
HAL Id: tel-01274729
https://pastel.hal.science/tel-01274729

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volumetry of timed languages and applications
Nicolas Basset

To cite this version:
Nicolas Basset. Volumetry of timed languages and applications. Document and Text Processing.
Université Paris-Est, 2013. English. �NNT : 2013PEST1073�. �tel-01274729�

https://pastel.hal.science/tel-01274729
https://hal.archives-ouvertes.fr

THESE

Pour obtenir le grade de
DOCTEUR de l’UNIVERSITE PARIS-EST

Spécialité
Informatique

Ecole Doctorale : Mathématiques et Sciences et Technologies de
l’Information et de la communication

Présentée par

Nicolas Basset

Volumetry of timed languages and
applications
sous la co-direction de

Eugène Asarin (LIAFA) et Dominique Perrin (LIGM)

soutenue le 5 décembre 2013 devant le jury composé de :

M. Rajeev Alur Rapporteur
M. Eugène Asarin Co-directeur de thèse
Mme Christel Baier Examinatrice
M. Jean Mairesse Directeur du jury
M. Dominique Perrin Co-directeur de thèse
Mme Brigitte Vallée Rapporteur

1

2

Remerciements

Je tiens à remercier Eugene Asarin et Dominique Perrin pour m’avoir encadré pendant cette
thèse ainsi qu’Aldric Degorre pour son aide et ses conseils aussi bien sur le plan humain que
scientifique et orthographique.

Je remercie Marie-Pierre Béal et Ahmed Bouajjani pour m’avoir tous deux conseillé de
soumettre le chapitre 4 de cette thèse à ICALP et je remercie le comité de programme
d’ICALP 2013 track B pour m’avoir décerné le “best student paper award“. Merci aussi à
Peter Habermehl pour des conseils similaires.

Merci à Marta Kwiatkowska et son équipe pour m’avoir accueilli en postdoc à Oxford
deux mois avant même que je soutienne ma thèse.

Je remercie aussi ceux qui m’ont aidé pour ma mission d’enseignement: Nicolas Bedon,
Cyril Nicaud, Didier Caucal, Gregory Kutcherov...

Je remercie mon père et ma mère pour m’avoir transmis leur gout de la science et des
maths respectivement. Et surtout merci à Sonia, Gaël, Délia nés pendant la thèse où juste
après pour avoir égayé mes temps libres et merci à leur maman Eve pour s’en être bien
occupé, m’avoir soutenu et aidé.

3

4

Contents

Résumé introductif en français. 9

1 Introduction 19
1.1 Contributions, extended outline . 21
1.2 Related work . 28

1.2.1 Classical results lifted to the timed case. 28
1.2.2 Timed automata related works . 29
1.2.3 Combinatorics . 30

1.3 Past and ongoing publications . 30

2 Preliminaries 33
2.1 Basics definitions . 33

2.1.1 Timed languages . 33
2.1.2 Bounded Deterministic Timed Automata 34
2.1.3 Timed region graphs . 36

2.2 Advanced preliminaries . 37
2.2.1 Paths, polytopes and point to point reachability. 37
2.2.2 Closed version of a timed region graph 39
2.2.3 SCC decomposition . 39
2.2.4 Volume and entropy of runs . 40

2.3 Link between BDTA and TRGs (technical section). 41
2.3.1 The region-splitting of [AD09a] . 42
2.3.2 BDTAs and TRGs have the same entropy 42
2.3.3 Proof of Proposition 5 . 43
2.3.4 Recurrent equations on volume functions [AD09a] 44

3 Thin and Thick languages 47
3.1 Preliminaries . 48

3.1.1 Thinness, simplices and examples . 48
3.1.2 Point to point reachability: algebraic characterization 49
3.1.3 Linear Lyapunov functions and sub-exponential volume. 51

3.2 Main section . 54
3.2.1 Pumping lemma for long thick paths 54

5

3.2.2 Characterizing thick languages . 56
3.2.3 Thin and thick SCC . 57

3.3 Conclusion and perspectives . 58

4 The maximal entropy SPOR. 59
4.1 Maximal entropy Markov chain on a graph 60

4.1.1 Markov chain on a graph . 60
4.1.2 Ergodic stochastic processes . 60
4.1.3 Entropies . 61
4.1.4 The asymptotic equipartition property for Markov-chain 62
4.1.5 The Shannon-Parry Markov chain . 62

4.2 Stochastic processes on timed region graphs 63
4.2.1 SPOR of a timed region graph . 64
4.2.2 Entropy . 65

4.3 The maximal entropy SPOR . 67
4.3.1 Technical assumptions . 67
4.3.2 Main theorems . 68
4.3.3 Definition and properties of ρ, v and w 69
4.3.4 Examples . 78
4.3.5 Proof of the maximal entropy theorem (Theorem 14) 80

4.4 Conclusion and perspectives . 86
4.4.1 Technical challenges . 86

5 Timed symbolic dynamics 87
5.1 Preliminaries . 88

5.1.1 Words and factors . 88
5.1.2 Topology . 88
5.1.3 Shift spaces . 89
5.1.4 ε-entropies and topological entropy 90

5.2 Classical symbolic dynamics . 90
5.2.1 Characterization with finite factors 91
5.2.2 Edge and sofic shifts . 91
5.2.3 The language point of view. 91

5.3 Compact alphabet shift space . 92
5.3.1 Factor based characterization of shift spaces. 92
5.3.2 An infinite topological entropy . 93
5.3.3 Entropy of a mesurable shift . 93
5.3.4 Keeping the ε-entropy . 94

5.4 Timed edge shift and timed sofic shift . 95
5.4.1 Definitions . 96
5.4.2 The timed language point of view . 97
5.4.3 Discretization . 100
5.4.4 Metric mean dimension . 106

6

5.5 Sliding block codes . 111
5.6 Conclusion and perspectives . 112

5.6.1 Open problems . 112

6 Toward a Timed Theory of Channel Coding 115
6.1 Theory of channel coding for finite alphabet languages 115

6.1.1 Terminology . 115
6.1.2 Coding: the basic case . 116
6.1.3 Other coding settings . 118

6.2 Timed coding . 118
6.2.1 Timed source, discrete channel, approximate transmission 119
6.2.2 Timed source, timed channel, exact transmission 121
6.2.3 A variant: scaling allowed . 124
6.2.4 A speedup and a slowdown lead to a collapse 126

6.3 Conclusion and perspectives . 127

7 Generating functions of timed languages 129
7.1 Preliminaries . 129

7.1.1 Clock languages and timed languages 129
7.1.2 From timed automata to triplet, clock and timed languages 130
7.1.3 Volume(s) of timed and clock languages 132

7.2 Generating functions . 136
7.2.1 Definitions . 136
7.2.2 Analytic characterization . 136
7.2.3 Volumes, generating functions and functional analysis 137
7.2.4 Inductive characterization of generating functions 138

7.3 Computing generating functions . 140
7.3.1 Generating functions for particular classes of automata 140

7.4 Conclusion and perspectives . 146

8 Combinatorics using timed languages 147
8.1 Two problem statements . 147
8.2 A timed and geometric approach . 149

8.2.1 Order sets of a language of signatures (On(L))n≥1 149
8.2.2 Timed semantics of a language of signatures (L′n)n∈N 150
8.2.3 Volume preserving transformation between L′n and On(L). 152
8.2.4 The S-T (timed) language encoding. 154

8.3 Solving the two problems . 155
8.3.1 Characterization of the VGF of an S-T-automaton. 155
8.3.2 An algorithm for Problem 2 . 156

8.4 Examples . 160
8.4.1 The alternating permutations . 160
8.4.2 The up-up-down-down permutations 161

7

8.4.3 Permutations without two consecutive descents 162
8.5 Conclusion and perspectives . 163

9 Conclusion and perspectives 165

Bibliography 173

List of Figures 175

Abstract and Résumé 176

8

Résumé introductif en français.

Deux théories pour un objet d’étude. La théorie des automates et celle de la dy-
namique symbolique ont été développées en parallèle depuis le milieu du 20ème siècle. Ces
deux théories partagent le même objet d’étude : l’ensemble des chemins d’un graphe étiqueté
fini. Pour la première théorie, cet ensemble est un langage régulier (et le graphe étiqueté est
appelé automate) tandis que pour la deuxième théorie c’est l’ensemble des blocs autorisés
d’un ensemble de décalage sofique (et le graphe étiqueté est appelé présentation de l’espace
de décalage). Nous conseillons au lecteur de lire le chapitre [BBEP10] pour une exposition
de la dynamique symbolique dans le contexte de la théorie des automates.

Une analyse quantitative donnée par la dynamique symbolique. La dynamique
symbolique apporte une analyse quantitative des langages réguliers grâce à la notion d’entro-
pie. Celle-ci mesure le taux de croissance du langage par rapport à la taille des mots con-
sidérés. Sa définition formelle est détaillée ci-après. Soit Ln un ensemble de mots de taille
n d’un langage régulier L. Dans la majorité des cas, son cardinal |Ln| se comporte à peu
près comme une exponentielle ρn multipliée à un terme sous-exponentiel de telle sorte que
λ−n << (|Ln|ρ−n) << λn pour tout λ > 1. L’entropie h(L) est définie comme le logarithme
en base 2 de ρ, en d’autres termes |Ln| se comporte comme 2nh(L) et formellement

h(L) = lim sup
n→∞

1

n
log2 |Ln|.

L’entropie h(L) s’interprète naturellement comme le nombre de bits par symbole pour coder
un mots de L.

La dynamique symbolique considère les langages réguliers comme des systèmes dynami-
ques appelés espaces de décalage sofiques et offre un aspect topologique. L’entropie des
espaces de décalage sofiques est un cas particulier de l’entropie topologique des systèmes
dynamiques.

Du cas discret au cas continu. Les notions de décalage et de temps dans le contexte
de la dynamique symbolique sont discrets : le décalage d’une lettre (par la suite appelé
événement) vers la droite permet d’avancer d’un pas dans le futur tandis que le décalage d’un
événement vers la gauche permet de reculer d’un pas dans le passé. De la même façon, dans
le contexte de la vérification, les mots d’un langage régulier représentent l’histoire possible

9

d’un système. Chaque lettre représente un événement et les événements se produisent les
uns après les autres sans quantifier le temps entre eux.

Cependant, il est souvent pertinent de quantifier de façon continue les délais entre les
événements. Les automates temporisés ont été introduits pour cette raison dans le années
90 par Alur et Dill [AD94]. Les automates temporisés sont rapidement devenus populaires
comme un modèle simple mais expressif vérifiant beaucoup de résultats de décidabilités tels
que la vérification de modèle ou les problèmes d’accessibilité (équivalent au problème du vide
pour les langages). Depuis les automates temporisés ont été minutieusement étudiés d’un
point de vue théorique.

Volumétrie des langages temporisés. La notion de temps continu entre les événements
n’a pas encore été étudiée dans le contexte de la dynamique symbolique. Dans la théorie
des automates temporisés, une analyse quantitative de la taille des langages temporisés
et l’information contenue dans leur éléments ont seulement été introduites récemment par
deux de mes collègues Eugene Asarin et Aldric Degorre. Dans ce but, ils ont défini dans
[AD09a, AD09b] les notions de volume et d’entropie (inspirées par la dynamique symbolique)
des langages temporisés et construit une nouvelle théorie que nous appelons la volumétrie de
langages temporisés. Dans le paragraphe suivant, nous rappellerons brièvement la définition
de volume et d’entropie des langages temporisés.

Un mot temporisé t1w1 · · · tnwn est un mot formé d’une alternance de délais de valeur
réelles positives ti ≥ 0 et d’événements ai. Un langage temporisé est un ensemble de mots
temporisés. D’un point de vue géométrique, un mot temporisé est un vecteur de délais
(t1, . . . , tn) ∈ Rn étiqueté par un mot d’événements w = w1 · · ·wn ∈ Σn où Σ représente un
alphabet d’événements. Nous adoptons la convention d’écriture suivante : (~t, w) est le mot
temporisé t1w1 · · · tnwn avec ~t = (t1, · · · , tn) et w ∈ Σn (n ≥ 1). En continuant avec la même
convention, étant donné un langage temporisé L ⊆ (R+×Σ)∗, le langage temporisé restreint
aux mots de taille n, L′n peut être vu comme une union formelle d’ensembles

⊎
w∈Σn Lw×{w}

où Lw = {~t ∈ Rn | (~t, w) ∈ L′} est l’ensemble des vecteurs de délais qui avec w forme un mot
temporisé de L. Dans la thèse, nous considérons uniquement des langages L tel que chaque
Lw a un volume mesurable. Pour un langage temporisé L, on peut définir sa séquence de
volumes :

Vol(Ln) =
∑

w∈Σn

Vol(Lw)

et son entropie volumétrique :

H(L) = lim sup
n→+∞

1

n
log2 Vol(Ln).

Ainsi, la définition de l’entropie d’un langage temporisé imite celle de l’entropie des langages
réguliers en remplaçant l’énumération des mots de taille n par la mesure du volume des mots
de taille n (qui est indénombrable).

Dans la thèse, nous utilisons comme exemple principal l’automate Aex représenté sur la
Figure 1, pour illustrer les notions de volume, d’entropie, de processus d’entropie maximale

10

ou de fonctions génératrices. Le langage temporisé reconnu par l’automate Aex est

L = {t1at2bt3a . . . |∀i (ti + ti+1 ≤ 1)}.

Pour tout nombre d’événements n nous avons un polytope dans Rn :

Ln = {(t1, t2, t3, . . . , tn)|∀i (ti + ti+1 ≤ 1)},

la séquence de volumes Vn de ces polytopes est :

1; 1;
1

2
;
1

3
;

5

24
;

2

15
;

61

720
;

17

315
;

277

8064
. . . ,

et il est démonté dans [AD09a] que cette séquence se comporte asymptotiquement comme
(2/π)n (l’entropie du langage est log2(2/π)).

p q
a, x ≤ 1, {x}

b, y ≤ 1, {y}

Figure 1: Un automate temporisé Aex

Dans cette thèse nous construisons de nouveaux développements à cette théorie (que nous
appelons volumétrie des langages temporisés) et l’appliquons a plusieurs problèmes apparais-
sant dans divers domaine de recherche tel que la théorie de l’information, la vérification, la
combinatoire énumérative.

Entre autre nous

• développons une théorie de la dynamique symbolique temporisées ;

• caractérisons une dichotomie entre automates temporisés se comportant bien ou mal ;

• définissons pour un automate temporisé donné, un processus stochastique d’entropie
maximale le moins biaisé possible ;

• développons une version temporisé de la théorie des codes sur canal contraint ;

• énumérons et générons aléatoirement des permutations dans une certaine classe ;

Notre travail améliore considérablement la volumétrie des langages temporisés car nous

• fournissons les applications énumérées ci-dessus ;

• éliminons les conditions restrictives imposées dans [AD09b, AD09a] ;

• caractérisons algébriquement (et algorithmiquement) les langages d’entropie fini ;

11

• caractérisons précisément la suite de volumes d’un langage temporisé grâce a sa fonction
génératrice des volumes ;

• prouvons et améliorons la convergence de la méthode de discrétisation pour le calcul
de l’entropie proposé dans [AD09b].

• fournissons plusieurs définitions équivalentes de l’entropie, chacune ayant ses propres
avantages selon le contexte.

Nous donnons le cadre de dynamique symbolique temporisé dans le chapitre central (Chapitre
5). Même si nous aurions pu écrire une bonne partie de la thèse en terme de dynamique
symbolique temporisé nous avons préféré dans la plupart des cas utiliser le vocabulaire des
automates temporisés. Ceci afin de simplifier la réutilisation de nos contributions, qui sont
plus proches de la théorie des automates temporisés.

Ci-dessous nous décrivons chapitre par chapitre nos contributions dans l’ordre dans lequel
elles apparaissent dans la thèse.

Chapitre 2. Préliminaires.

Dans ce chapitre de préliminaires, nous rappelons les définitions de volume et d’entropie
des automates temporisés introduites par Asarin et Degorre. Nous introduisons le modèle
de graphe de régions temporisés qui est utilisé dans la plupart des chapitres de cette thèse.
Chaque automates temporisé a un graphe de région temporisé sous-jacent. Nous réduisons
donc l’étude de l’entropie des automates temporisés à celle des graphes de régions tempo-
risées. Nous introduisons une caractérisation de l’entropie basé sur la mesure des calculs
(Proposition 5) qui

• cöıncide dans le cas déterministe avec la définition originale basée sur le volume des
mots temporisé du langage,

• est simple à comparer avec l’entropie d’un processus stochastique sur les calculs intro-
duite plus tard au Chapitre 4.

Chapitre 3. L’alternative gras et maigre.

Les automates temporisés utilisant des horloges analogiques exactes, des gardes exactes et
des mises à 0 sont de beaux objet mathématiques et sont des modèles utiles pour les systèmes
temps-réels. Cependant, dès le tout début des recherches sur les automates temporisés, il
parut évident qu’ils sont, sur plusieurs aspects, trop précis, qu’ils ont parfois d’étranges
artéfacts, des pathologies mathématiques ou encore mènent à des modèles irréalistes. De
nombreuses lignes de recherches ont expliqués en parties ces questions.

L’espace d’états d’un automate temporisé étant infini, des calculs longs (ou infinis) ne
permettront jamais de revisiter le même état. Pour cette raison, comme stipulé dans [Bea98],
le lemme d’itération habituel ne marche pas et doit plutôt être remplacé par un analogue

12

plus complexe. Dans un calcul, beaucoup d’événements peuvent se produire un nombre infini
de fois durant une portion de temps fini, ou deux événements peuvent se produire encore
et encore avec un intervalle de temps entre eux tendant vers 0. De tels calculs rappellent
les paradoxes de Zénon et sont souvent appelé calculs Zénon (“Zeno runs” en anglais), voir
[GB07] et ces références.

Nous introduisons la notion clé de cycles d’oubli, un critère pour distinguer les langages
maigres, ayant une entropie −∞, et les langages gras, ayant une entropie > −∞.

Cette notion est primordiale pour repérer et éliminer les automates temporisés aux com-
portements pathologiques, comme nous le faisons dans plusieurs chapitres de cette thèse
(Chapitres 4,5 et 6).

La dichotomie entre maigre et gras se résume ainsi :

Dans les automates maigres toutes les trajectoires infinies sont, en un sens faible, Zénon;
la discrétisation des longues trajectoires est difficile, puisque qu’elle nécessite de très
petits pas de discrétisation.

Dans les automates gras la majorité des trajectoires sont non-Zénon et se comportent
bien pour la discrétisation; de tels automates ont des cycles d’oubli et la plupart des
trajectoires visite de tels cycles.

Le principal résultat de ce chapitre (Théorème 5) établit que la propriété d’être gras (c’est à
dire H > −∞) est équivalente au autres propriétés décrites brièvement ci-après : une bonne
discrétisation, l’existence d’un cycle d’oubli, etc.). Nous montons dans le même temps que
tout long chemin d’un automate temporisé gras, contient nécessairement un cycle d’oubli
(Théorème 3), qui peut être assimilé à un lemme de pompage pour chemins gras.

La preuve du Théorème 5 est assez technique. Elle utilise un mélange d’outils “tempo-
risés” inspirés de [Pur00, AKY10] ainsi que le théorème de factorisation de forêt de Simon
[Sim90] (qui constitue un raffinement de la théorie de Ramsey pour les monöıdes).

Etre gras, une condition necessaire et suffisante au calcul de l’entropie. Dans le
travail original d’Asarin et Degorre, deux approches sont étudiées pour calculer l’entropie,
l’approche par discrétisation [AD09b] et l’approche par opérateur[AD09a]. Cependant, la
convergence de ces algorithmes pour ces deux approches n’est pas prouvée et une condition
restrictive sur les mises à 0 des horloges au cours de chaque cycle est nécessaire. Dans
cette thèse, nous nous débarrassons de cette condition restrictive et résolvons le problème
de convergence de l’approche par discrétisation. Nous montrons aussi la convergence de
l’approche par opérateur dans [ABD13]. Ces deux solutions sont basés sur la notion des
cycles d’oubli introduites dans ce chapitre. Plus précisément, le cas H = −∞ (équivalent
à l’absence de cycle d’oubli) peut être détecté avec une procédure PSPACE décrite dans ce
chapitre. Quand ce cas est éliminé, le fait d’être gras (H > −∞, équivalent à la présence
d’un cycle d’oubli) devient une condition nécessaire et suffisante pour que les deux méthodes
convergent (voir [BA11] et Chapitre 5 pour l’approche par discrétisation, [ABD13] pour
l’approche par opérateurs).

13

Chapitre 4. Un processus stochastique d’entropie maximale pour
un graphe de région temporisé.

Dans le contexte de vérification de système temps réel, plusieurs paramètres probabilistes
ont été ajoutés aux automates temporisés (voir les références ci-après). Il y a de nombreuses
raisons d’ ajouter des probabilités : cela permet (i) un meilleur reflet des systèmes physiques
qui se comporte aléatoirement, (ii) une réduction de la taille du modèle en émondant les
comportement de probabilités nulles [BBB+07], (iii) de résoudre le non-déterminisme lié aux
composition parallèle d’automates[DLL+11, KBM13].

Dans la majorité des travaux précédents sur le sujet (voir e.g. [BA07, BAM06, BBBM08,
DLL+11]), les distributions de probabilité sur des transitions continues et discrètes sont
données en même temps que les paramètres de temps. Dans ces travaux, la distribution
de probabilité est donné par le concepteur du modèle. Alors que, il peut vouloir fournir
uniquement un automate temporisé et s’interroger sur le ”meilleur” choix de distribution de
probabilité pour l’automate temporisé considéré? Un tel ”meilleur” choix doit transformer
l’automate temporisé en un générateur aléatoire de calculs le moins biaisé possible, c’est à dire
qu’il devrait générer des calculs aussi uniformément que possible pour couvrir avec une grande
probabilité le maximum des comportements du système modélisé. Plus précisément, la
probabilité qu’un calcul généré appartienne à un ensemble donné devrait être proportionnelle
à la taille (volume) de cet ensemble. Nous formalisons cette question et proposons une
réponse basée sur la notion d’entropie des automates temporisés introduite dans [AD09a].

La théorie développée par Shannon [Sha48] et ses successeurs permets de résoudre le
problème analogue de la génération aléatoire quasi-uniforme des chemins d’un graphe fini.
Ce problème peut être formulé comme suit : étant donné un graphe fini G, comment peut-
on trouver une châıne de Markov stationnaire sur G permettant de générer des chemins de
la façon la plus uniforme? La réponse est en deux points (voir Chapitre 1.8 de [Lot05] et
aussi la section 13.3 de [LM95]) : (i) Il existe une châıne de Markov stationnaire sur G avec
entropie maximale : la châıne de Markov de Shannon et Parry ; (ii) cette châıne de Markov
stationnaire permet de générer des chemins quasi uniformément.

Dans ce chapitre nous étendons cette théorie au cadre des automates temporisés. Nous
définissons les processus stochastiques sur les calculs des graphes de régions temporisées et
leur entropie (continue). Cette généralisation des châınes de Markov pour les automates
temporisés a un intérêt en soit (c’est la première fois par exemple qu’une distribution de
probabilité sur les états initial est donnée). Un tel graphes de régions temporisées permets
de générer des calculs aléatoires pas à pas en temps linéaire. Comme résultat principal,
nous décrivons un graphe de régions temporisées d’entropie maximal stationnaire ergodique
et généralisant la châıne de Markov de Shannon et Parry pour les automates temporisés
(Théorème 14). Les concepts d’entropie maximale, stationnarité et ergodicité peuvent être
intéressants en eux-même. Ici, nous les utilisons comme des hypothèses clés afin de garantir
la quasi-uniformité de la génération aléatoire (Théorème 15). Plus précisement, le résultat
que nous prouvons est une variante du célèbre théorème de Shannon-McMillan-Breiman aussi
connu sous le nom de propriété d’équipartition asymptotique (AEP).

14

Chapitre 5. Dynamique symbolique temporisée.

Dans ce chapitre, nous établissons le cadre de théorie de la dynamique symbolique tempo-
risé a la volumétrie des langages temporisés. Nous introduisons les espaces de décalages
sofique qui sont des espace de décalage sur un alphabet compact. Du coté négatif, l’entropie
topologique d’un tel espace de décalage tends vers l’infinie. Du coté positif, trois mesures
de la taille des espace de décalages sofique peuvent néanmoins être décrites : la dimension
métrique moyenne mdim de [LW00], l’ ε-entropie hε et l’entropie volumétrique H inspirés de
[AD09b, AD09a]. Nous expliquons le sens de ces trois mesures ainsi que leur lien commun.
En particulier, nous résolvons le problème resté ouvert dans [AD09b] de l’approximation de
l’entropie volumétrique par discrétisation. Formellement, nous montrons le développement
asymptotique suivant qui constitue l’un des résultats principaux du chapitre :

hε = H + log2(1/ε) + o(1).

Une interprétation de cette formule en terme de complexité de Kolmogorov est donné dans
[AD09b]. Cette formule a aussi une interprétation naturelle en terme d’informations con-
tenues dans un mot temporisé que nous expliquons et utilisons dans notre théorie des codes
temporisés sur canal contraint (voir Chapitre 6).

Les codes à fenêtres glissantes (en anglais “sliding block code”) sont des objets clés de
la dynamique symbolique. Ils sont exactement, en vertu du théorème de Curtis-Hedlund-
Lyndon, les morphismes des espaces de décalage (c’est à dire les fonctions continues qui
commute avec le décalage). Dans le cas temporisé, il n’y a pas de correspondance entre
morphismes et codes à fenêtres glissantes (Proposition 29). Cependant, nous montrons que
tout morphisme vers un espace de décalages total est la limite uniforme d’une suite de codes
à fenêtre glissantes continus (Théorème 30).

Chapitre 6. Vers une théorie temporisé des codes sur canal con-
traint.

La théorie développé dans ce chapitre est la première tentative de généralisation de la théorie
classique des codes sur canal contraint aux langages temporisés.

Soit un langage, S représentant tous les messages possibles que peut généré une source,
et C tous les messages qui peuvent être transmis par un canal. Les problèmes typiques de
théorie des codes sont :

• Est-il possible de transmettre n’importe qu’elle message généré par la source via un
canal?

• Quelle sera la vitesse de transmission?

• Comment coder le message avant et le décoder après la transmission?

Les réponses données par la théorie des codes sur canal contraint sont les suivantes : à chaque
langage L est associé un réel positif h(L), appelé son entropie, qui caractérise la quantité

15

d’information en bits par symbole. Dans le but de transmettre une information en temps
réel (resp. avec vitesse α) l’entropie de la source ne doit pas excéder celle du canal (aussi
nommé capacité) : h(S) ≤ h(C) (resp. αh(S) ≤ h(C)). Pour les langages réguliers (ou
plus précisément sofique), Chaque fois que l’inégalité d’information précédente est stricte, la
théorie des codes sur canal contraint fournie un protocole de transmission avec un encodage
et décodage simple (réalisé par un transducteur à état fini). Dans la pratique, quand S = Σ∗

et h(S) < h(C), le décodage peut être fait de façon simples (par fenêtre glissante). Un
exemple typique est l’EFMPlus code [Imm95] permettant l’écriture de n’importe quel fichier
binaire (i.e. la source {0, 1}∗, avec entropie 1) sur un DVD (le canal C = (2, 10)− RLL qui
contient tous les mots sans facteurs 11, 101 et 011, son entropie est de 0.5418, voir [Bla90])
avec un taux presque optimal α = 1/2.

La théorie classique des codes sur canal contraint traite de messages discrets. Il est cepen-
dant important de considérer des mots de donnés c’est à dire des mots discrets augmentés de
donnés (par exemple des nombre réels). Dans ce chapitre, nous développons la théorie des
codes sur canal contraint pour la classe de langage de donnés la plus étudiée : les langages
temporisés. Plusieurs modèles de transmission d’informations sont alors possibles :

• La source est un langage temporisé ; le canal est un langage discret. Dans ce cas, un
encodage avec perte minimale est impossible, et il faut considérer l’encodage avec une
précision ε;

• La source et le canal sont des langages temporisés, nous pouvons faire un encodage
exact (perte minimale);

• La source et le canal sont des langages temporisés, et les changement d’échelles sur les
données temporisées sont autorisées.

L’entropie des langages temporisés est la notion clé pour résoudre ces problèmes. Pour
beaucoup de modèles de transmission de données temporisées nous écrivons une inegalité
d’information reliant l’entropies des sources et des canaux aux paramètres des encodages
(taux, précision, graduation, voir ci-après). Une telle inégalité est une condition nécessaire
à l’existence d’un encodage. D’un autre côté, Pour chaque inégalité d’information (dans sa
forme stricte) si les langages sont réguliers (sofique), nous donnons une construction explicite
d’une fonction simple d’encodage-décodage temporisé.

Techniquement, nous nous appuyons fortement sur une discrétisation quantitative des
langages temporisés développé dans le Chapitre 5.

Chapitre 7. Fonctions génératrices des langages temporisés.

L’entropie est une mesure grossière de la taille des langages temporisés. Dans ce chapitre,
nous faisons une analyse plus précise de la taille des langages temporisés acceptés par un
automate temporisé déterministe. Nous associons à un langage L la séquence de ces volumes
Vol(Ln), et sa fonction génératrice f(z) =

∑
n Vol(Ln)zn. Ainsi la fonction f(z) contient

une information complète sur le “profile de taille” Vol(Ln) en fonction de n. La fonction

16

génératrice f(z) peut être exprimer en termes de résolvante de l’opérateur Ψ de Asarin
et Degorre [AD09a], et l’entropie du langage temporisé dépend uniquement du rayon de
convergence f(z).

Les méthodes développées dans ce chapitre produisent par exemple une formule close
pour la fonction génératrice des volumes de l’exemple courant (automate Aex de la Figure
1.1) :

f(z) = tan z + sec z. (1)

Le rayon de convergence de la série, π/2, est l’inverse du taux de croissance de la séquence
Vn. Cette série décrit précisément la séquence des volumes, et une formule close pour Vn
peut en être déduite :

V2n−1 = B2n(−4)n(1− 4n)/(2n)! ; V2n = (−1)nE2n/(2n)! ,

où les Bs sont les nombres de Bernoulli et Es les nombres d’Euler.
Les fonctions génératrices se comportent de façon naturelle par rapport aux opérations

simples sur les langages temporisés (union disjointe, concaténation non-ambiguë, et étoile
non-ambiguë). Cependant afin d’obtenir une caractérisation exacte pour les fonctions généra-
trices des langages temporisés réguliers, une analyse plus approfondie est requise. Une telle
analyse constitue la principale contributions de ce chapitre. Des formules close pour les
fonctions génératrices des volumes peuvent être calculées pour des sous-classe d’automates
temporisés incluant ceux utilisés dans le Chapitre 8. Ces dernier permettent d’exprimer de
façon combinatoire certaines classes de permutations.

Chapitre 8. Compter et générer des permutations en utilisant les
langages temporisés.

La signature d’une permutation σ = σ1 · · · σn est le mot w = w1 · · ·wn−1 ∈ {a,d}n−1 ou
quand il y a une descente à la position i (σi > σi+1) wi = d et wi = a pour s’il y a une
montée (σi < σi+1).

Générer toutes les permutations pour une signature donnée où simplement les compter
sont deux sujets classiques de la combinatoire (voir e.g. [Szp01] et ses références).

Un exemple très étudié de permutations données par leur signature est la célèbre classe
de permutation alterné (aussi appelé en zig-zag) (voir [Sta10] pour une vue d’ensemble des
travaux sur cette classe). Leurs signatures appartient au langage exprimé par les expressions
régulières (da)∗(d + ǫ) (i.e. ils satisfont σ1 > σ2 < σ3 > σ4...).

Une telle définition de classe de permutations en terme de langage de signatures est
en fait une nouveauté. Pour un langage L ⊆ {a,d}∗, nous associons la classe sg−1(L)
de permutations dont la signature est dans L. Plusieurs classes de permutations peuvent
être exprimé de cette façon (e.g. les permutations en alternance, celles sans 2 descentes
consécutives, celles avec un nombre pair de descentes, etc.). Nous appelons régulière ces
classes de permutations.

Nous posons les deux problèmes de dénombrement et de génération aléatoire quand le
langage de signature est régulier.

17

Nous proposons l’Algorithme 1 qui prend en entrée un langage régulier L et qui retourne
une formule close pour la fonction génératrice exponentielle (EGF) de sg−1(L) i.e. une série
formelle

∑
an

zn

n!
où le neme coefficient an compte les permutations de taille n avec une sig-

nature dans L. Avec une telle EGF, il est facile de retrouver le nombre an et de faire
une estimation du taux de croissance de an (voir [FS09] pour une introduction complète à
l’analyse combinatoire).

La génération aléatoire est faite par un algorithme décrit dans le Théorème 38. Le langage
régulier de signature L associée à n la taille de la permutation à générer est donné en entrée,
et les sorties sont des permutations aléatoires de taille n dont les signatures sont dans L,
chaque permutation ayant une probabilité égale d’être retournée.

Ici, nous trouvons une interprétation combinatoire des fonctions génératrices de volumes
des langages temporisés introduits dans le Chapitre 7. Nous développons dans ce chapitre
une théorie plus pointu (et auto-contenue) car nous restreignons notre attention a des classes
de langages temporisés particulières qui permettent d’encoder les classes de permutations
régulières.

Le passage d’une classe de permutations à un langage temporisé se fait en deux temps.
D’abord nous associons les polytopes d’ordre et de châıne aux signatures (ceux sont des cas
particulier de polytopes de Stanley associés aux ensemble partiellement ordonnés [Sta86]).
Puis, nous interprétons le polytope de châıne d’une signature w comme l’ensemble des vecteur
de délais qui avec w forment un mot temporisé dans un langage temporisé bien choisi.

L’outil théorique principal est une transformation préservant les volumes entre l’union
des polytopes d’ordre des mots du langage régulier considéré et le langage temporisé associé
(Théorème 36). Ainsi le calcul de la fonction génératrice exponentielle des permutations se
ramène a un calcul de fonction génératrice des volumes d’un langage temporisé (étudié dans
le chapitre précédent). Par exemple Aex schématisé sur la Figure 1.1 encode le cas bien étudié
des permutations alternantes dont la fonction génératrice exponentielle est tan(z) + sec(z).
Plusieurs preuves différentes de ce résultat peuvent être trouvées dans [Sta10]. Ici, nous
l’obtenons en identifiant la fonction génératrice exponentielle des permutations alternantes
a la fonction génératrice des volumes de l’exemple courant décrite en (1).

Nous fournissons aussi un générateur aléatoire uniforme de mots temporisé dans un lan-
gage temporisé associé a un langage régulier de permutations (Algorithme 2). Ce générateur
de mots temporisé combiné à la transformation préservant les volumes évoqué précédemment
fournit un générateur de permutations aléatoires dans la classe de permutations associé au
langage régulier considéré (Théorème 38).

18

Chapter 1

Introduction

Two theories, one object of studies Automata theory and symbolic dynamics are
two well-established theories developed in parallel since the middle of the 20th century, and
sharing roughly the same main object of study: the sets of labels of paths in a finite labelled
directed graph. In the former theory the object is a regular language and the labeled graph
is called finite state automaton while in the latter theory this is known as the set of allowed
blocks of a sofic shift (and the labeled graph is called a presentation of the shift). We refer
the reader to the handbook chapter [BBEP10] for an exposition of symbolic dynamics in the
context of automata theory.

A quantitative analysis provided by symbolic dynamics. Symbolic dynamics pro-
vides a quantitative analysis of regular languages with the notion of entropy. Entropy mea-
sures the growth rate of the languages w.r.t. the size of words considered. Its formal
definition and meaning is sketched as follows. Let Ln be the set of words of length n of a
regular language L. In most cases, its cardinality |Ln| roughly behaves like an exponential
ρn multiplied by a sub-exponential term. This means λ−n << (|Ln|ρ−n) << λn for all λ > 1.
The entropy h(L) is defined as the logarithm in base 2 of ρ, in other words |Ln| behaves
like 2nh(L) and formally h(L) = lim supn→∞ 1/n log2 |Ln|. The entropy h(L) has a natural
interpretation as the number of bits per symbol of words of L.

Symbolic dynamics considers regular languages as dynamical systems called shift spaces
and provides a topological point of view, e.g. the entropy of a sofic shift is a particular case
of the so-called topological entropy defined for general dynamical systems.

From discrete to continuous time. The notion of shift and of time in the context of
symbolic dynamics is discrete: shift of one letter (called one event in the following) to the
right permits to go a step forward in the future while shift of one event to the left permits
to go a step backward in the past. In the same way, in the verification context, words of a
regular language represent the possible history of a system. Each letter represents an event
and events occur one after the other without quantifying time between them.

However it is often relevant to quantify continuous time delays between events. Timed
automata (TA) were introduced for this purpose in the early 90s by Alur and Dill [AD94].

19

TAs quickly became popular as a simple yet expressive model with a lot of decidability
results such as for the model checking problem or the reachability problem (equivalent to
the language emptiness problem). Since then TA have been thoroughly explored from a
theoretical standpoint.

Volumetry of timed languages The notion of continuous time between events has not
been explored yet in the context of symbolic dynamics. In timed automata theory a quan-
titative analysis of the size of timed languages and information content of timed words has
only been introduced recently by two of my colleagues Eugene Asarin and Aldric Degorre.
For this purpose they defined in [AD09a, AD09b] the notion of volume and entropy (inspired
by symbolic dynamics) of timed languages and built a new theory that we call the volumetry
of timed languages. In the following paragraph we briefly recall the definition of volume and
entropy of timed languages.

A timed word is an alternating sequence t1w1 · · · tnwn of non-negative real-valued delays
ti ≥ 0 and events ai. A timed language is a set of timed words. From a geometric point of
view, a timed word is a vector of delays (t1, . . . , tn) ∈ Rn together with a word of events w =
w1 · · ·wn ∈ Σn where Σ denotes the alphabet of events. We adopt the convention to write
(~t, w) the timed word t1w1 · · · tnwn with ~t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). Continuing
with the same convention, given a timed language L ⊆ (R+ × Σ)∗, the timed language
restricted to words of length n, L′n can be seen as a formal union of sets

⊎
w∈Σn Lw × {w}

where Lw = {~t ∈ Rn | (~t, w) ∈ L′} is the set of delay vectors that together with w form
a timed word of L. In the sequel we will only consider languages L for which every Lw is
volume measurable. To a timed language L one can associate its sequence of volumes:

Vol(Ln) =
∑

w∈Σn

Vol(Lw)

and its volumetric entropy:

H(L) = lim sup
n→+∞

1

n
log2 Vol(Ln).

Thus the definition of the entropy of a timed language mimics that of the entropy of a
regular language by replacing the counting of n-length words by the measurement of volume
of n-length timed words (which are uncountable).

Throughout the thesis we will use as a running example the automaton Aex depicted in
Fig. 1.1, to illustrate the notions of volume, entropy, maximal entropy stochastic process or
generating function. The timed language recognized by automaton Aex is

L = {t1at2bt3a . . . |∀i (ti + ti+1 ≤ 1)}.

For any number of events n we have a polytope in Rn:

Ln = {(t1, t2, t3, . . . , tn)|∀i (ti + ti+1 ≤ 1)},

20

the sequence of volumes Vn of these polytopes is

1; 1;
1

2
;
1

3
;

5

24
;

2

15
;

61

720
;

17

315
;

277

8064
. . . ,

and it was shown in [AD09a] that this sequence behaves asymptotically like (2/π)n (the
entropy of the language is log2(2/π)).

p q
a, x ≤ 1, {x}

b, y ≤ 1, {y}

Figure 1.1: A timed automaton Aex

1.1 Contributions, extended outline

In this thesis we use the volumetry of timed language to solve several problems occurring in
various domains of theoretical computer science such as verification, enumerative combina-
torics or information theory. Among other we

• develop a theory of timed symbolic dynamics;

• characterize a dichotomy between bad behaving and well behaving TA;

• define a least biased stochastic process for a timed automaton;

• develop a timed theory of constrained channel coding;

• count and generate randomly and uniformly permutations in certain classes.

Our work also clearly improves the volumetry of timed languages by

• providing applications enumerated above;

• getting rid of restrictive conditions assumed in [AD09b, AD09a];

• characterizing algebraically (and algorithmically) the languages of finite entropy;

• characterizing precisely the volume sequence of a timed language with its volume gen-
erating functions;

• proving and improving the convergence of the discretization method for the computa-
tion of entropy proposed in [AD09b].

• providing several equivalent definitions of the entropy, each one having its own advan-
tages depending on the context.

21

We give the framework of timed symbolics dynamics in the central chapter (Chapter 5). Even
if we could have written a broad part of this thesis in terms of timed symbolic dynamics we
preferred to use in most places a timed automata vocabulary. This simplifies the re-use of
our contributions which are more timed automata oriented.

We summarize below our contributions in the order they appear in the thesis.

Chapter 2. Preliminaries.

In this preliminary chapter we recall the definition of volume and entropy of timed languages
introduced by Asarin and Degorre. We introduce the model of timed region graph which
used in most chapter of this thesis. They are the underlying structure of timed automata.
We reduce the study of entropy of timed automata to that of their underlying structures
called timed region graphs.

We introduce a machine based characterization of entropy (Proposition 5) which

• matches the original “language based” definition in case of determinism,

• is easy to compare with the entropy of a stochastic process over runs introduced latter
in Chapter 4.

Chapter 3. The thin and thick alternative.

An amazing theoretical application of the entropy of timed languages is related to a well-
known, but not yet sufficiently understood issue of “pathological” and “normal” behaviours
of timed automata. Indeed, timed automata using exact continuous clocks, exact guards and
resets are a beautiful mathematical object and a useful model of real-time systems. However,
from the very beginning of research on timed automata, it was clear that they are in several
aspects too precise, which leads sometimes to strange artifacts, mathematical pathologies or
unrealistic models. Several lines of research have partially elucidated these issues (see the
related work section below).

The state space of a timed automaton being infinite, some long (or infinite) runs never
revisit the same state. For this reason, as stated in [Bea98], usual pumping lemmata do
not hold, and should be replaced by rather involved analogues. In a run, infinitely many
events can happen during a finite amount of time, or two events can happen again and again
with the time interval between them tending to 0. Such a run reminds of Zeno’s aporias and
is often called a Zeno run, see [GB07] and references therein.

We introduce the key notion of forgetful cycles, the existence of which is a criterion for
distinguishing between thin languages, with entropy −∞, and thick languages, with entropy
> −∞.

This notion is primordial to rule out pathological TA, like we do in several chapters of
this thesis (Chapters 4,5 and 6).

It turns out that:

22

In thin automata all the infinite trajectories, are, in some weak sense Zeno; the discretiza-
tion of long trajectories is difficult, since it requires a very small discretization step.

In thick automata most of trajectories are non-Zeno and behave well under discretization;
such automata have a forgetful cycle, and most trajectories visit such a cycle.

The main result of this chapter (Theorem 5) establishes that thickness of a language (i.e.
that H > −∞) is equivalent to many other nice properties briefly described above (good
discretization, existence of forgetful cycle etc.). We state at the same time that any path in a
timed automaton which is thick and long, necessarily contains a forgetful cycle (Theorem 3),
which can be seen as a pumping lemma for thick paths.

The proof of Theorem 5 is rather technical, and uses together with “timed” techniques
inspired by [Pur00, AKY10], the monoid version of Ramsey’s theory, namely Simon’s fac-
torization forests theory [Sim90].

Thickness, a necessary and sufficient condition for entropy computation. In the
original work of Asarin and Degorre, two approaches were explored to compute the entropy,
the discretization approach [AD09b] and the operator approach [AD09a]. However the con-
vergence of the algorithms for both approaches was not proved and a restrictive condition
on the reset of clocks along each cycle was used. In the thesis we get rid of the restrictive
condition and solve the problem of convergence for the discretization approach. We also
show the convergence of the operator approach in [ABD13]. Both solutions are based on
the notion of forgetful cycle introduced in this chapter. More precisely the case H = −∞
(equivalent to the absence of a forgetful cycle) can be detected with a PSPACE procedure
described in this chapter. When this case is ruled out, thickness (H > −∞, equivalent to
the presence of a forgetful cycle) turns out to be a sufficient and necessary condition for
the two methods to converge (see [BA11] and Chapter 5 for the discretization approach and
[ABD13] for the operator approach).

Chapter 4. A maximal entropy stochastic process for a timed region
graph.

In the context of verification of real-time system, several probability settings have been
added to TA (see references below). There are several reasons to add probabilities: this
permits (i) to reflect in a better way physical systems which behave randomly, (ii) to reduce
the size of the model by pruning the behaviors of null probability [BBB+07], (iii) to resolve
undeterminism when dealing with parallel composition [DLL+11, KBM13].

In most of previous works on the subject (see e.g. [BA07, BAM06, BBBM08, DLL+11]),
probability distributions on continuous and discrete transitions are given at the same time
as the timed settings. In these works, the choice of the probability functions is left to the
designer of the model. Whereas, she or he may want to provide only the TA and ask the
following question: what is the “best” choice of the probability functions according to the
TA given? Such a “best” choice must transform the TA into a random generator of runs

23

the least biased as possible, i.e it should generate the runs as uniformly as possible to cover
with high probability the maximum of behaviours of the modeled system. More precisely the
probability for a generated run to fall in a set should be proportional to the size (volume)
of this set (see [KBM13] for a same requirement in the context of job-shop scheduling).
We formalize this question and propose an answer based on the notion of entropy of TA
introduced in [AD09a].

The theory developed by Shannon [Sha48] and his followers permits to solve the analogous
problem of quasi-uniform path generation in a finite graph. This problem can be formulated
as follows: given a finite graph G, how can one find a stationary Markov chain on G which
allows one to generate the paths in the most uniform manner? The answer is in two steps
(see Chapter 1.8 of [Lot05] and also section 13.3 of [LM95]): (i) There exists a stationary
Markov chain on G with maximal entropy, the so-called Shannon-Parry Markov chain; (ii)
This stationary Markov chain allows to generate paths quasi uniformly.

In this chapter we lift this theory to the timed automata setting. We work with timed
region graphs which are to timed automata what finite directed graphs are to finite state
automata i.e. automata without labeling on edges and without initial and final states. We
define stochastic processes over runs of timed region graphs (SPOR) and their (continuous)
entropy. This generalization of Markov chains for TA has its own interest (for instance
it has the nice feature to provide a continuous probability distribution on starting states).
Such SPOR permits to generate step by step random runs. As a main result we describe a
maximal entropy SPOR which is stationary and ergodic and which generalizes the Shannon-
Parry Markov chain to TA (Theorem 14). Concepts of maximal entropy, stationarity and
ergodicity can be interesting by themselves, here we use them as the key hypotheses to ensure
a quasi uniform sampling (Theorem 15). More precisely the result we prove is a variant of
the so-called Shannon-McMillan-Breiman theorem also known as asymptotic equipartition
property (AEP).

Chapter 5. Timed symbolic dynamics.

In this chapter we provide a timed symbolic dynamics framework to the volumetry of timed
languages. We introduce timed sofic shifts which are shift spaces on a compact alphabet. On
the negative side, the topological entropy of such a shift space turns out to be infinite. On
the positive side three measures of the size of sofic shifts can nevertheless be described: the
metric mean dimension mdim of [LW00], the ε-entropy hε and volumetric entropyH adapted
from [AD09b, AD09a]. We describe the meaning of these three measures as well as their
common link. In particular we solve the problem left open in [AD09b] of the approximation
of the volumetric entropy by discretization: formally we show that hε = H+log2(1/ε)+o(1).
An interpretation of this formula in terms of Kolmogorov complexity was given in [AD09b].
This formula has also a natural interpretation in terms of information content of a timed
word that we explain and use in our theory of timed channel coding (see Chapter 6).

The so-called sliding block codes are key objects in symbolic dynamics. They are by virtue
of the Curtis-Hedlund-Lyndon theorem exactly the morphisms of shift spaces (i.e. continuous
functions that commute with the shift). In the timed case, there is no more correspondence

24

between morphisms and sliding block codes (Proposition 29). However we show that every
morphism to a full shift space is the uniform limit of a sequence of continuous sliding block
codes (Theorem 30).

Chapter 6. Toward a timed theory of channel coding.

The theory developed in this chapter is the first attempt of lifting the classical theory of
constrained-channel coding to timed languages.

Let a language S represent all the possible messages that can be generated by a source,
and C all the messages that can transit over a channel. Typical problems addressed by
coding theory are:

• Is it possible to transmit any source generated message via the channel?

• What would be the transmission speed?

• How to encode the message before and to decode it after transmission?

The answers given by the theory of channel coding are as follows: to each language L
is associated a non-negative real number h(L), called its entropy, which characterizes the
quantity of information in bits per symbol. In order to transmit information in real-time
(resp. with speed α) the entropy of the source should not exceed the one of the channel
(also called its capacity): h(S) ≤ h(C) (resp. αh(S) ≤ h(C)). For regular (or more precisely
sofic) languages, whenever the information inequalities above are strict, the theory of channel
coding provides a transmission protocol with a simple encoding and decoding (realized by a
finite-state transducer). For the practically important case when S = Σ∗ and h(S) < h(C),
the decoding can be made even simpler (sliding-window). A typical example is EFMPlus
code [Imm95] allowing writing any binary file (i.e. the source {0, 1}∗, with entropy 1) onto a
DVD (the channel C = (2, 10)− RLL admits all the words without factors 11, 101 and 011,
its entropy is 0.5418, see [Bla90]) with almost optimal rate α = 1/2.

Classical theory of channel coding deals with discrete messages. It is, however, important
to consider data words, i.e. discrete words augmented with data, e.g. real numbers. In this
chapter, we develop the theory of channel coding for the most studied class of data languages:
timed languages. Several models of information transmission are possible for the latter:

• the source is a timed language; the channel is a discrete language. In this case, lossless
encoding is impossible, and we will consider encoding with some precision ε;

• the source and the channel are timed languages, we are interested in exact (lossless)
encoding;

• the source and the channel are timed languages, some scaling of time data is allowed.

Entropy of timed languages is the key notion to address these problems. For several models
of transmission of timed data we will write information inequalities relating entropies of

25

sources and channels with parameters of encodings (rate, precision, scaling, see below).
Such an inequality is a necessary condition for existence of an encoding. On the other hand,
whenever the information inequality holds (in its strict form) and the languages are regular
(sofic), we give an explicit construction for simple timed encoding-decoding functions.

Technically, we strongly build on the quantitative discretization of timed languages done
in Chapter 5.

Chapter 7. generating functions of timed languages.

Entropy is a rough size measure of a timed language. In this chapter, we make a much
more precise size analysis of timed languages accepted by deterministic timed automata.
We associate to such a language L the sequence of its volumes Vol(Ln), and the generating
function f(z) =

∑
n Vol(Ln)zn. Thus the function f(z) contains a complete information on

the “size profile” of Vol(Ln) as a function of n. To relate it with the operator Ψ of Asarin
and Degorre [AD09a], we show that f(z) can be expressed in terms of its resolvent, and that
the entropy of a timed language depends only on the convergence radius of f(z).

The methods developed in this chapter yield for instance a closed-form expression for the
generating function of volumes for the running example (automaton Aex of Figure 1.1):

f(z) = tan z + sec z. (1.1)

The convergence radius of the series, π/2, is the inverse of the growth rate of the sequence
Vn. This series describes precisely the sequence of volumes, and a closed-form formula for
Vn can be deduced:

V2n−1 = B2n(−4)n(1− 4n)/(2n)! ; V2n = (−1)nE2n/(2n)!

where Bs stand for Bernoulli numbers and Es for Euler numbers.
Generating functions behave in a natural way with respect to simple operations on timed

languages (disjoint union, unambiguous concatenation, and unambiguous star). However in
order to obtain an exact characterization for generating function of timed regular languages
a more involved analysis is needed. Such an analysis constitutes the main contribution of the
chapter. Closed-form expressions for the generating function of volumes can be computed
for subclasses of timed automata including those used in Chapter 8 which permit to express
combinatorics of some class of permutations.

Chapter 8. counting and generating permutations using timed lan-
guages.

The signature of a permutation σ = σ1 · · · σn is the word w = w1 · · ·wn−1 ∈ {a,d}n−1 where
in the ith position wi = d when σ has a descent (σi > σi+1), and wi = a when it has an
ascent (σi < σi+1).

Generating all the permutations with a prescribed signature or simply counting them are
two classical combinatorial topics (see e.g. [Szp01] and reference therein).

26

A very well studied example of permutations given by their signatures are the so-called
alternating (or zig-zag, or down-up) permutations (see [Sta10] for a survey). Their signatures
belong to the language expressed by the regular expression (da)∗(d + ǫ) (i.e. they satisfy
σ1 > σ2 < σ3 > σ4...).

Such a definition of a class of permutations in terms of a language of signatures is in fact
a novelty of the present work. To a language L ⊆ {a,d}∗, we associate the class sg−1(L)
of permutations whose signature is in L. Many classes of permutations can be expressed in
that way (e.g. alternating permutations, those without 2 consecutive downs, those with an
even number of downs, etc.).

We state and address the two problems of counting and randomly generating when the
language of signatures is regular.

We propose Algorithm 1 which takes as its input a regular language L and returns a
closed form formula for the exponential generating function (EGF) of sg−1(L) i.e. a formal
power series

∑
an

zn

n!
where the nth coefficient an counts the permutations of length n with

signature in L. With such an EGF, it is easy to recover the number an and some estimation
of the growth rate of an (see [FS09] for an overview of analytic combinatorics).

The random generation is done by an algorithm described in Theorem 38. The regular
language of signatures L together with n the size of permutation to generate are given in
input, and the output are random permutations of size n whose signatures are in L with
equal probability to be returned.

Here we find a combinatorial interpretation to the volume generating function of timed
languages introduced earlier in Chapter 7. We develop in this chapter a self contained and
more acute theory since we restrict our attention to a simple class of timed languages that
permit to encode regular classes of permutations. The passage from a class of permutations
to a timed language is in two steps. First we associate order and chain polytopes to signatures
which are particular cases of Stanley’s poset polytopes [Sta86]. Then we interpret the chain
polytopes of a signature w as the set of delays which together with w form a timed word of
a well chosen timed language.

The main theoretical tool is a volume preserving transformation between the union of
order polytopes of the words in the regular language considered and the timed language
associated (Theorem 36). Hence the computation of the exponential generating function
of permutations reduce to that of the generating function of volumes of a timed language
(studied in the previous chapter). For instance, the running example Aex depicted on Figure
1.1 encodes the well studied class of alternating permutations whose exponential generating
function is known to be tan(z) + sec(z). Several different proofs of this results can be found
in [Sta10]. Here we get another proof by identifying the exponential generating function of
the alternating permutations to the generating function of volumes of the running example
(already described in 1.1).

Last but not least, we provide a uniform sampler of timed word for any regular timed
language associated to a regular language of signature (Algorithm 2). This sampler of
timed word combined with the volume preserving transformation mentioned above provide a
uniform sampler of permutations in the class associated to the regular language considered.

27

1.2 Related work

We have already cited several times the two pioneering articles on volumetry of timed lan-
guage [AD09a, AD09b]. We should also mention the work [AD10] done by the same authors
where a mean dimension and an entropy were introduced for timed language for which the
usual volume is not defined.

1.2.1 Classical results lifted to the timed case.

A broad part of our work consists in lifting to the timed case of results coming from infor-
mation theory, symbolic dynamics and coding theory. A lot of results concerning entropy
were already presented in the seminal paper of Shannon [Sha48].

Symbolic dynamics

A well established reference for a general introduction of symbolic dynamics and coding
is [LM95]. We refer also the reader to the more recent yet unpublished chapter “Symbolic
dynamics“ of the handbook of automata theory [BBEP10] where an effort is made to present
symbolic dynamics in the context of automata theory.

Mean dimension and compact alphabet shift spaces

In [LW00], Lindenstrauss and Weiss introduced the two concepts of metric mean dimension
and topological mean dimension to measure shift spaces on compact alphabet such as [0, 1]Z.
Here we study metric mean dimension for timed sofic shift. As mentioned above, a mean
dimension has already been introduced in the context of volumetry of timed language [AD10].
Yet it does not capture phenomena explained in Chapter 5. We briefly explain the differences
with our approach in the conclusion of Chapter 5.

Constrained channel coding

Constrained-channel coding theory for finite alphabets is a well-established domain; we refer
the reader to monographs [LM95, Bla90, BPR09], handbook chapters [MRS98, BBM+10]
and references therein.

Shannon-Parry maximal entropy Markov chain

One of the main contributions of the thesis (Chapter 4) is the lifting to the timed setting
of the theory of maximal entropy Markov chain of a finite graph developed by Shannon and
Parry.

In the discrete case the theory of Perron and Frobenius is used as a key tool to define
the maximal entropy Markov chain of a graph (see e.g. [LM95, Lot05]). In the continuous
case, we use its generalization to positive operators on functions defined on a ”continuous“
state space. All the results on positive operators we use can be found in [KLS89].

28

1.2.2 Timed automata related works

Avoiding pathological behaviour in TAs

In order to rule out bad behaviors, restricted classes of timed automata, and alternative
semantics were considered by several authors. Thus, in [GHJ97, HR00], a tube language
semantics is introduced. In a pioneering paper [Pur00] a robust semantics, based on small
imprecisions is considered. It reappears in a different flavour as implementability, see
[WDR05, WDMR08], and in another version in [AKY10].

With the same objective to rule out bad behaviors, restrictions are often put on all the
cycles in the automaton, by requiring that each cycle takes at least one time unit (strongly
non-Zeno condition), or resets all the clocks (progress cycle condition), or even resets all
the clocks at one and the same transition (regeneration condition). This kind of conditions
intervenes in most of the cited literature – and will be replaced in several places of this thesis
(as we have already mentioned) by the somewhat subtler condition of existence of a forgetful
cycle.

The notion of forgetfulness we introduced in [BA11], has been used by other authors in
the context of frequency analysis [Sta12] and robust controller synthesis for timed automaton
[SBMR13]. In the latter work the existence of a forgetful cycle (equivalent to thickness) is a
necessary and sufficient condition for a robust controller synthesis to be achievable.

Probabilistic settings for real time systems

The models of stochastic real-time systems we introduce in Chapter 4 can be related to
numerous previous works. Almost-sure model checking for probabilistic real-time systems
based on generalized semi Markov processes GSMPs was presented in [ACD91] at the same
time as the timed automata theory and by the same authors. This work was followed by
[BAM06, BA07] which address the problem of quantitative model checking for GSMPs under
restricted hypotheses. The GSMPs have several differences with TA; roughly they behave
as follows: in each location, clocks decrease until a clock is null, at this moment an action
corresponding to this clock is fired, the other clocks are either reset, unchanged or purely
canceled. Our probability setting is more inspired by [BBB+07, BBJM12, DLL+11] where
probability densities are added directly on the TA. Here we add the new feature of an initial
probability density function on states.

In [DLL+11], a probability distribution on the runs of a network of priced timed automa-
ton is implicitly defined by a race between the components, each of them having its own
probability. This allows a simulation of random runs in a non deterministic structure with-
out state space explosion. There is no reason that the probability obtained approximates
uniformness and thus it is quite incomparable to our objective.

Polytopes and discretization

For volume definition and discretization of timed language we use the fact that constraints
linking successive delays that can be read along a path lies in a polytopes. This fact is quite

29

folklore in timed automata community and was related to discretization in several previous
works [MP04, HMP92, AMP98, Krc09, AD09b].

Polytopes and discretization has been also studied in a combinatorics context. In partic-
ular, we will use the beautiful theorem of Erhrhart for counting discrete points in polytopes
(see [BR07, BLD+05]).

1.2.3 Combinatorics

The generating functions of Chapter 7 generalize those of regular languages, thoroughly
studied and applied, [BR11, FS09, SS78].

The link between geometry and permutations used in Chapter 8 is not new and can be
found in several articles including [EJ12, Mar12, Szp01] that state integral equations similar
to ours. Our use of timed languages provides a new tool necessary to catch the dynamic of
the regular languages of signatures. Particular regular languages of signatures are considered
in [EJ12] under the name of consecutive descent pattern avoidance.

Numerous other works treat more general cases of (consecutive) pattern avoidance (see
e.g. the monograph [Kit11]) and are quite incomparable to our works. Indeed, certain classes
of permutations avoiding a finite set of patterns cannot be described as a language of signa-
tures while some class of permutations involving regular languages cannot be described by
finite pattern avoidance (e.g. the permutations with an even number of descents).

The random sampler of timed words we introduce at the end of Chapter 8 is an adaptation
to the timed case of the so-called recursive method of [NW78] and developed by [FZVC94].
It has been successively improved for generation of words in a regular language in [BG12].

Last but not least, we refer the reader to [Sta10] for a broad survey on combinatorics
of the class of alternating permutations (treated as an example in the present thesis). In
[Mar12], the author exposes a method to generate uniformly alternating permutations in
time O(n log2 n) which is faster than ours. However our method is more generic as it works
for every regular languages.

1.3 Past and ongoing publications

A broad part of this thesis has been published in several conferences or is under submission
for conference or journal.

Published conference papers

• [BA11] corresponds to Chapter 3 with the discretization of the entropy (Theorem 25)
of Chapter 5;

• [ABDP12] corresponds to Chapter 7;

• [ABB+12] corresponds to Chapter 6;

30

• [Bas13b] corresponds to Chapter 4. This article has obtained the Best student paper
award at ICALP 2013.

• [Basar] corresponds to Chapter 8. A long version is available here [Bas13a].

Papers under submission

• A shorten version of Chapter 5 is under submission to a conference.

• Chapter 4 corresponding to [Bas13b] is under submission for the ICALP 2013 special
issue of Information and Computation.

31

32

Chapter 2

Preliminaries

Outlines of the chapter

In this thesis we continue the work of Asarin and Degorre on volumetry of timed languages
[AD09a, AD09b]. This theory has been designed for bounded deterministic timed automata
(BDTA). In section 2.1, we recall first the definitions of timed languages and BDTAs and
then define a simplified version of BDTA called timed region graph. We will consider this
model in most chapters of this thesis (Chapter 3, 4, 5, 6) while in the two remaining chapter
(Chapter 7 and 8) we give a self contained definition of timed automata based on clock
languages [BP02].

In section 2.2 we give advanced preliminaries. In section 2.3 we explain how to pass from
BDTA to TRGs without changing the entropy. This last technical section can be skipped in
a first reading as its material is not used in the rest of the thesis.

2.1 Basics definitions

2.1.1 Timed languages

An alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The meaning
of a timed event (ti, wi) is that ti is the time delay before the occurrence of the event wi.
A timed word is a sequence of timed events with the intuition that they occur one after the
other. From a geometric point of view, a timed word is a vector of delays (t1, . . . , tn) ∈ Rn

together with a word of events w = w1 · · ·wn. We will often abuse the notation and write
(~t, w) the timed word (t1, w1) · · · (tn, wn) with ~t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). A timed
language is just a set of timed words.

Volume and entropy For every timed language L ⊆ Σ∗ and word of events w ∈ Σ∗, we
define Lw = {~t | (~t, w) ∈ L}. A timed language L can be viewed as a formal sum over
w ∈ Σ∗ of sets Lw ⊆ R|w|. We denote by Ln the restriction of L to n-length timed words:
Ln
∼= ∑

w∈Σn Lw × {w}. Its nth volume Vn(L) is the sum over w ∈ Σn of Vol(Lw) where Vol

33

stands for volume measure1 (also known as Lebesgue measure):

Vn(L) =
∑

w∈Σn

Vol(Lw).

The volumetric entropy of L is

H(L) = lim sup
n→+∞

1

n
log2 Vn(L). (2.1)

Timed languages considered in this thesis are mostly those recognized by bounded deter-
ministic timed automata we define now.

2.1.2 Bounded Deterministic Timed Automata

A good introduction to timed automata theory is its founding paper [AD94]. Here we give
self contained definitions and explanations. We fix a natural constant M which upper bounds
all the constants in the automaton. A clock is a variable ranging over R≥0 (non-negative
reals). A clock constraint over a set of clocks C is a conjunction of finitely many inequalities
of the form xi ∼ c or xi ∼ xj + c, where xi and xj are clocks, ∼∈ {<,≤,=,≥, >} and
c ∈ {0, . . . ,M}. A subset of RC defined by a clock constraint is called a zone.

A timed automaton (TA) is a tuple A = (Q,Σ, C,∆, I, F) where

• C is a finite set of clocks;

• Q is a finite set of locations ;

• The states of A are couples of a location and a clock vector: SA =def Q× [0,M]C ;

• Σ is a finite alphabet of events;

• ∆ is a finite set of transitions. Any transition δ ∈ ∆ goes from a starting location
δ− ∈ Q to an ending location δ+ ∈ Q; δ has

– a set r(δ) of indices of clocks to reset when firing it,

– a guard g(δ) (which is a clock constraint) to satisfy to fire it,

– a label Lab(δ);

• I is the set of initial states described for each location by a zone Iq: (q, ~x) ∈ F iff
~x ∈ Iq.

• F is the set of final states described for each location by a zone Fq: (q, ~x) ∈ F iff
~x ∈ Fq.

1Such a volume measure exists when Lw is a union of polytopes. This will always be the case for timed
languages considered in this thesis.

34

A timed transition is an element (t, δ) of A =def [0,M] × ∆ (the delay t represents
the time before firing the transition δ). A timed word (t1, a1) · · · (tn, an) is the label of
(t1, δ1) · · · (tn, δn) ∈ An (another timed word, sequence of timed transitions) if for all i ∈
{1, . . . , n}, Lab(δi) = ai.

Given a state s = (q, ~x) ∈ SA and a timed transition α = (t, δ) ∈ A, the successor of s
by α is denoted by s ⊲ α and defined as follows. Let ~x′ be the clock vector obtained from
~x+ (t, . . . , t) by resetting clocks in r(δ) (x′i = 0 if i ∈ r(δ), x′i = xi + t otherwise). If δ− = q
and ~x + (t, . . . , t) satisfies the guard g(δ) then s ⊲ α = (δ+, ~x′) else s ⊲ α = ⊥. Here and in
the rest of the thesis ⊥ represents every undefined state. Timed words of A∗ act on states
S∪{⊥} as follows ⊥⊲α = ⊥, s⊲ε = s and s⊲(α~α′) = (s⊲α)⊲~α′ for all s ∈ S, α ∈ A, ~α′ ∈ A∗.

A run of the TA A is a word s0α0 · · · snαn ∈ (S.A)n+1 such that s0 ⊲ α0α1 · · ·αn 6= ⊥
(i.e. si+1 = si ⊲ αi 6= ⊥ for all i ∈ {0, . . . , n − 1} and sn ⊲ αn 6= ⊥). Its label is that of
α0 · · ·αn. The run and its label are called accepted by A if s0 ∈ I and sn ⊲ αn ∈ F . The
timed language of A denoted by L(A) is the set of its accepted time words. We denote by
Ln(A) the language L(A) restricted to its n-length timed words and by Rn(A) the set of its
n-length runs (n ≥ 1).

p q
δ1 : a, x ≤ 1, {x}

δ2 : b, y ≤ 1, {y}

Figure 2.1: A bounded deterministic timed automaton A

Example 1. Consider the timed automaton depicted in figure 2.1 with Ip = (0, 0), Iq = ∅,
Fp = [0, 1]× {0}, Fq = 0. An accepted run of this timed automaton is

(p, (0, 0))(0.3, δ1)(q, (0, 0.3))(0.6, δ2)(p, (0.6, 0))(0.2, δ1)(q, (0, 0.2))(0.7, δ2)

The language of this timed automaton can be simply describe as follows. For every n ∈ N:

L2n(A) = {(t1, a)(t2, b) · · · (t2n−1, a)(t2n, b) | ti + ti+1 ≤ 1 for i ≤ 2n− 1}
and L2n+1(A) = ∅.

A TA is deterministic if for any two transitions with the same source and the same label
the guards are disjoint.

The volumetry of timed languages ([AD09a, AD09b]) has been developed for determin-
istic timed automata with bounded clocks (BDTA). If some guards in the automaton were
unbounded, the volume would be infinite, which is beyond the reach of our approach. De-
terminism was motivated as follows in [AD09a, AD09b]:

Remark 1. Most of known techniques to compute entropy of untimed regular languages work
on deterministic automata. In fact, these techniques count paths in the automaton, and only
in the deterministic case their number coincides with the number of accepted words. The
same is true for volumes in timed automata.

35

2.1.3 Timed region graphs

Smallest (by inclusion) zones are called regions (e.g. the set of points (x1, x2, x3, x4) which
satisfy the constraints 0 = x2 < x3−4 = x4−3 < x1−2 < 1). Regions of [0, 1]2 are depicted
in Figure 2.2.

Informally, timed region graph is to a timed automaton what a graph is to an automaton:
an automaton without initial, final states as well as labels on transitions. Timed region
graphs admit also a useful decomposition in regions, making them a timed version of the
so-called region graphs [AD94].

Formally, a timed region graph (TRG) is a tuple G = (C,Q, S,∆) such that

• C is a finite set of clocks.

• Q is a finite set of locations.

• S is the set of states which are couples of a location and a clock vector (S ⊆ Q×[0,M]C).
It admits a region decomposition S = ∪q∈Q{q}×rq where for each q ∈ Q, rq is a region
called entry region of q.

• ∆ is a finite set of transitions. Any transition δ ∈ ∆ goes from a starting location
δ− ∈ Q to an ending location δ+ ∈ Q; it has a set r(δ) of clocks to reset when firing
δ and a guard g(δ) to satisfy to fire it. Moreover, the set of clock vectors that satisfy
g(δ) is projected on the region rδ+ when the clocks in r(δ) are resets.

It can be seen as a timed automaton for which Iq = Fq = rq for every q ∈ Q and the labelling
function Lab is the identity on ∆.

Runs of timed region graphs are defined as for timed automata. The timed language of
a timed region graph is just the set of labels of all its runs.

p q

δ1, 0 < x < 1, {y}

δ2, 0 < y < 1, {x}

δ3, 0 < x < 1, {y}

δ4, 0 < y < 1, {x}

0

1

1

y

x

rq

rp

Figure 2.2: Right: Gex1; left: Its state space (in gray).

Example 2. Let Gex1 be the timed region graph depicted in Figure 2.2 with rp and rq the
region described by the constraints 0 = y < x < 1 and 0 = x < y < 1 respectively. Successor
action is defined by [p, (x, 0)]⊲(t, δ1) = [p, (x+t, 0)] and [p, (x, 0)]⊲(t, δ2) = [q, (0, t)] if x+t <
1; [q, (0, y)] ⊲ (t, δ3) = [p, (t, 0)] and [q, (0, y)] ⊲ (t, δ4) = [q, (0, y+ t)] if y+ t < 1. An example
of run of Gex1 is (p, (0.5, 0))(0.4, δ1)(p, (0.9, 0))(0.8, δ2)(q, (0, 0.8))(0.1, δ3)(p, (0.1, 0)).

36

A transition is fleshy if its guard g(δ) has no constraints of the form x = c in its definition.
A timed region graph is fleshy if so does its transitions. For instance, the timed region graph
depicted in figure 2.2 is fleshy.

Proposition 1 (adapted from [AD09a] to TRGs). Given a TRG G, a fleshy TRG G ′ ac-
cepting a language L(G ′) ⊂ L(G) with Vn(L(G ′)) = Vn(L(G)) and H(L(G ′)) = H(L(G)) can
be constructed.

Most of the time, TRGs considered in this thesis are fleshy and we will sometimes consider
their closed version G (see section 2.2.2 below).

2.2 Advanced preliminaries

Reduced version of runs

The reduced version of a run s0α0 · · · snαn ∈ (S× A)n+1 is [s0, α0 . . . αn] ∈ S× An+1 (for all
i > 0 the state si = si−1⊲αi−1 is determined by its preceding states si−1 and timed transition
αi−1 and thus is a redundant information). In the following we will use without distinction
extended and reduced version of runs.

2.2.1 Paths, polytopes and point to point reachability.

Throughout the thesis we will use geometrical ideas involving polytopes (especially those
associated to paths).

polytopes A closed (resp. open) affine half-space of Rn is a set of vectors of the form

{~t|
〈
~h,~t

〉
≥ a} where ~h ∈ Rn, a ∈ R and 〈, 〉 denotes the standard scalar product of Rn. An

affine hyperspace of Rn is a set of the form {~t|
〈
~h,~t

〉
= a}. We recall that a polytope of Rn is

a bounded set which is the intersection of a finite number of affine closed half-spaces. When
the half-spaces are open we speak of open polytope. We call an open non full dimensional
polytope the intersection of an open polytope with several affine sub-spaces.

A polytope can equivalently be defined as the convex hull of a finite number of points
in Rn. Worth mentioning examples of polytopes are simplices which are the convex hull
of n + 1 affinely independent points in Rn. In particular we call a simplex of type 1 a
set of the following form {~t ∈ Rn

≥0 | t1 + . . . + tn ≤ 1}. It is the convex hull of the ori-
gin (0, . . . , 0) and of the standard basis of Rn: (1, . . . , 0), . . . , (0, . . . , 1). A simplex of type

2 is a set of the form {~T ∈ Rn
≥0 | 0 ≤ T1 ≤ . . . ≤ Tn ≤ 1}. It is the convex hull of

(0, . . . , 0), (0, . . . , 0, 1)(0, . . . , 0, 1, 1), . . . , (1, . . . , 1). Polytopes are n-dimensional generaliza-
tion of convex polyhedra e.g. simplices generalize tetrahedra.

Polytopes associated to a path Here we describe for a path π = π1 · · · πn ∈ ∆n (n ≥ 1)
the geometrical shape of constraints on clocks and delays involved in runs along π. For

37

j ∈ {1, . . . , |C|}, we denote by xji the value of the jth clock before the (i+ 1)th transition of
the run. It is easy to see that xji is of the following form:

xji = xj0 +
∑i

k=1 tk if xj is not reset during π1 · · · πi;
=
∑i

lr(xj ,i) ti if lr(xj, i) is the index of the last reset of xj before i.

Let π be a path from a location q to a location q′, ~t ∈ [0,M]n. We denote by ~x ⊲π ~t = ~x′

the fact that (q, ~x) ⊲ (~t, π) = (q′, ~x′).

Lemma 1. For every path π the set {~x0,~t, ~xn | ~x0 ⊲π~t = ~xn} is an open non full dimensional
polytope (and so it is convex).

Fixing the starting and ending clock vectors ~x0, ~xn as parameters we get an open polytope
Pπ(~x0, ~xn) = {~t | ~x0 ⊲π ~t = ~xn}. If we are not interested in clock values at the end of the
path, we get an open polytope depending only on the path and clock values at the beginning
of the path.

Pπ(~x0) = {~t | ∃~xn s.t. ~x0 ⊲π ~t = ~xn}

By projecting also the clock values at the beginning of the path we obtain the open polytope:

Pπ = {~t | ∃~x0, ~xn s.t. ~x0 ⊲π ~t = ~xn}.

The other way around, if we do not care about timing, we get the reachability predicate:

Reach(π) = {(~x0, ~xn) | ∃~t s.t. ~x0 ⊲π ~t = ~xn}.

A contiguous polytope is a bounded subset of Rn which is composed by all the points satisfying
a conjunction of inequalities of the form

∑k
i=j ti ∈ (A,B) for some 1 ≤ i ≤ j ≤ n and

A,B ∈ N. We say that the polytope is d-contiguous if the length of all sums in the inequalities
is bounded by d. They are associated to d-progressive paths: the paths along which each
clock is reset at least every d transitions.

Proposition 2. For each path π ∈ ∆∗, Pπ is a contiguous polytope. If π is d-progressive
then Pπ is a d-contiguous polytope.

Polytopes associated to paths and language of a TRG

The language of a timed region graph G can simply be decomposed as a formal union of
open polytopes Pπ L(G) = ∪π∈∆∗Pπ × {π} = {(~t, π) | ~t ∈ Pπ}.

In the following Vπ denotes the volume of the polytope Pπ: Vπ =def Vol(Pπ). By summing
over all paths π of length n we obtain the volume of Ln(G): Vn(G) =def

∑
π∈∆n Vπ.

38

2.2.2 Closed version of a timed region graph

We sometimes need to work with closed sets of delays (e.g. to ensure compactness in Chapter
5). Hence we also consider the closed version G of a timed region graph G, which is con-
structed by replacing every region r appearing in the definition of G by its topologic closure
(in Rd) r.

If we consider G and G as labelled graphs, it is easy to see that this transformation is an
isomorphism, and thus both automata have exactly the same discrete paths. For a path π
of G, we denote by π its isomorphic image in G. Then the following holds:

Proposition 3. For a timed region graph G,

1. for every n ∈ N, Vn(G) = Vn(G) and thus H(L(G)) = H(L(G));

2. for every path π of G, Reach(π) = Reach(π).

2.2.3 SCC decomposition

Given a timed region graph G, it can be split into (non-trivial) strongly-connected compo-
nents (SCC) Gi and acyclic pathways between them. The entropy of a TRG depends in a
very natural way on the entropies of its SCC.

Proposition 4. The entropy of G equals the maximal entropy of its SCC.

Proof. Let us denote by Hmax the maximal entropy of the SCC and let it be reached on
Gimax . As L(Gimax) is a sublanguage of L(G), we can conclude that Hmax ≤ H(G).

For the converse inequality let us fix some σ > 0. By definition of entropy, there exists
an A > 0 such that in each subautomaton Gi we have for all n:

Vol(Ln(Gi)) ≤ A2n(HGi
+σ) ≤ A2n(Hmax+σ).

One can decompose Ln as a finite disjoint union of languages of the form

Ln1(Gi1) · Li1→i2 · Ln2(Gi2) · · ·Lnm(Gim). (2.2)

Languages Lij→ij+1 correspond to all paths going from Gij to Gij+1
. There are finitely many

such paths, thus their lengths and volumes are globally bounded (respectively by some L
and D. In particular, in the decomposition (2.2) only a bounded length is spent outside the
SCCs: n− c ≤ n1 + · · ·+ nm ≤ n (for c = mL).

Thus, the volume V of a language described in (2.2) satisfies

V ≤ A′2(n1+···+nm)(Hmax+σ) ≤ A′′2n(Hmax+σ)

Summing over elements of the finite disjoint union of languages gives the inequality
Vol(Ln(G)) ≤ A′′′2n(Hmax+σ) and then, since σ is arbitrary, Hmax ≥ H(G).

39

2.2.4 Volume and entropy of runs

One of the main contributions of the thesis is the design of a maximal entropy stochastic
process over runs of a timed region graph (Chapter 4). Definition of such a process and its
entropy requires to know how to integrate (probability density) functions over states and
runs. Moreover to compare the entropy of the process with that of the graph, it is necessary
to give a run based characterization of this latter entropy (Proposition 5).

Integrating over states and runs; volume of runs.

It is well known (see [AD94]) that a region is uniquely described by the integer parts of clocks
and by an order on their fractional parts, e.g. in the region rex given by the constraints 0 =
x2 < x3−4 = x4−3 < x1−2 < 1, the integer parts are ⌊x1⌋ = 2, ⌊x2⌋ = 0, ⌊x3⌋ = 4, ⌊x4⌋ = 3
and fractional parts are ordered as follows 0 = {x2} < {x3} = {x4} < {x1} < 1. We denote
by γ1 < γ2 < · · · < γd the fractional parts different from 0 of clocks of a region rq (d is
called the dimension of the region). In our example the dimension of rex is 2 and (γ1, γ2) =
(x3 − 4, x1 − 2). We denote by Γq the simplex Γq = {~γ ∈ Rd | 0 < γ1 < γ2 < · · · < γd < 1}.
The mapping φr : ~x 7→ ~γ is a natural bijection from the d dimensional region r ⊂ R|X| to
Γq ⊂ Rd. In the example the pre-image of a vector (γ1, γ2) is (γ2 + 2, 0, γ1 + 4, γ1 + 3). We
will often abuse the notation and write ~γ instead of φ−1rq

(~γ) e.g. in polytopes Pπ(~γ), Pπ(~γ,~γ′).

Example 3 (Continuing example 2). The region rp = {(x, y) | 0 = y < x < 1} is 1-
dimensional, φrp(x, y) = x and φ−1rp

(γ) = (γ, 0).

Now, we introduce simplified notation for sums of integrals over states, transitions and
runs. We define the integral of an integrable2 function f : S→ R (over states):

∫

S
f(s)ds =

∑

q∈Q

∫

Γq

f(q, φ−1rq
(~γ))d~γ.

where
∫
.d~γ is the Lebesgue integral (wrt. the Lebesgue measure). We define the integral of

an integrable function f : A→ R (over timed transitions):

∫

A
f(α)dα =

∑

δ∈∆

∫

[0,M]
f(t, δ)dt

and the integral of an integrable function f : Rn → R (over runs) with the convention that
f [s, ~α] = 0 if s ⊲ ~α = ⊥:

∫

Rn

f [s, ~α]d[s, ~α] =
∫

S

∫

A
. . .
∫

A
f [s, ~α]dα1 . . . dαnds

To summarize, we take finite sums over finite discrete sets Q, ∆ and take integrals over
dense sets Γq, [0,M]. More precisely, all the integrals we define have their corresponding

2 A function f : S→ R is integrable if for each q ∈ Q the function ~γ 7→ f(q, φ−1
rq

(~γ)) is Lebesgue integrable.
A function f : A→ R is integrable if for each δ ∈ ∆ the function t 7→ f(t, δ) is Lebesgue integrable.

40

measures3 which are products of counting measures on discrete sets Σ, Q and Lebesgue
measure over subsets of Rm for some m ≥ 0 (e.g. Γq, [0,M]). We denote by B(S) (resp.
B(A)) the set of measurable subsets of S (resp. A).

The volume of the set of n-length runs is defined by:

Vol(Rn) =
∫

Rn

1d[s, ~α] =
∫

S

∫

An
1s⊲~α 6=⊥d~αds

Remark 2. The reduced version of runs is necessary when dealing with integrals (and densi-
ties in the following). Indeed the following integral on the extended version of runs is always
null since variables are linked (si+1 = si ⊲ αi for i = 0..n− 2):

∫

A

∫

S
. . .
∫

A

∫

S
1s0α0···sn−1αn−1∈Rnds0dα0 . . . dsn−1dαn−1 = 0.

Entropy of a TRG

Now, there are two ways of defining entropy for TRGs. Either with the volume sequence of
Ln(G) =

∑
π∈∆∗ π×Pπ or with that of its runs Rn. Fortunately these two definitions coincide

and moreover they involve true limit instead of the lim sup of (2.1).

Proposition 5. The entropy of a timed region graph satisfies:

H(G) = lim
n→∞

1

n
log2 Vol(Ln(G)) = lim

n→∞
1

n
log2 Vol(Rn(G)) ∈ [−∞, log2(MΣ)]

The proof of this proposition is quite technical and will be one of the purposes of the
next section.

2.3 Link between BDTA and TRGs (technical section).

The content of this section will not be used in the rest of the thesis. It just explains how
to pass from BDTA to its underlying TRG without changing the entropy. The proof of
Proposition 5 is also given here. This section can be skipped by a reader not interested by
technical developments.

This section goes as follows: firstly we recall the region-splitting transformation of a
BDTA [AD09a]. The region-split form of a BDTA A is a BDTA A′ with the same entropy
which admits a region decomposition of the state space. Secondly, we define the underlying
TRG of a region-split BDTA and show that entropy of both objects coincide. Thirdly we
recall the equations of timed languages and volume functions [AD09a] for region-split BDTA
(which fit also TRGs). Finally we prove that the different notions of entropies associated to
a TRG coincide.

3We refer the reader to [Bil12] for an introduction to measure and probability theory.

41

p
x ∈ [0, 1]
y = 0

q
x = 0

y ∈ [0, 1]

r
x = 0
y = 0

a, x ∈ [0, 1]/x := 0

a, y ∈ [0, 1]/y := 0 a, x ∈ [0, 1]/x := 0

Figure 2.3: Fleshy region-split forms of automata A from Figure 2.1. Entry regions are given
by condition in nodes.

2.3.1 The region-splitting of [AD09a]

We say that a BDTAA = (Q,Σ, C,∆, I, F) is in a region-split form if the following properties
hold:

B 1. Each location and each transition of A is visited by some accepting run.

B 2. For every location q ∈ Q a unique clock region rq (called its entry region) exists, such
that the set of clock values with which q is entered is exactly rq. For the initial location
q0, its entry region is the singleton {0}.

B 3. For every δ ∈ ∆ the guard g(δ) is just one region. All the clock values satisfying g(δ)
are time-reachable from rq.

Notice, that B2 and B3 imply that r(g) = rq′ for every δ.

Proposition 6. [AD09a] Given a deterministic BDTA A, a region-split TA A′ accepting
the same language can be constructed.

Given a region-split BDTA A its underlying timed region graph G is obtained by deleting
I, F and Lab in its definition (see section 2.1.2). In particular, for every n ∈ N, Rn(G) =
Rn(A).

2.3.2 BDTAs and TRGs have the same entropy

We show in this section that the passage from a region-split BDTA A to its underlying TRG
G is safe wrt. the entropy:

Proposition 7. H(L(G)) = H(L(A))

We need first a technical lemma to prove the Proposition. This lemma permits to upper
bound the volume of any polytope associated to a path π′ by the volume of the polytope of
a two-side extension of this path ππ′π′′ which is accepting for A (i.e. goes from the initial
location to a final location).

42

This lemma is based on the following fact: for any path π the set of date vectors P date
π =

{(T1, . . . , Tn) | (T1, T2 − T1, . . . , Tn − Tn−1) ∈ Pπ}, corresponding to delay vectors in Pπ,
is a zone (with volume Vol(P date

π) = Vπ). Indeed, to show this fact, it suffices to remark
that every condition

∑j
k=i tk ∈ (A,B) of the contiguous polytope Pπ yields a condition

Tj − Ti ∈ (A,B). Therefore P date
π is a zone as defined by a conjunction of conditions of the

form Tj ∼ Ti + c where ∼∈ {<,>} and c ∈ N.

Lemma 2. Let π, π′, π′′ be three consecutive paths, n = |ππ′π′′| and k = |π| + |π′′| then

(n− k)!

n!
Vπ′ ≤ Vππ′π′′ .

Proof. P date
ππ′π′′ and P date

π′ are zones (and thus unions of regions). We denote by Reg(A) the
set of regions included in a zone A with maximal dimension dim(A). We have Vol(A) =∑

r∈Reg(A) Vol(r) = 1
dim(A)!

|Reg(A)|. It remains to prove that |Reg(P date
π′)| ≤ |Reg(P date

ππ′π′′)|.
This is true since every region of Reg(P date

π′) is the projection of several regions of Reg(P date
ππ′π′′).

Proof of Proposition 7. The inequality H(L(A)) ≤ lim supn→∞(log2 Vn(G))/n is straightfor-
ward since Vn(A) =

∑
q0

π→F
Vπ ≤

∑
π∈∆n Vπ = Vn(G)(G). We show the converse inequality.

Let k be a constant greater than twice the diameter of A. We will show that for every
n ∈ N, (n−k)!

n!
Vn(G) ≤ ∑k

i=0 Vn+i(A) , then taking lim supn→∞
1
n

log2(·) in both sides of the
inequality gives the expected result. For every path π′, there exist two paths π and π′′ such
that π starts in the initial state (q0,0) and ππ′π′′ leads to a final region. By Lemma 2 we

have (n−k)!
n!

Vπ′ ≤ Vππ′π′′ . Summing over all the paths π′ of length n we obtain the wanted

inequality (n−k)!
n!

Vn(G) ≤ ∑
π′∈∆n Vππ′π′′ ≤ ∑k

i=0 Vn+i (indeed all the paths of the sum are
distinct and contribute to one Vn+i for i ∈ {0, . . . , k}).

2.3.3 Proof of Proposition 5

Existence of the limit in [−∞, log2(M∆)]

The following lemma gives useful properties of Vπ:

Lemma 3. • Sub-multiplicativity: for all π, π′ ∈ ∆∗: Vππ′ ≤ VπV
′
π;

• Upper bound: for all π ∈ ∆∗: Vπ ≤M |π|;

which translate directly on volumes Vn(G):

Lemma 4. • Sub-multiplicativity: Vn+m(G) ≤ Vn(G)Vm(G).

• Upper bound: Vn(G) ≤Mn|∆|n.
As a consequence the sequence log2(Vn(G)) is sub-additive log2(Vn+m(G)) ≤ log2(Vn(G))+

log2(Vm(G)). By a classical lemma on sub-additive sequences [Fek23], we deduce that
1
n

log2(Vn(G)) admits a limit in [−∞, log2(M∆)].

43

2.3.4 Recurrent equations on volume functions [AD09a]

Here we expose the beautiful equations on languages and volumes described by Asarin and
Degorre in [AD09a]. We slightly generalize this work by allowing some locations to be non
final and we give a more concise notation based on the integrations over timed transition
defined in section 2.2.4.

Given a BDTA A, for every state s, let L(s) be the set of all the timed words corre-
sponding to the runs of the automaton starting at this state, let Ln(s) be its sublanguage
consisting of its words of length n, and vn(s) the volume of this sublanguage.

By definition of runs of a timed automaton, we obtain the following language equations:

L0(s) = ε if s is final; L0(s) = ∅ otherwise;

Lk+1(s) =
⋃

α:s⊲α 6=⊥
Lab(α)Lk(s ⊲ α)

Passing to volume we get:

v0(s) = 1F (s) where 1F is the indicator function of the final states F ; (2.3)

vk+1(s) =
∫

A
vk(s ⊲ α) dα with vk(⊥) = 0, (2.4)

The volume functions vn satisfy the following nice property:

Lemma 5 ([AD09a]). The function vn(q, ~x) restricted to a location q and a clock region can
be expressed by a polynomial of degree n with rational coefficients in variables ~x.

Thus in order to compute the volume Vn(A) one should find by symbolic integration
polynomial functions vk(s) for k = 0..n, and finally compute vn(q0, 0).

Theorem 1 ([AD09a]). For a BDTA A, the volume Vn(A) is a rational number, computable
from A and n using the procedure described above.

A recursive characterization of volume functions (given by (2.3) and (2.4)) holds also for
TRGs (one must take F = S in (2.3)).

We can define another volume sequence by V sup
n (G) =def sups∈S Vol(Ln(s)) which defines

the same entropy as the volume sequence of runs and timed words (see (2.6) below).

Coincidence between the different entropies

We first compare the different volumes associated to a path.

Lemma 6. If π is a path of length n starting in a d-dimensional region rp then

(n− d)!

n!
Vπ ≤

∫

Γp

Vol[Pπ(~γ)]d~γ ≤ 1

d!
sup
~x∈rp

Vol[Pπ(~x)] ≤ 1

d!
Vπ.

44

rpVol(rp) = 1
D!

~x

~x

~t

Vol(Pπ)

Pπ = ∪~x∈rpPπ(~x)

Pπ(~x)

Vol[Pπ(~x)]

∪~x∈rp{~x} × Pπ(~x) (It is Zπ when dealing with Ti)

Figure 2.4: The three polytopes associated to a path.

Proof. We advise the reader to look at Figure 2.4 for the geometric intuition of the proof.
The third inequality comes from language inclusion: for all ~x ∈ rp, Pπ(~x) ⊆ Pπ and thus
Vol(Pπ(~x)) ≤ Vol(Pπ). The second inequality holds since 1

d!
=
∫
Γp

1d~γ is the volume of Γp.
The first inequality is the difficult one. Mutatis mutandis, it is proved in the same way as
Lemma 2 using a zone Zπ (defined later) whose volume is

∫
Γp
Vol[Pπ(~γ)]d~γ and its projection

P date
π of volume Vol(Pπ) = Vπ. The zone Zπ involves variables T−d, . . . , T−1, T1, . . . , Tn links

to π as follows. The Ti for positive i are the dates of the zone P date
π . We denote by x1 >

x2 . . . > xd the d affinely independent clock values in rp (each one corresponds to a γi). For
i ∈ {1, . . . , d} we define T−i = −xi < 0 with the intuition that Ti records the last date
in the past when the clock xi was reset. The relation between all the Ti defines a zone
Zπ. Its volume is

∫
Zπ

1dT−D . . . dTn which, after the change of coordinates xi ← T−i for
i ∈ {1, . . . , d}, gives the expected value

∫
r Vol[Pπ(~γ)]d~γ.

An example of a zone Zπ is the zone Zδ2δ3 associated to the cycle δ2δ3 of Example
2.2. In that case T−1 = −x = −γ and (T−1, T1, T2) ∈ Zδ2δ3 iff −1 < T−1 < 0, 0 < T1,
0 < T1 − T−1 < 1 and 0 < T2 − T1 < 1.

By summing over all paths π of length n of a TRG we can relate the volumes of its
timed language with the volumes of its runs and with the suprema of its volume functions
V sup
n (G) = sups∈S Vol(Ln(s)).

(n− d)!

n!
Vn(G) ≤ Vol(Rn(G)) ≤ |Q|V sup

n (G) ≤ |Q|Vn(G) (2.5)

where d = |C| is the number of clocks. And by taking limn→∞ log2(·)/n of each term, we
conclude the proof of Proposition 5:

H(G) = lim
n→∞

log2 Vol(Rn(G))/n = lim
n→∞

(log V sup
n (G))/n = lim

n→∞
(log2 Vn(G))/n. (2.6)

45

46

Chapter 3

The thin-thick alternative and its
consequences

Abstract of the chapter

In previous literature on timed automata, it was noticed that they are in several aspects
too precise, which leads sometimes to strange artifacts, mathematical pathologies or un-
realistic models. In particular, some timed automata are non-implementable, non-robust,
behave badly under discretization, have many Zeno runs etc. In this chapter, we propose a
unifying approach to most of these issues for timed region graph (or equivalently bounded
deterministic timed automata). We classify these TRGs either as thin or as thick. In thin
TRGs, all the infinite trajectories are, in some weak sense, Zeno; the discretization of long
trajectories is difficult, since it requires very small discretization step. In thick TRGs, most
of trajectories are non-Zeno and behave well under discretization; such TRGs satisfy a sort
of pumping lemma. Formally, the thin-thick alternative is based on the notion of entropy
of timed regular languages introduced by E. Asarin and A. Degorre in [AD09a, AD09b] and
recalled in the preliminaries (Chapter 2). Thin languages have the entropy = −∞ while
thick have a larger one.

Chapter structure

This chapter goes as follows: first we make simple observations on pathological behaviours
and relate their volumes to those of simplices. Then, inspired by Puri, we characterize
reachability in algebraic terms, introducing the monoid of orbit graphs. This eventually
leads us to the definition of a forgetful path. After this, we exhibit a Lyapunov function,
which decreases along all pathological runs. Next comes our pumping lemma (Theorem 3),
where it is shown that sufficiently long paths containing a ball of radius η necessarily contain
a forgetful cycle. This result borrows a useful theorem from Simon (Theorem 4), about
factorization forests. Finally we conclude by stating the equivalences of Theorem 5, which
justify that the rough dichotomy thin vs. thick is in fact a precise way to distinguish between
“ill behaving” and “well behaving” TRG (and thus timed automata); and by showing, in
Theorem 6, that this can be decided by algebraic methods (PSPACE algorithm).

47

Technical assumptions

The theory of this chapter applied to every language recognized by bounded deterministic
timed automata. We consider w.l.o.g. for the entropy fleshy timed region graphs and their
languages (see Chapter 2). In particular every path considered are fleshy. Several results
holds also for non fleshy paths e.g. the first equivalence of proposition 8 and the definition
of forgetful paths can include the non fleshy paths. We refer the reader to [Sta12, SBMR13]
for use of forgetfulness when non-fleshiness is allowed.

3.1 Preliminaries

3.1.1 Thinness, simplices and examples

Our analysis of thin languages will start with a simple observation that the volume of k-
dimensional simplices tends to 0 faster than any exponential:

Proposition-definition 2. We call simplices of “type 1” and of “type 2”, the sets of points
~t ∈ Rk respectively satisfying the sets of inequalities 0 ≤ t1 + · · · + tk ≤ 1, ti ≥ 0 and
0 ≤ t1 ≤ · · · ≤ tk ≤ 1. Simplices of both types have volume 1

k!
.

x ∈ (0, 1)

a, x ∈ (0, 1)

p
x ∈ (0, 1)
y = 0

q
y ∈ (0, 1)
x = 0

a, x ∈ (0, 1), {x}

b, y ∈ (1, 2), {y}

p
x ∈ (0, 1)
y = 0

q
y ∈ (0, 1)
x = 0

a, x ∈ (0, 1), {x}

b, y ∈ (0, 1), {y}

p
x ∈ (0, 1)
y = 0

q
y ∈ (0, 1)
x = 0

δ1, x ∈ (0, 1), {y}

δ2, y ∈ (0, 1), {x}

δ3, x ∈ (0, 1), {y}

δ4, y ∈ (0, 1), {x}

Figure 3.1: First row: thin TRGs G1, G2. Second row: thick ones G3, G4. Entry regions are
given by conditions in nodes.

48

The TRGs depicted in Figure 3.1 illustrate the concepts of thinness and thickness. On
one hand, G1 and G2 are examples of TRGs having thin languages. The case of G1 is straight-
forward: Ln(G1) = {t1, . . . , tn | ∑i≤n ti < 1} is a simplex of type 1, thus L(G1) is thin. That
of G2 is slightly more involved, as Ln(G2) = {t1, . . . , tn | ∀i, t2i + t2i+1 < 1∧ t2i+1 + t2i+2 < 1}.
But we can make the following change of variables: u2i+1 = 1− t2i+1 and u2i = t2i, mapping
the language polytope into the simplex 0 < u1 < . . . un < 1. This transformation preserves
volumes, thus Vn(G2) = 1

n!
. This is an example of TRG that is thin although it satisfies the

progress cycle condition (i.e. resetting all clocks along each cycle).
On the other hand, examples1 G3 and G4 are thick. Indeed their entropies can be computed

symbolically using techniques of [AD09a], which give us respectively log2
2
π

and log2 log2(e).
Note that G4 does not satisfy the progress cycle condition.

3.1.2 Point to point reachability: algebraic characterization

In this section, we characterize the reachability relation of a BDTA in terms of an algebraic
structure: the monoid of orbit graphs. Our analysis is less detailed than those in [CJ99,
Dim02, Krc09] and follows the lines of [Pur00].

Monoid of orbit graphs

For a location q ∈ Q, we denote by V (q) = {S1, . . . , Sp} the vertices of the closed region
rq. Any point ~x in the region is uniquely described by its barycentric coordinates λ1, . . . , λp,
i.e. nonnegative numbers such that

∑p
i=1 λi = 1 and ~x =

∑p
i=1 λiSi.

Given q, q′ ∈ Q, we call orbit graph a tuple (G, q, q′) with G a graph with vertices
V (q)

⊎
V (q′) if q and q′ are different and V (q) otherwise, and with edges going from V (q)

to V (q′). Informally, an edge from S to S ′ means that the clock vector at the vertex S can
reach the clock vector at S ′ along some transition or path.

Orbit graphs compose in the natural way: given (G1, q1, q
′
1), and (G2, q2, q

′
2) their product

(G, q1, q
′
2) = (G1, q1, q

′
1) · (G2, q2, q

′
2) is defined if q′1 = q2. There is an edge from S to S ′′ in G

if and only if there exists S ′ such that (S, S ′) and (S ′, S ′′) are edges of G1 and G2. Whenever
q′1 6= q2, we put (G1, q1, q

′
1) · (G2, q2, q

′
2) equal to some special (absorbing) element 0. The

set G of orbit graphs, augmented with 0 and a neutral element 1 has a structure of finite
monoid.

An orbit graph (G, q, q′) can be represented by its adjacency matrix M of size |V (q)| ×
|V (q′)|. Products in the monoid of orbit graphs are easy to compute using matrices:
M(G1G2) = M(G1)⊗M(G2) where the “product” ⊗ is defined by

(A⊗ B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : ∆∗ → G from paths to orbit graphs defined as
follows. For a transition δ between q and q′, we define the orbit graph γ(δ) = (G, q, q′)

1G3 is the SCC of maximum entropy of the running example of the thesis already seen in Figure 1.1, 2.1
and 2.3. G4 is the TRG Gex1 of the previous chapter.

49

whose graph G has edges {(S, S ′) ∈ V (q) × V (q′) | ∃t, S (δ,t)−−→ S ′}. For a path π = δ1 . . . δn,
we define γ(π) = γ(δ1) . . . γ(δn) (it will be called the orbit graph of the path π). For the
empty path we have γ(ε) = 1, and for any non-consecutive path γ(π) = 0.

For example, the orbit graphs of cycles ab and ba of G3 and G4 are complete, the orbit
graphs of the other examples of the chapter are given in Figure 3.2.

Adding clock resets

For future use, we must enrich the monoid of orbit graphs by adding information on clock
resets. Elements of the monoid M are couples (orbit graph, subset of clocks) (and also, as
before, two special elements 0,1), the product rule is:

(O1, X) · (O2, Y) =

®
(O1 ·O2, X ∩ Y), if O1 ·O2 6= 0
0, otherwise.

For each π ∈ ∆∗ we denote by ν(π) the set of clocks not reset along the path π. We define
a morphism µ : ∆∗ →M as follows: µ(π) = (γ(π), ν(π)).

Orbit graphs and reachability

The orbit graph of a path γ(π) remarkably determines its reachability relation.

Lemma 7 (Puri [Pur00]). 2 Let ~x and ~x′ be two clock vectors with barycentric coordinates ~λ

and ~λ′. Then (~x, ~x′) ∈ Reach(π) iff there exists a stochastic matrix P �M(γ(π)), such that
~λP = ~λ′.

Here matrix “inequality” A � B means that Bij = 0⇒ Aij = 0 for all i, j.
The following particular case is of interest to us:

Proposition 8. γ(π) is complete iff Reach(π) = rq × rq′, or equivalently iff Reach(π) =
rq × rq′.

In this case, we say that π is forgetful. The intuition is that clock values reached after
reading π are independent of clock values before reading it. Remark that the orbit graph of
a forgetful cycle always is an idempotent of the monoid of orbit graphs. Such elements of
this monoid (and corresponding elements inM) will be referred to as forgetful idempotents.

Proof of proposition 8. We use Lemma 7 to show that γ(π) is complete iff Reach(π) = rq×rq′ .
Suppose that γ(π) is complete. For all ~x, ~x′, we denote by ~λ,~λ′ the vectors with corresponding

barycentric coordinates. We define P as the matrix with rows equal to ~λ′, we have ~λP = ~λ′

and then (~x, ~x′) ∈ Reach(π). We conclude that γ(π) being complete implies that Reach(π) =
rq × rq′ . The converse is trivial.

The second equivalent characterization is a consequence of Proposition 3.

2An intuition behind this lemma could be as follows. A clock vector with barycentric coordinates ~λ in
a region can be seen as a probabilistic distribution over vertices of this region. The lemma says that this
distribution, evolves as in some Markov chain.

50

Other particular cycles

Two other kinds of cycles are often considered in the literature: in a progress cycle [Pur00]
(already mentioned above), every clock is reset at some edge; in a regenerating cycle [SV07],
at least one edge resets all the clocks.

The condition of progress cycle can be seen as a weaker kind of forgetting: the state
after such a cycle is exactly determined by the delays of the cycle (see Lemma 9 below).
Nevertheless the orbit graph of a progress cycle is not always strongly connected (e.g. cycle
ab of G2 depicted in Figure 3.2); in that case, clock values in starting states and ending states
are still dependent.

More precisely, we have the following strict inclusions:

Proposition 9. progress cycles) forgetful cycles) regenerating cycles.

Proof. First inclusion: if a cycle π is not progressing, then there is one clock x, which is not
reset along that cycle. The value of x cannot decrease along the transitions of this cycle.
Moreover, necessarily this clock is one of the non-zero clocks of the entry region r of the
starting location of π. Runs realizing π must start with clock x = x0 > ⌊x0⌋ and must end
with x = x1 ≥ x0. Thus Reach(π) 6= r× r.

Second inclusion: a regenerating cycle π necessarily traverses, after the full reset, a
location q having singleton {0} as its entry region. Let us call p the location where π starts.
We define π1 and π2 such that π = π1 · π2, where π1 goes from p to q and π2 goes from q to
p. Necessarily Reach(π1) = rp × {0} and Reach(π2) = {0} × rp. The reachabilty relation of
π is the composition of that of π1 and π2, i.e. rp × rq, thus π is forgetful.

In order to prove that the inclusions are strict, consider in Figure 3.1, the forgetful cycle
labeled ab in G3, which is not regenerating, and the progress cycle labeled ab in G6, which is
not forgetful.

A remark is in order: in most works using progress or regenerating cycles, all the cycles
are required to satisfy the considered property. In our work, existence of one forgetful cycle
is necessary and sufficient to characterize “non-degenerate” (i.e. thick) automata.

3.1.3 Linear Lyapunov functions and sub-exponential volume.

The aim of this section is to prove Lemma 11. It informally states that the iteration of a
non-forgetful cycle yields a fast decreasing volume (and thus an entropy equal to −∞). The
proof of this lemma involves Lyapunov functions and affine expansive functions defined as
follows.

Given a cycle π we say that f(~x) ≥ 0 is a Lyapunov function for this cycle if for any
(~x, ~x′) ∈ Reach(π) it holds that f(~x′) ≤ f(~x). An affine function g : Rn 7→ R is expansive if
it is of the form (t1, . . . , tm) 7→ C +

∑m
j=1 αjtj with |αj| ≥ 1 for some j ≤ m.

We need three lemmas to prove Lemma 11. Indeed the core of its proof will be in three
steps:

step 1 Lyapunov functions exist for non-forgetful cycles (Lemma 8);

51

step 2 such a Lyapunov function can be expressed at each cycle as an expansive affine
function of the delays read along the cycle (Lemma 9);

step 3 inequalities involving expansive affine functions yields a fast decreasing volume
(Lemma 10).

If a cycle is non-forgetful, and moreover its orbit graph is not strongly connected, then
it is possible to find a linear Lyapunov function:3

Lemma 8. For a cycle π, if γ(π) is not strongly connected then there exists a non-empty

I ({1, . . . , p} such that fI(~x) =def

∑
i∈I λi is a Lyapunov function for π, where ~λ stands for

barycentric coordinates of ~x.

Proof. Let (~x, ~x′) ∈ Reach(π) and ~λ, ~λ′ the corresponding barycentric coordinates. We must

show that
∑

j∈I λ
′
j ≤

∑
i∈I λi. Let P be a matrix such that ~λP = ~λ′ (it exists by virtue of

Lemma 7). There exists an SCC I of γ(π) without incoming edges from other SCCs. After
a change of indices putting those of I before those of its complement Ī, the matrix P takes
the following form:

P =

Ç
PI→I PI→Ī

0 PĪ→Ī

å
.

If we decompose ~λ in (~λI , ~λĪ) and ~λ′ in (~λ′I ,
~λ′Ī) we have ~λIPI→I = ~λ′I and we are done since:∑

j∈I λ
′
j =

∑
j∈I

∑
i∈I λiPij =

∑
i∈I λi

∑
j∈I Pij ≤ ∑i∈I λi.

In this lemma, as before, {1, . . . , p} are indices of the vertices of the region where π starts
(and ends). In fact I corresponds to an initial strongly connected component (SCC) of the
orbit graph, i.e. an SCC without incoming edges from other SCCs. According to the lemma,
the state moves from the facet spanned by I towards other vertices of the region and cannot
come back (see Figure 3.2).

The next lemma describes the same Lyapunov function fI(~x) in terms of the timed word
read along a progress cycle π.

Lemma 9. If π is a progress path terminating in some p-dimensional region r, then the
clock vector ~x obtained after reading a timed word ~t× π (from any initial clock vector) is a
function of ~t. Moreover, for all non-empty I ({1, . . . , p}, there exists an expansive affine
function g such that fI(~x) = g(~t).

Proof. Let m = |π|. We show that there exist coefficients α1, . . . , αm ∈ {−p, . . . , p} not all
null and an integer constant c such that

∑
i∈I λi = c+

∑m
j=1 αjtj.

Up to a reordering of the clocks and a fusion of equal clocks we can suppose that the
region r̄ is

⌊~x⌋+ {({x1}, . . . , {xp}) | 0 ≤ {x1} ≤ · · · {xp} ≤ 1} ,
3The reader acquainted with Lyapunov functions will remark that, in contradiction to the custom, our

Lyapunov functions are linear. Nevertheless, they still serve to characterize a stability property: the tendency
of a cyclic path to bring the clock vector closer to some facet of a region. In our case, we consider it a “bad”
property.

52

λ1 λ2 λ1 λ3

λ2

0.3 1

0.10.8

0.6

0.2

Figure 3.2: Two non strongly connected orbit graphs, the first one is the orbit graph of the
cycle of G1, of the cycle ab of G2 and of the cycles δ1 and δ4 of G4. States move from the initial
SCC (in the box) to the final one. By choosing the convex combination of paths given by
the Markov chain on the second orbit graph we pass from state (λ1 = 0.2, λ2 = 0.5, λ3 = 0.3)
to state (λ′1 = 0.46, λ′2 = 0.02, λ′3 = 0.52). The sum λ1 + λ2 can only decrease.

where ⌊~x⌋ = (⌊x1⌋, . . . , ⌊xp⌋).
Vertices of the region are s1 = ⌊~x⌋ + (0, . . . , 0), s2 = ⌊~x⌋ + (0, . . . , 1), sp+1 = ⌊~x⌋ +

(1, . . . , 1). Therefore ~x =
∑

i∈I λisi = ⌊~x⌋ + (λp+1, λp+1 + λp, . . . , λp+1 + λp + .. + λ2) and
then for i ≥ 2 we have λi + (⌊xp+2−i⌋− ⌊xp+1−i⌋) = xp+2−i− xp+1−i. This last quantity is, in
absolute value, the sum of all delays between resets of clocks xp+2−i and xp+1−i. Therefore
every λi (i ∈ {2, . . . , p}) is of the form Ci ±

∑
tj with Ci ∈ Z. If 1 6∈ I then

∑
i∈I λi is of

the expected form. Otherwise, as λ1 = 1 −∑i≥2 λi, there exists J ⊂ {2, . . . , p} such that∑
i∈I λi = 1+

∑
i∈J ±λi; the sum is also of the expected form. Moreover, there is one non-zero

coefficient because
∑

i∈I λi is not constant (otherwise dimension of the region would be less
than p).

Lemma 10. Let P ⊆ [0,M]n. If there exists k indices 0 = i1 < . . . < ik ≤ n and k expansive
affine functions g1, . . . , gk such that for all (t1, . . . , tn) ∈ P :

1 ≥ g1(t1, . . . , ti1) ≥ g2(ti1+1, . . . , ti2) ≥ . . . ≥ gk(tik−1+1, . . . , tik) ≥ 0

then Vol(P) ≤ Mn−k

k!
.

Proof. We describe an affine change of coordinate φ : (u1, . . . , un) . . . (t1, . . . , tn) with Jaco-

bian determinant modulus |J(φ)| ≥ 1 and such that Vol(φ(P)) ≤ Mn−k

k!
. Then the conclusion

follows immediately Vol(P) = |J(φ)|−1Vol(φ(P)) ≤ Vol(φ(P)) ≤ Mn−k

k!
.

For l ∈ {1, . . . , k}, the function gl has the following form

gl(til−1+1, . . . , til) = cl +
il−il−1∑

j=1

αj,ltil−1+j with |αjl,l| ≥ 1 for some jl.

53

We can assume up to a permutation of coordinates (it does not change the volume) that
jl = il. The change of coordinates φ is defined as follows uil ← gl(til−1+1, . . . , til) for l ∈
{1, . . . , k} and the other coordinates remain unchanged: ui ← ti.

Every vector (u1, . . . , un) ∈ φ(P) satisfies 0 ≤ ui1 ≤ . . . ≤ uik ≤ 1 and ui ∈ [0,M] for the

other coordinates. Therefore Vol(φ(P)) ≤ Mn−k

k!
. It remains to prove that |J(φ)| ≥ 1..

The Jacobian matrix is lower triangular, thus the Jacobian determinant is the product of
the entries in the diagonal. These entries are 1 (n− k times) and the αil,l for l ∈ {1, . . . , k}.
We are done: |J(φ)| = ∏k

l=1 |αil,l| ≥ 1.

Now we can state the key technical lemma of this section.

Lemma 11. Let π1, . . . , πk be k cycles of ∆∗ such that µ(π1), . . . , µ(πk) are all equal to a

same non-forgetful idempotent ofM, then Vπ1···πk
≤ Mn−k

k!
where n = |π1|+ · · ·+ |πk|.

Proof. If G is an idempotent orbit graph (thus equal to its transitive closure), G is complete
if and only if G is strongly connected. We will distinguish two disjoint kinds of non-forgetful
idempotents, those associated to non-progress cycles and those associated to progress cycles
with non strongly connected orbit graphs. In the former case a clock is not reset all along the
path π1 · · · πk, thus Pπ1...πk

is in a simplex of type 1 and the volume satisfies the inequality
to prove. In the latter case, π1, . . . , πk are progress cycles with γ(π1) = . . . = γ(πk) a non
strongly connected orbit graph. For l ∈ {1, . . . , k} we denote by il the index of the last
transition of the lth cycle. By virtue of Lemma 8 there exists I such that

1 ≥ fI(~x0) ≥ fI(~xi1) ≥ . . . ≥ fI(~xik) ≥ 0.

Moreover, by Lemma 9 there exists expansive affine functions g1, . . . , gk (each one corre-
sponding to a cycle) such that fI(~xil) = g1(til+1, . . . , til) for every l ∈ {1, . . . , k}. Hence

1 ≥ g1(t1, . . . , ti1) ≥ g2(ti1+1, . . . , ti2) ≥ . . . ≥ gk(tik−1+1, . . . , tik) ≥ 0.

Hypotheses of Lemma 10 are satisfied, the conclusion follows.

3.2 Main section

3.2.1 Pumping lemma for long thick paths

For a given real η > 0, we say that a path π is η-thick if Vπ ≥ η|π|. The following “pump-
ing lemma” will play the key role in characterization of thick languages below and can be
interesting by itself.

Theorem 3 (pumping lemma). For every TRG G and every η > 0, there exists Nη such
that any η-thick path longer than Nη contains a forgetful cycle.

54

The rest of this section is devoted to the proof of this result. We use Simon’s theorem on
factorization forests to factorize paths and find some repeated idempotent. Then, absence
of forgetful-cycles yields repetition of non-forgetful idempotent along every path which by
Lemma 11 imply thinness.

A factorization forest of a word π is an unranked labeled tree with leaves labeled by the
letters of π, with root labeled by π and with two types of internal nodes:

• binary node labeled by a word π1 · π2 with two children labeled by the words π1 and
π2;

• idempotent node labeled by a word π1 . . . πk with all µ(πi) equal to a same idempotent
and with children labeled by the words π1, . . . , πk.

Theorem 4 (Simon [Sim90]). If µ is a morphism from ∆∗ to a finite monoidM, then every
word admits a factorization forest of height at most h(M) = 9|M|.

We suppose that there are no forgetful cycles on a long path π and consider its factor-
ization forest of height at most h(M). When its length n grows up, the number of leaves
also grows and since the height is bounded, branching of nodes must get larger and larger.
These hugely branched nodes are idempotent and satisfy hypotheses of Lemma 11, thus their
volume is very small, which implies that Vπ is also small. Lemma 12 below quantifies this
“smallness” of Vπ as function of the length of π and height of its factorization forest, and
Theorem 3 follows immediately from this proposition.

Let LVol be the function defined on paths by LVol(π) = log2 Vπ − |π| log2M . This
function is subadditive non-positive, i.e. LVol(π1 · π2) ≤ LVol(π1) + LVol(π2) ≤ 0. Let
L(n, h) be the maximum of LVol(π) over paths π of length n that do not contain forgetful
idempotents and admit a factorization forest of height at most h.

Lemma 12. For any height h, for any B > 0, there exists Nh,B ∈ N such that for all
n ≥ Nh,B the inequality L(n, h) ≤ −nB holds.

Proof. We will define Nh,B by induction on the height h. Let a be a factorization forest of
height h with n leaves and π1, . . . , πk be the children of the root. We distinguish two disjoint
cases:

1. There are more than m = n
2Nh−1,2B

subtrees having less than Nh−1,2B leaves.

2. There are less than m = n
2Nh−1,2B

subtrees with less than Nh−1,2B leaves. Here the juicy

part (sons with enough leaves to satisfy induction hypothesis) has more than n
2

leaves.

• In the first case: root is an idempotent node and we can apply Lem. 11:

LVol(π) ≤ log
Mn−k

k!
− n logM = −k logM − log k! ≤ −m logM − logm!,

which is upper bounded by −nB for n large enough.

55

• In the second case, for i ≤ k, we denote by ni the length of the path πi and by hi ≤ h−1
the height of its corresponding subtree. We can conclude using properties of LVol and
the inductive hypothesis:

LVol(π) ≤
k∑

i=1

LVol(πi) ≤
k∑

i=1

L(ni, hi − 1)

≤
∑

ni≥Nh−1,2B

L(ni, hi − 1) ≤ −2B
∑

ni≥Nh−1,2b

ni ≤ −2B
n

2
= −nB.

To conclude the proof of Theorem 3, given η > 0, let C = log2(η/M) and h = h(M) the
bound on height of factorization forest. Using Lemma 12, we obtain that a path longer than
Nh,C without forgetful idempotents cannot be η-thick.

3.2.2 Characterizing thick languages

In the theorem below we characterize thick languages with forgetfulness and give two other
equivalent characterizations of thickness. We say that there is a limit cycle along π if there

exists a clock vector ~x and a time sequence ~t such that ~x
~t,π−→ ~x. Given ε > 0, in ε-discrete

limit cycles all the components of ~x and ~t should be multiple of ε.

Theorem 5 (characterizations of thickness). For a BDTA in region split form the following
conditions are equivalent and define thick languages:

1. H > −∞;

2. there exists a forgetful cycle;

3. there exists a limit cycle;

4. there exists an ε-discrete limit cycle with ε > 0.

Equivalence between 3 and 4 can be found in [Krc09]. 2⇒ 3 is straightforward.

Proof that 4⇒ 1. By definition of an ε-discrete limit cycle, there exist a path π (let m
be its length), q0, . . . , qm−1 ,~x0, . . . , ~xm−1 and u1, . . . , um ∈ {ε, 2ε, . . . ,M − ε} such that

(q0, ~x0)
(u1,π1)−−−−→ (q1, ~x1) . . .

(um,πm)−−−−−→ (q0, ~x0) and all the ~xi are not on the frontier of regions
and have discrete coordinates. Extending u periodically permits to have a point in Pπn such
that

∑k
i=j ui ∈ [A + ε, B − ε] for each inequality

∑k
i=j ti ∈ (A,B) defining the contiguous

polytope Pπn . Taking ti ∈ (ui − ε
m
, ui + ε

m
) defines a hypercube of side 2ε

m
included in Pπn

whose volume is therefore greater than (2ε
m

)nm. Then H(G) ≥ log2
2ε
m
> −∞.

Proof that 1⇒ 2. We notice first that a thick language contains long thick paths.

56

Lemma 13. If H > −∞, there exists η > 0 such that for all n big enough, there exists an
η-thick path of length n.

Proof. We use the characterization of the entropy in terms of V̂n =
∑

π∈∆n Vπ given in
Proposition 7. Let β = 2H−1. For n large enough V̂n ≥ βn. Let π be one of the paths of ∆n

of maximal volume, then V̂n ≤ Vπ|∆|n and so if we pose η = β
|∆| we have Vπ ≥ ηn.

Combining Lemma 13 with Theorem 3 we find a required forgetful cycle.

Theorem 6 (complexity of deciding thickness). The thickness property can be decided in
PSPACE.

Proof. We denote by QReg = Q×Reg the set of locations of the region graph and by ∆Reg

the set of fleshy transition of the region graph. For a location q ∈ QReg we denote by KV (q)

the complete graph on the vertices of rq. By Theorem 5 a TA is thick if and only if there
exists an orbit graph (KV (q), q, q) ∈ γ(∆∗) such that q is reachable from (q0,0) by fleshy
transitions and a final location q′ is reachable from q by fleshy transitions. These two latter
reachability questions can be solved in PSPACE using Savitch’s theorem. The membership
question (KV (q), q, q) ∈ γ(∆∗) is equivalent to reachability of this element from γ(ǫ) in the
graph of the monoid G i.e the graph with vertex set G and edges of the form (O,O ·γ(δr,r′)),
O ∈ G, δr,r′ ∈ ∆Reg. There is at most 2(|C|+1)2 orbit graphs for each couple of locations
(q, q′) ∈ QReg. The monoid G has thus at most QReg × QReg × 2(|C|+1)2 elements and the
reachability problem in its graph is also in PSPACE.

In fact this problem is PSPACE complete as a consequence of [SBMR13].

3.2.3 Thin and thick SCC

The theory developed above can be refined using a decomposition of G into strongly con-
nected components (SCC) G1,G2, . . . ,Gk. It is immediate from Proposition 4 that G is thin
iff so are all the subautomata Gi.

It is easy to see that long and thick paths spend most of the time in thick SCCs.

Theorem 7. For every TRG G and every η, α > 0, there exists Nη,α such that for any
η-thick path of length n > Nη,α at most nα states belong to thin SCCs.

Proof. Let λ, α > 0 and π a λ-thick path of length n. Let r be the number of SCC in the
TRG. We suppose by contradiction that π wanders more than αn transitions on thin SCCs
and thus has a factor π′ of length greater than αn

r
in one thin SCC. In thin SCC, for every

γ, for m large enough i.e. greater than a constant Nγ, every path π′′ of length m is γ-thin:
V ′′π < γm. If αn

r
is greater than Nγ then Vπ ≤ V ′π < γ

αn
r , which contradicts the λ-thickness

when choosing γ such that γ
α
r = λ.

The following technical lemma will be useful for the proof of the main theorem of Chapter
5 (Theorem 25).

57

Lemma 14. In a thick SCC Gi, there exists a constant c such that there is a forgetful cycle
of length c on each location of Gi.

Proof. Let π be some forgetful cycle and r be the region where π starts and ends. Let r′ be
a region in the same SCC as r. There is a path π(1) from r to r′ and a path π(2) from r′ to r.
We will show that π(1)ππ(2) is a forgetful cycle on r′. As Puri stated in [Pur00], in an orbit
graph, there is an outgoing edge from each vertex of the starting region and an incoming
edge to each vertex of the ending region. Let S, S ′ be two vertices of r′, let S1, S2 be two
vertices of r such that (S, S1) and (S2, S

′) are respectively edges of γ(π(1)) and γ(π(2)). As
γ(π) is complete there is an edge between S1 and S2 and so there is an edge between S and
S ′ in γ(π(1)ππ(2)). To sum up there is a forgetful cycle πr′ on each region r′ of the strongly
connected sub-graph, the least common multiple of all length of πr′ gives an appropriate
constant c.

3.3 Conclusion and perspectives

We have identified the class of thick timed automata (those with non-vanishing language
volume). Most runs in such automata are thick and exhibit a nice behaviour: they spend
most of the time in thick strongly connected components (Theorem 7) and visit from time
to time forgetful cycles (Theorem 3).

The key concept of forgetfulness presented here (and introduced for the first time in our
paper [BA11]) is used in several chapters of this thesis (Chapter 4 and 5) as well as in our
article [ABD13] and in other works such as [Sta12, SBMR13].

A direction of future work is to extend the thin-thick dichotomy to the case of non-fleshy
paths and to determine when the two size measures of [AD10] are defined (see also the
conclusion of Chapter 5).

In the context of verification, we believe that when analyzing a thick timed automaton,
it suffices to check that the thick paths satisfy the specification, while thin ones can violate
it.

58

Chapter 4

A maximal entropy stochastic process
for a timed region graph

Abstract of the chapter

Several ways of assigning probabilities to runs of timed automata (TA) have been proposed
recently. When only the TA is given, a relevant question is to design a probability distribution
which represents in the best possible way the runs of the TA. We give an answer to it
using a maximal entropy approach. We introduce our variant of stochastic model, the
stochastic process over runs which permits to simulate random runs of any given length
with a linear number of atomic operations. We adapt the notion of Shannon (continuous)
entropy to such processes. Our main contribution is an explicit formula defining a process
Y ∗ which maximizes the entropy. This formula is an adaptation of the so-called Shannon-
Parry measure to the timed automata setting. The process Y ∗ has the nice property to be
ergodic. As a consequence it has the asymptotic equipartition property and thus the random
sampling wrt. Y ∗ is quasi uniform.

Chapter structure

In section 4.1 we recall the theory of maximal entropy Markov chain on finite graph. In
the rest of the chapter we lift results of this section to the timed setting. In section 4.2 we
introduce stochastic processes over runs (SPOR) of a timed region graph (defined in Chapter
2), the timed analogues of Markov chains on finite graphs. We also give definition of entropies
of these continuous objects inspired by [Sha48] for the processes and by [AD09a] for the timed
region graph. In the main section (section 4.3), after giving the technical assumptions, we
state and prove the two main theorems: the existence of the maximal entropy SPOR which
is ergodic and the asymptotic equipartition property for this process.

59

4.1 Maximal entropy Markov chain on a graph

In this section we recall classical results about the Markov chain of maximal entropy for
a finite graph. The notations and definitions used are inspired by the books [LM95] and
[Lot05].

4.1.1 Markov chain on a graph

A graph is defined by a finite set of states Q and a set of transitions ∆. Any transition δ ∈ ∆
has a starting state δ− ∈ Q and an ending state δ+ ∈ Q (there can be several transitions
between the same two states).

A path δ0 · · · δn−1 ∈ ∆∗ (n ≥ 1) is a word of consecutive transitions (δi+1
− = δi

+ for
i ∈ {0, . . . , n− 2}). We denote by PATHn(G) the set of paths of length n.

A Markov chain on a graph G is given by

• initial state probabilities p0(q) for q ∈ Q i.e. such that
∑

q∈Q p0(q) = 1;

• conditional probabilities on transitions p(δ|δ−) i.e. such that for all q ∈ Q,∑
δ|δ−=q p(δ|q) = 1 (and such that p(δ|q) = 0 if q 6= δ−).

The following chain rule defines a probability distribution pn on PATHn(G):

pn(δ0 · · · δn−1) = p0(δ0
−)p(δ0|δ0−) . . . p(δn−1|δn−1−). (4.1)

We also denote by pn the induced probability measure on PATHn(G) i.e. for A ⊆ PATHn(G),
pn(A) =

∑
π∈A pn(π).

The initial probabilities and the conditional probabilities are respectively represented by
a row vector ~p0 and a Q×Q stochastic matrix P such that:

Pij =
∑

δ|δ−=i,δ+=j

p(δ|i).

With this notation P k
ij is the probability that j is reached from i in k steps. A Markov chain

is called irreducible if so is its transition matrix P i.e. for all i, j ∈ Q, there exists k ∈ N

such that P k
i,j > 0.

4.1.2 Ergodic stochastic processes

Stochastic processes It is convenient to use the vocabulary of stochastic processes to deal
with Markov chains. We will use this vocabulary in the timed case and thus the definitions
given here will be useful all along the chapter.

A stochastic process is a sequence of random variables Y = Y0, . . . , Yn, . . . with values in
a common measurable1 set D (e.g. D = ∆).

1We refer the reader to [Bil12] for an introduction to measure and probability theory.

60

The stochastic process associated to a Markov chain on a graph is described by its joint
law for each n:

P(Y0 = δ0, . . . , Yn−1 = δn−1) = pn(δ0, . . . , δn−1).

We will sometimes abuse the notation and denote a Markov chain by its corresponding
stochastic process Y .

A stochastic process is said stationary whenever for each n ∈ N the joint law of2Yi · · ·Yn+i

does not depends on i ∈ N, i.e. for all measurable set D ⊆ Dn+1, P (Yi · · ·Yn+i ∈ D) =
P (Y0 · · ·Yn ∈ D) for n ∈ N.

Stationarity is easy to describe in the discrete case: the stochastic process associated to
a Markov chain on a graph is stationary if and only if

~p0P = ~p0. (4.2)

Probability measure on bi-infinite words and ergodicity Given a measurable set
R ⊆ Dn+1 with n ≥ 0, one can extend it into a set of bi-infinite sequences R∞ ⊆ DZ as
follows: R∞ = {(yi)i∈Z ∈ DZ|y0 · · · yn ∈ R}.

Let σ be the shift map on DZ i.e. σ((yi)i∈Z) = (y′i)i∈Z with y′i = yi−1.
A probability measure µ on DZ is called shift invariant if µ(σ(A)) = µ(A) for every

µ-measurable set A ⊆ DZ.
Let Y be a stationary stochastic process then by a classical extension theorem due

to Kolmogorov one can define a shift invariant probability measure PY on DZ such that
PY (R∞) = P (Y0 · · ·Yn−1 ∈ R) for every measurable R ⊆ Dn with n ≥ 1.

The probability PY (A) of a shift invariant set A ⊆ DZ (i.e. σ(A) = A) can be character-
ized as follows

PY (A) = lim
n→+∞

P (Y0 · · ·Yn−1 ∈ An) where An = {r | ∃y ∈ A, y0 · · · yn−1 = r}. (4.3)

A stochastic process Y is ergodic whenever it is stationary and every shift-invariant
measurable set A has probability PY (A) equal to 0 or 1. The following proposition gives
sufficient conditions for ergodicity of the stochastic process associated to a Markov chain.

Proposition 10. If a Markov chain is stationary and irreducible then it defines an ergodic
stochastic process.

4.1.3 Entropies

There are different notions of entropies. Their mutual connection and their meanings are
discussed in the rest of this section. Here we only summarize the definitions and propositions
we lift to the timed setting. We refer the reader to [Lot05, LM95, CT06] for more explanations
about notions of Markov chain, entropies, almost equipartition properties...

2To simplify the notation, we use words instead of tuples, e.g. Yi · · ·Yn+i instead of (Yi, · · · , Yn+i).

61

Proposition-definition 8 (Entropy of a graph). Given a finite graph G, the following limit
exists and is called the entropy of G:

h(G) = lim
n→∞

1

n
log2(|PATHn(G)|).

Proposition-definition 9 (Entropy of a stationary Markov chain). Let Y be a stationary
Markov chain on a finite graph G then

− 1

n

∑

π∈PATHn(G)

pn(π) log2 pn(π)→n→∞ −
∑

q∈Q
p0(q)

∑

δ∈∆
p(δ|q) log2 p(δ|q).

This limit is called the entropy3 of the Markov chain, denoted by h(Y).

4.1.4 The asymptotic equipartition property for Markov-chain

The asymptotic equipartition property (AEP) also known as the Shannon-McMillan-Breiman
theorem roughly states that almost every path of a length n generated according to an ergodic
process has approximately the same probability to be chosen: 2−nh(Y) (with h(Y) the entropy
of the process considered).

To state the theorem, we must recall first the notion of almost sureness. A property
is said to hold almost surely (abbreviated by a.s.) when the set where it is false has
probability 0. For instance, in the following theorem, (4.4) means that PY ({(yi)i∈Z| −
(1/n) log2 pn(y0 · · · yn−1)→n→+∞ h(Y)}) = 1.

Theorem 10 (AEP for Markov chain). Let Y be the ergodic stochastic process associated to
an irreducible stationary Markov chain. It holds that

−(1/n) log2 pn(Y0 · · ·Yn−1)→n→+∞ h(Y) a.s. (4.4)

This theorem applied to a stochastic process Y ∗ such that h(Y ∗) = h(G) means that long
paths have a high probability to have a quasi uniform probability:

p∗n(Y ∗0 · · ·Y ∗n−1) ≈ 2−nh(Y
∗) = 2−nh(G) ≈ 1/|PATHn(G)|.

4.1.5 The Shannon-Parry Markov chain

In fact there exists a unique Markov chain such that h(Y ∗) = h(G), the Shannon-Parry
Markov chain [Sha48, Par64]. Its construction is based on the classical Perron-Frobenius
theorem recalled just below (see also [Lot05]).

The spectral radius of a matrix is the maximal modulus of its eigenvalues.

Theorem 11 (Perron-Frobenius). IfM is the adjacency matrix of a strongly connected graph
G (i.e. M has non-negative entries and is irreducible) then

3In information theory the term entropy rate is sometimes preferred see e.g. [CT06]

62

• the spectral radius ρ of M is a simple4 eigenvalue of M and of its transposed matrix
MT with corresponding eigenvectors (defined up to a scalar constant) v and w which
are positive;

• any non-negative eigenvector of M (resp. MT) is collinear to v (resp. w).

The following proposition links the entropy of a graph with the spectral radius of its
adjacency matrix.

Proposition 11. The entropy of G and the spectral radius ρ of its adjacency matrix are
linked by the following equality h(G) = log2(ρ).

Theorem 12 (Shannon-Parry). If G is strongly connected then

• every stationary Markov chain on G satisfies h(Y) ≤ h(G);

• there exists a unique stationary Markov chain Y ∗ such that h(Y ∗) = h(G);

• Y ∗ is ergodic.

Given a strongly connected graph G, let ρ, v, w be given by the Perron-Frobenius theorem
above. Eigenvectors v and w are chosen such that 〈v, w〉 =

∑
q∈Q vqwq = 1 (eigenvectors are

defined up to a scalar constant). The Shannon-Parry Markov chain Y ∗ on G is given by: for
every q ∈ Q, δ ∈ ∆,

p∗0(q) = vqwq; p∗(δ|δ−) =
vδ+

ρvδ−
. (4.5)

The transition probability matrix of Y ∗ is defined by: for every i, j ∈ Q,

Pij =
Mijvj
ρvi

. (4.6)

4.2 Stochastic processes on timed region graphs

The definition of timed region graphs (TRG) and their properties are given in the prelim-
inary chapter of the thesis (Chapter 2). We use as a running example the TRG Gex1 from
this preliminary chapter depicted in Figure 2.2 (also called G4 in the previous chapter and
depicted in Figure 3.1)

4The generalized eigenspace of an eigenvalue λ of a matrix A is the set of f such that (A − λId)kf = 0
for some k. When it has dimension 1 then λ is called simple. This definition holds also when A is a more
general positive operator as used in the following (section 4.3).

63

4.2.1 SPOR of a timed region graph

A stochastic process over runs (SPOR) of a timed region graph G is a stochastic process
(Yn)n∈N such that

C.1) each Yn takes its values in D =def S× A, it is of the form Yn = (Sn, An);

C.2) The initial state S0 has a probability density function (PDF) p0 : S→ R+ i.e. for every
S ∈ B(S), P (S0 ∈ S) =

∫
s∈S p0(s)ds (in particular P (S0 ∈ S) =

∫
s∈S p0(s)ds = 1).

C.3) Probability on every timed transition only depends on the current state: for every
n ∈ N, A ∈ B(A), for almost every5 s ∈ S, y0 · · · yn ∈ (S× A)n,

P (An ∈ A|Sn = s, Yn = yn, . . . , Y0 = y0) = P (An ∈ A|Sn = s),

moreover this probability is given by a conditional PDF p(.|s) : A → R+ such that
P (An ∈ A|Sn = s) =

∫
α∈A p(α|s)dα and p(α|s) = 0 if s ⊲ α = ⊥ (in particular

P (An ∈ A|Sn = s) =
∫
α∈A p(α|s)dα = 1).

C.4) States are updated deterministically knowing the previous state and transition: Sn+1 =
Sn ⊲ An.

Given a timed region graph a SPOR of it is uniquely and entirely described by the initial
and transitional PDFs p0(s) and p(α|s).

The Markovian properties C.3) and C.4) permit to define probability density functions
for portion of runs Yi · · ·Yi+n−1 knowing the value of Si (see (4.8) below) : for ~α ∈ An and
s0 ∈ S we define pn(~α|s0) by the following chain rule

pn(~α|s0) = p(α0|s0)p(α1|s1) . . . p(αn−1|sn−1). (4.7)

where for each j = 1..n− 1 the state updates are defined by sj = sj−1 ⊲ αj−1. Then pn(.|s)
satisfies

P ((Si, Ai) · · · (Si+n−1, Ai+n−1) ∈ R|Si = s) =
∫

An
pn(~α|s)1[s,~α]∈Rd~α. (4.8)

The PDF for Y0 · · ·Yn−1 is pn[s, ~α] =def p0(s)pn(~α|s) i.e.

P (Y0 · · ·Yn−1 ∈ R) =
∫

Rn

pn[s, ~α]1[s,~α]∈Rd[s, ~α].

The following proposition permits to characterize stationarity of a SPOR (defined in
section 4.1.2) in terms of initial and conditional PDFs as in the discrete case (4.2):

5A property prop (like “f is positive”, “well defined”...) on a set B holds almost everywhere when the
set where it is false has measure (volume) 0:

∫
B
1b 6�propdb = 0.

64

Proposition 12 (Characterization of stationarity). A SPOR is stationary if and only if for
all measurable set S ∈ B(S) the following holds:

∫

S

∫

A
p0(s)p(α|s)1s⊲α∈Sdαds =

∫

S
p0(s

′)1s′∈Sds
′

Proof. The left-hand side of the equality is P (S0 ⊲ A0 ∈ S) = P (S1 ∈ S) while the right
hand-side is P (S0 ∈ S). Thus we must prove that a SPOR is stationary if and only if S1 has
the PDF p0 (and thus the same law as S0).

The “only if” part is straightforward. For the other part let Y be a SPOR such that S1

has the PDF p0. We first show by recurrence that for all i ≥ 0, Si has the PDF p0. For this,
we assume that Sn has the PDF p0 for some n ≥ 1 and prove that Sn+1 has the same law as
S1 and thus has the PDF p0. For every measurable set of states S ∈ B(S),

P (Sn+1 ∈ S) =
∫

S

∫

A
p0(s)p(α|s)P (Sn ⊲ An ∈ S|Sn = s, An = α)dαds

=
∫

S

∫

A
p0(s)p(α|s)1s⊲α∈Sdαds

= P (S1 ∈ S)

Thus for all i ≥ 0, Si has the PDF p0. Now we remind from (4.8) that the PDF of
Yi · · ·Yi+n−1 knowing that Si = s is pn(~α|s). We conclude that Yi · · ·Yi+n−1 has the PDF
pn(s, ~α) = p0(s)pn(~α|s) and thus the same law as Y0 · · ·Yn−1.

Given a measurable function f : Rn → R, we denote by EPY
(f) its expectation wrt. PY :

EPY
(f) =def

∫
Rn
f [s, ~α]pn[s, ~α]d[s, ~α].

Simulation according to a SPOR Given a SPOR Y , a run (s0, ~α) ∈ Rn can be generated
randomly wrt. Y with a linear number of the following operations: random pick according
to p0 or p(.|s) and computing a successor. Indeed it suffices to pick s0 according to p0 and
for i = 0..n− 1 to pick αi according to p(.|si) and to make the update si+1 = si ⊲ αi.

4.2.2 Entropy

In this sub-section, we define entropy for timed region graphs and SPORs. The former
adapted from [AD09a] is the timed analogue of entropy of a graph (Proposition-definition
8) while the latter adapted from the Shannon’s continuous entropy [Sha48] is the timed
analogue of entropy of a finite state Markov chain (Proposition-definition 9).

Entropy of a timed region graph

Recall from Proposition 5 that the entropy of a timed region graph G is characterized by

H(G) = lim
n→∞

1

n
log2(Vol(Rn)).

65

• When H(G) > −∞, the timed region graph is thick, the volume Vol(Rn) behaves
wrt. n like an exponent: 2nH(G) (multiplied by a sub-exponential term i.e. λ−n <<
2nH(G)/Vol(Rn) << λn for every λ > 1).

• When H(G) = −∞, the timed region graph is thin, the volume decays faster than any
exponent: ∀ρ > 0, Vol(Rn) << ρn.

Entropy of a SPOR

Proposition-definition 13. If Y is a stationary SPOR, then

EPY
(− log pn[s0, α0 · · ·αn])/n→n→∞ EPY

(− log p(α0|s0))

which can be re-written as

− 1

n

∫

Rn

pn[s, ~α] log2 pn[s, ~α]d[s, ~α]→n→∞ −
∫

S
p0(s)

∫

A
p(α|s) log2 p(α|s)dαds.

This limit is called the entropy of Y , denoted by H(Y).

Proof.

EPY
(− log pn[s0, α0 · · ·αn])/n = EPY

(− log p0(s0)
n∏

i=0

p(αi|si))/n

= EPY
(− log p0(s0))/n−

n∑

i=0

EPY
(log p(αi|si))/n

= EPY
(− log p0(s0))/n− EPY

(log p(α0|s0))

This quantity tends to EPY
(− log p(α0|s0)) when n→ +∞.

Proposition 13. Let G be a timed region graph and Y be a stationary SPOR on G. Then
the entropy of Y is upper bounded by that of G: H(Y) ≤ H(G).

Proof. The proof follows from the following fact: for all n ∈ N, h(pn) ≤ log2(Vol(Rn)) where
h(pn) =def −

∫
Rn
pn[s, ~α] log2 pn[s, ~α]d[s, ~α] is the Shannon’s continuous entropy of the PDF

pn. We need some definitions and properties concerning Kullback-Leibler divergence before
proving this fact.

The Kullback-Leibler divergence6 (KL-divergence) from a PDF pn to another p′n is

∫

Rn

pn[s, ~α] log2

pn[s, ~α]

p′n[s, ~α]
d[s, ~α].

6this notion has several other names such as relative entropy, Kullback-Leibler distance, KLIC, . . . Its
general definition (including the present setting) is ensured by the GYP-Theorem (see e.g. Theorem 2.4.2 of
[Pin64]).

66

The KL-divergence is always non-negative with equality to 0 if and only if pn and p′n
are equal almost everywhere (see e.g. [CT06] chapter 8). It permits to measure how far a
probability distribution is from another one.

Now we can prove that h(pn) ≤ log2(Vol(Rn)). The KL-divergence from an arbitrary
distribution pn to the uniform distribution [s, ~α] 7→ 1/Vol(Rn) is log2(Vol(Rn))− h(pn) ≥ 0
with equality if and only if pn is uniform almost everywhere.

The main contribution of this chapter is a construction of an ergodic SPOR Y ∗ for which
the equality H(Y ∗) = H(G) holds i.e. a timed analogue of the Shannon-Parry Markov chain
recalled in section 4.1.

4.3 The maximal entropy SPOR

In this main section, G is a timed region graph satisfying the technical condition below
(section 4.3.1). We present an ergodic SPOR Y ∗ for which the upper bound on entropy is
reached H(Y ∗) = H(G) (Theorem 14). We prove also an asymptotic equipartition property
for ergodic SPOR (Theorem 15) whose main corollary is that runs r generated according to
Y ∗ has a high probability to have a quasi-uniform density of probability p∗n(r) ≈ 1/Vol(Rn).

4.3.1 Technical assumptions

In this section we explain and justify several technical assumptions on the timed region graph
G we make in the following. Some of them where already assumed in other chapters and are
just recalled, there is a novel one: the weak progress cycle condition.
Bounded delays. If the delays were not bounded the sets of runs Rn (for n ≥ 1) would
have infinite volumes and thus a quasi uniform random generation cannot be achieved.
Fleshy transitions. We consider timed region graphs whose transitions are fleshy [AD09a]:
there is no constraints of the form x = c in their guards. Non fleshy transitions yield a null
volume and are thus useless. Deleting them reduces the size of the timed region graph
considered and ensures that every path has a positive volume (see Chapter 3 and [AD09a]
for more justifications and details).
Strong connectivity of the set of locations. We will consider only timed region graph
which are strongly connected i.e. locations are pairwise reachable. This condition (usual in
the discrete case we generalize) is not restrictive since the set of locations can be decomposed
in strongly connected components and then a maximal entropy SPOR can be designed for
each component. Moreover the entropy of a TRG is equal to the maximal entropy of its
SCCs (Proposition 4).
Thickness. In the maximal entropy approach we adopt, we need that the entropy is finite
H(G) > −∞. This is why we restrict our attention to thick timed region graphs. The
dichotomy between thin and thick timed region graphs was characterized precisely in Chapter
3 where it turns out that thin timed region graphs are in a sense degenerate. The key
characterization of thickness is the existence of a forgetful cycle. When the locations are

67

strongly connected, existence of such a forgetful cycle ensures that the state space S is
strongly connected i.e. for all s, s′ ∈ S there exists ~α ∈ A∗ such that s ⊲ ~α = s′.
Weak progress cycle condition. In [AD09a] the following assumption was made: for
some positive integer constant D, on each path of D consecutive transitions, all the clocks
are reset at least once. An equivalent condition (already mentioned in Chapter 3) known
as the progress cycle condition was assumed (and justified) by Puri [Pur00] and followers in
many works on robustness of timed languages.

Here we use a weaker condition: for a positive integer constant D, a timed region graph
satisfies the D weak progress condition (D-WPC) if on each path of D consecutive transitions
at most one clock is not reset during the entire path.

The timed region graph on Figure 2.2 does not satisfy the progress cycle condition (e.g. x
is not reset along δ1) but satisfies the 1-WPC.

4.3.2 Main theorems

Here we give the two main theorems of the chapter. The proof of Theorem 14 is given in
section 4.3.5 as it requires some material exposed in section 4.3.3.

Theorem 14 (maximal entropy). There exists a positive real ρ and two functions v, w : S 7→
R positive almost everywhere such that the following equations define the PDF of an ergodic
SPOR Y ∗ with maximal entropy (H(Y ∗) = H(G)):

p∗0(s) = w(s)v(s); p∗(α|s) =
v(s ⊲ α)

ρv(s)
. (4.9)

Objects ρ, v, w will be defined in the next section (section 4.3.3).
The maximal entropy SPOR Y ∗ has also as nice features simple PDFs for n-length runs

(obtained by plugging (4.9) into the chain rule (4.7)):

p∗n(~α|s) =
v(s ⊲ ~α)

ρnv(s)
; p∗n(s, ~α) =

w(s)v(s ⊲ ~α)

ρn
. (4.10)

An ergodic SPOR satisfies an asymptotic equipartition property (AEP) (see [CT06] for
classical AEP and [AC88] which deals with the case of non necessarily Markovian stochastic
processes with density). Here we give our own AEP. It strongly relies on the pointwise ergodic
theorem (see [Bil12]) and on the Markovian property satisfied by every SPOR (conditions
C.3 and C.4).

Theorem 15 (AEP for SPOR). If Y = (Si, Ai)i∈N is an ergodic SPOR then

−(1/n) log2 pn[S0, A0 · · ·An]→n→+∞ H(Y) a.s.

To prove the theorem we use as a lemma (a weak version of) the pointwise ergodic
theorem applied to the shift invariant probability measure PY . We refer the reader to [Bil12]
for a general version of this theorem.

68

Lemma 15 (Pointwise ergodic theorem for PY). If Y is an ergodic SPOR, for every mea-
surable function f : D→ R such that EPY

(|f |) < +∞, almost surely a bi-infinite run y ∈ DZ

satisfies
1

n

n−1∑

k=0

f(yk)→n→+∞ EPY
(f). (4.11)

Proof of Theorem 15. We use Lemma 15 with the function f : D→ R defined by f : (s, α) 7→
− log2 p(α|s). The left-hand side of (4.11) is equal to

− 1

n

n−1∑

k=0

log2 p(αk|sk) = − 1

n
log2 pn[s0, α0 · · ·αn−1]−

1

n
log2 p0(s0).

The right-hand side of (4.11) is

EPY
(f) = −

∫

S
p0(s)

∫

A
p(α|s) log p(α|s)dαds = H(Y).

It remains to show that EPY
(|f |) < +∞. For this, we write |f | as |f | = f + 2f− where

f− = (|f | − f)/2 is the negative part of f . By linearity of the expectation EPY
(|f |) =

EPY
(f) + 2EPY

(f−) is finite since EPY
(f) = H(Y) < +∞ and

EPY
(f−) =

∫

S
p0(s)

∫

α∈A|−log p(α|s)>0
−p(α|s) log p(α|s)dαds < +∞

(since the function x 7→ −x log2 x is upper-bounded).

Theorem 15 applied to the maximal entropy SPOR Y ∗ means that long runs have a high
probability to have a quasi uniform density:

p∗n[S∗0 , A
∗
0 · · ·A∗n] ≈ 2−nH(Y ∗) = 2−nH(G) ≈ 1/Vol(Rn).

4.3.3 Definition and properties of ρ, v and w

The maximal entropy SPOR is a lifting to the timed setting of the Shannon-Parry Markov
chain of a finite strongly connected graph recalled in section 4.1. The definition of this chain
is based on the Perron-Frobenius theory applied to the adjacency matrix M of the graph.
The timed analogue of M is the operator Ψ introduced in [AD09a]. The objects ρ,v and
w used in the definition of the maximal entropy SPOR (4.9) are spectral attributes of Ψ.
To define ρ,v and w, we will use the theory of positive linear operators (see e.g. [KLS89])
instead of the Perron-Frobenius theory used in the discrete case.

The operator Ψ

Before defining the operator Ψ we describe the functional space where it is act. The set
L2(S) is the Hilbert space of square integrable functions7 from S to R with the scalar product

7Strictly speaking, elements of L2(S) (and L1(S)) are classes of equivalent functions pairwise equal almost
everywhere.

69

〈f, g〉 =
∫
S f(s)g(s)ds and associated norm ||f ||2 =

»
〈f, f〉. We will also use the functional

space L1(S) of integrable function with norm ||f ||1 =
∫
S |f(s)|ds. As the state space S has a

finite measure, L2(S) is included in the functional space L1(S).
For a function f : S → R we denote by f > 0 (resp. f ≥ 0) the fact that f(s) > 0

(resp. f(s) ≥ 0) for almost every s ∈ S.

Proposition-definition 16. The operator Ψ of a timed region graph defined by

∀f ∈ L2(S), ∀s ∈ S, Ψ(f)(s) =
∫

A
f(s ⊲ α)dα (with f(⊥) = 0), (4.12)

is a positive continuous linear operator on L2(S).

Proof. It is clear from the definition of Ψ that the operator is positive i.e. if f ≥ 0 then so
is Ψ(f).

To show that Ψ is a continuous operator on L2(S) it suffices to prove that for all f ∈ L2(S)

the operator norm ||Ψ(f)||2 = (
∫
S Ψ(f)(s)2ds)

1
2 is upper bounded by [|∆|Vol(A)]

1
2 ||f ||2. In

other words we will prove that

∫

S

Å∫
A
f(s ⊲ α)dα

ã2
ds ≤ |∆|Vol(A)

∫

s′
f(s′)2ds′. (4.13)

We first prove the following inequality for every f ∈ L2(S):

∫

S

∫

A
f(s ⊲ α)2dαds ≤ |∆|

∫

s′
f(s′)2ds′ = |∆|.||f ||22. (4.14)

For this purpose we decompose the left-hand side into a sum over δ ∈ ∆:

∫

S

∫

A
f(s ⊲ α)2dαds =

∑

δ∈∆

∫

(~γ,t)∈G(δ)
f((δ−, ~γ) ⊲ (t, δ))2d~γdt (4.15)

where G(δ) =def {(~γ, t) ∈ Γδ−× [0,M] | (δ−, ~γ)⊲(t, δ) 6= ⊥}. Now, for every δ ∈ ∆, we will do
a change of coordinate. Let d and d′ be the dimension of rδ− and rδ+ respectively. For a real
y we denote by {y} its fractional part. Let t, ~γ, ~γ′ such that (δ−, ~γ)⊲(t, δ) = (δ+, ~γ′). Modulo
a permutation of coordinates that only depends on δ we have ({γ1 + t}, . . . {γd + t}, {t}) =
(~γ′, ~σ) for some ~σ ∈ [0, 1]d+1−d′ . Indeed there are two possible cases for the coordinate {t}:

• either there exist clocks null in δ− and not null in δ+ and thus {t} corresponds to these
clocks and is thus a coordinate of ~γ′,

• either {t} is a coordinate of ~σ;

and for the other coordinates:

• a coordinate γi of ~γ corresponding to a non resetting clock yields a new coordinate
{γi + t} of ~γ′;

70

• a coordinate γi of ~γ corresponding to a resetting clock yields a coordinate {γi + t} of
~σ.

The change of coordinates (~γ, t) 7→ (~γ′, ~σ) from the set G(δ) to its image denoted by G′(δ)
is linear with a Jacobian equal to 1. Making this change of coordinates in (4.15) yields:

∫

S

∫

A
f(s ⊲ α)2dαds =

∑

δ∈∆

∫

(~γ′,~σ)∈G′(δ)
f(δ+, ~γ′)2d~γ′d~σ

If we denote by gδ(~γ
′) = Vol({~σ | (~γ′, ~σ) ∈ G′(δ)}) we can simplify the last integral:
∫

S

∫

A
f(s ⊲ α)2dαds =

∑

δ∈∆

∫

~γ′∈Γδ+

f(δ+, ~γ′)2gδ(~γ
′)d~γ′

The coordinates of ~σ belong to [0, 1] and thus for every ~γ′ ∈ Γδ+ , the set {~σ | (~γ′, ~σ) ∈ G′(δ)}
is included in a hypercube of side 1. We deduce that gδ(~γ

′) ≤ 1 for every ~γ′ ∈ Γδ+ and obtain
the expected inequality (4.14):

∫

S

∫

A
f(s ⊲ α)2dαds ≤ |∆|.

∑

q′∈Q

∫

~γ′∈Γq′

f(q′, ~γ′)2d~γ′ = |∆|.||f ||22

Now we can prove (4.13). Fubini’s theorem applied to (4.14) ensures that α 7→ f(s ⊲ α)2

is defined and integrable for almost every s. Thus we can apply Cauchy–Schwartz inequality
(in L2(A)) to the constant function 1 and the function α 7→ f(s ⊲ α):

[Ψ(f)(s)]2 =
Å∫

A
f(s ⊲ α)dα

ã2
≤ Vol(A)

∫

A
f(s ⊲ α)2dα. (4.16)

Combining (4.14) and (4.16) we get (4.13) and conclude the proof:

||Ψ(f)||22 =
∫

S
Ψ(f)(s)2ds =

∫

S

Å∫
A
f(s ⊲ α)dα

ã2
ds

≤ Vol(A)
∫

S

∫

A
f(s ⊲ α)2dαds (by (4.16))

≤ |∆|Vol(A)||f ||22 (by (4.14)).

Intuitively Ψ(f)(s) is the integral of f over all the one-step successor s ⊲ α of s. In the
same way, for a positive integer k, Ψk(f)(s) is the integral of f over all the k-step successor
s ⊲ ~α of s:

∀f ∈ L2(S), ∀s ∈ S, Ψk(f)(s) =
∫

Ak
f(s ⊲ ~α)d~α (with f(⊥) = 0) (4.17)

The adjoint operator Ψ∗ (acting also on L2(S)) is the analogue of M⊤. It is formally
defined by the equation:

∀f, g ∈ L2(S), 〈Ψ(f), g〉 = 〈f,Ψ∗(g)〉 . (4.18)

Characterizing the adjoint of an operator is easier when it is a so-called Hilbert-Schmidt
integral operator as we will describe now.

71

Kernels and matrix notation

An operator Ψ is said to be an Hilbert-Schmidt integral operator (HSIO) if there exists a
function k ∈ L2(S× S) (called the kernel) such that

∀f ∈ L2(S), ∀s ∈ S, Ψ(f)(s) =
∫

s′∈S
k(s, s′)f(s′)ds′.

With HSIOs, the analogy with matrices is strengthened and easier to use; e.g. when Ψ
has a kernel k then Ψ∗ has the kernel: k∗(s, s′) = k(s′, s) (it is a direct analogue of matrix
transposition). Moreover HSIOs have the good property to be compact. The compactness
of Ψk for some k ≥ 0 was the key technical point used in [AD09a] to prove a theorem
similar to our Theorem 17 below. Here the following proposition implies that ΨD and (Ψ∗)D

are Hilbert-Schmidt integral operator (with D the constant occurring in the weak progress
condition).

Proposition 14. (Ψn and Ψ∗n are HSIOs) For every n ≥ D there exists a function kn ∈
L2(S× S) such that: Ψn(f)(s) =

∫
S kn(s, s′)f(s′)ds′ and Ψ∗n(f)(s) =

∫
S kn(s′, s)f(s′)ds′.

This proposition is a straightforward corollary of the following precise lemma (Lemma
16 below) used also in the proof of irreducibility of Ψ and Ψ∗ (Proposition 15). To state
this lemma we recall from Chapter 2 the definition of the reachability relation and adopt a
matrix notation. For q, q′ ∈ Q, we denote by Reach(n, q, q′) the set of couple (~γ,~γ′) such
that (q′, ~γ′) is reachable in n steps from (q, ~γ); formally:

Reach(n, q, q′) =def {(~γ,~γ′) ∈ Γq × Γq′ | ∃~α ∈ An, (q, ~γ) ⊲ ~α = (q′, ~γ′)}.

It is convenient to adopt the following matrix notation: each function f of L2(S) is
represented by a row vector (also written f) of functions fq ∈ L2(Γq). The operator Ψ is
represented as a Q × Q matrix [Ψ] for which each entry [Ψ]q,q′ is an operator from L2(Γq′)
to L2(Γq). Action of [Ψ] on f is given by the following formula:

∀i ∈ Q, ([Ψ]f)i =
∑

j∈Q
[Ψ]ijfj.

With this matrix notation the matrix for Ψ∗ is simply defined by: for all i, j ∈ Q, [Ψ∗]ij =
([Ψ]ji)

∗.
Now we can state the technical lemma describing the kernels of the operators [Ψn]ij for

n ≥ D.

Lemma 16. For every i, j ∈ Q and n ≥ D, the operator [Ψn]ij : L2(Γi) → L2(Γj) has a
kernel kn,i,j ∈ L2(Γr×Γr′) positive almost everywhere in Reach(n, i, j), continuous and
piecewise polynomial.

Proof. We first introduce a notation for the successor of a vector ~γ by a delay vector ~t ∈
[0,M]n. Let π = δ1 · · · δn be a path from a location q to a location q′, ~γ ∈ Γq, ~t ∈ [0,M]n

72

and ~α = (t1, δ1) . . . (tn, δn). If there exists ~γ′ such that (q, ~γ) ⊲ ~α = (q′, ~γ′) then we define
~γ ⊲π ~t = ~γ′ else we define ~γ ⊲π ~t = ⊥.

We denote by Pπ(~γ) the polytope of delay vector ~t that can be read from ~γ along π
i.e. Pπ(~γ) = {~t | ~γ ⊲π ~t 6= ⊥}. We denote by Reach(π) = {(~γ,~γ ⊲π ~t) | ~γ ⊲π ~t 6= ⊥}. We also
define an operator Ψπ as follows.

Ψπ(f)(~γ) =
∫

Pπ(~γ)
f(~γ ⊲π ~t)d~t. (4.19)

Then Ψn can be decomposed into a sum of operators Ψπ as follows:

[Ψn]qq′fq′(~γ) =
∑

π|π goes from q to q′ and |π| = n

Ψπ(fq′)(~γ).

Now it suffices to prove that if π is a path leading from q to q′ and such that |π| = n ≥ D
then Ψπ has a kernel kπ which is piecewise polynomial and non-zero in Reach(π).

The idea of the proof is to operate a change of coordinates which transforms several time
delays of ~t into the vector ~γ′. Let d′ be the dimension of the ending region rq′ . In rq′ , there
are d′ non zero clocks with pairwise distinct fractional parts which correspond to coordinates
of ~γ′. We sort them as follows y1 < · · · < yd

′
. By the D weak progress condition, at most

one clock is not reset during π, this must be the greatest, i.e. yd
′
. If yd

′
was not reset along

π its value is of the form yd
′

= x+
∑n

i=id′
ti where id′ = 1 and x is a clock (possibly null) of

the starting region rp, otherwise it is of the form yd
′

=
∑n

i=id′
ti where id′ − 1 ∈ {1, . . . n− 1}

is the index of the transition where yd
′

was reset for the last time. Similarly for the other
clocks we define i1 > i2 > · · · > id′ where for each l ∈ {1, . . . , d′ − 1}, il − 1 is the index of
the transition where yl was reset for the last time. We have thus yl =

∑n
i=il

ti.
The change of coordinates consists in replacing coordinates indexed by I =def {i1, . . . , id′}

by ~γ′ = ~γ ⊲π ~t and by staying unchanged coordinates in Ī =def {1, . . . , n} \ I. With few

symbols: ~t = (~tĪ ,~tI)I 7→ (~tĪ , ~γ
′)I where ~c = (~a,~b)I means that ~b are coordinates of ~c indexed

by I while ~a are the others. This change of coordinates preserves the volumes as shown in
the following paragraph.

Firstly, it is easy to see that the function which maps ~tI = (ti1 , . . . , tid′) to (y1, . . . , yd
′
) is a

volume preserving transformation. Indeed, it holds that (y1, . . . , yd
′
)⊤ = M(ti1 , . . . , tid′)

⊤+~b

where M is an upper triangular matrix with only 1 on the diagonal and where ~b is a row
vector. Secondly, reordering sorted clocks y1 < · · · < yd

′
into sorted fractional part γ′1 <

· · · < γ′d′ can be achieved by a translation and a permutation of coordinates.
Now, let us consider the domains of integration before and after the change of coordinates.

The old domain of integration is Pπ(~γ) = {~t | ~γ ⊲π ~t 6= ⊥}, this domain is a polytope. We
denote by P ′π(~γ) the new domain of integration i.e. (~tĪ , ~γ

′)I ∈ P ′π(~γ) iff (~tĪ ,~tI)I ∈ Pπ(~γ).
When we fix (~γ,~γ′) ∈ Reach(π) we denote by Pπ(~γ,~γ′) the set of vectors ~tĪ such that

(~tĪ , ~γ
′)I ∈ P ′π(~γ). This corresponds intuitively to the set of timed vectors which lead from ~γ

to ~γ′. Applying the change of coordinates in (4.19) yields

Ψπ(f)(~γ) =
∫

Γj

Ç∫
Pπ(~γ,~γ′)

1~tĪ∈Pπ(~γ,~γ′)d~tĪ

å
f(~γ′)d~γ′

73

The expected form of Ψπ is obtained by defining the kernel as

kπ(~γ,~γ′) = Vol[Pπ(~γ,~γ′)] =
∫

Pπ(~γ,~γ′)
1~tĪ∈Pπ(~γ,~γ′)d~tĪ .

It remains to prove that this kernel is piecewise polynomial and non null when (~γ,~γ′) ∈
Reach(π). It holds that (~γ,~γ′) ∈ Reach(π) if and only if the set Pπ(~γ,~γ′) is non empty. In
this case Pπ(~γ,~γ′) is moreover an open polytope (a polytope involving strict inequalities) as
a section of the open polytope P ′π(~γ). Its volume is thus positive and so is kπ(~γ,~γ′).

The polytope Pπ(~γ,~γ′) can be defined by a conjunction of inequalities of the following
form:

∑
i∈Ī aiti +

∑d
i=1 biγi +

∑d′

i=1 ciγ
′
i > e with ai, bi, ci, e ∈ N. The volume of such a

polytope (when integrating the ti) can be shown to be piecewise polynomial and continuous
in ~γ and ~γ′. We conclude that kπ is piecewise polynomial, continuous and non null on
Reach(π).

When Reach(n, q, q′) = Γq × Γq′ , this lemma ensures that the kernel kn,i,j is positive
almost everywhere in the whole set Γq × Γq′ . This case, useful in the following, occurs for
some n ≥ D as stated by the two lemmas just below.

Lemma 17. For every q, q′ ∈ Q, there exists n ≥ D such that Reach(n, q, q′) = Γq × Γq′.

Proof. This lemma is a direct consequence of results of Chapter 3. A path π from q to
q′ is called forgetful if Reach(π) = Γrq × Γrq′

where Reach(π) is the reachability relation
restrained to π defined in the proof of lemma 16. Every path which contains a forgetful
cycle is forgetful. If G is thick it contains a forgetful cycle f (with |f | > 0). Let l ∈ Q
such that f leads from l to l and π, π′ ∈ ∆∗ such that π leads from q to l and π′ leads
from l to q′. Such paths exist by strong connectivity of the set of locations. Let m ≥ D,
the path πfDπ′ is forgetful and leads from q to q′ and thus Reach(n, q, q′) = Γq × Γq′ with
n = D|f |+ |π|+ |π′| ≥ D.

Lemma 16 and 17 imply the following one.

Lemma 18. For every q, q′ ∈ Q, there exists n ≥ D such that [Ψn]qq′ has a kernel kn,q,q′
positive almost everywhere on Γq × Γq′.

The spectral radius ρ and the eigenfunctions v and w.

Before describing ρ, v and w, we recall several definitions from spectral theory. The spectrum
of an operator A acting on a functional space F is the set of scalars λ ∈ C such that A−λId
is not invertible (where Id is the identity of F). The spectral radius of an operator is the
radius of the smallest disc centred in the origin and containing all its spectrum. Last but
not least, if for some f ∈ F \ {0} and λ ∈ C it holds that A(f)− λf = 0 then λ is called an
eigenvalue and f is called an eigenfunction of A for λ.

74

As in the discrete case (Proposition 11), the entropy is equal to the logarithm of the
spectral radius (Theorem 17 below). This was the main theorem of [AD09a]. We must prove
this theorem in our setting since the functional space of [AD09a] was different from ours and
assumptions on the model were somewhat more restrictive. We need two lemmas, the first
one links the entropy with the norm of the operator (in L1(S)), the second one ensures some
regularity of the eigenfunctions of Ψ.

The original intuition of [AD09a] was that the iterates of Ψ on the constant function
1 permit to compute volumes (see also Equations (2.3) and (2.4) in the Chapter 4). More
precisely (Ψn1)(s) is equal to the volume of n-length timed words ~α that can be read from
s (i.e. s ⊲ ~α 6= ⊥). Formally (Ψn1)(s) =

∫
An 1s⊲~α 6=⊥d~α. To get the volume of runs, it suffices

to integrate over the state space S in this equation:

||Ψn1||1 =
∫

S
(Ψn1)(s)ds = Vol(Rn). (4.20)

As a consequence the entropy of the timed region graph can be defined using the operator
Ψ as follows:

Lemma 19. H(G) = lim supn→+∞
1
n

log2(||Ψn1||1).

Lemma 20. For each eigenvalue λ 6= 0, each solution f of the eigenfunction equation
Ψ(f) = λf (resp. Ψ∗(f) = λf) is continuous and bounded8.

Proof. Let f be a solution of the eigenfunction equation Ψ(f) = λf . Lemma 16 implies that
ΨD is a kernel operator with a kernel kD piecewise polynomial (and thus bounded on S2).
The function f satisfies: for almost every s,

ΨD(f)(s) = λDf(s) =
∫

S
kD(s, s′)f(s′)ds′.

By Lemma 16 kD,i,j is piecewise polynomial continuous and non null on Reach(D, i, j)
for every i, j ∈ Q. The function ~γ 7→ ∫

Γj
kD,i,j(~γ,~γ

′)fj(~γ
′)d~γ′ is continuous since the

function ~γ 7→ kD,i,j(~γ,~γ
′)fj(~γ

′) is defined and continuous for almost every ~γ′ ∈ Γj and
bounded by sup(kD,i,j)fj(~γ

′) for every ~γ′ ∈ Γj. Moreover, for every ~γ ∈ Γi, the function
~γ 7→ ∫

Γj
kD,i,j(~γ,~γ

′)fj(~γ
′)d~γ′ is bounded by sup(kD,i,j)||f ||1. When summing over i, j ∈ Q

we obtain that f : s 7→ λ−D
∫
kD(s, s′)f(s′)ds′ is continuous and bounded (as a finite sum of

continuous and bounded functions).
A similar proof can be written for Ψ∗ since it has the kernel k∗D(s′, s) = kD(s, s′).

Now, we can state the theorem which gives the definition and the first properties of ρ used
to defined the maximal entropy SPOR (4.9). The objects v and w are also introduced here,
yet their uniqueness (up to a scalar constant) is postponed to the next theorem (Theorem
18).

8To be more formal, f as an element of L2(S) is a class of functions pairwise equal almost everywhere, it
admits a unique representative that is continuous and bounded.

75

Theorem 17 (adapted from [AD09a] to L2(S)). The spectral radius ρ is a positive eigenvalue
for Ψ (resp. Ψ∗) with an eigenfunction v ≥ 0 (resp. w ≥ 0). Moreover it holds that H(G) =
log2(ρ).

Proof. We adapt to the functional space L2(S) the proof of the main theorem of [AD09a].

Proof that H(G) ≤ log2 ρ The so-called Gelfand formula gives

ρ = lim
n→∞

||Ψn||2
1
n

where we recall that ||Ψn||2 = supf∈L2(S),||f ||2>0 ||Ψnf ||2/||f ||2. In particular we have

||Ψn1||2 ≤ ||Ψn||2||1||2
and thus

lim sup
n→∞

log(||Ψn1||2)
n

≤ log2 ρ.

We conclude that

H(G) = lim sup
n→∞

log(||Ψn1||1)
n

≤ lim sup
n→∞

log(||Ψn1||2)
n

≤ log2 ρ.

where the first equality is Lemma 19 and the first inequality comes from the Cauchy-Schwartz
inequality:

||Ψn1||1 ≤ ||Ψn1||2||1||2 = ||Ψn1||2
»
Vol(S).

Proof that ρ is a positive eigenvalue for Ψ and Ψ∗ By the preceding part of the
proof and using the hypothesis H(G) > −∞ we have ρ ≥ 2H(G) > 0. According to Theorem
9.3 of [KLS89], a necessary condition for the spectral radius (when it is positive) to be an
eigenvalue of an operator A with an eigenfunction f ≥ 0 is the compactness of some power
An of A. This is ensured by proposition 14 as HSIOs are compact operators. Thus there
exists v ≥ 0 such that Ψ(v) = ρv and w ≥ 0 such that Ψ∗(w) = ρw.

Proof that log2 ρ = H(G) Lemma 20 ensures that the eigenfunction v defined above is
continuous and bounded (everywhere). Let C be an upper bound for v i.e. a positive constant
such that ∀s ∈ S, 0 ≤ v(s) < C. Therefore:

∀s ∈ S, n ∈ N, ρnv(s) = Ψn(v)(s) ≤ CΨn(1)(s). (4.21)

Integrating wrt. s we get:

0 < ρn||v||1 ≤ C||Ψn(1)||1 = CVol(Rn).

Taking lim infn→∞
1
n

log(.) we obtain:

log2 ρ ≤ lim inf
n→∞

1

n
log(Vol(Rn)) ≤ lim sup

n→∞

1

n
log(Vol(Rn)) = H(G) ≤ log2 ρ (4.22)

where the last inequality comes from the first part of the proof. Thus all inequalities of
(4.22) are equalities and we conclude that log2 ρ = H(G).

76

Uniqueness of v and w

Theorem 18 (Perron-Frobenius like theorem for Ψ). The spectral radius ρ is a simple
eigenvalue of Ψ and Ψ∗ with corresponding eigenfunction v ≥ 0 and w ≥ 0. Any non-
negative eigenfunction of Ψ (resp. Ψ∗) is proportional to v (resp. w).

Thus eigenfunctions v and w introduced in Theorem 17 are unique up to a scalar constant.
The constants are chosen such that 〈w, v〉 = 1. This makes the functions of (4.9) well defined
provided that v is positive. Positivity of v (and w) is the purpose of the next section (section
4.3.3).

Expressing ρ, v, w as solutions of integral equations with kernel It is worth men-
tioning that for any n ≥ D, the objects ρ, v and w are solutions of the eigenvalue problems∫
S kn(s, s′)v(s′)ds′ = ρnv(s) and

∫
S kn(s′, s)w(s′)ds′ = ρnw(s) with v ≥ 0 and w ≥ 0; unique-

ness of v and w (up to a scalar constant) is ensured by Theorem 18. The matrix notation,
where we denote as in Lemma 16 by kn,q,q′ the kernel of [Ψn]qq′ , gives a system of integral
equations for v and ρ:

∑

q′∈Q

∫

Γq′

kn,q,q′(~γ,~γ
′)vq′(~γ

′)d~γ′ = ρnvq(~γ), for q ∈ Q, ~γ ∈ Γq (4.23)

and another system for w and ρ:

∑

q∈Q

∫

Γq

kn,q,q′(~γ,~γ
′)wq(~γ)d~γ = ρnwq′(~γ

′), for q′ ∈ Q, ~γ′ ∈ Γq′ . (4.24)

Further computability issues for ρ, v and w are discussed in the conclusion.

Proof of theorem 18 The proof of Theorem 18 is based on theorem 11.1 condition e) of
[KLS89] (recalled in Theorem 19 below) which is a generalization of the Perron-Frobenius
theorem to positive linear operators. The main hypothesis to prove is the irreducibility of Ψ
whose analogue in the discrete case is the irreducibility of the adjacency matrix M . Recall
from section 4.1 that M is irreducible if for all states i, j there exists n ≥ 1 such that Mn

ij > 0
(this is equivalent to the strong connectivity of the graph).

In the following we denote by L+
2 (S) the subset of L2(S) of functions f ≥ 0. The operator

Ψ is said to be irreducible if the following condition holds: if Ψ(f) ≤ af for some a > 0
and f ∈ L+

2 (S) \ {0}, then f is quasi-interior (which means that 〈f, g〉 > 0 for every
g ∈ L+

2 (S) \ {0}).
The irreducibility of Ψ and Ψ∗ (Proposition 15 below) is essentially due to the strong

connectivity of the state space S which also mean the positivity of kernels between every two
locations q, q′ (Lemma 18 above).

Proposition 15. Ψ and Ψ∗ are irreducible.

77

Proof. Let f ∈ L+
2 (S) \ {0} and a > 0 such that Ψ(f) ≤ af . Let g ∈ L+

2 (S) \ {0}; we show
that 〈f, g〉 > 0. There are i, j ∈ Q such that gi ∈ L+

2 (Γi) \ {0}, fjL+
2 (Γj) \ {0}. By Lemma

18 there exists an n such that [Ψn]ij has a kernel kn,i,j positive almost everywhere and thus
[Ψn]ij(fj)(s) =

∫
Γj
kn,i,j(s, s

′)f(s′)ds′ > 0 for almost every s. Therefore 〈[Ψn]ijfj, gi〉 > 0.
We are done:

an 〈f, g〉 ≥ 〈Ψnf, g〉 ≥ 〈[Ψn]ijfj, gi〉 > 0.

This also prove the irreducibility of Ψ∗ since k∗n,i,j(s, s
′) = kn,j,i(s

′, s).

The conclusions of Theorem 17 give the hypotheses of theorem 11.1 condition e) of
[KLS89] (Theorem 19 below). We define the cone K = L+

2 (S). It satisfies Ψ(K) ⊆ K, it is
minihedral ([KLS89]6.1 example d)) and is reproducing i.e. all functions f ∈ L2(S) can be
written as f = f+− f− with f−, f+ ∈ K. The conclusions of this last theorem complete the
proof of our theorem.

Theorem 19 ([KLS89], theorem 11.1 condition e)). Suppose that ΨK ⊆ K, Ψ has a nor-
malized eigenfunction v ∈ K with corresponding eigenvalue ρ (where ρ is the spectral radius
of Ψ), K is reproducing and minihedral, the operator Ψ is irreducible and the operator Ψ∗

has an eigenfunction w in K∗ for the eigenvalue ρ. Then the eigenvalue is simple and there
is no other normalized eigenfunction different from v in K.

Positivity of v and w

Proposition 16. The eigenfunction v of Ψ (resp. w of Ψ∗) for ρ is positive almost every-
where.

Proof. As v ∈ L+
2 (S) \ {0}, there exists q′ such that vq′ is non-null on Γq′ . Let q ∈ Q. We

show that vq is positive almost everywhere. By Lemma 18, there exists n ≥ D such that
kn,q,q′(~γ,~γ

′) is positive almost everywhere and thus kn,q,q′(~γ,~γ
′)vq′(~γ

′) is non-negative and
non-null almost everywhere. We deduce using (4.23) that vq(~γ) is positive for almost every
~γ ∈ Γq. The proof can be adapted for Ψ∗ and w using (4.24) instead of (4.23).

4.3.4 Examples

Running example completed

We consider again the timed region graph depicted in Figure 2.2. The matrix notation of
(4.12) is:

[Ψ]

Ç
frp
frq

å
=

(
γ 7→ ∫ 1

γ frp(γ′)dγ′ +
∫ 1
0 frq(γ

′)dγ′

γ 7→ ∫ 1
0 frp(γ′)dγ′ +

∫ 1
γ frq(γ

′)dγ′

)

We can deduce that operators Ψ and Ψ∗ are HSIO with matrices of kernels:

Ç
10<γ≤γ′<1 10<γ′<1

10<γ′<1 10<γ≤γ′<1

å
;

Ç
10<γ′≤γ<1 10<γ′<1

10<γ′<1 10<γ′≤γ<1

å
.

78

The eigenvalue equations [Ψ]v = ρv and [Ψ∗]w = ρw written in the form of (4.23) and (4.24)
(for n = 1) yield

ρvrp(γ) =
∫ 1

γ
vrp(γ′)dγ′ +

∫ 1

0
vrq(γ

′)dγ′;

ρvrq(γ) =
∫ 1

0
vrp(γ′)dγ′ +

∫ 1

γ
vrq(γ

′)dγ′;

ρwrp(γ) =
∫ γ

0
wrp(γ′)dγ′ +

∫ 1

0
wrq(γ

′)dγ′;

ρwrq(γ) =
∫ 1

0
wrp(γ′)dγ′ +

∫ γ

0
wrq(γ

′)dγ′.

We differentiate once the equations and obtain:

ρv′ri(γ) = −vri(γ); ρw′ri(γ) = wri(γ) (i ∈ {p, q}).

Thus the functions are of the form vri(γ) = vri(0)e−γ/ρ, wri(γ) = wri(0)eγ/ρ. Remark that
ρvrp(0) =

∫ 1
0 vrp(γ′)dγ′+

∫ 1
0 vrq(γ

′)dγ′ = ρvrq(0) and thus vrp = vrq (we can divide by ρ which
is positive since ρ = 2H(G) and the timed region graph is thick i.e. H(G) > −∞).

Similarly wrp(1) = wrq(1) yields wrp = wrq .

The constant ρ satisfies the condition

vrp(0) = 2
∫ 1

0
vrp(γ′)dγ′/ρ = 2vrp(1) = 2vrp(0)e−1/ρ.

Therefore e1/ρ = 2 and thus ρ ∈ {1/(ln(2) + i2kπ) | k ∈ Z}. The spectral radius is the eigen-
value of maximal modulus corresponding to k = 0, ρ = 1/ ln(2). Then the eigenfunctions are

v =

Ç
vrp(γ)
vrq(γ)

å
= C

Ç
2−γ

2−γ

å
with C > 0 and w =

Ç
wrp(γ)
wrq(γ)

å
= C ′

Ç
2γ

2γ

å
with C ′ > 0.

Finally the maximal entropy SPOR for Gex1 is given by:

p∗0(p, (γ, 0)) = p∗0(q, (0, γ)) =
1

2
for γ ∈ (0, 1);

p∗(t, δ1|p, (γ, 0)) = p∗(t, δ4|q, (0, γ)) =
2−t

ρ
for γ ∈ (0, 1), t ∈ [0, 1− γ);

p∗(t, δ2|p, (γ, 0)) = p∗(t, δ3|q, (0, γ)) =
2γ−t

ρ
for γ ∈ (0, 1), t ∈ (0, 1).

Running example of the thesis

Consider the TRG G3 depicted in Figure 3.1 from Chapter 3 also related to timed automata
depicted in Figure 1.1, 2.1 and 2.3. The entry regions of this TRG are rp = {(x, y) | 0 = y <
x < 1} and rq = {(x, y) | 0 = x < y < 1}.

79

The operators Ψ and Ψ∗ are equal9. Indeed they are HSIOs with the same matrices of
kernels: Ç

0 10<γ′<1−γ<1

10<γ′<1−γ<1 0

å

The maximal entropy SPOR of G3 is given by the following PDFs:

p∗0(p, (γ, 0)) = p∗0(q, (0, γ)) = cos2
Åπ

2
γ
ã

for γ ∈ (0, 1);

p∗(t, a|p, (γ, 0)) = p∗(t, b|q, (0, γ)) =
π

2

cos(π
2
t)

cos(π
2
γ)

1t<1−γ for γ ∈ (0, 1), t ∈ [0, 1− γ);

4.3.5 Proof of the maximal entropy theorem (Theorem 14)

We give the proof of Theorem 14 in several steps

Proof that Y ∗ is a SPOR

The eigenfunctions v and w are positive almost everywhere and are chosen such that
∫
S p
∗
0(s) =

〈v, w〉 = 1. Moreover v(s ⊲ α) = 0 when s ⊲ α = ⊥ and thus p(α|s) is defined for almost
every s ∈ S, α ∈ A and equals 0 when s ⊲ α = ⊥. Finally for almost every s ∈ S:∫
A p
∗(α|s)dα =

∫
A

v(s⊲α)
ρv(s)

dα = Ψ(v)(s)
ρv(s)

= 1 since v is an eigenfunction for ρ.

Proof that Y ∗ is stationary

Proof. We use the characterization of stationarity given in Proposition 12. For every mea-
surable set of states S ∈ B(S),

∫

S

∫

A
p0(s)p(α|s)1s⊲α∈Sdαds =

∫

S

∫

A
v(s)w(s)

v(s ⊲ α)

ρv(s)
1s⊲α∈Sdαds

=
∫

S
w(s)

∫

A
v(s ⊲ α)1s⊲α∈Sdαds/ρ

= 〈w,Ψ(v1S)〉 /ρ
= 〈Ψ∗(w), v1S〉 /ρ by definition of Ψ∗ see (4.18)

= 〈w, v1S〉 (w is an eigenfunction of Ψ∗ for ρ)

=
∫

S
p0(s)1s∈Sds.

9Such a self adjoint operator (i.e. Ψ = Ψ∗) in a Hilbert space has nice properties.

80

Proof that H(Y ∗) = H(G)

H(Y ∗) = −
∫

S
p0(s)

∫

A
p(α|s) log2 p(α|s)dαds

= −
∫

S
v(s)w(s)

∫

A

v(s ⊲ α)

ρv(s)
log2

v(s ⊲ α)

ρv(s)
dαds

= −1

ρ

∫

S
w(s)

∫

A
v(s ⊲ α)[log2 v(s ⊲ α)− log2(ρv(s))]dαds

= −1

ρ
〈w,Ψ(v log2 v)〉+

1

ρ
〈w log2 v,Ψ(v)〉+

log2 ρ

ρ
〈w,Ψ(v)〉

= −1

ρ
〈Ψ∗(w), v log2 v〉+ 〈w log2 v, v〉+ log2(ρ) 〈w, v〉 (since Ψ(v) = ρv)

= −〈w, v log2 v〉+ 〈w log2 v, v〉+ log2(ρ) (〈w, v〉 = 1 and Ψ∗(w) = ρw)

= log2(ρ) = H(G).

Ergodicity of Y ∗

We first introduce a “stochastic” operator ϕ which is the continuous analogue of a stochastic
matrix. Then we relate this operator with Y ∗ (Equation (4.25) and Proposition 17) and prove
an ergodic property on ϕ (Proposition 19). This property permits to prove the ergodicity of
Y ∗.

The operator ϕ defined below acts on the functional space L2(v
2ds) of function f such

that fv ∈ L2(S). The dual space of L2(v
2ds) is the set of functions g such that g/v ∈ L2(S).

The norm on L2(v
2ds) is ||f ||L2(v2ds) = ||fv||2.

Let ϕ : L2(v
2ds) → L2(v

2ds) be the linear operator defined by ϕ(f) = Ψ(vf)
ρv

. One can

see using the equality 〈ϕ(f), g〉 = 〈f, ϕ∗(g)〉 that ϕ∗(g) = vΨ∗
(

g
ρv

)
. Indeed,

Æ
Ψ(vf)

ρv
, g

∏
=

Æ
Ψ(vf),

g

ρv

∏
=

Æ
vf,Ψ∗

Ç
g

ρv

å∏
=

Æ
f, vΨ∗

Ç
g

ρv

å∏
.

We have constructed the operator ϕ by analogy with the transition probability matrix
of the Shannon-Parry Markov chain recalled in (4.6).

The operators ϕi with i ≥ 0 are associated with the conditional PDFs p∗i (~α|s) =
p∗i (~α)/p∗0(s) (defined in (4.7) and characterized in (4.10)) as follows:

Lemma 21. For every f ∈ L2(v
2ds), s ∈ S, the following equality holds:

ϕi(f)(s) =
∫

~α∈Ai
p∗i (~α|s)f(s ⊲ ~α)d~α. (4.25)

Proof. By a straightforward induction we have that ϕi(f) = Ψi(vf)
ρiv

. Then ϕi(f)(s) =
∫
Ai

v(s⊲~α)
ρiv(s)

f(s ⊲ ~α)ds which is equal to the expected result since by virtue of (4.10), p∗i (~α|s) =
v(s⊲~α)
ρiv(s)

.

81

It is also worth mentioning that when Ψi has a kernel ki(s, si) then ϕ has the kernel

p∗i (s, si) =def
v(si)
ρiv(s)

ki(s, si). With this notation,

ϕi(f)(s) =
∫

S
p∗i (s, si)f(si)dsi. (4.26)

Thus p∗i (s, si) is the (density of) probability that S∗i = si knowing that S∗0 = s and ϕi(f)(s)
can be interpreted as the expectation of the random variable f(S∗i) knowing that S∗0 = s. The
ergodic property for ϕ (Proposition 19 below), states that this value converges (in L2(v

2ds)
and for Cesàro means) towards the constant 〈f, p∗0〉 =

∫
S f(s)p∗0(s)ds. This constant is the

expectation of f(S∗i) for each i ∈ N. Thus the initial state of a run generated according to
Y ∗ is “forgotten”. Intuitively, this will be the key sufficient condition for the ergodicity of
Y ∗.

To prove Proposition 19 we need to study the spectral properties of ϕ. They are analogous
to those of the matrix of an irreducible stationary Markov chain on a graph.

Proposition 17. The spectral radius of ϕ is 1. It is a simple eigenvalue of ϕ for which
the constant function 1 is an eigenfunction (ϕ(1) = 1). Every positive eigenfunction of ϕ is
constant. p∗0 is an eigenfunction of ϕ∗ for 1 (ϕ∗(p∗0) = p∗0). Every positive eigenfunction of
ϕ∗ is proportional to p∗0.

Proof. One can see that λ belongs to the spectrum of ϕ iff λ/ρ belongs to the spectrum of
Ψ and thus 1 is the spectral radius of ϕ.

The functions 1 and p∗0 are eigenfunctions of ϕ and ϕ∗ for the spectral radius: ϕ(1) =
Ψ(v)
ρv

= 1 and ϕ∗(p∗0) = vΨ∗
(
vw
ρv

)
= vΨ∗ (w) /ρ = vw = p∗0.

The other properties are ensured by Theorem 19 (already used to prove Theorem 18).

We need also another property to ensure the convergence of the iterates of ϕ on a function
f .

Proposition 18 (Spectral gap). Some power ϕp (p ∈ N) has a spectral gap, i.e. the spectral
radius of ϕp is a simple eigenvalue and the rest of its spectrum belongs to the disc Cλ =
{z||z| ≤ λ} for some λ < ρ.

Proof. First of all, Proposition 17 just above guarantees that the spectral radius is a simple
eigenvalue of ϕ and thus of ϕp. It remains to prove that the rest of the spectrum of ϕp lies
in a disc Cλ with λ < 1.

We can apply the theorem at the beginning of section 3.4 of the appendix of [SW99]. This
theorem states that there exists p ∈ N such that every eigenvalue ω of modulus 1 satisfies
ωp = 1 and thus ϕp has only one eigenvalue of modulus 1. The other eigenvalues ωp of ϕp

are such that ωp < β for some β < 1 since there is no accumulation point other than 0 (the
spectrum of ϕp has the same shape as the spectrum of Ψp which has no accumulation point
other than 0 since it is compact). Therefore ϕp has a spectral gap β.

With such a spectral gap, as stated in Lemma 22 just below, iterates of ϕp on a function
f ∈ L+

2 (v2ds) converges towards the constant function 〈f, p∗0〉.

82

Lemma 22. For every f ∈ L+
2 (v2ds) the following holds

ϕpk(f)→k→+∞ 〈f, p∗0〉 in L2(v
2ds).

Proof. This is ensured by Theorem 15.4 of [KLS89] whose hypothesis is the existence of a
gap for ϕp (Proposition 18).

Proposition 19 (ergodic property for ϕ). For every f ∈ L+
2 (v2ds), the following holds10

1

n

n∑

i=1

ϕi(f)(s)→n→+∞ 〈f, p∗0〉 in L2(v
2ds)

Proof. We let gn(s) = 1
n

∑n
i=1 ϕ

i(f)(s)− 〈f, p∗0〉 and show that ||gn||L2(v2ds) converges to 0 as
n→ +∞.

It holds that

||gn||L2(v2ds) ≤
p∑

j=1

1

n

n−1∑

i=0

||ϕpi+j(f)− 〈f, p∗0〉 ||L2(v2ds).

Now it suffices to remark that for every j ∈ {1, . . . , p} the sequence ||ϕpi+j(f)−〈f, p∗0〉 ||L2(v2ds)

converges to 0 as i→ +∞ and thus so does its Cesàro mean. This convergence follows from
Lemma 22 applied to ϕj(f) since ϕpi+j(f) = ϕpi(ϕjf).

As we have already discussed, in some sense Y ∗ forgets its past. This intuition is made
more clear with the following lemma: for Cesàro average and asymptotically, coordinates
Y ∗m+i, . . . , Y

∗
2m+i−1 and coordinates Y ∗0 , . . . , Y

∗
m−1 are distributed as if they were independent

from each others.

Lemma 23. Let R,R′ be two measurable subsets of Dm (m ∈ N) then

1

n

n∑

i=1

PY ∗(R∞ ∩ σm+i(R′∞))→n→∞ PY ∗(R∞)PY ∗(R′∞).

Proof. Let f be the function defined by

f(s) = P (Y ∗0 · · ·Y ∗m−1 ∈ R′|S∗0 = s) =
∫

Am
pm(~α′|s)1[s,~α′]∈R′d~α′

We first prove the two following equations:

1

n

n∑

i=1

PY ∗(R∞ ∩ σm+i(R′∞)) =
∫

R
pm[s, ~α]

(
1

n

n∑

i=1

ϕi(f)(s ⊲ α)

)
d[s, ~α] (4.27)

and
PY ∗(R∞)PY ∗(R′∞) =

∫

R
pm[s, ~α] 〈f, p∗0〉 d[s, ~α]. (4.28)

10This proposition is akin to von Neumann’s mean ergodic theorem (see e.g. Theorem 4.5.2 of [BS02])
whose conclusion is similar to ours (yet the hypotheses differ).

83

Proof of (4.27) By definition of R∞ and R′∞:

PY ∗(R∞ ∩ σm+i(R′∞)) = P (Y ∗0 · · ·Y ∗m−1 ∈ R and Y ∗m+i · · ·Y ∗2m+i−1 ∈ R′)

which is equal to

∫

R
pm[s, ~α]P (Y ∗m+i · · ·Y ∗2m+i−1 ∈ R′|S∗m = s ⊲ ~α)d[s, ~α].

Now, it suffices to prove that for every s ∈ S the following equality holds

P (Y ∗m+i · · ·Y ∗2m+i−1 ∈ R′|S∗m = s) = ϕi(f)(s). (4.29)

Using characterization (4.25) of ϕi(f)(s) we obtain that

ϕi(f)(s) =
∫

Ai
pi(~α|s)

∫

Am
pm(~α′|s ⊲ ~α)1[s⊲~α,~α′]∈R′d~α′d~α

which can be rewritten as

ϕi(f)(s) =
∫

Am+i
pm+i(~α|s)1yi···ym+i−1∈R′d~α

where y0 · · · ym+i−1 ∈ Dm+i denotes the extended version of the run [s, ~α]. Thus we obtain
the expected equality (4.29) using stationarity of Y ∗:

P (Y ∗m+i · · ·Y ∗2m+i−1 ∈ R′|S∗m = s) = P (Y ∗i · · ·Y ∗i+m−1 ∈ R′|S∗0 = s) = ϕi(f)(s)

Proof of (4.28) By definition of f :

〈f, p∗0〉 =
∫

S
f(s)p∗0(s)ds =

∫

S

∫

Am
p∗0(s)pm(~α′|s)1[s,~α′]∈R′d~α′ds = PY ∗(R′∞).

Thus

PY ∗(R∞)PY ∗(R′∞) =
∫

R
pm[s, ~α]PY ∗(R′∞)d[s, ~α] =

∫

R
pm[s, ~α] 〈f, p∗0〉 d[s, ~α].

84

End of the proof We can complete the proof with the following sequences of inequalities
and equalities:

∣∣∣∣∣
1

n

n∑

i=1

PY ∗(R∞ ∩ σm+i(R′∞))− PY ∗(R∞)PY ∗(R′∞)

∣∣∣∣∣

=

∣∣∣∣∣

∫

R
pm[s, ~α]

(
1

n

n∑

i=1

ϕi(f)(s ⊲ α)− 〈f, p∗0〉
)
d[s, ~α]

∣∣∣∣∣ (by (4.27) and (4.28))

=
∣∣∣∣
∫

R
pm[s, ~α]gn(s ⊲ α)d[s, ~α]

∣∣∣∣ with gn : s′ →
n∑

i=1

ϕi(f)(s′)− 〈f, p∗0〉

≤
∫

R
pm[s, ~α] |gn(s ⊲ α)| d[s, ~α] (by triangular inequality)

≤
∫

S

∫

Am
pm[s, ~α]|gn(s ⊲ ~α)|d~αds

=
∫

S
ϕm(|gn|)(s)p(s)ds =

∫

S
ϕm(|gn|)(s)v(s)w(s)ds

≤ ||w||∞
∫

S
ϕm(|gn|)(s)v(s)ds (since w is bounded by Lemma 20)

≤ ||w||∞||ϕm(|gn|)v||2
»
Vol(S) (by Cauchy-Schwartz inequality)

= ||w||∞||ϕm(|gn|)||L2(v2ds)

»
Vol(S)

≤ ||w||∞||ϕm||L2(v2ds)||gn||L2(v2ds)

»
Vol(S)→n→+∞ 0 (by Proposition 19).

Now we can achieve the proof that Y ∗ is ergodic.
Consider a shift invariant set A. We will show that PY ∗(A) ∈ {0, 1}. We assume that

PY ∗(A) < 1 and show that PY ∗(A) ≤ PY ∗(A)2. These inequalities imply that PY ∗(A) = 0.
Using (4.3), for every ǫ, there exists an m ∈ N such that

P (Y ∗0 · · ·Y ∗m−1 ∈ Am) = PY ∗(Am,∞) ∈ [PY ∗(A), PY ∗(A) + ǫ].

By set inclusion we have:

PY ∗(A) ≤ PY ∗(Am,∞ ∩ σm+i(Am,∞)).

Taking the Cesàro average, we get:

PY ∗(A) ≤ 1

n

n∑

i=1

PY ∗(Am,∞ ∩ σm+i(Am,∞)).

Taking the limit and using Lemma 23 we obtain:

PY ∗(A) ≤ PY ∗(Am,∞)2 ≤ (PY ∗(A) + ǫ)2.

When ǫ tends to 0, we obtain the expected inequality. This last paragraph completed the
proof of Theorem 14.

85

4.4 Conclusion and perspectives

In this chapter, we proved the existence of an ergodic stochastic process over runs of a timed
region graph G with maximal entropy, provided G has finite entropy (H(G) > −∞) and
satisfies the D weak progress condition.

In the introduction, we already motivated the theory of this chapter by potential appli-
cations in verification and in coding theory.

4.4.1 Technical challenges

Getting rid of the D-WPC In our recent work [ABD13], we manage to prove the
existence of a spectral gap for Ψ without assuming the D-weak progress condition. We think
that such a spectral gap suffices to have existence and uniqueness of a maximal entropy
SPOR. Nevertheless the functional space of continuous function used in [ABD13] has a dual
space which is less intuitive to use (at least for the author) than L2(S), e.g. the meaning of
w in this functional space is still to be understood.

Computing ρ, v, w The next question is to know how simulation can be realized in prac-
tice. Symbolic computations of ρ and v have been proposed in [AD09a] for subclasses of
deterministic TA, the algorithm can be adapted to compute w. In the same article, an itera-
tive procedure is also given to estimate the entropy H = log2(ρ). We prove in [ABD13] that
this procedure converges exponentially fast due to the presence of the spectral gap mentioned
above. We think that approximations of ρ, v and w using an iterative procedure on Ψ and
Ψ∗ would give a SPOR with entropy as close to the maximum as we want. However, several
challenges remain to be solved. As described above, we must clarify the link between the
present work and [ABD13] and understand for instance what would be the iterates of Ψ∗.
Another technical hypothesis we want to get rid of is the decomposition of the state space
in regions. This decomposition can lead to an exponential blow-up of the size of the model.
In works on timed automata, regions are often replaced by zones which are in practice far
less numerous. It is a challenging task for us to define Ψ and then the maximal entropy
stochastic process Y ∗ on a state space decomposed in zones.

Discretizing Y ∗ Let G be a timed region graph, if we consider only states with clocks
multiples of a discretization step ε we obtain a finite graph Gǫ whose paths represent runs
of G with clocks and delays multiple of ε. This finite graph has a maximal entropy Markov
chain p∗Gε . It would be interesting to show that when ε tends to 0 the Markov chain p∗Gε gets
closer and closer (in a sense we must define) to the maximal entropy SPOR of the timed
region graph. This would permit to compute the maximal entropy SPOR of a timed region
graph with any required precision.

86

Chapter 5

Timed symbolic dynamics

Abstract of the chapter

In this chapter we develop a theory of timed symbolic dynamics. This theory explains the
recent results of volumetry of timed languages within a symbolic dynamics framework. On
the positive side, several results are leveraged from the classical symbolic dynamics such
as the definition of timed shift space. On the negative side, several results have no natural
extension to the timed case. For instance, we show that the topological entropy is infinite for
timed shift spaces and also that there is no correspondence between sliding block codes and
morphisms of shift space, contradicting (in the timed case) the so-called Curtis-Hedlund-
Lyndon Theorem. We give remedy to each of these negative results. In particular we show
how the classical entropy is naturally replaced by the volumetric entropy H of Asarin and
Degorre or by the (parametric) ε-entropy hε. The two entropies are related in Theorem 25
by the formula

hε = log2(1/ε) +H + o(1).

This solves the problem left open in [AD09b, AD09a] of computability of the entropy. Some
timed automata yield languages of n-length timed words of degenerate dimension and thus
of null volume. We adapt the metric mean dimension of Lindenstrauss, Weiss and Gromov
to the timed setting to measure these non full dimensional language. This measure is more
precise than the dichotomy between thin and thick timed languages described in Chapter 3.

Chapter structure

After several preliminaries (section 5.1) we briefly recall in section 5.2 the classical symbolic
dynamics. We introduce in section 5.3 compact alphabet shift spaces a general framework
containing the timed shift space defined later in section 5.4 devoted to timed sofic shift. In
this latter section we discretize the shift space and the entropy (section 5.4.3) and explore
the notion of metric mean dimension (section 5.4.4). Section 5.5 is devoted to morphisms of
compact alphabet shift spaces. We conclude in section 5.6.

87

5.1 Preliminaries

5.1.1 Words and factors

In this section, A denotes a finite or infinite set called alphabet. We denote by AZ the set of
bi-infinite words over A i.e. words of the form x = (xi)i∈Z with xi ∈ A. Given a bi-infinite
word x ∈ AZ and two indices i, j ∈ Z with i ≤ j, the finite word xixi+1 · · · xj is called a
factor of x and is denoted by x[i..j]. We denote by σA : AZ → AZ the (left) shift map which
operates on bi-infinite words x by shifting coordinates to the left i.e. if y = σA(x) then for
all i ∈ Z, yi = xi+1. When A is clear from the context, we will only write σ instead of σA.

5.1.2 Topology

We refer the reader to [BS02] and [LM95] for more details.

Metric spaces

A metric space (A, δ) is a set endowed with a distance i.e. a mapping from A2 to R+ such that
∀x, y, z ∈ A, δ(x, y) = δ(y, x); δ(x, y) ≥ 0; δ(x, y) = 0 iff x = y; δ(x, z) ≤ δ(x, y) + δ(y, z).
The following sets are metric spaces used in this chapter:

• An interval [0,M] where M ∈ N \ {0} and a distance δ1 such that δ1(x, y) = |x− y|.

• A finite alphabet Σ and a distance δΣ such that δΣ(l, l′) = 1l,l′ =





1 if l 6= l′

0 otherwise
.

• A timed alphabet A = [0,M] × Σ and a distance δ3 = δ1 + δΣ i.e δ3((a, t), (a
′, t′)) =

|t− t′|+ 1a,a′

in the last example Σ denotes a finite alphabet whose elements are called events and M is
an upper bound on delays between pairwise consecutive events. A “letter” (t, a) informally
means that the event a is produced after waiting a time t.

The product of a finite set Σ with a metric space A should be understood as several
disjoint copies of A. The closed (resp. open) sets of A× Σ are the finite unions of {a} × F
where a ∈ Σ and F is a closed (resp. open) subset of A.

If (A, δ) then so is (An, δn) with δn defined by

δn[(x1, . . . , xn), (y1, . . . , yn)] = sup
i∈{1,...,n}

δ(xi, yi).

For instance, for a finite alphabet Σ and two words w,w′ ∈ Σn, δnΣ(w,w′) = 1 iff w 6= w′, 0
otherwise.

In the same way AZ has a distance δ̄ defined by :

δ̄(x, x′) = sup
i∈Z

δ(xi, x
′
i)

2|i|
.

88

Remark 3. A sequence of bi-infinite words converges if and only if all its coordinates con-
verge i.e. xn →n→∞ x iff ∀i ∈ Z, xni →n→∞ xi.

Compacity, dynamical systems

Let (X, δ) be a metric space. A subset Y ⊆ X is an ε-net of X if every element of X is at
most ε far apart from an element of Y : ∀x ∈ X, ∃y ∈ A such that δ(x, y) ≤ ε. X is said to
be pre-compact if, for all ε > 0, there exists a finite ε-net of it. We denote by Nε(X, δ) the
minimal cardinality of ε-net of X.A set Y ⊆ X is said to be ε-separated if all two different
elements of Y are at least ε far apart from each other. ∀x, y ∈ Y, x 6= y ⇒ δ(x, y) > ε.
In a pre-compact set, all ε-separated set is of finite cardinality. We denote by Sε(X, δ) the
maximal cardinality of ε-separated1 sets of X.

Lemma 24 ([KT59], see also [BS02]). Given a pre-compact metric space X the followings
inequalities hold S2ε(X, δ) ≤ Nε(X, δ) ≤ Sε(X, δ)

A metric space is said compact if it is pre-compact and complete. The properties used
in this paper are:

• The compact subsets of Rn are the closed and bounded subset of it.

• Finite or infinite product of compacts (i.e (AZ, δ̄)) are compacts.

• Closed subset of compacts are compacts.

• Compacts of a metric space are closed and of bounded diameter (The distance between
every two elements of a compact A is upper bounded by a constant diam(A)).

• The image of a compact by a continuous mapping is a compact.

• Metric spaces given in examples are compact.

A dynamical system is a couple (X, f) where X is a metric space and f is a homeomor-
phism of X i.e. a continuous bijection from X to X whose reciprocal f−1 is continuous.

Informally, we can see X as the state space of the system. The function f is the evolution
law of the system, it gives the dynamics: given a starting state x0, the states f(x0), f

2(x0), ...
are the successors of x, fn(x0) is the state at the “moment” n. The function f−1 permits to
go back in the past.

5.1.3 Shift spaces

Proposition-definition 20. If (C, δ) is a metric compact space then ((CZ, δ̄), σ) is a dy-
namical system called full shift on C.

1The values log2(Nε(X, δ)) and log2(Sε(X, δ)) are known as ε-entropy and ε-capacity of X [KT59].

89

Proof. The reciprocal of σ is given by the right shift : σ−1(y) = x where ∀i ∈ Z, xi = yi−1.
Both shifts are continuous because they map converging sequences to converging sequences:
xn →n→∞ x iff ∀i ∈ Z, xni →n→∞ xi iff σ(xn)→n→∞ σ(x).

A subspace X of CZ is called a sub-shift of CZ whenever it is closed and shift invariant:
σ(X) = X. Clearly sub-shifts are also dynamical systems.

Given a shift space X, the set of factors of length n of bi-infinite words of X is denoted
by Xn = {x[i+1..i+n] | x ∈ X, i ∈ Z}.

In the broad field of research of symbolic dynamics [BS02, LM95], the shift spaces con-
sidered are on finite alphabet (|C| is finite). Shift spaces on more general compact spaces
have also been studied in [LW00].

5.1.4 ε-entropies and topological entropy

The topological entropy permits to measure the complexity of a system. Intuitively a system
is complex when it is sensitive to initial conditions. There are several equivalent ways to
define topological entropy, here we give a definition due to Bowen [Bow71].

Let ((X, d), f) be a dynamical system. For all n ∈ N∗ we define the distance between the
n first iterations of f on x, y ∈ X by:

dn(x, y) = max
0≤k≤n−1

(d(fk(x), fk(y))).

The idea is that two points x and y are ε far apart for dn if when iterating f at most n
times, we can distinguish them with a precision ε. An ε-net for dn is thus an approximation
of the system during n iteration and with precision ε. The N -ε entropy hNε (X) measures the
growth rate of these sets w.r.t n:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(X, dn)).

Similarly the S-ε-entropy is :

hSε (X) = lim sup
n→∞

1

n
log2(Sε(X, dn)).

The topological entropy htop(X) is defined by :

htop(X) = lim
ε→0

hNε (X)

which is also, by virtue of Lemma 24, equal to limε→0 h
S
ε (X).

5.2 Classical symbolic dynamics

In this section Σ is a finite alphabet which is the simplest case of compact alphabet. The
theory of finite alphabet shift spaces is the core of symbolic dynamics. A broad part of
this theory can be explained in an elementary manner with characterization of the principal
objects (shift space, entropy, conjugacy ...) based on finite factors and without referring to
topology (see [LM95]). We will lift to the timed case several results of this section.

90

5.2.1 Characterization with finite factors

Definition 1. Given a family O = (On)n∈N∗ where for each n ∈ N, On ⊆ Cn, we denote
by XO the set of bi-infinite words not having factors in O : XO = {x ∈ CZ | ∀i ∈ Z, ∀n ∈
N, x[i..i+n] 6∈ On}.

We have also the dual definition

Definition 2. Given a family F = (Fn)n∈N∗ where for each n ∈ N, Fn ⊆ Cn, we denote by
B(F) the set of bi-infinite words whose authorized factors are those of F : B(F) = {x ∈
CZ | ∀i ∈ Z, ∀n ∈ N, x[i..i+n] ∈ Fn}

The following theorem permits to define shift spaces with factors.

Theorem 21. A set is a shift space iff it can be defined as a XO iff it can be defined as a
B(F).

The entropy can also be characterized with factors as follows:

Proposition 20. The topological entropy of a sub-shift X ⊆ CZ for a finite C is:

lim
n→+∞

1

n
log2 |Xn|

5.2.2 Edge and sofic shifts

Let G = (Q,∆) be a finite graph with possibly multiple edges between two nodes, Σ be a
finite alphabet and Lab : ∆→ Σ a labelling function on edges. The couple (G, Lab) is called
a labeled graph.

A finite (resp bi-infinite) path of G is a finite (resp bi-infinite) sequence of consecutive
edges δi such that for all i ∈ {1, . . . , n − 1} (resp i ∈ Z) δi

+ = δi+1
− (where we recall the

notation that a transition δ starts from a vertex δ− and ends in the vertex δ+).
The set PATH(G) of bi-infinite paths of a labeled graph G is a sub-shift of (∆Z, σ) called

edge shift of G. The sofic shift of the labeled graph (G, Lab) is the set of bi-infinite words
that label bi-infinite paths of G:

Lab(PATH(G)) = {(Lab(δi))i∈Z | ∀i ∈ Z, δi
+ = δi+1

−},

it is a sub-shift of ΣZ .

5.2.3 The language point of view.

In the next chapter we will recall several notions of constrained channel coding based on
languages (of finite words) and their entropies. There is a direct correspondence between
shift spaces and languages we explain now.

A language L is factorial whenever for every word w ∈ L every factor of it is in the
language. A language L is extensible whenever for every word w ∈ L there exist letters
a, b ∈ Σ such that wa ∈ L and bw ∈ L.

91

These two conditions are usual in the context of coding and can be justified in practice
as follows. If we can encode (decode) some long word w (e.g. a movie file), then we want
also to encode (decode) its contiguous fragments (e.g. a short scene in the middle of the
movie). On the other hand, some extension of w should correspond to a longer movie.

A labelled graph can be seen as a finite automaton whose states are all initial and final.
This property ensures factoriality. Every bi-infinite path of the automaton visits only vertices
that have both ongoing and outgoing edges. Vertices that do not satisfy this condition can
be pruned out without loss of generality. The resulting automaton has only states with
ongoing and outgoing edges. This ensures extensibility of the language. Thus every regular,
factorial and extensible language is the language of allowed block of a sofic shift. We call
such a language sofic. Entropy can be defined directly for sofic languages L:

h(L) = lim
n→+∞

1

n
log2 |Ln|. (5.1)

For a sofic language L recognized by a given automaton, its entropy h(L) can be effectively
computed using linear algebra. In particular if L = Σ∗ for a k-letter alphabet Σ then
h(L) = log2 k. Finally, the intuitive meaning of the entropy is the amount of information (in
bits per symbol) in typical words of the language.

5.3 Compact alphabet shift space

5.3.1 Factor based characterization of shift spaces.

We already defined shift spaces as shift invariant and closed subsets of CZ for some met-
ric compact alphabet C. Here we generalize from finite to compact alphabet shift spaces
the factor based characterization of such shift spaces (see [LM95] and Theorem 21 recalled
above).

Definition 3. Given a family O = (On)n∈N∗ where all On are open sets of Cn, we denote by
XO the set of bi-infinite words whose forbidden factors are those of O : XO = {x ∈ CZ | ∀i ∈
Z, ∀n ∈ N, x[i..i+n] 6∈ On}.

We have also the dual definition

Definition 4. Given a family F = (Fn)n∈N∗ where all Fn are closed sets of Cn, we denote
by B(F) the set of bi-infinite words whose authorized factors are those of F : B(F) = {x ∈
CZ | ∀i ∈ Z, ∀n ∈ N, x[i..i+n] ∈ Fn}

Theorem 22. A subset of CZ is a shift space iff it can be defined as a XO iff it can be defined
as a B(F).

Proof. Poof that X is a shift space ⇔ it can be defined as a B(F)
⇒) Let X be a shift space. Let F = (Xn)n∈N∗ . By definition X ⊆ B(F). To show the

converse inclusion, we take an x ∈ B(F) and prove that it belongs to X. As x[−n..n] ∈ X2n+1,

92

there exists a bi-infinite word xn ∈ X such that xn[−n..n] = x[−n..n]. The sequence (xn)n∈N
converges to x. As this sequence takes its values in the closed set X, its limit x is also in
X. It remains to prove that for all n ∈ N∗, Xn is closed. It suffices to show that for every
convergent sequence (wm)m∈N of Xn, its limit w belongs to Xn. For each n, there exists an
xm ∈ X such that xm[0..n−1] = wm. The sequence xm of the compact CZ admits a subsequence
which converges toward an x ∈ X. We have x[0..n−1] = limn x

m
[0..n−1] = limnw

m = w and thus
w belongs to Xn as a factor of x ∈ X.
⇐) Let X = B(F). X is shift invariant. Let us show that X is closed. It suffices to show

that for every convergent sequence (xm)m∈N of X, its limit x belongs to X. For all n ∈ N∗,
m ∈ N and i ∈ Z, xm[i..i+n−1] ∈ F n. As F n is closed, x[i..i+n−1] = lim xm[i..i+n−1] belongs to F n.
All factors of x belongs to F thus x ∈ B(F) = X which is thus closed.
Poof that X is a shift space ⇔ it can be defined as a XO

⇒) We take F = (Xn)n∈N∗ as above. We define O = (Cn \ Xn)n∈N∗ . For each n, On is
relatively open in Cn since Xn is closed. By definition of O, B(F) = X0 which is equal to
X.
⇐) Let X = XO. X is shift invariant. Let us show that X is closed. It suffices to show

that for every convergent sequence (xm)m∈N of X, its limit x belongs to X. For all n ∈ N

and i ∈ Z, we have x[i..i+n−1] = lim xm[i..i+n−1] 6∈ On since On is open. Thus x ∈ X0.

Example 4. Let C = [0, 1] × {a} and the set of forbidden factors be given by O2 =
{(a, t)(a, t′) | t+ t′ > 1}. The shift space XO is the set {(a, ti)i∈Z | ti + ti+1 ≤ 1}.

5.3.2 An infinite topological entropy

Topological entropy is very useful to compare dynamical systems. Unfortunately it is infinite
in our case of interest, i.e. for shift spaces on infinite alphabet. Such fact was already known
and given as a motivating remark in [LW00]. It is a straightforward consequence of the two
following lemmas:

Lemma 25. If C has infinite cardinality then Sε(C, δ)→ε→0 +∞.

Lemma 26. Let (C, δ) be a compact metric space. Then

hSε ((CZ, δ̄), σ) ≥ log2(Sε(C, δ)).

The fact that topological entropy for the shift spaces we are interested in is infinite can
seem problematic. In the two next sections (sections 5.3.3 and 5.3.4) we will see two ways
to circumvent this problem.

5.3.3 Entropy of a mesurable shift

The alphabets of interest Σ, [0,M], [0,M]×Σ have natural measures. The counting measure
for Σ, the Lebesgue measure (i.e. 1-dimensional-volume) for [0,M] and the product measure
of the two for A = [0,M]× Σ.

93

We suppose that the metric compact set C is also endowed with a ”natural” measure µC.
The set Cn has the product measure µn

C . For example the measure on Σn is the counting
measure, that on [0,M]n is the n-dimensional Lebesgue measure (volume) and the measure
on ([0,M] × Σ)n ∼= [0,M]n × Σn also called volume is the product of the two preceding
measures. As already observed in other chapters of this thesis, a subset Ln of ([0,M]× Σ)n

can be seen as a formal sum of subsets Lw ⊆ [0,M]n indexed by words w ∈ Σn. The volume
of Ln is just the sum of the volumes of Lw:

Vol(Ln) = Vol (∪w∈Σn{w} × Lw) =
∑

w∈Σn

Vol(Lw).

We define the entropy of a sub-shift X of CZ as

H(X) = lim
n→+∞

1

n
log µn

C(Xn). (5.2)

This limit is well defined. Indeed, the set inclusion Xn+m ⊆ XmXn for m,n ≥ 0 im-
plies the inequality µn+m

C (Xn+m) ≤ µm
C (Xm)µn

C(Xn). Thus the sequence (log µn
C(Xn))n∈N is

sub-additive log µn+m
C (Xn+m) ≤ log µm

C (Xm) + log µn
C(Xn) and we use (as in the proof of

Proposition 2.3.3) Fekete’s Lemma on sub-additive sequences [Fek23].
For example for finite alphabet shift spaces this definition coincides with the classical

characterization of entropy (Proposition 20). The entropy of a sub-shift of ([0,M] × Σ)Z is
the (volumetric) entropy introduced in [AD09a] and recalled in Chapter 2.

5.3.4 Keeping the ε-entropy

Another way of circumventing the problem of the infinite topological entropy is to consider
an asymptotic expansion of the ε entropy instead of its limit when ε tends to 0.

One of our main theorems (Theorem 25) states that for timed shift spaces considered,
this asymptotic expansion is of the form hε(X) = log2(

1
ε
) +H(X) + o(1) where H(X) is the

entropy defined above (5.2).
One can interpret as in [AD09b] H(X) as the average information for each event and

log2(
1
ε
) as the information necessary to represents with precision ε the time between two

events.

ε-entropies defined using factors

The distance d̄n used in the definition of ε-entropies is quite uneasy to deal with. We give
here definitions of ε-entropies based on distances dn defined using finite factors of Cn. For
this distance ε-balls are just hypercubes of side ε.

Proposition 21. Let X be a metric compact alphabet shift space. The N-ε-entropy (resp S-
ε-entropy) defined on bi-infinite words is equal to the following ε-entropy of X defined using
finite factors:

hNε (X) = lim sup
n→∞

1

n
log2(Nε(Xn, δ

n));

94

hSε (X) = lim sup
n→∞

1

n
log2(Sε(Xn, δ

n)).

This proposition is a consequence of the four following lemmas.

Lemma 27. For all ε > 0 : Nε(Xn, δ
n) ≤ Nε(X, δ̄n).

Proof. Let R be an ε-net of X for δ̄n. We define R′ = {x[0..n−1]| x ∈ R}. We will show that
R′ is an ε-net of Xn. For all y ∈ Xn, there exists y′ ∈ X such that y′[0..n−1] = y. There exists

x ∈ R such that δ̄n(x, y′) ≤ ε. In particular, for all i ∈ {0, .., n− 1}, δ̄(σi(x), σi(y)) ≤ ε thus
maxi∈{0,..,n−1} δ(xi, yi) < ε i.e δn(x, y) ≤ ε.

Lemma 28. For all ε > 0, there exists l such that Nε(Xn+2l, δ
n+2l) ≥ Nε(X, δ̄n).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let Rn+2l be an ε-net of Xn+2l. For all

x ∈ Rn+2l, we choose x̂ ∈ X such that x̂[−l..n+l−1] = x and we define R̂ = {x̂ | x ∈ R}.
We will show that R̂ is an ε-net of X for δ̄n. Let y ∈ X, there exists x ∈ Rn+2l such that
δn+2l(y[−l..n+l−1], x) ≤ ε. Therefore, for all k ∈ {0..n − 1} : maxi∈{−l...l}

δ(xi+k,yi+k)

2|i|
≤ ε and

thus supi∈Z
δ(xi+k,yi+k)

2|i|
≤ ε i.e δ̄n(x, y) ≤ ε

Lemma 29. For all ε > 0 : Sε(Xn, δ
n) ≤ Sε(X, δ̄n).

Proof. Let S be an ε-net of Xn for δn. For all x ∈ S, we choose x̂ ∈ X such that
x̂[0..n−1] = x and we define Ŝ = {x̂ | x ∈ S}. We have, for all x̂, ŷ ∈ Ŝ δ̄n(x̂, ŷ) =

maxk∈{0...n−1} supi∈Z
δ(x̂i+k,ŷi+k)

2|i|
≥ maxk∈{0..n−1} δ(xk, yk) = δn(x, y) > ε. Thus Ŝ is ε-separated.

Lemma 30. For all ε > 0, there exists l such that Sε(Xn+2l, δ
n+2l) ≥ Sε(X, δ̄n).

Proof. Let l ∈ N such that max|i|>l
diam(C)

2|i|
≤ ε. Let S a ε-net of X for δ̄n. We define S ′ =

{x[−l..l+n−1] | x ∈ S}. We have, for all x, y ∈ S, δ̄n(x, y) = maxk∈{0...n−1} supi∈Z
δ(xi+k,yi+k)

2|i|
>

ε. The terms of indices less than −l and greater than n + l − 1 are not taken into account
as by definition of l they cannot be greater than ε. Therefore δn+2l(x[−l..l+n−1], y[−l..l+n−1]) ≥
δ̄n(x, y) > ε and S ′ is ε-separated.

5.4 Timed edge shift and timed sofic shift

We define in this section timed sofic shifts which are a way to see regular timed languages
as compact alphabet shift spaces. This permits to bring tools from symbolic dynamics
as entropy, metric mean dimension, codings to timed automata theory. In the opposite
direction, this permits to bring the continuous time of timed automata theory to the field of
symbolic dynamics and coding.

95

5.4.1 Definitions

Timed edge shift

We have defined timed region graphs (TRG) and their closed versions (CTRG) in Chapter
2. CTRGs are the timed analogues of finite graphs. A CTRG yields two kinds of compact
alphabet shift spaces, one is the set of bi-infinite runs (whose definition are recalled just
below) the other called timed edge shift is the set of bi-infinite words of timed transitions
that can be recognized by the CTRG.

A bi-infinite run of a (closed) timed region graph G is a bi-infinite word (si, αi)i∈Z ∈
(S×A)Z such that si+1 = si ⊲ αi 6= ⊥ for all i ∈ Z (notation ⊲ as well as finite runs has been
defined in chapter 2).

Lemma 31. The set {(s, α, s′) | s′ = s ⊲ α} is a closed subset of S× A× S.

Proof. It suffices to remark that for every transition δ the set of tuples (~x, t, ~x′) such that
(δ−, ~x) ⊲ (t, δ) = (δ+, ~x′) is a polytope. Indeed it is a bounded set defined by equations
involving equality and non-strict inequality only (they have the following form x′ = x + t,
x′ = 0, A ≤ x ≤ B, x ≤ y, A ≤ x+ t ≤ B).

Proposition 22. The set of bi-infinite runs of G, RunG = {(si, αi)i∈Z | si+1 = si ⊲ αi} is a
sub-shift of (S× A)Z.

Proof. This set is shift invariant. We show that it is closed. The set {(s, α, s′) | s′ = s ⊲ α}
is a closed subset of S×A× S. For a fixed j ∈ Z the projection (si, αi)i∈Z 7→ (sj, αj, sj+1) is
continuous and thus the set of runs (si, αi)i∈Z such that sj+1 = sj ⊲αj is closed. The set RunG
is the intersection for j ∈ Z of the closed sets described just above, it is thus closed.

Proposition-definition 23. The following set is a sub-shift of AZ called the timed edge
shift of G and denoted by XG:

XG = {(αi)i∈Z | ∃(si)i∈Z ∈ SZ, ∀i ∈ Z, si+1 = si ⊲ αi}.

Proof. This set is obtained by projecting RunG on the timed transition components. By
continuity, the projected set is compact.

Every bi-infinite run visits only locations that have both ongoing and outgoing edges.
Location that do not satisfy this condition can be pruned out without loss of generality.
From now on we consider without loss of generality only such pruned labelled graphs.

A timed edge or sofic shift is fleshy if so is its underlying TRG (see Chapter 2 for definition
of fleshiness).

Timed sofic shift

Similarly to the finite case, when adding to a TRG G a labelling function Lab : ∆→ Σ from
the set of transition ∆ to a finite alphabet of event Σ we obtain a labelled timed region graph
LTRG A = (G, Lab).

96

Abusing the notation we will extend the labelling function to timed letters and runs as
follows: Lab(α) = (t, Lab(δ)) when α = (t, δ) and Lab[(si, αi)i∈Z] = (si, Lab(αi))i∈Z.

As in classical symbolic dynamics a LTRG is called right resolving if every two different
transitions have pairwise incompatible guards (this is the usual definition of determinism
without the condition of the uniqueness of an initial state). Finally a labelled closed timed
region graph (LCTRG) is called right resolving if it is obtained from a right resolving LTRG
by taking the closure of guards and regions.When dealing with LCTRG, there can be a
non determinism on border of guards, however it remains of null volume. For instance the
LCTRG on figure 5.1 is right resolving with a null volume non determinism for x = 1.

p
x ∈ [0, 1]

q
x ∈ [0, 1]

r
x ∈ [1, 2]

a, x ∈ [0, 1] a, x ∈ [1, 2]

Figure 5.1: A right resolving LCTRG

Proposition-definition 24. Let A = (G, Lab) be a labeled closed timed region graph then
the following set is a sub-shift of (S×Lab(A))Z called the timed sofic shifts of A and denoted
by XA:

XA = Lab(XG) = {Lab[(αi)i∈Z] | (αi)i∈Z ∈ (αi)i∈Z ∈ XG}

Indeed since labelling is a continuous mapping, XA is a shift space as XG.
We are mainly interested in right-resolving timed sofic shift: the shift spaces associated

to right resolving LCTRGs.
The LCTRGs depicted in figure 5.2 are right-resolving, they recognize the timed sofic

shift spaces of Examples 5, 6, 7 and 8.

5.4.2 The timed language point of view

Here we relate shift spaces of bi-infinite timed words (the focus of the chapter) to languages
of finite timed words (used in the rest of the thesis). We also prove that edge and sofic shifts
have the same entropy in case of determinism.

A right-resolving labelled (closed) timed region graph can be seen as a (closed) region-
split BDTA (see [AD09a] and section 2.3 of the present thesis) with all states of entry regions
being initial and finals. This latter property ensures factoriality of the language as defined
and motivated in the discrete case (section 5.2.3). Moreover, the language is extensible
(as the timed region graph is assumed to be pruned). Such timed language recognized by
right-resolving LCTRG are called sofic. They will be used in the next chapter.

Recall from Chapter 2 that the language of a timed region graph is L(G) = {(~t, π) | ~t ∈
Pπ}. This language is exactly the set of allowed factors of XG. It is extensible and factorial.

97

p

a, x = 1, x := 0

p q

a, x = 1, x := 0

b, 0 ≤ x ≤ 1, x := 0

p

a, x ≤ 1, x := 0

p q

a, x = 1, x := 0

b, 0 ≤ x ≤ 1

a, x = 1, x := 0

b, 0 ≤ x ≤ 1

Figure 5.2: LCTRGs for Examples 5, 6 (first row) and for Examples 7 and 8 (second row)

The following proposition states that entropy of a timed sofic language is equal to that
of the underlying TRG G.

Proposition 23. Given a right-resolving LCTRG A = (Ḡ, Lab), its entropy is equal to that
of its underlying TRG G:

H(L(A)) = lim
n→∞

1

n
log2

(
∑

w∈Σn

Vol(Pw)

)
= lim

n→∞
1

n
log2

(
∑

π∈∆n

Vol(Pπ)

)
= H(L(G)).

Proof. The inequality H(A) ≤ H(G) is easy to prove since for each w we have Pw =
∪π∈Lab−1(w)Pπ and then for every n ∈ N:

Vol(Ln(A)) =
∑

w∈Σn

Vol(Pw) ≤
∑

w∈Σn

∑

π∈Lab−1(w)

Vol(Pπ) = Vol(Ln(G)).

For the converse inequality, everything would be very simple if the above union were
disjoint. This is not the case due to freedom on the initial state. Indeed, let us consider for
instance the right resolving LCTRG depicted in Figure 5.1. The timed transition (0.5, a)
taken from (p, 0.2) leads to (q, 0.7) while taken from (p, 0.8) leads to (r, 1.3).

However the polytopes Pπ(2)
(s), Pπ′

(2)
(s) associated with two distinct paths π(2) 6= π′(2)

and a same starting state s are disjoint. Then, if all clocks are reset during a path π(1), for
every two distinct paths π(2), π

′
(2) we have Pπ(1)π(2)

∩ Pπ(1)π
′
(2)

= ∅. We divide in two groups

the set of paths of a given length l (l is a parameter that we will tune later):

• the set R(l) of paths which reset all its clocks;

• the set of other paths. For paths in this latter set, it holds that Vol(Pπ) ≤ 1
l!

98

The nth volume associated with G is

Vol(Ln(G)) =
∑

π∈∆n

Vol(Pπ) =
∑

π(1)∈R(l)

∑

π(2)∈∆n−l

Vol(Pπ(1)π(2)
)+

∑

π(1) 6∈R(l)

∑

π(2)∈∆n−l

Vol(Pπ(1)π(2)
)).

We will denote by S1 and S2 the two sums above. S2 is upper bounded by |∆|n
l!

. For each
w ∈ Σn we have

Pw =
⋃

π(1)∈R(l)

⊎

π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

Pπ(1)π(2)

and then

Vol(Pw) ≥ max
π(1)∈R(l)

∑

π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

Vol(Pπ(1)π(2)
)) ≥

1

|∆|l
∑

π(1)∈R(l)

∑

π(2)∈∆n−l

π(1)π(2)∈Lab−1(w)

Vol(Pπ(1)π(2)
).

We sum over all w and deduce that Vol(Ln(A)) ≥ S1/|∆|l. Remark that H(XA) ≥ H(XG)−
log2(|∆|) since

Vol(Ln(A)) =
∑

w∈Σn

Vol(Pw) ≥ max
π∈∆∗

Vol(Pπ) ≥ Vol(Ln(G))

|∆|n .

Hence H(L(A)) = −∞ iff H(L(G)) = −∞. We suppose now that H(L(A)) > −∞. In par-
ticular Vol(Ln(A)) behaves like an exponent in the following sense: for every a < 2H(L(A)) < b
it holds that bn >> Vol(Ln(A)) >> an.

Recap that Vol(Ln(G)) = S1 + S2, S2 ≤ |∆|n
l!

and S1 ≤ Vol(Ln(A))|∆|l, hence

Vol(Ln(G)) = S1 + S2 ≤ Vol(Ln(A))

Ç
|∆|l +

|∆|n
l!Vol(Ln(A))

å
. (5.3)

We choose l such that l << n << log2(l!) e.g. l such that n = l log2(log2(l)). With such an

l the quantity 1
n

log2(|∆|l + |∆|n
l!Vol(Ln(A))) tends to 0 and then taking limn→∞

1
n

log2(.) in (5.3)

yields H(L(A)) ≤ H(L(A)).

Thus, in case of determinism the computability of entropy for a timed sofic shift reduces
to the computability of entropy of its underlying timed region graph. That is why, in the
following, we restrict our attention w.l.o.g. to timed region graphs (without labelling) and
their corresponding timed edge shifts.

99

5.4.3 Discretization

Several definitions of ε-entropy for general compact alphabet shift spaces were given in section
5.3.4. Here we work with timed shift spaces : the sub-shifts of AZ. In this particular case
we give a simpler definition of ε-entropy which turns out to be computable for timed sofic
shift and asymptotically equal to the other ε-entropies under some hypotheses (i.e. thickness
and fleshiness). This new definition of ε-entropy is based on discretization of the timed shift
space we explore now.

We call ε-discrete the different objects involving delays and clocks multiple of ε (i.e vector
of delays of Rn, timed words, bi-infinite timed words, runs, etc.). The ε-discretization of a
set B denoted by Bε is the set of its ε-discrete element. For instance, for A = [0,M] × ∆,
Aε = {0, ε, . . . ,Mε} ×∆; for X ⊆ AZ, Xε = X ∩ AZ

ε ; for P ⊆ Rn, P ⊆ εZn.
Given an ε-discrete point ~t = (t1, . . . , tn) ∈ Rn, its ε-North-East-neighborhood is the

hypercube BNE
ε (~t) = {(u1, . . . , un) | ui ∈ [ti, ti + ε], i = 1..n}. This notion extends to

timed words as follows BNE
ε (~t, w) = BNE

ε (~t)× {w}. as well as to sets of ε-discrete elements
BNE
ε (Bε) = ∪b∈BεBNE

ε (b).

Discretization of a shift space and its entropy

The following properties permit a reduction from timed shift spaces to discrete ones.

Proposition 24. Given a subshift X of AZ then Xε is a subshift of AZ
ε .

We define the ε-entropy of a shift X as the (topological) entropy of the shift Xε:

hε(X) =def lim
n→∞

1

n
log2 |Xε,n|.

The discretization of a timed edge shift XG is the sofic shift of a finite labeled graph
Gε obtained from G by a discretization of its timed transitions and states as follows: Gε =
((Qε,∆ε), Labε) with Qε = S∩(Q×{0, ε, . . . ,Mε}d), Labε : ∆ε → Aε and there is a transition
s→ s′ in ∆ε labeled by α iff s ⊲ α = s′.

Proposition 25. Let G be a CTRG, then Gε is right resolving and

X(Gε) = (XG)ε.

Proof. Let Y be the sofic shift recognized by Gε. It is straightforward that Y ⊆ Xε. To prove
the converse inclusion we take (αi)i∈Z ∈ (XG)ε and show that (αi)i∈Z ∈ Y . By definition of
(XG)ε, each αi is ε-discrete i.e. of the form αi = (kiε, δi) with ki ∈ {0, . . . ,M/ε} and (αi)i∈Z
is obtained by projecting states of an infinite run of G, say (si, αi)i∈Z. We denote by xi the
value of the clock x at the index i of this run. Our objective is to transform the value of xi
for all clocks x and indexes i in such a way that the new values are multiple of ε and the
guards are still satisfied. For every clock x, we denote by fr(x) the index of first reset of x
(possibly equal to −∞ if the clock is reset infinitely often in the past or +∞ if the clock is
never reset).

100

Since all the delays are multiple of ε then so is xi for i ≥ fr(x). Remark that for all
i < fr(x) we have xi = xfr(x) −

∑
i≤l<fr(x) klε. As all xj ∈ εN for j ∈ Z, it holds that kl = 0

for every l lower than a position fp(x) where it is positive for the first time (here also fp(x)
can take values −∞, +∞). We have thus the three possible cases for xi:

• xi = xfp(x) if i ≤ fp(x);

• xi = xfp(x) +
∑i−1

l=fp(x) klε if fp(x) < i ≤ fr(x);

• xi is multiple of ε if i > fr(x).

It remains to choose a new value for xfp(x) that is multiple of ε. The guards on the path
(δi)i∈Z give inequalities of the form Ai ≤ xi ≤ Bi. The lower bound for ε−1xfp(x) is

sup(sup
i≤fp(x)

ε−1Ai, sup
fp(x)<i≤fr(x)

ε−1Ai −
i−1∑

l=fp(x)

ki).

This lower bound is an integer since it is a supremum over a set of integers. A symmetric
reasoning can be used for the upper bound. An arbitrary choice between the lower and upper
bounds gives a new value for ε−1xfp(x) which is an integer. This choice does not affect the
delays nor the values of the other clocks, it permits to have a new run satisfying the same
constraints. One can repeat this operation until all the clocks are ε-discrete in all positions
and then we are done.

As a corollary the computation of the ε-entropy of a timed sofic shift reduces to the
computation of the entropy of a (finite alphabet) sofic shift:

Corollary 1 (A symbolic dynamics version of [AD09b], Theorem 3). Let G be a timed region
graph, its ε-entropy is the topological entropy of the sofic shift Gε:

hε(XG) = h(XGε)

In particular, hε(XG) can be computed as the logarithm of the spectral radius of the adjacency
matrix of the graph Gε (This matrix has order O(|Q|/εd) where d is the number of clocks).

Discretizing the volumetric entropy

Theorem 25. Let G be a fleshy thick timed region graph then its volumetric entropy can be
approximated by its ε-entropy as follows:

hε = log2(1/ε) +H + o(1)

The proof uses geometrical arguments on polytopes associated to paths and requires
several definitions we give now. Given a polytope P , we denote by NP its N -fold dilated
copy, i.e. {N~t | ~t ∈ P} and by E(P) = P ∩ Zn the set of points with integer coordinates
in P . We call a contiguous polytope d-fat if it is d contiguous and there exists an integer

101

point in the interior of dP (called an internal point). In other words, a polytope is d-fat if
there exists a point (u1, · · · , un) ∈ Rn such that

∑k
i=j ui ∈ [dA+1, dB−1] for all inequalities∑k

i=j ti ∈ [A,B] defining the polytopes and if k − j + 1 ≤ d for all such inequalities.
The ≥ direction of Theorem 25 is the following lemma:

Lemma 32. For thick timed sofic shifts:

hε ≥ H + log2(1/ε). (5.4)

Proof. We will bound the volume Vol(Xn) by the number of discrete points |Xε,n|. For this,
we will use a beautiful theorem on counting points in polytopes:

Theorem 26 (Ehrhart, see [BR07]). For integer N and an integer polytope P ⊂ Rn

(i.e. whose vertices have integer coordinates), the number of integer points |E(NP)| is a
polynomial in N with non negative coefficients of degree n and whose coefficient of the high-
est degree is the volume of P .

We deduce directly from this theorem that for each path π of length n and ε = 1
N

the
following holds: Vol(Pπ)Nn ≤ |E(NPπ)|. Summing over all paths of length n and taking
limn→∞

1
n

log2(.) in both sides of the inequality, we get H + log2
1
ε
≤ hε.

Upper bounding hε by H + log2
1
ε

+ o(1) is more involved, and we first give a sketch of
the proof. Details of the proof are given later.

Sketch of the proof. We fix several integer parameters: b, c, d, e (they have to be adjusted
in order to obtain the required estimate). Let π be a path of a length n (It is fleshy by
assumption). At every b transitions, we insert in π a forgetful cycle of length c (it exists by
virtue of Lemma 14). Thus we obtain a slightly longer path π′ (its length is n′ ≈ n(1+c/b)),
whose polytope P ′π is e-fat.We have three inequalities:

1. The first one:

|Pπ,ε| ≤ |Pπ′,ε|
is proved by constructing an injection from the left-hand side ε-discrete set to the
right-hand side one.

2. We choose ε′ slightly smaller than ε (another parameter to adjust) and consider the
polytope P− obtained from Pπ′ by pushing all its facets inside by the amount2 δ = ε′e.
Using fatness of Pπ′ , it is possible to build an injection from its ε-discrete points to
ε′-discrete points of P− (the latter is a bit smaller but its discrete points are slightly
denser).

|Pπ′,ε| ≤
∣∣∣P−ε′

∣∣∣ .

2i.e. by replacing each constraint
∑k

i=j ti ∈ [A,B] in the definition of Pπ′ as a (closed) contiguous polytope

by
∑k

i=j ti ∈ [A+ δ, B − δ] (see also [AD09b]).

102

3. Taking an ε′-cube at every ε′-discrete point of P−, we get a set included in Pπ′ (this
requires e-contiguity of Pπ′). Passing to volumes we conclude that

ε′
n′ ∣∣∣P−ε′

∣∣∣ ≤ Vπ′ .

Combining the three inequalities we get:

|Pπ,ε| ≤
Ä
ε′−n

′

Vπ′

ä
,

and with an appropriate choice of parameters, ε′ and n′ can be made very close to ε and n.
Summing up over π and taking limn→∞

1
n

log2(.) in the previous inequality, we obtain the
required result.

Corollary 2. For a timed region graph G, H is computable as function of G. Consequently,
H is a computable real (i.e. one can compute its approximation with any wanted precision).

Proof. Using Theorem 6 of Chapter 3 one can decide whether G is thick or not. If it is
thin then H = −∞. Otherwise, the automaton is thick and it just remains to compute the
discrete entropy h(XGε) (see Theorem 1) for the wanted precision.

Details of the proof of Theorem 25

We begin by some auxiliary results used in the core of the proof.

Lemma 33. If a contiguous polytopes contains a 1/N discrete and internal point then it is
NM -fat.

Proof. Let (t1, . . . , tn) be a 1/N discrete and internal point of the polytope. This point is
also a 1

NM
discrete and internal point of the polytope. Equations of the polytopes are of the

form A ≤ ∑k
i=j ti ≤ B with B ≤ M . As for every i ∈ {1, . . . , n}, ti > 0 and ti is multiple

of 1
N

then ti ≥ 1
N

and k−j+1
e
≤ ∑k

i=j ti ≤ M . We deduce the result: lengths k − j + 1 of
contiguous sums are bounded by NM .

The following two discretization lemmas are from [AMP98].

Lemma 34. If ~x, ~x′ are ε-discrete and Pπ(~x, ~x′) 6= ∅ then Pπ,ε(~x, ~x
′) 6= ∅.

Lemma 35. Every contiguous polytope P of dimension n has an 1
m
-discrete internal point

for all m > n.

The constant c occurring in the following definition is that defined in Proposition 14.

Lemma 36 (fattening the polytopes). Let b ∈ N, for every n ∈ N there exists an injection φ
from path of length n to path of length n′ = n+⌊n/b⌋c = n(1+O(b)) and such that polytopes
of these paths are e-fat with e =def M(c+ 1)(b+ 1) = O(b) and satisfy:

|Pπ,ε| ≤
∣∣∣Pφ(π),ε

∣∣∣ .

103

Proof. Let π be a path of length n = mb+ r with 0 ≤ r ≤ b− 1. We will insert in π at every
b letters a forgetful cycle fi such that the polytope associated to the created word is e-fat
with e = M(b+ 1)(c+ 1) (and thus contain more discrete points).

Let π = π(1)π(2) . . . π(m)π(m+1) where π(1), . . . , π(m) are words of length b (and thus
|π(m+1)| = r). For all i ∈ {1, . . . ,m}, there exists a forgetful cycle fi of length c on the
region ri between π(i) and π(i+1).

We define π′ = φ(π) by φ(π) = π(1)f1π(2) . . . π(m−1)fm−1π(m)fmπ(m+1). Function φ is an
injection from En to En′

with n′ = n + mc ∼ n(1 + c/b). This injection can be extended
to ε-discrete words because with Lemma 34, for each couple of ε-discrete states of ri we can
choose delays labelling fi to join each other. Therefore we have the inequality |Pπ,ε| ≤ |Pπ′,ε| .

By Lemma 35, for each i one can find a 1
b+1

-discrete and internal run on π(i) starting
from a state si and ending in a state s′i. One can also find a 1/[(b + 1)(c + 1)]-discrete and
internal run on fi from s′i to si+1. We have described a 1/[(b+1)(c+1)]-discrete and internal
run on π′. The polytope is thus e-fat with e = M(b+ 1)(c+ 1) by virtue of Lemma 33.

For every e-contiguous polytope, and a discretization step ε ≤ 1/2e, we denote by P−eε

the polytope defined from P by replacing all inequalities
∑k

i=j ti ∈ [A,B] involved in the
definition of P by

∑k
i=j ti ∈ [A+ eǫ, B − eε].

Lemma 37. If P is an e-fat contiguous polytope, ε ≤ 1/2e the inverse of a positive integer
and ε′ = ε

1+e2ε
, then the following inequality holds:

|Pε| ≤
∣∣∣P−eε

′

ε′

∣∣∣ .

Proof. As Pπ′ is e-fat, there exists ~u ∈ Nn such that for each equation
∑k

i=j ti ∈ [A,B]
defining P it holds that

eA+ 1 ≤
k∑

i=j

ui ≤ eB − 1. (5.5)

The mapping ~t 7→ ε′

ε
~t + ε′e~u is injective, we show that it maps Pε into P−eε

′

ε′ , which yields

the expected inequality on cardinalities |Pε| ≤
∣∣∣P−eε

′

ε′

∣∣∣.
By definition ~t ∈ Pε iff ~t/ε ∈ Nn and

A ≤
k∑

i=j

ti ≤ B. (5.6)

Now, one can remark that 1
ε

+ e2 = 1
ε′

and then combining inequalities as follows ε′[1
ε
×

(5.6) + e× (5.5)] gives

A+ eε′ ≤
k∑

i=j

ε′

ε
ti + ε′ui ≤ B − eε′.

We conclude that ~t 7→ ε′

ε
~t+ ε′~u ∈ P−eε′ε′ for every ~t ∈ Pε.

Lemma 38 ([AD09b]). If P is e-contiguous then BNE
ε (P−eεε) ⊆ P and passing to volumes:

|P−eεε | ≤ Vol(P)εn.

104

End of the proof. The three inequalities of the sketch of the proof are given by lemma
36, 37 and 38. Combining the three inequalities we get:

|Pπ,ε| ≤
Ä
ε′−n

′ä
Vπ′ .

Recall that φ : π 7→ π′ is an injection and thus

|Ln,ε| =
∑

π∈∆n

|Pπ,ε| ≤
Ä
ε′−n

′ä ∑

π′∈En′

Vπ′ =
Ä
ε′−n

′ä
Vol(Ln′).

If we take limn→∞
1
n

log2(.) in the previous inequality we obtain

hε ≤
Å

1 +
c

b

ãÇ
log2

Ç
1

ε′

å
+H

å
.

The right-hand side is equal to log2
1
ε

+ H + log2(1 + e2ε)) + c
b
O(log2

1
ε
). We choose b =

ε−
1
3 (log2

1
ε
)
1
3 , then log2(1 + e2ǫ) and c

b
log2

1
ε

are O
(
ε

1
3 (log2

1
ε
)
2
3

)
. Indeed e = O(b) and then

log2(1 + e2ǫ) = O(b2ε) = O
(
ε

1
3 (log2

1
ε
)
2
3

)
.

Over and under ε-discretization

In [AD09a], an over and under-approximation of the language were designed for timed au-
tomata satisfying the progress cycle condition (mentioned above in Chapter 3 and 4). This
condition states that there exists D > 0 such that each path of the TRG of length greater
than D resets all the clocks. In that case we say that the TRG is D-progressive. Remark
that if a TRG is D-progressive for some D then it is also D′-progressive for every D′ ≥ D.
We call a progressive timed sofic shift the shift spaces of a right-resolving LCTRG which is
D-progressive.

The following theorem is a corollary of the previous proof. It is based on ideas of [AD09b],
improving this work by stating the convergence of under and over-approximation when the
discretization step tends to 0.

Theorem 27 (over and under approximation). Let S be a progress timed sofic shift. If
H(S) > −∞ then for all positive small enough ε, one can compute ε-discrete sofic shifts
S−ε and S+

ε that verify BNE
ε (S−ε) ⊆ S ⊆ BNE

ε (S+
ε), and H(S) + log 1

ε
= h(S−ε) + o(1) =

h(S+
ε) + o(1).

Sketch of the proof. Let (G, Lab) be the timed region graph recognizing S. We take e =

ε−
1
3 (log2

1
ε
)
1
3 as in the previous proof and ε small enough to have S satisfying the e-progress

condition.

under-approximation We define the eε-under-approximation of G denoted by G−eε from
G by replacing every constraint of the form x ∈ [A,B] by x ∈ [A,B − eε]. G−eε is not truly
a LCTRG since it has non integer bounds in its guards and since it is no more decomposed
in regions. Nevertheless one can define runs and shift space S−eε associated to this object in

105

the same way as for LCTRG. The discretization procedure of section 5.4.3 yields a sofic shift
denoted by S−ε =def S

−eε
ε . We must show that BNE

ε (S−ε) ⊆ S and H(S)+log 1
ε

= h(S−ε)+o(1).
The former result is a consequence of [AD09b]. The latter is a corollary of the previous proof.
Indeed for each n it holds that:

|Sn, ε| ≤
∑

π

∣∣∣P−eε
′

π,ε′

∣∣∣ ≤
∣∣∣S−eε

′

n,ε′

∣∣∣ (5.7)

where the definition of ε′ and the first inequality is given in Lemma 37 while the second one is
obtained by set inclusion the shrunk polytope P−eε

′

π is always included in the corresponding
polytope for G−eε. Taking limn→∞

1
n

log2(.) in (5.7) we get hǫ(S) = h(S−ε)+o(1) which yields
by virtue of Theorem 25: H(S) + log 1

ε
= h(S−ε) + o(1)

over-approximation the over-approximation can be proven in a similar way. We define
the eε-over-approximation of G denoted by G+eε from G by replacing every constraint of the
form x ∈ [A,B] by x ∈ [A −̇ eε, B] (where for two numbers x, y ≥ 0, x −̇ y = max(0, x− y)).
We denote S+eε the shift space associated to G+eε. Let S+

ε = S+eε
ε . We show that S ⊆

BNE
ε (S+

ε) and H(S) + log 1
ε

= h(S+
ε) + o(1) The former result is a consequence of [AD09b].

Lemma 36 and 37 can be adapted to upper bound |P+eε
π,ε | by |Pπ′,ε′ |. Thus, For every n

it holds that: ∣∣∣S+eε
n,ε

∣∣∣ ≤
∑

π∈∆n

∣∣∣P+eε
π,ε

∣∣∣ ≤ |Sn,ε′ | (5.8)

where the first inequality is obtained by set inclusion: the “bloated” polytope P+eε′

π always
includes the corresponding polytope for G+eε. Taking limn→∞

1
n

log2(.) in (5.8) we get hǫS =
h(S+

ε) + o(1) which yields by virtue of Theorem 25: H(S) + log 1
ε

= h(S+
ε) + o(1)

We pose S−ε = S−eεε and S+
ε = S+eε

ε . The sequence of inclusions is proved in [AD09b] as
well as the following sequence of inequalities h(S−ε) ≤ H(S) + log 1

ε
≤ h(S+

ε).
As a corollary of the previous proof h(ε) ≤ h(S−eεε) + o(1) (since the e-fat polytopes

involved in Lemmas 36 and 37 form a subset of all the polytopes defining S−eε).
Lemma 36 and 37 can be adapted to upper bound |P+eε

π,ε | by |Pπ′,ε′ |. This yields the
inequalities on entropies h(S+

ε) ≤ h(Sε) + o(1) which concludes the proof.

5.4.4 Metric mean dimension

Definitions

The metric mean dimension [LW00] of a dynamical system ((X, d), f) is defined by:

mdim(X) = lim inf
ε→0

log2 h
S
ε (X)

log2(1/ε)

One can replace hSε (X) by hRε (X) in the preceding definition using Lemma 24.
Moreover for timed sofic shifts the different ε-entropies can be related as follows:

106

Proposition 26. For all ε′ ≥ ε the following inequalities hold:

h2ε′ ≤ hS2ε ≤ hNε ≤ hε

Proof. The points of Xn,ε′ are 2ε separated which proves the first inequality. The second
inequality is a straightforward corollary of Lemma 24. To prove the third inequality it suffices
to prove that for all n ∈ N, Xn,ε is an ε-net of Xn. We will adapt a method used in [HMP92].
The setting of [HMP92] considers increasing sequences of dates when events occur instead
of delays between events. There is a one-to-one correspondence φ between n-uplet of delays
and n-uplets of dates defined by φ(t1, ..., tn) = (t1, t1 + t2, ..., t1 + t2 + ... + tn) and with
φ−1 defined by φ−1(T1, ..., Tn) = (T1, T2 − T1, ..., Tn − Tn−1). One can remark that ε-discrete
points are also in one to one correspondence by φ. The guards along a path give the following
inequations on dates Tk − Tj ∈ [A,B] (this corresponds to a constraint x ∈ [A,B] checked
at the kth transition and with the last reset of x done in the jth transition).

For all real T we denote by [T] the closest multiple of ε to T (|[T] − T | ≤ ε
2
): [T] =



ε⌊T/ε⌋ if T ≤ ε⌊T/ε⌋+ ε

2

ε(⌊T/ε⌋+ 1) otherwise

One can remark that Tk − Tj ∈ [A,B] implies [Tk]− [Tj] ∈ [A,B].
Let (t1, δ1), ..., (tn, δn) ∈ Xn. We denote by (T1, ..., Tn) = φ(t1, ..., tn) and thus ([T1], ..., [Tn])

satisfy the constraints [Tk]− [Tj] ∈ [A,B]. We denote by (u1, ..., un) = φ−1([T1], ..., [Tn]) then
(u1, δ1), ..., (un, δn) ∈ Xn,ε. Since |u1 − t1| = |[T1]− T1| ≤ ε

2
then for all i ∈ {2, .., n} we have

|ui− ti| = |([Ti+1]− [Ti])− (Ti+1−Ti)| ≤ |[Ti+1]−Ti+1|+ |[Ti]−Ti| ≤ ε. Finally every timed
word of Xn is at most ε far apart from a timed word of Xε,n. Xε,n is thus an ε net for Xn

which concludes the proof.

Corollary 3. The metric mean dimension of a timed sofic shift can be defined with hε:

mdim = lim inf
ε→0

log2 hε
log2(1/ε)

= lim inf
ε→0

lim sup
n→∞

log2 (
∑

π∈∆n |Pπ,ε|)
n log2(1/ε)

. (5.9)

Remark that if X ⊆ Y then mdim(X) ≤ mdim(Y) and that mdim(AZ) = 1 (where
A = [0,M]×Σ is our alphabet of interest). Thus every subshift of AZ has a mean dimension
lower or equal to 1.

Examples

The following examples of timed sofic shifts are recognized by LCTRGs depicted in Figure
5.2.

Example 5 (zero choice). Let A = [0, 1]× {a} and the set of forbidden factors be given by
O1 = {(a, t) | t < 1}. The only element of the shift space XO is (1, a)Z. This shift space has
metric mean dimension zero.

Example 6 (One half a choice). Let A = [0, 1] × {a, b} and the set of forbidden factors be
given by O2 = {(a, t)(b, t′) | t < 1, t′ ∈ [0, 1]}∪{(l, t)(l, t′) | l ∈ {a, b}, t, t′ ∈ [0, 1]}. The shift

107

space XO is the set of bi-infinite words of the form [(ai, ti)(bi+1, ti+1)]i∈2Z or 2Z+1 with ti = 1.
Its metric mean dimension is mdim = 1

2
. This corresponds to the intuition that a full choice

can be made half of the time, since delays before events a are always in the 0-dimensional
singleton {1} while delays before events b are to be in the 1-dimensional interval [0, 1].

Examples 7 and 8 below are more subtle and involve Zeno phenomena and simplices as
we have seen in Chapter 3. To treat these examples we need first a couple of results:

Lemma 39 (Few points in a simplex). The number of ε-discrete points in a simplex described
by inequalities 0 ≤ u1 ≤ · · · ≤ un ≤ M (resp. by inequalities

∑n
i=1 ui ≤ M and ui ≥ 0) isÄ

n+M/ε
n

ä
and (1/n) log2

îÄ
n+M/ε

n

äó
→n→+∞ 0.

Proof. There is
Ä
n+M/ε

n

ä
possibilities to choose n indices i1 < . . . < in among {1, . . . , n+M/ε}.

For j = 1..n define uj = (ij − j)ε and get 0 ≤ u1 ≤ · · · ≤ un ≤ M . It remains to remark
that the mapping (i1, . . . , in) 7→ (t1, . . . , tn) is a bijection (one can check that the following
function is an inverse for it: uj 7→ uj/ε+ j for j = 1..n).

Example 7 (Zeno: zero choice in the average). Let A = [0, 1]×{b} and the set of forbidden
factors be given by On = {(b, t1) · · · (b, tn) | t1 + . . . + tn > 1} (n ≥ 2). The shift space XO

is the set of bi-infinite word of the form (b, ti)i∈Z satisfying the (bi-infinite) Zeno condition∑
i∈Z ti ≤ 1. The number of discrete points in Pπ,ε for the only path π of length n is given

by Lemma 39 above: |Pπ,ε| =
Ä
k+1/ε

k

ä
. Plugging this in (5.9) yields a metric mean dimension

zero. Intuitively there are less and less choices as n increases.

Example 8 (Thin, yet full mean dimensional). Let A = [0, 1]×{a, b} and the set of forbidden
factors be given by O1 = {(a, t) | t < 1} and On = {(b, t1) · · · (b, tn) | t1 + . . . + tn > 1}.
Every bi-infinite words of XO has its delays corresponding to the event a equals to 1 (as in
example 5) and the sum of delays of blocks of consecutive b is bounded by 1 (as in example 7).
Every words containing an a yields a volume 0, the only word of length n that contributes to
Vol(Xn) is bn it yields a volume: Vol(Xn) = 1/n! and thus an entropy H = −∞. However
this shift space has metric mean dimension 1 and thus many discrete points. Indeed, for every
positive integer m, the path in (am−1b)∗ yields a metric mean dimension equal to (m− 1)/m
and thus mdim ≥ 1− 1/m for every m > 0.

Metric mean dimension and thickness.

Here we prove that when it is fleshy, a timed sofic shift is thick (H > −∞) if and only if it
has a full metric mean dimension (mdim = 1). The condition of fleshiness is necessary as
there exists thin (H = −∞) full metric mean dimensional fleshy timed sofic shift as we have
seen with example 8.

Theorem 28. For fleshy timed sofic shift, thickness is equivalent to maximal metric dimen-
sion.

H > −∞ iff mdim = 1.

108

Proof of H > −∞⇒mdimM = 1

The statement H > −∞ ⇒ mdimM = 1 is obtained by taking lim infε→0
log2(.)

log2(1/ε)
in both

sides of inequality (5.4) stated in Lemma 32.

Proof of mdimM = 1⇒ H > −∞ (difficult part)

This proof is an adaptation of results of Chapter 3 where we replace volumes of sets by
cardinalities of ε-discretization of the corresponding sets. We refer to this chapter when a
definition is needed e.g. monoid of orbit graph, forgetful idempotent, factorization forest,
etc.

By virtue of Theorem 5 of Chapter 3 the existence of a forgetful cycle is a necessary and
sufficient condition to have thickness (H > −∞). We will thus prove that if there is no
forgetful cycle then mdim < 1.

The idea of the proof is very similar to that of Theorem 5. Path that contains several
times a non-forgetful idempotent has polytope with few discrete points (Proposition 27).
The Simon’s factorization forest theorem (Theorem 4) ensures that in any long enough path
an idempotent is iterated. Thus if there is no forgetful cycle, there is roughly few discrete
points. This formally corresponds to a mean dimension lower than 1.

Proposition 27. Let π1, . . . , πk be k cycles of ∆∗ such that µ(π1), . . . , µ(πk) are all equal
to a same non forgetful idempotent of M, then |Pπ1...πk,ε| ≤ (1 + M/ε)n−k

Ä
k+M/ε

k

ä
where

n = |π1|+ · · ·+ |πk|.

The proof is omitted as it follows the same line as that of Lemma 11.
Now we introduce a function L(n, h, ε) (whose second parameter will be clarify below)

similar to that of (5.9) yet easier to handle. It is related to mean dimension in Lemma 40
and asymptoticly upper bounded in Proposition 28.

Let LC(π, ε) =def log2 |Pπ,ε| − |π| log2(1 + M/ε). This function is subadditive and non-
positive, i.e. LC(π1π2) ≤ LC(π1)+LC(π2) ≤ 0. Let L(n, h, ε) be the maximum of LC(π, ε) over
paths π of length n that do not contain forgetful idempotents and admit a factorization forest
of height at most h. In particular, L(n, h(M), ε) = maxπ∈∆n log2 |Pπ,ε| − n log2(1 + M/ε)
where h(M) is the height of the monoidM (defined in Chapter 3). The mean dimension is
related to this latter quantity as follows:

Lemma 40. IfM does not contain forgetful idempotent then

lim inf
ε→0

lim sup
n→∞

L(n, h(M), ε)

n log2(1/ε)
= mdim− 1.

Proof. We relate the left-hand side of the equality to prove to the right-hand side of (5.9).
We remark that maxπ∈∆n |Pπ,ε| ≤

∑
π∈∆n |Pπ,ε| ≤ |∆n|maxπ∈∆n |Pπ,ε|. Then, L(n, h(M), ε)+

n log2(1 +M/ε) ≤ log2 (
∑

π∈∆n |Pπ,ε|) ≤ L(n, h(M), ε) + n log2(1 +M/ε) + n log2(∆).
We divide by n log2(1/ε), take lim infε→0 lim supn→∞(.) and obtain the expected result.

109

It remains to prove that the quantity L(n,h(M),ε)
n log2(1/ε)

becomes negative when n → +∞ and

ε→ 0. This is implied by the following proposition.

Proposition 28. If M does not contain forgetful idempotents then for any height h, there
exists αh > 0 such that for all n > 1

αh
, for all ε > 0, the inequality L(n, h, ε) ≤ −αhn log2(1+

M/ε) holds.

Proof. We will define αh by induction on the height h. Let a be a factorization forest of
height h with n leaves and π1, . . . , πk be the children of the root. We distinguish two disjoint
cases:

1. There are more than m =def nαh−1 subtrees having less than 1/αh−1 leaves.

2. There are less than m = nαh−1 subtrees with less than 1/αh−1 leaves. Here the juicy
part (sons with enough leaves to satisfy induction hypothesis) has more than n

2
leaves.

• In the first case: root is an idempotent node and we can apply Lem. 27:

LC(π) ≤ log2

Ä
(1 +M/ε)n−k

ä
+ log2

(
k +M/ε

k

)
− n log2(1 +M/ε)

which after simplifications yields:

LC(π) ≤ −k log2(1 +M/ε) + log2

(
k +M/ε

k

)
≤ −m log2(1 +M/ε) + log2

(
m+M/ε

m

)
.

The constant αh can be chosen small enough such that for every n ≥ 1
αh

:

LC(π) ≤ −m log2(1 +M/ε) + log2

(
m+M/ε

m

)
≤ −nαh log2(1 +M/ε).

• In the second case: LC(π) ≤ ∑k
i=1 L(ni, hi, ε) ≤ ∑

ni≥Nh−1,2C
L(ni, hi, ε). We apply the

induction hypothesis:

LC(π) ≤ −αh−1 log2(1 +M/ε)
∑

ni≥αh−1

ni

≤ −αh−1
n

2
log2(1 +M/ε) ≤ −αhn log2(1 +M/ε)

where αh is chosen such that αh ≤ αh−1/2.

At the end, when H = −∞ then mdim ≤ 1− αh(M) < 1.

110

5.5 Sliding block codes

In this section C and C ′ denotes two metric compact alphabet shift-spaces (with respective
distances d and d′), X and Y denotes sub-shifts of CZ and C ′Z respectively. Given a function ψ
from X to C ′ we denote by ψ∞ : X → C ′Z defined by (ψ∞(x))i = ψ∞(σi(x)). Such functions
are those that commute with the shifts i.e. σC′Z ◦ φ = φ ◦ σX . We denote by F(X, C ′) the
function from X to C ′ and by SC(X, C ′Z) the function from X to C ′Z that commutes with
the shift.

Lemma 41. The mapping ψ 7→ ψ∞ is a bijection from F(X, C ′) to SC(X, C ′Z) whose inverse
is φ 7→ (x 7→ φ(x)0). Moreover ψ is continuous iff so is ψ∞.

Proof. By definition of ψ∞ it holds that ψ∞(x)0 = ψ(x) and thus the two mappings de-
fined above are mutual inverses. If ψ is continuous then for every sequence (xn)n∈N of
elements of X, the convergence xn 7→n→+∞ x ∈ X implies that for every i ∈ N, ψ∞(xn)i =
ψ∞(σi(xn)) 7→n→+∞ ψ∞(σi(x)) = ψ∞(x)i. This means that ψ∞ is continuous when so is ψ.
The converse is straightforward.

Every continuous functions from a shift space X ⊆ CZ to a shift space Y ⊆ C ′Z that
commutes with the shift is called a morphism. By virtue of the preceding lemma, every
morphism is of the form ψ∞ with ψ a continuous function from X to C ′.

We say that ψ is a (2n + 1)-block function when for every x, ψ(x) depends only on the
(2n + 1)-central factor x[−n..n] i.e. there exists a function f : C2n+1 → C ′ such that for every
x, ψ(x) = f(x[−n..n]). One can remark that ψ is continuous iff so is f . A function φ that is
equal to some ψ∞ with ψ a (continuous) block function is called a (continuous) sliding block
code.

The following famous theorem gives a characterization of the morphisms of finite-alphabet
shift spaces as sliding block codes.

Theorem 29 (Curtis-Hedlund-Lyndon). Let X and Y be two finite-alphabet shift spaces. A
function ϕ : X → Y is a morphism if and only if it is a sliding block code.

The following proposition below shows that there are morphisms which are not sliding
(finite) block codes and thus that the Curtis-Hedlund-Lyndon theorem does not hold for
compact alphabet shift spaces in general.

Proposition 29. Let ψ : [0, 1]Z → [0, 1] defined by ψ(x) = 1
3

∑
i∈Z

xi

2|i|
then ψ∞ is an endo-

morphism of [0, 1]Z (which is not a sliding block code).

Proof. We show that ψ maps converging sequences to converging sequences and is thus
continuous. Let (xn)n∈N be a sequence of bi-infinite words of [0, 1]Z that converges toward a

bi-infinite word x ∈ [0, 1]Z. We show that
∑

i∈Z
xn
i

2|i|
→n→+∞

∑
i∈Z

xi

2|i|
. For every i ∈ N, n ∈ N,

xn
i

2|i|
≤ 1

2|i|
and thus we are done by applying the dominate convergence theorem. Thus ψ is

continuous and by virtue of Lemma 41 ψ∞ is an endomorphism of [0, 1]Z.

111

Even if the Curtis-Hedlund-Lyndon theorem does not hold for compact alphabet shift
spaces, Theorem 30 below states that we can approximate every morphism by continuous
sliding block codes (the target shift space must be a full shift C ′Z). We first state a similar
result for function from CZ to C ′.
Lemma 42. Every continuous function from X to C ′ is a uniform limit of block continuous
functions from X to C ′.
Proof. Let ψ ∈ F(X, C ′) be a continuous function. The nth truncation fn : x 7→ x[−n..n] is
a continuous function from X to C2n+1. For n ∈ N, let gn : X2n+1 → X be a function such
that gn(w) is an element of X with central factor w i.e. gn(w)[−n..n] = w (construction of
gn requires the axiom of choice). The function ψn is a (2n + 1)-block continuous function.
It remains to prove that (ψn)n∈N converges toward ψ. As ψ is continuous between two
compacts, it is also uniformly continuous. Thus for an arbitrary ε, let δ → d̄(x, x′) ≤ δ
implies that d′(ψ(x), ψ(x′)). We take n ≥ log2(diam(C)/δ) − 1 so that for every x ∈ CZ,
d̄(gn ◦ fn(x), x) ≤ diam(C)2−(n+1) ≤ δ and thus d′(ψn(x), ψ(x)) ≤ ε. We are done the
sequence (ψn)n∈N of continuous sliding block codes uniformly converges toward ψ.

Theorem 30. Every morphism from a shift space X to a full shifts C ′Z is the uniform limit
of continuous sliding block codes.

Proof. By Lemma 41 every morphism is of the form ψ∞ with ψ a continuous function of
F(X, C ′). By Lemma 42 just above there exists a sequence (ψn)n∈N of continuous block
functions that uniformly converges toward ψ. For every x and i, the ith coordinates of
ψ∞(x) and ψ∞n (x) are ψ(σi(x)) and ψn(σi(x)) respectively. Thus, for every x:

sup
x∈CZ

d̄′ (ψ∞(x), ψ∞n (x)) = sup
x∈CZ

sup
i∈Z

1

2|i|
d′
Ä
ψ(σi(x)), ψn(σi(x))

ä
≤ sup

y∈CZ
d′ (ψ(y), ψn(y)) .

We can conclude: the sequence of continuous sliding block codes (ψ∞n)n∈N converges toward
the morphism ψ∞.

5.6 Conclusion and perspectives

In this chapter we designed a general symbolic dynamics framework for the volumetry of
timed languages. We close the problem partially left open in [AD09b] of computability of
the entropy by discretization of the entropy. We adapted to sofic timed shift the metric
mean dimension of Lindenstrauss, Weiss and Gromov [LW00]. Finally we study morphisms
of compact alphabet shift spaces.

5.6.1 Open problems

What is the good notion of morphism/sliding block codes?

Here we gave a very general definition of morphisms as functions that preserve the structure of
dynamical system: they are continuous, in order to preserve compactness, and they commute

112

with the shift, in order to preserve dynamics. This definition is maybe too general and it
would be an interesting task to define morphism that preserves more structural aspects
i.e. distance, and even volume measure. It would be nice to define morphisms that leave the
class of timed sofic shift invariant.

In the next chapter, motivated by coding purposes, we add conditions on these functions
to loosely preserve distances and volume measures. Yet they do not leave the sofic timed
shifts (and languages) invariant.

A machine-independent characterization of timed sofic shifts

The definition of a timed sofic shift as given in this chapter requires a “machine” (the
LCTRG (G, Lab)). There is a beautiful machine-independent characterization of sofic shifts
as the shift spaces that have only a finite number of follower sets (see [LM95]). This results
corresponds to the characterization of regular languages as languages that have a finite
number of Nerode’s equivalence classes. In [BL12], the authors introduce an equivalence
relation playing the role of the Nerode’s equivalence for timed languages. Their main results
state that deterministic regular timed languages are those for which the set of equivalence
classes is orbite finite (a notion introduced and explained by these authors). It would be
interesting to marry the new theory of [BL12] with ours and get a machine-independent
characterization of timed sofic shift.

What about shifts of finite type?

Fundamental objects of symbolic dynamics are so-called shifts of finite types (SFT): the
shift spaces that can be defined with finite sets of forbidden factors. In fact such shifts are
conjugated to edge shifts. That is why we are able to lift a broad part of results to the timed
case without referring to SFTs (but referring to graphs and edge shifts). The question of
what would be a good notion of timed SFT is still open.

About metric mean dimension

In [AD10], Asarin and Degorre proposed that timed automata with non-fleshy transitions
should be associated two size measures. The first one is the asymptotic proportion of fleshy
transions in the ”best” runs (here, let us call it ”structural mean dimension” and denote it
by smdim). The second one is the volumetric entropy adapted to this dimension (let us
denote it by Hv).

[AD10] characterizes the structural mean dimension as the spectral radius in the Max-
Plus algebra of a kind of adjacency matrix associated to the automaton (its coefficients are
1 if there is a fleshy transition, 0 if there are only non fleshy ones and −∞ if no transition
exists). However this dimension does not detect Zeno behaviors as in Example 7. Indeed,
in this example, smdim = 1, yet according Weiss’ and Lindenstrauss’ intuition of mean
dimension, it should be 0. Our notion of metric mean dimension, directly adapted from
[LW00], captures such Zeno behaviours.

113

It is shown in [AD10] that provided that smdim > 0 and Hv > −∞ a kind of ǫ-entropy
is equal to smdim log2(1/ε)+Hv+o(1). This results is similar to our Theorem 25 yet several
questions remain open to unify our work with that of [AD10].

• How to characterize Hv > −∞? We must adapt for this, theory of Chapter 3 to the
case where non-fleshy transitions are unavoidable.

• How the ε-entropy of [AD10] is related to that defined here.

• What is the case of equality? It is easy to see that the mean dimension exposed in the
present chapter is always upper-bounded by that of Asarin and Degorre.

There are also open questions dealing with decidability.

• Is there an algebraic characterization of the metric mean dimension?

• Is metric mean dimension computable?

• What real numbers are metric mean dimensions of timed region graphs?

114

Chapter 6

Toward a Timed Theory of Channel
Coding

Abstract of the chapter

The classical theory of constrained-channel coding deals with the following questions: given
two languages representing a source and a channel, is it possible to encode source messages
to channel messages, and how to realize encoding and decoding by simple algorithms, most
often transducers. The answers to this kind of questions are based on the notion of entropy.

In the current chapter, the questions and the results of the classical theory are lifted to
timed languages. Using the notion of entropy of timed languages introduced by Asarin and
Degorre, the question of timed coding is stated and solved in several settings.

Chapter structure

In section 6.1 we recall basic notions of the discrete theory of constrained-channel coding.
In section 6.2 we state our main results on timed theory of constrained-channel coding. In
section 6.3 we discuss the rationale, perspectives and applications of this work.

6.1 Theory of channel coding for finite alphabet lan-

guages

In this section we give an elementary exposition of some basic notions and results from
the theory of constrained-channel coding, see [MRS98, LM95, BPR09, BBM+10] for more
details. We refer the reader to the sections 5.2.3 for the definition of sofic languages and
their entropy.

6.1.1 Terminology

Most of our coding functions have a special property defined below.

115

Definition 5 (almost injective). A (partial) function φ : Σ∗ → Γ∗ is called almost injective
with delay D ∈ N, if for any n and w,w′ ∈ Σn, and u, u′ ∈ ΣD it holds that

φ(wu) = φ(w′u′)⇒ w = w′.

Intuitively, if such a function is used to encode messages, then knowing the code of some
message wu one can decode w, i.e. the whole message except its last D symbols. Thus the
decoding is possible with delay D. This can be formalized as follows:

Definition 6 (almost inverse). For an almost injective function φ : Σ∗ → Γ∗ with delay
D its D-almost inverse family of functions ψn : Γ∗ → Σn is characterized by the following
property: for any w ∈ Σn and v ∈ Γ∗,

w = ψn(v)⇔ ∃u ∈ ΣD : φ(wu) = v.

Lemma 43. If the domain of an almost injective function φ is extensible and ψn is its almost
inverse, then ψn is a surjection to this domain (constrained to words of length n).

6.1.2 Coding: the basic case

Let A and A′ be two alphabets (source and channel alphabets), S ⊂ A∗ and C ⊂ A′∗

factorial extensible languages and D ∈ N. The aim is to encode any source message w ∈ S
to a channel message φ(w) ∈ C. The latter message can be transmitted over the channel.

Definition 7. An (S,C)-encoding with delay D is a function φ : S → C (total on S but not
necessarily onto C) such that

• it is length preserving: ∀w ∈ S, |φ(w)| = |w|,
• it is almost injective with delay D.

The first condition means that the information is transmitted in real-time (with the
transmission rate 1). The second one permits decoding.

A natural question is to find necessary and sufficient conditions on S and C for an
(S,C)-encoding (with some delay) to exist. This question can be addressed by comparing
the entropy of the languages S and C. Roughly, the channel language should contain at least
as much information per symbol as the source language. Formally, we define the information
inequality :

h(S) ≤ h(C). (II1)

Proposition 30. Let S and C be factorial and extensible languages. If an (S,C)-encoding
exists then (II1) necessarily holds.

Proof. Let φ : S → C be an (S,C)-encoding with delay D. By Lemma 43 its almost inverse ψ
maps C onto S. More precisely, for every n we have ψn(Cn+D) = Sn. Hence, the cardinalities
should satisfy: |Sn| ≤ |Cn+D|. Finally we have

lim
n→∞

1

n
log |Sn| ≤ lim

n→∞
1

n
log |Cn+D|

and the expected inequality h(S) ≤ h(C).

116

c

a

b

a

b 1|c
0|b

0|a

1|b

Figure 6.1: A sofic automaton of a channel C (left) and a ({0, 1}∗, C)-encoder (right)

Thus, (II1) is necessary for existence of the coding. For sofic languages (if the inequality
is strict) it is also sufficient. Moreover, the encoding can be realized by a sort of finite-state
machine. We present this fundamental result in the following form which is essentially the
finite-state coding theorem from [MRS98], Theorem 10.3.7 in [LM95].

Theorem 31. Let S and C be sofic languages. If the strict version of (II1) holds, then
there exists an (S,C)-encoding realized by a finite-state transducer which is right-resolving
on input and right-closing on output1.

The reader is now motivated to get through a couple of definitions.

Definition 8 (transducer). A transducer is a tuple τ = (Q,A,A′,∆, I,O) with a finite
set Q of control states; finite input and output alphabets A and A′; a set of transitions ∆
(each transition δ has a starting state δ− and an ending state δ+); input and output labeling
functions I : ∆→ A and O : ∆→ A′.

The transducer is said to be right-resolving on input whenever for each state q ∈ Q every
two different edges starting from q have different input labels. For such a transducer, the
input automaton with a fixed initial state i, i.e. Ai = (Q,A,∆, I, i, Q) is deterministic, we
denote by Si the language of this automaton.

The transducer is right-closing on output with delay D whenever every two paths π and
π′ of length D+ 1 with the same output label and the same starting state q always have the
same initial edge π1 = π′1.

A transducer τ satisfying both properties performs the encoding process in a natural way:
an input word w of S is read from a state i along a path πw, and this path determines the
output word O(πw). The function φi : Si → A′∗ defined as w 7→ O(πw) is length preserving
and almost injective with delay D.

Example 9. Consider the source language S = {0, 1}∗ and the channel language C recog-
nized by the sofic automaton on the left of Figure 6.1. The language C is composed by all the
words on {a, b, c} that do not contain any block bc. The entropy of the source is h(S) = 1,
and the one of the channel is h(C) = 2 log

î
(1 +

√
5)/2

ó
≈ 1.3885. The information in-

equality h(S) < h(C) holds and we can encode S in C using the transducer on the right of
Figure 6.1.

1Such a transducer is also called a finite-state (S,C)-encoder.

117

6.1.3 Other coding settings

Similarly to the previous section, other coding settings can be considered. For example, we
can transmit information over a channel with some rate α = p

q
, when q letters of the channel

message correspond to p letters of the source message (the previous section corresponds thus
to the case α = 1).

Definition 9. An (S,C)-encoding with rate α ∈ Q+ and delay D is a function φ : S → C
(total on S and not necessarily onto C) such that

• it is of rate α, i.e. ∀w ∈ S, ⌈α|φ(w)|⌉ = |w|;

• it is almost injective (with delay D).

In this setting, the information inequality takes the form:

αh(S) ≤ h(C), (II2)

and it is a necessary and almost sufficient condition for the code to exist:

Proposition 31. Let S and C be factorial and extensible languages. If an (S,C)-encoding
with rate α exists, then (II2) necessarily holds.

Proposition 32. Let S and C be sofic languages. If a strict inequality (II2) holds, then an
(S,C)-encoding of rate α exists. Moreover, it can be realized by a finite-state transducer of
rate α.

We skip here a natural definition of such a transducer.

6.2 Timed coding

Similarly to classical results presented in section 6.1, we will consider several settings for
transmission of timed words over a channel. For every setting we will formulate an informa-
tion inequality, and show that it is necessary and, with some additional hypotheses, sufficient
for a coding to exist.

On timed language considered

In this chapter we consider (progressive) timed sofic language as defined in section 5.4.2,
i.e. recognized by (progressive) right-resolving labelled closed timed region graphs.

As usual, we work with alphabets of the form A = [0,M] × Σ called here k-M-alphabet
where Σ is a k-letter alphabet and M a positive integer bound, so that every letter in A
corresponds to a real-valued delay (seen as a data) in [0,M] and a discrete event in Σ.

118

p q r

c, x ∈ [0, 3], {x}

a, x ∈ [0, 3]

b, x ∈ [0, 2]

d, x ∈ [0, 2], {x}

Figure 6.2: An abstract representation of a LCTRG (in fact locations p and r correspond to
multiples location of a LCTRG depending whether x ∈ [0, 1], x ∈ [1, 2] or x ∈ [2, 3])

Example 10. In this chapter we will consider the labelled closed timed region graph given
in Figure 6.2. Polytopes associated to words ac and bd are Pac = {(t1, t2) | t1 + t2 ≤ 3} and
Pbd = {(t1, t2) | t1 + t2 ≤ 2}; and their volumes are respectively 4.5 and 2; and thus L2(q),
the sublanguage of L2 of words accepted by runs starting from q, has volume 6.5. We have
L2n(q) = (L2(q))

n whose volume is 6.5n, the entropy of the whole language H(L) is thus at
least 0.5 log 6.5 (in fact it is exactly 0.5 log 6.5).

Discretization of languages and entropy

We will use discretization in a three-step reduction scheme:

1. discretize the timed languages S,C with a sampling rate ε to obtain Sε, Cε (as in
section 5.4.3);

2. use a classical coding theorem (Theorem 31) with Sε, Cε;

3. go back to timed languages by taking ε-NE-neighborhood of Sε and Cε (as defined in
section 5.4.3).

The following lemma is the main tool for this reduction scheme, it is a recap of Theorem 27
of Chapter 4.

Lemma 44. Let S be a progressive timed sofic language. If H(S) > −∞ then for all
positive small enough ε, one can compute ε-discrete sofic languages S−ε and S+

ε that verify
BNE
ε (S−ε) ⊆ S ⊆ BNE

ε (S+
ε), and H(S) + log 1

ε
= h(S−ε) + o(1) = h(S+

ε) + o(1).

6.2.1 Timed source, discrete channel, approximate transmission

In practice, timed and data words are often transmitted via discrete (finite alphabet) chan-
nels. For example, a timed log of events in an operating system (a timed message) can
be stored as a text file (ASCII message). The delays in the timed word cannot be stored
with infinite precision, thus the coding is necessarily approximate. More precisely, the set of
timed source messages w of a length n is infinite, while the set of discrete channel messages

119

of the same length is finite. For this reason, the coding cannot be injective, and necessar-
ily maps many timed words to a same discrete word. It is natural to require that all the
timed words with the same code are ε-close to each other. This justifies Definition 10 below.
We give first some notation. For two timed words of same length w = (t1, a1) . . . (tn, an)
and w = (t′1, a

′
1) . . . (t

′
n, a

′
n), the distance d(w,w′) between w and w′ is equal to +∞ if

a1 . . . an 6= a′1 . . . a
′
n, otherwise it is max1≤i≤n |ti − t′i|. Let A be a k-M alphabet, Σ′ be a

finite alphabet, S be a factorial extensible measurable timed language on A, C be a factorial
extensible language on Σ′, and α, ε be positive reals and D be a non negative integer.

Definition 10. Similarly to Definition 5 we say that a partial function φ : A∗ → Σ′∗ is
almost approximately injective with precision ε and delay D if

∀n ∈ N, w, w′ ∈ An ∀u, u′ ∈ AD : φ(wu) = φ(w′u′)⇒ d(w,w′) < ε.

Its almost inverse is a multi-valued function family ψn : Σ′∗ → An characterized by the
following property: for any w ∈ An it holds that w ∈ ψn(v) if and only if some u ∈ AD yields
φ(wu) = v.

Lemma 45. Given an almost approximately injective function φ with precision ε and delay
D, let ψn be its almost inverse family. Then for every v the diameter of ψn(v) is at most ε.
If the domain of φ is extensible, then the image of ψn coincides with this domain (constrained
to length n).

Definition 11. An (S,C)-encoding of a rational rate α, precision ε and delay D is a function
φ : S → C (total on S) such that

• it is of rate α: i.e. ∀w ∈ S, ⌈α|φ(w)|⌉ = |w|;

• it is almost approximately injective with precision ε and delay D.

The information inequality for this setting has the form:

α(H(S) + log(1/ε)) ≤ h(C), (II3)

which corresponds to information contents of S equal to H(S) + log(1/ε), see the formula
for Kolmogorov complexity of timed words in [AD09b].

Proposition 33. For a factorial extensible measurable timed language S and a factorial
extensible discrete language C the following holds. If an (S,C)-encoding of rate α, precision
ε, and some delay D exists then necessarily (II3) must be satisfied.

Proof. Let φ be an (S,C)-encoding of rate α, precision ε and delay D, and ψ its almost
inverse. By Lemma 45, for every n it holds that Sn = ψn(C⌊(n+D)/α⌋). This leads to an
inequality on volumes

Vol(Sn) ≤
∑

v∈C⌊(n+D)/α⌋

Vol(ψn(v)).

120

Any ψ(v) has a diameter ≤ ε and thus is included in a cube of side ε and volume εn. We
have:

Vol(Sn) ≤ εn|C⌊(n+D)/α⌋|.
Thus

α

n
log Vol(Sn) ≤ α

n
log εn|C⌊(n+D)/α⌋| = α log ε+

⌊(n+D)/α⌋
n/α

|C⌊(n+D)/α⌋|
⌊(n+D)/α⌋ .

Taking the limit as n tends to infinity we obtain αH(S) ≤ α log ε + h(C) and then (II3)
holds.

We strengthen a little bit (II3) to have a (partial) converse result for timed sofic languages.

Proposition 34. For a progressive timed sofic language S satisfying with H(S) > −∞,
there exists a function RS such that limx→0RS(x) = 0 and the following holds. Whenever
the entropy of a sofic discrete language C verifies the inequality α(H(S)+log(1/ε)+RS(ε)) <
h(C), then there exists an (S,C)-encoding of rate α, precision ε and some delay D. Moreover
it can be realized by a “real-time transducer” sketched below in the proof.

Sketch. Let S be a timed sofic language. For ε > 0, let S+
ε be its ε-discretized over-

approximation given by Lemma 44. We define

RS(ε) = h(S+
ε)−H(S)− log(1/ε),

it satisfies the required condition: RS(ε) = o(1) (see Lemma 44). Let C be a sofic discrete
language such that

α(H(S) + log(1/ε) +RS(ε)) < h(C),

we prove that an (S,C)-encoding of rate α, precision ε and some delay D exists. Lemma 44
gives us

S ⊆ BNE
ε (S+

ε) and αh(S+
ε) = α(H(S) + log(1/ε) +RS(ε)) < h(C).

Thus by Proposition 32 an (S+
ε , C)-encoding of rate α and some delay D exists and can be

realized by a finite-state transducer τε of rate α and delay D. If we replace for each transition
its input label (a, kε) by the label a and the guard t ∈ [kε, (k + 1)ε], we obtain a real-time
transducer τ with input BNE

ε (S+
ε) whose output is in C. The injectivity of τε ensures that τ

realizes an approximately injective function with precision ε.

6.2.2 Timed source, timed channel, exact transmission

Another natural setting is when a timed message is transmitted via a timed channel. In
this case, the coding can be exact (injective). For the moment we consider length-preserving
transmission (see section 6.2.4 for faster and slower transmission).

Let A, A′ be a k-M and a k′-M ′ alphabet, S and C factorial extensible measurable timed
languages on these alphabets, and D ∈ N.

121

Let ℓ and σ be positive rationals. A function f : A′n → A∗ is said to be ℓ-Lipshitz
whenever for all x, y in its domain, d(f(x), f(x′)) ≤ ℓ d(x, x′). We call a function σ-piecewise
ℓ-Lipshitz if its restriction to each cube of the standard σ-grid on A′n is ℓ-Lipshitz.

We can now state the definition of an (S,C)-encoding:

Definition 12. An (S,C)-encoding with delay D (and step σ) is a function φ : S → C such
that

• it is length preserving: |φ(w)| = |w|,

• it is almost injective (with delay D),

• no time scaling: the almost inverse ψn are σ-piecewise 1-Lipshitz.

The last condition rules out a possible cheating when for instance all the time delays are
divided by 1000 before transmission over the channel. We will come back to this issue in
section 6.2.3.

The information inequality in this setting takes a very simple form:

H(S) ≤ H(C). (II4)

The necessary condition for existence of a coding has a standard form (for technical reasons
we require the channel to be sofic):

Proposition 35. If for a factorial extensible measurable timed language S and a progressive
timed sofic language C an (S,C)-encoding of delay D exists, then (II4) holds.

Proof. We consider first the most interesting case when H(C) > −∞. We will prove that
for any ζ > 0 the inequality H(S) ≤ H(C) + ζ holds. Suppose φ is an (S,C)-encoding of
delay D (and step σ), and ψ its almost inverse. By Lemma 43, for any natural n we have
Sn ⊂ ψn(Cn+D).

Since C is sofic, Lemma 44 applies, and for a fixed ǫ, each Cn can be covered by C+
n ,

a union of Kn,ε cubes of size ε with H(C) + log 1
ε

= limn→∞
logKn,ε

n
+ o(1). We choose ε

dividing σ and small enough such that

H(C) + log
1

ε
> lim

n→∞
logKn,ε

n
− ζ. (6.1)

Thus we have Sn ⊂ ψn(C+
n+D), and, passing to volumes we get

Vol(Sn) ≤ Vol(ψn(C+
n+D)) ≤ Kn+D,εε

n, (6.2)

indeed, since ψn is 1-Lipshitz on each ε-cube, ψn-image of each such cube has a diameter
≤ ε and thus a volume ≤ εn. Passing to logarithms, dividing by n and taking the limit as
n→∞ in (6.2) we get

H(S) ≤ lim
n→∞

logKn+D,ε

n+D
+ log ε,

122

and applying inequality (6.1) we obtain

H(S) ≤ H(C) + log
1

ε
+ ζ + log ε = H(C) + ζ,

which concludes the proof for the case when H(C) > −∞. The remaining case H(C) = −∞
is a simple corollary of the previous one.

As usual, when both timed languages S and C are sofic and the information inequality
(II4) strict, the converse holds.

Proposition 36. If for progressive timed sofic languages S and C it holds that H(S) <
H(C), then there exists an (S,C)-encoding (with some delay D). Moreover it can be realized
by a “real-time transducer” described below in the proof.

Sketch. Let S and C be timed sofic languages whose entropies verify −∞ < H(S) < H(C).
We prove that an (S,C)-encoding with some delay D exists. Let C−ε and S+

ε be as in
Lemma 44, i.e. such that

S ⊆ BNE
ε (S+

ε); BNE
ε (C−ε) ⊆ C;

H(S) + log
1

ε
= h(S+

ε) + o(1); H(C) + log
1

ε
= h(C−ε) + o(1).

The discretization step ε can be chosen small enough such that h(S+
ε) < h(C−ε). Thus

by Theorem 31 a finite-state (S+
ε , C

−
ε)-encoder τε exists.

We replace each transition δǫ of τǫ with input label (a, kε) and output label (b, lε) by a
transition δ with input label a, guards t ∈ [kε, (k+1)ε], output label b and increment/decre-
ment c(δ) = (l− k)ε. We obtain what we call a real-time transducer τ . Its input language is
BNE
ε (S+

ε) and its output language is included in BNE
ε (C−ε) ⊆ C. The encoding is performed

as follows: a timed word (t1, a1) . . . (tn, an) is in the input language if there is a path δ1 . . . δn
such that I(δi) = ai and ti satisfies the guard of δi: ti ∈ [kε, (k + 1)ε]; the output timed
word is in this case (t′1, b1) . . . (t

′
n, bn) with t′i = ti + c(δi), bi = O(δi).

The collection of cubes BNE
ε (w), w ∈ S+

ε (resp. w ∈ C−ε) forms a partition of timed
languages BNE

ε (S+
ε) (resp. BNE

ε (C−ε)), they are cubes of the standard σ-grid with the step
σ = ǫ. Transducer τ only translates cubes. Translations are 1-Lipshitz and thus the last
condition of an (S,C)-encoding holds.

The remaining degenerate case when −∞ = H(S) < H(C) is an easy corollary of the
non-degenerate one.

The following example illustrates the construction of the transducer. Let the source timed
language be S = ([0, 1] × {e, f})∗ and the channel timed language C be recognized by the
automaton on Figure 6.2. We have seen that the entropy H(C) is at least 0.5 log 6.5 and thus
H(C) > H(S) = log 2. By Proposition 36 an (S,C)-encoding exists. To realize this encoding
we take ε = 1. There are four cubes included in the language C2(q): ([0, 1] × [0, 1] × {ac},
[0, 1] × [0, 2] × {ac}, [1, 0] × [0, 1] × {ac}, [0, 1] × [0, 1] × {bd}) while the cubes to encode

123

δ− δ+ I(δ) g(δ) O(δ) c(δ)
q p0 e [0, 1] a 0
q p1 f [0, 1] a 1
q′ p′0 e [0, 1] a 0
q′ r f [0, 1] b 1
p0 q e [0, 1] c 0
p0 q′ f [0, 1] c 0
p′0 q e [0, 1] c 1
p′0 q′ f [0, 1] c 1
p1 q e [0, 1] c 0
p1 q′ f [0, 1] c 0
r q e [0, 1] d 0
r q′ f [0, 1] d 0

Table 6.1: The coding transducer

(language S2) are [0, 1]×{ee}, [0, 1]×{ef}, [0, 1]×{fe}, [0, 1]×{ff}. The transducer will
repeatedly map four “input cubes” to four “output cubes”.

We build an automaton for discrete words C−ε (as in Lemma 44, such words correspond
to “output cubes”) in Figure 6.3. Then, as usual in coding, we first split the state p0 and
then the state q (each in two copies) to obtain an automaton with constant outdegree 2
(Figure 6.4). This automaton accepts the same language C−ε , and can be transformed to the
desired transducer just by adding input letters and increment/decrement to its transition.
The transitions of the transducer are given in Table 6.1.

6.2.3 A variant: scaling allowed

In some situations, timed data can be scaled for coding, which leads to a new term in
the information inequality. Let λ > 0 be a rational bound on scaling factor. We modify
Definition 12 by replacing 1-Lipshitz by 1/λ-Lipshitz.

Definition 13. An (S,C)-encoding with delay D, scaling λ and step σ is a function φ : S →
C such that

• it is length preserving: |φ(w)| = |w|,

• it is almost injective (with delay D),

• it has scaling at most λ: the almost inverse ψn are σ-piecewise 1/λ-Lipshitz.

The information inequality for this case becomes:

H(S) ≤ H(C) + log λ. (II5)

124

p1 q r

p0

(c, 0)

(a, 1)

(b, 0)

(d, 0)

(c, 0)(c, 1) (a, 0)

Figure 6.3: A−ε : an automaton recognizing C−ε with ε = 1.

p1 q q′

p0

r

p′0

(c, 0)

(a, 1)

(c, 0)(a, 0)

(c, 0)

(c, 0)

(c, 1)
(c, 1) (a, 0)

(d, 0)

(b, 0)

(d, 0)

Figure 6.4: The split form of A−ε .

The problem of coding with scaling can be easily reduced to the one considered in the
previous section. Indeed, for a timed language C let λC be the same language with all times
multiplied by λ (the entropy of this language is H(λC) = H(C) + log λ). A function φ is an
(S,C)-encoding with scaling λ if and only if the “λ-scaled” function λφ is an (S, λC)-encoding
without scaling. Using this reduction, the results below are corollaries of Proposition 35-36.

Proposition 37. If for factorial extensible measurable timed language S and progressive
timed sofic language C an (S,C)-encoding with scaling λ and delay D exists then (II5)
holds.

Proposition 38. If for progressive timed sofic languages S and C (with H(S) > −∞) the
strict version of (II5) holds, then there exists an (S,C)-encoding with scaling λ (with some
delay D). Moreover it can be realized by a “real-time transducer”.

125

6.2.4 A speedup and a slowdown lead to a collapse

For untimed channels, transmission with some rate α 6= 1leads to the factor α in information
inequalities (II2), (II3). Unfortunately, for timed channels this does not work: any rate
α 6= 1 leads to a collapse of the previous theory.

Definition 14. An (S,C)-encoding with rational rate α, delay D and step σ is a function
φ : S → C such that

• its rate is α, i.e. ∀w ∈ A∗, ⌈α|φ(w)|⌉ = |w|;

• it is almost injective (with delay D);

• no time scaling: its almost inverse ψ is σ-piecewise 1-Lipschitz.

For α > 1 no coding is possible, and for α < 1 it always exists. More precisely, the two
following propositions hold.

Proposition 39. For factorial measurable timed languages S and C if H(S) > −∞ and
α > 1, then no (S,C)-encoding with rate α exists.

Sketch. The proof follows the same lines as that of Proposition 35. Suppose φ is such
an (S,C)-encoding, and ψ its almost inverse. By Lemma 43, for any natural n we have
Sn ⊂ ψn(C⌊(n+D)/α⌋). Each Cn can be covered by C+

n , a union of Kn,ε cubes of size ε
satisfying inequality (6.1) We have Sn ⊂ ψn(C+

⌊(n+D)/α⌋), and, passing to volumes we get

Vol(Sn) ≤ Vol(ψn(C+
⌊(n+D)/α⌋)) ≤ K⌊(n+D)/α⌋,εε

n. Passing to logarithms, dividing by n and
taking the limit as n→∞ we get

H(S) ≤ α−1 lim
n→∞

logK⌊(n+D)/α⌋,ε
⌊(n+D)/α⌋ + log ε,

and applying inequality (6.1) we obtain

αH(S) ≤ H(C) + log(1/ε) + ζ + α log ε = H(C) + ζ − (α− 1) log(1/ε).

Choosing ε small enough makes the inequality wrong. This contradiction concludes the
proof.

Proposition 40. For timed sofic languages S and C (with H(C) > −∞) and any α < 1
there exists an (S,C)-encoding with rate α (and some delay D). Moreover it can be realized
by a kind of timed transducer.

The construction is non-trivial and uses spare time durations in the channel message to
transmit discrete information.

126

6.3 Conclusion and perspectives

In the previous section, we have established several results on timed channel coding following
the standard scheme: a setting of information transmission – information inequality – coding
existence theorem – synthesis of an encoder/decoder. We believe that this approach can be
applied to various situations of data transmission (and compression). We also consider it as a
justification of the previous research on entropy of timed languages [AD09a, AD09b, AD10].
In this concluding section, we explain some of our choices and immediate perspectives of this
approach.

The time is not preserved. In the central Definition 12 and Proposition 35,36, we
consider codings of timed words that preserve the number of events, and not their dura-
tion. This choice is compatible to the general idea of dealing with data words (in our
case, sequences of letters and real numbers), and less so with the standard timed paradigm.
We use again the example of Figure 6.2 to illustrate this feature. For n ∈ N, the timed
word w = [(0.5, e)(0.5, f)]n is encoded to the timed word w′ = [(0.5, a)(1.5, c)]n, both have
2n events. However, the duration of w is (0.5 + 0.5)n = n, while the duration of w′ is
(0.5 + 1.5)n = 2n.

Other settings to explore. It would be still interesting to explore coding functions pre-
serving durations. On the theoretical side, a more detailed analysis for transmission speeds
different from 1, as in section 6.2.4 would probably lead to information inequalities instead of
a collapse. Many other settings of transmission of information could be practically relevant:
approximated transmission of a timed source on a timed channel; coding of a discrete source
on a timed channel; coding using transducers of a fixed precision; coding of other kinds
of data languages. On the other hand, more physical models of timed and data channels
would be interesting to study, one can think of a discrete channel with a fixed baud rate
coupled with an analog channel with a bounded frequency bandwidth. Finally, some special
codes, such as sliding-window, error-correcting etc., should be explored for timed and data
languages.

What is a timed transducer? In the classical theory of constrained channel coding,
several kinds of transducers are used for encoding/decoding, such as those leading to a sliding-
block window decoding. Here, we have realized our codes by using some very restricted ad
hoc timed transducers. They behave like timed (in our case, real-time) automata on the
input, and “print” letters and real numbers on the output; we believe that this is the correct
approach. However, the right definition of a natural class of timed transducers adequate to
coding remains an open question. As a preliminary definition, we suggest timed automata
that output, on each transition, a letter and a real number (which is an affine combination
of clock values). While reading a timed word, such a transducer would output another timed
word. We illustrate this informal definition with the example of mutually inverse transducers
τ1 and τ2 (encoder and decoder) on Figure 6.5. Let us consider a run of the transducer τ2 on

127

p q

b, x ∈ [0, 1]|a, x

c, x ∈ [1, 2], {x}|a, x− 1

p q

a, x ∈ [0, 1], y ∈ [0, 1], {x}|b, x

a, x ∈ [0, 1], y ∈ [0, 2], {x}, {y}|c, 2x− y + 1

t2

t10 1 2

1

2

t2

t10 1 2

1

2

Figure 6.5: Top: transducers τ1 : S → C and τ2 : C → S. Bottom: languages S2 and C2.

the timed word (t1, b)(t2, c) . . . We start from q with x = 0, y = 0, after reading (t1, b) the
value of x and y is t1, we fire the transition, the output is (t1, a), we pass in q where we read
(t2, c), the value of x is t2 and the value of y is t1 + t2, we fire the transition, the output is
(2t2 − (t1 + t2) + 1, a) = (t2 − t1 + 1, a), we pass in p etc.

For τ1, the input language of timed words of length 2 starting from p is S2(p) =
{(t1, b)(t2, c) | t1 ∈ [0, 1], t1 + t2 ∈ [1, 2]}, while for the second transducer it is C2(p) =
{(t1, a)(t2, a) | t1 ∈ [0, 1], t2 ∈ [0, 1]}. These two languages are depicted in Figure 6.5,
they have the same volume. It would be impossible to realize this kind of encoding using
“rectangular” transducers as in section 6.2.

How to improve code synthesis? The encoders in section 6.2 are not completely sat-
isfactory: they use non-integer guards even when the source and the target language are
defined using integer timed automata. We believe that this issue can be avoided using a
broader class of transducers as suggested just above.

Applications. In practice, when transmitting (or storing) information containing discrete
events and real-valued data, all the information is first converted to the digital form and next
encoded for transmission or storage. Our paradigm combines both steps and, in principle,
provides better bounds and codes. However, more research is needed to come up with useful
practical codes.

128

Chapter 7

Generating functions of timed
languages

Abstract of the chapter

In order to study precisely the growth of timed languages, we associate to such a language
a generating function. These functions (tightly related to volume and entropy of timed lan-
guages) satisfy compositionality properties and, for deterministic regular timed languages,
can be characterized by integral equations. We provide procedures for closed-form compu-
tation of generating functions for some classes of timed automata and regular expressions.

Chapter structure

In section 7.1 we introduce a formalism (inspired by [BP02]) for timed and clock languages,
introduce volume functions of such languages, and investigate the properties of these func-
tions. In section 7.2 we introduce generating functions of timed languages and investigate
their general properties. In section 7.3 we explain how to compute generating functions
for several subclasses of timed automata. We summarize the contributions and discuss the
directions of future work in section 7.4.

7.1 Preliminaries

7.1.1 Clock languages and timed languages

In this chapter, we study timed languages (mostly regular) using an approach based on clock
languages introduced in [BP02]. We present this approach in a slightly different form along
with a multi-stage semantics. The general idea is as follows: we are interested in timed
languages. Timed languages are obtained as projections of clock languages. Clock languages
are homomorphic images of discrete “triplet languages”. Triplet languages, in turn, can be
generated by automata or regular expressions. Below we define formally all these notions
and illustrate them on a running example.

129

An alphabet of timed events is the product R+ × Σ where Σ is a finite alphabet. The
meaning of a timed event (t, a) is that t is the time delay before the event a. A timed word
is a sequence of timed events and a timed language is just a set of timed words.

Inspired by [BP02], we enrich timed words and languages with d-dimensional clock vec-
tors. As usual, a clock is a variable which takes values in R+ which is (in our setting)
bounded by a positive integer M . A clock word is a tuple whose components are a starting
clock vector ~x, a timed word w and a final clock vector clock vector ~x, it is denoted by

~x
w−→ ~y. Two clock words ~x

w−→ ~y and ~x′
w′−→ ~y′ are said to be compatible if ~y = ~x′, in this

case we define their product by ~x
w−→ ~y · ~x′ w′−→ ~y′ = ~x

ww′−−→ ~y′. A clock language is a set of
clock words. The product of two clock languages L and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (7.1)

The neutral element E is {~x ǫ−→ ~x | ~x ∈ Rd} and the Kleene star of a language L is as usual
L∗ =

⋃
k Lk with L0 = E .

A clock language L is said to be deterministic whenever for each clock word the final
clock vector is uniquely determined by the starting clock vector and the timed word, in
other words there exists a function σL : Rd × (R+ × Σ)∗ → Rd such that for any clock word
~x

w−→ ~y of L, we have that ~y = σL(~x,w). In the following, we work with deterministic clock
languages1.

To a clock language we associate its timed projections. Given L, we define L(~x, ~x′) as
the timed language leading from ~x to an element lower than ~x′:

L(~x, ~x′) = {w | ∃~y ∈ Rd, ~x
w−→ ~y ∈ L and ~y ≤ ~x′}

where ~y ≤ ~x′ means that for every i ∈ {1, . . . , d}, yi ≤ x′i. We also define the timed language

L(~x) = {w | ∃~y ∈ Rd, ~x
w−→ ~y ∈ L}

as the language starting from ~x. Note that L(~x) = L(~x, ~M) where ~M = (M, . . . ,M) is the
greatest clock vector possible.

7.1.2 From timed automata to triplet, clock and timed languages

In this section, following [BP02], we give a convenient representation of timed automata
(such as those on Figure 7.1) and their languages.

Triplets and timed automata. We define timed automata as finite automata over
the finite alphabet T of triplets. These triplets are tuples 〈a, g, r〉 with: a a letter in Σ; g
a conjunction of constraints xi ⊲⊳ c (i ∈ {1..d}, c ∈ {0..M}, ⊲⊳∈ {<,>,≤,≥}) called guard
and r ⊆ {1..d} a set of indices of clocks to be reset. We suppose moreover that guards are
such that all the clocks remain bounded by M .

1Such are clock languages associated to deterministic timed automata. However, a product of two deter-
ministic clock languages can be non-deterministic, and we will explicitly rule out this situation.

130

p q

〈a, x ≤ 1, {x}〉

〈b, y ≤ 1, {y}〉

r

〈b, y ≤ 1, {x}〉

〈a, x ≤ 1, {y}〉

p

q

〈a, x ≤ 1, {y}〉〈b, y ≤ 1, {x}〉

〈a, x ≤ 1, {y}〉

〈b, y ≤ 1, {x}〉

p

q r

〈a, x ≤ 1, {x}〉

〈c, y ≤ 1, ∅〉

〈b, y ≤ 1, {y}〉

Figure 7.1: Timed automata. First line: A1, A2; second line: A3, A4.

Clock semantics of triplets. Informally, a triplet 〈a, g, r〉 corresponds to the following
behaviours: starting from some clock vector ~x let some time t elapse (all the clocks advance
by t), check that g is satisfied, emit a and update the clocks according to r. Formally, the

clock language of this triplet is L(〈a, g, r〉) = {~x (t,a)−−→ r(~x+ t) | ~x+ t |= g}. Here, for a clock
vector ~x = (x1, . . . , xd), we denote by ~x+ t the vector (x1 + t, . . . , xd + t). Clock vectors are
updated as follows: r(y1, . . . , yd) = (y′1, . . . , y

′
d) with y′i = 0 if i ∈ r and y′i = yi otherwise.

This definition can be extended to all triplet words by: L(ǫ) = E and
L(π1 . . . πn) = L(π1) . . .L(πn) (using the product of clock languages as defined in (8.5)).
Finally for a language L ⊆ T ∗, we define L(L) = {L(π) | π ∈ L}. In fact, L is a morphism
between the two Kleene algebras of triplet and clock languages.

Timed automata and their languages. Given a timed automaton A, its discrete se-
mantics L is the language of triplet words accepted by A seen as a finite automaton over
T ; its clock semantics is LA =def L(L) and its timed semantics is LA =def LA(0). The
timed automata considered in this chapter are assumed to be deterministic in the sense of
[AD94], i.e. outgoing transitions from the same state with the same letter must have pairwise
incompatible guards. Clock languages of deterministic automata are also deterministic.

A timed regular expression is defined as expression over the finite alphabet T . Its dis-
crete, clock and timed semantics are defined similarly to the automata. This multi-stage
timed semantics is equivalent to the usual semantics of timed automata and timed regular
expressions.

131

Example 11 (Running example of the Chapter). Automata A2 and A3 on Figure 7.1 have
the same discrete semantics2 which is captured by a regular expression:

(〈a, x ≤ 1, {y}〉+ 〈b, y ≤ 1, {x}〉)∗.

An example of a clock word recognized by the automaton is (0.5, 0.8)
(0.3,a)(0.1,a)(0.9,b)−−−−−−−−−−−→ (0, 0.9).

The timed language recognized LA2 = LA3 is:

{(t1, a) · · · (tn1 , a)(tn1+1, b) · · · (tn2 , b)(tn2+1, a) · · · (tn3 , a) · · · | ∀j ≥ 0,
nj+1∑

i=nj+1

ti ≤ 1}

with n0 = 0 and possibly n1 = 0.

Matrix notation. A convenient way to see automata is the matrix form. A timed
automaton A over a set of control states Q and an alphabet of transitions T is uniquely
described by three ingredients:

• a Q×Q-matrix ❚ whose element ❚qq′ is the set of triplets labelling transitions from q
to q′;

• a row vector I describing initial states: for each control state p, its element Ip = {ǫ}
iff p is initial, and ∅ otherwise;

• a column vector F describing final states: for each control state q, its element Fq = {ǫ}
iff q is final, and ∅ otherwise.

The coefficient (❚n)qq′ of ❚n contains the language of all the triplet words of length n from q
to q′. The qth coordinates of the column vector ❚nF contains the language recognized from
state q and I❚nF contains the language of triplet words of length n recognized by A. For
instance the matrices for A3 are:

I =
Ä
{ǫ} ∅

ä
; ❚ =

Ç {〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}
{〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}

å
; F =

Ç {ǫ}
{ǫ}

å
.

7.1.3 Volume(s) of timed and clock languages

Measurable timed languages and clock languages.

A timed language L is measurable if, for any word w ∈ Σ∗, the projection Lw = {~t ∈ R|w| |
(~t, w) ∈ L} is a Lebesgue-measurable subset of R|w|. A clock language L is measurable if
it is deterministic and for every w ∈ Σ∗, σL(·, (·, w)) is a Lebesgue-measurable function of
Rd×R|w| → Rd. We remark that timed languages and deterministic clock languages obtained
from a triplet word are measurable because their timed projections are polytopes.

2The difference will appear in section 7.3.1 since A3 is 1 3

4
-clocks and A2 is not.

132

Volumes of a timed language [AD09a].

The sequence of volumes (Vn(L))n∈N associated to a measurable timed language is Vn(L) =∑
w∈Σn Vol(Lw), where Vol is the hyper-volume (i.e. Lebesgue measure) in Rn. For dimension

0 we define V0(L) = 1 if ǫ ∈ L, and V0(L) = 0 otherwise.
Now, for a clock language L and a word w ∈ Σ∗ of length n ≥ 0, we define the clock

language L(w) = {~x (~t,v)−−→ ~x′ | v = w}.

Volumes constrained by initial and final clock vectors.

regular timed languages considered below come from clock languages (which themselves
come from triplet languages). The information about clock vectors is crucial to compute the
volume of timed languages in a compositional manner.

Thus we define parametric volumes depending on initial and final clock vectors as follows

V 2
n (~x, ~x′) = Vn(L(~x, ~x′)).

We call this function the cumulative volume function (CVF)3 of L. We also allow the
following notations: for a clock language L and a discrete events word w,

V 2
L(w)(~x, ~x

′) = V 2
|w|(L(w)(~x, ~x′));

and for a triplets word π,

V 2
π (~x, ~x′) = V|π|(L(π)(~x, ~x′)).

The notion of parametric volumes can also be applied to the clock language constrained only
by starting clock vector L(~x):

V 1
n (~x) = Vn(L(~x)).

Clearly V 1
n (~x) = V 2

n (~x, ~M).

CVFs for a triplet word.

According to the following result, a CVF is easy to compute for a triplet word, and hence
for a finite triplet language.

Proposition 41. For a triplet word π the CVF V 2
π is piecewise polynomial with rational

coefficients of degree ≤ |π|. The pieces are polytopes, and an expression of this function is
computable.

Sketch of proof. The clock language L(π) is a polytope in Rd × Rn × Rd. Its timed section
L(π)(~x, ~x′) is a polytope in Rn whose coefficients are linear functions of ~x and ~x′. Volumes
of such polytopes are computable and have the required form.

3similarly to cumulative distribution functions in probability theory.

133

Composing CVFs.

In order to define a composition for CVF corresponding to the concatenation of triplet words
and languages, we proceed as follows. We define composition of two functions of Rd×Rd → R

as:
V 2
1 ⋆ V

2
2 (~x, ~x′) =

∫

~y
V 2
2 (~y, ~x′)V 2

1 (~x, d~y),

where the integral is the Lebesgue-Stieltjes integral4. We also define

V 2
1 ⋆ v(~x) =

∫

~y
v(~y)V 2

1 (~x, d~y),

when v is defined on Rd. Then we can state the key lemma (to transpose concatenation of
words to the CVFs world):

Proposition 42. For any measurable clock languages L1 and L2 and discrete words w1 and
w2, V

2
L1(w1)

⋆ V 2
L2(w2)

is well defined and satisfies: V 2
L1(w1)

⋆ V 2
L2(w2)

= V 2
L1(w1)·L2(w2)

.

Proof. First recall that

V 2
L1(w1)·L2(w2)

(~x, ~x′) = Vol{~t | σL1·L2(~x, (~t, w1w2)) ≤ ~x′}
=
∫

~t
1σL1·L2

(~x,(~t,w1w2))≤~x′d~t,

which gives

V 2
L1(w1)·L2(w2)

(~x, ~x′) =
∫

~t1,~t2
1σL2

(σL1
(~x,(~t1,w1)),(~t2,w2))≤~x′d~t1d~t2.

By Fubini’s theorem this can be rewritten as

V 2
L1(w1)·L2(w2)

(~x, ~x′) =
∫

~t1

Ç∫
~t2
1σL2

(σL1
(~x,(~t1,w1)),(~t2,w2))≤~x′d~t2

å
d~t1.

Applying again the formula for V 2
L2(w2)

, we get that

V 2
L1(w1)·L2(w2)

(~x, ~x′) =
∫

~t1
V 2
L2(w2)

(σL1(~x, (~t1, w1)), ~x
′)d~t1

=
∫

~x1

V 2
L2(w2)

(~x1, ~x
′)V 2
L1(w1)

(~x, d~x1),

as required. The last change of variables can be justified as follows. It has the form:
∫

~t1
u(σL1(~x, (~t1, w1))) =

∫

~x1

u(~x1)V
2
L1(w1)

(~x, d~x1)d~t1, (7.2)

and we have to prove that it holds for any measurable u. Indeed, whenever u(~y) is an
indicator 1~y≤~a, both left-hand and right-hand sides equal V 2

L1(w1)
(~x,~a), thus (7.2) holds. Any

other function u can be obtained as a limit of linear combinations of such indicators.
4By definition, the Lebesgue-Stieltjes integral

∫
f(~x)g(d~x) is the Lebesgue integral of f wrt. the measure

µ having cumulative distribution function g.

134

Volume functions in timed automata. Volume functions as automata admits a
matrix notation as follows. We introduce a Q-vector Vn(~x) of volumes of clock languages
and a Q × Q-matrix ❱(~x, ~x′) of cumulative volume functions of elements of the transition
matrix ❚: formally

Vn,q(~x) = Vn(Lq(~x)) and ❱qq′(~x, ~x
′) = V1(L(❚qq′)(~x, ~x

′)) with Lq = L((❚nF)q).

It follows from the proposition above that the matrix element (❱⋆n)qq′ (of the matrix power
wrt. ⋆) contains the CVF of L ((❚n)qq′), that is of the language of all the clock words of
length n leading from q to q′. Finally, we get the formula for volumes:

Vn = ❱⋆n ⋆VF , (7.3)

with VF a column vector with VF,p = 1 if p is final, and VF,p = 0 otherwise.
The following property of volume functions will be used in the sequel.

Proposition 43. In a timed automaton A, for n ≥ 1, the entries of Vn(~x) and of ❱⋆n(~x, ~x′)
are continuous wrt. the starting clock vector ~x.

Proof. We prove that for every triplet word π, the volume function V 2
π is continuous wrt. its

first component. It is then straightforward to lift the result to the cumulative and non-
cumulative volume functions of the n-language of an automaton (finite sum of triplet words).

For a triplet word π, L(π)(~x, ~x′) is actually a polytope, intersection of half-spaces H of
equations of one of the following forms:

• either xi + sj ⊲⊳ c,

• xi + s|π| ⊲⊳ x
′
i,

• sj − sl ⊲⊳ c
• or s|π| − sl ⊲⊳ x′i

Choices of i, j, ⊲⊳ and c depend on H. Here sj is the time since the beginning of the word
after j transitions, i.e. sj =

∑j
i=1 ti, in particular s0 is the constant 0. Note that the Jacobian

of the change of variables ~t = (t1, . . . , t|π|) to ~s = (s1, . . . , s|π|) is 1. So we can write:

V 2
π (~x, ~x′) =

∫
1L(π)(~x,~x′)(~t)d~t =

∫ ∏

H:half-space

1H(~s,~x,~x′)d~s,

thus, for any i ∈ {1, . . . , d}:
∂V 2

π (~x, ~x′)

∂xi
=
∫ ∑

Hl:xi appears

±δ(xi + sji − cl or xi + s|π| − x′i)
∏

H 6=Hl

1Hd~s

=
∫ ∑

Hl:xi appears

±
∏

H 6=Hl

1H[xi ← x′
i−s|π| or xi ← cl−sjl]d~̃s.

where ~̃s is the vector of coordinates of ~s different from jl for all l such that Hl : xi+sjl ⊲⊳kl ckl .
We note that the Dirac’s δs were all eliminated after the integration by sjl and that the

expression that remains under the integral is a proper function of ~x, ~x′ and ~̃s. This implies
that V 2

π (~x, ~x′) was actually continuous with respect to xi for all i and thus continuous.

135

7.2 Generating functions

7.2.1 Definitions

To study volume sequences associated to timed and clock languages we define their generating
functions. As usual for generating functions, they allow recovering the sequence, its growth
rate, momenta etc; and they have nice compositional properties. Given a timed language L

its generating function is defined as follows:

fL(z) =
∑

k

zkVk(L).

Given a clock language L, we define a (parametric) generating function with a given starting
clock vector

f 1
L(z, ~x) =

∑

k

zkVk(L(~x)) = fL(z), with L = L(~x).

For a clock language L we also define another cumulative generating function with a given
starting clock vector and a bound on the final clock vector:

f 2(z, ~x, ~x′) =
∑

k

zkV 2
k (~x, ~x′) = fL(z), with L = L(~x, ~x′).

To summarize, we are interested in computing f(z), but this computation will be based on
f 1(z, ~x), and sometimes on f 2(z, ~x, ~x′).

Given a timed automaton, timed and clock languages, and thus generating functions are
naturally associated to its states, for example

f 1
q (z, ~x) =

∑

k

zkVk(Lq(~x)) = fL(z), with L = Lq(~x).

Taken for all states, functions fq and f 1
q form |Q|-dimensional vector functions f(z, ~x), f1(z, ~x),

while functions f 2
q,q′ form a Q×Q-matrix function ❢2(z, ~x, ~x′).

7.2.2 Analytic characterization

Elementary properties. First, let us state the relations between the three kinds of gener-
ating functions:

Proposition 44. The functions f, f 1, f 2 are related as follows:

f(z) = f 1(z,0);

f 1(z, ~x) = f 2(z, ~x, ~M).

By definition, f 2, f 1 and f are analytic functions of z. Since we consider timed automata
with guards bounded by some constant M , all the volumes Vk (with any initial or final
conditions) can be upper bounded by (M |Σ|)k. This implies that convergence radius of

136

series for f 2, f 1 and f is at least (M |Σ|)−1 > 0. More precisely, the radius of convergence of
f is

1/ lim sup
k→∞

(Vk(L))1/k = 2−H(L)

where H(L) is the volumetric entropy of L.
For generating functions associated to timed automata, the following result is a straight-

forward corollary of Proposition 43:

Proposition 45. Within its convergence radius, the generating function f1(z, ~x) associated
to a timed automaton A is continuous wrt. the starting clock vector ~x.

Integral equation for generating functions. Consider a timed automaton. Using
formula (7.3), its generating function can be computed as follows:

f1(z, ~x) =
∑

k

zkVk(~x) =
∑

k

zk
Ä
❱

⋆k ⋆VF

ä
(~x),

which implies our first main result.

Theorem 32 (Integral equation). In the interior of its convergence circle, the generating
function f1 is the unique solution of the integral equation

f1 − z❱ ⋆ f1 = VF . (7.4)

Example 12 (Example 11, continued). For the automaton A3 (using the notation x −̇ y for
max(x− y, 0)):

❱ =

Ç
min(x′, 1) −̇ x1y′≥0 min(y′, 1) −̇ y1x′≥0
min(x′, 1) −̇ x1y′≥0 min(y′, 1) −̇ y1x′≥0

å
; VF =

Ç
1
1

å
.

Equation (7.4) gives: f 1
p (z, x, y) = f 1

q (z, x, y) = 1 + z
∫ 1
x f

1
p (z, x′, 0)dx′

+z
∫ 1
y f

1
q (z, 0, y′)dy′. In section 7.3.1 below we develop a technique for solving such equa-

tions (for a subclass of automata including this one), and compute the generating function
for this language.

7.2.3 Volumes, generating functions and functional analysis

In this section (which can be skipped by a reader not interested in functional analysis),
similarly to [AD09a], we rephrase previous results in terms of the spectral theory of linear
operators.

Given a timed automaton, consider the Banach space F of Q-vectors of continuous func-
tions on clock valuations. Thus an element of F is a vector v whose components are con-
tinuous vq : [0;M]d → R, and F = C([0;M]d)Q. The matrix ❱ corresponds to an operator
Ψ : F → F defined by Ψ(v) = ❱ ⋆ v (a variant of this operator plays the central role in
[AD09a]). In terms of this operator, Proposition 43 and Equation (7.3) can be rephrased as
follows:

137

Proposition 46 ([AD09a]). Ψ is a bounded linear operator on F (represented by a matrix
of integral operators). The volume vector can be obtained by iteration of this operator: Vn =
Ψn(VF).

Recall that, by definition, the resolvent of an operator A is R(λ,A) = (A − λI)−1; it
is well defined when λ does not belong to the spectrum of A, in particular for |λ| > ρ,
where ρ denotes the spectral radius. We obtain as a consequence of Theorem 32 another
characterization of the generating function:

Proposition 47 (Generating function and resolvent). The generating function f1 satisfies
the formula: f1 = −z−1R(z−1,Ψ)VF , which holds in the interior of the circle |z| < ρ(Ψ)−1.

7.2.4 Inductive characterization of generating functions

The form of generating functions of finite triplet languages follows from Proposition 41:

Proposition 48. For a finite triplet language L with maximal word length ℓ, the generating
functions f 2, f 1 are piecewise polynomial in z, ~x, ~x′ (pieces are polytopes in ~x, ~x′) of degree
≤ ℓ wrt. z and wrt. ~x and ~x′.

More complex languages can be obtained from finite ones using Kleene algebra opera-
tions. As usual in the context of generating functions, we suppose that the operations are
unambiguous. A language operation is ambiguous if a word of the resulting language can be
obtained in several ways by composing different words from the operands. We consider first
the simple case of timed languages.

Proposition 49. Generating functions behave well for unambiguous operations on measur-
able timed languages: fL1∪L2 = fL1 + fL2; fL1·L2 = fL1fL2; fL∗ = 1 + fLfL∗ provided ǫ 6∈ L.

However, in order to obtain general regular timed languages we need operations on clock
languages, which are more involved.

Proposition 50. Generating functions f 2 behave well for unambiguous operations on deter-
ministic measurable clock languages (whenever the resulting language is also deterministic):
f 2
L1∪L2 = f 2

L1 + f 2
L2; f

2
L1·L2 = f 2

L1 ⋆ f
2
L2; f

2
L∗ = 1~x≤~x′ + f 2

L ⋆ f
2
L∗ provided E ∩ L = ∅.

Proof. • Union:

f 2
L1∪L2(~x, ~x

′, z) =
∑

w∈Σ∗

z|w|V 2
L1∪L2(w)(~x, ~x

′)

Since the union is unambiguous, ∀w ∈ Σ∗, L1(w) ∩ L2(w) = ∅ and thus ∀w ∈
Σ∗, V 2

L1∪L2(w) = V 2
L1(w) + V 2

L2(w). Finally :

f 2
L1∪L2(~x, ~x

′, z) = f 2
L1(~x, ~x

′, z) + f 2
L2(~x, ~x

′, z)

138

• Product:

Recall that:

f 2
L1·L2(~x, ~x

′, z) =
∑

w∈Σ∗

z|w|V 2
L1·L2(w)(~x, ~x

′).

Since the product is unambiguous,

(L1 · L2)(w) =
⊎

w1,w2∈Σ∗

w=w1w2

L1(w1) · L2(w2),

and thus

V 2
L1·L2(w) =

∑

w1,w2∈Σ∗

w=w1w2

V 2
L1(w1)·L2(w2)

=
∑

w1,w2∈Σ∗

w=w1w2

V 2
L1(w1)

⋆ V 2
L2(w2)

,

with the last equality given by proposition 42. We deduce:

∑

w∈Σ∗

z|w|V 2
L1·L2(w) =

∑

w∈Σ∗

∑

w1,w2∈Σ∗

w=w1w2

z|w1|V 2
L1(w1)

⋆ z|w2|V 2
L2(w2)

=
∑

w1∈Σ∗

∑

w2∈Σ∗

z|w1|V 2
L1(w1)

⋆ z|w2|V 2
L2(w2)

=
∑

w1∈Σ∗

z|w1|V 2
L1(w1)

⋆
∑

w2∈Σ∗

z|w2|V 2
L2(w2)

,

and finally:

f 2
L1·L2 = f 2

L1 ⋆ f
2
L2 .

• Kleene star:

We have L∗ = E ∪ L · L∗, the union is empty since E ∩ L = ∅ and the product is
unambiguous since the star is unambiguous thus using the two first items:

f 2
L∗ = f 2

E + f 2
L ⋆ f

2
L∗ .

To complete the proof it remains to prove that f 2
E (x, x

′, z) = 1~x≤~x′ . Recall that:
E = {~x ǫ−→ ~x | ~x ∈ Rd} thus E(x, x′) = {w ∈ (R+ × Σ)∗ | ∃~y ≤ ~x′, (~x,w, ~y) ∈ E} =
{w ∈ (R+ × Σ)∗ | ~x ≤ ~x′,w = ǫ} this set is equal to the 0-dimensional set {ǫ} whose
volume is 1 iff ~x ≤ ~x′, otherwise it is empty and thus of volume 0.

Corollary 4. Generating function f 1 for unambiguous compositions of clock languages (un-
der the same hypotheses) can be computed as follows: f 1

L1+L2 = f 1
L1 + f 1

L2; f
1
L1·L2 = f 2

L1 ⋆ f
1
L2;

f 1
L∗ = 1 + f 2

L ⋆ f
1
L∗ provided E ∩ L = ∅.

139

7.3 Computing generating functions

The generating function of a timed language represented by an automaton is characterized by
a system of integral equations (7.4). The generating function of a timed language represented
by a regular expression can be found recursively from piecewise polynomial functions using
operations +, ⋆ and solving fixpoint integral equations of Proposition 50 and Corollary 4.
Unfortunately, both procedures involve computation of integrals, and solution of integral
equations, for this reason, the result cannot be always presented by an explicit formula.
Below we consider several subclasses of timed automata, for which generating functions can
be obtained in closed form, or at least admit a simpler characterization.

7.3.1 Generating functions for particular classes of automata

System of equations.

Our closed-form solutions for subclasses of timed automata will be obtained using a variant
of language equations.

Let Q = G ∪ B be a disjoint partition of the states of a timed automaton A into good
and bad. We want to describe the vector L of triplet languages Lq recognized from good
states q ∈ G only. This vector satisfies the equation:

L = ❚ · L + F, (7.5)

where ❚ is a G × G-matrix and F is a G-vector of triplet languages. Their elements are
defined as follows: T pq consists of all words leading from p to q via bad states only; F p

consists of all words leading from p to a final state via bad states only5.

Automata with regeneration.

p q r
〈b, x < 8, x〉

〈b, x < 7, x〉

〈a, 2 < x < 3, ∅〉

〈b, x < 5, x〉

Figure 7.2: A regenerating automaton

Following [SV07], we call an automaton regenerating if there exists a partition Q = G∪B
having two properties: (a) every cycle in the automaton contains a state in G (good); (b)
all the transitions coming into a good state reset all clocks.

5if this final state is good the word should be ǫ.

140

W.l.o.g. we suppose that the initial state is good (this can be achieved by adding a
new initial state). Condition (a) implies that no cycle is possible within bad states, and
thus all the elements of ❚ and F are finite triplet languages (with maximal word length
≤ |B|+ 1). Condition (b) means that (7.5) can be rewritten in timed languages (instead of
clock languages), since when entering in a good state all clocks are reset. This gives

Ltimed = ❚timed · Ltimed + Ftimed. (7.6)

Applying simple compositionality conditions for generating functions for timed languages
(Proposition 49) we obtain that f = ❢ f + fF . Due to Proposition 48 all the coefficients
(elements of matrix ❢ and vector fF) are polynomials of z. Solving this linear |G|-dimensional
system we express f as a vector of rational functions of z:

f =
Ä
I − ❢

ä−1
fF . (7.7)

The generating function f of the timed language accepted by the automaton is just one
element of this vector f . We conclude.

Theorem 33. For a regenerating automaton the generating function f(z) is a rational func-
tion.

Example 13. Consider a regenerating automaton on Figure 7.2. We choose good and bad
states as follows: G = {p, q};B = {r}. The system of equations on timed languages of good
states takes the form

Ç
Lp

Lq

å
=

Ç ∅ Tpq
Tqp ∅

å
·
Ç
Lp

Lq

å
+

Ç
Fp

∅
å

with (7.8)

Tpq ={(t1, a)(t2, b)|2 < t1 < 3 ∧ t1 + t2 < 5} ∪ {(t, b)|t < 8};
Tqp ={(t, b)|t < 7};
Fp ={(t, a)|2 < t < 3}.

For generating functions this yields:

Ç
fp
fq

å
=

Ç
0 2.5z2 + 8z
7z 0

å
·
Ç
fp
fq

å
+

Ç
z
0

å
. Solving

this linear system we find the required fp(z) = 2z/(2− 35z3 − 112z2) . It converges for |z| <
0.1309, its Taylor coefficients (i.e. volumes Vn for n = 0..11) are

0; 1; 0; 56; 17
1

2
; 3136; 1960; 175922

1

4
; 164640; 9885946; 12298479

3

8
; 556494176.

Real-time automata.

We consider here transition-labeled real-time automata (t-RTA) from [Dim01]. They are
automata, in which to any transition p

a→ q is associated a time interval [l, u]. This transition
can be taken after spending between l and u time units in p. Equivalently, a real-time

141

p q r
b, [2, 8]

b, [1, 9]

a, [2, 3]

a, [1, 5]

Figure 7.3: A real-time automaton

automaton can be seen as a timed automaton with only one clock, which is reset on any
transition.

It is easy to see that real-time automata are regenerating (all their states are good). Thus
equation (7.7) applies. Its coefficients can be found in a more explicit form:

f = (I − z❆)−1VF , (7.9)

where matrix Apq is the sum of lengths of all time intervals associated to transitions from p
to q, and, as before, VFq = 1 iff q is final, and 0 otherwise. This can be seen as a simplified
version of the resolvent equation (7.4) for real-time automata: instead of a matrix of integral
operators, a matrix of polynomials is inverted.

Example 14. For the real-time automaton of Figure 7.3 equation (7.9) takes the form:

Ö
fp
fq
fr

è
=

Ö
I − z

Ö
0 6 1
8 0 0
0 4 0

èè−1
·

Ö
0
0
1

è
,

which gives the required generating function:

fp =
z

1− 48z2 − 32z3

with convergence circle |z| < 0.13812 and first 11 Taylor coefficients (volumes Vn):

0; 1; 0; 48; 32; 2304; 3072; 111616; 221184; 5455872; 14188544; 268959744.

13
4
-clocks automata.

We call an automaton 13
4
-clocks if there exists a partition of Q = G ∪ B into good and bad

states having three properties:(a) every cycle in the automaton contains a good state; (b)
the initial state is a good one; (c) for each good state p there is at most one clock xi(p) not
reset by incoming transitions.

142

Similarly to regenerating automata, we apply equations (7.5), and observe that all the
coefficients are finite triplet languages. Unfortunately, since some clocks are not reset, we
cannot write an equation on timed languages similar to (7.6). Instead, we pass to clock
languages and their generating functions, as in the general case. This gives:

f1 = ❢2 ⋆ f1 + f1F , (7.10)

an integral equation with piecewise polynomial coefficients. We notice that functions in the
last equation depend on the clock vector ~x ∈ Rd (or on two clock vectors ~x,~x′), but in fact
for any good state p ∈ G only one clock xi(p) matters. This allows extracting simpler integral
equations from (7.10), involving only functions of scalar argument.

We proceed as follows: given a G-vector v whose elements vp are functions on Rd, we
define reduced functions on R: ṽp(x) = vp(0, . . . , 0, x, 0, . . . , 0), with the argument x at
position i(p). Reduced G-vector ṽ consists of reduced elements ṽp. Reduced versions of
matrices are defined similarly.

The following identity is based on the requirement of clock resets:

Lemma 46. For a 13
4
-clocks automaton the following holds:

·�
❢2 ⋆ f1 = ❢̃2 ⋆ f̃1.

Equation (7.10), reduced to f̃1 = ❢̃2⋆f̃1+
fi
f1F , implies that the reduced vector of generating

functions is a solution of equations of the form:

f(z, x) = (❆ ⋆ f)(z, x) + b(z, x), (7.11)

where all the coefficients are piecewise polynomial functions of z and a scalar argument x.

Lemma 47. An integral equation of the form (7.11) can be transformed into a system of
linear ordinary differential equation with piecewise polynomial coefficients (depending on x
and z).

Theorem 34. For a 13
4
-clocks automaton the generating function f can be obtained by solv-

ing a system of linear ordinary differential equations with piecewise polynomial coefficients.

We notice that the theorem gives a rather explicit characterization of f , but not always
a closed-form expression.

Example 15 (Running example completed). A3 is 13
4
-clocks6 with good states G = {p, q}

and no bad state B = ∅. The matrix ❆ and the vector b are

❆ =

Ç
z(min(x′, 1) −̇ x) zmin(x′, 1)
zmin(x′, 1) z(min(x′, 1) −̇ x)

å
; b =

Ç
1
1

å
.

We use equation (7.11) and remark that by symmetry of ❆, the two generating functions

f̃ 1
p and f̃ 1

q are equal to a unique function f 1 which satisfies f 1(z, x) = z
∫ 1
x f

1(z, x′) dx′ +

z
∫ 1
0 f

1(z, x′) dx′+1. Differentiating it one time wrt. x we obtain: ∂f1

∂x
(z, x) = −zf 1(z, x). The

solution has the form f 1(z, x) = A(z)e−zx. Remark that f 1(z, 0) − 1 = 2z
∫ 1
0 f

1(z, x′) dx′ =
2(f 1(z, 1)− 1). We are done f(z) = f 1(z, 0) = A(z) = 1/(2e−z − 1) .

6A3 can be seen as A2 whose state is split to make it a 1 3

4
-clock automaton. See also the region splitting

of [AD09a] recalled in section 2.3.

143

Example 16 (Airy). Consider the automaton A4 of Figure 7.1. We choose G = {p, q},
B = {r}. As in the previous example we have ❆pq(x, x

′) = min(1 −̇ x, x′)1x′≥0. For ❆qp, we
must compute the volume of the language Lcb(x, x

′) = {t1, t2 ≥ 0 | x+ t1 + t2 ≤ 1∧ t1 + t2 ≤
x′}. This is the area of the right-angled triangle of equations t1, t2 ≥ 0, t1 + t2 ≤ u where
u = min(1 −̇ x, x′) i.e. min(1 −̇ x, x′)2/2. We can now give the matrix ❆ and the vector b:

❆ =

Ç
0 zmin(1 −̇ x, x′)1x′≥0

z2 min(1 −̇ x, x′)21x′≥0/2 0

å
; b =

Ç
1
0

å
.

Equations (7.11) on generating functions take the form:

f̃ 1
p (z, x) = z

∫ 1−x

0
f̃ 1
q (z, x′) dx′; f̃ 1

q (z, x) = z2
∫ 1−x

0
x′f̃ 1

p (z, x′) dx′ + 1.

Differentiating wrt. x we obtain:

∂f̃ 1
p

∂x
(z, x) = −zf̃ 1

q (z, 1− x);
∂f̃ 1

q

∂x
(z, x) = −z2(1− x)f̃ 1

p (z, 1− x).

Differentiate once again the former equation gives:
∂2‹f1

p

∂x2 (z, x) = z
∂‹f1

q

∂x
(z, 1 − x), combining

with the latter one this gives:

∂2f 1

∂x2
(z, x) = −z3xf 1(z, x) with f 1 = f̃ 1

p .

The solution has the form f 1(z, x) = α(z)Ai(−zx) + β(z)Bi(−zx) where Ai and Bi are the
Airy’s functions and α(z), β(z) two functions to be determined with the border conditions

f 1(z, 1) = 1, ∂f1

∂x
(z, 0) = 0. We obtain the following equations:

α(z)Ai(−z) + β(z)Bi(−z) = 1; α(z)Ai′(0) + β(z)Bi′(0) = 0.

Solving this system and simplifying using classical formulae for Ai(0), Ai′(0), Bi(0), Bi′(0)
and Euler’s reflection formula, we obtain the final result:

f(z) = f 1(z, 0) =
4

π
· 1

Bi′(0)Ai(−z)− Ai′(0)Bi(−z)
.

Example 17. The matrices defining A1 (the running example of the thesis) are:

I =
Ä
{ǫ} ∅

ä
; ❚ =

Ç ∅ {〈a, x ≤ 1, {x}〉}
{〈b, y ≤ 1, {y}〉} ∅

å
; F =

Ç {ǫ}
{ǫ}

å
.

The matrices of CVF are:

❱ =

Ç
0 min(1 −̇ x, y′ −̇ y)1x′≥0

min(1 −̇ y, x′ −̇ x)1y′≥0 0

å
; VF =

Ç
1
1

å
.

144

The automaton A1 is 13
4
-clocks, it suffices to choose G = {p, q}, B = ∅. The matrix ❆ and

the vector b are

❆ =

Ç
0 zmin(1 −̇ x, x′)1x′≥0

zmin(1 −̇ x, x′)1x′≥0 0

å
; b =

Ç
1
1

å
.

Equations (7.11) on generating functions take the form:

f̃ 1
p (z, x) = z

∫ 1−x

x′=0
f̃ 1
q (z, x′) dx′ + 1; f̃ 1

q (z, x) = z
∫ 1−x

x′=0
f̃ 1
p (z, x′) dx′ + 1.

By symmetry the two generating functions f̃ 1
p and f̃ 1

q are equal to a unique function f 1 which

satisfies f 1(z, x) = z
∫ 1−x
x′=0 f

1(z, x′) dx′ + 1. Differentiating it twice wrt. x we obtain:

∂f 1

∂x
(z, x) = −zf 1(z, 1− x);

∂2f 1

∂x2
(z, x) = −z2f 1(z, x).

The solution has the form f 1(z, x) = A(z) cos zx+B(z) sin zx.

Using ∂f1

∂x
(z, 0) = −zf 1(z, 1) = −z we obtain zB(z) = −z and thus B(z) = −1. Then

f 1(z, 1) = 1 implies A(z) cos z − sin z = 1 and thus A(z) = 1+sin z
cos z

= tan z + sec z. We can
conclude

f(z) = f 1(z, 0) = A(z) = tan z + sec z.

A reader acquainted with alternating permutations would recognized the exponential generat-
ing function of these permutations. This is no accident as we will see in the next chapter.

Example 18. The automaton A4 is 13
4
-clocks, it suffices to choose G = {p, q}, B = {r}. As

in the previous example we have ❆pq(x, x
′) = min(1 −̇ x, x′)1x′≥0. For ❆qp, we must compute

the volume of the language Lcb(x, x
′) = {t1, t2 ≥ 0 | x+ t1 + t2 ≤ 1∧ t1 + t2 ≤ x′}. This is the

area of the right triangle defined by equations t1, t2 ≥ 0, t1+t2 ≤ u, where u = min(1 −̇ x, x′),
i.e. min(1 −̇x,x′)2

2
. We can now give the matrix ❆ and the vector b:

❆ =

(
0 zmin(1 −̇ x, x′)1x′≥0

z2min(1 −̇x,x′)2

2
1x′≥0 0

)
; b =

Ç
1
0

å
.

Equations (7.11) on generating functions take the form:

f̃ 1
p (z, x) = z

∫ 1−x

0
f̃ 1
q (z, x′) dx′; f̃ 1

q (z, x) = z2
∫ 1−x

0
x′f̃ 1

p (z, x′) dx′ + 1.

Differentiating wrt. x we obtain:

∂f̃ 1
p

∂x
(z, x) = −zf̃ 1

q (z, 1− x);
∂f̃ 1

q

∂x
(z, x) = −z2(1− x)f̃ 1

p (z, 1− x).

Differentiate once again the former equation gives:
∂2‹f1

p

∂x2 (z, x) = z
∂‹f1

q

∂x
(z, 1 − x), combining

with the latter one this gives:

∂2f 1

∂x2
(z, x) = −z3xf 1(z, x) with f 1 = f̃ 1

p .

145

The solution has the form f 1(z, x) = α(z)Ai(−zx) + β(z)Bi(−zx) where Ai and Bi are the
so-called Airy’s functions and α(z), β(z) two functions to be determined with the border

conditions f 1(z, 1) = 1, ∂f1

∂x
(z, 0) = 0. We obtain the following equations:

α(z)Ai(−z) + β(z)Bi(−z) = 1; α(z)Ai′(0) + β(z)Bi′(0) = 0.

Solving this system and simplifying using classical formulae for Ai(0), Ai′(0), Bi(0), Bi′(0)
and Euler’s reflection formula, we obtain the final result:

f(z) = f 1(z, 0) =
4

π
· 1

Bi′(0)Ai(−z)− Ai′(0)Bi(−z)
.

Example 19. The matrices of A2 are 1× 1-dimensional since it has only one state:

I = ({ǫ}) ; ❚ = ({〈a, x ≤ 1, {y}〉, 〈b, y ≤ 1, {x}〉}) ; F = ({ǫ}) .

The matrices of CVF are:

❱ = (min(x′, 1) −̇ x1y′≥0 + min(y′, 1) −̇ y1x′≥0) ; VF = (1) .

The equation on generating function is

f 1(z, x, y) = 1 + z
∫ 1

x
f 1(z, x′, 0)dx′ + z

∫ 1

y
f 1(z, 0, y′)dy′.

This automaton is not 13
4
-clocks, but language equivalent to its split form A3 treated in the

chapter.

7.4 Conclusion and perspectives

In this chapter, we introduced generating functions of timed languages, explored their proper-
ties and characterized them by integral equations. For subclasses of regular timed languages
we have presented closed-form expressions or a simpler characterization of generating func-
tions. Generating functions describe with high accuracy the quantitative behaviour of timed
languages.

At the current stage of research, the computation of generating functions is a semi-manual
task and restrictions are imposed to automata. We are planning to explore theoretical and
practical algorithmics of timed generating functions, and to implement the algorithms On
the other hand, we want to see whether closed form solutions are possible beyond the class
of 13

4
-clocks languages.

We hope that this approach will lead to better quantitative characterization of timed
languages with applications to information theory and verification of real-time systems. Also,
the approach can be extended to timed formal series, non-regular timed languages, or to
richer models such as hybrid automata.

Generating functions of timed languages already have an application to enumerative
combinatorics of permutations... this is the subject of the next chapter.

146

Chapter 8

Counting and generating
permutations using timed languages

Abstract of the chapter

The signature of a permutation σ is a word sg(σ) ⊆ {a,d}∗ whose ith letter is a when σ
has a descent (i.e. σ(i) > σ(i + 1)) and is d when σ has an ascent (i.e. σ(i) < σ(i + 1)).
Combinatorics of permutations with a prescribed signature is quite well explored. Languages
of signatures permit to express a broad number of classes of permutations (e.g. the permu-
tations with an even number of descents). Here we state and address the two problems of
counting and randomly generating in the set sg−1(L) of permutations with signature in a
given regular language L ⊆ {a,d}∗. First we give an algorithm that computes a closed form
formula for the exponential generating function of sg−1(L). Then we give an algorithm that
generates randomly the n-length permutations of sg−1(L) in a uniform manner, i.e. all the
permutations of a given length with a signature in L are equally probable to be returned.
Both contributions are based on a geometric interpretation of a subclass of regular timed
languages.

Chapter structure

In section 8.1 we expose the problem statements. In section 8.2 we establish the link between
the classes of permutations associated with languages of signatures and timed languages of
a particular form. We address the two problems in section 8.3, treat several examples and
discuss our results and perspectives in the last section.

8.1 Two problem statements

All along the chapter we use the two letter alphabet {a,d} whose elements must be read
as “ascent” and “descent”. Words of {a,d}∗ are called signatures. For n ∈ N we denote
[n] = {1, . . . , n} and by Sn the set of permutation of [n]. We also use the one line notation
of permutations e.g. σ = 231 means that σ(1) = 2, σ(2) = 3, σ(3) = 1.

147

1 2

4 3

a

a

d

d

1 2

4 3

a

a

d

d

1, 3 2, 4

T

S

Figure 8.1: From left to right: automata for Lex, Lex′
and std(Lex′

)

Let n be a positive integer. The signature of a permutation σ = σ1 · · · σn is the word
u = u1 · · · un−1 ∈ {a,d}n−1 denoted by sg(σ) such that for i ∈ [n], σi < σi+1 iff ui = a
(we speak of an “ascent”, also known as an ascent) and σi > σi+1 iff ui = d (we speak of a
“descent”, also known as a descent) e.g. sg(21354) = sg(32451) = daad.

This notion appears in the literature under several different names and forms such as
descent word, descent set, ribbon diagram, etc. The usual definition of signature of a per-
mutation is an n-tuple of +1 (“ascent”) and −1 (”descent“). Here we use words to express
in a very convenient way constraints on permutations in terms of languages. More precisely
we are interested in sg−1(L) = {σ | sg(σ) ∈ L}: the class of permutations with a signature
in L ⊆ {a,d}∗. Given a language L we denote by Ln the sub-language of L restricted to
words of length n. The exponential generating function of sg−1(L) is

EGF [sg−1(L)](z) =
∑

σ∈sg−1(L)

z|σ|

|σ|! =
∑

n≥1
|sg−1(Ln−1)|

zn

n!
=
∑

u∈L
|sg−1(u)| z|u|+1

(|u|+ 1)!
.

Example 20. Consider as a running example of the chapter the class of ”up-up-down-
down“ permutations with signature in the language1 Lex = (aadd)∗(aa+ε) recognized by the
automaton depicted in the left of Figure 8.1. The theory developed in the chapter permits to
find the exponential generating function of sg−1(Lex).

EGF [sg−1(Lex)](z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

Its Taylor expansion is

z +
z3

3!
+ 6

z5

5!
+ 71

z7

7!
+ 1456

z9

9!
+ 45541

z11

11!
+ 2020656

z13

13!
+

For instance, there are 1456 up-up-down-down permutations of length 9.

Now we state the two problems solved in this chapter.

Problem 1. Design an algorithm which takes as input a regular language L ⊆ {a,d}∗ and
returns a closed form formula for EGF (sg−1(L))

1We confuse regular expressions with the regular languages they express.

148

Problem 2. Design an algorithm which takes as input a regular language L ⊆ {a,d}∗ and
a positive integer n and returns a random permutation σ uniformly in sg−1(Ln−1) i.e. such
that the probability for each σ ∈ sg−1(Ln−1) to be returned is 1/|sg−1(Ln−1)|.

8.2 A timed and geometric approach

In section 8.2.1 we introduce a sequence of sets On(L) ⊆ [0, 1]n and see how the two problems
posed can be reformulated as computing the volume generating function of the sequence
(On(L))n≥1 and generating points uniformly in On(L). Then we define a timed language
L′ associated to L as well as its volume (section 8.2.2) and describe a volume preserving
transformation between On(L) and L′n.

8.2.1 Order sets of a language of signatures (On(L))n≥1

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition of a set A
if A is the union of Si and they have pairwise a null volume intersection. In this case we
write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1
1
≤ . . . ≤ νσ−1

n
≤ 1} is called the order simplex2

of σ and denoted by O(σ) e.g. ~ν = (0.3, 0.2, 0.4, 0.5, 0.1) belongs to O(32451) since ν5 ≤
ν2 ≤ ν1 ≤ ν3 ≤ ν4 and (32451)−1 = 52134. The set O(σ) for σ ∈ Sn forms an almost
disjoint partition of [0, 1]n. By symmetry all the order simplices of permutations have the
same volume which is 1/n!.

If ~ν is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability 1/n!. To
retrieve σ from ~ν it suffices to use a sorting algorithm. We denote by Π(~ν) the permutation
σ returned by the sorting algorithm on ~ν i.e. such that 0 ≤ νσ−1

1
≤ . . . ≤ νσ−1

n
≤ 1.

The signature of a vector ~ν ∈ [0, 1]n is the word sg(~ν) = sg(Π(ν)) i.e. such that νi < νi+1

iff ui = a and νi > νi+1 iff ui = d. e.g. sg(0.3, 0.2, 0.4, 0.5, 0.1) = daad. The order polytope
[Sta86] of a signature u ∈ {a,d}n−1 is the polytope O(u) = {~ν ∈ [0, 1]n | sg(~ν) = u}. It
is clear that the collection of order simplices O(σ) with all σ having the same signature
u form an almost disjoint partition of the order polytope O(u): O(u) =

⊔
σ∈sg−1(u)O(σ)

(e.g. O(daa) = O(2134) ⊔ O(3124) ⊔ O(4123)). Passing to volume we get:

Vol(O(u)) =
∑

σ∈sg−1(u)

Vol(O(σ)) =
|sg−1(u)|

n!
(8.1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u∈Ln−1 forms an almost
disjoint partition of a subset of [0, 1]n called the nth order set of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈sg−1(Ln−1)

O(σ) = {~ν ∈ [0, 1]n | sg(~ν) ∈ Ln−1}. (8.2)

2Order simplices, order and chain polytopes of signatures defined here are particular cases of Stanley’s
order and chain polytopes [Sta86].

149

For volumes we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈sg−1(Ln−1)

Vol(O(σ)) =
|sg−1(Ln−1)|

n!
(8.3)

Reformulating the two problems with the geometric approach

As a consequence of (8.3), Problem 1 can be reformulated as computing the volume generating
function (VGF) of the sequence O(L) =def (On(L))n≥1:

V GF (O(L))(z) =def

∑

n≥1
Vol(On(L))zn = EGF (sg−1(L))(z) (8.4)

Problem 2 can also be treated using order polytopes On(L). Indeed it suffices to generate
uniformly a vector ν ∈ On(L) and then sort it to get a permutation σ = Π(ν). As the
simplices O(σ) for σ ∈ sg−1(Ln) form an almost disjoint partition of On(L) and all these
simplices have the same volume 1/n!, they are equally probable to receive the random vector
ν, and thus all σ ∈ sg−1(Ln) have the same probability to be chosen.

We have seen with (8.2) that permutations of a fixed length n fit well with the nth order
set. However, it is not clear how to fit the sequence of order sets (when n varies) with the
dynamics of the language L. It is easier to handle a timed language L since its sequence
of volumes (Vol(Ln))n∈N satisfies a recursive equation (see [AD09a] and (2.4) in the present
thesis). We will find a volume preserving transformation between order sets On(L) and
timed languages (Ln)n∈N and hence reduce Problem 1 to the computation of the ordinary
generating function of (Vol(Ln))n∈N. For the second problem, by generating uniformly a
timed word in Ln and applying the volume preserving transformation we will get a uniform
random point in On(L).

8.2.2 Timed semantics of a language of signatures (L′n)n∈N
In this section, we expose the material on timed languages needed to solve our problem.
We adopt as in the previous chapter an approach based on the notion of clock languages
introduced by [BP02]. The material of the present chapter is simpler than that of the
previous one, that is why we choose to give a self-contained exposition. In particular, the
next paragraph is essential for a reader that is only interested by the present chapter of the
thesis but can be skipped by a reader that has already encountered the definition of volume
sequences of a timed language and its generating function.

Timed languages, their volumes and their generating functions

An alphabet of timed events is the product R+ × Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi. A timed
word is just a word of timed events and a timed language a set of timed words. Adopting a
geometric point of view, a timed word is a vector of delays (t1, . . . , tn) ∈ Rn together with a

150

word of events w = w1 · · ·wn ∈ Σn. We adopt the following convention, we write (~t, w) for
the timed word (t1, w1) · · · (tn, wn) with ~t = (t1, · · · , tn) and w ∈ Σn (n ≥ 1). Continuing
with the same convention, given a timed language L′ ⊆ (R+×Σ)∗, then the timed language
restricted to words of length n, L′n can be seen as a formal union of sets

⊎
w∈Σn L′w × {w}

where L′w = {~t ∈ Rn | (~t, w) ∈ L′} is the set of delay vectors that together with w form a
timed word of L′. In the sequel we will only consider languages L′ for which every L′w is
volume measurable. To such a L′n one can associate a sequence of volumes and a VGF as
follows:

Vol(L′n) =
∑

w∈Σn

Vol(L′w);

V GF (L)(z) =
∑

w∈Σ∗

Vol(L′w)z|w| =
∑

n∈N
Vol(L′n)zn.

The clock semantics of a signature.

A clock is a non-negative real variable. Here we only consider two clocks bounded by 1 and
denoted by xa and xd. A clock word is a tuple whose component are a starting clock vector
(xa0 , x

d
0) ∈ [0, 1]2, a timed word (t1, a1) · · · (tn, an) ∈ ([0, 1] × {a,d})∗ and an ending clock

vector (xan, x
d
n) ∈ [0, 1]2, it is denoted by (xa0 , x

d
0)

(t1,a1)···(tn,an)−−−−−−−−−→ (xan, x
d
n).

Two clock words ~x0
w−→ ~x1 and ~x2

w′−→ ~x3 are said to be compatible if ~x2 = ~x1, in this

case their product is (~x0
w−→ ~x1) · (~x2 w′−→ ~x3) = ~x0

ww′−−→ ~x3. A clock language is a set of clock
words. The product of two clock languages L and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (8.5)

The clock language3 L(a) (resp. L(d)) associated to an ascent (resp. a descent) is the set of

clock words of the form (xa, xd)
(t,a)−−→ (xa+ t, 0) (resp. (xa, xd)

(t,d)−−→ (0, xd+ t)) and such that
xa+t ∈ [0, 1] and xd+t ∈ [0, 1] (and by definition of clocks and delays xa ≥ 0, xd ≥ 0, t ≥ 0).
These definitions extend inductively to all signatures L(u1 · · · un) = L(u1) · · · L(un) (using
the product of clock languages as defined in (8.5)).

Example 21. (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(daad) since

(0, 0)
(0.7,d)−−−→ (0, 0.7) ∈ L(d); (0, 0.7)

(0.2,a)−−−→ (0.2, 0) ∈ L(a);

(0.2, 0)
(0.2,a)−−−→ (0.4, 0) ∈ L(a); (0.4, 0)

(0.5,a)−−−→ (0, 0.5) ∈ L(d).

The timed semantics of a language of signatures.

The timed polytope associated to a signature w ∈ {a,d}∗ is Pw =def {~t | (0, 0)
(~t,w)−−→ ~y ∈

L(w) for some ~y ∈ [0, 1]2} e.g. (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada. The definition of such a

3A reader acquainted with timed automata would have noticed that the clock language L(a) (resp. L(d))
corresponds to a transition of a timed automaton where the guards xa ≤ 1 and xd ≤ 1 are satisfied and
where xd (resp. xa) is reset. See also the definition given in section 2.1.2 of this thesis.

151

timed polytope will be clarified in Proposition 51 and its following example. The timed
semantics of a language of signatures L′ is

L = {(~t, w) | ~t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′n = ∪w∈L′
n
Pw×{w}, its volume is Vol(L′n) =∑

w∈L′ Vol(Pw).
The chain polytope [Sta86] of a signature u is the set C(u) of vectors ~t ∈ [0, 1]n such that

for all i < j ≤ n and l ∈ {a,d}, wi · · ·wj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1.

Proposition 51. Given a word u ∈ {a,d}∗ and l ∈ {a,d}, the timed polytope of ul is the
chain polytope of u: Pul = C(u).

Proof. Let w = ul i.e. for all i ∈ [n − 1] wi = ui and wn = l. Pul ⊆ C(u)) Let (t1, . . . , tn) ∈
Pw i.e. there exist value of clocks xak (a ∈ {a,d}, k ∈ [n]) such that xa0 = xd0 = 0 and

(xak−1, x
d
k−1)

(tk,wk)−−−−→ (xak, x
d
k) ∈ L(wk). Let i < j ≤ n and a ∈ {a,d} such that wi · · ·wj−1 =

aj−i, then for k ∈ {i, . . . , j − 1}, xak = xak−1 + tk by definition of L(a). Then xaj−1 =
xai−1+ti+. . .+tj−1. Moreover xaj−1+tj ≤ 1 by definition of L(wj) and thus ti+. . .+tj−1+tj ≤
xai−1 + tj ≤ 1 which is the wanted inequality.
C(u) ⊆ Pul) Let (t1, . . . , tn) ∈ C(u). We show inductively that for every a ∈ {a,d}, the
condition xaj−1 + tj ≤ 1 is satisfied and thus that xaj can be defined (xaj = xaj−1 + tj if wj = a
and xaj = 0 otherwise). For this we suppose that clock values xa0, . . . , x

a
j−1 are well defined.

Let lr(xa, j) be the maximal index before transition j such that wlr(xa,j) 6= a. Necessarily
wlr(xa,j)+1 . . . wj = aj−i and thus tlr(xj)+1 + . . .+ tj ≤ 1 by definition of C(u). This latter sum
is equal to xaj−1 + tj ≤ 1 and thus the condition on xa imposed by L(uj) is satisfied.

Example 22. A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to Pdaada = C(daad) iff t1 + t2 ≤
1, t2+t3+t4 ≤ 1, t4+t5 ≤ 1 iff 1−t1 ≥ t2 ≤ t2+t3 ≤ 1−t4 ≥ t5 iff (1−t1, t2, t2+t3, 1−t4, t5) ∈
O(daad). One can check this fact on examples given before: (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada

corresponds to the vector (0.3, 0.2, 0.4, 0.5, 0.1) ∈ O(daad).

The purpose of the following section is to give the general formula for the correspondence
between timed polytopes and order polytopes we have foreseen in the previous example.

8.2.3 Volume preserving transformation between L′n and On(L).

Let n be a positive integer. We define for w = ul with u ∈ {a,d}n−1 and l ∈ {a,d} a volume
preserving function (t1, · · · , tn) 7→ (ν1, · · · , νn) from the chain polytope C(u) = Pul to the
order polytope O(u). This is a simple case of Theorem 2.1 of [HL12].

Let w ∈ {a,d}n and n = |w|. Let j ∈ [n] and i be the index such that wi · · ·wj−1 is
a maximal ascending or descending block i.e. i is minimal such that wi · · ·wj−1 = lj−i with
l ∈ {a,d}∗. If wj = d we define νj = 1−∑j

k=i tk and νj =
∑j

k=i tk otherwise.

152

Proposition 52. The mapping φul : (t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume preserving
transformation from C(u) = Pul to O(u). It can be computed in linear time using the following
recursive characterization:

∣∣∣∣∣
ν1 = t1 if w1 = a
ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣∣∣∣∣∣∣∣∣∣

νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

Proof. The function φul is a volume preserving transformation since it is a linear function
given by a unimodular (i.e. an integer matrix having determinant +1 or −1) matrix. Indeed

φul(~t) = ~ν iff ~ν⊤ = Mul
~t⊤ +~b with for all j ∈ [n]: if wj = a (resp. wj = d) then the jth row

of the matrix Mul has only 1s (resp. −1s) between coordinates i and j included and the jth

row of ~b is 0 (resp. −1). One can see that Mul is upper triangular and has only 1 and −1
on its diagonal and thus is unimodular. Now it remains to prove that ~ν (= φul(~t)) belongs
to O(u) for ~t ∈ C(u). For this we show that the two conditions (C-1) and (C-2) below are
equivalent; the former is the definition of (t1, · · · , tn) ∈ C(u) while the latter is equivalent to
ν1, . . . , νn ∈ O(u):

(C-1) for all i < j ≤ n and l ∈ {a,d}, ui · · · uj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1;

(C-2) for all i < j ≤ n, ui · · · uj−1 = aj−i ⇒ νi ≤ . . . ≤ νj ≤ 1 and ui · · · uj−1 = dj−i ⇒ νj ≤
. . . ≤ νi ≤ 1.

Let i < j ≤ n and ui · · · uj−1 = aj−i then the following chain of inequalities [0 ≤ νi = ti ≤
. . . ≤ νj−1 = ti + . . .+ tj−1 ≤ νj = (1− tj or ti + . . .+ tj) ≤ 1] is equivalent to ti + . . .+ tj ≤ 1.
The case of descents can be proved in a similar way by applying x 7→ 1− x to the preceding
inequalities.

Proposition 52 links the timed polytope of a signature of length n + 1 and the order
polytopes of a signature of length n. We correct this mismatch of length using prolongation
of languages. We say that a language L′ is a prolongation of a language L whenever the
truncation of the last letter w1 . . . wn 7→ w1 . . . wn−1 is a bijection between L′ and L. Every
language L has prolongations e.g. L′ = Ll for l ∈ {a,d} are prolongations of L. A prolonga-
tion of Lex is Lex′

= (aadd)∗(aad + a) recognized by the automaton depicted in the middle
of Figure 8.1.

Now we can extend Proposition 52 to a language of signatures.

Theorem 35. Let L ⊆ {a,d}∗ and L′ be the timed semantics of a prolongation of L then
for all n ∈ N, the following function is a volume preserving transformation between L′n and
On(L). Moreover it is computable in linear time.

φ : L′n → On(L)

(~t, w) 7→ φw(~t)
(8.6)

153

As a consequence, the two problems can be solved if we know how to compute the VGF
of a timed language L′ and how to generate timed vector uniformly in L′n. A characterization
of the VGF of a timed language as a solution of a system of differential equations is done in
our previous work [ABDP12]. Nevertheless the equations of this article were quite uneasy to
handle and did not give a closed form formula for the VGF. To get simpler equations than in
[ABDP12] we work with a novel class of timed languages involving two kinds of transitions
S and T.

8.2.4 The S-T (timed) language encoding.

The S-T-encoding

We consider the finite alphabet {S, T} whose elements must be respectively read as straight
and turn. The S-T-encoding of type l ∈ {a,d} of a word w ∈ {a,d}∗ is a word w′ ∈ {S, T}∗
denoted by stl(w) and defined recursively as follows: for every i ∈ [n], w′i = S if wi = wi−1
and w′i = T otherwise, with the convention that w0 = l. The mapping stl is invertible:
w = st−1l (w′) is defined recursively as follows: for every i ∈ [n], wi = wi−1 if w′i = S and
wi 6= wi−1 otherwise, with convention that w0 = l. Notion of S-T-encoding can be extended
naturally to languages e.g. for the running example: std(Lex′

) = (TS)∗T. We call an S-
T-automaton, a deterministic finite state automaton with transition alphabet {S, T} (see
Figure 8.1 for an S-T-automaton recognizing std(Lex′

)).

Timed semantics and S-T-encoding

In the following we define clock and timed languages similarly to what we have done in
section 8.2.2. Here we need only one clock x that remains bounded by 1. We define the

clock language associated to S by L(S) = {x (t,S)−−→ x+t | x ∈ [0, 1], t ∈ [0, 1−x]} and the clock

language associated to T by L(T) = {x (t,T)−−→ t | x ∈ [0, 1], t ∈ [0, 1 − x]}. Let L′′ ⊆ {S, T}∗

we denote by L′′(x) the timed language starting from x: L′′(x) = {(~t, w) | ∃y ∈ [0, 1], x
(~t,w)−−→

y ∈ L(w), w ∈ L′′}. The timed semantics of L′′ ⊆ {S, T}∗ is L′′(0).
The S-T-encodings yields a natural volume preserving transformation between timed lan-

guages:

Proposition 53. Let L′ ⊆ {a,d}∗, l ∈ {a,d}, L′ be the timed semantics of L′ and L′′ be
the timed semantics of stl(L

′) then the function (~t, w) 7→ (~t, st−1l (w)) is a volume preserving
transformation from L′′n to L′n.

Using notation and results of Theorem 35 and Proposition 53 we get a volume preserving
transformation from L′′n to On(L).

Theorem 36. The function (~t, w) 7→ φ
st

−1
l

(w)(~t) is a volume preserving transformation from

L′′n to On(L) computable in linear time. In particular

Vol(L′′n) =
|sg−1(Ln−1)|

n!
for n ≥ 1, and V GF (L′′)(z) = EGF (sg−1(L))(z)

154

Thus to solve Problem 1 it suffices to characterize the VGF of an S-T-automaton.

8.3 Solving the two problems

8.3.1 Characterization of the VGF of an S-T-automaton.

In this section we characterize precisely the VGF of the timed language recognized by an
S-T-automaton. This solves Problem 1.

We have defined just above timed language L′′(x) parametrized by an initial clock vec-
tor x. Given an S-T-automaton, we can also consider the intial state p as a parameter
and write Kleene like systems of equations on parametric language Lp(x) (similarly to
[ABDP12]). More precisely, let A = {{S, T}, Q, i, F, δ} be an S-T-automaton. To every
state p ∈ Q we denote by Lp ⊆ {S, T}∗ the language starting from p i.e. recognized by
Ap =def {{S, T}, Q, p, F, δ}. We adopt the convention that Lδ(p,l) is empty when δ(p, l) is
undefined and the corresponding generating function is null. Then for every p ∈ Q, we have
a parametric language equation:

Lp(x) =
î
∪t≤1−x(t, S)Lδ(p,S)(x+ t)

ó
∪
î
∪t≤1−x(t, T)Lδ(p,T)(t)

ó
∪ (ǫ if p ∈ F) (8.7)

Passing to volume generating functions fp(x, z) =def V GF (Lp(x))(z) (as in [ABDP12]) we
get:

fp(x, z) = z
∫ 1

x
fδ(p,S)(s, z)ds+ z

∫ 1−x

0
fδ(p,T)(t, z)dt+ (1 if p ∈ F) (8.8)

In matrix notation:

~f(x, z) = zMS

∫ 1

x

~f(s, z)ds+ zMT

∫ 1−x

0

~f(t, z)dt+ ~F (8.9)

where ~f(x, z),
∫ 1
x
~f(s, z)ds and

∫ 1−x
0

~f(t, z)dt are the column vectors whose coordinates are

respectively the fp(x, z),
∫ 1
x
~fp(s, z)ds and

∫ 1−x
0

~fp(t, z)dt for p ∈ Q. The pth coordinate of

the column vector ~F is 1 if p ∈ F and 0 otherwise. The Q × Q-matrices MS and MT are
the adjacency matrices corresponding to letter S and T i.e. for l ∈ {S, T}, Ml(p, q) = 1 if
δ(p, l) = q and 0 otherwise.

The equation (8.9) is equivalent to the differential equation:

∂

∂x
~f(x, z) = −zMS

~f(x, z)− zMT
~f(1− x, z) (8.10)

with boundary condition
~f(1, z) = ~F . (8.11)

The equation (8.10) is equivalent to the following linear homogeneous system of ordinary
differential equations with constant coefficients:

∂

∂x

(
~f(x, z)

~f(1− x, z)

)
= z

Ç −MS −MT

MT MS

å(~f(x, z)
~f(1− x, z)

)
. (8.12)

155

Algorithm 1 Computation of the generating function

1: Compute an S-T-automaton A for an extension of L and its corresponding adjacency
matrices MT and MS;

2: Compute

Ç
A1(z) A2(z)
A3(z) A4(z)

å
=def exp

ñ
z

Ç −MS −MT

MT MS

åô
;

3: Compute ~f(0, z) = [A1(z)]−1[I − A2(z)]~F (or ~f(0, z) = [I − A3(z)]−1A4(z)~F);

4: return the component of ~f(0, z) corresponding to the initial state of A.

whose solution is of the form
(

~f(x, z)
~f(1− x, z)

)
= exp

ñ
xz

Ç −MS −MT

MT MS

åô(~f(0, z)
~f(1, z)

)
(8.13)

Taking x = 1 in (8.13) and using the boundary condition (8.11) we obtain:

~F = A1(z)~f(0, z) + A2(z)~F
~f(0, z) = A3(z)~f(0, z) + A4(z)~F

(8.14)

where

Ç
A1(z) A2(z)
A3(z) A4(z)

å
= exp

ñ
z

Ç −MS −MT

MT MS

åô
. In particular when z = 0, A1(0) =

I −A3(0) = I and thus the two continuous functions z 7→ detA1(z) and z 7→ det(I −A3(z))
are positive in a neighbourhood of 0. We deduce that the inverses of the matrices A1(z) and
I − A3(z) are well defined in a neighbourhood of 0 and thus both rows of (8.14) permit to

express ~f(0, z) with respect to ~F :

~f(0, z) = [A1(z)]−1[I − A2(z)]~F
~f(0, z) = [I − A3(z)]−1A4(z)~F

(8.15)

Finally the coordinate of the column vector ~f(0, z) associated to the initial state gives the
expected VGF. To sum up we have:

Theorem 37. Given a regular language L ⊆ {a,d}∗, one can compute the exponential
generating function EGF (sg−1(L))(z) using Algorithm 1.

Some comments about the algorithm. In line 1, several choices are left to the user:
the prolongation L′ of the language L, the type of the S-T-encoding and the automaton that
realizes the S-T-encoding. These choices should be made such that the output automaton
has a minimal number of states or more generally such that the matrices MT and MS are the
simplest possibles. Exponentiation of matrices is implemented in most of computer algebra
systems.

8.3.2 An algorithm for Problem 2

Now we can solve Problem 2 using a uniform sampler of timed words (Algorithm 2), the
volume preserving transformation of Theorem 36 and a sorting algorithm.

156

Theorem 38. Let L ⊆ {a,d}∗ and L′′ be the timed semantics of a S-T-encoding of type l
(for some l ∈ {a,d}) of a prolongation of L. The following algorithm permits to achieve a
uniform sampling of permutation in sg−1(Ln−1). i.e. For σ ∈ sg−1n (L), the probability that
the permutation σ is returned is 1/|sg−1(Ln−1)|.

1. Choose uniformly an n-length timed word (~t, w) ∈ L′′n using Algorithm 2;

2. Return Π(φ
st

−1
l

(w)(~t)).

Proof. For all σ ∈ sg−1n (L), the probability p(σ) that the output is σ is the probability to
choose a timed word (~t, w) such that Π[φst−1(w)(~t)] = σ. Since the timed words are uniformly

sampled this probability is equal to Vol({(~t, w) | Π[φw(~t)] = σ})/Vol(L′′n) which is equal to
Vol({~ν | Π(~ν) = σ})/Vol(L′′n) since the mapping (~t, w) 7→ φst−1(w)(~t) is a volume preserving
transformation. The numerator is the volume of the order simplex associated to σ which is
Vol(O(σ)) = 1/n!; the denominator Vol(L′′n) is |sg−1(Ln−1)|/n! by virtue of Theorem 36.
We get the expected result p(σ) = (1/n!)/(|sg−1(Ln−1)|/n!) = 1/|sg−1(Ln−1)|.

Uniform sampling of timed words.

Recursive formulae (8.16) and (8.17) below are freely inspired by those of [AD09a] (and by
those of the previous chapter of the thesis). They are the key tools to design a uniform
sampler of timed word. This algorithm is a lifting from the discrete case of the so-called
recursive method (see [BG12, FZVC94]). For all q ∈ Q, n ∈ N and x ∈ [0, 1] we denote by
Lq,n(x) the language Lq(x) restricted to n-length timed words. The languages Lq,n(x) can
be recursively defined as follows: Lq,0(x) = ǫ if q ∈ F and Lq,0 = ∅ otherwise;

Lq,n+1(x) =
î
∪t≤1−x(t, S)Lδ(q,S),n(x+ t)

ó
∪
î
∪t≤1−x(t, T)Lδ(q,T),n(t)

ó
. (8.16)

For q ∈ Q and n ≥ 0, we denote by vq,n the function x 7→ Vol[Lq,n(x)] from [0, 1] to R+. Each
function vq,n is a polynomial of a degree less or equal to n that can be computed recursively
using the recurrent formula: vq,0(x) = 1q∈F and

vq,n+1(x) =
∫ 1

x
vδ(q,S),n(y)dy +

∫ 1−x

0
vδ(q,T),n(y)dy. (8.17)

The polynomials vq,n(x) play a key role for the uniform sampler, they permit also to retrieve
directly the terms of the wanted VGF: Vol(L′′n) = vq0,n(0) where q0 is the initial state of the
S-T automaton.

Theorem 39. Algorithm 2 is a uniform sampler of timed words of L′′n i.e. for every volume
measurable subset A ⊆ L′′n, the probability that the returned timed word belongs to A is
Vol(A)/Vol(L′′n).

Proof. One can first check that for all k ∈ [n], (qk−1, xk−1)
(tk,wk)−−−−→ (qk, xk) ∈ L(wk) and that

w1 · · ·wn ∈ L′′.

157

Algorithm 2 Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do
3: Compute mk = vqk−1,n−(k−1)(xk−1) and pS =

∫ 1
xk−1

vδ(qk−1,S),n−k(y)dy/mk;
4: b← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then
6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1− xk−1] of 1

mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy − r = 0;
9: xk ← xk−1 + tk;
10: else
11: wk ← T; qk ← δ(qk−1, T);
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1− xk−1] of 1

mk(1−pS)
∫ tk
0 vqk,n−k(y)dy − r = 0;

14: xk ← tk;
15: end if
16: end for
17: return (t1, w1)(t2, w2) . . . (tn, wn)

We denote by p[(t1, w1) · · · (tn, wn)] the density of probability of the timed word
(t1, w1) · · · (tn, wn) ∈ L′′ to be returned. The algorithm is a uniform sampler if it assign the
same density of probability to every timed word of L′′ i.e. p[(t1, w1) · · · (tn, wn)] = 1/Vol(L′′).

During the kth loop, wk and tk are chosen, knowing qk−1, xk−1 and the index k, according
to a density of probability (implicitly defined by the algorithm) denoted by pk[(tk, wk) |
qk−1, xk−1]. The new general state (qk, xk) is (deterministically) defined using qk−1, xk−1, tk,
wk. The following chain rule is satisfied

p[(t1, w1) · · · (tn, wn)] =
n∏

k=1

pk[(tk, wk) | qk−1, xk−1] (8.18)

No it suffices to plug (8.19) proven in Lemma 48 just below in (8.18) to get the expected
result:

p[(t1, w1) · · · (tn, wn)] =

∏n
k=1mk+1∏n
k=1mk

=
mn+1

m1

=
vqn,0(xn)

vq0,n(0)
=

1

Vol(L′′n)
.

Lemma 48. In Algorithm 2 during the kth loop for the timed transition (tk, wk) is cho-
sen knowing the current state (qk−1, xk−1) according to the following probability distribution
function (variables of the following equation such as mk are defined in the algorithm):

pk[(tk, wk) | qk−1, xk−1] =
mk+1

mk

=
vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
. (8.19)

158

Proof. The choice of (tk, wk) is done in two steps: first wk is chosen (and thus qk =
δ(qk−1, wk)) and then tk. We write this

pk[(tk, wk) | qk−1, xk−1] = pk[wk | qk−1, xk−1]pk[tk | qk, xk−1] (8.20)

Remark that b = 1 iff wk = S and thus pk[S | qk−1, xk−1] = pS (the probability that 1 is
returned in line 4) and pk[T | qk−1, xk−1] = 1− pS otherwise.

In both cases (b = 0 or 1) the delay tk is sampled using the so-called inverse transform
sampling. This method states that to sample a random variable according to a probability
density function (PDF) p(t) (here p(t) = pk[t | qk, xk−1]) it suffices to uniformly sample a
random number in [0, 1] and define t such that

∫ t
0 p(t

′)dt′ = r. The latter integral is known
as the cumulative density function4 (CDF) associated to p.

• When b = 1 (and thus wk = S), the CDF used in the algorithm is

t 7→ 1

mkpS

∫ t

0
vqk,n−k(xk−1 + t′)dt′.

Its corresponding PDF is

pk[tk | qk, xk−1] =
1

mkpS
vqk,n−k(xk−1 + tk) =

mk+1

mkpS
.

Plugging this in (8.20) we get the expected result (8.19).

• When b = 0 (and thus wk = T), a similar reasoning permits to prove (8.19) which is
then true in both cases.

Remark 4. One can remark that the probability depends on the index k of the loop which is
different5 from stochastic processes over runs of Chapter 4.

Some comments about the algorithm. Algorithm 2 requires a precomputation of all
functions vq,k for q ∈ Q and k ≤ n done by Algorithm 3 below (see also Proposition 54 for
the complexity). The expressions in lines 8 and 13 are polynomials increasing in [x, 1] (the
derivative is the integrand which is positive on (x, 1)). Finding the root of such a polynomial
can be done numerically and efficiently with a controlled error using a numerical scheme
such as the Newton’s method.

Proposition 54. Algorithm 3 has space and time complexity O(|Q|n2). Its bit space com-
plexity is O(|Q|n3).

Proof. The polynomial vq,m is of degree m, it has O(m) coefficients. Therefore the time and
space complexity are O(

∑n
m=1 |Q|m) = O(|Q|n2).

Magnitudes of coefficients of vq,m behave like 2mH where H is the entropy of the timed
language (see [AD09a]) and thus one needs O(m) bits to store them. This explains why an
extra factor n appears when dealing with bit space complexity.

4Its inverse (t function of r) is known as the quantile function.
5Such a property is sometimes called time-inhomogeneous while the SPOR of Chapter 4 are time-

homogeneous.

159

Algorithm 3 Preprocessing for Algorithm 2

1: for p ∈ Q do
2: define vp,0(x) = 1p∈F .
3: for k = 1 to n do
4: compute vp,k(x) using (8.17).
5: end for
6: end for

8.4 Examples

In section 8.4.1 we show how Algorithm 1 applies to the classical example of alternating
permutations. In section 8.4.2 we apply this algorithm to what we call up-up-down-down
permutations. In section 8.4.3 we treat the running example given in section 8.1.

8.4.1 The alternating permutations

p q

d

a

T

Figure 8.2: An automaton for (da)∗(ε+ d) and its S-T encoding of type d

The class of alternating permutation is6 Alt = S0 ∪ sg−1[(da)∗(ε+d)]. It is well known
since the 19th century and the work of Désiré André that

EGF (Alt)(z) = tan(z) + sec(z) (where sec(z) = 1/ cos(z)).

Several different proofs of this results can be found in [Sta10]. Here we give a novel proof
based on the application of Algorithm 1 on (da)∗(ε+ d).

A prolongation of (da)∗(ε + d) is (da)∗(d + da). We add ε to the language to add 1 to
its VGF, indeed

EGF (Alt)(z) = 1 + V GF [(da)∗(d + da)](z) = V GF [(da)∗(ε+ d)](z)

The S-T encoding of type a of (da)∗(ε + d) is just S∗ which is recognized by the one
loop automaton depicted in the right of Figure 8.2. Thus MS = (1), MT = (0) and we must

compute exp(zM) =
∑

n∈N z
nMn/n! with M =

Ç
0 1
−1 0

å
.

Computation of exp(zM) is easy since M is unipotent and thus its sequence of power
Mk is periodic: M0 = I2, M

1 = M , M2 = −I2, M3 = −M , M3 = I2, M
4 = M , . . .

6The unique permutation on the empty set has no signature and thus S0 6⊆ sg
−1(L) for any language L

of signature.

160

Then for all k ≥ 0:

M2k =

Ç
(−1)k 0

0 (−1)k

å
; M2k+1 =

Ç
0 (−1)2k

(−1)2k+1 0

å

Hence exp(zM) =
∑

n∈N z
nMn/n! =

Ç
cos(z) − sin(z)
sin(z) cos(z)

å
.

By definition A1(z) = cos(z), A2(z) = − sin(z). We can conclude:

EGF (Alt)(z) = A1(z)−1(1− A2(z)) =
1

cos(z)
+ tan(z).

8.4.2 The up-up-down-down permutations

Here we compute the exponential generating function of the class of up-up-down-down per-
mutations given as running example of the chapter. Recall that the corresponding regular
language is Lex = (aadd)∗(aa + ε), one of its extension is Lex′

= (aadd)∗(aad + a) and the
S-T-encoding of type d of this latter language is std(L′) = (TS)∗T. These languages are rec-
ognized by automata depicted in Figure 8.1. The adjacency matrices of the third automaton

are MS =

Ç
0 0
1 0

å
, MT =

Ç
0 1
0 0

å
and the row vector of final state is ~F =

Ç
0
1

å
. Let

M =

Ç −MS −MT

MT MS

å
. Again the computation of exp(zM) is easy since M is unipotent7:

M =

á
0 0 0 −1
−1 0 0 0
0 1 0 0
0 0 1 0

ë

;M2 =

á
0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

ë

;M3 =

á
0 −1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

ë

and M4 = I4.
Hence if we denote by fi(z) =

∑+∞
n=0 z

4n+i/(4n+ i)! for i ∈ {0, 1, 2, 3} we have:

exp zM = f0(z)I + f1(z)M + f2(z)M2 + f3(z)M3 and

A1(z) =

Ç
f0(z) −f3(z)
−f1(z) f0(z)

å
;A2(z) =

Ç
f2(z) −f1(z)
f3(z) f2(z)

å
.

The function fi can be expressed with trigonometric and hyperbolic functions:

f0(z) = [cosh(z) + cos(z)]/2;
f1(z) = [sinh(z) + sin(z)]/2;
f2(z) = [cosh(z)− cos(z)]/2;
f3(z) = [sinh(z)− sin(z)]/2.

7This is in fact the case for all cyclic automata.

161

p q

d

a

a

p q

d

a

a

p q

T

S

T

Figure 8.3: From left to right automata for Lex3 , Lex′
3 = {ε} ∪ Lex3 .{a} and sta(Lex′

3)

It holds that

[I2 − A2(z)]~F =

Ç
f1(z)

1− f2(z)

å

and thus Ç
fp(z)
fq(z)

å
=

Ç
f0(z) −f3(z)
−f1(z) f0(z)

å−1 Ç
f1(z)

1− f2(z)

å
.

Using Cramer formula we get fp(z) = [f1(z)f0(z) + f3(z)(1 − f2(z))]/[f 2
0 (z) + f1(z)f3(z)].

After straightforward simplifications we obtain the wanted result:

f(z) = fp(z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

8.4.3 Permutations without two consecutive descents

Consider the class Cex3 of permutations without two consecutive descents. This class has
already been studied and its EGF computed. References and many details can be found in
the On-Line Encyclopedia of Integer Sequences (OEIS), sequence A049774. In particular the
following EGF is given:

EGF (Cex3)(z) =

√
3ez/2√

3 cos
(√

3
2
z
)
− sin

(√
3
2
z
) .

We give an alternative proof of this result based on the method developed in this chapter.
The class Cex3 can be described in terms of regular languages:

Cex3 = S0 ∪ sg−1[(a + da)∗(ε+ d)].

A prolongation of (a+da)∗(ε+d) is (a+da)∗a. As for alternating permutations we add the
word ε to this language to add 1 to the final generating function, thus we get the language
(a+da)∗ recognized by the automaton depicted in the middle of Figure 8.3. Its S-T encoding
of type a is (S+TT)∗ which is recognized by the automaton depicted in the right of Figure 8.3.

Its adjacency matrices are MS =

Ç
1 0
0 0

å
, MT =

Ç
0 1
1 0

å
and the row vector of final state

162

http://oeis.org
http://oeis.org/A049774

is ~F =

Ç
1
0

å
. Let M =

Ç −MS −MT

MT MS

å
. We will solve directly the differential equation

(8.10) with boundary condition (8.11), i.e. the system

∂fp
∂x

(x, z) = −zfp(x, z)dy − zfq(1− x, z)dy; (8.21)

∂fq
∂x

(x, z) = −zfp(1− x, z). (8.22)

with boundary conditions fp(1, z) = 1; fq(1, z) = 0 Equation (8.21) taken at x = 1 ensures

that ∂fp
∂x

(1, z) = −zfp(0, z)− zfq(1, z) = −zfp(0, z). Thus we have the boundary conditions

fp(1, z) = 1; (8.23)

∂fp
∂x

(1, z) = −zfp(0, z). (8.24)

Differentiating (8.21) and replacing ∂fq
∂x

(1− x, z) using (8.22) we get:

∂2fp
∂x2

(x, z) = −z∂fp
∂x
− z2fp(x, z); (8.25)

Solutions are of the form: fp(x, z) = e−zx/2
[
a(z) cos

(√
3
2
zx
)

+ b(z) sin
(√

3
2
zx
)]

with a(z)

and b(z) to be determined using boundary conditions (8.23) and (8.24) i.e. a(z) and b(z)
should satisfy:

cos
(√

3
2
z
)

a(z)+ sin
(√

3
2
z
)

b(z) = ez/2;

a(z)+
√

3 b(z) = 0.

Solving this system we obtained the expected EGF:

EGF (Cex3)(z) = fp(0, z) = a(z) =

√
3ez/2√

3 cos
(√

3
2
z
)
− sin

(√
3
2
z
) .

8.5 Conclusion and perspectives

We have stated and solved the problems of counting and uniform sampling of permutations
with signature in a given regular language of signatures. The timed semantics of such a
language is a particular case of regular timed languages (i.e. recognized by timed automata
[AD94]). However, with the approach used, timed languages can be defined from any kind
of languages of signatures. A challenging task for us is to treat the case of context free
languages of signatures. For this we should use as in Chapter 7 and in [ABD13] (see also the
kernels of Chapter 4), volume of languages parametrized both by a starting and an ending
state.

Volumes and languages parametrized both by a starting and an ending states would also
be useful to gain a linear factor for the time and space complexity of the preprocessing stage

163

(Algorithm 3). Indeed such parametrized volume are needed to adapt the divide and conquer
algorithm of [BG12].

Our work can also benefit timed automata research. Indeed, we have proposed a uniform
sampler for a particular class of timed languages. An ongoing work is to adapt this algo-
rithm to all deterministic timed automata with bounded clocks using recursive equations of
[AD09a]. A uniform sampler of timed word would be useful to solve the proportional model
checking problem introduced in Chapter 4

It would be interesting to see whether the sequence of probability density functions
(pk)k∈N defined in Lemma 48 converges (in a sense to be clarified) toward the conditional
PDF of p∗ of the maximal entropy SPOR studied in Chapter 4.

A toy implementation of the algorithms is available on-line:
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.

164

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

Chapter 9

Conclusion and perspectives

In this thesis we applied entropy-based studies of timed languages in several research areas
and these methods gave interesting results. Indeed they allow

• to distinguish between essentially Zeno and essentially non-Zeno TA;

• to develop enumerative combinatorics of timed languages;

• to initiate constrained channel information transmission theory;

• to contribute to simulation of timed automata and uniform generation of timed words;

• to define a natural stochastic process for a timed automaton;

• to formulate timed automata theory in terms of symbolic dynamics;

• and even to have a general method for uniform random generation of permutations.

This confirms that an information-based approach to timed automata is very useful.
It would be also interesting to extend the methods presented here to timed automata

with weights, in the sense that each transition could have both a time duration and a cost.
Generating functions would again be a helpful tool to handle this more general setting.

We believe that these methods can/should be extended to other models from computer
science such as Hybrid automata and their languages, data languages, programs.

In a shorter perspective we would like to explore the two followings topics:

Uniform generation of timed words and permutations.

Let us compare the two kinds of random generations of timed words that appeared in the
thesis:

• In Chapter 4, the maximal entropy SPOR permits to perform a quasi-uniform ran-
dom generation of runs in linear time. The timed region graphs considered are quite
general. This permits to generate timed words of a quite general timed automaton in

165

linear time. However the question of how to compute the maximal entropy SPOR has
not been addressed yet.

• In Chapter 8, there is an exact uniform sampling of timed word in quadratic time
(and even cubic time for the bit complexity) for a very restrictive subclass of timed
automata. However, this sub-class is general enough to solve the problem of random
generation of permutations with signature in a given regular language.

It remains some work to marry the strength of both approaches while eliminating their
weakness. In fact the method of Chapter 8 can easily be adapted to the whole class of
bounded deterministic timed automata using the recursive equation on volume functions of
[AD09a] recalled in (2.3),(2.4). Nevertheless it remains slower than the method of Chapter
4. Unfortunately, this latter method does not yield a truly uniform random sampling. In
[Mar12] the author uses a stochastic process very similar to ours for the particular problem
of generating alternating permutations. He corrects the non uniformity of the process by an
ad hoc method. Some ideas of this latter work may be helpful to improve uniformity of our
process Y ∗.

For the particular case of timed automata considered in Chapter 8, we are convinced that
symbolic computations of objects ρ, v, w defining the maximal entropy SPOR Y ∗ can easily
be done and thus that quasi-uniform random generation of permutations can be performed
in linear time.

Empirical entropy

In [Sha48] and [Sha51], Shannon estimated the entropy of the printed English by assuming
(and motivating) that English texts were produced as with an irreducible Markov chain (see
also [Lot05]).

In a verification context, a language can represents the observable behaviours of a system.
The entropy measures the complexity of a language. The higher the entropy is, the more
complex the language is.

It is a challenging task for us to estimate empirically the entropy from samples of a timed
language. An empirical estimation of the entropy can be useful for monitoring a system: A
fall of the entropy can traduce a breakdown of a part of the system observed. In a different
context, if we model a spoken language by a timed language, then we could estimate for
instance the entropy of spoken English as Shannon did for printed English.

166

Bibliography

[ABB+12] Eugene Asarin, Nicolas Basset, Marie-Pierre Béal, Aldric Degorre, and Do-
minique Perrin. Toward a timed theory of channel coding. In Jurdzinski and
Nickovic [JN12], pages 27–42.

[ABD13] Eugene Asarin, Nicolas Basset, and Aldric Degorre. Spectral gap in timed
automata. In Vı́ctor A. Braberman and Laurent Fribourg, editors, FORMATS,
volume 8053 of Lecture Notes in Computer Science, pages 16–30. Springer, 2013.

[ABDP12] Eugene Asarin, Nicolas Basset, Aldric Degorre, and Dominique Perrin. Generat-
ing functions of timed languages. In Branislav Rovan, Vladimiro Sassone, and
Peter Widmayer, editors, MFCS, volume 7464 of Lecture Notes in Computer
Science, pages 124–135. Springer, 2012.

[AC88] Paul H. Algoet and Thomas M. Cover. A sandwich proof of the Shannon-
McMillan-Breiman theorem. The annals of probability, 16(2):899–909, 1988.

[ACD91] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for proba-
bilistic real-time systems (extended abstract). In Javier Leach Albert, Burkhard
Monien, and Mario Rodŕıguez-Artalejo, editors, ICALP, volume 510 of Lecture
Notes in Computer Science, pages 115–126. Springer, 1991.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[AD09a] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed lan-
guages: Analytic approach. In Joël Ouaknine and Frits W. Vaandrager, editors,
FORMATS, volume 5813 of Lecture Notes in Computer Science, pages 13–27.
Springer, 2009.

[AD09b] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed lan-
guages: Discretization approach. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR, volume 5710 of Lecture Notes in Computer Science, pages
69–83. Springer, 2009.

[AD10] Eugene Asarin and Aldric Degorre. Two size measures for timed languages.
In Kamal Lodaya and Meena Mahajan, editors, FSTTCS, volume 8 of LIPIcs,
pages 376–387. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

167

[AKY10] Parosh Aziz Abdulla, Pavel Krcál, and Wang Yi. Sampled semantics of timed
automata. Logical Methods in Computer Science, 6(3), 2010.

[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in
timed automata and digital circuits. In Davide Sangiorgi and Robert de Simone,
editors, CONCUR, volume 1466 of Lecture Notes in Computer Science, pages
470–484. Springer, 1998.

[BA07] Mikhail Bernadsky and Rajeev Alur. Symbolic analysis for gsmp models with
one stateful clock. In Alberto Bemporad, Antonio Bicchi, and Giorgio C. But-
tazzo, editors, HSCC, volume 4416 of Lecture Notes in Computer Science, pages
90–103. Springer, 2007.

[BA11] Nicolas Basset and Eugene Asarin. Thin and thick timed regular languages. In
Fahrenberg and Tripakis [FT11], pages 113–128.

[BAM06] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. Bounded model
checking of concurrent data types on relaxed memory models: A case study. In
Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of Lecture Notes
in Computer Science, pages 489–502. Springer, 2006.

[Bas13a] Nicolas Basset. Counting and generating permutations using timed languages
(long version). 2013.

[Bas13b] Nicolas Basset. A maximal entropy stochastic process for a timed automaton.
In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, ICALP (2), volume 7966 of Lecture Notes in Computer Science, pages
61–73. Springer, 2013.

[Basar] Nicolas Basset. Counting and generating permutations using timed languages.
volume 8392 of Lecture Notes in Computer Science. Springer, 2014 (to appear).

[BBB+07] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Mar-
cus Größer. Probabilistic and topological semantics for timed automata. In
Vikraman Arvind and Sanjiva Prasad, editors, FSTTCS, volume 4855 of Lec-
ture Notes in Computer Science, pages 179–191. Springer, 2007.

[BBBM08] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey.
Quantitative model-checking of one-clock timed automata under probabilistic
semantics. In QEST, pages 55–64. IEEE Computer Society, 2008.

[BBEP10] Marie-Pierre Béal, Jean Berstel, S. Eilers, and Dominique Perrin. Symbolic
dynamics. CoRR, abs/1006.1265, 2010.

[BBJM12] Patricia Bouyer, Thomas Brihaye, Marcin Jurdzinski, and Quentin Menet.
Almost-sure model-checking of reactive timed automata. In QEST, pages 138–
147. IEEE Computer Society, 2012.

168

[BBM+10] Marie-Pierre Béal, Jean Berstel, Brian Marcus, Dominique Perrin, Christophe
Reutenauer, and Paul H. Siegel. Variable-length codes and finite automata. In
Subhas Chandra Misra Issac Woungang, Sudip Misra, editor, Selected topics
in information and coding theory, chapter 14, pages 505–584. World Scientific
Publishing Company, 2010.

[Bea98] Danièle Beauquier. Pumping lemmas for timed automata. In Maurice Nivat,
editor, FoSSaCS, volume 1378 of Lecture Notes in Computer Science, pages
81–94. Springer, 1998.

[BG12] Olivier Bernardi and Omer Giménez. A linear algorithm for the random sam-
pling from regular languages. Algorithmica, 62(1-2):130–145, 2012.

[Bil12] Patrick Billingsley. Probability and measure, volume 939. Wiley, 2012.

[BL12] Miko laj Bojańczyk and S lawomir Lasota. A machine-independent characteri-
zation of timed languages. In Automata, Languages, and Programming, pages
92–103. Springer, 2012.

[Bla90] Richard E. Blahut. Digital Transmission of Information. Addison Wesley, 1990.

[BLD+05] M Beck, JA De Loera, M Develin, J Pfeifle, and RP Stanley. Coefficients and
roots of ehrhart polynomials. Contemporary Mathematics, 374:15–36, 2005.

[Bow71] Rufus Bowen. Entropy for group endomorphisms and homogeneous spaces.
Transactions of the American Mathematical Society, 153:401–414, 1971.

[BP02] Patricia Bouyer and Antoine Petit. A Kleene/Büchi-like theorem for clock
languages. Journal of Automata, Languages and Combinatorics, 7(2):167–186,
2002.

[BPR09] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Au-
tomata, volume 129 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 2009. 634 pages.

[BR07] M. Beck and S. Robins. Computing the continuous discretely: Integer-point
enumeration in polyhedra. Springer, 2007.

[BR11] Jean Berstel and Christophe Reutenauer. Noncommutative rational series with
applications, volume 137 of Enc. of Math. and Appl. Cambridge University
Press, 2011.

[BS02] Michael Brin and Garrett Stuck. Introduction to Dynamical Systems. Cambridge
University Press, New York, NY, USA, 2002.

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers.
In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, volume 1664 of
Lecture Notes in Computer Science, pages 242–257. Springer, 1999.

169

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.).
Wiley, 2006.

[Dim01] Catalin Dima. Real-time automata. Journal of Automata, Languages and Com-
binatorics, 6(1):3–24, 2001.

[Dim02] Catalin Dima. Computing reachability relations in timed automata. In LICS,
pages 177–. IEEE Computer Society, 2002.

[DLL+11] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis,
Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng Wang. Statistical model
checking for networks of priced timed automata. In Fahrenberg and Tripakis
[FT11], pages 80–96.

[Edg93] Gerald A. Edgar, editor. Classics on Fractals. Addison-Wesley, 1993.

[EJ12] Richard Ehrenborg and JiYoon Jung. Descent pattern avoidance. Advances in
Applied Mathematics, 2012.

[Fek23] M. Fekete. Uber die verteilung der wurzeln bei gewissen algebraischen gleichun-
gen mit ganzzahligen koeffizienten. Mathematische Zeitschrift, 17:228–249, 1923.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge
University Press, 2009.

[FT11] Uli Fahrenberg and Stavros Tripakis, editors. Formal Modeling and Analysis
of Timed Systems - 9th International Conference, FORMATS 2011, Aalborg,
Denmark, September 21-23, 2011. Proceedings, volume 6919 of Lecture Notes in
Computer Science. Springer, 2011.

[FZVC94] Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for
the random generation of labelled combinatorial structures. Theoretical Com-
puter Science, 132(1):1–35, 1994.

[GB07] Rodolfo Gómez and Howard Bowman. Efficient detection of zeno runs in timed
automata. In Jean-François Raskin and P. S. Thiagarajan, editors, FORMATS,
volume 4763 of Lecture Notes in Computer Science, pages 195–210. Springer,
2007.

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed
automata. In Oded Maler, editor, HART, volume 1201 of Lecture Notes in
Computer Science, pages 331–345. Springer, 1997.

[HL12] T. Hibi and N. Li. Unimodular equivalence of order and chain polytopes. arXiv
preprint arXiv:1208.4029, 2012.

170

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital
clocks? In Werner Kuich, editor, ICALP, volume 623 of Lecture Notes in
Computer Science, pages 545–558. Springer, 1992.

[HR00] Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of timed
and hybrid systems. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC,
volume 1790 of Lecture Notes in Computer Science, pages 145–159. Springer,
2000.

[Imm95] K.A.S. Immink. EFMPlus: The coding format of the multimedia compact disc.
IEEE Transactions on Consumer Electronics, 41(3):491–497, 1995.

[JN12] Marcin Jurdzinski and Dejan Nickovic, editors. Formal Modeling and Analysis of
Timed Systems - 10th International Conference, FORMATS 2012, London, UK,
September 18-20, 2012. Proceedings, volume 7595 of Lecture Notes in Computer
Science. Springer, 2012.

[KBM13] Jean-Francois Kempf, Marius Bozga, and Oded Maler. As soon as probable:
Optimal scheduling under stochastic uncertainty. In Nir Piterman and Scott A.
Smolka, editors, TACAS, volume 7795 of Lecture Notes in Computer Science
7795, pages 385–400. Springer, 2013.

[Kit11] Sergey Kitaev. Patterns in permutations and words. Springer, 2011.

[KLS89] M.A. Krasnosel’skij, E.A. Lifshits, and A.V. Sobolev. Positive Linear Systems:
The method of positive operators. Number 5 in Sigma Series in Applied Math-
ematics. Heldermann Verlag, Berlin, 1989.

[Krc09] Pavel Krcál. Infinite Structures in Timed Systems. PhD thesis, University of
Uppsala, Dept. of Information Technology, May 2009.

[KT59] A.N. Kolmogorov and V.M. Tikhomirov. ε-entropy and ε-capacity of sets in
function spaces. Uspekhi Mat. Nauk, 14(2):3–86, 1959. Russian, partial English
translation in [Edg93].

[LM95] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and
coding. Cambridge University Press, 1995.

[Lot05] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics
and its Applications). Cambridge University Press, New York, NY, USA, 2005.

[LW00] Elon Lindenstrauss and Benjamin Weiss. Mean topological dimension. Israel J.
of Math., 115:1–24, 2000.

[Mar12] Philippe Marchal. Generating random alternating permutations in time n log
n. 2012.

171

[MP04] Oded Maler and Amir Pnueli. On recognizable timed languages. In Igor
Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Computer Sci-
ence, pages 348–362. Springer, 2004.

[MRS98] Brian Marcus, Ron M. Roth, and Paul H. Siegel. Constrained systems and
coding for recording channels. In Handbook of Coding Theory, pages 1635–1764.
North-Holland, 1998.

[NW78] Albert Nijenhuis and Herbert S Wilf. Combinatorial algorithms for comput-
ers and calculators. Computer Science and Applied Mathematics, New York:
Academic Press, 1978, 2nd ed., 1, 1978.

[Par64] W. Parry. Intrinsic Markov chains. Transactions of the American Mathematical
Society, pages 55–66, 1964.

[Pin64] S. Pinsker. Information and information stability of random variables and pro-
cesses. Holden-Day series in time series analysis. Holden-Day, 1964.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, 2000.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Ro-
bust controller synthesis in timed automata. In Pedro R. D’Argenio and
Hernán C. Melgratti, editors, CONCUR, volume 8052 of Lecture Notes in Com-
puter Science, pages 546–560. Springer, 2013.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J.,
27:379–423, 623–656, 1948.

[Sha51] Claude E Shannon. Prediction and entropy of printed english. Bell system
technical journal, 30(1):50–64, 1951.

[Sim90] Imre Simon. Factorization forests of finite height. Theor. Comput. Sci.,
72(1):65–94, 1990.

[SS78] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series.
Springer Verlag, 1978.

[Sta86] R.P. Stanley. Two poset polytopes. Discrete & Computational Geometry,
1(1):9–23, 1986.

[Sta10] Richard P. Stanley. A survey of alternating permutations. In Combinatorics
and graphs, volume 531 of Contemp. Math., pages 165–196. Amer. Math. Soc.,
Providence, RI, 2010.

[Sta12] Amélie Stainer. Frequencies in forgetful timed automata. In Jurdzinski and
Nickovic [JN12], pages 236–251.

172

[SV07] Luigi Sassoli and Enrico Vicario. Close form derivation of state-density functions
over dbm domains in the analysis of non-markovian models. In QEST, pages
59–68. IEEE Computer Society, 2007.

[SW99] H.H. Schaefer and M.P.H. Wolff. Topological vector spaces, volume 3. Springer
Verlag, 1999.

[Szp01] George G Szpiro. The number of permutations with a given signature, and the
expectations of their elements. Discrete Mathematics, 226(1):423–430, 2001.

[WDMR08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin.
Robust safety of timed automata. Formal Methods in System Design, 33(1-
3):45–84, 2008.

[WDR05] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost asap se-
mantics: from timed models to timed implementations. Formal Asp. Comput.,
17(3):319–341, 2005.

173

174

List of Figures

1 Un automate temporisé Aex . 11

1.1 A timed automaton Aex . 21

2.1 A bounded deterministic timed automaton A 35
2.2 The TRG Gex1 and its state space . 36
2.3 Fleshy region-split forms of automata A . 42
2.4 The three polytopes associated to a path. 45

3.1 Examples of thin and thick TRGs . 48
3.2 Two non strongly connected orbit graphs . 53

5.1 A right resolving LCTRG . 97
5.2 LCTRGs for Examples 5, 6, 7 and 8 . 98

6.1 A sofic automaton of a channel C (left) and a ({0, 1}∗, C)-encoder (right) . . 117
6.2 An abstract representation of a LCTRG . 119
6.3 A−ε : an automaton recognizing C−ε with ε = 1. 125
6.4 The split form of A−ε . 125
6.5 Top: transducers τ1 : S → C and τ2 : C → S. Bottom: languages S2 and C2. 128

7.1 Timed automata. First line: A1, A2; second line: A3, A4. 131
7.2 A regenerating automaton . 140
7.3 A real-time automaton . 142

8.1 From left to right: automata for Lex, Lex′
and std(Lex′

) 148
8.2 An automaton for (da)∗(ε+ d) and its S-T encoding of type d 160
8.3 From left to right automata for Lex3 , Lex′

3 = {ε} ∪ Lex3 .{a} and sta(Lex′
3) . 162

175

Abstract

Since early 90s, timed automata and timed languages are extensively used for modelling and
verification of real-time systems, and thoroughly explored from a theoretical standpoint. Re-
cently Asarin and Degorre introduced the notions of volume and entropy of timed languages
to quantify the size of these languages and the information content of their elements.

In this thesis we build new developments of this theory (called by us volumetry of timed
languages) and apply it to several problems occurring in various domains of theoretical
computer science such as verification, enumerative combinatorics or information theory.

Among other we (i) develop a theory of timed symbolic dynamics; (ii) characterize a
dichotomy between bad behaving and well behaving timed automata; (iii) define a least
biased stochastic process for a timed automaton; (iv) develop a timed theory of constrained
channel coding; (v) count and generate randomly and uniformly permutations in certain
classes.

Résumé

Depuis le début des années 90, les automates temporisés et les langages temporisés ont été
largement utilisés pour modéliser et vérifier les systèmes temps réels. Ces langages ont aussi
été largement étudié d’un point de vue théorique. Plus récemment, Asarin et Degorre ont
introduit les notions de volume et d’entropie des langages temporisés pour quantifier la taille
de ces langages et l’information que ses éléments contiennent.

Dans cette thèse nous construisons de nouveaux développements à cette théorie (que nous
appelons volumétrie des langages temporisés) et l’appliquons a plusieurs problèmes apparais-
sant dans divers domaines de recherche tels que la théorie de l’information, la vérification,
la combinatoire énumérative.

Entre autre, nous (i) développons une théorie de la dynamique symbolique temporisée ;
(ii) caractérisons une dichotomie entre les automates temporisés se comportant bien ou mal ;
(iii) définissons pour un automate temporisé donné, un processus stochastique d’entropie
maximale le moins biaisé possible ; (iv) développons une version temporisé de la théorie des
codes sur canal contraint (v) énumérons et générons aléatoirement des permutations dans
une certaine classe.

176

	Résumé introductif en français.
	Introduction
	Contributions, extended outline
	Related work
	Classical results lifted to the timed case.
	Timed automata related works
	Combinatorics

	Past and ongoing publications

	Preliminaries
	Basics definitions
	Timed languages
	Bounded Deterministic Timed Automata
	Timed region graphs

	Advanced preliminaries
	Paths, polytopes and point to point reachability.
	Closed version of a timed region graph
	SCC decomposition
	Volume and entropy of runs

	Link between BDTA and TRGs (technical section).
	The region-splitting of volumeFormats
	BDTAs and TRGs have the same entropy
	Proof of Proposition 5
	Recurrent equations on volume functions volumeFormats

	Thin and Thick languages
	Preliminaries
	Thinness, simplices and examples
	Point to point reachability: algebraic characterization
	Linear Lyapunov functions and sub-exponential volume.

	Main section
	Pumping lemma for long thick paths
	Characterizing thick languages
	Thin and thick SCC

	Conclusion and perspectives

	The maximal entropy SPOR.
	Maximal entropy Markov chain on a graph
	Markov chain on a graph
	Ergodic stochastic processes
	Entropies
	The asymptotic equipartition property for Markov-chain
	The Shannon-Parry Markov chain

	Stochastic processes on timed region graphs
	SPOR of a timed region graph
	Entropy

	The maximal entropy SPOR
	Technical assumptions
	Main theorems
	Definition and properties of , v and w
	Examples
	Proof of the maximal entropy theorem (Theorem 14)

	Conclusion and perspectives
	Technical challenges

	Timed symbolic dynamics
	Preliminaries
	Words and factors
	Topology
	Shift spaces
	-entropies and topological entropy

	Classical symbolic dynamics
	Characterization with finite factors
	Edge and sofic shifts
	The language point of view.

	Compact alphabet shift space
	Factor based characterization of shift spaces.
	An infinite topological entropy
	Entropy of a mesurable shift
	Keeping the -entropy

	Timed edge shift and timed sofic shift
	Definitions
	The timed language point of view
	Discretization
	Metric mean dimension

	Sliding block codes
	Conclusion and perspectives
	Open problems

	Toward a Timed Theory of Channel Coding
	Theory of channel coding for finite alphabet languages
	Terminology
	Coding: the basic case
	Other coding settings

	Timed coding
	Timed source, discrete channel, approximate transmission
	Timed source, timed channel, exact transmission
	A variant: scaling allowed
	A speedup and a slowdown lead to a collapse

	Conclusion and perspectives

	Generating functions of timed languages
	Preliminaries
	Clock languages and timed languages
	From timed automata to triplet, clock and timed languages
	Volume(s) of timed and clock languages

	Generating functions
	Definitions
	Analytic characterization
	Volumes, generating functions and functional analysis
	Inductive characterization of generating functions

	Computing generating functions
	Generating functions for particular classes of automata

	Conclusion and perspectives

	Combinatorics using timed languages
	Two problem statements
	A timed and geometric approach
	Order sets of a language of signatures (On(L))n1
	Timed semantics of a language of signatures (L'n)nN
	Volume preserving transformation between L'n and On(L).
	The S-T (timed) language encoding.

	Solving the two problems
	Characterization of the VGF of an S-T-automaton.
	An algorithm for Problem 2

	Examples
	The alternating permutations
	The up-up-down-down permutations
	Permutations without two consecutive descents

	Conclusion and perspectives

	Conclusion and perspectives
	Bibliography
	List of Figures
	Abstract and Résumé

