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Foreword

The present PhD thesis addresses the interaction of fast particles with instabilities and tur-
bulence in fusion plasmas. We focus on three types of instabilities: the internal kink mode,
which underlies sawtooth activity in tokamaks, the Energetic particle driven Geodesic
Acoustic Mode (EGAM), and the Ton Turbulent Gradient (ITG) modes, which underlie
turbulence. The interaction of fast particles with sawteeth and turbulence is considered
under the angle of stability control: how can fast particle provide mitigation of those

processes?

Fast particles in tokamaks are born from three main sources: Neutral Beam Injection
(NBI), Ton Cyclotron Resonant Heating (ICRH) and alpha particles. Out of those sources,
the first two can be, to some extent, controlled by the operator. They may be used on

purpose to damp or excite plasma instabilities.

Since studies published in the late 80s - early 90s [Coppi 1988, Coppi 1989, Por-
celli 1991|, it has been known that trapped fast particles can, through their interaction
with the internal kink mode, modulate the frequency of sawteeth. Results from experi-
ments carried out in JET (European tokamak located in the UK) showing such sawtooth
stabilization are presented in the present manuscript. In those experiments, the fast par-
ticles are deuterons first accelerated by NBI to about 100 keV, and then accelerated by
3rd harmonic ICRH to energies in the MeV range. The effects of those fast particles on
sawteeth are studied for the first time in JET with ITER-Like Wall (ILW). They are
interpreted in the framework of Porcelli’s model, and found to be strongly stabilizing,
consistently with the observations. A 2.5 s long sawtooth is studied, a record duration
for JET with ILW; during this sawtooth the plasma parameters, in particular the fast
particle distribution and the g-profile, are remarkably stable in time. Explanations for
the sawtooth crashes, while fast particle provided such stabilization, are discussed: in two
of the four considered discharges, tornado modes, which are known to expel fast particles
from the core plasma, are observed just before the crashes. In the other two discharges,
the inward propagation of a cold front triggered by Edge Localized Modes (ELMs), and

preceding the sawtooth crash, is observed.



Foreword

The impact of fast particles on the internal kink mode, and therefore on sawteeth,
is a direct effect: by pumping energy from the mode, or on the contrary yielding en-
ergy to it, the fast particles can damp or excite the instability. The impact of fast
particles on ITG modes studied in the present manuscript, and therefore on turbu-
lence, is of a different kind: it is indirect. Indeed, this interaction occurs through so
called Energetic particle driven Geodesic Acoustic Modes (EGAMs), which are simi-
lar to Geodesic Acoustic Modes (GAMs). GAMs were discovered in the 60s [Win-
sor 1968|; they were later shown, in the 00s, to have interaction with drift wave modes
|[Hallatschek 2001, Jakubowski 2002, Ramisch 2003, Miyato 2004, Nagashima 2005, An-
gelino 2006, Miki 2007, Waltz 2008, Conway 2011, Sasaki 2012, Xu 2012|. In particular,
it was found that under certain circumstances, they could mitigate turbulence. However,
GAMs are not easily triggered nor controlled by an operator. EGAMs, on the contrary,
are excited by fast particles and may thus, to some extent, be controlled by an operator.
It has recently been shown in numerical simulations that EGAMs interact with turbulence
[Zarzoso 2013]; however the nature of this interaction, and in particular whether EGAMs
damp or excite ITG modes, remains to be established. The similarity between GAMs and
EGAMs suggests that EGAMs should be able to mitigate ITG modes, at least in certain
ranges of plasma parameters. Based on this remark, the excitation of EGAMs by fast
particles, and the relation between GAMs and EGAMs, are studied analytically in the
present thesis. This is the first part of the interaction of fast particles with turbulence.
The second part is the impact of EGAMs on ITG modes, discussed in the present work

through a non-linear three wave parametric decay model.

All the notations used in the present thesis are summarized in a dedicated section at

the end of the manuscript.



Chapter 1
Introduction

In this chapter, we first recall the basic physics which governs nuclear fusion in magnet-
ically confined plasmas, present the magnetic geometry of tokamaks, and give the main
characteristics of particle orbits in such devices. Subsequently, we give a brief introduction
to the fluid and gyrokinetic theories which allow one to model the plasma in conditions
relevant for thermonuclear fusion. Finally, we detail a few conventions used in the present
manuscript and which may not be universally acknowledged, and give the outline of the
present manuscript.

The present chapter is largely based on well-established references: [Hazeltine 2003,
Rax 2005, Rax 2011, Wesson 2011]. They will most of the time not be explicitly cited in

the passages below.

1.1 A few words about nuclear fusion in tokamaks

We here briefly recall a few aspects of controlled nuclear fusion in tokamaks, based on
[Hazeltine 2003, Rax 2005, Mora 2011, Rax 2011, Wesson 2011|. Other types of magnetic
confinement machines, not described in the present manuscript, include linear mirror

machines, stellarators and reversed field pinch machines.

1.1.1 Reaction rate - Cross sections

In a magnetic plasma made of two types of ions a and b, the rate N of reactions per time

unit and per volume unit reads as follows:
N = ngny (o(v)v)y, (1.1)

where n, is the density of ions a, n, is the density of ions b, ¢ is the cross section of the
fusion interaction between the two species of ions, v is the relative velocity between two

ions of species a and b, and (...), means the average over v weighted by the corresponding

3



Chapter 1. Introduction

distribution function.

Figure 1.1 presents the evolution of the (o(v)v), factor according to temperature for
three couples of elements: deuterium - deuterium (D-D), deuterium - tritium (D-T) and
deuterium - helium 3 (D-He3). To get the figure, a Maxwellian distribution function was

used to compute (...),. For further elements about this computation, one can refer to
[Wesson 2011| or [Mora 2011].

1021

— — . :(
— I
pe
102 = ] : =
- v : T
_ ad pad
1A
L~
1023 AD-T A
- / = ; =
(ov) = 7 7 T
(m?s7) / L D//'_
10—24 = ln[}:( 7__. —— A
;‘(! 4 I’; 1T 111
/
]0—25 | — ,/ + !)_ch
— f’t = a o
— “If
/
10—26 7 / ] ]
1 10 100
T(keV)

FIGURE 1.1 — Average cross sections of D-T, D-D and D-He3 reactions as a function of
temperature (Source : [Wesson 2011]).

When collisions occur, those three couples of elements can give birth to the following

reactions:

D+ T —  He4 4+ n+17.59 MeV,
% Hed +n + 3.27 MeV,
D+D 50%
== T+ H+4.03 MeV,
D+ He3 — Hed4+ H+ 18.3 MeV,

where n designates a neutron.

In the range of temperatures 1 keV - 100 keV, at given densities, we can see that D-T
has by far the highest (o(v)v), factor. The latter reaches its maximum around 60 keV;

4



1.1 A few words about nuclear fusion in tokamaks

however what is needed is not the maximisation of (o(v)v), but of the reaction rate
nanp (o(v)v),. In the case of deuterium and tritium, calling n; the total density of ions,

2
npnt reaches its maximum for np = nt = 2. The reaction rate then reads & (o (v)v),.
2 1 v

We will see further below (Section 1.1.1) that the pressure p; = n;T; in a tokamak, where
T; is the ion temperature, is constrained by technological and scientific issues. Calling

Pmax the maximum value of p;, the reaction rate reads

(o),

W, (1.2)

2
N = Piax

where ppax is independent of the temperature and (ov), is a function of the temperature

only.

(ov)w
T2

Figure 1.1, for values of T; below 10 keV, (ov), grows faster than f2, while it grows

2

We can now see that the expression we need to maximize is As shown in
slower than T? after T; = 20 keV. Consequently, the optimum temperature range for D-T
fusion is 10-20 keV.

1.1.2 Ignition criterion

Various criteria have been set up to predict what conditions may be favourable for con-

trolled fusion to occur; among those, the ignition criterion is one of the most relevant.
Ignition is reached when the energy released by fusion in the plasma compensates the

energy losses, or in other words when no external power is required to sustain the reaction.

It is characterized by
Pfus%pla Z PIOSS7 (13)

where Prys_yp1a is the power of fusion reactions transferred to the plasma and Py is the

power of losses on the edge of the plasma (by radiation, conduction or convection).

In the case of D-T fusion, only the alpha particles transfer their energy to the plasma.
Neutrons quickly escape out of the tokamak without having time to communicate their
energy to the plasma. In fusion power plants, those neutrons will slow down in a water-

cooled tritium breeding blanket; the water thus heated will be used to generate electricity.

Let us call E, the energy that an alpha particle takes away from a D-T reaction, and
let us call V' the volume of the plasma. Assuming all the energy of the alpha-particles is

transferred to the bulk ions, and assuming np = nt = 3, we can write

n2

Pfus—>p1a = <Z <UU>U> Eav7 (14)
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where (...), stands for the space average operator 7 [, .(dx)®.

Besides, under the hypothesis that energy losses are essentially conductive and con-

vective, Py can be written as follows:

%74
Ploss = (15)

E

where W is the internal energy of the plasma, and 7 is the characteristic energy confine-
ment time. Radiative, bremsstrahlung and synchrotron losses have been neglected. In a
simplified D-T plasma where electrons and ions have the same uniform temperature 7;,
and where the density n; is uniform, the internal energy reads W = 2 - gniTiV = 3n,T;V
(the factor 2 appears to take into account both ion and electron internal energies). The
energy confinement time depends on collisional and turbulent transports; which in turn
depend on the plasma parameters. One of those parameters is the temperature: when
the temperature rises, the energy confinement time decreases.

Taking into account the expressions of Prs_pia and P here above described, the

ignition criterion becomes

127,

> Tt
M= 50y, Ba

(1.6)

The right hand side term of inequality (1.6) depends only on T}, and reaches its minimum

around 30 keV, as shown in Figure 1.2.

1022F1||||| N I o o .
?’ITE
5, 102 .
(m™s) - .
20l 1 1 111l ! Lol
= 10 100
T (keV)

FI1GURE 1.2 — Condition on n7g for ignition in the case of a D-T plasma, with flat density
and temperature profiles (Source : [Wesson 2011]).



1.1 A few words about nuclear fusion in tokamaks

1.1.3 Triple product

Taking into account the dependence of 7 on temperature, as well as synchrotron losses
which increase rapidly with temperature, the ideal temperature for a burning plasma is
not 30 keV, but 10-20 keV as mentioned above. In this range of temperature, (ov), can

be approximated with 10 % error bars as follows:!
(ov), =T? x 1.1-107%* m* s where T} is in keV. (1.7)

Considering that F, = 3.5 MeV, we obtain the following inequality, called triple
product inequality:

nTimg > 3-10* keV - s - m 3. (1.8)

It is recalled that this inequality is valid only for 7; comprised in the range 10 keV -
20 keV, and for flat radial density and temperature profiles.

For parabolic density and temperature profiles, the value of the right hand side is

somewhat higher:
ATy > 5 - 102 keV - s - m>, (1.9)

where 7; and T} are the peak density and temperature values, encountered on the magnetic
axis (see Section 1.2.1 below for the definition of the magnetic axis in a tokamak). In

engineering units, the same inequality reads
n; Tyt > 8 bar-s. (1.10)

To better understand what the triple product means for magnetic fusion, it is a good
idea to write it differently. Let us define the (§; parameter of ions as the kinetic pressure
of the ions divided by the magnetic pressure:

n;1;
Pi= % (1.11)

2p0
where p is the vacuum magnetic permeability and B is the norm of the magnetic field.

It is possible to define the 5, parameter of electrons in the same way:

ned,
g = "ok, (112)

2po

! This approximation is valid only between 10 keV and 20 keV. In particular, away from the range
10 keV - 20 keV, (ov), does not behave like T2
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where, consistently, n. and T, are respectively the density and temperature of electrons.
Finally, the overall 5 parameter of the plasma can be defined as

neTe + nzT‘z

240
Sticking to the simple case of the D-T plasma with parabolic density and temperature
profiles, and where T; = T,, 5y on the magnetic axis reads

Bo=—%> (1.14)
[0]

2p0

where By is the value of the magnetic field on the magnetic axis.

This expression of 8 can then be injected into inequality (1.9) to get
B2Bop >4 T? . (1.15)

It is important to remember that this expression is valid only when the following condi-
tions are fulfilled together: D-T plasma, temperature in range 10 keV - 20 keV, same ion

and electron temperatures, parabolic profiles of density and temperature.

In particular, we can here see that the product 7,1} is a function of Bo and By only. As
discussed below, £y and By are constrained by scientific and engineering issues. Therefore,
the product 1,1} is constrained by those issues, and this justifies the assumption made in

Section 1.1.1, namely the existence of an upper boundary for the plasma pressure.

1.1.4 How can we improve each factor of the triple product?

To understand better how criterion (1.15) can be fulfilled, let us focus on each of the three

factors B2, By and 7g, in tokamaks.

° Bg
By appears at first glance as an advantageous parameter to modify, since its impact
on the ignition criteria is proportional to its square. In tokamaks, B is usually of the
order of a few Teslas. For instance, in the JET tokamak (European tokamak, located
in the UK), By has a value of 3.5 T} in the Tore Supra tokamak (France) it has a value
of 4.5 T; and in the ITER tokamak (international tokamak, currently in construction
in France) its intended value is 5.3 T (source: |[Rax 2011]). Some machines, such as
Alcator C-mod (US), regularly perform discharges at higher values of By: over 8 T.
Besides, some other machines, such as Ignitor (tokamak in project, Italy), have been
in discussion for long, with the intention of reaching even higher magnetic fields on

the toroidal axis: a value of 13 T in the case of Ignitor. However, such projects still
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have to come to reality: the main problem with high By is the magnetic pressure
2

QBT% the coils have to withstand, which, like the ignition criterion, varies as B2.

For By = 5 T, this pressure is of the order of 100 bars. If By = 13 T, it is over

650 bars.

~Y

A further issue is the width of the Scrape-Off Layer (SOL), which varies like 1/B?,
with a of the order of unity |[Loarte 1999, Eich 2011, Goldston 2012|. The SOL
is a zone of the outer plasma in which flux surfaces are not closed; the particles
in this layer are guided by the magnetic field lines to the divertor, situated at the
bottom of the tokamak. The width of the SOL determines the size of the power
deposition layer on the divertor. Reducing the width of the SOL may lead to a

dramatic increase in the power density deposited on the divertor.

Bo

In usual toroidal tokamaks, that is to say in tokamaks with large aspect ratio % ~ 3,
Bo is of the order of a few percent, which is quite low. So called spherical tokamaks
can have a much higher 3y, which can reach 40 %. Such tokamaks are in fact still
toroidal from a topological point of view, but their minor radius a is almost equal
to their major radius Ry, so that the global machine is almost spherical. They are
characterized by % ~ 1, and only depart from spheres by the vertical cylindrical
hole they host in their core. The tokamaks MAST (UK) and NSTX (USA) are

examples of spherical tokamaks, with % ~ 1.3.

Those machines have several drawbacks, one of the main being the small size of the
central post. Indeed, it has to host all Toroidal Field (TF) magnetic coils; and it
is usually too small to host a central solenoid. If one wants to use superconductors
for the coils, then the cryogenic system has to be hosted as well. In addition, the
materials in that cylinder are very exposed to neutrons; the power thus received
may be superior to 10 MW.m™2, which means that metals in the cylinder hole are

at risk of being transmuted and deformed.

TE

According to classical scaling laws, the energy confinement time is determined by
several characteristics of the plasma; in particular the volume V', the kinetic pressure
p and the magnetic field B. 75 also depends on the transport (classical, neoclas-
sical, turbulent) experienced by the plasma. One of the key goals of the study of

turbulence is to reduce transport in order to increase 7 (see Section 2.3).

Let us assume that one managed to reduce turbulence, so that 7 did not follow
the scaling laws and increased at given B, p and V. The consequence would be a

reduction in the power of the plant, at given size. Indeed, as written above, ignition
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requires

Pfus—>pla > Ploss- (116)

When steady-state is reached, this criterion turns into
Pfus—)pla, = Plossa (117)

where it is recalled that Pps_,p1, is the fusion power transferred to the plasma, i.e.
the power of alpha particles in the case of a burning D-T plasma. If a power plant
delivers 1 GWe. to the electrical grid, then it requires about 3 GWy;, of thermal
power, taking into account Carnot yield. Assuming this power comes entirely from
the neutrons of the D-T reactions, it means that Prs pla is about 750 MW.

Let us now recall the expression (1.5) of Ploss: Plogs = 3"T£V. We consequently have

the following relationship:

3nTV

TE

Pfus—)pla = (1.18)
If 7% increases at given n, T', V', then the power of the plant must be reduced through
its dependence on Prys_,pia, While the size of the plant, and hence its cost, remains

constant.

1.2 Tokamaks: geometry and particle trajectories

1.2.1 Geometry of the magnetic field B

In a toroidal device designed for the magnetic confinement of charged particles, the mag-
netic field needs to have a poloidal component as well as a toroidal component. In toka-
maks, the toroidal field is generated by poloidal coils disposed around the vacuum cham-
ber, while the poloidal field is generated by a toroidal current carried by the plasma
itself. Tokamaks are usually axisymmetric devices (contrary to stellarators for instance,
in which the poloidal field is generated by external coils). The combination of the toroidal
and poloidal components of the magnetic field yields helical field lines wrapped on nested
magnetic surfaces, called flux surfaces. The flux surfaces have the topology of a torus;
the inner-most one has a minor radius equal to zero and is in fact reduced to a mere line:

this line is called the magnetic axis.

The geometry of tokamaks can be described by the following set of three coordinates:
(1,6, ), where 9 is the poloidal magnetic flux counted from the magnetic axis and

normalized to 27, 6 is the flux coordinate poloidal angle counted from the low field side

10
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Magnetic axis
Flux surfaces

FIGURE 1.3 — Illustration of the set of coordinates (1,6, ) in the case of circular, con-
centric flux surfaces.

equatorial plane, and ¢ is the toroidal angle. ¢ is a flux label, i.e. it is constant on a
given flux surface and uniquely characterizes each flux surface. It verifies 1) ~ 72, where
r is the minor radius (distance between a given point and the magnetic axis). The ratio

between the major radius (distance between a given point and the torus symmetry axis)

T
Ry’

Ry is the major radius of the magnetic axis, is commonly used as a small parameter in

and the minor radius is called the aspect ratio. The inverse aspect ratio ¢ = where

calculus.

The flux coordinate poloidal angle 6 is defined to ensure that the safety factor

~ B-Vp
- B-V4

q (1.19)

is a function of ¢ only. This definition of  differs from the geometrical one by a term of
order ¢ which depends on ¢ and 6. Figure 1.3 shows the set of coordinates (¢, 6, ¢) here

used; the orientations have been chosen so that the set be direct.

In an axisymmetric tokamak, the magnetic field B can be written
B=1(Y)Vo+ Ve x Vi, (1.20)

where [ is a function of ¢ only, which can be expressed as

_

Y (1.21)

1(¢)

In this expression, R is the major radius and J = (V¢ x V@ - Vgp)_l is the Jacobian of

the Cartesian coordinates with respect to the (1,0, ¢) coordinates.

11
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The corresponding vector potential reads
A =YV -9V, (1.22)

where 7 is the toroidal flux normalized to 27; and the current density reads

_ W 4P,
J=-5 TB RV (1.23)

where the pressure P is a function of v only.

According to the Ampére theorem, at first order in ¢, the magnetic field verifies

R
B= BOEO, (1.24)

where By is the norm of the magnetic field on the magnetic axis.

At order zero in g, the norm B of the total magnetic field is equal to By:

B = B,. (1.25)

In flux coordinates, ¢ reads at first order in ¢

TBO

q() = m,

(1.26)

where Bp is the norm of the poloidal magnetic field.

In the case of concentric circular flux surfaces, the major radius coordinates reads

R = Ry +rcos?b. (1.27)

In practice, in tokamaks, the flux surfaces are not always circular. For instance, in
JET the flux surfaces have a somewhat "D" shape; and they will have a similar shape in
ITER. On the contrary, in Tore Supra, the flux surfaces are circular. However, even in
this last case, they are not really concentric. Indeed, the plasma tends to shift outwards
under the combined effects of self-induction and pressure: this results in the so-called
Shafranov shift, which is stronger for the inner flux surfaces than for the outer ones. The
Shafranov shift adds a term A(r) to the expression of R. A(r) comprises one term of
order 2 in ¢ and one term of the order of 8 (ratio of the kinetic pressure to the magnetic
pressure). Therefore, at small § and at first order in e, the Shafranov shift needs not
be taken into account, and the expression of R presented here above remains correct for

circular flux surfaces.

12
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1.2.2 Parallel and perpendicular directions

In magnetized plasmas, such as the ones which are encountered in tokamaks, the mag-
netic field provides strong anisotropy. At each spatial position, the magnetic field defines
a privileged direction, called the parallel direction, and a normal surface referred to as
the perpendicular direction. Vectors are usually decomposed into their parallel and per-
pendicular components (where it is therefore implied that parallel means parallel to the
equilibrium magnetic field and perpendicular means perpendicular to the equilibrium mag-
netic field).

The unit vector in the parallel direction b is defined as follows:

b= (1.28)

In the case of circular flux surfaces, in flux coordinates, b reads, at first order in ¢,

b=e,+ €y, (1.29)

r
q(¢) Ro
where eg is the unit vector in the poloidal direction, and e, is the unit vector in the

toroidal direction. In that case, the parallel gradient reads

Vi=b-V (1.30)

1 1

Remark: in the case of circular, concentric flux surfaces, the three coordinates
(1,0, ) define an orthogonal basis. Therefore no distinction between covariant and con-

travariant components needs to be made. This is, however, not the case in general.

1.2.3 Particle trajectories

When they are immersed in a stationary and uniform magnetic field, and in the absence of

any other forces, charged ions can move freely in the direction of the field, while they de-

scribe circles in the perpendicular direction, with frequency w. = 2 and radius p;, = %

m; we?

where B is the norm of the magnetic field, e; is the charge of the ions, m; is the mass
of the particles and v, is the perpendicular velocity. This latter part of their movement
is called the cyclotron gyration, the corresponding frequency is called the cyclotron fre-
quency and the corresponding radius is called the Larmor radius. The combination of
the free motion along the magnetic field and of the cyclotron gyration yields a helical
trajectory. In tokamaks, however, the magnetic field is not uniform: although the helical
trajectory here above described remains valid at first order, some additional features need

to be taken into account. They are detailed below.

13
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In the rest of the manuscript, electrons are treated adiabatically and collisional phe-
nomena are not taken into account; this is why we have here chosen to focus on ions
(electrons are mentioned in the paragraph on drift velocities only), and why no reference

to collision characteristics is made.

Motion invariants
Some quantities can be, under certain conditions, identified as motion invariants. Among
the quantities presented below, some are said to be adiabatic invariants. This means
that they are invariant only under the following conditions: the spatial variations of
the magnetic field B occur on large scales compared to the thermal ion Larmor radius
pi = vVmiT;/eB, and the time variations of B occur on large scales compared to the
cyclotron period of time w; .
Only three independent invariants can be built. The energy, the magnetic moment and
the canonical moment presented here below are independent. The longitudinal invariant

can be expressed as a combination of those three independent invariants.

e Energy: H = %mwﬁ + uB + e;0,
where v is the parallel velocity, p is the magnetic moment, and ¢ is the electric
potential. The energy is a motion invariant only if the electric field varies slowly

compared to the cyclotron rotation.

mivi

2B °
The magnetic moment is an adiabatic invariant.

e Magnetic moment: pu =

e Canonical momentum: P, = m;Rv, — e;1),
where v, is the toroidal velocity. The invariance of the canonical momentum is de-
duced from the independence of the motion Lagrangian with regard to the toroidal
angle in the case of an axisymmetric tokamak. In practice, due to the finite number
of toroidal field coils (for instance 32 non superconducting coils in JET, to be com-
pared to 18 superconducting coils in Tore Supra or ITER), the toroidal magnetic

field is not perfectly axisymmetric.

. . 0

e Longitudinal invariant: J =2 [T mjvydl,
where 6; > 0 is the poloidal angle of the trapped orbit turning points (the difference
between trapped and passing ions in tokamaks is explained a few lines below). The
longitudinal invariant is an adiabatic invariant which concerns trapped particles

only. The integration path denoted by dl is made along the banana motion.

Trapped and passing orbits

In the absence of any electric field and collisions, the kinetic energy £ = %mivﬁ + uB

14
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Magnetic axis

Trapped
orbit

Reference flux

surfaces Passing orbit

FIGURE 1.4 — Illustration of a passing orbit and a trapped orbit projected on a poloidal
section, each represented with their reference flux surfaces.

of each ion is conserved, while p is an adiabatic invariant. Therefore, the variations of
v and B during the motion are directly linked. In the case of circular, concentric flux

surfaces this link reads, at first order in the inverse aspect ratio,

vjf = le[E — 1Bo(1 — e cosb)]. (1.32)

This relation implies that E — pBy(1 — € cos @) must always be non-negative. If there
exists a poloidal angle 0 for which E—uBy(1 — € cos #) is null, then the ion will be mirrored
by the magnetic field. It will not be able to reach the high field side of the tokamak (6 of
the order of 7), and will be confined to the low field side (6 of the order of zero). Such
a particle is called a trapped particle. On the contrary, if the parallel energy of the ion is
high enough for it to never fall to zero, then the particle is said to be a passing particle.
The trapping condition corresponds to the case F' < pBugax = #Bo(l+¢). Using the

definition of £ = %mivﬁ + pB, this conditions can be recast as follows:

Al < Ve (1.33)
V1 lg=o
Figure 1.4 shows the projection on a poloidal surface of a trapped orbit (in red) and
of a passing orbit (in blue). Due to their shape, trapped orbits are also called banana
orbits, and the corresponding motion is usually called bounce motion. The toroidal motion
of ions is not represented in Figure 1.4: at the same time as they go to and fro in the
poloidal direction, trapped particles also go to and fro in the toroidal direction; while
passing particles have helical orbits rotating in the poloidal and toroidal directions.
The proportion 7 of trapped ions with respect to the total number of ions is of the

order of the inverse aspect ratio:

n~ e (1.34)

15
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Passing and trapped orbits do not exactly lie on a flux surface: they deviate slightly

from their reference surface due to the curvature and gradient drifts (see below). Those

deviations from the reference flux surface are of the following order, for thermal trapped

(0p) and passing (0,) ions:

qpi
O ~ 1.
Jatv- (1.35)
dp ~ qpi. (1.36)

Characteristic frequencies

The following frequencies are characteristic of the ion trajectories. Frequencies corre-

sponding to collisions are not indicated here.

16

Cyclotron frequency: w, = %

The cyclotron frequency concerns both trapped and passing particles; it corresponds

to their motion around the magnetic field lines.

a1

=

The toroidal passing frequency concerns passing particles only; it corresponds to

Toroidal passing frequency: w, =

their motion in the toroidal direction.

i

qR’

The transit frequency concerns passing particles only; it corresponds to their motion

Transit frequency (= poloidal passing frequency): w; =

in the poloidal direction.

. vT
Bounce frequency: wy ~ B VES

where v = \/g is the thermal velocity. The bounce frequency concerns trapped

particles only; it corresponds to their motion in the poloidal direction.

quT pL
Ro a”

The toroidal precession frequency concerns trapped particles only. In addition to the

Toroidal precession frequency: wy ~

bounce motion, trapped particles experience a slow motion in the toroidal direction.
. . . o 2
Indeed, on a banana orbit, since the parallel velocity reads v = \/;\/E — B, the
particles go faster on the outer branch, where B is lower, than on the inner branch,
where B is higher. The velocity difference between the two branches reads
2 ,U/BO (Sb

Sy = =22 1.37
= 20y R (1.37)

This difference accounts for the toroidal precession, with frequency

51)”
w ~/ . 1.38
d Ro ( )
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The toroidal precession implies that although they will never make a whole poloidal
turn, trapped particles will on the contrary eventually make a whole toroidal turn

(see Figure 1.5) with frequency wy.

Toroidal precession of
Trajectory of a trapped the trapped particle
particle guiding centre

F1GURE 1.5 — Illustration of the trajectory of a trapped particle guiding centre, where the
bounce motion is visible, and where the toroidal precession is identified.

Drift velocities
In tokamaks, the magnetic field is not uniform, and the particles are usually submitted
to an electric field in addition to the magnetic field. In such situations, in addition to
the helical motion around the field lines, they experience so-called drift velocities. The
main drift velocities are the E x B (read "E cross B", where E is the electric field) drift,
the curvature drift, and the gradient drift. Together, the curvature drift and the gradient
drift are called the magnetic drift.
In the presence of an electric field E, the ions are subject to the following E x B drift

velocity:

Exb

When the magnetic field is curved and has a perpendicular gradient, the ions are sub-
ject to the following magnetic drift velocity, where the first part represents the curvature

drift, and the second part represents the gradient drift:

mﬂfﬁ uB bx VDB
— Kt — —.

= 1.40
g 6iB eiB B ( )

In this expression, k is the curvature of the magnetic field. It reads kK = (b x VB +

rot B|,)/B, where the rot B|, term can be neglected when the plasma has a low 3;

(ratio of the kinetic pressure to the magnetic pressure).

17
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The E x B and magnetic drift also affect electrons (just replace m; with m. and e; with
—e, where m, is the electron mass and e is the elementary Coulomb charge). However,
they do not have the same effect: the E x B drift drives electrons and ions in the same
direction, and therefore does not create any charge separation. On the contrary, the
magnetic drift drives electrons and ions in opposite directions, thereby creating a charge
separation.

Together, the E x B and the magnetic drifts explain why a poloidal magnetic field is
needed in a tokamak: without the poloidal field, the magnetic drift would create a vertical
charge separation; this charge separation would in turn be at the origin of an E x B drift,
and the latter would cause the expulsion of the particles from the tokamak. By allowing a
compensation of the vertical drift, the poloidal field prevents the charge separation caused

by the magnetic drift from occurring.

1.3 A brief introduction to fluid and gyrokinetic theo-
ries

The kinetic and fluid theories provide models of the plasma, in the framework of which the
time evolution of the relevant parameters can be computed. In the fluid theory, a three-
dimension problem is considered (see Section 1.3.2 below), while in the kinetic theory
six dimensions are taken into account, corresponding to spatial and velocity coordinates
(see Section 1.3.1): the kinetic theory therefore provides a more complex framework than
the fluid theory. While some aspects of plasma physics in tokamaks may be treated in
both fluid and kinetic theories, it is sometimes necessary to resort to the kinetic model.
This is in particular the case if Finite Larmor Radius (FLR) and Finite Orbit Width
(FOW) effects are to be considered, or if Landau resonances in the velocity space are
to be taken into account. For instance, the study of the excitation of Energetic particle
driven Geodesic Acoustic Modes (EGAMs) requires a Landau resonance to be taken into

account (see Chapter 3).

1.3.1 Gyrokinetic theory: time evolution and quasi-neutrality

equations

In the kinetic model, on a microscopic scale, each particle is characterized by its spatial
coordinates (3 dimensions) and its velocity coordinates (3 dimensions). On mesoscopic
and macroscopic scales, the particles are described by a distribution function f(x,v,t)
which depends on the six phase space variables (physical space and velocity), plus on time.
The number of particles having a velocity [v;v +dv] at a position [x;x + dx] is given
by f(x,v,t)(dv)*(dz)®. A different distribution function is established for each species

18
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present in the tokamak, and therefore the equations presented below are to be solved
once for each species. In the present manuscript, however, the electrons are treated in a
simplified way, according to the adiabatic theory (see below the paragraph dealing with
the quasi-neutrality equation).

The distribution function evolves in time because of the interactions of particles
with the surrounding electromagnetic field, with other particles (collisions) and exter-
nal sources. Under the assumption that over infinitesimal times, the position and velocity
of any given particle experience only infinitesimal variations, the time evolution of the

distribution function is described by the Fokker-Planck equation

a _

S =C)+5, (1.41)

where C(f) is the collision operator and describes collisions between particles, while S
is a source term which describes the injection of any given quantity (energy, momentum,
particles...) in the system. % designates the particle derivative:
d dx dv
— =0+ — - 0x+ — - Os. 1.42
R R TR (1.42)
In the absence of source and collision terms, the Fokker-Planck equation is called the

Vlasov equation, and reads

a _

= 0. 1.4
7 =0 (1.43)

The Vlasov equation is a 6 dimensional (6D) equation. However, in magnetized plas-
mas such as those encountered in tokamaks, this equation can be turned into a 5 di-
mensional (5D) equation, considering that the cyclotron motion of a particle around the
magnetic field lines occurs both on a fast time scale and a small spatial scale. The aim of
deriving such a 5D equation usually is to model perturbation phenomena in the vicinity
of equilibrium states. Depending on the ordering hypotheses which are made on the per-
turbations, different kinds of 5D equations can be derived from the Vlasov equation. We

here briefly present two of them; further details can be found in [Brizard 2007].

Drift-kinetic equation

The drift-kinetic equation is valid under the following ordering hypotheses:

Y« (1.44)
We

kipi~ pe <1, (1.45)
(;—¢ ~ 1 or smaller, (1.46)
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where w is the characteristic frequency of the perturbation, w. is the cyclotron frequency,
k. is the characteristic perpendicular wave vector of the perturbation, p; = v/m;T;/eB is
the fluid ion Larmor radius, p. = p;/a is the normalized ion Larmor radius, a is the minor
radius of the tokamak, e is the elementary electric charge, T; is the ion temperature, m; is
the ion mass, B is the norm of the equilibrium magnetic field and ¢ is the perturbed electric
potential. In the drift-kinetic ordering, no requirement on the amplitude of the perturbed
electric potential is made; while the condition k&, p; < 1 requires the characteristic length
of the perturbation to be much larger than the ion Larmor radius. This last condition
restricts the types of perturbations which can be studied within the drift-kinetic model.

At low 8 and for electrostatic perturbations, the drift-kinetic equation reads, at order

1in p,,
bx V¢ mvj+uBbx VB
o f + B + B B +yb|-Vf
e ~ bx V¢ VB B
+ ( EV”(b EVHB + I B >3U”f =0. (1.47)

Gyrokinetic equation
In the case of electrostatic perturbations, the gyrokinetic equation is valid under the

following ordering hypotheses:

Y« (1.48)
We
e
— ~ oy K1, 1.49
=< (1.49)
kip; ~ 1 or smaller. (1.50)

Contrary to what happens in the drift-kinetic case, the amplitude of the perturbed electric
potential has to remain small in the gyrokinetic ordering; but as a compensation more
freedom is enjoyed on the characteristic length of the perturbation, which can be as small
as the ion Larmor radius.

At low 8 and for electrostatic perturbations, the gyrokinetic equation reads, at order

1in p,,

bx VJyp mvj+puBbx VB
athr( B ' B B

+ Ub) -V f

(1.51)

- bxVJy» VB
+ —EVnJoéﬁ - ﬁVHB + ) ¢ Op [ =0,
m m B B I

where Jj is the gyroaverage operator.

In practice, in the present manuscript, the gyrokinetic equation is used with the fol-
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lowing ordering:
kip;~ 0, (1.52)
where § is a small parameter verifying
pe K 0K 1. (1.53)

The gyrokinetic equation is solved in conjunction with the quasi-neutrality equation.
Assuming that the electrons behave adiabatically, in the gyrokinetic ordering with &, p; ~

0, the quasi-neutrality equation reads, at order 1 in p, and order 2 in 9:
6((5—<¢~)> )—d' (mm"v QE)+ P 2B o) p i e (154
neTe o) AV 5 VL 2Epi i v n;, .

where n. is the equilibrium electron density, Tt is the electron temperature, ( - )pq denotes
the average on a flux surface, and n; is the equilibrium ion density.

Remark: that the electrons behave adiabatically means that their inertia is consid-
ered to be small and that they are therefore always in equilibrium with the surrounding

medium. In particular, they are considered to respond immediately to an electric potential

2%

perturbation, according to the Maxwellian equilibrium distribution function: 7, ~ n.z.

1.3.2 Fluid theory - Ideal MHD closure

The 6D kinetic theory can be reduced to a 3 dimensional (3D) fluid theory by integration
on the velocity space. The variables are then the moments of the distribution function,
defined as follows: the moment of order ¢ (where ¢ is a non-negative integer) is the integral
over v of the particle distribution function multiplied by a factor of order v*.

The following moments are amongst the most commonly used:
o density: n = [ f(dv)”.
The density is a moment of order 0;
o fluid velocity: u =1 [ vf(dv)’.
The fluid velocity is a moment of order 1;
e pressure tensor: P =m [(v —u) ® (v — u) f(dv)’.
The pressure tensor is a moment of order 2. The scalar pressure p is equal to the

third of the trace of the pressure tensor P. The temperature of a species is defined

as the ratio of the scalar pressure to the density;

o heat flux: Q=2 [|v —uf(v—u)f(dv)’.

The heat flux is a moment of order 3.
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The fluid equations are obtained from the kinetic equation, multiplied by factors of
order v* and then integrated over v. A fluid equation of order ¢ always contains a mo-
ment of order ¢+ + 1, which means that the set of fluid equations to be solved is infinite.
Consequently, to get a finite number of self-consistent, closed equations, approximations
have to be made; such approximations are called fluid closures. Various fluid closures
have been developed, we will here present one of them: the ideal MagnetoHydroDynamic
(MHD) closure. The question of fluid closures remains open for further refinement, it is

an on-going research area.

Ideal MHD closure

In the ideal MHD model, the following assumptions are made: at order 0 in the nor-
malized Larmor radius p,, the parallel electric field is null (£ = 0) and the fluid velocity
is the sum of a parallel component and of an electric drift velocity: u = u b+ %. Those

features can be summed up in the following equation:
E4+uxB=0. (1.55)

In addition, u is assumed to be the same for all species, the pressure tensor is assumed to
be isotropic (therefore only the scalar pressure is needed), and the heat flux is assumed
to be negligible.

Under those hypotheses, the ideal MHD equations are:

dpm .
_gt + pmdivu = 0, (1.56)
d
pmd—ltl+Vp—J xB =0, (1.57)
dp 5
21T di = 1.
o +3pdwu 0, (1.58)

where p,, is the mass density. Those equations are complemented by the Maxwell equa-

tions to form a closed set of equations.

1.4 Conventions used in the present manuscript

Some conventions are commonly used in the field of plasma physics for nuclear fusion,
but may not be used in other fields. Some other conventions may not be unanimously
acknowledged, even in the field of plasma physics. To be sure that no ambiguity arises
from the choices of conventions made in the present manuscript, they are here explicitly
stated.

e The word azisymmetric is used to describe an object (field, device such as a toka-

mak...) which is invariant by a rotation of any angle around a symmetry axis.
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The implication of axisymmetric is therefore here stronger than invariance by a

mere rotation of m around the symmetry axis.

e The word frequency here stands for either frequency, written f, or pulsation, written
w, without distinction; it needs to be understood according to the context. There

is a factor 27 between the usual meanings of frequency and pulsation: w = 27 f.

e A difference should be made between observed MHD or turbulent activity and the
underlying instabilities. In the present manuscript, sawtooth activity and turbulence
are considered, along with the respective underlying internal kink mode and Ion
Temperature Gradient (ITG) modes. The underlying modes are said to be unstable
when their amplitudes evolve in time like 7*, where ¢ stands for the time, and v > 0
is the growth rate. Of course, such an evolution is necessarily limited in time: the
modes cannot have an infinite amplitude. In most cases, saturation occurs: the
modes stop growing and may be damped by some non-linear process. After a while,
the conditions for linear growth may be gathered again, and the cycle starts anew.
The resulting process of growth and decay of the underlying modes corresponds to

observed sawtooth activity or turbulence.

Sensu stricto, only instabilities may be stabilized: it is the case for the internal kink
mode and I'TG modes, but not for sawtooth activity and turbulence as those are
not strictly speaking instabilities. Nonetheless, it is common to say that sawtooth
activity and turbulence are stabilized, meaning in fact that the underlying processes

are stabilized. Such an extended meaning is used in the present manuscript.

e The gradient of a tensor F of order 1 (i.e. a vector) is computed as follows, in

Cartesian coordinates:

0.F, 0,F, 0.F,
VF = |0,F, 0,F, 0.F,
0,F, 0,F, 0.F.

With this convention, the differential of F applied in x to a vector h can be expressed

dF(x)(h) = VF|_-h,

where - is the tensor product contracted once.

Attention: in some other conventions, not used in the present manuscript, a different
order is adopted in the expression of VF, and the differential then reads dF(x)(h) =
h- VF| .

e The divergence of a vector F is written div F.
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e The curl of a vector F is written rot F.
e The vectorial product of two vectors F and G is written with the sign x: F x G.

e The Boltzmann constant is set equal to 1 in equations, and the temperature is
expressed in energy units. To get the temperature in SI units, simply divide the

temperature in energy units by the actual Boltzmann constant kg = 1.38-1072% J/K.

1.5 OQutline

The present manuscript starts with two introductory chapters, which reflect some aspects

of the academic knowledge in plasma physics.

A general introduction on thermonuclear fusion and tokamak plasmas is proposed in

Chapter 1 here above.

In Chapter 2, a focus is given on the instabilities studied in the present manuscript.
Sawtooth activity, along with the underlying internal kink mode, is presented. Porcelli’s
model [Porcelli 1991|, which predicts the stabilization of the internal kink mode by fast
particles, is described. An overview of I'TG modes, which underlie turbulence, is provided;
the physics of GAMs and EGAMs is introduced.

The developments of this thesis are presented in Chapters 3 to 5. The stabilization
of sawteeth by fast particles is studied from an experimental point of view, while the
stabilization of I'TG modes via EGAMs is discussed through theoretical and analytical

modelling.

In chapter 3, we report on the stabilization of sawteeth by fast particles in the toka-
mak JET, in the framework of Porcelli’s theoretical model. The energetic deuterons are
produced by 100 keV NBI combined with 3rd harmonic ICRH.

In chapter 4, we analyse the link between GAMs and EGAMs: do they belong to the
same mode branch? Depending on the answer, EGAMs may or may not have the same
impact as GAMs on turbulence. Through a linear, analytical model, in which the fast
particles are represented by a Maxwellian bump-on-tail distribution function, we find that

the answer depends on several parameters.

In chapter 5, we discuss the interaction between EGAMs and ITG modes. A non-
linear three wave parametric interaction model is developed, in which the possibility of
the excitation of two I'TG modes by a single EGAM is studied. We conclude that such
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1.5 Outline

a phenomenon cannot occur locally. However, assuming the ITG is linearly unstable in
the core plasma, and taking into account radial propagation, an ITG mode may be non-

linearly excited in the outer region even if it is linearly stable.
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Chapter 2

Sawteeth; EGAMs; turbulence:
overview of three types of plasma
instabilities which interact with fast

particles.

2.1 The stakes

Plasma instabilities

A tokamak is designed to provide magnetic confinement to a steady-state plasma. The
features of the magnetic field geometry and the particle trajectories described in Sec-
tion 1.2 correspond to the case of an equilibrium plasma. However, the plasma is driven
away from this ideal equilibrium state whenever a perturbation arises. If the equilibrium
is stable (situation illustrated in Figure 2.1-a), the plasma will return to its equilibrium
state as soon as the perturbation ceases. On the contrary, if the equilibrium is unstable
(situation illustrated in Figure 2.1-c), the plasma will not return to its equilibrium state
when the perturbation ceases: as soon as it has left its equilibrium state, the plasma will
be self-driven to a different state.

In practice, an unstable equilibrium cannot be maintained in an experiment, since the
slightest perturbation is enough to drive the plasma away from this equilibrium. Such a
situation can be compared to a pendulum consisting of a mass held at the extremity of
a rigid bar. There are two equilibrium positions for such a pendulum: in one of them
the bar is vertical and the mass is down; in the other one the bar is also vertical but
the mass is up. Only the first case corresponds to a stable equilibrium; the second one
corresponds to an unstable equilibrium: if the mass moves by even a fraction of degree, it
will be driven by gravity down to its stable equilibrium position, assuming the pendulum

is dissipative.

27



Chapter 2. Sawteeth; EGAMs; turbulence: overview

(a) (b) (c)

FIGURE 2.1 - Illustration of (a) stable equilibrium, (b) metastable equilibrium, (c) linearly
unstable equilibrium.

Between stable and unstable equilibria, there exist metastable equilibria (situation il-
lustrated in Figure 2.1-b). In such situations, the amplitude of the perturbation matters:
if the perturbation is small, the system remains close to its equilibrium value, like in the
case of a stable equilibrium. If the perturbation is large enough, the system is driven

away from its equilibrium, like in the case of an unstable equilibrium.

Fusion plasmas in tokamaks are known to be subject to rich dynamics ranging from
stable oscillations to fast-growing instabilities. Those oscillations and instabilities are
characterized by their frequencies and spatial structures (toroidal, poloidal and radial
structures, usually given by the corresponding wave vectors). They are most of the time
studied with Fourier analysis or similar tools: a given oscillation or instability is therefore
usually called a mode. Some classes of modes exhibit well-defined frequencies and spatial
structures, while some others correspond to a wide range of frequencies and have more
complex spatial structures.

For a few words on the definition of underlying instabilities, refer to Section 1.4.

Understanding the excitation mechanisms of the modes encountered in fusion plasmas
and learning to control them is of tremendous importance in the view of next step tokamak
experiments such as ITER. A class of particles present in tokamaks is particularly relevant
regarding their interactions with instabilities: those are fast ions which, under certain
circumstances, can trigger or damp instabilities. A review of the impact of energetic

particles in plasmas in view of burning experiments can be found in [Gorelenkov 2014].

Fast ions
Fast ions are defined as ions which have a kinetic energy which is several times larger
than the thermal energy. In tokamaks, the thermal energy is about 10-20 keV, while there

are three main sources of fast ions:
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e alpha particles from D-T reactions;
in a power plant, the main fusion reactions will be deuterium-tritium reactions. They
will produce fast alpha particles (helium 4) at an energy of about 3.5 MeV. Such a
population of fast alpha particles is isotropic: their energy is as much contained in

their parallel velocity as in their perpendicular velocity;

e NBl-accelerated ions;
Neutral Beam Injection (NBI) is one of the means used to heat fusion plasmas to the
10-20 keV range. Ionized particles are accelerated in dedicated accelerators outside
the tokamak and are neutralized before being injected in the plasma. They then
transfer their energy via collisions. To be able to reach the core plasma before being
ionized, those particles need to have a sufficiently high energy: it is about 100 keV
in JET. In ITER, they should have an energy of about 1 MeV. The parallel velocity
and the perpendicular velocity of fast ions born from NBI have the same order of

magnitude;

e ICRH-accelerated ions;
Ion Cyclotron Resonant Heating (ICRH) is another means used to heat fusion plas-
mas. An electromagnetic wave is produced in the plasma by dedicated apparatus.
The range of frequency used is of the order of a few tens of MHz, and the fast
particles can be accelerated to energies of the order of a few MeV. The population
of fast ions born from ICRH is highly anisotropic: their fast kinetic energy is al-
most entirely comprised in their perpendicular velocity, while their parallel velocity

remains similar to that of thermal particles.

Focus on sawteeth, EGAMs and turbulence
In this manuscript, we will focus on three distinct phenomena: sawteeth, EGAMs and

turbulence.

Sawteeth occur in the core plasma and are responsible for sudden drops of the elec-
tron temperature. They have been extensively studied, in conjunction with the in-
ternal kink mode, neoclassical tearing modes and magnetic reconnection issues [Bus-
sac 1975, Kadomtsev 1975, Waelbroeck 1989, Aydemir 1992, Zakharov 1993|. It has been
shown that, under certain circumstances, sawteeth oscillations can be stabilized by kinetic
ions [White 1988, White 1989, Porcelli 1991, Edery 1992, Porcelli 1992, Zabiego 1994, Por-
celli 1996, Angioni 2002, Graves 2005]. In Chapter 3, the stabilization of sawteeth in JET
by fast deuterium beam ions accelerated to the 100 keV range by NBI, and then to the
MeV energy range by 3rd harmonic ICRH, is analysed in the framework of Porcelli’s model
[Porcelli 1991]. In view of this analysis, an overview of sawteeth phenomena is presented in

Section 2.2 below, with focus on the aspects relevant for the study presented in Chapter 3.
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Turbulence is a widely observed phenomenon in all tokamaks; it causes energy trans-
port from the core to the edge plasma. This turbulent transport is a major hurdle on the
road to burning plasma, as it involves high losses of energy, thus leading to the reduction
of the energy confinement time 75 (see Section 1.1 about the importance of 7x). Some
electrostatic modes, known as Geodesic Acoustic Modes (GAMs) and first described in
the early days of research on nuclear fusion plasmas [Winsor 1968|, have recently been
found to interact with turbulence [Hallatschek 2001, Jakubowski 2002, Ramisch 2003, Miy-
ato 2004, Nagashima 2005, Angelino 2006, Miki 2007, Conway 2011, Sasaki 2012, Xu 2012].
This opens the way to a possible reduction of turbulent transport. GAMs are damped in
thermal plasma; however fast ions have been found to excite GAM-like modes, called Ener-
getic particle driven Geodesic Acoustic Modes (EGAMs) [Fu 2008, Berk 2010, Qiu 2010,
Zarzoso 2012b, Kolesnichenko 2013|. In Chapter 4, the relation between GAMs and
EGAMs is investigated, to better understand to which extent those modes may behave
in a similar way or not, and may have a similar mitigating impact on turbulence or not.
In Chapter 5, the relation between EGAMs and Ton Temperature Gradient (ITG) turbu-
lence is examined, through a parametric decay model. In view of the studies reported in
those two chapters, an overview of the physics of ITG turbulence, GAMs and EGAMs is

presented in Section 2.3 below, with focus on the aspects relevant for Chapters 4 and 5.

2.2 Overview of sawteeth phenomena

Sawteeth are thus called because of the shape they give to the timelines of electron
temperature: Figure 2.2 shows characteristic sawtooth activity. A thorough presentation
of sawteeth phenomena can be found in [Nicolas 2013]. We focus in the present section
on the aspects relevant for Chapter 3.

Sawtooth crashes are usually caused by the excitation of the internal kink mode, de-
scribed in Section 2.2.1 below. Sawtooth crashes are often accompanied by magnetic
reconnection, can trigger Neoclassical Tearing Modes (NTMs), and can expel impurities
from the core plasma. Those aspects are presented in Section 2.2.2. Finally, the stabi-

lization of sawteeth by trapped fast particles is discussed in Section 2.2.3.

2.2.1 Internal kink mode

The internal kink mode [Bussac 1975] is an instability which can arise in tokamaks wher-
ever the safety factor ¢ drops below 1. It is called internal for the lowest values of ¢ are
encountered in the core plasma, close to the magnetic axis. The word kink is due to the
first observations of those instabilities, in Z-pinch machines: when exposed to a strong

enough co-radial magnetic field, the plasma started to twist like a snake. It was found that
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FIGURE 2.2 — Core electron temperature timeline from Electron Cyclotron Emission
(ECE) measurements during JET discharge #59706, exhibiting characteristic sawtooth
activity.

a strong enough longitudinal magnetic field could provide stabilization. The particular
role of the safety factor ¢ in tokamaks is reminiscent of the ratio between co-radial and

longitudinal fields needed to provide stabilization in Z-pinch machines.

The internal kink mode appears as a possible instability in the ideal MHD model
(described in Sec. 1.3.2). It is characterized by the spatial displacement & of any given
fluid element with respect to its equilibrium position, in interaction with perturbations B,
J and p of respectively the magnetic field, the current and the pressure. If there exists a
displacement & which corresponds to a decrease in the plasma potential energy, then the
plasma equilibrium is unstable and the internal kink mode can appear. The displacement

& which arises is the one which corresponds to the highest potential energy drop.

In the large aspect ratio approximation (¢ = r/Ry < 1, where ¢ is the inverse aspect
ratio), for a monotonous radial ¢ profile and neglecting the inertia, the internal kink mode

has the following ideal structure:

£ =& (e, —ieg) +ce. forr <, (2.1)

£=0 for r > rq, (2.2)

where 7 is the minor radius of the ¢ = 1 surface, &, is a constant and c.c. means complex
conjugate. The ideal internal kink mode thus exhibits an (m,n) = (1,1) structure, where
m is the poloidal mode number and n the toroidal mode number, with a rigid body dis-
placement within the ¢ = 1 surface. This rigid body displacement occurs perpendicularly
to the equilibrium magnetic field: at first order in the inverse aspect ratio, the parallel
displacement is null. The plasma outside the ¢ = 1 surface is not affected; a discontinuity

in the ideal solution therefore occurs at » = ry. This discontinuity can be smoothed out
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by taking into account the inertia in a small layer around r = ry.

2.2.2 Sawteeth main features

Sawtooth crashes are known to be associated with magnetic reconnection [Kadomtsev 1975,
Waelbroeck 1989, Zakharov 1993]. A magnetic reconnection is a reorganisation of the mag-
netic topology. It can occur when a flux surface breaks and a magnetic island appears:
Figure 2.3 presents an illustration of a magnetic island with structure (m,n) = (1,1),
where m is the poloidal mode number and n is the toroidal mode number. A magnetic
island is a flux tube which is not centred on the magnetic axis. It is a perturbation which
affects the equilibrium magnetic geometry and leads to particle or energy transport: mean
profiles tend to flatten inside the island as a result of the fast parallel transport; and several
islands can overlap, leading to stochastic field lines and enhanced radial transport.

Sawtooth crashes can lead to the excitation of Neoclassical Tearing Mode (NTMs)
[Buttery 2004|. The excitation of those modes is more likely in the case of violent crashes,
such as those which follow long sawteeth (usually called monster sawteeth). NTMs cor-
respond to the reconnection of magnetic field lines on rational ¢ surfaces. NTMs usually
exhibit one of the following structures: (m,n) = (3,2) or (m,n) = (2,1). NTMs are thus
called for they cause the tearing of magnetic flux surfaces, and are excited only when
the magnetic island is large enough to compensate the stabilizing effect of the bootstrap
current |Nicolas 2013], where the bootstrap current is a neoclassical effect of the radial
pressure gradient. The mechanism of NTM destabilization is as follows: when a magnetic
island appears, it locally causes a drop in the pressure gradient, which in turn results in a
reduction of the bootstrap current. This current hole favours the growth of the magnetic
island, and thus of the NTM.

It has recently been found that sawteeth can expel impurities from the core plasma
[Nave 2003, Nakano 2009|. Impurities in tokamaks can be particularly harmful because
of the energy losses they cause. Those energy losses are due in particular to line emission
and bremsstrahlung. Line emission is high in the case of ions which are partially, but
not entirely, ionized; while bremsstrahlung increases with Z?, where Z; is the ion charge
number. In new generation tokamaks, divertors are coated with tungsten, which has a
particularly high charge number Z; = 74. It is partially ionized at 7" = 10 keV, with a high
effective Z; of about 50-60, thus leading to possible high power losses [Piitterich 2010].

Sawtooth crashes may prove very useful to avoid the accumulation of tungsten in the core.

Taking into account the features here above exposed, the question of the optimal
sawtooth frequency remains open [Chapman 2011, Graves 2012|. Indeed, longer sawteeth

correspond to higher and more stabilized core electron temperature, which is beneficial
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FIGURE 2.3 — Schematic representation of a magnetic island, evidenced in red. The black,
solid lines represent the flux surfaces out of the magnetic island, with a D-shaped poloidal
section. Figure obtained with the XTOR-2F code [Liitjens 2010, Février 2015|.

for fusion. However, the crashes which follow those stabilized periods are more intense,
cause higher T, drops, and can cause harmful NTMs. Besides, shorter sawteeth periods

may be beneficial to ensure that the core plasma always remains clear from impurities.

2.2.3 Sawteeth stabilization by fast particles

Under certain conditions, fast particles can stabilize sawteeth. In the literature, different
mechanisms of stabilization have been evidenced; trapped fast particles in the core plasma
are at the origin of one of them [Coppi 1988, Coppi 1989, Porcelli 1991, Porcelli 1996,
Angioni 2002].

The contribution W), of fast particles to the plasma potential energy in the presence

of an internal kink mode is computed as follows:

t
5Wkin = /(d$)3/ dt/ Jk; . E, (23)
where J;, is the fast particle current density perturbation and E is the electric field pertur-
bation, both created by the internal kink mode. Given the small ratio of the fast particle
density to the thermal population density, E is essentially generated by thermal ions and
can be related to the displacement & through the ideal MHD relation. Ji can be re-

lated to the fast particle pressure perturbation through the momentum balance equation,
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neglecting inertial and collision terms.

In Sec. 2.2.1, the internal kink mode was derived within the ideal MHD framework.
To take into account the fast particle perturbation, it is necessary to resort to the kinetic
theory. The pressure is then obtained by integrating over the velocity coordinates; and
equation (2.3) can be split into two terms. One of them is an adiabatic (in the conven-
tion of [Coppi 1990|') contribution: the fast particles follow the perturbation computed
with the ideal MHD model. The other term is a non-adiabatic (still in the convention of
[Coppi 1990]) contribution.

Under the following conditions:

g, pe K 1, (2.4)
w K Wy, (25)
w< w||<q - 1>q<17 (26)

where ¢ is the inverse aspect ratio, p, is the Larmor radius normalized to the tokamak mi-
nor radius, w is the kink mode frequency, wy, is the trapped fast particle bounce frequency,
w is the passing fast particle transit frequency, and <->q<1 denotes the average over the
volume within the ¢ = 1 surface; the non-adiabatic contribution from passing fast parti-
cles can be neglected [Coppi 1990]. As for the non-adiabatic contribution from trapped
particles, its structure is then aligned with the equilibrium magnetic field lines instead of

being aligned with the kink mode: its spatial dependence is in e~ instead of being
1

w—wgq’

where wy is the trapped fast particle precession frequency; its sign therefore depends on

in e~ This non-adiabatic contribution contains in particular a kinetic factor

the velocity of the considered fast particles. If w > wy, then their contribution is usually
destabilizing; on the contrary, if w < wy (that is to say, if the fast ions are fast enough),
then their contribution is usually stabilizing. In practice, to meet this last condition, the

fast particles need to have an energy of at least a few tens of keV.

If wy ~ w, a resonance can occur between the internal kink mode and the fast parti-
cles: depending on the ratio of the fast ion kinetic pressure to the magnetic pressure S,
fishbone modes are then triggered [Chen 1984, Porcelli 1991]. Fishbones are thus called
because of the characteristic shape they give to magnetic perturbations measured with

Mirnov coils [Mirnov 1971|: see Figure 2.4.

In JET, ICRH-generated fast particles can reach energies up to 2 MeV; the following

ordering is therefore met: w < wy, and the w%w factor can be approximated as —wid.

"Note that the definition of the adiabatic term adopted in [Coppi 1990], that is to say f2d = —¢ -
V feq, is not the one which is usually adopted in the literature.
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FIGURE 2.4 — Magnetic perturbation timeline from a Mirnov coil during JET discharge
#69302 exhibiting characteristic fishbone activity.

The overall fast ion contribution then comprises two terms: see expression (3.10), from
[Porcelli 1991]. One of them is usually stabilizing, while the other is usually destabilizing.
The former is stronger when ¢ is lower (and lower than 1 in any case), while the latter is
stronger when the magnetic shear s = r¢/(r)/q is higher. Consequently, the fast particles
closest to the magnetic axis usually have a stabilizing effect, while those further from the
magnetic axis (but still within the ¢ = 1 surface) have a destabilizing effect. It is therefore
important for stabilization that the fast particles distribution be as peaked as possible on

the magnetic axis.

Other mechanisms of sawtooth control by fast particles have been evidenced in the
literature. In particular, ICRF current drive can modify the ¢-profile and thus the mag-
netic shear in the core plasma. Consequently, the ratio between the fast particle adiabatic
and non-adiabatic contributions is modified. Passing ions with large orbit width, close to
the ¢ = 1 surface and with an asymmetric distribution in parallel velocity have also been

shown to have an impact on sawtooth crashes.

2.3 Overview of ITG turbulence and GAMs/EGAMs

2.3.1 Turbulence: the I'TG mode

Various turbulent (i.e. with high mode numbers) modes have been extensively studied: at
low $3, the main ones are the Ion Temperature Gradient (ITG) modes [Horton 1981], the
Electron Temperature Gradient (ETG) modes [Drake 1988, Horton 1988|, the Trapped Ion
Modes (TIM) [Tagger 1977, Tang 1977, Biglari 1989|, and the Trapped Electron Modes
(TEM) [Kadomtsev 1970].
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Among them, the ITG are one of the most frequent and harmful turbulent modes.

They can be described in ballooning representation.

Ballooning representation
In ballooning representation |Glasser 1977, Lee 1977, Connor 1978, Connor 1979, Hazel-
tine 1990], the perturbed electric potential reads, at the lowest order in p,,

P(xg,t) = e “he™? Z D6 + 207)ema0+2tm=00) | ¢ ¢ (2.7)

l=—00

The sum over ¢ ensures the 27-periodicity in 8. The function ® provides the poloidal
shape of the modes; it has to decrease fast enough at infinity for $? to be integrable. It

appears that I'TG modes verify this integrability condition.

The modes are usually localized on the low field side, which is called the bad curvature
region, for this is where the excitation of instability is the easiest: VB and Vp there have
the same orientation. On the contrary, the high field side is called the good curvature
region, for VB and Vp there have opposite orientations, which makes it harder for modes
to be excited. This asymmetry in 6 provides the name of the representation: the modes
are localized on the low field side; this can be compared to an excrescence on that side,
hence the name ballooning.

0y is called the ballooning angle: under certain circumstances linked to the magnetic
shear, 6, coincides with the value of the poloidal angle for which the mode is the strongest.
The radial dependence is taken into account through the linearized dependence of ¢ on
r: q = qo+ (r —ro)qh, where ry is the minor radius of the reference resonance surface,
qo = q(ro) and g = ¢'(ro).

The representation here above is equivalent to the following expression:

d(xq, t) = elfolr=ro)tne] § (%(7“ —dTm) e”™0 4 cc., (2.8)
m=—c0
where gg is the small scale radial envelope, Ky = ng)f, is the radial wave vector, r,, is the
minor radius of a given resonance surface and verifies ¢(r,,) = m/n, m is the corresponding
poloidal mode number, and d = 1/ng is the distance between two resonance surfaces. i)
in expression (2.7) is the Fourier transform of the small scale radial structure ¢.

It can be seen in expression (2.8) that, through Kj, the ballooning angle 6, also pro-
vides a large scale radial envelope. To explicitly get this structure, a supplementary
function (not written here), which is the Fourier transform of the considered radial en-
velope and therefore depends on 6y, has to be determined. Then, multiplying equation

(2.8) by this function and integrating over 6, yields the large scale radial envelope.
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It can be seen in expression (2.7) that the ballooning representation provides an
n(p — qf) structure: the modes are aligned with the magnetic field lines. Given the
27 periodicity in 0 and ¢, the alignment of the modes with the magnetic field lines gives
a particular role to the so-called rational flux surfaces. Those are flux surfaces on which
the safety factor is rational: ¢ = ™, where m and n are not higher than a few tens. On
such flux surfaces, the field lines are closed: starting from a given point in space, they
will reach the same point again after m toroidal turns and n poloidal turns. This config-
uration enables a resonance to take place: a mode reaches its maximal intensity on the

corresponding rational flux surface.

ITG mode structure

The ITG modes are expressed in the form of the ballooning representation; the i)
function and the dispersion relation which provides the mode frequency w are to be deter-
mined. We here consider the case of a mode excited by ions with a Z; = 1 charge number,

with equal electron temperature and ion temperature: 7, = T;.

Looking for the poloidal shape & under the form

~ A (y—y)?

O = Pge 222, (2.9)

where @, is a constant and y = 6 — 6, one finds (see Appendix A for the computation):

k2s2\ 7t
Yo = 00(80 — 1) (1 — 280 + ZQ—O) s (210)
g
—1
1+ QF 9(2)(50 — 1)292
A? =202 |12——™ 4 (2 —02)Q, — 2k g 2.11
27t B ) =2 e e | (211)

where sg = roq)/qo is the magnetic shear on the reference resonance surface, k = kyp;
is the normalized poloidal wave vector, ks = nqo/ro is the poloidal wave vector, vy =
\/W is the ion thermal velocity, ) = vp/qRw is the normalized transit frequency,
Q, = 2k¢T;/eBRw is the normalized fluid drift frequency, 2} = —koT;n}(r)/weBn; is the
normalized density diamagnetic frequency, and 0y = —koT;p}(r)/weBp; is the normalized

pressure diamagnetic frequency.

ITG stability

The dispersion relation reads (see Appendix A for the computation)

2
Q203 (sp — 1)°

(1 —2s0)82, + 2k2s?

14

2
@

+(2-65)Q, — 2K + + 207 (1 — 250)Q, + 2k%s7] = 0.

(2.12)

37



Chapter 2. Sawteeth; EGAMs; turbulence: overview

To better understand this relation, let us consider a simple case, in the approximation
tp =0, ) < 1 and k£ < 1. The dispersion relation then reads

w? 4 ww; + wepwy =0, (2.13)

where w,; = 2kyT;/eBR is the fluid drift frequency, w* = —koT;n’(r)/eBn; is the density
gf n 7

diamagnetic frequency, and w; = —keTip;(r)/eBp; is the pressure diamagnetic frequency.

The ITG frequency is thus the root of a second order polynomial. The mode is

unstable if Im(w) > 0: in the ordering here considered, this corresponds to the condition

(w*)? — dwgwy < 0. This condition also reads
/ R|ni(r)|?
pz(r) > nl(r) (214>
Pi 8] n

This inequality shows that a threshold in temperature gradient exists for the excitation
of ITG modes. This threshold is a growing function of the density gradient: the density
gradient is stabilizing, while the temperature gradient is destabilizing. A consequence is
that, for a given density gradient, the actual temperature gradient in a tokamak cannot
exceed the ITG threshold: if |T}(r)/T;| becomes steeper than the threshold, turbulence

will start, causing radial transport, and the temperature gradient will then become lower.

2.3.2 Zonal flows and GAMs

The study of zonal flows and GAMs is of interest because of their interaction with turbu-
lence. An overview of the excitation of zonal flows and GAMs, along with their interaction
with turbulence, can be found in [Zarzoso 2012a]. Based on this description, we give below
a brief presentation of those modes, with focus on GAMs in view of the study of EGAMs
(see Section 2.3.3, Chapter 4, and Chapter 5).

Zonal flows

In tokamaks, in the presence of a radial electric field, an E x B poloidal velocity arises
(see Section 1.2.3). If the electric field varies in r, then radially sheared poloidal flows
can appear, leading to the reduction of turbulence [Biglari 1990, Waltz 1994, Hahm 1995,
Hahm 1999]. The mechanism of turbulence mitigation by steady poloidal flows exhibiting

radial shear is illustrated in Figure 2.5.

Various axisymmetric modes can lead to the excitation of radially sheared poloidal
flows. In the literature, three types are usually distinguished: mean field flows, with a
null frequency; low frequency modes, with a frequency of the order of a few kHz; and

higher frequency modes, with a frequency of the order of a few 10 kHz. The latter cor-
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FIGURE 2.5 — Mitigation of a turbulent convective cell via radially sheared poloidal flows.

respond to GAM-like modes; while in the literature mean field flows and low frequency
n = 0 modes may both be called zonal flows. This confusion is understandable as in most
cases those two types interact in the same way with turbulence, since the frequency of low
frequency modes is low enough compared to the frequency of turbulence to be assimilated
to zero. In the present thesis, we have chosen the convention to give the name zonal flows

to the low frequency modes.

Zonal flows are low-frequency modes (a few kHz) with an (m,n) = (0,0) structure:
those modes correspond to poloidal flows driven by an E x B drift. Zonal flows have been
found to be non-linearly excited by turbulence [Hasegawa 1979, Chen 2000, Diamond 2001,
Malkov 2001, Diamond 2005]. They can therefore provide a saturation mechanism for
turbulence: turbulent modes excite zonal flows, which in turn mitigate turbulence thanks
to the radially sheared poloidal flows. This saturation mechanism is of interest in view
of turbulence control; however a drawback is the difficulty for an operator to control the

excitation of zonal flows.

GAMs

Geodesic Acoustic Modes (GAMs) are modes which are similar to zonal flows; in par-
ticular they have an axisymmetric n = 0 structure and exhibit a radial electric field. They
differ from zonal flows in particular via their poloidal structure, since they have an m = 1
component in addition to the m = 0 component shared with zonal flows (see Figure 2.6),
and via their frequency (a few 10 kHz), which is an order of magnitude higher than that
of zonal flows. Note that the m = 1 component of GAMs exhibits a sin § structure, where
0 is the poloidal angle counted from the equatorial plane: this component is null at first
order on the equatorial plane, as shown in Figure 2.6. GAMs are thus called for they are
caused by the geodesic curvature of the magnetic field (geodesic qualifies the component

of the field curvature (Vb) - b which is tangential to flux surfaces, by opposition to the
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normal curvature which is perpendicular to flux surfaces), and for their frequency is of

the order of the ion sound wave frequency:

(%
WaAM ~ - (2.15)
GAMs are Landau-damped in thermal plasmas, with a damping factor proportional
to e79°, where ¢ is the safety factor. Since the safety factor is usually higher in the edge
plasma, the damping of GAMs is smaller there; GAMs are therefore usually observed
in the edge plasma. This fact is illustrated in Figure 2.6, and evidenced in Figure 2.7
which shows a reflectometry spectrogram from Tore Supra: the GAM there appears as a

white line at frequency 8-18 kHz, for a normalized radius comprised between 0.75 and 0.95.

FIGURE 2.6 — Illustration of the GAM structure, obtained with the GYSELA code
[Sarazin 2006, Grandgirard 2008, Sarazin 2010].

GAMs were discovered in the 60s [Winsor 1968|, and later enjoyed renewed in-
terest when they were found to have interaction with turbulence [Hallatschek 2001,
Jakubowski 2002, Ramisch 2003, Miyato 2004, Nagashima 2005, Angelino 2006, Miki 2007,
Conway 2011, Sasaki 2012, Xu 2012|. When considering the interaction of radially sheared
poloidal flows with turbulence, the GAMs may seem flawed when compared to the zonal
flows because of their higher frequency. Indeed, if the poloidal flows oscillate too quickly,
then the turbulence may only be sensitive to the time average component of those flows,
which is usually zero in the case of GAMs. For instance, simulations with a fluid code
have shown that the effect of zonal flows on turbulence is, in the region of parameters
then explored, largely dominant over the effect of GAMs [Miyato 2004]. However, the
frequency of GAMs is generally low enough for an interaction with turbulence to occur

(turbulence covers a wide range of frequencies, from 10 kHz to 1 MHz, with a peak around
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FIGURE 2.7 — Reflectometry spectrogram exhibiting the signature of a GAM in Tore
Supra. Source: [Storelli 2014].

100 kHz.). In some cases, the effect of GAMs on turbulence may even be dominant over
the effect of zonal flows [Waltz 2008]. In addition, the interaction of GAMs with tur-
bulence may not be limited to a quench of convective cells via radially sheared poloidal
flows: in [Miyato 2004], the onset of GAMs corresponds to a reduction of the heat flux,

though no correlation is observed between the GAM oscillatory flows and the heat flux.

The ITG turbulence frequency witq is of the order of

v
wira ~ kaPiL—T, (2.16)
p

where L, = g% is the characteristic pressure gradient length. From a heuristic point
of view, GAMs may interact with turbulence if wgaym < witg. This condition may be
satisfied more easily in the edge plasma where L, is usually lower than in the core plasma.
This inequality also shows that ITG modes exhibiting large wave vectors ky may interact
more easily with GAMs. A consequence of those two observations could be that GAMs
interact with most I'TG modes in the edge plasma, while they may interact mainly with
small-scale modes in the core plasma. The radial mode structure also matters. The best
interactions are expected when GAMs and ITG modes have similar radial wave vectors.

See the end of Section 2.3.3 for a discussion on the EGAM radial structure.

Like in the case of zonal flows, it was found that GAMs can be non-linearly excited by
turbulence [Ttoh 2005, Chakrabarti 2007, Guzdar 2008, Zonca 2008, Hager 2012|. There-

fore, they can provide a saturation mechanism for turbulence. However, like in the case
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of zonal flows, a drawback is the difficulty for an operator to control the excitation of
GAMs. At first glance, GAMs may therefore not seem as promising as zonal flows for tur-
bulence control: the former have a higher frequency than the latter, which usually leads
to a reduced impact on turbulence, and both seem hard to control. Still, GAMs have an
asset: it has been found that GAM-like modes, called EGAMs, can be excited by fast
ions. Since fast ions can be controlled, to some extent, by NBI and ICRH, the control of
EGAMs by an operator may be easier than the control of zonal flows and GAMs. Then, if
EGAMs were to have a mitigating impact on turbulence in certain ranges of parameters,
they would provide a controlled way to reduce turbulent transport. Current knowledge
on EGAMs is presented in Section 2.3.3.

2.3.3 EGAMs

We have seen in Section 2.3.2 that zonal flows and GAMs interact with turbulence. How-
ever those modes are hard to control, since they are naturally damped in thermal plasma
(even in non-collisional plasma, because of Landau damping), and are usually excited
non-linearly by turbulence itself, which leads to saturation but not proper control of tur-

bulence.

It was found, in a JET experiment with Ion Cyclotron Resonant Heating (ICRH),
that n=0 modes identified [Berk 2006, Boswell 2006] as Global GAMs could be driven
unstable by trapped energetic ions. This observation led to the idea of controlling
the GAMs, and perhaps plasma turbulence coupled to the GAMs, with energetic par-
ticles. Later, an experiment on DIII-D with counter-current Neutral Beam Injection
(NBI) revealed modes, somewhat similar to those observed on JET, but at a frequency
twice as low as the characteristic GAM frequency [Nazikian 2008, Berk 2010]. Studies
[Fu 2008, Qiu 2010, Kolesnichenko 2013| aiming at explaining this experiment found
new modes called Energetic-particle-driven GAMs (EGAMs), and investigated them.
Those EGAMs were also detected [Zarzoso 2012b| in the 5D gyrokinetic code GYSELA
[Sarazin 2006, Grandgirard 2008, Sarazin 2010|, at about half the expected GAM fre-
quency, like in the DITI-D experiment [Nazikian 2008]. Due to their similarity with GAMs,
the EGAMs are good candidates for reducing turbulent transport, thanks to vortex shear-
ing (see Section 2.3.2). However, recent numerical simulations suggest that the impact of
EGAMSs on turbulence may not always be as positive as expected, and requires further
investigation |Zarzoso 2013]. EGAMs can also be responsible for fast ion losses under
certain circumstances [Fisher 2012|. Those elements justify extensive study of EGAMs,
to better understand the circumstances under which they can be excited by fast particles,
and those under which they may have a mitigating impact on turbulence. In particular,

understanding their links with GAMs may enable researchers to make use of similarities
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2.3 Overview of ITG turbulence and GAMs/EGAMs

between the two modes in the study of their interaction with turbulence.

FIGURE 2.8 — Illustration of the EGAM structure, obtained with the GYSELA code
[Sarazin 2006, Grandgirard 2008, Sarazin 2010].
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FIGURE 2.9 — Magnetic and reflectometry spectrograms exhibiting the signature of an
EGAM in JET. (a) Magnetic spectrogram; data from Mirnov coils |[Mirnov 1971]. (b)
Reflectometry spectrogram; source: [Arnichand 2014].

Like GAMs, EGAMs have been observed in various tokamaks, and have an axisym-
metric structure (m = 0,1;n = 0), with the m = 1 component exhibiting a sin § phase.
Unlike GAMs, they are excited by fast particles with a linear mechanism and usually
appear in the core plasma, as illustrated in Figure 2.8, and evidenced in a JET discharge
(see Figures 2.9 and 2.10). In addition, their frequency is usually different from that
of GAMs |Nazikian 2008|, by a factor which can vary between approximately 1 and 2,

depending on the equilibrium conditions.
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The experimental signature of an EGAM on JET is presented in Figure 2.9. The left
hand-side graph is a magnetic spectrogram showing the toroidal mode number of each
displayed mode. n = 0 is characterized by the black colour: the EGAM can clearly be seen
at a frequency comprised between 25 and 38 kHz. The right hand-side graph is a reflec-
tometry spectrogram, with a resonance position situated in the core plasma. The EGAM
clearly appears at the same frequency as in the magnetic spectrogram. Reflectometry
measurements during JET discharge #69302 were made at 4 different radial positions. In
the spectrograms obtained from the two outer-most positions, no EGAM appears; while
the EGAM is visible in the spectrograms obtained from the two inner-most positions.
Those reflectometry results, which show the core localization of EGAMs, are summarized

in Figure 2.10.

FIGURE 2.10 — Reflectometry measurements in JET: radial localization of EGAMs in
discharge #69302. Reflectometry analysis: [Arnichand 2014]

Two conditions are required for EGAMs to be excited by fast particles: the availability
of energy from the fast particles to be transferred to a potential mode, and a resonance
between the fast particles and the mode to make the transfer of energy possible.

In practice, the first condition corresponds to the existence of a positive slope dgF}, > 0
in the distribution function of fast particles with respect to the kinetic energy. The energy
used to excite EGAMs therefore comes from the velocity space.

The second condition corresponds to a resonance between the EGAM and one of the
fast particle characteristic frequencies (see Section 1.2.3). In practice, the resonance may
occur with the bounce frequency of barely trapped particles, the value of which is close
to the EGAM frequency. In JET discharge #69302, off-axis ICRH was applied on the

high-field side: a population of anisotropic barely trapped fast particles was thus created,
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2.3 Overview of ITG turbulence and GAMs/EGAMs

with available energy that led to the excitation of EGAMs. The resonance may also occur
with the transit frequency of passing fast particles, if the fast ion kinetic energy is low
enough for the transit frequency to be close to the EGAM frequency. In DIII-D, EGAMs
were excited by counter-passing NBI. The available energy came from the anisotropy of
the fast particle distribution, while the transit frequency of the fast particles was found
to be about twice as high as the detected EGAM frequency [Nazikian 2008|. In view
of the analytical results presented in Chapter 4, this factor 2 between the fast particle
transit frequency and the EGAM frequency is not in contradiction with the existence of a
resonance. In particular, as can be seen on Figure 4.8, what matters is the resonance with
the real frequency of the relevant root of the GAM dispersion relation. In the presence of
fast particles, the imaginary part of this root changes and becomes positive, thus leading
to the excitation of the EGAM; it is important to note that the real part can also change,
by a factor of the order of 1 to 2.

As mentioned above, a major difference between GAMs and EGAMs is their radial
structure and location. While GAMs are observed in the edge plasma, EGAMs are ob-
served in the core plasma. It is worth noting that while EGAMs are electrostatic mode
and are localized in the core plasma, they trigger magnetic fluctuations which can be
detected by Mirnov coils at the edge of the plasma (see Figure 2.9). This observation
suggests that EGAMs may have an underlying radial structure which extends from the
core to the edge plasma. Numerical simulations of GAMs taking into account magnetic
fluctuations were performed |Biancalani 2014| with the NEMORB code [Bottino 2011]:
they did not reveal any change in the GAM oscillations with respect to simulations per-
formed with electric field perturbations only. This is in agreement with the analytical
theory developed in [Smolyakov 2010]. However, it was shown analytically that electro-
magnetic GAM side-bands m = £+2 may exist outside the magnetic surface on which the
GAMs appear [Wahlberg 2009].

The issue of the EGAM radial structure is mentioned in the literature, in the frame-
work of experiments |[Berk 2006, Nazikian 2008 as well as from a theoretical point of view
[Fu 2008, Zonca 2008, Qiu 2010]. The dependence of the GAM frequency (wgam ~ vr/R)
provides a radial continuum: at each radial position corresponds a given GAM frequency.
Consequently, GAMs are well localized. On the contrary, dedicated theoretical develop-
ments [Fu 2008, Qiu 2010] suggest that EGAMSs may correspond to a global eigenfunction
of the radial dispersion relation, with a frequency distinct from the GAM continuum.
This question of the EGAM radial structure is of particular importance in view of the

study of the interaction with turbulence (see Chapter 5).
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Chapter 3

Sawteeth stabilization with 3rd
harmonic deuterium ICRF-accelerated

beam in JET plasmas

In the present chapter, we report on sawtooth stabilization by fast deuterium (D) beam
ions accelerated to about 100 keV by Neutral Beam Injection (NBI), and then to the MeV
energy range by 3rd harmonic Ton Cyclotron Resonant Heating (ICRH). Four sawteeth
from four different JET discharges are studied. JET is the Joint European Torus, a FEu-
ropean tokamak located in the UKj it is currently the largest tokamak in the world. One
of the studied sawteeth, in discharge #86775, is a 2.5 s long monster sawtooth, during
which the fast particle population and the g¢-profile are remarkably stable. We will see
that according to Porcelli’s model, its crash is due to a fast occurring event. The stabi-
lization of a sawtooth by 3rd harmonic deuterium ICRH in JET was already studied in
[Gassner 2012|, in discharge #74951. However, in that discharge, the fast particles did
not exhibit a stable profile and the event causing the sawtooth crash occurred on a longer

time scale (a few 100 ms). The present study can be found in [Girardo 2015|.

The efficiency of sawtooth stabilization by the fast particles obtained in our experi-
ments is assessed within Porcelli’s model. We find that the stabilization provided by fast
particles is strong, in accordance with the experiments. In particular, the model predicts
higher stabilization in the case of discharge #86775, which is the discharge where the
monster sawtooth was observed. We then aim at understanding the reasons which cause

the sawtooth crashes, while fast particles provide such stabilization.
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FIGURE 3.1 — Soft X-rays signals for the four sawteeth studied in the present chapter.
Arbitrary units on y-axis. The time slices for which values are presented in Table 3.1 are
here marked with dashed lines.

3.1 Presentation of the four considered JET discharges

- Framework of the present study

Four sawteeth, from four different discharges (#86459, 486762, #86774 and #86775), are
considered in the present study. Those four discharges were performed in June and July
2014, in JET with ITER-Like Wall (ILW) [Matthews 2011, at By ~ 2.3 T, I ~ 2 MA,
Ry~ 3 mand a ~ 0.9 m, where By is the intensity of the magnetic field on the magnetic
axis, I is the intensity of the toroidal plasma current, R; is the major radius of the
magnetic axis and a is the minor radius of the plasma.

In all four cases, NBI and 3rd harmonic deuterium ICRH heating were on. For each
discharge, four ICRH antennas were used with frequencies between 51.4 and 51.8 MHz,
speeding up the NBl-accelerated particles from the 10-100 keV range to the MeV range.

In Figure 3.1, the soft X-ray signals corresponding to the four sawteeth are presented.
The first sawtooth occurred in discharge #86459, lasting about 0.4 s. The second sawtooth
was measured in discharge #86762, with a duration of over 0.5 s. The third sawtooth hap-
pened in discharge #86774 and lasted about 0.4 s. Finally, the fourth sawtooth occurred
in discharge #86775: it was a record-long sawtooth in JET with ILW, with a duration of

over 2.4 s.

The present study is carried out in the framework of a theoretical model developed

by Porcelli in [Porcelli 1991]. According to this model, a sawtooth remains stable as long

48



3.2 Bulk equilibrium reconstruction and MHD excitation of
internal kink mode

as the potential energy functional 6W = §Wymp + 6Win remains positive, where the
MagnetoHydroDynamic (MHD) contribution Witk usually is negative, and therefore
destabilizing, while the kinetic contribution Wiein can, under certain circumstances, be
positive and therefore stabilizing. The MISHKA1 code [Mikhailovskii 1997] is used to
retrieve 5WMHD for the studied sawteeth. (5Wkin contains two parts: a part from the
NBI-accelerated particles, here called 5WNBI, and a part from the ICRH-accelerated par-
ticles, here called (5WICRH. 5WNBI is computed with an analytical expression, validated for
JET in [Angioni 2002|. The computation of SWicry is based on an integral formula from
[Porcelli 1991|, and numerical values are obtained with the HAGIS code |Pinches 1998|.
The distribution of NBl-accelerated and ICRH-accelerated fast particles is obtained from
the SPOT code [Schneider 2005], with input from the NEMO [Schneider 2011] and PION
|[Eriksson 1993] codes, and run using the RFOF library [Johnson 2011].

The effect of cyclotron current drive on sawteeth stabilization and destabilization has
been studied in [Graves 2011]. Though such effects may in general cases have a substantial
impact on sawteeth, they are not expected to be significant in our experiments as dipole
ICRH was used.

Besides, three of the four studied discharges (#86762, #86774 and #86775) contained
helium 3 (He3), in a proportion of 5 to 13 %. In those discharges, in addition to 3rd
harmonic D heating, the ICRH may have led to some 2nd harmonic He3 heating. How-
ever, the power transferred to the plasma through 2nd harmonic He3 heating was found
[Hellsten 2015] to be much lower than through 3rd harmonic D beam heating. For dis-
charge #86775, in the steady-state plasma 0.4 s after the ICRH power reached flat top,
the ICRH power absorbed by the D beam was 84 %, while the power absorbed by He3
was 3 % only, the remaining 13 % being absorbed by electrons. The difference in the ab-
sorbed powers can be explained as follows: the 2nd harmonic He3 resonance layer occurs
at higher magnetic field than the 3rd harmonic D resonance, which means that the I[CRH
waves first crosses the 3rd harmonic D resonance before reaching the 2nd harmonic He3
resonance layer. In addition, the He3 ions were not pre-accelerated by NBI. Therefore,

the effects of fast He3 particles have not been taken into account in the present work.

3.2 Bulk equilibrium reconstruction and MHD excita-

tion of internal kink mode

For the bulk equilibrium reconstruction, the EFIT code has been run in conjunction with
data from Motional Stark Effect (MSE) measurements. With this method, the accuracy
of the ¢ profile is estimated to be of the order of 10-15 % [Brix 2008]. To generate
a straight field line coordinate system required for MHD analysis, the HELENA code
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discharge 86459 86762

t[s] 10.66 10.79 10.99 | 10.52 10.79 11.04
g on axis 0.96 093 0.87 | 0.97 083 085
R(g=1)[m] 333 335 340 | 329 338 3.38
1 0.14 0.19 0.38 | 0.08 0.32 0.36
SWymp [107%] N/A  -086 -1.61 | N/JA -228 -2.03

discharge 86774 86775

t[s] 9.33 9.47 9.63 | 10.46 11.12 11.35
g on axis 099 095 085 | 0.75 0.71 0.69
R(qg=1) [m] 3.33 336 343 | 3.42 342 3.43
S1 0.11 0.25 049 | 0.61 0.70 0.75
SWamp [1073]  N/A 211 -3.06 | -4.41 -4.34 -4.37

Table 3.1 — For the four studied sawteeth, four values are presented at different time slices:
g on axis, computed with HELENA; the radial position of the ¢ = 1 surface (equatorial
plane, low field side), computed with HELENA; the magnetic shear on the ¢ = 1 surface
s1, computed with HELENA; and the MHD potential energy functional Win, computed
with MISHKA1. The time slices here mentioned are indicated in Figure 3.1 with dashed
lines.

[Huysmans 1991] has then been used. The results are presented in Table 3.1.

The equilibrium computed by HELENA has been used as an input to the MISHKA1
code [Mikhailovskii 1997] to compute the MHD growth rate of the internal kink mode for
the four studied sawteeth, at different times, with accuracy estimated to be of the order
of 3 % |Gassner 2012|. This MHD growth rate has then been converted to the MHD

potential energy functional Wb as described in [Porcelli 1991]:
~ S1
oW = —— 3.1
MHD 27T’YTA> ( )

where « is the internal kink mode growth rate, s; = 71¢/(71) is the magnetic shear on
the ¢ = 1 surface, 7, = r1,/k1 is the average minor radius of the ¢ = 1 surface, r; is the
minor radius of the ¢ = 1 surface on the equatorial plane, k1 is the ellipticity of the ¢ = 1
surface, 74 = V3R, /vy is the Alfvén time, Ry is the plasma major radius on the magnetic
axis, vy = Bo/\/ponim; is the Alfvén speed, By is the norm of the magnetic field on the
magnetic axis, o is the vacuum magnetic permeability, n; is the peak ion density and m;

is the ion mass.

The results from MISHKAT1 are presented in Table 3.1. Note that (5WMHD has been
computed only when ¢ on axis had a value equal to or lower than 0.95: when ¢ is too
close to 1, numerical computations are not accurate enough; and expression (3.1) is valid

only for largely unstable situations, that is to say when ¢ on axis is much lower than 1.
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3.3 NBI contribution to JWkin

3.3 NBI contribution to 5Wkin

Let us recall that Wi, = 6Wagt + dWickn.
The NBI contribution reads [Angioni 2002|:

. \/Euo 3 [P pl/2
OWxpl = ———= —/ —75PxBidp — pxsi(p1) | (3.2)
orB2el? |2 )0 pY?

where pnpr is the pressure of NBl-accelerated fast particles, and p; is the normalized
radial position of the ¢ = 1 surface. It is found in [Angioni 2002| that this analytical
expression gives, in the case of JET NBI, very good agreement with values obtained from
numerical codes modelling kinetic-MHD modes interactions. The radial pressure profiles
of the NBI-accelerated ions are obtained with the SPOT code [Schneider 2005] coupled
with the NBI deposition simulation code NEMO [Schneider 2011|. They are assumed
to be stable during the time scales of interest, since the neutral particle injection was
stable during the considered sawteeth, and since NBI fast particles are not expected to be
affected by the tornado modes observed in discharges #86459 and #86762 (their energy
is too low).

The results are presented in Figure 3.4 and discussed in Section 3.7. Note that the
NBI contribution (WVNBI is generally small compared to the ICRH contribution (5WICRH.

3.4 ICRH-accelerated fast particles distribution

ICRH ions are known to be mostly trapped and it is assumed that their banana tips
are coincident with the ICRH resonant layer (situated in the central region, close to the
magnetic axis in our experiments). Following [Hellesen 2013], we here use an extension
of the classical Stix model |Stix 1975, Hellesen 2013| to high harmonics. In the central
region, the radial variations of the background electron temperature and density are slow
compared to the radial variations of the fast particle density. The following ansatz for the

distribution function is thus employed:

Fiicrn = Mo(p) fu(Er)0(A — Ay), (3.3)

where A is a normalization factor, p = r/a is the normalized minor radius coordinate, r
is the minor radius coordinate, a = a,/k, is the average minor radius of the plasma, a is
the minor radius of the plasma measured on the equatorial plane, s, is the ellipticity of
the plasma at r = a, A = uBy/E} is the pitch coordinate, Ey = 1/2mv? is the kinetic
energy, my, is the mass of the fast particles, ux = myv? /2B is the magnetic moment, v
is the norm of the perpendicular velocity, v is the total norm of the velocity, and B is the

norm of the magnetic field.

o1



Chapter 3. Sawteeth stabilization in JET plasmas

A JET #86459 4'. JET #86762
Ao =1.04 Ay = 1.02
X p=0.18 pe = 0.20

f, (arbitrary unit)
N

02 04 06 038 02 04 06 08
Normalized radius p Normalized radius p

JET #86774 4 JET #86775

Ay = 1.00
\ py = 0.24

f, (arbitrary unit)

02 04 06 08 02 04 06 08
Normalized radius p Normalized radius p

FIGURE 3.2 — Radial fast ion distribution: data from SPOT (black circles) and corre-
sponding fits (green solid lines) - discharges #86459, #86762, #86774 and #86775.

Ay is the value of the pitch on the ICRH resonance layer. In the four discharges, the
magnetic field was chosen to ensure that the resonance layer would be situated close to the
magnetic axis: consequently Ay is close to 1.0 in the four discharges. We find Ag = 1.04
in discharge #86459, Ay = 1.02 in discharge #86762, and Ay = 1.00 in discharges #86774
and #86775. The influence of Ay on sawtooth stabilization according to Porcelli’s model

is discussed in Section 3.7.

A Gaussian-like shape of the radial distribution function is assumed:

folp) = plre=(elee), (3.4)

where pj, is the characteristic length of the radial distribution, and « is a constant used to
ensure that the maximum of the distribution function is reached on the resonance layer.
The ICRH-accelerated fast particle distribution is modelled with the SPOT code [Schnei-
der 2005], with the use of the NEMO code [Schneider 2011] (for the NBI deposition), the
RFOF library [Johnson 2011] (for the interaction between the ions and the ICRF wave)
and the PION code [Eriksson 1993] (for the propagation of the ICRF wave in the plasma).

The numerical results, along with the corresponding fits, are presented in Figure 3.2.

The TOFOR diagnostic |Gatu Johnson 2008| has been used to measure the energy
distribution of the neutrons emitted by reactions with fast deuterium. From this energy
distribution of the neutrons, it has been possible [Hellesen 2010a, Hellesen 2010b, Eriks-
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FIGURE 3.3 — Energy distribution retrieved from TOFOR measurements (circle marks
with error bars) and analytic fit (full line curve) - discharges #86459, #86762, #86774
and #86775.

86459 86762 86774 86775
322 252 249 615

discharge
Wiicrna [kJ]

Table 3.2 — Wy 1cru for the studied discharges: data from SPO'T.

son 2013, Hellesen 2013] to estimate the energy distribution fg of the fast deuterium
particles. The estimated energy distributions are shown in Figure 3.3, along with ana-
lytic distributions obtained by solving a Fokker-Planck equation derived in [Stix 1975].
More details about this Fokker-Planck modelling can be found in [Hellesen 2013|. In Fig-
ure 3.3, the cut-off energies in the analytic distributions have been adjusted so that the
resulting neutron energy distribution be in agreement with the TOFOR measurements.
It can be seen that the deuterium distributions are similar for the four studied sawteeth,

with cut-off energies varying between 1.6 and 2.4 MeV.

Note that in Figures 3.2 and 3.3, the y-axis units are arbitrary; what matters is the
relative profile of the distribution only: the normalization of the distribution functions is

contained in A in expression (3.3), this A being determined below in Section 3.5.
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3.5 Normalization of the ICRH distribution function

In expression (3.3), f, and fg provide the profiles of the fast particle distribution function,
but none of those functions yields the normalization of Fjcrm. This normalization is
represented by A, a constant in space and velocity which is determined in this section
for each studied discharge, using the total energy of the ICRH-accelerated fast particles
Wiicrn. It is necessary to determine A for the computation of SWicrn (see Section 3.6).

Wi icrn is defined as
Wk,ICRH = /(d:ﬁ)g(dv)BEkaJCRH. (35)

Taking into account expression (3.3) of F, jcrm and the expressions of f, and fg, (3.5)

can be written, at lowest order in the inverse aspect ratio ¢ = r/ Ry, as

8m2Rya? too N el o=(p/p)’ () B2
Wiicre = - / / / dE, 2> Jo(Er) Bl , (3.6)
myv'2 min J— 0 V1 — Ay + Agecos b

where 0 is the poloidal angle counted from the equatorial plane and py;, is the minimum

value of p reached by fast particles.

Defining

prtle—(e/mn) »
) 3.7
g = / EY? fy(Ey)dEy, (3.8)

0
Wi icrn reads:
8T2A\Rya’crgc
Whacns == oy 39)
MpA/ 2y

The numerical values of Wy icru have been retrieved from SPOT results; they are
indicated in Table 3.2. In discharges #86459, #86762 and #86775, the ICRH power was
stable during the studied sawteeth; therefore Wy 1crm can be considered as stable over
time. In discharge #86774, the studied sawtooth occurred during a power ramp-up: this
ramp-up was not taken into account in SPOT, a time-averaged power value being used
instead. However, the rationale presented in Section 3.7 is not altered by this fact: what
matters is the evolution of 5Wkin in time, which is found to increase. Taking into account
the ICRH power ramp-up in discharge #86774 would only accentuate the increase of

Wiin over time, and would thus not bring any significant change to the global picture.
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3.6 ICRH contribution to 5Wkin

3.6.1 Expression of §Wicru

To compute §Wicrn, an integral expression, equation (11) of [Porcelli 1991], is used. This
expression is valid in the following limit: when the parallel pressure of fast particles is small
compared to their perpendicular pressure, and when the internal kink mode frequency is
small compared to the banana drift frequency (condition (2) in [Porcelli 1991]). This limit
is relevant to our experiments for the ICRH-accelerated particles, which are in the MeV
range (see TOFOR results in Section 3.4).

Thus,

. | THog1 Iq > 3/20F 10rRH
oW d dAAI dE B —F———
ICRH = 232(7“1 T (mk) / TT/ I / g or

(3.10)

where ¢, = 71 /Ry is the inverse aspect ratio at the ¢ = 1 surface, B,(71) = 71 By/Ry is
the poloidal component of the magnetic field on the ¢ = 1 surface, I, = ng7 I. = (cos B),,
Is = (cosB), + s(0sinb),, 1, = (cos(¢h)),, (-), represents the average over the bounce

motion, v = \/2E}/my is the velocity of the particle, and 7, is the bounce period.

Taking into account the expression of Fj jcru,

OFicrn A [« B 2p o))’
o  a (p p§>p O(A = Ao) fe(Ek). (3.11)

Using equation (3.9) to replace A in this expression, SWicrn reads

2 toWi M 2p
oW — == [ dpp*t = — = —(e/pe)* (A 3.12
ICRH = 47?@9@7‘132 /p PP <p pi ( 0)7 ( )

min

where I(Ag) is defined as AIb% evaluated at A = A,.

3.6.2 Computation of /(Ay) with HAGIS

The HAGIS code is used to compute the orbit of fast test particles; ellipticity and Finite
Orbit Width (FOW) effects are taken into account. From those orbits, 1(A) is computed
numerically. The output of HELENA is used for the safety factor and the magnetic
shear radial profiles; those profiles are used to numerically compute the integral over p in

expression (3.12). The results are presented in Figure 3.4 and discussed in Section 3.7.
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FIGURE 3.4 — Evolutions of §W = (5WMHD + (5Wkin in the case of discharges #86459 and
#86762 (figure a), as well as discharges #86774 and #86775 (figure b), as functions of
time before the sawtooth crashes. For discharges #86459 and #86762, different values of
pr have been assumed: the dashed lines show the evolution of SW for stationary values
of pi; the full lines show the expected evolution of SW assuming Pk increases in time.
For discharges #86774 and #86775, the full lines show the evolution of SW taking into
account the stability of p, as indicated by the timelines from the neutron cameras.

3.7 Predictions of the model: sawteeth stabilization

The evolutions of W = §Wymp +0Wii, are shown in Figures 3.4 a) and 3.4 b). According

to Porcelli’s theory, a sawtooth crash is due to occur when SW becomes negative.

In the case of discharges #86459 and #86762, the dashed lines show the evolution
of 6W assuming py (characteristic length of the ICRH fast particles radial distribution)
remains constant. This evolution is unlikely, considering the tornado modes which oc-
curred during those two discharges (see Section 3.8.1 below). The full lines show the
expected evolution of (5W, assuming pi increases during the tornado modes activity. In
Figure 3.4-a), an increase of 0.05 in p;, has been retained, consistent with the observations
made in a JET discharge exhibiting similar features [Gassner 2012|. In discharges #86459
and #86762, gamma-rays signals were too low to retrieve any useful data, and neutron
cameras were not in activity, thus prohibiting the direct experimental observation of the

fast particle radial redistribution.

In the case of discharges #86774 and #86775, neutron cameras [Adams 1993| with
horizontal and vertical lines of sight were available (see Figure 3.5). Thanks to the reac-
tion Dpg + Dy, — n +3He, a broadening of the radial distribution of the fast deuterons
during the sawteeth would have been observable on the neutron cameras signals (the
signals from the outer channels would have increased while the signals from the inner

channels would have decreased, like in [Gassner 2012]). However, in discharges #86774
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FIGURE 3.5 — Lines of sight of vertical neutron cameras in JET. The blue circles correspond
to the magnetic flux surfaces computed with EFIT in discharge #86775, at time t=10.96
S.

and #86775, no significant evolution of the neutron cameras signals was observed during
the studied sawteeth (see Figure 3.6), which means that the fast particles were not ex-
pelled from within the ¢ = 1 surface. In particular, in the case of discharge #86775, the
fast particle population was remarkably stable. This is consistent with the fact that no
tornado modes were observed (see Section 3.8.1 below). Consequently, the time evolution

of 6W has been plotted at constant pr for those two discharges.

It can be observed in Figure 3.4-b) that §W does not get closer to the crash threshold
(5W = 0) when time goes by. On the contrary, SW tends to get further from the thresh-
old. This fact can be interpreted considering that the fast particle distribution features
(Ao, pry Wricrn) remain the same, while the radial position of the ¢ = 1 surface increases
(see Table 3.1) and ¢ on axis decreases. Consequently, the fast particles are found to be
contained deeper and deeper within the ¢ = 1 surface as time increases, and they are more
stabilizing [Porcelli 1991, Porcelli 1992]. The evolutions of §W computed for discharges
#86774 and #86775 show that the sawtooth crashes for those discharges must have been
caused by events which are fast (a few 10 ms) compared to the sawtooth characteristic

period, since no evolution of SW in the direction of a crash is observed during the sawtooth.

It can be observed in Figure 3.4-a) that SW is highly sensitive to the value of pg:
this is consistent with the theory [Porcelli 1991, Porcelli 1992]. In discharges #86459

and #86762, without any increase of p;, Porcelli’s model would not predict the sawtooth
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FIGURE 3.6 — Timelines from neutron cameras, vertical channels 12 to 17, discharges
#86774 and #86775. The dashed lines show the times of the sawtooth crashes.

crash, since W then increases over time and gets further from the crash threshold. On
the contrary, taking into account an increase of pp is consistent with the onset of the

crash, in the framework of Porcelli’s model.

The absolute values of §W depend strongly not only on p; but also on Ay. The closer
Ag is to 1.0, the more stabilizing the fast particles are. This is consistent with the fact
that when Ay = 1.0, the fast particles are contained deeper within the ¢ = 1 surface and
are therefore more stabilizing. Tt may be difficult to determine Ay with the accuracy nec-
essary for the computation of SW: the needed accuracy is of the order of 1% for the value
of By (magnetic field on axis), which is not met by EFIT with MSE. However, contrary
to pr, Ao is expected to remain stable over times of a few hundreds of milliseconds, and
the time evolution of W is hardly sensitive to the value retained for Ag. This means that
even if the original error made on Ag is higher than 1%, this does not affect the rationale
here exposed: what really matters is that Ay is stable during the considered time scales,

and that 0W increases over time if p, remains constant.

It can finally be observed in Figure 3.4 that SW is much higher in the case of dis-
charge #86775 than in the other three cases. This is consistent with the fact that the
corresponding sawtooth was much longer (over 2.5 s) than the other three studied saw-
teeth. This high value of §W can be explained by the high value of the fast particle energy
(see Table 3.2) and by the favourable radial position of the fast particles (Ag = 1 and
small pg: see Figure 3.2) in the case of discharge #86775.
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FIGURE 3.7 — Tornado modes measured with FIR interferometry - discharges #86459 and
#86762.

3.8 Explanation for the crashes

3.8.1 Tornado modes

Tornado modes [Saigusa 1998, Kramer 2004| are observed in discharges #86459 and
#86762 with Far InfraRed (FIR) interferometry (Figure 3.7). Those tornado modes have
an overall duration of more than 0.2 s before the sawtooth crashes. Tornado modes are
known to be at the origin of the expulsion of some fast particles from within the ¢ = 1
surface, as has been observed in the tokamaks JT-60 in Japan [Saigusa 1998|, TFTR in
the USA |Bernabei 2000|, DIII-D in the USA |Bernabei 2001], and JET [Gassner 2012|.
In particular, the JET discharge studied in [Gassner 2012| was very similar to the dis-
charges considered in the present study (same magnetic field on axis, same plasma current,
same 3rd harmonic deuterium ICRH). Such expulsion of fast particles during the sawteeth
means that the stabilizing effect of the fast particles is strongly reduced; this can lead to
the crash of the sawteeth, as exposed in [Bernabei 2000, Bernabei 2001, Gassner 2012].
In our experiments, the expulsion of the fast particles outside the ¢ = 1 surface can be
modelled as the increase of p; during the sawtooth periods. Porcelli’s model then shows
that this expulsion of fast particles is consistent with the crashes and sufficient to account
for them: see Section 3.7 and Figure 3.4-a).

In the case of discharges #86774 and #86775, no tornado modes were observed. One
can notice that the two discharges exhibiting tornado modes were the two with Ag > 1.0,

while the two-discharges with Ay = 1.0 did not exhibit tornado modes.

3.8.2 ELMs - Inward propagation of a cold front

In discharges #86774 and #86775, as can be seen in Figure 3.8, significant drops in the
radio-frequency (RF) coupled power are observed just before the sawtooth crashes: a
drop of 31 % in the case of discharge #86774, and a drop of 43 % in the case of discharge
#86775. Could those power drops be at the origin of a decrease in the stabilizing fast
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FIGURE 3.9 - ELMs (D alpha) - discharges #86774 and #86775.
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FIGURE 3.10 - ELMs (D alpha) and Soft X-Rays, with focus on crash times - discharges
#86774 and #86775.
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particle population within the ¢ = 1 surface, thus leading to the observed crashes? The

slowing down time for the fast particle population can be estimated with the Spitzer time
75 [ITER 1999]:

3(2m)¥ 2T 2 my,

Nen/MeetIn A7

where T, is the electron temperature, £y the vacuum permittivity constant, m. is the

(3.13)

Ts =

electron mass, e the elementary Coulomb charge and In A is the Coulomb logarithm.
With the set of parameters corresponding to the four discharges here considered, In A
reads [NRL 2011]

1nA:24—ln(\éﬂn_€), (3.14)

where n. is in m™ and T, is in eV. For discharge #86774, expression (3.13) yields
7s = 0.6 s, while it yields 7, = 0.9 s for discharge #86775. In comparison, the times
between the RF power drops and the sawtooth crashes are one order of magnitude lower:
it is comprised between 0.04 and 0.08 s for discharge #86774, while it is comprised be-
tween 0.005 and 0.04 s for discharge #86775. Those intervals correspond to the time

intervals between two measurements of the RF power.

Another hypothesis is that the RF power drops have been caused by ELM bursts, and
that in addition to causing the RF power drops, those ELM bursts have also triggered the
sawtooth crashes. The measured activity of D-alpha transition is represented in Figure 3.9
for discharges #86774 and #86775 during the studied sawteeth.

In the case of discharge #86774, one major ELM burst occurs at ¢ = 9.62 s, while
no other significant burst occurs before. This burst takes place about 60 ms before the
sawtooth crash, as can be seen in Figure 3.10 where D-alpha activity and soft X-ray
signals are represented together, with a focus on the crash time.

In the case of discharge #86775, two periods of major ELM activity are recorded:
one around ¢t = 10.0 s, which does not have any significant impact on the coupled ICRH
power, and one around ¢t = 11.4 s, at the same time as the sawtooth crash. It can be
seen in Figure 3.10 that in the second period of ELM activity, the first burst occurs about
40 ms before the sawtooth crash. That the first period of ELM activity should have had
no impact on the coupled ICRH power makes it likely that the intensity of ELMs was
then weaker than during the second period of activity; and this is consistent with the
fact that it should not have triggered any sawtooth crash either. It is also consistent
with the fact that during the first period of ELM activity (¢ = 10.0 s), W computed
with MISHKA1 was about twice as low as during the second period (¢t = 11.4 s), thus

indicating that the internal kink mode was not as easy to be destabilized during the first
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FIGURE 3.11 — Time evolution of the electron temperature in discharge #86774 measured
with various ECE channels, corresponding to various radial positions comprised between
R = 3.3 m (channel 48) and R = 3.7 m (channel 24). The ¢ = 1 surface corresponds
approximately to channel 42 in the case of discharge #86774, and to channel 40 in the
case of discharge #86775.

period of ELM activity as during the second period.

It has been reported in [Sarazin 2002] that some large ELM bursts can generate a
strong perturbation 07, which propagates inwards at a velocity of the order of a few
100 m-s~!. In the two discharges of interest, the ¢ = 1 surface is situated quite far from
the magnetic axis, at R = 3.43 m on the equatorial plane, low field side (see Table 3.1).
Thus, the 67, perturbation can reach this surface after travelling about 50 cm, which cor-
respond to less than 5 ms. This time value is lower than the time which elapses between
the first ELM burst of interest and the sawtooth crash in both discharges #86774 (60 ms)
and #86775 (40 ms), which makes it possible for the ELM bursts to be at the origin of

the sawtooth crashes.

Figure 3.11 shows the time evolution of the electron temperature in discharges #86774
and #86775 measured with various Electron Cyclotron Emission (ECE) channels, corre-
sponding to various radial positions comprised between R = 3.3 m (channel 48) and
R = 3.7 m (channel 24). On those two figures, the propagation of the cold front (67
perturbation) can be seen and is identified with a solid black line. In the case of discharge
#86775, the cold front does not appear in Figure 3.11 clearly enough for immediate iden-
tification; this is why larger scale plots have been represented in Figure 3.12. Note that
in that last figure, only the vertical scale (corresponding to the electron temperature) has
been increased with respect to Figure 3.11, while the x-axis scale has been kept similar

to that of Figure 3.11.

The inward propagating perturbation triggered by ELM bursts was measured in
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FIGURE 3.12 — Details of the time evolution of the electron temperature in discharge
#86775 measured by four different ECE channels (channels 36, 40, 44 and 48), showing
the propagation of the cold front to the ¢ = 1 surface (corresponding approximately to
channel 40) and beyond (channels 44 and 48).

[Sarazin 2002] on T, and is here measured experimentally on T, as well. However other
plasma parameters are likely to be affected by the inward propagating front, and be
perturbed at the same time as the electron temperature. The mechanism of sawtooth
destabilization by such perturbations triggered by ELM bursts is not clear yet. Those
perturbations may have an impact on the ¢ = 1 layer, and in particular on the magnetic
shear s;; but this hypothesis has not been confirmed and the exact mechanism remains

to be determined.

3.9 Conclusion

Four sawteeth in four different JET discharges have been analysed. The application of
Porcelli’s model to those sawteeth, with the help of the equilibrium codes EFIT and
HELENA, of the MHD code MISHKAL1, of the fast-particle codes SPOT and HAGIS has
enabled us to check that fast particles produced by NBI and 3rd harmonic deuterium
ICRH had a strong stabilizing effect on the internal kink mode. Despite the stabilization
thus gained, the four sawtooth all ended up crashing. Two mechanisms that can explain
those crashes have been observed.

The first one is the appearance of tornado modes before the sawtooth crashes in
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discharges #86459 and #86762. Tornado modes are known [Saigusa 1998, Bernabei 2000,
Bernabei 2001, Gassner 2012| to expel fast particles from within the ¢ = 1 surface, leading
to the loss of their stabilizing effect. In such situations, fast particles are not only the
cause of the sawtooth stabilization, they are also the cause of the sawtooth crashes, since
they are at the origin of the tornado modes which eventually trigger the sawtooth crashes.

The second one is an inward propagating perturbation 67, of the electron temperature,
triggered by major ELM bursts. The inward propagation of the perturbation occurs at
ballistic velocities [Sarazin 2002] (~ 160 m-s~!): the time of the propagation from the edge
of the plasma to the ¢ = 1 surface is therefore under 5 ms in JET. This phenomenon is
believed to be at the origin of the sawtooth crashes in discharges #86774 and #86775. An
implication of this hypothesis is that the cause for sawtooth crashes comes from outside
the ¢ = 1 surface, and not from the very particles which provide stabilization.

A limit of the present study is that the possible mechanism of the interaction between
the cold front in discharges #86774 and #86775 and the internal kink mode has not been

analysed. Further theoretical and experimental analyses are required for that.

One of the sawteeth studied in the present chapter had a duration of about 2.5 s.
However, monster sawteeth may not be desired in burning plasmas: on the one hand, they
correspond to higher and more stabilized core electron temperature, which is beneficial
for fusion; on the other hand, the crashes which follow such sawteeth are more intense,
cause higher T, drops, and can cause harmful NTMs. The issue of plasma impurities also
matters: sawteeth can expel impurities, and high frequency sawteeth may be beneficial
to avoid the accumulation of high Z ions in the core plasma. For more details, one may
read [Chapman 2011, Graves 2012].
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Relation between GAMs and EGAMs

The relation between GAMs and EGAMs is somewhat unclear and remains to be ex-
plained: it is the purpose of this chapter. The present study can be found in |Gi-
rardo 2014|. Through a linear, analytical model, the relation between GAMs and EGAMs
is investigated. The fast particles are modelled by a Maxwellian bump-on-tail distribution

function, in which only deeply passing ions are retained.

The link between GAMs and EGAMs is found to depend on several parameters: the
safety factor ¢, the fast ion parallel velocity % normalized to the thermal velocity, the
ratio 7 of the fast ion distribution width to the bulk ion temperature, the ratio 7; /T, of
the bulk ion temperature to the electron temperature, the mass my and the charge number
7y, of the fast ions. Those parameters are explored in the following ranges: 1 < ¢ < 3;
2<u; <401<7 <2and 05 < T;/T. < 2; while the masses and charge numbers
correspond to those of hydrogen (H), deuterium (D), tritium (T) and helium 3 (He3). For
low values of ¢ and my; for high values of @, 7, and 7;/T¢, the EGAM originates from the
GAM. On the contrary, for high values of ¢ and my; for low values of @, 7, and T;/T¢,
the GAM is not the mode which becomes unstable when fast particles are added: the
EGAM then originates from a distinct mode, which is strongly damped in the absence of
fast particles.

Note that such a split in the nature of the EGAM depending on the parameters of
the plasma was already exposed in [Fu 2008]. The present analysis gives further informa-
tion about this split; the origin of the two branches is clarified. In particular, it is here
established that one of the two branches (the so called Landau EGAM) originates from a
branch of Landau modes which already exist and are stable in the absence of fast particles.
When kinetic particles are added, one of the stable Landau modes sees its frequency rise
progressively to the upper part of the complex plane, and turns into an excited mode. In
addition, the present model takes into account the possibility of having different species
for thermal ions on the one hand, and kinetic particles on the other hand. This leads to

interesting results, in particular regarding the excitation threshold of the EGAM, which
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is found to be very low under certain circumstances (Figure 4.7).

The analysis carried out in this chapter allows one to better understand the ways in
which the real frequency and the growth rate of the GAMs and EGAMs can be modified.
This is important in particular to better apprehend the interaction of GAMs and EGAMs
with turbulence. After exposing the linear, analytical model which has been used in the
present work to study the link between GAMs and EGAMs, we detail the results which
were obtained through numerical resolution of the dispersion relation. Those results are

then discussed.

4.1 Model

4.1.1 Equations

The equilibrium magnetic field is B = I(¢¥)Vy + Vi x V). We use an electrostatic
approximation, i.e. fluctuations of the magnetic field are not considered. ¢ is the toroidal
angle, v is the magnetic poloidal flux normalized to 27, and the poloidal angle is written
0. (1,0, p) constitutes a direct set of coordinates in which the safety factor ¢ depends
on 1 only. The aspect ratio %, where a is the minor radius of the tokamak and Ry the
major radius on the magnetic axis, is assumed to be large. The distribution functions
of the thermal ion and kinetic ion gyro-centres are called, respectively, f; and fi (¢ for
thermal and k for kinetic). The total ion gyro-centre distribution function fg thus reads:
fa = fi+ fr. Since most equations for f; and fj are identical, the subscript s (for species)
will be used instead of ¢ or £ whenever possible, and only one equation will be written.

The gyrokinetic equation for the ion distribution functions f, reads

Ofs
ot

dE, 0f. _
dt OE,

+vVas - Vifs+u V) fs+ (4.1)

where the subscript s stands for species s and can be replaced with either t or k, FE, =

2
%msvﬁ + usB is the kinetic energy, s = "=t is the magnetic moment and B is the

2B
intensity of the magnetic field. v, is the drift velocity comprising the electric drift @,

2
the gradient drift %% and the curvature drift which reads %% in the low
limit. e, stands for the electric charge of species s, m, stands for the mass of species s, b
is the unitary vector directed along the magnetic field, 5 is the ratio of the kinetic energy
to the magnetic energy. In the present work, the long wavelength limit is considered, so
that the gyro-averaged electric potential Jogzz is simply replaced by the electric potential

¢ itself. g is an adiabatic motion invariant and the kinetic energy varies according to the
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electric energy transfers:

dfis

e 0, (4.2)
dFE, ~
TRl (Vd7s + va) - Vo. (4.3)

The equilibrium electric field is assumed to be small, so that (/5 represents the perturbed

part only of the electrostatic potential. The electrons are considered adiabatic:

remn(6-(3),) o

where n, is the equilibrium density of electrons, n, is the perturbed density of electrons,
T, is the electron temperature, e is the elementary Coulomb charge and (-)pq stands for

the average on a magnetic flux surface.

The distribution function of the ions of species s is decomposed into an equilibrium

part F; and a perturbed part fsz

fo= Fs<1 + f) (4.5)

With those notations, the overall ion gyro-centre distribution function f reads

fG:Zfs:ft“‘fk:Ft(l‘i‘ft)+Fk<1—|—fk>. (4.6)

The quasi-neutrality equation n, = Z;n; + Zxny, reads (see Appendix B)

nez(9-(9),) = > {div(”;;ﬁsmé) +2. [ R, (dv)ﬂ, (4.7)

se{t,k}

where, for species s, Z is the charge number, n, is the perturbed density, and n, is
the equilibrium density. The n, verify: n, = Zyn; + Zyng. The gyrokinetic equation is
linearized in f, and ¢; the equilibrium radial gradients are neglected. The computation

is executed up to order 1 in p, = p;/a, where p; is the ion Larmor radius.

In the case of GAMs and EGAMs, two Fourier modes are predominantly excited:
(m,n) = (0,0) and (1,0) where m is the poloidal mode number, and n is the toroidal
mode number. For the density and for the electrostatic potential (1,0) modes, the sin 6

part is predominant over the cosf part, where 6 is counted from the equatorial plane.
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4.1.2 GAM Dispersion Relation

The bulk plasma particles at equilibrium are represented by a local Maxwellian distribu-

tion:

my 2 B
F = P 4.
t =Ty (2#7}) € ) ( 8)

where the subscript t stands for thermal.

In the absence of fast particles, with Z; = 1, the dispersion relation of the GAM reads

1 Np(£2;)?
— 4+ A () — =0, 4.9
q2 1( t) Dl(Qt) ( )
with

3 1 2 3
A() =ZQ)( X+ + —= | + Q7 + -, (4.10)

202, 2

1
Ny () = Z() (Q? - 5) + €y, (4.11)
T,

Di() = Z(Q)% + 1+ Tf (4.12)

Ty
Q, = [~ 4.1

where w is the frequency of the mode, ¢ is the safety factor, Ry is the major radius on
the magnetic axis, and Z is the plasma dispersion function [Fried 1961|. This dispersion

relation is the same as the one obtained in [Zonca 2008].

4.1.3 EGAM Dispersion Relation

The bulk plasma particles at equilibrium are still represented by a local centred Maxwellian
distribution, while the fast particles are represented by a shifted Maxwellian distribution

(here called bump-on-tail distribution) in parallel velocity:

n mp % mk(v|‘77§“)2+2uk5 mk(v‘|+ﬁll)2+2ukB
) T e T 4.14
F (27TTtTk) ‘ o te i ; (4.14)

where the subscript k stands for kinetic and v is the position of the bump of the distribu-
tion function on the v axis. Note that the distribution function of the fast particles is a
centred Maxwellian in perpendicular velocity, and that it is even in parallel velocity: con-
sequently, no parallel momentum is injected [Elfimov 2014]. In addition, the distribution

function (4.14) can be recast as a function of motion invariants only; in particular only
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highly passing particles are considered and the parallel velocity is considered as a motion
invariant (see Appendix B). 7 is a temperature-like, dimensionless parameter which de-
scribes the width of the bumps in v. For the model to be consistent, the bumps need to
be larger than the small variation of v during a poloidal turn which has been neglected.

This imposes a condition on 7:

€
T > =2 (4.15)
Y
where
_ mg _

For ) = 2.8 and ¢ = 0.3, this condition numerically reads 7, > 0.011.

In the presence of fast particles described by such a bump-on-tail distribution function,
the dispersion relation of the EGAM reads

[N () + Na ()]

1
A + As(Q) — =0, 417
qg 1( t) 2( k) Dl(Qt)+D2(Qk:) ( )
where
AQ) = — " ") o8 0,4 | 102D (4.18)
! t_nt+nk%ne Do) 2 ( )

my, Ne ng Qk—ﬂ” uj|
Ap(Qy) = D Ne 4 il N ) 4.1
() mtnt+nk%2ne{[ (=) - (4.19)
+Z<Qk+@n)[1+ﬂ_} S U RATY RPN P AT (ﬂ) |
NG Q

+ Tk Q2
Ne Ny 5 1
N() =2, | —————< Z() | — Q 4.21
1(%) t“nt‘i‘nk%ne{ ( t)|: t—I—Q} + t}a ( )

— +
Y TN

No(Q) = Zk\/_\/> /nt F 2ne{ Q’“ ;:‘) {1 - g—]j (4.22)
+Z<%) {1+QJ T: +% +2% gf(ﬁ)} (4.23)
Di(Sy) = {Z(Qt)Qt + 1} + ;t (4.24)
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n/ng = 8%
2 4
Re(Qy)

FIGURE 4.1 — Contour representations of |[D(€;)|”" in the complex plane for ¢ = 1.6,
T;/T. = 1, for various concentrations of fast ions, from 0 to 40%. The bulk and fast ions
belong to the same species (D-D), with 4 = 2.8 and 7, = 1.

(4.25)

and where

My

O = qR [Ty,
qu2Ttw

(4.26)

The details of the derivation of this dispersion relation can be found in Appendix B.
The dispersion relation (4.9) is recovered in the absence of fast particles, i.e. for n, = 0,
and for Z; = 1.

4.2 Results

4.2.1 Impact of the safety factor ¢ on the link between GAMs
and EGAMs

The dispersion relation (4.17) is numerically solved for various parameters of the bulk
plasma and of the fast particles. Calling D the left hand-side of that relation, we look for
the zeros of D as a function of €, {2 being itself a linear function of €;: Q) = | /%Qt.

In Figures 4.1 and 4.2 shown are the contour representations of |D(€,)|”" in the complex

plane for ¢ = 1.6 and ¢ = 3, for various concentrations of fast ions. The solutions of the
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FIGURE 4.2 — Contour representations of |[D(€;)|”" in the complex plane for ¢ = 3,
Ti/T. = 1, for various concentrations of fast ions, from 0 to 40%.The bulk and fast ions
belong to the same species (D-D), with % = 2.8 and 7, = 1.

dispersion relation correspond to the high values of D~1(£2;), which are recognizable as the
fully filled circles. In particular, one can see that in the absence of fast particles, no circle
is present in the upper part of the complex plane, where Im(£2;) > 0 (which corresponds to
excited modes). One zero of the dispersion relation is present slightly below the real axis:
it is the GAM. Several zeros are present in the lower complex plane (where Im(€2;) < 0):
those zeros correspond to highly damped modes, which are therefore observed neither in
experiments nor in simulations. When fast particles are added, the positions of the roots
evolve, and when the fast particle concentration becomes high enough, one of the roots

crosses the real axis and finds itself in the upper plane.

In those figures, the EGAM is defined as the only mode which lies in the upper plane
above a certain fast-particle density threshold, and which is therefore the only mode to
be excited. During its evolution, this mode is labelled as an EGAM in Figures 4.1 and
4.2. Another mode lies very close to the real axis above a certain fast particle density
threshold, at a real frequency greater than that of the EGAM. However, this mode is
never excited. The GAM is defined as the only mode which lies very close to the real
axis in the absence of fast particles. When fast particles are added, it can either turn

into an EGAM (Figure 4.1) or remain on the real axis (Figure 4.2) and thus not be excited.

In Figure 4.1, when the proportion of fast particles increases, the GAM becomes an
EGAM: this mode is called an EGAM from GAM. At the same time, a mode which was
deeply damped in the absence of fast particles progressively gets nearer to the real axis.

The behaviour of the modes in Figure 4.2 is different. When the proportion of fast parti-
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Im(Q)

Re(Q)
(b)

FIGURE 4.3 — Background (blue curves): contour representation of |D(,)|”" in the com-
plex plane, in the absence of fast ions, for ¢ = 1.6 (a) or ¢ = 3.0 (b). In both cases,
T;/T. = 1. Black curves: evolution of the GAM and EGAM frequencies when the propor-
tion of fast ions ng/n. varies from 0 to 40%. The bulk and fast ions belong to the same
species (D-D), with 4 = 2.8 and 7, = 1.

cles increases, the GAM remains close to the real axis, and does not turn into an excited
mode. At the same time, a mode which was deeply damped in the absence of fast particles
progressively moves towards the upper plane, crosses the real axis and then gets excited:
this mode is called a Landau EGAM. 1t is worth noting that the link between GAMs and
EGAMs is thus different according to the value of the safety factor ¢: for ¢ = 1.6, the
EGAM originates from the GAM; while for ¢ = 3, the GAM and the EGAM belong to
different mode branches. The existence of two different kinds of EGAMSs has also been
shown numerically [Zarzoso 2014| with the gyrokinetic code NEMORB [Jolliet 2007, Bot-
tino 2011].

In Figure 4.3 shown are the contour representations (in blue) of |D(€;)| " in the com-
plex plane for ¢ = 1.6 and ¢ = 3, in the absence of fast particles. Those two contour
representations are the same as the ones in Figures 4.1 and 4.2 in the absence of fast par-
ticles. Atop those contour representations, the evolutions of some zeros of the dispersion
relation when the proportion of fast particles increases from 0 to 40% (black curves) are
superposed. The evolutions of those zeros are numerically computed; the evolutions of the
other zeros are not represented as they are not significant. In Figure 4.3-a), drawn with
the same parameters as Figure 4.1, one can see that the GAM becomes an EGAM (solid
black line). At the same time, a mode which was deeply damped in the absence of fast
particles gets very close to the real axis, but does not cross it (dashed black line). In Fig-
ure 4.3-b), drawn with the same parameters as Figure 4.2, one can see that the GAM does
not turn into an EGAM: the GAM stays about the real axis, but never enters the upper
plane (dashed black line). At the same time, a mode which was deeply damped in the ab-
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FIGURE 4.4 — Phase diagram: type of EGAM as a function of ¢ and 1|, for D-D particles,
with 7; /T, = 1 and 7, = 1.

sence of fast particles goes up, crosses the real axis, and yields an EGAM (solid black line).

Figure 4.3-b) was obtained with the same parameters as those used in |Zarzoso 2012b|:
q=3T)T. =1, a4y = 28, 7o = 1, my/my = 1, Z, = Z; = 1 (NB: due to different
normalizations, ( = 4 in [Zarzoso 2012b| corresponds to i = 2.8 in the present work).
In that figure, we can see that the frequency of the EGAM is approximately half the
frequency of the GAM which would be obtained in the absence of fast particles. For
the real part of €);, we thus recover with a linear, analytical model the result which had
previously been obtained in [Zarzoso 2012b] with the non-linear, 5D gyrokinetic code
GYSELA, and which had also been obtained experimentally in DIII-D |Nazikian 2008|.

4.2.2 Impact of other parameters

The safety factor g is not the only parameter to have an impact on the link between
GAMs and EGAMs. The phase diagrams reproduced as Figures 4.4 and 4.5 show, for
various sets of parameters, three different zones in which the EGAM either originates
from the GAM, is a Laudau EGAM, or is not excited at all (at least up to a fast particle
fraction of 40%). Those sets of parameters are respectively (¢, @), (¢, T:/7¢) and (q, 7x).
In the zones labelled as EGAM from GAM, the EGAM is excited and originates from the
GAM: the situation corresponds to the one which appears in Figures 4.1 and 4.3-a). In
the zones labelled as Landau EGAM, the EGAM is excited and originates from a mode
which is deeply damped in the absence of fast particles: the situation corresponds to the

one which appears in Figures 4.2 and 4.3-b).
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FIGURE 4.5 — Phase diagrams: type of EGAM, for D-D particles, (a) as a function of ¢
and T /T, with 7, = 1 or (b) as a function of ¢ and 7, with 7;/T, = 1. In both cases,
u| = 2.8.
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FIGURE 4.6 — Phase diagrams: type of EGAM as a function of ¢ and 73, with 4 = 2.8 and
Ti/T. = 1. (a) D(bulk) - H(fast) and D-D particles. (b) D(buik) - Tfast) and D(buik) - He3(fast)
particles.
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Figure 4.6-a) completes Figure 4.5-b): the three different zones No EGAM, EGAM
from GAM and Landau EGAM are represented as functions of ¢ and 7, for two different
kinds of fast particles, which have the same charge but different masses (hydrogen and
deuterium). The thermal particles are deuterium in both cases.

Finally, Figure 4.6-b) gives further information about the impact of the charge number.
In this figure, the same three zones are represented as functions of ¢ and 7, for two different
kinds of fast particles, which have the same mass but different charges (tritium and helium
3). The thermal particles are deuterium in both cases.

Note that in Figures 4.4 to 4.6, the critical density above which the EGAM becomes
unstable is different at each position in the diagram. Indeed, as noted in |Zarzoso 2012b|,
the excitation threshold depends on a certain number of parameters, including ¢, ), 7%
and T, /T.; this issue is further discussed in section 4.2.3. The No EGAM region refers to
cases in which no EGAM is excited when the fraction of energetic particles ny/n. varies
from 0 to 40%; an EGAM is considered to be excited when Im(€);) is positive, with a
precision of 0.05. Diagrams 4.4 to 4.6 were obtained with a matrix of test points, with
steps of 0.2 (for all parameters) between the points. For each test point, the dispersion
relation (4.17) was numerically solved for different values of the fast particle density (from
0 to 40%).

4.2.3 Excitation threshold

The parameters of the bulk plasma and of the fast particles also have an impact on the
excitation threshold of EGAMs. Figure 4.7 presents the growth rate of EGAMs in the
case of ¢ = 1.8 and deuterium as thermal particles, for different species of fast particles
(H, D, T, and He3). For the considered parameters, Figure 4.6-a) shows that hydrogen
and deuterium EGAMs originate from GAMs, while Figure 4.6-b) shows that tritium and
helium 3 EGAMs are Landau EGAMs. This distinction is consistent with what can be
observed in Figure 4.7: in the case of hydrogen and deuterium, nlgr_r}O Im(£2;) =~ 0, which
indicates that the EGAMs originate from GAMs. On the contrary, in the case of tritium
and helium 3, nlgr_rgo Im(£2;) < 0, which indicates that the EGAMs are Landau EGAMs.
Such a difference in the excitation threshold between the two types of EGAMs should
allow one to distinguish a Landau EGAM from an EGAM from GAM in experiments.
With the parameters used to produce Figure 4.7, for an experimentally reasonable
density of fast particles of 5%, we can see that there is a huge difference between the
different species. For heavy fast particles such as tritium and helium 3, the EGAMs
(which are then Landau EGAMs) are still far from the excitation threshold. On the
contrary, for lighter fast particles such as deuterium and especially hydrogen, a density
of 5% corresponds to a region where the EGAMs (which are then EGAMs from GAMs)

can be excited.
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FIGURE 4.7 — normalized EGAM growth rate Im({2) as a function of ny/n., with ¢ = 1.8,
u = 2.8 7, = land T;/T, = 1, for D(bulk) - Htast), D-D, D(bulk) - T'(fast) and D(bulk) - He3(tast)
particles. The EGAM is excited whenever Im(€2) > 0.

In addition, it is worth noticing that there is no fast particle density threshold for the
excitation of EGAMSs in the hydrogen case, for the parameters used to compute Figure 4.7.
It means that there exist certain cases in which EGAMs are very easily excited. This
feature is related to the nature of the EGAM (the excitation is easier in the case of an
EGAM from GAM). The behaviour of EGAMs at very low fast particle concentration is
of notable interest for the study of the interaction of EGAMs with turbulence, and to

understand the appearance of EGAMs in experiments.

4.3 Discussion

4.3.1 Limit ¢ — 0

When ¢ — 0, Figures 4.4 to 4.6 show that no EGAM is excited. Let us show that it is
consistent with expression (4.17). First, let us show that, in the absence of fast particles ,
|2t canm| remains small (under a few unities) when ¢ — 0. Indeed, if |2 gan| were large,
the hydrodynamic limit would be applicable, and the dispersion relation would read in
that limit [Zonca 2008]: 1 — g—;(% + %’) + iy/7@* Qe % = 0. Taking into account the
constraint on €);, which has to be above a few unities for the hydrodynamic limit to be
valid, this equation has no solution (in €2;) when ¢ — 0. Therefore, the only possibility for
Q.cam to be a solution of the dispersion relation (4.9) is to be out of the hydrodynamic
limit, that is to say to be smaller than a few unities. Let us now consider the EGAM

frequency Q; pgam: it is expected to have the same order of magnitude as €, gam, even
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though there may be a ratio of several unities between the two frequencies. When ¢
approaches 0, Q;pgam is therefore to be looked for in a region of the type || < C,
where C' is an arbitrary, positive constant of the order of a few unities. It can be checked
with a numerical graphic representation of D (€);) + D(2;) that this expression does
not have any root satisfying |2;| < C, Re(£2;) > 0 and Im(€2;) > 0; which means that
1/(D1(2:) 4+ D2 (€2)) is bounded in that region (called U from now on). In addition, since
the plasma function Z(£2) is bounded for Im(2) > C’ (where C” can be any arbitrary,
positive or negative constant), A () + A2(Q2%) — % is bounded for €2; in U.
It is important to note that this last expression does not have any explicit dependence on
q, which implies that it remains bounded even when ¢ approaches 0. Let us now consider
the remainder of the dispersion relation: (lgii% q% = +00. Therefore, when ¢ — 0, one part
of the dispersion relation approaches infinity, while the other remains bounded for values
of Q; in U: consequently, the dispersion relation (4.17) does not have any excited solution

when ¢ — 0, which is consistent with what can be observed in Figures 4.4 to 4.6.

4.3.2 Limits uy — 0 and 7 — +00

It can be observed in Figure 4.4 that when u; — 0, no EGAM is excited. To account
for this phenomenon, it is to be remembered that the growth of the EGAM comes from
the existence of a range of energy for which [Zarzoso 2012b, Fu 2008] g%’; > 0. When
uy — 0, the centres of the fast ion bumps move towards 0 in the phase space; the overall
ion distribution function thus approaches a Maxwellian, for which ng’; > 0 is nowhere
verified. Consequently, no EGAM is expected to be excited, which is consistent with the
observation in Figure 4.4. For the same reason, no EGAM is expected to be excited when

Tx — 400, which is consistent with Figures 4.5-b) and 4.6.

4.3.3 Impact of FLR/FOW effects on the growth rate

In Figure 4.7, in the D-D case, the growth rate becomes positive for ny/n. = 4% (£0.5
percentage point). In the case of ¢ = 3, we find that the growth rate of EGAMs in the D-D
case, (with @) = 2.8, 7, = 1 and T;/T, = 1) becomes positive for nj/n. = 6%. This value
is quite low compared with the excitation threshold obtained with the GYSELA code for
the same parameters [Zarzoso 2012b|: the threshold value was then about ny/n. = 15%.
A possible explanation for this discrepancy is that GYSELA takes into account the Finite
Larmor Radius (FLR) and Finite Orbit Width (FOW) effects, while the present model
does not. Regarding the FOW effects, a numerical plot in [Biancalani 2014], based on
a theoretical model from [Sugama 2006, Sugama 2008| shows that for large values of ¢
(¢ > 2), the damping rate of GAMs in the absence of fast particles is several orders

of magnitude larger when FOW effects are taken into account than when they are not.
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Consequently, for large values of ¢, the EGAM growth rate is expected to be lower when
FOW effects are taken into account than when they are not. In addition, regarding the
FLR effects, the GYSELA simulations |Zarzoso 2012b| were performed over an annular
domain 0.2 < r/a < 0.8, where r is the radial coordinate, and a is the maximal value of
r. This restricted choice of r/a led to higher values of the radial wave vector of the mode
k., and therefore artificially increased the damping due to FLR effects. Both those FOW
and FLR effects are consistent with the difference found in threshold values between the
present analytical model and the GYSELA simulations [Zarzoso 2012b].

Note that according to the same numerical plot [Biancalani 2014|, the FOW effects
are expected to play a less significant role for low values of ¢ (¢ < 2). As a matter of fact,
simulations taking FOW effects into account made with the gyrokinetic code NEMORB,
in the D-D case with parameters ¢ = 2, 4y = 2.8, 7, = 1 and T;/T. = 1, indicate
[Zarzoso 2014| that the EGAM excitation threshold is reached at ng/n. = 5%. With the
present analytical model, we find for the same parameters a threshold of ng/n. = 4%.
Contrary to what was found in the ¢ = 3 case, the threshold values found in the ¢ = 2 case
are similar whether FOW effects are taken into account [Zarzoso 2014] or not (present
model). This is consistent with [Biancalani 2014]. In that NEMORB case, the simulations
were performed over a domain 0 < r/a < 1, thus leading to reduced FLR effects with
respect to the GYSELA case.

Further details about FOW/FLR effects and numerical analysis of EGAM excitation

can be found in |Zarzoso 2014|.

4.3.4 EGAM resonance

The resonance in the model happens for Q;, = @). When %) and €} gam have similar
values, it is expected that the fast particles will preferentially excite the GAM mode
(which is the least damped mode in the absence of fast particles), thus leading to an
EGAM from GAM. In the absence of fast particles, when ¢ increases, 2 gam also in-
creases |Zonca 2008], while numerical plots made in the present work indicate that the
damped modes do not evolve significantly. If ¢ increases from a configuration in which
) and Q gam have similar values (while @) remains the same), {0 gam will increase and
thus move away from . At the same time, the damped modes will keep the same values,
one of them having a real part close to u). The fast particles will then resonate with this
damped mode and excite it, rather than the GAM which has moved away, thus leading
to a Landau EGAM. Consistently, still starting from a configuration in which % and
O),cam have similar values, if %) decreases while ¢ remains the same, %) will move away
from € cam: the fast particles are therefore expected to excite a damped mode with a
real part close to u) rather than the GAM, thus leading to a Landau EGAM. This analysis
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FIGURE 4.8 — Background: contour representation of |[D(€;)|™" in the complex plane for
q = 2.6, T;/T. = 1 and in the absence of fast ions. Coloured stripes: . This figure
allows one to see the resonance link between @ (coloured stripes) and the roots of the
GAM dispersion relation in the absence of fast particles (coloured circles), when bulk and
fast ions belong to the same species (D-D) and when 7, = 0.4 . Reading example: for a
value of 2.5, u) is in the light green stripe. This means that it is the root tagged with
a light green circle that will be excited and turn into the EGAM when fast particles are
added.

is consistent with what can be observed in Figure 4.4: when ¢ increases (for a given ) or
when %) decreases (for a given ¢), there is a transition from the EGAM from GAM zone
to the Landau EGAM zone. The almost straight-line limit between those two zones was
also expected, as it reflects the role of @) /q in the resonance wgam = /27T3/my (@) /qR)

(expressed in terms of the non-normalized frequency wgam)-

Figure 4.8 (on which bulk and fast particles belong to the same species, which means
that Q, = €2;) gives a clear illustration of the resonance Q, = @ when ¢ = 2.6 is fixed
and ) varies, with 7, = 0.4. It can be seen that the fast particles always excite a root
of the dispersion relation which has a real part Re(2;) very close to @; in fact it is the
first mode which has a real frequency superior to @) which is excited - with a preference
for the GAM mode when two modes have similar real frequencies, given that this mode
is already very close to the excitation threshold, and therefore requires less energy to be

excited than the highly damped modes.
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Below a certain value of @ (u = 1.8 in Figure 4.8), the EGAMs are not excited - we
here remind that the EGAM is considered not to be excited when it never has a positive
growth rate for fractions of fast particles ranging between 0 and 40%, with a precision of
0.05 for the growth rate Im(€2;). For % between 1.8 and 2 (in dark green in Figure 4.8),
the EGAM is a Landau EGAM: it corresponds to a root of the dispersion relation which
does not exist in the absence of fast particles, and which appears close to the root tagged
with a light green circle when fast particles are added. For @ between 2 and 4, the Lan-
dau EGAMs come from roots which all exist in the absence of fast particles, and which
are tagged with colour circles in Figure 4.8. For 4 between 4 and 6.7, the EGAM comes
from the GAM root (in light yellow in Figure 4.8).

Beyond a certain value of @) (% = 7.6 in Figure 4.8), the EGAMs are no more excited.
) is too far from the GAM frequency for a resonance to occur, and the other modes are
too deeply damped. Between the GAM from FGAM range and the no-EGAM range,
there is a zone (in dark yellow in Figure 4.8) where the origin of the EGAM remains
unclear. The reason is that when fast particles are added, a deeply damped mode first
moves to the real axis and joins the GAM root: those two modes then become undistin-
guishable. When the fraction of fast particles further increases, one of them turns into
the EGAM while the other remains below the real axis.

When 7; increases, the bumps of the fast-particle distribution function become larger,
and consequently the possibilities of resonance between €, cam and @) increase. When
such possibilities of resonance increase, a resonance with the GAM is preferred to a
resonance with a damped mode, since the GAM is already much closer to the excitation
threshold. This can be observed in Figures 4.5-b) and 4.6: when 7, increases (for given
values of ¢ and 1)), there is a transition from the Landau EGAM zone to the EGAM from
GAM zone.

4.4 Conclusion

The ratio of frequencies between the EGAM and the GAM close to 1/2 observed in exper-
iments in DITI-D [Nazikian 2008] and in the non-linear code GYSELA [Zarzoso 2012b] is
recovered with a linear model. A noticeable feature of this linear model is that quantita-
tive results can be obtained in a few minutes through numerical computation on a personal
computer. This model however exhibits some limitations. First, kinetic electrons are not
taken into account, while they might play a role in the excitation of EGAMs, similarly
to the effect observed for standard GAMs [Zhang 2010]. Second, trapped ions are not
considered either. Finally, neither FLR nor FOW effects are taken into account. The
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impacts of FLR/FOW effects on EGAMs, together with a detailed comparison of the
analytic dispersion relation with gyrokinetic simulations, are analysed in [Zarzoso 2014].

Depending on the equilibrium parameters of the plasma, as well as on the parameters
of the energetic particles, the GAMs and EGAMs belong or not to the same branch. The
EGAM originates from the GAM in the following regions of the studied parameters: low
values of the safety factor ¢ and of the mass of the fast ions; high values of the energy of
the fast ions, of the width of the fast particle distribution, and of the ratio of the bulk ion
temperature to the electron temperature. On the contrary, the EGAM originates from a
mode which is damped in the absence of fast particles (Landau EGAM) when the studied
parameters are in the following regions: high values of the safety factor ¢ and of the mass
of the fast ions; low values of the energy of the fast ions, of the width of the fast particle
distribution, and of the ratio of the bulk ion temperature to the electron temperature.

The difference between EGAMs originating from GAMs and Landau EGAMs may be
observed in experiments through the different density thresholds required for their excita-
tion (Figure 4.7). Information on the behaviour of EGAMs for low concentrations of fast
particles can be retrieved from the present model and may be compared to experimental
results. It may also be possible to differentiate the two types of EGAM through their
radial profiles: since they have different origins, an EGAM from GAM and a Landau
EGAM may have different radial structures. If this happened to be the case, it would
then be possible to observe it in experiments. Clarification on the EGAM radial struc-
ture and the potential differences between different kinds of EGAMs requires additional
theoretical and experimental work.

Differentiating the GAM from the EGAM in experiments has several interests. Con-
trary to the GAM, which arises from turbulence, the EGAM can give information on the
fast particle distribution. For instance, the nature of the EGAM (EGAM from GAM or
Landau EGAM) can give information on the mean velocity of the fast particles (param-
eter @) in Figure 4.8). Besides, if it is found from further investigation that the EGAMs
have different radial structures depending on their nature, their impact on turbulence may
prove different as well. Since the study of EGAMs is largely motivated by their impact
on turbulence, it is worth trying to understand whether different types of interaction with

turbulence may exist, depending on the EGAM type.
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Chapter 5

Description of the interaction of
EGAMs with ITG modes through a

three wave parametric decay model

GAMs were found to have a mitigating impact on turbulence in [Hallatschek 2001,
Jakubowski 2002, Ramisch 2003, Miyato 2004, Waltz 2008, Conway 2011, Xu 2012].
EGAMs were simulated |Zarzoso 2012b| with the gyrokinetic code GYSELA [Sarazin 2006,
Grandgirard 2008, Sarazin 2010], and have been found to destabilize turbulence
[Zarzoso 2013]. This impact of EGAMs on turbulence was unexpected, taking into ac-
count the similarity of GAMs with EGAMs. However, such a behaviour may occur only
for a certain range of parameters. We present in this section a model of the parametric
decay of an EGAM into two I'TG waves. The aim is to understand under which conditions
such a phenomenon may take place, and consequently how it can be avoided. After hav-
ing introduced the numerical results showing the excitation of turbulence by EGAMs, we
present the parametric interaction model. We then detail the local dispersion relation de-
rived with this model, in the case of an EGAM decaying into two I'TG modes. Finally, we
discuss a possible one dimensional propagative mechanism of interaction between EGAM

and I'TG, within the parametric interaction model.

5.1 Gyrokinetic simulations show excitation of ITG
modes by EGAMs

In this section, we comment on numerical simulations presented in [Zarzoso 2013]; more
details about them can be found therein. Those simulations were carried out with the
gyrokinetic code GYSELA.

Two sources play a role in the considered simulations:
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FIGURE 5.1 — Implementation of the fast ion source in GYSELA

e a thermal heat flux source is present at the core of the plasma, around the inner
radial boundary of the simulation domain. It leads to an increase in temperature
of the core plasma; a steep radial temperature gradient is thus created, enabling
ITG turbulence to develop. This heat source does not cause positive energy slopes

(Opf > 0) to appear in the ion distribution function.

e an ad hoc fast particle source, the role of which is to trigger EGAMs. This fast par-
ticle source corresponds to a "pump" which removes particles from a given position
on the parallel velocity axis and injects them at another position on the same axis
(see Figure 5.1). This fast particle source has been designed to inject energy only,
while it has no effect on momentum, density nor vorticity. This pump does modify
the distribution function shape in the velocity space: it creates two bumps-on-tail in
parallel velocity, which can trigger EGAMs when they grow large enough. Contrary
to the thermal heat source, the fast particle source is localized almost everywhere

in the radial simulation domain.

During the first part of the simulations, only the heat flux source is activated, while
the fast particle source is turned off. The result is the appearance of I'TG turbulence.
When the turbulence reaches steady-state, the fast particle pump is turned on: it cor-
responds to the start of period A in Figures 5.2 and 5.3. During period A, the source
of fast particles is active, but the bumps-on-tail are not large enough yet for EGAMs to
be triggered; ITG turbulence remains active as if no fast particle source had been turned
on. The fluctuations corresponding to this turbulence are visible in red and yellow in

Figure 5.2 and in colours other than green in Figure 5.3.

During period B, it can be seen that turbulent fluctuations decrease in intensity, in
particular for values of the minor radius superior to 0.5. This is due to the way the
fast particle source is implemented in GYSELA: the particles pumped by the source are

removed from a position in the velocity space which is resonant with ITG modes. The
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EGAMs

Turbulent diffusivity (arbitrary unit)
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Normalized time w,'t (x10°)
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FIGURE 5.2 — Turbulent diffusivity (colour scale) as a function of the normalized minor
radius (z-axis) and time (y-axis). Three periods, called A, B and C, are distinguished
depending on the type of EGAM and ITG activity. Source: |Zarzoso 2013|

particle depletion in this particular velocity space region therefore accounts for the de-
crease in intensity of ITG turbulence. Note that during period B, EGAMs are still not
observed in the simulations.

The beginning of period C corresponds to the appearance of EGAMs. At the same
time, the I'TG turbulence regains intensity. A difference in the ITG turbulence behaviour
can be observed in Figure 5.2 between periods A and C: during period A, ITG turbulence
seems to have a broadband frequency; while it is modulated by the EGAM frequency
during period C. This last fact suggests that there is an interaction between EGAMs and
ITG modes. However, against expectations, the appearance of EGAMs does not coincide

with a reduction, but with an increase in turbulence intensity.

The interaction between EGAMs and ITG modes is also visible in Figure 5.3. At
the end of period B, static oscillations appear at minor radius around 0.6. At that
moment, those static oscillations appear as independent from other oscillations exhibiting
an avalanche-like behaviour at minor radius 0.4-0.5. Then, during period C, a mixing

between those static and avalanche-like oscillations occur.
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FIGURE 5.3 — Time fluctuating part of the inverse normalized temperature gradient length
(R/Ly — (R/Lr),, colour scale) as a function of the normalized minor radius (z-axis) and
time (y-axis). Three periods, called A, B and C, are distinguished depending on the type
of EGAM and ITG activity. Two zooms (a) and (b) are made on characteristic time slices
exhibiting avalanche-like behaviours and static oscillations. Source: |Zarzoso 2013]

5.2 Presentation of the three wave parametric interac-

tion model

We present in this section a parametric decay model which aims at understanding the
interactions between EGAM and ITG modes observed in the GYSELA gyrokinetic sim-
ulations described in Section 5.1. This model takes into account three different waves:
one is a pump wave, the existence of which is taken for granted. This pump wave decays
into two other waves, called the daughter waves. The excitation of those two daughter
waves is described by the parametric interaction model; their growth is a consequence of

the pump wave decay.

Such a model was already considered in [Zonca 2008]. The pump wave was then an
ITG mode, decaying into a GAM and another ITG mode: the situation is illustrated in
Figure 5.4-a). We here consider a different situation: the pump wave is an EGAM, and

the two daughter waves are ITG modes, as illustrated in Figure 5.4-b).

The interaction between the three waves is non-linear. In the gyrokinetic Vlasov
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FIGURE 5.4 — Illustration of the three wave parametric interaction model

equation, the dominant non-linearity is assumed to be the E x B velocity; non-linearities
in the velocity space are not taken into account in the present model. In the case studied
in |Zonca 2008|, it was shown that through this non-linear interaction, the daughter GAM
and I'TG waves could be driven unstable by the I'TG pump wave. We here intend to check
whether daughter ITG waves can be non-linearly driven unstable by an EGAM pump

wave.

For the interaction between the three modes to occur, the wave vectors and frequencies

need to be in agreement:

ki = ki — ko, (5.1)

WE = Wy — Wy, (5.2)

where kg and wyg are respectively the EGAM wave vector and real frequency, k; and
wy are respectively the first ITG mode wave vector and real frequency, k, and w, are

respectively the second I'TG mode wave vector and real frequency.

Note that we here adopt a convention under which the mode frequencies can be ei-
ther positive or negative. This may differ from other conventions sometimes used in the
literature, under which all frequencies are considered positive. In practice, Figure 5.4-b)
corresponds to a situation where the frequencies equality should read wg = w; + ws if all

frequencies were positive. Therefore, for (5.2) to correspond to the situation shown in
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Figure 5.4-b), the following signs for the frequencies should be considered:

wg,wy > 0, (5.3)
we < 0. (54)

We will focus in Section 5.3 on situations which fulfil those conditions.

A consequence of equation (5.2) together with conditions (5.3) and (5.4) is that the
EGAM frequency should be of the same order of magnitude as the I'TG frequencies. This
condition is fulfilled by the ordering considered in the present study.

Indeed, as described in Chapter 4,

where vt is the ion thermal velocity and C' is a constant of the order of 1 to 10. Besides,
as indicated in (5.28),

Wit ~ 67wy, (5.6)

where ¢ is a small parameter defined in expression (5.10) and wy,* is the pressure diamag-

netic frequency defined in (5.41).
As mentioned in Section 5.3.1, aV | In fg ¢q is assumed to be of order 573,

Consequently,

1UT
~ o 5.7
wITG - R’ ( )

where ¢ is the inverse aspect ratio.

Considering that % ~ C', we find indeed that
WE ~ WITG - (58)

The EGAM is an axisymmetric mode, i.e. n = 0 where n is the toroidal mode number,
and has a low poloidal mode number: m = 0,1. On the contrary, ITG modes usually
have high toroidal and poloidal mode numbers (n and m are of the order of a few 10).
Consequently, for condition (5.1) to be met, the two ITG modes need to have identical
toroidal and poloidal mode numbers. Rigorously speaking, their poloidal mode numbers
may differ by unity, a difference which is much smaller than the mode number themselves.

The interaction with the EGAM can only take place through the radial wave vectors.

Given that the two I'TG modes have, in the situation here considered, frequencies of op-

posite signs and toroidal wave vectors of the same sign, their phase velocities have opposite
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signs. It is sometimes assumed that ITG waves can only travel in one single direction (the
ion direction) in tokamaks. In fact, they may also travel in the electron direction. This has
already been reported for instance in [Romanelli 1989, Romanelli 1990|. In those papers,
depending on the plasma parameters, the I'TG can travel in one or the other direction.
In the present manuscript, we can infer from expressions (5.54) and (5.55) that two ITG
modes can travel in opposite directions, including in situations when the two modes share
the same plasma parameters (which is not the case in |[Romanelli 1989, Romanelli 1990]).
The condition for it to happen is that the two modes have different ballooning angles, one

of them being superior to /2.

The resolution of the model leads to equations of the following type:

1 = Moo, (5.9)

where A is the non-linear coupling operator, ¢, is the first ITG mode amplitude, ¢
is the second ITG mode amplitude, and ¢ is the EGAM mode amplitude. Calling
v = (0i¢1)/¢1 the non-linear ITG growth rate, the aim is to check whether v can take

real, positive values in the framework of the parametric interaction model.

5.3 Local model

We here derive the local dispersion relations in the case of an EGAM pump wave and
two ITG daughter waves. The time evolution equations are deduced from the dispersion
relations. Two branches arise, leading to different possible situations. Out of them only

one is physically meaningful.

5.3.1 Derivation of the local dispersion relations

The non-linear dispersion relation is derived in the case where the linear part corresponds
to one ITG mode, called the first ITG mode, while the non-linear part corresponds to
the EGAM and the other ITG mode, called the second ITG mode. From this dispersion
relation, the equation in which the linear part corresponds the second I'TG mode, while
the non-linear part corresponds to the EGAM and the first ITG mode, is then deduced.

More details about the present derivation can be found in Appendix C. The deriva-
tion of the linear part is similar to the derivation of the linear ITG mode exposed in
Section 2.3.1 and Appendix A.

We first consider the gyrokinetic Vlasov equation up to order 1 in p,, where p, = p;/a

is the normalized ion Larmor radius. A second small parameter ¢ is considered, of the
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order of k,p;, where k, designates the order of magnitude of the perpendicular wave
vectors. With the notations used below, k, may correspond to either kg, K1, K5 or k,.

The ordering is as follows:
Pr L O~ kip <1 (510)

The ordering § < 1 means that we are here considering long wave lengths as compared

to Pi-

The ion gyro-centre distribution function fg is decomposed into an equilibrium part,
called fgeq, and a perturbed part called f The perturbed part itself comprises three
components fag, fa1 and fgo corresponding respectively to the EGAM, the first ITG
mode and the second I'TG mode. The equilibrium electric potential is assumed to be null.
The perturbed electric potential, called é, comprises three components &E, él and éz
corresponding respectively to the EGAM, the first ITG mode and the second ITG mode.

Those perturbations can be summed up as follows:

fG:fG,eq+fGE+fGl+fG27 (5.11)
é = QEE + &1 + éz- (5.12)

The following orderings in ¢ and p, are assumed for the EGAM perturbation,

e;iE ~ 0072, (5.13)

Jqu ~ pd L, (5.14)
and for the ITG perturbations,

‘%BTFZ pudL, (5.15)

Elz ~ b2, (5.16)

The ordering in p, is imposed by the gyrokinetic equation (see [Brizard 2007|). The
orderings in § of ¢r and fl,g correspond to the idea that the non-linear term in the
E x B velocity is dominant. The orderings in ¢ of fGE and (5172 are then deduced from
the gyrokinetic Vlasov equations (see Appendix A for the ITG and Appendix B for the
EGAM). Jo — 1 applied to perturbed fields is of order 6% and aV | In fg eq is assumed to
be of order §3.

The computation is carried out up to order 1 in p, and -1 in §. The equilibrium

distribution function fg eq is assumed to be a Maxwellian. The ballooning representation
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is used for ITG modes 1 and 2,

&1,2(XG7 t) = <Z51,2(t)eiiwl’ﬁemwci)l,z(9)efimkeefmq{)xﬂm&’z + c.c., (5-17)

JEGI,Q (XG7 o t) _ f1,2 (15)e—iwl,ztez'ngoﬁvL2 (97 o ,u) e—z‘mkee—inqéze—l—ixKl,Q + c.c., (5.18)

while the EGAM is represented in the conventional form:

dp(xa,t) = —og(t)e “rle*® 4 c.c. (5.19)
(&

In those expressions, ¢ is the safety factor, ¢r12(t) and f12(t) are the amplitudes of
the modes, K1 = nb; 2q| is the I'TG radial wave vector, 6 5 is the ITG ballooning angle,
n is the ITG toroidal mode number, ky = Z—‘ff) is the I'TG poloidal wave vector, k, is the
EGAM radial wave vector, and c.c. means complex conjugate. We consider the safety
factor to be linear: ¢ = qo + ¢jx, where qo = q(r0), ¢, = ¢'(ro), © = r — 1o and 7 is
the position (in the small radius coordinate) of the reference resonance surface. w2 is
the real part of the linear frequency (i.e. the frequency which is solution of the linear

dispersion relation).

In practice, since the EGAM is the pump wave, its amplitude is assumed to be large
and vary slowly compared to the amplitudes of the daughter waves (the ITG modes).

Therefore, we will consider that ¢g is a constant.

To ensure interaction between the two ITG modes and the EGAM, the following

relations are assumed:

Wg + Wy = wy, (5.20)
kr + KQ == Kl- (521)

The following wave vectors and frequencies are defined:

kiio= \/(KLQ — nq69)2 + k2 is the perpendicular ITG wave vector, (5.22)
0,
ik = = is the parallel wave vector, (5.23)
qR
i =iwro — O is the comprehensive mode frequency, (5.24)
OrIn fa eq T : : :
Wy = —kZ@%— is the diamagnetic frequency, (5.25)
e
Wy12 = Vy[sin O( K 5 — ngyf) — cos Oky] is the kinetic drift frequency, (5.26)
w| = vk is the transit frequency. (5.27)

mvﬁ—o—,uB
eBR

In expression (5.26), v, = is the norm of the drift velocity.

91



Chapter 5. Interaction of EGAMs with ITG modes

A hydrodynamic limit is considered, with the following orderings:

~ 62 5.28
O (5.28)
Wi
~ 4, 5.29
O (5.29)
Wg1,2 2
T2 5E. 5.30
o, (5.30)

The gyrokinetic Vlasov equation then reads:

2
~ e Wy W W W 1uB 5 -
HF = —foeg——|1—- L 4+ 2L 4 L = k% p3 t)d
O fG’qu-Ql< o, T, Tz o 1(t) %y

2\ .
Wg1 | W Wi 1A
S I [ it | AT B it 31
( Ql+Ql+Q§>Ql’ (5:31)

where the linear part corresponds to the first ITG mode and the non-linear part A (see
Appendix C for details) is related to the EGAM and the second ITG mode. A similar
equation can be derived in which the linear part is related to the second ITG mode while
the non-linear part corresponds to the EGAM and the first ITG mode

We here suppose that there is only one species of ions, and that its charge number is 1.
The equilibrium density of ions and electrons is therefore the same, and is here called n;.
Assuming that the electron temperature T, is equal to the ion equilibrium temperature
T; and neglecting the spatial variations of n;, the quasi-neutrality equation reads

e . . 1uB :
nz‘fﬁfhg(t)@m = /fl,Z(t)Fm (1 - §MT p; [kg + (K12 — ”Q()Q)z]) (dv)d- (5.32)

After integrating over the velocity, an integration is performed over 6, using a Gaussian

form for the poloidal shape (1)172, as suggested in Section 2.3.1. We suppose that ¢ > 1.

The resulting dispersion relations read as follows:

e i so(0y — 09)k2?
()L ) = Ty (0, K, ) 2O R ), (5.33)
T; Qo B
e 1 so(0 — 05)k2
()L, Ky) = — - Ty( @, Q. 16y, 1) 2 O . (5.34)
T; O B
where the linear parts are
Ql + w;‘; wgf 2
Ll(Ql,Kl) = —*+Q—COS¢91—]€ s (535)
p 1
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Q *
Lo(Qa, ) = 20 8 cos, — (5.36)
Ldp 2

and the non-linear parts are

(JJ*
Fl(Qla 927 K17 KQ) - _Z
p
o —50(07 — 6) sin 6 0
i COS U9 + SO( 1 2) SIn ¢y + cos to wWef — kz[l + (91 . 92)283}, (5'37)
QZ Ql
Wy,
PQ(QI; 927 Kla KQ) = T
wp
0 01 — 0;)sind 0
COS U1 + SO( 1 2) sin 67 + cos 0 Wef — k2 [1 + (01 o 92)28(2)}. (5.38)
Ql Q2
In those expressions,
oy . .
50 = —— is the magnetic shear on the reference surface, (5.39)
4do
ko T;
wr = —Ee—m is the density diamagnetic frequency, (5.40)
e n;
ko T; pj . . .
wy = __a_m is the pressure diamagnetic frequency, (5.41)
B e p;
2k T;  2nqoT; . . .
Wy = eBeR = e:i)q;R is the fluid drift frequency, (5.42)
k = kop; is the normalized poloidal wave vector. (5.43)

In equation (5.33), the linear part is related to the first ITG mode, while the non-
linear part corresponds to the EGAM and the second ITG mode. In equation (5.34), the

linear part corresponds to the second I'TG mode, while the non-linear part is related to
the EGAM and the first ITG mode.

5.3.2 Time evolution equation

We assume that the two I'TG modes are linearly marginally stable. This means that the
linear frequencies, which are roots of the linear dispersion relations (5.35) and (5.36),
are real. We perform an expansion of L; and L, around the linear frequencies. After

differentiation in time, we find the same time evolution equations for ¢; and ¢s:

Our(t) = A1A2gt o1 (t), (5.44)
Oua(t) = A1 A2gtda(t), (5.45)
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where

T; so(61 — 02) k3T (wr, wa, K1, K>)

Al(W17W2>K17K2> = — » ) (5-46)
€ wy B [wi — =4 cos 91}
P 1
T, so(0; — 05) k2T K|, K
Ag(wl,wg,Kl,Kg) _ __50( 1 2) 0 2(:017002, 15 2)7 (5.47)
€ w1 B [wi — 4L cos 92]
p 2
have been assumed to be independent of time.
Calling
2 _ 2
v = AiAagi, (5.48)

¢, and ¢y can be expressed as et

For the two ITG modes to be linearly unstable, v needs to be positive. Otherwise, if
~? is negative, v will be an imaginary number, which means that the ITG modes will be

purely oscillatory and will not grow.

7? has the same sign as

Fl(wl, we, K, K2)F2(w1, wo, K, Kz)

D=— , (5.49)
W1 w—l* — % COS 01i| |:w_1* — (':)Lgf COS 92
where w; and wy are respectively roots of equations (5.35) and (5.36).
Let us normalize the frequencies to wy:
Q= -2, (5.50)
(.Up
Q, =2 (5.51)
w
P
0 =1, (5.52)
w*
p
Q= 2. (5.53)
wp
With those notations, Q; and 5 read
k2 -Q, 1 —
0, = 5 + 815\/(1432 — Qn) — 4Q, cos by, (5.54)
N 1 - -
Oy = =" +eagy/ (2 =) — 4 cosfy, (5.55)

where 1,69 = *1 determine two different branches. As shown in Section 5.3.3 below,
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only the €1,e9 = +1 branch is physically meaningful.

5.3.3 Determination of the physically meaningful branch

Two consistent ways are used to show that in expressions (5.54) and (5.55), only the
£1,€9 = +1 branch is physically meaningful. We first consider the poloidal extension of
the two I'TG modes, which must be finite. We then consider the radial propagation of
a linearly damped ITG mode, which must exhibit a group velocity in the direction of
the reference resonance surface, thus conveying energy to the position where the mode is

damped.

Finite poloidal extension of ITG modes
Let us consider the non-local ITG linear dispersion relation for the first ITG mode (see

Appendix A for details on the derivation of this equation):

1 2 . Qi+ wl  wyy 9 1 02

— L 9y® n 1 - — = - —1)— =2

Q%l q2R2 899 1+ w; + QLl + (9 91) So 5 + (9 91)91 (80 ) B
— k*[s2(0 — 6,)° + 1] | &1 = 0, (5.56)

where €)1 is the complex linear frequency of the mode. Contrary to what was supposed
in Section 5.3.2, we here consider that €1, has a small imaginary part, called ~;, which

will enable us to determine the sign of €;. The linear frequency thus reads

QLI =wi + 2’71 (557)
A Gaussian function

. _(0=61—-y1)

Oy =e A (5.58)

is solution of equation (5.56). The expressions of parameters y; and A; are given in Sec-
tion 2.3.1 and in Appendix A.

In the limit sy > 1, where sq is the magnetic shear, equation (5.56) becomes

q2R2
vt

Dpo®1 + | K222, (0 —6,)* —¢| Dy =0, (5.59)
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and the parameters of the Gaussian solution become

y1 =0, (5.60)
1 . R .
P = L1Z|k$0’i—T(wl + Z")/l), (561)
1

where 1; = £1 remains to be determined. For the poloidal extension of the I'TG mode to

be finite, the real part of 2 needs to be positive, i.e. 117y needs to be negative.

In equation (5.59), ¢ is a parameter needed to ensure that expression (5.58) is a

consistent solution of the equation. (5.58) being solution of (5.59) imposes that

1

. R .
(= _A_% = —L12|k:so|i—T(w1 +1im1). (5.62)

Besides, ¢ has to be consistent with the constant term in 6 in equation (5.56):

1 Ugf C_ QL1+w;§ wgf

= +
Q02 PR? wy Q11

cos ) — k%, (5.63)
where 1 — % has been replaced with cos6;.

The following equation must thus be satisfied by €r;:

Q . 1
Llwt “n 4 g?j cos ) — k* + Q—T%le\ksd (5.64)

p

We recognize the linear dispersion relation (5.35) where an imaginary term has been
added. This additional term is small in the limit ¢ > 1.

Normalizing the frequencies to wy, this dispersion relation becomes

Q Ut
Q Q, + = 0, — k% + —yilksgl =0 5.65
L1+ + = Ors cos 0y QLwJ* qRLlZ| S0 ; (5.65)
where
_ Q
Oy = — (5.66)
w
p
The solution reads
_ k2 —Q, 1 _ _ 1 vp .
Opq = 5 + 515\/(14;2 _ Qn)2 _ 4(99 cos 0y + w—;q—]T%L12|kso|), (5.67)
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where one can see that v; has the same sign as —ej¢1. 7141 being negative to ensure that

®; has a finite poloidal extension thus corresponds to £, being positive.

The same rationale applies to the second I'TG mode, and we find that e, must also be

positive for the mode to have a finite poloidal extension.

Balance between energy source and convected flux
Like in the previous paragraph about the finite poloidal extension of the ITG modes,

we here consider the non-local linear dispersion relation in the limit sq > 1:

. q2R2 9 R
Dpo®1 + | k?sh 9510—2(9 —0,)° —(|®, =0, (5.68)
T
with the same solution
R _(0-0)?
O =e 221 . (5.69)

We are now interested in the imaginary part of AL%: we consider a model in which the
ITG mode propagates radially from the reference resonance flux surface. As the radial
wave vector depends on 7 and increases when one gets away from the reference surface,
a position comes where the hydrodynamic limit is no longer valid. A Landau resonance
there takes place. If the I'TG mode is linearly damped, the wave group velocity should be
oriented towards the reference resonance surface: indeed, the energy is then provided to
the mode by the Landau resonance at the radial positions where the hydrodynamic limit
is no longer valid, while this energy is withdrawn from the mode at the radial positions
around the reference layer, where linear damping occurs. On the contrary, if the I'TG
mode is linearly unstable, the wave group velocity should be oriented outwards, from
the reference resonance surface |Pearlstein 1969|: indeed, the energy is then provided
to the mode by the linear instability at the radial positions around the reference layer
resonance, while it is withdrawn from the mode by the Landau resonance at the radial

positions where the hydrodynamic limit is no longer valid.
Calling n the imaginary part of 1/(2A2):

1

the oscillatory part of the Gaussian shape reads
by = e 000", (5.71)
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with

1 R
n= §L1|k80|qv—Tw1- (5.72)

In this expression, ¢, = £1.

In the ballooning representation, the poloidal shape is the Fourier transform of the
small scale radial shape. Therefore, in the present model, the small scale radial shape
reads e*% = e"%, where = (r — r()/d is the normalized distance from the I'TG reference
resonance flux surface and d = 1/ngj is the distance between two resonance surfaces. This

radial shape can also be written under the form of a position-dependent wave vector:

2

ei% _ eifK(;t)dx, (573)
with
TUT
K 4 5.74
(@) L1d2|k’30|qu1 ( )

and where x = r — ry.

The radial group velocity of the wave then reads

0K~ '@|ksolqRK2(x)’

(5.75)

For a linearly damped ITG mode, the wave packet must propagate towards the ref-
erence resonance surface, which means that the group velocity must be negative for x

positive. Therefore, in that case, t; = +1.

The same procedure as in the paragraph about the finite poloidal extension of the ITG
modes can then be carried out: for the Gaussian shape to satisfy the linear dispersion
relation (5.68) in the limit sy > 1, a constant term ( needs to be taken into account.
This ¢ must be equal to both —1/A? and to the constant term in the linear dispersion

relation (5.56). We thus get the linear dispersion relation of the mode, and

_ k2 —Q, 1 - - L vp
QLl = T =+ 615\/(]{2 — Qn)2 _ 4(Qg COS 01 + w—;q—éblZ’kSO‘) . (576)

In the case of a damped mode, 7.e. for 74 < 0, we have seen that t; = +1 for the
radial group velocity to have the correct sign. Consequently, €; must be positive, which is

consistent with the result obtained considering the finite poloidal extension of the mode.
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5.3.4 Results of the local model

arbitrary unit

FIGURE 5.5 — D as a function of 6y, in the case Q, = 0.003, Q,, = 0.2, k = 0.3, and sy = 1.

Taking into account expressions (5.54) and (5.55) of Q; and s, expression (5.49) can
be re-written

%80(91 — 0y)sinf; — Oy + % cos O — k*s5(0h — 92)2

V(2 = 2,)7 — 49, cos b,

D = —E1&9

—%50(61 — 92) sin 92 — QQ + 8—? COS 62 — k28(2)<91 — 62)2

\/(k2 - Qn)z — 4Qg cos 0,

X

(5.77)

D depends on the following parameters: Qg, Q. k., 61,0, and sy, under the constraint
that €, and Q, are real, i.e. (k2 - Qn)2 — 4Qg > 0. Out of those parameters, the
ballooning angles #; and 6, play a significant role, in particular to ensure that ; and
have opposite signs, as requested by (5.2). In addition, L; and I'; on the one hand, and
L, and I'; on the other hand, are similar, which makes v? close to minus a perfect square.
Only the ballooning angles 6; and 6, break this symmetry between the first I'TG mode
and the second ITG mode.

We here consider the case 65 = 0. Considering both #; = 0 and 6y = 0 is impossible
since € and Q, would then have the same sign, and 72 would then be negative. Another
way to see it is that the ballooning angles of the ITG modes also provide the radial wave
vectors K7 and K,: if the radial wave vectors of both the ITG modes are null, then no
interaction with the EGAM can occur. However, considering that only the second ITG
radial wave vector is null does not restrict the generality of the problem: the EGAM
can still interact radially with the first ITG mode, while the second ITG mode provides
poloidal and toroidal counterpart wave vectors for the first I'TG mode.

To ensure that €, and €, have opposite signs, we consider the case k? — Q,, < 0 with
0, > /2, as instructed by (5.54) and (5.55).
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D is plotted in Figure 5.5 as a function of 6y, for Qg =0.003, Q, = 0.2, £ = 0.3, and
so = 1: D is positive for the considered values of 6.

D being positive is equivalent to 2 being positive. Consequently, ITG modes can be
driven non-linearly unstable by an EGAM pump wave in the framework of a local three
wave parametric interaction model, under very stringent conditions. In particular, one of

the two I'TG modes should have a ballooning angle larger than 7 /2.

Let us now consider a non-local model, which could also explain the onset of ITG

modes in the outer region, under less stringent conditions regarding the ballooning angle.

5.4 Model taking into account the ITG radial propaga-
tion

Turning back to the results of gyrokinetic simulations exposed in Section 5.1, an important
feature is that during phase B, ITG modes were not entirely suppressed: they remained
linearly unstable in the core region, while they were stable in the outer region. In the
present section, we therefore reconsider the three wave parametric interaction model to

include radial propagative effects.

The mode amplitudes ¢, and ¢, are now assumed to depend not only on ¢ but also
on x, where x = r — rq is the radial distance from the ITG reference resonance surface.
¢1(t, ) and ¢(t, x) now provide the radial envelope of the modes, together with the linear

ballooning angles #; and 6,. €2, and €25 still have the following meanings:

Ql = wi + i@t, (578)
Qg = wy + i@t, (579)

while K and K, now stand for
K = ngyty —i0y, (5.80)

where the 0, terms have been added with respect to the previous definitions of K; and

K>, to take into account the new dependence of ¢; and ¢y on z.

We here suppose that the second I'TG mode is localized in the core region, where it is

linearly unstable. An ad-hoc representation is chosen for this mode, which is assumed to

100



5.4 Model taking into account the ITG radial propagation

exhibit regular bursts:

Z Dy(2)d(t — ;) (5.82)

where the I'TG bursts occur at times ¢;, ®, is a function localized in = < x5, and x5 de-
notes the limit between the region in which the ITG is linearly unstable, namely z < z,,
and the region in which the I'TG is linearly stable, namely x > x5. We here consider a
situation which is the inverse of the one illustrated in Figure 5.4-a): instead of an ITG
mode giving birth to another ITG mode plus an EGAM, we consider the case where an
ITG mode and an EGAM give birth to another I'TG mode, at a radial location different

from the one of the mother I'TG wave. This new situation is illustrated in Figure 5.6.

EGAM

ITG 1
ITG 2

FIGURE 5.6 — Illustration of the three wave parametric interaction model - reverse process
to the one shown in Figure 5.4-a).

Assuming #; # 0 and 0, = 0, the dispersion relation in which the linear part corre-
sponds to the first ITG mode and the non-linear part to the EGAM and the second ITG

mode, reads

e 1 S0 /<: )
TL1(917K1)¢1(@$) = Q—2F1(91,92,K1,K2) ke 0¢E¢2(t ), (5.83)
where
Ql —i—w Wyfr 2
Ll(QlyKl) == T + Q—lCOS 91 —k s (584)
p
wy 1 1 9rn2 9
[(Q, 0, K, Ky) = + o 9_2 wys — k*[07sg + 1] (5.85)

Ly is expanded not only around the linear complex frequency €21, but also around

the linear radial wave vector ngb:

oL,
o)y

0L,

L1(Q, Ky) = L1(Q 0
1(, Ky) 1(Qr1,ngy01) + oK,

: (91 - QL1) +
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where Ll(QLh 7’LQ601) = 0.

We define the following normalized coordinates:

T = W, (5.87)
T

X =— 5.88
Pi ( )

where w, is the cyclotron frequency and p; is the fluid Larmor radius.

Assuming the first ITG mode is linearly marginally stable, ¢.e. 7, = 0, and taking

into account expression (5.54) of wy, the dispersion relation reads

87-(251(7', X) + vg18X¢1 (T, X) = Al(bE(bQ(T, X), (589)

where

- Q1 Dy(wr, wo, Ky, Ks)sob1k?

A (w1, wa, Ky, Kp) = ) (5.90)
P2 /(0, — 12)” — 40, cos,
Q, 1 in 0
v = gl e , (5.91)
<Ko (9, — k)7 — 40, cos )
- w
Q, = 2 92
o (5.92)
The following function ¢; is a solution of equation (5.89):
$1(T. X) = Migo > Bo[X — vg1 (7 — 1) H(7 — 7), (5.93)
i=0

where H is the Heaviside function and 7; = w.t;. For ¢;(¢,x) to be non null in the outer
region (X > X3), vy needs to be positive. This condition corresponds to sinf; > 0.
Besides, one may observe that the group velocity depends strongly on the magnetic shear
So: vg1 ~ 1/sp. Low values of s correspond to high values of v,. This suggests that
the propagative model here described may be more efficient in low shear plasmas. The
simulations presented in [Zarzoso 2013| exhibited a parabolic ¢-profile, with low magnetic
shear (s between 0 and 0.4).

An illustration of the non-linear solution given by expression (5.93) is presented in

Figure 5.7. To plot the figures, the following assumptions have been made:

Dy(X) =€ X, (5.94)
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X=X,
] A
5 ! With EGAM
= E (¢0 — 1)
o 1
>< 1
= 10 : }{ T=1,
2 I
i | Without
5 ! EGAM
(¢0 = 0)
=Unstable {TG—  Stable ITG .
0 1

15 20 25
Minor radius X

FIGURE 5.7 — Numerical representation of |¢1]| + |¢2|, where ¢; is given by expression
(5.93) and ¢ by expression (5.82). For 7 < 1y, ¢g = 0 which means that ¢; = 0; therefore
only ¢, appears in the figure. For 7 > 7, ¢9 = 1; therefore ¢; and ¢, appear in the figure.
The colours correspond to the intensity of |¢1|+ |¢2|. The following numerical values have
been used: Ax =6, A, =50, A,, = 1500, sop = 0.05, £ = 0.3, 6, = 0.7, Q, = 0.2, Qg =
0.003, Q. = 10 and ¢, = 0.1.

72

o) =e 27, (5.95)
Tir1 = Ti + A, (5.96)

where Ax, A; and A,, are constant parameters. The numerical values are detailed in the
caption of Figure 5.7. Regarding ¢y, one should remember that it is normalized to T;/e,

as mentioned in expression (5.19); a numerical value of ¢y = 0.1 has been used.

5.5 Conclusion

The results of the local model discussed in Section 5.3.4 show that a parametric exci-
tation of linearly stable ITG waves by an EGAM is possible under stringent conditions
(especially regarding the ballooning angle of one of the daughter ITG waves). This means
that in the framework of this model, an EGAM may non-linearly excite linearly stable
ITG waves. This result provides a possible explanation for the behaviour of EGAMs
and ITG modes in the gyrokinetic simulations described in Section 5.1 [Zarzoso 2013]. It
comes as a counter-example to the interaction which is expected between EGAMs and
ITG modes: indeed, like GAMs [Hallatschek 2001, Jakubowski 2002, Ramisch 2003, Miy-
ato 2004, Waltz 2008, Conway 2011, Xu 2012|, EGAMs are expected to mitigate, rather
than excite, I'TG modes.
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Based on the observation that during phase B, in the simulations presented in Sec-
tion 5.1, I'TG modes were not suppressed in the core region of the plasma, the radial
propagation of ITG modes may also play a significant role. The model exposed in Sec-
tion 5.4 shows indeed that the presence of a region in which ITG modes are linearly
unstable, coupled with the presence of an EGAM as a pump wave, can cause the appear-
ance of an ITG mode at a location where the ITG is linearly stable. The amplitude of
the ITG mode which appears in this non-linear model is proportional to the amplitude
of the linearly excited I'TG mode; in the gyrokinetic framework, the former represents a
small fraction of the latter. Note that in the numerical simulations, the EGAM amplitude
which non-linearly links the ITG modes was not small, which may explain why the ITG
had similar amplitudes in the core and outer regions during phase C. This propagative
model provides a simple analytical explanation for the interaction between I'TG modes
and EGAMs observed in the GYSELA simulations, with less stringent conditions on the

ballooning angle than in the case of the local model.
The analytical results here obtained call for more simulations, to assess the level of

generality of the excitation of linearly stable ITG modes by an EGAM, in the presence of

linearly unstable ITG modes at different radial location.
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Conclusions and perspectives

Fast particles are a key issue in tokamaks. First because their presence will be inevitable
in burning D-T plasmas: alpha particles will be born at about 3.5 MeV, to be compared to
a bulk plasma ion temperature of a few 10 keV. Second because they can, to some extent,
be controlled by an external operator, through Neutral Beam Injection (NBI) and Ion
Cyclotron Resonant Heating (ICRH), which are alternative fast particle sources to fusion
reactions. Third because they interact with various plasma instabilities: this feature is of

interest to stabilize or destabilize modes on purpose.

In the present manuscript, we focus on the interaction of fast particles with three
plasma instabilities: a MagnetoHydroDynamic (MHD) instability, the internal kink mode,
which underlies sawtooth activity; a kinetic instability, the Energetic particle driven
Geodesic Acoustic Mode (EGAM); and via EGAMs the Ion Temperature Gradient (ITG)

modes, which underlie turbulence.

In the case of sawtooth activity, the fast particles interact directly with the internal
kink mode. Porcelli’s model |Porcelli 1991] shows that trapped fast ions can stabilize
the mode under certain conditions, in particular if they are localized close enough to the
magnetic axis. We report in Chapter 3 on strong sawtooth stabilization by deuterons ac-
celerated to about 100 keV by NBI, and subsequently to the MeV range by third harmonic
ICRH. The contributions of NBI and ICRH to the stabilization of sawteeth are computed
in the framework of Porcelli’s model, with the help of different numerical codes. As a
result, the fast particles are found to be stabilizing in the four studied discharges, in ac-
cordance with the experiments. A monster sawtooth of about 2.5 s appears in one of the
studied discharges, namely #86775; the sawteeth in the other three studied discharges are
somewhat shorter. This observation is consistent with the results from Porcelli’s model,
which predict that among the four studied discharges, the strongest sawtooth stabilisation
provided by fast particles is in discharge #86775. This 2.5 s long sawtooth is remarkable
under various aspects: it is record in JET with ITER-Like Wall (ILW), and the discharge
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parameters are constant during the sawtooth, in particular the fast ion distribution and

the g-profile.

In two of the four studied discharges, tornado modes are observed before the sawtooth
crashes. Tornado modes are known to expel fast particles from the core plasmas, and
are believed to be here responsible for the sawteeth crashes. In the other two discharges,
cold fronts due to Edge Localized Modes (ELMs) are observed just before the sawtooth
crashes. Those cold fronts may be at the origin of the sudden onset of the internal kink
mode, while stabilization is provided by the energetic particles, and while neutron cam-
eras show that the population of fast particles in the core plasma does not decrease up to

the very moment of the crash.

In the case of turbulence, the interaction between fast particles and ITG modes is
indirect; it occurs through another mode: the Energetic particle driven Geodesic Acoustic
Mode (EGAM). EGAMs are similar to Geodesic Acoustic Modes (GAMs). In Chapter 4,
a local linear dispersion relation of EGAMs is derived, and the relation between GAMs
and EGAMs is analysed. Depending on the plasma and fast particle parameters, the
EGAM can either originate from a mode which is Landau-damped in the absence of fast
particles and is excited in the presence of fast particles, or from the GAM itself which
is slightly damped in the absence of fast particles and is excited when fast particles are
present. In the first case, the EGAM is called a Landau FEGAM; in the second case the
EGAM is called an EGAM from GAM. There also exist ranges of parameters in which
the EGAM cannot be excited at all.

In Chapter 5, gyrokinetic simulations published in [Zarzoso 2013| are considered.
Those simulations suggest that instead of reducing turbulence, EGAMs can on the con-
trary enhance turbulence. An analytical, non-linear three wave parametric interaction
model is developed to better understand the behaviour of EGAMs and ITG modes ob-
served in the simulations. Considering the toroidal and poloidal structures of EGAMs
and ITG modes, the interaction can only occur through the radial wave numbers. A
local dispersion relation shows that the non-linear excitation of two linearly stable ITG
modes by an EGAM is possible under stringent conditions (stringent especially regard-
ing the ballooning angle of one of the two daughter ITG waves). This result provides a
possible explanation for the excitation of I'TG modes observed in the GYSELA simula-
tions. However, it brings a counter-example to the expectations that EGAMs would mit-
igate I'TG-driven turbulence, the latter being based on the similarity between GAMs and
EGAMs and the mitigating impact of GAMs on turbulence described in [Hallatschek 2001,
Jakubowski 2002, Ramisch 2003, Miyato 2004, Waltz 2008, Conway 2011, Xu 2012|. A
three wave interaction propagative model is also found to provide a possible explanation
for the excitation of ITG modes observed in the GYSELA simulations, under less stringent

conditions on the ballooning angle: if ITG modes are linearly unstable in the core region
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and linearly stable in the outer region, the EGAM can act as a pump to non-linearly make
ITG modes appear in the outer region. The group velocity depends strongly on the plasma
shear; it suggests that this mechanism may be dominant in low shear plasmas. It turns

out that the gyrokinetic simulations presented in [Zarzoso 2013| exhibit low shear plasmas.

Several paths may be explored to carry on the work performed on sawtooth stabiliza-
tion. The absence of tornado modes in two of the four studied discharges, while they are
present in the other two discharges, is unexplained. The magnetic shear s = r¢’(r)/q and
the § parameter are expected to play a role. Besides, it happens that the two discharges
in which tornado modes are not present are those in which the ICRH resonant layer is

best centred on the magnetic axis: is there a link between those two observations?

The possible interaction between ELMs and sawteeth via the inward propagation of
a cold front also remains to be explained. Analytical study of this interaction is needed
to understand the possible mechanisms at stake, the conditions under which such an
interaction may occur. This analytical study may be carried out along with numerical
simulations combining edge and core plasmas. On the experimental side, a statistical
survey may be carried out to help determine the link between ELMs and sawteeth: what
is the proportion of sawtooth crashes preceded by an ELM-triggered inward propagating
cold front? Conversely, how many ELM bursts may be triggered by sawtooth crashes?

Regarding the interaction of fast particles with turbulence via EGAMs, the results
exposed in the present manuscript open the way for further research. The analytical
work carried out in the framework of the present thesis shed new light on the gyrokinetic
simulations presented in [Zarzoso 2012b, Zarzoso 2013|. These analytical results may
in turn be used as guidelines to design further gyrokinetic simulations. Regarding the
relation between GAMs and EGAMs, non-linear simulations carried out in the various
ranges of parameters explored in Chapter 4, including with various fast ion species, should
provide interesting results, further validating the linear analytical model or, on the con-
trary, pointing out some limitations. Regarding the interaction between EGAMs and ITG
modes, simulations with the GYSELA code may be carried on: a priority could be the
improvement of the fast particle source in the code, which would be made more flexible.
The goal is to carry out simulations in which the I'TG modes would not be damped by the
fast particle source prior to the appearance of the EGAMs. Different ranges of plasma,
or fast particle parameters could be explored: in particular, the magnetic shear, which
seems to play a key role in the non-linear interaction between EGAMs and ITG modes,
could be varied. Other parameters, including the values of the safety factor ¢, may be
varied to take into account the different types of EGAMs exposed in Chapter 4. Due to
their closer link to GAMs, EGAMs from GAM may be better at mitigating turbulence
than Landau EGAMs.
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Chapter 6. Conclusions and perspectives

Along with numerical simulations, further analytical work may also be carried out.
The non-local three wave interaction model exposed in Section 5.4 may be extended to
take into account a self-consistent form for the linearly unstable ITG mode (here called
ITG 2), for which an ad-hoc form has been chosen so far. This may lead to the non-linear
excitation of the linearly stable ITG mode (here called ITG 1) as a true instability, with
a growth rate of its own, rather than as a mode whose amplitude is a fraction of ITG 2’s.

Analytical work also includes the study of a key aspect of EGAMs: their radial mode
structure. We have seen in Sections 2.3.2 and 2.3.3 that GAMs and EGAMs are observed
at different radial locations. GAMs are observed in the edge plasma, while EGAMs are
localized in the core plasma but have a magnetic component which is detected by Mirnov
coils, outside of the plasma. An EGAM seems to be a coherent mode, with a well de-
fined frequency: how is this frequency determined with respect to the radial position of
the mode? That is to say, to compute the EGAM frequency, where should the ion tem-
perature or the value of ¢ be evaluated on the minor radius axis? If those parameters
vary quickly in r, could the mode still have a wide radial extension? The answers to
those questions are important to better assess the impact of EGAMs on turbulence, to
understand whether they may provide a radial link for turbulence spreading from the core
to the edge plasma, or on the contrary whether they may be able to trigger an Internal
Transport Barrier (ITB).
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Appendix A

Linear I'TG derivation

A.1 Gyrokinetic Vlasov equation

In the present appendix, we use the gyrokinetic model described in Section 1.3.1 to derive
the linear ITG poloidal shape (2.10)-(2.11) and dispersion relation (2.12). The derivation
is based on |Garbet 2001, Sarazin 2009].

The following variables are used: (X, v, ), where the subscript G denotes the gyro-
centre position. v is the parallel velocity, p is the magnetic moment. The latter is an

adiabatic invariant, which means that dyu = 0.

We here consider an electrostatic perturbation. This means that the magnetic field
fluctuations are not taken into account: B(xg,t) = Beq(xg). The equilibrium electric
potential is assumed to be null; the electric potential is therefore reduced to its perturbed

part ¢. In agreement with the gyrokinetic hypotheses, egE/Ti is assumed to be of order 1
in p,.
The distribution function of gyro-centres fq is decomposed into an equilibrium part

fa.eq and a perturbed part fG:

fG(XGavlbﬂvt) = fG,eq<XGa v, ,U') + fg(Xg,U”,M,t)- (Al)

The perturbation of the distribution function is assumed to be of order 1 in p,: fG/fG’eq ~

P

The gyrokinetic equation reads, at first order in p,:

dfc+vaer-Vife+yVfec+dw- 0y fc=0, (A.2)
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Appendix A. Linear ITG derivation

with
VgL = VE + Vg, (A.3)
b x VJyo
VE = Tm, (A4)
V:mvﬁ+uBbeB+mvﬁrotB (A5)
g eB B eB B |, '

In this expression, vy is the electric drift velocity, v, the gradient and curvature drift

velocity and Jj is the gyro-average operator. The magnetic field B is to be evaluated at

2
U rot B
eB B |1’

can be neglected when the plasma has a low 3, which is what we will here consider.

the gyro-centre position. The last term in the expression of v, that is to say

Still up to the first order in p, and at low f:

e ~
dyv| = _EVHJOQS + Y| VE - (A.6)

5
In this expression, only highly passing particles are considered, which means that the

term -4,V B has not been taken into account.

In addition to p,, a second small parameter is introduced, 6 ~ k, p;, with the following

ordering;:
Pe K 0 K 1, (A.7)

were p; is the ion Larmor radius and &, represents a characteristic value of the perpen-
dicular wave vector. In terms of the notations used below, k| here means either ky or K.

Taking into account ¢, the following orderings are considered:

cg
—= ~pdl A8
7 P (A-8)
fa ~ P63, (A.9)
fG,eq
The second ordering comes from the fact that ET—{’% ~ &2 (see the derivation below). In

the computation, we will keep terms up to order 1 in p, and -1 in 6. Jy — 1 applied to
perturbed fields is of order §%: Jy — 1 ~ %%p?Vi. aky = ki p;a/p; is of order dp; ! (a is
the value of the minor radius of the tokamak). aV | In f ¢, is assumed to be of order 53,
The orderings in 0 here assumed are consistent with those considered for the non-linear
interaction of an EGAM with ITG modes (see Section 5.3.1).

Removing all non-linear and equilibrium terms, the gyrokinetic equation reads, with
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A.1 Gyrokinetic Vlasov equation

the conventions here adopted:

- bxV.Jyo mui +uB b x VB .
O fa + TOQS Vi faeq+ HeB B -V fq
~ e ~ b x VJ VB
+ UHV”fG — EVHJ(@ a”\l fG7eq + ) 3 0¢ . 5 &,H fG,eq =0. (A.l())

A Maxwellian distribution function is assumed for the equilibrium distribution func-

tion:
3/2 mo?

m __I_wB

faeq = 1o (27TT> e 2T T, (A.11)
Therefore:
0 IU/VJ_B

VLfG#le = er_fG,eq - —fG7eq7 (A12)

I+ or n T;

mu

avaG,eq = - TH fG,eq~ (A13)

Taking into account those last two relations, and after having removed high order

terms, the gyrokinetic equation reads

:  bxVJo 0
O fa + 5 e, Ef(},eq »
mvﬁ + IUB b x VB ~ ~ )| ~
+ e B Vifa+y V) fc+ T V¢ faeq = 0. (A.14)

In the case of concentric circular poloidal sections, this equation can be recast as

- OpJod _ 0.\ -
N L - <sm 00, + = 39) fe
830 89 ~ €’U|| a‘p 09 i
where v, = mj;; i

The ballooning representation (see Section 2.3.1) is used to express ¢ and fG:

+o00
b(xq,t) = e W Z (0 + 20m)e~ma0+2m=00) ¢ o (A.16)

{=—00
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Appendix A. Linear ITG derivation

+o0
fa (XG, TS t) = ¢ Wheine Z ﬁ’(ﬁ + 20w, v, u) g~ma(6+20m=00) 4 ¢ ¢ (A.17)

l=—00

where ¢ is the safety factor and c.c. means compler conjugate. We consider the safety
factor to be linear: ¢ = qo + gjz, where gy = q(r0), ¢4 = ¢'(ro), * = r — 1o and r¢ is the

position (in the small radius coordinate) of the reference resonance surface.

Keeping only the ¢ = 0 component; defining Ky = nfyq, and ky = ”qo , the ballooning

representation reads as follows:

&(XG; t) _ efiwteimp(i)(9)€7ir0k907inq(’):p9+i:pKo + c.c., (A18)
Fo (0 ) = €1 B (B, )R e (A1)
Inserting those expressions into equation (A.15), we get
. Z'we—theimPﬁ’e—iTOk99—i”‘J6$9+i$K0
1w
—Op| 1
9( 2 T

— Vg (sin 00, +

V ) zwteingoée—irokQH—inqéxG—i-ixKo anGﬁq
rB

cos

ae) efiwteinapFefirokgéfinq6x0+ixKo

- I (Ew + —; eflwtelmpFe*““okg@f’mq(’)mHJrzzKo

a 0 . A . ot ;
fG e eV <E + q_;%) efzwtezmpq)eflmke9*m‘10$0+mK0 =0. (AQO)

Due to ordering considerations, once out of the exponentials, € or z do not need to be

2
derived any more. Besides, ’;F— does not have any spatial dependence (except through B,
but B is here assumed to be constant). F' and ¢ depend slowly on 6, and are therefore

not to be derived except in parallel gradients. Equation (A.20) can therefore be recast as

(ke + ) (1 1523 2) 8 OpF
—wkF + ’ B aT‘f(},eq + UHfl (t) (;R
. . . . inq(’)x ~ 89 BU”
— 0(iKy — ingyd) — cos 0| ik F o =0. A.21
v, (sm (1Ko — ingyd) — cos (Z 0+ - )> R + fGeq T, =0. )

We define the perpendicular wave vector k; and the parallel wave vector kj as follows:

k2 = (Ko — ngh)” + k2, (A.22)
. Do

ki = —. A.23
=R (A.23)
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A.2 Quasi-neutrality equation

We define the diamagnetic frequency w,, the kinetic drift frequency wg;, and the

parallel frequency w as follows:

87‘ In fG e T'z
e = —kg———2 A24
w 0 B e ) ( )
Wgk = Vg[sin O( Ky — ngyt) — cos Oky), (A.25)
wy = vk (A.26)

Taking into account those definitions, and considering that % is small, equation (A.21)

now reads

e w*<1 - I“Blﬁpz> —w
o

A~ Q_)H A~
= —fGeq— —F. A.27
e iT; w + Wk, * w ( )
Assuming the following orderings:
w* . —2
— is of order §~, (A.28)
w
ud | is of order 9, (A.29)
w
Yok s of order 62, (A.30)
w
this expression can be recast as
2
€ W wok W Y LpB o,
— —fae 1 — 29 2y 0 d. A.31
quT ( w+w+w2 ZﬂkJ_’L (3)

A.2 Quasi-neutrality equation

The gyrokinetic quasi-neutrality equation reads (see Section 1.3.1)

niTi <q~5 — <§E>Fs) = div(?énzivlq@ + / Jo - (fG’eq + fG> (dv)3 —n,;. (A.32)

€

We have here supposed that there is only one species of ions, and that its charge
number is 1. The equilibrium density of ions and electrons is therefore the same, and is
here called n;. <q3>FS is the flux-surface average of the electrostatic potential. fg eq is the
equilibrium ion distribution function; it verifies [ Jy- fg eq (dv)3 = n; at order 1 in p,. We
assume that the electron temperature 7, is equal to the ion temperature 7;. The spatial
variations of n; are neglected.

Using the ballooning representation, considering that F depends slowly on 6, that %
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Appendix A. Linear ITG derivation

is small, and eliminating high order terms, the quasi-neutrality equation can be recast as

. . 1B :
N ® = / F(l - §“T_ P2 {kg + (Ko —nqgeﬂ) (dv)®. (A.33)

e

Recalling expression (A.31), this expression transforms into

€z Jeq € Wy Wy wﬁ pB oo o) - 3

Defining
ko T; nl(r)
o N0 ST A.35
"= "Be (A.35)
ko T; pi(r)
e A.
w, Be p (A.36)
T;
/
sy = 20, (A.38)
4o

where p; = n;T; is the ion pressure, and integrating over the velocity, the equation becomes

2

<ok, k )
W %% [cos 6 + so(60 — 6y) sin 0] + vgrw—HQ — kgpi [sg(6 — 00)° + 1]|®=0.

w* + weBR

p

(A.39)

Let us define the fluid drift frequency wyy and the normalized poloidal wave vector k:

2T, _ 2nqT;

= = A4
“9! = CBR ~ er,BR’ (A-40)
k? = kpp. (A.41)
The frequencies of the problem are renormalized to the ITG frequency w:
w 2keT; 2nqoT;

0 — “af _ — A.42

W weBR  wergBR’ ( )
w*

Q) = Up’ (A.43)
w*

Q=" A.44

= (A1)

Ur

QO — A.45

I = Rw (A.45)

y=0—146. (A.46)
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A.3 Linear ITG dispersion relation

A new variable y is defined as a translation of the variable :
With those definitions, the equation becomes

140 ) A
O =+ Qgfcos(y + 0y) + soysin(y + 6p)] — Qﬁayy — E*[sgy? +1] | =0. (A.48)
p

In the limit y < 1, 6y < 1, the cosine and sine functions can be expanded:

0 2
cos(y +60p) =1 — @’ (A.49)
ysin(y +0o) = y(y + o), (A.50)

thus leading to
A 1+Qr  Q 1 62 k? .
_8yy(I)—|— Qﬁﬂ* + Q—%|:1 —|—y2<30 — 5) —|—y90(30 — 1) — 50} — Q—ﬁ[sng + 1] d=0
p

(A.51)

A.3 Linear ITG dispersion relation

Let us rewrite equation (A.51) under the following shape:
Dyy® — My — )°® — pud = 0. (A.52)

By identification of the terms of the second order polynomial in y:
1N\NQ, kK,
A= So — 5 Q_ﬁ - Q—ﬁSO, (A53)
Q
2 a0 = —60(50 — 1)Q—ﬁ, (A54)
1+  Q 62 Q) k?
2 = ny 9 _ 029 _ A.
Ao+ p QﬁQZ + Qﬁ 5 Qﬁ Qﬁ (A.55)
Consequently, the three parameters A, o and p read
1N\NQ, K,
A= So — 5 Q_ﬁ — Q—ﬁso, (A56)
0 —1)Q

a= o0 = 1) (A.57)

(1 — 250)Q + 2k%53’
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Appendix A. Linear ITG derivation

1| 14+ 02 (5o — 1)°Q2
=—|2 2 (2-62)Q, — 2k 1. A58
ST R (2=00)% =26+ 75 o ke (A.58)
We suppose that d has the following shape:
2 PN _(y—yo)2
O = Qe a2z (A.59)
where <i>0 is a constant, and where we want to determine gy, A and w.
With this expression, the second order derivative in y reads
s ly—w)s 1
and we can infer, by identification:
1
a = Yo, (A.62)
1
The dispersion relation can then easily be written:
=\, (A.64)

which can be recast as

0(2)(80 — 1)293
(1 —2s0)Q, + 2k2s3

1+ Q

2
L

+(2-65)Q, — 2k* + + 207 [(1 — 250)Q, + 2k°s5] = 0.

(A.65)
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Appendix B

Linear EGAM derivation

We present in this appendix the major steps of the derivation of the EGAM dispersion
relation (4.17). The model takes into account three species: two ion species (thermal
ions and kinetic ions), and the electrons. Throughout the calculus, the subscripts t, k
and e are used to denote respectively the thermal ions, the kinetic ions and the electrons.
Whenever an equation is the same for thermal and kinetic ions, it is written only once for
simplicity purpose, and the subscript s (standing for species) is used. This means that
whenever the subscript s is met in an equation, it can be substituted indifferently with ¢
or k.

The quasi-neutrality equation is solved taking into account the three species. This equa-
tion is coupled to two gyrokinetic equations for the ions, while an adiabatic representation

is used for the electrons.

B.1 Gyrokinetic equation, for thermal and kinetic ions

The equation used for species s (where it is recalled that s stands indifferently for ¢ -
thermal - or k - kinetic) is the gyrokinetic equation (4.1). We recall that the distribution

function of the ions of species s is decomposed into an equilibrium part F and a perturbed

part fsz
fo= FS<1 + fs) (B.1)

The model is electrostatic, i.e. no fluctuation of the magnetic field is taken into
account.

The thermal ion equilibrium is described by a Maxwellian distribution function (ex-
pression (4.8)). The temperature and density equilibrium radial profiles are assumed to
be flat, which means that F; depends on the kinetic energy of the particles E; only.

The kinetic ion equilibrium is described by a so-called bump-on-tail function, consist-

ing in two Maxwellian functions shifted in parallel velocity (expression (4.14)).
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Appendix B. Linear EGAM derivation

Note that the fast particles are accelerated in the parallel direction only: the fast
particle parallel velocity is of the order of a few times the thermal velocity, while their
perpendicular velocity is of the order of the thermal velocity itself. In addition, the aspect
ratio Ry/a is assumed to be large. Consequently, the vast majority of the fast particles
here considered are highly passing. Their parallel velocity can therefore be considered as
a motion invariant, v can be chosen to be a constant (i.e. independent of r and §), and

the distribution function (4.14) can be recast as a function of motion invariants only:

P My 2 _%’"’;@7@ : M| ) Bo
e tTk . .
kT 2Ty ‘ o Ty (B2)

Two different kinds of expansions are performed:
a) the equations are linearized according to the perturbed quantities (f;, fi and );
b) the equations are expanded up to the first order in p,, consistently with the order at
which the gyrokinetic equations used in the model are valid. p, is defined as p;/a where p;
is the ion Larmor radius and a the minor radius of the tokamak. Note that this expansion
is valid for both thermal and kinetic ions: kinetic ions are accelerated only in the parallel

direction, which means that p, is the same for thermal and kinetic ions.

After linearisation according to the perturbed quantities, the gyrokinetic equation for

species s reads

FOifs +ve ViFo+Fv, . Vifi+ FoyVfs + diEsOp, Fy = 0. (B.3)

Neither F; nor F}, have any spatial dependence: consequently V F, = 0.

Besides, the kinetic energy of species s varies according to the electric energy transfers:
dF, = —esv”VHgE —€sVgs- Vlgg. Consequently, the gyrokinetic equation for species s can

be recast as
~ e ~ ~
atfs = (Vg,s -V + U”V”) (j_ﬂtgszTtaEs lOg Fs — fs)a (B4)

where Z, = eg/e is the charge number of species s and e is the elementary Coulomb

charge.

Since the GAM and the EGAM are axisymmetric modes, the perturbed quantities ft,
fr and ¢ are independent of the toroidal angle . In the case of a tokamak with circular,

concentric magnetic flux surfaces, we have, in flux coordinates:

r

0
Vgs VI =g (sin 00, + o8 39), (B.5)

v
U||V|| = q%ag, (B.G)
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B.1 Gyrokinetic equation, for thermal and kinetic ions

msvﬁJr/,LsB

where vy = — 75

The radial extension of the EGAM is assumed to be significantly smaller than the
minor radius of the tokamak. Therefore, in expression (B.5), only the sin 00, term is

retained as it is assumed to be dominant over the COT—Sé@g term.
A decomposition of f;, f, and ¢ is performed on a Fourier basis:

—+00

fs = Z [fo,cosmb + f5 sin m&]ei(krr_m), (B.7)
Ptk
I :
b= ;t Z [¢r, cosmb + ¢, sin m@]e’(k”"_w'f), (B.8)
w,m=0
kyr=—o00

where the electric potential has been normalized to T;/e.

At leading order in p,, the first two poloidal harmonics of equation (B.4) read

2wf30 = Ug,skr[ ;1 - ¢§ZSE8ES IOg Fs]7 (Bg)
e Ylrgs s
wfg = q_R[ 5 — $12:Ti0p, log Iy, (B.10)

Yl

W ssl = _i¢OUg,SkTZSEaES lOg s — qR

fo — 52,105, log F).  (B.11)

Note that those harmonics have been expressed up to the first order in p, only. To get
them, k,.p; has been assumed to be of order pi/ 2, leading to the following orderings (which
can easily be checked a posteriori): v|/qRw is of order 0 in p,; ¢5/do, f21/do, f$/Po and
vy sky/w are of order 1/2 in p,; foo/¢0 and ¢5/¢po are of order 1 in p,. While fS /¢g is of
order 1/2 in p,, it is important to remark that its integral in velocity at that order is null,

which means that n¢, /¢y, is of order 1 in p,, where n&, = [ F,f¢ (dv)*/n,.

Defining wy s = vy sk, and wy = v)/qR, equations (B.9) to (B.11) can, after some linear

combinations, be recast as follows:

wiw, s¢5 + ww;S(bO

st - _ZsﬂaEs log Fs 5 (B12)
2w <w2 — wﬁ)
Wwy sPo + Wi + fww) @S
% = —Z.T0p, log F——— LT T (B.13)

Equation (B.10) has been used to derive equations (B.12) and (B.13), but it will not
be useful any more in what follows: it has therefore not been copied again. It is to be
recalled that equations (B.12) and (B.13) are valid indifferently for thermal and kinetic

ions (just replace the subscript s with t or k).
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Appendix B. Linear EGAM derivation

B.2 Quasi-neutrality equation, taking into account ther-

mal ions, kinetic ions and adiabatic electrons

The perturbed quasi-neutrality equation reads n. = Zyn; + Ziny.
The perturbed density of ion species s reads, in the gyrokinetic framework at first
order in p,, as the integral of the perturbed gyro-centre distribution function, plus a

polarisation term:

fis = div (ZLSBSV@) /Ff (dv)?. (B.14)

Taking into account equations (B.14) and (4.4), the perturbed quasi-neutrality equa-

tion reads

nTi (6-(9), ) =div (va) / |ZiFfo+ 2B (a0, (B.15)

msT}
e2 B2

librium spatial variations with regard to the perturbation spatial variations, and dividing

Defining p? = where the subscript s stands for either k or ¢, neglecting the equi-

by n., the quasi-neutrality equation can be recast as

(6-(9).) - ;[”pz o Q]V ¢+ie / (ZFfo+ 2Ffe| (@) (BI16)

ne o2

Using Fourier decompositions (B.7) and (B.8), defining p? = 2 p?+ 77, and assuming
(like was done in the gyrokinetic equation calculus) that 0, is dommant over 879, the first

two harmonics of the quasi-neutrality equation can be written, at first order in p,, as

F F
P22y = Zt/n—t fio (dv)3 + Zy, / n_k fro (dv)s, (B.17)
T F F
2O =2 [T @ 2 [ T g (o) (B.19
T, F . F. .
2 =2 [ g+ 2 [ g’ (B.19)

Reporting equations (B.12) and (B.13) into equations (B.17) and (B.19), consider-
ing that —7;0p, log F; = 1, and removing the odd terms in v (which disappear when
integrated), we get the following system:

Fy wwgy

72 Z? F w2
21.2 t s ) It
atr 0 2 L Ne w? — (.Uﬁ ( ) 0 Ne w? — CUH

72 T.0y F) 72 T,.0p F, w?
——%/ Ik S (do)’ - SE 0/ ROl _Zeb o (dv)®, (B.20)

Ne w2 — wij Ne w?— wij

5 (dv)’
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B.2 Quasi-neutrality equation, taking into account thermal ions,
kinetic ions and adiabatic electrons

ﬂ s 2 Ft wwgt 2 s
7ot = Zion |t A | e @
T,0p, Fr ww . [ T0 F wi
~ 2%, / - ’“WQ s (do)® — 226 / tf’“ L (@)’ (B2y)
¢ [ e ]

To solve this system, six integrals need to be computed:

L= [~ dv)? B.22

1 ne w2 — Wﬁ ( U) ) ( )
F W2t 3

L= —=——% _(d B.23

2 e w2 — Wﬁ ( U) ’ ( )
F

I —t dv)? B.24

s Ne w? —wﬁ (dv)’s ( )
Tt(?E Fk WWq k 3

I — k 9 d B.25

1= [ R (B.25)
Ti0p, Fi. Wi 3

I = k A B.2

o= [T @ (5.26)
T,0g, Fi Wﬁ 3

I = k d B.27

o= [ @ (B.27)

where I, I, and I3 are integrals over the thermal distribution function, while I, I5 and

I are integrals over the kinetic distribution function.

Regarding the three integrals over the thermal distribution function, we find after

calculus

ne Iymy gk,

I = ——t Z(Q) (1 +20%) + 20 B.2
T aB v o 20 20 (29
oy Timy 4,4 1 3 2
I, = —n—e€%B2q k; {Z(Qt)(ﬁt + 20 +207) + 3 + 205 |, (B.29)
oy

where €); is the frequency of the mode normalized as follows:

[y
0 = QthRw (B.31)

Regarding the three integrals over the kinetic distribution function, the derivative of
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the kinetic distribution function according the the kinetic energy reads

Ny my 2 o (v =9 ) 205 i (v +0y) 20,2
Or FL. = — a 2Ty, - 2Ty,
o™k 27,75 (27‘(‘Tt7‘k) c te
3 2 2
v 2 m (v =9 )" +201B m (v +0) )" +20i B
+ kY Mk ’ e iy —e 24y, (B32)
2Ty vy \ 27Ty,
We find after calculus
M:”’”Ttm’“ﬁqk’“ Py i Y PN =Y LTl PR N S
2n. exB /T NG Q NG Q TR 2
o gy ( U >
+2—— — — Z —= , B.33
Ve e \VTk ( )
T, QO — u Qp + u Q Q0
Ay ¥ P (i O (o O B SO SV
2n, e; B2 VTk Qi Tk Q, 520 T 2,
02 u
Lotk g II\QF ( ol >}, (B.34)
Tk Q Na
ny 1 Qkﬂn> Q [ ] <9k+ |> Qe { ]
j? z e 1+ L] 4273, B.35
o 2nm{ < Vi IVEL Vi JVEL (B:53)

where ) is the frequency of the mode, normalized as

Y = 4 [T oT, —* 4Rw, (B.36)

and ) is the position of the bump-on-tail in the v direction, normalized as

m
274

E |

57U (B37)

Reporting those expressions of I; to I into equations (B.20) and (B.21), and using a
linear combination of those two equations to get rid of ¢7, one gets the dispersion relation
with ¢g in factor. When the mode exists, ¢y is non null, which means that it can be

removed from the relation. We thus get the following dispersion relation:

1 [N1 () + Nay()]”
A + Ay () — =0, B.38
q2 1( t) 2( k) Dl(Qt) + D2(Qk) ( )
with
AQ) = — " M) o8 0,4 | 02D (B.39)
T _nt+nk%ne T oq, 2 ( ’



B.2 Quasi-neutrality equation, taking into account thermal ions,
kinetic ions and adiabatic electrons
my Ne N Q — u| u
Ay(Qp) = ———— Zl ——— ) |1 — —
() mtnt+nk2—§2ne{ ( N )[ Q.
Q U u O3 Q 0?2 u
k+un>{1+u_] 3;€2+ k \/T_ Lotk g uu{;/gﬁ <U)},
Qk Ty, \/_ QQk Tk \/7Tk
(B.40)
(B.41)

v2( -

2n,
1
(B.43)

M) = Z, /JWZ—:{Z(QQ {93 + %] +Qt},
N0 =z (s AR
_)} (B.42)

] AL

+Z(%)P+$J .t
Du(S) = ZPE{Z(Q0%+ 1} + 7
o= 52 o) ) o) ] )
(B.44)
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Appendix C

Non-linear parametric decay model

derivation

We here consider a non-linear model taking into account three waves: two ITG modes
and an EGAM. The aim is to describe a situation in which the two ITG modes have a
positive non-linear growth rate, while the EGAM has a large amplitude compared to the
ITG, and which can be considered to be steady-state. In the equations derived in the
present appendix, the linear part is an ITG mode, while the non-linear part (from the
E x B drift velocity) comprises the other ITG mode and the EGAM.

The derivation of the linear part is similar to that described in Appendix A. A dif-
ference is that in the present appendix, a local equation is derived, while in Appendix A
the poloidal shape of the ITG linear mode was derived. However, the global structure
derived in Appendix A is taken into account in Section 5.3.3 to discuss the pertinence of

the solutions obtained in the present appendix.

C.1 Gyrokinetic Vlasov equation

We use the gyrokinetic model described in Section 1.3.1 to derive the non-linear equation
describing the interaction between ITG and EGAM in the framework of the parametric
decay model. The following variables are used: (xgq,v|, ), where the subscript G' denotes
the gyro-centre position. v is the parallel velocity, u is the magnetic moment. The latter
is an adiabatic invariant, which means that d;u = 0.

We here consider an electrostatic perturbation. This means that the magnetic field
fluctuations are not taken into account: B(xq,t) = Beq(xg). The equilibrium electric
potential is assumed to be null; the electric potential is therefore reduced to its perturbed
part é In agreement with the gyrokinetic hypotheses, egg/Ti is assumed to be of order 1
in p,.

The distribution function of gyro-centres fg is decomposed into an equilibrium part
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Appendix C. Non-linear parametric decay model derivation

fa.eq and a perturbed part fG:

fa(xa, v, s t) = faea(Xas v, 1) + fa(Xa, vy, 11, 1). (C.1)

The perturbation of the distribution function is assumed to be of order 1 in p,: fG/fG7eq ~

P

The gyrokinetic equation reads, at first order in p,:

Ofec+ver-Vife+v V) fe+dwy- 0y fa =0, (C.2)
with
VgL = Vi + Vg, (C.3)
Vi = bx%;, (C.1)
. mvﬁe; 1B b xBVB . 7:22 ro;B : (©.5)

In this expression, vg is the electric drift velocity, v, the gradient and curvature drift

velocity and Jj is the gyro-average operator. The magnetic field B is to be evaluated at

22
MY rot B{
eB B |1’

can be neglected when the plasma has a low 3, which is what we will here consider.

the gyro-centre position. The last term in the expression of v, that is to say

Still up to the first order in p, and at low g,
e ~ VB
dyvy = ——V 1 JJop + vy vy - ——. C.6
) = —Vjdod +uve - — (C.6)
In this expression, only highly passing particles are considered, which means that the
term in V) B has not been taken into account.
In addition to p,, a second small parameter is introduced, 6 ~ k, p;, with the following
ordering;:

P L0 L 1, (C.7)

were p; is the ion Larmor radius and &k, represents a characteristic value of the perpen-
dicular wave vector. In terms of the notations that are used below, k, here means either

ko, K1, Ky or k.. Taking into account ¢, the following orderings are considered for the
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C.1 Gyrokinetic Vlasov equation

ITG:
6451,2 -1
T, P07, (Clg)
fow 6%, (©.9)
fé@q

where &172 is the I'TG mode 1, 2 perturbed electric potential and fGLQ is the I'TG mode

1, 2 perturbed gyro-centre distribution function.

As for the EGAM, the following orderings are considered:

e&E 9

T P07, (C.10)
fae ~ pdY (C.11)
f6£q

where ¢p is the EGAM perturbed electric potential, and fap is the EGAM perturbed

gyro-centre distribution function.

The EGAM being the pump wave, the corresponding electric potential perturbation
is deemed to be one order of magnitude larger in § than the ITG waves. In addition,
those orderings correspond to the idea that the non-linear term in the E x B velocity is
dominant over other non-linearities. The fq / fG.eq Ordering then ensues from the EGAM

and ITG gyrokinetic equations.

In the computation, we will keep terms up to order 1 in p, and -1 in . Jy — 1 applied
to perturbed fields is of order 6% Jy — 1 ~ $422V%. ak, = kipia/p; is of order 5p;t (a

is the value of the minor radius of the tokamak). aV | In fq o4 is assumed to be of order 573,

The equilibrium terms are removed from the gyrokinetic equation: their sum is null
since they satisfy the equilibrium gyrokinetic equation. Out of the non-linear terms, the
vVE-V | fG term is assumed to be dominant. We therefore remove all non-linear terms but

this one. With the conventions here adopted, the gyrokinetic equation reads

. bxV.Jyb b x V.Jyod - mul+uB bx VB .
O fan + Twl Vi faeq + T(@E -V fa2 + ”eB 5 V. fa
. e - bx VJop, VB
+wmﬁﬂ—ngwﬂhhm+w\ Zgoﬁ Ba%mmzo (C.12)

bXVJo(%z
B

In particular, the non-linear term -V, fGE does not appear in this equation as

its order in 0 is too high.

A Maxwellian distribution function is assumed for the equilibrium distribution func-
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Appendix C. Non-linear parametric decay model derivation

tion:
fGeq =1 (%)3/26_7;?_/%?- (C.13)
Therefore:
VJ_fG,eqlvH’u = eT%fG,eq » — %fg eq> (C.14)
Ouy fioa = = Fatea: (C.15)

7

Taking into account those last two relations, and after having removed high order

terms, the gyrokinetic equation reads

~ b x Vjoqgl 0 b x VJOQNSE 3
O¢fan + — 75 erafe,eq B + — 5 Vi faz
mv? + uB b x VB - ~ ev ~
I Il
+ B 5 Vi far+vV)far + ?iVH(bl faeq = 0. (C.16)

In the case of concentric circular poloidal sections, this equation can be recast as

- Opl, b x VJyo . . cos
O, for — o 0<251a  Feseq + TWE -V i faa — vy (sm 00, + 89> fG1
0, O, 19) Op \ ~
JFUII(R +—9>fG1 fGeqT <E@+q—;)¢1=0, (C.17)
where v, = mZ'JB+; i

The ballooning representation (see Section 2.3.1) is used to express ggl and fGl in the

linear part of the equation, corresponding to the first I'TG mode:

+oo
b1(xq,t) = ¢y (t)e “1tem? Z Dy (0 4 20m)e~maO+2Hr=00) 4 ¢ ¢ (C.18)
f=—0o0
~ +m ~ .
Jar(xa, vy, pt) = fr(t)e e Z Fy (0 + 20m, vy, p)e 10200 e (C.19)
f=—00

where ¢ is the safety factor and c.c. means complex conjugate. We consider the safety
factor to be linear: ¢ = qo + qyz, where qo = q(ro), ¢4 = ¢'(10), © = r — ¢ and ry is the
position (in the small radius coordinate) of the reference resonance surface. wy is the real

part of the linear frequency (i.e. the frequency which is solution of the linear dispersion
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C.1 Gyrokinetic Vlasov equation

relation). ¢1(¢) and fi(t) are the amplitudes of the mode.

Keeping only the ¢ = 0 component; defining K7 = nfq) and ky = 22, we can write

ro ?

the ballooning representation as follows:

le (XG, t) — le <t>€—iw1t€ingoci)l(Q)G—irokBG—inq6x0+izK1 + c.c., (020)
fen (X(;, vy, H t) = fl(t)e_wltem“"ﬁl (9, vy, ,u) e~ irokeV—ingorftizky 4 . . (C.21)

Inserting those expressions into equation (C.17), we get

!/

. VLfGQ + (—iwl + %

1

b x VJyor

. . A o .
5 )fl (t)e zwltezmpFle irokg0—inqyrd+icz K

1pB it ing @ —irokpO—ingzh+izi, Orl
_89(1 5 T 2v2)¢ ( )6 1te @0(1316 okg6 qoro+izKy Tg,eq

cos 0

. _ o L )
— Uy (Sln Qar + 69) fl( ) 7,w1t€mg0F16 irokg0@—ing{x0+icK,

0, 0 , L o
* UH (ELP * q_;) fl (t)e‘wntemchle—zrokge—znq0x9+zxK1

G’U”

9, 9 o1t inp gy g irokol—ingys0-i
tfaa 2 (%o G0 o mientginey cminokab-indyaoicis _ C.22
T

RqR

Due to ordering considerations, once out of the exponentials, 6 or z do not need to be

2
derived any more. Besides, ';—l does not have any spatial dependence (except through B,
but B is here assumed to be constant). F; and ®; depend slowly on 6, and are therefore

not to be derived except in parallel gradients. Equation (C.22) can therefore be recast as

b 5 . o . L .
% . VLfGQ + e—zwltezngae—zmkgé'—znqowG—‘erl [(—iwl + at)fl (t)Fl
(ko + ) (1= 5243102 ) n ()
+ B rfG,eq
: /
- (sm 8(i kK, — ing)f) — cos (ika + mqu) ) AR
To
Oy F: ev Dp®
+wﬁ@);1+ﬁhq¢d);; ~ 0. (C.23)

We define the perpendicular wave vector k1, and the parallel wave vector k| as follows:

K, = (K1 — ng\d)” + k2, (C.24)
. Op

k= —. C.25
k=R (C.25)

We define the comprehensive mode frequency 2, the diamagnetic frequency w,, the
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Appendix C. Non-linear parametric decay model derivation

kinetic drift frequency wyi, and the parallel frequency wy as follows:

in = iw1 - 815,

(
0 lnfG T;
=g, Gea ti
w 0 B e’ (
wg1 = vy[sin (K — ngyd) — cos Oky), (
(

wj = vk

With those conventions, and considering that % is small, the equation now reads

b x VJyob . o o R
X e O¢E . VLfGQ + e—zwltezncpe—zmkg9—znq0a:9+w:K1 _ infl (t)Fl
. . e 1uB . .
—_ Zgbl (t)q)l fw* (1 — 5% k‘ilﬂ?) fG7eq — nglfl (t)F1
~ 6’(}” ~
+ kal (t)Fl + fG,eq?k‘”¢1 (t)fbl =0. (C.30)

In the non linear part of the equation, the EGAM is expressed as follows:

op(xg,t) = —qu(t)e’““Etelm [CDE + ®,sinfh + ¢.cosb| + c.c., (C.31)
e

where qBE has been normalized to %, wy is the real part of the EGAM frequency and
¢g(t) is the amplitude of the mode. In practice, since the EGAM is the pump wave,
its amplitude is assumed to be large and vary slowly compared to the amplitudes of the
daughter waves (the I'TG modes). Therefore, we will consider that ¢ is a constant. Py,
is the m = 0 component of the EGAM, where m is the poloidal mode number, while &,
and ®. and respectively the sine and cosine m = 1 poloidal components. The orderings

in § are as follows (see Appendix B):

i)

=~ 4, (C.32)
P

i)

L~ (C.33)
P

In practice, taking into account those orderings, &, and ®, will not appear in the final

dispersion relations.
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C.1 Gyrokinetic Vlasov equation

As for the second I'TG mode, it is expressed in the ballooning representation as

QB2 (XG7 t) _ ¢2 (t)efiwztemgo(i)2(9)67ir0k907inq6:p9+ixK2 + cc., (C34)
fao (XG, Vs [y t) = fg(t)e_i”temwﬁg (9, vy, u) e~ iroke0—ingyrdtizks | o . (C.35)

where Ky = nfaqq, kg = 51 and ws is the real part of the linear frequency. ¢o(t) and fo(t)

are the amplitudes of the mode.

To ensure interaction between the two ITG modes and the EGAM, the following

relations are assumed:

Wg + Wy = wy, (C.36)
ky 4+ K> = K. (C.37)

T; in the EGAM expression is assumed to be constant. In the second ITG expression,
Fy varies slowly in # and therefore needs not be derived. Considering that % is small, and

removing high order terms, the non-linear term, here called A, reads

T . k, [(fE + <i>s sin 6 + <i>c cos 9} T . . uB p2k?
A==F t ko — —ppPr fo(t) Fomma "=k :
~ Eypufult) . o= Lonbefu(t) Brl e, (C39)
while the total gyrokinetic equation reads
1uB2 2
A 1A e Wx <1 - ETikuPz) — W A w)| A
OF) = —— — fGeq= )P, + —fi(t)F1.  (C.39
Si(t)Fy O+ o fa, AT, 0+ o ¢1(t) Py Qlfl() 1 (C.39)
Assuming the following orderings:
w
o~ C.40
Ql ) ( )
wi
— ~ 0 C.41
Ql ) ( )
Wyl 2
—— ~) C.42
Ql Y ( )
this expression can be recast as
2
; € Wa wor W W TpB L, :
D = —fgeqme— |1 - L+ 2 4+ - — k3, p t)d
fl() 1 fG7q7vin< Ql +Ql Q% 2T, 11P; le() 1
2\ .
Wgl w| Wi 1A
—-1-=4+ 14 == C.43
< 91+Ql+9§>91 (C.43)
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Appendix C. Non-linear parametric decay model derivation

C.2 Quasi-neutrality equation

The gyrokinetic quasi-neutrality equation reads (see Section 1.3.1)

nTi (gfs . <¢§>FS) - div(%;im&) + / o - (fG,eq + fG) (o) — i, (C.44)

We have here supposed that there is only one species of ions, and that its charge
number is 1. The equilibrium density of ions and electrons is therefore the same, and is

here called n;. <q~5> is the flux-surface average of the electrostatic potential. fg eq is the
FS

equilibrium ion distribution function; it verifies [ Jo - fq.eq (d’u)3 = n; at order 1 in p,.
We assume that the electron temperature 7, is equal to the ion equilibrium temperature

T;. The spatial variations of n; are neglected.

Using the ballooning representation, considering that F depends slowly on 6, that %
is small, and eliminating high order terms, the quasi-neutrality equation can be recast,
for the linear I'TG mode, as

ngonb = [ A0 (1= 5522 [+ (o] ) @' ()

Recalling expression (C.43), this expression transforms into

2
@3“*(1_@+ﬂ uB

n; TZQ_1 -

o T T kim?) $1(t)®1 (dv)® + N, (C.46)
1 i

%Qﬁ(t)‘iﬁ = -

where N is the integrated non-linear term:

1 wer W Wi LuB 4, \iA |
N=—— 11—+ 2+ = — = k1 | = (dv)”. A4
n; ( Ql + Ql + Q% 2 7—; Pirv11 Ql ( U) (C 7)
Defining
ko T; nl(r)
== C.48
"= "Be (C.48)
ko T pii(r)
=== C.49
P (C.49)
T
2 _ i
vp = (C.50)
/
So = %, (051)
4o
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C.3 Non-linear term

where p; = n;T; is the ion pressure, and integrating over the velocity, the equation becomes

E Ql—i—w;'; 2]{397—;

T; wy 0eBR
ki Q,

+UTQQ k@ﬂz [30(9 91) } ¢1(t) Nw_' (0-52)

p

[cos O + s(0 — 61) sin 0]

Let us define the fluid drift frequency wyy and the normalized poloidal wave vector k:

2keT;  2nqoT;

w = =
9" ¢BR ~ eroBR’
k? = kppt. (C.54)

(C.53)

Let us consider the following form for the poloidal shape of the linear ITG mode:

1 (o0
A \/%6 287 (C.55)
1

where A is a constant. Then integrating over 6, the equation becomes

Ql/ N(§)ds.  (C.56)

o, =

T;

cosbie” & —k2>( —i—SOA

0 +w N Was
w; Ql
C.3 Non-linear term

Taking into account the expression of A, and eliminating high order terms, the non-linear

term N reads

. : k [Cﬁ 1+ d,sinh + P COSQ:| 9,3
=-— L 1T - ‘ _ 5 WB pik; 3
N = nin/ 6F2¢Ef2(t) B ko gZ)ECDEfQ() 29T B 0| (dv)
7 T - ky [‘i)E + Ci)s sin 9} ,
_niQ%/w — F29ufa(t) 5 kg | (dv)
2 A~
‘ “I _wg  L1uB k,Pr 3
nifh/ Q2 o 2T an F2¢Ef2( )=k | (dv)”. (C.57)
Considering that
2
Z € Ws wer W W L1pB i, .
' ¢ -, T, t) @2, C.58
f2( ) fG qT Q2 ( Q2 + QQ + Q% 9 T LQ i ¢2( ) 2 ( )
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Appendix C. Non-linear parametric decay model derivation

eliminating high order terms, and integrating over the velocity, one gets

' A
N = - Prpa(t) ? E{Wn

Q109 B

_ [sin O( Ky — ngyd) — cos Oky N sin 0( K, — ngyf) — cosbky | 27T; L

Qz Ql eBR P
- lpzw* (K2 + K2+ k2, + L e D, (C.59)

oFi%p M 11 2 Q% 0,9, Q% I~ T%p )
where

Ky = (K1 — ngi)” + k7, (C.60)
k2, = (Ky —ngld)” + k2. (C.61)

We can here see in particular that the EGAM m = 1 components ®, and ®, have been
eliminated for ordering reasons. Therefore, ¢p and dp now play the same role of the
EGAM amplitude. We consequently assume that b = 1, and only ¢g remains to de-
scribe the amplitude of the EGAM.

Let us consider the following form for the poloidal shape of the non-linear I'TG mode:

. 1 _(0=6)?

Py = e 2% C.62
2= A (C.62)

where A, is a constant. Then integrating over 6, the non-linear term reads

%0 i koko [
[mewzgﬁﬁww>B{%

a2 A2
foe™ % -7
cos 56 -(soAg + 1) + eQ (30 cos 035 — s0(61 — 05) sin 0y + cos 92) W
2 1
_ L — k| 2024 2o, — a2+ 1| V. (C.63)
9 i pr p|20—=2 9 1 2 0

C.4 Dispersion relation

Since k, + Ky = Kj, k, can be recast as k, = kgso(61 — 02).

The dispersion relation therefore reads

e
T;

0 * A2
W, + (ﬁ cos 916_71 — k:Q) (1 + SoA%)
wy Q

1

T
B wy

: _ 2 (
$1(t) = QL2¢E¢2(t)M{wn

136



C.4 Dispersion relation

0 1 :
cos2 2 (SoAg + 1) + Q—l(so cos 03 A5 — s50(01 — 05) sin 0y + cos 92) wgfe’AT
— K*[s5A3 + (61 — 02)*sg + 1] } (C.64)

A similar dispersion relation can be written in the case where the first [TG mode
enters the non-linear term of the equation, while the second ITG mode enters the linear

part of the equation:

*

e | Qy+wr w _a3 ! (61 — O)ks | i
|2 (e ) ()< - et O
9 1 %
+ [COS *(s0A2 4+ 1) + o (s0€0s 01T + 5061 — 02) sin 01 + cos 91)}wgf€_i
1 2
— K2 [s5AT + (61 — 05)°s5 + 1] } ()

According to (2.11), A? and A2 vary like 1/q. Therefore, assuming ¢ is large, A? and

A2 can be neglected. The two dispersion relations then read

e i so(0; — 05)k2
(LK) = Ty, 0 Ky By R . (C.66)
T, Qy B
e ) So(01 — 09) k2
—¢a(t) La(S2o, Ky) = __F2<QDQ27K1:K2)—O( 1= 62) O ppon(t), (C.67)
T; 0 B
where the linear parts are
Ql +w; wgf 2
L1<Ql, Kl) = o + Q_ COS (91 —k s (068)
» 1
Q *
Lo(Qs, K,) = 2;“’” + ‘% cos By — k2 (C.69)
» 2
and the non-linear parts are
W,
F1<Ql7 QQ? K17 KQ) R
p
0 —50(6; — 05)sinf 0
|:C(;§1 2 + 50( 1 2)(;;1’1 2 -+ cos 2:|wgf N ]f2 |:1 + (61 . 92)253]’ (070)
W,
F2<Qla Q27 K17 KQ) — _*
wp
0 0, — 05)sind 0
|:COSI 1 + SO( 1 2) ?;Zl 1 + cos 1:|ng _ kQ [1 + (91 . 92)283] ) (071)
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Appendix C. Non-linear parametric decay model derivation

Let us call respectively p; and €y, the complex linear frequencies (i.e. the complex
frequencies solutions of the linear dispersion relations) of ITG modes 1 and 2. €y is
therefore a root of expression (C.68), while Q5 is a root of expression (C.69). Let us
call v, the imaginary part of €1,; and v, the imaginary part of {215. The complex linear

frequencies therefore read

My = wy + i1, (C.72)
QLQ = Wy + Z’}/Q (073)

We expand L; and Ly around the linear frequencies:

oL
Li($h, K1) = Li(Qu1, K4) + a—Ql (= ), (C.74)
1
oL
Ly(Q, Ky) = Lo(Qa, Ks) + 3_92 (s — Qua), (C.75)
2
where L1<QL1>K1> =0 and LQ(QLQ,KQ) = 0.
Let us recall the definition of €2; and ,:
in = iwl - 8t, (076)
iQQ = in - 6t. (077)
The dispersion relations read
el Yt 01 (0 — 1)1 (t) =
Ti [wy 0
so(01 — 0)k2
Ty (QL1, Qua, K1, Kﬁ%@@(t% (C.78)
2
e |1 w
T L}—p — Q—%’; cos 92} (Or — v2)a(t) =

80(01 — 02)]{33

—To(Q1, Qa, Ky, Ks) dro1(). (C.79)

We consider marginally stable I'TG modes, i.e. 73 = 75 = 0. The dispersion relations

thus have the following shape:

at¢1(t) - A1¢E¢2(t>7 (0-80)
O19a2(t) = Aoy (1), (C.81)
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C.5 Sign of ~?2

where
T, so(0, — 05)k2T K, K
Al(wl,wg,Kl,KQ) _ _So( 1 2) 0 1(:01&02, 1 2)7 (C.82)
€ wy B [wi — w%fcosel}
P 1
T, so(6y — 05)k2T K, K
Ao(wr,wa, K1, Ky) = __SO( - 2) ‘ 2(:0170027 s 2)- (C.83)
€ wlB[ﬁ — %00592]
P 2

Differentiating equation (C.80) according to ¢ assuming that A; is time independent,

and then using equation (C.81) to substitute 0;¢o, one gets
O (t) = A Aadfdn (t). (C.84)

Similarly, differentiating equation (C.81) according to t assuming that Ay is time

independent, and then using equation (C.80) to substitute d;¢, one gets
Oua(t) = A1 Aagral(t). (C.85)

Defining v = A;Ay¢3, we can see that ¢; and ¢, have the same exponential evolution

et

We now need to check under which conditions 72 = A Ay¢% can be positive, a situation

which corresponds to non-linearly unstable modes.

C.5 Sign of ~2

The sign of 72 is the same as the sign of

Fl(wla w2, Kh KQ)PQ(wla w2, Kl; KQ)

D=— . (C.86)
wiws | = — =4 cos 91} [wi — =4l cos b,
P 1 P 2
Let us define the following normalized frequencies:

Q= -2, (C.87)

w

p

_ w
Q, =4 C.88
= (C89)
0 = 2, (C.89)

w*

p
Q= 2. (C.90)

(JJp

wy and wy are solutions of the linear dispersion relations (C.68) and (C.69), therefore
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Appendix C. Non-linear parametric decay model derivation

Q and Q5 read

— 2 -
_ k2 —Q, k2 —Q,)" —4Q,cos b,
b= +e \/< )2 ! , (C.91)
— 2 —_
_ k2 —Q, k2 —Q,)" — 4Q, cos b,
Q=" +e \/< )2 ! : (C.92)

where 1,9 = £1.

With the normalized frequencies, the expression we are searching the sign of reads

Qz 80(01 — 02) sin 81 — Ql + g—g COS 01 - k233(«91 — 92)2

D = —5152?2_ _ : =
\/(k:2 _ Qn>2 — 4Q, cos 0;
O . ® Qg 2
L mieso(fr = 02)sindy — O + Gt costy — K301 — 02)° (C.93)
\/(kQ _ Qn)Q — 49, cos b,
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Notations

Latin letters

a minor radius of the plasma on the equatorial plane

a,b letters used to designate undetermined ions species

a = a./k, average minor radius of the plasma

A equilibrium magnetic vector potential

A non linear term before integration in velocity, defined in Appendix C (three wave
parametric interaction model)

Ay term of the GAM and EGAM dispersion relations, defined in Sections 4.1.2 and 4.1.3
Ay term of the EGAM dispersion relation, defined in Section 4.1.3

b unitary vector oriented along the equilibrium magnetic field

B equilibrium magnetic field

B perturbed magnetic field

B norm of the equilibrium magnetic field

By norm of the equilibrium magnetic field on the magnetic axis

Biax = IB—_Og maximum value of the magnetic field on a given flux surface

Bp norm of the poloidal magnetic field

c.c. complex conjugate

“+o0
cg= [ Eg/QfE(Ek)dEk (sawteeth stabilization modelling)
0

Crezfl

min

fet pa+le—(p/pk)2
—0¢ /1—Ao+Agecosb

C' parameter in the Gaussian form assumed for the I'TG poloidal shape

dfdp (sawteeth stabilization modelling)

C' constant of the order of 1-10 (three wave parametric interaction model)
C,C" arbitrary constants (relation GAM/EGAM)

C(f) collision operator in the Fokker-Planck equation
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d= n;(,) distance between two resonance surfaces in ballooning representation
D deuterium

D EGAM dispersion relation (relation GAM/EGAM)

D expression defined in Section 5.3.2 which has the same sign as 7? (three wave
parametric interaction model)

D; term of the GAM and EGAM dispersion relations, defined in Sections 4.1.2 and 4.1.3
Ds term of the EGAM dispersion relation, defined in Section 4.1.3

div divergence

e=1.6-10"1 C elementary Coulomb charge

e; ion charge

es charge of ions of species s (relation GAM/EGAM, s stands either for ¢ - thermal or k
- kinetic)

e, unit vector in the radial direction

ey unit vector in the poloidal direction, in the case of circular flux surfaces

e, unit vector in the toroidal direction

E perturbed electric field
E

%mvﬁ + puB kinetic energy

E, =3.5MeV energy that an alpha particle takes away from a D-T reaction

E, = %msvﬁ + psB kinetic energy of ions of species s (s stands either for ¢ - thermal or
k - kinetic)

f(x,v,t) generic kinetic distribution function

fr distribution of the fast particles in kinetic energy (sawteeth stabilization modelling)
fa = fi + fr total ion gyro-centre distribution function (relation GAM/EGAM)

fa = faeq + fe ion gyro-centre distribution function (linear ITG derivation, three wave
parametric interaction model)

fGeq equilibrium ion gyro-centre distribution function (linear I'TG derivation, three wave
parametric interaction model)

fad = —¢ 1 - Vfs adiabatic part of the perturbed ion distribution function, in the
convention of [Coppi 1990] (sawteeth stabilization modelling)

fo perturbed ion gyro-centre distribution function (linear ITG derivation, three wave
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parametric interaction model)

far  EGAM part of the perturbed ion gyro-centre distribution function (three wave
parametric interaction model)

fGLQ ITG 1, 2 part of the perturbed ion gyro-centre distribution function (three wave
parametric interaction model)

fi2 amplitude of the ITG 1, 2 perturbed ion gyro-centre distribution function (three
wave parametric interaction model)

f, radial distribution of the fast particles (sawteeth stabilization modelling)

fs=F, (1 + fg> ion gyro-centre distribution function of species s (relation GAM/EGAM,
s stands either for ¢ - thermal or k - kinetic)

fs perturbed ion gyro-centre distribution function of species s (relation GAM/EGAM, s

stands either for ¢ - thermal or k - kinetic)

C

<. cosine Fourier component of order m of f;

f# sine Fourier component of order m of f,
F; equilibrium ion gyro-centre distribution function of species s (relation GAM /EGAM,
s stands either for ¢ - thermal or k - kinetic)

Fricry = Afa(A) fe(E) f(r) distribution function of the ICRH-accelerated fast particles
(sawteeth stabilization modelling)

FLQ poloidal envelope of the ion gyro-centre distribution function for ITG 1, 2 (three
wave parametric interaction model)

F generic tensor of order 1, i.e. a vector (Section 1.4 about conventions)

F,,F,, F, Cartesian coordinates of generic tensor F (Section 1.4 about conventions)

h generic small displacement (Section 1.4 about conventions)

H= %mivﬁ + uB + e;¢ ion energy

H Heaviside function

H hydrogen

He3 helium 3

I, Iy, I3, Iy, I5, Is integrals defined in Appendix B.2 (relation GAM/EGAM)

Iy = 3¢ (sawteeth stabilization modelling)

I. = (cos®), (sawteeth stabilization modelling)
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I = (cosB), + s(fsinf), (sawteeth stabilization modelling)

I, = (cos(qf)), (sawteeth stabilization modelling)

I(Ao) = Aofb% (sawteeth stabilization modelling)
I(¢) = % toroidal covariant component of the magnetic field

J =2 f_a’;t mgvdl longitudinal invariant

J equilibrium current density

J perturbed current density

Ji perturbed fast particle current density

J = (VY xVo- ng)_l Jacobian of the Cartesian coordinates with respect to the
(1,0, ¢) coordinates

kr EGAM wave vector (three wave parametric interaction model)

kio ITG 1, 2 wave vector (three wave parametric interaction model)

k = kgp; normalized poloidal wave vector

k.  GAM/EGAM radial wave vector (relation GAM/EGAM, three wave parametric
interaction model)

ke = T;—? poloidal wave vector

k| characteristic perpendicular wave vector of the perturbation

ki, = \/(KO — ngyf)” + k2 perpendicular wave vector (linear ITC derivation)

kiio = \/(KLQ —nqéQ)Q—f—kg perpendicular wave vector of ITG 1, 2 (three wave
parametric interaction model)

k= —i(%% parallel wave vector (linear ITG derivation, three wave parametric interaction
model)

Ky = ng\fy radial wave number in ballooning representation

K, 5 = ngjf,» radial wave number of ITG mode 1, 2 (three wave parametric interaction
model)

K(x) position-dependent radial wave vector (three wave parametric interaction model)
¢ mode number in ballooning representation which allows the 27-periodicity in 6 to be
respected

In A Coulomb logarithm

L, 5 linear dispersion relation for ITG 1, 2 (three wave parametric interaction model)
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—_rdp
LP_ pdr

_ rdr
LT_ T dr

characteristic pressure gradient length
characteristic temperature gradient length
m poloidal mode number
m mass
me = 9.1-1073! kg electron mass
m; ion mass
ms mass of ions of species s (s stands either for ¢ - thermal or k - kinetic)
n neutron
n toroidal mode number
n density
ne equilibrium electron density
n. perturbed electron density
n; equilibrium ion density
n; peak equilibrium ion density
ns equilibrium ion density of species s (relation GAM/EGAM, s stands either for t -
thermal or k - kinetic)
ns perturbed ion density of species s (relation GAM/EGAM, s stands either for ¢ -
thermal or k - kinetic)
né = [ F < (dv)®/n, cosine Fourier component of order 1 of the perturbed density of
species s normalized to the equilibrium density (relation GAM/EGAM)
ng,np density of ions of species a, b
N fusion reaction rate per time unit and per volume unit
N non linear term integrated in velocity, defined in Appendix C (three wave parametric
interaction model)
N; term of the GAM and EGAM dispersion relations, defined in Sections 4.1.2 and 4.1.3
Ny term of the EGAM dispersion relation, defined in Section 4.1.3
p scalar pressure
p; = n;1; ion equilibrium scalar pressure
Pmax Maximum value of p; that can be withstood by a given tokamak

p perturbed scalar pressure
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P pressure tensor (tensor of order 2)

Prus—pla power of fusion reactions transferred to the plasma

Poss power of losses on the edge of the plasma (by radiation, conduction or convection)
P, =m;Rv, — e;p canonical momentum

q= %@—’ safety factor

go = q(ro) value of the safety factor at the position of the reference resonance surface in
ballooning representation

g, = ¢'(ro) derivative of the safety factor with respect to the minor radius coordinate, at
the position of the reference resonance surface in ballooning representation

Q heat flux (tensor of order 1)

r minor radius coordinate

ro minor radius of the reference resonance surface in ballooning representation

r1 minor radius of the ¢ = 1 surface, on the equatorial plane (sawteeth stabilization
modelling)

71 = 114/Rk1 average minor radius of the ¢ = 1 surface (sawteeth stabilization modelling)
r,, minor radius of a given resonance surface in ballooning representation, defined by
the relation q(r,) = =
rot curl

R major radius coordinate

Ry major radius of the magnetic axis

_ rd(r)
q

5= magnetic shear

S0 = T;—gé magnetic shear on the reference resonance surface in ballooning representation
s1 = 71¢'(71) magnetic shear on the ¢ = 1 surface

S source in the Fokker-Planck equation

t time

t; time at which an I'TG 2 burst occurs (three wave parametric interaction model)

T tritium

T, electron temperature

T; ion temperature

~

T; peak ion temperature
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T; thermal ion temperature

u) parallel fluid velocity

u = 1/;%T)” normalized mean parallel velocity of the fast particles (relation
GAM/EGAM)

u fluid velocity
U bounded domain defined in Section 4.3.1 (relation GAM/EGAM)
v particle velocity

v norm of the particle velocity

Bo

VA = \/ﬁ AlfVéIl Velocity
Vis = VE + Vv, drift velocity of ions of species s (s stands either for ¢ - thermal or & -
kinetic)
= Exb | x B drift veloci
VE = 75 X ritt velocity
MVl bxwB | ™Y rot B pB bxVB : . .
Vo =\ 85 T8 & ‘L + £5 >*57 magnetic drift velocity; the rot B term

can be neglected when [ is low

2
MsV bxVB

—5 g+ ’% % magnetic drift velocity of ions of species s at low 5 (s

Vgs =

stands either for ¢ - thermal or k - kinetic)
mvﬁ-l—,uB

g = —gpg— horm of the magnetic drift velocity

vy, normalized group velocity of ITG 1 (three wave parametric interaction model)

Mg Uﬁ +usB

95 = —e. g orm of the magnetic drift velocity of ions of species s at low (s stands

v
either for ¢ - thermal or k - kinetic)

U = \/g ion thermal velocity

vy = v - b parallel velocity

v mean parallel velocity of the fast particles (relation GAM/EGAM)

vy = v — v b perpendicular velocity

V' volume of the plasma

W total internal energy of the plasma

Wiicrn total energy of the ICRH-accelerated fast particles (integrated over space and
velocity; sawteeth stabilization modelling)

X position in space

x,1y, 2z Cartesian coordinates
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x =1 —rg distance to the reference resonance surface in ballooning representation

r—7ro

d

T = normalized distance to the reference resonance surface in ballooning represen-
tation

X = [‘)11_ normalized radial coordinate (three wave parametric interaction model)

Xy radial position marking the separation between the region in which the ITG is linearly
unstable and the region in which the ITG is linearly stable (three wave parametric
interaction model)

y = 0 — 6y poloidal coordinate counted from the ballooning angle in ballooning
representation (linear ITG derivation)

Yo parameter in the Gaussian form assumed for the ITG poloidal shape (linear ITG
derivation)

y1 parameter in the Gaussian form assumed for the ITG 1 poloidal shape (three wave
parametric interaction model)

Z; = < ion charge number

Z; thermal ion charge number

Zy, kinetic ion charge number

_2 . . . .
fj;o etjz dt Fried and Conte plasma dispersion function, where z € C

Z(z

)= &

Greek letters

a constant used in the expression of the Scrape-Off Layer (SOL) width as a function of
the magnetic field B

«a constant used in the expression of the radial fast particle distribution function to ensure
the maximum is reached on the ICRH resonance layer (sawteeth stabilization modelling)
a coefficient in the ITG equation (see Appendix A.3, linear I'TG derivation)

B = B+ B; ratio of the total kinetic pressure to the magnetic pressure

Bo value of S on the magnetic axis

Be = % ratio of the electron kinetic pressure to the magnetic pressure

2p0
B = ”BTT ratio of the ion kinetic pressure to the magnetic pressure
20
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O ratio of the fast ion kinetic pressure to the magnetic pressure

v generic mode growth rate (introduction)

~ internal kink mode growth rate (sawteeth stabilization modelling)

~ same non linear growth rate of ITG modes 1 and 2 (three wave parametric interaction
model)

712 linear growth rate of ITG mode 1, 2 (three wave parametric interaction model)

I'1 2 non-linear coefficient in the dispersion relation where the linear part corresponds to
ITG 1, 2 (three wave parametric interaction model)

0 small parameter in the gyrokinetic ordering, verifying p, < § < 1

Op ~ ‘f/pgf radial deviation from the reference flux surface, case of trapped particles

0p ~ qp; radial deviation from the reference flux surface, case of passing particles

0T, electron temperature perturbation, cold front (sawteeth stabilization modelling)
SW = (5WMHD + (5Wkin total potential energy functional (sawteeth stabilization mod-
elling)

(5WICRH ICRH contribution to the potential energy functional (sawteeth stabilization
modelling)

5Wkin = 5WNBI + 5WICRH kinetic contribution to the potential energy functional (saw-
teeth stabilization modelling)

5WMHD MHD contribution to the potential energy functional (sawteeth stabilization
modelling)

5WNBI NBI contribution to the potential energy functional (sawteeth stabilization mod-
elling)

A parameter in the Gaussian form assumed for the ITG poloidal shape (linear ITG
derivation)

A5 parameter in the Gaussian form assumed for the ITG 1, 2 poloidal shape (three
wave parametric interaction model)

Ax characteristic radial extension of ITG 2 (three wave parametric interaction model)
A, characteristic time extension of ITG 2 (three wave parametric interaction model)

A,, lapse of time between two ITG 2 bursts (three wave parametric interaction model)

A(r) Shafranov shift
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T

€= w7 inverse aspect ratio

€1 inverse aspect ratio at ¢ = 1 surface

=&
e12 = =1 coefficient meaning plus or minus for ITG 1, 2 (three wave parametric interac-
tion model)

( parameter used to ensure consistency of the Gaussian solution with the ITG linear
equation for sp > 1 (three wave parametric interaction model)

¢ parameter used in [Zarzoso 2012b|, comparable to i in the present manuscript

n ratio of the number of trapped ions to the total number of ions (introduction)

n= Im(ﬁ) imaginary part of 1/2A% (three wave parametric interaction model)

0 flux coordinate poloidal angle, counted from the low field side equatorial plane

0y ballooning angle (linear ITG derivation)

612 ballooning angle for ITG mode 1, 2 (three wave parametric interaction model)

6; > 0 poloidal angle of banana orbit turning points

¢ non-negative integer, order of a given fluid moment

11 = £1 coefficient meaning plus or minus for ITG 1 (three wave parametric interaction

model)

__ bxVB + rot B

K= >3 5|, curvature of the magnetic field

k1 ellipticity of the ¢ = 1 surface

kq ellipticity of the plasma at r = a

A coefficient in the ITG equation (see Appendix A.3, linear ITG derivation)

A normalisation factor in the fast particle distribution function (sawteeth stabilization
modelling)

A generic non-linear coupling operator (three wave parametric interaction model)

A; 2 non-linear coefficient in the dispersion relation where the linear part corresponds to
ITG 1, 2 (three wave parametric interaction model)

A; normalized non-linear coefficient in the dispersion relation where the linear part cor-
responds to I'TG 1 (three wave parametric interaction model)

A in the expression In A, not the pitch coordinate; In A is the Coulomb logarithm

A= “’fE—fO pitch coordinate (sawteeth stabilization modelling)

Ay pitch of the ICRH-accelerated particles
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p coefficient in the ITG equation (see Appendix A.3, linear ITG derivation)

2
va_

p = Sz magnetic moment

1502 . . . .
s = "2‘} magnetic moment of ions of species s (s stands either for ¢ - thermal or k -

kinetic)

o = 4m - 1077 vacuum magnetic permeability

& spatial displacement of a fluid element with respect to its equilibrium position (saw-
teeth stabilization modelling)

& characteristic value of the spatial displacement € (sawteeth stabilization modelling)

normalized minor radius coordinate

Q3

p:

p2 = Dtp? 4+ Zkp?  parameter comparable to an average Larmor radius of kinetic and
(] e

thermal ions (relation GAM/EGAM)

pi = —VZBT fluid ion Larmor radius

pr characteristic radial length of the fast particle distribution function (sawteeth stabi-
lization modelling)

Pm Mmass density

prL = = kinetic Larmor radius

c

Pmin Minimum minor radius reachable by fast particles (sawteeth stabilization modelling)

P = Z;BTQ parameter comparable to the fluid Larmor radius for ions of species s (relation

GAM/EGAM, s stands either for ¢ - thermal or k - kinetic)

= Pi
pe =5

normalized ion Larmor radius

o(v) cross-section of the fusion interaction between two ions having a relative velocity v
T = w.t normalized time (three wave parametric interaction model)

To time separating the lapse of time during which the EGAM is off from the lapse of time
during which the EGAM is on (three wave parametric interaction model)

TA = \/EAAR Alfvén time (sawteeth stabilization modelling)

Tg characteristic energy confinement time

7; = w.t; normalized time at which an ITG 2 burst occurs (three wave parametric inter-
action model)

7 ratio of the fast ion distribution width to the bulk ion temperature (relation GAM/EGAM)

Ts Spitzer slowing-down time
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qz; non-normalized perturbed electric potential

¢r EGAM part of the perturbed electric potential (three wave parametric interaction
model)

qBLQ ITG 1, 2 part of the perturbed electric potential (three wave parametric interaction
model)

¢r normalized amplitude of the EGAM perturbed electric potential (three wave para-
metric interaction model)

¢12 non-normalized amplitude of the ITG 1, 2 perturbed electric potential (three wave
parametric interaction model)

¢S, normalized cosine Fourier component of order m of )

¢;, normalized sine Fourier component of order m of )

®, radial shape of the ad-hoc representation of ¢y (three wave parametric interaction
model)

® poloidal envelope of the electric potential in ballooning representation

d, characteristic value of the ITG poloidal envelope o (linear ITG derivation)

@172 poloidal envelope of the electric potential for ITG 1, 2 (three wave parametric inter-
action model)

®p m = 0 component of the EGAM (three wave parametric interaction model)

~

®. cosine m = 1 component of the EGAM (three wave parametric interaction model)

®, sine m = 1 component of the EGAM (three wave parametric interaction model)
ng small scale radial envelope of the electric potential in ballooning representation
¢ toroidal angle

1 poloidal magnetic flux counted from the magnetic axis, normalized to 27

w frequency of the studied mode

Wy ~ :?TO\/E bounce frequency

We = fn—B ion cyclotron frequency

Wy ~ qﬁf—j% toroidal precession frequency

wg EGAM linear real frequency (three wave parametric interaction model)

wio ITG 1, 2 linear real frequency (three wave parametric interaction model)

__ 2koT;
Wof = ©BR

fluid drift frequency (linear ITG derivation, three wave parametric interaction
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model)

Wy = Vy[sin O( Ko — ngyf) — cos Oky] kinetic drift frequency (linear ITG derivation)

Wg1,2 = Vg[sin O( K4 2 — ngpf) — cos Bky] kinetic drift frequency for ITG 1, 2 (three wave
parametric interaction model)

Wy,s = Ug sk, drift frequency of ions of species s (relation GAM/EGAM, s stands either
for t - thermal or k - kinetic)

waam ~ 7 GAM frequency

WITG ~ k:gpiZ—“; ITG mode frequency

Wy = —ke—&'lnh%&

= 547t kinetic diamagnetic frequency (linear ITG derivation, three wave

parametric interaction model)

x _ _ ke Ty (1)

W, =—Fe5 density diamagnetic frequency
/
.o (r . .
wy = —%e%p pr,) pressure diamagnetic frequency
1

Wy = % toroidal passing frequency

w| = vk = —:—]H%iag transit frequency (linear ITG derivation, three wave parametric
interaction model)

Yl

wy = .5 transit frequency (introduction, relation GAM/EGAM)

Q12 = w2 +10; comprehensive ITG 1, 2 frequency (three wave parametric interaction
model)
Q12 = wia +iv2 linear complex frequency of ITG mode 1, 2 (three wave parametric

interaction model)

O = %L*l normalized linear complex frequency of ITG mode 1 (three wave parametric
p

interaction model)

)

Q12 = 22 normalized ITG 1, 2 real frequency (three wave parametric interaction model)
P

Q) = 3; normalized fluid transit frequency (linear ITG derivation)
Q. = 2e normalized ion cyclotron frequency (three wave parametric interaction model)
Q

g = 2L normalized fluid drift frequency (linear ITG derivation)

Q, = 22 normalized fluid drift frequency (three wave parametric interaction model)
p

€

Q= qR, /5w GAM/EGAM frequency normalized to the kinetic ion velocity (relation
GAM/EGAM)

Qr = % normalized density diamagnetic frequency (linear ITG derivation)
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Q, = == normalized density diamagnetic frequency (three wave parametric interaction
P

model)

Q= UL—” normalized pressure diamagnetic frequency (linear ITG derivation)

QO =qR W GAM/EGAM frequency normalized to the thermal ion velocity (relation
GAM/EGAM)

Qpcam = qR\/%wEGAM normalized EGAM frequency (c)

Qgam = qR\/%wGAM normalized GAM frequency (relation GAM/EGAM)

Qrcam = qR ;n_TIZWGAM normalized GAM frequency (relation GAM/EGAM)

Other

, average over the bounce motion

4<1 average over the volume within the ¢ = 1 surface
g average over a magnetic flux surface

average over time

t

, average over velocity weighted by the relevant distribution function (introduction)

)
)
)
)
)
)

. average over space
V gradient
V, =V —b(b-V) perpendicular gradient

V|| =b -V parallel gradient
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