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Fondements mathématiques et numériques de la méthode des pseudopotentiels

Résumé: Les contributions de cette thèse consistent en trois principaux résultats.

Le premier résultat concerne la théorie des perturbations analytique pour les modèles
de type Kohn-Sham. Nous montrons, sous certaines conditions techniques, l’existence,
l’unicité et l’ analyticité de la matrice densité de l’état fondamental du modèle de Hartree-
Fock réduit pour des perturbations régulières provenant d’un potentiel extérieur. Notre
analyse englobe le cas où le niveau de Fermi de l’état fondamental non-perturbé est une
valeur propre dégénérée de l’opérateur de champ moyen et où les orbitales frontières sont
partiellement occupées.

Le deuxième résultat concerne la construction mathématique de pseudopotentiels pour
les modèles Kohn-Sham. Nous définissons l’ensemble des pseudopotentiels semi-locaux à
normes conservées de régularité de Sobolev donnée, et nous prouvons que cet ensemble
est non-vide et fermé pour une topologie appropriée. Cela nous permet de proposer une
nouvelle façon de construire des pseudopotentiels, qui consiste à optimiser sur cet ensemble
un critère tenant compte des impératifs de régularité et de transférabilité.

Le troisième résultat est une étude numérique du modèle de Hartree-Fock réduit pour
les atomes. Nous proposons une méthode de discrétisation et un algorithme de résolu-
tion numérique des équations de Kohn-Sham pour un atome soumis à un potentiel ex-
térieur à symétrie cylindrique. Nous calculons les niveaux d’énergie occupés et les nombres
d’occupations pour tous les éléments des quatre premières rangées du tableau périodique et
considérons le cas d’un atome soumis à un champ électrique uniforme.

Mathematical and numerical foundations of the pseudopotential method

Abstract: The contributions of this thesis consist of three main results.

The first result is concerned with analytic perturbation theory for Kohn-Sham type mod-
els. We prove, under some technical conditions, the existence, uniqueness and analyticity
of the perturbed reduced Hartree-Fock ground state density matrix for regular perturbations
arising from an external potential. Our analysis encompasses the case when the Fermi level
of the unperturbed ground state is a degenerate eigenvalue of the mean-field operator and
the frontier orbitals are partially occupied.

The second result is concerned with the mathematical construction of pseudopotentials
for Kohn-Sham models. We define a set of admissible semilocal norm-conserving pseudopo-
tentials of given local Sobolev regularity and prove that this set is non-empty and closed for
an appropriate topology. This allows us to propose a new way to construct pseudopoten-
tials, which consists in optimizing on the latter set some criterion taking into account both
smoothness and transferability requirements.

The third result is a numerical study of the reduced Hartree-Fock model of atoms. We
propose a discretization method and an algorithm to solve numerically the Kohn-Sham
equations for an atom subjected to a cylindrically-symmetric external potential. We report
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the computed occupied energy levels and the occupation numbers for all the atoms of the
four first rows of the periodic table and consider the case of an atom subjected to a uniform
electric-field.
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Preface (Fr)

L’objectif du premier chapitre est de donner un aperçu de la théorie de la fonctionnelle
de la densité et de la théorie des perturbations pour les opérateurs auto-adjoints, ainsi
qu’un résumé des résultats nouveaux présentés dans cette thèse.

Les résultats obtenus au cours de ce travail de thèse sont rassemblés dans les trois
chapitres suivants:

Chapitre 2. Un point de vue mathématique sur la DFPT (Density Functional

Perturbation Theory)

Le contenu de ce chapitre reprend un article publié dans Nonlinearity [23], complété
par une annexe sur la théorie des perturbations au deuxième ordre. L’article est consacré
à l’application de la méthode des perturbations analytiques à la théorie de la fonctionnelle
de la densité. Nous introduisons d’abord le modèle de Hartree-Fock réduit et expliquons
la distinction entre le cas non-dégénéré et le cas dégénéré. Nous établissons également des
conditions suffisantes assurant l’unicité de la matrice de densité de l’état fondamental non
perturbé de référence. Ensuite, un potentiel de perturbation est ajouté à la fonctionnelle
d’énergie. L’objectif de cette contribution est de comprendre l’influence de ce potentiel sur
l’énergie et sur la matrice densité de l’état fondamental. Les résultats de base dans le cas
non-dégénéré sont rappelés, principalement l’existence, l’unicité et l’analyticité de la ma-
trice densité perturbée par rapport à la perturbation. En outre, nous donnons une formule
de récurrence permettant de calculer les coefficients du développement en perturbation.
Le cœur de cet article est l’extension de ces résultats au cas dégénéré. Sous certaines hy-
pothèses, nous prouvons des résultats similaires à ceux établis dans le cas non-dégénéré :
la matrice densité de l’état fondamental perturbé existe, est unique et est analytique en
la perturbation. En outre, une formule de récurrence permet de calculer les coefficients de
la série de Rayleigh-Schrödinger. L’approche décrite dans ce chapitre peut être appliquée
à d’autres modèles quantiques de champ moyen, comme le modèle de Kohn-Sham LDA
(sous certaines hypothèses supplémentaires). Enfin, des démonstrations rigoureuses de la
règle (2n+ 1) de Wigner sont fournies.

Chapitre 3. Existence de pseudopotentiels à normes conservées optimaux pour
le modèle de Kohn-Sham

Ce chapitre traite de la construction mathématique de pseudopotentiels pour le calcul
de structures électroniques. Nous rappelons pour commencer la structure et les propriétés
de base du modèle de Kohn-Sham pour un atome, d’abord pour un potentiel tous-électrons,
puis pour des pseudopotentiels à normes conservées. L’Hamiltonien de champ moyen de
l’état fondamental de l’atome est invariant par rotation et ses fonctions propres ont donc
des propriétés spécifiques, que nous étudions en détail car elles jouent un rôle important
dans la théorie du pseudopotentiel. Nous décrivons la façon de construire des pseudopoten-
tiels à normes conservées et nous définissons l’ensemble des pseudopotentiels semi-locaux
è normes conservées admissibles. Nous montrons que, pour le modèle de Hartree (égale-
ment appelé modèle de Hartree-Fock réduit), cet ensemble est non-vide et fermé pour
une topologie appropriée. Nous démontrons également quelques résultats de stabilité du
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modèle de Hartree avec pseudopotentiel, par rapport aux perturbations extérieures et aux
variations du pseudopotentiel lui-même. Nous étendons ensuite quelques-uns des résultats
obtenus au Chapitre 2 dans le cadre de la théorie des perturbations régulières au cas d’une
perturbation par un champ électrique uniforme (potentiel de Stark). Nous construisons en
particulier la perturbation au premier ordre de la matrice densité à la fois pour le modèle
tous-électrons et pour le modèle avec pseudopotentiel. Nous proposons enfin une nouvelle
façon de construire des pseudopotentiels consistant à choisir le "meilleur" pseudopotentiel
selon un certain critère d’optimalité, et nous montrons l’existence d’un pseudopotentiel op-
timal pour divers critères d’optimalité (certains d’entre eux impliquant la réponse linéaire
de la densité atomique de l’état fondamental à des potentiels de Stark). Enfin, nous discu-
tons des extensions possibles de nos résultats au modèle de Kohn-Sham LDA. Ce travail a
fait l’objet d’une pré-publication [25] et a été soumis pour publication.

Chapitre 4. Une étude numérique du modèle de Kohn-Sham pour les atomes

Ce chapitre traite de la simulation numérique du modèle de Kohn-Sham pour les atomes
soumis à des potentiels extérieurs à symétrie cylindrique. Nous traitons à la fois le modèle
de Hartree et le modèle Xα. Nous commençons par présenter ces modèles avec et sans
perturbation et par rappeler quelques résultats théoriques bien connus dont nous avons
besoin. L’approximation variationnelle du modèle et la construction d’espaces de discréti-
sation appropriés (en utilisant les éléments finis P4) sont détaillées, ainsi que l’algorithme
pour résoudre les équations de Kohn-Sham discrétisées utilisé dans notre code. La dernière
section est consacrée aux résultats numériques que nous avons obtenus : d’abord, nous
présentons les niveaux d’énergie calculés de tous les atomes des quatre premières lignes du
tableau périodique. Fait intéressant, nous observons dégénérescences accidentelles entre
des couches s et d ou p et d au niveau de Fermi de quelques atomes. Ensuite, nous con-
sidérons le cas d’un atome soumis à un champ électrique uniforme. On trace la réponse
de la densité de l’atome de bore pour différentes amplitudes du champ électrique, calculée
numériquement dans une grande boule avec des conditions aux limites de Dirichlet, et
on vérifie que, dans la limite de petits champs électriques, cette réponse est équivalente
à la perturbation au premier ordre de la densité de l’état fondamental. Quelques détails
techniques sont rassemblés dans une annexe à la fin du chapitre.
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Chapter 1

Introduction and summary of results

The aim of this chapter is to give a brief overview of the density functional theory and of
the perturbation theory for self-adjoint operators, as well as a summary of the new results
presented in this thesis.

Several models are used to describe the electronic structure of atoms and molecules.
The electronic Schrödinger equation is a very accurate ab-initio model, but unfortunately,
it is difficult to deal with it numerically, since it is a high-dimensional partial differen-
tial equation. Nonlinear mean-field models, which are approximations of the electronic
Schrödinger equation, are on the other hand widely used in computational physics and
chemistry. The most commonly used among these models are the Hartree Fock (HF) and
Kohn-Sham (KS) models. The HF model is a variational approximation of the electronic
Schrödinger equation. An introduction to density functional theory (DFT) and the Kohn-
Sham models is given in Section 1.1.

Perturbation theory (PT) is an important tool in quantum chemistry. One of its ap-
plication is that it can be used to compute the response properties of molecular systems
to external electromagnetic fields. In Section 1.2, the main results of the perturbation
theory for linear self-adjoint operators in both degenerate and non-degenerate cases are
recalled. Perturbation methods for some nonlinear mean-field models [21] are dealt with
in Chapter 2.

The contributions of this thesis are summarized in Section 1.3. First, we describe
the results on density functional perturbation theory clarified in Chapter 2 and published
in [23]. Second, we give an overview of our study of the pseudopotential method presented
in Chapter 3. Finally, we summarize the numerical results presented in Chapter 4.

1.1 Mathematical modeling of molecular systems

Density functional theory is the most widely used approach in ground state electronic
structure calculations. The purpose of this section is to give an introduction to DFT. We
explain in particular how it is derived from the many-body Schrödinger equation describing
a finite molecular system.
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1.1.1 Many-body Schrödinger equation

A non-relativistic isolated quantum system consisting of N particles can be modeled by a
separable complex Hilbert space H, called the state space, and a self-adjoint operator on
H, denoted by H, called the Hamiltonian. The time-dependent Schrödinger equation has
the form

i~
dΨ

dt
(t) = HΨ(t), (1.1)

where ~ is the reduced Planck constant. The wave function Ψ(t) is a normalized vector in
H. It is the object which completely describes the state of the quantum system at time t.

Equation (1.1) is a first order linear evolution equation. The stationary states are of
special interest. They have the form Ψ(t) = eiα(t)ψ, where ‖ψ‖H = 1 and α(t) = −iEt/~.
Inserting Ψ(t) in equation (1.1), one gets that the function ψ satisfies the time-independent
Schrödinger equation

Hψ = Eψ. (1.2)

The number E is from a physical point of view the energy of the state ψ.

The state space associated to a one-particle system with spin s is H = L2(R3 × Σ,C),
where Σ is a discrete set of cardinality 2s+ 1. For a system consisting of N -particles, the
state space is a subspace of the tensor product of the N one-particle state spaces. For
simplicity, let us first consider two particles with spins s1 and s2. If the two particles are of
different nature then the state space of the two-particle system is L2(R3×Σ1,C)⊗L2(R3×
Σ2,C) ≡ L2(R6,C(2s1+1)(2s2+1)). If the two particles are identical we get:

• for bosons, the state space is the symmetrized tensor product of the one-particle state
space, denoted by L2(R3 × Σ,C) ∨ L2(R3 × Σ,C), where Σ = Σ1 = Σ2,

• for fermions, the state space is the antisymmetrized tensor product of the one-particle
state space, denoted by L2(R3 × Σ,C) ∧ L2(R3 × Σ,C).

More explicitly, the wave function Ψ satisfies the following symmetry properties: for
all (r1, σ1; r2, σ2) ∈ R

3 × Σ× R
2 × Σ,

Ψ(t; r2, σ2; r1, σ1) = Ψ(t; r1, σ1; r2, σ2) (for two identical bosons),

Ψ(t; r2, σ2; r1, σ1) = −Ψ(t; r1, σ1; r2, σ2) (for two identical fermions).

Consider now the general case of N -particles, where the i-th particle has a mass mi

and is subjected to an external potential Vext and where the interaction between the
i-th and the j-th particles is described by the two-body potential Wij . The quantity
|Ψ(t; r1, σ1; · · · ; rN , σN )|2 can be interpreted as the probability density of observing at
time t, the first particle at position r1 ∈ R

3 with spin σ1, the second particle at position
r2 with spin σ2, etc. The Hamiltonian H is the equal to

H = −
N∑

i=1

~
2

2mi
∆ri+

N∑

i=1

Vext(ri)+
∑

1≤i<j≤N
Wij(ri, rj).

In the sequel the spin variable is omitted for simplicity.
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1.1.2 Quantum description of a molecular system

In the sequel, we will work with the atomic units, so that

~ = 1, me = 1, e = 1, 4πǫ0 = 1,

whereme is the electron mass, e is the elementary charge and ǫ0 is the dielectric permittivity
of the vacuum.

Consider an isolated molecule composed of M nuclei and N electrons. Denote by

HN := ∧NL2(R3),

the subspace of the N -tensor product of L2(R3), consisting of antisymmetric functions.
A time-dependent molecular wavefunction is, in the position representation, a function
Ψ(t,R1, · · · ,RM ; r1, · · · , rN ) and belongs to L2(R3M ) ⊗ HN . The Hamiltonian of this
molecular system is

Hmol = −∑M
k=1

1
2mk

∆Rk
−∑N

i=1
1
2∆ri −

∑N
i=1

∑M
k=1

zk
|ri−Rk|

+
∑

1≤i<j≤N
1

|ri−rj | +
∑

1≤k<l≤M
zkzl

|Rk−Rl| , (1.3)

where mk and zk are the mass and the electric charge of the k-th nucleus, respectively. The
first two terms in Hmol correspond to the kinetic energy of the nuclei and the electrons,
respectively. The later three terms correspond to the electrostatic energy of the interaction
between electrons and nuclei, between electrons, and between nuclei, respectively.

It is to be remarked that this model does not depend on empirical parameters specific
to the molecular system. It only depends on fundamental constants of physics, of the
number of electrons, and of the masses and charges of the nuclei. On the other hand, it is
difficult to use it to compute the properties of the molecular system, as it requires solving
a 3(M + N)-dimensional partial differential equation. In practice, this becomes hard as
long as M +N > 3.

1.1.3 Born-Oppenheimer approximation

Since the nuclei are much heavier than the electrons, the mass ratio me/mn is a small
parameter, and it is possible to decouple the nuclear and electronic degrees of freedom by
means of an adiabatic limit [62]. It can then be shown that, in most cases, nuclei behave
as classical point-like particles interacting through an effective potential energy function
W : R3M → R,

W (R1, · · · ,RM ) = I(R1, · · · ,Rk) +
∑

1≤k<l≤M

zkzl
|Rk − Rl|

, (1.4)

where I(R1, · · · ,Rk) is the effective potential created by the electrons and where the
second term in (1.4) is due to the repulsive Coulomb forces between the nuclei. In fact,
the value of I(R1, · · · ,Rk) is the ground state energy of the electronic Hamiltonian

H
{Rk}
elec = −1

2

N∑

i=1

∆ri −
N∑

i=1

M∑

k=1

zk
|ri − Rk|

+
∑

1≤i<j≤N

1

|ri − rj |
,
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which is a self-adjoint operator on HN = ∧NL2(R3), parametrized by the nuclear positions.
It can be obtained by solving the following minimization problem

I(R1, · · · ,Rk) = inf
{
〈Ψ|H{Rk}

elec |Ψ〉, Ψ ∈ QN , ‖Ψ‖HN
= 1
}
, (1.5)

where
QN = HN ∩H1(R3)

is the form domain of the electronic Hamiltonian H{Rk}
elec . Note that to solve (1.5), it suffices

to minimize on real-valued wavefunctions. We therefore considered here QN as a space of
real-valued functions. In what follows, we will focus on the electronic problem (1.5) for a
given configuration {Rk} of the nuclei. For simplicity we will denote by

E0 := I(R1, · · · ,Rk) and HN := H
{Rk}
elec ,

so that

HN = −1

2

N∑

i=1

∆ri +

N∑

i=1

Vne(ri) +
∑

1≤i<j≤N

1

|ri − rj |

with

Vne(r) = −
M∑

k=1

zk
|r− Rk|

,

and
E0 = inf {〈Ψ|HN |Ψ〉, Ψ ∈ XN} , (1.6)

where
XN = {Ψ ∈ QN , ‖Ψ‖HN

= 1}
is the set of admissible wavefunctions.

The operator HN is always bounded below, and its essential spectrum is a half-line:
σess(HN ) = [ΞN ,+∞[. For neutral or positively charged molecules, HN possesses infinitely
many discrete eigenvalues below ΞN := minσess(HN ). For N = 1, we have Ξ1 = 0, and
for N ≥ 2, ΞN is equal to the ground state energy of HN−1 (see figure 1.1). This is a
special case of the HVZ theorem (see e.g. [69, p.120, 343] and [97]), which was proved by
Hunziker [45], van Winter [95] and Zhislin [96].

Figure 1.1 – The graphs of the spectra of HN and H
N−1 respectively (HVZ-theorem).
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Even though applying the Born-Oppenheimer approximation simplifies the original
fully quantum problem, solving (1.6) for N large remains extremely difficult. Nonlinear
mean-field models such as Hartree-Fock and Kohn-Sham models provide relatively accurate
approximations of (1.6) at a reasonable computational cost.

It should be noted that the Born-Oppenheimer approximation does not account for
correlated dynamics of ions and electrons, such that polaron-induced superconductivity, or
some diffusion phenomena in solids. See [14, 31] for mathematical studies of cases when
this approximation breaks down.

1.1.4 Density functional theory

The idea of the density functional theory (DFT) is to replace the minimization (1.6) over
admissible wavefunctions by a minimization over the set of admissible electronic densities.
Let us recall that the density associated with a wavefunction Ψ ∈ HN is defined by

ρΨ(r) := N

∫

R3(N−1)

|Ψ(r, r2, · · · , rN )|2 dr2 · · · drN . (1.7)

Density functional theory was introduced first by Hohenberg and Kohn [53] and Kohn
and Sham [51], and formalized by Levy [54], Valone [89, 90] and Lieb [55]. The first step
consists in writing the electronic Hamiltonian as

HN = H1
N +

N∑

i=1

Vne(ri) with Hλ
N = −1

2

N∑

i=1

∆ri +
∑

1≤i<j≤N

λ

|ri − rj |
. (1.8)

The operator H1
N is generic and only depends on the number N of the electrons in the

system, while Vne is specific, in the sense that it depends on the molecular system under
consideration. Note that, for any Ψ ∈ XN , we have

〈Ψ|
N∑

i=1

Vne(ri)|Ψ〉 =
N∑

i=1

∫

R3N

Vne(ri)|Ψ(r1, · · · , rN )|2 dr1 · · · drN

=

∫

R3

ρΨVne. (1.9)

Define the set of the admissible electronic densities

RN = {ρ | ∃Ψ ∈ XN s.t. ρΨ = ρ} .

It is proved in [55] that

RN =

{
ρ ≥ 0 | √ρ ∈ H1(R3),

∫

R3

ρ = N

}
.

Using (1.8) and (1.9), problem (1.6) is equivalent to

E0 = inf
{
〈Ψ|H1

N |Ψ〉+
∫
R3 ρΨVne, Ψ ∈ XN

}
.
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An elementary calculation shows that

E0 = inf

{
FLL
N (ρ) +

∫

R3

ρVne, ρ ∈ RN

}
, (1.10)

where FLL
N is the Levy-Lieb functional defined by

FLL
N (ρ) = inf

{
〈Ψ|H1

N |Ψ〉, Ψ ∈ XN , ρΨ = ρ
}
. (1.11)

It is a universal density functional, in the sense that it does not depend on the considered
molecular system. It only depends on the number of electrons.

The states that can be described by a single wave function Ψ ∈ XN are called pure
states. The N -body density operator associated with Ψ is the operator ΓΨ on HN defined
by

ΓΨ := |Ψ〉〈Ψ|.
By definition, the density associated with ΓΨ is the density associated with the wave
function Ψ, that is

ρΓΨ
(r) = ρΨ(r) = N

∫

R3(N−1)

|Ψ(r, r2, · · · , rN )|2 dr2 · · · drN . (1.12)

The one-body reduced density matrix associated with Ψ is the operator γΨ on L2(R3)
defined by the integral kernel

γΨ(r, r
′) := N

∫

R3(N−1)

Ψ(r, r2, · · · , rN )Ψ(r′, r2, · · · , rN ) dr2 · · · drN . (1.13)

Recall that we only deal with real-valued wavefunctions Ψ. In fact, not all molecular
states can be described by a single wavefunction. This is the case of mixed states, which
are fundamental objects in statistical physics, and are convex combinations of the pure
states. A mixed state can be described by a N -body density operator

Γ =

∞∑

i=1

pi|Ψi〉〈Ψi|; 0 ≤ pi ≤ 1,

∞∑

i=1

pi = 1, Ψi ∈ XN ; i ∈ N
∗. (1.14)

From a physical point of view, the coefficient pi is the probability for the system to be in
the pure state Ψi. The density and the one-body reduced density matrix associated to the
N -body density operator Γ defined by (1.14) are respectively defined by

ρΓ(r) =

∞∑

i=1

piρΨi(r)

and

γΓ =
∞∑

i=1

piγΨi , (1.15)

where ρΨi and γΨi are defined by (1.12) and (1.13), respectively. An important point to
be mentioned is that the mappings Γ 7→ ρΓ and Γ 7→ γΓ are linear. Denote by

DN = {Γ ∈ S(HN )| 0 ≤ Γ ≤ 1, Tr (Γ) = 1, Tr (−∆Γ) <∞} ,
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where S(HN ) is the space of bounded self-adjoint operators on HN , 0 ≤ Γ ≤ 1 means
0 ≤ 〈ΓΨ,Ψ〉 ≤ 1, for any Ψ in HN , and Tr (−∆Γ) = Tr (|∇|Γ|∇|). In fact, the set DN is
the convex hull of the set of the density operators associated with pure states. It can be
checked that

Tr (HNΓ) = Tr (H1
NΓ) +

∫

R3

ρΓVne

and

RN = {ρ | ∃Ψ ∈ XN s.t. ρΨ = ρ}
= {ρ | ∃Γ ∈ DN s.t. ρΓ = ρ}

=

{
ρ ≥ 0 | √ρ ∈ H1(R3),

∫

R3

ρ = N

}
.

The above results are known as the N -representability of densities. As

E0 = inf {〈Ψ|HN |Ψ〉; Ψ ∈ XN}
= inf {Tr (HNΓψ); Ψ ∈ XN}
= inf {Tr (HNΓ); Γ ∈ DN} ,

we get, with the help of (1.8) and (1.9),

E0 = inf

{
FL
N (ρ) +

∫

R3

ρVne, ρ ∈ RN

}
, (1.16)

where FL
N is the Lieb functional, defined by

FL
N (ρ) = inf

{
Tr (H1

NΓ), Γ ∈ DN , ρΓ = ρ
}
.

Formulation (1.16) is more satisfactory than (1.10) from a mathematical point of view, as
it is a convex problem.

We have thus formulated the ground state electronic problem, as a function of the
density. Unfortunately, there is no simple way to evaluate FL

N and FLL
N .

1.1.5 Thomas-Fermi and related models

The idea underlying the Thomas-Fermi model [32, 84] (1927) is to approximate

• the electronic kinetic energy by CTF

∫
R3 ρ(x)

5
3dx. This approximation is based on the

fact that the kinetic energy density of a homogeneous gas of non-interacting electrons
with density ρ is equal to CTFρ

5
3 , where

CTF =
10

3
(3π2)

2
3

is the Thomas-Fermi constant;

• the electron repulsion energy by 1
2

∫
R3

∫
R3

ρ(x)ρ(y)
|x−y| dx dy, which is the electrostatic

energy of a classical charge distribution of density ρ.
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The Thomas-Fermi (TF) energy functional, then reads

FTF(ρ) = CTF

∫

R3

ρ5/3 +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy.

In the Thomas-Fermi-von Weizsäcker (TFW) model, the term CW

∫
R3 |∇√

ρ|2 is added
as a correction to the TF approximation of the kinetic energy to account for the non-
uniformity of electron densities in molecular system [92]. The TFW energy functional thus
reads

FTFW(ρ) = CW

∫

R3

|∇√
ρ|2 + CTF

∫

R3

ρ5/3 +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy,

where CW takes different values depending on how the correction is derived [28].

In the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model, a term of the form −CD

∫
R3 ρ

4
3

is added to the TFW, where

CD =
3

4
(
3

π
)
1
3

is the Dirac constant, to deal with exchange effects. The TFDW energy functional reads

FTFDW(ρ) = CW

∫

R3

|∇√
ρ|2 − CD

∫

R3

ρ
4
3 + CTF

∫

R3

ρ5/3

+
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy.

The minimization problem of the Thomas-Fermi type models has the form

ETF,TFW,TFDW
0 = inf

{
FTF,TFW,TFDW(ρ) +

∫

R3

ρVne, ρ ∈ RN

}
,

where FTF,TFW,TFDW is one of the above defined energy functionals.

It is to be remarked that Thomas-Fermi energy functionals are explicit functionals of
the density. They belong to the class of orbital-free models, in contrast with the Kohn-
Sham models, in which the energy functional is expressed in terms of one-electron Kohn-
Sham orbitals and associated occupation numbers, or equivalently in terms of one-body
reduced density matrix. Thomas-Fermi models are not used much anymore in chemistry
and physics, but they are still of interest from a mathematical point of view, since they
are used to test mathematical techniques.

1.1.6 Kohn-Sham models

The Kohn-Sham method [51], introduced in 1965, is currently the mostly used approach
for electronic structure calculation in materials science, quantum chemistry and condensed
matter physics, as it provides the best compromise between computational efficiency and
accuracy. This method proceeds from DFT as follows:
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• the kinetic energy is approximated by the kinetic energy of a system of N non-
interacting electrons. We then obtain for the pure states

T̃KS(ρ) = inf
{
〈Ψ|H0

N |Ψ〉, Ψ ∈ XN , ρΨ = ρ
}
, (1.17)

and for the mixed states

TJ(ρ) = inf
{
Tr (H0

NΓ), Γ ∈ DN , ρΓ = ρ
}
. (1.18)

The functional TJ is called the Janack kinetic energy functional;

• the repulsion energy between electrons is approximated by the classical Coulomb
electrostatic energy

J(ρ) =
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy;

• the errors on the kinetic energy and the electron repulsion energy are put together
in a single term, called the exchange-correlation functional, defined by the difference

Exc(ρ) = FLL
N (ρ)− T̃KS(ρ)− J(ρ)

or
Exc(ρ) = FL

N (ρ)− TJ(ρ)− J(ρ),

depending on the choice of whether working with the pure or mixed states. It is
numerically shown that the exchange-correlation energy is about 10% of the total
energy.

The Janack kinetic energy defined by (1.18) can be rewritten as a functional of the
one-body reduced density matrix γΓ defined by (1.15). Indeed

Tr (H0
NΓ) = Tr (−1

2
∆γΓ)

and
{γ| ∃ Γ ∈ DN , γΓ = γ} = KN ,

where
KN =

{
γ ∈ S(L2(R3))| 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞

}
. (1.19)

The above result is known as the mixed-state N -representability of one-body reduced
density matrices (1-RDM). Thus the Janack kinetic energy is equal to

TJ(ρ) = inf

{
Tr (−1

2
∆γ), γ ∈ KN , ργ = ρ

}
.

Note that any γ ∈ KN can be written as

γ =
∞∑

i=1

ni|φi〉〈φi|,
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with

φi ∈ H1(R3),

∫

R3

φiφj = δij , ni ∈ [0, 1],

∞∑

i=1

ni = N,

and
∞∑

i=1

ni‖∇φi‖2L2(R3) <∞.

In particular, the density associated with γ ∈ KN is

ργ(r) =
∞∑

i=1

ni|φi(r)|2.

Hence, the Janack kinetic energy can be equivalently rewritten as

TJ(ρ) = inf

{
1

2

∞∑

i=1

ni

∫

R3

|∇φi|2, Φ = (φi)i∈N∗ ∈ W,

ν = (ni)i∈N∗ ∈ NN ,
∞∑

i=1

ni|φi|2 = ρ

}
,

where

W :=

{
Φ = (φi)i∈N∗ , φi ∈ H1(R3),

∫

R3

φiφj = δij

}

and

NN :=

{
ν = (ni)i∈N∗ , 0 ≤ ni ≤ 1,

∞∑

i=1

ni = N

}
.

Unfortunately, no such simple expression for T̃KS(ρ) is available. In the standard Kohn-
Sham model, it is assumed that a minimizer of (1.17) is a Slater determinant (which is not
always the case [55]), so that T̃KS(ρ) can be replaced by

TKS(ρ) = inf

{
1

2

N∑

i=1

∫

R3

|∇φi|2, Φ = (φ1, · · · , φN ) ∈ (H1(R3))N ,

∫

R3

φiφj = δij , ρΦ =

N∑

i=1

|φi|2 = ρ

}
.

We recall that a Slater determinant is a wave function Ψ of the form

Ψ(r1, · · · , rN ) =
1

N !
det(φi(rj)), with φi ∈ L2(R3), and

∫

R3

φiφj = δij .

Note that, for any ρ ∈ RN , it holds

TJ(ρ) ≤ T̃KS(ρ) ≤ TKS(ρ).

The standard Kohn-Sham model, built from the Levy-Lieb functional, with integer
occupation numbers, reads

EKS
0 = inf

{
EKS(Φ), Φ = (φ1, · · · , φN ) ∈ (H1(R3))N ,

∫

R3

φiφj = δij

}
, (1.20)
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with

EKS(Φ) =
1

2

N∑

i=1

∫

R3

|∇φi|2 +
∫

R3

ρΦVne + J(ρΦ) + Exc(ρΦ).

The Kohn-Sham equations obtained from the first-order optimality conditions associ-
ated with the constrained optimization problem (1.20) read (after some algebraic manip-
ulation) 




Φ0 = (φ1, · · · , φN ) ∈ (H1(R3))N ,
HKS

Φ0 φi = εiφi,∫
R3 φiφj = δij ,
HKS

Φ0 = −1
2∆+ Vne + (ρΦ0 ⋆ | · |−1) + vxc(ρΦ0),

where vxc = ∂Exc(ρ)
∂ρ .

The extended Kohn-Sham model, built from the Lieb functional, with possibly frac-
tional occupation numbers, reads

EEKS
0 = inf

{
EEKS(γ), γ ∈ KN

}
, (1.21)

with

EEKS(γ) = Tr (−1

2
∆γ) +

∫

R3

ργVne + J(ργ) + Exc(ργ),

which is equivalent to (with slight abuse of notation) the following orbital formulation

EEKS
0 = inf

{
EEKS(ν,Φ), Φ ∈ W, ν ∈ NN

}
,

with

EEKS(ν,Φ) =
1

2

∞∑

i=1

ni

∫

R3

|∇φi|2 +
∫

R3

ρν,ΦVne + J(ρν,Φ) + Exc(ρν,Φ),

where ρν,Φ :=
∑∞

i=1 ni|φi|2. The Euler-Lagrange equation of problem (1.21) is (after
algebraic manipulation)





Φ = (φi)i∈N∗ ∈ W, ν = (ni)i∈N∗ ∈ NN ,
ρ0(r) =

∑
i≥1 ni|φi(r)|2,

HEKS
ρ0 φi = ǫiφi,

ni = 1 if ǫi < ǫ0F,
ni = 0 if ǫi > ǫ0F,
0 ≤ ni ≤ 1 if ǫi = ǫ0F,
HEKS
ρ0 = −1

2∆+ Vne + ρ0 ⋆ | · |−1 + vxc(ρ0),

where the Fermi level ǫ0F is the Lagrange multiplier associated with the constrained
∑∞

i=1 ni =
N . The difficulty of studying these models arises from the nonlinearity, non-convexity, and
possible loss of compactness at infinity when Exc 6= 0 [1, 81].
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Approximations of the exchange correlation energy

There are a large number of approximations of the exchange-correlation energy in the
literature. Some of them, for instance the B3LYP functional [8] or the PBE functional [63]
are very successful in many cases. However, despite recent progress [75], there are still
problems for certain situations, for instance when Van-der-Waals (VDW) interaction plays
a major role. Approximate exchange-correlation functionals can be classified in several
groups:

• when Exc is chosen identically equal to zero, we obtain the reduced Hartree-Fock
model (rHF), also called the Hartee model;

• the simplest approximation actually used in practice is the local density approxima-
tion (LDA) [51, 65]:

ELDA
xc (ρ) =

∫

R3

g(ρ(r)) dr,

where g : R+ → R− is the exchange-correlation energy density of the homogeneous
electron gas. An approximation of the LDA model is the so-called Xα model [79]:

EXα
xc (ρ) = −CD

∫

R3

ρ4/3,

where CD is the Dirac constant;

• the generalized gradient approximation [63]. gives raise to exchange-correlation func-
tionals of the form

EGGA
xc (ρ) =

∫

R3

h(ρ,
1

2
|∇√

ρ|2),

where h : R+ ×R+ → R−. The PBE functional previously mentioned belong to this
class.

Let us mention more sophisticated approximations, such as meta-GGA [83] (e.g TPSS),
hybrid functionals [8] (B3LYP, PBE0, HSE,...), range-separated functional [85], exact ex-
change (Ex), the random phase approximation for correlation [11, 12, 13] (cRPA), and
functionals originated from the adiabatic connection fluctuation-dissipation theorem [60]
(ACFD). As the complexity of the exchange-correlation energy functional increases, com-
putational efficiency decreases [64]. This is represented usually by Jacob’s ladder in
DFT, which was first formulated by Perdew. It depicts five generations of exchange-
correlation energy functionals leading from Hartree (the less accurate model) to the N -
body Schŕ’odinger equation (the most accurate model), see figure (1.2).

A proof of existence of a Kohn-Sham ground state for neutral or positively charged
systems was given in [81] for Hartree and in [1] for LDA. This question remains open for
GGA and more complicated functionals.

1.2 Perturbation theory

Perturbation theory has various applications in quantum chemistry. It is used for instance
to compute the response of the system under consideration to different chemical or elec-
tromagnetic environments. From a mathematical point of view, it aims at investigating
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Figure 1.2 – Jacob’s ladder of exchange-correlation energy functional [64].

how the eigenvalues and the eigenfunctions of a reference operator change when the later
is slightly modified.

Eigenvalue perturbation theory was first introduced by Rayleigh [67] in the 1870’s.
The mathematical theory of the perturbation of linear operators has been first studied by
Rellich [70]. We refer the reader to the reference books [47, 69].

The main results of perturbation theory will be recalled in this section. We will restrict
ourselves to linear analytic perturbations in the sense of Kato [47]. A mathematical study
of perturbation theory for some nonlinear quantum chemistry models, under some assump-
tions, can be found in the reference [21]. In chapter 2, we present a new approach to study
the perturbation of such models, under more general assumptions. An important case for
physical applications, which is not covered by analytic perturbation theory, namely the
”stark effect”, will be dealt with in chapters 3 and 4.

1.2.1 Finite dimensional perturbation

In this section, we present perturbation theory for the eigenvalue problem in a finite di-
mensional complex vector space X. We first focus on this case not only for simplicity, but
also because the perturbation theory of discrete eigenvalues in infinite dimension can be
reduced to the finite dimensional case.

For z0 ∈ C and R > 0 we denote by D(z0, R) = {z ∈ C| |z − z0| < R} the disc in the
complex plane of center z0 and radius R and by C(z0, R) = {z ∈ C| |z − z0| = R} the
circle in the complex plane of center z0 and radius R.

Let β 7→ T (β) ∈ L(X) be an operator-valued function of a complex variable β. Suppose
that T (β) is analytic in a given domain Ω of the complex plane. Without loss of generality,
we can assume that 0 ∈ Ω. We have

T (β) =

∞∑

β=0

βkT (k).
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with T (k) ∈ L(X), the series being convergent for |β| small. The operators T = T (0) = T (0)
is the unperturbed operator and A(β) = T (β) − T (0) is the perturbation. The eigenvalues
of T (β) satisfy the following characteristic equation

det(E − T (β)) = 0. (1.22)

Let N = dim(X). Equation (1.22) is a polynomial in E of degree N , with analytic
coefficients in β. Thus, solving equation (1.22) for a given β is equivalent to finding the
roots of

q(β,E) := det(E − T (β)) = EN + a1(β)E
N−1 + · · ·+ aN (β).

The functions a1(β) · · · aN (β) are analytic for |β| small enough. Let E0 be a root of q(0, E)
of multiplicity m. For |β| small enough, it is known [50] that q(β,E) has exactly m roots
near E0 and that these roots are the branches of one or more multivalued analytic functions.
More precisely, there exist positive integers p1, · · · , pk, with

∑k
i=1 pi = m, such that the

m roots of q(β,E) near E0 are given by multivalued functions E1(β), · · · , Ek(β) analytic

in β
1
pi , for i = 1, · · · , k, that is

Ei(β) = E0 +

∞∑

j=1

α
(i)
j β

j
pi . (1.23)

These series are known as Puiseux series.

In particular, if E0 is a simple root, then for |β| small enough, there is exactly one root
E(β) of q(β,E) near E0. Moreover, E(β) is analytic in β in the vicinity of 0.

For any operator A, we denote by σ(A) the spectrum of A, and by ρ(A) = C \ σ(A)
the resolvent set of A. The resolvent of T (β) is defined by

∀z ∈ ρ(T (β)), R(β, z) := (z − T (β))−1.

In fact, R(β, z) is analytic in the two variables (β, z) in each domain in which z is not
equal to an eigenvalue of T (β) [47]. This result is obtained by writing R(β, z) as follows

R(β, z) = R(0, z0) [1 + (z − z0 −A(β))R(0, z0)]
−1 ,

where z0 ∈ ρ(T ), and proving that the operator (z − z0 −A(β))R(0, z0) is small in norm
for |z − z0| and |β| small enough.

Let E be one of the eigenvalues of T , with multiplicity m, and ǫ > 0 be such that
σ(T )∩D(E, ǫ) = {E}. Denote by, C = C(E, ǫ) the circle in the complex plane of center E
and radius ǫ. The analyticity of the resolvent R(β, z), for |β| small, insures the analyticity
of the projector

γ(β) = − 1

2iπ

∮

C

R(β, z) dz.

In particular, if E0 is a simple root of T with associated eigenvector ψ0, then for |η|
small enough there exit analytic functions β 7→ E(β) and β 7→ ψ(β) from D(0, η) into C

and X respectively, satisfying T (β)ψ(β) = E(β)ψ(β).

28



Additional results can be established when T (β) is self-adjoint for β real. In this
case, if E(0) is an eigenvalue of T of multiplicity m, then there exist k ≤ m distinct
analytic functions in β near 0: E1(β), · · · , Ek(β), which are all the eigenvalues of T (β).
This is known as Rellich’s theorem [69]. In this particular case, one can show that in

formula (1.23) for a given i, for any j, either α(i)
j = 0 or j

pi
is an integer. Moreover, the

associated eigenfunctions {ψi(β)}1≤i≤m can be chosen orthonormalized and γ(β) is then
the orthogonal projector on the subspace spanned by those eigenfunctions.

Here are some elementary examples of linear perturbation in dimension two. For sim-
plicity, T (β) is identified by its matrix representation.

1. First example:

T (β) =

(
1 β
β −1

)
.

This is an example where the eigenvalues form the branches of one double-valued
function, with two exceptional points, where there is ”level crossing” between the two
eigenvalues. The eigenvalues of T (β) are: E± = ±(1 + β2)

1
2 , and β = ±i are the

exceptional points. The eigenprojectors are:

P±(β) = ± 1

2(1 + β2)
1
2

(
1± (1 + β2)

1
2 β

β −1± (1 + β2)
1
2

)
.

2. Second example:

T (β) =

(
0 β
β 0

)
.

This is an example where the eigenvalues are two distinct analytic functions, with
an exceptional point. The eigenvalues of T (β) are: E± = ±β, and β = 0 is an
exceptional point. The eigenprojectors are:

P1(β) =
1

2

(
1 1
1 1

)
, P2(β) =

1

2

(
1 −1
−1 1

)
.

3. Third example:

T (β) =

(
0 β
0 0

)
.

This is an example where we have two identical analytic functions, with no excep-
tional points. For all β ∈ C, 0 is an eigenvalue of T (β) of multiplicity two. The
eigenprojector is the identity.

4. Fourth example:

T (β) =

(
0 1
β 0

)
.

This is an example where the eigenvalues are the branches of one double-valued
function, with one exceptional point. The eigenvalues of T (β) are: E± = ±β 1

2 , and
β = 0 is an exceptional point. The eigenprojectors are:

P±(β) =
1

2

(
1 ±β− 1

2

±β− 1
2 1

)
.
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5. Fifth example:

T (β) =

(
1 β
0 0

)
.

This is an example where the eigenvalues are two distinct analytic functions, with no
exceptional point. The eigenvalues of T (β) are: 0 and 1. The eigenprojectors are:

P1(β) =

(
1 β
0 0

)
, P2(β) =

(
0 −β
0 1

)
.

6. Sixth example:

T (β) =

(
β 1
0 0

)
.

This is an example where the eigenvalues are two distinct analytic functions, with
one exceptional point. The eigenvalues of T (β) are: 0 and β, and β = 0 is the
exceptional point. The eigenprojectors are:

P1(β) =

(
1 β−1

0 0

)
, P2(β) =

(
0 −β−1

0 1

)
.

1.2.2 Regular perturbation theory

In the previous section, we introduced perturbation theory in finite dimensional complex
vector spaces. In this section, we will extend the results to an infinite-dimensional complex
Hilbert space X.

Let T (β) be an operator-valued function on a domain Ω of the complex plane, such that
for every β ∈ Ω, the operator T (β) is closed and the resolvent set ρ(T (β)) is non-empty.
We define the following two types of analytic operators:

• we say that the operator T (β) is analytic in the sense of Kato, if and only if, for
every β0 ∈ Ω, there exists z0 ∈ ρ(T (β0)) and η > 0 such that z0 ∈ ρ(T (β)) for all
β ∈ D(β0, η) and D(β0, η) ∋ β 7→ (z0 − T (β))−1 is analytic.

• we say that T (β) is an analytic family of type (A) if and only if

– the operator domain of T (β) is some dense subspace D ⊂ X independent of β;

– for each ψ ∈ D, T (β)ψ is a vector-valued analytic function of β. That is

T (β)ψ = Tψ + βT (1)ψ + β2T (2)ψ + · · · ,

which is convergent in a disc independent of ψ.

It is to be remarked that an analytic family of type (A) is analytic in the sense of Kato.

We assume here that β 7→ T (β) is self-adjoint for β real and analytic in the sense of
Kato. It is straightforward to show that the results obtained in finite dimension can be
extended to isolated eigenvalues of T (0), without substantial modifications. This can be
achieved by restricting the operator T (β) to the subspace spanned by the eigenfunctions
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associated to the discrete eigenvalue under consideration and using the results obtained
for the finite-dimensional problem.

Without loss of generality, we can suppose that 0 ∈ Ω and β0 = 0. Let E(0) be
an eigenvalue of T of multiplicity m. Then there exist ǫ > 0 and η > 0 such that for
all β ∈ D(0, η), T (β) has exactly m eigenvalues E1(β), · · · , Em(β) in D(E(0), ǫ). The
functions β 7→ E1(β), · · · , β 7→ Em(β) are simple valued analytic functions in D(0, η),
with Ek(0) = E(0).

The set
Γ := {(β, z); β ∈ Ω, z ∈ ρ(T (β))}

is open, and the resolvent function

R(β, z) := (z − T (β))−1

defined on Γ is analytic in the two variables (β, z) [69]. Let C = C(E(0), ǫ) be a circle in
the complex plane of center E(0) and radius ǫ > 0 such that σ(T ) ∩D(E(0), ǫ) = {E(0)}.
Since C is compact and Γ is open, there exists η > 0, such that z /∈ σ(T (β)) if |z−E(0)| = ǫ
and |β| ≤ η. Therefore the projector

γ(β) :=
1

2iπ

∮

C

R(β, z) dz (1.24)

is well-defined and is analytic for |β| ≤ δ. The analyticity of the above projector follows
from the analyticity of the resolvent R(β, z). In fact, when β is real, the projector defined
in (1.24) is the orthogonal projector over the vector subspace of dimension m generated
by the eigenvectors of T (β) associated to the eigenvalues E1(β), · · · , Em(β).

In particular, we get the Kato-Rellich theorem [69]: if E0 is a simple eigenvalue of
T with associated eigenvector ψ0, then there exists one point E(β) ∈ σ(T (β)) ∩D(E0, ǫ),
such that E(β) is a simple eigenvalue of T (β), which is analytic for |β| small. Furthermore,
there exists an analytic associated eigenvector ψ(β):

T (β)ψ(β) = E(β)ψ(β).

when β is real, one can take ψ(β) = 1I(T (β))ψ0, where I =]E0−ǫ, E0+ǫ[ or the normalized
eigenvector

ψ(β) = 〈ψ0,1I(T (β))ψ0〉−
1
21I(T (β))ψ0.

Note that, 〈ψ0,1I(T (β))ψ0〉 6= 0 for |β| small, since 1I(T (β))ψ0 → ψ0 as β → 0.

1.2.3 Linear Perturbation theory

We now consider a special family of analytic operators, which is often encountered in
quantum chemistry,namely the following linearly perturbed operator

H(β) = H0 + βV, (1.25)

where H0 is a self-adjoint operator on H with domain D(H0), H being a real Hilbert space,
and where V is the perturbation operator. The number β is called the coupling constant in
quantum mechanics. The operator H(β), defined on D(H0) ∩D(V ), is an analytic family
of type (A), for β near 0, if and only if V is H0-bounded, that is
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• D(H0) ⊂ D(V ),

• there exist a, b > 0 such that ‖V ψ‖H ≤ a‖H0ψ‖H + b‖ψ‖H, for any ψ ∈ D(H0).

For example, let V ∈ L2(Rd)+L∞(Rd) and H0 = −∆ on R
d, then H0+βV is a family

of type (A) on H = L2(Rd) with D = H2(Rd).

Moreover, if the function V is infinitesimally small with respect to H0 (that is if a can
be chosen as small as we wish), then H0 + βV is an entire family of type (A), that is
analytic on C.

Note that an operator H0+βV , where V is symmetric and H0-bounded, is self-adjoint
for |β| small enough. This result is known as the Kato-Rellich theorem [61, p 145-167 ].

Let H0 + βV be an analytic family in the sense of Kato. Let E0 ∈ σd(H0) be a simple
eigenvalue of H0. The results stated above are valid for this type of operators, that is the
existence, uniqueness and analyticity of the eigenvalues of H0 + βV , in a neighborhood
of E0, and of their associated eigenprojector is guaranteed for |β| small. In the following,
we will recall well-known formulas for the computation of the coefficients in the Taylor
expansions. We distinguish two cases:

• case 1: E(0) is a simple eigenvalue of H0 with associated eigenvector ψ(0) ∈ D(H0).
The simple perturbed eigenvalue in I =]E0 − ǫ, E0 + ǫ[ of the linearly perturbed
operator H(β) = H0 + βV and its associated eigenvector exist and are analytic for
|β| small enough. Their Taylor series are, respectively,

E(β) =
∑

n∈N
βnE(n) and ψ(β) =

∑

n∈N
βnψ(n). (1.26)

These series are called Rayleigh-Schrödinger series. They are normally convergent
in R and D(H0), respectively. For |β| small, the Rayleigh-Schrödinger coefficients of
(1.26) are determined by the well-posed triangular system

∀n ∈ N
∗

{ (
H0 − E(0)

)
= fn + E(n)ψ(n)

〈ψ(0)|ψ(n)〉 = αn,

where fn = −V ψ(n−1) +
∑n−1

k=1 E
(k)ψ(n−k) and αn = − 1

2

∑n−1
k=1〈ψ(k)|ψ(n−k)〉. In particular,

E(1) = 〈ψ(0)|V |ψ(0)〉.

If H0 is diagonalizable in an orthonormal basis, that is if

H0 =
∑

k∈N

ǫk|φk〉〈φk|,

with 〈φl|φk〉 = δlk and (ǫ0, φ0) = (E(0), ψ(0)), we have the sum-over-state formula

ψ(1) = −∑k∈N∗

〈φk|V |φ0〉
ǫk−ǫ0

, E(2) = −∑k∈N∗

|〈φk|V |φ0〉|
2

ǫk−ǫ0
...

In numerical simulations, it is preferred to solve the triangular system (1.27) rather than
using the sum-over-state formula, as the later requires the knowledge of all the eigenstates
of H0;

32



• case 2: E(0) is a multiple eigenvalue of H0. Denote by P0 = γ(0) = 1I(H0). The eigen-
projector of the linearly perturbed operator H(β) = H0 + βV defined by (1.24) is analytic
in β, for |β| small. This projector can be written as a convergent series, called the Dyson
expansion, as follows

1I(H0 + βV ) =
N∑

n=0

βnPn + βN+1RN =
∞∑

n=0

βnPn,

with
Pn = 1

2iπ

∮
C

[
(z −H0)

−1V
]n

(z −H0)
−1 dz,

RN = 1
2iπ

∮
C

[
(z −H0)

−1V
]N+1

(z − (H0 + βV ))−1 dz,

where C is a circle in the complex domain of center E(0) and small radius. This Dyson series
is normally convergent in the space L(H) of bounded operators on H. It is also convergent
in stronger topologies such as S1(H) = {γ ∈ L(H); Tr (|γ|) <∞}.

One can find an explicit lower bound on the radius of convergence of the above stated
series [47]. For simplicity, suppose that V is H0-bounded, and that E(0) is a simple
eigenvalue of H0. We have, ‖V ψ‖H ≤ a‖H0ψ‖H + b‖ψ‖H, for any ψ ∈ D(H0). Let
d = 1

2dist
(
E(0), σ(H0) \ {E(0)}

)
. Then the eigenvalue E(β) ofH0+βV near E(0) is analytic

in the disc of radius r0, given by

r0 =
[
a+ d−1

[
b+ a(|E(0)|+ d)

]]−1
.

Finally, we will illustrate with the following example that the analytic continuation of
an eigenvalue is not necessarily an eigenvalue. This is in contrast to the finite dimensional
case, where the analytic continuation of an eigenvalue always remains an eigenvalue. Let
H0 = −∆ − 1

|r| and V = 1
|r| . Then the eigenvalues of H0 + βV are − 1

4n2 (1 − β)2, for

n = 1, 2, · · · , and |β| small. The ground state energy is E(0)(β) = −1
4 + 1

2β + 1
4β

2. Even
though E(0) is given by an entire function, H0 + βV has no eigenvalues at all for β > 1.

1.3 Main results

In this section, we summarize the results obtained during this PhD work, which are detailed
in the coming three chapters.

1.3.1 Density functional perturbation theory

Consider a neutral or positively charged molecular system, containing N electrons sub-
jected to a nuclear potential V . We define the following energy functional

ErHF(γ,W ) := Tr

(
−1

2
∆γ

)
+

∫

R3

ργV +
1

2
D(ργ , ργ) +

∫

R3

ργW,

and the minimization problem

ErHF(W ) := inf
{
ErHF(γ,W ), γ ∈ KN

}
, (1.27)

where KN is defined in (1.19). The potential W is the perturbation potential and it belongs
to the space C′, the dual of the Coulomb space C (see Section 2.2) for precise definition of
these spaces.
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Unperturbed system

When the perturbation is turned off, i.e. W = 0, it is known that problem (1.27) has a
minimizer γ0 and that all the ground states share the same density ρ0. The mean-field-
Hamiltonian

H0 := −1

2
∆ + V + ρ0 ⋆ | · |−1,

is a self-adjoint operator on L2(R3) and any ground state γ0 is of the form

γ0 = 1(−∞,ǫ0F)
(H0) + δ0,

with ǫ0F ≤ 0, 0 ≤ δ0 ≤ 1, Ran(δ0) ⊂ Ker(H0 − ǫ0F) [81]. The number ǫ0F ≤ 0 is the Fermi
level. We distinguish the following three cases

• case 1 (non-degenerate case): H0 has at least N negative eigenvalues and ǫN <
ǫN+1 ≤ 0,

• case 2 (degenerate case): H0 has at least N +1 negative eigenvalues and ǫN+1 =
ǫN ,

• case 3 (singular case): ǫ0F = ǫN = 0,

where ǫi is the i’s non-positive eigenvalue of H0. We denote by (φ0i ) an orthonormal family
of associated eigenvectors. In the non-degenerate case, the ground state is unique: it is
the orthogonal projector γ0 = 1(−∞,ǫ0F)

(H0) =
∑N

i=1 |φ0i 〉〈φ0i |. In the degenerate case, we
introduce the following assumption: for any real symmetric matrix M of dimension Np,
we have 

∀x ∈ R
3,

Np∑

i,j=1

Mijφ
0
Nf+i

(x)φ0Nf+j
(x) = 0


 ⇒ M = 0,

where Nf := Rank
(
1(−∞,ǫ0F)

(H0)
)

is the number of (fully occupied) eigenvalues lower than

ǫ0F, and Np := Rank
(
1{ǫ0F}(H0)

)
is the number of (partially occupied) bound states of

H0 with energy ǫ0F. This assumption guarantees the uniqueness of the ground state γ0 in
the degenerate case. In Section (2.2), we identify two situations where this assumption is
valid.

Perturbed system

Let us now turn on the perturbation, that is we consider the case when W 6= 0. For the
non-degenerate case, we prove that there exists η > 0, such that for all W ∈ Bη(C′), (1.27)
has a unique minimizer γW . In addition, γW is an orthogonal projector of rank N and

γW = 1(−∞,ǫ0F)
(HW ) =

1

2iπ

∮

C

(z −HW )−1 dz,

where

HW = −1

2
∆ + V + ρW ⋆ | · |−1 +W,
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ρW being the density of γW . Moreover, the mappings W 7→ γW , W 7→ ρW and W 7→
ErHF(W ) are real analytic from Bη(C′) into S1,1, C and R respectively, where Bη(C′)
denotes the ball of C′ with center 0 and radius η and S1,1 := {T ∈ S1 | |∇|T |∇| ∈ S1}
where S1 is the space of trace class operators. Therefore, for allW ∈ C′ and all −η‖W‖−1

C′ <
β < η‖W‖−1

C′ ,

γβW = γ0 +
+∞∑

k=1

βkγ
(k)
W , ρβW = ρ0 +

+∞∑

k=1

βkρ
(k)
W ,

and

ErHF(βW ) = E(0) +
+∞∑

k=1

βkE(k)
W ,

the series being normally convergent in S1,1, C and R respectively. A recursion relation is

given to compute the Rayleigh-Schrödinger coefficients γ(k)W , ρ
(k)
W and E(k)

W . Finally, Wigner’s

(2n+1)-rule, which states that the knowledge of γ(k)W for k ≤ n is enough to compute γ(2n)W

and γ(2n+1)
W , is rigorously proved. Some of these results were already known in the literature

(for instance see [21]).

Our main original results are concerned with the degenerate case. We assume that the
natural occupation numbers at the Fermi level are strictly comprised between 0 and 1. As
a consequence, γ0 belongs to the subset

KNf ,Np := {γ ∈ KN | Rank(γ) = Nf +Np, dim(Ker(1− γ)) = Nf}

of KN . In order to establish similar results as in the non-degenerate case, we proceed as
follows

1. we first construct a real analytic local chart of KNf ,Np in the vicinity of γ0;

2. we use this local chart to prove that, for ‖W‖C′ small enough, the minimization
problem

ẼrHF(W ) := inf
{
ErHF(γ,W ), γ ∈ KNf ,Np

}

has a unique local minimizer γW in the vicinity of γ0, and that the mappings W 7→
γW ∈ S1,1 and W 7→ ẼrHF(W ) are real analytic; we then prove that γW is actually
the unique global minimizer of (2.4), hence that ẼrHF(W ) = ErHF(W );

3. we finally derive the coefficients of the Rayleigh-Schrödinger expansions of γW and
ErHF(W ), and prove that Wigner’s (2n + 1)-rule also holds true in the degenerate
case.

Finally, we comment on the ability of extending our approach to other settings, such as
Kohn-Sham LDA model (under some additional assumptions).

1.3.2 Pseudopotentials

Pseudopotential methods are widely used in electronic structure calculations. These meth-
ods rely on the fact that the core electrons of an atom are hardly affected by the chemical
environment experienced by this atom. In pseudopotential methods, core electrons are
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frozen in a state computed once and for all from an atomic calculation, while valence elec-
trons are described by pseudo-orbitals. As a pseudopotential is constructed from atomic
calculation only, we just consider atomic models in this section. We restrict ourselves to
the Hartree model. Extensions to the Kohn-Sham LDA model are discussed in Chapter 3.

On one hand, we have the ground state all-electron density matrix γ0z of the atom with
nuclear charge z (which we abbreviate as atom z in the sequel), which is a solution to

IAA
z := inf

{
EAA
z (γ), γ ∈ Kz

}
,

where

EAA
z (γ) = Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ(r)

|r| dr+
1

2
D (ργ , ργ) .

The ground state all-electron density (which is unique by a strict convexity argument) is
defined by ρ0z := ργ0z . The Hartree all-electron atomic Hamiltonian

HAA
z = −1

2
∆ +WAA

z , where WAA
z = − z

| · | + ρ0z ⋆ | · |−1,

is a bounded below self-adjoint operator on L2(R3) with domain H2(R3). Due to symme-
tries, WAA

z is radial so that finding the eigenfunctions of HAA
z reduces to solving the family

of radial Schrödinger equations (index by the quantum number l ∈ N, see Chapter 3 for
details),





Rz,n,l ∈ H1(R), Rz,n,l(−r) = Rz,n,l(r) for all r ∈ R,

− 1
2R

′′
z,n,l(r) +

l(l+1)
2r2

Rz,n,l(r) +WAA
z (r)Rz,n,l(r) = ǫz,n,lRz,n,l(r),

∫
R
R2
z,n,l = 1,

where ǫz,n,l are the eigenvalues of HAA
z , ordered in such a way that ǫz,1,l ≤ ǫz,2,l ≤ · · ·

for all l. For each l ≤ lz (lz is a well-chosen non-negative integer), we denote by n⋆z,l, the
unique non-negative integer such that ǫz,n⋆

z,l,l
correspond to a valence electron. The choice

of lz and the existence of n⋆z,l are discussed in Chapter 3.

On the other hand, the ground state pseudo-density matrix γ̃0z of atom z is the solution
of

IPPz = inf
{
EPP
z (γ̃), γ̃ ∈ KNz,v

}
,

where

EPP
z (γ̃) = Tr

((
−1

2
∆ + V PP

z

)
γ̃

)
+

1

2
D
(
ργ̃ , ργ̃

)
,

Nz,v is the number of valence electrons and V PP
z is the pseudopotential, which is a non-

local rotation-invariant operator. The pseudo-density is defined by ρ̃0z := ργ̃0z is unique and
radial. The Hartree pseudo-Hamiltonian

HPP
z = −1

2
∆ +WPP

z , where WPP
z = V PP

z + ρ̃0z ⋆ | · |−1,
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corresponding to the pseudopotential V PP
z , is a bounded below self-adjoint operator on

L2(R3) with domain H2(R3). Due to symmetries, its eigenvalues are obtained by solving
the family of Schrödinger equations





R̃z,n,l ∈ H1(R), R̃z,n,l(−r) = R̃z,n,l(r) for all r ∈ R,

− 1
2R̃

′′
z,n,l(r) +

l(l+1)
2r2

R̃z,n,l(r) +WPP
z,l (r)R̃z,n,l(r) = ǫPPz,n,lR̃z,n,l(r),

∫
R
R̃2
z,n,l = 1,

(1.28)

whereWPP
z,l = PlW

PP
z Pl, Pl denoting the orthogonal projector from L2(R3) on the subspace

Ker(L2 − l(l+ 1)) (L is the angular momentum operator). For semilocal norm-conserving
pseudopotentials, WPP

z,l is a multiplication operator.

The norm-conserving pseudopotentials V PP
z are constructed in such a way that

1. the occupied eigenfunctions of the pseudo-Hamiltonian agree with the valence all-
electron eigenfunctions outside the core region, more precisely

R̃z,1,l = Rz,n⋆
z,l,l

on (rc,+∞),

where rc is the core radius, chosen larger than the largest node of Rz,n⋆
z,l,l

, for all
l ≤ lz;

2. the functions R̃z,1,l have no nodes other than zero;

∫

R

R̃2
z,1,l = 1 and Rz,1,l > 0 on (0,∞);

3. the lowest eigenvalues of the pseudo-Hamiltonian are equal to the valence all-electron
eigenvalues, more precisely

ǫz,n⋆
z,l,l

= ǫPPz,1,l.

The advantage of the pseudopotential methods, besides the fact that they reduce the
number of electrons explicitly dealt with, is that the pseudo-orbitals can be made more
regular in the core region than the valence all-electron orbitals. The former can therefore
be represented numerically in less expensive ways (with a lower number of basis functions
or on coarser meshes). In addition, pseudopotentials can be used to incorporate relativistic
effects in non-relativistic calculations.

In Chapter 3, we prove that, if the Fermi level ǫ0z,F is negative and rc is large enough,
there exists a pseudopotential of arbitrary Sobolev regularity satisfying the above require-
ments. We also prove that, under the assumption that ǫ0z,F is not an accidentally degenerate
eigenvalue of HAA

z , the set of the admissible pseudopotentials of local regularity Hs (s > 0)
is a weakly closed subset of an affine space endowed with an Hs norm.

Moreover, with more restricted conditions, for each 0 ≤ l ≤ lz, the radial function R̃z,1,l
is regular and

R̃z,1,l(r) = O(rl+1) as r → 0.
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The above property is used in practice to build pseudo-orbitals from which the local and
nonlocal components of the atomic pseudopotential are calculated by inversion of the radial
Schrödinger equations (1.28) (see e.g. [87]).

Some stability results of the Hartree ground state with respect to both external pertur-
bations and small variations of the pseudopotential are proved. Our analysis encompasses
the case of Stark perturbation potentials generated by uniform electric fields.

Finally, we propose a new way to construct pseudopotentials, consisting in choosing the
best candidate in the set of all admissible pseudopotentials for a given optimality criterion.

1.3.3 Numerical simulations

This section is devoted to stating the numerical results obtained for the discretization
of the Kohn-Sham model for atoms in the reduced Hartree-Fock and Kohn-Sham LDA
models [51, 65]. Both isolated atoms and atoms subjected to cylindrically symmetric
external potentials are considered. For simplicity, we restrict ourselves to restricted spin-
collinear Kohn-Sham models. Recall that, for a molecular system with one nucleus of
charge z and N electrons subjected to an external potential βW (β ∈ R is the coupling
constant), the energy functional to be minimized reads

Ẽ
rHF/LDA
z,N (γ, βW ) := E

rHF/LDA
z,N (γ) +

∫

R3

βWργ , (1.29)

and is well-defined for any γ ∈ KN , W ∈ C′ and β ∈ R, for both the reduced Hartree-Fock
model

ErHF
z,N (γ) := Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ
| · | +

1

2
D(ργ , ργ),

and the Kohn-Sham LDA model

ELDA
z,N (γ) := Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ
| · | +

1

2
D(ργ , ργ) + ELDA

xc (ργ),

(see Section 1.1.6). Denote by

ĨrHF/LDA
z,N (βW ) := inf

{
Ẽ

rHF/LDA
z,N (γ, βW ), γ ∈ KN

}
. (1.30)

In Chapter 4, a-finite dimensional submanifold KN,h of KN is constructed, and a vari-
ational approximation of (1.30) is obtained by minimizing the energy functional (1.29)
over the approximation set KN,h. A practical reformulation of the discretized problem
and of its Euler-Lagrange equations is presented. Solving these Euler-Lagrange equations
amounts to solving a generalized nonlinear eigenvalue problem. The description of the self-
consistent algorithm we use to solve this problem is also detailed. Our numerical results
can be divided into two categories:

1. for isolated atoms (W = 0):

• we study the ground state energy and the energy levels of the discretized problem
as a function of the cut-off radius (we solve the Kohn-Sham equations in a large
ball centered at the nucleus with Dirichlet boundary conditions) and the mesh
size;
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• we provide the occupied energy levels in the rHF and Xα cases for all the atoms
of the first four rows of the periodic table (1 ≤ z ≤ 54). It is to be noted that
there are few of these atoms for which, in the rHF case, it was difficult to infer
from our numerical simulations whether the Fermi level is a slightly negative
accidentally degenerate eigenvalue of the mean-field Hamiltonian, or whether
the Fermi level is equal to zero. However, in the Xα case, atoms whose Fermi
level is an accidentally degenerate eigenvalue of the mean-field Hamiltonian are
clearly identified.

2. for atoms subjected to an external cylindrically-symmetric perturbative potential
(W 6= 0):

• we plot the variations of the density when the atom is subjected to an external
uniform electric field (W (r) = −ez · r, which is a Stark potential). For β small,
we simply observe a polarization of the electronic cloud (recall that we solve
the Kohn-Sham equations in a large ball with Dirichlet boundary conditions),
while as β increases, we observe boundary effects: part of the electronic cloud is
localized in the region where the external potential takes highly negative values;

• we extract the first-order perturbation of the ground state density matrix in the
case when W (r) = −ez · r. Note that for such a potential W , (1.30) has no
ground state; however, the first-order perturbation is well defined [25].
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Chapter 2

A mathematical perspective on
density functional perturbation
theory

The content of this chapter is an article published in Nonlinearity [23], complemented
with an appendix on second order perturbation theory. The article is devoted to analytic
density functional perturbation theory. We first introduce the reduced Hartree-Fock model
and explain the distinction between the non-degenerate and the degenerate case. Some
conditions which insure the uniqueness of the reference density matrix (the ground state
of the rHF unperturbed energy functional) are stated and proved. Then a perturbation
potential is added to the energy functional. The aim of this contribution is to understand
the influence of this potential on the energy and the ground state density matrix. The
basic results in the non-degenerate case are recalled, mainly the existence, uniqueness and
analyticity of the perturbed density matrix with respect to the perturbation. Moreover,
a recursion formula is stated to calculate the coefficients of the perturbation expansion.
The heart of this paper is the extension of those results to the degenerate case. Under
some conditions, we were able to recover similar results as in the non-degenerate case: the
perturbed ground state density matrix exists, is unique and analytic in the perturbation.
Also, a recursion formula is found to compute the coefficients of the Rayleigh-Schrödinger
series. The approach described in this chapter can be applied to other quantum mean-field
models, such as the Kohn-Sham LDA model (under some additional assumptions). Finally,
rigorous proofs of Wigner’s (2n+ 1)-rule are provided.
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2.1 Introduction

Eigenvalue perturbation theory has a long history. Introduced by Rayleigh [67] in the
1870’s, it was used for the first time in quantum mechanics in an article by Schrödinger [74]
published in 1926. The mathematical study of the perturbation theory of self-adjoint
operators was initiated by Rellich [70] in 1937, and has been since then the matter of a
large number of contributions in the mathematical literature (see [47, 71, 78] and references
therein).

Perturbation theory plays a key role in quantum chemistry, where it is used in particular
to compute the response properties of molecular systems to external electromagnetic fields
(polarizability, hyperpolarizability, magnetic susceptibility, NMR shielding tensor, optical
rotation, ...). Unless the number N of electrons in the molecular system under study is very
small, it is not possible to solve numerically the 3N -dimensional electronic Schrödinger
equation. In the commonly used Hartree-Fock and Kohn-Sham models, the linear 3N -
dimensional electronic Schrödinger equation is approximated by a coupled system of N
nonlinear 3-dimensional Schrödinger equations. The adaptation of the standard linear
perturbation theory to the nonlinear setting of the Hartree-Fock model is called Coupled-
Perturbed Hartree-Fock theory (CPHF) in the chemistry literature [59] (see also [21] for a
mathematical analysis). Its adaptation to the Kohn-Sham model is usually referred to as
the Density Functional Perturbation Theory (DFPT) [7, 40]. The term Coupled-Perturbed
Kohn-Sham theory is also sometimes used.

The purpose of this article is to study, within the reduced Hartree-Fock (rHF) frame-
work, the perturbations of the ground state energy, the ground state density matrix, and
the ground state density of a molecular system, when a “small” external potential is turned
on.

In the case when the Fermi level ǫ0F is not a degenerate eigenvalue of the mean-field
Hamiltonian (see Section 2.2 for a precise definition of these objects), the formalism of
DFPT is well-known (see e.g. [28]). It has been used a huge number of publications in
chemistry and physics, as well as in a few mathematical publications, e.g. [22, 29]. On the
other hand, the degenerate case has not been considered yet, to the best of our knowledge.
An interesting feature of DFPT in the degenerate case is that, in contrast with the usual
situation in linear perturbation theory, the perturbation does not, in general, split the
degenerate eigenvalue; it shifts the Fermi level and modifies the natural occupation numbers
at the Fermi level.

The article is organized as follows. In Section 2.2, we recall the basic properties of rHF
ground states and establish some new results on the uniqueness of the ground state density
matrix for a few special cases. The classical results of DFPT in the non-degenerate case
are recalled in Section 2.3, and a simple proof of Wigner’s (2n+ 1) rule is provided. This
very important rule for applications allows one to compute the perturbation of the energy
at the (2n+ 1)st order from the perturbation of the density matrix at the nth order only.
In particular, the atomic forces (first-order perturbations of the energy) can be computed
from the unperturbed density matrix (Wigner’s rule for n = 0), while hyperpolarizabili-
ties of molecules (second and third-order perturbations of the energy) can be computed
from the first-order perturbation of the density matrix (Wigner’s rule for n = 1). In Sec-
tion 2.4, we investigate the situation when the Fermi level is a degenerate eigenvalue of the
rHF Hamiltonian. We establish all our results in the rHF framework in the whole space
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R
3, for a local potential W with finite Coulomb energy. Extensions to other frameworks

(Hartree-Fock and Kohn-Sham models, supercell with periodic boundary conditions, non-
local potentials, Stark external potentials, ...) are discussed in Section 2.5. The proofs of
the technical results are postponed until Section 2.6.

2.2 Some properties of the rHF model

Throughout this article, we consider a reference (unperturbed) system of N electrons
subjected to an external potential V . For a molecular system containing M nuclei, V is
given by

∀x ∈ R
3, V (x) = −

M∑

k=1

zkv(x−Rk),

where zk ∈ N
∗ is the charge (in atomic units) and Rk ∈ R

3 the position of the kth nucleus.
For point nuclei v = | · |−1, while for smeared nuclei v = µ ⋆ | · |−1, where µ ∈ C∞

c (R3) is a
non-negative radial function such that

∫
R3 µ = 1.

In the framework of the (extended) Kohn-Sham model [28], the ground state energy of
this reference system is obtained by minimizing an energy functional of the form

EKS(γ) := Tr

(
−1

2
∆γ

)
+

∫

R3

ργV +
1

2
D(ργ , ργ) + Exc(ργ) (2.1)

over the set

KN :=
{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞

}

of the admissible one-body density matrices. To simplify the notation, we omit the spin
variable. In the above definition, S(L2(R3)) denotes the space of the bounded self-adjoint
operators on L2(R3), 0 ≤ γ ≤ 1 means that the spectrum of γ is included in the range [0, 1],
and Tr (−∆γ) is the usual notation for Tr (|∇|γ|∇|), where |∇| := (−∆)1/2 is the square
root of the positive self-adjoint operator −∆ on L2(R3). The function ργ : R3 → R+ is the
electronic density associated with the density matrix γ. Loosely speaking, ργ(x) = γ(x, x),
where γ(x, y) is the kernel of the operator γ. It holds

ργ ≥ 0,

∫

R3

ργ = N,

∫

R3

|∇√
ργ |2 ≤ Tr (−∆γ)

(Hoffmann-Ostenhof inequality [52]) so that, in particular, ργ ∈ L1(R3) ∩ L3(R3). The
first term in the right-hand side of (2.1) is the Kohn-Sham kinetic energy functional, the
second one models the interaction of the electrons with the external potential V , D(·, ·) is
the Coulomb energy functional defined on L6/5(R3)× L6/5(R3) by

D(f, g) :=

∫

R3

∫

R3

f(x) g(y)

|x− y| dx dy,

and Exc is the exchange-correlation functional. In the reduced Hartree-Fock (rHF) model
(also sometimes called the Hartree model), the latter functional is taken identically equal
to zero. In the Local Density Approximation (LDA), it is chosen equal to

Exc
LDA(ρ) :=

∫

R3

exc(ρ(x)) dx, (2.2)
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where the function exc : R+ 7→ R− is such that for all ρ ∈ R+, the non-positive number
exc(ρ) is (an approximation of) the exchange-correlation energy density of the homogeneous
electron gas with constant density ρ. It is known that for neutral or positively charged
molecular systems, that is when Z =

∑M
k=1 zk ≥ N , the minimization problem

E0 := inf
{
EKS(γ), γ ∈ KN

}
, (2.3)

has a ground state γ0, for the rHF model [81] (Exc = 0), as well as for the Kohn-Sham
LDA model [1] (Exc = Exc

LDA).

This contribution aims at studying, in the rHF setting, the perturbations of the ground
state energy E0, of the ground state density matrix γ0, and of the ground state density
ρ0 = ργ0 induced by an external potential W . In order to deal with both the unperturbed
and the perturbed problem using the same formalism, we introduce the functional

ErHF(γ,W ) := Tr

(
−1

2
∆γ

)
+

∫

R3

ργV +
1

2
D(ργ , ργ) +

∫

R3

ργW,

and the minimization problem

ErHF(W ) := inf
{
ErHF(γ,W ), γ ∈ KN

}
. (2.4)

We restrict ourselves to a potential W belonging to the space

C′ :=
{
v ∈ L6(R3) | ∇v ∈ (L2(R3))3

}
,

which can be identified with the dual of the Coulomb space

C :=
{
ρ ∈ S ′(R3) | ρ̂ ∈ L1

loc(R
3), | · |−1ρ̂ ∈ L2(R3)

}

of the charge distributions with finite Coulomb energy. Here, S ′(R3) is the space of tem-
pered distributions on R

3 and ρ̂ is the Fourier transform of ρ (we use the normalization
condition for which the Fourier transform is an isometry of L2(R3)). When W ∈ C′, the
last term of the energy functional should be interpreted as

∫

R3

ργW =

∫

R3

ρ̂γ(k) Ŵ (k) dk.

The right-hand side of the above equation is well-defined as the functions k 7→ |k|−1ρ̂γ(k)

and k 7→ |k|Ŵ (k) are both in L2(R3), since ργ ∈ L1(R3) ∩ L3(R3) ⊂ L6/5(R3) ⊂ C.

The reference, unperturbed, ground state is obtained by solving (2.4) with W = 0.

Theorem 1 (unperturbed ground state for the rHF model [81]). If

Z =

M∑

k=1

zk ≥ N (neutral or positively charged molecular system), (2.5)

then (2.4) has a ground state for W = 0, and all the ground states share the same density
ρ0. The mean-field Hamiltonian

H0 := −1

2
∆ + V + ρ0 ⋆ | · |−1,
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is a self-adjoint operator on L2(R3) and any ground state γ0 is of the form

γ0 = 1(−∞,ǫ0F)
(H0) + δ0, (2.6)

with ǫ0F ≤ 0, 0 ≤ δ0 ≤ 1, Ran(δ0) ⊂ Ker(H0 − ǫ0F).

The real number ǫ0F, called the Fermi level, can be interpreted as the Lagrange multiplier
of the constraint Tr (γ) = N . The Hamiltonian H0 is a self-adjoint operator on L2(R3) with
domain H2(R3) and form domain H1(R3). Its essential spectrum is the range [0,+∞) and
it possesses at least N non-positive eigenvalues, counting multiplicities. For each j ∈ N

∗,
we set

ǫj := inf
Xj⊂Xj

sup
v∈Xj , ‖v‖L2=1

〈v|H0|v〉,

where Xj is the set of the vector subspaces of H1(R3) of dimension j, and v 7→ 〈v|H0|v〉
the quadratic form associated with H0. Recall (see e.g. [69, Section XIII.1]) that (ǫj)j∈N∗

is a non-decreasing sequence of real numbers converging to zero, and that, if ǫj is negative,
then H0 possesses at least j negative eigenvalues (counting multiplicities) and ǫj is the jth

eigenvalue ofH0. We denote by φ01, φ
0
2, · · · an orthonormal family of eigenvectors associated

with the non-positive eigenvalues ǫ1 ≤ ǫ2 ≤ · · · of H0. Three situations can a priori be
encountered:

• Case 1 (non-degenerate case):

H0 has at least N negative eigenvalues and ǫN < ǫN+1 ≤ 0. (2.7)

In this case, the Fermi level ǫ0F can be chosen equal to any real number in the range
(ǫN , ǫN+1) and the ground state γ0 is unique:

γ0 = 1(−∞,ǫ0F)
(Hρ0) =

N∑

i=1

|φ0i 〉〈φ0i |;

• Case 2 (degenerate case):

H0 has at least N + 1 negative eigenvalues and ǫN+1 = ǫN . (2.8)

In this case, ǫ0F = ǫN = ǫN+1 < 0;

• Case 3 (singular case): ǫ0F = ǫN = 0.

In the non-degenerate case, problem (2.4), for W ∈ C′ small enough, falls into the scope
of the usual perturbation theory of nonlinear mean-field models dealt with in Section 2.3.
The main purpose of this article is to extend the perturbation theory to the degenerate
case. We will leave aside the singular case ǫN = 0. It should be emphasized that the
terminology degenerate vs non-degenerate used throughout this article refers to the possible
degeneracy of the Fermi level, that is of a specific eigenvalue of the unperturbed mean-field
Hamiltonian Hρ0 , not to the possible degeneracy of the Hessian of the unperturbed energy
functional at γ0. The perturbation method heavily relies on the uniqueness of the ground
state density matrix γ0 and on the invertibility of the Hessian (or more precisely of a
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reduced Hessian taking the constraints into account). In the non-degenerate case (Case 1),
the minimizer γ0 is unique and the reduced Hessian is always invertible. We will see that
the same holds true in the degenerate case (Case 2) under assumption (2.9) below. We
denote by

Nf := Rank
(
1(−∞,ǫ0F)

(H0)
)

the number of (fully occupied) eigenvalues lower than ǫ0F, and by

Np := Rank
(
1{ǫ0F}(H0)

)

the number of (partially occupied) bound states of H0 with energy ǫ0F. We also denote by

R
Np×Np

S the space of real symmetric matrices of size Np ×Np.

Lemma 2. Assume that (2.5) and (2.8) are satisfied. If for any M ∈ R
Np×Np

S ,

∀x ∈ R

3,

Np∑

i,j=1

Mijφ
0
Nf+i

(x)φ0Nf+j
(x) = 0


 ⇒ M = 0, (2.9)

then the ground state γ0 of (2.4) for W = 0 is unique

The sufficient condition (2.9) is satisfied in the following cases.

Proposition 3. Assume that (2.5) and (2.8) are satisfied. If at least one of the two
conditions below is fulfilled:

1. Np ≤ 3,

2. the external potential V is radial and the degeneracy of ǫ0F is essential,

then (2.9) holds true, and the ground state γ0 of (2.4) for W = 0 is therefore unique.

Let us clarify the meaning of the second condition in Proposition 3. When V is radial,
the ground state density is radial, so thatH0 is a Schrödinger operator with radial potential:

H0 = −1

2
∆ + v(|x|).

It is well-known (see e.g. [69, Section XIII.3.B]) that all the eigenvalues of H0 can be
obtained by computing the eigenvalues of the one-dimensional Hamiltonians h0,l, l ∈ N,
where h0,l is the self-adjoint operator on L2(0,+∞) with domain H2(0,+∞)∩H1

0 (0,+∞)
defined by

h0,l := −1

2

d2

dr2
+
l(l + 1)

2r2
+ v(r).

If ǫ0F is an eigenvalue of h0,l, then its multiplicity, as an eigenvalue of H0, is at least 2l+1.
It is therefore degenerate as soon as l ≥ 1. If ǫ0F is an eigenvalue of no other h0,l′ , l′ 6= l,
then its multiplicity is exactly 2l + 1, and the degeneracy is called essential. Otherwise,
the degeneracy is called accidental. It is well-known that for the very special case when
v(r) = −Zr−1 (hydrogen-like atom), accidental degeneracy occurs at every eigenvalue
but the lowest one, which is non-degenerate. On the other hand, this phenomenon is
really exceptional, and numerical simulations seem to show that, as expected, there is no
accidental degeneracy at the Fermi level when v is equal to the rHF mean-field potential
of most atoms of the periodic table (see Chapter 4).
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2.3 Density functional perturbation theory (non-degenerate
case)

We denote by B(X,Y ) the space of bounded linear operators from the Banach space X to
the Banach space Y (with, as usual, B(X) := B(X,X)), by S(X) the space of self-adjoint
operators on the Hilbert space X, by S1 the space of trace class operators on L2(R3), and
by S2 the space of Hilbert-Schmidt operators on L2(R3) (all these spaces being endowed
with their usual norms [68, 76]). We also introduce the Banach space

S1,1 := {T ∈ S1 | |∇|T |∇| ∈ S1} ,

with norm
‖T‖S1,1 := ‖T‖S1 + ‖|∇ |T |∇| ‖S1 .

We denote by Bη(H) the open ball with center 0 and radius η > 0 of the Hilbert space H.

Let us recall that in the non-degenerate case,

γ0 ∈ PN :=
{
γ ∈ S(L2(R3)) | γ2 = γ, Tr (γ) = N, Tr (−∆γ) <∞

}
,

that is γ0 is a rank-N orthogonal projector on L2(R3) with range in H1(R3), and

γ0 = 1(−∞,ǫ0F]
(H0) =

1

2iπ

∮

C

(z −H0)
−1 dz,

where C is (for instance) the circle of the complex plane symmetric with respect to the
real axis and intersecting it at points ǫ1 − 1 and ǫ0F.

2.3.1 Density matrix formulation

The linear and multilinear maps introduced in the following lemma will be useful to write
down the Rayleigh-Schrödinger expansions in compact forms.

Lemma 4. Assume that (2.5) and (2.7) are satisfied.

1. For each k ∈ N
∗, the k-linear map

Q(k) : (C′)k → S1,1

(v1, · · · , vk) 7→ 1

2iπ

∮

C

(z −H0)
−1v1(z −H0)

−1v2 · · · (z −H0)
−1vk(z −H0)

−1 dz

is well-defined and continuous.

Rank(Q(k)(v1, · · · , vk)) ≤ N and Tr (Q(k)(v1, · · · , vk)) = 0, for all (v1, · · · , vk) ∈ (C′)k,
and there exists 0 < α,C <∞ such that for all k ∈ N

∗ and all (v1, · · · , vk) ∈ (C′)k,

‖Q(k)(v1, · · · , vk)‖S1,1 ≤ Cαk‖v1‖C′ · · · ‖vk‖C′ . (2.10)
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2. The linear map

L : C → C
ρ 7→ −ρQ(1)(ρ⋆|·|−1),

associating to a charge density ρ ∈ C, minus the density ρQ(1)(ρ⋆|·|−1) of the trace-

class operator Q(1)(ρ ⋆ | · |−1), is a bounded positive self-adjoint operator on C. As a
consequence, (1 + L) is an invertible bounded positive self-adjoint operator on C.

The main results of non-degenerate rHF perturbation theory for finite systems are
gathered in the following theorem.

Theorem 5 (rHF perturbation theory in the non-degenerate case). Assume that (2.5) and
(2.7) are satisfied. Then, there exists η > 0 such that

1. for all W ∈ Bη(C′), (2.4) has a unique minimizer γW . In addition, γW ∈ PN and

γW = 1(−∞,ǫ0F]
(HW ) =

1

2iπ

∮

C

(z −HW )−1 dz, (2.11)

where

HW = −1

2
∆ + V + ρW ⋆ | · |−1 +W,

ρW being the density of γW ;

2. the mappings W 7→ γW , W 7→ ρW and W 7→ ErHF(W ) are real analytic from Bη(C′)
into S1,1, C and R respectively;

3. for all W ∈ C′ and all −η‖W‖−1
C′ < β < η‖W‖−1

C′ ,

γβW = γ0 +
+∞∑

k=1

βkγ
(k)
W , ρβW = ρ0 +

+∞∑

k=1

βkρ
(k)
W , ErHF(βW ) = E(0) +

+∞∑

k=1

βkE(k)
W ,

the series being normally convergent in S1,1, C and R respectively;

4. denoting by W (1) =W +ρ
(1)
W ⋆ | · |−1 and W (k) = ρ

(k)
W ⋆ | · |−1 for k ≥ 2, the coefficients

ρ
(k)
W of the expansion of ρβW can be obtained by the recursion relation

(1 + L)ρ(k)W = ρ̃
(k)
W , (2.12)

where ρ̃(k)W is the density of the operator Q̃(k)
W defined by

Q̃
(1)
W = Q(1)(W ),

∀k ≥ 2, Q̃
(k)
W =

∑k
l=2

∑
1 ≤ j1, · · · , jl ≤ k − 1,∑

l

i=1 ji = k

Q(l)(W (j1), · · · ,W (jl)); (2.13)

5. the coefficients γ(k)W and E(k)
W are then given by

γ
(k)
W =

1

2iπ

∮

C

(z −H0)
−1W (k)(z −H0)

−1 dz + Q̃
(k)
W , (2.14)

and

E(k)
W = Tr

(
H0γ

(k)
W

)
+

1

2

k−1∑

l=1

D
(
ρ
(l)
W , ρ

(k−l)
W

)
+

∫

R3

ρ
(k−1)
W W. (2.15)
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2.3.2 Molecular orbital formulation

When ǫ1 < ǫ2 < · · · < ǫN < ǫ0F, that is when the lowest N eigenvalues of H0 are all
non-degenerate, it can be seen, following the same lines as in [21], that, for all W ∈ C′,
there exist real analytic functions β 7→ ǫW,i(β) ∈ R and β 7→ φW,i(β) ∈ H2(R3) defined in
the neighborhood of 0 such that ǫW,i(0) = ǫi, φW,i(0) = φ0i , and





HβWφW,i(β) = ǫW,i(β)φW,i(β),
(φW,i(β), φW,j(β))L2 = δij ,
ǫW,1(β) < ǫW,2(β) < · · · < ǫW,N (β) are the lowest eigenvalues of HβW (counting multiplicities).

The coefficients of the Rayleigh-Schrödinger expansions

ǫW,i(β) =
+∞∑

k=0

βkǫ
(k)
W,i, φW,i(β) =

+∞∑

k=0

βkφ
(k)
W,i,

where ǫ0W,i = ǫi and φ0W,i = φ0i , are obtained by solving the system

∀k ∈ N
∗, ∀1 ≤ i ≤ N,

{
(H0 − ǫi)φ

(k)
W,i +

∑N
j=1K

0
ijφ

(k)
W,j = f

(k)
W,i + ǫ

(k)
W,iφ

0
i ,∫

R3 φ
(k)
W,iφ

0
i = α

(k)
W,i,

(2.16)

where
∀φ ∈ L2(R3), K0

ijφ = 2
(
φ0jφ ⋆ | · |−1

)
φ0i ,

and where the right-hand sides

f
(k)
W,i = −Wφ

(k−1)
W,i −

N∑

j=1

∑

1 ≤ l1, l2, l3 ≤ k − 1,
l1 + l2 + l3 = k

(
φ
(l1)
W,jφ

(l2)
W,j ⋆ | · |−1

)
φ
(l3)
W,i +

k−1∑

l=1

ǫ
(l)
W,iφ

(k−l)
W,i ,

and

α
(k)
W,i = −1

2

k−1∑

l=1

∫

R3

φ
(l)
W,iφ

(k−l)
W,i .

at order k only depend on the coefficients φ(l)W,j and ǫ(l)W,j at order l ≤ k − 1. System (2.16)
can therefore be considered as an infinite triangular system with respect to k.

The fact that all the terms of the Rayleigh-Schrödinger series are defined unambiguously
by (2.16) is guaranteed by the following lemma and the fact that for all φ and ψ in H1(R3),
Wφ ∈ H−1(R3) and φψ ⋆ | · |−1 ∈ L∞(R3).

Lemma 6. Assume that (2.5) and (2.7) are satisfied and that ǫ1 < ǫ2 < · · · < ǫN < ǫ0F.
For all f = (f1, · · · , fN ) ∈ (H−1(R3))N and all α = (α1, · · · , αN ) ∈ R

N , the linear problem

∀1 ≤ i ≤ N,

{
(H0 − ǫi)ψi +

∑N
j=1K

0
ijψj = fi + ηiφ

0
i ,∫

R3 ψiφ
0
i = αi,

(2.17)

has a unique solution (Ψ, η) = ((ψ1, · · · , ψN ), (η1, · · · , ηN )) in (H1(R3))N×R
N . Moreover,

if f ∈ (L2(R3))N , then Ψ ∈ (H2(R3))N .

49



Let us notice that, although the constraints
∫
R3 φW,i(β)φW,j(β) = 0 for i 6= j are not

explicitly taken into account in the formal derivation of (2.16), the unique solution to (2.16)
is compatible with these constraints since it automatically satisfies

∀k ∈ N
∗, ∀1 ≤ i, j ≤ N,

∫

R3

k∑

l=0

φ
(l)
W,iφ

(k−l)
W,j = 0. (2.18)

A proof of the above result is provided in Section 2.6.6, together with the proof of Lemma 6.

Let us finally mention that the Rayleigh-Schrödinger expansions of the density matrix
γβW and of the molecular orbitals φW,i(β) are related by

γ
(k)
W =

N∑

i=1

k∑

l=0

|φ(l)W,i〉〈φ
(k−l)
W,i |,

where we have used Dirac’s bra-ket notation.

2.3.3 Wigner’s (2n+ 1)-rule

According to (2.15), the first n coefficients of the Rayleigh-Schrödinger expansion of the
density matrix allows one to compute the first n coefficients of the perturbation expansion
of the energy. Wigner’s (2n+1)-rule ensures that, in fact, they provide an approximation of
the energy up to order (2n+1). This property, which is very classical in linear perturbation
theory, has been extended only recently to the nonlinear DFT framework [5]. In the present
section, we complement the results established in [5] by providing a different, more general
and compact proof, which also works in the infinite dimensional setting.

In the density matrix formulation, the Wigner’s (2n + 1)-rule can be formulated as
follows. We introduce the nonlinear projector Π on S(L2(R3)) defined by

∀T ∈ S(L2(R3)), Π(T ) = 1[1/2,+∞)(T ),

and, for W ∈ C′ and β ∈ R, we denote by

γ̃
(n)
W (β) := Π

(
γ0 +

n∑

k=1

βkγ
(k)
W

)
.

For T ∈ B(L2(R3)), resp. T ∈ S2, we denote by

dist(T,PN ) := inf {‖T − γ‖, γ ∈ PN} ,

resp.
distS2(T,PN ) := inf {‖T − γ‖S2 , γ ∈ PN} ,

the distance from T to PN for the operator, resp. Hilbert-Schmidt, norm. The projector
Π enjoys the following properties.

Lemma 7. For each T ∈ Ω :=
{
T ∈ S(L2(R3)) | dist(T,PN ) < 1/2, Ran(T ) ⊂ H1(R3)

}
,

Π(T ) ∈ PN . Besides, for each T ∈ Ω ∩S2, Π(T ) is the unique solution to the variational
problem

‖T −Π(T )‖S2 = min
γ∈PN

‖T − γ‖S2 = distS2(T,PN ). (2.19)
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It follows from Lemma 7 that, for all W ∈ C′ and |β| small enough, γ̃(n)W (β) is the
projection on PN (in the sense of (2.19)) of the Rayleigh-Schrödinger expansion of the
density matrix up to order n.

Theorem 8 (Wigner’s (2n + 1)-rule in the non-degenerate case). Assume that (2.5) and
(2.7) are satisfied. For each n ∈ N and all W ∈ C′, it holds

0 ≤ ErHF(γ̃
(n)
W (β),W )− ErHF(βW ) = O(|β|2n+2). (2.20)

Note that as γ0 +
∑n

k=1 β
kγ

(k)
W has finite-rank Nn, it can be diagonalized in an or-

thonormal basis of L2(R3) as

γ0 +

n∑

k=1

βkγ
(k)
W =

Nn∑

i=1

gW,i(β)|φ̃W,i(β)〉〈φ̃W,i(β)|, (2.21)

with (φ̃W,i(β), φ̃W,j(β))L2 = δij , gW,i(β) ∈ R, and |gW,i(β)| ≥ |gW,j(β)| for all i ≤ j. We
also have

Nn∑

i=1

gW,i(β) = Tr

(
γ0 +

n∑

k=1

βkγ
(k)
W

)
= N,

since, in view of (2.13), (2.14) and Lemma 4, Tr (γ(k)W ) = 0 for all k ≥ 1. For |β| small
enough, the above operator is in Ω, and therefore, gW,1(β) ≥ gW,2(β) ≥ · · · ≥ gW,N (β) >
1/2 and |gW,j(β)| < 1/2 for all j ≥ N + 1. We then have

γ̃
(n)
W (β) =

N∑

i=1

|φ̃W,i(β)〉〈φ̃W,i(β)|. (2.22)

2.4 Perturbations of the rHF model in the degenerate case

We consider in this section the degenerate case. We assume that (2.9) is satisfied, yielding
that the ground state γ0 of the unperturbed problem (2.4) with W = 0 is unique. We also
make the following assumption:

ǫ0F < 0, Rank(δ0) = Np, Ker(1− δ0) = {0} , (2.23)

where δ0 is the operator in (2.6). Assumption (2.23) means that the natural occupation
numbers at the Fermi level (or in other words the Np eigenvalues of δ0|Ker(H0−ǫ0F)

) are
strictly comprised between 0 and 1. As a consequence, γ0 belongs to the subset

KNf ,Np := {γ ∈ KN | Rank(γ) = Nf +Np, dim(Ker(1− γ)) = Nf}

of KN .

We are going to prove that, under assumptions (2.9) and (2.23), the rHF problem
(2.4) has a unique minimizer for ‖W‖C′ small enough, which belongs to KNf ,Np and whose
dependence in W is real analytic. To establish those results and compute the perturbation
expansion in W of the minimizer, we proceed as follow:
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1. we first construct a real analytic local chart of KNf ,Np in the vicinity of γ0 (Sec-
tion 2.4.1);

2. we use this local chart to prove that, for ‖W‖C′ small enough, the minimization
problem

ẼrHF(W ) := inf
{
ErHF(γ,W ), γ ∈ KNf ,Np

}
(2.24)

has a unique local minimizer γW in the vicinity of γ0, and that the mappings W 7→
γW ∈ S1,1 and W 7→ ẼrHF(W ) are real analytic; we then prove that γW is actually
the unique global minimizer of (2.4) (Section 2.4.2), hence that ẼrHF(W ) = ErHF(W );

3. we finally derive the coefficients of the Rayleigh-Schrödinger expansions of γW and
ErHF(W ), and prove that Wigner’s (2n + 1)-rule also holds true in the degenerate
case (Section 2.4.3).

2.4.1 Parametrization of KNf ,Np in the vicinity of γ0

We first introduce the Hilbert spaces Hf = Ran(1(−∞,ǫ0F)
(H0)), Hp = Ran(1{ǫ0F}(H0))

and Hu = Ran(1(ǫ0F,+∞)(H0)), corresponding respectively to the fully occupied, partially
occupied, and unoccupied spaces of the unperturbed ground state density matrix γ0. For
later purpose, we also set Ho = Hf ⊕Hp. As

L2(R3) = Hf ⊕Hp ⊕Hu,

any linear operator T on L2(R3) can be written as a 3× 3 block operator

T =




Tff Tfp Tfu

Tpf Tpp Tpu

Tuf Tup Tuu



,

where Txy is a linear operator from Hy to Hx. In particular, γ0 and H0 are block diagonal
in this representation, and it holds

γ0 =




1 0 0

0 Λ 0

0 0 0



, H0 =




H−−
0 0 0

0 ǫ0F 0

0 0 H++
0




with 0 ≤ Λ = δ0|Hp ≤ 1, H−−
0 −ǫ0F ≤ −g− := ǫNf

−ǫ0F and H++
0 −ǫ0F ≥ g+ := ǫNf+Np+1−ǫ0F.

We then introduce

• the spaces of finite-rank operators

Aux :=
{
Aux ∈ B(Hx,Hu) | (H++

0 − ǫ0F)
1/2Aux ∈ B(Hx,Hu)

}
,

for x ∈ {f, p}, endowed with the inner product

(Aux, Bux)Aux := Tr (A∗
ux(H

++
0 − ǫ0F)Bux);
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• the finite dimensional spaces
Apf := B(Hf ,Hp)

and
App := {App ∈ S(Hp) | Tr (App) = 0};

• the product space
A := Auf ×Aup ×Apf ×App,

which we endow with the inner product

(A,B)A =
∑

x∈{f,p}
(Aux, Bux)Aux +

∑

x∈{f,p}
Tr
(
ApxB

∗
px

)
.

To any A = (Auf , Aup, Apf , App) ∈ A, we associate the bounded linear operator Γ(A) on
L2(R3) defined as

Γ(A) := exp (Luo(A)) exp (Lpf(A)) (γ0 + Lpp(A)) exp (−Lpf(A)) exp (−Luo(A)) ,
(2.25)

where

Luo(A) :=




0 0 −A∗
uf

0 0 −A∗
up

Auf Aup 0



, Lpf(A) :=




0 −A∗
pf 0

Apf 0 0

0 0 0



, Lpp(A) :=




0 0 0

0 App 0

0 0 0



.

Note that Γ is real analytic from A to S1,1, Γ(0) = γ0, and Γ(A) ∈ KN for all App such
that 0 ≤ Λ+App ≤ 1. In addition, it follows from Assumption (2.23) that Γ(A) ∈ KNf ,Np

for all A ∈ A small enough. The following lemma provides the parametrization of KNf ,Np

near γ0 our analysis is based upon.

Lemma 9. Assume that (2.5), (2.8), (2.9) and (2.23) are satisfied. Then there exists an
open neighborhood O of 0 in A and an open neighborhood O′ of γ0 in S1,1 such that the
real analytic mapping

O → KNf ,Np ∩ O′

A 7→ Γ(A)
(2.26)

is bijective.

In other words, the inverse of the above mapping is a local chart of KNf ,Np in the vicinity
of γ0. Note that a similar, though not identical, parametrization of the finite-dimensional
counterpart of KNf ,Np obtained by discretization in atomic orbital basis sets, was used
in [18] to design quadratically convergent self-consistent algorithms for the extended Kohn-
Sham model.
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2.4.2 Existence and uniqueness of the minimizer of (2.4) for W small
enough

We now define the energy functional

E(A,W ) := ErHF(Γ(A),W ), (2.27)

for all A ∈ O and all W ∈ C′, which, in view of Lemma 9 allows us to study the existence
and uniqueness of local minimizers of (2.24) in the vicinity of γ0 when ‖W‖C′ is small
enough. The functional E is clearly real analytic; we denote by

F (A,W ) := ∇AE(A,W ), (2.28)

the gradient of E with respect to A, evaluated at point (A,W ). As γ0 is the unique
minimizer of the functional γ 7→ ErHF(γ, 0) on KN , hence on KNf ,Np , 0 is the unique
minimizer of the functional A 7→ E(A, 0) on O, so that

F (0, 0) = 0.

Lemma 10. Assume that (2.5), (2.8), (2.9) and (2.23) are satisfied. Let

Θ :=
1

2
F ′
A(0, 0)|A×{0},

where F ′
A(0, 0)|A×{0} is the restriction to the subspace A × {0} ≡ A of A × C′ of the

derivative of F with respect to A at (0, 0). The linear map Θ is a bicontinuous coercive
isomorphism from A to its dual A′.

We infer from Lemma 10 and the real analytic version of the implicit function theorem
that for W ∈ C′ small enough, the equation F (A,W ) = 0 has a unique solution Ã(W ) in
O, and that the function W 7→ Ã(W ) is real analytic in the neighborhood of 0. It readily
follows from (2.28) and Lemma 9 that for W ∈ C′ small enough,

γW := Γ(Ã(W )) (2.29)

is the unique critical point of (2.24) in the vicinity of γ0. This critical point is in fact a
local minimizer since Θ, which is in fact the second derivative of the energy functional
A 7→ E(A, 0), is coercive. We have actually the following much stronger result.

Lemma 11. Assume that (2.5), (2.8), (2.9) and (2.23) are satisfied. Then, for ‖W‖C′

small enough, the density matrix γW defined by (2.29) is the unique global minimizer of
(2.4).

We conclude this section by providing the explicit form of Θ, which is useful to prove
Lemma 10, but also to compute the Rayleigh-Schrödinger expansion of γW :

[Θ(A)]uf = −Auf(H
−−
0 − ǫ0F) + (H++

0 − ǫ0F)Auf +
1

2
[J (A)]uf ,

[Θ(A)]up = (H++
0 − ǫ0F)AupΛ +

1

2
[J (A)]up,

[Θ(A)]pf = −(1− Λ)Apf

(
H−−

0 − ǫ0F
)
+

1

2
[J (A)]pf ,

[Θ(A)]pp =
1

2
[J (A)]pp,
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J denoting the linear operator from A to A′ defined by

∀(A,A′) ∈ A×A, 〈J (A), A′〉 = D(ργ1(A), ργ1(A′)),

where
γ1(A) = 〈Γ′(0), A〉 = [Luo(A) + Lpf(A), γ0] + Lpp(A). (2.30)

A key observation for the sequel is that

∀A ∈ A, Tr (H0γ1(A)) = 0. (2.31)

2.4.3 Rayleigh-Schrödinger expansions

It immediately follows from the previous two sections that, for any W ∈ C′, the functions
β 7→ AW (β) := Ã(βW ) and β 7→ γβW := Γ(Ã(βW )) are well-defined and real analytic
in the vicinity of 0. The purpose of this section is to provide a method to compute the
coefficients A(k)

W , γ(k)W and E(k)
W of the expansions

AW (β) =
+∞∑

k=1

βkA
(k)
W , γβW = γ0 +

+∞∑

k=1

βkγ
(k)
W and ErHF(βW ) = ErHF(0) +

+∞∑

k=1

βkE(k)
W .

We can already notice that the coefficients γ(k)W and E(k)
W are easily deduced from the

coefficients A(k)
W . Using the following version of the Baker-Campbell-Hausdorff formula

eXY e−X = Y + [X,Y ] +
1

2!
[X, [X,Y ]] +

1

3!
[X, [X, [X,Y ]]] + ...,

we indeed obtain

γ
(k)
W =

∑

1≤l≤k

∑

α∈(N∗)l | |α|1=k
γαW,l with γαW,l = γl(A

(α1)
W , · · · , A(αl)

W ), (2.32)

where for all α = (α1, · · · , αl) ∈ (N∗)l, |α|1 = α1 + · · ·+ αl, |α|∞ = max(αi), and

γl(A1, · · · , Al) =
∑

i+j=l

1

i!j!
[Luo(A1), · · · , [Luo(Ai), [Lpf(Ai+1), · · · , [Lpf(Al), γ0] · · · ]

+
∑

i+j=l−1

1

i!j!
[Luo(A1), ..., [Luo(Ai), [Lpf(Ai+1), · · · , [Lpf(Al−1), Lpp(Al)] · · · ],

for all (A1, · · · , Al) ∈ Al. Note that for l = 1, the above definition agrees with (2.30), and
that, more generally,

∀A ∈ A, Γ(A) = γ0 +

+∞∑

l=1

γl(A, · · · , A). (2.33)

It follows from (2.31) and (2.32) that

E(1)
W =

∫

R3

ργ0W, (2.34)
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and that for all k ≥ 2,

E(k)
W = Tr

(
−1

2
∆γ

(k)
W

)
+

∫

R3

ρ
γ
(k)
W

V +
1

2

k∑

l=0

D
(
ρ
γ
(l)
W

, ρ
γ
(k−l)
W

)
+

∫

R3

ρ
γ
(k−1)
W

W (2.35)

We will see however that the above formula is far from being optimal, in the sense that
E(k)
W can be computed using the coefficients A(j)

W for 1 ≤ j ≤ k/2 only (see formulation

(2.39) of Wigner’s (2n+1)-rule), whereas the direct evaluation of E(k)
W based on (2.32) and

(2.35) requires the knowledge of the A(j)
W ’s up to j = k.

2.4.4 Main results for the degenerate case

The following theorem collects the results obtained so far, and provides a systematic way
to construct the A(k)

W ’s, as well as an extension to Wigner’s (2n+1)-rule to the degenerate
case.

Theorem 12. Assume that (2.5), (2.8), (2.9) and (2.23) are satisfied. Then there exists
η > 0, such that

1. existence and uniqueness of the ground state: for all W ∈ Bη(C′), the rHF model
(2.4) has a unique ground state γW ;

2. no energy level splitting at the Fermi level: the mean-field Hamiltonian

HW = −1

2
∆ + V + ρW ⋆ | · |−1 +W

(where ρW is the density of γW ) has at least No = Nf + Np negative eigenvalues
(counting multiplicities), the degeneracy of the (Nf + 1)st eigenvalue, which is also
the Fermi level ǫWF of the system, being equal to Np, and it holds

γW = 1(−∞,ǫWF )(HW ) + δW ,

where 0 ≤ δW ≤ 1 is an operator such that Ran(δW ) ⊂ Ker(HW − ǫWF ) with maximal
rank Np;

3. analyticity of the ground state: the functions W 7→ γW and W 7→ ErHF(W ) are real
analytic from Bη(C′) to S1,1 and R respectively. For all W ∈ C′ and all −η‖W‖−1

C′ <
β < η‖W‖−1

C′ ,

γβW = γ0 +
+∞∑

k=1

βkγ
(k)
W , ErHF(βW ) = ErHF(0) +

+∞∑

k=1

βkE(k)
W ,

the series being normally convergent in S1,1 and R respectively;

4. Rayleigh-Schrödinger expansions: the coefficients γ(k)W are given by (2.32), where the

A
(k)
W ’s are obtained recursively by solving the well-posed linear problem in A

Θ(A
(k)
W ) = −1

2
B

(k)
W , (2.36)
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where the B(k)
W ’s are defined by

∀A ∈ A, 〈B(1)
W , A〉 =

∫

R3

ργ1(A)W, (2.37)

and for all k ≥ 2 and all A ∈ A,

〈B(k)
W , A〉 =

k+1∑

l=3

∑

α∈(N∗)l−1

|α|1=k, |α|∞≤k−1

l∑

i=1

Tr
(
H0γl(τ(i,l)(A

(α1)
W , · · · , A(αl−1)

W , A))
)

+
∑

3≤l+l′≤k+1
l≥1, l′≥1

∑

α∈(N∗)l, α′∈(N∗)l
′−1

|α|1+|α′|1=k,max(|α|∞,|α′|∞)≤k−1

l′∑

i=1

D

(
ργαW,l

, ρ
γl′ (τ(i,l′)(A

(α′
1)

W ,··· ,A
(α′

l′−1
)

W ,A))

)

+
k∑

l=2

∑

α∈(N∗)l−1

|α|1=k−1, |α|∞≤k−2

l∑

i=1

∫

R3

ρ
γl(τ(i,l)(A

(α1)
W ,··· ,A(αl−1)

W ,A))
W ; (2.38)

where τ(i,j) is the transposition swapping the ith and jth terms (by convention τ(i,i)
is the identity);

5. first formulation of Wigner’s (2n+ 1)-rule: for all n ∈ N, and all ǫ ∈ {0, 1},

E(2n+ǫ)
W =

∑

2≤l≤2n+ǫ

∑

α∈(N∗)l | |α|1=2n+ǫ, |α|∞≤n
Tr (H0γ

α
W,l)

+
1

2

∑

2≤l+l′≤2n+ǫ
l,l′≥1

∑

α∈(N∗)l, α′∈(N∗)l
′ | |α|1+|α′|1=2n+ǫ

max(|α|∞, |α′|∞)≤n

D

(
ργαW,l

, ρ
γα

′

W,l′

)

+
∑

1≤l≤2n+ǫ−1

∑

α∈(N∗)l | |α|1=2n+ǫ−1, |α|∞≤n

∫

R3

ργαW,l
W ; (2.39)

6. second formulation of Wigner’s (2n+ 1)-rule: it holds

0 ≤ ErHF

(
Γ

(
n∑

k=1

βkA
(k)
W

)
,W

)
− ErHF(βW ) = O(|β|2n+2). (2.40)

Note that both formulations of Wigner’s (2n + 1)-rule state that an approximation

of the energy ErHF(βW ) up to order (2n + 1) in β, can be obtained from the A(k)
W for

1 ≤ k ≤ n. They are yet different since the first formulation consists in computing all
the coefficients E(k)

W up to order (2n + 1), while the second formulation is based on the

computation of the density matrix Γ
(∑n

k=1 β
kA

(k)
W

)
.

Remark 13. Although we were not able to rigorously prove that assumptions (2.5), (2.8),
(2.9) and (2.23) were actually satisfied for a specific molecular system, we strongly believe

57



that this is the case for some atoms. Recall that the singlet-spin state rHF model is obtained
from the spinless rHF model dealt with here by replacing N by N/2 (the number of electron
pairs) and ργ by 2ργ (each state is occupied by one spin-up and one spin-down electron),
so that all our results can be applied mutatis mutandis to the singlet-spin state rHF model.
We have performed numerical simulations of a carbon atom within the singlet-spin state
rHF model (see Chapter 4) and observed that for this system, the lowest two eigenvalues of
H0, corresponding to the 1s and 2s shells, are negative and non-degenerate, while the third
lowest eigenvalue, corresponding to the 2p shell, is threefold degenerate. As the carbon atom
contains six electrons, that is three electron pairs, the Fermi level coincides with the third
lowest eigenvalue. Using the first statement of Proposition 3, we obtain that assumptions
(2.8) is satisfied, hence that the ground state density matrix γ0 is unique, yielding that,
by symmetry, all the occupation numbers at the Fermi level are equal to 1/3. Numerical
simulations therefore suggest that assumptions (2.8), (2.9) and (2.23) are satisfied for the
singlet-spin state rHF model of a carbon atom, while (2.5) is obviously satisfied since this
system is electrically neutral.

Remark 14. In order to illustrate what may happen when assumption (2.23) is not satis-
fied, we consider the toy model

ETM(w) = inf
{
ETM(γ, w), γ ∈ K2

}
, (2.41)

where

ETM(γ, w) = Tr (HTM
0 γ) +

1

2

(
Tr
(
(γ − γTM

0 )2
))2

+Tr (γw),

HTM
0 = −2|e1〉〈e1| − |e2〉〈e2| − |e3〉〈e3|, γTM

0 = |e1〉〈e1|+ |e2〉〈e2|,
e1, e2, e3 being pairwise orthonormal vectors of L2(R3). For w = 0, the unique ground
state of (2.41) is γTM

0 and the mean-field Hamiltonian of the unperturbed system is HTM
0 .

We are therefore in the degenerate case with ǫ0F = −1 and δTM
0 = |e2〉〈e2|, and we have

Nf = 1, 1 = Rank(δTM
0 ) < Np = 2, Ker(1− δTM

0 ) = Re2 6= {0}, so that condition (2.23) is
not fulfilled. A simple calculation shows that for w = |e3〉〈e3|, it holds

ETM(βw) =

∣∣∣∣
−3− 3

8 |β|4/3 for β < 0,
−3 for β ≥ 0.

Clearly, real-analytic perturbation theory cannot be applied.

Remark 15. The block representation of γ(1)W , the first-order term of the perturbation
expansion of the ground state density matrix, is given by

γ
(1)
W =




0 (A
(1)
pf )

∗(1− Λ) (A
(1)
uf )

∗

(1− Λ)A
(1)
pf A

(1)
pp Λ(A

(1)
up )∗

A
(1)
uf A

(1)
upΛ 0



, (2.42)
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where the above operators solve the following system

Θ(A
(1)
uf , A

(1)
up , A

(1)
pf , A

(1)
pp ) = −(Wuf ,WupΛ, (1− Λ)Wpf ,

1

2
Wpp), (2.43)

where Wxy is the xy-block of the operator “multiplication by W ”. We also have

E(2)
W = Tr

(
H0γ

(1,1)
W,2

)
+

1

2
D

(
ρ
γ
(1)
W,1

, ρ
γ
(1)
W,1

)
+

∫

R3

ρ
γ
(1)
W,1

W.

The second-order term γ
(2)
W is also useful to compute nonlinear responses. The explicit

formula is given in an appendix at the end of the chapter.

Remark 16. In the degenerate case, there is no analogue of (2.12), that is no explicit
closed recursion relation on the coefficients of the Rayleigh-Schrödinger expansion of the
density.

2.5 Extensions to other settings

Although all the results in the preceding sections are formulated for finite molecular systems
in the whole space, in the all-electron rHF framework, some of them can be easily extended
to other settings:

• all the results in Sections 2.3 and 2.4 can be extended to valence electron calculations
with nonlocal pseudopotentials, as well as to regular nonlocal perturbations of the
rHF model, that is to any perturbation modeled by an operator W such that W (1−
∆) is a bounded operator on L2(R3), the term

∫
R3 ργW being then replaced with

Tr (γW );

• all the results in Section 2.3 can be extended to the rHF model for locally perturbed
insulating or semiconducting crystals (see in particular [22], where the analogues of
the operators L and Q(k) in Lemma 4 are introduced and analyzed); the extension
to conducting crystals is a challenging task, see [34] for results on the particular case
of the homogeneous electron gas;

• extending our results to the Kohn-Sham LDA model for finite molecular systems in
the whole space is difficult as the ground state density decays exponentially to zero at
infinity while the LDA exchange-correlation energy density is not twice differentiable
at 0 (it behaves as the function R+ ∋ ρ 7→ −ρ4/3 ∈ R−). On the other hand, all
the results in Sections 3 and 4 can be extended to the Kohn-Sham LDA model on
a supercell with periodic boundary conditions as well as to the periodic Kohn-Sham
LDA model for perfect crystals, as in this case, the ground state density is periodic
and bounded away from zero (see e.g. [16, 17]). Let us emphasize however that in the
LDA setting, it is not known whether the ground state density of the unperturbed
problem is unique. We must therefore restrict ourselves to local perturbation theory
in the vicinity of a local minimizer and make a coercivity assumption on the Hessian
of the energy functional at the unperturbed local minimizer γ0. In the supercell
setting, the operator L was used in [29] to study the stability of crystals;
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• the Hartree-Fock model consists in minimizing the energy functional

EHF(γ,W ) := Tr

(
−1

2
∆γ

)
+

∫

R3

ργ(V +W )+
1

2
D(ργ , ργ)−

1

2

∫

R3

∫

R3

|γ(x, y)|2
|x− y| dx dy

over the set PN of Slater determinants with finite kinetic energy. It turns out that all
the local minimizers of EHF(γ,W ) on KN are on PN (Lieb’s variational principle [56]).
Consequently, an equivalent formulation of the Hartree-Fock model is

E(W ) := inf
{
EHF(γ,W ), γ ∈ KN

}
. (2.44)

Uniqueness for problem (2.44) is an essentially open question (see however [42] for
partial results). In order to apply perturbation theory, we therefore need a coercivity
assumption on the Hessian at the minimizer γ0, just as in the LDA setting. It is
known that there are no unfilled shells in the Hartree-Fock theory [6], which implies
that we are always in the non-degenerate case. The first three statements and the
fifth statement of Theorem 5 can be transposed to the Hartree-Fock setting under
the above mentioned coercivity assumption. On the other hand, there is no analogue
of (2.12) for the Hartree-Fock model. A mathematical analysis of the perturbation
theory for the molecular orbital formulation of the Hartree-Fock model was published
in [21]. It is easily checked that our proof of Wigner’s (2n + 1)-rule also applies to
the Hartree-Fock setting;

• the extension to some of our results to Stark potentials W (x) = −E ·x, where E ∈ R
3

is a uniform electric field, will be dealt with in a future work [25].

2.6 Proofs

2.6.1 Proof of Lemma 2

Let γ0 and γ′0 be two ground states of (2.4) for W = 0. By Theorem 1, γ0 − γ′0 = σ, with
σ ∈ S(L2(R3)), Ran(σ) ⊂ Ker(H0 − ǫ0F), Tr (σ) = 0. Therefore,

σ =

Np∑

i,j=1

Mij |φ0Nf+i
〉〈φ0Nf+j

|

for some symmetric matrix M ∈ R
Np×Np

S such that Tr (M) = 0. As, still by Theorem 1,
γ0 and γ′0 share the same density, the density of σ is identically equal to zero, that is

∀x ∈ R
3,

Np∑

i,j=1

Mijφ
0
Nf+i

(x)φ0Nf+j
(x) = 0.

If Assumption (2.9) is satisfied, then M = 0; therefore σ = 0, and uniqueness is proved.
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2.6.2 Proof of Proposition 3

Let us first notice that as for all 1 ≤ i ≤ Np, φ0Nf+i
∈ D(H0) = H2(R3) →֒ C0(R3),

condition (2.9) is mathematically well-defined.

Case 1: Let M ∈ R
Np×Np

S be such that

∀x ∈ R
3,

Np∑

i,j=1

Mijφ
0
Nf+i

(x)φ0Nf+j
(x) = 0.

The matrix M being symmetric, there exists an orthogonal matrix U ∈ O(Np) such that

UMUT = diag(n1, · · · , nNp) with n1 ≤ · · · ≤ nNp . Let φ̃0Nf+i
(x) =

∑Np

j=1 Uijφ
0
Nf+j

(x).

The functions φ̃0Nf+i
form an orthonormal basis of Ker(H0 − ǫ0F) and it holds

∀x ∈ R
3,

Np∑

i=1

ni|φ̃0Nf+i
(x)|2 = 0,

from which we deduce that
∑Np

i=1 ni = 0. Consider first the case when Np = 2. If M 6= 0,
then n2 = −n1 = n > 0, so that

∀x ∈ R
3, |φ̃0Nf+1(x)|2 = |φ̃0Nf+2(x)|2.

In particular, the two eigenfunctions φ̃0Nf+1 and φ̃0Nf+2 have the same nodal surfaces (that

is (φ̃0Nf+1)
−1(0) = (φ̃0Nf+2)

−1(0)). Consider now the case when Np = 3. If M 6= 0, then

either n2 = 0 and φ̃0Nf+1 and φ̃0Nf+3 have the same nodes, or n2 6= 0. Replacing M with
−M , we can, without loss of generality assume that n1 < 0 < n2 ≤ n3, which leads to

∀x ∈ R
3, |φ̃0Nf+1(x)|2 =

|n2|
|n1|

|φ̃0Nf+2(x)|2 +
|n3|
|n1|

|φ̃0Nf+3(x)|2.

We infer from the above equality that the nodal surfaces of φ̃0Nf+1(x) are included in those

of φ̃0Nf+2(x). Let Ω be a connected component of the open set R
3 \ (φ̃0Nf+1)

−1(0), and let
HΩ

0 be the self-adjoint operator on L2(Ω) with domain

D(HΩ
0 ) =

{
u ∈ H1

0 (Ω) | ∆u ∈ L2(Ω)
}

defined by

∀u ∈ D(HΩ
0 ), HΩ

0 u = −1

2
∆u+ V u+ (ρ0 ⋆ | · |−1)u.

As both ψ1 = φ̃0Nf+1|Ω and ψ2 = φ̃0Nf+2|Ω are in D(HΩ
0 ) and satisfy HΩ

0 ψ1 = ǫ0Fψ1,
HΩ

0 ψ2 = ǫ0Fψ2, |ψ1| > 0 in Ω, we deduce from [69, Theorem XIII.44] that ǫ0F is the non-
degenerate ground state eigenvalue of HΩ

0 , so that there exists a real constant C ∈ R

such that ψ2 = Cψ1. It follows from the unique continuation principle (see e.g. [69,
Theorem XIII.57]) that φ̃0Nf+2 = Cφ̃0Nf+1 on R

3, which contradicts the fact that φ̃0Nf+1 and

φ̃0Nf+2 are orthogonal and non identically equal to zero. Thus, M = 0 and the proof of
case 1 is complete.
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Case 2. The degeneracy being assumed essential, ǫ0F is (2l+1)-times degenerate for some
integer l ≥ 1, and there exists an orthonormal basis of associated eigenfunctions of the
form

∀1 ≤ i ≤ Np = 2l + 1, φ0Nf+i
(x) = Rl(r)Y−l+i−1

l (θ, ϕ),

where (r, θ, ϕ) are the spherical coordinates of the point x ∈ R
3, and where the functions

Yml are the spherical harmonics. In particular,

2l+1∑

i,j=1

Mijφ
0
Nf+i

(x)φ0Nf+j
(x) = Rl(r)

2
2l+1∑

i,j=1

Mij Y−l+i−1
l (θ, ϕ)Y−l+j−1

l (θ, ϕ).

We therefore have to prove that for any symmetric matrix M ∈ R
(2l+1)×(2l+1)
S ,




2l+1∑

i,j=1

MijY−l+i−1
l Y−l+j−1

l = 0


 ⇒ M = 0.

Let M ∈ R
(2l+1)×(2l+1)
S a symmetric matrix such that

2l+1∑

i,j=1

MijY−l+i−1
l Y−l+j−1

l = 0

on the unit sphere S
2. Using the relation

Ym1
l Ym2

l =
2l∑

L=0

√
(2l + 1)2(2L+ 1)

4π




l l L

m1 m2 −(m1 +m2)





l l L

0 0 0


Ym1+m2

L ,

where the



l1 l2 l3

m1 m2 m3


 denote the Wigner 3-j symbols (see [15] for instance), and

where, by convention, YmL = 0 whenever |m| > L, we obtain

0 =

√
4π

2l + 1

2l+1∑

i,j=1

MijY−l+i−1
l Y−l+j−1

l

=

2l+1∑

i,j=1

Mij

2l∑

L=0

√
2L+ 1




l l L

−l + i− 1 −l + j − 1 2l + 2− i− j





l l L

0 0 0


Y i+j−2l−2

L

=

2l∑

m=−2l

2l∑

L=0

√
2L+ 1



l l L

0 0 0







∑

1 ≤ i, j ≤ 2l + 1

i+ j − 2l − 2 = m




l l L

−l + i− 1 −l + j − 1 −m


Mij



YmL .
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Using the fact that the Wigner 3-j symbol




l l L

m1 m2 −(m1 +m2)


 is equal to zero unless

|m1| ≤ l, |m2| ≤ l, |m1 +m2| ≤ L, 0 ≤ L ≤ 2l, and L ∈ 2N if m1 = m2 = 0,

we obtain that for all L ∈ {0, 2, · · · , 2l} and all −L ≤ m ≤ L,

∑

1 ≤ i, j ≤ 2l + 1

i+ j − 2l − 2 = m




l l L

−l + i− 1 −l + j − 1 −m


Mij = 0. (2.45)

For m = −2l and L = 2l, the above expression reduces to


l l 2l

−l −l 2l


M11 = 0, where



l l 2l

−l −l 2l


 =

1√
4l + 1

.

Hence M11 = 0. More generally, for each integer value of m in the range [−2l, 2l], equation
(2.45) gives rise to a linear system of nm,l equations (obtained for the various even values
of L in the range [|m|, 2l]) with nm,l unknowns (the Mi,j ’s satisfying i ≤ j - recall that the
matrix M is symmetric - and i+ j = 2l + 2 +m). Using the symmetry property




l l L

−l + i− 1 −l + j − 1 −m


 =




l l L

−l + j − 1 −l + i− 1 −m




and the orthogonality relation stating that for all −2l ≤ m ≤ 2l, and all |m| ≤ L,L′ ≤ 2l,

∑

1 ≤ i, j ≤ 2l + 1

i+ j − 2l − 2 = m




l l L

−l + i− 1 −l + j − 1 −m






l l L′

−l + i− 1 −l + j − 1 −m


 =

δLL′

(2L+ 1)
,

it is easy to see that this linear system is free, and that the corresponding entries of M are
therefore equal to 0. Hence, the matrix M is identically equal to zero, which completes
the proof.

2.6.3 Proof of Lemma 4

As C is a compact subset of the resolvent set of H0 and as the domain of H0 is H2(R3),
there exists C0 ∈ R+ such that

max
z∈C

(‖(z −H0)
−1‖, ‖(1−∆)(z −H0)

−1‖, ‖(z −H0)(1−∆)−1‖) ≤ C0.

It follows from the Kato-Seiler-Simon inequality [76] that for all v ∈ C′,

‖v(z −H0)
−1‖ ≤ C0‖v(1−∆)−1‖ ≤ C0‖v(1−∆)−1‖S6 ≤ C‖v‖L6 ≤ α‖v‖C′ ,
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for constants α,C ∈ R+ independent of v. The k-linear map Q(k) is therefore well-defined
and continuous from (C′)k to the space of bounded operators on L2(R3). Denoting by
γ⊥0 = 1− γ0, we have

Q(k)(v1, · · · , vk) =
∑

(Pj)0≤j≤k∈{γ0,γ⊥0 }k+1

1

2iπ

∮

C

(z −H0)
−1P0

k∏

j=1

(
vj(z −H0)

−1Pj
)
dz.

In the above sum, the term with all the Pj ’s equal to γ⊥0 is equal to zero as a consequence of
Cauchy’s residue formula. In all the remaining terms, one of the Pj ’s is equal to the rank-N
operator γ0. The operators (z −H0)

−1 and vj(z −H0)
−1 being bounded, Q(k)(v1, · · · , vk)

is finite-rank, hence trace-class, and it holds

‖Q(k)(v1, · · · , vk)‖S1 ≤ |C |
2π

NC0α
k‖v1‖C′ · · · ‖vk‖C′ .

Likewise, the operator

|∇|Q(k)(v1, · · · , vk)|∇|

=
∑

(Pj)∈{γ0,γ⊥0 }k+1

1

2iπ

∮

C

|∇|(z −H0)
−1/2P0

k∏

j=1

(
(z −H0)

−1/2vj(z −H0)
−1/2Pj

)
(z −H0)

−1/2|∇| dz

is finite rank and

‖ |∇|Q(k)(v1, · · · , vk)|∇| ‖S1 ≤ Cαk‖v1‖C′ · · · ‖vk‖C′ ,

for some constant C independent of v1, · · · , vk. Therefore Q(k) is a continuous linear map
from (C′)k to S1,1 and the bound (2.10) holds true. It then follows from Cauchy’s residue
formula and the cyclicity of the trace that, for k ≥ 1,

Tr (Q(k)(v1, · · · , vk)) = Tr


 1

2iπ

∮

C

(z −H0)
−1

k∏

j=1

(
vj(z −H0)

−1
)
dz




=
∑

(Pj)∈{γ0,γ⊥0 }k+1

Tr


 1

2iπ

∮

C

(z −H0)
−1P0

k∏

j=1

(
vj(z −H0)

−1Pj
)
dz




=

k∑

j=1

∑

(Pl)∈{γ0,γ⊥0 }k

Tr

(
1

2iπ

∮

C

k−1∏

l=1

(
vl+j mod(k)(z −H0)

−1Pl
)
vj(z −H0)

−2γ0 dz

)
= 0.

Let ρ ∈ C and Q := Q(1)(ρ ⋆ | · |−1). Proceeding as above, we obtain that for all
φ ∈ C∞

c (R3),
∣∣∣∣
∫

R3

ρQφ

∣∣∣∣ = |Tr (Qφ)| =
∣∣∣∣Tr

(
1

2iπ

∮

C

(z −H0)
−1(ρ ⋆ | · |−1)(z −H0)

−1φ dz

)∣∣∣∣
≤ C‖ρ‖C‖φ‖C′ ,
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for a constant C ∈ R+ independent of ρ and φ. Therefore, ρQ is in C and ‖ρQ‖C ≤ C‖ρ‖C .
This proves that L is a bounded operator on C. In addition, for all ρ1, ρ2 in C,

(Lρ1, ρ2)C = −Tr

(
1

2iπ

∮

C

(z −H0)
−1(ρ1 ⋆ | · |−1)(z −H0)

−1(ρ2 ⋆ | · |−1) dz

)
= (ρ1,Lρ2)C ,

where we have used again the cyclicity of the trace. Thus, L is self-adjoint. Lastly, for all
ρ ∈ C,

(Lρ, ρ)C =

N∑

i=1

〈γ⊥0 ((ρ ⋆ | · |−1)φ0i )|(H⊥
0 − ǫi)

−1|γ⊥0 ((ρ ⋆ | · |−1)φ0i )〉 ≥ 0,

where H⊥
0 is the self-adjoint operator on Ran(γ⊥0 ) = Ker(γ0) defined by ∀v ∈ Ran(γ⊥0 ),

H⊥
0 v = H0v.

2.6.4 Stability of the spectrum of the mean-field Hamiltonian

We assume here that we are

• either in the non-degenerate case (ǫN < 0 and ǫN < ǫN+1), in which case we set
ǫ0F =

ǫN+ǫN+1

2 ;

• or in the degenerate case (ǫN = ǫN+1 = ǫ0F < 0).

We recall that Nf = Rank(1(−∞,ǫ0F)
(H0)), Np = Rank(1{ǫ0F}(H0)) and No = Nf +Np. We

also have g− = ǫ0F − ǫNf
and g+ = ǫNf+Np+1 − ǫ0F. By definition g− > 0 and g+ > 0 since

ǫ0F < 0.

Lemma 17. Let

α1 = ǫ1 − 1, α2 = ǫ0F − 3g−
4
, α3 = ǫ0F − g−

4
, α4 = ǫ0F +

g+
4
, α5 = ǫ0F +

3g+
4
.

There exists η > 0 such that for all v ∈ Bη(C′),

Rank(1(−∞,α1](H0 + v)) = 0, Rank(1(α1,α2)(H0 + v)) = Nf , Rank(1[α2,α3](H0 + v)) = 0,

Rank(1(α3,α4](H0 + v)) = Np, Rank(1(α4,α5](H0 + v)) = 0.

Proof. Let z ∈ {α1, α2, α3, α4, α5}. As z /∈ σ(H0), we have

z − (H0 + v) =
(
1 + v(1−∆)−1(1−∆)(z −H0)

−1
)
(z −H0).

Besides, as D(H0) = H2(R3), there exists a constant C ∈ R+ independent of the choice of
z ∈ {α1, α2, α3, α4, α5}, such that

‖(1−∆)(z −H0)
−1‖ ≤ C.

In addition, there exists a constant C ′ ∈ R+ such that for all v ∈ C′,

‖v(1−∆)−1‖ ≤ ‖v(1−∆)−1‖S6 ≤ C ′‖v‖C′ .
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Let η = (CC ′)−1. We obtain that for all v ∈ Bη(C′),

‖v(1−∆)−1(1−∆)(z −H0)
−1‖ < 1,

so that z − (H0 + v) is invertible. Therefore, for all v ∈ Bη(C′), none of the real numbers
α1, α2, α3, α4, α5 are in σ(H0 + v). It also follows from the above arguments that for
all v ∈ C′, the multiplication by v is a H0-bounded operator on L2(R3). Using Kato’s
perturbation theory, we deduce from a simple continuity argument that the ranks of the
spectral projectors

1(−∞,α1](H0+v), 1(α1,α2)(H0+v), 1[α2,α3](H0+v), 1(α3,α4](H0+v), and 1(α4,α5](H0+v)

are constant for v ∈ Bη(C′), and therefore equal to their values for v = 0, namely 0, Nf , 0,
Np and 0 respectively.

2.6.5 Proof of Theorem 5

Step 1: proof of statement 1.

Let us introduce the relaxed constrained problem

ErHF
≤N (W ) = inf

{
ErHF(γ,W ), γ ∈ K≤N

}
, (2.46)

where
K≤N =

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr (γ) ≤ N, Tr (−∆γ) <∞

}
.

As ǫ0F < 0, γ0 is the unique minimizer of (2.46) for W = 0, and as K≤N is convex, the
corresponding optimality condition reads

∀γ ∈ K≤N , Tr (H0(γ − γ0)) ≥ 0. (2.47)

Let W ∈ C′, and (γ′k)k∈N∗ a minimizing sequence for (2.46) for which

∀k ≥ 1, ErHF(γ′k,W ) ≤ ErHF
≤N (W ) +

1

k
. (2.48)

Set ρ′k = ργ′k . We obtain on the one hand, using (2.47),

ErHF
≤N (W ) ≥ ErHF(γ′k,W )− 1

k

= ErHF(γ′k, 0) +
∫

R3

ρ′kW − 1

k

= ErHF
≤N (0) + Tr (H0(γ

′
k − γ0)) +

1

2
D(ρ′k − ρ0, ρ

′
k − ρ0) +

∫

R3

ρ′kW − 1

k

≥ ErHF
≤N (0) +

1

2
D(ρ′k − ρ0, ρ

′
k − ρ0) +

∫

R3

ρ′kW − 1

k
,

and on the other hand

ErHF
≤N (W ) ≤ ErHF(γ0,W ) = ErHF

≤N (0) +

∫

R3

ρ0W.
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Therefore,
1

2
D(ρ′k − ρ0, ρ

′
k − ρ0) ≤

∫

R3

(ρ0 − ρ′k)W +
1

k
,

from which we get
1

2
‖ρ′k − ρ0‖2C ≤ ‖W‖C′‖ρ′k − ρ0‖C +

1

k
,

and finally

‖ρ′k − ρ0‖C ≤ 2‖W‖C′ +
(
2k−1

)1/2
. (2.49)

Then, using Cauchy-Schwarz, Hardy and Hoffmann-Ostenhof [52] inequalities, we obtain

ErHF
≤N (0) = ErHF(0) = ErHF(γ0, 0) = ErHF(γ0,W )−

∫

R3

ρ0W

≥ ErHF
≤N (W )−

∫

R3

ρ0W ≥ ErHF(γ′k,W )−
∫

R3

ρ0W − 1

k

=
1

2
Tr (−∆γ′k) +

∫

R3

V ρ′k +
1

2
D(ρ′k, ρ

′
k) +

∫

R3

ρ′kW −
∫

R3

ρ0W − 1

k

≥ 1

2
Tr (−∆γ′k)− 2ZN

1
2 (Tr (−∆γ′k))

1/2 +
1

2
‖ρ′k‖2C − ‖ρ′k‖C‖W‖C′ − ‖ρ0‖C‖W‖C′ − 1

k

≥ 1

2
((Tr (−∆γ′k))

1/2 − 2ZN
1
2 )2 +

1

2
(‖ρ′k‖C − ‖W‖C′)2 − 2Z2N − 1

2
‖ρ0‖2C − ‖W‖2C′ − 1

k

≥ 1

2
((Tr (−∆γ′k))

1/2 − 2ZN
1
2 )2 − 2Z2N − 1

2
‖ρ0‖2C − ‖W‖2C′ − 1

k
,

from which we infer that
Tr (−∆γ′k) ≤ C0(1 + ‖W‖2C′),

for some constant C0 ∈ R+ independent of W and k. This estimate, together with (2.49)
and the fact that ‖γ′k‖S1 = Tr (γ′k) ≤ N , shows that the sequences (γ′k)k∈N∗ and (ρ′k)k∈N∗

are bounded in S1,1 and C respectively. We can therefore extract from (γ′k)k∈N∗ a subse-
quence (γ′kj )j∈N∗ such that (γ′kj )j∈N converges to γW for the weak-∗ topology of S1,1, and

(ρ′kj )j∈N converges to ρW := ργW weakly in C and strongly in Lploc(R
3) for all 1 ≤ p < 3.

This implies that

γW ∈ K≤N and ErHF(γW ,W ) ≤ lim inf
j→∞

ErHF(γ′kj ,W ) = ErHF
≤N (W ).

Thus γW is a minimizer of (2.46). In addition, as the rHF model is strictly convex in the
density, all the minimizers of (2.46) have the same density ρW , and, passing in the limit in
(2.49), we obtain that ρW satisfies

‖ρW − ρ0‖C ≤ 2‖W‖C′ .

Denoting by
vW =W + (ρW − ρ0) ⋆ | · |−1, (2.50)

we have

HW = −1

2
∆ + V +W + ρW ⋆ | · |−1 = H0 + vW , (2.51)
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with
‖vW ‖C′ ≤ ‖W‖C′ + ‖(ρW − ρ0) ⋆ | · |−1‖C′ ≤ 3‖W‖C′ . (2.52)

By Lemma 17, for all W ∈ Bη/3(C′), we have

Rank(1(−∞,ǫ0F−g−/2](HW )) = N and Rank(1(ǫ0F−g−/2,ǫ0F+g−/2](HW )) = 0.

In particular, HW has a least N negative eigenvalues, from which we infer that Tr (γW ) =
N . Therefore, γW is a minimizer of (2.4). In addition, γW = 1(−∞,ǫ0F]

(HW ) and it holds

γW =
1

2iπ

∮

C

(z −HW )−1 dz. (2.53)

Step 2: proof of statement 2.

It follows from (2.50), (2.51) and (2.53) that

∀W ∈ Bη/3(C′), X (vW ) =W,

where X is the mapping from Bη/3(C′) to C′ defined by

X (v) = v − ρ 1
2iπ

∮
C
((z−H0−v)−1−(z−H0)−1) dz ⋆ | · |−1.

The mapping X is real analytic. Besides, denoting by vc the Coulomb operator associating
to each density ρ ∈ C the electrostatic potential vc(ρ) = ρ ⋆ | · |−1 ∈ C′, we have

X ′(0) = vc(1 + L)v−1
c .

It follows from the second statement of Lemma 4 and from the fact that vc : C → C′ is
a bijective isometry that X ′(0) is bijective. Applying the real analytic implicit function
theorem, we obtain that the mapping W 7→ vW is real analytic from some ball Bη′(C′) (for
some η′ > 0) to C′. By composition of real analytic functions, the functions

γW =
1

2iπ

∮

C

(z−H0− vW )−1 dz, ρW = ρ0+ v
−1
c (vW −W ) and ErHF(W ) = ErHF(γW ,W )

are real analytic from Bη′(C′) to S11, C and R respectively.

Step 3: proof of statements 3 and 4.

Let W ∈ Bη′(C′). It follows from the above result that the functions β 7→ γβW , β 7→ ρβW ,
and β 7→ ErHF(βW ) are real analytic in the vicinity of 0, so that, for |β| small enough,

γβW = γ0 +
+∞∑

k=1

βkγ
(k)
W , ρβW = ρ0 +

+∞∑

k=1

βkρ
(k)
W , ErHF(βW ) = ErHF(0) +

+∞∑

k=1

βkE(k)
W ,

the series being normally convergent in S11, C and R respectively. The Dyson expansion
of (2.11) gives

γβW = γ0 +
+∞∑

k=1

Q(k) (vβW , · · · , vβW ) .
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As

vβW = βW +

+∞∑

k=1

βk(ρ
(k)
W ⋆ | · |−1) =

+∞∑

k=1

βkW (k),

where we recall that W (1) =W + ρ
(1)
W ⋆ | · |−1 and W (k) = ρ

(k)
W ⋆ | · |−1, we obtain

γβW = γ0 +

+∞∑

k=1

Q(k)




+∞∑

j=1

βjW (j), · · · ,
+∞∑

j=1

βjW (j)


 ,

from which we deduce (2.14). Taking the densities of both sides of (2.14), we get

ρ
(k)
W = −L(ρ(k)W ) + ρ̃

(k)
W .

This proves (2.12).

2.6.6 Proof of Lemma 6 and of (2.18)

The proof of Lemma 6 is similar to the proof of Lemma 1 in [21]. We only sketch it here
for brevity. We denote by V := (H1(R3))N , by Φ0 = (φ01, · · · , φ0N )T ∈ V and by H the
bounded linear operator from V to V ′ ≡ (H−1(R3))N defined by

∀Ψ ∈ V, (H Ψ)i = (H0 − ǫi)ψi +
N∑

j=1

K0
ijψj .

We then decompose V as

V = SΦ0 + AΦ0 +Φ0
⊥ = DΦ0 + S

0Φ0 + AΦ0 +Φ0
⊥,

where D, A, S, and S
0 denote the vector spaces of N ×N real-valued matrices which are

respectively diagonal, antisymmetric, symmetric, and symmetric with zero entries on the
diagonal, and where

Φ0
⊥ =

{
Φ = (φi)1≤i≤N ∈ V | ∀1 ≤ i, j ≤ N, (φi, φ

0
j )L2 = 0

}
.

Likewise, it holds

V ′ = SΦ0 + AΦ0 +Φ0
⊥⊥ with Φ0

⊥⊥ =
{
g = (gi)1≤i≤N ∈ V ′ | ∀1 ≤ i, j ≤ N, 〈gi, φ0j 〉 = 0

}

and it is easily checked that

{
g ∈ V ′ | ∀χ ∈ Φ0

⊥, 〈g, χ〉 = 0
}
= SΦ0 + AΦ0. (2.54)

Denoting by F = (f1, · · · , fN )T ∈ V ′ and by α ∈ D the N×N diagonal matrix with entries
α1, · · · , αN , we have to show that there exists a unique pair (Ψ, η) ∈ V × D such that

{
H Ψ = F + ηΦ0,
Ψ− αΦ0 ∈ S

0Φ0 + AΦ0 +Φ0
⊥.

(2.55)
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For this purpose, we first introduce the matrix S ∈ S defined by

∀1 ≤ i ≤ N, Sii = αi and ∀1 ≤ i 6= j ≤ N, Sij =
〈fj , φ0i 〉 − 〈fi, φ0j 〉

ǫj − ǫi
,

and observe that F̃ := F − H (SΦ0) ∈ SΦ0 + Φ0
⊥⊥. Next, using the fact that ǫ1 < · · · <

ǫN < ǫ0F and the positivity of the operator K0, namely

∀Ψ = (ψi)1≤i≤N ∈ V,
N∑

i,j=1

〈K0
ijψj , ψi〉 = 2D

(
N∑

i=1

φ0iψi,
N∑

i=1

φ0iψi

)
≥ 0,

we can see that the operator H is coercive on Φ0
⊥. Therefore, by Lax-Milgram lemma and

(2.54), there exists a unique Ψ̃ ∈ Φ0
⊥ such that H Ψ̃− F̃ ∈ SΦ0 +AΦ0. As F̃ ∈ SΦ0 +Φ0

⊥⊥
and

∀1 ≤ i, k ≤ N, ∀Ψ = (ψj)1≤j≤N ∈ V,
N∑

j=1

〈K0
ijψj , φ

0
k〉 =

N∑

j=1

〈K0
kjψj , φ

0
i 〉,

we have in fact H Ψ̃ − F̃ ∈ SΦ0. Setting Ψ′ = Ψ̃ + SΦ0, we get H Ψ′ − F ∈ SΦ0. We
now observe that H is an isomorphism from AΦ0 to S

0Φ0. Decomposing H Ψ′ − F as
H Ψ′ −F = −S′Φ0 + ηΦ0 with S′ ∈ S

0 and η ∈ D, and denoting by A the unique element
of A such that H (AΦ0) = S′Φ0, and by Ψ = Ψ′ + AΦ0, we finally obtain that the pair
(Ψ, η) is the unique solution to (2.55) in V × D.

The fact that Ψ ∈ (H2(R3))N whenever f ∈ (L2(R3))N follows from simple elliptic
regularity arguments.

To prove (2.18), we introduce, for k ∈ N
∗,

χi,k(β) =

k∑

l=0

βlφ
(l)
βW,i, ηi,k(β) =

k∑

l=0

βlǫ
(l)
βW,i,

Hk(β) = −1

2
∆+V +

(
N∑

i=1

χi,k(β)
2

)
⋆|·|−1+βW, fi,k(β) = Hk(β)χi,k(β)−ηi,k(β)χi,k(β).

By construction, |ηi,k(β)− ǫβW,i|+ ‖χi,k(β)− φβW,i‖H2 + ‖fi,k(β)‖H−1 ∈ O(βk+1) when β
goes to zero, for all 1 ≤ i ≤ N . As the operator Hk(β) is self-adjoint, it holds

〈fi,k, χj,k〉+ ηi,k〈χi,k, χj,k〉 = 〈Hkχi,k, χj,k〉 = 〈Hkχj,k, χi,k〉 = 〈fj,k, χi,k〉+ ηj,k〈χj,k, χi,k〉

(the variable β has been omitted in the above equalities). As by assumption ǫ1 < ǫ2 <
· · · < ǫN+1, we obtain

〈χi,k(β), χj,k(β)〉 =
〈fi,k(β), χj,k(β)〉 − 〈fj,k(β), χi,k(β)〉

ηj,k(β)− ηi,k(β)
∈ O(βk+1),

from which we deduce (2.18).
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2.6.7 Proof of Lemma 7

Let T ∈ Ω and γ ∈ PN such that ‖T − γ‖S2 < 1/2. As ‖T − γ‖ ≤ ‖T − γ‖S2 < 1/2,
σ(γ) = {0, 1} and Rank(γ) = N , Rank(Π(T )) = Rank(1[1/2,+∞)(T )) = N . Therefore
Π(T ) ∈ PN . If, in addition, T ∈ S2, then

‖T −Π(T )‖2S2
= ‖T − γ + γ −Π(T )‖2S2

= ‖T − γ‖2S2
+ ‖γ −Π(T )‖2S2

+ 2Tr ((T − γ)(γ −Π(T )))

= ‖T − γ‖2S2
+ ‖γ −Π(T )‖2S2

+ 2Tr (T (γ −Π(T )))− (2N − 2Tr (γΠ(T )))

= ‖T − γ‖2S2
+ 2Tr (T (γ −Π(T )))

= ‖T − γ‖2S2
+ 2Tr ((T − 1/2)(γ −Π(T ))) ,

where we have used that both γ and Π(T ) are in PN and that for all P ∈ PN , ‖P‖2
S2

=
Tr (P 2) = Tr (P ) = N . Let A = T − 1/2 and Q = γ − Π(T ). The self-adjoint operator A
has exactly N positive eigenvalues (counting multiplicities), and all its other eigenvalues
are negative. Remarking that Π(T ) = 1[0,+∞)(A), and denoting A++ = Π(T )AΠ(T ),
A−− = (1 − Π(T ))A(1 − Π(T )), Q−− = Π(T )(γ − Π(T ))Π(T ), Q++ = (1 − Π(T ))(γ −
Π(T ))(1− Π(T )), and g := dist(0, σ(A)), we obtain, using the fact that A++ ≥ g, A−− ≤
−g, Q++ ≥ 0, Q−− ≤ 0 and Q2 = Q++ −Q−−,

Tr ((T − 1/2)(γ −Π(T ))) = Tr (A++Q−− +A−−Q++)

≤ −gTr (Q++ −Q−−) = −gTr (Q2) = −g‖γ −Π(T )‖2S2
.

Hence, Π(T ) is the unique minimizer of (2.19).

2.6.8 Proof of Theorem 8

Throughout the proof, W is a fixed potential of C′, chosen once and for all, and C denotes
a constant depending on W but not on β, which may vary from one line to another. For all
β ∈ R, we denote by Q(n)

W (β) := γ̃
(n)
W (β)− γβW . When |β| is small enough, γ̃(n)W (β) ∈ PN ,

so that we have

ErHF(γ̃
(n)
W (β), βW ) ≥ ErHF(βW )

= ErHF(γβW , βW )

= ErHF(γ̃
(n)
W (β)−Q

(n)
W (β), βW )

= ErHF(γ̃
(n)
W (β), βW )− Tr

(
HβWQ

(n)
W (β)

)
− 1

2
D
(
ρ
Q

(n)
W (β)

, ρ
Q

(n)
W (β)

)

= ErHF(γ̃
(n)
W (β), βW )− Tr

(
|HβW − ǫ0F|(Q(n)

W (β))2
)
− 1

2
‖ρ

Q
(n)
W (β)

‖2C ,

where we have used Lemma 18 below. We thus obtain that for |β| small enough,

0 ≤ ErHF(γ̃
(n)
W (β), βW )− ErHF(βW ) = Tr

(
|HβW − ǫ0F|(Q(n)

W (β))2
)
+

1

2
‖ρ

Q
(n)
W (β)

‖2C .

Using (2.51), (2.52) and the bound ‖v(1 −∆)−1‖ ≤ C‖v‖C′ for all v ∈ C′, we obtain that
for all |β| small enough,

|HβW − ǫ0F| ≤ C(1−∆).
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Hence, for |β| small enough,

0 ≤ ErHF(γ̃
(n)
W (β), βW )− ErHF(βW ) ≤ CTr

(
(1−∆)(Q

(n)
W (β))2

)
+

1

2
‖ρ

Q
(n)
W (β)

‖2C
≤ C‖Q(n)

W (β)‖2S1,1
,

where we have used the continuity of the linear mapping S1,1 ∋ γ 7→ ργ ∈ C. The latter
property is proved as followed: we infer from the Kato-Seiler-Simon inequality and the
Sobolev inequality ‖V ‖L6(R3) ≤ C6‖∇V ‖L2(R3) = C6‖V ‖C′ that there exists a constant
C ∈ R+ such that for all γ ∈ S1,1 ∩ S(L2(R3)),

‖ργ‖C = sup
V ∈C′\{0}

Tr (γV )

‖V ‖C′
= sup

V ∈C′\{0}

Tr ((1−∆)1/2γ(1−∆)1/2(1−∆)−1/2V (1−∆)−1/2)

‖V ‖C′

≤ C‖γ‖S1,1 . (2.56)

Denoting by

γW,n(β) := γ0 +

n∑

k=1

βkγ
(k)
W ,

we get

0 ≤ ErHF(γ̃
(n)
W (β), βW )−ErHF(βW ) ≤ C

(
‖γ̃(n)W (β)− γW,n(β)‖2S1,1

+ ‖γW,n(β)− γβW ‖2S1,1

)
.

We infer from the third statement of Theorem 5 that

‖γW,n(β)− γβW ‖S1,1 ≤ Cβn+1.

We now observe that as W is fixed, all the functions φ̃W,i(β) in (2.21)-(2.22) lay in a finite
dimensional subspace of H1(R3) independent of β. Using the equivalence of norms in finite

dimension, the fact that γ̃(n)W (β) = Π (γW,n(β)) and Lemma 7, we obtain that

‖γ̃(n)W (β)− γW,n(β)‖S1,1 ≤ C‖γ̃(n)W (β)− γW,n(β)‖S2 ≤ C‖γβW − γW,n(β)‖S2 ≤ Cβn+1,

which completes the proof of (2.20).

Lemma 18. Let H be a bounded below self-adjoint operator on a Hilbert space H, ǫF ∈ R,
and γ := 1(−∞,ǫF](H). Assume that Tr (γ) < ∞. Then, for all orthogonal projector
γ′ ∈ S(H) such that Tr (γ′) = Tr (γ), it holds

0 ≤ Tr (HQ) = Tr (|H − ǫF|Q2),

where Q = γ′ − γ.

Proof. We first observe that

Q = γ′ − γ = (γ′)2 − γ2 = Q2 + γγ′ + γ′γ − 2γ,

H − ǫF = (1− γ)(H − ǫF)(1− γ) + γ(H − ǫF)γ,

72



|H − ǫF| = (1− γ)(H − ǫF)(1− γ)− γ(H − ǫF)γ,

Q2 = (1− γ)Q(1− γ)− γQγ.

As Tr (Q) = 0, it follows that

Tr (HQ) = Tr ((H − ǫF)Q) = Tr
(
(H − ǫF)Q

2
)
+Tr

(
(H − ǫF)(γγ

′ + γ′γ − 2γ)
)

= Tr
(
(H − ǫF)Q

2
)
+ 2Tr (γ(H − ǫF)γQ)

= Tr
(
(H − ǫF)Q

2
)
+ 2Tr (γ(H − ǫF)γQγ)

= Tr
(
(H − ǫF)Q

2
)
− 2Tr

(
γ(H − ǫF)γQ

2
)

= Tr
(
|H − ǫF|Q2

)
.

Note that all the terms in the above series of equalities containing γ are finite, since
Tr (γ) <∞ and H is bounded below, while the other terms may be equal to +∞.

2.6.9 Proof of Lemma 9

Using the fact that L2(R3) = Ho⊕Hu, any linear operator T on L2(R3) can be represented
by a 2× 2 block operator

T =

(
Too Tou
Tuo Tuu

)
,

where Txy is a linear operator from Hy to Hx (with x, y ∈ {o, u}). In particular, the
operators P0 := 1(−∞,ǫ0F]

(H0) (the orthogonal projector on Ho), P⊥
0 := 1(ǫ0F,+∞)(H0) and

H0 are block diagonal in this representation, and we have

P0 =

(
1 0
0 0

)
, P⊥

0 =

(
0 0
0 1

)
, H0 =

(
Hoo 0
0 Huu

)
,

with Hoo − ǫ0F ≤ 0 and Huu − ǫ0F = H++
0 − ǫ0F ≥ g+ > 0.

We consider the submanifold

PNo :=
{
P ∈ S(L2(R3)) | P 2 = P, Tr (P ) = No, Tr (−∆P ) <∞

}

of S(L2(R3)) consisting of the rank-No orthogonal projectors on L2(R3) with range in
H1(R3), and the Hilbert space

Z =

{
Z =

(
0 −Z∗

uo

Zuo 0

)
| (Huu − ǫ0F)

1/2Zuo ∈ B(Ho,Hu)

}
,

endowed with the inner product

(Z,Z ′)Z = Tr (Z∗
uo(Huu − ǫ0F)Z

′
uo).

We are going to use the following lemma, the proof of which is postponed until the end of
the section.
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Lemma 19. There exists an open connected neighborhood Õ of P0 in PNo , and η > 0 such
that the real analytic mapping

Bη(Z) → Õ
Z 7→ eZP0e

−Z

is bijective.

By continuity, there exists a neighborhood O of 0 in A such that

∀A ∈ O, 1(0,1] (Γ(A)) ⊂ Õ.

Let A and A′ in O be such that Γ(A) = Γ(A′). Then

eLuo(A′)P0e
−Luo(A′) = 1(0,1]

(
Γ(A′)

)
= 1(0,1] (Γ(A)) = eLuo(A)P0e

−Luo(A),

and we infer from Lemma 19 that Luo(A
′) = Luo(A). Therefore,

eLpf(A
′)(γ0 + Lpp(A

′))e−Lpf(A
′) = eLpf(A)(γ0 + Lpp(A))e

−Lpf(A). (2.57)

In particular (using again functional calculus),

eLpf(A
′)γ0e

−Lpf(A
′) = eLpf(A)γ0e

−Lpf(A).

Using the finite dimensional analogue of Lemma 19 (a standard result on finite dimensional
Grassmann manifolds), we obtain that, up to reducing the size of the neighborhood O if
necessary, Lpf(A

′) = Lpf(A). Getting back to (2.57), we see that Lpp(A
′) = Lpp(A).

Therefore, A = A′, which proves the injectivity of the mapping (2.26).

We now consider a neighborhood O′ of γ0 in S1,1 in such that Γ(O) ⊂ O′ and
1(0,1]

(
KNf ,Np ∩ O′) ⊂ Õ. Let γ ∈ KNf ,Np ∩ O′. By Lemma 19, there exists a unique

Z ∈ Bη(Z) such that 1(0,1](γ) = eZP0e
−Z , and by the classical finite-dimensional ver-

sion of the latter lemma, there exists a unique Apf ∈ Apf in the vicinity of 0 such that
1{1}(γ) = eZeLpf(0,0,Apf ,0)1{1}(γ0)e

−Lpf(0,0,Apf ,0)e−Z . It is then easily seen that the operator

e−Ze−Lpf(0,0,Apf ,0)γeLpf(0,0,Apf ,0)eZ

is of the form γ0 + Lpp(0, 0, 0, App) for some App ∈ App, which is close to 0 if O′ is small
enough. Decomposing Zuo as (Auf , Aup) and setting A = (Auf , Aup, Apf , App), we obtain
that A is the unique element of A in the vicinity of 0 such that γ = Γ(A).

Proof of Lemma 19. Let

U :=
{
U ∈ GL(H1(R3)) | ‖Uφ‖L2 = ‖φ‖L2 , ∀φ ∈ H1(R3)

}

where GL(H1(R3)) is the group of the inversible bounded operators on H1(R3). In view
of [26, Theorem 4.8], the mapping

U → PNo

U 7→ UP0U
−1
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is a real analytic submersion. Besides [26, Lemma 2.5], U is a Banach-Lie group with Lie
algebra

U =
{
Z ∈ B(L2(R3)) | Z∗ = −Z, Z(H1(R3)) ⊂ H1(R3)

}

(with the slight abuse of notation consisting of denoting by Z the restriction to H1(R3) of
an operator Z ∈ B(L2(R3)) such that Z(H1(R3)) ⊂ H1(R3)), and [26, Remark 4.7], the
isotropy group of the action of U on PNo is the Banach-Lie group with Lie algebra

U0 =
{
Z ∈ B(L2(R3)) | Z∗ = −Z, Z(H1(R3)) ⊂ H1(R3), Zuo = 0

}
.

Hence, denoting by

Z̃ =

{
Z =

(
0 −Z∗

uo

Zuo 0

)
| (1−∆)1/2Zuo ∈ B(Ho,Hu)

}
,

there exists an open connected neighborhood Õ of P0 in PNo , and η̃ > 0 such that the real
analytic mapping

Bη̃(Z̃) → Õ
Z 7→ eZP0e

−Z

is bijective. As there exists 0 < c < C < ∞ such that c(1−∆) ≤ (Huu − ǫ0F) ≤ C(1−∆)

on Hu, we have Z̃ = Z, which concludes the proof of the lemma.

2.6.10 Proof of Lemma 10

In view of (2.33), the density matrix Γ(A) can be expanded as

Γ(A) = γ0 + γ1(A) + γ2(A,A) +O(‖A‖3V), (2.58)

with

γ1(A) = 〈Γ′(0), A〉 = [Luo(A) + Lpf(A), γ0] + Lpp(A)

γ2(A,A) =
1

2
[Γ′′(0)](A,A)

=
1

2
[Luo(A), [Luo(A), γ0]] + [Luo(A), [Lpf(A), γ0]] +

1

2
[Lpf(A), [Lpf(A), γ0]]

+ [Luo(A), Lpp(A)] + [Lpf(A), Lpp(A)]

=
1

2

{
Luo(A)

2 + Lpf(A)
2, γ0

}
+ [Luo(A) + Lpf(A), Lpp(A)]

+Luo(A)Lpf(A)γ0 + γ0Lpf(A)Luo(A)− (Luo(A) + Lpf(A))γ0(Luo(A) + Lpf(A)),

where {X,Y } = XY + Y X denotes the anticommutator of X and Y . As in Section 2.4,
we denote by F (A, 0) = ∇AE(A, 0) and Θ = 1

2F
′
A(0, 0)|A×{0}. It follows from (2.58) and

the analyticity properties of the mapping A 7→ E(A, 0) that for all (A,A′) ∈ A×A,

E(A, 0) = E0 +Tr (H0γ1(A)) + Tr (H0γ2(A,A)) +
1

2
D(ργ1(A), ργ1(A)) +O(‖A‖3A),

and

〈Θ(A), A〉 = Tr (H0γ2(A,A)) +
1

2
D(ργ1(A), ργ1(A)).
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Besides, a simple calculation leads to

Tr (H0γ2(A,A)) = Tr
(
A∗

uf

(
H++

0 − ǫ0F
)
Auf

)
− Tr

(
Auf

(
H−−

0 − ǫ0F
)
A∗

uf

)

+Tr
((
H++

0 − ǫ0F
)
AupΛA

∗
up

)
− Tr

((
H−−

0 − ǫ0F
)
A∗

pf(1− Λ)Apf

)
.

Hence,

〈Θ(A), A′〉 = a(A,A′) +
1

2
D(ργ1(A), ργ1(A′)), (2.59)

where

a(A,A′) = Tr
(
A∗

uf

(
H++

0 − ǫ0F
)
A′

uf

)
− Tr

(
A′

uf

(
H−−

0 − ǫ0F
)
A∗

uf

)

+Tr
((
H++

0 − ǫ0F
)
A′

upΛA
∗
up

)
− Tr

((
H−−

0 − ǫ0F
)
A∗

pf(1− Λ)A′
pf

)
.

For all A and A′ in A, we have

|a(A,A′)| ≤
(
1 +

ǫ0F − ǫ1
g+

)
‖Auf‖Auf

‖A′
uf‖Auf

+‖Aup‖Aup‖A′
up‖Aup+(ǫ0F−ǫ1)‖Apf‖Apf

‖A′
pf‖Apf

.

We thus deduce from (2.56) that there exists a constant C ′ ∈ R+ such that for all A ∈ A,

‖ργ1(A)‖C ≤ C‖γ1(A)‖S1,1 ≤ C ′‖A‖A.

The bilinear form in (2.59) is therefore continuous on the Hilbert space A. It is also positive
since for all A ∈ A,

〈Θ(A), A〉 ≥ ‖Auf‖2Auf
+ λ−‖Aup‖2Aup

+ (1− λ+)g−‖Apf‖2Apf
+

1

2
‖ργ1(A)‖2C , (2.60)

where 0 < λ− ≤ λ+ < 1 are the lowest and highest eigenvalues of Λ. To prove that
it is in fact coercive, we proceed by contradiction and assume that there exists a nor-
malized sequence (Ak)k∈N in A such that limk→∞〈Θ(Ak), Ak〉 = 0. We infer from (2.60)
that ‖(Ak)uf‖Auf

, ‖(Ak)up‖Aup , ‖(Ak)pf‖Apf
and ‖ργ1(Ak)‖C converge to zero when k goes

to infinity. Denoting by (Mk)ij := (φ0Nf+i
, (Ak)ppφ

0
Nf+j

)L2 , this implies that ‖Mk‖2 =
‖(Ak)pp‖App → 1 and ∥∥∥∥∥∥

Np∑

i,j=1

(Mk)ijφ
0
Nf+i

φ0Nf+j

∥∥∥∥∥∥
C

→ 0.

Extracting from (Mk)k∈N a subsequence (Mkn)n∈N converging to some M ∈ R
Np×Np

S , and
letting n go to infinity, we obtain

‖M‖2 = 1 and
Np∑

i,j=1

Mijφ
0
Nf+i

φ0Nf+j
= 0.

This contradicts (2.9). The bilinear form (2.59) is therefore coercive on A. As it is also
continuous, we obtain that the linear map Θ is a bicontinuous coercive isomorphism from
A to A′.
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2.6.11 Proof of Lemma 11

We can prove the existence of a minimizer γ̃W to (2.4) reasoning as in the proof of the
first statement of Theorem 5 (non-degenerate case) up to (2.52). Only the final argument
is slightly different. In the degenerate case, we deduce that HW has at least N negative
eigenvalues from the fact that Rank(1(−∞,α5](HW )) = No ≥ N .

We now have to prove that γ̃W = γW , where γW is defined by (2.29). We know that
γW is the unique local minimizer of (2.24) in the neighborhood of γ0. Decomposing the
space L2(R3) as

L2(R3) = HW
f ⊕HW

p ⊕HW
u , (2.61)

where HW
f = Ran(1{1}(γW )), HW

p = Ran(1(0,1)(γW )), and HW
u = Ran(1{0}(γW )), we can

parametrize KNf ,Np in the neighborhood of γW using the local map

ΓW (A) := exp
(
LWuo(A)

)
exp

(
LWpf (A)

) (
γW + LWpp(A)

)
exp

(
−LWpf (A)

)
exp

(
−LWuo(A)

)
,

where

LWuo(A) :=




0 0 −A∗
uf

0 0 −A∗
up

Auf Aup 0



, LWpf (A) :=




0 −A∗
pf 0

Apf 0 0

0 0 0



, LWpp(A) :=




0 0 0

0 App 0

0 0 0



,

the block decomposition of the operators LWxy(A) being done with respect to the decom-
position (2.61) of the space L2(R3). As A = 0 is the unique minimizer of the functional
A 7→ ErHF(ΓW (A),W ) in the neighborhood of 0, we obtain that the block decomposition
of the operator H̃ = − 1

2∆+ V + ργW ⋆ | · |−1 +W reads

H̃ :=




H̃ff 0 0

0 H̃pp 0

0 0 H̃uu




(first-order optimality conditions), and that there exists ǫ ∈ R such that

H̃ff − ǫ ≤ 0, H̃pp − ǫ = 0, H̃uu − ǫ ≥ 0

(second-order optimality conditions). These conditions also read

γW = 1(−∞,ǫ)(H̃) + δW , (2.62)

with 0 ≤ δW ≤ 1, Ran(δW ) ⊂ Ker(H̃ − ǫ), Tr (γW ) = N , which are precisely the Euler
conditions for problem (2.4). Thus, γW is a minimizer to (2.4).

It follows that all the minimizers γ̃W of (2.4) have density ρW := ργW and are of the
form

γ̃W = 1(−∞,ǫ)(H̃) + δ̃W ,
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with 0 ≤ δ̃W ≤ 1, Ran(δ̃W ) ⊂ Ker(H̃ − ǫ), Tr (γ̃W ) = N . As the optimization problem
(2.4) is convex, the set of its minimizers is convex. Therefore, for any t ∈ [0, 1]

(1− t)γW + tγ̃W = 1(−∞,ǫ)(H̃) + (1− t)δW + tδ̃W ,

is a global minimizer of (2.4), hence of (2.24) for t small enough. As we know that γW is
the unique minimizer to (2.24) in the vicinity of γ0, we obtain that δ̃W = δW , which proves
that γW is the unique minimizer of (2.4).

2.6.12 Proof of Theorem 12

The first statement of Theorem 12 has been proved in the previous section. The second
statement is a consequence of (2.62) and of the fact that γW ∈ KNf ,Np . The third statement

follows from the real analyticity of the mappings Bη(C′) ∋ W 7→ Ã(W ) ∈ A, A ∋ A 7→
Γ(A) ∈ S1,1, and S1,1 × C′ ∋ (γ,W ) 7→ ErHF(γ,W ) ∈ R and the chain rule.

It follows from (2.33) that for all A ∈ O and all W ∈ C′,

E(A,W ) = E0 +

∫

R3

ργ0W + 〈Θ(A), A〉+
∫

R3

ργ1(A)W +
∑

l≥3

Tr (H0γl(A, · · · , A))

+
1

2

∑

l+l′≥3
l,l′≥1

D(ργl(A,··· ,A), ργl′ (A,··· ,A)) +
∑

l≥2

∫

R3

ργl(A,··· ,A)W.

As a consequence, we obtain that that for any A′ ∈ O,

(∇AE(A,W ), A′)A = 2〈Θ(A), A′〉+
∫

R3

ργ1(A′)W +
∑

l≥3

Tr (H0Γl(A,A
′))

+
∑

l+l′≥3
l≥1, l′≥1

D(ργl(A,··· ,A), ρΓl′ (A,A
′)) +

∑

l≥2

∫

R3

ρΓl(A,A′)W,(2.63)

with where Γ1(A,A
′) = γ1(A

′) is in fact independent of A, and where for all l ≥ 2,
Γl(A,A

′) =
∑l

i=1 γl(τ(i,l)(A, · · · , A,A′)) (recall that τ(i,l) denotes the transposition swap-
ping the ith and lth elements, and that, by convention τl,l is the identity). By definition of
AW (β), we have

∀A′ ∈ A, (∇AE(AW (β), βW ), A′)A = 0. (2.64)

Using (2.63) and observing that

Γl(AW (β), A′) =
∑

k≥l−1

βk
∑

α∈(N∗)l−1

|α|1=k,|α|∞<k

l∑

i=1

γl(τ(i,l)(A
(α1)
W , · · · , A(αl−1)

W , A′)), (2.65)

we can rewrite (2.64) by collecting the terms of order βk as

∀k ∈ N
∗, ∀A′ ∈ A, 〈2Θ(A

(k)
W ) +B

(k)
W , A′〉 = 0,
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where B(k)
W is given by (2.37) for k = 1 and by (2.38) for the general case k ≥ 2. Thus

(2.36) is proved.

Using (2.30) and (2.32), we can rewrite (2.35) for k = 2n+ ǫ (n ∈ N, ǫ ∈ {0, 1}) as

E(2n+ǫ)
W = Tr (H0γ1(A

(2n+ǫ)
W )) +

∑

2≤l≤2n+ǫ

∑

α∈(N∗)l | |α|1=2n+ǫ

Tr (H0γ
α
W,l)

+
1

2

∑

2≤l+l′≤2n+ǫ
l,l′≥1

∑

α∈(N∗)l, α′∈(N∗)l′ | |α|1+|α′|1=2n+ǫ

D(ργαW,l
, ρ
γα

′

W,l′
)

+
∑

2≤l≤2n+ǫ−1

∑

α∈(N∗)l | |α|1=2n+ǫ−1

∫

R3

ργαW,l
W

=
∑

2≤l≤2n+ǫ

∑

α∈(N∗)l | |α|1=2n+ǫ, |α|∞≤n
Tr (H0γ

α
W,l)

+
1

2

∑

2≤l+l′≤2n+ǫ
l,l′≥1

∑

α∈(N∗)l, α′∈(N∗)l′ | |α|1+|α′|1=2n+ǫ
max(|α|∞, |α′|∞)≤n

D(ργαW,l
, ρ
γα

′

W,l′
)

+
∑

2≤l≤2n+ǫ−1

∑

α∈(N∗)l | |α|1=2n+ǫ−1, |α|∞≤n

∫

R3

ργαW,l
W + J2n+ǫ(A

(1)
W , ..., A

(2n+ǫ−1)
W ),

where

J2n+ǫ(A
(1)
W , ..., A

(2n+ǫ−1)
W ) =

∑

2≤l≤2n+ǫ

∑

α∈(N∗)l | |α|1=2n+ǫ
|α|∞>n

Tr (H0γ
(α)
l )

+
1

2

∑

2≤l1+l2≤2n+ǫ
l1,l2≥1

∑

α∈(N∗)l, α′∈(N∗)l
′ | |α|1+|α′|1=2n+ǫ

max(|α|∞,|α′|∞)>n

D(ρ
γ
(α)
l1

, ρ
γ
(α′)
l2

)

+
∑

1≤l≤2n+ǫ−1

∑

α∈(N∗)l | |α|1=2n+ǫ−1
|α|∞>n

∫

R3

ρ
γ
(α)
l

W.

As

J2n+ǫ(A
(1)
W , ..., A

(2n+ǫ−1)
W ) =

2n+ǫ−1∑

k=n

〈2Θ(A
(2n+ǫ−k)
W ) +B

(2n+ǫ−k)
W , A

(k)
W 〉 = 0,

the proof of the fifth statement is complete. Lastly, the sixth statement can be established
reasoning as in the proof of Theorem 8.
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2.A Second order perturbation theory

The block representation of γ(2)W , the second order perturbation expansion of the ground
state energy density is given by the sum of




0 (A
(2)
pf )

∗(I − Λ) (A
(2)
uf )

∗

(I − Λ)A
(2)
pf M (2) Λ(A

(2)
up )∗

A
(2)
uf A

(2)
upΛ 0




and




−(A
(1)
pf )

∗(I − Λ)A
(1)
pf −1

2(A
(1)
uf )

∗A(1)
up (Λ + I) (A

(1)
pf )

∗(I − Λ)(A
(1)
up )∗

−(A
(1)
uf )

∗A(1)
uf −(A

(1)
pf )

∗A(1)
pp

−1
2(Λ + I)(A

(1)
up )∗A

(1)
uf −1

2(A
(1)
up )∗A

(1)
upΛ− 1

2Λ(A
(1)
up )∗A

(1)
up (I − Λ)A

(1)
pf (A

(1)
uf )

∗

−A(1)
ppA

(1)
pf +1

2(I − Λ)A
(1)
pf (A

(1)
pf )

∗ +A
(1)
pp (A

(1)
up )∗

+1
2A

(1)
pf (A

(1)
pf )

∗(I − Λ)

A
(1)
up (I − Λ)A

(1)
pf A

(1)
uf (A

(1)
pf )

∗(I − Λ) A
(1)
upΛ(A

(1)
up )∗

+A
(1)
upA

(1)
pp +A

(1)
uf (A

(1)
uf )

∗




,

where the above operators solve the following systems

Θ
(
(A

(1)
pf , A

(1)
uf , A

(1)
up , A

(1)
pp )
)
= −((1− Λ)Wpf ,Wuf ,WupΛ,Wpp), (2.66)

and

Θ
(
(A

(2)
pf , A

(2)
uf , A

(2)
up , A

(2)
pp )
)
= −1

2
((B

(2)
pf , B

(2)
uf , B

(2)
up , B

(2)
pp ). (2.67)

The right hand side of (2.67) is equal to

B
(2)
pf = (I − Λ)(A

(1)
up )∗

(
2H++

0 A
(1)
uf − ǫ0FA

(1)
uf −A

(1)
uf H

−−
0

)
+
[
J (A

(1)
W )
]
pf

+2A
(1)
ppA

(1)
pf (H

−−
0 − ǫ0F) + 2

[
−(I − Λ)A

(1)
pf Wff −A

(1)
ppWpf

+1
2Wpp(I − Λ)A

(1)
pf + (I − Λ)(A

(1)
up )∗Wuf +

1
2(I − Λ)WppA

(1)
pf

+(I − Λ)W ∗
upA

(1)
uf

]
,
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B
(2)
uf = (2H++

0 − ǫ0F)A
(1)
up (I − Λ)A

(1)
pf −A

(1)
up (I − Λ)A

(1)
pf H

−−
0 +

[
J (A

(1)
W )
]
uf

+2
[
−A(1)

uf Wff − 1
2A

(1)
up (Λ + I)Wpf +Wup(I − Λ)A

(1)
pf +WuuAuf ] ,

B
(2)
up =

(
2H++

0 A
(1)
uf − ǫ0FA

(1)
uf −A

(1)
uf H

−−
0

)
(A

(1)
pf )

∗(I − Λ) +
[
J (A

(1)
W )
]
up

+2(H++
0 − ǫ0F)A

(1)
upA

(1)
pp +

[
−AufW

∗
pf(Λ + I)−A

(1)
upΛWpp

−A(1)
upWppΛ + 2Wuf(A

(1)
pf )

∗(I − Λ) + 2WupM + 2WuuA
(1)
upΛ

]
,

B
(2)
pp = A

(1)
pf (H

−−
0 − ǫ0F)(A

(1)
pf )

∗ − (A
(1)
up )∗(H

++
0 − ǫ0F)A

(1)
up +

[
J (A

(1)
W )
]
pp

+2
[
−A(1)

pf W
∗
pf +W ∗

upA
(1)
up

]

while, J (A
(1)
W ) =

(
[J (A

(1)
W )]pf , [J (A

(1)
W )]uf , [J (A

(1)
W )]up, [J (A

(1)
W )]pp

)
is defined as follows:

for any A′ ∈ A,

〈J (A
(1)
W );A′〉 = 2

[
D
(
ργ1(A′), ργ2(A(1)

W ,A
(1)
W )

)
+D

(
ρ
γ1(A

(1)
W )
, ρ
γ2(A

(1)
W ,A′)

)

+ D
(
ρ
γ1(A

(1)
W )
, ρ
γ2(A′,A

(1)
W )

)]
.
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Chapter 3

Existence of optimal
norm-conserving pseudopotentials for
Kohn-Sham models

This chapter is concerned with the mathematical construction of pseudopotentials for elec-
tronic structure calculation. We first start by recalling the structure and the basis prop-
erties of the Kohn-Sham model for an atom, first with all-electron potentials, and second
with norm-conserving pseudopotentials. The ground state mean-field Hamiltonian of an
atom is rotation-invariant and its eigenfunctions therefore have specific properties, which
we study in details since they play an important role in pseudopotential theory. The way of
building norm-conserving pseudopotentials is described and the set of admissible semilocal
norm-conserving pseudopotentials is defined. We prove that, for the Hartree (also called
reduced Hartree-Fock) model, the latter set is nonempty and closed for an appropriate
topology. We also prove some stability results of the Hartree model with pseudopotential,
with respect to both external perturbations and variations of the pseudopotential itself.
We then extend some of the results obtained in the framework of regular perturbation
theory in Chapter 2 to the case of a perturbation by a uniform electric field (Stark po-
tential). We construct in particular the first-order perturbation of the density matrix for
both the all-electron and the pseudopotential Hartree model. We finally propose a new
way to construct pseudopotentials consisting in choosing the “best” pseudopotential for
some optimality criterion, and we prove the existence of an optimal pseudopotential for
a variety of optimality criteria (some of them involving the linear response of the ground
state atomic density to Stark potentials). Finally, we discuss possible extensions of our
results to the Kohn-Sham LDA model. This work has been preprinted [25] and submitted
for publication.

83



3.1 Introduction

It is a well-known theoretical and experimental fact that the core electrons of an atom are
hardly affected by the chemical environment experienced by this atom. Pseudopotential
methods are efficient model reduction techniques relying on this observation, which are
widely used in electronic structure calculation, especially in solid state physics and mate-
rials science, as well as for the simulation of molecular systems containing heavy atoms. In
pseudopotential methods, the original all-electron model is replaced by a reduced model ex-
plicitly dealing with valence electrons only, while core electrons are frozen in some reference
state. The valence electrons are described by valence pseudo-orbitals, and the interaction
between the valence electrons and the ionic cores (an ionic core consists of a nucleus and
of the associated core electrons) is modeled by a nonlocal operator called a pseudopoten-
tial, constructed once and for all from single-atom reference calculations. The reduction
of dimensionality obtained by eliminating the core electrons from the explicit calculation
results in a much less computationally expensive approach. The pseudopotential has the
property that, for isolated atoms, the valence pseudo-orbitals differ from the valence or-
bitals in the vicinity of the nucleus, i.e. in the so-called core region, but coincide with the
valence orbitals out of the core region, i.e. in the region where the influence of the chemical
environment is important. In addition to the reduction of dimensionality mentioned above,
an advantage of pseudopotential models is that pseudopotentials are constructed in such
a way that the valence pseudo-orbitals oscillate much less than the valence orbitals in the
core region, hence can be approximated using smaller planewave bases, or discretized on
coarser grids. In addition, pseudopotentials can be used to incorporate relativistic effects
in non-relativistic calculations. This is of major interest for the simulation of heavy atoms
with relativistic core electrons.

The concept of pseudopotential was first introduced by Hellmann [43] as early as in
1934. Several variants of the pseudopotential method were then developed over the years.
Let us mention in particular Kerker’s pseudopotentials [48], Troullier-Martins [87] and
Kleinman-Bylander [49] norm-conserving pseudopotentials, Vanderbilt ultrasoft pseudopo-
tentials [91], and Goedecker pseudopotentials [37]. Blochl’s Projected Augmented Wave
(PAW) method [10] can also be interpreted, to some extend, as a pseudopotential method.
Although existing pseudopotential methods can be justified by convincing chemical argu-
ments and work satisfactorily in practice, they are obtained by ad hoc procedures, so that
the error introduced by the pseudopotential approximation is difficult to quantify a priori.

The purpose of this article is to clarify the mathematical framework underlying the
construction of semilocal norm-conserving pseudopotentials for Kohn-Sham calculations,
and to prove the existence of optimal pseudopotentials for a natural family of optimality
criteria. We focus here on theoretical issues; the practical interest of this approach will
be investigated in future works. In Section 3.2, we recall the mathematical structures of
all-electron and norm-conserving pseudopotential Kohn-Sham models. In Section 3.3.2, we
provide some results on the spectra of Hartree Hamiltonians for neutral atoms upon which
the construction of pseudopotentials is based. Recall that the Hartree model is obtained
from the exact Kohn-Sham model by discarding the exchange-correlation energy functional.
We then define and analyze in Sections 3.3.3 to 3.3.5 the set of admissible semilocal norm-
conserving pseudopotentials. After establishing in Section 3.3.6 some stability results of the
Hartree ground state with respect to both external perturbations and small variations of
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the pseudopotential, we propose in Section 3.3.7 a new way to construct pseudopotentials,
consisting of choosing the best candidate in the set of all admissible pseudopotentials for
a given optimality criterion. Most of our results are concerned with the Hartree model.
Extensions to the LDA (local density approximation) model are discussed in Section 3.4.
All the proofs are collected in Section 3.5.

3.2 Kohn-Sham models

Throughout this article, we use atomic units, in which ~ = 1, me = 1, e = 1 and 4πǫ0 = 1,
where ~ is the reduced Planck constant, me the electron mass, e the elementary charge, and
ǫ0 the dielectric permittivity of the vacuum. For simplicity, we only consider here restricted
spin-collinear Kohn-Sham models (see [38] for a mathematical analysis of unrestricted and
spin-noncollinear Kohn-Sham models) in which the diagonal components γ↑↑ and γ↓↓ of
the spin-dependent density matrix are equal, and the off-diagonal components γ↑↓ and γ↓↑

are both equal to zero. A Kohn-Sham state can therefore be described by a density matrix

γ = γ↑↑ + γ↓↓ = 2γ↑↑ = 2γ↓↓

satisfying the following properties:

• γ ∈ S(L2(R3)), where S(L2(R3)) denotes the space of the bounded self-adjoint op-
erators on L2(R3);

• 0 ≤ γ ≤ 2, which means 0 ≤ (φ, γφ)L2 ≤ 2‖φ‖2L2 for all φ ∈ L2(R3);

• Tr (γ) equals the number of electrons in the system.

As we do not consider here molecular models with magnetic fields, we can work in the
space L2(R3) of real-valued square integrable functions on R

3.

3.2.1 All electron Kohn-Sham models

Consider a molecular system with N electrons and K point-like nuclei of charges Z =
(z1, · · · , zK) ∈ N

K , located at positions R = (R1, · · · ,RK) ∈ (R3)K . The Kohn-Sham
ground state of the system is obtained by solving the minimization problem

IZ,R = inf {EZ,R(γ), γ ∈ KN} , (3.1)

where

EZ,R(γ) = Tr

((
−1

2
∆−

K∑

k=1

zk| · −Rk|−1

)
γ

)
+

1

2
D (ργ , ργ) + Exc (ργ) , (3.2)

and
KN :=

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 2, Tr (γ) = N, Tr (−∆γ) <∞

}
,

where Tr (−∆γ) := Tr (|∇|γ|∇|), with |∇| := (−∆)1/2. Recall that any γ ∈ KN has a
density ργ ∈ L1(R3), defined by

∀W ∈ L∞(R3), Tr (γW ) =

∫

R3

ργW,
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which satisfies ργ ≥ 0 in R
3 and

√
ρ
γ

∈ H1(R3), so that ργ ∈ L1(R3) ∩ L3(R3). In
particular,

Tr

((
−1

2
∆−

K∑

k=1

zk| · −Rk|−1

)
γ

)
=

1

2
Tr (−∆γ)−

K∑

k=1

zk

∫

R3

ργ(r)

|r−Rk|
dr,

where the second term of the right-hand side is well-defined by virtue of Hardy and
Hoffmann-Ostenhof inequalities [44]

0 ≤
∫

R3

ργ(r)

|r−Rk|
dr ≤ 2N1/2‖∇√

ργ‖L2 ≤ 2N1/2Tr (−∆γ)1/2 <∞.

The bilinear form D(·, ·) in (3.2) is the Coulomb interaction defined for all (f, g) ∈
L6/5(R3)× L6/5(R3) by

D(f, g) =

∫

R3

∫

R3

f(r) g(r′)
|r− r′| dr dr′. (3.3)

Lastly, the exchange-correlation energy functional Exc depends on the Kohn-Sham model
under consideration. We will restrict ourselves to two different Kohn-Sham models, namely
the Hartree model, also called the reduced Hartree-Fock model, for which

EHartree
xc (ρ) = 0,

and the Kohn-Sham LDA (local density approximation) model [51], for which

ELDA
xc (ρ) =

∫

R3

ǫxc(ρ(r)) dr,

where for each ρ ∈ R+, ǫxc(ρ) ∈ R− is the exchange-correlation energy density of the
homogeneous electron gas with uniform density ρ. The function ρ 7→ ǫxc(ρ) does not have
a simple explicit expression, but it has the same mathematical properties as the exchange

energy density of the homogeneous electron gas given by ǫx(ρ) = −3
4

(
3
π

)1/3
ρ4/3.

We are now going to recall some existence and uniqueness results for the Hartree model
proved in [23, 81]. Although general results for neutral and positively charged molecular
systems are available, we focus here on the case of a single neutral atom, which is of
particular interest for the study of pseudopotentials. Weaker results have been obtained
for the Kohn-Sham LDA model [4] (see also Section 3.4).

For convenience, we will call atom z the neutral atom with atomic number z.

Proposition 20 (All-electron Hartree model for neutral atoms [23, 81]). Let z ∈ N
∗. The

all-electron Hartree model for atom z

IAA
z := inf

{
EAA
z (γ), γ ∈ Kz

}
, (3.4)

where

EAA
z (γ) = Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ(r)

|r| dr+
1

2
D (ργ , ργ) ,

has a minimizer γ0z , and all the minimizers of (3.4) share the same density ρ0z. In addition,
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1. the ground state density ρ0z is a radial positive function belonging to H2(R3)∩C0,1(R3)∩
C∞(R3 \ {0}) (hence vanishing at infinity);

2. the Hartree Hamiltonian

HAA
z = −1

2
∆ +WAA

z , where WAA
z = − z

| · | + ρ0z ⋆ | · |−1

is a bounded below self-adjoint operator on L2(R3) with domain H2(R3) and such
that σess(HAA

z ) = [0,+∞);

3. the minimizers γ0z satisfy the first-order optimality condition

γ0z = 21(−∞,ǫ0z,F)
(HAA

z ) + δ,

where ǫ0z,F ≤ 0 is the Fermi level (that is the Lagrange multiplier of the constraint
Tr (γ) = z), and where δ is a finite-rank operator such that 0 ≤ δ ≤ 2 and Ran(δ) ⊂
Ker(HAA

z − ǫ0z,F);

4. if ǫ0z,F is negative and is not an accidentally degenerate eigenvalue of HAA
z , then the

minimizer γ0z of (3.4) is unique.

Remark 21 (on the Fermi level). Consider, for each j ∈ N
∗, the real number

εz,j := inf
Xj∈Xj

sup
φ∈Xj\{0}

〈φ|HAA
z |φ〉

‖φ‖2
L2

, (3.5)

where Xj is the set of the vector subspaces of H1(R3) of dimension j and 〈φ|HAA
z |φ〉

the quadratic form associated with the self-adjoint operator HAA
z (whose form domain is

H1(R3)). According to the minmax principle [69, Theorem XIII.1], εz,j is equal to the
jth lowest eigenvalue of HAA

z (counting multiplicities) if HAA
z has at least j non-positive

eigenvalues (still counting multiplicities), and to min(σess(H
AA
z )) = 0 otherwise. If z is

odd, then ǫ0z,F = εz,(z+1)/2. If z is even, that is if z = 2Np, where Np is the number
of electron pairs, two cases can be distinguished: if εz,Np = εz,Np+1, then ǫ0z,F = εz,Np ,
otherwise, any number in the interval (εz,Np , εz,Np+1) is an admissible Lagrange multiplier
of the constraint Tr (γ) = z.

Remark 22 (on essential and accidental degeneracies). Let us clarify the meaning of
the last statement of Proposition 20. The mean-field operator HAA

z being invariant with
respect to rotations, some of its eigenvalues may be degenerate. More precisely, all its
eigenvalues corresponding to p, d, f, ... shells (see Section 3.3.2) are degenerate, and only
those corresponding to s shells are (in general) non-degenerate. Eigenvalue degeneracies
due to symmetries are called essential. By contrast, eigenvalues degeneracies of HAA

z which
are not due to rotational symmetry are called accidental. For instance, the fact that the
2s and 2p shells of the Hamiltonian H = −1

2∆ − 1
|·| (hydrogen atom) both correspond to

the eigenvalue −1/8 is an accidental degeneracy. We have checked numerically that ǫ0z,F
is negative and is not an accidentally degenerate eigenvalue for any 1 ≤ z ≤ 20. On the
other hand, for z = 21, ǫ0z,F is very close or equal to zero (see [24]).
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3.2.2 Kohn-Sham models with norm-conserving pseudopotentials

In pseudopotential calculations, the electrons of each chemical element are partitioned
into two categories, core electrons on the one hand and valence electrons on the other
hand, according to the procedure detailed in Section 3.3.4 below. We denote by Nz,c

the number of core electrons in atom z, and by Nz,v = z − Nz,c the number of valence
electrons. Each chemical element is associated with a bounded nonlocal rotation-invariant
self-adjoint operator V PP

z , called the atomic pseudopotential, a core pseudo-density ρ̃0z,c ∈
L1(R3)∩L3(R3), and a core energy Ez,c ∈ R which will be precisely defined in Section 3.3.5.
Only valence electrons are explicitly dealt with in pseudopotential calculations. For the
molecular system considered in Section 3.2.1, the pseudopotential approximation of the
ground state energy is given by

IPPZ,R = inf
{
EPP
Z,R(γ̃), γ̃ ∈ KNv

}
+

K∑

k=1

Ezk,c, (3.6)

where

Nv = N −
K∑

k=1

Nzk,c

is the total number of valence electrons in the system (Nv =
∑K

k=1Nzk,v if the system is
electrically neutral). The Kohn-Sham pseudo-energy functional is

EPP
Z,R(γ̃) = Tr

((
−1

2
∆ +

K∑

k=1

τRk
V PP
zk

τ−Rk

)
γ̃

)
+
1

2
D
(
ργ̃ , ργ̃

)
+Exc

(
ργ̃ +

K∑

k=1

τRk
(ρ̃0zk,c)

)
,

where for all R ∈ R
3, τR is the translation operator defined on L2(R3) by (τRφ)(r) =

φ(r−R).

We will describe the precise nature of the atomic pseudopotentials V PP
z in Section 3.3.5.

Let us just mention at this stage that V PP
z is a rotation-invariant operator of the form

V PP
z = Vz,loc + Vz,nl (3.7)

where Vz,loc and Vz,nl are respectively the local and nonlocal parts of the pseudopotential
operator V PP

z . The operator Vz,loc is a multiplication operator by a real-valued radial
function Vz,loc ∈ L2

loc(R
3) satisfying

Vz,loc(r) ∼
|r|→∞

−Nz,v

|r| . (3.8)

The operator Vz,nl is a −∆-compact, rotation-invariant, bounded self-adjoint operator on
L2(R3) such that

∀φ ∈ L2(R3),
(
ess-Supp(φ) ⊂ R

3 \Brc

)
⇒ (Vz,nlφ = 0) , (3.9)

where rc is a positive real number (depending of z) called the core radius of atom z, and
where Brc is the closed ball of R3 centered at the origin, with radius rc.

The results below are straightforward extensions of the existence and uniqueness results
established in [4, 23, 81]. We skip their proofs for brevity.
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Proposition 23 (Kohn-Sham models with norm-conserving pseudopotential). Assume
that the molecular system is neutral or positively charged, and that the atomic pseudopo-
tentials satisfy (3.7)-(3.9). Then

1. the Hartree model (3.6) with Exc = EHartree
xc = 0 has a minimizer and all the mini-

mizers share the same density;

2. the Kohn-Sham LDA model (3.6) with Exc = ELDA
xc has a minimizer.

Proposition 24 (Hartree model for neutral atoms and norm-conserving pseudopotentials).
Let z ∈ N

∗. If the atomic pseudopotential V PP
z satisfies (3.7)-(3.9), then the Hartree model

inf
{
EPP
z (γ̃), γ̃ ∈ KNz,v

}
, (3.10)

where

EPP
z (γ̃) = Tr

((
−1

2
∆ + V PP

z

)
γ̃

)
+

1

2
D
(
ργ̃ , ργ̃

)
,

has a minimizer γ̃0z and all the minimizers share the same density ρ̃0z. In addition,

1. the pseudo-density ρ̃0z is a radial positive function belonging to H2(R3) (hence van-
ishing at infinity); ;

2. the Hartree pseudo-Hamiltonian

HPP
z = −1

2
∆ +WPP

z , where WPP
z = V PP

z + ρ̃0z ⋆ | · |−1, (3.11)

corresponding to the pseudopotential V PP
z , is a bounded below self-adjoint operator

on L2(R3) with domain H2(R3) and such that σess(HPP
z ) = [0,+∞);

3. the minimizers γ̃0z satisfy the first-order optimality condition

γ̃0z = 21(−∞,ǫ̃0z,F)
(HPP

z ) + δ̃,

where ǫ̃0z,F ≤ 0 the pseudo Fermi level (the Lagrange multiplier associated with the

constraint Tr (γ̃) = Nz,v), and where δ̃ is a finite-rank operator such that 0 ≤ δ̃ ≤ 2

and Ran(δ̃) ⊂ Ker(HPP
z − ǫ̃0z,F);

4. if ǫ̃0z,F is negative and is not an accidentally degenerate eigenvalue of HPP
z , then the

minimizer γ̃0z of (3.4) is unique.

Remark 25. We will see in Section 3.3.5 that, by construction, the Fermi level ǫ0z,F and
the pseudo Fermi level ǫ̃0z,F are actually equal, and that if ǫ0z,F is negative and is not an
accidentally degenerate eigenvalue of HAA

z , then ǫ̃0z,F is (obviously) negative and is not an
accidentally degenerate eigenvalue of HPP

z .

3.3 Analysis of norm-conserving semilocal pseudopotentials

In this section, we restrict ourselves to the Hartree model. Extensions to the Kohn-Sham
LDA model are discussed in Section 3.4.
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3.3.1 Atomic Hamiltonians and rotational invariance

In both all-electron and pseudopotential calculations, atomic Hartree Hamiltonians are
self-adjoint operators on L2(R3) invariant with respect to rotations around the nucleus
(assumed located at the origin). These operators are therefore block-diagonal in the de-
composition of L2(R3) associated with the eigenspaces of the operator L2 (the square of
the angular momentum operator L = r × p = r × (−i∇)). More precisely, the Hilbert
space L2(R3) can be decomposed as the direct sum of the pairwise orthogonal subspaces
Hl := Ker(L2 − l(l + 1)):

L2(R3) =
⊕

l∈N
Hl. (3.12)

It is convenient to introduce the spaces

L2
o(R) =

{
f ∈ L2(R) | f(−r) = −f(r) a.e.

}

(odd square integrable functions on R) and

L2
r (R

3) =
{
u ∈ L2(R3) | u is radial

}

(radial square integrable functions on R
3). To any u ∈ L2

r (R
3) is associated a (unique)

function Ru ∈ L2
o(R) such that

u(r) =
Ru(|r|)√
2π|r|

for a.e. r ∈ R
3.

When there is no ambiguity, we will also denote by

u(r) =
Ru(r)√
2πr

for a.e. r ∈ R

(r 7→ u(r) then is an even function of r, belonging to the weighted L2 space L2
(
R, r2dr

)
).

It is easily checked that the mapping

R : L2
r (R

3) ∋ u 7→ Ru ∈ L2
o(R)

is unitary. For s ∈ R, we denote by

Hs
r (R

3) and Hs
o(R)

the subspaces of the Sobolev spaces Hs(R3) and Hs(R) consisting of radial, and odd
distributions respectively, and, for s ∈ R+, we denote by Hs

loc,r(R
3) the space of radial

locally Hs distributions in R
3.

Lemma 26. For all s ∈ R+ and all u ∈ Hs
r (R

3), we have that Ru ∈ Hs
o(R). In addition,

the mapping Hs
r (R

3) ∋ u 7→ Ru ∈ Hs
o(R) is unitary.

Denoting by Pl ∈ S(L2(R3)) the orthogonal projector on Hl, the spaces Hl = Ran(Pl)
are given by

Hl =

{
vl(r) =

l∑

m=−l

√
2 vl,m(|r|)

|r| Yml
(

r

|r|

) ∣∣∣∣ vl,m ∈ L2
o(R), ∀ − l ≤ m ≤ l

}
,
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where (Yml )l≥0,−l≤m≤l are the real spherical harmonics [94], normalized in such a way that

∫

S2

Yml Ym′

l′ = δll′δmm′ ,

where S
2 is the unit sphere of R3. Clearly,

∀vl ∈ Hl, ‖vl‖2L2(R3) =

l∑

m=−l
‖vl,m‖2L2(R).

We also have for all s ∈ R+,

Hs(R3) =
⊕

l∈N

(
Hl ∩Hs(R3)

)
,

Hl ∩Hs(R3) =

{
vl(r) =

l∑

m=−l

√
2 vl,m(|r|)

|r| Yml
(

r

|r|

) ∣∣∣∣ vl,m ∈ Hs
o(R), ∀ − l ≤ m ≤ l

}
,

∀vl ∈ Hl ∩H1(R3), ‖vl‖2H1(R3) =

l∑

m=−l
‖vl,m‖2H1(R) + l(l + 1)

l∑

m=−l
‖r−1vl,m‖2L2(R),

∀vl ∈ Hl ∩H2(R3), ‖vl‖2H2(R3) =
l∑

m=−l

∥∥−v′′l,m + l(l + 1)r−2vl,m + vl,m
∥∥2
L2(R)

.

By rotational invariance, any atomic Hamiltonian Hz is block-diagonal in the decomposi-
tion (3.12), which we write

Hz =
⊕

l∈N
Hz,l. (3.13)

3.3.2 All-electron atomic Hartree Hamiltonians

All-electron atomic Hartree Hamiltonians are Schrödinger operators of the form

HAA
z = −1

2
∆ +WAA

z , (3.14)

where WAA
z is the multiplication operator by the radial function

WAA
z (r) = − z

|r| +
(
ρ0z ⋆ | · |−1

)
(r),

ρ0z being the radial all-electron atomic Hartree ground state density of atom z (see Propo-
sition 20). The operator HAA

z,l associated with the decomposition (3.13) is the self-adjoint
operator on Hl with domain Hl ∩H2(R3) defined for all vl ∈ Hl ∩H2(R3) by

(HAA
z,l vl)(r) =

l∑

m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|) +

l(l + 1)

2|r|2 vl,m(|r|) +WAA
z (|r|)vl,m(|r|)

)
Yml

(
r

|r|

)
.
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This leads us to introduce, for each l ∈ N, the radial Schrödinger equations

−1

2
R′′(r) +

l(l + 1)

2r2
R(r) +WAA

z (r)R(r) = ǫR(r), R ∈ H1
o (R),

∫

R

R2 = 1. (3.15)

Recall that, for convenience, we also denote by WAA
z the even function from R to R such

that for all r ∈ R
3, WAA

z (r) =WAA
z (|r|).

The spectral properties of atomic Hartree Hamiltonians which will be useful to con-
struct atomic pseudopotentials are collected in the following proposition.

Proposition 27 (spectrum of atomic Hartree Hamiltonians). Let z ∈ N
∗ for which ǫ0z,F <

0. The atomic Hartree Hamiltonian HAA
z is a bounded below self-adjoint operator on L2(R3)

with domain H2(R3), and it holds for any l ∈ N, σess(HAA
z,l ) = σess(H

AA
z ) = [0,+∞). In

addition,

1. HAA
z has no strictly positive eigenvalues and the set of its non-positive eigenvalues is

the union of the non-positive eigenvalues of the operators HAA
z,l , which are obtained

by solving the one-dimensional spectral problem (3.15);

2. for each l ∈ N, the negative eigenvalues of (3.15), if any, are simple, and the eigen-
functions associated with the nth eigenvalue have exactly n− 1 nodes on (0,+∞);

3. for each l ∈ N, (3.15) has at most a finite number nz,l of negative eigenvalues. The
sequence (nz,l)l∈N is non-increasing and nz,l = 0 for l large enough. We denote by

l+z = min{l ∈ N | nz,l+1 = 0};

4. denoting by (ǫz,n,l)1≤n≤nz,l
the negative eigenvalues of (3.15), ranked in increasing

order, we have

∀0 ≤ l1 < l2 ≤ l+z , ∀n ≤ nz,l2 , ǫz,n,l1 < ǫz,n,l2 . (3.16)

We denote by Rz,n,l the L2-normalized eigenfunction associated with the (simple) eigen-
value ǫz,n,l of (3.15) taking positive values for r > 0 large enough:

Rz,n,l ∈ H1
o (R), −1

2
R′′
z,n,l(r) +

l(l + 1)

2r2
Rz,n,l(r) +WAA

z (r)Rz,n,l(r) = ǫz,n,lRz,n,l(r),
∫

R

R2
z,n,l = 1, Rz,n,l(r) > 0 for r ≫ 1.

An orthonormal family of eigenfunctions of the negative part of the atomic Kohn-Sham
Hamiltonian HAA

z is thus given by

φmz,n,l(r) =

√
2Rz,n,l(|r|)

|r| Yml
(

r

|r|

)
, 0 ≤ l ≤ l+z , 1 ≤ n ≤ nz,l, −l ≤ m ≤ l.

Note that φmz,n,l ∈ Hl ∩H2(R3).
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Remark 28. The integers l and m are respectively called the azimuthal and magnetic
quantum numbers. With the labeling of the eigenvalues of HAA

z we have chosen, the so-
called principal quantum number is equal to (n + l). Thus, the 2p and 4d shells of atom
z respectively correspond to the eigenvalues ǫz,1,1 (first eigenvalue of HAA

z |H1) and ǫz,2,2
(second eigenvalue of HAA

z |H2).

The ground state density matrix γ0z can be written as

γ0z =

l+z∑

l=0

nz,l∑

n=1

l∑

m=−l
pz,n,l|φmz,n,l〉〈φmz,n,l|, (3.17)

where 0 ≤ pz,n,l ≤ 2 is the occupation number of the Kohn-Sham orbital φmz,n,l. Note that
pz,n,l is independent of the magnetic quantum number m. The occupation numbers are
such that

pz,n,l = 2 if ǫz,n,l < ǫ0z,F, 0 ≤ pz,n,l ≤ 2 if ǫz,n,l = ǫ0z,F, pz,n,l = 0 if ǫz,n,l > ǫ0z,F, (3.18)

and
l+z∑

l=0

nz,l∑

n=1

(2l + 1)pz,n,l = z.

We call occupied l-shells of atom z the shells s (l = 0), p (l = 1), d (l = 2), f (l = 3), ...
for which nz,l > 0 and pz,1,l > 0. In view of (3.16)-(3.18) if a shell l is occupied, then so
are all the shells l′ with l′ < l. Denoting by

l−z = max
{
0 ≤ l ≤ l+z | pz,1,l > 0

}
,

we thus obtain that all the shells l ≤ l−z are occupied, and all the shells l−z < l ≤ l+z (if
any, see Remark 29 below) are unoccupied.

It follows from (3.17)-(3.18) that if ǫ0z,F is not an eigenvalue of HAA
z (non-degenerate

case in the terminology used in [23]), that is if the highest occupied shell is fully occupied,
then the ground state density matrix is unique and is the orthogonal projector

γ0z = 2
∑

n,l,m | ǫz,n,l<ǫ
0
z,F

|φmz,n,l〉〈φmz,n,l| (non-degenerate case).

We also know (see Proposition 20 and Remark 22) that if ǫ0z,F is an eigenvalue ǫz,n0,l0

of HAA
z which is negative (degenerate case in the terminology used in [23]), and is not

accidentally degenerate, then the ground state density matrix is still unique and is given
by

γ0z = 2
∑

n,l,m | ǫz,n,l<ǫ
0
z,F

|φmz,n,l〉〈φmz,n,l|+
z −Nf

2l0 + 1

l0∑

m=−l0
|φmz,n0,l0〉〈φmz,n0,l0 | (degenerate case),

where
Nf = 2

∑

n,l | ǫz,n,l<ǫ
0
z,F

(2l + 1)

is the number of electrons in the fully occupied shells.
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3.3.3 Atomic semilocal norm-conserving pseudopotentials

Atomic norm-conserving pseudopotentials are operators of the form

V PP
z = Vz,loc +

lz∑

l=0

PlVz,lPl, for some l−z ≤ lz ≤ l+z , (3.19)

where Vz,loc ∈ Hs
loc,r(R

3) and where we recall that Pl ∈ B(L2(R3)) is the orthogonal
projector on the space Hl. The first term in the right-hand side of (3.19) therefore is
a local operator, while the second term is nonlocal. The structure of the operator Vz,l
depends on the nature of the pseudopotential under consideration:

• in semilocal pseudopotentials, Vz,l is a multiplication operator by a function Vz,l ∈
Hs

r (R
3); otherwise stated, Vz,l is a local operator on Hl;

• in Kleinman-Bylander pseudopotentials, Vz,l is a finite-rank rotation-invariant oper-
ator.

We restrict our analysis to semilocal pseudopotentials. The overall regularity of the pseu-
dopotential is governed by the parameter s. For each 0 ≤ l ≤ lz, the function Vz,l is
supported in a ball of radius rc,l. The positive number

rc := max
0≤l≤lz

rc,l

is called the core radius.

The operators HPP
z,l involved in the decomposition (3.13) of the atomic Hartree pseudo-

Hamiltonian HPP
z are then given by: for all 0 ≤ l ≤ lz,

(HPP
z,l vl)(r) =

l∑

m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|) +

l(l + 1)

2|r|2 vl,m(|r|) + (Wz,loc + Vz,l)(r)vl,m(|r|)
)

Yml
(

r

|r|

)
,

and for all l > lz,

(HPP
z,l vl)(r) =

l∑

m=−l

√
2

|r|

(
−1

2
v′′l,m(|r|) +

l(l + 1)

2|r|2 vl,m(|r|) +Wz,loc(r)vl,m(|r|)
)

Yml
(

r

|r|

)
,

where
Wz,loc = Vz,loc + ρ̃0z ⋆ | · |−1,

ρ̃0z being the ground state pseudo-density defined in Proposition 24.

The mathematical construction of a semilocal pseudopotential for atom z goes as fol-
lows:

Step 1: choose an energy window ∆E = (E−, E+) ⊂ R−, which, in particular, defines a
partition between core and valence electrons;

Step 2: choose the core radius rc and the Sobolev exponent s, and check that the so-
obtained set Mz,∆E,rc,s of admissible pseudopotentials (see Section 3.3.5) is non-
empty;
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Step 3: choose the "best" pseudopotential in the set Mz,∆E,rc,s.

Steps 1 and 2 are detailed in the next two sections. In Section 3.3.6, we investigate the
stability of the atomic ground state of the pseudopotential model with respect to both
external perturbations and variations of the pseudopotential itself. In Section 3.3.7, we
address the existence of optimal pseudopotentials for a variety of optimality criteria.

3.3.4 Partition between core and valence electrons

As mentioned above, the first task to construct a pseudopotential is to partition the elec-
trons into core and valence electrons. We assume here that z ∈ N

∗ is such that ǫ0z,F < 0.
This partitioning is made through the choice of an energy window ∆E = (E−, E+), with
−∞ < E− < E+ < 0, containing the Fermi level ǫ0z,F (or a Fermi level in the case when
the highest occupied energy level is fully occupied, see Remark 21) and such that there
exists an integer lz satisfying l−z ≤ lz ≤ l+z and

∀l ≤ lz, #
(
{ǫz,n,l}n∈N ∩∆E

)
= #

(
{ǫz,n,l}n∈N ∩∆E

)
= 1, (3.20)

∀l > lz, #
(
{ǫz,n,l}n∈N ∩∆E

)
= 0. (3.21)

All the electrons occupying the shells such that ǫz,n,l < E− are considered as core electrons.
For each l ≤ lz, we denote by n⋆z,l, the unique non-negative integer such that ǫz,n⋆

z,l,l
∈ ∆E.

The set
{
ǫz,n⋆

z,l,l

}
0≤l≤lz

constitute the set of the valence energy levels, which can a priori

be fully occupied (E− < ǫz,n⋆
z,l,l

< ǫ0z,F), partially occupied (ǫz,n⋆
z,l,l

= ǫ0z,F) or unoccupied

(ǫ0z,F < ǫz,n⋆
z,l,l

< E+).

Remark 29. Let us emphasize that it is not clear a priori that one can find energy windows
∆E satisfying (3.20)-(3.21). Here again, we need to rely on numerical simulations to
establish that our assumptions make sense and are satisfied in practice, at least for some
atoms. In another contribution [24] more focused on numerical simulations, we show in
particular that for most atoms of the first four rows of the periodic table, ǫ0z,F < 0 and
energy windows ∆E satisfying (3.20)-(3.21) do exist. Besides, for most atoms of the first
four rows, atomic Hartree Hamiltonians do not seem to have unoccupied energy levels with
negative energies, so that for those atoms, l+z = l−z and therefore lz = l−z = l+z . For
instance, it can be checked numerically that the Hartree valence energy levels of the copper
atom (z = 29) are such that

lz = 2, n⋆z,0 = 4, n⋆z,1 = 2, n⋆z,2 = 1, E− < ǫz,2,1 < ǫz,4,0 < ǫ0z,F = ǫz,1,2 < E+, (for Cu).

This is the situation depicted on Fig. 1. The core and valence configurations are respectively
denoted by 1s2 2s2 2p6 3s2 and 3p6 4s2 3d9 in the chemistry literature. Let us observe that
the valence configuration of Cu for the Hartree model differs from the one obtained from
the N -body Schrödinger equation with infinitesimal Coulomb repulsion [35], that is 3p6 3d10

4s1.

We therefore have

Nz,c =
∑

n,l | ǫz,n,l≤E−

(2l + 1)pz,n,l and Nz,v = z −Nz,c,
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Figure 3.1 – Sketch of the spectra of the operators HAA
z |Hl

and admissible energy window
∆E = (E−, E+) for the copper atom (z = 29). The energy scale is arbitrary. The actual
values of the energy levels are the following: ǫz,1,0 ≃ −312.78 Ha (1s), ǫz,2,0 ≃ −36.42 Ha
(2s), ǫz,1,1 ≃ −31.57 Ha (2p), ǫz,3,0 ≃ −3.716 Ha (3s), ǫz,2,1 ≃ −2.294 Ha (3p), ǫz,4,0 ≃
−5.540× 10−2 Ha (4s), ǫ0z,F = ǫz,1,2 ≃ −1.371× 10−2 Ha (3d). The self-consistent Hartree
Hamiltonian HAA

z seems to have no negative eigenvalue above the Fermi level ǫ0z,F.

where we recall that Nz,c and Nz,v respectively denote the numbers of core and valence elec-
trons. We also introduce the core and valence all-electron Hartree ground state densities,
respectively defined as

ρ0z,c(r) := 2
∑

n,l | ǫz,n,l≤E−

l∑

m=−l
|φmz,n,l(r)|2 and ρ0z,v(r) :=

lz∑

l=0

l∑

m=−l
pz,n⋆

z,l,l
|φmz,n⋆

z,l,l
(r)|2.

Note that the core density ρ0z,c should not be confused with the core pseudo-density ρ̃0z,c
mentioned in Section 3.2.2 and whose expression will be given below (see (3.32)).

3.3.5 Admissible pseudopotentials

Let z ∈ N
∗ be such that ǫ0z,F < 0, and let ∆E = (E−, E+) be an energy window satisfying

the properties (3.20)-(3.21). An admissible semilocal norm-conserving pseudopotential
with core radius rc and regularity Hs (s > 0) is an operator V PP

z of the form

V PP
z = Vz,loc +

lz∑

l=0

PlVz,lPl, for some l−z ≤ lz ≤ l+z ,

for which the radial functions Vz,loc and Vz,l satisfy the following properties:

1. values out of the core region:

in R
3 \Brc , Vz,loc = − z

| · | + ρ0z,c ⋆ | · |−1 and Vz,l = 0 for all 0 ≤ l ≤ lz; (3.22)
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2. Hs-regularity:

Vz,loc ∈ Hs
loc,r(R

3) and for all 0 ≤ l ≤ lz, Vz,l ∈ Hs
r (R

3); (3.23)

3. consistency: the atomic Hartree pseudo-Hamiltonian

HPP
z = −1

2
∆ +WPP

z , where WPP
z =Wz,loc +

lz∑

l=0

PlVz,lPl,

obtained with the pseudopotential V PP
z (see Proposition 24) is such that

1(−∞,E+)(H
PP
z ) =

lz∑

l=0

l∑

m=−l
|φ̃mz,l〉〈φ̃mz,l|, (3.24)

Wz,loc = Vz,loc + ρ̃0z ⋆ | · |−1, ρ̃0z(r) =

lz∑

l=0

l∑

m=−l
pz,n⋆

z,l,l
|φ̃mz,n⋆

z,l,l
(r)|2, (3.25)

where

φ̃mz,l(r) =

√
2 R̃z,l(|r|)

|r| Yml
(

r

|r|

)
, (3.26)

with, for each 0 ≤ l ≤ lz,

R̃z,l ∈ H1
o (R), (3.27)

− 1

2
R̃′′
z,l(r) +

l(l + 1)

2r2
R̃z,l(r) + (Wz,loc(r) + Vz,l(r)) R̃z,l(r) = ǫz,n⋆

z,l,l
R̃z,l(r), (3.28)

∫

R

R̃2
z,l = 1, (3.29)

R̃z,l = Rz,n⋆
z,l,l

on (rc,l,+∞) for some 0 < rc,l ≤ rc, (3.30)

R̃z,l ≥ 0 on (0,+∞), . (3.31)

We can therefore define the set of admissible semilocal norm-conserving pseudopotentials
with energy window ∆E = (E−, E+), core radius rc and regularity Hs, for the atom z as

Mz,∆E,rc,s :=

{
V PP
z = Vz,loc +

lz∑

l=0

PlVz,lPl

∣∣∣∣ such that (3.22)− (3.31) hold

}
.

Several comments are in order:

• condition (3.22) implies conditions (3.8)-(3.9), so that the existence and uniqueness
of the atomic ground state valence pseudo-density ρ̃0z is guaranteed by Proposition 24
as soon as (3.22) is satisfied;

• it follows from (3.27)-(3.29) and (3.31) that ǫz,n⋆
z,l,l

is the ground state eigenvalue of

HPP
z |Hl

and that the (2l + 1) functions φ̃mz,l, −l ≤ m ≤ l, form an orthonormal basis
of associated eigenfunctions;
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• it also follows from (3.24) that the ǫz,n⋆
z,l,l

’s are the only eigenvalues of HPP
z in the

energy range (−∞, E+). This property is referred to as the absence of ghost states
in the physics literature;

• out of the core region, (3.22) is compatible with (3.28) and (3.30). Indeed, (3.28)
and (3.30) imply that

∀r ∈ R
3 \Brc , ρ̃0z(r) = ρ0z,v(r) and Wz,loc(r) + Vz,l(r) =WAA

z (r),

hence, applying Gauss theorem, that ρ̃0z ⋆ | · |−1 = ρ0z,v ⋆ | · |−1 in R
3 \Brc , which finally

leads to

Vz,loc + Vz,l =WAA
z − ρ0z,v ⋆ | · |−1 = − z

| · | + ρ0z,c ⋆ | · |−1 in R
3 \Brc ;

• the core energies and the core pseudo-densities ρ̃0,c of the atoms appearing in (3.6)
are defined in such a way that for an isolated atom, the pseudopotential calculation
gives the same energy as the all-electron model. In the Hartree case, the core energy
of atom z is therefore given by

Ez,c = IAA
z − inf

{
EPP
z (γ̃), γ̃ ∈ KNz,v

}

= IAA
z − Tr

((
−1

2
∆ + V PP

z

)
γ̃0z

)
− 1

2
D
(
ρ̃0z, ρ̃

0
z

)

= IAA
z −

lz∑

l=0

(2l + 1)pz,n⋆
z,l,l

ǫz,n⋆
z,l,l

+
1

2
D
(
ρ̃0z, ρ̃

0
z

)
.

The core pseudo-density of atom z is defined by

ρ̃0z,c = ρ0z − ρ̃0z. (3.32)

Note that atomic core pseudo-densities do not play any role in the Hartree model,
since they are only involved in the exchange-correlation energy functional.

The rest of this section is devoted to the study of the set Mz,∆E,rc,s. We assume here
that z ∈ N

∗ is such that ǫ0z,F < 0 and that ∆E = (E−, E+) is a fixed energy window
satisfying (3.20)-(3.21). It readily follows from the definition of Mz,∆E,rc,s that

∀0 < rc ≤ r′c < +∞, Mz,∆E,rc,s ⊂ Mz,∆E,r′c,s, (3.33)

∀0 ≤ s ≤ s′ < +∞, Mz,∆E,rc,s′ ⊂ Mz,∆E,rc,s. (3.34)

Let
r−z,∆E,c = max

0≤l≤lz

(
maxR−1

z,n⋆
z,l,l

(0)
)
≥ 0

be the maximum over 0 ≤ l ≤ lz of the largest node of the function Rz,n⋆
z,l,l

. If rc < r−z,∆E,c,
then (3.30) and (3.31) are obviously inconsistent, and Mz,∆E,rc,s = ∅. On the other hand,
we are going to see that Mz,∆E,rc,s is not empty, for any s ≥ 0, as soon as rc is large
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enough. To any potential W ∈ L
3/2
r (R3), we associate the function TW : (0,+∞) → R−

defined for all r > 0 by

TW (r) := inf
φ ∈ H1

0 (Ω(r))
‖φ‖

L2(Ω(r))
= 1

∫

Ω(r)

(
1

2
|∇φ|2 +Wφ2

)
,

where Ω(r) = R
3 \ Br. We will prove in Section 3.5.3 that TWAA

z
is continuous and non-

decreasing, and that it maps (0,+∞) onto (εz,1, 0] (where we recall that εz,1 is the lowest
eigenvalue of HAA

z , see (3.5)).

Lemma 30. Let z ∈ N
∗ be such that ǫ0z,F < 0. Let ∆E = (E−, E+) be an energy window

satisfying (3.20)-(3.21). The equation TWAA
z

(r) = E+ has a unique solution r+z,∆E,c > 0.

In addition, r−z,∆E,c < r+z,∆E,c and for all rc ≥ r+z,∆E,c and all s ≥ 0, the set Mz,∆E,rc,s is
nonempty.

We were not able to provide a simple characterization of the critical core radius r0z,∆E,c,
r−z,∆E,c ≤ r0z,∆E,c ≤ r+z,∆E,c, such that for all s ≥ 0,

∀rc < r0z,∆E,c, Mz,∆E,rc,s = ∅ and ∀rc > r0z,∆E,c, Mz,∆E,rc,s 6= ∅.

We can only show, using the same regularization argument as in the proof of Lemma 30,
that r0z,∆E,c is indeed independent of s.

Our next results will be established under the following:

Assumption 1: z ∈ N
∗ is such that ǫ0z,F is negative and is not an accidentally degenerate

eigenvalue of HAA
z , ∆E = (E−, E+) satisfies (3.20)-(3.21), rc > r0z,∆E,c and s > 0.

Consider now the Hilbert space

Xz,∆E,rc,s =

{
v = vloc +

lz∑

l=0

PlvlPl

∣∣∣∣ (vloc, (vl)0≤l≤lz) ∈ (Hs
0,r(Brc))

lz+2

}
≡ (Hs

0,r(Brc))
lz+2,

where Hs
0,r(Brc) is the closure in Hs(R3) of the space of radial, real-valued, C∞ functions

on R
3 with compact supports included in the open ball Brc :=

{
r ∈ R

3 | |r| < rc
}
, and the

affine space

Xz,∆E,rc,s =
{
V = Vloc +

lz∑

l=0

PlVlPl

∣∣∣∣ such that (3.22)− (3.23) hold

}
.

Note that
∀V ∈ Xz,∆E,rc,s, Xz,∆E,rc,s = V +Xz,∆E,rc,s.

As Mz,∆E,rc,s is a subset of Xz,∆E,rc,s, we can endow the former set with the topology of
the latter, and say that a sequence (V PP

z,k )k∈N ∈ Mz,∆E,rc,s of admissible pseudopotentials

• strongly converges to some V ∈ Xz,∆E,rc,s if (with obvious notation)

‖Vz,loc,k − Vloc‖2Hs +

lz∑

l=0

‖Vz,l,k − Vl‖2Hs →
k→∞

0; (3.35)
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• weakly converges to some V ∈ Xz,∆E,rc,s if

∀V ′ ∈ Xz,∆E,rc,s,
(
Vz,loc,k − Vloc, V

′
loc

)
Hs +

lz∑

l=0

(
Vz,l,k − Vl, V

′
l

)
Hs →

k→∞
0. (3.36)

Theorem 31 (properties of the set of norm-conserving pseudopotentials). Under Assump-
tion 1, Mz,∆E,rc,s is a nonempty weakly (hence strongly) closed subset of the affine space
Xz,∆E,rc,s.

In practice, pseudopotentials are constructed by first selecting optimal (for some cri-
terion) pseudo-orbitals R̃z,l, 0 ≤ l ≤ lz, and then deducing from these functions the local
and nonlocal components of the atomic pseudopotential using the relations

∀r ∈ R
3 \ {0} , Vz,loc(r) + Vz,l(r) = ǫz,n⋆

z,l,l
+

1

2

R̃′′
z,l(|r|)

R̃z,l(|r|)
− l(l + 1)

2|r|2 −
(
ρ̃0z ⋆ | · |−1

)
(r),

where ρ̃0z is defined by (3.26) and (3.25).

The following lemma is useful to select admissible functions R̃z,l.

Lemma 32. Let V PP
z ∈ Mz,∆E,rc,s for some s > 1

2 (so that the functions Vz,loc and Vz,l
are continuous). For each 0 ≤ l ≤ lz, the radial function R̃z,l, defined by (3.27)-(3.31) in
is Hs+2

o (R) and
R̃z,l(r) = O(rl+1) as r → 0.

3.3.6 Some stability results

Let z,∆E, rc, s satisfying Assumption 1. Let V PP
z ∈ Mz,∆E,rc,s be a reference pseudopo-

tential. It follows from Proposition 24 and the definition of Mz,∆E,rc,s (see also Remark 25)
that ǫ0z,F is not an accidentally degenerate eigenvalue of HPP

z and that the ground state
pseudo-density matrix γ̃0z corresponding to V PP

z is unique.

We can study the sensitivity of γ̃0z with respect to both an external perturbation and
the choice of the pseudopotential by considering the minimization problem

EV PP
z

(v,W ) := inf
{
EV PP

z
(γ̃, v,W ), γ̃ ∈ KNz,v

}
, (3.37)

where the energy functional EV PP
z

is defined on KNz,v ×Xz,∆E,rc,s × C′ by

EV PP
z

(γ̃, v,W ) := Tr

((
−1

2
∆ + V PP

z + v

)
γ̃

)
+

1

2
D(ργ̃ , ργ̃) +

∫

R3

ργ̃W,

and where we have denoted by

C′ =
{
W ∈ L6(R3) | ∇W ∈ (L2(R3))3

}

100



the space of potentials with finite Coulomb energies, endowed with the scalar product
defined by

∀(W1,W2) ∈ C′ × C′, (W1,W2)C′ =

∫

R3

∇W1 · ∇W2.

For η > 0 and X a normed vector space, we denote by Bη(X) the open ball of X with
center 0 and radius η. The following result guarantees the stability of the pseudopotential
model with respect to the choice of the pseudopotential.

Proposition 33. Let z,∆E, rc, s satisfying Assumption 1. Then, for all V PP
z ∈ Mz,∆E,rc,s,

there exists η > 0 such that for all (v,W ) ∈ Bη(Xz,∆E,rc,s) × Bη(C′), problem (3.37)
has a unique minimizer γ̃v,W (V PP

z ). Moreover, for each V PP
z ∈ Mz,∆E,rc,s, the function

(v,W ) 7→ γ̃v,W (V PP
z ) is real analytic from Bη(Xz,∆E,rc,s)×Bη(C′) to the space

S1,1 :=
{
T ∈ S1(L

2(R3)) ∩ S(L2(R3)) | |∇|T |∇| ∈ S1(L
2(R3))

}
,

S1(L
2(R3)) denoting the space of the trace-class operators on L2(R3). For all v ∈ Xz,∆E,rc,s,

all W ∈ C′, and all real numbers α and β such that −η‖v‖−1
Xz,∆E,rc,s

< α < η‖v‖−1
Xz,∆E,rc,s

and −η‖W‖−1
C′ < β < η‖W‖−1

C′ , we have

γ̃αv,βW (V PP
z ) = γ̃0z +

∑

(j,k)∈(N×N)\{(0,0)}
αjβk γ̃

(j,k)
v,W (V PP

z ), (3.38)

where γ̃0z is the ground state density matrix for the pseudopotential V PP
z , where the coeffi-

cients γ̃(j,k)v,W (V PP
z ) of the expansion are uniquely defined in S1,1, and the series is normally

convergent in S1,1.

In the next section, we will define optimality criteria based on first-order perturbation
method for choosing the "best" pseudopotential in the class Mz,∆E,rc,s. These criteria
will involve the difference between the first-order response of the all-electron model and
that of the pseudopotential model to a given external perturbation W . A natural external
perturbation is the one obtained by subjecting the atom to an external uniform electric
field (Stark effect):

W Stark(r) = −r · e, (3.39)

where e is the unit vector of the vertical axis of the reference frame. As the unperturbed
system is rotation-invariant, the direction of the electric field is unimportant. So is its
magnitude since we only consider here first-order perturbations (linear responses).

Note that it is not possible to apply the results in Proposition 33 to the perturba-
tion (3.39) since W Stark is not in C′. In the framework of the linear Schrödinger equation
(see e.g. [69] for a detailed analysis of the case of the Hydrogen atom), the spectrum of a
molecular Stark Hamiltonian is purely absolutely continuous and equal to R for all non-
zero values of the electric field. The eigenstates of the unperturbed Hamiltonian turn into
resonances. On the other hand, the perturbation series is well-defined; its convergence
radius is equal to zero, but the energies and widths of the resonances can nonetheless be
computed from the perturbation expansion using Borel summation techniques.
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For the atomic Hartree model under consideration here, the perturbed energy functional
has no minimizer: for all β 6= 0,

inf

{
EAA
z (γ)− β

∫

R3

ργ(r · e), γ ∈ Kz

}
= −∞.

The same holds true for the corresponding pseudopotential model for any V PP
z ∈ Mz,∆E,rc,s.

Physically, this corresponds to the fact that the infimum of the energy is obtained by al-
lowing the electrons to go to infinity towards the regions where W (r) = −βr · e goes to
−∞. As in the linear framework, each term of the perturbation series is well-defined, but
the convergence radius of the series is equal to zero. We will only prove here the part
of this result we need, namely that the first-order term of the perturbation expansion is
well-defined, and, in the pseudopotential case, that the linear response is continuous with
respect to the choice of the pseudopotential (see Theorem 34 below). We are not aware
of an extension of the theory of resonances to nonlinear mean-field models of Kohn-Sham
type.

For V PP
z ∈ Mz,∆E,rc,s and W ∈ C′, we denote by γ̃(k)W (V PP

z ) := γ̃
(0,k)
0,W (V PP

z ), where the

right-hand side is defined in Proposition 33. We also denote by γ(k)z,W the kth-order pertur-
bation of the all-electron ground state γ0z when atom z is subjected to an external potential
W ∈ C′. A consequence of [23, Theorems 5 and 12] and of the above Proposition 33 is that
the linear maps

C′ ∋W 7→ γ
(1)
z,W ∈ S1,1 and C′ ∋W 7→ γ̃

(1)
W (V PP

z ) ∈ S1,1, V PP
z ∈ Mz,∆E,rc,s, (3.40)

are continuous.

Theorem 34. (Stark effect) Let z,∆E, rc, s satisfying Assumption 1. The continuous
linear maps defined by (3.40) can be extended in a unique way to continuous linear maps

Yz ∋W 7→ γ
(1)
W ∈ S1,1 and Yz ∋W 7→ γ̃

(1)
W (V PP

z ) ∈ S1,1, V PP
z ∈ Mz,∆E,rc,s, (3.41)

where Yz is the Banach space

Yz := C′ + L2
w where L2

w :=

{
W ∈ L2

loc(R
3) |

∫

R3

|W (r)|2e−
√

|ǫ0z,F||r| dr <∞
}
.

In addition, W Stark ∈ Yz and the mapping Mz,∆E,rc,s ∋ V PP
z 7→ γ̃

(1)

WStark(V
PP
z ) ∈ S1,1 is

compact.

3.3.7 Optimization of norm-conserving pseudopotentials

A natural way to choose a pseudopotential in the class Mz,∆E,rc,s is to optimize some
criterion J(V PP

z ) combining the two requirements that the pseudopotential must be as
smooth as possible and as transferable as possible. The smoothness requirement leads us
to introduce the criterion

Js(V
PP
z ) :=

1

2
‖WPP

z ‖2Hs :=
1

2

(
‖Wz,loc‖2Hs +

lz∑

l=0

‖Vz,l‖2Hs

)
, (3.42)
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where WPP
z is the self-consistent pseudopotential corresponding to the pseudopotential

V PP
z (see Proposition 24). Note that it is natural to use the self-consistent pseudopotential
WPP
z rather than V PP

z in the right-hand side of (3.42) since the smoothness of the Kohn-
Sham pseudo-orbitals is controlled by WPP

z . Let us first state a general result.

Theorem 35. Let z,∆E, rc, s satisfying Assumption 1. Consider the criterion

J(V PP
z ) = αJs(V

PP
z ) + Jt(V

PP
z ),

where the smoothness criterion Js is defined by (3.42), where the transferability criterion
Jt : Mz,∆E,rc,s → R is a bounded below weakly lower-semicontinuous function, and where
α > 0 is a parameter allowing one to balance the smoothness and transferability require-
ments. Then, the optimization problem

inf
{
J(V PP

z ), V PP
z ∈ Mz,∆E,rc,s

}
(3.43)

has a minimizer.

Many different transferability criteria Jt, based on various physical and chemical prop-
erties, can be considered. A natural choice is the criterion

JStark
t (V PP

z ) :=
1

2

∥∥∥1R3\Brc

(
ρ̃
(1)

WStark(V
PP
z )− ρ

(1)

z,WStark

)∥∥∥
2

C
, (3.44)

where ρ(1)
z,WStark = ρ

γ
(1)

z,WStark

and ρ̃
(1)

WStark(V
PP
z ) = ρ

γ̃
(1)

WStark (V
PP
z )

are respectively the first-

order perturbations of the all-electron and pseudo densities of atom z, when the latter is
submitted to the Stark potential (3.39). The Coulomb space C is defined as

C =
{
ρ ∈ S ′(R3) | ρ̂ ∈ L1

loc(R
3), ‖ρ‖2C := D(ρ, ρ) <∞

}
,

where

D(f, g) := 4π

∫

R3

f̂(k) ĝ(k)

|k|2 dk. (3.45)

Let us recall that L6/5(R3) ⊂ C, that the definitions (3.3) and (3.45) agree for (f, g) ∈
L6/5(R3) × L6/5(R3), and that C is therefore the space of all charge distributions ρ with
finite Coulomb energy.

The following lemma shows that the transferability criterion JStark
t is well-defined and

falls into the scope of Theorem 35.

Lemma 36. Let z,∆E, rc, s satisfying Assumption 1. Then, JStark
t is a well-defined

bounded below weakly continuous mapping from Mz,∆E,rc,s to R+.

3.4 Extensions to the Kohn-Sham LDA model

It is probably quite difficult to extend to the LDA model the results established above
for the Hartree model. As usual in the mathematical analysis of Kohn-Sham models, the
main obstacle is that we do not know whether the atomic ground state density of atom
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z is unique. We will therefore limit ourselves to comment on the extensions of our main
results under some additional assumptions on the Kohn-Sham LDA ground state.

Assuming that the LDA ground state density ρ0z of atom z is unique, hence radial, and
that the LDA Fermi level of atom z is negative, it is then easy to show that the properties
of the ground state density and of the atomic Hamiltonian listed in Propositions 1 and 8,
as well as the result of uniqueness of the ground state density matrix, still hold for the
all-electron Kohn-Sham LDA model. Likewise, the results in Proposition 5 are still valid
for the LDA model under the assumption that the ground state pseudo-density ρ̃0z of atom
z is unique. Note that the self-consistent potentials are then given, in the all-electron
setting, by

WAA
z = − z

| · | + ρ0z ⋆ | · |−1 + vxc(ρ
0
z),

where vxc(ρ0z) =
dǫxc
dρ (ρ0z) is the exchange-correlation potential, and, in the pseudopotential

setting, by
WPP
z = V PP

z + ρ̃0z ⋆ | · |−1 + vxc(ρ̃
0
z,c + ρ̃0z).

Still under the above assumptions, Lemma 30 (nonemptyness of the set Mz,∆E,rc,s of
admissible pseudopotentials), Theorem 31 (Mz,∆E,rc,s is a weakly closed subset of the
affine space Xz,∆E,rc,s), and Theorem 35 (existence of an optimal pseudopotential in an
abstract framework) can all be extended to the LDA setting.

Note that, in practice, the calibration of pseudopotentials is made under the assump-
tion that the LDA ground state density (with or without pseudopotential) is radial. The
calculations then boil down to solving coupled systems of radial Schrödinger equations
(see [24, 49, 87] for details). To the best of our knowledge, no numerical evidence that the
radial LDA ground state of an atom might not be unique has been published so far.

The extensions of our results involving nonlinear perturbation theory (Proposition 14,
Theorem 15, and Lemma 17) require, on top of the above assumptions, an additional
assumption on the uniform coercivity of the Hessian of the energy functional at the unper-
turbed local minimizer. As the exchange-correlation energy density is not twice differen-
tiable at 0 (it behaves as the function R+ ∋ ρ 7→ −ρ4/3 ∈ R−), it is not clear that such an
assumption is satisfied. As already mentioned in [23, Section 5], this technical problem is
not encountered in Kohn-Sham calculations with periodic boundary conditions due to the
fact that the ground state density then is both bounded and bounded away from zero.

3.5 Proofs

3.5.1 Proof of Lemma 26

The three-dimensional Fourier transform of a radial function u ∈ L2
r (R

3) is related to the
one-dimensional Fourier transform of the function Ru = R(u) by the simple relation

F3(u)(k) =
i√

2π|k|
F1(Ru)(|k|).
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The above expression is a special case of the Grafakos-Teschl recursion formula [41]. We
therefore have

‖u‖2Hs(R3) =

∫

R3

(1 + |k|2)s|F3(u)(k)|2 dk =
1

2π

∫

R3

(1 + |k|2)s
|k|2 |F1(Ru)(|k|)|2 dk

= 2

∫ ∞

0
(1 + k2)s|F1(Ru)(k)|2 dk =

∫ +∞

−∞
(1 + k2)s|F1(Ru)(k)|2 dk = ‖Ru‖2Hs(R).

3.5.2 Proof of Proposition 27

The proof of Proposition 27 is based on the following observation.

Lemma 37. Let z ∈ N
∗ such that ǫ0z,F < 0. The Hartree potential WAA

z is a radial
increasing negative function of L2

r (R
3) ∩ C∞(R3 \ {0}) converging exponentially fast to 0.

Proof. The Hartree potential WAA
z satisfies −∆WAA

z = 4π(ρ0z − zδ0), where the ground
state density ρ0z is in C and satisfies

∫
R3 ρ

0
z = z. We also know from Proposition 20 that

ρ0z is a radial positive function belonging to C∞(R3 \ {0}). Therefore, WAA
z is radial and

belongs to C∞(R3 \ {0}), and we infer from Gauss theorem that for all r > 0,

4πr2
dWAA

z

dr
(r) = −4π

(
−z +

∫

Br

ρ0z

)
= 4π

∫

R3\Br

ρ0z > 0,

where Br is the ball of R3 with center 0 and radius r. Hence, WAA
z is a radial increasing

function. Its limit at infinity is necessarily equal to zero since WAA
z = − z

|·| + ρ0z ⋆ | · |−1

with ρ0z ⋆ | · |−1 ∈ C′ ⊂ L6(R3). As ǫ0z,F < 0, the ground state density of the atom z is of
the form

ρ0z(r) =
n∑

i=1

pi|φi(r)|2,

where the occupation numbers pi are such that 0 ≤ pi ≤ 2 and
∑n

i=1 pi = z, and where
the orbitals φi satisfy

φi ∈ H2(R3), −1

2
∆φi +WAA

z φi = ǫiφi,

∫

R3

φiφj = δij .

As ǫi ≤ ǫ0z,F < 0 and WAA
z goes to zero at infinity, we deduce from the maximum principle

for second-order elliptic equations (see e.g. [36]) that for each 1 ≤ i ≤ n, φi e
√

|ǫ0z,F||·|/2 ∈
L∞(R3). Therefore, there exists Cz ∈ R+ such that

∀r ∈ R
3, 0 < ρ0z(r) ≤ Cz e

−
√

|ǫ0z,F||r|. (3.46)

Hence,

∀r > 0, 0 ≤ dWAA
z

dr
(r) =

1

r2

∫

R3\Br

ρ0z ≤
Cz
r2

∫

R3\Br

e
−
√

|ǫ0z,F||r′| dr′.

105



Integrating the above inequality leads to

∀r ≥ 2√
|ǫ0z,F|

, 0 ≥WAA
z (r) ≥ −4πr2Cz√

|ǫ0z,F|
e
−
√

|ǫ0z,F|r.

Together with the fact that WAA
z = − z

|·| + ρ0z ⋆ | · |−1 ∈ L2
loc(R

3), this bound implies that

WAA
z ∈ L2

r (R
3).

The proof of Proposition 27 then follows from classical results on the spectra of rotation-
invariant Schrödinger operators (see e.g. [69]), which we recall here for completeness. First,
as the function WAA

z is in L2
r (R

3), the operator WAA
z (1−∆)−1|Hl

= (WAA
z (1−∆)−1)|Hl

is
Hilbert-Schmidt for each l ∈ N by the Kato-Seiler-Simon inequality [77] and the continuity
of Pl. Therefore, WAA

z is a compact perturbation of the operator −1
2∆|Hl

, and we deduce
from Weyl’s theorem that σess(HAA

z,l ) = σess(−1
2∆|Hl

) = [0,+∞).

The absence of strictly positive eigenvalues of HAA
z is a consequence of Lemma 37 and [69,

Theorem XIII.56]. The set of the negative eigenvalues of HAA
z is the union of the sets of

the negative eigenvalues of (3.15) for l ∈ N; this is a straightforward consequence of the
decomposition (3.13).

The fact that for each l ∈ N, the negative eigenvalues of (3.15), if any, are simple and that
the eigenfunctions associated with the nth eigenvalue have exactly n− 1 nodes on (0,+∞)
is a standard result on one-dimensional Schrödinger equations (Sturm’s oscillation theory),
which can be read in [27, 46] for instance.

Lemma 37, together with [69, Theorem XIII.9], implies that for each l ∈ N, (3.15) has
at most (2l + 1)−1

∫ +∞
0 r|WAA

z (r)| dr < ∞ negative eigenvalues. Since this number is
lower than 1 for l large enough, HAA

z,l has no negative eigenvalue for l large enough. The
monotonicity of the sequence (nz,l)l∈N readily follows from the minmax principle. So does
the last assertion.

3.5.3 Proof of Lemma 30

Let us first establish a couple of intermediate results.

Lemma 38. Let W ∈ L
3/2
r (R3) ∩ C0(R3 \ {0}). We denote by Ω(r) = R

3 \ Br, by
TW,r the self-adjoint operator on L2(Ω(r)) with domain H1

0 (Ω(r)) ∩ H2(Ω(r)) defined by
TW,rφ = −1

2∆φ+Wφ for all φ ∈ H1
0 (Ω(r)) ∩H2(Ω(r)), and by

TW (r) := min (σ(TW,r)) = inf
φ ∈ H1

0 (Ω(r))
‖φ‖

L2(Ω(r))
= 1

∫

Ω(r)

(
1

2
|∇φ|2 +Wφ2

)
.

We also introduce the self-adjoint operator TW,0 on L2(R3) with domain H2(R3) defined by
TW,0φ = −1

2∆φ+Wφ for all φ ∈ H2(R3). Then, two situations may occur:

• either min (σ(TW,0)) = 0, in which case the function TW is identically equal to zero
on (0,+∞);
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• or min (σ(TW,0)) < 0, in which case there exists r̃c ∈ (0,+∞) such that the function
TW is differentiable, strictly increasing and bijective from (0, r̃c) to (min (σ(TW,0)) , 0),
and identically equal to zero on (r̃c,+∞).

Proof. Let W ∈ L
3/2
r (R3) ∩ C0(R3 \ {0}). Since for any 0 < r < r′ < ∞, we have

Ω(r′) ⊂ Ω(r), the function TW is non-decreasing on (0,+∞). As σess(TW,r) = [0,+∞), we
have for all 0 < r <∞,

0 ≥ TW (r) ≥ inf
φ∈H1(R3) | ‖φ‖L2=1

∫

R3

(
1

2
|∇φ|2 + 1Ω(r)W |φ|2

)
,

and it follows from [69, Theorem XIII.9] that the right-hand side is equal to zero for r
large enough.

It also holds that σess(TW,0) = [0,+∞). If TW,0 has no negative eigenvalue, then the
function TW is identically equal to zero by the minmax principle. Otherwise, denoting by
ǫ1 the lowest negative eigenvalue of TW,0, we have

lim
r→0

TW (r) = ǫ1.

This follows from the fact that C∞
c (R3 \ {0}) is dense in H1(R3).

Lastly, for any r ∈ (0,+∞) such that TW (r) < 0, the operator TW,r has a negative non-
degenerate ground state eigenvalue and a radial ground state φW,r ∈ H1

0 (Ω(r))∩H2(Ω(r))
such that ‖φW,r‖L2(Ω(Br)) = 1 and φW,r > 0 in Ω(r). By the Hopf’s maximum principle for

second-order linear elliptic equations [36], ∂φW,r

∂r > 0 on ∂Ω(r) = ∂Br. It is then well-known
[80] that TW is differentiable at r and that

T ′
W (r) = −

∫

∂Ω(r)

∂φW,r
∂n

=

∫

∂Br

∂φW,r
∂r

> 0.

Therefore, if TW,0 has a negative eigenvalue, then the function TW is continuous, there
exists 0 < r̃c < +∞ such that TW is differentiable and strictly increasing on (0, r̃c), and
identically equal to zero on [r̃c,+∞), and TW maps (0,+∞) onto (ǫ1, 0).

It follows in particular from Lemma 38 that, since WAA
z ∈ L

3/2
r (R3) ∩ C0(R3 \ {0})

by Lemma 37, and min(σ(HAA
z )) < E+ < 0, the equation TWAA

z
(r) = E+ has a unique

solution r+z,∆E,c.

The second intermediate result we need is the following.

Lemma 39. Let l ∈ N, s ∈ R+, E+ < 0 and W ∈ L
3/2
r (R3) vanishing at infinity and such

that W ∈ Hs(Ω(ε)), for any ε > 0. Let Rl ∈ H2
o (R) and ǫl < E+ be such that

−1

2
R′′
l (r) +

l(l + 1)

2r2
Rl(r) +W (r)Rl(r) = ǫlRl(r),

∫

R

R2
l = 1.

Let r+c be the unique positive real number such that TW (r+c ) = E+. Then, for all rc > r+c ,
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there exists W̃ ∈ Hs
r (R

3) such that

R̃l ∈ H1
o (R), (3.47)

− 1

2
R̃′′
l (r) +

l(l + 1)

2r2
R̃l(r) + W̃ (r)R̃l(r) = ǫlR̃l(r), (3.48)

∫

R

R̃2
l = 1, (3.49)

R̃l = Rl on (rc,+∞), (3.50)

R̃l ≥ 0 on (0,+∞), (3.51)

σ

((
−1

2
∆ + W̃

) ∣∣∣∣
Hl

)
\ {ǫl} ⊂ [E+,+∞). (3.52)

Proof. Using the notation and the results in Lemma 38, we see that ǫl is an eigenvalue of
(TW,0)|Hl

, so that E+ ∈ (min(σ(TW,0)), 0), which implies that there exists a unique positive

real number r+c such that TW (r+c ) = E+. Let rc > r+c and mc =
∫ rc
0 R2

l . We denote by R
the unique odd function in H1(−rc, rc) such that

−1

2
R′′ +

l(l + 1)

2r2
R− ǫlR = 0, R(rc) = 1,

and by

F (d) =

∫ rc−d

0
R2(r)dr.

Note that the function u(r) = rcR(|r|)
|r| Yml ( r

|r|) is the unique solution in H1(Brc) to the

boundary value problem −1
2∆u−ǫlu = 0 inBrc , u|∂Brc

= Yml , and that F (d) = r−2
c

∫
Brc−d

|u|2.
For all 0 < α≪ 1 ≪ A <∞, we introduce

θ−α,A = arcsin(α/A), θ+α,A = π − arcsin(Rl(rc)/A)− θ−α,A,

dα,A the unique solution in (0, rc) of

α2F (d) +A2d

2

(
1−

sin(2(θ+α,A + θ−α,A))− sin(2θ−α,A)

2θ+α,A

)
= mc,

kα,A =
θ+α,A
dα,A

, vα,A = ǫl −
k2α,A
2
,

β−α,A =
kα,AA cos(θ−α,A)

2α
− R′(rc − dα,A)

2R(rc − dα,A)
, β+α,A =

R′
l(rc)− kα,AA cos(θ+α,A + θ−α,A)

2Rl(rc)
.

When α→ 0+ and A→ +∞, the above quantities behave as follows

θ−α,A → 0+, θ+α,A → π−, dα,A ∼ 2mc

A2
, kα,A ∼ πA2

2mc
, vα,A ∼ −π

2A4

8m2
c

,

β−α,A ∼ πA3

4mcα
, β+α,A ∼ πA3

4mcRl(rc)
. (3.53)
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Consider the function Rα,A ∈ H1
o (R) defined on (0,+∞) by

Rα,A = α
R

R(rc − dα,A)
1(0,rc−dα,A)+A sin

(
kα,A(r − rc) + θ−α,A + θ+α,A

)
1(rc−dα,A,rc)+Rl1(rc,+∞).

It is easily checked that R̃l = Rα,A is solution of (3.47)-(3.51) for W̃ = Wα,A ∈ H−1
r (R3),

with radial representation given by

Wα,A = β−α,Aδrc−dα,A
+

(
vα,A − l(l + 1)

2r2

)
1(rc−dα,A,rc) + β+α,Aδrc +W1(rc,+∞).

Figure 3.2 – Sketch of the function Rα,A (green) and of the potential Wα,A +
l(l+1)
2r2

1(rc−dα,A,rc) (red).

Denoting by

Hα,A = −1

2
∆ +Wα,A,

we are going to show that for α > 0 small enough and A < +∞ large enough

σ

(
Hα,A

∣∣∣∣
Hl

)
\ {ǫl} ⊂ (E+,+∞).

Let µα,A = min

(
σ

(
Hα,A

∣∣∣∣
Hl

)
\ {ǫl}

)
. Assume that µα,A ≤ E+. As σess(Hα,A|Hl

) = R+,

µα,A is a discrete eigenvalue of Hα,A|Hl
. We denote by Uα,A an associated normalized

eigenfunction and by uα,A ∈ H1
o (R) the odd extension of its radial component multiplied

by r. As µα,A is in fact the second lowest eigenvalue of Hα,A|Hl
(counting multiplicities),

the function uα,A satisfies

−1

2
u′′α,A +

l(l + 1)

2r2
uα,A +Wα,Auα,A = µα,Auα,A,
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and has exactly one node r0α,A in (0,+∞). This node cannot lay in the interval [rc,+∞);

otherwise, the function φ(r) = Uα,A(r)1[r0α,A,+∞)(|r|)Y0
l

(
r

|r|

)
would belong toH1

0 (Ω(r
0
α,A))\

{0} and we would have

E+ = TW (r+c ) < TW (r0α,A) ≤
〈φ|TW,r0α,A

|φ〉
〈φ|φ〉 = µα,A,

which contradicts the assumption that µα,A ≤ E+. It cannot either lay in the interval
(0, rc − dα,A]; otherwise, as the potential Wα,A is equal to zero on this interval, we would
have

1

2

∫ r0α,A

0
|u′α,A|2 +

l(l + 1)

2

∫ r0α,A

0

|uα,A(r)|2
r2

dr = µα,A

∫ r0α,A

0
|uα,A|2 < 0,

which is obviously not possible. We therefore have rα,A ∈ (rc − dα,A, rc), and without loss
of generality, we can assume that uα,A is positive in the neighborhood of +∞. As Wα,A

is equal to zero on (0, rc − dα,A), uα,A is negative and concave on this interval, so that
uα,A(rc − dα,A) < 0 and u′α,A((rc − dα,A)

+) < u′α,A((rc − dα,A)
−) < 0. We therefore have

∀r ∈ [rc − dα,A, rc], uα,A = Ãα,A sin
(
k̃α,A(r − (rc − dα,A)) + θ̃α,A

)
,

with Ãα,A < 0, k̃α,A =
√

2(µα,A − vα,A), 0 < θ̃α,A < π/2 and π < k̃α,Adα,A + θ̃α,A < 2π.
It follows from the jump condition at rc−dα,A and from the fact that uα,A is negative and
concave on (0, rc − dα,A) that

k̃α,A

tan(θ̃α,A)
=
u′α,A((rc − dα,A)

+)

uα,A(rc − dα,A)
≥
u′α,A((rc − dα,A)

+)− u′α,A((rc − dα,A)
−)

uα,A(rc − dα,A)
= β−α,A.

Thus,

tan(θ̃α,A) ≤
k̃α,A

β−α,A
≤ 2π

β−α,Adα,A
∼ 4α

A
, when α→ 0+ and A→ +∞. (3.54)

We can distinguish two cases:

• case 1: u′α,A(rc − 0) < 0. In this case, k̃α,Adα,A + θ̃α,A > 3π
2 , which, together with

(3.54), implies that for α > 0 small enough and A > 0 large enough,

k̃α,A ≥ 5

4
kα,A or equivalently µα,A ≥ ǫl −

9

16
vα,A ∼ 9π2A4

128m2
c

,

which contradicts the assumption that µα,A ≤ E+;

• case 2: u′α,A(rc − 0) ≥ 0. In this case, the function uα,A is positive on (rc,+∞)
and the pair (uα,A, µα,A) is solution to the spectral problem on (rc,+∞) with Robin
boundary conditions





− 1
2u

′′
α,A(r) +

l(l+1)
2r2

uα,A(r) +Wuα,A(r) = µα,Auα,A(r), r ∈ (rc,+∞)

u′α,A(rc + 0) =

(
k̃α,A

tan(k̃α,Adα,A+θ̃α,A)
+ β+α,A

)
uα,A(rc).

(3.55)
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When α → 0+ and A → +∞, the parameter k̃α,A

tan(k̃α,Adα,A+θ̃α,A)
+ β+α,A goes to +∞,

so that µα,A converges to the ground state eigenvalue of TW,rc |Hl
, which implies

lim
α↓0, A→+∞

µα,A = TW (rc) > TW (r+c ) = E+.

Choosing α > 0 small enough and A large enough, we obtain a contradiction with
the assumption that µα,A ≤ E+.

We therefore have obtained a function R̃l = Rα,A ∈ H1
o (R) and a potential W̃ =Wα,A ∈

H−1
r (R3) such that (3.47)-(3.52) are satisfied. As Rα,A is in C∞(R \ {±(rc − dα,A),±rc})

and is positive on (0,+∞), we can construct a sequence (R̃l,n)n∈N of odd functions of
C∞(R) ∩H1

o (R) positive on (0,+∞) and converging in H1
o (R) to Rα,A, such that R̃l,n =

Rα,A = Rl on (rc,+∞), R̃l,n = Rα,A on (0, rc − dα,A) and
∫
R
|R̃l,n|2 = 1. Consider the

sequence of radial potentials defined by

∀n ∈ N, ∀r ∈ (0,+∞), W̃n(r) = ǫl +
1

2

R̃′′
l,n(r)

R̃l,n(r)
− l(l + 1)

2r2
.

As R̃l,n(r) is bounded away from zero on the interval [(rc − dα,A)/2, rc + 1] uniformly

in n, each W̃n is in Hs
r (R

3) for all s ≥ 0, and the sequence (W̃n)n∈N converges to Wα,A

in H−1
r (R3). Consequently, the Rayleigh quotients Rn(φ) =

〈φ| − 1
2∆+ W̃n|φ〉
‖φ‖2 converge

to R(φ) =
〈φ| − 1

2∆+ W̃ |φ〉
‖φ‖2 for any φ ∈ Hl ∩ H1(R3), which implies, by the minmax

principle, that the kth negative eigenvalue of
(
−1

2∆+ W̃n

)∣∣∣
Hl

converges to the kth negative

eigenvalue of
(
−1

2∆+Wα,A

)∣∣
Hl

when n goes to infinity. Therefore, for n large enough,

conditions (3.47)-(3.52) are satisfied for W̃ = W̃n.

We are now in position to prove the non-emptiness of Mz,∆E,rc,s under the assumptions
of Lemma 30. Applying Lemma 39 successively for each 0 ≤ l ≤ lz with W = WAA

z ,
Rl = Rz,n⋆

z,l,l
, ǫl = ǫz,n⋆

z,l,l
and rc > r+z,c, we obtain lz +1 functions W̃l ∈ Hs

r (R
3) and lz +1

functions R̃l, satisfying for each 0 ≤ l ≤ lz,

R̃l ∈ H1
o (R), (3.56)

− 1

2
R̃′′
l (r) +

l(l + 1)

2r2
R̃l(r) + W̃lR̃l(r) = ǫz,n⋆

z,l,l
R̃l(r), (3.57)

∫

R

R̃2
l = 1, (3.58)

R̃l = Rz,n⋆
z,l,l

and W̃l =WAA
z on (rc,+∞), (3.59)

R̃l ≥ 0 on (0,+∞). (3.60)

We then introduce the functions

φ̃ml (r) =

√
2 R̃l(|r|)
|r| Yml

(
r

|r|

)
, −l ≤ m ≤ l, (3.61)
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and the density

ρ̃0(r) =

lz∑

l=0

l∑

m=−l
pz,n⋆

z,l,l
|φ̃ml (r)|2,

and we consider a sequence (Wloc,k)k≥1 of local potentials in the class Hs
r (R

3) such that
Wloc,k ≥WAA

z on R
3, Wloc,k =WAA

z in Ω(rc) and Wloc,k = k on Brc−1/k. We finally set

Vloc,k =Wloc,k − ρ̃0 ⋆ | · |−1 and ∀0 ≤ l ≤ lz, Vl,k = W̃l −Wloc,k,

and

Vk = Vloc,k +

lz∑

l=0

PlVl,kPl.

By construction, the self-adjoint operator

Hk = −1

2
∆ + Vk + ρ̃0 ⋆ | · |−1,

on L2(R3) is rotation-invariant, and for all 0 ≤ l ≤ lz,

1(−∞,E+)(Hk|Hl
) = 1(−∞,E+)

((
−1

2
∆ + W̃l

) ∣∣∣∣
Hl

)
=

l∑

m=−l
|φ̃ml 〉〈φ̃ml |.

Lastly, for all l > lz,

minσ(Hk|Hl
) ≥ minσ

(
−1

2
∆ +Wloc,k

)
−→
k→∞

TWAA
z

(rc) > TWAA
z

(r+z,c) = E+.

Therefore, for k large enough, Vk ∈ Mz,∆E,rc,s.

3.5.4 Proof of Theorem 31

Let us prove that Mz,∆E,rc,s is weakly closed in the affine space Xz,∆E,rc,s. For this
purpose, we consider a sequence (V PP

z,k )k∈N of elements of Mz,∆E,rc,s weakly converging

to some V PP
z in Xz,∆E,rc,s. We denote by HPP

z,k the Hartree pseudo-Hamiltonian obtained

with the pseudopotential V PP
z,k and by φ̃mz,l,k its eigenfunctions of the form (3.26). We have

for all k ∈ N,

HPP
z,k = −1

2
∆ +Wk, HPP

z,k φ̃
m
z,l,k = ǫz,n⋆

z,l,l
φ̃mz,l,k, ‖φ̃mz,l,k‖L2 = 1, (3.62)

ρ̃k(r) =

lz∑

l=0

l∑

m=−l
pz,n⋆

z,l,l
|φ̃mz,l,k(r)|2, vk = ρ̃k ⋆ | · |−1,

Wk = Vz,loc,k + vk +

lz∑

l=0

PlVz,l,kPl.

Note that for all 0 ≤ l ≤ lz, −l ≤ m ≤ l, and k ∈ N, we have φ̃mz,l,k = φmz,n⋆
z,l,l

on R
3 \ Brc

and

(Wkφ̃
m
z,l,k)(r) =

∣∣∣∣∣
WAA
z (r)φmz,n⋆

z,l,l
(r) if |r| ≥ rc,

(Vz,loc,k(r) + vk(r) + Vz,l,k(r))φ̃
m
z,l,k(r) if |r| < rc.

112



As ǫz,n⋆
z,l,l

< 0, vk ≥ 0 in R
3, and ‖φ̃mz,l,k‖L2 = 1 we obtain, using the Sobolev inequality

in R
3, the boundedness of the sequence (‖Vz,l,k‖L2)k∈N and Lemma 37, that for all k ∈ N,

1

2
‖∇φ̃mz,l,k‖2L2 = −〈φ̃mz,l,k|Wk|φ̃mz,l,k〉+ ǫz,n⋆

z,l,l

≤ −
∫

Brc

(Vz,loc,k + Vz,l,k)|φ̃mz,l,k|2 −
∫

R3\Brc

WAA
z |φmz,n⋆

z,l,l
|2

≤
(
‖Vz,loc,k + Vz,l,k‖L2‖φ̃mz,l,k‖

1/2
L2 ‖φ̃mz,l,k‖

3/2
L6 + ‖WAA

z ‖L∞(R3\Brc )

)

≤ C(1 + ‖∇φ̃mz,l,k‖
3/2
L2 ),

where the constant C is independent of k. This implies that for all 0 ≤ l ≤ lz and all
−l ≤ m ≤ l, the sequence (φ̃mz,l,k)k∈N is bounded in H1(R3). We can therefore extract from

(φ̃mz,l,k)k∈N a subsequence (φ̃mz,l,kn)n∈N which weakly converges in H1(R3) to some function

φ̃mz,l ∈ H1(R3) ∩Hl. As for all k ∈ N, φ̃mz,l,k = φmz,n⋆
z,l,l

in R
3 \Brc , we can assume, without

loss of generality, that the convergence of (φ̃mz,l,kn)n∈N to φ̃mz,l also holds strongly in Lp(R3)

for all 1 ≤ p < 6 and almost everywhere in R
3. In particular,

∀0 ≤ l, l′ ≤ lz, ∀ − l ≤ m ≤ l, ∀ − l′ ≤ m′ ≤ l′,
∫

R3

φ̃mz,lφ̃
m′

z,l′ = δll′δmm′ ,

and the associated functions R̃z,l defined by (3.26) satisfy (3.27) and (3.29)-(3.31). We
also infer from the strong convergence of (φ̃mz,l,kn)n∈N to φ̃mz,l in L2(R3) ∩ L4(R3) that the

sequence (ρ̃kn)n∈N strongly converges in L1(R3)∩L2(R3), hence in L6/5(R3) to the function
ρ̃ defined by

ρ̃(r) =

lz∑

l=0

l∑

m=−l
pz,n⋆

z,l,l
|φ̃mz,l(r)|2,

which, in turn, implies that the sequence (vkn)n∈N strongly converges in C′, hence in L6(R3),
to the function v = ρ̃ ⋆ | · |−1. Lastly, as (Vz,l,kn)n∈N weakly converges to Vz,l in Hs

0,r(Brc)
for s > 0, we can assume without loss of generality that the sequence (Vz,l,kn)kn∈N strongly
converges to Vz,l in L2(Brc). Passing to the limit in (3.62), we obtain that the functions
R̃z,l satisfy

−1

2
R̃′′
z,l(r) +

l(l + 1)

2r2
R̃z,l(r) + (v(r) + Vz,l(r)) R̃z,l(r) = ǫz,n⋆

z,l,l
R̃z,l(r).

To conclude that V PP
z ∈ Mz,∆E,rc,s, we just need to show that

1(−∞,E+)(H
PP
z ) =

lz∑

l=0

l∑

m=−l
|φ̃mz,l〉〈φ̃mz,l|, (3.63)

where HPP
z = −1

2∆+ V PP
z + v. If this was not the case, there would exists λ < E+ and

φ ∈ H2(R3) ∩
(
Span

{
φ̃mz,l, 0 ≤ l ≤ lz, −l ≤ m ≤ l

})⊥
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such that ‖φ‖L2 = 1 and HPP
z φ = λφ. Consider, for n large enough, the function

φn =
φ−∑lz

l=0

∑l
m=−l(φ̃

m
z,l,kn

, φ)L2 φ̃mz,l,kn∥∥∥φ−∑lz
l=0

∑l
m=−l(φ̃

m
z,l,kn

, φ)L2 φ̃mz,l,kn

∥∥∥
L2

.

We have

φn ∈ H2(R3) ∩
(
Span

{
φ̃mz,l,kn , 0 ≤ l ≤ lz, −l ≤ m ≤ l

})⊥
, ‖φn‖L2 = 1, (3.64)

and

〈φn|HPP
z,kn

|φn〉=
λ+〈φ|(Vz,loc,kn

+Vz,l,kn
)−(Vz,loc+Vz,l)|φ〉+

∫
R3

(vkn
−v)φ2−

∑lz
l=0

∑l
m=−l ǫz,n⋆

z,l
,l|(φ̃

m
z,l,kn

,φ)
L2 |2

‖φ−
∑lz

l=0

∑l
m=−l

(φ̃m
z,l,kn

,φ)
L2 φ̃m

z,l,kn
‖2

L2

.

Using the weak convergence of V PP
z,kn

to V PP
z in Xz,∆E,rc,s, the strong convergence of vkn to

v in L2(R3) and the strong convergence of φ̃mz,l,kn to φ̃mz,l in L2(R3), we obtain that

lim
n→∞

〈φn|HPP
z,kn |φn〉 = λ.

Together with (3.62) and (3.64), this implies that for n large enough, HPP
z,kn

has at least

(lz + 1)2 + 1 eigenvalues in (−∞, E+), which contradicts the fact that V PP
z,kn

∈ Mz,∆E,rc,s.

Therefore, V PP
z ∈ Mz,∆E,rc,s, which proves that Mz,∆E,rc,s is weakly closed in Xz,∆E,rc,s.

3.5.5 Proof of Lemma 32

The function φ̃z,l,m is an eigenfunction of the Schrödinger operator −1
2∆+Wz,loc+Vz,l on

L2(R3), withWz,loc+Vz,l ∈ Hs
r (R

3). By elliptic regularity, φ̃z,n,l ∈ Hs+2(R3), and therefore
R̃z,l ∈ Hs+2

o (R) in view of Lemma 26. It follows from the unique continuation principle
for nonnegative solutions of second-order ordinary differential equations that R̃z,l > 0 on
(0,+∞). The function R̃z,l is an odd function which solves a differential equation, with
regular singular point, of the form

r2y′′ − l(l + 1)y + Vl(r)y = 0, with Vl(0) = 0. (3.65)

Its indicial equation is
s(s− 1)− l(l + 1) = 0,

with roots s1 = l+1 and s2 = −l. Since s1−s2 = 2l+1 is an integer, Fuch’s theorem [46, 93]
states that the fundamental system of solutions of (3.65) is

{
y1(r) = rs1p(r)
y2(r) = c p(r)rs1 ln(r) + rs2q(r),

where p(0) 6= 0, q(0) 6= 0 and c is a constant. As y2 does not vanish at zero, R̃z,l is
proportional to y1.
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3.5.6 Proof of Proposition 33

Observing that

EV PP
z

(γ̃, v,W ) = Tr

((
−1

2
∆ + V PP

z

)
γ̃

)
+

1

2
D(ργ̃ , ργ̃) + Tr (γ̃(v +W ))

allows us to follow the same lines as in the proofs of [23, Theorems 5 and 12] (see also the
first point in [23, Section 5]). Indeed, the operator HPP

z has the same spectral properties as
the operator H0 in [23], and the key property on the perturbation that we need to proceed
as in [23] is that there exists a constant C ∈ R+ such that

|Tr (γ̃(v +W ))| ≤ C
(
‖v‖Xz,∆E,rc,s

+ ‖W‖C′

)
‖γ̃‖S1,1 , (3.66)

for all (γ̃, v,W ) ∈ S1,1 ×Xz,∆E,rc,s × C′. Let us prove that (3.66) actually holds true. On
the one hand, we have for all (γ̃,W ) ∈ S1,1 × C′,

|Tr (γ̃W )| =
∣∣∣Tr

(
(1−∆)−1/2(1−∆)1/2γ̃(1−∆)1/2(1−∆)−1/2W

)∣∣∣
≤ ‖(1−∆)−1/2‖ ‖(1−∆)1/2γ̃(1−∆)1/2‖S1‖(1−∆)−1/2W‖
≤ ‖(1−∆)−1/2‖ ‖(1−∆)1/2γ̃(1−∆)1/2‖S1‖(1−∆)−1/2W‖S6

≤ C‖γ̃‖S1,1 ‖W‖L6 ≤ C‖γ̃‖S1,1 ‖W‖C′ ,

where we have used the Kato-Seiler-Simon inequality [77] for p = 6. Likewise, we have for
all (γ̃, v) ∈ S1,1 ×Xz,∆E,rc,s,

|Tr (γ̃v)| =
∣∣∣∣∣Tr

((
vloc +

lz∑

l=0

PlvlPl

)
γ̃

)∣∣∣∣∣

≤
∣∣∣Tr

(
(1−∆)−1/2vloc(1−∆)−1/2(1−∆)1/2γ̃(1−∆)1/2

)∣∣∣

+

lz∑

l=0

∣∣∣Tr
(
Pl(1−∆)−1/2vl(1−∆)−1/2Pl(1−∆)1/2γ̃(1−∆)1/2

)∣∣∣

≤ C‖γ̃‖S1,1

(
‖vloc‖L2 +

lz∑

l=0

‖vl‖L2

)
≤ C‖γ̃‖S1,1 ‖v‖Xz,∆E,rc,s

,

where we have used that the Pl’s commute with the Laplace operator and the fact that for
all w ∈ L2(R3),

‖(1−∆)−1/2w(1−∆)−1/2‖ ≤ ‖|w|1/2(1−∆)−1/2‖2 ≤ ‖|w|1/2(1−∆)−1/2‖2S4
≤ C‖w‖L2 ,

by the Kato-Seiler-Simon inequality for p = 4.
Proceeding as in the proofs of Theorems 5 (non-degenerate case) and 12 (degenerate

case) in [23], we obtain that there exists η > 0 such that for all (v,W ) ∈ Bη(Xz,∆E,rc,s)×
Bη(C′), problem (3.37) has a unique minimizer γ̃v+W (V PP

z ) and that, for each V PP
z ∈

Mz,∆E,rc,s, the function (v + W ) 7→ γ̃v+W (V PP
z ) is real analytic from Bη(Xz,∆E,rc,s) +

Bη(C′) to S1,1. Expanding α 7→ γ̃α(v+W )(V
PP
z ) as

γ̃α(v+W )(V
PP
z ) = γ̃0z +

+∞∑

k=1

αkγ
(k)
v+W (V PP

z ),
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the coefficients γ̃(j,k)v,W (V PP
z ) in (3.38) are connected to the coefficients γ(k)v+W (V PP

z ) in the
above expansion by the relation

γ
(k)
αv+βW (V PP

z ) =

k∑

j=0

αjβk−j γ̃(j,k−j)v,W (V PP
z ).

3.5.7 Proof of Theorem 34

It suffices to prove the results in the degenerate case, since, in this setting, the non-
degenerate case can be seen as a special case of the degenerate case (take Np = 0 in [23,
Section 4]). We can also restrict ourselves to the pseudopotential case, as the all-electron
case works the same.

Let Vref ∈ Mz,∆E,rc,s be a reference pseudopotential fixed once and for all and M ∈
R+. We are going to establish a series of uniform bounds valid for all V PP

z ∈ Mz,∆E,rc,s

satisfying
‖V PP

z − Vref‖Xz,∆E,rc,s
≤M. (3.67)

In the sequel, we will denote by CM constants depending on Vref and onM , but not on V PP
z .

It follows from the arguments used in Section 3.5.4 that the pseudo-orbitals associated with
V PP
z satisfy

max
0≤l≤lz

max
|m|≤l

‖φ̃mz,l‖H1 ≤ CM ,

which implies that ‖ρ̃0z‖L1∩L3 ≤ CM , and therefore that ‖ρ̃0z ⋆ | · |−1‖L∞ ≤ CM , from which
we infer that

max
0≤l≤lz

‖Wz,loc + Vz,l‖L3/2 ≤ CM , (3.68)

and finally that

max
0≤l≤lz

max
|m|≤l

‖φ̃mz,l‖L∞ ≤ 2 max
0≤l≤lz

max
|m|≤l

‖φ̃mz,l‖H2 ≤ CM . (3.69)

Using the fact that WPP
z = WAA

z in Ω(rc) and the maximum principle for second-order
elliptic equations [36], we obtain that

max
0≤l≤lz

max
|m|≤l

‖φ̃mz,le
√

|ǫ0z,F||·|/2‖L∞ ≤ CM . (3.70)

As in [23], we decompose L2(R3) as the orthogonal sum of the fully occupied, partially
occupied, and unoccupied spaces

L2(R3) := Hf ⊕Hp ⊕Hu, (3.71)

where Hf = Ran(1(−∞,ǫ0z,F)
(HPP

z )), Hp = Ran(1{ǫ0z,F}(H
PP
z )) and Hu = Ran(1(ǫ0z,F,+∞)(H

PP
z )),

and where Pf , Pp and Pu are the orthogonal projectors from L2(R3) to Hf , Hp and Hu

respectively. We then introduce

• the spaces

Aux :=
{
Aux ∈ B(Hx,Hu) | (Pu(H

PP
z − ǫ0F)Pu)

1/2Aux ∈ B(Hx,Hu)
}
,
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for x ∈ {f, p}, endowed with the inner product

(Aux, Bux)Aux := Tr (A∗
uxPu(H

PP
z − ǫ0F)PuBux);

• the finite dimensional spaces

Apf := B(Hf ,Hp) and App := {App ∈ S(Hp) | Tr (App) = 0};

• the product space
A := Auf ×Aup ×Apf ×App,

which we endow with the inner product

(A,B)A =
∑

x∈{f,p}
(Aux, Bux)Aux +

∑

x∈{f,p}
Tr
(
ApxB

∗
px

)
.

Note that the decomposition (3.71), as well as the space A, depend on V PP
z . Following

[23, Eq. (43)], let us first show that the continuous linear map

ζ : C′ → A′

W 7→ −(PuWPf , PuWPpΛ, (2− Λ)PpWPf , PpWPp),

where Λ is the diagonal matrix containing the partial occupation numbers at the Fermi
level, can be extended in a unique way to a continuous linear map from C′+L2

w to A′. We
first observe that for all W ∈ C∞

c (R3) (where C∞
c (R3) is the space of the C∞ functions on

R
3 with compact support), and all A ∈ A,

|Tr ((PuWPf)
∗Auf )| = |Tr (PfWPuAuf)|

=
∣∣∣Tr

(
PfW (HPP

z − ǫ0F)
∣∣−1/2

Hu
(Pu(H

PP
z − ǫ0F)Pu)

1/2Auf

)∣∣∣ ,

where (HPP
z − ǫ0F)

∣∣−1/2

Hu
denotes the bounded operator on L2(R3) block-diagonal in the

decomposition (3.71) identically equal to zero on Hf ⊕Hp and equal to the inverse square
root of the invertible positive operator (HPP

z − ǫ0F)
∣∣
Hu

on Hu. As the space Auf consists
of finite-rank operators with rank lower or equal to Nf , the operator and trace norms are
equivalent on this space, and we therefore obtain

∀A ∈ A, |Tr ((PuWPf)
∗Auf )| ≤ (E+ − ǫ0z,F)

−1/2‖PfW‖ ‖Auf‖Auf

≤ (E+ − ǫ0z,F)
−1/2 max

1≤n≤Nf

‖Wφn‖L2 ‖Auf‖Auf
,

where (φn)1≤n≤Nf
is an orthonormal basis of Hf . Similar arguments applied to the other

components of ζ(W ) lead to

∀W ∈ C∞
c (R3), ‖ζ(W )‖A′ ≤ CM max

0≤l≤lz ,−l≤m≤l
‖Wφ̃mz,l‖L2 .

Using (3.70), we deduce from the above inequality that

∀W ∈ C∞
c (R3), ‖ζ(W )‖A′ ≤ CM‖W‖L2

w
.
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As ζ is continuous from C′ to A′ (see [23]), we also have

∀W ∈ C∞
c (R3), ‖ζ(W )‖A′ ≤ CM‖W‖C′+L2

w
. (3.72)

The space C∞
c (R3) being dense in C′+L2

w, we obtain that the linear map ζ can be extended
in a unique way to a continuous linear map from C′ + L2

w to A′.

Let us now consider a sequence (V PP
z,k )k∈N of elements of Mz,∆E,rc,s which weakly

converges to some V PP
z in Mz,∆E,rc,s. As Vz,loc,k coincides with − z

|·| + ρ0z,c ⋆ | · |−1 outside

Brc , we obtain that (V PP
z,k )k∈N converges to V PP

z strongly in Mz,∆E,rc,s/2. To prove the

compactness of the mapping Mz,∆E,rc,s ∋ V PP
z 7→ γ̃

(1)

WStark(V
PP
z ) ∈ S1,1, it is therefore

sufficient to show that the mapping V PP
z 7→ γ̃

(1)

WStark(V
PP) is strongly continuous from

Mz,∆E,rc,s to S1,1 for any s > 0. Let us therefore consider a sequence (V PP
z,k )k∈N of

elements of Mz,∆E,rc,s which strongly converges to some V PP
z in Mz,∆E,rc,s and M ∈ R+

such that
sup
k∈N

‖V PP
z,k − Vref‖Xz,∆E,rc,s

≤M.

Using [23, Eqs. (42)-(43)], (3.72), the bound

‖HPP
z,k (1−∆)−1‖ ≤ CM ,

and the fact that there exists 0 < cM ≤ CM < +∞ such that

∀(A,A′) ∈ A×A, 〈Θ(A), A〉 ≥ cM‖A‖2A and 〈Θ(A), A′〉 ≤ CM‖A‖A‖A′‖A,

where the bilinear form Θ is defined in [23, Eq. (59)], we obtain that

sup
k∈N

‖γ̃(1)W (V PP
z,k )‖S1,1 ≤ CM‖W‖C′+L2

w
. (3.73)

Let ε > 0 and W ∈ C∞
c (R3) be such that ‖W −W Stark‖C′+L2

w
≤ ε/(3CM ), where CM is

the constant in (3.73). By the triangular inequality,

‖γ̃(1)
WStark(V

PP
z,k )− γ̃

(1)

WStark(V
PP
z )‖S1,1 ≤ 2ε

3
+ ‖γ̃(1)W (V PP

z,k )− γ̃
(1)
W (V PP

z )‖S1,1

≤ 2ε

3
+

∥∥∥∥ limβ→0
β−1

(
γ̃V PP

z,k −V PP
z ,βW (V PP

z )− γ̃0,βW (V PP
z )

)∥∥∥∥
S1,1

.

We then infer from the analyticity properties of the mapping (v,W ) 7→ γ̃v,W (V PP) (cf.
Proposition 33) that for k large enough, the second term of the right-hand side is lower than

ε/3. Therefore, the mapping V PP
z 7→ γ̃

(1)

WStark(V
PP
z ) is strongly continuous from Mz,∆E,rc,s

to S1,1.

3.5.8 Proof of Theorem 35

Let (V PP
z,k )k∈N be a minimizing sequence for (3.43). As α > 0 and Jt is bounded below, the

sequence (WPP
z,k )k∈N is bounded for the norm ‖ · ‖Hs defined in (3.42). As WPP

z,k coincides

with WAA
z outside Brc , we can assume, without loss of generality, that (WPP

z,k )k∈N converges
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to some WPP
z = WPP

z,loc +
∑lz

l=0 PlVz,lPl, weakly for the norm ‖ · ‖Hs , and strongly for the
norm ‖ · ‖Hs−η for any η > 0. We then have

1

2
‖WPP

z ‖2Hs ≤ lim inf
k→∞

Js(V
PP
z,k ). (3.74)

Reasoning as in the proof of Theorem 31, we obtain that the ground state density ρ̃k of

inf

{
Tr

((
−1

2
∆ + V PP

z,k

)
γ̃

)
+

1

2
D
(
ργ̃ , ργ̃

)
, γ̃ ∈ KNz,v

}

converges, when k goes to infinity, to some ρ̃ in Hs(R3), which is in fact the ground
state density associated with the self-consistent pseudopotential WPP

z . This implies that
V PP
z,loc,k =WPP

z,loc,k − ρ̃k ⋆ | · |−1 weakly converges to V PP
z,loc :=WPP

z,loc − ρ̃ ⋆ | · |−1 in Hs
loc(R

3).

Therefore, (V PP
z,k )k∈N weakly converges in Xz,∆E,rc,s to V PP

z = V PP
z,loc+

∑lz
l=0 PlVz,lPl, which

belongs to Mz,∆E,rc,s by virtue of Theorem 31, and WPP
z is the self-consistent pseudopo-

tential associated with V PP
z . Using (3.74) and the weak lower-semicontinuity property of

Jt, we finally obtain that
J(V PP

z ) ≤ lim inf
k→∞

J(V PP
z,k ),

which implies that V PP
z is a minimizer to (3.43).

3.5.9 Proof of Lemma 36

Let (V PP
z,k )k∈N be a sequence of elements of Mz,∆E,c,s weakly converging to V PP

z in Xz,∆E,c,s.
By Theorem 31, V PP

z ∈ Mz,∆E,rc,s and by Theorem 34, the sequence (γ̃
(1)

WStark(V
PP
z,k ))k∈N

strongly converges to γ̃(1)
WStark(V

PP
z ) in S1,1. Consequently, (ρ̃(1)

WStark(V
PP
z,k ))k∈N converges to

ρ̃
(1)

WStark(V
PP
z ) strongly in L6/5(R3), which implies that (1R3\Brc

ρ̃
(1)

WStark(V
PP
z,k ))k∈N converges

to 1R3\Brc
ρ̃
(1)

WStark(V
PP
z ) in L6/5(R3), hence in C, which implies that the sequence of non-

negative real-numbers (JStark
t (V PP

z,k ))k∈N converges to JStark
t (V PP

z ).
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Chapter 4

A numerical study of the Kohn-Sham
ground states of atoms

This chapter is concerned with the numerical simulation of the Kohn-Sham model for
atoms subjected to cylindrically-symmetric external potentials. We deal with both the
Hartree model and the Xα model. We start by presenting these models with and without
perturbation and by recalling some well-known theoretical results we need. The variational
approximation of the model and the construction of appropriate discretization spaces (using
P4-finite elements) are detailed together with the algorithm to solve the discretized Kohn-
Sham equations used in our code. The last section is devoted for the numerical results
we have obtained: first, we report the computed energy levels of all the atoms of the four
first rows of the periodic table. Interestingly, we observe accidentally degeneracies between
s and d shells or between p and d shells at the Fermi level of some atoms. Second, we
consider the case of an atom subjected to a uniform electric-field. We plot the response
of the density of the boron atom for various magnitudes of the electric field computed
numerically in a large ball with Dirichlet boundary conditions, and we check that, in the
limit of small electric fields, it is equivalent to the first-order perturbation of the ground
state density. Some technical details are gathered in an appendix at the end of the chapter.
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4.1 Introduction

This chapter is concerned with the numerical computation of the extended Kohn-Sham
ground states of atoms for the reduced Hartree-Fock (rHF, also called Hartree) and LDA
(local density approximation) models. We consider the case of an isolated atom, as well as
the case of an atom subjected to cylindrically symmetric external potential. We notably
have in mind Stark potentials, that are potentials of the form W (r) = −E · r generated by
a uniform electric field E 6= 0.

We first propose a new method to accurately solve the extended Kohn-Sham problem for
cylindrically symmetric systems, using spherical coordinates and a separation of variables.
This approach is based on the fact that, for such systems, the Kohn-Sham Hamiltonian
commutes with Lz, the z-component of the angular momentum operator, z denoting the
symmetry axis of the system. We obtain in this way a family of 2D elliptic eigenvalue
problems in the r and θ variables, index by the eigenvalue m ∈ Z of Lz, all these problems
being coupled together through the self-consistent density. To discretize the 2D eigenvalue
problems, we use harmonic polynomials in θ (or in other words, spherical harmonics Y 0

l ,
which only depend on θ) to discretize along the angular variable, and P4 finite element
methods to discretize along the radial variable r ∈ [0, Le]. We then apply this approach to
study numerically two kind of systems.

First, we provide accurate approximations of the extended Kohn-Sham ground states
of all atoms of the first four rows of the periodic table. These results allow us to test
numerically the assumptions on the negative spectra of atomic rHF Hamiltonians that
we use in our theoretical works on density functional perturbation theory [23] and norm-
conserving semilocal pseudopotentials [25]. We show in particular that for most atoms of
the first four rows of the periodic table, the Fermi level is negative and is not an accidentally
degenerate eigenvalue of the rHF Hamiltonian, and that there seems to be no unoccupied
orbitals with negative energies. On the other hand, for a few atoms, the Fermi level
seems to be an accidentally degenerate eigenvalue (for example the 5s and 4d states being
degenerate).

Second, we study an atom subjected to uniform electric field (Stark effect). In this case,
the system has no ground state (the Kohn-Sham energy functional is not bounded below),
but density functional perturbation theory (see [23, 25] for a mathematical analysis) can be
used to compute the polarization of the electronic cloud caused by the external electric field.
The polarized electronic state is not a steady state, but a resonant state, and the smaller
the electric field, the longer its life time. Another way to compute the polarization of the
electronic cloud is to compute the ground state for a small enough electric field in a basis
set consisting of functions decaying fast enough at infinity for the electrons to stay close
to the nuclei. The Gaussian basis functions commonly used in quantum chemistry satisfy
this decay property. However, it is not easy to obtain very accurate results with Gaussian
basis sets, since they are not systematically improvable (over-completeness issues). Here we
consider instead basis functions supported in a ball BLe , where Le is a numerical parameter
chosen large enough to obtain accurate results and small enough to prevent electrons from
escaping to infinity (for a given, small, value of the external electric field E). We study the
ground state energy and density as functions of the cut-off radius Le, and observe that for
a given, small enough, uniform electric field, there is a plateau [Le,min, Le,max] on which
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these quantity hardly vary. For Le < Le,min, the simulated system is too much confined,
which artificially increases its energy, while for Le > Le,max, a noticeable amount of charge
accumulates at the boundary of the simulation domain, in the direction of E (where the
potential energy is very negative). On the other hand, for Le,min ≤ Le ≤ Le,max, the
simulation provides a fairly accurate approximation of the polarization energy and of the
polarized density.

The chapter is organized as follows. In Section 4.2, we recall the mathematical for-
mulation of the extended Kohn-Sham model, and some theoretical results about the rHF
and LDA ground states of isolated atoms and of atoms subjected to an external cylin-
drically symmetric potential. In Section 4.3, we describe the discretization method and
the algorithms used in this work to compute the extended Kohn-Sham ground states of
atoms subjected to cylindrically symmetric external potentials. Some numerical results
are presented in Section 4.4. Lastly, some details about the practical implementation of
our methods are provided in Appendix.

4.2 Modeling

In this article, we consider a molecular system consisting of single nucleus of atomic charge
z ∈ N

∗ and of N electrons. For N = z, this system is the neutral atom with nuclear charge
z, which we call atom z for convenience.

4.2.1 Kohn-Sham models for atoms

In the framework of the (extended) Kohn-Sham model [28], the ground state energy of
a system with one nucleus with charge z and N electrons is obtained by minimizing an
energy functional of the form

Ez,N (γ) := Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ
| · | +

1

2
D(ργ , ργ) + Exc(ργ) (4.1)

over the set

KN :=
{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 2, Tr (γ) = N, Tr (−∆γ) <∞

}
,

where S(L2(R3)) is the space of the self-adjoint operators on L2(R3) and Tr (−∆γ) :=
Tr (|∇|γ|∇|). Note that, KN is a closed convex subset of the space S1,1 defined by

S1,1 := {T ∈ S1 | |∇|T |∇| ∈ S1} ,

endowed with norm
‖T‖S1,1 := ‖T‖S1 + ‖|∇ |T |∇| ‖S1 .

The function − z
|.| is the attraction potential induced on the electrons by the nucleus,

and ργ is the density associated with the one-body density matrix γ. For γ ∈ KN , we have

ργ ≥ 0,

∫

R3

ργ = N,

∫

R3

|∇√
ργ |2 ≤ Tr (−∆γ) <∞.
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The last result is the Hoffmann-Ostenhof inequality [52]. Therefore
√
ργ ∈ H1(R3), and in

particular, ργ ∈ L1(R3) ∩ L3(R3). For ρ ∈ L
6
5 (R3), D(ρ, ρ) is equal to

∫
R3 V

H(ρ)ρ, where
V H is the Coulomb, also called Hartree, potential generated by ρ:

V H(ρ) = ρ ⋆ | · |−1.

Recall that V H can be seen as a unitary operator from the Coulomb space C to its dual
C′, where

C :=
{
ρ ∈ S ′(R3) | ρ̂ ∈ L1

loc(R
3), | · |−1ρ̂ ∈ L2(R3)

}
, (ρ1, ρ2)C = 4π

∫

R3

ρ̂1(k)ρ̂2(k)

|k|2 dk,

(4.2)
and

C′ :=
{
v ∈ L6(R3) | ∇v ∈ (L2(R3))3

}
, (v1, v2)C′ =

1

4π

∫

R3

∇v1∇v2 =
1

4π

∫

R3

|k|2v̂1(k)v̂2(k) dk.
(4.3)

The term Exc is the exchange-correlation energy. We will restrict ourselves to two kinds
of Kohn-Sham models: the rHF model, for which the exchange-correlation energy is taken
equal to zero

ErHF
xc = 0,

and the Khon-Sham LDA (local density approximation) model, for which the exchange-
correlation energy has the form

ELDA
xc (ρ) =

∫

R3

ǫxc(ρ(r)) dr,

where ǫxc is the sum of the exchange and correlation energy densities of the homogeneous
electron gas. As the function ǫxc : R+ → R is not explicitly known, it is approximated in
practice by an explicit function, still denoted by ǫxc for simplicity. We assume here that
the approximate function ǫxc is a C1 function from R+ into R−, twice differentiable on R

∗
+

and obeying the following conditions

ǫxc(0) = 0, ǫ′xc(0) ≤ 0, (4.4)

∃0 < β− ≤ β+ <
3

2
s.t sup

ρ∈R+

|ǫ′xc(ρ)|
ρβ− + ρβ+

<∞, (4.5)

∃1 ≤ α <
3

2
s.t lim sup

ρ→0+

ǫxc(ρ)

ρα
< 0, (4.6)

∃λ > −1 s.t ǫ′′xc(ρ) ∼
0
cρλ. (4.7)

Note that these properties are satisfied by the exact function ǫxc.

To avoid ambiguity, for any z and N in R
∗
+, we denote by

IrHF
z,N := inf

{
ErHF
z,N (γ), γ ∈ KN

}
, (4.8)
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where

ErHF
z,N (γ) := Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ
| · | +

1

2
D(ργ , ργ),

and
ILDA
z,N := inf

{
ELDA
z,N (γ), γ ∈ KN

}
, (4.9)

where

ELDA
z,N (γ) := Tr

(
−1

2
∆γ

)
− z

∫

R3

ργ
| · | +

1

2
D(ργ , ργ) + ELDA

xc (ργ).

We recall the following two theorems which insure the existence of ground states for
neutral atoms and positive ions.

Theorem 40 (Ground state for the rHF model [23, 81]). Let z ∈ R
∗
+ and N ≤ z. Then

the minimization problem (4.8) has a ground state γ0,rHF
z,N , and all the ground states share

the same density ρ0,rHF
z,N . The mean-field Hamiltonian

H0,rHF
z,N := −1

2
∆− z

| · | + V H(ρ0,rHF
z,N ),

is a bounded below self-adjoint operator on L2(R3), σess(H
0,rHF
z,N ) = R+, and the ground

state γ0,rHF
z,N is of the form

γ0,rHF
z,N = 21

(−∞,ǫ0,rHF
z,N,F)

(H0,rHF
z,N ) + δ0,rHF

z,N ,

where ǫ0,rHF
z,N,F ≤ 0 is the Fermi level, 0 ≤ δ0,rHF

z,N ≤ 2 and Ran(δ0,rHF
z,N ) ⊂ Ker(H0,rHF

z,N −ǫ0,rHF
z,N,F).

If ǫ0,rHF
z,N,F is negative and is not an accidentally degenerate eigenvalue of H0,rHF

z,N , then γ0,rHF
z,N

is unique.

Theorem 41 (Ground state for the LDA model [1]). Let z ∈ R
∗
+ and N ≤ z. Suppose

that (4.4)-(4.6) hold. Then the minimization problem (4.9) has a ground state γ0,LDA
z,N . In

addition, γ0,LDA
z,N satisfies the self-consistent field equation

γ0,LDA
z,N = 21

(−∞,ǫ0,LDA
z,N,F )

(H0,LDA
z,N ) + δ0,LDA

z,N , (4.10)

where ǫ0,LDA
z,N,F ≤ 0 is the Fermi level, 0 ≤ δ0,LDA

z,N ≤ 2, Ran(δ0,LDA
z,N ) ⊂ Ker(H0,LDA

z,N − ǫ0,LDA
z,N,F )

and the mean-field Hamiltonian

H0,LDA
z,N := −1

2
∆− z

| · | + V H(ρ0,LDA
z,N ) + vxc(ρ

0,LDA
z,N ),

where ρ0,LDA
z,N = ρ

γ0,LDA
z,N

and vxc(ρ) = d ǫxc
d ρ (ρ), is a bounded below self-adjoint operator on

L2(R3) and σess(H
0,LDA
z,N ) = R+.
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4.2.2 Density function perturbation theory

We now examine the response of the ground state density matrix when an additional
external potential βW is turned on. The energy functional to be minimized over KN now
reads

Ẽ
rHF/LDA
z,N (γ, βW ) := E

rHF/LDA
z,N (γ) +

∫

R3

βWργ , (4.11)

and is well-defined for any γ ∈ KN , W ∈ C′ and β ∈ R. The parameter β is called the
coupling constant in quantum mechanics. Denote by

ĨrHF/LDA
z,N (βW ) := inf

{
Ẽ

rHF/LDA
z,N (γ, βW ), γ ∈ KN

}
. (4.12)

The following theorem insures the existence of a perturbed ground state density matrix
for perturbation potentials in C′.

Theorem 42 (Existence of a perturbed minimizer [23]). Let z ∈ R
∗
+, N ≤ z, W ∈ C′ and

β ∈ R, β small enough. In the rHF framework, problem (4.12) has a unique minimizer
γrHF
z,N,βW . The Hamiltonian

HrHF
z,N,βW = −1

2
∆− z

| · | + V H(ρrHF
z,N,βW ) + βW, (4.13)

where ρrHF
z,N,βW = ργrHF

z,N,βW
, is a bounded below self-adjoint operator on L2(R3) with form

domain H1(R3) and σess(H
0,rHF
z,N,βW ) = R+. Moreover, γrHF

z,N,βW and ρrHF
z,N,βW are analytic in

β, that is
γrHF
z,N,βW =

∑

k≥0

βkγ
(k),rHF
z,N,W and ρrHF

z,N,βW =
∑

k≥0

βkρ
(k),rHF
z,N,W ,

the above series being normally convergent in S1,1 and C respectively.

In the sequel, we will refer to γ
(k)
z,N,W as the k-th order perturbation of the density

matrix.

The unperturbed Hamiltonians H0,rHF
z,N are self-adjoint operators on L2(R3) invariant

with respect to rotations around the nucleus (assumed located at the origin). These oper-
ators are therefore block-diagonal in the decomposition of L2(R3) as the direct sum of the
pairwise orthogonal subspaces Hl := Ker(L2 − l(l + 1)):

L2(R3) =
⊕

l∈N
Hl, (4.14)

where L = r× (−i∇) is the angular momentum operator. Since we are going to consider
perturbation potentials which are not spherically symmetric, but only cylindrically sym-
metric, or in other words independent of the azimuthal angle ϕ in spherical coordinates,
the Hl’s are no longer invariant subspaces of the perturbed Hamiltonians. The appro-
priate decomposition of L2(R3) in invariant subspaces for Hamiltonians HrHF

z,N,βW with W
cylindrically symmetric, is the following: for m ∈ Z, we set

Hm := Ker(Lz −m),

126



where Lz is the z-component of the angular momentum operator L (Lz = L.ez).
Note that

∀l ∈ N, Hl =



φ ∈ L2(R3), s.t φ(r, θ, ϕ) =

∑

−l≤m≤l
Rm(r)Y m

l (θ, ϕ)



 ,

and

∀m ∈ Z, Hm =



φ ∈ L2(R3), s.t φ(r, θ, ϕ) =

∑

l≥|m|
Rl(r)Y

m
l (θ, ϕ)



 ,

where Y m
l are the spherical harmonics, the joint eigenfunctions of the Laplace-Beltrami

operator ∆S and the generator of rotations about the azimuthal axis Lz on L2(S2), where
S
2 is the unit sphere of R3. More precisely, we have

−∆SY
m
l = l(l + 1)Y m

l and LzY
m
l = mY m

l ,

where, in spherical coordinates,

∆S =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2(θ)

∂2

∂ϕ2
and Lz = −i ∂

∂ϕ
.

These functions are orthonormal, in the following sense:

∫

S2

Y m
l (Y m′

l′ )∗ =
∫ π

θ=0

∫ 2π

ϕ=0
Y m
l (θ, ϕ)

(
Y m′

l′ (θ, ϕ)
)∗

sin θ dθ dϕ = δll′δmm′ , (4.15)

where δij is the Kronecker symbol and (Y m
l )∗ = (−1)mY −m

l is the complex conjugate of
Y m
l .

We also define
Vm := Hm ∩H1(R3),

so that L2(R3) and H1(R3) are decomposed as the following direct sums:

L2(R3) =
⊕

m∈Z
Hm and H1(R3) =

⊕

m∈Z
Vm, (4.16)

each Hm being HrHF
z,N,βW -stable (in the sense of unbounded operators) for W cylindrically

symmetric. This is due to the fact that, for W being cylindrically symmetric, the operator

HrHF
z,N,βW commutes with Lz. Note that σ(HrHF

z,N,βW ) = ∪
m∈Z

σ
(
HrHF
z,N,βW |Hm

)
. Same argu-

ments hold true for HLDA
z,N,βW under the assumption that the ground state density ρ0,LDA

z,N,βW

is cylindrically symmetric (which is the case whenever it is unique).

With the new decomposition defined in (4.16), the ground state density matrix γ0,rHF/LDA
z,N

can be written as

γ
0,rHF/LDA
z,N =

∑

(m,k) |ǫ0m,k≤ǫ
0,rHF/LDA
z,N,F

n
(0)
m,k|Φ

(0)
m,k〉〈Φ

(0)
m,k|, (4.17)
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where ǫ0m,k is the k-th negative eigenvalue of the Hamiltonian H0,rHF/LDA
z,N in the subspace

Hm, (Φ
(0)
m,k) is an L2-orthonormal family of associated eigenvectors (H0,rHF/LDA

z,N Φ
(0)
m,k =

ǫ0m,kΦ
(0)
m,k, (Φ

(0)
m,k,Φ

(0)
m′,k′)L2 = δmm′δkk′), while 0 ≤ n

(0)
m,k ≤ 2 is the occupation number of

the orbital Φ(0)
m,k. Let us denote by

Oz,N :=
{
(m, k) ∈ Z× N

∗| ǫ0m,k ≤ ǫ
0,rHF/LDA
z,N,F

}
(4.18)

the set of indices (m, k) such that the eigenfunction associated to the k-th lowest eigenvalue

(counting multiplicity) in the Vm subspace is an occupied orbital (i.e n
(0)
m,k 6= 0). By

convention, we take ǫ0m,k = minσess(H
0,rHF/LDA
z,N |Hm) = 0 if H0,rHF/LDA

z,N |Hm has at most
(k − 1) negative eigenvalues.

We are interested in the Stark potential

WStark(r) = −ez · r, (4.19)

which does not belong to C′, and thus does not fall into the scope of Theorem 42. We
therefore introduce the classes of perturbation potentials

Ws :=

{
W ∈ H0

loc|
∫

R3

|W |2
(1 + |.|2)s <∞

}
,

where H0
loc := H0 ∩ L2

loc(R
3), which contain the Stark potential WStark whenever s > 5/2.

For W ∈ Ws \ C′, the energy functional (4.11) is not necessarily bounded below on KN for
β 6= 0. Thus the solution of (4.12) may not exist. This is the case for the Stark potential
WStark. However, the k-th order perturbation may exist, as this is the case when the linear
Schrödinger operator of the hydrogen atom is perturbed by the Stark potential WStark (see
e.g [69]). The following theorem ensures the existence of the first order perturbation of the
density matrix.

Theorem 43 (First order perturbation [25]). Let z ∈ R
∗
+, 0 < N ≤ z, such that ǫ0,rHF

z,N,F <

0,1 s ∈ R and W ∈ Ws. In the rHF framework, the first order perturbation of the density
matrix γ(1),rHF

z,N,W is well defined in S1,1.

4.3 Numerical method

In this section, we will present the discretization method and the algorithms used to cal-
culate numerically the ground state density matrices for (4.8), (4.9) and (4.12) for cylin-
drically symmetric perturbation potentials W , together with the minimum energy and the
lowest eigenvalues of the associated Kohn-Sham operator. From now on, we make the
assumption that the ground state density of (4.12), if it exists, is cylindrically symmetric
which is always the case for the rHF model. Using spherical coordinates, we can write

W (r, θ) =

+∞∑

l=0

Wl(r)Y
0
l (θ) ∈ H0

1Note that, ǫ0,rHF
z,N,F < 0 whenever 0 < N < z (see e.g. [81]).
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(since Y 0
l is independent of ϕ, we use the notation Y 0

l (θ) instead of Y 0
l (θ, ϕ)). As the

ground state density ρz,N,βW is assumed to be cylindrically symmetric as well, one has

ρz,N,βW (r, θ) =

+∞∑

l=0

ρz,N,βW,l(r)Y
0
l (θ).

The Hartree and the exchange-correlation potentials also have the same symmetry. For
ρ ∈ L1(R3) ∩ L3(R3) ∩H0, we have

V H(ρ)(r, θ) =
+∞∑

l=0

V H
ρl
(r)Y 0

l (θ), and vxc(ρ)(r, θ) =
+∞∑

l=0

(vxcρ )l(r)Y
0
l (θ),

where, for each l ≥ 0, V H
ρl
(r) solves the following differential equation

−1

r

d2

dr2
(rV H

ρl
) +

l(l + 1)

r2
V H
ρl

= 4πρl

with boundary conditions

lim
r→0+

rV H
ρl
(r) = 0 and lim

r→+∞
rV H

ρl
(r) =

(
4π

∫ +∞

0
r2ρ0(r) dr

)
δl0,

while (vxcρ )l can be computed by projection on the spherical harmonics Y 0
l :

(vxcρ )l(r) = 2π

∫ π

0
vxc(ρ)(r, θ)Y

0
l (θ) sin θdθ.

4.3.1 Discretisation of the Kohn-Sham model

Recall that for W ∈ Ws and β 6= 0, the energy functional defined by (4.11) is not
necessarily bounded below on KN , which implies in particular that (4.12) may have no
ground state. Nevertheless, one can compute approximations of (4.12) in finite-dimensional
spaces, provided that the basis functions decay fast enough at infinity. Let Nh ∈ N

∗ and
mh ≥ m∗

z := max{m| ∃k > 0; ǫ0m,k ≤ ǫ0z,N,F}, and let {Xi}1≤i≤Nh
∈
(
H1

0 (0,+∞)
)Nh be a

free family of real-valued basis functions. We then introduce the finite-dimensional spaces

Vh,m := Vm ∩ span

(Xi(r)
r

Y m
l (θ, φ)

)

1≤i≤Nh
|m|≤l≤mh

⊂ H1(R3)

and
X h = span(X1, · · · ,XNh

) ⊂ H1
0 (0,+∞),

and the set

KN,h :=

{
γ ∈ KN | γ =

mh∑

m=−mh

γm, γm ∈ S(Hm), and Ran(γm) ⊂ Vh,m
}

⊂ KN .
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Variational approximation

A variational approximation of (4.12) is obtained by minimizing the energy functional
(4.11) over the approximation set KN,h:

ĨrHF/LDA
z,N,h (βW ) := inf

{
Ẽ

rHF/LDA
z,N (γh, βW ), γh ∈ KN,h

}
. (4.20)

Any γh ∈ KN,h can be written as

γh =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k|Φh,m,k〉〈Φh,m,k|, (4.21)

with

Φh,m,k ∈ Vh,m,
∫

R3

Φh,m,kΦ
∗
h,m,k′ = δkk′ , 0 ≤ nm,k ≤ 2,

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k = N.

The functions Φh,m,k being in Vh,m, they are of the form

Φh,m,k(r, θ, ϕ) =

mh∑

l=|m|

uh,m,kl (r)

r
Y m
l (θ, ϕ), (4.22)

where for each −mh ≤ m ≤ mh, 1 ≤ k ≤ (mh−|m|+1)Nh and |m| ≤ l ≤ mh, u
h,m,k
l ∈ X h.

Expanding the functions uh,m,kl in the basis (Xi)1≤i≤Nh
as

uh,m,kl (r) =

Nh∑

i=1

Um,ki,l Xi(r), (4.23)

and gathering the coefficients Um,ki,l for fixed m and k in a rectangular matrix Um,k ∈
R
Nh×(mh−|m|+1), any γh ∈ KN,h can be represented via (4.21)-(4.23) by at least one element

of the set
MN,h := UN,h ×NN,h, (4.24)

where

UN,h :=

{
(Um,k) −mh≤m≤mh

1≤k≤(mh−|m|+1)Nh

| Um,k ∈ R
Nh×(mh−|m|+1), Tr ([Um,k]TM0U

m,k′) = δkk′

}
,

and

NN,h :=




(nm,k) −mh≤m≤mh

1≤k≤(mh−|m|+1)Nh

, 0 ≤ nm,1 ≤ · · · ≤ nm,(mh−|m|+1)Nh
≤ 2,

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k = N




.

The matrix M0 appearing in the definition of UN,h is the mass matrix defined by

[M0]ij =

∫ +∞

0
XiXj ,

130



and the constraints Tr ([Um,k]TM0U
m,k′) = δkk′ come from the fact that

∫

R3

Φh,m,kΦ
∗
h,m,k′ =

∫ +∞

0

∫

S2




mh∑

l=|m|

Nh∑

i=1

Um,ki,l

Xi(r)
r

Y m
l (σ)






mh∑

l′=|m|

Nh∑

i=1

Um,k
′

j,l′
Xj(r)
r

Y m
l′ (σ)∗


 r2 dσ dr

=

mh∑

l=|m|

Nh∑

i,j=1

Um,ki,l [M0]ijU
m,k′

j,l = Tr ([Um,k]TM0U
m,k′).

Remark 44. An interesting observation is that, if there is no accidental degeneracy in
the set of the occupied energy levels of H0,rHF/LDA

z,N , and if the occupied orbitals are well

enough approximated in the space Vh,m, then the approximate ground state density matrix
γ
0,rHF/LDA
z,N,h has a unique representation of the form (4.21)-(4.23), up to the signs and the

numbering of the functions uh,m,kl , that is up to the signs and numbering of the column vec-
tors of the matrices Um,k. By continuity, this uniqueness of the representation will survive
if a small-enough cylindrically-symmetric perturbation is turn-on. This is the reason why
this representation is well-suited to our study.

Let us now express each component of the energy functional ẼrHF,LDA
z,N (γh, βW ) using

the representation (4.21)-(4.23) of the elements of KN,h. For this purpose, we introduce
the Nh ×Nh real symmetric matrices A and Mn, n = −2,−1, 0, 1 with entries

Aij =

∫ +∞

0
X ′
iX ′

j and [Mn]ij =

∫ +∞

0
rnXi(r)Xj(r) dr. (4.25)

The weighted mass matrices M−2 and M−1 are well-defined in view of the Hardy inequality

∀u ∈ H1
0 (0,+∞),

∫ +∞

0

u2(r)

r2
dr ≤ 4π

∫ +∞

0
|u′|2.

We assume from now on that the basis functions Xi decay fast enough at infinity for the
weighted mass matrix M1 to be well-defined.

In the representation (4.21)-(4.23), the kinetic energy is equal to

1

2
Tr (−∆γh) =

1

2

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,k

(
Tr
(
[Um,k]TAUm,k

)
+Tr

(
Dm[U

m,k]TM−2U
m,k
))

,

where Dm ∈ R
(mh−|m|+1)×(mh−|m|+1) is the diagonal matrix defined by

Dm = diag(|m|(|m|+ 1), · · · ,mh(mh + 1)). (4.26)

All the other terms in the energy functional depending on the density

ρh := ργh =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k|Φh,m,k|2, (4.27)
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we first need to express this quantity as a function of the matrices Um,k and the occupation
numbers nm,k. As the function ρh is in H0, we have

ρh(r, θ) =

2mh∑

l=0

ρhl (r)Y
0
l (θ). (4.28)

Inserting (4.22) in (4.27), we get

ρh(r, θ) =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k

∣∣∣∣∣∣

mh∑

l=|m|

uh,m,kl (r)

r
Y m
l (θ, ϕ)

∣∣∣∣∣∣

2

. (4.29)

We recall the following equality [72]

Y m
l1 (Y m

l2 )∗ = (−1)mY m
l1 Y

−m
l2

=

l1+l2∑

l3=|l1−l2|
cml1,l2,l3Y

0
l3 , (4.30)

with

cml1,l2,l3 = (−1)m
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
m −m 0

)(
l1 l2 l3
0 0 0

)
,

where

(
l1 l2 l3
m1 m2 m3

)
denote the Wigner 3j-symbols. Inserting the expansion (4.23) in

(4.29) and using (4.30) and the fact that

(
l1 l2 l3
m1 m2 m3

)
= 0 unless |l1 − l2| ≤ l3 ≤ l1 + l2,

we obtain

ρh(r, θ) =

2mh∑

l=0




Nh∑

i,j=1




∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,k

mh∑

l′,l′′=|m|
cml′,l′′,lU

m,k
i,l′ U

m,k
j,l′′




Xi(r)
r

Xj(r)
r


Y

0
l (θ),

from which we conclude that

ρhl (r) =

Nh∑

i,j=1




∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,k

mh∑

l′,l′′=|m|
cml′,l′′,lU

m,k
i,l′ U

m,k
j,l′′




Xi(r)
r

Xj(r)
r

.

For 0 ≤ l ≤ 2mh, we introduce the matrix Rl ∈ R
Nh×Nh defined by

Rl :=
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,kU
m,kC l,m[Um,k]T (4.31)
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where C l,m ∈ R
(mh−|m|+1)×(mh−|m|+1) is the symmetric matrix2 defined by

∀|m| ≤ l ≤ mh, C l,ml′,l′′ =
√
4π cml′,l′′,l, (4.32)

so that

ρh(r, θ) =
1√
4π

2mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)
r

Xj(r)
r

Y 0
l (θ). (4.33)

Note that C0,m is the identity matrix, so that

R0 =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,kU
m,k[Um,k]T

and

Tr (M0R0) =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,kTr (M0U
m,k[Um,k]T ) =

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

nm,k = N,

and that C1,m is a symmetric tridiagonal matrix whose diagonal elements all are equal to
zero.

The Coulomb attraction energy between the nucleus and the electrons then is equal to

−z
∫

R3

ρh
| · | = −z

∫ +∞

0

∫

S2

1

r


 1√

4π

2mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)
r

Xj(r)
r

Y 0
l (σ)


 r2 dr dσ

= −z
∫ +∞

0

∫

S2

1

r




2mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)
r

Xj(r)
r

Y 0
l (σ)


Y 0

0 (σ)
∗ r2 dr dσ

= −z
Nh∑

i,j=1

[R0]i,j [M−1]ij = −zTr (M−1R0),

where we have used the orthonormality condition (4.15) and the fact that Y 0
0 = 1√

4π
.

Likewise, since Y 0
1 (θ) =

√
3
4π cos(θ), the Stark potential (4.19) can be written in spher-

ical coordinates as

WStark(r, θ) = −
√

4π

3
rY 0

1 (θ) = −
√

4π

3
rY 0

1 (θ)
∗,

and the potential energy due to the external electric field is then equal to

β

∫

R3

ρhWStark = − 1√
3
β

Nh∑

i,j=1

[R1]ij [M1]ij = − 1√
3
βTr (M1R1).

2The symmetry of the matrix C
lm comes from the following symmetry properties of the 3j-symbols:

(

l1 l2 l3

m1 m2 m3

)

= (−1)l1+l2+l3

(

l2 l1 l3

m2 m1 m3

)

= (−1)l1+l2+l3

(

l2 l1 l3

−m2 −m1 −m3

)

.
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Let µ be a radial, continuous function from R
3 to R vanishing at infinity and such that∫

R3 µ = 1. The Coulomb interaction energy can be rewritten as follows:

1

2
D(ρh, ρh) =

1

2
D

(
ρh −

(∫

R3

ρh

)
µ, ρh −

(∫

R3

ρh

)
µ

)
+ND(µ, ρh)−

N2

2
D(µ, µ). (4.34)

The reason why we introduce the charge distribution µ is to make neutral the charge
distributions ρh−

(∫
R3 ρh

)
µ in the first term of the right-hand side of (4.34), in such a way

that the physical solution Q0,R0 to the equation (4.37) below for l = 0 is in H1
0 (0,+∞).

Introducing the real symmetric matrix Vµ ∈ R
Nh×Nh with entries

[Vµ]ij =

∫ +∞

0
[V H(µ)](re)Xi(r)Xj(r) dr, (4.35)

where e is any unit vector of R3 (the value of V H(µ)(re) is independent of e since V H(µ)
is radial) the sum of the last two terms of the right-hand side of (4.34) can be rewritten as

ND(µ, ρh)−
N2

2
D(µ, µ) = NTr (VµR0)−

N2

2
D(µ, µ).

Denoting by

Ṽ H(ρh) = V H

(
ρh −

(∫

R3

ρh

)
µ

)
,

we have by symmetry Ṽ H(ρh) ∈ H0 and

[Ṽ H(ρh)](r, θ) =

2mh∑

l=0

Ṽl(ρ
h
l )(r)Y

0
l (θ) =

2mh∑

l=0

Ql,Rl
(r)

r
Y 0
l (θ)

where Ql,Rl
is the unique solution in H1

0 (0,+∞) to the differential equation

−d
2Ql,Rl

dr2
(r) +

l(l + 1)

r2
Ql,Rl

(r) = 4πr




 1√

4π

Nh∑

i,j=1

[Rl]i,j
Xi(r)Xj(r)

r2


−Nµ(r)δl0


 .

(4.36)
Note that the mappings Rl 7→ Ql,Rl

are linear. We therefore obtain

1

2
D(ρh, ρh) =

1

2

2mh∑

l=0

1

4π

(∫ +∞

0

((
dQl,Rl

dr
(r)

)2

+
l(l + 1)

r2
Ql,Rl

(r)2

)
dr

)

+NTr (VµR0)−
N2

2
D(µ, µ). (4.37)

Finally, the exchange-correlation energy is

Exc(ρh) = 2π

∫ +∞

0

∫ π

0
ǫxc


 1√

4π

2mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)
r

Xj(r)
r

Y 0
l (θ)


 r2 sin θ dr dθ. (4.38)
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Approximation of the Hartree term

Except for very specific basis functions (such as Gaussian atomic orbitals), it is not possible
to evaluate exactly the first contribution to the Coulomb energy (4.37). It is therefore
necessary to approximate it. For this purpose, we use a variational approximation of
(4.36)-(4.37) in an auxiliary basis set {ζp}1≤p≤Nh,a

∈ (H1
0 (0,+∞))Nh,a , which amounts to

replacing 1
2D(ρh, ρh) by its lower bound

1

2
Dh(ρh, ρh) =

1

8π



∫ +∞

0



(
dQhl,Rl

dr
(r)

)2

+
l(l + 1)

r2
Qhl,Rl

(r)2


 dr




+NTr (VµR0)−
N2

2
D(µ, µ), (4.39)

where Qhl,Rl
is the unique solution in ζh = span(ζ1, · · · , ζNh,a

) to the problem

∀vh ∈ ζh,

∫ +∞

0

(
dQhl,Rl

dr
(r)

dvh
dr

(r) +
l(l + 1)

r2
Qhl,Rl

(r)vh(r)

)
dr

= 4π

∫ +∞

0
r




 1√

4π

Nh∑

i,j=1

[Rl]i,j
Xi(r)Xj(r)

r2


−Nµ(r)δl0


 vh(r)dr,

which is nothing but the variational approximation of (4.36) in the finite dimensional space
ζh. Expanding the functions Qhl,Rl

in the basis set {ζk}1≤k≤Nh,a
as

Qhl,Rl
(r) =

Nh,a∑

p=1

Qp,lζp(r),

and collecting the coefficients Qp,l, 1 ≤ k ≤ Nh,a in a vector Ql ∈ R
Nh,a , we obtain that

the vector Ql is solution to the linear system
(
Aa + l(l + 1)Ma

−2

)
Ql = 4π (F : Rl −Nδl0G) , (4.40)

where the Nh,a ×Nh,a real symmetric matrices Aa and Ma
−2 are defined by

Aa
pq =

∫ +∞

0
ζ ′pζ

′
q, [Ma

−2]pq =

∫ +∞

0

ζp(r)ζq(r)

r2
dr, (4.41)

where F ∈ R
Nh,a×Nh×Nh is the three-index tensor with entries

Fpij =
1√
4π

∫ +∞

0

Xi(r)Xj(r)ζp(r)
r

dr, (4.42)

and where G ∈ R
Nh,a is the vector with entries

Gp =

∫ +∞

0
rµ(r)ζp(r) dr. (4.43)

Note that since N = Tr (M0R0), the mappings Rl 7→ Ql are in fact linear. We finally get

1

2
Dh(ρh, ρh) =

1

8π

2mh∑

l=0

QTl (A
a + l(l + 1)Ma

−2)Ql +NTr (VµR0)−
N2

2
D(µ, µ), (4.44)

where Ql is the solution to (4.40).
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Final form of the discretized problem and Euler-Lagrange equations

We therefore end up with the following approximation of problem (4.1):

ĨrHF/LDA
z,N,h (βW ) := inf

{
ErHF/LDA
z,N,β ((Um,k), (nm,k)), (U

m,k) −mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

∈ UN,h,

(nm,k) −mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

∈ NN,h

}
. (4.45)

where

ErHF/LDA
z,N,β ((Um,k), (nm,k)) :=

1

2

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k

(
Tr
(
[Um,k]TAUm,k

)
+Tr

(
Dm[U

m,k]TM−2U
m,k
))

− zTr (M−1R0) +
1

8π

2mh∑

l=0

QTl (A
a + l(l + 1)Ma

−2)Ql +NTr (VµR0)

− N2

2
D(µ, µ) + Exc(ρh)−

β√
3
Tr (M1R1),

where for each l, the matrix Rl and the vector Ql are respectively defined by (4.31) and
(4.40), and where the last but one term in the right-hand side is given by (4.38).

The gradient of ĨrHF/LDA
z,N,h (βW ) with respect to Um,k is

∇Um,kErHF/LDA
z,N,β =2nm,k

(
1

2
AUm,k +

1

2
M−2U

m,kDm − zM−1U
m,k +NVµU

m,k

+

2mh∑

l=0

(QTl · F )(Um,kC l,m) +
2mh∑

l=0

V l
xcU

m,kC l,m − β√
3
M1U

m,kC1,m

)
,

where for each 0 ≤ l ≤ 2mh, the Nh ×Nh real matrix V l
xc is defined by

[V l
xc]ij =

√
π

∫ +∞

0

∫ π

0
vxc


 1√

4π

Nh∑

i,j=1

[Rl]i,j
Xi(r)Xj(r)

r2


Xi(r)Xj(r)Y 0

l (θ) sin θ dr dθ,

(4.46)
where vxc(ρ) := dexc

dρ (ρ) is the exchange-correlation potential.

Diagonalizing simultaneously the Kohn-Sham Hamiltonian and the ground state density
matrix in an orthonormal basis, we obtain that the ground state can be obtained by
solving the following system of first-order optimality conditions, which is nothing but a
reformulation of the discretized extended Kohn-Sham equations exploiting the cylindrical
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symmetry of the problem:

1

2
AUm,k +

1

2
M−2U

m,kDm − zM−1U
m,k +NVµU

m,k +

2mh∑

l=0

(QTl · F )(Um,kC l,m)

+

2mh∑

l=0

V l
xcU

m,kC l,m − 1√
3
βM1U

m,kC1,m = ǫm,kM0U
m,k, (4.47)

Tr
(
[Um,k]TM0U

m,k′
)
= δkk′ , (4.48)

(
Aa + l(l + 1)Ma

−2

)
Ql = F : Rl − Tr (M0R0)δl0G, (4.49)

[V l
xc]ij =

√
π

∫ +∞

0

∫ π

0
vxc


 1√

4π

Nh∑

i,j=1

[Rl]i,j
Xi(r)Xj(r)

r2


Xi(r)Xj(r)Y 0

l (θ) sin θ dr dθ, (4.50)

nm,k = 2 if ǫm,k < ǫF, 0 ≤ nm,k ≤ 2 if ǫm,k = ǫF, nm,k = 0 if ǫm,k > ǫF, (4.51)

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,k = N, (4.52)

Rl =
∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

nm,kU
m,kC l,m[Um,k]T , (4.53)

where the matrices A, M−2, M−1, M0, M1, Dm, Vµ, Aa, Ma
−2, C

l,m, the 3-index tensor F
and the vector G are defined by (4.25), (4.26), (4.32), (4.41), (4.42), (4.43).

P4-finite element method

In our calculations, we use the same approximation space to discretize the radial compo-
nents of the Kohn-Sham orbitals and the radial Poisson equations (4.36), so that, in our
implementation of the method, Nh,a = Nh and X h = ζh. We choose a cut-off radius Le > 0
large enough and discretize the interval [0, Le] using a non-uniform grid with NI +1 points
0 = r1 < r2 < · · · < rNI

< rNI+1 = Le. The positions of the points are chosen according
to the following rule:

rk = rk−1 + hk, hNI
=

1− s

1− sNI
Le, hk−1 = shk,

where 0 < s < 1 is a scaling parameter leading to a progressive refinement of the mesh
when one gets closer to the nucleus (r = 0). To achieve the desired accuracy, we use the
P4-finite element method.
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All the terms in the variational discretization of the energy and of the constraints can be
computed exactly (up to finite arithmetics errors), except the exchange-correlation terms
(4.38) and (4.46), which requires a numerical quadrature method. In our calculation, we
use Gauss quadrature formulas of the form

∫ +∞

0

∫ π

0
f(r, θ) sin θ dr dθ =

∫ +∞

0

∫ 1

−1
f(r, arccos tθ) dr dtθ

≃
NI∑

k=1

Ng,r∑

i=1

Ng,θ∑

j=1

hkwi,rwj,θf(rk + hkti,r, arccos(tj,θ)),

where the 0 < t1,r < · · · < tNg,r,r < 1 (resp. −1 < t1,θ < · · · < tNg,θ,θ < 1) are Gauss
points for the r-variable (resp. for the tθ-variable) with associated weights w1,r, · · · , wNg,r,r

(resp. w1,θ, · · · , wNg,θ,θ).

More details about the practical implementation of the method are provided in Ap-
pendix.

4.3.2 Description of the algorithm

In order to solve the self-consistent equations (4.47), we use an iterative algorithm. For
clarity, we first present this algorithm within the continuous setting. Its formulation in the
discretized setting considered here is detailed below. The iterations are defined as follows:
an Ansatz of the ground state density ρ[n] being known,

1. construct the Kohn-Sham operator

H [n] = −1

2
∆− z

| · | + V H(ρ[n]) + vxc(ρ
[n]) + βW

where vxc = 0 for the rHF model and vxc = vLDA
xc for the Kohn-Sham LDA model;

2. for each m ∈ Z, compute the negative eigenvalues of H [n]
m := ΠmH

[n]Πm, where Πm
is the orthogonal projector on the space Hm:

H [n]
m φ

[n+1]
m,k = ǫ

[n+1]
m,k φ

[n+1]
m,k ,

∫

R3

φ
[n+1]
m,k

∗
φ
[n+1]
m,k′ = δkk′ ;

3. construct a new density
ρ
[n+1]
∗ =

∑

m,k

n
[n+1]
m,k |φ[n+1]

m,k |2,

where




n
[n+1]
m,k = 2 if ǫ

[n+1]
m,k < ǫ

[n+1]
F ,

0 ≤ n
[n+1]
m,k ≤ 2 if ǫ

[n+1]
m,k = ǫ

[n+1]
F ,

n
[n+1]
m,k = 0 if ǫ

[n+1]
m,k > ǫ

[n+1]
F ,

and
∑

(m,k)

n
[n+1]
m,k = N ;
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4. update the density:
ρ[n+1] = tnρ

[n+1]
∗ + (1− tn)ρ

[n],

where tn ∈ [0, 1] either is a fixed parameter independent of n and chosen a priori, or
is optimized using the Optimal Damping Algorithm (ODA), see below;

5. if some convergence criterion is satisfied, then stop; else, replace n with n+1 and go
to step 1.

In the non-degenerate case, that is when ǫ
[n+1]
F is not an eigenvalue of the Hamiltonian

H [n], the occupation numbers n[n+1]
m,k are equal to either 0 (unoccupied) or 2 (fully occu-

pied), while in the degenerate case the occupation numbers at the Fermi level have to be
determined. We distinguish two cases: if W = 0, or more generally if W is spherically
symmetric, and if ǫ[n+1]

F is not an accidentally degenerate eigenvalue of H [n], then the
occupation numbers at the Fermi level are all equal; otherwise, the occupations numbers
are not known a priori. In our approach we select the occupation numbers at the Fermi
level which provide the lowest Kohn-Sham energy. When the degenerate eigenspace at the
Fermi level is of dimension 3, that is when the highest energy partially occupied orbitals
are perturbations of a three-fold degenerate p-orbital, the optimal occupation numbers
can be found by using the bisection method since, in this case, the search space can be
parametrized by a single real-valued parameter (this is due to the fact that the sum of
the three occupation numbers is fixed and that two of them are equal by cylindrically
symmetric). In the general case, more generic optimization methods have to be resorted
to.

In the discretization framework we have chosen, the algorithm can be formulated as
follows.

Initialization.

1. Choose the numerical parameters mh (cut-off in the spherical harmonics expansion),
Le (size of the simulation domain for the radial components of the Kohn-Sham or-
bitals and the electrostatic potential), NI (size of the mesh for solving the radial
equations), Ng,r (number of Gauss points for the radial quadrature formula), Ng,θ

(number of Gauss points for the angular quadrature formula), and ε > 0 (convergence
threshold),

2. assemble the matrices A = Aa, M−2 =Ma
−2, M−1, M0, M1, C lm, Vµ and the vector

G. The tensor F can be either computed once and for all, or the contractions F : R
[n]
l

can be computed on the fly, depending on the size of the discretization parameters
and the computational means available;

3. choose an initial guess (R
[0]
l )0≤l≤2mh

for the matrices representing the discretized
ground state density at iteration 0 (it is possible to take Rl = 0 for all l if no other
better guess is known).

Iterations. The matrices (R
[n]
l )0≤l≤2mh

at iteration n being known,

1. construct the building blocks of the discretized analogues of the operators H [n]
m . For

this purpose,
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(a) solve, for each l = 0, · · · , 2mh, the linear equation

(
Aa + l(l + 1)Ma

−2

)
Q

[n]
l = 4π

(
F : R

[n]
l −Nδl0G

)

(b) assemble, for each l = 0, · · · , 2mh, the matrix V
xc,[n]
l by means of use Gauss

quadrature rules

[V l,[n]
xc ]ij =

√
π

NI∑

k=1

Ng,r∑

p=1

Ng,θ∑

q=1

hkwp,rwq,θf
l
ij(rk + hktp,r, tq,θ),

where

f lij(r, tθ) = vxc


 1√

4π

mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)Xj(r)

r2
Y 0
l (arccos tθ)


Xi(r)Xj(r)Y 0

l (arccos tθ);

2. solve, for each −mh ≤ m ≤ mh, the generalized eigenvalue problem

1

2
AUm,k,[n+1] +

1

2
M−2U

m,k,[n+1]Dm − zM−1U
m,k,[n+1] +NVµU

m,k,[n+1] +

2mh∑

l=0

(Q
[n]T
l · F )(Um,k,[n+1]C l,m)

+

2mh∑

l=0

V l,[n]
xc Um,k,[n+1]C l,m − β√

3
M1U

m,k,[n+1]C1,m = ǫ
[n+1]
m,k M0U

m,k,[n+1],

(4.54)

Tr
(
[Um,k,[n+1]]TM0U

m,k′,[n+1]
)
= δkk′ , (4.55)

3. build the matrices R[n+1]
l,∗ using the Aufbau principle and, if necessary, optimizing the

occupation numbers n[n+1]
m,k , by selecting the occupation numbers at the Fermi level

leading to the lowest Kohn-Sham energy3:

R
[n+1]
l,∗ =

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

n
[n+1]
m,k Um,k,[n+1]C l,m[Um,k,[n+1]]T ,

where




n
[n+1]
m,k = 2 if ǫ

[n+1]
m,k < ǫ

[n+1]
F ,

0 ≤ n
[n+1]
m,k ≤ 2 if ǫ

[n+1]
m,k = ǫ

[n+1]
F ,

n
[n+1]
m,k = 0 if ǫ

[n+1]
m,k > ǫ

[n+1]
F ,

and
∑

(m,k)

n
[n+1]
m,k = N ;

3In practice, this optimization problem is low-dimensional. Indeed, the degeneracy of the Fermi level
is typically 3 (perturbation of p-orbitals) or 5 (perturbation of d-orbitals) for most atoms of the first four
rows of the periodic table, and some of the occupation numbers are known to be equal for symmetric
reasons.

140



4. update the density:

∀0 ≤ l ≤ 2mh, R
[n+1]
l = tnR

[n+1]
l,∗ + (1− tn)R

[n]
l ,

where tn ∈ [0, 1] either is a fixed parameter independent of n and chosen a priori, or
is optimized using the ODA, see below;

5. if (for instance) max0≤l≤2mh
‖R[n+1]

l −R
[n]
l ‖ ≤ ε then stop; else go to step one.

Note that the generalized eigenvalue problem (4.54)-(4.55) can be rewritten as a stan-
dard generalized eigenvalue problem of the form

H
m
Vk = ǫ

[n+1]
m,k MVk, V

T
kMVk′ = δkk′ , (4.56)

where the unknowns are vectors (and not matrices) by introducing the column vectors
Vk ∈ R

(mh+1−|m|)Nh and the block matrices

H
m ∈ R

(mh+1−|m|)Nh×(mh+1−|m|)Nh and M ∈ R
(mh+1−|m|)Nh×(mh+1−|m|)Nh

defined as

Vk =




U
m,k,[n+1]
·,|m|

·
·
·

U
m,k,[n+1]
·,mh



, H

m =




H
m
|m|,|m| H

m
|m|,|m|+1 · · · H

m
|m|,mh−1, H

m
|m|,mh

H
m
|m|+1,|m| H

m
|m|+1,|m|+1 · · · H

m
|m|+1,mh−1, H

m
|m|+1,mh

· · · · · · · · · · · · · · ·
H
m
mh−1,|m| H

m
mh−1,|m|+1 · · · H

m
mh−1,mh−1, H

m
mh−1,mh

H
m
mh,|m| H

m
mh,|m|+1 · · · H

m
mh,mh−1, H

m
mh,mh



,

and
M = block diag(M0, · · · ,M0),

where each of the (mh − |m|+ 1) block H
m
l,l′ is of size Nh ×Nh with

∀|m| ≤ l ≤ mh, H
m
l,l =

1

2
A+

l(l + 1)

2
M−2−zM−1+NVµ+

2mh∑

l′′=0

C l,ml,l′′
(
[Q

[n]
l′′ ]

T · F + V l′′,[n]
xc

)

∀|m| ≤ l 6= l′ ≤ mh, H
m
l,l′ =

2mh∑

l′′=0

C l,ml′,l′′
(
[Q

[n]
l′′ ]

T · F + V l′′,[n]
xc

)
− β√

3
C1,mM1δ|l−l′|,1.

If β = 0 and if the density ρ[n]h is radial, then R
[n]
l = 0 for all l ∈ N

∗, and the matrix
H
m is block diagonal. The generalized eigenvalue problem (4.56) can then be decoupled

in (mh − |m| + 1) independent generalized eigenvalue problems of size Nh. This comes
from the fact that the problem being spherically symmetric, the Kohn-Sham Hamiltonian
is block diagonal in the two decompositions

L2(R3) =
⊕

l∈N
Hl and L2(R3) =

⊕

m∈Z
Hm.

Let us conclude this section with some remarks on the Optimal Damping Algorithm
(ODA) [20, 19], used to find an optimal step-length tn to mix the matrices R[n+1]

l,∗ and R[n]
l
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in Step 4 of the iterative algorithm. This step-length is obtained by minimizing on the
range t ∈ [0, 1] the one-dimensional function

t 7→ Ẽ
rHF/LDA
z,N

(
(1− t)γ

[n+1]
∗ + tγ[n], βW

)
,

where γ[n] is the current approximation of the ground state density matrix at iteration n
and

γ
[n+1]
∗ =

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)Nh

n
[n+1]
m,k |Φ[n+1]

h,m,k〉〈Φ
[n+1]
h,m,k|,

with

Φ
[n+1]
h,m,k(r, θ, ϕ) =

mh∑

l=|m|

Nh∑

i=1

U
m,k,[n+1]
i,l

Xi(r)
r

Y m
l (θ, ϕ),

A key observation is that this optimization problem can be solved without storing den-
sity matrices, but only the two sets of matrices R[n] := (R

[n]
l )0≤l≤2mh

and R
[n+1]
∗ :=

(R
[n+1]
l,∗ )0≤l≤2mh

, and the scalars

E
[n]
kin := Tr

(
−1

2
∆γ[n]

)

and

E
[n+1]
kin,∗ := Tr

(
−1

2
∆γ

[n+1]
∗

)

=
1

2

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

n
[n+1]
m,k

(
Tr
(
[Um,k,[n+1]]TAUm,k,[n+1]

)

+Tr
(
Dm[U

m,k,[n+1]]TM−2U
m,k,[n+1]

))
,

Indeed, we have for all t ∈ [0, 1],

Ẽ
rHF/LDA
z,N

(
(1− t)γ

[n+1]
∗ + tγ[n], βW

)
= (1−t)E[n+1]

kin,∗ +tE
[n]
kin+F rHF/LDA

(
(1− t)R

[n+1]
∗ + tR[n], βW

)
,

where the functional F rHF/LDA collects all the terms of the Kohn-Sham functional depend-
ing on the density only. When Exc = 0 (rHF model), the function

t 7→ Ẽ
rHF/LDA
z,N

(
(1− t)γ

[n+1]
∗ + tγ[n], βW

)

is a convex polynomial of degree two, and its minimizer on [0, 1] can therefore be easily
computed explicitly. In the LDA case, the minimum on [0, 1] of the above function of t
can be obtained using any line search method. We use here the golden search method [66,

Chapter 10]. Once the minimizer tn is found, the quantity E
[n]
kin is updated using the

relation
E

[n+1]
kin = (1− tn)E

[n+1]
kin,∗ + tnE

n
kin.
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4.4 Numerical results

As previously mentioned, we use in our code the same basis to discretize the radial com-
ponents of the Kohn-Sham orbitals and of the Hartree potential, that is (Xi)1≤i≤Nh

=
(ζi)1≤i≤Nh

, and the P4 finite elements method to construct the discretization basis.

We start this section by studying the convergence rate of the ground state energy and
of the occupied energy levels of the carbon atom (z = 6) as functions of the cut-off radius
Le and the mesh size NI (see Section 4.3.1). The errors on the total energy and on the
occupied energy levels for the rHF model are plotted in Fig. 4.1 (for Le = 50 and different
values of NI) and Fig. 4.2 (for NI = 50 and different values of Le), the reference calculation
corresponding to Le = 100 and NI = 100. We can see that the choice Le = 50 and NI = 50
provide accuracies of about 1 µHa (recall that chemical accuracy corresponds to 1 mHa).
Similar results are obtained for the Xα model.
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Figure 4.1 – Error on the total energy (left) and the occupied energy level (right) of the carbon atom for the rHF
model as a function of the cut-off radius Le for a fixed mesh size NI = 50 (the reference calculation corresponds to
Le = 100 and NI = 100).
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Figure 4.2 – Error on the total energy (left) and the occupied energy level (right) of the carbon atom for the rHF
model as a function of the mesh size NI , for a fixed cut-off radius Le = 50 (the reference calculation corresponds to
Le = 100 and NI = 100).

4.4.1 Electronic structures of isolated atoms

We report here calculations on all the atoms of the first four rows of the periodic table
obtained with the rHF (Section 4.4.1) and Xα (Section 4.4.1) models respectively.
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Occupied energy levels in the rHF model

The negative eigenvalues of HrHF
ρ0 for all 1 ≤ z ≤ 54 (first four rows of the periodic table)

are listed in the tables below. The results for 1 ≤ z ≤ 20, 27 ≤ z ≤ 39, 42 ≤ z ≤ 45 and
48 ≤ z ≤ 54 correspond to Le = 50 and NI = 50 (these values are sufficient to obtain
chemical accuracy). The remaining atoms are more difficult to deal with because the Fermi
level happens to be an accidentally degenerate eigenvalue associated with

• the 4p and 3d shells for z = 21 and z = 22;

• the 5s and 3d shells for 23 ≤ z ≤ 26, with a Fermi level very close (or possibly equal)
to zero;

• the 5p and 4d shells for z = 40, with a Fermi level very close (or possibly equal) to
zero;

• the 6s and 4d shells for z = 41 and z = 42, with a Fermi level very close (or possibly
equal) to zero;

• the 5s and 4d shells for z = 46 and z = 47.

Since the radial component of the highest occupied orbital typically vanishes as e−
√

2|ǫ0,rHF
z,z,F |r

if ǫ0,rHF
z,NF < 0 and algebraically if ǫ0,rHF

z,z,F = 0, we used Le = 200 and NI = 100 for the atoms
for which the Fermi level is very close or possibly equal to zero. In the next version of
the code, we will implement Robin boundary conditions to deal with these cases. When
the accidental degeneracy involves an s-shell and since the density is radial, the problem
of finding the occupation numbers at the Fermi level reduces to finding a single parameter
t0 ∈ [0, 1], which encodes the amount of electrons on the upper s-shell. In other word, one
can write

ρ0,rHF
z,z = ρf + t0ρs + (1− t0)ρd,

where ρf is the density corresponding to the fully occupied shells, and where ρs and ρd are
densities corresponding to the accidentally degenerate s and d shells. Using the same trick
for accidentally degenerate p and d shells, we manage to obtain a self-consistent solution
to the rHF equations, which is necessarily a ground state since the rHF model in convex
in the density matrix.

Hydrogen and Helium:

z 1s

1 -0.046222441

2 -0.18488978

First row:

z 1s 2s 2p

3 -1.20270301 -0.01322136 -

4 -2.90243732 -0.04372294 -

5 -5.40709672 -0.16484895 -0.00228929

6 -8.55573207 -0.26568197 -0.01204656

7 -12.39017752 -0.38469911 -0.02731211

8 -16.91253830 -0.52288300 -0.04728083

9 -22.12352496 -0.68047933 -0.07166353

10 -28.02348145 -0.85759726 -0.10342071

Second row:
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z 1s 2s 2p 3s 3p

11 -35.06531327 -1.45387137 -0.51433947 -0.01247334 -

12 -42.96317835 -2.16934853 -1.03789169 -0.03403618 -

13 -51.83361292 -3.11883641 -1.78980637 -0.13539872 -0.00236049

14 -61.53217897 -4.16012798 -2.62905505 -0.20880306 -0.01076743

15 -72.08395183 -5.31952891 -3.58242198 -0.28419984 -0.02343144

16 -83.48974606 -6.59848973 -4.65155127 -0.36358542 -0.03974632

17 -95.74953576 -7.99740416 -5.83693061 -0.44762885 -0.05940137

18 -108.86319120 -9.51643491 -7.13877263 -0.53666989 -0.08223377

Third row:

z 1s 2s 2p 3s 3p 4s

19 -123.09371155 -11.41336398 -8.81578407 -0.86617519 -0.32610851 -0.00949680

20 -138.23385507 -13.47856459 -10.65883777 -1.22593632 -0.59655446 -0.02427523

z 1s 2s 2p 3s 3p 4s 4p 3d t0 on 3d

21 -154.3586 -15.7853 -12.7415 -1.6900 -0.9696 -0.0864 -0.0026 -0.0026 0.028

22 -171.131 -17.9548 -14.6900 -1.9168 -1.1152 -0.0082 -0.0005 -0.0005 1.5380

z 1s 2s 2p 3s 3p 4s 5s 3d t0 on 5s

23 -188.7708 -20.2407 -16.7539 -2.15109 -1.26708 -0.07796 -0.00044 -0.00044 0.1689

24 -207.2745 -22.6427 -18.9327 -2.3922 -1.4240 -0.0702 -0.00020 -0.00020 0.1028

25 -226.6420 -25.1593 -21.2249 -2.6388 -1.5844 -0.0638 -0.00005 -0.00005 0.0566

26 -246.8743 -27.7923 -23.6325 -2.8922 -1.7496 -0.0582 0.00006 0.00006 0.0214

z 1s 2s 2p 3s 3p 4s 3d

27 -267.97358 -30.54466 -26.15796 -3.15500 -1.92170 -0.05437 -0.00119

28 -289.94359 -33.42047 -28.80557 -3.43107 -2.10456 -0.05459 -0.00722

29 -312.78011 -36.41574 -31.57124 -3.71624 -2.29392 -0.05539 -0.01370

30 -336.48291 -39.53046 -34.45490 -4.01038 -2.48957 -0.05646 -0.02026

z 1s 2s 2p 3s 3p 3d 4s 4p

31 -361.30915373 -43.03685995 -37.72686012 -4.57587907 -2.95111519 -0.26410850 -0.16513180 -0.00225054

32 -387.03964375 -46.71169384 -41.16430511 -5.18276103 -3.44948249 -0.53374871 -0.22933666 -0.01054116

33 -413.70410266 -50.58386786 -44.79632026 -5.85675241 -4.01109639 -0.86072524 -0.29329191 -0.02257476

34 -441.29732764 -54.64718844 -48.61688712 -6.59013132 -4.62885611 -1.24022451 -0.35879526 -0.03741385

35 -469.81532351 -58.89678392 -52.62128841 -7.37731085 -5.29767763 -1.66831339 -0.42619337 -0.05462542

36 -499.25546693 -63.32932357 -56.80632165 -8.21464148 -6.01429770 -2.14232300 -0.49563869 -0.07399144

Fourth row:

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 5p

37 -529.82601790 -68.15068857 -61.37833545 -9.30643156 -6.98331877 -2.86700686 -0.76009595 -0.27190798 -0.00873608 -

38 -561.33920001 -73.17198115 -66.14866074 -10.46284560 -8.01515628 -3.65305106 -1.03266673 -0.47589319 -0.02158602 -

39 -593.86428446 -78.46184644 -71.18601398 -11.75196775 -9.17808919 -4.56895864 -1.38316482 -0.75715385 -0.07643896 -0.00257626

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 5p 4d t0 on 4d

40 -627.1736 -83.7796 -76.2511 -12.9368 -10.2352 -5.3771 -1.5820 -0.8924 -0.0736 -0.0004 -0.0004 1.603

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 6s 4d t0 on 6s

41 -661.3853 -89.2541 -81.4718 -14.1458 -11.3153 -6.2066 -1.7642 -1.0128 -0.0626 -0.0001 -0.0001 0.0079

42 -696.5125 -94.8971 -86.8598 -15.3909 -12.4302 -7.0694 -1.9422 -1.1300 -0.0494 0.0001 0.0001 0.0076

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 4d

43 -732.56043462 -100.7181380 -92.42481893 -16.68177062 -13.58963868 -7.97538494 -2.12654690 -1.25415793 -0.04455432 -0.00944404

44 -769.53351308 -106.7135989 -98.16322266 -18.01497015 -14.79032927 -8.92098014 -2.31409507 -1.38184648 -0.04320371 -0.02418577

45 -807.42521 -112.88068 -104.07219 -19.38777 -16.02955 -9.90351 -2.50245 -1.51046 -0.04269 -0.04081

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 4d t0 on 5s

46 -846.2173 -119.1903 -110.1229 -20.7717 -17.2789 -10.8943 -2.6643 -1.6133 -0.0384 -0.0384 1.6723

47 -885.906 -125.669 -116.341 -22.192 -18.564 -11.919 -2.824 -1.714 -0.033 -0.033 1.353

z 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p

48 -926.60969514 -132.40974761 -122.82066065 -23.74286025 -19.97783049 -13.07178064 -3.07367236 -1.90166791 -0.09671315 -0.04286172 -

49 -968.39851855 -139.49293764 -129.64090781 -25.50170538 -21.59919010 -14.43055667 -3.48770732 -2.25177074 -0.31074362 -0.13152493 -0.00244819

50 -1011.10988776 -146.75529247 -136.63892941 -27.30519988 -23.26432592 -15.83203278 -3.90095895 -2.59906146 -0.51756218 -0.18185504 -0.010597961

51 -1054.77491808 -154.22790173 -143.84587070 -29.18404362 -25.00398086 -17.30702665 -4.34350846 -2.97392511 -0.74975726 -0.23082157 -0.021622274

52 -1099.39181535 -161.90882447 -151.25984753 -31.13608167 -26.81603535 -18.85346237 -4.81292425 -3.37420604 -1.00615152 -0.28009664 -0.034651269

53 -1144.95872041 -169.79608757 -158.87893701 -33.15920544 -28.69841162 -20.46929504 -5.30700485 -3.79792519 -1.28524929 -0.33010152 -0.049319259

54 -1191.47425451 -177.88824165 -166.70173403 -35.25187508 -30.64959710 -22.15303866 -5.82421316 -4.24371893 -1.58593153 -0.38102733 -0.065446657
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Remark 45. Our numerical simulations seem to show that for all 1 ≤ z ≤ 54, there are
no unoccupied negative eigenvalues in the rHF model.

We end this section by the following figures, which back up the conjecture rHF atomic
densities are strictly decreasing radial functions of the distance to the nucleus.
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Figure 4.3 – The left figure is the plot of the densities of all the atoms 1 ≤ z ≤ 54 with non-accidental degeneracy
at the Fermi level, as a function of the distance to the nucleus, on the interval [0, 0.05]. The right one is the plot of
the logarithms of those densities on the interval [0, 50] (with Le = 50.

Occupied energy levels in the Xα model

Recall that, in the Xα model, we have vxc(ρ) = −( 3π )
1
3 ρ

1
3 and Exc(ρ) = −3

4

(
3
π

) 1
3
∫
R3 ρ

4
3 , so

that the exchange-correlation contributions must be computed by numerical quadratures.
We use here the Gauss quadrature method withNg,r = 15 andNg,θ = 30 (see Section 4.3.1).
The tables below provide the negative eigenvalues of the Kohn-Sham Xα Hamiltonian for
all the atoms of the first four rows of the periodic table. We observe that atoms z, with
23 ≤ z ≤ 28 and 41 ≤ z ≤ 44 have accidentally degenerate Fermi levels, the degeneracy
occurring in all cases between an s-shell and a d-shell (4s-3d for 23 ≤ z ≤ 28, 5s-4d for
41 ≤ z ≤ 44) . All the results of this section are obtained for Le = 50 and NI = 50.

Hydrogen and Helium:

z 1s

1 -0.19425006

2 -0.51696819

First row:

z 1s 2s 2p

3 -1.82059688 -7.903269E-2 -0.01980414

4 -3.79318208 -0.17002882 -0.04568118

5 -6.50218508 -0.30537740 -0.10004190

6 -9.88411109 -0.45738266 -0.15795225

7 -13.94600837 -0.62884191 -0.22100492

8 -18.69081532 -0.82059960 -0.28951252

9 -24.12007582 -1.03296355 -0.36353478

10 -30.23473335 -1.26604957 -0.44305634

Second row:

z 1s 2s 2p 3s 3p

11 -37.64758180 -2.00773745 -1.00602899 -0.07701608 -

12 -45.89700050 -2.84556771 -1.66130099 -0.14212957 -

13 -55.08056245 -3.87797891 -2.50729361 -0.25134003 -0.07177562

14 -65.10729333 -5.01701318 -3.45670306 -0.35912165 -0.11781396

15 -75.98288074 -6.26974906 -4.51657129 -0.47007048 -0.16667495

16 -87.70907634 -7.63874114 -5.68939939 -0.58562735 -0.21887553

17 -100.2866151 -9.12522188 -6.97637829 -0.70643843 -0.27456776

18 -113.7158648 -10.7298831 -8.37817028 -0.83284590 -0.33379865
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Third row:

z 1s 2s 2p 3s 3p 4s 3d

19 -128.33088855 -12.77542310 -10.21910630 -1.23313747 -0.64663669 -0.06446060 -

20 -143.84855797 -14.98113891 -12.21828949 -1.65584549 -0.98139181 -0.11135946 -

21 -160.10133445 -17.14580897 -14.17782407 -1.94114079 -1.18677960 -0.12562079 -0.08993616

22 -177.19446604 -19.39840741 -16.22419871 -2.21070037 -1.37630293 -0.13516712 -0.12742135

z 1s 2s 2p 3s 3p 4s 3d t0 on 4s

23 -195.11079 -21.72028 -18.33888 -2.44810 -1.53340 -0.13684 -0.13684 1.80348

24 -213.87746 -24.14440 -20.55424 -2.68033 -1.68342 -0.13575 -0.13575 1.56344

25 -233.50874 -26.68762 -22.88689 -2.92165 -1.83995 -0.13474 -0.13474 1.36094

26 -254.00468 -29.35014 -25.33699 -3.17214 -2.00304 -0.13379 -0.13379 1.18853

27 -275.36533 -32.13213 -27.90468 -3.43191 -2.17274 -0.13292 -0.13292 1.04052

28 -297.59072 -35.03373 -30.59009 -3.70102 -2.34907 -0.13212 -0.13212 0.91251

z 1s 2s 2p 3s 3p 3d 4s 4p

29 -320.71113046 -38.08838872 -33.42631684 -4.01075021 -2.56269325 -0.15772095 -0.13853326 -

30 -344.88588666 -41.47118261 -36.58668322 -4.51985307 -2.96945715 -0.34823478 -0.18536698 -

31 -370.08694818 -45.14035375 -40.03094135 -5.18870626 -3.53208119 -0.68572747 -0.29087281 -0.07062410

32 -396.20670224 -48.99180349 -43.65480075 -5.90610365 -4.13981877 -1.06418169 -0.38678393 -0.11469598

33 -423.24795332 -53.02694591 -47.45990056 -6.67318606 -4.79450154 -1.48714865 -0.48133889 -0.15888526

34 -451.20940700 -57.24351130 -51.44413418 -7.48771399 -5.49435363 -1.95357905 -0.57651339 -0.20426009

35 -480.08984982 -61.63957319 -55.60570006 -8.34791183 -6.23792096 -2.46234253 -0.67311692 -0.25119926

36 -509.88839450 -66.21370906 -59.94327472 -9.25254377 -7.02419663 -3.01257433 -0.77157332 -0.29987488

Fourth row:

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 4d

37 -540.86299141 -71.21967003 -64.71130538 -10.45230037 -8.10401360 -3.85483317 -1.08806572 -0.54736605 -0.06148775 -

38 -572.77371002 -76.41823515 -69.67048854 -11.70829319 -9.23867588 -4.75086849 -1.40702066 -0.79807906 -0.10273762 -

39 -605.53830731 -81.71901613 -74.73119930 -12.93252908 -10.34028964 -5.61229300 -1.65169456 -0.98042181 -0.12072164 -0.07191940

40 -639.19811617 -87.16714952 -79.93818365 -14.17103753 -11.45501932 -6.48554899 -1.87316127 -1.14187376 -0.13103765 -0.11153445

z 1s 2s 2p 3s 3p 3d 4s 4p 5s 4d t0 on 5s

41 -673.73 -92.74 -85.27 -15.40 -12.56 -7.35 -2.05 -1.27 -0.131 -0.131 0.43

42 -709.14 -98.44 -90.72 -16.63 -13.66 -8.20 -2.19 -1.35 -0.11 -0.11 0.49

43 -745.47 -104.31 -96.35 -17.90 -14.80 -9.10 -2.34 -1.43 -0.106 -0.106 0.52

44 -782.72 -110.36 -102.15 -19.20 -15.98 -10.03 -2.482 -1.52 -0.091 -0.091 1.58

z 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p

45 -820.92037210 -116.61462706 -108.16375469 -20.58519414 -17.23463593 -11.03598845 -2.66114841 -1.64573152 -0.10328896 - -

46 -860.04005143 -123.04183023 -114.34293438 -22.00846063 -18.52807961 -12.07926430 -2.84546201 -1.77155380 -0.11897024 - -

47 -900.22199578 -129.79046984 -120.84193123 -23.62015666 -20.00902516 -13.30887072 -3.17386649 -2.03765069 -0.25210378 -0.12413645 -

48 -941.36800831 -136.75927851 -127.55983800 -25.31799286 -21.57523963 -14.62254311 -3.54347710 -2.34306170 -0.42072334 -0.16782523 -

49 -983.53661310 -144.00564974 -134.55408885 -27.15937608 -23.28414797 -16.07767931 -4.01092920 -2.74459266 -0.68157835 -0.25392457 -0.07116224

50 -1026.64612079 -151.44937883 -141.74444883 -29.06302510 -25.05452546 -17.59329598 -4.49305138 -3.15921725 -0.95435554 -0.33058463 -0.11021256

51 -1070.70153266 -159.09520245 -149.13571744 -31.03355268 -26.89101534 -19.17406284 -4.99473289 -3.59218268 -1.24495452 -0.40462751 -0.14839056

52 -1115.70333560 -166.94345654 -156.72827917 -33.07120441 -28.79389045 -20.82027875 -5.51644865 -4.04419106 -1.55433179 -0.47795434 -0.18678349

53 -1161.65132530 -174.99385350 -164.52188686 -35.17562866 -30.76282361 -22.53163992 -6.05805748 -4.51525592 -1.88259825 -0.55138448 -0.22581410

54 -1208.54517097 -183.24602834 -172.51621060 -37.34641486 -32.79742631 -24.30777853 -6.61934032 -5.00526767 -2.22967177 -0.62535460 -0.26568953

4.4.2 Perturbation by a uniform electric field (Stark effect)

In this section, we consider atoms subjected to a uniform electric field, that is to an external
potential βWStark with

WStark(r) = −ez · r,
or, in spherical coordinates,

WStark(r, θ, ϕ) = −
√

4π

3
rY 0

1 (θ, ϕ).

As already mentioned in Section 4.2.2, ĨrHF/LDA
z,N (βWStark) = −∞ whenever β 6= 0, and the

corresponding variational problem has no minimizer. However, one can find a minimizer
γh ∈ KN,h to the approximated problem ĨrHF/LDA

z,N,h (βWStark). The following figures are

147



the plot in the xy-plane of the density ρh multiplied by |r|2 for the boron atom (z = 4)
obtained for different values of β:
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Figure 4.4 – rHF case: the left figure is a plot of the density of an isolated boron atom. The other ones
are plots of the density of the boron atom subjected to a uniform external electric field, with coupling constants
β = 10−3, 10−2, 10−1, respectively.
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Figure 4.5 – Xα case: The first figure is a plot of the density of an isolated boron atom. The other ones
are plots the density of the boron atom subjected to a uniform external electric field, with coupling constants
β = 10−3, 10−2, 10−1, respectively.

For β = 10−2 and β = 10−1, we clearly see boundary effects: part of the electronic cloud
is localized in the region where the external potential takes highly negative values. This
result is obviously not physical. On the other hand, for the Xα model and for β = 10−3

we simply observe a polarization of the electronic cloud. The perturbation potential being
not spherically symmetric, it breaks the symmetry of the density. This numerical solution
can probably be interpreted as a (nonlinear) resonant state. We will come back to the
analysis of this interesting case in a following work.

Fig. 4.6 shows the amount of electrons in the boron atom which escape to infinity as a
function of the coupling constant β (for Le = 100), in the rHF case.

While ĨrHF/LDA
z,N (βWStark) = −∞ and the corresponding variational problem has no

minimizer, the first-order perturbation γ(1),rHF
z,N,WStark

of the ground state density matrix does
exist (see Theorem 43). If we consider the boron atom, it can be expressed as a function of
the unperturbed occupied Kohn-Sham orbitals and of their first-order perturbations. We
indeed have

γ
(1),rHF
4,4,WStark

=
∑

(m,k)∈O4,4

2|Φ(0)
m,k〉〈Φ

(1)
m,k|+ 2|Φ(1)

m,k〉〈Φ
(0)
m,k|,

where O4,4 = {(0, 1), (0, 2)}, where ǫ(0)m,k is the k-th lowest eigenvalue of H0,rHF
4,4 in the
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Figure 4.6 – The plot of the integral on B100 \ B50 of the density ρh for Le = 100 as a
function of β in the rHF and Xα case.

subspace Hm and Φ
(0)
m,k an associated normalized eigenfunction, while ǫ(1)m,k and Φ

(1)
m,k satisfy

the following self-consistent equation

(
H0,rHF

4,4 − ǫ
(0)
m,k

)
Φ
(1)
m,k + 2


 ∑

(m′,k′)∈O4,4

2Φ
(0)
m′,k′Φ

(1)
m′,k′ ⋆ | · |−1


Φ

(0)
m,k +WStarkΦ

(0)
m,k = ǫ

(1)
m,kΦ

(0)
m,k,

∫

R3

Φ
(1)
m,kΦ

(0)
m,k = 0.

We denote by ǫ
(0)
h,m,k, ǫ

(1)
h,m,k,Φ

(0)
h,m,k and Φ

(1)
h,m,k the approximations of ǫ(0)m,k, ǫ

(1)
m,k,Φ

(0)
m,k and

Φ
(1)
m,k. For each (m, k) ∈ O4,4, define

Φ̃
(1)
h,m,k(β) :=

1

β
(Φh,m,k(β)− Φ

(0)
h,m,k).

Recall that, (Φh,m,k(β))(m,k)∈O4,4
are the eigenfunctions of the density matrix γh, the

minimizer of the approximated problem ĨrHF
z,N,h(βWStark).

Let Um,k and Ũm,k(β) be such that

Φ
(0)
h,m,k(r, θ, ϕ) =

mh∑

l=|m|

(
Nh∑

i=1

Um,ki,l (β)Xi(r)/r
)
Y m
l (θ, ϕ) and

Φ̃
(1)
h,m,k(β)(r, θ, ϕ) =

mh∑

l=|m|

(
Nh∑

i=1

Ũm,ki,l (β)Xi(r)/r
)
Y m
l (θ, ϕ).

To show that Φ̃
(1)
h,m,k(β) → Φ

(1)
h,m,k when β → 0, it is enough to show that for each l ≥ 0
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(
1

2
A+

l(l + 1)

2
M−2 − zM−1 +NVµ − ǫ(0)M0

)
Ũ.,l(β)−

1√
3
C1,mM1U.,l−1 −

1√
3
C1,mM1U.,l+1

+

mh∑

l′=|m|

2mh∑

l′′=0

Cl,m
l′,l′′([Ql′′ ]

T · F )Ũ.,l′(β) + 2Cl,m
l′,l′′([Q̃l′′(β)]

T · F )U.,l′ − ǫ(1)M0U.,l →
β→0

0.

(4.57)

The index (m, k) is omitted for simplicity and the vector Q̃l(β) is the solution to the linear
system (

Aa + l(l + 1)Ma
−2

)
Q̃l = 4πF : R̃l,

with
R̃l :=

∑

−mh≤m≤mh
1≤k≤(mh−|m|+1)×Nh

2Ũm,kC l,m[Ũm,k]T .

Our numerical results show that, as expected by symmetry, ǫ(1)h,m,k = 0 for all (m, k) ∈
O4,4, and that the left-hand side of (4.57) converges to zero linearly in β.

Appendix: discretization with P4 finite elements

In this appendix, we elaborate on the details of the calculation.

A1. Basis functions

We have chosen the following form functions to build the finite element matrices and
tensors:

z1(t) = 1− t, z2(t) = t, z3(t) = 4t(1− t) = −4t2 + 4t,

z4(t) =
128

3
t

(
1

2
− t

)(
3

4
− t

)
(1− t) = −128

3

(
t4 − 9

4
t3 +

13

8
t2 − 3

8
t

)
,

z5(t) =
128

3
t

(
t− 1

4

)(
t− 1

2

)
(1− t) = −128

3

(
t4 − 7

4
t3 +

7

8
t2 − 1

8
t

)
.

Their derivatives are given by:

z′1(t) = −1, z′2(t) = 1, z′3(t) = −8t+ 4,

z′4(t) = −128

3

(
4t3 − 27

4
t2 +

13

4
t− 3

8

)
, z′5(t) = −128

3

(
4t3 − 21

4
t2 +

7

4
t− 1

8

)
.

Finite element basis:

• the 1D Schrödinger equation is solved on the finite interval [0, Le] with zero Dirichlet
boundary conditions

• the interval [0, Le] is decomposed in NI intervals of positive lengths h1, · · ·hNI
. Let

0 = r1 < r2 < · · · < rNI
< rNI+1 = Le be such that hk = rk+1 − rk;
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• we denote by

Vh =
{
v ∈ C0([0, Le]) s.t. v|[rk,rk+1] ∈ P4, v(0) = v(Le) = 0

}

the P4 finite element space associated with the so-defined mesh. We have

dim(Vh) = 4NI − 1;

• we then set for all 1 ≤ k ≤ NI and 1 ≤ j ≤ 5,

pkj (r) = zj

(
r − rk
hk

)

so that pkj (rk + thk) = zj(t), and define the basis (χ1, · · · , χ4NI−1) of Vh as follows:

χ1(r) = p13(r)1[r1,r2], χ2(r) = p14(r)1[r1,r2], χ3(r) = p15(r)1[r1,r2],

and for all 2 ≤ k ≤ NI ,




χ4k−4(r) = pk−1
2 (r)1[rk−1,rk] + pk1(r)1[rk,rk+1]

χ4k−3(r) = pk3(r)1[rk,rk+1]

χ4k−2(r) = pk4(r)1[rk,rk+1]

χ4k−1(r) = pk5(r)1[rk,rk+1].

A2. Assembling the matrices

Let Λ be the bijective mapping from {0, 1, 2, 3, 4} to {1, 2, 3, 4, 5} defined by

Λ(0) = 2, Λ(1) = 5, Λ(2) = 4, Λ(3) = 3, and Λ(4) = 1.

Recall that the density is equal to

ρh(r, θ) =

2mh∑

l=0

Nh∑

i,j=1

[Rl]i,j
Xi(r)
r

Xj(r)
r

Y 0
l (θ).

Using the finite element basis defined above, one gets that ρh(r, θ) is equal to
∣∣∣∣∣∣∣∣∣∣∣∣∣

∑2mh
l=0

∑3
i,j=0[Rl]4−i,4−j

p1
Λ(i)

(r)

r

p1
Λ(j)

(r)

r Y 0
l (θ) if r ∈ (r1, r2)

∑2mh
l=0

∑4
i,j=0[Rl]4k−i,4k−j

pk
Λ(i)

(r)

r

pk
Λ(j)

(r)

r Y 0
l (θ) if r ∈ (rk, rk+1), 1 < k < NI

∑2mh
l=0

∑4
i,j=1[Rl]4NI−i,4NI−j

p
NI
Λ(i)

(r)

r

p
NI
Λ(j)

(r)

r Y 0
l (θ) if r ∈ (rNI

, rNI+1).

In particular, for 0 < tp,r < 1 and −1 < tq,θ < 1, we have that (tp,rhk + rk)
2ρ(tp,rhk +

rk, arccos(tq,θ)) is equal to
∣∣∣∣∣∣∣∣∣∣∣∣∣

∑2mh
l=0

∑3
i,j=0[Rl]4−i,4−jzΛ(i)(tp,r)zΛ(j)(tp,r)

√
2l+1
4π Pl(tq,θ) if k = 1

∑2mh
l=0

∑4
i,j=0[Rl]4k−i,4k−jzΛ(i)(tp,r)zΛ(j)(tp,r)

√
2l+1
4π Pl(tq,θ) if 1 < k < NI

∑2mh
l=0

∑4
i,j=1[Rl]4NI−i,4NI−jzΛ(i)(tp,r)zΛ(j)(tp,r)

√
2l+1
4π Pl(tq,θ) if k = NI ,

(4.58)
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where Pl are the Legendre polynomials, which can be calculated using the recurrence

relation

Pn(x) =
2n− 1

n
xPn−1(x)−

n− 1

n
Pn−2(x), n ≥ 2,

with P0(x) = 1 and P1(x) = x.

For µ(re) = η2

4π
e−ηr

r , then

[V H(µ)](re) =
1

r

(
1− e−ηr

)
.

Thus the vector G in (4.43) has the following form

G =
[
g13, g

1
4, g

1
5, · · · , gk−1

2 + gk1 , g
k
3 , g

k
4 , g

k
5 , · · · , gNI−1

2 + gNI
1 , gNI

3 , gNI
4 , gNI

5

]T
,

where

gki =
η2

4π
hke

−ηrk
∫ 1

0
e−ηthkzi(t) dt.

We denote by

[Ĥl,l′ ] =

2mh∑

l′′=0

C l,ml′,l′′
(
[Ql′′ ]

T · F
)
, (4.59)

where C l,m, Ql and F are defined by (4.32), (4.40) and (4.42), respectively.

All the matrices A, M−2, M−1, M0, M1, Vµ, [V l
xc] and [Ĥl,l′ ] defined in (4.25), (4.35),

(4.59) and (4.46) are symmetric and have the same pattern:
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Their entries can be computed using elementary assembling matrices:

• diagonal blocks: for any 2 ≤ k ≤ NI , and any 1 ≤ i ≤ 4 such that 1 ≤ 4k−i ≤ 4NI−1

Y4k−4,4k−4 = yk−1
22 + yk11 Y4k−4,4k−3 = yk13 Y4k−4,4k−2 = yk14 Y4k−4,4k−1 = yk15

Y4k−3,4k−4 = yk31 Y4k−3,4k−3 = yk33 Y4k−3,4k−2 = yk34 Y4k−3,4k−1 = yk35
Y4k−2,4k−4 = yk41 Y4k−2,4k−3 = yk43 Y4k−2,4k−2 = yk44 Y4k−2,4k−1 = yk45
Y4k−1,4k−4 = yk51 Y4k−1,4k−3 = yk53 Y4k−1,4k−2 = yk54 Y4k−1,4k−1 = yk55

• off-diagonal blocks

Y4k−4,4k = yk12, Y4k−3,4k = yk23, Y4k−2,4k = yk24, Y4k−1,4k = yk25,

Y4k,4k−4 = yk21, Y4k,4k−3 = yk32, Y4k,4k−2 = yk42, Y4k,4k−1 = yk52.

The ykij ’s are the entries of the elementary assembling matrices. The latter are defined for

the matrices A, M−2, M−1, M0, M1, Vµ, [V l
xc] and [Ĥl,l′ ] as follows

akij =

∫ rk+1

rk

pki
′
pkj

′
= h−1

k

∫ 1

0
z′iz

′
j = h−1

k αij

(m−2)
k
ij =

∫ rk+1

rk

pki (r)p
k
j (r)

r2
dr = hk

∫ 1

0

zi(t)zj(t)

(rk + thk)2
dt

=

∣∣∣∣∣
hkr

−2
k

∫ 1
0

zi(t)zj(t)
(1+thk/rk)2

dt if k ≥ 2

h−1
1

∫ 1
0
zi(t)zj(t)

t2
dt if k = 1

(m−1)
k
ij =

∫ rk+1

rk

pki (r)p
k
j (r)

r
dr = hk

∫ 1

0

zi(t)zj(t)

rk + thk
dt

=

∣∣∣∣∣
hkr

−1
k

∫ 1
0
zi(t)zj(t)
1+thk/rk

dt if k ≥ 2
∫ 1
0
zi(t)zj(t)

t dt if k = 1

(m0)
k
ij =

∫ rk+1

rk

pki (r)p
k
j (r)dr = hk

∫ 1

0
zi(t)zj(t)dt = hk νij

(m1)
k
ij =

∫ rk+1

rk

rpki (r)p
k
j (r)dr = h2k

∫ 1

0
tzi(t)zj(t)dt+ hkrk νij = h2kβij + hkrk νij

(vµ)
k
ij = (m−1)

k
ij − hke

−ηrk
∫ 1

0

e−ηthk

rk + thk
zi(t)zj(t) dt

=

∣∣∣∣∣
(m−1)

k − hkr
−1
k e−ηrk

∫ 1
0

e−ηthk

1+thk/rk
zi(t)zj(t) dt if k ≥ 2

(m−1)
k − e−ηrk

∫ 1
0
e−ηthk

t zi(t)zj(t) dt if k = 1
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(vlxc)
k
ij = cxchk

√
2l + 1

4π

Ng,r∑

p=1

Ng,θ∑

q=1

ωpω
′
q (ρ(tp,rhk + rk, arccos(tq,θ)))

1
3 Pl(tq,θ)zi(tp,r)zj(tp,r)

= cxc

∣∣∣∣∣∣∣∣∣∣∣

hkr
−1
k

√
2l+1
4π

∑Ng,r

p=1

∑Ng,θ

q=1 ωpω
′
q

(
(tp,rhk + rk)

2ρ(tp,rhk + rk, arccos(tq,θ))
) 1

3

Pl(tq,θ)
zi(tp,r)zj(tp,r)
tp,rhk/rk+1 (tp,rhk + rk)

1
3 if k ≥ 2√

2l+1
4π

∑Ng,r

p=1

∑Ng,θ

q=1 ωpω
′
q

(
(tp,rhk)

2ρ(tp,rhk + rk, arccos(tq,θ))
) 1

3

Pl(tq,θ)
zi(tp,r)zj(tp,r)

tp,r
(tp,rhk)

1
3 if k = 1

in the Xα-case, that is vxc(ρ) = −( 3π )
1
3 ρ

1
3 ,

(ĥl,l′)
k
ij =

∣∣∣∣∣∣∣

∑2mh
l′′=0

∑3
n=1 c

m
l,l′,l′′f

k
ijΛ(n)Ql′′,4−n if k = 1∑2mh

l′′=0

∑4
n=0 c

m
l,l′,l′′f

k
ijΛ(n)Ql′′,4k−n if 1 < k < NI∑2mh

l′′=0

∑4
n=1 c

m
l,l′,l′′f

k
ijΛ(n)Ql′′,4NI−n if k = NI ,

where

fkijn =

∫ rk+1

rk

pki (r)p
k
j (r)p

k
n(r)

r
dr = hk

∫ 1

0

zi(t)zj(t)zn(t)

(thk + rk)
dt,

and

cxc = −√
π(

3

π
)
1
3 .

Note that ρ(tp,rhk + rk, arccos(tq,θ)) will be calculated with the help of (4.58). In addition
to assembling the matrices, we need to deal with the following term

Nh∑

i,j=1

Fijn[Rl]i,j

in order to calculate the right-hand side of (4.40). Let kn = 1 + int(n4 ) and qn = 4 −
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(nmod 4), so that n = 4kn − qn. Then
∑Nh

i,j=1 Fijn[Rl]i,j is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑3
i,j=0 h1f

1
Λ(i)Λ(j)Λ(qn)

[Rl]4−i,4−j if kn = 1

∑4
i,j=0 hknf

kn
Λ(i)Λ(j)Λ(qn)

[Rl]4kn−i,4kn−j if qn 6= 4 and 1 < kn < NI

∑4
i,j=1 hkNI

f
kNI

Λ(i)Λ(j)Λ(qn)
[Rl]4kNI

−i,4kNI
−j if qn 6= 4 and kn = NI

∑3
i,j=0 h1f

1
2Λ(i)Λ(j)[Rl]4−i,4−j +

∑4
i,j=0 h2f

2
1Λ(i)Λ(j)[Rl]8−i,8−j

if qn = 4 and k = 2

∑4
i,j=0

[
hkn−1f

kn−1
2Λ(i)Λ(j)[Rl]4kn−4−i,4kn−4−j

+hknf
kn
1Λ(i)Λ(j)[Rl]4kn−i,4kn−j

] if qn = 4 and 2 < k < NI

∑4
i,j=0 hkNI

−1f
kNI

−1

2Λ(i)Λ(j)[Rl]4kNI
−4−i,4kNI

−4−j

+
∑4

i,j=1 hkNI
f
kNI

1Λ(i)Λ(j)[Rl]4kNI
−i,4NI

−j

if qn = 4 and k = NI .

We end this section by providing the values of αij , βij and νij , for 1 ≤ i, j ≤ 5,

α11 = 1 α12 = −1 α13 = 0 α14 = 0 α15 = 0
α21 = −1 α22 = 1 α23 = 0 α24 = 0 α25 = 0
α31 = 0 α32 = 0 α33 = 16/3 α34 = 128/45 α35 = 128/45
α41 = 0 α42 = 0 α43 = 128/45 α44 = 3328/189 α45 = 5888/945
α51 = 0 α52 = 0 α53 = 128/45 α54 = 5888/945 α55 = 3328/189

ν11 = 1/3 ν12 = 1/6 ν13 = 1/3 ν14 = 4/15 ν15 = 4/45
ν21 = 1/6 ν22 = 1/3 ν23 = 1/3 ν24 = 4/45 ν25 = 4/15
ν31 = 1/3 ν32 = 1/3 ν33 = 8/15 ν34 = 64/315 ν35 = 64/315
ν41 = 4/15 ν42 = 4/45 ν43 = 64/315 ν44 = 128/405 ν45 = 128/2835
ν51 = 4/45 ν52 = 4/15 ν53 = 64/315 ν54 = 128/2835 ν55 = 128/405

β11 = 1/12 β12 = 1/12 β13 = 2/15 β14 = 16/315 β15 = 16/315
β21 = 1/12 β22 = 1/4 β23 = 1/5 β24 = 4/105 β25 = 68/315
β31 = 2/15 β32 = 1/5 β33 = 4/15 β34 = 16/315 β35 = 16/105
β41 = 16/315 β42 = 4/105 β43 = 16/315 β44 = 64/945 β45 = 64/2835
β51 = 332/105 β52 = 1852/105 β53 = 592/63 β54 = 704/315 β55 = 704/2835.
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Appendix A

Spherical harmonics

The spherical harmonics are extensively used in basis functions in the computation of
atomic orbital electron configuration. They were introduced as the joint eigenfunctions of
Lz and L2, in the spherical coordinates. The Lz is the generator of rotations about the
azimuthal angle

Lz = −i ∂
∂ϕ

.

While, L2 is the square of the orbital angular momentum operator L = −ix×∇. That is,

L2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2(θ)

∂2

∂ϕ2
,

known also by the Laplace-Beltrami operator, denoted by ∆S . More precisely, we have

∆SY
m
l = −l(l + 1)Y m

l and − i
∂

∂ϕ
Y m
l = mY m

l ,

where l is the angular momentum quantum number and m is the magnetic quantum
number. There explicit expression is

Y m
l (θ, ϕ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimϕ, (A.1)

where Pml denotes the Legendre functions. The latter are obtained from them-th derivative
of the Legendre polynomials Pl, as follows: for 0 ≤ m ≤ l

{
Pml (cos θ) = (sin θ)m P

(m)
l (cos θ)

P−m
l (cos θ) = (−1)m (l−m)!

(l+m)!P
(m)
l (cos θ).

The Legendre polynomials can be computed using the Rodrigues’ formula:

Pl(x) =
(−1)l

2ll!

dl

dxl
(1− x2)l.

Note that, the Legendre polynomials satisfy the following recurrence relation

Pn(x) =
2n− 1

n
xPn−1(x)−

n− 1

n
Pn−2(x), n ≥ 2,
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with P0(x) = 1 and P1(x) = x.

To fix the idea, the spherical harmonics for l = 0, 1 and 2 are given by

Y 0
0 (θ, ϕ) =

1
2

√
1
π ,

Y 0
1 (θ, ϕ) =

1
2

√
3
π cos θ, Y ±1

1 (θ, ϕ) = ∓1
2

√
3
2π sin θ e

±iϕ,

Y 0
2 (θ, ϕ) =

1
4

√
5
π (3 cos

2 θ − 1), Y ±1
2 (θ, ϕ) = ∓1

2

√
15
2π sin θ cos θ e±iϕ,

Y ±2
2 (θ, ϕ) = 1

4

√
15
2π sin

2 θ e±2iϕ.

Properties of spherical harmonics

The spherical harmonics, given by (A.1), satisfy the following properties

• They are orthonormal functions, that is for l ≥ 0, −l ≤ m ≤ l and l′ ≥ 0, −l′ ≤
m′ ≤ l′, we have

∫

S2

Y m
l (Y m′

l′ )∗ =
∫ π

0

∫ 2π

0
Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ)∗ sin θ dϕ dθ = δll′δmm′

where δij is the Kronecker symbol, S
2 is the unit sphere of R

3, and Y m
l (θ, ϕ)∗ =

(−1)mY −m
l (θ, ϕ).

• The set {Y m
l }l≥0,−l≤m≤l form a basis of the Hilbert space L2(S2).

• Any f ∈ L2(S2) can be expressed uniquely as a linear combination of the spherical
harmonics, as

f =
∑

l≥0

m=l∑

m=−l
〈Y m
l , f〉L2(S2)Y

m
l .

The coefficients 〈Y m
l , f〉L2(S2) =

∫
S2
Y m
l f .

Furthermore, the spherical harmonics satisfy an addition theorem, which states

m=l∑

m=−l
Y m
l (θ1, ϕ1)Y

m
l (θ2, ϕ2)

∗ =
2l + 1

4π
Pl(cosω),

where ω describes the angle between two unit vectors oriented at the polar coordinates
(θ1, ϕ1) and (θ2, ϕ2) with

cosω = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2).

In particular, when θ1 = θ2 = θ and ϕ1 = ϕ2 = ϕ, gives the Unsöld’s theorem [88]

m=l∑

m=−l
Y m
l (θ, ϕ)Y m

l (θ, ϕ)∗ =
2l + 1

4π
.
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Since the solutions of the non-relativistic Schrödinger equation can be made real, it is
important to define the real forms of the spherical harmonics. Thus using these later func-
tions, the programs don’t need anymore to use complex algebra. Real spherical harmonics
are defined from the complex ones by

Yml =





i√
2

(
Y

−|m|
l − (−1)mY

|m|
l

)
if m < 0

Y 0
l if m = 0
1√
2

(
Y

−|m|
l + (−1)mY

|m|
l

)
if m > 0.

Graphical representation of spherical harmonics

The spherical harmonics are usually represented graphically. Here are two figures: first for
some complex spherical harmonics, second for their linear combinations which correspond
to the angular functions of orbitals.

Figure A.1 – Plot of the spherical harmonics where the phase of the function is color coded.

Product of two spherical harmonics

The product of two spherical harmonics can be expressed in terms of spherical harmonics,
since they form an orthonormal basis set. The product is written with the help of the
Wigner 3j-symbols [15, 30], as follows

Y m1
l1

Y m2
l2

=

l=l1+l2∑

l3=|l1−l2|

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)

(
l1 l2 l3
m1 m2 −(m1 +m2)

)
(Y m1+m2
l )∗.
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Figure A.2 – Plot of the real spherical harmonis, which are usually shown as the atomic orbitals.

The Wigner 3j-symbol

(
j1 j2 j3
m1 m2 m3

)
can be found in tables in books (see [73] for

instance). It is related to the Clebsh-Gordan coefficients by
(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

1√
2j3 + 1

c(j1,m1, j2,m2, j3,−m3).

It is identically zero unless all these conditions are satisfied

• m1 +m2 +m3 = 0,

• j1 + j2 + j3 is an integer (or an even integer if m1 = m2 = m3 = 0),

• |mi| ≤ ji,

• |j1 − j2| ≤ j3 ≤ j1 + j2.

We will give some useful properties of this symbol, which facilitate the calculations.
We start with the symmetry properties: a Wigner 3j-symbol is invariant under an even
permutation of its columns, i.e

(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
,

while an odd permutation of the columns gives a phase factor
(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)

= (−1)j1+j2+j3
(
j1 j3 j2
m1 m3 m2

)
.

The change of the sign of the m quantum numbers also gives a phase factor
(

j1 j2 j3
−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
.

Moreover, let us note that these symbols satisfy the following important orthogonality
relations

(2j + 1)
∑

m1m2

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
= δjj′δmm′ ,
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and ∑

jm

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m′
2 m

)
= δm1m′

1
δm2m′

2
.

The integration of the product of three spherical harmonics can be simplified using the
product rule and the orthogonality condition. This leads to

∫ π

0

∫ 2π

0
Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ)Y m3
l3

(θ, ϕ) sin θ dϕ dθ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)

(
l1 l2 l3
m1 m2 m3

)
.

For the formulas stated in this appendix, we refer for instance to the following refer-
ences [15, 30, 72].
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