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Apprentissage Automatique pour Simplifier
l'Utilisation de Banques d'Images Cardiaques

RÉSUMÉ : L’explosion récente de données d’imagerie cardiaque a été phénoménale.
L'utilisation intelligente des grandes bases de données annotées pourrait constituer une aide
précieuse au diagnostic et à la planification de thérapie. En plus des défis inhérents à la grande
taille de ces banques de données, elles sont difficilement utilisables en l'état. Les données ne
sont pas structurées, le contenu des images est variable et mal indexé, et les métadonnées ne
sont pas standardisées. L'objectif de cette thèse est donc le traitement, l’analyse et
l’interpretation automatique de ces bases de données afin de faciliter leur utilisation par les
spécialistes de cardiologie. Dans ce but, la thèse explore les outils d'apprentissage automatique
supervisé, ce qui aide à exploiter ces grandes quantités d'images cardiaques et trouver de
meilleures représentations. Tout d'abord, la visualisation et l’interpretation d'images est
améliorée en développant une méthode de reconnaissance automatique des plans d'acquisition
couramment utilisés en imagerie cardiaque. La méthode se base sur l'apprentissage par forêts
aléatoires et par réseaux de neurones à convolution, en utilisant des larges banques d'images,
où des types de vues cardiaques sont préalablement établies. La thèse s’attache dans un
deuxième temps au traitement automatique des images cardiaques, avec en perspective
l'extraction d'indices cliniques pertinents. La segmentation des structures cardiaques est une
étape clé de ce processus. A cet effet une méthode basée sur les forêts aléatoires qui exploite
des attributs spatio-temporels originaux pour la segmentation automatique dans des images 3D
et 3D+t est proposée. En troisième partie, l'apprentissage supervisé de sémantique cardiaque
est enrichi grâce à une méthode de collecte en ligne d'annotations d'usagers. Enfin, la dernière
partie utilise l'apprentissage automatique basée sur les forêts aléatoires pour cartographier des
banques d'images cardiaques, tout en établissant les notions de distance et de voisinage
d'images. Une application est proposée afin de retrouver dans une banque de données, les
images les plus similaires à celle d'un nouveau patient.

Mots clés : Résonance magnétique cardiaque, apprentissage automatique, forêts de décision,
réseaux de neurones à convolution, nettoyage automatique de données, segmentation d’image,
recherche d'image par le contenu

Machine Learning for Simplifying the Use of Cardiac Image Databases
ABSTRACT : The recent growth of data in cardiac databases has been phenomenal. Clever
use of these databases could help find supporting evidence for better diagnosis and treatment
planning. In addition to the challenges inherent to the large quantity of data, the databases are
difficult to use in their current state. Data coming from multiple sources are often unstructured,
the image content is variable and the metadata are not standardised. The objective of this
thesis is therefore to simplify the use of large databases for cardiology specialists with
automated image processing, analysis and interpretation tools. The proposed tools are largely
based on supervised machine learning techniques, i.e. algorithms which can learn from large
quantities of cardiac images with groundtruth annotations and which automatically find the best
representations. First, the inconsistent metadata are cleaned, interpretation and visualisation of
images is improved by automatically recognising commonly used cardiac magnetic resonance
imaging views from image content. The method is based on decision forests and convolutional
neural networks trained on a large image dataset. Second, the thesis explores ways to use
machine learning for extraction of relevant clinical measures (e.g. volumes and masses) from
3D and 3D+t cardiac images. New spatio-temporal image features are designed and
classification forests are trained to learn how to automatically segment the main cardiac
structures (left ventricle and left atrium) from voxel-wise label maps. Third, a web interface is
designed to collect pairwise image comparisons and to learn how to describe the hearts with
semantic attributes (e.g. dilation, kineticity). In the last part of the thesis, a forest-based machine
learning technique is used to map cardiac images to establish distances and neighborhoods
between images. One application is retrieval of the most similar images.

Keywords : Cardiac magnetic resonance, machine learning, decision forests, convolutional
neural networks, data munging, segmentation, content-based image retrieval
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1.1 The dawn of the cardiac data age

The developments in cardiology over the last century (Cooley and Frazier, 2000;
Braunwald, 2014) have been quite spectacular. Many revolutions have happened
since the first practical Electrocardiogram (ECG) by Einthoven in 1903. These
include cardiac catheterization (1929), heart and lung machine and first animal
models in the 1950s, minimally invasive surgeries (1958), and drug development (β
blockers (1962), statins (1971), and angiotensins (1974)). The diagnostic imaging of
the heart has also vastly improved. The post-war development of cardiac Ultrasound
(US), Computed tomography (CT) (1970s) and Magnetic resonance imaging (MRI)
(1980s) have helped us to non-invasively peek into the heart at a remarkable level
of detail.
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All of these advances have dramatically changed the course of cardiovascular
disease management and by 1970 the mortality due to these diseases in high income
countries has tipped and has been steadily declining (Fuster and Kelly, 2010, p52)
ever since. Yet, the cardiovascular diseases remain the number one killer in the
world (Nichols et al., 2012, p 10;Roger et al., 2011), causing 47% of all deaths in
Europe.

We are at the dawn of the age where new cardiac image acquisition techniques,
predictive in silico cardiac models (Lamata et al., 2014), realistic image simulations
(Glatard et al., 2013; Prakosa et al., 2013; Alessandrini et al., 2015), real-time pa-
tient monitoring (Xia et al., 2013), and large-scale cardiac databases (Suinesiaputra
et al., 2014a; Petersen et al., 2013; Bruder et al., 2013) become ubiquitous and have
the chance to further improve cardiac health and our understanding.

Data within these databases are only as useful as the questions they can help
to answer, the insights they can generate, and the decisions they enable to make.
Large population clinical studies with treatment recommendations can be made,
supporting evidence can be tailored for each patient individually. Treatment can
be adjusted by looking at similar, previously treated patients, comparing their out-
comes, and predicting what is likely to happen. New teaching tools can be developed
using the data to create virtual patient case studies and surgery simulations on 3D-
printed models (Bloice et al., 2013; Kim et al., 2008; Jacobs et al., 2008) and boost
the education and practice of cardiologists.

1.2 Challenges of large cardiac data organisation

The opportunities for novel uses of large image databases are countless, however,
the usage of these databases poses new challenges. Rich cardiac collections with
relevant images (including many rare conditions) are scattered across thousands of
Picture archiving and communication system (PACS) servers across many countries
and hospitals. Data coming from these heterogeneous sources are not only massive,
but often also quite unstructured and noisy.

1.2.1 Data aggregation from multi-centre studies

The biobanks and international consortia managing medical imaging databases,
such as the UK biobank (Petersen et al., 2013), the Cardiac atlas project (CAP) (Fon-
seca et al., 2011) or the VISCERAL project (Langs et al., 2013), have solved many
difficult problems in ethics of data sharing, medical image organisation and data dis-
tribution — in particular, when aggregating the data from multiple sources. The
PACS together with the Digital Imaging and Communications in Medicine (DI-
COM) standards have been invaluable in these efforts. Studies coming from multiple
centres often use specific nomenclature, follow different guidelines or utilise different
acquisition protocols. In these cases, even these standards are not sufficient.
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1.2.2 Data standardisation

The image collections on PACS servers can be queried by patient information (e.g.

ID, name, birth date, sex, height, weight), image modality, study date and other
DICOM tags, sometimes by study description, custom tags of the clinicians, associ-
ated measurements (e.g. arterial blood pressure and cardiac heart rate) and disease
or procedure codes. See Fig. 1.1 for an example of such interface.

Figure 1.1: Cardiac atlas project web client interface.

There is no standard way to store some of the important image related infor-
mation (e.g. the cardiac acquisition image plane information), where the naming
depends on custom set-up of the viewing workstation and on the language prac-
ticed at the imaging centre. Even the standard DICOM tags often contain vendor
specific nomenclature. For example, the same Cardiac magnetic resonance imaging
(CMR) acquisition sequences are branded differently across the Magnetic resonance
(MR) machine vendors (Siemens, 2010). While some implementation differences ex-
ist, these are not relevant for image interpretation, and the terminology could be
significantly simplified (Friedrich et al., 2014). Parsing electronic publications with
images is even a bigger challenge. These images are rarely in DICOM format and
only the image content with textual description is available.

Such differences reduce our ability to effectively query and explore the databases
for relevant images. The standardisation can be enforced by strictly following guide-
lines during image acquisition, and consistently using terminologies to encode the
associated information such as the Systematized Nomenclature of Medicine - Clini-
cal Terms (SNOMED CT) (Stearns et al., 2001). Care has to be taken to eliminate
manual input errors. Images previously stored in the databases without the stan-
dardised information should be revisited for better accessibility.
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1.2.3 Retrieving similar cases

Manually crawling through these growing databases to find similar previously treated
patients (with supporting evidence) becomes very time consuming. Delivering
archived images from PACS is, in practice, quite slow for such exploratory use.
In addition, the cardiac imaging data stored in the databases are frequently 3D+t
sequences, and important details can be easily missed during such visual inspection.

An alternative to this brute-force approach is to consistently describe the images
with more compact representations. This prepares the cardiac image databases for
future image retrieval. Though, it limits the search to the annotated data or to the
cases known to the particular clinician. Most of the unannotated data therefore
never gets used again and unused data means useless data.

1.2.4 Data annotation and consensus

Annotating these images simplifies their later reuse. However, together with the
growth of the data, the demand for manual input becomes an increasing burden
on the expert raters. One way to tackle this is to reduce the annotation task into
very simpler questions that can be answered by a larger number of less experienced
raters, for example via crowdsourcing.

As studied by Suinesiaputra et al. (2015), the variability of different radiologists
(experts following the same guidelines) is not negligible. For example, in left ven-
tricle (LV) segmentation, the papillary muscles (PMs) are myocardial tissue and
therefore according to Schulz-Menger et al. (2013) should ideally be included in
the myocardial mass and excluded from the left ventricular cavity (LVC) volume
calculation. The corresponding reference values for volumes and masses (Maceira
et al., 2006; Hudsmith†et al., 2005) should be used in this case. Some tools include
the papillary muscles into the cavity volume instead. In this case a different set
of reference values should be considered (Natori et al., 2006). The two reported
measures can differ substantially. Ultimately, the PMs are part of the disease pro-
cess (Harrigan et al., 2008) and deserve individual attention on their own.

The acquisition centres are equipped with different software tools and not all
of these tools are equally capable. We still have a long way ahead to achieve
reproducible extraction of image-based measures and consistent description of all
relevant image information, especially given the constantly evolving guidelines.

1.2.5 The need for automated tools

For success in large scale analysis and use of the data, efficient ways of automatic
clean-up and description of the cardiac data coming from several clinical centres
with tools scalable to large data (Medrano-Gracia et al., 2015) are primordial. As
we will see on the following example, manual design of such tools can rapidly become
quite challenging.
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1.3 A deceptively simple problem

Examine the following four CMR mid-ventricular short axis (SAX) slices obtained
using the Steady state free precession (SSFP) acquisition sequence shown in Fig. 1.2.
They belong to four individuals with different pathologies. One of them is an image
of a healthy heart, another belongs to a patient after a myocardial infarction in the
lateral wall, the third to a patient with a severely failing and non-compacting left
ventricle and the last one shows a patient with idiopathic pericardial effusion. Can
you correctly tell which one is which?

Figure 1.2: Four cardiac pathologies on MRI: heart with pericardial effusion, post
lateral wall myocardial infarction heart, left ventricular non-compaction and a
healthy heart. Can you identify them?1

This task of pathology identification is seemingly effortless for a person expe-
rienced in interpretation of cardiac images. Intuitively, we could recognise the
post-myocardial infarction heart by a marked thinning of the lateral wall due to
a transmural infarction and subsequent myocardial necrosis. One might also note
sternal wire artefacts from a prior surgery. The failing non-compacting heart man-
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ifests itself with massive dilation, prominent trabeculations in the left ventricular
cavity, and significant reduction in myocardial contractility (best seen on cinematic
image sequences). The pericardial effusion can be seen as a bright ring of liquid
outside of the myocardium and swinging heart motion. And finally, the healthy
heart looks “normal.”

1.3.1 Automating the task

Only when we try to write a program to mimic this reasoning on a computer we
can start to fully appreciate the true complexity of the visual tasks performed by
the brain. The simplicity of relevant information extraction from the images is very
deceptive. Intuitive concepts like the myocardial thinning, the cavity dilation, low
contractility, bright ring, or swinging motion are concepts unknown to a machine.
Not to mention the more global problem to automatically tell that all these images
are short axis slices coming from a SSFP MR acquisition sequence.

One of the possibilities to extract this information by a computer is to start
writing a set of rules. Myocardial thinning measurement can be measured as the
length of the shortest line across the myocardium, counting pixels between two edges
separating the white blob (the blood pool) and the grey (except for the effusion case)
outer surroundings of the heart. Dilation is linked to the number of voxels within
the ventricular blood pool and the cavity diameter. Both of these measures can be
computed from segmentation of the left ventricular myocardium. The contractility
can be estimated from displacement of the pixels, e.g., via image registration. The
subtle changes we might want to recognise are easily overshadowed by acquisition
differences, e.g., images coming from different MR acquisition machines, acquisition
artefacts or differences in image orientation and heart position in the images. The
images have no longer similar resolutions and image quality, tissue intensities on
CMR between different machines do not match, acquisition artefacts are present
or vendor specific variations of similar acquisition protocols are used. We soon
discover that the set of rules to encode the relevant information and extract features
to describe the cardiac images is endless.

1.3.2 The machine learning approach

The machine learning approach is quite different. Instead of manually hardcoding
the rules, we specify a learning model and let the learning algorithm automatically
figure out a set of rules by looking at the data, i.e., to train the model. In the
supervised learning setting, a set of examples together with desired outputs (e.g.

images and their voxel-wise segmentations) is shown the training algorithm. The
algorithm then picks rules that best map the inputs to the desired outputs. It is
important that the learnt model generalises, i.e., can reliably predict outputs for
previously unseen images while ignoring irrelevant acquisition differences.

1Top left: Lateral infarction with thinning, top right: healthy, bottom left: left ventricular

non-compaction, bottom right: pericardial effusion
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Although good prediction is desirable, it is common to use “less than perfect”
machine learning systems in a loop, and improve the models over time, when more
data arrives. Also when guidelines change, these algorithms can be retrained and
the images can be reparsed. Incorrect predictions can be fixed and added to the
new training set and the model can then be retrained.

Machine learning in medical imaging has become remarkably important. This
is partly due to the algorithmic improvements but mainly thanks to the increased
availability of large quantities of data. While there are many machine learning
algorithms, there is not (yet) a perfect one dealing with all the tasks at hand. One
that is working for both large and small datasets.

Throughout this thesis we will use mainly three families of supervised machine
learning (ML) algorithms: Linear regression models (the Support vector machines
(SVMs) (Cortes and Vapnik, 1995) and ridge regression (Golub et al., 1979)), the
Decision forests (DFs) (Ho, 1995; Amit and Geman, 1997; Breiman, 1999), and the
Convolutional neural network (CNN) (Fukushima, 1980; LeCun et al., 1989).

1.4 Research questions of this thesis

This thesis aims to answer the following global question: “How can we simplify

the use of CMR image databases for cardiologists and researchers using

machine learning?” To help us answer this question, we addressed some of the
main challenges introduced in Section 1.2.

1.4.1 How can we clean up and standardise DICOM tags for easier

filtering and grouping of image series?

One of the first problems we face in cardiac imaging when dealing with large multi-
vendor databases is the lack of standardisation in used notation in acquisition pro-
tocols (Friedrich et al., 2014) or naming of cardiac acquisition planes. Especially
the knowledge of cardiac planes is essential for grouping the images into series and
choosing the right image processing pipeline.

Chapter 2 presents our two methods for fixing noisy DICOM metadata with
information estimated directly from image content. Our first method to recognise
CMR acquisition planes uses classification forests applied on image miniatures. We
show how cheaply generated new images can help to improve the recognition.

We then show how we modify a state of the art technique in a large scale visual
object recognition, based on CNNs, to a much smaller cardiac imaging dataset. Our
second method recognises short axis and 2-, 3- and 4-chamber long axis views with
very promising recognition performance.

In Appendix B we show how the CNN-based features can be reused to regress
cardiac point distribution models for inter-patient image alignment.
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1.4.2 Can we teach the computer to understand cardiac anatomy

and to segment cardiac structures from MR images?

Once we can describe cardiac images based on their views and merge them into
spatio-temporal 3D+t series we can move on to teach the computer the basics of
cardiac anatomy, i.e., how to segment the cardiac images. Successful segmentation
is essential to index cardiac images based on standard volumetric measures such as
systolic and diastolic volume, ejection fraction, and myocardial mass.

In Chapter 3 we extend the previous work on semantic segmentation using
classification forests (Shotton et al., 2008; Geremia et al., 2011). We show how our
modified algorithm learns to segment left ventricles from 3D+t MR short axis SSFP
sequences without imposing any shape prior. Our decision forest classifier is trained
in a layered fashion, and we propose new spatio-temporal features to classify the
3D+t sequences. We show that avoiding to hard-code the segmentation problem
helps us to easily adapt this technique to segment other cardiac structures, the left
atria — the black box of the heart, both from CMR and CT. We contributed these
algorithms to two comparison studies for fair evaluation.

In Appendix A we propose a segmentation method exploiting unlabelled data
in a semi-supervised setting to learn how to segment from sparse annotations.

1.4.3 How can we collect data needed by the computer for training

of the machine learning algorithms and learn how to describe

the hearts with semantically meaningful attributes?

Most of the practical machine learning problems are currently still solved in a fully
supervised manner. It is therefore essential to acquire the ground-truth. Chapter 4

deals with label collection for machine learning algorithms. We design a web-based
tool for crowd-sourcing of cardiac attributes and use it to collect pairwise image
annotations. We describe the cardiac shapes with their spectral signatures and use
a linear predictor based on SVM classifier to learn ordering of the images based on
their attribute values. Our preliminary results suggest that in addition to volumetric
measurements obtainable from cardiac segmentations, the hearts could be described
by cardiac attributes.

1.4.4 Can we automatically retrieve similar hearts?

The image similarity depends on the clinical question to be answered. Queries we
might want to ask the retrieval system can be quite variable. Chapter 5 builds
on the Neighbourhood approximating forest (NAF) of Konukoglu et al. (2013) and
presents our pipeline to learn shape, appearance and motion similarities between car-
diac images and how we use them to structure the spatio-temporal cardiac datasets.
We show how hearts with similar properties (similar ejection fraction) can be ex-
tracted from the database. In (Bleton et al., 2015), we then used a similar technique
to localise cardiac infarcts from dynamic shapes only (no contrast agent needed).
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1.5 Manuscript organisation

The presented thesis is organised around our published work and our work in prepa-
ration for submission. The manuscript also roughly progresses from global towards
fine-grained description of the cardiac images. Each chapter in this thesis attempts
to answer one of the objectives and to bring content-based retrieval of images from
large-scale CMR databases closer to reality.

First, we train a system to fix image tags that are not captured by DICOM
directly from image content. In Chapter 2, we show how to automatically recognise
cardiac planes of acquisition. In Chapter 3, we propose a flexible automatic seg-
mentation technique that learns to segment cardiac structures from spatio-temporal
image data, using simple voxel-wise ground-truth as input, that could be used for
automatic measurements. In Chapter 4, we suggest a way of collecting annotations
necessary for training of automatic algorithms, and to describe the cardiac images
with sets of semantic attributes. Finally, in Chapter 5, we propose an algorithm to
structure the datasets and find similar cases with respect to different clinical criteria.
Chapter 6 concludes the thesis with perspectives and future work. In the appendices,
we illustrate how unlabelled data can be used for guided image segmentation (Ap-
pendix A), how to estimate cardiac landmarks for image alignment (Appendix B),
or how to enhance pericardial effusion for image retrieval (Appendix C).
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Based on our published work (Margeta et al., 2014) on the use of decision forests
for cardiac view recognition and the convolutional neural network approach (Mar-
geta et al., 2015c) to further improve the performance.
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Chapter overview

When dealing with large multi-centre and multi-vendor databases, inconsistent no-
tations are a limiting factor for automated analysis. Cardiac MR acquisition planes
are a particularly good example of a notation standardisation failure. Without
knowing which cardiac plane we deal with, further use of the data without manual
intervention is limited. In this chapter, we propose two supervised machine learn-
ing techniques to automatically retrieve missing or noisy cardiac acquisition plane
information from Magnetic resonance imaging (MRI) and to predict the five most
common cardiac views (or acquisition planes). We show that cardiac acquisitions
are roughly aligned with the heart in the image center and use this to learn cardiac
acquisition plane predictors from 2D images.

In our first method we train a classification forest on image miniatures. Dataset
augmentation with a set of label preserving transformations is a cheap way that
helps us to improve classification accuracy without neither acquiring nor anno-
tating extra data. We further improve the forest-based cardiac view recogniser’s
performance by fine-tuning a deep Convolutional neural network (CNN) originally
trained on a large image recognition dataset (ImageNet LSVRC 2012) and transfer
the learnt feature representations to cardiac view recognition.

We compare these approaches with predictions using off the shelf CNN image
features, and with CNNs learnt from scratch. We show that fine-tuning is a viable
approach to adapt parameters of large convolutional networks for smaller problems.
We validate this algorithm on two different cardiac studies with 200 patients and
15 healthy volunteers respectively. The latter comes from an open access cardiac
dataset which simplifies direct comparison of similar techniques in the future. We
show that there is value in fine-tuning a model trained for natural images to transfer
it to medical images. The presented approaches are quite generic and can be applied
to any image recognition task. Our best approach achieves an average F1 score
of 97.66% and significantly improves the state of the art in image-based cardiac
view recognition. It avoids any extra annotations and automatically learns the
appropriate feature representation.

This is an important building block to organise and filter large collections of
cardiac data prior to further analysis. It allows us to merge studies from multiple
centers, to enable smarter image filtering, to select the most appropriate image
processing algorithm, to enhance visualisation of cardiac datasets in content-based
image retrieval, and to perform quality control.

2.1 Brief introduction to cardiac data munging

The rise of large cardiac imaging studies has opened us the door to better under-
standing and management of cardiac diseases. When handling data from various
sources, inconsistent, missing, or non-standard information is unavoidable. The
Digital Imaging and Communications in Medicine (DICOM) standard has solved
many common problems in handling, archival, and exchange of information in med-
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ical imaging by adding metadata to images and defining communication protocols.
Nevertheless, a lot of the metadata crucial for filtering cases for studies is not stan-
dardised and still remains site and vendor specific.

Prior to any analysis, the data must be cleaned up and put into the same
format. This process is often called data munging or data wrangling. Cardiac MRI
acquisition plane information is a particularly important piece of information to be
wrangled.

2.2 Cardiac acquisition planes

Instead of commonly used body planes (coronal, axial and sagittal) the CMR images
are acquired along several oblique directions aligned with the structures of the
heart. Imaging in these standard cardiac planes ensures efficient coverage of relevant
cardiac territories (while minimising the acquisition time) and enables comparisons
across modalities, thus enhancing patient care and cardiovascular research. The
optimal cardiac planes depend on global positioning of the heart in the thorax.
This is more vertical in young individuals and more diaphragmatic in elderly and
obese.

An excellent introduction to the standard CMR acquisition planes can be found
in Taylor and Bogaert (2012). These planes are often categorized into two groups
— the short and the long axis planes (see Figures 2.1 and 2.2 for a visual overview).
In this chapter, we learn to predict the five most commonly used cardiac planes
acquired with Steady state free precession (SSFP) acquisition sequences to evaluate
the left heart. These are the short axis, 2-, 3- and 4- chamber and left ventricular

outflow tract views. These five labels are the targets for our learning algorithm.

2.2.1 The need for automatic plane recognition

Why is it important to have an automatic way of recognising this information?
Automatic recognition of this metadata is essential to appropriately select image
processing algorithms, to group related slices into volumetric image stacks, to en-
able filtering of cases for a clinical study based on presence of particular views, to
help with interpretation and visualisation by showing the most relevant acquisition
planes, and in content-based image retrieval for automatic description generation.
Although this orientation information is sometimes encoded within two DICOM
image tags: Series Description (0008,103E) and Protocol Name (0018,1030), it is
not standardised, operator errors are frequently present, or this information is com-
pletely missing. In general, the DICOM tags are often too noisy for accurate image
categorization (Gueld et al., 2002). Searching through large databases to manu-
ally cherrypick relevant views from the image collections is therefore very tedious.
The main challenge for an image-content-based automated cardiac plane recogni-
tion method is the variability of the thoracic cavity appearance. Different parts of
organs can be visible even in the same acquisition planes between different patients.



20 Chapter 2. Learning how to recognise cardiac acquisition planes

2.2.2 Short axis acquisition planes

Short axis slices (Figure 2.1) are oriented perpendicular to LV long axis.These are
acquired regularly spaced from the cardiac base to the apex of the heart, often as
a cine 3D+t stack. These views are excellent for reproducible volumetric measure-
ments or radial cardiac motion analysis, but their use is limited in atrio-ventricular
interplay or valvular disease study. The American Heart Association (AHA) nomen-
clature (Cerqueira et al., 2002) divides the heart into approximately three thirds:
basal, mid cavity and apical slices (See Figure B.1 for more details).

2CH

3CH 4C
H

RV
LV

Figure 2.1: Example of a basal short axis view and mutual orientation of the long
axis planes. Both left (LV) and right (RV) ventricle can be seen. The long axis
planes are radially distributed around the myocardium to ensure the optimal cov-
erage of the heart.

2.2.3 Left ventricular long axis acquisition planes

The long axis slices are usually acquired as 2D static images or cine 2D+t stacks.
The 2-chamber, 3-chamber, and 4-chamber views (Figures 2.2a, 2.2b and 2.2d) are
used to visualise different regions of the left ventricle (LV), mitral valve (MV) ap-
paratus, aortic root and left atrium (LA). The 3-chamber (Fig. 2.2a) and the Left
ventricular outflow tract (LVOT) (Fig. 2.2c) views provide visualisation of the aortic
root from two orthogonal planes and help to detect any obstructions of the outflow
tract and/or aortic valve (AV) regurgitation. The 4-chamber view (Fig. 2.2b) visu-
alises both atrio-ventricular valves, all four cardiac chambers and their interplay.
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Figure 2.2: Examples of the main left ventricular long axis cardiac MR views. The
main cardiac cardiovascular territories and structures can be visible such as: left
ventricle (LV), right ventricle (RV), left atrium (LA), right atrium (RA), mitral
valve (MV), tricuspid valve (TV), aortic valve (AV), aorta (Ao), descending aorta
(AoD) or posterior papillary muscle (PPM). Note the dark regurgitant jet into the
left atrium (LA) adjacent to the mitral valve (MV) in Fig. 2.2a
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2.3 Methods

2.3.1 Previous work

The previous work on cardiac view recognition has been concentrated mainly on real-
time recognition of cardiac planes for echography (Otey et al., 2006; Park et al., 2007;
Beymer et al., 2008). In addition to our work, there exists some work on MR (Zhou
et al., 2012; Shaker et al., 2014). The common methods are based on dynamic active
shape models (Beymer et al., 2008), require to train part detectors (Park et al., 2007)
or landmark detectors (Zhou et al., 2012). Therefore, any new view will require these
extra annotations to be made. Otey et al. (2006) avoid this limitation by training
an ultrasound cardiac view classifier using gradient based image features. The most
recently proposed work on cardiac view recognition from MR (Shaker et al., 2014)
uses autoencoders. These learn image representations in an unsupervised fashion
(the goal is to reconstruct images from a lower dimensional representation) and use
this representation to distinguish between two cardiac views.

The state of the art in image recognition has been heavily influenced by the
seminal works of Krizhevsky et al. (2012) and Cireşan et al. (2012) using Convolu-
tional neural network (CNN). Krizhevsky et al. (2012) trained a large (60 million
parameters) CNN on a massive dataset consisting of 1.2 million images and 1000
classes (Russakovsky et al., 2014). They employed two major improvements: Rec-

tified linear unit nonlinearity to improve convergence, and Dropout (Hinton et al.,
2012) to reduce overfitting.

Training a large network from scratch without a large number of samples still
remains a challenging problem. A trained CNN can be adapted to a new domain
by reusing already trained hidden layers of the network, though. It has been shown,
e.g., by Sharif et al. (2014) that the classification layer of the neural net can be
stripped, and the hidden layers can serve as excellent image descriptors for a variety
of computer vision tasks (such as for photography style recognition by Karayev et al.
(2014)). Alternatively, the prediction layer model can be replaced by a new one and
the network parameters can be fine-tuned through backpropagation.

2.3.2 Overview of our methods

A ground truth target label (2CH, 3CH, 4CH, LVOT or SAX) was assigned to each
image in our training set by an expert in cardiac imaging. We use these labels
in the training phase as a target to train. In the testing phase, we predict the
cardiac views from the images and use the ground-truth only to evaluate our view
recognition methods.

In this chapter, we compare the three groups of methods for automatic cardiac
acquisition plane recognition. The first one is based on DICOM-derived orientation
information. The algorithms in the other two families completely ignore the DICOM
tags and learn to recognise cardiac views directly from image intensities.

In Section 2.4, we first present the recognition method using DICOM-derived
features (the image plane orientation vectors, similar to Zhou et al. (2012)). Here,
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we train a decision forest classifier using these 3-dimensional feature vectors.
The latter two approaches learn to recognise cardiac views from image content

without using any DICOM meta-information. In Section 2.5, we present our classi-
fication forest-based method (Margeta et al., 2014) using pixels from image minia-
tures as features. We then introduce the third path for cardiac view recognition,
using CNNs, as described in Section 2.6. In this section, we consider all commonly
used approaches (training a network from scratch, reusing a hidden layer features
from a network trained on another problem, and fine-tuning of a pretrained network)
for using a CNN in cardiac view recognition.

To increase the number of the training samples (for image content-based algo-
rithms) we augment the dataset with small label preserving transformations such as
image translations, rotations, and scale changes. See Section 2.5.4 for more details.

In Section 2.7, we compare all of these approaches. We show how the CNN-
based approaches outperform the previously introduced forest-based method and
achieve very good perfomance. Finally, in Section 2.8, we present and discuss our
results.

2.4 Using DICOM orientationtag

Plane normal + Forest

Zhou et al. (2012) showed that where the DICOM orientation (0020,0037) tag is
present we can use it to predict the cardiac image acquisition plane (see Figure 2.3).
This tag is not defined as a cardiac view but as two 3-dimensional vectors defining
orientation of the imaging plane with respect to the MR scanner coordinate frame.

Figure 2.3: Tips of DICOM plane normals for different cardiac views. In our dataset,
distinct clusters can be observed (best viewed in colour). Nevertheless, the separa-
tion might not be the case for a more diverse collection of images. Moreover, as we
cannot always rely on the presence of this tag an image-content-based recogniser is
necessary.
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It is straightforward to compute the 3-dimensional normal vectors of this plane
as a cross-product of these two vectors specified in the tag. We then feed these
three-dimensional feature vectors into any classifier, in our case a classification
forest (see Section 2.5.1 for more details on classification forests). This method is
shown in the results section as Plane normal + forest.

2.4.1 From DICOM metadata towards image content

This method uses feature vectors computed from the DICOM orientation tag and
cannot be used in the absence of this tag. This happens for example in DICOM
tag removal after an incorrectly configured anonymisation procedure, when parsing
images from clinical journals or when using image formats other than DICOM. In
these cases we have to rely on recognition methods using exclusively the image
content.

In the next two sections, we present two such methods. One that is based on
classification forests and image miniatures (Margeta et al., 2014) and the other
one is using CNNs. We learn to predict the cardiac views from 2D image slices
individually, rather than using 2D+ t, 3D or 3D+ t volumes. This decision makes
our methods more flexible and applicable also to view recognition scenarios when
only 2D images are present, e.g., when parsing clinical journals or images from
electronic publications.

2.5 View recognition from image miniatures

Miniatures + forest

First, we propose an automatic cardiac view recognition pipeline (see Fig. 2.4) that
learns to recognise the acquisition planes directly from CMR images by combining
image miniatures with classification forests.

2.5.1 Decision forest classifier

Decision forest classifier or classification forest (Ho, 1995; Amit and Geman, 1997;
Breiman, 1999) is an ensemble machine learning method that constructs a set of
binary decision trees with split decisions optimised for classification. This method
is computationally efficient and allows automatic selection of relevant features for
the prediction.

The decision forest framework itself is also quite flexible (Criminisi et al., 2011b;
Pauly, 2012) and has already been used to solve a number of problems in medical
imaging. For example, for image segmentation (Geremia et al., 2011), organ de-
tection (Criminisi and Shotton, 2011; Pauly et al., 2011), manifold learning (Gray
et al., 2011), or shape representation (Swee and Grbić, 2014).
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Figure 2.4: Discriminative pixels from image miniatures are chosen from a random
pool as features for a classification forest. We jitter the training dataset to improve
robustness to differences in the acquisitions without the need for extra data.

Training phase

During the training phase, the tree structure is optimised with a divide and conquer
strategy on the collection of data points X by recursively splitting them into the
left and right branches. This splitting is done such that points with different labels
get separated while the same label points are grouped together, i.e., the label purity
in the branches increases. See Figure 2.5 for an illustration of this process.

At each node of the tree a feature from a randomly drawn subset of all features
and a threshold value are chosen such that class impurity I in both branches is
minimised. We weight samples from the under-represented views more (inversely
proportionally to dataset view distribution) and normalise them to sum to one at
each node.

I(X, θ) = wleftH(Xleft) + wrightH(Xright) (2.1)

H is weighted entropy and Xleft and Xright are point subsets falling to either the
left or the right branch, based on the tested feature value and threshold. wleft,
wright are sums of sample weights at each branch and wk is the sum of weights for
a particular class k in the branch.

H(X) = −
K
∑

k=1

wk log(wk) (2.2)

Only a random subset of features (e.g. components of the 3D plane orientation
vector or a set of pixel intensity values at different fixed locations of the images)
is tested at each node of each tree and a simple threshold on this value is used to
divide the data points into the left or the right partition. This helps to make the
trees in the forest different from each other which leads to better generalisation.
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Figure 2.5: We illustrate a 2D feature space and a single tree from the classification
forest. At the training phase, the feature space (for example constructed by sam-
pling image miniature intensities at random locations) is recursively partitioned
(horizontal and vertical lines cut through the feature space) to recognise cardiac
planes of acquisition. Class distributions at the leaves are stored for the test time.
At the test time, the tested images are passed through the decisions of each tree
until they reach the final set of leaves (one per tree). Class with maximal average
probability across the forest is chosen as the prediction.

When classifying a new image, features chosen at the training stage are extracted
and the image is passed through the decisions of the forest (fixed in the training
phase) to reach a set of leaves. Class distributions of the reached leaves are averaged
across the forest and the most probable label is selected as the image view. For
excellent in-depth discussions on decision forests, in particular applied to medical
imaging, see (Criminisi et al., 2011b; Pauly, 2012).

2.5.2 Alignment of radiological images

The radiological images are mostly acquired with the object of interest in the image
center and some rough alignment of structures can be expected (see Figure 2.6).

Note the large bright cavity in the center (3CH, 4CH), dark lung pixels just
above the cavity (SAX), or black air pixels on the left and right side (2CH, SAX).
Image intensity samples at fixed positions (even without registration) provide strong
cues about the position of different tissues.

2.5.3 Pooled image miniatures as features

It has been shown by Torralba et al. (2008) that significantly down-sampled image
miniatures can be used for image recognition. In our case, we extract the central
square from each image, resample it to 128× 128 pixels (with linear interpolation),
and linearly rescale to an intensity range between 0 and 255. We subsample the
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2CH 4CH3CH LVOT SAX

Figure 2.6: Example of each cardiac view used in this work (above) and correspond-
ing central square region mean intensities across the whole dataset (below).

cropped centers to two fixed sizes (20 × 20 and 40 × 40 pixels). In addition, we
divide the image into non-overlapping 4×4 tiles and for each of these tiles compute
the intensity minima and maxima (see Figure 2.7).

Image tiles miniatures

min and max pool

40x40 20x20

32x32 32x32128x128  (4x4 tiles)

Figure 2.7: Image miniatures features: downsampled images and tile intensity min-
ima and maxima are used.

This creates a set of pooled image miniatures (32 × 32 pixels each). The pool-
ing adds some invariance to small image translations and rotations (whose effect
is within the tile size). The pixel values at random positions of these miniature
channels are then used directly as features.

In total 64 random locations across all four miniatures channels are tested
at each node of each tree when training the forest. The location and threshold
value combination that best (Eq. (2.1)) partition the data-points are then selected
and stored and the data points are correspondingly divided into the left and right
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branches. We recursively continue dividing the dataset until not less than 2 points
are left in each leaf or no gain is obtained by further splitting. We trained 160 trees
in total using Scikit-learn (Pedregosa et al., 2011).

This method is shown in the evaluation as Miniatures + forest.

2.5.4 Augmenting the dataset with geometric jittering

While the object of interest is in general placed at the image center, some differences
between various imaging centres and positioning of the heart on the image remain
(see Fig. 2.12). The proposed miniature features are not fully invariant to these
changes per se. To account for larger differences in acquisition we augment the
training set (artificially increase its size) with extra images created by transforming
the originals. In other words, we artificially generate new images from the originals
by geometric transformations. It makes sense to perform appearance transforma-
tions as well (e.g. intensity alterations done by Wu et al. (2015) or adding synthetic
bias fields). Only care must be taken not to modify the target label. The advantage
of data augmentation is that very realistic images can be obtained without extra
acquisition or labelling cost. The downside is that excessive augmentation makes
the images look more alike and there is a greater risk of overfitting to the training
set.

For our purpose, we augment the dataset on a regular grid of transformation
parameters. These were translations (all shifts in x and y between -10 and 10
pixels for a 5 × 5 grid), but also scale changes (1 − 1.4 zoom factor with 8 steps
while keeping the same image size) and in-plane rotations around the image cen-
tre (angles between -10 and 10 degrees with 20 steps). The augmented images
were resampled with linear interpolation. Note that the extra expense of dataset
augmentation is present mainly at the training time as more data points are used.
The test time remains almost unaffected, however, now a deeper forest could be
learnt. As we will see later in the results, the benefit of dataset augmentation for
this forest-based method is clear, yielding a solid 12.14% gain in the F1 score
(F1 = 2(precision.recall)/(precision + recall)). Results using this augmented
dataset are presented in the evaluation as Augmented miniatures + forest.

2.5.5 Forest parameter selection

We first trained and tested this forest-based algorithm on a subset of our dataset con-
sisting of 960 image slices from 100 cardiac patients (SAX: 540, 4CH: 140, 2CH: 112,
3CH: 107, LVOT: 9) coming from the DETERMINE study (Kadish et al., 2009)
and obtained via the Cardiac atlas project infrastructure (Fonseca et al., 2011)
(www.cardiacatlas.org). Through the augmentation we obtained 51894 training
images in total.

We ran a 25-fold cross validation by dividing the dataset on patient identifiers to
prevent biasing our results due to repeated view acquisitions and other acquisition
similarities. This means that images from the same patient (despite being from

www.cardiacatlas.org
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different views) and therefore also from the same acquisition session never appeared
in the training and testing set at the same time. We observed that, there is not
much gain in classification accuracy beyond 80 trees in the forest (see Figure 2.8).
As increasing the number of trees usually does not hurt the performance, we used
160 trees in our experiments, to stay safely in the saturated area.
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Figure 2.8: We selected the optimal number of trees via cross validation. Increasing
the number of trees from 10 to 160 improves the prediction accuracy, however at
the expense of increased training and classification computational cost. Beyond 80
trees, the forest reaches a plateau without further benefit.

2.6 Convolutional neural networks for view recognition

A larger training dataset could capture even more of these variations in appearance
than just pure augmentation. Our forest-based method initially performed quite
well (Margeta et al., 2014) but there was still room for amelioration.

The current image recognition works use the ImageNet dataset consisting of 1.2
million images (Russakovsky et al., 2014) to train high capacity models predicting
labels over 1000 categories. We will show that with good initialisation we can use
these high capacity models based on CNNs also to predict cardiac planes of acqui-
sition, using our much smaller dataset to train, and improve on the performance of
the forest-based approach.

CNNs are another powerful machine learning tool. They were originally inspired
by a simple biological model of vision. The CNNs have been around for several
decades, first introduced by Fukushima (1980) and later successfully applied to
handwritten digit recognition (LeCun et al., 1989). For a detailed history of the
neural networks and the CNNs see Schmidhuber (2015).
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Recently, there has been a renewed surge in interest in the CNNs, allowed by
rapid pace of improvements and understanding of their theoretical foundations.
Their most recent applications significantly outperform previous approaches in
many difficult machine learning problems and in some cases reach near human
level performance — e.g., in handwritten digit recognition (Cireşan et al., 2010),
traffic sign recognition (Cireşan et al., 2012), face identification (Taigman et al.,
2014), general image recognition (Ioffe and Szegedy, 2015; He et al., 2015), and
speech recognition (Hannun et al., 2014). However, not much has changed in the
original principles of the CNNs since first introduced to image processing.

We have just got better at optimisation (Bottou, 2010; Bengio, 2012; Dauphin
et al., 2014), large training datasets became available (Russakovsky et al., 2014;
Lin et al., 2014), we have greater processing power available, found good ways to
initialise the networks (Glorot and Bengio, 2010; He et al., 2015; Ioffe and Szegedy,
2015), and overcame problems of diminishing gradients and with overfitting (Hinton
et al., 2012; Ioffe and Szegedy, 2015).

This renewed interest, especially in image recognition, is mainly driven by the
seminal works of Ciresan et al. (2011) and Krizhevsky et al. (2012), and is fuelled
by the large ImageNet dataset (Deng et al., 2009) for image recognition and better
hardware. The ImageNet Large scale visual recognition competition (Russakovsky
et al., 2014) has become the battlefield in machine learning since. Many significant
improvements have followed. Fortunately, we start to see similar efforts in medical
imaging now.

2.6.1 Layers of the Convolutional Neural networks

In essence, the CNN is still just a hierarchical bank of convolutional filters combined
with some nonlinearity in between, and whose parameters are optimised with gra-
dient descent. It is composed of several layers, most frequently sequential stacked
where outputs of the lower layers are fed into inputs of the upper ones. There are
several layer types being currently used.

Convolutional layers

Convolution is a frequently used operation to enhance various aspects of images
such as gradient orientation or a particular texture. It is the main element in CNNs.
The convolutional layers map the input multichannel images into new multichannel
images by convolving them with a trainable filter bank (see Fig. 2.9).

The output multichannel images from the convolutional layer are then trans-
formed with a non-linear activation function σ.

Non-linear transformation - activation function

Most of the layers in the network are linear. Without any nonlinearity in between
their combination can be reduced into a single linear operation. In the last few
years, the Rectified linear unit (ReLU) nonlinearity (Krizhevsky et al., 2012; Malik
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Figure 2.9: Example SAX image (top left) and channels obtained by convolving
the source image with filters from the first convolutional layer of our convolutional
network CardioViewNet detailed in Section 2.6.5. The first layer mainly picks up
low level information such as edges at various orientations.

and Perona, 1990) has become quite popular. It simply clips negative input values
to 0:

σ(x) = max(0, x) (2.3)

This nonlinearity was shown to dramatically speed up training of the network.

Local response aggregation via max-pooling

Max-pooling is another important operation in the CNNs. It can be seen as a form
of nonlinear down-sampling. The role of the max-pooling operation is similar to its
role in the previously described forest-based method with miniatures in Section 2.5.
Max-pooling aggregates local responses within rectangular neighbourhoods and for
each neighbourhood outputs the maximum response value. This adds some invari-
ance to small image transformations. The output of the max-pooling operation
creates a new set of image channels which are then fed into another layer of convo-
lutions and nonlinearities.

Fully connected layers

However, the final layers of the network are usually not convolutional. We still need
to transform the multi-channel images into class predictions. The image channels
are therefore fed into the fully connected (fc) layers. The fully connected layers often
reduce the data dimensionality and in the final layer produce the class activation
vector (one element for each target class).

The multi-channel input images are first reshaped into flat vectors xmi (i is data-
point index and m is index of the layer). The fully connected layers then transform
this vector into a vector of new length via matrix multiplication. This layer is
parametrised by a matrix Wm and a bias vector bm:

xm+1
i =Wmxmi + bm (2.4)
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Soft-max to estimate cardiac view probabilities

To obtain the target label probabilities yi ∈ R
K (K is the number of classes), the

output vector of the final fully-connected layer ai = xlast
i is transformed by the

soft-max function.

yi[k] =
eai[k]

∑K
k=1 e

ai[k]
(2.5)

To predict the view of a never seen image, it has to be passed through the layers
of the CNN until the soft-max output is reached. The most likely view is then
chosen. But first, the parameters of the network must be optimised.

Loss function for classification

With decision forests, a surrogate loss is greedily optimised at every node instead
of a global loss for the classifier. The CNNs on the other hand are an end-to-end
approach, i.e., they learn optimal feature representation directly from raw image
intensity values by minimizing some global loss L(θt). For classification we use the
cross-entropy loss:

L = −
1

N

N
∑

i=1

K
∑

k=1

zki ln yki (2.6)

Here, i indexes over the data-points in the training batch and k indexes over
the views. yi is the vector with predicted probabilities for each view (depending
on parameters of the network θt and the input image). zi is the ground-truth label
indicator vector. E.g. for an image labelled as LVOT where the complete set of
views is (2CH, 3CH, 4CH, LVOT, SAX), its ground-truth vector zi is encoded as
(0, 0, 0, 1, 0).

Note that in a binary case (K = 2) this becomes the better known logistic
regression loss:

L = −
1

N

N
∑

i

zi ln yi + (1− zi) ln(1− yi) (2.7)

It is common, to also add a term regularising the network parameters into the
loss function. This is in our case a simple L2 penalty on the parameters of the
network (Ld = 0.5∥θ∥22) which we add to the total loss weighted by parameter β,
also called weight decay.

2.6.2 Training CNNs with Stochastic gradient descent

If the cost function is differentiable, we should be able to jiggle parameters of the
network θt to minimize this cost. The parameters of the network such as weights of
the convolutional filter kernels are then optimised through backpropagation in the
direction of the steepest descent.
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The batch Stochastic gradient descent (SGD) (Bottou, 2010, 2012) algorithm has
been quite successful to optimise large neural networks. The principle is very similar
to the gradient descent algorithm except that the descent direction is estimated
from a smaller random batch only (instead of using the whole training dataset at
the same time). This not only dramatically speeds up the optimisation, it also
reduces the chances of getting trapped in local minima. The batch SGD is shown
in Algorithm 1.

Algorithm 1: Batch Stochastic gradient descent (SGD) algorithm

while stopping criteria not satisfied do

Take a small random batch of examples from different classes;
Compute average descent direction with respect to these images;
Update parameters with the update rule;

end

The stochastic gradient descent updates parameters of the network θ at each
iteration using the following update rule:

Vt+1 = µVt − αt∇Lθt (2.8)

θt+1 = θt + Vt+1 (2.9)

Momentum µ helps to regularize the locally estimated steepest descent direction
of the cost function ∇Lθt with the previous weight update Vt which results in more
stable and faster convergence. For zero momentum and when using all training
images in the batch, this equals to the standard gradient descent algorithm with
learning rate α.

As the network learns the optimal parameters through training in mini-batches,
the average descent direction for the mini-batch is used. For generalisation and
convergence, care has to be taken to avoid too many images from the same subject
or the same class in one batch.

The batch training allows us to use massive (possibly infinite) quantities of
training data or data generated on the fly by data augmentation. While it is
technically possible to do similar data generation at each node for a decision forest,
the forest structure is fixed in training and is usually not revisited afterwards.The
SGD makes it simpler to continuously keep updating all of the network parameters
when new data become available.

2.6.3 Network architecture

The state of the art in image recognition has been heavily influenced by the pre-
viously mentioned seminal work of Krizhevsky et al. (2012) who trained a large
(60 million parameters) CNN on a massive dataset consisting of 1.2 million images
and 1000 target classes. They employed two major improvements to the previ-
ously used CNNs: Rectified linear unit nonlinearity to improve convergence, and
Dropout (Hinton et al., 2012) to reduce the effect of overfitting.
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Figure 2.10: Our CardioViewNet is based on CaffeNet network structure and is
adapted for cardiac view recognition. We initialised the network weights from a
pretrained CaffeNet (Jia et al., 2014). We then replaced the last 1000-dimensional
logistic regression layer (previous fc8) with a 5-dimensional for 5 cardiac views.
Then we fine-tuned the network with our data. We also extracted features from the
last 4096-dimensional fully connected layer fc7 (in dark gray) from both CaffeNet
and our fine-tuned CardioViewNet and used them with a decision forest and a
linear SVM classifier. We achieve the best performance with our fine-tuned network
directly.

We therefore use this widely adopted neural network architecture (see Fig-
ure 2.10) as implemented in the Caffe deep learning framework (Jia et al., 2014)
under the bvlc_reference_caffenet acronym (CaffeNet in short). The CaffeNet im-
plementation differs from Krizhevsky’s AlexNet in the order of Local response nor-
malisation (LRN) and max-pooling operations. Not only AlexNet/CaffeNet is the
winning entry of the ImageNet LSVRC 2012 competition, the weights and defini-
tions of this network are publicly available thus improve reproducibility of this work
and reduce computational time needed for the training.

2.6.4 Reusing CNN features tuned for visual recognition

The CNNs trained on the larger datasets are often used for feature extraction. Simi-
larly to the work of Karayev et al. (2014) for photography style recognition or Sharif
et al. (2014) for a variety of image recognition tasks, we use CNN features from
the fully connected layer of the network pretrained on the ImageNet LSVRC (Rus-
sakovsky et al., 2014) dataset. This time, to recognise cardiac acquisition planes.
The fully connected layer (in our case fc7 — see Figure 2.10) helps us to describe
the cardiac image slices with 4096-dimensional feature vectors.

Before putting the cardiac images through the network, simple preprocessing
is done. The cardiac images are resized to 256 × 256 squares regardless of their
input dimensions. Since the CaffeNet pretrained with ImageNet takes Red-Green-
Blue (RGB) images as input, we simply replicate the 2D cardiac slices into each
colour channel. We compute a pixel-wise mean image for the whole cardiac dataset
and subtract it from all training and testing images prior to entering the CNN.
This centers image intensities around zero and serves as a very simple intensity
normalisation. As we found later, the pixel-wise mean image across all classes
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is almost uniform in the central region of interest and a scalar value could be
subtracted instead. The central (227 × 227 × 3) crop of this image is then fed
forward through the network.

We then use the extracted CaffeNet fc7 features with a linear SVM classi-
fier (Cortes and Vapnik, 1995) to predict the cardiac views. We ran cross-validation
on the training subset folds to maximise the prediction precision. This helped us
to choose the penalty parameter C of the SVM classifier from standard set of val-
ues [0.1, 1, 10, 100, 1000] as C = 1. We report results of this method as Caf-

feNet fc7 + SVM.
Similarly, we trained a classification forest (with 64 tested features per node

and 1000 trees) using these CNN features (instead of image miniatures) and report
these results as CaffeNet fc7 + forest.

These features were adapted to a general object recognition task and come from
a CNN that never saw a cardiac MR image to optimise its weights. As we will show
in Table 2.1, this already performs quite well for the cardiac view recognition, in
fact, much better than our method using classification forests with image miniatures.
In the following, we will show how we can further improve performance by adapting
the CNN weights to our target domain.

2.6.5 CardioViewNet architecture and parameter fine-tuning

In practice, many examples are often needed to train a large capacity neural network.
However, by starting from the weights of a pretrained network we can just fine-tune
the network parameters with new data and adapt it to the new target domain. Here,
we use the pretrained CaffeNet (Jia et al., 2014) and replace the last 1000-class
multinomial regression layer with a 5-class one (see Figure 2.10).

The net is fine-tuned with stochastic gradient descent. We use higher learning
rate α for parameters in the newly added layer (10−2) and smaller (10−3) in the rest
of the network — we want to mainly optimise the newly added layer and preserve
the more general low level preprocessing ones. We choose momentum µ of 0.9 in
the SGD optimiser, and a small weight decay β (10−4). The batch size used in each
iteration was 32 images and the step size is kept constant for the whole training.
As done in the previous section, the images were resized to 256 × 256 × 3 and the
mean image was subtracted from them prior to the training.

At each iteration, a batch of 32 random (not necessarily central) 227× 227× 3

crops is extracted from the resized cardiac slices and is fed forward through the
network. Compared to the implementation of the forest-based method where all
augmented images were precomputed, the translations are cheaply generated on
the fly at each iteration. Already after 3000 iterations the prediction error on the
validation dataset reaches a plateau and further improvements are only marginal
(see Figure 2.11). We stop the optimisation at 8000 iterations and pick this model
in our experiments as it yields the best performance. To reduce overfitting, we use
the Dropout strategy (Hinton et al., 2012) in the fully connected layers fc6 and fc7

with probability of dropping output of a neuron to be 0.5.
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Figure 2.11: Fine-tuning our CardioViewNet model, the prediction accuracy and
classification loss rapidly converge to the best performance.

The fine-tuning is quite efficient and 8000 SGD iterations take approximately 4
hours on a single NVIDIA Tesla M2050 Graphical processing unit (GPU). Results
of this method are presented as CardioViewNet.

We also show results for prediction of an SVM classifier using fc7 features ex-
tracted from the fine-tuned network as CardioViewNet fc7 + SVM. In other
words, we replace the 1000-class multinomial regression layer of the fine-tuned net-
work by a linear SVM classifier. Results using a classification forest instead are
listed as CardioViewNet fc7 + forest. The possibility to replace the final classi-
fier is important for quick retraining with additional views without extra fine-tuning.
In addition to the training set augmentation, we perform oversampling at the test
time, i.e., average predictions of ten 227×227 image crops: the central crop and the
four 227×227 corner aligned crops and their horizontally flipped versions (vertically
flipped images are rare). We report these results as CardioViewNet + oversam-

ple. We will see that this improves performance on an independent dataset.

2.6.6 Training the network from scratch

Good initialisation of the network is important and the CaffeNet trained on the
ImageNet dataset helps us with that. The initial motivation behind the fine-tuning
was that there were few images in our dataset to train the whole network from
scratch. While the number of images is certainly smaller than in the ImageNet
dataset, our target domain is also much simpler. We are predicting only 5 classes
whose appearance variability is lower than the one across the ImageNet classes (e.g.

variability of felines in different poses and appearance all labelled as a cat).
To test whether there is any value in the fine-tuning instead of learning the

network parameters from scratch, we train from the ground up two networks. First,
a simpler LeNet-5 network (shown as LeNet-5 from scratch) previously designed
for handwritten digit recognition (LeCun et al., 1998), with the last layer adapted
to a 5 class target (similarly to what was done for the CardioViewNet). Again, for
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better reproducibility, we use the network definition from the Caffe library. The sec-
ond network architecture is the CardioViewNet (CardioViewNet from scratch).
We found the choice of the learning rate (10−3 for CardioViewNet and 10−5 for
LeNet-5, both using batch sizes of 32) and good random initialisation to be crucial
to ensure convergence.

We chose the learning rate by trial and error strategy of Bengio (2012), i.e., we
reduce the learning rate until the network starts to reduce the loss without diverging.
We initialised the weights with the procedure described by He et al. (2015) that is
well suited for networks with the ReLU nonlinearity.

2.7 Validation

We trained and validated all the presented methods on a dataset of slices from 200
patients (2CH: 235, 3CH: 225, 4CH: 280, LVOT: 12, SAX: 2516) from a multi-center
study on post myocardial infarction hearts DETERMINE (Kadish et al. (2009))
from SSFP acquisition sequence (see Fig. 2.12 for illustration). The LVOT views
are severely under-represented and served us only as a test case for learning from
very few examples. They are not taken into the account when computing the mean
scores in the results as it would make unrealistic variation between the methods for
fair comparison.

2CH

4CH

3CH

LVOT

SAX

Figure 2.12: Typical examples of the training images from the DETERMINE
dataset for different views. Note the acquisition and patient differences. In ad-
dition, the short axis slices cover the heart from the apex to the base with quite
different appearances.

We ran a randomized 10-fold cross-validation by taking a random subset of 90%
of the patients (rather than image slices) for training and using the remaining 10%
for validation. The patient splits guarantee that repeated acquisitions from the
same patient, that are occasionally present in the dataset, never appear in both the
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training and the validation set together and do not bias our results. Classification
accuracy is not a good measure for imbalanced datasets as performance on the
dominant class (i.e. short axis) can obfuscate the true performance. Therefore, in
this chapter we report means and standard deviations of average (averaging is done
across the classes) precisions, recalls and F1 scores. In the context of content-based
retrieval, these measures can be interpreted as following: The precision (also known
as positive predictive value or false positive rate is defined as TP / (TP + FP))
is the fraction of relevant images (having the same view as the query view) out of
all returned images. The recall (also known as sensitivity or true positive rate is
defined as TP / (TP + FN )) is the probability of retrieving a relevant image out of
all existing relevant images. TP is the number of true positives, FP the number of
true negatives, and FN the number of false negatives. The F1 score is the harmonic
mean of the precision and the recall.

To study the robustness of the presented algorithms against the dataset bias, we
did the training exclusively on images from the DETERMINE study (Kadish et al.
(2009)) and tested them on a completely independent dataset — the STACOM

motion tracking challenge (Tobon-Gomez et al., 2013a) (KCL in short) contain-
ing SSFP slices from 15 patients (2CH: 15, 4CH: 15, SAX: 207). This allows us
to evaluate performance on the 3 cardiac views present. The KCL dataset consists
of images from healthy volunteers. The images are in general of higher and more
uniform quality and with more consistently chosen regions of interest. We invite
the interested readers to look at this open access dataset through the Cardiac Atlas
Project website (Fonseca et al., 2011).

2.8 Results and discussion

Here, we present prediction results for the DICOM-based and image-content-based
methods. The mean average F1 scores, precisions and recalls are summarised in Ta-
ble 2.1 and total confusion matrices for the two best methods from each family
(DICOM-based and Image-based) are shown in Figure 2.13.

We confirm findings from the previous work that cardiac views can be predicted
from image plane normals (Zhou et al., 2012) but require presence of the relevant
DICOM tag. The DETERMINE dataset turned out to be more challenging for
the miniature-based method using classification forests. It is clear, however, that
data augmentation helps to boost recognition performance. On the contrary, the
performance of the CNN features from CaffeNet on the cardiac view recognition
problem is quite remarkable. These features were not trained for cardiac MR images,
yet they perform better than most methods with handcrafted features. They most
likely encode local texture statistics helping the prediction. Adding some texture
channels to the miniature method could therefore further improve its performance.

The quality of predictions using the fine-tuned CardioViewNet is almost on par
with the approach using DICOM derived information and significantly outperforms
the forest-based method using image miniatures (Margeta et al., 2014) while not
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DETERMINE KCL

F1 score precision recall F1 score precision recall

DICOM tag based prediction

Plane normal + forest (2.4) 99.14± 1.2399.14± 1.2399.14± 1.23 98.91± 1.1398.91± 1.1398.91± 1.13 99.20± 1.5399.20± 1.5399.20± 1.53 99.08± 0.4699.08± 0.4699.08± 0.46 98.76± 0.7898.76± 0.7898.76± 0.78 99.16± 0.3299.16± 0.3299.16± 0.32

Image content-based prediction

Miniatures + forest (2.5) 59.33± 4.15 62.13± 5.74 55.61± 3.80 39.36± 1.75 42.71± 4.63 37.98± 4.39

Augmented miniatures + forest (2.5.4) 71.46± 2.68 72.33± 2.77 68.01± 2.65 48.87± 2.02 54.74± 2.33 43.77± 1.98

CaffeNet fc7 + forest (2.6.4) 75.94± 4.50 94.03± 1.75 69.08± 4.53 88.09± 1.29 92.60± 1.63 86.86± 1.08

CaffeNet fc7 + SVM (2.6.4) 91.86± 4.33 92.48± 3.98 91.61± 4.71 86.72± 1.49 86.70± 2.19 87.30± 1.08

CardioViewNet fc7 + forest (2.6.5) 97.48± 2.34 98.28± 1.84 96.81± 3.03 93.43± 2.05 95.79± 3.10 91.67± 2.34

CardioViewNet fc7 + SVM (2.6.5) 97.39± 2.27 98.37± 1.8898.37± 1.8898.37± 1.88 96.65± 2.77 88.40± 1.84 97.51± 2.0297.51± 2.0297.51± 2.02 88.95± 4.44

CardioViewNet (2.6.5) 97.66± 2.0497.66± 2.0497.66± 2.04 97.82± 1.93 97.62± 2.3797.62± 2.3797.62± 2.37 91.01± 3.29 92.23± 3.80 90.57± 3.26

CardioViewNet oversample (2.6.5) 97.53± 2.06 97.98± 2.12 97.30± 2.30 93.50± 3.1293.50± 3.1293.50± 3.12 95.31± 5.17 92.62± 2.3092.62± 2.3092.62± 2.30

LeNet-5 from scratch (2.6.6) 69.59± 5.12 76.79± 5.40 67.89± 4.26 63.81± 4.88 72.03± 9.67 60.41± 4.53

CardioViewNet from scratch (2.6.6) 92.36± 3.51 92.63± 4.44 92.97± 2.79 79.72± 3.65 80.39± 5.39 81.65± 3.64

Table 2.1: Evaluation of the algorithms in the two groups of algorithms, we highlight
in bold the best performance from each group. Note: References to relevant sections
in the chapter with more details on each algorithm in the parentheses. We computed
average of individual view F1 scores, precisions and recalls for each fold (except for
the underrepresented LVOT) for the two datasets. Here, we display means and
standard deviations of these average scores across all 10 folds. The prediction
using classification forests on the DICOM orientation vector is the best performing
method. However, from purely image-based methods, the fine-tuned convolutional
network CardioViewNet outperforms the rest.

(a) Predictions from DICOM-derived image
normals (Plane normal + forest).

(b) Predictions from image content with a
fine-tuned CNN (CardioViewNet).

Figure 2.13: Sum of the confusion matrices over the 10 folds of our cross-validation
on the DETERMINE dataset for the two best models (one using DICOM normal in-
formation and the best image-based predictor using our fine-tuned neural network).
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requiring to train any extra landmark detectors as in Zhou et al. (2012). As features
extracted from the CardioViewNet perform well even when used with external clas-
sifiers, they could be likely used to learn extra view recognisers without additional
fine-tuning on these new views.

In Figure 2.14, we present examples of some of the least confident correct predic-
tions using the fine-tuned CardioViewNet. It is important to note that the softmax
output of the neural network not only returns the label but also some measure of
confidence in the prediction. The incorrectly classified images (see Figure 2.15) of-
ten belong to views more difficult to recognise even for a human observer and the
second best prediction is often the correct result.

Figure 2.14: Examples for some of the least confident correct (the normal pre-
dictions are usually very peaky) predictions using CardioViewNet. Predicted and
true (in parentheses) labels shown under the images. Below them are view-specific
prediction confidences.

The predictions on the KCL dataset are naturally slightly worse as some dif-
ferences between the studies still exist. We have observed (as shown in Table 2.1)
that test time oversampling (averaging predictions of the central and corner patches
and their horizontally flipped versions) improves the scores for this dataset while
it does not improve the quality of predictions on the DETERMINE dataset. This
might indicate that better thought dataset augmentation strategies, oversampling,
or image normalisation might further improve the cross-dataset generalisation.

When training from scratch, the performance does not seem to improve beyond
10,000 iterations and we pause the backpropagation there. Although the perfor-
mance is much lower than for the fine-tuned networks, the network learns to predict
the cardiac views. For the LeNet-5 model trained from scratch, the performance
closely follows the CaffeNet fc7 + SVM model. We did not observe any benefit
of using forests (at least when using orthogonal splits) over the linear SVM clas-
sifier when using features from the convolutional nets, and the forests perform in
general slightly worse. We would likely improve their performance using oblique
splits (Menze et al., 2011; Criminisi et al., 2011b). In our case, the use of the
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Figure 2.15: Example misclassifications using CardioViewNet. Predicted and true
label (in parentheses) are indicated under the images and below them are view-
specific prediction confidences. The failures typically happen with less typical ac-
quisitions and truly ambiguous images. The misclassified 2CH image indeed looks
like a 3CH image except that the left atrium is missing and the ventricle is ac-
quired with non-standard oblique orientations. Similarly for the 4CH view, the
right atrium is missing and one can already see parts of the outflow tract branching
out of the left ventricle typical for a 3CH view. The 3CH view is captured with
a detailed region of interest not very common in the dataset. Extra data augmen-
tation could probably help to fix this case. Finally, the LVOT views are severely
under-represented and can be confused with basal short axis views. Note that for
all of these cases, the correct prediction is in the top two most likely views.
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CardioViewNet trained from scratch is a better choice than using the generic fc7

features from CaffeNet. However, the training is significantly more time-consuming.
The fine-tuning approach is the clear winner among the image-based methods in
terms of performance.

2.9 Conclusion and perspectives

Convolutional neural networks and features extracted from them seem to work
remarkably well for medical images. As large datasets to train complex models are
often not available, retargeting the domain of a previously trained model by fine-
tuning can help. This speeds up the learning process and achieves better predictions.
Even models trained for general object recognition might be a great baseline to
start. In our case, doing network surgery by replacing the final layer and fine-
tuning the pretrained model allowed us to make significant progress in cardiac view
recognition from image content without handcrafting the features or training with
extra annotations.

This also allowed us to gain performance over models learnt from scratch. How-
ever, even the performance of models learnt from scratch is very encouraging for
further exploration. More recent and much deeper network architectures (e.g.

VGG (Simonyan and Zisserman, 2014) or GoogLeNet (Szegedy et al., 2014; Ioffe
and Szegedy, 2015)) have achieved significant improvements in image recognition
performance over AlexNet, and would likely help to further improve performance
of the view recognition.

Features extracted from our network should be useful as descriptors for new
views (e.g. pathology specific views such as those used in congenital heart diseases)
and acquisition sequences other than SSFP, but also to recognise the acquisition se-
quences themselves. Several recommendations (Friedrich et al., 2014; Kramer et al.,
2013) have been recently proposed to simplify and remove vendor specific naming
of acquisition sequences. Such efforts are crucial for improved communication in
cardiology. The methods presented in this chapter could help us to learn the map-
ping from image content to these standardised nomenclatures and further clean up
inconsistent and missing metadata for better organisation and search within car-
diac databases. As we will see later in this thesis, the features from our fine-tuned
network can also be used to predict positions of cardiac landmarks (Appendix B).

These are important additions to the arsenal of tools for handling noisy meta-
data in our datasets and are already helping us to organise collections of cardiac
images. In the future, our method can be used for semantic image retrieval and
parsing of medical literature. Recognition at an image level (image classification)
can be also extremely useful for the costly problem of quality control (as done, e.g.,
by Criminisi et al. (2011a) to verify contrast enhanced images). For example, “I
have asked my radiographer to take all standard views of the heart. Did he do it
correctly?”
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Based on our paper on left ventricle segmentation (Margeta et al., 2012) whose
results we contributed to the left ventricle collation study by Suinesiaputra et al.
(2014b). Our left atrial segmentation work was published in (Margeta et al., 2013)
and was contributed to the benchmark study led by Tobon-Gomez et al. (2015).
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Chapter overview

The most commonly used clinical indices for cardiac disease quantification are based
on geometrical measurements of structures in the images, such as cavity volumes,
myocardial masses or wall thicknesses. It would be quite useful to have them stored
in the cardiac databases alongside the images and use them to select patient cohorts
for clinical studies. These measurements are often computed from segmentations of
these cardiac structures. The segmentation also forms the basis for understanding
the cardiac anatomy by a computer.

In this chapter we present a flexible machine learning based method for CMR
image segmentation of two of the most important cardiac structures. First, we
learn how to segment the left ventricles from dynamic 3D+t SAX images directly
from voxel-wise ground-truth by training classification forests with spatio-temporal
context rich features. We then show that this method can be easily adapted to
other segmentation problems such as the left atria.

3.1 Segmentation of the left ventricle

3.1.1 Measurements in cardiac magnetic resonance imaging

The left ventricle plays a fundamental role in circulation of oxygenated blood to
the body. To assess its function in clinical practice, the guidelines (Kramer et al.,
2013; Fratz et al., 2013; Friedrich et al., 2012) suggest to measure, calculate and
report several measures. Many of these are based on ventricular volume and mass
measurements at reference cardiac phases. These can be then compared with refer-
ence values (Schulz-Menger et al., 2013; Maceira et al., 2006; Hudsmith†et al., 2005;
Chuang et al., 2014; Buechel et al., 2009) for CMR.

Compared to CT, CMR imaging offers superior temporal resolution, excellent
soft tissue contrast, no ionising radiation, and a vast flexibility in image acquisi-
tion characteristics. On the other side, MRI scans often yield significantly lower
resolution in the plane orthogonal to the plane of acquisition, the images can suf-
fer from magnetic field inhomogeneities and respiration artefacts can manifest as
slice shifts. Moreover, the lack of standard units (compared to the Hounsfield scale
in CT) makes it more challenging to directly apply most of the intensity based
segmentation techniques.

Still, to calculate the quantities, accurate delineations of the myocardium and
the cavity borders are often necessary. Such manual delineations are still labour
intensive (2 minutes per cardiac phase), especially when applied retrospectively to
the previously acquired data. The inter-rater variability of manual segmentations
(and derived measures) is also quite noticeable (Suinesiaputra et al., 2015) and can
be likely improved by finding a consensus and training of the raters.

Moreover, the differences in measures between inclusion or exclusion of papillary
muscles and trabeculations can be also significant (Papavassiliu et al., 2005; Winter
et al., 2008; Chuang et al., 2011; Han et al., 2008).



3.1. Segmentation of the left ventricle 45

To obtain consistent measurements, to be able to resegment the images when the
guidelines change (or segment all variations), and to save clinicians’ time, automatic
segmentation techniques are desirable.

3.1.2 Previous work

There have been numerous examples of semi-automatic or automatic LV segmen-
tation algorithms to this date. See Petitjean et al. (2011) for a thorough review.
Here, we mention only a selection of the notable automatic ones.

Shape based segmentation

Two beautiful frameworks for automatic whole heart cardiac image segmentation
were proposed by Zheng et al. (2008); Ecabert et al. (2008). Machine learning based
detection of the heart is followed by an iterative refinement of the segmentation
regularised with probabilistic shape models.

These methods offer an excellent performance and regularisation of the segmen-
tations. In addition, they naturally complete out of image shapes, e.g., in the apical
or atrial regions and divide the image into the compartments even when no image
gradient between them is present. As they are often based on Principal Component
Analysis (PCA), they perform slighly worse on data that cannot be well represented
by the linear combination of the bases and do not work at all when the topology sig-
nificantly changes (such as for congenital heart diseases). In these cases, additional
models have to be built specifically for each topology.

Atlas-based segmentation

The atlas-based segmentation techniques (Shi et al., 2011) use non-rigid image reg-
istration to deform and position a previously segmented image (or images for a
multi-atlas segmentation) to better match the target image. The labels are then
propagated from the atlas to the target image. These methods rely on robust
non-rigid registration.

The inter-patient non-rigid registration is in general a difficult problem due to
the extra-cardiac structures which misguide the registration metric. Masking of the
images (with cardiac segmentation) might be needed (Ou et al., 2012). To avoid
the chicken and egg problem (segmenting the heart in order to register in order
to segment) Shi et al. (2011), proposed to register the images and use only the
information contained within the cardiac region of interest. This region is detected
with a standard trainable object detector (Viola and Jones, 2004).

Voxel-wise semantic segmentation

Instead of shape-based or atlas-based methods, the cardiac segmentation can be
posed as a semantic image segmentation problem (Shotton et al., 2008). Here, each
pixel is assigned a class label (myocardium or background). In the work of Shotton
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et al. (2008), classification forests and simple pairwise difference/sum features were
used. Lempitsky et al. (2009) modified this algorithm for LV myocardium segmenta-
tion from 3D ultrasound sequences in near real time and extracted Haar-like 3D box
features. Later, Geremia et al. (2011) extended this method for the segmentation
of multiple sclerosis lesions from multi-channel MRI.

3.1.3 Overview of our method

In this chapter, we propose a fully automated voxel-wise segmentation method for
3D+t cardiac images inspired by the above techniques. We avoid the need for robust
registration to an atlas (Shi et al., 2011), to build a statistical model (Zheng et al.,
2008; Ecabert et al., 2008; Lu et al., 2011), or design a highly specialised cardiac
segmentation algorithm.

Instead, the left ventricle segmentation problem is defined as a binary classifica-
tion of image voxels into myocardium and background. We make no assumptions
on shape, appearance, or motion (except for periodicity and temporal ordering)
or knowledge about the cardiac phase of the images in the sequence. There is no
constraint on the topology per se either. We define a set of simple feature families
and leave the learning algorithm to automatically figure out which features are rele-
vant for solving the segmentation problem providing only a pixel-wise segmentation
ground-truth.

In principle, segmenting any cardiac pathology and tissue can be learnt this way
once it is contained in the voxel-wise ground-truth and similar voxels are present
within the training dataset. This includes for example the controversial papillary
muscles and trabeculations, but also pericardial effusion or surrounding fat.

The previously used decision forest-based segmentation algorithms (Lempitsky
et al., 2009; Geremia et al., 2011) rely on features that work best when image
intensities and orientations are very similar. To tackle the highly variable dataset,
we propose a layered learning approach, where the output of each layer serves
a different purpose. The first layer is used to prepare the data (normalised image
intensities and pose) for a more semantically meaningful and accurate segmentation
task in the second layer. Once the images are intensity- and pose-normalised, we
add coordinate features encoding spatial information and then train a second forest
layer (Section 3.1.7). This helps the trees to automatically build their own latent
shape representations. When results of one learning stage are used as semantic input
to improve a second learning stage, this is often referred to as the auto-context (Tu
and Bai, 2010).

Our main contribution is a method to segment left ventricular myocardia from
cine MR SAX 3D+t sequences with decision forests. We show, how our method can
be used for robust inter-patient rigid alignment (Section 3.1.6) and a possible way to
tackle the MR intensity standardisation problem (Section 3.1.6). We also introduce
temporal dimension into the currently used 3D random features (Section 3.1.5).



3.1. Segmentation of the left ventricle 47

Dataset for LV segmentation

STACOM 2011 LV segmentation challenge data (Fonseca et al., 2011) were divided
into two sets. Training set (96 3D+t short axis (SA) volumes with manually de-
lineated myocardia at each cardiac phase) and validation sets (5 × 20 3D+t SA
volumes). In this work, we use ground-truth that excludes the papillary muscles
and trabeculations from the myocardium. This dataset clearly shows the anatomi-
cal variability of heart shape and appearance and some of the main issues of CMR
mentioned above.

3.1.4 Layered spatio-temporal decision forests

We train a classification forest as described in the previous chapter (see Section 2.5.1).
Instead of representing one 2D slice as a point in the feature space, we consider each
voxel as one point in this space.

The goal of the forest is to divide this space and predict label for every voxel as
being either the myocardium or the background based on its feature representation
θ and context. The binary decision on each feature is τl < θ < τh. At each node,
local features and a randomly sampled subset of context-rich features are considered
for feature selection. We detail these features in Section 3.1.5.

Bagging strategy for training from 4D datasets

In our approach, we serially train two layers of decision forests, each with the aim to
learn how to segment, but using slightly modified training data and features. Train-
ing with the complete 3D+t dataset in memory is not always feasible. In Figure 3.1
and in Algorithm 2 we present our bagging strategy to reduce the memory footprint
when using larger training datasets (e.g. when using the 4D image sequences).

This strategy is repeated for each tree:

Algorithm 2: Our bagging strategy for training with 4D data

for Every tree in the forest do

Select a random subset of k 4D volumes from the whole training set;
Randomly choose a reference 3D frame Ic for each selected 4D volume;
Select two frames Ic−o, Ic+o with a fixed offset o on both sides from the
reference cardiac image Ic (with periodic temporal wrapping);
Train the tree using the set of k triplets (Ic, Ic−o, Ic+o);

end

To fit into the memory constraints, the size of the subset for each tree was set
to k = 15, and only one fixed offset o = 4 is used. The value of o was chosen such
that the motion between the selected frames is significant even when more stable
cardiac phases (end systole or end diastole) are selected as the reference frame and
that almost a half of the cardiac cycle could be covered. Note that for k = 1

and when no offset images Ic−o, Ic+o are used, the algorithm becomes similar to
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Training 3D triplets

Ic-o Ic+oIc

Ic-o Ic+oIc

Ic-oIc+oIc

Source 4D images

Figure 3.1: Our strategy to train a segmentation forest from 3D+t cardiac data.
For each tree we randomly select a subset of training images (3 in this example). For
each image we pick a random reference frame and two frames offset by a constant
number of frames (while respecting the periodicity of the sequence). We then train
the forest on these triplets.

the later introduced Atlas encoding by randomized forests (Zikic et al., 2013). In
addition, instead of randomly selecting the reference images for each tree, guided
bagging (e.g. by training each tree on similar images only) could help to improve
the segmentation quality as shown by Lombaert et al. (2014).

3.1.5 Features for left ventricle segmentation

We use several feature families to generate the random feature pool operating on
the triplets of frames. These can be seen in Figs. 3.2 to 3.6.

Local features

Proposed in Geremia et al. (2011) as an average of intensities in the vicinity of the
tested voxel to deal with noise in magnetic resonance imaging:

θlocIc (x) = θlocIc ([x, y, z]) =

x′≤x+1
∑

x′=x−1

y′≤y+1
∑

y′=y−1

z′≤z+1
∑

z′=z−1

Ic([x′, y′, z′]) (3.1)

Although these features are not intensity invariant, they can still quite well reject
some highly improbable intensities (e.g. bright blood-like voxels will likely never
belong to the myocardium).
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I
c

S

Figure 3.2: Local features (3× 3× 3 box average S around the source voxel in the
current frame Ic) Geremia et al. (2011).

Context rich features

Defined also in Geremia et al. (2011), for multichannel MR acquisitions as a differ-
ence between the local source image intensity IS and box averages of remote regions
in image IR:

θCR
IS ,IR(x) = IS(x)−

1

V ol(R1)

∑

x’∈R1

IR(x’)−
1

V ol(R2)

∑

x’∈R2

IR(x’) (3.2)

The 3D regions R1 and R2 are randomly sampled in a large neighbourhood around
the tested voxel. These capture strong contrast changes and long-range intensity
relationships. In our case we define context-rich features as θCR

Ic,Ic(x).

R1

R2

S

I
c

Figure 3.3: Context rich features (Geremia et al., 2011) measuring the difference
between source box average S and the sum of remote region averages R1 and R2.

Voxel coordinates

Finally, as in (Lempitsky et al., 2009), we can insert absolute voxel coordinates:
θXC (x) = xx, θYC (x) = xy, θZC(x) = xz into the feature pool. However, not until these
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coordinates have a strong anatomical meaning. This happens later, in the second
forest layer when we reorient the images into the standard pose.

Ic

x,y,z

Figure 3.4: Components x,y,z of voxel coordinates as features (Lempitsky et al.,
2009).

Spatio-temporal context rich features

The domain of the moving heart can be coarsely extracted by just thresholding the
temporal intensity ranges of the image (Section 5.4.2.1). We propose to exploit
the wealth of information in time and extend the previous context-rich features
into the temporal domain by comparing the “current” 3D frame Ic and another
frame offset from c by ±o. The temporal context-rich features can be defined as
θTCR1
Ic = θCR

Ic,Ic+o(x) and θTCR1
Ic = θCR

Ic,Ic−o(x).

I
c

R1

R2

S

I
c

I
c±o

Figure 3.5: Spatio-temporal context rich features with one of the offset frames as
the source image and the other as remote.

Similarly, we measure the differences between the symmetrically offset frames
contained in the triplet as θTCR2

Ic (x) = θCR
Ic+o,Ic−o(x) and θTCR2

Ic (x) = θCR
Ic−o,Ic+o(x).

These spatio-temporal features can be seen as an approximation to temporal differ-
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entiation around the centre frame. Note that we use both +o and −o to keep some
symmetry of the remote region distribution.

I

R1

R2

S

I I
c±o c∓o

Figure 3.6: Spatio-temporal context rich features with one of the offset frames as
the source image and the other as remote.

Data preprocessing

To use fast evaluation of previously defined features based on integral images (Viola
and Jones, 2004; Crow, 1984), it is necessary to have consistent spacing. Therefore,
all the volumes were resampled to one of the most common voxel size in the dataset
(1.56, 1.56, 7.42) milimetres and temporal sequence length (20 frames).

Intensity ranges of the images were all linearly rescaled to a fixed range. Sim-
ilarly to Nyúl and Udupa (1999), we clip intensities beyond the 99.8 percentile as
they usually do not convey much useful information.

3.1.6 First layer: Decision forests for image intensity standardisa-

tion and pose normalisation

We train the first layer of the forests using the above mentioned training subset
selection strategy. The training is done directly using the images after intensity
rescaling, i.e., images are brought into the same intensity range but have their
original poses. Although short axis scans are often acquired close to a position
where the ventricular ring is centred, slice orientation is chosen manually during
the acquisition, and precise alignment cannot be guaranteed. Therefore, we skip
the usage of absolute voxel coordinate features at this step.

Several authors (e.g. Shi et al. (2011); Pavani et al. (2010)) have proposed to
use Haar-like features to detect the heart and crop the cardiac region of interest.
Images can be then registered using only information in the cropped volumes. This
reduces the influence of background structures on the registration and improves its
success rate. However, an extraction of the cropped region will not be necessary
to perform a robust registration in our case. We train the first layer of the forests
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Figure 3.7: Short (top) and long (bottom) axis views of the posterior probabilities
after the first layer. Brighter value means higher probability.

on a rather general scenario, to end up with at least a very rough classification
performance (see Fig. 3.7). The performance of this first layer may not be suffi-
cient for image segmentation. We show in the next two sections, how these rough
posterior probability maps (of a tissue belonging to the myocardium) are already
good enough for ventricle detection, intensity standardisation and alignment of the
ventricles onto a reference pose without any prior knowledge of the data apart from
the ground-truth.

Intensity standardisation

MR intensity value differences of the same tissue are significant not only between
scanners and acquisition protocols (Shah et al., 2010) but also for the same follow-
up patients (Nyúl and Udupa, 1999). Therefore, good intensity standardisation is
crucial for any intensity based segmentation algorithm. The variance in median
intensities of the myocardia between different cases in the training set is quite large
(see Figure 3.8). There is no unique mode and the distribution is fairly spread
across the whole intensity range (0, 65535). Median myocardial intensities span
range (1954, 36430), with standard deviation of 5956 and inter-quantile range 7663.
This is a serious problem for any intensity-based segmentation method.

Many of the intensity standardisation algorithms (Bergeest and Jäger, 2008)
used today are based on Nyúl and Udupa (1999); Nyúl et al. (2000) and the ob-
servation that most of the MR intensity histograms are often either unimodal or
bimodal for which the second mode corresponds to the foreground object. The
alignment of histogram-based landmarks (e.g. modes, percentiles or statistics of
homogeneous connected regions) is done by rescaling image intensities with a piece-
wise linear mapping. These methods do work well for brain images where the white
matter is clearly the most dominant tissue. In CMR, the largest homogeneous re-
gions belong most of the time to the lungs, the liver or the blood pool rather than
the myocardium.

However, from the rough image first layer classification we already obtain some
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Figure 3.8: Histogram of median intensities of the myocardium across the dataset.

information about the strength of the belief in the foreground and background
object. We propose to remap the source image intensities by a piece-wise linear
function, such that the weighted median intensities (as median is more robust to
outliers than the mean) M c

source of the images are transformed to a reference inten-
sity value Mref . The weighted median is defined as follows:

M c
source = arg min

µ

∑

x∈Ic

w(x)|Ic(x)− µ| (3.3)

Where x is the voxel iterator and w(x) are the weights (first layer posterior prob-
abilities of voxel x belonging to the myocardium). We avoid sorting all volume
intensities by approximating the weighted median in one iteration over the volume
voxels by using the weighted version of the P 2 algorithm (Jain and Chlamtac, 1985;
Egloff, 2005). This algorithm dynamically approximates the cumulative probability
density function with a piece-wise quadratic polynomial by adjusting positions of
just five markers as the weighted samples are streamed in.

Pose normalisation

In the approach of Lempitsky et al. (2009), absolute voxel coordinates are used
as features directly. The use of the image coordinates cannot be justified without
first aligning the images onto a reference pose. In addition, the features we use for
classification are certainly not rotation invariant. Therefore, registering the volumes
to roughly the same orientation and position not only helps the classification but
also allows us to use those voxel coordinates as features.

In general, the interpatient cardiac registration is a difficult problem due to
the high variability of the thoracic cage. One way to do this is by first training
a commodity computer vision detector (Viola and Jones, 2004) trained for the
hearts (Shi et al., 2011) and then apply a locally affine registration method within
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this detected region followed by a non-rigid alignment. A robust learning based lin-
ear inter-patient organ registration was proposed by Konukoglu et al. (2011). Here,
each organ is represented with a smooth probability map fit to the bounding boxes
obtained as a result of a regression forest. Then, registration of these probability
maps is performed. This representation of probabilities is however rather limiting
as the boxes are axis-aligned and disregard the orientation that we would like to
correct for.

We propose to rigidly align the myocardium enhanced first layer posterior prob-
ability maps instead. For this step we use a fast and robust rigid block matching
registration technique (Ourselin et al., 2000). The reference we used is chosen semi-
randomly from images where the apex was at least partially present and closed. An
even more automatic way to construct the reference such as an algorithm similar
to Hoogendoorn et al. (2010) or a generative technique like described in Iglesias
et al. (2011) could be used.

To reduce the computational time, only probability maps of frames from the
middle of the sequence are used to estimate the intensity and pose transformations.
The same transformations are then applied for all the frames and ground-truths in
the sequence which will be needed to train the second layer.

3.1.7 Second layer: Learning to segment with the shape

Retraining with pose and intensity-normalised images

Once the images are registered to a reference volume and intensities are standard-
ised, we retrain a new classification forest. The voxel coordinates start to encode
spatial relationships with respect to the reference coordinate frame and the coor-
dinate features can be now included in training of the second decision forest layer.
Moreover, if the intensity standardisation step succeeds, the intensities have more
tissue specific meaning (at least for the myocardium).

Figure 3.9: Mid-cavity short (top) and artificial long (bottom) axis views on the
posterior probabilities after the second layer. The predictions are clearly more
confident and most of the remote misclassified voxels are now properly removed.
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Thanks to the incorporation of coordinate-based features, the trees can com-
pletely automatically learn their own latent representation of the possible set of
shapes, regularize the classification, and help to remove objects far away from the
ventricles (see Fig. 3.9). This step strongly relies on the success of the previous
registration step. Currently, only one reference image is used, which is chosen ran-
domly. Registration to multiple targets could improve robustness and alleviate this
problem.

Transforming the volumes back

After the classification is done in the reference space, the posterior probability maps
can be transformed back to the original reference frame and resampled accordingly.
This shows the advantage of a soft classification technique like the classification
forests. The final binary segmentation masks (see Fig. 3.10) are obtained by thresh-
olding the floating point posterior probability maps after the transformation, thus
avoiding the possible interpolation artefacts.

Figure 3.10: Short (top) and long (bottom) axis views on the second layer segmen-
tation results (isocontour of the probability maps at 0.5).

3.1.8 Validation

The forest parameters for the first layer were fixed as follows: 20 trees with depth 20
each. For tree, 15 triplets of frames were randomly selected from different volumes
of the training set containing 96 volumes in total. For the second layer 27 trees
were trained, each with maximal depth 20. The threshold value to obtain the final
segmentation was chosen empirically as 0.5.

Common training and validation datasets allowed fair comparison of our method
with others (Suinesiaputra et al., 2014b). Most of the methods in the comparison
benchmark were based on manual segmentation in one frame and propagation of
the segmentation contours with registration (AU (Li et al., 2010), AO (Fahmy et al.,
2012), DS). The only fully automatic techniques in this benchmark were SCR (Jolly
et al., 2012) and ours (INR).
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sensitivity specificity PPV NPV Jaccard

CSMAN 0.88 (0.17) 0.53 (0.18) 0.54 (0.09) 0.91 (0.10) 0.49 (0.10)

CSALL 0.86 (0.20) 0.60 (0.16) 0.56 (0.11) 0.90 (0.11) 0.51 (0.13)

CS* 0.89 (0.17) 0.56 (0.15) 0.50 (0.10) 0.93 (0.09) 0.43 (0.10)

Table 3.1: Performance of our algorithm as compared to CSMAN, CSALL and CS*
consensuses by Suinesiaputra et al. (2014b). All values1 are expressed as “mean
(standard deviation)”

From these methods, consensus segmentations were established using the STA-
PLE algorithm (Warfield et al., 2004) to which the individual segmentation algo-
rithms could be compared. Three different consensuses were computed to which
our method was compared (CSMAN - using only manual segmentations methods:
AU, AO, DS; CSALL - using all five methods: AU, AO, DS, SCR, INR; CS* -
using all methods but ours: AU, AO, DS, SCR).

3.1.9 Results and discussion

The following results were obtained after evaluating our segmentations on 95 previ-
ously unseen test volumes. See Table 3.1.

Figure 3.11: Comparison of PPV and NPV values from each rater between CSMAN
and CSALL consensus (Suinesiaputra et al., 2014b). Only SCR and our method
(INR) were fully automatic.

The SCR algorithm first segments the blood pool as the largest moving com-
ponent of the image. The myocardium is segmented in polar representation of the
image using Dijkstra’s shortest path algorithm (Dijkstra, 1959). A clever use of
an externally trained landmark detector on the long axis images lets them cut off

1Positive predictive value (PPV) is defined as TP/(TP + FP ) and Negative predictive value

(NPV) as TN/(TN + FN).
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Measure CSMAN CSALL CS*

EDV (ml) -55.94 (40.78) -73.32 (47.74) -55.65 (41.03)

ESV (ml) -38.43 (31.55) -48.11 (33.21) -39.76 (27.74)

EF (%) -1.33 (24.10) -2.45 (22.42) 1.18 (22.01)

LV mass (g) 124.35 (36.08) 90.23 (32.52) 127.80 (34.32)

Table 3.2: Clinical LV function differences between our segmentations from the CS-
MAN, CSALL and CS* consensus. All values are expressed in “mean (standard
deviation)” (Suinesiaputra et al., 2014b). Our method clearly oversegments the my-
ocardium by misclassifying the papillary muscles and trabeculations as myocardial
tissue. This is reflected as large positive bias in LV mass and negative in ESV and
EDV. The EF is not affected that much by these biases.

voxels beyond the mitral valve plane. Segmentations of individual frames are then
propagated with non-rigid registration, similarly to the other methods.

In the following discussion we use the CSMAN consensus results as the reference
since it is based on manually initialised segmentation techniques only. In most of
the cases, our algorithm was able to correctly identify the left ventricle myocardium
(with mean sensitivity of 0.88, specificity of 0.53 and Jaccard index of 0.49). Sensi-
tivity (also called true positive rate) measures the proportion of myocardial voxels
that are properly segmented as such. Specificity (also called true negative rate)
is the proportion of background voxels that are properly segmented. Higher sen-
sitivity and lower specificity indicate that our method oversegments. Indeed, the
trabeculations and papillary muscles are often misclassified and included into the
myocardial mass (contrary to the ground-truth). The effect of this can be also seen
on the volumetric and mass measures extracted (Table 3.2).

Our method was clearly not the best performer between automatic segmenta-
tion methods for left ventricles in the benchmark. On the other hand, the layered
forest algorithm did not need any explicitly defined segmentation rules and problem
specific assumptions (e.g. circularity of the myocardium for polar transformation).
It also did not use extra annotation into the training set (e.g. manual segmenta-
tion of one frame in the sequence) nor used an external dataset to train a robust
landmark detector.

It should be also noted that our classification is run independently for each voxel.
No smoothness, connectivity nor temporal consistency constraints are enforced to
demonstrate the performance of the pure machine learning approach. Therefore,
isolated segmentation islets or holes in the resulting binary segmentation can occur
as a result of misclassification. Thanks to the coordinate features, most of the voxels
far from the myocardium are usually discarded and also the solution becomes more
regular as a result of the latent cardiac shape model built by the forests. In the soft
classification, the holes are represented as a drop in the segmentation confidence



58 Chapter 3. Segmenting cardiac images with classification forests

but rarely fall to zero. This information could be considered in a subsequent post-
processing step (e.g. the graph cut algorithm (Malik, 2000)), to further improve
the final segmentation.

3.1.10 Volumetric measure calculation
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Figure 3.12: (a) Automatically calculated volume curve from patient DET0026701
during a single cardiac cycle with detected end systole (ES) and end diastole (ED)
frames at the volume maximum and minimum respectively. (b) Long axis crosssec-
tion through the binarised segmentations at ED and ES.

Finally, using a curvature-based iterative hole filling algorithm (Krishnan et al.,
2009) we fill up the binarised myocardial segmentation, in order to automatically
calculate volumetric and mass measurements (Table 3.2) and to detect the main
cardiac phases as the volume curve extrema (see Fig. 3.12). End diastolic volume
(EDV) is the maximal and end systolic volume (ESV) the minimal volume of voxels
labelled as the cavity. Ejection fraction (EF) is computed as (EDV − ESV)/EDV.
The LV mass is obtained from myocardial volumes at ED assuming constant tissue
density of 1.05g/ml.

3.1.11 Conclusions

In this section, we presented a fully automatic machine-learning-based algorithm
for left ventricle segmentation from 4D CMR with no explicit definition of specific
segmentation rules, model creation, user interaction, nor post-processing. The al-
gorithm learnt to automatically select the most discriminative features for the task
using the ground-truth only. The only assumptions we made is that the motion of
the object to be segmented is periodic for the construction of frame triplets and that
the tissue intensity mapping between two different cases can be roughly approxi-
mated by a piece-wise linear function. We also introduced a machine-learning-based
intensity standardisation method that allows to do tissue specific remapping of in-
tensities and obtain a more CT-like behaviour.

Our method is currently not the most accurate method for myocardial CMR
segmentation (see Fig. 3.11) (Suinesiaputra et al., 2014b). On the other hand, it
is rather flexible and only very little prior knowledge was hardcoded into the algo-
rithm. The recommendations of the Board of Trustees Taskforce of the Society for
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Cardiac Magnetic Resonance (SCMR) suggest excluding the trabeculations and pa-
pilary muscles from the ventricular cavity and including them into the myocardial
mass (Schulz-Menger et al., 2013). This is a challenging problem for the shape and
registration-based methods. In addition to the papillary muscles and the trabecu-
lations, there are other important cardiac fine-scale anatomical structures (Lamata
et al., 2014) and findings of interest. These also include small blood vessels, or hyper-
intense scar regions in late enhanced MRI or pericardial effusion. In these cases,
voxel-wise semantic segmentation techniques are likely a better solution. Once
enough examples of voxels belonging to these small structures are annotated in the
ground-truth, our method should be able to figure out how to discriminate them
from other tissue, and segment these without much modification. This method
could also be easily adapted to the segmentation of long axis views, usually 2D or
2D+t sequences. In this case we could just replace the spatio-temporal boxes with
spatio-temporal rectangles.

We will now show that our algorithm is also amenable to segment another
important but large cardiac structure — the left atrium (LA).

3.2 Left atrium segmentation

The LA plays an important role in facilitating uninterrupted circulation of oxy-
genated blood from pulmonary veins to the left ventricle and in cardiac electro-
physiology. To quantify its function, simulate electrical wave propagation and de-
termine the best location for ablation therapy, it is important to be able to first
accurately segment the atrial contours. A common approach to segment the left
atrium from 3D images is to use statistical shape models (Kutra et al., 2012; Ecabert
et al., 2008). A levelset-based method with a heuristic region split and merge strat-
egy was proposed by Karim et al. (2007). Finally, label fusion techniques (Depa
et al., 2010) seem to yield accurate atrial segmentations but require to non-rigidly
register the image to be segmented to every training image. All of these methods are
specifically hand-crafted for atrial segmentation and thus treat the training set in a
particular way or need a set of non-rigid registrations which can be computationally
expensive.

Similarly to our method for LV segmentation, we use a fully automated voxel-
wise segmentation technique based on classification forests. This time, the problem
is formulated as a binary classification between atrial and background voxels. The
advantage of these approaches is that very few assumptions are necessary and it is
possible to learn how to segment directly from the image - label map pairs. For
this method we do not use a robust registration method, build a statistical model,
nor explicitly define the classification problem. We only require a larger number of
training images with the atria carefully delineated and good blood pool contrast in
the images.



60 Chapter 3. Segmenting cardiac images with classification forests

3.2.1 Dataset

Compared to the LV segmentation, the dataset is much smaller in this case. The
STACOM 2013 LA segmentation challenge dataset (Tobon-Gomez et al., 2013b)
contains 30 CT and 30 MR images. Each of these sets was divided into a training
set (10 3D volumes with voxel-wise LA segmentation maps) and a validation set
(20 3D volumes with no delineation provided used for blind evaluation).

3.2.2 Preprocessing

The only preprocessing step is linear intensity rescaling of the 0 and 98.5 percentile
image range as done in the first layer of the LV segmentation. This was chosen to
cut off high intensity variation due to noise and imaging artefacts, similarly to Nyúl
and Udupa (1999).

3.2.3 Training forests with boundary voxels

Training of decision forests is in general relatively fast as each tree can be learnt
individually in parallel. To further cut down from the training time, and more im-
portantly to better balance the background/atrium voxel proportion and to better
learn how to classify voxels on the boundaries, we train only on some of the voxels
from the annotated training set. We include all atrial voxels in the training set as
positive examples. However, we subsample the negative example voxels. These are
sampled only on a sparse regular grid. We also add all voxels in the immediate
atrial neighbourhood (approximately 15 pixels thick, obtained by morphologically
dilating the atrial mask).

3.2.4 Segmentation phase

During the segmentation phase, each voxel of the test image is passed through
the forest to reach a set of leaves. The average class distributions of all reached
leaves then represent the posterior probabilities of the voxel belonging to either
the atrium or the background given its appearance in the feature space. This
means that we obtain an atrial probability map for the whole volume. To obtain
binary masks required for evaluation in the benchmark study of Tobon-Gomez
et al. (2015), we simply threshold the atrial probability maps with a fixed threshold
value. Afterwards, we apply simple morphological hole-filling and extract the largest
connected component which we deliver as the final binary atrial segmentation.

3.2.5 Additional channels for left atrial segmentation

To describe the appearance of each voxel and discriminate between the atrium and
background we generate a random feature pool operating on the 3D images from
two feature families (local and context-rich) previously shown in Section 3.1.5 and
in Geremia et al. (2011), but applied on three different image channels. These two
feature families capture both local and remote information about the tested voxel.
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a) im age +  gt b) blood pool c) distance d) tubularity

Figure 3.13: Image channels extracted from two example images. (a) Source image
overlaid with the ground-truth segmentation. (b) Blood segmented with sequen-
tially applied Otsu thresholding.(c) Distance to the blood contours.(d) Tubularity
enhancing vascular structures (e.g. the strong signal in the aorta)

3.2.5.1 MR image intensity

Voxel intensity in combination with context rich features give wealth of information
about its position. For example, regions of the bright atrium are located close to
the darker spine or lungs, and next to other bright cavities. It is however much
more difficult to discriminate between voxels on the border between the atrium and
the ventricle as there is no clear intensity change (apart from occasional faint signal
drop from the mitral valve). Therefore, we extract the local and the context rich
features not only on image intensity (Fig. 3.13a), but also add two other channels
(see Fig. 3.13c and Fig. 3.13d).

3.2.5.2 Distance to blood pool contours

The atrium is always contained within the bright blood pool in the image. Thanks
to the high contrast between the blood pool and the rest of the image, all blood can
be simply extracted by sequentially applying the thresholding algorithm of Otsu
(1979). The first round divides image voxels into the black air and the brighter
part of the thorax. The second round splits the brighter part of the thorax into the
very bright blood and the rest (Fig. 3.13b).

We can observe that the atrium is mostly separated at blood pool narrowings
(such as at the mitral plane or atrial septum). These can be located by measuring
the distance to blood pool contours as distance minima (Fig. 3.13c). Local maxima
are, on the other hand, located near centres of blobs in the image such as the atrium.
Therefore, similarly to Karim et al. (2007), we exploit these properties and compute
the Euclidean distance to the blood pool surface for each voxel in the image (voxels
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out of the blood pool are assigned zero distance). Instead of manually defining
region splitting and merging criteria we let the forest pick the most discriminative
decisions from the above mentioned feature families.

3.2.5.3 Tubularity features

To further help in distinguishing the atrium from the other bright structures such
as the aorta, we calculate the vesselness information for each voxel. This also adds
context based on enhanced arteries present (e.g. the atrium is near the aorta —
a large tubular structure). We use a multi-scale vesselness filter of Sato et al.
(1997) enhancing all tubular objects ranging from 5 to 15 millimetres in diameter
(see Fig. 3.13).

3.2.6 Validation

We trained a classification forest with previously described features on these three
image channels. We chose the best parameters by running cross-validation on the
training set. As the size of the training set is quite limited, we used a leave-one-out
approach, i.e., we trained on 9 images and tested on the remaining one (Fig. 3.14).
The best settings were then applied to the validation data.

3.2.6.1 Effect of the parameters

Number of trees (5): More trees result in increased accuracy and slightly
smoother segmentations but also increase training and classification time.

Number of tested features (200) and thresholds (20) at each node: Test-
ing fewer features results in more randomness in the forest but also less efficient
splits. On the other hand, higher numbers decrease generalisation strength as the
trees look more alike.

Maximal tree depth (20): Deeper splits can better capture the structure, but
can lead to overfitting.

Minimal number of points at leaves (8): Too small number of samples in
a leaf could result in noisy segmentations. For example, a leaf containing a single
incorrectly labelled training voxel could significantly influence the result.

Neighbourhood in which context rich features are sampled (70× 70× 70):

Larger neighbourhoods can capture more context, however result in more frequent
out of image bounds evaluation of the context rich features. We clip the boxes to
the image extent (they evaluate to zero when completely outside of the images).

Binarising threshold (0.9): We use a higher threshold to keep only the most
confident voxels and to reduce the effect of oversegmentation.
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Figure 3.14: Coronal, sagittal and axial views of the segmentation results on one of
the test cases during the leave-one-out cross-validation. Top row: source image with
ground-truth, middle row: atrial probability map with contour of the probability
map at 0.6 (brighter values means more confidence in the segmentation), bottom:
source image with overlaid ground-truth (green) and final segmentation after hole
filling (red).
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3.2.7 Results and discussion

After the selection of parameters above via cross-validation we obtained a dice
coefficient 0.63± 0.14. This small forest of 5 trees took on average 2 hours to train
and just around a minute to fully automatically segment a single atrial MR image
on a 12 core Intel Xeon 3.3GHz CPU.

This algorithm performs reasonably well to extract the main part of the atrial
volume, its shortcomings are mainly in the segmentation of the pulmonary veins
which are often missed or misclassified. The other main drawbacks of our method is
that that the segmentation contours do not necessarily adapt to the cavity contours
in the images (see Fig. 3.14).

3.2.7.1 Benchmark results

Tobon-Gomez et al. (2015) developed an elegant benchmarking framework for com-
parison of the atrial segmentation for various parts of the LA. We submitted our
segmentation results from the MR images and ran almost the identical pipeline to
segment also the CT images. The comparison of all submitted methods on the
whole validation set for the LA body can be seen in Fig. 3.15.
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Figure 3.15: Boxplot of Dice coefficients for all methods in the benchmark (Tobon-
Gomez et al., 2015). The dotted line represents the mean of medians of the bench-
marked methods. Our method is listed as INRIA, OBS_2 is second rater.

3.2.8 Conclusions

We used our machine-learning-based image segmentation technique and extended
it with a set of image features to better distinguish vascular structures from the
rest of the blood pool. We then learnt to directly predict voxel labels (atrium /
background) from the images without hand-tuning the segmentation pipeline. Our
only assumptions were the strong blood pool contrast and the presence of tubular
structures in the images.
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Our segmentation algorithm is quite fast but lacks for correct classification of
boundary voxels and small structures, i.e., the pulmonary veins that were also
marked as part of the atrium in the ground-truth. Our segmentations serve as an
excellent atrium detector and initialisation for a refinement step in order to produce
accurate segmentations. Such refinement will be needed for electro-physiological
studies.

Figure 3.16: Qualitative display of segmentated atrial meshes from the validation
dataset.

Due to the fact that the training set consists of only 10 images it does not cover
many of the atrial shape variations present in the validation images. To capture
some of this variability and avoid image registration to an atlas in the classification
phase it might be possible to augment the training dataset, e.g., by transforming
the images with a set of smooth deformations.

3.3 Conclusions and perspectives

In this chapter, we have shown that segmentation can be learnt directly from voxel-
wise labels using classification forests. We have also demonstrated how segmentation
can be learnt for spatio-temporal images. Although in this work we apply this
method only to MR and CT images, it is quite straightforward to apply it to other
modalities and other structures of interest. There is very little prior information
included and the method can automatically pick relevant features from the given
set and improve with more input data.

Nevertheless, when less examples are given, resorting to extra (more hand-
crafted) feature channels helps to improve the segmentations and allows to learn
how to segment from fewer training images. Yet, a couple of improvements to the
method are necessary to allow us to reliably index and query cardiac images using
volumetric measurements.

3.3.1 Perspectives

Since this work, further studies on segmentation of cardiac structures and other
organs using semantic voxel-wise machine learning classification techniques have
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appeared. These include different sets of features or image channels to describe the
voxels (Mahapatra, 2014; Wang et al., 2014), to use more than two layers (Kerau-
dren et al., 2014), to more intelligently select subsets example training images for
each tree (Lombaert et al., 2014), or to exploit also unlabelled data (Appendix A).
Many ideas in these approaches are orthogonal to ours and could further help to
improve the quality of our segmentations. In Lombaert et al. (2014) alone, the Dice
coefficient increased from 66.6% up to 79% by smarter selection of training image
subsets for each tree.

The use of classification forests for segmentation greatly simplifies the problem of
learning how to segment directly from voxel-wise ground-truth without hardcoding
the segmentation rules. Nevertheless, the algorithm still requires to define the
feature families and design image channels that enhance relevant regions, and to
improve the smoothness and contour matching. In addition, the tree structure is
optimised and fixed in the training.

For growing databases, when new training examples are continuously added into
the training set, the forest can be retrained from scratch or the leaf distributions
can be updated accordingly. The more recent CNN-based segmentation approaches
(e.g. Long et al. (2015)), automatically learn optimal image channels to solve the
segmentation and can update the network parameters with SGD when new data
become available. Finally, Kontschieder et al. (2015) showed a hybrid approach
where the classification forests are made differentiable and trained within a CNN
using backpropagation.
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Chapter overview

In Chapter 2, we have shown how to automatically predict the CMR image view
information using CNNs. We can easily retrieve, for example, all short axis image
slices from the database. Automatic cardiac image segmentation methods (such as
the ones presented in Chapter 3) allow us to index and query the cardiac databases
using simple geometric measurements, (e.g. cavity volumes, myocardial mass, or
wall thickness). These two tools are important steps towards automated content-
based image retrieval of cardiac images.
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Some images, however, cannot be directly described and indexed on such simple
geometric measurements alone. Consider a slightly more complex query: “retrieve
all short axis images of akinetic hearts with significant wall thinning, and filter out
low quality images with artefacts at the same time”.

We aim to achieve computerised description of cardiac images with a set of
semantic shape, motion and appearance attributes. In this chapter, we focus on
images of post-myocardial infarction hearts with mild to moderate left ventricular
dysfunction. We develop a tool that will allow filtering of cardiac databases with
such a set of meaningful attributes. We learn to order images based on attributes
learnt from pairwise image comparison ground-truth. The ground-truth consists of
two images and an indicator for which image of the two has lower or higher presence
of the attribute. We designed a web interface allowing to collect such ground-truth
via crowdsourcing.

4.1 Describing cardiac images

Finding a way to interactively query and explore large cardiac imaging collections,
and to find relevant cases linked to Electronic health records (EHRs) with treatment
history and outcomes, could enrich the process of diagnosis and therapy planning.
Such resource could also serve as a rich learning tool and to generate new insights
for disease discovery.

One possibility is to computationally describe the hearts in these database with
some semantic concepts. As semantic we mean a description that is understandable
by a human, e.g., large left ventricular hypertrophy or small muscle contractility,
in contrast to an arbitrary feature vector used by the machine, e.g., a histogram
of filter responses. Similarly to how a graphic designer can interactively find ap-
propriate fonts described with a set of traits such as dramatic, playful, legible or
thin (O' Donovan et al., 2014), a cardiologist could use a set of traits describing
human hearts for exploration of an unknown dataset. Of course, most hearts in
the databases are not labelled with these traits. We build a method to ultimately
describe with them any heart.

4.1.1 Non-semantic description of the hearts

Some of the most successful examples of non-semantic description of medical images,
in particular for Content based image retrieval (CBIR), are based on texture of the
images. André et al. (2011b) used dense image gradient-based SIFT features (Lowe,
2004) combined with the Bag of words (BOW) approach (Sivic and Zisserman, 2003)
to create a computerised representation of confocal endomicroscopy images. The
BOW approach is widely popular. Foncubierta-Rodríguez et al. (2012) used the
BOW representation to describe pulmonary images from wavelet and Riesz trans-
form responses. The similarity is then derived from a similarity measure between
histograms of these visual words.
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These systems work particularly well for images where the semantic gap (the
difference between the information captured with the extracted features and the
expert similarity) is quite small. Except for some measures simple to obtain from
image segmentation (such as cardiac volumes, muscle masses or myocardial wall
thickness) the semantic gap in cardiac imaging can be a real challenge.

In cardiac imaging, Glatard et al. (2004) extracted texture-based features to
pre-segment the images and to find similarly segmented cardiac slices. Eslami et al.
(2012) used a binary cardiac segmentation overlap measure to query a database of
already segmented images for the closest match and to guide their segmentation
algorithm.

Numerous feature representations have been used to characterise cardiac shapes
(Bernardis et al., 2012; Zhang et al., 2014b; Le Folgoc et al., 2013; Medrano-Gracia
et al., 2014), and cardiac motion (Duchateau et al., 2011; Mantilla et al., 2013;
McLeod et al., 2015), in order to discriminate between normal and abnormal cases.
An interesting way to compare cardiac shape differences due to the remodelling was
proposed by Medrano-Gracia et al. (2014) and by Zhang et al. (2014b). These atlas
based methods look at differences in the principal modes of shape variation (the
LV is represented with a personalised finite element model) between two different
cardiac cohorts. Zhang et al. (2014b) compared shapes of infarcted hearts against
asymptomatic volunteers. The left ventricle shapes at both systole and diastole
were then described with up to 20 parameters, the first 20 modes best explaining
the shape variation. This approach discovered statistically significant shape changes
between the two cohorts that are not simple to capture otherwise.

A search for images with similar or greater value of the 5th mode of variation for
example is not very intuitive though. Links of the modes of variation to semantic
attributes of the heart (first mode linked to the size of the LV, second mode to the
sphericity of the ventricle, and the third to the mitral valve orientation) were found
a posteriori, by observation.

4.1.2 Semantic attributes

Sphericity has been previously linked to long term survival (Wong et al., 2015).
Semantic descriptions like this one are commonly seen in the clinical journals, how-
ever, their computational definition is often challenging or ambiguous. Nevertheless,
even simpler attributes commonly used to describe the hearts (such as the hypertro-

phy) are often not straightforward to compute automatically. For example, consider
assigning the value of hypertrophy to be a number between 0 and 100, where 0 is
a normal heart and 100 is an extreme case where the myocardium even in relaxed
state leaves little space for the cavity.

André et al. (2011b) proposed an interesting way of retrieving similar sequences
from endomicroscopic videos of the colon by first computing a Bag of words (BOW)
representation from dense textural descriptions of the image. Then, they mapped
the histograms of visual words to a semantically meaningful description (André
et al., 2012) helping with interpretation of the images.
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Quantifying concepts such as the degree of remodelling is quite challenging.
Zhang et al. (2014b) used logistic regression to discriminate healthy from infarcted
hearts from the modes of shape variation as a feature vector. Instead of the binary
classification of the hearts, the learnt weights of the linear projector in the logistic
regression could be used to obtain a measure of remodelling.

Learning a linear model that projects the extracted features to semantic at-
tributes is similar to our work in this chapter. The attributes are very different
from classses. Classes are discrete (e.g. normal, hypoplastic left heart syndrom,
Tetralogy of Fallot heart) and they do not even have ordinal relation, attributes are
continuous (more or less dilated, more or less spherical, more or less akinetic). In
many ways, attributes are related to a regression type of task.

We aim to describe at least some of the aspects of post-myocardial infarction
hearts and use the extracted values to filter the dataset. We learn to regress these
attributes from pairwise comparisons using machine learning tools used in web
ranking. First, let’s have a look, which characteristics of the hearts are the most
frequently present in the database (Kadish et al., 2009).

4.2 Attributes for failing post-myocardial infarction hearts

Following myocardial infarct, the hearts have several compensatory remodelling
mechanisms in play. As a consequence of the myocardial infarction and the loss of
viable tissue, myocardial cells are corrupted by the synthesis of interstitial fibrillar
collagen. The affected myocardial wall becomes thinner (Figure 4.1) and stiffer

(Mihl et al., 2008). The overall kineticity1 of the heart becomes compromised.

Figure 4.1: Thinning of the lateral wall due to transmural post-infarction necrosis.

To deal with pressure overload secondary to conditions such as aortic stenosis or
1The kineticity can be seen as a continuous extension of the discrete clinical labels: hyperkinetic,

normokinetic, hypokinetic, akinetic, or dyskinetic
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hypertension, the heart muscle usually responds with hypertrophy (Figure 4.2).
The increase in the muscle mass, leads to temporarily improved contractile force of
the myocardial cells. Sustained pressure on the cardiac cavity, however, leads to its
dilation (Figure 4.3).

Figure 4.2: Hypertrophy in post-myocardial infarction hearts located opposed to
the infarction location. Note also the myocardial wall thinning of the inferolateral
wall on the left image.

Figure 4.3: Examples of the left ventricular cavity dilation in post-myocardial in-
farction hearts. The left heart is also significantly trabeculated. Note also the
anterior wall thinning in both images.

The changes in the cardiac shape due to the remodelling can also lead to valvular
diseases such as valve insufficiency or regurgitation which further worsen the
cardiac function. A binary tag is sufficient to describe these two findings.

The pericardial effusion (see Fig. 4.4) is a relatively common finding (8%
of patients) in post-acute myocardial infarction patients (Sagristà-Sauleda et al.,
2011). An excessive amount of the liquid can cause cardiac tamponade reducing
cardiac function and is often associated with swinging motion of the heart. There
are two reasonable options to describe the effusion: a binary flag indicating the
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Figure 4.4: Pericardial effusion — fluid built up in the sac around the heart. This
is often seen as a bright ring around the heart. The effusion can be easily confused
with pericardial fat.

presence or absence of the effusion, or a real value quantifying the amount of the
pericardial fluid.

4.2.1 Pairwise comparisons for image annotation

Most of the attributes are continuous. Unless these are derived from well defined
measures, expert annotations of such values can differ from centre to centre. It is
often much simpler to visualise two cardiac images side by side and let the expert
choose which of the two hearts has a more dominant presence of the attribute, e.g.,
“heart on the left has more hypertrophy than heart on the right” (see Fig. 4.5).

Learning continuous attributes (scores) from pairwise comparisons is a powerful
technique to deal with the attribute value assignment from multiple experts (or less
experienced annotators, such as students of cardiology). The effect of inter-expert
variability will likely be smaller than if assigning an absolute score in isolation.

The consistency of pairwise annotations between different centres and different
experts has been recently shown by Burggraaff et al. (2015). The experts viewed
pairs of videos of multiple sclerosis patients doing standardised actions. For the
video pairs, the experts indicated if the patients were performing equally or one
of them had poorer performance. TrueSkillTM (Herbrich et al., 2007; Dangauthier
et al., 2007) algorithm, was then used to learn continuous scores (and confidences
in them) from the pairwise comparisons for each video. This simple Bayesian model
is used daily by millions of people playing Xbox online games for matching players
of similar skills. Finding opponents with similar skills from as few matching trials
as possible is important for fun and engaging games, and faster and more accurate
skill estimation. In the case of pairwise medical sequence annotation, proposing
matching videos is important for faster (less burden on the annotators) and more
accurate clinical score/attribute predictions.
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Figure 4.5: Relative comparison of hypertrophy between two hearts. Any two
hearts can be assigned a strict inequality or approximate equality. The pairwise
comparison is a much simpler task than to assign an absolute degree of hypertrophy,
Top row: The amount of hypertrophy correlates mainly with the mass of the muscle.
Bottom row: The dilation is mainly determined by the ventricular cavity volume.
Together with the dilation one can see thinning of the myocardium due to post-
myocardial infarction tissue loss.

In our work, instead of asking for more manual input, we use pairwise compar-
isons as ground-truth and learn how to predict the attributes directly from image
features. This allows us to automatically mimic the pairwise image comparison and
ordering by a computer.

4.2.2 Selected attributes for shape, motion and appearance

In this chapter, we chose (based on their presence in the dataset) the following
attributes to describe the cardiac shape: hypertrophy, dilation and thinning.
We describe the cardiac motion with the kineticity attribute. Moreover, we use
the same approach to estimate image ranking based on the image appearance —
image quality — to allow removal of low quality images.

These attributes are not meant to be a disease classification tool. They serve
as mid-level concepts to meaningfully describe the cardiac images with interactive
CBIR in mind. Image of any heart, regardless of the underlying disease, can be
described by all of the attributes simultaneously, e.g., a particular failing heart with
a transmural infarction can be described by these attributes as a very dilated and
hypokinetic heart with significant thinning. For more severe changes in the anatomy,
such as the hypoplastic left heart syndrome hearts, an additional attribute could
be devised for the underdeveloped left ventricle.
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4.3 Crowdsourcing in medical imaging

Learning to rank (establish order) and to filter the images based on the attributes
using supervised machine learning algorithms needs the ground-truth annotations.
Crowdsourcing is a powerful way to engage a large number of people to provide
data. In machine learning and computer vision it is a well established technique to
generate ground-truth for large databases. Only recently, we have seen its adoption
in medical imaging (Foncubierta-Rodríguez and Müller, 2012; Maier-Hein et al.,
2014). A notable example is the work of André et al. (2012) building a “Smart
atlas” as a case lookup software for practitioners and students of colonoscopy. The
authors collect binary image attributes and ground-truth for image similarity from
pairwise expert annotations ranging from very dissimilar, rather dissimilar, rather
similar to very similar. From the discrete annotations, they then estimate the
continuous semantic attributes.

4.3.1 A ground-truth collection web application

Collecting the ground-truth is a tedious task, but crowdsourcing helps to speed
up the process and reduce the burden on individual annotators. In this work, we
design a cloud-hosted web application to collect pairwise cardiac image comparisons
through crowdsourcing (See Fig. 4.6). The advantage is that the clinicians, students
of medicine, or other cardiac imaging knowledgeable crowd can rapidly label the
data on any platform that supports HTML5 and ECMAScript, i.e., most modern
web browsers. Thus allowing data annotation even on the go, e.g., on a mobile
phone while being stuck in public transport.

We randomly pick an attribute am and two images belonging to two cases Ii
and Ij . We then present these short axis 3D+t cine stacks for pairwise comparisons.
The annotators (or workers in the crowdsourcing terminology) can play the cardiac
video sequence, change the slice position, or look into the associated patient infor-
mation (sex, age, infarction location), if that helps them with the decision. Then,
they can decide in which out of the two images is the selected attribute more dom-
inant and add the image pair into the ordered set Om. However, if the amount of
presence/absence of the attribute is approximately equal in both images, the pair is
added to the similarity set Sm instead by clicking on the “About the same” button.
After the choice is made, another random attribute together with a left and a right
pair of cases are shown to the annotator.

4.4 Learning attributes from pairwise comparisons

In this work, we derive the raw computerised representations of the images from
myocardial segmentations, their spectral signatures, and texture features. Clearly,
the semantic gap between these representations and the semantic attributes is quite
large. We use the obtained pairwise annotations to learn functions that are mapping
the extracted features to the attribute values.
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Figure 4.6: Comparison interface where video sequences are displayed and the ex-
pert is allowed to browse through the slices. The annotator can then choose the
most suitable response to the posed question. We believe that in this case the image
on the right is more likely to be chosen.

We borrow the ideas from Parikh and Grauman (2011) and RankSVM (Joachims,
2002) where ordering of instances is posed as a max-margin classification problem,
commonly seen as the linear SVM classifier. Ranking functions that map feature
measurements to continuous attributes are efficiently learnt from sparse pairwise
image comparisons. These comparisons are represented in the ground-truth with
only two discrete options (smaller/greater than or similar) and therefore lessen
the impact of expert variability. Pedregosa and Gramfort (2012) and Huang et al.
(2013) were some of the first to learn from pairwise comparisons in medical imaging.
We apply a similar concept to cardiology. Contrary to Parikh and Grauman (2011)
where the attributes are learned to describe each class (group of images), we aim
to describe individually each heart, i.e., treat each heart as a separate class.

The ranking functions will help us to automatically reproduce the image com-
parisons and allow us to describe the cardiac images with an attribute vector. We
will later show that even with a small number of collected samples we observe a
clearly positive trend in the prediction of pairwise image ordering.

We describe each image Ii with a set of M scalar attributes Ai =
{

aim
}

. This
description then leads to a natural way of comparing the images, e.g., one heart
is more hypertrophied than the other, or one image is of a poorer image quality
than another one. However, only a set of features θi can be directly measured and
not the attribute value itself aim. Our goal is to learn for each attribute a ranking
function rm(θi) that best satisfies the two expert provided pairwise constraints:
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Project ordered pairs apart
and maximise rank margin

Project “about the same”
pairs closer together

Fe
at

ur
e 
θ 2

 

WbWa

rhypertrophy(θ) = w1θ1 + w2θ2

Figure 4.7: Ranking function estimation in a synthetic 2-dimensional feature space.
Circles represent different hearts, their thicknesses the corresponding degrees of
hypertrophy. A computationally efficient way to find the optimal projection W
from pairwise comparisons that maps the feature vector θ to the attribute values
can be derived from an SVM-like formulation. The goal is to map similar hearts
closer together and the ordered pairs more spread apart. In this example, Wa
(orange) is a clearly superior projector over Wb (blue) in preserving the ordering
with respect to the hypertrophy attribute.

Attribute value ordering constraint when aim > a
j
m

∀(i, j) ∈ Om : rm(θi) > rm(θj) (4.1)

Attribute similarity constraint when aim ≃ a
j
m

∀(i, j) ∈ Sm : rm(θi) ≃ rm(θj) (4.2)

As in Parikh and Grauman (2011), we use a linear ranking function rm(θi) =
Wm

T θi that is not only rapid to optimise but also guarantees a monotonic mapping
between the features and the estimated attribute value. Learning of the ranking
function is then approximated by solving the following convex optimisation problem
(Eq. (4.3)), similar to the formulation of the linear SVM classifier (Cortes and
Vapnik, 1995) (see Fig. 4.7).
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Wm = argmin
(

1

2
∥Wm∥

2
2 + CO

∑

ξij
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∑

γij
2

)

subject to WT
m
(

θi − θj) ≥ 1− ξij; ∀ (i, j) ∈ Om
∣

∣WT
m
(

θi − θj)∣
∣ ≤ γij; ∀ (i, j) ∈ Sm

ξij ≥ 0; γij ≥ 0

(4.3)

Here, CO and CS are the trade-offs between margin maximisation between the
ranked points and satisfying the pairwise ordering constraints (CO) and pairwise
similarity (CS) constraints provided by the experts. The slack variables ξij and γij
are penalties for incorrect ranking.

4.5 Spectral description of cardiac shapes

If we consider the heart as a binary object on a closed and bounded domain Ω ⊂ Rd,
it can be represented with its spectral signature. In essence, the spectral signature
is representing the hearts’ modes of vibration, similar to how a drum membrane
would vibrate when hit by a stick. This has been used to globally describe the
intrinsic geometry of the heart shape and to discriminate between healthy hearts
and repaired tetralogy of Fallot patients (Bernardis et al., 2012; Konukoglu et al.,
2012), and similarly by Lombaert et al. (2012) to establish better correspondences
for inter-patient cardiac image registration. The main advantage of this method
over the traditionally used active shape methods is that no shape correspondences
are required. The description is also invariant to rigid transformations.

The spectral signature is determined by the spectrum of the Laplace operator
∆Ω defined on a domain Ω as shown in Eq. (4.4).

∆Ωf ≜
∑

i=1

∂2

∂x2i
f, ∀x ∈ Ω (4.4)

Eigenvalues λi and eigenfunctions fi of the operator ∆Ω are solutions of the
Helmholtz equation with Dirichlet type boundary conditions, ∂Ω is the object’s
boundary and x are the image coordinates.

∆f = λf ∀x ∈ Ω, ∀x ∈ ∂Ω, f (x) = 0 (4.5)

There are infinitely many pairs (λi, fi) that satisfy this equation. The spectral
shape description is formed by ordering N smallest eigenvalues such that 0 < λ1 <

· · · < λN .
In our case, we describe mid-cavity slices of each heart by the 100 smallest

eigenvalues of the spectrum; separately for the cavity and the myocardium at the
end-diastolic and end-systolic frame. We concatenate these vectors and call it θs100
in the evaluation. We also compute temporal volume curves of the cavity blood pool
and the mass of the myocardium. We concatenate these measurements with the
spectral feature vector and obtain the final shape vector θs100,vm. Please note that
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we use manual segmentations in this work to discount the effect of bad automatic
segmentation. There is a large body of work on automatic or semi-automatic cardiac
image segmentation (see Section 3.1 for a brief overview). Any sufficiently accurate
and regularised segmentation method can be used to extract the binary masks of
the myocardium and the blood pool for the spectral representation.

4.6 Texture features to describe image quality

Images corrupted by the imaging artefacts might be required to be removed (Marko-
nis et al., 2012) from the retrieval results. Twelve criteria were proposed by Klinke
et al. (2013) to assess the CMR image quality based on the present artefacts. These
include banding or field of view wrap-around artefacts (often seen as dark curved
lines across the images), respiratory and cardiac motion ghosting (replication of
thoracic structures), mistriggering (image blurring), metal artefacts (changes of
magnetic field homogeneity, e.g., around sternal wires), shimming artefacts (dark
bands across the image caused by off-resonance) and flow related artefacts.

The spectral shape or volumetric features described above are not capturing any
of this information. We assume that the main information about image quality can
be inferred from the texture statistics of the images. To capture this information
we use the first thirteen textural features defined by Haralick et al. (1973).Haralick
features are a set of measures (such as contrast, entropy, or variance) on local
grayscale co-occurrence matrices. These features make our texture feature vector θh.

4.7 Evaluation and results

The goal of relative attributes is to establish pairwise comparisons between any
pair of images, and then be able to order them with respect to the attribute of
choice.The absolute ground-truth values aleft,gt and aright,gt and not known except
for their relative ordering. As we do not have a global ordering nor the value of the
attributes as ground-truth, we report average success rate of order prediction for
image pairs simply as S = P/(P +Q). Where P is the number of concordant pairs,
i.e., pairs where the the estimated pairwise comparison of the left and right images
rleft < rright is in agreement with the ground-truth comparison aleft,gt < aright,gt

for a particular attribute. Q is the number of discordant pairs, i.e., pairs where the
estimated and ground-truth comparisons differ from the prediction. We ignore ties
(pairs labelled as “about the same”) in the evaluation.

4.7.1 Data and preprocessing

The data used in this study consists of 96 post myocardial infarction acquisitions
of short axis Steady State Free Precession (SSFP) 3D+t stack of varying resolution
and image quality from the DETERMINE dataset (Kadish et al., 2009). We use
the manual expert segmentations of the LV myocardium.
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4.7.2 Evaluation

So far, we have collected 329 pairwise annotations from 3 in-house annotators for
all of the attributes altogether. From the annotated pairs (and for each attribute
individually) we randomly choose 80% for training and then use the remaining 20%
to measure the success rate of the order prediction. This is repeated 5 times and
averaged. The number of collected pairs for each attribute and the mean results
after a 5-fold cross validation for different combinations of features is shown in
Table 4.1 below.

hypertrophy kineticity dilation thinning im. quality

# pairs 76 41 75 67 70

θs100 83.5 74.574.574.5 67.0 58.0 52.0

θs100,vm 92.592.592.5 71.5 73.573.573.5 73.073.073.0 52.5

θh 64.5 51.5 54.5 47.5 72.072.072.0

Table 4.1: Mean pairwise order success rates for different attributes trained with
empirically chosen CO = 1, CS = 0.2 with different feature sets (s100 — first
100 smallest eigenvalues of the Laplace operator spectrum for the blood pool and
myocardium at end systole and end diastole, vm - end-systolic and end-diastolic
volumes of LV cavity and myocardial mass and h-Haralick features).

On average, our method estimates the correct pairwise orders for the majority
of the pairs in the test set with success rate significantly higher than chance (50%).
Spectral features, together with volumetric and mass measurement, seem to be a
decent shape description to predict image ordering for the hypertrophy attribute.
The success rate of 92.5% means that when querying the database for images with
hypertrophy larger than some reference value, approximately 9 out of 10 retrieved
images (on average) correctly contain more hypertrophied hearts than the reference.
The performance of the spectral description drops for the thinning and dilation at-
tributes where the thin myocardium poses a challenge for the graph construction.
Using the spectral description together with volumes and myocardial masses im-
proves the ranking estimate. As expected, using these features to predict the image
quality attribute is not better than flipping a fair coin. The Haralick features at
least partly capture the image quality attribute.

4.8 Conclusions and perspectives

We applied the approach of relative attributes to cardiac imaging, to automatically
compare images of post myocardial infarction hearts. Relative attributes can help
to bridge the gap between extracted image features and semantically meaningful
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descriptions of the images. In our preliminary study, we obtained encouraging
pairwise image ordering based on the estimated semantic attribute values. However,
collecting a much larger training set and/or better features will be needed to capture
the continuous attribute values, to extrapolate to extreme values of the attributes,
and to completely sort the dataset.

In this study, the attributes were global, without any spatial information. This
description is invariant to the underlying cardiac condition and by adding extra
attributes it should be possible to extend this work to more complex pathologies.
For a congenital heart disease, such as the Tetralogy of Fallot (TOF), relevant at-
tributes describing the right ventricle, the pulmonary valve, and the ventricular
septum should be added. Here, we would likely discover that in general the right
ventricles are more dilated and hypertrophied than normal hearts. This approach
also opens up possibilities for faster creation cohorts for studies using the attribute
values, e.g., select hearts with a hypertrophy larger than some reference case and
with sufficiently high image quality. We also have to remind the reader that describ-
ing cardiac images without any motion information is not ideal. Adding motion
could help us to introduce attributes such as asynchrony, stiffness, and contractility,
or better estimate the kineticity of the myocardium. Also, although linear ranking
functions are very fast to train and test, they might not create the most optimal
mappings between the features and attributes.

4.8.1 Perspectives

We developed a crowdsourcing platform to start collecting ground-truth in cardiol-
ogy. Once more annotations from several experts are collected, it might be possible
to compare rankings of different experts and weigh their contributions in the cost
function accordingly. The more certain decisions usually happen much faster. The
time to decide could therefore be used as the decision strength.

Further improvements can be done to reduce the required annotators’ time.
Smarter choices of the image pair — attribute triplets could be done by presenting
the most similar images (Tamuz and Belongie, 2011) and to avoid annotating the
obvious cases. Currently, the annotators are free to ignore the transitive relations
between the annotated images (if A is greater than B, and B is greater than C, A
does not have to be annotated as being greater than C). Therefore, probabilistic
modelling of the attributes and their comparisons (e.g., as done with TrueSkill
in Burggraaff et al. (2015); Herbrich et al. (2007)) should be explored. It would be
useful to have a measure of confidence in the attribute and to decide, which cases
need more input and which attributes are less certain. A gamified interface (von
Ahn and Dabbish, 2004) should be designed to improve engagement and learning
of the annotators.

Approaches like this one will help to reduce the semantic gap and enable natural
language queries of the databases, e.g., Retrieve images like this one, but with a
more dilated ventricle and with higher image quality. They also allow us to retrieve
the images using a set of sliders specifying the desired attribute ranges (Kovashka
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et al., 2012). They could be also used directly to assess relevance of the images for
image retrieval. The ground-truth collection application could then ask questions
such as “If you had a patient with the current image, which of the images presented
are more relevant for the diagnosis and prognosis?”





Chapter 5

Learning how to retrieve

semantically similar hearts

Contents

5.1 Content based retrieval in medical imaging . . . . . . . . . . 84

5.1.1 Visual information search behaviour in clinical practice . . . 84

5.1.2 Where are we now? . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Similarity for content-based retrieval . . . . . . . . . . . . . 86

5.2.1 Bag of visual words histogram similarity . . . . . . . . . . . . 86

5.2.2 Segmentation-based similarity . . . . . . . . . . . . . . . . . . 86

5.2.3 Shape-based similarity . . . . . . . . . . . . . . . . . . . . . . 87

5.2.4 Registration-based similarity . . . . . . . . . . . . . . . . . . 87

5.2.5 Euclidean distance between images . . . . . . . . . . . . . . . 87

5.2.6 Using decision forests to approximate image similarity . . . . 88

5.3 Neighbourhood approximating forests . . . . . . . . . . . . . 89

5.3.1 Learning how to structure the dataset . . . . . . . . . . . . . 90

5.3.2 Finding similar images . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 NAFs for post-myocardial infarction hearts . . . . . . . . . . 91

5.4 Learning the functional similarity . . . . . . . . . . . . . . . . 91

5.4.1 Cluster compactness based on ejection fraction difference . . 91

5.4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Spatio-temporal image features . . . . . . . . . . . . . . . . . 95

5.5 Validation and results . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.1 Retrieval experiment . . . . . . . . . . . . . . . . . . . . . . . 98

5.5.2 Feature importance . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion and perspectives . . . . . . . . . . . . . . . . . . . 104

5.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Based on our work in preparation for submission (Margeta et al., 2015a) and
our work presented at Statistical Atlases and Computational Modeling of the Heart
(STACOM) workshop (Bleton et al., 2015).



84 Chapter 5. Learning how to retrieve semantically similar hearts

Chapter overview

In this chapter, we propose a method for automated content-based retrieval of
semantically similar hearts by learning how to approximate the similarity mea-
sure between the images. We build upon the Neighbourhood approximating forest
(NAF) (Konukoglu et al., 2013) algorithm which we train to capture similarities
between cardiac images and to allow efficient retrievals of hearts from the most
similar patients based on clinical criteria. We illustrate its use on a database of
post-myocardial infarction patients.

In Bleton et al. (2015), we already showed how cardiac neighbours can be used
to locate infarcts from dynamic LV segmentations without injecting any contrast.
Here, we combine spatio-temporal image-based features and the NAFs with ejection-
fraction-derived similarity to find hearts with similar pumping function. No image
segmentation is required.

5.1 Content based retrieval in medical imaging

An important step in the diagnosis process is to compare findings with the state of
the art literature and collections of previously treated patients. This is particularly
useful when found abnormalities are not known. Finding the most similar images
is also useful to better estimate prognosis, to choose from the available treatments,
to better predict their outcomes, and to discuss with patients possible impact on
their quality of life. Retrieval of similar patients can also indicate cases that can be
retrospectively studied as virtual patients. The CBIR systems aim to fill up these
needs.

5.1.1 Visual information search behaviour in clinical practice

Markonis et al. (2012) conducted a survey on visual information search behaviour
and requirements on a sample of 34 young radiologists. Despite the limited sample
size and potentially biased selection, some insights on the use cases of such systems
can be drawn.

5.1.1.1 Personal annotated collections

At the time of the survey, the radiologists mostly relied on text-based web search
on Google, PubMed, Goldminer, eAnatomy, or Eurorad in order to find published
literature with relevant findings. They often maintained local personal collections
of images, annotated with keywords, and tagged interesting cases for later reuse in
clinical practice and teaching.

Without these personal annotated collections, searching within large collections
of image data can rapidly become tedious. Such a search involves slow retrieval of
the data from PACS archives, and interpretation of previously unseen 3D+t images
to find cases with relevant characteristics. The DICOM tags are also not very



5.1. Content based retrieval in medical imaging 85

reliable with error rates up to 15% (Gueld et al., 2002). The search within hospital
databases is therefore only the third most popular option.

Restricting the search to the personal annotated collections instead of the much
larger and richer multi-centre databases seriously hampers the possibility to tran-
scend boundaries of the clinicians’ own experiences, and to discover relevant and
rare cases available elsewhere. Nonetheless, this strategy compensates for the lim-
ited ability to search within the PACS databases, and for the text-only search within
the clinical literature.

5.1.1.2 Time before quitting

During clinical activities, the average time before quitting when searching through
the databases was between 5 and 10 minutes. To diagnose unknown abnormalities,
an efficient lookup of relevant cases in large hospital databases is necessary. Even
shorter times are needed for exploratory search (Kules et al., 2009) where quick
turnaround is essential.

5.1.1.3 Desired functionalities

Based on the survey, the most often sought functionalities of the CBIR systems
are: search by pathology, modality, and search for “similar images”. The surveyed
radiologists judged the usefulness of the retrieved images based on their experience
and comparison with the queried case, and by matching image properties (e.g. the
image modality). They also found important to filter the images based on their
quality.

5.1.2 Where are we now?

In Chapter 2, we showed how to automatically index the CMR images based on
the acquisition plane information. This information is one of the most important
properties of cardiac MR slices. With segmentation (Chapter 3), we describe the
hearts with geometric indices. In Chapter 4, we addressed describing the images
with their semantic description, and the image quality. This description simplifies
query formulation and can help with exploratory search for similar images within
the image collections.

Our next technical challenge is to facilitate querying of cardiac databases (per-
haps less interactively) from image content for “similar” images. We therefore need
to find a flexible way of estimating the similarity between any pair of images to
approximate the clinicians’ metrics (e.g. similarity in image-derived measures or
pathology). In this chapter, we propose a technique that learns how to approximate
such similarity from the examples.
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5.2 Similarity for content-based retrieval

When are two cardiac images “similar”? The similarity metric depends on the clini-
cal application of the CBIR system. A different similarity measure is needed to find
images with equivalent findings than to find hearts with comparable prognosis. And
yet another one to find similar hearts for initialisation of a segmentation algorithm.

As we will see, the measure of similarity between the images for retrieval is
frequently defined from distances of some intermediate representations such as tex-
ture histograms or segmentation overlaps. This creates a discrepancy between what
these measures capture and the desired clinical similarity (the semantic gap). In
Section 4.1.1, we have already described a couple of methods to extract features
from cardiac images.

5.2.1 Bag of visual words histogram similarity

One of the most common ways to describe and compare medical images for retrieval
is through their tissue or texture statistics. E.g., Depeursinge et al. (2012) used his-
tograms of tissue volumes to retrieve similar lung images. Instead of these volumes
requiring image segmentation, André et al. (2011a) used histograms of visual words
to describe and retrieve images from confocal endo-microscopy. Both approaches
define the similarity as a measure of distance between the histograms. This creates
a semantic gap between the measured and the perceived similarity.

André et al. (2012) later managed to reduce this gap by learning the distance
between images using the perceived clinical similarity as ground-truth (helping to
discriminate healthy tissue from malignant tumours). In their work, clinicians an-
notated pairs of videos on a four point scale from very dissimilar to very similar.
This is comparable to our estimation of semantic cardiac attributes from pairwise
image annotations presented in Chapter 4.

5.2.2 Segmentation-based similarity

Segmentation overlap can describe the global similarity of shapes. Glatard et al.
(2004) used a texture-based method to roughly segment the cardiac images. An
overlap measure between these segmentations then served to find the most similar
slices. Neighbouring slices and frames from the same 3D+t stack were correctly
retrieved. However, retrieving neighbouring slices from the same patient does not
aid with the decision-making process. In addition, even Euclidean distance would
likely perform well in this scenario.

Segmentation overlap (measured with Dice coefficient) was also used by Eslami
et al. (2012) to find the most similar hearts and to use them as atlases to guide
their LV segmentation algorithm. Computing overlaps of fine structures (e.g. thin
myocardium) can cause problems. Small misalignments of these structures can
cause zero overlap and negatively affect the similarity measure.

In Bleton et al. (2015), we showed how spatio-temporal myocardial thickness
profiles extracted from image segmentation, instead of the segmentation overlap,
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can be used for fine-grained infarction localisation (without contrast agent).

5.2.3 Shape-based similarity

Statistical shape models are powerful tools to capture fine differences between vari-
ous cohorts (Zhang et al., 2014b; Medrano-Gracia et al., 2014). The hearts are rep-
resented with the same model across the dataset and reduced to a lower-dimensional
representation via PCA. The modes of variation then form a descriptor. Such repre-
sentation can be used to compute distances between the cases, e.g., as the Euclidean
distance. Correspondences between the hearts must be first established to construct
the shape models.

Bernardis et al. (2012) extracted a pose invariant spectral representation (see Sec-
tion 4.5) from image segmentations to describe shapes of the hearts without the need
for the correspondences. They used Weighted Spectral Distance (Konukoglu et al.,
2012) to measure the shape dissimilarity.

5.2.4 Registration-based similarity

A different approach was introduced by Duchateau et al. (2011). They used image
registration in a diffeomorphic framework to construct an atlas of septal motion. For
each heart in the database a septal motion abnormality map was computed. This
map highlights the septal flash pattern — a factor to predict cardiac resynchroni-
sation therapy response. Euclidean distances between these abnormality motion
maps then serve to compute pairwise similarities between the hearts and find a
lower dimensional representation of the dataset. This method characterises the
septal motion and disregards the shape differences.

To capture shape similarity between different pathologies, Ye et al. (2014) pro-
posed to characterise cardiac ventricles via a deformation metric. Similarly to Duchateau
et al. (2011), deformation maps to a reference model allow them to measure dis-
tances from normality but also to classify the hearts into four distinct pathological
classes: healthy, Tetralogy of Fallot, hypertrophic cardiomyopathy and hearts with
diastolic dysfunction.

5.2.5 Euclidean distance between images

Instead of using the motion abnormality (Duchateau et al., 2011) or deformation (Ye
et al., 2014) maps as the intermediate representation, an even simpler approach
exists. This is to use the image intensities of rigidly registered images directly and
compute the Euclidean distance between them instead. Such approach was recently
presented by Wang et al. (2015) and was validated on a dataset of 209 cardiac
images. Their lower-dimensional image representations (Belkin and Niyogi, 2003)
derived from this distance make visually appealing visualisation of the dataset and
reveals clusters of patients with similar sex, blood pressures, ventricular volumes,
but also some appearance similarity. These representations of the dataset were
used successfully for binary classification within the three categories (sex, blood
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pressure, volume). This is an appealing finding. Images used in their study were
all acquired in a controlled environment and on the same MR system, likely with
the same acquisition settings.

In our experiments with the multi-centre study DETERMINE (Kadish et al.,
2009), we used images cropped similarly to Wang et al. (2015). However, we failed
to retrieve images with similar characteristics using Euclidean distances between
them. We did not project the images into a low-dimensional embedding though.
The Euclidean distance between pixel ints ensities is a measure particularly sensitive
to the acquisition differences (see Fig. 3.8 for an illustration of myocardial tissue
intensity variability across the dataset) and image artefacts. It is also not necessarily
the best measure to address some of the clinical retrieval goals.

To remove the differences between the acquisitions we can strip the images
down to the bare minimum, i.e., to segment the images. The other options are to
do correct preprocessing or to pick features invariant to irrelevant image differences.

5.2.6 Using decision forests to approximate image similarity

Most of the above mentioned methods use Euclidean or other fixed distances be-
tween the fixed intermediate representations. Learning-based techniques can be
used to capture the similarity, reduce the semantic gap (André et al., 2012) and
pick acquisition invariant features. One way to learn to approximate the similarity
is via decision forests.

Pei et al. (2013) recognised that the decision forests can be used to find similar
motion patterns for lip reading. They used an unsupervised clustering criterion
to train the forest, grouping dense clusters of points together (comparably to the
Distance approximating forests in Appendix A). Their approach was termed in Cri-
minisi et al. (2011b) as manifold forests.

In medical imaging, the decision-forest-based distance was first used by Gray
et al. (2013) for cerebral images, to discriminate Alzheimer disease patients from
mildly cognitively impaired and healthy controls. Here, two classification forests
were trained. One was trained with features derived from volumetric measurements
of anatomical regions (after segmentation). Another one with features derived from
Positron emission tomography (PET) image intensities at random locations (sim-
ilarly to our recognition of cardiac acquisition planes with image miniatures in
Section 2.5). These forests were trained to classify the brains into Alzheimer dis-
ease and healthy. The trained forests were then used to compute the similarity
between the images. As it is typical for decision forest-based methods, the algo-
rithm automatically selected relevant discriminative features.

The notion of similarity in the forest-based approaches (the number of times
two data points end up in the same leaf) (Gray et al., 2013; Criminisi et al., 2011b;
Pei et al., 2013) might seem quite ad-hoc at first. Intuitively, it makes sense to
use forests to find similar images. Similar images take similar decisions and pass
through similar paths. The selected decisions are adapted during the training phase
so that the performance on the target task (e.g. classification) is maximised. If the
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forest is well trained, the paths are then relevant to the similarity.

5.3 Neighbourhood approximating forests

Konukoglu et al. (2013) showed how decision forests can be trained in a supervised
way from pairwise similarity ground-truth to find similar images directly. The simi-
larity is specified in the split criterion. They called this approach the Neighbourhood
approximating forest (NAF).

+1 +1 +1 +1

Query image

(a) Structuring the dataset with neighbourhood approximat-
ing forests.

2

11

00

(b) Similarity to all images
in the database.

Figure 5.1: The NAFs are trained to group similar hearts (e.g. with respect to
similar ejection fraction) together. These similar images end up in the same leaves
more often than with the dissimilar ones (Fig. 5.1a). New, previously unseen, images
can be used to rapidly query the database by counting the number of common
leaves with the database. When querying a new image, the image is passed through
decisions of the forest (thick green path) and reaches a set of leaves (blue). The
similarity with each database image (Fig. 5.1b) is computed simply as the number
of times the query image and the database image co-ocur in the same leaf.

The NAF is a particularly advantageous algorithm for CBIR. We do not need a
predefined metric between features. The trees automatically select relevant features
from the images and cluster the closer (based on the provided similarity ground-
truth) images together to achieve the clinically meaningful goal.

The tree data structure also allows us to rapidly evaluate similarities between
the query image and all existing cases in the database. To compare the query image
to all previously stored images, we count the number of times the query image co-
occurs with each of them in the leaves of the forest. Even for very large datasets,
only as many leaves need to be visited as there are trees in the forest. This method
is computationally efficient, especially, if the features are also efficiently extracted.

It is possible to insert new cases into the database without retraining or doing
additional pairwise comparisons. Once the new image is inserted into the database
and passed through the forest, reached leaf indices can be recorded. There is no
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longer any need to have direct access to the image for future comparisons. This is
compatible with collaborative indexing of personal collections from several clinicians.
Sharing sets of leaf indices from images in personal collection would be sufficient to
find where the relevant images can be found.

5.3.1 Learning how to structure the dataset

This tree-based method hierarchically structures the dataset such that similar im-
ages are clustered closer together while the dissimilar ones are spread more apart.
Since this is a supervised method, pairwise distances ρ(I, J) between images I and
J in the training set must be known. The ground-truth similarity between the cases
can be defined from virtually anything meaningful, e.g., pathology, blood pressure,
patient’s age, or in our case the ejection fraction, infarct location (Bleton et al.,
2015), or the presence of pericardial effusion (Appendix C).

In lieu of the information gain used previously (see Eq. (2.1)), a criterion derived
from cluster compactness is used to select split parameters that lead to the best
partitioning of the dataset. Cluster compactness Cρ for a set of images Ds at the
node s and with respect to the training image distance ρ is defined as:

Cρ(Ds) =
1

|D|2

∑

i∈Ds

∑

j∈Ds

ρ(Ii, Ij) (5.1)

During the training phase, at each node, the parameters of the binary splits θs
are fixed in order to divide the images at the node into the left IsL and the right IsR
branches. The parameters are chosen such that the following gain measure Gρ is
maximised:

Gρ(Is, θs) = Cρ(Is)−
|IsL|

|Is|
Cρ(IsL)−

|IsR|

|Is|
Cρ(IsR) (5.2)

To maximise this quantity, the compactness (e.g. the pairwise sum of absolute
ejection fractions differences for all the pairs within the node) in both left Cρ(IsL) and
right Cρ(IsR) branch must be as low as possible. This quantity therefore encourages
the forest to pick decisions where similar images (with similar ejection fractions)
are put together into the same branch.

5.3.2 Finding similar images

The trained trees can be then used to obtain a measure of similarity S between
any two images I and J (even if they were not part of the training set). After
passing each image through the trees, a set of leaves is reached (see Fig. 5.1a). The
similarity is approximated by counting how many times the same decisions were
taken, i.e., by measuring the number of trees where two images both reach the
same leaf (Lt(I) = Lt(J)) as illustrated in Fig. 5.1b.

S(Ii, Ij) =

nT
∑

t=1

1(Lt(Ii) = Lt(Ij)) (5.3)
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Please note that the similarity value is not continuous as one would expect. It
is quantised into as many discrete steps as there are trees in the forest (nT ). If two
images share no leaf, the similarity between them is null. On the other hand, the
similarity between them is equal to the number of trees when the images share all
decision paths and always reach the same leaves. For a more detailed description
of the NAFs algorithm, please see Konukoglu et al. (2013).

5.3.3 NAFs for post-myocardial infarction hearts

We now apply this technique on a dataset of hearts after an acute myocardial
infarction event. In Section 4.2, we described several aspects of the failing hearts
that can be captured by cardiac images. Following the acute myocardial infarction
the hearts undergo a series of remodelling steps. Some of the most important
predictors for the current state and the later remodelling changes (global ventricular
dilation, impaired contraction, or a valvular disease) is the infarction position and
the amount of preserved cardiac function (Zaliaduonyte-Peksiene et al., 2013; Sun,
2009).

In Bleton et al. (2015), we used NAFs to help with interpretation of previously
unseen images of post-myocardial infarction hearts by learning how to approximate
similarity between them based on their infarction locations from image segmen-
tations and to predict the infarction position. The amount of preserved cardiac
function is another important factor for the course of adverse remodelling after a
myocardial infarction. It is therefore important to be able to find weakly contracting
hearts when a non-compacting heart on a course of adverse remodelling is queried.

5.4 Learning the functional similarity

The ejection fraction of the LV is one of the most frequently used measures in
cardiac reporting to describe the cardiac function and to classify failing hearts.

5.4.1 Cluster compactness based on ejection fraction difference

For this goal, we now train a NAF with absolute ejection fraction (EF) difference
as the split criterion. EF(I) is the ground-truth ejection fraction measure for image
I computed from its LV cavity segmentation.

ρEF(I, J) = |EF(I)− EF(J)| (5.4)

5.4.2 Preprocessing

We first extract one apical, one mid-cavity, and one basal slice from each image. If
there are more slices of a particular type, a single slice is selected from each of these
at random. In fact, choosing random combinations of the 3-slice volumes can be
seen as a way to augment the dataset.
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We then align the images to a reference image with a set of landmarks belonging
to the LV epicardium on the mid-cavity slice (as detailed in Appendix B.3) with a
similarity transformation model (rigid + scale). The reference image is cropped to
128× 128 pixels, such that it wholy contains the target landmarks with some small
extra margin. The intensity of the images is normalised (similarly to whitening) by
shifting the mean of the cropped images to 127 and by forcing a single standard
deviation value across the whole dataset such that the most common intensity
ranges (between 0 and 98.5%) fully span the 0 to 255 intensity range.

We strip away the thorax pixels (Section 5.4.2.1) and compute the temporal
pseudo-volumetric curves from the image crops. We then extract the end diastolic
and end systolic frames from the images (Section 5.4.2.3).

5.4.2.1 Thorax stripping

To reduce the influence of background structures, we focus on the regions adjacent
to the moving left ventricle only. Such preprocessing is similar to what is commonly
done in brain imaging - skull stripping. Rough estimation of the moving cardiac
region can be obtained from temporal intensity changes (see Figure 5.2). We first
compute the temporal range of intensity values at each pixel, in other words the
difference of maximal and minimal intensity values of the pixel in time. We spatially
smoothen the range image and binarise it using the method of Otsu (1979).

Intensities beyond some distance from the largest moving blob can therefore be
safely labelled as the background and masked to be removed from the image. It is
important to keep some extra region around the heart to avoid removing important
cardiac findings such as the pericardial effusion. Smooth blending of the background
is obtained by mapping the distance to the blob with a sigmoid.

5.4.2.2 Spatial alignment

In Appendix B, we describe our landmark model and how cardiac landmarks can
be estimated. Once the landmarks are estimated, we can align the hearts. Having a
landmark-based model allows us to rapidly choose the reference structure of interest.
This is a big advantage over the intensity-based registration techniques. The main
options include registration to all available landmarks, to both LV endocardial and
LV epicardial landmarks, to RV endocardial landmarks alone, or to a specific subset
of landmarks, e.g., the antero-septal wall.

In this chapter, we choose the LV epicardium as the reference. We regis-
ter the left ventricular epicardial landmarks to the mean left ventricle epicardium
model with similarity (rigid + scale) transformation model. The transformation pa-
rameters are estimated with Procrustes analysis (Suinesiaputra et al., 2004). The
similarity transformation preserves most of the image information and puts the
hearts into correspondence without introducing artefacts from non-linear methods.
The standard acquisitions were performed by expert radiologists so the long axis is
in general in good alignment with the short axis plane normal vector. However, the
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Figure 5.2: Thorax stripping with intensity range images. From left to right: origi-
nal image, smoothed max-min range image, isocontours to the largest moving object
(white contour is the Otsu thresholding of the smoothed image), and final image
with faded background beyond 15 mm from the moving blob.
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in-plane rotation is arbitrary. We limit the similarity transformation to rotations
around the image normal (within the (x-y) plane). This diminishes the effect of
image interpolation artefacts along the coarsely sampled z-axis of the CMR images.

Having the images registered allows us to directly compare the different cardiac
structures. Pixels at fixed locations roughly correspond to the same anatomical
region and their pixel intensities can be compared as done in Section 2.5. Similar
approaches have been successfully used for example in classification of patients
with multiple sclerosis from depth videos (Kontschieder et al., 2014), or in a face
identification pipeline (Taigman et al., 2014). In Kontschieder et al. (2014), the
images were rigidly aligned with patients’ heads. In Taigman et al. (2014), facial
landmarks were first extracted. These were then used to estimate a piecewise affine
transformation and to normalise the faces into a reference view.

5.4.2.3 Temporal alignment

Cropping the regions from the estimated landmarks and stripping the thorax also
helps us to temporarily align the sequences. Approaches like Dynamic time warp-
ing (DTW) (Peyrat et al., 2010) or resampling to a fixed temporal length (Zhang
et al., 2010) use the whole cardiac cycle to temporally align the cardiac sequences.
To establish unambiguous temporal correspondences between the different cardiac
sequences we use only the two main cardiac phases.
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Figure 5.3: Temporal dissimilarity curve (sum of absolute differences over time) of
the cropped LV region with respect to the first frame (usually the end diastole).
Having cropped regions around the LV helps us to identify the main cardiac phases
even without the need for the segmentation. Note the remarkable resemblance of
this curve to the typical cardiac volume curve.

The first frame in the sequence is chosen as the end diastolic frame. The end
systolic frame is chosen as the most different (with the largest sum of absolute differ-
ences) frame from the end-diastole (see Figure 5.3 for an example of the estimated
similarity curve).
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5.4.3 Spatio-temporal image features

To describe the images and to achieve acceptable query responsiveness, we propose
fast temporal intensity-based features (see Fig. 5.4), using no segmentation nor
non-rigid image registration. These features are derived from 3D Haar-like features,
similar to the ones we used for cardiac image segmentation in Chapter 3, measuring
regional intensity statistics. This time, the images are aligned and cropped with the
background faded. Measures at fixed positions roughly capture information from
the same cardiac regions.
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Figure 5.4: Overview of our features. Short axis images are cropped, reoriented and
aligned and features are extracted for the NAFs to find similar hearts. These are
derived from 3D Haar-like features computing regional intensity averages, standard
deviations and maxima, together with their differences. We use several feature
families in this work, both spatial only and fully spatio-temporal.

Again, we define several feature families from which we sample the features and
we extract not only the average regional intensities within the boxes but also
standard deviations (capturing texture and intensity homogeneity) and regional

maxima. The first two can be computed very efficiently with integral images as
proposed by Viola and Jones (2004). We find the regional maxima directly, but they
can be also roughly approximated with integral images using the soft-max function
log

∑

i exp(xi). In other words, by exponentiating the voxel intensity values prior to
the integral image computation and computing logarithms of the extracted regional
sums. Care must be taken to avoid numerical overflows.

In all cases, we limit the parameters of these boxes to fit into the aligned
spatio-temporal image crops. We do this by parametrising the spatio-temporal
rectangles with coordinates of their two extreme corners (L - lower and U - upper):
(Lx, Ly, Lt, Ux, Uy, Ut). Each coordinate is represented as percentage of the cropped
image size and is bounded between 0 and 1. This way of defining the rectangles
guarantees them to stay within the cropped image and no extra out-of-bounds box
evaluation or clipping are necessary. Note, we currently always use the whole range
of z values (computing statistics in voxel across all three slices), and only two main
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temporal instants (diastole and systole).

In total, we define 30 “semantic” families of features for easier interpretation of
the results. We sample 200 random features from each family as we will describe
below. This generates a large number of features from several different feature
families and assumptions on how they should capture the content. The advantage
of the forest-based algorithm is that it can automatically pick features that truly
matter to find similar hearts.

5.4.3.1 Intensity statistics of static central rectangles (“centered rect”)

First, we propose to measure intensity statistics of the central image region, indi-
vidually at systole and at diastole. A dilated and poorly contracting ventricle, with
large bright blood pool should have higher systolic and diastolic average intensity
than a heart whose cavity is much smaller and where the myocardium drives down
the average image intensity.

We extract spatial boxes with their centre aligned with the image centre. The
image centre coordinates are simply c = (0.5, 0.5, 0.5). These boxes have dimensions
proportional to the image crop size (in our case the extracted region is a square
and so are the extracted rectangles). Their extent can be anywhere from single
central pixel to the extent of the whole crop. In other words, we uniformly sample
a single variable d between 0 and 0.5. The rectangles are then defined as Rcentre

dia =

(cx − d, cy − d, 0, cx + d, cy + d, 0.5) for diastolic frames, and for systolic frames as
Rcentre

sys = (cx−d, cy−d, 0.5, cx+d, cy+d, 1). We use the generated boxes to compute
their intensity averages (avg), standard deviations (std) and maxima (max), at both
end frames (sys, dia).

This results in 6 feature families (1200 features): centered rect dia avg, cen-

tered rect sys avg, centered rect dia std, centered rect sys std, centered

rect dia max, centered rect sys max.

5.4.3.2 Intensity statistics of arbitrary static rectangles (“rect”)

By measuring regions at arbitrary spatial positions we can capture extra information
to help with more fine-grained division of the hearts based on local measurements.
Therefore, we also sample randomly-sized diastolic or systolic boxes at arbitrary
spatial positions. From a uniform distribution we sample two pairs of spatial co-
ordinates x and y to lie anywhere between 0 and 1. For each coordinate, we pick
the smaller of the components to create the lower corner of the box (L) and the
larger ones to create the upper corner (U). We can then extract the boxes for sys-
tole Rspatial

dia = (Lx, Ly, 0, Ux, Uy, 0.5) and diastole Rspatial
sys = (Lx, Ly, 0.5, Ux, Uy, 1).

The following 6 feature families were extracted (1200 features): rect dia avg,
rect sys avg, rect dia std, rect sys std, rect dia max, rect sys max.
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5.4.3.3 Full-cycle box statistics (“rectangles full extractor”)

We also compute regional statistics of arbitrarily placed rectangles as described
above in Section 5.4.3.2, but this time spanning both temporal instants: Rfull =

(Lx, Ly, 0, Ux, Uy, 1). This results in 3 additional feature families (600 features):
rectangles full extractor avg, rectangles full extractor std, rectangles full

extractor max.

5.4.3.4 Regional differences (“offset rect spatial diff”)

For now, we have computed individual boxes and considered them independently.
Comparisons between two spatial regions can help to better discriminate subtler
shape differences with single decisions. We compute the spatial differences in re-
gional average intensities, standard deviations and maxima between two boxes of
different sizes and at two different positions within the same frame. We sam-
ple two independent rectangles as described in Section 5.4.3.2, i.e., Rspatial,0

dia =

(L0
x, L

0
y, 0, U

0
x , U

0
y , 0.5) and R

spatial,1
dia = (L1

x, L
1
y, 0, U

1
x , U

1
y , 0.5) for diastolic boxes.

Apart from the boxes being fully contained within the image crop (by construc-
tion), we do not restrict their positions and sizes. These boxes can even fully
overlap or do not touch each other. Then, we compute the differences in their
statistics (stats(Rspatial,0

dia ) − stats(Rspatial,1
dia )) and use them as additional features.

For systolic boxes we add 0.5 to the temporal components.
This results in 6 feature families and 1200 features: offset rect avg spatial

diff dia, offset rect avg spatial diff sys, offset rect std spatial diff dia, offset

rect std spatial diff sys, offset rect max spatial diff dia, offset rect max

spatial diff sys.

5.4.3.5 Central temporal differences (“centered rect temporal diff”)

In the end, the function of the heart is best captured with volume changes in time.
Temporal intensity changes (between the diastolic and systolic frame) can help to
further discriminate the hearts based on the chosen criteria. In particular, shifts in
regional image intensities are an excellent mean to roughly capture the amount of
motion without registration.

The intuition behind using temporal intensity differences is that average in-
tensities in static or stiff regions do not change temporally much while properly
contracting voxels cause a visible drop in average regional intensity due to changed
blood-myocardium distribution. Temporal changes in the image histogram distri-
bution due to cardiac contraction have already been used previously to estimate
the ejection fraction by Afshin et al. (2012a,b).

The main intensity changes between the ED and ES should happen within the
ventricular cavity. Therefore, we first define differences of statistics within equally
sized centred rectangles: stats(Rcentre

dia ) − stats(Rcentre
sys ). This yields 3 more feature

families (600 features): centered rect avg temporal diff, centered rect std

temporal diff, centered rect max temporal diff.
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5.4.3.6 Regional temporal changes (“rect temporal diff”)

The central temporal differences are limited in the shape of the region they can
capture. We therefore measure temporal change of rectangular regions, i.e., the
differences between two fixed spatial boxes: R0 = (Lx, Ly, 0, Ux, Uy, 0.5) and R1 =

(Lx, Ly, 0.5, Ux, Uy, 1). In other words, apart from the temporal coordinate, the box
stays fixed for the two frames and the features are computed as stats(R0)−stats(R1).
This adds 3 families (600 features): rect avg temporal diff, rect std temporal

diff, rect max temporal diff.

5.4.3.7 Spatio-temporal differences (“offset rect avg temporal diff”)

Finally, we combine arbitrary space and time together and include regional spatio-
temporal diastole-systole differences of independently placed and sized boxes. One
box from the diastolic frame: R0 = (L0

x, L
0
y, 0, U

0
x , U

0
y , 0.5) and one from the systolic

one: R1 = (L1
x, L

1
y, 0.5, U

1
x , U

1
y , 1). Differences in all three box statistics of the

two boxes are then computed: stats(R0) − stats(R1), which makes for the last 3
feature families and 600 features: offset rect avg temporal diff, offset rect std

temporal diff, offset rect max temporal diff.

5.5 Validation and results

Dataset

Our image database comes from a multi-centre study and consists of 96 post-
myocardial infarction patients with cine short axis MR SSFP acquisitions (Fonseca
et al., 2011; Kadish et al., 2009). The infarctions are healed, but the hearts are in
arbitrary phases of the remodelling process and with arbitrary myocardial salvage.

5.5.1 Retrieval experiment

For each heart we extracted the 6000 previously described features from the corre-
sponding images to capture the hearts’ functional and appearance characteristics.
We then trained the NAFs to select the relevant ones and approximate the image
similarity with respect to the functional aspect of the heart — the ejection fraction.
Our forests consist of 2000 trees with maximum depth 6. All training images were
selected to train the trees, 500 randomly selected features and 50 random thresholds
(per feature) were tested at each node.

We then queried the database with validation images in order to retrieve the
most similar hearts from the training database. We evaluate the quality of the re-
trieval via the differences in ejection fraction of the query images and mean ejection
fraction of their nearest neighbours retrieved by the NAFs.
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5.5.1.1 Mean absolute prediction error

First, we divided the dataset into 10 random folds (90 percent of the data for
training and 10 for testing). The mean absolute prediction error of the ejection
fraction (computed as a mean of ejection fractions of the retrieved four nearest
neighbours) across our cross-validation folds was 5.48% ± 4.60. No segmentation
was used to measure the ejection fraction. This appears to be slightly better than
estimation of the ejection fractions (EFs) by visual inspection (Gudmundsson et al.,
2005) with mean variability 7.0%1.

5.5.1.2 Bucket leave-one-out

To test how well the ejection fractions are predicted across the whole range of values
in the dataset, we set up a different experiment. In this step, we sorted the images
in the training set with respect to their ejection fractions. We then split the sorted
images into 10 equally-sized buckets (each containing roughly the same number of
images), for a 10-fold leave-one-out cross-validation. At each fold we picked one
of the buckets, and chose the image at its centre as the query image. All other
remaining images were left for training.

The retrieval results using this leave-one-out strategy are shown in Fig. 5.5.
Especially for the lower and middle EF buckets, the mean EF of the retrieved images
closely matches the query ejection fraction (within 4%). The retrieved ejection
fractions of buckets at the higher end of the spectrum (> 49%) are much noisier.
This is likely because more hearts in the dataset are in the lower EF buckets and
there are more examples to learn from. Note also that the most dissimilar images
are often located in the opposite side of the functional spectrum.

To visualise how the forest predicts across the whole range of EFs present in the
dataset, we fit a linear regression model to the mean predictions of the leave-one-out
folds (see Fig. 5.6).

5.5.1.3 Computational time

The full query pipeline (loading the image, predicting the cardiac landmarks, thorax
stripping, detecting main cardiac phases, feature extraction, forest traversal and
retrieval of similar images) currently runs together in less than 30 seconds. If
the features are pre-calculated, the tree traversal and similarity computation with
every image in our database is performed in a fraction of a second. Wrapping this
tool into a friendly user interface could enable fast interaction with the dataset for
exploration.

5.5.2 Feature importance

We mentioned a few times in this thesis that the forest picks the relevant features by
itself and allows inspection of the decisions taken. This is a great benefit compared

1Try it for yourself: http://www.cardiacejectionfraction.com

http://www.cardiacejectionfraction.com


100 Chapter 5. Learning how to retrieve semantically similar hearts

Query

DET0044801 (28)

DET0005101 (32)

DET0003901 (36)

DET0001401 (41)

DET0005401 (43)

DET0008901 (47)

DET0037101 (49)

DET0008801 (55)

DET0006301 (58)

DET0001801 (38)

Most similar

Similarity 1068
DET0045301 (30)

Similarity 1145
DET0028801 (32)

Similarity 546
DET0006401 (36)

Similarity 732
DET0015401 (43)

Similarity 884
DET0005501 (40)

Similarity 1219
DET0003301 (49)

Similarity 1472
DET0006501 (61)

Similarity 1186
DET0003501 (51)

Similarity 673
DET0004901 (36)

Similarity 1111
DET0024501 (30)

Similarity 1028
DET0004801 (24)

Similarity 1127
DET0005201 (26)

Similarity 527
DET0009001 (41)

Similarity 703
DET0016101 (42)

Similarity 847
DET0035501 (44)

Similarity 1155
DET0008801 (55)

Similarity 1427
DET0001601 (62)

Similarity 1128
DET0008901 (47)

Similarity 643
DET0006001 (56)

Similarity 1096
DET0001301 (41)

Similarity 1024
DET0028801 (32)

Similarity 1081
DET0026801 (33)

Similarity 506
DET0016101 (42)

Similarity 640
DET0009001 (41)

Similarity 783
DET0028301 (41)

Similarity 1104
DET0002601 (45)

Similarity 1425
DET0021701 (63)

Similarity 1099
DET0002601 (45)

Similarity 627
DET0003101 (43)

Similarity 990
DET0004601 (36)

Most
dissimilar

Similarity 0
DET0015601 (57)

Similarity 0
DET0009001 (41)

Similarity 93
DET0008801 (55)

Similarity 17
DET0005201 (26)

Similarity 43
DET0001301 (41)

Similarity 17
DET0035501 (44)

Similarity 0
DET0005101 (32)

Similarity 1
DET0021701 (63)

Similarity 58
DET0044801 (28)

Similarity 0
DET0021701 (63)

29

30

40

42

42

50

62

48

45

36

Mean EF

Figure 5.5: Retrieval of similar hearts based on the function criterion with a forest
of 2000 trees. Each row represents a query and database retrieval results. The
leftmost heart is the query image (shown diastolic and systolic mid cavity slices),
next is the mean ejection fraction of the retrieved neighbours, the three most similar
hearts, and the most dissimilar heart. Similarity (the number of shared leaves) to
the query is marked above the images. The ground-truth ejection fractions are
marked next to the case name in the parentheses.
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Figure 5.6: Predicting ejection fractions from the retrieved nearest three neighbours
for centres of evenly sized EF buckets as queries. Removing the last three buckets
significantly boosts the prediction accuracy.

to some of the more “black box” algorithms where the interpretation of the learnt
models is more difficult. But what does it mean in practice? There are many
different ways to capture and visualise importance of the features.

5.5.2.1 Visualising spatio-temporal importance

We draw our inspiration from the work of Kontschieder et al. (2014). Let’s start
with a visualisation of the first few decision layers (or levels of the trees) of the
forest. In Fig. 5.7 we show how often each voxel contributed to the decision across
the whole forest (on average). In practice, we count the number of times each voxel
was contained in one of the supporting rectangles of the selected features.

Looking at the forest this way slightly resembles the neural network attention
model of Vinyals et al. (2014). We can see that with increasing depth the attention
of the forests shifts from the central systolic rectangle (Fig. 5.7a) to diastolic frames
with more spread out spatial support (Fig. 5.7c). The later layers (Figs. 5.7d
and 5.7e) further disperse the regions both spatially and temporally. Overall, the
central image region is the most important (Fig. 5.7f).

5.5.2.2 Feature family relevance

The advantage of sampling features from the feature families is that we can easily
find out which of these families are relevant for the similarity. The most important
features per decision layer of the forest are listed in Fig. 5.8.
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Figure 5.7: Average feature importance at different depths of the forest (we show
maximum intensity projections along the temporal and width axis). This is derived
from the number of times a region was selected at the corresponding level of the
trees. Brighter intensities mean more frequent use of particular voxel. At first, the
central square region at the end systole is almost exclusively sampled. Then, the
attention of the forest shifts towards more balanced systole-diastole comparison and
more global spatial support. The third layer further increases the spatial support
and seems to focus on end diastolic frames. Further levels become even more spa-
tially and temporally spread. Note, we show maximum intensity projection across
the temporal axis (left) and spatial as (right). We remind the reader, that our
features use only diastolic and systolic frames (see Section 5.4.2.3), and therefore,
the temporal axis has only two discrete instants.
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Figure 5.8: The most important feature families by decision layer depth for simi-
larity neighbourhood derived from ejection fraction. We show how many times a
family of features was selected by a forest. The first decisions are clearly dominated
by mean intensities of the central region at end systole. The temporal changes of
this region’s mean intensity follow. See Section 5.4.3 for a detailed description of
the used features.
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In the first layer (see Fig. 5.8a), the most commonly used feature is the mean
intensity of central rectangles at systole (“centered rect sys avg”). This choice makes
perfect sense. For intensity-normalised and aligned images (as in our case) the cen-
tral region image intensity clearly determines the proportion of myocardium and
blood pool. In other words, well contracting heart will cover the region with my-
ocardium and the mean intensity will be lower. The second most frequent decision
in the first layer (Fig. 5.8a), the most frequent in the second layer (Fig. 5.8b), and
the most popular feature family across the whole forest (Fig. 5.8f) is the intensity
change in time of the central region (“centered rect avg temporal diff ”). The average
intensity changes in the central rectangle are indeed intuitive features to capture
the ejection fraction similarity. Since the images are pose-normalised by aligning
the epicardia at end diastole, the first splits strongly prefer the systolic measures
and the diastolic ones are almost completely irrelevant.

The second layer of the forests (Fig. 5.8b) captures mainly the temporal change
of mean intensity in the central rectangle and other randomly placed rectangles.
But also, the first diastolic features start to appear and their relevance starts to
grow (Fig. 5.8c). This is likely to capture complementary information to the systole-
dominant decisions in the first layer.

The further layers (Figs. 5.8d and 5.8e) use combinations of a variety of feature
families, capturing more and more of the fine-grained image details. The preference
of one feature over another becomes less clear. Our analysis could differ for a much
larger dataset.

5.6 Discussion and perspectives

We presented an efficient supervised method for content-based image retrieval for
cardiac images based on the Neighbourhood approximating forest (NAF) using a set
of generic spatio-temporal features. The retrieval similarity was learned from pair-
wise distance ground-truth derived from semantically meaningful parameters and
the NAF automatically picked relevant features. The NAF algorithm has several
properties particularly well-suited for content-based image retrieval. The distances
to every heart in the database can be rapidly obtained.

The structure of the forest is fixed during the training phase. To insert a new
image into the database, it is passed through the decisions and its reference number
is recorded at the reached leaves. To compare the query image with images in the
database, it is no longer necessary to access the pixel intensities of the stored images.
This process is also computationally efficient.

Finally, peeking into the tree decisions can give us insights on which parts of
the heart and which features are relevant for a particular goal. However, additional
validation will be needed to ensure reliability of this method and its use in other
(more interesting) similarity criteria than the EF.
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5.6.1 Limitations

The forest-based method has a drawback for small datasets. The recursive division
of the dataset creates nodes with only very few examples after a few splits. E.g.,
in our case, using 96 cases is not much for a forest-based method with binary trees.
Perfectly balanced trees recursively divide the dataset and rapidly leave less than 3
cases per node after just 5 decisions. As the number of leaves grows exponentially
with tree depth, this reduces the chances of two truly similar images sharing a leaf.
Therefore, for smaller datasets, no deep decisions can be taken.

This method is also limited by what the box features can capture. The box
features can be seen as a way to aggregate local information. Some finer aspects
of the hearts are less distinct for the forest to pick up the signal when using raw
image intensity channels.

Since this method is based on image intensities, mixing datasets from other
modalities or even CMR acquisition sequences is currently not possible. In partic-
ular, the use of the MESA dataset (Bild, 2002) with thousands of asymptomatic
volunteers is a great resource to learn the differences between healthy and patho-
logical hearts. In our case, with the intensity-based features, we would likely learn
to discriminate the Gradient echo (GRE) from the SSFP sequences. A simple fix
(such as the one for correction of cardiac shape biases by (Medrano-Gracia et al.,
2013)) is not available.

5.6.2 Perspectives

To address the rapid drop in the number of cases per node, alternative learning
structures are worth exploration. For example, Neighbourhood approximating jun-
gles could be derived from the recently introduced Decision jungles (Shotton et al.,
2013). In Decision jungles, directed acyclic graphs are used instead of the trees,
occasionally merging similar nodes. This can help to keep higher number of points
at the nodes, while, at the same time, keeping the decision structure more compact.

Retrieving hearts with similar ejection fractions is just the start. Training this
method with more cases should help to improve relevance of the retrieved results,
detect more subtle differences between the hearts, or experiment with different
similarity criteria, e.g., based on clinical outcome or clinical findings.

Adding additional channels enhancing the pericardial effusion (Appendix C),
myocardial thinning, valvular jets, particular motion direction, or other motion-
field derived features (such as the acceleration features of Kontschieder et al. (2014))
could help to better capture the appearance and motion information in the images.
In addition, Kontschieder et al. (2015) recently proposed a method to train decision
forests with backpropagation. This way the optimal convolutional filters and the
forest structure could be trained simutaneously.

It is also important to explore how to combine NAFs with different similarity
criteria together, so that mixed search criteria could be allowed, and to explore
querying by ensembles of example images (e.g. by summing up the leaf counts). It
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is likely that querying the datasets with these ensembles will enhance leaf counts
for the common characteristics while the less common will be “averaged out”.



Chapter 6

Conclusions and perspectives

Over the past few years, several initiatives collecting cardiac images have appeared.
These include the Cardiac atlas project (Fonseca et al., 2011) containing the DE-
TERMINE subset (Kadish et al., 2009) we frequently used in this thesis, but also
a study of asymptomatic hearts MESA (Bild, 2002). The UK biobank (Petersen
et al., 2013) aims to image a large part of British population, and the European
Cardiovascular Magnetic Resonance (EuroCMR) registry (Bruder et al., 2013) col-
lecting imaging data from 57 centers in 15 countries. These already quite massive
collections are here to grow and will cause impact on cardiac healthcare. We will
need to find ways to automatically interpret the information contained within these
databases and simplify search.

In this thesis we addressed some of the most important challenges of cardiac
data organisation and information extraction from these datasets using machine
learning.

6.1 Summary of the contributions

We addressed the following four issues. Here, we show them with our respective
contributions and limitations of the proposed methods.

6.1.1 Estimating missing metadata from image content

Many of the DICOM tags are inherently noisy and cannot be realiably used. In
this thesis we showed that instead of relying on DICOM, we can estimate some of
the metadata from the image content — the cardiac acquisition plane information.

The main contribution of Chapter 2 is that a good cardiac view recogniser
(reaching state of the art performance) can be efficiently trained end-to-end without
designing features using a convolutional neural network. This is possible by fine-
tuning parameters of a CNN previously trained for a large scale image recognition
problem. We published our findings in Margeta et al. (2015c, 2014).

• We achieve state of the art performance in cardiac view recognition by learning
an end-to-end system from raw image intensities using CNNs

• This is one of the first works to demonstrate the value of features extracted
from medical images using CNNs, originally trained on a large scale visual
object recognition dataset
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• We show that fine-tuning parameters of the CNN pretrained on an object
recognition dataset is a good strategy that helps to improve performance and
speed up the network training

• We show that the CNNs can be applied to smaller datasets (a common prob-
lem in medical imaging) thanks to careful network initialisation and dataset
augmentation, even when training the network from scratch

• We also reproduce the observation of Zhou et al. (2012) that the 3-dimensional
orientations vectors that can be derived from DICOM tags can be used for
cardiac view recognition (if the orientation tags are present)

Fine-tuning of a network is a great way to learn complex models from smaller
size medical data and CNNs are powerful machine learning tools that have yet to
fully propagate into medical imaging.

We trained the views only on a dataset of post-myocardial infarction hearts.
These hearts certainly have some particularities as we showed in the thesis, never-
theless, their appearance and topology are still rather “normal”. We have yet to
test this method on severely pathological cases or less standard acquisitions (non-
centred, oriented with atypical angles).

There are also many more cardiac views left to be recognised (Taylor and Bo-
gaert, 2012) from other acquisition sequences. Such ground-truth has to be collected
for all acquisition sequences with which the views are acquired, which leads to a
combinatorial problem. Many of these combinations are underrepresented, and
learning from very few examples remains a challenging problem.

In addition, the recognition of the views should not stop on describing the views.
This work is a cornerstone for recognition of image modalities and MR acquisition
protocols and for automatic generation of full image description as done recently
for natural images using Recurrent neural networks (Vinyals et al., 2014; Karpathy
et al., 2015; Donahue et al., 2014).

6.1.2 Segmentation of cardiac images

Segmentation of cardiac structures allows to index the databases using automatic
measurements of tissue volumes and estimation of their masses. In Chapter 3 we
propose to segment cardiac MR images with classification forests as in Shotton et al.
(2008); Lempitsky et al. (2009); Geremia et al. (2011).

The main contribution of this part of the work is that voxel-wise segmentation
of cardiac structures can be learnt from voxel-wise ground-truth.

• We proposed a forest-based segmentation method for LVs from 3D+t cardiac
MR sequences and for LAs from 3D MR and CT images

• We introduced a novel two layered approach for standardisation of image
intensities and inter-patient cardiac registration
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• We designed spatio-temporal features for learning how to segment dynamic
sequences

• We proposed to use other image channels such as vesselness, or distances to
blood pool (which can be easily segmented) to segment the atrial images

• We also showed (Appendix A), how non-labelled data can help to segment
the images in a semi-supervised way and how the best points for labelling can
be proposed

This work led to our publications (Margeta et al., 2012, 2013), and we con-
tributed the results from our algorithms to two benchmarking studies (Suinesiapu-
tra et al., 2014b; Tobon-Gomez et al., 2015) for fair evaluation. Our methods are
not the best performers in terms of segmentation accuracy. However, they shine in
terms of how little knowledge about the problem was hardcoded into the algorithm
which makes them quite flexible. The algorithms also get better with more exam-
ples. This makes our approaches much more ready to be applied to other cardiac
modalities, views and tissues, and for the growing data.

While our methods do not use much prior information, some postprocessing
to regularise the solution and large datasets to learn sufficiently robust features is
essential. Extra steps such as data augmentation and learning discriminative image
channels would likely help to further improve their performance.

6.1.3 Collection of ground-truth for describing the hearts with se-

mantic attributes

In this thesis, we mainly focused on supervised machine learning approaches. This
means that the algorithm learns from examples where ground-truth labels are re-
quired. The acquisition of these labels is at least as important as the acquisition of
the images. Our solution to the annotation collection problem is a web-based crowd-
sourcing tool for collection of annotations in order to learn semantic descriptions of
the hearts described in Chapter 4.

The disease itself is usually not a discrete (yes or no) flag and it manifests itself
through several ways. Some of them can be described by clinicians in semantic
terms, the cardiac attributes. There is discrepancy between this semantic descrip-
tion and the representation by the computer, making searching for hearts in cardiac
databases using such description difficult. Thanks to the pairwise comparisons, less
experience in interpretation of cardiac images is needed to correctly answer difficult
questions.

• We design a web interface for crowdsourcing of such ground-truth.

• We propose to describe the cardiac images with semantic attributes such as
hypertrophy, thinning, kineticity, dilation, or image quality from pairwise
image comparisons.



110 Chapter 6. Conclusions and perspectives

• We show, how concepts from web-ranking can be used to learn these at-
tributes.

Our crowd (3 in-house annotators) size is very limited and so is the amount
of ground-truth currently collected and the conclusions we can draw. Annotator
variability and quality is also an important aspect to study. When Health Insurance
Portability and Accountability Act (HIPAA) compliance is assured, such a tool
could be distributed among medical students to generate a rich resource for learning
while contributing to the dataset at the same time. Having multiple annotations
would also help us to assess how reliable the predictions are.

Presenting random combination of images to the annotators is not ideal as it
redundantly wastes their time on simpler questions that the machine can already
confidently predict. An active loop should be rather used where human input will
be solicited predominantly for the least confident cases.

While we claim that any pathology could be described with semantic attributes,
the spectral representations of the hearts cannot capture all of the aspects. Not
only we restricted the research to the LVs, for small structures (such as thin walls
of the myocardium) the spectral features become unstable due to the change of
topology. Moreover, these features depend on good quality image segmentation.

We are also limited by our imagination of the attributes. Attribute discovery
techniques are essential in the next steps.

Once more data is collected, learning better feature representations (e.g. (Kang
et al., 2015; Zhang et al., 2014a)) for prediction of the attributes is crucial for
improving the predictions.

6.1.4 Structuring the datasets with clinical similarity

Finally, Chapter 5 discussed how the decision forest structure has desirable prop-
erties to structure imaging datasets and can be used to learn similarity for CBIR
using a decision forest-based method.

• We show how NAFs can be used to approximate clinical similarity with respect
to ejection fraction or infarction location (Bleton et al., 2015) i.e. aspects
capturing shape, motion and appearance similarity of cardiac sequences.

• We show simple ways to remove static background and estimate the main
cardiac phases from the images

• We propose to reuse previously fine-tuned CNN features for cardiac landmark
estimation and image alignment (Appendix B).

• We hint, how the pericardial effusion could be enhanced with simple filtering
(Appendix C)

In theory, the NAFs can be trained with arbitrary image similarity ground-truth
and used for fast exploratory queries within the large cardiac datasets. Using EF
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itself does not lead to any benefit over using pure automatic segmentation and
image measurements.

Our method needs more validation and larger datasets for improved reliability of
the retrieved results and predictions on different similarity criteria. Also, additional
image channels will be needed to enhance the relevant information.

While the returned results are not perfect, they are significantly better than just
retrieving images at random and the retrieved images are relevant to the query. In
the end, collection of real usage data in a feedback loop will be necessary to define
which similarity criteria are actually useful and to personalise the retrieval results.

6.2 Perspectives

In this thesis we only scratched the surface of management of large cardiac databases
with machine learning, the collection of annotations, or content-based image re-
trieval of similar cases. There are many challenges lying ahead.

6.2.1 Multimodal approaches

Different cardiac imaging modalities complement each other with the information
contained therein. There is a need for multi-modality approaches (Galderisi et al.,
2015). None of our tools is modality specific, and the same algorithms could be
almost directly applied to these modalities.

In this thesis, we used mainly SAX images, acquired with the SSFP MR proto-
col. This is clearly not sufficient. Other cardiac views can offer deep insights into
different aspects of the heart that are not seen on short axis slices. The Delayed
enhancement MRI (DE-MRI) acquisition protocol captures the extent of myocar-
dial infarction, the tagged imaging sequences help to better estimate the motion,
the phase contrast imaging captures the blood flow through the valves and in the
arteries. New modalities and protocols appear. T1 imaging at 3T magnetic fields
can be used to reliably detect and quantify myocardial fibrosis without the need for
contrast agent (Kali et al., 2014) (e.g. to image infarcted regions in hypertrophic
cardiomyopathies, dilated cardiomyopathies, or aortic stenoses). Gradient echo T2∗

sequences (Anderson, 2001) capture myocardial iron overload and allow early de-
tection of ventricular dysfunction, before it develops. Other modalities such as CT
and US can bring yet another angle into study of cardiac anatomy and motion.

6.2.2 Growing data

The study of the EuroCMR registry (Bruder et al., 2009) scanned 27,309 patients
across 57 sites in 15 European Countries according to standard protocol (Kramer
et al., 2008). In 61.8% of all subjects, the study found that CMR had significant
impact on diagnosis and therapeutic consequences (change in medication, invasive
procedure, hospital discharge or admission). About 8.7% of the scans revealed new
diagnoses not suspected before.
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But we have yet to establish the benefits of CMR on the outcomes. More
people will likely be scanned and more data will be generated. Wearable computing
has already started to record real-time health information. It will soon become
necessary to search through this data with automatic software tools.

With these humongous databases and heterogeneuous data sources, automatic
cleaning of the metadata directly from image content and indexing of the databases
for fast access to relevant studies become even more relevant than before.

6.2.3 Generating more data

We still face the challenges of expensive data acquisition, patient privacy in data
collection and distribution and missing ground-truth. In the meanwhile, if we can
generate massive synthetic but realistic data and images using biophysical models,
we shall be able to train richer models and only then tune them to the real data
problem. This is known as transfer learning (Pan and Yang, 2010) and is one of
the main goals of the ERC MedYMA project.

It is significantly cheaper to generate more synthetic data than to acquire and
annotate them. There is no need for patients’ consent or restriction on data shar-
ing, the underlying parameters used to generate the images (the ground-truth)
are known. These in-sillico approaches can generate large quantities of images
with known ground-truth labels, facilitating training algorithms to reverse the gen-
erative process and obtain the labels back from the image data. High quality
generators of synthetic cardiac image generators already exist for a wide range
of modalities (Alessandrini et al., 2015; Prakosa et al., 2013; De Craene et al.,
2014; Tobon-Gomez et al., 2011). Whole platforms on the web are dedicated to
the multi-modality medical image simulation to democratise this process (Glatard
et al., 2013).

Similarly to how synthetic depth data made real-time pose estimation from
depth cameras possible (Shotton et al., 2011), robust detectors were trained on syn-
thesised fluoroscopic images (Heimann et al., 2014). Geremia et al. (2013) learnt
to estimate tumour cell density estimation on clinical images by training models on
simulated multi-modal MR images using biophysical models growing synthetic cere-
bral tumours at various positions in the brain. Simulated cardiac images (Prakosa
et al., 2013) were used to inverse cardiac electrophysiology (Prakosa et al., 2014)
and the models transferred to real images. The opportunities are endless.

6.2.4 Data augmentation

We showed that even a simpler way to generate synthetic but very realistic training
examples and to improve performance of the machine learning system is to modify
the already existing images such that the labels are preserved. This is called data
augmentation or data jittering. The augmentation is a cheap and efficient way to
cover some of the dataset variability (this can help if features are not invariant to
these changes). Simple image transformations (Decoste and Schölkopf, 2002) and
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intensity manipulations are often performed. Image acquisition artefacts such as vi-
gnetting or barrel distortion (Wu et al., 2015) or realistic background noise (Hannun
et al., 2014) are added.

In general, the problem of augmenting medical images is more difficult as care
must be taken only to change the image content and not the associated label (e.g.

merely changing the image size by an isotropic scale could make a normal heart
look like a dilated one) but not impossible. Adding artificial noise, bias fields or
image artefacts will increase the robustness of our methods.

We will need machine learning models that have the capacity to learn from these
massive data. Ideally, these will be models into which the training data can be
iteratively streamed in batches (such as for neural networks trained with stochastic
gradient descent, or in bootstrapped forests) so that it will be quite simple to train
with new data and update their parameters on the fly. The CNNs as we used
for recognition of cardiac planes are a good fit for the growing multi-modal data
problem.

6.2.5 Collecting labels through crowdsourcing and gamification

Now, the challenge is not only to keep acquiring and aggregating the data but also
to design annotation tools for our algorithms to learn. The solutions are multiple.
One is to generate synthetic data with known ground-truth, another one is to ask
the clinicians or the “crowd” for them. Many complex questions can be reduced to
simpler ones where the crowd can competently answer them.

Pair-wise image annotations we used are not the only way. Large companies
like Google are using the crowdsourcing to collect ground-truth for its Street view
service house number recognition or to translate books. Galaxy Zoo teaches people
astronomy while collecting precious annotations for automated description of galax-
ies. Duolingo teaches people foreign languages and the users help them to train
automatic translation systems in return, gamifying (von Ahn and Dabbish, 2004)
the ground-truth collection.

There are many challenges to make these systems more engaging and how to
use the often not perfect ground-truth.

6.2.6 Moving from diagnosis to prognosis

In the end, diagnosis is not the end. Finding evidence about “what is likely to
happen” should shape clinical practice. Follow-up evidence is needed for cardiac
imaging to improve quality of care and the outcomes. Shift in focus from diagno-
sis to prognosis and outcomes (Timmis et al., 2015) should happen with patients
reporting the outcome measures and their quality of life. If prognosis is to replace
diagnosis (Croft et al., 2015), this will be impossible without automating the whole
process of data management and effectively retrieving the supporting data based
on the outcomes and benefits to the patients.





Appendix A

Distance approximating forests

for sparse label propagation

Contents

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Distance approximating forests . . . . . . . . . . . . . . . . . 117

A.3.1 Finding shortest paths to the labels . . . . . . . . . . . . . . 118

A.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 120

A.4.1 Synthetic classification example . . . . . . . . . . . . . . . . . 120

A.4.2 Towards interactive cardiac segmentation . . . . . . . . . . . 121

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Overview

In this appendix, we present a semi-supervised label propagation algorithm based
on the density decision forest to approximate geodesic distances in feature space to
labelled points. The algorithm hierarchically partitions the data (both labelled and
unlabelled) by a simple unsupervised splitting criterion in order to approximate
feature space density. Using the density approximation, we then propagate labels
from the nearest annotated points in the dataset to all unlabelled points, using a
fast-marching-like propagation strategy.

This allows us to exploit the unlabelled data and use significantly less manual
input. Moreover, the obtained distances to the labels can help us to suggest new
points to be labelled in an active learning loop. We test this learning method on
left ventricle segmentation from CMR.

A.1 Introduction

Large quantities of medical images have been recently made available. Manual
inputs (e.g. labelling of each voxel in an image or assigning a pathology for each
image in the database) can be a tedious, time consuming and expensive process.
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a b c d

Figure A.1: (a) Unlabelled points from a 2D feature space. (b) Density estimation
with density forests. (c) Fast marching shortest path between two points prefers
traversing the dense regions. (d) Voronoi clustering and label propagation from the
nearest sparse labels.

On the other hand, unlabelled data have always been rather inexpensive to acquire.
We can represent each image (or voxel in an image) as a point in an N-dimensional
feature space. Based on the high density assumption (Singh and Nowak, 2008): if
the data points are lying on a manifold, the point densities can help to propagate
correct labels to unknown points by finding the closest labels along the density.

It has been illustrated by Criminisi et al. (2011b) that data densities can be
efficiently estimated using decision forests. The estimated densities are then used
in semi-supervised learning to deal with a lack of labelled data points. Moving
along the direction of high density should be considered easier than crossing low
density regions (see Fig. A.1). This can be done very efficiently in low dimensional
spaces, where the point density is estimated on a Cartesian grid. Algorithms, such
as fast marching (Sethian, 1996), then rapidly compute the shortest paths from
all labelled points. However, it is not very practical to estimate the density in
high-dimensional feature spaces as the size of these grids would rapidly explode
with the dimensionality of the feature space. On the other hand, graph-based label
propagation approaches are capable to better deal with higher-dimensional spaces,
but they suffer for large numbers of points.

A.2 Previous work

Leistner et al. (2009) have proposed a semi-supervised decision forest algorithm,
where forest training and data relabelling (with the new predictions) is performed
iteratively in a simulated annealing process. This requires computationally demand-
ing retraining at each iteration. Moreover, over the iterations, incorrect labels might
leak if some points are classified incorrectly. In general, it is difficult to completely
avoid such a leak in semi-supervised learning. Here, we would like to avoid the
iterative learning and also to find out when we lose confidence in label assignment
and when we are more likely to make an error. Our approach is the most simi-
lar to Bachmann (2006) and the semi-supervised forests (Criminisi et al., 2011b).
Two other related works use decision forests for metric learning (Xiong et al., 2012)
and to approximate (Konukoglu et al., 2012) distance between data points. These
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approaches, however, require pairwise point distances as the input.
In Bachmann (2006), an efficient forest-based method called Vantage point forest

is used to partition the large high-dimensional data space of pixels from multi-
spectral satellite images. They avoid exhaustive point-to-point distance calculations
for a subsequent dimensionality reduction algorithm. In their approach, each tree
sees a different feature subset and is associated to one landmark point in the image.
The authors do not exploit the density direction that can be obtained from a density
forest.

In our approach, we propose to avoid the need for feature space rasterisation
and use the trees to jointly estimate local point densities. We partition the initial
space into several smaller subsets and find approximate geodesic distances from
every unlabelled point to the closest label. The tree ensemble then averages the
tree distances for a smoother approximation.

In this appendix we propose

1. A method for geodesic distance estimation in the feature space to find candi-
dates for relabelling.

2. A practical implementation of density forests for learning with sparsely la-
belled data.

A.3 Distance approximating forests

Although a semi-supervised problem like the one illustrated in Fig. A.1 could be
solved by the above mentioned methods or traditional manifold learning algorithms,
it becomes much more difficult with increasing dimension of the feature space and
size of the training set.

By partitioning the data using the “divide and conquer” strategy of the forests,
we recursively divide the whole dataset into much smaller chunks of data and work
in parallel for each tree. We also use different feature space dimensions at each
node for increased computational efficiency while adapting to the the underlying
data density.

The training process is very simple. We start at the root node and recursively
partition the data S until the stopping criteria (maximum depth, minimum number
of points in a leaf) are satisfied. At each node, we partition the data using ρ

configurations of binary split functions θn(x) = τn(ψn(Φn(x))). These consist of a
linear projector ψn(x) = W Tx and a threshold τn(x) = x < T . Each split function
divides the points into two disjoint partitions V = {0, 1}.

Out of the ρ choices we then select the split that maximizes the total split
quality I. In our case, we use a fully unsupervised the differential information gain
(Eq. (A.1)) as the cost function, encouraging splits that can be represented with two
compact multivariate Gaussians. Here, |Λ(S)| is the determinant of the covariance
matrix of the Gaussian distribution.
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I = log |Λ(Sj)| −
∑

v∈V

|Sv
j |

|Sj |
log |Λ(Sv

j )| (A.1)

Although the method that primarily inspired this work (Criminisi et al., 2011b)
uses a combination of supervised (information gain) and unsupervised criteria, we
use only the unsupervised component. For a small number of labelled points the
estimation of the supervised cost would be unreliable.

To deal with the high-dimensional feature spaces, at each node n we select
a random subset of features with feature selector Φn(x) instead of working with
complete feature vectors. This feature subset can be different for each node and
the features can be also evaluated “on the fly”. Once the forest is trained and the
dataset is partitioned into the leaves, we need to find a way to propagate the labels.

A.3.1 Finding shortest paths to the labels

Often, point neighbourhoods for label propagation are approximated using k-nearest
Euclidean neighbours. These are then used for graph construction. Small point
neighbourhoods are susceptible to noise, whereas large ones increase connectivity
of the graph and the search space. In addition, location of the points within the
feature space can matter for the optimal choice of the neigbourhood. How to choose
the parameter k? We aim to completely avoid the need for it (although we exchange
it for the forest depth parameter).

In our case, each tree hierarchically partitions the node data distributions into
compact multivariate Gaussian distributions. When the tree structure is fixed, the
multivariate Gaussian parameters are stored at each node. We use them to define
the local point neighbourhoods within the nodes and to approximate geodesic dis-
tances to the nearest labelled points. As every tree is trained with some randomness,
the trees differ from each other, and the ensemble neighbourhood of each point can
be quite different from the Gaussian shape. Training a distance approximating tree
is summarised in Algorithm 3.

A.3.1.1 Leaf covariance and medoid

For every leaf node n we capture the shape and the position of the leaf’s point
distribution with a covariance matrix Λn and mean µn. These are computed on the
feature space subset (selected with Φn(x) of its parent). In addition, we find leaf’s
medoid mn as the closest point to the leaf’s centre using the squared Mahalanobis
distance1:

mn = arg min
p∈n

(Φ(p)− µn)
T Λn (Φ(p)− µn) (A.2)

This point will represent the leaf’s position in the feature space. We use the
medoid (a true dataset point) instead of the leaf’s mean (a virtual point), since µn

1We use the name Mahalanobis distance for this generalized squared interpoint distance.
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Figure A.2: Distances between points are computed as Mahalanobis distance. Note
that the covariances are not necessarily calculated in the same feature subspace.
We consider three distances: Distances between labelled points of each class and all
unlabelled points within the same leaf, distances between node medoids, and dis-
tances to the approximately nearest points (expansion proxies) of the neighbouring
nodes.

exists only in the leaf’s feature subspace. This permits us to evaluate the complete
feature vector for the medoid point and to allow leaf crosstalk.

A.3.1.2 Initialisation of the propagation

To start, we assign a vector of distances to each class label (two scalars for a binary
classification problem per tree) to each unlabelled point in the training set. We
initialise the values to infinity (i.e. the point not reachable). We start at the
labelled points with zero distance and propagate the distances to all the unlabelled
points within the same leaf, only then we expand the distances towards points in
the neighbouring unlabelled leaves until all leaves and all points have an estimate
of distance. Two things can happen for the unlabelled points: when the unlabelled
point is contained within the same leaf as the class labels, and when not and the
label distance has to be propagated from neighbouring leaves.

A.3.1.3 Intra-leaf distance to label propagation

For points in leaves containing the class label, the solution is very simple. Maha-
lanobis distance to the nearest labelled point is assigned to all unlabelled points of
the leaf:

Dn(xi, xj) = (Φn(xi)− Φn(xj))
T Λ−1

n (Φn(xi)− Φn(xj)) (A.3)

A.3.1.4 Out of leaf distance to label propagation

Often the data partitioning happens in such a way that no labelled points are present
in the leaf. The distances now need to be propagated to the other unlabelled leaves.
The symmetric Mahalanobis distance between points in leaves n and m can be
defined as follows (Criminisi et al., 2011b):
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Dn,m(xi, xj) = 0.5 (Dn(xi, xj) +Dm(xi, xj)) (A.4)

This is similar to Jeffries-Matsushita distance (Bachmann, 2006) used for clus-
ter similarity. Note that when n equals to m this becomes equivalent to Eq. (A.3).
However, as in the graph-based methods, pairwise point distances to find the best
inter-leaf point-to-point combination could be prohibitively expensive for higher
number of points to be computed exhaustively. We reduced this problem to finding
only the nearest node medoid and then a point of expansion. This can be repre-
sented with a much smaller pairwise medoid distance matrix Wt for each tree t.
Once computed, this matrix stays fixed.

A.3.1.5 Finding the nearest point from another node

Now, we will discuss how to use this matrix to find the nearest leaves and propagate
the label distances. First, the best labelled-unlabelled medoid combination for
expansion is found as the minimum pairwise Mahalanobis distance of the medoids.
We call leaves containing these two medoids a source (fixed) and a target (expansion)
leaf. From the source leaf, where each point is already assigned a distance to the
label, we expand the distances to the target leaf.

To reduce another exhaustive pairwise distance problem (i.e., for each point in
the target leaf find the closest point in the source leaf), we first find a single proxy
point within the target leaf. This proxy represents the connection between the two
leaves. Ideally, this should be a point on the boundary of the source leaf distribution
and at the same time close enough to the target leaf distribution (see Fig. A.2). We
choose it to be a point from the source leaf closest to the target leaf medoid. Now,
the symmetric Mahalanobis distances between this point to all points in the target
leaf can be calculated. These distances are summed withthe “distance to the label”
value of the proxy point. The sum of the two is then stored for each target leaf
point.

A.3.1.6 The ensemble decision

This distance propagation procedure is independent for each class (for classification)
and each tree. Ultimately, the minimum distances to each class label are assigned
to every point in the training set. The final label of each data point is then assigned
to be the class with minimal average distance across all forests.

A.4 Results and discussion

A.4.1 Synthetic classification example

We first tested our algorithm on two-class classification problem of a synthetic 3D
spirals dataset. We generated two spirals consisting of a total of 1000 points.
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Figure A.3: Comparison of classification accuracy with respect to number of labelled
points for various learning algorithms on a 3D spirals dataset. Labelled points are
chosen from the dataset at random. Our distance approximating forest reaches
higher accuracies significantly faster.

Out of these points we randomly selected 15 points (5.7% of the training data) to
be labelled and ran our semi-supervised forest. We trained 300 trees with maximal
depth 4 and tested 50 split function configurations per node.

In order to validate the inter-leaf distance propagation we restrict the number
of tested dimensions at each node to two (with all three dimensions we were able to
rapidly achieve >90% average classification accuracy). Similarly, denser distribution
also improves the classification accuracy as the leaf covariances are estimated much
more robustly, however, this hides real problems with noisy points. Also when
labelled points are placed more uniformly, much better coverage can be obtained.
The setup from Fig. A.4 misclassifies only 18.3% of the points.

It is easy to see that the misclassified points in some regions (marked with
ellipses on (b) and (c)) have much larger distance to the label than others. This
can be exploited in an active learning strategy to propose new points to be labelled.

A.4.2 Towards interactive cardiac segmentation

Traditionally, decision forests have already been used in medical imaging for quite
a large range of segmentation problems. This often requires large databases rich
with segmentation information. We will show here that our semi-supervised forests
can be used when the data is sparsely labelled, e.g. in an interactive segmentation.

Prior to the segmentation, we train a fully unsupervised forest using all voxels
of the image to be segmented according to the differential entropy splitting cost as
described above. This helps us to decompose the image into several configurations
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Figure A.4: (a) Two 3D spirals in an orthogonal 2D view and labelled points
(black squares and circles). (b) Labels assigned according to the nearest label. (c)

Minimum distances to nearest labelled points (encoded by colour) clearly show that
the misclassified regions are far from the labels and would be good candidates for
relabelling.

of meaningful partitions. Which also means that similar feature measurements
are clustered together and can benefit from the geodesic label propagation. Then
medoids and their pairwise distance matrices can be precomputed and fixed for each
tree in an off-line step. The much faster propagation of the distances to the labels
can be then done during the interaction.

A.4.2.1 Features

We use a combination of very simple features for each voxel - image intensity (at
two scales of a Gaussian pyramid from the current frame and the frame from the
middle of the cardiac sequence). Since we apply the semi-supervision on a single
image, there is no need for registration to the reference pose and we use also voxel
coordinates as features to spatially regularise the segmentation. For a 2D case, this
results in a feature vector of dimension 6.

A.4.2.2 Stabilisation of the covariance matrices

Real MR images pose a problem for the differential entropy. Homogeneous back-
ground (air) forms intensity clusters with little variation and the covariance matrices
might not be invertible. Therefore, similarly to Levenberg-Marquardt optimisation
algorithm (Marquardt, 1963), we regularise our covariance matrices with a scaled
identity, i.e., Λr

n ← Λn + γI both for the computation of differential information
gain and for the Mahalanobis distance computation. This significantly improves
the numerical stability while did not seem to compromise the performance for our
experiments. In our experiments we use γ = 0.1.

The output of our segmentation algorithm is still soft. However, distances to
labels are used instead of the label posterior probabilities. The forests were not
trained for this particular segmentation problem rather than to decompose the
image into something meaningful. Hence, the structure already learned could be
used to extend the segmentation to more classes or even regression very easily
without retraining - only label propagation step is needed.
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a b c

Figure A.5: (a) We sparsely labelled 4 points on the myocardium and 20 points
from the background. (b) Binary mask of points with shorter distance to the
nearest myocardial label than to the background label. We used 17 trees, ρ = 10,
and dimension subset 2. (c) Overlay of the final segmentation (Canny edges).

A.5 Conclusions

We proposed a semi-supervised learning algorithm that uses unsupervised forest
training to estimate feature space density and to later approximate geodesic dis-
tances to the labeled points in this space. Although distances from individual trees
are not perfect, they already create a signal of the distance. The distances are then
averaged to get the final estimate. As a result we associate the shortest distance to
the nearest labelled point of each class to all points in the training dataset. For a
two class segmentation problem this means that a 2D vector is associated to each
voxel in the image.

We observed that this technique works even if we do a lower-dimensional feature
subspace selection, when the subspace is different at each node. This permits to
speed up the distance calculation and gives us the possibility to deal with very high-
dimensional datasets or even datasets where features are evaluated “on the fly.” The
decision forests help us to partition the feature space into several smaller regions,
each represented by a point subspace, covariance, and a medoid. We can there-
fore replace expensive pairwise point-to-point with distances between the leaves as
a rough estimate of the connectivity. One has to be careful with deep trees as
the number of leaves (and hence medoids) grows exponentially with depth (up to
2depth−1).

We tested this algorithm on a synthetic dataset and for an interactive segmen-
tation of left ventricles from CMR. As the structure of the trees and the medoid
distance matrix can be fixed we can do a rapid update of the distances once new
labels are added. As the forests are inherently parallel this can be further sped up.

A.5.1 Perspectives

Assigning distances to labels for each points enables us to actively guide point
selection process in an active learning loop. Points far from any label should be
considered to be labelled first. It is important to note that this approach is not
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limited to segmentation and classification problems. In our experiments, we do not
yet fully exploit the feature subspace selection for high-dimensional datasets, our
maximal feature space dimension was 6. Nevertheless, using the original density
forests for the nearest label search using a 6-dimensional Cartesian grid with fast
marching would become an extremely memory intensive problem.

The proposed pairwise medoid matrix for inter-leaf label propagation is not the
only possibility. At the moment we are completely ignoring the hierarchical struc-
ture for the calculation. This might be an interesting area of further exploration.
Finally, the sparse labels have very strong influence on the approximated distances.
The stability of the algorithm to incorrect labels should be investigated.

Algorithm 3: Training of a single distance approximating tree for one label
type.
tree← DensityTree(points, ρ, dim, stopCrit)

nodes, leaves← tree.nodes, tree.leaves

d←InfinityArray(points.size)

foreach leaf in tree.leaves do
medoids[leaf.index]← CalculateMedoid(leaf.points)

tree.W ← PairwiseDistance(medoids)

foreach leaf in tree.leaves do
dl ←InfinityArray(leaf.points.size)

foreach srcP t in leaf.labelledPoints do
dl ←Min(dl, PropagateDistance(srcP t, leaf.points))

d[leaf.partition]←Min(d[leaf.partition], dl)

fixedMedoids, freeMedoids←

FindFixedAndFreeMedoids(medoids, tree.W)

while not freeMedoids.Empty() do
sourceIdx, expansionIdx← FindMinDistancePair(fixedMedoids,

freeMedoids, tree.W)

sourceLeaf ← leaves[sourceIdx]

expansionLeaf ← leaves[expansionIdx]

expansionMedoid← medoids[expansionLeaf.idx]

proxyPt, proxyPtDist←

FindClosestPoint(expansionMedoid, sourceLeaf.points)

d[expansionLeaf.partition]←

proxyPtDist+PropagateDistance(proxyPt, expansionLeaf.points)

fixedMedoids.Append(expansionMedoid)

freeMedoids.Remove(expansionMedoid)
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Overview

To compare relevant cardiac territories across different subjects and cardiac shape
variations we must first establish correspondences between the hearts. This is espe-
cially necessary since the features we use throughout the thesis (Section 5.4.3) are
not invariant even to simple rotations and translations. We show how features from
the CNN previously fine-tuned for recognition of acquisition planes (Chapter 2) can
be reused for cardiac landmark estimation, and to align the cardiac sequences.

B.1 Introduction

Image registration is one of the obvious choices for registration of cardiac images.
Robust inter-subject cardiac alignment via traditional image registration methods
is in general quite difficult due to the presence of trabeculations, papillary muscles,
extra-cardiac thoracic structures, and MRI acquisition artefacts (Klinke et al., 2013;
Naehle et al., 2011; Saremi et al., 2008) frequently appearing on cardiac images. Ou
et al. (2012) address the inter-patient cardiac registration by first masking the hearts
with manual segmentation. Masking the heart prior to the registration reduces
the effect of irrelevant structures but requires cardiac segmentation instead. In
Chapter 3, we trained two layers of decision forests, the first one roughly segmented
the heart and returned soft probability maps which we used for registering images
between different patients. The thorax stripping presented in Section 5.4.2.1 helps
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to automatically remove the outer structures by fading the irrelevant non-moving
background information without the detailed segmentation.

Even a perfect masking of the images with segmentation does not guarantee
accurate correspondences between the cardiac images (except for rigid alignment)
using non-linear registration as ambiguities exists for large deformations. Lombaert
et al. (2012) suggest that better correspondences between cardiac images for regis-
tration can be obtained by registering spectral representations of the images instead
of registering the image intensity channels directly. Nevertheless, image registration
methods, in general, result in little control on which parts should and which parts
should not matter for the alignment.

We argue that landmark-based inter-patient approaches are a more flexible way
to define correspondences between the hearts. The advantage of using landmark-
based methods for alignment of the cardiac images is the flexibility to rapidly change
the correspondence model (rigid, similarity, affine, or piecewise affine) and the ref-
erence cardiac structure on the fly.

B.2 Aligning with landmarks and regions of interest

In practice, cardiac images are commonly aligned by automatically or manually
placing a set of landmarks. These often include the junction points of the left ven-
tricle, or ventricular barycentres (Wang et al., 2015; Bai et al., 2015). The CAP
(Fonseca et al., 2011) provides an interactive tool for fitting much denser left ventric-
ular meshes to the cardiac images. An alternative is drawing tight contours Afshin
et al. (2012b) or rectangles (Afshin et al., 2012a) that encapsulate the left ventricle.

For large scale analysis it is desirable to automate this process but still keep the
possibility of simple manual corrections for failure and to establish correspondences
also for the right ventricle and possibly other structures. It has been shown (e.g.

by Zhou et al. (2012)), that separate detectors can be trained for the main cardiac
landmarks. In theory, it is possible to train a detector for any landmark. This
requires to train and test a large number of detectors, to suppress multiple maxima
and regularize the final solution.

In this appendix, we propose an automated landmark detection method inspired
by the technique of Ren et al. (2014) for face alignment in face recognition. Their
method is quite robust to occlusion in natural images, e.g., hair across the eyes
and working under varying light conditions. The MR acquisition artefacts can be
also modelled as occlusions. The acquisition intensity differences and bias fields are
analogous to the variation of the lighting conditions. We therefore approach the
alignment of hearts with this technique.

B.3 Definition of cardiac landmarks

Which landmarks to choose for our model and how to consistently establish the cor-
respondences even for the free walls? To compare corresponding cardiac territories
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Figure B.1: The standard American heart association 17-zone model (Cerqueira
et al., 2002) used for comparative regional analysis.

in a clinical setting, Cerqueira et al. (2002) proposed a now widely adopted 17-zone
model of the left ventricle (see Fig. B.1).

Using the left-right ventricle attachment (junction) points with cavity centre
for alignment is a solid start for comparative cardiac image analysis as the posi-
tions of these are relatively unambiguous. Using more landmarks gives us a more
fine-grained control over the alignment model or the choice of the reference cardiac
structure. With landmarks we can register anything from local regions (e.g. my-
ocardial septa), through parts (e.g. left ventricular epicardium) or global hearts
with transformation models varying from rigid transformation through similarity
and affine transformation, towards piecewise affine and non-rigid models.

We define 68 landmarks in total for mid-cavity slice only. Our landmark (see
Figure B.2) model is similar to the frequently used AHA model of Cerqueira et al.
(2002). We obtain the landmarks by dividing the manually drawn cardiac con-
tours (LV epicardium, LV endocardium, and right ventricle (RV) endocardium)
into several segments. These segments start at the well-defined LV-RV junction
points. The curve segments between these two points are uniformly resampled and
the landmarks are placed there. Once we have defined a set of training landmark
configurations we can train a regressor to place them automatically.
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Figure B.2: Our cardiac point distribution model. In total we place 68 landmarks
on a mid-cavity slice. We represent the septum with 20 uniformly distributed
landmarks, 10 on each side. Two of these 20 points are fixed to on the LV-RV
junctions. Then 14 points are uniformly sampled along the left ventricular free wall
epicardium. Likewise we uniformly sample another 14 for the endocardium. The
right ventricular free wall is represented with 20 landmarks.

B.4 Cascaded shape regression

Posing this problem as discriminative regression we predict the joint positions of
all landmarks directly from the images, as was done, for example, by Donner et al.
(2013) for estimation of landmarks from X-ray images. The cardiac shape model
at iteration t is represented as a vector of flattened landmark coordinates st =

[x1, y1, x2, y2, . . . , x68, y68]
T .

Initial shape regression

As we saw earlier in Chapter 2, the heart is often located at the centre of the image
(Figure 2.6). To initialise the shape s0 we first extract CNN features from the
central image crops. To describe the image slices we use features from the last fully
connected layer (fc7 ) of CardioViewNet network (Section 2.6.5). This CNN was
fine-tuned for CMR acquisition plane recognition but not for landmark regression.
This gives us a 4096-dimensional feature vector Φcnn as a byproduct of classifying
the image acquisition planes at no additional cost.

Using the extracted features, we can then train a simple linear regressor to
estimate the initial shape by linearly projecting the CNN features:

s0 =W 0Φcnn (B.1)
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Where W 0 is estimated using ridge regression (Golub et al., 1979) as:

W 0 = argminW

∑

i

∥WΦcnn(Ii)− si∥+ λ∥W∥ (B.2)

The regularisation of the weight matrix W t is necessary for the method to
predict realistic cardiac shapes at its output. The best parameter λ was chosen by
cross-validation.

Refinement of the prediction with CNN features

The initial estimate (Figure B.3) can then be refined with cascaded regression.
Instead of the CNN features, the cascaded regression uses shape-indexed features
Φt(I, st−1), i.e., features evaluated from patches centred at landmark positions of
the current shape estimate. A new ridge regressor is then trained to predict the
shape update jointly from all features. The shape update can be represented as:

st = st−1 +W tΦt(I, st−1) (B.3)

At each stage of the cascade a shape estimation matrix W t is trained via ridge
regression. We use local binary features (Ren et al., 2014) for the shape-indexed
features.

W t = argminW

∑

i

∥st−1
i +WΦt(Ii, s

t−1
i )− si∥+ λ∥W∥ (B.4)

Dataset augmentation

In practice, some differences in hearts’ positions and orientations between the ac-
quisitions exist. These are quite arbitrary and depend on the radiologist or the
acquisition machine settings. Nevertheless, they do not change the underlying in-
formation content of the images.

To better capture variability of the dataset and to increase the training set
size, we generate new images indistinguishable from the real ones by rotating and
translating the original image slices. Even small changes to the image scale can still
generate images of hearts of realistic sizes. We therefore use the original training set
and augment it (both the images and the landmarks) with additional scale changes,
rotations, and small translations.

The parameters of these transformations were sampled from three Gaussian
distributions. Scaling factors were sampled from N(µ = 1, σ2 = 0.0025), rotation
angles (in radians) from N(µ = 0, σ2 = 0.0025), and translations offsets from a
bivariate Gaussian N2(µ = 0, σ2x = 4, σ2y = 4). In total, we generated 10,000 images
out of 100 training images.
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Figure B.3: First stage of the landmark position estimation. Even in the worst case
(bottom right corner) we get quite some overlap and global orientation and scale
estimation for our model and the heart. The successive stage then further decreases
the median prediction error from 6 to 4 pixels (approximately 5 mm).
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Validation and results

We did not observe any further performance gains beyond approximately 2,400 ex-
ample images. This is most likely due to strong correlations between the generated
images.

We use 90% of the images for training and the remaining 10% for testing. We
split the dataset such that images from patients in the training set do not leak
into the testing set. The direct prediction from the CNN features predicts the
landmarks with a median error of 6 pixels (approximately 7.5 mm). The median
landmark position error then further decreases to 4 pixels (approximately 5 mm)
in the second stage.

B.5 Conclusions

We learnt to predict cardiac landmarks by simple regression from CNN-derived
features that were adapted to recognise cardiac acquisition planes. For such a
simple method, this is quite remarkable. Adding images from different patients,
or additional image augmentation techniques such as adding artificial bias fields,
could further improve the dataset span for better landmark regression quality for
previously unseen images. Of course, fine-tuning is a natural next step to better
adapt the CNN parameters and to potentially completely remove the need for the
iterative refinement.
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C.1 Overview

Similarly to the atrial segmentation (Section 3.2), we can use extra image channels
to enhance some aspects of the images, such as the pericardial effusion, and poten-
tially use them for image retrieval with the Neighbourhood approximating forest
(NAF) algorithm we describe in Chapter 5. In this preliminary study we use an
almost identical pipeline to the one we used to retrieve hearts with similar ejection
fractions in order.

C.2 Introduction

Pericardial effusion is a common finding in myocardial infarction patients. It man-
ifests itself as an accumulation of liquid in the pericardial sac around the heart.
It can be seen on SSFP CMR images as a bright ring around the LV epicardium
(see Fig. C.1a). The pericardial effusion is, however, more difficult to detect and
to capture. It consists of fewer pixels and has significant variability in appearance.
In addition, the pericardial effusion and the pericardial fat are also visually quite
similar (apart from small intensity difference).
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C.3 Pericardial effusion based similarity

We consider the finding of pericardial effusion as a binary label associated to the
image. Currently, we do not distinguish between the pericardial effusion and fat.
Since this is a binary label, the compactness for this measure has to be defined
differently than for the continuous ejection fraction (Section 5.4.1). We also use an
extra image channel enhancing the effusion.

C.3.1 Compactness on effusion

The target cost function ρeffusion(I, J) encourages images with effusion to be put
into the same leaves. If both I and J have bright rings around the LV, the pairwise
distance is 0 otherwise 1.

ρeffusion(I, J) =

{

1 if Effusion(I) = Effusion(J)

0 otherwise
(C.1)

The NAF then attempts to find decisions that separate images without effusion
and fat from the images with them.

C.4 An additional image channel

The effusion is a bright ring surrounded by darker tissue. Such structures can be
enhanced by convolving the image with a Laplacian of Gaussian (LoG) image filter
(see Fig. C.1b).

LoG(x, y) = −
1

πσ4

[

1−
x2 + y2

2σ2

]

e
x2+y2

2σ2 (C.2)

(a) Source image (b) Laplacian filtered (c) Thresholded response

Figure C.1: Pericardial effusion can be enhanced with Laplacian operator (σ = 1.4

pixels).
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C.5 Retrieving similar images

We use the LoG-filter effusion-enhanced images as an additional image channel on
which we evaluate the spatio-temporal boxes (Section 5.4.3).

The small number of effusion (and pericardial fat) cases (13) in the dataset and
the variability of its appearance was not sufficient to correctly retrieve the affected
hearts. Yet, when querying the database for hearts without the effusion, the hearts
with it never appeared within the retrieved neighbours and were often the most
dissimilar ones (see Fig. C.2).

DET0001201 (0)

DET0003601 (0)

DET0044101 (0)

Similarity 1635
DET0005501 (0)

Similarity 1375
DET0014901 (0)

Similarity 1222
DET0002901 (0)

Similarity 1627
DET0014901 (0)

Similarity 1342
DET0005501 (0)

Similarity 1213
DET0008301 (0)

Similarity 1588
DET0040001 (0)

Similarity 1334
DET0004601 (0)

Similarity 1198
DET0011501 (0)

Similarity 1580
DET0042301 (0)

Similarity 1329
DET0012401 (0)

Similarity 1193
DET0012401 (0)

Similarity 38
DET0005901 (1)

Similarity 139
DET0004101 (1)

Similarity 184
DET0009001 (1)

Query Most similar
Most

dissimilar

Figure C.2: Retrieval of similar hearts based on the effusion criterion. The leftmost
heart is the query image (shown diastolic and systolic mid-cavity slices), next are
the four most similar hearts, and rightmost is the most dissimilar heart. The values
in the parentheses indicate the presence (1) or absence (0) of the effusion in the
images.

C.6 Conclusions and perspectives

Simple convolutional filtering of the images can capture the effusion. Nevertheless,
more training examples with expert ground-truth will be necessary to learn good
decisions for image retrieval of hearts with effusion.

With filtering, additional aspects of the hearts could be enhanced. Learning
these filters can be done with a CNN. Also filters from a pretrained CNN could be
explored to create image channels for the NAFs.
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Benchmark for Algorithms Segmenting the Left Atrium

From 3D CT and MRI Datasets.

C. Tobon-Gomez, A. Geers, J. Peters, J. Weese, K. Pinto, R. Karim, M. Ammar,
A. Daoudi, J. Margeta, Z. Sandoval, B. Stender, Y. Zheng, M. A. Zuluaga, J.
Betancur, N. Ayache, M. A. Chikh, J.-L. Dillenseger, M. Kelm, S. Mahmoudi, S.
Ourselin, A. Schlaefer, T. Schaeffter, R. Razavi, and K. Rhode, in IEEE Transac-
tions on Medical Imaging, vol. 34, no. 7, pages 1460 1473, 2015.

Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation
guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA
from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images
is a complex problem. This manuscript presents a benchmark to evaluate algorithms
that address LA segmentation. The datasets, ground truth and evaluation code
have been made publicly available through the http://www.cardiacatlas.org website.
This manuscript also reports the results of the Left Atrial Segmentation Challenge
(LASC) carried out at the STACOM13 workshop, in conjunction with MICCAI13.
Thirty CT and 30 MRI datasets were provided to participants for segmentation.
Each participant segmented the LA including a short part of the LA appendage
trunk and proximal sections of the pulmonary veins (PVs). We present results
for nine algorithms for CT and eight algorithms for MRI. Results showed that
methodologies combining statistical models with region growing approaches were
the most appropriate to handle the proposed task. The ground truth and automatic
segmentations were standardised to reduce the influence of inconsistently defined
regions (e. g. mitral plane, PVs end points, LA appendage). This standardisation
framework, which is a contribution of this work, can be used to label and further
analyse anatomical regions of the LA. By performing the standardisation directly
on the left atrial surface, we can process multiple input data, including meshes
exported from different electroanatomical mapping systems.

A collaborative resource to build consensus for auto-

mated left ventricular segmentation of cardiac MR im-

ages.

A. Suinesiaputra, B. R. Cowan, A. O. Al-Agamy, M. A. Elattar, N. Ayache, A. S.
Fahmy, A. M. Khalifa, P. Medrano-Gracia, M. P. Jolly, A. H. Kadish, D. C. Lee,
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J. Margeta, S. K. Warfield, and A. A. Young, in Medical Image Analysis, vol. 18,
no. 1, pages 50 62, 2014.

A collaborative framework was initiated to establish a community resource of
ground truth segmentations from cardiac MRI. Multi-site, multi-vendor cardiac
MRI datasets comprising 95 patients (73 men, 22 women; mean age 62.73 ś 11.24
years) with coronary artery disease and prior myocardial infarction, were randomly
selected from data made available by the Cardiac Atlas Project (Fonseca et al.,
2011). Three semi- and two fully-automated raters segmented the left ventricular
myocardium from short-axis cardiac MR images as part of a challenge introduced
at the STACOM 2011 MICCAI workshop (Suinesiaputra et al., 2012). Consensus
myocardium images were generated based on the ExpectationMaximization prin-
ciple implemented by the STAPLE algorithm (Warfield et al., 2004). The mean
sensitivity, specificity, positive predictive and negative predictive values ranged be-
tween 0.63 and 0.85, 0.60 and 0.98, 0.56 and 0.94, and 0.83 and 0.92, respectively,
against the STAPLE consensus. Spatial and temporal agreement varied in differ-
ent amounts for each rater. STAPLE produced high quality consensus images if
the region of interest was limited to the area of discrepancy between raters. To
maintain the quality of the consensus, an objective measure based on the candidate
automated rater performance distribution is proposed. The consensus segmentation
based on a combination of manual and automated raters were more consistent than
any particular rater, even those with manual input. The consensus is expected to
improve with the addition of new automated contributions. This resource is open
for future contributions, and is available as a test bed for the evaluation of new seg-
mentation algorithms, through the Cardiac Atlas Project (www.cardiacatlas.org).

Confidence-based Training for Clinical Data Uncertainty

in Image-based Prediction of Cardiac Ablation Targets.

R. C. Lozoya, J. Margeta, L. Le Folgoc, Y. Komatsu, B. Berte, J. Relan, H. Cochet,
M. Haïssaguerre, P. Jaïs, N. Ayache, and M. Sermesant, in International Workshop
on Medical Computer Vision: Algorithms for Big Data, Held in conjunction with
MICCAI 2014, Boston, Lecture Notes in Computer Science, vol. 8848, pages 148
159, B. Menze, G. Langs, A. Montillo, M. Kelm, H. Müller, S. Zhang, W. Cai, and
D. Metaxas, Eds., Springer Berlin / Heidelberg, 2014.

Ventricular radio-frequency ablation (RFA) can have a critical impact on pre-
venting sudden cardiac arrest but is challenging due to a highly complex arrhyth-
mogenic substrate. This work aims to identify local image characteristics capable
of predicting the presence of local abnormal ventricular activities (LAVA). This can
allow, pre-operatively and non-invasively, to improve and accelerate the procedure.
To achieve this, intensity and texture-based local image features are computed and
random forests are used for classification. However, using machine-learning ap-
proaches on such complex multimodal data can prove difficult due to the inherent
errors in the training set. In this manuscript we present a detailed analysis of
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these error sources due in particular to catheter motion and the data fusion process.
We derived a principled analysis of confidence impact on classification. Moreover,
we demonstrate how formal integration of these uncertainties in the training pro-
cess improves the algorithms performance, opening up possibilities for non-invasive
image-based prediction of RFA targets.

Local late gadolinium enhancement features to identify

the electrophysiological substrate of post-infarction ven-

tricular tachycardia: a machine learning approach.

R. C. Lozoya, J. Margeta, L. Le Folgoc, Y. Komatsu, B. Berte, J. S. Relan, H.
Cochet, M. Haïssaguerre, P. Jaïs, N. Ayache, and M. Sermesant, in Journal of
Cardiovascular Magnetic Resonance, vol. 17, no. Suppl 1, poster 234, 2015.

Most ventricular tachycardias occur on structurally diseased hearts with fibrotic
scar, where bundles of surviving tissue promote electrical circuit re-entry. These
bundles can be identified on invasive electrophysiological (EP) mapping as local
abnormal ventricular activities (LAVA) during sinus rhythm. Although the elimi-
nation of LAVAs by radiofrequency ablation was shown to be an efficient therapeutic
option, their identification requires is a lengthy and invasive process. Late gadolin-
ium enhancement (LGE) magnetic resonance imaging enables a non-invasive 3D
assessment of scar topology and heterogeneity with millimetric spatial resolution.
The aim of this work is to identify imaging features associated with LAVA, fea-
tures that may subsequently be used to target ablation or to stratify the risk of
arrhythmia.

Myocardial Infarct Localisation using Neighbourhood Ap-

proximation Forests.

H. Bleton, J. Margeta, H. Lombaert, H. Delingette, and N. Ayache, in Interna-
tional Workshop on Statistical Atlases and Computational Models of the Heart.
Imaging and Modelling Challenges, Held in conjunction with MICCAI 2015, Mu-
nich, O. Camara, T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young, Eds.,
2015.

This paper presents a machine-learning algorithm for the automatic localisation
of myocardial infarct in the left ventricle. Our method constructs neighbourhood
approximation forests, which are trained with previously diagnosed 4D cardiac se-
quences. We introduce a new set of features that simultaneously exploit information
from the shape and motion of the myocardial wall along the cardiac cycle. More
precisely, characteristics are extracted from a hyper surface that represents the pro-
file of the myocardial thickness. The method has been tested on a database of 65
cardiac MRI images in order to retrieve the diagnosed infarct area. The results
demonstrate the effectiveness of the NAF in predicting the left ventricular infarct
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location in 7 distinct regions. We evaluated our method by verifying the database
ground truth. Following a new examination of the 4D cardiac images, our algorithm
may detect misclassified infarct locations in the database.
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E.1 L’aube du Big Data cardiaque

Les développements en cardiologie au cours du dernier siècle (Cooley and Frazier,
2000; Braunwald, 2014) ont étés assez spectaculaires. Beaucoup de révolutions se
sont passées depuis le premier électrocardiogramme (ECG) pratique par Einthoven
en 1903. Ceux-ci comprennent le cathétérisme cardiaque (1929), la machine coeur-
poumon et les premiers modèles animaux dans les années 1950, les chirurgies mini-
invasives (1958), et le développement de médicaments (les bêta-bloquants (1962),
les statines (1971), et les angiotensines (1974)). L’imagerie diagnostique cardiaque a
aussi considérablement améliorée. Le développement après-guerre de l’échographie
cardiaque (EC), la tomodensitométrie (TDM) (1970) et l’imagerie par résonance
magnétique (IRM) (des années 1980) nous ont aidés à obtenir un regard non-invasif
dans le coeur et avec un niveau de détail remarquable.

Toutes ces avancées ont considérablement changées le cours de gestion de la
maladie cardio-vasculaire. En 1970, le taux de mortalité liée à ces deux maladies
dans les pays à revenu élevé a basculé et a été en baisse constante (Fuster and Kelly,
2010, p52) depuis. Pourtant, les maladies cardiovasculaires demeurent la première
cause de mortalité dans le monde (Nichols et al., 2012, p 10;Roger et al., 2011),
et causent 47% de tous les décès en Europe. Nous sommes à l’aube de l’âge où
de nouvelles techniques cardiaques d’acquisition d’image, des modèles prédictifs (in
sillico) cardiaques (Lamata et al., 2014), des simulations d’images réalistes (Glatard
et al., 2013; Prakosa et al., 2013; Alessandrini et al., 2015), la surveillance en temps
réel du patient (Xia et al., 2013), et les banques d’images cardiaques à grande échelle
(Suinesiaputra et al., 2014a; Petersen et al., 2013; Bruder et al., 2013) ont devenus
omniprésents et ont la chance d’améliorer la santé cardiaque et notre compréhension.
Les données dans ces bases de données ne sont aussi utiles que les questions qu’ils
peuvent aider à répondre, les idées qu’ils peuvent engendrer, et les décisions qu’ils
permettent de faire. Des grandes études de population avec les recommandations
de traitement cliniques peuvent être faites, preuves à l’appui peuvent être adaptées
à chaque patient individuellement. Le traitement peut être ajusté en regardant
les patients similaires précédemment traités, en comparant leurs résultats et les
évolutions de leurs maladies. Des nouveaux outils d’enseignement peuvent aussi être
développés en utilisant les données pour créer les patients virtuels comme les études
de cas et des simulations de chirurgie sur les modèles imprimé 3D (Bloice et al., 2013;
Kim et al., 2008; Jacobs et al., 2008) Ceci pourrait stimuler l’enseignement et la
pratique des cardiologues.
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E.2 Les défis pour l’organisation des données cardiaques

à grande échelle

Les possibilités pour les nouvelles utilisations de grandes bases de données d’image
sont innombrables, cependant, l’utilisation de ces bases de données pose de nou-
veaux défis. Collections cardiaques riches avec des images pertinentes (y compris
de nombreuses maladies rares) sont dispersés à travers des milliers de systèmes
d’archivage et de transmission d’images (PACS) dans de nombreux pays et hôpi-
taux. Ces données provenant de sources hétérogènes sont non seulement massives,
mais aussi assez non-structurées et bruyantes.

E.2.1 Agrégation des données provenant des études multi-centriques

Les biobanques et consortia internationaux de gestion des bases de données d’imagerie
médicale, tels que UK Biobank (Petersen et al., 2013), Cardiac atlas project (CAP)
(Fonseca et al., 2011) ou le projet VISCERAL (Langs et al., 2013), ont résolu de nom-
breux problèmes difficiles dans l’éthique de partage de données d’imagerie médicale
et dans l’organisation de la distribution de données — en particulier l’agrégation
des données provenant de sources multiples. Dans ces efforts (PACS) ainsi que
la norme dimagerie numérique en médecine (DICOM) ont étés inestimables. Des
études provenant de plusieurs centres utilisent souvent des nomenclatures spéci-
fiques, suivent des orientations différentes ou utilisent des protocoles d’acquisition
différents. Dans ces cas, même ces deux normes ne sont pas suffisantes.

E.2.2 Normalisation des données

Les collections d’images sur des serveurs PACS peuvent être interrogées par l’information
du patient (par exemple ID, nom, date de naissance, sexe, taille, poids), la modalité
de l’image, la date de l’étude et d’autres balises DICOM, parfois par description
de l’étude, des balises personnalisées des cliniciens, des mesures associées (par ex-
emple la pression artérielle ou la fréquence cardiaque) et les codes de maladie ou
d’intervention. Voir Fig. 1.1 pour un exemple d’une telle interface.

Il n’y a pas de façon standard pour stocker une partie de l’information d’image
importante associée (par exemple, de l’information sur le plan d’acquisition d’images
cardiaques). Pour cette information le nom dépend de la mise au point de la station
de travail, ou de la langue pratiqué au centre d’imagerie. Même les balises de la
norme DICOM contiennent souvent des nomenclatures spécifiques du fournisseur.
Par exemple, les mêmes séquences d’acquisition dIRM cardiaque sont marquées dif-
féremment à travers des fabricants (Siemens, 2010). Alors que certaines différences
de mise en oeuvre existent, elles ne sont pas pertinentes pour l’interprétation des
images, et la terminologie pourrait être considérablement simplifiée (Friedrich et al.,
2014). L’analyse des publications électroniques avec des images est encore un plus
grand défi. Ces images sont rarement en format DICOM et seul le contenu de l’image
et la description textuelle sont présents. Ces différences réduisent notre capacité à
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interroger et explorer les bases de données pour les images pertinentes de manière
efficace. La normalisation peut être appliquée en strictement appliquant les lignes
directrices lors de l’acquisition des images, et en utilisant systématiquement les ter-
minologies pour coder les informations associées: tels que SNOMED CT (Stearns
et al., 2001). Des précautions doivent être prises pour éliminer les erreurs de saisie
manuelle. Les images déjà stockées dans les bases de données sans l’information
normalisée devraient être revues pour une meilleure accessibilité.

E.2.3 Récupération des cas similaires

Traverser ces bases de données manuellement et trouver des patients similaires (avec
preuves à l’appui) devient donc très chronophage. Récupération des images archivées
en PACS est, dans la pratique, assez lent pour une telle utilisation exploratoire.
En plus, les données d’imagerie cardiaque stockées dans les bases de données sont
fréquemment des séquences 3D+t, et des détails importants peuvent être facilement
manqués lors de cette inspection visuelle. Une alternative à cette approche (force
brute) est de décrire systématiquement les images avec des représentations plus com-
pactes. Cela prépare les bases de données d’images cardiaques pour la récupération
future. Cependant, cette approche limite la recherche sur les cas annotés ou pour
les cas connus au clinicien particulier. La plupart de données annotées ne sera donc
jamais réutilisée et les données qui ne sont pas utilisées sont les données inutiles.

E.2.4 Annotation des données et le consensus

Lannotation des images simplifie leur réutilisation. Cependant, avec la croissance
des données, la demande pour la saisie manuelle devient un fardeau sur les an-
notateurs experts. Une façon de lapprocher est de réduire les tâches d’annotation
en questions simples qui peuvent être très répondues par un plus grand nombre
d’évaluateurs moins expérimentés, par exemple via le crowdsourcing. Comme étudié
par Suinesiaputra et al. (2015), la variabilité des différents radiologues (experts
suivant les mêmes lignes directrices) est non négligeable. Par exemple, dans la seg-
mentation du ventricule gauche, les muscles papillaires sont du tissu myocardique
et donc selon Schulz-Menger et al. (2013) devraient idéalement être inclus dans la
masse myocardique et exclus du calcul du volume ventriculaire gauche. Les valeurs
de référence pour les volumes et les masses correspondantes (Maceira et al., 2006;
Hudsmith†et al., 2005) devrait être utilisé dans ce cas. Certains outils incluent les
muscles papillaires dans le volume de la cavité à la place. Dans ce cas, un autre
ensemble de valeurs de référence doit être envisagée (Natori et al., 2006). Les deux
mesures signalées peuvent différer substantiellement. En fin de compte, les muscles
papillaires font partie de la progression de la maladie (Harrigan et al., 2008) et méri-
tent une attention individuelle. Les centres d’acquisition sont équipés de différents
outils logiciels et tous ces outils ne sont pas aussi capables. Nous avons encore un
long chemin à parcourir pour réaliser l’extraction reproductible de mesures basées
sur l’image et description cohérente de toutes les informations d’image pertinentes,
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surtout étant donné les lignes directrices en constante évolution.

E.2.5 Le besoin d’outils automatisés

Pour réussir dans l’analyse à grande échelle et l’utilisation des données, des moyens
efficaces de nettoyage et la description automatique des images cardiaques provenant
de plusieurs centres cliniques avec des outils adaptable aux grandes bases de don-
nées (Medrano-Gracia et al., 2015) sont primordiales. Comme nous allons le voir
sur l’exemple suivant, la conception manuelle de ces outils peut rapidement devenir
très difficile.

E.3 Un problème trompeusement simple

Examinez les quatre images mi- ventriculaires petite axe (SAX) obtenues par l’IRM
cardiaque avec la séquence dacquisition SSFP sur Fig. 1.2. Ils appartiennent à qua-
tre personnes avec différentes pathologies. L’une d’eux est une image d’un coeur
sain, une autre appartient à un patient après un infarctus du myocarde dans la
paroi latérale, la troisième à un patient avec un ventricule gauche avec sa fonction
cardiaque gravement insuffisant et non-compactant, et la dernière représente un pa-
tient avec lépanchement péricardique idiopathique. Pouvez-vous dire correctement
lequel est lequel? Cette tâche de lidentification de la pathologie est apparente et sans
effort pour une personne expérimentée dans l’interprétation des images cardiaques.
Intuitivement, nous pourrions reconnaître le coeur de post-infarctus du myocarde
par un amincissement notable de la paroi latérale causé par l’infarctus transmural
et une nécrose myocardique subséquente. On peut aussi noter des artefacts de fil
de suture sternale d’une chirurgie antérieure. Le coeur non-compactant se mani-
feste avec une dilatation de la cavité gauche massive, les trabéculations dans la
cavité ventriculaire gauche dominantes, et une réduction significative de la contrac-
tilité du myocarde (mieux visible sur les séquences d’images cinématographiques).
L’épanchement péricardique peut être vu comme un anneau hyper-intense du liq-
uide à l’extérieur du myocarde et le mouvement du coeur pendulaire. Et enfin, le
coeur en bonne santé semble “normal”.

E.3.1 Automatisation de la tâche

Seulement quand nous essayons d’écrire un programme pour imiter ce raisonnement
sur un ordinateur, nous commencerons à apprécier pleinement la véritable com-
plexité des tâches visuelles effectuées par le cerveau. La simplicité de l’extraction
d’informations pertinentes à partir des images est très trompeuse. Les concepts in-
tuitifs comme l’amincissement du myocarde, la dilatation de la cavité, la faible con-
tractilité, l’anneau hyper-intense ou le mouvement pendulaire sont inconnus à une
machine. Sans oublier la tâche plus globale — de dire automatiquement que toutes
ces images proviennent d’une séquence d’acquisition SSFP et sont des coups petite
axe. Une des possibilités pour extraire ces informations par un ordinateur est de
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commencer à écrire un ensemble de règles. Mesure de l’amincissement du myocarde
peut être obtenu comme la longueur de la ligne la plus courte à travers du myocarde,
comptant pixels entre deux bords séparant lobjet blanc (le sang dans la cavité) et le
environnement gris (sauf pour le cas avec l’épanchement péricardique) à lextérieur
du coeur. La dilatation est liée au nombre de voxels au sein de la cavité ventriculaire
et son diamètre. Ces deux mesures peuvent être calculées à partir de la segmenta-
tion du myocarde ventriculaire gauche. La contractilité peut être estimée à partir du
déplacement de pixels, par exemple, par l’intermédiaire du recalage d’images. Les
changements subtils que nous voudrions reconnaître sont facilement éclipsés par les
différences dacquisition : les images provenant de différentes machines dacquisition,
des artefacts d’acquisition et des différences dans l’orientation d’image et la posi-
tion du coeur dans les images existent. Les images ne sont pas acquises avec des
résolutions ni la qualité d’images similaire, les intensités des tissus entre différentes
machines ne correspondent pas, des artefacts d’acquisition sont présents ou varia-
tions spécifiques aux fournisseurs des protocoles d’acquisition sont utilisées. Nous
découvrons bientôt que (pour coder cet ensemble des règles et extraire l’information
pertinente pour décrire les images cardiaques n’a pas de frontière).

E.3.2 L’approche de l’apprentissage automatique

L’approche de l’apprentissage automatique est tout à fait différente. Au lieu de
coder manuellement les règles, nous spécifions un modèle d’apprentissage et lais-
sons l’algorithme d’apprentissage détermine automatiquement un ensemble de rè-
gles en regardant les données, à savoir, pour entraîner le modèle. Dans le cadre
de l’apprentissage supervisé, un ensemble d’exemples ainsi que des sorties désirée
(par exemple les images et leurs segmentations) sont présentés à l’algorithme de
lentraînement. L’algorithme prend alors les règles qui transforment au mieux les
entrées aux sorties souhaitées. Il est important que le modèle généralise, autrement
dit, quil peut prévoir de façon fiable les sorties pour des images jamais vues, tout
en ignorant les différences d’acquisition non pertinentes.

Bien quune bonne prédiction est souhaitable, il est courant d’utiliser les systèmes
d’apprentissage automatique “moins que parfait” dans une boucle, et d’améliorer
les modèles au fil du temps, lorsque plus de données arrive. Aussi lorsque directives
changent, ces algorithmes peuvent être relancés et les images peuvent être traité
à nouveau. Prévisions incorrectes peuvent être fixées et ajoutées au nouveau en-
semble dentraînement et le modèle peut ensuite être ré-entraîné. L’apprentissage
automatique dans l’imagerie médicale est devenu remarquablement présent. Ceci
est en partie grâce aux améliorations algorithmiques, mais aussi grâce à la disponi-
bilité de grandes quantités de données. Bien qu’il existe de nombreux algorithmes
d’apprentissage automatique, il n’y a pas (encore) un algorithme parfait pour toutes
les tâches à accomplir, qui performe bien sur les grands et petits ensembles de don-
nées. Tout au long de cette thèse, nous allons utiliser principalement trois familles
des algorithmes dapprentissage automatique supervisé: les modèles linéaires (les
machines à vecteurs de support (SVM) (Cortes and Vapnik, 1995) et la régression
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linaire (Golub et al., 1979).), les forêts de décision (Ho, 1995; Amit and Geman,
1997; Breiman, 1999), et les réseaux de neurones à convolution (CNN) (Fukushima,
1980; LeCun et al., 1989).

E.4 Les questions de recherche de cette thèse

Cette thèse vise à répondre à la question globale suivante: “Comment pouvons-
nous simplifier l’utilisation des banques d’images cardiaques pour les cardiologues
et chercheurs grâce à l’apprentissage automatique?” Pour nous aider à répondre à
cette question, nous avons abordé certains des principaux défis présentés dans la
section E.2.

E.4.1 Comment pouvons-nous nettoyer et normaliser les balises

DICOM pour rendre le filtrage et le regroupement des séries

d’images plus facile ?

Un des premiers problèmes auxquels nous sommes confrontés en imagerie cardiaque
lorsquon traite bases de données hétérogènes est le manque de standardisation dans
la notation utilisée dans les protocoles d’acquisition (Friedrich et al., 2014) ou la
désignation de plans d’acquisition cardiaques. Surtout la connaissance des plans car-
diaques est essentielle pour regrouper les images en série et choisir les algorithmes
de traitement d’image appropriés. Le chapitre 2 présente nos deux méthodes de net-
toyage des métadonnées DICOM en les estiment directement à partir du contenu de
l’image. Notre première méthode pour reconnaître les plans d’acquisition utilise les
forêts de classification appliquée sur les miniatures d’images. Nous montrons com-
ment les nouvelles images générées à moindre coût peuvent contribuer à améliorer
la reconnaissance. Nous montrons ensuite comment modifier une technique de lé-
tat de l’art, entraîné initielement pour la reconnaissance d’objets visuels à grande
échelle, basée sur les CNN, pour les données d’imagerie cardiaque beaucoup plus
petites. Notre deuxième méthode reconnaît vues petite et longue axe (2-, 3- et 4-
chambre) avec la performance de reconnaissance très prometteur. Dans l’annexe B,
nous montrons comment les fonctionnalités basées sur les CNN peuvent être réu-
tilisés pour la prédiction des distributions de points cardiaques pour l’alignement
d’image inter-patient.

E.4.2 Peut-on apprendre à l’ordinateur l’anatomie cardiaque et de

segmenter les structures cardiaques à partir d’images IRM

?

Une fois que nous pouvons décrire les images cardiaques en fonction de leurs plans
dacquisition et les fusionner en volumes spatio-temporelles 3D+t, nous contin-
uons à apprendre à l’ordinateur les bases de l’anatomie cardiaque — comment
segmenter les images cardiaques. La segmentation est essentielle pour extraire les



E.4. Les questions de recherche de cette thèse 147

indices cardiaques basés sur les mesures volumétriques standards telles que le vol-
ume systolique et diastolique, fraction d’éjection, et la masse myocardique. Dans
le chapitre 3, nous étendons les travaux antérieurs sur la segmentation en util-
isant les forêts de classification sémantique (Shotton et al., 2008; Geremia et al.,
2011). Nous montrons comment cet algorithme modifié apprend à segmenter les
ventricules gauches à partir des séquences IRM SSFP 3D+t SAX sans imposer au-
cune forme préalable. Notre classificateur est entraîné en deux couches successives,
et nous proposons des nouvelles caractéristiques spatio-temporelles pour segmenter
les séquences 3D+t. Nous montrons que, cet approche de segmentation nous permet
de l’adapter facilement à d’autres structures cardiaques, les oreillettes gauches — la
boîte noire du coeur, à la fois de l’IRM et du TDM. Nous avons contribué ces algo-
rithmes à deux études de comparaison pour l’évaluation équitable. Dans l’annexe A,
nous proposons une méthode de segmentation semi-supervisé qui exploite les don-
nées non labélisées pour apprendre à segmenter à partir de annotations éparses.

E.4.3 Comment peut-on recueillir des données nécessaires à pour

les algorithmes d’apprentissage automatique et comment ap-

prendre à décrire les coeurs avec des attributs sémantique-

ment significatives ?

La plupart des problèmes d’apprentissage automatique pratiques sont actuellement
encore résolu d’une manière entièrement supervisé. Par conséquent, il est essentiel
d’acquérir la vérité terrain. Le chapitre 4 traite la collection de la vérité terrain
pour les algorithmes d’apprentissage automatique. Nous concevons un outil Web
de crowdsourcing (approvisionnement par la foule ou production participative) des
attributs cardiaques et l’utilisons pour recueillir des annotations d’image par paires.
Nous décrivons les formes cardiaques avec leurs signatures spectrales et utilisons
un prédicteur linéaire basée sur les SVM pour apprendre à l’ordonner les images
en fonction de leurs valeurs d’attribut. Nos résultats préliminaires suggèrent qu’en
plus des mesures volumétriques à partir des segmentations cardiaques, les coeurs
pourraient être décrits aussi par des attributs cardiaques sémantiques.

E.4.4 Peut-on récupérer automatiquement les coeurs semblables ?

La similarité entre les images dépend de la question clinique. Les requêtes que
nous pourrions vouloir demander au système de récupération des images peuvent
être très variables. Chapitre 5 se fonde sur la forêt d’approximation du voisinage
(NAF) de Konukoglu et al. (2013) et présente notre algorithme pour apprendre
la forme, l’apparence et les similitudes de mouvement entre les images cardiaques
et comment nous les utilisons pour structurer les ensembles de données cardiaques
spatio-temporelles. Nous montrons comment les coeurs avec des propriétés similaires
(fraction d’éjection similaire) peuvent être récupérés de la base de données. Dans
(Bleton et al., 2015), nous avons ensuite utilisé une technique similaire pour localiser
les infarctus cardiaques à partir des formes dynamiques (sans besoin dun agent de
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contraste).

E.5 Organisation du manuscrit

Cette thèse est organisée autour de notre travail publié et nos travaux en prépara-
tion. Le manuscrit progresse à peu près du niveau global vers la description plus
fine des images cardiaques. Chaque chapitre de cette thèse tente de répondre à
l’un des objectifs et d’emmener la récupération d’images basée sur le contenu des
bases de données à grande échelle CMR plus proche vers la pratique. Tout d’abord,
nous entraînons un système de nettoyage des balises d’images qui ne sont pas cap-
turés par DICOM directement à partir du contenu d’image. Dans le chapitre 2,
nous montrons comment reconnaître automatiquement les plans dacquisition car-
diaques. Dans le chapitre 3, nous proposons une technique de segmentation automa-
tique flexible qui apprend à segmenter les structures cardiaques à partir de données
d’image spatio-temporelles, en utilisant de simples cartes des voxels comme la vérité
terrain. La segmentation pourrait être utilisée pour l’extraction automatique des
mesures clinique. Dans le chapitre 4, nous proposons un moyen de collectionner
les annotations nécessaires pour lentraînement des algorithmes automatiques, et
pour décrire les images cardiaques avec un ensemble d’attributs sémantiques. Enfin,
dans le chapitre 5, nous proposons un algorithme pour structurer les ensembles de
données pour y trouver des cas similaires à l’égard de différents critères cliniques.
Le chapitre 6 conclut la thèse avec des perspectives et des travaux futurs. Dans
les annexes, nous avons illustré comment les données non labélisées peuvent être
utilisées pour la segmentation d’images guidée (Annexe A), comment estimer les
repères cardiaques pour l’alignement des images (Annexe B), ou comment rehausser
épanchement péricardique pour la récupération d’image (Annexe C).

E.6 Sommaires des chapitres

E.6.1 Reconnaisance des plans d’acquisition cardiaques

Lorsqu’on traite des grandes bases de données depuis plusieurs centres et four-
nisseurs de machines d’acquisition, notations incompatibles sont un facteur limi-
tant pour l’analyse automatisée. Les plans d’acquisition de l’IMR cardiaque sont
un très bon exemple d’un tel échec de normalisation de la notation. Sans savoir
quel plan cardiaque on traite, l’utilisation des données sans intervention manuelle
est limitée. Dans ce chapitre, nous proposons deux techniques d’apprentissage au-
tomatique supervisée pour récupérer automatiquement les informations manquantes
ou bruyantes et de prédire les cinq vues (ou plans d’acquisition) cardiaques les plus
courants. Nous montrons que les plans d’acquisitions cardiaques sont à peu près
alignés pour situer le coeur au centre de l’image. Nous l’utilisons pour apprendre
prédicteurs des plans d’acquisition cardiaques à partir d’images 2D.

Dans notre première méthode nous entraînons une forêt de classification sur
les miniatures d’image. L’augmentation de l’ensemble de données avec des transfor-
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mations géométriques (qui préservent les étiquettes) est un moyen efficace qui nous
aide à améliorer la précision de la classification sans des acquisitions ou des données
supplémentaires. Nous améliorons la performance de la forêt en affinant un réseau
de neurones à convolution profond, à l’origine pré-entrainé sur une grande base de
données pour la reconnaissance d’images naturelles (ImageNet LSVRC 2012). Nous
transférons la représentation apprise à la reconnaissance des vues cardiaques.

Nous comparons ces approches avec les prédictions à l’aide des caractéristiques
extraites des images en utilisant le CNN entraîné directement sur ImageNet, et
avec un CNN entraîné à partir de zéro. Nous montrons que peaufinage est une
approche viable pour adapter les paramètres des grands CNN pour les petits prob-
lèmes. Nous validons respectivement cet algorithme sur deux études cardiaques
différentes avec 200 patients et 15 témoins sains. Celui-ci provient d’un ensemble
de données cardiaques en libre accès qui simplifie la comparaison directe avec des
techniques similaires dans l’avenir. Nous montrons qu’il y a une valeur significative
à peaufiner un modèle entrainé pour des images naturelles et de le transférer aux
images médicales. Les approches présentées sont tout à fait générales et peuvent
être appliquées à toute tâche de reconnaissance d’image. Notre meilleure approche
réalise un score de F1 moyen de 97, 66% et améliore l’état de l’art sur la recon-
naissance de vues cardiaques en utilisant le contenu d’image seulement. Elle évite
les annotations supplémentaires et apprend la représentation de la fonction voulue
automatiquement.

Ceci est une composante important pour organiser et filtrer des grandes collec-
tions de données cardiaques avant de les analyser. Elle nous permet de fusionner
des études à partir de plusieurs centres, afin de permettre le filtrage d’image plus
intelligent, la sélection des algorithmes de traitement d’image les plus appropriés,
et une amélioration de la visualisation d’ensembles de données cardiaques, et pour
la recherche d’image par le contenu et un contrôle de qualité.

E.6.2 Segmentation d’images cardiaques

Les indices cliniques les plus couramment utilisés pour la quantification des mal-
adies cardiaques sont souvent basés sur les mesures géométriques des structures
anatomiques, telles que les volumes des cavités, des masses du myocarde ou des
épaisseurs de paroi. Il serait très utile de les avoir stockées dans les bases de don-
nées cardiaques à côté des images et les utiliser pour sélectionner les cohortes de
patients pour les études cliniques. Ces mesures sont souvent calculées à partir des
segmentations de ces structures cardiaques. La segmentation constitue également
la base pour la compréhension de l’anatomie cardiaque par un ordinateur.

Dans ce chapitre, nous présentons une méthode d’apprentissage automatique
flexible pour la segmentation d’images IRM cardiaques. Nous segmentons deux des
structures cardiaques les plus importantes. Tout d’abord, nous apprenons comment
segmenter les ventricules gauches des séquences dynamiques 3D+t SAX directement
à partir de la vérité-terrain par voxel en utilisant les forêts de classification avec
le contexte spatio-temporel. Ensuite, nous montrons que cette méthode peut être
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facilement adaptée à d’autres structures du coeur, tel que l’oreillette gauche.

E.6.3 Approvisionnement par la foule des attributs semantiques

Dans chapitre 2, nous avons montré comment automatiquement prédire les mé-
tadonnées d’image de grâce aux CNNs. Nous pouvons facilement récupérer, par
exemple, toutes les coupes SAX du ventricule gauche dans la base de données. Les
méthodes automatiques de segmentation d’image (tels que celles présentés dans le
chapitre 3) nous permettent d’indexer et d’interroger les bases de données en util-
isant des mesures géométriques simples (par exemple les volumes des cavités, la
masse myocardique ou l’épaisseur du mur). Ces deux outils sont des étapes impor-
tantes vers la récupération d’images cardiaque en fonction du contenu automatisée.

Quelques images, cependant, ne peuvent être directement décrits et répertoriés
sur si simple mesures géométriques seules. Considérons une requête un peu plus
complexe: “récupérer toutes les images de petite axe des coeurs akinétiques avec
un amincissement significatif de la paroi, et le limiter que sur les images de qualité
diagnostique”.

Nous visons à atteindre la description informatisée des images cardiaques avec
un ensemble des attributs sémantiques pour la forme, le mouvement et l’apparence.
Dans ce chapitre, nous nous concentrons sur les images de coeurs d’infarctus du
myocarde avec une légère à modérée dysfonction ventriculaire gauche. Nous dévelop-
pons un outil qui va permettre de filtrer les bases de données cardiaques avec un
tel ensemble d’attributs. Nous apprenons la machine à décrire les images en fonc-
tion des caractéristiques extraites de l’image et les comparaisons par pair. La vérité
terrain se compose de deux images et un indicateur disant quelle image des deux
dispose d’une présence inférieure ou supérieure de l’attribut. Nous avons conçu
une interface web permettant de recueillir telles annotations de vérité-terrain via
approvisionnement par la foule.

E.6.4 Recherche d’image par le contenu

Dans ce chapitre, nous proposons une méthode pour apprendre à rapprocher la
similitude entre les images pour la récupération automatique d’images basée sur le
contenu des coeurs sémantiquement similaires. Nous nous appuyons sur les forets
d’approximation du voisinage (NAF) de (Konukoglu et al., 2013), un algorithme
que nous entraînons pour capturer les similitudes entre les images cardiaques. Il
permet les récupérations efficaces des coeurs les plus similaires basés sur des critères
cliniques. Nous illustrons son utilisation sur une base de données des patients après
un infarctus du myocarde.

En Bleton et al. (2015), nous avons déjà montré comment des voisins cardiaque
peuvent être utilisés pour localiser infarctus sans injecter l’agent de contraste à
partir des segmentations dynamiques. Ici, nous combinons les attributs d’images
spatio-temporelles avec les NAFs et utilisons la similitude dérivée de la fraction
d’éjection pour trouver les coeurs avec une fonction de pompage similaire. Aucune
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segmentation d’image n’est plus nécessaire.

E.7 Conclusions et perspectives

Au cours des dernières années, plusieurs initiatives de collecte des images cardiaques
ont apparus. Ceux-ci incluent Cardiac Atlas Project (Fonseca et al., 2011) contenant
le sous-ensemble DETERMINE (Kadish et al., 2009) fréquemment utilisé dans cette
thèse, mais aussi une étude sur les coeurs asymptomatiques MESA (Bild, 2002). UK
Biobank (Petersen et al., 2013) vise à imager une grande partie de la population,
et le registre EuroCMR (Bruder et al., 2013) collectionne de données d’imagerie à
partir de 57 centres dans 15 des pays. Ces collections déjà très massives sont ici
pour grandir et vont avoir un impact sur la santé cardiaque. Nous devrons trouver
des façons d’automatiquement interpréter l’information contenue dans ces bases de
données et de simplifier la recherche dedans.

Dans cette thèse, nous avons abordé certains des défis les plus importants dans
l’organisation des données cardiaques et dans l’extraction d’informations à partir
de ces ensembles de données grâce à l’apprentissage automatique.

E.7.1 Synthèse des contributions

Nous avons abordé les quatre questions suivantes. Ici, nous les remontrons avec nos
contributions et les limites des méthodes proposées.

E.7.1.1 Estimation des métadonnées manquantes à partir de contenu

de l’image

Les balises DICOM sont intrinsèquement bruyantes et ne peuvent pas être utilisées
avec confiance. Dans cette thèse, nous avons montré qu’au lieu de compter sur
DICOM, nous pouvons estimer une partie des métadonnées (les plans d’acquisition
cardiaques) à partir du contenu de l’image.

La contribution principale du chapitre 2 est qu’un algorithme robuste de recon-
naissance des vues cardiaques peut être efficacement entraîné de bout en bout sans
l’aide d’une conception des attributs avec un réseau de neurones à convolution. Ceci
est possible en peaufinant des paramètres du réseau préalablement formés pour un
problème de reconnaissance d’image à grande échelle. Nous avons publié nos résul-
tats dans Margeta et al. (2015c, 2014).

• Nous atteignons la performance de l’état de l’art en reconnaissance des vues
cardiaques par l’apprentissage d’un système de bout en bout à partir des
intensités d’image grâce à l’aide d’un CNN

• Ceci est l’un des premiers travaux à démontrer la valeur de l’extraction des
attributs à partir des images médicales utilisant un CNN initialement entraîné
pour la reconnaissance d’objets visuels avec une large quantité de données
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• Nous montrons que le peaufinage des paramètres d’un CNN pré-entraîné pour
la reconnaissance d’objets visuels est une bonne stratégie qui aide à améliorer
la performance et à accélérer l’entraînement du réseau

• Nous montrons qu’un CNN peut être appliquée à des ensembles de données
plus petits (un problème commun en imagerie médicale) grâce à l’initialisation
du réseau prudent et l’augmentation artificielle de l’ensemble de données,
même lors de l’entraînement du réseau à partir de zéro

• Nous reproduisons également l’observation de Zhou et al. (2012) que les
vecteur d’orientation peuvent être tirés de balises DICOM pour une recon-
naissance de vue cardiaque (si ces balises d’orientation sont présentes)

Le peaufinage d’un réseau est un excellent moyen d’apprendre des modèles com-
plexes avec des données médicales d’une plus petite taille et les CNNs sont des
outils puissants d’apprentissage automatique qui devraient encore complètement
propager dans l’imagerie médicale. Nous avons entraîné le modèle que sur les vues
cardiaques uniquement et sur un ensemble de données des coeurs de l’infarctus du
myocarde. Ces coeurs ont certainement quelques particularités que nous avons mon-
tré dans la thèse, néanmoins, leurs apparences et leurs topologies sont encore assez
“normales”. Nous avons encore à tester cette méthode sur des cas pathologiques ou
des acquisitions moins standards (non-centrées, orientées avec des angles atypiques).
Il y a aussi beaucoup plus de vue cardiaques et d’autres séquences d’acquisition pour
être reconnus (Taylor and Bogaert, 2012). La vérité terrain doit être recueilli pour
toutes ces séquences d’acquisition avec les vues, ce qui conduit à un problème com-
binatoire. Beaucoup de ces combinaisons sont sous-représentées, et l’apprentissage
avec très peu exemples toujours reste un problème difficile. En outre, la reconnais-
sance des images cardiaques ne devrait pas s’arrêter sur la description des vues. Ce
travail est une pierre angulaire pour la reconnaissance des modalités d’image, des
protocoles d’acquisition et pour la génération automatique des descriptions d’image
comme fait récemment pour des images naturelles à l’aide récurrente de neurones
réseaux (Vinyals et al., 2014; Karpathy et al., 2015; Donahue et al., 2014).

E.7.1.2 Segmentation d’images cardiaques

Segmentation des structures cardiaques permet d’indexer les bases de données à
l’aide automatique des mesures des volumes de tissus et l’estimation de leurs masses.
Dans le chapitre 3 nous proposons de segmenter les images d’IRM cardiaque avec les
forêts de classification comme dans Shotton et al. (2008); Lempitsky et al. (2009);
Geremia et al. (2011). La principale contribution de cette partie de l’ouvrage est
que la segmentation des structures cardiaques peut être réalisée à partir de la vérité
terrain par voxel.

• Nous avons proposé une méthode de segmentation basée sur la forêt de classi-
fication pour ventricule gauche (LV) à partir des séquences cardiaques d’IRM
3D+t et de l’oreillette gauche à partir des images 3D d’IRM et de TDM
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• Nous avons introduit une nouvelle approche en deux couches pour la normal-
isation des intensités de l’image et le recalage cardiaque inter-patients

• Nous avons conçu caractéristiques spatio-temporelles pour apprendre à seg-
menter les séquences dynamiques

• Nous avons proposé d’utiliser d’autres canaux d’image tels que la vascularité,
ou distances aux contours sanguines pour segmenter les images auriculaires

• Nous avons également montré (chapitre A), comment les données non-étiquetées
peuvent aider à segmenter les images d’une manière semi-supervisé et com-
ment les meilleurs points pour étiquetage peuvent être proposés

Ce travail a abouti à deux publications (Margeta et al., 2012, 2013), et nous
avons envoyé les résultats de nos algorithmes à deux études comparatives (Suine-
siaputra et al., 2014b; Tobon-Gomez et al., 2015) pour l’évaluation équitable. Nos
méthodes ne sont pas les meilleurs performeurs en termes de précision de segmen-
tation. Cependant, elles brillent en termes de la façon dont peu de connaissance
sur le problème étaient codé en dur dans l’algorithme ce qui les rend assez flexi-
ble. Les algorithmes se comporteront également mieux avec plus d’exemples. Cela
rend nos approches beaucoup plus prêt à être appliquées à d’autres modalités car-
diaques, les vues et les tissus différents, et pour les données en pleine croissance.
Bien que nos méthodes n’utilisent pas beaucoup d’informations à priori, certain
post-traitement pour la régularisation et les grands ensembles de données sont es-
sentiels pour apprendre une solution robuste. Des mesures supplémentaires telles
que l’augmentation des données et l’apprentissage des canaux d’image discriminants
probablement aideraient à encore améliorer la performance.

E.7.1.3 Collection de vérité-terrain pour décrire les coeurs avec les at-

tributs sémantiques

Dans cette thèse, nous nous sommes concentrés principalement sur les approches
d’apprentissage machine supervisé. Cela signifie que l’algorithme apprend à partir
d’exemples où la vérité terrain est requise. L’acquisition de la vérité terrain est au
moins aussi importante que l’acquisition des images. Notre solution au problème de
la collecte d’annotation est l’approvisionnement par la foule, un outil qui collecte les
annotations sur internet afin d’apprendre les descriptions sémantiques des coeurs
décrits dans le chapitre 4.

La maladie elle-même n’est généralement pas un processus discret (oui ou non)
et se manifeste elle-même à travers des plusieurs façons. Certains d’entre eux peu-
vent être décrits par les cliniciens en termes sémantiques, les attributs cardiaques.
Il y a une discordance entre cette description sémantique et la représentation par
l’ordinateur, qui rend la recherche pour les coeurs dans les bases de données à l’aide
de telle description difficile. Grâce aux comparaisons par paires, moins d’expérience
dans l’interprétation des images cardiaques est nécessaires pour répondre correcte-
ment à des questions difficiles.
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• Nous concevons une interface web pour le crowdsourcing de cette vérité-
terrain.

• Nous proposons de décrire les images cardiaques avec des attributs séman-
tiques tels que l’hypertrophie, l’amincissement, la kineticité, la dilatation ou
la qualité d’image à partir des comparaisons par paires.

• Nous montrons, comment les concepts du Web ranking peuvent être utilisés
pour apprendre ces attributs.

Notre experts (3 annotateurs internes) restent limités par la quantité de vérités
terrains productibles, ce qui affecte les conclusions que nous pouvons tirer. La vari-
abilité et la qualité des annotateurs est également un aspect important à étudier.
Lorsque HIPAA est assurée, un tel outil pourrait être réparti entre les étudiants
en médecine pour générer une ressource précieuse pour l’apprentissage tout en con-
tribuant à l’ensemble de données en même temps. Ayant de multiples annotations
nous aiderait également à évaluer la fiabilité des prédictions. La présentation d’une
combinaison aléatoire des images pour les annoter n’est pas idéal non plus car il
gaspille leur temps sur des questions potentiellement trop simples que la machine
peut déjà prévoir avec certitude. Une boucle active devrait être plutôt utilisée,
l’intervention humaine serait sollicitée principalement pour les cas les moins confi-
ants.

Alors que nous affirmons que toute pathologie pourrait être décrite avec des
attributs sémantiques, les représentations spectrales des coeurs ne peuvent pas cap-
turer tous les aspects. Non seulement nous avons limité la recherche aux ventricules
gauches mais aussi pour les petites structures (tels que parois du myocarde très
minces) les caractéristiques spectrales deviennent instables à cause du changement
de la topologie. En outre, ces représentations dépendent d’une segmentation de
bonne qualité.

Nous sommes également limités par notre imagination des attributs. Les tech-
niques de découverte des attributs sont essentielles dans les prochaines étapes. Une
fois plus de données sont collectées, l’apprentissage de meilleures représentations
d’entités (par exemple (Kang et al., 2015; Zhang et al., 2014a)) pour la prédiction
des attributs est crucial pour améliorer les prédictions.

E.7.1.4 Structurer les ensembles de données avec similitude clinique

Enfin, chapitre 5 discute comment les forêts de décision approximant le voisinage
(NAF) possèdent des propriétés souhaitables pour structurer des ensembles des
données d’imagerie et peut être utilisé pour apprendre la similarité pour la recherche
d’image base sur le contenu.

• Nous montrons comment NAF peut être utilisée pour calculer la similarité
clinique à l’égard de la fraction d’éjection (EF) ou l’emplacement du my-
ocarde (Bleton et al., 2015): les aspects qui captent la forme, le mouvement
et l’apparence des séquences cardiaques.



E.7. Conclusions et perspectives 155

• Nous montrons des façons simples de supprimer l’arrière-plan statique et
d’estimer les principales phases cardiaques à partir des images

• Nous proposons de réutiliser le CNN précédemment peaufiné pour l’estimation
des repères cardiaques et alignement de l’image (chapitre B).

• Nous indiquons, comment l’épanchement péricardique pourrait être amélioré
avec le filtrage simple (chapitre C)

En théorie, la NAF peut être entraînée avec une vérité terrain de similitude
arbitraire et utilisé pour les requêtes exploratoires rapides au sein de la grande base
de données cardiaque. L’utilisation de la fraction d’éjection elle-même ne conduit pas
à une prestation supérieure à l’usage de la segmentation automatique et extraction
des mesures.

Notre méthode a besoin de plus de validation et de grands ensembles de données
pour améliorer la fiabilité des résultats récupérés et effectuer des prédictions sur dif-
férentes critères de similitude. En outre, les canaux d’image supplémentaires seront
nécessaires pour mieux capter l’information pertinente. Alors que les résultats re-
tournés ne sont pas parfaits, ils sont nettement mieux que simplement récupérer
des images au hasard. Les images récupérées sont pertinents pour la question clin-
ique. En fin de compte, la collecte des données d’utilisation réelle dans une boucle
sera nécessaire pour définir quels critères de similarité sont réellement utiles et pour
personnaliser les résultats de récupération.

E.7.2 Perspectives

Dans cette thèse, nous avons seulement gratté la surface de la gestion de grandes
bases de données cardiaques avec l’apprentissage automatique, la collecte des an-
notations, ou la recherche d’image par le contenu des cas similaires. Il y a encore
beaucoup de défis à relever.

E.7.2.1 Les approaches multimodales

Différentes modalités d’imagerie cardiaque se complètent mutuellement avec l’information
qui y est contenues. Les approches multi-modalités (Galderisi et al., 2015) seront
indispensables. Aucun de nos outils n’est pas spécifique à la modalité, et les mêmes
algorithmes pourraient être presque directement appliqués à ces modalités.

Dans cette thèse, nous avons utilisé principalement les images d’IRM SAX,
acquises avec le protocole SSFP. Ceci n’est clairement pas suffisant. Autres vues
cardiaques peuvent offrir un éclairage précieux sur les différents aspects du coeur
qu’on ne voit pas sur de courtes images SAX. Le protocole d’acquisition IRM avec
le rehaussement retardé capte l’ampleur de l’infarctus du myocarde, les séquences
d’imagerie marqués aident à mieux estimer le mouvement, l’imagerie à contraste de
phase capte le flux sanguin à travers des veines et des artères. De nouvelles modal-
ités et protocoles apparaissent. Imagerie T1 à la puissance du champ magnétiques
à 3T peut être utilisé pour détecter de manière fiable et quantifier la fibrose du
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myocarde sans avoir besoin d’agent de contraste (Kali et al., 2014) (par exemple
aux régions infarcis d’image dans les cardiomyopathies hypertrophiques dilatées, les
cardiomyopathies, ou sténoses aortiques). Les séquences de T2∗ (Anderson, 2001)
captent la surcharge de fer et permettent la détection précoce de la dysfonction
ventriculaire, avant qu’elle se développe. D’autres modalités telles que la TDM et
l’EC peuvent apporter un autre point de vue dans étude de l’anatomie cardiaque
et du mouvement.

E.7.2.2 Données croissantes

L’étude du registre EuroCMR (Bruder et al., 2009) a imagé 27309 patients à travers
de 57 sites dans 15 pays européens selon un protocole standard (Kramer et al.,
2008). Dans 61, 8% de tous les sujets, l’étude a révélé que l’IRM avaient l’impact
significative sur le diagnostic et les conséquences thérapeutiques (changement de
médication, procédure invasive, sortie de l’hôpital ou de l’admission). Au tour de
8, 7% des analyses ont révélés des nouvelles diagnoses ne pas soupçonnés avant.

Mais nous avons encore à établir les avantages de l’IRM cardiaque sur les résul-
tats. Plus de gens seront probablement scannés et plus de données seront générés.
Les ordinateurs corporels (wearable computing) ont déjà commencés à enregistrer
des informations de santé en temps réel. Il deviendra bientôt nécessaire de chercher
dans ces données avec des outils automatiques.

Avec ces bases de données faramineuses et ces sources de données hétérogènes, le
nettoyage automatique des métadonnées directement à partir du contenu de l’image
et de l’indexation des bases de données pour un accès rapide aux études pertinentes
deviennent d’autant plus importants que jamais.

E.7.2.3 Génération de plus de données

Nous sommes toujours confrontés aux défis de l’acquisition de données coûteuse, de
l’intimité du patient, de la collecte de données et leur distribution et de l’absence de
la vérité terrain. En attendant, si nous pouvions générer des données synthétiques,
massives et réalistes à l’aide des modèles biophysiques, nous serons en mesure de
former des modèles plus riches et seulement après les accorder aux problèmes de
données réelles. Ceci est connu comme l’apprentissage par transfert (Pan and Yang,
2010) et est l’un des principaux objectifs du projet ERC MedYMA.

Il est nettement moins cher à produire des données synthétiques que de les
acquérir et les annoter. Il n’y a pas besoin d’obtenir le consentement ou la restric-
tion des patients sur le partage de données, les paramètres sous-jacents utilisés
pour générer les images (la vérité terrain) sont connu. Ces approches in sillico peu-
vent produire de grandes quantités d’images avec des étiquettes connues, facilitant
algorithmes d’entraînement pour inverser le processus génératif et d’obtenir les éti-
quettes à partir du contenu d’image. Générateurs d’images cardiaques synthétiques
de haute qualité existent déjà pour une large gamme de modalités (Alessandrini
et al., 2015; Prakosa et al., 2013; De Craene et al., 2014; Tobon-Gomez et al., 2011).
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Il y a des plates-formes sur le Web qui sont dédiées à la simulation multi-modalité
d’image médicale qui permettent de démocratiser ce processus (Glatard et al., 2013).

Les données synthétiques de profondeur ont rendu l’estimation de la pose en
temps réel possible (Shotton et al., 2011) et les détecteurs robustes ont été en-
traînés sur les images radioscopiques synthétisés (Heimann et al., 2014). Geremia
et al. (2013) a appris à estimer la densité cellulaire des tumeurs sur les images
cliniques grâce à la simulation des images multimodales en utilisant les modèles
biophysiques de croissance des tumeurs cérébrales synthétiques à diverses positions
dans le cerveau. Les images cardiaques simulées (Prakosa et al., 2013) ont été util-
isées pour inverser l’électrophysiologie cardiaque (Prakosa et al., 2014) et puis les
modèles ont été transférés à des images réelles. Les possibilités sont infinies.

E.7.2.4 Augmentation de données

Nous avons montré que même un moyen plus simple de générer des images synthé-
tique mais aussi très réalistes pour améliorer la performance du système d’apprentissage
automatique: modifier les images déjà existantes, telles que les étiquettes sont con-
servées. Ceci est appelé l’augmentation de données. L’augmentation est un moyen
pas cher et efficace pour couvrir une partie de la variabilité dans l’ensemble de
données (cela peut aider si les attributs extraites ne sont pas invariantes à ces
changements). Transformations d’image simples (Decoste and Schölkopf, 2002) et
manipulations d’intensité sont souvent effectués. Artefacts d’acquisition d’image
tels que vignettage ou la distorsion en barillet (Wu et al., 2015) ou bruit de fond
réaliste (Hannun et al., 2014) sont fréquemment ajoutés.

En général, le problème d’augmentation des images médicales est plus difficile
parce que soins doivent être prises pour ne changer que le contenu de l’image et
pas l’étiquette associée (par exemple un changement simple de la taille de l’image
par une échelle isotrope pourrait faire un coeur normal ressembler plus à un coeur
dilaté). L’ajout du bruit artificiel, du champ de biais d’IRM synthetique ou des
artefacts d’images vont tous augmenter la robustesse de nos méthodes.

Nous aurons besoin de modèles d’apprentissage automatique qui ont la capacité
d’apprendre à partir de ces données massives. Idéalement, ceux-ci seront des modèles
dans lesquels les données de l’entraînement peuvent être itérativement streamés en
lots (tels que les CNNs entraîné avec la descente de gradient stochastique, ou dans
les forêts bootstrapés) de sorte que ce sera assez simple à entraîner avec des nouvelles
données et mettre à jour leurs paramètres à la volée. Le CNN que nous avons utilisé
pour la reconnaissance de plans cardiaques sont un bon outil pour le problème de
données multimodal de croissance.

E.7.2.5 Collecte d’étiquettes par crowdsourcing et gamification

Maintenant, le défi est non seulement de maintenir l’acquisition et l’agrégation des
données, mais également de concevoir des outils d’annotation pour nos algorithmes
à apprendre. Les solutions sont multiples. La première consiste à générer des don-
nées synthétiques avec une vérité terrain connue, une autre est de demander aux
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cliniciens ou la foule pour eux. Beaucoup de questions complexes peuvent être rem-
placées par des questions plus simples où la foule a assez de compétence de les
répondre.

Les annotations des images par pairs que nous avons utilisées ne sont pas le seul
moyen. Les grandes entreprises comme Google utilisent l’approvisionnement par la
foule pour recueillir la vérité terrain pour ses produits e.g. Street View (reconnais-
sance du numéro du bâtiment) ou la traduction automatisée. Galaxy Zoo enseigne
au public l’astronomie tout en collectant des annotations précieuses pour la descrip-
tion automatisé des galaxies. Duolingo enseigne aux gens des langues étrangères et
les utilisateurs les aide à entraîner des systèmes de traduction automatique en re-
tour, grâce à la collecte de la vérité terrain amusante (von Ahn and Dabbish, 2004).
Il y a beaucoup de défis pour rendre ces systèmes plus engageante et comment
utiliser la vérité terrain souvent pas parfait.

E.7.2.6 Du diagnostic au pronostic

En fin de compte, le diagnostic n’est pas la fin. Trouver des preuves à propos de
“ ce qui est susceptible de se produire ” devrait conduire la pratique clinique. Le
suivi est nécessaire pour l’imagerie cardiaque pour améliorer la qualité des soins et
les résultats. Changement d’orientation du diagnostic aux pronostic et aux résul-
tats (Timmis et al., 2015) devrait apparaître avec les patients signalant les mesures
des résultats et leur qualité de vie. Si le pronostic est de remplacer le diagnos-
tic (Croft et al., 2015), ce sera impossible sans automatisation de l’ensemble du
processus de gestion des données et une récupération efficace des données avec
l’appui basé sur les résultats et les avantages pour les patients.
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