chapter, we will restrict ourselves to the Random-Phase Ap-
proximation (RPA), where fxc = 0, as we are interested only in the description of the local-fields.
Nevertheless, our results are general and can be used for any kernel. χ(1)

0 is the independent-particle
response function given in reciprocal space by

χ
(1)
0,GG′(q;ω) =

2

NkVcell

∑
m,n

BZ∑
k

(fn,k − fm,k+q)
〈n,k|e−i(q+G)r|m,k + q〉〈m,k + q|ei(q+G′)r|n,k〉

(En,k − Em,k+q + ω̃)
,

(8.3)
where fn,k is the Fermi occupation number of the Bloch state |n,k〉 with the energy En,k. Nk is the
number of k-points and Vcell refers to the volume of the cell, ω̃ = ω + iη is the frequency with a small
positive imaginary part η, that turns on adiabatically the electromagnetic field. The volume of the
matter inside the cell is denoted Vmat in the following.

Param. void1 void2 void3

nkpt 256 256 256
nband 300 300 400
npwwfn 1499 1499 7987
npwmat 299 391 399

Tab. 8.1: Parameters.

In Fig. 8.2, we present the results of the IPA calcu-
lation, where εM = 1 − v0χ

(1)
0,00, with χ

(1)
0 defined by

Eq. (8.3), for different sizes of the vacuum slab, denoted
void1 (vacuum size=21.72 Å; Vcell/Vmat = 2), void2 (vac-
uum size=43.44 Å; Vcell/Vmat = 3) and void3 (vacuum
size=65.17 Å; Vcell/Vmat = 4), as schematically shown. The
convergence parameters are given in Tab. 8.1. We present
also the result of the renormalized super-cell calculation,
using Vmat instead of Vcell for the normalization volume in Eq. (8.3). In that case, the result of the cal-

1This surface has already been presented in Chap. 4 and the numerical details such as atomic positions have been given
in Sec. 5.1.3.
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8.1 Local-field effects and super-cells

Fig. 8.2: Imaginary part of the in-plane (ε||) and out-of-plane (ε⊥) dielectric function for three different
sizes of the super-cell. Local field effects are not included. The three super-cells are sketched in inset
of the right panel.

culations for the different super-cells are the same, showing that the only dependence on the volume
of the cell stands in the explicit prefactor volume in Eq. (8.3).

In Fig. 8.3, we report the in-plane (ε||) and out-of-plane (ε⊥) dielectric responses of the Si(001)2×1
surface in the presence of local fields (RPA), for the three different sizes of the vacuum region previ-
ously defined, as given by the code. The in-plane response (left panel) behaves similarly to the IPA
results. Indeed the different calculations, including the effect of Local-Field (LF) are identical once
renormalized. The peak position of the in-plane RPA result is identical to the IPA peak position, and
only the spectral weight is affected by the local fields; which reduce the weight by approximatively
10% in the low-energy region. Concerning the out-of-plane dielectric response (right panel), the re-
sults strongly depend on the size of the vacuum introduced in the super-cell, in a way that cannot
be attributed only to the normalization volume, since the position of the peak shifts in energy. Note
also the drastic change in the peak position and amplitude, as compared to the IPA calculation (see
Fig. 8.2). Note that the position of the main absorption peak of the out-of-plane dielectric function is
getting closer to the plasmon peak position of bulk silicon (16.8 eV) and might converge to it.
This result obviously does not correspond to the dielectric function of a silicon surface nor a sili-
con thin-film, as experimental data show only a small variation of the optical gap with respect to
the thickness of ultra-thin films of silicon [238, 239]. I also want to stress that the surfaces are not
interacting as proved by the fact that we can renormalise the IPA results (see Fig. 8.2).

In order to understand this a priori unexpected result, i.e., the different behaviour of the IPA and
RPA responses with vacuum, we can use the so-called “effective-medium approach” [240]. This
theory exhibits two limiting cases, called Wiener bounds, which correspond to no screening of the
field inside the material and the maximum screening of the field inside the material [240]. Said
differently, the two limiting cases correspond respectively to E or D uniform in the material. In the
case of no screening, a composite material made of a bulk part and vacuum has an effective dielectric
function given by εsuper-cell = f + (1− f)εbulk; where f refers to the amount of vacuum introduced in
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

Fig. 8.3: Imaginary part of the in-plane (ε||) and out-of-plane (ε⊥) dielectric function for three different
sizes of the super-cell. Local field effects are included. Note the change in the scale for the right panel.

the composite. This case corresponds to the case of the independent-particle approximation as there
is no local-fields, thus explaining why all the spectra (in-plane and out-of-plane) behave similarly
with vacuum.

Fig. 8.4: Comparison between the super-cell
and effective medium theory calculations.

In the case of the in-plane RPA optical responses,
there is almost no local-field effects, because we are
close to the no-screening case, and the corresponding
formula is valid. In the out-of-plane direction, when
local-field effects are included, the correct description
using the effective-medium theory is the maximal
screening limit. I show in Fig. 8.4 the results obtained
through the effective-medium approach for maximal
screening, i.e., using ε−1

super-cell = f + (1 − f)ε−1
bulk, ap-

plied to the super-cells and compared to the out-of-
plane result of Fig. 8.3.
This simple model reproduces quite well the TDDFT
results and thus shows that the standard calculation
in a super-cell approach amounts to averaging over
the whole super-cell. The conclusion of this comparison is that when using super-cells in reciprocal
space, only the optical properties of the entire super-cell, as an effective medium, are obtained; and
the optical response of the slab is not accessible directly.
Notice that some failures of the super-cell approach have already been pointed out, e.g., in Ref. [241],
where authors have noticed that the screened Coulomb interaction W is “substantially influenced by
the repeated-slab geometry”.
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8.2 Mixed-space approach

8.2 Mixed-space approach

8.2.1 A surface-adapted space

The super-cell approach and the periodicity implied by this method is not perfectly adapted to the
slab geometry. Indeed, the surfaces that we want to model are periodic systems in two dimensions
and aperiodic in the third one. Moreover, as shown above, the super-cells do not yield the expected
slab optical response.
Therefore, I chose a different approach for computing optical properties of surfaces, changing to
the real space for computing the optical properties. The idea of abandoning the periodic boundary
conditions and to work in real-space is not a novel idea of this thesis, and was already suggested in
Ref. [241] as a possible cure for issues related to the super-cell approach. The authors decided to not
investigate this approach in their paper. The real space approach for computing optical properties of
surfaces has been successfully applied to surface plasmons, e.g., Refs. [242, 243].
The surfaces are isolated in the out-of-plane direction. Thus, in the direction perpendicular to the
plane of the surface, I decided to treat the system in real space, as it is known to be efficient for
isolated systems. The in-plane directions are treated in the reciprocal space, as it is customary for
extended systems. In this thesis, I refer to this space as the “mixed-space”.
In this mixed-space, the slab is truly isolated, because there is no out-of-plane periodicity; whereas
in reciprocal space, the slab is artificially isolated by increasing the size of the vacuum region. As a
consequence, we expect calculations in the mixed-space to yield directly the optical properties of the
slab and not of the super-cell. Also, in the mixed-space, the size of the vacuum region is no more
a convergence parameter and the vacuum serves only for describing the exponential decay of the
density.
At the light of all these points, the mixed-space appears as the natural choice for working with thin-
films and surfaces. Nevertheless, as it will be discussed latter, the numerical cost associated with
the mixed-space is prohibitive and a new approach, also developed during this thesis should be
preferred instead.

8.2.2 TDDFT and mixed-space in practice

Let us consider a super-cell containing a slab of matter and some vacuum. We denote the height of
this super-cell Lz whereas Lmat

z refers to the thickness of the slab. The calculation of optical properties
of surfaces in the mixed-space proceeds as follow:

1. The independent-particle susceptibility χ(1)
0 (q||, z, z

′;ω) is computed. Instead of writing a new
TDDFT code for computing the quantity χ(1)

0 (q||, z, z
′;ω) directly, I obtained this quantity from

the DP code [116]. More precisely, χ(1)
0 (q||, z, z

′;ω) is obtained by Fourier transforming the

matrix
[
χ

(1)
0 (q;ω)

]
Gz ,G′z

, computed with the DP code. 2

2The initial super-cell represents a periodic system. Nevertheless, in real space, we pad the space with zeros, thus
isolating the system. Therefore we describe an isolated slab, even if the initial IPA response function has been calculated
with a super-cell approach.
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

2. The fully interacting response function χ(1) is obtained by solving the Dyson-like equation.
In Ref. [242], authors have shown that neglecting the in-plane dispersion of the susceptibility
gives reliable results for surface calculations. Under that approximation, i.e., considering only
the components of the response functions such as G|| = G′|| = 0 as in-plane reciprocal lattice
vectors, the Dyson-like equation reads as3

χ(1)(q||, z, z
′;ω) = χ

(1)
0 (q||, z, z

′;ω) +

∫ +∞

−∞
dz1dz2χ

(1)
0 (q||, z, z1;ω)v(q||, z1, z2)χ(1)(q||, z2, z

′;ω).

(8.4)
In practice, this equation is solved on a real space grid. On a grid, the Dyson equation Eq. (8.4)
becomes a matrix equation. The solution of this matrix equation reads as

χ(1)(q||;ω) =
1

∆z
M−1(q||;ω)χ

(1)
0 (q||;ω), (8.5)

where M(q||;ω) is an NG ×NG matrix defined by

Mij(q||;ω) = M(q||, zi, zj ;ω) =
δij
∆z
−
∑
k

χ
(1)
0 (q||, zi, zk;ω)v(q||, zk, zj)∆z,

with the 2D Fourier transform of the Coulomb potential given by

v(q||, z, z
′) = 2πe−|q||||z−z

′|/|q|||. (8.6)

3. In order to compute the absorption spectra, the inverse of the microscopic dielectric matrix,
defined by [244, 245]

ε−1(q||, z, z
′;ω) = δ(z, z′) +

∫
dz1v(q||, z, z1)χ(1)(q||, z1, z

′;ω)

grid
≈ δij

∆z
+
∑
zk

v(q||, zi, zk)χ
(1)(q||, zk, zj ;ω)∆z, (8.7)

is averaged, using

ε−1(q;ω) =
1

Lz

∫
dz

∫
dz′e−iqzzε−1(q||, z, z

′;ω)eiqzz
′ grid
≈
∑
zi,zj

e−iqz(zi−zj)ε−1(q||, zi, zj ;ω)
∆2
z

Lz
.

(8.8)
Notice here that this is the macroscopic average [44] which is computed, i.e., containing the full
dependence on the momentum q, and not a spatial average which would contain only the in-
plane momentum. This allows us to compute all the components of the dielectric tensor, as
explained below, and also to compare with previous results for instance.

3The approximation of taking only the G|| = G′|| = 0 contribution reduces drastically the burden associated with the
solution of this equation, and is enough as we are using the real space approach as a test-case.
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8.2 Mixed-space approach

4. The macroscopic dielectric tensor is computed, using the usual expression

εM (q;ω) = lim
q→0

1

ε−1(q;ω)
.

Due to the expression of the Coulomb potential in the mixed-space Eq. (8.6), some care is required
for computing the zz component of the macroscopic dielectric tensor. Indeed, for obtaining the zz
component, one would choose q = qzêz. But this leads to a divergent Coulomb potential (see Eq.(8.6))
which is prohibited for numerical simulations. This can be disappointing considering that I decided
to use the mixed-space method precisely to calculate the out-of-plane component of the dielectric
tensor.
This apparent problem is nevertheless solved easily using the following approach:
i) The non-interacting response function χ

(1)
0 is evaluated for three different values of q, which are

q1 = q||êx, q2 = q||êx + qzêz and q3 = q||êx − qzêz.
ii) The macroscopic dielectric tensor ε(q1;ω) = εxx(ω), ε(q2;ω) and ε(q3;ω) are computed according
to the mixed-space scheme, as already explained.
iii) From simple algebra, using the tensorial nature of the dielectric tensor, one obtains that

εxz(ω) =
1

4ab

(
ε(q2;ω)− ε(q3;ω)

)
,

εzz(ω) =
1

b2

(
ε(q2;ω)− a2εxx(ω)− 2abεxz(ω)

)
,

where a =
q||√
q2
||+q

2
z

and b = qz√
q2
||+q

2
z

.

Some care is required in order to choose the values of q|| and qz . As we are interested in the optical
properties, we assume the optical limit; which constrains us to the limit q → 0. To avoid numerical
problems, we want to have non-vanishing values of q|| and qz , in order to have reliable numeri-
cal results when evaluating εzz(ω). It is possible to satisfy these two constrains, remembering that
the χ(1)

0 (q,q;ω) is analytically proportional to |q|2 in the optical limit. Also the matrix elements
χ

(1)
0 (q,q + G;ω) and χ

(1)
0 (q + G,q;ω) are proportional to |q|, G 6= 0. The same holds for χ(1) [54].

Therefore, when calculating the matrix χ(1)
0 with the DP code, a vanishing value of q is used. Then,

before performing the Fourier transform for obtaining χ(1)
0 (q||, zi, zj ;ω), the aforementioned matrix

elements are rescaled, in order to have q||, qz ∼ 1.

8.2.3 Numerical results

During this thesis, I have implemented this numerical scheme using the software MATLAB [246].
In Fig. 8.5, I report the numerical results, obtained using the mixed-space scheme, for the clean
Si(001)2×1 surface. I used 1400 Gz-vectors, corresponding to a spacing of ∆z = 0.0635 Å, in or-
der to reach convergence. We checked that the RPA results are independent of the size of the vacuum
region used in the super-cell, as expected for a mixed-space calculation. The striking point is the
weak effect of local-fields on Im{ε⊥}, in comparison to the previous results, presented on the right
panel of Fig. 8.3. Also we obtain no effect of LF on the in-plane component (Fig. 8.3; left panel) of
the dielectric tensor. Indeed, the peak positions and intensities are identical to the IPA calculation.
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

Fig. 8.5: Imaginary part of the dielectric function, computed using the mixed-space scheme. Black
curves: Independent-particle approximation (IPA). Red curves: Random-phase approximation. Left
panel: Imaginary part of ε|| with q align along the x-axis. Right panel: Imaginary part of ε⊥.

This can be attributed, as justified latter, to the approximation introduced, where we neglected the
contributions of G|| in-plane vectors.

Using the mixed-space scheme, we are now able to compute all the components of the dielectric
tensor, and in particular the out-of-plane component of the dielectric tensor, when including the local-
field effects. Nevertheless, the price to pay is that any calculation requires three calculations of the full
tensor χ(1)

0 , for each frequency of interest and for a huge number of G-vectors. Even with nowadays
facilities, this still represents a formidable task. This is why, this method is used in this thesis only
for investigation purposes. In particular, the full resolution of the Dyson equation including in-
plane local-field effects (G||,G′|| 6= 0), has not been performed in the mixed-space. Nevertheless,
the numerical result obtained here serves as a reference for developing and testing a new and more
efficient method, as explained in the next session.

8.3 Selected-G approach

Formally, a slab of matter can only describe the optical properties of a free-standing film. Up to
now, we have not make any distinction between the optical properties of a surface and the optical
properties of a thin-film. As already mentioned in the introduction of Chap. 5, a surface should be
represented by a semi-infinite system.
In this section, I first give the equations for calculating the optical properties of a thin-film. Then,
taking the surface limit, I obtain a new set of equations for calculating the optical properties of a
surface.
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8.3 Selected-G approach

8.3.1 Isolated system from periodic super-cell calculations

From the previous results, it is clear now that the periodicity induced by the super-cell approach,
treated in reciprocal space, is at the origin of the failure of the super-cell approach. We must treat
a thin-film as an isolated system in the out-of-plane direction in order to properly include the local-
field effects in its optical properties.
Let us consider such an isolated thin-film. We introduce the following approximation: the matter,
i.e., the density, is localised in the z-direction between −Lmat

z and 0. This is justify by the observation
of the density of silicon slabs, as shown in Fig. 8.1. The full space has an extension in the z-direction,
denoted Lz , with Lz →∞.

Considering that response functions are restricted to the matter region, the full Dyson equation,
expressed in the mixed-space, reads as

χ
(1)
G||G′||

(q||, z, z
′;ω) = χ

(1)
0,G||G′||

(q||, z, z
′;ω) +

∑
G1||

∫ 0

−Lmat
z

dz1dz2χ
(1)
0,G||G1||

(q||, z, z1;ω)

× vG1||(q||, z1, z2)χ
(1)
G1||G′||

(q||, z2, z
′;ω), z, z′ ∈ [−Lmat

z , 0].

(8.10)

In contrast to Eq. (8.4), we consider here the full dependence on the in-plane G-vectors.
Instead of solving this equation directly in the mixed-space, as already done in the previous section,
we introduce here two auxiliary functions χ̃(1)

0 and χ̃(1). These functions are respectively identical to
χ

(1)
0 and χ(1) for (z, z′) ∈ [−Lmat

z , 0] × [−Lmat
z , 0]. These functions are also chosen periodic, of period

Lmat
z

4

χ̃
(1)
0,G||G′||

(q||, z +NLmat
z , z′ +NLmat

z ;ω) = χ̃
(1)
0,G||G′||

(q||, z, z
′;ω),

χ̃
(1)
G||G′||

(q||, z +NLmat
z , z′ +NLmat

z ;ω) = χ̃
(1)
G||G′||

(q||, z, z
′;ω).

N ∈ Z

Note that in the standard super-cell calculations, the response functions have a periodicity of Lz in-
stead of the periodicity of Lmat

z that we have here for the auxiliary response functions. These auxiliary
response functions being periodic, it is possible to define their (inverse) Fourier transform

χ̃G̃,G̃′(q;ω) =
1

Lmat
z

∫ 0

−Lmat
z

dz

∫ 0

−Lmat
z

dz′e−i(qz+G̃z)zχ̃G||,G′||(q||, z, z
′;ω)ei(qz+G̃′z)z′ , (8.11a)

χ̃G||,G′||(q||, z, z
′;ω) =

1

Lmat
z

∑
qz

∑
G̃z ,G̃′z

ei(qz+G̃z)zχ̃G̃,G̃′(q;ω)e−i(qz+G̃′z)z′ , z, z′ ∈ [−Lmat
z , 0], (8.11b)

with G̃z = N 2π
Lmat
z

, N ∈ Z.

4The remaining space is filled with zero.
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Dyson-like equation

Using Fourier transform definitions, together with definition of delta functions (see App. A), we
obtain a Dyson-like equation for the auxiliary response function χ̃(1)

χ̃
(1)

G̃G̃′
(q;ω) = χ̃

(1)

0,G̃G̃′
(q;ω) +

1

Lmat
z

∑
G1||

∑
G̃z1G̃z2

χ̃
(1)
0,G||G1||

(q||, qz + G̃z, qz + G̃z1;ω)

×
∫ 0

−Lmat
z

dz1dz2

(
e−i(qz+G̃z1)z1vG1||(q||, z1, z2)ei(qz+G̃z2)z2

)
χ̃

(1)
G1||G′||

(q||, qz + G̃z2, qz + G̃′z;ω).

(8.12)

This equation can be written in a more compact way

χ̃
(1)

G̃G̃′
(q;ω) = χ̃

(1)

0,G̃G̃′
(q;ω) +

∑
G̃1G̃2

χ̃
(1)

0,G̃G̃1
(q;ω)ṽG̃1G̃2

(q)χ̃
(1)

G̃2G̃′
(q;ω), (8.13)

by defining

ṽG̃1,G̃2
(q) =

1

Lmat
z

∫ 0

−Lmat
z

dz1

∫ 0

−Lmat
z

dz2e
−i(qz+G̃z1)z1vG1||(q||, z1, z2)ei(qz+G̃z2)z1δG1||,G2|| . (8.14)

Using the expression of the Coulomb potential, it is possible to obtain a simplified analytical expres-
sion of ṽG̃1,G̃2

(q), as shown in App. G.

Dielectric response

The inverse dielectric function is given by

ε−1(q||, z, z
′;ω) = δ(z, z′) +

∫
dz1v(q||, z, z1)χ(1)(q||, z1, z

′;ω)

= δ(z, z′) +

∫ 0

−Lmat
z

dz1v(q||, z, z1)χ̃(1)(q||, z1, z
′;ω),

(8.15)

where the last equation comes from the approximation that response functions are restricted to
[−Lmat

z , 0]× [−Lmat
z , 0].

The macroscopic average of the inverse dielectric function Eq. (8.8), averaged over the slab, reads as

ε−1(q;ω) =
1

Lmat
z

∫ 0

−Lmat
z

dz

∫ 0

−Lmat
z

dz′e−iqzzε−1(q||, z, z
′;ω)eiqzz

′

= 1 +
∑

q′zG̃zG̃
′
z

ṽ0G̃z
(q||, qz)χ̃

(1)

G̃zG̃′z
(q||, q

′
z;ω)e−i(q

′
z−qz+G̃′z)

Lmat
z
2 sinc([q′z − qz + G̃′z]

Lmat
z

2
).

(8.16)
As a result, we obtain that in order to compute the optical properties of an isolated thin-film in
reciprocal space, we have to proceed in two steps. First, the Dyson equation Eq. (8.13), which links the
fully interacting response function χ̃(1) to the independent-particle response function χ̃(1)

0 is solved.
In this equation, the Coulomb potential v is replaced by a modified Coulomb potential ṽ, given by
Eq. (8.14) or equally by Eq. (G.5). Then, the dielectric response of the thin-film is computed, according
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to Eq. (8.16). Again, this definition contains the modified Coulomb potential ṽ. It is important to
note that this modified Coulomb potential ṽ is not diagonal in reciprocal space and has a complex
analytical expression (see App. G), making the resolution of the Dyson equation Eq. (8.13) more
intricate.

8.3.2 Selected-G approach

In order to describe the optical properties of a surface from a thin-film of thickness Lmat
z , we must

take the limit Lmat
z →∞. I refer to this limit as the surface limit.

As shown in App. G, within the surface limit,

ṽG̃1,G̃2
(q) =

4π

|q + G̃|2
δG̃1,G̃2

= vG̃1
(q)δG̃1,G̃2

, (8.17)

where v is the Coulomb potential. Inserting this result in Eq. (8.13) and Eq. (8.16) gives a new set of
equations

χ̃
(1)

G̃G̃′
(q;ω) = χ̃

(1)

0,G̃G̃′
(q;ω) +

∑
G̃1

χ̃
(1)

0,G̃G̃1
(q;ω)vG̃1

(q)χ̃
(1)

G̃1G̃′
(q;ω),

ε−1(q;ω) = 1 + v0(q)χ̃
(1)
00 (q;ω).

(8.18a)

(8.18b)

These two equations are very similar to the usual equations of the TDDFT. Only the definition of
the G-vectors involved in is different. The equation Eq. (8.18a) contains the G-vectors corresponding
to the material slab volume.

Fig. 8.6: Selected-G method for Lz = 2Lmat
z .

If we now choose the vacuum region to be an in-
teger multiple of the height of the material slab, we
obtain an easy way to construct the matrix χ̃(1)

0 from
χ

(1)
0 . Indeed, in this case, the matrix elements of χ̃(1)

0

are matrix elements of χ(1)
0 . Thus χ̃(1)

0 is obtained
by keeping only matrix elements of χ(1)

0 given by the
subset of the super-cell’sGz-vectors corresponding to
Gz-vectors of the material slab; and by replacing the
volume of normalisation Vcell in Eq. (8.3) by the vol-
ume of matter Vmat, accordingly to the definition of
the Fourier transform Eq. (8.11a).

8.3.3 Numerical results

I have implemented the Selected-G approach in the DP code. The same parameters (see Tab. 8.1) have
been used to obtain the spectra. In particular, 299 G-vectors have been used in total, i.e., including
in-plane and out-of-plane G-vectors. This is to be compared with the 1400 Gz-vectors needed for
the mixed-space original scheme, where the in-plane dispersion is neglected. The result of this new
framework, called ”Selected G“ is presented in Fig. 8.7 (red dashed line).
In the inset, we checked that solving the Dyson equation Eq. (8.18a) with slab’sGz , but keeping G|| =
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

Fig. 8.7: Imaginary part of the dielectric function ε|| with q aligned along the x-axis (left panel) and
ε⊥ (right panel). Black solid curves: Independent-particle approximation (IPA). Red dashed curves:
Mixed-space calculation. Blue dotted curves: Selected-G calculation. Inset: Comparison between
the mixed-space and the Selected-G method, without in-plane reciprocal vectors (”Gz-only“, green
dotted-dashed curve).

0, gives the same results as the mixed-space approach. The error introduced by the approximation of
the strict localisation of response function between −Lmat

z and 0 is negligible and appears a posteriori
as a good and perfectly valid approximation. The differences with the mixed-space calculations
originate then from the approximation introduced in this last approach. This allows us to understand
how local fields built in, in terms of G|| and Gz .

Fig. 8.8: Imaginary part of the dielectric re-
sponses of the surface and the bulk, local
fields included.

It appears that ε⊥ depends on both G|| and Gz

(right panel: blue and red curves). On the contrary,
as shown in the left panel, ε|| is only influenced by
G||, as the curves labelled ”IPA“ and ”Mixed-space“
are superposed. We also observe that the weak de-
pendence of ε|| on Gz explains why the standard ap-
proach leads to a correct description of the local fields
in the plane of the surface, although the set of Gz is not
adapted to the material slab. We do not show the re-
sults for several sizes of the vacuum region as they
are indistinguishable.
These results allow us to discuss for the first time the
effect of the local-fields on the different components
of the optical dielectric function for a surface.
We compare in Fig. 8.8 the imaginary part of ε⊥, εxx||
and εyy|| for the clean Si(001)2×1 surface to the absorp-
tion spectra silicon bulk, including local-fields in all cases.
The main effect is a blue shift of approximately 0.3 eV in the position of the peak for ε⊥, compared to
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the bulk response, while no shift is observed for ε||. The decrease in the intensity of the main absorp-
tion peak is more pronounced for ε⊥ than for ε||. This effect was already visible in the IPA calculation
(see Fig. 8.2) and for this reason, it can be attributed to the presence of the surface itself, and not to
the local-fields.
For the clean Si(001)2×1 surface, the atomic relaxation at the interface with vacuum introduces states,
located in the gap of the material, the so-called surface-states, which are evidenced in the IPA cal-
culation by the appearance of a small structure around 1.3 eV, see the black curve in Fig. 8.7. With
local-fields included, this structure is still clearly visible in ε||, in particular for εyy|| (see Fig. 8.8). In
the case of ε⊥, the peak vanishes when all the G|| and Gz are taken into account, while it remains,
in the mixed-space calculation, including the Gz only, evidencing the influence of the in-plane local
fields (G|| 6= 0). This also shows how local-field effects are important for the correct description of
surface-induced structures.

8.4 Discussion

8.4.1 Independence of the two surfaces in a slab geometry

The two surfaces of a slab have been shown to be independent in Chap. 5, in the independent-particle
approximation. Here I check the independence of the two surfaces of a slab when local-field effects
are included. Due to the Coulomb interaction, which is a long-range interaction, the two surfaces of
a slab of matter may potentially couple. In that case, it would not be possible to map the result of a
calculation performed using a slab geometry to the semi-infinite system that we try to model, even
taking the surface limit (Lmat

z →∞).
Let us consider the spectra of two symmetric slabs, one with two clean surfaces and one with two

dihydride surfaces. If the surfaces of a slab are independent, the average of these two symmetric
spectra should be identical to the spectrum of an asymmetric slab, with a front clean surface and a
back dihydride surface, as depicted in Fig. 5.3. Calculations of these three slabs have been performed
using the Selected-G method, including the local-field effects. The spectra have been computed for
two different slab sizes; 12 atomic layers (top panels) and 16 atomic layers (bottom panels). Results
are presented in Fig. 8.9.
The differences between the average (”Average“) and the asymmetric slab (”Clean-DiH“) are found
to be small for the 12 atomic layers. When increasing the thickness of the slab, the differences almost
vanish, showing that the surfaces become independent. I checked that the IPA results yield the same
quantitative differences. Therefore these differences do not originate from the Coulomb interaction
but from the size of the slab. This shows that the surfaces are numerically independent when includ-
ing local-field effects.
Note that by comparing the density of a slab and the one of bulk silicon (see Sec. 5.2.6), I already
found in Chap. 5.2.6 that the surface-states live in a ∼8.5Å wide region. The half-slab thicknesses
are respectively here 8.15Å (”12 layers“) and 10.86Å (”16 layers“). This explains that when using a
slab made of 12 atomic layers, the surface-states of each side of the slab slightly overlap, resulting in
small interferences. From these results, we obtain a condition of independence of the surfaces of the
slabs, which is that the surface states of the two surfaces must not overlap. In the case of the clean
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Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

Fig. 8.9: Comparison between the real part (left panel) and imaginary part (right panel) of εzz com-
puted for the asymmetric slab (Clean-DiH; solid curve), a symmetric clean slab (Clean-Clean; blue
dotted curve), a symmetric dihydride slab (DiH-DiH; green dotted dashed curve) and from the av-
erage of the two symmetric slabs (Average; dashed curve). Local field effects are included.

surface, this imposes a slab to contain at least 16 layers.

8.4.2 Surface dielectric function and three-layer model

One must be careful when interpreting the optical spectra obtained from the Selected-G approach,
especially the variation of the spectra with respect to the number of layers or atoms in the slab.
Indeed, the position and amplitude of the surface spectra depend on the number of atomic layers in
the slab. This is well illustrated in Fig. 8.10. We observe in Fig. 8.10 that the slab calculations slowly
converge to the bulk spectra when increasing the number of atoms. In order to show that we really
converge to the bulk spectra, I reported in Fig. 8.11 the evolution of the intensity of the E2 related
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Fig. 8.10: Imaginary part of the out-of-plane component of the dielectric tensor (ε||) versus the number
of layers in the slab, compared to the bulk silicon absorption spectra.

peak versus the number of layers (N ) in the slab. The value at zero correspond to the bulk case. We
clearly see that both IPA (black dots) and RPA (red dots) converge to the bulk values as 1/N .
How to interpret and to extract information from these slab calculations is an intricate question.

It is common to use a three-layer model in order to extract surface quantities from a slab calcula-
tion [247, 248]. In this model, the dielectric response of the slab is given by

εslab
M (ω) =

(N − 2Ns)ε
bulk
M (ω) + 2Nsε

surf(ω)

N
, (8.19)

where N and Ns are respectively the total number of layers in the slab and the effective number of
surface layers where the dielectric function equals the effective surface dielectric function εsurf(ω).
There is (N − 2Ns) bulk layers with a dielectric function εbulk

M (ω). The factor 2 comes here from the
fact that the slab has two surfaces.

Fig. 8.11: Convergence in number of
layers of the intensity of the E2 related
peak. Lines are here to guide the eyes.

Here we analyse the optical spectra obtained from the
Selected-G method within the limits of this formula. We
checked (not shown) that the surface optical region is fully
contained in the slab made of 20 atomic layers of matter,
as we can extract the bulk absorption spectra from the slab
calculations performed with N = 20 layers and N = 24

layers.
Thereby, it is possible to extract the surface-induced spec-
tra using Eq. (8.19) from these slabs. More precisely, as it is
not possible to determine separately Ns and εsurf, we can
only determine the surface-induced quantityNs

(
εsurf(ω)−

εbulk
M (ω)

)
, which is the only meaningful physical quantity

that we can extract using Eq. (8.19).
The quantityNs

(
εsurf
yy (ω)−εbulk

M (ω)
)

has been extracted from the results of a 20 atomic layer slab (black

123



Chapter 8. Local-field effects for linear optical properties of thin-films and surfaces

Fig. 8.13: Spectra of Ns

(
εsurf(ω)− εbulk

M (ω)
)

for the xx component (left panel) the yy component (mid-
dle panel) and the zz components (right panel) for the clean surface. Dashed lines are obtained
without local-fields (”IPA“) whereas solid lines correspond to local-field effects included (”RPA“).
The spectra is obtained from the 24 atomic layer slab.

lines) and a 24 atomic layers slab (red lines), as shown in Fig. 8.12. These two slabs yield the same
result, showing the reliability of the approach.
The same quantity is reported in Fig. 8.13, where the dashed lines are the results obtained without
including the local-field effects (”IPA“) whereas the solid lines correspond to local-field included re-
sults (”RPA“).
We observe in Fig. 8.13 that the three different components of the dielectric tensor give quite different
results. Nevertheless some features are common.

Fig. 8.12: Spectra ofNs

(
εsurf
yy (ω)−εbulk

M (ω)
)

for
the clean surface, calculated for N = 20 lay-
ers (black solid line) and N = 24 layers (red
dashed line).

First, in all the spectra, there is a negative peak
around 3.7 eV (corresponding to the critical point E2

of bulk silicon) indicating a lowering of the intensity
of this peak in the surface quantity. By opposition,
all the spectra are positive between 0 eV and 2 eV,
due to the presence of surface-states in the gap of the
clean surface. The intensity of the E1 related peak is
found to be increased in the surface spectra for two
in-plane components of the dielectric tensor, whereas
the intensity of the same peak is reduced for the out-
of-plane component. The xx component shows the
smallest deviation to the bulk spectra, as already vis-
ible in Fig. 8.8.

The effects of the local fields are well evidenced in
Fig. 8.13. Indeed, on the xx and the zz components,
the surface-states induced structures are reduced by the local-field effects, whereas the equivalent
structure on the yy component is unchanged when including local-field effects. Also the E2 related
peak intensity is closer to the bulk one when local-fields are included, for the in-plane components.
For the out-of-plane components, the local-field effects induce a blue-shift of 0.1eV, whose conse-
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quence is to increase the difference at the energy position of the E2 critical point of bulk silicon.
We note that the local-field effects do not change too much the spectral shape of the quantity
Ns

(
εsurf(ω) − εbulk

M (ω)
)
, and more importantly, they do not change its sign. This means that when

the surface quantity is smaller (bigger) in intensity than the bulk one, this remains true when in-
cluding local-field effects. Finally, the prominent peak positions are found not to be affected by the
local-field effects, expect a small blue-shift for the E2 peak of the zz surface optical response. This
means that the apparent blue-shift observed in Fig. 8.10 is mainly due to a change in the relative
weight between the ”surface“ spectra and the bulk one.

Conclusion

In summary, I have investigated in this chapter the local-field effects on the linear optical properties
of surfaces. The standard reciprocal-space based super-cell approach, has been shown to only yield
the optical properties of an effective medium matter plus vacuum and to fail in the out-of-plane
direction. In order to compute the optical properties of the surface and not the super-cell, I have in-
troduced two new efficient schemes to account for local-fields in the ab initio description of the optical
properties of surfaces, for both parallel and perpendicular components.
The two schemes are based on the resolution of TDDFT plus linear response theory equations in a
mixed-space designed to be adapted to the special periodicity of the slab geometry. The first scheme
corresponds to the resolution of the equations in this mixed-space directly. This approach works per-
fectly but an approximation has to be introduced to reduce the numerical cost of the calculation.
In order to do better, I have derived from the mixed-space equations a second scheme, still based on
the super-cell approach, but which uses a selected set of reciprocal vectors. This scheme combines
the correctness of the mixed-space approach, with the efficiency of a treatment in reciprocal space.
Thanks to the efficiency of this scheme, we have been able to fully account for the local-field effects,
removing the approximation introduced in the first scheme.
We have then demonstrated how local-field effects are important for a correct description of the out-
of-plane optical properties. Comparing the two schemes, I have explained how the local-field effects
construct, in terms of in-plane and out-of-plane G-vectors. In addition, it explains why the standard
calculation leads to reliable results for the in-plane components, as expected from the excellent agree-
ment between theoretical and experimental results for Reflectance Anisotropy Spectra found in the
literature.
Finally, I have checked that the two surfaces of a slab are independent, even including local-field ef-
fects, and we have extracted the surface-induced modification to the bulk spectra assuming a three-
layer model.
In next chapter, I present the local-field effects for surface SHG, merging the extraction of the spectra
(Chap. 5, Chap. 6 and Chap. 7) with the Selected-G approach for the calculation of local-field effects.
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9. Local-field effects on second-harmonic
generation from surfaces

The abrupt change in the electronic density at the surface of a dielectric mate-
rial leads to a huge variation of the electric field at the interface with vacuum.
As a result, strong effects of the local-fields on the optical properties of sur-
faces are expected; in particular in the direction perpendicular to the plane of
the surface. Therefore we except the local-field effects to affect quantitatively
the surface second-harmonic generation.
It is still common practice to neglect local-field effects on surface second-harmonic generation spectra,
and their effects have, so far, only been estimated using models fitted on experimental data [249,250].
Understanding, by means of ab initio methods, how local-field effects affect the second-harmonic gen-
eration (SHG) at crystal surfaces is the aim of this chapter.
I report here a method of calculating the local-field effects in the Time-Dependent Density Functional
Theory (TDDFT) framework, based on the macroscopic theory developed in Chap. 7. This macro-
scopic theory is used to calculate the surface second-harmonic generation of some silicon surfaces
and to investigate the effect of local-fields.
The SHG from silicon surfaces has been widely studied in the literature [28, 78–80, 227, 251]; and it
is found experimentally a strong influence of ad-atoms on the SHG spectra of silicon surfaces. In
particular, the presence of hydrogen results in a quenching of the SHG signal [32, 33, 252–254]. Here,
the local-field effects are investigated on the clean Si(001)2×1 surface, but also on two hydrogenated
surfaces, namely the monohydride or Si(001)2×1:H and the dihydride or Si(001)1×1:2H surfaces; in
order to shed some light on the close connection between the surface SHG, the ad-atoms and the
local-field effects.
This chapter is organised as follow. First, I present the numerical results obtained at various lev-
els of approximation, evidencing the role and the effects of the local-fields on the SHG spectra of
the clean Si(001) surface. Then, the results obtained for two hydrogenated surfaces are presented
and compared with available data, evidencing the importance of local-field effects for a quantitative
description of surface SHG.
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9.1 Local-Field Effects on the clean Si(001) SHG spectra

9.1.1 Numerical implementation

I have implemented the expressions of the χ
(0)S
ρρ and χ

(0)S
ρρρ , as well as the Selected-G method in

the SHG-TDDFT code known as 2light [117]. For conciseness, the expression of the full matrices[
χ

(0)S
ρρ

]
GG′

and
[
χ

(0)S
ρρρ

]
GG′G′′

are derived and reported in App. I. Due to the impressive time re-
quired for computed the entire matrix χ(0)S

ρρρ , I have modified the parallelization of the code from an
OpenMP parallelization to an hybrid OpenMP+MPI parallelization. Thanks to some optimizations
of the 2light code, and to this new parallelization, I have been able to perform the calculations of sur-
face second-harmonic generation on systems of reasonably converged size, fully taking into account
local-field effects.

9.1.2 Numerical details

Param. Value

nkpt 256
npwwfn 3989
nband 220
lomo 40
npwmat 93
η 100 meV
∆ω 100 meV

Tab. 9.1: Parameters
for the clean Si(001)2×1
surface.

The self-consistent ground-state and the Kohn-Sham states were calculated
using the plane-wave ABINIT code [115]. I used Troullier-Martins pseu-
dopotentials [216] that are fully separable nonlocal pseudopotentials in the
Kleinman-Bylander form [120] for Si and H atoms. The contribution of the
nonlocal part of the pseudo-potential to v and V is carried out using the
2light code [117].
The parameters of the atomic relaxation, as well as the values obtained for
the dimer bond-length and buckling are the same as in Sec. 5.1.3. The con-
vergence in number of atoms is an important issue, but the calculation of
the local-field effects requires the evaluation of the entire matrix χ(0)S

ρρρ for a
big number of G-vectors, typically around 75-100. I found 24 atomic layers
for representing the full slab to give a good trade off between quantitative
results and the numerical burden associated with the inclusion of local-field effects on the surface
SHG spectra.

Fig. 9.1: SHG spectra |χ(2)S
0,xxx| of the

clean surface calculated. The different
curves are explained in the text.

For this slab made of 24 atomic layers, I found the con-
verged parameters, which are reported in Tab. 9.1 for the
clean Si(001) surface. The parameter “lomo” corresponds
to the index of the first valence band included in the cal-
culation. This parameter is quite important for optimizing
the computing time, as the computation of χ(0)S

ρρρ scales as
N3
b , Nb being the number of bands considered in the sim-

ulation. Fig. 9.1 shows the effect of choosing 40 as a value
for the lomo parameters (“lomo 40”; black solid line), in-
stead of taking all the valence bands (“lomo 1”; red dotted
line). As the two spectra are almost indistinguishable, we
use for lomo the value of 40 in the following for the clean
surface, thus almost dividing by two the number of transitions to be computed.
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9.1 Local-Field Effects on the clean Si(001) SHG spectra

Fig. 9.2: Effect of local fields on the surface second-harmonic generation of the clean Si(001)2×1
surface. No scissors correction is included.

9.1.3 The clean Si(001)2×1 surface

As a test case, I have chosen the clean Si(001)2×1 surface to investigate the effects of local-fields
on surface second-harmonic generation. The local-field effects are investigated at the level of the
Random-Phase Approximation (RPA). The excitonic effects are neglected and will be treated in the
next chapter. Two components of the χ(2)S tensor have been selected, namely the zzz, and the yyz
components, because they represent two different physical situations. The first component, zzz, cor-
responds to incoming electric fields and an emitted polarization perpendicular to the surface plane.
Therefore, we expect this component to be more sensitive to the local-field; due to the abrupt change
of the electric field at the interface with the vacuum. The yyz component corresponds to an in-plane
emitted polarization, and is thus expected to be less affected by local-field effects.

The calculations of surface second-harmonic generation for these two components, with and with-
out local-field effects, are reported in Fig. 9.2. Various effects are obtained. As a general remark,
the LF are found to affect significantly the surface second-harmonic generation, and are therefore
required to obtain a quantitative description of the surface second-harmonic generation. The LF are
also found to reduce the spectral weight in the low-energy region. For the zzz component, the LF
seem to introduce a blue-shift. Indeed, the main structure of the zzz component, around 2.0 eV seems
to be shifted to 2.6eV. However, in SHG spectra, two situations can appear as a shift. One possibility
is a real shift; the other possibility being a redistribution of the spectral weight from 1ω resonances to
2ω resonances or the opposite.1 In order to investigate the nature of this apparent shift, I have com-
pared the spectra with and without the scissors operator. The different structures which are clearly
visible with and without scissors correction ∆ are indicated with arrows in Fig. 9.3. As a result, we
obtain that the two main structures in IPA are shifted by the inclusion of the scissors operator by

1This is another difference with linear optical properties where only a blue-shift can occur. No redistribution can occur
as the resonances have an unique origin.
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Fig. 9.3: Comparison of the effect of scissors correction on the surface second-harmonic generation
of the clean Si(001)2×1 surface, with (blue curves) and without (red curves) local fields included. The
scissors correction is chosen to be ∆ = 0.6eV . Arrows are here for indicating the positions of main
structures.

∆/2 = 0.3eV (indicating their 2ω origin) whereas the two main structures in RPA are shifted by
∆ = 0.6eV (indicating their 1ω origin). Therefore the main effect of local-fields on the zzz component
is not a blue shift but a redistribution of the spectral weight between the 2ω and the 1ω transitions.
Concerning the yyz components, the LF do not alter the position of the prominent peaks, but they do
reduce the spectral-weight of the main structures.

9.2 Hydrogenated surfaces and local-field effects

Param. DiH MonoH

nkpt 288 256
npwwfn 3999 3989
nband 140 220
lomo 20 30
npwmat 73 89
η 100 meV
∆ω 100 meV

Tab. 9.2: Parameters for the
hydrogenated surface.

As explained in Chap. 4, it is possible to cover the Si(001) with ad-
atoms and in particular with hydrogen atoms. The effect of the hy-
drogen on the second-harmonic generation from silicon surfaces has
been widely investigated experimentally [32, 33, 252–254]; but the
origin of the hydrogen-induced quenching is not well understood.
In this section, I report the effects of local-fields on the spectra of two
hydrogenated surfaces, the monohydride Si(001)2×1:H and the di-
hydride Si(001)1×1:2H surfaces.
The parameters for these calculations are given in Tab. 9.2, re-
spectively for the dihydride (“DiH”) and for the monohydride
(“MonoH”) surfaces. Note that due to the symmetries of the dihy-
dride surface, twice less atoms are needed to describe the surface;
lowering the requirements in terms of number of bands, and thus reducing the numerical cost of
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9.2 Hydrogenated surfaces and local-field effects

Fig. 9.4: Surface second-harmonic generation spectra of the dihydride Si(001)1×1:2H surface, for the
zzz, xxz and zxx components of the χ(2)S tensor. No scissors correction is included.

the calculations for the dihydride surface. In Fig. 9.4, I report the calculations of the non-zero com-
ponents of the dihydride surface, with and without local-field effects included. The most striking
result obtained here is the strong effect of local-fields on the SHG spectra of the dihydride surface.
In particular, the zzz and the zyy components are found to be drastically affected by the LF, whereas
the yyz is only slightly affected. The inclusion of the scissors correction (not shown) shows that the
local-field effects redistribute the spectral weight from a structure corresponding mainly to 2ω tran-
sitions to a structure corresponding to mainly 1ω transitions, on the zzz and zyy components. Note
that the structure at higher energy is sharper than the corresponding 2ω structure at low energy, due
to sum-rules on the SHG spectra [255].
Interestingly, the region between 1 eV and 3 eV, which is “passivated” by local-field effects on the
zzz and zyy components, corresponds to the region probed by the experiments, where it is found a
quenching by the hydrogen [32, 33, 254]. However, concluding that the local-fields explain entirely
the observed quenching is not obvious and requires an entire study in itself. Indeed, the quenching
has been observed on the generalized reflection coefficients and each components of the χ(2)S are
weighted differently in the expression of these reflection coefficients (see Chap. 2 and Ref. [226]). In
particular, as shown later, the Rpp is not affected so much by local-fields, whereas the coefficient Rsp
is drastically reduced by the local-field effects.
We find similar conclusions for the monohydride surface second-harmonic spectra, shown in Fig. 9.5.
Again we observe a big effect of local-fields on the zzz and the zyy components, whereas the yyz com-
ponent is only slightly affected by local-fields and, in particular, peak positions of these components
are not modified.
From the analysis of the clean, the monohydride and the dihydride surface second-harmonic spectra
(corresponding to three different space-groups), it is possible to attribute to local-fields two distinct
effects, depending on the kind of component concerned. If the component corresponds to an emitted
polarization propagating perpendicularly to the surface plane, the spectral weight is redistributed
to higher energies, by changing the weight from 2ω transitions to 1ω transitions. On the contrary, if
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Chapter 9. Local-field effects on second-harmonic generation from surfaces

Fig. 9.5: Surface second-harmonic generation spectra of the monohydride Si(001)2×1:1H surface, for
the zzz, xxz and zxx components of the χ(2)S tensor. No scissors correction is included.

the polarization is propagating in the plane of the surface, the local-field effects reduce the spectral
weight of the main structures but their positions are not altered.

9.3 Comparison with experimental results

Fig. 9.6: SHG spectra |χ(2)S
0,zzz| of the dihydride sur-

face calculated using k-point grids corresponding
to 288 (blue, dotted-dashed line), 578 (red, dashed
line), and 882 (black solid line) points in the sur-
face Brillouin zone.

In this section, we further analyse the dihy-
dride or Si(001)1×1:2H surface. In particular,
I present here two comparisons with available
experimental data. First I present a compar-
ison between experiment and theory for sin-
gle components of the susceptibility tensor,
and then I compare theoretical calculations of
the generalized reflection coefficients with low-
temperature measurements.

In order to compare with the experimental
data, a smaller broadening must be used. This
increases the requirement in number of k-points.
The number of k-points used for sampling the
Brillouin zone is one of the most important crite-
ria for the calculation of the optical properties of
surfaces, as already pointed out by various au-
thors in the literature [256–258]. Fig. 9.6 shows
the SHG spectra of the dihydride surface, cal-
culated for uniform grids of k-points containing
respectively 288, 578 and 882 k-points. All the spectra are computed with a broadening of 50meV.
This figure shows in particular that the grid with 578 k-points yield a completely converged spectra.
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9.3 Comparison with experimental results

Therefore, in the following, this grid of k-point is used.

9.3.1 Components of the second-order susceptibility tensor

In experiments, the generalised reflection coefficients (see Chap. 2) result from the contributions of
both surface dipolar and bulk quadrupolar terms, the latter having never being calculated, to the best
of my knowledge, by means of ab initio methods. This makes difficult the comparison between theory
and experiments. Nevertheless, when the surface dipolar contribution is isotropic, as for the dihy-
dride surface, it is possible to exploit this isotropy to distinguish between surface dipolar and bulk
quadrupolar contributions, see Refs. [78–80]. In these references, authors used rotational anisotropy
to separate the anisotropic contribution, coming from the bulk quadrupolar term, and the isotropic
contribution, coming from the surface. In particular, in Ref. [79], authors have been able, from their
measurements, to extract the spectra of χ(2)S

xxz and χ(2)S
zxx for the dihydride Si(001)1×1:2H surface. Their

results are not given in absolute units but the SHG spectra were normalized against the reflected SHG
signal from a quartz reference [79]. Recently, it has become possible to measure experimentally the
absolute amplitude of some components of the surface second-order susceptibility tensor χ(2)S [78]
and even the absolute phase [251]. In particular, in Ref. [78], authors found for the native-oxide cov-
ered Si(001) surface, an absolute value of 3.5 ± 0.7 × 10−19m2/V for χ(2)S

xxz , at the second-harmonic
energy 2h̄ω = 3.1eV . This energy is out of the resonance due to the E1 critical point of silicon, and is
found to be quite insensitive to the surface termination, as shown by the spectra of χ(2)S

xxz , extracted
for three surface terminations in Ref. [79].

Using this value as a reference, we can convert the data of Ref. [79] into absolute units, as they
provide us with the normalized value for the hydrogen-terminated Si(001) SHG spectra, but also with
the native and thermal oxide terminated surface spectra.2 Notice that this is only possible because
the results of Ref. [251] have been normalized to a quartz crystal, as in Ref. [78].
Due to the uncertainty on the experimental absolute value of χ(2)S

xxz , there is at least 20% of error
on the experimental spectra. Nevertheless, this allows us to compare the theoretical calculations
with experimental data in absolute units, whereas theoretical calculations are usually rescaled to agree
with theoretical calculations. Renormalizing by the same procedure the experimental spectrum of
|ζ| given in Ref. [80] and extracted from the same experimental data as in Ref. [79], yields values in
good agreement with the absolute experimental values, obtained from other references [78,251]. This
shows the robustness of the approach.

The comparison between theoretical calculations and experimental data, in absolute units, is re-
ported in Fig. 9.7. The calculation without local-fields (left panel) is found to not reproduce even
qualitatively the experimental data, and in particular, we found here that |χ(2)

zxx| > |χ(2)
xxz| whereas

the opposite is observed experimentally, in the region probed in Ref. [79]. The local-field effects,
within the RPA (right panel) improves significantly the agreement between theory and experiment.
Indeed, the relative weight of the two components is now found to be consistent with the experimen-
tal data. Moreover, we obtain a good agreement for the absolute intensity, showing the importance
of including local-field effects to quantitatively reproduce the experiments. Note that in a previous

2Some care is required when comparing the results of the different papers, due to the definition of the d matrix, which
gives for instance 2d15 = χ

(2)
xxz .
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Chapter 9. Local-field effects on second-harmonic generation from surfaces

Fig. 9.7: Comparison between the theoretical calculation of |χ(2)S
xxz | and |χ(2)S

zxx | without local-field ef-
fects (left panel), with local-field effects (middle panel), and the experimental data, from Ref. [79]
(right panel). Here we used ∆ω = 0.125eV , η = 0.25eV and scissors correction of ∆ = 0.6eV .

study of surface second-harmonic generation, performed at the level of independent-particles [228],
the calculated intensities were found to be respectively a factor-of-5 and a factor-of-10 larger than the
experimental ones for Rpp and Rps.

The calculated peak positions are not in good agreement with the experimental one. It has been
observed that the temperature has a strong influence on the peak position of the clean and the mono-
hydride surfaces; and that lowering the temperature induces a blue-shift of the E1 resonance [33,253].
The experimental data presented here have been obtained from room temperature measurements.
Comparing the SHG spectra of Refs. [33, 58, 259], I found that decreasing the temperature from 300K
to 80K induces a blue-shift of about 0.1eV (in two-photon energy scale). Clearly, this does not explain
entirely the difference in the peak positions found here of about 0.3 eV (in the two-photon energy
scale). Even if we do not have a clear explanation for this discrepancy, we want to stress that state-of-
the-art linear calculations, including the excitonic effects thanks to the Bethe-Salpeter equation, and
with a GW correction, instead of a scissors operator, also suffer from a 0.2 eV blue-shift as compared
to the experimental spectra for the dihydride surface [181]. This is consistent with the 0.3 eV of dif-
ference we obtained, in the two-photon energy scale. Possible explanations for this difference in the
peak positions can be found in Ref. [181], and are therefore not repeated here. Finally, the calculation
are performed here for 24 atomic layers. Calculations for thicker slabs are expected to improve the
agreement with the experiment.
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9.3 Comparison with experimental results

Fig. 9.8: Rpp vs the two-photon energy for the dihydride Si(001)1×1:2H surface. Blue curve: IPA+SO
calculation. Red curve: RPA+SO calculation. In both cases, we used a scissors correction of ∆ =
0.6eV. The low-temperature experimental results (black crosses, rescaled on the vertical axis) are
obtained from Ref. [259]. The angle of incidence θ=45° is the same as in the experiment. A Lorentzian
broadening of 20 meV is added as a post-processing on the final Rpp spectra.

9.3.2 Generalized reflection coefficients

The dihydride surface exhibits a p4mm symmetry. Therefore, the two non-zero reflection coefficients
are given by (see Chap. 2)

Rpp(θ, ω) =
2ω2 tan2 θ

c3ε0

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣∣
2 ∣∣∣∣ sin2 θχ

(2)S
⊥⊥⊥ +

c2

ω2

(
qm⊥ (ω)2χ

(2)S
⊥‖‖ − q

m
⊥ (2ω)qm⊥ (ω)χ

(2)S
‖‖⊥

)∣∣∣∣2,
(9.1a)

Rsp(θ, ω) =
2ω2 tan2 θ

c3ε0

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣χ(2)S
⊥‖‖

∣∣∣∣2. (9.1b)

Here θ is the angle of incidence, ω is the frequency of the incoming photon, timv and tivm are the Fres-
nel transition coefficients, respectively describing the matter-to-vacuum and the vacuum-to-matter
transmissions, for the i polarization and ε is the bulk dielectric function. The derivation of these co-
efficients is explained in Chap. 2. In Fig. 9.8, I show the reflection coefficient Rpp, corresponding to
a p-polarized incoming light and a p-polarized outgoing photon, along with low-temperature (80K)
experimental data of Ref. [259]. I used here, as for the previous comparison, a frequency spacing of
∆ω = 0.125eV and a broadening of η = 0.25eV .
The calculations with and without local-fields are found to be of the same intensity and to agree
qualitatively. This can be understood by the fact that due to the different weights in Eq. (9.1a),
the component xxz is mainly responsible for the resulting line-shape of Rpp, as already noticed in
Ref. [226]. We have already seen that the component xxz is only slightly affected by local-field effects
(see Fig. 9.4), explaining the small difference between the two calculatedRpp. The peak around 3.4 eV,
clearly visible in the calculation without local-fields included (“IPA+SO”), vanishes when these latter
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Chapter 9. Local-field effects on second-harmonic generation from surfaces

Fig. 9.9: Rpp spectra versus the incidence angle for the dihydride Si(001)1×1:2H surface. (a) Without
local-field effects. (b) Local-field effects included. A Lorentzian broadening of 20 meV is added as a
post-processing on the final Rpp spectra.

are included (“RPA+SO”). Again, we obtain that including local-field effects improve the compari-
son with experiments. The results suggest that more interesting features can be observed at higher
energies, as shown by the big structure between 3.6 and 4.0 eV. From the results, it is also possible
to obtain the evolution of the reflection coefficient versus the angle of incidence. This is represented
in Fig. 9.9. We observe that the Rpp reflection coefficient has the same angular dependence with and
without local-field effects, except small structures between 3.2 and 3.4 eV which are not present once
local-field effects are included.

Fig. 9.10: The same as in Fig. 9.8, but for
the s-in/p-out reflection coefficient Rsp.

I would like to comment on the value of the angle of in-
cidence chosen for studying the dihydride surface. The ex-
perimental measurements of Ref. [259] (shown by the red
line in Fig. 9.9) were performed at 45° of incidence. Other
studies of the same surface were also performed with sim-
ilar angles, for instance 35° [253] and 45° [227]. How-
ever, as suggested by Fig. 9.9, the optimal value for per-
forming measurements on the dihydride surface is around
70°, as it would yield a more intense signal. An an-
gular value around 70° is experimentally possible, e.g.,
Ref. [260] where authors performed their measurements
with a value of 67.5° for their measurements on the clean
Si(001)2×1 surface. A more complex problem is to probe
the higher-energy region, even if studies have been already performed in this region [63, 228].
The absence of features in the reflection spectra from the dihydride surface is mainly due to the choice
of the incidence angle, and a more optimal value of the angle of incidence would potentially reveal
more details in the second-harmonic reflection spectra of the dihydride surface.

In Fig. 9.8, I show the reflection coefficientRsp, corresponding to an s-polarized incoming light and
a p-polarized outgoing photon. By opposition to the Rpp reflection coefficient, the local-fields quench
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9.3 Comparison with experimental results

completely the spectra. Note that the spectra including local-field effects (“RPA+SO”) is rescaled
by a factor of 50 to be compared to the spectra without local-field effects (“IPA+SO”). This is easily
understood, looking at Eq. (9.1b). Indeed, the Rsp coefficient depends only on the square of |χ(2)

zyy|,
with the component zyy being strongly affected by the local-field effects in the region between 1 eV
and 2 eV, for the fundamental frequency, see Fig. 9.7. Without the local-field effects, the intensity is
over-estimated by more than a factor of 50, showing how crucial it is to account for the latter.

Summary

I have presented in this chapter the local-field effects on the surface second-harmonic generation,
obtained for the first time from ab initio calculations. The local-fields have been taken into account
exactly, without assuming any model, using the theory developed in Chap. 7.
Applied to the generation of second-harmonic from silicon surfaces, I have shown how impor-
tant these local-fields are for describing the components of the second-order susceptibility tensor.
Through the analysis of different components of three silicon surfaces, I have shown that two main
effects are possible. If the direction of the emitted polarization, i.e., the first component of the χ(2)S

tensor, is perpendicular to the plane of the surface (z-direction), the local-field effects are found to
be important and to redistribute the weight from 2ω transitions to 1ω transitions. If the outgoing
polarization is in the plane of the surface, the local-field effects are found to be less important and to
not affect the prominent peaks positions.
I have also investigated in this chapter the effect of ad-atoms on the spectra of surface second-
harmonic generation. In particular, I found a more important effect of the local-fields on the hy-
drogenated surfaces. Interestingly, the major effect of local-fields, for the two hydrogenated surfaces,
is to reduce the spectral weight drastically for some components of the χ(2)S tensor, in the region
where a quenching due to the hydrogen is found experimentally.
Comparison with available experimental data have shown that these local-field effects allows us to
obtain quantitative agreement between theory and experiments. We have compared theoretical cal-
culations and experimental data, both in absolute units; showing for the first time an agreement for
the absolute intensity of surface second-harmonic generation calculated from ab initio methods. Also,
the comparisons with low temperature reflectivity measurements have shown an improvement of the
theoretical description, when including local-field effects. As a conclusion, we found that local-field
effects are mandatory for a good description of surface second-harmonic generation and that the
theory presented in this chapter takes us a step closer to reality.
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10. Excitonic effects on second-harmonic
generation from silicon surfaces

The electron-hole interaction is known to be a key ingredient for obtaining reliable results when cal-
culating optical properties of bulk materials [261], but also surfaces [262] and nanostructures [263].
When these effects are neglected, it is generally found that the absorption spectra is underestimated
in the low-energy region and overestimated the higher energy region.
The state-of-the art method for including the excitonic effects in the optical spectra, namely solv-
ing the Bethe-Salpeter equation (BSE), is still numerically challenging for surfaces, due to the big
number of atoms that has to be treated. An alternative way for including excitonic effects is the
time-dependent-density-functional theory (TDDFT), where these effects are obtained through the
inclusion of the variations of the exchange-correlation (xc) potential. Various exchange-correlation
kernels (fxc) have been proposed during the twenty past years, mainly for extended systems, and
only few of them have been tested on surfaces. Among these few kernels, we find the long-range
contribution (LRC) kernel, or α-kernel [114], which includes the correct long-range decay of fxc in
momentum space as 1/q2. This simple kernel has been found to be sufficient to obtain the contin-
uum exciton effects in optical spectra of bulk semiconductors, like GaAs and silicon. It has also been
successfully tested against the result of the BSE for the linear optical properties of the Si(111)2×1 sur-
face [262]. Authors of Ref. [262] found the α-kernel to be applicable to surfaces of semiconductors,
with the value of α determined for the bulk material. Moreover this kernel has also been applied to
the calculation of SHG spectra, thus improving the agreement with the experiment [41, 43].
In this chapter, I show that it is possible to extend the TDDFT macroscopic formalism developed in
Chap. 7, in order to include the exchange-correlation kernel fxc in the formalism. In the first part, I
show that the effects of the LRC kernel, which is chosen to be a scalar kernel, can be included in the
spectra, as a post-processing on the bulk measurable quantities, namely the macroscopic dielectric
tensor, εM , and macroscopic second-order susceptibility tensor, χ(2)

M .
Then I extend this derivation to the case of surfaces. In particular, I present a formula allowing us
to include the effects of the α-kernel on the surface second-harmonic generation spectra. Finally, this
formalism is applied to the SHG spectra of silicon surfaces, to get an insight into the excitonic effects
on the surface second-harmonic generation.
This chapter represents the first effort to include such excitonic effects on the nonlinear properties of
surfaces.
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Chapter 10. Excitonic effects on second-harmonic generation from silicon surfaces

10.1 The α-kernel as a post-processing

10.1.1 Bulk materials

Let us start by considering bulk materials. Even if this does not correspond to the scope of this
chapter, the results presented in this section serves as a preliminary for the surface case.

Macroscopic dielectric tensor

We start by considering the case of the macroscopic dielectric tensor of a bulk materials. In the
framework of the TDDFT, and assuming the long-wavelength limit, the longitudinal-longitudinal
(LL) part of the macroscopic dielectric tensor is given, at any level of approximation, by

εLLM (q;ω) =
1

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
G=G′=0

, (10.1)

where q is a vanishing momentum, ω the frequency of the light, G and G′ are reciprocal lattice
vectors, and χ(1)

ρρ is the density response function of the fully interacting electronic system.
The latter quantity is obtained in reciprocal space by solving the Dyson-like equation

[
χ(1)
ρρ (q;ω)

]
GG′

=
[
χ(0)
ρρ (q;ω)

]
GG′

+
∑

G1G2

[
χ(0)
ρρ (q;ω)

]
GG1

[
v(q) + fxc(q;ω)

]
G1G2

[
χ(1)
ρρ (q;ω)

]
G2G′

,

(10.2)
where χ(0)

ρρ is the density response function of the non-interacting system, v is the Coulomb inter-
action and fxc is the exchange-correlation kernel. In order to be able to solve this equation, one
has to introduce an approximation for the unknown exchange-correlation kernel. In the random-
phase approximation (RPA), the exchange-correlation kernel is neglected and only the Coulomb in-
teraction, responsible for the local-field effects, is considered (see Chap. 3). We denote χ(1)RPA

ρρ the
solution of Eq. (10.2) in the RPA. When the long-range contribution kernel is included, we have[
fLRC

xc (q;ω)
]
G1G2

= α/q2δG10δG1G2 . It is straightforward to show that the solution of the Dyson

equation including the long-range contribution, χ(1)
ρρ , is linked to the RPA response, χ(1)RPA

ρρ , by

[
χ(1)
ρρ (q;ω)

]
GG′

=
[
χ(1)RPA
ρρ (q;ω)

]
GG′

+
[
χ(1)RPA
ρρ (q;ω)

]
G0

α

q2

[
χ(1)
ρρ (q;ω)

]
0G′

. (10.3)

From Eq. 10.3, we obtain that χ(1)
00 (q;ω) =

χ
(1)RPA
00 (q;ω)(

1−χ(1)RPA
00 (q;ω) α

q2

) . Using this result, the macroscopic

dielectric response including the effect of the LRC kernel, εM , can then be linked to the macroscopic
RPA dielectric response, εRPA

M . After simple algebra, one obtains that

εLLM (q;ω)− 1 =
εLL,RPA
M (q;ω)− 1

1 + α
4π

(
εLL,RPA
M (q;ω)− 1

) . (10.4)

This simple formula can be used to obtain the effect of the LRC kernel on the linear spectra, at the
extremely low cost of a post-processing of the dielectric response computed in the RPA. Notice that
this analytical expression is close to the contact exciton model, as already discussed in Ref. [84].

142



10.1 The α-kernel as a post-processing

Second-order response function

The measurable quantity, playing the role of εLLM at second-order is the macroscopic second-order
response tensor χ(2)

M given by [41]

χ
(2)
M (q,q1,q2;ω, ω) =

−i
2|q||q1||q2|

[
χ(2)
ρρρ(q,q1,q2;ω, ω)

]
000

εLLM (q; 2ω)εLLM (q1;ω)εLLM (q2;ω), (10.5)

where χ(2)
ρρρ is the second-order susceptibility of the fully interacting electronic system; which can be

obtained by solving the second-order Dyson-like equation [41], see Eq. (3.37). We have defined here
q = q1 + q2.

We proceed following the same idea as for the linear case, and we link the RPA density response
function to the LRC density response function, i.e., containing the LRC exchange-correlation kernel.
Following the derivation of App. F.2, we obtain the link between the solution of the Dyson equation
including the long-range contribution, χ(2)

ρρρ, and the RPA response, χ(2)RPA
ρρρ , which reads in reciprocal

space as [
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The solution of this equation for G = G′ = G′′ = 0 is
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(10.6)
Inserting the expressions of χ(2)

000 and χ
(1)
00 into Eq. 10.5, we obtain directly the link between the RPA

and the full macroscopic second-order susceptibilities
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where we used the fact that α

q2 = α
4πv0(q).

After some algebra and using the fact that

εLLM (q;ω) =
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4π

)
εLL,RPA
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4π
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) , (10.7)
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we obtain the simple result

χ
(2)
M (q,q1,q2;ω, ω) = A(q; 2ω)χ

(2)RPA
M (q,q1,q2;ω, ω)A(q1;ω)A(q2;ω), (10.8)

where A(q;ω) = 1

1+ α
4π

(
εLL,RPA
M (q;ω)−1

) .

Again we have linked the macroscopic quantity, including the long-range contribution χ
(2)
M , to the

RPA macroscopic second-order response χ(2)RPA
M . This result allows us to include the excitonic effects

on the second-harmonic spectra of bulk materials, without increasing the numerical burden associ-
ated with its calculation.

10.1.2 Surfaces

We have established that the effects of the α-kernel on the macroscopic optical responses of bulk
systems can be included, at first- and second-order, as a post-processing of the macroscopic RPA
optical responses. In this section, I extend this result to the case of surfaces. The calculations are
more complex because of the presence, in the Dyson-like equations, of both the density response
functions and surface-averaged density response functions, see Chap. 7.

Surface dielectric function

The expression of the macroscopic surface dielectric function (see Chap. 7 for the definition and the
derivation) is given by

εS,LLM (q̂;ω) = 1− lim
q→0

v0(q)
1

Lz

∑
Gz
C̃(−Gz)

[
χ

(1)
ρρ (q;ω)

]
Gz0

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

, (10.9)

where Lz is the thickness of half of the super-cell used to model the surface.
We introduce the quantity χ̄(1), defined by Eq. (7.16), which is related in the LRC approximation to
the density response function of the fully interacting system, χ(1)

ρρ , by

[
χ̄(1)(q;ω)

]
G0

=

[
χ

(1)
ρρ (q;ω)

]
G0

1 + (v0(q) + α
q2 )
[
χ

(1)
ρρ (q;ω)

]
00

. (10.10)

Inserting this relation into the expression of the macroscopic dielectric tensor, and identifying the
macroscopic dielectric tensor in the RPA approximation, given by Eq. (7.18), we obtain directly that

εS,LLM (q;ω)− 1 =
(
εS,LL,RPA
M (q;ω)− 1

)1 + (v0(q) + α
q2 )
[
χ

(1)
ρρ (q;ω)

]
00

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

.

Simple algebra give that

1 + (v0(q) + α
q2 )
[
χ

(1)
ρρ (q;ω)

]
00

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

= 1 +
α

4π

v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

1 + v0(q)
[
χ

(1)
ρρ (q;ω)

]
00

=
1

1 + α
4π

(
εLL,RPA
M (q;ω)− 1

) .
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Finally, we obtain that the macroscopic surface dielectric function is given by

εS,LLM (q̂;ω)− 1 =
εS,LL,RPA
M (q̂;ω)− 1

1 + α
4π

(
εLL,RPA
M (q̂;ω)− 1

) , (10.11)

showing that the result of Eq. (10.4) is also valid for the surface macroscopic dielectric tensor.

Surface second-order susceptibility

Now that we have established the preliminary results, we can focus on the primary interest of this
chapter, which is the analytical inclusion of the effect of the LRC-kernel in the macroscopic surface
second-order susceptibility.
We start from the expression of the macroscopic surface second-order susceptibility, valid for any
approximation of the exchange-correlation kernel, proved in Chap. 7

χ
(2)S
M (q,q1,q2;ω, ω) =

−i
2|q||q1||q2|

εM (q1;ω)εM (q2;ω)

×

[(
εSM (q; 2ω)− 1

)[
χ(2)
ρρρ(q,q1,q2;ω, ω)

]
000

+ χ(2)S
ρρρ (q,q1,q2;ω, ω)

]
, (10.12)

where χ(2)S
ρρρ (q,q1,q2;ω, ω) is given by

χ(2)S
ρρρ (q,q1,q2;ω, ω) =

1

Lz

∑
Gz

C̃(Gz)
[
χ(2)
ρρρ(q,q1,q2;ω, ω)

]
Gz00

. (10.13)

For conciseness, we omit here the LL superscript of the dielectric functions.
Using Eq. (10.6) and Eq. (10.11), we obtain that

χ
(2)S
M (q,q1,q2;ω, ω) =

−i
2|q||q1||q2|

A(q1;ω)εRPA
M (q1;ω)A(q2;ω)εRPA

M (q2;ω)

×

[
A(q; 2ω)

(
εS,RPA
M (q; 2ω)− 1

) [
χ

(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000(

1− α
4πv0(q)

[
χ

(1)RPA
ρρ (q; 2ω)

]
00

) + χ(2)S,RPA
ρρρ (q,q1,q2;ω, ω)

+χ̄S(q,q, ω)
α

q2
χ(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000

(
1 + v0(q)

[
χ

(1)RPA
ρρ (q; 2ω)

]
00

)
(

1− α
4πv0(q)

[
χ

(1)RPA
ρρ (q; 2ω)

]
00

)]. (10.14)

In order to simplify this expression, we first prove the following set of relations

1(
1− α

4πv0(q)
[
χ

(1)RPA
ρρ (q; 2ω)

]
00

) = 1 +
α

q2

[
χ(1)
ρρ (q; 2ω)

]
00
, (10.15a)(

1 + v0(q)
[
χ

(1)RPA
ρρ (q; 2ω)

]
00

)
(

1− α
4πv0(q)

[
χ

(1)RPA
ρρ (q; 2ω)

]
00

) = 1 + (v0(q) +
α

q2
)
[
χ(1)
ρρ (q; 2ω)

]
00
,

= A(q; 2ω)
(

1 + v0(q)
[
χ(1)
ρρ (q; 2ω)

]
00

)
, (10.15b)
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A(q;ω)+A(q;ω)
α

4π

(
εRPA
M (q; 2ω)− 1

)
= 1, (10.15c)

χ̄S(q,q, ω)
α

q2
= − α

4π

(
εS,RPA
M (q; 2ω)− 1

)
. (10.15d)

Inserting all the ingredients above into the expression of the macroscopic surface second-order sus-
ceptibility, we obtain, after some algebra,

χ
(2)S
M (q,q1,q2;ω, ω) =

−i
2|q||q1||q2|

A(q; 2ω)A(q1;ω)εRPA
M (q1;ω)A(q2;ω)εRPA

M (q2;ω)

×

[(
εS,RPA
M (q; 2ω)− 1

)([
χ(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000
− α

4π

[
χ(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000

)

+χ(2)S,RPA
ρρρ (q,q1,q2;ω, ω) +

α

4π

(
εRPA
M (q; 2ω)− 1

)
χ(2)S,RPA
ρρρ (q,q1,q2;ω, ω)

]
.

(10.16)

We directly notice that if we replace the surface quantities by the bulk one, we recover the bulk
expression Eq. (10.8), thus showing the consistency of the approach.
To make this more obvious, we identify Eq. (10.8) in Eq. (10.16), and we obtain

χ
(2)S
M (q,q1,q2;ω, ω) = A(q; 2ω)χ

(2)S,RPA
M (q,q1,q2;ω, ω)A(q1;ω)A(q2;ω)

− i

2|q||q1||q2|
α

4π
A(q; 2ω)A(q1;ω)εLL,RPA

M (q1;ω)A(q2;ω)εLL,RPA
M (q2;ω)

×

[(
εLL,RPA
M (q; 2ω)− 1

)
χ(2)S,RPA
ρρρ (q,q1,q2;ω, ω)−

(
εS,LL,RPA
M (q; 2ω)− 1

)[
χ(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000

]
.

(10.17)
The second term in this expression appears as a correction to the bulk formula, in the case of surfaces.
The formalism developed in Chap. 7 is valid only for symmetric slab. We now assume that the full
slab has the inversion symmetry, which is always possible to have with symmetric slab of centro-
symmetric materials. This is the case for all the symmetric slab considered in this thesis. This implies
that the term

[
χ

(2),RPA
ρρρ (q,q1,q2;ω, ω)

]
000

is zero. In this special case, we can simplify Eq. (10.17) to
obtain that

χ
(2)S
M (q,q1,q2;ω, ω) =

−iχ(2)S,RPA
ρρρ (q,q1,q2;ω, ω)

2|q||q1||q2|
εRPA
M (q1;ω)εRPA

M (q2;ω)A(q1;ω)A(q2;ω)

= χ
(2)S,RPA
M (q,q1,q2;ω, ω)A(q1;ω)A(q2;ω)

(10.18)

This result is the main result of this chapter. It allows us to include the effect of the α-kernel on the
surface second-harmonic generation, as a post-processing on top of the RPA results. We do not have
to calculate nor to diagonalize the exciton Hamiltonian and the cost of the calculation is the cost of
the RPA calculation. It is worthwhile to note that the last expression is not the same as the bulk
formula. Indeed, we found that the “screening” term A(q; 2ω) is not present in Eq. (10.18), due to the
symmetries of the slab, used for performing the calculation.
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Fig. 10.1: Surface second-harmonic generation spectra of the dihydride Si(001)1×1:2H surface, for
the zzz (left panel), the xxz (middle panel), and the zxx (right panel) components of the χ(2)S tensor.
Black lines: IPA calculations. Red lines: RPA calculations. Blue lines: excitonic calculations using the
α-kernel. A scissors operator (SO) correction of ∆ = 0.6 eV is included in all the calculations.

10.2 Excitonic effects on the surface second-harmonic generation

10.2.1 Effects on components of the susceptibility tensor

Here we discuss the effects of the long-range contribution kernel fxc on the surface second-order sus-
ceptibility spectra. The value of α used is -0.2, as it has been found to well reproduce the BSE spectra
for the bulk silicon and the Si(111)2×1 surface [262].
In Fig. 10.1, we show the excitonic effects on the surface second-harmonic spectra from the dihydride
surface, also including the local-field effects (blue lines), compared to the independent-particle spec-
tra (black lines) and the spectra including only the effect of the local fields (red lines). As a general
result, we find that the main effect of the α-kernel is to increase the magnitude of |χ(2)S

M | in the low en-
ergy region. Notice that a similar effect has already been observed for bulk semiconductors [41,264].
We also find that the excitonic effects almost do not change the position of the prominent peaks, by
opposition to the local-field effects. Only a small red-shift of 0.1 eV is observed for the zzz and the
zxx components.1 The main effect of the α-kernel is to enhance the peak corresponding to the E1

critical point of bulk silicon, at 3.4 eV. Also the peak corresponding to the E2 critical point, at 4.3 eV,
is enhanced for the component zzz. The corresponding peak at 2.15 eV is also enhanced for the com-
ponent xxz, thus compensating almost completely the effects of the local fields on this peak. These
E1 and E2 related peaks are located at the same energy as the bulk silicon critical points [265], as we
used the same scissors correction as for bulk silicon.
The results of Fig. (10.1) show that the IPA and the RPA are not enough for describing the second-
harmonic generation from surfaces, and that excitonic effects must be included for obtaining in the

1We checked (not shown) that this peak is a real shift, using the same approach of including or not the scissors operator,
as explained in Chap. 9.
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Fig. 10.2: The same as Fig. 10.1 for the clean Si(001)2×1 surface.

correct description of the surface second-harmonic generation.
We find that the same conclusions hold for the clean surface of silicon, as shown in Fig. 10.2. In par-
ticular, the effect on the E1 related peak of the inclusion of the exciton more than double its intensity
for the zzz component. For the yyz components, the two main structures, corresponding to the E1

and E2 critical points for 2ω transitions are enhanced, as well as the peak due to the surface-states,
around 0.5 eV.

10.2.2 Effects on the reflection coefficients

Fig. 10.3: Rpp vs the two-photon energy
for the dihydride Si(001)1×1:2H surface.
Curves are explained in the text.

It is interesting to investigate the excitonic effects on the
generalized reflection coefficients. As a test case, I chose
the Rpp coefficient of the dihydride surface. This coeffi-
cient has already been presented in Chap. 9, see Fig. 9.8.
In Fig. 10.3, I reproduce the same data, adding the re-
flection coefficient calculated with the excitonic effects in-
cluded (blue curve), as explained above. In all the calcula-
tions, I used a scissors correction of ∆ = 0.6eV . The low-
temperature experimental results (black crosses, rescaled
on the vertical axis) are obtained from Ref. [259]. The an-
gle of incidence θ=45° is the same as in the experiment.
A Lorentzian broadening of 20 meV is added as a post-
processing on the final Rpp spectra.
We directly see that in the region probed by the experi-
ment, there is almost no excitonic effect visible, whereas
around 4.0 eV, we can see a change in the intensity, con-
sistent with the behaviour obtain in Fig. 10.1 for the xxz component. The same conclusion hold for
the Rsp coefficient, which is also not affected by the excitonic effects, in the region considered here.
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Fig. 10.4: Comparison between the effects of the static and the dynamic long-range contribution
kernels on the surface second-harmonic generation of the dihydride surface. Black lines: static kernel
fxc = α

q2 , with α = −0.2. Red lines: dynamic kernel fdyn
xc = 1

q2 (α + βω2), with α = −0.13 and
β = −6.35× 10−3 eV.

Therefore, we can conclude that the excitonic effects are less important than the local-field effects for
describing the line-shape and the intensity of the reflection coefficient Rpp.

10.2.3 Dynamical model for the exchange-correlation kernel

In Ref. [266], authors have proposed an dynamical extension of the static α-kernel, which has the
following form

f
dyn
xc (q;ω) =

1

q2
(α+ βω2). (10.19)

They have proved that including the dynamical dependency of the exchange-correlation kernel using
this simple model was improving the agreement with experimental absorption spectra for wide-
gap insulators, as well as for the electron energy-loss spectra for silicon. This kernel has also been
tested for cluster calculations [267], molecular chains calculations [268] and bulk materials [269],
yielding good agreement with the experiment or the BSE. Here I discuss the effect of the inclusion
of the dynamical part of the exchange-correlation kernel on the surface second-harmonic generation
spectra, with the spectra of the dihydride surface as an example. This dynamic kernel being scalar,
as the static version, the formulae presented above still holds. In Fig. 10.4, I compare the spectra
obtained with the static kernel, using α = −0.2 (black lines), and with the dynamic kernel (red
lines), with the values α = −0.13 and β = −6.35 × 10−3 eV taken from Ref. [266] and obtained for
bulk silicon. We obtain as a result almost no effect due to the energy-dependence of the exchange-
correlation kernel, compared to the result obtained from the static α-kernel. Only the peak related
to the critical point E2 is slightly affected. Moreover, the spectral weight is almost not affected.
Therefore, we conclude that the inclusion of the dynamical effects due to the exchange-correlation
kernel, using the simple model of Eq. (10.19), does not really affect the surface second-harmonic
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spectra in energy region we are interested in, and that dynamical effects are negligible. Note that a
similar result for the absorption spectra of bulk GaAs was found in Ref. [270].

Conclusion

In this chapter, we have analysed the excitonic effects on the surface second-harmonic generation.
The excitonic effects have been investigated using the α-kernel. I have proved in particular, that the
effects due to this static and scalar kernel can be including by a simple post-processing of the spectra
including the local-field effects and the scissors correction, calculated within the RPA.
Then we have analysed the excitonic effects on the surface second-harmonic generation spectra from
two silicon surfaces. We found that the excitonic effects increase the spectra weight of |χ(2)S

M |, and in
particular that they enhance the peak corresponding to the E1 critical point of bulk silicon. The peak
positions are almost not affected. The excitonic effects on the generalized reflection coefficient of the
dihydride surface have also been investigated, showing only a small effect in the region probed by
the experiments whereas an effect is observed at higher energy, around the energy of the E2 critical
point of bulk silicon. We finally investigated the effects due to the dynamical extension of the α-
kernel, showing almost no effect of the dynamical version against the static α-kernel.
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Concluding Remarks

This thesis has been focusing on the ab initio description of the second-harmonic generation from
surfaces, and more generally, I have tried to improve the theoretical description and understanding
of the optical properties of crystalline surfaces.
The second part of this thesis dealt with the microscopic description of the SHG from surfaces. The
theory behind the calculation of the microscopic optical response of a single surface has been justi-
fied, proved and tested with tight-binding calculations. The spatial construction of the SHG spectra
has been performed, showing that signal was mainly originating from the first layers and that the
contribution of deeper atomic layers was decaying, as expected from a surface signal. In Chap. 6,
I have presented how to improve this microscopic description by taking into account the effect of
nonlocal operators, thus opening the way to more versatile and precise description of the second-
harmonic generation from surfaces.
However, a microscopic description of optical properties is not enough, due to microscopic fluctua-
tions of the electric field and of the density. These fluctuations, called local-fields, and their effects on
the second-order optical properties of surfaces have been treated theoretically in Part. III. A macro-
scopic theory has been presented, allowing us to take into account the local-field effects on the linear
and second-order optical properties of a single surface. The analyticity of the macroscopic quantity
computed has been proved. Most of the effort has been devoted to the clarification between the
macroscopic optical response of a super-cell, which is the numerical tool for doing the calculation,
and the surface, which is the physical system that we would like to treat. In particular, the super-cell
approach, due to the intrinsic periodicity induced by the approach, has been shown to fail in calcu-
lating the out-of-plane optical response of a slab of matter, when including the effects of the local
fields. The real space approach, which does not suffer from this problem, has been used to calculate
the correct optical response and, more importantly, to derive a new method, which merges the con-
venience of the super-cell approach with the correctness of the treatment in real space.
These developments have then been applied to silicon surfaces in Part. IV. The local-field effects on
the surface second-harmonic generation have been analysed on three silicon surfaces, in particular
shedding some light on the important role of these local fields in the surface second-harmonic gen-
eration.
Finally, the excitonic effects have also been investigated in Chap. 10.
It is clear that the developments of this thesis take us a step closer to the reality, as shown by the
comparisons with experiments presented in Chap. 9.
Even if the theory seems now to be mature enough to give quantitative results, some points still need
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to be addressed. Here are some of them. The excitonic effects have, so far, only been investigated by
means of a simple scalar kernel. Even if these effects are found to be less important than local-field
effects, as shown by the results obtained with the long-range contribution kernel, their proper inclu-
sion must not be forgotten for a quantitative description of surface second-harmonic generation.
Then, even if very interesting results have been obtained for the hydrogen as an ad-atoms on sili-
con surfaces, the effect of other ad-atoms like Ge or B has been experimentally well characterized
but has to be understood and explained theoretically. Finally, two challenging elements are missing:
the ab initio description of the bulk quadrupolar contribution, which should be sizeable compared
to the surface dipolar contribution and the ab initio description of the Electric Field Induced Second-
Harmonic Generation (EFISH).

To summarize, the main original results of this thesis are:

1. Justification of the formalism of the microscopic description of the Second-Harmonic Genera-
tion from surfaces, and improvement by including the effect of nonlocal operators.

2. Development of a macroscopic formalism for computing the optical response of a single sur-
face, for linear and second-order optical properties.

3. Correct description of local-field effects on the out-of-plane optical response of surfaces.

4. First ab initio study of local-field effects on the second-harmonic generation spectra from clean
and hydrogenated silicon surfaces.

5. Investigation of the excitonic effects, for the first time, on the second-harmonic generation spec-
tra from silicon surfaces.

Finally, I would like to comment this often quoted citation of the famous physicist Wolfgang Pauli
"God made the bulk; surfaces were invented by the devil". For Wolfgang Pauli, the diabolical nature
of surfaces was coming from the fact that surface atoms, instead of being surrounded by similar
atoms as in bulk materials, were interacting with the external environment. This is maybe true, but
these interactions with the environment also lead to very interesting and exciting physics. I hope
that this thesis is a proof of how complex but also interesting the physics of surfaces is. Therefore, if
Wolfgang Pauli was right, we should probably be grateful to the devil.
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A. Fourier transforms
The definition of the Fourier transform requires some care, because authors use different conventions
in the literature. In this appendix, I give the definitions of the Fourier transforms used in the thesis.

A.1 One-variable functions

Let us consider a function f ∈ L2, i.e., f is square integrable. The Fourier transforms in time and in
space for such a one-variable function f , as well as the reciprocal transformations are

f(ω) =

∫
dte−iωtf(t), f(t) =

1

2π

∫
dωeiωtf(ω),

f(r) =
1

(2π)3

∫
d3kf(k)eikr, f(k) =

∫
d3rf(r)e−ikr.

(A.1)

A practical application of these Fourier transforms is the definition of various Dirac’s delta func-
tions

δ(t) =
1

2π

∫
dωeiωt, δ(ω) =

1

2π

∫
dte−iωt, (A.2a)

δ(k) =
1

(2π)3

∫
d3re−ikr, δ(r) =

1

(2π)3

∫
d3keikr. (A.2b)

A.2 Two-variable functions

Let us consider a two-variable functions, such as response functions.
We consider a function χ, square integrable, and two functions f and g, such that f, g ∈ L2 and

f(r) =

∫
d3r′χ(r, r′)g(r′). (A.3)

The Fourier transform of this expression is

f(k) =

∫
d3k′χ(k,k′)g(k′). (A.4)

Using the definitions Eqs. (A.1), we obtain by identification

χ(r, r′) =
1

(2π)3

∫
d3k

∫
d3k′eikrχ(k,k′)e−ik

′r′ , (A.5a)

χ(k,k′) =
1

(2π)3

∫
d3r

∫
d3r′e−ikrχ(r, r′)eik

′r′ . (A.5b)

Similarly, in time, we obtain

χ(t, t′) =
1

(2π)

∫
dω

∫
dω′eiωtχ(ω, ω′)e−iω

′t′ , (A.6a)
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χ(ω, ω′) =
1

(2π)

∫
dt

∫
dt′e−iωtχ(t, t′)eiω

′t′ . (A.6b)

A.3 Crystals and Fourier Transforms

When dealing with an infinite system, such as a crystal, we can replace this infinite system by a finite
system of volume V, using some periodic boundary conditions. These conditions are called Born-
von-Karman periodic boundary conditions. The condition states that any functions of the crystal f
follows

f(r +Niai) = f(r), (A.7)

the ai are the primitive vectors of the lattice and Ni are integers, with i ∈ {x, y, z}.
In a crystal of volume V, we can write 1

f(r) =
1

V

∑
k

f(k)eikr, f(k) =

∫
V
d3rf(r)e−ikr. (A.8)

Equations A.2b become for example

δk,k′ =
1

V

∫
V
d3re−i(k−k′)r, δ(r) =

1

V

∑
k

eikr. (A.9)

The equivalent of relation A.3 in a periodic crystal is

f(k1) =
∑
k2

χ(k1,k2)g(k2) (A.10)

In crystals, any reciprocal vector k can be expressed as the sum of a vector q, belonging to the first
BZ of the crystal and a reciprocal lattice vector G.
Using definitions A.8 and using the fact that the integral of a periodic function u

∫
V d

3ru(r)e−ikr is
non zero only if k is a vector of reciprocal lattice G, we get

χG,G′(q) =
1

V

∫
V
d3r

∫
V
d3r′e−i(q+G)rχ(r, r′)ei(q+G′)r′ ,

χ(r, r′) =
1

V

∑
q,G,G′

ei(q+G)rχG,G′(q)e−i(q+G′)r′ ,
(A.11)

where χG,G′(q) stands for χ(q + G,q + G′), q is a vector in the first Brillouin zone and G, G′ are
vectors of the reciprocal lattice.

1Here the factor V is chosen to be on the inverse transform for not having volumes in Dyson-like equations and for
having a Coulomb potential defined as 4π

q2
and not 4π√

V q2
or 4π

V q2
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A.4 Fourier transform in the mixed-space

In Chap. 7, I defined the mixed-space. Here I give the different Fourier transforms, that link the
mixed-space with the real space and the reciprocal space. Let us consider the 2D Fourier transform,
defined by

f(k||, z) =

∫
dx

∫
dye−i(kxx+kyy)f(x, y, z). (A.12)

Using this definition, we obtain the following relations

f(k) =

∫
dze−ikzzf(k||, z), (A.13a)

f(k||, z) =
1

2π

∫
dqze

ikzzf(k). (A.13b)

We consider a two-variable function χ as the function describing the response f to a perturbation g.
We have

f(k||, z) =

∫
d2k′||

∫
dz′χ(k||, z,k

′
||, z
′)g(k′||, z

′). (A.14)

Hence,

χ(k,k′) =
1

2π

∫
dz

∫
dz′e−ikzzχ(k||, z,k

′
||, z
′)eik

′
zz
′
, (A.15a)

χ(k||,k
′
||, z1, z2) =

1

2π

∫
dkz

∫
dk′ze

ikzzχ(k,k′)e−ikz′z
′
. (A.15b)

A.4.1 Periodic crystals

Considering that the system is periodic, one gets that

f(q + G) =

∫
dze−i(qz+Gz)zf(q|| + G||, z), (A.16a)

f(q|| + G||, z) =
1

Lz

∑
qz ,Gz

ei(qz+Gz)zf(q + G), (A.16b)

where q is a vector in the first Brillouin zone, G is a reciprocal lattice vector, q = q|| + qzẑ and
G = G||+Gzẑ. Here Lz is the size of the cell along the z-axis, which is then repeated to fill the space.
We obtain for delta functions

δkzk′z =
1

Lz

∫
dze−i(kz−k′z)z, (A.17a)

δ(z) =
1

Lz

∑
kz

eikzz. (A.17b)

One easily extend the definitions of the Fourier transforms to two-variable response functions

χG||1,G||2(q||, z1, z2) =
1

Lz

BZ∑
qz

∑
Gz1,Gz2

ei(qz+Gz1)z1χG1,G2(q)e−i(qz+Gz2)z2 , (A.18a)
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Appendix A. Fourier transforms

χG1,G2(q) =
1

Lz

∫
dz1dz2e

−i(qz+Gz1)z1χG||1,G||2(q||, z1, z2)ei(qz+Gz2)z2 , (A.18b)

χG||1,G||2(q||, z1, z2) =
1

A

∫
d2r||1d

2r||2e
−i(q||+G||1)r||1χ(r1, r2)ei(q||+G||2)r||2 , (A.18c)

χ(r1, r2) =
1

A

BZ∑
q||

∑
G||1,G||2

ei(q||+G||1)r||1χG||1,G||2(q||, z1, z2)e−i(q||+G||2)r||2 , (A.18d)

where the A is the system area.
For three-variable response functions, we obtain similarly,

χG1||,G2||,G3||(q||, z1, z2, z3) =
1

A

∫
d2r1||d

2r2||d
2r3||e

−i(q||+G1||)r1||χ(r1, r2, r3)

×ei(q||+G2||)r2||ei(q||+G3||)r3|| (A.19a)

χ(r1, r2, r3) =
1

A2

BZ∑
q||

∑
G1||G2||G3||

ei(q||+G1||)r1||χG1||,G2||,G3||(q||, z1, z2, z3)

×e−i(q||+G2||)r2||e−i(q||+G3||)r3|| (A.19b)
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B. Maxwell’s equations

From a long view of the history of mankind — seen from, say, ten thousand years from now —
there can be little doubt that the most significant event of the nineteenth century will be judged as
Maxwell’s discovery of the laws of electrodynamics.

Richard Feynman, in The Feynman Lectures on Physics (1964) Volume II, 1-6

In this thesis, all the fields are treated in a purely classical way whereas the mater is described
by response functions computed quantum-mechanically. This corresponds to the framework of the
semi-classical dielectric theory. The Maxwell equations are given here in a medium, not in the vac-
uum.

B.1 Microscopic Maxwell’s equations

If one considers the matter at atomistic level, microscopic Maxwell equations are

∇.E(r, t) = 4πη(r, t), ∇×B(r, t)− 1

c

∂E

∂t
(r, t) =

4π

c
j(r, t),

∇.B(r, t) = 0, ∇×E(r, t) +
1

c

∂B

∂t
(r, t) = 0,

(B.1)

where E and B are the microscopic electric and magnetic field quantities, η and j are the microscopic
charge and current densities, respectively 1.
These two last quantities are connected by the continuity equation for charge and current

∇. j(r, t) +
∂η

∂t
(r, t) = 0. (B.2)

B.1.1 Separation of different contributions

When dealing with microscopic fields, one has to take care about which field is considered. Indeed
the fields that appear in equations (B.1) are total fields, not external fields.
We denote by E the total field that can be separated into an external field Eext and an induced field Eind.
By linearity, Maxwell equations hold for total fields or external fields and induced fields separately.
The same separation is applied to charge density and current density.
This leads to the definition of the electric polarization P and the magnetization M such that

ηind(r, t) = −∇P(r, t), jind(r, t) =
∂P

∂t
(r, t) + ∇×M(r, t). (B.3)

1There is no D and H fields because all of the charges are included in η and j. [37].
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Appendix B. Maxwell’s equations

B.2 Macroscopic Maxwell’s equations

The question of averaging must be treated carefully. According to [37], only spatial averaging is
necessary. Macroscopic quantities can be understand as quantities that vary slowly with respect to
the characteristic size of the considered medium. In the case of a crystal, the characteristic size is
the size of the unit cell. These macroscopic quantities result from the averaging of the microscopic
one, over regions large compared to atomic separation but small compared to the wavelength of
the perturbation [44]. The definition of the averaging procedure requires great cares. In Ref. [39],
Mochán and Barrera defined a general averaging procedure, which then can be chosen to be an
ensemble-average, a spatial average or a wave-vector average. As an example, the spatial average of
a function F (r, t) with respect to a test function f(r) is defined by

〈F (r, t)〉 =

∫
d3r′f(r′)F (r− r′, t), (B.4)

with f(r) a real function, non-zero in some neighbourhood of r = 0 and normalized over all space.
The test function does not need to be defined but must only requires continuity and smoothness
properties [39]. We can show easily that space and time derivatives, that enter in the equations,
commute with the averaging operation.

∂

∂ri
〈F (r, t)〉 =

∫
d3r′f(r′)

∂F

∂ri
(r− r′, t) =

〈
∂F (r, t)

∂ri

〉
, (B.5)

and
∂

∂t
〈F (r, t)〉 =

∫
d3r′f(r′)

∂F

∂t
(r− r′, t) =

〈
∂F (r, t)

∂t

〉
. (B.6)

The definition of the wave-vector truncation has been already given in Chap. 1 and is not reported
here again.

Without restricting ourself to any specific averaging procedure, we define the macroscopic fields
EM = 〈E〉 and BM = 〈B〉. From Eqs. (B.1), we obtain

∇.E = 4π〈η〉, ∇×B− 1

c

∂E

∂t
=

4π

c
〈j〉, (B.7a)

∇.B = 0, ∇×E +
1

c

∂B

∂t
= 0. (B.7b)

In order to obtain the macroscopic Maxwell equations, we must use the following results (that are
proved in [37], under dipole approximation)

〈η〉 = ρ−∇P, 〈j〉 = J +
∂P

∂t
+ c∇×M. (B.8)

Here, ρ and J are the macroscopic averaged free charge and free current densities (see Eq. (B.3)).
There is nevertheless a limit to that approach, when the external fields are not macroscopic, because
it is not possible to define macroscopic quantities, e.g., in the case of X-ray spectroscopy where the
wavelength is very short.
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B.2 Macroscopic Maxwell’s equations

The macroscopic Maxwell equations reads in real space by [37]

∇.DM (r, t) = 4πρ(r, t), ∇×HM (r, t)− 1

c

∂DM

∂t
(r, t) =

4π

c
J(r, t),

∇.BM (r, t) = 0, ∇×EM (r, t) +
1

c

∂BM

∂t
(r, t) = 0,

(B.9)

where DM and HM are respectively the macroscopic electric displacement and macroscopic magnetic
field.
This macroscopic current and charge densities are connected by the continuity equation for charge
and current

∇J(r, t) +
∂ρ

∂t
(r, t) = 0. (B.10)

For the reader more at home with SI-notation, the preceding equations are in SI notation:

∇.DM (r, t) = ρ(r, t), ∇×HM (r, t)− ∂D

∂t
(r, t) = J(r, t),

∇.BM (r, t) = 0, ∇×EM (r, t) +
∂BM

∂t
(r, t) = 0.

(B.11)

B.2.1 Separation of charges

The main problem when working with P and M is that these quantities are not uniquely defined and
one has to choose a convention to define them. In this thesis, we chose the separation of charges that
writes

D(r, t) = Eext(r, t). (B.12)

As consequences, we get

4πP = −Eind,
4π

c
M = Bind. (B.13)

Using the definition of the microscopic dielectric function ε

D(r, t) =

∫
d3r′

∫
dt
↔
ε (r, r′, t− t′)E(r′, t′), (B.14)

we get that

Eext(r, t) =

∫
d3r′

∫
dt
↔
ε (r, r′, t− t′)E(r′, t′) or E(r, t) =

↔
ε
−1

(r, r′, t− t′)Eext(r′, t′). (B.15)

Here
↔
ε
−1

is the inverse of the dielectric tensor
↔
ε . In this thesis, I assume that

↔
ε is always invertible.

The constitutive relations connecting EM and BM to DM and HM are giving by equations (B.16):

DM (r, t) = EM (r, t) + 4πPM (r, t), HM (r, t) = BM (r, t)− 4πMM (r, t), (B.16)

where PM and MM are respectively the macroscopic polarization and magnetization.
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Appendix B. Maxwell’s equations

B.3 Longitudinal and Transverse Fields

In reciprocal space, the Maxwell equations Eqs. (B.9) reads as

ik.D(k;ω) = 4πρ(k;ω), ik×H(k;ω)− iω

c
D(k;ω) =

4π

c
J(k;ω),

ik.B(k;ω) = 0, ik×E(k;ω) +
iω

c
B(k;ω) = 0.

(B.17)

Due to the structure of these equations, it is natural to divide the fields into longitudinal and transverse
fields. For a field E, the longitudinal part EL and transverse part ET are defined in reciprocal space
as2

EL(k;ω) =
k

k

(
E(k;ω).

k

k

)
, ET (k;ω) = E(k;ω)−EL(k;ω) = −k

k
×
(

k

k
×E(k;ω)

)
. (B.18)

Therefore the Maxwell equations become

DL(k;ω) =
4πρ(k;ω)

k2
k, i

k

k
×HT (k;ω)− iω

c
DT (k;ω) =

4π

c
JT (k;ω),

BL(k;ω) = 0, k×ET (k;ω) +
ωk

c
BT (k;ω) = 0.

(B.19)

And the continuity equation becomes JL(k;ω) + ωρ(k;ω) = 0.

2In 1858, Helmholtz proved that any vector field E can be decomposed into a longitudinal and a transverse part [271],
E = EL +ET , where EL and ET are defined, in real space, by∇×EL = 0, and∇.ET = 0.
This is known as the Helmholtz decomposition.
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C. Second-harmonic reflection coefficients
for some symmetries

In chapter 2, I have presented the expressions of the four reflection coefficients Rpp, Rps, Rsp and Rss
for the p4mm symmetry. Here I report the expressions of these reflection coefficients in the general
case, meaning when no symmetry is assumed for reducing the number of components. I also give
the simplified expressions in the case of the m symmetry corresponding to a single domain of the
clean Si(001)2×1 surface, the p2mm symmetry corresponding to a single domain of the monohydride
Si(001)2×1:H surface and the 3m symmetry corresponding to the Si(111)1×1:H surface.

C.1 Reflection coefficients in the general case

Here we give the expression of the four reflection coefficients assuming no symmetry. In the general
case, the χ(2)S tensor has 18 independent components in the case of the second-harmonic generation,
due to the intrinsic symmetry property of the crystal which gives χ(2)S

ijk = χ
(2)S
ikj .

Rpp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin3 θχ(2)S

zzz +
2c

ω
qm⊥ (ω) sin2 θ

[
cosφχ(2)S

zzx + sinφχ(2)S
zzy

]
+
c2

ω2
sin θqm⊥ (ω)2

[
cos2 φχ(2)S

zxx + 2 cosφ sinφχ(2)S
zxy + sin2 φχ(2)S

zyy

]
− c

2ω
sin2 θqm⊥ (2ω)

[
cosφχ(2)S

xzz + sinφχ(2)S
yzz

]
− c2

ω2
sin θqm⊥ (ω)qm⊥ (2ω)

[
cos2 φχ(2)S

xxz + cosφ sinφ(χ(2)S
xyz + χ(2)S

yxz ) + sin2 φχ(2)S
yyz

]
− c3

2ω3
qm⊥ (ω)2qm⊥ (2ω) cosφ

[
cos2 φχ(2)S

xxx + sin(2φ)χ(2)S
xxy + sin2 φχ(2)S

xyy

]
− c3

2ω3
qm⊥ (ω)2qm⊥ (2ω) sinφ

[
cos2 φχ(2)S

yxx + sin(2φ)χ(2)S
yyx + sin2 φχ(2)S

yyy

]∣∣∣∣2, (C.1a)

Rps(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣ tsmv(2ω)tpvm(ω)2

ε(ω)

∣∣∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin2 θ

(
sinφχ(2)S

xzz − cosφχ(2)S
yzz

)
+

2c

ω
sin θqm⊥ (ω)

[
sin2 φχ(2)S

xyz + cosφ sinφ(χ(2)S
xxz − χ(2)S

yyz )− cos2 φχ(2)S
yzx

]
+
c2

ω2
qm⊥ (ω)2 sinφ

[
sin2 φχ(2)S

xyy + sin(2φ)χ(2)S
xxy + cos2 φχ(2)S

xxx

]
− c2

ω2
qm⊥ (ω)2 cosφ

[
sin2 φχ(2)S

yyy + sin(2φ)χ(2)S
yyx + cos2 φχ(2)S

yxx

]∣∣∣∣2, (C.1b)
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Appendix C. Second-harmonic reflection coefficients for some symmetries

Rsp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin θ [cos2 φχ(2)S

zyy − sin(2φ)χ(2)S
zyx + sin2 φχ(2)S

zxx

]
− c

2ω
qm⊥ (2ω) sinφ

[
cos2 φχ(2)S

yyy − sin(2φ)χ(2)S
yyx + sin2 φχ(2)S

yxx

]
− c

2ω
qm⊥ (2ω) cosφ

[
cos2 φχ(2)S

xyy − sin(2φ)χ(2)S
xxy + sin2 φχ(2)S

xxx

] ∣∣∣∣2, (C.1c)

Rss(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣tsmv(2ω)tsvm(ω)2
∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin3 φχ(2)S

xxx − cosφ sin2 φ
(
χ(2)S
yxx + 2χ(2)S

xxy

)
+ cos2 φ sinφ

(
χ(2)S
xyy + 2χ(2)S

yyx

)
− cos3 φχ(2)S

yyy

∣∣∣∣2.
(C.1d)

C.2 Reflection coefficients for the m symmetry

We give here the expression for a m symmetry, where the only non-zero components of the χ(2)S ten-
sor are χ(2)S

yyx , χ
(2)S
xyy , χ

(2)S
xxx , χ

(2)S
yyz , χ

(2)S
xxz , χ

(2)S
zxx , χ

(2)S
zyy , χ

(2)S
xzz , χ

(2)S
zzx , χ

(2)S
zzz (The mirror plan is perpendicular

to êy).
This symmetry corresponds for instance to a single domain of the clean Si(001)2x1 surface.

Rpp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin3 θχ(2)S

zzz +
2c

ω
qm⊥ (ω) sin2 θ cosφχ(2)S

zzx +
c2

ω2
sin θqm⊥ (ω)2

[
cos2 φχ(2)S

zxx + sin2 φχ(2)S
zyy

]
− c

2ω
sin θqm⊥ (2ω)

(
sin θ cosφχ(2)S

xzz +
2c

ω
qm⊥ (ω)

[
cos2 φχ(2)S

xxz + sin2 φχ(2)S
yyz

])

− c3

2ω3
qm⊥ (ω)2qm⊥ (2ω) cosφ

[
cos2 φχ(2)S

xxx + sin2 φ(χ(2)S
xyy + 2χ(2)S

yyx )
]∣∣∣∣2, (C.2a)

Rps(θ, φ, ω) =
ω2

2c3ε0

sin2 φ

cos2 θ

∣∣∣∣ tsmv(2ω)tpvm(ω)2

ε(ω)

∣∣∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ sin θ
(
χ(2)S
xzz +

2c

ω
qm⊥ (ω) cosφ(χ(2)S

xxz − χ(2)S
yyz )

)

+
c2

ω2
qm⊥ (ω)2

[
sin2 φχ(2)S

xyy + cos2 φ(χ(2)S
xxx − 2χ(2)S

yyx )
]∣∣∣∣2, (C.2b)

Rsp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2
×
∣∣∣∣ sin θ [cos2 φχ(2)S

zyy + sin2 φχ(2)S
zxx

]
− c

2ω
qm⊥ (2ω) cosφ

[
cos2 φχ(2)S

xyy + sin2 φ(χ(2)S
xxx − 2χ(2)S

yyx )
] ∣∣∣∣2,

(C.2c)

Rss(θ, φ, ω) =
ω2

2c3ε0

sin2 φ

cos2 θ

∣∣tsmv(2ω)tsvm(ω)2
∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ sin2 φχ(2)S
xxx + cos2 φ

(
χ(2)S
xyy + 2χ(2)S

yyx

) ∣∣∣∣2.
(C.2d)
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C.3 Reflection coefficients for the mm2 symmetry

C.3 Reflection coefficients for the mm2 symmetry

We give here the expression for a mm2 symmetry, where the only non-zero components of the χ(2)S

tensor are χ(2)S
yyz , χ

(2)S
xxz , χ

(2)S
zxx , χ

(2)S
zyy , χ

(2)S
zzz . This symmetry corresponds for instance to a single domain

of the monohydride Si(001)2x1:H surface.

Rpp(θ, φ, ω) =
ω2

2c3ε0
tan2 θ

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ sin2 θχ(2)S
zzz

+
c2

ω2
qm⊥ (ω)2

[
cos2 φχ(2)S

zxx + sin2 φχ(2)S
zyy

]
− c2

ω2
qm⊥ (2ω)qm⊥ (ω)

[
cos2 φχ(2)S

xxz + sin2 φχ(2)S
yyz

] ∣∣∣∣2,
(C.3a)

Rps(θ, φ, ω) =
1

2cε0
sin2(2φ) tan2 θ

∣∣∣∣ tsmv(2ω)tpvm(ω)2

ε(ω)

∣∣∣∣2 ∣∣∣∣qv⊥(2ω)qm⊥ (ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣χ(2)S
xxz − χ(2)S

yyz

∣∣∣∣2, (C.3b)

Rsp(θ, φ, ω) =
ω2

2c3ε0
tan2 θ

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ cos2 φχ(2)S
zyy + sin2 φχ(2)S

zxx

∣∣∣∣2, (C.3c)

Rss(ω) = 0. (C.3d)

C.4 Reflection coefficients for the 3m symmetry

We give here the expression for a 3m symmetry, where the only non-zero components of the χ(2)S ten-
sor are χ(2)S

zzz = χ⊥⊥⊥, χ
(2)S
xxz = χ

(2)S
yyz = χ

(2)S
‖‖⊥ , χ

(2)S
zxx = χ

(2)S
zyy = χ

(2)S
⊥‖‖ , χ

(2)S
xxx = −χ(2)S

xyy = −χ(2)S
yyx = χ

(2)S
‖‖‖

(The mirror plan is perpendicular to êy). This symmetry corresponds for instance to the Si(1111)1x1:H
surface.

Rpp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ sin3 θχ
(2)S
⊥⊥⊥

+
c2

ω2
sin θ

(
qm⊥ (ω)2χ

(2)S
⊥‖‖ − q

m
⊥ (ω)qm⊥ (2ω)χ

(2)S
‖‖⊥

)
− c3

2ω3
qm⊥ (ω)2qm⊥ (2ω) cos(3φ)χ

(2)S
‖‖‖

∣∣∣∣2,
(C.4a)

Rps(θ, φ, ω) =
c

2ω2ε0

sin2(3φ)

cos2 θ

∣∣∣∣ tsmv(2ω)tpvm(ω)2

ε(ω)

∣∣∣∣2 ∣∣∣∣qv⊥(2ω)qm⊥ (ω)2

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣χ(2)S
‖‖‖

∣∣∣∣2, (C.4b)

Rsp(θ, φ, ω) =
ω2

2c3ε0

1

cos2 θ

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣ sin θχ(2)S
⊥‖‖ +

c

2ω
qm⊥ (2ω) cos(3φ)χ

(2)S
‖‖‖

∣∣∣∣2,
(C.4c)

Rss(θ, φ, ω) =
ω2

2c3ε0

sin2(3φ)

cos2 θ

∣∣tsmv(2ω)tsvm(ω)2
∣∣2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

∣∣∣∣2 ∣∣∣∣χ(2)S
‖‖‖

∣∣∣∣2. (C.4d)
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Appendix C. Second-harmonic reflection coefficients for some symmetries

C.5 Reflection coefficients for a cubic non-centrosymmetric bulk

From Eq. (2.29) we get directly the four usual reflection coefficients

Rpp(θ, φ, ω) =
c

2ω2ε0
tan2(θ) sin2(2φ)

∣∣∣∣∣qv⊥(2ω)qm⊥ (ω)

qm⊥ (2ω)

tpmv(2ω)tpvm(ω)2√
ε(2ω)ε(ω)

qm⊥ (ω)− qm⊥ (2ω)

qm⊥ (2ω) + 2qm⊥ (ω)

∣∣∣∣∣
2 ∣∣∣χ(2)

xyz

∣∣∣2 ,
(C.5a)

Rps(θ, φ, ω) =
2

cε0
tan2(θ) cos2(2φ)

∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)

tsmv(2ω)tpvm(ω)2

ε(ω)

qm⊥ (ω)

[qm⊥ (2ω) + 2qm⊥ (ω)]

∣∣∣∣2 ∣∣∣χ(2)
xyz

∣∣∣2 , (C.5b)

Rsp(θ, φ, ω) =
ω2

2c3ε0
tan2(θ) sin2(2φ)

∣∣∣∣∣ tpmv(2ω)tsvm(ω)2√
ε(2ω)

∣∣∣∣∣
2 ∣∣∣∣ qv⊥(2ω)

qm⊥ (2ω)[qm⊥ (2ω) + 2qm⊥ (ω)]

∣∣∣∣2 ∣∣∣χ(2)
xyz

∣∣∣2 , (C.5c)

Rss(ω) = 0. (C.5d)

Notice here that these reflection coefficients depend on both the incident and the azimuthal angles.
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D. Matrix elements of V in a plane-waves
basis

The inclusion of the nonlocal part of the pseudo-potential requires the evaluation of the matrix ele-
ments of the modified velocity, as defined by Eq. (6.11). More precisely, we want to compute

〈n,k|q.V |n′,k〉 = 〈n,k|C(z)q. v̂ + q. v̂C(z)
2

|n′,k〉, (D.1)

with v̂ = p̂ + i[V̂ nl, r̂]. Two contributions have to be computed separately: 〈n,k|C(z)q.p̂+q.p̂C(z)
2 |n′,k〉

and 〈n,k|C(z)[V̂
nl,iq.̂r]+[V̂ nl,iq.̂r]C(z)

2 |n′,k〉. Using the definition of the Bloch states Eq. (3.40), the first
term is easily obtained

〈n,k|C(z)p̂ + p̂C(z)
2

|n′,k〉 =
−i
2V

∑
G,G′

c∗n,k(G)cn′,k(G′)

×
∫
d3r

[
e−i(k+G).rC(z)∇r(ei(k+G′).r)−∇r(e−i(k+G).r)C(z)ei(k+G′).r

]
=

1

2

∑
G,G′

c∗n,k(G)cn′,k(G′)
[
2k + G + G′

]
δG||G′||F (Gz −G′z), (D.2)

where we have defined F (Gz) = 1
2Lz

∫
dze−iGzzC(z), with 2Lz the height of the super-cell.

In order to compute the term containing the commutator, we introduce the unity operator

〈n,k|C(z)[V̂ nl, iq. r̂]|n′,k〉 =
∑
G′′

〈n,k|C(z)|k + G′′〉〈k + G′′|[V̂ nl, iq. r̂]|n′,k〉,

where 〈r|k + G〉 = ei(k+G).r/
√
V , V being the volume of the super-cell.

Using the definition of Bloch states Eq. 3.40, we obtain that

〈n,k|C(z)|k + G′′〉 =
1√
V

∑
G

c∗n,k(G)

∫
d3re−i(G−G′′).rC(z),

〈k + G′′|[V̂ nl, iq. r̂]|n′,k〉 =
1√
V

∑
G′

cn′,k(G′)〈k + G′′|[V̂ nl, iq. r̂]|k + G′〉.

Putting everything together yields

〈n,k|C(z)[V̂
nl, iq. r̂] + [V̂ nl, iq. r̂]C(z)

2
|n′,k〉 =

1

2

∑
G,G′,G′′

c∗n,k(G)cn′,k(G′)

×

[
〈k + G′′|[V̂ nl, iq. r̂]|k + G′〉δG||G′′||F (Gz −G′′z) + 〈k + G|[V̂ nl, iq. r̂]|k + G′′〉δG′||G′′||F (G′′z −G′z)

]
.
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Appendix D. Matrix elements of V in a plane-waves basis

Using the notation K = k + G and in case of a Kleinman-Bylander separable-form pseudo-potential,
we have [120] (see Ref. [121] for the notations)

〈K|V̂ nl|K′〉 =
∑
s

ei(K−K′).τs
ls∑
l=0

l∑
m=−l

ElF
s
lm(K)F s∗lm(K′), F slm(K) =

∫
d3reiK.rδV s

l (r)Φps
lm(r).

Using the relation i〈K|[V̂ nl, r̂]|K′〉 = (∇K + ∇K′)〈K|V̂ nl|K′〉, shown in Ref. [121], we obtain the
nonlocal contribution to the velocity operator, as already implemented in DP [116] and 2light [117]
codes

〈n,k|[V̂ nl, ir̂]|n′,k〉 =
∑
s

ls∑
l=0

l∑
m=−l

El

{[∑
G

c∗n,k(G)eiG.τs∇GF
s
lm(K)

][∑
G′

cn′,k(G′)e−iG
′.τsF s∗lm(K′)

]

+

[∑
G

c∗n,k(G)eiG.τsF slm(K)

][∑
G′

cn′,k(G′)e−iG
′.τs∇G′F

s∗
lm(K′)

]}
.

(D.4)
The nonlocal part of the modified velocity, i.e., containing the contribution of the commutator, is
given by

〈n,k|C(z)[V̂
nl, iq. r̂] + [V̂ nl, iq. r̂]C(z)

2
|n′,k〉 =

1

2

∑
G,G′,G′′

c∗n,k(G)cn′,k(G′)

×

[
(∇K′′ +∇K′)〈K′′|V̂ nl|K′〉δG||G′′||F (Gz −G′′z) + (∇K +∇K′′)〈K|V̂ nl|K′′〉δG′||G′′||F (G′′z −G′z)

]
.

After some algebra, we obtain the expression of the nonlocal contribution to the modified velocity
matrix elements

〈n,k|C(z)[V̂
nl, iq. r̂] + [V̂ nl, iq. r̂]C(z)

2
|n′,k〉 =

1

2

∑
s

ls∑
l=0

l∑
m=−l

El{(∑
G′′

eiG
′′.τs∇K′′F

s
lm(K′′)

∑
G

c∗n,k(G)δG||G′′||F (Gz −G′′z)

)(∑
G′

cn′,k(G′)e−iG
′.τsF s∗lm(K′)

)

+

(∑
G′′

eiG
′′.τsF slm(K′′)

∑
G

c∗n,k(G)δG||G′′||F (Gz −G′′z)

)(∑
G′

cn′,k(G′)e−iG
′.τs∇K′F

s∗
lm(K′)

)

+

(∑
G

c∗n,k(G)eiG.τs∇KF
s
lm(K)

)(∑
G′′

e−iG
′′.τsF s∗lm(K′′)

∑
G′

cn′,k(G′)δG′||G′′||F (G′′z −G′z)

)

+

(∑
G

c∗n,k(G)eiG.τsF slm(K)

)(∑
G′′

e−iG
′′.τs∇K′′F

s∗
lm(K′′)

∑
G′

cn′,k(G′)δG′||G′′||F (G′′z −G′z)

)}
.

(D.5)
In this last expression, a double sum over G vector is involved, making the calculation of the non-
local part of the modified velocity operator more intricate and time consuming than for the bulk
counterpart.
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E. Divergence-free expression of χSρρρ

Here I present a detailed derivation of the divergence-free expression Eqs. (6.14). The starting point
is the divergent expression Eq. (6.10). We first split Eq. (6.10) into three pieces

χS,Iρρρ(q̂, q̂1, q̂2, ω) =
−2

V ω3

∑
nn′n′′

BZ∑
k

〈n,k|q̂VΣ|n′,k〉〈n′,k|q̂1v̂Σ|n′′,k〉〈n′′,k|q̂2v̂Σ|n,k〉
(EΣ

nk − EΣ
n′k + 2ω + 2iη){

(fnk − fn′′k)

(EΣ
nk − EΣ

n′′k + ω + iη)
+

(fn′k − fn′′k)

(EΣ
n′′k − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2), (E.1a)

χS,IIρρρ (q̂, q̂1, q̂2, ω) =
i

V ω3

∑
nn′

BZ∑
k

(fnk − fn′k)

{
2〈n,k|

[
q̂R, q̂1v̂Σ

]
|n′,k〉〈n′,k|q̂2v̂Σ|n,k〉

(EΣ
nk − EΣ

n′k + ω + iη)

+
〈n,k|q̂VΣ|n′,k〉〈n′,k|

[
q̂1r̂, q̂2v̂Σ

]
|n,k〉

(EΣ
nk − EΣ

n′k + 2ω + 2iη)

}
+ (q̂1 ↔ q̂2), (E.1b)

χS,IIIρρρ (q̂, q̂1, q̂2, ω) =
1

V ω3

∑
n

BZ∑
k

fnk〈n,k|
[
q̂r,
[
q̂1r̂, q̂2VΣ

]]
|n,k〉+ (q̂1 ↔ q̂2). (E.1c)

The last term vanishes from time-reversal symmetry.
In order to be able to apply Sipe and coworkers transformation [185], we first show that the term
n = n′ is zero in χS,Iρρρ

χS,I,n=n′
ρρρ (q̂, q̂1, q̂2, ω) =

−2

V ω3

∑
n=n′n′′

BZ∑
k

〈n,k|q̂VΣ|n,k〉〈n,k|q̂1v̂Σ|n′′,k〉〈n′′,k|q̂2v̂Σ|n,k〉
(EΣ

nk − EΣ
n′k + 2ω + 2iη){

(fnk − fn′′k)

(EΣ
nk − EΣ

n′′k + ω + iη)
+

(fnk − fn′′k)

(EΣ
n′′k − EΣ

nk + ω + iη)
+ (q̂1 ↔ q̂2)

}
.

(E.2)

Using k → −k, we obtain directly that the contribution n = n′ to χ
(2)I
abc (ω) is zero. It is therefore

possible to follow Sipe and coworkers demonstration and to write that

1

ω3(EΣ
nk − EΣ

n′k + 2ω + 2iη)

{
(fnk − fn′′k)

(EΣ
nk − EΣ

n′′k + ω + iη)
+

(fn′k − fn′′k)

(EΣ
n′′k − EΣ

n′k + ω + iη)

}
=
A
ω3

+
B
ω2

+
C
ω

+F(ω).

As in Ref. [185], terms associated to A and C are zero thanks to time-reversal symmetry. We have to
shown that the term associated with B is zero.

B(ω) =
(fnk − fn′′k)

(EΣ
n′k − EΣ

nk)(EΣ
n′′k − EΣ

nk)

[
2

(EΣ
n′k − EΣ

nk)
+

1

(EΣ
n′′k − EΣ

nk)

]

+
(fn′k − fn′′k)

(EΣ
n′k − EΣ

nk)(EΣ
n′k − EΣ

n′′k)

[
2

(EΣ
n′k − EΣ

nk)
+

1

(EΣ
n′k − EΣ

n′′k)

]
.

(E.3)
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Appendix E. Divergence-free expression of χSρρρ

Using the following definitions, derived from k.p theory,1

∂v̂Σ
nn′

∂k
= i

∑
n′′ /∈Dn,Dn′

[
r̂nn′′ v̂

Σ
n′′n′ − v̂Σ

nn′′ r̂n′′n′
]

+ i[v̂Σ, r̂]nn′ + i∆n′nr̂nn′ , (E.4a)

∂VΣ
nn′

∂k
= i

∑
n′′ /∈Dn,Dn′

[
r̂nn′′VΣ

n′′n′ − VΣ
nn′′ r̂n′′n′

]
+ i[VΣ, r̂]nn′ + ir̂nn′∆̃n′n, (E.4b)

and the tensor
↔
T=

∑
i,j 6=i

fijVΣ
ij(k)v̂Σ

ji(k)

EΣ
ij(k)2 , we obtain after some algebra that

∂
↔
T

∂k
=
∑

n,n′ 6=n
fnn′(k)

[
∂VΣ

nn′(k)

∂k

v̂Σ
n′n(k)

EΣ
nn′(k)2

+
∂v̂Σ

n′n(k)

∂k

VΣ
nn′(k)

EΣ
nn′(k)2

− 2
VΣ

nn′(k)v̂Σ
n′n(k)∆nn′

EΣ
nn′(k)3

]

= −
′∑

n,n′,n′′

VΣ
nn′ v̂

Σ
n′n′′ v̂

Σ
n′′n

[
fn′n′′

EΣ
n′n(k)EΣ

n′n′′(k)

(
2

EΣ
n′n(k)

+
1

EΣ
n′n′′(k)

)

+
fnn′′

EΣ
n′n(k)EΣ

n′′n(k)

(
2

EΣ
n′n(k)

+
1

EΣ
n′′n(k)

)]
−
∑

n,n′ 6=n

3fnn′VΣ
nn′ v̂

Σ
n′n∆nn′

EΣ
nn′(k)3

+
∑

n,n′ 6=n
fnn′

[
v̂Σ
nn′∆̃n′nv̂

Σ
n′n

EΣ
nn′(k)3

+
[VΣ, ir̂]nn′ v̂

Σ
n′n

EΣ
nn′(k)2

− VΣ
nn′ [ir̂, v̂

Σ]n′n
EΣ
nn′(k)2

]
.

The first three terms vanish thank to time-reversal symmetry. Invoking the same arguments as in
Ref. [185], the term associated to B is zero. Concerning the F term, we get

F(ω) =
16

(EΣ
n′k − EΣ

nk)3(EΣ
nk − EΣ

n′k + 2ω + 2iη)

[
(fnk − fn′′k)

EΣ
n′n − 2EΣ

n′′n

+
(fn′k − fn′′k)

EΣ
n′n − 2EΣ

n′n′′

]
+

(fnk − fn′′k)

(EΣ
n′′k − EΣ

nk)3(2EΣ
n′′n − EΣ

n′n)(EΣ
nk − EΣ

n′′k + ω + iη)

+
(fn′k − fn′′k)

(EΣ
n′k − EΣ

n′′k)3(2EΣ
n′n′′ − EΣ

n′n)(EΣ
n′′k − EΣ

n′k + ω + iη)
.

We thus obtain the two-band and three-band terms,

χS,I3bndρρρ (q̂, q̂1, q̂2, ω) =
2

V

∑
n6=n′ 6=n′′

BZ∑
k

〈n,k|q̂VΣ|n′,k〉〈n′,k|q̂1v̂Σ|n′′,k〉〈n′′,k|q̂2v̂Σ|n,k〉
(2EΣ

n′′n − EΣ
n′n)

×

{
16(fnk − fn′k)

(EΣ
n′k − EΣ

nk)3(EΣ
nk − EΣ

n′k + 2ω + 2iη)
− (fnk − fn′′k)

(EΣ
n′′k − EΣ

nk)3(EΣ
nk − EΣ

n′′k + ω + iη)

+
(fn′k − fn′′k)

(EΣ
n′k − EΣ

n′′k)3(EΣ
n′′k − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2), (E.6a)

χS,I2bndρρρ (q̂, q̂1, q̂2, ω) = − 2

V

∑
n6=n′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n,k〉q̂2∆n′n

(EΣ
nk − EΣ

n′k)2

1It is interesting to note here that v and V follow the same sum-rule.

170



×

{
16

(EΣ
nk − EΣ

n′k + 2ω + 2iη)
+

1

(EΣ
nk − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2). (E.6b)

We now use partial fraction development, to simplify χS,I3bndρρρ that we then split into χ3bnd
I and χ3bnd

II ,
such as χS,I3bndρρρ (q̂, q̂1, q̂2, ω) = χ3bnd

I (q̂, q̂1, q̂2, ω) + χ3bnd
II (q̂, q̂1, q̂2, ω), with

χ3bnd
I (q̂, q̂1, q̂2, ω) =

2i

V

∑
n6=n′ 6=n′′

BZ∑
k

〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n′′,k〉〈n′′,k|q̂2r̂|n,k〉

{
−

(2EΣ
n′′k − EΣ

n′k − EΣ
nk)

(EΣ
n′k − EΣ

nk)2

4(fnk − fn′k)

(EΣ
nk − EΣ

n′k + 2ω + 2iη)

−
(2EΣ

nk − EΣ
n′k − EΣ

n′′k)

(EΣ
n′′k − EΣ

nk)2

(fnk − fn′′k)

(EΣ
nk − EΣ

n′′k + ω + iη)

+
(2EΣ

n′k − EΣ
nk − EΣ

n′′k)

(EΣ
n′k − EΣ

n′′k)2

(fn′k − fn′′k)

(EΣ
n′′k − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2), (E.7a)

χ3bnd
II (q̂, q̂1, q̂2, ω) =

4i

V

∑
n6=n′ 6=n′′

BZ∑
k

〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n′′,k〉〈n′′,k|q̂2r̂|n,k〉
(2EΣ

n′′n − EΣ
n′n){

2(fnk − fn′k)

(EΣ
nk − EΣ

n′k + 2ω + 2iη)
− (fnk − fn′′k)

(EΣ
nk − EΣ

n′′k + ω + iη)
+

(fn′k − fn′′k)

(EΣ
n′′k − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2). (E.7b)

Let us now consider χS,IIρρρ . Using the relations

1

ω3(EΣ
nk − EΣ

n′k + ω + iη)
=

1

ω3(EΣ
nk − EΣ

n′k)
− 1

(EΣ
nk − EΣ

n′k)3(EΣ
nk − EΣ

n′k + ω + iη)
,

1

ω3(EΣ
nk − EΣ

n′k + 2ω + iη)
=

1

ω3(EΣ
nk − EΣ

n′k)
− 8

(EΣ
nk − EΣ

n′k)3(EΣ
nk − EΣ

n′k + 2ω + iη)
,

we obtain that

χS,IIρρρ (q̂, q̂1, q̂2, ω) =
2i

V

∑
nn′

BZ∑
k

(fnk − fn′k)〈n,k|
[
q̂R, q̂1v̂Σ

]
|n′,k〉〈n′,k|q̂1v̂Σ|n,k〉[

1

ω3(EΣ
nk − EΣ

n′k)
− 1

(EΣ
nk − EΣ

n′k)3(EΣ
nk − EΣ

n′k + ω + iη)

]
+ (q̂1 ↔ q̂2)

+
i

V

∑
nn′

BZ∑
k

(fnk − fn′k)〈n,k|q̂VΣ|n′,k〉〈n′,k|
[
q̂1r̂, q̂2v̂Σ

]
|n,k〉[

1

ω3(EΣ
nk − EΣ

n′k)
− 8

(EΣ
nk − EΣ

n′k)3(EΣ
nk − EΣ

n′k + 2ω + iη)

]
+ (q̂1 ↔ q̂2). (E.8)
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Appendix E. Divergence-free expression of χSρρρ

The term containing 1
ω3 vanishes using k→ −k and n↔ n′. The remaining terms give

χS,IIρρρ (q̂, q̂1, q̂2, ω) =
−2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|

[
q̂R, q̂1v̂Σ

]
|n′,k〉〈n′,k|q̂2r̂|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)

− 8

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|

[
q̂1r̂, q̂2v̂Σ

]
|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + 2ω + iη)
+ (q̂1 ↔ q̂2).

(E.9)

Notice here that all energies are scissored energies. This is due to the presence of the term [r, v̂Σ],
which is not possible to neglect. This term must be worked out in order to obtain the commutator
[r,v] that we can neglect [117]. In order to do so, we use that (with n′ /∈ Dn)

∂v̂Σa
ij

∂kc
= −i[r̂c, v̂Σa]ij − i

∑
l /∈Di,Dj

[
v̂Σa
il r̂

c
lj − r̂cilvΣa

lj

]
− i∆a

ij r̂
c
ij , (E.10a)

∂v̂aij
∂kc

= −i[r̂c, v̂a]ij − i
∑

l /∈Di,Dj

[
v̂ailr̂

c
lj − r̂cilv̂alj

]
− i∆a

ij r̂
c
ij . (E.10b)

From Eq. (E.10a) we directly obtain

[r̂c, v̂Σa]nn′

(EΣ
nn′)

= i
∂v̂Σa

nn′

∂kc
1

(EΣ
nn′)
−

∑
l /∈Dn,Dn′

[
v̂Σa
nl r̂

c
ln′ − r̂cnlv̂Σa

ln′
]

(EΣ
nn′)

−
∆a
nn′ r̂

c
nn′

(EΣ
nn′)

. (E.11)

Combining this expression with Eq. (E.10b) gives the link between the two commutators

[r̂c, v̂Σa]nn′

(EΣ
nn′)

=
[r̂c, v̂a]nn′

Enn′
+

∑
l /∈Dn,Dn′

[
v̂anlr̂

b
ln′ − r̂cnlv̂aln′

]
Enn′

+
∆a
nn′r

c
nn′

Enn′
+

∆c
nn′r

a
nn′

Enn′

−
∑

l /∈Dn,Dn′

[
v̂Σa
nl r̂

c
ln′ − r̂cnlv̂Σa

ln′
]

EΣ
nn′

−
∆a
nn′r

c
nn′

EΣ
nn′

−
∆c
nn′r

a
nn′

EΣ
nn′

.

We obtain the same relations by replacing v̂ with V and v̂Σ with VΣ.

[q̂1r̂, q̂2v̂Σ]n′n
(EΣ

n′n)
=

[q̂1r̂, q̂2v̂]n′n
En′n

+
∑

l /∈Dn,Dn′

[q̂2v̂n′lq̂1r̂ln − q̂1r̂n′lq̂2v̂ln]

En′n
+

q̂1∆n′nq̂2r̂n′n
En′n

+
q̂2∆n′nq̂1r̂n′n

En′n

−
∑

l /∈Dn,Dn′

[
q̂2v̂Σ

n′lq̂1r̂ln − q̂1r̂n′lq̂2v̂Σ
ln

]
EΣ
n′n

− q̂1∆n′nq̂2r̂n′n
EΣ
n′n

− q̂2∆n′nq̂1r̂n′n
EΣ
n′n

(E.13a)

[q̂R, q̂1v̂Σ]nn′

(EΣ
nn′)

=
[q̂R, q̂1v̂]nn′

Enn′
+

∑
l /∈Dn,Dn′

[q̂1v̂nlq̂Rln′ − q̂Rnlq̂1v̂ln′ ]

Enn′
+

q̂1∆nn′ q̂Rnn′

Enn′
+

q̂∆̃nn′ q̂1v̂nn′

Enn′

−
∑

l /∈Dn,Dn′

[
q̂1v̂Σ

nlq̂Rln′ − q̂Rnlq̂1v̂ln′
]

EΣ
nn′

− q̂1∆nn′ q̂Rnn′

EΣ
nn′

− q̂∆̃nn′ q̂1rnn′

EΣ
nn′

. (E.13b)
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Let us define E and F such that

E =
−2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|

[
q̂R, q̂1v̂Σ

]
|n′,k〉〈n′,k|q̂2r̂|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)
+ (q̂1 ↔ q̂2), (E.14a)

F =
−8

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|

[
q̂1r̂, q̂2v̂Σ

]
|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + 2ω + iη)
+ (q̂1 ↔ q̂2). (E.14b)

We insert Eq. (E.13a).

E =
−2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|[q̂R, q̂1v̂]|n′,k〉〈n′,k|q̂2r̂|n,k〉

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

− 2

V

∑
nn′

∑
l /∈Dn,Dn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂1v̂|l,k〉〈l,k|q̂R|n′,k〉〈n′,k|q̂2r̂|n,k〉

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

+
2

V

∑
nn′

∑
l /∈Dn,Dn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|l,k〉〈l,k|q̂1v̂|n′,k〉〈n′,k|q̂2r̂|n,k〉

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

− 2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂1r̂|n′,k〉〈n′,k|q̂2r̂|n,k〉q̂∆̃nn′

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

− 2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂2r̂|n,k〉q̂1∆nn′

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

+
2

V

∑
nn′

∑
l /∈Dn,Dn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂1v̂Σ|l,k〉〈l,k|q̂R|n′,k〉〈n′,k|q̂2r̂|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)

− 2

V

∑
nn′

∑
l /∈Dn,Dn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|l,k〉〈l,k|q̂1v̂Σ|n′,k〉〈n′,kq̂2r̂|n,k〉

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)

+
2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂1r̂|n′,k〉〈n′,k|q̂2r̂|n,k〉q̂∆̃nn′

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)

+
2

V

∑
nn′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂2r̂|n,k〉q̂1∆nn′

(EΣ
nk − EΣ

n′k)2(EΣ
nk − EΣ

n′k + ω + iη)

+(q̂1 ↔ q̂2). (E.15)

We note that due to the occupation numbers and the restriction of the sum over n′′, we have directly
n /∈ Dn′ ,Dn′′ , n′ /∈ Dn,Dn′′ and n′′ /∈ Dn,Dn′ . We can safely define matrix elements of the position
operator for these sums. For conciseness, we introduce the notation

∑
nn′
∑

n′′ /∈Dn,Dn′
→
∑′

nn′n′′ ,
first introduced by Bechstedt and co-workers in Ref. [189]. By symmetrisation and using the time-
reversal symmetry, we obtain a simpler expression for E, and similarly, for F . We can redefine the
two-band and three-band terms, to accounts for these new terms. Two contributions are obtained for
the two-band part, one local and denoted χ2bnd

l that is non-zero even is the potential is local, and a
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Appendix E. Divergence-free expression of χSρρρ

nonlocal part χ2bnd
nl that vanishes in the case of a local potential.

χ2bnd
l (q̂, q̂1, q̂2, ω) =

−2

V

∑
n6=n′

BZ∑
k

(fnk − fn′k)
〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n,k〉q̂2∆n′n

(EΣ
nk − EΣ

n′k)2{
((Enk − En′k) + (EΣ

nk − EΣ
n′k))

(Enk − En′k)

8

(EΣ
nk − EΣ

n′k + 2ω + 2iη)

+
2(Enk − En′k)− (EΣ

nk − EΣ
n′k)

(Enk − En′k)

1

(EΣ
nk − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2)

(E.16a)

χ2bnd
nl (q̂, q̂1, q̂2, ω) =

−2

V

∑
nn′

BZ∑
k

(fnk − fn′k)

{
〈n,k|[q̂R, q̂1v̂]|n′,k〉〈n′,k|q̂2r̂|n,k〉

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + ω + iη)

+
4〈n,k|q̂R|n′,k〉〈n,k|[q̂1r̂, q̂2v̂]|n′,k〉

(Enk − En′k)(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + 2ω + iη)

}
+ (q̂1 ↔ q̂2)

(E.16b)

The new three-band contributions are included in the definition of the χ3bnd
I , which now reads as

χ3bnd
I (q̂, q̂1, q̂2, ω) =

2i

V

∑
n6=n′ 6=n′′

BZ∑
k

〈n,k|q̂R|n′,k〉〈n′,k|q̂1r̂|n′′,k〉〈n′′,k|q̂2r̂|n,k〉

{
(Enk + En′k − 2En′′k)

(Enk − En′k)

4(fnk − fn′k)

(EΣ
nk − EΣ

n′k)(EΣ
nk − EΣ

n′k + 2ω + iη)

− (2Enk − En′k − En′′k)

(En′′k − Enk)

(fnk − fn′′k)

(EΣ
n′′k − EΣ

nk)(EΣ
nk − EΣ

n′′k + ω + iη)

+
(2En′k − Enk − En′′k)

(En′k − En′′k)

(fn′k − fn′′k)

(EΣ
n′k − EΣ

n′′k)(EΣ
n′′k − EΣ

n′k + ω + iη)

}
+ (q̂1 ↔ q̂2)

(E.17)
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F. Macroscopic surface response functions

F.1 Charge conservation and cut-function

We consider the following replacement for the current and for the density ρ(1)(r, ω) → ρ(1)S(r, ω) =

C(z)ρ(1)(r, ω) and j
(1)
ind(r, ω)→ j

(1)S
ind (r, ω) = C(z)j(1)

ind(r, ω) where C(z) is a cut function introduced here,
in order to select the response from a part of the system.
Using vector calculus relations, one can write that

∇.
(
jSind(r, ω)

)
= C(z)∇. (jind(r, ω)) + gradC(z).jind(r, ω). (F.1)

Inserting the continuity relation yields

∇.
(
jSind(r, ω)

)
= ωρS(r, ω) + gradC(z). jind(r, ω). (F.2)

Here we choose to assume two approximations:
Approximation 1: The system is invariant under the permutation z ↔ −z.
Approximation 2: The function C(z) is a step function.

Using Approximation 2, one finds that

gradC(z). jind(r, ω) = êz. jind(r, ω)δ(z) = êz. jind(x, y, z = 0, ω). (F.3)

Due to Approximation 1, the plan z = 0 is a mirror plan of the system, imposing that jind is contained
in the plan [x,y]. Thereby it results that

k. jSind(k, ω) = ωρSind(k, ω). (F.4)

Physically, this result shows that the charge is conserved in each half of the system separately.
Replacing the current and the density by their expressions in terms of response functions [44], we
obtain at first order and second-order

ω2χSρρ(k,k
′, ω) = k. χSjj(k,k

′, ω).k′ − 〈ρS〉δ(k− k′)k2, (F.5a)

ω3χSρρρ(k,k
′,k′′, ω) = k. χSjjj(k,k

′,k′′, ω) : k′.k′′. (F.5b)

Note that if the slab and the cut-function C(z) are equally shifted by z0, the same result is obtained.

F.2 Response function to the total macroscopic classical potential
at second-order

Let us define the total macroscopic classical potential, as

V̂mac[ρ(1)](1) = V̂ext(1) +

∫
d32v0(1− 2)ρ(2). (F.6)
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where v0 is the long-range part of the Coulomb potential.
The density of the system reads as

ρ(1) = ρ(0)(1) + ρ
(1)
ind(1) + ρ

(2)
ind(1), (F.7)

where ρ(0)(1) is the unperturbed density. Inserting this expression in Eq. (F.6), yields

V̂mac[ρ(1)](1) = V̂
(0)

mac(1) + V̂
(1)

mac(1) + V̂
(2)

mac(1), (F.8)

where

V̂
(0)

mac(1) =

∫
d32v0(1− 2)ρ(0)(2) (F.9a)

V̂
(1)

mac(1) = V̂
(1)

ext (1) +

∫
d32v0(1− 2)ρ

(1)
ind(2) (F.9b)

V̂
(2)

mac(1) = V̂
(2)

ext (1) +

∫
d32v0(1− 2)ρ

(2)
ind(2) (F.9c)

I now define the response function to that total macroscopic classical potential, using the short
notation of Chap. 3,

ρ
(2)
ind(1) =

∫
d2

∫
d3χ̄ρρρ(1,2,3)V̂

(1)
mac(2)V̂

(1)
mac(3) +

∫
d2χ̄ρρ(1,2)V̂

(2)
mac(2). (F.10)

From this definition and the definition of the independent-particle response function and the fully-
interaction response functions Eq. (3.36) (see Chap. 3), we obtain the two equations

χ(2)
ρρρ(1,2,3) =

∫
d4d5χ̄ρρρ(1,4,5)

[
δ(4− 2) +

∫
d6v0(4− 6)χ(1)

ρρ (6,2)
]

×
[
δ(5− 3) +

∫
d7v0(5− 7)χ(1)

ρρ (7,3)
]

+

∫
d4

∫
d5χ̄ρρ(1,4)v0(4− 5)χ(2)

ρρρ(5,2,3) (F.11a)

χ̄ρρρ(1,2,3) =

∫
d4

∫
d5χ(0)

ρρρ(1,4,5)
[
δ(4− 2) +

∫
d6
(
v̄(4− 6) + fxc(4,6)

)
χ̄ρρ(6,2)

]
×
[
δ(5− 3) +

∫
d7
(
v̄(5− 7) + fxc(5,7)

)
χ̄ρρ(7,3)

]
+

∫
d4

∫
d5χ(0)

ρρ (1,4)
(
v̄(4− 5) + fxc(4,5)

)
χ̄ρρρ(5,2,3)

+

∫
d4

∫
d5

∫
d6χ(0)

ρρ (1,4)gxc(4,5,6)χ̄ρρ(5,2)χ̄ρρ(6,3) (F.11b)

where v̄ is the Coulomb potential without its long-range part. For obtaining the second relation, I
used that

V̂
(1)

eff (1) = V̂
(1)

mac(1) + V̂
(1)

xc (1) +

∫
d32v̄(1− 2)ρ

(1)
ind(2) (F.12a)

V̂
(2)

eff (1) = V̂
(2)

mac(1) + V̂
(2)

xc (1) +

∫
d32v̄(1− 2)ρ

(2)
ind(2) (F.12b)
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G. Analytical expression of ṽG1,G2
(q)

In this appendix, I report the derivation of the analytical expression of the modified Coulomb poten-
tial. The modified Coulomb potential is defined by, (see Chap. 8)

ṽG̃1,G̃2
(q) =

1

Lmat
z

∫ 0

−Lz
dz1dz2e

−i(qz+G̃z1)z12π
e−|q||+G1||||z1−z2|

|q|| + G1|||
ei(qz+G̃z2)z2δG1||,G2|| . (G.1a)

Let us first define some notations, in order to ease the derivation

kz1 = qz + G̃z1, kz2 = qz + G̃z2, k|| = |q|| + G1|||, R = Lmat
z .

Using these notations, we obtain that

ṽG̃1,G̃2
(q) =

2π

Rk||

∫ 0

−R
dz1e

−ikz1z1

[
e−k||z1

∫ z1

−R
dz2e

(ikz2+k||)z2 + ek||z1
∫ 0

z1

dz2e
(ikz2−k||)z2

]
δG1||,G2||

(G.2a)

After some tedious algebra, we obtain the expression of the modified Coulomb potential

ṽG̃1,G̃2
(q) = 2πei(kz1−kz2)R

[
sinc([kz1 − kz2]R)

(k2
z2 + k2

||)
+
sinc([kz1 − kz2]R)

(k2
z1 + k2

||)

]
δG1||,G2||

+
2πei(kz1−kz2)R

Rk||(k
2
z2 + k2

||)(k
2
z1 + k2

||)

[
− cos([kz1 − kz2]R)(k2

|| − kz1kz2)

+ e−2k||R
(

(k2
|| − kz1kz2) cos([kz1 + kz2]R)− k||(kz1 + kz2) sin([kz1 + kz2]R)

)]
δG1||,G2|| .

(G.3a)

It is possible to simplify further this expression, using that G̃z1 = n1
2π
Lmat
z

and G̃z2 = n2
2π
Lmat
z

, n1, n2 ∈ Z.
We have

sinc([kz2 − kz1]
R

2
) = sinc([n2 − n1]π) = δkz1,kz2 ,

where sinc is defined as sinc(x) = sin(x)
x . Similarly, we obtain that

cos([kz1 − kz2]
R

2
) = cos([Gz2 −Gz1]Lmat

z /2) = (−1)n1−n2 = (−1)
R(kz1−kz2)

π .

Without any approximation, we obtain that

cos([kz1 + kz2]
R

2
) = cos(qzR)(−1)

R(kz1+kz2)
π ,

sin([kz2 + kz1]
R

2
) = sin(qzR)(−1)

R(kz1+kz2)
π .
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Appendix G. Analytical expression of ṽG1,G2(q)

Putting everything together, we obtain that

ṽG̃1,G̃2
(q) =

4π

|q + G̃1|2
δG̃1,G̃2

+
4πδG1||,G2||

|q + G̃1|2|q + G̃2|2

[
− e−|q||+G1|||Lmat

z sin(qzR)

Lmat
z

(2qz + G̃z1 + G̃z2)
)

+
e−|q||+G1|||Lmat

z cos(qzR)− 1

Lmat
z |q|| + G1|||

(
|q|| + G1|||2 − (qz + G̃z1)(qz + G̃z2)

)]
.

From that expression, we can easily show that, for R→∞,

ṽG̃1,G̃2
(q) =

4π

|q + G̃1|2
δG̃1,G̃2

= vG̃1
(q)δG̃1,G̃2

. (G.5)
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H. Mixed-space equations for SHG

Here I show that the mixed-space analytical results of Chap. 8 are also valid for the nonlinear second-
order optical properties.

H.1 Second-order dyson equation in the mixed-space

The second-order Dyson equation in real-space and real-time is given by Eq. (3.37). In frequency
space, the second-order Dyson equation is

χ(2)
ρρρ(r, r

′, r′′, ω1, ω2) =

∫
dr4dr5χ

(2)
0 (r, r4, r5, ω1, ω2)

×
[
δ(r4 − r′) +

∫
dr6fuxc(r4, r6, ω1)χ(1)

ρρ (r6r′, ω1)
]

×
[
δ(r5 − r′′) +

∫
dr7fuxc(r5, r7, ω2)χ(1)

ρρ (r7, r
′′, ω2)

]
+

∫
dr4dr5dr6χ

(1)
0 (r, r4, ω1 + ω2)gxc(r4, r5, r6, ω1, ω2)χ(1)

ρρ (r5, r
′, ω1)χ(1)

ρρ (r6, r
′′, ω2)

+

∫
dr4dr5χ

(1)
0 (r, r4, ω1 + ω2)fuxc(r4, r5, ω1 + ω2)χ(2)

ρρρ(r5, r
′, r′′, ω1, ω2).

(H.1)

For conciseness, we omit the frequency dependence. Using the definition of Fourier transform (see
App. A),we obtain that

χ
(2)
G||,G′||,G′′||

(q||, z, z
′, z′′) =

∑
G4||G5||

∫
dz4dz5χ

(2)
0,G||G4||G5||

(q||, z, z4, z5)

×
[
δ(z4 − z′)δG4||G′|| +

∑
G6||

∫
dz6fuxc,G4||G6||(q||, z4, z6)χ

(1)
G6||G′||

(q||, z6, z
′)
]

×
[
δ(z5 − z′′)δG5||G′′|| +

∑
G7||

∫
dz7fuxc,G5||G7||(q||, z5, z7)χ

(1)
G7||G′′||

(q||, z7, z
′′)
]

+
∑

G4||G5||G6||

∫
dz4dz5dz6χ

(1)
0,G||G4||

(q||, z, z4)gxc,G4||G5||G6||(r4, r5, r6)

×χ(1)
G5||G′||

(q||, z5, z
′)χ

(1)
G6||G′′||

(q||, z6, z
′′)

+
∑

G4||G5||

∫
dz4dz5χ

(1)
0,G||G4||

(q||, z, z4)fuxc,G4||G5||(q||, z4, z5)χ
(2)
G5||,G′||G′′||

(q||, z5, z
′, z′′).

(H.2)
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Assuming the random-phase approximation, we get

χ
(2)
G||,G′||,G′′||

(q||, z, z
′, z′′) =

∑
G4||G5||

∫
dz4dz5χ

(2)
0,G||G4||G5||

(q||, z, z4, z5)

×
[
δ(z4 − z′)δG4||G′|| +

∫
dz6vG4||(q||, z4, z6)χ

(1)
G4||G′||

(q||, z6, z
′)
]

×
[
δ(z5 − z′′)δG5||G′′|| +

∫
dz7vG5||(q||, z5, z7)χ

(1)
G5||G′′||

(q||, z7, z
′′)
]

+
∑
G4||

∫
dz4dz5χ

(1)
0,G||G4||

(q||, z, z4)vG4||(q||, z4, z5)χ
(2)
G4||,G′||G′′||

(q||, z5, z
′, z′′).

(H.3)

H.2 Isolated system from periodic super-cell calculations

We now define the auxiliary response functions χ̃(1), χ̃(1)
0 , χ̃(2), and χ̃(2)

0 , similarly to what is done in
Chap. 8. We obtain that

χ̃
(2)
G||,G′||,G′′||

(q||, z, z
′, z′′) =

∑
G4||G5||

∫ 0

−Lmat
z

dz4dz5χ̃
(2)
0,G||G4||G5||

(q||, z, z4, z5)

×
[
δ(z4 − z′)δG4||G′|| +

∫ 0

−Lmat
z

dz6vG4||(q||, z4, z6)χ̃
(1)
G4||G′||

(q||, z6, z
′)
]

×
[
δ(z5 − z′′)δG5||G′′|| +

∫ 0

−Lmat
z

dz7vG5||(q||, z5, z7)χ̃
(1)
G5||G′′||

(q||, z7, z
′′)
]

+
∑
G4||

∫ 0

−Lmat
z

dz4dz5χ̃
(1)
0,G||G4||

(q||, z, z4)vG4||(q||, z4, z5)χ̃
(2)
G4||,G′||G′′||

(q||, z5, z
′, z′′).

(H.4)

Then, using the Fourier tranform Eqs. (8.12) and the fact that the three variables are equivalent, we
get

χ̃
(2)
G,G′,G′′(q) =

∑
G4||G5

χ̃
(1)
0,GG4

(q)ṽG4G5(q)χ̃
(2)
G5,G′G′′

(q)

+
∑

G4G5

χ̃
(2)
0,GG4G5

(q)
[
δG4G′ +

∑
G6

ṽG4G6(q)χ̃
(1)
G6||G′||

(q)
][
δG5G′′ +

∑
G7

ṽG5G7(q)χ̃
(1)
G7G′′(q)

]
,

(H.5)

where ṽ is defined by Eq. (8.14).
Therefore, we checked that the Selected-G method can also be applied to second-order susceptibili-
ties.
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I. Optical properties of single surfaces

I presented, in Chap. 7 and Chap. 8, a theory for calculating the optical properties of a single surface,
in reciprocal space and using a super-cell technique, now known as the Selected-G formalism. In the
Random-Phase Approximation (RPA), I have shown that the calculation of linear and second-order
optical properties of surfaces are based on the knowledge of two quantities, χ(0)S

ρρ and χ
(0)S
ρρρ . In this

section, I briefly review the macroscopic theory of Chap. 7 and I give the analytical expressions of
χ

(0)S
ρρ and χ(0)S

ρρρ , referred here as the surface-averaged independent-particle response functions.
For conciseness, I consider only the case of the nonlocal part of the pseudo-potential as a nonlocal
operator, and I assume no scissors correction. Similar formulae are obtained when including the
scissors operator.

I.1 Linear optical properties of crystal surfaces

In Chap. 7, I have presented how to calculate, in the framework of TDDFT, the macroscopic dielectric
tensor of a semi-infinite system, i.e., with a single surface; referred here as the surface dielectric tensor.
Here we also use the Selected-G approach, see Chap. 8.
In the RPA, and in the optical limit, the surface macroscopic dielectric tensor is given by (see Sec. 7.3)

εS,LLM (q̂;ω) = lim
q→0

1(
1− v(q)χ

(0)S
ρρ (q,q;ω)

)−1

G=G′=0

. (I.1)

Here q is a vanishing momentum and G, G′ are reciprocal lattice vectors. The frequency of the
impinging light is ω. Also v refers to the Coulomb interaction and the notation

[
χ

(0)S
ρρ (q;ω)

]
GG′

stands for χ(0)S
ρρ (q + G,q + G′;ω). In our formalism, the matrix

[
χ

(0)S
ρρ (q;ω)

]
GG′

, is defined by the
following set of equations [

χ(0)S
ρρ (q;ω)

]
0G′

= χ(0)S
ρρ (q,q + G′;ω),[

χ(0)S
ρρ (q;ω)

]
GG′

=
[
χ(0)
ρρ (q;ω)

]
GG′

, G 6= 0,
(I.2)

where χ(0)
ρρ is the independent-particle or Kohn-Sham response function.

The elements χ(0)S
ρρ (q,q + G′;ω) are obtained from the independent-particle response function by

χ(0)S
ρρ (q,q + G′;ω) =

1

Lz

∑
Gz

C̃(−Gz)
[
χ(0)
ρρ (q;ω)

]
GzG′

, (I.3)

with Lz , the thickness of half of the cell used to model the surface.
Thereby, the construction of the matrix

[
χ

(0)S
ρρ (q;ω)

]
GG′

requires only the knowledge of the independent-
particle or Kohn-Sham response function χ

(0)
ρρ , which is given in reciprocal space by Eq. (8.3). By
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Appendix I. Optical properties of single surfaces

inserting Eq. (8.3) into Eq. (I.3), we obtain

χ(0)S
ρρ (q,q + G′;ω) =

2

NkVcell

∑
n,n′

BZ∑
k

fnn′
ρ̃Sn,n′,k(q)〈n′,k + q|ei(q+G′)r|n,k〉

(En,k − En′,k+q + ω + iη)
, (I.4)

with fnn′ = fn − fn′1 and

ρ̃Sn,n′,k(q) =
1

Lz

∑
Gz

C̃(−Gz)〈n,k|e−i(q+Gz)r|n′,k + q〉.

This quantity has to be evaluated in the optical limit, meaning for q→ 0.
The expression of ρ̃Sn,n′,k(q) is given by

ρ̃Sn,n′,k(q) =
1

Lz

∑
Gz

C̃(−Gz)〈n,k|e−i(q+Gz)r|m,k + q〉

=

∫
d3rφ∗n,k(r)

1

Lz

∑
Gz

C̃(−Gz)e−iGzze−iqrφn,k+q(r)

=

∫
d3rφ∗n,k(r)C(z)e−iqrφn,k+q, (I.5)

where we recognized the Fourier transform of the cut-function C in the last equation.
In the optical limit, q→ 0 and therefore, from k.p perturbation theory, we get that

ρ̃Sn,n′,k(q→ 0) = 〈n,k|C(z)|n′,k〉+
∑

m/∈Dn′

〈n,k|C(z)|m,k〉〈m,k|qv|n′,k〉
Em,k − En′,k

. (I.6)

The position operator r can be expressed into interband ri and interband re part defined by [272]

〈n,k|ri|m,k′〉 = δnmδ(k− k′) [ξnn+ i∇k]

〈n,k|re|m,k′〉 = (1− δnm)δ(k− k′)ξnm

where r = ri + re.
Using this definition, allows us to remove the restriction of the sum, and we get

ρ̃Sn,n′,k(q→ 0) = 〈n,k|C(z)− iqreC(z)|n′,k〉. (I.7)

The generalized derivative of any operator O is given by [272]

(Onm);k =
∂Onm
∂k

− iOnm(ξnn − ξmm)

In the paper, authors give the following relation [272]

〈n,k|[ri, O]|n′,k′〉 = iδ(k− k′) (Onm);k

1Occupation numbers are independent of the momentum, as we consider a cold semiconductor with filled bands.
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I.1 Linear optical properties of crystal surfaces

From these relations, we obtain that for n′ /∈ Dn, we have

i〈n,k|[re, H]|n′,k′〉 = 〈n,k|v|n′,k′〉, (I.8)

because (Hnm);k = 0 for n′ /∈ Dn. From this result, we can compute the last term of Eq. I.7 for n′ /∈ Dn

i(En,k − En′,k)〈n,k|̂rC(z)|n′,k〉 = i

∫
d3rC(z)φ∗n,k(r)(En,kre − reEn′,k)φn′,k(r)

= i

∫
d3rφ∗n,k(r)

C(z)(Ĥre − reĤ) + (Ĥre − reĤ)C(z)
2

φn′,k(r)

= 〈n,k|C(z)v̂ + v̂C(z)
2

|n′,k〉. (I.9)

Here we recognize the expression of the modified velocity (see Eq. (6.11)).
The final expression of ρ̃Sn,n′,k(q→ 0) is

ρ̃Sn,n′,k(q→ 0) = 〈n,k|C(z)|n′,k〉+
〈n,k|q.V |n′,k〉
En,k − En′,k

. (I.10)

For G′ = 0, and in the limit q→ 0, χ(0)S
ρρ reads as

χ(0)S
ρρ (q,q;ω) =

2

NkVcell

∑
n,n′

BZ∑
k

fnn′

[
〈n,k|C(z)|n′,k〉〈n′,k|iq. r|n,k〉〈n′,k|q.v|n′,k〉

(En,k − En′,k + ω + iη)2

+
〈n,k|C(z)|n′,k〉〈n′,k|iq. r|n,k〉

(En,k − En′,k + ω + iη)
+

〈n,k|q.V |n′,k〉〈n′,k|iq. r|n,k〉
(En,k − En′,k)(En,k − En′,k + ω + iη)

]
+O(q3),

(I.11)

whereas for G′ 6= 0, we obtain

χ(0)S
ρρ (q,q + G′;ω) =

2

NkVcell

∑
n,n′

BZ∑
k

fnn′

[
〈n,k|C(z)|n′,k〉〈n′,k|eiG′r′ |n,k〉〈n,k|q.v|n,k〉

(En,k − En′,k + ω + iη)2

+
〈n,k|q.V |n′,k〉〈n′,k|eiG′r′ |n,k〉

(En,k − En′,k)(En,k − En′,k + ω + iη)
+
〈n,k|C(z)|n′,k〉〈n′,k|eiG′r′ |n,k〉

(En,k − En′,k + ω + iη)

]
+O(q2).

(I.12)

The first term in Eq. (I.12) and in Eq. (I.11) vanishes, using k→ −k and n↔ n′ two times. The other
terms associated with C(z) do not vanish using the time-reversal symmetry. In order to prove that
these terms are zero, we introduce the surface-averaged current-current response function,

↔
χ

(0)S

jj (q + G,q + G′;ω) = 〈ρS〉δGG′
↔
1 +

1

4NkVcell

∑
n,n′

BZ∑
k

fnn′

×
〈n,k|

[
e−i(q+G)rC(z)v + vC(z)e−i(q+G)r

]
|n′,k + q〉〈n′,k + q|

[
ei(q+G′)rv + vei(q+G′)r

]
|n,k〉

(En,k − En′,k+q + ω + iη)

− 1

NkVcell

∑
n

BZ∑
k

fn〈n,k|e−i(q+G)r[r, [r, Ṽnl]]|n,k〉δGG′ ,

(I.13)
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where Ṽnl stands for C(z)V̂nl+V̂nlC(z)
2 , V̂nl being the nonlocal part of the pseudo-potential (see Chap. 6).

In the limit q→ 0, we obtain at the 0-th order in q, after some algebra, that

↔
χ

(0)S

jj (q,q;ω) = 〈ρS〉
↔
1 +

1

NkVcell

BZ∑
k

∑
n,n′

fnn′
〈n,k|V |n′,k〉〈n′,k|v|n,k〉

(En,k − En′,k + ω + iη)

− 1

NkVcell

BZ∑
k

∑
n

fn〈n,k|[r, [r, Ṽnl]]|n,k〉, (I.14a)

↔
χ

(0)S

jj (q,q + G′;ω) =
1

2NkVcell

∑
n,n′

BZ∑
k

fnn′
〈n,k|V |n′,k〉〈n′,k|

[
eiG

′rv + veiG
′r
]
|n,k〉

(En,k − En′,k + ω + iη)
. (I.14b)

Using the conservation of charges (see App. F.1), we obtain the two equalities

ω2χ(0)S
ρρ (q,q;ω) = q.

↔
χ

(0)S

jj (q,q;ω).q− 〈ρS〉q2, (I.15a)

ω2χ(0)S
ρρ (q,q + G′;ω) = q.

↔
χ

(0)S

jj (q,q + G′;ω). (q + G′). (I.15b)

From the comparison between the left-hand side and the right-hand side of Eqs. (I.15), we conclude
that, at lowest order in q, χ(0)S

ρρ (q,q;ω) is proportional to q2, and χ(0)S
ρρ (q,q + G;ω) is proportional to

q.
This proves that the terms associated with 〈n,k|C(z)|n′,k〉 in Eq. I.11 and Eq. I.12 vanish. Finally, we
obtain, at the lowest order in q, that

χ(0)S
ρρ (q,q;ω) =

2

NkVcell

∑
n,n′

BZ∑
k

fnn′
〈n,k|q.V |n′,k〉〈n′,k|iq. r|n,k〉

(En,k − En′,k)(En,k − En′,k+q + ω + iη)
, (I.16a)

χ(0)S
ρρ (q,q + G′;ω) =

2

NkVcell

∑
n,n′

BZ∑
k

fnn′
〈n,k|q.V |n′,k〉〈n′,k|eiG′r′ |n,k〉

(En,k − Em,k)(En,k − En′,k + ω + iη)
. (I.16b)

These expressions are similar to the usual expressions for matrix elements of χ(0)
ρρ ; except the re-

placement 〈n,k|q.v|n′,k〉 → 〈n,k|q.V |n′,k〉, which allows us to calculate the optical properties of
a single surface. Note that the expression for χ(0)S

ρρ (q,q;ω) was already presented in Chap. 5 for a
local-potential. It is worthwhile to note that the quantity χ(0)S

ρρ has been found to describe the sur-
face optical response, starting from a macroscopic description of the optical response; but also from
a microscopic description, see Chap. 5.

I.1.1 Second-order optical properties of crystal surfaces

In Chap. 7, I have proved that the nonlinear optical properties of surfaces are given, for the case of
second-harmonic generation, by

χ
(2)S,LLL
M (q,q1,q2;ω, ω) =

−i
2|q||q1||q2|

εS,LLM (q; 2ω)χ̂Sρρρ(q,q1,q2;ω, ω)εLLM (q1;ω)εLLM (q2;ω), (I.17)
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I.1 Linear optical properties of crystal surfaces

where χ̂Sρρρ is obtained by solving Eq. (7.47), whose solution is

χ̂Sρρρ(q,q1,q2;ω, ω) =
∑

G1G2G3

[
Id− χ(0)S

ρρ (q; 2ω)v(q)
]−1

0G1

[
χ(0)S
ρρρ (q,q1,q2;ω, ω)

]
G1G2G3

×
[
Id+ v(q1)χρρ(q1;ω)

]
G20

[
Id+ v(q2)χρρ(q2;ω)

]
G30

.

(I.18)

In the formalism developed in Chap. 7, the matrix
[
χ

(0)S
ρρρ (q,q1,q2;ω, ω)

]
GG1G2

is defined by the
following set of equations[

χ(0)S
ρρρ (q,q1,q2;ω, ω)

]
0G1G2

= χ(0)S
ρρρ (q,q1 + G1,q2 + G2;ω, ω),[

χ(0)S
ρρρ (q,q1,q2;ω, ω)

]
GG1G2

=
[
χ(0)
ρρρ(q,q1,q2;ω, ω)

]
GG1G2

, G 6= 0.
(I.19)

Here χ(0)S
ρρρ (q,q1 + G1,q2 + G2;ω, ω) is defined by matrix elements of the independent-particle re-

sponse function, thanks to

χ(0)S
ρρρ (q,q1 + G1,q2 + G2;ω, ω) =

1

Lz

∑
Gz

C̃(−Gz)
[
χ(0)
ρρρ(q,q1,q2;ω, ω)

]
GzG1G2

, (I.20)

where the Kohn-Sham density-density-density response function χ(0)
ρρρ is given by [41]

[
χ(0)
ρρρ(q,q1,q2;ω, ω)

]
GG1G2

=
2

NkVcell

∑
n,n′,n′′

BZ∑
k

〈n,k|e−i(q+G)r|n′,k + q〉
(Enk − En′,k+q + 2ω + 2iη)[

(fn,k − fn′′,k+q2)
〈n′,k + q|ei(q1+G1)r′ |n′′,k + q2〉〈n′′,k + q2|ei(q2+G2)r′′ |n,k〉

(En,k − En′′,k+q2 + ω + iη)

+(fn,k − fn′′,k+q1)
〈n′,k + q|ei(q2+G2)r′ |n′′,k + q1〉〈n′′,k + q1|ei(q1+G1)r′′ |n,k〉

(En,k − En′′,k+q1 + ω + iη)

+(fn′,k+q − fn′′,k+q1)
〈n′,k + q|ei(q2+G2)r′ |n′′,k + q1〉〈n′′,k + q1|ei(q1+G1)r′′ |n,k〉

(En′′,k+q1 − En′,k+q + ω + iη)

+(fn′,k+q − fn′′,k+q2)
〈n′,k + q|ei(q1+G1)r′ |n′′,k + q2〉〈n′′,k + q2|ei(q2+G2)r′′ |n,k〉

(En′′,k+q2 − En′,k+q + ω + iη)

]
.

(I.21)

The derivation of the matrix elements of χ(0)S
ρρρ is similar to the derivation at matrix elements of χ(0)S

ρρ .
Note that the head of the matrix,

[
χ

(0)S
ρρρ

]
000

, has already been given in Chap. 6, see Eq. (6.13) and
Eqs. (6.14). Therefore, only the expressions for

[
χ

(0)S
ρρρ

]
0G′0

,
[
χ

(0)S
ρρρ

]
00G′′

and
[
χ

(0)S
ρρρ

]
0G′G′′

remains to
be derived.
As their derivations follow exactly the same idea, I do not report the corresponding derivations here.
The resulting expressions are found to be similar to the expressions for bulk materials, with only the
replacement 〈n,k|q.v|n′,k〉 → 〈n,k|q.V |n′,k〉 for the matrix elements associated with q.
Matrix elements associated with q1 and q2 are identical to those of the “usual” bulk formula.
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Ground-state and linear response at first and second-order, within the IPA.
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Abstract
More than 50 years after the first experimental observation of second-harmonic generation, the theo-
retical description of second-harmonic generation is still under debate, whereas it is well understood
from an experimental point of view. This is the gap that this thesis aims to fill.
This work aims to improve the theoretical description and understanding of the generation of second-
harmonic from the surfaces of crystalline semiconductors.
When applying an external electric field to a dielectric material, electric dipoles are created at a mi-
croscopic level. These dipoles are responsible for the apparition, inside the material, of an induced
field. The fluctuations of the electric field at a microscopic level, the density fluctuations or any kind
of microscopic inhomogeneities must be taken into account when describing the optical properties
of a system. These effects are often referred as “local-field effects”.
These local-field effects have been widely studied in the past and in particular their effects on the
optical properties of bulk materials are now well established. In the case of surfaces, the theoretical
description and the numerical simulations are more intricate than for bulk materials. The abrupt
change in the electronic density leads to a huge variation of the electric field at the interface with
vacuum. As a result, strong effects of the local-field are expected, in particular in the direction per-
pendicular to the plane of the surface.
The goal of this thesis is to quantify how important these effects are for the linear and second-order
optical properties of surfaces.
A macroscopic theory of second-harmonic generation from crystal surfaces has been developed in or-
der to account for local-field effects. The latter are calculated from first-principles, in the framework
of the Time-Dependent Density-Functional Theory (TDDFT). The primary interest is the description
of non-linear optical responses of surfaces, but new theoretical tools for improving the description of
local-field effects in the case of linear optics have also been developed.
The numerical simulations have been focused on the Si(001) surface, and the macroscopic formal-
ism developed during this thesis has been applied to three surface reconstructions, namely the clean
Si(001)2×1, the monohydride Si(001)2×1:H and the dihydride Si(001)1×1:2H surfaces.
Comparison with available experimental results is also reported.
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Résumé
Plus de 50 ans après la première observation expérimentale de la génération de deuxième harmonique,
la description théorique de la génération de deuxième harmonique est toujours sujette à débat, alors
qu’elle est bien comprise d’un point de vue expérimental. Cette thèse vise à combler ce fossé.
Ce travail a pour but d’améliorer la description théorique ainsi que la compréhension de la généra-
tion de deuxième harmonique à la surface des cristaux semi-conducteurs. Lorsque l’on applique un
champ électrique extérieur à un matériau diélectrique, des dipôles électriques se créent au niveau
microscopique.
Ces dipôles sont responsables de l’apparition, à l’intérieur du matériau, d’un champ induit.
Les fluctuations du champ électrique à l’échelle microscopique, les fluctuations de la densité ou tout
type d’inhomogénéités microscopiques doivent être prises en compte lorsque l’on décrit les pro-
priétés optiques d’un système. Ces effets sont souvent appelés “effets des champs locaux”.
Les champs locaux ont été largement étudiés par le passé et leurs effets sur les propriétés optiques
des matériaux massifs sont maintenant bien établis.
Dans le cas des surfaces, la description théorique et les simulations numériques sont plus com-
pliquées que pour les matériaux massifs. Le changement abrupt de la densité électronique conduit
à une variation importante du champ électrique à l’interface avec le vide. Par conséquent, de forts
effets dus au champ local sont attendus, en particulier dans la direction perpendiculaire au plan de
la surface.
Le but de cette thèse est de quantifier à quel point ces effets affectent les propriétés optiques linéaires
et non-linéaires des surfaces.
Une théorie macroscopique de la génération de deuxième harmonique à la surface des cristaux a été
développée afin de tenir compte des effets dus aux champs locaux. Ces derniers sont calculés ab
initio, dans le cadre de la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT).
L’intérêt principal de cette thèse est la description de la réponse non-linéaire des surfaces. Néan-
moins, de nouveaux outils théoriques permettant une meilleure description des champs locaux et de
leurs effets sur les propriétés optiques linéaires ont aussi été développés.
Les simulations numériques se sont focalisées sur la surface Si(001), et le formalisme macroscopique
développé durant cette thèse a été appliqué à trois reconstructions de surface, ici la surface propre
Si(001)2×1, la surface monohydrique Si(001)2×1:H et la surface dihydrique Si(001)1×1:2H.
Des comparaisons avec les résultats expérimentaux disponibles sont aussi présentées.
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