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Résumé

La perte d’énergie moyenne d’un ion par unité de longueur de longueur quand
il se déplace à travers la matière est nommé pouvoir d’arrêt. La connaissance
du pouvoir d’arrêt est essentielle pour de nombreuses applications modernes
qui dépendent du transport des ions dans la matière, par exemple les tech-
niques d’analyse par faisceau d’ions ou l’implantation d’ions. L’utilisation de
faisceaux de protons ou d’ions plus lourds en radiothérapie nécessite également
la connaissance du pouvoir d’arrêt dans les tissus. Mais, alors que les données
expérimentales sont facilement disponibles pour les solides élémentaires, les
données sont beaucoup plus rares pour les composés.

La réponse linéaire dans le formalisme diélectrique a été largement utilisée
dans le passé pour étudier le pouvoir d’arrêt électronique. En particulier, les
célèbres calculs pionniers de Lindhard évaluent le pouvoir d’arrêt électronique
d’un gaz d’électrons libres. Dans cette thèse, nous développons un code ab
initio entièrement basée sur la théorie de la fonctionnelle densité dépendant
du temps dans sa version réponse linéaire afin de prédire le pouvoir d’arrêt
électronique aléatoire (RESP en anglais), qui est la moyenne des pouvoirs
d’arrêt pour les différents points d’impact. Le but est d’être capable de prédire
le résultat d’expériences sans aucune connaissance du matériau cible en dehors
de sa structure cristallographique.

Nos développements ont été réalisés au sein du code libre ab initio nommé
ABINIT, dans lequel deux approximations sont maintenant disponibles : l’ap-
proximation de la phase aléatoire (RPA en anglais) et l’approximation de la
densité locale adiabatique (ALDA en anglais). En outre, une nouvelle méth-
ode nommée “méthode d’extrapolation” a été introduite pour surmonter les
problèmes de convergence hardus que nous avons rencontrés. Ces questions de
convergence ont empêché les études précédentes dans la littérature de perme-
ttre une comparaison directe à expérience.

Tout d’abord, nous démontrons l’importance de décrire la structure élec-
tronique réaliste en ab initio en comparant avec l’évaluation historique Lind-
hard du pouvoir d’arrêt. Bien que le pouvoir d’arrêt de Lindhard fournit une
description acceptable au premier ordre qui permet capturer les caractéris-
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tiques générales du pouvoir d’arrêt, les détails quantitatifs sont clairement
au-delà du modèle de gaz d’électrons libres. De surcroît, nous montrons que le
RESP ab initio se compare bien avec les données expérimentales pour les pro-
jectile proton pénétrant une large gamme de matériaux cibles. Dans la thèse,
nous avons examiné des cibles métalliques (aluminium, lithium, graphite) et
des cibles semi-conductrices (Si, diamant, SiC). Nous montrons aussi les ré-
sultats préliminaires pour les matériaux organiques. La description correcte
du pouvoir d’arrêt nécessite un traitement attentif des électrons de coeur et
de l’échange-corrélation pour les électrons de la cible. Nous avons également
examiné la pertinence du formalisme de la réponse linéaire par rapport aux
résultats de la littérature utilisant la propagation temporelle des fonctions
d’onde, qui va au-delà de la théorie de la réponse linéaire que nous utilisons.
Étonnamment, nous avons trouvé un très bon accord entre ses deux théories
et avons évalué une limite supérieure pour les effets non-linéaires de 5 % dans
la cible d’aluminium.

En outre, certaines règles empiriques rapides qui sont couramment utilisées
pour l’interprétation ou la prédiction d’expériences avec les codes empiriques
ont été évaluées. L’anisotropie du RESP dans des matériaux anisotropes peut
être complétement ignoré par exemple. Toutefois, la règle d’additivité de Bragg
et l’insensibilité de phase ne peuvent pas être considérés comme acquis en
général. Nous avons découvert que, bien que le silicium, le diamant, et SiC
possèdent une structure cristallographique très similaire et une structure élec-
tronique très similaire, l’erreur de la loi de Bragg est non négligeable lorsque
l’on compare SiC à la somme du silicium et du carbone (diamant).

Enfin, nous avons exploré la possibilité d’utiliser notre code basé sur une
base d’ondes planes pour calculer les systèmes isolés dans la phase gazeuse.
Notre approche en utilisant des ondes planes n’est pas vraiment adaptée à
ce type d’application, à moins que des efforts énormes de calcul soient con-
sentis. Les développements futurs de code peuvent déverrouiller ce goulot
d’étranglement et pourraient permettre d’aborder le sujet de la comparaison
entre les systèmes isolés et de la matière condensée. Dans les expériences pub-
liées, des différences notables ont été identifiées entre la phase solide de l’eau
(glace) et sa vapeur. Ce serait une voie très intéressante à suivre à l’avenir.
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Summary

The average energy loss of an ion per unit path length when it is moving
through the matter is named the stopping power. The knowledge of the stop-
ping power is essential for a variety of contemporary applications which depend
on the transport of ions in matter, especially ion beam analysis techniques and
ion implantation. Most noticeably, the use of proton or heavier ion beams in
radiotherapy requires the knowledge of the stopping power. Whereas experi-
mental data are readily available for elemental solids, the data are much more
scarce for compounds.

The linear response dielectric formalism has been widely used in the past
to study the electronic stopping power. In particular, the famous pioneering
calculations due to Lindhard evaluate the electronic stopping power of a free
electron gas. In this thesis, we develop a fully ab initio scheme based on lin-
ear response time-dependent density functional theory to predict the impact
parameter averaged quantity named the random electronic stopping power
(RESP) of materials without any empirical fitting. The purpose is to be capa-
ble of predicting the outcome of experiments without any knowledge of target
material besides its crystallographic structure.

Our developments have been done within the open-source ab initio code
named ABINIT, where two approximations are now available: the Random-
Phase Approximation (RPA) and the Adiabatic Local Density Approximation
(ALDA). Furthermore, a new method named “extrapolation scheme” have been
introduced to overcome the stringent convergence issues we have encountered.
These convergence issues have prevented the previous studies in literature from
offering a direct comparison to experiment.

First of all, we demonstrate the importance of describing the realistic ab
initio electronic structure by comparing with the historical Lindhard stopping
power evaluation. Whereas the Lindhard stopping power provides a first-
order description that captures the general features of the stopping power, the
quantitative details are cleary beyond the free-electron gas model. Moreover,
we show that the ab initio RESP compares well with experimental data for
the proton projectile impinging a wide range of materials. In the thesis, we
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considered metallic targets (aluminum, lithium, graphite) and semiconductors
(Si, diamond, SiC). We also show preliminary results for organic materials.
The correct description of the stopping power requires a carefully treatment of
the core states and of the exchange-correlation for the electrons of the target.
We have also examined the adequacy of the linear response formalism against
published time-propagation results that go beyond the linear-response theory.
Amazingly we have found a very good match between the two frameworks and
have evaluated an upper bound for the non-linear effects of 5 % in aluminum
target.

In addition, some empirical rules of thumbs that are commonly employed
for the experimental interpretation or for the prediction with empirical codes
have been checked. The anisotropy of the RESP in anisotropic materials can be
safely ignored. However, the Bragg’s additivity rule and the phase insensitivity
cannot be taken for granted in general. We have found that, even though
silicon, diamond, and SiC have a very similar crystallographic structure and a
very similar electronic structure, the Bragg’s law error is non negligible when
comparing SiC to the sum of silicon and carbon (diamond).

Finally, we have explored the possibility of using our code within the plane-
waves to calculate isolated systems in the gas phase. Our framework using
plane-waves is not really suitable to this type of application, unless huge com-
putational efforts are achieved. Future code developments may unlock this
bottleneck and allow one to address the topic of the comparison between iso-
lated systems and condensed matter. In the experimental reports, noticeable
differences have been acknowledged between the solid phase of water (ice) and
its vapour. This would be a valuable route to follow in the future.
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Table 1: List of acronyms that will be used in this manuscript.

ALDA Adiabatic local density approximation
BZ Brillouin Zone
DFT Density functional theory
EELS Electron energy loss spectroscopy
ELF Energy loss function
FEG Free electron gas
GOS Generalized oscillator strength
HK Hohenberg-Kohn
IXSS Inelastic X-ray scattering
KS Kohn-Sham
LDA Local density approximation
LFC Local field correction
LPDA Local plasma density approximation
LR Linear response
MELF Mermin energy loss function
RESP Random electronic stopping power
RPA Random phase approximation
TDDFT Time-dependent density function theory
PE Polyethylene
PA Polyacetylene
PW Plane wave
rprim Real space Primitive translations
xred The atom positions in reduced coordinates.
xcart The atom positions in Cartesian coordinates
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Chapter 1

Motivations

The stopping power of an irradiating ion in condensed matter is defined as the
kinetic energy loss per unit of path length:

S = −dE
dx

. (1.1)

This quantity is central to the many technological fields, which involve particle
irradiation. Besides materials in nuclear or space environments, the stopping
power is highly relevant for the depth of implantation of dopants in electronics
and for the accurate prediction of damage in the proton therapy used in nuclear
medicine. Due to its importance, the stopping power of ions has been the
subject of intense research for the last 80 years.

The stopping power consists of two components: the nuclear stopping
power Sn, which involves energy losses due to collisions with the nuclei of the
target and the electronic stopping power Se, which arises from the excitation
of the electrons of the target. As soon as the kinetic energy of the impinging
ion is larger than a few tens of keV/amu, the electronic part becomes the vastly
dominating contribution.

Historically, the electronic stopping power has been first evaluated with
model scattering formulas [79]. Then came the calculations based on the free-
electron gas, pioneered by Lindhard [47]. The electron gas modelling and its
further refinements have been continuoulsy used since then [40, 93, 1, 4]. More
recently, with the advent of density functional theory and its time-dependent
version (TDDFT) [63], the fully ab initio evaluation of the electronic stopping
power has become within reach [20, 21, 64, 65, 67, 54, 77].

Among the recent applications of TDDFT to the calculation of stopping
power, two frameworks have emerged: either in the linear response regime,
in which the response functions are expressed in terms of the frequency; or
in the time-propagation approach, in which the time-dependent Kohn-Sham
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(KS) equations have to be solved. Both approaches have pros and cons. Time-
propagation incorporates the response to all orders and this is expected to yield
important contributions at low velocity. However, the time discretization can
be technical and supercells have to be employed. All this leads to very cum-
bersome calculations. The linear-response framework is conceptually simpler,
however still requires a carefully monitoring of the convergence. Moreover, the
limitation to the linear terms might be questionable for the low ion velocities.

In this thesis, we aim at developing an ab initio code that predicts the
electronic stopping power of any material within the linear response dielectric
formalism. We aim at producing a linear response electronic stopping power
code within two options the Random Phase Approximation (RPA) and Time
Dependent Adiabatic Local-Density Approximation (TD-ALDA). However, as
we will show the absolute convergence is difficult to be obtained since the
convergence factors have different origins. Therefore, we will introduce a new
method (extrapolation method) to overcome this problem.

In this thesis, we propose to push the linear-response approach to its limit
and appreciate his range of validity to evaluate the random electronic stopping
power (RESP). We aim at exploring the power of the calculations to predict
experimental results, since the experimental data are scarce for non-elemental
crystals. Due to the slow convergence of the practical calculations, we produce,
to the best of our knowledge, the first fully converged ab initio electronic
stopping power within linear-response theory. The comparison against time-
propagation results is surprisingly good as we will show. We furthermore
evaluate the validity of a few rule of thumbs empirically used in practice, such
as the Bragg’s additivity rule or the bond effect. In addition, to have a deep
understanding of the RESP results, we will answer the following two questions:
Can we take the phase insensitivity for granted? Also, can we safely ignore
the anisotropy of anisotropic materials?

At the end of this thesis, we will check if the linear response RESP code
within the plane wave (PW) framework is suitable to study more complex
targets, such as water (in solid and gas phase) and polymer materials. These
organic materials are highly interesting since their stopping power strongly
depends on the phase in water and strongly depends on the bond type in
polymers.

The thesis is organized as follows: Chapter 1 (the present Chapter) an-
nounces the motivations and the purpose of this thesis. Also, Chapter 2
presents a brief summary of the history of the most closely related stopping
power theories to our framework here. Furthermore, Chapter 3 reviews the
fundamental basis of the work, namely the ab initio methods (DFT and TD-
DFT). Chapter 4 gives a brief overview of the basic linear response formalism
of TDDFT. However, this chapter is very important for this work, since we are
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going to study the electronic stopping power from the linear response point of
view.

Then, the remaining parts of the thesis is devoted the electronic stopping
power theory , given as follows: In Chapter 5, the first section reviews the
Lindhard theory of stopping power. Also, the second section shows the full
derivation with extensive details of the linear-response in periodic solids for
both the position dependent electronic stopping power and the RESP. Then,
to make the story complete, the last part shows how to derive the Lindhard’s
theory of (FEG) as a special case from RESP of real solid (periodic solid).
Chapter 6 presents the details of the practical implementation in a plane-
waves and proposes a working approach to achieve convergence. In Chapter 7,
the first part evaluates the validity of the simpler models (based on FEG) that
are often used for real targets, the second part tests the effect of the physical
approximations on the RESP and the last one examines the validity of some
commonly stated rules of thumbs concerning the RESP. The Chapter 8 shows
our first steps in understanding and in investigating the stopping power in
organic systems such as: water (in solid and gas phase) and polymers (PE and
PA as isolated chain form). Finally, the thesis is concluded in Chapter 9.

Appendix A summarized all the convergence parameters we use for the
practical calculations.

The atomic units will be used throughout the text (~ = e = a0 = 1), unless
otherwise stated.
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Chapter 2

Introduction to the stopping power

In this chapter, we present an overview of the existing stopping power theories.
In particular, we focus on reviewing the earliest theories, such as the Bohr and
Bethe theories. Finally, we will also sketch the main ideas of some widely used
empirical models for the electronic stopping power.

2.1 Historical review
For many years, the stopping of energetic ions in matter has been a subject
of great interest to theoretical and experimental physicists. Bohr [12, 14, 13],
Bethe [8], and Bloch [10, 11] were the pioneering theoretical investigators of
the charged particles stopping in matter. In his first papers [12, 14, 13], Bohr
suggested a formula for the stopping power based on the assumption that the
atoms of the target are classical oscillators. Later, in Ref. [8], Bethe carried out
a consistent quantum mechanical study and obtained a fundamental equation
to describe the stopping of the fast charged particles moving in a quantized
medium. Then, Bloch [10, 11] constructed a bridging formulation between the
classical Bohr impact parameter approach and the quantum Bethe approach.
His work introduced a modified Bethe formula named “Bethe-Bloch equation”.
This equation reduces to Bohr formula at low velocity and to Bethe formula
at high velocity. Furthermore, Moller [51] and Bethe [9] improved the Bethe’s
stopping theory by adding the relativistic corrections. However, Bohr’s and
Bethe’s theories are only valid for the swift particles. Anyway, both theories
are still used up to the present day for the large velocities.

On the other hand, for slow particles, the stopping power theory of the
condensed matter was developed further by Fermi and Teller [30]. They treated
the target medium as a free electron gas and derived an electronic stopping
power formula which is proportional to the projectile velocity.
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A more general treatment of the electronic stopping was later developed
by Lindhard [47]. Lindhard introduced the first linear dielectric formulation
of stopping theory for a charged particle penetrating a free electron gas. The
Lindhard formula captures many important features of the electronic stop-
ping power. However, it still misses an important point: since it is derived
for an homogeneous electron gas, it is inadequate to describe the directional
dependence of the stopping power.

Furthermore, Lindhard theory has two correct limits for low and high ve-
locities. For low velocities, the Lindhard theory can be replaced with the
Fermi-Teller theory (the linear dependence). For the high but non-relativistic
velocities, the Lindhard theory can be replaced with Bethe theory [68, 47].

Then, the so called local plasma density approximation [45, 41] was intro-
duced in order to better treat the solid targets. This model has been widely
used for long time for two reasons: it is simple and it is rather accurate [41].

Also, a semi-empirical scheme was proposed by Ritchie and Howie to treat
realistic materials [70]. They suggested to use the experimental optical data
to find a fitted formula in the optical limit for the energy loss function (ELF),
then the extrapolated to finite momemta with a dispersion relation such as the
“extended Drude model” to incorporate the momentum q dependence of the
energy loss function. Similar work have been done using different extended
models for the ELF, such as the Penn model [62] and MELF-GOS model [1].
For more details, see Ref. [24].

Finally, the first results to describe the stopping power in a periodic crystal
using ab initio linear response theory were due to Saslow and Reiter [76]. Later,
Campillo et al. [20, 64] obtained equations for both random electronic stopping
power (RESP) and position dependent stopping electronic power using the
linear response theory within the time-dependent DFT framework. Several
attempts were conducted to include the effect of the crystal structure of the
target into the electronic stopping power calculations. For instance, Campillo
et al. [20] and Pitarke and Campillo [64] compared the calculated stopping
power values in Al and Si targets with an equivalent calculations in a free-
electron gas target considered at the same average density as bulk Al and Si.
According to their results, the crystal effect must be included in the stopping
power calculations to obtain high quality results.

More details about the electronic stopping power in a periodic crystal will
be described in Chapter 5 of the present work. The main task of this work is
to study the random electronic stopping power for proton moves in a periodic
crystal within the linear response dielectric formalism. The study of electronic
stopping for the heavy particle with all velocities range is out the scope of this
thesis.
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2.2 Definition and classifications
The stopping power of an irradiating ion in condensed matter is defined as the
kinetic energy loss E per unit of path length x:

S = −dE
dx

. (2.1)

Note that the stopping power has a force dimension, which is why it is also
referred to as the stopping force.

The stopping power consists of two components: the nuclear stopping
power Sn, which involves energy losses due to collisions with the nuclei of the
target, and the electronic stopping power Se, which arises from the excitation
of the electrons of the target. As soon as the kinetic energy of the impinging
ions is larger than a few tens of keV/amu, the electronic part becomes the
vastly dominating contribution.[86] The total stopping power is given as the
sum of the two stopping types:

S = Sn + Se, (2.2)

In this thesis, we will only study the electronic part of the stopping power
of the proton when it moves through the solid target.

Next, we present a brief summary about the most successful electronic
stopping power theories.

2.3 Electronic stopping power of fast, light par-
ticles

In the beginning of 20th century, Bohr [12] and Bethe [8] proposed the first
reliable and acceptable theories to study the stopping power phenomena. In
fact, they managed to solve several limitations and problems corresponding to
in the earlier works done by Thomson and Darwin [81, 23].

The work of both Bohr and Bethe are still used in many applications, since
a nice result compared to the experimental data can be achieved in the case
of the swift particles only. More details can be found in [79].

2.3.1 Bohr formula

Bohr theory of electronic stopping considers the energy transfer from a point
charge projectile to classical electrons harmonically bound to the atoms of the
target with a resonance angular frequencies, say ωj.
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Bohr obtained within a classical perturbation treatment the following for-
mula of the electronic stopping power cross section

S(Z,v) =
4πZ2e4

mev2
LBohr, (2.3)

with the Bohr stopping number

LBohr =
∑
j

fj ln (
Cmev

3

Ze2ωj
), (2.4)

where C = 1.1229, fj values represent the relative contributions of different ωj
values subject to

∑
j fj = 1.

In fact, Bohr theory can be used for the weak interactions only, since he
derived the stopping formula under a classical perturbation assumption. In
addition, Bohr considered two approximations in order to simplify the prob-
lem: First, the dipole approximation; the interaction of the projectile with the
electrons is treated under the assumption that the strength of the Coulomb
interaction does not vary significantly over the range of motion of the elec-
tron; Second, the momentum approximation, in which the projectile path is
not changed and the target electrons remain at rest throughout the collision.

In Bohr approach, the impact parameter between the particle’s trajectory
and the target nucleus is limited to the maximum and minimum values, bmax
and bmin. More details, see [68, 12].

2.3.2 Bethe formula

An alternative stopping power formula has been derived by Bethe [8]. Unlike
Bohr, in views of the quantum mechanics, Bethe derived a stopping formula
for the case of the high velocity projectile.

The classical expression Bethe stopping formula for a free electron gas
target can be written as [56]

S(Z, v) =

(
Zeωp
v

)2

ln
2meMpv

2

(me +Mp)ωp~
, (2.5)

where v, Ze and Mp indicate to the projectile velocity, charge, and mass.
ωp refers to the classical plasma frequency that is obtained with the relation

ωp =

√
4πne2

me

, where n is number density of electrons and me is the electron
mass.
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Furthermore, for heavy projectile Mp � me the stopping power in Eq.
(2.5) reduces to

S(Z, v) =

(
Zeωp
v

)2

ln
2mev

2

ωp~
. (2.6)

In this derivation, two assumptions have been used: The stopping resulted
from Coulomb excitation and ionization of the target electrons. In addition,
the interaction is considered within the first Born approximation.

Hence, the stopping number LBethe reads

LBethe =
∑
j

fj ln

(
2mev

2

~ωj

)
, (2.7)

where ~ωj is the energy corresponding to the jth excitation of electrons in the
target atom and fj is a generalized oscillator strength (GOS).

In practice, it is very hard to calculate the jth electronic excitation, instead
we can calculate the average excitation energy. The average excitation energy
is defined as

ln I =
∑
j

fj ln (~ωj). (2.8)

Empirically, it can be approximated using a commonly used scaling relation
[11]:

I ≈ Z2 × 10 eV (2.9)

In order to judge the accuracy of using both Both theory and Bethe theory
in predicting the electronic stopping power, we present the results of electronic
stopping power of proton moving through Si target.
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Figure 2.1: Electronic stopping power as a function of the projectile velocity
calculated using both Bohr’s formula (blue line) and Bethe’s formula (red line).
Experiment from the PSTAR database [7] (black line) is given as a reference.

Figure 2.1 shows that both Bohr formula and Bethe formula are valid only
for large velocity.

2.4 Empirical models
Predicting the stopping of any projectile in any stopping target medium is the
main purpose in modeling electronic stopping powers. For many applications,
one needs only the stopping power data as an input values for other calcula-
tions. For this, we should use the most direct method “the empirical method”
which provides us with the desired stopping data.

The possibility of success of the empirical models can be seen from Figure
2.2. This figure points to the useful scaling relations for the behavior of the
experimental data. Therefore, it is possible to produce a fitting electronic
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stopping curve as a function of the projectile velocity or other variables like
the atomic number of the target or the atomic number of the energetic particles.
As shown in Figure 2.2, by simple transformations, the experimental data of
different targets and projectiles can be superimposed.

For instance, the most popular fitting schemes is called the stopping and
range of ions in matter “SRIM” code [91] by Ziegler et al [93]. The approach
of Ziegler et al. is based on scaling proton stopping powers, S(Z1 = 1, Z2, v),
by an effective charge fraction γ such that

S(Z1, Z2, v) = Z2
1γ

2S(Z1 = 1, Z2, v). (2.10)

The proton stopping powers are calculated using the local density approxi-
mation of the Lindhard an Sharff [45]. The Lindhard-Sharff theory is described
in details in Chapter 5.

Another successful empirical approach "MSTAR" is found in literature by
Paul and Schinner [59, 61]. In their approach, they have considered the helium
stopping data as an experimental data reference instead of the proton stopping
data.

Using a large experimental electronic stopping power dataset for H and He
ions in elemental targets in conjunction with program JUDGE, Paul and Schin-
ner [60] compared these data to the theoretical programs and semi-empirical
programs. They showed that the average accuracy of SRIM is about 7−8% for
solid and 3−4% for gaseous targets. Anyway, in their results, the experimental
accuracy of the measurements for gases is about twice as good as for solid.
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Figure 2.2: A demonstration of how simple scaling relationships (b) can cap-
ture much of the behaviour of the electronic stopping power (a) for a variety
of projectile and target combinations. The scaling of stopping power by 1/Z1

2

is informed by the prefactor in the fast particle stopping theories [79], [27] and
[53] and the normalization of the particle velocity by 1/Z1

2/3 is suggested by
the Thomas-Fermi scaling of electronic velocities. Data are from the database
of Paul[58]) 22



2.5 Conclusion
In this chapter, we have presented an overview of the stopping power theories.
Also, we have presented a brief summary of the history of the most famous
stopping power theories. Furthermore, we have focused on reviewing the earli-
est theories such as the Bohr and Bethe theories. Finally, we have introduced
the idea of the most used empirical methods of the electronic stopping power
found in the literature.
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Chapter 3

Theoretical background

Ab initio methods are used to predict the properties of materials by solving
the equations of quantum mechanics without using any adjustable variables.
Most prominently among the available ab initio methods, the ground state
density functional theory (DFT), based on the Hohenberg-Kohn theorem [38],
has simplified the electronic structure calculations by focusing on the density
of the electronic system instead its wave function.

The most popular approach to DFT is the Kohn-Sham (KS) auxiliary sys-
tem, which introduces non interacting electrons having the same density as
the interacting system. In practice, DFT calculations are relatively light and
provide an access to a large systems. DFT gives new tools to study and under-
stand the results of the calculations. This is why DFT is today the most used
approach to the theoretical prediction of physical and chemical properties.

Later, the extension of the ground state theory to the time-dependent case
has provided us with a new method, namely the time-dependent density func-
tional theory (TDDFT), which can access excited state properties. Based on
the Runge-Gross theorem [73] and sometimes combined with linear-response
theory, TDDFT allows us to study the time dependent phenomena of the elec-
tronic excitations [63]. In this chapter, we will discuss and review the ab initio
methods that are to be used in our work, namely DFT in the first section and
TDDFT in the second one.

3.1 Ground state density functional theory (DFT)
In solid state physics and quantum chemistry, several approaches, such as Con-
figuration Interaction or Quantum Monte Carlo, have been proposed in order
to solve the time-independent non-relativistic Schrödinger equation. Unfor-
tunately, these approaches use the ground state wave function, Ψ0, of the
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N -electron system as the main quantity. In practice calculating this quantity
is very hard and is usually limited to very small systems.

Therefore, one has to implement a new strategy to deal with the many
body problem. First, Thomas and Fermi (TF) [29, 80] introduced the first
density functional theory, in which they managed to use the density as a basic
variable of the total energy. Based on the uniform electron gas, they completely
expressed the total energy of the electrons in terms of the ground state density,
as follows:

ETF (ρ(r)) =
3

10
(3π2)2/3

∫
dr ρ5/3(r) +

∫
dr ρ(r)vext(r) +

1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
,

(3.1)
where the first term is the Thomas-Fermi kinetic energy T TF of the non in-
teracting homogeneous electron gas, the second one is the energy due to the
external potential vext and the last term is the electrostatic electron electron
interaction, the Hartree energy EH .

Thomas-Fermi model can not be used as it for real systems because of two
main limitations:

• In general, it is not possible to express T TF in terms of the sole density;

• The electron electron interaction is only treated with an electrostatic
term and there is no account for exchange or correlation.

For instance, the Thomas-Fermi model is not able to describe important
features, such as electronic shells in atoms or chemical bounds.

Here after, we review the modern DFT as first introduced by Hohenberg-
Kohn with their celebrated theorem.

3.1.1 Hohenberg-Kohn theorem

In 1960’s, a rigourous proof for the validity of the DFT approach was intro-
duced by Hohenberg and Kohn. For a system N interacting electrons subjected
to an external potential vext, the exact Hamiltonian is given by

H = T + vee + vext, (3.2)

where the kinetic energy is the first term and electron-electron interaction is a
second term.

The Hohenberg-Kohn theorem (HK) states that there exists a one-to-one
mapping between the density and the external potential. This statement has
very interesting consequences, such as

• The total energy is a functional of the electron density ρ(r) only.
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• The ground state expectation value of any observable is a unique func-
tional of the electron density ρ(r):〈

Ψ0|O|Ψ0
〉

= O(ρ(r)), (3.3)

where Ψ0 is the many-body ground state wave function.

• Thanks to the variational principle, the total energy functional E[ρ(r)]
has a minimum, the ground state energy E0, if and only if the input
density is the true ground state density ρ0.

The total energy functional E[ρ] is defined as

E[ρ] = F [ρ] +

∫
drvext(r)ρ(r). (3.4)

If one assumes further that the system has a non-degenerate ground-state
Ψ0 with a corresponding ρ(r), one can define the functional F [ρ] by

F [ρ] =
〈
Ψ0|T + vee|Ψ0

〉
(3.5)

which is a unique functional of ρ(r).
F is also called the universal functional, since it does not depend on the

external potential, then it does not on the system under study. For the mo-
ment, F [ρ(r)] is left not determined by the HK theorem. HK theorem is only
telling us about the existence of such a universal functional. In other words,
the ground state density and also all the desired physics or chemistry ground
state properties can not yet been determined by using only HK theorem.

The problem is to find an expression for the functional F [ρ] which could
be formally split into three different parts:

F [ρ] = Ts[ρ] + EH [ρ(r)] + Exc[ρ(r)], (3.6)

where

• Ts[ρ] is the kinetic energy of non-interacting electrons,

• EH [ρ] is the classical electrostatic (Hartree) energy,

• Exc[ρ] is the exchange-correlation energy.

While the two first terms can be given an analytical expression by using an
auxiliary system of non-interacting electrons as we will see in the next section,
the last term is not known analytically. It contains the non-classical electron-
electron interaction energy, the so-called exchange and correlation energy, and
the difference between the kinetic energies of the interacting and the non-
interacting systems.
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3.1.2 Kohn Sham method

Kohn and Sham (KS) suggested to study a non-interacting electron system,
that has the same electronic density as the interacting electron system. Intro-
ducing non-interacting electron orbitals φi(r) is particularly helpful to write
down an analytical expression for the main part of the kinetic energy:

Ts[ρ] =
Ne∑
i

〈φi| −
∇2

2
|φi〉. (3.7)

According to KS, the total energy of the interacting electron system within
an external potential vext is given as

E[ρ] = Ts[ρ] +

∫
vextρ(r)dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[ρ]. (3.8)

Minimizing the total energy with respect to the density indeed corresponds
to solving an effective Hamiltonian eigenvalue problem, the so-called KS equa-
tion:

HKSφi(r) = [−1

2
∇2 + vKS(r)]φi(r) = εKSi φi(r), (3.9)

where the potential vKS is the functional derivative of the the last three terms
in the total energy equation:

vKS(r) = vext(r) + vH [ρ](r) + vxc[ρ](r). (3.10)

The Hartree potential vH reads

vH [ρ](r) =

∫
ρ(r′)

|r− r′|
dr′ (3.11)

and the exchange-correlation potential reads

vxc[ρ](r) =
δExc[ρ(r)]

δρ(r)
. (3.12)

In order to find the ground-state density ρ0(r), Eq. (3.9) needs to be solved
self-consistently with

ρ(r) =
Ne∑
i=1

|φi(r)|2 (3.13)

where φi are the single particle orbitals obtained from the diagonalization of
HKS.
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In practice, from the solution of the Kohn-Sham equation, we can evaluate
the energy via the eigenvalues as

E[ρ(r] =
Ne∑
i

εi −
∫
ρ(r)vxc(r)dr− EH [ρ(r)] + Exc[ρ(r)]. (3.14)

So far the only unknown part in the last equation is Exc[ρ]. Finally, the
total energy can be evaluated by including the ion-ion interaction. The missing
term Exc can be efficiently approximated using the very simple expressions
given by the local density approximation (LDA) or by the generalized gradient
approximation (GGA).

3.1.3 Local Density Approximation

The simplest approximation for calculating the term of exchange and correla-
tion is the local density approximation or LDA. This approximation assumes
that the density varies very slowly. It replaces the exchange and correlation
energy in each point in space by that of a uniform interacting electron gas with
the same density. The LDA for the exchange correlation energy is:

ELDA
xc [ρ] =

∫
ρ(r)εhegxc (ρ(r))dr, (3.15)

where εhegxc [ρ(r)] is the exchange-correlation energy per electron of a homoge-
neous electron gas of density ρ(r).

In practice, LDA can be regarded as an accurate approximation, even when
the density fluctuates noticeably. However, whereas this method usually gives
fairly reasonable molecular structures, it leads to overestimated binding energy,
which can result in too short atomic distances. Thus, the parameters of lattice
in solids are often underestimated [43].

3.1.4 Generalized Gradient Approximations

The most natural way to improve the LDA is to consider inhomogeneity of
the electron density by introducing the exchange and correlation terms which
further dependend on the density gradient ∇ρ. This improvement is called the
Generalized Gradient Approximation or GGA. Within this approximation, the
term Exc is written as a function of the electron density and its gradient as
follows [90]

EGGA
xc [ρ] =

∫
ρ(r)fxc[ρ(r),∇ρ(r)]dr, (3.16)
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where fxc[ρ(r),∇ρ(r)] is a function of the local density and the local density
gradient.

In practice, the GGA works generally better than LDA and improves the
LDA results concerning the binding energies of molecules. However the lattice
constants of solids are still not as accurate as one would have expected: GGA
generally yields slightly overestimated lattice constants [32, 94].

3.2 Time dependent density functional theory
To study the phenomena related to the excited states of a system, DFT is not
sufficient. DFT gives only access to ground state properties. But one may
be interested in excited state phenomena: for example the photo-absorption
spectra, a photo-dissociation induced by an intense laser, or the phenomenon
we are interested in here, the electronic stopping power, in which the energy
loss of the impinging ion is due to the electronic excitation of the target elec-
trons. In years 1984-85, Runge, Gross and Kohn [73, 35] have extended DFT
to the general situation of the systems subjected to a time dependent external
field. This extension is named the time dependent-density functional theory
(TDDFT). In this section, we give a brief introduction into the TDDFT: the
time dependent equivalent of HK theorem "the Runge-Gross theorem" will be
presented, then the KS time dependent system will be discussed. More details
about the TDDFT can be found in Ref. [85].

The time dependent Schrödinger describes a system of N interacting elec-
trons system exposed to a time dependent external potential vext(r, t) is given
by

H(t)Ψ(r1, ..rN , t) = i∂tΨ(r1, ..rN , t), (3.17)

where Ψ(r1, ..rN , t) is the time dependent wave function of the interacting
electrons. It is fully determined from the specified initial state Ψ(r1, ..rN , t0)
at initial time t0 and from the Hamiltonian H(t).

The Hamiltonian H(t) can be written in the form

H(t) =
N∑
i=1

(−∇
2
i

2
+ vext(ri, t)) +

1

2

N∑
i,k=1,i 6=k

1

|ri − rk|
, (3.18)

where the first term is the kinetic energy of the electrons and the last term is
the electron electron interaction.

Again, as in DFT, TDDFT aims to replace the hard task of calculating the
many-electron wavefunction Ψ(r1, ..rN , t) by solving the (3.17) with the easier
task of calculating the time dependent density ρ(r, t). The electron density
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ρ(r, t) is obtained from

ρ(r, t) = N

∫
dr2...drN |Ψ(r, r2, ..rN , t)|2 (3.19)

Now the following question is in our mind: Can the density ρ(r, t) be used
to determine all the properties of the system exposed to an external potential
vext(ri, t)? Therefore we would need a time dependent version of the HK
theorem in order to establish a one to one correspondence between the vext(r, t)
and ρ(r, t). Next we review the Runge Gross theorem which gives the answer
of this question.

3.2.1 Runge Gross theorem

The Runge Gross theorem (RG) consists of two parts.

Existence of a one-to-one mapping between densities and potentials
The RG theorem states that:

For two densities ρ(r, t) and ρ′(r, t) evolving from a common initial state
Ψ(r1, ..rN , t0) under the influence of two potentials vext(r, t) and v′ext(r, t) which
are both Taylor-expandable about the initial time t0, then ρ(r, t) would differ
from ρ′(r, t) if and only if the potentials differ by more than a purely time
dependent function, i.e. if and only if vext(r, t)− v′ext(r, t) 6= c(t).

Therefore, these two potentials can not produce the same ρ(r, t), i.e.

vext(r, t)− v′ext(r, t) 6= c(t)⇒ ρ(r, t) 6= ρ′(r, t), (3.20)

According to the last statement the existence of a one-to-one correspon-
dence between the potential vext(r, t) and the density ρ(r, t) (up to purely
time-dependent function c(t)) has been demonstrated.

Therefore, as well the potential vext(r, t) is a functional of the density
ρ(r, t), the many-body Hamiltonian H(t) and the many-body wavefunction
Ψ(r1, ..rN , t) are also functional of ρ(r, t) (for a given fixed initial state Ψ0):

vext(r, t) = vext[ρ,Ψ0](r, t)⇒ H(r, t) = H[ρ,Ψ0](r, t)

⇒ Ψ(r1, ..rN , t) = Ψ[ρ,Ψ0](r1, ..rN , t),
(3.21)

As a consequence, the expectation value of any physical observable O(t) is
also a unique functional of the density ρ(r, t)

O(t) = O[ρ,Ψ0](t) = 〈Ψ[ρ,Ψ0]|O(t)|Ψ[ρ,Ψ0]〉 (3.22)

In a few words, a proof of the RG theorem can be obtained in two steps,
in which they considered two systems primed and unprimed evolving from a
common initial state Ψ(r1, ..rN , t0), for more details see [73, 35, 85]:
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• Proof of the one-to-one correspondence between the potential vext(r, t)
and the current density J(r, t)

• Then using the continuity equation

∂ρ(r, t)

∂t
= −∇J(r, t) (3.23)

to relate the current density to the density itself.

Extremum of the quantum-mechanical action Since the minimization
principle for the total energy can not be used in the time dependent theory,
we have to replace it by the stationary principle of the quantum mechanical
action A.

Remember that the time dependent Schrödinger equation is equivalent to
the stationary principle for A with appropriate initial condition, such as the
knowledge of the initial many-body wavefunction Ψ0.

Due to the first part of RG theorem, this action is also density functional
A[ρ]. According to the stationary principle, we then have that

A[ρ] =

∫ t1

t0

dt 〈Ψ[ρ,Ψ0]|i∂t −H(t)|Ψ[ρ,Ψ0]〉 (3.24)

has stationary point at the correct time dependent density. In other words,

the solution of
δA[ρ]

δρ(r, t)
= 0 with appropriate condition will give the correct

time dependent density. Similarly to ground-state DFT, Eq. (3.24) can also
be written as

A[ρ] = A0[ρ]−
∫ t1

t0

dt

∫
drρ(r, t)vext(r, t), (3.25)

where A0[ρ] is the universal function

A0[ρ] =

∫ t1

t0

dt 〈Ψ[ρ,Ψ0]|i∂t − T − vee|Ψ[ρ,Ψ0]〉 (3.26)

And similar to DFT we will use an auxiliary system in order to approximate
the unknown action functional A[ρ] .

3.2.2 Time-dependent Kohn Sham Equations

One can construct a time dependent KS system, in which the time KS orbitals
φj(r, t) will obey the one-particle time dependent Schrödinger equation:

i∂tφj(r, t) =

[
−∇

2

2
+ vKS(r, t)

]
φj(r, t). (3.27)
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Here, vKS(r, t) is the time dependent Kohn-Sham potential. Simply, the correct
time dependent density ρ(r, t) is given by the following

ρ(r, t) =
∑
j

|φj(r, t)|2. (3.28)

Again, as for static DFT, the vKS(r, t) can be decomposed into three parts:

vKS(r, t) = vext(r, t) + vH(r, t) + vxc(r, t), (3.29)

where the first term is the external potential, the Hartree potential is the
second term and the third one is the exchange correlation potential. The
vxcpart need to be approximated and the simplest approximation again is
called the adiabatic local density approximation (ALDA).

3.2.3 Adiabatic approximations

It is a very simple method which employ the xc functionals vxc[ρ](r) of static
DFT to be used in the TDDFT by evaluating vxc[ρ](r) at each time with the
density ρ(r, t). The adiabatic time-dependent xc potential is written as

vadiabaticxc (r, t) = vxc[ρ](r)|ρ=ρ(r,t). (3.30)

In other words, the xc potential does not have memory: it only depends on
the present density. This is of course a very strong assumption.

The so-called adiabatic local density approximation (ALDA) is the result
of inserting the LDA functional in Eq. (3.30)

vALDAxc (r, t) = vHEGxc [ρ]|ρ=ρ(r,t) (3.31)

The ALDA considers that the xc potential at the point r and time t is equal
to the xc potential of a homogeneous-electron gas (HEG) of density ρ(r, t).

Certainly, ALDA has all the drawbacks of the LDA applications combined
with all the drawbacks of the adiabatic approximation. For more details see
Ref. [85].

3.3 Conclusion
In conclusion, we have reviewed the static density functional theory and the
time dependent density functional theory. In our study, we will use DFT
to calculate the KS orbitals and its eigenenergies, as necessary quantities to
obtain the KS linear response function χKS within TDDFT. The next chapter
is about the linear response theory in details.
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Chapter 4

Linear response approach to
TDDFT

The dynamics of the electronic many body systems can be described exactly
within TDDFT by solving a time-dependent Schrödinger equation for the time-
dependent KS orbitals. In the case of a system which has small deviation from
the ground state, the full solution of the time-dependent Schrödinger equation
or TDKS can be much simplified and still capture the response of the electronic
many body systems upon an external perturbation. This formalism is the the
linear response theory that deals directly with this small deviation from the
ground state. The density functional formalism is very well suited for the
implementation of the linear response of a many-body system to an external
potential [63]. The linear response theory is a very widely used method to
describe the response to a weak perturbation, such as encountered in many
types of spectroscopy for instance. In this chapter we give a brief overview of
the basic linear response formalism.

4.1 Linear response theory and Dyson-like equa-
tion

The linear change in the density due to a change in the external potential can
be written as [48, 85, 63]:

δρ(r, t) =

∫
dt′
∫
dr′ χ(r, r′, t− t′)δvext(r′, t′). (4.1)

If we make a small change in the external potential at point r′ and time t′ ,
χ tells us how the density will change at point r and later time t. Note that,
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because of the causality condition, χ in this equation is non zero function only
for t > t′

Alternatively the linear change in the density due to a change in the KS
potential can be written as:

δρ(r, t) =

∫
dt′
∫
dr′ χKS(r, r′, t− t′)δvKS[ρ](r′, t′). (4.2)

In the two previous equations, we have introduced the density-density re-
sponse functions. χ(r, r′, t− t′) describes the change δρ(r, t) in the electron
density due to a change in the potential δvext(r′, t′)

χ(r, r′, t− t′) =
δρ(r, t)

δvext(r′, t′)
, (4.3)

and the Khon-Sham density-density response function χKS(r, r′, t− t′), which
is the response of the independent KS particle

χKS(r, r′, t− t′) =
δρ(r, t)

δvKS(r′, t′)
. (4.4)

By using the chain rule for derivatives, the response function χ(r, r′, t− t′)
for the true system can be written in term of the χKS(r, r′, t− t′) for the
Kohn-Sham system as follows

χ(r, r′, t− t′) =

∫
dt′′
∫
dr′′

δρ(r, t)

δvKS(r′′, t′′)

δvKS(r′′, t′′)

δvext(r′, t′)

=

∫
dt′′
∫
dr′′ χKS(r, r′′, t− t′′)δvKS(r′′, t′′)

δvext(r′, t′)

(4.5)

The only unknown part in Eq. (4.5) is
δvKS(r′′, t′′)

δvext(r′, t′)
. It can be further

worked out along the following lines. First, using the definition of KS potential
and taking the partial derivative of vKS(r′, t′) with respect to vext(r′, t′)

δvKS(r′′, t′′)

δvext(r′, t′)
=

δ

δvext(r′, t′)
{vext(r′′, t′′) + vH(r′′, t′′) + vxc(r

′′, t′′)} , (4.6)

and using the definition of the Hartree potential vH(r′′, t′′)

vH(r′′, t′′) =

∫
dr′′′

ρ(r′′′, t′′)

|r′′ − r′′′|

=

∫
dt′′′

∫
dr′′′

δ(t′′ − t′′′)ρ(r′′′, t′′′)

|r′′ − r′′′|
,

(4.7)
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Eq. (4.6) now reads

δvKS(r′′, t′′)

δvext(r′, t′)
= δ(r′ − r′′)δ(t′ − t′′)+

∫
dt′′′

∫
dr′′′

δ(t′′ − t′′′)
|r′′ − r′′′|

δρ(r′′′, t′′′)

δvext(r′, t′)
+
δvxc(r

′′, t′′)

δvext(r′, t′)
.

(4.8)
The chain rule via density ρ(r′′′, t′′′) can be used in the last term of (4.8)

δvKS(r′′, t′′)

δvext(r′, t′)
= δ(r′ − r′′)δ(t′ − t′′) +

∫
dt′′′

∫
dr′′′

δ(t′′ − t′′′)
|r′′ − r′′′|

δρ(r′′′, t′′′)

δvext(r′, t′)

+
δvxc(r

′′, t′′)

δρ(r′′′, t′′′)

δρ(r′′′, t′′′)

δvext(r′, t′)
.

(4.9)

Then the definition of the exchange-correlation kernel fxc

fxc(r, r
′, t− t′) =

δvxc(r, t)

δρ(r′, t′)
, (4.10)

can be used in Eq. (4.9):

δvKS(r′′, t′′)

δvext(r′, t′)
= δ(r′ − r′′)δ(t′ − t′′)

+

{∫
dt′′′

∫
dr′′′

δ(t′′ − t′′′)
|r′′ − r′′′|

+ fxc(r′′, r′′′, t′′ − t′′′)
}
δρ(r′′′, t′′′)

δvext(r′, t′)
.

(4.11)

If we use the expression found in Eq. (4.11) in Eq. (4.5), we obtain the
so-called Dyson-like equation for χ of an interacting system:

χ(r, r′, t− t′) = χKS(r, r′, t− t′)

+

∫
dt′′
∫
dr′′
∫
dt′′′

∫
dr′′′ χKS(r, r′′, t− t′′)

× [v(r′′, r′′′, t′′ − t′′′) + fxc(r
′′, r′′′, t′′ − t′′′)]

× χ(r′′′, r′, t′′′ − t′),

(4.12)

here, v is the usual Coulomb potential.
If the Fourier transform of the Dyson-like equation is taken with respect

to the different pairs of t, one obtains the Dyson-like equation in frequency
space:

χ(r, r′, ω) = χKS(r, r′, ω)

+

∫
dr′′
∫
dr′′′ χKS(r, r′′, ω) [v(r′′, r′′′) + fxc(r

′′, r′′′, ω)]

× χ(r′′′, r′, ω),

(4.13)
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The exchange-correlation kernel fxc is the key quantity of linear response
TDDFT. Eq. (4.13) gives an exact solution of the interacting system, the
χ(r, r′, ω) can be found from a series summation of this equation or alterna-
tively from an inversion.

For periodic crystal system, it would be practical to write the Dyson-like
equation in the reciprocal an frequency space.

4.2 Dyson-like equation for a periodic lattice
By definition, the Fourier transformation of a periodic two-index quantity
f(r, r′) is given as

f(r, r′) =
1

Ω2

BZ∑
q1,q2

∑
G,G′

ei(q1+G).re−i(q2+G′).r′f(q1 + G,q2 + G′), (4.14)

where q1 and q2 are restricted to the first Brillouin zone, G,G′ are the recip-
rocal lattice vectors and Ω is the solid volume. This can be simplified by using
the invariance by a translation of the crystal. Thus, for any vector R of the
direct lattice, f(r′, r′) must satisfy the following equation:

f(r, r′) = f(r + R, r′ + R). (4.15)

When inserting the Fourier transform in the left-hand and the right-hand sides,
then one can show that the Fourier transform of Eq. (4.15) only needs one q
vector in the first BZ. This proof uses the equality e(iG.R) = 1 and the fact
that the only non-vanishing coefficient ei(q1−q2).R is obtained when q1 − q2 is
a reciprocal lattice vector. As both q1 and q2 are located in the first BZ, then
the only reciprocal lattice vector available is zero.

Therefore the expansion in Eq. (4.14) can be written as

f(r1, r2) =
1

Ω

BZ∑
q

∑
G,G′

ei(q+G).re−i(q+G′).r′fG,G′(q), (4.16)

Thus, due to (4.16), the Fourier expansion of density response function
χ(r, r′, ω),

χ(r, r′, ω) =
1

Ω

BZ∑
q

∑
G,G′

ei(q+G).re−i(q+G′).r′χG,G′(q, ω) (4.17)

Using the definition of the Fourier transform of a two index function in a
periodic lattice as explicited in Eq. (4.16), then one can write χ(r, r′, ω) in
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reciprocal and frequency space:

χG,G′(q, ω) = χKSG,G′(q, ω)

+
∑

G′′G′′′

χKSG,G′′(q, ω)
{
vG′′,G′′′(q) + fxcG′′,G′′′(q, ω)

}
χG′′′,G′(q, ω). (4.18)

This is the Dyson-like equation in reciprocal and frequency space. The Fourier
transform of the Coulomb interaction is well known to be

vG,G′(q) =
4π

|q + G|2
δG,G′ . (4.19)

4.3 Linear response function of the independent-
particle system

The retarded density-density response function χ(r, r′, t− t′) of the interacting
particle system can be alternatively defined as

χ(r, r′, t− t′) =
δρ(r, t)

δvext(r′, t′)
= −iθ(t− t′) 〈ψI(t0)|[ρ̂I(r, t), ρ̂I(r′, t′)]|ψI(t0)〉

(4.20)
For the derivation of the retarded χ(r, r′, t− t′) see Ref. [31].

The wavefunctions and operators in the interaction picture differ from the
wavefunctions and the operators in the Schrödinger picture by a unitary trans-
formation:

ψI(t0) = eiH0(t−t0)ψ(t) (4.21)

and
ρ̂I(r, t) = eiH0(t−t0)ρ̂(r)e−iH0(t−t0), (4.22)

where H0 is the time-independent Hamiltonian. Also the Heaviside function
θ(t− t′) is defined as:

θ(t− t′) =1 t ≥ t′

0 t ≤ t′.
, (4.23)

In case of non-interacting electrons system the initial and final states may
be described by single Slater determinants. A Slater determinant is a product
of single electron states, ψ = A[φKS1 ...φKSN ] (where A is the anti-symmetrization
operator). Therefore the density-density response function χKS(r, r′, t− t′) of
the non interacting particle system is defined as

χKS(r, r′, t− t′) = −iθ(t− t′)
〈
φKS1 ...φKSN |[ρ̂(r, t), ρ̂(r′, t′)]|φKS1 ...φKSN

〉
(4.24)
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χKS(r, r′, t− t′) has a well known formula [63]

χKS(r, r′, ω) =
∑
ij

(fi − fj)

∗
φKSj (r′)φKSi (r′)

∗
φKSi (r)φKSj (r)

ω − (εj − εi) + iη
, (4.25)

where fi and fj are the Fermi occupation numbers, εj and εi are KS eigenvalues
and the sums run over all KS orbitals, and φKSi (r′) and φKSj (r′) are the ground
state KS orbitals. εj−εi are the excitation energy of the non interacting system
and thus χKS has poles at the difference of KS energies.

In Fourier space, χKS(r, r′, ω0) can be written as [64]:

χKSG,G′(q, ω) =
1

Ω

BZ∑
k

∑
i,j

(fi,k − fj,k+q)

εi,k − εj,k+q + ω + iη

× 〈φi,k| e−i(q+G).r |φj,k+q〉 〈φj,k+q| e+i(q+G′).r′ |φi,k〉 ,

(4.26)

where the wave vector q and k are restricted to the first BZ, φi,k(r) are single-
particle Bloch states(important for periodic solid), and the broadening η must
be infinitesimal small. The spin can be introduced in the previous equation.

In summary, in order to calculate the density response of the interacting
system χ, the following step have to be done:

• Ground state DFT calculation: in which all the KS eigenstates φKSi,k
(for occupied and empty states) and eigenvalues εKSi,k are calculated for a
given vxc potential;

• Density response function of KS system χKS: The matrix elements
of χKSG,G′(q, ω) can be evaluated by performing Eq. (4.26);

• Dyson-like equation solution: a solution of Eq. (4.18) through an
inversion of the geometric series yields the response function χ.

4.4 Exchange-correlation Kernel
Unfortunately one piece of information is still missing at this stage: both the
exchange-correlation potential or the kernel are unknown [48]. Within the
adiabatic approximation, fxc depends only on the density at present time as
explained in the previous chapter. So that all the memory effects are not
included, i.e. fxc has δ(t− t′) behavior.

The final expression of the adiabatic (LDA) kernel is given by

fALDAxc (r, r′, t− t′) =
dvLDAxc

dρ

∣∣∣∣
ρ(r,t)

δ(r− r′)δ(t− t′). (4.27)
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Several other xc kernels could be introduced to improve the results [22, 84,
69]. If the kernel is simply neglected instead, the Dyson-like equation reduces
to the random phase approximation (RPA).

In practice, the ALDA gives good results for finite systems, such as molecules
[55]. In this work, we have found the using of ALDA for the random electronic
stopping power(RESP) calculations will give good results for bulk targets es-
pecially for Aluminum and Silicon target materials. Also our results show
the improvement using ALDA instead of RPA will be important only for low
proton energy. Next section is devoted to the dielectric function, which is the
quantity that allows us to link withexperiment. For instance, we need to use
it to obtain the energy loss function, which it is the central task to obtain the
RESP.

4.5 The dielectric function
The inverse dielectric function is used to calculate the electron energy loss
spectra. The microscopic dielectric function is the basic quantity that gives
information about the screening of the system in the linear response, given
through the following relation:

vtot(r, t) =

∫
dt′
∫
dr′ε−1(r, r′, t− t′)vext(r′, t′), (4.28)

The following relation represents the connection of inverse dielectric func-
tion with the density-density response function, given by

ε−1(r, r′, ω) = δ(r− r′) +

∫
dr′′v(r− r′′)χ(r′′, r′, ω). (4.29)

For a periodic solid, ε−1 is given by

ε−1
G,G′(q, ω) = δG,G′ +

4π

|q + G|2
χG,G′(q, ω). (4.30)

Therefore, one can use this equation to calculate the ε−1
G,G′(q, ω) if one knows

the response function χ.
The energy loss function is defined as the imaginary part the inverse di-

electric function Im[−ε−1
G,G′(q, ω)].

Im[−ε−1
G,G′(q, ω)] = − 4π

|q + G|2
Im[χG,G′(q, ω)], (4.31)

The inversion of the dielectric matrix is computationally very demanding. At
this point we are ready to calculate the RESP, in which the Im[ε−1

G,G′(q, ω)] is
needed.
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4.6 Conclusion
We have presented a brief summary for the Linear response function. We have
focused on the well known formula the Dyson like equation which is consid-
ered to be as the most important equation, because it allows us to evaluate
the density-density response function χ from the KS density-density response
function χKS. Finally we have introduced the link between the inverse dielec-
tric matrix Im[ε−1] and χ. Next chapter, we will study the electronic stopping
power in details.
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Chapter 5

Dielectric theory of the electronic
stopping power of fast ions

In this chapter, the dielectric theory of the electronic stopping power is re-
viewed. Historically, the first evaluation of the electronic stopping power is
due to Lindhard [47] in 1954. The calculation of Lindhard was based on the
non-interacting homogeneous electron gas model (sometimes named jellium),
which is the simplest model one can think of to represent electrons in solids:
the electrons freely move without interacting in a positive charge background
that ensures the overall charge neutrality. This model has been popular for
many decades since many calculations can be performed analytically in this
model and still the obtained electronic properties often capture the realistic
features of experiments. The first section of the chapter is devoted to the
Lindhard theory of stopping power. The second section will deal with the
complete calculation of the electronic stopping power in linear response in pe-
riodic solids. The Lindhard results for the homogeneous electron gas can be
understood as a limiting case of the complete theory.

5.1 Linear response electronic stopping power
for the non-interacting homogeneous elec-
tron gas

The slowing down of the charged particle in a target material was an intense
topic in the first half of the twentieth century with the advent of nuclear sci-
ence. To evaluate the electronic contribution to the stopping power, Lindhard
introduced the first dielectric formulation of stopping phenomenon [47]. He
derived the dielectric formulation of the stopping effect for a free electron gas
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(FEG) responding to a perturbation induced by a charged particle using per-
turbation theory [40, 92, 46]. The only parameter necessary to completely
describe this model system is the average electron density ρ.

By performing the Lindhard calculation for different values of this parame-
ter ρ, we can calculate the stopping power for a range of densities and then one
apply a kind of local density approximation with Lindhard theory to evaluate
the stopping value of the impinging ion in a real solids, as we will describe
in the following. For many cases this approximation can produce a somewhat
acceptable result compared to the experimental data [92].

5.1.1 Lindhard’s theory of stopping power

We will not derive Lindhard’s expressions here, but simply write them down.
The Lindhard’s formulas will be obtained later on as a special case of the
complete periodic solid results. In this section, the atomic units (a.u.), with
(e =~= m = 1, etc) will not be used.

According to the Lindhard theory, the electronic stopping power within the
dielectric formalism can be written as

−dE/dx =
4π

m

(
Ze2

v

)2

ρL(ρ, v), (5.1)

where the ion of charge Ze moving with velocity v in a medium of uniform
density ρ, m is the electron mass and L is called the dimensionless stopping
number.

In the dielectric formalism, L is written as

L =
i

πω2
0

∫ ∞
0

dk

k

∫ kv

−kv
ωdω[ε−1(k, ω)− 1], (5.2)

where the double integral cannot be evaluated analytically. In this last equa-
tion, the classical plasma frequency ω0 is given by

ω0 =

√
4πρe2

m
(5.3)

and ε(k, ω) is the wave number and frequency dependent longitudinal dielectric
function.

Within the first order perturbation theory the dielectric function ε(k, ω)
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was obtained by Lindhard for free electron gas as the following equation

ε(k, ω) = 1 +
8πme2

~2k2

∑
n

F (En)

 1

k2 + 2k.kn − (
2m

~
)(ω + iη)

+
1

k2 − 2k.kn + (
2m

~
)(ω + iη)

 , (5.4)

where the energy En and wave vector kn are for an electron in the nth state
and η is a small positive value.

For a free-electron gas at zero temperature, the occupation function F
reduces to

F (En) =1 En ≤ Ef

0 En ≥ Ef ,
(5.5)

in terms of the gas density ρ the Fermi energy Ef can be written as

Ef =
1

2
mvf

2 =
~2k2

f

2m
=

~2

2m
(3π2ρ)2/3. (5.6)

Using the reduced dimensionless variables z =
k

2kf
and u =

ω

kvf
instead of

k and ω, Eq. (5.4) can be also simplified into

ε(u, z) = 1 +
χ2

z2
[f1(u, z) + if2(u, z)] , (5.7)

where

f1(u, z) =
1

2
+

1

8z

[
1− (z − u)2

] ∣∣∣∣ln z − u+ 1

z − u− 1

∣∣∣∣
+

1

8z

[
1− (z + u)2

] ∣∣∣∣ln z + u+ 1

z + u− 1

∣∣∣∣ ,
and

(5.8a)

f2(u, z) =
1

2
πu, for z + u < 1

=
π

8z

[
1− (z − u)2

]
for |z − u| < 1 < z + u

=0 for |z − u| > 1.

(5.8b)
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Also, the dimensionless parameter χ in Eq. (5.7) is defined by

χ2 =
v0

πvf
, (5.9)

where v0 = e2/~ is the Bohr velocity, χ2 is proportional to ρ−1/3.
When the dielectric constant of Eq. (5.7) is substituted into Eq. (5.2), one

obtains

L =
6

π

∫ v/vf

0

u du

∫ ∞
0

dz
z3f2(u, z)

[z2 + χ2f1(u, z)]2 + [χ2f2(u, z)]2
. (5.10)

This expression for L in Eq. (5.10) is refered to as the Lindhard stopping
number.

The double integral could be evaluated numerically in Eq. (5.10). Later
Lindhard and Winther (L-W) [46] obtained an analytic form for the stopping
power number in two limits: the high and the low projectile velocity with
respect to the electron gas Fermi velocity. The main advantage of using the
analytic forms of “the L-W expansions” of the stopping power number is to
avoid the significant computational difficulties implied by the original Lindhard
formula: it indeed presents singularities in the integrand [40, 41, 92].

In the following, we review in details the application of the local density
approximation with the Lindhard’s stopping theory for a realistic solid target.

5.1.2 Local density approximation to the stopping power

The simplest approximation is to assume that the solid can be treated locally
as a uniform electron gas: the electronic stopping power at each point in a
solid system is the same as that of a uniform electron gas of the same density.
This local density approximation (LDA), also sometimes named local plasma
density approximation (LPDA) was originally introduced by Lindhard and
Scharff (L-S) [45, 41]. The electronic stopping power for a solid having an
electronic density ρ(r) is approximated by

−dE
dx

=
4π

m

(
Ze2

v

)2 ∫
ρ(r)L(ρ(r), v)dr (5.11)

The LDA has been widely used to study the electronic stopping power of
a solid target. This has been done by using different model that described the
atomic charge distribution ρ(r) of the target electrons, for an instance the Lenz-
Jensen density model used by Bonderup [15], the Hartree-Fock-Slater (HFS)
density model used by Rousseau et al. [72] and the spherically averaged solid
state charge densities used by G. J. Iafrate et al. [41].
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The importance of using the solid-state charge densities to study the stop-
ping of impinging ion in solid target has been nicely understood by G. J. Iafrate
et al.; they have compared the calculated value of stopping number for low en-
ergy (100 KeV/amu) and stopping number for high energy (10000 KeV/amu)
of the impinging ion. It has been found for low energy of impinging ion the
stopping number is caused by the valence electrons excitation, whereas for the
high energy of impinging ion the stopping number is caused mainly by the core
electrons excitation.[41]

In this work, we will use Eq. (5.11) to check the accuracy of using FEG
model as compared the real target electrons in the electronic stopping power
calculations, in which we used the density functional theory to calculate the
charge density distribution for both valence and core electrons. This will be
explained in details in chapter 7.

In the next section we review in details the theory of the electronic stopping
power of a periodic crystal.

5.2 Linear response electronic stopping power of
a periodic crystal

As we have just seen, a local density approximation to real solids can used
based on the Lindhard stopping power of FEG system. However, a more real-
istic approach to the stopping power of solids is to consider the actual electronic
wavefunctions in a periodic crystal potential, in which the electronic states are
described by Bloch states and the spectrum of one-electron excitations splits
into energy bands [21].

Among the first authors to describe the stopping in a periodic crystal using
linear response theory were Saslow and Reiter [76]. They computed the energy
loss of a high-energy charged particle, namely an electron, moving through a
solid with a constant velocity v a long r0 = vt [76]. In fact the linear response
dielectric formalism is valid for high ion velocities, i.e. ion velocity larger than
the Fermi velocity of the electrons in the target (v > vf ). While at low ion
velocities in metals, the nonlinear effects have to be included in principle. But
it has been argued [65, 83] that the non-linear phenomena are less crucial in
case of solids with a band gap.

For long time, simple models for the dielectric response function have been
used to treat the stopping power in periodic crystal, however these attempts
rely on rather unrealistic band structure calculations, which in turn might
produce energy loss functions with a limited accuracy [16, 17, 25, 19].

Several attempts to introduce the full electronic band structure in the elec-
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tronic stopping power calculations for low projectile velocities have been done.
These attempts were carried out based on the linear combination of atomic
orbitals (LCAO) framework [26] for instance or with a static treatment of the
density-response of the solid for silicon target [83]. More recently, ab initio
band structure calculations that are based on a full evaluation of the dynami-
cal density response of the solid have been carried out by Campillo et al. for
aluminum and silicon [21, 20, 64]. In the following we review and discuss the
full derivation of the position dependent and of the random electronic stopping
power for fast ions within the linear response theory.

5.2.1 Position dependent of electronic stopping power

Our calculations in this section will be based on classical electro-magnetism
at the microscopic level. We would like to stress immediately that the electro-
magnetism language differs from the DFT language by a sign convention. In-
deed, the electrons bear a negative charge and then their density in a solid
ρ(r) is a negative-valued function. In the DFT language, we use instead the
electron density n(r) which is a positive-valued function. The same statement
holds when expressing the potentials. We will label φ the electrostatic poten-
tials, whereas the electronic potential were labeled v in the previous chapters.
However when expression the response functions the two sign conventions will
luckily cancel out. Consider the density-density response functions χ which
can alternatively be written as

χ(r, r′, t− t′) =
δn(rt)

δvext(r′t′)
(5.12a)

or as
χ(r, r′, t− t′) =

δρ(rt)

δφext(r′t′)
. (5.12b)

In the following, we will compute the rate of the electronic energy loss,
dE/dt, of a point particle as it moves through the solid. The electronic energy
loss rate is given by the response of the system to the external potential.

Consider a classical point charge Ze passing through the solid, moving at
a constant velocity along r0 = b + vt, where b is the impact parameter:

ρext(r, t) = Zδ(r− r0)

= Zδ(r− b− vt)
(5.13)

ρext denotes the external charge density.
The electronic energy loss rate is given by the real part of

dE

dt
=

∫
dr ρext(r, t) v.Eind(r, t), (5.14)
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where Eind is the induced electric field in the target material.
The stopping power, S = −dE/dx, is given by

S(r0,v) = −1

v

∫
dr ρext(r, t) v.Eind(r, t). (5.15)

In order to compute the dielectric formula of the electronic stopping power,
one has to evaluate Eind(r, t) = −∇φind(r, t). For periodic crystals a Fourier
expansion of the induced electrostatic potential φind(r, ω) is given by

φind(r, ω) =
1

Ω

BZ∑
q

∑
G

ei(q+G).rφindG (q, ω) (5.16)

Using Eq. (5.16), one can write φind(r, t) as

φind(r, t) =
1

2π

∫
dω e−iωtφind(r, ω)

=
1

Ω

BZ∑
q

∑
G

1

2π

∫
dω ei((q+G).r−ωt)φindG (q, ω),

(5.17)

where φindG (q, ω) is the Fourier coefficients of the induced potential. Thus,
Eind(r, t) is given by

Eind(r, t) = −∇φind(r, t)

= −∇ 1

Ω

BZ∑
q

∑
G

1

2π

∫
dω ei((q+G).r−ωt)φindG (q, ω)

=
−i

(2π)Ω

BZ∑
q

∑
G

∫
dω ei((q+G).r−ωt)φindG (q, ω)(q + G),

(5.18)

where Ω is the solid volume, the first sum runs over q vectors within the first
Brillouin zone (BZ), and G runs over the reciprocal lattice vectors.

In the following we are going to evaluate φindG (q, ω) using the linear response
theory:
The linear density response function χ(r, r′, ω) of an electron system is defined
by equation

ρind(r, ω) =

∫
dr′ χ(r, r′, ω)φext(r′, ω), (5.19)

where ρind(r, ω) is the electron density induced by an external potential φext(r, ω).
According to Poisson’s equation and with using (5.19) one can write the in-
duced potential φind(r, ω) as
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φind(r, ω) =

∫
dr′

1

|r− r′|
ρind(r′, ω)

=

∫
dr′
∫
dr′′

1

|r− r′|
χ(r′, r′′, ω)φext(r′′, ω).

(5.20)

It is convenient to introduce the Fourier expansion of φext(r, ω), 1
|r−r′| and

χ(r, r′, ω) for periodic crystal,

φext(r′′, ω) =
1

Ω

BZ∑
q1

∑
G1

ei(q1+G1).r′′φextG1
(q1, ω), (5.21)

1

|r− r′|
=

1

Ω

BZ∑
q2

∑
G2

ei(q2+G2).re−i(q2+G2).r′ 4π

|q2 + G2|2
, (5.22)

χ(r′, r′′, ω) =
1

Ω

BZ∑
q0

∑
G0,G′0

ei(q0+G0).r′e−i(q0+G′0).r′′χG0,G′0
(q0, ω), (5.23)

where q, q0, q1, and q2 are wave vectors within the first BZ, and G0, G′0, G1,
and G2 are reciprocal lattice vectors. Then, substituting of Eq. (5.16), Eq.
(5.21), Eq. (5.22) and Eq. (5.23) in Eq. (5.20) leads to the following equation:

1

Ω

BZ∑
q

∑
G

ei(q+G).rφindG (q, ω) =

∫
dr′
∫
dr′′

1

Ω

BZ∑
q2

∑
G2

ei(q2+G2).re−i(q2+G2).r′ 4π

|q2 + G2|2

1

Ω

BZ∑
q0

∑
G0,G′0

ei(q0+G0).r′e−i(q0+G′0).r′′χG0,G′0
(q0, ω)

1

Ω

BZ∑
q1

∑
G1

ei(q1+G1).r′′φextG1
(q1, ω).

(5.24)

Also the last equation can be written as
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1

Ω

BZ∑
q

∑
G

ei(q+G).rφindG (q, ω) =
1

Ω

BZ∑
q2

∑
G2

ei(q2+G2).r 4π

|q2 + G2|2

1

Ω

BZ∑
q0

∑
G0,G′0

∫
dr′ ei(q0+G0−q2−G2).r′χG0,G′0

(q0, ω)

1

Ω

BZ∑
q1

∑
G1

∫
dr′′ ei(q1+G1−q0−G′0).r′′φextG1

(q1, ω).

(5.25)

One now uses the following useful relation

1

Ω

∫
Ω

dr ei(q+G−q′−G′).r = δq,q′δG,G′ (5.26)

to simplify Eq. (5.25):

1

Ω

BZ∑
q

∑
G

ei(q+G).rφindG (q, ω) =
1

Ω

BZ∑
q2

∑
G2

ei(q2+G2).r 4π

|q2 + G2|2∑
G′0

χG2,G′0
(q2, ω)φextG′0

(q2, ω).

(5.27)

Again, by introducing
∫
dr e−i(q3+G3).r for the both side of the last equation

as

1

Ω

BZ∑
q

∑
G

∫
dr ei(q+G−q3−G3).r φindG (q, ω) =

1

Ω

BZ∑
q2

∑
G2

∫
dr ei(q2+G2−q3−G3).r 4π

|q2 + G2|2∑
G′0

χG2,G′0
(q2, ω)φextG′0

(q2, ω),

(5.28)

and then using Eq. (5.26), this yields

BZ∑
q

∑
G

δq,q3δG,G3 φ
ind
G (q, ω) =

BZ∑
q2

∑
G2

δq2,q3δG2,G3

4π

|q2 + G2|2∑
G′0

χG2,G′0
(q2, ω)φextG′0

(q2, ω).

(5.29)
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Therefore, φindG (q, ω) has the following form

φindG (q, ω) =
∑
G′

4π

|q + G|2
χG,G′(q, ω)φextG′ (q, ω). (5.30)

We now use the following formula for ε−1
G,G′(q, ω) which was derived by

Martin and Schwinger [49],

ε−1
G,G′(q, ω) =

(
δG,G′ +

4π

|q + G|2
χG,G′(q, ω)

)
. (5.31)

We introduce it in Eq. (5.30) in order to write the φindG (q, ω) in terms of the
dielectric matrix ε−1

G,G′(q, ω):

φindG (q, ω) =
∑
G′

(ε−1
G,G′(q, ω)− δG,G′)φextG′ (q, ω) (5.32)

From the Poisson equation one can show that

φextG′ (q, ω) =
4π

|q + G′|2
ρextG′ (q, ω), (5.33)

where the Fourier components of ρextG (q, ω) are given by

ρextG (q, ω) =

∫
Ω

dr

∫
dt ρext(r, t)e−i((q+G).r−ωt)

=

∫
Ω

dr

∫
dt Zδ(r− b− vt)e−i((q+G).r−ωt)

=

∫
dt Ze+i(ω−(q+G).v)t e−ib.(q+G)

= 2πZδ(ω − (q + G).v)e−ib.(q+G).

(5.34)

By substituting Eq. (5.33) into Eq. (5.32), the final expression of φindG (q, ω)
can be written as

φindG (q, ω) =
∑
G′

(ε−1
G,G′(q, ω)− δG,G′)

8π2Z

|q + G′|2
δ(ω − (q + G′).v) e−ib.(q+G′)

(5.35)
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Inserting Eq. (5.35) into Eq. (5.18) gives Eind(r, t) as

Eind(r, t) =
−i

(2π)Ω

BZ∑
q

∑
G

∫
dω e+i((q+G).r−ωt)

∑
G′

(ε−1
G,G′(q, ω)− δG,G′)

8π2Z1

|q + G′|2

δ(ω − (q + G′).v) e−ib.(q+G′) (q + G)

=
−i4πZ1

Ω

BZ∑
q

∑
G

∫
dω e+i((q+G).r−ωt)

∑
G′

(ε−1
G,G′(q, ω)− δG,G′)

(q + G)

|q + G′|2

δ(ω − (q + G′).v) e−ib.(q+G′).

(5.36)

Finally, the electronic stopping power, S(r0,v), can be obtained by substi-
tuting Eq. (5.13) and Eq. (5.36) in Eq. (5.15)

S(r0,v) =
−Z1

v

∫
dr δ(r− b− vt) v.Eind(r, t)

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

∫
dω e+i((q+G).v−ω)t

∑
G′

(ε−1
G,G′(q, ω)− δG,G′)

v.(q + G)

|q + G′|2

δ(ω − (q + G′).v) e−ib.(q+G′) e+ib.(q+G)

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
G′

(ε−1
G,G′(q, (q + G′).v)− δG,G′)

v.(q + G)

|q + G′|2

e+i(G−G′).vt e+ib.(G−G′)

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
G′

(ε−1
G,G′(q, (q + G′).v)− δG,G′)

v.(q + G)

|q + G′|2

e+i(b+vt).(G−G′)

(5.37)

By using −J = G−G′ in Eq. (5.37) can be simplified to

S(r0,v) =
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
J

(ε−1
G,G+J(q, (q + G + J).v)−δG,G+J)e−iJ.(b+vt) v.(q + G)

|q + G + J|2
.

(5.38)
This last equation contains an oscillating phase factor e−iJ.vt = 0. The

exponential factor e−iJ.vt vanishes when averaging over time for any J vector
which does not satisfy J.v = 0. The only non vanishing contributions arise
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from the vectors J⊥, i.e., the J vectors that are perpendicular to v. Therefore
the position dependent of the electronic stopping power is given by

〈S(v,b)〉 =
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
J⊥

(ε−1
G,G+J⊥

(q, (q + G).v)− δG,G+J⊥)e−iJ⊥.b

v.(q + G)

|q + G + J⊥|2
.

(5.39)

This last equation has been averaged over time.
We have derived the position dependent electronic stopping power in pe-

riodic crystal as a general case. Then we will derive the averaged impact
parameter electronic stopping power, named the “random electronic stopping
power” in the next Section. Note that the position dependent electronic stop-
ping power is not studied in the present work.

5.2.2 Random electronic stopping power

The random electronic stopping power (RESP) is "the average over impact
parameters of the position-dependent electronic stopping power". The most
important contribution in Eq. (5.39) is resulted by the term J = 0. Other
contributions from other terms of J vectors depends on the velocity direction,
in which J.v = 0 must be satisfied. For most directions, the condition J.v = 0
is never satisfied or satisfied by only few large J⊥. With this, the random stop-
ping power 〈S(v,b)〉 is equal or well approximated by the contrain J⊥ = 0 in
Eq. (5.39). For more details, see [20, 83]. With these general directions one
simply obtain the random electronic stopping power S(v), which is indepen-
dent of b,

S(v) =
i4πZ2

1

Ω v

BZ∑
q

∑
G

(ε−1
G,G(q, (q + G).v)− δG,G)

v.(q + G)

|q + G|2
. (5.40)

It has been noted the calculated value of the random electronic stopping power
can be replaced by the average over impact parameters of the position depen-
dent stopping power alone any given channel [20].

However, let us follow now the complete derivation for the random elec-
tronic stopping power as obtained from its definition: "the average over impact
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parameters of the position dependent stopping power":

S(v) =
1

Ab

∫
db S(v,b)

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
J⊥

(ε−1
G,G+J⊥

(q, (q + G).v)− δG,G+J⊥)
1

Ab

∫
dbe−ib.J⊥

× v.(q + G)

|q + G + J⊥|2

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

∑
J⊥

(ε−1
G,G+J⊥

(q, (q + G).v)− δG,G+J⊥) δJ⊥,0
v.(q + G)

|q + G + J⊥|2

=
i4πZ2

1

Ω v

BZ∑
q

∑
G

(ε−1
G,G(q, (q + G).v)− δG,G)

v.(q + G)

|q + G|2
,

(5.41)

where Ab is the normalized area of the impact parameter b.
This last result can be further refactored in order to highlight that the

stopping power is indeed real-valued. Using the fact that the response function
ε−1(rt, r′t′) is real-valued, its Fourier transform has the following symmetry
(see Appendix A of Ref. [76] for a derivation):

ε−1
GG′(q, ω) =

[
ε−1
−G−G′(−q,−ω)

]∗
. (5.42)

Then, for each q + G that appears in the summation in Eq. (5.41), the cor-
responding −q−G will be part of the summation as well. As a consequence,
only the imaginary part of ε−1 yields a contribution to the summation and the
RESP can be finally recast into

S(v) =
4πZ2

1

Ωv

BZ∑
q

∑
G

Im
{
−ε−1

G,G[q,v · (q + G)]
} v · (q + G)

|q + G|2
. (5.43)

Both equations Eq. (5.43) and Eq. (5.39) that we have derived are different
from the corresponding equations derived by Campillo and Pitarke [21, 64, 20].
In fact, they have used the so called the imaginary part of the projectile self
energy in order to derive both equations the random and position dependent
of the electronic stopping power.

Anyway we have recalculated the RESP results of both Si and Al using
the same parameters used in Campillo and Pitarke articles; almost the same
results have been found as will be explained in the results part of my thesis.
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In the next section, we derive the electronic stopping power of the free
electron gas equation "The Lindhard’s formula" from the complete periodic
solid of the electronic stopping power equation (5.43).

5.2.3 The Lindhard’s formula as special case

A free electron gas is just a particular case of a periodic system. Then using
the just-derived RESP equation (5.41) for the periodic system, the simpler
case of a free electron gas target can be obtained.

First, one transforms the discrete summations into an integral. We use
the following relation:

∑
q∈BZ

∑
G f(q + G) ⇒ Ω0Nq

(2π)3

∫
f(Q)dQ, in order to

rewrite equation (5.41) into a 3-dimensional integral:

S(v) =
4πZ2

1

(2π)3 v

∫
dQ Im[−ε−1(Q,Q.v)]

Q.v

Q2
, (5.44)

where Q = q + G. We have also used the fact that the free electron gas is
completely isotropic, i.e. ε−1

GG(q, ω) = ε−1(Q,ω).
Our Eq. (5.44) is precisely the one found in Refs. [83] and [66].
To recover the original Lindhard’s formula of the free electron gas from Eq.

(5.44), we now introduce the spherical coordinates transformation (Q, θ, φ) in
Eq. (5.44). The z-axis is chosen so to align with v. Thus the integrated
functions is independent from φ, i.e.

∫
dQ⇒ 2π

∫∞
0
Q2dQ

∫ π
0
dθsinθ:

S(v) =
Z2

1

πv

∫ ∞
0

dQ

∫ π

0

dθ sinθ Qvcosθ Im[−ε−1(Q,Qvcosθ)]. (5.45)

To simplify this last equation, we apply a change of variable ω = Qvcosθ
(and thus dω = −Q v sinθdθ ):

S(v) =
Z2

1

πv2

∫ ∞
0

dQ

Q

∫ Qv

−Qv
dω ω Im[−ε−1(Q,ω)]. (5.46)

This is the Lindhard formula, as can be read in Ref. [40] for instance.
Sometimes, the parity with respect to ω of the causal function ωIm[ε−1(ω)]

is further used to limit the range of integration even further:

S(v) =
2Z2

1

πv2

∫ ∞
0

dQ

Q

∫ Qv

0

dω ω Im[−ε−1(Q,ω)]. (5.47)

We have just shown that our Eq. (5.44) allows us to recover the well-known
Lindhard formula. This further assesses our expression, which departs from
the one of Campillo et al. [21] by a factor 2.
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5.3 Conclusion
We have presented a brief history of the electronic stopping power based on
the linear response theory starting from the simple case of the non interacting
homogeneous electron gas for the solid state system. We have derived in details
the position dependent and random electronic stopping power equations of
periodic crystal, in which slightly different equations have been found from that
in the literature. This thesis will specifically focus on the random electronic
stopping power.

We have implemented the formula in an ab initio code ABINIT that can
calculate the RESP of any material within the linear response dielectric for-
malism. This is explained in details in the next chapter.
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Chapter 6

Development and computational
details

In this Chapter, we present the main steps that have been done in order to
implement the RESP equation within two approximations RPA and ALDA in
the latest version of the abinit software. We study also the difficulties and
challenges raised by the complex convergence of RESP calculations in details.
Furthermore, we introduce a new method to evaluate the fully converged re-
sults of the RESP of any bulk targets. To illustrate the methods and its details,
we will exemplify how to calculate the fully converged value of the RESP of
the Si target using the valence electrons within RPA.

6.1 Practical implementation in a periodic plane-
wave approach

In the previous chapter, we have obtained the so-called RESP S:

S(v) =
4πZ2

1

NqΩ

1

|v|

BZ∑
q

∑
G

Im
{
−ε−1

G,G[q,v(q + G)]
} v.(q + G)

|q + G|2
. (6.1)

It is clear from Eq. (6.1) that the imaginary dielectric matrix is the central
quantity to characterize the slowing down of a charged particle in a condensed
matter target within linear-response. Therefore, the first step which has to
be done is to find a suitable ab initio code that could be used for the RESP
implementation task.

Many modern ab initio codes for periodic systems are capable of calculating
the inverse dielectric matrix ε−1

GG′(q, ω) for finite frequencies ω. For instance,
this quantity is requested in the GW framework [36, 39]. The present work for
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instance relies on the GW subroutines available in the abinit software [34].
Figure 6.1 represents the flowchart of RESP code.

                                                                                                 

                                                                    
                    

 

                                                                              

                   

                  
       

                                                                                         

 

                                            

ABINIT TD-DFT

ABINIT DFT 

ABINIT RESP 

Figure 6.1: The flowchart of the RESP code.
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6.1.1 Technicalities

As we will show in the following, the convergence of the stopping power with
respect to the calculation parameters is strikingly slow even for small unit
cell systems. This difficulty makes the use of symmetry operations absolutely
crucial to perform calculations on an affordable time-scale.

Eq. (6.1) can be rewritten with the use of the symmetries R contained in
the crystal space group that produces the star of q vectors. With this, Eq.
(6.1) reads

S(v) =
4πZ2

NqΩ

1

|v|

IBZ∑
q

∑
R∈Rq

∑
G

Im
{
−ε−1
R−1G,R−1G[q,v.(Rq + G)]

} v.(Rq + G)

|Rq + G|2
,

(6.2)
where the summation over q only runs over the irreducible wedge of the Bril-
louin Zone (IBZ). This equation is what we have implemented in the abinit
software.

Then we have faced another difficulty during the implementation task. We
found that the inverse dielectric matrix needs to be evaluated for many energies
ω = q + G. For sure it would be almost intractable to calculate and invert
the dielectric matrix for each requested ω. We rather calculate and invert the
dielectric matrix on a dense grid of frequency and then perform a cubic spline
interpolation in order to evaluate its diagonal at the desired energy.

The imaginary part of the inverse dielectric matrix is a rather noisy function
of the energy, which can be smoothed with an increase of the broadening η in
Eq. (4.26).

Due to the spline interpolation, the number of sampling frequencies (abinit
parameter nfreqre) becomes an extra-parameter to be converged.

The maximum frequency needed for ε−1(ω) is set by the maximum velocity
v and the dielectric matrix cutoff through ωmax ≈ G.v. Figure 6.2 shows
the accuracy of using the cubic spline interpolation as a function of nfreqre
in predicting the energy loss value of any desired value ω. Our reference
calculation (red line) is obtained using 6 points per Hartree. This density of
frequency will be retained in the rest of the thesis.
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Figure 6.2: The accuracy of using the cubic spline interpolation with increasing
the nfreqre. All the calculated values are obtained at |q + G| = 3.71 a.u.
along [111]. This study have been done using the following parameters: 4×4×4
with 4 shifts of q point mesh, 400 bands and the broadening η is 1.5 eV.

Next we are going to show the first test to assess the accuracy of our RESP
code for the electronic stopping power of any bulk material.

6.1.2 Assessment against previous calculations

In order to assess our calculation method, we first tackled the task of repro-
ducing the only series of articles [20, 21, 64] we are aware of that implemented
the linear-response RESP from fully ab initio calculations. Using our norm-
conserving pseudopotential implementation in abinit, we calculated the RESP
for proton (Z = 1) in bulk silicon and bulk aluminum at their experimental
lattice constant.

Following in particular Ref. [64], we used the same convergence parameters
in order to offer a direct comparison in Fig. 6.3. These authors were admittedly
aware that their parameters were too loosely converged to offer comparison
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against experiment. In Fig. 6.3, we just aim at demonstrating the correctness
of the implementation.
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Figure 6.3: Comparison of the RESP as a function of the projectile velocity
within RPA from our implementation (solid blue line) against previously pub-
lished results from Ref. [64] (black diamond symbols). The calculations are
converged with the same level of accuracy as prescribed in the previous work.

Silicon and aluminum are described by valence electron only norm-conserving
pseudopotentials. The dielectric matrices have been limited to a 15×15 repre-
sentation in plane-waves, corresponding to an energy cutoff of 0.75 Ha in silicon
and of 1.35 Ha in aluminum. The number of bands is limited to 200 for silicon
and to 60 in aluminum. The k-point mesh is 8×8×8 for Si and 10×10×10 for
Al. Finally, whereas Ref. [64] employs an analytic continuation technique that
extrapolates the inverse dielectric function from purely imaginary frequencies
to purely real frequencies, our work relies on a direct evaluation of the response
functions for real frequencies. However we have to use a finite value for the
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broadening parameter η entering in Eq. (4.26). A value η = 1.5 eV was used
to produce the the data reported in Fig. 6.3.

Despite the difference in the sampling of the inverse dielectric matrix, the
agreement between our calculations and the previously published results is
strikingly good. It appears that the data published in Ref. [64] are consistent
with our Eq. (6.1) rather than their own expression which is doubled compared
to us. As a consequence, the RESP code is ready to be used in understanding
the electronic stopping power phenomena in a series of target materials.

6.1.3 Convergence issues

As already alluded to in the previous paragraph, the calculation of RESP
requires extremely large convergence parameters that were not accessible 15
years ago and that are still challenging nowadays.

In Fig. 6.5 and in Fig. 6.4, we show the convergence behavior of the RESP
as a function of the other convergence parameters. The parameters can be
grouped into two independent sets: the number of bands and the dielectric
matrix cutoff on one side in Fig. 6.5 and the k-point and q-point sampling on
the other side in Fig. 6.4.
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Figure 6.4: Convergence of the RESP of silicon within RPA as a function of
k-points. The convergence with respect to the k-point grid was evaluated for
a fixed number of bands (400) and a fixed dielectric matrix cutoff (8 Ha).

62



1.5 2.0 2.5 3.0 3.5 4.0
v  ( a.u. )

0.04

0.08

0.12

R
E

S
P

  
( 

a
.u

. 
)

 200   0.75
 400   8
 600  11
1000  20
1500  25
2000  30
2500  35

bands  E
cut

Si

valence only

Figure 6.5: Convergence of the RESP of silicon within RPA as a function of
the number of bands and of the dielectric matrix cutoff. The convergence with
respect to the number of bands and dielectric matrix cutoff was obtained a
fixed Γ-point sampling.

First of all, as a general comment, the convergence of RESP appears as
extremely slow compared to the convergence parameters required in ground-
state DFT or even in standard excited state calculations within TD-DFT. The
number of bands necessary to converge the RESP up to velocity v = 4. a.u.
(which corresponds to a proton at 0.4 MeV) is around 1500, to be compared to
the 4 occupied bands of silicon. The converged dielectric matrix cutoff energy
is 25 Ha, to be compared to the cutoff energy for wave functions in norm-
conserving pseudo-potential of about 10 Ha. The RESP peak necessitates at
least 864 k-points in the BZ, which corresponds to a 6×6×6 Monkhorst-Pack
grid with 4 different origins, whereas standard calculations usually require only
256 k-points in the BZ (4×4×4 grid with 4 shifts).

The extremely slow convergence with respect to these parameters has two
different origins in the equations presented in the two previous chapters. That
is why we grouped the convergence parameters into two sets.

63



Firstly, the dielectric matrix cutoff and the number of bands are tightly
related as can be inferred from the matrix elementMkij(q+G). TheMkij(q+
G) is defined in the Kohn-Sham polarizability χKS, which is given as:

Mkij(q + G) = 〈k− qi|e−i(q+G).r|kj〉. (6.3)

If high energy empty bands are included in the sum of states formula of χKS, the
representation of these states in plane-wave involves high energy plane-waves.
These high plane-waves are coupled with the occupied states through large
reciprocal lattice vectors G in Eq. (6.3). This observation justifies why the
convergence with respect to bands and to the dielectric matrix cutoff cannot be
evaluated independently. In Fig. 6.5, we have shown the RESP curves for the
converged dielectric matrix cutoff associated with a given number of bands.
For instance, for 400 bands, a dielectric matrix cutoff of 8 Ha is sufficient.
However, for 1500 bands, it should rather be set to 25 Ha.

Secondly, the BZ sampling appears through the k-points in Eq. (4.26) and
through the q-points in Eq. (6.1). Whereas the q-points are only constrained
to be differences of k-points due to the evaluation of the matrix elements in
Eq. (6.3), we have limited ourselves to the very same grids for both k- and
q-points since a down-sampling analogous to Ref. [57] would have induced
marginal computational gains only. The convergence with respect to k-points
in Eq. (4.26) is made smoother thanks to a well adapted value of the broadening
parameter η. For instance, in Fig. 6.4, the curve with Γ-point was obtained
η = 12 eV, while the result with 2048 points used η = 1 eV.

As a consequence of the presented convergence study, the task of under-
standing the RESP of proton in any target material at the fully converged level
will not be an easy task. This difficulty enforced us to look for a new method
or strategy that can be used to evaluate the fully converged parameters, or
at least to help us in saving the requested computer memory or reducing the
computational effort.

6.2 A method to achieve convergence at a lower
cost

Since the RESP calculations require very strict convergence of the parameters,
we had to introduce a new strategy to perform the RESP calculation that we
named extrapolation scheme. The RESP value mostly depends on three
important parameters: the number of bands, k-points sampling and the num-
ber of plane-waves used for ε−1. As the absolute convergence is difficult to
obtain and as the convergence factors have different origins, it is legitimate
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to evaluate the possibility to reach the global convergence by adding up the
different contributions.

The idea of the extrapolation scheme is to perform the RESP value in three
separated steps as following:

• The valence electrons contribution: the fully converged RESP can be
estimated by converging separately the number of plane-waves and bands
using the Gamma point only on the one hand and the number of k-points
with low number of bands and plane-waves on the other hand.

• The core electrons contribution: the RESP of the core electrons contri-
bution can be estimated by using only one k-point since the bands of the
inner shell electrons are highly localized, i.e. they are not dispersive in
k-space.

• Finally, the fully converged value of the RESP is simply estimated by
adding the two contributions of the valence and the core electrons to
each others.

In other words, we mean to extrapolate the RESP of the valence electrons
contribution thanks to the formula:

Se(extrap., high)val = Se((bands,Ecut) = low,k = high)

+ Se((bands,Ecut) = high,k = low)

− Se((bands,Ecut) = low,k = low). (6.4)

Also, the RESP of the core electrons contribution can be estimated by using
the following formula:

Se(extrap., high)core = Se((bands,Ecut) = low,k = high)val

+ Se((bands,Ecut) = high,k = low)core+val

− Se((bands,Ecut) = low,k = low)val, (6.5)

where low/high characterizes the convergence level respectively for the number
of bands and dielectric matrix cutoff and for the k-point grid.

With these techniques at hand, we are now ready to calculate RESP that
are converged in absolute.

In Fig. 6.6, we demonstrate that the extrapolation is indeed justified, in
which Eq. (6.4) is numerically demonstrated. The difference between the more
converged curve (600 bands and Ecut = 11 Ha) and the least converged curve
(400 bands and Ecut = 8 Ha) is almost the same when evaluated with a Γ
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point sampling (red line) as when evaluated with a dense grid of 864 k-points
in the BZ.
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Figure 6.6: Comparison of the convergence rate for 2 k-point meshes: Γ (red
lines) and 864 BZ points (green lines). The upper panel shows the RESP for
two levels of convergence, whereas the lower panel shows their difference.

Moreover, the core extrapolation of Eq. (6.5) can be nicely understood as
shown in Fig. 6.7. Fig. 6.7 shows the comparisons between the calculated
RESP value of the core electrons at the level of (2s2p electrons) using three
k-point meshes: 256 BZ points, 8 BZ points and Γ point. The results shows
almost the same RESP core contribution can be estimated only with using Γ
point. Right now, the contribution of the (1s electron) is not taken to the
account. This is because of the probability of exciting an electron in this state
is extremely low.
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Figure 6.7: Comparison of the RESP core contribution calculated using 3
k-point meshes: 256 BZ points (green lines), 8 BZ points (blue lines) and
Γ (red lines). The upper panel shows the RESP for two levels of electrons
contribution, i.e., the 2s2p3s3p electrons and 3s3p electrons only whereas the
lower panel shows their difference, i.e., the 2s2p electrons only).

6.2.1 Application to silicon

In this part, we only present the first attempt to evaluate the fully converged
RESP of proton in Si target by using the extrapolation scheme. The results
will be obtained for both the valence electrons and core electrons (excluded
the 1s state) contribution within only RPA.

• The valence contribution:

The fully converged value has been calculated as follows. First, using Γ
point only to find the most converged result with respect to the number
of bands and plane-waves. As shown in Fig. 6.5, the 2000 bands and
Ecut equal to 25 Ha are converged parameters. Then, finding the con-
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verged q point mesh by using low parameters values (Ecut=8 Ha and 400
bands). As shown in Fig. 6.4, the 864 BZ points is the converged value
corresponding to η=1.0 eV. Finally, using the extrapolation scheme in
Eq. (6.4) one can find the fully RESP converged value. The converged
RESP value is corresponding to the following parameters: 2000 bands,
25 Ha of Ecut and 864 BZ points. The final results can be seen in Fig.
6.8.
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Figure 6.8: The fully Converged RESP of valence electrons in Si target for
proton (Z1=1) within the linear response of RPA calculated by extrapolation
scheme in Eq. (6.4). The green line obtained for highly converged parame-
ters (2000 bands and Ecut = 25 Ha), the red line obtained for low converged
parameters (400 bands and Ecut = 8 Ha).

• The core contribution:

In this example, we need to find the converged values as follows. First,
using Γ point only to find the most converged result with respect to the
number of bands and plane-waves. As shown in Fig. 6.9, the 2500 bands
and Ecut equal to 35 Ha are converged parameters. Then, finding the
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converged q point mesh by using low parameters values (Ecut=8 Ha and
400 bands). As shown in Fig. 6.4, the 864 BZ points is the converged
value corresponding to η=1.0 eV. Finally, using the extrapolation scheme
in Eq. (6.5) one can find the fully RESP converged value. The converged
RESP value is corresponding to the following parameters: 2500 bands,
35 Ha of Ecut and 864 BZ points. The final results can be seen in Fig.
6.10.
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Figure 6.9: Convergence of the RESP of silicon within RPA as a function of
the number of bands and of the dielectric matrix cutoff. The convergence with
respect to the number of bands and dielectric matrix cutoff was obtained for a
fixed Γ-point sampling. The convergence study is obtained for the (2s2p3s3p)
electrons.
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6.3 Conclusion
In this chapter, we have developed a computer program to calculate the RESP
of periodic solids, within the linear-response approach to TDDFT. Further-
more, the convergence issues of the RESP calculations have been shown in
details. Also, we have presented an extrapolation scheme that can be used to
overcome the convergence problems of the RESP calculations.

Next chapter, we will present the RESP for solid materials in details.
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Chapter 7

Stopping power of bulk materials

In this chapter, we present a comprehensive study on the RESP of the solid ma-
terials. First of all, we evaluate the validity of using the LDA of the Lindhard
theory, sometimes called the Local Plasma Density Approximation (LPDA).
In order to predict the best results compared to the available experimental
data, we will answer the following two questions: The first one is what is the
best approximation RPA or ALDA? The second one is should we go beyond
the valence electrons contribution? Finally, with the formalism described in
the previous chapters, we check the validity of some commonly stated rules of
thumbs concerning the RESP of solid materials.

7.1 First principle against models based on the
free-electrons gas

In the previous chapter, we have seen that the convergence issues are dramatic.
Thus, the task of understanding the electronic stopping power in real material
is still a very challenging job. This fact is true for the calculations within
a simple approximation like RPA even when taking into account the valence
electrons only. Now that we have a working implementation of the ab initio
RESP, We would like to seize the opportunity to evaluate the validity of the
simpler models that are often used for real targets. According to the literature,
models based on the free-electron gas (FEG) have been developed and used
with a relative success in the previous fifty years.
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Figure 7.1: FEG-based modeling of the RESP against the reference ab initio
RPA calculation.

In this section, we propose to examine the validity of these models against
the calculated ab initio RPA for silicon, as shown in Fig. 7.1. We will focus
only on the most used models like the Bethe’s formula and Lindhard’s formula
with and with out LDA.

The crudest modeling we consider here is the analytic formula from Bethe:

Se =
Z2

1ω
2
p

v2
ln

(
2v2

ωp

)
, (7.1)

where ωp =
√

4πρ0 is the classical plasma frequency and ρ0 is the average
electronic density. In Fig. 7.1, the Bethe formula is not evaluated for v <
1. a.u., since the formula shows a divergence there. However the Bethe formula
is effective to capture the large v behavior, since it was derived based on
considering a moving projectile with high but non relativistic velocity. More
details can be found in chapter 2.

Then a huge improvement is due to Lindhard [47] , who derived the RPA
RESP formula for a FEG at a given homogeneous electron density ρ0. The
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Lindhard RESP still requires a numerical evaluation of a double integral [40],
for more details see chapter 5. Fig. 7.1 shows the Lindhard RESP evaluated
at the same average density as the valence electrons of bulk silicon, (rs =
2.00 a.u.). The Lindhard RESP deviates noticeably from the ab initio RPA,
especially around the peak at v = 1.4 a.u..

A route to improve the description of real inhomogeneous solids is the local
density approximation (LDA) to RESP [45, 40]. This approximation assumes
that the RESP of a solid can be obtained as the spatial average over Lindhard
RESP evaluated at the local density, however more discussion about this theory
is given in chapter 5.

In this work, the LDA-Lindhard theory have been applied for the Si target
as following: First, within the ab initio DFT framework the valence density
was obtained. Then, we have applied Eq. (5.11) to produce the electronic
stopping power as a function of ion’s velocity for this given valence density.

Fig. 7.1 shows that the LDA based on Lindhard produces a rather meaning-
ful evaluation of the RESP of Si. As we will see next, LDA based on Lindhard
is not adequate when including the tightly bound core electrons.

As a consequence, the earliest stopping theories which are based on the
FEG system show advantages and disadvantages in practice, for example: The
Bethe’s formula can be used to study swift projectile, but it can not be used
in the case of for low velocity projectile. In addition, Lindhard’s theory may
be considered as the first choice if we are only interested in predicting the
stopping power peak position. Furthermore, Lindhard’s formula is found to be
a acceptable method if the target medium does not contain the core electrons,
or if we are not looking for finding high accuracy results.

7.2 Physical approximations relevant for bulk
materials

Before going further in understanding the electronic stopping of solid, we
must introduce a more deep study in order to find the best way to predict
the available experimental data. Therefore, this section will be devoted to
test the following: First, we will look for more efficient approximations for
the exchange-correlation beyond RPA, since the calculated RESP within RPA
shows a largely underestimated value comparing to the experiment. Second,
we will investigate the core electrons contribution on the RESP value using the
presented ab initio formalism. Also, we try also to calculate the core electrons
RESP contribution using a simple approximation like LPDA (LDA based on
Lindhard) and we test this method. Finally, we check the linear response lim-

73



itations of the RESP, especially at low energy, in comparison to the higher
order perturbation consideration.

7.2.1 RPA vs ALDA

In earlier works [87, 88], it has been shown that the quality of the structure
factor S is much improved when switching on the exchange-correlation contri-
bution from RPA to ALDA. As the structure factor is closely related to the
stopping power, one can anticipate that the stopping power will be affected
and hopefully improved by the inclusion of the ALDA kernel in TDDDFT.

In terms of the inverse dielectric function, the dynamic structure factor can
be written as [78]:

S(Q, ω) = − Q2

4π2ρ
Im
[
ε−1(Q, ω)

]
, (7.2)

where, the ρ is the electron density.
The structure factor S(Q, ω) can be linked to several experimental mea-

surements: electron energy loss spectroscopy (EELS) and to the inelastic X-
ray scattering (IXSS). By analyzing the S(Q, ω) results, one can extract some
useful information which can be used to understand the RESP results. For
instance, in Fig. 7.2, we present the accuracy of the calculated S(Q, ω) using
both RPA and ALDA comparing to the experimental data.

Fig. 7.2 shows that the agreement between the experiment and the cal-
culated S(Q, ω) by using ALDA is very good, while a much worse agreement
between the calculated S(Q, ω) value using RPA and the experiment can be
noted.
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Figure 7.3: RESP of Si using different approximations for the TDDFT kernel:
RPA (dashed red line) and ALDA (solid green line). Silicon is described by its
valence electrons only. Experiment from the PSTAR database[7] (blue circle
symbols) is given as a reference.

Turning back to the RESP, the results are expected to change much when
using ALDA instead of RPA. Figure 7.3 demonstrates how the inclusion of
the ALDA kernel increase much the RESP in the low velocity regime. How-
ever, for the larger velocities v > 2 a.u., the RESP is completely insensitive to
the TDDFT kernel. Thanks to ALDA, the agreement with respect to exper-
iment is excellent for low velocities up to the peak, but still remains largely
underestimated for higher velocities.
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7.2.2 Core states contribution
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Figure 7.4: RESP of Si within ALDA including (solid green line) or not (dashed
red line) the contribution from the core 2s and 2p electrons. Experiment from
the PSTAR database[7] (blue circle symbols) is given as a reference.

ab initio inclusion of the core contribution To address the underes-
timation of the RESP for large velocities, the natural step is to include the
description of the core states. Indeed, we have shown in Chapter 6 that the
RESP is much sensitive to the high-energy transitions included in the response
χKS and that a huge number of empty bands is necessary to achieve conver-
gence. In an analogous manner, the RESP can be expected to be much affected
by core electrons. For instance, in silicon, the 2s and 2p electrons are located
about 100 eV below the valence and can contribute to the loss processes for
moderate values of the velocity v. The 1s electrons which lie 1700 eV below
the valence can be safely disregarded.

The effect of the 2s2p electrons of Si on the RESP can be appreciated from
Fig. 7.4, where the calculation with two pseudopotentials with or without 2s
and 2p have been carried out. The 2s2p electrons yield a significant additional
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contribution to the RESP for velocities beyond 1.5 a.u., whereas they have no
effect below. However, even when introducing the core electrons, the RESP for
high velocity is underestimated by about 10-15% with respect to experiment.
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Figure 7.5: Upper panel: RESP of Si within RPA (red lines), ALDA (green
lines), and LDA based on Lindhard (blue lines) including (solid lines) or not
(dashed lines) the contribution from the core 2s and 2p electrons. Lower panel:
Core-only contribution to the RESP of Si as obtained through the difference
between the calculations with and without 2s and 2p within RPA, ALDA, or
LDA based on Lindhard.

Unfortunately, the calculations with explicit core states not only have more
occupied states in the summation of Eq. (4.26), but also have a much harder
pseudo-potential, that in turn induces a higher dielectric matrix cutoff. Silicon
now requires Ecut = 35 Ha instead of 25 Ha. With such a high computational
burden, it would be then desirable to have an approximate scheme to handle
the core states. Thanks to the extrapolation scheme as introduced in Eq. (6.5)
in the previous Chapter which help to overcome the core convergence problem.
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Let us analyze further here the contribution from the core electrons alone.
In the lower panel of Fig. 7.5, we evaluate the contribution of the core electrons
to the RESP of Si for different approximations as the difference between the
RESP curves obtained in the upper panel. In contrast with the statement
issued for valence electrons, the effect of the ALDA kernel is negligible: the
ALDA and the RPA core RESP are almost identical.

What is still missing in the core contribution? Hence, even when in-
cluding the core states properly in silicon, the calculated RESP still under-
estimates slightly the experimental RESP for the large velocities. We then
wonder if this underestimation is a problem due to the bad description of the
core states or of the valence states. To try to answer that question, we have
performed calculations for a bulk systems that does not have really bound core
electrons, namely the body-centered cubic lithium. Indeed, Li is a metal with
a 2s1 valence electron, but the 1s2 electrons below are very loosely bound.
Their binding energy is around 60 eV to be compared to the 300 eV of the 1s
electron of carbon.

Figure 7.6 shows that the calculated RESP value using ALDA in Li target
for high proton velocity (v > 2 a.u.) are almost the same as the available ex-
perimental data from Refs. [28, 42]. This almost perfect result points to the
fact that the ALDA is not the most suitable approach to evaluate the core elec-
trons RESP contribution. This could be the subject of further investigations
in the future.
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Figure 7.6: The electrons RESP of Li within ALDA in linear-response (dashed
red line) compared to the available experimental data. Experiments (probably
bcc crystal) by Janni [42] (orange line) and Eppacher et al. [28] (brown line).

Is LDA RESP a valid alternative to the full evaluation of core elec-
trons? We also considered the opportunity to have a cheap evaluation of the
core contribution using the LDA based on the Lindhard stopping power. In
the upper panel of Fig. 7.5, the LDA RESP is calculated for both the valence
electronic density and the valence plus core electronic density. The difference
between the two can be compared with the full ab initio calculation in the
lower panel. The LDA technique is not perfectly adequate to describe the core
contribution. Indeed, the stopping power continuously increases starting from
the lowest velocities. In other words, the LDA core misses the shell effect: the
core contribution should be zero up to the minimum velocity that allows the
core electrons to be excited.

Even though the LDA technique could describe the core contribution with a
reasonable accuracy, we rather use an explicit introduction of the core electrons
through adequate pseudo-potentials in all the following RESP results of the
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study.

7.2.3 Effect of the higher order terms
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Figure 7.7: RESP of Al within ALDA in linear-response (solid green line) com-
pared to the time-propatation results of Scheifle and coauthors.[77] Experiment
from the PSTAR database[7] (blue circle symbols) is given as a reference.

In a recent study, Schleife and coworkers [77] produced a high quality ALDA
stopping power calculation for aluminum using the time-propagation approach
to TDDFT. Their calculations readily include the perturbation to all orders,
whereas ours are limited to the linear response by construction. Hence, the
comparison can allow us to evaluate the magnitude of the higher-order terms.

In Fig. 7.7, one can compare our linear-response results to the time-propagation
data of Ref. [77] for the traveling of an off-channeled proton in Al. The
differences are indeed rather small, around 5 % for the worse data points.
Considering the conceptual differences in the two approaches and their own
convergence issues, we consider this close match as an impressive success of
the linear-response theory. Surprisingly, the error due to the linear-response
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approximation does not vary much with the proton velocity. This compari-
son validates the linear-response approach, at least for protons with velocities
larger than 0.5 a.u..

7.3 RESP for bulk materials
With the formalism described in the previous Chapter, we check the validity
of some commonly stated rules of thumbs concerning the RESP.

7.3.1 How weak is the RESP anisotropy of anisotropic
materials?
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Figure 7.8: Anisotropy of the RESP of 2H-SiC (left-hand panel) and of graphite
(right-hand panel) within ALDA including the 2s2p electrons of Si.

In an anisotropic material, the RESP not only depends on the magnitude of
the velocity, but also on its direction. This anisotropy is usually completely
disregarded in the interpretation of the experimental data, either because the
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anisotropy is expected to be small, or because the experimental samples are
poly-crystalline (and the anisotropy is then averaged out).

We analyze in Fig. 7.8 the anisotropy of the RESP of two prototypical
crystals, 2H-SiC (silicon carbide in wurzite structure) and graphite. Fig. 7.8
shows the RESP along a direction in the plane against the RESP along the out
of plane axis. The dense structure of wurzite SiC is weakly anisotropic and,
as expected, the RESP is almost insensitive to the direction of v. The layered
structure of graphite, which consists in hexagonal planes of carbon separated
by a large spacing, may give rise to a larger anisotropy. However, the RESP
in right-hand panel of Fig. 7.8 has a very small direction dependence, which
amounts to at most 3 % in the peak region.

As a conclusion, the anisotropy of the RESP is always very weak, even for
crystal structures which are much anisotropic.
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7.3.2 Is the Bragg’s additivity rule valid?
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Figure 7.9: RESP of Si, diamond, 3C-SiC within ALDA including the 2s2p
electrons of Si. The Bragg’s rule SiC (dashed blue line) was obtained using
Eq. (7.3).

It has been observed since the early times of the particle irradiation[18] that
the electronic stopping power is mainly proportional to the average density of
electrons, so that the stopping power of compounds could be obtained as a
weighted average of the stopping power of its constituents. Exemplifying this
statement, known as the Bragg’s additivity rule, for silicon carbide would read

Se(SiC)

ρat(SiC)
=
Se(Si)

ρat(Si)
+
Se(C)

ρat(C)
, (7.3)

where ρat is the atomic density. From experimental databases, some deviations
for this rule are well documented.[93, 82] However, the deviations mainly occur
for light elements, such as organic polymers.

In Fig. 7.9, we test the adequacy of Eq. (7.3) for 3C-SiC (zinc blende
structure). This case should be the simplest case for the Bragg’s rule, due to the
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similarity between the crystals considered here. All three crystals, Si, diamond,
and 3C-SiC, have a similar crystal structure (diamond or zinc blende), have
the same local environment, and have the same electronic configuration. The
Bragg’s rule indeed shows its efficacy for the large velocity regime, v > 2 a.u..
However, for low to moderate velocities, the deviation between the Bragg’s
rule RESP of SiC and the ab initio RESP of SiC is as large as 15 %.

Considering a very simple test case, we shed light on a significant violation
of the Bragg’s rule. This statement casts doubts about the application of this
rule of thumbs for more complex cases, for instance, when the formal charge
varies (oxides), or when the bonding changes (single or double bonds).

7.3.3 Is the structural phase effect vanishing?
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Figure 7.10: RESP of SiC (left-hand panel) and of carbon (right-hand panel)
within ALDA including the 2s2p electrons of Si. 3C-SiC and 2H-SiC phases
are shown for silicon carbide, whereas graphite and diamond phases are shown
for carbon.

The empirical Bragg’s rule also implies that the details of the crystalline struc-
ture does not influence much the RESP. We propose to check that assumption
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for two prototypical examples.
Silicon carbide can crystallize in many different phases, named polytypes.

The left-hand panel of Fig. 7.10 shows the RESP for the 2H-SiC (wurzite) and
3C-SiC (zinc blende). These two phases only differ through the stacking of the
planes in the (111) direction. The local environment is exactly the same in the
two structures. In order to ease the comparison between the two, we have used
an ideal wurzite structure instead of the experimental structure and we have
used an hexagonal supercell of the cubic polytype with 6 atoms. Finally, the
difference in the RESP for the two phases appears as negligible in the left-hand
panel of Fig. 7.10.

The phases of carbon are a more challenging example. Indeed the diamond
phase of carbon involves tetrahedrically coordinated atoms with sp3 hybridized
electrons, whereas the graphite phase is a layered crystal with sp2 hybridized
electrons. In these two structures, the nature of the bonding is affected and
the consequences on the RESP are huge as shown in the right-hand panel of
Fig. 7.10. The increase in stopping power of graphite follows the empirical
trends highlighted in Ref. [75], which is named the bond effect.

The RESP appears as sensitive to the details of the bonds, however the
long-range structure is clearly not a relevant parameter, as demonstrated by
the different stacking patterns in SiC.

7.4 Conclusion
In this Chapter, we have produced high quality stopping power curves with
the assistance of an extrapolation technique. Also, we have shown that the
necessity of a proper description of the core electrons and of the exchange-
correlation within ALDA. With the comparison with the time-propagation
results of Ref. [77], we have evaluated an upper limit for the non-linear effects
of 5 % in aluminum.

With the ab initio RESP, we have checked some empirical rules of thumbs
that are commonly employed for the experimental interpretation or for the
prediction with empirical codes, such as SRIM [93]. Whereas the anisotropy of
the RESP in anisotropic materials can be safely ignored, the Bragg’s additivity
rule and the phase insensitivity cannot be taken for granted.

Next chapter, we show the validity of using the ab-initio for complex ma-
terials such as the Ice, water in the gas phase and polymer materials.
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Chapter 8

Stopping power in organic systems

Very intriguing phenomena occur for the stopping power of organic systems.
It has been noted [75] for long that the nature of the chemical bonds affects
much the electronic stopping power especially for light atoms. Indeed, carbon
is very versatile and can take part to multiple types of bonds (simple, double,
triple). We just have seen in the previous chapter how graphite and diamond
noticeably differ. Along the same lines, it is well known experimentally that
the different water phases (vapour, liquid, ice) show rather different stopping
powers.

In this chapter, we sketch the first steps towards the evaluation of the RESP
from ab initio calculations. We present the calculations that have been possible
to carry out, but also show how difficult it would be to obtain converged results
for isolated systems. The end of the chapter is meant to pave the way for a
future study.

This chapter first focuses on the RESP of water H2O since its value strongly
depends on the phase (gas or solid phases). Then, this chapter studies the
RESP of polymers so to check the contribution of the bond effect.

8.1 RESP of the H2O molecule in two phases:
The solid and gas phases

The first step is to choose the crystal structure of the solid water, since the ice
can be found in many different forms. We have considered the H2O ice in a
Hexagonal crystal (ice Ih) which has the symmetry P63/mmc, since it is the
natural form of the ice on Earth. The hexagonal crystal has unit cell dimen-
sions a=8.5379 bohr and c=13.9 bohr at 250 K, with 4 molecules per unit cell
as found in Ref. [71]. Fig. 8.1 shows the unit cell of the ice Ih and the periodic
ice Ih crystal with a view along the c-axis. As shown in Fig. 8.1, between two
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adjacent oxygen atoms lies exactly one hydrogen atom, closer to one of the
oxygen atoms. This bond is then called hydrogen bond. Furthermore, to each
oxygen atom belong exactly two hydrogen atoms, which are closest to it.

(a) View of Ice structure along the c-axis.

(b) The hexagonal unit cell of ice
Ih.

Figure 8.1: Structure of water in the ice Ih phase

Even with the more complex structure (ice Ih) than the bulk materials (Si,
diamond, Graphite, Al, Li,..etc) studied in the previous chapter, we managed
to use our extrapolation method to find the converged RESP value of proton
projectile in ice Ih. As shown in Fig. 8.2, the calculated ALDA RESP con-
verged value of ice Ih target is almost acceptable result in comparison with the
available experimental data.
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the available experimental data. Experiments by Bauer et al. [5] (black square
points) and Wenzel and Whaling [89] (red diamond points). The SRIM 2003
[93] is semi empirical code (solid blue line).

Unfortunately, the success of the plane wave framework in calculating the
RESP of ice cannot be transposed to the H2O in gas phase. Indeed for an
isolated system like H2O in gas phase, another convergence parameter has to
be taken to the account. This convergence parameter is the box volume which
is used to make the H2O molecule isolated. The purpose is to make the inter-
molecular interactions almost negligible at the large box volume, so that a gas
phase is well mimiced.

89



0.5 1.0 1.5 2.0

 v (a.u.)

0

2

4

6

8

R
E

S
P

 (
 e

V
 c

m
2
 /

 1
0

1
5
 a

to
m

 )

25
30
35
40

H
2
O gas phase 

     a (Bohr)

Fcc lattice

V
c
=(a

3
/4)

Figure 8.3: RESP of proton in the H2O gas phase target as a function of the
cell volume Vc. For all Vc the following parameters have been used: Nk = 8,
Ecut = 4 Ha for ε−1

GG′(q, ω), η = 1.5 eV and using a number of bands so that the
highest transition is ∆Eband = 42 eV. Thus, the same excitation density will
be used for all the volume Vc. Note that the low velocity part below 0.5 a.u.
is very unstable and is not shown here.

First, we would like to have an evaluation of the cell volume Vc necessary to
obtain the stopping power of the isolated system. It is not feasible to converge
all the paramters at once. Therefore we choose to evaluate Vc with loosely
converged values for the other parameters. We use a low value Ecut = 4 Ha.
Then we choose the number of empty states not fixing it, but rather fixing the
energy of the highest empty states. Here we select the number of states so
that the highest transition is ∆Eband = 42 eV. The k-point grid is 2×2×2. As
shown in the Fig. 8.3, the volume for a face-centered cubic cell necessary to
obtain an isolated molecule appears to be obtain for a lattice constant equal
to 35 bohr. In fact, this volume is very large comparing with what is usually
used for the ground state study. Therefore, the absolute convergence will be
extremely hard to be achieved. Even for a low value of Ecut for ε−1

GG′(q, ω),
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the required number of bands to account all the possible electronic excitations
will be an incredible quantity.

Let us try to evaluate this number. Fig. 8.4 shows the convergence behavior
of the RESP as a function of dielectric matrix cutoff and the number of bands
using only the gamma point. For small box (FCC cell with a = 20 Bohr), the
number of bands necessary to converge the RESP up to velocity v = 4. a.u. is
around 2500 using Ecut = 15 Ha. Thus, the number of bands at Ecut = 15Ha
extrapolated to the converged box size (FCC cell with a = 35 bohr) is about
13000! This is far beyond our capabilities as of today.
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Figure 8.4: Convergence of the RESP of H2O gas target within ALDA as
a function of the number of bands and of the dielectric matrix cutoff. The
convergence with respect to the number of bands and dielectric matrix cutoff
was obtained for a fixed Γ-point sampling with η = 4 eV. The convergence
study is obtained for the all electrons (without 1s state of the oxygen atom).

As a consequence, a different approach from the linear response RESP
within the plane wave framework should be used to investigate the isolated
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systems, such as the H2O vapor. It could be a good idea to write and develop
the RESP equation within localized orbitals instead of plane-waves. Of course,
localized orbitals have their own limitations such as the difficult fulfilment of
the Bethe sum-rule [52]. Next we test the RESP in another isolated system:
the single chain polymers in particular polyethylene (PE) and polyacetylene
(PA).

8.2 RESP for polymers
Without debate the polymers material are very important in the industrial
life. For instance, the polyethylene (PE) is formed into tubing, and is used in
building services pipework systems, heating and cooling systems and domestic
water piping. Furthermore, it is used to produce the plastic insulated wire
and cable which is used for conveying electricity (for example, in the home,
in automobiles and in the Synchrotron). Since the emission of synchrotron
radiation can produce a damage in this insulated cable, we are going to study
the stopping of the proton ions in a polymer targets. Thus, in the future this
study can help to find the most suitable polymer in resisting the synchrotron
radiations.

In this part, we investigate the volume necessary to have an isolated poly-
mer chain using our RESP plane-wave code for two polymers: PE and Poly-
acetylene (PA). We chose these polymers target since the carbon (C) atoms can
form different type of bonds. PE is a series a single bonds, whereas PA is an
alternating sequence of single and double bonds. Thus, the RESP contribution
of the bonds type can be examined.

We have been focusing on the solid materials all the time, but for H2O.
From the results of H2O gas phase, we expected to face the same complexity
in calculating the converged RESP for isolated polymer.

Fig. 8.5 shows the view of the single isolated chain of PA. PE (the most
common plastic) usually refers to an organic polymer with the repeating unit
(C2H2)n. In PA the carbon atoms have an alternating single and double bonds,
each carbon bound to one hydrogen atom.

Fig. 8.6 shows the view of the single isolated chain of PE. PE usually
refers to an organic polymer with the repeating unit (C2H4)n. Unlike PA,
the carbon atoms in PE have single bonds only, each carbon bound to two
hydrogen atoms.
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Figure 8.5: View of single isolated PA chain along the z-axis. The length of
C=C bond is 1.34 Å which is found in each unit C2H2, and the C-C bond
length is 1.451 Å.
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Figure 8.6: View of single isolated PA chain along the z-axis. The length of
single bond (c-c) is 1.535 Å.

As shown in the Fig. 8.7 and in Fig 8.8, the volume Vc for isolated polymers
in an orthorhombic cell with the lattice constants a, b, c is respectively a, b = 35
and c = 4.66 Bohr for PA and a, b = 35 and c = 4.812 Bohr for PE. Again, this
volume is very large comparing with what is usually used for the ground state
study. Therefore, the convergence task will be so hard that it is impossible
with the current status of the code.
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According to this study, we decided to study the RESP contribution of
bond types in solid polymers instead the isolated one. This task is one of our
perspectives.

8.3 Conclusion
In this chapter, the validity of using the linear response RESP within the
plane wave framework has been examined for organic systems in solid and gas
phases. We found that the plane-wave framework can only be used to study
the RESP of H2O in ice phase. We managed to calculate the fully converged
RESP value of this target. Also, the obtained converged results show a nice
agreement with the available experimental data.
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Unlike the H2O ice phase, we realized that the plane wave framework is
very hard to be used for H2O vapor. We demonstrated the impossibility of the
convergence task with the current status of ABINIT. Furthermore, we found
that the polymers have the same convergence problems as found in H2O the
gas phase.

Finally, one has to use alternative frame work or formalism which can
reduce the required computational efforts in studying the RESP of such ma-
terials. This is one of our future scientific tasks.
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Chapter 9

Conclusions and perspectives

Summary
In this thesis, we have derived in details the position dependent and random
electronic stopping power equations of periodic crystals, in which slightly dif-
ferent equations have been found from those in the literature. The Lindhard’s
free-electron gas formula could be obtained as a particular case of the periodic
crystal equations.

Then, we have developed a computer program to calculate the RESP of
periodic solids, within the linear-response approach to TDDFT. Also, we have
shown in details the convergence issues of the RESP calculations. In order
to overcome the convergence problems, we have presented and devised an ex-
trapolation scheme. As an example, we have shown how to calculate the RPA
RESP value of proton in Si target (with 2s2p3s3p electrons and with valence
only) using the extrapolation method. However, we have managed to produce
high quality converged stopping power curves using this extrapolation tech-
nique. In the beginning of this work, we have focused on testing the RESP in
simple solid materials such as: Si, diamond, Al, 3C-SiC, 2H-SiC, graphite and
Li.

Moreover, we have shown the importance of using a suitable description
of the core electrons. For instance, we have seen that the ALDA formalism is
very good in calculating the RESP value in the valence electrons target (like
Li) at high proton velocity (v>2 a.u.), but is not giving the same high quality
results for the core electrons of the target (like Si, Al, etc.). These observations
are pointing to the shortcoming of the ALDA in treating the core electrons.
However, these small discrepancy at high velocity may be due to not a counting
the even deeper core states like the 1s of Si, C, O, etc. Furthermore, we have
shown that the accuracy of using the LDA based on the Lindhard’s stopping
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power in evaluating the RESP core contributions is quite reasonable, in spite
of the shell effect is not well accounted within the LDA as shown in the thesis.

In addition, we have tested the importance of including the exchange-
correlation within ALDA in producing more accurate results at low proton
velocity. In fact, we have shown that the successful of calculating the dy-
namical structure factor and the valence RESP in Si target using ALDA at
low velocity is better than using RPA, where the results have been compared
to the experiments. These results indicated the necessity of describing the
exchange-correlation within ALDA.

Also, we have checked the the limitations of the linear response theory. In
fact, the obtained results are more accurate than what we had expected. For
example, with the comparison with the time-propagation results of Ref. [77],
we have evaluated an upper limit for the non-linear effects of 5 % in aluminum.

We have investigated the Bragg’s additivity rule which is failing even for
3C-SiC, so it cannot be taken for granted for more complex compounds. Also,
we have checked the RESP phase effect in SiC and in C targets. The phase
insensitivity cannot be taken for granted. Since the obtained RESP results
shows different phase sensitivity behavior: it is almost negligible in SiC target,
while it is very important in the C target. We have shown that the anisotropy
of the RESP in anisotropic materials can be safely ignored, since we have
shown that the calculated RESP results are almost the same in 2H-SiC and
graphite along two different velocity directions.

In the final part of this thesis, we have focused on testing the RESP in
more complex targets such as: H2O in two phases (the solid and gas) and
in two type polymers (PE and PA). We have shown an acceptable result of
the RESP in H2O solid phase compared to the available experimental data
with our plane-wave linear-response RESP code. Then, we have tested the
possibility of using the RESP code within the PW framework for an isolated
organic systems by analyzing the results of the convergence study. As we have
found in the convergence test, the volume necessary to isolate the images is
very large in PE, PA and also in H2O gas phase. Therefore, we expect to
face an incredible computational task to find the converged RESP in such
the isolated materials. For instance, we have shown in the case of the H2O
gas phase that the required number of bands needed to accounting for all the
possible electronic excitations is about 13000 at the isolation volume. As a
consequence, we think the linear response RESP within the PW framework is
only suitable to be applied for crystal systems.
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Perspectives
In the future, we aim to continue developing the RESP code, for example we
will implemented the position dependent electronic stopping power formula
in an ab initio code ABINIT. Then, we could use this code to study the
channelling effect of electronic stopping power in a series of periodic materials.
The chanelling is the easy propagation of ions along the crystalline directions
that do not cross the region of large electronic density.

At the same time, we will continue studying the RESP in more complex
materials. For instance, we will investigate the Bragg law for more complex
compounds (for which the valence changes a lot) such as III-V semiconductors
or oxides. Imagine the change in valence between the titanium atom in the
metal, or in TiO2, or in Ti2O3.

Regarding the task of understanding the RESP phase effect in water target
(solid and gas phase) which was not possible to be done using PW RESP
code. Therefore, we are now evaluating the opportunity to write RESP formula
in localized orbitals instead the PW framework. Historically, the localized
orbitals calculations of the RESP were the first to be carried out (beyond
the FEG) [74, 52]. Lots of developpments have already been done in that
particular direction. Comparing the PW and the localized orbitals could be
much insightful.
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Appendix A

Calculation parameters

This appendix provides the details of the parameters used to calculate the
converged results in this thesis, as given in tables A.1 and A.2. Also, this
appendix provides the lattice parameters of all crystal solids that have been
investigated in this work, as given in table A.3.

Table A.1: A list of the low convergence parameters that used in this
manuscript.

Target Ecut (Ha) Nb Nk η (eV)

Si (valence) 8 400 1 12
Si (core) 8 400 1 12
Diamond 4 200 8 6
Li 6 200 16 4
AL (valence) 4 200 8 7
AL (core) 4 200 8 7
3C-SiC 4 200 8 6
2H-SiC 4 200 8 6
Graphite 4 200 4 9.5
Ice Ih 11 1000 4 2
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Table A.2: A list of the high convergence parameters that used in this
manuscript.

Target Ecut (Ha) Nb Nk η (eV)

Si (valence) 25 2000 864 1
Si (core) 35 2500 864 1
Diamond 26 600 2048 1.5
Li 25 1200 2000 0.75
AL (valence) 25 1000 2048 1
AL (core) 30 2000 2048 1
3C-SiC 35 2000 2048 0.75
2H-SiC 35 2000 2048 0.75
Graphite 35 2000 484 1
Ice Ih 20 2500 48 1

Table A.3: A list of the structural parameters used in this manuscript.

Target The lattice parameters (Bohr)

Si a=10.26
Diamond a=6.7405
Li a=3.51
AL a=7.653
3C-SiC a=8.2384
Graphite a, b=4.65 and c=12.6763
Ice Ih a, b=8.5379 and c=13.9
PA a, b=35 and c=4.66
PE a, b=35 and c=4.812

Figure A.1 shows the SiC crystal structure build in two phases the 2H-SiC
crystal and the 3C-SiC crystal (has hexagonal super cell contains 6 atoms).
For both 2H-SiC and 3C-SiC solids, we have used the same real space primitive
translations vectors (rprim): rprim(i,1)(0.5, 0.0, 0.5), rprim(i,2)=(0.0, 0.5, 0.5)
and rprim(i,3)=(-1, -1, 1). Furthermore, the atoms position in the reduced
coordinates (xred) are given as following for 2H-SiC crystal: Two Si atoms are
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located at [1/3, 1/3, -1/2] and [2/3, 2/3, -1]. Also, two C atoms are placed at
[1/3, 1/3, -1/8] and [2/3, 2/3, -5/8]. While, the xred of atoms position of the
3C-SiC crystal are given as: Three Si atoms are located at [0, 0, 0], [1/3, 1/3,
-1/3] and [2/3, 2/3, -2/3] and three C atoms are placed at [1/3, 1/3, -1/12],
[1/3, 1/3, -5/12] and [1, 1, -9/12]. In addition, the lattice parameters are given
as following: a=8.154 Bohr for 3C-SiC and a=8.154 with a/c=2/3 ratio.

(a) The 3C-SiC (6 atoms super cell) crystal
.

(b) The 2H-SiC crystal.

Figure A.1: A view of SiC structure in two phases 2H-SiC and 3C-SiC.

Table A.4 shows the atoms position in Cartesian coordinates (xcart) for
the isolated PA chain.
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Table A.4: A list of the atoms position of the isolated PA-chain used in this
manuscript.

Atom type The xcart (Bohr)

C [ 0.000, 0.000,-1.107]
C [ 1.225, 0.000, 1.107]
H [-2.035, 0.000,-1.115]
H [ 3.260, 0.000, 1.115]

Table A.5 shows the atoms position (xcart) for the isolated PE chain.

Table A.5: A list of the atoms position of the isolated PE-chain used in this
manuscript.

Atom type The xcart (Bohr)

C [ 0.594, 0.548, 1.203]
C [-0.594,-0.548,-1.203]
H [ 2.507, 0.105, 1.203]
H [-2.507,-0.105,-1.203]
H [ 0.364, 2.545, 1.203]
H [-0.364,-2.545,-1.203]

Table A.6 shows the atoms position (xred) for the ice Ih crystal.

104



Table A.6: A list of the atoms position of the ice Ih crystal used in this
manuscript.

Atom type The xred (Bohr)

O [0.333, 0.666, 0.060]
O [0.666, 0.332, 0.936]
O [0.333, 0.667, 0.436]
O [0.667, 0.334, 0.560]
H [0.335, 0.670, 0.195]
H [0.454, 0.908, 0.020]
H [0.664, 0.329, 0.695]
H [0.546, 0.091, 0.521]
H [0.446, 0.542, 0.482]
H [0.095, 0.542, 0.482]
H [0.904, 0.458, 0.982]
H [0.553, 0.458, 0.982]
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