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Cloud brokering is a service paradigm that provides interoperability and portability of applications across multiple Cloud providers. The attractiveness of Cloud brokering relies on the new services and extended computing facilities that enhance or complement those already offered by isolated Cloud providers. These services provide new value to Small and Medium-sized Businesses (SMBs) and large enterprises and make Cloud providers more competitive. Nowadays, at the infrastructure level, Cloud brokers act as an intermediary between the end-users and the Cloud providers. A Cloud broker provides a single point for service consumption in order to avoid vendor lock-in, increase application resilience, provide a unified billing, and simplify governance, procurement and settlement processes across multiple Cloud providers. In the future, Cloud brokers will provide advanced valueadded services and will use attractive pricing models to capture potential Cloud consumers. The aim of this thesis is to propose advanced value-added services and a pricing model for Cloud brokers.

Motivation, objectives and thesis outline

The role of Cloud Brokers in the near future of Cloud computing has been identified by Gartner as a major market trend: "By 2015, Cloud Brokers will represent the single largest category of growth in Cloud computing, moving from a sub-$1 billion market in 2010 to a composite market counted in the hundreds of billions of dollars." [START_REF] Cantara | Gartner: Hype cycle for cloud services brokerage[END_REF]. This prediction seems to be reinforced by the amount of funding raised by some Cloud brokering companies: Rightscale US$47.3m in three rounds1 , 6fusion US$10m in two rounds, Cloud Cruiser US$7.6m in two rounds, Zimory Systems US$7.2m in two rounds and Gravitant US$3.7m in one round [START_REF] Fellows | Cloud brokers: Now seeking ready-to-pay customers[END_REF]. One of the main reasons, behind this high economic expectation, is the highly heterogeneous current Cloud market constituted by many Cloud providers. Each Cloud provider exhibits different interfaces, pricing models and valueadded services. Thereby, to help the end-user cope with such a fragmented ecosystem, Cloud brokers have emerged as an intermediary third-party that provides unified-self service access to multiple Cloud providers. Thus, by being a single point for service consumption, Cloud brokers provide interoperability and portability of applications across multiple Cloud providers. Besides this inherent role, current Cloud brokers provide to Cloud consumers other value-added services, such as follows. Advanced management by using tools beyond the stacks offered by Cloud providers (e.g. consolidated billing, Figure 1.1: Evolution and dependency of value-added services in Cloud brokering infrastructure monitoring, disaster recovery, SLA enforcement), elasticity management in order to automatically scale up or down infrastructure resources based on the workload and service arbitrage with the aim of taking advantage of two or more Cloud provider offerings (e.g. Cost optimization). These services can be overlayed, enabling new Cloud computing scenarios such as Cloud bursting or Cloud marketplaces (Figure 1.1). These new scenarios may be beneficial for both end-users and Cloud providers. In the case of Cloud bursting, end-users have the possibility to extend their computing facilities by moving the development of applications or the non-mission-critical applications to public Clouds. In the case of a Cloud marketplace scenario, end-users have access to multiple Cloud providers through a single interface, while Cloud providers may sell spare infrastructure capacity.

Cloud brokers are expected to drive creation of value through advanced value-added services enabling new Cloud computing scenarios. The price of Cloud computing resources varies around 20% between Cloud providers, while the performance differences between Cloud providers remain unknown or less studied [START_REF] Fellows | Cloud brokers: Now seeking ready-to-pay customers[END_REF]. Due to the fact that Cloud brokers are able to deploy a workload in any Cloud provider, the measurement of performance of Cloud providers and the placement of Cloud resources based on a cost-performance relationship may be in the future value-added services supported by Cloud brokers. Moreover, the commoditization of infrastructure resources will increase the Cloud adoption by simplifying the purchase of Cloud computing resources. Being Cloud computing resources traded like any other commodity (e.g. wheat, oil, iron) will flatten the current fragmented Cloud market. This opens the door to new pricing models Chapter 1. Introduction in which Cloud brokers not only will act as intermediaries but also as liquidity providers, negotiating volume discounts from Cloud providers and guaranteeing resource availability to end-users.

Service arbitrage enables advanced services in Cloud brokering by taking advantage of two or more Cloud provider offers. This allows Cloud brokers to simplify the vast number of offers by categorizing the features and benefits of each Cloud provider in order to match consumer needs with an ideal set of Cloud providers. In the first part of this thesis entitled "Value-added services in Cloud brokering", it is carried out a comprehensive state of the art on Cloud performance evaluations and placement in Cloud brokering (Chapter 2). Then, it is proposed a method to calculate Cloud performance through a single figure of merit based on the mapping of the physical features of a VM to their respective performance capacities (Chapter 3). Finally, it is proposed an exact placement approach for optimizing the distribution of Cloud infrastructure across multiple providers (Chapter 4). Parameters such as price, VM configuration, VM performance, network latency and availability are considered for that purpose.

Nowadays, pay-as-you-go and reserved pricing dominate the way consumers acquire Cloud resources from legacy Cloud providers at the infrastructure level. However, the introduction of Cloud brokers may induce the commoditization of Cloud infrastructures. Facing such an evolution, new pricing models are necessary to capture potential consumers or untapped market segments. The second part of this thesis entitled "A new pricing model for Cloud brokering" focuses on the design of a pricing model for Cloud brokering, called pay-as-you-book (Chapter 5). Pay-as-you-book is based on two types of information. The first type consists of the forecast of users' job requests. The second one consists of the ability of Cloud brokers to take advantage of such advanced reservations. With this aim in view, a study comparing three resource allocation policies under pay-as-you-book is carried out.

The aim of this thesis is to contribute to the design of new value-added services and pricing models for Cloud brokering. The majority of the investigations and original results presented in this manuscript have been achieved and obtained in the context of the CompatibleOne [COn] research project supported by the French Ministry of Industry. Its objective was to demonstrate the feasibility of a Cloud brokering intermediation platform integrating and adapting the various software solutions proposed by the industrial and academic partners of the project. This platform provides a single point for service consumption in order to avoid vendor lock-in. This thesis has three objectives:

• The first one is to propose a single figure of merit of Cloud VMs performance based on the application profile.

• The second one is to propose an exact approach for allocation of VMs across multiple Cloud providers based on different optimization criteria.

Contributions of this thesis

• The third one is to describe a pricing model for Cloud brokering, called pay-as-youbook.

Contributions of this thesis

The contribution of this doctoral research can be itemized as the following:

• A method to calculate a figure of merit of VM Cloud performance. The originality of this figure of merit is to offer a single value to express VM Cloud performance that is based on the type of application to be deployed. Thus, end-users may in a straightforward manner compare and select the best Cloud provider in which to deploy an application.

• The formulation of Mixed-Integer Linear Programming for placement of VMs across multiple Cloud providers. The originality of this approach is in associating the heterogeneity of Cloud providers' offers with their respective performance. This approach may be applied to the optimization of cost, performance, cost-performance and disaster recovery scenarios.

• The description of pay-as-you-book, a pricing model between pay-as-you-go and subscription. Pay-as-you-book consists of paying and reserving time-slots of VMs in advance without a fixed fee to subscribe to the service and without a long-term commitment, avoiding vendor lock-in, while obtaining lower prices than in pay-asyou-go. Pay-as-you-book may be applied in scenarios with predictable workloads. Through simulations, it has been shown why a model such as pay-as-you-book is not convenient for Cloud providers. However, Cloud brokers reselling Cloud infrastructure may create attracting service offerings based on pay-as-you-book.

Publications

This dissertation consists of an overview of the following conference publications:

1. F. Díaz 

Part I

Value-added services in Cloud brokering

Introduction

The growing number of Cloud computing services increases the interest of consumers in comparing these services in order to choose those best adapted to their needs. This chapter focuses on the performance issues related to Cloud provider evaluation and on the role of Cloud brokers in the automatic optimization of resource allocation across multiple Cloud providers. This chapter is structured as follows. A survey of the current studies related to Cloud performance evaluation appears in Section 2.2. The motivations and challenges behind the evaluation of Cloud provider performance are described. Section 2.3 presents the state of the art on placement in Cloud brokering. The studies are classified into two categories: placement based on non-functional requirements and application-aware placement.

Cloud performance evaluation

Motivations and challenges

The current Cloud computing landscape hinders a straightforward comparison of Cloud provider service offerings. In the case of computing resources, this is mainly due to the heterogeneity of VM configurations and prices. On the one hand, traditional Cloud providers such as Amazon, Rackspace and WindowsAzure sell fixed-size VMs. These VM configurations vary from one Cloud provider to another, therefore it is not possible to find the same VM configuration at two Cloud providers. On the other hand, new Cloud providers in an effort to attract consumers, look to differentiate their services through technology by allowing consumers to configure at freely the size of the computing resources to be purchased.

VM performance evaluation adds another layer of complexity to the comparison of Cloud providers. Firstly, consumers have little knowledge and control over the infrastructure hosting their applications. Due to the virtualization of hardware used in Cloud computing, Cloud providers may use resource sharing practices (e.g. processor sharing, memory overcommit, throttling or under-provisioned network [START_REF] He | Performance analysis of cloud computing services for many-tasks scientific computing[END_REF]) that degrade the performance of a Cloud application. Secondly, Cloud provider's data centers are equipped with hundred of thousands of servers with different qualities of hardware and software. Thereby, the evaluation of performance, across all the data centers of multiple Cloud providers, implies a trade-off between thoroughness, time and cost of the evaluation [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. Thirdly, Cloud providers may continually upgrade or extend their hardware and software infrastructures, and new commercial services and technologies may gradually enter the market [LZO + 13]. Therefore, performance evaluations become quickly out of date and the tools for performance measurement must be continuously re-designed. Finally, there are no Cloud-specific benchmarks to evaluate all VM features [START_REF] Iosup | Iaas cloud benchmarking: Approaches, challenges, and experience[END_REF]. However, traditional benchmarks can partially satisfy the requirements for Cloud performance evaluation.

Cloud performance evaluation would be beneficial for both consumers and Cloud providers [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. Consumers testing their applications across multiple Cloud providers can choose the Cloud provider that represents the best performance-cost trade-off. Also, performance evaluations can serve as a recommendation of the performance of a particular system [START_REF] He | Performance analysis of cloud computing services for many-tasks scientific computing[END_REF] or can give to consumers technical arguments to put pressure on Cloud providers to use best practices [START_REF] Iosup | Iaas cloud benchmarking: Approaches, challenges, and experience[END_REF]. A provider may identify its market positioning in order to improve its services or to adjust its prices [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF].
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Studies related to Cloud providers performance evaluation

An exhaustive study about the academic approaches of commercial Cloud services evaluation has been carried out by the Australian National University [LZO + 13]. A Systematic Literature Review (SLR) was the methodology employed to collect the relevant data to investigate the Cloud services evaluation. As a result, 82 relevant Cloud service evaluation studies were identified. The key findings of this study represent a state-of-practice when evaluating Cloud services and are as follows:

• 50% of the relevant studies investigated applying Cloud computing to scientific issues, while only 16% of the studies focused on the evaluation of business applications in the Cloud.

• 21 Cloud services over 9 Cloud providers were identified. 70% of the relevant studies evaluated Cloud services provided by Amazon Web Services (AWS).

• Three main aspects and their properties for Cloud services evaluation have been investigated: performance, economics and security, performance being the most studied aspect (78 studies).

• There is no consensus regarding the definition and the usage context of metrics. Some metrics with the same name were used for different purposes, some metrics with different names were essentially the same. The study identified more than 500 metrics including duplications.

• There is a lack of effective metrics vis-à-vis elasticity and security aspects in Cloud computing. Therefore, it is hard to quantify these apects.

• There is not a single or a small set of benchmarks that provides a holistic evaluation of Cloud services. The SLR identified around 90 different benchmarks in the selected studies of Cloud services evaluation. These benchmarks can be grouped in three main categories: application, synthetic and micro-benchmarks, as explained below.

• 25 basic setup scenarios for constructing complete Cloud service evaluation experiments have been identified and classified.

• The Cloud service evaluation is getting more and more attention from the research community. The number of relevant studies was 17 times larger in 2011 (34 studies) than in 2007 (2 studies).

Cloud performance evaluation is done by running application benchmarks, synthetic benchmarks or micro-benchmarks in single or multiple Cloud providers. Application benchmarks correspond to real-world software that provides an overall view of the performance of a specific application. Synthetic benchmarks simulate application behavior by imposing a workload on the system. Similarly, micro-benchmarks impose a workload with the aim of measuring hardware-specific VM features. Since there are no Cloud-specific benchmarks, Cloud performance has been measured through widely used benchmarks such as TPC-W (a transactional web e-Commerce benchmark) [START_REF] Li | Towards a taxonomy of performance evaluation of commercial cloud services[END_REF], HPCC (a software suite consisting of 7 basic benchmarks) [SASA + 11,IOY + 11a,HZKD11], NPB (set of parallel benchmarks to evaluate the performance of parallel supercomputers) [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF][START_REF] He | Performance analysis of cloud computing services for many-tasks scientific computing[END_REF] or common measurement tools such as ping or iperf [START_REF] Schad | Runtime measurements in the cloud: Observing, analyzing, and reducing variance[END_REF][START_REF] Baun | Performance measurement of a private cloud in the opencirrus™ testbed[END_REF]. Also, specific benchmarks have been developed to measure Cloud performance of CPU, memory, disk and network [ADWC10,HLM + 

Cloud VM characterization

According to the studies of Cloud provider performance evaluation presented in the previous Section, a Cloud VM can be represented by a set of criteria and a set of capacities (Figure 2.1). The criteria set is composed of the VM physical properties (i.e. communication, computation, memory and storage) and of Cloud service related features (i.e. availability, reliability, scalability and variability). The set of capacities corresponds to brokering the metrics used to describe the performance of the criteria. Both criteria and capacities are described below.

Criteria

• Communication is defined as the property of transferring data between two entities through a network. Three types of communications can be distinguished: intraand inter-datacenter network, and wide-area network [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. Intra-datacenter network refers to the communication of two VMs belonging to the same datacenter, while inter-datacenter network corresponds to the communication between two VMs located in different datacenters but belonging to the same Cloud provider. Widearea network refers to the communication between a VM located in a datacenter and an external host on the Internet.

• Computation refers to the physical property of processing data. In the case of a VM, computation corresponds to the evaluation of the virtual CPU.

• Memory corresponds to the physical property of storing data on a temporary basis. Both RAM memory and cache are considered in this category.

• Storage refers to the physical property of storing data on a permanent basis, until the data is removed or the service is suspended by the end-user.

• Availability is defined as the percentage of time an end-user can access the Cloud service (Equation 2.1). For a given interval of time, it is calculated as a ratio of the uptime of the Cloud service to the total time of the interval, usually on a yearly basis. Availability = total uptime total time of the interval (2.1)

• Reliability: In the literature, the definition of reliability varies depending on different contexts or perspectives. Here, reliability refers to the property of a Cloud service to perform its function for a specified period of time (Equation 2.2). It is defined based on the previous failures experienced by users and the promised Mean Time Between Failures (MTBF) by the Cloud provider [START_REF] Garg | A framework for ranking of cloud computing services[END_REF].

Reliability = 1 - number of users experiencing a failure number of users × MTBF (2.2)
Thus, if a Cloud provider promises a MTBF of 8760 hours (one failure per year) and 20% of his clients experienced a failure in an interval less than promised by the Cloud provider. The reliability performed by the Cloud provider, according to our definition is 7008 hours (or 9 months and 22 days).

• Scalability (also known as elasticity) is the ability at which the application capacity can be adapted to the demand of end-users [START_REF] Islam | How a consumer can measure elasticity for cloud platforms[END_REF]. Two types of scalability can be distinguished: Horizontal [START_REF] Vaquero | Dynamically scaling applications in the cloud[END_REF][START_REF] Wang | An availability-aware virtual machine placement approach for dynamic scaling of cloud applications[END_REF] and Vertical [START_REF] Dawoud | Elastic vm for rapid and optimum virtualized resources' allocation[END_REF][START_REF] Yazdanov | Vertical scaling for prioritized vms provisioning[END_REF]. The former refers to the provisioning of multiple instances of the Cloud service (e.g. deploy new VMs). The latter implies to add more resources to a current Cloud service (e.g. add dynamically more processors or storage to a VM).

• Variability (also known as stability) refers to the variation of performance of a Cloud service. Unlike the availability and the reliability that are either provided by the Cloud provider or that can be easily calculated, variability depends on the values of the capacities (as explained below). Therefore, variability can be considered as a derived capacity. Several metrics have been employed as a metric to evaluate variability [START_REF] Li | On a catalogue of metrics for evaluating commercial cloud services[END_REF]. Here, we have used the Coefficient of Variation (CV), which is defined as the ratio of the standard deviation to the mean (Equation 2.3). The CV is useful for comparison between data sets with different units (as it is the case of most of the benchmarks), since it allows to compare the degree of variation from one data set to another.

CV = 1 x • 1 N -1 • N i=1 (x i -x) 2 (2.3)
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Here N is the number of measurements; x 1 , ..., x N are the measured results; and x is the mean of those measurements.

Capacities

The presented capacities have been defined by Li et al. in [START_REF] Li | Towards a taxonomy of performance evaluation of commercial cloud services[END_REF].

• Transaction speed defines how fast transactions (e.g job execution, read/write operation) can be processed.

• Data throughput (Bandwidth) is considered as the amount of data processed by any physical property in a given period of time.

• Latency includes all the time-related capacities of a Cloud service.

• Other consists of dimensionless metrics (i.e. availability, CV) or single metrics such as the reliability.

Placement in Cloud brokering

The placement or resource allocation in Cloud brokering refers to the mechanisms to distribute infrastructure resources across multiple Cloud providers based on end-users' needs and constraints. The optimization goal in placement is to select a single or a set of Cloud providers to optimally deploy a service based on an optimization criteria, for example cost optimization or performance optimization. Placement mechanisms can be classified into non-functional requirements-based placement and application-aware placement. The non-functional requirements placement corresponds to the allocation of Cloud infrastructure based on the match of both Cloud provider resources and end-user requirements. The application-aware placement is based on the constraints that guarantee a Quality of Service (QoS) of the application running on top of the infrastructure.

Non-functional requirements-based placement

Placement studies based on non-functional requirements consider performance of Cloud providers and/or dynamic pricing scenarios 1 . In the literature, we have identified two Cloud brokering placement scenarios: static and dynamic. Static placement assumes that changes within the Cloud environment never happen. Dynamic placement addresses the issue of how to reconfigure Cloud resources optimally, adapting them to new situations when conditions change (e.g. Cloud provider outage, new VM prices, and etc.). The approaches described below are based on exact models (e.g. binary integer programming formulation).

Static placement

Tordsson et al. [START_REF] Tordsson | Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers[END_REF] propose an architecture for Cloud brokering and a placement algorithm based on the performance of the GridNPB/ED benchmark and the price of resources. An end-user may constrain resource deployment by specifying the type and number of VMs to be deployed and the percentage of VMs located within each Cloud provider. Chaisiri et al. [START_REF] Chaisiri | Optimal virtual machine placement across multiple cloud providers[END_REF] propose an optimal VM placement across multiple Cloud providers that considers both reserved and on-demand provisioning plans. However, including the reservation plan implies not only a long commitment in exchange of lower prices regarding on-demand service provisioning but also raises new issues in case of underprovisioning or overprovisioning of IaaS resources. On the one hand, in the underprovisioning scenario, the demand can be fully met through on-demand resources at a higher cost. On the other hand, in the overprovisioning scenario, questions arise such as: who (the end-user or the Cloud broker) is going to pay for the unutilized IaaS resources?

The usefulness of Cloud brokering placement for fully-decoupled or loosely-coupled applications is studied by Van den Bossche et al. [START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF] and Moreno-Vozmediano et al. [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF]. Both approaches improve the cost-effectiveness of the deployment and consider an on-demand provisioning plan and a hybrid IaaS Cloud architecture. Van den Bossche et al. [START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF] propose a cost-optimal placement for preemptible but nonprovider-migratable batch workloads with a strict completion deadline. The workloads are characterized by memory, CPU and data transmission requirements. The problem is tackled by Linear programming. Moreno-Vozmediano et al. [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF] evaluate the scenario of deploying a computing cluster on top of a multi-Cloud infrastructure for solving loosely-coupled Many-Task Computing (MTC) applications. The goal is to improve the cost-effectiveness of the deployment, or to implement high-availability strategies. This approach is evaluated through a low scale testbed including a local data-center and three different public Cloud sites. This testbed is complemented with simulations that include a larger number of resources.

Dynamic placement

Lucas-Simarro et al. [START_REF] Lucas Simarro | Dynamic placement of virtual machines for cost optimization in multi-cloud environments[END_REF] propose a VM placement algorithm with the goal of minimizing the costs for end-users in a dynamic pricing environment. The Cloud broker transfers clients' infrastructure from one Cloud provider to another based on price fluctuations. The algorithm calculates possible future prices based on the average Cloud brokering provider's price and its price trend. In order to guarantee the performance of the applications running on top of the IaaS resources, the placement decisions are constrained by: the maximum and minimum number of VMs to reallocate in each placement and a load balancing requirement that indicates the percentage of resources to maintain within each Cloud provider. In this approach, the placement problem is limited to one VM configuration. Lucas-Simarro [START_REF] Lucas-Simarro | Scheduling strategies for optimal service deployment across multiple clouds[END_REF] extends this work to multiple VM configurations and addresses the problem of performance optimization. Performance optimization consists in maximizing the performance of the deployed resources by choosing the VMs with the best performance in terms of hardware resources (hard disk, memory, CPU). A drawback of this approach is that VM performance measures should be provided by end-users after testing all VM configurations within each Cloud provider.

A more complex model that not only involves cost-optimization but also copes with changes in the Cloud environment through VM migration is proposed by Tordsson et al. [START_REF] Li | Modeling for dynamic cloud scheduling via migration of virtual machines[END_REF]. In this model, the time for VM migration is approximated by the time required to shut down a VM within one Cloud provider and start a new VM with the same configurations within another.

Chaisiri et al. [START_REF] Chaisiri | Optimization of resource provisioning cost in cloud computing[END_REF] propose an optimal Cloud resource provisioning algorithm minimizing the cost of resource provisioning for a certain period given the uncertainty for demand and price. The optimal decision calculated by the Cloud broker is based on endusers' demands and Cloud providers' prices. This allows the Cloud broker to adjust the number of resources acquired in advance under reservation and the number of resources to be acquired under on-demand provisioning, taking into account that reserved VMs are generally cheaper than on-demand ones. This approach tackles the underprovisioning and overprovisioning problem. Chaisiri addresses this problem through stochastic integer programming.

Application aware placement

The application-aware placement dynamically scales up or down resources across multiple Cloud providers' infrastructures under QoS constraints specific to the application. In the case of tightly-coupled applications with low delay or strong communication requirements, the placement process should guarantee a single-cloud deployment [START_REF] Grozev | Inter-cloud architectures and application brokering: taxonomy and survey. Software: Practice and Experience[END_REF]. On the other hand, in the case of fully-decoupled2 or loosely-coupled applications, the placement process may take advantage of the heterogeneity of Cloud providers' offers to deliver a cost-effective solution that guarantees the performance of the application [RCL09, Vd-BVB10]. In the case of interactive applications (e.g. on-line gaming), user experience relies on network bandwidth and on the latency caused by geographical distances [START_REF] Grozev | Inter-cloud architectures and application brokering: taxonomy and survey. Software: Practice and Experience[END_REF].
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Therefore, these kinds of applications should be treated near the geographical location of their origin to achieve lower latency and higher throughput.

The importance of Cloud brokering for telecommunication services is highlighted by Carella G. et al. [START_REF] Carella | Network-aware cloud brokerage for telecommunication services[END_REF]. In this approach, the Cloud broker enhances his placement mechanisms based on: real-time data on network performance, QoS requirements and Cloud providers' prices. The goal is to provide to telecommunication service operators a minimum QoS to satisfy customer's requirements by monitoring the deployed services. This approach is evaluated in a testbed composed of a Cloud broker and an IP Multimedia Subsystem (IMS) deployment. The cost-effective placement of Web 2.0 applications with high-availability and fault-tolerance requirements across multiple Cloud providers is proposed by Frincu et al. [START_REF] Frincu | Multi-objective meta-heuristics for scheduling applications with high availability requirements and cost constraints in multi-cloud environments[END_REF]. In this approach, authors consider applications consisting of several components and connectors (C/Cs). C/Cs are reallocated by making a snapshot, stopping the execution of each C/C, moving the snapshot to a new VM and starting the C/C from the snapshot. A Cloud broker architecture with the intelligence to react to changes in business processes by changing the Cloud configuration across multiple Cloud providers is described by Grivas et al. [START_REF] Grivas | Cloud broker: Bringing intelligence into the cloud[END_REF].

The placement of services with different QoS and service provisioning requirements for risk assessment services and e-learning education applications is tackled by Quarati et al. [START_REF] Quarati | Hybrid clouds brokering: Business opportunities, qos and energy-saving issues[END_REF]. The goal is to maximize user satisfaction and broker's revenues by reducing energy costs, through energy saving mechanisms. For this, the Cloud broker allocates IaaS resources to the public or private Cloud based on end-user's QoS expectations and the workload of the private resources. This approach was evaluated through a discrete event simulator.

Conclusion

In this chapter, it has been surveyed research work tackling the problem of Cloud performance evaluation and placement in Cloud brokering. A shortcoming in the current approaches to Cloud performance evaluation is the absence of a single figure of merit that provides a straightforward comparison of Cloud providers. Regarding the problem of placement in Cloud brokering, the surveyed studies assume that Cloud providers offer the same type of VM configurations. This assumption is not true for all the cases; VM configurations may vary from one Cloud provider to another. For some cases, even a VM offered by a Cloud provider in one location, may not exist in another location belonging to the same Cloud provider. These issues are tackled in the next two chapters. 

Introduction

Let's imagine creating a figure of merit for automobiles and that the most expensive Mercedes-Benz has the highest figure of merit. Does this mean everyone should buy that particular car? What if you want to tow a trailer? In Cloud computing this also happens, although we may be able to find a single value to represent Cloud performance, it does not mean that this value will be useful for all type of applications. According to the physical property that limits performance, applications can be classified as CPU-bound, memory bound or I/O bound (Figure 3.1). Therefore, the application profile must be taken into account in the calculation of a single figure of merit.

Currently, the information given by Cloud providers allows a simple but inaccurate comparison between providers. End-users can choose a Cloud provider by comparing quantitatively different VM offers (e.g. number of cores per dollar, memory or storage capacity per dollar). Using this simple approach, end-users can select the Cloud provider that offers the largest quantity of resources at the lowest price. However, this only makes sense in the unreal scenario in which Cloud providers have qualitatively homogeneous resources. Another more precise alternative for comparing Cloud providers, is to evaluate the performance of an application across multiple Cloud providers and to choose the set of Cloud providers with the best performance-cost ratio [START_REF] Lucas-Simarro | Scheduling strategies for optimal service deployment across multiple clouds[END_REF]. This approach is technically feasible through a Cloud broker but requires a time-consuming and highly expensive task: the application must be evaluated in each VM configuration offered by each Cloud provider. Moreover, the performance estimation becomes increasingly inaccurate as the Cloud providers upgrade their infrastructures (Section 2.2.1). In contrast with the methods described above, a figure of merit of Cloud performance based on the application profile, can serve as a general guide for the performance of a particular system configuration and provide a straightforward comparison of Cloud providers for a given type of application. In this chapter, a figure of merit of Cloud performance is calculated, by running benchmarks in advance across multiple Cloud providers and by obtaining a composed metric based on the benchmarks' results.

The motivation behind a figure of merit in Cloud brokering is twofold. Firstly, the performance of the Cloud providers can be measured in advance with consistent results for Chapter 3. Towards a figure of merit of Cloud performance a period of time. This is due to the fact that the time to run benchmarks is much shorter than the upgrade cycle of Cloud infrastructures. Secondly, a Cloud broker, granting access to multiple Cloud infrastructures as a trusted third-party, may provide up-to-date evaluations of Cloud provider performance. Cloud brokers may automatically deploy benchmarks and process the results. Thereby, a Cloud broker can easily automate the process for calculating a figure of merit. This chapter is organized as follows. In Section 3.2, the methodology and the experimental setup used in our Cloud evaluation is described. This is followed by the evaluation of the provisioning time and the evaluation of criteria such as computation, memory, storage and variability for different types of VMs and Cloud providers. In Section 3.3, two approaches to calculate a single figure of merit of Cloud performance are presented. Finally, Section 3.4 presents a case study for a CPU-intensive application. In this case study, we use real performance results to compute a figure of merit with three different methods.

Performance evaluation

Evaluation methodology

There is a lack of standardized methodology for Cloud performance evaluation through benchmarks (cf. Section 2.2.2). Here, we describe the methodology employed in this work to measure Cloud performance. This methodology is composed of five main steps (Figure 3.2):

1. Define scenarios: the stakeholders (i.e. Cloud providers to be evaluated) are identified, as well as the features related to the Cloud services such as VM configurations and datacenter locations.

2. Identify Benchmarks: selection of suitable benchmarks according to the scenario formulated in the previous step. If we want to evaluate the performance of a specific application, this step is omitted. Evaluation-related issues such as the number of benchmark repetitions and the type of workload are defined in this step [START_REF] Li | Towards a taxonomy of performance evaluation of commercial cloud services[END_REF].

3. Run tests: the resources are acquired on the selected Cloud providers' locations. Then, benchmarks are deployed into the chosen VM configurations. At the end of this step, the results are collected and the resources are released.

4.

Process results: the results are treated and synthesized. For example, by calculating a figure of merit of Cloud performance or by generating a graphical representation that summarizes the main results, aspects and trends. 

Experimental setup

Our initial idea was to create an Operative System (OS) image consisting of all the scripts and benchmarks necessary to measure Cloud performance. This image would be uploaded and deployed in every Cloud. Thus, we would guarantee the same workload conditions for every Cloud provider. However, the Cloud providers, covered in this study, present issues that hinder or completely prevent VM import. In some cases, Cloud providers only support the import of VMs generated via licensed software (e.g. Amazon only support the import of images generated with VMware vSphere Client). In other cases, the import of VM images is only supported for some but not for all the image formats (e.g. Cloudsigma only supports import of VMs in RAW format). Finally, particularly in recent-emerged Cloud providers, the import of VM images is not supported at all. For these reasons, it has been opted to build a VM image from the images already offered by Cloud providers. The experimental setup presented here consists of three phases: image setup, running benchmarks and processing benchmark results. These phases occur once the accounts have been created in every Cloud provider to be evaluated and the payment details have been registered. More issues related with this evaluation of performance are presented in Appendix A.1.

The image setup is as follows. First, a VM via web interface or command line is created. During the VM creation, the OS system is chosen. In this setup, Linux CentOS 6.X for a 64 bits processor architecture, an OS supported by the majority of Cloud providers, has been chosen. Once the VM has been created, the OS is updated and a ssh server is installed to enable a secure remote control of the VM. Then, the scripts, benchmarks and tools necessary to evaluate Cloud performance are installed and configured. The scripts have been developed in Python. The execution permissions of the /etc/rc.local file have been modified and changed, in order to automatically trigger the benchmarks once the VM is turned-on. The phoronix-test-suite [pho] has been selected as the framework to deploy benchmarks due to its widely set of supported benchmarks (more than 350). For the transmission of benchmark results, s3cmd, a command line tool for using the Amazon S3 service, has been used. The image containing all the scripts, benchmarks and tools necessary to evaluate Cloud performance has been called ceilo(Figure 3.3). As explained above, the benchmarks are triggered automatically and sequentially once the VM is turned-on. Once all the benchmarks have been executed, the results are sent to an Amazon S3 bucket and the VMs are automatically turned-off. Benchmark results correspond to XML files. Thus, result files are parsed with xsltproc [xsl], a command line tool for applying XSLT stylesheets to XML documents; and values such as the average, the variance, the standard deviation and the coefficient of variation are calculated. Finally, for some of the results, we run a script to automatically generate graphical representations of the results with google charts.

In this study, the performance of 37 different VM types across 8 Cloud providers with data centers in Europe has been measured (Table 3.1). According to the pre-configured VMs offered by some Cloud providers and in order to compare VMs with similar capacities, we have defined five different VM sizes (xs, s, l, m and xl) (Table A .1). This classification has been based on the number of virtual CPUs (vCPUs) and the RAM memory size.

The performance evaluation presented here is based on 6 benchmarks. These benchmarks measure the computation, memory and storage capacities (Table 3.2). Depending on the operation implemented by the benchmark, the magnitude of the results can be classified as: Lower is Better (LB) or Higher is Better (HB). LB means that the lower the value, the better the system to execute a given benchmark. Inversely, HB means that the 

Provisioning time

The provisioning time (or scaling latency) is defined as the time taken by a Cloud provider to allocate a new VM once the end-user requests it [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. The provisioning time corresponds to the sum of the time that takes to a Cloud provider to power-on a VM (VM provisioning time) and the boot time of the OS, defined as the time between when the VM has been powered-on and the VM is ready to be used. The provisioning time has a direct impact in the scalability of a Cloud application, particularly in peak load scenarios, where the deployment of Cloud infrastructure must follow the workload variations and the VMs must be ready to be used as soon as possible.

The VM provisioning time for every VM size of WindowsAzure and Amazon has been measured (Figure 3.4). In general, WindowsAzure has a higher provisioning time and a larger standard deviation than Amazon. The VM provisioning time for Amazon stays under 25s while for WindowsAzure it is consistently over 25s. The boot time for every VM size of every Cloud provider has been also measured (Figure 3.5). In 5 out of 8 evaluated Cloud providers, the VM boot time varies in the range 10-25s and is independent of the VM size. In the case of Joyent, the boot time is inversely proportional to the VM size. Arubacloud presents a VM boot time that varies in the range 40-50s and it is independent of the VM size. Lunacloud presents the lowest boot time values for xs-, s-, m-and xl-VM sizes. Lunacloud's l-size VMs present the highest boot time among all the evaluated Cloud providers. There is not a logical explanation to this fact, from the data we have collected. We found, Lunacloud's l-size VMs shared the same processors family (Intel Xeon E5-2620) with the other Lunacloud's VM sizes. Thus, the processor brand probably is not the reason for these boot time differences. Unfortunately, we do not have either additional results or information about the Lunacloud's underlying infrastructure to determine the reasons behind this high boot time.

Computation benchmarks performance

The transaction speed has been measured with 7-zip and C-ray benchmarks (Figure 3.6). 7zip is an application to compress files. The benchmark consists of compressing a file with random data and measuring the number of CPU instructions executed during the compression. C-ray measures floating point CPU performance. By default, the benchmark uses only a small amount of data, such that on most systems the CPU does not have to access the RAM to run the benchmark. In our performance evaluation, C-ray was set up to measure the time to render an image with a resolution of 800x600 pixels. Therefore 

Memory benchmarks performance

RAM and cache memory bandwidth have been measured with the Stream and Cachebench benchmarks, respectively (Figure 3.7). Stream is a simple synthetic benchmark program that measures sustainable memory bandwidth and the corresponding computation rate for simple vector kernels. In our performance evaluation, Stream was set up to measure the memory bandwidth through the copy and add operations. The copy operation consists of fetching two values from memory and updating the value of one of these fetched values with the other. The add operation fetches three values from memory and updates one of the fetched values with the sum of the other two fetched values. Cachebench is a benchmark designed to evaluate the performance of the cache memory present on a system. In this performance evaluation, CacheBench was set up to measure the cache memory bandwidth through read and write operations. In general, CacheBench results show the writing speed is around 60%-80% faster than the reading speed (Figure 3.7e).

Storage benchmarks performance

The storage bandwidth has been measured with the Iozone and Threaded I/O Tester (TIO) benchmarks (Figure 3.8). Iozone is a filesystem benchmark tool. The benchmark generates and measures a variety of file operations. In this performance evaluation, Iozone was used to measure the transaction speed for reading and writing a file of 2GB. Similarly, the write and read speeds have been measured with TIO for a 64MB file by using 16 threads. For the small VM sizes (xs and s), the read and write speed are comparable for both benchmarks. For the m-, l-and xl-VM sizes, the read speed is at least ten times 

Variability

The variability of VMs has also been studied. For this, a single value of variability has been calculated by averaging the Coefficient of Variation (CV) of all the benchmark results. The distribution of variability (Figure 3.9) shows that 70.3% of the evaluated VMs have a variability less or equal to 10%. Since physical servers host many VMs at the same time, one should expect that the bigger the VM size, the lower the variability, and viceversa. However, results show that even small VM sizes present low variability values. The percentage of VMs with a variability between 40% and 45% corresponds to the xs-VM size of AWS. One possible explanation to this fact is that the number of processor of the AWS's xs-VMs is not constant, providing spiky CPU resources [aws]. 

Figure of merit of VM Cloud performance

No benchmark offers a holistic view through a single score of Cloud performance. Instead, benchmarks have their own specific metrics and magnitudes to express results. This heterogeneity in results prevents a straightforward, simple calculation of an absolute figure of merit of VM performance. Moreover, even in the case of benchmarks sharing the same units to express results, it is incorrect to directly add values from different benchmarks. The reason is that the magnitudes of values can differ significantly, for example read and write cache results differ by a magnitude of three. Therefore, it is not an easy task to choose a Cloud provider based on individual benchmark results. In this section, some methods to calculate a figure of merit of VM performance to allow a simple Cloud provider 

Mean and radar plot as figures of merit

Most of the performance evaluation studies report individual benchmarking results (Table 2.1). In an attempt to express the holistic performance of a Cloud service through a single score, Li et al. [START_REF] Li | Boosting metrics for cloud services evaluation -the last mile of using benchmark suites[END_REF] propose Boosting1 Metrics such as the mean (eg. arithmetic, geometric, harmonic) and the radar plot. The geometric mean, by definition, is the nth root of the product of the n units in a data set (Equation 3.1). There is a defect when employing means as boosting metrics: the results from different benchmarks must use the same units. This shortcoming is overcome by using a radar plot.

M = n n i=1 Benchmark i (3.1)
A radar plot is a simple graphical tool that can depict three or more quantitative values relative to a central point (Figure 3 3.3). HB (LB) means the higher (the lower) the benchmark result, the better.

HB Standardized i = Benchmark i MAX(Benchmark 1,...,n ) (3.2) LB Standardized i = 1 Benchmark i MAX( 1 Benchmark 1,...,n ) (3.3)
Here HB Standardized i and LB Standardized i refer to the standardized ith benchmark result. Thus, the area of the polygon representing n standardized benchmarking results can be considered as a figure of merit of Cloud performance (Equation B.3) [START_REF] Li | Boosting metrics for cloud services evaluation -the last mile of using benchmark suites[END_REF].

Figure of merit

(radar plot) = n i=1 sin ( 2π n ) × Standardized i × Standardized mod(i+1,n) 2 (3.4)
Although these metrics result in a figure of merit, they present main concerns such as lack of weighting and categorical scores2 . 

Simple figure of merit

The simple figure of merit of Cloud performance is a method similar to the one employed by companies reporting Cloud performance such as CloudSpectator or Cloudharmony. It is called simple since it does not take into account the trade-off among the different criteria. In this method, each benchmark result is scaled between two fixed values, A and B. Where A is the lower bound corresponding to the worst performance result (wpr) and B is the upper bound corresponding to the best performance result (bpr). The intermediate values (x i ) are calculated with Equation 3.5. Then, all the scaled values are averaged and a single figure of merit is obtained for each VM configuration. This method has been applied to the data previously reported (c.f. Section 3.2) to obtain a figure of merit of Cloud performance (Figure 3.11). More results based on the simple figure of merit method can be found in Appendix A. 4.

Performance score =    A + B-A bpr-wpr (x i -wpr) if HB benchmark B -B-A bpr-wpr (x i -bpr) if LB benchmark (3.5)

Figure of merit based on Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a structured technique for analyzing, organizing and solving problems related to Multiple Criteria Decision Making (MCDM) [START_REF] Saaty | The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation[END_REF]. In AHP, complex problems are simplified and structured by arranging the decision factors . In this section, AHP is used to determine the relative merit of members of a set of alternatives. This process consists of three phases: hierarchy structure modeling, judgement of priorities and hierarchical synthesis.

Phase 1: hierarchical structure modeling

In this phase, the problem is defined and the goal is determined. Also, all the criteria that have an influence in resolving the issue are identified, as well as the alternatives that offer an answer to the problem. Both criteria and alternatives are organized in a hierarchical structure. The hierarchy structure used here (Figure 3.12) is based on the performance criteria described previously (c.f. Section 2.2.3). The alternatives correspond to the different Cloud providers supported by a Cloud broker. Each alternative represents a set of benchmark results that contains a figure of merit for each criterium. In this case, the goal is to find a figure of merit for a Cloud infrastructure based on performance. 

Reciprocals of above nonzero

If activity i has one of the above nonzero numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i Table 3.3: Relative rating scale [START_REF] Saaty | The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation[END_REF] Phase 2: judgement of priorities Pairwise comparisons are used to determine the relative importance of each alternative and each criteria. Saaty [START_REF] Saaty | The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation[END_REF] proposes a relative rating scale (Table 3.3) by which the decision-maker expresses his opinion about the relative importance of one criteria over another. This scale allows one to quantify the pairwise comparisons. This phase leads to the construction of P pairwise comparison matrices of size N-by-N, where N is the number of alternatives and P is the total number of criteria. One additional matrix C, the pairwise comparison criteria matrix, is constructed to express the relative weights between each one of the criteria to be evaluated.

Phase 3: hierarchical synthesis

Once all comparisons have been made in phase 2, the numerical probability of each alternative is calculated. This probability determines the likelihood that the alternative has to fulfill the expected goal. This process is applied also to the matrix C that expresses the relative weights between each one of the criteria. The hierarchical synthesis phase is applied to the pairwise comparison matrices as follows:

1. Synthesize the pairwise comparison matrix. Given the pairwise matrix S of size N-by-N, the synthesized pairwise comparison matrix (A) is obtained by dividing N 1 2 3 4 5 6 7 8 9 10 RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 Table 3.4: Random Consistency Index (RI) [START_REF] Saaty | Theory and Applications of the Analytic Network Process[END_REF] each value of A by the total of its column, as follows:

∀n ∈ [1...N ], ∀i ∈ [1...N ] : a ij = s ij N i=1 s in (3.6)
where a ij is an element of matrix A in row i and column j.

2. Calculate the priority vector (V ). The priority vector corresponds to the eigenvector of matrix A. The priority vector can be approximated to the average value of each row of matrix A (Equation 3.7), in order to avoid the mathematical effort required to calculate an eigenvector [START_REF] Kostlan | Statistical complexity of dominant eigenvector calculation[END_REF].

∀v ∈ [1...N ] : v i = N i=1 a i N (3.7)
3. Calculate the maximum eigenvalue (λ max ). λ max is calculated by adding the product of each element of vector V by the sum of its corresponding column of matrix S (Equation 3.8).

λ max = N j=1 v j • N i=1 s ij (3.8)
4. Calculate the Consistency Index (CI):

CI = λ max -N N -1 (3.9)
5. Check the consistency of the pairwise comparison matrix (S). Saaty [START_REF] Saaty | Theory and Applications of the Analytic Network Process[END_REF] suggests the Consistency Ratio (CR) in order to determine if the pairwise comparisons made by the decision maker are consistent. For example, consider three criteria x, y and z. If the decision maker has considered x>y and y>z, then it would be inconsistent to consider that x<z. The CR is calculated as follows:

CR = CI RI (3.10)
where the Random Consistency Index (RI) is a fixed value provided by Saaty [START_REF] Saaty | Theory and Applications of the Analytic Network Process[END_REF] (Table 3.4). The decisions are considered as consistent when CR < 0.1

Finally, the overall performance for each alternative is calculated. For this, a matrix L of size P-by-H is formed. In matrix L, each row corresponds to one of the H priority vectors found for each one of the P criteria. The overall performance (OP) corresponds to the product of the priority vector (G) of matrix C and the matrix L (Equations 3.11 and 3.12). Each element of vector OP corresponds to the performance of one of the H alternatives.

OP = GL (3.11) OP = g 1 g 2 • • • g P        l 1,1 l 1,2 • • • l 1,H l 2,1 l 2,2 • • • l 2,H . . . . . . . . . . . . l P,1 l P,2 • • • l P,H       
(3.12)

Case study: CPU-intensive application

The objective of this case study is to find a single figure of merit of Cloud performance for a CPU-intensive application (e.g. file encryption, encoding, scientific computing). In order to compare the different approaches presented previously, a figure of merit with the radar plot has been computed (c.f. Section 3.3), the simple and the AHP techniques. The criteria considered were: computation, memory, storage, availability, scalability and variability. In order to calculate a figure of merit based on real data, the performance values obtained previously have been used and the availability values have been obtained from Cloud providers' websites. The availability used is the one for which the Cloud provider will not reimburse the end-user in case of service unavailability. We limited our study to s-size VMs. The implementation details per technique are the following: 

Figure of merit based on AHP:

the benchmark results are standardized with Equations 3.2 and 3.3. We have found mean values of benchmarks evaluating Cloud performance for the same criteria (e.g. in the case of the computation criteria, we calculate the mean value of standardized results of 7zip and C-ray). The pairwise comparison criteria matrix (Table 3.5) considers computation and variability criteria with an equal importance. The computation criterium is also absolutely more important than the storage and scalability criteria. The memory is slightly more important than the storage, availability and scalability. The availability is considered more important than the storage and the scalability. The priority vector represents The priority vectors are calculated for each criterium based on the these mean standardized values. The priority matrix for assessment of the overall Cloud performance (Table 3.6) presents the overall performance for each Cloud provider (Figure 3.13c).

Besides finding a figure of merit of Cloud performance, the cost plays an important role in Cloud service selection. For this, we have considered the performance-price ratio (Figure 3.13d).

The results show that for the three methods to compute a figure of merit, ArubaCloud s-size VMs present the best performance among all the evaluated Cloud providers. In the case, of the radar plot and the simple figure of merit approaches the results of performance of Joyent are close to those of ArubaCloud (Figure 3.13a-b). However, with the AHP approach, it can be clearly seen that in the case of a CPU-intensive application, ArubaCloud doubles in performance Joyent (Figure 3.13c).

Summary

In this chapter, we have evaluated Cloud performance by using micro-benchmarks. The results obtained from benchmarks have been used to calculate a single figure of merit of Cloud performance with the radar plot, the simple and the Analytic Hierarchy Process (AHP) techniques. The advantage of AHP, in comparison with other techniques to calculate figures of merit, is that it is based on pairwise comparisons in which users can express the importance of one feature over another. Thus end-users can take into account the requirements an application has in terms of performance criteria.

Summary

Introduction

In the near future, Cloud brokers may become the online travel planning companies for Cloud computing. Several years ago, the travel industry was in the same situation as the current Cloud computing industry. Travelers left planning into the hands of travel agencies who had agreements with airline companies and hotels in order to provide an overall value added proposition. This situation changed with the advent of travel planning websites that provide instant online comparisons for millions of flights on over a thousand airlines. Similarly, nowadays consulting companies help end-users with the placement of Cloud infrastructure. In the near future, Cloud brokers may provide not only discovering and comparison of Cloud providers' offers but also automatic and optimal placement of Cloud resources.

Placement in Cloud brokering refers to the techniques to distribute efficiently infrastructure resources across multiple Cloud providers (c.f. Section 2.3). Cloud brokers may react to new situations when conditions change, dynamically repositioning or deploying new Cloud infrastructure in order to maintain the performance of end-users' applications. Examples of scenarios in which a Cloud broker may trigger placement algorithms in order to compute a new infrastructure topology include:

• Changes in Cloud market conditions: for example, introduction of new VM configurations, change in prices, apparition of a new Cloud provider, implementation of a new pricing model. In this scenario, a Cloud broker could determine the impact of the changes of market conditions on the economies or performance of end-users' applications. In the case of a positive impact, the end-user can be advised to migrate its Cloud infrastructure.

• Unexpected changes in Cloud infrastructure: outages may strongly impact economies of end-users' running Cloud applications. Although Cloud providers offer economic compensation to end-users having experienced an outage, in most of the cases, this compensation is negligible in comparison to the impact of having a service unavailable (e.g. an e-commerce website down). Thus, Cloud brokers may not only automatically redeploy infrastructure in recovery scenarios but also minimize the time an application is inaccessible.

This chapter is organized as follows. Goal programming, a technique to solve Multiple Criteria Decision Making (MCDM) problems is briefly described in Section 4.2. An exact approach for optimizing placement in Cloud brokering is presented in Section 4.3. A case study considering an online trading platform is presented in Section 4.4.

Goal programming

The optimization goal in MCDM problems is to find an efficient (but not necessarily an optimum) solution by considering multiple objectives (or goals) that can possibly conflict with each other. Thus, MCDM problems contrast with Linear Programming (LP) problems which optimizes a single linear objective. Here, we consider goal programming as a technique to solve MCDM problems. Goal programming is usually carried out using either the weighted or the preemptive method.

The weighted method transforms a MCDM problem into a standard LP. A weighted objective function corresponds to a weighted sum of functions representing the multiple objectives of the problem. The weights determine the priority of each objective. Although the computation of the weighted method is easy, the main drawbacks are:

• The weights selection is subjective and may result in under-or over-rating the • The objectives may be expressed in different metrics or different order of magnitudes that prevent a straightforward calculation of the objective function.

The preemptive method considers a MCDM problem as a set of multiple LPs with different priorities assigned by the end-user. Thus, each LP is optimized one at a time from the highest to the lowest priority (Figure 4.1). Between LP executions, the optimum value is added as a constraint to the successive LP model. This guarantees that the optimum value of a higher priority objective is not degraded by a lower priority objective. This process continues until the lowest priority is optimized. In cases where a limited amount of degradation is acceptable, the constraint is added as an inequality that allows higher priority solutions to be in the near neighborhood of the optimal solution.

An exact approach for the Placement problem

The Cloud VM placement problem in Cloud brokering can be represented as a constrained Knapsack problem: Given a set of VMs, each with a configuration, a price, a performance, determine the number of each VM configuration to provide so that the provisioning infrastructure is more than or equal to the end-user request (i.e. request is satisfied) and the cost of the Cloud infrastructure is as small as possible (in the case of cost optimization). The Cloud placement problem is formulated as an Mixed-Integer Linear Programming (MILP) problem and the preemptive goal programming analysis is performed to solve this problem.

Parameters

• End-user request parameters:

-reqCPU : number of vCPUs.

-reqMEM : memory capacity.

-reqSTO: storage capacity.

-reqNET : network capacity.

-reqRTT : average latency between the Cloud providers and the application customers.

-reqAVA: average availability.

-reqREL: average reliability.

-reqSCA: average VM provisioning time.

-reqVAR: average variability.

-reqPER: performance required by the end-user.

-LOCmax k : maximum percentage of resources that can be allocated to Cloud provider k.

-VMmax: maximum number of VMs.

-Pricing model: on-demand, reserved or spot.

• Cloud provider parameters:

-V : j-by-k matrix composed of v jk elements. Where v jk = 1 if and only if the VM configuration j exists at the Cloud provider k. v jk = 0 otherwise.

-CP U jk : the number of vCPUs of the VM configuration v jk .

-M EM jk : the memory capacity of the VM configuration v jk .

-ST O jk : the storage capacity of the VM configuration v jk .

-N ET jk : the bandwidth capacity of the VM configuration v jk .

-P rice jk : the price per unity of time for running a VM configuration of type v jk .

• Cloud broker parameters: Parameters measured or calculated by the Cloud broker.

-p: index of the smallest VM configuration (in terms of computing, memory and storage).

η k : the number of VMs of type p that guarantees the fulfillment of the request for the Cloud provider k.

∀k ∈ [1, K] :

η k = max reqCP U CP U pk , reqM EM M EM pk , reqST O ST O pk (4.1)
-N : as we consider Cloud providers with unlimited resources, N is an upper bound that limits the set of solutions. Thus, N represents the maximum number of any kind of VM configuration used to fulfill the request. This parameter is set in case of the V M max is not specified by the end-user.

N = max(η k ) (4.2)
-RT T k : the latency of the Cloud provider k.

α k : average availability of a Cloud provider k.

β k : average reliability of a Cloud provider k.

γ jk : average time to provision a VM of type j at Cloud provider k.

cv jk : average variability of a VM of type j at Cloud provider k.

-P erf ormance jk : the performance of a VM configuration of type v jk .

Variables

• Binary variables:

x n jk = 1: if and only if the VM n of type j is used and belongs to the Cloud provider k. x n jk = 0 otherwise.

• Real variables:

-TCC : Total Computing Capacity. Amount of computing capacity for a particular solution.

T CC = 

Goal

Preemptive goal programming analysis is performed to solve the MILP depending on the scenario. For instance, in a disaster recovery scenario the priority of the criteria is as follows:

1. Minimize the real variable TDT.

2. Minimize the real variable TDC constrained by the minimal deployment time previously obtained.

3. Maximize the real variable TP constrained by the minimal deployment time and the total deployment cost previously obtained.

This method guarantees a minimal deployment time and suboptimal cost and performance values of the infrastructure to be provisioned.

Constraints

The constraints associated are the following:

• Physical constraint: this constraint guarantees VMs are allocated to an existing VM configuration.

x n jk ≤ v jk (4.11)

• VM configuration constraints:

T CC ≥ reqCP U (4.12) T M C ≥ reqM EM (4.13) T SC ≥ reqHD (4.14) V M max ≥ T V M (4.15)
• Load Balancing constraints:

∀k ∈ [1, K] : J j=1 N n=1 CP U jk x n jk ≤ LOCmax k • T CC (4.16) J j=1 N n=1 M EM jk x n jk ≤ LOCmax k • T M C (4.17) J j=1 N n=1 HD jk x n jk ≤ LOCmax k • T SC (4.18)
• Availability and reliability constraint:

∀k ∈ [1, K] : y k = J j=1 N n=1 x n jk ⇒ K k=1 α k • y k ≤ reqAV A • K k=1 y k K k=1 β k • y k ≤ reqREL • K k=1 y k (4.19)
• Latency constraint:

K k=1 RT T k • J j=1 N n=1 x n jk ≤ reqRT T • T V M (4.20)
• Scalability constraint:

J j=1 K k=1 γ jk • N n=1 x n jk ≤ reqSCA • T V M (4.21)
• Variability constraint:

J j=1 K k=1 cv jk • N n=1 x n jk ≤ reqV AR • T V M (4.22)

Case study: Online trading platform

Bezimie is a London based company that provides an online trading platform. Using Bezimie's application, traders can purchase and sell stocks and currencies easily through its web interface. The main competitive advantage of Bezimie regarding other online trading platforms is the low latency1 at the moment of placing market orders or reporting prices quotes of stocks and currencies to traders. Bezimie manages its Cloud infrastructure with the help of the CompatibleOne Cloud broker. The current Cloud infrastructure topology of Bezimie consists of multiple VMs deployed across two providers (Amazon and Rackspace) with datacenters in Ireland and England. The Cloud providers have been chosen due to their proximity to Bezimie's clients, resulting in the low average latency ideal for online trading ( Bezimie is planning to expand its portfolio of clients to France. After some tests, Bezimie's IT department notes that the latency of French traders to its UK-based Cloud infrastructure is acceptable (≤ 125 ms) for online trading but greater than the latency of Zimie (≤ 110 ms) its French counterpart and direct competitor. Therefore, in order to be competitive in the French market, Bezimie's IT department compares different solutions to serve its French traders with help of the CompatibleOne broker. The first optimization priority is to minimize the latency between Cloud providers and traders; the second priority is to minimize the cost of the requested infrastructure; the third is to maximize the performance of the future acquired VMs. Bezimie's IT department chooses the best performing solution (19.6) with the lowest latency in France (≤ 82 ms) at the lowest cost (2.5 US$ per hour) for serving its French traders (Figure 4.2). However, this solution places all the infrastructure to serve French traders into one Cloud provider (ArubaCloud). This represents a serious defect in the case of Cloud service outages.

Bezimie's IT department simulates also disaster recovery scenarios through the Com-patibleOne Cloud broker. In disaster scenarios, the main priority for Bezimie is to minimize the time the service is offline while keeping an acceptable latency. The second priority is to minimize the cost of the required infrastructure. The solutions for provisioning time optimization in case of an ArubaCloud outage are presented in Figure 4.3. The figure shows the two optimization stages for different LOCmax values. On the right, the solutions resulting from the first optimization stage (minimization of the provisioning time). On the left, the solutions resulting from the cost optimization stage. Note that cost optimization brings cheaper but higher latency and more variable solutions. models in Cloud computing are briefly described (Section 5.2). The Advance Reservations (ARs), an efficient way to guarantee the availability of a given amount of resources for use at a specific time in the future is studied (Section 5.3). Then, the concept of pay-asyou-book (Section 5.4), a novel manner of acquiring Cloud resources in advance for future use based on ARs is presented. Pay-as-you-book combines the main advantages presented in pay-as-you-go and subscription-based pricing models: no long-term commitment and low cost, respectively. At the end of this chapter, a case study comparing the impact of different resource allocation policies on the economies of a Virtual Cloud Provider (VCP) is developed (Section 5.5).

Pricing models in Cloud computing

Several economic models from other fields of study have been proposed for Grid Computing [START_REF] Buyya | Economic models for resource management and scheduling in grid computing[END_REF]. The commodity market, posted price, tender, bargaining and auction models are among the commonly studied economic models employed for managing the resources in the Cloud [START_REF] Buyya | Economic Models for Resource Management and Scheduling in Grid Computing[END_REF]. However, most of them have not been implemented by current Cloud providers. Pay-as-you-go and subscription-based pricing models are among the most popular cloud pricing models applied by current Cloud providers [START_REF] Weinhardt | Business models in the service world[END_REF]. In the pay-as-you-go model users pay a value proportional to their resource consumption, while in subscription-based pricing models users must commit to use the service for a given period of time, in exchange of paying a lower price per hour than in pay-as-you-go. Generally, purchased resources through subscription-based pricing models have priority in terms of availability over resources acquired through pay-as-you-go. The following Cloud pricing models are currently deployed by IaaS Cloud providers:

1. Freemium: a product or a service is free of charge, but users must to pay for advanced features. The product or service may be restricted by time, capacity, customer class, features, and so on (e.g. Amazon EC2 Free Tier Instances).

2. Usage duration or pay-as-you-go: users pay a value proportional to their resource consumption (e.g. Amazon EC2 On-Demand Instances).

3. Subscription-based: users must commit to use the service for a given period of time, in exchange they pay a lower price in the long term than in pay-as-you-go. This pricing model allows Cloud providers to foresee the utilization of their Cloud infrastructure in advance and to speed up their Return On Investment (ROI). The resource allocation, in this pricing model, is based on ARs; Cloud providers lock resources and guarantee their future availability to end-users [LRY + 11]. Subscription-based pricing model may be divided into three categories:

• Flat-fee or flat-rate: users are charged a fixed fee for a given period of time, regardless of the resource utilization (e.g. Amazon EC2 Heavy Utilization Chapter 5. The Pay-as-you-book pricing model

Reserved Instances).

• Subscription with quota: users are charged a fixed fee to subscribe the service and are given an usage quota. If the quota is exceeded, there is an additional charge.

• Subscription without quota: users are charged a fixed fee to subscribe the service plus an additional extra charge depending on usage (e.g. Amazon EC2

Light and Medium Utilization Reserved Instances).

4.

Market-based: users bid for computing power, resources are allocated if the bid exceeds the price fixed by the Cloud provider (e.g. Amazon EC2 Spot Instances). This pricing model is used by Cloud providers to sell spare Cloud computing capacity.

Users select a pricing model based on their needs (such as computation power, memory and storage capacities, QoS, execution time, budget and so on). Thus, users with timeconstrained tasks would be more interested in purchasing flat-rate VMs, in order to assure computing power at anytime. On the contrary, users without time-constrained tasks would be willing to acquire VMs through the Market-based pricing model. In case of fluctuating and unpredictable loads, VMs are purchased through the pay-as-you-go model.

Advance Reservations

Advance Reservations (ARs) have been introduced as an efficient way to guarantee the availability of a given amount of resources for use at a specific time in the future. Hotel room bookings are a very well known example of ARs. In hotel room bookings, an AR is described by at least three parameters: numbers of rooms to be booked, and the check-in and check-out dates. AR mechanisms have been applied to several problems of resource sharing in computer science such as bandwidth reservation, job scheduling and VM scheduling. In the following, a classification of some studies dealing with ARs applied to computer science is presented.

Advance Reservation specified by Cloud providers

This type of AR is tightly related to the subscription-based pricing model, widely proposed by Cloud providers (Section 5.2). This type of reservation operates on a time-interval basis. At the beginning of each time-interval, the end-user may adjust the amount of resources to be reserved by the Cloud provider for the next time-interval. Published research studies can be classified into short-term reservation plans [START_REF] Niu | Pricing Cloud Bandwidth Reservations Under Demand Uncertainty[END_REF][START_REF] Niu | A Theory of Cloud Bandwidth Pricing for Video-on-Demand Providers[END_REF] (e.g. fine granularity of 10-minute/1-hour time-intervals) and long-term reservation plans (e.g. multi-year time-intervals) [START_REF] San-Aniceto | Cloud Capacity Reservation for Optimal Service Deployment[END_REF][START_REF] Chaisiri | Optimization of resource provisioning cost in cloud computing[END_REF].

Niu, D. et al. [START_REF] Niu | Pricing Cloud Bandwidth Reservations Under Demand Uncertainty[END_REF] investigated pricing policies for guaranteed bandwidth reservation in the Cloud on a short-term basis such as hours or tens of minutes. Requests are characterized by an estimated average bandwidth requirement, its variability, and the percentage of the traffic flow to be satisfied with guaranteed bandwidth. As for the Cloud provider, it computes the current bandwidth reservation in order to guarantee the required performance in a probabilistic way. It also decides on the reservation fee taking into account the burstiness and the time correlation of the various requests. A similar problem where a broker is introduced between the Cloud providers and the end-users is also investigated by Niu, D. et al. [START_REF] Niu | A Theory of Cloud Bandwidth Pricing for Video-on-Demand Providers[END_REF]. While the broker sells guarantees to end-users individually, it jointly reserves bandwidth from multiple Cloud providers for the mixed demand, exploiting statistical multiplexing to save reservation cost. The problem has been solved using a game theory approach where the equilibrium bandwidth price depends on the demand expectation, its burstiness as well as its correlation to the market.

The long-term reservation plan was first studied by San-Aniceto, I. et al. [START_REF] San-Aniceto | Cloud Capacity Reservation for Optimal Service Deployment[END_REF]. This approach considered a single Cloud provider and proposed an algorithm that selects the number of VMs to be reserved by an end-user while deploying a service in the Cloud. In order to cope with request fluctuations and unpredictability, additional resources may be dynamically provisioned with an on-demand plan. The proposed algorithm minimizes the global cost of using a mixture of reserved and on-demand VMs by taking advantage of the different pricing models within the same provider. Chaisiri, S. et al. [START_REF] Chaisiri | Optimization of resource provisioning cost in cloud computing[END_REF] generalized the problem to the context of multiple Cloud providers taking into account the uncertainty on end-users future requests and providers' resource prices. They formulated the problem as an integer stochastic program and solved it numerically using various approaches.

Advance Reservation specified by end-users

In this type of AR, end-users have a higher flexibility as they can specify, in addition to their capacity requirements, various time constraints associated with the execution of their tasks. Time constraints can be expressed in terms of various parameters such as start-time, completion time, duration and task deadline. Thus end-users have the opportunity to reserve in advance the estimated required resources for the completion of their tasks without any further commitment. The AR window is defined as the timeinterval delimited by the start-time and the deadline of a given AR request. ARs specified by end-users can be classified into the following three categories.

Strict start and completion time

This type of AR is characterized by a duration equal to its AR window. In other words, end-users require the resources at a specified exact time in the future and for a specified duration (Figure 5.1). This type of AR does not leave any flexibility to the Cloud Aoun, R. et al. [START_REF] Aoun | Resource Provisioning for Enriched Services in Cloud Environment[END_REF] investigated the provisioning of computing, storage, and networking resources in order to satisfy AR requests. They considered several basic services and highlighted how distributed data storage and multicast data transfer can satisfy a larger number of end-users and improve resource utilization of Cloud providers. In further studies, the business model of the aforementioned problem has been investigated [START_REF] Aoun | Towards a Fairer Benefit Distribution in Grid Environments[END_REF]. The authors proposed and compared three pricing strategies assessing the expectations of both end-users and Cloud providers.

Flexible start but strict completion time

This type of AR is characterized by a higher flexibility than the former as the AR window is larger than its execution time. However, these ARs are time-critical and, if accepted, the Cloud provider must ensure that they will complete prior to their firm deadline (Figure 5.2). Thus, Cloud providers may use various mechanisms to efficiently arrange, manage, and monitor their resources. For instance, Lu, K. et al. [LRY + 11] introduced a model based on computational geometry that allows Cloud providers to record and efficiently verify the availability of their resources during the SLA negotiation and planning phase. According to this model, when the Cloud provider lacks resources, a flexible alternative solution, referred to as counter-offer, can be generated in order to satisfy the end-user. Hence, the Cloud provider's reputation can be enhanced by improving its ability to satisfy as many end-users as possible leading to higher resource utilization and consequently higher profits. Venugopal, S. et al. [START_REF] Venugopal | A Negotiation Mechanism for Advance Resource Reservations Using the Alternate Offers Protocol[END_REF] investigated a negotiation mechanism that allows both parties (Cloud providers and end-users) to modify the SLA or to make counter proposals in order to converge to a mutually acceptable agreement. In the investigated scenarios, once the SLA has been agreed upon, the Cloud provider has to execute the task at the specified time. Numerical simulations have been carried out to highlight the benefit brought by time-flexible AR requests. Kaushik Aoun, R. et al. [START_REF] Aoun | An Exact Optimization Tool for Market-Oriented Grid Middleware[END_REF] investigated the resource provisioning problem in a marketoriented Cloud considering ARs with flexible windows, the size of the AR window being a function of the requirements and the budgets of end-users. The aim of this study is to propose a fair management algorithm that guarantees the QoS requirements of end-users while increasing the expected benefit of Cloud providers. For this purpose, the authors introduced a weighted cost function that enables service differentiation relying on disparity in time constraints of the requests. An exact linear formulation [START_REF] Aoun | An Exact Optimization Tool for Market-Oriented Grid Middleware[END_REF] as well as a heuristic approach [START_REF] Aoun | Service Differentiation Based on Flexible Time Constraints in Market-Oriented Grids[END_REF] have been considered for the numerical performance evaluation. Instead of charging fixed prices, Yeo, C.S. et al. [START_REF] Chee | Autonomic Metered Pricing for a Utility Computing Service[END_REF] propose to automatically adjust the price for accessing the resources, whenever necessary, in order to increase the Cloud provider revenues. By charging variable prices, Cloud providers can give incentives to end-users with less urgent requirements to shift their use to off-peak periods to benefit from lower prices. As the prices are adjusted based on the expected workload and the resource availability, ARs submitted a long time in advance are privileged with cheaper prices compared to late ARs. Similar investigations have been carried out in a slightly different environment. The new environment allows the Cloud provider to modify the execution schedule of already accepted ARs in order to accommodate new requests right up until each execution starts [START_REF] Netto | SLA-Based Advance Reservations with Flexible and Adaptive Time QoS Parameters[END_REF]. Such rescheduling of existing ARs is carried out while respecting the deadline constraints specified in the SLA. The authors have shown that this mechanism can mitigate the negative effects of ARs and improve the performance of reservation-based schedulers as it tends to reduce the amount of time intervals where resources remain free. Another solution to improve resource utilization is to make use of comprehensive overbooking which is particularly efficient in scenarios with no-show policy, AR cancelation [START_REF] Sulistio | Managing Cancellations and No-Shows of Reservations with Overbooking to Increase Resource Revenue[END_REF], and over-estimated execution time of ARs [START_REF] Birkenheuer | Reservation-Based Overbooking for HPC Clusters[END_REF]. In this context, rescheduling existing ARs may allow overbooked ARs to get access to the resources during their full execution period if previous ARs do not show or finish earlier. The Earliest Deadline First scheduler has been shown to provide probabilistic real-time guarantees for ARs over time-shared machines [KKV + 09]. With this scheduling strategy, an admission control policy is developed where new AR requests are accepted if they do not break the QoS constraints of previously accepted reservations. This can be achieved for instance by changing the priority of the running ARs to ensure that the execution completes prior to its deadline.

Flexible start and completion time

This type of AR is also characterized by a high flexibility. However, the AR window is not clearly defined. Instead of defining a start-time and a firm deadline for the execution of each AR, the end-user provides a set of time-intervals along with its preferences represented by a utility function (Figure 5.3). The utility function represents the level of satisfaction that the end-user will experience as a result of the negotiation outcome. This satisfaction may depend on several parameters such as the time of execution, the price of the resources, the delays and the QoS requirements. Not being able to reach an agreement is the worst possible outcome as the end-user receives a null utility from the rejected request. Dynamic pricing based on resource utilization and end-users classification was introduced by Püschel, T. et al. [START_REF] Püschel | Management of Cloud Infrastructures: Policy-Based Revenue Optimization[END_REF]. Such dynamic pricing strategies allow adapting the price to set incentives for using the resources during off-peak periods. Two different approaches, which are already well established in other areas, are compared by Meinl, T. et al. [START_REF] Meinl | Enabling Cloud Service Reservation with Derivatives and Yield Management[END_REF] namely, reservation realized by derivative markets in a perfect competition Cloud providers environment and by yield management techniques assuming an imperfect competition environment. The authors analyze the different requirements in order to apply the proposed approaches in the Cloud and provide models to derive the suitable reservation price. Son, S. et al. [START_REF] Son | A Price-and-Time-Slot-Negotiation Mechanism for Cloud Service Reservations[END_REF] introduced a bilateral negotiation mechanism for Cloud service reservation that simultaneously considers price and execution time. Numerical simulations have been used to compare the proposed mechanism to traditional pricing models used by current Cloud providers, namely fixed-prices for on-demand and reserved VMs, and variable prices for spot VMs. The Time-of-Use pricing policy has been investigated by Saure, D. et al. [SSQ + 10]. According to this policy, the price of accessing resources is totally independent from the utilization ratio of the requested resources but varies within a day. The optimal pricing strategy that maximizes the end-user satisfaction is derived.

In under-estimated ARs, ARs will run for a longer period than expected. Yeo, C.S. et al. [START_REF] Chee | Autonomic Metered Pricing for a Utility Computing Service[END_REF] deal with the problem of under-estimated ARs with flexible start but strict completion time. However, in order to enforce future scheduled ARs, ARs are killed once the time period of reservation expires. In our approach, decisions on whether to kill or keep ARs are made by evaluating ARs' SLA constraints.

Pay-as-you-book

Pay-as-you-book is a pricing model between pay-as-you-go and subscription-based. Payas-you-book consists of paying and reserving time-slots of VMs in advance without a fixed fee to subscribe to the service and without a long-term commitment, avoiding vendor lockin, while obtaining lower prices than in pay-as-you-go. Thus, combining the advantages of pay-as-you-go and subscription-based pricing models. Another advantage of pay-asyou-book is a fixed user cost provision, due to the fact that users pay what they have reserved. This also represents an advantage for Cloud providers, that could substantively reduce or avoid the use of predictive analytic techniques (e.g. modeling, game theory, machine learning, and data mining) to determine utilization patterns. Table 5.1 presents a comparison between the current popular pricing models of Cloud providers and pay-asyou-book.

Pay-as-you-book may be applied in scenarios with predictable workloads [START_REF] Harms | The economics of the cloud[END_REF] such as:

• Time-of-day patterns: Scenarios with recurring cycles in users' resources consumption based on people's behavior, e.g. the consumption of IT resources by users of a company can be easily predicted and described by R resources between 8AM to 5PM from Monday to Friday.

• Industry-specific variability: Scenarios with predictable variability based on recurrent events, such as tax season, FIFA World Cup and gift purchases for Christmas.

In pay-as-you-book, an AR Ω i can be modeled by a set of VMs ω i j . Each VM ω i j is meant to be used during a specific period of time ("strict start and completion times") and is represented by the tuple (α i j , β i j , γ i j ), where α i j denotes the start-time of the VM, β i j its stop-time estimated by the end-user, and γ i j its real stop-time. An AR is accepted if the set of VMs described in it can be provisioned.

Initial scheduling of Advance Reservations

Since ARs are made prior to VM utilization, the Cloud provider can use various scheduling approaches in order to optimize the resource utilization of its infrastructure and conse- Even though these estimations may be imprecise, the Cloud provider has to decide whether to accept (̟ i = 1) or reject (̟ i = 0) each AR Ω i depending on its resource availability.

The initial scheduling problem can be formulated as follows. Given the number N of available VMs and the set of M ARs, the Cloud provider has to determine, for each accepted AR, the physical machine that will host it. This should be carried out while respecting the limited resources of the Cloud provider and the fixed start and completion times estimated by the end-users. The main objective of the Cloud provider is to maximize the utilization of its resources which can be expressed mathematically as:

G = M i=1 ̟i × ∀j β i j -α i j (5.1)
The choice of the type of the initial scheduling algorithm and its setup depends on the provider goals. In the case of a Cloud provider, the resource allocation goal may aim, for instance, to minimize the number of physical machines used to host the VMs in order to reduce the power consumption, thus reducing the operational expenditures. In the case of a Cloud broker reselling VM time from different Cloud providers, the resource allocation goal may aim for instance, to minimize the cost of the resold VMs. This problem turns out to be similar to the 2-dimensional bin packing problem with rejection. In order to solve this problem, we will use a very straightforward sequential algorithm commonly known as "Decreasing First Fit" (DFF) algorithm. DFF is a simple offline heuristic algorithm that achieves a near-optimal solution for the classical 1-dimensional bin packing problem [START_REF] Yue | A Simple Proof of the Inequality FFD(L) ≤ 11/9 OPT(L) + 1, ∀L for the FFD bin-packing algorithm[END_REF]. The DFF strategy operates in two phases.

First, it sorts the ARs in decreasing order based on their duration ∀j (β i jα i j ). Then, it processes the ARs according to the previous order, and schedules each VM in the first physical host with sufficient remaining capacity during its execution time. If none of the physical hosts can fully accommodate the incoming VM, the AR will be rejected, as previously stated.

Pricing and rewarding end-users

The Cloud provider is responsible for guaranteeing the QoS required by the reservations. In return, the Cloud provider expects the payment of reward or fee for the successful completion of a reservation. If α i j denotes the start-time of a VM and β i j its expected stop-time estimated by the end-user, the end-user will be charged a fee F i j equal to

(β i j -α i j ) × ∆ R
, where ∆ R is the hourly rate of a reserved VM. However, it may happen that a VM is needed for more time than initially estimated (γ i j > β i j ). In this case, the Cloud provider can allocate the required resources for a longer period for a higher hourly rate ∆ O on a best-effort basis (∆ O > ∆ R ). In other words, the Cloud provider cannot guarantee the VM availability until the real stop-time γ i j . Let θ i j denotes the time when the VM is stopped (θ i j = γ i j ) or it is forced to terminate by the Cloud provider if the VM is reserved for executing another end-user (θ i j < γ i j ). In the case of under-estimated reservations, the end-user will be charged a fee

F i j equal to (β i j -α i j )×∆ R +(θ i j -β i j )×∆ O .
When the Cloud provider accepts an AR, the end-user expects to be able to access the reserved VMs at the specified starting time. However, changes may occur between the time when the end-user submits the reservation and this specified starting time. This can happen for various reasons such as end-users canceling or modifying requests, resource failures, and errors in the estimation of the execution time. Since an AR is a commitment by the Cloud provider, failing to meet this commitment may result in the provider having to pay a penalty P i j to the end-user equal to (β i jα i j ) × ∆ P .

Resource allocation policies

From the previous discussion, three scenarios have been distinguished: over-estimated ARs (Figure 5.4a), under-estimated ARs without any conflict (Figure 5.4b), and underestimated ARs resulting in a conflict (Figure 5.4c) with other ARs. The first two scenarios are trivial since the Cloud provider does not have to intervene and the AR will end normally. However, for the third scenario, a Cloud provider motivated by profit has to decide at the arrival of a new AR α i+n j ′ whether to keep running the under-estimated AR or abort it. In order to tackle this conflictive scenario, we have defined three different resource allocation policies: highest priority to running ARs, highest priority to future ARs and an economic agent. Under this strategy, the Cloud provider will never stop a running VM and always try to postpone the incoming AR that causes the conflict to a later period through negotiations. The only incentive for the end-user to accurately estimate the time of VM utilization is motivated by the lower price of ARs (∆ O > ∆ R ). This strategy is characterized by a null percentage of dropped ARs during their execution.

Strategy 2: Highest priority to future ARs

Under this strategy, under-estimated VMs are penalized as they are aborted after they have been started if there is a conflict with a future AR. In order to protect their application from forced termination, end-users with critical applications must ensure that the ARs times are sufficient for their applications to be completed. This strategy is characterized by a null percentage of rejected ARs prior to their execution since all accepted ARs are honored by the Cloud provider.

An economic agent for maximizing revenues under pay-as-you-book

Under this approach, an agent to manage the conflict between currents running underestimated ARs and future ARs is proposed. The Cloud provider has first to estimate the average extra-time δ required by the currents running under-estimated AR. This can be easily obtained by analyzing the past history of AR executions and hence adjusting δ accordingly. Based on this, the Cloud provider predicts that if the under-estimated AR is kept running, it will get an additional fee of (δ + β i jα i+n j ′ ) × ∆ O but will have α i+n j ′ ) × ∆ P . If the under-estimated AR is aborted and the new AR is executed, the Cloud provider estimates its gain to be equal to

F i+n j ′ = (β i+n j ′ -α i+n j ′ ) × ∆ R .
By comparing these two values, the Cloud provider will decide on the way to resolve this conflict. If the Cloud provider decides to keep the underestimated AR, it should negotiate with the owner of the incoming AR if it accepts to delay its current execution and gets in exchange a penalty and a new time slot for executing its AR. In this study, it is assumed that the end-user can accept such a proposal with a probability ρ.

Case Study: A Virtual Cloud Provider maximizing revenues through the Pay-as-you-book pricing model

In the mobile business, Mobile Virtual Network Operators (MVNOs) offer attractive mobile communication services without having their own infrastructure or spectrum. As in the mobile business, Cloud brokers may operate in the near future, like Virtual Cloud Providers (VCPs) by assuming credit risk and by creating new pricing models addressing specific market segments. This case study considers a VCP that resells at a flat rate VMs reserved in advance. For this, the VCP reserves across multiple Cloud providers a large number of VMs (quota) at a lower price that the announced by the Cloud providers and resells them under the pay-as-you-book pricing model.

Experimental setup

For our simulations, a VCP with a fixed number N of same size VMs reserved across multiple Cloud providers is considered. A simulation period of 4 days (or equivalently 96 hours) has been defined. The VCP collects the set of ARs prior to their execution.

It is assumed that each AR is composed of a single VM. The start-time α i j of a VM is chosen uniformly in the interval [0, 96) while its estimated utilization µ i j follows a negative exponential law of mean μ = 5 hours bounded by a maximum utilization of 8 hours (β i j = α i j + µ i j ). The percentage ψ of AR that are under-estimated varies in the set {20%, 30%, 40%, 50%} and the extra-time required by these reservations λ i j also follows a negative exponential law of mean λ equal to 1 or 2 hours (γ i j = β i j + λ i j ). Without loss of generality, the value of ∆ R has been fixed to 1. Consequently, the parameters ∆ O and ∆ P can take their values in the sets {1, 2, 3, 4, 5} and {0.5, 1, 1.5}, respectively. Finally, the probability ρ of a successful negotiation between the VCP and the end-users was fixed to 100%.

For each simulation, we report the percentage:

• R i of ARs that were rejected at the end of the offline initial scheduling; • R d of initially accepted ARs that were dropped during their execution because they under-estimated their execution time;

• R r of initially accepted ARs that were rejected prior to their execution because the VCP decided to keep running an under-estimated request;

• the percentage R a of advanced reservations that are accepted and executed during their complete activity period. It is obvious that the following equation holds:

R i + R d + R r + R a = 100% (5.2)
as well as:

• the average utilization ratio χ of the VCP resources during the simulation period.

• the revenue Ξ of the VCP computed as a function of ∆ R , ∆ O , and ∆ P ;

All the experiments have been repeated 1000 times. The average and the standard deviation computed over these different runs are recorded. In our simulations, it has been considered the three resource allocation policies previously described (c.f. Section 5.4.3) as well as the on-demand approach. In the on-demand approach, no ARs are made at all and the resource allocation is performed online. Upon the arrival of a new request, the VCP evaluates its instantaneous resource utilization. If enough free resources are available, the new request is accepted; otherwise, it is rejected. In return, the end-user is expected to pay a higher price ∆ O for accessing the resources as they are not reserved in advance. This approach does not ensure end-user satisfaction with a request for multiple VMs as there is no guarantee that all the VM will be provisioned.

Results and analysis

Impact of the number of submitted ARs

In the first scenario, the parameters of the simulation have been fixed as follows: N = 10, ∆ R = 1, ∆ P = 1, ∆ O = 3, ψ = 20%, λ = 1, ρ = 100% (Table 5.2). As expected, the on-demand approach ensures the highest VCP revenue as the endusers are paying a higher price during all the execution of their tasks (∆ O = 3 × ∆ R ). It also achieves a high overall acceptance ratio R a as it does not have to deal with estimation uncertainties. We notice that both strategies 1 and 2 achieve similar revenue Ξ for the VCP. However, Strategy 1 achieves the highest acceptance ratio R a for AR, while Strategy 2 has a better performance in terms of resource utilization χ. Our proposed economic agent achieves slightly lower resources utilization compared to Strategy 2 and keeps the percentage of rejected AR prior to their execution R d at an acceptable value. In summary, our proposed economic agent is a trade-off in terms of resource utilization and acceptance ratio between the intuitive strategies 1 and 2, but outperforms both of them in terms of VCP revenue. These conclusions hold independently of the number of submitted ARs.

Case

Impact of the percentage under-estimated ARs and their execution extra-time

In the second scenario, the parameters of the simulation have been fixed as follows: N = 10, ∆ R = 1, ∆ P = 1, ∆ O = 3, M = 200, ρ = 100% (Table 5.3).

As the initial scheduling does not have any knowledge about the error in estimating the execution time, it achieves the same performance independently of the values of ψ and λ. As the percentage of under-estimated ARs increases, the percentage of ARs that are rejected prior to their execution in Strategy 1 increases also. However, this increase is less pronounced than the increase observed in the Strategy 2 for the percentage of dropped ARs during their execution. Finally, our proposed economic agent keeps its superiority Chapter 5. The Pay-as-you-book pricing model and still achieves a trade-off in terms of resource utilization and acceptance ratio between the strategies 1 and 2, but it outperforms both of them in terms of VCP revenue.

In general, the results show that the on-demand approach is better in terms of revenues than the proposed economic agent, and the strategies 1 and 2. Since the main interest for a Cloud provider is to maximize its revenues, the obtained results explain why a pricing policy such as pay-as-you-book has not been implemented by Cloud providers. Thus, pay-as-you-book may be implemented by a Cloud broker taking advantage of multiple Cloud providers' service offerings, acting as a VCP.

Summary

In this chapter the problem of resource provisioning while assuming AR under the pay-asyou-book pricing model has been investigated. The proposed model handles the extra-time required by running ARs at a higher price, on a best-effort basis. Indeed, an extra-time of an AR plan may lead to resource conflicts with other AR plans. In order to resolve such resource conflicts, an economic agent responsible for managing the under-provisioning problem has been proposed. The economic agent aims to achieve the provider satisfaction by maximizing its revenues through intelligent resource management. In order to assess the performance of the proposed agent, the proposed economic agent has been compared with two intuitive approaches that systematically prioritize reserved ARs or currently running ARs. The economic agent achieves a trade-off between the two intuitive strategies in terms of resource utilization and acceptance ratio, while outperforming both in terms of provider's revenue. These conclusions hold independently of the number of submitted ARs, the percentage of under-estimated ARs, and the average duration of the extra-time required.

Summary

Chapter 6

Conclusion and future works

The aim of this dissertation has been to propose new value-added services and pricing models in Cloud brokering at the infrastructure level. With this aim in view, Chapter 1 provided a comprehensive overview of the current and future value-added services in Cloud brokering. After surveying the research related to Cloud performance evaluation and placement in Cloud brokering (Chapter 2), needs and shortcomings in the current Cloud computing service offerings have been identified. In particular, in the first part of this dissertation (Chapters 3 and 4), the problem of a single figure of merit for Cloud performance and the problem of VM placement in Cloud brokering have been addressed. In the second part of this dissertation, a new pricing model for Cloud computing known as pay-as-you-book has been proposed (Chapters 5).

The computation of a single figure of merit of VM Cloud performance has been described as a multi-criteria problem (Chapter 3). This problem relies on eight criteria: Communication, Computation, Memory, Storage, Availability, Reliability, Scalability and Variability (Section 2.2.3). The weight of these criteria in the computation of a figure of merit of Cloud performance depends on the application profile foreseen to run on top of the Cloud infrastructure. The Analytic Hierarchy Process (AHP) has been used to analyze and to solve the Multiple Criteria Decision Making (MCDM) problem of finding a single figure of merit of Cloud performance. In this case, AHP enables an objective determination of the relative merit of the VM performance criteria for a given set of Cloud providers.

Similarly to the problem of finding a figure of merit of Cloud performance, the problem of placement in Cloud brokering has been described as a multi-criteria problem (Chapter 4). This problem refers to the efficient distribution of Cloud infrastructure across multiple and non-interoperable Cloud providers. Preemptive goal programming has been used to tackle this problem by defining a set of multiple LPs with different priorities assigned by the end-user.

A pricing model between pay-as-you-go and subscription-based known as pay-as-youbook has been proposed (Chapter 5). Contrary to subscription-based pricing models, pay-as-you-book allows reservations of Cloud resources for future use without long-term commitment. Three resource allocation policies to manage the extra-time required by running reservations under pay-as-you-book have been described and evaluated. Among the evaluated policies, the economic agent maximizes Cloud provider's revenue while keeping an acceptable ratio of resource utilization.

Cloud brokers have emerged in the Cloud computing landscape as a technical solution to bring unified self-service access to multiple non-interoperable Cloud providers. By bringing interoperability and portability of end-user's applications across multiple Cloud providers, Cloud brokers act as an ideal doorway to fill the current technical gaps in Cloud computing and to introduce new pricing and business models. Technically, Cloud brokers already complement or enhance some of the Cloud provider service offerings such as infrastructure monitoring, cost optimization, elasticity management and consolidated billing. In this manner, Cloud brokers act as a single point of access for consumption of Cloud services. With the introduction of new value-added services, as those exposed in this dissertation, Cloud brokers may become trusted third-parties, providing un-biased information that benefits end-users.

Current Cloud providers look for differentiation through the addition of new valueadded services to their portfolios. Similarly to supermarkets, Cloud providers become a place to find aggregated but non-interoperable services. For example, Cloud providers do not provide infrastructure monitoring services that monitor the infrastructure of their competitors. In the near future, Cloud brokers can take part of the Cloud economies by actively changing the value chain of Cloud computing. Similarly to the Mobile Virtual Network Operator (MVNO) business model, Cloud brokers, without any hardware infrastructure, may develop new and appealing pricing models addressing untapped market segments. By acting as a single point of access for consumption of Cloud services, Cloud brokers could set the bar of how much end-users should pay for a given Cloud offer depending on the SLA of the Cloud provider and its respective performance. Thereby, Cloud brokers will increase competition between Cloud providers.

The practical implication of this dissertation is threefold. First, the proposed figure of merit can be used to objectively compare Cloud providers based on their performance and on the application profile to be deployed. Second, the computation of this figure of merit linked with the proposed intelligence for Cloud brokering placement optimizes costs of the distributed resources depending on the end-user constraints. This intelligence may enrich the service portfolio of not only Cloud brokers, who could automatically respond to unforeseen scenarios, but also consultancy firms and IT departments who may take data-driven decisions when migrating into the Cloud. Third, the proposed pricing model is a first step to the study of mechanisms enabling new and appealing ways of purchasing Chapter 6. Conclusion and future works Cloud infrastructure. This work has identified two areas for possible further study. These include the identification of standard sizes and the establishment of standard SLAs for Cloud VMs. The definition of standard VM sizes solves the problem of product differentiation created by current heterogeneous VM service offerings from Cloud providers. Thus, the challenge is to identify a measure of VM configurations which satisfies the largest demand of endusers by taking into account the different application profiles. Cloud SLAs vary from one Cloud provider to another. In order to enable the comparison of service offerings, SLAs terms and definitions need to be standardized across Cloud providers. In summary, standard SLAs, standard VM sizes along with our proposed figure of merit contribute to the commoditization of Cloud VMs.

• Acquisition of Cloud resources is not automatic for all Cloud providers. For instance, for some Cloud providers, the creation of the account needed to be validated by human-intervention before we cloud use the resources. Sometimes the confirmation took more than one working day.

• One Cloud provider had a security policy that considered our benchmarks a risk for its Cloud infrastructure. Our VMs were immediately stopped and the account got blocked till we explained the reason behind our tests.

• In some cases, the online documentation is extensive and well-explained, in some other cases the documentation is insufficient to solve technical issues but the technical support assisted us in deploying the applications.

A.2 VM configurations

The table A.1 presents the evaluated VM configurations. All prices have been converted to US$ (1US$ = 1.23e). 

A.3 Benchmark duration

The benchmark duration is important when measuring Cloud performance, since the costs related with the evaluation are directly proportional to its duration. Regarding the benchmark duration (Figure A.1), half of the Cloud providers (Arubacloud, Cloudsigma, Profitbricks and Rackspace) have a benchmark duration under one hour for all VM sizes. For the others, the benchmark duration and VM size are inversely proportional. This proportional relationship is mainly due to three facts. First, we kept a constant workload in the computation benchmarks (7zip and c-ray) across all VM sizes. Thus, the lower the number of processors in a VM, the longer the duration of the computation benchmarks. Second, the practice of processor-sharing by Cloud providers increases the benchmark duration. For example, Amazon and Joyent share the processor time between VMs for xs-VMs. Third, the differences in processor brands and qualities make some Cloud providers more powerful than others in computing terms (Table A.2). 

A.4 Performance-price correlation with a simple figure of merit of Cloud performance

The results here presented were calculated with the simple figure of merit of Cloud performance method (c.f. Section 3.3.2).

A.4.1 Correlation among VM sizes from different Cloud providers

The performance-price relationship for the same VM size from different Cloud providers has been studied. The performance values have been calculated as previously described for each VM size (i.e. for every graph presented in RighScale a obtenu 47.3 millions de dollars en trois levées de fonds1 , 6fusion 10 millions de dollars en deux levées de fonds, Cloud Cruiser 7.6 millions de dollars en deux levées de fonds, Zimory Systems 7.2 millions de dollars en deux levées de fonds et Gravitant 3.7 millions de dollars en une levée de fonds [START_REF] Fellows | Cloud brokers: Now seeking ready-to-pay customers[END_REF]. L'une des principales raisons de cette forte attente économique est la forte hétérogénéité du marché actuel du Cloud constitué par plusieurs fournisseurs de service. Dans ce marché, chaque fournisseur propose ses interfaces, ses modèles de prix et ses services à valeur ajoutée. Afin d'aider les consommateurs de Cloud à faire face à un tel écosystème aussi fragmenté, les Cloud brokers sont devenus des intermédiaires qui fournissent un accès unique à plusieurs fournisseurs de Cloud. Ainsi, les Cloud brokers offrent un unique point d'accès pour la consommation de services, permettant ainsi l'interopérabilité et la portabilité des applications à travers de multiples fournisseurs de Cloud.

Parmi les autres services à valeur ajoutée fournis par les Cloud brokers (Figure B.1), on trouve : la gestion avancée des offres Cloud grâce à des outils plus performants que de ceux déjà proposés par les fournisseurs ; la gestion de l'élasticité permettant d'augmenter ou de diminuer automatiquement les ressources en infrastructure pour le Cloud ; le choix optimal entre plusieurs services. Ces services permettent la création de nouveaux scénarios avantageux pour les consommateurs, ainsi que pour les fournisseurs. Dans le cas de « Cloudbursting », les consommateurs ont la possibilité d'étendre leurs installations informatiques en développant leurs applications non critiques chez les fournisseurs publics. Dans le cas des places de marché, les consommateurs ont accès à des fournisseurs multiples à travers une interface unique, tandis que les fournisseurs ont la possibilité de louer l'infrastructure inutilisée.

Les Cloud brokers pourraient favoriser la création de valeur à travers des services avancés à forte valeur ajoutée, permettant l'émergence de nouveaux cas d'usage pour le Cloud computing. Les prix des infrastructures de Cloud computing varient autour de 20% selon les fournisseurs tandis que les différences de performance entre fournisseurs restent inconnus ou moins étudiées [START_REF] Fellows | Cloud brokers: Now seeking ready-to-pay customers[END_REF]. Comme les Cloud brokers sont en mesure de déployer une charge de travail chez n'importe quel fournisseur, la mesure de la performance et l'allocation des ressources en infrastructure basée sur un compromis coût/performance constitueront de nouveaux services à valeur ajoutée de la part des brokers. D'autre part, la création d'une unité de valeur pour évaluer les performance des infrastructure Cloud contribue à faire du Cloud une utilité publique, ce qui augmentera l'adoption du Cloud computing par le marché et simplifiera l'achat de ressources. Ainsi, si l'infrastructure Cloud est négociée comme toute autre utilité publique (par ex. l'eau, l'électricité), le marché jusqu'à présent fragmenté par des offres hétérogènes sera consolidé. Cela permettra de nouvelles politiques de prix où les brokers serviront non seulement d'intermédiaires, ver la même configuration de machine virtuelle chez deux fournisseurs différents. D'autre part, les nouveaux fournisseurs de Cloud, afin d'augmenter leur attractivité auprès du consommateur, cherchent à différencier leurs services en permettant aux consommateurs de configurer la quantité des ressources d'infrastructure qui leur est nécessaire. L'évaluation de la performance des machines virtuelles augmente la complexité de la comparaison des fournisseurs de Cloud. Tout d'abord, les consommateurs ont peu de connaissances et peu de contrôle sur l'infrastructure sur laquelle sont hébergées leurs applications. En raison de la virtualisation du matériel utilisé par les fournisseurs de Cloud, les fournisseurs peuvent favoriser le partage de ressources (par exemple le partage du processeur par plusieurs processus, la surréservation de la mémoire, l'étranglement ou sous-dimensionnement du réseau [START_REF] He | Performance analysis of cloud computing services for many-tasks scientific computing[END_REF]) qui dégradent les performances d'une application exécutée sur le Cloud. D'autre part, les centres de données des fournisseurs sont équipés avec des centaines de milliers de serveurs avec une qualités matérielle et logiciel variable. Ainsi, l'évaluation de la performance, de tous les centres de données chez plusieurs fournisseurs de Cloud, suppose un compromis entre la précision, le temps et le coût de l'évaluation [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. Par ailleurs, les fournisseurs mettent régulièrement à jour ou étendent leurs infrastructures matérielles et logicielles, de nouvelles technologies et des services commerciaux pouvant progressivement entrer sur le marché [LZO + 13]. Par conséquent, les évaluations de la performance deviennent rapidement obsolètes et les outils de mesure de performance doivent être continuellement mis à jour. Enfin, il n'y a pas de logiciel de référence spécialisé pour évaluer de manière global les caractéristiques des machines virtuelles [START_REF] Iosup | Iaas cloud benchmarking: Approaches, challenges, and experience[END_REF]. Cependant, les logiciels traditionnels peuvent satisfaire partiellement les exigences d'évaluation de la performance.

L'évaluation de la performance des machines virtuelles serait bénéfique pour les consommateurs et les fournisseurs de Cloud [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF]. En effet, celle-ci permettrait aux consommateurs de tester leurs applications chez de multiples fournisseurs et ainsi de choisir le fournisseur qui représente le meilleur rapport performance/coût. En outre, les évaluations peuvent servir de recommandation de la performance d'un système particulier [START_REF] He | Performance analysis of cloud computing services for many-tasks scientific computing[END_REF] ou peuvent donner aux consommateurs des arguments techniques pour inciter les fournisseurs de Cloud à metre en oeuvre les meilleures pratiques en matière d'infrastructure [START_REF] Iosup | Iaas cloud benchmarking: Approaches, challenges, and experience[END_REF]. Aussi, les évaluations permettent à un fournisseur d'identifier son positionnement sur le marché afin d'améliorer ses services ou de modifier ses prix [START_REF] Li | Cloudcmp: comparing public cloud providers[END_REF].

B.2.2 Études relatives à l'évaluation de la performance des services de Cloud

Une étude exhaustive des approches académiques d'évaluation des services commerciaux de Cloud a été réalisée par l'Université National d'Australie [LZO + 13]. Une « Systematic Literature Review » (SLR) fut la méthode utilisée pour recueillir les données pertinentes en infrastructure Cloud a été mesurée à l'aide de logiciels tels que TPC-W (logiciel d'e-Commerce) [START_REF] Li | Towards a taxonomy of performance evaluation of commercial cloud services[END_REF], HPCC (ensemble de sept logiciels pour le calcul haute performance) [SASA + 11, IOY + 11a, HZKD11], NPB (ensemble de logiciels pour évaluer la performance des super-ordinateurs en parallèle) [MVML11,HZKD11] ou des outils de mesure communs tels que ping ou iperf [START_REF] Schad | Runtime measurements in the cloud: Observing, analyzing, and reducing variance[END_REF][START_REF] Baun | Performance measurement of a private cloud in the opencirrus&#8482; testbed[END_REF]. En outre, des logiciels spécialisés ont été développés pour mesurer la performance en puissance de calcul, en mémoire vive, les performance du disque et du réseau [ADWC10,HLM + 10] ainsi que le temps d'approvisionnement ou de libération des machines virtuelles [SDQR10, IOY + 11a, MH12] (davantage de détails sur les études relatives à l'évaluation de la performance des fournisseurs sont présentés dans le tableau 2.1).

B.2.3 Caractérisation des machines virtuelles

Selon les études d'évaluation de la performance des fournisseurs présentées dans la section ci-dessus, une machine virtuelle peut être représentée par un ensemble de critères et un ensemble de métriques. Les critères caractérisent la machine virtuelle (par exemple la communication, la puissance de calcul, la mémoire vive et le stockage) et caractérisent le fonctionnement de machines virtuelles (par exemple la disponibilité, la fiabilité, l'élasticité et la variabilité). L'ensemble des métriques correspond aux métriques utilisées pour décrire la validité des critères. Une courte description des critères et des métriques est présentée ci-dessous.

Critères

• La communication est la transmission de données entre deux entités à travers un réseau. On distingue trois types de communication : via un réseau intenrne à un centre de données, via un réseau entre centres de données et via un réseau étendu (WAN, Wide Area Network). Le réseau interne à un centre de données fait communiquer les machines virtuelles appartenant à un même centre de données, tandis que le réseau entre centres de données fait communiquer les centres de données appartenant à un même fournisseur de Cloud. Le réseau étendu fait référence aux communications entre une machine virtuelle allouée dans un centre de données et une machine connectée à Internet.

• La puissance de calcul correspond à la performance du processeur pour le traitement de données.

• La mémoire vive fait référence à la propriété physique pour la sauvegarde temporaire de données. On considère à la fois la mémoire RAM et et la mémoire cache.

• Le stockage fait référence à la propriété physique pour la sauve garde permanente de données.

• La disponibilité correspond au pourcentage du temps pendant lequel un utilisateur peut accéder à un service Cloud. Pour un intervalle de temps donné, la disponibilité est calculée comme le rapport entre le temps où le service est disponible et l'intervalle de temps total ; elle est généralement exprimée sur la base d'une année complète.

• La fiabilité est la caratéristique d'un service Cloud opérationnel pour une période de temps spécifique.

• L'élasticité est la rapidité d'adaptation des capacités de services Cloud en fonction de la demande de consommateurs [START_REF] Islam | How a consumer can measure elasticity for cloud platforms[END_REF]. On distingue deux types d'élasticités :

Horizontale [START_REF] Vaquero | Dynamically scaling applications in the cloud[END_REF][START_REF] Wang | An availability-aware virtual machine placement approach for dynamic scaling of cloud applications[END_REF] et Verticale [START_REF] Dawoud | Elastic vm for rapid and optimum virtualized resources' allocation[END_REF][START_REF] Yazdanov | Vertical scaling for prioritized vms provisioning[END_REF]. La première fait référence à l'approvisionnement de multiples instances d'un service Cloud (par exemple le déploiement d'une nouvelle machine virtuelle). La deuxième correspond à l'ajout de ressources aux services Cloud déjà déployés (par exemple ajout dynamique de processeurs ou de stockage sur une machine virtuelle déjà existante).

• La variabilité est une métrique dérivée d'autres métriques qui fait référence à la variation de la performance d'un service Cloud.

Métriques

Li et al. [START_REF] Li | Towards a taxonomy of performance evaluation of commercial cloud services[END_REF] définissent les métriques suivantes :

• La vitesse de transaction est définie comme le nombre de transactions (par exemple l'exécution d'une tâche, la lecture ou l'écriture en mémoire) traitées par unité de temps.

• Le débit de données (la bande passante) est la quantité de données traitées dans une période de temps donnée.

• La latence regroupe toutes les métriques du temps d'un service Cloud.

• Les autres métriques sont composées de paramètres sans dimension (par exemple la disponibilité) ou de mesures simples telles que la fiabilité.

B.2.4 Mesure de performance Cloud

La moyenne et le graphique radar

La plupart des études liées sur l'évaluation de la performance en cloud computing n'utilisent que des mesures de performance indépendantes (Tableau 2. 

Réduction à une échelle commune entre deux bornes

La réduction à une échelle commune entre deux bornes est une méthode employée par les entreprises qui mesurent la performance de l'infrastructure Cloud tels que CloudSpectator et Cloudharmony. Dans cette approche, chaque résultat du logiciel de référence est ramené entre deux valeurs fixes A et B, où A correspond à la borne inférieure (c'est-à-dire le moins bon résultat de performance) et B correspond à la borne supérieure (c'est-à-dire le meilleur résultat de performance). Les valeurs intermédiaires sont ramenées à une échelle entre ces deux bornes. 3. La synthèse hiérarchique : quand toutes les comparaisons ont été faites dans la deuxième étape, la probabilité numérique de chaque alternative est calculée. Cette probabilité détermine la vraisemblance que l'alternative atteigne l'objectif prévu. Cette procédure s'applique également à la matrice C qui exprime les poids relatifs entre chacun des critères. La phase de synthèse hiérarchique est appliquée aux matrices de comparaison de la façon suivante :

(a) Synthèse de la matrice de comparaison par paires.

(b) Calcul du vecteur de priorité.

(c) Calcul de la valeur propre maximale.

(d) Calcul de l'index de consistance.

(e) Vérification de la consistance de la matrice de comparaison par paires.

(f) Calcul des poids relatifs de chaque alternative ou critère. 

Valeurs réciproques

Si le critère i a une des valeurs mentionnées ci-dessus lors de sa comparaison avec le critère j, alors j a la valeur réciproque lors de sa comparaison avec i 

B.3 Le placement dans les Clouds brokés

Le placement ou l'attribution des ressources dans un environnement de Cloud brokers correspond aux mécanismes pour distribuer l'infrastructure à travers de multiples Clouds basés sur les besoins et les contraintes des consommateurs. Les Cloud brokers peuvent réagir automatiquement aux scénarios imprévus dans lesquels les conditions de l'infrastructure Cloud changent, afin de maintenir l'opérabilité des applications des consommateurs. Voici deux exemples de scénarios où les Cloud brokers font appel aux algorithmes de placement : L'optimisation du placement consiste à choisir un ou plusieurs fournisseurs Cloud pour déployer un service en se basant sur des critères d'optimisation tels que le coût, la performance, etc. Les types de placement sont classés entre ceux basés sur des exigences non-fonctionnelles et ceux basés sur des exigences de l'application. Le placement basé sur des exigences non-fonctionnelles consiste à attribuer de l'infrastructure Cloud sur la base de paramètres tels que le nombre de processeurs et la quantité de mémoire et de stockage. D'autre part, le placement basé sur des exigences de l'application cherche à garantir la qualité de service en prenant en compte des paramètres spécifiques aux applications.

B.3.1 Placement basé sur des exigences non-fonctionnelles

Le placement basé sur des exigences non-fonctionnelles peut se faie dans des scénarios statiques ou dynamiques. Les placement suivant les scénarios statiques considèrent que les changements dans l'infrastructure n'arrivent jamais. A contrario, le placement suivant le scénario dynamique vis à reconfigurer d'une façon optimale l'infrastructure Cloud dans des nouvelles situations ou lors du changements des conditions. Les approches présentées dans la suite abordent le placement suivant des scénarios statiques et dynamiques à travers des modèles exacts.

Placement statique

Tordsson et al. [START_REF] Tordsson | Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers[END_REF] proposent une architecture pour le Cloud brokering et un algorithme de placement basé sur la performance du logiciel GridNPB/ED et le prix des ressources d'infrastructure. Dans cette approche, les consommateurs ont la possibilité de contraindre le déploiement de l'infrastructure en spécifiant le nombre, le type et le pourcentage de machines virtuelles à déployer. Chaisiri et al. [START_REF] Chaisiri | Optimal virtual machine placement across multiple cloud providers[END_REF] proposent un placement optimal de machines virtuelles à travers plusieurs Cloud providers en considérant l'approvisionnement en ressources par réservation à l'acte. L'approvisionnement par réservation implique un engagement de longue durée en échange d'une remise sur le prix de l'utilisation à la demande. Cependant, l'approvisionnement par réservation soulève également de nouvelles questions en cas de sous-dimensionnement ou de sur-dimensionnement des ressources en infrastructure. Dans le cas du sous-dimensionnement, le besoin en ressources d'infrastructure peut être totalement satisfait en achetant de la ressource en infrastructure au fur et à mesure avec un coût plus supérieur. Dans le cas de sur-dimensionnement, des questions sue l'entité (le consommateur ou le Cloud broker) à qui sont facturées les ressources d'infrastructure inutilisées. L'utilité du placement de machines virtuelles pour les applications entièrement découplées ou faiblement couplées a été étudiée par Van den Bossche et al. [START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF] et Moreno-Vozmediano et al. [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF]. Ces deux approches optimisent le coût du déploiement et considère la facturation à l'acte ainsi qu'une infrastructure Cloud hybride. D'une part, Van den Bossche et al. [START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF] proposent un placement de coût optimal pour des charges de travail préemptibles mais non transférables parmi les fournisseurs, avec un délai strict d'exécution. Les charges de travail sont caractérisées par des exigences en mémoire, en puissance de calcul et en transmission de données. Les auteurs résolvent ce problème avec une programmation linéaire. D'autre part, Moreno-Vozmediano et al. [START_REF] Moreno-Vozmediano | Multicloud deployment of computing clusters for loosely coupled mtc applications[END_REF] évaluent le scénario du déploiement d'un cluster de calcul sur une infrastructure multi-Cloud pour résoudre des tâches faiblement couplées 3 . L'objectif de cette approche est d'optimiser le coût du déploiement ou de mettre en oeuvre des stratégies de haute disponibilité. Cette approche est évaluée à l'aide d'un banc d'essai à petite échelle comprenant un centre de données local et trois différents Cloud publics. Les résultats obtenus à partir de ce banc d'essai ont été complétés par des simulations qui incluent un plus grand nombre de ressources.

Placement dynamique

Lucas-Simarro et al. [START_REF] Lucas Simarro | Dynamic placement of virtual machines for cost optimization in multi-cloud environments[END_REF] proposent un algorithme de placement de machines virtuelles ayant pour but de minimiser le coût pour les consommateurs dans un environnement de prix dynamiques. Dans cette approche, le Cloud broker transfère l'infrastructure des consommateurs d'un fournisseur Cloud à un autre moins cher en fonction de variations de prix. L'algorithme calcule les nouveaux prix en fonction de la moyenne et de la tendance d'évolution du prix du fournisseur ; afin de garantir la performance des applications déployées sur les ressources d'infrastructure, les décisions de placement sont limitées par le nombre maximum et minimum de machines virtuelles par placement réattribuer et par l'exigence d'équilibrage de charge qui indique le pourcentage de ressources maximum à instancier au sein de chaque fournisseur de Cloud. Dans cette approche, le problème de placement est limité à une configuration de machine virtuelle. Lucas-Simarro [START_REF] Lucas-Simarro | Scheduling strategies for optimal service deployment across multiple clouds[END_REF] étend ce travail en étudiant l'effet de plusieurs configurations de machines virtuelles et en abordant le problème d'optimisation de la performance. L'optimisation de la performance consiste à maximiser la performance des ressources déployées, en choisissant les machines virtuelles ayant la meilleure performance en termes de ressources matérielles (disque dur, mémoire, processeurs). Le principal inconvénient de cette approche est que les mesures de performance des machines virtuelles doivent être fournies par les consommateurs après avoir testé toutes les configurations des machines virtuelles au sein de chaque fournisseur de Cloud.

Un modèle plus complet aui vise non seulement l'optimisation des coûts mais aussi les 3 Loosely-coupled Many-Task Computing (MTC) applications changements imprévus de l'infrastructure Cloud par la migration de machines virtuelles a été proposé par Tordsson et al. [START_REF] Li | Modeling for dynamic cloud scheduling via migration of virtual machines[END_REF]. Dans ce modèle, le temps de migration d'une machine virtuelle est éstimé grâce au temps nécessaire pour arrêter une machine virtuelle chez un fournisseur de Cloud en plus du temps de redémarrage une nouvelle machine virtuelle (de configuration similaire à celle arrêtée) chez un autre fournisseur de Cloud.

Chaisiri et al. [START_REF] Chaisiri | Optimization of resource provisioning cost in cloud computing[END_REF] proposent un algorithme de minimisation de coûts pour l'approvisionnement de ressources d'infrastructure pour une certaine période étant donné l'incertitude de la demande et le prix. La décision optimale calculée par cet algorithme est basée sur la demande des consommateurs et le prix des fournisseurs de Cloud. Cela permet à un Cloud broker d'ajuster la quantité de ressources acquises à l'avance sous réservation et la quantité de ressources acquises à la demande, en tenant compte du fait que les machines virtuelles réservées à l'avance sont généralement moins chères que celles acquises à la demande. Cette approche aborde le problème du sous-dimensionnement et du sur-dimensionnement. Les auteurs résolvent ce problème à travers la programmation stochastique de nombres entiers.

B.3.2 Placement basé sur des exigences de l'application

Le placement basé sur des exigences de l'application fair varier dynamiquement les ressources d'infrastructure à travers plusieurs fournisseurs de Cloud sur la base des contraintes de qualité de service spécifiques à l'application. Dans le cas des applications étroitement couplées avec des exigences en communication, le processus de placement doit garantir un déploiement sur un seul fournisseur Cloud [START_REF] Grozev | Inter-cloud architectures and application brokering: taxonomy and survey. Software: Practice and Experience[END_REF]. D'autre part, dans le cas des applications entièrement découplées4 ou des applications faiblement couplées, le processus de placement peut profiter de l'hétérogénéité des offres de fournisseurs de Cloud pour fournir une solution rentable qui garantit une bonne performance de l'application [START_REF] Rimal | A taxonomy and survey of cloud computing systems[END_REF][START_REF] Van Den Bossche | Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads[END_REF]. Dans le cas des applications interactives (par exemple des jeux en ligne), l'expérience de l'utilisateur repose sur la bande passante et la latence causée par les distances géographiques [START_REF] Grozev | Inter-cloud architectures and application brokering: taxonomy and survey. Software: Practice and Experience[END_REF]. Par conséquent, ce type d'applications pourrait être traité près de l'emplacement géographique d'origine pour obtenir une latence plus faible et un débit plus élevé. L'importance des services de Cloud brokering pour les télécommunications est mise en évidence par Carella G. et al. [START_REF] Carella | Network-aware cloud brokerage for telecommunication services[END_REF]. Dans cette approche, un Cloud broker améliore ses mécanismes de placement sur la base des données en temps réel sur les performances du réseau, des exigences de la qualité de service et des prix des fournisseurs de Cloud. L'objectif est de fournir aux opérateurs de services de télécommunications une qualité de service minimale pour satisfaire les exigences des clients à l'aide de la surveillance des services déployés. Cette approche est évaluée à l'aide d'un banc d'essai composé d'un Cloud broker et d'un système IMS 5 . Le placement à coût optimal des applications Web 2.0 avec des exigences de haute disponibilité et de tolérance de panne à travers des fournisseurs de Cloud multiples a été proposé par Frincu et al. [START_REF] Frincu | Multi-objective meta-heuristics for scheduling applications with high availability requirements and cost constraints in multi-cloud environments[END_REF]. Dans cette approche, les auteurs considèrent des applications constituées par plusieurs composants et connecteurs (C/Cs). Les C/Cs sont réaffectés en faisant un enregistrement de l'état du C/C et en arrêtant la machine virtuelle qui les héberge. Après cela, une nouvelle machine virtuelle est démarrée, l'enregistrement est transmis et le C/C est redémarré dans l'état dans lequel il a été enregistré. Une architecture basée sur un Cloud broker intelligent qui réagit aux changements de processus opérationnels, en changeant la configuration de l'infrastructure au sein de plusieurs fournisseurs de Cloud est décrite par Grivas et al. [START_REF] Grivas | Cloud broker: Bringing intelligence into the cloud[END_REF].

Le placement de services de qualités différentes et avec différentes exigences de provisionnement pour les applications d'e-learning a été abordé par Quarati et al. [START_REF] Quarati | Hybrid clouds brokering: Business opportunities, qos and energy-saving issues[END_REF]. L'objectif de cette approche est de maximiser la satisfaction de l'utilisateur ainsi que les revenus du Cloud broker tout en réduisant les coûts d'énergie par le biais des mécanismes d'économie d'énergie. Pour cela, le Cloud broker attribue des ressources au sein de fournisseurs publics ou privés sur la base des attentes du consommateur en termes de qualité de service et également sur la base de la charge de travail de l'infrastructure Cloud privée. Cette approche a été évaluée à l'aide d'un simulateur à événements discrets.

B.3.3 Approche exacte au problème de placement en Cloud brokering

Dans cette thèse, le problème du placement de machines virtuelles en Cloud brokering a été modélisé comme un problème du sac à dos : étant donné un ensemble de machines virtuelles, avec chacune une configuration, un prix et une performance, il s'agit de déterminer le nombre de machines virtuelles de chaque configuration à fournir pour que l'infrastructure provisionnée soit égale ou supérieure à la requête du consommateur (c'est-à-dire la requête soit satisfaite) et pour que le coût de l'infrastructure Cloud soit aussi bas que possible (dans le cas d'une optimisation des coûts). Le problème de placement Cloud a été formulé comme un problème d'optimisation linéaire et la technique du Goal programming a été employée pour résoudre ce problème.

Dans cette thèse, une approche exacte du placement des ressources d'infrastructure Cloud à travers multiples fournisseurs est proposé ; elle peut être appliquée aux scénarios d'optimisation de coûts ainsi qu'aux scénarios de reprise après sinistre. Parmi les paramètres les plus importants, celle-ci prend en compte le prix, le type de machine virtuelle, les délais intrinsèques au réseau et la disponibilité du fournisseur de Cloud. L'originalité de notre approche réside dans l'association des configurations de machines virtuelles avec leurs performances respectives. La formulation du problème de placement est faite dans la section 4.3. La politique de prix par abonnement peut être divisée en trois catégories :

B.4 Les

• Forfaitaire : les utilisateurs sont facturés à un prix fixe pour une période de temps donnée indépendamment de l'utilisation des ressources (par exemple les machines virtuelles réservées à une utilisation intensive d'Amazon EC2 ) .

• Abonnement avec un quota : les utilisateurs doivent payer des frais fixes pour s'abonner au service et couvrir un quota d'utilisation. Si le quota est épuisé, il y a des frais pour la consommation supplémentaire.

• Abonnement sans quota : les utilisateurs sont facturés un montant fixe pour souscrire au service avec un supplément en fonction de l'utilisation (par exemple machines virtuelles réservées pour une utilisation légère ou modérée d'Amazon EC2 ).

4. Sur la base du marché : les utilisateurs font des enchères pour acquérir les ressources, les ressources sont allouées si l'enchère dépasse le prix fixé par le fournisseur de Cloud (par exemple les instances ponctuelles d'Amazon EC2 ). Les fournisseurs utilisent cette politique de prix pour vendre leurs capacités inutilisées d'infrastructure Cloud.

Les utilisateurs sélectionnent une politique de prix en fonction de leurs besoins tels que la puissance de calcul, la mémoire, le stockage, la qualité de service, le temps d'exécution, le budget, etc. Ainsi, les consommateurs contraints par le temps dans l'exñecution de leurs tâches seraient plus intéressés par l'achat d'un abonnement de machines virtuelles, afin d'assurer leur disponibilité à tout moment. Au contraire, les utilisateurs qui souhaite exécuter des tâches sans contraintes de temps seraient prêts à louer des machines virtuelles via la politique de prix basée sur le marché. Dans le cas des scénarios à tâches variables et imprévisibles, les machines virtuelles sont louées via la politique pay-as-you-go.

B.4.2 Les réservations faites à l'avance

Les réservations faites à l'avance (RFA) ont été introduites pour garantir de manière efficace la disponibilité d'une quantité de ressources donnée à utiliser à un moment déterminé dans le future. La réservation de chambres d'hôtel est un des meilleurs exemples de RFA. Dans ce cadre, une RFA est décrite par au moins trois paramètres : le nombre de chambres à réserver, les dates d'arrivée et du départ. Les mécanismes pour gérer les RFA ont été appliqués à plusieurs problèmes de partage des ressources en informatique tels que la réservation de bande passante, la planification des tâches et la planification de machines virtuelles. Dans ce qui suit est présentée une classification de certaines études portant sur les RFA en informatique.

Les réservations faites à l'avance par les fournisseurs de Cloud

Ce type de RFA est étroitement lié à la politique de prix par abonnement, largement proposée par les fournisseurs de Cloud. Ce type de réservation fonctionne sur une base d'intervalle de temps. Au début de chaque intervalle de temps, l'utilisateur peut ajuster la quantité de ressources à réserver par le fournisseur de Cloud pour le prochain intervalle de temps. Les études menées sur ce type de réservation peuvent être classées en deux catçegories : les plans de réservation à court terme [START_REF] Niu | Pricing Cloud Bandwidth Reservations Under Demand Uncertainty[END_REF][START_REF] Niu | A Theory of Cloud Bandwidth Pricing for Video-on-Demand Providers[END_REF] (par exemple avec des intervalles de temps de 10 minutes ou 1 heure) et les plans de réservation à long terme (par exemple des intervalles de temps de plusieurs années) [SAMVML11, CLN12]. Niu, D. et al. [START_REF] Niu | Pricing Cloud Bandwidth Reservations Under Demand Uncertainty[END_REF] ont étudié les politiques de prix pour la réservation de bande passante dans le Cloud sur un plan à court terme de l'ordre de quelques heures ou quelques dizaines de minutes. Les requêtes des consommateurs sont caractérisées par une estimation de la moyenne de la bande passante, de leur variabilité et le pourcentage du trafic à être garantit par la bande passante demandée. Dans cette approche, le fournisseur de Cloud calcule la réservation de bande passante courante d'une façon probabiliste afin de garantir les performances requises. Il décide également des frais de réservation en tenant compte des rafales de rêquetes et de la corrélation temporelle des différentes requêtes. Un problème similaire dans lequel un broker est introduit entre les fournisseurs de Cloud et les utilisateurs est également étudié par Niu, D. et al. [START_REF] Niu | A Theory of Cloud Bandwidth Pricing for Video-on-Demand Providers[END_REF]. Dans cette approche, un broker vend individuellement des garanties de bande passante pour les utilisateurs. Pour cela, le broker réserve conjointement la bande passante chez plusieurs fournisseurs de Cloud Computing et il exploite le multiplexage statistique pour réduire les coûts de réservation. Ce problème a été résolu en utilisant la théorie des jeux où le prix d'équilibre de la bande passante dépend de l'attente lié au nombre de requêtes, des rafales de requêtes ainsi que de sa corrélation avec le marché.

Le plan de réservation à long terme a été étudié d'abord par San-Aniceto, I. et al. [START_REF] San-Aniceto | Cloud Capacity Reservation for Optimal Service Deployment[END_REF]. Dans cette approche est considéré et un seul algorithme est proposé pour sélectionner le nombre de machines virtuelles qui doivent être réservées par un utilisateur tout en déployant un service dans le Cloud. Afin de faire face aux fluctuations et au caractère imprévisible de la demande, des ressources supplémentaires peuvent être provisionnées dynamiquement grâce au modèle on-demand. L'algorithme proposé réduit le coût global des machines virtuelles acquises en tirant parti des diffèrents politiques de prix au sein d'un Cloud provider. Chaisiri, S. et al. [START_REF] Chaisiri | Optimization of resource provisioning cost in cloud computing[END_REF] ont généralisé le problème décrit précédemment au contexte de plusieurs fournisseurs de Cloud en tenant compte de l'incertitude des requêtes des utilisateurs et du prix futur des ressources fixé par les fournisseurs. Ce problème a été modélisé sous la forme d'un programme stochastique entier et a été résolu numériquement. Aoun, R. et al. [START_REF] Aoun | An Exact Optimization Tool for Market-Oriented Grid Middleware[END_REF] ont étudié le problème de l'approvisionnement des ressources dans un marché Cloud en prenant en compte les RFA avec une fenêtre flexible dans le temps, étant donnée la taille de la fenêtre en fonction des exigences et des budgets des utilisateurs. Le but de cette étude est de proposer un algorithme de gestion équitable qui garantit la qualité de service et les exigences des utilisateurs tout en augmentant le bénéfice attendu des fournisseurs. A cette fin, les auteurs ont introduit une fonction de coût pondérée qui permet la différenciation des services en s'appuyant sur les disparités de durée des RFA. Une formulation linéaire exacte [START_REF] Aoun | An Exact Optimization Tool for Market-Oriented Grid Middleware[END_REF] ainsi qu'une approche heuristique [START_REF] Aoun | Service Differentiation Based on Flexible Time Constraints in Market-Oriented Grids[END_REF] 

B.4.3 La politique de prix pay-as-you-book

Pay-as-you-book est une politique de prix hybride combinant les avantages des politiques de pay-as-you-go et celles par abonnement. Elle consiste à payer et à réserver à l'avance Le pay-as-you-book peut être appliquée dans des cas d'usage avec des profils d'utilisation prévisibles [START_REF] Harms | The economics of the cloud[END_REF] tels que :

• le schéma récurrent dans une journée : scénarios avec des cycles récurrents dans la consommation de ressources basée sur les profils d'utilisation personnels, par exemple la consommation des ressources informatiques par les utilisateurs d'une entreprise peut être facilement prédite et décrite comme le besoin de R ressources entre 8h et 17h du lundi au vendredi, où R est calculé en fonction du nombre d'utilisateurs et de la quantité de ressources utilisée par utilisateur ;

• la variabilité propre à une industrie : scénarios avec une variabilité prévisible en fonction des événements récurrents, comme le période des impôts, la Coupe du Monde de foot, pèriode de Noël, etc. L'objectif de cette thèse a été de proposer des nouveaux services à valeur ajoutée et une politique de prix dans le Cloud brokering au niveau de l'infrastructure. L'application pratique de cette thèse est triple. Tout d'abord, le facteur de qualité de la performance proposé peut être utilisé pour comparer objectivement les fournisseurs de Cloud sur la base de leur performance et du profil d'application à déployer. D'autre part, le facteur de performance lié à l'algorithme de placement proposé apporte une allocation des ressources à coût optimal en fonction des contraintes de l'utilisateur. Ainsi, cet algorithme peut enrichir l'offre de services non seulement des Cloud brokers, qui pourraient réagir automatiquement à des scénarios imprévus, mais aussi des entreprises de conseil et de services informatiques qui peuvent prendre des décisions lors de la migration des applications vers le Cloud. Enfin, la politique de prix proposée représente une première étape pour l'étude des nouveaux moyens attractifs pour acheter de l'infrastructure Cloud.

Ce travail a permis d'identifier deux axes possibles d'approfondissement. Il s'agit notamment de l'identification de configurations types de machines virtuelles et la mise en place de SLA standards. L'identification de configurations types de machines virtuelles résout le problème de la disparité de l'offre de machines virtuelles actuellement présente chez les fournisseurs de Cloud. Ainsi, le défi est d'identifier une jauge de configurations de machines virtuelles qui satisfasse au plus grande nombre de demande des utilisateurs et qui prend en compte les différents profils d'application. D'autre part, les SLAs varient actuellement parmi les fournisseurs de Cloud. Afin de permettre la comparaison des offres de service, les attributs des SLA et leurs définitions doivent être normalisés entre les fournisseurs de Cloud. En résumé, les SLA standards, les configurations de machines virtuelles types ainsi que le facteur de performance proposé dans cette thèse contribuent faire des machines virtuelles un bien d'utilité publique.
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 34 Figure 3.4: Average VM provisioning time for Windowsazure and Amazon
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 36 Figure 3.6: Performance of computation benchmarks (a) 7-zip results (HB) (b) C-ray results (LB)
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 37 Figure 3.7: Performance of memory benchmarks. (a) Stream results for copy operation (b) Stream results for add operation (c) CacheBench results for read operation (d) CacheBench results for write operation (e) Ratio CacheBench read/write speed.
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 3 Figure 3.8: Performance of memory benchmarks. (a) Iozone read speed (b) Iozone write speed (c) Ratio Iozone read/write speed (d) TIO read speed (e) TIO write speed (f) Ratio TIO read/write speed.
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 3 Figure 3.9: Distribution of variability for the measured VMs

  Figure 3.10: Radar plot as a figure of merit
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 311 Figure 3.11: Correlation between performance and price for different VM sizes. The variability is represented by the size of the spot. A=1 and B=100.
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 3 Figure 3.12: Hierarchy of the problem

1 .

 1 Radar plot: benchmark results are standardized with Equations 3.2 and 3.3. A single figure of merit is calculated with Equation B.3 (Figure 3.13a). 2. Simple figure of merit: benchmark results are scored with Equation 3.5. Then, the single figure of merit corresponds to the mean value of the scored values of performance (Figure 3.13b).
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 3 Figure 3.13: Comparison of figures of merit techniques for s-VM size. (a) Radar plot (b) Simple figure of merit, A = 0 and B = 1 (c) Figure of merit based on AHP (d) Performance-price ratio based on AHP performance values. The values of the four figures have been normalized in order to ease the comparison.
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 41 Figure 4.1: Preemptive method. Optimization priority: Criteria 1, Criteria 2, Criteria 3 (represented by the size of the spot).
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  TMC : Total Memory Capacity. Amount of memory capacity for a particular solution. EM jk x n jk (4.4) -TSC : Total Storage Capacity. Amount of storage capacity for a particular solution. TVM : Total of VMs of a particular solution. TDC : Total Deployment Cost. Total cost for deploying an infrastructure across multiple Cloud providers. TP: Total performance of a particular solution. TDT : Total Deployment Time. Total time for deploying an infrastructure across multiple Cloud providers. TV : Total Variability. Total variability for a particular solution.
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 42 Figure 4.2: Solutions for latency preemptive optimization. The size of the spot represents the average provisioning time in seconds (reqSCA). The figure of merit here used is the same obtained in the previous case study (c.f. section 3.4). Parameters: reqCPU = 80, reqMEM = 60, reqSTO = 300, reqRTT ≤ 110ms.
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 43 Figure 4.3: Solutions for provisioning time preemptive optimization. The size of the spots represents the solution variability. Parameters: reqPER = 20, reqRTT ≤ 110ms.
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 51 Figure 5.1: Strict start and completion time Advance Reservation
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 52 Figure 5.2: Flexible start but strict completion time Advance Reservation
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 53 Figure 5.3: Flexible start and completion time Advance Reservation. The mood represents the level of end-user satisfaction for a specific interval.
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 54 Figure 5.4: Possible scenarios of running Advance Reservations
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  Figure A.2). The Average Values (AVE) have been used to split each graph into four quadrants: High Performance (HP) and Low Cost (LC), High Performance (HP) and High Cost (HC), Low Performance (LP) and Low Cost (LC), and, Low Performance (LP) and High Cost (HC). The highlights of the findings are the following: confirmée par le montant des fonds lévés par quelques entreprises de « Cloud brokering » :

Figure B. 2 -

 2 Figure B.2 -Hiérarchie du problème avec AHP
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  Figure B.3 -RFA avec un temps de démarrage et une date limite stricts
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 4 Figure B.4 -RFA avec un temps de démarrage flexible et une date limite stricte
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 5 Figure B.5 -RFA avec un temps de départ et une date limite flexibles. L'humeur de l'émoticône représente la satisfaction d'un utilisateur pour un intervalle de temps.
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  10] further the VM provisioning or deprovisioning time [SDQR10, IOY + 11a, MH12]. Details about the studies related to Cloud providers performance evaluation are presented in Table 2.1. Recent studies tend to clarify confusing concepts, inaccurate terms, as well as to unify the metrics used by previous Cloud performance evaluation studies. Li et al. propose a taxonomy of performance for evaluating commercial Cloud services [LOCZ12] and potential approaches to bring a holistic impression of Cloud services performance through a single figure of merit [LOZC13].

Table 2 .

 2 1: Studies related to Cloud providers performance evaluation

	Study	Type of benchmark	Applications or Suite/Benchmarks	Property	Metric
	Stanchev [Sta09]	Synthetic	WSTest	Overall performance	Transactions per second
	Yigitbasi et al. [YIEO09]	Application	Modified Grenchmark Modified Grenchmark	Overall performance Overall performance	Queue waiting time (s) Response time (s)
			Micro	Benchmark developed by authors	Elasticity	VM adquisition and release (s)
	Dejun			CPU-intensive web	CPU	Duration of operation (ms)
	et [DPC09]	al.	Application	Database read-intensive	Disk	Duration of operation (ms)
				Database write-intensive	Disk	Duration of operation (ms)
	Baun and Kunze [BK10]	Application Micro	Compilation Linux Kernel Bonnie++ Bonnie++ iperf	CPU Disk Disk Network	Duration (s) KBps Number of file operations/s Transfer rate in KBps
				ping	Network	RTT (ms)
	Alhamad et				
	al.		Application	Java application	Network	Response time (ms)
	[ADWC10]				
						Continued on next page
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Table 2 .

 2 1: (Continued)

	Study	Type of benchmark	Applications or Suite/Benchmarks	Property	Metric
				Benchmark developed by authors	Elasticity	Duration (s)
	Phillips		Application	Gromacs, FFmpeg, Blender	Many	Total execution time (s)
	et	al.		TORCH/Dhrystone	CPU	Total execution time (s)
	[PEP11]		Synthetic	TORCH/Spectral	CPU	Total execution time (s)
				TORCH/Particle	CPU	Total execution time (s)
	Salah et al. [SASA + 11]	Micro	Simplex HPCC/STREAM FIO	CPU Memory Disk	Total execution time (ms) MBps KBps
	Lenk et al. [LML + 11]	Micro	Phoronix/crafty,dcraw	CPU	Test duration (s), MFLOPS
			Application	TPC-W	Overall performance	Page generation time(s)
	Li et al.		Modified SPECjvm2008	CPU	Finishing time of a CPU-intensive task (s)
	[LOCZ12]	Synthetic	Modified SPECjvm2008	CPU	Finishing time of a memory intensive task (s)
				Modified SPECjvm2008	Memory	Finishing time of a disk I/O intensive task (s)
				Modified SPECjvm2008	Disk	Finishing time of a CPU-intensive task (s)
						TCP throughput (Mbps)
			Micro	iperf	Network	in intra-and inter-datacenter network
				ping	Network	RTT (ms)
	Mao et Humphrey [MH12]	Micro	Benchmark developed by authors	Elasticity	VM acquisition and release (s)

Table 4

 4 

	Cloud provider RTT to England (ms) RTT to France (ms)
	ARU	127	82
	AWS	95	112
	CLO	135	105
	JOY	105	101
	LUN	110	91
	PRO	130	110
	RAC	85	97
	WIN	122	123

.1).
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 4 1: RTT from Cloud providers to current and future Bezimie's client portfolio
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1: Most used pricing models compared with pay-as-you-book quently increases its revenues. At this stage, the Cloud provider has knowledge only of the execution time estimated by end-users.
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					λ = 1					λ = 2		
			%R i	%R d	%Rr	%χ	Ξ	%R i	%R d	%Rr	%χ	Ξ
		DFF	7.64	0	0	67.51	58 000	7.43	0	0	67.58	58 000
	ψ = 20%	On-Demand Strategy 1 Strategy 2	9.68 7.64 7.64	* * 11.29	* 10.01 *	67.01 64.77 69.64	173 250 61 000 61 000	11.12 7.43 7.43	* * 12.81	* 11.21 *	68.31 65.89 70.15	176 250 65 000 61 500
		Economic Agent	7.64	8.00	2.91	69.34	64 750	7.43	5.53	6.51	69.40	67 500
		DFF	7.44	0	0	67.45	58 000	7.45	0	0	67.49	58 000
	ψ = 30%	On-Demand Strategy 1 Strategy 2	11.10 7.44 7.44	* * 17.07	* 14.34 *	68.24 63.60 70.61	176 250 62 000 62 250	13.48 7.45 7.45	* * 19.34	* 15.91 *	70.66 65.22 71.38	180 750 67 750 63 250
		Economic Agent	7.44	11.89	4.33	70.15	67 750	7.45	9.52	8.09	69.98	71 750
		DFF	7.51	0	0	67.54	58 000	7.48	0	0	67.48	58 000
	ψ = 40%	On-Demand Strategy 1 Strategy 2	12.68 7.51 7.51	* * 22.71	* 18.10 *	69.52 62.66 71.78	179 250 62 750 63 750	15.97 7.48 7.48	* * 25.50	* 19.89 *	71.27 64.71 72.63	183 750 69 750 62 500
		Economic Agent	7.51	15.67	5.59	71.11	71 000	7.48	12.36	10.27	70.72	75 250

Table 5 .

 5 3: Impact of the percentage of under-estimated Advance Reservations (ARs) and their execution extra-time. *s are 0% by default.
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				Table A.1: (Continued)	
	Cloud provider		VM size vCPU (number) RAM (GB) Disk (GB)	Price(U$)/hr
			m	2	4	20	0.0939
			l	4	8	40	0.1870
			xl	8	16	80	0.3750
			s	1	2	10	0.0413
	Profitbricks		m l	2 4	4 8	20 40	0.0825 0.1650
			xl	8	16	80	0.3300
			xs	1	0.512	20	0.0330
			s	1	1	40	0.1210
	Rackspace		m	2	4	160	0.2430
			l	4	8	320	0.4870
			xl	8	30	1200	1.5240
			xs	2-shared	0.768	20	0.0184
			s	1	1.75	70	0.0552
	WindowsAzure	m	2	3.5	135	0.1105
			l	4	7	285	0.2210
			xl	8	14	605	0.4410
		s	1	2	10		0.0309
	Arubacloud	m	2	4	20		0.0556
		l	4	8	40		0.1050
		xs	1	0.615	8		0.0200
		s	1	1.7	160		0.0650
	Amazon	m	1	3.75	410		0.1300
		l	2	7.5	840		0.2600
		xl	4	15	1680		0.5200
		xs	1	0.512	10		0.0524
		s	1	2	10		0.0807
	Cloudsigma	m	2	4	10		0.1526
		l	4	8	10		0.2339
		xl	8	16	10		0.5841
		xs	0.15	0.625	20		0.0200
		s	1	1.75	56		0.0560
	Joyent	m	2	7.5	738		0.2400
		l	4	15	1467		0.4800
		xl	8	30	1683		0.9600
		xs	1	0.512	10		0.0191
		s	1	2	10		0.0469
	Lunacloud				Continued on next page

.1: VM configurations Cloud provider VM size vCPU (number) RAM (GB) Disk (GB) Price(US$)/hr
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.2: Type of processor for xs-VM size

  1). Par ailleurs, Li et al.[START_REF] Li | Boosting metrics for cloud services evaluation -the last mile of using benchmark suites[END_REF] ont proposé une solution pour exprimer la performance globale d'un service de Cloud par un score unique. Cette approche propose la moyenne et le graphique radar comme méthodologies pour calculer un score unique exprimant la performance d'une infrastructure Cloud. Cependant, le calcul d'une moyenne de résultats obtenus à l'aide de différents logiciels de référence a le désavantage de nécessiter l'utilisation de la même métrique pour tous les logiciels. Cet inconvénient est surmonté en utilisant le graphique radar ; un graphique radar est un outil permettant de représenter graphiquement trois, ou davantage de valeurs quantitatives et relatives à un point commun. Deux méthodes de normalisation sont proposés par Li et. al lorsque les résultats des logiciels de référence sont exprimés dans des unités de valeur différentes : le plus grand et meilleur (HB, abrégé en anglais) (Equation B.1) et le plus petit et meilleur (LB, abrégé en anglais) (Equation B.2).Où HB Normalisé i et LB Normalisé i correspondent au résultat du ième logiciel de référence. De cette façon, la surface du polygone représentant n résultats peut être considérée comme un score unique de la performance de l'infrastructure Cloud (Equation B.3)[START_REF] Li | Boosting metrics for cloud services evaluation -the last mile of using benchmark suites[END_REF].

	HB Normalisé i =	Logiciel de référence i MAX(Logiciel de référence 1,...,n )	(B.1)
	LB Normalisé i =	1 Logiciel de référence i MAX( 1 Logiciel de référence 1,...,n	)	(B.2)
	Score unique (graphique radar) =	n i=1	sin ( 2π n ) × Normalisé i × Normalisé mod(i+1,n) 2	(B.3)
	Bien que la moyenne et le graphique radar permettent d'exprimer un score unique,
	ils présentent des désavantages tels que le manque de pondération et DE nombre fini de
	valeurs possibles.			

Table B .

 B 2 -Échelle relative[START_REF] Saaty | The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation[END_REF] 

•

  Les changements des conditions du marché : par exemple, l'introduction de nouvelles configurations de machines virtuelles, le changement de prix, l'apparition d'un nouveau fournisseur Cloud ou l'introduction d'une nouvelle politique de prix. Dans ce scénario, un Cloud broker déterminerait l'impact des changements des conditions du marché ou la performance des applications sur les gains des consommateurs d'infrastructure Cloud. Dans le cas d'un impact positif, l'utilisateur serait encouragé par le Cloud broker afin à migrer partiellement ou en totalité son infrastructure Cloud. • Les changements imprévus de l'infrastructure Cloud : la panne d'un service Cloud peut gravement impacter les économies des consommateurs d'infrastructure. Même si dans la plupart de cas, les fournisseurs de Cloud offrent des compensations économiques aux consommateurs ayant subi la panne d'un service Cloud, ces compensations sont négligeables par rapport au fait d'avoir un service Cloud indisponible (par exemple un site d'e-commerce). Dans ces scénarios, les Cloud brokers peuvent non seulement redéployer une infrastructure Cloud soumis à une panne, mais aussi minimiser le coût et le temps d'indisponibilité d'une application.

politiques de prix et les réservations faites à l'avance B.4.1 Les politiques de prix en Cloud computing

  Plusieurs modèles économiques issus d'autres domaines d'étude ont été proposés pour le Grid Computing[START_REF] Buyya | Economic models for resource management and scheduling in grid computing[END_REF]. Les modèles du marché des produits de base, de prix affichés, d'appel d'offres, de négociation et de vente aux enchères sont parmi les modèles économiques les plus couramment étudiés pour la gestion des ressources dans le Cloud[START_REF] Buyya | Economic Models for Resource Management and Scheduling in Grid Computing[END_REF]. Cependant, la plupart d'entre eux n'ont pas été mis en pratique par les fournisseurs actuels de Cloud.

	2. Facturaion à l'acte ou pay-as-you-go : les utilisateurs paient un montant propor-
	tionnel à leur consommation réelle de ressources (par ex. les machines virtuelles à
	la demande d'Amazon EC2 ).
	3. Par abonnement : les utilisateurs s'engagent à utiliser le service pendant une période
	de temps donné, en échange de quoi ils paient un prix réduit sur le long terme
	par rapport au pay-as-you-go. Cette politique permet aux fournisseurs d'anticiper
	l'utilisation de leur infrastructure Cloud et d'accélérer leur retour sur investissement.
	Dans cette politique de prix, l'attribution des ressources est basée sur les réservations

Le « Pay-as-you-go » (facturation à l'acte) et les politiques par abonnement sont parmi les politiques de prix les plus populaires appliquées par les fournisseurs de Cloud actuels

[START_REF] Weinhardt | Business models in the service world[END_REF]

. Dans le modèle pay-as-you-go, les utilisateurs paient un montant proportionnel à leur consommation de ressources tandis que dans les politiques par abonnement les consommateurs doivent s'engager à utiliser le service pendant une période de temps donnée, en échange de quoi ils paient un prix plus bas par unité de temps que dans le pay-as-you-go. Généralement, les ressources achetées à travers des politiques d'abonnement ont priorité en termes de disponibilité par rapport à celles où les ressources sont acquises par pay-as-you-go. Parmi les politiques de prix de Cloud déployées par les fournisseurs actuels, on trouve :

1. Freemium : un produit ou un service est gratuit, mais les utilisateurs doivent payer pour les fonctionnalités avancées. L'usage du produit ou service peut être limité en temps, en capacité, en qualité du service, en caractéristiques, etc. (par exemple les machines virtuelles du niveau d'utilisation gratuit d'Amazon EC2 ). faites à l'avance (RFA). Grâce aux RFA, les fournisseurs de Cloud bloquent des ressources et garantissent leurs disponibilités futures aux consommateurs [LRY

+ 11]

.

avec un temps de démarrage et une date limite flexibles : ce

  ont été prises en compte pour l'évaluation numérique de la performance de cette approche. Au lieu de payer des prix fixes, Yeo, C.S. et al.[START_REF] Chee | Autonomic Metered Pricing for a Utility Computing Service[END_REF] proposent d'ajuster automatiquement le prix pour l'accès aux ressources si nécessaire afin d'augmenter les revenus des fournisseurs de Cloud. En utilisant des prix variables, les fournisseurs peuvent inciter les utilisateurs décaler l'utilisation du service aux périodes creuses en bénéficiant de prix plus bas. Comme les prix sont ajustés en fonction de la charge de travail prévue et de la disponibilité des ressources, les RFA soumises longtemps à l'avance sont privilégiées avec des prix inférieurs par rapport aux RFA tardives.Un environnement permettant aux fournisseurs de Cloud de modifier le calendrier d'exécution des RFA déjà acceptées afin de lancer des nouvelles RFA a été proposé par Netto, M. et al.[START_REF] Netto | SLA-Based Advance Reservations with Flexible and Adaptive Time QoS Parameters[END_REF]. Ce rééchelonnement des RFA est effectué en respectant les contraintes de temps d'exécution indiquées dans le SLA. Les auteurs ont montré que ce mécanisme peut atténuer les effets négatifs des RFA et améliorer la performance des ordonnanceurs. Il permet en effet de réduire les intervalles de temps où les ressources restent inutilisées. Une autre solution pour améliorer l'utilisation des ressources est de faire usage des mécanismes de surréservation qui sont particulièrement efficaces dans les scénarios avec des politiques d'annulation des RFA[START_REF] Sulistio | Managing Cancellations and No-Shows of Reservations with Overbooking to Increase Resource Revenue[END_REF] et de surestimation du temps d'exécution des RFA[START_REF] Birkenheuer | Reservation-Based Overbooking for HPC Clusters[END_REF].Dans ce contexte, le rééchelonnement des RFA existantes peut permettre aux RFA sur-réservées d'avoir accès aux ressources pour leur période d'exécution si les RFA précédentes sont annulées par l'utilisateur ou terminent plus tôt. L'algorithme d'ordonnancement préemptif à échéance proche a été étudié pour fournir des garanties probabilistes en temps réel pour les RFA sur des machines à temps partagé [KKV+ 09]. Avec cette stratégie de planification, une politique de contrôle d'admission est développée dans laquelle de nouvelles RFA sont acceptées si elles ne violent pas les contraintes de qualité de service de réservations préalablement acceptées. Ceci peut être réalisé, par exemple, en changeant la priorité des RFA afin de faire en sorte que leur exécution se termine avant leur date limite. type de RFA est également caractérisé par une flexibilité élevée. Cependant, la fenêtre n'est pas clairement définie. Au lieu de définir un temps de démarrage et une date limite pour l'exécution de chaque RFA, l'utilisateur fournit un ensemble d'intervalles de temps selon ses préférences représenté par une fonction d'utilité (figure B.5). La fonction d'utilité représente le niveau de satisfaction que l'utilisateur final obtient à la suite de la négociation. Cette satisfaction peut dépendre de plusieurs paramètres tels que le temps d'exécution, le prix des ressources ou encore les exigences de qualité de service, etc. En général, le résultat le plus défavorable est celui où l'utilisateur et le fournisseur ne sont pas en mesure de parvenir à un accord ; dans ce cas l'utilisateur reçoit une utilité nulle car sa demande est rejetée. Des politiques

3. RFA

  TableB.3 -Comparaison des politiques de prix les plus utilisées avec pay-as-you-book des créneaux horaires pour l'utilisation de machines virtuelles. Le prix de ces créneaux n'implique pas de frais d'abonnement ou d'engagement à long terme. De cette façon, payas-you-book permet d'éviter la dépendance exclusive à l'égard d'un fournisseur introduite par les politiques par abonnement. Un autre avantage de pay-as-you-book est un coût d'usage fixe car les utilisateurs paient pour ce qu'ils ont réservé. Cela représente également un avantage pour les fournisseurs de Cloud qui pourraient considérablement réduire ou éviter l'utilisation de techniques d'analyse prédictive afin de déterminer les tendances d'utilisation. Le Tableau B.3 présente une comparaison des politiques de prix les plus employées actuellement par les fournisseurs de Cloud et de pay-as-you-book.

	Caractéristique	Pay-as-you-go	Par abonnement	Pay-as-you-book
	Coût	Élevé	Bas	Moyen
	Coûts de l'utilisateur	Variable	Variable et fixe	Fixe, sauf si présence de RFA est sous-estimées
	Compensation en cas d'indisponibilité du service	Aucune	Pourcentage de frais d'utilisation	X fois le prix de la RFA
	Modalités de paie-ment	À échéance	À l'avance	À terme échu ou à l'avance
			Long (De quelques	
	Engagements à terme	Aucun	mois à plusieurs	Court (Durée de la RFA)
			années)	
	Disponibilité pendant les périodes de très forte demande	Base	Haute	Dépend des politiques du fournisseur
	Utilisation de l'ana-lyse prédictive	Modèles d'utilisation imprévisibles	Nécessaire et fait par le fournisseur	Non nécessaire car la prédiction est effectuée par l'utilisateur
	Type d'application	Avec un profil d'utilisation imprévisible	Avec un profil d'utilisation prévisible	Avec un profil d'utilisation très prévisible

A funding round is a practice by which a company raises money to fund operations, expansion, an acquisition, or some other business purpose.

Another non-functional requirements, out of the scope of this dissertation, cover end-users limiting the set of placement solutions due to political and legislative considerations. For example, end-users could avoid placing data either outside or inside a given region (e.g. the EU Data Protection Directive which regulates the processing and free movement of personal data within the European Union).

Applications are fully-decoupled when the jobs that form the application have no precedence constraints, and can be executed in parallel.

The boosting concept comes from the machine learning field. In Cloud service evaluation, boosting refers to the creation of a measure based on primary metrics that measure individual Cloud service features.

Score with a limited and usually fixed, number of possible values.

The network latency is particularly important in financial instruments with a high price variation (volatility). A few cent price variation may represent large amounts of money when trading in high volume. Moreover, higher latency connections are more prone to packet delivery delays and loss.

Une levée de fonds est une pratique par laquelle une entreprise lève des fonds pour financer son expansion, une acquisition ou dans un autre but.

Les applications sont entièrement découplées lorsque ses tâches n'ont aucune contraintes de précédence, elles peuvent donc être exécutées en parallèle.

IP Multimedia Subsystem (IMS)

Chapter 4

An exact approach for optimizing placement in Cloud brokering

Part II

A new pricing model in Cloud brokering

Chapter 5

The Pay-as-you-book pricing model 

Introduction

The most popular pricing models used by the current Cloud providers are: Pay-as-yougo and subscription-based. Pay-as-you-go involves a high price per unity hour but does not require long-term commitment. On the contrary, subscription-based pricing models result cheaper than pay-as-you-go in the long-term but normally require a long-term commitment and associated vendor lock-in. In this chapter, the current employed pricing

Pricing models in Cloud computing

Appendix A 

Cloud performance evaluation: details and extended results

Contents

A.1 Related issues to the performance evaluation

Issues faced during the development of this study:

• Not all Cloud providers provide an API to manage the VMs. This fact obliged us to start and stop VMs via the web interface which prevents the exact measurement of the provisioning time.

• Some Cloud providers (particularly the recently emerged) do not support the import of VM images.

• The image provided by one Cloud provider had the root user account deactivated (for security reasons as expressed by the technical support). As ceilo was conceived for being used under the root account, we faced some troubles at the moment of installing and configuring the benchmarks.

• Arubacloud presents the best performance-price relationship among the evaluated Cloud providers for the three VM sizes (s,m and l) evaluated with a low variability in the case of s and m sizes.

• AWS is placed on the HC-LP and LC-LP quadrants for all the VMs sizes but for the m VM size. AWS VMs present a low variability (0-10%) for the m and xl sizes.

• Cloudsigma presents a HP and a small variability at a HC for the small sizes (xs and s). For the m, l and xl sizes the performance is close to the AVE. VMs have a low variability for all the sizes but the m size.

• Joyent has a HP for all the VMs sizes (but xs size) at a HC for the m, l and xl sizes.

VMs have a low variability for all the sizes but the xl size.

• Lunacloud VMs are on the HP-LC and LP-LC quadrants. VMs have a performance over the AVE for the l and xl sizes, with a low variability for the m and l sizes.

• Profitbricks VMs are on the HP-LC quadrant. VMs have a low variability for the s, m and l sizes.

• Rackspace presents a low variability and is placed on the HP-HC and HP-LC quadrants for all the VMs sizes.

• 

A.4.2 Correlation among different VM sizes from a single Cloud provider

The performance-price relationship for different VM sizes from the same Cloud provider has been studied here. The performance values have been calculated as previously described. The motivation behind this is to check the correspondence among size, price and performance of VMs. In general, prices are proportional to the size and performance of the VMs ( found as follows. For two VMs, VM x and VM y , where:

The pair (VM x , VM y ) is selected if:

or if:

We define the Economic Advantage (EA) as the amount of money a user saved when choosing the smallest VM between two VMs with similar performance. EA is denoted as Cette thèse se concentre sur les services à valeur ajoutée et les politiques de prix d'un point de vue de l'infrastructure Cloud. Trois objectifs sont visés : le premier est de proposer une mesure de qualité de la performance des machines virtuelles basé sur le profil d'application. Le deuxième est de proposer une approche exacte pour l'allocation de machines virtuelles à travers de plusieurs fournisseurs basée sur différents critères d'optimisation. En fin, le troisième est de décrire une politique de prix pour le Cloud brokering, appelée « pay-as-you-book ».

B.2 Mesures de performances des fournisseurs de Cloud

B.2.1 Enjeux

Actuellement, il est impossible de faire une comparaison directe des offres de services Cloud. Dans le cas des ressources en infrastructure, cela est dû principalement à l'hétérogénéité des configurations des VMs. D'une part, les fournisseurs de Cloud traditionnels tels qu'Amazon, Rackspace et WindowsAzure vendent des machines virtuelles de taille fixe (c'est-à-dire des machines virtuelles avec une configuration prédéfinie). Ces configurations des machines virtuelles varient parmi les fournisseurs, il n'est donc pas possible de trou-pour rechercher l'évaluation des services Cloud. 82 études d'évaluation des services de Cloud ont été relevées. Les principales conclusions de cette étude représentent un état de l'art en ce qui concerne l'évaluation de services Cloud. Ces conclusions sont les suivantes :

• 50% des études cherchent à appliquer le Cloud computing aux problèmes scientifiques, tandis que seulement 16% des études se penchent l'évaluation des applications pour les entreprise dans le Cloud.

• 21 services de Cloud ont été sélectionnés chez 9 fournisseurs de Cloud. 70% des études évaluent les services fournis par Amazon Web Services uniquement.

• Trois aspects principaux de l'évaluation de la performance des services Cloud avec leurs propriétés respectives ont été étudiés : la performance, l'économie et la sécurité.

La performance étant l'aspect le plus étudié (78 études).

• Il n'y a pas de consensus sur la définition et le type des métriques utilisées. Certaines métriques de même nom ont été utilisées pour designer différentes mesures. De la même façon, certaines métriques avec différents noms correspondent à une même mesure. L'étude a identifié plus de 500 métriques, y compris les doublons.

• Il y a un manque de métriques efficaces vis-à-vis de l'élasticité et des aspects de sécurité en Cloud computing. En conséquence, il n'est pas possible de quantifier la quanlité d'élasticité et de sécurité d'un service Cloud.

• Il n'y a pas de logiciels de référence fournissant une évaluation globale de services du Cloud. Le SLR a recensé environ 90 logiciels différents utilisés dans les études sur l'évaluation des services Cloud. Ces logiciels de référence ont été regroupés en trois catégories principales : logiciels d'application, micro-logiciels et logiciels à charge de travail synthétiques ils seront expliqués ci-dessous.

• 25 scénarios de base pour l'élaboration de services d'évaluation des services de Cloud ont été identifiés et classés.

• L'évaluation des services de Cloud est de plus en plus étudiée par la communauté scientifique. Le nombre d'études relevées a été multiplié par 17 fois entre 2007 (2 études) et 2011 (34 études).

L'évaluation de la performance des services de Cloud est faite à l'aide de logiciels d'application, de logiciels à charge de travail synthétique et de micro-logiciels. Les logiciels d'application correspondent aux logiciels utilisés dans les environnements de production et fournissent une vue d'ensemble de la performance d'une application spécifique. Les logiciels à charge de travail synthétique simulent le comportement d'une application en imposant une charge de travail sur le système. De même, les micro-logiciels imposent une charge de travail dans le but de mesurer les ressources matérielles spécifiques qui caractérisent une machine virtuelle. Comme il n'existe d'ensemble de logiciel de références spécifique pour l'évaluation des services de Cloud, la performance des ressources