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CHAPITRE I

GENERAL INTRODUCTION

The present thesis provides theoretical and numerical contributions to the Hamilton-
Jacobi-Bellman approach for optimal control problems. The main objetive is to
extend in practice this approach for problems with unusual forms.

Optimal control is a mathematical branch of the control theory used in many en-
gineering disciplines such as mechanics, electrics, etc... Its aim is to �nd a control
law for a controlled stochastic or ordinary dynamical system while minimizing or
maximizing some criterion.

Deterministic optimal control has been closely linked to industrial applications since
its inception in the 1950s, starting with the aerospace, among which was the problem
of an optimal trajectory of an airplane. Stochastic optimal control will appear later
in the 70s in �nance. Merton in [84] studied the portfolio optimization and Black and
Scholes [26] introduced the notion of �nancial model. The optimal control problems
can be approched by the method of dynamic programming developed by Bellman
in [22, 23, 21] which states that the value function associated with the optimal
control problem satis�es a particular equality called a dynamic programming prin-
ciple (DPP). This principle essentially allows to solve recursively an optimal control
problem by its decomposition into a sequence of subproblems.

If the value function is smooth enough, then one can characterize it by an in�nite-
simal version of the dynamic programming principle, the Hamilton Jacobi Bellman
Partial di�erential equation (HJB). For deterministic problems, the value function
satis�es an HJB equation of �rst order while the for stochastic case, it satis�es a se-
cond order HJB equation. In general, due to the lack of regularity, the value function
can not be characterized as a solution of a PDE in any classical sense. In [45, 46],
Crandall and Lions propose a weak version for general solutions by introducing the
notion of viscosity solution. The theory of viscosity solutions was extended to second
order by Lions in [82, 81]. This theory provides a good context for proving existence,
uniqueness and stability for a large class of non-linear partial di�erential equations
including HJB equations (see [69, 70, 71, 73]). In this work, we will refer to Bardi
and Capuzzo-Dolcetta [12] and Barles [13] for the �rst order case and Flemming and
Soner [61] and Crandall, Ishii and Lions in [44] for the second order case.

The viscosity theory gives a suitable framework for dealing with numerical solutions
of nonlinear HJB equations. Many numerical approaches were adapted to compute
the weak solutions of PDE in the viscosity sense. In particular, Finite Di�erence (see
[47, 97]) and Semi Lagrangian (see [55, 58]) methods were developed for �rst order
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HJB equations. For the second order case, the �rst convergence result of numerical
methods to viscosity solutions of second order HJB equations was given by Barles-
Souganidis (see [17]). Since then, the �eld of error estimates for such numerical
solutions has been of growing interest. Krylov [75] obtained error bounds for the
second order HJB equation for constant di�usion coe�cient. The case of di�usion
coe�cient depending on time, space and also on the control variable was developed
in [14, 15, 16]. Several other extensions have been analysed in the literature, see
[31] for stopping-game problems, [32] for impulsive control systems, [39, 24, 25] for
integro partial di�erential HJB equations, and [34] for a general class of coupled
HJB systems.

These early works concentrated on problems without constraints whereas in many
applications, it is more crucial to take into account some state constraints. In the
deterministic setting, the state-constrained optimal control problem has been discus-
sed in the context of controllability assumptions and the associated value function
has been characterized as the unique viscosity solution of a HJ equation. First, So-
ner introduced the so-called "Inward pointing" constraint quali�cation (IPQ) (see
[98]- [99]). The IPQ condition allows to approximate each trajectory that reaches
the boundary of the constraints set by a sequence of viable trajectories . Later, Fran-
kowska et al formulated in [63]-[64], the "outward pointing" constraint condition
(OPQ). The OPQ condition states that each point on the boundary of the set of
constraints can be reached by a trajectory coming from the interior of this set. Since
these conditions are not always satis�ed, alternative ways using viability theory
have been explored (see [11, 40, 41, 8]). In [3], Altarovici and coauthors propose to
describe the value function of the state-constrained control problem by means of
a Lipschitz continuous value function of an auxiliary control problem free of state
constraints.

In the stochastic framework, the so-called chance constraints play an important
role. In particular, the problem of the safety region de�ned as the set from which
it is possible to reach a target set, with threshold probability is one of the most
relevant applications in this �eld. For discrete time stochastic systems, this backward
reachable set has been analysed and characterized by an adequate stochastic optimal
control problem in [1] and [2]. In this case, the control problem is solved using
the dynamic programming approach. In the context of �nancial mathematics, the
problem of characterizing the backward reachable set with a given probability was
�rst introduced by Föllmer and Leukert [62]. This problem was also studied and
converted into the class of stochastic target problems by Touzi, Bouchard and Elie
in [33].

The purpose of this thesis is to use the Hamilton Jacobi Bellman approach to study
some optimal control problems from theoretical and computational points of view.
First, we present in Chapter 2 the general background of HJB approach used in this
thesis. In Chapter 3, a stochastic optimal control problem of the Mayer form with
unbounded and discontinuous value function is considered. The �Krylov regulariza-
tion� approach is extended here to obtain the error estimates using some re�ned
consistency estimates. Then, the analysis of the reachability problem for stochastic
systems is considered in Chapter 4 where we use essentially the level set approach
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and our results of error estimate for discontinuous value function. The Chapter 5 is
devoted to the study of a state-constrained optimal control problem with a maximum
cost. We introduce the auxiliary control problem to deal with the state contraints
and we derive some HJB equations. Here, we are interested, in particular, in the
analysis of the optimal feedback control and the associated trajectories for which
we give some important results. The problem discussed in Chapter 6 is motivated
by a real application : the abort landing in presence of windshear. In particular, we
reconstruct the optimal trajectories and the associated optimal feedback controls
using several algorithms.

Part 1 : Error estimate of second order HJB equa-

tions. Application :Probabilistic reachability analy-

sis.

This part is detailed in Chapters 3 and 4. The �rst contribution of this part is to
study the numerical approximations of unbounded and discontinuous value function
associated with some stochastic control problems. We derive error estimates for
monotone schemes based on a Semi-Lagrangian method (or more generally in the
form of a Markov chain approximation). To achieve our goal, we follow two steps.
The �rst one consists in determining the error estimates between our control problem
with discontinuous function and a regularized control problem and the second step
consists in considering the error estimate of the numerical scheme of the regularized
problem.

More precisely, let T > 0 be a �xed �nal horizon. Consider a controlled process Xu
t,x

satisfying :{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), ∀s ∈ [t, T ],

X(t) = x,
(1.1)

where the di�usion σ and drift b are two Lipschitz continuous functions, W (·) is
the classical Brownian motion, and u is a control function that takes values in a
compact subset U of Rm (q ≥ 1). Under suitable assumptions on b, σ and on U ,
equation (1.1) admits a unique solution (see Chapter 3 for precise assumptions).

Consider the following control problem :

ϑ(t, x) := sup
u∈U

E
[
Φ(Xu

t,x(T ))
]
, (1.2)

where Φ : Rd → R is measurable, with linear growth. In this thesis, we are interested
in error estimates of numerical approximations of ϑ.

Let us introduce a family of Lipschitz continuous functions (Φε)ε converging point-
wisely to Φ. Then, the value function ϑ can be approximated by the value functions
ϑε de�ned as :

ϑε(t, x) := sup
u∈U

E
[
Φε(X

u
t,x(T ))

]
.
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It is known that under quite general assumptions on the data and on Φε, one can
show that ϑε converges pointwisely towards ϑ, when ε → 0. However, the error
estimate ϑ − ϑε is not a very classical result. Here, the error estimate of ϑ − ϑε
depends on the measure of the set where the two functions Φ and Φε di�er. The
result that will be studied here is obtained under an ellipticity condition of the
di�usion matrix, i.e

- The di�usion σ depends only on (t, x) and there exists a real number Λ ≥ 1,
such that :

∀(t, x) ∈ (0, T )× Rd, ΛId ≥ σ(t, x)σ(t, x)T ≥ Λ−1Id, (1.3)

where Id is the identity matrix and the inequalities (1.3) are in the sense of symmetric
matrices : Λ‖ξ‖2 ≥ 〈ξ, σσT ξ〉 ≥ Λ−1‖ξ‖2, ∀ξ ∈ Rd.

Thanks to the bounds on the density of probability of the process Xu
t,x(·), for a given

(t, x) ∈ [0, T ) and an admissible control u ∈ U , the error estimate between ϑ and
the approximated value function ϑε can be achieved using some technical results.
Thus, the following estimate holds, for every 0 ≤ t < T , x ∈ Rd, and 0 < ε < ε0

(ε0 ∈]0, 1]), there exists C0 > 0, such that :

|ϑ(t, x)− ϑε(t, x)| ≤ C0
1 + |x|2 + | log ε|

(T − t)d/2
ε.

The second step in the approximation of ϑ is to discretize the Hamilton-Jacobi-
Bellman equation satis�ed by ϑε. Indeed the value function ϑε is the unique Lipschitz
continuous viscosity solution of :

−∂tv +H(t, x,Dv,D2v) = 0 in (0, T )× Rd,

v(T, x) = φ(x) in Rd,

where H(t, x, p,Q) := supa∈U
(
−b(t, x, a) · p− Tr([σσT](t, x, a)Q)

)
.

In the case where the drift b and the di�usion σ are bounded and where the value
function ϑε is itself bounded, error estimates of monotone schemes have been obtai-
ned �rst by Krylov [75] for the case where σ is a constant function. These results
were developed further in [14, 15, 16] introducing new tools that allow to consider
the case where σ can depend on time, space and also on the control variable. Several
other extensions of the theory have been analysed in the literature. Let us mention
some of these extensions for stopping-game problems [31], impulsive control systems
[32], for integro partial di�erential HJB equations [39, 24, 25], and for a general class
of coupled HJB systems [34]. Note also that the case of fully uniformly elliptic ope-
rators have been also studied by Cafarelli-Souganidis [37] using a di�erent approach
than the one introduced by Krylov.

Let us point out that the result given for the error estimates between the numerical
scheme and the value function of the regularized value function is independent from
the ellipticity condition and the di�usion may depend on the control. We aim to
give new error estimates for Semi-Lagrangian schemes [38], in the case of unbounded
Lipschitz continuous b and σ (as well as the solution v itself).
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Let h = dt > 0 be a given time step. We de�ne a semi-discrete scheme in its abstract
form as (for x ∈ Rd) :

V N(x) = φ(x)

and, for every n = N, . . . , 1,

V n−1(x) = Sh(tn, x, V n),

with, for any tn ∈ [0, T ], x ∈ Rd.

Under some assumptions, we state the following results on the error estimates of the
semi discrete scheme, i.e, there exists C ≥ 0, ∀n ∈ [0, . . . , N ],

|V n(x)− v(tn, x)| ≤ C (1 + |x|)7/4 h1/4. (1.5)

The above result (1.5) is an extension to the error estimates known in the literature
for bounded Hölder continuous value functions with bounded and Lipschitz conti-
nuous drift b and di�usion σ, see [14, 16, 49]. The proof given here is based on
classical shaking and regularization techniques introduced by Krylov [75, 76] com-
bined with a precise consistency estimate and an interpretation of the numerical
scheme as value function of a discrete-time control problem.

Moreover, for a spatial discretization of Rd, denote by V ∆ the solution of the fully
discrete scheme. Then, under some regularity assumptions, we get the existence of
L > 0 such that for every R > 0, we have :

‖v − V ∆‖L∞(BR) ≤ L

(
R7/4h1/4 +

|∆x|
h

)
.

The study of the error estimates for unbounded and discontinuous value functions
is motivated by several problems involving functions which are not necessary conti-
nuous and bounded. Among these problems, we have the characterization of the
probabilistic backward reachable sets. In fact, the latter can be characterized using
the level set and the HJB approaches making use of the results on the above error
estimates.

The second contribution consists in studying the approximation of chance-
constrained reachable sets. These sets will be characterized as level sets of a
discontinuous value function associated with an adequate stochastic control pro-
blem.

More clearly, let C be a non-empty subset of Rd ("the target"). Let ρ ∈ [0, 1[ and
t ≤ T . Consider the backward reachable set under probability of success ρ, that is,
the set of initial points x for which the probability that there exists a process Xu

t,x

solution of (1.1), associated with an admissible control u ∈ U and that reaches C at
time T is higher than ρ :

Ωρ
t =

{
x ∈ Rd

∣∣∃u ∈ U , P[Xu
t,x(T ) ∈ C] > ρ

}
.
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The sets Ωρ
t can be characterized by using the level-set approach. This approach has

been introduced in [92] to model front propagation problems. Then, the method
has attracted a big interest for studying backward reachable sets of continuous non-
linear dynamical systems under general conditions, see [87, 28] and the references
therein. The idea of using the level set approach in discrete time stochastic setting
has been also considered in [1, 2, 6]. In this case, the value function is obtained by
solving the dynamic programming principle.

It is important to observe that Ωρ
t is equivalent to :

Ωρ
t =

{
x ∈ Rd

∣∣ ∃u ∈ U , E[1C(X
u
t,x(T ))] > ρ

}
.

Moreover, by considering the control problem (1.2) with φ(x) := 1C(x), it is possible
to show that for every ρ > 0 and every t ∈ [0, T ], the backward reachable set Ωρ

t is
given by the level-set :

Ωρ
t = {x ∈ Rd, ϑ(t, x) > ρ}.

In the present thesis, we are interested in the approximation of the probabilistic
backward reachable sets for time-continuous stochastic processes. We analyse the
approach and we provide error estimates between the exact sets and their numeri-
cal approximation. More precisely, we consider the following "regularized" control
problem :

ϑε(t, x) := sup
u∈U

E[Φε(Xu
t,x(T ))],

where Φε is a "regularized" indicator function. Let us denote by ϑε,∆ a numerical
approximation of ϑε obtained by solving the fully discretized scheme. In the aim
to obtain an error estimate of ϑ − ϑε,∆, we obtain an approximation of Ωρ

t , i.e, for
0 ≤ t ≤ T − δ,{
x, ϑε,∆(x, t) > ρ+ C

R
7
4

δ
d
4

∆x
1
10

}
⊂ Ωρ

t ∩ BR ⊂
{
x, ϑε,∆(x, t) > ρ− CR

7
4

δ
d
4

∆x
1
10

}
.

Let us mention that other numerical methods for reachability analysis have been
introduced and analysed in the literature. The most natural numerical algorithm
consists in using Monte Carlo simulations to generate a set of trajectories starting
from a given initial position x ∈ Rd. Then the percentage of trajectories reaching
the target gives an approximation of the probability of success (for reaching the
target) when starting from this position x. On the other hand, for linear stochastic
systems, a bound for the probability of hitting a target can be obtained by using
the enclosing hulls of the probability density function for time intervals, see [5, 4],
for instance. Note that these approaches are used to calculate the probabilities of
success but do not allow to de�ne the entire set of points that have the same given
probability. In addition, Monte-Carlo-based methods often require a large number
of simulations to obtain a good accuracy. We will use such simulations in Section
4.3 of chapter 4 to validate our level-set approach.
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Part 2 : Feedback control analysis for the state-

constrained control problem with maximum cost.

Application : Abort landing in presence of windshear.

This part contains the results of the Chapters 5 and 6 and it is dedicated to the
analysis of the state-constrained control problem with maximum cost. First, we
show that it is possible to characterize the value function of such a problem as a
level set of the value function of an auxiliary optimal control problem. Then, we
prove that the auxiliary value function is Lipschitz continuous and is the unique
viscosity solution of a HJB equation. Furthermore, with a special choice of the
initial condition, the solution of the auxiliary HJB equation satis�es some boundary
conditions out of a set that we can easily compute. In particular, this result is
useful in the case when the dynamics function is Lipschitz continous only on a
compact set. Next, we establish a link between the optimal trajectory associated
with the control problem, the optimal trajectory associated with the auxiliary control
problem and the optimal trajectories for some exit time problem associated with a
viable kernel set . We prove that the optimal trajectories can be constructed as a
limit of trajectories with piecewise constant controls. The convergence result is also
extended to an approximate auxiliary value function. The same study will be done
for the state-constrained control problem with a Bolza cost. Then, we focus on a
concrete problem : abort landing problem of the airplane in presence of windshear.
The problem consists in maximizing the lower altitude over a time horizon in order to
avoid the crash on the ground. Many simulations are perfomed in this work including
two models in order to validate our approach for real applications.

More precisely, let T > 0 be a given time horizon, consider the dynamical system

ẏ(s) = f(y(s),u(s)), a.e. s ∈ (0,T), (1.6a)

y(0) = y, (1.6b)

where f : [0, T ] × Rd × U → Rd is a continuous function (see Section 5.2 for the
precise assumptions) and u : [0, T ] → U is a measurable function. Let us denote
y = yu

y the absolutely continuous solution of (1.6). Let K ∈ Rd be a given non-empty
closed set and consider the following value function : de�ned by,

ϑ1(t, y) := min
u∈L∞((0,t),U)

{
max
θ∈[0,T ]

Φ1(yu
y (θ))

∣∣∣∣ yu
y (θ) ∈ K ∀θ ∈ [0, t]

}
,

with the convention that inf ∅ = +∞. The function Φ1 : Rd → R is a Lipschitz
continuous function (see section 5.2).

In the unconstrained case (K = Rd), this control problem has already been studied
by Barron and coauthors [18, 19] where they proved that the control problem with
maximum cost can be approximated by the control problem with Lp-cost maximum-
cost for which the standard theory of viscosity solutions can be applied. This problem
has been also used to characterize the reachable sets in [28]. Quincampoix and Serea
considered in [93] the control problem with l.s.c in�mum cost where the Epigraph
of the value function is characterized by a viable Kernel and the value function is
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the smallest l.s.c supersolution to a Hamilton Jacobi equation. In the context of
di�erential games, the problem has been studied in [94] for a Lipschitz continuous
in�mum cost and [96] for maximum bounded cost.

Here, we want to analyse the general case where the set K is nonempty closed set.
The paper [19] inspires us to work �rst on the control problem with Lp-cost that can
be considered as an approximation of the maximum-cost. Here, we do not make any
approximation between both problems. Even so, we will compare later the optimal
trajectories of such problems for a concrete application (see [35]). So, we investigate
the following state-constrained control problem with Bolza cost :

ϑ2(t, y) := min
u∈L∞((0,t),U)

{∫ t

0

Φ2(yu
y (s))ds

∣∣∣∣ yu
y (θ) ∈ K ∀θ ∈ [0, t]

}
,

where Φ2(y) := rΦ1(y)q for all y ∈ Rd and r and q are positive constants. For the
unconstrained case (K = Rd), under classical assumptions on the dynamics and Φ2,
the value function ϑ2 is the unique continuous viscosity solution of an HJ equation
[13, 12]. This result has also been extended to the lower semicontinuous setting
[20, 63].

For the constrained case ( when K 6= Rd), the value function ϑ2 may be discon-
tinuous. Nevertheless, ϑ2 satis�es a Dynamic programming principle. Moreover, a
state-space constrained Hamilton-Jacobi-Bellman equation can be associated with
ϑ2 (see [98]- [99]) taking the following form :

−∂tϑ2 +H(t, y,∇ϑ2) = 0, in (0, T )×K, (1.7a)

ϑ2(0, y) = 0, in K, (1.7b)

where H(t, y, p) := max
a∈U

(−f(t, y, a).p − Φ2(y)). In Soner's formulation, a function

ϑ2 is a viscosity solution of (1.7) provided it is sub-solution in (0, T )×
◦
K (where

◦
K:= K\∂K) and a super-solution on (0, T ) × K. The uniqueness of the solution
of the HJ equation (1.7) is more complicated to prove and it requires restrictive
controllability assumptions on K and the dynamics.

The pointing quali�cation conditions are the most known controllability assump-
tions. The �rst classical one is called 'inward pointing condition (IPQ)' (see [98]-
[99]). It states that each point of ∂K, there exist a �eld of the system pointing into
K. In other words, this condition ensures that the trajectory hitting the ∂K can be
approximated by a sequence of trajectories that remain in K\∂K. The uniqueness
can then be established from the Lipschitz property of the value function obtained
from this condition. The �outward pointing condition� (OPQ) is an other pointing
condition (see [63] - [64]) ensuring that each point on the boundary of K can be
reached by a trajectory coming from K\∂K. Under this condition, the value function
is the unique lower semi continuous solution of a Hamilton Jacobi equation. Note
that these pointing conditions are not satis�ed for all control problems.

In the general case where the controllability assumptions do not necessary hold, it is
more convenient to exploit the idea of the characterization of the value function by
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its Epigraph (see for instance [11, 40, 41, 8, 93]) ). Altarovici et al in [3] studied the
case of Lipschitz continuous distributed cost Φ2. Here, we show that this result can
be extended to locally Lipschitz continuous functions Φ2 with polynomial growth.
Thus, the function ϑ2 can be described by means of continuous value function of
an auxiliary control problem. The new value function is free of constraints and it
can be characterized as the unique continuous viscosity solution of a variational
HJ equation. More precisely, let g be a Lipschitz continuous function satisfying
g(x) ≤ 0 ⇐⇒ x ∈ K, then the approach consists in introducing the following
auxiliary control problem :

w2(t, y, z) := inf
u∈L∞((0,t),U)

(∫ t

0

Φ2(yu
y (θ))− z

)∨
max
θ∈(0,t)

g(yu
y (θ)),

where a
∨
b := max(a, b). The function w2 can be characterized as the unique conti-

nuous viscosity solution of a HJ equation of variational type,

min

(
∂tw2 +H(y,∇yw2, ∂zw2), w2(t, y, z)− g(y)

)
= 0, in [0, T )× Rd × R, (1.8a)

w2(0, y, z) = (−z) ∨ g(y), in Rd × R. (1.8b)

where H(y, p1, p2) := sup
u∈U

(
− f(y, u).p1 + Φ2(y).p2

)
, for all p1 ∈ Rd, p2 ∈ R .

Moreover, under the classical assumptions on f , and Φ2, the epigraph
1 of ϑ2 satis�es

Epi(ϑ2(t, ·)) = {(y, z) ∈ Rd×R, w2(t, y, z) ≤ 0}. Thus, one can determine the value
functions ϑ2 in terms of level sets of w2, i.e,

ϑ2(t, y) = min{z, w2(t, y, z) ≤ 0}, (1.9)

Let us emphasis that the variational Hamilton Jacobi equation (1.8) is de�ned in all
domain. From a numerical point of view, this is not good since one has to choose
the suitable boundary conditions for solving the problem on a compact set. Here,
we prove that with a wise choice of the Lipschitz function g, one may obtain that
the function ϑ2 is the unique viscosity solution of a variational Hamilton Jacobi
equation with a Dirichlet condition.

In the reality, using the same arguments, one can show that the function ϑ1 can
also be characterized by the levels sets of the value function of an auxiliary control
problem that takes the following form :

w1(t, y, z) := inf
u∈L∞((0,t),U)

max
θ∈[0,t]

Ψ1(yu
y (θ), z),

where Ψ1(y, z) = (Φ(y) − z) ∨ g(y). In the same way, one can get the important
property (1.9) for ϑ1 and w1. The function w1 is characterized as the unique solution
of a variational Hamilton Jacobi equation with initial data Ψ1(y, z) =

(
Φ(y) −

z
)∨

g(y).

The central objective of this work is to study the optimal trajectories associated
with the state-constrained optimal control problems discussed above. The auxiliary

1. The epigraph at time t is de�ned by Epi(ϑ2(t, ·)) := {(y, z) ∈ Rd × R, ϑ2(t, y) ≤ z}.
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control problem has the advantage to handle the technical di�culties related to the
resolution of the control problem under state constraints. Moreover, it provides a
good framework for the study of the optimal trajectories and the associated optimal
feedback control. Indeed, one can establish a link between the optimal trajectory
associated with the control problem and the optimal trajectory associated with the
auxiliary control problem.

In addition, we show that the control problem with maximum cost is linked to a
viability kernel while the control problem with Bolza cost is linked to a Capture
basin. We de�ne an exit time function for the viability problem and a maximum
time function for the reachability problem. Under some initial conditions, we show
that the optimal trajectories constructed from the maximum time function are also
optimal for the control problems whose value functions are respectively ϑ1 and w1.
In the same manner, we make the link between the optimal trajectories constructed
from the exit time function and the Bolza problems. An other important contribution
is to extend the classical result for the convergence of optimal trajectories in [95]
to the state-constrained control problems with maximum cost and with Bolza cost
as well. The algorithm is based on an approximation of the set valued optimal
feedback control map using the Dynamic Programming Principle for the auxiliary
value functions. Moreover, we establish an equivalent result for the same algorithm
using an approximated solution of the auxiliary control problem.

This work is motivated by a real application : abort landing problem in presence of
windshear. We aim to determine the maximal altitude that the airplane can reach
in order to prevent a crash on the ground. In the references [86], [85], the authors
propose an optimal control with maximum cost for which an approximate solution for
the problem is given with the associated optimal trajectories and feedback control.
This solution was improved in [35] and [36] by considering the switching structure
of the problem that has bang-bang subarcs and singular arcs. Here, we still study
the same control problems but with di�erent dynamics (see section 6.1 for more
details).

The presence of constraints in the de�nition of our optimal control problem precludes
the characterization of the value function -without any controllability assumption-
as the unique solution of a Hamilton Jacobi equation. Therefore, we consider the
Hamilton Jacobi approach developed for the maximum cost problem and the Bolza
problem discussed in the theoretical part. Moreover, we introduce and compare
some algorithms of reconstruction of optimal trajectories associated with both state-
constrained control problems.

Conclusion

In this thesis, we study di�erent control problems corresponding to some applications
by making use of the so-called Hamilton Jacobi Bellman approach. The main aim
of the study is to validate the behaviour of this approach when applied to concrete
cases.
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The �rst part is concerned by the error estimates for second order HJB equations
with discontinuous and unbounded data. These estimates were obtained in two steps.
First, we derive error estimate between a possible discontinous and unbounded value
function of a stochastic optimal control problem and the regularized value function
associated with a regularized control problem. Then, we focus on the error estimates
for numerical solutions of second order HJB equation satis�ed by the regularized va-
lue function with unbounded data. Here, these obtained errors are based on classical
shaking and regularization techniques. An application of this study is the probabi-
listic reachablility problem. Indeed, the chance-constrainted backward reachable set
is characterized by the level set of a discontinous value function. Then, the result of
the theoretical study is applied to approximate this discontinous value function and
the backward reachable set itself.

The second part considers some classes of state-constrained optimal control problems
with maximum cost and with Bolza cost as well. For each control problem, we show
that the Epigraph of the value function can be described in terms of a new value
function associated with an auxiliary control problem. We show that the auxiliary
value function enjoyes some regularities and it is the unique viscosity solution of a
Hamilton Jacobi equation with a Dirichlet condition. We also prove a convergence
result of some approximated trajectories to the continuous one. Next, we consider
a concrete application : the problem of abort landing during low altitude wind-
shears. Many algorithms of reconstruction of optimal trajectories and the associated
feedback control are compared from a numerical and theoretical points of view.
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CHAPITRE II

BACKGROUND FOR HAMILTON
JACOBI BELLMAN APPROACH

In this chapter we recall all the de�nitions and basic results on the control problems
and the Hamilton-Jacobi Bellman approach, we will refer in the following chapters.
The concept of optimal control can be described as the fact to in�uence the behavior
of a dynamical system with the aim to optimize a payo� function depending on the
control inputs to the system. A modern method to deal with this class of problems
is the dynamic programming principle developed by [22, 23, 21] and considered as
an important facet of the control theory.

This approach allows to reduce the core of the study to the analysis of the solutions
to a nonlinear partial di�erential equation called Hamilton Jacobi Bellman equation
(HJB). In general case, the value function is not smooth enough to be the unique
solution of a HJB equation in a classical sense. The theory of viscosity solutions, �rst
introduced in the early of 80s of the last century by M. G. Crandall and P.-L. Lions
[45, 46], provides a convenient framework to study the HJB equations. We refer also
to [12] and [44] for a detailed introduction of the theory of viscosity solution in the
deterministic and stochastic setting as well.

The chapter is organized as follows. First, we introduce the deterministic uncons-
trained and state-constrained optimal control problems and the corresponding value
functions. The HJ equation is then derived in both cases using the Dynamical pro-
gramming approach. We also discuss the feedback control problems and the di�erent
ways to reconstruct trajectories. Some known numerical schemes are presented in
section 2.1. In section 2.2, we give a formulation for the stochastic optimal control
problems with �nite or in�nite time horizon and discuss the existence of solutions.
The value function is then described as the unique solution of a Hamilton-Jacobi-
Bellman equation. We also discuss some numerical approximate solutions of a second
order HJB equation and the error estimates of the approximation. In section 2.3, the
main notions and results of viscosity theory for a �rst and second order Hamilton-
Jacobi Bellman equations are presented.
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2.1 Deterministic control problems

Let T > 0 be a �nite time. Consider the following nonlinear controlled dynamical
system :

ẏ(s) = f(y(s), u(s)), s ∈ (0, T ], (2.1a)

y(0) = x, (2.1b)

where x ∈ Rd and u(.) ∈ U is the control function representing the decision or the
policy of the controller and U is the set of all admissible control functions de�ned
as,

U := {u(.) : [0,+∞)→ U, Lebesgue measurable },

and U is a subset of Rk (k ≥ 1). Consider the following assumptions on U and the
function f :

U ⊂ Rk is a compact set ; (H1)


(i) f(·, ·) is continuous on Rd × U ;

(ii) ∃Lf ≥ 0 such that x1, x2 ∈ Rd, a ∈ U :

|f(x1, a)− f(x2, a)| ≤ Lf |x1 − x2|;
(H2)

Let us recall that if f(., a) (for all a ∈ U) has continuous gradient fx, then, the
Lipschitz continuity property of f in (H2) is equivalent to |fx(x, a)| ≤ Lf for all
a ∈ U .
It is known that the assumptions (H1)-(H2) ensure the existence and the uniqueness
of the solution of the di�erential equation (2.1). For u ∈ U and x ∈ Rd, we denote
the solution yux(.). Note that the solution yux(.) (for u ∈ U) is in the class of absolutely
continuous functions W 1,1([0, T ]) and it satis�es the following :

yux(s) = x+

∫ s

0

f(y(θ), u(θ))dθ, ∀s ∈ (0, T ].

Furthermore, the following proposition holds (see [12, Chapter III])

Proposition 2.1.1 Assume (H1)-(H2) hold. For each x ∈ Rd, there exists constant
C depending only on Lf , T such that, for all u ∈ U , t, s ∈ [0, T ] and x′, x ∈ Rd,∣∣yux(t)− yux′(t)

∣∣ ≤ C|x− x′|,∣∣yux(t)− yux(s)
∣∣ ≤ C(1 + |x|)|t− s|,∣∣yux(t)
∣∣ ≤ C(1 + |x|).

Now, consider the set of all absolutely continuous functions solutions of (2.1) in [0, t]
(t ≤ T ) starting from x :

S[0,t](x) :=

{
y := yux , y is absolute continuous solution to (2.1) in [0, t] for u ∈ U

}
.
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Under the assumptions (H1)-(H2), the set S[0,t](x) is compact in W 1,1([0, t]). Moreo-
ver, the set valued map x→ S[0,t](x) is Lipschitz continuous from Rd in C([0, t];Rd)
(see [9] for instance) with respect to the Hausdor� metric.

Now, let K be a given non-empty and closed subset of Rd. Let us de�ne the set of
all the admissible solutions of (2.1) in [0, t] starting from x by :

SK[0,t](x) :=

{
y := yux , y ∈ S[0,t](x), and yux(s) ∈ K ∀s ∈ [0, t]

}
.

Let us recall that the assumptions (H1)-(H2) are not su�cient to prove the compact-
ness of SK[0,t](x) in W 1,1([0, t]). The compactness of SK[0,tc](x) requires an additional
hypothesis of the type,

f(x, U) is a convex set ∀x ∈ Rd; (H3)

In the following, our overall task will be to determine what is the best control for our
system. For this, we will consider a criterion to optimize. Typically, we will minimize
a cost or a payo� functional.

2.1.1 Unconstrained control problem

In this section, we present a class of optimal control problems of the bolza form for
which there are classical results on the characterization of the value function with
partial derivatives equations of HJB type (see [12, 60, 13, 80] and the references
therein).

Finite time horizon

The bolza cost functional J associated to the trajectories of the system (2.1) in the
�nite horizon time is :

J(t, x, a) :=

∫ t

0

`(yax(s), a(s))ds+ ϕ(yax(t)).

We call ` : [0, T ]×Rd × U → R a running cost function and ϕ : Rd → R a terminal
cost function. If ϕ(x) = 0 then the problem is said to be in Lagrange form. If
`(t, x, v) = 0, the problem is in Mayer form.

The bolza and the Lagrange forms of the problem can be easily rewritten in a
Mayer's type form ([100, Remark 3.2.(iii)]), by adding a state variable following the
dynamics given by the running cost `.

We will consider the following assumptions on the running cost function ` and the
terminal cost function ϕ,

(i) `(·, ·) is continuous on Rd × U ;

(ii) ∃L` ≥ 0 such that ∀x, y ∈ Rd, u ∈ U :

|`(x, u)− `(y, u)| ≤ L`|x− y|.
(H4)
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ϕ is a Lipschitz continuous function. (H5)

The problem is to �nd u(.) ∈ U which minimizes J . The dynamic value function
associated to the cost functional J , is then de�ned by :

ϑ(t, x) := inf
a∈U

J(t, x, a). (2.3)

The �rst regularity result on the value function ϑ is the following Lipschitz property
(see [12, Chapter III, proposition 3.1]).

Proposition 2.1.2 Assume (H1)-(H2) and (H4)-(H5) hold. The value function ϑ
is Lipschitz continuous, i.e ∃ Lϑ > 0 depending only on Lf , T , L` such that for all
T ≥ s ≥ t and x, y ∈ Rd, the following holds :

|ϑ(t, x)− ϑ(s, y)| ≤ Lϑ

(
|x− y|+ |t− s|

)
.

The idea of the dynamic programming is that the value function ϑ satis�es a func-
tional equation called the Dynamic Programming Principle.

Proposition 2.1.3 Assume (H1)-(H2) and (H4)-(H5) hold. Let t ∈ [0, T ] and x ∈
Rd be given. Then, for all s ∈ [0, t], we have :

ϑ(t, x) = inf
u∈U

{∫ s

0

`(yux(r), u(r))dr + ϑ(t− s, yux(s))

}
. (2.4)

In particular, the dynamic programming principle states that the function

s→
∫ s

0

`(yux(r), u(r))dr + ϑ(t− s, yux(s)), (2.5)

is non decreasing, for all control u ∈ U . If there exists an optimal control u∗ ∈ U for
the problem (2.3) then (2.5) (with u = u∗) is constant.

The Dynamic Programming Principle (DPP) allows to split the trajectories so as to
calculate the value function at the point (t, x) in terms of the value function at time
t− s starting with the position of the trajectory at time s.

If the function ϑ is di�erentiable, one can derive ϑ to get its di�erential version, the
Hamilton-Jacobi-Bellman (HJB) equation. More precisely, de�ne the Hamiltonian
in the following way

H(x, p) := sup
a∈U

{
− f(x, a).p− `(x, a)

}
. (2.6)

Then, the value function ϑ is solution of{
∂tϑ(t, x) +H(x,∇ϑ(t, x)) = 0, in [0, T ]× Rd,

ϑ(0, x) = ϕ(x), in Rd,
(2.7)

where ∇ϑ(t, x) denotes the gradient of ϑ at the point x.

Usually the value function ϑ is not di�erential which means that ϑ does not satisfy
(2.7). The theory of viscosity solution presented brie�y in section 2.3 gives a good
framework to characterize the value function ϑ.
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In�nite time horizon

Let T = +∞. Consider the cost functional J associated to the trajectories of the
system (2.1) in the in�nite horizon time :

J(x, u) :=

∫ +∞

0

`(yux(s), u(s))e−λtds,

where λ > 0 is a discount factor and the distributed cost ` satis�es (H4). The value
function in the in�nite time horizon is given by

ϑ(x) = inf
u∈U

J(x, u).

The value function ϑ satis�es the following regularity result (see [12, Chapter III,
proposition 2.1])

Proposition 2.1.4 Assume (H1)-(H2) and (H4) hold. The value function ϑ is Höl-
der continuous, i.e ∃ Lϑ > 0 depending only on Lf , T , L` such that for all x, y ∈ Rd,
we have :

|ϑ(x)− ϑ(y)| ≤ Lϑ|x− y|γ,

where the exponent γ is depending on λ and Lf .

The value function ϑ satis�es a dynamic programming priniciple of the following
form.

Proposition 2.1.5 Assume (H1)-(H2) and (H4) hold. For all x ∈ Rd and t > 0,
the value function ϑ satis�es the following DPP :

ϑ(x) = inf
u∈U

{∫ t

0

`(yux(r), u(r))e−λrdr + ϑ(yux(t))e−λt
}
. (2.8)

For di�erentiable function ϑ, the value function can be described by the following
Hamilton-Jacobi-Bellman (HJB) equation :

λϑ(x) +H(x,∇ϑ(x)) = 0, in Rd, (2.9)

where H is de�ned by (2.6).

In the general case, the value function ϑ is not necessary di�erentiable. In the section
2.3, we present a very relevant tool when dealing with non smooth value functions :
viscosity solutions.
In many applications, the control problems are subject to constraints on the state
variable and the control as well. In the following subsection, we will present some
works on the state constrained optimal control problems.
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2.1.2 State constrained control problem

For a given �nite horizon T > 0, consider the dynamical system (2.1). Let (t, x) ∈
[0, T ]×Rd, and K be a given non-empty and closed subset of Rd. Consider a control
problem whose value function is de�ned by

ϑ(t, x) := min

{∫ t

0

`(yux(s), u(s))ds+ ϕ(yux(t))

∣∣∣∣ yux ∈ SK[0,t](x)

}
, (2.10)

where we consider the convention ϑ(t, x) = +∞ if SK[0,t](x) = ∅.

In the case when K = Rd the problem turns out to be an unconstrained optimal
control problem.

Here, the constraint set K is not equal to Rd and it is known that without assuming
additional assumptions, the value functions ϑ may be discontinuous. However, if we
assume that for any x ∈ Rd there exists a viable trajectory (yx(.) ∈ K), i.e,

∀x ∈ Rd, SK[0,t](x) 6= ∅,

then, a state-constrained Hamilton-Jacobi equation is associated to the value func-
tion ϑ (see [98]- [99]) taking the following form,

∂tu+H(x,∇xu) = 0 , in (0, T )×K, (2.11a)

u(0, x) = ϕ, in K, (2.11b)

where H is de�ned on (2.6). A function u is a viscosity solution of (2.11) in Soner's

formulation, if it is sub-solution in (0, T )×
◦
K (where

◦
K:= K\∂K) and a super-

solution in (0, T ) × K. The uniqueness of the solution of the HJ equation (2.11)
is more complicate to prove. Indeed, without any contrability assumption on the
behavior of the solution on the boundary, the state-space HJB equation may have
several solutions (in the constrained viscosity sense), see [29, 72]. Actually, unique-
ness requires restrictive controllability assumptions on K and on the dynamics.

The Pointing quali�cation conditions are the most known controllability assump-
tions. The �rst one was introduced by Soner (see [98]- [99]) and it is called the
"Inward pointing" constraint quali�cation and it takes the following form,

∃β > 0, ∀x ∈ ∂K, ∃α(x) ∈ U, f(x, α(x)).n(x) ≤ −β, (2.12)

where n(x) is the exterior normal vector. The condition (2.12) is a strengthened
viability condition and it means that from each point x ∈ ∂K a trajectory enters

into
◦
K , while the viability condition guarantees that a solution stays in K forever.

Moreover, each trajectory hitting the boundary can be approximated by a sequence
of trajectories staying in K. The uniqueness of the solution (2.11) can then be
established from the Lipschitz property of the value function obtained form this
condition. For weaker inward pointing assumptions, we refer to [52, 88, 89].

In the papers [63] and [64], Frankowska et al, introduced another pointing condition
called "outward pointing" constraint condition taking the form :

∀x ∈ ∂K, ∃α(x) ∈ U, f(x, α(x)).n(x) > 0, (2.13)
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This condition (2.13) states that each point on the boundary of K can be reached
by a trajectory coming from the interior of K. The value function is not necessary
continuous under (2.13), but is still characterized as the unique lower semi continuous
solution of a Hamilton Jacobi equation. Note that these pointing conditions can not
be satis�ed for all control problems.

An alternative way for dealing with the constrained case is to consider the epigraph
of value function. Using the viability theory [7], one can characterize the epigraph
of the value function (see [11, 40, 41, 8]).

In [3], the authors introduced an alternative way to deal with the state constraints by
showing that the epigraph of ϑ can be described by means of a Lipschitz continuous
function, which will turn out to be the value function of an auxiliary control problem
free of state constraints. More precisely, the approach consists of introducing the
auxiliary control problem whose value function de�ned by

w(t, x, z) := inf
u∈U

(∫ t

0

`(yux(s), u(s))ds+ ϕ(yux(t))− z
)∨

max
θ∈(0,t)

g(yux(θ)), (2.14)

where a
∨
b := max(a, b), and g is a Lipschitz continuous function satisfying,

g(x) ≤ 0⇐⇒ x ∈ K,

(one can take g to be the signed distance to K for instance).
The idea behind the use of an auxiliary control problem suggests the introduction
of an additional state variable, but it presents the best tool for characterizing the
epigraph without controllability assumptions. To see this, let us de�ne the epigraph
of ϑ at time t by

Epi(ϑ(t, ·)) := {(x, z) ∈ Rd × R, ϑ(t, x) ≤ z},

then, the following proposition holds

Proposition 2.1.6 Assume (H1)-(H5) hold. Then for any t ∈ [0, T ] and (x, z) ∈
Rd × R,

Epi(ϑ(t, ·)) = {(x, z) ∈ Rd × R, w(t, x, z) ≤ 0},

and ϑ(t, x) = min{z, w(t, x, z) ≤ 0}.

The auxiliary problem is free of constraints and the value function w can be charac-
terized as the unique continuous viscosity solution of the following variational HJ
equation (obstacle type) :

min

(
− ∂tv + max

a∈U
(−f(x, a)∇xv + `(x, a)∂zv, v − g(x)

)
= 0,

(t, x, z) ∈ [0, T )× Rd × R, (2.15a)

v(T, x, z) = (ϕ(x)− z) ∨ g(x), (x, z) ∈ Rd × R. (2.15b)

The control problems with L∞-cost were studied in [18, 19]. The exact penaliza-
tion of the state constraints (i.e maxθ∈(t,T ) g(yαt,x(θ))) has also been applied in the
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reachability analysis of some state constrained nonlinear systems, (see [28] and [6]).

This approach can be applied to general optimal control problems with state
constraints, namely, the cases of �nite horizon control problems, in�nite horizon
control problems and di�erential games as well (see [28]).

Particular case of minimum time function

Let us consider the minimum time function T de�ned as the time needed by the
system to reach a given closed target set C ⊂ Rd with an admissible trajectory yux
(which remains in K), that is,

T (x) := min

{
t | ∃u ∈ U , yux(t) ∈ C, yux(s) ∈ K, ∀s ∈ [0, t]

}
,

with the convention that T (x) := +∞ if yux(t) /∈ C,∀t > 0 and u ∈ U or ∃s ∈
[0, t] s.t yux(s) /∈ K.
When K = Rd it is known that under some metric properties (see [12]), the value
function T is the unique viscosity solution of a Hamilton Jacobi Bellman equation
of the following form.T (x) + supa∈U

{
− f(x, a).DT (x)

}
= 1, on R\C,

T (x) = 0, on ∂C.
(2.16)

Now, let K 6= Rd. Then, the minimum time function can not be characterized by an
HJB equation. Actually, function T even does not satisfy the dynamic programming
principle (see [27]). However, it can be characterized by level set of a Lipschitz value
function ϑ of an auxiliar optimal control problem (see [28]). Let us consider the
following Lipschitz value function gC de�ned in Rd to R such that,

gC(x) ≤ 0⇔ x ∈ C,

(one can take gC to be the distance function to C). Consider the following Mayer
problem,

ϑ(t, x) = inf
{
gC(y

u
x(t)) | u ∈ U , yux(θ) ∈ K, ∀θ ∈ [0, t]

}
.

Let us emphasise that ϑ is the value function of a state-constrained problem. The
approach of the exact penalization will be used in order to eliminate the state
constraints. Let us consider the following Lipschitz value function gK de�ned in
Rd to R such that,

gK(x) ≤ 0⇔ x ∈ K.

Then, we consider the following optimal control problem :

w(t, x) := inf

{
max

(
gC(y

u
x(t)), max

s∈[0,t]
gK(yux(s))

)
, yux(.) ∈ S[0,t](x)

}
. (2.17)
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It is important to remark here that the value function is free of constraints. Then,
the following proposition provides a characterization of the minimum time function
and the capture basin by the value function w (see [28] for the proof).

Proposition 2.1.7 Assume (H1)-(H3) hold. The minimum time function T is re-
lated to w by the following relation :

T (x) = inf

{
t ≥ 0 | ϑ(t, x) ≤ 0

}
= inf

{
t ≥ 0 | w(t, x) ≤ 0

}
.

The minimum time function ( and the capture basin) can then be determinated
by the level set of a Lipschitz value function ϑ (see [28]) without additional state
variable.

In addition, the value function w is the unique viscosity solution of a Hamilton
Jacobi equation. More precisely, consider the Hamiltonian de�ned in (2.6). Then,
we have

Proposition 2.1.8 Assume (H1)-(H3) hold. Then, the value function is the unique
viscosity solution of the following obstacle problem,

max

(
∂tw + H(x,Dw), w − gK(x)

)
= 0, t > 0, x ∈ Rd,

w(0, x) = max(gK(x), gC(x)), x ∈ Rd.

One of the issues discussed in this thesis is to extend the results reported above to
state-constrained control problems with di�erent optimality criterions.

2.1.3 Feedback control synthesis

The main goal of the computations in the control theory is to recover the approxi-
mate optimal controls and optimal trajectories. If the value function can be cha-
racterized as the unique solution of a Hamilton Jacobi equation, it is possible to
reconstruct the feedback control by di�erent procedures, in particular, by the use of
Dynamic programming principle or the nonlinear partial di�erential equation or a
combination of various techniques (see [56]).

Here, we recall the DPP procedure of the reconstruction of the trajectory from
a Lipschitz value function ϑ solution to a Hamilton Jacobi equation (see [95]) by
considering a piecewise constant control de�ned for N intervals of time representing
the discretization of the time interval. Consider the following algorithm

Algorithm. 1 Let (t0 = 0, t1...tn−1, tn = T ) be a uniform partition and h = T
n
be

the time step. Let {yn(.)} be a trajectory de�ned recursively on the intervals (ti−1, ti]
(i ≥ 1 ) and let {un(.)} be the corresponding sequence of controls. Set yn(t0) = x.

Step 1 Compute the optimal control at tk :

ak ∈ arg min
u

{
ϑ
(
tn−k, y

n(tk) + hf(yn(tk), u)
)}
. (2.19)
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Step 2 , De�ne the uk(t) := ak be a constant control in t ∈ (tk, tk+1] and yn(t) on
(tk, tk+1] be the solution to

ẏ(t) := f(y(t), uk(t)) a.e t ∈ (tk, tk+1]; (2.20)

with intial condition y(tk).

The following proposition shows that the sequence of trajectories generated by the
above algorithm converges uniformly to some optimal trajectory (see [95]).

Theorem 2.1.9 Assume (H1)-(H5) hold. Let {yn(.), un(.)} be a sequence generated
by algorithm 1 for n ≥ 1. Then, the sequence of trajectories {yn(.), un(.)} has cluster
points with respect to the uniform convergence topology. For any cluster point ȳ(.)
there exists a control low ū(.) such that the pair (ȳ(.), ū(.)) is optimal for the problem
associated to ϑ.

It is known that the reconstruction of the optimal trajectories using the DPP pro-
vides good results. However, it is not expected in general to get the same results for
the control law, in particular, for nonlinear problems. The regularization methods,
namely, the regularization by variation of the control and the regularization of the
post treatment allow to improve the behaviour of the control (see Chapter 6 for
more details).

2.1.4 Numerical scheme

Numerical solutions of PDE obtained by applying the Dynamic programming prin-
ciple to optimal control problems is a challenging topic that can solve many en-
gineering issues. Here we are interested in the numerical solution of the Hamilton
Jacobi equation (2.7). The most known methods of approximation of the solution
of PDE are the �nite di�erence method (see [47, 97]) and Semi lagrangian method
(see [55, 58]). The Finite di�erence schemes are based on interpolations of discrete
data using polynomials or other simple functions. The interpolations in second and
high orders are necessarily oscillatory near a discontinuity. The Essentially Non-
Oscillatory (ENO) proposed in [66] allows to obtain uniformly high order accurate
non-oscillatory interpolation for piecewise smooth functions.

Another interesting method is called Semi Lagrangian and it was �rst introduced
for conservation laws in [43]. The Semi Lagrangian was �rst used for stationary
Hamilton Jacobi Bellman equations related to optimal control problems [53, 54,
57]. We refer to [59] for evolutive problems. A Semi-Lagrangian scheme is obtained
by discretizing in time the dynamic programming principle and this provides an
interesting interpretation of the schemes in terms of a discrete representation formula
for the value function.

Finite di�erence method

Here, we propose a �nite di�erence scheme to approximate the solution of the equa-
tion (2.7). Let us de�ne the following grid,

G :≡
{

(n∆t, I∆x), n ∈ N, I ∈ Zd
}
.
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where ∆x,∆t > 0. Let V n
I be the approximation of the solution V at the node

(tn, yI).

Given a numerical Hamiltonian H : Rd ×Rd ×Rd → R (consistent with the Hamil-
tonian H) , the following scheme based on a Runge-Kutta method of �rst order for
time discretization,{

V n+1
I = V n

I −∆tH(xI , D
+V n(xI), D

−V n(xI)),

V 0
I,j = ϕI ,

(2.21)

where ϕI,j is the appoximation of the initial data of the control problem at the node
(xI) and the discrete space gradient of the function V n at the point (xI),

D±V n(xI) = (D±y1
V n(xI), .., D

±
xd
V n(xI)),

where the ENO scheme of second order can be used to approximate the derivatives
D±yiW .

Semi Lagrangian scheme

Let us consider the Semi Lagrangian scheme that approximates the solution of the
equation (2.7). Let ∆x,∆t > 0 be respectively the space and the time steps. Let V n

I

be the approximation of the solution V at the node (tn, yI). Consider the following
approximation −∇ϑ(tn, xI).f(xI , a) =

ϑ
(
tn, xI − f(xI , a)∆t

)
− ϑ(tn, xI)

∆t
+O(∆t). (2.22)

Replacing in (2.7), the term ∂tϑ by the forward �nite di�erences and the directional
derivatives by (2.22), we get the following explicit Semi Lagrangian schemeV n+1

I = mina∈U

[
V n
I

(
tn, xI − f(xI , a)∆t

)
+ l(xI , a)∆t

]
,

V N
I = ϕI ,

(2.23)

where ϕI is the appoximation of the initial data of the control problem at the node
(yI) and l is the approximation of ` at the node (yI , a). The value of V on the
right-hand side is calculated by an interpolation procedure based on the values on
the nodes of the grid G.

2.2 Stochastic control problems

Let {Ω,F , {Ft}t≥0,P} be a �ltered probability space satisfying the usual condition
((Ω,F ,P) is a complete probability space and {Ft}t≥0 is a right continuous �ltration
contained in F i.e Ft+ ≡

⋂
s>tFs = Ft, ∀t ≥ 0 and F0 contains all P-null sets. Let

W (.) be a givenm-dimensional Brownian motion, and T > 0. We denote by U the set
of progressively measurable processes valued in U ⊂ Rq (q ≥ 1). Let (Xu

t,x(s))0≤s≤T
be a controlled process valued in Rd solution of the following stochastic di�erential
equation :

25



{
dX(s) = f(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s) s ∈ (t, T ),
X(t) = x.

(2.24)

where the initial condition x ∈ Rd. We consider the following assumptions on the
drift f : [0, T ]× Rd × U × Rd, the volatility σ : [0, T ]× Rd × U × Rd×p and U :

U ⊂ Rm is a compact set ; (A1)


(i) f(·, ·, ·) and σ(·, ·, ·) are continuous on [0, T ]× Rd × U ;

(ii) ∃L0 ≥ 0 such that ∀x, y ∈ Rd, t ∈ [0, T ], u ∈ U :

|f(t, x, u)− f(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ L0|x− y|;
(A2)

Note that the above uniform Lipschitz condition on f and σ and the compactness
of U guarantee the existence of a controlled process on the time interval [t, T ] for
each given initial data x, and for every admissible control u ∈ U (see [61] for more
details).

A processXu
t,x solution of (2.24) associated to a control u ∈ U will be said admissible.

Moreover, there exists K0 depending only on L0, T, d and m (see [101, page 42] or
[61, Appendice D] or [100, Theorem 3.1])) : such that for any u ∈ U , 0 ≤ t ≤ t′ ≤ T
and x, x′ ∈ Rd

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t,x′(θ)
∣∣2] ≤ K2

0 |x− x′|2, (2.25a)

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)−Xu

t′,x(θ)
∣∣2] ≤ K2

0(1 + |x|2) |t− t′|. (2.25b)

Furthermore, for every p ≥ 1, there exists Kp > 0 such that :

E

[
sup
θ∈[t,t′]

∣∣Xu
t,x(θ)− x

∣∣p] ≤ Kp(1 + |x|p) |t− t′|. (2.25c)

The solution Xu
t,x(·) satis�es almost surely the following,

Xu
t,x(·) = x+

∫ ·
t

f(s,Xu
t,x(s), u(s))ds+

∫ ·
t

σ(s,Xu
t,x(s), u(s))dW(s).

We denote by Xu
x (·) the solution of (2.24) for autonomous systems (t = 0).

Roughly speaking, the control problem on a �nite time interval is to minimize the
following bolza functional :

J(t, x, u) = E
[ ∫ T

t

`(s,Xu
t,x(s), u(s))ds+ ϕ(Xu

t,x(T ))

]
. (2.26)

In the case of in�nite time horizon, the control problem consists of minimizing :
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J(x, u) = E
[ ∫ +∞

0

e−λs`(Xu
x (s), u(s))ds

]
. (2.27)

Let us consider the following assumptions on the running cost ` and terminal cost
ϕ

` is continuous in all its arguments and Lipschitz continuous with respect to x,
(A3)

ϕ is a Lipschitz continuous function. (A4)

In a �nite time horizon setting, the value function denoted by ϑ is the map that
associates to any t ∈ [0, T ] and x ∈ Rd the optimal value in (2.26), that is,

ϑ(t, x) = inf
u∈U

E
[ ∫ T

t

`(s,Xu
t,x(s), u(s))ds+ ϕ(Xu

t,x(T ))

]
. (2.28)

If the time horizon is in�nite, the value function ϑ is a function of x and it associates
to x the optimal value in (2.27), that is,

ϑ(x) = inf
u∈U

E
[ ∫ +∞

0

e−λs`(Xu
x (s), u(s))ds

]
.

Here, an obvious question is the existence of optimal control u∗ such that,

ϑ(t, x) = J(t, x, u∗),

for the case of �nite case, and ϑ(x) = J(x, u∗) for the in�nite case. The following
discussions recall some classical results for the existence of optimal controls.

2.2.1 Existence of optimal controls

The existence of optimal controls is an important topic in optimal control theory. In
a deterministic setting, the compactness of trajectories that follows from a convexity
property of the dynamics, ensures the existence of an optimal control. In a stochastic
setting, the problem is more complicated and it depends on formulations of the
control problem, namely, strong and weak formulations.

If the Brownian basis {Ω,F , {Ft}t≥0, P,W (.)} is �xed at the beginning and the
control is a progressively measurable process with respect to the �ltration, then the
optimal control problem has a strong formulation. In this case, there is a lack of a
compact structure on the set of stochastic trajectories. However, in the particular
case of linear function b and σ of the state and the control variable, one can get the
existence of optimal solution. More precisely, let us consider the following stochastic
linear controlled system{

dX(t) = (AX(t) +Bu(t))dt+ (CX(t) +Du(t))dW (t), t ∈ (0, T ),
X(0) = x.

(2.29)
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where A,B,C and D are matrices of suitable sizes and W (·) is a one-dimensional
Brownian motion. The �nite horizon Bolza problem (2.28) is considered (with auto-
nomous systems (t = 0) and ` independent of t). Consider the following hypotheses,

(i) ` and ϕ are convex and the set U is convex and closed.

(ii) For some k0, k1 > 0,

`(x, u) ≥ k0|u|2 − k1, ϕ(x) ≥ −k1, ∀(x, u) ∈ Rd × U.
(A5)

U is convex and compact and ϕ and ` are convex. (A6)

The following proposition is an existence result in the case of linear dynamics (see
[101, Chapter II Theorem 5.2]).

Proposition 2.2.1 Let (Ω,F , {Ft}t≥0,P) be a �xed �ltered probability space. Under
either (A5) or (A6), if (2.28) is �nite, then it admits an optimal control.

If the probability space and the �ltration vary, then they represent parts of the
so-called weak control. Here, even for general optimal control problems, there is a
possibility to prove the existence of the control in a �weak formulation� (see [91, 78]).
More precisely, let us give the de�nition of a weak admissible control.

De�nition 2.2.2 A 6-tuple π = (Ω,F , {Ft}t≥0,P,W (·), u(·)) is called a weak ad-
missible control and (X(.), u(.)) is a weak admissible pair if

� (Ω,F , {Ft}t≥0,P) is a �ltred probability space satisfying the usual conditions ;

� W (·) is an m-dimensional standard Brownian motion de�ned on
(Ω,F , {Ft}t≥0,P) ;

� u(·) is an {Ft}t≥0-adapted process on (Ω,F ,P) taking values in U .

� X(·) is the unique solution of the equation (2.24) in (Ω,F , {Ft}t≥0,P) under
u(·).

Denote by Π the set of all weak admissible controls. Under the weak formulation,
the stochastic optimal control problem can be stated as follows :

inf
π∈Π

Eπ

[ ∫ T

t

`(s,Xu
t,x(s), u(s))ds+ ϕ(Xu

t,x(T ))

]
, (2.30)

where Eπ denotes the expectation with respect to the probability measure P. Consi-
der the following convexity property, i.e, for every t ∈ [0, T ], x ∈ Rd

(f, σσT , `)(t, x, U) :=
{

(bi(t, x, u), (σσT )ij(t, x, u), `(t, x, u)), (A7)

i = 1, . . . , d, j = 1, . . . ,m, u ∈ U
}
,

is a convex set. Then, the following proposition is an existence result of a control in
a weak formulation setting ([101, Chapter II, Theorem 5.3]) :
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Proposition 2.2.3 Assume (A1)-(A4) hold. Let (A7) be also satis�ed. If (2.30) is
�nite, then it admits an optimal control in Π.

Remark 2.2.4 The result still works for the case of unbounded controls (see [67]
and [83]).

In the following, we report some classical results on the characterization of the value
functions in in�nite and �nite time horizons using the Dynamic programming prin-
ciple. For di�erential functions, it is also possible to characterize the value function
as the unique solution of a nonlinear partial di�erential equation called second order
Hamilton Jacobi Bellman equation.

2.2.2 Finite time horizon

The main idea of the dynamic programming approach is that the value function ϑ
satis�es a functional equation called the Dynamic Programming Principle (DPP).

Theorem 2.2.1 Assume (A1)-(A4). Then, for any (t, x) ∈ [0, T )×Rd and for any
{Ft}-stopping time θ with values in [t, T ]

ϑ(t, x) = inf
u∈U

E
[
ϑ(θ,Xu

t,x(θ)) +

∫ θ

t

`(s,Xu
t,x(s), u(s))ds

]
.

If ϑ is two times di�erentiable, by using the Itô formula it is possible to prove that
v is a solution of the following equation :{

−∂tϑ(t, x) +H(t, x,Dxϑ,D
2
xϑ) = 0 t ∈ [0, T ), x ∈ Rd,

ϑ(T, x) = ϕ(x) x ∈ Rd.
(2.31)

where we denoted by Dϑ and D2ϑ respectively the gradient and the Hessian matrix
of ϑ. The function H : [0, T ]×Rd×Rd×Sd×R (with Sd we denote the set of d× d
symmetric matrices), namely the Hamiltonian of the system, is de�ned by

H(t, x, p,Q) := sup
u∈U

{
− f(t, x, u) · p− 1

2
Tr[σσT (t, x, u)Q]− `(t, x, u)

}
,

for any t ∈ [0, T ], x, p ∈ Rd and Q ∈ Sd.

2.2.3 In�nite time horizon

For the value function in in�nite time horizon, it is still possible to establish the
Dynamic programming principle and derive from it the appropriate Hamilton Jacobi
Bellman equation.

Theorem 2.2.2 Assume (A1)- (A4). Then, for any x ∈ Rd and for any {Ft}-
stopping time θ ≥ 0

ϑ(x) = inf
u∈U

E
[
e−λθϑ(Xu

x (θ)) +

∫ θ

0

e−λt`(Xu
x (t), u(t))dt

]
.
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If ϑ is twice di�erentiable, by using the Itô formula it is possible to prove that v is
a solution of the following equation :

λϑ(x) +H(x,∇ϑ,∇2ϑ) = 0, x ∈ Rd, (2.32)

For σ ≡ 0, equations (2.31) and (2.32) are reduced to the �rst order equations
corresponding to the deterministic control problems.
It is clear that the value function of an optimal control problem may not be always
twice di�erentiable. In such cases, it cannot be expected that the value function
should solve the HJB equation in any classical sense. Even so, it will be seen that
the value function is a viscosity solution of the HJB equation and even more it will
be the unique viscosity solution (see section 2.3 for more details). This nice notion of
solution is relevant for optimal control problems and it provides a good framework
to deal with existence and uniqueness of solutions for generalized HJB equations.

Let us point out that the optimal control problems described in this chapter are
associated to problems in �nance, aerodynamic and many other domains. Then, it
would be relevant to try to solve numerically these concrete problems. The next
subsection proposes to discuss the numerical approximations of the solutions of
second order Hamilton Jacobi Bellman equation.

2.2.4 Numerical approximations

The �rst convergence result of numerical methods to viscosity solutions was given by
Barles-Souganidis (see [17]). Error bounds for the second order HJB equation were
found by Krylov [75] for a case where σ is a constant function. These results were
developed further in [14, 15, 16] by introducing new tools that allow to consider the
case where σ can depend on time, space and also on the control variable. Several
other extensions of the theory have been analysed in the literature, let us mention
some of the extensions for stopping-game problems [31], for impulsive control sys-
tems [32], for integro partial di�erential HJB equations [39, 24, 25], and for a general
class of coupled HJB systems [34]. Note also that the case of fully uniformly ellip-
tic operators have been also studied by Cafarelli-Souganidis [37] using a di�erent
approach than the one introduced by Krylov.

Let us report some �ndings in the appoximations of solutions of Hamilton Jacobi
Bellman equations, in particular, the error bounds for numerical solution for second
order HJB equations (see [14, 15, 16]).

We shall consider only the evolutionary case (by analogy the results still hold for
stationary case). For this, let Gh be a grid and consider the scheme denoted by S,

S(h, x, t, vh(x, t), [vh]t,x) = 0, in G+
h := Gh\{t = 0},

vh(0, x) = ϕh(x), in G0
h := Gh ∩ {t = 0}.

where [vh] is a function de�ned from vh representing the value of vh at other points
than (t, x) (e.g interpolation).

The following discussion is about an important result on the error estimates for se-
cond order HJB equation on unbounded domain. We should mention that this result
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is not directly applicable to the bounded domain problem. Consider the following
HJB equation :

∂tϑ + H(t, x,Dxϑ(t, x), D2
xϑ(t, x)) = 0, on QT := (0, T )× Rd,

ϑ = ϕ, on {T} × Rd.

Assume that g, σ, f are bounded uniformly in α in the following norm :

|u|1 := |u|L∞(R×Rd) + [u]1, and [u]1 := sup
(t,x)6=(s,y)

|u(t, x)− u(s, y)|
|x− y|+

√
|t− s|

.

Consider that the following hypotheses are satis�ed for the scheme :

[Monotonicity]. There exists λ, µ ≥ 0, h0 ≥ 0 such that if |h| < h0, u ≤ v are
function Cb(Gh), and φ(t) = eµt(a+ bt) + c for a, b, c ≥ 0, then for any r ∈ R,

S(h, x, t, r + φ(t), [u+ φ]) ≥ S(h, x, t, r, [v]) +
b

2
− λc, in G+

h .

[Regularity] For every h and φ ∈ Cb(Gh), the function (t, x) →
S(h, t, x, φ(t, x), [φ]t,x) is bounded and continuous in G+

h and the function
r → S(h, t, x, r, [φ]t,x) is uniformly continuous for bounded r, uniformly in
(t, x) ∈ G+

h .

[Sub-consistency]. There exists a function E1(K,h, ε) such that for any sequence
{φε}ε>0 of smooth functions satisfying

|∂β0
t D

β′φε(x, t)| ≤ Kε1−2β0−|β′|, in QT , for any β0 ∈ N, β′ = (β′i)i ∈ NN ,

where |β′| =
∑N

i=1 βi, the following inequality holds :

S(h, t, x, φε(t, x), [φε]t,x) ≤ ∂tφε +H(t, x,Dφε, D
2φε) + E1(K,h, ε), in G+

h .

[Super-consistency]. There exists a function E2(K,h, ε) such that for any sequence
{φε}ε>0 of smooth functions satisfying

|∂β0
t D

β′φε(x, t)| ≤ Kε1−2β0−|β′|, in QT , for any β0 ∈ N, β′ = (β′i)i ∈ NN ,

the following inequality holds :

S(h, t, x, φε(t, x), [φε]t, x) ≥ ∂tφε +H(t, x,Dφε, D
2φε) + E2(K,h, ε), in G+

h ,

Then, the following result on the error estimate of the approximate solution is ob-
tained.
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Theorem 2.2.3 Assume the assumptions hold. If the scheme admits a unique so-
lution vh ∈ Cb(Gh), then for h su�ciently small, the following inequalities hold.

Upper bound. There exists C depending on |σ|1, |f |1, |ϕ|1, |`|1 and µ for all
(x, t) ∈ Gh,

ϑ− vh ≤ eµt|(ϕ− ϕh(., T ))+|∞ + C min
ε>0

(
ε+ E1(|ϑ|1, h, ε)

)
.

Lower bound. There exists C depending on |σ|1, |f |1, |ϕ|1, |`|1 and µ for all
(x, t) ∈ Gh,

ϑ− vh ≥ −eµt|(ϕ− ϕh(., T ))+|∞ − C min
ε>0

(
ε

1
3 + E2(|ϑ|1, h, ε)

)
.

It is important to remark that the disymmetry in the consistency hypothesis allows
to describe how the bound are obtained from the consistency requirements using
the �Krylov regularization�. In [49], the authors try to improve the lower bound for
a large class of Semi Lagrangian schemes without using switching systems.

In the following chapter, we will extend the theory of error estimates to the unboun-
ded Lipschitz setting using again the �Krylov regularization� and some regulariza-
tion technics combined with the consistency estimate for a class of Semi Lagrangian
schemes.

2.3 Viscosity solutions

The theory of viscosity solutions allows continuous functions to be solutions of non-
linear HJB equations of �rst and second order as well. Moreover, it provides very
general existence and uniqueness theorems and gives precise formulations of general
boundary conditions.

2.3.1 First order case

Here, we present some de�nitions and classical results of the theory of the continuous
viscosity solutions of the second order Hamilton Jacobi equation :

F (x, ϑ,Dϑ) = 0, x ∈ D, (2.34)

where D is an open set. The case D = Rd corresponds to (2.9) and

F (x, r, p) := λr +H(x, p),

and D = (0, T )× Rd to the evolutionary case of equation (2.7) and

F ((t, x), r, (p1, p)) := −p1 +H((t, x), p).
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De�nition 2.3.1 (Viscosity solutions) (i) A function u is viscosity supersolu-
tion of (2.34) if u is lower semicontinuous and for any ϕ ∈ C1(D;R) :

F (x, ϕ,Dϕ) ≥ 0 on D,

for all local minimum point x ∈ D of u− ϕ.
(ii) A function u is viscosity subsolution of (2.34) if u is upper semicontinuous and
for any ϕ ∈ C1(D;R) :

F (x, ϕ,Dϕ) ≤ 0 on D,

for all local maximum point x ∈ D of u− ϕ.

The function u is a viscosity solution of (2.34) if and only if it is both a viscosity
supersolution and subsolution and the �nal condition is satis�ed as well.

Viscosity solutions were introduced by Crandall and Lions in [46] (see also [45]
for earlier contribution). The notions of viscosity solutions can be de�ned in an
alternative way using the semi di�erentials (see [12, 13]).

The value function ϑ is then characterized as follows :

Proposition 2.3.2 Assume the assumptions (H1)-(H2) and (H4)-(H5) hold. Then,
the value function ϑ is the unique viscosity solution of (2.34).

The uniqueness represents the hard part of the proof of the proposition (2.3.2) and it
requires a comparison result between viscosity supersolutions and viscosity subsolu-
tions. The classical method for proving the comparison principle is based on doubling
variable technique (see [12, 13]). The idea of the proof consists of considering the
maximum point (xε, yε) of the following

u1(x)− u2(y)− |x− y|
2

ε
,

for D = Rd and for the evolutionary case D = (0, T ) × Rd, the maximum point
((tε, xε), (sε, yε) of the following

u1(t, x)− u2(s, y)− |x− y|
2 + |t− s|2

ε
,

The information given by the following test functions allow to obtain the desired
comparison principle, namely,

φ1(x) := u2(yε) +
|x− yε|

ε
,

φ2(y) := u1(xε) +
|xε − y|

ε
,

for D = Rd and for time depend case, the following viscosity test functions

φ1(t, x) := u2(sε, yε) +
|x− yε|2 + |t− sε|2

ε
,

φ2(s, y) := u1(tε, xε) +
|xε − y|2 + |tε − s|2

ε
.
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2.3.2 Second order case

The viscosity theory is not restricted to the �rst order HJB equations and it can
be extended to the second order HJB equations. This subsection is devoted to the
de�nitions and classical results of the theory of the continuous viscosity solutions of
the �rst order Hamilton Jacobi equation :

F (x, v,Dv,D2v) = 0, x ∈ D, (2.37)

where D is an open set in Rd and Dv and D2v respectively the gradient and the
Hessian matrix of v in a viscosity sense. The equation (2.32) corresponds to the case
D = Rd and

F (x, r, p,Q) := λr +H(x, p,Q),

and the equation (2.31) to D = (0, T )× Rd and

F ((t, x), r, (p1, p), Q) := −p1 +H(t, x, p, (Qij)i,j≥2
).

De�nition 2.3.3 (Viscosity solutions) (i) An usc function v on D is a viscosity
sub-solution of (2.37), if for each function ϕ ∈ C2(D), at each maximum point x of
v − ϕ the following inequalities hold

F (x, ϕ,Dϕ,D2ϕ) ≤ 0 on D.

(ii) A lsc function v on D is a super-solution of (2.37), if for each function ϕ ∈
C2(D), minimum point x of v − ϕ the following inequalities hold

F (x, ϕ,Dϕ,D2ϕ) ≥ 0 on D.

A continuous function v is a viscosity solution of (2.37) if it is both a sub- and
super-solution.

In [82, 81], Lions extends the notion of viscosity to the second order case (stochastic
case) and characterizes the value function associated to optimal control problems
for controlled di�usion as the unique continuous viscosity solution of a second order
HJB equation.

It is well known that the uniqueness is obtained as a consequence of some comparison
result between sub- and super-solutions. The classical method used for proving the
comparison inequality for �rst order equations (deterministic setting) is not relevant
here and the information given by the test functions on the second order derivatives
is not su�cient to prove the result. In [74], Jensen gives the comparison principle
for a family of equations (2.37) independent of x using the notions of sup and inf-
convolution approximations. Since, many contribution have been added to this �rst
work on uniqueness of the solution of second order HJB equations (see [69, 70, 71,
73]). Let us introduce another equivalent de�nition of viscosity solution involving
the notion of semijets (see [101, Proposition 5.6] for the equivalence with de�nition
2.3.3).
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De�nition 2.3.4 (i) An usc function v on D is a viscosity sub-solution of (2.37)
if

F (x, v, p,X) ≤ 0 for any x ∈ D, (p,X) ∈ J 2,+
v(x),

where the closed superjet of v at some point x is de�ned by

J 2,+
v(x) :=

{
(p,X) ∈ Rd × Sd : ∃xn → x, ∃(pn, Xn), s.t.

v(x) ≤ v(xn) + pn · (x− xn) +
1

2
Xn(x− xn) · (x− xn) + o‖xn − x‖2

and (pn, Xn)→ (p,X)
}
.

(ii) A lsc function v on D is a viscosity super-solution of (2.37) if

F (x, v, p,X) ≥ 0 for any x ∈ D, (p,X) ∈ J 2,−
v(x),

where the closed superjet of v at some point x is de�ned by

J 2,−
v(x) :=

{
(p,X) ∈ Rd × Sd : ∃xn → x, ∃(pn, Xn), s.t.

v(x) ≥ v(xn) + pn · (x− xn) +
1

2
Xn(x− xn) · (x− xn) + o‖xn − x‖2

and (pn, Xn)→ (p,X)
}
.

A continuous function v is a viscosity solution of (2.37) if it is both a sub- and
super-solution.

Remark 2.3.5 The notions of sub and super-jets allow to extend the notions of
semi di�erentials (sub and super di�erential leading to a de�nition of Dv and D2v
in the nonsmooth case) to the second order case.

The �Crandall-Ishii lemma� is a very useful tool associated to the semijet which
allows to avoid the explicit regularization by convolution of the solutions ( see [44,
Theorem 3.2] for more details) :

Lemma 2.3.6 (Crandall-Ishii lemma) Let Di be a locally compact subset of Rdi

for i = 1, . . . , k, D := D1× . . .×Dk ⊆ Rd (d = d1 + . . .+ dk), vi ∈ USC(Di) and ϕ
be a twice continuously di�erentiable function in a neighborhood of D. Set

v(x) := v1(x1) + . . .+ vk(xk),

for x ≡ (x1, . . . , xk) ∈ D and suppose that x̂ ∈ D is a local maximum point for v−ϕ.
Then for any α > 0 there exists Xi ∈ Sdi such that

(Dxi
ϕ(x̂), Xi) ∈ J

2,+
vi(x̂i), for i = 1, . . . , k,

and the following matrix inequalities hold

−
(

1

α
+ ‖D2ϕ(x̂)‖

)
Id ≤

 X1 . . . 0
...

. . .
...

0 . . . Xk

 ≤ D2ϕ(x̂) + α(D2ϕ(x̂))2,

(where for a matrix A ∈ Sd we de�ne ‖A‖ := sup{|Aξ · ξ| : |ξ| ≤ 1}).

We refer to [44] for the case of parabolic HJ equations making use of the concept of
parabolic semijets.
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CHAPITRE III

ERROR ESTIMATES FOR SECOND
ORDER H-J-B EQUATIONS WITH
POSSIBLY DISCONTINUOUS AND

UNBOUNDED DATA

Publications of this chapter

M. Assellaou, O. Bokanowski and H. Zidani, Error Estimates for Second Order
Hamilton-Jacobi-Bellman Equations. Approximation of Probabilistic Reachable Sets,
DCDS- Serie A, vol. 35(9), pp. 3933 - 3964, 2015.

3.1 Introduction

Throughout this chapter, we denote by T > 0 a �xed �nal horizon. Consider a
controlled process Xu

t,x satisfying :{
dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), ∀s ∈ [t, T ],

X(t) = x,
(3.1)

where the di�usion σ and drift b are two Lipschitz continuous functions, W (·) is the
classical Brownian motion, and u is a control function that takes values in a compact
subset U of Rq (q ≥ 1). Under suitable assumptions on b, σ and on U , equation (3.1)
admits a unique solution (see Section 3.2, for precise assumptions). Now, consider
the following control problem

ϑ(t, x) := sup
u∈U

E
[
Φ(Xu

t,x(T ))
]
, (3.2)

where Φ : Rd → R is measurable, with linear growth. In this chapter, we are
interested in error estimates of numerical approximations of ϑ.

The �rst approximation that will be considered here is a very classical one that
consists of introducing a family of Lipschitz continuous functions (Φε)ε converging
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pointwisely to Φ. Then the value function ϑ can be itself approximated by the value
functions ϑε de�ned as :

ϑε(t, x) := sup
u∈U

E
[
Φε(X

u
t,x(T ))

]
.

It is known that under quite general assumptions on the data and on Φε, one can
show that ϑε converges pointwisely towards ϑ, when ε → 0. In this chapter, we
are also interested in the error estimate of ϑ− ϑε depending on the measure of the
set where the two functions Φ and Φε di�er. The result that will be studied here
is obtained under an ellipticity condition of the di�usion matrix. An extension to
more general degenerate matrices is still a challenging problem that is not covered
in this chapter.

The second step in the approximation of ϑ is to discretize the Hamilton-Jacobi-
Bellman equation satis�ed by ϑε. Indeed ϑε will be shown to be the unique continuous
viscosity solution of :

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0, in (0, T )× Rd,

ϑε(T, x) = Φε(x), in Rd,

where H(t, x, p,Q) := supa∈U
(
−b(t, x, a) · p− Tr([σσT](t, x, a)Q)

)
. In the case when

the drift b and the di�usion σ are bounded and when the value function ϑε is
itself bounded, the error estimates of monotone schemes have been obtained �rst by
Krylov [75] for a case where σ is a constant function. These results were developed
further in [14, 15, 16] by introducing new tools that allow to consider the case
where σ can depend on time, space and also on the control variable. Several other
extensions of these errors have been analysed in the literature. Let us mention some
of them for stopping-game problems [31], for impulsive control systems [32], for
integro partial di�erential HJB equations [39, 24, 25], and for a general class of
coupled HJB systems [34]. Note also that the case of fully uniformly elliptic operators
have been also studied by Cafarelli-Souganidis [37] using a di�erent approach than
the one introduced by Krylov.

Here, we extend the theory of error estimates to the unbounded Lipschitz setting.
The proof is still based on �Krylov regularization� and on some re�ned consistency
estimates. To the best of our knowledge, this is the �rst result in the case where b,
σ and the solution to the HJB equation itself are unbounded with respect to the
space variable (with linear growth).

The chapter is organized as follows : Section 3.2 introduces the notations and the
setting of the control problems (3.2). In section 3.3, we derive an error estimate for
the value functions when the payo� function Φ is approximated by smooth functions.
In section 3.4, we analyse the error estimates for a semi-Lagrangian scheme for the
approximation of the value function.

3.2 Setting of the problem. Basic assumptions

Throughout this chapter, | · | denotes the Euclidean norm for any RN type space,
and BR is the closed ball centred at the origin and with radius R.
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For a given set S ⊂ RN , the indicator function is given by 1S(x) = 1 if x ∈ S and
1S(x) = 0 otherwise. The distance function to S is d(x,S) = inf{|x − y| : y ∈ S}.
We also denote by µ(S) the measure of S with respect to Lebesgue's measure.
For any real valued function ϕ : [0, T ]× Rd → R, we say that ϕ ∈ Ck,l([0, T ]× Rd)
(for non-negative integers k, l) i� all the partial derivatives ∂iti∂

j
xj
ϕ, for 0 ≤ i ≤ k

and 0 ≤ j ≤ l, exist and are continuous functions. Moreover, we denote by ‖ϕ‖0 the
norm given by :

‖ϕ‖0 := sup
(t,x)∈[0,T ]×Rd

|ϕ(t, x)|,

and for the matrix Dkϕ (the k-th derivative with respect to the variable x) :

‖Dkϕ‖0 := max
αi≥0,

∑
αi=k
‖ ∂k

∂xα1
1 · · · ∂x

αd
d

ϕ‖0.

Let {Ω,Ft, {Ft}t≥0, P} be a �ltered probability space, W (.) be a given m-
dimensional Brownian motion, and T > 0. We denote by U the set of progressively
measurable processes valued in U ⊂ Rq (q ≥ 1) where U is a non empty compact
set. Let (Xu

t,x(s))0≤s≤T be a controlled process valued in Rd solution of the following
stochastic di�erential equation :{

dX(s) = b(s,X(s), u(s))ds+ σ(s,X(s), u(s))dW (s), ∀s ∈ [t, T ]

X(t) = x,
(3.3)

where σ : [0, T ]×Rd × U → Rd×m and b : [0, T ]×Rd × U → Rd are two continuous
functions satisfying the following standard assumption :

(H1a) there exists L0 > 0 such that for any (s, t, x, y, u) ∈ [0, T ]×[0, T ]×Rd×Rd×U ,
we have :

|b(t, x, u)− b(s, y, u)|+ |σ(t, x, u)− σ(s, y, u)| ≤ L0(|x− y|+ |t− s|
1
2 ).

For convenience, we assume also that |σ(0, 0, u)|+ |b(0, 0, u)| ≤ L0 for any u ∈ U .
Assumption (H1a) imposes that b and σ are Lipschitz continuous with respect to x
and 1

2
- Hölder continuous with respect to t.

For a part of the results that will be presented in this chapter, we will also need an
ellipticity condition that we state as follows :

(H1b) σ depends only on (t, x) and there exists a real number Λ ≥ 1, such that :

∀(t, x) ∈ (0, T )× Rd, ΛId ≥ σ(t, x)σ(t, x)T ≥ Λ−1Id, (3.4)

where Id is the identity matrix and the inequalities (3.4) are in the sense of symmetric
matrices : Λ‖ξ‖2 ≥ 〈ξ, σσT ξ〉 ≥ Λ−1‖ξ‖2, ∀ξ ∈ Rd.

Assumption (H1b) will be used in section 3.3. It is very useful to derive Aronson
type estimates [50] on the density of probability associated with the process Xu

t,x,
precise statement is given in Lemma 3.3.3.

39



Remark 3.2.1 Note that more generally, assumption (H1b) can be replaced by a
weak Hörmander condition where the di�usion takes part only in some components
and the noise propagates through a chain of di�erential equations. Similar Aronson
type estimates can then be obtained, following [50],and the results of the chapter
could be generalized to this context.

Throughout the chapter, we denote by Φ : Rd → R a given �nal cost function
satisfying the assumption :

(H2) Φ is measurable, and with linear growth, i.e, there exists M0 > 0 such that :

|Φ(x)| ≤M0(1 + |x|) a.e. x ∈ Rd.

Now, consider the following optimal control problem :

ϑ(t, x) := sup
u∈U

E
[
Φ(Xu

t,x(T ))
]
. (3.5)

Under assumptions (H1a)-(H2), the value function ϑ is well de�ned but it may
be discontinuous. Moreover, according to [65], if Φ is upper semi-continuous (u.s.c)
and under some additional convexity assumptions on the drift and the di�usion
coe�cients, ϑ is u.s.c and satis�es the following HJB equation :

−∂tϑ+H(t, x,Dϑ,D2ϑ) = 0 in (0, T )× Rd, (3.6a)

ϑ(T, x) = Φ(x) in Rd. (3.6b)

In this chapter, we are interested in the error estimates theory for numerical approxi-
mations of the value function ϑ. Since ϑ is discontinuous, we shall �rst introduce
a regularized problem with a controlled error with respect to the original problem,
and on which further analysis and numerical approximation will be more convenient.
For this aim, we consider a family of regularized functions (Φε)ε>0, and denote by
Dε (for any ε > 0) the set where Φε and Φ take di�erent values :

Dε := {x ∈ Rd | Φε(x) 6= Φ(x)}.

Then we consider the following assumption :

(H3) (i) For every ε ∈]0, 1], Φε : Rd → R is a Lipschitz continuous function with
Lipschitz constant Lε ≥ 0,
(ii) there exists a constant M0 > 0 (independent of ε), such that

|Φε(x)| ≤M0(1 + |x|), x ∈ Rd,

(iii) there exists a constant M1 > 0 (independent of ε), such that for any A > 0

µ(Dε ∩ BA) ≤M1Aε, ε ∈]0, 1].

(The constant M0 in (H3)-(ii) can be chosen to be the same constant as in (H2)
without loss of generality.)
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Of course the existence of such approximated Lipschitz continuous functions im-
plicitly imposes some more requirements on the function Φ itself. However, (H3)
is not too restrictive and is satis�ed in many cases. For instance, it is possible to
construct a family Φε satisfying (H3) when the function Φ is piecewise Lipschitz
continuous function with discontinuities lying in a union of compact regular sub-
manifolds of dimension d− 1. See also remark 4.2.2 or Chapter 4 for construction of
such approximations in some particular cases.

Notice also that if Dε ⊂ BA for some given A ≥ 1 and for all ε ∈]0, 1], then (H3)-(iii)
is simply equivalent to assume that there exists M1 > 0 such that µ(Dε) ≤M1ε for
every ε ∈]0, 1].

Now, consider an approximation of ϑ given by the value function associated to the
following control problem :

ϑε(t, x) := sup
u∈U

E
[
Φε(X

u
t,x(T ))

]
. (3.7)

Under (H3) and using the ellipticity condition (H1b), we shall derive an error esti-
mate of ϑ− ϑε.
The next step will then consist in the obtention of error estimates for numerical
approximation of ϑε Lipschitz continuous function with linear growth in x variable.
For every ε > 0, this new value function can be characterized as unique Lipschitz
viscosity solution of the HJB equation :

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0, in (0, T )× Rd, (3.8a)

ϑε(T, x) = Φε(x) in Rd. (3.8b)

The Lipschitz regularity is suitable for deriving the error estimates when the HJB
equation is approximated by a monotone scheme. However, error estimates for second
order HJB equations have been studied so far only for Lipschitz bounded solutions, as
well as bounded coe�cients (b, σ). Here, we are concerned by the case of unbounded
coe�cients with respect to the x variable (which is the case of many real applications
such as call options in mathematical �nance). We recall here that throughout all the
chapter the control set U is bounded.

3.3 The regularized problem

Notation. Throughout this sections and the following ones, the constant C will
denote a generic positive real number that may depend only on T, d,m, L0, K0, Kp.

3.3.1 Error estimate for the regularization procedure

Here we focus on the error estimate between ϑ and the approximated value function
ϑε.

Theorem 3.3.1 Assume (H1a), (H1b), (H2), and (H3). Let ϑ and ϑε be the value
functions de�ned respectively by (3.5) and (3.7).
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(i) There exist a constant C0 > 0 (depending only on T, L0,Λ,M0,M1) and ε0 ∈]0, 1],
such that for every 0 < ε < ε0 the following estimate holds :

|ϑ(t, x)− ϑε(t, x)| ≤ C0
1 + |x|2 + | log ε|

(T − t)d/2
ε, (3.9)

for every 0 ≤ t < T and x ∈ Rd.
(ii)Furthermore, if there exists A > 0 such that Dε ⊂ BA for every ε ∈]0, 1], then
there exist C1, C2 > 0 (depending only on T,M0,M1 and A) such that the following
estimate holds :

|ϑ(t, x)− ϑε(t, x)| ≤ C1

(T − t)d/2
e−C2

d(x,Dε)2

(T−t) ε, (3.10)

for every ε ∈]0, 1], for every x ∈ Rd and every 0 ≤ t < T .

Remark 3.3.2 In particular, if there exists A > 0 such that Dε ⊂ BA for every ε >
0, then Theorem 3.3.1 leads directly to the following bound (since dist(x,Dε) ≥ 0) :

|ϑ(t, x)− ϑε(t, x)| ≤ C1

(T − t)d/2
ε, (3.11)

for every 0 ≤ t < T and every x ∈ Rd. Moreover, by using (3.10) and the fact that
e−r ≤ C/rd/2 for all r > 0 (for some constant C ≥ 0), we conclude that there exists
C ′1 ≥ 0 depending on T,M0,M1, A such that :

|ϑ(t, x)− ϑε(t, x)| ≤ C ′1
[dist(x,Dε)]d

ε, (3.12)

for every 0 ≤ t ≤ T and any x ∈ Rd \ Dε.

Before giving the proof of Theorem 3.3.1, we �rst recall some known results on
the density of probability of the process Xu

t,x(·), for a given (t, x) ∈ [0, T ) and an
admissible control u ∈ U . We will denote by y 7−→ pu(t, x; s, y) the density of
probability function associated to the process Xu

t,x(s) (for a given admissible control
u ∈ U).

Lemma 3.3.3 Assume (H1a) and (H1b). There exist c1, c2, c3 > 0 such that for any
(t, s, x, y) ∈ [0, T )× Rd × Rd such that t < s, and for any admissible control u ∈ U ,
the following estimate holds :

|pu(t, x; s, y)| ≤ c1

(s− t) d2
e−c2

|x−y|2
2(s−t) ec3|x|

2

. (3.13)

Proof. Let u ∈ U . From [50], there exists c1, c2 > 0 such that for every 0 ≤ t <
s ≤ T and every x, y ∈ Rd, we have :

pu(t, x; s, y) ≤ c1

(s− t) d2
exp

(
− c2

|θut,x(s)− y|2

s− t

)
, (3.14)
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where θ(s) := θut,x(s) is the solution of the deterministic di�erential equation :

d

ds
θ(s) = b(s, θ(s), u(s)), s ≥ t,

θ(t) = x.

Note that by [50, Theorem 1.1], the constants c1 and c2 depend only on d,Λ and do
not depend neither on θu nor on the control. Therefore, the estimate (3.14) is valid
for any control function u ∈ U . By assumption (H1a) and some classical estimates,
we get |θut,x(s)−x| ≤ L0(1+ |x|)(s−t)eL0(s−t). On the other hand, by straightforward
calculation, we get : |x− y| ≤ |θut,x(s)− y|+ |θut,x(s)− x|. Hence

−
|θut,x(s)− y|2

s− t
≤ −|x− y|

2

2(s− t)
+ 2L2

0(1 + |x|2)(s− t)e2L0(s−t).

Therefore, we obtain

pu(t, x; s, y) ≤ c1

(s− t) d2
e−c2

|x−y|2
2(s−t) ec3(1+|x|2),

≤ c1e
c3

(s− t) d2
e−c2

|x−y|2
2(s−t) ec3|x|

2

,

with c3 = 2c2L
2
0Te

2L0T , which gives the desired upper bound.

The lower bound can be derived in the same way.

Now we turn to the proof of theorem 3.3.1.
Proof of Theorem 3.3.1 Let t ∈ [0, T ] and x ∈ Rd. We have

|ϑ(t, x)− ϑε(t, x)| =
∣∣∣∣ sup
u∈U

E[Φ(Xu
t,x(T ))]− sup

u∈U
E[Φε(X

u
t,x(T ))]

∣∣∣∣,
≤ sup

u∈U
E[
∣∣Φ(Xu

t,x(T ))− Φε(X
u
t,x(T ))

∣∣],
≤ sup

u∈U

∫
Rd
|Φ(y)− Φε(y)| pu(t, x;T, y)dy,

where y → pu(t, x;T, y) is the density of probability associated to the processXu
t,x(T )

associated to a control function u ∈ U . Since supp(Φ− Φε) ⊂ Dε, it comes :

|ϑ(t, x)− ϑε(t, x)| ≤ sup
u∈U

∫
Dε
|Φ(y)− Φε(y)| pu(t, x;T, y)dy. (3.15)

We �rst consider the proof of (ii). We assume that Dε ⊂ BA for some A > 0 and for
every ε > 0. Then by taking into account Lemma 3.3.3 (using the fact that for every
y ∈ Dε, we have |x− y| ≥ dist(x,Dε)), and by assumption (H3) (which implies also
that for any y ∈ Rd, |Φ(y)− Φε(y)| ≤ 2M0(1 + |y|)), we get :∫

Dε
(Φ(y)− Φε(y))pu(t, x;T, y)dy,

≤ 2M0(1 + A)c1(T − t)−
d
2 e−c2

d(x,Dε)2

T−t ec3A
2

µ(Dε ∩ BA),

≤ 2M0M1c1(T − t)−
d
2 e−c2

d(x,Dε)2

T−t ec3A
2

(1 + A)Aε, (3.16)
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for every u ∈ U , which concludes to the desired bound for (ii).

We come back to the general case (i). For ε ∈]0, 1], let Xε ∈ R be the unique
parameter such that Xε ≥ d−1

2c2
(where c2 is introduced in Lemma 3.3) and

X(d−1)/2
ε e−c2Xε = ε. (3.17)

Then, as ε → 0, it holds Xε ∼ 1
c2
| log ε| and therefore, Xε = O(| log(ε)|). Intro-

duce also the positive constant Rε :=
√

(T − t)Xε. Let u ∈ U be �xed. Using the
estimate (3.14), we obtain a �rst bound as follows :∫

Dε∩(θut,x(T )+BRε )

(Φ(y)− Φε(y))pu(t, x;T, y)dy,

≤ 2M0(1 + |θut,x(T )|+Rε)
c1

(T − t) d2
µ

(
Dε ∩ (θut,x(T ) + BRε)

)
,

≤ 2M0M1(1 + |θut,x(T )|+Rε)
2 c1

(T − t) d2
ε,

≤ 2M0M1C(1 + |x|+Rε)
2 c1

(T − t) d2
ε, (3.18)

where we have used that |θut,x(T )| ≤ C(1 + |x|) for some constant C > 0 that only
depends on T and L0 (and does not depend on u). On the other hand,∫

Dε∩ Rd\(θut,x(T )+BRε )

(Φ(y)− Φε(y))pu(t, x;T, y)dy,

≤
∫
Rd\(θut,x(T )+BRε )

|Φ(y)− Φε(y))|pu(t, x;T, y)dy,

≤
∫
|y−θut,x(T )|≥Rε

2M0(1 + |y|) c1

(T − t)d/2
e−c2

|θut,x(T )−y|2

T−t dy,

=

∫
|y|≥Rε
2M0(1 + |y + θut,x(T )|) c1

(T − t)d/2
e−c2

|y|2
T−t dy,

≤ 2c1M0

∫
|z|≥ Rε√

T−t

(1 + |θut,x(T )|+
√
T − t|z|)e−c2|z|2 dz.

On the other hand, we have the following Lemma (see the proof in Appendix .B) :

Lemma 3.3.4 For any α ≥ 0, there exists a constant qα > 0 (depending also on c2

and d), such that∫
|z|≥a,z∈Rd

|z|αe−c2|z|2dz ≤ qαa
α+d−1e−c2a

2

, as |a| ≥ 1.

Hence, with a := Rε/
√

(T − t) =
√
Xε, it comes :∫

Dε∩ Rd\(θut,x(T )+BRε )

(Φ(y)− Φε(y))pu(t, x;T, y)dy,

≤ 2c1M0

(
q0(1 + C(1 + |x|))X

d−1
2

ε + q1

√
T − tX

d
2
ε

)
e−c2Xε ,

≤ 2c1M0C(1 + |x|+Rε)Xε

d−1
2 e−c2Xε , (3.19)
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for some constant C ≥ 0, under the condition that Xε ≥ 1 (which is satis�ed
whenever ε is small enough).

By combining (3.18) and (3.19), and taking into account that the two estimates do
not depend on the control variable u, we get for every ε small enough :

|ϑ(t, x)− ϑε(t, x)| ≤ 2(c1+M1)M0C(1 + |x|+Rε)
2

(
(T − t)−d/2 ε+X

d−1
2

ε e−c2Xε

)
. (3.20)

By using the de�nition of Xε and its properties, we get :

|ϑ(t, x)− ϑε(t, x)| ≤ 2(c1+M1)M0C(1 + |x|+Rε)
2(1 + (T − t)−d/2)ε,

≤ 2(c1+M1)M0C(1 + |x|+ C| log ε|1/2)2(1 + (T − t)−d/2)ε,

≤ C0
1 + |x|2 + | log ε|

(T − t)d/2
ε,

where the constant C0 > 0 depends only on T, L0,M0,M1, c1, c2, which concludes
the proof of (i).

3.3.2 Some regularity results for ϑε

In this subsection, we provide an upper bound of the Hölder constant of ϑε. By using
the fact that the function Φε is Lε-Lipschitz continuous, we obtain the following :

Lemma 3.3.5 Assume (H1a), (H2) and (H3). There exists a constant C > 0 such
that for every ε > 0, the value function ϑε satis�es :

|ϑε(t, x)− ϑε(t, y)| ≤ CLε|x− y|,

for all x, y ∈ Rd, t ∈ [0, T ]. Moreover,

|ϑε(t, x)− ϑε(s, x)| ≤ CLε(1 + |x|) |t− s|
1
2 , (3.21)

for all x ∈ Rd, t, s ∈ [0, T ]

Proof. (i) By straightforward calculations, we obtain :

|ϑε(t, x)− ϑε(t, y)| ≤ sup
u∈U
|E[Φε(X

u
t,x(T ))]− E[Φε(X

u
t,y(T ))]|,

≤ sup
u∈U

E[|Φε(X
u
t,x(T ))− Φε(X

u
t,y(T ))|].

Then by using the Lipschitz regularity of Φε, it comes that :

|ϑε(t, x)− ϑε(t, y)| ≤ Lε sup
u∈U

E
[∣∣Xu

t,x(T )−Xu
t,y(T )

∣∣].
By using (2.25), we get the inequality :

|ϑε(t, x)− ϑε(t, y)| ≤ K0Lε |x− y|.
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(ii) Without loss of generality, we assume that s = t + h for some h > 0. By using
the de�nition of ϑ, we have :

|ϑε(t+h, x)− ϑε(t, x)| ≤ sup
u∈U

∣∣∣∣E [Φε(X
u
t+h,x(T ))

]
− E

[
Φε(X

u
t,x(T ))

] ∣∣∣∣,
≤ sup

u∈U
E
[
E
[∣∣Φε(X

u
t+h,x(T ))− Φε(X

u
t+h,Xu

t,x(t+h)(T ))
∣∣ | Ft+h] |Ft],

≤ sup
u∈U

Lε E
[
E
[∣∣Xu

t+h,x(T )−Xu
t+h,Xu

t,x(t+h)(T )
∣∣ | Ft+h] |Ft].

Finally, taking into account (2.25), we deduce that :

|ϑε(t+h, x)− ϑε(t, x)| ≤ K2
0Lε(1 + |x|)h1/2.

Therefore, taking any C ≥ max(K0, K
2
0), the desired result follows.

It is also known that ϑε satis�es the following dynamic programming principle and
the HJB equation :

Proposition 3.3.6 Assume (H1), (H2) and (H3).
(i) Let (t, x) ∈ [0, T ] × Rd, and denote T[t,T ] the set of (Fθ)θ∈[t,T ]-adapted stopping
times with values a.e. in [t, T ]. Let {τu;u ∈ U} be a subset of T[t,T ] (independent of
Ft). Then

ϑε(t, x) = sup
u∈U

E[ϑε(τ
u, Xu

t,x(τ
u))]. (3.22)

(ii) The function ϑε is the unique continous viscosity solution (see de�nition 3.3.7),
with linear growth, of the following HJB equation :

−∂tϑε +H(t, x,Dϑε, D
2ϑε) = 0, in (0, T )× Rd, (3.23a)

ϑε(T, x) = Φε(x) in Rd, (3.23b)

where H denotes the Hamiltonian function de�ned by :

H(t, x, p,Q) := inf
u∈U

{
−1

2
Tr(σ(t, x, u)σT (t, x, u)Q)− b(t, x, u) · p

}
, (3.24)

for every t ∈ [0, T ], x ∈ Rd, p ∈ Rd and for every symmetric d× d-matrix Q.

De�nition 3.3.7 A usc function ϑ (resp. lsc function ϑ) on [0, T ]×Rd
is a viscosity

sub-solution (resp. super-solution) of (3.23), if for each function ϕ ∈ C1,2([0, T ] ×
Rd

), at each maximum (resp. minimum) point (t, x) of ϑ − ϕ (resp. ϑ − ϕ) the
following inequalities hold{

−∂tϕ+H(t, x,Dxϕ,D
2
xϕ) ≤ 0 in [0, T )× Rd,

min
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ), ϑ− Φε

)
≤ 0 on {T} × Rd.(

resp. {
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ) ≥ 0 in [0, T )× Rd,

max
(
−∂tϕ+H(t, x,Dxϕ,D

2
xϕ), ϑ− Φε

)
≥ 0 on {T} × Rd.

)
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The proof of Proposition 3.3.6 can be found in [61, Chapter 5]. For the uniqueness
of viscosity solution we will use in particular the following comparison principle that
holds for unbounded solutions (see [48] for the proof).

Proposition 3.3.8 Let v1, v2 : [0, T ]× Rd → R and assume that v1 is u.s.c and v2

is l.s.c, that there exists a constant c ≥ 0 and p ≥ 1 such that v1 ≥ −c(1 + |x|p) and
v2 ≤ c(1+|x|p) for all x ∈ Rd, and that v1 and v2 are respectively viscosity subsolution
and supersolution of (3.23). Then v1(t, x) ≤ v2(t, x),∀(t, x) ∈ [0, T ]× Rd.

3.4 Error estimate for numerical approximations by

a Semi-Lagrangian scheme

3.4.1 Time semi-discrete scheme

We aim at approximating v, the unique continous viscosity solution, with linear
growth, of the following HJB equation :

−∂tv +H(t, x,Dv,D2v) = 0, in (0, T )× Rd, (3.25a)

v(T, x) = φ(x) in Rd. (3.25b)

where H is the same Hamiltonian function as in (3.24). This is the same as HJB
equation (3.23) but with a general terminal data φ instead of Φε. Throughout this
section, we assume satis�ed the assumption (H1) on the drift and di�usion coe�-
cients b, σ. Also φ is assumed to be a Lipschitz continuous function, with Lipschitz
constant Lφ. The Hölder constant of v will be denoted by Lv.

We aim to give new error estimates for semi-Lagrangian schemes [38], in the case of
Lipschitz continuous b and σ yet that can be unbounded (as well as the solution v
itself).

For convenience, we will denote by σk the column vectors of the matrix σ :

σ(t, x, a) =
[
σ1, . . . , σm

]
(t, x, a),

For p > 0 and a smooth function ψ de�ned on [0, T ] × Rd, we have the following
approximation of Camili and Falconi (see [38]),

1

2
Tr[(σ(t, x, a)σT (t, x, a) D2φ] + b(t, x, a)Dψ

:'
m∑
k=1

[ψ](t, x+ p
mb(t, x, a) +

√
pσk(t, x, a))− 2[ψ](t, x) + [ψ](t, x+ p

mb(t, x, a)−√pσk(t, x, a))

2p

where [B] is the interpolation of B. Let h := p
m
be the time step. We obtain,

1

2
Tr[(σσT )(t, x, a) D2φ] + b(t, x, a)Dψ

:'
m∑
k=1

[ψ](t, x+ h b(t, x, a) +
√
hm σk(t, x, a))− 2[ψ](t, x) + [ψ](t, x+ h b(t, x, a)−

√
hm σk(t, x, a))

2mh

:'
2m∑
k=1

[ψ](t, x+ h b(t, x, a) +
√
h σ̄k(t, x, a))− [ψ](t, x)

2mh
,

47



where the vectors (σ̄k)k=1,...,2m are de�ned by :

σ̄k(t, x, a) := (−1)k
√
m σb k−1

2
c(t, x, a), (3.26)

(where bpc denotes the integer part of p ∈ R). Consider the following operator,

Lah[ψ](t, x) :=
1

2m

2m∑
i=1

ψ(t, x+ h b(t, x, a) +
√
h σ̄k(t, x, a))− ψ(t, x)

h
,

and the approximation of the time derivative of ψ, i.e,

∂tψ(t, x) ' ψ(t+ h, x)− ψ(t, x)

h
.

It follows from the equation (3.25) and the above approximations that,

ψ(t+ h, x) = ψ(t, x) + hmax
a∈U

Lah[ψ](t, x)

Then, one can propose the following semi-discrete SL scheme (for x ∈ Rd) :

V N(x) = φ(x), (3.27a)

V n−1(x) = Sh(tn, x, V n), for every n = N, . . . , 1, (3.27b)

with, for any t ∈ [0, T ], x ∈ Rd, and any function w : Rd → R,

Sh(t, x, w) :=
1

2m
max
a∈U

{
2m∑
k=1

w(x+ hb(t, x, a) +
√
hσ̄k(t, x, a))

}
.

By V we will denote the linear interpolation of V 0, · · · , V n on t0, · · · , tN .

The main result of this section is the following :

Theorem 3.4.1 Assume that (H1a) is satis�ed and that φ is Lipschitz continuous
function with Lipschitz constant Lφ. There exists C ≥ 0, ∀n ∈ [0, . . . , N ],

|V n(x)− v(tn, x)| ≤ CLφ (1 + |x|)7/4 h1/4.

The above theorem is an extension to the error estimates known in the literature for
bounded Hölder continuous value functions with bounded and Lipschitz continuous
drift b and di�usion σ, see [14, 16, 49]. The proof given here is based on classical
shaking and regularization techniques introduced by Krylov [75, 76] combined with a
precise consistency estimate and an interpretation of the numerical scheme as value
function of a discrete-time control problem.

Remark 3.4.1 More precisely if we assume, for some constant L0,0, L0,1 ≥ 0 :

|b(t, x, a)|+ |σ(t, x, a)| ≤ L0,0 + L0,1|x|, |φ(x)| ≤ L0,0 + L0,1|x|, (3.28)

for every (t, x, a) ∈ [0, T ]× Rd × U , then there exists a constant C ≥ 0, such that :

|V n(x)− v(tn, x)| ≤ CLφ (1 + L0,0 + L0,1|x|)7/4 h1/4.

In particular if φ, b and σ are bounded functions then the previous estimates hold
with L0,1 := 0 and we �nd the usual error estimate bounded by h1/4 up to a universal
constant (i.e. no growth term in |x|7/4).
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Properties of (3.27)

First, we derive the following consistency property :

Lemma 3.4.2 For any regular function ϕ ∈ C2,4([0, T ] × Rd), denoting ϕn(x) =
ϕ(tn, x) and Enϕ(x) as

Enϕ(x) := −∂tϕ(tn, x) +H(tn, x,Dϕ,D
2ϕ)− ϕn−1(x)− Sh(tn, x, ϕn)

h
,

where Sh is de�ned in (3.27), it holds

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) sup
a∈U

(
|b(tn, x, a)|2 + |σ(tn, x, a)|4

)
h,

where C ≥ 0 is a constant independent of n, h and ϕ.

Proof. The result is straightforward by �rst using a Taylor expansion of fourth order
of ϕ(t− h, y +

√
hσ̄k(t, x, a)) around ϕ(t, y), where y = x + b(t, x, a)h, and then by

using a second order Taylor expansion of the result around x.

In particular, by using the Lipschitz regularity of b and σ, and their linear growth-
ness, it also holds that

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) (1 + |x|4) h.

Remark 3.4.3 The factor
√
m in (3.26) is in order that the consistency estimate

of Lemma 3.4.2 holds.

Remark 3.4.4 More precisely if we assume (3.28) for some constant L0,0, L0,1 ≥ 0,
then it also holds, for a constant C ≥ 0 :

|Enϕ(x)| ≤ C (‖ϕtt‖0 +
∑

k=2,3,4

‖Dkϕ‖0) (1 + L0,0 + L0,1|x|)4 h. (3.29)

Now, by considering Q ∈ {1, . . . , 2m} a random variable such that
P[Q = k] = 1

2m
, it follows that the scheme (3.27) is equivalent to :

V n−1(x) = max
a∈U

E
[
V n(x+ hb(tn, x, a) +

√
h σ̄Q(tn, x, a))

]
.

For the sequel of the section, it will be useful to de�ne recursively the Markov chain
Zk,a
n,x as follows. For a given x ∈ Rd, a given k ≥ n ≥ 0, a sequence of controls

a = (an, . . . , ak, . . . ) with ai ∈ U , and a sequence (Qn, Qn+1, . . . , Qk, . . . ) of i.i.d.
random variables with same law as Q,

- If k = n,
Zn,a
n,x := x.
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- If k ≥ n,

Zk+1,a
n,x := Zk,a

n,x + hb(tk, Z
k,a
n,x, ak) +

√
hσ̄Qk(tk, Z

k,a
n,x, ak).

Clearly, Zk,a
n,x will depend only of n, x, the �rst k − n values of (an, . . . , ak−1) and of

Qn, . . . , Qk−1.
The scheme can then be written equivalently in the form

V n−1(x) = max
a∈U

E
[
V n(Zn+1,a0

n,x )

]
. (3.30)

By standard estimates, there exists a constant C > 0 (depending on L0, d,m and
T ) such that for all x, y ∈ Rd, and for all 0 ≤ n ≤ k ≤ N and 0 ≤ m ≤ N − k, we
have :

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[
|Zk,a

n,x|4
]
...

]]
≤ C(1 + |x|4), (3.31a)

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[
|Zk,a

n,x − Zk,a
n,y |
]
...

]]
≤ C|x− y|, (3.31b)

max
an,...,ak

E
[

max
an+1

E
[
... max

ak+m−1

E
[∣∣Zk+m,a

n,x − Zk,a
n,x

∣∣] ≤ C(1 + |x|)(tk+m − tk)
1
2 . (3.31c)

For sake of completeness, a proof of the above estimates is given in Appendix C.
Finally, we recall that the scheme is 1

2
-hölder in time and Lipschitz continuous in

space :

Lemma 3.4.5 There exists C > 0 (independent of h), for 0 ≤ n ≤ n+ k ≤ N :

|V n+k(x)− V n(y)| ≤ CLφ

(
(1 + |x|)(tn+k − tn)

1
2 + |x− y|

)
,

for x, y ∈ Rd.

Proof. By recursion we have

V n(x) = max
a0

E
[
V n+1(Zn+1,a0

n,x )

]
,

= max
a0

E
[

max
a1

E
[
· · ·max

ak−1

E
[
V n+k(Zn+k,a

n,x )
]
· · ·
]]
.

In particular, with k = N − n and knowing that V N(x) = φ(x), it comes

V n(x) = max
a0

E
[

max
a1

E
[
· · · max

aN−n−1

E
[
φ(ZN,a

n,x )
]
· · ·
]]
.

By using the property that max
ai

E[f(ai)] ≤ E[max
ai

f(ai)], we deduce that

|V n(x)− V n(y)| ≤ LφE
[

max
a

∣∣ZN,a
n,x − ZN,a

n,y

∣∣], (3.32)

and in the same way

|V n+k(x)− V n(x)| ≤ LφE
[

max
a

∣∣ZN,a
n+k,x − Z

N,a
n,x

∣∣]. (3.33)

By combining the inequalities (3.32) and (3.33), and (3.31), we deduce the statement
of Lemma 3.4.5.
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Upper bound

First, we consider a regular super-solution of (3.25), denoted w, and we aim to derive
an upper bound for

en := V n − wn,

where wn(x) = w(tn, x).

Lemma 3.4.6 Let w be a regular super-solution of (3.25). For all 0 ≤ n ≤ N and
every x ∈ Rd, we have :

en(x) ≤ max
an+1

E
[

max
an+2

E
[
...max

aN
E
[
eN(ZN+1,a

n+1,x )

]
...

]]
,

+h
∑

n+1≤k≤N

max
an+1

E
[

max
an+2

E
[
...max

ak−1

E
[

max
ak−1

Ekw
(
Zk,a
n+1,x

)]
...

]]
.

Proof. By de�nition of the scheme,

V n−1(x) = Sh(tn, x, V n) = max
an∈U

E
[
V n(Zn+1,an

n,x )

]
,

and by the consistency estimate of Lemma 3.4.2 and the super-solution property, it
comes that

wn−1(x) ≥ Sh(tn, x, wn)− hEnw(x) = max
an∈U

E
[
wn(Zn+1,an

n,x )

]
− hEnw(x).

Therefore, for en = V n − wn we get the estimate

en−1(x) ≤ max
an∈U

E
[
en(Zn+1,an

n,x )

]
+ hEnw(x).

Hence

en−1(x) ≤ max
an

E
[

max
an+1

E
[
en+1(Z

n+2,an+1

n+1,Zn+1,an
n,x

)

]
+ hEn+1

w (Zn+1,an
n,x )

]
+ hEnw(x),

≤ max
an

E
[

max
an+1

E
[
en+1(Zn+2,a

n,x )

]]
+ hmax

an
E
[
En+1
w (Zn+1,an

n,x )

]
+ hEnw(x),

..

..

≤ max
an

E
[

max
an+1

E
[
...max

an+k

E
[
en+k(Zn+k+1,a

n,x )

]
...

]]
,

+h
∑

0≤j≤k

max
an

E
[

max
an+1

E
[
... max

an+j−1

E
[
En+j
w (Zn+j,an

n,x )

]
...

]]
,
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(where we have denoted max
an∈U

≡ max
an

, and the term j in the sum corresponds to

E
[
Enw(x)

]
). We �nally obtain :

en−1(x) ≤ max
an

E
[

max
an+1

E
[
...max

aN
E
[
eN(ZN+1,a

n,x )

]
...

]]
,

+h
∑

n≤k≤N

max
an

E
[

max
an+1

E
[
...max

ak−1

Ekw
(
Zk,a
n,x

)]
...

]]
.

The desired result follows by changing n into n+ 1.

The previous result holds for any smooth function w that is super-solution of (3.25).
The viscosity solution v is just Hölder continuous. However it is possible to construct
a regular function w ≡ vη, close to v, and which is a classical supersolution of
(3.25). More precisely, by using the shaking coe�cients techniques introduced in
[77] combined with a standard regularization by molli�cation, we have the following
result.

Lemma 3.4.7 Under assumption (H1a), for every η > 0 there exists a C∞ function
vη such that vη is a classical super-solution to (3.25). Moreover, there exists C > 0
such that for every η > 0 the following estimates hold :

|v(t, x)− vη(t, x)| ≤ CLφ(1 + |x|)η, (3.34a)

|∂
kvη
dtk

(t, x)| ≤ CLφ
η2k−1

(1 + |x|) and ‖∂
kvη
dxk
‖0 ≤

CLφ
ηk−1

, (3.34b)

for any k ≥ 1, and for every (t, x) ∈ [0, T ]× Rd.

The proof of this result can be found in [77] under the additional assumption that
b, σ and φ are bounded functions. However the arguments used in [77] can be easily
extended to the case when (H1a) is satis�ed and φ is a Lipschitz function (not
necessarily bounded). For convenience of the reader, the outline of the proof is given
in Appendix A.
Now, we have all the ingredients to conclude the upper bound :

Proof of theorem 3.4.1 : upper bound of V n − v(tn, ·)
Let η > 0. By using Lemma 3.4.7, there exists C ≥ 0 such that for every x ∈ Rd, it
holds :

Envη(x) ≤ CLφ(1 + |x|5)
h

η3
,

max
an

E
[

max
an+1

E
[
...max

aN−1

E
[∣∣V N(ZN,a

n,x )− vη(T, ZN,a
n,x )

∣∣]...]] ≤ CLφ(1 + |x|)η.

By applying the result of Lemma 3.4.6 with w = vη, and taking into account esti-
mates (3.31), we obtain :

V n(x)− vη(tn, x) ≤ CLφ(1 + |x|)η + TCLφ(1 + |x|5)
h

η3
.

52



Therefore for |x| ≤ R, we can choose for η an optimal value of order η ≡ Rh1/4 to
derive the "upper" bound :

‖(V n − v(tn, ·))+‖L∞(BR) ≤ CLφR
2h1/4,

for any n = 0, · · · , N , with C independent of h, φ and R.

Lower bound

Now, we aim at deriving the lower bound estimate for the semi-discrete scheme
(3.27). For this, we will apply exactly the same techniques as used for the upper
bound, reversing the role of the equation and the scheme. The key point is that the
solution V of the semi-discrete scheme is also Hölder continuous. We �rst build a
function V η by considering a scheme with shaking coe�cients :

V η(t, x)= max
−η2≤e1≤0
|e2|≤η
a∈U

E
[
V η(t+ h, x+ (hb+

√
hσ̄)(t+ e1, x+ e2, a))

]
, (3.35a)

in [−2η2, T )× Rd,

V η(T, x) = φ(x), in Rd, (3.35b)

(where σ, b are extended in time interval [−2η2, T ] in such way (H1a) is still valid).
We de�ne by convolution Vη := V η ∗ ρη where ρη is a sequence of molli�ers de�ned
by ρη(t, x) := 1

ηd+2ρ( t
η2 ,

x
η
) and with ρ such that {ρη}η is the sequence of molli�ers

de�ned by

ρη =
1

ηd+2
ρ(
t

η2
,
x

η
),

ρ ∈ C∞(Rd+1), ρ ≥ 0, supp ρ ⊂ [0, 1]×B1,

∫
R

∫
Rd
ρ(s, x) dxds = 1. (3.36)

Then, by using the same arguments as in Appendix A, we get the following Lemma.

Lemma 3.4.8 Under assumption (H1a), for every η > 0, Vη is a C
∞ function such

that

Vη(t, x)− Sh(t+ h, x, Vη(t+ h, ·)) ≥ 0 ∀(t, x) ∈ [0, T − h]× Rd.

Moreover, there exists C > 0 depending on T and L0 such that for every η > 0 the
following estimates hold for every t ∈ [0, T ] and every x ∈ Rd :

|V (t, x)− Vη(t, x)| ≤ CLφ (1 + |x|)η (3.37a)

|∂
kVη
dtk

(t, x)| ≤ CLφ
η2k−1

(1 + |x|) and ‖∂
kVη
dxk
‖0 ≤

CLφ
ηk−1

, (3.37b)

for any k ≥ 1.
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By straithforward calculations, one can check that :

EnVη(x) ≥ −CLφ
η3

(1 + |x|5)h.

By using the consistency estimate of Lemma 3.4.2, and the Hölder estimates on Vη
(that can be inferred from the one of the scheme), we then deduce :

−∂tVη +H(tn, x,DVη, D
2Vη) =

V n−1
η (x)− Sh(tn, x, V n

η )

h
+ EnVη(x),

≥ EnVη(x),

≥ −CLφ
η3

(1 + |x|5)h,

(for some constant C ≥ 0). In the same way we establish the same estimate for any
t ∈ [tn−1, tn]. Hence

−∂tVη +H(t, x,DVη, D
2Vη) ≥ −

CLφ
η3

(1 + |x|5)h, ∀(t, x) ∈ [0, T ]× Rd. (3.38)

Let ζ be the following function :

ζ(t, x) := C̄Lφe
λ(T−t)

(
(1 + |x|5)

h

η3
+
√

1 + |x|2η
)
,

where λ > 0, C̄ > 0 will be �xed later on. The de�nitions of H and of ζ, and the
linear growth of b and σ with respect to |x|, yield the following bounds :

−∂tζ = λζ ≥ λC̄eλ(T−t)
(

(1 + |x|5)
h

η3
+ |x|η

)
,

H(t, x,Dζ,D2ζ) ≥ −KC̄eλ(T−t)(|x|5 h
η3

+ |x|η
)
,

for some constant K ≥ 0 tht depends on L0. In particular, choosing λ := K + 1, it
holds

−∂tζ +H(t, x,Dζ,D2ζ) ≥ C̄

(
(1 + |x|5)

h

η3
+
√

1 + |x|2η
)
. (3.39)

Combining (3.38) and (3.39), it comes for any t ∈ [0, T ] and x ∈ Rd :

−∂t(Vη + ζ) +H(t, x,D(Vη + ζ), D2(Vη + ζ)),

≥ −∂tVη +H(t, x,DVη, D
2Vη)− ∂tζ +H(t, x,Dζ,D2ζ),

≥ −CLφ(1 + |x|5)
h

η3
+ C̄

(
(1 + |x|5)

h

η3
+
√

1 + |x|2η
)
,

≥ 0, (3.40)

for any C̄ ≥ CLφ. On the other hand it also holds

Vη(T, x) + ζ(T, x) ≥ φ(x)− CLφ(1 + |x|)η + C̄
√

1 + |x|2η,
≥ 0, (3.41)
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for any C̄ ≥
√

2CLφ. Hence by choosing C̄ :=
√

2CLφ, (3.40) and (3.41) hold and
Vη + ζ is a viscosity super-solution of (3.25). Furthermore, Vη + ζ has a quadratic
upper bound growth : Vη(t, x) + ζ(t, x) ≤ ca (1 + |x|5) for some constant ca > 0.
The exact solution v is also a viscosity sub-solution of (3.25), with a linear growth
(so a linear bound from below of the form v(t, x) ≥ −cb(1 + |x| for some constant
cb > 0). Therefore, according to the comparison principle stated in Lemma 3.3.8, it
comes that Vη + ζ ≥ v on [0, T ]× Rd. By consequence,

v(tn, x)− V n(x) ≤ ζ(tn, x) ≤
√

2CLφe
λT
(
(1 + |x|5)

h

η3
+
√

1 + |x|2η
)
.

Finally, by choosing η such that η4 ≡ R4h and for |x| ≤ R we obtain the following
reverse estimate, for some constant C ≥ 0 :

‖(v(tn, .)− V n)+‖L∞(BR) ≤ CLφR
2 h1/4.

This concludes the proof of theorem 3.4.1.

3.4.2 Fully discrete scheme

Now, Consider a spatial discretisation of Rd (which can be assumed uniform for
simplicity) : for some given mesh steps ∆xi > 0, xi = i∆x ≡ (i1∆x1, . . . , id∆xd)
with i ∈ Zd. We will denote |∆x| the Euclidean norm of ∆x, G := {i∆x, i ∈ Zd},
and Gh := {t0, . . . , tN} × G.

Fully discrete scheme : for n = N, . . . , 1, for all xi ∈ G :

V n−1
i = V n−1(xi) =

1

2m
max
a∈U

{
2m∑
k=1

[V n](xi + h b(tn, xi, a) +
√
h σ̄k(tn, xi, a))

}
,(3.42)

where [V n] denotes the bilinear interpolation of (V n
i ) on (xi), and with

V N
i = V N(xi) = φ(xi), ∀xi ∈ G. (3.43)

Theorem 3.4.2 Assume (H1a) and assume φ is a Lφ-Lipschitz continuous func-
tion. Let v be the continuous solution of (3.25) , and let V ∆ be the numerical solution
satisfying the scheme (3.42), with ∆ = (h,∆x) the time and space steps. There exists
C > 0 depending only on T, L0 such that for every R > 0, we have :

‖v − V ∆‖L∞(BR) ≤ CLφ

(
R2h1/4 +

|∆x|
h

)
.

Proof. By theorem 3.4.1, we have already an error estimate between v and the
solution V of the semi-discrete scheme (3.27). Now, the error between V and V ∆ is
a classical result (see [49, 30] for details).
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3.4.3 Comments

The convergence and error estimates results of this section are still valid for more
general schemes in the form of Markov chain approximations as (3.30) with gene-
ral probability density (see also [79, 90]). Indeed, all the arguments developed in
this section are mainly based on the formulation (3.30) and do not depend on the
probability distribution of the random variable Q neither on the formulation as
semi-Lagrangian scheme (3.27).
For the numerical simulations in Chapter 4, we will consider the scheme (related to
Milstein's approximation) :

Sh(t, x, w) :=
1

2m
max
a∈U

{
2m∑
k=1

w(x+ hb̃(t, x, a) +
√
hσ̄k(t, x, a))

}
(3.44)

where b̃(t, x, a) := 1
2
(b(t, x, a)+b(t, x+hb(t, x, a), a)). This scheme is a little bit more

precise for the approximation of the deterministic part of the processes when b(·, ·, a)
is non-constant. The error estimates of the present section can be easily extended
to such an approximation.

Appendix

Appendix A. Proof of Lemma 3.4.7

First, we notice that the functions σ and b are de�ned for times t ∈ [0, T ], but they
can be extended to times [−2η2, T + 2η2] in such a way that assumption (H1a) still
holds.

For any η > 0, let E be the set of progressively measurable processes (α, χ) valued
in [−η2, 0]× Bη ⊂ R× Rd that is,

E :=
{
prog. meas. process (α, χ) valued in [−η2, 0]× Bη

}
.

Now, consider the function vη associated to the perturbed control problem (with
η > 0) :

vη(t, x) := inf
u∈U ,

(α,χ)∈E

E
[
φ
(
X
u,(α,χ)
t,x (T ))

)]
,

where X
u,(α,χ)
t,x is the solution of the perturbed system of SDEs{

dX(s)=b(s+ α(s),X(s) + χ(s),u(s))ds+σ(s+ α(s),X(s)+χ(s),u(s))dB(s),
X(t) = x.

By classical arguments, we can show that vη is the unique viscosity solution of the
perturbed HJB equation :−∂tv

η
t + inf

−η2≤s≤0,|e|≤η
H(t+ s, x+ e,Dvη, D2vη) = 0 in Qη2 ,

vη(T, x) = φ(x) in Rd,
(3.45)
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where Qη2 := (−η2, T ]×Rd. Using similar argument to those used in Lemma 3.3.5,
the function vη satis�es the following relations :

|vη(t, x)− vη(t, y)| ≤ CLφ|x− y|, (3.46)

|vη(t, x)− vη(s, x)| ≤ CLφ(1 + |x|)|t− s|
1
2 , (3.47)

for all x, y ∈ Rd , t, s ∈ [0, T ].

The bound on the di�erence between the pertubed function vη and the value function
v at every point (t, x) follows by the Lipschitz property of φ and (H1a)

|v(t, x)− vη(t, x)| =
∣∣∣∣ sup

u∈U
(α,e)∈E

E
[
φ(Xu

t,x(T ))
]
− sup

u∈U
(α,e)∈E

E
[
φ(X

u,(α,e)
t,x (T ))

]∣∣∣∣,
≤
∣∣∣∣ sup

u∈U
(α,e)∈E

E
[
φ(Xu

t,x(T ))− φ(X
u,(α,e)
t,x (T ))

]∣∣∣∣,
≤ Lφ sup

u∈U
(α,e)∈E

E
[∣∣Xu

t,x(T )− φ(X
u,(α,e)
t,x (T )

∣∣]. (3.48)

On the other hand, for every τ ∈ [t, T ], we have :

E
[∣∣Xu

t,x(τ)−Xu,(α,χ)
t,x (τ)

∣∣2],
≤ E

[∣∣∣∣ ∫ τ

t

[
b(s+ α(s), X

u,(α,χ)
t,x (s) + χ(s), u(s))− b(s,X(s), u(s))

]
ds,

+

∫ τ

t

[
σ(s+ α(s), X

u,(α,χ)
t,x (s) + χ(s), u(s))− σ(s,X(s), u(s))

]
dW (s)

∣∣∣∣2].
With assumption (H1a), Cauchy-Schwartz inequality and Gronwall Lemma, we ob-
tain that :

E
[∣∣Xu

t,x(τ)−Xu,(α,χ)
t,x (τ)

∣∣2] ≤ Cη2. (3.49)

By combining (3.48) and (3.49), we �nally get :

|v(t, x)− vη(t, x)| ≤ LφCη.

by a change of variables, we see that for −η2 ≤ s ≤ 0, |e| ≤ η, the function vµ(· −
s, · − e) is a supersolution of the following equation :

−∂tϕ+H(t, x,Dϕ,D2ϕ) = 0 in (−η2, T + s)× Rd. (3.50)

In order to regularize vη, we construct the following sequence vη = vη ∗ ρη where
{ρη}η is the sequence of molli�ers de�ned by

ρη =
1

ηd+2
ρ(
t

η2
,
x

η
),

ρ ∈ C∞(Rd+1), ρ ≥ 0, supp ρ ⊂ [0, 1]×B1,

∫
R

∫
Rd
ρ(s, x) dxds = 1. (3.51)
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A Riemmann-sum approximation shows that vη(t, x) can be viewed as the limit of
convex combinaisons of vη(t− s, x− e). By the stability result for viscosity superso-
lutions, and by using same arguments as in [14, Appendix A], we can conclude that
vη is itself a supersolution of (3.50).
Moreover, for a small η << 1 and using (3.46)-(3.47), we have

|vη(t, x)− vη(t, x)| =
∫ 1

0

∫
B1

|vη(t− η2τ, x− ηz)− vη(t, x)|ρ(τ, z) dzdτ,

≤ CLφη

∫ 1

0

∫
B1

(
(1 + |x|+ η|z|)

√
τ + |z|

)
ρ(τ, z) dzdτ.

Thus, we obtain for η ∈ (0, 1) that |vη(t, x) − vη(t, x)| ≤ CLφ(1 + |x|)η, which
together with (3.48) yield to the desired estimate :

|v(t, x)− vη(t, x)| ≤ CLφη(1 + |x|) For all t, x ∈ [0, T ]× Rd,

for a positive constant C > 0.

Bound estimates (3.34b) for the derivatives of vη can be derived in straightforward
way by using the de�nition of molli�cation and the Hölder estimates of vη. see [32]
for instance.

Appendix B. Proof of Lemma 3.3.4

By using spherical coordinates in Rd it �rst holds that,

I(a) :=

∫
|z|≥a,z∈Rd

|z|αdz = |Sd|
∫ ∞
a

rβe−c2r
2

dr, with β := α + d− 1,

where |Sd| denotes the surface of the unit sphere of Rd. Then the following identity
holds :

2(1 +
(1− β)r2

2c2r2
)rβe−c2r

2

=
−d
c2dr

(rβ−1e−c2r
2

).

In this case when a2 ≥ 2β−1
2c2

= |β−1|
c2

, and for r ≥ a, we observe that 1 ≤ 2(1+ (1−β)
2c2r2 ),

hence,

rβe−c2r
2 ≤ −1

c2

d

dr
(rβ−1e−c2r

2

).

By integration over r ∈ [a,∞], we obtain I(a) ≤ |Sd|
c2
aβ−1e−c2a

2
. On the other hand,

if a ∈ J :=
[
1,
√
|β−1|
c2

]
, then F (a) := I(a)/(aβ−1e−c2a

2
) is a continuous function on

the interval J so it is bounded by some qα > 0. We can furthermore choose qα ≥ |Sd|
c2
.

In all cases, for a ≥ 1, it holds that F (a) ≤ qα. Hence I(a) ≤ qαa
α+d−2e−c2a

2
. Using

that aα+d−2 ≤ aα+d−1 for a ≤ 1, we obtain the desired result.
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Appendix C. Proof of estimates (3.31)

Let us �rst prove, by recursion, the following estimate : there exists C ≥ 0 such
that, for any p ∈ {2, 4} , for 0 ≤ n ≤ k ≤ N and ∀x an h ≤ 1 :

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[∣∣Zk,a

n,x

∣∣]...]],
≤ eC(k−n)h

(∣∣x∣∣p + C(k − n)h(1 + |x|p)
)
. (3.52)

For p = 4 and using that (k − n)h ≤ Nh = T , this will give the desired estimate
(3.31a).
We �rst start with the case p = 2. Using conditional expectations, let us �rst show
that, for some constant C1, C2 ≥ 0 :

max
ak−1

E
[
|Zk,a

n,x|
∣∣Zk−1,a

n,x = y
]
≤ |y|2eC1h + (1 + |y|2)C2h. (3.53)

Denoting b(y) = b(tk, y, ak) as well as σ̄q(y) = σ̄q(tk, y, ak), it holds,

E
[
|Zk,a

n,x|
∣∣Zk−1,a

n,x = y
]

= E
[∣∣y + hb(y) +

√
hσ̄Q(y)

∣∣2]
=
∣∣y + hb(y)

∣∣2 + E
∣∣σ̄Q(y)

∣∣2,
Where we have used that E[σ̄Q(y)] = 0 by the de�nition of the random variable σ̄Q.
Hence it holds, since σ̄Q(y) has a linear growth in y :

E
[
|Zk,a

n,x|
∣∣Zk−1,a

n,x = y
]
≤
∣∣y + hb(y)

∣∣2 + Ch(1 + |y|2).

Notice that for h ≤ 1 it holds, for the Euclidean norm, and for any vectors A and
B of Rd,

|A+ hB|2 ≤ |A|2(1 + h) + 2h|B|2, (3.54)

(using Cauchy-schwartz inequality and h2 ≤ h). Hence we obtain a bound of the
form

max
ak−1

E
[

max
ak−2

E
[
|Zk,a

n,x|2
∣∣ Zk−2,a

n,x = y

]]
,

≤ max
ak−2

E
[∣∣Zk−1,a

n,x

∣∣2eC1h + C2h(1 + |y|2)
∣∣ Zk−2,a

n,x = y

]
,

≤
(
|y|2eC1h + C2h(1 + |y|2)

)
eC1h + C2h(1 + |y|2), (3.55)

≤ |y|2e2C1h + C2h(1 + |y|2)(1 + eC1h).

By a recursion argument and since Zn,a
n,x = x, it holds,

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[∣∣Zk,a

n,x

∣∣2]...]],
≤ eC1(k−n)h|x|2 + C2h(1 + |x|2)

∑
j=0,...,k−n−1

eC1jh, (3.56)

≤ eC1(k−n)h

(
|x|2 + C2(k − n)h(1 + |x|2)

)
.
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Now we turn to the case p = 4. Let us show that a similar estimate to (3.53) holds,

max
ak−1

E
[∣∣Zk,a

n,x

∣∣4 ∣∣ Zk−1,a
n,x = y

]
≤ |y|4eC1h + (1 + |y|4)C2h. (3.57)

The rest of the proof of (3.52) then follows the same idea as for the case p = 2 and
is left to reader.

To prove (3.57), assuming �rst that d = 1 to simplify the argument, denoting A =
y + hb(y) and B = σ̄Q(y), we have

E
[∣∣Zk,a

n,x

∣∣4 ∣∣Zk−1,a
n,x = y

]
= E

[∣∣A+
√
hB4

∣∣],
= |A|4 + 16hA2E

[
B2
]

+ h2E
[
B4
]
,

where we have used that E[B] = E[B3] = 0. Then, E[B2] ≤ C(1 + |y|2) and E[B4] ≤
C(1 + |y|4), it can be shown that |y+hb(y)|4 ≤ |y|4(1 +Ch) +Ch(1 + |y|4) for some
constant C ≥ 0 (for instance by using twice (3.54)), and (3.57) is deduced from
these estimates. The case d ≥ 1 can be treated in a similar way.

The proof of (3.31b) can be obtained in a similar way as for the proof of (3.31a) for
p = 2. It is �rst established that

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[∣∣Zk,a

n,x − Zk,a
n,y

∣∣2]...]] ≤ C
∣∣x− y∣∣2.

Then, using that E
[
|X|
]
≤ (E

[
|X|2

]
)

1
2 .

Finally we consider the proof of (3.31c). In a complete manner as for the proof of
(3.52), we can establish that for any given x0 ∈ Rd,

max
an

E
[

max
an+1

E
[
...max

an+1

E
[∣∣Zk,a

n,x − x0

∣∣2]...]],
≤ eC(k−n)h

(
|x− x0|2 + C(k − n)h(1 + |x|2)

)
.

In particular for x0 = x, for some other constant C ≥ 0, we obtain :

max
an

E
[

max
an+1

E
[
...max

ak−1

E
[∣∣Zk,a

n,x − x
∣∣2]...]],

≤ C(1 + |x|2)(k − n)h. (3.58)

By using (3.58) and the fact that for y := Zk,a
n,x, Z

k+m,a
n,x = Zm,a′

k,y (with controls
a′ = (ak, ak+1, ..., ak+m−1)), we have

max
ak

E
[

max
ak+1

E
[
... max

ak+m−1

E
[∣∣Zk+m,a

n,x − Zk,a
n,x

∣∣2 ∣∣Zk,a
n,x = y

]
...

]]
≤ C(1 + |y|2)mh.

Then

max
ak

E
[

max
ak+1

E
[
... max

ak+m−1

E
[∣∣Zk+m,a

n,x − Zk,a
n,x

∣∣2]...]] ≤ CE
[
1 +

∣∣Zk,a
n,x

∣∣2]mh,
By using (3.31c), the right hand side term is bounded by C(1 + |x|2)mh = C(1 +

|x|2)(tm+k − tk). Using again inequalities of the type E[|X|] ≤ E[|X|2]
1
2 , we obtain

the desired bound (3.31c).
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CHAPITRE IV

PROBABILISTIC REACHABILITY
ANALYSIS

Publications of this chapter

M. Assellaou, O. Bokanowski and H. Zidani, Error Estimates for Second Order
Hamilton-Jacobi-Bellman Equations. Approximation of Probabilistic Reachable Sets,
DCDS- Serie A, vol. 35(9), pp. 3933 - 3964, 2015.

M. Assellaou, O. Bokanowski and H. Zidani, Probabilistic safety reachability analysis,
ICCOPT, Lisboa, July 2013.

4.1 Introduction

This chapter is devoted to reachability analysis for stochastic systems. The main
objective is to approximate the reachable sets using the error estimates developed in
the last chapter. More precisely, let C be a non-empty subset of Rd ("the target").
Let ρ ∈ [0, 1[ and t ≤ T . Consider the backward reachable set under probability
of success ρ, that is, the set of initial points x for which the probability that there
exists a process Xu

t,x solution of (3.1), associated with an admissible control u ∈ U
and that reaches C at time T is higher than ρ :

Ωρ
t =

{
x ∈ Rd

∣∣∃u ∈ U , P[Xu
t,x(T ) ∈ C] > ρ

}
. (4.1)

The sets Ωρ
t can be characterized by using the level-set approach. Indeed, it is

straightforward to see that Ωρ
t is equivalent to :

Ωρ
t =

{
x ∈ Rd

∣∣ ∃u ∈ U , E[1C(X
u
t,x(T ))] > ρ

}
.

Moreover, by considering the control problem (3.2) with Φ(x) := 1C(x), it is possible
to show that for every ρ > 0 and every t ∈ [0, T ], the backward reachable set Ωρ

t is
given by the level-set :

Ωρ
t = {x ∈ Rd, ϑ(t, x) > ρ}.

The level-set approach has been introduced in [92] to model front propagation pro-
blems. Then, the method has attracted a big interest for studying backward rea-
chable sets of continuous non-linear dynamical systems under general conditions,
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see [87, 28] and the references therein. The idea of using the level set approach in
discrete time stochastic setting has been also considered in [1, 2, 6]. In this case,
the value function is obtained by solving the dynamic programming principle. In
the present chapter, we are interested in the approximation of the probabilistic
backward reachable sets for time-continuous stochastic processes. We analyse the
approach and we provide error estimates between the exact sets and their numerical
approximation.

Let us mention that other numerical methods for reachability analysis have been
introduced and analysed in the literature. The most natural numerical algorithm
consists in using Monte Carlo simulations to generate a set of trajectories starting
from a given initial position x ∈ Rd. Then the percentage of trajectories reaching
the target gives an approximation of the probability of success (for reaching the
target) when starting from this position x. On the other hand, for linear stochastic
systems, a bound for the probability of hitting a target can be obtained by using
the enclosing hulls of the probability density function for time intervals, see [5, 4],
for instance. Note that these approaches are used to calculate the probabilities of
success but do not allow to de�ne the entire set of points that have the same given
probability. In addition, Monte-Carlo-based methods often require a large number
of simulations to obtain a good accuracy.

This chapter is organised as follows : section 4.2, we study the characterization and
approximation of probabilistic backward reachable sets. Section 4.3 is devoted to
some illustrative numerical examples.

4.2 Problem statement

Let C be a nonempty subset of Rd with non-zero measure ("the target"). Let ρ ∈ [0, 1[
and t ≤ T . Consider Ωρ

t the backward reachable set under probability of success ρ,
that is, the set of initial points x for which the probability that there exists trajectory
Xu
t,x solution of (3.3), associated with an admissible control u ∈ U and that reaches
C at time T is at least ρ :

Ωρ
t =

{
x ∈ Rd

∣∣∃u ∈ U , P[Xu
t,x(T ) ∈ C] > ρ

}
. (4.2)

Such backward reachable sets play an important role in many applications. For
instance the set Ωρ

t can be interpreted as a "safety region" for reaching C, with
con�dence ρ. For time discrete stochastic systems, stochastic backward reachable sets
of the form of (4.2) have been analysed and characterized via an adequate stochastic
optimal control problem in [1] and [2]. In this case, the control problem is solved
via the dynamic programming approach. In the context of �nancial mathematics,
the problem of characterizing the backward reachable set with a given probability
was �rst introduced by Föllmer and Leukert [62]. This problem was also studied and
converted into the class of stochastic target problems by Touzi, Bouchard and Elie
in [33].
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In order to characterize the domain Ωρ
t for di�erent values of ρ, we consider the

level-set approach and introduce the following optimal control problem :

ϑ(t, x) := sup
u∈U

E
[
1C(X

u
t,x(T ))

]
≡ sup

u∈U
P
[
Xu
t,x(T ) ∈ C

]
. (4.3)

Therefore, it is straightforward to show the following :

Proposition 4.2.1 Assume (H1a), and let ϑ de�ned in (4.3). Then, ∀t ∈ [0, T ] :

Ωρ
t = {x ∈ Rd, ϑ(t, x) > ρ}. (4.4)

Following the results of chapter 3, we �rst regularize the function 1C(·) by functions
Φε (for ε > 0), de�ned as follows :

Φε(x) = min(1,max(0,−1

ε
d(x, C))). (4.5)

Notice that the Φε is 1
ε
-Lipschitz continuous (see Figure 4.1).

x

1

C
ε ε

φ
φε

Figure 4.1 � Regularization Φε of the indicator function 1C for a given set C.

Then, we consider the following "regularized" control problem :

ϑε(t, x) := sup
u∈U

E[Φε(Xu
t,x(T ))],

and we denote by ϑε,∆ a numerical approximation of ϑε obtained by solving the fully
discretized scheme (3.42). In order to obtain an error estimates of ϑ−ϑε,∆, we shall
need to assume the following hypothesis on the target set C :
(H4) C is a non-empty Borelean subset of Rd. Moreover, if we denote by Cε the set

de�ned by :
Cε := {x ∈ C, d∂C(x) ≤ −ε},

where d∂C is the signed distance to C, then, there exists a constant M1 > 0
such that, for every A > 0 ,

µ((C \ Cε) ∩ BA) ≤M1Aε.
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Remark 4.2.2 The above assumption is satis�ed in many cases, for example when
C is a half space or when C is a �nite union of bounded, convex polytopes Oi ⊂ Rd

with non empty interiors :

C :=
⋃

i=1,...,p

Oi.

Theorem 4.2.3 Assume that (H1a), (H1b) and (H4) are satis�ed.
(i) There exists C > 0 such that for every ε > 0 and every ∆ = (h,∆x) mesh steps,
for every ∀t ∈ [0, T ), ∀x ∈ Rd, the following holds :

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C
1 + |x|2 + | log ε|

(T − t) d2
ε+

C

ε

(
|x|

7
4h

1
4 +

∆x

h

)
(4.6)

(ii) If there exists A > 0 such that C \ Cε ⊂ BA for every ε ∈]0, 1], then there exists
C > 0 such that

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C
1

(T − t) d2
e−C2

d(x,C\Cε)2

T−t ε+
C

ε

(
|x|

7
4h

1
4 +

∆x

h

)
(4.7)

for every ∀t ∈ [0, T ), ∀x ∈ Rd, ∀ε ∈]0, 1].

Proof. Under assumption (H4), all the requirements of assumptions (H2)-(H3) are
satis�ed for Φ = 1C and the regularized function Φε de�ned in (4.5). Thus the result
of theorems 3.3.1 and 3.4.2 can be applied and leads to the result.

To get the optimal rates in (4.6) and (4.7), one can choose ε, h and ∆x in such way
to minimize the error in the right hand side of the estimates. For instance in case
there exists A > 0 such that C \ Cε ⊂ BA, and for every 0 ≤ T − δ (with δ > 0), and
for every x ∈ BR with R > 1, the error estimate in (4.7) becomes :

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C
ε

δ
d
2

+
C

ε
R

7
4

(
h

1
4 +

∆x

h

)
.

The optimal estimate is then obtained by choosing ε, h
1/4

ε
and 1

ε
∆x
h
to be of the same

order. This leads to ε ∼ h1/8 ∼ ∆x1/10 and to the following estimate :

|ϑε,∆(t, x)− ϑ(t, x)| ≤ C
R2

δ
d
4

∆x1/10. (4.8)

Therefore, we obtain the following approximation of Ωρ
t , for 0 ≤ t ≤ T − δ :{

x, ϑε,∆(x, t) > ρ+ C
R2

δ
d
4

∆x
1
10

}
⊂ Ωρ

t ∩ BR ⊂
{
x, ϑε,∆(x, t) > ρ− CR

2

δ
d
4

∆x
1
10

}
(4.9)

Hence we can approximate the region Ωρ
t by level sets of the numerical approximation

of ϑε,∆. The above approximation, of order O(∆x1/10), is rough. However, in practice,
we have observed numerically that it is su�cient to take h ≡ ∆x and, in that case,
the error behaves like O(∆x), so the errors in (4.8) or (4.9) are also of the order of
∆x (see section 4.3 for more details).

To conclude, we have given a simple numerical approximation procedure for the cha-
racterisation of probabilistic backward reachable sets and how to control rigorously
the error made in the approximation.
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4.3 Numerical simulations.

In all this section the numerical scheme considered is the fully discrete Semi-
Lagrangian scheme (3.44) where the maximization operation is performed on a
subset of control values {a1, ..., aNu} that represents a discretization of U with a
mesh size ∆u. In all the simulations, the regularization parameter ε will be chosen
as ε = 1

∆x
.

Example 1.We consider the following stochastic di�erential equation with no drift
term and no control : (

dX1

dX2

)
= σ

(
c 1
−1 0

)(
dW 1

t

dW 2
t

)
(4.10)

where c = 0.2 and σ = 0.2. The time horizon is T = 1.0. The target C is the
diamond of summits (−0.8, 1), (1.2, 1), (0.8, 1), (−1.2, 1) (see Figure 4.2(up-left)). If
we consider the initial data

φ(x, y) =

{
1 if x ∈ C
0 otherwise

(4.11)

then the exact solution to the HJB equation is known and the level-set function is
given by,

ϑ(t, x, y) = v1(t, x+ cy) v2(t, y)

where v1(t, r) = v2(t, r) := 1√
2π σ2 t

∫ 1−r
−1−r e

− s2

2σ2 tds.

First, in Figure 4.2 (up-right) shows the backward reachable set Ωρ
t for ρ = 0.05

at time t = 0. Fo this simulation, we have considered the computational domain
D = [−4, 4]2 with a uniform grid and zero condition outside the domain D :

ϑ(t, x, y) = 0, ∀t ∈ [0, T ], ∀(x, y) /∈ D (4.12)

(which amounts to take homogenous Dirichlet boundary condition on ∂D). One can
observe a good matching between the numerical front (computed using the scheme
approximation), and the exact front (computed by using the exact value function).

In Figure 4.2(down), we have also plotted di�erent sets corresponding to di�erent
level set values (when using ∆x = ∆y = 0.016). This corresponds to di�erent level
of con�dence for reaching the target.

Remark 4.3.1 The reason behind the use of a diamond as a target set is to validate
the behaviour of the numerical scheme for non standard target shape.

We consider also a case with smaller target, and set σ = 0.5 (σ is taken large in order
to see the impact of the di�usion). Similar simulations as in before are performed
in this case and the results are given in Figure 4.3, where we can observe again a
good approximation of the reachable set.
In Table 4.1, we summarize the error estimates between the exact solution and
the numerical approximation, for σ = 0.25, showing L∞, L1 and L2 errors. We have
chosen h and ∆x of the same order (h ≡ ∆x), and we observe roughly a convergence
of �rst order.
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t=1

  

t=0 ; ρ=0.05

Figure 4.2 � Example 1 with σ = 0.2 : Target (up-left) ; backward reachable set Ωρ
0

for ρ = 0.05 (up-right) ; backward reachable sets Ωρ
0 for di�erent values of ρ (down).

Table 4.1 � Example 1 with σ = 0.25 : Error estimates ϑ− V at time t = 0, using
h = T/N and ∆x = h.

N error L∞ error L1 error L2 CPU time (s)

20 3.31 e-2 1.02 e-1 3.88 e-2 3.33 ×10−1

40 1.56 e-2 4.65 e-2 1.82 e-2 2.43 ×100

80 6.97 e-3 1.99 e-2 8.01 e-3 2.05 ×101

160 3.78 e-3 1.14 e-2 4.34 e-3 1.55 ×102

320 2.01 e-3 6.13 e-3 2.36 e-3 1.27 ×103

Remark 4.3.2 In this simple case, we can observe numerically that the error es-
timate decreases with order 1 wich is better than what one can prove theoretically
(order of 1/4). Also, the choice h = ∆x seems to give better numerical approxi-
mations than what we would get if we choose the optimal ratio between h and ∆x
established in Chapter 3. The �rst-order numerical behavior can be justi�ed in this
example by the fact that the exact solution is very smooth on [0, T )× R2.
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t=1

  

 

t=0 ; ρ=0.05

Figure 4.3 � (Example 1) initial data (up-left), capture basin Ωρ
0 for ρ = 0.05

(up-right) or di�erent ρ values (center), for σ = 0.5.

Example 2. Now we deal with the following controlled stochastic system :(
dX1

dX2

)
= uσ

(
c 1
−1 0

)(
dW 1

t

dW 2
t

)
(4.13)

where u is a control taking values in [0, 1], c = 0.2, σ = 0.25 and T = 1.0. The
initial data and the boundary conditions are the same as the ones used in the �rst
example. For this kind of problem the exact solution is not known. The solution
obtained with N = 160 is taken as the reference solution. The error estimates
computed at time t = 0 are summarized in Table 4.2. As for Example 1, we observe
again a convergence of order 1.

Table 4.2 � (Example 2) Error table, using ∆x = h = T/N .

N error L∞ error L1 error L2 CPU time (s)

10 1.68 e-1 1.16 e-3 8.41 e-3 6.42× 10−1

20 8.80 e-2 7.49 e-4 4.34 e-3 5.06× 100

40 4.43 e-2 2.55 e-4 1.79 e-3 4.01× 101

80 1.62 e-2 1.12 e-4 7.13 e-4 3.20× 102

67



Example 3. In this example, we consider a controlled stochastic system with a
drift :

dx(t) =

(
−1 −4
4 −1

)
x(t)dt+ u(t)dt+

(
0.7 0
0 0.7

)(
dW 1

t

dW 2
t

)
(4.14)

where u(t) =

(
u1(t)
u2(t)

)
and ui ∈ [−0.1, 0.1], for i = 1, 2.

The linear system (4.14) is used in [5] to illustrate an appoximation of the probability
of reaching a target by using enclosing hulls of probability density functions. Here, we
set T = 1.75 and consider a target set represented by the green square in Figure 4.4.
We compute for di�erent times t ∈ {0.75; 0.25; 0}, the set Ωρ

t for ρ = 0.4 (see
Figure 4.4).
The numerical simulation is performed on a computational domainD = [−8, 8]2 with
a uniform grid and boundary conditions as (4.12). Once the numerical approximation
V of the value function and the backward reachable set Ωρ

tn are computed, and
in order to validate the numerical simulations, we generate di�erent trajectories
starting from the backward reachable set using the algorithm described below. Let
x̄ be a given initial position, the following algorithm aims to reconstruct a trajectory
on starting at time tn from the position x̄ :

  

t=0.75 ; ρ=0.4

  

t=0.25 ; ρ=0.4

  

t=0 ; ρ=0.4

Figure 4.4 � (Example 3) Backward reachable sets at di�erent times t ∈
{0.75, 0.25, 0} for a time horizon T = 1.75. The target set is represented by the
green square.
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In order to validate our results, we then generate di�erent trajectories starting from
the capture basin using the following algorithm :

Algorithm (trajectory reconstruction) Initialization : Set Xn = x̄.

For k = 0 to N − 1 by step 1 :

Step 1 Compute optimal control at t = tk :

uk = arg maxa∈{a1,...,aNu}E[V (Xa
k+1, tk+1)] (4.15)

Step 2 Compute the next point at iteration k :

Xk+1 := Xk + b(tk, Xk, uk)dt+ σ(tk, Xk, uk)
√
hB (4.16)

where B is a random variable with a normal law N (0, 1).

Figure 4.7 shows some controlled processes issued from a starting point located in
the backward reachable sets Ωρ

t for t ∈ {0.75, 0.25, 0}.

Figure 4.5 � (Example 3) Behaviour of controlled processes starting from the
backward reachable sets at times t ∈ {0.75, 0.25, 0} for a �nal time horizon T =
1.75.

Now consider x̄ := (−1.0, 2.0)T and set tn = 0.75. We compute an approximation
V (tn, x̄) of the level-set function (by numerically solving the corresponding HJB
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equation). On a grid with the discretization parameters ∆u = ∆ = h = T
N
, we obtain

the values given in the second column, of Table 4.3. The third column of this table
gives the di�erences between two values. The last value V (tn, x̄) is approximately
0.503 and the di�erence between the last two computed values is of order 0.014.
Hence we can extrapolate numerically to say that a process starting from x̄ reaches
the target set with a probability 0.503± 0.007.

Table 4.3 � (Example 3) The value of V (tn, x̄) for di�erent mesh parameters, and
the di�erence between two successive values (here tn = 0.75 and x̄ = (−1.0, 2.0)T ).

N v(t, x) estimate di�erences
10 0.41768 -
20 0.46359 0.046
40 0.48926 0.026
80 0.50326 0.014

Now, let N = 20 and call the trajectory reconstruction algorithm described above to
generate some trajectories starting from x̄ (by Monte Carlo simulations). The results
are reported in Table 4.4 with M is the number of the simulated trajectories, p is
the percentage of trajectories reaching the target set and C.I denotes the con�dence
intervall at 95%. The results of Table 4.4 show that the value V (tn, x̄) at point x̄ is
inside the con�dence interval.

Table 4.4 � (Example 3) Percentage of p of simulated trajectories that reach the
target set, corresponding con�dence interval (C.I.), and a Monte Carlo error estimate
(MC-error)

M p C.I. MC-error
3000 0.51233 (0.4944, 0.5302) 0.0179
6000 0.51317 (0.5005, 0.5258) 0.0127
12000 0.51575 (0.5068, 0.5247) 0.0090
25000 0.50912 (0.5029, 0.5153) 0.0062
50000 0.50876 (0.5044, 0.5131) 0.0044
100000 0.50969 (0.5066, 0.5128) 0.0031

Example 4. In this example, we consider a controlled stochastic system with a
drift :

dx(t) =

(
−1 −π
π −1

)
x(t)dt+

(
u1(t) + 0.5 0

0 u2(t) + 0.5

)(
dW 1

t

dW 2
t

)
(4.17)

where ui ∈ [−0.1, 0.1], for i = 1, 2.

Let us emphasise that the case of the linear system (4.17) is not considered in the
theoretical study in chapter 3 since the control appear in the components of the
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di�usion. Here, we set T = 1.5 and consider a target set represented by the green
square in Figure 4.4. We compute for di�erent times t ∈ {0.0; 0.25; 0.5; 0.75}, the
set Ωρ

t for ρ = 0.4 (see Figure 4.6).

The numerical simulation is performed on a computational domainD = [−8, 8]2 with
a uniform grid and boundary conditions as (4.12). Once the numerical approximation
V of the value function and the backward reachable set Ωρ

tn are computed, and
in order to validate the numerical simulations, we generate di�erent trajectories
starting from the backward reachable set using the algorithm described above. Let
x̄ be a given initial position, the following algorithm aims to reconstruct a trajectory
on starting at time tn from the position x̄ :

Figure 4.6 � (Example 3) Reachable sets at di�erent times t ∈ {0.0, 0.25, 0.5, 0.75}
for a time horizon T = 1.25. The target set is represented by the green square.

Next, we will use the algorithm described in the last example to generate di�erent
trajectories starting from the capture basin . Figure 4.7 shows some controlled pro-
cesses issued from a starting point located in the backward reachable sets Ωρ

t for
t ∈ {0.0, 0.25, 0.5, 0.75}.

71



Figure 4.7 � (Example 3) Behaviour of controlled processes starting from the
backward reachable sets at times t ∈ {0.0, 0.25, 0.5, 0.75} for a �nal time horizon
T = 1.5.

Let us consider x̄ := (−2.0, 0.0)T and set tn = 0.75 and compute an approximation
V (tn, x̄) of the level-set function (by numerically solving the corresponding HJB
equation). On a grid with the discretization parameters ∆u = ∆ = h = T

N
, we

obtain the values given in the second column, of Table 4.5. Hence, we can conclude
that approximately V (tn, x̄) = 0.786± 0.009.

Table 4.5 � (Example 4) The value of V (tn, x̄) for di�erent mesh parameters, and
the di�erence between two successive values (here tn = 1.0 and x̄ = (−2.0, 0.0)T ).

N v(t, x) estimate di�erences
10 0.64208 -
20 0.72736 0.08528
40 0.76679 0.03943
80 0.78655 0.01976

Now, let N = 20 and call the trajectory reconstruction algorithm described above to
generate some trajectories starting from x̄ (by Monte Carlo simulations). The results
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are reported in Table 4.6 with M is the number of the simulated trajectories, p is
the percentage of trajectories reaching the target set and C.I denotes the con�dence
intervall at 95%. The results of Table 4.6 show that the value V (tn, x̄) at point x̄ is
slightly closed to the con�dence interval but not inside.

Table 4.6 � (Example 3) Percentage of p of simulated trajectories that reach the
target set, corresponding con�dence interval (C.I.), and a Monte Carlo error estimate
(MC-error)

M p C.I. MC-error
3000 0.77133 (0.7563, 0.7864) 0.0150
6000 0.77083 (0.7602, 0.7815) 0.0106
12000 0.77517 (0.7677, 0.7826) 0.0074
25000 0.77488 (0.7697, 0.7801) 0.0052
50000 0.77384 (0.7702, 0.7775) 0.0036
100000 0.77361 (0.7710, 0.7762) 0.0026
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CHAPITRE V

HJB APPROACH FOR STATE
CONSTRAINED CONTROL PROBLEM

WITH MAXIMUM COST

Publications of this chapter

M. Assellaou, O. Bokanowski, A. Desilles and H. Zidani, Feedback control analysis
for state constrained control problem with maximum cost, in preparation.

5.1 Introduction

The purpose of this chapter is to study a Hamilton Jacobi Bellman approach for
state-constrained control problems with maximum cost and Bolza cost. In particular,
we are interested by the characterization of the value functions of such problems and
the analysis of the associated optimal trajectories. Let T > 0 be a �nite time horizon
and consider the following dynamical system :

ẏ(s) = f(y(s),u(s)), a.e. s ∈ (0, T ), (5.1a)

y(0) = y, (5.1b)

where f : Rd × U → Rd is a Lipschitz continuous function, U is a compact set, and
u : [0, T ] → U is a measurable function. Denote y = yu

y the absolutely continuous
solution of (5.1). Let K ⊂ Rd be a given non-empty closed set and consider the
following value function :

ϑ1(t, y) := min
u∈L∞((0,t),U)

{
max
θ∈[0,T ]

Φ1(yu
y (θ))

∣∣∣∣ yu
y (θ) ∈ K ∀θ ∈ [0, t]

}
,

with the convention that inf ∅ = +∞. The function Φ1 : Rd → R is a Lipschitz
continuous function.

In the case when K = Rd, this control problem has been studied by Barron and
coauthors [18, 19] where the control problem with maximum cost is approximated
by a sequence of control problems with Lp-cost. In [93], the control problem with
l.s.c in�mum cost has been considered from a viability point of view where the
Epigraph of the value function is characterized by a viability Kernel . In the context
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of di�erential games, the problem has been studied in [94] for a Lipschitz continuous
in�mum cost and [96] for maximum bounded cost.

In the general case where the set of state constraints K is nonempty closed set
of Rd, we shall follow an approach closely related to [3]. The idea is �rst to look
for the characterization of the value function by its Epigraph (see for instance [11,
40, 41, 8, 93]). Indeed, the function ϑ1 can be described by a Lipschitz continuous
value function of an auxiliary control problem free of state constraints. Moreover,
the auxiliary value function can be characterized as the unique Lipschitz continuous
viscosity solution of a variational HJ equation. More precisely, let g be a Lipschitz
continuous function satisfying g(x) ≤ 0 ⇐⇒ x ∈ K and introduce the following
auxiliary control problem :

w1(t, y, z) := inf
u∈L∞((0,t),U)

(
max
θ∈[0,t]

Ψ1(yu
y (θ), z)

)
,

where
Ψ1(y, z) :=

(
Φ1(y)− z

)
∨ g(y)

and a
∨
b := max(a, b). The new function w1 can be characterized as the unique

Lipschitz continuous viscosity solution of a HJ equation of variational type :

min

(
∂tw1 +H(y,∇yw1), w1(t, y, z)−Ψ1(y, z)

)
= 0, in [0, T )× Rd × R, (5.2a)

w1(0, y, z) = Ψ1(y, z), in Rd × R, (5.2b)

where H(y, p) := sup
u∈U

(
−f(y, u).p

)
. Moreover, under the classical assumptions on f ,

and Φ1, the epigraph
1 of ϑ1 satis�es Epi(ϑ1(t, ·)) = {(y, z) ∈ Rd×R, w1(t, y, z) ≤ 0}.

Thus, one can determine the value functions ϑ1 in terms of level sets of w1, i.e,

ϑ1(t, y) = min{z, w1(t, y, z) ≤ 0},

The new value function is de�ned in all domain. In order to reduce our search of
the solution only on a closed set, we show that with a wise choice of the Lipschitz
continuous function g as well as a slightly modi�ed function Ψ1, we can obtain a
function w̃1 characterized as the unique Lipschitz continuous viscosity solution of
a variational Hamilton Jacobi equation with speci�c Dirichlet boundary conditions
(this will be detailed in section 5.3.1).

We then focus on the analysis of the optimal trajectories associated with the state
constrained optimal control problem with maximum cost. Indeed, the characteriza-
tion of the state-constrained control problem using auxiliary control problem pro-
vides a tool to deal with optimal trajectories. In this framework, we show that
under some initial condition, the optimal trajectory of the auxiliary control problem
is also optimal for the control problem whose value function is ϑ1. Thanks to this
result, we propose algorithms to generate optimal trajectories corresponding to the
auxiliary optimal control problem. On the other hand, we show that the control

1. The epigraph at time t is de�ned by Epi(ϑ1(t, ·)) := {(y, z) ∈ Rd × R, ϑ1(t, y) ≤ z}.
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problems discussed above are linked to some viability kernel associated with an exit
time function.

In addition, a convergence result of the approximated optimal trajectory to the
continuous optimal trajectory is included in this Chapter. More precisely, we extend
the result of [95] to the optimal control problem with maximum criterion. The main
idea of this approach is to de�ne an approximation of the set-valued map of the
optimal feedback control using the dynamic programming principle.

Another contribution of this Chapter is to work also on the control problem with
Bolza cost that can be considered as an approximation of the maximum-cost. So,
we investigate the following state constrained control problem with Bolza cost :

ϑ2(t, y) := min
u∈L∞((0,t),U)

{∫ t

0

Φ2(yu
y (s))ds

∣∣∣∣ yu
y (θ) ∈ K ∀θ ∈ [0, t]

}
,

with the convention that inf ∅ = +∞. The function Φ2 : Rd → R is a locally Lipschitz
continuous function with polynomial growth (for instance Φ2(y) := rΦ1(y)q where r
and q are positive constants). Note that the value function ϑ2 can be discontinuous.
Nevertheless, ϑ2 satis�es a Dynamic programming principle. Moreover, a state-space
constrained Hamilton-Jacobi-Bellman equation can be associated with ϑ2 (see [98]-
[99]) taking the following form :

−∂tϑ2 +H(t, y,∇ϑ2) = 0, in (0, T )×K, (5.3a)

ϑ2(0, y) = 0, in K, (5.3b)

where H(t, y, p) := max
a∈U

(−f(t, y, a).p − Φ2(y)). In Soner's formulation, a function

ϑ2 is a viscosity solution of (5.3) provided it is sub-solution in (0, T )×
◦
K (where

◦
K:= K\∂K) and a super-solution on (0, T ) × K. The uniqueness of the solution
of the HJ equation (5.3) is more complicated to prove and it requires restrictive
controllability assumptions on K and the dynamics (see [98]- [99] for the IPQ
condition and [63] - [64] for the OPQ condition).

The viability tools [7, 10] and non-smooth analysis allow to characterize the value
function or more precisely its epigraph, see [11, 40, 41, 8] and the references therein.

Altarovici et al in [3] studied the case where Φ2 is Lipschitz continuous without
any controllability assumption. In this Chapter, we show that this result can be
extended for locally Lipschitz continuous distributed cost with polynomial growth.
Thus, the function ϑ2 can be described by means of a continuous value function free
of state constraints associated with an auxiliary control problem. More precisely, let
us consider the following auxiliary control problem :

w2(t, y, z) := inf
u∈L∞((0,t),U)

(∫ t

0

Φ2(yu
y (θ))− z

)∨
max
θ∈(0,t)

g(yu
y (θ)),

where a
∨
b := max(a, b). In the same manner, the function w2 can be characterized

as the unique continuous viscosity solution of a HJ equation of variational type and
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the epigraph of ϑ2(t, .) is described in terms of the level sets of w2. Furthermore, we
study the optimal trajectories associated with the state constrained optimal control
problem of Bolza type. We show again that under some initial condition, the optimal
trajectory of the auxiliary control problem is also optimal for the control problem
whose value function is ϑ2. On the other hand, we established a link between the
control problems whose value function are ϑ2 and w2 and some Backward reachable
set associated with a maximum time function.

This Chapter is organized as follows. Section 5.2 contains the setting and the as-
sumptions of the problem. The main results of the state constrained control problem
with a maximum cost including the auxiliary control problems and the analysis of
the optimal feedback control is presented in section 5.3. Section 5.4 is devoted to
the state constrained control problem with Bolza cost and the anaylsis of the cor-
responding optimal feedback controls.

5.2 Problem Formulation

For a given non-empty compact subset U of Rk and a �nite time T > 0, de�ne the
set of admissible control to be,

U :=

{
u : (0, T )→ Rk, measurable, u(t) ∈ U a.e

}
.

Consider the following control system :{
ẏ(s) := f(y(s),u(s)), a.e s ∈ [0, T ],

y(0) := y,
(5.4)

where u ∈ U and the function f is de�ned and continuous on Rd × U and that it is
Lipshitz continuous in the variable y, i.e,

(i) f : Rd × U → Rd is continuous,

(ii) ∃L > 0 s.t. ∀(y1, y2) ∈ Rd × Rd, ∀u ∈ U,
|f(y1, u)− f(y2, u)| ≤ L(|y1 − y2|).

(H1)

Denote yu
y (.) the trajectory corresponding to the control u and the initial point

y (if it exists). Under the assumption (H1), the solutions of the above di�erential
equation (5.4) belong to the class of absolutely continuous functions W 1,1([0, T ]).
Moreover, the set of all absolutely continuous solutions of (5.4) on [0, t] ⊆ [0, T ]
starting from a given state vector y, i.e :

S[0,t](y) := {yu
y , y absolutely continuous solution of (5.4) for some u ∈ U}.

is a compact subset of W 1,1([0, t]) for the topology of C([0, t];Rd). Moreover, under
the assumptions (H1), the set valued map y  S[0,t](y) is Lipschitz continuous from
Rd in C([0, t];Rd) (see [9]) with respect to the Hausdor� metric.
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Let K ⊂ Rd be a compact set of state constraints. We will say that a solution
yu
y ∈ S[0,t](y) is admissible for K on [0, t] if

∀ θ ∈ [0, t], yu
y (θ) ∈ K.

Let us denote

SK[0,t](y) := {yu
y ∈ S[0,t](y), s.t. ∀ θ ∈ [0, t], yu

y (θ) ∈ K},

the set, eventually empty, of all admissible trajectories starting from a given initial
vector y.

Remark 5.2.1 Note that in some cases the function f may not be de�ned or Lip-
shitz continuous on the whole state space Rd. For instance, this is the case in the
application studied in the Chapter 6. In such situations we will assume that at least
the function f is Lipshitz continuous on some compact set containing K. More pre-
cisely, assume that there exists K̃ such that K ⊂ K̃ and :

(i) f : K̃ × U → Rd is continuous,

(ii) ∃L > 0 s.t. ∀(y1, y2) ∈ K̃ × K̃, ∀u ∈ U,
|f(y1, u)− f(y2, u)| ≤ L(|y1 − y2|).

(H1 local)

Then, there exists a Lipshitz continuous extension of f out of K̃, due to the lemma
5.2.2 below. In what follows we will assume that such extension exists and we will
use the same notation f for it. So, we assume that the hypothesis (H1) and all others
de�ned below hold for f or, if necessary, for its extension.

Lemma 5.2.2 (McShane-Whitney extension theorem). Let f : K×U → R, K ⊂ Rd,
be a continuous function such that,

|f(x, u)− f(y, u)| ≤ L(|x− y|), ∀(x, y, u) ∈ Rd × Rd × U.

Then, there exists a continuous function fe : Rd × U → R such that fe
∣∣
K×U = f ,

and

|fe(y1, u)− fe(y2, u)| ≤ L(|y1 − y2|), ∀(y1, y2, u) ∈ Rd × Rd × U.

Proof. For u ∈ U , de�ne the function fe(x, u) = infy∈K
{
f(y, u) + L|x − y|

}
. It is

obvious that the functions

(x, u)→ f(y, u) + L|x− y|, ∀y ∈ K,

are L-Lipschitz continuous in x. It is also known that the in�mum of Lipschitz
continuous functions is Lipschitz continuous, that is, the function fe is L-Lipschitz
continuous in x.

By de�nition of fe we have fe(x, u) ≤ f(x, u) for each x ∈ K and u ∈ U . On the
other hand, from the Lipschitz property of f , we have, for each x ∈ K, u ∈ U ,

f(x, u) ≤ f(y, u) + L|y − x|, ∀y ∈ K

Taking the in�mum over y ∈ K yields that f(x, u) ≤ fe(x, u). It follows that
fe(x, u) = f(x, u) for each x ∈ K and u ∈ U .
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Let us de�ne the maximum cost J1 and the Bolza cost J2,

J1(T, y,u) : = max
θ∈[0,T ]

Φ1(yu
y0

(θ)),

J2(T, y,u) : =

∫ T

0

Φ2(yu
y0

(θ))dθ,

where the cost function Φ1(y) is assumed to satisfy the following :
(i) Φ1 : Rd → R is continuous.

(ii) ∃L1 > 0 s.t. ∀(y, y′) ∈ Rd × Rd,

|Φ1(y)− Φ1(y′)| ≤ L1(|y − y′|).
(H2)

and the distributed cost Φ2(y) is assumed to satisfy the following
(i) Φ2 : Rd → R is continuous.

(ii) For each y ∈ Rd, ∃Ly, δ0 > 0 s.t

|y − y′| ≤ δ0 ⇒ |Φ2(y)− Φ2(y′)| ≤ Ly(|y − y′|).
(iii) ∃C > 0, ∀y ∈ Rd, |Φ2(y)| ≤ C(1 + |y|q) where q > 0 .

(H3)

In this chapter, two optimal control problems are studied related to the functionals
J1 and J2 :

inf

{
J1(T, y,u)

∣∣ u ∈ U , yu
y (s) ∈ K, s ∈ [0, T ]

}
, (5.5)

and

inf

{
J2(T, y,u)

∣∣ u ∈ U , yu
y (s) ∈ K, s ∈ [0, T ]

}
. (5.6)

The existence of the minimum of the control which minimizes (5.5) and (5.6) is not
obvious and it depends on the compactness of the set of admissible trajectories.
Indeed, we will assume that the function f satis�es the convexity hypothesis :

∀y ∈ Rd, f(y, U) = {f(y, u), u ∈ U} is a convex set. (H4)

Under this last assumption, the set SK[0,T ](y) is compact. Moreover, the set valued

map x → SK[0,T ](x) is Lipschitz continuous from Rd in C([0, T ];Rd) (see [9]) with
respect to the Hausdor� metric.

The optimal control problems discussed above are subject to value functions de�ned
below. One can associate with the maximum cost functional J1 the following value
function :

ϑ1(t, y) = inf

{
J1(t, y,u)

∣∣ u ∈ U , yu
y (s) ∈ K, ∀s ∈ [0, t]

}
, (5.7)
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with the convention that inf{∅} := +∞. For the Bolza cost functional J2, the asso-
ciated value function is denoted by ϑ2,

ϑ2(t, y) = inf

{
J2(t, y,u)

∣∣ u ∈ U , yu
y (s) ∈ K, ∀s ∈ [0, t]

}
, (5.8)

with the convention that inf{∅} := +∞. Note that, in this constrained case ( when
K 6= Rd), the value functions ϑ1 and ϑ2 may be discontinuous. Moreover, there is
no classical result to be applied to the value function ϑ1. However, the function
ϑ2 can be characterized, under some controllability assumption of (IPQ) type, as
the unique Lipschitz continuous viscosity solution of a state-constrained Hamilton-
Jacobi equation (see [98]- [99]) and under some controllability assumption of (OPQ)
type, as the unique lower semi continuous solution of a Hamilton Jacobi equation
(see [63]- [64]). Since these assumptions are not satis�ed for a wide class of problems,
one has to look for other methods to characterize these value functions.

On the hand, the viability theory (see [7, 10]) and non-smooth analysis allows to
characterize the epigraph of the value function, see [11, 40, 41, 8].

In this work, we consider the viability point of view and we look at the characteri-
zation of the epigraphs of the value functions ϑ1 and ϑ2 (see [3]) using the level-set
and the Hamilton Jacobi approaches. More precisely, these epigraphs are linked to
some auxiliary optimal control problems free of constraints whose value functions
are continuous. For each control problem, the new auxiliary value function is the
unique viscosity solution of a Hamilton-Jacobi equation.

5.3 State constrained control problem with maxi-

mum cost

In order to characterize the epigraph of the value function ϑ1 in terms of a value
function free of constraints associated with an auxiliary optimal control problem, we
introduce the following augmented dynamics f̂ for u ∈ U and ŷ := (y, z) ∈ Rd×R :

f̂((y, z), u) =

(
f(y, u)

0

)
.

Let ŷ(s) := ŷ{y,z}(s) := (yu
y (s), zu

y,z(s)) (where zu
y,z(.) := z) be the associated aug-

mented solution of :

˙̂y(s) = f̂(ŷ(s),u(s)), s ∈ (0, T ), (5.9a)

ŷ(0) = (y, z)T . (5.9b)

De�ne the corresponding set of feasible trajectories,

Ŝ[0,T ](ŷ) := {ŷ = (yu
y , z

u
y,z), ŷ satis�es (5.9) for some u ∈ U}, (5.10)

for ŷ = (y, z) ∈ Rd × R.
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Remark 5.3.1 Under the assumption (H4), for every ŷ ∈ Rd × R, the augmented

dynamics f̂(ŷ, U) is convex. Therefore, Ŝ[0,T ](ŷ) is a compact subset of W 1,1([0, T ])
for the topology of C([0, T ];Rd+1) (see [9]).

In what follows, we will de�ne an auxiliary optimal control problem whose value
function is Lipschitz continuous. The auxiliary value function is characterized by a
HJ equation.

5.3.1 Auxiliary control problem for the L∞-running cost case

Hamilton-Jacobi equation

Let g be a Lipschitz continuous function characterizing the constraints set K in the
following way :

∀y ∈ K, g(y) ≤ 0⇔ y ∈ K. (5.11)

Denote by Lg > 0 the Lipschitz constant of g. Note that the function g exists because
of the closeness of K (for instance the signed distance to K satis�es the condition
(5.11)). Therefore, for u ∈ U , we have,

yu
y (s) ∈ K,∀s ∈ [0, t] ⇔ max

s∈[0,t]
g(yu

y (s)) ≤ 0.

Consider the following auxiliary control problem de�ned below by its value function :

w1(t, y, z) := inf
ŷ∈Ŝ[0,t](ŷ)

max
θ∈[0,t]

Ψ1(y(θ), z), (5.12)

where

Ψ1(y, z) := (Φ1(y)− z) ∨ g(y), (5.13)

(with a∨ b = max(a, b)). The new control problem is free of any additional assump-

tion on the set K neither on the dynamics f̂ . The following proposition shows that
the level sets of this new value function w1 characterize the epigraph of ϑ1.

Proposition 5.3.2 Assume (H1), (H2) and (H4) hold and let (t, y, z) ∈ [0, T ] ×
K × R. The value functions w1 is related to ϑ1 by the following relations :

(i) ϑ1(t, y)− z ≤ 0⇔ w1(t, y, z) ≤ 0,

(ii) ϑ1(t, y) = min

{
z ∈ R , w1(t, y, z) ≤ 0

}
.

Proof. (i) Assume ϑ1(t, y) ≤ z. There exists a minimizing sequence {yn}n ⊂
S[0,T ](y) of admissible trajectories such that,

lim
n→∞

[
max
0≤θ≤t

Φ1(yn(θ))− z
]

= ϑ1(t, y)− z ≤ 0.
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Since all the trajectories yn are admissible, we have max
0≤θ≤t

g(yn(θ)) ≤ 0. Hence

w1(t, y, z) ≤ lim inf
n→∞

[
max
0≤θ≤t

(
Φ1(yn(θ))− z

)∨
max
0≤θ≤t

g(yn(θ))

]
≤ 0.

Conversely, assume w1(t, y, z) ≤ 0. By remark 5.3.1, there exists a trajectory ŷ ∈
Ŝ[0,T ](y, z) starting from ŷ = (y, z) such that,

0 ≥ w1(t, y, z) = max
0≤θ≤t

Ψ1(y(θ), z).

The last inequality is equivalent to,

max
0≤θ≤t

(
Φ1(y(θ))− z

)
≤ 0 and max

0≤θ≤t
g(y(θ)) ≤ 0.

It follows that ϑ1(t, y) ≤ z and (i) is proved. The proof of (ii) follows from (i).

Remark 5.3.3 Note that the value function ϑ1(t, .) is l.s.c. and then its epigraph is
a closed set. Moreover, from the previous proposition, we have

Epi
(
ϑ1(t, .)

)
=

{
ŷ = (y, z) ∈ K × R | w1(t, ŷ) ≤ 0

}
.

The value function w1 enjoys more regularity properties and recall that it satis�es
the dynamic programming principle. Let us de�ne the following Hamiltonian, for all
y, p ∈ Rd :

H(y, p) := sup
u∈U

(
− f(y, u) · p

)
.

Proposition 5.3.4 Assume (H1)-(H2) hold.

(i) The value function w1 is Lipschitz continuous in Rd × R, i.e, ∀ŷ, ŷ′ ∈ Rd × R,
t, t′ ∈ [0, T ],

|w1(t, ŷ)− w1(t, ŷ′)| ≤ max(Lg, L1)eLt|ŷ − ŷ′|
|w1(t, ŷ)− w1(t′, ŷ)| ≤ max(L,Cf )e

LT |t− t′|
where Cf := maxa∈U |f(0, a)|.

(ii) For any t ∈ [0, T ], h ≥ 0, such that t+ h ≤ T ,

w1(t+ h, y, z) = inf
ŷ:=(y,z)∈Ŝ[0,h](y,z)

{
w1(t,y(h), z)

∨
max
θ∈[0,h]

Ψ1(y(θ), z)

}
.

(iii) Furthermore, the function w1 is the unique Lipschitz continuous viscosity solu-
tion of the following HJ equation :

min

(
∂tw1(t, y, z) + H(y,∇yw1), w1(t, y, z)−Ψ1(y, z)

)
= 0,

in ]0, T ]× Rd × R,(5.14a)
w1(0, y, z) = Ψ1(y, z), in Rd × R. (5.14b)

Proof. The proof of the Lipschitz property is given in the Appendix A. The DPP is
classical and its proof can be found in [19]. For the proof of the (iii) see for instance
[3].
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Hamilton-Jacobi equation with a wise choice of the obstacle function

The reason behind the introduction of an auxiliary control problem is to deal with a
problem free of state constraints. However, from a control problem de�ned only on
a set K, we deal with an auxiliary control problem whose value function is charac-
terized with a Hamilton Jacobi equation de�ned in all domain. In addition, if the
dynamics function f is Lipshitz continuous only on a closed set K̃ containing the
constraints set K, then it is extended out of K̃. In such a case, it can be di�cult to
solve the equation (5.14) out of K̃. In order to overcome this problem , we want to

restrict our search of the solution on the set K̃. In fact, we show that with a wise
choice of the function g, we will have to deal with an HJ equation with a Dirichlet
condition. Let c̃ > 0 and de�ne the following extended set K̃ :

K̃ :≡ K + c̃B.

where B is the unit ball in Rd centred in the origin. Let g(y) := (dK(y)∧ c̃),∀y ∈ Rd

where dK the signed distance to K. In particular, we have

g(y) < c̃, ∀y ∈
◦

K̃ and g(y) = c̃, ∀y /∈
◦

K̃ . (5.15)

De�ne
Ψ̃1(y, z) =

(
(Φ1(y)− z) ∨ g(y)

)
∧ c̃,

where Ψ1 is de�ned in (5.13). Let w̃1 be de�ned by :

w̃1(t, y, z) := inf
ŷ=(y,z)∈Ŝ[0,T ](ŷ)

max
θ∈[0,t]

Ψ̃1(y(θ), z).

It is important to emphasise that the function w̃1 can be used to characterize the
epigraph of the value function ϑ1(t, .) in the same manner that it is done by the
function w1. In fact, it can be easily shown (using the de�nitions w1 and w̃1) and
the fact that c̃ > 0) that

w̃1(t, y, z) ≤ 0 ⇔ w1(t, y, z) ≤ 0.

The following theorem provides the characterization of the value function w̃1 as the
unique Lipschitz continuous viscosity solution of the same Hamilton Jacobi equation
(5.14) but with a Dirichlet boundary condition. This allows to reduce the solution
of the problem to a closed set. Apart from this set, the solution remains constant.

Theorem 5.3.5 Assume (H1)-(H2) hold. The function w1 is the unique Lipschitz
continuous viscosity solution of the following Hamilton Jacobi equation :

min

(
∂tw̃1(t, y, z) + H(y,∇yw̃1), w̃1(t, y, z)− Ψ̃1(y, z)

)
= 0,

in ]0, T ]×
◦

K̃ ×R, (5.16a)

w̃1(0, y, z) = Ψ̃1(y, z), in
◦

K̃ ×R. (5.16b)

w̃1(t, y, z) = c̃, for all t ∈ [0, T ], y /∈
◦

K̃ and z ∈ R, (5.16c)
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Proof. The �rst part (i) follows from (iii) of the proposition 5.3.4. Let prove the

assertion (ii). For (y, z) /∈ K̃ × R, we have

g(y) ≥ c̃.

It follows that
(
Φ1(y)− z

)
∨ g(y) ≥ c̃. Then, by de�nition of Ψ̃1, we have

Ψ̃1(y, z) = c̃.

Now, by using the fact that w1(t, y, z) ≥ Ψ̃1(y, z) which follows from (5.14), we get

w1(t, y, z) ≥ c̃, ∀y /∈ K̃ and z ∈ R.

By de�nition of w1, we have w1(t, y, z) ≤ c̃. This ends the proof of (ii) and then the
proof of the theorem 5.3.5.

Remark 5.3.6 If the function Φ1 satis�es the following :

Φ1(y) ∈ [m,M ], ∀y ∈ K̃,

Then, it su�ces to consider the variable z ∈]m,M [ such that m < m and M > M .
Indeed, in this case, we still have the important relation between ϑ1 and w1, i.e,

ϑ1(t, y) = inf
{
z ∈]m,M [ | w̃1(t, y, z) ≤ 0

}
In addition, the function w1 is the unique Lipschitz continuous viscosity solution of
the following HJ equation :

min

(
∂tw̃1(t, y, z) + H(y,∇yw̃1), w̃1(t, y, z)− Ψ̃1(y, z)

)
= 0,

in ]0, T ]×
◦

K̃ ×]m,M [, (5.17a)

w̃1(0, y, z) = Ψ̃1(y, z), in
◦

K̃ ×]m,M [. (5.17b)

w̃1(t, y, z) = c̃, ∀ t ∈ [0, T ], y /∈
◦

K̃ and z ∈]m,M [, (5.17c)

We don't need any boundary condition on the axis of z because the dynamics is zero
ż(t) = 0.

The control problems discussed in this Chapter can be described by a viability kernel
associated with the epigraph of the function Φ1. Moreover, an exit time function cor-
responding to the viability kernel will be de�ned and used later for a reconstruction
of the optimal trajectories.
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5.3.2 Link with the exit time function and viability problems

The aim of this subsection is to make a link between the control problems discussed
in the previous subsection and a viability problem we will de�ne in the following.
First, let us de�ne the following set :

D1 :=

{
ŷ = (y, z) ∈ Rd+1

∣∣ y ∈ K and ŷ ∈ Epi(Φ1)

}
.

Let us de�ne also the exit time function T1 : Rd+1 → [0, T ], which associates with
each starting point (y, z) ∈ Rd+1, the maximum time to remain inside the epigraph
of the function Φ1 with an admissible trajectory ŷuŷ (.) solution of (5.9) associated
with an admissible control u ∈ U , i.e,

T1(y, z) := sup

{
t ∈ [0, T ]

∣∣∣∣ ∃u ∈ U , s.t ŷuŷ (θ) ∈ D1, ∀θ ∈ [0, t]

}
. (5.18)

Now, let us recall the de�nition of the viability kernel with time horizon t associated
with D1, i.e, the set of starting points for which it is possible to remain in D1 for
the time interval [0, t],

Viab1(t) :=

{
ŷ ∈ Rd+1

∣∣∣∣ ∃u ∈ U , s.t ŷuŷ (θ) ∈ D1, ∀θ ∈ [0, t]

}
.

The following proposition gives a link between the value functions w1, v1 and the
viability kernel at time t ∈ [0, T ].

Proposition 5.3.7 Assume (H1), (H2) and (H4) hold. Then, for t ∈ [0, T ] the
viability kernel Viab1(t) is related to the value functions w1 and ϑ1 by the following
relations :

Viab1(t) =
{
ŷ = (y, z) ∈ Rd+1

∣∣ ϑ1(t, y) ≤ z
}

=
{

(y, z) ∈ Rd+1
∣∣ w1(t, y, z) ≤ 0

}
.

Proof. Let V1(t) :=
{

(y, z) ∈ Rd+1
∣∣ w1(t, y, z) ≤ 0

}
. The fact that V1(t) =

{
ŷ =

(y, z) ∈ Rd+1
∣∣ ϑ1(t, y) ≤ z

}
is a consequence of proposition 5.3.2. It remains to

prove that Viab1(t) = V1(t),

Let ŷ = (y, z) ∈ Viab1(t). It follows from the de�nition of Viab1(t) that

∃u ∈ U , s.t ŷuŷ (θ) ∈ D1, ∀θ ∈ [0, t].

By de�nition of D1, the following equivalence holds :

∃u ∈ U , s.t Ψ1

(
ŷuŷ (θ)

)
≤ 0, ∀θ ∈ [0, t]⇐⇒ ∃u ∈ U , s.t max

θ∈[0,t]
Ψ1

(
ŷuŷ (θ)

)
≤ 0.

(5.19)
Taking the in�mum over the set of trajectories, yields that w1(t, y, z) ≤ 0.

Conversely, assume that (y, z) ∈ V1(t). Then, by de�nition of V1(t) we have

w1(t, y, z) ≤ 0. By Remark 5.3.1, there exists a trajectory ŷu
ŷ ∈ Ŝ[0,T ](y, z) star-

ting from ŷ = (y, z) depending on the control u ∈ U such that,

0 ≥ w1(t, y, z) = max
0≤θ≤t

Ψ1(yu
y (θ), z).

By using (5.19), we get (y, z) ∈ Viab1(t) and the proof is completed.
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The following proposition gives a tool to bypass the regularity issues of T1. Here,
we focus on the characterization of the viability kernel Viab1(t). Moreover, the value
function ϑ1 is written in terms of the exit time function.

Theorem 5.3.8 Assume (H1), (H2) and (H4) hold. Then the exit time function
T1 satis�es the following relations :

(i) T1(y, z) = sup
{
t ∈ [0, T ]

∣∣ (y, z) ∈ Viab1(t)
}

= sup
{
t ∈ [0, T ]

∣∣ w1(t, y, z) ≤ 0
}
,

(ii) T1(y, z) = t⇒ w1(t, y, z) = 0,

(iii) ϑ1(t, y) = inf
{
z
∣∣ T1(y, z) ≥ t

}
.

Proof. Let T̃1(y, z) := sup
{
t ∈ [0, T ]

∣∣ (y, z) ∈ Viab1(t)
}
. The fact that T̃1(y, z) :=

sup
{
t ∈ [0, T ]

∣∣ w1(t, y, z) ≤ 0
}
is a consequence of proposition (5.3.7). It remains

to prove that T1(y, z) = T̃1(y, z). Let t := T1(y, z) and assume that t < ∞. By

remark 5.3.1, there exists an admissible trajectory ŷu
ŷ (.) such that

ŷu
ŷ (θ) ∈ D1, ∀θ ∈ [0, t].

This implies that ŷ ∈ Viab1(t). Hence T̃1(y, z) ≥ t by de�nition of T̃1(y, z).

Now, let t̃ := T̃1(y, z). For any n ≥ 1, there exists a sequence (tn)n≥1 such that tn ≤ t̃
such that tn → t̃ as n → ∞ and w1(tn, y, z) ≤ 0, ∀n ≥ 1. By remark 5.3.1, there
exists an admissible trajectory ŷn := ŷun

ŷ such that ŷn(θ) ∈ D1, ∀θ ∈ [0, tn]. Since
D1 is closed and using the compactness arguments of trajectories, it is possible to
extract a subsequence ŷn converging uniformly on [0, t̃] to ŷ (with tn → t̃) such that
ŷ(θ) ∈ D1, ∀θ ∈ [0, t̃]. Thus, by de�nition of T1(y, z), we obtain T1(y, z) ≥ t̃, which
concludes the proof of (i).

Now, let us prove (ii). Let t := T1(y, z). As a consequence of (i), we have that for
all n ≥ 1, ∃tn ∈ [t − 1

n
, t[ s.t w1(tn, y, z) ≤ 0. Since w1 is continuous, one obtain

w1(t, y, z) ≤ 0. On the other hand, ∀t1 ≥ t, w1(t1, y, z) > 0, then w1(t, y, z) ≥ 0 and
the proof (ii) is completed.

For the proof of (iii), one can deduce directly from (i) and proposition 5.3.7 that,
for all (t, y, z),

T1(y, z) ≥ t⇐⇒ ϑ1(t, y) ≤ z. (5.20)

The statement of (iii) follows from (5.36).

In the following, a link is established between the optimal trajectory associated with
the auxiliary control problem whose value function is w1, the optimal trajectory
of the control problem whose value function is ϑ1, and the optimal trajectories
associated with the exit time function.

Proposition 5.3.9 Assume (H1), (H2) and (H4) hold. Let y ∈ K such that
ϑ1(T, y) <∞. De�ne z := ϑ1(T, y).
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(i) Let ŷ∗ = (y∗, z∗) be the optimal trajectory for the auxiliary control problem (5.12)
associated with the initial point (y, z) ∈ K × R. Then, the trajectory y∗ is optimal
for the control problem (5.7).

(ii) Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the exit time problem (5.18)
associated with the initial point (y, z) ∈ K × R. Then, ŷ∗ is also optimal for the
auxiliary control problem (5.12).

Proof. Let (y, z) ∈ K × R such that ϑ1(T, y) = z. First, let us prove (i). Let
ŷ∗ = (y∗, z∗) be the optimal trajectory for the auxiliary control problem (5.12)
associated with the initial point (y, z) ∈ K × R.

Using the proposition 5.3.2, we have that

ϑ1(T, y) = z ⇒ w1(T, y, z) ≤ 0.

Since ŷ∗ is an optimal trajectory of the problem (5.12) associated with (y, z), it
follows that

w1(T, y, z) = max
s∈[0,T ]

Ψ1(y∗(s), z) ≤ 0.

Using the de�nition of Ψ1, we get,

max
s∈[0,T ]

Φ1(y∗(s)) ≤ z, and max
s∈[0,T ]

g(y∗(s)) ≤ 0.

Since ϑ1(T, y) = z, it follows from that,

max
s∈[0,T ]

Φ1(y∗(s)) ≤ ϑ1(T, x) and y∗(s) ∈ K, ∀s ∈ [0, T ].

By de�nition of ϑ1 one can conclude that

ϑ1(T, x) = max
s∈[0,T ]

Φ1(y∗(s)) and y∗(s) ∈ K, ∀s ∈ [0, T ].

Therefore, y∗ is an optimal trajectory for (5.7) associated with (y, z) and the proof
is achieved.

Now, let us prove (ii). Let ŷ∗ = (y∗, z∗) be an optimal trajectory for the exit time
problem (5.18) associated with the initial point (y, z) ∈ K×R such that ϑ1(T, y) = z

Let τ := T1(y, z). Since ŷ∗ is an optimal trajectory of the problem (5.18), it follows
from the de�nition of T1 that,

ŷ∗(θ) := (y∗(θ), z∗(θ)) ∈ D1, ∀θ ∈ [0, τ ].

Then, we have,

max
s∈[0,τ ]

Φ1(y∗(s)) ≤ z, and max
s∈[0,τ ]

g(y∗(s)) ≤ 0.
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Since ϑ1(T, y) = z, we obtain that

max
s∈[0,τ ]

Φ1(y∗(s)) ≤ ϑ1(T, x) and y∗(s) ∈ K, ∀s ∈ [0, τ ].

If τ = T , then from the de�nition of ϑ1, one can conclude that y∗ is an optimal
trajectory for (5.7) associated with (y, z).

Assume τ < T . Then, from the fact that ϑ1(T, y) = z, there exists a minimizing
sequence {yn}n ⊂ S[0,T ](y) of admissible trajectories such that,

lim
n→∞

[
max

0≤θ≤T
Φ1(yn(θ))− z

]
= ϑ1(T, y)− z = 0.

Since all the trajectories yn are admissible, we have max
0≤θ≤T

g(yn(θ)) ≤ 0. It follows

that,

lim
n→∞

[
max

0≤θ≤T
Ψ1(yn(θ), z)

]
≤ 0. (5.21)

From (5.21) and by de�nition of the exit time function T1 we have that T1(y, z) :=
τ ≥ T and this is a contradiction and the proof of the proposition is completed.

Remark 5.3.10 The previous links we have just established are very important in
the sense that they allow to consider several algorithms for the reconstruction of
optimal trajectories. On one hand, one can consider the algorithm of reconstruction
of trajectories using the value function w1 of the auxiliary control problem de�ned in
[0, T ]× Rd × R. However, for high dimensions, this kind of algorithms may be very
slow. On the other hand, the reconstruction using the exit time function may be an
alternative way since T1 is de�ned only on Rd × R.

5.3.3 Reconstruction of optimal trajectories

The purpose of this section is to present some ways to reconstruct optimal trajecto-
ries of the control problem whose value function is ϑ1. It is important here to recall
the context of our analysis. The value function ϑ1 is in general discontinuous in
presence of constraints. In the previous section we have shown that the epigraph of
ϑ1 can be characterized by a level set of a Lipschitz continuous value function w1 of
an auxiliary optimal control problem. This procedure has a dual importance. First,
we handle the technical di�culties related to the direct computation of ϑ1 and we
focus on a Lipschitz value function characterized as the unique Lipschitz continuous
viscosity solution of a Hamilton Jacobi equation. The second importance is the pos-
sibility to generate optimal trajectories using the auxiliary optimal control problem
for which the value function is Lipschitz continuous.
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Reconstruction by minimizing the value function

Here, we want to extend the classical result of [95] for the unconstrained optimal
control problem to the state constrained control problem with maximum criterion.
The main idea of this approach is to de�ne an approximation of the set-valued
optimal feedback map using the dynamic programming principle.

Algorithm A. For a given n ∈ N, n ≥ 1, let us consider (t0 = 0, t1, ..., tn−1, tn = T )
a uniform partition of [0, T ] with the time step h = T

n
. Let {yn(·), zn(·)} be a

trajectory de�ned recursively on the intervals (ti−1, ti] (i ≥ 1 ). Set zn(·) := z and
yn(t0) = y (where ϑ1(tn, y) = z).

Step 1 Knowing the state yn(tk), choose the optimal control at time tk such that :

unk ∈ arg min
u∈U

(
w1(tn−k−1,y

n(tk) + hf
(
yn(tk), u

)
, z)
∨

max
θ∈[0,h]

Ψ1(yn(tk) + θf
(
yn(tk), u

)
, z)

)
.

Step 2 De�ne un(t) := unk a constant control on the interval t ∈ (tk, tk+1] and yn(t)
on (tk, tk+1] as the solution of

ẏ(t) := f(y(t),un(t)) a.e t ∈ (tk, tk+1],

with initial condition yn(tk) at tk and zn(·) := z.

An important result of this section is the following theorem showing that the algo-
rithm A will converge to an optimal trajectory.

Theorem 5.3.11 Assume (H1), (H2) and (H4) hold. Let w1 be the unique Lip-
shitz continuous viscosity solution of the equation (5.14)) for n ≥ 1 and h = T

n
.

Let {yn(·), zn(·),un(·)} be a sequence generated by algorithm A for n ≥ 1. Then,
the sequence of trajectories {yn(·)}n has cluster points with respect to the uniform
convergence topology. For any cluster point ȳ(·) there exists a control law ū(·) such
that (ȳ(·), z̄(·), ū(·)) is optimal for the control problem (5.12).

In order to prove the theorem 5.3.11, we �rst establish the following property :

Proposition 5.3.12 Let Ω ⊂ Rd be a compact set. Assume (H1), (H2) and (H4).
Then for all ε > 0 there exists δ > 0 such that for all h ∈ [0, δ], for all ξ ∈ Ω and
t ∈ [0, T ]∣∣∣∣1h
(

min
u∈U

{
w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
− w1(t, ξ, z)

)∣∣∣∣ < ε.

Proof. of Proposition 5.3.12. Let us introduce a set-valued map R(·, ·) : [0, T ]×
Rd → Rd de�ning for a ξ ∈ Rd and τ ∈ [0, T ] the reachable set of the dynamic
system f for the trajectories starting from ξ and at time τ

R(τ, ξ) = {y(τ), y ∈ S[0,τ ](ξ)}. (5.22)

Let LΨ1 > 0 and Lw > 0 be the Lipshitz constants of Ψ1 and w1 respectively. Due to
the hypothesis (H1) there exists a constant r > 0 such that for all ξ ∈ Ω, τ ∈ [0, T ]
R(τ, ξ) ⊂ rB (with B the unit ball centered at zero).
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Fix a ε > 0. Using the properties of the reachable set (5.22) (see proposition 5.3 in
[95]), let us choose δ > 0 such that for all h ∈ (0, δ) ∩ (0, T ) and for all ξ ∈ Ω

max(LΨ1 , Lw) · distH(
1

h
(R(h, ξ)− ξ), f(ξ, U)) <

ε

2
.

where distH is the Hausdorf distance. Now, let take ξ ∈ Ω and t ∈ [0, T ]. Recall
that, due to the dynamic programming principle (5.14a) we have :

w1(t, ξ, z) = inf
y∈S[0,h](ξ)

(
w1(t− h,y(h), z)

∨
max
θ∈[0,h]

Ψ1(y(θ))

)
.

Then∣∣∣∣min
u∈U

{
w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
− w1(t, ξ, z)

∣∣∣∣
≤

∣∣∣∣∣min
u∈U

{
w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
− inf

y∈S[0,h](ξ)

(
w1(t− h,y(h), z)

∨
max
θ∈[0,h]

Ψ1(y(θ))

)∣∣∣∣∣
≤

∣∣∣∣∣∣ sup
u∈U,y∈S[0,h](ξ)

{
w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))− w1(t− h,y(h), z)
∨

max
θ∈[0,h]

Ψ1(y(θ))

}∣∣∣∣∣∣ .

Let u ∈ U and y ∈ S[0,h](ξ). Then, there exists u ∈ U such that y = yu
ξ on [0, h].

Let us show that∣∣∣∣max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))− max
θ∈[0,h]

Ψ1(y(θ))

∣∣∣∣ < h · ε
2
. (5.23)

Indeed, for all θ ∈ [0, h],

|Ψ1(ξ + θf(ξ, u))−Ψ1(y(θ))| ≤ LΨ1 |ξ + θf(ξ, u)− y(θ)|
≤ LΨ1distH(R(θ, ξ), ξ + θf(ξ, U)) = LΨ1distH(R(θ, ξ)− ξ, θf(ξ, U))

= LΨ1θdistH(θ−1(R(θ, ξ)− ξ), f(ξ, U)) < θε ≤ hε
2
.

Then the inequality (5.23) holds. With the similar arguments, one can show also
that

|w1(t− h, ξ + hf(ξ, u), z)− w1(t− h,y(h), z)| ≤ Lw |ξ + θf(ξ, u)− y(θ)|
≤ Lw · distH(R(h, ξ)− ξ, hf(ξ, U))

= LW · h · distH(h−1(R(h, ξ)− ξ), f(ξ, U))

< h · ε
2
.

Recall that for all reals (a, b, c) ∈ R3,

|max(a, c)−max(b, c)| ≤ |a− b|. (5.24)
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So, for all u ∈ U and all y ∈ S[0,h](ξ), we have∣∣∣∣w1(t− h, ξ + hf(ξ, u), z)
∨

max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))− w1(t− h,y(h), z)
∨

max
θ∈[0,h]

Ψ1(y(θ))

∣∣∣∣
≤
∣∣∣∣w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))− w1(t− h, ξ + hf(ξ, u), z)
∨

max
θ∈[0,h]

Ψ1(y(θ))

∣∣∣∣
+

∣∣∣∣w1(t− h, ξ + hf(ξ, u), z)
∨

max
θ∈[0,h]

Ψ1(y(θ))− w1(t− h,y(h), z)
∨

max
θ∈[0,h]

Ψ1(y(θ))

∣∣∣∣
≤
∣∣∣∣ max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))− max
θ∈[0,h]

Ψ1(y(θ))

∣∣∣∣+ |w1(t− h, ξ + hf(ξ, u), z)− w1(t− h,y(h), z)|

< hε.

and the the proof of the proposition 5.3.12 is achieved.

Proof. of Theorem 5.3.11. The proof is given in two steps :

Step 1. For all n ≥ 1, the function (yn(.),un(.)) satis�es

ẏn(t) := f(yn(t),un(t)) a.e t ∈ [0, T ].

Recall that the function f veri�es the linear growth property (that follows from the
Lipschitz property). Then, using the Gronwall's lemma, one can show that for all
t ∈ [0, T ],

|yn(t)| =
∣∣∣∣y +

∫ t

0

f(yn(s),un(s))ds

∣∣∣∣
≤ |y|+ L

∫ t

0

(
1 + |yn(s)|

)
ds ≤ (|y|+ Lt)eLt ≤ cT , (5.25)

where L is the Lipschitz constant of f and cT depends only on T and |y|. For all
(t, s) ∈ [0, T ]2, due to the linear growth property of f we obtain the inequality

|yn(t)− yn(s)| =
∣∣∣∣ ∫ t

s

f(yn(r), u)dr

∣∣∣∣
≤ L

∫ t

s

(1 + cT )
)
dr ≤ L(1 + cT )|t− s|, (5.26)

So, the sequence (yn(.),un(.)) is bounded and equicontinuous. By Arzela-Ascoli
theorem, there exists a uniformly convergent subsequence {yni(.)} that converges
to a continuous solution ȳ(.) as ni → ∞. The Dunford Pettis criterion allows to
extract a subsequence of ẏi converging weakly to a limit l(.), i.e

ẏi ⇀ l, in L1(Rd, [0, T ]).

Using yi(t) = yi(s) +
∫ t
s

ẏi(r)dr and the dominated convergence theorem, we obtain

ȳ(t) = y +

∫ t

0

l(s)ds.
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Hence, ȳ is an absolutely continuous function on [0, T ] and ˙̄y(.) = l(.) a.e.

Set L(t, y, p) = max
q∈f(y,U)

< p, q >. Let {Ai} be a sequence of measurable subsets of

[0, T ] such that measure (Ai)→ T and 1i be the indicator function of Ai. Let V be
any measurable set in [0, T ], then we have,

0 ≤ lim sup
i→∞

∫
V ∩Ai

[
L(t,yi(t), p)− < p, ẏi(t) >

]
dt

0 ≤
∫
V

lim sup
i→∞

1iL(t,yi(t), p)dt+ lim sup
i→∞

∫
V ∩Ai

< −p, ẏi(t) > dt

0 ≤
∫
V

L(t, ȳ(t), p)dt+ lim sup
i→∞

∫
V

< −p, ẏi(t) > dt

+ lim sup
i→∞

∫
V ∩Aci

< p, ẏi(t) > dt

0 ≤
∫
V

[
L(t, ȳ(t), p)− < p, ˙̄y(t) >

]
dt.

It follows from the arbitrariness of V that L(t, ȳ(t), p) ≥< p, ˙̄y(t) >. Since L is
continuous in p, it follows (see proposition 2.1.4 of [42]) that

˙̄y(t) ∈ f(ȳ(t), U).

By Fillipov's selection theorem, we get a control function ū(.) such that (ȳ(.), ū(.))
is an admissible solution for the optimal control problem.

Step 2. The optimality of (ȳ(.), ū(.)) will follow if,

max
θ∈[0,T ]

Ψ1(yn(θ), z)→ w1(T, y, z), as n→∞.

Let Lw the Lipschitz constant of w1.

lim sup
n→∞

∣∣∣∣ max
θ∈[0,T ]

Ψ1(yn(θ), z)− w1(T, y, z))

∣∣∣∣
≤ lim sup

n→∞

n−1∑
k=0

∣∣∣∣w1(tn−k−1,y
n(tk+1), z)

∨
max

θ∈[t0,tk+1]
Ψ1(yn(θ), z)− w1(tn−k,y

n(tk), z)
∨

max
θ∈[t0,tk]

Ψ1(yn(θ), z)

∣∣∣∣.

By using (5.24), one can simplify the last expression so that we have

lim sup
n→∞

∣∣∣∣ max
θ∈[0,T ]

Ψ1(yn(θ), z)− w1(T, y, z))

∣∣∣∣
≤ lim sup

n→∞

n∑
k=0

∣∣∣∣w1(tn−k−1,y
n(tk+1), z)

∨
max

θ∈[tk,tk+1]
Ψ1(yn(θ), z)− w1(tn−k,y

n(tk), z)

∣∣∣∣
≤ lim sup

n→∞

n∑
k=0

∣∣∣∣w1(tn−k−1,y
n(tk) + hf(yn(tk), unk ), z)

∨
max
θ∈[0,h]

Ψ1(yn(tk) + θf(yn(tk), unk ), z)− w1(tn−k,y
n(tk), z)

∣∣∣∣
+ lim sup

n→∞

n∑
k=0

∣∣∣∣w1(tn−k−1,y
n(tk+1), z)

∨
max

θ∈[tk,tk+1]
Ψ1(yn(θ), z) (5.27)

−w1(tn−k−1,y
n(tk) + hf(yn(tk), unk ), z)

∨
max
θ∈[0,h]

Ψ1(yn(tk) + θf(yn(tk), unk ), z)

∣∣∣∣.
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.

Since uk−1 is chosen to achieve the minimum, the �rst term in the right hand side
of the last inequality is zero (due to the proposition 5.3.12). For the second term we
use the same arguments that in the proof of the proposition 5.3.12 to show that for
all k = 0, . . . , n− 1∣∣∣∣w1(tn−k−1,y

n(tk+1), z)− w1(tn−k−1,y
n(tk) + hf(yn(tk), unk ), z)

∣∣∣∣
≤ Lw1

hdistH

(
h−1

(
R(h,yn(tk))− yn(tk)

)
, f(yn(tk), U)

)
< hε,

and ∣∣∣∣ max
θ∈[tk,tk+1]

Ψ1(yn(θ), z)− max
θ∈[0,h]

Ψ1(yn(tk) + θf(yn(tk), unk ), z)

∣∣∣∣
≤ LΨ1

hdistH

(
h−1

(
R(h,yn(tk))− yn(tk)

)
, f(yn(tk), U)

)
< hε.

Then the second member of right hand side of the inequality (5.27) is also zero and
this achieves the proof.

Remark 5.3.13 Let us point out that the strong convergence of the control requires
restrictive assumptions and it leads, in general, to second order optimality conditions.
These assumptions are not considered for our problems. This is why we make the
choice to deal only with the convergence of the trajectories and we don't study the
convergence of the control. However, in the framework of relaxed control, the weak
convergence of the control has been studied in [51, Theorem 5.1] for in�nite horizon
optimal control problem and this result is easily extended to our case.

Reconstruction using an approximate value function

Let W1 be a numerical approximate solution of the problem (5.12) such that the
error estimates between the exact solution and the approximate one is,

|W1(t, y, z)− w1(t, y, z)| ≤ E1(∆t,∆y), (5.28)

where E1 depends on ∆t and ∆y such that if W1(., .) → w1(., .) as ∆t,∆y →
0. For instance, one can consider the approximate solution of the equation (5.14)
constructed by the Finite Di�erence scheme or the Semi Lagrangian scheme.

The following result is an extension of the convergence of the trajectories for pie-
cewise constant control with the algorithm A using an approximate solution of the
control problem.

Theorem 5.3.14 Assume (H1), (H2) and (H4) hold. Let w1 be the unique Lip-
schitz continuous viscosity solution of the equation (5.14). Let Wh be an approxima-
tion of w1 satisfying (5.28). Let {yn(.),un1 (.)} and {Yn(.),un2 (.)} be the sequences
generated by the algorithm A for w1 and W1 respectively. Then, for all ε > 0 we
have the following estimates :∣∣∣∣ max

θ∈[0,T ]
Ψ1(Yn(θ), z)− max

θ∈[0,T ]
Ψ1(yn(θ), z)

∣∣∣∣ ≤ 3Tε+ (2n+ 3)E1(∆t,∆y).
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The proof of the theorem is based on the following property :

Proposition 5.3.15 Let Ω ⊂ Rd be a compact set. Assume (H1), (H2) and (H4).
Then for all ε > 0 there exists δ > 0 such that for all h ∈ [0, δ], for all ξ ∈ Ω and
t ∈ [0, T ]∣∣∣∣ 1h
(

min
u∈U

{
W1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
−W1(t, ξ, z)

)∣∣∣∣ < ε+ 2
E1(∆t,∆y)

h
.

Proof.
Let us denote by

Au(W1) =

{
W1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
,

Au(w1) =

{
w1(t− h, ξ + hf(ξ, u), z)

∨
max
θ∈[0,h]

Ψ1(ξ + θf(ξ, u))

}
.

We have∣∣∣∣min
u∈U

Au(W1)−W1(t, y, z)

∣∣∣∣
≤
∣∣∣∣min
u∈U

Au(W1)−min
u∈U

Au(w1)

∣∣∣∣+

∣∣∣∣min
u∈U

Au(w1)− w1(t, ξ, z)

∣∣∣∣+ |w1(t, ξ, z)−W1(t, ξ, z)

∣∣∣∣
≤
∣∣∣∣min
u∈U

Au(W1)−min
u∈U

Au(w1)

∣∣∣∣+ hε+ E1(h,∆y)

≤
∣∣∣∣ sup
u∈U

{
Au(W1)− Au(w1)

}∣∣∣∣+ E1(h,∆y) + hε.

By using (5.24), we have∣∣∣∣ sup
u∈U

{
Au(W1)− Au(w1)

}∣∣∣∣ ≤ ∣∣∣∣ sup
u∈U
{W1(t− h, ξ + hf(ξ, u), z)− w1(t− h, ξ + hf(ξ, u), z)}

∣∣∣∣
≤ E1(h,∆y).

Proof. of theorem 5.3.14. By using the theorem 5.3.11 and (5.28), we obtain that,∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)− max
θ∈[0,T ]

Ψ1(yn(θ), z))

∣∣∣∣
≤
∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−W1(T, y, z)

∣∣∣∣+

∣∣∣∣w1(T, y, z)−W1(T, y, z)

∣∣∣∣+

∣∣∣∣w1(T, y, z)− max
θ∈[0,T ]

Ψ1(yn(θ), z))

∣∣∣∣
≤
∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−W1(T, y, z)

∣∣∣∣+ E1(∆t,∆y) + Tε.
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By using again (5.24), one can simplify the last expression so that we have∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−W1(T, y, z)

∣∣∣∣
≤
n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk+1), z)

∨
max

θ∈[t0,tk+1]
Ψ1(Yn(θ), z)−W1(tn−k,Y

n(tk), z)
∨

max
θ∈[t0,tk]

Ψ1(Yn(θ), z)

∣∣∣∣
+

∣∣∣∣W1(0,Yn(T ), z)
∨
w1(0,Yn(T ), z)−W1(0,Yn(T ), z)

∣∣∣∣+

∣∣∣∣W1(T, y, z)
∨
w1(T, y, z)−W1(T, y, z)

∣∣∣∣
≤
n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk+1), z)

∨
max

θ∈[t0,tk+1]
Ψ1(Yn(θ), z)−W1(tn−k,Y

n(tk), z)

∣∣∣∣+ 2E1(∆t,∆y).

It follows from above that∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−Ψ1(yn(θ), z)

∣∣∣∣
≤
n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk+1), z)

∨
max

θ∈[t0,tk+1]
Ψ1(Yn(θ), z)−W1(tn−k,Y

n(tk), z)

∣∣∣∣+ 3E1(∆t,∆y) + Tε

≤
n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk) + hf(Yn(tk), unk ), z)

∨
max
θ∈[0,h]

Ψ1(Yn(tk) + θf(Yn(tk), unk ), z)−W1(tn−k,Y
n(tk), z)

∣∣∣∣
+

n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk+1), z)

∨
max

θ∈[tk,tk+1]
Ψ1(Yn(θ), z)

−W1(tn−k−1,Y
n(tk) + hf(Yn(tk), unk ), z)

∨
max
θ∈[0,h]

Ψ1(Yn(tk) + θf(Yn(tk), unk ), z)

∣∣∣∣+ 3E1(∆t,∆y) + Tε.

Since uk is chosen to achieve the minimum, if follows from the proposition that,∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−Ψ1(yn(θ), z)

∣∣∣∣
≤ 2Tε+ (2n+ 3)E1(∆t,∆y) +

n−1∑
k=0

∣∣∣∣W1(tn−k−1,Y
n(tk+1), z)

∨
max

θ∈[tk,tk+1]
Ψ1(Yn(θ), z)(5.29)

−W1(tn−k−1,Y
n(tk) + hf(Yn(tk), unk ), z)

∨
max
θ∈[0,h]

Ψ1(Yn(tk) + θf(Yn(tk), unk ), z)

∣∣∣∣.
Now, let LW1 be the Lipschitz constant of W1. By using again the arguments that
in the proof of the proposition 5.3.12, one can show that for all k = 0, . . . , n− 1∣∣∣∣W1(tn−k−1,Y

n(tk+1), z)−W1(tn−k−1,Y
n(tk) + hf(Yn(tk), unk ), z)

∣∣∣∣
≤ LW1

hdistH

(
h−1

(
R(h,Yn(tk))−Yn(tk)

)
, f(Yn(tk), U)

)
< h

ε

2
,

and ∣∣∣∣ max
θ∈[tk,tk+1]

Ψ1(Yn(θ), z)− max
θ∈[0,h]

Ψ1(Yn(tk) + θf(Yn(tk), unk ), z)

∣∣∣∣
≤ LW1hdistH

(
h−1

(
R(h,Yn(tk))−Yn(tk)

)
, f(Yn(tk), U)

)
< h

ε

2
.

Then, from (5.29), we obtain the following result :∣∣∣∣ max
θ∈[0,T ]

Ψ1(Yn(θ), z)−Ψ1(yn(θ), z)

∣∣∣∣ ≤ 3Tε+ (2n+ 3)E1(∆t,∆y).
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Corollary 5.3.16 Assume (H1), (H2) and (H4) hold. Let w1 be the unique lipschitz
continuous viscosity solution of the equation (5.14). Let Wh be an approximation
of w1 given by the Finite Di�erence scheme or the Semi Lagrangian scheme. Let
{Yn(.),un2 (.)} be the sequence generated by the algorithm A for W1. Then, if we
have the following estimates :

max
θ∈[0,T ]

Ψ1(Yn(θ), z)→ max
θ∈[0,T ]

Ψ1(ȳ(θ), z) = w1(T, y, z),

where ȳ is the optimal trajectory for the problem (5.12).

Proof. Let {yn(.),un1 (.)} and {Yn(.),un2 (.)} be the sequences generated by the
algorithm A for w1 and W1 respectively. By theorem 5.3.14, we have, for all ε > 0,∣∣∣∣ max

θ∈[0,T ]
Ψ1(Yn(θ), z)− max

θ∈[0,T ]
Ψ1(yn(θ), z)

∣∣∣∣ ≤ 3Tε+ (2n+ 3)E1(∆t,∆y).

Since the error estimate of the Finite Di�erence scheme and the Semi Lagrangian
scheme are the same and it takes the following form :∣∣∣W1(t, y, z)− w1(t, y, z)

∣∣∣ ≤ k(∆t
1
2 + ∆y).

By taking (∆t
1
2 + ∆y) ' ◦(h) and letting h→ 0, we obtain the result.

Reconstruction using the exit time function

An alternative way to deal with the reconstruction of the optimal trajectories for
(5.7), is to use the exit time function T1. Unfortunately, there is no convergence result
for such algorithm. However, we have seen that the optimal trajectories construc-
ted from T1 are also optimal for (5.12) and (5.7). Let us formulate the Dynamic
Programming Principle for the exit time problem.

Proposition 5.3.17 Assume (H1), (H2) and (H4) hold. Then, for all (y, z) ∈
Rd+1,

T1(y, z) := sup
α∈U

{
T1(yα(t), z) + t

}∧
T, ∀t ∈

[
0, T1(y, z)

]
.

Proof. Let θ := supα∈U

{
T1(yα(t), z) + t

}
. By de�nition of T1, there exists α ∈ U

such that,

ỹαỹ (τ) ∈ D1, ∀τ ∈ [0, T1(y, z)].

De�ne ᾱ by ᾱ(s) := α(s+ t) for all s ∈ [0, T1(y, z)− t]. Then, we have

ỹᾱỹ(t)(s) ∈ D1, ∀s ∈ [0, T1(y, z)− t].
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It follows from the de�nition of T1(yᾱ(t), z) that

T1(yᾱ(t), z) ≥ T1(y, z)− t.

Taking the supremum over the set of controls U , we obtain that T1(y, z) ≤ θ.

Conversely, let us prove that T1(y, z) ≥ θ and consider a ∈ U such that,

ỹaỹ(s) ∈ D1, ∀s ∈ [0, t].

From the de�nition of T1(ya(t), z), we have that there exists ā ∈ U such that,

ỹāỹa(t)(s) ∈ D1, ∀s ∈ [0, T1(ya(t), z)].

Now, de�ne the following control :

α(s) = a(s)1[
0,t
] + ā(s− t)1[

t,T1(ya(t),z)
].

Note that α ∈ U . Then, we have that,

ỹαy (s) ∈ D1, ∀s ∈ [0, T1(ya(t), z) + t].

By de�nition of T1(y, z), we have

T1(y, z) ≥ T1(ya(t), z) + t.

We get the result by taking the supremum over the set of controls. From the fact
that T1(y, z) ≤ T , we conclude the Dynamic Programming Principle.

Remark 5.3.18 The value function ϑ1 is upper semi contiunous and the exit time
function is lower semi continuous. Under pointing controllability assumptions of
inward type, one can obtain that both of ϑ1 and T1 are Lipschitz continuous and
the convergence of the trajectories in the previous section can be extended to the
algorithms using ϑ1 and T1.

The following formal algorithm uses the exit time function to reconstruct optimal
trajectories for (5.7),

Algorithm B. For a given n ∈ N, let (t0 = 0, t1...tn−1, tn = T ) be an uniform
partition of [0, T ] with the time step h = T

n
. Let {yn(·), zn(·)} be a trajectory

de�ned recursively at ti (i ≥ 1 ) with zn(·) := z. Set yn(t0) = y and ϑ1(T, y) := z.

Step 1 Knowing the state yn(tk) choose the optimal control at tk :

unk ∈ arg max
u∈U

{([
T1

](
yn(tk) + hf

(
yn(tk), u

)
, z
)

+ h

)∧
T

}
,

where
[
A
]
denotes the linear interpolation of A.
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Step 2 The next point of the state corresponding to the minimizing value u(tk) =
unk is :

yn(tk+1) := yn(tk) + hf
(
yn(tk),u(tk)

)
.

and zn(·) := z.

Remark 5.3.19 For the numerical point of view, one can stress that the choice
of the algorithm using the exit time function allows to reduce the dimension of the
matrix that will be saved for the reconstruction and thus making the economy of the
CPU time and the available memory. Moreover, with the algorithm using the exit
time function, one can save the matrix just at the last time. For high dimensions,
it cannot be possible to use the algorithm of reconstruction by minimizing the value
function because of CPU time and the memory required for this operation. The algo-
rithm of reconstruction using the exit time function can be seen as the best alternative
for reconstruction algorithms in high dimensions.

5.4 State constrained control problem with Bolza

cost

The main objective of this section is to prove similar results to that obtained in the
last section, for the present state-constrained control problem with Bolza cost. Let us
mention that this problem has been studied in [3] for Lipschitz continuous cost. Here,
we deal with the case of locally Lipschitz continuous cost with polynomial growth.
First of all, we want to characterize the epigraph of the value function in terms of
a locally Lipschitz continuous value function function associated to some auxiliary
control problem. More precisely, introduce the following augmented dynamics f̄ for
u ∈ U and ȳ := (y, z) ∈ Rd × R,

f̄((y, z), u) =

(
f(y, u)

−Φ2(y)

)
.

Let the associated augmented trajectory be denoted ȳ(s) := ȳ{y,z}(s) :=
(yu

y (s), ζuy,z(s)) (where ζ
u
z,y(s) := z −

∫ s
0

Φ2(yu
y (θ))dθ) solution of :

˙̄y(s) = f̄
(
ȳ(s),u(s)

)
, s ∈ (0, T ), (5.30a)

ȳ(0) = (y, z)T . (5.30b)

De�ne the associated set of feasible trajectories,

S̄[0,T ](ȳ) := {ȳ = (yu
y , ζ

u
y,z), ȳ satis�es (5.30) for some u ∈ U},

for ȳ = (y, z) ∈ Rd × R.

Remark 5.4.1 Since f(y, U) is convex, the augmented dynamics f̄(ȳ, U) is convex
(since Φ2(·) is not depending on the control u) and therefore S̄[0,T ](ȳ) is compact for
the topology of C([0, T ];Rd+1) (see [9]). Moreover, the function ϑ2 is lsc in [0, T ]×Rd.

In the same manner, we will consider some auxiliary optimal control problems for
which the continuous value functions (which will not be globally Lipschitz conti-
nuous) are characterized by di�erent HJB equations.
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5.4.1 Auxiliary optimal control with Bolza cost

Hamilton-Jacobi equation

Let us consider the new auxiliary control problem associated with a bolza problem
and de�ned in the following way :

w2(t, y, z) := inf
ȳ=(y,z)∈S̄[0,t](ȳ)

{(
− ζuy,z(t)

)∨(
max
θ∈[0,t]

g(yuy (θ))

)}
, (5.31)

The new control problem is free of any additional assumption of the set K neither
on the dynamics f̄ . Then, the following equivalences between w2 and ϑ2 holds.

Proposition 5.4.2 Assume (H1), (H3) and (H4) hold and let (t, y, z) ∈ [0, T ] ×
Rd × R. The value function w2 is related to ϑ2 by the following relations :

(i) ϑ2(t, y)− z ≤ 0⇔ w2(t, y, z) ≤ 0,

(ii) ϑ2(t, y) = min

{
z ∈ R , w2(t, y, z) ≤ 0

}
.

Proof. The proof is similar to that given in the proposition 5.3.2.

In this case, the value function of the auxiliary optimal control problem w2 is not
globally Lipschitz continuous, but it satis�es a polynomial growth property and a
Dynamic Programming Principle. De�ne the Hamiltonian :

H(y, p1, p2) := sup
u∈U

(
− f(y, u).p1 + Φ2(y).p2

)
for y, p1 ∈ Rd, p2 ∈ R

Proposition 5.4.3 Assume (H1) and (H3) hold.

(i) The function w2 is locally Lipschitz continuous. The function w2 has a polynomial
growth property, i.e, there exists C > 0, such that,

|w2(t, y, z)| ≤ C(1 + |y|q + |z|).

(ii) For any t ∈ [0, T ], h ≥ 0, such that t+ h ≤ T ,

w2(t+ h, y, z) = inf
ȳ:=(y,ζ)∈S̄[0,t](y,z)

{
w2(t,y(h), ζ(h))

∨
max
θ∈[0,h]

g(y(θ))

}
.

(iii) The function w2 is the unique continuous viscosity solution of the following HJ
equation :

min

(
∂tw2(t, y, z) + H(y,∇yw2, ∂zw2), w2(t, y, z)− g(y)

)
= 0,

in ]0, T ]× Rd × R (5.32a)

w2(0, y, z) = g(y) ∨ (−z), in Rd × R. (5.32b)
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Proof. The proof of the polynomial growth and the Lipschitz property is given in
Appendix B. The proof of (ii) is classical and its proof can be found also in [19].

The proof of w2 is a solution of (5.32) is similar to the proof of w1 is solution of
(5.14). For the uniqueness of the solution, let us �rst consider the following lemma :

Lemma 5.4.4 Assume (H1) and (H3). Then H is continuous and it satis�es,

(i) Let λ be a modulus of continuity of Φ2, i.e,

|Φ2(y1)− Φ2(y2)| ≤ λ(|y1 − y2|, R), ∀R > 0 and y1, y2 ∈ B(◦, R),

such that λ(., R) is continuous, nondecreasing and λ(0, R) = 0. Then, for all R > 0, p ∈ Rd,
m ∈ R, y1, y2 ∈ BR,

|H(y1, p,m)−H(y2, p,m)| ≤ L|p|.|y1 − y2|+ |m|.λ(|y1 − y2|, R).

(ii) For all p1, p2, y ∈ Rd, m1,m2 ∈ R,

|H(y, p1,m1)−H(y, p2,m2)| ≤ L(|y|q + 1)(|p1 − p2|+ |m1 −m2|).

Proof. By using the Lipschitz continuity of f and the continuity of Φ2, we obtain
for all R > 0, p ∈ Rd, m ∈ R, y1, y2 ∈ BR and a ∈ U ,

|H(y1, p,m)−H(y2, p,m)| ≤ sup
u∈U
|(f(y2, u)− f(y1, u)).p|+ |m|.|Φ2(y1)− Φ2(y2)|

≤ |f(y2, a)− f(y1, a)|.|p|+ |m|.|Φ2(y1)− Φ2(y2)|+ ε

≤ L|p|.|y2 − y1|+ |m|.λ(|y1 − y2|, R) + ε;

where λ(s, R) → 0 as s goes to 0 for all R > 0. Then the �rst inequality of lemma
5.4.4 follows from the arbitrariness of ε. Let us prove the second inequality of lemma
5.4.4. For all y, p1, p2 ∈ Rd, m1,m2 ∈ R and a ∈ U ,

|H(y, p1,m1)−H(y, p2,m2)| ≤ |(f(y, a).(p2 − p1)|+ |Φ2(y).(m1 −m2)|+ ε

≤ |f(y, a)|.|p1 − p2|+ |Φ2(y)|.|m1 −m2|+ ε

≤ L(1 + |y|q).(|p1 − p2|+ |m1 −m2|) + ε.

Since ε is arbitrary the proof of lemma 5.4.4 is complete.

The proof of uniqueness of solutions of the equation 5.32 follows from the comparison
principle (see Appendix D) using lemma 5.4.4.

Hamilton-Jacobi equation with a wise choice of the obstacle function

By using the same idea as for w̃1, we want to show that if the function g satis�es
some conditions, then the solution of (5.32) is constant out of some closed set.

For this, let us assume that the function g is de�ned by (5.15). Let w̃2 be de�ned
by :

w̃2(t, y, z) := inf
ȳ=(y,z)∈S̄[0,t](ȳ)

{((
− ζuy,z(t)

)
∨ max
θ∈[0,t]

g(yuy (θ))

)
∧ c̃
}

Then, the following theorem allows to characterize the value function w̃2 as the
unique viscosity solution of (5.32). Moreover, the solution is constant outside some
unbouded closed set.
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Theorem 5.4.5 Assume (H1) and (H3) hold. The function w̃2 is the unique conti-
nuous viscosity solution of the following HJ equation :

min

(
∂tw̃2(t, y, z) + H(y,∇yw̃2, ∂zw̃2), w̃2(t, y, z)− g(y) ∧ c̃

)
= 0,

in ]0, T ]×
◦

K̃ ×R (5.33a)

w̃2(0, y, z) =
(
g(y) ∨ (−z)

)
∧ c̃, in

◦

K̃ ×R. (5.33b)

w̃2(t, y, z) = c̃, ∀ t ∈ [0, T ], y /∈
◦

K̃ and z ∈ R

Proof. The �rst part (i) follows from (iii) of the proposition 5.4.3. Let us prove the

assertion (ii). For y /∈
◦

K̃ and z ∈ R, we have

g(y) ∧ c̃ = c̃.

It follows that :

Ψ2(y, z) = c̃.

From (5.32), we have w1(t, y, z) ≥ Ψ2(y, z), which implies that,

w̃2(t, y, z) ≥ c̃, ∀ t ∈ [0, T ], y /∈
◦

K̃ and z ∈ R.

By de�nition of w̃2, we have w̃2(t, y, z) ≤ c̃. This ends the proof of (ii) and then the
proof of the theorem 5.4.5.

Remark 5.4.6 Assume that the function Φ2 satis�es the following :

Φ2(y) ∈ [m,M ], ∀y ∈ K,

and z ∈]Tm− c̃, TM + c̃[. Then, we still have the characterization of ϑ2 by w2, i.e,

ϑ2(t, y) = inf
{
z ∈]Tm− c̃, TM + c̃[ | w̃2(t, y, z) ≤ 0

}
In addition, the function w2 is the unique continuous viscosity solution of the follo-
wing HJ equation :

min

(
∂tw̃2(t, y, z) + H(y,∇yw̃2, ∂zw̃2), w̃2(t, y, z)− g(y) ∧ c̃

)
= 0,

in ]0, T ]×
◦

K̃ ×]Tm− c̃, TM + c̃[,

w̃2(0, y, z) =
(

(−z) ∨ g(y)
)
∧ c̃, in

◦

K̃ ×]Tm− c̃, TM + c̃[.

w̃2(t, y, z) = c̃, ∀ t ∈ [0, T ], y /∈
◦

K̃ and z ∈ [Tm− c̃, TM + c̃],
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For the boundary condition, it is easy to check that

w̃2(t, y, Tm− c̃) = c̃, ∀t ∈ [0, T ], y ∈
◦

K̃ .

However, for the boundary condition on z = TM + c̃, one can make a slight change

on the de�nition of w̃2 so as to obtain w̃2(t, y, z) := c̃, ∀t ∈ [0, T ] and y ∈
◦

K̃. (see
the Chapter 6 for more details).

In the following, we will establish a link between the value functions w2 and ϑ2 and
a Backward reachable set. The latter is associated to some maximum time function.

5.4.2 Link with the maximum time function and reachability
problems

De�ne the maximum time function T2 : Rd+1 → [0, T ], which associates to each
point ȳ := (y, z) ∈ Rd+1, the maximum time to reach the target set C := K × R+

with an admissible trajectory ȳuȳ (·) := (y(·), ζ(·)) solution of (5.9) associated with
an admissible control u ∈ U , i.e,

T2(y, z) := sup

{
t ∈ [0, T ]

∣∣∣∣ ∃u ∈ U , s.t yuy (θ) ∈ K, ∀θ ∈ [0, t], and ζuy,z(t) ≥ 0

}
.

(5.35)
Now, de�ne the Capture basin with time horizon t associated to C, i.e, set of starting
points for which it is possible to reach the target set C at time t,

CapC(t) :=

{
(y, z) ∈ Rd+1

∣∣∣∣ ∃u ∈ U , s.t yuy (θ) ∈ K, ∀θ ∈ [0, t], and ζuy,z(t) ≥ 0

}
.

In the following proposition, we give a link between the value functions w2, v2 and
the set CapC(t).

Proposition 5.4.7 Assume (H1), (H3) and (H4) hold. Then, for t ∈ [0, T ] the
Capture basin CapC(t) is related to the value functions w2 and ϑ2 by the following
relations :

CapC(t) =
{

(y, z) ∈ Rd+1
∣∣ ϑ2(t, y) ≤ z

}
=
{

(y, z) ∈ Rd+1
∣∣ w2(t, y, z) ≤ 0

}
.

Proof. Let V2(t) :=
{

(y, z) ∈ Rd+1
∣∣ w2(t, y, z) ≤ 0

}
. The fact that V2(t) =

{
ŷ =

(y, z) ∈ Rd+1
∣∣ ϑ2(t, y) ≤ z

}
is a consequence of proposition 5.4.2. It remains to

prove that CapC(t) = V2(t),

Let ŷ = (y, z) ∈ CapC(t), it follows from the de�nition of CapC(t) that

∃u ∈ U , s.t ζuy,z(t) ≥ 0, and yuy (θ) ∈ K, ∀θ ∈ [0, t],

which is equivalent to,

∃u ∈ U , s.t
(
− ζuy,z(t)

)∨
max
θ∈[0,t]

g
(
yuy (θ)

)
≤ 0.
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Taking the in�mum over the set of trajectories, yields that w2(t, x, y) ≤ 0.

Conversely, assume that (y, z) ∈ V2(t). Then by de�nition of Vt we have w2(t, y, z) ≤
0. By Remark 5.4.1, there exists a trajectory ȳu

ȳ ∈ S̄[0,T ](y, z) starting from ȳ = (y, z)
depending on the control u ∈ U such that,

0 ≥ w2(t, y, z) =
(
− ζuȳ (t)

)∨
max
θ∈[0,t]

g
(
yuy (θ)

)
≤ 0

It follows that ȳ = (y, z) ∈ CapC(t) and the proof is completed.

The following theorem presents the obtained relations between the maximum time
function T2, the Capture basin CapC(t) and the value functions w2 and ϑ2.

Theorem 5.4.8 Assume (H1), (H3) and (H4) hold. Then the maximum time func-
tion T2 satis�es the following relations : :

(i) T2(y, z) = sup
{
t ∈ [0, T ]

∣∣ (y, z) ∈ CapC(t)
}

= sup
{
t ∈ [0, T ]

∣∣ w2(t, y, z) ≤ 0
}
,

(ii) T2(y, z) = t⇒ w2(t, y, z) = 0,

(iii) ϑ2(t, y) = inf
{
z
∣∣ T2(y, z) ≥ t

}
.

Proof. Let T̃2(y, z) := sup
{
t ∈ [0, T ]

∣∣ (y, z) ∈ CapC(t)
}
. The fact that T̃2(y, z) :=

sup
{
t ∈ [0, T ]

∣∣ w2(t, y, z) ≤ 0
}
is a consequence of proposition (5.4.7). It remains

to prove that T2(y, z) = T̃2(y, z). Let t := T2(y, z) and assume that t < ∞. There

exists an admissible trajectory ȳu
ȳ (.) = (yu

y (.), ζuy,z(.)) such that

yu
y (θ) ∈ K, ∀θ ∈ [0, t], and ζuy,z(t) ≥ 0

This implies that ȳ = (y, z) ∈ CapC(t). Hence T̃2(y, z) ≥ t by de�nition of T̃2(y, z).

Now, let t̃ := T̃2(y, z). For any n ≥ 1, there exists a sequence (tn)n≥1 such that tn ≤ t̃
such that tn → t̃ as n→∞ and w2(tn, y, z) ≤ 0, ∀n ≥ 1. There exists an admissible
trajectory ȳn := ȳun

ȳ such that yn(θ) ∈ K, ∀θ ∈ [0, tn] and ζn(tn) ≥ 0. Since C and
K ∈ R are closed and using the compactness arguments of trajectories, it is possible
to extract a subsequence ȳn converging uniformly on [0, t̃] to ȳ (with tn → t̃) such
that ζ(t̃) ≥ 0 and, y(t̃) ∈ K ∀θ ∈ [0, t̃]. Thus, by de�nition of T2(y, z), we obtain
T2(y, z) ≥ t̃, which concludes the proof of (i).

Now, let us prove (ii). Let t := T2(y, z). As a consequence of (i), we have that for
all n ≥ 1, ∃tn ∈ [t − 1

n
, t[ s.t w2(tn, y, z) ≤ 0. Since w2 is continuous, one obtain

w2(t, y, z) ≤ 0. On the other hand, ∀t1 ≥ t, w2(t1, y, z) > 0, then w1(t, y, z) ≥ 0 and
the proof (ii) is completed.

For the proof of (iii), one can deduce directly from (i) and proposition 5.3.7 that,
for all (t, y, z),

T2(y, z) ≥ t⇐⇒ ϑ2(t, y) ≤ z. (5.36)

The statement of (iii) follows from (5.36).
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We show also that, under some initial condition, the optimal trajectories of the
control problems (5.8) and (5.31) can be linked to the optimal trajectories associated
with the maximum time function T2.

Proposition 5.4.9 Assume (H1), (H3) and (H4) hold. Let y ∈ K such that
ϑ2(T, y) <∞. De�ne z := ϑ2(T, y).

(i) Let ȳ∗ = (y∗, ζ∗) be the optimal trajectory for the auxiliary control problem (5.31)
associated with the initial point (y, z) ∈ K × R. Then, the trajectory y∗ is optimal
for the control problem (5.8).

(ii) Let ȳ∗ = (y∗, ζ∗) be an optimal trajectory for the maximum time problem (5.35)
associated with the initial point (y, z) ∈ K × R. Then, ȳ∗ is also optimal for the
auxiliary control problem (5.31).

Proof. Let (y, z) ∈ K×R such that ϑ2(T, y) = z. First, let us prove that the optimal
trajectory ȳ∗ = (y∗, ζ∗) for the auxiliary control problem (5.31) associated with the
initial point (y, z) ∈ K × R ensures that y∗ is an optimal trajectory of the control
problem (5.8).

Using the proposition 5.4.2, we have :

ϑ2(T, y) = z ⇒ w2(T, y, z) ≤ 0.

Since ȳ∗ := (y∗, ζ∗) is an optimal trajectory of the problem (5.31) associated with
(y, z), it follows that,

w2(T, y, z) = −ζ∗(T ) ∨ max
s∈[0,T ]

g(y∗(s)) ≤ 0.

It follows that,

−ζ∗(T ) =

∫ T

0

Φ2(y∗(θ))dθ − z ≤ 0, and max
s∈[0,T ]

g(y∗(s)) ≤ 0. (5.37)

Since ϑ2(T, y) = z, it follows from (5.37), that∫ T

0

Φ2(y∗(θ))dθ ≤ ϑ2(T, x) and y∗(s) ∈ K, ∀s ∈ [0, T ].

By de�nition of ϑ1 one can conclude that,

ϑ2(T, x) =

∫ T

0

Φ2(y∗(θ))dθ and y∗(s) ∈ K, ∀s ∈ [0, T ].

Therefore, y∗ is an optimal trajectory for (5.7) associated with (y, z) and the proof
is completed.

Now, let us prove that the optimal trajectory ŷ∗ = (y∗, ζ∗) for the maximum time
problem (5.35) associated with the initial point (y, z) ∈ K×R such that ϑ1(T, y) = z
ensures that y∗ is the optimal trajectory of the problem (5.8).
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Let τ := T2(y, z). Since ŷ∗(·) = (y∗, ζ∗) is an optimal trajectory of the problem
(5.35), it follows from the de�nition of T2 that,

−ζ∗(τ) ≤ 0, and max
s∈[0,τ ]

g(y∗(s)) ≤ 0.

Since ϑ2(T, y) = z, we obtain∫ τ

0

Φ2(y∗(θ))dθ ≤ ϑ2(T, x) and y∗(s) ∈ K, ∀s ∈ [0, τ ].

If τ = T , then from the de�nition of ϑ2 one can conclude that y∗ is an optimal
trajectory for (5.8) associated with (y, z).

Assume τ < T . Since ϑ2(T, y) = z, then there exists a minimizing sequence yn of
admissible trajectories of S[0,T ](y) such that,

lim
n→∞

[ ∫ T

0

Φ2(yn(s))ds− z
]

= ϑ2(T, y)− z = 0.

Since all the trajectories are admissible, we have max
0≤θ≤t

g(yn(θ)) ≤ 0. It follows that,

lim
n→∞

[(∫ T

0

Φ2(yn(s))ds− z
)
∨ max

0≤θ≤T
g(yn(θ))

]
≤ 0. (5.38)

From (5.38) and the de�nition of the maximum time function T2, we obtain
T2(y, z) := τ ≥ T and this is a contradiction.

5.4.3 Reconstruction of optimal trajectories

This section is devoted to the reconstruction of optimal trajectories associated with
the control problem for which the value function is ϑ2. We have seen that the epi-
graph of ϑ2 can be characterized by a level set of a Lipschitz continuous value
function w2 of an auxiliary optimal control problem. The Lipschitz property of w2

allows to generate optimal trajectories.

Reconstruction by minimizing the value function

Consider the following version of the algorithm dedicated to the control problem
(5.31) :
Algorithm C. For a given n ∈ N let us consider (t0 = 0, t1...tn−1, tn = T ) a uniform
partition of [0, T ] with the time step h = T

n
. Let {Yn(.)} := {yn(.), ζn(.)} be a

trajectory de�ned recursively on the intervals (ti−1, ti] (i ≥ 1 ). Set Yn(t0) = (y, z)
(where ϑ2(tn, y) = z).

Step 1 Knowing the state Yn(tk), compute the optimal control at tk :

ak ∈ arg min
u

{
w2

(
tn−k−1,Y

n(tk) + hf̄
(
Yn(tk), u

))∨
max
θ∈[0,h]

g(yn(tk) + θf(yn(tk), u))

}
.
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Step 2 , De�ne uk(t) := ak be a constant control in t ∈ (tk, tk+1] and Yn(t) =
(yn(t), ζn(t)) on (tk, tk+1] be the solution to

Ẏ(t) := f̄(Y(t),uk(t)) a.e t ∈ (tk, tk+1].

with the initial condition Y(tk) = (y(tk), ζ(tk)).

Theorem 5.4.10 Assume that the hypothesis (H1), (H3) and (H4) hold. Let w2 be
the unique continuous viscosity solution of the equation (5.32) and let {Yn(.),un(.)}
be a sequence generated by algorithm C for n ≥ 1. Then, the sequence of trajectories
{Yn(.)}n has cluster points with respect to the uniform convergence topology. For any
cluster point Ȳ(.) there exists a control low ū(.) such that the pair (Ȳ(.), ū(.)) is
optimal for the problem (5.31).

Proof. The proof is similar to that given for theorem 5.3.11 and it is given in
Appendix C.

Reconstruction using an approximate value function

LetW2 be the solution given by a numerical scheme approximating the value function
w2 such that the error estimates takes the following form :

|W2(t, y, z)− w2(t, y, z)| ≤ E2(∆t,∆y,∆z), (5.39)

where E2 depends on ∆t, ∆y and ∆z such that ifW2(., .)→ w2(., .) as ∆t,∆y,∆z →
0.

Let Y be the trajectory associated with W2 given by the algorithm C. Then the
following holds :

Theorem 5.4.11 Assume (H1), (H3) and (H4) hold. Let w2 be the unique conti-
nuous viscosity solution of the equation (5.14). Let W2 be an approximation of w2

satisfying (5.39). Let {Yn
1 (.),un1 (.)} and {Yn

2 (.),un2 (.)} be the sequences respectively
generated by the algorithm C for w2 and W2 respectively. Then, for all ε > 0 we
have the following estimates :∣∣∣∣(− ζn1 (T ) ∨ max

θ∈[0,T ]
g(yn1 (θ))

)
−
(
− ζn2 (T ) ∨ max

θ∈[0,T ]
g(yn2 (θ))

)∣∣∣∣ ≤ 3Tε+ (2n+ 3)E2(∆t,∆y,∆z).

where Y1 := (y1, ζ1) and Y2 := (y2, ζ2).

Proof. The proof of the theorem 5.4.11 is similar to that given for the theorem
5.3.14.
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Reconstruction using the maximum time function

The reconstruction of optimal trajectories corresponding to (5.8) can be done using
the maximum time function T2 since it satis�es a Dynamic Programming Principle.

Proposition 5.4.12 Assume (H1), (H3) and (H4) hold. Then, for all (y, z) ∈
Rd+1,

T2(y, z) := sup
α∈U

{
T2(yα(t), ζα(t)) + t

}∧
T, ∀t ∈

[
0, T2(y, z)

]
.

Proof. The same proof is given for proposition 5.3.17.

The following formal algorithm uses the maximum time function to reconstruct
optimal trajectories for (5.7),

One can derive also a similar algorithm for the maximum time function T2 in the
following manner :

Algorithm D. For a given n ∈ N let us consider (t0 = 0, t1...tn−1, tn = T ) a
uniform partition of [0, T ] with the time step h = T

n
. Let Yn(.) := {yn(.), ζn(.)} be

a trajectory de�ned recursively at ti (i ≥ 1 ). Set yn(t0) = y and ζn(t0) = z.

Step 1 Knowing the state yn(tk) choose the optimal control at tk :

unk ∈ arg max
u∈U

{([
T2

](
Yn(tk) + hf̄

(
Yn(tk), u

))
+ h

)∧
T

}
, (5.40)

where
[
A
]
denotes the linear interpolation of A.

Step 2 The next point of the state corresponding to the minimizing value u(tk) =
unk is :

Yn(tk+1) := Yn(tk) + hf̄
(
Yn(tk),u(tk)

)
. (5.41)

In the next Chapter, we propose to work on a real application in order to see the
behaviour of our approach for state constrained control problems with maximum
cost problem and Bolza cost. In particular, we generate optimal trajectories using
the algorithms described above and we propose other formal algorithms.

Appendix

Appendix A. Proof of the Lipschitz property of w1

Consider ŷ = (y, z), ŷ′ = (y′, z′) ∈ Rd × R, t ∈ [0, T ], and w1(0, ŷ) ≡ max(ϕ(y) −
z, g(y)) ∧ c̃. By using the de�nition of w1 and the elementary inequalities

max(A,B)−max(C,D) ≤ max(A−C,B−D), and inf Aα−inf Bα ≤ sup(Aα−Bα),
(5.42)
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we obtain :

|w1(t, ŷ)− w1(t, ŷ′)| ≤ sup
α∈U

max
θ∈(0,T )

(∣∣∣Ψ1(yαy (θ), z)−Ψ1(yαy′(θ), z)
∣∣∣), (5.43)

≤ sup
α∈U

(
LΨ1 max

θ∈(t,T )

∣∣yαy (θ)− yαy′(θ)
∣∣)

where LΨ1 denote the Lipschitz constant of Ψ1. By using the Lipschitz property of

the function f̃ , for any θ ∈ (0, T ),
∣∣ŷαŷ (θ)− ŷαŷ′(θ)

∣∣ ≤ eL̂(θ)|ŷ− ŷ′| ≤ eL̂T |ŷ− ŷ′| (here
L̂ is the Lipschitz constant of f̂), we can conclude that

|w1(t, ŷ)− w1(t, ŷ′)| ≤ LΨ1e
L̂T |ŷ − ŷ′|. (5.44)

Alternatively, let ŷ = (y, z) be in Rd × R, and let t ≥ 0, h ≥ 0. Using the fact that
w1(t, ŷ) ≥ Ψ1(ŷ), we can deduce from the dynamic programming principle for w1

that

|w1(t+ h, ŷ)− w1(t, ŷ)|

≤ sup
α

max

(∣∣w1(t, ŷαŷ (h))− w1(t, ŷ))
∣∣, max
θ∈(0,h)

∣∣Ψ1(yαy (θ), z)−Ψ1(y, z)
∣∣)

≤ max

(
LΨ1e

L̂T |ŷαŷ (h)− ŷ|, LΨ1 max
θ∈(0,h)

|yαy (θ)− y|
)

where we have used (5.44).
Furthermore, denoting Cf := max

a∈U
|f(0, a)| < ∞, we have |f(y, a)| ≤ Cf + L|y|.

Hence, by a Gronwall estimate, we have |yαy (θ) − y| ≤ (Cf + L|y|)eLhh ≤ (Cf +
L|y|)eLTh for θ ∈ (0, h). We can obtain in the same fashion the estimate |ŷαŷ(θ)−
ŷ| ≤ (Ĉf + L̂|ŷ|)eL̂Th for every θ ∈ (0, h).
Therefore, we conclude that |w1(t′, ŷ)−w1(t, ŷ)| ≤ C(1+|ŷ|)|t′−t| for some constant
C > 0. Combining the inequalities above we get

|w1(t′, ŷ′)− w1(t, ŷ)| ≤ C(1 + |ŷ|) (|t′ − t|+ |ŷ′ − ŷ|),

for some constant C ≥ 0. In particular, we obtain the linear growth condition
|w1(t, ŷ)| ≤ C(1 + |ŷ|).

Appendix B. Proof of properties of w2

Proof. Locally Lipschitz property. Consider ȳ = (y, z) ∈ Rd × R, t ∈ [0, T ]. By
using the elementary inequalities (5.42), there exists u ∈ U , let y′ ∈ V (y) (where
V (y) denotes a neighborhood of y),∣∣∣∣w2(t, y, z)− w2(t, y′, z)

∣∣∣∣
≤ max

θ∈(0,t)

∣∣∣Ψ2(ȳuy,z(θ)−Ψ2(ȳuy′,z(θ)
∣∣∣,

≤ max
θ∈(0,t)

∣∣∣∣ ∫ θ

0

(
Φ2(yuy (s))− Φ2(yuy′(s))

)
ds
∨(

g(yuy (θ))− g(yuy′(θ))
)∣∣∣∣
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On the other hand, by using the Lipschitz property of the function f , for any θ ∈
(0, T ),

∣∣yαy (θ)−yαy′(θ)
∣∣ ≤ eL(θ)|y− y′| ≤ eLT |y− y′| (here L is the Lipschitz constant

of f)

Then, the set V (y) can be de�ned such that yuy′(θ) ∈ V (yuy (θ)) for all θ ∈ [0, T ]. It
follows that, ∣∣∣∣w2(t, y, z)− w2(t, y′, z)

∣∣∣∣ ≤ LV max
θ∈(0,t)

∣∣∣yuy (θ)− yuy′(θ)
∣∣∣,

we can conclude that

|w1(t, y, z)− w1(t, y′, z)| ≤ LV e
LT |y − y′|.

The Lipschitz property in z is obvious and one can get for all y′ ∈ V (y), and z, z′ ∈ R,

|w1(t, y, z)− w1(t, y′, z)| ≤ LV e
LT |y − y′|+ |z − z′|.

The Lipschitz property in t follows in the same way from the Dynamic programming
principle and classical argument as in the previous proof of Lipschitz property for
w1.

Proof. Polynomial growth property. Consider ȳ = (y, z) ∈ Rd × R, t ∈ [0, T ].
By using the elementary inequalities (5.42), there exists u ∈ U ,

|w2(t, ȳ)| ≤ max
θ∈(0,t)

∣∣∣Ψ2(ȳαȳ (θ)
∣∣∣, (5.45)

≤ max
θ∈(0,t)

∣∣∣− ζαȳ (θ)
∨

g(yu
y (θ))

∣∣∣ (5.46)

≤ max
θ∈(0,t)

∣∣∣( ∫ θ

0

Φ2(yu
y (s))ds− z

)∨(
g(0) + Lg|yu

y (θ)|
)∣∣∣ (5.47)

≤ max
θ∈(0,t)

(
c1

∫ θ

0

(1 + |yu
y (s)|q)ds+ |z|

)∨(
g(0) + Lg|yu

y (θ)|
)

where Lg is Lipschitz constant of g. By Lipschitz assumption of f , for any θ ∈ (0, T ),∣∣yu
y (θ)

∣∣ ≤ L(|y| +
√
Kθ)eKθ (where K = L + sup{|f(0, a) | a ∈ U} and L is the

Lipschitz constant of f). If follows that,

|w2(t, ȳ)| ≤
∣∣∣(c1

∫ t

0

(1 + |y|q + c2)ds− z
)∨

Lg|y|+ c3

∣∣∣
≤
∣∣∣(Tc1(1 + |y|q + c2)− z

)∨
Lg|y|+ c3

)
≤
∣∣∣(Tc1(1 + |y|q + c2) + |z|+ Lg|y|+ c3

)
≤ cT

(
1 + |y|q + |z|+ |y|

)
≤ cT

(
1 + |ȳ|q

)
where cT is a positive constant depending on T , L, Lg, and L1. We conclude that
the value function w2 has a polynomial growth.
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Appendix C. Proof of theorem 5.4.10

The proof of the theorem is based on the following property :

Proposition 5.4.13 Let Ω ⊂ Rd+1 be a compact set. Assume (H1)-(H3). Then for
all ε > 0 there exists δ > 0 such that for all h ∈ [0, δ], for all ξ := (y, z) ∈ Ω and
t ∈ [0, T ]∣∣∣∣1h

(
min
u∈U

{
w2(t− h, ξ + hf̄(ξ, u))

∨
max
θ∈[0,h]

g(y + θf(y, u))

}
− w2(t, ξ)

)∣∣∣∣ < ε

Proof.
Let us introduce a set-valued map R̄(·, ·) : [0, T ] × Rd+1 → Rd+1 de�ning for a

ξ := (y, z) ∈ Rd+1 and τ ∈ [0, T ] the reachable set of the dynamic system f̄ for the
trajectories starting from ξ and at time τ

R̄(τ, ξ) = {Y(τ), Y = (y, ζ) ∈ S̄[0,τ ](ξ)} (5.48)

Let Lg > 0 and Lw2 > 0 be the Lipshitz constants of g and w2 respectively. Due to
the hypothesis (H1) there exists a constant r > 0 such that for all ξ ∈ Ω, τ ∈ [0, T ]
R̄(τ, ξ) ⊂ rB (with B the unit ball centered at zero).

Fix a ε > 0. Using the properties of the reachable set (5.48) (see proposition 5.3 in
[95]), let us choose δ > 0 such that for all h ∈ (0, δ) ∩ (0, T ) and for all ξ ∈ Ω

max(Lg, Lw2) · distH(
1

h
(R̄(h, ξ)− ξ), f̄(ξ, U)) <

ε

2

where distH is the Hausdorf distance. Now, let us take ξ := (y, z) ∈ Ω and t ∈ [0, T ].

Recall that, due to the dynamic programming principle (5.14a) we have :

w2(t, ξ) = inf
Y:=(y,ζ)∈S̄[0,h](ξ)

(
w2(t− h,Y(h))

∨
max
θ∈[0,h]

g(y(θ))

)
Then∣∣∣∣min

u∈U

{
w2(t− h, ξ + hf̄(ξ, u))

∨
max
θ∈[0,h]

g(y + θf(y, u))

}
− w2(t, ξ)

∣∣∣∣
≤

∣∣∣∣∣min
u∈U

{
w2(t− h, ξ + hf̄(ξ, u))

∨
max
θ∈[0,h]

g(y + θf(y, u))

}
− inf

Y∈S̄[0,h](ξ)

(
w2(t− h,Y(h))

∨
max
θ∈[0,h]

g(y(θ))

)∣∣∣∣∣
≤

∣∣∣∣∣∣ sup
u∈U,Y∈S̄[0,h](ξ)

{
w2(t− h, ξ + hf̄(ξ, u))

∨
max
θ∈[0,h]

g(y + θf(y, u))− w2(t− h,Y(h))
∨

max
θ∈[0,h]

g(y(θ))

}∣∣∣∣∣∣
Let u ∈ U and y ∈ S[0,h](ξ). Then there exists u ∈ U such that y = yu

ξ on [0, h].
Let us show that ∣∣∣∣max

θ∈[0,h]
g(ξ + θf(ξ, u))− max

θ∈[0,h]
g(y(θ))

∣∣∣∣ < h · ε
2

(5.49)

Indeed, for all θ ∈ [0, h]

|g(y + θf(y, u))− g(y(θ))| ≤ Lg |y + θf(y, u)− y(θ)|
≤ LgdistH(R(θ, y), y + θf(y, U)) = LgdistH(R(θ, y)− y, θf(ξ, U))(5.50)

= LgθdistH(θ−1(R(θ, y)− y), f(y, U)) < θε ≤ hε
2
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Then the inequality (5.49) holds. With the similar arguments one can show also that∣∣w2(t− h, ξ + hf̄(ξ, u))− w2(t− h,Y(h))
∣∣ ≤ Lw2 |ξ + θf(ξ, u)− y(θ)|
≤ Lw2 · distH(R̄(h, ξ)− ξ, hf(ξ, U))

= Lw2 · h · distH(h−1(R̄(h, ξ)− ξ), f(ξ, U))

< h · ε
2

By recalling again (5.24), we have, for all u ∈ U and all Y := (y, ζ) ∈ S[0,h](ξ),∣∣∣∣w2(t− h, ξ + hf̄(ξ, u))
∨

max
θ∈[0,h]

g(y + θf(y, u))− w2(t− h,Y(h))
∨

max
θ∈[0,h]

g(y(θ))

∣∣∣∣
≤
∣∣∣∣w2(t− h, ξ + hf̄(ξ, u))

∨
max
θ∈[0,h]

g(y + θf(y, u))− w2(t− h, ξ + hf̄(ξ, u))
∨

max
θ∈[0,h]

g(y(θ))

∣∣∣∣
+

∣∣∣∣w2(t− h, ξ + hf̄(ξ, u))
∨

max
θ∈[0,h]

g(y(θ))− w2(t− h,Y(h))
∨

max
θ∈[0,h]

g(y(θ))

∣∣∣∣
≤
∣∣∣∣ max
θ∈[0,h]

g(y + θf(y, u))− max
θ∈[0,h]

g(y(θ))

∣∣∣∣+ |w2(t− h, ξ + hf(ξ, u))− w2(t− h,Y(h))|

< hε

and the proof of the proposition is done.

Proof.
Step 1. For all n ≥ 1, the function (Yn(.),un(.)) satis�es

Ẏn(t) := f̄(Yn(t),un(t)) a.e t ∈ [0, T ]

Recall the de�nition of the augmented dynamics in this case,

f̄(t) :=

(
fe(y

n(t),un(t))

−Φ2(yn(t))

)
a.e t ∈ [0, T ]

Let us denote Yn(.) := (yn(.), ζn(.)). The boundedness and the equicontinuity of
yn(.) follows respectively from (5.25) and (5.26). Let us prove the boundedness
and the equicontinuity of ζn(.). Indeed, the boundedness of ζn(.) follows from the
boundedness of yn(.) and the following polynomial growth property of function
y → Φ2(y) (that follows from the de�nition of Φ2), i.e there exists cΦ2 > 0 s.t,

Φ2(y) ≤ cΦ(1 + |y|q)

we obtain that,

|ζn(t)| ≤ |z|+ rcqT t ≤ c4

where cT is given by (5.25) and the boundedness of the sequence Yn(.) follows.
Moreover, the equicontinuity of {Yn(.)} holds using similar arguments.

By Arzela-Ascoli theorem we know that there exists a uniformly convergent subse-
quence {Yni(.)} that converges to the continuous solution Ȳ(.) as ni → ∞. The
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Dunford Pettis criterion allows to extract a subsequence converging weakly to a
trajectory limit l(.), i.e

Ẏi ⇀ l, in L1(Rd+1, [0, T ])

Using the dominated convergence theorem, we obtain that Ȳ is an absolutely

continuous function on [0, T ] and ˙̄Y(.) = l(.) a.e.

Set L(t, Y, p) = max
q∈f̄(Y,U)

< p, q >. Let {Ai} be a sequence of measurable subsets of

[0, T ] such that measure (Ai)→ T and 1i be the indicator function of Ai. Let V be
any measurable set in [0, T ], then we have,

0 ≤ lim sup
i→∞

∫
V ∩Ai

[
L

(
t,Yi(t), p

)
−
〈
p, Ẏi(t)

〉]
dt

0 ≤
∫
V

lim sup
i→∞

1iL

(
t,Yi(t), p

)
dt+ lim sup

i→∞

∫
V ∩Ai

〈
p, Ẏi(t)

〉
dt

0 ≤
∫
V

L

(
t, Ȳ (t), p

)
dt+ lim sup

i→∞

∫
V

〈
p, Ẏi(t)

〉
dt

+ lim sup
i→∞

∫
V ∩Aci

〈
p, Ẏi(t)

〉
dt

0 ≤
∫
V

[
L

(
t, Ȳ(t), p

)
−
〈
p, ˙̄Y(t)

〉]
dt

It follows from the arbitrariness of V that L(t, Ȳ(t), p) ≥< p, ˙̄Y(t) >. Since L is
continuous in p, it follows (see proposition 2.1.4 of [42]) that

˙̄Y(t) ∈ f̄(Ȳ(t), U)

By Fillipov's Lemma, we get a control function ū(.) such that (Ȳ(.), ū(.)) is an
admissible solution for the optimal control problem.

Step 2. The optimality of (Ȳ(.), ū(.)) will follow if,(
− ζ(T )

)∨(
max
θ∈[0,T ]

g(yn(θ))

)
→ w2(T, (y, z)) as n→∞

Let Lw be the Lipschitz constant of w1.

lim sup
n→∞

∣∣∣∣(− ζ(T )

)∨(
max
θ∈[0,T ]

g(yn(θ))

)
− w2(T, (y, z))

∣∣∣∣
≤ lim sup

n→∞

n−1∑
k=0

∣∣∣∣w2(tn−k−1,Y
n(tk+1))

∨
max

θ∈[t0,tk+1]
g(yn(θ))− w2(tn−k,Y

n(tk))
∨

max
θ∈[t0,tk]

g(yn(θ))

∣∣∣∣
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By recalling again (5.24), one can simplify the last expression so that we have

lim sup
n→∞

∣∣∣∣(− ζ(T )

)∨(
max
θ∈[0,T ]

g(yn(θ))

)
− w2(T, (y, z))

∣∣∣∣
≤ lim sup

n→∞

n∑
k=0

∣∣∣∣w2(tn−k−1,Y
n(tk+1))

∨
max

θ∈[tk,tk+1]
g(yn(θ))− w2(tn−k,Y

n(tk))

∣∣∣∣
≤ lim sup

n→∞

n∑
k=0

∣∣∣∣w2(tn−k−1,Y
n(tk) + hf̄(yn(tk), unk ))

∨
max
θ∈[0,h]

g(yn(tk) + θf(yn(tk), unk ))− w2(tn−k,Y
n(tk))

∣∣∣∣
+ lim sup

n→∞

n∑
k=0

∣∣∣∣w2(tn−k−1,Y
n(tk+1))

∨
max

θ∈[tk,tk+1]
g(yn(θ)) (5.51)

−w2(tn−k−1,Y
n(tk) + hf(Yn(tk), unk ))

∨
max
θ∈[0,h]

g(yn(tk) + θf(yn(tk), unk ))

∣∣∣∣
Since uk is chosen to achieve the minimum, the �rst term in the right hand side of
the last inequality is zero (due to the proposition 5.4.13. For the second term we use
the same arguments that in the proof of the proposition 5.4.13 to show that for all
k = 0, . . . , n− 1∣∣∣∣w2(tn−k−1,Y

n(tk+1))− w2(tn−k−1,Y
n(tk) + hf̄(Yn(tk), unk ))

∣∣∣∣
≤ Lw2hdistH

(
h−1

(
R̄(h,Yn(tk))−Yn(tk)

)
, f̄(Yn(tk), U)

)
< hε

and ∣∣∣∣ max
θ∈[tk,tk+1]

g(yn(θ), z)− max
θ∈[0,h]

g(yn(tk) + θf(yn(tk), unk ))

∣∣∣∣
≤ LghdistH

(
h−1

(
R(h,yn(tk))− yn(tk)

)
, f(yn(tk), U)

)
< hε

Then the second member of right hand side of the inequality (5.51) is also zero and
this achieves the proof.

Appendix D. Comparison principle for HJ equations with obs-
tacle terms

The aim of this section is to prove a comparison principle for the following HJ
equation in the presence of an obstacle term

min(ut(t, x) +H(x,∇u), u(t, x)− u0(x)) = 0 on (0, T )× Rd, (5.52a)

u(0, x) = u0(x), x ∈ Rd, (5.52b)

where T > 0 and u0 ∈ C(Rd), and H : Rd × Rd → R is continuous and assumed to
satisfy the following there exists C ≥ 0 such that{

for all x in Rd, p1, p2 ∈ Rd,

|H(x, p1)−H(x, p2)| ≤ C(|x|q + 1)|p1 − p2|,
(A1)
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{
for any R > 0, there exists a function wR : [0,∞)→ [0,∞), lim

r→0+
wR(r) = 0, s.t,

|H(x, p)−H(y, p)| ≤ C|p|.wR(|x− y|).
(A2)

For every p ∈ Rd, x, y ∈ BR, where BR denotes the open ball centered at 0 and of
radius R

Theorem 5.4.14 Let u, v be two functions of C([0, T ] × Rd), and let g, h be in
C(Rd). We assume that u (resp. v) is a sub-solution (resp. super-solution) of (5.52a)
in (0, T )× Rd :

min(ut(t, x) +H(x,∇u(t, x)), u(t, x)− g(x)) ≤ 0 in (0, T )× Rd, (5.53a)

min(vt(t, x) +H(x,∇v(t, x)), v(t, x)− h(x)) ≥ 0 in (0, T )× Rd. (5.53b)

We denote g(x) := u(0, x) and h(x) := v(0, x). Then for all t ∈ [0, T ],

sup
Rd

(u(t, .)− v(t, .)) ≤ sup
Rd

(g − h). (5.54)

Proof. The result without the obstacle term can be found in Ishii [68]. It su�ces
to prove the result for T > 0 small enough, the result for any T > 0 can then be
deduced by immediate recursion.

Assuming that C > 0, we take T = 1/(2qC) and L = L(x0) := 2qC(|x0|q + 1), and
we de�ne the set

Ox0 :=
{

(t, x) ∈ (0, T )× Rd, |x− x0| < (Lt)
1
q
}
.

(the case C = 0 is trivial). We claim that for every t0 ∈ (0, T )

u(t0, x0)− v(t0, x0) ≤ sup
Br(x0)

(g − h), (5.55)

(where Br(x0) is the ball of radius r = (L(T − t0))
1
q centered in x0) which

concludes (5.54). Let us consider t0 ∈ (0, T ) and prove the claim. First, notice
that for any (t, x) ∈ Ox0 , there holds C(|x|q + 1) ≤ qC(|x0|q + 1) + qC|x − x0|q ≤
L
2

+ qCLT ≤ L
2

+ 1
2
L = L, and thus

|H(x, p1)−H(x, p2)| ≤ L|p1 − p2|, x ∈ Bs(x0).

where s = (LT )
1
q . We also de�ne for any (t̄, x̄) ∈ Ox0 and τ ∈ (t̄, T ) the set

Ot̄,x̄,τ :=
{

(t, x) ∈ (t̄, τ)× Rd, |x− x̄| < (L(t− t̄))
1
q
}
.

According to Crandall-Lions [46], and Ishii [68], the following Lemma holds :

Lemma 5.4.15 If u, v belongs to C(Ot̄,x̄,t) with t ∈ (t̄, T ), and are respectively
viscosity solutions of

−ut +H(x,∇u) ≤ 0 in Ot̄,x̄,t, (5.56a)

−vt +H(x,∇v) ≥ 0 in Ot̄,x̄,t, (5.56b)
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then

u(t̄, x̄)− v(t̄, x̄) ≤ sup
Br̄(x̄)

(u(t, .)− v(t, .)).

where r̄ = (L(t− t̄))
1
q .

Consider the set
Σ := {(t, x) ∈ Ox0 , u(t, x) ≤ g(x)},

and its complement in Ox0

Ω := Ox0\Σ.

Since u is a sub-solution of (5.53a), u is also a sub-solution of ut + H(x,∇u) = 0
on the open set Ω. Furthermore, v being a super-solution of (5.53b), it is also a
super-solution of vt +H(x,∇v) = 0 on the open set Ω.
On the other hand, from (5.53b), it follows that v(t, x) ≥ g(x) everywhere. Hence

∀(t, x) ∈ Σ, u(t, x)− v(t, x) ≤ g(x)− h(x) ≤ sup
Br(x0)

(g − h). (5.57)

Now, assume that

u(t0, x0)− v(t0, x0) > M := sup
Br(x0)

(g − h), (5.58)

and de�ne, for τ ∈ [0, T ] (with τ > t0), the set

Ot0,x0,τ :=
{

(t, x) ∈ (t0, τ)× Rd, |x− x0| < (L(t− t0))
1
q
}
.

Using the continuity of u− v in (t0, x0), there exists a neighborhood Γ of (t0, x0) in
Ox0 satisfying :

u(t, x)− v(t, x) > M ≥ sup
Br(x0)

(g − h) ∀(x, t) ∈ Γ.

Taking into account (5.57), it follows that Γ is necessarily included in Ω. Hence,
there exists a τ > t0 such that the set Ot0,x0,τ is also included in Ω. Set

t1 := sup
{
τ ∈ (t0, T ], Ot0,x0,τ

⋂
Γ = ∅

}
.

(Ot0,x0,t1 is the greatest set Ot0,x0,τ such that Ot0,x0,τ ⊂ Ω.) Applying Lemma 5.4.15
to the set Ot0,x0,t1 , we obtain

u(t0, x0)− v(t0, x0) ≤ sup
Bp(x0)

(u(t1, .)− v(t1, .)).

where p = L(t1− t0)
1
q . If t1 = T , then u(t0, x0)−v(t0, x0) ≤ supBs(x0)(uT −vT ) = M ,

which contradicts (5.58). Hence t1 < T . We consider a point x1 of the ball Bp(x0)
at which a maximum of u(t1, ·)− v(t1, ·) is attained. We get

M < u(t0, x0)− v(t0, x0) ≤ u(t1, x1)− v(t1, x1).
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We re-iterate the previous argument to obtain the existence of a t2 in (t1, T ) cor-
responding to the greatest set of the form Ot1,x1,t2 and satisfying Ot1,x1,t2 ⊂ Ω, and
then the existence of a point x2 in B

(L(t2−t1))
1
q
(x1) ⊂ B

(L(t2−t0))
1
q
(x0) such that

M < u(t1, x1)− v(t1, x1) ≤ u(t2, x2)− v(t2, x2),

and so on. Therefore we construct an increasing sequence of times (tk), and a se-
quence of points (xk) such that the points (tk, xk) belong to the set Ox0 . Because
Ox0 is a compact set, we can extract a convergent subsequence limiting to (t∗, x∗)
in Ox0 . Moreover,

M < u(t∗, x∗)− v(t∗, x∗).

If t∗ = T , we obtain a contradiction. Hence t∗ < T . Now by continuity, we must
have u(t, x) − v(t, x) > M in a neighborhood of (t∗, x∗), for instance in the tube C
centered at (t∗, x∗) de�ned by

C := ]t∗ − τ0, t
∗ + τ0[ × (Bn(x∗)),

where n = (Lτ0)
1
q , for τ0 > 0 su�ciently small. On the other hand, as soon as

t∗ − tk < τ0, we have Otk,xk,tk+1
⊂ Otk,xk,t∗ ⊂ C ⊂ Ω. This contradicts the fact

that tk+1 is the maximum time τ such that Otk,xk,τ ⊂ Ω. This concludes the proof
of (5.55).
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CHAPITRE VI

OPTIMAL FEEDBACK CONTROL
FOR THE ABORT LANDING
PROBLEM IN PRESENCE OF

WINDSHEAR

Publications of this chapter

M. Assellaou, O. Bokanowski, A. Desilles and H. Zidani, Optimal feedback control
for the abort landing problem in presence of windshear , in preparation.

6.1 Introduction

The problem of the control of the aircraft �ying through the wind shear is one
of the most important issues in the aerodynamics of the �ight, in particular, in a
landing framework. Indeed, several aircraft accidents have been attributed to wind
shear [35]. This meteorological phenomenon is de�ned as the change on speed and
direction of the wind over a small distance. This change of the wind a�ects the
aircraft motion relative to the ground and it has more signi�cant e�ects during the
landing case.

As the aircraft passes through the wind shear level, the aircraft su�ers a loss of the
lift force and the airspeed. The pilot encounters a headwind with transition to the
tailwind coupled with a descending air which spreads horizontally near the ground.
This generates a signi�cant threat of the resulting inertia wind shear force.

The penetration landing in presence of wind shear is unsafe in a high altitude. The
abort landing problem is the best strategy to avoid the failed landing. This procedure
consists in steering the aircraft to the maximum altitude that can reach in order to
prevent a crash on the ground. In the references [86], [85], the authors propose a
Chebyshev-type optimal control for which an approximate solution for the problem
is given with the associated feedback control. This solution was improved in [35]
and [36] by considering the switching structure of the problem that has bang-bang
subarcs and singular arcs.
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The present chapter is concerned by a similar optimal problem as in
[86], [85], [35], [36]. The Hamilton Jacobi approach is used in order to calcu-
late the corresponding value function. The presence of constraints on the de�nition
of the optimal control problem precludes the characterization of the value function
-without any controllability assumption- as the unique solution of a Hamilton
Jacobi equation. Here, we will characterize the epigraph of the value function, as it
is done in the theoretical part of this chapter, using some auxiliary optimal control
problems.

In this chapter, we will introduce two optimal control problems with maximum and
Bolza types associated with di�erent models of equations of motion. Then, we will
consider the Finite Di�erence and the Semi Lagrangian schemes for which we will
study the stability issues. Next, we will reconstruct the associated optimal trajec-
tories and feedback control using di�erent algorithms of reconstruction discussed in
the last section. Furtheremore, we introduce additional algorithms and focus on the
regularity issue of the feedback control. In this framework, we discuss the regulari-
zation approach to improve the history of the feedback control. Many simulations
will be included in this chapter involving data of a Boeing 727 aircraft model.

This chapter will be organized as follows. Section 6.2 contains the background of
the aerodynamic of �ight. The formulation of the control problem is given in section
6.3. In sections 6.5-6.6, we give the numerical schemes and the study of the stability.
Then, we reconstruct the trajectories using di�erent algorithms proposed in sections
6.7 and 6.8.

6.2 Background for the �ight aerodynamic

6.2.1 Equation of motion

Consider the �ight of an airplane in a vertical plane over a �at earth where the
thrust, the aerodynamic and weight are forces acting on the center of gravity of the
airplane and they lie in the plane of symmetry. Let V be the velocity vector of the
airplane relative to the atmosphere. In order to clarify the derivation of equations
of motion, let us de�ne the following coordinate systems (see Figure 6.1) :

∗ The ground axes system Exeyeze �xed to the surface of earth at mean sea level.
∗ The wind axes system denoted by Oxwywzw moving with the airplane and the xw
axis coincides with the velocity vector.

The path angle γ is de�ning the wind axes orientation with respect to the ground
horizon axes. Let E0 be the position vector of center of the gravity relative to the
ground.

The derivation of the position vector and the Newton's second law with the external
force acting on the airplane yield the following equations,

V0 =
d E0

dt
, (6.1a)

F = m
dV0

dt
, (6.1b)
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Figure 6.1 � Coordinate Systems for Flight in a Vertical Plane.

where V0 = V + w is the resultant velocity of the airplane relative to the ground
axes system (w is the velocity of the atmosphere relative to the ground axis system)
and F is the resultant force vector acting on the center of gravity of the aircraft.
Figure 6.2 shows the following forces :

- The vector of the thrust force FT. The modulus of the thrust force is, in general,
of the form FT := FT (V, β) where (V is the modulus of the velocity V and β is the
power setting of the engine which identi�es the ratio of the actual revolution per
minute (rpm, measure of rotation's frequency) per the maximum allowable rpm.)

- The vectors of the lift and drag forces FL and FD.The norms of the lift and
the drag forces are supposed to satisfy the following relations :

FL =
1

2
ρV 2Scl, FD =

1

2
ρV 2Scd, (6.2)

where ρ is the air density on altitude and S is the wing area. The coe�cients cd and
cl may depend on the angle of attack and the nature of the airplane.

- The vector of the weight force FP. the modulus of the weight obeys the known
relation Fp = mg (m ,g are respectively the aircraft mass and gravitational force
per unit mass).

Let the velocity vector of the atmosphere be written in the ground axis system :

w = wxie − whke,

where wx and wh are respectively the horizontal component and the vertical com-
ponent of the wind velocity. The vector V0 in the ground axis system takes the
following form,

V0 = (V cos γ + wx)ie − (V sin γ + wy)ke. (6.3)
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Figure 6.2 � Forces acting on the aircraft in �ight in a moving atmosphere.

Then, by using (6.1a) with (6.3), the following scalar system is obtained :{
ẋ = V cos γ + wx,

ḣ = V sin γ + wh,
(6.4)

In the wind coordinate system, the forces acting on the aircraft can be written in
the following form :

FT = FT cos(α + δ)iw − FT sin(α + δ)kw, FD = −FDiw,

FP = −FP sin γiw + FP cos γkw, FL = −FLkw,

The resultant external force becomes in this coordinate system :

F = (FT cos(α + δ)− FD − FP sin γ)iw − (FT sin(α + δ) + FL − FP cos γ)kw.(6.5)

The acceleration of the airplane with respect to the ground can be written in the
wind axes :

dV0

dt
= V̇ iw + V

diw
dt

+ ẇxie − ẇhke

= V̇ iw − V γ̇kw + ẇx(cos γiw + sin γkw)

− ẇh(− sin γiw + cos γkw)

= (V̇ + ẇx cos γ + ẇh sin γ)iw − (V γ̇ − ẇx sin γ + ẇh cos γ)kw. (6.6)

where the time derivatives of the components of the wind are given by,

ẇx =
∂wx
∂x

(V cos γ + wx) +
∂wx
∂h

(V sin γ + wh).

ẇh =
∂wh
∂x

(V cos γ + wx) +
∂wh
∂h

(V sin γ + wh).

Replacing (6.5) and (6.6) in the Newton's law (6.1b), the balance of forces gives the
following scalar equations :{

V̇ = FT
m

cos(α + δ)− FD
m
− FP

m
sin γ − (ẇx cos γ + ẇh sin γ)

γ̇ = 1
V

(FT
m

sin(α + δ) + FL
m
− FP

m
cos γ + (ẇx sin γ − ẇh cos γ)).

(6.7)
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By adding (6.4) to (6.7), we obtain the equations of motion in a vertical plane over
a �at plane :

ẋ = V cos γ + wx

ḣ = V sin γ + wh

V̇ = FT
m

cos(α + δ)− FD
m
− g sin γ − (ẇx cos γ + ẇh sin γ)

γ̇ = 1
V

(FT
m

sin(α + δ) + FL
m
− g cos γ + (ẇx sin γ − ẇh cos γ)).

(6.8)

6.2.2 Di�erent models

In �ight, the aircraft movements cause a change of the forces balance and a�ects
the value of the angle of attack α. Then, α can be a control of the dynamics (6.8).
The airplane can also be controlled by moving a device used for piloting some �xed
wing aircraft called the throttle. Moving the throttle leads to the change of the �ow
rate which causes a change of the revolution per minute (rpm). The power setting β
used to control the relative rpm of the engine, can also be a control corresponding
to the throttle.

Instead of considering the control variables, one can think to control its derivatives
and take into consideration an augmented state variables vector. When the control
is non smooth enough, this last procedure presents a best regularization approach
of the control variable. Indeed, in [35], the control is u = α̇ and the state variables
are increased by one.

Here, we present two models of the equation of motion depending on the choice of
the controls variables and the control dependence of the aerodynamic forces. Let d
be the dimension of any model described below and T a �xed time horizon and y0

the initial point, the equations of motion are supposed to be in the following form,

ẏ(s) = f(y(s),u(s)), s ∈ [0, T ], (6.9a)

y(0) = y0, (6.9b)

where y(s) ∈ Rd is the vector of state variables at time s ∈ [0, T ] and f the dynamic
depending on the model. The vector of controls is u. Denote yu

y0
(.) the trajectory

corresponding to the control u and the initial point y0.

M1- model : The �rst model of the equations of motion is a four dimensional
di�erential equations given by (6.8) (the function f is given by the right hand side
of (6.8)), where y(.) = (x(.), h(.), V (.), γ(.)) is the state variables. The vector control
here is u(.) = (α(.), β(.)) (where α is the angle of attack and β is the power setting).
The aerodynamic forces are only functions of velocity i.e

FD = FD(V ), FL = FL(V ),

whereas the thrust function is assumed to be a function of the power setting β and
the velocity V , i.e, FT := βFT (V ).
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M2- model : The second model considered here is a �ve dimensional di�erential
equation of the following form,

ẋ = V cos γ + wx,

ḣ = V sin γ + wh,

V̇ = FT
m

cos(α + δ)− FD
m
− g sin γ − (ẇx cos γ + ẇh sin γ),

γ̇ = 1
V

(FT
m

sin(α + δ) + FL
m
− g cos γ + (ẇx sin γ − ẇh cos γ)),

α̇ = u.

(6.10)

The equations of motion involve the �ve state variables whose derivatives appear in
the equations of motion, that is, y(.) = (x(.), h(.), V (.), γ(.), α(.)). The control u in
this model is the angular speed of the angle of attack α.The aerodynamic forces are
depending on the velocity V and the control α and the thrust function is assumed
to be a function of velocity, that is

FD = FD(V, α), FL(V, α), FT = βFT (V ). (6.11)

where the power setting β is equal to 1.

Remark 6.2.1 The �rst model M1 is based on some approximation of the aerody-
namic forces. Nevertheless, it will help us to explore some numerical aspects for this
real application, namely, the stability issue of the considered schemes. The 5D-model
M2 has already been studied in [86], [85], [35], [36] for a power setting β in the
from of an a�ne function for the �rst three seconds and equal to 1 for the following.
Here, we justify our choice of β by the fact that the pilot has to achieve the maximal
thrust when he realizes that the windshear phenomenon occurs. The model M2 is
more realistic since the aerodynamic forces are depending on the velocity and the
angle of attack as well. This is a good example to validate our approach developed in
the Chapter 5 for real applications. Both models satisfy the assumptions considered
in this Chapter 5 (see Appendix A). In the next section, we will present the control
problem we want to solve and the associated constraints.

6.3 Statement of the problem

6.3.1 State and control constraints

This subsection presents di�erent physical types of control and state constraints
that prevent the resolution of the problems in all domain. These constraints are
characterizing the structure of the airplane and the sensitivity of the trajectories in
the abort landing problem. Denote by K the set of state constraints that will contain
all the constraints corresponding to the state variables. The following constraints
are characterizing the aircraft :

∗ The velocity norm V can not be negative. The velocity is zero means that the
aircraft is not moving which is not compatible with our problem. Moreover, the
velocity is characterizing the aircraft and it satis�es V (·) ≤ Vmax ( where Vmax is
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given by the aircraft constructor). The airplane can not �y with a velocity lower
than a threshold Vmin (Vmin ≤ V ≤ Vmax).

∗ The inclination angle γ and the angle of attack α are obviously belonging to
[−π, π]. In addition, these angles can not exceed some upper and lower bounds
given by the constructor that is α(.) ∈ [αmin, αmax] and γ(·) ∈ [γmin, γmax] ⊆ [−π

2
, π

2
].

The power setting β belongs to [0, 1].

Besides the constraints of the aircraft structure, we have the constraints correspon-
ding to the abort landing problem :

∗ The altitude h is strictly positive. Otherwise, it is zero, then the aircraft can
touch the ground and this is what we want to avoid for this abort landing problem.
Moreover, the altitude is supposed to satisfy the following,

h(·) ∈ [hmin, hmax],

where hmin de�nes the lower altitude below which the abort landing is very di�cult
and hmax is a reference altitude (the cruise altitude for instance).

∗ There is no special assumption that can be made for the coordinate x of
the horizontal axis. However, the time horizon T is �xed which implies that
x(.) ∈ [xmin, xmax].

6.3.2 Optimality criterion

In the case of the wind-shear, the Airport Tra�c Control Tower has to choose
between two options. The �rst one is to penetrate inside the wind shear area and
try to make a successful landing. If the altitude is high enough, it is more safety to
choose another option : the abort landing, so as to avoid any unexpected unstability
of the aircraft. In this thesis, only the second option is considered.

Starting from an initial point y0 ∈ Rd, the optimality criterion is de�ned as the lower
altitude over a time interval , that is,

min
θ∈[0,T ]

h(θ),

where h(θ) is the altitude at time θ corresponding to the second component of the
vector y(θ) := yu

y (θ) solution of (6.9) at time θ starting from y.

Instead of considering the lower altitude as a cost function, one can choose to op-
timize the peak value over a time interval of the di�erence between the reference
altitude Hr and the instantaneous altitude. Let us de�ne the function Φ by the
following,

Φ(y) = Hr − h,

where h is the second component of vector y. The state constrained control problem
with a maximum cost related to Φ is given by the following form :
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(P1) := max
θ∈[0,T ]

{
Φ(yu

y (θ))
∣∣∣ u ∈ U , yu

y (s) ∈ K, s ∈ [0, T ]
}

In the case when Hr − h(t) ≥ 0, ∀t ∈ [0, T ], the Supremum norm functional can be
approximated by the Bolza functional using the relation between the Holder norm
and the supremum norm , i.e,

lim
k→∞

(∫ T

0

(Hr − h(t))2k

) 1
2k

= sup
0≤t≤T

(Hr − h(t)).

Let P2 be the state constained control problem with Bolza cost :

(P2) :=
{
r

∫ T

0

Φ(yu
y (θ))qdθ

∣∣∣ u ∈ U , yu
y (s) ∈ K, s ∈ [0, T ]

}
where r = 1

maxK Φ(y)q
, q are positive constants. Both control problems (P1) and (P2)

have been studied in the previous Chapter 5 for closed set K.

6.4 Hamilton Jacobi Bellman approach

Let us consider the value functions corresponding to the state constrained control
problem discussed above. One can associate with (P1), the following value function,

ϑ1(t, y) := min
u∈U

{
max
θ∈[0,t]

Φ(yu
y (θ))

∣∣∣ u ∈ U , yu
y (s) ∈ K, s ∈ [0, t]

}
For the Bolza problem (P2), one can consider the value function denoted by ϑ2,

ϑ2(t, y) := min
u∈U

{
r

∫ t

0

Φ(yu
y (θ))qdθ

∣∣∣ u ∈ U , yu
y (s) ∈ K, s ∈ [0, t]

}
The Hamilton Jacobi Bellman approach developed in the Chapter 5 is applied here
in order to compute the value function ϑ2 and ϑ1.

6.4.1 Problem (P1)

Let g be the signed distance function to K and let c̃ > 0 and de�ne the following
extended set K̃,

K̃ :≡ K + c̃B.

where B is the unit ball in Rd centred in origin. De�ne

Ψ̃1(y, z) =
(

(Φ1(y)− z) ∨ g(y)
)
∧ c̃,

where Ψ1 is de�ned in (5.13). Let w̃1 be de�ned by :

w̃1(t, y, z) := inf
ŷ=(y,z)∈Ŝ[0,t](y,z)

max
θ∈[0,t]

Ψ̃1(y(θ), z).
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De�ne the Hamiltonian :

H(y, p) := sup
u∈U

(
− f(y, u).p

)
.

Since K is compact, then the function Φ1 satis�es the following :

Φ1(y) ∈ [m,M ], ∀y ∈ K,

Then, the value function w̃1 describes the epigraph of ϑ1.

ϑ1(t, y) = inf

{
z ∈]m− 1,M + 1[, w1(t, y, z) ≤ 0

}
.

(where 1 means a small constant). Moreover, the value function w1 is the unique
Lipschitz continuous viscosity solution of the following Hamilton Jacobi equation,

min

(
∂tw̃1(t, y, z) + H(y,∇yw̃1), w̃1(t, y, z)− Ψ̃1(y, z)

)
= 0,

in [0, T ]×
◦

K̃ ×]m− 1,M + 1[, (6.12a)

w̃1(0, y, z) = Ψ̃1(y, z), in
◦

K̃ ×]m− 1,M + 1[. (6.12b)

w̃1(t, y, z) = c̃, for all t ∈ [0, T ], y /∈
◦

K̃ and z ∈]m− 1,M + 1[ ,(6.12c)

We don't need any boundary condition on the boundary of z because the dynamics
is zero ż(t) = 0.

6.4.2 Problem (P2)

Since K is compact then, the function Φ2(·) := rΦ(·)q satis�es the following,

Φ2(y) ∈ [m,M ], ∀y ∈ K̃,

Let g be the signed distance to K and let w̃2 be the value function de�ned by :

w̃2(t, y, z) := inf
ȳ=(y,z)∈S̄[0,t](y,z)

max
θ∈[0,t]

Ψ̃2(y(θ), ζ(θ))

where ζ(t) := z −
∫ t

0
rΦ(y(s))qds and Ψ̃2(y, z) :=

(
(−z) ∨ g(y) ∨ (z − TM)

)
∧ c̃.

Then, the level sets of the value function w̃2 describe the epigraph of ϑ1, i.e,

ϑ2(t, y) = inf
{
z ∈]Tm− c̃, TM + c̃[ | w̃2(t, y, z) ≤ 0

}
In addition, the function w̃2 is the unique continuous viscosity solution of the follo-
wing HJ equation. More precisely, de�ne the Hamiltonian :

H(y, p1, p2) := sup
u∈U

(
− f(y, u).p1 + Φ2(y).p2

)
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min

(
∂tw̃2(t, y, z) + H(y,∇yw̃2, ∂zw̃2), w̃2(t, y, z)− g(y) ∧ c̃

)
= 0,

in [0, T ]×
◦

K̃ ×]Tm− c̃, TM + c̃[, (6.13a)

w̃2(0, y, z) =
(

(−z) ∨ g(y)
)
∧ c̃, in

◦

K̃ ×]Tm− c̃, TM + c̃[, (6.13b)

w̃2(t, y, z) = c̃, ∀ t ∈ [0, T ], y /∈
◦

K̃ and z ∈]Tm− c̃, TM + c̃[, (6.13c)

w2(t, y, Tm− c̃) = c̃, ∀t ∈ [0, T ], y ∈
◦

K̃, (6.13d)

w2(t, y, TM + c̃) = c̃, ∀t ∈ [0, T ], y ∈
◦

K̃ . (6.13e)

Now, it remains to solve numerically these problems and in particular to focus on
the numerical solutions of (6.12) and (6.13).

6.5 Numerical Schemes

In this section, we are interested in the numerical solution of the Hamilton Jacobi
equation (5.14) and (5.32). The most known methods of approximation of the so-
lution of PDE are the �nite di�erence method (see [47, 97]) and Semi lagrangian
method (see [55, 58]).

6.5.1 Finite Di�erence scheme

The Finite di�erence schemes are based on interpolations of discrete data using
polynomials or other simple functions. Let us propose a FD scheme to approximate
the solution of the equation (5.14). De�ne the following grid,

G :=
{

(n∆t, I∆y, j∆z), n ∈ Z, I ∈ Zd, j ∈ Z
}
,

where ∆y,∆z,∆t > 0. LetW n
I,j be the approximation of the solution w1 at the node

(tn, yI , zj).

Given a numerical Hamiltonian H : Rd ×Rd ×Rd → R (consistent with the Hamil-
tonian H) , the following scheme based on a Runge-Kutta method of �rst order for
time discretization,W n+1

I,j = max

(
W n
I,j + ∆tH(yI , D

+W n(yI , zj), D
−W n(yI , zj)), ϕI,j

)
WN
I,j = ϕI,j,

where ϕI,j is the appoximation of the initial data of the control problem at the node
(yI , zi) and the discrete space gradient of the function W n at the point (yI , zj),

D±W n(yI , zj) = (D±y1
W n(yI , zj), .., D

±
yd
W n(yI , zj)),

128



where we have used the ENO scheme of second order to approximate the derivatives
D±yiW .
Note that to the Essentially Non-Oscillatory ENO scheme introduced by [66] allows
to obtain uniformly second order accurate non-oscillatory interpolations.

Remark 6.5.1 If the numerical Hamiltonian is Lipschitz continuous on all its ar-
guments and monotone (i.e ∂H

∂P+
i

(yI , P
+, P−) ≤ 0, ∂H

∂P−i
(yI , P

+, P−) ≥ 0.) and if the

following CFL condition is satis�ed

∆t

∆y

d∑
i=1

{∣∣∣∣ ∂H∂P+
i

(yI , P
+, P−)

∣∣∣∣+

∣∣∣∣ ∂H∂P−i (yI , P
+, P−)

∣∣∣∣} ≤ 1,

Then, the scheme is consistent and it converges to the continuous solutions. Moreo-
ver, the discrete continuous error estimate takes the following form :

sup
(tn,zI ,yj)∈G

|w1(tn, yI , zj)−W n
I,j| ≤ KT∆t

1
2

where KT is depending only on T (see [28] for more details).

6.5.2 Semi Lagrangian scheme

Another famous method is the Semi Lagrangian and it was �rst introduced in [43].
The Semi Lagrangian was �rst used for stationary Hamilton Jacobi Bellman equa-
tions related to optimal control problems [53, 54, 57]. We refer to [59] for evolutive
problems. A Semi-Lagrangian scheme is obtained by discretizing in time the dynamic
programming principle.

Let us consider the Semi Lagrangian scheme that approximates the solution of the
equation (5.14). We have the following approximation −∇yW (tn, xI , zj).f(xI , a) =

−
W
(
tn, yI + f(yI , a)∆t, zj

)
−W (tn, yI , zj)

∆t
+O(∆t) (6.14)

Replacing (6.14) in (5.14), we get the following Semi Lagrangian scheme,{
W n+1
I,j = mina∈U

(
W
(
tn, yI + f(yI , a)∆t, zj

))∨
ϕI,j

WN
I,j = ϕI,j

where ϕI,j is the appoximation of the initial data of the control problem at the
node (yI , zj). The value of V on the right-hand side is calculated by an interpolation
procedure based on the values on the nodes of G.
The Semi Lagrangian scheme is independent from any CFL condition and the dis-
crete continuous error is the same as that given by the FD scheme. Later we will
compare the numerical convergence of the Semi Lagrangian scheme with the Finite
Di�erence scheme.
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6.5.3 Analytical forms of the Hamiltonian

In this subsection, we give the analytical forms of the Hamiltonian for models M1.
and M2.

Model M1

Since the control is acting only in the third and forth dimension, one can have an
explicit form of the Hamiltonian using the de�nition of the hamiltonian given by :

H(y, P ) := max
(α,β)∈U

−f(y, α, β).P. (6.15)

It follows from the dynamics that,

−f(y, α, β).P = −βT
m

cos(α + δ)P3 −
βT
mV

sin(α + δ)P4 + C1(y, P1, P2)

= −βT
m

(
cos(α + δ)P3 +

P4

V
sin(α + δ)

)
+ C1(y, P1, P2)

= −βT
m

(√
P 2

3 +
P 2

4

V 2
cos(α + δ + θ)

)
+ C1(y, P1, P2).

where θ = arctan
(
− P4

P3V

)
(Pi are the components of the vector P ) and C1(y, P1, P2)

is the part of the Hamiltonian independing form the controls. Then, the value of the
controls (α∗, β∗) which maximizes H(α, β, x, P ) is minimizing β cos(α + δ + θ).

Assume α ∈ [αmin, αmax] ∈ [0, π] and β ∈ [βmin, βmax] ∈ R+. The value α∗ is depen-
ding on θ, P3 and P4 :

1- For P4 = 0 and P3 = 0, any control can be taken for the maximum in (6.15).

2- For P4 6= 0 or P3 6= 0, we have four cases,
α∗ = αmin, θ ∈ [−π,−

(
αmax+αmin

2
+ δ
)
],

α∗ = αmax, θ ∈ [−
(
αmax+αmin

2
+ δ
)
, π − δ − αmax],

α∗ = π − δ − θ, θ ∈ [π − δ − αmax, π − δ − αmin],

α∗ = αmin, θ ∈ [π − δ − αmin, π].

On the other hand, it is obvious that the value of the control β∗ is taking this form,{
β∗ = βmin, cos(α + θ + δ) > 0,

β∗ = βmax, otherwise.

Model M2

Taking into account that the control appears only in the �fth component of the
dynamical system f , one can have the following Hamiltonian expression :

H(x, P ) :=
4∑
i=1

(
− fiPi

)
−
(
P5umax ∨ P5umin

)
.

where {fi}1≤i≤5 denote the �ve components of (6.10) and Pi is the components of
P .
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Remark 6.5.2 The value of the optimal control obtained above is an approximation
of the optimal control of a numerical Hamiltonian of a basic Finite Di�erence scheme
taking this form,

HFD(x, P+, P−) := max
(α,β)∈U

( 5∑
i=1

max(0, fi(x, α, β))P−i + min(0, fi(x, α, β))P+
i

)
where {fi}i are the components of (6.8) or (6.10).

6.5.4 Numerical data

The model data of a Boeing B 727 aircraft is considered. The wind velocity compo-
nents relative to the windshear model are satisfying the following relations :

wx(x) = kA(x), wy(x, h) = k
h

h∗
B(x), (6.16)

where A(x) and B(x) are functions depending only on the x axis given by,

A(x) =


−50 + ax3 + bx4, 0 ≤ x ≤ 500,
1
40

(x− 2300) 500 ≤ x ≤ 4100,

50− a(4600− x)3 − b(4600− x)4, 4100 ≤ x ≤ 4600,

50, 4600 ≤ x,

B(x) =


dx3 + ex4, 0 ≤ x ≤ 500,

−51 exp(−c(x− 2300)4), 500 ≤ x ≤ 4100,

d(4600− x)3 + e(4600− x)4, 4100 ≤ x ≤ 4600,

0, 4600 ≤ x,

(6.17)

where all the constants appearing in the relations of the forces and the wind are
given in tables 6.1.

Table 6.1 � Boeing 727 aircraft model data.

Eqs (6.8)-(6.2) Eqs (6.18)
ρ = 2.203 e−3 Ib sec2 ft−4 A0 = 4.456 e4 Ib
S = 1.56 e3 ft2 A1 = −23.98 Ib sec ft−1

g = 32.172 ft sec−2 A2 = 1.442e−2 Ib sec−2 ft−2

mg = 1.5 e5 Ib
δ = 3.49 e−2 rad
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Eqs (6.20) Eqs (6.16)-(6.17)
B0 = 0.1552 k ∈ [0, 1]
B1 = 0.12369 rad−1 h∗ = 1000 ft
B2 = 2.4203 rad−2 a = 6 e−8 sec−1 ft−2

C0 = 0.7125 b = −4 e−11 sec−1 ft−3

C1 = 6.0877 rad−1 c = −ln(25/30.6) e−12 ft−4

C2 = −9.0277 rad−2 d = −8.02881 e−8 sec−1 ft−2

α∗ = 0.2094 rad e = 6.28083 e−11 sec−1 ft−3

Depending on the model of the dynamics, the thrust, the drag and the lift forces
are taking di�erents forms.

M1-model

The thrust force is supposed to have a polynomial dependance on the velocity and
linear dependence on the power setting β,

FT := FT (β, V ) = β(A0 + A1 V + A2 V
2). (6.18)

The drag and lift forces are the components of the aerodynamic force and they take
the following forms :

FL := FL(V ) =
1

2
ρV 2Scl,

FD := FD(V ) =
1

2
ρV 2Scd,

where cl = C0 + C1α∗ and cd = B0 +B1α∗ are constansts.

The controls belong to the following interval :

α(.) ∈
[
5 deg, 17.2 deg

]
, β(.) ∈

[
0, 1
]
.

De�ne the set state constraints K,

K =
[
xmin, xmax

]
×
[
hmin, hmax

]
×
[
vmin, vmax

]
×
[
γmin, γmax

]
. (6.19)

where the constants xmin, xmax, hmin, hmax, vmin, vmax, γmin and γmax are given in
table 6.2.

M2-model

The thrust force is supposed to have a polynomial dependance on the velocity,

FT := FT (V ) = A0 + A1 V + A2 V
2.

The drag and lift forces take the same relations. The drag coe�cient has a polynomial
dependence on α and the lift coe�cient is linearly depending on α until a swiching
point where the dependence becomes polynomial, i.e :

cd = B0 +B1α +B2α
2, cl(α) =

{
C0 + C1α, α ≤ α∗,

C0 + C1α + C2(α− α∗)2 α∗ ≤ α ≤ αmax,
(6.20)
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Table 6.2 � Coe�cients de�ning the set of constraints

Eq (6.19) and Eq (6.21)
xmin = −500.0 xmax = 9500.0
hmin = 500.0 hmax = 1000
vmin = 170.0 vmax = 260.0
γmin = −4.0deg γmax = 14.0 deg
αmin = 0.0 αmax = 17.2 deg

The control belongs to the following interval ω(.) ∈
[
− 3.0 deg, 3.0 deg

]
and the set

of state constraints K is given by

K =
[
xmin, xmax

]
×
[
hmin, hmax

]
×
[
vmin, vmax

]
×
[
γmin, γmax

]
×
[
αmin, αmax

]
(6.21)

where the constants are given in table 6.2.

The computational domain K̃ := K + c̃B (where B is the unit ball centered in the
origin) will be ajusted according to the set K.

Remark 6.5.3 The following change of variable is made in order to obtain an ho-
mogeneous grid,

Y(.) := φ(X(.)) :=
X(·)−Xmin(·)

Xmax(·)−Xmin(·)
.

where Xmin and Xmax are the vectors containing respectively the lower and upper
bounds on the computational domain K̃.

6.6 Stability analysis

The aim of this subsection is to be convinced that the choices we will make of the
method to approximate the solutions and the setting of the scheme are the best. In
the last section, we discussed the methods often used in the literature, namely, the
Finite di�erence and the Semi Lagrangian schemes. In the following, we study the
stability issue for these two schemes corresponding to the solutions of the auxiliary
control problems.

Here, these schemes are based on the Runge-Kutta method of second order for time
discretization. The 5D model M2 requires a big memory and the associated CPU
time is very large for a big number of the grid points. Let us emphasise that for a
relevant analysis of the stability for the schemes, we can not consider a small number
of points of grid points. On the hand, the 4D model M1 allows to choose a more
important setting for the space steps.

For these problems, the exact solutions are not known. Nevertheless, we will calculate
a reference solution for each control problem and we will study the error against this
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solution. More precisely we compute the following absolute L∞-, L1- and L2-errors
against the reference solution Wref :

eL∞a (W (T, .)) := max
x∈G
|Wref (T, x)−W (T, x)|,

eL1
a
(W (T, .)) :=

(
1

ΠNi

∑
x∈G

|Wref (T, x)−W (T, x)|
)
,

eL2
a
(W (T, .)) :=

(
1

ΠNi

∑
x∈G

|Wref (T, x)−W (T, x)|2
) 1

2

,

where Ni de�nes the number of points per the axis i. Furthermore, for a complete
view of the errors obtained, we will compute also the following relative errors,

eL∞r (W (T, .)) :=
eL∞a (W (T, .))

||Wref (T, .)||L∞
,

eL1
r
(W (T, .)) :=

eL1
a
(W (T, .))

||Wref (T, .)||L1

,

eL2
r
(W (T, .)) :=

eL2
a
(W (T, .))

||Wref (T, .)||L2

.

6.6.1 Auxiliary control problem for the L∞ running cost as-
sociated with M.1

Let us recall �rst that for the case of the auxiliary control problem with maximum
cost, the augmented dynamics is zero for the additional variable z. Let z to be a
constant (Nz = 1 for the number of points per the axis z).

For each method of approximation, we consider a reference solution. The reference
solution is obtained with Nref = 1604 grid points and CFL = 0.5 for the Finite
Di�erence scheme. The analytical form of the Hamiltonian allows to compute directly
the approximated solution using the FD scheme without discretization of the control.

On the other hand, the Semi Lagrangian scheme needs to discretize the control.
We have used Nc = 102 discrete points for the control values. The time step is
∆tref = 0.1 .

We have denoted ∆t the time step and NG the total number of grid points. In table
6.3, the errors and the CPU times are given for the Finite Di�erence scheme asso-
ciated with the maximum cost problem at time t = T . From this table, we observe
roughly a convergence of �rst order. Note that the computations are performed using
30 threads.
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Table 6.3 � Error table for FD scheme of the control problem with maximum cost
associated with the model M1

NG ∆t
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)

204 1.69 e-2 3.85 e-2 7.42 e-2 1.68 e-2 3.02 e-2 3.12 e-1 6.32 e-1 2.16 e+2

404 8.47 e-3 1.97 e-2 4.02 e-2 7.80 e-3 1.57 e-2 2.02 e-1 4.03 e-1 7.31 e+2

804 4.24 e-3 7.40 e-3 1.56 e-2 2.63 e-3 5.59 e-3 8.01 e-2 1.16 e-1 8.97 e+3

403 × 20 1.38 e-2 2.15 e-2 4.34 e-2 8.41 e-3 1.64 e-2 2.23 e-1 4.47 e-1 4.53 e+2

The next table 6.4 shows the absolute and the relative errors associated with the
Semi Lagrangian scheme against the reference solution at time t = T . The number
of discrete points for the control values (Nc = 102) remains unchanged. From table
6.4, we observe a convergence of �rst order. The convergence of the FD scheme is
slightly better than that obtained with SL scheme. Note that the fact that CPU
times for SL scheme are lower than those obtained for the FD scheme is due to the
time step which is considered very lower than the time step for the FD scheme.

Table 6.4 � Error table for SL scheme of the control problem with maximum cost
associated with the model M1

NG ∆t
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)

204 8.00 e-1 5.53 e-2 1.04 e-1 2.36 e-2 4.32 e-2 4.47 e-1 8.94 e-1 9.71

404 4.00 e-1 2.91 e-2 6.01 e-2 1.24 e-2 2.52 e-2 2.59 e-1 5.19 e-1 2.67 e+2

804 2.00 e-1 1.18 e-2 2.51 e-2 4.78 e-3 1.03 e-2 1.08 e-1 2.16 e-1 7.72 e+3

403 × 20 4.00 e-1 2.86 e-2 5.83 e-2 1.23 e-2 2.43 e-2 2.83 e-1 5.67 e-1 1.38 e+2

Let us mention that the errors of both schemes for the setting NG = 403 × 20 are
very close to the errors given by NG = 404. This can be justi�ed by the fact that
the inclination angle belongs to a small interval. This setting will be used in the
following section to reconstruct trajectories.

In order to determine the sentivity of the errors for re�ned grid of the interval
of controls, we report in the table 6.5 the errors and the CPU times for di�erent
numbers of points per control against the reference solution obtained with NG =
403 × 20 grid points and Nc = 802 discrete points for the control values. From this
table, one can see that the solutions are not improved when we increase the number
of points per control. Therefore, a re�ned discretization of the control intervals is not
relevant. On the other hand, the FD scheme doesn't need to discretize the control
since the solution is directly computed using the analytical form of the Hamiltonian.
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Table 6.5 � Error table for SL scheme of the control problem with maximum cost
associated with M1 using the reference solution obtained for NG = 404×20, Dt = 0.4
and Nc = 802.

Nc
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)

102 4.14 e-5 8.55 e-5 1.49 e-5 3.01 e-5 1.41 e-3 2.83 e-3 1.38 e+2

202 2.23 e-5 4.59 e-5 7.56 e-6 1.52 e-5 4.49 e-4 8.98 e-4 7.09 e+2

402 6.87 e-6 1.41 e-5 2.24 e-6 4.53 e-6 1.80 e-4 3.61 e-4 2.69 e+3

6.6.2 Auxiliary control problem for the Bolza cost associated
with M.1

Let us also check the behaviour of the errors for the control problem with Bolza
cost. Let the solution obtained with Nref = 804 × 10 grid points (where N = 80 is
the number of points per the �rst forth components of the state and Nz = 10 for
the additional variable z) and CFL = 0.5 be a reference solution at time t = T for
the Finite Di�erence scheme. For the Semi Lagrangian scheme, we take the same
number of grid points Nref = 804 × 10, and we consider Nc = 102 for the reference
solution at time t = T with the time step ∆tref = 0.1.

The next table 6.6 shows the absolute and the relative errors corresponding to the FD
scheme of the control problem associated with the Bolza cost against the reference
solution at time t = T . The number of points per the variable z (Nz = 10) remains
unchanged.

Table 6.6 � Error table for FD scheme of the control problem with Bolza cost
associated with the model M1

NG ∆t
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)

105 3.06 e-2 9.79 e-2 1.86 e-1 8.02 e-2 1.32 e-1 3.20 e-1 6.40 e-1 2.73 e+1

204 × 10 1.53 e-2 5.36 e-2 1.14 e-1 3.61 e-2 7.47 e-2 2.40 e-1 4.81 e-1 3.16 e+2

404 × 10 7.71 e-3 2.26 e-2 5.14 e-2 1.29 e-2 2.99 e-2 1.30 e-1 2.60 e-1 6.12 e+3

403 × 20× 10 1.25 e-1 3.09 e-2 6.91 e-2 1.77 e-2 3.99 e-2 2.11 e-1 4.23 e-1 2.05 e+3

We report in the next table 6.7 as we did for the maximum cost problem, the errors
and CPU times associated with the Semi Lagrangian scheme of the control problem
with Bolza cost. From table 6.7, we observe a convergence of �rst order. Again, one
can observe that the convergence of the FD scheme is better than that obtained
with SL scheme.
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Table 6.7 � Error table for SL scheme of the control problem with Bolza cost
associated with the model M1

NG ∆t
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)

105 8.00 e-1 1.48 e-1 2.81 e-1 1.19 e-1 1.98 e-1 4.89 e-1 9.79 e-1 1.81 e+1

204 × 10 4.00 e-1 8.12 e-2 1.70 e-1 5.54 e-2 1.19 e-1 2.92 e-1 5.84 e-1 3.91 e+2

404 × 10 2.00 e-1 3.97 e-2 9.09 e-2 2.28 e-2 5.24 e-2 1.59 e-1 3.10 e-1 8.44 e+3

403 × 20× 10 4.00 e-1 4.59 e-2 1.03 e-1 2.66 e-2 6.01 e-2 2.23 e-1 4.47 e-1 5.56 e+3

In order to see how the errors behave for re�ned grid of the interval of controls, we
consider the reference solution obtained with NG = 204×10 grid points and Nc = 402

discrete points for the control values. From this table 6.8, one can see again that the
errors of the solutions given by the SL scheme for Nc = 402 are not very important
if we compare with that obtained with Nc = 102.

Table 6.8 � Error table for SL scheme of the control problem with maximum cost
associated with M1 using the reference solution obtained for NG = 204×10, Dt = 0.4
and Nc = 402.

Nc
error L2 error L1 error L∞ CPU

eL2
a

eL2
r

eL1
a

eL1
r

eL∞a eL∞r time (s)
102 7.11 e-4 1.35 e-3 3.72 e-4 6.45 e-4 2.70 e-2 5.41 e-2 3.91 e+2
202 2.02 e-4 3.86 e-4 1.08 e-4 1.88 e-4 1.10 e-2 2.19 e-2 1.51 e+3

In this section, we did a study of the stability of the FD and SL schemes for both
control problems discussed in the theoretical part of this chapter using the model
M1. This provides some information of the advantages and disadvantages of the each
scheme. In the following section, we will reconstruct the optimal trajectories using
some algorithms of reconstruction of trajectories for the control problems with both
schemes.

6.7 Analysis of the simpli�ed model M1

This section is devoted to the analysis of the model M1. This model is based on
some approximations of the aerodynamic forces and it allows to verify some aspects
of the reconstruction of trajectories. Indeed, we will focus on the reconstruction
by minimizing an approximate solution of the value function and the simulations
are supposed to reinforce our choice of the method of appoximation. Then, we will
justify the choice we will make of the model to be used later for di�erents methods
of reconstruction of trajectories.

The study of the stability provided some tools to compare the FD and SL schemes.
Indeed, the FD scheme seems to have signi�cant convergence to the reference solution

137



and the solutions are computed using an analytical form of the Hamiltonian. On the
other hand, the solution given by the SL scheme can be performed using a relatively
greater time step (there is no restriction or CFL condition to be respected while
choosing the time step). Unfortunately, the solution is not improved for a re�ned
grid of the control intervals and this doesn't encourage the choice of the SL scheme.
Here, we will compare again these two schemes in order to justify our choice of the
approximation method.

Let us we compare the trajectories given by the FD and the SL schemes starting
from di�erents altitudes using a moderate wind coe�cient k = 0.6 in order to see
which method will be used after. Let CFL = 0.5 for the FD scheme and Dt = 0.4
for the SL scheme. Consider the following initial points :

y0 = (0.0, 600.0, 239.7,−2.249◦)

y1 = (0.0, 650.0, 239.7,−2.249◦)

y2 = (0.0, 700.0, 239.7,−2.249◦)

y3 = (0.0, 750.0, 239.7,−2.249◦)

Throughout this section, let NG = 403 × 20 be the grid points (where 40 is the
number of points per axis for the �rst three components, namely, x, h and v and
20 is the number of points per the axis of the inclination angle) and Nc = 50 × 10
be the number of discrete points for the control values. In the table 6.9, we report
the value of the optimality criterion J1 at time T for each scheme starting from the
initial points yi (i = {1, .., 4}). Note that the value of the optimality criterion is
computed using the following :

inf
{
z
∣∣W̃1(T, y, z) ≤ η

}
,

where W̃1 is the scaled approximated solution and η = 0.02 is expected to be a small
error due to the interpolation of the scheme. From this table, one can observe that
the SL scheme is suboptimal compared to the FD scheme. Indeed, the lower altitude
for the FD scheme is slightly greater than the one obtained by the SL method.

Table 6.9 � The value of the optimality criterion deduced from the value function
at time t = T for each scheme starting from di�erent initial points.

Scheme J∗1 (T, y0) J∗1 (T, y1) J∗1 (T, y2) J∗1 (T, y3)
FD 4.01 e+2 3.80 e+2 3.72 e+2 3.47 e+2
SL 4.03 e+2 3.96 e+2 3.85 e+2 3.65 e+2

The �gure 6.3 presents the history of state for the control problem with maximum-
cost associated with the model M1 starting from the initial point y3 and using the
SL and FD schemes .

138



Figure 6.3 � History of the state components for the maximum-cost problem with
model M1 using SL and FD schemes.

Note that the value of the optimality criterion is the di�erence between the re-
ference altitude and the minimal altitude over the time interval. Then, from the
reconstruction of the altitude over the time interval, one can compute the value of
the optimality criterion. Table 6.10 gives the value of the optimality criterion de-
duced from the reconstruction of the altitude. We observe that these values are not
the same values reported in the Table 6.9. Indeed, we expected that we will have
this result because of the interpolation errors of the scheme.

Table 6.10 � The value of the optimality criterion at time t = T obtained from the
reconstruction of trajectories for each scheme starting from di�erent initial points.

Scheme J∗1 (T, y0) J∗1 (T, y1) J∗1 (T, y2) J∗1 (T, y3)
FD 4.04 e+2 3.63 e+2 3.51 e+2 3.34 e+2
SL 4.07 e+2 3.80 e+2 3.60 e+2 3.56 e+2

Now, let us make a choice for the model to use in order to compare di�erent al-
gorithms of reconstruction of optimal trajectories. First, let us recall that the 4D
model M1 is based on some approximations of the aerodynamic forces and the co-
e�cient of the wind k ∈ [0, 1] is an important parameter to take into account. The
wind forces increase with respect to the parameter k. In Table 6.11, we observe that
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these approximations are not suitable with a coe�cient k greater than 0.8 starting
from y1 (see also Figure 6.4 for the reconstruction of the altitude starting from y1).

Table 6.11 � The optimality criterion at time t = T obtained with FD scheme and
starting from y0 = (0.0, 650.0, 239.7,−2.249.0 deg).

k J∗1 (T, y1) Minimal altitude
0.5 3.54 e+2 6.46 e+2
0.6 3.63 e+2 6.37 e+2
0.7 4.77 e+2 5.23 e+2
0.8 +∞ -

Figure 6.4 � History of the altitude for di�erent coe�cients of the wind starting
from y1 = (0.0, 650.0, 239.7,−2.249.0 deg).

On the other hand, we know that the model M2 has already been used in
[86], [85], [35], [36] and it is suitable with the data of the Boeing 727 aircraft model.
For this reason, in the following, we will focus on the �ve dimensional model M2
and we will compare the results obtained for di�erents algorithm of reconstruction
of optimal feedback controls.

6.8 Di�erent methods of reconstruction of trajecto-

ries

There are several versions of the algorithm of reconstruction of trajectories starting
from a numerical solution of an optimal control problem. In the previous Chapter
5, we discussed the algorithm of reconstruction by minimizing the value function
and the algorithm of reconstruction involving the exit time function. Here, we ana-
lyse numerically these algorithms and we introduce other alternatives. Indeed, we
compare the reconstructed optimal trajectory based on the value function and the
trajectory constructed using the exit time function. Furtheremore, we introduce an
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algorithm based on the value function coupled with a penalization of the control
variation. Such algorithm is supposed to provide a signi�cant improvement in the
quality of the optimal feedback control which can be nonsmooth due to the nonlinear
structure of the problem.

Throughout this Section, we consider the following setting for the discretization of
the space : we let NG = 303 × 202 × 10 (where 30 is the number of points per axis
for the �rst three components, namely, x, h and v, 20 is the number of the points
for the angles γ and α an 10 is the number of points for the additional variable
z). Let Nc = 502 be the number of discrete points for the control values. Since the
model is more realistic and the aerodynamic forces are close to the real ones, one
can consider the strong wind whose coe�cient is k = 1. Moreover, we start from an
altitude close to the lower boundary of the constraints in the altitude, i.e, the initial
point considered is,

y0 = (0.0, 600.0, 239.7,−2.249 deg, 7.373 deg).

The procedure of reconstruction by minimizing the value function has been valida-
ted theoretically by proving the convergence of the sequence of trajectories to an
optimal trajectory. For the algorithm using the exit time function, we don't have any
theoretical result on the convergence but it is a good alternative in high dimension
since it does not need to save the value at each iteration. In the next subsection,
we want to observe numerically and compare the result with the solution given in
[35]- [36].

6.8.1 Comparison with [36] using the exit time algorithm

In the Chapter 5 of this thesis, we established the link between the optimal trajecto-
ries corresponding to the controls problems and those constructed from an exit time
function associated with a viability kernel set. We also gave a formal algorithm of
the reconstruction of optimal trajectories using the exit time function. Here, we want
to make a comparison between the optimal trajectories corresponding to the control
problems with maximum cost and with Bolza cost. We use the exit time function
and we consider again the same setting of the space and control steps and we let
q = 6.0 and r = 1

maxK Φ(y)q
. Figure 6.5 shows the history of the state components for

both control problems.
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Figure 6.5 � History of the states for the control problems with Bolza cost and
maximum cost using the exit time function.

Let us point out that the model M2 can be compared to the model used is [35]- [36].
The only di�erence between both models is that the thrust force depends a�nely
on time in [35]- [36] just for the �rst three seconds. Then, it takes the same formula
as that used in this work. Figures 6.6-6.7 show that the result obtained here is close
to that obtained in [36].

Figure 6.6 � Image copied from [36] : History of the altitude for both the Bolza
problem and L∞-cost problem.
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Figure 6.7 � Image copied from [36] : History of the velocity, the angular velocity
and the angle of attack for the L∞-cost problem.

Table 6.12 shows that the optimality criterion in our case is less than that deduced
from the Figure 6.5 for both control problems.

Table 6.12 � The optimality criterion at time t = T obtained with FD scheme
compared with the Figure .

Control problem J∗1 (T, y0) J∗2 (T, y0)
Paper [36] 4.98 e+2 5.10 e+2

Exit time algorithm 4.94 e+2 5.01 e+2

Let us emphasise that there is no theoretical result related to the exit time algorithm.
On the other hand, we have proved that the sequence of trajectories generated by
the algorithm of the value function is convergent. In what follows, we concentrate
on the control problem with maximum cost and we compare several algorithms of
reconstruction involving the value function.

6.8.2 Reconstruction using the value function

The reconstruction by an approximate value function is based on a space discreti-
zed version of the algorithm of reconstruction based on the value function and it
investigates if the control is minimizing the value function. This method has been
analysed in the Chapter 5 and a convergence result has been proved.

Figures 6.8 and 6.9 show respectively the history of the state components and the
control along the interval starting from the same initial point y0. The results are
close that obtained in the last experiences.
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Figure 6.8 � History of the state components for the maximum-cost problem
associated with the model M2 using the reconstruction by exit time function.

Figure 6.9 � History of the control for the maximum-cost problem associated with
the model M2 using the reconstruction by exit time function.

Figure 6.9 show that the quality optimal control using the exit time is slightly better
than the one obtained by the algorithm based on the value specially after t=20s.
The same remark can be done for the evolution of the angle of attack in the Figure
6.8.

The last experiences require a huge memory and the CPU times are sometimes very
big due to the matrices to be saved during the time interval. For high dimension and
re�ned grid, it is very expensive in time and memory to consider the algorithm based
on the value function. On the other hand, the algorithm of reconstruction based on
the exit time function doesn't need to save at each iteration and the only matrix
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to be saved is at the end. The latter can then be considered as a good alternative
to make the economy on memory but also in CPU time in high dimensions. In the
following, we give other variants of algorithms that can be used for the reconstruction
of the optimal trajectories.

6.8.3 Other variants for the algorithms of reconstruction

Reconstruction using the value and the penalization of control variation

The penalization by control variation aims to provide an improvement on the per-
formance of the algorithm of reconstruction by the value. In particular, if many
values of the control realize the minimization of the value function, then, this me-
thod allows to select the control for which the value is close to the last value of the
control.
Algorithm. E For a given n ∈ N, let us consider (t0 = 0, t1...tn−1, tn = T ) a uniform
partition of [0, T ] with the time step h = T

n
. Let {yn(.)} be a trajectory de�ned

recursively on the intervals (ti−1, ti] (i ≥ 1 ). Set yn(t0) = y (where ϑ1(tn, y) = z).
For a given n ∈ N let us consider (t0 = 0, t1...tn−1, tn = T ) a uniform partition of

[0, T ] with the time step h = T
n
. Let {yn(.)} be a trajectory de�ned recursively on

the intervals (ti−1, ti] (i ≥ 1 ). Set yn(t0) = y (where ϑ1(tn, y) = z).

Step 1 Let λ be a positive constant. Knowing the state yn(tk), choose the optimal
control at tk :

unk = arg min
u∈U

(
w1(tn−k−1,y

n(tk) + hf
(
yn(tk), u

)
, z)
∨

max
θ∈[0,h]

Ψ1(yn(tk) + θf
(
yn(tk), u

)
, z) + λ|u− unk−1|

)
.

Step 2 De�ne u(tk) = ck. Then, the next point is : yn(tk+1) := yn(tk) + hf
(
yn(tk),u(tk).

)
From Figure 6.10, one can observe that the quality of the optimal feedback control
with penalization of control variation (λ > 0) is quite better than the one obtained
without any regularization (λ = 0). Moreover, the choice of λ = 2.0 is better than
λ = 1.0. This a�ects also the quality of the angle of attack (see �gure 6.11). The
other state components seem to be the same.

Figure 6.10 � Reconstruction of the optimal feedback control (speed of the angle
of attack) for the control problem with maximum cost without with three values of
λ = 0.0, 1.0 and 2.0.
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Figure 6.11 � Reconstruction of the state components for the control problem with
maximum cost with three values of λ = 0.0, 1.0 and 2.0.

Besides the algorithms supposed to provide a regularization of the feedback control
during the search of the optimal control, one may consider other algorithms that
produce a posterior regularization of the control in order to improve the result.
These algorithm are simple to implement and are based on the post treatment of
the control graph.

Reconstruction using the Hamiltonian

Since the value function is the unique solution of (6.12), one can reconstruct the
optimal trajectories from the Hamiltonian. Indeed, at each iteration, the control
whose value minimizes the numerical Hamiltonian is the optimal one. The algorithm
start by computing the approximation of the gradient of the value function and select
the optimal control from the set of controls. Thanks to the analytical form of the
Hamiltonian, we don't need to discretize the set of control and the only task to be
achieved is to obtain the best approximation of the gradient. More precisely, the
algorithm of reconstruction using the Hamiltonian takes this form,

Algorithm. F For a given n ∈ N, let us consider (t0 = 0, t1...tn−1, tn = T ) a uniform
partition of [0, T ] with the time step h = T

n
. Let {yn(.)} be a trajectory de�ned

recursively on the intervals (ti−1, ti] (i ≥ 1 ). Set yn(t0) = y (where ϑ1(tn, y) = z).

Step 1 For 1 ≤ k ≤ n, let yk := yn(tk). Calculate the space gradient of the function
W at the point (tk, yk, z),

D±W (tk, yk, z) = (D±yk,1W (tk, yk, z), .., D
±
yk,d

W (tk, yk, z)),
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where yk = (yk,1, ...yk,d) and for a general function b,

D±yk,ib(yk, z) =

[
± b(yki,± , z)− b(yk, z)

∆x

]
where

[
A
]
is the linear interpolation of A and kj,± = (i1, .., ij−1, ij±1, ij+1, ..id).

Compute the optimal control at tk :

ak = arg min
u
Hnum(u, yk, D

+W (tk, yk, z), D
−W (tk, yk, z)) (6.22)

where Hnum is the numerical Hamiltonian.

Step 2 De�ne u(tk) = ak. Then, the next point is :

yn(tk+1) := yn(tk) + hf
(
yn(tk),u(tk)

)
Let us emphasise that if the gradient is close to zero, all values of the control are
solutions to (6.22). Moreover, the choice of the scheme of the numerical Hamiltonian
can have a big importance. A scheme of the numerical Hamiltonian using a centered
approximation of gradient of the value function may lead to more smooth feedback
controls. Let us compare this procedure to the algorithm using the value function.

From the �gure 6.12, one can observe that the evolution of the state is almost the
same for both algorithms, but the history of the angle of attack by the method of
the value seems to be more smooth than the one obtained by using the Hamiltonian.

Figure 6.12 � Reconstruction of the state for the control problem with maxi-
mum cost using the method based on the value function and the method using the
Hamiltonian.
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In the �gure 6.13, we can see that the quality of the control and the angle of attack
using the algorithm based on the minimization of the value is slightly better than
the result obtained with the algorithm using the Hamiltonian. This involves the
nonsmoothness of the angle of attack that has a very unstable behaviour (see Figure
6.12).

Figure 6.13 � Reconstruction of the optimal control for the control problem with
maximum cost using the value function (right) and the Hamiltonian (left).

In order to make a suitable comparison between all the methods of reconstruction,
we superimpose all reconstructed graphs of the altitude in a same Figure (see Fi-
gure 6.14). The optimality criterion obtained with each method is reported in the
table 6.13. The reconstruction by minimizing the value function provides the best
performance since the optimality criterion is maximal using this algorithm.

Figure 6.14 � History of the trajectory in the plan oxh for the control problem
with maximum cost using several methods of reconstruction.
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Table 6.13 � The optimality criterion at time t = T obtained with several algo-
rithms.

Algorithm J∗1 (T, y0) Minimal altitude
Algorithm A 4.821 e+2 5.178 e+2
Algorithm B 4.936 e+2 5.063 e+2
Algorithm E 4.828 e+2 5.171 e+2
Algorithm F 4.865 e+2 5.134 e+2

On the other hand, the quality of the angle of attack and the control are not good
using the value function and the hamiltonian. The regularization allows to improve
partially the performance. From �gures 6.15 6.16, one can conclude that the algo-
rithm of reconstruction by the exit time function allows to obtain smooth behaviour
of the control and the angle of attack.

Figure 6.15 � History of the angle of attack for the control problem with maximum-
cost using several methods of reconstruction.
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Figure 6.16 � History of the control for the control problem with maximum-cost
using di�erent methods of reconstruction.

Appendix A. Analysis of the properties of the dyna-

mical systems for the landing abort problem

This subsection is concerned by the analysis of the properties of di�erent models
proposed for the study of the landing problem. First, in all the models the function
f : K × U → R is continuous in both variables (the forces FD, FL and FP and the
wind are supposed to be continuous functions in all its arguments).

Lipshitz continuity hypothesis

One can easily observe that, for all the models, the function f is de�ned on the
constraints set K and it is possible to de�ne more large set K̃ such that the function
f has all partial derivatives in all state variables and that the Jacobian of f is
bounded on K̃. In particular, on can de�ne this set as follows

K̃ := K + c̃B

where B is the ball of radius 1 centered in the origin and c̃ < vmin. That means
that the function f is Lipschitz continuous in y on the set K̃. Then one can de�ne
a Lipshitz continuous extension of f out of K̃.
Convexity hypothesis

Now, let verify if the models are satisfying the convexity property (H4) or not.
In fact, this property may not be satis�ed for all models considered in this paper.
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Indeed, in general, the model M1-model don't satisfy (H4) and it will depend on
the formulas of the aerodynamic forces.

Fortunately, the convexity property is satis�ed for the other models. For M1.2-
model, one can observe that the controls are appearing only in the third and the
forth components of (6.8) or (6.10). Then, one can only focus on the convexity of
the following set,

A :=

{(
βF ∗T (V ) cos(α + δ), β

F ∗T (V )

V
sin(α + δ)

) ∣∣∣∣ u = (α, β) ∈ U
}

The set A turns out to be a subset of the set of the ellipses E ,

E :=

{
(x, z) ∈ R2

∣∣ x2

V 2
+ z2 ≤ F ∗T (V )2

V 2

}
Since α ∈ [0, αmax] ⊂ [−δ, 2π − δ], then A represents the set of all arcs of E corres-
ponding to αmax. The set A is convex and the convexity of f(z, U) follows.

For M2- model, the convexity property (H4) is obvious and it follows from the
linear dependence of f on the control ω.

151





CONCLUSION

In this thesis, we study some control problems with non standard forms motivated
by applications using the so-called Hamilton Jacobi Bellman approach. The main
goal is to validate in practice the behaviour of this approach while dealing with
applications.

First, we consider a discontinuous and unbounded value function associated with
some stochastic optimal control problems . We introduce a regularized value function
and compute the error estimates between both functions. The regularized value func-
tion is the unique viscosity solution of a second order HJB equation with unbounded
data. We derive error estimates for monotone schemes based on a Semi-Lagrangian
method (or more generally in the form of a Markov chain approximation). These
errors are based on classical shaking and regularization techniques.

The reachablility under chance constraints is one of the current issues in the control
theory. Here, we characterize the starting points from which it is possible to reach
a target with a probability greater than a threshold. We make use of the level set
approach and the result of the �rst study to approximate the value function. It
follows that the probabilistic reachable set is contained between two sets that we
can compute.

Then, we study on a class of deterministic state-constrained optimal control pro-
blem with maximum cost. We want to deal with the constraints in the general
case where no controllability assumption is made. We describe the epigraph of the
value function by the auxiliary optimal control problem whose value function is Lip-
schitz continuous. We prove that our new Lipschitz continuous value function is the
unique Lipschitz continuous viscosity solution of a Hamilton Jacobi equation with
a Dirichlet condition. We prove a convergence result of a sequence of approximated
optimal trajectories. In addition, we show that the auxiliary value function is linked
to a Viability Kernel and the corresponding exit time function. In the same man-
ner, we study the state-constrained control problem with Bolza cost and emphasise
di�erences.

Finally, we consider the concrete problem of the abort landing during low altitude
wind-shears. Many algorithms of reconstruction involving the value function and the
exit time function are analysed from theoretical and computational points of view
to generate optimal trajectories and the associated optimal feedback controls.
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PERSPECTIVES

In the Chapter 6, we discussed the abort landing in presence of windshear. This
real application is modeled using a deterministic dynamics. Whereas, in the reality,
the wind does not have only a determistic term corresponding to the meterological
predictions (see Chapter 6) but also a stochastic term representing inaccuracy and
uncertainty in these predictions. Let W (·) = (W 1(·),W 2(·)) be a 2-dimensional
Browian motion and consider the following stochastic equation of motion :

dx(t) = (V cos γ + wx)dt+ σ1dW
1
t ,

dh(t) = (V sin γ + wh)dt+ σ2dW
2
t ,

dV (t) = (FT

m cos(α+ δ)− FD

m − g sin γ − (ẇx cos γ + ẇh sin γ))dt

−σ1

(
∂wx

∂x cos γ + ∂wh

∂x sin γ
)
dW 1

t − σ2

(
∂wx

∂h cos γ + ∂wh

∂h sin γ
)
dW 2

t ,

dγ(t) = ( 1
V (FT

m sin(α+ δ) + FL

m − g cos γ + (ẇx sin γ − ẇh cos γ)))dt

+σ1

V

(
∂wx

∂x sin γ − ∂wh

∂x cos γ
)
dW 1

t + σ2

V

(
∂wx

∂h sin γ − ∂wh

∂h cos γ
)
dW 2

t ,

dα(t) = u(t).

(6.23)

where the time derivatives of the components of the wind are given by,

ẇx :=
∂wx
∂x

(V cos γ + wx) +
∂wx
∂h

(V sin γ + wh),

ẇh :=
∂wh
∂x

(V cos γ + wx) +
∂wh
∂h

(V sin γ + wh),

(see Chapter 6 for other de�nitions). The above dynamics can be rewriten in the
abstract form, {

dy(t) := f(y(t),u(t))dt+ σ(y(t))dW (t)

y(0) := y

where y is the initial point and f and σ are given by :

σ(y) =


σ1 0
σ2 0

−σ1

(
∂wx

∂x cos γ + ∂wh

∂x sin γ
)
−σ2

(
∂wx

∂h cos γ + ∂wh

∂h sin γ
)

σ1

V

(
∂wx

∂x sin γ − ∂wh

∂x cos γ
)

σ2

V

(
∂wx

∂h sin γ − ∂wh

∂h cos γ
)

0 0


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f(y, u) =


V cos γ + wx
V sin γ + wh

FT

m cos(α+ δ)− FD

m − g sin γ − (ẇx cos γ + ẇh sin γ)
1
V (FT

m sin(α+ δ) + FL

m − g cos γ + (ẇx sin γ − ẇh cos γ))
u(t)



Remark 6.8.1 Notice that in this case the function f and σ are not Lipschitz conti-
nuous on the whole state space Rd. Denote by K the set on which the functions f
and σ are Lipschitz continuous. Then, there exist Lipshitz continuous extensions of
f and σ out of K. In what follows we consider that these extensions have the same
notations f and σ.

Note that the uniform Lipschitz properties of f and σ and the compactness of U
guarantee the existence of a strong solution yu

z (·) := xu
z (·),hu

z (·),Vu
z (·), γuz (·), αu

z (·))
for each initial data y0, and for every admissible control u ∈ U (see [61] for more
details). A process yuy solution of (6.23) associated to a control u ∈ U will be said
admissible. Moreover, there exists K0 depending only on T, d (see [101, page 42] or
[61, Appendice D]) : such that for any u ∈ U , 0 ≤ t ≤ T and y, y′ ∈ Rd,

E

[
sup
θ∈[0,t]

∣∣yuy (θ)− yuy′(θ)
∣∣2] ≤ K2

0 |y − y′|2, (6.24a)

Furthermore, for every p ≥ 1, there exists Kp > 0 depending only on T such that :

E

[
sup
θ∈[0,t]

∣∣yuy (θ)− y
∣∣p] ≤ Kp(1 + |y|p). (6.24b)

Stochastic optimal control problem

In the deterministic setting, the problem of the abort landing consists to maximize
the lower altitude in order to avoid the crash on the ground. Here, one can formulate
the problem of the abort landing in presence of a wind with stochastic form as a
reachability problem. More precisely, one can be interested by the characterization
of the starting points from which the probability that the altitude of the airplane
remains above a threshold h is greater than ρ, i.e, consider the following probabilistic
backward reachable set,

Ωρ :=

{
y ∈ Rd | u ∈ U , P

[
min
θ∈[0,T ]

hu
y (t) ≥ h

]
) > ρ

}
Instead of considering the lower altitude one can consider the peak value of the
di�erence between the reference altitude hR and the instantaneous altitude.

Ωρ :=

{
z ∈ Rd | u ∈ U , P

[
max
θ∈[0,T ]

Φ(yu
y (θ)) ≤ hR − h

]
) > ρ

}
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where Φ(yu
y (.)) = hR − hu

y (.). If the function Φ is positive (which is the case here),
then we know that the maximum cost can be approximated by an Lp-cost, i.e,

max
θ∈[0,T ]

Φ(yu
y (θ)) = lim

q→∞
(

∫ T

0

Φ(yu
y (θ))qdθ)

1
q

Here, we want to deal with the characterization of the following backward reachable
set :

Γρq :=

{
y ∈ Rd | u ∈ U , P

[ ∫ T

0

Φ(yu
y (θ))qdθ ≤

(
hR − h

)q]
> ρ

}
The analyse of the comparison or convergence between both sets Γρq and Ωρ is not
discussed in this work. The backward reachable set Γρq can be characterized using
the value function of a suitable stochastic control problem.

Let us denote ζy,z(·) := z +
∫ .

0
Φ(yu

y (θ))qdθ and λ :=
(
hR − h

)q
and de�ne the

following stochastic optimal control problem

ϑ(t, y, z) := sup
u∈U

P
[
ζuy,z(t)− z ≤ λ

]
(6.25)

Then, using the level set approach, it is easy to check that,

Γρ =

{
y ∈ Rd

∣∣ ϑ(T, y, 0) > ρ

}
Regularized control problem

Let us �rst regularize the function 1[0,λ](·) by functions Ψε (for ε > 0), de�ned as
follows :

Ψε(z) = min(1,max(0,−1

ε
max(z − λ,−z))). (6.26)

Notice that the Ψε is
1
ε
-Lipschitz continuous. Then, we consider the following "re-

gularized" control problem :

ϑε(t, y, z) := sup
u∈U

E
[
Ψε(ζ

u
y,z(t))

]
(6.27)

Remark 6.8.2 In chapter 5, we proved that, under an additional ellipticity condi-
tion on the di�usion σ, we obtain an error estimates of order ◦(ε) between both value
functions ϑ and ϑε. Here, this condition is not necessary satis�ed for the extended
function σ. Moreover, the arguments used in the proof for the error estimates bet-
ween the value functions ϑ and ϑε in the Chapter 4, can not be readapted in this case
since the dynamics in z can not be splitted in deterministic and stochastic terms.

In the following we do not study the error estimates between the value function ϑ
and ϑε. The value function ϑε enjoyes some regularity properties. Using the fact that
the function Φε is Lε-Lipschitz continuous, we obtain the following :
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Lemma 6.8.3 Assume (A1). There exists a constant C > 0 such that for every
ε > 0, the value function ϑε satis�es :

|ϑε(t, y, z)| ≤ CLε(1 + |y|q + |z|),

for all y ∈ Rd, z ∈ R, t ∈ [0, T ].

Proof. (i) By straightforward calculations, we obtain :

|ϑε(t, y, z)| ≤ sup
u∈U
|E[Ψε(ζ

u
ỹ (t))]|,

≤ sup
u∈U

LεE[1 + |ζuỹ (t)|].

Then by using the Lipschitz regularity of Φ, it comes that :

|ζuỹ (t)| ≤ Lε sup
u∈U

E
[
|z|+ LqΦ

∣∣ ∫ t

0

(1 + |yuy (s)|)qds
∣∣].

By using (6.24), we get the inequality :

|ϑε(t, y, z)| ≤ Lε

(
|z|+ CTL

q
Φ(1 + |y|q)

)
.

It is also known that ϑε satis�es the following dynamic programming principle and
the HJB equation :

Proposition 6.8.4 Assume (A1).

(i) Let (t, x) ∈ [0, T ]× Rd, and denote T[0,t] the set of (Fθ)θ∈[0,t]-adapted stopping
times with values a.e. in [0, t]. Let {τu;u ∈ U} be a subset of T[0,t] (independant
of F0). Then

ϑε(t+ τu, y, z) = sup
u∈U

E[ϑε(t,y
u
y (τu), ζuy,z(τ

u))]. (6.28)

(ii) The function ϑε is a continous viscosity solution, with polynomial growth of
the following HJB equation :

∂tϑε +H(y,Dyϑε, ∂zϑε, D
2
yϑε) = 0, in (0, T )× Rd+1, (6.29a)

ϑε(0, y, z) = Ψε(z) in Rd+1, (6.29b)

where H denotes the Hamiltonian function de�ned by :

H(y, p1, p2, Q) := inf
u∈U

{
−f(y, u) ·p1

}
− 1

2
Tr(σ(y)σT (y)Q)−Φ(y)q ·p2, (6.30)

for every y ∈ Rd, p1 ∈ Rd, p2 ∈ R and for every symmetric d× d-matrix Q.

Proof. The proof of Proposition 6.8.4 can be found in [61, Chapter 5]. For the
uniqueness of unbounded solutions see [48].
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Time semi-discrete SL scheme

We aim at approximating v, the unique continous viscosity solution, with linear
growth, of the following HJB equation :

∂tv +H(y,Dyv, ∂zv,D
2v) = 0, in (0, T )× Rd+1, (6.31a)

v(0, y, z) = ψ(z) in Rd. (6.31b)

where H is the same Hamiltonian function as in (6.30). This is the same as HJB
equation (6.29) but with a general Lipschitz continuous terminal data ψ instead of
Ψε, with Lipschitz constant Lψ.

We aim to give new error estimates for semi-Lagrangian schemes [38], in the case
of Lipschitz continuous b and σ yet that can be unbounded and locally Lipschitz
continuous solution v with polynomial growth.

For convenience, we will denote by σk the column vectors of the matrix σ :

σ(y) =
[
σ1, . . . , σm

]
(y),

and let us denote the vectors (σ̄k)k=1,...,2m as follows

σ̄k(y) := (−1)k
√
m σb k−1

2
c(y), (6.32)

(where bpc denotes the integer part of p ∈ R).

Let h = h > 0 denote a given time step, and consider a semi-discrete scheme de�ned
as (for y ∈ Rd) :

V 0(y, z) = ψ(z), (6.33a)

and, for every n = N, . . . , 1,

V n+1(y, z) = Sh(tn, y, z, V n),

with, for any t ∈ [0, T ], y ∈ Rd, z ∈ R, and any function w : Rd → R,

Sh(t, y, z, w) :=
1

2m
max
a∈U

{
2m∑
k=1

w(y + hf(y, a) +
√
hσ̄k(y), z + hΦq(y))

}
.

By V we will denote the linear interpolation of V 0, · · · , V n on t0, · · · , tN .

Remark 6.8.5 An important perspective in the following is to extend the result of
the errors estimates for Lipschitz continuous initial data to locally Lipschitz conti-
nuous initial data with polynomial growth.
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Abstract. The main objective of this thesis is to analyze the Hamilton Jacobi Bell-
man approach for some control problems of unusual forms. The �rst work is devoted
to the numerical approximations of unbounded and discontinuous value functions
associated with some stochastic control problems. We derive error estimates for
monotone schemes based on a Semi-Lagrangian method (or more generally in the
form of a Markov chain approximation). The proof is based on classical shaking and
regularization techniques. The second contribution concerns the probabilistic rea-
chablility analysis. In particular, we characterize the chance-constrained backward
reachable set by a level set of a discontinuous value function and we use the �rst
theoretical results to derive the corresponding error estimates. In the second part
of this thesis, we study a class of state constrained optimal control problem with
maximum cost. We �rst describe the epigraph of the value function by an auxiliary
optimal control problem whose value function is Lipschitz continuous. We show that
the new value function is the unique Lipschitz continuous viscosity solution of a
Hamilton Jacobi equation with a Dirichlet condition. Here, we give a review of the
optimal trajectories and the associated feedback control for such control problems.
In particular, we prove the convergence of a sequence of approximated optimal tra-
jectories to the continuous one. We establish a link between the control problem
and a viability kernel associated with an exit time function. The obtained results for
the state constrained control problem with maximum cost are then extended to the
state constrained control problem with Bolza cost. The study is motivated by a real
application : the abort landing during low altitude wind-shears. Many algorithms
of reconstruction of optimal feedback trajectories are studied and compared from
numerical and theoretical points of view.

Résumé. Le principal objectif de cette thèse est d'analyser l'approche Hamilton
Jacobi Bellman appliquée à certains problèmes de contrôle optimal de formes non
usuelles. La première étude concerne les estimations d'erreur des schémas monotones
basés sur la méthode Semi-Lagrangian (ou plus généralement sous la forme d'une
chaîne de Markov approchée). La preuve est basée sur des techniques classiques
de secousse et de régularisation. Ensuite, on analyse un problème d'atteignabilité
probabiliste. En particulier, on caractérise l'ensemble des points initiaux tel qu'on
arrive à la cible avec une probabilité supérieure à un seuil. Ce problème est relié
à une courbe de niveau d'une fonction valeur discontinue à laquelle on applique
les premiers résultats théoriques pour obtenir les estimations d'erreur associées. La
deuxième partie de la thèse traite d'un problème de contrôle optimal avec un coût
maximum sous des contraintes d'état. Tout d'abord, on va décrire l'épigraphe de
la fonction valeur par une fonction valeur Lipschitzienne d'un problème de contrôle
optimal sans contraintes sur l'état. Cette nouvelle fonction est caractérizée comme
l'unique solution Lipschitzienne de viscosité d'une équation Hamilton-Jacobi avec
une condition de Dirichlet. Un résultat de convergence des trajectoires optimales
approchées vers la trajectoire optimale continue est inclu dans ce travail. Cette étude
est motivée par un problème d'atterrissage annulé avec un vent à basse altitude. De
nombreux algorithmes de reconstruction de trajectoires optimales sont étudiés et
comparés de points de vue théorique et numérique.
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