Real-world data has a large geometric component, exhibiting significant geometric patterns.

Therefore exploiting the geometric nature of data to design efficient methods has became a very important topic in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. In this thesis we use geometric structures to design efficient algorithms for problems in two domains, computer graphics and combinatorial optimization. First, I would like to acknowledge my advisers and mentors from ESIEE and Université Paris-Est. I am very grateful to my supervisor Nabil Mustafa for his warm and open attitude, for believing in me

Part I focuses on a geometric data structure called well-separated pair decomposition and its usage for one of the most challenging problems in computer graphics, namely efficient photorealistic rendering. One solution is the family of many-lights methods that approximate global illumination by individually computing illumination from a large number of virtual point lights (VPLs) placed on surfaces. Considering each VPL individually results in a vast number of calculations. One successful strategy to reduce computations is to group the VPLs into a small number of clusters that are treated as individual lights with respect to each point to be shaded.

We use the well-separated pair decomposition of points as a basis for a data structure for precomputing and compactly storing a set of view independent candidate VPL clusterings showing that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We show that instead of clustering points and/or VPLs independently, what is required is to cluster the product-space of the set of points to be shaded and the set of VPLs based on the induced pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the number of visibility queries for each product-space cluster. Our method handles any light source that can be approximated with virtual point lights (VPLs), highly glossy materials and outperforms previous state-of-the-art methods.

Part II focuses on developing new approximation algorithms for a fundamental NP-complete problem in computational geometry. It focuses on the minimum hitting set problem, particularly on the case where given a set of points and a set of disks, we wish to compute the minimumsized subset of the points that hits all disks. It turns out that efficient algorithms for geometric hitting set rely on a key geometric structure, called -net. We give an algorithm that uses only Delaunay triangulations to construct -nets of size 13.4/ and we provide a practical implementation of a technique to calculate hitting sets in near-linear time using small sized -nets. Our results yield a 13.4 approximation for the hitting set problem with an algorithm that runs efficiently even on large data sets. For smaller datasets, we present an implementation of the local search technique along with tight approximation bounds for its approximation factor, yielding an (8+)-approximation algorithm with running time Õ(n 2.34). Our work related to fundamental computational geometry problems also includes a novel dynamic convex hull algorithm for simple polygonal chains handling insertion or deletion of a point in amortized constant time.

Resumé

Les données du monde réel ont une composante géométrique importante et représentent souvent des motifs géométriques. Les méthodes qui utilisent la nature géométrique des données sont activement développées dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire.

La première partie porter sur une structure de données géométriques, appelée well-separated pair decomposition, et son application pour un des problèmes les plus difficiles dans la synthèse d'images, le rendu photo réaliste efficace. Une solution consiste à appliquer toute une famille de méthodes de many-lights qui fait une approximation d'illumination globale par calcule individuelle d'illumination avec un grand nombre de VPLs (virtual point light) répartis sur les surfaces. L'application individuelle de chacun VPL résulte dans un grand nombre de calculs.

Une des stratégies pour réduire les calculs est de faire les clusters qui sont considères comme un seul émetteur. Nous utilisons la well-separated pair decomposition de points comme le fondement de la structure des données susceptible de procéder à un calcul préliminaire et de conserver d'une fac ¸on compacte un grand nombre des clusterisations individuels potentiels ce qui montre que la clusterisation des VPL plus correspondante peut être extraite de cette structure de données d'une manière efficace. Nous montrons qu'au lieu de regrouper les points et/ou VPL indépendamment il vaut mieux produire les clusters sur l'espace de produit du nombre des points à nuancer et un groupe de VPL à la base de l'illumination des paires induite. En plus, nous proposons une technique adaptative afin d'échantillonner pour réduire le nombre des demandes de vérifications de visibilité pour chaque cluster de l'espace de produit. Notre méthode consiste à détenir chaque émetteur qui peut être rapproché par VPL, matériaux spéculaire et à effectuer les méthodes précédentes reconnus les meilleurs jusqu'au présent.

La deuxième partie est consacrée au développement de nouveaux algorithmes d'approximation pour un problème fondamental de NP complet dans la géométrie algorithmique, précisément le problème du hitting set, en s'intéressant au cas d'un groupe de points et d'un groupe de disques, nous souhaitons calculer le plus petit nombre de points qui touche tous les disques. Il arrive que les algorithmes efficaces à détecter le hitting set repose sur une structure géométrique clé, appelée -net. Nous donnons un algorithme utilisant uniquement la triangulation de Delaunay pour construire les -nets de taille 13.4/ . Nous donnons une implémentation pratique de la technique à calculer les hitting sets dans le temps quasi-linéaire en utilisant des -nets de petites tailles. Nos résultats aboutissent à une approximation de 13.4 pour le problème de hitting set par un algorithme qui fonctionne même pour les grands ensembles de données. Pour les ensembles de taille plus petite, nous proposons une implémentation de la technique de recherche locale avec une approximation bornes supérieures, avec le résultat obtenu d'approximation de (8 +

) dans le temps Õ(n 2.34). Notre travail lié à des problèmes fondamentaux de la géométrie algorithmique comprend également un nouvel algorithme déterminant l'enveloppe convexe de manière dynamique pour les chaînes polygonales simples traitant l'insertion ou la suppression d'un point en temps amorti constant.

A Detailed Overview: Problems,

Techniques and Results

This chapter aims to provide a compact introduction to the research conducted during the thesis.

It describes:

• the problems studied during this thesis,

• the development of the relevant scientific areas,

• the proposed algorithms and data structures,

• and the obtained results.

Detailed technical descriptions of our results follow in the subsequent chapters of the thesis.

Designing efficient algorithms for solving various problems is one of the most important research directions in many scientific fields. The enormous amount of data that algorithms have to deal with requires both fast methods (in the sense of theoretical complexity) and efficient implementations of them. There is frequently a big difference between the best algorithms that achieve good theoretical performance and the best algorithms that run efficiently on real problem instances. One of the most famous examples might be the extremely successful simplex method proposed by Dantzig in 1947. Although its worst case behavior is exponential [START_REF] Klee | How good is the simplex algorithm?[END_REF],

still many linear program solvers use this instead of the provably polynomial methods (e.g., interior point methods [START_REF] Karmarkar | A New Polynomial-time Algorithm for Linear Programming[END_REF]) due to its simplicity and efficiency on practical problems. One of the main goals of this thesis is to provide methods that try to guarantee good theoretical results and at the same time their implementation is efficient and robust. Most of our algorithms have been implemented and published on-line, available at the author's website.

Developing efficient methods requires studying the structure and unique properties of the problems. Real-world data has a large geometric component, showing significant geometric patterns.

Exploring the geometric nature of data to design efficient methods has became very important in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics, computer vision. For example finite element methods are one of the fundamental tools for a wide range of engineering problems (ranging from design to analysis) and mesh generation lies in the core of these finite element methods [START_REF] Richard | Tetrahedral Mesh Generation by Delaunay Refinement[END_REF]. In this work we aim to investigate how geometric structures can be used to design efficient algorithms for problems in specifically two domains, computer graphics and combinatorial optimization. Although at first sight the two problems seem to be very far from each other, they share geometrical components and there are many problems in computer graphics that have a discrete formulation where combinatorial optimization algorithms could be potentially used. Ultimately, fast enough hitting set algorithms could be utilized to improve various computer graphics problems that rely on selecting a subset of points.

Computer Graphics: Rendering Photo-Realistic Images

One of the main problems in computer graphics is creating synthetic images of digital models, a challenging problem since the 1960's. It became a key component of many modern applications e.g., simulators, industrial design programs, virtual effect creation for the film industry and video games. The ever increasing need for creating the most realistic images of virtual scenes in the least amount of time has triggered many techniques to achieve this goal. The techniques used for rendering can be classified into two big categories based on the speed they require to produce a rendered image. Real-time rendering algorithms produce images that are less realistic and physically incorrect but apply techniques that appear visually pleasing while enabling fast calculations. Such algorithms are usually running on graphics cards that are specialized hardware to facilitate fast rendering of images. They achieve interactive frame rates therefore they are suitable for interactive applications such as games and virtual reality applications. This field is developing extremely fast, see e.g., the SIGGRAPH course notes [START_REF] Tatarchuk | Advances in Real-time Rendering in 3D Graphics and Games I[END_REF] on the topic held every year since 2006. Algorithms that do not achieve real-time performance, called off-line rendering algorithms, provide much higher fidelity to real photographs through more demanding algorithms. Most of them use ray tracing techniques that try to simulate the propagation of light (photons) as in real world scenes. These algorithms excel in solving the hard problem of calculating global illumination i.e., illumination not coming directly from a light source. These techniques lie at the heart of many CGI applications for movies. Current algorithms are able to render images of very good quality but with large computation times. The ultimate goal of the field is to create a real-time implementation of these techniques on commodity hardware. Our work targets speeding up high fidelity off-line rendering systems although we are not directly aiming for real-time performance.

The rendering equation. Photo-realistic rendering algorithms aim to solve the rendering equation, proposed by Kajiya in 1986 [START_REF] Kajiya | The Rendering Equation[END_REF]. Here we provide a simple version of it not accounting for certain phenomena e.g., different wavelengths of light.

L o (p, ω o) = L e (p, ω o) + Ω f r (p, ω i , ω o)L o (p, ω i)(ω i • n) dω i (1)
This fundamental equation describes the radiance leaving a point in a stationary state. The equation states that the radiance L o (p, ω o) leaving a point p ∈ R 3 located on a surface of the scene, in direction ω o ∈ S 2 is the sum of the radiance L e (p, ω o) emitted in this direction and the reflected light. The reflected light can be calculated by an integral over the hemisphere Ω aligned to the surface normal n at p. This integral accounts for all possible directions of received light, integrating the incoming radiance at the point modified by the bidirectional reflectance distribution function (BRDF) and the area of a surface patch perpendicular to the light direction projected over the surface at p. The latter is simply the dot product of ω i and the surface normal n. The BRDF is a function that represents the material properties of the surface, namely that given the direction of incoming radiance what portion of the it is reflected in a certain outgoing direction.

The most robust algorithms for solving the rendering equation are pure unbiased Monte Carlo algorithms such as path tracing [START_REF] Kajiya | The Rendering Equation[END_REF], Metropolis light transport [START_REF] Veach | Metropolis light transport[END_REF] or simple bidirectional path tracing [START_REF] Lafortune | Bi-Directional Path Tracing[END_REF]. These methods are considered to be gold standards for reference solutions. Unfortunately they produce noisy results that are slow to converge in the case of complex scenes. This is due to the stochastic integration methods applied to solve the rendering equation numerically. The noise is visually disturbing and the need to avoid it lead to other developments in the field. Biased algorithms like Photon Mapping [START_REF] Wann | Realistic image synthesis using photon mapping[END_REF], point-based global illumination [START_REF] Per | Point-Based Approximate Color Bleeding[END_REF] or the many-lights methods, such as Instant Radiosity [START_REF] Keller | Instant radiosity[END_REF], are less robust solutions but they provide good performance in many practical applications without noise.

Many-lights methods. The last method and its improvements have proven to be very useful for approximating global illumination. By tracing light paths from light sources, they create virtual point lights (VPLs) at the intersections of the surface of the scene and these light paths. For details we refer the reader to [START_REF] Keller | Instant radiosity[END_REF]. Global illumination is estimated by computing the direct illumination from all of the VPLs. The resulting equation is a discretization of the rendering equation:

L o (x, ω o) ≈ s∈S f r (x, ω s , ω o)L s (p, ω s)(ω s • n) (2)
where the summation is over the set of VPLs S and ω s is the direction towards s. L s (p, ω s) denotes the radiance caused by s. Note that this equation isn't recursive anymore and has a discrete form which is beneficial for the application of combinatorial techniques to increase the efficiency of solutions. Since the work of Keller in 1997 [START_REF] Keller | Instant radiosity[END_REF] there has been steady interest in improving and generalizing the method due to its simplicity and noise free images. Among many results it has been extended to handle highly glossy materials [HKW+09; DKH+10], specular light transfer with Rich-VPLs [START_REF] Simon | Rich-VPLs for Improving the Versatility of Many-Light Methods[END_REF] and participating media with virtual ray and beam lights [START_REF] Novák | Virtual Ray Lights for Rendering Scenes with Participating Media[END_REF][START_REF] Novák | Progressive Virtual Beam Lights[END_REF]. In 2012 there has been a SIGGRAPH course [START_REF] Křivánek | Optimizing Realistic Rendering with Many-Light Methods[END_REF] on the many-lights methods and next year a state-of-the-art report was published at EUROGRAPH-ICS [START_REF] Dachsbacher | Scalable Realistic Rendering with Many-Light Methods[END_REF]. Despite some limitations, they provide a unified and scalable approach to the problem of computing global illumination. However, as the number of VPLs needed for a goodfidelity approximation is very large, computing the illumination for each point by exhaustively summing up the contribution of each individual VPL can become prohibitively expensive. Overcoming this problem has lead to a series of work improving the efficiency of the many-lights methods.

Clustering VPLs. One of the earliest improvements of the method is the work of Paquette point. The state-of-the-art method in this family is LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF] that first creates clusters of points that are treated separately and a clustering is constructed for each of these clusters.

The main drawback of these methods is that they lack a rigorous error bound for the clustering and due to the sampling they might miss important features in the matrix (especially high frequency details). The second line of work continues the tree based approach of [START_REF] Paquette | A Light Hierarchy for Fast Rendering of Scenes with Many Lights[END_REF]. The most significant algorithm is Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] published in 2005 that solved the problem of not adapted clusterings by developing a clustering criteria that was able to adapt to complex lighting situations. The method guarantees low error at each shaded point. Lightcuts also builds a hierarchical clustering structure for the VPLs called a lighttree. The leafs of the lighttree correspond to a single VPL and any clustering in the structure is represented by a cut in the tree.

For each point to be shaded the algorithm progressively descends in the lighttree starting with the root in order to extract a clustering. This descend is carried out by replacing a cluster by its children, therefore refining the clustering. See Figure 2. This process is continued as long as the clustering does not have a low enough error. Ensuring that the error is small is achieved by the following technique. While descending in the tree the algorithm maintains an estimation of radiation caused by the current clustering. Each cluster is tested if the upper bound on the possible error caused by it is less than e.g., 1% of the estimation. If the criteria is not met the cluster with highest possible error is refined and the estimation is updated.

Lightcuts has triggered new interest in the many-light methods as the rendering time became tractable even for millions of VPLs while the error was controlled. Several extensions of the method have been published, some generalizing the effects that are possible to render e.g., Multidimensional Lightcuts [START_REF] Walter | Multidimensional lightcuts[END_REF] and Bidirectional Lightcuts [START_REF] Walter | Bidirectional Lightcuts[END_REF], while some of them aiming to further improve the efficiency of Lightcuts [START_REF] Bodt | Coherent Lightcuts[END_REF][START_REF] Wang | Efficient Search of Lightcuts by Spatial Clustering[END_REF]. Both of our proposed algorithms fall in to the latter category i.e., aiming to improve the efficiency of tree based algorithms. Since the Lightcuts technique is fundamental for the efficiency of many-lights methods, any improvement of it has the potential of improving all methods that are built on it. Let us now describe our contributions along with some motivation.

Global Illumination Using Well-Separated Pair Decomposition. Clustering the VPLs is a successful idea but invokes a problem: how to efficiently determine a clustering for each shaded point, since creating a clustering for each point from scratch is prohibitively costly. In the tree based methods this problem was solved by a hierarchical clustering structure since the structure is created only once prior to rendering and extracting a clustering from this structure for a point can be carried out fairly efficiently. But the question is whether this process can be further improved. Our proposed method makes the next logical step in the direction of improving the extraction of clusterings: rather than pre-computing a set of individual candidate clusters that form a hierarchy, from which clusterings are computed during rendering, we pre-compute a number of clusterings. Then, during the rendering phase, the clustering for a point can simply taken to be one of these pre-computed clusterings, together with some minor modification. Our data structure stores the clusterings compactly, it is view-independent and it is computed prior to rendering. This results in a very efficient rendering phase allowing for changing the camera position without the necessity to repeat the preprocessing steps. We give a short informal description of the proposed method and data structures. Let us denote the set of VPLs by S. Our approach has two main components: first we propose a method to pre-compute and compactly store several clusterings of the VPLs. Then during rendering, we show how to quickly extract a clustering for each point to be shaded using this pre-computed structure.

The naive algorithm, namely to explicitly store all the clusterings, would have prohibitively high memory requirements. We succeeded to overcome this limitation by encoding them compactly in a geometric structure. Our data structure is based on the well-separated pair decomposition, hereafter WSPD, that has been developed for the N-body simulation problems [START_REF] Callahan | A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields[END_REF]. The WSPD is a set of pairs of subsets {{R 1 , Q 1 }, {R 2 , Q 2 }, . . . } where R i , Q i ⊆ P such that i) for every pair of points p, q ∈ P , there is a unique index i such that p ∈ R i and q ∈ Q i

ii) for all pairs, the subsets R i and Q i are well-separated from each other.

Two subsets R i , Q i are well-separated if their distance from each other is much bigger than the radius of their enclosing spheres. Informally this means, that from the point of view of R i the cluster Q i can be considered as one point. Note that i) results in the fact that a WSPD implicitly stores for any point p ∈ P a well-separated clustering of P/{p}. To extract such a clustering one only needs to list the pairs that contain p and list the subsets in these pairs that do not contain the point. The well-separated pair decomposition theorem [START_REF] Callahan | A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields[END_REF] states that for any set of points P ⊂ R 3 there exists a WSPD of size linear in |P |. These facts enable the storage of all clusterings without excessive memory requirements. One way to construct a WSPD is to build an octree for the point set and search for well-separated pairs consisting of subsets of points that correspond to nodes in the tree. Therefore, instead of storing a list of pairs, a WSPD is represented by links between nodes of the tree. This way, due to the octree structure, for any point p ∈ P extracting a clustering becomes very simple: it suffices to list the pairs of the nodes that are on the path from p to the root. These properties make the WSPD very useful for our problem. Our algorithm builds a WSPD of the VPLs based on their position.

See Figure 3 for the octree based representation of a WSPD and a clustering for the rightmost VPL. It is clear that the pairs of the nodes on the path to the root form a clustering. We show that the well-separated condition under certain circumstances ensures low shading error i.e., if R i was a set of points to be shaded then for any point in R i the difference between calculating the radiance from each VPL in Q i or treating them as a single cluster is low. This enables us to use the clusterings of the WSPD as VPL clusterings. Well-separated clusters approximate the geometric terms of the rendering equation, but ignore visibility and directional properties. To adjust for this, we further compute two additional structures in the pre-processing phase. First, we further group the lights in each cluster into a small number of subgroups by similar light normals. This additional grouping will be used to evaluate the illumination from the cluster more precisely. Second, we introduce representative lights that approximate local visibility for each cluster.

Given the WSPD built on the VPLs the rendering becomes very efficient. For an arbitrary point p to be shaded, find the closest point in S to p (an approximate nearest-neighbor is sufficient and will be used), and start with its (pre-computed) clusters as the clustering for p. Furthermore, refine each cluster by subdividing it into new clusters until they are well-separated from {p}.

We show that refinement can only add a constant number of new clusters for any point p. This constant is provably independent of the number of lights in S or points to be shaded.

The method achieves good performance compared to Lightcuts. Depending on the complexity of the scene and implementation of the system it shows around 2-3 times speed-up of the rendering phase with equal quality, but with a rather long preprocessing time. The drawback of the method is that in the presence of glossy materials its performance degrades. Chapter 2 describes the technical details of this work and is based on the following paper. IlluminationCut. The drawbacks of our WSPD based method which relied mainly on geometric structures inspired us to further study the problem. Our second algorithm approaches the problem of speeding up clustering methods from a more combinatorial side. It handles highly glossy material and provides a tight error bound for the error resulting from the clustering. On the other hand, it is not view independent making it unsuitable for fast rendering with changing camera positions. The method is motivated by the study of the structure of all the clusterings that an algorithm produces during rendering an image. To give a clear explanation let us first present the structure of these clusterings for the state-of-the-art methods Lightcuts and Lightslice. We will illustrate them on the light transport matrix.

The main observation is that instead of clustering points or VPLs independently the key structure to study is the clustering of their product-space, namely the clustering of all point-VPL pairs. Each cluster in this product-space consists of a subset of points (to be shaded) paired with a subset of VPLs.

In fact, both Lightcuts and LightSlice can be seen as constructing constrained product-space clusterings. Lightcuts recomputes a clustering for every point therefore in the product space each cluster created by Lightcuts consists of a single point paired with a set of VPLs. This constraint is wasteful as two points which are very similar could have been grouped together and therefore the expensive operation to extract this cluster could have been spared. See Figure 4 (a). LightSlice first groups all points to be shaded into a small number of roughly equal-sized clusters, called point-clusters, based on their geometric proximity then creates a clustering of the VPLs for each of these point-clusters. This means that it constructs a product-space clustering where the same set of points are grouped together in any cluster. For efficiency reasons each point-cluster is large, which severely limits how well the VPL-clusters paired to them can be adapted to each individual point in the point-cluster. See Figure 4 (b). The wasteful computation of Lightcuts has been long noticed and there have been a few attempts to resolve it [START_REF] Bodt | Coherent Lightcuts[END_REF][START_REF] Wang | Efficient Search of Lightcuts by Spatial Clustering[END_REF]. All these methods aim to create a common clustering for a group of points, similarly to LightSlice but starting from this common clustering they refine it for each individual point.

These methods have to balance between how many points can share a clustering and how well adapted this clustering is to each point (or in other words how much additional refinement is needed).

Our proposed method, IlluminationCut, creates a product-space clustering without any a priori constraints on either the points or the VPLs that can appear in product-space clusters. These clusters capture similar point-VPL pairs such that shading every point in a cluster by using a single representative VPL instead of all VPLs in the cluster causes error that remains under a threshold. Treating cluster pairs enables us to amortize calculations that were previously carried out separately for each point in Lightcuts; and to construct non-uniform clusters with different subsets of points with different subsets of VPLs, which is more adaptive clustering than that of LightSlice. Moreover we don't require additional refinement since our clusters are already adapted to each individual point. See Figure 4 (d).

IlluminationCut builds on the Multidimensional Lightcuts approach [START_REF] Walter | Multidimensional lightcuts[END_REF], in that they both utilize two hierarchies (trees), one on points and one on VPLs to construct product-space clusters with bounded error by simultaneously descending on the trees. The difference is that the latter has to maintain a heap and repeatedly builds a tree only for points that originate from the same pixel (e.g., for use in spatial anti-aliasing). It does not exploit possible similarity among points originating from different pixels and so does not improve upon Lightcuts if there is only one point per pixel. See Figure 4 space clusters, illumination contribution from the representative is added to the radiance of each point in the cluster. To compare the efficiency of Lightcuts and IlluminationCut, see Figure 5, where we present the logarithm of clustering computations carried out per point. It is clear that our method is superior to Lightcuts in efficiency. Our method is further extended by adaptive visibility sampling within a product-space cluster i.e., we do not trace a ray to all the points in the cluster, only if a small sample of rays shows different visibility values. This reduces the number of rays traced for each product-space cluster without introducing high error since the our tight error bound already ensures that the error that can be caused by the cluster is small.

Our results improve on both the quality and the efficiency of previous methods. We achieve 3-6 times speed-up over both Lightcuts and LightSlice by reducing the number of visibility queries, dramatically decreasing the computations needed to construct clusters, as well as eliminating the need for maintaining a heap during rendering in Lightcuts. The drawback of the method is that it exploits the similarity of shaded points and if the scene is very heterogeneous its performance The family of Lightcuts methods have attracted much attention since they have been published

and we believe that future research will be able to provide several improvements. One of the most important directions is to optimize the error bounds used by them since it is a widely observed fact that in dark areas of the image and in the presence of highly glossy materials the current error bounds create unnecessarily refined clusterings.

Combinatorial Optimization

Combinatorial optimization is one of the fundamental fields of discrete mathematics with a very wide range of problems coming from both theoretical and applied research. It aims to find an optimal object from a finite set of objects. The difficulty in these problems is that an exhaustive search for the solution is not tractable due to the exponentially large set of possible solutions. Some of the most well-known problems in the field include the traveling salesman problem, integer programming or vehicle routing problems. Many problems in the field are NPcomplete, therefore finding polynomial time algorithms that solve the problem exactly seem to be impossible. This has led to a vast amount of research on solving special cases of them or giving approximately good solutions. Our work aims to solve problems efficiently even for large datasets while obtaining a solution closest to the optimal.

The minimum hitting set problem, the focus of our work, is one of the most fundamental combinatorial optimization problems: given a range space (P, D) consisting of a set P and a set D of subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard.

If there are no restrictions on the set system D, then it is known that it is NP-hard to approximate the minimum hitting set within a logarithmic factor of the optimal [START_REF] Raz | A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP[END_REF]. The problem is NP-complete even for the case where each range has exactly two points since this problem is equivalent to the vertex cover problem which is known to be NP-complete [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF][START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. A natural occurrence of the hitting set problem occurs when the range space D is derived from geometry -e.g., given a set P of n points in R 2 , and a set D of m triangles containing points of P , compute the minimum-sized subset of P that hits all the triangles in D. Unfortunately, for most natural geometric range spaces, computing the minimum-sized hitting set remains NP-hard. For example, even the (relatively) simple case where D is a set of unit disks in the plane is strongly NP-hard [START_REF] Hochbaum | Fast Approximation Algorithms for a Nonconvex Covering Problem[END_REF]. Therefore fast algorithms for computing provably good approximate hitting sets for geometric range spaces have been intensively studied for the past three decades (e.g., see the two recent PhD theses on this topic [START_REF] Fraser | Algorithms for Geometric Covering and Piercing Problems[END_REF][START_REF] Shashidhara | Geometric Hitting Sets and Their Variants[END_REF]). Although the problem seems to be very theoretical at first sight, it turns out that it can model a wide range of real world problems e.g., designing wireless networks [START_REF] Lakshmi | Maximising Wireless sensor Network life time through cluster head selection using Hit sets[END_REF], filtering data of bathymetric measurements [START_REF] Fraser | Algorithms for Geometric Covering and Piercing Problems[END_REF],

image processing and VLSI design [START_REF] Hochbaum | Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI[END_REF], model based diagnosis systems [START_REF] Lin | The Computation of Hitting Sets: Review and New Algorithms[END_REF] or classifier generation [START_REF] Vinterbo | Minimal approximate hitting sets and rule templates[END_REF]. These practical problems make efficient implementations of hitting set algorithms highly desired.

The special case studied in this work -hitting sets for disks in the plane -has been the subject of a long line of research. The case when all the disks have the same radius is easier, and has been studied in a series of works: Cȃlinsecu et al. So far, besides ad-hoc approaches, there are two systematic lines along which all progress on the hitting-set problem for geometric ranges has relied on: rounding via -nets, and local-search.

Both these approaches have to be evaluated on the questions of computational efficiency as well as approximation quality. In spite of all the progress, there remains a large gap between theory and practice -mainly due to the ugly trade-offs between running times and approximation factors. We have made progress on both approaches and we describe these methods in the following along with the necessary definitions.

Rounding via -nets. Given a range space (P, D) and a parameter > 0, an -net is a subset O(1) O(n 3) Mustafa-Ray et al. [START_REF] Nabil | Improved Results on Geometric Hitting Set Problems[END_REF] (

S ⊆ P such that D ∩ S = ∅ for all D ∈ D with |D ∩ P | ≥ n.
+) n O(1/ 2) Agarwal et al. [AES12] O(log n) Õ(n) Agarwal-Pan [AP14] O(1) Õ(n) 1
OUR RESULTS FOR ARBITRARY DISKS Bus et al. [START_REF] Bus | Geometric Hitting Sets for Disks: Theory and Practice[END_REF] 13.4 Õ(n) OPT is the size of the optimal (smallest) hitting set, in polynomial time. A shorter, simpler proof was given by Even et al. [START_REF] Even | Hitting sets when the VC-dimension is small[END_REF]. Both these proofs construct an assignment of weights to points in P such that the total weight of each range D ∈ D (i.e., the sum of the weights of the points in D) is at least (1/OPT)-th fraction of the total weight. Then a (1/OPT)-net with these weights is a hitting set. Until very recently, the best such rounding algorithms had running times of Ω(n 2), and it had been a long-standing open problem to compute a O(1)-approximation to the hitting-set problem for disks in the plane in near-linear time. In a recent break-through, Agarwal-Pan [START_REF] Pankaj | Near-Linear Algorithms for Geometric Hitting Sets and Set Covers[END_REF] presented an algorithm that is able to do the required rounding efficiently for a broad set of geometric objects. In particular, they are able to get the first near-linear algorithm for computing O(1)-approximations for hitting sets for disks. The catch is that the approximation factor depends on the sizes of -nets for disks; despite over 7 different proofs of O(1/)-sized -nets for disks, the precise bounds are not very encouraging. So far, the best constants for the -nets come from the proofs in [START_REF] Pyrga | New existence proofs for epsilon-nets[END_REF] and [START_REF] Har-Peled | Epsilon-Nets for Halfspaces Revisited[END_REF]. The latter paper presents 1 They actually proved a more general statement, but the following is more relevant for our purposes.

Bus et al. [BGM+15] (8 +) Õ(n 7/3)
five proofs for the existence of linear size -nets for halfspaces in R 3 . The best constant for disks is obtained by using their first proof. A lifting of the problem of disks to R 3 gives an -net problem with lower halfspaces in R 3 , for which [START_REF] Har-Peled | Epsilon-Nets for Halfspaces Revisited[END_REF] obtains a bound of 4 f (α) where α < 1 3 and f (α) is the best bound on the size of an α-net for lower halfspaces in R 3 . Using the lower bound of [START_REF] Pach | Some New Bounds for Epsilon-Nets[END_REF] for halfspaces in R 2 , f (α) ≥ 2/α -1 ≥ 6, although we believe that it is at least 10 since even for = 1/2, no -net construction of size less than 10 is known. Thus, the best constructions so far give a bound that is at least 24/ and most likely more than 40/ . Furthermore, there is no implementation or software solution available that can even compute such -nets efficiently.

The breakthrough algorithm of Agarwal-Pan [START_REF] Pankaj | Near-Linear Algorithms for Geometric Hitting Sets and Set Covers[END_REF] has two problems: the constant in the approximation depends on the constant in the size of -nets, which are large and it uses sophisticated data-structures that have large constants in the running time. Our work makes an attempt to improve on both shortcomings. It turns out that Delaunay triangulations will be the key structures in our approach. The algorithm for constructing small sized -nets starts by taking a random sample of the points in P . The key observation is that any disk that is not hit by this random sample is contained in two neighboring Delaunay disks i.e., disks that correspond to neighboring Delaunay triangles.

This enables the application of a divide and conquer approach i.e., create subproblems for each pair of neighboring Delaunay disks and solve them recursively. We show that such subproblems can be created efficiently i.e., in near linear time. Moreover, we give algorithms to solve certain subproblems without recursion by proposing a novel method to construct small sized -nets for large values of , i.e, > 1/2. Through a careful analysis we show that by properly adjusting the probability with which we pick points into the random sample this randomized algorithm gives an -net of expected size 13.4/ in near linear time. We have implemented our algorithm

showing that in practice it can output -nets of size 9/ . Together with the result of Agarwal-Pan, this immediately implies: for any δ > 0, one can compute a (13.4 + δ)-approximation to the minimum hitting set for (P, D) in time Õ(n).

Technical description can be found in 6 and it is based on the following publication. This structure is replaced by a second -net since disks that are not hit by it are guaranteed to have a low weight. Unfortunately this does not completely solve the problem since there might be disks that are hit but have low weight. We propose additional steps to ensure that all disks that have a low weight are found, but these steps prevent our algorithm to run in near linear time in worst case.

We have published an implementation of our algorithm and give detailed experimental results on both synthetic and real-world data sets, which indicates that the algorithm computes, on average, a 1.3-approximation in near-linear time. This surprisingly low approximation factor compared to the proven worst case bound is the result of fine tuning the parameters of the algorithm. The algorithm is capable of handling extremely large datasets. We have tested it on set of points consisting of the locations of cities on Earth (except for the USA) containing altogether 10 million points with disks of fixed radius around each point, see Figure 7 for a visualization based on a subset of the problem.

The complete technical description can be found in 7 and it is based on the following publication. Both operations require amortized constant time. The key idea of our algorithm is to build two convex hulls, one handling insertions and the other handling deletions. The desired convex hull is simply the merge of these hulls. The two hulls are built as follows. Given a polygonal chain we create one empty convex hull that can be iteratively expanded when we are inserting points and we build another one for all the points currently in the chain. This hull will shrink as points are deleted and when it becomes empty we simply reset the data structures. See Figure 8. is the BRDF which depends on the material at p. We use Lambertian and Blinn micro-facet BRDFs (in Chapter 2 the latter is replaced by Phong BRDFs). They have the form 1 π k diff cos θ and 1 2π k spec (n + 2) cos(β) n cos θ respectively (1 2π k spec cos(β) n cos θ in the case of the Phong BRDF), where each component of k diff and k spec has values between 0 and 1, and n is the specular coefficient. The angles β, φ and θ are denoted in the figure below where ω is the view direction ω reflected with the surface normal N p , and N s is the normal of the light s. With these notations β is the angle between ω and sp, φ is the angle between N s and ps while θ denotes the angle between N p and sp. The geometric term G s (p) captures the light attenuation G s (p) = cos(φ)/d(p, s) 2 , where d(p, s) is the Euclidean distance between p and s.

For a cluster C ⊆ S, let rep(C) denote a representative light s ∈ C. Then the radiance at p from lights in C with representative rep(C) can be approximated as:

L C (p, ω) = M rep(C) (p, ω) • G rep(C) (p) • V rep(C) (p) • s∈C I s (1.2) Let C = {C 1 , . . . , C k } denote a clustering of S into k clusters.
The radiance at P from all the lights in S can be approximated as:

L C (p, ω) = C∈C L C (p, ω) (1.3)
For further details on the many-lights methods we refer the reader to the SIGGRAPH course notes on the many-lights problem [START_REF] Křivánek | Optimizing Realistic Rendering with Many-Light Methods[END_REF] and the EG state-of-the-art report [START_REF] Dachsbacher | Scalable Realistic Rendering with Many-Light Methods[END_REF]. In what follows we give a brief introduction to various improvements and extensions of the manylights methods that have been left out from the introduction.

Real-time techniques. The many-lights framework can be used for rendering images in real time with incremental updating of VPLs, though this is limited to few hundreds of VPLs [START_REF] Laine | Incremental Instant Radiosity for Real-Time Indirect Illumination[END_REF].

Other methods achieving interactive frame rates include calculating level of details structures efficiently [START_REF] Holländer | ManyLoDs: Parallel Many-view Level-of-detail Selection for Real-time Global Illumination[END_REF] and imperfect shadow maps [START_REF] Ritschel | Imperfect Shadow Maps for Efficient Computation of Indirect Illumination[END_REF]. Clustering VPLs into area lights for real-time GPU based rendering has been proposed in [START_REF] Prutkin | Reflective Shadow Map Clustering for Real-Time Global Illumination[END_REF]. [START_REF] Segovia | Bidirectional Instant Radiosity[END_REF] uses stochastic sampling of VPLs to achieve interactive frame rates. For a summary see [START_REF] Radax | Instant Radiosity for Real-Time Global Illumination[END_REF]. Our methods have different scope from all these approaches since they are designed to handle significantly larger number of VPLs.

Extensions and limitations. These methods greatly increase the rendering time compared to pure many-lights algorithms.

Good fidelity off-line rendering requires a large number of VPLs (typically hundreds of thousands of VPLs). There are two main approaches that avoid computing the radiance for all point-VPL pairs. Sampling. To decrease the complexity of the problem, one can sample the VPLs according to their contribution to the image [START_REF] Georgiev | Simple and Robust Iterative Importance Sampling of Virtual Point Lights[END_REF]. The method proposed in [START_REF] Georgiev | Importance Caching for Complex Illumination[END_REF] calculates the exact illumination at a sparse set of locations and builds the probability distribution of the incoming light at each sample. These distributions are then used to importance sample the VPLs.

General Idea

One key idea for speeding up computations is to cluster the VPLs. In other words, for each point p ∈ P, partition S into a small number of clusters (each partition of S into clusters is called a clustering of S), and then consider each cluster as a single VPL when calculating its contribution to the shading at p.

The goal is to compute, for each p ∈ P, a clustering that minimizes the shading error at p. This forces all algorithms to be adaptive, i.e., as one iterates over all the points to be shaded, the clustering has to be recomputed again with respect to the spatial and radiometric properties of each point (though various improvements are possible, at a loss of quality, by exploiting spatial coherence to re-use previous computation).

As the set S of VPLs is view-independent, an idea that improves efficiency is to compute the set of all possible candidate clusters of S before the rendering computation (and store in some hierarchical structure). Then during rendering, a clustering for each point is selected by choosing an appropriate subset of clusters from this pre-computed set. This is an expensive task which forces examining a large number of clusters (again, this can be somewhat ameliorated by exploiting the spatial coherence between neighboring pixels). This has been the basis of previous work; two well-known examples are Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF].

Our Contributions. We consider our main contributions to be two-fold. First, we make the next logical step in the many-lights clustering paradigm: rather than pre-computing a set of individual candidate clusters from which clusterings are computed during rendering, we precompute a number of clusterings of S. Then, during the rendering phase, the clustering for a point p can simply taken to be one of these pre-computed clusterings, together with some minor modification. Our data structure stores the clusterings compactly, it is view-independent and it is computed prior to rendering. This results in a very efficient rendering phase. For a very natural criterion of clustering, we show that

• the total number of these pre-computed clusterings will be independent of the number of points in P to be shaded and will only depend on the size of S.

• the modification required for each point will be provably small; in fact it will be independent of the size of S or P.

Second, we develop the above framework into an accurate and efficient new many-lights clustering method. It computes a clustering relying on geometric and radiometric data for fast and accurate computation. We show that the complexity of our scheme is largely invariant on geometric scenes, and it is easily scalable with the number of VPLs.

We prove theoretical guarantees as well as experimentally validate the computational efficiency of our scheme, contrasting it with two of the most well-known earlier systems, Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]. In particular, the advantages of our work include:

• Our pre-computation phase is view-independent, and so are the pre-computed clusterings.

Unlike LightSlice and Lightcuts, this allows our algorithm to re-utilize computation with changing camera position.

• As all the clustering computations are moved to the pre-computation phase, the rendering phase takes constant time for each p ∈ P, i.e., independent of the number of VPLs. On the other hand, Lightcuts has to maintain a heap and do clustering computations. Our method is able to produce similar output as Lightcuts with around 3 times average speedup.

• It outperforms LightSlice in speed and quality, achieving, e.g., 2 times speedup with consistently better quality. The errors of our algorithm are smooth, and visually difficult to detect, unlike for LightSlice which suffers from visible blocking effects. • It also uses a significantly lower amount of memory than LightSlice which requires around 30 GB for scenes with around 0.5 million VPLs while our algorithm runs with 5 GB. This allows the usage of a considerably higher number of VPLs for rendering.

Broadly our work shows that the set of VPLs itself contain enough information such that with intensive preprocessing, a geometrically good clustering can be constructed for each point p ∈ P with provably little effort.

Organization. We present the novel ideas involved in our approach in Section 2.2 along with theoretical details on our clustering representation and computation. Section 2.3 describes additional structures to further improve the clustering. Extensive experimental results and comparison with previous work are presented in Section 2.4. Finally, limitations are discussed in Section 2.5.

Algorithm

For a point p ∈ P to be shaded, consider a clustering of the set of VPLs S into k clusters C 1 , . . . , C k such that the radius of the smallest-ball containing each cluster is much smaller than the distance of that ball to p (this will be formulated precisely). Call such a cluster wellseparated, or a ws-cluster for brevity, from p, and the clustering {C 1 , . . . , C k } a well-separated clustering, or a ws-clustering, for p. Intuitively, from the point of view of p, all the points in each cluster behave roughly like a single point. Figure 2.2 illustrates this for an arbitrary point p, shaded bright green, a few of the ws-clusters of S around it. Note that as the ws-cluster's distance to p decreases, the well-separated criterion automatically ensures that the radius of the cluster decreases as well. Our goal is to compute a ws-clustering of S for each point p to be shaded during the rendering phase.

Chapter 2 Global Illumination Using Well-Separated Pair Decomposition

Our approach has two main components: first we propose a method to pre-compute and compactly store several ws-clusterings of S. Then during rendering, we show how to quickly extract a ws-clustering for each point to be shaded using this pre-computed structure. This precomputed clustering will then be slightly modified to fit the spatial properties of the shaded point. We sketch the main components of the system in Figure 2.1, and outline them below.

Pre-Compute Clusterings

The computation of ws-clustering for each point p is dependent on spatial properties of p, and requires individual computation during rendering for each point, an expensive task. Instead, we will do the following in a view-independent pre-rendering phase: compute a ws-clustering of S with respect to each light s ∈ S. In other words, for each light s in S, compute the partition of the remaining lights into clusters satisfying the well-separatedness criterion. The key to this construction will be the use of a partitioning data-structure, the wellseparated pair decomposition [START_REF] Callahan | A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields[END_REF] (henceforth denoted as WSPD). These ws-clusterings will be stored implicitly in a compact structure from which the ws-clustering for any light s ∈ S can be extracted quickly.

Well-separated clusters approximate the geometric terms of the rendering equation, but ignore visibility and material properties. To adjust for this, we will further compute two additional structures in this pre-processing phase. First, we further group the lights in each ws-cluster C into a small number of subgroups by similar light normals. This additional grouping will be used to evaluate the illumination from the cluster more precisely. Second, we introduce Retrieve ws-clustering During the rendering computation, for an arbitrary point p, find the closest point in S to p (an approximate nearest-neighbor is sufficient and will be used), and start with its (pre-computed) clusters as the clustering for p. Furthermore, refine each cluster by subdividing it into new clusters until they are well-separated from p. The number of clusters required to achieve this ws-clustering criteria could potentially be quite high, for two reasons: i)

the clustering for the closest point in S to p could have many clusters, and ii) refinement could add many more new clusters to this initial clustering. It will be shown that refinement can only add a constant number of new clusters for any point p. This constant is provably independent of the number of lights in S or points in P. Also, under some basic assumptions on the geometry of scenes, we will show that the average size of a ws-clustering for points of p will be logarithmic in the size of S. Experimental evidence will confirm this behavior.

Calculate L(p, ω). Let C p = {C 1 , . . . , C k } be the final constructed ws-clustering for p ∈ P during rendering. Furthermore let {C 1 i , . . . , C k i i } be the k i subgroups of each C i by similar light normals. From a single subgroup C j i of C i ∈ C p , we compute:

L C j i (p, ω) = M rep(C j i) (p, ω) • G rep(C j i) (p) • s∈C j i I s (2.1)
Then we approximate the illumination at p from the cluster C i ∈ C p as: Constructing ws-clusterings A well-separated cluster. We introduce a necessary condition that each cluster must satisfy when constructing a clustering of S w.r.t. a shaded point p -namely that it is well-separated from p, for a given parameter 0 ≤ ≤ 1 (will be called the separation parameter).

L C i (p, ω) =   k i j=1 L C j i (p, ω)   • V p (∂(b(C i))) • R(C i , p) (2.2) where V p (∂(b(C i)))
Chapter 2 Global Illumination Using Well-Separated Pair Decomposition

Definition 2.1. A cluster of lights C is well-separated from a point p if r(C) < • d(p, C),
where is the separation parameter.

C p d(p, C) r(C) FIGURE 2.3: For = 0.5, C is ws from p. In other words, we have d(p, C) > 2 • r(C).
The lights in a ws-cluster w.r.t. p are 'far enough' from p, and concentrated in a small ball (see Figure 2.3). This condition implies that from the point of view of p, all the lights in a ws-cluster are in a similar direction and the distances of p to the lights in C are approximately the same.

Since the luminosity reaching p depends on the angle and the distance of lights in S from p (differences regarding visibility and light normals will be accounted for later in Section 2.3) it can be argued that treating all the lights in a ws-cluster as one point does not introduce significant error. This intuition is captured in the following theorem:

Theorem 2.2. For a point p and a ws-cluster C ⊆ S, assume that all lights in C face in the same direction and they have the same visibility from p. Then the error from representing C with any one light in C (which has the cumulative intensity summed over all the lights in C) is bounded by a function depending only on . In case the point to be shaded has Lambertian BRDF, it is

L(p, ω) -L C (p, ω) = O() s∈C I s d(p, s) 2 (2.3)
where L(p, ω) denotes the exact illumination from lights in C.

Proof. First we show -dependent bounds of the changes of angles and distances between p and the lights in a ws-cluster C. See Figure 2.4 for the interaction of p with two lights s, r in C

where r denotes the light chosen as the representative of the cluster. Estimating the change in the distances follows immediately from the ws property:

d(p, s) ≤ d(p, r) + 2r(C) ≤ d(p, r) + 2 d(p, s) (2.4)
For bounding the change of angles ∆θ, it is clear that the angle between the two tangents of the circle from p is the upper bound. The center of the circle, p and the point on tangency form a right angle triangle:

sin ∆θ 2 = r(C) d(p, C) + r(C) ≤ d(p, C) d(p, C) ≤ (2.5)
Hence using the approximation for the sine function with Taylor series we have ∆θ = O().

In the following we approximate the error for one cluster using the previous results. We assume that the visibility is always 1 (the case of 0 is trivial). Therefore the error is:

L(p, ω) -L C (p, ω) = (2.6) = | s∈C V s (p)I s M s (p, ω)G s (p) -V r (p)M r (p, ω)G r (p) s∈C I s | (2.7) = s∈C I s M s (p, ω)G s (p) -M r (p, ω)G r (p) (2.8)
The above formula has the important property that the M s and G s functions are dependent on the cosines of angles and distances which are closely bounded because of the ws property. This result intuitively means that the error cannot be too big for a BRDF that relies on distances and

s∈C I s k d (p) cos θ s cos φ s r 2 s - k d (p) cos θ r cos φ r r 2 r = (2.9) k d (p) s∈C I s cos θ s cos φ s r 2 s - cos(θ s + ∆θ s) cos(φ s + ∆φ s) (r s + ∆r s) 2 (2.10)
We omit a complete analysis and just minimize the subtrahend assuming that ∆θ, ∆φ, ∆r ≥ 0 (the other cases are similar). Using the ws property and that cos(θ + ∆θ) ≥ cos θ -∆θ,

≤ k d (p) s∈C I s cos θ s cos φ s r 2 s - (cos θ s -∆θ s)(cos φ s -∆φ s) (1 + 2) 2 r 2 s (2.11)
Using that cos x ≤ 1 and the bound on ∆θ

≤ k d (p) s∈C I s (4 + 4 2 + ∆θ s + ∆φ s -∆θ s ∆φ s) (1 + 2) 2 r 2 s (2.12) = O()k d (p) s∈C I s r 2 s (2.13)
In other words, the error is proportional to the complete intensity received by a pixel. Note that this does not account for visibility difference of course, which we address with other methods.

Remark: In the case of Phong BRDF the M s (p, ω) function becomes k s (p)cos n β s cos θ s where β s is the angle between ω and the direction of s-p reflected on the surface normal (the subscript of k now refers to the word specular). In this case the above calculations are as follows:

s∈C

I s k s (p) cos n β s cos θ s cos φ s r 2 s - k s (p) cos n β r cos θ r cos φ r r 2 r (2.14) = k s (p) s∈C I s cos n β s cos θ s cos φ s r 2 s - cos n (β s + ∆β s) cos(θ s + ∆θ s) cos(φ s + ∆φ s) (r s + ∆r s) 2 (2.15) ≤ k s (p) s∈C I s cos n β s cos θ s cos φ s r 2 s - (cos β s -∆β s) n (cos θ s -∆θ s)(cos φ s -∆φ s) (1 + 2) 2 r 2 s (2.16)
One could upper bound this error but the subtrahend converges to 0 as n → ∞ hence in this case one could only give a weak bound which depends on n as well. If we were to set according to such a bound one would have to build a too fine WSPD which would result in a prohibitively big runtime. We remark that this could be possibly overcome by refining the WSPD with a smaller epsilon during the rendering phase but only for those clusters that have a high value for M r (p, ω). However we have not experimented with this approach.

To compute ws-clusterings efficiently, we will need to use a basic structure in the theory of geometric computing, the well-separated pair decomposition.

Well-separated pair decompositions. We first need to extend the notion of well-separatedness between a point and a cluster to that of between two clusters. Two point sets R and Q are wellseparated from each other if, for a given separation parameter > 0, the radius of both the balls

b(R) and b(Q) is smaller than • d(R, Q), i.e., max(r(R), r(Q)) < • d(R, Q) where d(R, Q) is the distance between b(R) and b(Q).
Definition 2.3. A well-separated pair decomposition of S for a given separator parameter is a

list of pairs of clusters {R 1 , Q 1 } , . . . , {R s , Q s } , where each R i , Q i ⊆ S, and
i) for every pair of points p, q ∈ S, there is a unique index i such that p ∈ R i and q ∈ Q i , and

ii) for all i = 1 . . . s, the clusters R i and Q i are well-separated from each other, with separation parameter .

2.5× zoom FIGURE 2.5: Each red edge represents a pair {R i , Q i }, where the sets R i , Q i are enclosed in green circles.

Here s is called the size of the WSPD. See 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 average # of non-empty cells

5 • -3 25 • -2 Conference Museum Sibenik San Miguel FIGURE 2.6: A geometric condition.
Recall that the set of VPLs S was placed on the surface of objects by tracing random light particles from the light sources. The geometry of graphics scenes is usually such that it satisfies a technical geometric condition. Namely, that if the three-dimensional space was partitioned into equal-sized cubes of size δ, the boundary of scene objects would intersect on average O(-2) cubes in a ball of radius δ/ (note that there are Θ((δ/) 3 δ 3) = Θ(-3) cubes in a ball of radius δ/). Figure 2.6 shows that, for a variety of scenes, the average number of cells containing VPLs within a ball of radius δ/ in our octree behaves more like O(-2) than O(-3). This Observe that the behavior of the WSPD is relatively unchanged from one scene to the next.

Constructing well-separated pair decomposition of S. We use a compressed octree of S as an underlying data structure to compute the initial ws-clusters for S, to find approximate nearest neighbors, and for the local refinement for each point p during the rendering computation. The compressed octree is an octree where the non-branching paths are contracted into one edge. The compressed octree can be directly computed in linear time [START_REF] Samet | Spatial Data Structures[END_REF]. Each node corresponds to an axis-aligned bounding box. We associate with each node the set of VPLs of S contained in its bounding box. Note that each leaf of the octree contains exactly one unique point of S. For a node w, denote by R w the corresponding set of VPLs. Note that the height of the octree is linear in the worst-case, though in practice it is logarithmic. In Table 2.1 we show the depth of the tree for 300K VPLs, which is logarithmic for a variety of scenes. After constructing the compressed octree, Algorithm 1 computes the WSPD of S by utilizing a top down search on the tree for ws-pairs. Two nodes w, v of the octree will form a ws-pair if the corresponding sets R w , R v are well-separated. Note that instead of simply storing all the pairs of the WSPD as a list, we directly store the WSPD structure in the octree by storing, for

Tree depth

if isWellSeparated(R w , R v) then Insert v into pairs(w) Insert w into pairs(v) else if r(R w) < r(R v) then Swap(w, v) foreach i ∈ children(w) do S.pushback({i, v})
each node w of the octree, a list of pointers to all the other nodes with which w forms ws-pairs in the WSPD. We denote this list by pairs(w). In Function ConstructWSPDClustering(p) Consider the case for an arbitrary point p ∈ P. Compute the closest light, say s ∈ S, to p.

C p ← ∅ s ← closest point in S to p C s ← ws-clustering of s foreach Q ∈ C s do if d(s, Q) ≥ d(p,
One could use a variety of known optimal algorithms, but for us an approximation will suffice.

We find the smallest node of the compressed octree containing p and return an arbitrary light contained in it. A calculation shows that for randomly shifted octrees, the expected distance from the true nearest neighbor is bounded. Point location in a compressed octree takes O(log n)

time with some additional data structures, but for us the naive implementation suffices as the tree has logarithmic depth (see Table 2.1).

Say s is at distance d from p. Take the ws-clustering C s of s. -) . Thus for the slightly larger value of the separation parameter = 1-, C o is ws from p.

) ≥ d o -d ≥ d o (1 -) ≥ r(Co)(1
We next prove that the additional number of clusters added in the refinement of a cluster close to s is low. 2+ -1 . So each cluster added to C has a parent with radius at least the above value. Grouping the parents by size (higher level parents are the same size but multiplied by some power of two) we can give an upper bound on their number by a simple packing argument since parents with the same size are disjoint (since octree nodes can either contain each other or be disjoint):

∞ i=0 d/ 2 i (d 2+ -1) 3 = O(1 6) (2.17)
Since we have bounded the number of parents and each of them can have at most 8 children, this finishes the proof.

While the above theorem may be surprising at first glance, we hope the following intuition sheds some light: consider the distance of the closest point s ∈ S to p. If this distance is small, then it is not hard to argue that the clusters for the closest light provide a good approximation of the clustering for p, and so little refinement is necessary. On the other hand, if this closest distance is large, then all points of S are 'far' from p, and so any ws-cluster from s is far from p and thus approximately well-separated from p; again little refinement is needed to approximate the separation (and thus illumination). This intuition is formalized in the proof of the theorem. For empirical validation, see Cluster sizes. We have proved that the clustering stored in the WSPD can be used to retrieve clustering for arbitrary points without increasing the number of clusters more than an additive constant. It remains to argue that the initial clustering for every light s ∈ S is compact. While one can construct examples of arbitrary points where the average number of ws-clusters for a point p is linear (as a function of |S|), those are never realized in practice for the set of lights arising in geometric scenes. The spatial partitioning structures (octrees) turn out to be roughly balanced, and so the number of ws-clusters is logarithmic.

Additional Structures for Illumination Computation

We enhance the purely geometric WSPD based clustering with the following additional structures that improve the efficiency and accuracy in calculating illumination. Recall that given a ws-clustering C p for p, for a ws-cluster C i ∈ C p , the approximation of the radiance with a single representative has the form:

M rep(C i) (p, ω) • G rep(C i) (p) • V rep(C i) (p) • s∈C i I s .
(2.18)

Clustering refinement by direction. The WSPD data structure is able to efficiently bound angles and distances between points. However, the normals of the lights could vary widely in directions. To overcome this difficulty, the lights in each ws-cluster are grouped into a few subgroups with similar normals. For a ws-cluster C i , construct the subgroups C 1 i , . . . , C k i i , where all the lights in each C j i , j = 1 . . . k i , will have similar normal directions. The approximation then becomes

L C i (p, ω) =   k i j=1 L C j i (p, ω)   • V rep(C i) (p) (2.19)
where L C j i (p, ω) is defined in Equation 2.1. The subgroups are constructed by first picking a center c j ∈ C i for each subgroup C j i , and then assigning each VPL s ∈ C j to the subgroups with most similar center. see Algorithm 3.

Algorithm 3: Computing subgroups of a given cluster C i Function ClusterNormals(C i) j ← 1; c 1 ← random light in C i largestDistance ← ∞ while largestDistance ≥ threshold do For each s ∈ C i , d s ← min k≤j d(s, c k) c j+1 ← q, where q has largest d q value j ← j + 1 largestDistance ← d q For each l, C l i ← {s ∈ C i |l = arg min k<j d(s, c k)}
During the shading of a point p ∈ P, as before, visibility test will still be performed once for each ws-cluster of p. However, the radiance L C i (p, ω) for a ws-cluster C i will be calculated by summing up the radiance contributions separately for each subgroup C j i of C i , using the normal of the center light for each subgroup. The distance d(s, c j) used in the algorithm is the Euclidean distance with threshold set to 0.01, which did not result in too many subgroups on average (see Table 2.3). The number of subgroups is slightly higher for more complex scenes and decreases with since the clustering becomes more fine.

Scene

Average number of subgroups 0.9 0.7 0.

L C i (p, ω) =   k i j=1 L C j i (p, ω)   • V p (∂(b(C i))) • R(C i , p) (2.20) R(C i , p)
C i). R(C i , p) = s∈C i V p (s, ∂(b(C i))) • I s • cos φ s s∈C i I s • cos φ s (2.21) where V p (s, ∂(b(C i))
) denotes the visibility from s to the boundary of the sphere in the direction from the center of b(C i) to the shaded point p and φ s is the angle between the same direction and the normal of the light. Note that as → 0, equation 2.20 converges to L(p, ω). Since computing R(C i , p) during rendering would be expensive, we do the following in the pre-processing phase. For each cluster C i and for a small uniform set of directions on ∂b(C i), R(C i , p) is precomputed and stored in a cubemap (with a resolution of 6 × 6 on each side). This enables quick lookup of R(C i , p) for p. During the rendering of a point p, nearest-neighbor interpolation on the cubemap yields R(C i , p). A shadow test to ∂b(C i) gives the V p term.

High intensity clusters. To further minimize the error coming from a badly chosen representative for high intensity clusters we limit the radiance from each cluster (by further refining the cluster if necessary) to be less than 1% of the radiance received by a pixel. This refinement happens at the pre-processing phase only using approximate intensities between the cluster pairs.

Results and Discussion

In this section we present the experimental results on several scenes of varying complexity. running at 2.93GHz and with 32 GB of memory. We compare our algorithm with two wellknown methods: Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]. The authors of LightSlice have made their code publicly available, which also includes an implementation of Lightcuts. In order to do fair comparisons between all three methods, we have ported their implementation of LightSlice (and Lightcuts) into the ray-tracing system INTEL EMBREE [START_REF] Woop | Embree Ray Tracing Kernels for CPUs and the Xeon Phi Architecture[END_REF] without modifying the core of the algorithms. Our code is also written to use Embree as its ray-tracing engine.

Unless otherwise stated, we run LightSlice and Lightcuts with similar parameters as used in [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]:

Lightcuts error bound is set to 1% and unbounded the maximum cut size. In order to compare our method to Lightcuts with the parameters set as in [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF], we include results with 2% • The normalized RMSE provides numerical difference against the VPL reference image:

RMSE = (F (x, y, c) -F (x, y, c)) 2 m
where the summation is over all pixels and color channels of the images.

• The LMSE represents the average squared difference of the gradients between the rendered image and the reference [START_REF] Silva | Quantifying image similarity using measure of enhancement by entropy[END_REF]:

LMSE = (∇F (x, y, c) -∇ F (x, y, c)) 2 ∇F (x, y, c)
where ∇F (x, y, c) = F (x + 1, y, c) + F (x -1, y, c) + F (x, y + 1, c) + F (x, y -1, c) -4F (x, y, c). A high LMSE error implies sharp discontinuities (e.g., sharp error edges), identifying more noticeable errors.

• Average relative error is given by: y,c) .

Rel. Error = 100 m • |F (x, y, c) -F (x, y, c)| F (x,
The error images are calculated by taking the channel-wise Euclidean distance between the image, and the VPL reference image, and multiplying it by a factor of 32.

Table 2.4, Figure 2.10, 2.11, 2.12 and 2.13 show the results with all these statistics, rendered images and error images. In general, we find that with = 0.25, the quality of our results is similar to Lightcuts with around 3× speedup (the last row in Table 2.4). The average number of shadow rays for WSPD can be larger than that of Lightcuts; however, as proved earlier, almost no other computation except visibility testing is done by the WSPD algorithm. The WSPD method solely relies on the pre-computed pairs which results in a shorter rendering time since there is no additional work done. Lightcuts, on the other hand, has to descend the tree, maintaining an expensive heap data structure during this traversal. The cost of calculating upper bounds during rendering is also significant. Bounding the maximum cut size can result in significant loss of quality unless the ideal cut size is known a priori (e.g., as in San Miguel).

Considering this run as a reference for equal quality comparison, our method with = 0.5 still shows similar or even better quality with around 3 times speed-up (e.g., as in Museum).

LightSlice is able to explore the structure of VPLs and adapt to it more efficiently than Lightcuts, but dividing the image into slices results in visually disturbing blocking artifacts if the error is not low enough. This is captured by the high errors (especially the LMSE) of LightSlice compared with WSPD in all the scenes. The WSPD method locally adjusts the cluster radius based on the well-separated criteria. Thus the errors in the resulting image are smoothly distributed, with visually minimal artifacts. The value of the parameter closely tracks the quality;

for scenes with complex shadows like San Miguel, has to be set lower (0.1) for comparable quality to Lightcuts. LightSlice relies also on a fixed parameter (number of columns, set to 400).

For San Miguel it is unable to adapt to the complexity of the shadows with such a low number of columns, resulting in faster running times with high errors.

Scalability. See Table 2.5 for the total memory (GB) used by the three methods. Lightcuts is the most efficient on memory consumption, followed by WSPD. LightSlice, due to the light transport matrix storage, has prohibitively high memory consumption. Blocking artifacts. In contrast to LightSlice, our method and Lightcuts currently do not take advantage of using different representative lights for each sample per pixel. We have found that increasing the number of samples increases the quality of the images rendered with LightSlice. even with = 0.9 and 1 sample per pixel. On the other hand LightSlice has visible blocks on the image due to the clustering of the shaded points. These errors can be reduced by increasing the number of columns for LightSlice but this results in a higher running time. If one increases the number of samples then LightSlice becomes competitive, although some artifacts remain even with 9 samples per pixel.

Refinement. This method ensures that the final clustering used for a point satisfies our theoretical criteria. However, with a high number of VPLs the approximate nearest neighbor search is very accurate therefore our refinement method has less importance. If the density of the VPLs is low in an area its usage becomes more important in order to avoid blocking artifacts. We demonstrate this in Figure 2.17, by rendering the scene with and without refinement.

Limitations

We have showed that the WSPD structure is suitable for compactly storing clustering information and for providing fast extraction of clusters during render time. We showed theoretical WSPD 0.9 LightSlice LightSlice LightSlice 1 spp 1 spp 4 spp 9 spp

General Idea

This work proposes a new algorithm belonging to the family of instant radiosity methods. We start with a detailed overview of the different clustering techniques in the many-lights methods in order to highlight the differences between the structure of clusters. Current state-of-the-art clustering algorithms are, e.g., Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]. Lightcuts builds a tree on the VPLs where each node of this tree represents a cluster of VPLs in the subtree of that node. For each point to be shaded, it descends in the tree to select a set of nodes (a 'cut') which is taken to be the VPL clustering for that point. While the method is robust and able to bound the error resulting from treating each cluster as a single VPL, the cut is recomputed for every point and descending in the tree is expensive for complex lighting situations.

LightSlice first groups all points to be shaded into a small number of roughly equal-sized clusters, called point-clusters, based on their geometric proximity. Then it uses visibility and shading information to obtain a clustering of the VPLs for each of these point-clusters. Thus all the points in the same point-cluster have the same clustering of the VPLs. The main advantage of the method is its speed, since it is able to detect occluded clusters and amortize the cost of creating VPL clusterings across points in a point-cluster. However, it has no error bound and as the construction of the point-clusters is not adapted to the illumination of the scene, it is prone to failure if the radiance of points within a group is highly varying.

Chapter 3 IlluminationCut

Lightcuts constructs a different clustering of VPLs for each point; LightSlice clusters all the points to be shaded into a number of point-clusters for which the same clustering of VPLs is computed. Our idea is based on the following observation: instead of clustering points or VPLs independently, what is required is clustering their product-space, namely to cluster all point-VPL pairs. Each cluster in this product-space consists of a subset of points (to be shaded) paired with a subset of VPLs. In fact, both Lightcuts and LightSlice can be seen as constructing constrained product-space clusterings. Each cluster created by Lightcuts consists of a single point paired with a set of VPLs. This constraint is wasteful as two points which are very similar could have been grouped

together in many product-space clusters. See Figure 3.1 (a).

LightSlice, on the other hand, constructs a product-space clustering where the same set of points are grouped together in any cluster. For efficiency reasons each point-cluster is large, which severely limits how well the VPL-clusters paired to them can be adapted to each individual point in the point-cluster. Furthermore, as the initial clustering of points used only geometric information, these clusters cannot be completely adapted to illumination, and are likely to introduce artifacts on the cluster boundary. See Figure 3.1 (b).

Our contribution. Our proposed method, IlluminationCut, targets high fidelity off-line rendering by constructing an illumination-aware clustering of the product-space of all point-VPL pairs. We create illumination-aware product-space clusters without any a priori constraints on either the points or the VPLs that can appear in product-space clusters. These clusters capture similar point-VPL pairs such that shading every point in a cluster by using a single representative VPL instead of all VPLs in the cluster causes error that remains under a threshold. Treating cluster pairs enables us to amortize calculations that were previously carried out separately for each point in Lightcuts; and to construct non-uniform clusters with different subsets of points with different subsets of VPLs, which is more adaptive clustering than that of LightSlice. Our method is further extended by adaptive visibility sampling, reducing the number of rays traced for each product-space cluster without introducing high error. See Figure 3.1 (d).

IlluminationCut builds on the Multidimensional Lightcuts approach [START_REF] Walter | Multidimensional lightcuts[END_REF], in that they both utilize two hierarchies (trees), one on points and one on VPLs to construct product-space clusters with bounded error by simultaneously descending on the trees. The difference is that the latter has to maintain a heap and repeatedly builds a tree only for points that originate from the same pixel (e.g., for use in spatial anti-aliasing). It does not exploit possible similarity among points originating from different pixels and so does not improve upon Lightcuts if there is only one point per pixel. See Figure 3.1 (c).

Our results improve on both the quality and the efficiency of previous methods. We achieve 3 -6 times speed-up by reducing the number of visibility queries, dramatically decreasing the computations needed to construct clusters, as well as eliminating the need for maintaining a heap during rendering.

Organization. A detailed description of our algorithm is given in Section 3.2. Experimental results and comparison with state-of-the-art methods are presented in Section 3.3. Finally, limitations and future work are discussed in Section 3.4.

Algorithm

Overview. The method first constructs a cluster hierarchy on P, called the point tree and on S, called the light tree. Then using these trees, Phase I computes a coarse but fast approximation for every point p ∈ P. In Phase II, this approximate image is used to guide a topdown search of both trees simultaneously to construct the list of desired product-space clusters

(R 1 , Q 1), . . . , (R k , Q k).
Here each (R i , Q i) is a product-space cluster composed of the set of points R i ⊆ P and the set of VPLs Q i ⊆ S. Finally, for all product-space clusters (R i , Q i), illumination contribution from Q i is added to the radiance of each point p ∈ R i .

Light and point trees. For the light tree we use the same structure as Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF].

For the point tree, we use a compressed octree, which differs from a simple octree by the fact that paths without branching are contracted into a single edge. Then each node in the tree represents a unique cluster of the points in its bounding box. To ensure that the points located in the same node face approximately in the same direction, we make a slight modification: the subdivision of the first 3 levels into octants correspond to the subdivision of the space of normals of the points (these are unit vectors in R 3) and the remaining levels follow the standard octree subdivision rule. The points in P are stored in an array. In our implementation the octree is constructed by repeatedly subdividing the bounding box of the scene along planes perpendicular to the three axes. Thus recursively, at each subdivision, the points corresponding to a node are partitioned in-place into two contiguous subarrays. As a result the points in the array are in z-order (also called Morton-order [START_REF] Gargantini | An Effective Way to Represent Quadtrees[END_REF]). The construction ensures that each node in the tree contains points located in a contiguous part of the array. Therefore retrieving points associated to a node is efficient since one has to only iterate over a subarray.

Our algorithm stores additional auxiliary data with the nodes of both trees. These are the bounding box of the points inside the node and representative lights/points. The latter are sampled in the same way as Multidimensional Lightcuts (the sampling ensures that the algorithm remains unbiased in the Monte Carlo sense). For each light tree node we also store the bounding cone of the light directions of VPLs associated with that node. Each node of the point tree stores the maximum/minimum BRDF components in the subtree of the node (k spec max , k diff max , n min , n max). We also need to associate color data (color) with the nodes of the point tree.

Clusters and representatives. We will identify the nodes of the tree with the points they contain, e.g., the root of the light tree is simply denoted by v(S). Let us denote by Q a cluster of lights Q ⊆ S and its corresponding octree node as v(Q). Denote the radiance at p caused by

lights in Q as L Q (p, ω). L Q (p, ω) = s∈Q M s (p, ω) • V s (p) • I s • G s (p) (3.1)
For a node v(Q) let rep(Q) ∈ Q denote its representative light, and then compute the approximate radiance at p from lights in Q with representative rep(Q) as:

L Q (p, ω) = M rep(Q) (p, ω) • G rep(Q) (p) • V rep(Q) (p) • s∈Q I s (3.2)
For a cluster R denote the radius of the enclosing ball of its bounding box by r(R), and by d(R, Q) the distance between the enclosing balls of clusters R and Q.

Phase I: Computing approximate shading. Our algorithm needs an estimate of the radiance of each point p ∈ P. It is computed by descending in both trees until for a pair of point and

VPL nodes (v(R), v(Q)), the condition max(r(R), r(Q)) < 0.1 • d(R, Q
) is satisfied and the aperture of the light node's cone is less than 20 • ; we then add the contribution of the VPL cluster Q to each point in R. This criteria attempts to ensure, though without any guaranteed bound on the error, that this estimated radiance roughly matches the value that would result from exhaustively evaluating the radiance for every point-VPL pair in (R, Q). Notice that for shading a pair (R, Q) we only take into account the representative point's BRDF and do not shade every point individually. This necessarily introduces error to our approximation image (e.g., the texture can vary within clusters). However, since this image is only used as an error upper bound it does not have a significant effect on the final image (Section 3.4 contains a more detailed discussion). Furthermore, instead of adding the calculated contribution of Q to all the points in v(R), we can simply accumulate it in the node and later with a tree traversal, distribute it to the leaves (each containing a point of P). We also store the minimum of the approximate radiances of the points in a node v(R) as v(R).color. This is used in Phase II.

In Figure 3.2 we show the images rendered with this approximation to illustrate how they capture illumination.

Illumination-aware pairs. A set of points R ⊆ P and a set of lights Q ⊆ S form an illumination-aware pair if

max p∈R | L Q (p, ω) -L Q (p, ω)| < δ • min p∈R L(p, ω) (3.3)
where δ is the error threshold, e.g., 1%. while notEmpty(W) do

(v(R), v(Q)) = W .pop() if IsIllumAwarePair(v(R), v(Q)) then foreach p ∈ R do L(p, ω) += LQ (p, ω) else if r(Q) > r(R) then if v(Q) has no children then foreach p ∈ R do L(p, ω) += LQ (p, ω) else foreach u ∈ children(v(Q)) do W .pushback(u, v(R)) else if v(R) has no children then foreach p ∈ R do L(p, ω) += LQ (p, ω) else foreach u ∈ children(v(R)) do W .pushback(v(Q), u) Function IsIllumAwarePair(v(R),v(Q)) return δ • v(R).color > L U B (v(R), v(Q))
The definition ensures that for any point p ∈ R, using Q as a light cluster would result in a small error. This is the most conservative error bound but other variations, e.g., average of L(p, ω) could be used as well. In order to evaluate this condition one requires the knowledge of the true radiance a priori. This is estimated using the approximate image calculated in Phase I; i.e., use the minimum radiance in the approximate image of points belonging to R. This minimum was stored in each node as v(R).color in Phase I.

The left-hand side of Equation (3.3), denoted L U B (v(R), v(Q)), can be upper bounded in a similar manner as Multidimensional Lightcuts. Let M max and G max be the upper bounds on the material and geometric terms over all point-VPL pairs in (R, Q). As the visibility term can Algorithm 5: Adaptive sampling for a pair (R, Q)

Function AdaptiveSampling(R,Q) if Q is a leaf or |R| < 8 then foreach p ∈ R do L(p, ω) += LQ (p, ω)
else vs: the number of samples

if |R| > 32 then vs ← 16 else vs ← 8 compute R , with |R | = vs if V rep(Q) (q) = 1 for all q ∈ R then foreach p ∈ R do L(p, ω) += LQ (p, ω) with V rep(Q) (p) set to 1 else if V rep(Q) (q) = 0 for all q ∈ R then return else foreach R i defined by R do AdaptiveSampling(R i , Q)
be upper bounded by 1, L U B (v(R), v(Q)) can be written as:

L U B (v(R), v(Q)) = M max • G max s∈Q I s (3.4)
We show how to calculate G max = cos φmax r 2 min where r min = min p∈R,s∈Q d(p, s) and φ max is the angle between the light normals and light directions for which the cosine function attains its maximum value. r min is set to d(R, Q). For φ max , we use the same technique as described in Multidimensional Lightcuts. First, we simplify the problem by calculating the bounding box of all possible light-point vectors between R and Q then apply a linear transform to this bounding box such that the direction of the light node's cone is aligned with the z axis. This transformation enables the direct evaluation of φ max . Calculating M max can be done in a similar fashion by using the surface normal and the reflected view ray ω of rep(R) in the role of the cone direction (the surface normals and reflected view rays for points in a node are located in a small cone due to our octree construction). See the details in [START_REF] Walter | Multidimensional lightcuts[END_REF].

Phase II: Rendering with illumination-aware pairs. Once we have an approximate radiance for each point p ∈ P as well as the minimum radiance of all the points in a subtree rooted at v (stored as v.color), we again traverse the two trees simultaneously top-down to construct the illumination-aware pairs. For each illumination-aware pair (R, Q), add the illumination contribution of the VPL cluster Q to each point in R. See Algorithm 4. The straightforward way of adding the illumination contribution of Q to each point in R is by computing LQ (p, ω)

separately via a shadow test from each p to rep(Q) and then using Equation (3.2). We refer to this method as IlluminationCut.

Adaptive sampling. Algorithm 4 computes, for each illumination-aware pair (R, Q), the contribution LQ (p, ω) of Q to each point p ∈ R by performing a visibility query from p to rep(Q).

Instead, one can use an adaptive sampling technique that reduces the number of visibility queries to be considerably less than the number of points in R, denoted by |R|. Given an illuminationaware pair (R, Q), we have access to the points in R as a subarray in z-order; we refer to this subarray as R, this ambiguity shall not cause a problem. Take a subset R of R dividing it into at most 16 equal length subarrays and calculate the visibility between points of R and the representative light rep(Q). If all points in R are visible or all are occluded, use this visibility for shading R; if not, then we recurse on the subarrays R i defined by R . We note that choosing R in this manner makes the algorithm biased. Though errors are unlikely, as the subarrays consist of spatially proximate points. See Algorithm 5. We refer to this method as IlluminationCut-Sampling.

Results and Discussion

In this section we present experimental results for several scenes with complex lighting, highly glossy materials and varying geometric complexity. Timings are for a server equipped with Intel(R) Xeon(R) E5-2680 CPUs utilizing in total 20 cores running at 2.8 GHz, with 74 GB of memory.

Implementation. We compare our algorithm with two well-known methods: Lightcuts [START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF] and LightSlice [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]. Since the authors of LightSlice published their code, we have ported their implementation into the ray-tracing system Intel Embree 2.3 [WFW+13; WWB+14]. We have improved their Lightcuts implementation with the agglomerative clustering method presented in [START_REF] Miksik | Implementing Lightcuts[END_REF]. The code is written in C++ with a very efficient ray-tracing engine. Due to recent advantages in packeted ray-tracing algorithms and their implementations, shading and other calculations account for a significant portion of the overall rendering time in our system; e.g., approximately 20% of the total time for Lightcuts is used by ray tracing (see [START_REF] Wald | Realtime Ray Tracing and its use for Interactive Global Illumination[END_REF]).

The code can be downloaded at the website of the authors. Scenes. We test the algorithms on a collection of scenes, all of them having highly glossy materials except for Sponza, which is completely diffuse. The outdoor scene San Miguel is our Parameters. For Lightcuts the error bound is set to 1% (as in earlier work [START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]). We give the results of both IlluminationCut and IlluminationCut-Sampling, setting the error to 1.5% in the former case and to 1% in the latter. LightSlice is run with approximately 1500 slices and with varying columns. The number of slices determines the size of the reduced light transport matrix while the number of columns determines the number of clusters used for rendering a point.

For the sake of compactness we refer to these algorithms in the figures as LC(1%), LS(3200), IC(1.5%) and IC-S(1%). The images have 1600 × 1200 resolution and use 1 sample per pixel for a clear comparison of the quality of clusterings obtained by the different methods. We give a second table with comparison for anti-aliased images with 9 samples per pixel to show how the methods behave in this case. For each scene, around 650K VPLs are generated by tracing light paths from the original light sources up to depth 10. Our implementation uses clamping by setting the point-VPL distance not smaller than 5% of the scene radius. Due to the consequent energy loss, we use the image rendered with all VPLs as our reference image. Performance. Table 3.1 shows the results with various statistics for 1 sample per pixel. Figure 3.3, 3.4, 3.5 and 3.6 contain the rendered images and error images for the four scenes. We set the error bound of Lightcuts to 1% and adjusted the other methods (error bound or column number) to provide similar RMSE quality. We note that all algorithms exhibit small variations in quality due to randomness. We provide the running times for the preprocessing and the rendering phase. For our method and Lightcuts, the preprocessing consists of building the light tree while for LightSlice there is no view independent preprocessing phase. The normalized RMSE and average relative error provides numerical difference against the VPL reference image. Both our method and Lightcuts are using similar error upper bound calculations. In order to compare the reduction of such calculations we have included in the table the number of upper bound calculations averaged over the number of pixels. We also give average number of shadow rays per pixel. Note that these are not identical, since lights facing away are not tested and additional shadow rays are traced in other parts of the algorithms. The latter happens for Phase I and for building the reduced light transport matrix in LightSlice. The error images are calculated by taking the channel-wise Euclidean distance between the image, and the VPL reference image, and multiplying it by a factor of 16. For LightSlice we report in parenthesis the time to cluster the reduced matrix because that is single threaded and it is a significant part of the rendering causing the main bottleneck of the algorithm. We also include highlights of typical errors (see Figure 3.7).

Comparison to Lightcuts. In general, the quality of our results is similar to Lightcuts with 3-6 times speedup. Both methods adapt well to the scenes, keeping the error low with the upper bounding methods and both methods oversample shadowed areas. The only visible artifacts are the non smooth shading of uniform surfaces, e.g., in San Miguel. Note that as Embree is a high performance ray tracing kernel we gain speed-up by significantly reducing the cost of clustering.

In Figure 3.8 we illustrate the number of upper bound calculations for each point p ∈ P. The images are using false coloring with a logarithmic scale. In Lightcuts, for each p we add 1 at each upper bound calculated while shading the point. In IlluminationCut, when an upper bounding calculation is carried out for an illumination-aware cluster we add to each p in the cluster the inverse of the number of points in the cluster. This shows the amortized cost of but the quality is significantly worse. For Sponza this results in degradation of quality while for Kitchen the quality remains unchanged. We believe that maximum cut size is effective mainly if one can properly set it prior to rendering a scene. In Table 3 Speed up. The ray tracing kernel used in our implementation is more highly optimized than the renderer (see [START_REF] Wald | Embree: A Kernel Framework for Efficient CPU Ray Tracing[END_REF] for details on the ray tracing kernel). Therefore the speed up achieved by the method is less if these two components are similarly efficient. In order to have a more objective comparison we have measured the proportion of different components in our implementation of Lightcuts. Approximately 20% is spent on ray tracing, 60% on upper bounding computations and the remaining 20% is spent on shading and heap maintenance. The upper bounding calculations in our method are only a fraction of Lightcuts', therefore we achieve on average 3 times speedup over Lightcuts.

Memory. See Table 3.4 for the peak memory consumption (in GB) of the four algorithms LC(1%), LS(800), IC(1.5%), IC-S(1%) run on Banquet with 1 sample per pixel and 1600×1200 resolution. Lightcuts is the most efficient on memory consumption, followed by our method.

For the latter the point tree consumes most memory, scaling linearly with the number of points (e.g., 9 samples per pixels would require extra 8 GB of memory). We note that in order to alleviate the memory consumption one could partition the tree into a few subtrees and process them independently. LightSlice, due to the light transport matrix storage (the size of it is the number of slices times the number of VPLs), has a very high memory consumption. Anti-aliasing. We have found that increasing the number of samples increases the quality of the images rendered with LightSlice. Given a VPL-cluster, the method uses different representative lights of the light cluster for shading the different samples in a pixel. See Table 3.5, Figure 3.10, 3.11, 3.12 and 3.13 for the results of the methods with 9 samples per pixel. This technique smooths the errors, thus enables LightSlice to achieve better quality with only 800 columns, improving its rendering time significantly. For Kitchen, LightSlice now outperforms our algorithm but it is still not well-suited for highly glossy environments (e.g., Banquet) and challenging illumination (e.g., Sponza). In these cases IlluminationCut-Sampling performs better. Our method can be further enhanced for the case of multiple samples per pixel, in a similar way as Multidimensional Lightcuts, by limiting the number of traced rays and shadings. Namely, in each illumination-aware pair use only a single representative for the points originating from the same pixel. This would result in fewer visibility queries but likely increase the error on surfaces with non-uniform textures.

Limitations

We have presented an implementation of a flexible and efficient framework handling highly glossy materials. It is several times faster than Lightcuts and has similar speedup as LightSlice while guaranteeing low perceptual error which can be set a priori to rendering.

The usage of an octree for the point tree can cause blocking artifacts, however with low error threshold these disappear. The approximate image used in our algorithm has errors and it is not progressively refined (contrary to Lightcuts), thus it might introduce errors in Phase II. This effect, however, is unnoticeable since even a 100% error in the approximate image only results in at most 1% additional error (per cluster) in the final image. IlluminationCut reduces calculations by exploiting the similarity of points, therefore it is less efficient for scenes where the shaded points have highly varying properties (e.g., heterogeneous BRDFs or spatial incoherence). Our current implementation requires the BRDFs to belong to a family with a low number of parameters since otherwise bounding these parameters for nodes of the octree would become prohibitively expensive.

The construction method of the point tree is not important (to some extent) for Algorithm 4 to extract pairs of clusters. Thus one step further would be to utilize a complex metric for the point tree, e.g., incorporating material properties as well. Such a strategy could be useful in a scene with highly varying materials since it would enable tighter error bounds for the individual clusters. Chapter 4

Software

In our work we have introduced novel algorithms for computing global illumination in the manylights setup and provided comparisons with state-of-the-art techniques. In order to report appropriate data and to do a fair comparison it is required that all methods share the same framework and that this framework is representative of recent professional rendering environments.

In order to fulfill these requirements we have chosen a relatively simple yet fully functional rendering framework with state-of-the-art ray tracing kernels, namely the Embree rendering framework [START_REF] Wald | Embree: A Kernel Framework for Efficient CPU Ray Tracing[END_REF]. This system is capable of creating high quality images, see Figure 4.1.

We have implemented (or if the code was available simply ported) all algorithms in this environment. The ray tracing kernels provide efficient intersection methods by using state-of-the-art acceleration structures (e.g., bounding volume hierarchies built using SAH [START_REF] Ingo | On Fast Construction of SAH-based Bounding Volume Hierarchies[END_REF]), packeted ray tracing and low level optimization using vector instructions (both SSE and AVX). It's performance is comparable to state-of-the-art GPU ray tracing systems. The rendering engine was designed to provide a realistic environment for testing the kernel's performance for professional The source code of our project can be found on the author's website. We will here highlight some decisions and crucial parts of the algorithm. The code contained in this document is a subset of the real code only for presentation purposes.

Lightcuts

We have implemented the Lightcuts algorithm but additionally we include the implementation provided by the authors of LightSlice. Our implementation performs slightly better in the Embree framework.

We have used a heap-less agglomerative clustering algorithm for building the lighttree [START_REF] Walter | Fast Agglomerative Clustering for Rendering[END_REF] using a fast customized kd-tree [START_REF] Miksik | Implementing Lightcuts[END_REF]. See the Listing 4.3 where the kd-tree query returns the closest node using a custom metric (the one described in the original Lightcuts paper) for clustering the lights. This results in a slower construction but a better quality tree than the one used by the authors of LightSlice (built with divisive clustering based on spatial and directional splits). We have decided to use this method since the better quality tree resulted in an improvement of the rendering time.

LightSlice

We have used the code published by the authors of LightSlice. The only modification we have done is that we have adjusted it to use our framework. The code was downloaded from the authors' website.

IlluminationCut

Since IlluminationCut shares data structures and algorithms with Lightcuts we will only give some details regarding the difference, namely the pixeltree. The pixeltree was simply built by a divisive algorithm to minimize the construction time, repeatedly partitioning the set of pixels into two subsets. Each node corresponds to a group of pixels which we store in an array to have a fast access to them for shading. In order to avoid copies of the same pixels there is only one array storing all pixels and each node keeps only the beginning and ending pointer of a continuous range of this array. This is a well-known method to store a binary tree in an array. It Bounds on -nets. The result of Agarwal-Pan [START_REF] Pankaj | Near-Linear Algorithms for Geometric Hitting Sets and Set Covers[END_REF] opens the way, for the first time, for near linear-time algorithms for the geometric hitting set problem. The catch is that the approximation factor depends on the sizes of -nets for disks. So far, the best constants for the -nets come from the proofs in [START_REF] Pyrga | New existence proofs for epsilon-nets[END_REF] and [START_REF] Har-Peled | Epsilon-Nets for Halfspaces Revisited[END_REF]. These constructions give a bound that is at least 24/ and most likely more than 40/ . Furthermore, there is no implementation or software solution available that can even compute such -nets efficiently.

Local search. For the hitting set problem on (P, D), consider the following algorithm: start with any hitting set S ⊆ P , and repeatedly decrease the size of S, if possible, by replacing k points of S with < k points of P \ S. Call such an algorithm a (k, k -1)-local search algorithm. Mustafa-Ray [START_REF] Nabil | Improved Results on Geometric Hitting Set Problems[END_REF] showed that a (k, k -1)-local search algorithm for the hitting set problem gives a (1 + c/ √ k)-approximation, for a fixed constant c, when the ranges are disks, or more generally, pseudo-disks in R 2 . The running time of their algorithm to compute a

(1 +)-approximation is O(n O(1/ 2)).
Chapter 6

Tighter Estimates for -nets for Disks We prove new improved bounds on sizes of -nets and present efficient algorithms to compute such nets. Our approach is simple: we will show that modifications to a well-known technique for computing -nets -the sample-and-refine approach of Chazelle-Friedman [CF90] -together with additional structural properties of Delaunay triangulations in fact results in -nets of surprisingly low size:

Theorem 6.1. Given a set P of n points in R 2 , there exists an -net under disk ranges of size at most 13.4/ . Furthermore it can be computed in expected time O(n log n).

Together with the result of Agarwal-Pan, this immediately implies the following: Corollary 6.2. For any δ > 0, one can compute a (13.4 + δ)-approximation to the minimum hitting set for (P, D) in time Õ(n).

Through a careful analysis, we present the algorithm for computing an -net of size 13.4 , running in near linear time. The method, shown in Algorithm 6, computes a random sample and then solves certain subproblems involving subsets located in pairs of Delaunay disks circumscribing q Q R FIGURE 6.1: Setup around q.

Proof. Divide the plane into 4 quadrants with 2 lines, intersecting at a point q, such that each quadrant contains n/4 points. See Figure 6.1. Using the Ham-Sandwich theorem, this can be done in linear time [START_REF] Matousek | Lectures in Discrete Geometry[END_REF]. Create a 2 3 -net for each quadrant, using Lemma 6.3. Add these 8 points to the -net of P . If q ∈ P then add q to the -net; otherwise let ∆ be the triangle in the Delaunay triangulation of P that contains the point q. Add the two vertices of ∆ that are in the opposite quadrants to the -net. The resulting size of the net is at most 10. Denote the quadrant without a vertex of the Delaunay triangle inside it by Q and its opposite quadrant by R. If a disk D intersects at most 3 quadrants and does not contain any of the points from the 2 3 -net in each of those quadrants, it can contain only at most 3 • 2 3 • n 4 = n 2 points. On the other hand, if D contains points from each of the 4 quadrants, then it must contain points from Q and R that are outside of the Delaunay disk D ∆ of ∆ (as D ∆ is empty of points of P). Then if D does not contain any of the two vertices of ∆ in the opposite quadrants (already added to the -net), it must pierce D ∆ , a contradiction.

Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if int(∆(pqr)) ∩ int(∆(pqs)) = ∅. Define its weight, denoted W ({p,q},{r,s}) , to be the number of points of P in D pqr ∪ D pqs . Let T ≤k be a set of Delaunay quadruples of P of weight at most k and similarly T k denotes the set of Delaunay quadruples of weight exactly k. Similarly, a Delaunay triple is given by ({p, q}, {r}), where p, q, r ∈ P . Define its weight, denoted W ({p,q},{r}) , to be the number of points of P in D pqr ∪ D pqr . Let S ≤k be a set of Delaunay triples of P of weight at most k, and S k denotes the set of Delaunay triples of weight exactly k.

One can upper bound the size of T ≤k , S ≤k and using it, we derive an upper bound on the expected number of sub-problems with a certain number of points. Lemma 6.5. |T ≤k | ≤ (e 3 /9)nk 3 asymptotically and |T ≤k | ≤ (3.1)nk 3 for k ≥ 13.

Proof. The proof is an application of the Clarkson-Shor technique [START_REF] Matousek | Lectures in Discrete Geometry[END_REF]. Pick each point in P independently with probability p cs to get a random sample R cs . Count the expected number of edges in the Delaunay triangulation of R cs in two ways. On one hand, it is simply less than 3E[|R cs |] = 3np cs . On the other hand, it is:

3np cs ≥ E[Number of Delaunay edges in R cs] = p,q∈P Pr[{p, q} is a Delaunay edge of R cs] ≥ p,q∈P r,s∈P Pr[(D pqr ∪ D pqs) ∩ R cs = ∅] (disjoint events) ≥ ({p,q},{r,s})∈T ≤k Pr[(D pqr ∪ D pqs) ∩ R cs = ∅] ≥ ({p,q},{r,s})∈T ≤k p 4 cs • (1 -p cs) k = |T ≤k | • p 4 cs • (1 -p cs) k Therefore |T ≤k | ≤ 3np cs /(p 4 cs (1 -p cs) k
) and a simple calculation gives that setting p cs = 3 k+3 minimizes the right hand side. Then

|T ≤k | ≤ 3n 3 k+3 /((3 k+3) 4 (1 -3 k+3) k) = nk 3 1 9 (1 + 3 k) k+3
, and the claim follows. Lemma 6.6. |S ≤k | ≤ (e 2 /4)nk 2 asymptotically and |S ≤k | ≤ (2.14)nk 2 for k ≥ 13.

Proof. Pick each point in P independently with probability p cs to get a random sample R cs .

Count the expected number of edges in the Delaunay triangulation of R cs that lie on the boundary of the Delaunay triangulation, i.e., adjacent to exactly one triangle, in two ways. On one hand, it is exactly the number of edges in the convex-hull of R cs , therefore at most E[|R cs |] = np cs . Counted another way, it is:

np cs ≥ E[Number of boundary Delaunay edges in R cs] = p,q∈P Pr[{p, q} is a boundary Delaunay edge of R cs] ≥ p,q∈P r∈P Pr[(D pqr ∪ D pqr) ∩ R cs = ∅] (disjoint events) ≥ ({p,q},{r})∈S ≤k Pr[(D pqr ∪ D pqr) ∩ R cs = ∅] ≥ ({p,q},{r})∈S ≤k p 3 cs • (1 -p cs) k = |S ≤k | • p 3 cs • (1 -p cs) k
Setting p cs = 2 k+2 gives the required result.

Lemma 6.7.

E |{e ∈ Ξ | k 1 n ≤ |P e | ≤ k 2 n}| ≤ (3.1)c 3 1 e k 1 c 1 (k 3 1 c 1 + 3.7k 2 2) if n ≥ 13.
Proof. The crucial observation is that two points {p, q} form an edge in Ξ with two adjacent triangles ∆(pqr), ∆(pqs) ∈ Ξ iff {p, q, r, s} ⊆ R and none of the points of P in D pqr ∪ D pqs are picked in R (i.e, the points p, q, r, s form the Delaunay tuple ({p, q}, {r, s})). Or {p, q} form an edge on the convex-hull of Ξ with one adjacent triangle ∆(pqr) iff {p, q, r} ⊆ R and none of the points of P in D pqr ∪ D pqr are picked in R.

Let χ ({p,q},{r,s}) be the random variable that is 1 iff {p, q} form an edge in Ξ and their two adjacent triangles are ∆(pqr) and ∆(pqs). Let χ ({p,q},{r}) be the random variable that is 1 iff {p, q} form an edge in Ξ with exactly one adjacent triangle ∆(pqr). Noting that every edge in Ξ must come from either a Delaunay quadruple or a Delaunay triple,

E[|{e | k 1 n ≤ |P e | ≤ k 2 n}|] = p,q,r,s∈P k 1 n≤W ({p,q},{r,s}) ≤k 2 n Pr[χ ({p,q},{r,s}) = 1] + p,q,r∈P k 1 n≤W ({p,q},{r}) ≤k 2 n Pr[χ ({p,q},{r}) = 1]
The second term is asymptotically smaller, so we bound it somewhat loosely:

p,q,r∈P k 1 n≤W ({p,q},{r}) ≤k 2 n Pr[χ ({p,q},{r}) = 1] ≤ p,q,r k 1 n≤W ({p,q},{r}) ≤k 2 n (c 1 / n) 3 (1 -c 1 / n) W ({p,q},{r}) ≤ |S ≤k 2 n | • (c 1 / n) 3 (1 -c 1 / n) k 1 n ≤ (2.14)n(k 2 n) 2 • (c 1 / n) 3 • e -c 1 k 1 = (2.14)k 2 2 c 3 1 e c 1 k 1 .
Now we carefully bound the first term:

p,q,r,s∈P k 1 n≤W ({p,q},{r,s}) ≤k 2 n Pr[χ ({p,q},{r,s}) = 1] ≤ k 2 n i=k 1 n p,q,r,s W ({p,q},{r,s}) =i Pr[χ ({p,q},{r,s}) = 1] ≤ k 2 n i=k 1 n p,q,r,s W ({p,q},{r,s}) =i (c 1 / n) 4 (1 -c 1 / n) i ≤ k 2 n i=k 1 n |T i |(c 1 / n) 4 (1 -c 1 / n) i
As the above summation is exponentially decreasing as a function of i, it is maximized when

|T i 0 | = max |T ≤i 0 | where i 0 = k 1 n, and |T i | = max |T ≤i | -max |T ≤i-1 |
and so on. Using Lemma 6.5 we obtain:

≤ |T ≤k 1 n | • (c 1 / n) 4 (1 -c 1 / n) k 1 n + k 2 n i=k 1 n+1 (|T ≤i | -|T ≤i-1 |) • (c 1 / n) 4 (1 -c 1 / n) i ≤ (3.1)n(k 1 n) 3 • (c 1 / n) 4 (1 -c 1 / n) k 1 n + k 2 n i=k 1 n+1 (3.1)n • 3i 2 • (c 1 / n) 4 (1 -c 1 / n) i ≤ (3.1) k 3 1 c 4 1 e -k 1 c 1 + (3.1) 3k 2 2 c 4 1 2 n k 2 n i=k 1 n+1 (1 -c 1 / n) i ≤ (3.1) k 3 1 c 4 1 e -k 1 c 1 + (3.1) 3k 2 2 c 4 1 2 n (1 -c 1 / n) k 1 n c 1 / n ≤ (3.1)c 3 1 e k 1 c 1 (k 3 1 c 1 + 3k 2 2).
The proof follows by summing up the two terms.

Using the above facts we can prove the main result.

Lemma 6.8. Algorithm COMPUTE -NET computes an -net of expected size 13.4/ . For the expected size, clearly, if n < 13 then the returned set is an -net of size 13 . Otherwise we can calculate the expected number of points added to the -net during solving the sub-problems. We simply group them by the number of points in them. Set E i = {e | 2 i n ≤ |P e | < 2 i+1 n}, and let us denote the size of the -net returned by our algorithm with f ().

Then E f () = E[|R|] + E | e∈Ξ R e | = c 1 + E[|{e | n ≤ |P e | < 3 n/2}|] • f (2/3) +E[|{e | 3 n/2 ≤ |P e | < 2 n}|] • f (1/2) + i=1 E   e∈E i f n |P e |   Noting that E[e∈E i f (n |Pe|) | |E i | = t] ≤ tE[f (1/2 i+1)], we get E   e∈E i f n |P e |   = E   E[e∈E i f n |P e | |E i]   ≤ E |E i | • E[f (1/2 i+1)] = E[|E i |]•E[f (1/2 i+1)]
as

|E i | and f (•) are independent. As = n |Pe| > , by induction, assume E[f] ≤ 13.4 . Then E f () ≤ c 1 + (3.1) • c 3 1 (c 1 + 8.34) e c 1 • 2 + (3.1) • c 3 1 ((3/2) 3 c 1 + 14.8) e 3c 1 /2 • 10 + i (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • 13.4 • 2 i+1 ≤ 13.4
by setting c 1 = 12.

Finally, we bound the expected running time of the algorithm.

Lemma 6.9. Algorithm COMPUTE -NET runs in expected time O(n log n).

Proof. Note that E[|R|] = c 1 / . First we bound the expected total size of all the sets P e :

E e∈Ξ |P e | ≤ E[|{e | 0 ≤ |P e | < n}|] • n + i=0 E[|{e | 2 i n ≤ |P e | < 2 i+1 n}|] • 2 i+1 n ≤ O(n) + i=0 O (2 i) 3 e 2 i c 1 • 2 i+1 n = O(n),
as the last summation is a geometric series. This implies that the expected total number of incidences between points in P , and Delaunay disks in Proof. This can be seen by lifting P to R 3 via the Veronese mapping, where it follows from the fact that the faces of a convex polyhedron that are visible from any exterior point are connected.

Ξ is O(n). The
Note that by the -net theorem, the probability of restarting the algorithm (lines 4-5) at any call is at most a constant. Therefore it is re-started expected at most a constant number of times, and so the expected running time, denoted by T (n):

E[T (n)] = O(1/ log 1/) + O(n log 1/) + e∈Ξ E[T (|P e |)] ≤ O(n log 1/) + e∈Ξ E[T (|P e |)]
Similarly to previous calculations we have that

E[T (n)] ≤ O(n log 1/) + (3.1) • c 3 1 (c 1 + 8.34) e c 1 • O(3 n/2 log(3 n/2)) + (3.1) • c 3 1 ((3/2) 3 c 1 + 14.8) e 3c 1 /2 • O(2 n log(2 n)) + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • E[T (2 i+1 n)] ≤ dn log n + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • E[T (2 i+1 n)]
for a constant d coming from the constants above, as well as in Delaunay triangulation, pointlocation and list-construction computations. Setting E[T (k)] = ck log k satisfies the above inequality for c ≥ 2d, since

E[T (n)] ≤ dn log n + i=1 (3.1) • c 3 1 (2 3i c 1 + 3.7 • 2 2i+2) e c 1 2 i • c(2 i+1 n) log(2 i+1 n) ≤ dn log n + (cn log n) i=1 2 i+1 • (3.1) • 12 3 (2 3i • 12 + 3.7 • 2 2i+2) e 12•2 i ≤ dn log n + cn log n • 1 2 ≤ cn log n, for c ≥ 2d.

Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz) and with 16 GB main memory. All our implementations are single-threaded. The source code can be obtained from States [Fwf]. The KDDCUP04Bio dataset [Cd] (KDDCU for short) contains the first 2 dimensions of a protein dataset with 145K entries. We have also created a random data set Gauss9 with 90K points sampled from 9 different Gaussian distributions with random mean and covariance matrices.

Sizes of -nets. Setting the probability for random sampling to 12

•n results in approximately 12 sized nets for nearly all datasets, as expected by our analysis. We note however, that in practice setting c 0 to 7 gives smaller size -nets, of size around 9 . See Figure 6.2 for the dependency of the net size on c 0 for = 0.01. It also includes an -net calculated with our algorithm for a subset of the World data (red points denote the -net and each pixel's color is the logarithm of the number of disks it is contained in). See Table 6.1 for the -net sizes for different values of as c 0 varies from 7 to 12. This table also includes the size of the first random sample (R), which shows that the number of subproblems to solve increases as the random sample is more sparse.

The results for our -net algorithm indicate that our theoretical analysis in Section 6.1 closely tracks the actual size of the nets. This can additionally be seen as continuing the program for better analysis of basic geometric tools; see, e.g., Har-Peled [START_REF] Har-Peled | Constructing Planar Cuttings in Theory and Practice[END_REF] for analysis of algorithms and Matousek [START_REF] Matousek | On Constants for Cuttings in the Plane[END_REF] for detailed analysis, both for a related structure called cuttings in the plane. TABLE 6.1: The size of the -net multiplied by (left value in a column for a fixed) and the size of R, the first random sample multiplied by (right value in a column) for various point sets with c 0 = 7 or 12. Chapter 7

c 0 = 7 c 0 = 12 0.2 0.
Engineering the Agarwal-Pan

Algorithm

In this chapter we present our algorithm for computing hitting sets via the rounding technique.

This work is based on the following paper.

Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. "Geometric Hitting Sets for Disks: Theory and Practice." In: 23rd European Symposium on Algorithms (ESA). 2015

General Idea

The breakthrough algorithm of Agarwal-Pan [START_REF] Pankaj | Near-Linear Algorithms for Geometric Hitting Sets and Set Covers[END_REF] uses sophisticated data-structures that have large constants in the running time. In particular, it uses the O(log n + k)-time algorithm for range reporting for disk ranges in the plane (alternatively, for halfspaces in R 3) as well as a dynamic data-structure for maintaining approximate weighted range-counting under disk ranges in polylogarithmic time. We have not been able to find efficient implementations of any of these data-structures.

This work is an attempt to address this shortcoming by observing that in this specific application (i.e., minimum hitting set problem for disks), we don't need general range-searching and dynamic range counting tools, we give a new modified elementary algorithm. More specifically, rur contributions are:

1. Engineering a hitting-set algorithm (Section 7.2). Together with the result of Agarwal-Pan, Theorem 6.1 immediately implies, that for any δ > 0, one can compute a (13.4 + δ)approximation to the minimum hitting set for (P, D) in time Õ(n). We present a modification of the algorithm of Agarwal-Pan that does not use any complicated data-structures -just Delaunay triangulations, -nets and binary search (e.g., it turns out that output sensitive range reporting is not required). This comes with a price: although experimental results indicate a near-linear running time, we have been unable to theoretically prove that the algorithm runs in expected near-linear time.

2. Implementation and experimental evaluation (Section 7.3). A major advantage of Delaunay triangulations is that their behavior has been extensively studied, there are many efficient implementations available, and they exhibit good behavior for various real-world data-sets as well as random point sets. We present dnet, a public source-code module that incorporates these ideas and an implementation of our -net algorithm to efficiently compute small-sized hitting sets in practice. We give detailed experimental results on both synthetic and real-world data sets, which indicates that the algorithm computes, on average, a 1.3-approximation in nearlinear time.

Algorithm

The Agarwal-Pan (AP) algorithm (shown in Algorithm 7) uses an iterative reweighing strategy, where the idea is to assign a weight w(•) to each p ∈ P such that the total weight of points contained in each D ∈ D is relatively high. It starts by setting w(p) = 1 for each p ∈ P . If there exists a disk D with small weight, it increases the weight of the points in D until their total weight exceeds a threshold of cW/OPT, where c is some constant and W = p∈P w(p) is the current total weight. If after any iteration, all disks have weight above the threshold cW 2eOPT , return a c 2eOPT -net with respect to these weights, ensuring that every disk is hit.

For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings into O(log n)

phases, where each phase (except perhaps the last) performs Θ(OPT) reweighings. The implementation of the AP algorithm requires two ingredients: A) a range reporting data structure and B) a dynamic approximate range counting data structure. The former is required for figuring out whether a disk needs reweighing and the latter is used to construct the set of points to be reweighed. As a pre-processing step, the AP algorithm first computes a 1/OPT-net Q to be returned as part of the hitting set. This ensures that the remaining disks not hit by Q contain less than n/OPT points. Additionally they observe that in any iteration, if less than OPT disks are reweighed, then all disks have weight more than cW 2eOPT .

The AP algorithm is simple and has a clever theoretical analysis. Its main drawback is that the two data structures it uses are sophisticated with large constants in the running time. This unfortunately renders the AP algorithm impractical. Our goal is to find a method that avoids these sophisticated data structures and to develop additional heuristics which lead to not only a fast implementation but also one that generally gives an approximation ratio smaller than that guaranteed by the theoretical analysis of the AP algorithm. As part of the algorithm, we use the algorithm for constructing -nets described in the previous section, which already reduces the approximation factor significantly.

Removing A). Just as Agarwal and Pan do, we start by picking a c 1 /OPT-net, for some constant c 1 . The idea for getting rid of range-reporting data-structure is to observe that the very fact that a disk D is not hit by Q, when Q is an -net, makes it possible to use Q in a simple way to efficiently enumerate the points in D. We will show that D lies in the union of two Delaunay disks in the Delaunay triangulation of Q, which, as we show later, can be found by a simple binary search. The resulting algorithm still has worst-case near-linear running time.

Removing B). Our approach towards removing the dependence on dynamic approximate range counting data structure is the following: at the beginning of each phase we pick a c 2 /OPT-net R, for some constant c 2 . The set of disks that are not hit by R are then guaranteed to have weight at most c 2 W/OPT, which we can then reweigh during that phase. While this avoids having to use data-structure B), there are two problems with this: a) disks with small weight hit by R are not reweighed, and b) a disk whose initial weight was less than c 2 W/OPT could have its current weight more than c 2 W/OPT in the middle of a phase, and so it is erroneously reweighed.

Towards solving these problems, the idea is to maintain an additional set S which is empty at the start of each phase. When a disk D is reweighed, we add a random point of D (sampled according to w(•)) to S. Additionally we maintain a nearest-neighbor structure for S, enabling us to only reweigh D if it is not hit by R ∪ S. Now, if during a phase, there are Ω(OPT) reweighings, then as in the Agarwal-Pan algorithm, we move on to the next phase, and a) is not a problem. Otherwise, there have been less than OPT reweighings, which implies that less than OPT disks were not hit by R. Then we can return R together with the set S consisting of one point from each of these disks. This will still be a hitting set.

Algorithm 8: Algorithm for computing small-sized hitting sets. Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT. Compute a (c 1 /OPT)-net Q of P and the Delaunay triangulation Reweighing in a random order makes these events very unlikely (in fact we suspect this gives an expected linear-time algorithm, though we have not been able to prove it).

Ξ(Q) of Q. foreach q ∈ Q do construct Ψ(Q)(q). foreach D ∈ D do
See Algorithm 8 for the new algorithm (the data-structure Ψ(Q) will be defined later).

Lemma 7.1. The algorithm terminates, Q∪R∪S is a hitting set, of size at most (13.4+δ)•OPT, for any δ > 0.

Proof. By construction, if the algorithm terminates, then Q ∪ R ∪ S is a hitting-set. Set c 1 = 13.4 • 3/δ, c 2 = 1/(1 + δ/(13.4 • 3)), c 3 = δ/10000 and c 4 = δ/3. By the standard reweighing argument, we know that after t reweighings, we have: Finally note that Ψ(Q) can be constructed in the pre-processing phase in expected O(n log n) time: for each point q ∈ Q, extract its set of adjacent Delaunay triangles from Ξ(Q), and radially sort their circumcenters around q to get the list Ψ(Q)(q). As the number of triangles is

OPT (1 + c 3) t OPT ≤ n • (1 + c 2 c 3 OPT) t (7.
O(|Q|),

Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz) and with 16 GB main memory. All our implementations are single-threaded, but we note that our hitting set algorithm can be easily multi-threaded. The source code can be obtained from the authors' website. For States [Fwf]. The KDDCUP04Bio dataset [Cd] (KDDCU for short) contains the first 2 dimensions of a protein dataset with 145K entries. We have also created a random data set Gauss9 with 90K points sampled from 9 different Gaussian distributions with random mean and covariance matrices. Approximate hitting sets. For evaluating the practical usability of our approximate hitting set algorithm we compare it to the optimal solution calculated by an IP solver. Our algorithm needs a guess for OPT, and so we run it with O(log n) guesses for the value of OP T . The parameters are set as follows: c 0 = 10, c 1 = 30, c 2 = 12, c 3 = 2, c 4 = 2 and c 5 = 0.6.

Our datasets only contain points and in order to create disks for the hitting set problem we have utilized two different strategies. In the first approach we create uniformly distributed disks in the unit square with uniformly distributed radius within the range [0, r]. Let us denote this test case as RN D(r). In the second approach we added disks centered at each point with a fixed radius of 0.001. Let us denote this test case by F IX(0.001). The results are shown in Table 7.1 for two values r = 0.1 and r = 0.01. Our algorithm provides a 1.3 approximation on average. With small radius the solver seems to outperform our algorithm but this is most likely due to the fact that the problems become relatively simpler and various branch-and-bound heuristics become efficient. With bigger radius and therefore more complex constraint matrix our algorithm clearly outperforms the IP solver. Our method obtains a hitting set for all point sets, while in some of the cases the IP solver was unable to compute a solution in reasonable time (we terminate the solver after 1 hour).

In Table 7.2 we have included the memory consumption of both methods and statistics for range reporting. It is clear that the IP solver requires significantly more memory than our method. The statistics for range reporting includes the total number of range reportings (calculating the points inside a disk) and the number of range reportings when the algorithm doubles the weight of the points inside a disk (the doubling column in the table). It can be seen that only a fraction of the computations are wasted since the number of doublings is almost as high as the total number or range reportings. This in fact shows that the running time of our algorithm is near-linear in n.

In order to test the scalability of our method compared to the IP solver we have used the Forest-Fire and China dataset with limiting the number of points to 10K, 20K, 30K. . . and repeating exactly the same experiments as above (while increasing the number of disks in a similar manner). In Figure 7.2 we plot the running time of the methods. The solid lines represent the case RN D(0.1) while the dashed ones denote RN D(0.01). One can see that as the number of points and disks increases our method becomes more efficient even though for small instances this might not hold. It can be seen that for the China dataset and RN D(0.01) the IP solver is faster than our method but after 500K points our method becomes faster. In Figure 7.2 the dotted line represents the running time of our algorithm for F IX(0.001). In this case the IP running time is not shown because the solver was only able to solve the problem with 10K points within a reasonable time (for 20K and 30K points it took 15 and 21 hours respectively).

We have varied the radius of the disks for the fixed radius case to see how the algorithms behave.

See the Figure 7.3. With bigger radius the IP solver becomes very quickly unable to solve the problem (for radius 0.002 it was unable to finish within a day), showing that our method is more robust.

In order to test the extremes of our algorithm we have taken the World dataset containing 10M records. Our algorithm was able to calculate the solution of the F IX(0.001) problem of size

General Idea

Let R be a region in the plane. We say that a point p ∈ R 2 hits R if p ∈ R, and that a set of points X hits a set of regions R if each region in R is hit by some point in X. We denote by H(P, R) the set system (P, {R ∩ P : R ∈ R}) induced by P and R. A hitting set for H(P, R) is a subset of P which hits R. A hitting set of the smallest cardinality is called the minimum hitting set and its size is denoted OPT(P, R) (or simply OPT when it is clear from the context).

From now onwards, P denotes a set of points and D denotes a set of (circular) disks in the plane.

Our goal is to compute a hitting set for H(P, D) of a small size efficiently. Our algorithm is based on local search. It starts with a hitting set and repeatedly tries to make local improvements.

Let S be a hitting set for H(P, D). Let X ⊆ S and Y ⊆ P . We say that (X, Y) is a local improvement pair with respect to S and H(P, D) if |Y | < |X| and (S \ X) ∪ Y is a hitting set for H(P, D). Such a local improvement reduces the size of the hitting set by |X| -|Y |. We will refer to this quantity as the profit of the local improvement and the local improvement pair. We say that X ⊆ S is locally improvable with respect to S and H(P, D) if there exists a Y ⊆ P such that (X, Y) is a local improvement pair. If (X, Y) is a local improvement pair, we say that Y can locally replace X.

As our first result, we determine the exact limits of (3, 2)-local search:

Proof. Let n b = |B| and n r = |R|. Our goal is to prove that n b ≤ 8n r . Note that no vertex in B can have degree 0, otherwise the neighborhood of such a vertex is of size 0, violating the conditions of the theorem. We make a new graph G by adding edges in G to all vertices of B which have degree 1 in G. This can always be done while maintaining the planarity and bipartiteness of the graph as any such vertex v must lie in a face which has at least two vertices of R, at least one of which is not adjacent to v. Thus in G every vertex in B has degree at least We now show that n b 2 ≤ 6n r . To do that we construct a graph H with vertex set R as follows: two vertices r 1 ∈ R and r 2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B of degree 2 which is adjacent to both r 1 and r 2 in G . Note that H is planar since the edge between r 1 and r 2 can be routed via one such b. Note that for the same pair {r 1 , r 2 } there cannot be This shows that the bound in Theorem 8.4 is tight within additive constants. Now, we extend G to a triangulation by including the dotted edges in the blocks. Note that there are some dotted edges going between blocks. We also put an additional vertex in the outer face and connect it to all vertices in the outer face of G (i.e. we stellate the outer face). The resulting graph, call it Ξ, is triangulated (i.e., each face is of size 3) and furthermore it is 4-connected since, as can be verified by inspection, there is no separating triangle (a non-facial cycle of length 3). By a theorem of Dillencourt and Smith (Theorem 3.5 in [START_REF] Michael | Graph-theoretical conditions for inscribability and Delaunay realizability[END_REF]), there exists an embedding of Ξ in the plane so that Ξ is the Delaunay triangulation of its vertices. Abusing notation, we refer to the embedding as Ξ and we refer to the embedding of a vertex v in Ξ as v.

An Õ(n 7/3)-time Algorithm for Local Search

Let S be a hitting set for H(P, D). For any s ∈ S, we denote by D(s) the set of disks in D that are hit by s but not by any other point in S. We will call the disks in D(s) the personal disks of s. We will denote the region D∈D(s) D by R(s) and call it the personal region of s. The notations D(s) and R(s) are always with respect to a set system H(P, D) and a hitting set S. These things that are not explicit in the notation will be clear from the context. We also extend the same definitions for sets of points: for a set X ⊆ S, let D(X) be the set of disks in D which contain only points of X. We call these the personal disks of X. The personal region of X is

R(X) = D∈D(X) D.
Before presenting our algorithm, we prove a few results that will be useful for describing the algorithm.

Lemma 8.6. Let S be a hitting set for H(P, D). If |S| > 8 • OPT(P, D) + 3t, for some integer t ≥ 0, then there exist t + 1 disjoint subsets X 0 , . . . , X t of S, each of which is of size 3 and is locally improvable with respect to S in H(P, D).

Proof. The proof is by induction. The statement is true for t = 0: if there is no locally improvable set X of size 3, then taking B = S and R = O, where O is the optimal hitting set for H(P, D) and applying Theorem 8.4, we get that |S| ≤ 8OPT(P, D). Assume inductively that the lemma is true for t -1, and let the t disjoint sets of S be X

0 , • • • , X t-1 . It remains to construct the set X t . Let Z = t-1 i=0 X i . Let P = P \ Z, D = {D ∈ D : D ∩ Z = ∅} and S = S \ Z.
Clearly S is a hitting set for H(P , D). Moreover, Lemma 8.7. OPT(P , D) ≤ OPT(P, D).

Proof. Take any hitting set A for H((P, D)). Then any point a ∈ A that hits a disk in D must belong to P : otherwise a ∈ P \ P = Z, and we had constructed D by removing all the disks hit by Z from D. Therefore all the points in A hitting D belong to P , and form a hitting set in contains a hitting set for H(P , D). Now, using the Theorem 8.4 for t = 0 on S and (P , D), the fact that |S | > 8 • OPT(P , D) implies that there is set X t ⊆ S of size 3 and a set Y ⊆ P of size 2 such that (S \ X t) ∪ Y is a hitting set for H(P , D). This means that (S \ X t) ∪ Y ∪ Z is a hitting set for H(P, D) since all disks in D \ D intersect Z. In other words, (S \ X t) ∪ Y is a hitting set for H(P, D) since S ∪ Z = S and X t ∩ Z = ∅. That is, X t is locally improvable with respect to S in H(P, D). Since X t ⊆ S and S ∩ Z = ∅, X t is disjoint from the other X i 's.

The following key structural property is crucial for the efficiency of the algorithm: Lemma 8.8. Let S be a hitting set for H(P, D). Then the personal regions of the points in S form a collection of pseudodisks.

Proof. First observe that since each personal region R(s) is an intersection of disks, it is convex.

We show that for any two points x, y ∈ S, R(x) and R(y) are non-piercing i.e., the regions R(x) \ R(y) and R(y) \ R(x) are connected. Since the boundaries of two convex regions that are non-piercing cannot intersect in more than two points, we conclude that the regions form a collection of pseudodisks.

Assume for contradiction that R(x) and R(y) are piercing and without loss of generality that R(x)\R(y) has at least two connected components. The point x lies in one of these components and let x be a point in a different component of R(x) \ R(y). Since x does not lie in R(y), there must be a disk D y ∈ D(y) that does not contain x . Since no disk in D(y) contains x, D y also does not contain x. Since D y contains R(y), this implies that x and x are in different connected components of R(x) \ D y . In other words R(x) \ D y is not connected. There are two cases to consider now:

Case 1: D y \ R(x) is not connected. In this case y lies in one of the connected components of D \ R(x). Let y be a point in one of the other components. Since y / ∈ R(x), there is some disk D x ∈ D(x) which does not contain y and by assumption does not contain y. Since D x contains R(x), this implies that D y \ D x is not connected, a contradiction for disks. Once R has been computed, we can easily set up a data structure that checks for a query point q whether q ∈ R. The region R is almost like a convex polygon except that its sides are circular arcs. We can take one vertex v of the region R and join it with a chord to each of the other vertices. The chords define a linear order. Given a query point q, we can determine, by binary search, two consecutive chords so that the cone defined by v and the rays emanating from v along the two chords contains q. Next we just need to check whether q lies on the same side of We now describe our algorithm for computing a small hitting set for H(P, D). We first compute a hitting set S of size O(OPT). This can be done using the near linear time algorithm of the goal is to find a point p 2 so that {p 1 , p 2 } can replace a large set X, i.e., a local improvement pair (X, {p 1 , p 2 }) of large profit. If we can find such a profitable local improvement, we make the improvement, exit from the for loop, and continue with the next iteration of the while loop. Otherwise, we continue with the next point in the random ordering. For any pair of points Y = {p, q} ⊆ P , denote by ρ(Y) the number of points in S all of whose personal disks are hit by Y . For a point p ∈ P , we use ρ(p) to denote max q∈P \S {ρ({p, q})}. Call a point p ∈ P useful if there exists some q ∈ P so that for some X ⊆ S, (X, {p, q}) is a local improvement pair.

Lemma 8.12. If p 1 is useful, we can compute in O(n log 2 n) time a local improvement of profit Ω(ρ(p 1)).

Proof. Let us start by considering how we could compute ρ(p 1). In order to compute ρ(p 1), we need to find a point q so that the number of points s ∈ S whose personal disks are hit by {p 1 , q} is maximized. To do this, we first compute for each s ∈ S, the set D (s) of disks in D(s) that are not hit by p 1 . For each s ∈ S, we then construct the region R (s) by taking the intersection of the disks in D (s). Let R = {R (s) : s ∈ S}. For some s ∈ S, D (s) may be empty and consequently some of the regions in R are empty. Let M = {s ∈ S : D (s) = ∅}. The personal disks of the points in M are hit by p 1 alone. The regions in R define an arrangement of pseudodisks (Lemma 8.8). In this arrangement we seek to find a point q ∈ P of the maximum depth. However, instead of finding a point with the maximum depth, we find a point whose depth is within a constant factor of the maximum. We construct, in O(n log n) time, an approximate depth query data structure for the pseudodisks in R using Corollary 5.9 in [START_REF] Aronov | On Approximating the Depth and Related Problems[END_REF] with a constant ≤ 0.1. This takes O(n log n) time. Then, for each point p ∈ P , we compute a value α(p) s.t. 0.9 depth(p, R) ≤ α(p) ≤ depth(p, R) where depth(p, R) denotes the depth of p in the arrangement of regions in R . This takes O(log 2 n) time per point and so the overall time taken is O(n log 2 n). We then take the point p with the maximum α(p) as q. Observe that |M | + α(q) = Θ(ρ(p 1)).

We first compute the set S (q) = {s ∈ S : q ∈ R (s)}. Note that |S (q)| = depth(q, R) ≥ α(q). There are two cases to consider:

Case 1: |S (q) ∪ M | > 8.
In this case, we set p 2 = q and let Y = {p 1 , p 2 }. Using Lemma 8.9, we can find a subset X ⊆ S (q)∪M so that X = Ω(|S (q)∪M |) so that (X, {p 1 , p 2 }) is a local improvement pair. Note that |X| is Ω(ρ(p 1)). Thus in this case, we conclude that p 1 is useful and indeed we have found a local improvement that decreases the size of the current hitting set by Ω(ρ(p 1)).

Case 2: |S (q) ∪ M | ≤ 8. In this case S (q) ≤ 8/0.9 = 8 for all p ∈ P . This means that ρ(p 1) = O(1) and we just need to find one set X of size 3 and a point p 2 so that (X, {p 1 , p 2 }) is a local improvement pair. Using Lemma 8.11, we compute the set S (p) for all p ∈ P in O(n log n) expected time. For each p 2 ∈ P , we need to check if there is any subset X in

S (p 2) ∪ M of size 3 so that (X, {p 1 , p 2 }), is a local improvement pair. Since |S (p 2) ∪ M | ≤ 8,
there are at most a 8 3 subsets X ⊆ S (p 2) ∪ M for which we need to check if (X, {p 1 , p 2 }) is a local improvement pair. Thus there are O(n) pairs of the form (X, {p 1 , p 2 }), where |X| = 3, that we need to check. For a particular pair of this form, we basically need to verify that all the disks in D whose intersection with S is a subset of X are hit by either p 1 or p 2 . To make things simpler, we first remove from D all the disks that are hit by p 1 and obtain a set D ⊆ D. Now, we need to verify for all disks in D whose intersection with X is a subset of X that they are hit by p 2 . All the O(n) pairs can be checked in O(n log n) time as follows.

We construct a data structure that will help us do the checking for all the O(n) pairs of the form (X, {p 1 , p 2 }). We have already constructed a range reporting data structure on S for disk ranges. Additionally, use a dictionary data structure (based on balanced binary trees) in which the keys are subsets of S of size at most 3 and the value corresponding to a key U is a list of disks D ∈ D s.t. D ∩ S = U . We start with an empty dictionary. We then go over each disk D ∈ D one by one and if N D ≤ 3, we use the range reporting data structure to get U = D ∩ S in O(log n) time. We search the dictionary for U and if it is found, we add D to its list. If no entry is found, we create an entry for U with a single element d in its list. Note that since the number of (≤ 3)-sets that can be obtained from set of n points by intersecting it with a set of disks is linear in the number of points [START_REF] Matousek | Lectures in Discrete Geometry[END_REF], the number of distinct keys in the dictionary is O(n). We go over each key U and construct the region R (U) by taking the intersection of all the disks in the list associated with U . Note that R (U) can be constructed in O(m log m) time where m is the size of the list associated with U using Lemma 8.10. Since each disk is in the list of at most one U , the overall time is O(n log n). In the same amount of time, for each key U , we set up a data structure that allows us to check if a query point q is in R (U) using Lemma 8.10. Now, to check if a pair (X, {p 1 , p 2 }) is an improvement pair, we go over all subsets U ⊆ X and check if p 2 ∈ R (U). The time spent for any pair is now O(log n). Therefore checking all the O(n) pairs takes O(n log n) time.

If we find that none of the pairs we checked are local improvement pairs, then we can conclude that p 1 is not useful.

The following lemma will allow us to find a profitable local improvement quickly. Let β = max{ √ t, t • OPT/n}. Lemma 8.13. There exists a k > 0 such that there are at least Ω(β/k) useful points p ∈ P with ρ(p) ≥ k.

Proof. By Lemma 8.6, there exists Ω(t) local improvement pairs (X 0 , Y 0), . . . where the X i 's are disjoint subsets of S but the Y i 's need not be disjoint. Each X i is of size 3 and each Y i is of size 2. For any pair of points Y = {p 1 , p 2 } ⊆ P , if (X i , Y) is a local improvement pair among the Ω(t) pairs, then we say that X i is a triple assigned to the pair Y . Define the weight of Y as the number of triples assigned to it and denote it by W (Y). The total weight of all pairs is then Ω(t).

Call a pair Y to be of type i if

2 i-1 ≤ W (Y) < 2 i , for i = 1, . . . , O(log t). If W (Y) = 0 then
we say that Y is of type 0. Since the total weight of all pairs is Ω(t), there must be some j > 0 so that the total weight of the pairs of type j is Ω(t/2 j).

Let Q = Y {Y | Y is of type j}.
There are two lower bounds on the size of Q. First, since the total weight of the pairs of type j is Ω(t/2 j), and each pair has weight less than 2 j , the number of pairs is Ω(t/2 2j), and hence Proof. As we go over the points in random over, for the current point ν = π i , we estimate ρ(ν) which allows us to check if i/ρ(ν) ≤ Cn/β. If so, assuming that the point ν is useful, we decrease the size of the current hitting set by Ω(ρ(ν)). If i/ρ(ν) > Cn/β or we discover that ν is not useful we move to the next point in the random order. However, since the iteration of the while loop is lucky, we will find some point ν = π i which is useful and for which i/ρ(ν) ≤ Cn/β. For this point ν, we find a local improvement involving ν of value Ω(ρ(ν))

|Q| = Ω(√ t/2 j
and the current iteration of the while loop ends. The total time spent in this iteration is σ = O(i • n log 2 n) since we have seen i points so far and for each point we spend O(n log 2 n) time.

The reduction in the size of the current hitting set is λ = Ω(ρ(ν)). Thus σ/λ ≤ i ρ(ν) • n log 2 n ≤ Cn 2 log 2 n/β.

Since any iteration of the while loop is lucky with probaility at least 0.5 and we can assume that all the iterations are lucky. This does not change the running time by more than a factor of 2.

Lemma 8.16. The expected time taken to halve t is O(n 7/3 log 2 n -1/3).

Proof. Lemma 8.15 tells us that the amortized amount of time spent for the reducing the size of the current hitting set by 1 is O(n 2 log 2 n/β). Since β is an increasing function of t, this decreases with t. However, t does not change by more than a factor of 2 until it is halved. So, the expected time for t to be halved is O(t/2•n 2 log 2 n/β). Now, t/β = min{ √ t, n/(• OPT)}.

Since t = O(OPT), t/β = O(min{ √ OPT, n/(• OPT)} = O((n/) 1/3). Thus the expected time to halve t is O(n 7/3 log 2 n -1/3).

Since the initial value of t is O(OPT), there are O(log 1/) halving rounds until t ≤ • OPT.

Thus, the expected running time of the Algorithm 9 is O(n 7/3 log 2 n -1/3 log (1/)). Finally, since we need to run Algorithm 9 for O(1/ log (1 +)) guesses for OPT, the overall running time is O(n 7/3 log 2 n -1/3 log (1/)/ log (1 +)). For a fixed small value of , this is O(n 7/3 log 2 n).

Chapter 9

Dynamic Convex Hull for Simple

Polygonal Chains

This chapter describes an algorithm that constructs a dynamic convex hull of points in a simple polygonal chain. This chapter is based on the following paper.

General Idea

There exist many algorithms for computing the convex hull in both the real-RAM and the word-RAM model. If one considers the real-RAM model, an optimal output sensitive algorithm to construct the convex hull of n points in a plane was published in [START_REF] Chan | Optimal Output-Sensitive Convex Hull Algorithms in Two and Three Dimensions[END_REF] having O(n log h) time complexity where h is the output size. If the point set is a simple polygonal chain, the best algorithm, a result of Melkman, runs in linear time [START_REF] Melkman | On-line Construction of the Convex Hull of a Simple Polyline[END_REF]. If one requires the data structure to be dynamic, namely to handle insertions and deletions of arbitrary points an optimal algorithm requiring O(log n) time for both operations was proposed in [START_REF] Gerth | Dynamic Planar Convex Hull[END_REF]. For points in a polygonal chain there has been no work on efficient deletion of points. Changing the computational model to the word-RAM model and using Graham's scan [START_REF] Graham | An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set[END_REF] to construct a convex hull the running time is essentially the time to sort the points, taking, e.g., O(n log log n) time [START_REF] Han | Deterministic Sorting in O(n log log n) Time and Linear Space[END_REF]. Dynamic data structures supporting deletion and insertion in the word-RAM model require an optimal O(log n log log n) time for both operations assuming that word length is Θ(log n), see [START_REF] Demaine | Tight Bounds for Dynamic Convex Hull Queries (Again)[END_REF].

In this chapter we give an on-line algorithm to construct the dynamic convex hull of a simple polygonal chain in the Euclidean plane supporting deletion of points from the back of the chain and insertion of points in the front of the chain. Both operations require amortized constant time considering the real-RAM model. The main idea of the algorithm is to maintain two convex hulls, for efficiently handling insertions and deletions. Implicitly these two hulls constitute the convex hull of the polygonal chain.

Algorithm Overview of our algorithm

Our algorithm works in phases. For a precise formulation let us first define some necessary notations. A polygonal chain S in the Euclidean plane, with n vertices, is defined as an ordered list of vertices S = (p 1 , p 2 , . . . , p n) such that any two consecutive vertices, p i and p i+1 are connected by a line segment. A polygonal chain is called simple when it is not self-intersecting.

For simplicity, we assume that the points are in general position. Our algorithm handles insertion and deletion of points into the current convex hull in the order induced by S. This results in the fact that the current convex hull always contains a contiguous subchain of S, let us denote it by S j i = (p i , • • • , p j) where i ≤ j and the points are effectively inserted/deleted in a FIFO manner. Let us denote the convex hull of S j i with C j i . Therefore, given a convex hull C j i , inserting a point results in C j+1 i while removing the first point results in C j i+1 .

At the beginning of each phase, we initialize a simple data structure called the phase convex hull that maintains the representation of the convex hull of a subrange of the polygonal chain. Each phase handles an arbitrary number of insertions and handles deleting the points that were present when the phase started. Assuming that the phase convex hull first covered S b a this means we can delete the points p a . . . p b . A phase ends, when we first delete a point that was not covered by the initial convex hull. After that, a new phase starts and we initialize a new phase convex hull. At the beginning of the phase C * is built for S b a . This initializing step can be carried out by using the Melkman algorithm to build a convex hull of S b a and then creating the two dequeues by splitting up the result of the Melkman algorithm at the point with the lowest index. In green and red we depict C + and C -respectively.

The incremental convex hull is the data-structure representing the convex hull of the points in the polygonal chain added after the initialization of the phase. The data-structure is a dequeue as in the Melkman algorithm and it is used the same way, namely we iteratively add the inserted points to it. Let us denote it by C + , see Figure 9.2. At any state S j i , C + represents C j b+1 . It is initialized to the empty set.

The decremental convex hull is a data-structure representing the convex hull of the points that can be deleted during the phase. It is initially built with the Melkman algorithm for the points present at the beginning of the phase but according to the reverse order of the points. Let us denote it by C -, see Figure 9.2. At each deletion a point is removed from C -. At any state S j i , C -represents the convex hull of the points S b i , note that the data-structure corresponds to the Melkman data-structure for the subchain in reverse order. This data structure has to maintain additional information that will be used for efficient deletion of points.

First, while initializing C -, for each point p k in S b a , the list of points that were removed from the previous convex hull C b k+1 in the Melkman algorithm should be kept. Let us call these points the history of a point and denote it by H(p) for a point p. This enables one to 'rewind' the algorithm, i.e, the points of C -can be deleted in a LIFO order while the convex hull of the current points can be maintained easily. As C -was built in the reverse order this is exactly the deletion order we need.

Second, certain details of the polygonal regions defined by C b k \C b k+1 for a ≤ k < b, in other words the difference between consecutive convex hulls in the Melkman algorithm for building C -, have to be kept. Clearly, some of these regions are empty as the convex hull might not change during its construction. For simplicity, let us denote non-empty regions by R m such that m starts from 0 and corresponds to the order the regions appear. This way, R 0 is a simple edge, R 1 is the first triangle, etc. In Figure 9.3 we show the regions where the red polygonal chain is S b a . The green line corresponds to the polygonal chain of the points inserted during the phase. Maintaining a complete description of a region is not required for our algorithm, instead, for each region only the edges (at most two) that are shared with a higher ordered region have to be kept, e.g., in Figure 9.3 R 5 has two neighboring higher ordered regions, R 6 and R 7 . Let us denote the set of these edges by E(R m) and with each edge we store the two regions it belongs to. Setting up these edges for the regions can be done during the Melkman algorithm for constructing C -and all regions have at most two such edges. As a consequence of the Melkman algorithm, these two edges are always those that contain the point p k whose insertion (during the Melkman algorithm) created the region itself.

R 7 R 6 R 5 R 4 R 3 R 2 R 1 R 0 p a p b p j FIGURE 9.3: Regions.
We will need a simple property of the regions, namely that they form an ordered partitioning of the plane that enables a certain operation. See Lemma 9.3. Proof. The statement is a simple consequence of the Melkman algorithm.

Lemma 9.3. For each phase, the ordered list of regions enables the maintenance of the highest ordered region that contains any point inserted during that phase. This operation takes O(c-a) time for a phase.

Proof. As an illustration for the lemma see Figure 9.3. The highest ordered region containing a point inserted in the phase is region no.7. The proof is by induction. Suppose we know the highest ordered region R m containing a point of C + . When inserting a new point p j+1 into C + , one can check if this point is located in a higher ordered region by checking if the line segment between p j and p j+1 intersects an edge in E(R m). If the line segment intersects one then we recursively carry out the same process for the region that shares this edge with R m . If it does not intersect any of the edges in E(R m) then the current region is the one that is highest ordered and contains p j+1 Checking if a point exits one region is a constant time operation. The total number of times this operation is carried out in a phase is at most the number of regions in C - and points in C + which is together linear in the number of points inserted or deleted during the phase. Proving that this method actually finds the highest ordered region is a consequence of the Melkman algorithm.

To complete our proof we have to show how to find the region of the first point p b+1 of C + . In order to facilitate this search we create a list of the regions containing p b as a vertex (this can be done during the construction of C -). Assume we add an additional point on the line segment

Insertion

The main steps to insert points in amortized constant time is to add the point to C * and to C + . The latter is necessary for efficient deletions since points of C + might appear later on C * after deleting a point.

In order to insert the point p j+1 into C * it is sufficient to do one step of the Melkman algorithm.

For that, consider the back opening of C * to be closed, i.e., the two dequeues behave like one.

One has to be cautious when the Melkman algorithm deletes the point being the back opening as the new back opening should be by our definition the point in C j i with least index. Indeed, this is the neighbor of the deleted opening. In order to show this, suppose that it is not true and let p x , p w be the back and front opening, the neighbor of the back opening p y (the one that has not been deleted) and the new back opening p z where p z = p y . If z < y there were two polygonal chains S z

x and S j y inside the convex hull that have to intersect, contradicting the simplicity of the chain. After C * is updated, p j+1 has to be inserted into C + as well, which is done using the Melkman algorithm. Moreover, as long as the front opening is one of the points in C -i.e., C + ⊂ C -one has to update the highest ordered region of C -containing any inserted point. We introduce states corresponding to the points' distribution in C * (with respect to whether they belong to C + or C -) in order to detect when is the update of the highest ordered region necessary. The following lemma describes how the points' distribution changes during the execution of the operations in a phase. It states that there cannot be arbitrary distributions, e.g., points from C + and C -in an alternating order.

Deletion

The main idea to delete a point from the convex hull is to remove it from both C * and C -and reconstruct the convex hull in this area. To delete the point p i there are several scenarios that have to be handled differently. As a common point in all cases, p i has to be removed from C - and its history has to be added to C -('rewinding' the Melkman algorithm). For a point p in C -let us denote the set of its two neighbor vertices in the convex hull by N -(p). Similarly for the other hulls we use N + (p) and N * (p). Let us first group the different cases according to Lemma 9.4 for an illustration see Figure 9.4. There is only one case when the algorithm is nontrivial and we show that the method results in the desired convex hull. The running time analysis is left for Section 24. Case 2b: If one point, e.g., x belongs to C + then there might be points of C + that have to be inserted into C * . In this case first the history of p i and the point q such that q ∈ N -(p i), q / ∈ C * should be inserted into C * and then starting from x we shall add the vertices of C + in the circular order (starting with the point in N + (x) not being a vertex of C *) using the Melkman

Conclusion

We have presented algorithms for various problems that have sometimes seemingly little connection to each other. But they all share one component, namely that determining exact solutions seem to be currently unfeasible therefore good approximation algorithms are highly desired. We have presented several improvements relying on the study of the geometric and combinatorial structures of them. Even for problems like global illumination, it turns out that with a suitable formulation, like the many-lights framework that discretizes the problem, geometric and combinatorial structures become a key tool for efficient algorithms delivering state-of-the-art performance. Besides the theoretical aspects of designing efficient algorithms we have empirically validated our results by implementing them and testing them on various data. Most of the software written is published online.

FIGURE 1 :

 1 FIGURE 1: Clustering based on the light transport matrix

FIGURE 2 :

 2 FIGURE 2: Iterative refinement of the clustering in tree based methods.

FIGURE 3 :

 3 FIGURE 3: The well-separated pair decomposition where the sets correspond to nodes in an octree. Pairs shown in blue with a clustering shown in red for a shaded point whose closest VPL is the rightmost one.

FIGURE 4 :

 4 FIGURE 4: Partial light transport matrices, with rectangles denoting product-space clusters. Red stripes denote parts that could be improved. (a) Lightcuts creates clusters that could be merged; (b) LightSlice creates clusters that should be merged or refined; (c) Multidimensional Lightcuts only merges and refines clusters limited to points originating from the same pixel; (d) IlluminationCut merges and refines clusters for any set of points and VPLs.

FIGURE 5 :

 5 FIGURE 5: The logarithm of the number of clustering calculations per point for the wellknown Sponza scene for Lightcuts (left) and IlluminationCut (right). IC amortizes the cost of clustering calculations very efficiently.

 elements in it. The aim is to hit all ranges with weight more than . The condition of having finite V C-dimension is satisfied by many geometric set systems: disks, half-spaces, k-sided polytopes, r-admissible set of regions etc. in R d . For certain range spaces, one can even show the existence of -nets of size O(1/) -an important case being for disks in R 2[START_REF] Pyrga | New existence proofs for epsilon-nets[END_REF]. In 1994, Bronnimann and Goodrich[START_REF] Brönnimann | Almost Optimal Set Covers in Finite VC-Dimension[END_REF] proved the following interesting connection between the hitting-set problem 1 , and -nets: let (P, D) be a range-space for which we want to compute a minimum hitting set. If one can compute an -net of size c/ for the -net problem for (P, D) in polynomial time, then one can compute a hitting set of size at most c • OPT for (P, D), where

FIGURE 6 :

 6 FIGURE 6: Delaunay triangulation of the sampled points (in red). Disks that are not hit (in red) are contained in two neighboring Delaunay disks (in blue).

FIGURE 8 :

 8 FIGURE 8: From left to right: initial setup, inserting a point, deleting a point. The red convex hull handles the deletion of points, the green convex hull handles the insertion of points and the blue convex hull is the merge of them.

[SIM+06]

 SIM+06 uses stochastic sampling of the VPLs to achieve real-time global illumination. Compared to light clustering implementations, sampling introduces unstructured noise. [SIP07] samples the VPLs using a modified Metropolis-Hastings algorithm [VG97]. Visibility estimation. To further speed up rendering [PGS+13] caches visibility queries. The authors in [BEL+13] propose a novel framework for stochastic evaluation of visibility. Visibil-ityCluster [WC13] first clusters the pixels and the VPLs separately and creates pairs of these clusters. Then it calculates approximate visibility for these pairs and uses this information to improve the importance sampling of VPLs. Pair Decomposition This chapter describes a data structure that compactly stores all possible clusterings of the VPLs and enables efficient extraction of a clustering for any shaded point, resulting in a very fast rendering algorithm in the many-lights framework. This chapter is based on the following paper. Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. "Global Illumination Using Well-Separated Pair Decomposition." In: Computer Graphics Forum 34 (8), 2015

 representative lights that approximate local visibility for each ws-cluster C as follows: sample a number of directions and compute the illumination of the lights in C reaching the boundary of the ball b(C) in the sampled directions, where b(C) is the smallest-ball containing C. This will be used to estimate the visibility of the lights in C to b(C); the visibility test from b(C) to p will be performed during the view-dependent rendering phase.

FIGURE 2. 2 :

 2 FIGURE 2.2: The Museum scene with the well-separated clusters (represented by their enclosing spheres) around a shaded point, shown as a bright green square in the middle of the image.For visualization purposes we only included a quarter of the clusters.

 denotes the visibility from p to the boundary of the sphere b(C i) enclosing cluster C i ; this is computed by a shadow ray with the Embree raytracing kernel. R(C i , p) is the proportion of the summed intensity of the lights in C i reaching the boundary of the ball b(C i) in the direction from the center of b(C i) to p; see Section 2.3 for its precise definition and computation.

For a cluster

 C ⊆ S, define b(C) to be the smallest-enclosing ball of the points in C. Let r(C) be the radius of the ball b(C). For any point p, d(p, C) denotes the Euclidean distance of p to b(C).

FIGURE 2 . 4 :

 24 FIGURE 2.4: Changes in the angles and distances are bounded by a function of .

 angles. In the case of the diffuse BRDF, M s (p, ω) = k d (p) cos θ s where k d (p) is the diffuse reflection coefficient and θ s is the angle between the surface normal at p and sp. Denote by φ s the angle between the light normal and ps and for brevity denote d(p, s) by r s , then the formula becomes:

 Figure 2.5 for some example pairs {R i , Q i } for a point set in two dimensions. A remarkable fact about WSPDs is that there always exist WSPDs of size linear in |S|. In particular, for any > 0, and any set of points S ⊂ R d , there exists a WSPD of size O(|S| -d) that can be computed in time O(|S| log |S| + |S| -d) [CK95] .

 FIGURE 2.7: WSPD size ratios for some graphical scenes.

Algorithm 1 :

 1 Create WSPD for the set of points S Function CreateWSPD(S) root ← create compressed octree on S S: stack of pairs, S.pushback({root, root}) while notEmpty(S) do {w, v} = S.pop()

FIGURE 2

 2 FIGURE 2.8: The compressed octree and the WSPD for a set of points.

 s) then add Q to C p else refine Q into subclusters that are ws from p add the resulting clusters to C p return C p pairs(w) for all such nodes w, and can be computed by traversing the octree from this leaf to the root.Computing ws-clusterings of P during rendering. We now show how to use the clusterings C s , pre-computed for each s ∈ S before the rendering phase, to quickly compute a ws-clustering of S with respect to any point p ∈ P.

 Theorem 2.5. Let p be an arbitrary point and s be its nearest neighbor with d(p, s) = d. After refining the clusters in the set C * ⊆ C s which intersect the ball with radius d around s, there are at most O(1 6) new ws-clusters C created. The resulting set C s \C * ∪ C is a partition of S into ws-clusters around p, with separation parameter /(1 -). Proof. The second statement of the proof comes from Lemma 2.4. Take a cluster C i ∈ C s lying inside the ball of radius d/ around s. If it is not ws-separated from p, partition the boundingbox of C i into 8 equal-volume bounding boxes (the children of the node in the octree), and recursively check the ws-separated property of these new refined clusters with p. Eventually when a newly refined cluster is finally a ws-cluster from p, add it to C . To count the total number of new ws-clusters added to C , consider a cluster C ∈ C . It exists because its parent, say cluster D, was not a ws-cluster with p. i.e., r(D) > d p , where d p is the distance of the ball of D to p. Because s is the nearest neighbor of p we know that no other point is in the small ball of radius d around p; in particular it cannot completely contain the ball of D and hence r(D)/ ≥ d p ≥ d -2r(D), which implies that r(D) ≥ d

 is the proportion of the summed intensity of the lights in C i reaching the boundary of the ball b(C i) in the direction of p from the center of b(

 FIGURE 2.10: Museum scene rendered with the three different methods, Lightcuts, LightSlice and the WSPD algorithm together with the error images.

 error and maximum cut size set to 2000. We use the version with 1% error threshold as the reference for equal quality comparisons. LightSlice is run with approximately 1400 slices and 400 columns (the number of slices determines the size of the reduced light transport matrix while the number of columns determines the number of clusters used per point). For our method, the user is free to set the separation parameter . This parameter closely tracks both theoretically and practically the quality of the resulting image. In general, setting to 0.5 gives a good compromise between quality and speed.One inherent disadvantage of the many-lights technique is the presence of certain artifacts due to the overly-high contribution of some VPLs to their neighboring points. The standard way to avoid these problems is by clamping: limiting the contribution of any one VPL within some small Euclidean distance by applying a clamping threshold. The bias introduced by this technique requires the image rendered with all VPLs to be used as our reference image and not the path traced one. Our experiments use 1 and 4 samples per pixel to compare the quality of clustering obtained by the different methods.Scenes. We test the algorithms on standard collection of scenes with only moderately glossy materials. The Museum has specular materials like the bones of the dinosaur and the canvas on its stand. Most of the primary lights are facing the ceiling to ensure that the scene is mainly lit by indirect illumination. In Sibenik, the light sources are facing upwards in the dome such that the scene is again lit by indirect illumination, and is made up of purely diffuse materials. The big uniformly colored surfaces in the Conference are challenging since the clustering methods have to be spatially consistent, with moderately shiny materials. The outdoor scene San Miguel is our largest scene consisting of 10M triangles lit by an environment map of sunset. This is our most challenging scene since the area under the tree and in the corridors is mostly lit by indirect illumination with lots of smooth shadows.Performance. The images are rendered at a 1024 × 1024 resolution with 1 sample per pixel (spp) and with approximately 500K VPLs. We provide the running times for the pre-processing and the rendering phase along with the average number of shadow rays per pixel.We provide three different error metrics. Denote by F (x, y, c) the value of a color channel c in the image at coordinate (x, y) and by F (x, y, c) the same value in the reference image. The number of pixels multiplied by the number of color channels is m = 3 • 1024 • 1024 and each value of F and F is between 0 and 1.

FIGURE 2 .

 2 FIGURE 2.16: Part of the Museum scene rendered with different values of samples per pixel.

AFIGURE 2 FIGURE 2

 22 FIGURE 2.18: Museum scene rendered with 4 samples per pixel with the three different methods, Lightcuts, LightSlice and the WSPD algorithm together with the error images.

 FIGURE 3.1: Partial light transport matrices, with rectangles denoting product-space clusters. Red stripes denote parts that could be improved. (a) Lightcuts creates clusters that could be merged; (b) LightSlice creates clusters that should be merged or refined; (c) Multidimensional Lightcuts only merges and refines clusters limited to points originating from the same pixel; (d) IlluminationCut merges and refines clusters for any set of points and VPLs.

FIGURE 3 . 2 :

 32 FIGURE 3.2: Approximate images for various scenes. These images are used to guide the search for product-space clusters in Phase II.

 largest scene, consisting of 10M triangles lit by an environment map. Many of the VPLs are placed on walls facing outward; therefore this scene is exploiting the weakness of our algorithm and Lightcuts, namely that occluded clusters are not quickly discarded. Banquet has a grid of point light sources directed towards the ceiling and lights inside the lamps, both creating a challenging global illumination setup as there is significant indirect lighting. It also contains a strip of area lights running around the ceiling. Sponza has all its original point light sources facing the ceilings on the side corridors and a moderately dark environment map. The light filtering through the gaps around the curtains are challenging to capture properly. Kitchen is lit by upward facing spotlights located inside the lamps and an area light under the shelf.

FIGURE 3. 3 :

 3 FIGURE 3.3: Banquet scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600 × 1200 resolution with 1 samples per pixel.

FIGURE 3. 4 :

 4 FIGURE 3.4: San Miguel scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600 × 1200 resolution with 1 samples per pixel.

FIGURE 3. 5 :

 5 FIGURE 3.5: Sponza scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600 × 1200 resolution with 1 samples per pixel.

FIGURE 3. 6 :FIGURE 3 . 8 :

 638 FIGURE 3.6: Kitchen scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600 × 1200 resolution with 1 samples per pixel.

Scalability.FIGURE 3 . 9 :

 39 FIGURE 3.9: Render times with varying number of VPLs for San Miguel (top) and for Banquet (bottom).

FIGURE 3 .

 3 FIGURE 3.11: San Miguel scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images for 1600 × 1200 resolution with 9 samples per pixel.

FIGURE 4. 1 :

 1 FIGURE 4.1: Images rendered with the Embree framework [WWB+14].

 rendering. It only includes a path tracing implementation which is completely enough for our purposes. The renderer provides SIMD accelerated computation of vector arithmetics but does not offer parallel shading capabilities (in case this is needed it provides a renderer written in the Intel SPMD framework, a SIMD extension of the C language). The clear and simple design of Embree enabled us to easily integrate different many-lights methods into one package enabling our ultimate goal of accurate comparison. In what follows we will give a brief description of the included algorithms. Due to the clamping of VPLs in the many-lights methods we have used a simple exhaustive rendering as the reference image. The included algorithms are Lightcuts[START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF], LightSlice[START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF] and our work, Illumination-Cut[START_REF] Bus | IlluminationCut[END_REF].

 Node * ClusterLightCuts : : buildTreeFromLeavesLocal () { / / F a s t A g g l o m e r a t i v e C l u s t e r i n g f o r R e n d e r i n g , W a l t e r e t a l , 2008 / / L o c a l l y -o r d e r e d a g g l o m e r a t i v e c l u s t e r i n g std : : vector<Node * > clusters ; clusters . resize (numNodes) ; / / c r e a t e t h e i n i t i a l c l u s t e r s , c o r r e s p o n d i n g t o s i n g l e v p l s . . . / / c o n s t r u c t k d t r e e KdTree<Node> kdtree (t h i s ->sceneradiusSqr) ; kdtree . constructTree (clusters , numCurrentClusters) ; Random rnd (RND_SEED) ; Node * na = clusters [0] ; Node * nb = kdtree . queryNN (na) ; w h i l e (numCurrentClusters < numNodes) { Node * nc = kdtree . queryNN (nb) ; i f (na == nc) { na->valid = f a l s e ; nb->valid = f a l s e ; Node * naOld = na ; na = na->merge (nb , rnd) ; kdtree . invalidateNodesAndUpdate (naOld , nb , na) ; clusters [numCurrentClusters++] = na ; nb = NULL ; nb = kdtree . queryNN (na) ; } e l s e { na = nb ; nb = nc ; } } Node * root = clusters [numNodes -1] ; r e t u r n root ; } LISTING 4.3: Heap-less agglomerative clusteringFor ensuring that the rendering phase is efficient we store the lighttree nodes in an array with a copy of the representative lights, therefore enforcing spatial locality of the nodes in memory and avoiding additional pointer indirection compared to only storing pointers to the representative lights. In Listing 4.4 we included the definition of our node class. We could have achieved a smaller memory footprint by separating the variables only needed for construction but in order to have a more readable code we have decided against it. A crucial part of the Lightcuts algorithm is the maintenance of a heap. In order to speed up this part we use thread safe preallocated memory space avoiding costly memory re-allocation for each cut. / * ! \ b r i e f Node f o r l i g h t c u t s t r e e * / c l a s s Node { p u b l i c : / / member f u n c t i o n s . . . vplVPL repLights [REP_LIGHT_NUM] ; / / !< r e p r e s e n t a t i v e l i g h t s BBox3f cell ; / / !< b o u n d i n g box Cone cone ; / / !< c o n e o f d i r e c t i o n s Node * lc , * rc , * parent ; / / !< c h i l d r e n and p a r e n t KdNode<Node> * kdnode ; / / !< kd-node f o r t r e e ← c r e a t i o n b o o l valid ; / / !< u s e d f o r t r e e c r e a t i o n b o o l repLightFromRightChild [REP_LIGHT_NUM] ; / / !< w i t h which c h i l d i s t h e ← r e p r e s e n t a t i v e l i g h t s h a r e d } ; LISTING 4.4: Lighttree node

 is achieved by recursively partitioning the array, see Listing 4.5. c l a s s icPixelNode { p u b l i c : enum { nChildren = 2 } ; icPixelNode * parent ; / /< p o i n t e r t o p a r e n t node icPixelNode * children [nChildren] ; / /< p o i n t e r t o c h i l d r e n , n u l l i f t h e r e ← i s no c h i l d BBox6f cell ; / /< bbox o f t h e p i x e l s i n t h i s node icPixel * pixel ; / /< f o r l e a f node t h e p i x e l , o t h e r w i s e ← random r e p r e s e n t a t i v e icPixel * start ; / /< p i x e l r a n g e s t a r t icPixel * end ; / /< p i x e l r a n g e end Color maxKd , maxKs ; / /< max m a t e r i a l c o e f f s f l o a t maxExp , minExp ; / /< s p e c exp f o r ub (min i s f o r power ← o f a v a l u e < 1) Color color ; / /< l u m i n a n c e u s e d f o r s t o r i n g a p p r o x ← image and ub } ; Chapter 5 Overview of the Hitting Set Problem In 1994, Bronnimann and Goodrich [BG95] proved the following interesting connection between the hitting-set problem 1 , and -nets: let (P, D) be a range-space for which we want to compute a minimum hitting set. If one can compute an -net of size c/ for the -net problem for (P, D) in polynomial time, then one can compute a hitting set of size at most c • OPT for (P, D), where OPT is the size of the optimal (smallest) hitting set, in polynomial time. Until very recently, the best such rounding algorithms had running times of Ω(n 2), and it had been a long-standing open problem to compute a O(1)-approximation to the hitting-set problem for disks in the plane in near linear time. In a recent break-through, Agarwal-Pan [AP14] presented the first near-linear time algorithm that is able to do the required rounding for a broad set of geometric objects.

 First we show that the algorithm computes an -net. Take any disk D with center c containing n points of P , and not hit by the initial random sample R. Increase its radius while keeping its center c fixed until it passes through a point, say p 1 of R. Now further expand the disk by moving c in the direction p 1 c until its boundary passes through a second point p 2 of R. The edge e defined by p 1 and p 2 belongs to Ξ, and the two extreme disks in the pencil of empty disks through p 1 and p 2 are the disks D ∆ 1 e and D ∆ 2 e . Their union covers D, and so D contains n points out of the set P e . Then the net R e computed for P e must hit D, as n = (n/|P e |) • |P e |.

 Delaunay triangulation of R can be computed in expected time O(1/ log 1/). Steps 5-6 compute, for each Delaunay disk D ∈ Ξ, the list of points contained in D. This can be computed in O(n log 1/) time by instead finding, for each p ∈ P , the list of Delaunay disks in Ξ containing p, as follows. First do point-location in Ξ to locate the triangle ∆ containing p, in expected time O(log 1/). Clearly D ∆ contains p. Now starting from ∆, do a breadth-first search in the dual planar graph of the Delaunay triangulation to find the maximally connected subset of triangles (vertices in the dual graph) whose Delaunay disks contain p. As each vertex in the dual graph has degree at most 3, this takes time proportional to the discovered list of triangles, which as shown earlier is O(n) over all p ∈ P . The correctness follows from the following: Lemma 6.10. Given a Delaunay triangulation Ξ on R and any point p ∈ R 2 , the set of triangles in Ξ whose Delaunay disks contain p form a connected sub-graph in the dual graph to Ξ.

 FIGURE 6.2: -net size multiplied by for the datasets, = 0.01 (left) and a subset of the -net for the World dataset (right).

Algorithm 7 :

 7 AP algorithm for computing hitting sets Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT. Compute a (1/OPT)-net, Q, of P and remove disks hit by Q Set w(p) = 1 for all p ∈ P repeat foreach D ∈ D do if w(D) ≤ cW/OPT then reweigh D repeatedly until the weight w(D) exceeds cW/OPT flag = false foreach D ∈ D do if w(D) < (c/2e) • W/OPT then flag = true; until flag = true return (c/2eOPT)-net R along with Q

 if D not hit by Q then add D to D 1 . // using Ξ(Q) P 1 = P \ Q. foreach p ∈ P 1 do set w(p) = 1. repeat Compute a (c 2 /OPT)-net, R, of P and the Delaunay triangulation Ξ(R) of R.Set S = ∅, Ξ(S) = ∅. foreach D ∈ D 1 in a random order do if D not hit by R ∪ S then // using Ξ(R) and Ξ(S) foreach p ∈ D do set w(p) = w(p) + c 3 w(p). // using Ψ(Q) Add a O(1)-net to S; update Ξ(S). until |S| ≤ c 4 OPT return {Q ∪ R ∪ S}To remedy b), before reweighing a disk, we compute the set of points inside D, and only reweigh if the total weight is at most c 2 W/OPT. Consequently we sometimes waste O(n/OPT) time to compute this list of points inside D without performing a reweighing. Due to this, the worstcase running time increases to O(n 2 /OPT). In practice, this does not happen for the following reason: in contrast to the AP algorithm, our algorithm reweighs any disk at most once during a phase. Therefore if the weight of any disk D increases significantly, and yet D is not hit by S, the increase must have been due to the increase in weight of many disks intersected by D which were reweighed before D and for which the picked points (added to S) did not hit D.

 1) which solves to t = O(OPT log n δ). Each iteration of the repeat loop, except the last one, does at least c 4 OPT reweighings. Then the repeat loop can run for at most O(OPT log n c 4 OPTδ) = O(log n/δ) times.

FIGURE 7

 7 FIGURE 7.1: Computing D 1 and D 2 .

 this takes time O(|Q| log |Q|) = O(n/OPT log n). And for each D, one can find the two Delaunay disks D 1 and D 2 by binary search in Ψ(Q)(q) in time O(log n).

 nearest-neighbors and Delaunay triangulations, we use CGAL. It computes Delaunay triangulations in expected O(n log n) time. To calculate the optimal solution for the hitting set problem we use the IP solver SCIP (with the linear solver SoPlex).

Datasets.

 In order to empirically validate our algorithms we have utilized several real-world point sets. All our experiments' point sets are scaled to a unit square. The World dataset [Ngs] contains locations of cities on Earth (except for the US) having around 10M records. For our experiments we use only the locations of cities in China having 1M records (the coordinates have been obtained from latitude and longitude data by applying the Miller cylindrical projection). The dataset ForestFire contains 700K locations of wildfire occurrences in the United

 FIGURE 7.2: Different point set sizes for the ForestFire (left) and China (right) datasets.

 FIGURE 7.3: Different radii settings for the KDDCU (left) and China (right) datasets.

2.

 Let n b 2 be the number of vertices of B which have degree 2 and n b ≥3 = n bn b 2 be the number of vertices of B which have degree at least 3 in G . Since G is planar and bipartite the number of edges in G ≤ 2(n b + n r). This implies that 2n b 2 + 3n b ≥3 ≤ 2n b + 2n r . Since n b = n b 2 + n b ≥3 , we obtain n b ≥3 ≤ 2n r .

 three vertices b 1 , b 2 , b 3 ∈ B of degree 2 each that are adjacent to both r 1 and r 2 since in that case the neighborhood of the set {b 1 , b 2 , b 3 } is of size 2 violating the conditions of the theorem. Therefore, each vertex b ∈ B of degree 2 corresponds to an edge in H and each edge has at most two vertices in B that correspond to it. Since the number of edges in H is at most 3|R| = 3n r , we conclude that n b 2 ≤ 6n r . Thus n b = n b 2 + n b ≥3 ≤ 6n r + 2n r = 8n r . We now show that the bound given above is tight. However, that still leaves open the possibility that, by exploiting other properties of disks, a (3, 2)-local search could give a better approximation for the problem of computing minimum hitting sets for disks in the plane. The following theorem rules this out. Theorem 8.5. For any δ > 0, one can construct a set D of disks in the plane, a set of points P and a subset B ⊆ P s.t. i)B is a hitting set for H(P, D), ii) |B| ≥ (8δ)OPT and iii) there are no subsets X ⊆ B and Y ⊆ P \ B, |Y | < |X| ≤ 3, s.t. (B \ X) ∪ Y is a hitting set for H(P, D).Proof. We first construct a bipartite graph G = (R, B, E) that satisfies the conditions of Theorem 8.4 and |B| ≥ (8-δ)|R|. Let L be the triangular lattice, and take a large equilateral triangle ∆ aligned with the edges of L (so that L ∩ ∆ triangulates ∆) and containing many faces of the lattice. Then replace each face of the lattice by the block of the type shown in Figure8.1(left).The corner vertices (unshaded) of the block map to the corner vertices of the face, while the other vertices (shaded) in the block lie in the interior of the face (note that each edge of the face has two shaded vertices near it). Let R be the set of vertices of L lying in ∆ and let B be the set of vertices lying in the interior of the faces in L∩∆. The blocks together define a bipartite graph (see Figure8.1(right) for a small example with four blocks put together). The dotted edges and the edges of the lattice L are not part of the graph. If ∆ is large enough, the number of faces of L in ∆ is nearly twice the number of vertices of L in ∆. Thus by making ∆ large enough, we can ensure that |B| ≥ (8δ)|R| since each face in L ∩ ∆ contains four points of B. It can be verified by inspection that there is no subset of B of size at most 3 with a smaller neighborhood.

R

 and B are thus two sets of points. We set P = R ∪ B, and construct D by taking for each edge e in G a disk that contains a disk that contains exactly the two end points of e among all the vertices in Ξ. This is possible because Ξ is now a Delaunay triangulation of the points in P . By construction, each disk in D contains exactly one point from each of the sets R and B and thus both the sets are hitting sets for H(P, D). Since OPT is the size of the smallest hitting set, OPT ≤ |R| and therefore |B| ≥ (8δ)OPT. Consider a local improvement step where we seek to decrease the size of the hitting set B by removing some subset X ⊆ B of size at most 3 and adding a smaller set Y outside B (i.e., Y ⊆ R) so that (B \ X) ∪ Y is a hitting set for D. Let x be one of the points in X. Observe that then all neighbors of x in G must be in Y since for each neighbor y of x, there is a disk in D which contains only the two points x and y among all the points in R ∪ B. This means that |Y | ≥ |N G (X)|. Since for any X of size at most 3, |N G (X)| ≥ |X|, we have that |Y | ≥ |X| implying that such a local improvement is not possible.

FIGURE 8

 8 FIGURE 8.1: Unshaded vertices correspond to red and shaded to blue vertices. The dotted lines show a triangulation. We tile the triangles in (left) as shown in (right). The ratio of shaded to unshaded vertices goes to 8 as size of the tiling is increased. Connecting the vertices at the boundary of the tiling to a new vertex gives a 4-connected graph.

P

 for H((P , D)) of size at most |A|. Therefore, |S | = |S| -3t > 8 • OPT(P, D) ≥ 8 • OPT(P , D), and any hitting set for H(P, D)

Case 2 :

 2 D y \ R(x) is connected. In this case, since R(x) \ D y is not connected, the situation is as shown in Figure8.2. There is at least one point y where the boundaries of D y and R(x) intersect but do not cross. Furthermore, y does not lie on the boundary of D y \ R x . Since y lies on the boundary of R x , it lies on the boundary of some disk D x ∈ D(x). Note that D x contains R x but does not contain y. Therefore, D x must intersect the boundary of D y at least twice in the portion of ∂D y that lies outside R x , i.e., the arc between a and b (shown in the figure) in counterclockwise direction. The boundaries of D x and D y then intersect at least three times, a contradiction for disks. θ plotted along the x-axis is an x-monotone curve which we denote by Γ D . Furthermore, for any two disks D, D ∈ D the curves Γ D and Γ D intersect at most twice since the boundaries of any two disks intersect at most twice. The curves in {Γ D : D ∈ D} therefore form a set pseudo-parabolas. The number of arcs in the boundary of R is equal to the size of the lower envelope of the arrangement of curves, which is O(m) due to the linear union complexity of pseudo-parabolas [PS06; APS07]. The boundary of R can be computed by a randomized incremental construction in O(m log m) in the same way as the union of a set of m regions with linear union complexity is computed in the same amount of time. There is also a deterministic algorithm which takes O(m log 2 m) time. It basically splits the disks in D into disjoint sets of half the size, computes the intersection region for each, and then takes the intersection of the two intersection regions -which can be computed using a circular sweep. For details see [OWW85; EHS04; APS07] and the references therein.

 the circular arc bounding R in that cone, as v. Setting up this data structure takes O(m) time and the query time is O(log m) as required.Lemma 8.11. Let P be a set of n points in the plane and let D be a set of pseudodisks, the boundary of each being composed of circular arcs. For any constant C, we can compute, for each p ∈ P that lies in at most C pseudodisks, the exact set of pseudodisks it hits in O(n log m) time, where m is the total number of arcs in all the pseudodisks.Proof. We first compute the shallow levels (of depth at most C) of the arrangement of pseudodisks D. This can be done using a randomized incremental construction in exactly the same way as the union of a set of pseudodisks is computed. This takes O(m log m) time since the overall complexity of the shallow levels (for constant C) is linear. For details see [OWW85; EHS04; APS07]. Once the shallow levels are computed, we set up a point location data structure. Then in O(log m) time per point, we can determine for each point exactly which of the at most C pseudodisks it is contained in.

Norbert

 Bus and Lilian Buzer. "Dynamic Convex Hull for Simple Polygonal Chains in Constant Amortized Time per Update." In: Proceedings of the 31th European Workshop on Computational Geometry (EUROCG). 2015

Figure

FIGURE 9 . 1 :

 91 FIGURE 9.1: Example of two phases

 FIGURE 9.2: The two dequeues constituting C * with corresponding points in blue and yellow.In green and red we depict C + and C -respectively.

Lemma 9. 2 .

 2 While initializing C -for S b a one can create the ordered list of regions in O(ba) time.

(

 p b , p b+1) infinitesimally close to p b . Finding the region containing this point is now reduced to searching for the region whose two edges connected to p b define the sector containing this additional point. Given this region we can find the region of p b by applying the inductive step. Searching for the region of the additional point has O(ba) complexity.

Lemma 9. 4 .

 4 The points in C * are partitioned into contiguous ranges according to whether they belong to C -or C + . At any step in a phase there are at most two such partitions, one containing points of C + and one containing points of C -. The partitioning changes in a specific pattern during a phase: at the beginning there are only points from C -in C * ; then two partitions; finally only points from C + are located in C * . Let us call this the state of the algorithm and denote them by decremental, mixed or incremental respectively.Proof. The fact that C * is partitioned into at most two parts is a consequence of the simplicity of the polygonal chain. Indeed, suppose the contrary. Clearly in this case there are at least 4 points A, B, C, D in C * . Assume that A, C ∈ C + and B, D ∈ C -. This implies that there is a simple polygonal chain that belongs to C + and connects A with C. Similarly for B, D and C -. Since both chains are inside C * they must intersect which contradicts the simplicity assumption of the complete chain. The strict ordering also follows easily since C + is monotonically growing while C -is monotonically shrinking. Determining the state can be done by checking which convex hull (C -or C +) do the two openings of C * belong to. Using this notation we can say that updating the highest ordered region has to be done only in the decremental state. For the pseudo code of inserting the next point see Algorithm 10. Algorithm 10: Algorithm for a inserting the next point. Data: R * highest ordered region containing a point of C + Procedure Insert(p j+1) Insert p j+1 into C + // Melkman Insert p j+1 into C * // Melkman if state == decremental then while (p i , p j+1) exits R * into higher ordered region do Update R *

FIGURE 9 . 4 :

 94 FIGURE 9.4: The three different cases for deleting the point p i . C + and C -is depicted green and red respectively. C * is not illustrated.

a l g o

 w i l l g u e s s) . * / v o i d bg_solve (std : : vector<Point> & input_points , c o n s t std : : vector<Circle> & input_disks , std : : vector<size_t> & Hittingset , size_t OPT = 0) ; LISTING 10.2: enet interface This library relies on enet and the Delanuay triangulation provided by CGAL along the locating the disks in the Delanuay triangulation that contain certain points.

TABLE 1 :

 1 Summary of previous work.

 s is the intensity of the light s and V s (p) denotes the visibility between s and p. M s (p, ω)

		Chapter 1 Introduction to Many-Lights Methods
	extended and the merge of the convex hulls (in blue) is updated. The image on the right depicts single light:
	the deletion of a point. Here the previously built convex hull (in red) decreases and the merged hull is updated. Technical details can be found in Chapter 9. The presentation is the extended L(p, ω) = s∈S M s (p, ω) • G s (p) • V s (p) • I s (1.1)
	version of the following work.	s
	Norbert Bus and Lilian Buzer. "Dynamic Convex Hull for Simple Polygonal Chains in Constant Amortized Time per Update." In: Proceedings of the 31th European Work-Chapter 1
	shop on Computational Geometry (EUROCG). 2015 N s φ
	N p Introduction to Many-Lights Methods ω θ β
	p	ω
		Part I
	Rendering photo-realistic images efficiently is a challenging task in computer graphics. As the
	complexity of scenes, materials and lighting increases, so does the need for fast and accurate
	rendering methods. Unbiased algorithms such as Metropolis light transport [VG97] or bidi-
	Computer Graphics: Rendering rectional path tracing [VG95] result in the best quality images and handle the widest range of
	illumination types but take long time to converge due to their stochastic nature. Several solutions
	have been proposed to speed up rendering and to alleviate noise quickly but most of them do Photo-Realistic Images not retain the unbiased property of pure path tracing algorithms. Such solutions include Photon
	Mapping [Jen01], point-based illumination [Chr08] and many-lights methods such as Instant
	Radiosity [Kel97].	
	This chapter aims to introduce the notations used in our many-lights algorithms and to present
	previous results on the problem. Many-lights methods have gained much attention recently
	since they produce high quality images in a fraction of the time taken by Monte Carlo methods
	without noise. They are based on the observation that one can generate virtual light sources prior
	to rendering that are responsible for approximating global illumination. The image is rendered
	by simply summing up the direct contribution of all virtual light sources. We omit the details
	of the procedure to generate virtual light sources (referred to as virtual point lights or VPLs
	hereafter). Details and a formal derivation of the method can be found in [Kel97]. Using VPLs
	we obtain a discretization of the rendering equation that makes handling the problem easier
	since it has no recursive part.	
	Denote by S the set of VPLs and by P the set of points to be shaded (i.e., points in the scene hit
	by the rays traced from the camera). We use similar notation as in Lightcuts [WFA+05]. The
	radiance for a point p ∈ P in direction ω caused by the direct contribution of the lights in S is denoted by L(p, ω). It is a function that sums up over all lights the product of the material,
	The image on the left depicts an intermediate state after addition and deletion of points. The geometry, visibility and intensity terms, where each product represents the radiance caused by a
	image on the middle shows adding a point. The convex hull that handles insertions (in green) is

I

 Overview of the system building blocks. The Embree framework (in purple) has been augmented by our algorithms (in green). Details of each block follow in Sections 2.2, 2.2 and 2.3.

	Algorithm workflow		
	Pre-processing		VPL generation	Compute ws-clusterings	Additional structures
	BVH for	Pre-compute		
	geometry	clusterings		
	Render each pixel p ∈ P Retrieve ws-Calculate	Extract initial clustering C	Refine clusters in C	Embree raytracing kernel
	clustering C	L C (p, ω)		
	FIGURE 2.1:			

TABLE 2

 2

.1: Octree depths with 320K VPLs, both with and without compression.

 The subdivision uses the same octree that was used for the construction of the WSPD. See Algorithm 2. Note that the above algorithm is adaptive to the local geometry of the scene: for a point p closely surrounded by VPLs, it will refine at a smaller radius. FIGURE 2.9: A close ws-cluster C i and a far ws-cluster C o from s. Proof. See Figure 2.9. As C o is ws from s, it follows that d 0 ≥ r(C o), where r(C o) is the radius of the cluster C o . Also d ≤ d o since the cluster is disjoint. Triangle inequality implies d(s, C o) = d o ≤ d + d(p, C o), and so d(p, C o

	d			
	p s	d	C i	d o
				C o

These were pre-computed, and can be efficiently retrieved. The key idea now is to consider two types of clusters in C s separately: far clusters in C s are at distance further than d/ from s and close clusters are those closer than d/ from s. We show that each far cluster in C s is an approximately ws-cluster from p. For the remaining close clusters in C s , we recursively subdivide them until they are ws-clusters from p. We now prove that the clusters far from s are approximately ws-clusters from p. Lemma 2.4. Let p be an arbitrary point and s be its nearest-neighbor with d(p, s) = d. Any ws-cluster C o ∈ C s disjoint with the ball of radius d around s is approximately well-separated from p, namely it is well-separated with separation parameter = 1-.

 Table 2.2 for the maximum number of new clusters added per point for a number of scenes with varying values of .

		Refined clusters for varying
	Scene	0.9 0.7 0.5 0.3	0.1
	Conference 58	75 114 227 1401
	Sibenik	57	74 109 219 1505
	Museum	81 103 159 326 2350
	San Miguel 80 108 167 370 3411

TABLE 2 .

 2 2: Maximum number, over all p ∈ P , of added clusters during refinement with 320K VPLs.

 side of the object. To overcome this problem we propose to augment our ws-clusters with additional visibility information.As stated in Theorem 2.2, without taking into account visibility differences, a ws-clustering with a single representative and clustered normals gives a good approximation to L (as a function of). The visibility computation for a ws-cluster C i will be divided into two parts: a simple shadow test from p to the boundary of the ball of C i for the outside visibility and then shadow testing from the boundary to each light for visibility inside the ball of C i . Here again the geometric wellseparated property of the ws-clustering comes in useful, as the angles from p to C i are bounded (as a function of). We use a new approximation for L(p, ω), to better handle visibility:

				5	0.3
	Conference	8.3	8.1	6.7	5.3
	Sibenik	9.5	9.3	8.0	5.9
	Museum	23.3 21.2 16.8	11.4
	San Miguel 44.72 39.6 31.2	18.5
	TABLE 2.3: Average number of subgroups per cluster.

Visibility testing. Visibility differences within a cluster can cause errors with a fixed representative light. Consider for example a flat object with VPLs on both sides. Since the representative light is either on one side or the other, visibility queries falsely return occlusion if the pixel is on the other

 In Figure2.15 we plot the relative error and the rendering time against in the Museum scene. The curve is not strictly monotonic since our algorithm is not deterministic (e.g., approximate nearest neighbor).

			2.8					800
			2.6					700
		relative error(%)	1.4 1.6 1.8 2.0 2.2 2.4					200 300 400 500 600	time(s)
			1.2					100
			1.0					0
			1	0.8	0.6	0.4	0.2	0
	# VPLs:	75K 115K 200K 375K 776K
	Lightcuts	0.59	0.6	0.63	0.74	0.84
	LightSlice 4.53 6.31	9.85 18.81 36.58
	WSPD 0.5 1.14 1.40	1.98	3.38	6.17
		3000			WSPD 0.5
		2500			LightSlice LightCuts
	time (s)	1000 1500 2000					
		500					
		0					
		0	0.5	1	1.5	2	2.5	3
			Number of VPLs (million)

TABLE 2.5: Memory requirements for the Museum scene (GB).

In Figure

2

.14 we plot the rendering times of the three methods with varying number of VPLs in the Museum scene. Note how our algorithm consistently outperforms Lightcuts even with 3M VPLs and both of them scale sub-linearly in the number of light sources. LightSlice is only usable as long as it does not allocate more memory than present in the system. FIGURE 2.14: Varying number of VPLs for the Museum scene. Trade-off:

FIGURE 2.15: Relative error (red) and render time (green) with varying for the Museum scene.

Table 2

 2

.6, Figure

2

.18 and 2.19 show some results with 4 samples per pixel. Note that our algorithm still matches LightSlice in performance. See Figure

2

.16 for the effect of multiple samples per pixel on the Museum scene. Our method has no visible artifacts (nor does Lightcuts)

TABLE 3

 3 Banquet in Table3.3. Note that we still maintain our speed up over Lightcuts while the quality is the same. LightSlice converges very slowly to the correct solution if one only varies the number of columns. On the other hand, using more slices requires prohibitively large

		Banquet San Mig. Sponza	Kitchen
	R. time (s)	103.88	175.54	99.34	82.47
	RMSE	0.01066	0.02548 0.00632	0.01581
	Rel. Err.	3.04835	8.95983 5.16506 10.10555
	TABLE 3.2: Lightcuts with maximum cut size set to 2000.

.2 we included results with setting the maximum cut size to 2000. High fidelity images. We have set our error threshold for Lightcuts to 1% which closely matches the parameters used in previous work

[START_REF] Walter | Lightcuts: a scalable approach to illumination[END_REF][START_REF] Ou | LightSlice: matrix slice sampling for the manylights problem[END_REF]

. Despite that, the quality of our images are not matching the reference. In order to show that our methods are capable of producing nearly indistinguishable results we have set more strict error thresholds. See the result for .3: Results for Banquet where the images are visually indistinguishable from the reference.

 The Embree framework consists of two main parts. High performance ray tracing kernels and a simple but fully functional rendering engine with path tracing. The former was designed with a simple low level interface for ray tracing enabling any existing rendering application to simply use the ray tracing functionalities and benefit from its extreme speed. Listing 4.1 and 4.2 shows a few examples of using the Embree API.

u n s i g n e d geomID = rtcNewTriangleMesh (scene , geomFlags , numTriangles , ← numVertices) ; s t r u c t Vertex { f l o a t x , y , z , a ; } ; s t r u c t Triangle { i n t v0 , v1 , v2 ; } ; Vertex * vertices = (Vertex *) rtcMapBuffer (scene , geomID , RTC_VERTEX_BUFFER) ← ; / / f i l l v e r t i c e s h e r e rtcUnmapBuffer (scene , geomID , RTC_VERTEX_BUFFER) ; Triangle * triangles = (Triangle *) rtcMapBuffer (scene , geomID , ← RTC_INDEX_BUFFER) ; / / f i l l t r i a n g l e i n d i c e s h e r e rtcUnmapBuffer (scene , geomID , RTC_INDEX_BUFFER) ; LISTING 4.1: The Embree API: mesh creation v o i d rtcIntersect (RTCScene scene , RTCRay& ray) ; v o i d rtcOccluded (RTCScene scene , RTCRay& ray) ; LISTING 4.2: The Embree API: ray -primitive intersection

TABLE 7 .

 7 1: Hitting sets. From top to bottom, RN D(0.1), RN D(0.01) and F IX(0.001).

		# of	# of	Q	R	S	# of	IP	dnet	ap-	IP	dnet
		points	disks	size	size	size	phases	solution	solution	prox.	time(s)	time(s)
	China	50K	50K	367	809	604	11	1185	1780	1.5	60	12
	ForestFire	50K	16K	43	85	224	11	267	352	1.3	54.3	6.9
	KDDCU	50K	22K	171	228	786	11	838	1185	1.4	40.9	9.8
	Gauss9	50K	35K	322	724	1035	11	1493	2081	1.4	52.5	11.7
	Europe	50K	31K	185	322	419	11	630	926	1.5	87.6	9.8
	Birch3	50K	29K	166	233	1036	11	1026	1415	1.4	51.4	10.4
	Uniform	50K	48K	665	1109	2169	11	2824	3943	1.4	49.8	12.3
	Mopsi	13K	5K	40	55	197	10	228	292	1.3	2.4	1.7
	China	50K	49K	673	1145	4048	11	4732	5862	1.2	4.5	14.5
	ForestFire	50K	25K	162	268	1021	11	1115	1451	1.3	6.2	9.5
	KDDCU	50K 102K 1326	2492	6833	11	8604	10651	1.2	12.5	22.2
	Gauss9	50K 185K 2737	6636	9867	11	15847	19239	1.2	22.4	36.0
	Europe	50K	85K	683	1491	3138	11	4211	5312	1.3	13.2	18.1
	Birch3	50K 117K 1359	3358	7223	11	9683	11940	1.2	15.4	25.6
	Uniform	50K 387K 5549 13081 16826	11	31787	35446	1.1	34.7	66.3
	MOPSI	13K	6K	179	314	656	10	762	1009	1.3	0.6	2.5
	China ForesFire KDDCU	50K 50K 50K	50K 2765 50K 331 50K 2764	7376 602 5824 15734 7851 1273	11 11 11	--22368	17329 2206 24318	--1.1	--8.9	19.8 11.9 22.3
	Gauss9	50K	50K 5380 13321 19153	11	36302	37827	1.0	19.1	26.7
	Europe Birch3 Uniform	50K 50K 50K	50K 1376 50K 2709 50K 5442 13417 27573 2644 5161 7492 14434	11 11 11	--46124	9181 24630 46420	--1.0	--19.4	16.2 22.1 30.4
	MOPSI	13K	13K	354	673	870	10	1294	1646	1.3	127.2	2.9

TABLE 7 .

 7 2: Memory usage in MB (left) and range reporting statistics (right).

		RND(0.01)	RND(0.1)	FIX(0.001)		RND(0.01)	RND(0.1)	FIX(0.001)
		IP dnet	IP dnet	IP dnet		total doubling	total doubling	total doubling
	China	243	21 4282	19	434	20	China	44014	43713	9406	9184	96335	95846
	ForesFire 524	28 3059	18 5470	24	ForesFire	11167	11086	2767	2728	15648	15020
	KDDCU	458	30 2999	23	175	22	KDDCU	75448	75016	8485	8364 173147	173044
	Gauss9	569	33 3435	24	158	24	Gauss9	121168	120651 14133	13906 217048	217019
	Europe	734	30 4418	25	659	24	Europe	38112	37886	5224	5160	58644	57014
	Birch3	523	31 3655	24	960	26	Birch3	85399	85063 11219	11049 167384	167197
	Uniform 693	39 4083	25	155	24	Uniform 198168	197388 26970	26431 309286	309284
	MOPSI	30	11	294	8 1735	10	MOPSI	1883	1863	2283	2249	10360	10235

). On the other hand, for any local improvement pair (X i , Y) where Y is of type j, take any point x ∈ X i . Since D(x) is non-empty, any disk D ∈ D(x) contains at least one point in Y . Therefore any such local improvement pair leads to an incidence between a point in Q and a disk in D. Note that since the X i 's are disjoint these are distinct incidences. Thus there Probability that any iteration of the while loop is lucky is at least 1/2. Proof. By Lemma 8.13, there exists a k such that there are Ω(β/k) points, say the set U , withρ(p) ≥ k. Consider the smallest index i s.t. π i ∈ U . The expected value of i is O(nk/β).Lemma 8.15. For a lucky iteration of the while loop, let λ be the reduction in size of the current hitting set, and σ the time spent in this iteration. Then σ/λ ≤ Cn 2 log 2 n/β.

	∃i such that the point π i is useful and	i ρ(π i)	≤	Cn β
	for some constant C.				
	Lemma 8.14. i ρ(π i)	≤	Ckn/β k	=	Cn β

are Ω(t/2 j) incidences. Since by assumption no point in P , and therefore no point in Q, is in

more than n/(• OPT) disks in D, we have that |Q| = Ω(t • OPT/2 j n). Therefore, |Q| = Ω max{ t • OPT/2 j n, √ t/2 j } = Ω(β/2 j). Observe that each p ∈ Q is useful and ρ(p) ≥ 3 • 2 j . The lemma is therefore true for k = 2 j .

We can now analyze the running time of our algorithm. Running time: Preprocessing takes O(n 2) time but this is dominated by the running time of Algorithm 9. Consider a single iteration of the while loop in Algorithm 9. If we find some point s ∈ S for which D(s) = ∅, we drop s from the current hitting set. This way we have improved the size of the hitting set at the cost of O(n log n) time. The total time spent on such improvements is at most O(OPT n log n) = O(n 2 log n).

Otherwise, call a single iteration of the while loop lucky if the following is true:

Therefore, with probability at least 1 2 , i ≤ Cnk/β for some large enough C. Then,

 algorithm. Adding points should be continued only as long as they create new vertices on C * . * \ b r i e f Computes t h e h i t t i n g s e t w i t h o u t s i m p l i f i e d Bronnimann-G o o d r i c h← i m p l e m e n t a t i o n * \ param [i n , o u t] i n p u t p o i n t s The i n p u t p o i n t s . * \ param i n p u t d i s k s The i n p u t d i s k s . * \ param [i n , o u t] H i t t i n g s e t The h i t t i n g s e t (i n d i c e s) . * \ param OPT The o p t i m a l v a l u e i f known (i f z e r o t h e ←

They actually proved a more general statement, but the following is more relevant for our purposes.

Acknowledgements

thank Saurabh Ray for his valuable collaboration, Hugues Talbot for his help with the blade server and finally Gilles Bertrand and Michel Mateusz Koziński and Ravi Kiran. Meeting you alone already made the endeavor of taking up the doctoral studies worth it. I also thank my parents, and my sister, for their unconditional support.

Finally, I would like to acknowledge the funding we got from LIGM and CNRS(UMR 8049).

The work presented in this thesis was also partly funded by the grant ANR SAGA (JCJC-14-CE25-0016-01).

Overview of the Hitting Set Problem

The minimum hitting set problem is one of the most fundamental combinatorial optimization problems: given a range space (P, D) consisting of a set P and a set D of subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard. If there are no restrictions on the set system D, then it is known that it is NP-hard to approximate the minimum hitting set within a logarithmic factor of the optimal [START_REF] Raz | A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP[END_REF]. The problem is NP-complete even for the case where each range has exactly two points since this problem is equivalent to the vertex cover problem which is known to be NP-complete [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF][START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

The special case studied in this work -hitting sets for disks in the plane -has been the subject of a long line of research. Besides ad-hoc approaches, there are two systematic lines along which all progress on the hitting-set problem for geometric ranges has relied on: rounding via -nets, and local-search. Both these approaches have to be evaluated on the questions of computational efficiency as well as approximation quality. In spite of all the progress, there remains a large gap between theory and practice -mainly due to the ugly trade-offs between running times and approximation factors.

Rounding via -nets. Given a range space (P, D), a positive measure µ on P (e.g., the counting measure), and a parameter > 0, an -net is a subset S ⊆ P such that D ∩ S = ∅ for all D ∈ D with µ(D ∩ P) ≥ • µ(P). The famous " -net theorem" of Haussler and Welzl [START_REF] Haussler | Epsilon-nets and simplex range queries[END_REF] states Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane. We will use Ξ when R is clear from the context. For any triangle ∆ ∈ Ξ, let D ∆ be the Delaunay disk of ∆, and let P ∆ be the set of points of P contained in D ∆ . Similarly, for any edge e ∈ Ξ, let ∆ 1 e and ∆ 2 e be the two triangles in Ξ adjacent to e, and P e = P ∆ 1 e P ∆ 2 e . If e is on the convex-hull, then one of the triangles is taken to be the halfspace defined by e not containing R.

Algorithm 6: Compute -nets

Data: Compute -net, given P : set of n points in R 2 , > 0 and c 1 .

In order to prove that the algorithm gives the desired result, the following theorems regarding the size of an -net will be useful. Let f () be the size of the smallest -net for any set P of points in R 2 under disk ranges. In fact, our techniques can be generalized for larger values of k. In particular, it can be shown that (4, 3)-local search gives a 5-approximation in time Õ(n 3.75).

Analysis of Quality for Local Search

The PTAS of Mustafa and Ray [START_REF] Nabil | Improved Results on Geometric Hitting Set Problems[END_REF] uses a (k, k -1)-local search in which, for as long as possible, we try to swap some set of at most k points in the current hitting set with a smaller set of points while maintaining a hitting set. We stop when no such local improvement is possible.

The analysis of the approximation factor achieved by a (k, k -1)-local search depends on the following theorem on planar bipartite graphs. Remark: Lemma 8.8 holds even when D is a set of pseudodisks. In the proof we have only used the fact that boundaries of disks cannot intersect more than twice.

Lemma 8.9. Let S be a hitting set for H(P, D). Suppose that we are given two sets X ⊆ S and

, the personal disks of x. Then there exists a set X ⊆ X of size Ω(|X|) such that (X , Y) is a local improvement pair with respect to S and H(P, D). Furthermore, given X and Y , X can be computed in time

Proof. Consider the Delaunay triangulation of the points in X, and let X be an independent-set in this Delaunay graph. First we show that guesses since we know OPT within a constant factor. Throughout this section, we will use n as the total input size. We therefore upper bound |P | and |D| by n.

We first prune the input so that no point is contained in more than ∆ = n/(• OPT) disks. This Let q = arg max p∈P α(p)

Compute an independent set X ⊆ S (q) ∪ M in the Delaunay triangulation of S (q) of size at least 3 and Ω(|S (q Proof. Assume that each point has been inserted and later removed. In Section 24 we show that the i-th phase runs in O(k i + l i) time where k i is the number of insertions in the phase and l i is the number of deletions. During the whole algorithm each point has been inserted and deleted exactly once hence there have been n insertions and n deletions overall. Therefore the overall running time of the phases is O(n), yielding the desired result.

Definitions

In this section we introduce notations, definitions and data-structures used in our algorithms.

We start with the phase convex hull representing the convex hull of the polygonal chain at any step of the algorithm. Then we describe two other data-structures representing convex hulls that are maintained during the phase. These two objects' purpose is to enable that insertion and deletion of points for the phase convex hull run in constant amortized time. Each of these data-structures have to be initialized at the beginning of the phase, details can be found at the description of them. We suggest that the reader is familiar with the Melkman algorithm [START_REF] Melkman | On-line Construction of the Convex Hull of a Simple Polyline[END_REF] as our method builds heavily on it. Briefly, it constructs the convex hull of a polygonal chain by iteratively (in the proper order) adding the points to the convex hull and modifying it as necessary. This operation is based on checking a simple configuration of points.

At the beginning of the phase let S b a be the current polygonal chain while at the end let it be S c b . Let us denote by S j i the polygonal chain at an arbitrary step during the phase and C j i the corresponding convex hull.

The phase convex hull denoted by C * is the data structure representing the convex hull C j i , containing all of its points in two dequeues. Every point is contained in exactly one of the two dequeues except for two: the front of both dequeues refer to the same point of the subchain, the one contained in C j i with highest index and similarly, the back of both dequeues refer to the same point of the subchain, the one contained in C j i with lowest index. We refer to the front of both dequeues as front opening and to the back as back opening. Connecting the two dequeues gives the ordered circular list of points in C j i . See Figure 9.2 for an illustration. Moreover, if one considers the back opening to be closed (i.e., as if being glued together, removing the duplicate copy of the back point), one has the data structure used in the Melkman algorithm. On the other hand, if the front opening is considered to be closed one has again the Melkman data structure but now points can be added at the other end of the chain.

Note that connecting the two dequeues is a constant time operation as there is no copy of data happening in order to create one dequeue, it is enough to virtually handle them as one dequeue.

Case 2c: If both x and y belong to C + then a similar process has to be carried out namely first inserting the points of the history (with the points in N -(p i)) and then the vertices of C + in the proper circular order starting from x and y. Note that x and y define two different parts of C + that have to be inserted into C * and to maintain a low running time one has to insert points from these two parts in an alternating order (one cannot proceed with points from the part of x after finishing the points starting from y). Denote these two parts by A x and A y . In order to be able to utilize the Melkman algorithm the added points have to belong to a simple polygonal chain, otherwise using Melkman would be impossible. This can be ensured by first creating the part of C * within ∆ and adding it to C * by simply copying it. See Figure 9.5 for a schematic illustration of this setup. The details are as follows. We use the same double queue implementation of the Melkman algorithm as for C * . This enables us to add points on both ends of the polygonal chain. Let us denote the points in N -(p i) by x and y such that x is on the 'side' of x. Add points in this structure in the following order x , H(p i), y and then in an alternating order points from C + starting from x and y. The process continues until a new point is inside the convex hull. If one is inside we stop adding points from its part (e.g. A x) and continue with points from the other part as long as an added point is inside the convex hull.

Proof. In Case 2a, after the removal of the point p i , only points of C -can be added to C * otherwise it would contradict Lemma 9.4. It is trivial that these new points are exactly the history of p i . In Case 2b and Case 2c we need a simple fact, namely that after deleting p i only points of its history and N -(p i) can become part of C * in other words no other point of C -can appear in C * . This is implied by the fact that C -is in the cone defined by p i and N -(p i) which is inside the cone defined by p i , x and y (with p i as apex in both cones). In Case 2b and Case 2c one has to argue that it is valid to apply the Melkman algorithm. This is trivial as the parts of the polygonal chains that are actually inserted are always simple since only the point located inside the convex hull could cause a self-intersection but at this point the algorithm stops.

Complexity

In this section we show that each phase takes time linear in the number of insertions and deletions. Let us denote them by k and l respectively.

Initialization: Clearly, initializing C * , C + and C -is linear in the number of points present at the beginning of the phase since we only utilize a modified Melkman algorithm. This indeed is the same as the number of points deleted in the phase. Therefore the complexity of initialization is O(l).

Insertion: For all insertion using the Melkman algorithm for both the phase convex hull and the incremental convex hull takes O(k) time. During insertion of points one has to also maintain the highest ordered region containing any point of C + . This can be done in O(k) time as well.

Deletion: Clearly, during executing the deletions, the number of points inserted into C * using the Melkman algorithm is not more than a constant times the points in C -which is O(l) (this follows since the a point can appear as history only once) and the points of C + added to C * which is less than O(k) as no point can be added more than once to C * due to the monotonicity of the operations.

This results in the following theorem.

Theorem 9.5. The running time of one phase is O(k + l) given that there are k insertions and l deletions.

Chapter 10

Software

In our work we have introduced efficient algorithms for computing -nets and hitting sets for disks. In this section we will describe our code. Our methods rely on the Delaunay triangulation.

Instead of implementing an algorithm to construct Delaunay triangulations we have decided to use the well-known CGAL library [START_REF]The CGAL Project[END_REF]. It provides a rich source of efficient and reliable geometric algorithms and data structures written in C++. One of the unique features it provides is the possibility to carry out exact computations i.e., without numerical errors.

The source code can be found on the author's website. All of our code relies on the data structures and algorithms provided by CGAL, therefore it is necessary to use our software. We will here highlight some decisions and crucial parts of the algorithms. The code contained in this document is a subset of the real code only for presentation purposes.

The enet library

The library enet provides the implementation of our algorithm to construct small sized -nets for disks. In Listing 10.1 we give the interface of the algorithm. The comments describe the function of the parameters. We have defined a global variable eps_c for setting the probability with which the random sample is created. Setting it to 12 results in the smallest -nets theoretically while according to our experiments it worth lowering it to 7, resulting in even smaller -nets in practice. The parameter counter holds the number of points in the -net resulting from subproblems with > 0.5. The algorithms proposed for this case are not implemented (due to the lack of software for calculating centerpoints) therefore temporarily the same sampling algorithm is applied recursively instead of the more advanced constructions.

The dnet library

The library dnet provides the implementation of our algorithm to construct small sized hitting sets od disks. In Listing 10.2 we give the interface of the algorithm. The comments describe the function of the parameters. We have defined global variables controlling the different parameters of our algorithm, the best setting that we have applied was to set bg_c1=30, bg_c2=12, bg_c3=2, bg_c4=2, bg_c5=0.6.