
HAL Id: tel-01251856
https://pastel.hal.science/tel-01251856

Submitted on 6 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A requirement engineering driven approach to security
architecture design for distributed embedded systems

Muhammad Sabir Idrees

To cite this version:
Muhammad Sabir Idrees. A requirement engineering driven approach to security architecture design
for distributed embedded systems. Embedded Systems. Télécom ParisTech, 2012. English. �NNT :
2012ENST0045�. �tel-01251856�

https://pastel.hal.science/tel-01251856
https://hal.archives-ouvertes.fr

2012-ENST-045

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Muhammad Sabir IDREES
21/09/2012

Ingénierie des Exigences
pour la Conception d’architectures de Sécurité de

Systèmes Embarqués Distribués

Directeur de thèse : Yves ROUDIER
Co-encadrement de la thèse : Ludovic APVRILLE

Jury :
M. Pierre de SAQUI-SANNES, ISAE, France Président
M. Camille SALINESI, Université Paris 1, France Rapporteur
M. Frédéric MALLET, Université Nice Sophia Antipolis, France Rapporteur
Mme. Nora CUPPENS-BOULAHIA, Télécom Bretagne, France Rapporteur
M. Denis CAROMEL, Université Nice Sophia Antipolis, France Examinateur
M. Refik MOLVA, EURECOM, France Examinateur
M. Yves ROUDIER, EURECOM, France Directeur
M. Ludovic APVRILLE, TELECOM ParisTech, France Co-encadrement

TELECOM ParisTech
École de l’Institut Télécom - membre de ParisTech

2012-ENST-045

EDITE - ED 130

Doctorat ParisTech

A doctoral dissertation submitted to :

TELECOM ParisTech

in partial fulfilment of the requirement for the Degree of :

Doctor of Philosphy

Specialty « Computer Science and Networks »

Presented by

Muhammad Sabir IDREES

21/09/2012

A Requirement Engineering Driven Approach to Security
Architecture Design for Distributed Embedded Systems

Thesis Advisor : Yves ROUDIER
Thesis Co-advisor : Ludovic APVRILLE

Jury :

Mr. Pierre de SAQUI-SANNES, ISAE, France President
Mr. Camille SALINESI, Université Paris 1, France Reporter
Mr. Frédéric MALLET, Université Nice Sophia Antipolis, France Reporter
Ms. Nora CUPPENS-BOULAHIA, Télécom Bretagne, France Reporter
Mr. Denis CAROMEL, Université Nice Sophia Antipolis, France Reviewer
Mr. Refik MOLVA, EURECOM, France Reviewer
Mr. Yves ROUDIER, EURECOM, France Thesis Advisor
Mr. Ludovic APVRILLE, TELECOM ParisTech, France Thesis Co-advisor

TELECOM ParisTech

École de l’Institut Télécom - membre de ParisTech

«We have instructed man to honor his parents»

[Qur’an 29:8]

To my parents

Acknowledgements

Working on the Ph.D. has been a wonderful and often overwhelming experience. It

is hard to say whether is has been grappling with the topic itself which has been

the real learning experience, or grappling with how to write papers and proposals,

give talks, work in a group, stay up until the birds start singing, and stay focus . . .

In any case, I am indebted to many people for making the time working on my

Ph.D. an unforgettable experience. I had the pleasure to meet inspiring people that

encouraged me, gave me advice, shared their opinion with me, guided me or were

simply there when I needed someone to talk to. Without their valuable assistance,

I wouldn’t have succeeded this thesis. As all these people helped me in their own

special way, it would be unfair to put their names in an order. That is why I chose

the following way to express my gratitude:

H O R R J I P E J K C L H Z F

O R L G A D M C L U B N A T H

A I S A M I H A E U D Y N R A

N U A S A J I D E A C M D A J

F D H E U R E C O M D H R U E

G S E B A S T I E N X A I D R

A F S A M A N E T O M J K E I

B X B Q R Y V E S N R E E L N

R L F V T O C H A F I R T R E

I D E H T D A M G E R O D E Q

E X R A L E S A N D R E Q N T

L R I Q L U D O V I C H X A C

Z D E B B E L U D O V I C U B

S A L I A T I M A C C T E D W

R P I N T A Y Y B A B V M P H

"The emotional reaction is all that matters.

As long as there is some feeling of communication,

it isn’t necessary that it be understood."

– John Coltrane, 1964

Abstract

During the last ten years, the impact of security concerns on the development and

exploration of distributed embedded systems never ceased to grow. This is mainly

related to the fact that these systems are increasingly interconnected and thus vul-

nerable to attacks, and that the economic interest in attacking them has simultane-

ously increased.

In such a context, requirement engineering methodologies and tools have be-

come necessary to take appropriate decisions regarding security early on. Security

requirements engineering should thus strongly support the elicitation and specifica-

tion of software security issues and solutions well before designers and developers

are committed to a particular implementation. However, and that is especially true

in embedded systems, security requirements should not be considered only as the

abstract expression of a set of properties independently from the system architecture

or from the threats and attacks that may occur. We believe this consideration is

of utmost importance for security requirements engineering to be the driving force

behind the design and implementation of a secure system.

We thus describe in this thesis a security engineering requirement methodology

depending upon a constant dialog between the design of system functions, the re-

quirements that are attached to them, the design and development of the system

architecture, and the assessment of the threats to system assets. Our approach in

particular relies on a knowledge-centric approach to security requirement engineer-

ing, applicable from the early phases of system conceptualization to the enforce-

ment of security requirements. Our methodology can be seen of as an iterative and

complementary co-design process between security requirements and the system ar-

chitecture. Its main goals are to identify, refine, and trace security requirements

with enough expressivity and precision to become a central element throughout the

lifecycle of a security architecture. We illustrate our approach with examples from

the automotive on-board system domain.

Résumé

Au cours des dix dernières années, l’impact des questions de sécurité sur le développe-

ment et la mise en oeuvre des systèmes embarqués distribués n’a jamais cessé de

croître. Ceci est principalement lié à l’interconnexion toujours plus importante de

ces systèmes qui les rend vulnérables aux attaques, ainsi qu’à l’intérêt économique

d’attaquer ces systèmes qui s’est simultanément accru.

Dans un tel contexte, méthodologies et outils d’ingénierie des exigences de sécu-

rité sont devenus indispensables pour prendre des décisions appropriées quant à la

sécurité, et ce le plus tôt possible. L’ingénierie des exigences devrait donc fournir

une aide substantielle à l’explicitation et à la spécification des problèmes et solutions

de sécurité des logiciels bien avant que concepteurs et développeurs ne soient engagés

dans une implantation en particulier. Toutefois, et c’est particulièrement vrai dans

les systèmes embarqués, les exigences de sécurité ne doivent pas être considérées

seulement comme l’expression abstraite d’un ensemble de propriétés indépendam-

ment de l’architecture système ou des menaces et des attaques qui pourraient y

survenir. Nous estimons que cette considération est d’une importance capitale pour

faire de l’ingénierie des exigences un guide et un moteur de la conception et de la

mise en œuvre d’un système sécurisé.

Cette thèse décrit une méthodologie d’ingénierie des exigences qui s’appuie sur un

dialogue permanent entre la conception des fonctions du système, les exigences qui

leur sont attachées, la conception et le développement de l’architecture du système,

et l’évaluation des menaces qui pèsent sur ses composants. Notre approche s’appuie

en particulier sur une approche centrée sur les connaissances de l’ingénierie des

exigences de sécurité, applicable dès les premières phases de conception du système

jusqu’à la mise en application des exigences de sécurité dans l’implantation. Notre

méthodologie peut être considérée comme un processus itératif et complémentaire

de co-conception entre les exigences de sécurité et l’architecture du systéme. Ses

principaux objectifs sont l’identification, le raffinement et la traçabilité des exigences

de sécurité avec une expressivité et une précision suffisantes pour en faire un élément

central tout au long du cycle de vie d’une architecture de sécurité. Nous illustrons

notre approche par des exemples tirés de systèmes embarqués d’informatique de

bord pour l’automobile.

Contents

Acknowledgements . i

Abstract . iii

Contents . vi

List of Figures . xi

List of Tables . xiii

List of Publications . xv

1 Introduction 1

1.1 Context . 1

1.2 Thesis Contributions and Outline . 3

I A Knowledge-Centric Approach to Security Requirements En-

gineering 7

2 Overview of Security Requirements Engineering Methodology 9

2.1 Introduction . 9

2.2 The State of the Art SRE Approaches 10

2.2.1 Goal Oriented Approaches . 10

2.2.2 Model Oriented Approaches 13

2.2.3 Problem Oriented Approaches 16

2.2.4 Process Oriented Approaches 17

2.2.5 Conclusion . 19

2.3 The Role of Ontologies in RE . 20

2.4 Security Requirement Engineering Methodology 21

2.4.1 Knowledge-Centric SRE Process 23

2.4.2 Security Ontologies . 28

2.5 Conclusions . 39

3 System Modeling Language for Security - SysMLSec 41

3.1 Introduction . 41

3.2 System Modeling Language – SysML 42

3.3 SysML for Modeling Security Aspects 46

3.3.1 Structural Modeling . 46

3.3.2 Behavior Modeling . 48

3.3.3 Security Requirement Modeling 48

3.3.4 Attack Modeling . 53

3.4 Integration of Ontology Reasoning on Security with SysML 56

3.4.1 Annotating SysML Diagrams with Ontological concepts . . . 57

3.4.2 Reasoning with SysMLsec Models 62

3.5 Conclusions . 63

viii Contents

II By Design Security Requirements Engineering 65

4 Running Example: The Firmware Flashing Process 67

4.1 Introduction . 67

4.2 Firmware Flashing Use Case Specification 69

4.3 Security Goals . 70

4.4 System Architecture Design . 71

4.4.1 Behavioral Models . 71

4.4.2 Structural Models . 79

4.5 Conclusion . 84

5 Security Analysis and Knowledge-Based Attack Trees 87

5.1 Introduction . 87

5.2 Security Analysis Process . 88

5.3 Attacks on the Firmware Flashing Process 92

5.4 Multilayer Security Analysis . 96

5.5 Conclusions . 97

6 Security Requirement Engineering 99

6.1 Introduction . 99

6.2 Security Requirements Elicitation . 100

6.2.1 Security Requirement Modeling 102

6.3 Security Requirements Refinement 107

6.3.1 What a SR Refinement is not 107

6.3.2 SR Refinement Process . 109

6.4 Security Requirements Traceability 112

6.5 Where we Stand . 115

6.6 Conclusions . 115

III Security Requirements Enforcement 117

7 Constructing Security Specification of Cryptographic Protocol De-

sign 119

7.1 Introduction . 119

7.2 Ontology for Cryptographic Protocols 120

7.3 Firmware Flashing Cryptographic Protocol 123

7.3.1 Security Primitives . 124

7.3.2 Assumptions and Constraints 127

7.3.3 Cryptographic Protocol Specification 128

7.4 The State of the Art: Firmware Update 135

7.5 Conclusion . 136

8 Towards the Enforcement of Access Control Security Requirements137

8.1 Introduction . 137

Contents ix

8.2 Security Policy Enforcement Architecture 139

8.2.1 Policy Enforcement Points . 140

8.2.2 Handling Policy Decisions . 141

8.3 Security Policy Expression . 142

8.4 Security Policy Configuration . 144

8.5 Performance Analysis . 146

8.5.1 Performance Analysis: Technical Approach 146

8.5.2 Experimental Setup and Results 147

8.5.3 The State of the Art: Automotive Access Control Architecture 148

8.6 Conclusion . 149

9 Conclusions and Future Perspectives 151

Bibliography 153

A Security Properties 167

A.1 Data origin authenticity . 167

A.2 Integrity . 167

A.3 Authorization . 167

A.4 Freshness . 168

A.5 Non-Repudiation . 168

A.6 Privacy . 168

A.6.1 Anonymity . 168

A.6.2 Unlinkability . 168

A.6.3 Pseudonymity . 169

A.7 Confidentiality . 169

A.8 Availability . 169

B Risk Model 171

B.1 Introduction . 171

B.1.1 Risk Analysis . 173

C SysMLsec-to-Ontology Translation Engine 177

C.1 SysMLsec Knowledge Extraction . 177

C.2 Building OWL Ontological Instance 181

D XACML to ANS.1 Defintion 187

E Résumé en Français 193

E.1 Contexte . 193

E.2 Contributions de la thèse . 195

List of Figures

2.1 KAOS security requirements metamodel (taken from [103]) 11

2.2 SecureTropos security requirement diagram view (taken from [113]) . 13

2.3 UML diagrams and UMLsec stereotypes (taken from [54]) 14

2.4 SecureUML metamodel (taken from [88]) 15

2.5 Abuse frame diagram (taken from [85]) 16

2.6 Use case diagram containing misusers and misuse cases (taken from

[141]) . 17

2.7 Ontology-driven security requirement engineering methodology . . . 22

2.8 Security goal ontology . 28

2.9 IEEE system architecture metamodel [3]and its equivalent system

architecture ontology . 31

2.10 Security attack ontology . 32

2.11 Adversary taxonomy . 35

2.12 Security requirement ontology . 37

2.13 Security ontology . 40

3.1 The four pillars of SysML [107] . 43

3.2 Extended SysML diagram taxonomy – SysMLsec 47

3.3 Extended definition of the «refine» relationship 50

3.4 Meta-model for the security requirement diagram 52

3.5 Metamodel for the SysML attack tree diagram 53

3.6 Generic attack tree structure . 55

3.7 Integration of ontology reasoning on security with SysML 57

3.8 Mapping of the SR ontology concepts into the SysML SR Diagram . 59

3.9 Mapping of the security attack ontology concepts into the SysML

attack tree diagram . 61

3.10 SysMLsec to ontology translation engine 62

4.1 Over-the-Air firmware flashing process 68

4.2 EVITA Use Case reference architecture [74] 70

4.3 Ontological representation of the security goals 71

4.4 Use Case Diagram - Firmware flashing process 72

4.5 Ontological representation of the firmware flashing process Use Case 74

4.6 Activity Digram - Firmware flashing process 75

4.7 Sequence Chart - Firmware flashing process 76

4.8 Ontological representation of the Firmware flashing process Sequence

Diagram . 78

4.9 Extended Y-Chart approach . 79

4.10 Functional view - firmware flashing process 80

4.11 A partial view of the hardware architecture - Firmware flashing process 82

4.12 Mapping view - Firmware flashing process 83

xii List of Figures

4.13 Ontological representation of the Mapping view of the Firmware flash-

ing process . 84

5.1 Avoid goals - Firmware flashing process 90

5.2 Attacks on the Firmware flashing process – Knowledge base Attack

Trees representation . 95

5.3 RPC Logoff attack scenario . 96

6.1 Authenticity security requirements 103

6.2 Integrity security requirements . 104

6.3 Freshness security requirements . 104

6.4 Authorization security requirements 105

6.5 Confidentiality security requirements 105

6.6 Availability security requirements . 106

6.7 Monitor the network traffic security requirements 106

6.8 Prevent structural weakness of the firmware keys security requirements107

6.9 Security requirements, Attack Tree, and System architecture 108

6.10 Ontological representation of the refined system architecture 111

6.11 Refined Attack Tree . 112

6.12 Derived security requirements . 113

6.13 Security requiremnt traceability metamodel 114

6.14 Security requirement traceability table 115

7.1 Cryptographic protocols ontology . 121

7.2 Core classes of security mechanisms ontology 121

7.3 NRL security algorithm taxonomy [77] 122

7.4 NRL security credentials taxonomy [77] 123

7.5 Hardware Security Module – HSM [161] 125

7.6 Firmware flashing cryptographic protocol 134

8.1 PDM and PEP deployment . 140

8.2 XACML to PNL mapping engine . 145

8.3 PDM: On-board policy deserialization and configuration 146

8.4 Size of data and increase in speed up factor. 147

List of Tables

2.1 SQUARE security requirement template (taken from [91]) 18

2.2 Summary of security requirement engineering approaches 19

3.1 Summary and comparison of security modeling approaches. "�" for

available properties, "�" indicates that the modeling notation does

not consider the concept in its conceptual modeling. 42

4.1 Physical and Functional Viewpoints 82

6.1 Comparative analysis of security requirements approaches. The de-

gree of fulfillment will be "�" for available properties, "�" for not

available, and "⊞" for partly or optionally available properties. . . . 116

8.1 Software security modules and Policy Enforcement Points (PEPs). . 142

B.1 Security Requirements Prioritizstion 172

B.2 Relating attack potential to attack probability 172

B.3 Proposed security risk levels mapped to severity and probability . . . 173

B.4 Evaluation of required attack potential for asset attacks identified

from attack trees . 174

List of Publications

• Journal Papers

– M. Dell’Amico, G. Serme, M. Sabir Idrees, A. S. de Olivera, and Y.

Roudier. HiPoLDS: A hierarchical Security Policy Language for Dis-

tributed Systems, Information Security Technical Report, ISSN: 1363-

4127.

• International Conferences & Workshops

– Y. Roudier, M. Sabir Idrees, L. Apvrille. Towards the Model-Driven

Engineering of Security Requirements for Embedded Systems, 3rd Inter-

national Model-Driven Requirements Engineering (MoDRE) Workshop,

July 2013.

– M. Dell’Amico, G. Serme, M. Sabir Idrees, A. S. de Olivera, and Y.

Roudier. HiPoLDS: A Security Policy Language for Distributed Systems,

6th Workshop in Information Security Theory and Practice, /Also pub-

lished also in LCNS, Springer, Volume 7322/2012, London, United King-

dom, 2012.

– M. Sabir Idrees and Y. Roudier. Effective and Efficient Security Policy

Engines for Automotive On-Board Networks, 4th International Workshop

on Communication Technologies for Vehicles - NETS4CARS, /Also pub-

lished in LNCS, Springer, Volume 6596/2012, Vilnius, Lithuania, 2012.

– M. Sabir Idrees, G. Serme, Y. Roudier, A. S. de Oliveira, H. Grall, and

M. Sudholt. Evolving Security Requirements in Multi-Layered Service-

Oriented-Architectures, 4th International Workshop on Autonomous and

Spontaneous Security - SETOP, /Also published in Lecture Notes in

Computer Science, Springer, Volume 7122/2012, 2011.

– G. Pedroza, M. Sabir Idrees, L. Apvrille, and Y. Roudier. A For-

mal Methodology Applied to Secure Over-the-Air Automotive Applica-

tions, IEEE 74th Vehicular Technology Conference -VTC Fall 2011, San

Francisco, USA, 2011.

– H. Schweppe, B.Weyl, M. Sabir Idrees, T. Gendrullis, Y. Roudier,

and M. Wolf. Securing Car2X Applications with effective Hardware-

Software Co-Design for Vehicular On-Board Networks, VDI Automotive

Security ["27. VDI/VW-Gemeinschaftstagung Automotive Security"],

VDI-Bericht 2131, Berlin, Germany, 2011.

xvi List of Publications

– M. Sabir Idrees, H. Schweppe, Y. Roudier, M. Wolf , D. Scheuermann,

and O. Henniger. Secure Automotive On-Board Protocols: A Case of

Over-the-Air Firmware Updates, 3rd International Workshop on Com-

munication Technologies for Vehicles - NETS4CARS, /Also published in

LNCS, Springer-Verlag, Volume 6596/2011, Oberpfaffenhofen, Germany,

2011.

– G. Serme and M. Sabir Idrees. Adaptive security on service-based

SCM control system, 5th International Conference on Sensor Technologies

and Applications - SENSORCOMM, Nice/Saint Laurent du Var, France,

2011.

• National Conferences

– M. Sabir Idrees, Y. Roudier, and L. Apvrille. A Framework Towards

the Efficient Identification and Modeling of Security Requirements, 5th

Conference on Network Architectures and Information Systems Security

- SAR-SSI, Menton, France, 2010.

• Technical Reports

– A. Ruddle, D. Ward, B. Weyl, M. Sabir Idrees, Y. Roudier, M. Friede-

wald, T. Leimbach, A. Fuchs, S. Gürgens, O. Henniger, R. Rieke, M.

Ritscher, H. Broberg, L. Apvrille, R. Pacalet and G. Pedroza. Security

Requirements for Automotive On-Board Networks based on Dark-side Sce-

narios, Deliverable D2.3, EVITA Project, 2010.

– B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. Sabir Idrees, Y.

Roudier, H. Schweppe, H. Platzdasch, R. E. Khayari, O. Henniger, D.

Scheuermann, A. Fuchsa, L. Apvrille, G. Pedroza, H. Seudie, J. Shokrol-

lahi, and A. Keil. Secure On-board Architecture Specification, Deliverable

D3.2, EVITA Project, 2010.

– M. Sabir Idrees, Y. Roudier, H. Schweppe, B. Weyl, R. E. Khayari, O.

Henniger, D. Scheuermann, G. Pedroza, L. Apvrille, H. Seudie, H. Platz-

dasch, and M. Sall. Secure On-Board Protocols Specification, Deliverable

D3.3, EVITA Project, 2010.

– H. Seudie, E. Akcabelen, I. Ipli, H. Schweppe, Y. Roudier, and M. Sabir

Idrees. Security Architecture Implementation, Deliverable D4.3, EVITA

Project, 2011.

– M. Sabir Idrees, H. Schweppe, Y. Roudier, L. Apvrille, and G. Pedroza.

Test Results, Deliverable D4.4.2, EVITA Project, 2011.

– R. Douence, H. Grall, I. Mejia, J.-C. Royer, M. Sudholt, M. Sabir

List of Publications xvii

Idrees, Y. Roudier, G. Serme, J. Leroux, F. Rivard, and J.-C. Pzza-

glia. Survey and requirements analysis, Deliverable D1.1, CESSA project,

2010.

– M. Sabir Idrees, Y. Roudier, D. Balzerotti, G. Serme, J.-C.Pazzaglia,

H. Grall, J.-C. Royer, R.Douence, and M. Sudholt. State of the art and

Requirement Analysis of Security Functionalities for SOAs, Deliverable

D2.1, CESSA project, 2010.

– M. Dell’Amico, M. Sabir Idrees, Y. Roudier, G. Serme, A. Santana de

Oliveira, and G. Harel. Language Definition for Security Specifications,

Deliverable D2.2, CESSA project, 2011.

– G. Serme, A. S. de Oliveira, M. Sabir Idrees, Y. Roudier, and G.Harel.

Compositional Evolution of Secure Services Using Aspects, Deliverable

D3.1, CESSA project, 2011.

– M. Sabir Idrees, Y. Roudier. Computer Aided Design of a Firmware

Flashing Protocol for Vehicular On-Board Networks, RR-09-235, 2009.

Chapter 1

Introduction

1.1 Context

Designing a secure system has always been a complex exercise. In practice, much

of the focus for designers and developers being on delivering a working system in

the first place; on the other hand, security concerns have long been considered only

in retrospect, especially after serious flaws are discovered. Security experts are thus

generally confronted with an existing system, whose architecture might actually

hamper the deployment of security mechanisms that would prevent the occurrence

of the attacks they envision. An approach that avoids these problems is the devel-

opment of a security architecture, which is security requirement-driven and which

describes a structured collaboration and interrelationship between the architecture

design and Security Requirements (SR) to support the long-term needs of the sys-

tem [138]. The purpose of security architecture traditionally is to bring into focus

the key areas of concern, highlighting the decision criteria and security context for

each system aspect that has direct or indirect value for a stakeholder. The con-

cept of security architecture encompasses various technical notions wherein security

is introduced at different levels of abstraction and based on different mechanisms.

Thorn et al. [145] described security architecture as "a cohesive security design,

which addresses the security requirements (e.g. authentication, authorization, etc.),

and in particular the risks of a particular environment/scenario, and specifies what

security controls are to be applied where". To this end, one of the key aspects of

security architecture as a tool for secure design is to provide a Security Require-

ment Engineering (SRE) framework by which more realistic and concrete SRs can

be identified and enforced.

From the embedded system viewpoint, this activity, SRE, becomes even more

challenging and more critical. These challenges stem from the tight relationship

between architecture design and its functional, and non-functional requirements as

well as their impact on one another. For instance, if the system architecture design

changes or evolve, the SRs should meet the new architecture design objectives. It

is especially true when these systems are an integral part of safety critical systems

such as automotive systems [129, 9]. This is related to Koscher et al. [80] statement,

"automotive systems need not only to be extremely reliable and defect free, but also

extremely resistant to the threats and exploitation of vulnerabilities". Specifically,

safety applications need to be secured against malicious attacks. Several research ac-

2 Chapter 1. Introduction

tivities have described potential vulnerabilities and countermeasures in automotive

systems, e.g., [51, 14], which we are going to refer to in the rest of this thesis. With

some exceptions, most of these efforts consider SRs abstractly, only the require-

ment identification step, and are not aimed particularly at requirement refinement,

and requirement traceability properties. However, there are well-recognized SRE

approaches like KAOS [152] or UMLsec [69] that have already shown interesting re-

sults in the SRE domain to handle security concerns. Still, before considering these

approaches, we first have to make a clear distinction between what we mean by

embedded system and what are their functional, as well as non-functional security

concerns.

In general, embedded systems are defined as a combination of hardware and soft-

ware that form a part of some larger system and are generally designed to perform

some specific task. More precisely, what makes distributed embedded systems differ-

ent from general-purpose system are specific features: these systems are resource-

constrained in their capacities (and consequently in their defenses). They have

reliability and performance concerns, as well as real-time computing constraints.

Such systems are often portable or mobile, and they are easily accessible to adver-

saries at the physical layer. This accessibility has led to several new security attacks

in recent years [80, 163, 164]. For example, Koscher et al. [80] demonstrated the

ability to adversely control a wide range of automotive functions and completely

ignore driver input. These attacks were made by: simply accessing the On Board

Diagnostics (OBD-II) port and embedding malicious code into a car’s telematics

unit. This allows an adversary to virtually control various on-board functionalities

– including disabling the brakes, selectively braking individual wheels on demand,

stopping the engine, and so on. In addition, the most important aspect of embedded

system as defined by Noergaard [100]:

". . . none of the elements within an embedded system works in a vacuum. Every

element within a device interacts with some other element in some fashion. Further-

more, externally visible characteristics of elements may differ given a different set of

other elements to work with. Without understanding the ’whys’ behind an element’s

provided functionality, performance, and so on, it would be difficult to determine

how the system would behave under a variety of circumstances in the real world".

From the security viewpoint, this definition implies that, for an embedded sys-

tem to be secure, every element as well as its interrelationships with other elements

at different abstraction levels (i.e., application, protocol level, middleware level, in-

frastructure level, storage level, and so on) must be secure. For example, Electric

Control Unit (ECU) can rely on a hardware security module to process crypto-

graphic operations; however, if the upper layers (i.e., middleware layer) handle this

authentication attribute differently and allow an adversary to fake these attributes

(i.e., authentication tickets), the overall security is broken. We will explain this

attack in more detail in Chapter 5. In particular, we can identify such security

1.2. Thesis Contributions and Outline 3

weaknesses and concerns by examining the subtle interactions and collaborations

between layers. Similarly, several approaches [79, 55, 164, 161] have shown that we

cannot solve embedded system security at a single level of abstraction. Therefore,

it is natural to develop a security requirements specification by focusing on distinct

characteristics of embedded systems and particularly considering a layered (modu-

lar) representation of an embedded system architecture, which will essentially help

us to develop modular security architecture. In this context, the current state of

the art approaches to SRE, like KAOS and UMLsec, are falling short in capturing

the core essence of the embedded system architectures. For instance, the KAOS

framework concentrates mainly on goal satisfaction and on the synthesis of behav-

ior models [151] and does not consider the system architecture of the system. For

instance, in KAOS framework it is difficult to capture and model an architecture,

and even less so multiple architectural layers. In contrast, UMLsec, which is a model

driven engineering approach, considers both the structural and behavioral aspects

of SRs. In essence, this approach considers that well formed requirements have al-

ready been elicited and refined down to the design level through the definition of the

normal behaviors of the system components. UMLsec more specifically focuses on

the refinement of those security requirements into security mechanisms. A detailed

analysis of these approaches as well as other scientific contributions in this domain

are presented in Section 2.2.

1.2 Thesis Contributions and Outline

In this dissertation we propose a Security Requirement Engineering (SRE) approach

that enables the design of security architecture for embedded systems. We in partic-

ular focus on security-related knowledge acquisition and management through the

definition of a SRE process that makes it possible to design a system that would

intrinsically be secure from its design on. Our approach is composed of three suc-

cessive parts.

1. AKnowledge-Centric Approach to Security Requirements Engineer-

ing: In the first phase of this dissertation, we present the main building blocks

of our proposed SRE methodology and discuss its integration with a system

engineering modeling language.

• In Chapter 2, we systematically analyze various sources such as security

standards, a set of methodologies representative of the current state of the

art approaches, in order to build a unified SRE methodology. The pro-

posed methodology demonstrates how the capabilities of different SRE

models and approaches can be integrated through a knowledge-centric

SRE process. In addition, we take the key concepts defined in these

approaches and build security ontologies for each concept in order to

4 Chapter 1. Introduction

guide our SRE process with a knowledge base. This will make it possi-

ble to analyze different security concepts and enables a particular way of

structuring, reusing, and sharing security related knowledge base within

the SRE process. Although our proposed methodology is dedicated to

embedded systems, it is still flexible enough to be adapted to any general-

purpose system architecture like Service Oriented Architectures (SOA)

[115], and capable of producing accurate security requirements. The re-

sults are presented in [60].

• In Chapter 3, we first explore the capabilities of SysML, the System Mod-

eling Language [107] for supporting our knowledge-centric SRE method-

ology. The SysML is an OMG [106] standard for modeling system engi-

neering applications and has sufficient expressiveness to describe detailed

system design. However, a major obstacle toward the usage of SysML

is the lack of support from the security viewpoint. To take benefit from

the capabilities of SysML, we proposed several extensions to the SysML

semantics to integrate our security concepts. In particular, we have inte-

grated the security requirement and the security attack diagrams. More-

over, we enriched these diagrams with our proposed ontological concepts

such as a controlled vocabulary. The use of ontologies within modeling

languages offers a concrete opportunity to reason about the correctness

of these models. Furthermore, we implemented these capabilities into

the TTool [82] engine that also supports our extended SysML model for

defining security requirements and attack tree modeling. This tool read-

ily supports the iterative methodology that we advocate.

2. By Design Security Requirements Engineering: In the second part of

this dissertation, we present each activity of the Security Requirement En-

gineering Process (SREP) in more detail and explain how a security related

knowledge base is generated and shared among all activities.

• In order to illustrate the different parts of this thesis, we introduce in

Chapter 4 a running example used all along the thesis to explain our

proposals. The example is originating from the secure design of a vehic-

ular embedded system developed in the European project EVITA [117].

The case study has been developed for illustrating the secure firmware

update process.

• In Chapter 5, we address the problem of identifying security attacks and

vulnerabilities in the context of a multilayered system architecture, where

the security related information is generated, processed and stored at dif-

ferent layers. The idea is to extract the knowledge about different system

activities spread across and that corresponds to various system develop-

1.2. Thesis Contributions and Outline 5

ment activities, and to use this knowledge for security analysis purposes.

In particular, we use the knowledge bases relying upon different ontolo-

gies such as the system architecture ontology, the goal ontology, etc. to

analyze the security of the system and to specify how an adversary can

attack the system. Furthermore, the concept of a knowledge based attack

tree is brought in as the foundational graphical representation for attack

modeling.

• In Chapter 6, we illustrate the approach in the context of security require-

ments identification and refinement, and present a way to trace security

requirements. We describe first the security requirement identification

process, which makes use of the different knowledge bases produced in

different phases of the SREP. It enables us to discover security require-

ments from early system development stages and in relation to different

available knowledge bases. Then, we propose the concept of dependent

refinement model to address some shortcomings and limitations of exist-

ing approaches to SR refinement. Finally, we propose an approach for

tracing requirements in order to determine the source of requirements

and the reason about requirements existence. We in particular use our

extended SysML security requirement diagrams to model and share SR

related knowledge.

3. Security Requirements Enforcement: In the third and final part of this

dissertation, we handle SR enforcement issues and propose solutions for de-

signing and deploying cryptographic protocols and for enforcing access control

related security requirements.

• In Chapter 7, we propose an approach based on the use of cryptographic

key material protected with inexpensive hardware to build the firmware

flashing cryptographic protocol specification. We show how a root of

trust in hardware can sensibly be combined with software modules. These

modules and primitives have been applied to show how firmware updates

can be done securely and over-the-air, while respecting existing standards

and infrastructures. Despite the fact that a trusted platform model en-

tails certain constraints, such as the obligation to bind cryptographic keys

to a given boot configuration, we show how the protocols we presented

deal with the update of the platform reference registers during the boot

phase of an Electronic Control Unit – ECU.

• The final contribution of this thesis, in Chapter 8, is dedicated to the en-

forcement of access control related security requirements. We have pro-

posed and developed a policy decision module that is used to enforce var-

ious access control rules by deploying multiple policy enforcement points

at the different levels of system abstraction. We discuss how to design

6 Chapter 1. Introduction

policy engines that implement an effective enforcement in such architec-

tures despite the complexity of the protocol stacks of on-board electronic

control units. It also evaluates how policies expressed in XACML can be

adapted to the efficiency requirements of the automotive environments

despite the limited computational power of those units and their network

bandwidth limitations.

Part I

A Knowledge-Centric Approach to

Security Requirements

Engineering

Chapter 2

Overview of Security

Requirements Engineering

Methodology

2.1 Introduction

A very important part in the security architecture design for the achievement of

secure systems is that known as security requirements engineering which provides

techniques, methods and standards for tackling this task in the system development

cycle. Security requirements engineering frameworks derive security requirements

(SR) using various security-specific concepts, borrowed from security engineering

paradigm [4]. For instance, security requirements stem from potential adversaries

that attempt to compromise the system [62]. Security goals [151] are another con-

cept in SR literature defined as a prescriptive statement of intent, which expresses

some security objective to be achieved by the system. In addition, security re-

quirements are derived from analysis of interactions and dependencies of system

models and the subjects of the attacks [69]. These different views capture a cer-

tain types of information and results in different types of SRs and security design

solutions. For example, some approaches [153, 93, 86, 141] evaluate system from

the behavioral perspective by building obstacle and threat models and exploring

resolutions, security requirements, to enrich and update the system behavior. In

approaches such as [69, 88, 45], security requirements are derived to focus on the

different aspects of the system from structural viewpoint. However, as previously

mentioned, the tight relationship between different architecture layers of an embed-

ded system requires the security engineers take the collaborative SRE approach into

consideration to extract and enforce security requirements. This requires that SRE

framework expand the analysis from the problem space to the solution space as well.

Nevertheless, security requirements are not just related to identification, and prior-

itization or refinement. Security requirement traceability is yet another important

issue: providing a rationale for the definition of finer-grain requirements is necessary

to understand whether a given requirement is still necessary if associated assump-

tions about the environment, an attacker, or even the system architecture change,

for instance. We need to fill a gap from requirement identification to requirement

enforcement, verification and to testing. Establishing relationships between require-

10
Chapter 2. Overview of Security Requirements Engineering

Methodology

ments and such later phases of engineering should thus receive appropriate support:

for instance, it should be possible to document the fact that some security mecha-

nism is introduced in order to satisfy one security requirement, or to point at some

test over the implementation in order to verify that it is compliant with the same

requirement. That is to say, security requirements probably constitute one of the

most abstract documentation of the expected system behavior. These requirements

should provide a specification that has to be satisfied at every subsequent stage of

the system: analysis, design, implementation, and validation/testing. This leads

to another important challenge for SRE to cope with inconsistent and incomplete

security requirements specifications.

In this chapter, we first start from reviewing and analyzing different approaches

to SRE and their strengths and weaknesses with respect to aforementioned design

objectives. In Section 2.3, we look at ontologies in the requirement engineering, how

and what benefits we can achieve by using the ontological concepts (i.e., knowledge

acquisition and management) in requirement engineering process. In Section 2.4, we

proceed to defining a unified SRE methodology for the use of ontologies in security

requirement engineering process. Section 2.4.2, presents security ontologies for each

security class identified in the SRE methodology, including design objectives, domain

and scope, and detail descriptions. In Section 2.5, general conclusions concerning

the functionality of security requirements engineering process are drawn.

2.2 The State of the Art SRE Approaches

This section reviews the existing approaches for eliciting, modeling, and analyzing

security requirements. The goal of this section is to investigate the capabilities as

well as shortcomings of the state of the art SRE approaches and to extract the core

artifacts defined in these approaches for driving security requirements. We study

how different approaches for deriving and expressing security requirements result in

different expressions of requirements.

2.2.1 Goal Oriented Approaches

Goal oriented approaches focus on the concept of a goal or objective for eliciting,

elaborating, structuring, specifying, and modifying security requirements. In this

category, we review two frameworks:

• KAOS [153]: was the first to feature a goal-oriented approach for modeling,

specifying, and analyzing requirements. KAOS is a requirement engineering

method concerned with the elaboration of the objectives to be achieved by

the system-to-be. In particular, KAOS takes into consideration that there are

2.2. The State of the Art SRE Approaches 11

multiple stakeholders in and multiple views towards a system-to-be. These

views here do not refer to the differing views of the stakeholders, but to the

goal, object, agent, system operation, obstacle, and agent behavior models –

each model stands for a different view of the system as shown in Figure 2.1.

The main purpose of KAOS is to ensure that high-level goals are identified and

progressively refined into precise operational statements. Along this, various

alternative goals and responsibility assignments are considered until the most

satisfactory solution is chosen. KAOS extended to security has been intro-

duced in [151]. This approach extends an earlier framework on eliciting goals

and identifying potential obstacles to satisfying goals to security engineering.

The security obstacles are called anti-goals and are similar to the idea misuse

cases [141], which are the attackers goals and malicious obstacles to security

goals, set up by the attackers to threaten security goals. Anti-goals are refined

to form a threat tree, in which the leaf nodes are either software vulnerabilities

or anti-requirements.

Figure 2.1: KAOS security requirements metamodel (taken from [103])

All requirements in KAOS are written by default using semi-formal graphical

notations and, if needed, using formal notation. In [26], further features a for-

malization of KAOS requirements definitions using linear time temporal logic.

This representation makes use of generic refinement patterns to decompose

goals into a set of sub-goals. However, a major limitation of the approach

(and the framework) results from the fact that at the highest level of abstrac-

12
Chapter 2. Overview of Security Requirements Engineering

Methodology

tion, the system behavior is only characterized by focusing on a particular

functionality of subject/object of analysis. Thus, goals may be insufficient

for analyzing all the security concerns, especially when lower-level security

requirements have to deal with concrete details of the system architecture.

As pointed out in [45], it is required to incorporate approaches for reasoning

about the behavior of contexts and how that behavior contributes to satisfying

or violating security requirements. More precisely, since the output of SRE is

a set of required protection mechanisms and constraints on the system-to-be,

the need for building tight relationship between architecture design and secu-

rity requirements and impact of security mechanisms on other requirements is

absolutely imperative.

• Secure Tropos [93]: introduce extensions to Tropos [13] for incorporating

security concerns into the goal-oriented development process. Tropos defines

four requirement development phases in which each successive phase refines

the high level description from the previous phase to a lower level towards

implementation as shown in Figure 2.2. In this enhancement of Tropos, secu-

rity constraints, secure dependencies, threats, and security goals, tasks, and

resources are introduced and added to the Tropos modeling notation. In this

approach, secure entities are tagged with an "S" (see Legend in Figure 2.2) to

indicate those tasks, goals, and softgoals are security related. In particular,

security requirements are described as constraints on the functionalities. In

[90] security concerns are integrated into all phases of Tropos agent-oriented

methodology: from early and late requirements, and architecture and detailed

design. At the early requirements phase, Security Diagram is constructed and

security constraints are imposed to the stakeholders. During the late require-

ments stage, security constraints are imposed to the system-to-be in the Secu-

rity Diagram. The system is presented as one or more new actors, who have

a number of dependencies with the other actors of the organization. In the

architectural design stage, security constraints, secure entities that the new

actors introduce, and secure capabilities are identified and assigned to each

agent of the system. This approach follows a step-by-step refinement con-

struct, where goals are formulated at different levels of abstraction, ranging

from high-level, strategic concerns to low-level, technical concerns. However

one general concern about this framework is that it does not provide means for

propagating changes between the different levels of abstraction. For example,

if there is a change in a organizational model, which includes relevant actors

and their respective dependencies, there is no systematic way of relaying such

changes. A clear interaction relationship between the models would provide

a systematic way of propagating changes between the different models and

hence support maintaining security properties as requirements evolve.

Summary: In general, the goal-oriented approach is a natural way of expressing

security requirements that refine other more abstract security requirements.

While this is an important strength of that model, those approaches generally

2.2. The State of the Art SRE Approaches 13

!
!

0+1*,'#2#3#456!8'1/+#%,!>"%'06'6!?1%2+!@#)5+)-!*#%&!8,$%'-!

Figure 2.2: SecureTropos security requirement diagram view (taken from [113])

assume a rather static model of the system architecture. Another strength of

goal oriented approaches lies in their ability to capture dependencies between

security requirements; however, how those dependencies may evolve when se-

curity requirements are refined is generally ignored by those approaches, espe-

cially if the refinement is dictated by a refinement of the system architecture.

2.2.2 Model Oriented Approaches

In contrast to goal-oriented frameworks, the general concept of model-based ap-

proaches is underlined by the definition of architecture. Security requirements are

expressed through the architectural concepts described, at different levels of abstrac-

tion. In particular, those requirements arise in that approach from the identification

of security concerns about system components or the way they interact. We review

two model based approaches in the following.

• UMLsec [69]: is an extension to UML that allows expressing security rele-

vant information within UML diagrams. The main uses of such approach are

first, to encapsulate knowledge and make it available to developers in form of

a widely used design notation, and secondly, to provide formal evaluation to

check if the constraints associated with the UMLsec stereotypes are fulfilled in

a given specification. More precisely, UMLsec goal is to define a universal set

of stereotypes and tags that encapsulate security design knowledge to be used

as part of UML diagrams. In [71] combines the use of UMLsec modeling, Use

Case driven process, and goal trees to design the system along with modeling

functional and non-functional requirements respectfully. In this method, the

14
Chapter 2. Overview of Security Requirements Engineering

Methodology

goal tree is developed to record the result or reasons of design actions, which

are expressed in UMLsec diagrams. The security goals are refined in paral-

lel by giving more system details, such as UMLsec stereotypes or tag-values,

in design phases. However, UML is not a requirements engineering notation,

and the only diagram that focuses on the expected functionalities from the

users point of view is the use case diagram. The resulting models do not ex-

press attackers’ behavior, and threat description is limited to using the specific

stereotypes (i.e., Delete, Read, Insert) to changes a state of the subsystem.

Therefore, the usefulness of the modeling constructs is based on the expres-

siveness and comprehensiveness of the stereotypes. Moreover, UMLsec also

assumes that the system architecture is defined to a large extent. In essence,

the methodology considers that well formed requirements have already been

elicited and refined down to the design level as normal behaviors of the sys-

tem components as shown in Figure 2.3, and there exists some system design

to satisfy them. More precisely, UMLsec more specifically focuses on the re-

finement of those security requirements into security mechanisms and their

verification.

!!"#$%&#%$'()**

!!+,"&-.%&/"0%-

1%2"/%&3**

(%4&".$"0

567.%089::9#-8&"$%&",

,00%..-

09#$&92

!!.%04&%-2"#;.**

<
%
+"
#
%
-$
9
-=
4
>
?

.
%
0
4
&"
$3
-9
>
@A

$&,0"#B

!!&%#$'()**

.C%0"+3-.%04&"$3--

9>@%0$"/%

%2"0"$-.%04&"$3-

&%DA

&%+"#%-$9-

.C%0"+"0

.%04&"$3-&%DA

1%."B#-.3.$%:

>%E,/"94&
,#,23.".-

.%04&"$3-&%DA

/"%F-.3.$%:-

":C2%:%#$,$"9#

4.%-0,.%G

,0$"/"$3
1%C293:%#$9>@%0$G

.%D4%#0%

!"#"$%&

,&$%+,0$.

,0$"/"$3

!!567.%0-

.$%&%9$3C%**

!!E%4&".$"0'()**

,4$E%#$"0,$"9#---

>%+9&%-,0$"9#-+&9:-

HIJK5J5AL

.400%..+42-

,4$E%#$"0,$"9#-

>%+9&%-,0$"9#

HIJK5J5ALAM

!!#9#-+9&B%,>2%-

"1%#$"$3**

.400%..+42

"1%#$"+"0,$"9#

>%+9&%-,0$"9#-

HIJK5INALAM

"1%#$"+"0,$"9#-

>%+9&%-,0$"9#-+&9:-

HIJK5INAL

,4$E%#$"0,$"9#-

C&9C%&$"%.--+&9:-

HIJK5J5

"1%#$"+"0,$"9#-

C&9C%&$"%.-+&9:--

HIJK5IN
!!%#0&3C$%1**

!!,4$E%#$"0,$"9#

C&9/,>2%**

&%
+"#
%

.$%
&%
9
$3C
%

'(")*+,-.'+"/*,+"0"$-&'"1,),-2-,3$ (")*+"'%"&,#$

Fig. 9 UML diagrams and UMLsec stereotypes in SecReq

Figure 2.3: UML diagrams and UMLsec stereotypes (taken from [54])

• SecureUML [88]: is another UML-based modeling language for the model-

driven development of secure, distributed systems based on the Unified Mod-

eling Language (UML). SecureUML takes advantage of Role-Based Access

Control (RBAC) for specifying authorization constraints by defining a vocab-

2.2. The State of the Art SRE Approaches 15

ulary for annotating UML-based models with information relevant to access

control. In particular, their approach focuses on embedding role-based ac-

cess control policies in UML class diagrams (see Figure 2.4) using a UML

profile. The UML profile defines a vocabulary for annotating class diagrams

with relevant access control information. From a SRE perspective, and quite

similarly to UMLsec, SecureUML focuses on a later phase of software develop-

ment than the goal oriented security requirement approaches. As can be seen

from SeureUML metamodel presented in Figure 2.4, the SecureUML method-

ology does not consider security goals, domain knowledge, potential attacks

and vulnerability analysis, and focus on only authorization constraints and

access control requirements. SecureUML does not consider SRs (in the sense

of SRs in the conceptual framework) elicitation, completeness of the set of

requirements, refinement, nor traceability and coflicts of requirements. Fur-

thermore, this approach does not provide a systematic way of building rela-

tionship between different security elements (i.e., high level security objectives

and security requirements, security attacks and security requirements), which

is an important aspect for designing security solution for embedded systems.

Thus, SecureUML can be considered as a notation to specify and design secure

software systems, rather than a SRE method.

ResourceSet

AuthorizationConstraint

User
ModelElement

(from UML)

0..*
+contains

0..*

+constrainedElement

/

Role

1..* 0..* 1..* 0..*

RoleAssignment

Inheritance

Permission

0..* 1

ProtectedObject

1 0..*

PermissionAssignment

ActionType

0..*

+classification 1..*

ActionTypeAssignment

ResourceType

baseClass

0..* 1 0..*

+context

1 0..*

0..1
Containment

0..*

0..1

Inheritance

0..*

Figure 2.4: SecureUML metamodel (taken from [88])

Summary: This discussion highlights a major limitation of the model-based ap-

proach to security requirement engineering in that it mainly intervenes in

relationship with the system architecture design and focuses on linking low-

level security requirements with security mechanisms that would satisfy them.

Conversely, this feature also depicts the main strength of this approach, which

is perfectly aligned with the fine grained design of embedded system architec-

ture.

16
Chapter 2. Overview of Security Requirements Engineering

Methodology

2.2.3 Problem Oriented Approaches

Problem oriented approaches to defining security requirements focus on the defini-

tion of threats and how security requirements can be extracted from their identifi-

cation. We review the following two approaches:

• Abuse Frames [86]: is based on the Jackson’s problem frames approach [68]

and is intended to analyze security problems in order to determine security

vulnerabilities and to derive security requirements. This approach introduces

the notion of anti-requirement (similar to the concept of an anti-goal [151])

to describe the behavior of a malicious user that can subvert an existing re-

quirement. The basic idea behind the definition of abuse frames is to bind the

scope of a security problem with anti-requirements in order to derive security

requirements. Such explicit and precise descriptions facilitate the identifica-

tion and analysis of threats, which in turn drive the elicitation and elaboration

of security requirements as shown in Figure 2.5. However, it does not provide

any specific techniques or approach to deal with security requirement refine-

ment as well as requirement traceability.

e is the machine

to be built. The specification of the

Security Machine—E2 and E3—

represents the security measure to

counteract attacks from the Attacker.

 phenomena

SR

Attacker

Security

Machine

E3

Asset
E2 E1

E3

Figure 2.5: Abuse frame diagram (taken from [85])

• Misuse cases [141]: extend the traditional use case approach to also con-

sider misuse cases, which represent behavior not wanted in the system to be

developed. Misuse cases are initiated by misusers. A use case diagram (see

Figure 2.5) contains both, use cases and actors, as well as misuse cases and

misusers (notated in black color). Development of misuse cases allows the

identification of security attacks and associate security requirements during

application development. In [162], authors present a formal representation of

misuse cases and provide an intuitive way to executable misuse case model.

Although misuses cases are not entirely problem-oriented as they represent

aspect of both problems and solutions, they have become popular as a means

of representing security concerns in the early stages of software development.

However, they are limited by the fact that security attacks and requirements

are only analyzed and derive through use case specification. The completeness

of the security requirements analyzed through scenarios is not guaranteed as

other scenarios by which the security of a system could be exploited may be left

2.2. The State of the Art SRE Approaches 17

out. Furthermore, the approach does not consider validation, verification, con-

flicting requirements, or the interaction of security and other non-functional

requirements.

Customer

Operator

CrookRegister

customer

Browse

catalog

Flood

system

Steal

card info

Order

goods

Change

password

includes

extends

Obtain

passwd

Enforce
password

regime

extends
prevents

Encrypt

message

prevents

includes

includes

Monitor

system

detects

Log on
includes

includes

detects

Block
repeated

registrations

extends

prevents

includes

Tap com-

munication

includes

includes

Figure 2.6: Use case diagram containing misusers and misuse cases (taken from

[141])

Summary: The main liability of those problem oriented approaches is that they

need both a very detailed description of the system architecture as well as a

detailed knowledge of known vulnerabilities that may be present at each of

the components of this architecture. While they fit well the needs of security

certification, in which the security properties expected from a system are as-

sessed, they are much less appropriate to the definition of a brand new secure

system.

2.2.4 Process Oriented Approaches

Process oriented approaches focus on the analysis of security requirements through-

out the system design. These approaches involve identification of threats and vul-

nerabilities, identification and exploration of security requirements for addressing

identified weaknesses, risk analysis, and the verification of security properties. The

SQUARE methodology is the most prominent proposal in this category:

18
Chapter 2. Overview of Security Requirements Engineering

Methodology

• SQUARE [91]: is a comprehensive methodology for SRE. Its aim is to

integrate SRE into software development processes [91]. SQUARE stresses

applicability in real software development projects and thus provides an or-

ganizational framework for carrying out SRE activities. It is assumed that

SQUARE is carried out jointly by requirements engineers as well as by the

stakeholders. The SQUARE methodology is composed of nine steps to pro-

vide a mean for electing, categorizing, and prioritizing security requirements

for information technology systems and related applications. However, the

definition of SRs in the SQUARE methodology considers requirements at the

system or software level. This definition does not consider the properties and

behavior of the context in which an application operates. According to [68],

a more concise definition of SRs should consider their context of operation

as satisfaction of a requirement is expressed in terms of the state changes in

the context. Moreover, the steps provide by the SQUARE methodology are

"waterfall model" in nature, and this does not make a provision for iterations

to revise SRs and support the evolution of a system [95]. Although SQUARE

claims to operator with software engineering activities, its main drawback may

originate from the lack of integration and consistency between those different

models from the point of view of SRs. Furthermore, SRs are described using

text-based description (see Table 2.1): this makes it even more difficult to

integrate SRs with other system models as well as to organize the set of SRs

into a description with different levels of complexity. Another disadvantage is

the lack of support for SR traceability making that approach not suitable for

complex systems.

Goal (s): The claimed identities of all users and client applications will be au-
thenticated before they are allowed access.

Protect from unauthorised attacks involving addition, modification,
deletion, or reply of data in network.

Category: Authentication

Requirement(s): AN-1) Authentication control mechanism shall be enforced in produc-
tion environment. Authentication control will be done on user name
and password or other user credentials.

No. AR-01

Misuse case: MC-01

Architectural Rec-
ommendation:

All shared drives on the network should enforce authentication poli-
cies.

Implementation
Choices:

In IIS 6/0, the IIS Manager contains a check box that permits the
Administrator to omit the user name and password. If no user name
and password are specified, IIS uses the requesting user credentials
when the Administrator is using an authentication method that can
perform delegation to authenticate to the remote share.

Table 2.1: SQUARE security requirement template (taken from [91])

Summary: This approach is interesting in that it comprehensively and consis-

tently combines different phases of requirement engineering like threat model,

2.2. The State of the Art SRE Approaches 19

requirements elicitation, risk analysis, and requirement prioritization in order

to achieve a more precise and multi-facetted description of SRs. However,

the hard coding of a particular software development methodology also has

a strong impact on the SRs: the example of the SQUARE waterfall model

inadequacy illustrates, in particular, the need for an iterative approach in a

process oriented evaluation of SRs.

2.2.5 Conclusion

We have reviewed the state of the art approaches to SRE. The approaches have

been classified into goal-oriented, model-oriented, problem-oriented, and process-

oriented. Table 2.2 presents a summary of these approaches and brief summaries of

their main characteristics.

Conceptual Classifi-
cation

Security Require-
ment Approach

Security Specific Charateristics

Goal Oriented KAOS Elicitation of security goals to counter anti-goals

Secure Tropos Identification of malicious actor’s goals and plans, and
analysis of each actor’s security constraints.

Model Oriented UMLsec Refinement of security requirement into security mech-
anisms and their verification.

SecureUML Identification of authorization constraints

Problem Oriented Abuse Frames Identification of abuse frame concerns which need to
be addressed for an attack to succeed. Security re-
quirement for counteracting threats are expression a
problem frame.

Misuse cases Misuse cases to address which behavior is not wanted
in the system and associate security requirements dur-
ing application development.

Process Oriented SQUARE Misuse case, attack scenarios, goals, and elicitation of
security requirements from potential risks.

Table 2.2: Summary of security requirement engineering approaches

In general these approaches to SRE involve two main phases in their method-

ology/framework, namely (1) identification of security threats and (2) designing

mitigation strategies to remove the possibility of threats causing harm to assets. In

particular, most of these approaches consider different artifacts (i.e., goal, models,

system behavior, risk, etc.) for identification of security requirements at different

level of system conceptualization. However, as previously mentioned in the intro-

duction, challenges unique to embedded systems require an integrated approach to

SRE covering all aspects of embedded system design from architecture to implemen-

tation.

20
Chapter 2. Overview of Security Requirements Engineering

Methodology

2.3 The Role of Ontologies in RE

The above arguments motivated us to look at ontologies as a solution to overcome

the shortcomings and improve the state of the art approaches in this area. The main

objective of ontology is to define an explicit formal specification that try to elimi-

nate, or at least reduce, conceptual and terminological confusions in order to have a

shared interpretation about security terms and concepts. Also, it provides a way to

define dependencies and relationships among captured and stored knowledge. The

use of ontologies for precisely expressing and building requirement knowledge and

its relationships are under discussion since a long time ago [84, 12, 81, 127, 43]. The

key to these approaches appears to relate to the creation and maintenance of ontolo-

gies for requirements that can be easily updated and utilized in a systematic way.

These approaches addressed many diverse synergies between RE and ontologies and

raised issues that can be solved by the use ontologies such as, traceability, complete-

ness, consistency, unambiguous requirement specification, and managing evolution

of requirement. Building specifications (documentation) is seemingly the most com-

monly evaluated application of ontologies [36]. The purpose of using ontologies in

expressing requirement specification is to improve the structure of the document as

well as having a concise vocabulary of terms and concepts used during the documen-

tation. Notwithstanding, the requirement specification activity could additionally

be benefit from ontologies by developing intelligent tools for requirement annotation

that will for instance have capabilities for verifying validity of requirement specifi-

cation with respect to the developed requirements artifacts. Ontologies also offer

to have a clear semantic and interrelationships between different developed arti-

facts, and thus help in building requirement specification as intelligent knowledge

vocabulary [122]. Actually, great expressive power of ontologies helps us to achieve

several characteristics related to the semantics of a requirement specification (e.g.,

unambiguity, correctness, consistency, etc.).

The use of ontologies for checking requirement consistency as well as its partic-

ular support for managing the design rational for requirement engineering such as

traceability, and verification properties is probably one of the areas that have at-

tracted a lot of attention so far [140, 84, 166, 167]. One clear example is adapted by

Siegemund et al. [140], for checking consistency and completeness of goal oriented

requirement specification. They combined ontology consistency checking and rule

driven completeness checks to measure the validity and consistency of the require-

ment models. Similarly, Lin et al. [84] raised several issues regarding the requirement

specification that must address by requirement model such as traceability, complete-

ness, managing the evolution of requirement specification, etc. In response to issues,

they described an ontology driven solution for generating unambiguous, and precise

requirement specification that can be easily extendable and support dependencies

and relationships among requirements. Cranefield [23] promotes the synergy of on-

tologies and their association with software modeling languages such as UML. He

described an approach to take benefit from the use of ontological reasoning to reason

2.4. Security Requirement Engineering Methodology 21

over UML models. Given a lot of attention to model driven requirement engineer-

ing, ontologies are definitely a promising technology to reason about generated MDE

models and their dependencies in terms of interactions and collaborations. As well as

those mentioned above, ontologies could also be used to share and reuse requirement

[28, 155] related knowledge with other models that are relevant to requirements.

From the security engineering point of view, the development and usage of on-

tologies in different contexts and for many purposes (i.e., risk assessment [30], threat

and vulnerability ontology, security management [146, 33], security protocol designs

[77], policy configuration [10], security requirements [73, 35, 33], etc.) has shown

the strength and capabilities of ontologies to build the non ambiguous definition of

terms representing the knowledge of the security. For instance, Fenz et al. [33],

proposed several security ontologies to structure the security related knowledge like

threat, assets, vulnerability, etc. However, this approach is only limited to knowl-

edge repository and does not consider how the knowledge is generated and shared

among different activities involved in the security engineering process. Tsoumas et

al. [146] present a security ontologies using OWL and proposed a security frame-

work in order to support security knowledge acquisition and management. Like

others, this approach is also limited to "what" part of security requirement engi-

neering then "how" the security requirement related knowledge is generated and

used. These approaches and methodologies are well recognized in security commu-

nities and already showed interesting results for some of the security requirement

engineering process (i.e., threat, risk, etc.). However, as pointed out in [142], the

security ontologies vary a lot in the way they cover security aspects; the security

requirement design, integration, implementation and maintenance are almost the

dark side of security ontologies. In addition, none of these approaches analyze and

evaluate collaboration of security ontologies in different aspects of SRE by following

a comprehensive SDLC. Further exploration of semantic annotation mechanism of

security requirements, integration of ontologies and meta modeling architectures,

and a comprehensive security requirement engineering methodology, are some of

the biggest challenges conceding the aspects of security knowledge acquisition and

management.

2.4 Security Requirement Engineering Methodology

The goal of this section is to define security requirement engineering methodology,

describe typical security engineering development lifecycle, security classes used and

produced security metadata (i.e. the knowledge produced by each security class)

in each activity, their dependencies and interrelationships. Based on the discus-

sions, we define a unified methodology for the use of ontological concepts in security

requirement engineering process. More precisely, we aim at building SRE methodol-

ogy that is guided not only by a process but also knowledge about the each activity

within the process is also developed and shared among other activities. We start

22
Chapter 2. Overview of Security Requirements Engineering

Methodology

from defining security requirement engineering as an application context for ontolo-

gies, and proceed to defining a methodology that identified places in SREP where

ontologies can contribute to improve current state of security requirement engineer-

ing. In this context, we take the view these state of the art approaches are primarily

based on the same (small number of) artifacts. Our main intention is to identify

the core artifacts of the security requirement and harmonize them together. In this

context, we extracted the essence of the state of the art SRE models (cf. Literature

review presented in Section 2.2), the core artifacts, and then aligned them seman-

tically by defining ontology to construct a unified security requirement engineering

model. The essential artifacts that we identify as common to SRE models are: goals,

security attacks, system models (behavioral and structural), and use case oriented

models. We order these artifacts under the form of security classes where each class

is represented by ontology. We consequently have organized the structure of these

security classes in such a way that the security metadata produced by these security

classes, in different phases of SRE process, can be easily shared and reused among

different activities of the process. For example, security goal related metadata could

be used for identifying the system assets as well as this metadata could be used for

analyzing the security attacks and vulnerabilities. Figure 2.7, resumes the ontology-

driven security requirement engineering methodology.

!"#$

%&#'()*+,-."'(-'/,(+''0-$

%(-/,"'&*!(1/",()(2'#

%(-/,"'&*3405#

!""#

!""#

#

#

$%
&
'
($
%

#

#

#

#

#

#

#

#

#

#

#

)*$+%)%,-./

0,%1)(2(%,-23$4

(,%1)(2(%,-2$35

6$%7%1)

%7*8'*)%,-2$35

%
7
*
8'
*
)%
,
-2
$3
5%7

*8
'*
)%
,-
2$3
5

#

#

9""#

!""#

!""#

!""#

!""#

!""#

9""#

9""#

!""#

)*$+%)%,-./

#

#

%
7
*
8'
*
)%
,
-2
$3
5

!""#

:%
)3
2

Figure 2.7: Ontology-driven security requirement engineering methodology

Our analysis have revealed that multiple SRE models can be expressed in terms

of the security ontologies and their associated relationships that we identify, that the

2.4. Security Requirement Engineering Methodology 23

degree of overlap amongst existing models is significant, and that many “novel” SRE

models can potentially be developed by simply combining and sharing knowledge of

these diverse models in systematic ways. Nevertheless, identifying a common SRE

model is also desirable because it allows for various general syntaxes, relationships

bindings and common semantics, to be developed in terms of the generic model,

which facilitates the sharing of SR at the different levels of abstraction. For example,

initially identified security requirements, through problem-oriented approaches, can

be fed to models like UMLsec, which focuses on the verification of these requirements

in terms of security mechanisms.

In a similar way, the output of goal-oriented approaches can be combined with

model driven engineering approaches to build the process-oriented approaches. This

is the case of SQUARE methodology, where SRE process starts with identifying the

goals and then defining system architecture in order to identify requirements. Thus,

we can facilitate collaboration of SRE models (e.g., mutual understanding among

diverse models collaborating in RE process, especially in the context of system-wide

security engineering). However, the major obstacle in having such a collaborative

approach is that none of these SRE approaches usually allow for using different

approaches collaboratively, since they are mainly constrained by the modeling lan-

guages and tools they use. Recognizing this problem, we decided to use the SysML,

The System Modeling Language [107], which promotes cohesiveness between the

models generated during different phases of system engineering and creates a shared

understanding from multiple dimensions [50]. The SysML standard supports: "the

specification, analysis, design, verification and validation of a broad range of systems

and systems-of-systems"[107]. Although all of these feasters of SysML demonstrate

many capabilities to different aspects of system engineering, none of them analyze

and evaluated applications of SRE. In this context, we have proposed several ex-

tensions to SysML in order to integrate security aspects along with other system

wide development activities. The central point of these extensions is to utilize the

system engineering models along with the SRE and the associated security aspects

(i.e., verification, testing, etc.) in a single viewpoint.

In order to make this chapter lighter, we only give an overview of knowledge

driven security requirement engineering process and its associated security ontologies

to which we are going to refer in the rest of the thesis. Other important features of

our methodology are presented in the next chapter, namely the modeling language,

SysML, and its support for our Knowledge-Centric SRE Process.

2.4.1 Knowledge-Centric SRE Process

In this section, we first introduce the knowledge driven security requirement en-

gineering process (SREP) whose focus seeks to identify SR from the early design

phases of the system conceptualization. Instead of following the general approaches

like waterfall style [20], we build our SREP on the definition of iterative an in-

24
Chapter 2. Overview of Security Requirements Engineering

Methodology

cremental construction of the security requirement specification. Then, we define

security ontologies for each security class used during the SREP. The SREP is artic-

ulated into seven activities, which are iteratively performed throughout the system

conceptualization, although with different focus depending on where the iteration is

situated within the system development lifecycle. These activities are as follow:

1. Agree on Definitions: The first activity in the SREP is to define and to

agree upon a common set of security terms and definitions. It helps to build

a common knowledge base for the experts (i.e., system engineer, risk experts,

security experts, verification and testing teams, etc.) involved at different

stages of system development life cycle. The introduction of, as well as the

agreement on some general terms and principles of IT security within a given

RE process has proven to be very beneficial for all system wide activities:

analysis, design, implementation, and validation/testing [62]. We may use

the security terms and definitions mainly defined in security standards (i.e.,

ISO/IEC 15408, ISO/IEC 17799:2005, or ISO/IEC 27002:2005, etc.) to build a

common knowledge base in order to bridge a potential miscommunication gap

across different SRE phases. Appendix A, presents how some of the security

terms are generally defined and understood in this thesis.

2. Identify Security Goals: The purpose of this activity is for the stakeholders

to formally agrees on a set of concise and abstract statements of the intended

solution (goals) to the problem defined by the security problem definition

[20]. More precisely, goal captures stable information (correct behavior) and

provides means to distinguish between stable and unstable (malicious behav-

ior or anti-goals) information. Goals are usually identified by analyzing the

key operational capabilities of the system specified by the stakeholders, deter-

mined from the security policy of the organization, or analyzing the problems

and deficiencies in the system-as-is, as well as from legal requirements and

other functional constraints [151, 25]. For example, the high-level goal "avoid

updating firmware when vehicle is moving" is specified by having an interac-

tion between the security requirements engineering team and the stakeholders.

Once security goals are defined, they can be formally specified in the form of a

goal document. Typically, this document corresponds to functional and non-

functional aspects and range from high-level security goals to low-level ones

[151, 150]. To facilitate efficient collaboration and coordination of goals with

other SRE activities, we have defined the security goal ontology (cf. Section

2.4.2.1) in order to store, share, reuse, and manage goal knowledge base.

3. Identify System Assets: The purpose of this activity is to find all the sys-

tem assets and artifacts, and system behavior in the system context that has

direct or indirect value to the stakeholders. The importance of system assets

when coming to discovering security requirements as well as analyzing security

attacks and vulnerabilities is highlighted in many security specifications stan-

dards (ISO/IEC 15408:2009 ([62], sec. 3.1.2, 6.2), ISO/IEC 27000:2012 ([64],

2.4. Security Requirement Engineering Methodology 25

sec. 2.3), ISO/IEC 21827:2008 ([63], sec. 3.38), ISO/IEC 27002:2005 ([2], sec.

2.17), etc.) and model driven SRE approaches (i.e., SecureUML [70], UMLsec

[88]). Department of Defense [105] suggests the following definition of system

architecture: “an architecture framework provides a foundational framework

with guidance and rules for modeling, documenting, developing, understand-

ing, analyzing, using, and comparing architectures based on a common denom-

inator across a (virtual) development organization (i.e., value net)”. Therefore,

the system engineering approaches puts a lot of effort to the discipline known

as model-driven engineering (MDE) to allow model driven development of

system architecture.

We take into account the MDE approach composed of structural models as

well as behavioral models in order to determine the valuable and/or critical

system assets. The most important aspects for realizing a life cycle wide SR

are the interaction with involved artifacts and the evolution of the system

architecture [130]. One of the basic ideas of considering MDE, in SREP,

is that models help requirements analysts to understand complex software

compositions and identifying potential solutions through abstraction. Such

abstractions make it easier to understand how the system is evolving and how

it might be secured. This is because most of the information needed to express

security requirements are already defined and formalized by the design models

[88]. For this activity we also defined system architecture ontology (cf. Section

2.4.2.2). In particular, the objective of such synergy is to provide the system

engineers with reasoning services to reason over system models. In addition,

we can connect system models with other SRE activities. For instance, we

can combine goals (Step 2) and system architecture knowledge base to, first,

relate goals with system assets, and then reason about security aspects such

as if the goal is enough to protect the system assets, or there is a need to refine

goals or define more fine-grained goals. Actually, this allows us to combine

goal-oriented approaches with model driven engineering concepts.

4. Identify Threats and Security Vulnerability: This activity is concerned

primarily with identifying attack heuristics and addresses security weaknesses

(i.e., threats and security vulnerabilities) of the system that are exploitable by

an adversary. Security attacks can be identified from different sources. Figure

2.7, depict relationship of this activity with other SREP activities. Following

our objective for having a unified SRE model, we can consider any relation-

ship for identifying threats and vulnerabilities. For instance, the targeted by

relationship between security goal class and attack class allow us to identify

attacks on goals. From the goal oriented approaches viewpoint like the KAOS

[151], this relationship can be considered as an anti-goal model, where anti-

goals are identified either by simply negating the goals that are specified in

goal knowledge base, or linking with the adversary’s malicious goals. Sim-

ilarly, we can use the targeted by relationship between system architecture

class and attack class to identify attack on different system models including

26
Chapter 2. Overview of Security Requirements Engineering

Methodology

structural and behavior models. For example, during initial phases of system

conceptualization, we can use the use cases related knowledge base to identify

attacks on the system. For instance, specifying the misuse cases, like done in

the problem-oriented approaches [141]. Moreover, with the evolution of sys-

tem models and architecture design, we can apply more sophisticated security

analysis techniques (i.e., computational attack models [139] or Dolev-yao at-

tack model [29]) to identify threat and security vulnerability on these system

assets.

Security attacks are hard to understand, often expressed with unfriendly and

limited details, making it difficult for security experts and for security analysts

to create intelligible security specifications. For instance, to explain "Why"

(attack objective), "What" (i.e., system assets, goals, etc.), and "How" (attack

method), adversary achieved his attack goals. We introduced security attack

ontology (cf. Section 2.4.2.3), by taking into account security standards and

security dictionaries and deriving the features, in terms of classes and sub-

classes that were needed in such situations. Security attack ontology has been

designed to enable the specification of security attacks in a concise, readable,

and extensible way.

5. Risk Evaluation: The purpose of this activity in the SREP is to assess

whether the threats or security vulnerabilities are relevant according to the

security level specified by the security goals. In our approach, we estimate the

security risks based on the relevant threats, their likelihood/probability that

the threats will materialize as real attacks, any potential consequences on the

system assets or possible severity of an attack for the stakeholders, and the

resulting impact of that adverse event on the organization. To do so, we have

specified evaluated from relationships between risk class and other security

classes (see Figure 2.7). The objective of this relationship is to extract the

knowledge from different security classes and to build the risk metrics with

regards to the risk model. This will, later, allow us to infer and derive the

risk associated with different direct or indirect valuable system assets to the

stakeholders. For instance, by estimating the "severity" of the attack and

its possible outcome for the stakeholders, and the "probability" that such an

attack can be successfully mounted, etc.

6. Security Requirements Elicitation: This step is the core activity of the

SREP. Here, we aim at identifying SRs in relation to the different security

classes as defined in Figure 2.7. In particular, we put much emphasis on the

relationships between different security classes and their association with one

another for identification of SRs. Therefore, we consider two kinds of relation-

ships; (1) individual relationships and (2) collaborative relationships between

different classes to identify SRs. An individual relationship corresponds to

the situations where we can identify SRs by analyzing different knowledge

specified in the security class. For instance, use cases or goals also provide

2.4. Security Requirement Engineering Methodology 27

constraints and assumptions, such as performance constraints for the security

functions and may themselves suggest a number of security related user re-

quirements. For example, the information received from another entity needs

to be evaluated regarding security and trust (e.g. authenticity of data). In

contrast, we use collaborative relationships to identify SRs in relation to dif-

ferent security classes. For instance, relating goals and attacks (anti goals) to

identify requirements like done in KAOS, or following the model driven SRE

approaches where requirements are specified in order to protect system assets

from malicious threats and vulnerabilities, etc. The novelty of our approach

is that we do not restrict security engineer to identify SRs only by considering

specific constructs, but provide them detailed knowledge about different se-

curity classes as well as relationships between them to identify more concrete

and more realistic SRs. We will exemplify this in more detail in Chapter 6.

Of course, this activity also requires documenting and building well-structured

and well-understood requirement specification [61]. The IEEE 830 standard

recommended eight characteristics for specifying good software requirements

specifications, out of four are related to the semantics and documentation of

a requirement specification (e.g., unambiguity, correctness, consistency, and

Completeness). Following these recommendations and taking advantages of

expressing requirement in ontologies (cf. The role of ontologies in RE pre-

sented in Section 2.3), we have defined SR ontology in Section 2.4.2.4.

7. Categorize and Prioritize Requirements: The purpose of this activity

is to classify the requirements in two different categories based on the risk

analysis as well as on security needs. The initial set of requirements can

be organized into stakeholder-defined categories (i.e., essential, non-essential,

etc.) or we may use the security standards and specifications (i.e., ISO/IEC

15408:2009, ISO/IEC 18045, ISO/IEC 27000:2009, ISO/IEC 17799:2005, or

ISO/IEC 21827:2008, etc.) to determine and categorize SRs into security

functional components, for instance, we can map authentication related SR

into "Identification and authentication – FIA" class defined in Common Cri-

teria standard [1]. The SRs that are selected for inclusion in the design must

therefore be based on an objective assessment of potential threats and their

anticipated implications. As a result, SRs are categorized and prioritized

in a qualitative ranking in a way that the most important requirements are

handled first. Nevertheless, we acknowledge the fact that, during SR prioriti-

zation, some of the requirements may be deemed to be entirely unfeasible to

implement. SRs often conflicts and interact with other system requirements or

functional requirements. For instance, what is possible to do in a reasonable

timeframe or budget might conflict with what is required to implement and

enforce SRs. In this case, the security engineers have an option: completely

dismiss the SR from further consideration, or document and label the SR for

"future consideration".

28
Chapter 2. Overview of Security Requirements Engineering

Methodology

2.4.2 Security Ontologies

In this section, we define the security ontologies, modeled as OntologyWeb Language

[27], OWL classes, for each security class described in the previous section. The core

of the security ontology (see Figure 2.13) is the security sub-ontology, consisting of

the concepts (1) security goals, (2) system architecture, (3) security attacks, (4)

security requirements, and (5), security mechanisms, which were derived from well,

established information security standards and security dictionaries. Indeed, each

security ontology is defined as high-level knowledge repository for capturing, clas-

sifying and sharing security related information. With regards to our objective,

which is to reuse different ontologies and taxonomies vocabularies to structure and

organize the utmost security related knowledge, the high-level definition of onto-

logical classes offer interesting perspectives. Furthermore, our security ontologies

use a flexible and easily extendable structure: additional concepts can be included

without effort. Thus, in this section we also complements existing taxonomies as

well as ontologies that focus on building security knowledge.

2.4.2.1 Security Goal Ontology

In this section, we construct security goal ontology that captures an objective which

the system-to-be should meet in the form of security goals. Regarding the security

goal ontology design, we use the KAOS [151] catalog of goal patterns that generalize

the most common goal configurations. The structure of security goal ontology is

illustrated in Figure 4.3, where the main class called "Goal" has five subclasses

including AchieveGoal, AvoidGoal, SoftGoal, CeaseGoal, and MaintainGoal.

Figure 2.8: Security goal ontology

• AchieveGoal: Achieve goals specifies a property that the system will achieve

"some time in the future". More precisely, an Achieve goal describes intended

behaviors where some target condition must sooner or later hold whenever

some other condition holds in the current system state. For example, "authen-

ticity of service station must be ensured while performing firmware updates".

2.4. Security Requirement Engineering Methodology 29

• AvoidGoal: Avoid goals specifies a property that must not hold "at all times

in the future". In our approach, we consider Avoid goals as an adversary

"AchieveGoals". For example, "install malicious firmware" is an adversary

AchieveGoal, which we want to avoid in our system.

• SoftGoal: "Soft goals capture preferred behaviors; they are used to compare

alternative options" [21]. In particular, Soft goals are goals that do not have

a clear-cut criterion when they were formulated or whose satisfaction can be

subjective. They may be judged as satisfied or unsatisfied to different degrees

at different stages of system development. For example, "in-vehicle security

services must be offered with high availability".

• CeaseGoal: Cease goals disallow achievement "some time in the future".

More precisely, cease goals state that some target condition should not hold

in some (bounded) future state. For example, "prevent service station (adver-

sary) from closing the re-programming session, during the firmware installa-

tion phase".

• MaintainGoal: Maintain goals specify a property that must hold "at all

times in the future". For example, "all in-vehicle communication must be

handled in a secure manner".

2.4.2.2 System Architecture Ontology

System architecture ontology provides a detailed structuring that can be used as a

basis for describing how system assets interact and work together to achieve total

system goals. Regarding the security architecture ontology design, we have adapted

several classes (see marked classes in Figure 2.9.a) from more formal definitions

contained in ISO/IEC 42010:2007 [3] and defined an equivalent security architecture

ontology as shown in Figure 2.9.b. These classes are:

• System is a collection of assets organized to accomplish a specific goal or

set of goals. Following this definition, a system can be further classified into

system assets subclass.

– System Assets "are in the form of information that is stored, processed

and transmitted by or systems to meet requirements laid down by owners

of the information" [62]. Typically, the system assets can be classified

into data, software, hardware, etc. Nevertheless, the notion of system

assets in different domains is quite diverse. In order to give a complete

overview of the system, we can integrate system asset’s taxonomies (i.e.,

WAND Automotive Taxonomy [159], etc.) that describe different classes

as well as subclasses of assets involved in building system architecture.

• Architecture of a system is the system’s conceptualization, articulated in its

system assets, their relationships to each other and to the environment. In

30
Chapter 2. Overview of Security Requirements Engineering

Methodology

particular, it defines the structure, behavior, and more views of a system in

the form of conceptual models. Subsequently, each architecture concept can

be further categorized into several subclasses of systems architectures such as

functional architecture, logical architecture, technical architecture, etc.

• View represents a system from the perspective of a set of architecture related

concerns that are meaningful to one or more stakeholders in the system. Views

can be seen as the content of a viewpoint, i.e., a description or modeling

perspective used in defining the system architecture.

• Model represents the particular design of system architecture. We take into

account the MDE approach composed of conceptual models as well as logical

models in order to relate the valuable and/or critical system assets.

– Behavioral model: In the behavioral model the internal structure of a

system is neglected, and only its interaction over its system boundary to

its context is considered.

– Structural model: In the structural model the internal structure of a

system is described in terms of selecting, connecting and characteriz-

ing generic components, describing the way the system is connected to

its context and interacts, and decomposition into components or subsys-

tems.

Based on these two models, one may now start to reason about what is going

on within and beyond the system boundaries, i.e. what the effects of the

systems with respect to its environment are, and on the other side how the

system is internally structured, i.e. how the system behavior is reflected in

terms of the internal system behavior.

2
.4
.

S
e
c
u
rity

R
e
q
u
ire

m
e
n
t
E
n
g
in
e
e
rin

g
M

e
th

o
d
o
lo
g
y

3
1

(a) IEEE system architecture metamodel (b) Security architecture ontologys

Figure 2.9: IEEE system architecture metamodel [3]and its equivalent system architecture ontology

32
Chapter 2. Overview of Security Requirements Engineering

Methodology

2.4.2.3 Security Attack Ontology

The definition of a security attack ontology aims at building knowledge vocabu-

lary for security attacks that could be described including their type, mode, con-

sequences, and such details. Figure 2.10 sums up our analysis with respect to

extracting different constructs and concepts defined in well-known security stan-

dards (i.e., ISO/IEC 15408:2009, ISO/IEC 18045, ISO/IEC 27000: 2012, ISO/IEC

17799:2005, NIST SP-800:30, etc.) and security dictionaries (i.e., CVE, CAPEC,

OWASP, CLASP, etc.) in order to build the security attack ontology.

Figure 2.10: Security attack ontology

• Attack Type depicts an attempt to destroy, expose, alter, disable, steal or

gain unauthorized access to make unauthorized use of system assets [64]. This

abstract level definition of attack type allows us to further categorize attacks

into the Threats and Vulnerabilities sub classes (see Figure 2.10). Information

security standards describe these two main dimensions of attack types in many

specifications. For example, threat terminology is described in the ISO/IEC

2.4. Security Requirement Engineering Methodology 33

15408:2009 ([62], sec. A.6.2) standard, ISO/IEC 27002:2005 ([2], sec. 2.16)

standard , and NIST SP 800-30 ([99], sec. 3.2) standard. In the scope of this

thesis, we use the threat terminology as defined in section 2.45 of ISO/IEC

27000:2012 [64].

– Threat: A threat is a "potential cause of an unwanted incident, which

may result in harm to a system or organization". In a certain sense,

here, we can use the attack patterns approach [18, 24] to categorize dif-

ferent kind of threats.

Instead, the vulnerability terminology is described in ISO/IEC 15408:

2009 ([62], sec. 3.5.7), ISO/IEC 27000:2009 ([64], sec. 2.46), ISO/IEC

21827:2008 ([63], sec. 3.38), ISO/IEC 27002:2005 ([2], sec. 2.17) and

in other security dictionaries OWASP [108], CVE [24], we use the one

described in CVE:

– Vulnerabilities: "An information security vulnerability is a mistake in

software that can be directly used by a hacker to gain access to a system or

network" [24]. Subsequently, we can use the CVE list to classify different

security vulnerabilities and their consequences on the system assets.

• Attack Consequences refers to an impact of security breach or outcomes

that are not the ones intended by a purposeful system action. The attack

consequences can be classified as:

– Usurpation is a derogatory term used to describe either a misappropria-

tion or misuse of the system functionalities.

– Disruption is an event, which causes an incapacitation, corruption, ob-

struction, and unplanned deviation from the expected system behavior,

according to the functional and non-functional objectives.

– Deception is defined as masquerade, falsification, and repudiation actions

taken by an adversary, to thereby causes a system to accept as true a

specific incorrect version of reality.

– Disclosure enables an adversary to gain valuable information about a

system and its functionalities either by exposure, interception, inference,

intrusion, etc. that tries to uncover the details of a system.

• Adversary: An adversary is a threat agent according to the following ISO/IEC

15408: 2009 ([62] sec. 3.1.71) and the ISO/IEC 21827:2008 ([63], sec. 3.35)

standards, who attempts to attack system assets that have value to the stake-

holders. An adversary may range from a very unskilled individual to an expert

or even to multiple dedicated groups. In order to anticipate and thwart the ex-

pected types of attacks, one must have a solid understanding of the adversary’s

perspective and his/her capabilities and know-how about attack potential. We

34
Chapter 2. Overview of Security Requirements Engineering

Methodology

consider different attack objectives and corresponding adversary profiles and

describe them as:

– Attack Objective: This class suggests particular types of adversary and

his capabilities, as well as associated attack motivation. At the abstract

level of specification attack motivations can be broadly categorized as:

∗ Individual Benefits: Personal advantages can be gained in different

ways and for different purposes. For instance, gain reputation as

hacker, financial gain fraudulent commercial transactions, etc.

∗ Economical Benefits: These motivations and underlying objectives

should be envisaged at an organizational scale.

∗ Political Benefits: The main goal of the attacker is to destroy the

reputation of an organization or an individual system asset. For

example, acquiring system design information or for the purposes of

fraud, industrial/state espionage or sabotage.

∗ Criminal Benefits: An augmentation of the attack motivation to

harm an individual for the purposes of criminal or terrorist activity,

destroy or financial harm, destructive attacks or intellectual property

attacks, etc.

– Adversary Profile: The adversary profile depicts the attack potential that

is a measure of the minimum effort to be expended in an attack to be

successful. In ISO/IEC 15408:2009 ([62], sec. 3.1.5) the attack potential

is defined as a "measure of the effort to be expended in attacking a TOE,

expressed in terms of an adversary’s expertise, resources and motivation".

Essentially, the attack potential for an attack corresponds to the effort

required creating and carrying out the attack. The higher the adversary’s

motivation is the higher efforts they may be willing to exert. After having

performed a comparative analysis of several security specifications and

standards, we suggest the following abstract level taxonomy (see Figure

2.11) to be considered during an analysis of the attack potential:

∗ Elapsed Time: This is the total amount of time taken by an adver-

sary to identify that a particular potential vulnerability may exist,

to develop an attack method and to sustain the effort required for

mounting the attack.

∗ Expertise: This refers to the required level of general knowledge of

the underlying principles for mounting an attack (i.e., system archi-

tecture, security components, etc.), product types or attack methods.

∗ Location: This refers to the knowledge and the capabilities, which

an attacker may have, depending of his/her location; this is typically

reflected by the terminology for an Insider or Outsider attacker.

2.4. Security Requirement Engineering Methodology 35

Figure 2.11: Adversary taxonomy

For instance, insider attack agents are likely to have specific attack

objectives, potential, and have legitimate knowledge and access to

the system.

∗ Window of opportunity: This concept has a relationship with the

elapsed time factor. Identification and exploitation of vulnerability

may require considerable amounts of accesses to a system that may

increase the likelihood of detection of the attack. In contract, some

attack methods may require considerable effort off-line, and only brief

access to the target to exploit.

∗ IT hardware/software or other equipment: This refers to the equip-

ment required to identify and exploit vulnerability.

∗ Knowledge of the system under investigation: This refers to the spe-

cific expertise required in relation to the system under investigation.

36
Chapter 2. Overview of Security Requirements Engineering

Methodology

Though it is related to general expertise, it is distinct from it.

• Attack Mode: The attack mode refers to the actions ([62], sec. 3.1.1, A.6.2)

that an adversary takes during the execution of an attack and that can be

labeled as active or passive attacks:

– Attacks modifying the behavior of the system (active attacks).

– Attacks aiming at information retrieval without modifying the behavior

(Passive attacks).

• Attack Method: This class is related to the attack mode class. The attack

method can be classified into either functional (logical) attacks or physical

attack methods:

– Attacks physically modifying the behavior of the system (physical at-

tacks) and

– From the functional point of view, attacks aiming at logical manipulation

of information without physically modifying the system behavior.

• Attack Classification: The attack classification class is define to categorize

and systematically aggregated into a set of well-defined classes that provide a

comprehensive description of attacks and its objectives. A collection of ways,

including security dictionaries (i.e., CVE, CAPEC, OWASP, CLAP) can be

used to determine and cluster security attacks and vulnerabilities. However,

at the abstract level, we can classify security attacks into:

– Generic attack descriptions that represent a general class of security at-

tacks and vulnerabilities, which can be reused and adapted to any appli-

cation specific instantiation such as a birthday attack, a preimage attack,

a collision attack, etc.

– Domain Specific attacks and vulnerabilities depict the particular attack

objectives of an adversary and target specific assets (i.e., application,

middleware, infrastructure, and storage), and parameters of the system.

2.4.2.4 Security Requirements Ontology

In this section, we construct security requirement ontology with respect to the dif-

ferent constructs and concepts defined in well-known security requirements specifi-

cations and security standards (i.e., ISO/IEC 15408:2009, ISO/IEC 18045, ISO/IEC

27000:2009, etc.). The SRO, which is independent of the existing conceptual SRE

foundations, aims to detect the missing security construct in SR frameworks and fa-

cilitates their enhancement. The core classes and the concepts identified for security

requirements ontology, summarized in Fig. 2.12, are:

2.4. Security Requirement Engineering Methodology 37

Figure 2.12: Security requirement ontology

38
Chapter 2. Overview of Security Requirements Engineering

Methodology

• SR Type: This class is described to specify and distinguish more concretely

what kind of security requirements should be defined and implemented in order

to assure the security of a system and its data. These types are:

– Functional Security Requirements (FSR) are security services or security

capabilities that a systems or components must be able to perform. Put

simply, it describes a positive functional behavior related to specific se-

curity feature. Examples for FSR are authentication, authorization, in-

tegrity, and so on. Here, we can use the classification specified in ISO/IEC

15408:2009 (part 2 [1]) in order to classify and map FSR into well-

structured security functional components (SF components).

– Non-Functional Security Requirements (NFSR) are typically security re-

quirements essentially stemming from attack mitigation. Typical exam-

ples for NFSR could be “password or key strength”, “system logs”, or

requirements derived from best practice standards.

• SR Classification: This class is defined to classify and systematically aggre-

gate requirements into a set of well-defined classes and functions of security

requirements that provide a comprehensive description of requirements and its

objectives. We can use collection of ways, including stakeholder-defined cate-

gories (i.e., essential, non-essential, architectural constraints, etc.) , or security

standards (i.e., ISO/IEC 15408:2009, ISO/IEC 18045, ISO/IEC 27000:2009,

etc.) to determine and cluster security requirements into security functional

components (SFC). However, at the abstract level, we can classify security

requirements into:

– Generic: requirement description that represents a general class of secu-

rity requirements, which can be reused and adapted to an application

specific instantiation.

– Domain Specific: requirements or a set of SRs that are specific to the

system and that provide for protection of essential services and assets of

the targeted application.

• SR Specification: This class presents how numerous approaches can be used

for building and modeling security requirements specifications. Categories of

requirement modeling include:

– Informal: The formal representation of SRs, correspond to techniques

where natural languages (i.e., text based approaches) are used to present

security requirements.

– Semi-Formal: The semi-formal representation of requirements, correspond

to techniques where diagram and tabular techniques are used to present

security requirements in structured form.

2.5. Conclusions 39

– Formal: A formal specification of SRs includes the mathematical logics

(i.e., set theory, proof theory, first-order logic, etc.), and model trans-

formation techniques to present requirements in formal logic, in which

the syntax, semantics and manipulation rules for the requirements are

explicitly defined.

• Assumptions related to SR: Assumptions are just one part of the, usu-

ally hidden, reason for a design decision and are frequently made during re-

quirement engineering process. From the SRE point of view, assumptions

are required to provide an extensive and rich description about “why” and

“what” tradeoffs were made during requirements identification or refinement,

and “how” to realize certain security requirements.

• SR Relationships: The purpose of this class is enable relationships that al-

low security engineers to relate SRs to other requirements as well as to other

model or a set of model elements. We, in particular, consider relationships de-

fined in the SysML specification [107]. The structure of this class is illustrated

in Figure 2.12, where the "relationship" class has six subclasses including re-

fine, derive, copy, containment, verify and trace. A detailed description of

each subclass is present in Section 3.3.3.1.

• Role: The role relates to individuals and/or teams (i.e., security engineers,

test engineers, verification team, etc.), involved in the SREP. We take into

account the role to determine by whom and at what level of system abstraction

SRs are specified.

2.5 Conclusions

In this chapter, we presented the main building blocks of our knowledge-centric SRE

methodology. More precisely, we integrated within a single model the notions of the

goals driven SRE, model driven SRE, security attacks, and risk assessment, with the

view to propose a kind of unified methodology which offers means to overcome the

limitations of these state of the art approaches. The introduction of this knowledge-

centric SRE methodology meets the three following objectives. Firstly, we are able

to build the well-structured and well-formed specification of security concepts (i.e.,

goals, requirements, attacks, etc.) through the definition of security ontologies.

Secondly, it offers the possibility to obtain more concrete requirements as we start

sharing knowledge base between different SREP activities. Thirdly, it increases

the compatibility between concepts of several SRE approaches that share common

concepts. However, we still have to explain which kind of modeling language as well

as tools can be used to support our methodology. These issues are addressed in

chapter 3.

40
Chapter 2. Overview of Security Requirements Engineering

Methodology

F
ig
u
re

2.
13
:
S
ec
u
ri
ty

on
to
lo
gy

Chapter 3

System Modeling Language for

Security - SysMLSec

3.1 Introduction

We described the main building blocks of the security requirement engineering

methodology in the previous chapter. To pave the way for system-wide SREP,

we first have to breath live into a collection of conceptual stages following the map-

ping of stakeholders needs into product functions and use cases. Also, preceding the

design of these functions across the engineering disciplines (i.e., hardware, software,

etc.). In this context, a number of modeling languages (i.e., UML, SysML, etc.)

have been proposed to help engineers from different system development stages to

communicate, share, and compare their perspectives, to reason about properties

of a system. These modeling languages for software engineering practices express

different concepts to serve different development purposes like use case modeling,

requirement modeling, protocol modeling, etc. However, security issues involve spe-

cial concerns that these traditional software engineering languages do not consider.

Consider, for example, a general behavior modeling notation that expresses inter-

actions of entities in the system without considering the harmful behavior of an

adversary. Thus, the models do not convey the impacts of the malicious behavior

of the adversary on requirements, design, and architecture to the next phases of

system development lifecycle. As we have reviewed in Section 2.2, to model specific

security aspects such as threats, vulnerabilities, assets, and security requirements

several security modeling languages have been developed. A number of extensions

of UML (i.e., UMLsec [69], SecureUML [88], Misuse cases [141], Abuse cases [86],

etc.), allow to express security relevant information within the diagrams in a system

specification have been proposed. Yet, to best of our knowledge, none of them pro-

vides the expressivity required to deal effectively with system-wide SRE. Another

major group of contributions to the conceptual modeling of security requirements

like KAOS [151] and Secure Tropos [93], etc., have defined their own graphical

formalism each of which allows to express security relevant information (i.e., goal,

anti-goals, requirements, obstacles, etc.).

Table 3.1, summarizes existing modeling notations based on the concepts they

express and usage of the models. As can be seen that, each SRE approach is able to

specify certain features of requirement modeling and lacks conceptual modeling as-

42 Chapter 3. System Modeling Language for Security - SysMLSec

pects to express some other. In addition, these approaches do not provide constructs

to link and map these requirements with other system development activities, and

leave us with two different models that are either difficult to combine or that can not

be cross-referenced. Because engineers express the SRs based on the functionalities

they want to protect, they need to see the security requirements in the design. We

claim it’s necessary to combine objects and functions into the security requirement

engineering process. This is possible with SysML, a general-purpose graphical mod-

eling language. Section 3.2 is specifically dedicated to the evaluation and analysis of

SysML for handling system wide requirement engineering process. The remainder

of this chapter is organized as follows. Section 3.3 explains how to go from standard

system modeling language for engineering to the notion of security-oriented system

modeling language. Section 3.4 presents an approach for annotating SysML speci-

fication with security reasoning.

SRE
Approaches

Core Modeling Con-
struct

Structural
Modeling

Behavioral Modeling Attack
Model-
ing

Security
Require-
ment
Modeling

System
Modeling

Use Case
Diagram

Activity
Diagram

Sequence
Diagram

KAOS Goal (anti-goal, obsta-
cles, agent)

� � � � � �

Secure Tro-
pos

TROPOS (Task, Ac-
tor, Resource, Goal,
Soft Goal, Depen-
dency)

� � � � � �

UMLsec UML � � � � � �

SecureUML UML and RBAC � � � � � �

Misuse
Cases

UML � � � � � �

Table 3.1: Summary and comparison of security modeling approaches. "�" for

available properties, "�" indicates that the modeling notation does not consider the

concept in its conceptual modeling.

3.2 System Modeling Language – SysML

SysML, The Systems Modeling Language, specification is defined and promoted

by the Object Management Group (OMG). The goal of the OMG is to provide a

"standard modeling language, SysML, for systems engineering to analyze, specify,

design, and verify complex systems quality, improve the ability to exchange systems

engineering information amongst tools, and help bridge the semantic gap between

systems, software, and other engineering disciplines" [107]. SysML aims at unifying

the various types of modeling languages currently used in system engineering in

3.2. System Modeling Language – SysML 43

a similar manner to how UML combined diverse modeling languages used in soft-

ware engineering. SysML allows system engineers to model and follow system wide

development concepts including system requirements, system behavior and system

structure. SysML is often interpreted as being a new system engineering modeling

language, but there have been several languages that have been used in the past

such as block and internal block diagrams of UML are used to model the parametric

constraints. In fact, SysML is based on UML and cannot be considered an entirely

new language – more a large set of useful additions (extensions/modifications) to

the existing core UML modeling concepts and diagrams. However, SysML, notably

the object diagram, the deployment diagram, the component diagram, the commu-

nication diagram, the timing diagram, and the interaction overview diagram, does

not require some diagrams of UML. In contrast, SysML includes some new diagrams

and constructs not found in UML: the parametric diagram, the requirement diagram

and flow ports, and the flow specifications and item flows. In addition, SysML also

includes an allocation relationship to represent various types of allocation, including

allocation of functions to components, logical to physical components, and software

to hardware [107]. SysML classifies these different diagrams into four categories:

behavior, structure, system requirements, and parametric relationships. These are

known as the four pillars of SysML as illustrated in Figure 3.1.

Figure 3.1: The four pillars of SysML [107]

These four pillars represent a system engineering process, with a system model

being made up of one or more modeling diagrams (i.e., system behavior, system re-

44 Chapter 3. System Modeling Language for Security - SysMLSec

quirements, system structure, etc.), each of which interacts with one or more other to

support model-based systems engineering (MBSE). For instance, the system struc-

ture can be represented by block definition diagrams and internal block diagrams,

the behavior of the system can be depicted by the use case diagram, the activity

diagram, the sequence diagram, etc. The latter modeling constructs are imperative

to support requirements engineering and performance analysis. The focus of the

new constructs in SysML is geared towards some fundamental system engineering

concepts, such as requirements engineering and system behavior [50]. Let us dis-

cuss these two new modeling constructs (i.e., Requirement Diagram and Parametric

Diagram) in more detail, which are the core activities in requirement engineering

process.

Requirement Diagram: Although requirements have traditionally been realized

using use case diagrams, which consider requirements from a behavioral point

of view, the introduction of the requirements diagram in SysML allows the

structural relationships between requirements to be modeled [50]. The re-

quirement diagram is used to integrate the system models with text based

requirements that are typically captured in requirements management tools.

Figure 3.4 shows the metamodel for requirement diagrams. From the model

it can be seen that a "Requirement diagram" is made up of one or more "Re-

quirement" and zero or more "Relationships" elements. The dark background

in the objects represents the core elements of the SysML metamodel. While

others elements represent our contribution to the metamodel, which we will

explain in Section 3.3.3. Here, a requirement element is used to represent text-

based system requirements that can be related to other requirement or system

models/elements via the relationship element. For instance, a requirement

can be expressed and assigned to a system model or set of model elements

that is intended to realize or satisfy the requirement. Thus, it provides a

bridge between typical requirements management tools and the system mod-

els. As the SysML specification states: "The requirements model describes

the SysML support for describing textual requirements and relating them to

the specification, analysis models, design models, etc. A requirement repre-

sents the behavior, structure, and/or properties that a system, component, or

other model element must satisfy" [107]. With respect to the requirement rep-

resentation, SysML provides the graphical, tabular, or tree structure format

for modeling requirements. The SysML requirement graphical notation that

allows security engineers:

• To express and attribute individual requirement in a precise way,

• Make each requirement understandable (the interpretation of each re-

quirement is clear),

• Relate requirements with other system development activities throughout

the system’s life cycle.

3.2. System Modeling Language – SysML 45

• Group and to decompose requirements according to a hierarchical set of

concepts, and

• Trace the source of requirements and reasoning for requirements exis-

tence.

These various properties allow the modeller to document the requirement in

well structured and in a consistent way.

Parametric diagram: The Parametric diagram is the second new type of dia-

gram introduced to describe constraints on system properties to support engi-

neering analysis. The parametric diagram is a specialized variant of an internal

block diagram that restricts diagram elements to represent constraint blocks,

their parameters and the properties of block that they bind to. Parametric

diagrams are made up of one or more constraint blocks, zero or more part, and

one or more connectors [107]. This is illustrated in Figure 3.5. The constraint

block is used to show which constraints are being used. The SysML specifi-

cation describes constraint blocks in terms of conditions that are represented

by mathematical equations. More precisely, the constraints block contains an

equation, expression or rule that relates together the parameters given in the

parameters block. The concepts behind constraints can be extended to cover

general rules that constrain system properties and behavior such as authen-

tication should be performed BEFORE authorizing entity to access system

resources, etc. The use of a constraint block is called a constraint property

and is depicted on a parametric diagram. The interconnection between con-

straint blocks and part or constraint blocks is shown on a parametric diagram

using zero or more binding connectors as shown in Figure 3.5. Binding con-

nectors depict an equality relationship between the two connected parameters

or between a parameter and a value property. In the parametric diagrams, a

standard part element includes properties to specify its unique identifier and

text description.

We can draw some conclusions from the aforementioned properties of the SysML.

SysML provides a support to establish a good understanding of the processes that

exist and that are needed to realize the requirements of a system throughout the

system engineering process. In addition, SysML provides a well-integrated and

powerful notation, requirement diagrams, to specify expressive requirements. This

provides us a guarantee to obtain complete, consistent, organized, and verifiable

requirements, which are traceable at any stage of system conceptualization. It also

provides means to capture the rationale for a specific requirement or relationship.

Moreover, SysML provides an excellent set of extension mechanisms that can be

used to augment and enhance the capabilities of the modeling language. SysML

thus seems to be the right tool to map and relate security requirements to other

system development activities. However, a major obstacle towards the usage of

SysML is the lack of support from the security viewpoint. In particular, there is no

explicit modeling construct to express security weaknesses such as security attacks

46 Chapter 3. System Modeling Language for Security - SysMLSec

and vulnerabilities in the system that may lead to modeling attacks, nor for modeling

security requirement.

3.3 SysML for Modeling Security Aspects

The purpose of this section is to develop syntactic, semantic, and methodological ex-

tensions to SysML, that are needed to support the modeling of security aspects and

their relationships. We use different SysML diagrams as well as extended require-

ment and parametric diagrams to model security aspects like security requirements

and attack tree modeling. We group these set of diagrams (diagrams used for mod-

eling security aspects) in a profile, SysMLsec, The System Modeling Language for

Security. Figure 3.2, presents the SysMLsec diagram taxonomy. Among the many

tools (i.e., Enterprise Architect [144], Papyrus [110], Rational Rhapsody Developer

[56], OMEGA2 [102], ARTISAN [126], etc.) that support SysML, we have extended

an in-house SysML tool called TTool [82] to supports our SysMLsec profile. TTool is

an open-source toolkit that supports several UML profiles, including DIPLODOCUS

[8], and AVATAR [114], TURTLE [6], and Network Calculus [7]. TTool targets the

modeling of embedded systems with time and security constraints and offers addi-

tional capabilities such as simulation, formal verification, and code generation.

SysMLsec is mainly composed of four methodological steps and use different

SysML diagrams:

3.3.1 Structural Modeling

Structure diagrams in a SysML specification are a type of diagram (block definition

diagrams and internal block diagrams that represent) that are used to represent the

internal structure of a system, and the collaborations that this structure makes pos-

sible [107]. Following our model driven security requirement engineering approach,

in which models are the main artifact during system development, structure dia-

grams play a central role in modeling and expressing these system models. They

also provide a common root for user defined or domain-specific hierarchies of sys-

tem component types. We in particular use block and internal block diagrams in

order to represent hardware, software, facilities, or any other system element. More

precisely, we use:

• A block definition diagram to describe the system hierarchy and system/com-

ponent classifications (Chapter 4).

• The internal block diagrams are used to describe the internal structure of a

system in terms of its parts, ports, and connectors (Chapter 4).

3
.3
.

S
y
sM

L
fo
r
M

o
d
e
lin

g
S
e
c
u
rity

A
sp

e
c
ts

4
7

!"#$% '()*+),!"#$%&'()*+),

-./)0(1+ '()*+),-./)0(1+&'()*+), !"#$%&"'"()*+%,-&,' !2+3423+. '()*+),!2+3423+.&'()*+),

./)%0%)1**+%,-&,'
!.53.64.&'()*+), 7#.&8)#.&'()*+),

234/5*+"6%(%)%4(*

+%,-&,' 7()"&(,3*234/5*+%,-&,' 9)4:)*. '()*+),9)4:)*.&'()*+),

8,&,'")&%/*+%,-&,'

!2)2.&$)4/(6.&'()*+),

!),.&)#&7$%&;

$1<(=(.<&=+1,&7$%&;

>.?&'()*+),&@"A.

!.43+(2"&'()*+),

!.43+(2"&B.53(+.,.62&

'()*+),

C22)4:&@+..&'()*+),

Figure 3.2: Extended SysML diagram taxonomy – SysMLsec

48 Chapter 3. System Modeling Language for Security - SysMLSec

3.3.2 Behavior Modeling

The behavior diagrams include the use case diagram, activity diagram, sequence

diagram, and state machine diagram.

• The use case diagram provides a high-level description of functionality that is

achieved through interaction among systems or system parts" [107]. We rely

on use-case diagrams (Chapter 4) to model anything that performs a function.

It is thus a useful tool for the security analysis phase of security requirement

engineering.

• We use activity diagrams to explain use cases in more detail. More precisely,

we use activity diagrams when the use case scenario contains considerable con-

trol logic, inputs and outputs, and/or algorithms that transform data (Chapter

4);

• In our SysMLsec approach, we use the sequence diagram to represent the

interaction between collaborating parts of a system, the objects and classes

involved in the scenario, and the sequence of messages exchanged. We typically

use message sequence charts to model the security protocols (Chapter 7).

• The state machine diagram describes the state transitions and actions that

a system or its parts perform in response to events [107]. We can use the

state transition diagrams to express and analyze an abstract description of

the behavior of a system during security analysis as well as during formal

verification and testing activities.

3.3.3 Security Requirement Modeling

In order to take advantage of SysML requirement modeling capabilities (e.g., graphi-

cal modeling of requirements, relationships between requirements, traceability, etc.),

we have extended the SysML requirement diagram to model SRs. A meta-model,

which is an extension of the SysML meta-model for requirement, showing the or-

ganization of the security requirements is depicted below in Figure 3.4. The gray

background in the objects represents our extensions to the meta-model for model-

ing security requirements, whereas the objects in black background presents the core

element of SysML requirement diagram. A common way to define new modeling

constructs is by extending existing SysML constructs with new properties and con-

straints. In this context, the SysML specification [107] suggests to use the stereotype

mechanism to define new diagram notations. More precisely, a stereotype extends

the SysML metamodel, allowing one to create new kinds of diagrams/classes de-

rived from existing ones, but specific to a class of problems. We used the stereotype

mechanism to extend the requirement class (see Figure 3.4) in order to create the

«SecurityRequirement» diagram which allows us to model and distinguish SRs from

3.3. SysML for Modeling Security Aspects 49

other system requirements. After creating a stereotype, specific properties and con-

straints can be created. Properties add information to elements of the model, and

are normally associated to tagged values. Properties are displayed inside braces,

with the tag and the value encoded as strings. Tagged values add extra semantics

to a model element. We have created several properties (i.e., SR Type, SR Kind,

Risk, a reference to Attack Tree Node, etc.) in order to enrich SR with additional

but compulsory details. This is illustrated in Figure 3.4. In particular, we mapped

concepts from our SR ontology (cf. Section 2.4.2.4) to the tagged values to see the

concepts and properties in our SysML SR diagram that we will explain in more

detail in Section 3.4. Such concepts and properties are useful in particular with

respect to the construction of fine-grained and detailed SR specification.

3.3.3.1 Relationship

A relationship is a connection that enables the security engineer to relate SRs to

other requirements as well as to other UML/SysML model elements. In the SR

diagrams, we use several SysML relationships to define the structure between model

elements. Examples of relationships include the containment, refine, verify, derive,

satisfy, copy, and trace relationships. Based on the modeling construct of these

relationships, we group them into two categories:

• Related To. Relationship types are used to show how one SR is related to

another requirement.

– «Containment» enables a complex SR to be break down into its child

requirements [107] – that is an aggregation association which contains sub

requirements in terms of a requirements hierarchy. The decomposition

relationship (see Figure 6.1) is shown with a «containment» relationship.

– «Copy» relates SRs that are reused across model elements (versions/-

variants) [107]. A «copy» relationship between SRs establishes a mas-

ter/slave relationship between them in such a way that the text of the

slave SR is a read-only copy of the text of the master requirement:

the slave requirement cannot be changed but, if the master requirement

changes, then so will be the slave. For each slave a unique master should

be related but several slaves are possible for each master requirement.

In particular, the objective of this relationship is to reuse generic SRs

in multiple contexts. For instance, enforce access control is a generic

SR which we can reuse for multiple applications by using the «Copy»

relationship.

– The «DeriveReq» relationship relates a derived SR to its source require-

ment [107]. This typically involves some analysis to determine the mul-

tiple derived SR that support a parent SR. The derived requirements

generally (see Figure 6.12) correspond to the refinement of SRs at the

50 Chapter 3. System Modeling Language for Security - SysMLSec

next level of details of the system analysis.

• Connected To. some relationships can be used to connect any type of model

element to a SR and are used in the following ways:

– The «Refine» relationship can be used to describe how a model element

or set of elements can be used to further refine a security requirement

[107]. For example, details about the architecture of an embedded system

and the attacks it may be subjected to may be used to refine the analysis

about a SR. The refine relationship in the SysML specification is meant

to be used for that exact purpose with the difference that we use the

refine relationship to relate security requirements to different security

classes (i.e., system assets, attack trees, etc.), whereas in the SysML

specification, the refine relationship used to link requirements (i.e. system

requirements) to use cases [107]. Figure 3.3 shows our extended definition

of the refine relationship, representing the SR object and the referenced

class objects. Here, we focus on the reference class (see Figure 3.4) that

!"#$%$&'()*+

!,-.'$%$&'()*+

!/)*0$%$&'()*+

!,12-$%$&'()*+

!3)45$%$&'()*+

!3-6-(-*7-$-8-9-*'$%$&'()*+

!,:(+-'-0$:'':75$%$&'()*+

!"#$%&'()*"+$&%","-'

3-6-(-*7-0$;8-9-*'

<)=-=>$:'':75$'(-->$414'-9$:44-'4>$-'7=?

«refine»

Figure 3.3: Extended definition of the «refine» relationship

enables us to link and map SR to the models/elements. More precisely,

the object of reference class is to link and trace the source of SR, reason

for requirements existence, as well as understanding as to why and how

the system meets the current set of SR.

– The «Satisfy» relationship is used to show that a model element (or will)

satisfies a security requirement. A «satisfy» relationship will appear in

SysML SR diagram that relate elements of a design or implementation

model to the security requirements that those elements are intended to

satisfy [107].

3.3. SysML for Modeling Security Aspects 51

– The «Trace» relationship is used to show that a model element can be

traced to a security requirement. The trace link is a general-purpose

relationship free-form link connecting a requirement element to any re-

quirement/model element [107]. We use «trace» relationship specifically

to link security requirements to their related source.

These various types of relationship allow us to relate explicitly different parts

of a model to the SRs as a way of ensuring the consistency of the SRs and other

system models. We will exemplify these various relationships in Chapter 6.

5
2

C
h
a
p
te
r
3
.

S
y
ste

m
M

o
d
e
lin

g
L
a
n
g
u
a
g
e
fo
r
S
e
c
u
rity

-
S
y
sM

L
S
e
c

!"#$%$&'()*+

!"#$%&"'"()*+%,-&,'

!"#$%$&'()*+

!,-.'$%$&'()*+

!"#$%&"'"()

/0

!".,)%/(01%2

+"&%3" !"4%(" 5,)%046 7"&%46

8/(),%('"()

9&,:"

8/26

0

0

/110

/

/

/110

/110

0

9"0)8,0"

0 0

0

0

/ 0/

0

0

0

!"#$%$&'()*+

!,-.'$%$&'()*+

!2)*3$%$&'()*+

!,45-$%$&'()*+

!6)78$%$&'()*+

!6-9-(-*:-$-;-<-*'$%$&'()*+

!,=(+-'-3$=''=:8$%$&'()*+

5":$&%)6*!"#$%&"'"() 5,4")6*!"#$%&"'"() ;;;;;

<
=
4
$>
-
$3
-
:?
<
5
?
7-
3
$)
*
'?

<
=
4
$>
-
$3
-
()
@
-
3

$9
(?
<

<=4$>-$(-9)*-$)*'?

@-()9)-7

!"#$%$&'()*+

!,-.'$%$&'()*+

!6-9-(-*:-$,45-$%$&'()*+

!A=(=<-'-(7$%$&'()*+

!"4"&"(:"

0

0

560)"'*<&:1%)":)$&"

<)),:=*9&""

;;;;

BC7-7D BC7-7D

BC7-7D

0

0

6-9)*-$(-EC)(-<-*'$)*$(-;=')?*$'?$(-9-(-*:-$-;-<-*'$

0 0

<=4$C7-$(-9-(-*:-$-;-<-*'$'?$

"3-*')94$7?C(:-$=*3$'=(+-'$-;-<-*'

0

0

@-()94$(-EC)(-<-*'$)*$(-;=')?*$'?$'F-$(-9-(-*:-3$-;-<-*'

:?<5?7)')?*

/110

G110

Figure 3.4: Meta-model for the security requirement diagram

3.3. SysML for Modeling Security Aspects 53

3.3.4 Attack Modeling

As seen in the previous section, the definition of parameters and constraint blocks

offer convenient means to constrain aspects of a system in a rule-based fashion that

can relate the parameters of different parts of a system. The parametric diagram

depicts how the parameters of the equations are bound to each other, to the prop-

erties of the system (i.e., the system performance, desired physical characteristics,

etc.) that is being analyzed. The concept of security analysis is similar to the

concept of trade-off analysis in that there is also more than one way to attack sys-

tem assets, and an adversary may be trying them simultaneously or just a subset

of them. More precisely, an adversary can use distinct attack paths or alternative

approaches until reaching his attack objectives. This is often illustrated through the

attack trees, which form a convenient way to systematically categorize the different

ways in which a system can be attacked.

!"#"$%&#'()*'"+#"$

,-./&#"'.&)01-(2 !"#& ,-..%(&-#

3"45"&6%$"&'("1)78%#"&-#

9%:#'/&'(

!
!""#

!

$""#

!

!""#

#

$""#

#

#

%&'

%()*+

%,)+-./

%,./)

%012/

%3/4)56758

%9):)5)2;)<)=)>)2+

;&&"(2)<#%%

#

#

=12?)/<+.

#

#

=12?)/<+.

!""#

!""#

!""#
$""#

$""#
$""#

#

>
7
8
<@
6)
</
1:
:)
5)
2
+<
>
7
+-
)
>
7
+1
;7
=<
7
2
/
<+
)
>
A
.
57
=<
.
A
)
57
+.
56 @6)<;.2;)A+6<72/<A5.A)5+1)6

=12?

<%$8-#"1)78%#"&-#/

%B2/!

#

%B2/C

#

Figure 3.5: Metamodel for the SysML attack tree diagram

Basically, attack trees (the term was introduced by Schneier [133]) are multi-

leveled diagrams consisting of one-root, leaves, and children nodes. In addition,

different node values can be combined with AND, OR relationship to learn even

more about a system’s security flaws and weaknesses. Specifically, the purpose of

an attack tree is to define and analyze possible attacks on a system in a structured

way. This structure is expressed in the node hierarchy as well as in the form of

logical operators (i.e., conjunctive (aggregation) or disjunctive (choice), etc.) for

expressing interrelationship between different attack tree nodes. Thus, using both

54 Chapter 3. System Modeling Language for Security - SysMLSec

logical operators and node definition retains the natural way security experts build

the attack trees or fault trees [143, 129, 133, 17, 156]. Actually, these two building

blocks (nodes and logical operators) of an attack tree can be modeled with the

definition of constraint block with a object functions and the part element of the

parametric diagram. Thus, at a conceptual level we can use parametric diagrams

to model attack trees. Let us present how we suggest representing attack trees in

SysML using the above-mentioned modeling constructs.

3.3.4.1 Attack Trees in Parametric Diagrams

Let us first focus on the extension of the parametric metamodel (see Figure 3.5)

that is necessary for modeling attack trees. Following the extension mechanism

suggested in the SysML specification where the stereotype mechanism is defined to

extend the existing SysML classes, we create a new stereotype to represent security

attacks: the «attack tree». This is illustrated in Figure 3.5. As mentioned earlier,

we mainly focus in this thesis on expressing security knowledge to be shared and

reused throughout the system development process to design a secure system. In

order to integrate attack related knowledge, we extend the parametric diagram’s

"part" element with ontological concepts and properties from the attack tree on-

tology, presented in Section 2.4.2.3. We argue that such a representation is indis-

pensable to precisely understand how attack trees can be manipulated during their

construction and analysis. More details are given in Section 3.4 is about the intro-

duction of security reasoning into SysML models. We use the "constraint block"

element for the definition of set of constraints such as mathematical expressions

(i.e., AND, OR, etc.) among the pieces of the security attack nodes. The objective

of these operators is to show the relationship among difference attack nodes. More

precisely, we use OR operator to represent alternatives ways an adversary tries to

achieve his attack objectives. For instance, an adversary has to perform either one of

the attacks "hijack authenticated session" OR "disconnect client" to accomplish his

attack goal. AND relationship represent different steps toward achieving the same

goal, for example, by assuming an adversary can gain root access of vehicle Commu-

nication Unit (CU) if and only if he can tamper the on-board communication unit.

In our attack tree modeling approach, rather than considering only these two types

of logical operators, we also consider temporal operators (i.e., AFTER, BEFORE,

SEQUENCE, etc.). We in particular allow security experts to capture temporal

dependencies between attack nodes and sequences in an attack. For instance, in

order to install the bogus authority keys (see attack tree node AT.4.b in Figure

5.2), an adversary first have to switch an ECU into a re-programming mode. We

can represent the ordering between attacks by using the SEQUENCE relationship

as shown in Figure 5.2. We will exemplify these relationships in Section 5.3. We use

a "connector" element to link zero or more "part" with constraint block. The use

of a "constraint block", "part", and "connector" element for building attack trees

is shown in Figure 3.6.

3.3. SysML for Modeling Security Aspects 55

!"#$%&

'()*$+,*&

!"#$%&-.#/&0& !"#$%&-.#/&1& !"#$%&-.#/&2&

!"#$%&

3*45.6&

7.89$#/&.:*;#4.;<&

='>?&!@A?&*4$BC&

!"#$%&

3*45.6&

!"#$%&

3*45.6&

';6*;*6&

!"#$%<&

!"#$%&

3*45.6&

!"#$%&

3*45.6&

7*,*/&DE&!"#$%&'()*$+,*&

7*,*/&0E&!"#$%&-.#/&F&&

<G(8.#/<&

7*,*/&1E&';6*;*6&

.;&7.89$#/&.:*;#4.;<&

7*,*/&2E&!"#$%&3*45.6&

HA&H#;4&*/*I*J4&*/*I*J4&

HA&$.JJ*$4.;&

*/*I*J4&

HA&$.J<4;#9J4&(/.$%&

*/*I*J4&

#4.;<&

*/*I*/*I*/*I*/*I*/*I*J4&

HA&$HA&$.J<4.J<4.J<4.J<4;#9J;#9J4&(/4&(/.$%&.$%&;#9J;#9J4&(/4&(/;#9J;#9J

!"#$%&

KG(-.#/<&

!"#$%&

!"#$%&-.#/&L&

Figure 3.6: Generic attack tree structure

Attack Tree Modeling: An overall procedure for attack tree modeling looks

like this:

1. Build attack tree rooted (Level 0) on an abstract "attack objective". We use

the "part" element to model each attack tree node.

2. Its child nodes (Level 1) represent different "attack goals" that could satisfy

this attack objective. Attack goals and attack objectives are linked via a

binding "connector".

3. For each attack goal node:

• Decompose into a number of "attack methods" (Level 3) that could be

employed to achieve the attack objective

• Specify the logical relationships (Level 2) between different attack meth-

ods, if there are. We use the "constraint block" to specify these logical

expressions. At this stage, we also consider intermediate steps that rep-

resent attack method at a certain level of abstraction.

4. The attack tree terminates when leaf conditions (basic operations are described

that gives all details of the attack) are reached that meet the adversary’s

capabilities.

The attack tree modeling approach that we advocate provides a bridge between the

typical attack trees modeling approaches [133], and the anti-goal models approaches

[151]. More precisely, the first two steps of our attack tree modeling approach are

56 Chapter 3. System Modeling Language for Security - SysMLSec

equivalent to the KAOS anti-goal model [151], which provides the top down approach

for modeling attacks. The next two steps correspond to the standard attack tree

modeling approach, where attacks are identified from bottom up perspective. Figure

3.6 sums up these two approaches. Parametric attack trees are considered in much

greater detail in Chapter 5, which gives a worked example showing the construction

of attack tree diagrams.

3.4 Integration of Ontology Reasoning on Security with

SysML

Every system engineering activity, whether it is a system model such as a struc-

tural model, a behavioral model, or a requirement model, defines and organizes

concepts and properties into meaningful classes and relationships. As seen in pre-

vious sections, these concepts and relationships can be particular to a model (e.g.,

«deriveReq» relationship is specific to the requirement model), or they can be com-

mon to a family of models (e.g., a «trace» relationship is used to relate requirements

with its source such as use cases, system architecture, etc.). In other words, models

can be shared, contrasted, and their knowledge can be adapted in different mod-

els (e.g., knowledge related to use cases can be used in modeling activity diagram

or in sequence diagrams). Similarly, ontologies define a common set of concepts,

and terms that are used to represent knowledge by a vocabulary and, typically,

logical construction of knowledge in terms of classes, subclasses and relationships

among them. Syntactically SysML and ontology languages (i.e., OWL, OIL, etc.)

have a lot of syntactic overlap. SysML uses a graphical formalism with elements

for blocks, associations, part properties, and relationships between models as well

as set of model elements. In contrast, ontology languages use classes, properties,

relationships, and individuals as basic knowledge constructs. For instance, OWL

defines classes by appropriate and implicit logical constraints on properties of their

subclasses and concepts. Both approaches provide compelling benefits, system en-

gineering and in particular security engineering, should make use of both. Recently,

the integration of reasoning and ontological concepts in SysML has been discussed

in the literature. For instance in [41, 39, 158, 40, 83], the authors reasoned about

embedding SysML within a knowledge base, knowledge can be used to maintain

models consistency as a design evolves. More precisely, the purpose of such inte-

gration is to enable engineers to employ reasoning, explicit documentation about

system models, and to define more precise relationships in the course of a typical

model-based development process. Similarly, several approaches [111, 112, 149, 11]

are visualized towards using ontologies with UML modeling. However, these ap-

proaches are neither concerned with system wide engineering aspects, nor related

to the reasoning on security aspects such as checking the relationships among dif-

ferent security artifacts (i.e. attacks, system architecture, security goals, security

requirements, etc.).

3.4. Integration of Ontology Reasoning on Security with SysML 57

3.4.1 Annotating SysML Diagrams with Ontological concepts

In this section, we focus on annotating security concepts and terms defined in the

security ontologies (cf. Section 2.4.2) particularly security requirement ontology

and security attack ontology with security requirement and attack tree diagrams.

For other SysML models, such as system architecture, we consider [41] as a sup-

porting approach for integrating ontological knowledge. Figure 3.7, presents an

overview of an integration approach for embedding ontological concepts and terms

into SysMLsec models. As previously stated in section 3.3.3 we can add the onto-

logical concepts and terms into SysML models by extending the SysML metamodel

by including the user defined stereotypes or properties and tagged values. Let us

first consider the SR diagram (presented in section 3.3.3), and map SR related on-

tological classes (cf. Section 2.4.2.4) to the SR diagram. We build the integration

approach based on three core ideas:

Security Ontologies -
General Terminology

reusable across multiple
security engineering

domains

Security Ontologies
specialized for domain
specific applications

Facts about specific
applications

Security Knowledge
management and Reasoning

System

Extended SysML Metamodel
(SysMLsec Profile)

SysMLsec models

in
stan

tiate

SysMLsec Model Instance

in
stan

tiate

controlled vocabulary integration

uses

uses

Ontology SysMLsec

Transformation Engine
(SysMLsec instance

-to-
Ontology instance)

Feedback provided to
Security Engineers

reasoning on
security models

translating SysMLsec models
into ontology instances

Figure 3.7: Integration of ontology reasoning on security with SysML

• We have defined the «SecurityRequirement» stereotypes (see Figure 3.8) to

represent the security requirement ontology in the SysML RD.

• We integrate high-level ontology classes (see Level-1 in Figure 3.8.b) as a

SysML requirement’s diagram properties (i.e., type, kind, etc.) as shown in

Figure 3.8.a.

• We use ontology subclasses (see Level-2/n Figure 3.8.b), as tag values of the

SysML requirement’s diagram property element. This is illustrated in Figure

58 Chapter 3. System Modeling Language for Security - SysMLSec

3.8.a. These values constitute a controlled vocabulary. Thus, it provides

a canonical set of mapping mechanism in order to deal with integration of

ontological concepts into the SysML.

According to these rules, every SR diagram extended with a «SecurityRequirement»

stereotype is also associated with ontology concepts and terms as shown in Figure

3.8.a. The diagram consists of three parts; standard SysML requirement properties

(e.g., id, text), extended ontological properties (e.g., kind, type, role), and properties

for our reference concept (e.g., targeted attack, reference element). The discussion

here will be limited to the extended requirement’s property constructions that can

be directly translated to ontology classes. It can be seen that, for each high-level

class of the security requirement ontology (see Figure 3.8.b.) we basically define a

new property element in the requirement diagram. This is illustrated in the Fig-

ure 3.8.a. These properties are then populated with the subclasses and concepts

defined in the security requirement ontology as its tagged values. In particular, the

properties and tagged values are specified in the same manner as the classes and

subclasses concept described in the security requirement ontology. For instance, for

the Type property, we have constructed the list of tagged values (i.e., FSR, NSFR,

etc.) by using the sub classes of the "Type" class that depict the tree-based overview

of all classes and sub classes and their relationships (see Figure 3.8.b) within the

SR ontology. This allows security engineers to browse different ontological concepts

and terms within the SysML models, and to reason about them (cf. Section 3.4.2)

at different levels of abstractions from multiple dimensions. In particular, such in-

tegration will help security engineers to keep the security requirement description

and security requirements related knowledge such as type, kind, etc., consistent as

development proceeds. For instance, during the initial stages of system concep-

tualization, security requirements are often generic like "prevent denial of service

attack", these requirements are refined to more concrete security requirement de-

scription (i.e., "availability of an application"), or to security mechanisms such as

"Filter messages that are making an application unavailable", as the system evolve.

In this case, security engineer can map these requirements to more specific classes

and concepts (i.e., application specific) by selecting appropriate tag values from the

controlled vocabulary as shown in Figure 3.9. In this way it is possible to make sure

that, for example, particular information set belongs to specific knowledge branch,

and is confined within its hierarchical structure.

Following the same line of reasoning suggested above where high-level ontology’s

classes are used to represent the properties, and its subclasses represent tagged

values, we have extended the definition of "Part" element (presented in Figure 3.5)

of the Attack Tree diagram. Figure 3.9, is a schematic diagram that shows the

integration of concepts and terms from the security attack ontology in the SysML

Attack Tree diagram.

3
.4
.

In
te
g
ra
tio

n
o
f
O
n
to
lo
g
y
R
e
a
so
n
in
g
o
n
S
e
c
u
rity

w
ith

S
y
sM

L
5
9

ID = 0
Text =” ”
Type =” ”
Classification = “ ”
Risk = “ ”
Reference elements = “ ”
Targeted attacks = “ ”

level-0

level-1

level-2

Security Requirement
property view

stereo
type m

apping

high-level class mapping

subclass mapping

(a). TTool SR diagram view

(b). SR Ontology view

level-n

hasSubclass hasSubclass hasSubclass hasSubclass hasSubclass hasSubclass

hasSubclass hasSubclasshasSubclasshasSubclass

hasSubclass hasSubclass
hasSubclass hasSubclass

Figure 3.8: Mapping of the SR ontology concepts into the SysML SR Diagram

60 Chapter 3. System Modeling Language for Security - SysMLSec

We have defined the «attack» stereotypes to represent the security attack on-

tology in the "part" element. While the properties of the "part" element shown in

Figure 3.9.a are concepts and terms defined in the security attack ontology shown

in Figure 3.9.b. For instance, the different high-level classes of the security attack

ontology such as attack method, attack mode, attack type, etc. are mapped to a

corresponding property name (see property view in Figure 3.9.a), and their tagged

values corresponds to subclasses of these classes. For example the "Adversary" class

takes Layman, Expert, and Professional as its tagged value. Accordingly, we map

all other concepts and terms defined in the security attack ontology into the "part"

element. From a modeling perspective, security engineers can include this informa-

tion by double click on the attack tree node which shows the property view of the

part element as depicted in Figure 3.9.b. In a similar way, this information can be

viewed in the SysML diagram by a simple click on the attack tree node as shown in

the Figure 5.2, for DenialOfService" attack.

3
.4
.

In
te
g
ra
tio

n
o
f
O
n
to
lo
g
y
R
e
a
so
n
in
g
o
n
S
e
c
u
rity

w
ith

S
y
sM

L
6
1

level-0

level-1

level-2

Attack
property view

stereo
type m

apping

high-level class mapping

subclass mapping

(a). TTool AT diagram view

(b). SA Ontology view

level-n

hasSubclass hasSubclass hasSubclass hasSubclass hasSubclass
hasSubclass

hasSubclass hasSubclass

hasSubclass hasSubclass

Figure 3.9: Mapping of the security attack ontology concepts into the SysML attack tree diagram

62 Chapter 3. System Modeling Language for Security - SysMLSec

3.4.2 Reasoning with SysMLsec Models

In this section, we describe the extent to which we can use the capabilities of ontolo-

gies to reason about these different security concepts defined in SysMLsec models.

In particular, our objective is to enable the security engineers to have access to var-

ious ontological concepts and terms, and to reason on these models. Although, with

integration of ontology classes and subclasses into the SysML diagrams, we already

provided the partial reasoning capabilities to reason about different security concept

within the SysML models. More precisely, when security engineer select a particular

concept in the SysML diagram, for instance, SR is a "Domain specific" requirement,

we annotate the structure of the sub-classification with the tagged values that be-

long to the domain specific class such as an application specific, middleware specific,

etc, as shown in the property view of Figure 3.8. In a similar way, for each ontol-

ogy class we apply the same approach and limit the knowledge space for security

engineers to specify only those concepts and terms that belong to the super class

or the parent class. Thus, provide means to reason about security concepts within

the SysML models, which brings additional power to the development of security

models like consistency checking (i), concept satisfiability (ii), and concept classifi-

cation. The shortcoming is that we cannot specify the reasoner calls in relation to

one another or in relation with other security models such as security goals, attack,

system architecture, etc., which is our core objective. In order to fulfil this design

objective, we have implemented the "SysMLsec-to-Ontology" translation engine as

shown in the Figure 3.10. The translation engine, we have implemented for mapping

from SysMLsec models to the OWL description, contains a set of rules that match

security constructs and transform them into equivalent instance of ontology such as

shown in Figure 4.5.

TTool -- SysMLSec Models Protégé -- OWL

!"#$!"#$

SysMLSec-2-Ontology Translation Engine

input output

security reasoning

import SysMLsec
modelsexport SysMLsec

models

!"#$%&'()"*+,#-*'".*)#-$&*

)"#)/)%.*0'1$2*'33/,4'()"1*

Figure 3.10: SysMLsec to ontology translation engine

3.5. Conclusions 63

The primary purpose of this translation engine is to make the security engineers

able to reason about their security models using well known and efficient reasoning

engines such as SPARQL [121], OWL-QL [34], RACER [44], SQWRL [104], etc.

Engineers can directly make use of reasoning capabilities of these engines within

the context of current engineering practice and tools without building and using

some separate ontological models. In particular, our objective is to give the security

engineering a more precise way to employ reasoning in the course of a typical model-

based development process. On the other hand, since we obtain an OWL described

document, we can integrate our SysMLsec models with any other ontology based

applications such as integrating the security requirement knowledge with security

resource annotating approaches like [77], or providing input to the ontology based

risk analysis approaches [30] in order to compute risk metrics.

In this dissertation, we refer to SQWRL (Semantic Query Web Language) [104] as

a query language because of its concise, readable, and semantically robust semantic.

SQWRL is a SWRL-based [53] query language that can be used to query OWL

ontologies and provided in Protégé 4.2 beta version [147]. To retrieve knowledge

from OWL ontology, SQWRL provide SQL-like operation. The form of rule is

antecedent→ consequent

In this rule an antecedent part is referred to as the body, and a consequent part is

referred to as the head. Both the body and head consist of positive conjunctions of

atoms:

Atom ∧ Atom → Atom ∧ Atom

This rule can be read as if all the atoms in the antecedent are true then the conse-

quent must also be true. Here, an atom is an expression of the form P(arg1, arg2,

...argn), where p is a predicate symbol and arg1, arg2, ..., argn are the terms or argu-

ments of the expression. In our approach, the predicate symbols can include security

ontology classes (i.e., asset, goal, attack, security requirement, etc.), properties (i.e.,

hasFunction, hasSequence, hasAvoidGoal, etc.) or data types. Arguments can be

class individuals (i.e., SR-Type, AT-Classification, AvoidGoal, etc.) or data values

(i.e.,), or variables (i.e,) referring to them. In the further course of this thesis,

we will use the above-mentioned SQWRL query expression to retrieve, manipulate,

and reason about different security-related information.

3.5 Conclusions

The interest of a SysML should be measured by how it benefits the system engineer-

ing process. Given that SysML is a powerful approach to an essential part of this

process, the provision of means to better model security aspects, in particular, SRs

and attack tree modeling is obviously beneficial. Potentially, SysML could reach

64 Chapter 3. System Modeling Language for Security - SysMLSec

a wider user community. Modeled in SysML, security aspects can be incorporated

into the rest of a system engineering process, seamlessly linking the security engi-

neering process part of a project to the whole. Furthermore, we implemented these

capabilities into the TTool engine that also supports our extended SysML model for

defining security requirements and attack tree modeling. This tool readily supports

the SRE methodology that we advocate.

Part II

By Design Security Requirements

Engineering

Chapter 4

Running Example: The Firmware

Flashing Process

4.1 Introduction

Diagnosis of cars is not a new goal in the automotive industry. It has existed

since cars were first designed. During the last 20 years car diagnosis gained more

importance because of the increasing use of electronics in cars. Standards were

defined not just to allow different manufacturer’s ECUs to communicate with each

other in an in-vehicle network system, but also to allow different diagnosis tools to

have access to diagnosis data. In addition, there is a shift towards multipurpose

ECUs and usage of flash memory technology in the microcontrollers.

Besides these trends in the design of automotive on-board IT architectures, new

external communication interfaces, fixed and wireless, are becoming an integral part

of on-board architectures. One key factor for this development is the integration

of future e-safety applications based on V2X communications (external communi-

cations of vehicles, e.g. with other vehicles – V2V, or with the infrastructure – V2I)

which have been identified as one promising measure for increasing the efficiency

and quality of operational performance of all vehicles and corresponding intelligent

transportation systems.

These connected cars are revolutionizing the automotive industry. Yet as the

amount and the complexity of ECU and firmware inside cars increases, so too does

the need to update the firmware in order to provide new functionality and perform

firmware maintenance. Firmware updates are crucial for the automotive domain, in

which recalls are a very costly activity and thus should be avoided where possible.

Google has showed the practicability of remotely updating devices for their Android

telephones. With this, they have a powerful tool to react on discovered security

flaws in very short time [137].

In the automotive domain, update intervals are calculated in quarters of a year

and not quarters of a day right now. This paradigm is about to change and security

mechanisms within the car provide the necessary building blocks. With the arising

“always-connected” infrastructure, it will be possible to perform over-the-air (OTA)

diagnosis and OTA firmware updates (see Fig. 4.1), for example. This will provide

several advantages over hardwired access, such as saving time by faster firmware

68 Chapter 4. Running Example: The Firmware Flashing Process

updates, which improves the efficiency of the system by installing firmware updates

as soon as the car manufacturer releases them.

Figure 4.1: Over-the-Air firmware flashing process

In this dissertation, we are going to use firmware-flashing application as a running

example. There are several reasons for choosing this as the subject of the example.

• The firmware flashing is an excellent example of automotive systems that may

be possible in the real world. While this functionality herald a new era of

safety in transportation, new security requirements need to be considered in

order to prevent attacks on these systems.

• The firmware flashing is an example of a system that consists of both hard-

ware and software as well as is composed of internal and external interfaces.

Moreover, it contains a number of cooperating sub systems such as service

station system, in-vehicle system, and OEMs backend systems. Thus, allow

us to perform in-depth security analysis and evaluation of complex automotive

architecture.

• There are many aspects that can be modeled, from the structure of the

firmware flashing process, the parts used to build it, to the behavior that

the flashing process has to achieve. These various aspects lend themselves to

the use of most of the SysML diagrams.

The remainder of this chapter is organized as follows: Section 4.2 outlines the

firmware flashing application scenario. In Section 4.3, we will present security goals

that we have identified by analyzing the description of firmware flashing application.

4.2. Firmware Flashing Use Case Specification 69

Section 4.4 presents a detail description of system architecture design including

behavioral and structural models. Finally, the chapter summarizes the results that

we achieved regarding modeling of firmware flashing application.

4.2 Firmware Flashing Use Case Specification

The firmware flashing use case description is based on a common architecture [74]

and topology for the in-vehicle communication networks consisting of ECUs, sensors,

and actuators as shown in Figure 4.2. However, the use case of course can also be

mapped to other instantiations of the reference model. The purpose of this use case

is to describe the possibility of installing/updating firmware in the vehicle from an

external device. In particular, this use case demonstrates how after receiving the

request of the vehicle owner, a service station using a DT, the Diagnosis Tool, will

try to assess the state of a vehicle located in their area without making any physical

connection to the vehicle. The diagnosis of the vehicle should even be possible if

the vehicle is not in the area of the service station, by using an Internet connection.

This is necessary since real time data when a vehicle is moving can help to discover

malfunctions, which are not detectable when the car is in the service area. The use

case involves three communication entities, two within the vehicle (CU and ECU)

and one outside of the vehicle (DT). The DT uses a wireless connection to connect

with the Communication Unit – CU. The CU is hard-wired connected to the ECU

within the vehicle. To simplify the modeling and description of firmware flashing

process, the use case is split into two sequential phases named remote diagnosis and

remote flashing, respectively.

• Remote Diagnosis: In this phase, the service station has to first connect

via Internet and Wireless LAN to the in-vehicle network. An employee of the

station using the DT, sends a connection request to the vehicle. A connection

response is sent back to the DT. Once the connection is established, the DT

sends, depending on the option chosen by the employee of the service station,

requests to read out diagnosis information from the ECU it wants to check

such as ECU type, firmware version, and date of the last update. Assuming

the ECU type is known, a comparison is made to figure out the need of an

update of the version.

• Remote Flashing: A possible consequence of previous step (diagnosis) would

be the update of the software version of the ECU to remove bugs or to improve

the functionality. The DT sends a request to open a re-programming session

at the ECU level. Once the re-programming session is open, the DT sends the

new firmware version to the RAM of the ECU. The communication still goes

through the CU. The firmware is flashed in the ROM, and the date is saved.

At the end the DT closes the re-programming session at the ECU level and

the connection with the vehicle.

70 Chapter 4. Running Example: The Firmware Flashing Process

Figure 4.2: EVITA Use Case reference architecture [74]

4.3 Security Goals

We start our SREP by analyzing the problems and deficiencies in the firmware

flashing specification. At the early stages of system conceptualization, we have

identified the following preliminary goals:

• Avoid Goals: are related to the malicious behavior that an adversary can

perform during the firmware flashing process. For instance, an adversary can

"install older version of firmware", or "flash malicious firmware". If it is not

the case, it is still possible to an adversary can" abort the firmware flashing

process" by jamming the wireless communication channel. In a similar way,

we go through each detail of the specification and identify goals that may

prevent us from successfully installing firmware in the vehicle.

• Achieve Goals: We have applied a similar approach like the above to find

the achieve goals, that firmware flashing process must achieve throughout its

lifecycle. For instance, "Only valid users are allowed to access firmware flashing

functions" goal is identified for example to avoid the unauthorized access to

firmware flashing functions as well as from sending flashing commands. Some

of these goals are listed in figure 4.3.

As a result of this activity, we use this knowledge and instantiate the goal ontol-

ogy (cf. Section 2.4.2.1) for storing the knowledge about different goals related to

4.4. System Architecture Design 71

firmware flashing process as shown in Figure 4.3. In addition, we associate Achieve-

Goal with SRs (see figure 6.1), whereas, AvoidGoals are modeled as attack goals in

the SysML Attack Tree diagram, as shown in figure 5.2. This goal knowledge base

will later help us to identify more concrete security attacks and security require-

ments. We will exemplify this in coming chapters.

Figure 4.3: Ontological representation of the security goals

4.4 System Architecture Design

We now dictate how the most important assets within the firmware update pro-

cess can be identified and modeled from the high-level security goals and scenario

specification, and what interactions and collaborations are required in the system

to allow for their successful integration and function. A combination of mechanisms

are used to accomplish this including behavioral and structural models.

4.4.1 Behavioral Models

In this section, we provide a detail description of firmware flashing application from

its behavioral aspects. We particularly consider three combinations of behavioral

models (Use case Diagram, Activity Diagram, and Sequence Diagram) to describe

the functionality of firmware application.

72 Chapter 4. Running Example: The Firmware Flashing Process

4.4.1.1 Use Case Diagram

In the first step, we start with modeling use case diagram in order to describes the

functionality provided by a firmware flashing application in terms of actors, their

goals represented as use cases, and any dependencies among those use cases. Figure

4.4 shows what the above use case might look like in SysML schematic form. As

you can see, several firmwares related scenarios are extracted from the high-level

specification (cf. Section 4.2) and joined together in one use case. In our firmware

flashing application, the names of some use cases are: "ConnectionRequest", "Diag-

nosisCheck", and "Re-programmingSession". We further associated these use cases

with actors by including everyone and everything that needs to exchange informa-

tion with the system. In our example, the actors included in the specification are

the DT, the CU and the ECU.

Figure 4.4: Use Case Diagram - Firmware flashing process

The general idea of using use case diagrams is to express different knowledge re-

lated to scenario and then asking what outwardly visible, measurable result of value

that each actor desires. Following our ontological mapping principal (cf. Section

3.4.2), we extract the knowledge modeled in the Use case diagram, and generate

a corresponding instance of the system architecture ontology (cf. Section 2.4.2.2),

particularly, instance of a behavioral model. Figure 4.5 illustrate the ontological

4.4. System Architecture Design 73

representation of Figure 4.4, where "actor" subclass of use case class is used to hold

the different actors modeled in the Use case Diagram and "case" subclass is used

to hold values of different cases. In addition, we also capture association between

"actors" and "cases" by using a "hasAssociation" relationship as shown in figure

4.5.

7
4

C
h
a
p
te
r
4
.

R
u
n
n
in
g
E
x
a
m
p
le
:
T
h
e
F
irm

w
a
re

F
la
sh

in
g
P
ro

c
e
ss

Figure 4.5: Ontological representation of the firmware flashing process Use Case

4.4. System Architecture Design 75

4.4.1.2 Activities Diagram

We now adopt the SysML activity diagram to discover and reason about the different

activities/actions of the firmware flashing process. The main reason behind using

this diagram is to analyze a use case by describing what actions need to take place

and when they should occur. More specifically, we use activity diagram to describe

the operational progression that defines the sequences of firmware flashing operations

and the realization of operation. Following our example, figure 4.6 explains the use

case of figure 4.4.

Figure 4.6: Activity Digram - Firmware flashing process

However the behavior of a task is sequential and we characterize each task by

the following elements:

• Behavior that describe the task’s functionality.

• A set of input communication connectors

• A set of output communication connectors

76 Chapter 4. Running Example: The Firmware Flashing Process

• A set of attributes, that are used by the task’s behavior such as integer or

boolean (see choice element in Figure 4.6), and

• A name that represents the identifier of the task, which must be unique.

In addition, we use activity diagram to link up with the blocks and the structural

modeling to model continuous streams, which we will explain in the next section.

We feel that the usefulness and effectiveness of SR can be increased manifold by

considering the SysML activity diagram in the SREP. Our view is that, using activity

diagram we are in a position to identify and express SR that are not restricted to

the current state of the system but also to its past and future history.

4.4.1.3 Sequence Diagram

As part of the system architecture design, we also specify the system behavior using

SysML Sequence diagrams, which in the case of the firmware-flashing example are

used to describe the communication between the DT and the in-vehicle components

such as CU and ECU. A sequence diagram shows object (DT, CU, and ECU) in-

teractions arranged in time sequence. It depicts the objects involved in the scenario

and the sequence of messages exchanged between the objects needed to carry out

the functionality of the scenario. Objects required for accomplishing a firmware

flashing tasks are shown as lifelines as illustrated in figure 4.7.

Figure 4.7: Sequence Chart - Firmware flashing process

To be more precise, we use Sequence diagrams primarily to design, document,

analyze and validate the architecture, interfaces and logic of the system by describing

the sequence of actions that need to be performed to complete firmware flashing

4.4. System Architecture Design 77

process. Figure 4.7, clearly depict the sequence of events and show when objects are

created and destroyed. As like Use case model, we also generate ontological instance

of Sequence diagram as shown in the figure 4.8. In particular, we capture the

objects (DT, ECU, and CU) in our "Object" class, events (i.e., connection request,

connection response, etc.) in our "Message" class, and sequence of events (i.e., msg1,

msg2, etc.), in our "Sequence" class, defined in the ontology (see Section 2.4.2.2).

Moreover, in order to capture the relationship among all these elements, we have

used the "hasMessage" relationship to relate events with objects, and "hasSequence"

relationship is used for capturing the order of events as shown in figure 4.8. However,

further information such as time outs, synchronous/asynchronous messages types,

etc., can also be expressed in the ontologies.

7
8

C
h
a
p
te
r
4
.

R
u
n
n
in
g
E
x
a
m
p
le
:
T
h
e
F
irm

w
a
re

F
la
sh

in
g
P
ro

c
e
ss

Figure 4.8: Ontological representation of the Firmware flashing process Sequence Diagram

4.4. System Architecture Design 79

4.4.2 Structural Models

Previously we have discussed the point that the most obvious concept in embedded

system architecture design is that of the structural models. A variety of archi-

tectural structures are used to introduce technical concepts and fundamentals of

an embedded system design like Y-chart approach [76], SHE Methodology [148],

COSYMA approach [31], etc. Most of these approaches are concerned with design-

ing embedded system architecture by focusing on representing system architecture

from the high-level specification through to hardware synthesis and software com-

pilation. The general approach used in these approaches includes the exploration

of hardware software characteristics such as area, speed, memory limitations, power

consumption, maintainability, upgradability, testability, reliability, etc. Note that

most of these approaches are concerned with analyzing the non-functional or quality

related requirements of embedded systems. Therefore, a useful characteristic would

be to use these approaches also from the security requirement-engineering point of

view. This would permit us to analyze the security aspects from the early design

stages and in relation to the different architecture levels and their interrelationships.

On the contrary, analyzing the security concerns with design exploration step allows

system engineers to investigate the influence of security aspects on the system per-

formance (such as latency, throughput and resource utilization). The results may

inspire the designer to improve the architecture, restructure/adapt the application,

or modify the mapping of the application.

!""#$%&'$()

*(+',&-./0&-1,&-.2

3(/1.4$5)2!-%6$'.%'7-.

1$++.-.)'

8&""$)52

4'-&'.5$.4

9&""$)5

&""#$%&'$()2

2$8"-(:.8.)'4
&-%6$'.%'7-

$8"-(:.8.)'4

9$11#.,&-.2

!-%6$'.%'7-.2

0&-1,&-.2

!-%6$'.%'7-.2

!-%6$'.%'7-.

1$++.-.)'

8&""$)52

4'-&'.5$.4

Figure 4.9: Extended Y-Chart approach

We particularly use the Y-chart approach, because of its capabilities towards

enabling the designer to address separately functionality, architecture and mapping

80 Chapter 4. Running Example: The Firmware Flashing Process

issues to develop a fully mapped system. It is important to notice that the Y-

Chart approach clearly identifies three core issues (i.e., architecture, application,

and mapping) that play a role in finding feasible architecture. Be it individually or

combined, all three issues have a profound influence on the system design [76]. It fits

conveniently with our system architecture description, where we need to define po-

tential security requirements for targeted application expected to run in co-designed

hardware and software. However, as our objective is to identify security weaknesses

and security requirements in relation to different architecture levels from the early

stages of system conceptualization, we slightly modified the conventional Y-chart

approach and also consider mapping of functions on the software/middleware layer.

Even if the architectural structures are rough and informal at the early stages, it

is still better than nothing. As long as the architecture conveys in some way the

critical components of a design and their relationships to each other, it can provide

us with key information about whether the device can meet its requirements, and

how such a system can be constructed successfully. This is depicted in figure 4.9.

The design flow embraces the following three steps:

4.4.2.1 Application

Application represents the functionality to be performed by the targeted system.

In particular, application is structured around the notion of "task" that holds a

functionality (task’s behavior). We describe the behavioral description of task in

terms of a SysML Activity Diagram (see Figure 4.6). However, note that one be-

havioral description per task is required. A task has a dedicated behavior that will

define how it will execute and define its communication scenario with the other

tasks. Figure 4.10 depicts a firmware flashing application example modeled with

the TTool toolkit. The application in the example is the composition of a set of

tasks (DiagnosisConnectionInitiation, DiagnosisRequestManagement, etc.) and the

set of Communication Connectors such as connection request, connection response,

etc.

Figure 4.10: Functional view - firmware flashing process

4.4. System Architecture Design 81

These different tasks functionalities are interdependent as each task is an origin

and destination for different communication connectors. For instance, "Diagnosis-

ConnectionInitiation" exchange data with "DiagnosisRequestManagement" through

the channel "ConnectionRequest", but it is a destination for the event "Connection-

Response" sent by "DiagnosisRequestManagement". With the same logic, we build

the detail functional view of the application. In particular, we want to extract the

functional path (information flow path) of the firmware flashing application from

this view in order to analyze what data and messages are exchanged between dif-

ferent tasks. This will certainly help us to perform more detailed security analysis

as well as to express more concrete security requirements. To be more precise, we

define functional path as:

The functional path of an application is a tuple consisting of a set C of events

and data channels, and of a set F of functions. C and F are defined as follows:

• Fc is included into F.

• C contains all channels which destination is a function of F.

• F contains all functions that output messages in channels of C.

Therefore, the functional path of an application includes all data and events that

are taken as an input by all functions involved in the direct or indirect production

of the application.

4.4.2.2 Architecture

Following the line of reasoning suggested in Y-Chart approach, targeted architec-

tures are modeled independently from applications as a set of interconnected generic

hardware nodes. A set of parameters permits to calibrate components for their

application area. At this stage of system architecture development, we use the

DIPLODOCUS profile for modeling diagrams hardware architecture, as well as for

specifying high-level description of software/middleware layer, which is already in-

tegrated in TTool engine [5]. A hardware architectural description is a collection

of interconnected hardware nodes. Those hardware nodes are computing nodes

(CPUs, I/O devices, hardware accelerators), storage nodes (RAM, etc.), sensors

and actuators. The interconnection between those nodes is described in term of

busses, networks and wireless links (see Figure 4.11). In the context of software ar-

chitecture, we define it from the functional/logical-modeling viewpoint. Functional

modeling, focuses on building the functional architecture of the system by breaking

the problem domain into a set of non-overlapping and collaborating components. In

other words, software architecture is focused on organizing components to support

specific functionality such as processing tasks, sending message/data, etc. In order

to have common mapping, we classify hardware and software components into three

activities: 1) Computation, 2) Communication, and 3) Storage activities.

82 Chapter 4. Running Example: The Firmware Flashing Process

Figure 4.11: A partial view of the hardware architecture - Firmware flashing process

Note that, from a functional point of view, communication and storage look very

similar (sending and writing could be considered as the same operation; receiving

and reading too), but they are different: Communication takes place between dif-

ferent tasks while storage is dedicated to a single task, for its own needs. Moreover,

reading is an action while receiving a message is an event: A task decides to read

or not but has no control on messages reception, even if received messages can be

ignored. Of course, when considering the physical view, it may be that communi-

cations are implemented through read and write operations in a memory and, in

most cases, read and write operations of a task are implemented as transactions

on a physical communication link between a processor and its external memories.

Each of the three activities has a physical and functional counterpart, as outlined

in Table 4.1.

System Ac-
tivities

Physical View Functional (Logical) View

Computing CPU or dedicated hardware accelerator Processing task

Communication Wired bus or network, wireless link Send/receive messages on logical channels

Storage Memory (RAM, ROM, flash) Read/write data from/to address spaces

Table 4.1: Physical and Functional Viewpoints

4.4.2.3 Mapping

A mapping process defines how application tasks are bound to execution entities

and similarly how abstract communication channels between tasks are bound to

4.4. System Architecture Design 83

communication and storage devices. The general DIPLODOUC mapping framework

is the following.

• Each abstract task of the application is mapped on exactly one computation

node (i.e., CPU), which is a combination of both physical and functional view.

• Abstract communication entities are mapped on communication and storage

nodes. A channel is usually mapped on buses, bridges and exactly one storage

element [5].

Figure 4.12: Mapping view - Firmware flashing process

The mapping activity is carried out based on previously created DIPLODOCUS

architecture diagrams (Figure 4.10, and 4.11). The output of this activity is shown

in Figure 4.12, where artifacts representing tasks and channels are simply bound

to architecture components. Similarly like other activities, we also capture the

knowledge about structural model and generate an equivalent ontological instance

84 Chapter 4. Running Example: The Firmware Flashing Process

of system architecture ontology. Figure 4.13, represents the knowledge about sys-

tem assets and mapped functions on these assets. In particular, we have used the

"system asset" class to store the knowledge about different system assets as well

as knowledge about their subclasses (i.e., CPU, RAM, Hardware accelerators, etc.),

and "function" class to capture different functions involved in the firmware flashing

process. The "mappedTo" relationship class specified in the ontology captures the

mapping relationship between system assets and function.

Figure 4.13: Ontological representation of the Mapping view of the Firmware flash-

ing process

4.5 Conclusion

In summary, this chapter made the reader familiar with our running example, the

different behavioral and structural models of the system, its methodology and op-

erators. Furthermore, while creating system models (i.e., Use Cases, Sequence Di-

agrams, Structural Models, etc.), we also generated the corresponding ontology in-

stances of these different models. Thus, allow security engineers and analyst to use

these models and reason about different concepts and terms specified in these mod-

els. For instance, during SR identification activity, security engineer can query the

use case knowledge base about different "actors" involved in the system, or he can

search for different "functions" mapped on a particular system asset. Our objective

for the next steps of the SREP is to use these models as well as the knowledge base

generated from these models for performing the in-depth security analysis and also

4.5. Conclusion 85

identifying and prioritizing security requirements. Furthermore, we also use these

models for building our cryptographic protocols and enforcement of access control

related security requirements in Chapter 7 and Chapter 8, respectively.

Chapter 5

Security Analysis and

Knowledge-Based Attack Trees

5.1 Introduction

The rapidly increasing need to integrate business applications deployed across dis-

tinct architecture layers reflects the reality of how software is being consumed nowa-

days [60]. Such applications must also be compliant with SRs and regulations, which

can change and/or evolve according to the business context. For instance, access

control and monitoring for intrusion detection are prime examples of functionalities

that are subject to this problem: they cannot be properly modularized, that is,

defined in well-separated modules, especially if they cross administrative or techno-

logical boundaries [58]. In such a context, it is not sufficient to discover security

attacks only at overlooked weak point of the system; there is also a need to analyze

the information flow control issues, especially when the underlying platforms and

infrastructures are also made of services themselves. Security analysts also need to

consider threats to these underlying infrastructure and middleware for a particular

security realization, as the assets to be protected originate both from the horizontal

(i.e., between different entities and components) and vertical (i.e., multiple layers)

compositions.

A related problem is that it is easier to analyze the protection level at each

separate layer in the system architecture stack, but become vulnerable to various

security exploits and flaws in a coordinated manner [58, 129, 143]. Because of their

complexity and of the varying degrees in which system assets are deployed and exe-

cuted, it is often the case that a system is compromised through a path its developers

never have thought of. What is worse, a local security attack and vulnerability or a

mismatch between the security mechanisms adopted at different locations can have

dire consequences, potentially putting the security of large system at stake. Most

of such security attacks stem from the limited knowledge shared between various

security-engineering activities that collaborate with each other and the expression

of their interdependencies. One thing is that it is not easy to discover all parts of

a system that are relevant for its security. In mainstream practice, this knowledge

is often spread across different architecture layers, and correspond to various sys-

tem development activities such as system architecture design, goal specification, In

general, for a thorough security evaluation, one needs to take into account these dif-

88 Chapter 5. Security Analysis and Knowledge-Based Attack Trees

ferent knowledge perspectives. In this context, in Section 5.2, we aim at proposing a

security analysis model derived from the conceptual constructs of security ontologies

that will serve as the common knowledge repository for discovering, analyzing, and

sharing attack knowledge with other system development activities. Thus, it will

offer means to analyze the security of the system in such a way that it is possible to

discover simple and complex security attacks and vulnerabilities at different levels

of system abstraction. Furthermore, the concept of attack tree, modeled in SysML

Attack Tree Diagrams (ATD), is brought in as the foundational graphical represen-

tation for modeling and embedding the collected security attacks knowledge into the

security attack ontology. In this manner, the attack trees are completely parame-

terized by the ontological concepts so that it is possible to handle simultaneously

several knowledge bases associated with security attacks and vulnerabilities. In par-

ticular, the knowledge based attack trees ease the process of keeping security attack

specifications clear and understandable, minimizing the inconsistencies and helping

to achieve maintainability – even when security attacks are drafted cooperatively

by several entities as well as at different system development stages.

5.2 Security Analysis Process

In this section, we reason about instance of the security attack ontology (cf. Sec-

tion 2.4.2.3) to discover and share a common understanding of information about

security attacks and vulnerabilities among different system development activities.

In contrast to related research activities what we have in mind is to extract the

knowledge and relationships between different security ontologies, for the purpose

of being able to combine and analyze them together and discover security weak-

nesses. In our approach, we perform a security analysis in the following sense: given

system development phase, we capture the knowledge about core (valuable) system

components including hardware and software components, security goals, as well as

security requirements, and analyze their security relative to security objectives and

other functional and non-functional constructs, and we perform this analysis itera-

tively and incrementally at each system refinement stage. We thus, focus on high

level security attacks (or anti goals) and relationships and evolve them in accordance

with other system development activities, and in particular the level of refinement

of the system architecture. In this context, it is also useful to think about threats

in terms of what the adversary is trying to achieve and what are the adversary

capabilities. This changes the focus from the identification of every specific attack

– which is really just a means to an end – to focusing on the system-wide attacks.

A security analysis process is composed of two parts: knowledge extraction and its

evaluation, and a security attack modeling. We define the security analysis process

as a systematic process performing the following steps:

1. Extract the knowledge from various knowledge bases such as security goals,

system architecture, security requirements, and relationships among them

5.2. Security Analysis Process 89

through inferences rules and questions on available material.

2. Define every "attack goal" that is associated with a benefit (cf. Section 2.4.2.3)

to the adversary of some kind.

3. Identify classes of adversaries and their capabilities.

4. Decompose attack goals into a number of "attack methods" that could be

employed to achieve the attack objective; refinement terminates when leaf

conditions are reached that meet the adversary’s capabilities.

5. For each attack method, specify different properties that as described in the

attack ontology such as "attack mode", "attack type" (i.e., generic or appli-

cation specific), assumptions, consequences, etc.

Let us illustrate these steps in more detail with our firmware flashing case study

presented in Chapter 4. At the early stages of the system conceptualization, the

major inputs to our security analysis process are security goal knowledge (see Sec-

tion 4.3) and system architecture knowledge (see Section 4.4). However, during each

refinement stage we extend the current knowledge as well as include the knowledge

from other system development activities (e.g., security requirements, security pro-

tocols, etc.) as a basis for exploring more detailed security attacks and vulnerability.

Let us start from the analysis of the security goals presented in Section 4.3. Based

on the results of knowledge extraction phase (cf. Step 1), we move on to analyz-

ing different "attack goals" that can be associated with these system architecture

components. One obvious option is to browse the security goal knowledge base (see

Section 4.3) systematically in order to determine whether there is any "AvoidGoal"

that could be wished by malicious agents. In this case, we use the following rule to

select "AvoidGoals" from the security goal knowledge base:

Goal(?g) ∧ hasAvoidGoal(?g, ?AvoidGoal) → select(?g, ?AvoidGoal) (5.1)

The above query retrieves (cf. reasoning with SysML model presented in section

3.4.2) all goals in ontology with a known subclass that is AvoidGoal as shown in

the Figure 5.1. In this case, we start analyze each AvoidGoal and determine how

an adversary can attack this goal, which in his (adversary) case is an AchieveGoal.

For example, an adversary can "abort firmware flashing process" by jamming the

in-car communication or by shutting down the Communication Unit (CU) [129].

We analyze each AvoidGoal to identify the adversary objectives as well as deter-

mine additional AvoidGoals, if any. In addition, while browsing the security goal

knowledge base, we might stop on the "AchieveGoal" stating, "service station is

allowed to install firmware". This goal is obviously going to be of interest for a

number of adversaries. For instance, an adversary goal might be to "install mali-

cious firmware". We can also directly determine security flaws and weaknesses by

negating the "AchieveGoals". For instance, the statement "service station is not

able to install firmware", actually corresponds to a Denial of Service (DoS) attack.

90 Chapter 5. Security Analysis and Knowledge-Based Attack Trees

Figure 5.1: Avoid goals - Firmware flashing process

In a similar way, we extract the knowledge about system architecture models and

analyze different aspects of the system in order to determine additional attack goals

and attack points. For instance, we can extract the knowledge (see Rule 5.2) stored

in use cases knowledge base (see Figure 4.5) to define the behavior not wanted in the

system to be developed. This corresponds to the misuse cases approach [141], where

analyzing the interaction between actors and cases specifies attacks. For example,

an adversary’s goal might be to cease the firmware diagnosis process by sending fake

information about the version of the installed firmware to the DT. Similarly, we de-

termine various attack goals by reasoning on instances of these different knowledge

bases.

UseCase(?u) ∧ hasActor(?u, ?Actor) ∧ hasCases(?u, ?Cases) (5.2)

→ select(?u, ?Actor, ?Cases)

Once initial attack goals are identified, we start building the attack tree in SysML

Attack Tree diagram and group these different "attack goals" under the root node

called "attack objective". This is illustrated in Figure 5.2, where the root node (e.g.,

"Attack Firmware Flashing") depicts the attack objective and its child nodes (e.g.,

"install malicious firmware"," service station is not able to install firmware") repre-

sent attack goals. The identification of adversary instances is obviously intertwined

with the identification of attack goals. In particular, the attack goal raises the ques-

tion of who might profit from it. In this case, we can use the adversary taxonomy

presented in section 2.4.2.3 to identify different the adversaries and their capabili-

ties. For example, the following query retrieves all adversaries with the capabilities

that can a achieve a particular "attack objective":

Adversary(?e) ∧ hasExperties(?e, ?expt)

∧ hasEquipment(?e, ?equp) ∧ hasKnowledge(?e, ?kwlg) (5.3)

∧ Asset(?a)→ select(?e, ?expt, ?equp, ?kwlg, ?a)

However, in many cases these different capabilities are not independent, but may

be combined/substituted for each other in varying degrees. For instance, expertise

or equipment may be a substitute for time. In this example, we assume an expert

adversary who knows everything about the firmware flashing process as well as have

5.2. Security Analysis Process 91

knowledge about in-vehicle system being attacked. In the next step (step 4), for

each initial attack goal and adversary class identified, we build the attack tree by

decomposing attack goals into a number of attack methods that could be employed

to achieve the attack objective. As mentioned previously, our objective is to identify

security attacks and vulnerabilities that are targeting single or multiple architecture

layers. In this case, we follow our functional path (cf. Section 4.4.2.1), and Mapping

approach (cf. Section 4.4.2.3) to analyze security attack and vulnerabilities. In

particular, we extract (Rule 5.4) the knowledge from System architecture knowledge

base (see Figure 4.13) about different functions, their mapping on the different

system assets, and details about information flow path in order to analyze how an

adversary can perform attacks to achieve his attack goals.

Architecture(?e) ∧ hasFunctions(?e, ?Funtions)

∧ hasSequence(?Functions, ?Sequence) ∧ hasAssets(?e, ?Assets) (5.4)

∧ mappedTo(?Function, ?Assets, ?Mapping)

→ select(?e, ?Functions, ?Assets, ?Sequence, ?Mapping)

The result of this query corresponds to a set of functions (e.g., diagnosis ini-

tiation, firmware identification, etc.), information flow path in terms of sequences

(e.g., msg1, msg2, etc.), and their mapping on different system assets (e.g., CU,

ECU) as shown in figure 4.13. Based on the result of this query, we start ana-

lyzing the available information and different attack methods that correspond to

attack goals. For example, the above-mentioned attack goal (e.g., "Install Malicious

Firmware") can be require a "Man in the Middle" attack. As a result of attack

identification that corresponds to the attack goal, we add attack node (see attack

tree node – AT.2.a in figure 5.2) as a child of the attack goal. In addition, following

our knowledge based attack tree modeling principle (presented in section 3.3.4), the

security expert has to document the attacks using about different ontology concepts

(e.g., attack type, attack method, attack mode, adversary, etc.). This information

is available in SysML Attack Tree diagrams as a controlled vocabulary (see Section

3.4.1). Let us consider another case where an adversary is trying to achieve the

same attack goal ("Install Malicious Firmware") by "Injection of forged transac-

tions" (attack tree node – AT.2.b). In this case, we use the definition of constraint

block (cf. section 3.3.4) and link these two attack methods using "OR" operator

as shown in figure 5.2. Thanks to the expressive power of ontologies, we can freely

combine rules as antecedent patterns to capture complex topological structure, and

analyze different system activities altogether in order to identify different attack

methods. A description of various attack methods that we identified by analyzing

different knowledge bases and interrelation between them are listed in Section 5.3.

We can also decompose these attack goals by querying different well-know attack

and vulnerability dictionaries (e.g., OWASP, CVE, etc.). However, as indicated

previously, for a thorough security evaluation and validation, we require an explicit

92 Chapter 5. Security Analysis and Knowledge-Based Attack Trees

knowledge of security experts to decompose attack goals into child attack methods.

The security analysis process terminates when realistic attack methods are obtained

that meet the adversary’s capabilities.

5.3 Attacks on the Firmware Flashing Process

In the following, we use the above-mentioned security analysis process and analyze

the attacks against our three core activities of system architecture (see Table 4.1)

that we have defined for our firmware flashing process. In particular, we first analyze

the system from the active and passive attack viewpoints, and then classify security

attacks.

• Attacks Related to Active Mode: One of the ways to attack the firmware

update process is to modify its behavior. In the following, we show security

attacks that are associated with modifying the behavior of different system

assets and corresponding activities involved in the firmware update process.

– Communication: The attacks on the communication activity can be bro-

ken down into threats on physical and functional (logical) communica-

tion links that are used during the firmware update process. There are

two main means to implement physical1 attacks against communications:

tampering with it and the injection of forged transactions (see attack tree

node – AT.2.a in figure 5.2). Because on-board computing devices and

memories are usually connected through buses, attacks against physical

communication links can be used to tamper with the communication.

The consequences of physical attacks on communication links are on the

receiver side only (attacks aiming at modifying or canceling a firmware

update message before it is actually sent are, in fact, attacks against the

sending computing node). From the functional (logical) point of view,

attacks comprise Denial of Service (DOS) attack (see Attack Tree node

– AT.5.a). For instance, one way to do this would be attack the wireless

communication module by jamming the signal (see attack tree node –

AT.5.a.3.a). As we previously mentioned (cf. section 4.4.2), an archi-

tectural description is a collection of interconnected layers. Thus, the

security attacks targeted for one particular layer may span across other

layers and system activities. For instance, when a memory bus is at-

tacked, it can be in order to modify the function of a task (software code

modification) or the data it processes. There are three classes of mem-

ory bus injection attacks (see attack tree node – AT.2.c.2): spoofing (the

injected information was forged by the attacker), splicing (the injected

1The text in bold represents different classes and subclasses of the security attack ontology as

well as relationships between these classes. While, the text in italic characterizes the concrete

attack methods.

5.3. Attacks on the Firmware Flashing Process 93

information was taken at a different location in the memory) and replay

(the injected information was taken at the same location in the memory

but at a previous moment in time, where it differed from the expected

one).

– Computation: The computational capabilities of an attacker encompass

several different abilities such as decrypting incoming messages, encrypt-

ing outgoing messages and computing secrets. There are two components

that affect these abilities: hardware capabilities (pure computation) and

available information. In particular, communication attacks are target-

ing computing nodes (CPUs, hardware accelerators) that are involved in

the firmware update process (see figure 4.11). They consist in physical

modifications of the component (like modifying the content of an embed-

ded ROM or the structure of an operator), its replacement or even its

destruction. Transient fault injection is another possibility (see attack

tree node – AT.1.c.a). The consequence is the production of results that

differ in some way from those that would have been produced in nor-

mal operation, including failure to produce results when expected or the

converse. From the functional point of view, these physical attacks can

translate into: it seems easier (and more likely) to attack the on-board

units with a DoS attack (see attack tree node – AT.5.a) to prevent or de-

lay the computation/detection of events needed for the firmware flashing

process.

– Storage: Storage attacks consist in modifying the regular content of a

memory. As a consequence the read operations performed by the tasks

accessing the address space do not return the expected information, that

is, the last one that was written at the same location. The consequences

are very similar to the consequences of attacks against memory buses.

The means used to achieve content modification depend on the technol-

ogy: ROMs can be replaced (see attack tree node – AT.3.b.1.a), non-

volatile writable memories (EEPROMs, flashes) can be replaced or re-

programmed, volatile memories (static and dynamic RAMs) are much

more difficult to attack in a conscious way but more or less random bit

flips can be induced by voltage, clock frequency, temperature modifica-

tions, or more active fault attacks. In some cases, volatile memories can

even be cooled, removed from their PCB and plugged onto another host

without losing their content which can then be read out and/or modified

before the component is plugged back in its regular host system.

• Attacks Related to Passive Mode: In the following, we illustrate security

attacks aiming at information retrieval without modifying the behavior of the

firmware update process.

– Communication Communication can be spied upon and sensitive mes-

sages or read/written data exposed. On-board or on-bus probing (see

94 Chapter 5. Security Analysis and Knowledge-Based Attack Trees

attack tree node – AT.2.c.2) is a very effective and attractive mean for

wired communications. Wireless communications are even more sensitive

to this kind of attack as they can be conducted in a completely remote

and undetectable way. On-chip probing requires package removal, ex-

pensive equipment and very skilled attackers. Another possible attack

would consist in trying to gain access to the on-board units, for example

by personalizing the car with an external device, without changing the

behavior of the flashing process or vehicle, to exploit rekeying protocol

vulnerability in the diagnostic interface (see attack tree node – AT.4.e),

to extract the firmware data.

– Computation: Attacks against the computing activity aim at retrieving

either a secret quantum of data (secret key) or the processing definition

itself through software code extraction (see attack tree node – AT.3.b).

As every computation is actually performed by a physical device, mea-

surable syndromes are produced, like its power consumption, computing

time, or electromagnetic emissions that can be exploited to guess what

operations are performed or what is the value of some sensitive data.

This kind of analysis is referred to as side channel attacks in the litera-

ture. Observing the external communication or the exchanges (see attack

tree node – AT3.b.1.b) with memories is another mean to get informa-

tion about the computing but fall into the passive communication attacks

category.

From a security point of view they are all potential targets of attacks but by

different means and consequences. Security requirements shall therefore address all

system elements that might be involved in attacks identified in attack trees.

5
.3
.

A
tta

ck
s
o
n
th

e
F
irm

w
a
re

F
la
sh

in
g
P
ro

c
e
ss

9
5

Figure 5.2: Attacks on the Firmware flashing process – Knowledge base Attack Trees representation

96 Chapter 5. Security Analysis and Knowledge-Based Attack Trees

5.4 Multilayer Security Analysis

This section describes an example of an actual exploitation that we have identified

during the multilayer security analysis. As we previously mentioned, the loose cou-

pling between different architecture layers leads to various security exploits and flaws

in a coordinated manner. This was the case in our example, where a loose security

binding between architecture layers (i.e., Hardware Security Module, middleware –

EMVY RPC Library [125], application, etc.) makes it possible for an adversary to

impersonate valid users2. In particular, the security attack that resulted was due to

the improper design of the middleware layer, EMVY RPC Library, and it’s handing

of security related data. EMVY RPC library allows applications to use functionality

on the client itself and also to access higher-level security functionality (i.e., install

applications, set security policies, etc.) through the Master node as part of the RPC

invocation.

!"#$%&'()*+%, !"#$%"-.+)/%012) !"#$%&'()*+%3

!"#$%&'()*%+*,),-./&)+*,01234567,8129:9;<

=+,7>*%?>7+2.&'()*2@7//+AAB7&<

!"#$%&'()*%+*,),-./&)+*,C1234567,8129:9;<

=+,7>*%?>7+2.&'()*%@7//+AAB7&<

!"#$%&'('BB./&)+*,0<

=+,7>*%?>7+2.&'('BB2@7//+AAB7&<

Figure 5.3: RPC Logoff attack scenario

In order to perform this attack (impersonate valid users), we have created two

EMVY clients: Client 1 and Client 2. The Client 1 is considered as a legitimate

entity, whereas, the second entity, Client 2, act as a malicious entity. In the first

step, both entities send a login request (see figure 5.3) to EMVY Master node in

order to invoke several other security services. The authenticity for the connection

is verified in the Master node, by calling its hardware security module, which ver-

ifies the authenticity of the Client 1 and the Client 2 at the transport layer. Once

the authenticity of both entities is successfully verified both entities are allowed to

2User impersonation allows an entity/application to execute a task using the security context

of another user.

5.5. Conclusions 97

invoke any RPC functions. In the next step, Client 2, who is an insider adversary,

scan the connected entities in the network to extract their identifiers. Lets assume

that Client 2 managed to capture an identifier (i.e., Client1) of the Client 1. It

then invokes an RPC logoff function (see Listing 5.1), which only requires Entity

as a parameter. An adversary uses the identifier of Client 1 as a parameter of the

function in order to stop all the services accessed by the Client 1. The transcript in

figure 5.1 shows the use of the RPC Entity_logoff(client1) request from Client 2 to

EMVY Master node in order to logoff Client 1.

1 EMVY_logoff(const Entity* entity);

Listing 5.1: EMVY Log_off RPC function

On the Master side, it only verifies that Client 1 is in its "Entity Authentication

List". If its so, it removes the Client 1 from "Entity Authentication List" and close

the connection with the Client 1, thereby allowing the adversary to impersonate the

valid user. This attack happens since authentication is only performed at the trans-

port layer and not further considered at the upper layers. More precisely, the need to

authorize operations based on RPCs together with the fact that only channels, not

RPC messages are authenticated has forced us to piggyback the transport-level au-

thentication on internal framework calls from the components like Communication

Control Module3 (CCM) to the application layer.

5.5 Conclusions

Given an input for our knowledge centric design methodology, the security analysis

process helps to both classify identified attacks, but also to think about new ones,

given a category. Security analysis process is a combination of both top-down and

bottom-up approach to provide a support tool to security analysts. The purpose of

developing the ontology driven security analysis process is to identify possible secu-

rity threats and to allow aspects such as the desirability (to the adversary), oppor-

tunity, probability and severity of attacks to be assessed in order to share knowledge

among various system development activities (i.e., security requirements engineer-

ing, protocol design, testing, etc.). We believe that, on the one hand, ontology based

security analysis is expressive enough to describe several real-world security attacks

with a multi faceted approach; at the same time, it provides constructs to map and

relate security attacks with other system development activities.

3The central communication module provides a high-level interface for secured communication.

It can integrate various communication protocols.

Chapter 6

Security Requirement Engineering

6.1 Introduction

We described the main building blocks of our SRE process in the previous chapters.

We now move on to the next stage of this process and illustrate the approach in

the context of SRs identification, refinement, and present a way to trace SRs. We

first discuss in section 6.2, why security requirements should not be considered in-

dependently from the architecture of the system they relate to, or from the threats

and vulnerabilities that may arise on that system. We highlight how the strengths

of ontological approach can be used to drive the security requirement identification

process. In section 6.3, we investigate a fundamental flaw in state of the art ap-

proaches to security requirements refinement. We expose in this chapter in what

respect the different security artifacts (i.e., security attacks, system architecture),

and its evolution involve challenging refinement problems, in particular with respect

to the understanding of security requirements.

Security requirements refinement cannot rely on only high-level definition of secu-

rity goals or preliminarily constructed SR specification and disregard the evolution

of other security artifacts on top of which security requirements are based. In this

perspective, we first illustrate why security requirements can be refined with enough

precision for supporting the design of security architecture only if they are exten-

sively linked with security attacks and the system architecture. All existing solutions

have so far fallen short in that they only consider refinement separately within the

SR requirement model and/or within the attack model. We present a refinement

model to combine and jointly annotate all security artifacts and how it can be used

to develop an iterative refinement process.

In section 6.4, we also propose a very simple but fairly effective approach for

the traceability of security requirements. In particular, we provide insights on how

a traceability links empowered with cross-reference capabilities can provide clean

modularization to security assurance. We show how cross-reference traceability

links help in achieving the impact analysis of prescribe changes in the different

system development activities, by improving the efficient tracking and management

of security requirements.

100 Chapter 6. Security Requirement Engineering

6.2 Security Requirements Elicitation

In this section, we aim at identifying security requirements in relation to the afore-

mentioned system development activities. In the process of going from steps 2 to 5

of requirements engineering process (see section 2.4.1), we make use of the knowl-

edge base, which we developed, in the previous chapters. Let us recapitulate what

we have defined so far.

• In step 2, we have specified several security goals (see section 4.3) as key oper-

ational capabilities of the system specified by the stakeholders or determined

from the security policy of the organization. For example, an achieve goal (see

figure 4.3) "only valid users are allowed to access firmware flashing functions"

is specified by analyzing the firmware flashing specification. As a result of this

activity, we accumulated a goal knowledge base and hold the relationships

between ontology related classes and subclasses, as illustrated in figure 4.3.

• In step 3 of the SREP, we presented the system architecture models (in sec-

tion 4.4) for building the behavioral and structural models for firmware flash-

ing application, during the early stages of system development. This step of

the SREP is performed incrementally, by iterative analysis of the functional

models and of the mapping view. Figure 4.4, 4.7, and 4.12 gives an overall

view and results of how the step 3 is applied in the context of identifying

system assets and their behavior. Furthermore, we instantiated the system

architecture ontology to build a knowledge base about structural and behav-

ioral models (see figure 4.3, 4.5, 4.8, and 4.13) that are constructed during the

system architecture modeling.

• In step 4 of the SREP, we have used the results, in the form of knowledge base,

from step 2 and step 3, and performed a complete assessment and security

analysis of system assets and goals in chapter 5. It involves a security analysis

process (presented in section 5.2), that is, a dual model of threats to the system

model: it shows how system assets can be attacked within multilayered system

perspective and how this attack knowledge (i.e., attack knowledge base) can be

shared with other system development activities. As a result of this activity,

we accumulated knowledge about potential malicious activities into an attack

knowledge base in the form of a SysML Attack Tree Diagram (ATD) (see figure

5.2). We highlighted the different threats in terms of what the adversary is

trying to achieve (i.e., attack type, attack method, etc.) and what are the

adversary capabilities.

• Based on the results of the above steps, we have performed a risk analysis in

section B.1.1. In particular, we have used the risk model [129] developed in

the EVITA project [117], which indicate the risk level (see Table B.4), based

on the potentiality (equal to severity level + likelihood/probability) and the

maximum impact level on the concerned system assets.

6.2. Security Requirements Elicitation 101

After gathering knowledge about different system development activities, we now

show how these knowledge bases can be adopted in SR identification step. Following

the line of reasoning suggested in section 2.4.1, we start the requirement identifi-

cation process by querying and applying inferences rules on the already developed

knowledge bases of different security classes. For instance, let us turn back to the

case of identifying SRs from the security goal and let us show how our model can

integrate capabilities of goal-oriented [38] approaches to identify SRs. In this case,

we use the following types of rule to select suitable security goals from the goal

knowledge base (cf. section 4.3):

Goal(?g) ∧ hasAchieveGoal(?g, ?AchieveGoal)

→ select(?g, ?AchieveGoal) (6.1)

This query will return goals (i.e., "only valid users are allowed to access firmware

flashing functions") with a known ontology class type that is an "AchieveGoal".

Thus, based on the result of query, we analyze goals and derive SRs. For instance,

"only valid users are allowed to access firmware flashing functions" goal can be

refined into "ensure authenticity" security requirement as shown in figure 6.1. In

addition, queries can also operate in conjunction with rules from other security

classes (i.e., system architecture, use cases, etc.) and can be used to identify SRs

inferred by those rules. This for instance is the case of model-driven [54, 88, 151] en-

gineering approaches where security requirements are identified in accordance with

goals and system architecture. Consider for example that during the system archi-

tecture design, system architect specified the "AvoidGoal": "avoid service station

from gaining root access of CU" (see figure 4.3) in order to protect the CU. Thus

during the SR identification phase, we can use the following rule (equation 6.2) to

retrieve a set of "AvoidGoals" and their relationships with specific component of the

system architecture.

Goal(?g) ∧ hasAvoidGoal(?g, ?AvoidGoal) ∧

Architecture(?a) ∧ hasComponent(?a, ?component) ∧ (6.2)

Component(?c) ∧ hasHardware(?c, Hardware) → select(?g, ?c)

Based on the result of this query, we decide what kind of SR is required to avoid

service station from gaining root access of the CU. As you can see from the query that

we also extract the knowledge about the system architecture like system component,

and its subclasses (i.e., type of system asset, in/out parameters, functions, etc.) in

order to analyze different properties of systems. In particular, the object of this

query is to extract the knowledge from two different knowledge bases (i.e., goal and

system architecture), analyze them together and define a security requirement. In

this case, for example, we can specify "controlled access rights to CU" requirement

to restrict the rights of service station to access different functionaries of the CU, as

shown in figure 6.4. We can further identify SR by analyzing the security attacks

on the system assets and goals. For example, while browsing the attack knowledge

102 Chapter 6. Security Requirement Engineering

(using Rule 6.3) about firmware flashing application we might stop on the attack

that corresponds to our above mentioned example, where an adversary (i.e., service

station) gain root access of CU by "installing bogus authority keys" (see attack tree

node – AT 4.a in figure 5.2).

Attack(?a) ∧ hasActiveAttack(?a, ?Active)

∧ hasFunctionalAttack(a?, ?Functional) ∧Asset(?CU) (6.3)

→ select(?a, ?Active, ?Functional, ?CU)

In this case, we can specify "restrict access rights to install keys in the vehicle"

security requirement as shown in figure 6.4. The purpose of this SR is to prevent

service station to install any kind of authority key in the vehicle, which might allow

him to gain access to different parts of the on-board architecture. In a similar

way, we can go through each ontology class, as well as a combination of different

relationships in order to infer and derive SRs. In the next section, we model these

identified SRs in the SysML SRs diagram, and enrich them with ontological details

(cf. SR ontology presented in section 2.4.2.4), such as type of the requirement, its

kind, etc.

6.2.1 Security Requirement Modeling

We now illustrate the modeling of security requirements in the SysML SRD and

show how we can use ontological concepts. We will continue our discussion using the

firmware flashing example from the previous chapters. Using the two main SR types

(i.e., FSR, NFSR) introduced in the section 2.4.2.4, the first subsection is dedicated

to Functional Security Requirements. Next, we present the Non-Functional Security

Requirements that are also necessary to secure the firmware flashing process.

6.2.1.1 Functional Security Requirements – FSR

This section describes the security requirements that a system or system component

has to ensure during the firmware flashing process.

• Ensure authenticity: This security requirement specifies that the se-

curity features of a firmware flashing application shall require each entity

(i.e., internal or external) to be successfully authenticated before allowing

any firmware update action to be executed. This involves: ensure the iden-

tity of a service station, and firmware authentication. We use the SysML

«containment» relationship and group all these requirements together under

the abstract security requirement "ensure authenticity" in order to organize

requirements in well-formed structure, as shown in figure 6.1. From the onto-

logical point of view, we analyze each security requirement and map them to

appropriate ontological classes. For instance, "ensure the identity of a service

6.2. Security Requirements Elicitation 103

Figure 6.1: Authenticity security requirements

station" SR is a specific requirement defined for the firmware flashing appli-

cation. During modeling this requirement we classify this requirement as a

"Domain Specific" SR, and specify this in SR diagram by selecting the tagged

value of the "Classification" property as Shown in the Figure 6.1. In a similar

way, we also specify the type of SR by selecting an appropriate value from its

list of tagged values. For instance, in the case of authenticity security require-

ment, we select the "User Identification and Authentication" as a "Type" of

SR. In addition, following our reference concept, introduced in section 3.3.3,

a reference to the attack tree node (i.e., see attack tree node – AT.4 in figure

5.2), a reference to the system assets (i.e., Middleware), and a value about the

risk level (i.e., High) is also computed for each SR and specified in the SysML

SR element.

• Ensure Integrity: This security requirement should of course be monitored

to check whether a message sent between service station and on-board com-

ponents is unaltered, but also with respect to guarantee that the content of a

storage facility are not modified between two given read operations, or even to

ensure that the execution of the software implementing a service is not being

attacked through a modification to the execution environment or the code it

runs. Figure 6.2 depicts an aggregation of these security requirements using

the SysML «containment» relationship. As before, we analyze each ontological

concept for each of these requirements and map them to appropriate ontology

terms and concepts defined as a controlled vocabulary.

• Ensure Freshness: This security requirement prevents an adversary from

performing replay attacks in which a valid data is maliciously or fraudulently

repeated or delayed. In this context, this requirement is defined to ensure that

104 Chapter 6. Security Requirement Engineering

Figure 6.2: Integrity security requirements

all the messages and data exchanged between entities (i.e., DT, CU, ECU, etc.)

fulfill the freshness property. Even so, we also need to ensure the freshness

of firmware data and the freshness of all the messages along functional path.

Besides this, it is also imperative to ensure the freshness of flashing commands

sent from diagnosis tool. Figure 6.3 depicts the SysML representation of these

requirements along with mapping of ontological terms and concepts.

Figure 6.3: Freshness security requirements

• Ensure Authorization: This security requirement is specified to prevent the

gathering of unauthorized access rights to the resources. During the firmware

6.2. Security Requirements Elicitation 105

update process, it is required that the system uses the access control rules

to decide whether access requests from the (authenticated) service station,

using the diagnosis tool, for an installation of the firmware shall be approved

or disapproved. Moreover, it is also required to restrict the access rights for

accessing the flash memory, reading from the flash, and also limiting the access

rights to firmware update functions, or restricting access to install authority

keys as shown in figure 6.4.

Figure 6.4: Authorization security requirements

• Ensure Confidentiality: This security requirement is defined to ensure that

the authorized entities are the only ones that can know any secret of informa-

tion (i.e., firmware data, firmware shared keys, etc.). In the firmware update

scenario, this requirement is mainly specified in order to prevent an adversary

from accessing the firmware code, analyzing its structure, function, and in-

jecting his own code in the original firmware flashing code. Figure 6.5 demon-

strates the SysML representation of Confidentiality requirement.

Figure 6.5: Confidentiality security requirements

• Ensure Availability: This security requirement is focusing on properties

that should be maintained despite denial of service attacks, coming either un-

der the form of computational resource oriented DoS, network DoS, or even

degradation of real-time constraints. In this context, an availability require-

ment applies to a service provided by the ECU, or to platform running on

the ECU, or to physical components of the ECU (i.e., CPU, RAM, or Bus)

providing a service. This requirement is satisfied when some service is opera-

106 Chapter 6. Security Requirement Engineering

tional during operational periods. It is further detailed with the specification

of the period during which the availability is required and of a set of entities

requesting the availability. Figure 6.8 depicts the SysML representation of

availability requirements mapping of ontological terms and concepts.

Figure 6.6: Availability security requirements

6.2.1.2 Non-Functional Security Requirements – NFSR

The previous section showed how to define functional security requirements, their

classification. In this section, we present non-functional security requirements, which

are also essential to ensure the security of the firmware update process.

• Monitor the Network Traffic: This security requirement is focusing on

properties that the system should monitor about network or system activi-

ties, or policy violations. It should then trigger alerts on detecting unusual

behavior, during the firmware update process.

Figure 6.7: Monitor the network traffic security requirements

• Prevent Structural Weakness of the Firmware Keys: This security

requirement is defined to ensure that the keys to be used within the firmware

update process have a well-defined structure. They should therefore be large

enough so that a brute force attack (possible against any encryption algorithm)

is infeasible – i.e., would take too long to execute. As the security of the

firmware code is solely based on the strength of cryptographic keys and of

6.3. Security Requirements Refinement 107

the encryption algorithm, the difficulty for an adversary to obtain the key

determines the security of the firmware update process.

Figure 6.8: Prevent structural weakness of the firmware keys security requirements

6.3 Security Requirements Refinement

Although the refinement relationship is already defined and explored in aforemen-

tioned approaches for an explicit iteration of security requirements, an important

amount of diversification of this relationship still remains hidden and underspecified.

For example, those approaches generally lack any basic support for understanding

significant changes from the perspective of dependency relationships between differ-

ent artifacts (or security classes in our definition). In this perspective of an early

introduction of security concerns in the design of a system, security requirements

and goals are often originated from the functional behavior of the system. More

precisely, security requirements originate from the system functional specification,

and in particular from the system architecture artifacts themselves, as well as from

the threats identified on those components: in this respect, the SRE model should

also take into account the relationships between SRs and the specific context such

as attacks, goal, and architecture, that prompted their expression, which should

become increasingly detailed through refinement. The latter point of view is for

instance supported by approaches like ISO-15408 ([62], sec. 6.2), which links secu-

rity requirements with system assets. The next section describes in more detail the

different dimensions of the refinement of security requirements in the vision outlined

above.

6.3.1 What a SR Refinement is not . . .

In this section, we investigate how a fundamental flaw in state of the art approaches

to SRE limits the fulfillment of the refinement vision sketched above. A first step to-

wards this evaluation consists in analyzing the various relationships among different

artifacts that are involved in the security requirement identification process. We can

find various relationships and associations used in the literature, like the dependency

relationship [88, 93, 87, 47, 57, 141] or the composition relationship [69, 153, 57].

However, as mentioned in the literature review section 2.2, the impact of these re-

lationships on the iteration process is fairly neglected. With regards to iteration

108 Chapter 6. Security Requirement Engineering

and relationship binding, each refinement step may have different implications on

the security requirement (or set of SRs). As an illustration to SR refinement, we

consider the dependency relationship and consider this relationship on our running

example (section 6.2). Figure 6.9, recaps the initial results obtained from the SREP.

(a) Partial view of the system architecture

AttackFirmwareFlashing

[AT.5] Prevent Service Station Installing Firmware

[AT.5.a] Denial of Service Atttack

...

(b) Partial view of attack tree

(c) Availability security requirement

Figure 6.9: Security requirements, Attack Tree, and System architecture

From the refinement point of view, the dependency relationship means that a sin-

gle change in any of the activity involved in the SREP (i.e., security attacks, goals,

system architecture) may lead to changes in SRs. Consider for example a case where

the security attack (i.e. DoS – attack tree node 1) would be prevented by modifying

the system architecture: there is no longer a need for any availability SR in that

case, or if the attack definition changes, the availability SR should meet the new at-

tack contract. For instance, we can assume that a number of previously considered

security attacks and vulnerabilities might not possible anymore, or refinement in the

system design makes it difficult for an adversary to exploit this attacks (i.e., DOS

attack). Nevertheless, we should not neglect the fact that sometimes such a refine-

ment can also make it easy for an adversary to exploit other security weaknesses. In

this regard, it is desirable that SRs are defined and refined in relation with the other

system wide development activities, because it may otherwise lead to inconsistent

and incomplete SR specifications. Inconsistencies often arise because multiple con-

flicting requirements are introduced into the SR, or because the system functional

6.3. Security Requirements Refinement 109

specifications themselves are in a transient stage of evolutionary development.

Additionally, we have learned from our experience towards security requirement

refinement [129], that sometimes a trivial adjustment in the functional specification

of the system architecture design or a small adaptation in the assumption specifica-

tion leads to a completely different realization or refinement of security concerns. For

example, during the system architecture design, suppose that functional requirement

about the message encoding scheme is changed from BER to DER [65], in order to be

compliance with underlying layers such as low level drivers and Hardware Security

Module (HSM) interfaces [136]. This variation in the system architecture design,

provides an opportunity to the expert adversaries, who have knowledge about sys-

tem architecture, to encode the messages with previously message encoding scheme

(BER), and send to the vehicle to make system busy in analyzing and decoding

unwanted message formats. This may lead to either system crash, or system re-

mains too busy in decoding unnecessary messages that it is not able to provide

services (i.e., DoS attacks) to other legitimate requests [58]. Furthermore, we have

experienced with a system, which is a combination of a heterogeneous landscape of

technologies (e.g., RPC) and includes various off-The-shelf components from third

parties: they also need to be analyzed and coordinated to determine and refine se-

curity requirements. We have identified several security attacks and vulnerabilities

(as mentioned in Chapter 5), due to the use of a middleware layer, which was in-

troduced in later stages of the system development [58]. From this perspective, SRs

and other system development activities have complementary relationships.

Walking through these different concerns, we note that we cannot simply rely on

just parallel refinement models. Instead, there are strong relationships between SRs,

system assets, and security attacks. There is a need for an integrated approach where

these security classes can be linked together; starting from an initial high level goal

specification and refining down to concrete security mechanisms that can be enforced

by the system model. However, existing frameworks or methodologies [70, 47, 88]

for SR refinement are falling short with respect to that objective as they consider

refinement separately in these different dimensions (if they even consider more than

one dimension). They also generally fail to link requirements together. The next

section describes our approach towards the refinement of security requirements in

relation to different security classes.

6.3.2 SR Refinement Process

Contrarily to what is often done in requirement engineering approaches, we develop

an approach for SR refinement which not only follows the iterative and incremental

development lifecycle but also deeply rely on the relationship and concepts defined

in the SREP (cf. Section 2.4.1). More precisely, the relationships coming from the

SREP are considered as the most important driving factor for the refinement of the

SRs specification. We in particular believe this consideration is of utmost impor-

110 Chapter 6. Security Requirement Engineering

tance to realize the vision of security requirements engineering as the driving force

behind the design and implementation of a secure system. This approach can be

supported only by a constant dialog between the design of system functions, the

requirements that are attached to them, the design and development of the system

architecture, and the assessment of the threats to system assets, which would give

momentum to the refinement of the security requirements, as well as to that of the

system architecture and threat analysis. Thus, the focus is on refining the amount

of detail, which facilitates both the selection of the right architectural solutions and

the specification of a security rationale for architectural choices. For the purpose of

clarity, rather than refining the whole system development process, we refine only

that part having to do with security requirements refinement. The SR refinement

process, in particular, follows the same steps and inference rules as defined in the

SREP (cf. section 2.4.1), depending on the level of details and properties we are

interested in. That is to say, the preliminary constructed specifications (i.e., system

models, security attack specifications, risk metrics, and security requirements spec-

ifications) are refined to more detailed specification. As soon as the system models

are evolved to new states, where all the new functions and mapping parameters (i.e.,

arbitration policies, priorities, etc.) are specified with their possible values, we insert

this knowledge into the corresponding knowledge base of these security classes. For

instance, consider the case of structural models in particular architecture descrip-

tion (cf. section 4.4.2.2), where more detail about the RPC layer is included in the

middleware specification.

At the ontology level, we used the "hasSubclass" relationship (as described in

section 3.4) to link the definition of RPC layer with the middleware view. In this

case, we take advantage of new knowledge and analyze the evolved system models

for the identification of security attacks and vulnerabilities. For instance, we can

use the Equation 6.3 to extract the new knowledge about the system architecture.

This query returns a list of architecture components and their subclasses as shown

in figure 6.10. However, in order to limit the search space, we have used the concept

of reference attribute, defined in section 3.3.3, which links the design artifacts to the

security requirements as well as to security attacks. In this case, we only query for

those particular concepts that are referenced in the design. For example, if we look

at the "impersonating valid users" attack (see figure 6.11), a reference to system

asset "middleware" is specified in its reference parameter. We use this value and

query (Rule 6.3) the architecture ontology to detect and analyze the current state of

this particular architecture component. This query returns a value RPC layer and

its subclasses such as "FirmwareFlashing", "log_off", etc as shown with dotted lines

in the Figure 6.10. Based on the result, we infer and refine the threats using rules

specified in Section 5.2, and embed this knowledge into the attack tree diagram.

Note that the refinement process goes on until reaching terminal conditions that

are either realizable security attacks in view of the adversary’s capabilities. This is

illustrated in figure 6.11, which shows the refinement of an attack tree node (AT.4.b)

into a "log_off" attack (AT.4.b.1). A detail description of this attack is presented in

6.3. Security Requirements Refinement 111

Figure 6.10: Ontological representation of the refined system architecture

section 5.4. In addition, while refining attack tree, we add/update the source value

(i.e., source of the attack) in the reference attribute, which in this case is "RPC

layer". In this way, it is possible to make sure that, at the given level of abstraction,

for example, a particular security attack is discovered due to some specific system

configuration. Using reference attributes in this way increase the maintainability of

security attacks as well as security requirements and makes its unnecessary repeating

the same rule for different ontology classes. On the one hand, the use of a reference

attribute also solves the problem, which we exposed in Section 6.3.1. It provides us

with a way to link with different system development activities as well as allows us

to support step-by-step refinement to fulfill our refinement design principles.

In the next stage of the refinement process, we use this newly generated knowl-

edge and decide if any refinement of SR is required, or whether SR still covers the

desired goals, attacks, system requirements, etc. In particular, we use different in-

ference rules (as described in section 6.2), and combination of different condition

to refine the security requirements. For instance, we can consider the Rule 6.3

to extract the knowledge about security attacks and their targeted system assets.

This rule for instance returns the "log_off" attack and the "RPC layer" as a re-

sult. Based on this result we refine the "ensure the identity of a service station"

requirement into " RPC layer authentication" (see figure 6.12), which states "RPC

member functions should only be executed by the entity that authenticated as that

112 Chapter 6. Security Requirement Engineering

!"#$%$&'()*+$,$-./0/1

!23'456$%$&'()*+$,$78*9')5*:;

!2563$%$&'()*+$,$<:==)>3

!?)*6$%$&'()*+$,$#5@:)*$&A39)B)9

!-6>3(=:(C$%$&'()*+$,$DEA3('

!F3B3(3*93$%$&'()*+$,$2)66;3G:(3$H5@A5*3*'

!"#$%&'()*+(,-.)/+0-1&$%&

I

I

!"#$%$&'()*+$,$-./0/1/J

!23'456$%$&'()*+$,$78*9')5*:;

!2563$%$&'()*+$,$<:=)>3

!?)*6$%$&'()*+$,$-AA;)9:')5*$K3>3;

!-6>3(=:C$$%$&'()*+$,$DEA3('L"*=)63(

!F3B3(3*93$%$&'()*+$,$F<H$K:C3(

2',3'44-5**)67

Figure 6.11: Refined Attack Tree

designated in the parameter". We use the SysML «deriveReq» relationship in order

to specify the relationships between these requirements. The SRs that results from

a refinement cycle are at a refinement level suitable to prevent security attacks and

meet the requirement of refined system architecture. We may thus now apply our

reference concept here again to relate security requirement with the security attack

(i.e., AT1.1) and a reference to the system asset (i.e., RPC layer) is specified in the

SR diagram in order to link and maintain the relationship between different models.

The goal of this step is to refine the SR specification so that enhances and clarifies

previously specified SRs in relation to other security classes (i.e., attacks, goals, etc.)

and their constructs.

6.4 Security Requirements Traceability

In the previous chapters, we have defined the different processes to perform the SRE,

through a conceptual construction of ontologies and associated security classes. The

SREP describes an iterative and incremental construction of the SR specification

whose focus is to provide a relationship between the SRs, the security attacks, and

the other system development activities like the architecture design. However, as

mentioned in the chapter 2, major concern in designing secure systems, especially

the ones with evolving security requirements, is tracing the source of requirements

and understanding why and how the system meets the current set of security re-

quirements. In this context, it is essential to maintain the traceability link between

security requirements and the other security classes during the system development

process. However, as can be seen from the above SRE model, linking security re-

6.4. Security Requirements Traceability 113

Figure 6.12: Derived security requirements

quirements to their sources, and providing traceability links during the SREP can

be along several dimensions. In particular, different roles (i.e., business modelers,

security engineers, test and verification teams, etc.) contribute to capturing and

building the SR specification, often with divergent perspectives. For instance, the

types of relationships of interest to a test engineer are tracing and verifying the

relationship between security goals and enforced security requirements. In contract,

a security engineer interests are in providing the link between security requirements

and other security classes. To help in this alignment, we developed security require-

ments traceability metamodel (see figure 6.13). The purpose of this metamodel is

at least two fold:

• Building the source – target relationship between different security classes to

trace the origin of security requirements across different system development

efforts.

• Allowing designers to link and show that the security classes, more specifi-

cally security requirements meets the system design at different development

stages, and helping with the early recognition of those security requirements

not satisfied by the system design.

In our context, as introduced in chapter 3 and exemplified in our various examples,

we have used the reference attribute to link all different security classes and their

generated artifacts. In the case of traceability relationship between security require-

114 Chapter 6. Security Requirement Engineering

ments and other security classes (i.e., system assets, security attack class, etc.), the

reference element of the meta-model is defined by:

• A security class (Source), which references an element of the security class(es).

More specifically, the source relation documents the essence, which the secu-

rity requirement is based on. The source element can be, for example, a system

asset, an attack tree node(s), a value from the risk matrices, or security re-

quirements.

• A security class (Target), which references an element of the security require-

ments class.

!"#"$"%&" !"#$%&'()*+,--

!"#$#%#&'#()*#

!+,-#

!.,%,-#/#%0

!1#0'%2*/23&

4-#/,'5,006

'"&($)*+,!"#"$"%&"

7889

!:3-*302/#;"#$#%#&'#

988<

!/,%=#/

< 988<

!03>%'#< 988<

!?5#-#&/()*#

!+,-#

!.,%,-#/#%0

!1#0'%2*/23&

4-#/,'5,006-."/"%*

Figure 6.13: Security requiremnt traceability metamodel

As discussed earlier, the advantage of the source – target relationship as a seed

for the subsequent analysis is that, we can directly relate different security classes

(i.e., security attacks, security requirements, etc.) with their origin, as well as with

the reason for their existence. However, one of the concerns in managing traceability

links is that SRs originates from multiple sources and also have strong dependency

relationships with one another. In this context, a composite reference is required

to group and trace SRs though the lifecycle at the different level of granularity. By

“composite reference”, we mean aggregating individual references into one or more

complex traceability links. To support these security requirements traceability links,

we have made several extensions to SysML semantic (presented in section 3.3), in

order to link and cross-reference SysML diagrams (i.e., SysML AT Diagrams, SysML

SR Diagrams, etc.) with one another. We also used the SysML «trace» relationship

to add a source reference to any SysML model item, thus indicating its origin. Once

the reference attribute is specified, we can obtain a detailed report of the SRs traced,

using the TTool report generation mechanism. A SR traceability table, shown in

figure 6.14, illustrates the interest of this reporting feature. In this table, the ID

column depicts the identifiers of SRs and also indicates the dependencies between

different security requirements at the different levels of system abstraction such as,

6.5. Where we Stand 115

Figure 6.14: Security requirement traceability table

AUT-1 and AUT-1.a, AUA-1.b and so on (see figure 6.1). The following two columns

(Name, Type) represent the SR and defied SR type. The Kind column specifies the

more concrete category these requirements belong to. The columns Targeted Attack

and Reference Element contain a reference of the attack tree node and a reference to

system asset elements for which the security requirement is specified. Our summary

table (figure 6.14) illustrate the capabilities of our tool in tracing SRs along with

additional properties, which we have specified in SRO such as the type of SR, SR

kind, as well as assumptions (if defined) during the security requirements engineering

process, etc.

6.5 Where we Stand

The expression of security requirements is central when it comes to describing how

to secure a system. We reviewed in chapter 2.2, SRE approaches and in particular

how appropriate they are for the identification, the refinement, and the traceability

capabilities to security requirements. Table 6.1, summarizes the core capabilities

of our SRE methodology (SysMLsec) in comparison with other SRE approaches.

The main observation concerning this comparison table is that currently there is no

perfect match with respect to the capabilities that SRE should provide.

6.6 Conclusions

In this chapter, we have presented the SREP that help in capturing the charac-

teristics of SRs and the way these characteristics can be specified using the SysML

representation. The aim of specifying security requirements is to provide an input to

the secure on-board architecture design, to the model-based verification, to the pro-

tocol specification, and to the security architecture implementation. We illustrated

why security requirements can be refined with enough precision for supporting the

design of security architecture provided if they are extensively linked with security

attacks and the system architecture. Finally, we presented traceability metamodel

to facilitate tracking, management and assurance of SRs to support our approach.

We believe that, SREP is expressive enough to model and build fine-grained SR

116 Chapter 6. Security Requirement Engineering

U
n
ifi

e
d

S
R

E
M

e
th

o
d
o
lo

g
y

Conceptual
Classification

Security
Requirement
Approaches

Core Repre-
sentation

Capabilities

Refinement Traceability

Goal Based KAOS Goal � ⊞

Secure i* Goal ⊞ �

Secure Tropos TROPOS ⊞ �

Model Base UMLsec UML ⊞ ⊞

SecureUML UML � �

Problem Ori-
ented

Abuse Frames
Problem
Framework

� �

Misuse Cases Use Case � �

Process Ori-
ented

SQUARE
No specific
modeling dia-
gram proposed

⊞ �

SysMLsec SysML � �

Table 6.1: Comparative analysis of security requirements approaches. The degree

of fulfillment will be "�" for available properties, "�" for not available, and "⊞"

for partly or optionally available properties.

specifications; at the same time, the complexity of adapting SREP to subsequent

stages of the system development lifecycle is manageable.

Part III

Security Requirements

Enforcement

Chapter 7

Constructing Security

Specification of Cryptographic

Protocol Design

7.1 Introduction

When developing cryptographic protocols, the most common design principle is

specifying the behavior of protocols, security properties to be enforced, as well as

discussing the context/environment in which they will be used. While this simple

logic is not always explicit or evident when one designs cryptographic protocols,

there are various dilemmas in describing knowledge of cryptographic protocols in

this manner, in particular, two important issues. First, the notion of knowledge

typically depends upon certain mixes of functional and non-functional constructs

and the knowledge of a few system parameters: the sequences of states or events

(protocol itself), security requirements, the operational environment and system

boundaries, and security expertise about security mechanisms. Second, a more im-

portant problem relates to how this security knowledge and conceptual foundations

for different security classes (i.e., security requirements, security algorithms, secu-

rity mechanisms, etc.) is shared and used in the design of cryptographic protocols.

We experienced during the design and verification of cryptographic protocols for

automotive on-board network that, even though the protocols are based on crypto-

graphic building blocks, and proven backed by hardware mechanisms, the adversary

is still capable of performing considerably simple attacks (cf. logoff attack presented

in section 5.4). In particular, such kind of attacks are possible due to the lack of

relationship binding between different architecture layers and also due to the weak

association with other security constructs (i.e., security requirements, system ar-

chitecture, etc.). In a similar way, it is also challenging to decide about security

mechanisms and security controls without having enough details about all involved

artifacts, their properties, and how security related information is exchanged and

used by different functions in the protocol specification. Given these constraints,

constructing cryptographic protocols is a subtle and complex task, because it is diffi-

cult to speak of any logic for security protocols without relating to different security

constructs and classes. In this perspective, we argue that the concept of ontologies

make it clearer what are the relationship between security mechanism and security

120

Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

requirements. In general, such ontology allows a cryptographic protocol, together

with its knowledge representation, to be constructed in accordance with functional

and non-functional security aspects of system architecture.

The focus of this chapter is consolidating and developing the relationship among

different ontologies that can be used to design cryptographic protocols specifica-

tion. In section 7.2, we propose ontology for cryptographic protocols design, which,

in turn, facilitates the construction of cryptographic protocols. With an ability

to refer to different security constructs, the proposed ontology provides modular-

ization in such a way that cryptographic protocols can be combined and, when

appropriate, interchanged while preventing that certain security functionality is im-

plemented redundantly. In the sequel, in section 7.3, we present an OTA firmware

update cryptographic protocol to show how this security protocol ontology is em-

ployed in order to secure firmware update process. As already highlighted in chapter

5, attacks on the in-vehicle network have serious consequences for the driver. If an

adversary can downgrade the legitimate firmware with his malicious firmware, he

can essentially control the functionalities of the vehicle and perform arbitrary ac-

tions on the in-vehicle network. The OTA firmware flashing cryptographic protocol

has especially been designed with respect to these attacks as well as by consider-

ing the functional and non-functional requirements of such heterogeneous on-board

architectures. Our approach provides the link between hardware security anchors

(integrated security modules) and software security framework, which is necessary

to achieve an enhanced trust level for safety-critical applications like influencing the

vehicle’s behavior. Section 7.4, reviews the capabilities of existing OTA firmware

update protocols in comparison with our own protocol specification. In section 7.5,

general conclusions concerning the functionality of security protocol ontology and

the design rational of firmware update cryptographic protocol for such heterogeneous

automotive networks are drawn.

7.2 Ontology for Cryptographic Protocols

The objective of ontology is to assist the protocol designer in reviewing and relating

different security concepts when designing the cryptographic protocol specification.

In this section, we highlight different security classes of the ontology (see Figure 7.1)

and the relationships binding between their conceptual foundations.

• Security Requirements class describe the desired security behavior ex-

pected of a system. In particular, the purpose of security requirements is

not only to specify per-assets security needs, but also to ease the selection

of appropriate security measures and the enforcement of security constructs.

We use the security requirement ontology (see Section 2.4.2.4) to extract the

knowledge about different security requirements and their classification.

7.2. Ontology for Cryptographic Protocols 121

Figure 7.1: Cryptographic protocols ontology

• Security Mechanisms class describe methods and techniques that are used

to implement and enforce security requirements. More precisely, this class

serves as the "security building block" whose result is the basis for SRs en-

forcement. The organization of this class is depicted in Figure 7.2.

Figure 7.2: Core classes of security mechanisms ontology

– Security mechanisms classification: This class is defined to distinguish be-

tween different security mechanisms used to enforce security objectives.

We categorize security mechanism in to two categorizes: cryptography

and non-cryptographic security mechanism. For example, applying either

simple password based security solution can enforce authentication or

approaches like authentication with symmetric challenge-response tech-

niques or smart card based mechanisms like single sign-on (SSO), one

time password (OPT), etc. can be used. Each of these security mecha-

122

Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

nism represent different construct to achieve the same security objective;

that is based on non-cryptography and cryptography security constructs,

respectively.

– Security algorithms: This class is defined to categorize and systematically

aggregate security algorithms into a set of well-defined classes that pro-

vide a comprehensive description of cryptographic algorithms and their

objectives. Here, we can reuse the security algorithm taxonomies pro-

vided in [77, 157]. The organization of NRL algorithm taxonomy [77] is

depicted in Figure 7.3.

EncryptionAlgorithm

Algorithm

SignatureAlgorithmKeyExchangeAlgorithm

SymmetricAlgorithm AsymmetricAlgorithm

DES (keylength = 64)

AES

Blowfish

TripleDES (hasNSALevel = &assurance;type3)

RSA

ECC

HashAlgorithm MACAlgorithm

SHA-1

MD4

Diffie_Hellman

Oakley

modeofOperation

CAST

keyLength

ChecksumAlgorithm

isNISTStandard

hasNSALevel

CRC-16

CRC-8

CRC-32

KEA

RIPEMD

MD5

HMAC

SHA-256 CBC-MAC

Skipjack (hasNSALevel = &assurance;type2)

CRAYON (hasNSALevel = &assurance;type1)

Figure 7.3: NRL security algorithm taxonomy [77]

– Security credentials: In this class, systems assets are classified in terms

of their properties towards security such as smart card, passport, fin-

gerprint, etc. To annotate specific system assets that support security

credential class, we reuse the credential taxonomy (see Figure 7.4) devel-

oped by NRL [77].

• System Architecture: The cryptographic ontology is further enriched with

knowledge about system architecture. The security architecture constitutes

the framework that describes how system assets interact and work together to

achieve global system objectives. In particular, it describes the behavioral and

structural models of the system, what each asset of the system does, and what

information is exchanged among system assets as well as security functional-

ities supported and provided by different components of system architecture.

7.3. Firmware Flashing Cryptographic Protocol 123

Credential

ElectronicToken

Debit

Card

OnetimePasswdCookiePassword Certificate

BiometricToken

Passport Badge
Drivers

License

Credit

Card

Military

ID Voice Fingerprint

X.509Certificate

name
value
path

version
serialNumber
issuer
notBefore
notAfter

RBACCertificate

role

PhysicalToken

CACCard

Smart

Card

expDate

minLength

Address

atAddress

IPAddress Domain

CryptographicKey

PrivateKey DigitalSignature

MultifactorCredential

withCredential (minCardinality=2)

MultifactorCredential

withCredential (minCardinality=2)

Figure 7.4: NRL security credentials taxonomy [77]

In this context, we can make a link to the previously defined system architec-

ture ontology (se Section 2.4.2.2), which provides different architect views (i.e.,

application view, middleware view, infrastructure view), and logical and con-

ceptual models of the system, and describes the relationships among different

assets.

7.3 Firmware Flashing Cryptographic Protocol

In the following we present a cryptographic protocol for firmware flashing application

and show how the different classes specified in the ontology can be adopted to build

a cryptographic protocol specification. We start building cryptographic protocol

specification by extracting and tracing back to different knowledge bases that we

have developed so far. For instance, let us start from extracting the knowledge

about functional security requirements (FSR) by querying (Rule 7.1) the security

requirement knowledge base. This query returns all the FSRs that we have specified

for firmware flashing application, during the SRE process.

SR(?r) ∧ hasFunctional(?r, ?FSR) → select(?r, ?FSR) (7.1)

Based on the results, we decided to select authenticity (Figure 6.1), integrity (Fig-

ure 6.2), freshness (Figure 6.3), authorization (Figure 6.4), and confidentiality (6.5)

as the security criteria of interest regarding the firmware update process. In addition,

124
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

thanks to the knowledge specified in the SysML SR diagram, these SRs also provides

us details about security attacks they cover, and their relationships with system as-

sets. For instance, in order to prevent service station from "installing bogus

authority keys" (see SR – AT.4.b in Figure 5.2) in the Hardware Security Module

(HSM), we have specified the "ensure authenticity of service station" (see

SR – AUT.1.a in Figure 6.2) and "restrict access rights to the HSM" (see

SR – ATH.1.b in Figure 6.4) security requirements. Thus, facilitate us to decide

appropriate security mechanisms as well as how to enforce them in order to pre-

vent security attacks. For instance, we can enforce the "ensure authenticity of

service station" security requirement by defining a "digital signature" secu-

rity mechanism. In a similar way, we translate each security requirement into a

specific security mechanism or set of security mechanisms. In order to do so, we

first extract (Rule 7.2) the knowledge about system architecture such as type of an

ECU, its properties, security services supported by a particular system assets, etc.

Architecture(?a) ∧ hasFunctions(?a, ?Funtions)

∧ hasSequence(?Functions, ?Sequence) ∧ hasAssets(?a, ?Assets) (7.2)

→ select(?a, ?Functions, ?Assets, ?Sequence)

As we previously mentioned, the reason to extract the knowledge about system

architecture is to have enough details about all involved artifacts, their properties,

and what kind of information is exchanged and used by different functions in the

protocol specification. All these details will certainly help us to select appropriate

security mechanisms. For example, in order to satisfy the performance requirements

for signing and verifying messages for V2X communications, a very efficient asym-

metric cryptographic engine is required, whereas, for in-vehicle communication, we

make use of shared secrets (i.e., symmetric keys) due to cost and embedded con-

straints [161, 134]. Based on the analysis of the security requirements, the system

architecture as well as extracting knowledge from the security mechanism class,

we have specified the security primitives in section 7.3.1 and used these security

primitives to develop the secure firmware flashing protocols in section 7.3.3.

7.3.1 Security Primitives

In this section, we briefly describe the security primitives that are required during

firmware flashing process. In particular, the Hardware Security Module (HSM) pro-

vides these security primitives. A topology to enable ECUs to implement cryptog-

raphy security primitives in a secure manner is shown in Figure 7.5. In this figure,

the application CPU(s) of an ECU is equipped with a cryptography coprocessor

HSM. This module is responsible for performing all cryptography applications in-

cluding symmetric encryption/decryption, symmetric integrity checking, asymmet-

ric encryption/decryption, digital signature creation/verification, and generation of

7.3. Firmware Flashing Cryptographic Protocol 125

random numbers used for security applications.

Figure 7.5: Hardware Security Module – HSM [161]

• Signature: This function is used for demonstrating the authenticity and

integrity of a message. A valid signature gives a recipient reason to believe that

a known sender created the message, and that it was not altered in transit. For

signature generation, a signature generation scheme sig(m)k takes as input a

key k, and messagem, outputs a signature S; we write sig(m)k = {S}k. Where

k is the security parameter, outputs a pair of keys (s ; v). s is the signing key,

which is kept secret, and v is the verification key which is made public. We

also assume that a time stamp (UTC Time) is generated and then also covered

by the signature calculation, and write m = (m+ t) to denote the message and

a time stamp whose signature is S. For the signature verification, ver_sig(m

, S)v → S
′ function is defined, takes as input the signature S, the signature

verification public key part v, and outputs the answer S ′ which is either succeed

(signature is valid) or fail (signature is invalid). As a precondition, the v must

be loaded and enabled for verification.

• Message Authentication Code – MAC: This function is used to protect

both the data integrity and the authenticity of a message, by allowing verifiers

(who also possess the secret key) to detect any changes to the message content.

For generating a MAC as well as the message itself, the notation MAC (m)k
= {M}k is used, so that it produces the message itself plus the cryptographic

authentication code based on k andm. Here, k refers to a cryptographic key for

MAC generation and m to the message to be authenticated. In the same way

as for signatures, the use of the time stamp m = (m+t) is covered by the MAC

calculation. For the verification of a MAC, the notation ver_MAC(m,M) is

used. Based on the k, it is verified whetherM corresponds to the message m.

• Key Management: This module provides following functionalities for inter-

nal key creation (using the internal RNG), key import and export:

– Key Creation is used for the creation of a key k on a hardware module,

using HSM Create_Random_Key function. All properties of the key are

126
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

determined and fixed during creation. This includes the cryptographic

algorithm to be used, the use and further property use flags indicating

what actions may be done with this key (i.e., sign and verify) as well as

the authorization data needed for key usage. Additionally, the creator of

a key has the possibility to set individual usage authorizations (use flags)

for each key usage. The use flag parameter indicates the operations that

may be performed with the key. In particular, the following flags are

present:

∗ sign|verify: Key can be used to generate and/or verify digital

signatures or H/MACs of any data.

∗ encrypt|decrypt: Key can be used to encrypt and/or decrypt any

data.

∗ secureboot: Can be used to create/verify secure boot references.

∗ keycreation: Can be used for creation of new keys, e.g. via key

derivation functions (symmetric) or DH key agreement (asymmetric).

∗ securestorage: Can be used to realize (locally bound) secure stor-

age

∗ utcsync: Can be used for synchronizing internal tick counter to

UTC.

∗ transport: Can be used to protect transports of keys (i.e., migra-

tion, swapping, move) between locations, according to individual

transport flags (i.e., 0 = INT, 1 = MIG ,2 = OEM, 3 = EXT).

Only the use flag may explicitly be set by the creator whereas further

property flags are set inherently. Once created, the key properties are

unchangeable. As output, the function delivers a key handle for later

usage of the key.

– Key Export is used for moving keys between different HSMs, between

HSMs and external (trusted) locations (if permitted). The HSM pro-

vides key_export functionality that ensures confidentiality by encrypting

(E(k)Tk) private key internals via a special transport key (Tk) (symmetric

or asymmetric) transport encryption as well as authenticity of all key data

structures via (symmetric or asymmetric) so-called transport authentic-

ity codes (i.e., a digital signature or a MAC). The key authenticity code

can be an explicit symmetric key enabled with use flag = verify or an

implicit symmetric/asymmetric key derived from a transport key. The

use of this key authenticity code is mandatory. As output, the function

delivers the encrypted key together with its authentication code; we write

E(k)Tk= {Ke}Tk . As an important precondition, the specified transport

7.3. Firmware Flashing Cryptographic Protocol 127

key must be loaded and enabled to be used for transport. Furthermore,

the transport flag of the key to be exported must be appropriately marked

according to the type of module managing the transport key.

– Key Import is used for importing keys into HSM or to other trusted par-

ties. In this way, the key_import function provides the counterpart to

the previously described export function. The key k may be imported ei-

ther into the non-volatile memory or into the main memory (RAM) of the

HSM. In the same manner as for key export, the use of the key authen-

ticity code is mandatory. As output, the function delivers a key handle

to reference the key for later usage. As a precondition, the transport key

must be loaded and enabled before. In addition, the authentication code

verification key must be loaded if the key is protected by a signature.

• Key Master – KM: We introduce a new functional entity, which we call the

key master. As there exist multiple variants of the HSM, that support different

cryptographic keys (symmetric/asymmetric), we had to take this into account

for key distribution. The KM is a central element in the establishment of a

session between entities. It holds public key (P) and pre-shared keys (Sk) of

the individual ECUs, which are used as transport keys, to establish a secure

session. This functional entity resides on a dedicated ECU or is integrated

into another ECU. There may be more than one KM node in a vehicle for

replication purposes.

• Monotonic Counter: serves as a simple secure clock alternative while pro-

viding at least 16 monotonically increasing 64-bit counters together with cor-

responding access control similar to TCG’s monotonic counters [42]. For

handling these counters, the following HSM functions are provided: Cre-

ate_counter; Read_Counter, Increment_Counter, and Delete_Counter. Ac-

cess authorization data needs to be provided as input data, and is later nec-

essary to create, increment or delete the counter.

• Pseudo Random Number Generator: creates pseudo random numbers

with a PRNG algorithm specified on invocation that can be seeded internally

from a physical true random number generator (TRNG) or from an external

TRNG during production in a controlled environment of the chip man- ufac-

turer. The latter case additionally requires a proper seed update protocol. All

prototype modules provide at least an officially evaluated PRNG according to

E.4 [131] (e.g., AES- or hash-based).

7.3.2 Assumptions and Constraints

Before sketching the protocol, we describe some additional assumptions and con-

straints that have to be taken into account for secure firmware updates: including

128
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

the secure storage of key material in the diagnostic tool and secure transport of

firmware data over the on-board bus system (i.e., CAN).

• HSM in the Diagnostic Tool: As mentioned already in Chapter 5, there

are numerous scenarios, where an attacker targets the diagnostic tool (DT).

For instance, the attacker might inject bogus authority keys into the ECU,

through DT, which compromises the overall security of the vehicular on-board

architecture In particular, this means that the DT stores challenges and public

strings for key recovery (i.e., ECU unlock key) and is therefore responsible for

the security of the subsystem. Therefore, this information needs to be stored

securely on the DT-side. An additional advantage of HSM is the resistance

against physical tampering of the DT. Any damage to the HSM changes the

behavior and therefore prevents the extraction of secret key material.

• Bandwidth Limitations of In-vehicle Networking Technologies: Firmware

update protocols comprise two parts: a V2I part, and an intra-vehicular part,

the latter involving a large number of interconnected ECUs. Secure transport

protocols are needed for the exchange of on-board messages. In the on-board

bus systems used, a specific restriction lies in the limited size of data packets.

For the CAN bus, for example, this means that only eight bytes of payload

may be transmitted at a time. For this purpose, secure common transport

protocols (S-CTP) [59], extensions of the CTP defined in [15] are applied to

diagnosis jobs, where typically larger data chunks need to be transmitted.

7.3.3 Cryptographic Protocol Specification

To simplify the description of the protocol, we split the firmware update protocol in

five sequential phases named (1) remote diagnosis, (2) ECU reprogramming mode,

(3) firmware encryption key exchange, (4) firmware download, and (5) firmware

installation and verification. In the next subsections, we describe the design of the

firmware flashing protocol. The resulting protocol is shown in Figure 7.6.

7.3.3.1 Remote Diagnosis

In the firmware flashing process, a service station using a diagnostic tool (DT) con-

nects remotely to a vehicle, using V2I communication channel, to assess the state of

the vehicle. To know which version is installed, a diagnosis of the vehicle is required

to have all necessary information such as ECU type, firmware version, and date of

last update. An employee of the station using the DT establishes a secure connec-

tion with the vehicle, at the ECU level, in order to determine the current state of

the vehicle.

7.3. Firmware Flashing Cryptographic Protocol 129

To do so, DT creates a session key ks (exportable), by sending a HSM command

create random key and specifies the set of allowed key properties as

ks : create_random_key(target_algorithm_identifier, key_size, valid_until

memory_target{nv|ram}, key_usage_size, key_usage_data)
(7.3)

It then calls export function (see Equation 7.4) of the HSM to encrypt the ks,

using Pb
1 (Public key of the central communication unit – CU) as a transport key

(Tk), and transmits a freshly created session key along with its signature to the

vehicle, gives us message exchange as shown in Equation 7.5.

{Ks}Pb
: key_export(key_handle, use_flags transport_key_handle (7.4)

transport_key_authorization_size, authenticity_key_handle

authenticity_key_authorization_size, authenticity_key_authorization)

A → B : m, {S}sa here, m = ({Ks}Pb
+ t) (7.5)

Here, the CU is the first receiving entity in the vehicle, responsible for receiving

and distributing messages to the on-board network. In the vehicle, the CU, equipped

with the HSM and acting as a key master (KM) node, receives the connection

request. The authorization for the connection is verified in the CU, by calling

the PDM. The message is checked for freshness, integrity and authentication of the

service station is also verified by calling the EAM. If the check succeeds, CU imports

the key ks into the HSM (see Equation 7.6). It then exports the received {Ks}Pc

with the corresponding Pc and distributes it to the target ECU (see Equation 7.7)

in order to enable end-to-end communication. This message includes all information

that is necessary to deliver this message to the correct ECU.

Ki : key_import(transport_key_handle, transport_key_authorization_size, (7.6)

transport_key_authorization, authenticity_key_handle

authenticity_key_authorization_size, authenticity_key_authorization, memory_target,

import_key_size, import_key, key_authenticity_code_size, key_authenticity_code)

B → C : m, {S}sb here, m = ({Ks}Pc
+ t) (7.7)

On the receiving side, ECU verifies the integrity, authenticity and authorizations

of CU as well as for DT, based on the policies specified in PDM as to whether DT

1For clarity reasons of our OTA firmware update protocol description, we denote the diagnostic

tool (DT) as “A”, the communication unit (CU) as “B”, ECU as “C”, and the OEM as “D”. Fur-

thermore, all cryptographic operations such as generation or import/export, signature verification,

integrity checks, etc. take place inside the respective HSMs.

130
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

is allowed to deliver a message or not. If this is true, and the message is fresh, ECU

imports the ks in the HSM, using the same equation defined in 7.6. Once key ks

have imported, an acknowledgment is sent back to DT. After this acknowledgment

frame, the DT sends, depending on the option chosen by the employee of the service

station, requests to read out diagnosis information (State/Log information) from

the ECU it wants to check.

Advance Notification: Due to legal reasons and to allow for flexible deploy-

ment, we consider that service station will send an advance notification of possible

firmware updates, if the type is the expected one. This advance notification is in-

tended to help customers plan for the effective deployment of updates, and includes

information about the number of new updates being released. These updates still

need to be approved for install before downloading. The customer receives this

information on the vehicle human-machine interface (HMI) and can decide about

possible deployment (i.e., Install, Decline, Decide later, etc.). Only updates that

have the approval status Install will be downloaded to the vehicle. Disabling any

ECU while vehicle is running may cause safety critical problems, depending on the

function ECU is responsible for. We thus assume that additional checks will be

performed by the on-board system, to ensure that the vehicle is stopped and has ac-

cess to the infrastructure, before switching the ECU into the re-programming mode.

Furthermore, we assume that the V2I communication is available throughout the

OTA firmware update process.

7.3.3.2 ECU Re-Programming Mode

If the type is the expected one, the DT forces the ECU to switch from an application

mode into a re-programming mode by requesting a seed (see Equation 7.8). This

seed is required to calculate an ECU specific key value to unlock the ECU for re-

programming. The ECU verifies desired security properties. ECU verifies whether

m is authentic and fresh by verifying the {M}ks . If it is true, ECU sends a HSM

command SecM_Generate(seed) to generate a seed Na as shown in Equation 7.9.

It then encrypts the seed E(Na)ks for confidentiality enforcement, compute a M

using key ks and transmits it to the DT (see Equation 7.10).

A → C : m, {M}ks , here, m = (request_seed + t) (7.8)

Na : rng_get_random(algorithm_identifier, random_byte_request_size) (7.9)

A ← C : m, {M}ks here, m = (E(Na)ks + t) (7.10)

At the same time, the ECU sends a HSM command to compute the key on the

HSM using Na. As output, the function delivers a Ku key, that is used to unlock

7.3. Firmware Flashing Cryptographic Protocol 131

the ECU as

Ku : secm_compute_key(secm_seed_type, secm_word_type, secm_key_type) (7.11)

On the DT side, it verifies {M}ks , decrypts the received seed (E(Na)ks), and com-

putes the Ku with the aid of the received Na, using the same key computation

fuction as used by the ECU (see Equation 7.11). Once the Ku key value is com-

puted, it is exported {Ku}ks , using session key ks as a transport key, and transmitted

to the target ECU as

A → C : m, {M}ks here, m = ({Ku}ks + t) (7.12)

The ECU verifies the M, and compares the received Ku with the self-generated

Ku. If the two values are identical, the ECU is switched into unlock state (from

application mode to the re-programming mode) and sends an acknowledgement

message to the DT. This message is sent after the ECU is switched into the unlock

state to make sure the switch has been performed. The information whether a

re-programming request has been received or not shall be stored in non-volatile

memory, e.g. EEPROM. Since switching from the application to the re-programming

mode shall be done via a hardware reset, all contents of volatile memory will be lost

[92]. If the comparison failed, the flashloader [92] holds the ECU in locked state.

ECU re-programming is possible only in the unlocked state.

7.3.3.3 Firmware Encryption Key Exchange

In this phase we are considering two possible scenarios for exchanging firmware

encryption keys: (1) on-line solution and (2) off-line solution. In the on-line solution:

the service station has access to an online infrastructure of the manufacturer, it can

request the firmware and as well as the firmware encryption key – {K}ssk. Here,

the SSK is a stakeholder symmetric key pair [59], created externally, with use flag

= decrypt only, key for stakeholder individual usage e.g., software update. Instead,

in the case of off-line firmware is encrypted with the pre-installed SSK.

Considering current trends and advancements in the automotive industry, on-line

solutions provide more reliability, flexibility and will eventually increase the security

of the on-board network. Sharing the firmware encryption key only with specific

ECUs makes an on-line solution more robust and generic compared with of-line

approaches, where all vehicles share unique symmetric keys that are pre-installed in

the vehicles. In addition, the existence of various security levels in the architecture

[129], pleads for the specification of a validity period of the SSK (short term or

long term keys), for an individual ECU.

Following our results from security requirements engineering (cf. Non-Functional

Security Requirements – NFSR presented in section 6.2.1.2), we suggest to use short

term keys for firmware encryption. Short terms keys will expire after a short amount

of time and thus, as there is no need for instant revocation if keys are compromised.

132
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

This has the advantage that OEMs do not have to go through another key migration

(installing new keys) process if keys are compromised. As such, the following section

only details the on-line solution. In this context, the DT sends a request to the OEM

server to get the firmware F encryption key (see Equation 7.13). This message m

includes information about the ECU (i.e., ECU type, ECU identification number,

firmware version, etc.).

A → D : m, {S}Pa
here, m = (request_firmware_key + t) (7.13)

The OEM verifies whether m is authentic, fresh, and integrity protected by verifying

the signature S of the received message. If verified, OEM server retrieve the Pc from

the Public Key Infrastructure (PKI), (possibly) maintained by an individual OEM

or by third parties, and exports SSK using Pc as a transport key. As the SSK key

blob is encrypted with the ECU key, It is not possible for the DT to retrieve the

firmware encryption key. The OEM server sends a message m with an encrypted

and signed firmware encryption key to the service station as

A ← D : m, {S}Pd
here, m = ({Kssk}Pc

+ t) (7.14)

Next, the DT transmits the received firmware encryption key to the ECU as

A → C : m, {M}ks here, m = ({Kssk}Pc
+ t) (7.15)

The ECU imports the SSK in the HSM using the key import function (see

Equation 7.6). The key import function provides the assurance to the ECU that

the key is generated by the OEM, by verifying the authentication code send along

with the encrypted key, and can only be decrypted by the specific ECU key. After

importing the SSK in the HSM, the ECU sends an acknowledgment about the

successful import of the SSK.

7.3.3.4 Firmware Download

Once the SSK is successfully imported into the HSM, the DT sends the received

signed and encrypted firmware F along with its ECU Configuration Register (ECR)

reference to the Random-Access Memory (RAM) of the ECU. Following the HSM

use flag approach, where multiple key-properties areq set, only the OEM server can

sign and encrypt the firmware, whereas the receiving ECU can decrypt and verify

the received firmware, using the same key material, shared before. The encrypted

firmware is downloaded block by block (logical block). Each of those blocks is

divided into segments, which are a set of bytes containing a start address and a

length. The start address and the length of each segment is sent to the HSM during

the segment initialization. For one block, a download request is sent from the DT

to the ECU. The ECU initializes the decryption service and sends an answer to the

DT. The download then starts segment by segment. After sending the last firmware

segment, the DT sends a transfer exit message to the ECU as

A → C : m, {M}ks here, m = (transfer_exit + t) (7.16)

7.3. Firmware Flashing Cryptographic Protocol 133

7.3.3.5 Firmware Installation and Verification

For an installation of the firmware, we consider the standard firmware installation

procedure defined in [92], where each logical block is erased and re-programmed.

However, before the flash driver can be used to re-program an ECU, its compatibil-

ity with the underlying hardware, the calling software environment and with prior

versions of the firmware has to be checked. This compatibility check is performed

by means of version information stored in the HSM monotonic counters. The HSM

read counter function is used to read out the value of a counter. A counter identifier

previously increased after every authentic and successful installation of the firmware.

These monotonic counters are defined to perform such a checking of its current ver-

sion against the new firmware version in order to prevent the downgrading attacks

meant to install older firmware.

For the verification, we defined a two-step verification process: In the first step,

before re-programming, the ECU verifies the signature of the firmware data. This is

verified by using the pre-installed Manufacturer Verification Key MVK. It proves

that the software was indeed released from the OEM. In the second step: we con-

struct a tiny trusted computing base (TCB) during the installation phase. We

compute an ECR trusted chain at each step of the firmware installation. The ECR

reference is needed to ascertain the integrity/authenticity of the firmware data. An

extend ECR function is defined to build the ECR trusted chain. This function is

used for updating the ECR with a new hash value. The new value is provided as

input and chained with the existing value stored in the ECR, using a hash update

function. As output, the function delivers the updated ECR value.

After a successful installation of the new firmware data, software consistence

check is performed. The check for software dependencies shall be done by means

of a callback routine provided by the ECU supplier. This check is done after re-

programming and before setting the new ECR reference. Next, the compare ECR

function is called. This comparison can only be performed after all writing proce-

dures for the logical block have been finished. This function allows the direct com-

parison of the current ECR with a reference ECR value received with the firmware.

It is also possible that the ECR reference may be contained inside the firmware

itself. In this case the flashloader shall call a routine provided by the ECU supplier

to obtain the ECR reference. If the check succeeds, the HSM preset ECR function

is called. This function is used to manage references to ECR values by ECR indices

in the context of a secure boot. After successfully setting the ECR value, the HSM

increment counter function is called to increment the monotonic counter with the

new value. At the last step, the actual hardware reset is executed, the flash-loader

deletes (i.e. overwrites) the routines for erasing and/or programming the flash mem-

ory from the ECU’s RAM [92], thereby making sure those routines are not present

on the ECU in application mode. After the reset, the application is started.

134
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

Error Handling: Each function of the HSM returns a status after its successful

or unsuccessful execution. Some functions may deliver further function specific error

codes. The value of the status shows the positive execution of the function or the

reason for the failure. In case of a failure, the flash process must stop with an error

code and the ECU enters the locked state.

Figure 7.6: Firmware flashing cryptographic protocol

In this section, we have presented a security protocol to show how hardware,

software security mechanisms can be used to achieve secure firmware updates pro-

cess. In particular, by using secure in-vehicle communication and a trusted platform

model, we showed how to establish a secure end-to-end link between the manufac-

turer, the service station and the vehicle. Despite the fact that a trusted platform

model entails certain constraints, such as the obligation to bind cryptographic keys

to a given boot configuration, we showed how the protocols we presented deal with

the update of the platform reference registers during the boot phase of an ECU.

7.4. The State of the Art: Firmware Update 135

7.4 The State of the Art: Firmware Update

The past decade has seen a tremendous growth in the vehicular communication

domain, yet no comprehensive security architecture solution has been defined that

covers all aspects of on-board communication (data protection, secure communica-

tion, secure and tamper proof execution platform for applications). On the other

hand, several projects, namely GST [118], C2C-CC [16], IEEE Wave [160] and SeVe-

COM [120] have been concerned with inter-vehicular communication and have come

up with security architectures for protecting V2X communications.

These proposals essentially aim at communication specific security requirements

in a host-based security architecture style, as attackers are assumed to be within a

network where no security perimeter can be defined (ad-hoc communication). These

proposals consider the car mostly as a single entity, communicating with other cars

using secure protocols. Mahmud et al. [89] present a security architecture and dis-

cuss secure firmware upload, which depends however on a number of prerequisites

and assumptions (i.e., sending multiple copies to ensure firmware updates) in order

to make secure firmware update. However, sending multiple copies is not realis-

tic and imposes several constraints on the infrastructure. This proposal does not

consider automotive on-board networks, where domains are traditionally separated,

and due to functional and non-functional requirements. Furthermore, on-board key

management issues are not mentioned in their approach. Kim et al. [78] present

remote progressive updates for flash-based networked embedded systems. In their

solution a link-time technique is proposed which reduces the energy consumption

during installation. However, no security concern is addressed in this proposal.

Nilsson et al. discuss in [96, 98] provide a lightweight protocol and verification for

secure firmware updates over the air (SFOTA). In the SFOTA protocol, different

properties are ensured during firmware update protocol (i.e., data integrity, data

confidentiality, and data freshness). However, this approach also relies on strong

imposed assumptions in order to ensure the secure software upload: the authenti-

cation of the vehicle is not considered, keys are assumed to be stored securely and

the authors use a single encryption key for all the ECUs in a car. Furthermore, no

specific execution platform requirements are put forward by this proposal. In [97],

key management issues are discussed in relation with software updates. A rekey-

ing protocol is defined in order to distribute keys with only specific nodes in the

group. It also uses a multicast approach to update the software on a group of node.

However, we consider that different firmware’s are installed on different ECUs, de-

pending on the ECU functionalities, which makes multicast approach not useful.

Furthermore, as mentioned above, this approach also does not consider execution

platform requirements. It does not discuss about computation attacks, where the

attacker can learn and modify the firmware, during the installation phase or simply

prevent to update the counter, for later replay attacks.

136
Chapter 7. Constructing Security Specification of Cryptographic

Protocol Design

Hagai [135] presents an approach that takes hardware into account by providing a

secured runtime environment with a so-called Trust Zone on an ARM processor. In

contrast the solutions of [9, 48] are software based. The so called tools and enablers,

which are low-level and application-level security functions in [9] also cover a number

of on-board automotive use-cases, while leaving the essential link to the external

communication domain uncovered. The approach most closely related to our work

is that of the Herstelle-Initiative Software – HIS [92]. The flashing process defined

by the HIS provides a good basis for the OEMs, but the recommended protocol does

not provide all the necessary security functionalities (i.e., freshness). Furthermore,

this process only addresses hardwired firmware updates and does not provide any

information about which key is used for firmware encryption, in a heterogeneous

landscape of communication network technologies.

7.5 Conclusion

In this chapter, we have introduced the concept of ontology for cryptographic pro-

tocols in order to build the foundations for designing secure protocols in accordance

with available security constructs and security classes. In particular, ontology makes

it possible to analyze and design the cryptographic protocols by combining and

binding system architecture, its security requirements, relationship with its security

mechanisms, and available security services provided by different system assets. We

have exemplified how the ontology can be used for building dedicated distributed em-

bedded system protocols like a vehicular on-board firmware flashing cryptographic

protocol specification. We showed how a root of trust in hardware could sensibly

be combined with software modules such as PDM, EAM, and KMM. These mod-

ules and primitives have been applied to show how firmware flashing can be done

securely. In contrast to existing approaches, the protocols presented in this chap-

ter, describe a complete process, which involves the service provider, the vehicle

infrastructure as well as the manufacturer and the service station. By using secure

in-vehicle communication and a trusted platform model, we show how to establish

a secure end-to-end link between the manufacturer, the workshop and the vehicle.

Chapter 8

Towards the Enforcement of

Access Control Security

Requirements

8.1 Introduction

The design and enforcement of security requirements, and in particular the access

control related requirements, is central to securing automotive on-board networks

from various attacks (i.e., RPC log-off function, intercept key data, etc.), but also

a relatively very complex task. There already exist a few automotive-capable se-

curity solutions (detailed in Section 8.5.3): these solutions have traditionally been

developed using standard security solutions in mind, where the vehicle is mostly

considered as a single entity or only concerned with only the enforcement of access

control are for protecting V2X communications. However, automotive on-board ar-

chitectures do not only rely on the simple enforcement of security rules but also

involve multiple enforcement points, especially when the underlying platforms and

infrastructures are providing services themselves, like HSM, or middleware layers.

Guided by our requirements engineering approach that specifies the security relevant

automotive requirements to mitigate several attacks and vulnerabilities on these sys-

tems [80, 128, 52, 163] as well as by the specific needs and constraints, we extracted

various types of access control requirements to analyze what kind of security policy

is required as well as to decide about the appropriate enforcement points. We have

identified the following set of security requirements whose expression must notably

be enforced by the access control architecture:

• Authorization requirements (see Figure 6.4) that specify to which extent a

certain entity is allowed to access and use a specific resource under a certain

condition

• Authentication related access control requirements (see Figure 6.1) that define

what level of authentication is required for corresponding role authorizations

The above requirements have to be coordinated, which should be reflected by

a comprehensive security policy. For instance, the security policy to be applied in

a vehicle is the combination of an invariant policy for the usage control of cryp-

tographic credentials of electronic control units, and a flexible networking security

138
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

policy. The credential usage control policy is enforced by the HSM and possibly

through the virtualization of the ECUs if applications on the same ECU have to be

segregated. In contrast, the networking security policy is enforced by all network el-

ements. Moreover, the access control architecture must also allow enforcing the rule

to limit the traffic on the buses under consideration, based on trusted authentica-

tion or other security mechanisms like traffic filtering or secure logging. To simplify

the authorization steps and to enforce these different sets of security policies in an

on-board architecture, we need a system in which access control decisions are based

on authenticated attributes of the subjects, and when the authorization authority

is decentralized, in order to attain more fine grained access rights.

Unfortunately, there is currently no automotive-capable access control architec-

ture, which not only needs to be extremely reliable and defect, but also extremely

efficient for the enforcement of these security policies. To this end, we have defined

and prototyped a security policy enforcement architecture for automotive on-board

networks where security rules are enforced and handled at different layers of the

architecture. However, the prerequisites of such an enforcement architecture are the

knowledge of the communication buses and of the available computational capabili-

ties of the on-board networks, more specifically, their ability to transmit, process, or

store complex security policies. We show how the ASN.1 [67] specification that has

been used for other purposes in the vehicle (i.e., low level drivers, RPC definition,

HSM interfaces, etc.) can be employed in order to solve this particular issue.

In this chapter, we discuss how to design security policy engines that implement

an effective enforcement in such heterogeneous automotive on-board networks. The

novelty of our approach is in its enforcement of various access control rules, by

deploying multiple policy enforcement points at the different levels of system ab-

straction. In particular, such a system must configure on one hand the mechanisms

for handling all kind of authorization requests (i.e., management of keys for com-

munication between ECUs, RPC level, and application level access control, etc.)

and, on the other hand, the filtering mechanisms are enforced at the inter-domain

gateway level in order to limit the unnecessary traffic. The configuration of security

mechanisms (cf. deployment architecture presented in Chapter 7) in automotive on-

board networks makes it necessary to define and deploy adapted security policies.

In this context, we decided on building upon the XACML access control language.

This language is suitable for the high level description of subjects, objects (or re-

sources) and permissions on these. This language provides a flexible and modular

way to define and enforce policies in distributed environments. By using XACML,

we provide a reasonable interface towards new infrastructure and application ser-

vices with W3C compliance. Although, XACML defines the policy language and a

"request–response" message format, the use of the complete XACML policy spec-

ification is neither necessary nor even desirable for an automotive environment.

Similarly, we could not afford the XML based security policy for reasons of message

size constraints as well as footprint of an additional XML parser in the on-board

system.

8.2. Security Policy Enforcement Architecture 139

We thus evaluate how policies expressed in XACML can be adapted to the auto-

motive environment efficiency requirements despite the limited computational power

of those units and network bandwidth limitations. To this end, we propose an al-

ternative interchangeable format, PDM Native Language (PNL) for XACML based

security policies that is designed and implemented for compatibility with today’s

vehicular functional and non-functional needs. We further look at the performance

analysis of our proposed PNL encoded policies with security policies specified in

the XML format. We show that PNL encoded policy is lighter and enables a much

faster parsing and configuration of security policies.

The remainder of this chapter is organized as follows: Section 8.2 outlines the

security policy enforcement architecture, and in what way the security policy sup-

ports the flexible deployment and enforcement of the networking security policy.

Section 8.3 discusses how XACML is being used to define the flexible part of such a

security policy. In section 8.4, we present the security policy configuration process

in order to install and configure access control policies with in the vehicle. Section

8.5 presents and analyzes performance figures for our policy engine. Finally, the

chapter summarizes the results that we achieved regarding enforcement of access

control security requirements.

8.2 Security Policy Enforcement Architecture

We first describe the structure of Policy Decision Module (PDM) that we adopted

in chapter 7 in order to enforce various access control related security requirements.

The PDM, which can be flexibly updated, is deployed within the automotive system

at different levels of architecture layers. Considering the automotive networks and

design specifications, we propose modular access control deployment architecture. A

PDM which serves as a security policy engine is flexible deployable within the auto-

motive system environment, which means, that a PDM could be used as a centralized

module accessible from different domains and application within the automotive on-

board network, or it could be deployed based on a multi-centered approach, or the

module could be completely distributed within the system environment. There-

fore, the PDM is applicable to the different requirements and constraints given by

a specific on-board architecture and thus, can be deployed in different vehicle se-

ries over changing in-vehicular IT infrastructures. The PDM is composed of two

main components (1) Policy Decision Point (PDP), following the terminology used

in XACML, and (2) Policy Enforcement Points (PEPs). As a proof of concept,

we have implemented PDM within the EMVY framework as a centralized module

accessible from different domains and application. EMVY uses distributed master-

client architecture and provide component-based templates for introducing security

relevant mechanisms for securing communication between ECUs within a vehicle.

All clients request services such as authorization request, entity authentication or

key distribution, from the master in a "thin client" fashion, i.e., the service only

140
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

needs to be implemented on the master as shown in figure 8.1.

Figure 8.1: PDM and PEP deployment

8.2.1 Policy Enforcement Points

The PEP is the point, which receives the request from the requester and forwards

it to the PDP. The PDP makes the decisions based on the policy that is a set for

accessing that resource, while the PEP enforces the access control decision. Thus,

PEPs handle access, or communication, or boot sequence validation requests for

instance and have to enforce policy-based decisions. In order to enable a maximum

level of flexibility and adaptability of the security functionality, we configure the

PEP in a multi-layer fashion as a part of many security modules or programs that

effectively enforce access rights of security-relevant resources, as shown in figure 8.1.

In particular, this multi-layer enforcement architecture enforces security policies and

rules in a distributed fashion, even though enforcement mechanisms used at each

layer are different. All this means that we need some data structure to store security

attributes computed by an enforcement point along the control flow, and that may

be used to check the satisfaction of further policy rules. In particular, such a binding

allow us to share security related information at the different architecture layers as

well as to mitigate several attacks on these layers (cf. MLAM presented in Chapter

5). For instance, deciding on access control for some RPC request requires first

allowing network traffic, at the CCM level, between the communicating parties,

then the key credential usage control policy is enforced by the PEP deployed at

the HSM in order to determine if the client allowed to communicate with other on-

board clients and which ECUs the KMM component will distribute keys to in the

8.2. Security Policy Enforcement Architecture 141

vehicle, then authorizing the communication channel using these keys, then finally

making sure that the RPC request can be performed by the entity authenticated

at the transport layer. Moreover, the filtering policies are enforced by the PEP

defined at the CCM layer. The aim of those policies is to decide whether to forward

messages or to drop them based on the authorization rules defined. Those rules

will typically define patterns that have to be matched by the transport layer for the

message to be forwarded (positive rules) or dropped (negative rules). Every CCM

will contain a list of such rules that will be screened in an orderly fashion (so as

to solve conflicts between positive and negative rules), looking for the first match.

Rules apply to the incoming interface. The case where no match applies will result in

the message being dropped, and a notification being sent to the intrusion detection

system. Rules of such policies will be based mainly on transport-layer parameters

(source and destination addresses, domain of origin or destination, etc.) but also on

application-layer information, resulting for instance not only from the observation

of a message (e.g., sending of a message from a sensor), but also on that part of its

content (depending on the processing capabilities of the gateway), e.g. contained

security features on application level.

Filtering may also be stateful, for instance relying on the past observation of

a message, and even on contextual information, i.e., information about the vehicle

and its environment that parameterize the policy but may be updated separately

(e.g., vehicle speed, nearby vehicles, attack detected on another gateway, etc.). Fil-

tering may therefore rely on plausibility checks. Contrary to filtering performed for

traffic coming from some domains (e.g., the Head Unit (HU) domain), filtering on

emergency messages should never completely prevent the transmission of potentially

e-safety related messages, and only endpoints, i.e., applications, should ultimately

decide about the validity of some information.

In addition, endpoint access control policies, enforced by PEP at the application

level (i.e., C2X App shown in figure 8.1), on the other hand determine precisely

whether an application can process certain messages based on its origin and on

the definition of the authorizations of stakeholders. These are again positive rules

expressing authorization granted to subjects. These policies are rather fine-grained.

Most of these policies are about application permissions, that is, operations that can

be performed by ECUs internally. However, some permission relate to stakeholder’s

rights, in particular with respect to the right to update firmware or parameters of

ECUs. A detail description of rule enforcement used at each layer is discussed in

Table 8.1.

8.2.2 Handling Policy Decisions

The PDP decides based on security policies whether or not access to a particular

resource is granted. The decision of the PDP is then enforced by the policy PEP

that drops a message, forwards a message or modifies a message (e.g., encrypts the

142
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

Security Module Policy Enforcement Point (PEP)

Communication Con-
trol Module– CCM

enforce the filtering policies which act as firewall. Rule enforcement will
be based mainly on transport-layer parameters but also on application-layer
information.

Entity Authentication
Module –EAM

enforce the policy based login and authentication services (e.g., password,
smartcard).

Key Management
Module –KMM

enforce the key generation and group communication security rules.

Platform Integrity
Module – PIM

rule enforcement regarding valid boot integrity measurements.

Secure Storage Module
– SSM

enforce the secure storage/access of data security rules (i.e. encrypt the stor-
age device or, can encrypt data objects individually).

Security Watchdog
Module – SWD

policy enforcement rely on a set of rules consists of a attack pattern and an
action.

Table 8.1: Software security modules and Policy Enforcement Points (PEPs).

message with the cryptographic key of the destination ECU) according to the secu-

rity policy. In our deployment architecture, a PDP usually acts autonomously in its

domain where he is assigned and makes decisions in response to every authorization

request. By default, PEP actively queries the PDP for every decision. However,

PEP could be pre-configured by the PDM (autonomous PEP). Such an autonomous

PEP would act as an ancillary PDP, mostly based on static or cached security deci-

sions, and possibly parameterized decisions depending on security information that

are available locally. For instance, during the secure bootstrapping phase, the SSM-

PEP acts as an autonomous PEP and decides based on its local policy whether the

PDP is allowed to load security policies.

8.3 Security Policy Expression

As we explained, the on-board network policy has to describe how to configure very

different security mechanisms. After exploring several alternatives including draft-

ing our own policy language, we decided on building upon the XACML [101] access

control language, obviously for expressing the access control rules of our security

policy, such as the definition of secure communication groups and related autho-

rizations at the RPC level, but as well as a more general policy language. XACML

provides a flexible and modular way to define and enforce policies, and its deci-

sion/enforcement model fits well in distributed environments, even for the on-board

embedded system of a vehicle. XACML provides an interchangeable policy format,

support for the fine-grained description of resources, can describe conditional rights,

supports policy combination and conflict resolution. Another important aspect re-

garding the choice of XACML as our policy language was its independence from a

specific implementation and the large number of tools for writing and analyzing any

policy. In the case of specific configurations, XACML is flexible enough to represent

8.3. Security Policy Expression 143

different security profiles. For instance, the XACML Policy element can be used

in order to encapsulate complex firewall rules comprising multiple attributes, the

source IP address/port numbers being specified in the XACML Subject element for

instance, and the destination IP address/port number being mapped to the XACML

Resource element. In a similar way, the XACML Rule element can be used to rep-

resent distinct firewall rules. However, due to the embedded nature of the on-board

system and its functional and non-functional constraints [94], [74], it is not feasi-

ble to transmit, process, or store XML-based policies in the car. For instance, for

the ubiquitous CAN bus, which is operated at around 500kbit/s and offers 8 bytes

of data payload per packet, verbose formats like XML would constitute a hardly

justifiable increase of the bus load.

To cope with the above-mentioned limitations, we defined a binary-based secu-

rity policy language that consumes less bandwidth, is fast to process, and requires

less memory (see section 8.5 for a performance analysis). We called this representa-

tion the Policy decision module Native Language (PNL). The purpose of the PNL

is not to define yet another access control policy language but rather to provide

an alternative interchangeable format for XACML policies, that can be used where

performance is an issue. We built PNL on ASN.1 standards [67]. These standards

are adopted in a wide range of application domains, as in aviation systems for traf-

fic control, mobile networks, network management, secure emails, fast web services,

etc., [67]. PNL makes use of these standards, describes a serialized representation

of XACML policies in binary format, and ensures that the XACML structure is

preserved during serialization. In order to do so, a XACML schema is mapped into

a corresponding ASN.1 definition (see listing D.1). This mapping is based on the

ITU-T X.694 standard (Mapping from XML Schemas to ASN.1 modules) [66].

1 XACML DEFINITIONS AUTOMATIC TAGS ::= BEGIN

2 /* XACML Policy Defintion */

3 PolicyType ::= SEQUENCE {

4 ...

5 ruleCombiningAlgId UTF8String ,

6 target Target ,

7 choice -list SEQUENCE OF CHOICE {

8 ...

9 rule Rule

10 } OPTIONAL ,

11 obligations Obligations OPTIONAL

12 }

13 Policy ::= PolicyType

14 /* XACML Target Definition */

15 TargetType ::= SEQUENCE {

16 subjects Subjects OPTIONAL ,

17 resources Resources OPTIONAL ,

18 actions Actions OPTIONAL ,

19 environments Environments OPTIONAL

20 }

21 Target ::= TargetType

22 ...

23 /* XACML Rule Defintion */

24 RuleType ::= SEQUENCE {

144
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

25 effect EffectType ,

26 ruleId UTF8String ,

27 description Description OPTIONAL ,

28 target Target OPTIONAL ,

29 condition Condition OPTIONAL

30 }

31 ...

32 Rule ::= RuleType

33 AttributeAssignmentType ::= SEQUENCE {

34 attributeId [0] UTF8String ,

35 dataType [1] UTF8String ,

36 attr [2] SEQUENCE OF UTF8String

37 }

38

39 AttributeAssignment ::= AttributeAssignmentType

40

41 ObligationType ::= SEQUENCE {

42 fulfillOn [0] EffectType ,

43 obligationId [1] UTF8String ,

44 attributeAssignment -list [2] SEQUENCE OF attributeAssignment

45 AttributeAssignment

46 }

47 ...

48 END

Listing 8.1: Excerpt of a Policy decision module Native Language (PNL) based on

ASN.1 Defintion.

We have implemented the XACML to PNL mapping engine as shown in figure 8.2.

In our architecture, this encoder resides at the OEM’s backend system. The mapping

engine is responsible for serializing security policies into the PNL format and then

transmitting it to the vehicle. During the serialization process each security policy is

verified against a XACML schema. Upon a successful validation, the security policy

is serialized into a specific ASN.1 encoding scheme. Due to constraints from other

components (e.g., low level drivers, HSM interfaces, etc.), which employ the ASN.1

DER encoding [65], the security policies are also serialized using DER encoding

rules. However, a more efficient binary encoding such as Packed Encoding Rules

(PER) can be used if needed. We anticipate that using PER encoding scheme

would further enhance performance and latency results.

8.4 Security Policy Configuration

Security policies are the basic for all authorizations within the vehicular system.

Hence, mechanisms for creating, updating, and configuring policies are very impor-

tant. We are considering security policy update protocols [59], follows the similar

steps like defined in the OTA firmware update protocol, to be used for securely

transmitting new or updated security policies in the vehicle. Whereas, from the

on-board PNL configuration perspective, our high-level goal is to auto-configure se-

curity policies and appoint access rules from the vehicle ignition stage. This implies

that security policy are deserialized during secure bootstrapping phase, while also

8.4. Security Policy Configuration 145

recognizing an explicit configuration procedures, after secure bootstrapping phase,

in order to load new/update policies (i.e., installation of new application with its

policy set or update existing policy). Note that the new policy set or security rules,

which may have an impact on the basic safety of the vehicle, are always configured

during next vehicle start cycle. Adding/updating safety critical rules while vehicle

is running may cause safety critical problems, depending on the security policy re-

sponsible for.

Figure 8.2: XACML to PNL mapping engine

In our implementation stack, the bootstrapping protocols are defined to ensure

the secure initialization of all security modules and components (see figure 8.1). On

a certain point of the boot strapping procedure, the boot chain send an initialization

call to the PDP(s) to load all PNL based security policies (i.e., group communication

policy) from its policy database. Note that these security policies are stored in the

Secure Storage Module (SSM), which enforces confidentiality, integrity, authenticity,

and freshness mechanisms. Thus, require proper authentication and access rights to

access these policies. Since during boot strapping process, SSM cannot ask PDP for

a decision when PDP is opens/reads from its policy database (which is also stored

via SSM), it has to make autonomous decisions. A detail description of autonomous

decisions (autonomous PEP) is discussed in section 8.2.1.

146
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

On successful verification of access rights, the SSM allow the PDP(s) to read

policy set from its policy database. Regarding the integrity of policies, we rely on

the security solutions enforced by SSM. However for the policy validation attempt

in our prototype implementation, we enforced, that a vehicle will only be started

in case of successful configuration of all PDP/autonomous PEP(s) with respective

security policies and the vehicle will shutdown momentarily otherwise.

Figure 8.3: PDM: On-board policy deserialization and configuration

8.5 Performance Analysis

We have analyzed the performance of the PNL as well as the memory consumption

of different policies by varying the number of elements and attributes used. Perfor-

mance has a special importance with respect to the user experience in automotive

environments, where the time to load and configure security policies, and to assess

authorization request and response time is a critical issue when the driver waits

for his vehicle to start. The deserialization and configuration of authorization/se-

curity policies must be performed before receiving any request from PEP. Hence,

the configuration of these security policies is significantly contributing to the overall

responsiveness of the policy decision and enforcement at startup time.

8.5.1 Performance Analysis: Technical Approach

In order to evaluate our results against other XML based access control policies, we

are comparing our results with different XML parsers. There have been numerous

benchmark studies towards the evaluation of XML parsers [72, 19, 46, 75, 165, 132].

8.5. Performance Analysis 147

These benchmarks cover several aspects of XML parsing such as performance,

schema validation, DOM manipulation, XML security, etc. We used these bench-

marks in order to select an agile XML parser implemented in the same language

as our own (C/C++), and to run a comparison with our ASN.1 encoded policies.

Several lightweight C/C++ XML libraries [72, 75, 49] have been developed for low

power devices, with fast parsing capabilities. For instance, the pugixml library en-

ables extremely fast, convenient, and memory-efficient XML document processing.

It consists of a DOM-like interface with rich traversal and modification capabilities.

However, since pugixml has a DOM parser, it cannot process XML documents that

do not fit in memory; also the parser is not a schema validating parser [72], which is

a mandatory requirement in our case, for obvious security as well as safety reasons,

such as to prevent software compromises.

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!!"

'#!!!!"

'$!!!!"

'%!!!!"

'&!!!!"

#'" (%" ')%" *&%" +)%" ''&%" #*%$"

,-.""

/012."

34565789"

:;
<5
=>
?8
59
@"

(a). Comparison of XML and PNL security

policies, with different elements and attributes,

in terms of size (bytes) of policy data

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

&$" $!" '$" %!!" %&$" %$!" %'$" &!!"

()*"

+,-.*"

(/012134"

5
16

3
76

84
9"

(b). Speed up analysis of about 25-200 XML

and PNL security policies, where single security

policy is constitute of 21 XACML Policy

Elements.

Figure 8.4: Size of data and increase in speed up factor.

8.5.2 Experimental Setup and Results

Based on results of these benchmarks and these specific constraints, we decided to

evaluate our results with the Gnome XML toolkit (libxml) [154]. According to the

XMLBench Project [19], libxml is the fastest toolkit that has a rich enough set of

features. We have generated several XACML policies with various sizes using the

UMU XACML editor. The policy tickets are than transformed into a corresponding

PNL description, as described in section 8.3. We have set up a testing environment in

order to compare the scalability of our parser with libxml. All presented performance

results were obtained using a 64 bit Mac OS X 10.7.2 on a MacBook Pro with 8GB

of RAM and a 2.8GHz Intel Core i7 processor. All tests were run in a single user

mode without any system services running. We followed the assumptions outlined

in [19]: for instance, the time spent to initialize the toolkits is not counted in these

results, in order to compare our results with this benchmark. The measurements

148
Chapter 8. Towards the Enforcement of Access Control Security

Requirements

consist in several latency results which show that the parsing of a PNL encoded

policy is lighter and enables a much faster parsing and configuration of security

policies. Figure 8.4.a compares the parsing time with different policy sizes, in which

the PNL encoded policy parsing is approximately a third of the XML policy. For

2364 elements (2898 attributes) in a single XACML policy, the PNL encoded policy

amounts to 42,368 bytes and the XML encoded one to 152,817 bytes. In the eight

tests presented on Figure 8.4.b, we parsed a single XML policy (21 Elements, 22

Attributes) up to 200 times to understand the scalability. This resulted in parsing

times of 0.25 ms. In contrast, deserializing using the PNL encoded security policy

200 times takes approximately 0.015 ms. Parsing with the PNL encoding is thus

about 10 times faster that with an XML based encoding.

8.5.3 The State of the Art: Automotive Access Control Architec-

ture

There has been a quite remarkable progress in the area of access control architecture

for automotive networks [32, 16, 116], but they appear to have succeeded mostly

in terms of requirement specification or have been only concerned with security

policies for protecting V2X communications. Gerlach et al. [37] present a C2C

communication solution integrating several previous proposals [124, 123, 109] for

secure vehicular communications [16]. These proposals consider the car mostly as a

single entity, communicating with other cars using secure protocols and thus essen-

tially aim at communication specific security policies enforced at the Communication

Unit of the vehicle. Our approach in contrast treats both the expression of V2X and

intra-vehicle security policies uniformly. The EASIS project [32] defines a central

gateway, a sort of firewall, that is configured so that it denies all data traffic from

the external interfaces (e.g. C2C/C2I or Telematics) as a default. Unfortunately,

like [16] this proposal is also limited to V2X security policy enforcement and not

accompanied by any further analysis of the particular requirements/limitation of an

in-vehicle architecture with respect to security policies. Zrelli et al. [168] proposed

a security framework for the vehicular communication infrastructure implementing

access control at both the data link layer and the network layer. However, the pro-

posed solution is solely based on a central policy decision and enforcement module.

A single failure in this module may compromise the overall security of the on-board

network. Furthermore, this solution is obviously only handling V2X security policy

enforcement at the gateway level.

For in-vehicle architectures, numerous authors mention the need for on-board

access control architecture [80, 119, 9]. However, very few solutions have been

proposed. A recent security analysis [80] has shown that the risk of attacks on vehicle

on-board systems is not anymore of theoretic nature. It depicts several scenarios

where access control is either weak or simply not considered, like the firmware update

process, which may compromise the overall security of the on-board network, yet

8.6. Conclusion 149

no security architecture is described in this work. In [9], a set of cryptographic

protocols is discussed to support vehicular use-cases. However, regarding access

control, this intra-vehicle security toolbox is also limited to the only specification

of an API, without any detail about the policy decision engine, practical matters

regarding the enforcement architecture, nor implementation perspectives.

Chutorash et al. [22] propose an approach for integrating firewalls in a vehi-

cle communication bus. Firewalls are integrated between application software and

between vehicle components. In their approach, filtering rules are applied only on

user’s request, and commands sent from the HMI, preventing unauthorized access to

vehicle components. We see that the practicality of this approach is largely limited

by the fact that: (1) rule enforcement is limited to firewall rules and more specifi-

cally only to user commands. However, in an automotive system, different entities

(i.e., security modules as discussed in chapter 7) are themselves requesters (2) rules

are statically defined and remain the same over the vehicle lifetime, and (3) the con-

straints of embedded vehicular networks regarding notably the policy transmission,

processing, or storage and the practical implementation of the proposed approach,

are again left out. The OVERSEE Project [119] aims among other objectives at in-

vehicle firewall configuration and application level access control using XML based

configuration rules. As of now, this project has just begun and no result is avail-

able, thus we cannot evaluate the practicality of this approach. However, according

to our experience, the performance of verbose formats like XML in a constrained

environment has to be closely watched.

8.6 Conclusion

We have exposed in this chapter in what respect the complexity of automotive on-

board network architectures and their evolution involve a complex expression of the

access control security requirements and their enforcement. Today’s automobiles

are a perfect example of a system whose security relies on the combination of many

different enforcement points in the automotive on-board network and even in every

electronic control unit’s communication stack. The role of access control security

requirements in this context is to link the trusted computing base and the trusted

credentials it stores with enforcement mechanisms, as well as to connect enforcement

mechanisms together. We are taking advantage of the extensibility of XACML

subjects to associate attributes, and in particular the means to perform a trusted

authentication of electronic control units: this mechanism is at the core of the

EVITA approach. The performance of the policy parsing is also very important

in a vehicle. We described how the XACML policy could be encoded in ASN.1

in order to make it fit better the resource-constrained environment of a vehicle.

The policy engine described in this chapter was finally deployed in the EVITA

project demonstrator - two cars equipped with the EVITA HSMs and software

framework - and was successfully used for network filtering, configuring secure group

communication, and RPC level access control.

Chapter 9

Conclusions and Future

Perspectives

This dissertation deals about requirements engineering driven approach to security

architecture design for distributed embedded systems. Various approaches and tech-

niques are tackled with the wish to design the secure system from the early stages

of system conceptualization.

The first part of this study introduced the notion of knowledge centric security

requirement engineering methodology. An overview of existing security require-

ment engineering approaches and methodologies is provided and their techniques

are compared to describe their strengths and weaknesses with respect to security

requirement elicitation process. As a solution to overcome the shortcomings and

limitations in the state of the art approaches to SRE, we have defined an unified

methodology based on the concepts of ontologies which offers means to combine

different capabilities of these models in a single unified security requirement engi-

neering process. Different concepts and terms identified during the analysis were

then adapted to various security ontology classes such as security requirements, se-

curity goals, security attacks, etc. In order to well integrate our approach with

standard system engineering activities, we decided to use SysML as an underlying

modeling language to model our different security requirement engineering concepts.

In this regard, we have proposed several extensions to the SysML semantic to in-

tegrate our security concepts and developed a SysMLsec profile. The objective of

this profile is to combine different modeling diagrams that help in building security

solutions. The novelty of this extension is in its integration of concepts and terms

from security ontologies in the SysML diagrams as a controlled vocabulary. Thus,

gives the security engineers the freedom to choose and reason about appropriate on-

tological concepts, provided that the SysML diagrams have the sufficient semantics

to support the detailed ontological concepts.

The second part of this thesis describes the different solutions proposed to build

the security architecture design for embedded systems. The first solution relies on

the usage of knowledge based security analysis to identify the security attacks and

vulnerabilities in the context of multilayered embedded system architecture. Fur-

thermore, the concept of knowledge oriented attack trees, parameterized by the

152 Chapter 9. Conclusions and Future Perspectives

ontological concepts, was brought in as the foundational graphical representation

security attacks and vulnerabilities. Which makes it possible to graphically repre-

sent various types of attack related metadata such as attack type, attack method,

adversary capabilities, etc. The second solution exposes a security requirement en-

gineering based solution for the identification, the refinement, and the traceability

of system wide security requirements that tend to overcome shortcoming in state of

the art security requirement engineering approaches. This solution introduces the

new concept of dependent requirement engineering that is used for an identification

and refinement of security requirements in relation to their source(s). Furthermore,

we also discussed the traceability property of security requirements and proposed a

very simple solution to link different models by using the reference principle.

In the third and last part of this thesis focused on the enforcement of security

requirements by developing cryptographic protocols and development of access con-

trol architecture for automotive embedded system. We proposed a firmware flashing

cryptographic protocol for securely updating firmware in the vehicle. We showed

how a root of trust in hardware could sensibly be combined with software modules.

These modules and primitives have been applied to show how firmware updates can

be done securely and over-the-air, while respecting existing standards and infras-

tructure. In contrast to existing approaches, the firmware flashing protocol describe

a complete process, which involves the service provider, the vehicle infrastructure as

well as the manufacturer and the workshop. By using secure in-vehicle communica-

tion and a trusted platform model, we showed how to establish a secure end-to-end

link between the manufacturer, the workshop and the vehicle. We finally presented

our solution to enforce access control related security requirements in the complex

automotive architecture. We proposed how to design policy engines that implement

an effective enforcement in such architectures despite the complexity of the protocol

stacks of on-board electronic control units.

We reckon that this thesis is only an extensive snapshot of our work. We plan to

continue with some of the threads of future work that we identified in the different

chapters. Specifically, an interesting issue that needs further research is embedding

the SysMLsec within a formal logic, formal methods can be further facilitate us

to formally verify security aspects defined in these models as well as to maintain

consistency as a design evolves. To do so, we need to enlarge the semantics and the

expression of the security ontologies as well as SysMLsec.

Further, we plan to evaluate the knowledge-centric security requirement engi-

neering methodology with further case studies. Most importantly, we are interested

in case studies from other application domains, and also at different stages of sys-

tems development. Based on these, we plan to iteratively refine the concepts of the

security ontologies, with the prospect of developing security architecture.

Bibliography

[1] ISO/IEC 15408-2:2008. Information technology – Security techniques – Eval-

uation criteria for IT security – Part 2: Security Functional Requirements.

Available at http://www.iso.org/iso/home/store/catalogue_ics/catalogue_

detail_ics.htm?csnumber=46414, 2009. 27, 38

[2] ISO/IEC 27002:2005. Information technology – Security techniques – Code of practice

for information security management. Available at http://www.iso.org/iso/home/

store/catalogue_ics/catalogue_detail_ics.htm?csnumber=50297, 2005. 25, 33

[3] ISO/IEC/IEEE 42010:2011. Systems and Software Engineering – Architecture

Description. Available at http://www.iso.org/iso/home/store/catalogue_ics/

catalogue_detail_ics.htm?csnumber=50508, 2007. xi, 29, 31

[4] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems. Wiley Publishing, 2 edition, 2008. 9

[5] L. Apvrille. TTool for DIPLODOCUS: An Environment for Design Space Exploration.

In Proc. of the 8th International Conference on New Technologies in Distributed

Systems, 2008. 81, 83

[6] L. Apvrille, J-P. Courtiat, C. Lohr, and P. de Saqui-Sannes. TURTLE: A Real-

Time UML Profile Supported by a Formal Validation Toolkit. IEEE Transactions on

Software Engineering, pages 473–487, 2004. 46

[7] L. Apvrille, A. Mifdaoui, and P. de Saqui-Sannes. Real-Time Distributed Systems

Dimensioning and Validation: The TURTLE Method. Studia Informatica Universalis,

pages 47–69, 2010. 46

[8] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. A UML-

based Environment for System Design Space Exploration. In In 13th IEEE Interna-

tional Conference on Electronics, Circuits and Systems, ICECS’06, pages 1272–1275,

2006. 46

[9] H. Bar-El. Intra-Vehicle Information Security Framework. In 7th Workshop on Em-

bedded Security in Cars, ESCAR’09, 2009. 1, 136, 148, 149, 193

[10] C. Basile, J. Silvestro, A. Lioy, D. Canavese, M. Arrigoni Neri, S. Paraboschi amd

M. Verdicchio, M. Casalino, and T. Scholte. Security Ontology Definition. Technical

Report D3.2, PoSecCO Project, 2011. 21

[11] D. Berardi, A. Cali, D. Calvanese, and G. Di Giacomo. Reasoning on UML Class

Diagrams. Artificial Intelligence, 168, 2003. 56

[12] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge Representation as the Basis

for Requirements Specifications. IEEE Computer Society Press - Computer, pages

82–91, April 1985. 20

[13] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An

Agent-Oriented Software Development Methodology. Journal of Autonomous Agents

and Multi-Agents System, 2004. 12

154 Bibliography

[14] R. R. Brooks, S. Sander, J. Deng, and J. Taiber. Automobile Security Concerns.

IEEE Vehicular Technology Magazine, pages 52–64, June 2009. 2, 194

[15] M. Busse and M. Pleil. Data Exchange Concepts for Gateways. Technical Report

D1.2-10, EASIS Project, 2006. 128

[16] C2C-CC. Car2Car Communication Consortium. http://www.car-to-car.org/.

135, 148

[17] S. Ahmet Camtepe and B. Yener. Modeling and Detection of Complex Attacks. In

3rd International Conference on Security and Privacy in Communications Networks,

SecureComm, September 2007. 54

[18] CAPEC. Common Attack Pattren Enumeration and Classification. http://capec.

mitre.org/. 33

[19] S. Chilingaryan. The XMLBench Project: Comparison of Fast, Multi-platform XML

libraries. In Database Systems for Advanced Applications, pages 21–34. Springer-

Verlag, Berlin, Heidelberg, 2009. 146, 147

[20] T. Christian. Security Requirements Reusability and the SQUARE Methodology.

Technical Report CMU/SEI-2010-TN-027, Software Engineering Institute, Carnegie

Mellon University, September 2010. 23, 24

[21] L. Chung, P. Leite, and J. Cesar. On Non-Functional Requirements in Software

Engineering. In Conceptual Modeling: Foundations and Applications, pages 363–379,

2009. 29

[22] R . J. Chutorash. Firewall for Vehicle Communication Bus, WO/2000/009363, PC-

T/US1999/017852. International Patent Classification 7 - European Patent Office,

Feb 2000. 149

[23] S. Cranefield. UML and the Semantic Web. In Proc. of the International Semantic

Web Working Symposium, 2001. 20

[24] CVE. Common Vulnerabilities and Exposures. http://cve.mitre.org/. 33

[25] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed Requirements Acqui-

sition. Selected Papers of the Sixth International Workshop on Software Specification

and Design, pages 3–50, 1993. 24

[26] R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal-driven

Requirements Elaboration. In Proc. of the 4th ACM SIGSOFT symposium on Foun-

dations of software engineering, SIGSOFT’96, pages 179–190, 1996. 11

[27] M. Dean and G. Schreiber. OWL Web Ontology Language Reference. W3C Recom-

mendation, W3C, Feb 2004. 28

[28] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht. Self-organized Reuse of Software

Engineering Knowledge supported by Semantic Wikis. InWorkshop on Semantic Web

Enabled Software Engineering, SWESE’05, 2005. 21

[29] D. Dolev and A. C. Yao. On the Security of Public key Protocols. Technical re-

port, Stanford University, Available at ftp://reports.stanford.edu/pub/cstr/

reports/cs/tr/81/854/CS-TR-81-854.pdf, 1981. 26

Bibliography 155

[30] A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl. Security Ontologies: Improving

Quantitative Risk Analysis. In 40th Annual Hawaii International Conference on

System Sciences, HICSS’07, page 156a, Jan 2007. 21, 63

[31] R. Ernst. Hardware/Software Co-Design of Embedded Systems. In Asia Pacific Con-

ference on Computer Hardware Description Languages, APCHDL’97, August 1997.

79

[32] T. Eymann and M. Busse. Security and Firewall concepts for Gateways. Technical

Report Deliverable D1.2-12, EASIS Project, 2006. 148

[33] S. Fenz and A. Ekelhart. Formalizing Information Security Knowledge. In Proc. of

the 4th International Symposium on Information, Computer, and Communications

Security, ASIACCS’09, pages 183–194, 2009. 21

[34] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL- A language for deductive query

answering on the Semantic Web. Journal Web Semantics: Science, Services and

Agents on the World Wide Web, pages 19–29, December 2004. 63

[35] D. George Firesmith. A Taxonomy of Security-Related Requirements. In International

Workshop on High Assurance Systems, RHAS’05, 2005. 21

[36] D. Gaševic, N. Kaviani, and M. Milanovic. Ontologies and Software Engineering. In

Handbook on Ontologies, pages 593–615. Springer, 2009. 20

[37] M. Gerlach, A. Festag, T. Leinmüller, G. Goldacker, and C. Harsch. Security Archi-

tecture for Vehicular Communication. In 2nd International Workshop on Intelligent

Transportation, WIT’05, 2005. 148

[38] P. Giorgini, H. Mouratidis, and N. Zannone. Modelling Security and Trust with Se-

cure Tropos. In Integrating Security and Software Engineering: Advances and Future

Visions, 2006. 101

[39] H. Graves. Integrating SysML and OWL. InOWL Experiences and Directions October

Workshop, OWLED’09, October 2009. 56

[40] H. Graves. Ontological foundations for SysML. In Proc. of 3rd International Confer-

ence on Model-Based Systems Engineering, MBSE’10, September 2010. 56

[41] H. Graves and A. Associates. Integrating Reasoning with SysML. A Journal On The

Theory Of Ordered Sets And Its Applications, 2012. 56, 57

[42] Trusted Computing Group. Trusted Platform Module Specifications. Available at

http://www.trustedcomputinggroup.org/resources/tpm_main_specification,

2007. 127

[43] M. Grüninger and M. S. Fox. The Design and Evaluation of Ontologies for Enter-

prise Engineering. Workshop on Implemented Ontologies, European Conference on

Artificial Intelligence, 1994. 20

[44] V. Haarslev and R. Moller. RACER: An OWL Reasoning Agent for the Semantic

Web. In 1st International Workkshop on Applications, Products and Services of Web-

based Support Systems, WCC’03, pages 91–95, 2003. 63

156 Bibliography

[45] C. B. Haley, R. Laney, Jonathan D. Moffett, and B. Nuseibeh. Security Requirements

Engineering: A Framework for Representation and Analysis. IEEE Transactions on

Software Engineering, pages 133–153, January 2008. 9, 12

[46] S. Cheng Haw and G. S. V. Radha Krishna Rao. A Comparative Study and Bench-

marking on XML Parsers. In 9th International Conference on Advanced Communi-

cation Technology, pages 321–325, February 2007. 146

[47] W. Heaven and A. Finkelstein. A UML profile to support requirements engineering

with KAOS. In IEE Proceedings - Software, pages 10–27, February 2004. 107, 109

[48] A. Hergenhan and G. Heiser. Operating Systems Technology for Converged ECUs.

In 6th Workshop on Embedded Security in Cars, ESCAR’08, November 2008. 136

[49] J Higgins. Arabica XML and HTML Processing Toolkit. Available at http://www.

jezuk.co.uk/cgi-bin/view/arabica. 147

[50] J. Holt and S. Perry. SysML for System Engineering (Professional Applications of

Computing), volume 7. IET, 2007. 23, 44

[51] T. Hoppe, S. Kiltz, and J. Dittmann. Security Threats to Automotive CAN Net-

works - Practical Examples and Selected Short-Term Countermeasures. In Proc.

of the 27th International Conference on Computer Safety, Reliability, and Security,

SAFECOMP’08, pages 235–248, 2008. 2, 194

[52] T. Hoppe, S. Kiltz, and J. Dittmann. Automotive IT-Security as a Challenge: Basic

Attacks from the Black Box Perspective on the Example of Privacy Threats. In Proc.

of the 28th International Conference on Computer Safety, Reliability, and Security,

SAFECOMP’09, pages 145–158, 2009. 137

[53] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available at

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, May 2004. 63

[54] S. Hilde Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schneider. Eliciting Security

Requirements and Tracing them to Design: An Integration of Common Criteria,

Heuristics, and UMLsec. Journal of Requirements Engineering - Special Issue on

RE’09: Security Requirements Engineering, pages 63–93, March 2010. xi, 14, 101

[55] D. D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede. Securing Embedded

Systems. IEEE Security & Privacy, pages 40–49, April 2006. 3, 194

[56] IBM. Rational Rhapsody Developer. Available at http://www-01.ibm.com/

software/rational/products/rhapsody/developer/. 46

[57] M. Sabir Idrees, Y. Roudier, and L. Apvrille. A Framework Towards the Efficient

Identification and Modeling of Security Requirements. In 5th Conf. on Network Ar-

chitectures and Information Systems Security, SAR-SSI’10, May 2010. 107

[58] M. Sabir Idrees, Y. Roudier, L. Apvrille, and G. Pedroza. Test Results. Technical

Report D4.4.2, EVITA Project, 2011. 87, 109

Bibliography 157

[59] M. Sabir Idrees, Y. Roudier, H. Schweppe, B. Weyl, R. E. Khayari, O. Henniger,

D. Scheuermann, G. Pedroza, L. Apvrille, H. Seudie, H. Platzdasch, and M. Sall.

Secure On-Board Protocols Specification. Technical Report D3.3, EVITA Project,

2010. 128, 131, 144

[60] M. Sabir Idrees, G. Serme, Y. Roudier, A. Santana De Oliveira, H. Grall, and

M. Sudholt. Evolving Security Requirements in Multi-layered Service-Oriented-

Architectures. In 4th International Workshop on Autonomous and Spontaneous Se-

curity, SETOP’11, September 2011. 4, 87, 196

[61] IEEE. IEEE Guide to Software Requirements Specifications, ANSI/IEEE Standard

830-1998, 1998. 27

[62] ISO/IEC-15408:2009. Information technology – Security techniques – Evaluation

Criteria for IT security – Part 1: Introduction and General Model. Available

at http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?

csnumber=50341, 2009. 9, 24, 29, 33, 34, 36, 107

[63] ISO/IEC-21827:2008. Information technology – Security techniques – Sys-

tems Security Engineering – Capability Maturity Model SSE-CMM. Available

at http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_

ics.htm?csnumber=44716, 2008. 25, 33

[64] ISO/IEC-27000:2012. Information technology – Security techniques – Informa-

tion security management systems – Overview and vocabulary. Available at

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.

htm?csnumber=56891, 2009. 24, 32, 33

[65] ITU-T. Information Technology - ASN.1 encoding rules: Specification of Basic En-

coding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding

Rules (DER), ITU-T Recommendation X.690. Available at http://www.itu.int/

ITU-T/studygroups/com17/languages/X.690-0207.pdf, 2002. 109, 144

[66] ITU-T. Information Technology - ASN.1 encoding rules: Mapping W3C XML schema

definitions into ASN.1, ITU-T Recommendation X.694. Available at http://www.

itu.int/ITU-T/studygroups/com17/languages/X694.pdf, 2004. 143

[67] ITU-T. Information Technology - ASN.1 encoding rules: Abstract Syntax Notation

one (ASN.1): Specification of basic notation, ITU-T Recommendation X.680. Avail-

able at http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.

pdf, 2008. 138, 143

[68] M. Jackson. Problem Frames: Analyzing and Structuring Software Development Prob-

lems. Addison-Wesley Professional, 2001. 16, 18

[69] J. Jüerjens. Secure Systems Development with UML. Springer, 2003. 2, 9, 13, 41,

107, 194

[70] J. Jürjens. Towards development of secure systems using UMLSec. 4th International

Conference on Fundamental Approaches to Software Enineering, pages 32–42, 2001.

25, 109

158 Bibliography

[71] J. Jürjens. Using UMLsec and Goal Trees for Secure Systems Development. In Proc.

of the 2002 ACM symposium on Applied computing, SAC’02, pages 1026–1030, 2002.

13

[72] A. Kapoulkine. Pugixml Benchmark. Available at http://pugixml.org/benchmark/.

146, 147

[73] M. Karyda, T. Balopoulos, L. Gymnopoulos, S. Kokolakis, C. Lambrinoudakis,

S. Gritzalis, and S. Dritsas. An Ontology for Secure e-Government Applications. In

Proc. of the First International Conference on Availability, Reliability and Security,

ARES’06, pages 1033–1037, 2006. 21

[74] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P.Säger, H. Seudié, and B. Weyl.

Specification and Evaluation of e-Security Relevant Use cases. Technical Report D2.1,

EVITA Project, 2009. xi, 69, 70, 143

[75] M. Kerbiquet. Asm-XML Benchmark. Available at http://tibleiz.net/asm-xml/

benchmark.html. 146, 147

[76] B. Kienhuis, Ed F. Deprettere, P. van Der Wolf, and K. Vissers. A Methodology

to Design Programmable Embedded Systems - The Y-Chart Approach. In Embed-

ded Processor Design Challenges: Systems, Architectures, Modeling, and Simulation,

SAMOS, pages 18–37, 2002. 79, 80

[77] A. Kim, J. Luo, and M. Kang. Security Ontology for Annotating Resources. In Proc.

of the 2005 OTM Confederated international conference on the Move to Meaningful

Internet Systems: CoopIS, COA, and ODBASE, OTM’05, pages 1483–1499, 2005.

xii, 21, 63, 122, 123

[78] J. Kim and P. H. Chou. Remote Progressive Firmware Update for Flash-based Net-

worked Embedded Systems. In Proc. of the 14th ACM/IEEE international symposium

on Low power electronics and design, ISLPED’09, pages 407–412, 2009. 135

[79] P. Kocher, R. Lee, G. Mcgraw, and S. Ravi. Security as a New Dimension in Em-

bedded System Design. In Proc. of the 41st Design Automation Conference, DAC’04,

pages 753–760, 2004. 3, 194

[80] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,

B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental Security Analysis

of a Modern Automobile. In IEEE Symposium on Security & Privacy, pages 447–462,

may 2010. 1, 2, 137, 148, 193, 194

[81] A. Kott and J. Peasant. Representation And Management Of Requirements: The

Rapid-Ws Project. In Concurrent Engineering Research and Applications, pages 93–

106, June 1995. 20

[82] TELECOM ParisTech LabSoc. The TURTLE Toolkit - TTool. Available at http:

//labsoc.comelec.enst.fr/turtle/ttool.html. 4, 46, 196

[83] R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad, and B. Tatibouet. A First

attempt to combine SysML Requirements Diagrams and B. Innovations in Systems

and Software Engineering, pages 47–54, 2010. 56

Bibliography 159

[84] J. Lin, M. S. Fox, and T. Bilgic. A Requirement Ontology for Engineering Design.

Concurrent Engineering: Research and Applications, pages 279–291, September 1996.

20

[85] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Analysing Security Threats

and Vulnerabilities Using Abuse Frames. Technical Report 2003/10, Department of

Computing, The Open University, October 2003. xi, 16

[86] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing Abuse Frames

for Analysing Security Requirements. In Proc. of the 11th IEEE International Con-

ference on Requirements Engineering, RE’03, pages 371–372, September 2003. 9, 16,

41

[87] L. Liu, E. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis within

a Social Setting. In Proc. of the 11th IEEE International Requirements Engineering

Conference, RE’03, pages 151–161, September 2003. 107

[88] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Lan-

guage for Model-Driven Security. In Proc. of the 5th International Conference on The

Unified Modeling Language, UML’02, pages 426–441, 2002. xi, 9, 14, 15, 25, 41, 101,

107, 109

[89] S. Masud Mahmud, S. Shanker, and I. Hossain. Secure Software Upload in an In-

telligent Vehicle via Wireless Communication Links. In IEEE Intelligent Vehicles

Symposium, pages 588–593, 2005. 135

[90] N. Mayer, A. Rifaut, and E. Dubois. Towards a Risk-Based Security Requirements

Engineering Framework. In Proc. of the 19th International Working Conference on

Requirements Engineering: Foundation for Software Quality, REFSQ’05, June 2005.

12

[91] N. R. Mead and T. Stehney. Security Quality Eequirements Engineering (SQUARE)

Methodology. ACM SIGSOFT Software Engineering Notes, pages 1–7, May 2005.

xiii, 18

[92] T. Miehling, P. Vondracek, M. Huber, H. Chodura, and G. Bauersachs. HIS

Flashloader Specification Version 1.1, 2006. 131, 133, 136

[93] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp. A Natural Extension of Tropos

Methodology for Modelling Security. In Proc. of the Agent Oriented Methodologies

Workshop, OOPSLA’02, 2002. 9, 12, 41, 107

[94] N. Navet. Automotive Communication Systems: From Dependability to Security.

In 1st Seminar on Vehicular Communications and Applications, VCA’11, May 2011.

143

[95] A. Nhlabatsi, B. Nuseibeh, and Y. Yu. Security Requirements Engineering for Evolv-

ing Software Systems: A Survey. Journal of Secure Software Engineering, pages

54–73, 2009. 18

[96] D. K. Nilsson and U. E. Larson. Secure Firmware Updates Over the Air in Intelligent

Vehicles. In IEEE International Conference on Communications Workshops, ICC

Workshops’08, pages 380–384, May 2008. 135

160 Bibliography

[97] D. K. Nilsson, T. Roosta, U. Lindqvist, and A. Valdes. Key Management and Secure

Software Updates in Wireless Process Control Environments. In Proc. of the 1st ACM

conference on Wireless network security, WiSec’08, pages 100–108, 2008. 135

[98] D. K. Nilsson, L. Sun, and T. Nakajima. A Framework for Self-Verification of

Firmware Updates Over the Air in Vehicle ECUs. In IEEE Global Communication

Conference, GLOBECOM Workshops’08, pages 1–5, December 2008. 135

[99] NIST-SP-800:30. Risk Management Guide for Information Technology Sys-

tems. Available at http://csrc.nist.gov/publications/nistpubs/800-30-rev1/

sp800_30_r1.pdf, September 2012. 33

[100] T. Noergaard. Embedded Systems Architecture: A Comprehensive Guide for Engi-

neers and Programmers. Embedded Technology. Elsevier Science, 2005. 2, 194

[101] OASIS. XACML: eXtensible Access Control Markup Language TC v2.0. Available at

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cos01-en.pdf,

September 2012. 142

[102] I. Ober and I. Dragomir. OMEGA2: A New Version of the Profile and the Tools. In

14th IEEE International Conference on Engineering of Complex Computer Systems,

UML&AADL’09, pages 373–378, June 2009. 46

[103] Objectiver. A KAOS Tutorial. Available at http://www.objectiver.com/

fileadmin/download/documents/KaosTutorial.pdf, 2007. xi, 11

[104] M. J. O’Connor and A. K. Das. SQWRL: A Query Language for OWL. In Proc. of

the 5th International Workshop on OWL: Experiences and Directions, OWLED’09,

October 2009. 63

[105] Ministry of Defense. DoD Architecture Framework Volume II: Product Descrip-

tions. Available at http://dodcio.defense.gov/Portals/0/Documents/DODAF/

DoDAF_Volume_II.pdf, April 2007. 25

[106] OMG. Object Management Group. http://www.omg.org. 4, 196

[107] OMG. SysML - The Systems Modeling Language Specification, (ptc/02-06-12), OMG

final adopted specification. Available at http://www.omgsysml.org/, 2012. xi, 4, 23,

39, 42, 43, 44, 45, 46, 48, 49, 50, 51, 196

[108] OWASP. Open Web Application Security Project. https://www.owasp.org. 33

[109] P. Papadimitratos, V. Gligor, and J-P. Hubaux. Securing Vehicular Communications

- Assumptions, Requirements, and Principles. In 4th Workshop on Embedded Security

in Cars, ESCAR’06, November 2006. 148

[110] Papyrus. Papyrus for SysML. Available at http://www.papyrusuml.org/. 46

[111] F. Silva Parreiras and S. Staab. Using Ontologies with UML Class-based Modeling:

The TwoUse Approach. Data & Knowledge Engineering, pages 1194–1207, 2010. 56

[112] F. Silva Parreiras, S. Staab, and A. Winter. On Marrying Ontological and Metamod-

eling Technical Spaces. In 6th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software En-

gineering, ESEC/FSE’07, September 2007. 56

Bibliography 161

[113] M. Pavlidis and S. Islam. SecTro: A CASE Tool for Modelling Security in Re-

quirements Engineering using Secure Tropos. In 23rd International Conference on

Advanced Information Systems Engineering, CAiSE’11, pages 89–96, June 2011. xi,

13

[114] G. Pedroza, D. Knorreck, and L. Apvrille. AVATAR: A SysML Environment for the

Formal Verification of Safety and Security Properties. In 11th IEEE Conference on

Distributed Systems and New Technologies, NOTERE’11, may 2011. 46

[115] CESSA Project. CESSA - Compositional Evolution of Secure Services using Aspects.

http://cessa.gforge.inria.fr/. 4, 195

[116] CVIS Project. CVIS - Cooperative Vehicle Infrastructure Systems. http://www.

cvisproject.org/. 148

[117] EVITA Project. E-safety Vehicle InTrusion protected Applications. http://www.

evita-project.org. 4, 100, 196

[118] GST Project. Global Systems for Telematics. http://www.gst-forum.org/. 135

[119] OVESEE Project. Open Vehicular Secure Platform. https://www.

oversee-project.com/. 148, 149

[120] SeVeCOM Project. Secure Vehicle Communication. http://www.sevecom.org/. 135

[121] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Avail-

able at http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/, January

2008. 63

[122] R. Oberhauser R. Schmidt, C. Bartsch. Ontology-based Representation of Compliance

Requirements for Service Processes. In Workshop on Semantic Business Process and

Product Lifecycle Management, SBPM’07, June 2007. 20

[123] M. Raya, D. Jungels, P. Papadimitratos, I. Aad, and J-P. Hubaux. Certificate Revo-

cation in Vehicular Networks. Technical Report LCAREPORT-2006-006, Laboratory

for Computer Communications and Applications (LCA), EPFL, 2006. 148

[124] M. Raya, P. Papadimitratos, and Jean-Pierre Hubaux. Securing Vehicular Commu-

nications. IEEE Wireless Communications Magazine, Vol 13:8–15, 2006. 148

[125] BMW Group Research and Technology. EMVY: The Embedded Vehicular IT Security

Construction Kit. Basic Concept, June 2009. 96

[126] D. Richards, A. Stuart, and M. Hause. Testing Solutions through UML/SysML. In

19th Annual INCOSE International Symposium, INCOSE’09, 2009. 46

[127] G-C. Roman. A Taxonomy of Current Issues in Requirements Engineering. IEEE

Computer Society - Computer, pages 14–23, April 1985. 20

[128] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,

and I. Seskar. Security and Privacy Vulnerabilities of In-Car Wireless Networks: A

Tire Pressure Monitoring System Case Study. In Proc. of the 19th USENIX Security

Symposium, USENIX Security’10, August 2010. 137

162 Bibliography

[129] A. Ruddle, D.Ward, B. Weyl, M. Sabir Idrees, Y.Roudier, M.Friedewald, T.Leimbach,

A.Fuchs, S.Gürgens, O.Henniger, R. Rieke, M.Ritscher, H.Broberg, L. Apvrille,

R. Pacalet, and G.Pedroza. Security Requirements for Automotive On-Board Net-

works based on Dark-side Scenarios. Technical Report 2.3, EVITA Project, 2010. 1,

54, 87, 89, 100, 109, 131, 167, 193

[130] M. Saeki and H. Kaiya. Security Requirements Elicitation Using Method Weaving and

Common Criteria. In ACM/IEEE 11th International Conference on Model Driven

Engineering Languages and Systems, MoDELS’08 Workshops, pages 185–196, 2008.

25

[131] W. Schindler. Functionality Classes and Evaluation Methodology for Determin-

istic Random Number Generators. Available at https://www.bsi.bund.de/

SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/ais20e_

pdf.pdf?__blob=publicationFile, 2007. 127

[132] A. Schmidt, F. Waas, M. Kersten, Michael J. Carey, I. Manolescu, and R. Busse.

XMark: A Benchmark for XML Data Management. In Proc. of 28th International

Conference on Very Large Data Bases, VLDB’02, pages 974–985, August 2002. 146

[133] B. Schneier. Attack Trees: Modeling Security Threats. Available at http://www.

schneier.com/paper-attacktrees-ddj-ft.html, 1999. 53, 54, 55

[134] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann. Car2X commu-

nication : Securing the Last Meter - A Cost-Effective Approach for Ensuring Trust in

Car2X Applications using In-Vehicle Symmetric Cryptography. In 4th IEEE Inter-

national Symposium on Wireless Vehicular Communications, WIVEC’11, September

2011. 124

[135] secunet. Towards a Secure Automotive Platform (White Paper). Available

at http://www.secunet.com/fileadmin/user_upload/Download/Printmaterial/

englisch/sn_Whitepaper_Secure_Automotive_Platform_E.pdf, 2009. 136

[136] H. Seudie, E. Akcabelen, I. Ipli, H. Schweppe, Y. Roudier, and M. Sabir Idrees.

Security Architecture Implementation. Technical Report D4.3, EVITA Project, 2011.

109

[137] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev. Google An-

droid: A State-of-the-Art Review of Security Mechanisms. Technical Report CoRR

abs/0912.5101, Department of Information Systems Engineering, Ben-Gurion Univer-

sity, Israel, 2009. 67

[138] J. Sherwood, A. Clark, and D. Lynas. Enterprise Security Architecture: A Business-

Driven Approach. CRC Press, 2005. 1, 193

[139] H. Shrobe. Computational Vulnerability Analysis for Information Survivability. 18th

National Conference on Artificial Intelligence, pages 919–926, 2002. 26

[140] K. Siegemund, E. J Thomas, Y. Zhao, J. Pan, and U. Assmann. Towards Ontology-

driven Requirements Engineering. 7th International Workshop on Semantic Web En-

abled Software Engineering, October 2011. 20

Bibliography 163

[141] G. Sindre and A. L. Opdahl. Eliciting Security Requirements by Misuse Cases. In

Proc. of the 37th International Conference on Technology of Object-Oriented Lan-

guages and Systems, TOOLS-Pacific’00, pages 120–131, 2000. xi, 9, 11, 16, 17, 26,

41, 90, 107

[142] A. SOUAG, I. Comyn-Wattiau, and C. Salinesi. Ontologies for Security Require-

ments: A Literature Survey and Classification. In 2nd International Workshop on

Information Systems Security Engineering, WISSE’12, pages 1–8, June 2012. 21

[143] J. Stefan and M. Schumacher. Collaborative Attack Modeling. In Proc. of the ACM

Symposium on Applied Computing, SAC’02, pages 253–259, March 2002. 54, 87

[144] Sparx Systems. Enterprise Architect for SysML. Available at http://www.

sparxsystems.com/. 46

[145] A. Thorn, T. Christen, B. Gruber, R. Portman, and L. Ruf. What is a Security

Architecture? Available at http://www.isss.ch/fileadmin/publ/agsa/Security_

Architecture.pdf. 1, 193

[146] B. Tsoumas and D. Gritzalis. Towards an Ontology-based Security Management. In

Proc. of the 20th International Conference on Advanced Information Networking and

Applications, AINA’06, pages 985–992, 2006. 21

[147] Stanford University. Protégé Ontology Editor and Knowledge-base Framework. Avail-

able at http://protege.stanford.edu/. 63

[148] P. Henricus Antonius van der Putten. Specification of Reactive Hardware/software

Systems: The Method Software/Hardware Engineering (SHE). Ph.D. Thesis, Eind-

hoven University of Technology, Department of Electrical Engineering, 1997. 79

[149] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using Description

Logic to Maintain Consistency between UML Models. In 6th International Conference

on The Unified Modeling Language, Modeling Languages and Applications, UML’03,

pages 326–340, 2003. 56

[150] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

In Proc. of the Fifth IEEE International Symposium on Requirements Engineering,

RE’01, pages 249–262, 2001. 24

[151] A. van Lamsweerde. Engineering Requirements for System Reliability and Security.

In Software System Reliability and Security, NATO Security through Science Series -

Information and Communicarion Security, pages 196–238, 2007. 3, 9, 11, 16, 24, 25,

28, 41, 55, 56, 101, 195

[152] A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models

to Software Specifications. Wiley Publishing, March 2009. 2, 194

[153] A. van Lamsweerde and E. Letier. From Object Orientation to Goal Orientation:

A Paradigm Shift for Requirements Engineering. In Radical Innovations of Software

and System Engineering, pages 4–8, 2003. 9, 10, 107

[154] D. Veillard. Libxml - The XML C Parser and toolkit of Gnome. Available at http:

//www.xmlsoft.org, 2009. 147

164 Bibliography

[155] C. Veres, J. Sampson, S.J. Bleistein, K. Cox, and J. Verner. Using Semantic Tech-

nologies to Enhance a Requirements Engineering Approach for Alignment of IT with

Business Strategy. In International Conference on Complex, Intelligent and Software

Intensive Systems, CISIS’09, pages 469–474, March 2009. 21

[156] G. Vigna, S. Eckmann, and R. Kemmerer. Attack Languages. In Proc. of the IEEE

Information Survivability Workshop, ISW’00, pages 163–166, October 2000. 54

[157] A. Vorobiev and N. Bekmamedova. An Ontology-Driven Approach Applied to Infor-

mation Security. Journal Of Research And Practice In Information Technology, pages

61–76, 2010. 122

[158] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette, S. Jenkins, and M. Ing-

ham. An ontology for State Analysis: Formalizing the mapping to SysML. In IEEE

Aerospace Conference, pages 1–16, March 2012. 56

[159] WAND, Inc. WAND Automotive Taxonomy. Available at http://www.wandinc.

com/. 29

[160] IEEE WAVE. Wireless Access in Vehicular Environments, IEEE standard 1609.2.

135

[161] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. Sabir Idrees, Y. Roudier, H. Schweppe,

H. Platzdasch, R. E. Khayari, O. Henniger, D. Scheuermann, A. Fuchsa, L. Apvrille,

G. Pedroza, H. Seudie, J. Shokrollahi, and A. Keil. Secure On-board Architecture

Specification. Technical Report D3.2, EVITA Project, 2010. xii, 3, 124, 125, 194

[162] J. Whittle, D. Wijesekera, and M. Hartong. Executable misuse cases for modeling se-

curity concerns. In Proc. of the 30th international conference on Software engineering,

ICSE’08, pages 121–130, 2008. 16

[163] M. Wolf, A. Weimerskirch, C. Paar, and M. Bluetooth. Security in Automotive Bus

Systems. In 2nd Workshop on Embedded Security in Cars, ESCAR’04, 2004. 2, 137,

194

[164] M. Wolf, A. Weimerskirch, and T. J. Wollinger. State of the Art: Embedding Security

in Vehicles. Journal on Embedded Systems, Special Issue: Embedded Systems for

Intelligent Vehicles, 2007. 2, 3, 194

[165] Y. Wu, Q. Zhang, Z. Yu, and J. Li. A Hybrid Parallel Processing for XML Parsing

and Schema Validation. In Proc. of Balisage: The Markup Conference, August 2008.

146

[166] Y. Ying-ying, L. Zong-yong, and W. Zhi-xue. Domain Knowledge Consistency Check-

ing for Ontology-Based Requirement Engineering. In International Conference on

Computer Science and Software Engineering, volume 2, pages 302–305, December

2008. 20

[167] X. Zhu. Inconsistency Measurement of Software Requirements Specifications: An

Ontology-Based Approach. In Proc. of the 10th IEEE International Conference on

Engineering of Complex Computer Systems, ICECCS’05, pages 402–410, 2005. 20

Bibliography 165

[168] S. Zrelli, A. Miyaji, Y. Shinoda, and T. Ernst. Security and Access Control for

Vehicular Communications. In Proc.of the 2008 IEEE International Conference on

Wireless & Mobile Computing, Networking & Communication, WIMOB’08, pages

561–566, October 2008. 148

Appendix A

Security Properties

We follow a revised definition of security properties specified in the EVITA project [129],

that is relevant for heterogeneous networks and embedded systems. The informal explana-

tions below reflect how these concepts are generally understood.

A.1 Data origin authenticity

A data origin authenticity property applies to a quantum of information and a claimed

author. The property is satisfied when the quantum of information truly originates from

the author. The property can be made more specific by providing an observation of the

quantum of information (defined, e.g., by a time and a location in the system). The author

can also be constrained by adding a time and/or a place of creation of the quantum of

information. Note that in most security oriented frameworks, data origin authenticity

implies integrity.

A.2 Integrity

An integrity property applies to a quantum of information between two observations (de-

fined, e.g., by a time and a location in the system). The property is satisfied when the

quantum of information has not been modified between the two observations. It guarantees

for instance that the content of a storage facility has not been modified between two given

read operations, or that a message sent on a communication channel has not been altered

during its journey.

A.3 Authorization

A controlled access property or requirement applies to a set of actions and/or information

and a set of authorized entities. The property is guaranteed if the specified entities are the

only entities that can perform the actions or access the information. The property can be

further detailed with time constraints on the period of authorization. Controlled access is

needed to ensure that stakeholders only have access to information and functions that they

are authorized to access as appropriate to their expected activities.

168 Appendix A. Security Properties

A.4 Freshness

A freshness property applies to a quantum of information, a receiving entity, and a given

time. The property is satisfied if the quantum of information received by the entity at the

given time is not a copy of the same information received by the same or another entity in

the past. Ensuring freshness can be used to prevent replay attacks.

A.5 Non-Repudiation

A non-repudiation property or requirement applies to an action and an entity performing

the action. The non-repudiation of the action is guaranteed if it is impossible for the entity

that performed the action to claim that it did not perform it. This property can be further

detailed with a set of entities for which the action needs to be undeniable, with a time

limit, etc. There may be specific legal requirements for non-repudiation. However, non-

repudiation may also be introduced for convenience, for example, as an aid in providing

evidence or proving liability.

A.6 Privacy

A privacy property or requirement applies to an entity and a set of information. qPrivacy is

guaranteed if the relation between the entity and the set of information is confidential. This

relation can however significantly vary. For instance, one generally distinguishes different

types of privacy, typically anonymity, unlinkability, and pseudonymity.

A.6.1 Anonymity

This is the property that the relation between an entity and its identity is strictly confiden-

tial. Privacy property must be made consistent with potentially conflicting requirements

for identification, auditing, non-repudiation and jurisdictional access, which may require

users to be identified and information about their interactions to be stored.

A.6.2 Unlinkability

The unlinkability of two or more Item of Interest (abbreviated IOIs, e.g., subject, messages,

actions, . . . sent, received, or performed by the principal) from an attacker
′

s perspective

means that within the system (comprising these and possibly other items), the attacker

cannot sufficiently distinguish whether these IOIs are related or not.

A.7. Confidentiality 169

A.6.3 Pseudonymity

Pseudonymity refers to the capability of recognizing the same subject without being able

to relate him to his identity 1.

A.7 Confidentiality

A confidentiality property applies to a quantum of information and a set of authorized

entities. The property is satisfied when the authorized entities are the only ones that can

know the quantum of information. Privacy relies on confidentiality and can be considered

as a special case of confidentiality.

A.8 Availability

An availability property applies to a service or a physical device providing a service. The

property is satisfied when some service is operational. Denial of service attacks aim at

compromising the availability of their target. The property can be further detailed with

the specification of a period during which the availability is required and of a set of client

entities requesting the availability.

1A pseudonym is an identifier, that is, a name or another bit string, generated in a fully

independent manner from the subject and related attributes values, do not contain side information

on the subject they are attached to.

Appendix B

Risk Model

B.1 Introduction

The provision of security measures, like any other feature of a product or service, is in-

evitably accompanied by development and implementation costs. Consequently, protection

against every conceivable security threat would be too costly for the development of complex

systems, so resources need to be targeted on the most significant threats. The countermea-

sures that are selected for inclusion in the design must therefore be based on an objective

assessment of potential threats and their anticipated implications. Thus, in order to iden-

tify the most important security requirements that are needed to secure the system it is

necessary to assess the level of risk that may be posed by potential attacks. This provides

a convenient basis for systematically identifying and prioritizing threats that need to be

mitigated as follows:

• Where a number of possible attack objectives may achieve the attack goal, the attack

objective with the highest perceived risk level is the priority for countermeasures to

reduce the risk level for the attack objective.

• Where a number of possible attack methods may lead to the same attack objective,

the attack method with the highest perceived attack probability (i.e. lowest attack

potential) is the priority for countermeasures to reduce the risk level for the attack

objective.

• Were a number of asset attacks may lead to the same attack objective, the asset

attack with the highest perceived attack probability (i.e. lowest attack potential) is

the priority for countermeasures to reduce the risk level for the attack objective.

The results of the risk analysis is collated over all of the attack scenarios that are consid-

ered and summarized in terms of the number of instances of particular risk levels found

for each of the attacks that were envisaged against the various system assets (see Table

B.1). This therefore gives an indication of the relative importance of protecting the system

by providing countermeasures for specific assets (i.e. what to protect) against particular

types of attacks. Since all the investigated functions assume a common basic architecture,

it is likely that common patterns will arise in the attack trees. Consequently, the repeated

occurrence of particular attack patterns in attack trees is a further indicator for prioritizing

countermeasures that are likely to provide favorable cost-benefit properties. Furthermore,

the security requirements are mapped onto the functions and assets, providing a way to

evaluate the system performance (latency, throughput, and resource utilization) and al-

low the designer to further prioritize the security requirements according to system needs.

However, the expected cost of the proposed countermeasures also needs to be taken into

account in selecting specific security requirements.

172 Appendix B. Risk Model

Identified Threats Risk Analysis results Security

Assets Attack Risk Level Instances Requirements

software/ AT(1−n) R(0−6) 1 - n SR(1−n)

hardware

Table B.1: Security Requirements Prioritizstion

In order to identify the most important security requirements that are needed to prevent

(or at least detect and contain) key threats, it is necessary to assess the level of risk that

may be posed by potential attacks. The risk associated with an attack is a function of

the possible severity of the attack for the stakeholders and the estimated probability of

occurrence of a successful attack of this nature. The severity of an attack is assessed using

the attack tree, by considering the potential implications of the attack objectives for the

stakeholders. The probability of a successful attack is also derived from the attack tree, by

identifying combinations of possible attacks on the system assets that could contribute to

an attack method.

Attack Potential Attack Probability

Rating Description Likelihood Ranking

0 - 9 Basic Highly Likely 5

10 - 13 Enhanced-Basic Likely 4

14 - 19 Moderate Possible 3

20 - 24 High Unlikely 2

≥ 25 Beyond-High Remote 1

Table B.2: Relating attack potential to attack probability

To determine for each path in an attack tree the attack potentials of the contributing

asset attacks are defined and classified, as shown in Table B.2. Note that once an attack

scenario has been identified and been exploited, it may be exploited repeatedly with less

effort than for the first time. Both phases, identification and exploitation, are considered

in conjunction. In this context the term attack potential is really describing the difficulty

of mounting a successful attack, while for risk analysis purposes a probability measure is

required. A high probability of successful attack is assumed to correspond to the basic

attack potential, since many possible attackers will have the necessary attack potential.

Conversely, a high attack potential suggests a lower probability of successful attacks, since

the number of attackers with the necessary attack potential is expected to be comparatively

small. Consequently, Table B.2 also proposes an associated numerical scale that reflects

the relative probability of success associated with the attack potential in a more intuitive

manner. The attack probability measure (P) is higher for easier attacks that are associated

with lower attack potentials, and lower for more difficult attacks associated with the higher

attack potentials. Where the severity vector includes a non-zero safety component, the risk

B.1. Introduction 173

Severity (Si) Combined attack probability (A)

A=1 A=2 A=3 A=4 A=5

Si R(0-6) R(0-6) R(0-6) R(0-6) R(0-6)

Table B.3: Proposed security risk levels mapped to severity and probability

assessment may include an additional probability parameter that represents the potential

to influence the severity of the outcome. The probability and severity combinations are

mapped to a series of risk levels ranging from 0 (lowest) to 6 (highest) in order to rank

relative risks (see Table B.3). The risk level (R, a vector) is determined from the severity (S)

associated with the attack objective and the combined attack probability (A) associated

with a particular attack method. This is achieved by mapping the severity and attack

probability to the risk using a risk graph approach.

In this scheme, attacks that are judged to be of high probability and high severity are

considered to represent high risks, and therefore definitely require countermeasures to miti-

gate their potential impact, while other attacks that are judged to be of low probability and

low severity are considered to be low risk, and may not require specific countermeasures.

However, more careful consideration may be required for those threats (likely to be in the

majority) that are less readily ranked in terms of relative risk, such as those judged to be

either fairly likely but not particularly severe, or relatively unlikely but fairly severe. Risk

management is an iterative process that can be performed during each major phase of the

SDLC. However, the risk management methodology is the same regardless of the SDLC

phase for which the assessment is being conducted. We may use several methodologies

and standards (i.e., ISO/IEC 13335, NIST SP-800:30, ISO/IEC ISO 31000:2009, ISO/IEC

73:2002, or ISO 14971:2000 etc.) to carry out the risk assessment. These standards pro-

vide guidance and describe the characteristics of each SDLC phase and indicate how risk

management can be performed in support of each phase.

B.1.1 Risk Analysis

Once security needs of firmware update application are defined for each security criterion,

we analyzed the risks. We first started by analyzing the attacker capabilities relevant to

each system asset (i.e., functions, processes, middleware, or hardware components, etc.)

involved in the firmware update process. Table B.4 summarizes estimates for the “attack

potential1”, together with the underlying estimates for the influencing factors, for various

attacks identified for firmware update scenario. Consequently, it also indicates an associ-

ated numerical scale that reflects the relative value and ranking/rating of attack potential

in a more intuitive manner. The estimates are based on as-is automotive on-board net-

works, prior to the introduction of security measures. The results of the risk analysis are

summarized in terms of the frequency of the risk levels found for each threat. This gives

an indication of the relative importance of protecting against specific attacks: While a low

maximum risk suggests a low priority, a high maximum risk suggests a higher priority for

protection. A lower risk that appears in many attack trees, however, might be as important

to tackle than a higher risk tears only once.

1For estimating risk in a non-ambiguous manner, an expert adversary is chosen

174 Appendix B. Risk Model

Asset (at-
tack)

Elaspsed
Time

Expertise Knowledge
of System

Window
of Op-
portu-
nity

Equipment Attack Potential

Value Ranking

Communication
Unit (ex-
ploit vul-
nerability
or imple-
mentation
error)

10 6 3 4 7 33 Beyond
High

Keys
(illegal
acquisition,
modifi-
cation,
etc.)

17 6 7 10 7 35 Beyond
High

In-Car
Commu-
nication
(corrupt
or fake
messages)

10 6 3 0 4 23 High

CU (denial
of service)

4 6 3 1 4 15 Moderate

Table B.4: Evaluation of required attack potential for asset attacks identified from

attack trees

B.1. Introduction 175

Appendix C

SysMLsec-to-Ontology Translation

Engine

C.1 SysMLsec Knowledge Extraction

1 package sysmlsec.ontology;

2

3 import javax.xml.parsers.DocumentBuilderFactory;

4 import javax.xml.parsers.DocumentBuilder;

5 import org.w3c.dom.Document;

6 import org.w3c.dom.NodeList;

7 import org.w3c.dom.Node;

8 import org.w3c.dom.Element;

9

10 import com.hp.hpl.jena.vocabulary.RDF.Nodes;

11

12 import antlr.debug.NewLineEvent;

13

14 import java.io.File;

15 import java.util.ArrayList;

16 import java.util.Arrays;

17 import java.util.HashMap;

18 import java.util.Iterator;

19 import java.util.Set;

20

21 public class TtoOntology {

22

23 /**

24 * for one subTab , Store all of the instances and its parameters , the

format is

25 * TabName:

26 * classA : Id : 0 kind: functional

27 */

28 private HashMap <String , HashMap <String , HashMap <String , String >>>

allTabsInstances = new HashMap <String , HashMap <String ,HashMap <String

,String >>>();

29

30 /**

31 * Store all of the relationships between the classes. the format is :

32 * {tabname :[classA , [classB , relationship]]}

33 */

34 private HashMap <String , HashMap <String , HashMap <String , ArrayList <String

>>>> allTabsProperty = new HashMap <String , HashMap <String ,HashMap <

String ,ArrayList <String >>>>();

35 private String filename;

36 private String labelName;

37

38 public TtoOntology(String filename ,String labelString) {

39 this.filename = filename;

178 Appendix C. SysMLsec-to-Ontology Translation Engine

40 this.labelName = labelString;

41 }

42

43 public static void main(String [] args) {

44 TtoOntology tt = new TtoOntology("thesis -ontology.xml","SysMLsec

Requriement");

45 HashMap <String , HashMap <String , HashMap <String , String >>>

allTabsInstances = tt.getInstanceHashmap ();

46 HashMap <String , HashMap <String , HashMap <String , ArrayList <String >>>>

allTabsProperty = tt.getRelationshipHashMap ();

47 Iterator <String > propertyIterator = allTabsProperty.keySet ().iterator

();

48 while (propertyIterator.hasNext ()) {

49 String tabName = propertyIterator.next();

50 System.out.println("Tab Name is " + tabName+"--------");

51 HashMap <String , HashMap <String , ArrayList <String >>>

ontologyPropertyHashMap = allTabsProperty.get(tabName);

52 Iterator <String > ontologyproIterator = ontologyPropertyHashMap.

keySet ().iterator ();

53 while (ontologyproIterator.hasNext ()) {

54 String className = ontologyproIterator.next();

55 System.out.println("class "+ className + " has properties:");

56 HashMap <String , ArrayList <String >> proObj =

ontologyPropertyHashMap.get(className);

57 Iterator <String > proObjiIterator = proObj.keySet ().iterator ();

58 while(proObjiIterator.hasNext ()){

59 String propertyString = proObjiIterator.next();

60 System.out.println("----"+propertyString);

61 ArrayList <String > classesArrayList = proObj.get(propertyString);

62 for (int i = 0; i < classesArrayList.size(); i++) {

63 System.out.println("--------"+classesArrayList.get(i));

64 }

65 }

66 }

67 }

68 }

69

70 /**

71 * get the hashmap who contains all of the instances and their

properties.

72 *

73 * @return the hashmap

74 */

75 public HashMap <String , HashMap <String , HashMap <String , String >>>

getInstanceHashmap () {

76 Element modeling = readFile ();

77 NodeList subTabs = modeling.getElementsByTagName(this.labelName);

78 for (int i = 0; i < subTabs.getLength (); i++) {

79 Element subtab= (Element)subTabs.item(i);

80 initialAllInstance(subtab);

81 }

82 return this.allTabsInstances;

83 }

84

85 /**

86 * get the hashmap who contains all of the instances and their

relationships

87 *

88 * @return the relationship hashmap

89 */

90 public HashMap <String , HashMap <String , HashMap <String , ArrayList <String

>>>> getRelationshipHashMap () {

C.1. SysMLsec Knowledge Extraction 179

91 Element document = readFile ();

92 NodeList subTabs = document.getElementsByTagName(this.labelName);

93

94 for (int i = 0; i < subTabs.getLength (); i++) {

95 Element subtab= (Element)subTabs.item(i);

96 parseRelationShip(subtab);

97 }

98 return this.allTabsProperty;

99 }

100

101 /**

102 * read the given file and return the first Modeling element

103 *

104 * @return the first Modeling Element

105 */

106 private Element readFile () {

107 try {

108 File fXmlFile = new File(filename);

109 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.

newInstance ();

110 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder ();

111 Document doc = dBuilder.parse(fXmlFile);

112 doc.getDocumentElement ().normalize ();

113 Element firstPart = (Element) doc.getElementsByTagName("Modeling").

item (0);

114 System.out.println("first part property is "+firstPart.getAttribute(

"nameTab"));

115 return firstPart;

116 } catch (Exception e) {

117 e.printStackTrace ();

118 return null;

119 }

120 }

121 // public

122

123 /**

124 * this function read all of the relationships between the classes , and

125 * store them in the hashmap.

126 *

127 * @param doc the "Modeling Element" want to be parsed.

128 *

129 */

130 private void parseRelationShip(Element doc) {

131 HashMap <String , HashMap <String , ArrayList <String >>> allRelationShipMap

= new HashMap <String , HashMap <String , ArrayList <String >>>();

132 try {

133 // all relationships are represented by the tag "connector"

134 NodeList nList = doc.getElementsByTagName("CONNECTOR");

135 for (int temp = 0; temp < nList.getLength (); temp ++) {

136

137 Node nNode = nList.item(temp);

138 if (nNode.getNodeType () == Node.ELEMENT_NODE) {

139

140 Element eElement = (Element) nNode;

141 /*

142 * for one relationship , get the related two component name

143 */

144 String p1idString = getTagValue("id", "P1", eElement);

145 String p2idString = getTagValue("id", "P2", eElement);

146 String className1 = getTheNameById(doc , p1idString);

147 String className2 = getTheNameById(doc , p2idString);

148 className1.replaceAll(" ", "_");

180 Appendix C. SysMLsec-to-Ontology Translation Engine

149 className2.replaceAll(" ", "_");

150 /**

151 * get the relation type , like "subclass of", "equivalent" or "

containment"

152 */

153 Element infoparamElement = (Element) eElement.

getElementsByTagName("infoparam").item (0);

154 String type = infoparamElement.getAttribute("value");

155 if (type.contains("deriveReqt")) {

156 this.addProperty(allRelationShipMap ,className1 , className2 , "

superClassOf");

157 } else if (type.contains("composition")) {

158 this.addProperty(allRelationShipMap ,className1 , className2 , "

contains");

159 } else if (type.contains("copy")) {

160 this.addProperty(allRelationShipMap ,className1 , className2 , "

equivalent");

161 }

162 }

163 }

164 } catch (Exception e) {

165 e.printStackTrace ();

166 }

167 String name = doc.getAttribute("name");

168 name = name.replaceAll(" ", "_");

169 this.allTabsProperty.put(name , allRelationShipMap);

170 }

171 private void addProperty(HashMap <String , HashMap <String , ArrayList <

String >>> allRelationShipMap ,String className1 , String className2 ,

String objpro) {

172 HashMap <String , ArrayList <String >> hash1 ;

173 ArrayList <String > nameList;

174 if(allRelationShipMap.containsKey(className2)) {

175 hash1 = allRelationShipMap.get(className2);

176 nameList = hash1.get(objpro);

177 if(nameList == null) {

178 nameList = new ArrayList <String >();

179 nameList.add(className1);

180 hash1.put(objpro , nameList);

181 } else {

182 nameList.add(className1);

183 }

184 }

185 else {

186 hash1 = new HashMap <String , ArrayList <String >>();

187 nameList = new ArrayList <String >();

188 nameList.add(className1);

189 hash1.put(objpro , nameList);

190 allRelationShipMap.put(className2 , hash1);

191 }

192 }

193 /**

194 * read all of the instances and their properties in the file , and store

them in the hashmap.

195 * @param doc

196 */

197 private void initialAllInstance(Element doc) {

198 HashMap <String , HashMap <String , String >> allInstancesHashMap = new

HashMap <String , HashMap <String , String >>();

199 NodeList components = doc.getElementsByTagName("COMPONENT");

200 for (int i = 0; i < components.getLength (); i++) {

201 Element component = (Element) components.item(i);

C.2. Building OWL Ontological Instance 181

202 Element infoparamElement = (Element) component.getElementsByTagName(

"infoparam").item (0);

203 String name = infoparamElement.getAttribute("value");

204 name = name.replaceAll(" ", "_");

205 HashMap <String , String > parameters = new HashMap <String , String >();

206 Element extrparam = (Element) component.getElementsByTagName("

extraparam").item (0);

207 NodeList paralist = extrparam.getChildNodes ();

208 for (int j = 0; j < paralist.getLength (); j++) {

209 Node tmp = paralist.item(j);

210 if (tmp.getNodeType () == Element.ELEMENT_NODE) {

211 Element para = (Element) tmp;

212 parameters.put(para.getNodeName (), para.getAttribute("data"));

213 }

214 }

215 allInstancesHashMap.put(name , parameters);

216 }

217 String name = doc.getAttribute("name");

218 name = name.replaceAll(" ", "_");

219 this.allTabsInstances.put(name , allInstancesHashMap);

220

221 }

222

223 private String getTheNameById(Element doc , String id) {

224 NodeList components = doc.getElementsByTagName("COMPONENT");

225 for (int i = 0; i < components.getLength (); i++) {

226 Element component = (Element) components.item(i);

227 NodeList points = component.getElementsByTagName("TGConnectingPoint"

);

228 for (int j = 0; j < points.getLength (); j++) {

229 Element pointElement = (Element) points.item(j);

230 String pointID = pointElement.getAttribute("id");

231 if (pointID.equals(id)) {

232 Element infoparamElement = (Element) component.

getElementsByTagName("infoparam").item (0);

233 String name = infoparamElement.getAttribute("value");

234 return name;

235 }

236

237 }

238 }

239 return null;

240 }

241

242 private String getTagValue(String attrName , String sTag , Element

eElement) {

243 Element subNode = (Element) (eElement.getElementsByTagName(sTag).item

(0));

244

245 return subNode.getAttribute(attrName);

246 }

247 }

Listing C.1: SysMLsec Knowledge Extraction

C.2 Building OWL Ontological Instance

1 package sysmlsec.ontology;

2

3 import java.io.File;

182 Appendix C. SysMLsec-to-Ontology Translation Engine

4 import java.util.ArrayList;

5 import java.util.Collection;

6 import java.util.HashMap;

7 import java.util.Iterator;

8

9 import org.apache.log4j.lf5.PassingLogRecordFilter;

10 import org.openjena.atlas.iterator.Iter;

11

12 import edu.stanford.smi.protege.exception.OntologyLoadException;

13 import edu.stanford.smi.protegex.owl.ProtegeOWL;

14 import edu.stanford.smi.protegex.owl.jena.JenaOWLModel;

15 import edu.stanford.smi.protegex.owl.model.NamespaceManager;

16 import edu.stanford.smi.protegex.owl.model.OWLDatatypeProperty;

17 import edu.stanford.smi.protegex.owl.model.OWLIndividual;

18 import edu.stanford.smi.protegex.owl.model.OWLMaxCardinality;

19 import edu.stanford.smi.protegex.owl.model.OWLModel;

20 import edu.stanford.smi.protegex.owl.model.OWLNamedClass;

21 import edu.stanford.smi.protegex.owl.model.OWLObjectProperty;

22 import edu.stanford.smi.protegex.owl.model.RDFIndividual;

23

24 public class Ontology {

25

26 /**

27 * store the instances and its dataproperties.

28 */

29 private HashMap <String , HashMap <String , HashMap <String , String >>>

allInstancesHashMap;

30 /**

31 * store the object properties between the instances.

32 */

33 private HashMap <String , HashMap <String , HashMap <String , ArrayList <String

>>>> allRelationShipMap;

34

35 public Ontology(HashMap <String , HashMap <String , HashMap <String , String

>>> instances ,

36 HashMap <String , HashMap <String , HashMap <String , ArrayList <String >>>>

allRelationShipMap) {

37 this.allInstancesHashMap = instances;

38 this.allRelationShipMap = allRelationShipMap;

39 }

40

41 /**

42 * generate the classes and the data type corresponding to these classes

.

43 *

44 * @param prefix

45 * the prefix of the ontology

46 * @param ontologyName

47 * ontology uri

48 * @param filename

49 * the file to store

50 */

51 public void generateOntology(String prefix , String ontologyName , String

filename) {

52 try {

53

54 // create a new ontology

55 JenaOWLModel owlModel = ProtegeOWL.createJenaOWLModel ();

56 // set the namespace

57 NamespaceManager nsmanager = owlModel.getNamespaceManager ();

58 nsmanager.setDefaultNamespace(ontologyName);

C.2. Building OWL Ontological Instance 183

59 owlModel.getTripleStoreModel ().getTopTripleStore ().

setOriginalXMLBase(ontologyName);

60 owlModel.getTripleStoreModel ().getTopTripleStore ().setPrefix(

ontologyName , prefix);

61 // get a subtab element

62 Iterator <String > tabNameIterator = this.allInstancesHashMap.keySet ()

.iterator ();

63 while (tabNameIterator.hasNext ()) {

64 // get the name and create a superclass

65 String tabName = tabNameIterator.next();

66 OWLNamedClass tabClass = owlModel.createOWLNamedClass(tabName);

67 // get all of the subclasses of the subtab class

68 HashMap <String , HashMap <String , String >> allIntances = this.

allInstancesHashMap.get(tabName);

69 Iterator <String > classnameIterator = allIntances.keySet ().iterator

();

70 while (classnameIterator.hasNext ()) {

71 String className = classnameIterator.next();

72 // create one class and add set its supperclass to the

73 // subtab

74 OWLNamedClass ontoClass = owlModel.createOWLNamedClass (className

);

75 ontoClass.removeSuperclass(owlModel.getOWLThingClass ());

76 ontoClass.addSuperclass(tabClass);

77

78 // read all of the data properties it has.

79 Iterator <String > parasIterator = allIntances.get(className).

keySet ().iterator ();

80 while (parasIterator.hasNext ()) {

81 String paraString = parasIterator.next();

82 try {

83 OWLDatatypeProperty property = owlModel.

createOWLDatatypeProperty(paraString);

84 property.setDomain(ontoClass);

85

86 property.setRange(owlModel.getXSDstring ());

87 } catch (Exception e) {

88 // if we have already created the data property , we

89 // add union domain class.

90 OWLDatatypeProperty property = owlModel.

getOWLDatatypeProperty(paraString);

91 property.addUnionDomainClass(ontoClass);

92 }

93 }

94 }

95 }

96 // set the relationship between the classes.

97 Iterator <String > tabRelations = this.allRelationShipMap.keySet ().

iterator ();

98 while (tabRelations.hasNext ()) {

99 String tabName = tabRelations.next();

100 OWLNamedClass tabClass = owlModel.getOWLNamedClass(tabName);

101 HashMap <String , HashMap <String , ArrayList <String >>>

relationshiphaHashMap = this.allRelationShipMap

102 .get(tabName);

103 Iterator <String > relations = relationshiphaHashMap.keySet ().

iterator ();

104 while (relations.hasNext ()) {

105 String class1String = relations.next();

106 OWLNamedClass class1 = owlModel.getOWLNamedClass(class1String);

107 HashMap <String , ArrayList <String >> relationshipHashMap2 =

relationshiphaHashMap.get(class1String);

184 Appendix C. SysMLsec-to-Ontology Translation Engine

108 Iterator <String > relationIterator = relationshipHashMap2.keySet

().iterator ();

109 while (relationIterator.hasNext ()) {

110 String relation = relationIterator.next();

111 ArrayList <String > classes = relationshipHashMap2.get(relation)

;

112 for (int i = 0; i < classes.size(); i++) {

113 String class2String = classes.get(i);

114 OWLNamedClass class2 = owlModel.getOWLNamedClass(

class2String);

115 if (relation.equals("superClassOf")) {

116

117 class2.removeSuperclass(tabClass);

118 class2.addSuperclass(class1);

119 } else if (relation.equals("contains")) {

120

121 OWLObjectProperty containsProperty;

122 try {

123 containsProperty = owlModel.createOWLObjectProperty("

contains");

124 containsProperty.setDomain(class1);

125 containsProperty.setRange(class2);

126 } catch (Exception e) {

127 // TODO: handle exception

128 containsProperty = owlModel.getOWLObjectProperty("

contains");

129 containsProperty.addUnionDomainClass(class1);

130

131 containsProperty.addUnionRangeClass(class2);

132 }

133 } else if (relation.equals("equivalent")) {

134 class1.addEquivalentClass(class2);

135 }

136 }

137

138 }

139 }

140 }

141

142 owlModel.save(new File(filename).toURI());

143 } catch (Exception e) {

144 // TODO Auto -generated catch block

145 e.printStackTrace ();

146 }

147 }

148

149 /**

150 * generate the instances

151 *

152 * @param ontologyname

153 * @param namespaceString

154 * @param filename

155 */

156 public void generateInstance(String ontologyname , String namespaceString

, String filename) {

157 try {

158 JenaOWLModel owlModel = ProtegeOWL.createJenaOWLModelFromURI(

ontologyname);

159 owlModel.getNamespaceManager ().setDefaultNamespace(namespaceString);

160 Iterator <String > tabNameIterator = this.allInstancesHashMap.keySet ()

.iterator ();

161 while (tabNameIterator.hasNext ()) {

C.2. Building OWL Ontological Instance 185

162 String tabName = tabNameIterator.next();

163 HashMap <String , HashMap <String , String >> instanceHashMap = this.

allInstancesHashMap.get(tabName);

164 Iterator <String > classnameIterator = instanceHashMap.keySet ().

iterator ();

165 while (classnameIterator.hasNext ()) {

166 String className = classnameIterator.next();

167

168 OWLNamedClass ontoClass = owlModel.getOWLNamedClass(className);

169 RDFIndividual instance = ontoClass.createRDFIndividual (className

+ "Instance");

170 // instance.setPropertyValue(ageProperty , new Integer (0));

171 Iterator <String > parasIterator = instanceHashMap.get(className).

keySet ().iterator ();

172 while (parasIterator.hasNext ()) {

173 String paraString = parasIterator.next();

174 String valueString = instanceHashMap.get(className).get(

paraString);

175 OWLDatatypeProperty property = owlModel.getOWLDatatypeProperty

(paraString);

176 instance.setPropertyValue(property , valueString);

177 }

178 }

179 }

180 owlModel.save(new File(filename).toURI());

181 } catch (Exception e) {

182 // TODO Auto -generated catch block

183 e.printStackTrace ();

184 }

185 }

186

187 /**

188 * generate the properties between the instances

189 * @param ontologyname

190 * @param namespaceString

191 * @param filename

192 */

193 public void generateObjectPropertyBetweenInstance(String ontologyname ,

String namespaceString , String filename) {

194 try {

195 JenaOWLModel owlModel = ProtegeOWL.createJenaOWLModelFromURI(

ontologyname);

196 owlModel.getNamespaceManager ().setDefaultNamespace(namespaceString);

197 Iterator <String > tabRelations = this.allRelationShipMap.keySet ().

iterator ();

198 while (tabRelations.hasNext ()) {

199 String tabName = tabRelations.next();

200 HashMap <String , HashMap <String , ArrayList <String >>>

relationshiphaHashMap = this.allRelationShipMap

201 .get(tabName);

202 Iterator <String > relations = relationshiphaHashMap.keySet ().

iterator ();

203 while (relations.hasNext ()) {

204 String class1String = relations.next();

205 RDFIndividual instanceOfClass1 = owlModel.getRDFIndividual(

class1String + "Instance");

206 // System.out.print(class1String +" contains ");

207 HashMap <String , ArrayList <String >> relationshipHashMap2 =

relationshiphaHashMap.get(class1String);

208 Iterator <String > relationIterator = relationshipHashMap2.keySet

().iterator ();

209 while (relationIterator.hasNext ()) {

186 Appendix C. SysMLsec-to-Ontology Translation Engine

210 String relation = relationIterator.next();

211 ArrayList <String > classes = relationshipHashMap2.get(relation)

;

212 for (int i = 0; i < classes.size(); i++) {

213 String class2String = classes.get(i);

214 RDFIndividual instanceOfClass2 = owlModel.getRDFIndividual(

class2String + "Instance");

215 // we just contains the "contains" property

216 if (relation.equals("contains")) {

217 OWLObjectProperty containsProperty;

218 containsProperty = owlModel.getOWLObjectProperty("contains

");

219 instanceOfClass1.addPropertyValue(containsProperty ,

instanceOfClass2);

220 }

221 }

222

223 }

224 }

225 }

226 owlModel.save(new File(filename).toURI());

227 } catch (Exception e) {

228 // TODO: handle exception

229 }

230 }

231

232 }

Listing C.2: Building OWL Ontological Instance

Appendix D

XACML to ANS.1 Defintion

1 Access -control -xacml -2-0-policy -schema DEFINITIONS AUTOMATIC TAGS

2 ::= BEGIN

3

4 VersionType ::= UTF8String

5

6 Description ::= UTF8String

7

8 XPathVersion ::= UTF8String

9

10 DefaultsType ::= CHOICE {

11 xPathVersion [0] XPathVersion

12 }

13

14 PolicySetDefaults ::= DefaultsType

15

16 AttributeValueType ::= SEQUENCE {

17 dataType [0] UTF8String ,

18 attr [1] SEQUENCE OF UTF8String

19 }

20

21 AttributeValue ::= AttributeValueType

22

23 SubjectAttributeDesignatorType ::= SEQUENCE {

24 attributeId [0] UTF8String ,

25 dataType [1] UTF8String ,

26 issuer [2] UTF8String OPTIONAL ,

27 mustBePresent [3] BOOLEAN DEFAULT FALSE ,

28 subjectCategory [4] UTF8String

29 }

30

31 SubjectAttributeDesignator ::= SubjectAttributeDesignatorType

32

33 AttributeSelectorType ::= SEQUENCE {

34 dataType [0] UTF8String ,

35 mustBePresent [1] BOOLEAN DEFAULT FALSE ,

36 requestContextPath [2] UTF8String

37 }

38

39 AttributeSelector ::= AttributeSelectorType

40

41 SubjectMatchType ::= SEQUENCE {

42 matchId [0] UTF8String ,

43 attributeValue [1] AttributeValue ,

44 choice [2] CHOICE {

45 subjectAttributeDesignator [0] SubjectAttributeDesignator ,

46 attributeSelector [1] AttributeSelector

47 }

48 }

49

50 SubjectMatch ::= SubjectMatchType

51

188 Appendix D. XACML to ANS.1 Defintion

52 SubjectType ::= SEQUENCE {

53 subjectMatch -list [0] SEQUENCE (SIZE (1.. MAX)) OF subjectMatch

SubjectMatch

54 }

55

56 Subject ::= SubjectType

57

58 SubjectsType ::= SEQUENCE {

59 subject -list [0] SEQUENCE (SIZE (1.. MAX)) OF subject Subject

60 }

61

62 Subjects ::= SubjectsType

63

64 AttributeDesignatorType ::= SEQUENCE {

65 attributeId [0] UTF8String ,

66 dataType [1] UTF8String ,

67 issuer [2] UTF8String OPTIONAL ,

68 mustBePresent [3] BOOLEAN DEFAULT FALSE

69 }

70

71 AttributeDesignatorType -derivations ::= CHOICE {

72 attributeDesignatorType [0] AttributeDesignatorType ,

73 subjectAttributeDesignatorType [1] SubjectAttributeDesignatorType

74 }

75

76 ResourceAttributeDesignator ::= AttributeDesignatorType -derivations

77

78 ResourceMatchType ::= SEQUENCE {

79 matchId [0] UTF8String ,

80 attributeValue [1] AttributeValue ,

81 choice [2] CHOICE {

82 resourceAttributeDesignator [0] ResourceAttributeDesignator ,

83 attributeSelector [1] AttributeSelector

84 }

85 }

86

87 ResourceMatch ::= ResourceMatchType

88

89 ResourceType ::= SEQUENCE {

90 resourceMatch -list [0] SEQUENCE (SIZE (1.. MAX)) OF resourceMatch

91 ResourceMatch

92 }

93

94 Resource ::= ResourceType

95

96 ResourcesType ::= SEQUENCE {

97 resource -list [0] SEQUENCE (SIZE (1.. MAX)) OF resource Resource

98 }

99

100 Resources ::= ResourcesType

101

102 ActionAttributeDesignator ::= AttributeDesignatorType -derivations

103

104 ActionMatchType ::= SEQUENCE {

105 matchId [0] UTF8String ,

106 attributeValue [1] AttributeValue ,

107 choice [2] CHOICE {

108 actionAttributeDesignator [0] ActionAttributeDesignator ,

109 attributeSelector [1] AttributeSelector

110 }

111 }

112

189

113 ActionMatch ::= ActionMatchType

114

115 ActionType ::= SEQUENCE {

116 actionMatch -list [0] SEQUENCE (SIZE (1.. MAX)) OF actionMatch

ActionMatch

117 }

118

119 Action ::= ActionType

120

121 ActionsType ::= SEQUENCE {

122 action -list [0] SEQUENCE (SIZE (1.. MAX)) OF action Action

123 }

124

125 Actions ::= ActionsType

126

127 EnvironmentAttributeDesignator ::= AttributeDesignatorType -derivations

128

129 EnvironmentMatchType ::= SEQUENCE {

130 matchId [0] UTF8String ,

131 attributeValue [1] AttributeValue ,

132 choice [2] CHOICE {

133 environmentAttributeDesignator [0] EnvironmentAttributeDesignator ,

134 attributeSelector [1] AttributeSelector

135 }

136 }

137

138 EnvironmentMatch ::= EnvironmentMatchType

139

140 EnvironmentType ::= SEQUENCE {

141 environmentMatch -list [0] SEQUENCE (SIZE (1.. MAX)) OF environmentMatch

142 EnvironmentMatch

143 }

144

145 Environment ::= EnvironmentType

146

147 EnvironmentsType ::= SEQUENCE {

148 environment -list [0] SEQUENCE (SIZE (1.. MAX)) OF environment

Environment

149 }

150

151 Environments ::= EnvironmentsType

152

153 TargetType ::= SEQUENCE {

154 subjects [0] Subjects OPTIONAL ,

155 resources [1] Resources OPTIONAL ,

156 actions [2] Actions OPTIONAL ,

157 environments [3] Environments OPTIONAL

158 }

159

160 Target ::= TargetType

161

162 PolicyDefaults ::= DefaultsType

163

164 CombinerParameterType ::= SEQUENCE {

165 parameterName [0] UTF8String ,

166 attributeValue [1] AttributeValue

167 }

168

169 CombinerParameter ::= CombinerParameterType

170

171 CombinerParametersType ::= SEQUENCE {

190 Appendix D. XACML to ANS.1 Defintion

172 combinerParameter -list [0] SEQUENCE OF combinerParameter

CombinerParameter

173 }

174

175 RuleCombinerParametersType ::= SEQUENCE {

176 ruleIdRef [0] UTF8String ,

177 combinerParameter -list [1] SEQUENCE OF combinerParameter

CombinerParameter

178 }

179

180 PolicyCombinerParametersType ::= SEQUENCE {

181 policyIdRef [0] UTF8String ,

182 combinerParameter -list [1] SEQUENCE OF combinerParameter

CombinerParameter

183 }

184

185 PolicySetCombinerParametersType ::= SEQUENCE {

186 policySetIdRef [0] UTF8String ,

187 combinerParameter -list [1] SEQUENCE OF combinerParameter

CombinerParameter

188 }

189

190 CombinerParametersType -derivations ::= CHOICE {

191 combinerParametersType [0] CombinerParametersType ,

192 ruleCombinerParametersType [1] RuleCombinerParametersType ,

193 policyCombinerParametersType [2] PolicyCombinerParametersType ,

194 policySetCombinerParametersType [3] PolicySetCombinerParametersType

195 }

196

197 CombinerParameters ::= CombinerParametersType -derivations

198

199 RuleCombinerParameters ::= RuleCombinerParametersType

200

201 VariableReferenceType ::= SEQUENCE {

202 variableId [0] UTF8String

203 }

204

205 VariableReference ::= VariableReferenceType

206

207 FunctionType ::= SEQUENCE {

208 functionId [0] UTF8String

209 }

210

211 Function ::= FunctionType

212

213 ApplyType ::= SEQUENCE {

214 functionId [0] UTF8String ,

215 expression -list [1] SEQUENCE OF expression Expression -group

216 }

217

218 Apply ::= ApplyType

219

220 Expression -group ::= CHOICE {

221 variableReference [0] VariableReference ,

222 attributeSelector [1] AttributeSelector ,

223 resourceAttributeDesignator [2] ResourceAttributeDesignator ,

224 actionAttributeDesignator [3] ActionAttributeDesignator ,

225 environmentAttributeDesignator [4] EnvironmentAttributeDesignator ,

226 subjectAttributeDesignator [5] SubjectAttributeDesignator ,

227 attributeValue [6] AttributeValue ,

228 function [7] Function ,

229 apply [8] Apply

191

230 }

231

232 VariableDefinitionType ::= SEQUENCE {

233 variableId [0] UTF8String ,

234 expression [1] Expression -group

235 }

236

237 VariableDefinition ::= VariableDefinitionType

238

239 EffectType ::= ENUMERATED { deny (0), permit (1) }

240 ConditionType ::= SEQUENCE {

241 expression [0] Expression -group

242 }

243

244 Condition ::= ConditionType

245

246 RuleType ::= SEQUENCE {

247 effect [0] EffectType ,

248 ruleId [1] UTF8String ,

249 description [2] Description OPTIONAL ,

250 target [3] Target OPTIONAL ,

251 condition [4] Condition OPTIONAL

252 }

253

254 Rule ::= RuleType

255

256 AttributeAssignmentType ::= SEQUENCE {

257 attributeId [0] UTF8String ,

258 dataType [1] UTF8String ,

259 attr [2] SEQUENCE OF UTF8String

260 }

261

262 AttributeAssignment ::= AttributeAssignmentType

263 ObligationType ::= SEQUENCE {

264 fulfillOn [0] EffectType ,

265 obligationId [1] UTF8String ,

266 attributeAssignment -list [2] SEQUENCE OF attributeAssignment

267 AttributeAssignment

268 }

269

270 Obligation ::= ObligationType

271 ObligationsType ::= SEQUENCE {

272 obligation -list [0] SEQUENCE (SIZE (1.. MAX)) OF obligation Obligation

273 }

274

275 Obligations ::= ObligationsType

276

277 PolicyType ::= SEQUENCE {

278 policyId [0] UTF8String ,

279 ruleCombiningAlgId [1] UTF8String ,

280 version [2] UTF8String OPTIONAL ,

281 description [3] Description OPTIONAL ,

282 policyDefaults [4] PolicyDefaults OPTIONAL ,

283 combinerParameters [5] CombinerParameters OPTIONAL ,

284 target [6] Target ,

285 choice -list [7] SEQUENCE OF CHOICE {

286 combinerParameters [0] CombinerParameters OPTIONAL ,

287 ruleCombinerParameters [1] RuleCombinerParameters OPTIONAL ,

288 variableDefinition [2] VariableDefinition ,

289 rule [3] Rule

290 } OPTIONAL ,

291 obligations [8] Obligations OPTIONAL

192 Appendix D. XACML to ANS.1 Defintion

292 }

293

294 Policy ::= PolicyType

295

296 VersionMatchType ::= UTF8String

297

298 IdReferenceType ::= SEQUENCE {

299 earliestVersion [0] UTF8String OPTIONAL ,

300 latestVersion [1] UTF8String OPTIONAL ,

301 version [2] UTF8String OPTIONAL ,

302 base [3] UTF8String

303 }

304

305 PolicySetIdReference ::= IdReferenceType

306

307 PolicyIdReference ::= IdReferenceType

308

309 PolicyCombinerParameters ::= PolicyCombinerParametersType

310

311 PolicySetCombinerParameters ::= PolicySetCombinerParametersType

312

313 PolicySetType ::= SEQUENCE {

314 policyCombiningAlgId [0] UTF8String ,

315 policySetId [1] UTF8String ,

316 version [2] UTF8String OPTIONAL ,

317 description [3] Description OPTIONAL ,

318 policySetDefaults [4] PolicySetDefaults OPTIONAL ,

319 target [5] Target ,

320 choice -list [6] SEQUENCE OF CHOICE {

321 policySet [0] PolicySet ,

322 policy [1] Policy ,

323 policySetIdReference [2] PolicySetIdReference ,

324 policyIdReference [3] PolicyIdReference ,

325 combinerParameters [4] CombinerParameters ,

326 policyCombinerParameters [5] PolicyCombinerParameters ,

327 policySetCombinerParameters [6] PolicySetCombinerParameters

328 },

329 obligations [7] Obligations OPTIONAL

330 }

331

332 PolicySet ::= PolicySetType

333

334 ExpressionType ::= SEQUENCE {

335

336 }

337

338 Expression ::= ExpressionType

339

340 ExpressionType -derivations ::= CHOICE {

341 attributeDesignatorType [0] AttributeDesignatorType ,

342 subjectAttributeDesignatorType [1] SubjectAttributeDesignatorType ,

343 attributeSelectorType [2] AttributeSelectorType ,

344 variableReferenceType [3] VariableReferenceType ,

345 functionType [4] FunctionType ,

346 applyType [5] ApplyType

347 }

348

349 END

Listing D.1: Policy decision module Native Language (PNL) based on ASN.1

Defintion

Appendix E

Résumé en Français

E.1 Contexte

La conception des systèmes sécurisés a été toujours une tâche complexe. En pratique, beau-
coup d’effort a été fourni par les concepteurs et les développeurs afin de définir et délivrer un
système de travail. Concernant la sécurité de ces systèmes, l’approche considérée était tou-
jours rétroactive qui s’applique qu’après la détection d’un ensemble de lacunes. Les experts
en sécurité sont donc généralement confrontés à un système existant, dont l’architecture
pourrait entraver le déploiement de mécanismes de sécurité, ce qui empêcherait l’apparition
des attaques qu’ils envisagent. Une approche qui permet d’éviter ce type de problèmes est le
développement d’une architecture de sécurité qui définie des exigences axées sur la sécurité
et qui décrit une collaboration structurée et une interdépendance entre la conception de
l’architecture et les exigences de la sécurité (SR) pour répondre aux besoins à long terme
des systèmes [138]. Le but d’une architecture de sécurité est traditionnellement de mettre
en évidence les principaux domaines de préoccupation en soulignant les critères de décision
et le contexte de sécurité pour chaque aspect du système qui peut avoir une valeur directe
ou indirecte pour un acteur. Le concept d’une architecture de sécurité englobe diverses no-
tions techniques dans lesquelles la sécurité est introduite à différents niveaux d’abstraction
et fondée sur des mécanismes différents. Thorn et al. [145] décrivent une architecture de
sécurité comme «une conception cohérente de la sécurité, qui répond aux exigences de sécu-
rité (par exemple, l’authentification, l’autorisation, etc.) et en particulier aux risques d’un
environnement ou scénario spécifique, et spécifie les contrôles de sécurité qui doivent être
appliqués et où est ce qu’ils peuvent être appliqués". À cette fin, l’un des aspects clés d’une
architecture de sécurité comme étant un outil d’une conception sécurisée c’est de fournir
un framework des exigences de sécurité (SRE: Security Requirement Engineering) à travers
lequel des exigences réalistes et concrètes peuvent être identifiées et mises en œuvre.

Du point de vue de système embarqué, cette activité, SRE, devient encore plus cri-
tique et présente des défis. Ces défis découlent de la relation étroite entre la conception
de l’architecture et de ses exigences fonctionnelles et non fonctionnelles ainsi que de leur
impact sur l’autre. Par exemple, si la conception de l’architecture du système évolue, les
exigences de sécurité devraient atteindre les nouveaux objectifs de la nouvelle conception
de l’architecture. C’est particulièrement vrai lorsque ces systèmes font partie intégrante
des systèmes critiques de sécurité tels que les systèmes automobiles [129, 9]. Ceci est lié à
Koscher et al. [80] citation, "les systèmes automobiles doivent non seulement être extrême-
ment fiable et sans défaut, mais aussi extrêmement résistant aux menaces et l’exploitation
des vulnérabilités". Plus précisément, les applications de sécurité doivent être assurés con-
tre les attaques malveillantes. Plusieurs activités de recherche ont décrit les vulnérabilités

194 Appendix E. Résumé en Français

potentielles et contre-mesures dans les systèmes automobiles, par exemple, [51, 14], que
nous allons en faire référence dans la suite de cette thèse. À quelques exceptions près, la
plupart de ces efforts considèrent les SR d’une façon abstraite, seule l’étape d’identification
des exigences est considérée, et ne visent pas particulièrement le raffinement des exigences,
et les propriétés de traçabilité des exigences. Cependant, il y a des approches bien reconnues
comme KAOS [152] ou UMLsec [69] qui ont déjà montré des résultats intéressants dans le
domaine de SRE pour gérer les problèmes de sécurité. Pourtant, avant de considérer ces
approches, nous devons d’abord faire une distinction claire entre ce que nous entendons
par système embarqué et quelles sont leurs fonctions, ainsi que les problèmes de sécurité
non-fonctionnels.

En général, les systèmes embarqués sont définis comme une combinaison de matériel
et de logiciels qui forment une partie d’un système plus vaste et sont généralement conçus
pour accomplir une tâche spécifique. Plus précisément, ce qui rend les systèmes embarqués
distribués différent des systèmes à usage général sont des caractéristiques spécifiques : ces
systèmes ont des ressources limitées concernant leurs capacités (et par conséquent dans leurs
défenses). Ils ont des problèmes de fiabilité et de performance, ainsi que les contraintes de
calcul en temps réel. Ces systèmes sont souvent portables ou mobiles, et ils sont facilement
accessibles aux adversaires au niveau de la couche physique. Cette accessibilité a donné lieu
à plusieurs nouvelles attaques de sécurité au cours de ces dernières années [80, 163, 164].
Par exemple, Koscher et al. [80] démontrent la capacité de contrôler un large nombres de
fonctions automobiles tout en ignorant les données du conducteur. Ces attaques ont été
faites par le simple accès aux diagnostics internes sur portuaires (OBD- II) et l’incorporation
d’un code malveillant dans l’unité télématique d’une voiture. Cela permet à un adversaire
de contrôler pratiquement différentes fonctionnalités de bord - y compris la désactivation
des freins, un freinage sélectif des roues individuelles sur demande, l’arrêt du moteur, et
ainsi de suite. En outre, l’aspect le plus important du système embarqué tel que c’est défini
par Noergaard [100]:

". . . aucun des éléments à l’intérieur d’un système embarqué fonctionne en vase clos.

Chaque élément au sein d’un dispositif interagit avec un autre élément d’une certaine façon.

En outre, plusieurs caractéristiques qui sont visibles de l’extérieur des éléments peuvent

changer étant donné un ensemble d’autres éléments qui sont censés fonctionner avec. Sans

comprendre les «pourquoi» fournies derrière la fonctionnalité d’un élément, sa performance,

etc, il serait difficile de déterminer comment le système se comporte dans une variété de

circonstances dans le monde réel".

Du point de vue sécurité, cette définition implique que, pour un système intégré, pour
être sécurisé, chaque élément ainsi que ses relations avec les autres éléments à différents
niveaux d’abstraction (par exemple , application, au niveau du protocole, au niveau du
middleware, le niveau infrastructure, niveau de stockage, et ainsi de suite) doivent être
sécurisés . Par exemple, l’unité de contrôle électrique (ECU), peut compter sur un module
de sécurité matériel pour le traitement des opérations cryptographiques, mais si les couches
supérieures (par exemple, la couche de middleware) gèrent ces attributs d’authentification
différemment et permettent à l’adversaire de fausser ces attributs (c’est à dire , les tickets
d’authentification) , la sécurité globale est violée. En particulier, nous pouvons identifier
les failles de sécurité et les problèmes en examinant les interactions et les collaborations
entre les couches subtiles. De même, plusieurs approches [79, 55, 164, 161] ont montré que
nous ne pouvons pas résoudre le problème de sécurité d’un système intégré à un seul niveau
d’abstraction. Par conséquent, il est naturel de développer une spécification des exigences
de sécurité en mettant l’accent sur les caractéristiques distinctes des systèmes embarqués

E.2. Contributions de la thèse 195

et en particulier en tenant compte d’une structuration en couches pour la représentation
d’une architecture de système embarqué, qui peut nous aider à développer une architecture
de sécurité modulaire. Dans ce contexte, l’état actuel des approches de SRE, comme KAOS
et UMLsec, sont loin de Capturer le fonctionnement de base des architectures de systèmes
embarqués. Par exemple, le cadre KAOS se concentre principalement sur la satisfaction
des objectifs et sur la synthèse de modèles de comportement [151] et ne considère pas
l’architecture système du système. Par exemple, il est difficile de capturer et de modéliser
dans KAOS une architecture et encore moins plusieurs couches architecturales. En revanche,
UMLsec, qui est une approche d’ingénierie dirigée par les modèles, considère à la fois les
aspects structurels et comportementaux de SR. Cette approche considère que les exigences
bien formées ont déjà été obtenues et raffinées jusqu’au niveau de la conception à travers la
définition des comportements normaux des composants du système. UMLsec se concentre
plus particulièrement sur l’amélioration de ces conditions de sécurité dans les mécanismes
de sécurité.

E.2 Contributions de la thèse

Dans cette thèse, nous proposons une approche pour la gestion des exigences de sécurité
(SRE) qui permet la conception d’une architecture de sécurité pour les systèmes embarqués.
Nous mettons l’accent sur l’acquisition de connaissances liées à la sécurité et à la gestion
à travers la définition d’un processus de SRE qui permet de concevoir un système qui est
intrinsèquement sécurisé dès sa conception. Notre approche se compose de trois parties
successive:

1. Approche basée sur les connaissances pour l’ingénierie des exigences de

la sécurité: Dans la première phase de cette thèse, nous présentons les principaux
éléments constitutifs de notre méthodologie SRE proposée et nous discutons de son
intégration avec un système d’ingénierie à travers un langage de modélisation.

• Nous avons analysé systématiquement diverses sources telles que les normes
de sécurité, un ensemble de méthodologies représentant l’état actuel des ap-
proches existantes, afin de construire une méthodologie unifiée de SRE. La
méthodologie proposée montre comment les capacités des modèles et des ap-
proches des différents SRE peuvent être intégrés à un processus de SRE axé sur
la connaissance. En outre, nous considérons les concepts clés définis dans ces
approches et nous construisons des ontologies de sécurité pour chaque concept
afin de guider notre processus de SRE avec une base de connaissances. Ainsi,
il sera possible d’analyser différents concepts de sécurité et de permettre une
structuration particulière, une réutilisation et une base de connaissances sur
les concepts de sécurité qui peut être partagée dans le processus de SRE. Bien
que notre méthodologie proposée soit dédiée aux systèmes embarqués, il est en-
core assez souple pour l’adapter à tout type d’architecture de système d’usage
général comme dans le cadre des architectures orientées services (SOA) [115],
et aussi capables de produire des exigences de sécurité précises. Les résultats

196 Appendix E. Résumé en Français

sont présentés dans [60].

• Nous avons d’abord exploré les capacités de SysML, le système Modeling Lan-
guage [107] pour supporter notre méthodologie de SRE basée sur la connais-
sance. SysML est un standard OMG [106]pour le système de modélisation des
applications d’ingénierie et a une expressivité suffisante pour décrire une concep-
tion détaillée du système. Cependant, une faiblesse majeure pour l’utilisation
de SysML est le manque des aspects orientés sécurité. Pour tirer profit des
capacités de SysML, nous avons proposé plusieurs extensions à la sémantique
SysML pour pouvoir intégrer nos concepts de sécurité. En particulier, nous
avons intégré l’exigence de sécurité et les schémas d’attaque de sécurité. De
plus, nous avons enrichi ces diagrammes avec nos concepts ontologiques pro-
posés, comme un vocabulaire contrôlé. L’utilisation des ontologies dans les lan-
gages de modélisation offre une occasion concrète de raisonner sur l’exactitude
de ces modèles. En outre, nous avons implémenté ces fonctionnalités dans le
moteur TTool [82] qui supporte également notre modèle SysML étendu pour
définir les exigences de sécurité et de la modélisation de l’arbre d’attaque . Cet
outil prend en charge facilement la méthodologie itérative que nous préconisons.

2. Conception des exigences de sécurité: Dans la deuxième partie de cette thèse,
nous présentons chaque activité du processus des exigences de sécurité (SREP) en
détails et nous expliquons comment une base de connaissances liées à la sécurité est
générée et partagée entre toutes les activités.

• Afin d’illustrer les différentes parties de cette thèse, nous introduisons un exem-
ple pratique - sur la mise à jour de fireware - utilisé tout au long de la thèse pour
expliquer nos propositions. L’exemple est originaire de la conception sécurisée
d’un système embarqué de véhicule développé dans le projet européen EVITA
[117]. L’étude de cas a été développée pour illustrer le processus de mise à jour
du firmware sécurisé.

• Nous abordons le problème de l’identification des attaques de sécurité et les
vulnérabilités dans le cadre d’une architecture de système multicouche, où
l’information liée à la sécurité est générée, traitée et stockée à différents niveaux.
L’idée est d’extraire les connaissances sur les différentes activités du système et
qui correspondent à diverses activités de développement du système, et d’utiliser
ces connaissances à des fins d’analyse de la sécurité. En particulier, nous util-
isons les bases de connaissances en s’appuyant sur différentes ontologies tels
que l’ontologie de l’architecture du système, l’ontologie des objectifs, etc pour
analyser la sécurité du système et pour spécifier comment un adversaire peut
attaquer le système. En outre, le concept d’un arbre d’attaque basée sur la
connaissance est introduit dans la représentation graphique fondamentale pour
la modélisation d’attaque.

• Nous avons illustré l’approche dans le cadre de l’identification et de raffine-
ment des exigences de sécurité, et nous avons présenté un moyen de retracer
les exigences de sécurité. Nous décrivons d’abord le processus d’identification
des exigences de sécurité qui utilise les différentes bases de connaissances pro-

E.2. Contributions de la thèse 197

duites durant les différentes phases de la SREP. Il nous permet de découvrir les
exigences de sécurité du stade de développement du système tout au début et
par rapport aux différentes bases de connaissances disponibles. Ensuite, nous
proposons le concept de modèle de raffinement pour remédier à certaines insuff-
isances et limites des approches existantes pour le raffinement des SR. Enfin,
nous proposons une approche pour tracer les exigences afin de déterminer leurs
sources et les raisons pour leurs existences. Nous utilisons en particulier nos
diagrammes d’exigences de sécurité SysML étendu pour modéliser et partager
des connaissances connexes sur les SR.

3. Mise en oeuvre des exigences de sécurité: Dans la troisième et dernière partie
de cette thèse, nous traitons la mise en œuvre des SR et nous proposons des solutions
pour la conception et le déploiement de protocoles cryptographiques et pour la mise
en œuvre des exigences de sécurité liées au contrôle d’accès.

• Nous avons proposé une approche basée sur l’utilisation des clés cryptographiques
protégés avec du matériel peu coûteux pour construire le firmware montrant
la spécification du protocole cryptographique. Nous montrons comment une
racine de confiance dans le matériel peut être raisonnablement combinée avec
des modules logiciels. Ces modules et primitives ont été appliquées pour mon-
trer comment les mises à jour du firmware peut être faite en toute sécurité, tout
en respectant les normes et les infrastructures existantes. Malgré le fait que le
modèle de plateforme de confiance implique certaines contraintes, telles que
l’obligation d’intégrer des clés cryptographiques à une configuration de démar-
rage donnée, nous montrons comment les protocoles que nous avons présenté
gèrent la mise à jour des registres de référence de la plateforme pendant la phase
de démarrage d’une unité de contrôle électronique - ECU.

• La dernière contribution de cette thèse est consacrée à la mise en oeuvre des
exigences de sécurité concernant le contrôle d’accès. Nous avons proposé et
développé un module de décision de la politique qui est utilisé pour appliquer les
différentes règles de contrôle d’accès en déployant plusieurs points d’application
pour les différents niveaux d’abstraction du système. Nous discutons la façon de
mettre en œuvre les politiques qui implémentent une application effective dans
de telles architectures, malgré la complexité des piles de protocoles au bord des
unités de contrôle électronique. On évalue également comment les politiques
exprimées dans XACML peuvent être adaptées aux exigences d’efficacité dans
des environnements automobiles malgré la puissance de calcul limitée de leurs
unités et leurs limites de bande passante au niveau réseau.

