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Résumé :
La gestion énergétique (EMS) pour véhicules hybrides a pour objectif de déterminer la

répartition de puissance entre les différentes sources d’énergie de manière à minimiser la
consommation de carburant et/ou les émissions polluantes. L’objectif de cette thèse est de
développer un EMS en prenant en compte des températures internes (la température du
moteur et/ou la température du système de post-traitement). Dans une première partie
et en utilisant une connaissance préalable du cycle de conduite, le calcul d’un EMS est
formulé comme un problème de commande optimale. Ensuite, le principe du minimum de
Pontryagin (PMP) est utilisé pour résoudre ce problème d’optimisation. En se basant sur
les résultats numériques obtenus, un compromis entre les performances de la stratégie de
commande et de la complexité du modèle utilisé pour la calculer est établi. Les différents
problèmes étudiés dans cette thèse sont des exemples des simplifications successives de
modèle qui peuvent être regroupées dans le concept des perturbations régulières en con-
trôle optimal sous contrainte de commande discuté ici. Dans une deuxième partie, la
formulation de l’ECMS a été généralisée pour inclure les dynamiques thermiques. Ces ex-
tensions définissent des stratégies sous-optimales que nous avons testées numériquement
et expérimentalement.

Mots-clés : Superviseur énergétique, véhicule électrique hybride, commande opti-
male, PMP, perturbation régulière, généralisation de l’ECMS.

Abstract:
Energy management system (EMS) for hybrid vehicles consists on determining the

power split between the different energy sources in order to minimize the overall fuel
consumption and/or pollutant emissions of the vehicle. The objective of this thesis is
to develop an EMS taking into account the internal temperatures (engine temperature
and/or catalyst temperature). In a first part and using a prior knowledge of vehicle driv-
ing cycle, the EMS design is formulated as an optimal control problem. Then, the PMP
is used to solve this optimization problem. Based on the obtained numerical results, some
trade-off between performance of the control strategy and complexity of the model used
to calculate this strategy is established. The various problems studied in this thesis are
examples of successive model simplifications which can be recast in the concept of regu-
lar perturbations in optimal control under input constraints discussed here. In a second
part, the feedback law of ECMS is generalized to include thermal dynamics. This defines
sub-optimal feedback strategies which we have tested numerically and experimentally.

Keywords: Energy management, hybrid electric vehicle, optimal control, Pontryagin
minimum principle, regular perturbation, ECMS extensions.
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Rel Motor-to-wheel transmission ratio [−]
ηgb Gear-box efficiency [−]
ξ State of charge of the battery [%]
Uocv Open equivalent circuit voltage of the battery [V]
Rb Equivalent internal resistance [Ω]
Ib Battery current [A]
Q0 Battery nominal capacity [C]
ηc Battery charging efficiency [−]
θe Engine temperature [◦C]
θc Catalyst temperature [◦C]
Hlhv Lower heating value of the fuel [J/kg]
Pm Electric power requested by the electric machine [W]
Pf Fuel power consumed by the engine [W]
Pb Battery power [W]
Pe Engine power [W]
Pd Traction power at the wheels [W]
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1.1 The focus on energy efficiency for automotive vehi-
cles

The announced depletion of fossil fuel sources, climate change due to pollution and an
increase in overall energy demands are major challenges for the automotive industry. More
generally, energy efficiency is increasingly becoming a major concern, and a subject of
attention from major international organizations around the world. In 2006, the European
Parliament stated that energy efficiency is a relevant reaction in the face of environmental
concerns and rising energy prices [52, 61]. Later, in 2012, the EU established a set of
binding measures, called the "2012 Energy Efficiency Directive", to help it reach its 20%
energy efficiency target by 2020. Under this directive, all EU countries are required to use
energy efficiently at all stages of the energy chain, from production to final consumption.
Similar concerns are also present in USA (President Obama speech 2015 announcing the
Clean Power Plan, "A historic step in the fight against climate change" [67]). However,
energy-saving technologies are still vastly underdeveloped.

In the automotive industry, the European Commission established a strategy for clean
and efficient vehicles with a threefold aim. First, it sets out medium- to long-term ob-
jectives to promote a new industrial approach, based on clean and efficient vehicles to
boost the competitiveness of the European automotive industry. Second, the strategy
promotes alternative propulsion technologies in a global perspective of worldwide mobil-
ity systems. Third, the strategy encourages the creation of a green economy and supports
the decarbonization of the transportation system.
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CHAPTER 1. INTRODUCTION

Besides the development of alternative fuel sources, the main research directions to-
wards improving energy efficiency in the automotive field are focussed on fuel efficiency,
with a particular emphasis on decreasing carbon dioxide (CO2) emissions. To improve
efficiency, it is important to understand that there are three stages involved in the conver-
sion of fossil fuels to a useful work at the wheels. Each stage induces losses in the overall
efficiency.

1. Well-to-tank (W2T): The energy contained in one of the available primary energy
carriers (fossil hydrocarbons, nuclear energy, coal, etc.) is transmitted to an en-
ergy carrier that is suitable for on-board storage–that is, to the fuel (examples are
gasoline, hydrogen).

2. Tank-to-vehicle (T2V): The fuel obtained from the first stage is then converted by
the propulsion system into a mechanical energy which, in part, may be stored as a
kinetic or a potential energy.

3. Vehicle-to-meters (V2M): This step involves the conversion of the mechanical energy
produced in the previous step into a work used to power the vehicle. Energy losses
during this phase are related to certain vehicle parameters: rolling resistance, aero-
dynamics drag and friction of the non-rotating components. These losses depend
also on the driving profile.

More details about the definition of these stages are given in [33]. Hybridization [4,
26, 33] is a solution suggested to optimize the energy conversion during stage 2 (T2V)1.
Next, we will describe this technology, which is the main scope of this thesis.

1.2 Hybridization and hybrid electric vehicles (HEV)
Generally, hybrid vehicles are characterized by two or more prime movers and power
sources. Several techniques for storing energy are considered: rotational energy in a
flywheel, pressure in a hydraulic system, and electricity in a battery or a super-capacitor.
The term "hybrid vehicle" usually refers to a vehicle that combines an engine and an
electric machine. A more appropriate term for such a combination is "hybrid electric
vehicle" (HEV). One of the main motivations for developing HEVs is the possibility of
combining the advantages of electric vehicles – in particular, zero local emissions – with the
advantages of the internal combustion engine (ICE)-based vehicles, namely, high energy
and power density.

A HEV achieves improved efficiency by employing several techniques, among them:
stop-start [86, 91] and regenerative breaking. In common (non hybrid) cars, the vehicle
kinetic energy is thermally dissipated via the brake discs. In hybrid and electric vehicles, a
portion of the dissipated energy can be recovered using a kinetic energy recovering system
(KERS), and it is stored in a battery. Furthermore, the advantage of an electric machine
over an internal combustion engine is its efficiency at low speeds, where the former can
provide maximum torque at low speeds. In principle, HEVs can benefit from the best of
both technologies: electric drives and internal combustion.

According to their architecture, HEVs are classified into three main categories: series,
parallel and combined.

1Driver support system, or eco-driving, is among the solutions proposed to improve energy conversion
during the V2M stage. See the Appendix H for more details.
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• In the series configuration, traction is obtained via a powerful electric machine. The
internal combustion engine drives an electric generator to recharge the battery or
to power the electric machine. Series HEV may be considered as purely electric
vehicles with an additional ICE based energy path. Cadillac ELR and BMW I3 are
examples of production series hybrids.

• Parallel HEVs are considered to be ICE-based vehicles that possess an additional
electrical path. In this configuration, both the engine and the electric machine
provide the needed traction power either separately or together. This provides an
additional degree of freedom towards fulfilling the power requirements of the vehicle,
and allows some optimization to be performed. This is the architecture studied in
this thesis. Examples of parallel hybrids in the market are the 3008 Hybrid 4 (PSA)
and BMW I8.

• An intermediate configuration between series and parallel hybrids is the combined
hybrid configuration. This is mostly a parallel hybrid, but it contains some features
of a series configuration. Toyota Prius is an example of a series-parallel HEV.

More details about this classification are given in [4, 33]. To maximize the benefits of
hybridization, two approaches can be used:

• At the design level by optimizing the structure and the components of the propulsion
system and their assembly (assuming that the fuel type and the vehicle parameters
are fixed) [51, 73, 84].

• At the control level by optimizing the control algorithms of the various sub-systems
and their coordination (assuming that the propulsion system configuration and the
vehicle parameters are fixed). The aim of this approach is to maximize the perfor-
mance of the system [19, 66, 73]. This is the topic covered in this thesis.

1.3 Energy management systems (EMS) of parallel HEV
In conventional propulsion systems, the driver requests (e.g. action on the accelerator or
the brake which is converted into a torque request) are handled by an on-board computer.
When the driver acts on the accelerator pedal, the torque request to be provided by the
engine is regulated by the engine control unit (ECU). When the brake pedal is depressed,
either the brake circuit is mechanically activated (coupled braking), or an intermediate
controller converts the pedal position into a braking torque request that is split between
the front and the rear braking circuits. Purely electric vehicles have similar behaviors
with the electric machine acting as the sole prime mover [4, 33].

For parallel HEV, the interpretation step of the driver request is conceptually the
same as for conventional vehicles. However, the additional degree of freedom yield by
hybridization can be exploited. The presence of an additional energy source gives some
flexibility as to how the traction power requested by the driver may be satisfied: using
only the engine, using only the electric machine or using a combination thereof. For
this task, a supervisory controller is needed, which must determine how the powertrain
components should operate and how the energy split between different sources should be
organized. This controller is referred to as an "energy management system" (EMS) [33].
Its role in the on-board control system is presented in Figure 1.1.
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Figure 1.1: Flowchart of an HEV supervisory controller. The EMS determines the distribution
of a torque request.

The strategies implemented in an EMS may be classified into two categories. Type I,
usually called heuristic or rule-based, represents the method used in most prototypes and
mass-production hybrids. Strategies derived from optimal control (Type II) are seen as
an innovative approach. They are currently the subject of much research efforts and, are
gradually being introduced into the automotive industry. A brief description of these two
approaches are given in the next sections.

1.3.1 Heuristics (rule-based) EMS

This kind of controller implements intuitive rules and correlations inspired by a priori
knowledge of the behavior and the efficiency of the propulsion system [18, 20, 29, 56].
For example, one of the main rules suggests to use the engine only when its efficiency is
relatively high (generally for high loads), while in less favorable conditions the electric
mode should be preferred and the engine should be turned off.

The main advantage of these algorithms is that the rules are intuitive, so they are well-
accepted by engineers and end-users, and give relatively satisfactory results if they are
carefully tuned. They do not require any knowledge of future driving conditions, which
simplifies their implementation for real-time applications. Unfortunately, they are only
appropriate for simple systems, and their performance in real driving conditions (which
are usually different from those used to tune the rules) is not guaranteed. Moreover,
rule-based strategies are sub-optimal by definition. All these reasons have motivated the
development of (model-based) optimal controllers.

1.3.2 Optimal (model-based) EMS

The (relative) weaknesses of the heuristic EMS discussed above have spurred the devel-
opment of model-based optimal controllers. These strategies are based on the definition
of a cost function to be minimized or maximized for a dynamic system that represents
the vehicle dynamics. Various objectives can be considered: fuel consumption, pollutant
emissions, battery aging, drivability concerns or any combination of these [2, 17, 44, 56,
71, 72, 74, 77, 81, 92]. For energy management problems, a HEV can be described by
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quasistatic models. The state vector usually includes only the state of charge (SOC) of
the battery [33].

Whether future driving conditions are, or are not known, defines two sub-categories.
In the first category, the vehicle is assumed to follow a prescribed driving cycle defined by
the vehicle speed profile that is to be tracked, over a finite time horizon. The calculated
optimal strategy anticipates what will happen from the current time to the end of the
driving cycle. Knowing future conditions is possible when the vehicle is operated along
regulatory driving cycles, or for public transportation vehicles that have prescribed driving
profiles and right-of-ways. In all other cases, driving profiles may be vastly uncertain.

In the second category, where future driving conditions are unknown, the control strat-
egy is calculated from available information in real-time, in the form of a feedback. As
it is impossible to find an optimal strategy under such conditions, the obtained strategy
is sub-optimal. Predictive control [13, 36] and the equivalent consumption minimization
strategy (ECMS) [16, 37] are among the methods used to deal with unmodeled uncertain-
ties.

1.4 Considered problems and proposed solutions
In this thesis, we wish to develop an EMS for a parallel HEV by taking into account
the impact of internal temperatures (engine temperature and/or catalyst temperature)
on fuel consumption and pollutant emissions in addition to the SOC dynamics. Indeed,
these additional variables have a strong impact, as can be observed in Figure 1.2 and
Figure 1.3. Accounting for these variables yields a three-states dynamical system (with
a single input), and two outputs of interest (fuel consumption and pollutants). To be
implementable in real conditions, this EMS has to take the form of a feedback, as future
driving conditions will not be known. Currently [16], the ECMS is able to deal only with
a single state variable (the battery SOC).

Figure 1.2: Typical excess fuel consumption of the engine as a function of engine temperature [87].

Because of an increase in the state-space dimension (by including the new thermal
dynamics), it seems very costly to try to develop a rule-based EMS. Indeed, the complexity
of establishing rules that could cover all possible cases would be very high. What we wish
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Figure 1.3: Typical catalyst conversion efficiency as a function of catalyst temperature

to develop is a generalization of the ECMS strategy which combines the results of optimal
control (the control variable minimizes at all times the Hamiltonian of the system) and a
feedback loop (the adjoint variable is calculated as the output of a feedback controller on
the state variables). Thus, a significant extension is needed to address the problem under
consideration. Furthermore, because it is a sub-optimal strategy by construction, it is
not known whether ECMS can achieve a sufficient level of performance with respect to
pollutant emissions while keeping fuel consumption within acceptable limits. We visually
display this situation in Figure 1.4.

Figure 1.4: Fuel consumption [L/100 km] as a function of emissions [g/km]. The blue point
corresponds to the optimal strategy that minimizes the fuel consumption via the PMP. The
application of existing single-state ECMS has to be done in order to establish attainable perfor-
mance.

At first sight, it is not clear which state(s) should be considered in the analysis. As
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each state increases the complexity of the control design task, we wish to establish some
trade-off between performance and complexity.

To solve this problem, we proceed in two steps. In the first step, we solve a collection
of optimal control problems for the various dynamics under consideration (one, two or
three states). To make a fair comparison between the obtained solutions, the resulting
control strategies are applied to the full model with three state variables. We consider a
weighted sum of the overall fuel consumption and emissions over a known time horizon
that corresponds to a known driving cycle. In these cases, all information are known. The
results quantify the maximum benefit of considering additional states. Typical results are
illustrated in Figure 1.5.

Part I of this thesis focuses on offline solutions of energy management problems for a
gasoline engine fitted with an after-treatment system. The driving cycle is assumed to be
known in advance. In Chapter 3, the single-state energy management problem, which is
usually considered in the literature, is presented. It focuses solely on minimizing the fuel
consumption. We solve it using the Pontryagin minimum principle (PMP). This problem
is extended to include state constraints on the SOC.

In Chapter 4, we present possible extension of this simple problem to account for
pollutant emissions. This extension includes thermal dynamics of the engine and the
after-treatment system. We use this work to produce a figure similar to Figure 1.5.

In Chapter 5 of Part II, we explore the general concept of regular perturbations in
optimal control problems under input constraints. The various problems studied in Part I
are examples of successive model simplifications which can be recast in this concept.
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Figure 1.5: Simulation of control strategies solution of several OCP (with one, two and three
states) for various cost functions. The strategies (S), (S1) and (S2) are the solutions of one, two
and three states OCP, respectively.

In the second step detailed in Part III, we will generalize the feedback law of ECMS by
using correlations between the state and their corresponding adjoint states, which can be
observed along extremal calculated in the first step. This defines a sub-optimal feedback
strategy which we test numerically and experimentally. Typical results are illustrated in
Figure 1.6.
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In Chapter 6, a brief study of the stability properties and the robustness of ECMS is
proposed. Then, extensions of this strategy are proposed to include thermal dynamics in
the optimization problem. Simulation results stress that the obtained performance is suf-
ficient to satisfy the environmental norms while keeping fuel consumption sub-optimality
with reasonable bounds.

Finally, in Chapter 7, we apply our methodology to an experimental test bench con-
sisting of a diesel engine fitted with a diesel oxidation catalyst (DOC), a diesel particulate
filter (DPF) and an urea selective catalytic reduction (SCR) system. These experimental
tests validate the assertion that a simple control strategy is actually sufficient to reduce
NOx emissions.
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Figure 1.6: Generalized ECMS strategies with one, two or three states. The real-time strategies
(ECMS1) and (ECMS2) are the extensions of ECMS for two and three states OCP, respectively.

1.5 Thesis contributions

The two-steps approach, described above, suggests interesting investigation that consti-
tute, with the application results, the contribution of the thesis. These contributions are
twofold:

1. Perturbations in optimal control under input constraints: in this thesis, the
results of Bensoussan [7], which consider regular perturbations in optimal control,
is extended to include input constraints. We show that perturbation terms of mag-
nitude ε appearing in the dynamics and the cost function lead to an improvement
of Kε2 in the optimal cost. This is an improvement over the earlier result which
only proved (in the constraint-free case) the existence of K; here the constant K
is (conservatively) estimated from the solution of the optimal control problem for
ε = 0. This result, which is handy for practical applications, is proven by means of
the interior penalty method (IPM) proposed in [47]. A possible extension to include
state constraints, which are more difficult to handle in the presence of modeling
errors, is discussed and illustrated via a numerical example. This results allow us
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to assess the quantitative impact of model reduction for OCP. It brings an answer
to the informal question "Is it worth considering extra complexity in my model in
order to optimize the obtained performance?". This result is used in the first step
of our controller design.

2. Generalized ECMS: Three extensions of the ECMS are proposed to include ther-
mal dynamics in the optimization problem. These extensions are based on the
parametrization of the relations between the adjoint state variables and their cor-
responding states (which are assumed to be measured, or at least estimated) in-
dependently of the driving cycles. The proposed real-time strategies are capable
of handling some degrees of uncertainty in the future driving scenarios. They are
designed to handle more than one state, which is necessary for further applications.

The works presented in this thesis have been the subject of the following publications:

1. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "Comparison of several strate-
gies for HEV energy management system including engine and catalyst tempera-
tures", in Proc. of the American Control Conference 2015.

2. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "On the impact of model
simplification in input constrained optimal control: application to HEV energy-
thermal management", in Proc. of the 53rd IEEE Conference on Decision and
Control, 2014.

3. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "Numerical optimal control as
a method to evaluate the benefit of thermal management in hybrid electric vehicles",
in Proc. of the 2014 IFAC World Congress.
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2.1 Efficacité énergétique dans l’automobile

L’épuisement annoncé des sources fossiles, le changement climatique dû à la pollution
et à l’augmentation de la demande globale d’énergie sont parmi les défis majeurs pour
l’industrie automobile. De manière golbale , l’efficacité énergétique est devenue de plus en
plus une préoccupation majeure pour les grandes organisations internationales. En 2006,
le parlement européen a déclaré que l’efficacité énergétique est une réaction pertinente face
aux préoccupations environnementales et la hausse des prix de l’énergie [52, 61]. Plus tard,
en 2012, l’UE a établi un ensemble de mesures intitulé "2012 Energy Efficiency Directive",
afin de l’aider à atteindre l’objectif de 20% d’efficacité énergétique en 2020. Tous les pays
de l’UE ont été invités à optimiser l’utilisation de leurs ressources énergétiques, de la
production à la consommation. Des préoccupations similaires sont présentes également
aux Etats-Unis (discours d’Obama en 2015 annonçant le plan Power Clean, «une étape
historique dans la lutte contre le changement climatique» [67]).

Dans l’industrie automobile, la commission européenne a établi une stratégie pour
des véhicules propres et efficaces avec trois objectifs. Premièrement, elle a fixé des lignes
directrices à moyen et à long termes pour promouvoir une nouvelle approche industrielle,
fondée sur des véhicules propres pour stimuler la compétitivité de l’industrie automobile
européenne. Deuxièmement, la stratégie promeut des technologies de propulsion alterna-
tives dans une perspective globale. Troisièmement, la stratégie encourage la création d’une
économie verte et apporte son soutien à la dé-carbonisation des moyens de transport.
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2.2. HYBRIDATION ET VÉHICULE ÉLECTRIQUE HYBRIDE

Les orientations principales de la recherche, visant à améliorer l’efficacité énergétique
dans le monde de l’automobile, sont axées sur la minimisation de la consommation de
carburant, avec un accent particulier sur la réduction des émissions de dioxyde de carbone
(CO2). Pour cela, il est important de comprendre qu’il existe trois étapes essentielles dans
la conversion des énergies fossiles à un travail utile au niveau des roues. Chaque étape
induit des pertes dans le bilan global.

1. Puits-au-réservoir (W2T) : L’énergie contenue dans l’une des sources primaires (hy-
drocarbures, énergie nucléaire, charbon, etc.) est transformée à une autre forme
d’énergie qui est appropriée pour le stockage à bord. Nous citons comme exemple
le carburant (essence et hydrogène).

2. Réservoir-au-véhicule (T2V) : Le carburant issu de la première étape est ensuite
converti par un système de propulsion en une énergie mécanique qui, en partie,
peut être stockée sous une forme cinétique ou potentielle.

3. Véhicule-au-mètres (V2M) : Cette étape implique la conversion de l’énergie mé-
canique produite à l’étape précédente en un travail pour propulser le véhicule. Les
pertes d’énergie durant cette phase sont liées essentiellement aux caractéristiques
du véhicule : résistance aux pneus; résistance aérodynamique et les frottements des
parties non-tournantes. Ces pertes dépendent également de la vitesse du véhicule.

Plus de détails sur ces étapes sont donnés dans [33]. L’hybridation [4, 26, 33] représente
une des solutions proposées pour optimiser la conversion d’énergie à l’étape 2 (T2V)1. Par
la suite, nous décrivons cette technologie, qui constitue l’application principale de cette
thèse.

2.2 Hybridation et véhicule électrique hybride
Les véhicules hybrides sont caractérisés par la présence de deux voir plusieurs sources
d’énergie à bord du véhicule. L’énergie peut être stockée sous une forme mécanique (rota-
tive) dans un volant d’inertie, sous une forme de pression dans un système hydraulique, et
sous une forme électrique dans une batterie ou un super-condensateur. Le terme «véhicule
hybride» est généralement associé à la configuration d’un véhicule qui combine un moteur
thermique et une machine électrique. Le terme le plus approprié pour une telle combinai-
son est «véhicule électrique hybride» (HEV). L’une des motivations principales pour le
développement des HEVs est la possibilité de combiner les avantages des véhicules pure-
ment électriques en particulier, zéro émission, avec ceux des moteurs thermiques, à savoir,
une densité de puissance et d’énergie élevée.

Les performances énergétiques d’un HEV ont été améliorées par rapport à un véhicule
conventionnel en utilisant plusieurs techniques, telles que : le système stop-start [86, 91] et
le freinage récupératif. Pour les voitures conventionnelles, l’énergie cinétique du véhicule,
lors d’une phase de freinage, est thermiquement dissipée dans les disques de frein. Dans
les véhicules hybrides et électriques, une partie de cette énergie peut être récupérée à
l’aide d’un système de récupération d’énergie cinétique (KERS), et elle sera stockée dans
une batterie.

1l’éco-conduite, est parmi les solutions proposées pour améliorer la conversion d’énergie au cours de
l’étape V2M. Voir l’Annexe H pour plus de détails.
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D’un point de vue architectural, les HEVs sont généralement classés en trois caté-
gories : série, parallèle et combiné.

• Dans la configuration série, la traction du véhicule est assurée par une machine
électrique puissante. Le moteur thermique entraîne une génératrice pour recharger
la batterie ou pour alimenter la machine électrique. Cette configuration peut être
considérée comme un véhicule purement électrique avec un apport d’énergie supplé-
mentaire par le moteur thermique. Cadillac ELR et BMW I3 sont des exemples de
véhicules hybrides série disponibles sur le marché.

• Les hybrides parallèles sont considérés comme des véhicules conventionnels (avec
un moteur thermique) qui possèdent une source électrique supplémentaire. Dans
cette configuration, le moteur thermique et la machine électrique peuvent fournir la
puissance de traction nécessaire soit séparément, soit ensemble. Ce qui donne un
degré de liberté supplémentaire pour satisfaire la demande de puissance de la part
du conducteur. Cette architecture est étudiée dans cette thèse. La 3008 Hybrid 4
(PSA) et BMW i8 sont des exemples d’hybrides parallèles commercialisées.

• Une configuration intermédiaire entre l’hybride série et l’hybride parallèle est la
configuration combinée. Cette configuration est principalement de type parallèle,
mais elle possède des caractéristiques d’un hybride série. Toyota Prius est parmi les
exemples de cette configuration.

Plus de détails sur cette classification sont donnés dans [4, 33]. Pour profiter des avantages
de l’hybridation, on distingue deux approches :

• Au niveau de la conception : optimisation de la structure et les composants du
système de propulsion en supposant que le type de carburant et les paramètres du
véhicule sont fixés [51, 73, 84].

• Au niveau du contrôle : optimisation des algorithmes de commande des différents
sous-systèmes. Dans ce cas, la configuration du système et les paramètres du
véhicule sont fixés. L’objectif de cette approche, qui est le sujet principal traité
dans cette thèse, est de maximiser les performances du système [19, 66, 73].

2.3 Gestion énergétique pour un véhicule hybride de
type parallèle

Dans un système de propulsion conventionnel (thermique), la demande du conducteur est
traitée par un ordinateur à bord, connu sous le nom ECU : Engine Control Unit (par
exemple une action sur l’accélérateur ou le frein est convertie en une demande de couple).
Lorsque le conducteur agit sur la pédale d’accélération, la demande de couple à fournir
par le moteur thermique est régulée par l’ECU. Lorsque la pédale de frein est enfoncée,
soit le circuit de freinage est mécaniquement activé (freinage couplé), soit un dispositif
intermédiaire convertit la position du pédale en une demande de couple de freinage qui est
divisée entre les circuits de freinage avant et arrière. Les véhicules purement électriques
ont un comportement similaire avec la machine électrique comme actionneur principal
[4, 33].
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2.3. GESTION ÉNERGÉTIQUE POUR UN VÉHICULE HYBRIDE DE TYPE
PARALLÈLE

Pour un HEV de type parallèle, l’étape d’interprétation de la demande du conduc-
teur est typiquement la même. Cependant, le degré de liberté supplémentaire résultant
de l’hybridation peut être exploité. En effet, la présence d’une source d’énergie sup-
plémentaire laisse une liberté à la manière dont la puissance de traction demandée par
le conducteur peut être satisfaite : en utilisant uniquement le moteur thermique ou la
machine électrique, ou par une combinaison des deux. Pour réaliser cette tâche, un con-
trôleur haut-niveau est nécessaire et il doit déterminer comment les différents composants
du groupe motopropulseur doivent fonctionner. Ce contrôleur est souvent appelé "système
de supervision énergétique" (EMS) [33]. Son rôle est schématisé dans Figure 1.1.

Les stratégies de contrôle implémentées dans un EMS peuvent être classées en deux
catégories. Les stratégies de Type I, généralement appelé stratégies heuristiques, sont
utilisées dans la plupart des prototypes hybrides disponibles sur le marché. Les stratégies
dérivées du contrôle optimal (de Type II) sont considérées comme une solution innovante.
Actuellement, elles attirent beaucoup d’attention de la part de la communauté scientifique
et elles sont progressivement introduites dans l’industrie automobile. Ces deux approches
seront décrite dans les sections ci-dessous.

2.3.1 EMS heuristique

Ce type de contrôleur est basé sur des règles et des corrélations inspirées par une connais-
sance a priori du comportement et de l’efficacité du système de propulsion [18, 20, 29, 56].
Par exemple, une des règles principales suggère l’utilisation du moteur thermique seule-
ment lorsque son efficacité est relativement élevée (en général pour des charges élevées),
alors que dans des conditions moins favorables, le mode électrique devrait être préféré et
le moteur thermique sera éteint.

L’avantage principal de ce type d’algorithmes est que les corrélations sont intuitives, de
sorte qu’elles sont bien acceptées par les ingénieurs et les utilisateurs finaux. Ils donnent
des résultats relativement satisfaisants s’ils sont soigneusement réglés. Ils ne nécessitent
aucune connaissance des conditions futures de conduite, ce qui simplifie leur mise en
œuvre pour des applications en temps réel.

L’inconvénient majeur de ce type d’algorithmes est qu’ils sont adaptés pour des sys-
tèmes simples, et leurs performances dans des conditions de conduite réelles (qui sont
généralement différentes de celles utilisées pour calibrer la stratégie de commande) ne
sont pas garanties. Toutes ces raisons ont poussé le développement des contrôleurs opti-
maux basés sur des modèles (model based approach).

2.3.2 EMS optimal

Les faiblesses (relatives) de l’EMS heuristique discutées ci-dessus ont motivé le développe-
ment des contrôleurs optimaux. Ce type de stratégie est basé sur la définition d’une
fonction coût à minimiser ou à maximiser pour un système dynamique qui représente
la dynamique du véhicule. Différentes fonctions coût peuvent être considérées : con-
sommation du carburant, émissions polluantes, vieillissement de la batterie, agrément de
conduite ou toute combinaison de ces quantités [2, 17, 44, 56, 71, 72, 74, 77, 81, 92]. Pour
les problèmes de la gestion d’énergie, un HEV peut être décrit par des modèles quasi-
statiques. Le vecteur d’état ne comprend généralement que l’état de charge (SOC) de la
batterie [33].
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En fonction de la connaissance des conditions futures de conduite, on distingue deux
sous-catégories. Dans la première catégorie, le véhicule est supposé suivre un cycle de
conduite prédéfini sur un horizon de temps fini. La stratégie optimale calculée anticipe
ce qui se passe de l’instant actuel jusqu’à la fin du cycle de conduite. La connaissance
des conditions futures est seulement possible lorsque le véhicule opère sur des cycles de
conduite normalisés, ou pour des véhicules qui ont des trajets prescrits. Dans tous les
autres cas, le profil de vitesse est incertain.

Dans la deuxième catégorie, où les conditions futures de conduite ne sont pas connues,
la stratégie de commande doit être calculée à partir des informations disponibles en temps
réel, sous la forme d’un feedback. Comme il est impossible dans ces conditions de calculer
une stratégie optimale, la stratégie obtenue sera sous-optimale. La commande prédictive
[13, 36] et l’ECMS (Equivalent Consumption Minimization Strategy) [16, 37] font partie
des méthodes utilisées pour faire face aux incertitudes dans les conditions de conduite.

2.4 Problèmes considérés et solutions proposées
Dans cette thèse, nous souhaitons développer un EMS pour un HEV de type parallèle
en prenant en compte l’impact des températures internes (du moteur et/ou du système
de dépollution) sur la consommation du carburant et les émissions polluantes. En effet,
ces variables supplémentaires ont un impact significatif, comme on peut le constater sur
les Figures 1.2 et 1.3 et la prise en compte de leurs dynamiques conduit à un système
dynamique à trois états avec une seule entrée de commande, et deux sorties d’intérêt
(consommation du carburant et émissions polluantes). Pour implémenter ce régulateur
dans des conditions réelles de conduite, l’EMS doit prendre la forme d’un feedback des
in- formations disponibles en temps réel. Actuellement, l’ECMS [16] est en mesure de
prendre en compte une seule variable d’état (le SOC de la batterie).

À cause de l’augmentation du nombre de variables d’état, il nous semble très coûteux
de développer un EMS fondé sur des règles et des corrélations heuristiques. En effet, la
complexité d’établir un tel contrôleur, qui pourrait couvrir tous les cas possibles, serait
très élevée. Notre objectif est de développer une généralisation de l’ECMS qui combine
les résultats du contrôle optimal (l’entrée de commande minimise l’Hamiltonien associé
au problème de commande optimale considéré) et une boucle de rétroaction (la variable
adjointe est calculée comme la sortie d’un contrôleur de type PID sur les variables d’état).
En outre, parce que ce genre de stratégie est sous-optimal par construction, on ne sait
pas si l’ECMS, dans sa formulation originale, peut atteindre un niveau de performance
suffisant en ce qui concerne les émissions polluantes, tout en gardant l’excès en consom-
mation du carburant dans des limites acceptables. Nous illustrons cette situation dans la
Figure 1.4.

A première vue, on ne sait pas quelle(s) variable(s) d’état doit (doivent) être considérée
dans l’analyse. Comme chaque état augmente la complexité de la tâche de conception
de commande, nous souhaitons établir un certain compromis entre les performances des
stratégies et la complexité des modèles utilisés pour les calculer. Pour réponde à cette
question, nous procédons en deux étapes. Dans la première étape, nous résolvons une
collection de problèmes de contrôle optimal pour différents niveaux de modélisation (un,
deux ou trois états). Pour faire une comparaison équitable entre les solutions obtenues,
les stratégies de contrôle qui en résultent sont appliquées au modèle complet avec trois
variables d’état. Nous considérons une somme pondérée de la consommation du carburant
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et les émissions polluantes sur un horizon temporel prédéfini qui correspond à un cycle
de conduite. Les résultats obtenus quantifient le bénéfice de la prise en compte des états
supplémentaires. Des résultats types sont illustrés dans la Figure 1.5.

La Partie I de cette thèse est consacrée pour les solutions optimales des problèmes de
gestion d’énergie pour un hybride parallèle équipé avec d’un moteur essence et un système
de post-traitement de type catalyseur trois-voies. Le cycle de conduite est supposé être
connu à l’avance.

Dans le chapitre 3, le problème de la gestion d’énergie mono-état (considérant seule-
ment le SOC), généralement considéré dans la littérature, est présenté. La fonction coût
à minimiser est la consommation de carburant. Nous résolvons le problème de commande
optimale associé en utilisant le principe du minimum de Pontryagin (PMP). Ce problème
est étendu pour inclure des contraintes d’état sur le SOC.

Dans le chapitre 4, nous présentons une extension possible du problème mono-état
pour réduire les émissions polluantes. Cet extension permet de prendre en compte les
dynamiques thermiques du moteur et du système de post-traitement. Nous utilisons les
résultats numériques de cet étape pour produire une figure similaire à Figure 1.5.

Dans le chapitre 5 de la partie II, nous explorons le concept des perturbations régulières
dans les problèmes de contrôle optimal sous contrainte de commande. Les différents prob-
lèmes étudiés dans la Partie I sont des exemples de simplifications successives des modèles
qui peuvent être refondues dans ce concept général.

Dans la deuxième étape décrite dans la Partie III, nous proposons une généralisa-
tion de l’ECMS en utilisant des corrélations entre les états thermiques et ses variables
adjointes. Ces relations sont observées sur les trajectoires optimales calculées dans la
première étape. Cela définit un feedback sous-optimal que nous testons numériquement
et expérimentalement. Des résultats types attendus sont illustrés dans la Figure 1.6.

Dans le chapitre 6, une étude des propriétés de stabilité et de robustesse de l’ECMS
est proposée. Ensuite, des extensions de cette stratégie sont proposées pour inclure les
dynamique thermique dans le problème d’optimisation. Les résultats obtenus montrent
que les performances obtenues sont satisfaisantes notamment pour satisfaire la norme
sur les émissions polluantes tout en gardant la sous-optimalité sur la consommation du
carburant avec des limites acceptables.

Enfin, dans le chapitre 7, nous appliquons notre méthodologie à un banc d’essai con-
stitué d’un moteur diesel équipé d’un catalyseur d’oxydation diesel (DOC), d’un filtre
à particules diesel (DPF) et d’un système de réduction sélective catalytique par l’urée
(SCR). Les tests expérimentaux réalisés valident l’affirmation selon laquelle une stratégie
de contrôle simple est suffisante pour réduire les NOx.

2.5 Contributions de la thèse
L’approche en deux étapes, décrites ci-dessus, suggère une étude qui constitue, avec les
résultats de l’application en chapitre 7, les contributions de la thèse. Ces contributions
sont de deux ordres :

1. Perturbations dans les problèmes de commande optimale sous contrainte
de commande : Le résultat obtenu par Bensoussan [7] sur les perturbations
régulières dans le contrôle optimal est étendu pour inclure des contraintes de com-
mande. Nous montrons que les termes d’ordre ε apparaissant dans la dynamique et
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la fonction coût conduisent à une sous-optimalité de l’ordre Kε2 dans le coût opti-
mal. Le paramètre K est estimé à partir de la solution du problème d’optimisation
pour ε = 0. Ce résultat, qui est très utile pour des applications pratiques, est
prouvé par le biais de la méthode de points intérieurs (IPM) proposée dans [47].
Une extension possible pour inclure les contraintes d’état, qui sont plus difficiles à
gérer dans la présence des erreurs de modélisation, est discutée et illustrée par un
exemple numérique. Ce résultat nous permet d’évaluer quantitativement l’impact
de réduction de modèle dans les problèmes d’optimisation. Il apporte une réponse
à la question informelle suivante : : «Est-il utile de considérer une complexité sup-
plémentaire dans mon modèle afin d’optimiser les performances obtenues?».

2. Généralisation de l’ECMS : Trois extensions possibles de l’ECMS sont pro-
posées pour inclure les dynamiques thermiques dans l’optimisation. Ces extensions
sont basées sur la paramétrisation de la relation entre les états adjoints et leurs états
associés (qu’on suppose mesurés ou au moins estimés) indépendamment des condi-
tions de conduite. Les stratégies temps réel proposées sont capables de gérer certains
degrés d’incertitudes dans les futurs scénarios de conduite. Elles sont conçues pour
prendre en considération plus qu’une seule variable dynamique.

Les travaux présentés dans cette thèse ont fait l’objet des publications suivantes :

1. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "Comparison of several strate-
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tures", in Proc. of the American Control Conference 2015.

2. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "On the impact of model
simplification in input constrained optimal control: application to HEV energy-
thermal management", in Proc. of the 53rd IEEE Conference on Decision and
Control, 2014.

3. D. Maamria, F. Chaplais, N. Petit and A. Sciarretta, "Numerical optimal control as
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Chapter 3

Optimal single-state problem

Chapitre 3 Pour les véhicules hybrides, un contrôleur haut-niveau est nécessaire pour
déterminer comment les composants du groupe motopropulseur doivent fonctionner, afin
de satisfaire la demande de puissance du conducteur. L’objectif principal de ce contrôleur
est la réduction de la consommation d’énergie, particulièrement en présence des con-
traintes : agrément de conduite et limitations physiques des composants. Le calcul de
ce contrôleur peut être formulé comme un problème de commande optimale. Dans ce
chapitre, l’architecture du véhicule hybride choisie dans ce travail de thèse est détaillée.
Ensuite, le problème de la commande optimale pour calculer ce contrôleur est formulé.
Puis, certains aspects théoriques et numériques, ainsi que les résultats sont discutés.
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CHAPTER 3. OPTIMAL SINGLE-STATE PROBLEM

Hybrid vehicles (HV) are characterized by two or more motors and power sources.
Regardless of the type of HV, a supervisory controller is needed to determine how the
powertrain components should operate, in order to satisfy the power demand of the driv-
eline in the most convenient way. The main objective of this controller is the reduction of
the energy consumption, typically in the presence of various constraints due to drivability
requirements and the physical limitations of the components [4, 33]. The design of this
controller can be formulated as an optimal control problem (OCP).

The architecture of the chosen hybrid electric vehicle (HEV) to be investigated in this
thesis is detailed in this chapter. An optimal control problem is formulated. Then, some
theoretical and numerical aspects are discussed. Finally, numerical results are presented.

3.1 System modeling

The modeling methodology is adopted from [33], resulting in a quasistatic model of the
various components.

3.1.1 Reference parallel architecture

The system considered here is a parallel HEV equipped with an internal combustion
engine. The architecture is depicted in Figure 3.1. The electric machine allows the
power assistance, including the purely electric drive, and the battery recharging. The
transmission ratio of the electric machine to the wheels is constant. Additionally, a
battery is used as an energy storage system for the electric energy. The architecture
choice is not restrictive, as the methodology presented in this thesis could be transposed
to other cases of interest (series or combined HEV).

Figure 3.1: A parallel HEV architecture Figure 3.2: Schematic representation of the
forces acting on the vehicle

3.1.2 Longitudinal vehicle dynamics

Figure 3.2 shows the forces acting on the vehicle body. The vehicle is modeled in a vertical
plan. Assuming that the vehicle speed v(t), the acceleration α(t) and the road grade θ(t)
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3.1. SYSTEM MODELING

are known, the traction force Ft(t) required by the driving cycle is given, according to
Newton’s law of motion, by

Ft(t) = (m+mrot) · α(t) + Fa(t) + Fr(t) + Fg(t),

where Fa is the aerodynamic drag force, Fr is the rolling friction force, Fg is the uphill
driving force and m is the total vehicle mass. The term mrot

mrot =
ntire · jtire + jrot

r2
tire

is an equivalent mass of the rotating parts. It accounts for the overall inertia of the
wheels ntire · jtire and for that of the traction machines jrot. The expressions of the applied
forces are

Fg(t) = m · g · sin(θ(t)),

Fa(t) + Fr(t) = c0 + c1 · v + c2 · v2,

where g is the gravitational acceleration and ci, i = {0, 1, 2} are the coefficients of the
road load equation (this model is employed in [33, 66, 73]). This model considers only the
forces in the longitudinal direction. All latitudinal forces, variations of friction parameters
during curves, wind forces, and other disturbances are neglected. The traction force Ft(t)
has to be provided by prime movers.

3.1.3 Transmission model

The driver’s torque request and the vehicle speed are directly calculated from the driving
cycle which is described by the wheel speed profile, elevation profiles and the gear-box
ratio as functions of time. The resulting torque value Tt(t) can be positive (traction) or
negative (braking). As the considered HEV is of parallel type, the engine torque Teng
and the torque of the electric machine Tel are related to the torque required at the wheel
Tt(t) = rtire · Ft(t) by the torque balance

rtire · Ft(t) = Rel · Tel(t) + ηgb ·Rgb(t) · Teng(t), (3.1)

where Rel is the constant motor-to-wheel transmission ratio, Rgb is the gear-box ratio, rtire
is the wheel radius and ηgb is the constant gear-box efficiency. Similarly, the rotational
speed of the ICE and of the electric machine are related to the rotational speed at the
wheel ωwh by

ωeng(t) = Rgb(t) · ωwh(t),
ωel(t) = Rel · ωwh(t).

3.1.4 Engine model

The fuel consumption of the engine, neglecting the effects of engine temperature, is given
by a quasistatic map as a function of the effective engine torque Teng and the engine
rotational speed ωeng

ṁfuel = c(Teng, ωeng).

The fuel power can be written

Pf = c(Teng, ωeng) ·Hlhv,

where Hlhv denotes the lower heating value of the fuel. The maximum allowed engine
torque is given as a function of ωeng.
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3.1.5 Electric machine model

The electric machine1 is modeled by a quasistatic map describing either the electric power
or its efficiency. The electric power consumed (in traction mode) or supplied to the battery
(in recuperation mode) is of the form

Pm = Γ(Tel, ωel),

where Γ is the electric power map of the electric machine. It represents the requested
power from the battery to provide the needed torque Tele at the speed ωel. This map
often includes the losses in the electric machine (mechanical, copper and iron losses)
[8, 24, 90] and losses in the power converters. The electric machine torque is limited by
speed-dependent upper and lower bounds of the form

Temin(ωel) ≤ Tel ≤ Temax(ωel).

3.1.6 Battery model

The battery is usually represented by an equivalent circuit model comprising a voltage
source Uocv in series with an electric resistance Rb, both of which vary with certain pa-
rameters such as ξ, the state of charge (SOC) of the battery (which describes the capacity
remaining in the battery expressed as a percentage of its nominal capacity) and the battery
temperature [4, 33]. The open-circuit voltage Uocv represents the equilibrium potential of
the battery. The internal resistance Rb can be experimentally evaluated as a function of
the SOC and, possibly, the battery temperature. It depends on the sign of the current Ib
(charging or discharging phase) [33]. Kirchhoff’s law for the equivalent circuit yields

Ub = Uocv(ξ)−Rb(ξ)Ib,

which relates two unknowns, the battery current Ib and the voltage Ub. A second equation
is given by the definition of the battery power: Pb = IbUb. This power equals the electric
machine power Pm. Thus, the formula of the current Ib is given by [33]

Ib =
1

2Rb(ξ)

(
Uocv(ξ)−

√
U2
ocv(ξ)− 4Rb(ξ)Pb

)
.

Due to the limitation of the battery, the current Ib is not defined if the power Pb is greater
than U2

ocv(ξ)/4/Rb(ξ). In practice, this limit is never reached [4]. The power delivered by
the battery is limited by the constraints of the current Ib and the battery voltage

Pb,min(t) ≤ Pb(t) ≤ Pb,max(t).

The definitions of Pb,min and Pb,max are given in [33]. The SOC dynamics is given in the
discharging case by

dξ

dt
= − Ib

Q0

.

In the charging case, the evaluation of the SOC must take into account the fact that a
fraction of the current Ib is not transformed into charge. This fraction is due to irreversible,

1The term electric machine is used for the combined unit consisting of the electric machine and its
power electronics.
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parasitic reactions taking place in the battery [33]. The SOC dynamics, in this case, is
given by

dξ

dt
= −ηc

Ib
Q0

,

where Q0 is the nominal battery capacity and ηc is the charging efficiency. In practice,
the current Ib depends on ξ, but this dependency is neglected in the control model as
commonly assumed in the literature [40, 80] (it has been shown [80] that neglecting this
dependance does not have a substantial impact on the optimal fuel consumption). In
order to simplify the notation, the dynamics of ξ considering a given initial condition ξ0

is written as
dξ

dt
= f(Tel, t), ξ(0) = ξ0. (3.2)

3.2 Optimal energy management problem statement

As discussed above, the main task of an EMS for a parallel HEV is to find the most
convenient way to split the power at the wheel, requested by the driver, between the
engine and the electric machine to minimize the overall energy use. The calculation of
such controller can be formulated as an OCP. Details about this formulation are given in
following sections.

3.2.1 Cost function

The simplest cost function to be minimized is the fuel consumption over a given driving
cycle of a duration T . Pollutant emissions can be included in the performance index by
considering a trade-off between the two quantities [33, 64]. A general expression for the
cost is given by

J(u) =

∫ T

0

L(u, x, w)dt,

where L combines the fuel consumption rate and the emission rates of the regulated
pollutants, u is the control variable (engine torque u = Teng) and x is the state variable.
The variable w includes the speed ωwh and the torque Tt at the wheels requested by
the driver. These two parameters may be seen as disturbances in the case when future
driving conditions are unknown (online optimization). When the driving cycle is known
in advance (offline optimization), w is a known function of time.

Drivability concerns can also be introduced into the performance index. For example,
the cost function might include an anti-jerk term, which consists of the engine acceleration
squared [92], or a term related to gear shifting multiplied by an arbitrary weighting
factor [44].

The vehicle is assumed to follow a prescribed driving cycle and all fast dynamics
taking place in the powertrain are neglected. The considered cost function is the fuel
consumption

J0(u) =

∫ T

0

c(u(t), ωeng(t))dt,

where c is the fuel consumption rate for a warm engine described in Section 3.1.4.
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3.2.2 Dynamics

The nature of the state variables is related to the dynamics of the considered system,
which generally include mechanical, thermal, electrical, and electrochemical subsystems.
For the purpose of energy management, HEV can be described by quasistatic models [33].
Thus, the number of state variables decreases, and the state vector includes only integral
quantities such as the SOC [33]. The SOC dynamics is given by equation (3.2).

One operational constraint reflecting charge-sustaining (final SOC equals its initial
value) or charge-depleting (final SOC is nearly its minimal value) operations requires that
the final value of ξ should be equal to a target value ξref , where

ξ(T ) = ξref . (3.3)

This final condition allows a fair comparison of various strategies by guaranteeing the
same level of battery energy at the end of the driving cycle. In fact, the fuel consumption
and the final value of the SOC are related:

• if the final SOC is greater than its target value, the fuel consumption will be higher
than when the final constraint is satisfied;

• if the final SOC is lower than its target value, the fuel consumption will be lower
than when the final constraint is satisfied.

3.2.3 Input and state constraints

The engine torque u and the electric machine torque Tel are constrained and the bounds
depend on the motors speed; thus they are functions of time as the driving cycle is assumed
known in advance:

Tmin(t) ≤u(t) ≤ Tmax(t),

Temin(t) ≤Tel(t) ≤ Temax(t).

In Figure 3.3, an example of the upper and the lower bounds on the engine and the electric
machine torques are given for the new European driving cycle (NEDC). As has mentioned
above, these bounds depend on the driving cycle to follow.

By combining these two equations with torque balance in equation (3.1), only one
constraint on the input control u is considered. This constraint defines a set Uad of
the form

Uad = {u ∈ L∞([0, T ],R) s.t. umin(t) ≤ u(t) ≤ umax(t), t ∈ [0, T ]}. (3.4)

As the energy available in the battery is limited and in order to maximize the life
expectancy of the battery, the OCP may include some instantaneous constraints on the
state ξ. These are of the form

ξmin ≤ ξ(t) ≤ ξmax. (3.5)

Gathering all the facts discussed above, the OCP, being considered in this chapter, is
defined as follows

min
u∈Uad

J0(u), (3.6)

under the final constraint (3.3), the instantaneous constraints (3.5), the state dynamics
(3.2) and Uad is defined in equation (3.4). This optimization problem is solved below
using the PMP [40, 74].
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3.3 Recalls on optimal control theory
The optimal control problems (OCP) we treat in this thesis are of the form

min
u∈Uad

[∫ T

0

l(u(t), x(t), w(t))dt

]
, (3.7)

where l is a continuously differentiable locally Lipschitz function of its arguments and
the variable w is a function of time representing the disturbance terms (for the EMS, w
characterizes the driving cycle). x ∈ Rn and u ∈ Rm (m ≤ n) are the state and the
control variables of the following nonlinear dynamics with prescribed initial conditions x0

ẋ = h(x, u, w), x(0) = x0, (3.8)

where h is a smooth real-valued function of its arguments. On the considered time hori-
zon T , which is assumed to be fixed without loss of generality, the control variable u can
be chosen in a set Uad (a subset of L∞)

Uad = {u ∈ L∞([0, T ],Rm) s.t. u(t) ∈ C, t ∈ [0, T ]}, (3.9)

in which C is a bounded closed convex set of Rm. The optimal control problem consists
in finding the control u that minimizes the cost (3.7). To solve these unconstrained
optimal control problems, two main approaches are usually used: Pontryagin’s minimum
principle (PMP) and dynamic programming (DP). In this thesis, we are interested in
PMP methods. We now recall it.

3.3.1 Pontryagin minimum principle (PMP)

The minimum principle [68] states necessary conditions for optimality. It is based on
a variational approach and it converts the optimal control problem into a two-point

8



CHAPTER 3. OPTIMAL SINGLE-STATE PROBLEM

boundary-value problem (TPBVP). If (u, x) is an optimal solution for the problem (3.7,
3.8, 3.9), then there exists a function p called adjoint state variable, such that almost
everywhere on [0, T ]

ẋ = h(x, u(t)), x(0) = x0,

ṗ = −∂H
∂x

(x(t), u(t), p(t)), p(T ) = 0,

u(t) ∈ arg min
v∈C

H(x(t), v, p(t)),

where H is the Hamiltonian defined by

H(x(t), u(t), p(t)) = l(u(t), x(t)) + pT (t)h(x(t), u(t)).

The Hamiltonian H has to be minimized by u(t) at each time t ∈ [0, T ]. The equations
giving p and the optimal control u are usually called stationarity conditions. Dynamic
programming can be also used to solve this kind of optimal control. The interested reader
is referred to [9, 14].

3.3.2 Interior point methods for state constraints

More generally, beside the input constraints (3.9), the general OCP described by (3.7)
could include state constraints that are difficult to handle. Methods used to deal with
state constraints include the interior penalty method (IPM). The main advantage of
this approach is that the solution of the constrained OCP is determined from the sim-
ple stationarity conditions. There is no need to know in advance the sequence of con-
strained/unconstrained arc and switching points [50]. This is of practical importance
when implementing numerical methods based on the PMP.

Historically, these methods, IPM, have been introduced for finite dimensional con-
strained optimization by Fiacco and MacCormick [27] in the late 1960s. They were very
successful in the mid-1980s thanks to Karmarkar’s work [35] in which it was shown that
the proposed interior point algorithm is significantly (50 times) faster than the simplex
method for a linear programming (LP) problem. They have been generalized in [47] to
a class of optimal control problems of the form (3.7) with state constraints of the form
g(x(t)) ≤ 0 for all t ∈ [0, T ].

The algorithm presented in [47] demonstrates how to solve this class of optimal con-
trol problem as a sequence of unconstrained problems. The idea consists of introducing
penalties on the state and on the control input with a penalty weight r in the cost func-
tion. This modification defines a new unconstrained problem after an adequate change of
variable. Then, it has be shown that the solution of the new unconstrained problem con-
verges to the solution of the initial problem under constraints when r goes to zero and the
solutions approach the constraints from the interior. The new cost function parametrized
by the penalty weight r is

min
u∈Uad

[∫ T

0

[l(u(t), x(t)) + r · γg(g(x(t)))] dt

]
, (3.10)

where γg is a penalty function satisfying the following conditions:

• for x < 0, γg(x) is continuously differentiable, convex, and increasing;

9
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• γg(x) ≥ 0 if x < 0 and γg(x) = 0 if x ≥ 0;

• lim
x→0

γg(x) = +∞.

To satisfy these conditions, a possible choice of γg is

γg(x) =

{
(−x)−ng , for x < 0,
0, otherwise, (3.11)

where the parameter ng > 1 [50].

Proposition 1 [47] If u is constrained and γg is properly chosen, then:

• If the cost in (3.10) is finite, then the state x satisfies g(x) < 0;

• the modified cost (3.10) decreases and r · γg(g(x(t)))→ 0 when r tends to zero;

• when r tends to zero, the optimal value of the modified cost (3.10) converges to the
optimal value of (3.7) with the satisfaction of the state constraints g(x(t)) ≤ 0.

3.4 Optimal solution

3.4.1 System specifications and driving cycle

The specifications of the HEV are summarized in Table 3.1. The ICE is a gasoline engine.
Its fuel consumption rate as a function of the engine rotational speed and the engine
torque is given in Figure 3.4.

Table 3.1: Vehicle characteristics

Vehicle weight 1932 kg
ICE max. power 92 kW
Electric machine max. power 42 kW
Battery capacity 2000 Wh

Figure 3.5 shows the electric power Pm and the speed dependent torque limits of
the electric machine used in the vehicle. The open-circuit voltage Uocv and the internal
resistance Rb are given in Figures 3.6 and 3.7. These data are gotten from [15, 17].

The NEDC driving cycle is considered. The speed requested at the wheel and the
gear-box ratio (for the thermal mode) are given in Figures 3.8 and 3.9.

3.4.2 Determination of optimal solution

3.4.2.1 Without instantaneous SOC constraints (3.5)

The Hamiltonian H0 associated to the OCP (3.6) is defined by

H0(u, t, λ) = c(u, t) + λf(u, t), (3.12)

10
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where λ is the adjoint variable associated to ξ. For a given control u, the dynamics of λ
is defined by

dλ

dt
= −∂H0

∂ξ
(u, t, λ) = 0. (3.13)

The PMP states that, if u∗0 is an optimal control, then, for every time t, u∗0(t) minimizes
the Hamiltonian in the set defined by (3.4) along the optimal state and costate trajectories

u∗0(t) ∈ arg min
u∈Uad

H0(u, t, λ(t)). (3.14)

Equations (3.2, 3.3, 3.13, 3.14) constitute a two-point boundary-value problem (TPBVP),
denoted by (P0), where the final condition λ(T ) is unknown, as the final SOC is con-
strained. From (3.13), λ is a constant and its value should be chosen to satisfy the final
constraint (3.3).

In most practical cases of EMS design for HEV, the relationship between λ and ξ(T )
is monotonic. In particular, if λ chosen lower than its optimal value, ξ(T ) will be higher
than ξref and, conversely if λ is higher than its optimal value, ξ(T ) will be lower than

11
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Table 3.2: HEV parameters

Parameter Symbol Value
Constant coefficient of the road load c0 133, 7343 N
Linear coefficient of the road load c1 1, 8374 N/(m/s)
Quadratic coefficient of the road load c2 0, 5398 N/(m/s)2

Wheel radius rtire 0, 3173 m
Number of wheels ntire 4
Inertia of each wheel jtire 1.1 kg· m2

Battery nominal capacity Q0 18000 C
Motor-to-wheel transmission ratio Rel 11
Gear-box efficiency ηgb 0.95
Battery charging efficiency ηc 0.95
Fuel lower heating value Hlhv 42600000 J/kg
Lower SOC value ξmin 0.4
Upper SOC value ξmax 0.8
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Figure 3.8: Wheel speed [km/h] for NEDC
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Figure 3.9: Gear-box ratio for NEDC

ξref . Based on this property, λ can be iteratively determined by correcting the previous
estimation in accordance with the sign of (ξ(T )− ξref ) after each iteration [33]. A more
detailed study of this relationship has been conducted in [21].

Generally in the literature of EMS, an equivalence factor (that is positive and dimen-
sionless) denoted by s is usually used [74] instead of using λ (that is negative). The
relationship between these two parameters is given by

s(t) = − Hlhv

Q0 · Uocv
λ(t). (3.15)

The stationarity condition of the PMP is expressed on the quantity H̃0 (which is in
power units) given in (3.16). It is the sum of the consumed fuel power and the inner
(electrochemical) battery power

H̃0(u, t, s) = c(u, t) ·Hlhv + s(t) · Ib(t) · Uocv(t). (3.16)
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3.4.2.2 With instantaneous SOC constraints

To take the SOC constraints into account, the algorithm proposed in [47] is used. Con-
sistently with Section 3.3.2, a new cost function parametrized by the penalty weight r is
defined

J̄0(u, r) =

∫ T

0

[c(u, t) + r · γ(ξ)] dt,

where the penalty γ is of the form (3.11). For simplicity, and as the SOC trajectories
are always below ξmax for the considered driving cycles, only the constraint ξ(t) ≥ ξmin is
considered. The new Hamiltonian H0r associated to this OCP is

H0r(u, t, ξ, λ, r) = c(u, t) + r · γ(ξ) + λf(u, t).

The dynamics of λ is then given by

λ̇ = −∂H0r

∂ξ
(ur0(t), t, ξ, λ, r) =

r.ng
(ξ(t)− ξmin)ng+1

, (3.17)

where λ(T ) is free as the final SOC is constrained. The optimal control ur0(t) minimizes
the Hamiltonian in the set defined by (3.4)

ur0(t) ∈ arg min
u∈Uad

H0r(u, t, ξ, λ(t), r). (3.18)

Equations (3.2, 3.3, 3.17, 3.18) constitute a TPBVP denoted by (P r
0 ). The parameter ng

is set at 1.1. The weight r is initialized with r0 = 10−6 for NEDC and is then decreased.

3.4.3 Numerical results

3.4.3.1 Without instantaneous SOC constraints

The only unknown parameter in the TPBVP (P0) is the value of the adjoint state λ (which
is constant). Its value is determined by using a dichotomy as the relation between λ and
(ξ(T ) − ξref ) is monotonic. The obtained SOC trajectory is given in Figure 3.11 (black
curve). It satisfies the instantaneous constraints given by the relation (3.5).

The engine and the electric machine torques for the time interval t ∈ [0, 200] s are
depicted in Figure 3.10. In this part of the driving cycle, the vehicle speed is low and
the use of the engine is limited to the acceleration phases. In the deceleration phases,
the engine is not used and the electric machine recovers the kinetic energy (represented
by a negative electric machine torque) to recharge the battery. In the case of a constant
vehicle speed, the torque requested at the wheels will be constant and this demand will
be satisfied by the electric machine.

The adjoint state λ is constant, but its value and the obtained control strategy both
depend on the prescribed driving cycle. This solution can be used as a reference of
comparison for evaluating any sub-optimal real-time strategy.

3.4.3.2 With instantaneous SOC constraints

For each value of r in a decreasing sequence, the TPBVP (P r
0 ) is solved. The state and

costate trajectories are shown in Figures 3.11 and Table 3.3 summarizes the obtained fuel

13



3.4. OPTIMAL SOLUTION

0 50 100 150 200
−60

−40

−20

0

20

40

60

80

100

120

140

Time [s]

 

 

Wheel Speed
Electric Machine Torque
Engine Torque

Figure 3.10: Torque trajectories in [Nm] for NEDC in the unconstrained case for the time
interval [0, 200] s.

consumption for NEDC. For this driving cycle, the state constraints are never active and
the SOC trajectories converge to the unconstrained trajectory when r decreases.

As shown in Figure 3.11, when r decreases, the SOC trajectory approaches the constraint-
free optimal state trajectory from the interior (the SOC trajectories for different values
of r remain inside the domain defined by the constraints. In Figure 3.13, for a different
driving cycle, the trajectories approach the constraints from the interior). The parameter
r has to be decreased to small values to avoid causing too much sub-optimality and change
in the optimal trajectory. The parameter r also has some impact on the history of the
SOC (the use of the engine and the electric machine):

• For high values of r, the control strategy recharges the battery at the beginning of
the driving cycle by preferring the use of the engine: in order to minimize the term
r · γ(.), ξ(t) has to be far from its lower bound (ξmin) and thus the term γ(ξ) is
small.

• When r tends to zero, the control strategy has more flexibility. The SOC trajectory
can move nearer to the constraints and the term γ(ξ) increases. This variation is
offset by decreasing r: there is a compensation effect between decreasing the value
of r and the growth of the penalty value.

From Table 3.3, the fuel consumption decreases when r tends to zero and the difference
in terms of fuel consumption between the various solutions (for different values of r) is less
than 2% (for example, the difference in terms of fuel consumption between the solutions
corresponding to r = 5e−7 and r = 8e−9 is less than 1.1%). This quantification means that
having an acceptable distance from the constraints leads to an acceptable sub-optimal
fuel consumption.

As appears in Figure 3.11, for the NEDC (which is the main focus in the thesis),
the SOC constraints are never active (the unconstrained strategy does not violate it).
To illustrate the usefulness of the interior penalty approach in the presence of active
state constraints, another driving cycle, for which the constraint ξ(t) ≥ ξmin is active, is
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Figure 3.11: Optimal SOC [%] trajectories (left) and s trajectories (right) for NEDC in the
constrained case

Table 3.3: J0(ur0) [L/100 km] for NEDC in the constrained case

r J0(ur0) 100 ·min(ξ(t)− ξmin)
1e−6 4.48 8.23
5e−7 4.45 7.05
1e−7 4.41 3.59
5e−8 4.402 2.95
8e−9 4.39 2.21

Without constraints 4.385 /

considered. This new cycle is a combination of two driving cycles: FHDS (federal highway
driving cycle) and NEDC. The wheel speed and the gear-box ratio (for the thermal mode)
for this new cycle are given in Figures 3.12. The weight r is initialized with r0 = 5 · 10−7.
The obtained solutions (for decreasing values of r) are compared to the solution without
state constraints in terms of fuel consumption in Table 3.4.

Plots of Figure 3.13 report the SOC and its associated equivalence factor s trajectories
in the unconstrained case and for decreasing values of r. The behavior of the SOC when r
tends to zero has the same tendency as for the NEDC: ξ(t) approaches the state constraints
from the interior. When r tends to zero, the minimum distance between the SOC and its
lower bound decreases and after a certain threshold of r for which ξ(t) is very close to
ξmin, a jump in the value of the equivalence factor s appears.

The results given in Table 3.4 show that the difference in fuel consumption for different
values of r is less than 2% compared to the control strategy without constraints. It is
relevant to note that having an acceptable distance from the state constraint does not
cause a substantial impact on fuel consumption (this remark is discussed in Section 5.9
from a theoretical viewpoint).
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Figure 3.13: Optimal SOC [%] trajectories (left) and s trajectories (right) for the combined cycle
in the constrained case

Table 3.4: J0(ur0) [L/100 km] for the combined cycle in the constrained case

r J0(ur0) 100 ·min(ξ(t)− ξmin)
5e−7 4.85 8.23
2e−7 4.83 5.27
1e−7 4.80 3.22
5e−8 4.78 1.75
8e−9 4.76 0.27

Without constraints 4.75 /

3.5 Conclusion

In this chapter, the single-state energy management problem for a parallel hybrid electric
vehicle aiming at minimizing the fuel consumption has been addressed and formulated as
an OCP. The obtained OCP has been solved using the PMP and the control strategy has
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been extended to include instantaneous state constraints on the SOC by using the interior
penalty approach. The obtained control strategies depend on the prescribed driving cycle
and they can be used as a reference of comparison for real-time strategies.

It is to be noted that optimal solutions does not reach the state constraints. So, they
will now be left-out from the discussion.
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Chapter 4

Optimal EMS including thermal
dynamics

Chapitre 4 Dans la plupart des études sur la gestion d’énergie pour un véhicule élec-
trique hybride, la consommation du carburant du moteur thermique représente la fonction
coût à minimiser. L’état de charge de la batterie (SOC) est généralement la seule vari-
able d’état considérée dans l’optimisation. Récemment, et pour des raisons pratiques,
étendre un tel problème d’optimisation en considérant des nouvelles fonctions coût (émis-
sions polluantes, vieillissement de la batterie ou toute combinaison de ceux-ci) et des
variables d’état supplémentaires (températures du moteur, de la batterie et du système
de dépollution) a suscité un grand intérêt de la part de la communauté scientifique. Ces
extensions augmentent le niveau de complexité des problèmes d’optimisation ainsi que
le temps nécessaire pour les résoudre, quel que soit la méthode numérique utilisée [34].
Dans ce chapitre, une extension de l’EMS mono-état, décrit dans le chapitre 3, pour ré-
duire les émissions polluantes en incluant les températures du moteur et du système de
post-traitement est présentée et discutée.
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In most studies investigating optimal energy management problems for HEV, the fuel
consumption over a fixed time window corresponding to a given driving cycle is the cost
function to be minimized. The battery SOC is usually the only state variable considered
because of the final constraint reflecting the charge-sustaining or depleting operations.
Recently, and for practical reasons, extending such optimization problem by considering
new cost functions (pollutant emissions, battery aging or any combination thereof) and
additional state variables (engine, battery and the after-treatment system temperatures)
has attracted interest from researchers. These extensions, while interesting in terms of
their application, significantly raise the level of complexity of the optimization problem
and thereby increase the time needed to solve it offline, regardless the numerical methods
used [34].

In this chapter, a possible extension of the single-state EMS (presented in Chapter 3)
by including engine and after-treatment system temperatures is presented and discussed.

4.1 State of the art

4.1.1 Engine temperature

One frequent but unstated (hidden) assumption in numerous studies dealing with EMS
for HEV is that the engine is at thermal equilibrium. However, from an engine modeling
viewpoint, engine temperature is an important factor that influences both the fuel con-
sumption and the pollutant emissions [39]. A low powertrain temperature has a negative
impact on fuel consumption and transmission efficiency. These are due to the higher fric-
tional losses in the engine resulting from increased hydrodynamic viscosity effects together
with the need for a richer air-fuel mixture to overcome poor combustion [3, 59, 83]. These
problems are particularly true for HEV, as the engine is subject to stop-start phases, and
its temperature may drop. On the pollutant side, the after-treatment system is only acti-
vated beyond a catalyst temperature threshold, and its efficiency is relatively poor at low
temperatures. For these reasons, it seems necessary to quantify the benefits of including
engine temperature in EMS, aiming at minimizing fuel consumption.

Little recent researches have been conducted with the aim of including thermal states
in the optimization problem formulation of EMS: these are referred to as thermal man-
agement systems [43, 55, 81]. The study in [43] was a first attempt to include engine
temperature dynamics in the optimization problem and to quantify the corresponding
gain in terms of fuel consumption. [55] presented a general framework for optimal energy-
thermal management in which optimal strategies based on PMP were compared with
heuristic rule-based strategies. Very promising benefits in fuel economy and reduction of
pollutant emissions were reported. The PMP solution outperforms the tested heuristic
strategy of 6% in fuel economy for a warm-start cycle. For a cold-start cycle, the benefit
of the PMP was 4.5%. If emissions are considered, about 20% reduction was obtained
with the PMP in a cold-start cycle.

Works in [87, 88] described a study of the effect of engine temperature on the fuel
consumption for conventional and hybrid vehicles with cold and warm start. One of the
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main conclusions relevant to the hybrid vehicle studied was that the optimal controls cal-
culated for a warm engine start and a cold engine start were so similar that the difference
in fuel consumption could not be quantified.

4.1.2 After-treatment system temperature

The design of an EMS aimed at minimizing fuel consumption can also be extended to
take the pollutant emissions into account, since minimizing the fuel consumption does not
directly ensure pollutant emissions reduction. The emission rate not only depends on the
engine operating point (load and speed), but also on the engine and catalyst temperatures.
The catalyst temperature is an important factor because:

• the catalyst is activated only beyond a certain threshold temperature, while its
efficiency is relatively poor at low temperatures (see Figure 4.2);

• as the engine can be turned off for varying durations, engine and catalyst tempera-
tures may decrease, which can significantly increases the pollutant emissions out of
the after-treatment system.

To properly manage this situation, the optimization should include a new thermal state
(catalyst temperature) in addition to the SOC and the engine temperature, and that
requires a third adjoint variable associated to the catalyst temperature.

Only few studies have included the catalyst temperature θc in the calculation of an
EMS aiming at minimizing a trade-off between fuel consumption and pollutant emissions.
In [15, 55, 81], PMP-based optimization techniques, including three-way catalyst converter
dynamics with emissions as objective, were presented along with numerical comparisons.
In [57, 58], the integration of the three-way catalyst converter in a gasoline-HEV EMS was
discussed using numerical comparisons between three control strategies, and a simplified
control model to reduce NOx emissions was suggested. The missing point in these studies
is the comparison of the proposed solution to the optimal solution of the multi-state
problem (two or three state variables).

In this chapter, we present a possible extension of the single state EMS to account for
the CO emissions. This extension includes thermal dynamics of the engine and the after-
treatment system. The associated three-states optimization problem is solved. After, a
trade-off between model complexity and the optimality of the solutions is analyzed.

4.2 Model with thermal dynamics
The HEV is considered to be equipped with an after-treatment system. Four pollutants are
regulated in accordance with the current standards: hydrocarbons (HC), carbon monoxide
(CO), nitrogen oxides (NOx), and particulate matter (PM). Since the HEV has a gasoline
engine, the critical pollutants are mostly CO and HC. NOx emissions and particulate
matter are less crucial in gasoline engines. The choice of CO emissions in the cost function
is not restrictive, the same approach can be applied to other pollutant emissions.

4.2.1 Impact of thermal variables on the cost function

The cost function (4.1) to be minimized is a weighted sum of the fuel consumption rate
and the CO emission rate out of the after-treatment system, over a fixed time window
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corresponding to a driving cycle of a duration T :

J2(u) =

∫ T

0

[(1− α) · cf (u, t, θe) + α ·mCO(u, t, θe, θc)]dt, (4.1)

where 0 ≤ α ≤ 1 is a weighting factor for adjusting the relative importance of the two
quantities cf (.) andmCO(.), θe is the engine temperature and θc is the after-treatment sys-
tem temperature. The time variable t accounts for the dependence of the fuel consumption
on the engine speed related to the wheel speed, which is assumed to be tracked.

The quantity cf (u, t, θe) is the fuel consumption rate when the engine is cold. It can
be written as

cf (u, t, θe) = c(u, t)e(θe), (4.2)

where the function c(.) is the fuel consumption rate for a warm engine. The correction
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Figure 4.1: Correction factor of fuel consump-
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Figure 4.2: Catalyst conversion efficiency [%]

factor e(θe) of the fuel consumption with respect to θe is a decreasing function, always
greater or equal to one. It represents an extra-consumption factor that takes into account
the increase of friction and, as a consequence, the increase of fuel injected per cycle at
low temperatures. In the case of a warm engine, e(θe) = 1. This function can be any
decreasing (not necessarily smooth) function with asymptotic value of one. The simple
form shown in Figure 4.1 has been extracted from engine control maps given by car
manufacturers.

Similarly, the emission rate of CO out of the after-treatment system mCO(.) is of the
form

mCO(u, t, θe, θc) = mCO,h(u, t) · eCO(θe) · (1− ηCO(θc)),

where mCO,h is the emission rate out of the engine when the engine is warm, given by a
quasi-steady map as a function of the engine speed and the engine torque. The correction
factor eCO(.) is a decreasing function of θe and is always greater or equal to one (it is similar
to e given in Figure 4.1). The quantity ηCO is the after-treatment conversion efficiency
for CO emissions, which depends on the catalyst temperature θc (see Figure 4.2).
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4.2.2 Dynamics

In addition to the dynamics of the SOC given by equation (3.2), the engine temperature θe,
and the after-treatment system temperature (ATS) θc must be taken into account.

4.2.2.1 Engine temperature

The variable θe represents the coolant temperature. A typical ICE cooling system con-
sists of a thermostat, a coolant temperature sensor, a radiator, and a coolant circulation
pump [41]. An engine cooling system can be viewed as an energy storage device compris-
ing the coolant, the engine oil and the engine block. The energy level can be expressed
as the temperature of the system. There is typically one source of energy (i.e., combus-
tion energy) and several forms of energy loss. A part of the combustion energy produces
engine power and the remaining part is transferred to the ambient air, the engine block,
the oil and the engine coolant. The energy transfers take place in the different engine
subsystems can described as follows: the engine converts a significant part of the fuel
power (Pf) (i.e., chemical energy flux) into an effective mechanical power (Peng), whereas
another part leaves the engine in the form of exhaust gases (Pth,exh) and convection in
the ambient air (Pth,out) [26, 87]. Pth,aux represents the power drained by the auxiliaries
(considered to be constant in our case).

The heat losses from the engine block to the ambient air stem mainly from convective
heat transfer; therefore, the radiation and the conduction heat transfer mode can be
neglected [41], leading to

Pth,out = Ge · (θe − θ0),

where Ge is an equivalent conductance (the inverse of a resistance) and θ0 is the ambient
temperature. Defining an equivalent engine temperature θe, an energy balance across the
system yields

Ce
dθe
dt

= Pcomb − Pth,out − Pth,aux − Pth,exh − Peff,

where Ce is an equivalent thermal capacity. This equation can be written in the form [55]

Ce
dθe
dt

= Pth,e(u, t, θe)−Ge · (θe − θ0)− Pth,aux,

where the term Pth,e = Pcomb−Pth,exh−Peff represents the sum of friction power dissipated
into heat and thermal power transferred from the engine to the coolant, and is given by
a look-up table as a function of the speed, the torque and the temperature of the engine.
The external cooling system (thermostat) is not modeled here; rather, the temperature θe
is considered to be limited by a maximum value θw, at which the thermostat is activated.

To simplify the notation, the dynamics of θe considering a given initial condition θ0 is
written as

dθe
dt

= g(u, t, θe), θe(0) = θ0. (4.3)

4.2.2.2 Catalyst temperature

The variable θc represents the (spatially averaged) catalyst temperature [25, 81]. The
considered model is a zero-dimensional model based on physical equations. Figure 4.3
shows a simplified heat transfer balance taking place in the after-treatment system.
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Figure 4.3: Energy flows in the after-treatment system (ATS)

Based on the energy balance presented above, the after-treatment system temperature
variation can be written as

Cc(θc) ·
dθc
dt

= Pth,ec − Pth,cr −Gc · (θc − θ0) + Pch,c,

where Cc is an equivalent thermal capacity of the catalyst depending on θc, Gc in an
equivalent conductance of the catalyst and θ0 is the ambient temperature. The term
Gc · (θc − θ0) represents the heat flux exchanged with ambient air (mainly governed by
convection). The term Pch,c is the rate of heat released by the chemical reactions. It
depends on θe and θc as presented in [55]

Pch,c = −
∑
j

hj · ηj(θc) ·mj,h(u, t)ej(θe),

where j = {CO,HC,NOx}, and hj is the heat generated (enthalpy) by the oxidation of
the jth pollutant. The quantity mj,h is the emission rate out of the engine for each j and
it is given by a look-up table as a function of the engine speed and torque. The correction
factors ej have the same form as e(.) given in Figure 4.1. The term Pth,ec is the heat
flux (enthalpy) from the engine to the after-treatment system, and Pth,cr is the heat flux
(enthalpy) out of the after-treatment system. These quantities are defined by [25]

Pth,ec = mexh · cexh(θexh) · θexh,
Pth,cr = mexh · cc(θc) · θc,

mexh = cf (u, t, θe) · (
AFRst

φ
+ 1),

where AFRst is the Air/Fuel Ratio of a stoichiometric mixture; φ is the equivalence ratio,
and cexh and cc are the specific heat capacities, which are functions of the catalyst tem-
perature θc and the gas temperature at the input of the after-treatment system, denoted
by θexh respectively [55]. This latter temperature equals the exhaust temperature gas and
is given by a static map of the engine speed and the engine torque.
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In order to simplify the notations, the dynamics of θc considering a given initial con-
dition θc,0 is written as

dθc
dt

= k(u, t, θe, θc), θc(0) = θc,0. (4.4)

4.2.3 Constraints

The control u is constrained to belong to Uad defined by the relation (3.4).

4.2.4 OCP summary

In summary, the OCP, denoted by (OCP2), is defined

(OCP2) min
u∈Uad

J2(u),

under the boundary constraint (3.3), the dynamics (3.2, 4.3, 4.4) and Uad is defined in
equation (3.4). The corresponding optimal strategy is denoted by (S2).

When α = 0, only the fuel consumption is minimized and the catalyst temperature θc
is neglected from the optimization problem. This case is detailed in Appendix B.

4.3 PMP solution and numerical solving
The Hamiltonian H2 is defined by

H2(u, t, θe, θc, λ, µ, ρ) = L(u, t, θe, θc) + λf(u, t) + µg(u, t, θe) + ρk(u, t, θe, θc), (4.5)

where λ, µ, ρ are the adjoint variables associated to ξ, θe and θc respectively, and L is
given by

L(u, t, θe, θc) = (1− α) · c(u, t, θe) + α ·mCO(u, t, θe, θc).

The adjoint states λ(t), µ(t) and ρ(t) are defined by

dλ

dt
= −∂H2

∂ξ
= 0,

dµ

dt
= −∂H2

∂θe
= − ∂L

∂θe
(u∗2, t, θe, θc)− µ

∂g

∂θe
(u∗2, t, θe)− ρ

∂k

∂θe
(u∗2, t, θe, θc),

dρ

dt
= −∂H2

∂θc
= − ∂L

∂θc
(u∗2, t, θe, θc)− ρ

∂k

∂θc
(u∗2, t, θe, θc),

(4.6)

with

µ(T ) = 0, ρ(T ) = 0, (4.7)

since the final temperatures θe(T ) and θc(T ) are free and the final time T is fixed. On
the other hand, the final value of λ is not constrained since the final SOC is fixed.

If u∗2 is an optimal control, then, for every t, u∗2(t) minimizes the Hamiltonian in the
set defined by (3.4) along the optimal states and corresponding adjoint states trajectories

u∗2 ∈ arg min
u∈Uad

H2(u, t, θe, θc, λ, µ, ρ). (4.8)
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Equations (3.2, 3.3, 4.6, 4.7, 4.8) constitute a TPBVP. Many numerical methods can be
used to solve this TPBVP. Among these are Dynamic Programming (DP), which in our
case leads to numerical difficulties and memory-management issues, due to the grid size
of three-dimensional state variables.

To solve our TPBVP, the collocation method could be employed. It is implemented in
Matlab through the routines bvp4c and bvp5c [82]. It appears that solving this problem
with these routines leads to numerical instabilities and the solutions they produce are not
sufficiently accurate. Therefore, a specifically tailored single shooting-related method is
used.

Classically, the idea of this algorithm is to consider the initial conditions of the adjoint
states (λ0, µ0, ρ0) as unknown variables and the vector function which associates [ξ(T )−
ξ(0)], µ(T ) and ρ(T ) to (λ0, µ0, ρ0)



dξ

dt
= f(u∗2, t), ξ(0) = ξ0,

dθe
dt

= g(u∗2, t, θe), θe(0) = θe,0,

dθc
dt

= k(u∗2, t, θe, θc), θc(0) = θc,0,

dλ

dt
= 0, λ(0) = λ0,

dµ

dt
= − ∂L

∂θe
(u∗2, t, θe, θc)− µ

∂g

∂θe
(u∗2, t, θe)− ρ

∂k

∂θe
(u∗2, t, θe, θc), µ(0) = µ0,

dρ

dt
= − ∂L

∂θc
(u∗2, t, θe, θc)− ρ

∂k

∂θc
(u∗2, t, θe, θc), ρ(0) = ρ0.

Then, the problem is re-cast into finding zeros of this function from R3 into R3. This is
achieved using Newton’s method implemented in the popular fsolve Matlab function.
The solution given by bvp4c (which is not accurate enough, as noted above) is used to
initialize the fsolve algorithm.

Due to the absence of analytical expressions of the cost function and some variables
which are involved in the state dynamics, u∗2 is determined as follows: first, u is discretized
into a finite number of possible values (a grid) satisfying the condition (3.4). Then the
Hamiltonian H2 is evaluated for each value and the one minimizing H2 is taken as an
optimal value for u. From a theoretical viewpoint, this approach is consistent with the
fact that PMP is applicable in the case of discrete input control. However, a good mesh
of possible values must be considered to reach a good level of performance.

Implementing such a method requires special care in the present situation. In partic-
ular, the discrete nature of the set for which the control is sought after makes it quite
risky to rely on automatic finite difference schemes (that are usually very convenient in
other situations) to calculate the Jacobian matrix. If the value of the finite difference
parameter is set too small, the estimated derivatives are simply zero, as no change is seen
in the function. If it is set too high, then the estimate is biased by second-order terms.
For these reasons, the finite difference parameter was carefully tuned.
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4.4 Simplified strategies

Two simplifications are now considered. They are based on simplifying the factors e(.), eCO(.)
and ηCO(.). When the two simplifications are used, one gets back to an OCP covering the
OCP of Chapter 3.

4.4.1 First simplification

The first simplification is to assume that the engine is warm and its temperature θe is
always greater than θh = 80 ◦C. This assumption is equivalent to neglecting the influence
of θe in the case of a cold-start of the engine. This can be formulated as

eCO(θe) = 1, e(θe) = 1.

The cost function, in this case, becomes

J1(u) =

∫ T

0

[(1− α)ch(u, t) + αmCO,h(u, t)(1− ηCO(θc))] dt.

As J1 is independent of θe, only the dynamics of the SOC and θc (two states instead of
three considered earlier) have to be considered in the optimization problem with the final
constraint on the SOC (3.3). In summary, the OCP, denoted by (OCP1), is

(OCP1) min
u∈Uad

J1(u),

under the boundary constraint (3.3), the dynamics (3.2, 4.4) and Uad is defined in equa-
tion (3.4). The control strategy obtained from (OCP1) is denoted by (S1). The Hamilto-
nian H1 associated to (OCP1) is given by

H1(u, t, θc, λ, ρ) = (1− α)ch(u, t) + αmCO,h(u, t)(1− ηCO(θc)) + λf(u, t) + ρk(u, t, θh, θc).

This formula can be derived from the expression of H2 as follows

H1(u, t, θc, λ, ρ) = H2(u, t, θe = θh, θc, λ, µ(t) = 0, ρ).

4.4.2 Second simplification

Another possible simplification is to assume that the catalyst is never activated and its
efficiency ηCO is zero. In this case, the cost function is

J(u) =

∫ T

0

[(1− α)ch(u, t) + αmCO,h(u, t)] dt.

This simplification is equivalent to minimizing the CO emissions out of the engine. On
the other hand, assuming that the catalyst is activated (its efficiency is ηCO = 1) would
lead to a cost function depending only on the fuel consumption rate and no reduction of
pollutant emissions can be considered.

As the fuel consumption and the pollutant emissions are both independent of θc, the
number of state variables is reduced from two to one. Only the dynamics of SOC, given
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by (3.2), has to be considered with the final constraint (3.3). In summary, the OCP,
denoted by (OCP ), is

(OCP ) min
u∈Uad

J(u),

under the boundary constraint (3.3), the dynamics (3.2) and Uad is defined in equa-
tion (3.4). This OCP, in the case α = 0, is equivalent to the OCP described in Chapter 3.
The control strategy obtained from (OCP) is denoted by (S). The Hamiltonian H asso-
ciated to the (OCP ) is given by

H(u, t, λ) = (1− α)ch(u, t) + αmCO,h(u, t) + λf(u, t).

This formula can be derived from the expression of H1 as follows

H(u, t, λ) = H1(u, t, θc = θc,0, λ, ρ(t) = 0).

4.4.3 Heuristics strategies

For completeness, two additional heuristic strategies from the literature are considered.

• The first strategy, noted by (HS2), is a pseudo-solution of the OCP2 where µ(t) ≡
ρ(t) ≡ 0 are imposed in the Hamiltonian H2 (see [55]). The only unknown variable
λ is determined to satisfy the final constraint on ξ.

• The second strategy, noted by (HS1), is the strategy suggested in [57, 58]: the
impact of the engine temperature on the fuel consumption and the CO emissions is
neglected (which is equivalent to assuming that the engine is warm and µ(t) ≡ 0)
and ρ(t) is set to zero in the Hamiltonian H1. The only unknown variable λ is
determined to satisfy the final constraint on ξ.

All these strategies are summarized in Table 4.1. The unknown which must be determined
and the formula synthesizing the control law are detailed. The nature of the solution
(optimal or heuristic) is also reported.

Table 4.1: Control strategies description

Strategy Unknown Control Opt/Heur
(S2) 3 (λ, µ, ρ) u∗2(t) = arg min

u∈Uad
H2(u, t, θe, θc, λ, µ, ρ) Opt.

(S1) 2 (λ, ρ) u∗1(t) = arg min
u∈Uad

H1(u, t, θc, λ, ρ) Opt.
(S) 1 (λ) u∗(t) = arg min

u∈Uad
H(u, t, λ) Opt.

(HS2) 1 (λ) uh2(t) = arg min
u∈Uad

H2(u, t, θe, θc, λ, µ(t) ≡ 0, ρ(t) ≡ 0) Heur.

(HS1) 1 (λ) uh1(t) = arg min
u∈Uad

H1(u, t, θc, λ, ρ(t) ≡ 0) Heur.

4.5 Numerical results
For the comparison between the different strategies, the simulation of the control strategies
are carried out using the full model (3.2, 4.3, 4.4) with cold start conditions.
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4.5.1 System parameters

The engine parameters are listed in Table 4.2. The correction factor e(θe) is given by

e(θe) =

{
−a0θe + b0, θc ≤ θe ≤ θw,
1, θe > θw,

where a0 and b0 are positive constants that have been identified from experimental data.
Similarly, the correction factor eCO(.) is approximated by

eCO(θe) =

{
−a1θe + b1, if θc ≤ θe ≤ θw,
1, if θe > θw,

where a1 and b1 are positive constants. Look-up tables for CO emissions mCO,h and the
exhaust temperature θexh are given in Figures 4.4 and 4.5, respectively. They are derived
from experimental engine tests. The after-treatment system parameters are listed in
Table 4.3.

Table 4.2: Engine parameters

Parameter Value
a0 0.0084 [◦ C]−1

b0 1.59
Ce 105 J/kg
Ge 14.3 s−1

θw 70 ◦C
θc −30 ◦C

Table 4.3: After-treatment system parameters

Parameter Value
a1 0.0126 [◦C]−1

b1 1.8842
Cc 5355 J/kg
Gc 0.30 s−1

θact 200 ◦C
AFRst 14.5
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Figure 4.5: Exhaust temperature map θexh [◦C]

4.5.2 Results

To ease the reading, the engine and the catalyst temperatures trajectories for α = 0.8,
simulated using all the strategies described above, are given in Figures 4.6 and 4.7, re-
spectively. From Figure 4.6, the engine temperature trajectories for the three strategies
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(S2, S1, S) remain close whereas the engine temperature trajectories are little further
from the optimal trajectory when the strategies (HS2, HS1) are employed. Figure 4.7
shows that the optimal control u∗2 improves the catalyst efficiency by warming it up
promptly, which decreases the pollutant emissions out of the catalyst. The price to be
paid for achieving this improvement is increased fuel consumption due to greater use of
the engine.
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Figure 4.6: Histories of simulated engine temper-
ature θe [◦C] obtained from optimal input calcu-
lated for α = 0.8
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Another remark is that the strategies (HS2, HS1) in the first part of the driving cycle
use only the electric machine by discharging the battery. Due to the final constraint on
the SOC for the charge-sustaining operation, these two control strategies are forced to use
the engine in order to bring the final SOC at the end of the driving cycle to its desired
value.

Figure 4.8 details the variation of the fuel consumption as a function of CO emis-
sions for various values of α. For each control strategy, each point is obtained as follows:
the value of α is fixed and the strategies (S2, S1, S, HS2, HS1) are simulated. The
corresponding fuel consumption and CO emissions are presented.

As Figure 4.8 shows it, the five strategies allow the reduction of CO emissions below
1 g/km (which corresponds to the European norm Euro 6 for CO emissions); the main
difference between them lies in the fuel consumption. The solutions corresponding to the
strategies (S2), (S1) and (HS2) agree very close in terms of CO emissions reduction. To
further reduce CO emissions using strategies (S, HS1), the value of α must be increased
(recalling that when α in increased, more importance is given to CO emissions in the cost
function) at the expense of increased fuel consumption.

Note that the decrease of CO emissions is not obtained by deteriorating combustion
efficiency (ignition timing advance) as it is done in common strategies used for conven-
tional vehicles to satisfy the European norm requirements (this solution lowers the engine
performance in order to send more heat to the exhaust). The only degree of freedom used
here is the torque split between the engine and the electric machine.

Figure 4.8 shows that the single state models corresponding to the strategies (S, HS2,
HS1) satisfy the requirements of the European norm Euro 6, but the difference in the fuel
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NEDC

consumption is relatively negligible only for the strategy (S):

• Strategy (HS2) is far from the optimal fuel consumption (the difference is more
than 5%).

• Strategy (HS1) is close to the optimal fuel consumption (sub-optimality is less
than 2%).

• Strategy (S) is better than strategy (HS1) suggested in [57, 58] as it gives a quasi-
optimal fuel consumption compared to the optimal strategy.

Therefore, the single-state strategy (S) is a promising candidate to generate a control
trajectory which satisfies the European norm Euro 6 for the CO emissions, with close-
to-optimal fuel consumption. The simplified model used in this strategy will serve as a
benchmark for finding a suitable real-time energy management strategy. For example, the
ECMS as it is presented in the literature can be used to solve this single-state problem.

The European norms have been evaluated for the NEDC. Similar analysis and ad-
ditional numerical results are given in Appendix C for other four driving cycles. These
numerical results support the suggested simplification for EMS calculation.

4.6 Conclusion

In this chapter, an extension of the energy management problem aiming at minimizing fuel
consumption has been considered to include pollutant emissions reduction. This extension
requires the introduction of the engine and the after-treatment system temperatures. The
corresponding OCP has been solved using the PMP, and the obtained results have been
discussed.
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The complexity of the model used to calculate optimal strategies minimizing a trade-
off between fuel consumption and CO emissions is analyzed. The presented numerical
results show that the single-state model, considering only the SOC dynamics, is actually
sufficient to calculate control trajectories allowing the CO emissions to be reduced with
an acceptable extra-fuel consumption compared to the three-states optimal strategy.

Interestingly, similar conclusions have been made in studies focussed on other objec-
tives in [63, 76], where the authors have quantified the impact of battery temperature
θbat on the EMS, aiming at minimizing a trade-off between fuel consumption and battery
aging [80]. The comparison in [76] of single state (SOC only) vs. two states (SOC + θbat)
solutions has shown that the first solution is sufficient in most cases, the exception being
battery aging minimization.
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Theoretical aspects of model reduction
in optimal control

Aspects théoriques de la réduction de
modèle dans les problèmes de

commande optimale

32



Chapter 5

Perturbation in optimal control under
input constraints

Chapitre 5 Dans ce chapitre, nous discutons quelques résultats généraux sur les pertur-
bations régulières dans les problèmes de contrôle optimal sous contrainte de commande
suite aux études sur la gestion de l’énergie décrites dans le chapitre 4. L’objectif était de
quantifier l’apport de la prise en compte des températures (du moteur et du système de
post-traitement) dans la minimisation de la consommation de carburant et les émissions
polluantes. En se basant sur les résultats présentés dans [45], l’effet de la température
du moteur peut être ignorée de ce problème. Le résultat général établi dans ce chapitre
explique ces observations numériques. Plus précisément, les perturbations du grandeur ε
apparaissant dans le coût et la dynamique conduisent à une sous-optimalité d’ordre O(ε2)
sur le coût optimal.
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Following our studies on the energy management system described in Chapter 4, we
develop here some general results on the topic of perturbation in optimal control prob-
lems. Earlier, we have quantified the benefit of taking engine and after-treatment system
temperatures into account in the minimization of fuel consumption and pollutant emis-
sions. Based on simulation results presented in [45], it seems that the engine temperature
state could be ignored from this problem. Similar observations were given in [87, 88]. Our
own investigations in Chapter 4 also concur. The general result based on regular pertur-
bation established in this chapter explains and support these numerical observations. It
states that, even in input-constraint cases, perturbation of magnitude ε in the problem
definition gives an O(ε2) difference in optimal cost value.

Prior to establishing a general result, we first recall the state of the art about regu-
lar perturbations in optimal control. Then, a problem is formulated and the theoretical
contributions are discussed. Finally, three illustrative examples are presented.

5.1 State of the art
From theoretical and numerical viewpoints, the number of state variables and the oc-
currence of constraints greatly affect the resolution of OCP. This observation holds for
all methods, from dynamic programming [9], PMP based methods [68, 70], or direct for-
mulations (e.g. collocation methods) [34]. The presence of modeling uncertainties adds
another level of difficulty in the design of optimal controllers from the robustness view-
point. Such uncertainty arises when some aspects of the system model are not completely
known and/or when physical phenomena are neglected for reasons of simplification. One
of the methods used to study the impact of modeling uncertainties on optimal solutions
is perturbation theory.

Perturbations are mainly classified into two types: singular and regular. Only the
latter type is discussed in this chapter. Parameter variation in regular perturbation does
not produce a change of the model structure, nor its dimension.

It has been shown in [7, 23] (and references therein) how, under certain assumptions,
perturbation terms appearing in the dynamics and the cost of an unconstrained OCP
affect the optimality of the solution and the state trajectories. More precisely, if the
error in the right hand-side of the dynamics and the cost function between the nominal
model (which is generally used to calculate an optimal control) and the perturbed model
(considered to represent the real system) are of magnitude ε, then the error in the optimal
state trajectories and the control is bounded by a linear function in ε. As a consequence,
the induced sub-optimality in the cost is bounded by a quadratic function (Kε2). The
proposed results in [7, 23] are concerned only with the existence of K1.

1Interestingly, in the case of singular perturbation, the same question has been investigated in [7, 23,
89].
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In real situations, however, most OCPs have to include input and also very often state
constraints (which we leave out of the discussion). Several recent works have proposed
to deal with these constraints by means of unconstrained representation of the variables,
for example by saturation functions [30, 31, 32] or by using a method based on interior
penalties [47, 48, 49].

In this chapter, the proposed method is grounded on the results of Bensoussan [7]
about the robustness of cost, control and state with respect to model errors, and the
results of [47] which shows how to solve an OCP under constraints as a sequence of
problems without constraints. We combine the two approaches and we show that, here
also, the error in the cost function is bounded by Kε2 [46]. A secondary but important
objective in this chapter is to (at least roughly) estimate the value of K as a function of
the system parameters. Once K is estimated, its value can be used as a tool to analyze
the cost of the simplifying the original OCP.

5.2 Problem formulation and main result

Consider the OCP

min
u

[
Jε(u) =

∫ T

0

Lε(x, u)dt

]
, (5.1)

where Lε is C1, T is a fixed parameter, ε ∈ [0, 1] is a parameter scaling the error terms
(perturbation) in the cost function and the state dynamics in (5.2), and x ∈ Rn and
u ∈ Rm are the state and the control variables of the following nonlinear dynamics with
prescribed initial conditions X0

dx

dt
= fε(x, u), x(0) = X0. (5.2)

The control u is constrained to belong to the set Uad ⊂ L∞[0, T ] of the functions of the
form

umin ≤ u(t) ≤ umax, a.e. t ∈ [0, T ]. (5.3)

This study can be extended to the case of a cost Jε(.) with a terminal cost function. For
convenience, the notation σ , [x, u] is used. For a variable X, ∂zX indicates the partial
derivative of X with respect to z, z = x, u.

Assumption 1 (Model disturbances) The functions Lε and fε are affine in ε,

Lε(σ) , L0(σ) + εL1(σ), fε(σ) , f0(σ) + εf1(σ),

where f0 and L0 are of class C1 and L1, f1 and their first and second derivatives are
assumed to be bounded.

The choice of affine functions in ε is not restrictive and the presented results can be
extended to more general formulations.

Assumption 2 (Existence and Uniqueness) The optimal control problem (5.1) for
any ε ≥ 0 is supposed to possess a unique solution. u∗ε denotes the corresponding optimal
control and xε the corresponding solution of the differential equation (5.2) for u = u∗ε.
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The objective of the study conducted here is to quantify the induced sub-optimality in the
cost (5.1) for ε > 0 by using the nominal control strategy calculated for ε = 0. For this
and following the interior penalty approach [48, 49], a penalty function P (u) is introduced
into the cost. This function is defined on ]umin, umax[. It satisfies the following conditions:

• the function P (.) is continuously differentiable, strictly convex, and non-decreasing,

• the penalty P (.) grows unbounded as its argument reaches either umin or umax.

This penalty function is used to define a penalized, constraints-free OCP,

min
u∈L∞[0,T ]

[
Jrε (u) =

∫ T

0

[Lε(σ) + rP (u)]dt

]
, r > 0. (5.4)

This approach is very general, see [11] and references therein. As was shown in [27,
48, 49], when r goes to zero, under certain assumptions, the optimal value of the modified
cost (5.4) converges to the optimal cost of (5.1) under input constraints and the penalty
term rP (u) goes to zero. The main advantage of this method is that, for each value of
the weight r, the solution of OCP (5.4) is determined from simple stationarity conditions.

The first step is to establish relationships between the solution of the optimization
problem (5.4) for ε = 0 and for ε > 0 under Assumptions 1 and 2. To do this, the
stationarity conditions of the penalized problems are formulated.

5.2.1 Stationarity condition for the penalized nominal problem

The nominal problem is obtained for ε = 0. Using the PMP, the following TPBVP is
considered.

ẋr0 = f0(σr0), xr0(0) = X0,

−ṗrT0 = ∂xL0(σr0) + prT0 ∂xf0(σr0), prT0 (T ) = 0, (5.5)
∂uL0(σr0) + r∂uP (ur0) + prT0 ∂uf0(σr0) = 0, (5.6)

where pr0 is the adjoint state associated to xr0, and ur0 is the optimal control. The Hamil-
tonian associated to this problem is

Hr
0(σ, p) = L0(σ) + pTf0(σ) + rP (u).

5.2.2 Stationarity condition for the penalized perturbed problem

In the case ε > 0, the TPBVP is given by

ẋrε = fε(σ
r
ε), x

r
ε(0) = X0,

−ṗrTε = ∂xLε(σ
r
ε) + prTε ∂xfε(σ

r
ε), p

rT
ε (T ) = 0,

∂uLε(σ
r
ε) + r∂uP (urε) + prTε ∂ufε(σ

r
ε) = 0,

where prε is the adjoint state associated to xrε. For a given control urε, the first two lines
of the TPBVP are independent of the penalty P (.). The Hamiltonian associated to this
problem is

Hr
ε (σ, p) = Lε(σ) + pTfε(σ) + rP (u),
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which can be written as an affine function of ε as follows

Hr
ε (σ, p) = Hr

0(σ, p) + εH1(σ, p), (5.7)

where H1(σ, p) = L1(σ) + pTf1(σ) is independent of the penalty function.

Assumption 3 (Convexity Condition) Assume that ∃β > 0 such that{
∂uuH

r
0(σ, pr0) ≥ βI uniformly in σ,

(∂xxH
r
0 − ∂xuHr

0 [∂uuH
r
0 ]−1∂uxH

r
0)(σ, pr0) ≥ 0 uniformly in σ.

These inequalities are known in the calculus of variations as convexity conditions
or strengthened Legendre-Clebsch conditions [14]. If β ≥ 0, the inequalities are called
Legendre-Clebsch conditions and they represent second-order necessary conditions for
optimality. The strengthened Legendre-Clebsch conditions, in contrast to the Legendre-
Clebsch conditions, are not necessary.

Denote for any x, u, xrε and urε,

w , [σ p], δxr = x− xr0, δur = u− ur0, δσr = σ − σr0,

δxrε = xrε − xr0, δuε = urε − ur0, δσrε = σrε − σr0.

5.2.3 Main result

The induced sub-optimality is defined as

∆J = Jε(u
∗
0)− Jε(u∗ε).

Theorem 1 (Main Result) There exists a positive constantK such that the sub-optimality
of u∗0 is upper bounded under the form

∆J , Jε(u
∗
0)− Jε(u∗ε) ≤ Kε2 ∀ε ∈ [0, 1]. (5.8)

5.3 Preliminary results
The proof of Theorem 1 relies on elements of proof found in [7]. In order to estimate an
upper bound on ∆J , the two results given in Propositions 2 and 4 are used. These two
general results are based on Taylor expansion and differential calculation. The first step
toward the estimation of an upper bound on ∆J is to write the cost function Jrε (.) in the
following form.

Proposition 2 (Second Order Expansion) For any control u, Jrε (u) can be written

Jrε (u) =

∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt+ ε

∫ T

0

[
N0(t) · δur +N1(t) · δxr

]
dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH
r
ε (σr0 + λµδσr, pr0)(δσr)2dλdµdt, (5.9)

where
N0(t) , ∂uH1(σr0, p

r
0), N1(t) , ∂xH1(σr0, p

r
0). (5.10)
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As the term
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt depends only on the nominal trajectories, it

can be seen as a constant term. The second term
∫ T

0
[N0(t)δur +N1(t)δxr] dt represents

the first-order variation of the cost due to the state and control trajectories variation.
Proof The proof is based on Taylor expansion combined with stationarity conditions.
Details are given in Appendix D.1.

For a given r, ξr0 ts the solution of the differential equation (5.2) for the control ur0:

dξr0
dt

= fε(ξ
r
0, u

r
0), ξr0(0) = x0(0), (5.11)

while xr0 satisfies
dxr0
dt

= f0(xr0, u
r
0), xr0(0) = x0(0). (5.12)

The two trajectories of ξr0(t) and xr0(t) have the same control input ur0 and the same initial
conditions. The following proposition gives an upper bound on ‖ξr0(t)− xr0(t)‖.

Proposition 3 Consider (5.11) and (5.12), the error ‖ξr0(t)− xr0(t)‖ satisfies

‖ξr0(t)− xr0(t)‖ ≤ F1q(t)ε, (5.13)

where

F1 = sup
t∈[0,T ]

‖f1(σr0(t))‖, q(t) =
1

Γ
(eΓt − 1). (5.14)

and Γ is the Lipschitz constant of fε.

Proof The proof is given in Appendix D.2.
The second step in calculating an upper bound ∆J is to estimate the error in the state

trajectories due to the control input variation and perturbation in the dynamics. This
estimation is summarized in the following proposition.

Proposition 4 There exist positive constants (α3, α4) and time functions (α1, α2)such
that

‖δxrε(t)‖
2 ≤ α1(t)

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α2(t)F 2
1 ε

2, (5.15)∫ T

0

‖δurε(t)‖
2 dt ≤ α3

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α4F
2
1 ε

2, (5.16)

where the variable z defined by

z(λ, µ, t) = δurε + [∂uuH
r
0(.)]−1∂uxH

r
0(.)δxrε (5.17)

is well defined because ∂uuHr
0(.) is assumed to be positive definite from Assumption 3.

Proof The proof is based on first order expansion of the system given the dynamics of
δxrε. Details are given in Appendix D.3.
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5.4 Proof of the Main Result
In contrast to the results presented in Section 5.3 which are general, the propositions
presented in this section are specific to the suggested method to calculate the parameterK.
To prove the main result, we need the following intermediate upper bounds on xrε(t)−xr0(t)
and urε(s)− ur0(s) for a fixed value of r.

Lemma 1 There exist positive constants cx and cu independent of rP (.), such that

|xrε(t)− xr0(t)|2 ≤ c2
xε

2, (5.18)∫ T

0

|urε(s)− ur0(s)|2 ds ≤ c2
uε

2. (5.19)

The proof of this lemma is divided into two parts, each of which is summarized in a
proposition. The proof is organized as follows:

1. First, an upper bound on M0 defined by

M0 , Jrε (ur0)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt, (5.20)

is calculated. This upper bound is given in Proposition 5.

2. An upper bound on R defined by

R ,
∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt, (5.21)

is given in Proposition 6 where the inequalities (5.18, 5.19) will be derived.

5.4.1 Upper bound on M0

An upper bound on M0 is calculated in the following proposition.

Proposition 5 There exist positive constants c0 and c1 such that

|Jrε (ur0)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt| ≤ (c0F

2
1 + c1)ε2. (5.22)

These are

c0 =
1

2
( sup
t∈[0,T ]

∂xxH
r
0(.) +m)

∫ T

0

q2(t)dt+
1

2
sup
t∈[0,T ]

∂xxH1(.)

∫ T

0

q2(t)dt,

c1 =
1

2m

∫ T

0

k2
1(t)dt,

where m is a positive constant, q is given in (5.14) and k1 is an upper bound on N1(t)
defined in (5.10). In particular, the upper bound in (5.22) is independent of rP (.).

Proof The proof is based on the second-order expansion given in Proposition 2. The
upper bound in (5.22) is independent of the penalty, as the input constraints are satisfied.
Note that this remark would not be true in the presence of state constraints where the
perturbation in the dynamics may lead to the violation of the state constraints. Details
of the proof are given in Appendix D.4.
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5.4.2 Upper bound on R

The following proposition gives an upper bound on R. The proof is based on Proposition 2.

Proposition 6 There exists a constant c2 such that

R ≤ c2ε
2,

where c2 is independent of the penalty rP (.).

Proof Essentially, the proof is based on the decomposition suggested in Proposition 2
and the convexity conditions given in Assumption 3. The variable z defined in (5.17) will
be helpful as it allows the manipulation of diagonal quadratic forms. Details of the proof
are given in Appendix D.5.

5.4.3 Upper bound on ∆J

The final step is to find an upper bound of Jrε (ur0)− Jrε (urε).

Proposition 7 There exists a constant K such that

Jrε (ur0)− Jrε (urε) ≤ Kε2.

Proof The upper bound on ∆J is a consequence of the upper bounds on δxrε, δurε and R
given in (5.18, 5.19, D.20) respectively. The term Jrε (urε)− Jrε (ur0) can be written

Jrε (urε)− Jrε (ur0) = Jrε (urε)−
∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt− Jrε (ur0) +

∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt,

that is

Jrε (ur0)− Jrε (urε) ≤
∣∣∣∣Jrε (urε)−

∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt

∣∣∣∣+

∣∣∣∣Jrε (ur0)−
∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt

∣∣∣∣ ,
≤ |M1|+ |M0| ,

where M1 is given by

M1 = Jrε (urε)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt.

The upper bound on M0 is given in (5.22). M1 can be written using Proposition 2

M1 = ε

∫ T

0

[
N0δurε +N1δxrε

]
dt+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH
r
0(σr0 + λµδσrε , p

r
0)(δσrε)

2dλdµdt

+ε

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH1(σr0 + λµδσrε , p
r
0)(δσrε)

2dλdµdt.

An upper bound on M1 can be written as

M1 ≤
∫ T

0

[
ε2

2m

{
(N0(t))2 + (N1(t))2

}
+
m

2

{
‖δxrε‖

2 + ‖δurε‖
2}] dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ
[
zT∂uuH

r
0(.)z + δxrTε

[
∂xxH

r
0 − ∂xuHr

0 [∂uuH
r
0 ]−1∂uxH

r
0

]
(.)δxrε

]
dt

+ε

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH1(σr0 + λµδσrε , p
r
0)(δσrε)

2dλdµdt.
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By using equations (5.18, 5.19, D.20), the upper bound on M1 is given by

M1 ≤ c3(r)ε2,

where

c3(r) =

∫ T

0

[
1

2m
(k2

1(t) + k2
1(t)) +

m

2
c2
x(t)

]
dt+

m

2
c2
u

+
1

2
sup
s∈[0,T ]

‖∂σσH1(.)‖
[
F 2

1 (α4 + d2) + (α3 + d1)c2

]
+ sup

s∈[0,T ]

‖∂uuHr
0(.)‖ c2

+ sup
s∈[0,T ]

∥∥∂xxHr
0 − ∂xuHr

0 [∂uuH
r
0 ]−1∂uxH

r
0

∥∥∫ T

0

c2
x(t)dt.

The upper bound on ∆J is of the form

Jrε (ur0)− Jrε (urε) ≤ (c0F
2
1 + c1)ε2 + min

[
c3(r), (c0F

2
1 + c1)

]
ε2 = Kε2.

As (c0F
2
1 + c1)ε2 is independent of rP (.) and the input constraints are always satisfied

when r goes to zero, the upper bound on Jrε (ur0)−Jrε (urε) is finite and its limit is indepen-
dent of rP (.). As the penalized cost Jrε converges to the optimal value of Jε under input
constraint when r goes to zero (see [27, 47]), there exist a constant K such that

Jε(u0)− Jε(uε) ≤ Kε2.

The perturbation does not affect the satisfaction of the control constraint, as the latter
are independent of the state trajectories. Again, this remark would not be true in the
presence of state constraints, since the perturbations affect the state trajectories and
may jeopardize satisfying the state constraints. In the presence of state constraints, the
approach is different and the parameter r can not go to zero. This concludes the proof.

5.5 Estimation of the error factor K
The purpose of the main result, i.e. Theorem 1, is to quantify the sub-optimality induced
by modeling errors in the presence of control constraints. This objective can be achieved
by estimating the value of K. This estimation is carried out in five steps:

1. Step 1: Calculate the nominal trajectories (state, adjoint state and the nominal
control) for ε = 0. This step can be done using the PMP.

2. Step 2: Estimate the coefficients (α1, α2, α3, α4) giving the upper bounds on the
state and the control trajectories

‖δxrε(t)‖
2 ≤ α1(t)

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α2(t)F 2
1 ε

2,∫ T

0

‖δurε(t)‖
2 dt ≤ α3

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α4F
2
1 ε

2,

where F1 is the maximum error in the state dynamics, z is defined in (5.17). This
estimation can be achieved using the Lipschitz property (in accordance with Ap-
pendix D.3) or the first order expansion of the system given the dynamics of δxrε(t).
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3. Step 3: Estimate an upper bound on M0 given by

|M0| ≤ (c0F
2
1 + c1)ε2,

c0 =
1

2
( sup
t∈[0,T ]

∂xxH
r
0(.) +m)

∫ T

0

q2(t)dt+
1

2
sup
t∈[0,T ]

∂xxH1(.)

∫ T

0

q2(t)dt,

c1 =
1

2m

∫ T

0

k2
1(t)dt,

where m is a positive constant (whose value will be calculated below) and q is given
in (5.14).

4. Step 4: Estimate the upper bound on R given by

R ≤ 2

β

(
s2aF

2
1 + s2b

)
ε2 = c2ε

2,

where

s2a = c0 +

[
m

2
− 1

2
sup
s∈[0,T ]

‖∂σσH1(.)‖

]
(α4 +

∫ T

0

α2(s)ds),

s2b = c1 +
1

2m

∫ T

0

(k2
2(t) + k2

1(t))dt,

and m is given by

m =

√√√√√ β

α3 +

∫ T

0

α1(s)ds

.

The upper bound on δxε and δuε become of the form

‖δxrε(t)‖
2 ≤

[
2

β
α1(t)

(
s2aF

2
1 + s2b

)
+ α2(t)F 2

1

]
ε2 = c2

x(t)ε
2,∫ T

0

‖δurε(t)‖
2 dt ≤

[
2

β
α3

(
s2aF

2
1 + s2b

)
+ α4F

2
1

]
ε2 = c2

uε
2.

5. Step 5: Estimate the upper bound on ∆J of the form Kε2 where

K = c0F
2
1 + c1 + min

[
c3, c0F

2
1 + c1

]
,

c3 =

∫ T

0

[
1

2m
(k2

1(t) + k2
1(t)) +

m

2
c2
x(t)

]
dt+

m

2
c2
u

+
1

2
sup
s∈[0,T ]

‖∂σσH1(.)‖
[
F 2

1

(
α4 +

∫ T

0

α2(s)ds

)
+

(
α3 +

∫ T

0

α1(s)ds

)
c2

]
+ sup

s∈[0,T ]

∥∥∂uuH0
0 (.)
∥∥ c2 + sup

s∈[0,T ]

∥∥∂xxH0
0 − ∂xuH0

0 [∂uuH
0
0 ]−1∂uxH

0
0

∥∥∫ T

0

c2
x(t)dt.

The obtained upper bound on ∆J will be conservative. The inequalities used in the
calculation of K can be improved and better results for K can be obtained on a case-by-
case basis.
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5.6 Illustrative examples
Three illustrative examples are considered: (i) a linear quadratic control problem with
input constraints, (ii) a toy nonlinear control problem and (iii) an eco-driving control
problem which is more relevant in the context of the thesis. The parameter K is estimated
for each example and its value is compared to the real value calculated from the numerical
solutions of the nominal and the perturbed problems. The following notations are used:

• The nominal state and costate trajectories for ε = 0: (y1, y2, λ1, λ2).

• The solutions of the dynamics equations for the nominal control u = u0 and for
ε > 0: (x1, x2).

• The optimal state and costate trajectories for ε > 0: (x∗1, x∗2, λ∗1, λ∗2).

• The error in the state and the control trajectories δX1 = x1 − y1, δX2 = x2 −
y2, δx1 = x∗1 − y1, δx2 = x∗2 − y2, δu = uε − u0.

5.6.1 Linear quadratic (LQ) problem

Consider the following linear quadratic problem

Jε(u) =
1

2

∫ T

0

((1 +
ε

3
)u2 + x2

1)dt,

where x1, x2 and u are the state and the control variables of the following linear system

ẋ1 = x2 −
ε

12
x1, x1(0) = 4,

ẋ2 = −(1− ε

10
)x2 + u, x2(0) = 4.

The parameter εmodels the uncertainties (parameters variation) in the model (ε ∈ [0, 1]).
The control u is constrained to belong to the set Uad defined by

umin ≤ u(t) ≤ umax.

The Hamiltonian Hε associated to this OCP is given by

Hε(x1, x2, u, λ1, λ2) = H0(x1, x2, u, λ1, λ2) + ε(−λ1

12
x1 +

λ2

10
x2 +

u2

6
),

where H0 is the Hamiltonian associated to the nominal problem (ε = 0), and is given by

H0(x1, x2, u, λ1, λ2) =
1

2
(u2 + x2

1) + λ1x2 + λ2(−x2 + u).

5.6.1.1 Upper bounds on δXi

The dynamics of δX1 and δX2 are given by

d(δX1)

dt
= δX2 −

ε

12
δX1 −

ε

12
y1, δX1(0) = 0,

d(δX2)

dt
= −(1− ε

10
)δX2 +

ε

10
y2, δX2(0) = 0.

43



5.6. ILLUSTRATIVE EXAMPLES

The transition matrix Φ of this linear system is given by

Φ(t, τ, ε) =

[
Φ11(t, τ, ε) Φ12(t, τ, ε)

Φ21(t, τ, ε) Φ22(t, τ, ε)

]
=

[
e−

ε
12

(t−τ) 60e(
ε
10−1)(t−τ)−60e−

ε
12 (t−τ)

11ε−60

0 e( ε
10
−1)(t−τ)

]
. (5.23)

By using (5.23), δX1 and δX2 can be bounded as follows

‖δX1(t)‖ ≤ ε

∣∣∣∣∫ t

0

[
− 1

12
y1(τ)Φ11(t, τ, 0) +

1

10
y2(τ)Φ12(t, τ, 0)

]
dτ

∣∣∣∣ ,
‖δX2(t)‖ ≤ ε

∣∣∣∣∫ t

0

1

10
y2(τ)Φ22(t, τ, 1)dτ

∣∣∣∣ .
The two upper bounds on δX1 and δX2, which depend only on the nominal trajectories,
are of the form

‖δX1(t)‖ ≤ εα21(t), ‖δX2(t)‖ ≤ εα22(t),

where

α21(t) =

∣∣∣∣∫ t

0

[
−y1(τ)

12
+
y2(τ)

10
Φ12(t, τ, 0)

]
dτ

∣∣∣∣ , α22(t) =

∣∣∣∣∫ t

0

y2(τ)

10
Φ22(t, τ, 1)dτ

∣∣∣∣ .
Note that α21 and α22 depend only on the nominal trajectories. They are calculated
numerically.

5.6.1.2 Upper bounds on δxi

The dynamics of δx1 and δx2 are given by

d(δx1)

dt
= δx2 −

ε

12
δx1 −

ε

12
y1, δx1(0) = 0,

d(δx2)

dt
= −(1− ε

10
)δx2 + δu+

ε

10
y2, δx2(0) = 0.

By using the transition matrix Φ(t, τ, ε) given in (5.23), this differential system is solved as

δx1(t) =

∫ t

0

Φ12(t, τ, ε)δu(τ)dτ + ε

∫ t

0

[
− 1

12
y1(τ)Φ11(t, τ, ε) +

1

10
y2(τ)Φ12(t, τ, ε)

]
dτ,

δx2(t) =

∫ t

0

Φ22(t, τ, ε)δu(τ)dτ + ε

∫ t

0

1

10
y2(τ)Φ22(t, τ, ε)dτ.

From Cauchy-Schwarz inequality, the upper bounds on δx1(t) and δx2(t) are of the form

|δx1(t)| ≤

√∫ t

0

Φ2
12(t, τ, 0)dτ

√∫ t

0

δu2(τ)dτ + εα21(t) = α11(t)

√∫ t

0

δu2(τ)dτ + εα21(t),

|δx2(t)| ≤

√∫ t

0

Φ2
22(t, τ, 1)dτ

√∫ t

0

δu2(τ)dτ + εα22(t) = α12(t)

√∫ t

0

δu2(τ)dτ + εα22(t).

The upper bounds on δx1(t) and δx2(t) can be written as

|δx1(t)| ≤ α11(t)
√
R + εα21(t),
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|δx2(t)| ≤ α12(t)
√
R + εα22(t),

where

α11(t) =

√∫ t

0

Φ2
12(t, τ, 0)dτ , α12(t) =

√∫ t

0

Φ2
22(t, τ, 1)dτ ,

R =

∫ T

0

δu2(τ)dτ, M =

∫ T

0

[Hε(y1, y2, u0, λ1, λ2)− λ1ẏ1 − λ2ẏ2] dt.

In the expressions of α11 and α12, the stability of the system (eigenvalues properties) is
used to obtain upper bounds independent of ε and T .

5.6.1.3 Upper bound on R

From Proposition 2, J(u0) can be written in the form

Jε(u0) = M + ε

∫ T

0

[N1(t)δX1(t) +N2(t)δX2(t)] dt+
1

2

∫ T

0

δX2
1dt,

where N1(t) =
−λ1(t)

12
and N2(t) =

λ2(t)

10
and an upper bound on |Jε(u0)−M | is of the

form

|Jε(u0)−M | ≤ ε2

∫ T

0

[
α2

21(t)

2
+

∣∣∣∣−λ1(t)

12
α21(t) +

λ2(t)

10
α22(t)

∣∣∣∣] dt = cε2,

where c is given by

c =

∫ T

0

[
α2

21(t)

2
+

∣∣∣∣−λ1(t)

12
α21(t) +

λ2(t)

10
α22(t)

∣∣∣∣] dt.
In this upper bound, c depends only on the nominal trajectories. In the same spirit, and
by using Proposition 2, J(uε) can be written in the form

Jε(uε) = M+ε

∫ T

0

[N1(t)δx1(t) +N2(t)δx2(t) +N0(t)δu] dt+
1

2

∫ T

0

(δx2
1 +(1+

ε

3
)δu2)dt,

(5.24)
where N0 =

u0

3
. As uε is the optimal control, and from (5.24), we derive

cε2 ≥ ε

∫ T

0

[N1(t)δx1(t) +N2(t)δx2(t) +N0(t)δu] dt+
1

2

∫ T

0

(δx2
1 + (1 +

ε

3
)δu2)dt.

By using the decomposition xy ≥ − x2

2m
− m

2
y2, this inequality can be written

cε2 ≥ − ε2

2m

∫ T

0

[
N2

1 (t) +N2
2 (t) +N2

0 (t)
]
dt− m

2

∫ T

0

[
δx2

1(t) + δx2
2(t) + δu2(t)

]
dt

+
1

2

∫ T

0

(δx2
1 + (1 +

ε

3
)δu2)dt,

yielding

1

2

∫ T

0

((1+
ε

3
)δu2+(1−m)δx2

1−mδx2
2−mδu2)dt ≤ cε2+

ε2

2m

∫ T

0

[
N2

1 (t) +N2
2 (t) +N2

0 (t)
]
dt.

(5.25)
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By using the upper bounds on δx1 and δx2, inequality (5.25) becomes of the form

1

2

(
1 +

ε

3
+ 2(1−m)

∫ T

0

α2
11(t)dt− 2m

∫ T

0

α2
12(t)dt−m

)
R

≤ ε2

∫ T

0

[
(m− 1)α2

21(t) +mα2
22(t)

]
dt+ cε2 +

ε2

2m

∫ T

0

[
N2

1 (t) +N2
2 (t) +N2

0 (t)
]
dt,

where m > 0 is chosen such that

1 + 2(1−m)

∫ T

0

α2
11(t)dt− 2m

∫ T

0

α2
12(t)dt−m =

1 + 2
∫ T

0
α2

11(t)dt

2
.

The upper bound on R is then of the form

R ≤ 2
cε2 + ε2

2m

∫ T
0

[N2
1 (t) +N2

2 (t) +N2
0 (t)] dt+ ε2

∫ T
0

[(m− 1)α2
21(t) +mα2

22(t)] dt

1 + 2(1−m)
∫ T

0
α2

11(t)dt− 2m
∫ T

0
α2

12(t)dt−m+ ε
3

,

As ε ≥ 0, the upper bound on R becomes

R ≤ 2
cε2 + ε2

2m

∫ T
0

[N2
1 (t) +N2

2 (t) +N2
0 (t)] dt+ ε2

∫ T
0

[(m− 1)α2
21(t) +mα2

22(t)] dt

1 + 2(1−m)
∫ T

0
α2

11(t)dt− 2m
∫ T

0
α2

12(t)dt−m
, c1ε

2,

and the upper bounds on δx1(t) and δx2(t) become

|δx1(t)| ≤ (α11(t)
√
c1 + α21(t)) ε , cx1(t)ε,

|δx2(t)| ≤ (α12(t)
√
c1 + α22(t)) ε , cx2(t)ε.

5.6.1.4 Upper bound on ∆J

The last step is to find an upper bound on ∆J = Jε(u0) − Jε(uε) > 0. For this, ∆J can
be written

∆J = Jε(u0)− Jε(uε) ≤ |Jε(u0)−M |︸ ︷︷ ︸
≤cε2

+ |Jε(uε)−M | .

From (5.24) and by using the state upper bounds, we can write

|Jε(uε)−M | =

∣∣∣∣ε∫ T

0

[N1(t)δx1(t) +N2(t)δx2(t) +N0(t)δu(t)] dt+
1

2

∫ T

0

δx2
1dt

+
1

2

∫ T

0

(1 +
ε

3
)δu2dt

∣∣∣∣ ,
≤

∫ T

0

[
ε2N1(t)cx1(t) + ε2N2(t)cx2(t) +

ε2

2m1

N2
0 (t)

]
dt+

ε2

2

∫ T

0

c2
x1(t)dt

+
1

2
(m1 + 1 +

ε

3
)c1ε

2,

where m1 is chosen such that

m1 =

√∫ T
0
N2

0 (t)dt

c1

.

46



CHAPTER 5. PERTURBATION IN OPTIMAL CONTROL UNDER INPUT
CONSTRAINTS

Finally, the upper bound on ∆J is Kε2 where

K =

∫ T

0

[N1(t)cx1(t) +N2(t)cx2(t) +
1

2m1

N2
0 (t) +

1

2
c2
x1(t)]dt+

1

2
(m1 +

4

3
)c1 + c. (5.26)

The parameter K depends only on the nominal trajectories for ε = 0 and the upper
bounds on (δu, δx1, δx2). The expression of K is similar to the expression given in
Section (5.5). The difference is in the estimation of the error on the state trajectories: in
the general expression, we have used the Lipschitz constant and here we use the transition
matrix of the system describing the dynamics of the error on the state trajectories. The
obtained value will be less conservative than the general expression in Section (5.5).

5.6.1.5 Numerical evaluation

The problem parameters are given in Table 5.1. The two TPBVPs associated to the
nominal and the perturbed problems are solved for ε ∈ [0, 1] using Matlab routine
bvp4c [82]. The error in the cost function given by ∆J = Jε(u0) − Jε(uε) is evaluated
numerically.

Table 5.1: LQ problem parameters

Parameter umax umin T
Value 1.7 -1.7 10

The numerical comparison between ∆J (calculated numerically) and Kε2/15 (esti-
mated using the expression (5.26)) as functions of ε, is shown in Figure 5.1. The upper
bound Kε2/15 gives a good estimation of the error in the cost when ε is less than 0.6.
Otherwise, the estimate is higher than its real value.
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Figure 5.1: Kε2 for LQ problem
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Figure 5.2: Relative error in the optimal cost

The ratio (approx 15) between ∆J and Kε2 is due to the conservatism of the cal-
culation method: inequalities manipulation and problem assumptions (global convexity
condition in Assumption 3). Additionally, the error in the state (δx1, δx2) and the control
variable δu are estimated only from the solution of the nominal problem and they are not
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Figure 5.3: State trajectories (left) and optimal controls (right) for ε = 1 in LQ case

exactly calculated. Their estimations are higher than their real values which will lead to
a higher value of K, compared to the real error in the cost ∆J .

The state trajectories determined by using u0 and u1 (for ε = 1) and the control
trajectories are given in the plots of Figure 5.3. These figures show that the perturbation
affects the state and the control trajectories.

5.6.2 Nonlinear (NL) problem

Consider the following quadratic cost function

Jε(u) =

∫ T

0

(
0.3u2 + 5(1 +

ε

4
)x2

1

)
dt,

where x1, x2 and u are the state and the control variables of the following system

ẋ1 = (1 +
ε

5
)x1 − x1x2, x1(0) = 4,

ẋ2 = −x2 +
1

10
(1 +

ε

4
)u, x2(0) = 5.

The parameter ε models parameters variation in the model (ε ∈ [0, 1]). The control u is
constrained to belong to the set defined by

umin ≤ u(t) ≤ umax.

The Hamiltonian Hε associated to this OCP is given by

Hε(x1, x2, u, λ1, λ2) = 0.3u2 + 5(1 +
ε

4
)x2

1 + λ1((1 +
ε

5
)x1− x1x2) + λ2(−x2 +

1

10
(1 +

ε

4
)u),

where λ1 and λ2 are the adjoint state associated to x1 and x2 respectively. The Hamilto-
nian Hε can be written as an affine function of ε

Hε(x1, x2, u, λ1, λ2) = H0(x1, x2, u, λ1, λ2) + ε(
5

4
x2

1 +
λ1x1

5
+

1

40
λ2u).
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The term H0 is the Hamiltonian associated to the nominal problem (for ε = 0), and it is
given by

H0(x1, x2, u, λ1, λ2) = 0.3u2 + 5x2
1 + λ1(x1 − x1x2) + λ2(−x2 +

1

10
u).

The details of the calculation of K are given in Appendix E.1.

5.6.2.1 Numerical evaluation

The problem parameters are given in Table 5.2. The two TPBVPs associated to the
nominal and the perturbed problems are solved for ε ∈ [0, 1] and ∆J has been evaluated
numerically.

Table 5.2: Nonlinear problem parameters

Parameter umax umin T
Value 7.5 -7.5 10

The numerical comparison between ∆J and Kε2/19.8 (estimated numerically from
equation (E.4)) as functions of ε is given in Figure 5.4. The upper bound Kε2/19.8
estimate well the error in the cost.
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Figure 5.4: Kε2 for the NL problem

The state trajectories obtained using u0 and uε for different values of ε and the control
trajectories are given in Figures 5.5.

5.6.3 Eco-driving problem

The aim of this problem ("eco-driving" problem) is to find a control strategy that mini-
mizes the power consumption of the vehicle within the constraints that the vehicle must
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Figure 5.5: State trajectories (left) and optimal controls (right) for ε = 1 for the NL problem

reach a destination point at a distance D in a given time T , with a zero velocity, starting
from a given point at rest. This yields the formulation of the following OCP [78].

(OCP )



min
u
J(u) =

∫ T

0

(b1ux1 + b2u
2)dt+

1

2
β(x2(T )−D)2,

ẋ1 = h1u− h0,

ẋ2 = x1,

x1(0) = x1(T ) = 0,

x2(0) = 0,

(5.27)

where x1 is the vehicle speed, x2 is the vehicle position, and the parameters bi and hi are
constants. The objective is to study the effect of the weight β on the optimality of the
solution. For this, β is assumed to be of the form

β = β0 + εβ1,

where β0 is a nominal value of β, β1 is the maximum variation of β with respect to its
nominal value (β0 and β1 are fixed), and ε ∈ [0, 1] is a scaling parameter. Two optimization
problems can be defined: a nominal problem (ε = 0) and a perturbed problem (ε > 0).
For this "eco-driving" problem, the perturbation appears only in the cost function and
the estimation of K is more straightforward than the two previous examples (LQ and NL
problems). Details of the estimation of K are given in Appendix E.2.

5.6.3.1 Numerical evaluation

The problem parameters are listed in Table 5.3. The nominal and the perturbed TPVBs
defined in Appendix E.2 for ε ∈ [0, 1] are solved using the Matlab routine bvp4c.

The induced sub-optimality ∆J is evaluated numerically. The numerical evaluation
of the estimated upper bound on ∆J as a function of ε given by the relation (E.10) is
shown in Figure 5.6.

The quadratic upper bound gives a good estimate of the error when ε is small enough
(less than 0.5). The estimation of Kε2 seems to have the same form as ∆J , with a ratio
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Table 5.3: Eco-driving problem parameters

Parameter b1 b2 h0 h1 D β0 β1

Value 1000 1000 0.1 1 10 1000 2000
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Figure 5.6: Comparison between Kε2 and ∆J for the eco-driving problem. The quadratic nature
of the error is well observed. The estimation is conservative with a factor of 12.2.

of 12.2 between ∆J and the estimated Kε2. The state trajectories for various values of
ε are given in Figures 5.7. When ε increases, the maximum speed increases and the final
position x(T ) tends to its target value D.

5.7 Thermal management problem for HEV
As has been shown in Section 4.1 in the optimal energy management strategy for HEV,
neglecting the engine temperature leads to an acceptable sub-optimal fuel consumption.
Interestingly, this observation can be justified by Theorem 1. To illustrate this point, the
corresponding nominal and perturbed OCP are formulated.

5.7.1 OCP formulation

The cost function under consideration is the fuel consumption given by (B.1). To intro-
duce a perturbation in the cost function, the slope of the correction factor of the fuel
consumption e(.) is artificially modified, as shown in Figure 5.8. It is given by an affine
function of ε as follows

e(θe, ε) =

 εmax(1−
θe
θw

)ε+ 1, θc ≤ θe ≤ θw,

1, θe > θw,

where εmax = 0.59, ε ∈ [0, 1] and θw = 70◦C. When ε = 0 (red curve in Figure 5.8),
the correction factor is constant and equal to 1 (warm engine start) and the engine tem-
perature can be left out of the equations describing the OCP. When ε = 1 (blue curve
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in Figure 5.8), the correction factor has maximum sensitivity with respect to the engine
temperature (cold engine start). All the curves between the lower (ε = 0) and the upper
(ε = 1) boundaries are mathematical extrapolations with no physical interpretation. The
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Figure 5.8: Correction factor of the fuel consumption

state variables considered are the SOC and the engine temperature θe. Generally, the cost
function to be minimized is

Jε(u) = β(ξ(T )− ξ(0))2 +

∫ T

0

c(u, t)e(θe, ε)dt,

where β is a parameter used here to include the final constraint on the SOC and is chosen
to satisfy the final constraint with a small tolerated error. The perturbed and the nominal
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OCP, denoted by (OCPε) and (OCP0) respectively, are defined as

(OCPε)



min
u

[
Jε(u) = β(ξ(T )− ξ(0))2 +

∫ T

0

c(u, t)e(θe, ε)dt

]
,

dξ

dt
= f(u, t), ξ(0) = ξ0,

dθe
dt

= g(u, t, θe), θe(0) = θ0,

umin(t) ≤ u(t) ≤ umax(t),

(OCP0)



min
u

[
J0(u) = β(ξ(T )− ξ(0))2 +

∫ T

0

c(u, t)dt

]
,

dξ

dt
= f(u, t), ξ(0) = ξ0,

umin(t) ≤ u(t) ≤ umax(t).

For ε = 1, the (OCPε) is obtained from the optimization problem (OCP2) described in
Chapter 4 by setting α = 0 (only the fuel consumption is minimized). The (OCP0) is
similar to the problem described by equation (3.6) where the final constraint is taken into
account by the final cost.

From an application viewpoint, the problem (OCPε), which is considered as the per-
turbed problem, is the most desirable problem as it is more representative and more
accurate than the problem (OCP0), which is considered as the nominal problem. It is
also the most complex.

5.7.2 Numerical evaluation

The details of the estimation of K are given in Appendix E.3. The two problems (OCP0)
and (OCPε) for ε ∈ [0, 1] are solved. The induced sub-optimality ∆J is evaluated
numerically. The quadratic error is observed and evaluated with a conservatism factor of
approx 12.

The numerical evaluation of K given by equation (E.17) is shown in Figure 5.9 where
∆J (calculated numerically) is compared with Kε2. The quadratic upper bound gives a
good estimation of the error when ε is small enough (less than 0.5). For higher values
of ε, ∆J remains below the quadratic conservative estimation of K.

The theorem indicates that the error in the optimal cost between the solutions of
the two problems (OCP0) and (OCPε) can not be more than 12%. Numerical studies in
Appendix B show that is less than 1%.

5.8 Robustness analysis
Generally, optimal controllers are developed for systems for which the plant model and
the cost function are completely specified. Uncertainty arises when some aspects of the
system model are not completely known at the time of analysis and design. The typical
example is the value of a parameter which may vary according to operating conditions of
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Figure 5.9: Comparison between Kε2 and ∆J for the thermal management problem. The
quadratic nature of ∆J is well observed. The estimation is conservative with a factor of 11.9.

the system. The term uncertainty, as used here, includes also the result of under-modeling
to avoid complex models.

In Section 5.5, the objective was to quantify the error in the optimal cost due to the
presence of modeling errors (represented by ε ∈ [0, 1]). This quantification is given by
estimating K from the nominal trajectories. The numerical results presented show that
the estimated K is always higher than its real value (the ratio is between 10 and 20 for
the considered examples). To decide whether the induced sub-optimality is acceptable or
not, the maximum relative error (δ) calculated for ε = 1 by

δ =
K

J1(u0)

is the quantity to be analyzed. If δ is small, the induced sub-optimality is acceptable and
the nominal control calculated for ε = 0 is sufficient. The calculated values of δ for the
examples considered above are given in Table 5.4. In the last three columns, the OCP
considered (LQ and NL problems) have been modified by changing the maximum value
of ε (change of scale by replacing ε with the formula shown in brackets in the heading of
the corresponding column).

Table 5.4: Maximum relative error and δ values

Problem Eco-driving NL LQ NL (ε/2) LQ (ε/2) LQ (ε/4)
Max error 33% 18% 12% 4.4% 4% 1.1%

δ 3.24 3.08 2.58 0.83 0.66 0.172

In the two first columns of Table 5.4, the induced sub-optimality is important. The
value of δ decreases as the relative error decreases. The estimation of K and δ may be
used as a tool to analyze the robustness of the nominal strategy addressed by the following
question:

What is the maximum value of ε that would lead to a given maximum
desired relative error (δmax) on the optimal cost?
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To answer this question, the relative error defined by

δ1(ε) = 100
Kε2

Jε(u0)

is used. This quantity, depending on ε, can be estimated numerically, as it depends only
on the nominal trajectories and ε (taking into account that this estimated relative error
will be 10-20 times greater than its real value) and the maximum value of ε satisfying
δ1(ε) ≤ δmax can be calculated. The obtained value will be conservative (less than its real
maximum value), since the estimated value of K is always higher than its real value. To
illustrate this approach, we consider the following problem for the three OCP described
in Section 5.6:

Find the maximum value of ε leading to δmax = 4% of the optimal cost.

The values of ε are summarized in Table 5.5 (note that w is the ratio between the estimated
and the real value of K).

Table 5.5: Maximum values of ε for δmax = 4%

Problem w = 1 w = 10 w = 20
LQ 0.133 0.3903 0.5443
NL 0.106 0.334 0.46

Eco-driving 0.0576 0.2105 0.324

For the LQ problem, the maximum value of ε satisfying the maximum sub-optimality
of 4% is in the interval [0.133, 0.54]. For ε = 0.39, the real relative error is 2.55% and
for ε = 0.5443, the real relative error is 4.62%. The value ε = 0.39 can be considered as
a conservative upper bound for modeling errors.

The results in Table 5.5 show that it is possible to estimate a conservative upper
bound on the modeling uncertainties leading to a desired maximum relative error in the
optimal cost. The conservatism of this estimated bound depends on the ratio between
the estimated K and its real value.

5.9 Possible extension: state constraints
In the presence of state constraints of the form g(x) ≤ 0, the method suggested in The-
orem 1 has to be adapted. Generally state constraints are a difficult problem in optimal
control. Some perturbation sensitivity results have been addressed in [12]. In fact, for a
given value of r, modeling errors in the dynamics may lead to a violation of the state
constraints if the nominal control ur0 is used. The input constraints are still satisfied but
it is very difficult to guarantee a priori that ur0 will satisfy the state constraints. The same
notations for the state, adjoint state and the control variables used in Sections 5.2.1 and
5.2.2 are now used below. A penalty function rγg(g(x)) of the form (3.11) is added in the
expressions of the Hamiltonian to manage the state constraints for the nominal and the
perturbed problems.

For a fixed value of r, urε is the optimal control for the penalized problem and c(r) is
the minimum distance from the constraints

g(xrε) ≤ c(r) ≤ 0.
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An estimation of c(r) is given in the following proposition.
Proposition 8 For a positive constant s and a given γ̄(r) such that

γ̄(r) ≥
∫ t2

t1

γg(g(x(τ)))dτ,

an estimation of the upper bound on c(r) is given by

c(r) ≤ − ng

√
s

γ̄(r)Γ(1 + s)(ng+1)
, (5.28)

where the constant γ̄(r), depending on r, is an upper bound on the integral of the penalty
and it increases when the penalty weight r goes to zero and Γ is a positive constant.
Proof The proof is given in Appendix D.6.

The optimal control and the optimal state trajectory, solution of the OCP defined by
the new state constraints g(x) ≤ c(r), are (u∗, x∗). As u∗ is the optimal control, we have

Jε(u
∗) ≤ Jε(u

r
ε).

But, since urε is the optimal control for the penalized problem, we have

Jε(u
∗) + r

∫ T

0

γg(g(x∗(t)))dt ≥ Jε(u
r
ε) + r

∫ T

0

γg(g(xrε(t)))dt,

yielding

0 ≤ Jε(u
r
ε)− Jε(u∗) ≤ r

∫ T

0

[γg(g(x∗(t)))− γg(g(xrε(t)))]dt. (5.29)

This relation shows that the induced sub-optimality and the satisfaction of the constraints
are related: if the induced sub-optimality Jε(urε) − Jε(u∗) is high, the error in the state
constraints will be high. As γg is positive, this inequality can be written

0 ≤ Jε(u
r
ε)− Jε(u∗) ≤ r

∫ T

0

γg(g(x∗(t)))dt.

If the term r
∫ T

0
γg(g(x∗(t)))dt is low, the error in the cost will be low. A trade-off between

the constraint satisfaction and the optimality of the solution can be made. This point is
illustrated in the next section.

By using a particular adjustment between the modeling error and the penalty weight
parameter r, we show that it is possible to generate a path of solutions strictly lying in the
interior of the state constraints and to have a near-optimal cost value. For a given value
of r, xr0 satisfies the state constraints. This is not guaranteed for the trajectory ξr, as its
dynamics takes the perturbation into account. To avoid violating the state constraints
for ξr, the weight r is used as a tuning parameter: for a given ε, the nominal problem is
solved for different decreasing values of r and the algorithm is stopped for r = r0 when
ξr0 is close to the constraints. This method ensures that the constraints are satisfied. A
central question then arises: how far is the obtained cost function from its optimal value?

To answer this question, the results presented in Section 3.4.3.2 for the state constraints
on the SOC are analyzed. From Table 3.4, the difference between the control strategies for
r = 5e−7 and r = 8e−9 is less than 2% in the cost function value whereas the distance from
the constraint for r = 5e−7 is 8.23. Similar conclusion can be drawn from Tables 3.3, B.2
and B.3. This distance form the constraint will be useful in the presence of error modeling
to ensure that the state constraints are satisfied. This point is illustrated in the next
section.
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5.9.1 Illustrative example

Consider the following LQ problem under state and input constraints

min
u∈Uad

Jε(u) =

∫ 10

0

[
1

10
u2 + (x1 − 1)2

]
dt,

where x1, x2 and u are the state and the control variables of the following system

ẋ1 = x2, x1(0) = −1, (5.30)
ẋ2 = (1 + ε)u, x2(0) = 0. (5.31)

The parameter ε scales the modeling error in the state dynamics. The state x1 has to
satisfy the inequality

x1(t) ≤ 0,

and the control u is constrained to belong to the set defined by

−1 ≤ u(t) ≤ 1.

To solve this problem, we define the modified cost Jrε (u) as

Jrε (u) =

∫ 10

0

[
1

10
u2 + (x1 − 1)2 +

r

(−x1)ng

]
dt.

By using the PMP, the optimal control urε is given by

urε = min (1,max (−1,−5(1 + ε)λ2)) , (5.32)

where λ1 and λ2 are the adjoint states of x1 and x2 respectively. Their dynamics are

λ̇1 = −2(x1 − 1)− r.ng
(−x1)ng+1

, λ1(10) = 0, (5.33)

λ̇2 = −λ1, λ2(10) = 0. (5.34)

Equations (5.30, 5.31, 5.32, 5.33, 5.34) constitute a TPBVP, which is solved using the
Matlab routine bvp4c.

The trajectories of x1 and the variation of costs Jε(urε) and Jrε (urε) for a fixed value
of ε are given in Figure 5.10 and 5.11, respectively. Figure 5.10 shows that the state
trajectories of x1 approach the constraints when r goes to zero. Figure 5.11 shows that
the costs Jε(urε) and Jrε (urε) decrease when r decreases as expected theoretically, and the
difference between these two costs becomes negligible after a certain value of the penalty
weight r.

To illustrate the remark given by equation (5.29), the value of ε is fixed (ε = 0.09).
The value of c(r0) calculated from the nominal control is c(r0) = 0.0826 and the value
of r from which the state constraints are not satisfied is r0 = 0.0148. For a fixed ε, the
results, summarized in Table 5.6, illustrate that when J0(.) decreases the term

∫ T
0
γg(.)dt

increases.
The problem of interest is to find a nominal control ur0 leading to an acceptable sub-

optimal cost function while the state constraints are satisfied. For a given ε, the procedure
is the following:
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Table 5.6: Error in cost function in the case of state constraints

Quantity J0(.)

∫ 10

0

γg(.)dt Jr00 (.)

u∗ 14.428 132.922 16.395
ur00 14.659 114.368 16.352

• solve the nominal and the perturbed problems for different decreasing values of the
weight r;

• estimate the error in the state trajectories solution of (5.30, 5.31) using the nominal
control ur0;

• find the value of the penalty weight, denoted by r0, such that the state constraint
is not satisfied. The error in the state trajectories is evaluated for decreasing values
of r and the algorithm is stopped when the state constraint is not satisfied;

• calculate Jr0ε (ur00 ), Jε(ur00 ), Jr0ε (ur0ε ) and Jε(u
r→0
ε ) (the optimal value of the cost

function);

• calculate ∆J1 and ∆J2 given by

∆J1 = Jr0ε (ur00 )− Jr0ε (ur0ε ),

∆J2 =
Jε(u

r0
0 )− Jε(ur→0

ε )

Jε(ur→0
ε )

.

Figures 5.12 and 5.13 show the variation of ∆J1 and ∆J2 as a function of ε. The
trajectories of x1 for ε = 0.09 and for two values of r are given in Figures 5.14 and 5.15.

From Figure 5.12, the error ∆J1 in the modified cost function Jrε (.) is bounded by a
quadratic form in ε as expected theoretically (as the state constraints are satisfied, the
method presented in [7] is applicable). In Figure 5.14, r is chosen such that the state
constraints are satisfied by the perturbed trajectories. On the other hand, in Figure 5.15,
the penalty weight r has been decreased until state constraint is violated. These two
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Figure 5.13: ∆J2 as a function of ε
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Figure 5.14: x1 for ε = 0.09 and r > r0
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Figure 5.15: x1 for ε = 0.09 and r < r0

figures illustrate the possibility of handling the state constraint by an appropriate choice
of the parameter r.

From the variation of ∆J2 (the error in the cost function Jε(.)) given in Figure 5.13,
the induced sub-optimality in the value of Jε by using the nominal control ur00 is less
than 2% for ε ≤ 0.13. This nominal solution can thus be seen as robust, since the state
constraint is satisfied and the sub-optimality is less than 2%.

5.9.2 Discussion

The method presented in the previous section, based on the interior penalty approach,
allow a trade-off to be made between the satisfaction of the state constraints and the
induced sub-optimality of the nominal control strategy in the presence of perturbation
in the dynamics and the cost function. In the interior penalty approach, the difference
between the modified cost Jrε (.) and the cost Jε(.) decreases when the penalty weight r is
reduced. After a certain threshold of r, the difference is negligible as shown in Figure 5.11.

Another possible solution to deal with modeling uncertainty is to calculate a priori
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safety distance from the constraint based on dynamics error calculation for any control
input. The illustrated solution in the example allow also the determination of this safety
distance for the nominal control ur0 which will be less conservative than the a priori
safety distance. After, the same optimal control problem with the new modified state
constraints is solved. This approach ensures the constraints satisfaction. The question
remains whether the discussed method in the previous numerical example is better than
this classical approach in terms of the cost function value.

5.10 Conclusion
Performing the open-loop optimization with the simplified model (plant and cost) and
then implementing the optimal trajectory is the most commonly used approach in opti-
mal controller design; however, it is difficult to generate highly accurate models due to the
limited quality and quantity of experimental data and models complexity. Thus, in prac-
tice, the results of implementing model-based controller often lead to differences between
reality and simulation, whatever the model used for process optimization. The method
based on the estimation of K presented in this chapter allow induced sub-optimality to
be quantified a priori, from the solution of the simplified OCP as demonstrated in the
illustrative examples. Estimation of K can be also used to analyze the robustness of
nominal controller.
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Real-time strategies
Stratégies temps-réel
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Chapter 6

ECMS feedback control

Chapitre 6 Comme il a été mentionné précédemment, les stratégies optimales pour
l’EMS obtenues par le PMP nécessitent une parfaite connaissance du cycle de conduite.
En une situation réelle, les conditions futures de conduite sont inconnues. Pour des raisons
d’implementabilité, la stratégie de contrôle doit être calculée à partir de l’information
disponible en temps réel. Une des méthodes utilisées pour faire face à l’incertitude sur
les conditions de conduite est l’ECMS. Cette méthode a été utilisée uniquement pour le
problème de la gestion d’énergie mono-état en considérant seulement le SOC.

Dans ce chapitre, une description de l’ECMS est donnée avec une étude théorique sur
ses propriétés asymptotiques. Ensuite, des extensions possibles de cette stratégie pour
inclure les états thermiques (du moteur et du système de dépollution) dans l’optimisation
sont présentées et étudiées. Ces extensions sont basées sur la paramétrisation de la relation
entre l’état adjoint et l’état, indépendamment des conditions de conduite.
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As it has been mentioned before, optimal strategies obtained by the PMP are de-
termined using full knowledge of the driving cycle. In real situation, the future driving
conditions are unknown. For practical applications, the control strategy has to be cal-
culated from the available information in real-time. One of the methods used to deal
with driving condition uncertainties is ECMS [64, 74, 79]. This method has thus far been
developed only for the single-state energy management problem.

In this chapter, a description of the ECMS is given. We propose a theoretical study
about its asymptotic property. Then, extensions to include thermal state variables in the
optimization are presented and studied.

6.1 Equivalent consumption minimization strategy (ECMS)

6.1.1 ECMS formulation

The ECMS can be seen as a real-time strategy partially based on optimal control the-
ory [64, 74, 79]. It addresses the single-state EMS described in Chapter 3. In its original
formulation, the battery (electric energy) is considered as an auxiliary fuel tank. The
control input is selected to minimize the total power drawn from the two tanks (fuel and
electric power) by comparing the variation in total energy for the different possible values
of the control input at each time t. Combining these two rates (variation in the electric
power and the fuel consumed c) into a single cost requires the introduction of a weighting
factor λ such that (

c(u, t) + λ(t)
dξ

dt

)
∆t.

This quantity is then to be minimized at each time t and it is similar to the formula of the
Hamiltonian H0 in equation (3.12) where λ is the adjoint state associated to the SOC. In
this formula, λ acts as a weight on the price of the electrical energy, so that:

• if λ is high, the electricity is more expensive, and the thermal mode is preferred;

• if λ is low, the electricity is less expensive and it is preferable to use the elec-
tric/power assist mode.

The advantage of this strategy is its dependency on a single parameter, λ. Two information
about this parameter are then needed: the initial value λ0 and its dynamics. From the
PMP applied to the single-state OCP, λ is constant on the optimal trajectory, but in
the absence of knowledge of the future driving conditions, it is not possible to know the
optimal value of λ that would satisfy the final constraint on the SOC. In other words,
uncertainties about the future driving conditions are transferred (in an equivalent form)
into an uncertainty on the value of λ. The optimal control formula (3.14) still holds. To
use it, λ(t) is replaced by an online estimation as a function of the available information
(in this case, the SOC value) [15, 16, 37]

λ(t) = λ0 − kp · (ξref − ξ(t)), (6.1)

where λ0 < 0 is a first guess possibly inspired by offline calculations, and kp is a tunable
positive coefficient. This feedback relation can be interpreted as follows:
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• If ξ(t) is greater than ξref , the control strategy has to discharge the battery by using
the electric machine; the relation (6.1) should reduce |λ(t)|;

• If ξ(t) is lower than ξref , the control strategy has to recharge the battery by using
the ICE; the value of |λ(t)| should then increase.

In many cases, to favor the convergence of ξ(t) toward ξref , an integral term might be
appended to the right-hand term of (6.1), regulated by a second positive parameter ki

λ(t) = λ0 − kp · (ξref − ξ(t))− ki ·
∫ t

0

(ξref − ξ(s))ds. (6.2)

More complicated feedback have been reported in the literature [60, 62, 81, 85].

6.1.2 Relation between ECMS and linear quadratic regulator

In fact, it is possible to relate the ECMS to the more usual linear quadratic regulator
(which allows the calculation of an optimal feedback for linear systems and neighboring
optimal control in more complex cases). To establish this relation, the following assump-
tions are considered:

• The fuel consumption c(u, ωeng) is approximated by a second-order polynomial func-
tion in u with the coefficients ci that depend on the engine rotational speed,

c(u, ωeng) = c0(ωeng)u
2 + c1(ωeng)u. (6.3)

• The dynamic of the SOC is approximated by an affine function of the control u,

f(u, t) = −α0(ωel)u− α1(ωel). (6.4)

This assumption is relevant if the power requested by the electric machine is not
important compared to the maximum available power and the losses in the battery
are neglected. Otherwise, f is quadratic in u.

• The constraints on the control variable u are neglected, which is equivalent to con-
sidering a powerful machine and a large battery.

As the vehicle is assumed to follow a prescribed driving cycle, the parameters (ci, αi)
become functions of time. To take into account the final constraint on the SOC, a final
quadratic cost is added to the fuel consumption,

Jm0 (u) = β · (ξ(T )− ξref )2 +

∫ T

0

c(u, t)dt. (6.5)

To satisfy the final constraint (3.3) exactly, β should be infinite, which is not possible
from a numerical viewpoint. Thus, a certain error in (ξ(T )− ξref ) must be allowed. The
problem (OCP0) aiming at minimizing (6.5) with the definitions (6.3, 6.4), and in the
absence of state and input constraints, is a linear quadratic problem (LQ).

From the PMP, the necessary and sufficient condition for which u∗0 is the optimal
control minimizing (6.5) under the dynamics (3.2), is given by

u∗0(λ, t) =
λα0 − c1

2c0

. (6.6)
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Applied to this problem, DP gives an expression of the costate variable as a function of
the state and time. Indeed, =(ξ, t) is defined as the optimal cost for the problem (6.5)
where the initial time 0 is replaced by t ∈ [0, T ] and the initial state condition is replaced
by ξ(t). As the problem is linear quadratic without constraints, its value function =(ξ, t),
the optimal control and the adjoint state are determined by solving a Riccati differential
equation [14].

Since the state only appears in the optimal control problem by the difference ξ(T )−
ξref , a variable x defined by

x(t) = ξref − ξ(t)

is used to simplify the calculations. The form of = is quadratic with respect to x such
that

=(x∗, t) =
1

2
v0(t) · x∗2 + v1(t) · x∗ + v2(t).

Then, λ∗ is given by

λ∗(t) =
∂=
∂ξ

(x∗, t) = v0(t) · x∗(t) + v1(t), (6.7)

where x∗ is the optimal state trajectory. In this expression, λ∗ is an affine function of x,
with a time varying gain and a time varying drift. The parameters v0 and v1 are solutions
of the time varying differential equations obtained from Riccati equation

dv0

dt
=

α2
0

2c0

· v2
0, v0(T ) = 2β,

dv1

dt
=

(
α0c1

2c0

− α1

)
· v0 +

α2
0

2c0

· v0 · v1, v1(T ) = 0.

These equations are solved backward to compute the optimal control, the state and
the costate trajectories. Observe that if β = 0, the parameters v0 = v1 = 0, which is
intuitive since, in the absence of the final constraint, the optimal strategy is to use the
electric energy available in the battery as there is no instantaneous constraint on the SOC.

The expression (6.7) of λ as a function of x is similar to the formula (6.1) where the
drift λ0 and the gain kp are time varying. This is the analogy one can draw between
ECMS and LQ control.

6.1.3 ECMS parameters robustness

The choice of the ECMS parameters is very important to ensure the near-optimality of
the resulting control strategy. These parameters are mutually related. They are tied
to the driving cycle and to the state constraints (if these have to be considered in the
optimization problem).

To investigate the robustness of the ECMS parameters calibration with respect to
the variation of the driving conditions, four driving cycles are considered; we proceed as
follows:

• Calibrate the ECMS parameters for each driving cycle such that the obtained per-
formance in terms of fuel consumption is close to the optimal strategy.

• Use each combination of the (calibrated) parameters to simulate other driving cycles.
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• Compare the obtained fuel consumption to its optimal value.

The results in terms of fuel consumption and satisfaction of the final SOC constraint
(expressed by the error ξ(T ) − ξ(0)) for the ECMS and the optimal strategy calculated
by the PMP are summarized in Tables 6.1 and 6.2. It is apparent in these tables that
the optimality of the solution is strongly related to the choice of the parameters λ0 and
kp, and in most of the cases, a trade-off between fuel consumption minimization and final
state constraint satisfaction must be done.

Table 6.1: Fuel consumption in [L/100 km] using different combination of ECMS parameters. In
each column, a simulation has been made for parameters that are tuned for the cycle shown in
the column heading. In each row, the fuel consumption has been computed for the cycle shown
for that row. These results are only partial. See Table 6.3.

Tuning PMP NEDC FHDS FTP WLTCm

NEDC 4.385 4.393 (+0.2%) 4.74 (+8.1%) 4.88 (+11.3%) 4.72 (+7.6%)
FHDS 5.10 4.89 (-4.1%) 5.11 (+0.2%) 5.19 (+1.8%) 5.06 (-0.8%)
FTP 4.01 3.72 (-7.2%) 3.93 (-2%) 4.02 (+0.25%) 3.92 (-2.2%)
WLTCm 4.94 4.85 (-1.8%) 5.01 (+1.4%) 5.04 (+2%) 4.94 (+0.1%)

Table 6.2: Percentage difference between final value and target value of ξ (ξ(T )− ξ(0)) [%].
These values are to compensate the cost in Table 6.3.

Tuning PMP NEDC FHDS FTP WLTCm

NEDC 0.02 -0.09 5.93 8.04 5.13
FHDS 0.035 -5.82 0.1 2 -1.43
FTP -0.013 -8.40 -2.66 0.01 -2.84
WLTCm -0.017 -3.38 2.5 3.33 -0.05

The separate comparison of the fuel consumption and the final constraint satisfaction
may introduce some confusions in interpreting the results. In fact, the two quantities
are related:

• If the final SOC is below its target value ξref , the fuel consumption will be below
its optimal value. The battery will be discharged. To fulfill the final constraint on
the SOC, the battery will have to be recharged (in the future) using the converted
energy by the electric machine. This amount of energy will be provided by the ICE
that will lead to a real extra-fuel consumption;

• if the final SOC exceeds its target value ξref , the fuel consumption will exceed its op-
timal value (due to the excessive use of the engine). The battery has been recharged.
To bring the SOC to its target value, a future discharge of the battery is required.
This discharge will be done using the electric machine which will produce some
mechanical power used to propel the vehicle. This mechanical power is equivalent
to a real fuel consumption reduction. Indeed, the ICE will have to produce less
mechanical power to produce the same power at the wheels. The remained part is
produced by the electric machine.
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To avoid such awkwardness, the equivalent fuel consumptions (Qeq) is compared for
the different parameters combination, as it is commonly done in the literature dealing with
EMS for HEV [28, 64, 65, 74]. This equivalent consumption represents the consumed fuel
while the final constraint on the SOC is satisfied: the new cost function is the sum of the
real fuel consumption rate c(u, t) and the equivalent fuel consumption related to the use
of the battery. Indeed, it is clear that the electrical energy and the fuel energy are not
directly comparable and a conversion factor is needed. According to [64, 65], this factor
is the optimal adjoint state λ1 determined by the PMP:

Qeq =

∫ T

0

c(u, t)dt+ λ · (ξ(T )− ξ(0)). (6.8)

The values of the obtained equivalent fuel consumption are given in Table 6.3. We em-
phasize that the purpose of the final constraint on the SOC, in reality, is to make a fair
comparison between different control strategies. These results show that all the combina-
tions used lead to a quasi-optimal equivalent fuel consumption Qeq.

Table 6.3: Equivalent fuel consumption (Qeq) in [L/100 km] using different ECMS parameters

Tuning PMP NEDC FHDS FTP WLTCm

NEDC 4.384 4.40 (+0.4%) 4.40 (+0.4%) 4.42 (+0.8%) 4.42 (+0.8%)
FHDS 5.10 5.12 (+0.4%) 5.11 (+0.2%) 5.11 (+0.2%) 5.12 (+0.2%)
FTP 4.01 4.03 (+0.5%) 4.02 (+0.25%) 4.02 (+0.25%) 4.03 (+0.5%)

WLTCm 4.94 4.95 (+0.2%) 4.95 (+0.2%) 4.96 (+0.4%) 4.95 (+0.2%)

6.1.4 ECMS stability analysis

The study presented here is based on assumptions (6.3, 6.4). The variable z is defined by

z =

∫ t

0

x(s)ds.

By replacing the formula for u∗0 given by equation (6.6) in ξ dynamics, we can write

dξ

dt
= f(u∗0(λ, t), t) = −λ α

2
0

2c0

+
α0c1

2c0

− α1 , −λ ·D1(t) +D2(t), (6.9)

where λ is given by the proportional-integral formula in equation (6.2). The parameters
λ0, kp and ki in (6.2) are fixed.

If the dynamics (6.9) were a time-invariant equation, and if λ0 = 0, then the expres-
sion (6.2) would be basically a PID system whose stability could be straightforwardly
analyzed using a Laplace domain analysis. This method does not apply to time-varying
systems. Instead, a Lyapunov function approach is used [38]. By combining equations
(6.9) and (6.2), one gets

ẋ = −D1(t) · [λ0 − kpx− kiz] +D2(t). (6.10)

1This could be established by involving a calculus of marginal cost of the constraints.

67



6.1. EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY (ECMS)

The other state variable is

y = kiz − λ0 +G, G =
D2

D1

.

In its state-space form, the system (6.10) is

ẋ = −D1(t) · [kpx+ y], (6.11)
ẏ = kix+ Ġ. (6.12)

This system is time-variant with a time-varying perturbation G. The term D1(t) is
positive (as c0 is positive) and can be considered as a positive constant d perturbed by a
function of time δ(t) of the form

D1(t) = d+ δ(t), (6.13)

where d may be estimated from the driving cycle data. Typically, it can be taken equal
to the mean value of D1(t). The stability of the previous system (6.11, 6.12) is studied
by considering it as successive perturbation of a linear time invariant (LTI) system.

6.1.4.1 LTI system

In the first step, the following LTI system without perturbation is studied

ẋ = −d · [kpx+ y], (6.14)
ẏ = kix. (6.15)

The purpose of this analysis is to find a Lyapunov function [38] to be used in the following.
The stability of the system (6.14, 6.15) can easily be checked by taking a quadratic
Lyapunov function V

V =
[
x y

]
P

[
x
y

]
,

where P is a symmetric positive definite matrix solution of the Lyapunov equation

ATP + PA = −I.

The matrix A is the dynamic matrix of the system (6.14, 6.15). The matrix P is given by

P =
1

2d

[
p1 p2

p2 p3

]
=

1

2d


1

kp
+

ki
kpd

1

1
d

kpki
+
dkp
ki

+
1

kp

 .
The matrix P is definite positive if the gains kp and ki are strictly positive

kp > 0, ki > 0.

Details are given in Appendix F.1.
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6.1.4.2 Time-varying system without source terms

The next step is to introduce a perturbation term δ(t) defined in equation (6.13) in the
dynamics (6.14, 6.15),

ẋ = −(d+ δ(t)) · [kpx+ y], (6.16)
ẏ = kix. (6.17)

The objective in this second step is to find sufficient conditions on perturbation term δ(t)
so that the system (6.16, 6.17) remains stable by using the Lyapunov matrix P calculated
before. By using Lyapunov theory again, we end up with the following conditions on δ(t)

δ(t)

d
< 2

kps+ 1

(kp − s)2

(
1 +

√
1 +

(s− kp)2

(skp + 1)2

)
, (6.18)

δ(t)

d
> max

(
−2d

2d+ ki
, 2

kps+ 1

(kp − s)2

(
1−

√
1 +

(s− kp)2

(skp + 1)2

))
, (6.19)

where s is given by

s =
1

kp
+

ki
dkp

.

These bounds are achieved by considering the same Lyapunov function V , calculating
its derivative V̇ with respect to time and finding conditions on δ(t) such that V̇ < 0
independently from x and y. The detail of the calculations is given in Appendix F.2.
These strict inequalities are satisfied for δ(t) = 0, and hence for small values of δ(t).

6.1.4.3 Time-varying system with source terms

In the final step, the following nominal system is considered

ẋ = −(d+ δ(t))[kpx+ y],

ẏ = kix+ Ġ.

This system is equivalent to (6.11, 6.12). Using Lyapunov theory and assuming that δ(t)
satisfies the conditions (6.18, 6.19), there exists a set defined by

f1

[
x+

f2

f1

y − Ġ(t)

2df1

]2

+ (f3 −
f 2

2

f1

)

[
y − Ġ(t)

2d

f1s1 − f2

f3f1 − f 2
2

]2

≤ Ġ2(t)

4d2f1

[
1 +

(f1s1 − f2)2

f3f1 − f 2
2

]
(6.20)

outside of which the Lyapunov function (V ) decreases. The functions (fi) depend on time
and they are given by

f1 = 1 +
δ(t)

d
kps, f2 =

δ(t)

2d
(kp + s), f3 = 1 +

δ(t)

d
.

The following proposition summarizes this result.

Proposition 9 (Stability) Assume that δ(t) satisfies the conditions (6.18, 6.19). Then,
equation (6.20) defines an ellipse for the variables (x, y). The states x = ξref − ξ and

y = −λ0 + ki

∫ t

0

(ξref − ξ(s))ds+
c1

α0

− 2α1c0

α2
0
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converge to inside this set. Moreover, the origin always belongs to this ellipse. If the term
Ġ tends to 0, the ellipse converge to the origin of the state space (x, y).

Proof See Appendix F.3.
This result shows that the closed loop system determined using the ECMS formula (6.2)

remains stable, but a priori, not asymptotically. In practice, equations (6.18, 6.19) give
upper bounds on δ(t), which may be used to calculate the gains kp and ki ensuring the
stability of the system. However, the sub-optimality of the ECMS depends on the choice
of the parameters (λ0, kp, ki) as shown in the previous section.

6.1.5 Conclusion

The parameters of the ECMS are sensitive to the driving conditions. The calibration
impacts the fuel consumption and the final constraint satisfaction. Separate comparisons
introduce a confusion in the results interpretation if the final constraint on the SOC is
not fulfilled as explained above. On the other hand, when combined, the results become
clear. The error in the equivalent fuel consumption is less than 0.8% comparing to the
optimal fuel consumption.

6.2 ECMS extension to include catalyst temperature

In this section, the engine is warm at the beginning of the driving cycle. The impact of
the engine temperature θe on fuel consumption and CO emissions is negligible. Only the
catalyst temperature θc needs to be considered in the optimization problem.

6.2.1 Formulation of ECMS1

To extend the ECMS, we aim at finding a relationship between the adjoint state ρ (as-
sociated to θc defined in Section 4.3) and the catalyst temperature θc (which is assumed
to be measured or at least estimated). Ideally, this relation has to be robust against the
driving conditions variation.

For convenience, an equivalence factor that is positive and dimensionless, denoted
by q, is used instead of using ρ (which is negative). The relationship between the two
parameters is given by

q(t) = −Hlhv

Cc
ρ(t).

Figure 6.1 shows the relationship between q and θc on the optimal trajectories calcu-
lated using the PMP for α = 0.6. Similar behaviors are obtained for other driving cycles
for α ∈ [0, 1[. Three intervals are distinguished:

• θc ≤ 200◦C: the cost function is independent of θc. The dynamics of q is given by

q̇(t) = −q(t) · ∂Pcat(t)
∂θc

(u, t, 80, θc). (6.21)

• 200◦C ≤ θc ≤ 400◦C: the cost function depends on θc and an additional term related
to the derivative of ηCO modified the dynamics of q in (6.21).
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Figure 6.1: Equivalence factor q as a function of θc for α = 0.6 for FUDS

• θc ≥ 400◦C: the cost function becomes again independent of θc; q is equal to zero
as the final temperature θc(T ) is free.

The relationship between q and θc is not monotonic, but this does not cause any
problem because q is calculated from θc (assumed to be measured) and not the reverse.
The proposed relationship between q and θc is of the form

q(θc) =


d1θc + d2, if θc ≤ 200◦C,

d3θ
2
c + d4θc + d5, if 200◦C < θc ≤ 400◦C,

0, if θc > 400◦C,

(6.22)

where the parameters di have to be identified from the optimal trajectories calculated by
the PMP. The threshold 200◦C, beyond which the behavior of the equivalence factor q
changes, is the activation temperature of the after-treatment system. The threshold 400◦C
is the temperature beyond which the efficiency of the after-treatment system reaches its
maximum value. For the equivalence factor s associated to the SOC, the classical ECMS
formula (B.11) is used.

The stationarity condition is expressed on the quantity H̃1 (in power unit)2 given in
(6.23). It is the sum of three quantities: the fuel energy consumed, the inner (electro-
chemical) battery power, the thermal powers due to the variation of the after-treatment
system temperatures defined by Pcat(t) = −Cc · θ̇c

H̃1(u, t, θc, s, q) = L(u, t, θe = θh, θc) ·Hlhv + s · Ib(t) · Uocv(t) + q · Pcat(t). (6.23)

The control u1 is given by

u1(t) ∈ arg min
u∈Uad

H̃1(u, t, θc, s(ξ), q(θc)),

where (s, q) are respectively given by (B.11, 6.22). This defines the ECMS1 strategy.

2H̃1 is equivalent to H1 defined in Section 4.4.
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6.2.2 Tuning ECMS1 with respect to α

As the control strategy depends on α, we study the variation of the parameters di with
respect to α. For the NEDC cycle, we proceed as follows:

• solve the OCP defined in Section 4.4 for different values of α;

• identify the parameters di, i = 1 : 5 for each value of α;

• find the relationship between each di and α by interpolation.

The obtained results are given in Figures 6.2, 6.3, 6.4 and 6.5. This tedious work is done
once, and offline. From these figures, each parameter di can be approximated by an affine
function of α

di = k1,iα + k2,i.

The parameters d2 and d5 are determined to ensure the continuity of the equivalence
factor q at θc = 200◦C and θc = 400◦C. These relations, once identified for NEDC, are
used for the other driving cycles.
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Figure 6.2: d1 as a function of α for NEDC
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Figure 6.3: d2 as a function of α for NEDC

6.2.3 Robustness of ECMS1

The proposed rule in (6.22) to update q (or ρ) as a function of θc is established for the
NEDC for different values of α, and is also tested for the other three driving cycles: FTP,
WLTCm and FHDS. For the equivalence factor s, a single calibration of the parameters s0

and Kp is used and this calibration does not ensure the satisfaction of the final constraint
on the SOC. The initial value s0 and the gain Kp

3 are the average of the values ensuring
the satisfaction of the final constraint on the SOC for the four driving cycles. By taking
the average of the parameters s0 and Kp, the driving cycle is assumed to be unknown.

3The relation between kp (used in the formula of λ) and Kp (used in the formula of s) is given by

Kp =
Hlhv

Q0 · Uocv
kp.
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Figure 6.4: d3 as a function of α for NEDC
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Figure 6.5: d4 as a function of α for NEDC

The relative errors in terms of fuel consumption, CO emissions and satisfaction of
the final SOC constraint (expressed by the error ξ(T ) − ξ(0)) comparing to the optimal
strategy (S1) by using the strategy ECMS1 are summarized in Figures 6.6, 6.7 and 6.8
respectively.
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Figure 6.6: Relative error in fuel consumption
[%]
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Figure 6.7: Relative error in CO emission [%]

From Figures 6.6 and 6.7, the maximum error in the CO emissions between the strategy
(S1) and ECMS1 is less than 4% while the maximum error in the fuel consumption is more
important (10%) for the considered driving cycles. This maximum error depends on the
driving cycle and the final constraint satisfaction. For example, in the case of the WLTCm,
the error in the final constraint and the fuel consumption are lower than the other driving
cycles. The optimality of the solution is strongly related to the choice of the parameters
s0 and Kp, and in most of the cases, the fuel consumption is greatly impacted comparing
to the CO emissions. A trade-off between the fuel consumption evaluation and the final
SOC constraint satisfaction has to be done.

73



6.2. ECMS EXTENSION TO INCLUDE CATALYST TEMPERATURE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−5

0

5

10

α

Relative Error in the final constraint [100(ξ(T)−ξ(0))]

 

 

NEDC
FTP
WLTC

m

FHDS

Figure 6.8: Final constraint satisfaction
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Figure 6.9: Relative error in equivalent fuel con-
sumption [%]

For the reasons mentioned in Section 6.1.3, the equivalent fuel consumption Q1
eq

4,
defined for α 6= 0 in (6.24), must be compared to the optimal fuel consumption obtained by
using the strategy (S1) instead of comparing the fuel consumption and the final constraint
satisfaction separately.

Q1
eq =

1

α

[∫ T

0

α · c(u, t)dt+ λ · (ξ(T )− ξ(0))

]
. (6.24)

As the fuel consumption is multiplied by α in the cost function, the conversion factor
between the electrical energy and the fuel energy is the optimal adjoint state λ divided
by α. The impact of θe on the fuel consumption and CO emissions is neglected as the
engine is warm. The equivalent fuel consumption Q1

eq is compared to the optimal fuel
consumption calculated by using the strategy (S1) for a warm engine start. The obtained
relative error in the fuel consumption are summarized in Figure 6.9. These results show
that all the used combinations allow to reach a quasi-optimal equivalent fuel consumption
with a maximum relative error around 0.7% comparing to the optimal fuel consumption
while the error in CO emissions is less than 4%.

6.2.4 Conclusion

The proposed correlation to update q using measurements of θc has been shown to be
robust against the driving conditions change. The induced sub-optimality, compared
to the strategy (S1), in the equivalent fuel consumption is less than 0.7% while the sub-
optimality in CO emissions is less than 4% comparing to the optimal values (if the optimal
value of CO emissions is 0.8 g/km, the obtained value by using ECMS1 is 0.832 g/km).
The main problem is to find an efficient way of estimating s, as its calibration has a
significant effect on the final SOC constraint.

4The superscript 1 in Q1
eq refers to the use of the control strategy ECMS1.
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6.3 ECMS extension to include engine and catalyst tem-
perature

The engine is cold at the beginning of the driving cycle. The impact of θe on the fuel
consumption and the CO emissions has to be considered. The OCP formulation is given
in Section 4.3. The results will be compared to those given by the strategy (S2).

6.3.1 Formulation of ECMS2

Following the analysis of the relationships between (p, q) and (θe, θc) in Sections B.4.1
and 6.2.1, the proposed relationships to update (p, q) are of the form

p(θe) =

{
a1θ

2
e + a2θe + a3, si θe ≤ 80◦C,

0, si θe > 80◦C.

q(θc) =


d1θc + d2, si θc ≤ 200◦C,

d3θ
2
c + d4θc + d5, si 200◦C < θc ≤ 400◦C,

0, si θc > 400◦C,

where the parameters (ai, di) have to be identified as in Sections B.4.1 and 6.2.1. The
relation between p and θe is detailed in Appendix B.4.1 for the fuel consumption mini-
mization case (α = 0). For the equivalence factor s, the classical ECMS formula (B.11)
is used.

The stationarity condition is expressed on the quantity H̃2
5 given in (6.25). It is the

sum of four quantities: the fuel energy consumed, the inner (electrochemical) battery
power, the thermal powers due to the variation of the engine and the after-treatment
system temperatures defined by Ptherm(t) = −Ce · θ̇e and Pcat(t) = −Cc · θ̇c

H̃2 = L(u, t, θe, θc) ·Hlhv + s · Ib(t) · Uocv(t) + p · Ptherm(t) + q · Pcat(t). (6.25)

The optimal control u2 minimizes H̃2

u2(t) ∈ arg min
u∈Uad

H̃2(u, t, θe, θc, s(ξ), p(θe), q(θc)).

The obtained control strategy is denoted by ECMS2.

6.3.2 Robustness of ECMS2

The proposed rules to update (p, q) as functions of (θe, θc) are determined for the NEDC
for different values of α and they will be tested for the other three driving cycles: FTP,
WLTCm and FHDS. For the equivalence factor s, a single calibration of the parameters s0

and Kp is used: as it has been highlighted in Sections 6.1.3 and B.4, the final constraint is
sensitive to these two parameters. The used calibration does not ensure the satisfaction
of the final constraint on the SOC for the considered driving cycles. The relative errors
comparing to the optimal strategy (S2) in terms of fuel consumption, CO emissions and
the satisfaction of the final SOC constraint (expressed by the error ξ(T ) − ξ(0)) for the
strategy ECMS2 are summarized in Figures 6.10, 6.11 and 6.12 respectively.

5H̃2 (in power unit) is equivalent to H2 defined in Section 4.4.
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Figure 6.10: Relative error in fuel consumption
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Figure 6.11: Relative error in CO emission [%]
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Figure 6.12: Final constraint satisfaction
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Figure 6.13: Relative error in equivalent fuel
consumption [%]

From Figures 6.10 and 6.11, the maximum error in the CO emissions between the
strategy (S2) and ECMS2 is less than 5.5% while the maximum error in the fuel con-
sumption is less than 6% for the considered driving cycles. This maximum error depends
on the driving cycle and the final constraint satisfaction. For example, in the case of the
FTP cycle, the error in the final constraint and the fuel consumption are lower than the
errors for the other driving cycles.

For the reasons mentioned in Section 6.1.3, the equivalent fuel consumption Q2
eq

6,
defined for α 6= 0 in (6.26), must be compared to the optimal fuel consumption obtained by
using the strategy (S2) instead of comparing the fuel consumption and the final constraint
satisfaction separately. The formula (6.26) is the general expression to calculate the
equivalent fuel consumption. The previous formulas given in (6.8, 6.24, B.12) can be

6The superscript 2 in Q2
eq refers to the use of the control strategy ECMS2 for cold start conditions.
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easily deduced from the expression (6.26)7.

Q2
eq =

1

α

[∫ T

0

α · c(u, t)e(θe)dt+ λ · (ξ(T )− ξ(0))

]
. (6.26)

The obtained relative errors in the equivalent fuel consumption are summarized in Fig-
ure 6.13. From these numerical comparisons, the maximum relative error in the equivalent
fuel consumption Q2

eq is less than 1.8% comparing to the optimal strategy (S2).
To illustrate the added value of the strategies ECMS1 and ECMS2, the fuel con-

sumption and CO emissions obtained using ECMS1 and ECMS2 are compared to their
optimal values calculated by using the strategies (S1) and (S2) for cold-start conditions
for NEDC see Figure 6.14. In this case, the parameters (s0, Kp) are tuned to satisfy the
final constraint on the SOC. The full simulation model (3.2, 4.1, 4.3, 4.4) is used for the
comparison.
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Figure 6.14: Fuel consumption [L/100 km] and CO emissions [g/km] for NEDC

These numerical results show that the strategies ECMS, ECMS1 and ECMS2 are close
to the strategies (S), (S1) and (S2), respectively, in terms of fuel consumption and CO
emissions. The three real-time strategies allow the CO emissions to be reduced in order
to satisfy the European legislation with an acceptable extra-fuel consumption comparing
to the optimal strategy (S2).

6.3.3 Conclusion

The proposed correlations to update (p, q) using the measurements of (θe, θc) have been
shown to be robust against the driving conditions change. The induced sub-optimality in
the equivalent fuel consumption is less than 2% while sub-optimality in CO emissions is
less than 6%.

7For the formula (6.8), α = 1 and the engine is warm at the beginning of the driving cycle. For the
formula (6.24), α ∈ [0, 1] and the engine is warm at the beginning of the driving cycle. For the formula
(B.12), α = 1 and the engine is cold at the beginning of the driving cycle.
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6.4 Discussion
The proposed correlations to update (p, q) using measurements of (θe, θc) seems promising
for the pollutant emissions reduction with an acceptable extra-fuel consumption compared
to the optimal strategy (S2). These correlations are identified from the optimal trajec-
tories given by the PMP (DP can be also used). The presented results in the previous
sections illustrate also the sensitivity of the control strategy to the parameters s0 and
Kp used for the adaptation of the equivalence factor s associated to the SOC. The fuel
consumption and the final constraint are greatly impacted by the choice of s0 and Kp.
The separate comparison of these two quantities jeopardize the analysis. The use of the
equivalent fuel consumption in the comparison avoids such difficult situation.

The strategies ECMS1 and ECMS2 can be seen as closed loop strategies. In fact,
under certain assumptions, see [1], the PMP allows the optimal control to be written as
a function of the state x(t) and of the adjoint state λ(t) from the stationarity condition:

u∗ = W (x(t), λ(t)), t ∈ [0, T ].

In the three proposed strategies, λ is given by a function of the state x(t)

λ(t) =
∂=
∂x

(x∗, t) = F (x(t)), t ∈ [0, T ],

where = is the cost-to-go function. By combining these two quantities, the formula of the
optimal control u∗ becomes of the form

u∗ = L(x(t)), t ∈ [0, T ].

The main difficulty of this procedure is the relation between λ(t) and x(t). In our case, this
relation is carried out numerically from the optimal solution calculated using the PMP.
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Chapter 7

Experimental tests

Chapitre 7 Le système considéré dans ce chapitre est un véhicule hybride de type
parallèle équipé d’un moteur diesel. Comme le plupart des moteurs diesel modernes, le
système de dépollution est composé de trois sous-systèmes en cascade : un catalyseur
d’oxydation diesel (DOC) pour traiter les HC et CO, un filtre à particules diesel (FAP)
pour traiter les PM, et un système de réduction sélective catalytique (SCR) par l’urée
pour la réduction des NOx.

D’après la conclusion du chapitre 4, l’EMS mono-état optimal permet de réduire les
émissions polluantes avec une surconsommation du carburant acceptable par rapport à
la solution optimale (autour de 3%). En outre, les résultats numériques présentés dans
la section 6.3 suggèrent que l’ECMS, si soigneusement réglé, donne des performances
proches de celles de l’EMS mono-état optimal. Dans ce chapitre, nous souhaitons établir
expérimentalement ce résultat avec un accent particulier sur les NOx.

Dans ce chapitre, la description du banc d’essai et les caractéristiques du véhicule
sont données. Ensuite, l’identification des dynamiques thermiques et la formulation du
problème de commande optimale sont détaillées. Enfin, les résultats expérimentaux sont
discutés.
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For the diesel engine under consideration in the presented application, four pollutants
are regulated by current standards: hydrocarbons (HC), carbon monoxide (CO), nitrogen
oxides (NOx), and particulate matter (PM).

Like most of modern engines, our engine is equipped with an after-treatment system
composed of three sub-systems: diesel oxidation catalyst (DOC) to treat HC and CO,
diesel particulate filter (DPF) to treat PM, and urea selective catalytic reduction (SCR)
for NOx reduction. NOx and PM are the most problematic issues for diesel after-treatment
systems.

Following the conclusion of Chapter 4, the optimal single-state EMS allows the pol-
lutant emissions to be reduced with an acceptable extra-fuel consumption compared to
the optimal solution. Additionally, the numerical results presented in Section 6.3 for real-
time strategies suggest that the ECMS, if carefully tuned, gives performance close to the
optimal single-state EMS. In this chapter, we wish to establish this fact, experimentally
with a focus on the NOx emissions.

This chapter is organized as follows: first, the test bench description and the char-
acteristics of the vehicle are given; then the thermal dynamics identification and the op-
timization problem formulation are detailed, followed by a description of the simulation
platform. Finally, the simulation and the experimental results are discussed.

7.1 Test bench description

In order to reduce the total development cycle of a complete hybrid powertrain and the
on-board vehicle calibration, dynamic engine test benches are used. The aim of this
kind of bench is to provide an environment where the driver and vehicle behavior can be
reproduced. Based on this idea, a dynamic test bench dedicated to hybrid powertrains
was developed at IFP Energies nouvelles [17].

This testing tool is able to experimentally represent various hybrid architectures
through the hardware-in-the-loop (HiL) concept used in the development and the val-
idation of complex real-time embedded systems. It provides an effective platform by
adding the complexity of the plant under control to the test platform. The Hybrid HiL
(Hy-HiL) test bench under consideration couples a real engine test bench with mathe-
matical models running in real-time to emulate the electric system, the driver and the
vehicle. The rationale for testing a real engine combined with simulated components is to
evaluate the fuel consumption and pollutant emissions of the vehicle, taking into account
thermal and transient phenomena that are not fully reproduced in a completely simulated
system. The high accuracy of the selected models allows Hy-HiL to test either a single
component or the whole system in a realistic environment [16, 17].

Figures 7.1 and 7.2 describe the Hy-HiL arrangement. The test bench is controlled
in such a way that the torque Teng,mes at the engine output shaft is the response to the
driver’s requests Twh,sp (i.e., to follow a prescribed driving cycle defined by the vehicle
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Figure 7.1: Schematics of the Hy-HiL concept

speed vwh,sp) and the output of the supervisory controller (EMS) that splits such requests
Twh,sp between the engine and the electric machine. In particular, the hybrid driveline
model delivers the engine speed set-point to the dynamo-meter control, and the driver
model delivers the position of the accelerator and the brake pedals to the powertrain
control. The engine speed ωeng and the electric machine speed ωel are related to the
vehicle speed at wheels ωwh,mes by the relations{

ωeng(t) = Rgb(t) · ωwh,mes(t),
ωel(t) = Rel · ωwh,mes(t),

where Rgb is the gear-box ratio. A more detailed description of the test bench is given
in [53]. Photos of the used test bench during the HYDIVU project at IFPEN [69] are
given in Figure 7.3. This test bench is equipped with a diesel engine. The after-treatment
system is composed of three cascaded sub-systems: DOC, DPF and SCR. Details are
given in next sections.

Figure 7.2: Outline of signals flow in the Hy-HiL test bench

7.2 Vehicle description
The architecture under consideration is a parallel HEV equipped with a diesel engine. The
electric machine allows power assist, including purely electric drive and battery recharge.
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Figure 7.3: Test bench at IFP Energies nouvelles

The transmission ratio between the electric machine and the wheel is constant. The vehi-
cle specifications are summarized in Table 7.1. The fuel consumption and NOx maps are
reported in Figures 7.4 and 7.5 as functions of the engine rotational speed and the indi-
cated engine torque. The engine friction torque map, depending on the engine speed and
the engine (water) temperature is given in Figure 7.6 and it is used to calculate the en-
gine effective torque1. All reported data were obtained from experimental tests conducted
during the HYDIVU project at IFPEN [69].

Table 7.1: Vehicle characteristics

Vehicle weight 2772 kg
Engine max. power 120 kW
Electric machine max. power 50 kW
Battery capacity 4000 Wh
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Figure 7.4: Fuel consumption map c(.) [g/s]
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Figure 7.5: NOx map [g/s]

Figure 7.7 shows the electric power Pm and the speed-dependent torque limits of
1The maps of fuel consumption and NOx emissions are given as a function of the indicated engine

torque. The EMS calculate the indicated engine torque and the engine friction torque map is used to
deduce the effective torque from the formula: Effective Torque=Indicated Torque−Friction Torque
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the electric machine used in the vehicle. The open-circuit voltage Uocv and the internal
resistance of the battery Rb are given in Figures 7.8 and 7.9.
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7.3 Identification of thermal dynamics

7.3.1 Engine temperature

The engine temperature is the coolant temperature (water temperature). The ICE cooling
system consists of a thermostat, a coolant temperature sensor, a radiator, and a coolant
circulatory pump [41]. In accordance with Chapter 4, the model considered is

l1 ·
dθe
dt

= l2 · Pth,e(Teng, weng, θe)− l3 · (θe − θ0), (7.1)

where the parameters l1, l2 and l3 have to be identified from experiments. The power Pth,e

represents the sum of friction power dissipated into heat and thermal power transferred
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Table 7.2: HEV parameters

Parameter Symbol Value
Constant coefficient of the road load c0 253.26 N
Linear coefficient of the road load c1 3.4654 N/(m/s)
Quadratic coefficient of the road load c2 1.1677 N/(m/s)2

Wheel radius rtire 0.3756 m
Number of wheels ntire 4
Motor-to-wheel transmission ratio Rel 12.5625
Gear-box efficiency ηgb 0.96
Charging efficiency ηc 1
Fuel lower heating value Hlhv 42600000 J/kg
Cylinder volume Vcyl 2.300 L

from the engine to the coolant available in a look-up table as a function of the engine
speed, the engine torque and the engine temperature. The look-up table used in Chapter 4
has been modified and adapted for the new system. Since the external cooling system
(thermostat) is not modeled, the temperature θe is assumed to be limited by a maximum
value θe,max = 82◦C at which the thermostat is activated. Informally,

θe(t) = min(solution of equation (7.1), 82). (7.2)

For the identification, the Matlab solver pem is used to estimate the three parameters
describing the dynamics of θe. This solver estimates model parameters using iterative
prediction-error minimization method.

The driving cycle under consideration is the Worldwide harmonized Light vehicles Test
Cycle (WLTC). The corresponding speed and gear-box profiles are reported in Figure A.4
(see Appendix A). The engine speed and torque set points are given in Appendix G.1.

The part of the driving cycle in which the thermostat is not activated represents the
dynamics of the coolant temperature, and is used in the parameter identification process.
The measured and the simulated trajectories of θe are shown in Figure 7.10. The maximum
error in the water temperature estimation is:

• ±3◦C for t ∈ [0, 800]s (transient phase).

• +5◦C otherwise (steady state). This error is due to the weakness of the model of
the thermostat in (7.2).

To validate the model, data from other three experimental tests for the same driving
cycle are deployed. The engine speed and torque set points for these experimental tests are
given in Appendix G.1. The corresponding trajectories of the water temperature are given
in Figures 7.11, 7.12 and 7.13. The maximum error in the estimation of the temperature
in the transient phase is less than ±4◦C. The results presented above demonstrate a good
agreement between the simplified model and the experimental data.

2Ie-Test (identification test) refers to the experimental test data (the driving cycle) used for the
identification of the engine temperature dynamics.

3Vei-Test (validation test number i) refers to the experimental test data (the driving cycle) used in
the validation of the engine temperature dynamics. The engine torque and speed set points for the three
validation tests are given in Appendix G.1.
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Figure 7.10: Temperature θe [◦C] trajectories for Ie-Test2
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Figure 7.11: Temperature θe [◦C] for Ve1-Test3
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Figure 7.12: Temperature θe [◦C] for Ve2-Test

7.3.2 After-treatment system temperatures

As mentioned above, the after-treatment system consists of three sub-systems: DOC, DPF
and SCR, cascaded as pictured in Figure 7.14. For each sub-system, a zero-dimensional
model based on physical equations is considered. Usually, the physical phenomena are
described by partial differential equations involving the three space dimensions. Here,
these equations are simplified by considering a uniform distribution of the temperature
(spatially averaged). Additionally, the rate of heat released by the chemical reactions in
each sub-system is neglected for simplicity. We refer to works in [10, 42] for discussion on
this assumption. The energy balance for each sub-system yields a first order differential
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Figure 7.13: Temperature θe [◦C] for Ve3-Test

equation of the form [81]

k11 ·
dθdoc
dt

= k12 · ṁin · θexh − k13 · ṁin · θdoc − k14 · (θdoc − θ0), (7.3)

k21 ·
dθdpf
dt

= k22 · ṁin · θdoc − k23 · ṁin · θdpf − k24 · (θdpf − θ0), (7.4)

k31 ·
dθc
dt

= k32 · ṁin · θdpf − k33 · ṁin · θc − k34 · (θc − θ0), (7.5)

where ṁin is the gas inlet-flow rate, θexh is the exhaust gas temperature, θdoc is the

Figure 7.14: Configuration of after-treatment devices in the exhaust line

DOC temperature, θdpf is the DPF temperature, θc is the SCR temperature and θ0 is
the ambient temperature. There also, the parameters kij are identified using the Matlab
solver pem.

To identify the model parameters, the vehicle is used in the thermal mode (engine
only). The temperature sensors measure the gas temperature: if the power-assist mode is
chosen, the engine would be shut down and there would be no gas flow coming from the
engine. Therefore, the measured temperature would not represent the gas temperature.
This problem is illustrated in the model validation below. The engine torque and speed
set points for the identification test Ic-Test are given in Appendix G.2.
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7.3.2.1 Diesel oxidation catalysts (DOC)

The inputs of the DOC temperature model are the gas flow from the engine and the
exhaust gas temperature θexh, given by a quasistatic map of the engine torque and speed.
The measured and the simulated trajectories of the DOC temperature using the identified
parameters are given in Figure 7.15. The maximum error in the temperature estimation
is ±20◦C, which considering the model simplicity, can be seen as reasonable.
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Figure 7.15: Temperature θdoc [◦C] for Ic-Test4
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Figure 7.16: Temperature θdoc [◦C] for Vc1-Test5
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Figure 7.17: Temperature θdoc [◦C] for Vc2-Test

4Ic-Test (identification test) refers to the experimental test data (the driving cycle) used in the iden-
tification of the after-treatment temperature dynamics.

5Vci-Test (validation test number i) refers to the experimental test data (the driving cycle) used in the
validation of the after-treatment temperature dynamics. The same data are used for the identification of
the DOC, DPF and the SCR temperature.
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To validate the obtained model, data from other experimental tests are used. The
engine torque and speed set points for the Vc1-Test and the Vc2-Test are given in Ap-
pendix G.2. The corresponding trajectories of the DOC temperature are given in Figures
7.16 and 7.17. For the right figure, the engine and the after-treatment system are warm
at the beginning of the driving cycle. The error in the estimation of the temperature is
less than ±40◦C in the left-hand graph and less than ±20◦C for the right-hand graph.
In these two examples, the operation mode of the vehicle is the power assist mode: the
engine can be turned off (depending on the control strategy) and there is no gas flow from
the engine in the corresponding time intervals. Because the employed sensors measure
the gas temperature, the data does not represent the true temperature of the DOC and
the significant drops in temperature (see area surrounded by a black circle in Figure 7.16)
are, in fact, unrealistic. More details about these drops in the temperature are given in
Appendix G.3. Generally, the results presented above indicate a good agreement between
the model and experimental data.

7.3.2.2 Diesel particulate filters (DPF)

The inputs of the DPF temperature model are the gas flow from the DOC and the DOC
temperature estimated above. The measured and the simulated trajectories of the DPF
temperature using the identified parameters are given in Figure 7.18. The maximum error
in the estimated temperature is ±20◦C.
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Figure 7.18: Temperature θdpf [◦C] for Ic-Test

To validate the model, the same experimental data from Vc1-Test and Vc2-Test are
used. The corresponding trajectories of the DPF temperature are given in Figures 7.19
and 7.20. The maximum error in the temperature estimation is less than ±40◦C for the
left-hand graph and less than ±30◦C for the right-hand graph. A similar temperature-
drop problem (area surrounded by a black circle in Figure 7.19 and 7.20) appears when
the engine is turned off6, but it is more obvious than in the DOC case. Indeed, the DPF
is further from the engine than the DOC and the gas takes more time to reach it.

6The engine state for the surrounded regions is given in Appendix G.3.
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Figure 7.19: Temperature θdpf [◦C] for Vc1-Test
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Figure 7.20: Temperature θdpf [◦C] for Vc2-Test

7.3.2.3 Selective catalytic reduction (SCR)

The inputs of the SCR temperature model are the gas flow coming from the DPF and the
DPF temperature. The measured and the simulated trajectories of the SCR temperature
for the identified parameters are given in Figure 7.21.
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Figure 7.21: Temperature θc [◦C] for Ic-Test

The maximum error in the estimated temperature is ±30◦C. The large difference
apparent in the first part of the driving cycle (t ∈ [0, 600] s), may be due to the limits of
the model: zero-dimensional model and neglecting the rate of heat released by the chemical
reactions. In this phase, the SCR is not activated and the difference in temperature does
not affect the NOx emission rate out of the SCR. In the second part of the driving cycle,
the error in the estimated temperature is less than ±15◦C.

7Explanations about the drops in the DOC, the DPF and the SCR temperatures in the surrounded
regions A, B, C and D are given in Appendix G.3.

89



7.4. SIMULATION TOOLS

0 200 400 600 800 1000 1200 1400 1600 1800

50

100

150

200

250

300

Time [s]

SCR Temperature [°C]

 

 

Model
Measurement

A

B

C

Figure 7.22: Temperature θc [◦C] for Vc1-Test7

0 500 1000 1500 2000 2500 3000 3500

100

150

200

250

300

Time [s]

SCR Temperature [°C]

 

 

Model
Measurement

D

Figure 7.23: Temperature θc [◦C] for Vc2-Test

For the model validation, the same experimental data from Vc1-Test and Vc2-Test are
used. The corresponding trajectories of the SCR temperature are given in Figures 7.22 and
7.23. The error in the estimated temperature is less than ±50◦C for the left-hand graph.
As explained above for the DOC and DPF models, the temperature-drop phenomenon
(surrounded area by a black circle in Figure 7.22 and 7.23) occurs when the engine is turned
off. The temperature-drop problem is more obvious than for the two previous cases (see
Appendix G.3). Indeed, the SCR is located further from the engine than the DOC and
the DPF and the gas takes more time to reach the SCR. Additionally, the characteristics
of the sensors used for the SCR are different from those used for the DOC and the DPF.
The measured temperature in these phases do not represent the true situation.

7.4 Simulation Tools

The control strategies presented in Section 7.5 are coded in Matlab/ Simulink. The
obtained controller is coupled with a simulator aimed at representing the system dynamics
in a more accurate way than the simple models used to design the optimization laws. The
simulator is distributed between several sub-models as shown in Figure 7.24:

1. The driver model is executed at 100 Hz. It enables the vehicle speed on a given
driving cycle to be follow, and reproduce the behavior of a real driver. The driver
controller is based on predictive control.

2. The transmission model is integrated in the AMESIM platform. It executes the
model at 1 kHz frequency and it includes the sliding of the tire and a 1-D vehicle.
This model provides essential information for the good representativeness of the
complete platform: it enables the level of predictability of the fuel consumption to
be increased and the evaluation of the driving agreement.

3. The models of the electric components include: a quasi-static model of an electric
machine and a battery represented with an equivalent-circuit model. The two models
are executed at 100 Hz.
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Figure 7.24: Simulation architecture

4. The engine model is based on quasi-static maps giving the fuel consumption and the
pollutant emissions. This model does not represent the effect of the engine transient
behavior on the whole system. The purpose of this simplified model is to calibrate
the control strategies.

The simulations are done in two steps:

• The first step is carried out in Simulink: a simplified model based on look-up tables
is used to tune the control strategies. The simulation platform has been developed
at IFP and it is called HOT (Hybrid Optimization Tool) [75]. It includes models
of the different part of the HEV and a controller where the PMP and the ECMS
formula given in (6.1) are implemented [17]. The simulation time is about 10 s.
The calibration of the ECMS parameters is performed in order to satisfy the final
constraint on the SOC. The simulation platform in Simulink is used for the control
strategy design.

• The second step is in xMOD [5, 6]: the model described in Section 7.4 is used, so
it is more realistic than the model used in HOT. The only missing point is that
the engine was represented by a look-up table. This model does not reproduce the
effect of the engine transient behavior on the system. The software xMOD is used to
optimize model execution time (accelerating the simulation from eight hours using
Simulink to thirty minutes using xMOD [5]: Multi-core, multi-solver and multi-rate
execution to boost the simulations performance). The adjoint state λ is determined
using the ECMS formula in (6.1) where the ECMS parameters are well tuned to
fulfill the final constraint on the SOC. The simulation platform in xMOD is used to
validate the control strategy calculated in the first step before testing it in the test
bench (Rapid prototyping).

It is important to highlight that the two simulators have the same models for the thermal
dynamics (of the engine and the after-treatment system).
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7.5 Optimization strategies
The objective of the study conducted in this section is to find a control strategy based on
optimal control that would be suitable for a real-time implementation, as it was carried
out in Chapter 6 for CO emissions reduction. This simplified strategy should yield a
reduction of NOx emissions to below 80 mg/km corresponding to the European norm
Euro 6 with an acceptable extra-fuel consumption compared to a control strategy that
minimizes only the fuel consumption.

7.5.1 Problem formulation

7.5.1.1 Cost function

The cost function (7.6) to be minimized is a weighted sum of the fuel consumption rate
and the NOx emission rate out of the SCR, over a fixed time window corresponding to a
driving cycle of a duration T . That is, similarly to equation (4.1)

J(u) =

∫ T

0

[(1− α) · c(u, t, θe) + αmNOx(u, t, θe, θc)] dt, (7.6)

where u is the control variable (the engine torque), θe is the engine temperature and θc is
the SCR temperature.

The instantaneous fuel consumption rate c(u, t, θe) is given by a quasi-static map
depending on the engine rotational speed, the engine indicated-torque, the engine tem-
perature because the engine friction torque depends on it (see Figure 7.6). The NOx

emission rate out of the SCR system mNOx(.) is of the form

mNOx(u, t, θe, θc) = mNOx,e(u, t, θe) · (1− ηNOx(θc)),

where mNOx,e is the emission rate out of the engine given by a quasi-steady map as a
function of the engine speed and torque. The term ηNOx is the SCR conversion efficiency
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Figure 7.25: SCR conversion efficiency ηNOx

(see Figure 7.25) depending on the SCR temperature θc. This latter temperature depends
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on the DOC and DPF temperatures calculated using the models proposed in (7.3, 7.4).
As in Chapter 4, the parameter α ∈ [0, 1] is used to set the trade-off between the fuel
consumption and the NOx emissions. The NOx map is normalized such that its mean
value remains close to the mean value of the fuel map. The same approach can be extended
to the other pollutant emissions (HC emissions). For convenience, we note

L(u, t, θe, θc) = (1− α) · c(u, t, θe) + αmNOx(u, t, θe, θc).

7.5.1.2 Dynamics

Five states are taken into account. The first one is the SOC, which is governed by the dif-
ferential equation in (3.2) with the final constraint on the SOC in (3.3). The second state
variable is the engine temperature θe whose dynamics is described by equation (7.1). The
third dynamics is the SCR temperature whose dynamics is given by equation (7.5). This
temperature depends on the DOC and DPF temperatures θdoc and θdpf whose dynamics
are given in equations (7.3, 7.4) respectively. When α = 0, only the fuel consumption is
minimized and the temperature of the SCR can be neglected in formulating the optimiza-
tion problem as it has no impact on the cost function nor on the constraints.

7.5.1.3 Input Constraints

The control u is constrained to belong to Uad defined by (3.4).

7.5.2 OCP summary

To summarize, the OCP is defined by

min
u∈Uad

J(u) (7.7)

under the final constraint (3.3) and the state dynamics (3.2, 7.1, 7.3, 7.4, 7.5) where the
set Uad is defined in equation (3.4).

7.5.3 Strategies for α 6= 0

Following the conclusion given in Chapter 4, the single-state strategies described in Ta-
ble 7.3 are tested.

The strategy (S) assumes that the engine temperature is constant (fixed at an initial
value θe,0), the SCR is never activated (its temperature is fixed at θc,0) and its efficiency
ηNOx is fixed. The tested values of θe,0 are 20◦C (cold engine start) and 90◦C (warm engine
start). The tested values of θc,0 are 20◦C (the SCR is not activated and the control strategy
minimizes the NOx emissions out of the engine) and 150◦C (the SCR is partially activated
but its temperature is constant). These are the only information given to solve (S). These
tests are performed only on simulation with the full model (five states) described above
to study the sensitivity of the strategy (S) to the provided information. Two additional
heuristic strategies based on optimization are considered:

• The first strategy, denoted as (HS1), is a pseudo-solution of the OCP (7.7) where
the engine is warm (the cost function is independent of θe and its adjoint state
µ(t) ≡ 0) while ρ(t) ≡ 0 is arbitrarily imposed in the Hamiltonian.

93



7.5. OPTIMIZATION STRATEGIES

Table 7.3: Control strategies description for α 6= 0

Strategy Control

(S) u∗(t) = arg min
u∈Uad

(L(u, t, θe,0, θc,0) + λ
dξ

dt
)

(HS1) uh1(t) = arg min
u∈Uad

(L(u, t, 90, θc) + λ
dξ

dt
)

(HS2) uh2(t) = arg min
u∈Uad

(L(u, t, θe, 20) + λ
dξ

dt
)

• The second strategy, denoted as (HS2), assumes that the SCR is never activated
ηNOx = 0 (the cost function is independent of θc and its adjoint state ρ(t) ≡ 0) while
the adjoint state µ(t) (associated to the engine temperature) is arbitrarily set to
zero in the Hamiltonian.

Online adaptation of λ The adjoint state λ is determined using the ECMS formula
in (6.1). Following the conclusion drawn in Section 6.1.3, the ECMS parameters (λ0, kp)
are tuned to satisfy the final constraint on the SOC. The online strategies corresponding
to S, HS1 and HS2 are referred to ECMS, HECMS1 and HECMS2, respectively.

7.5.4 Strategies for α = 0

Here, the fuel consumption is the cost function to be minimized. Two dynamics have
to be considered: the SOC dynamics and the water temperature θe. The two strategies
described in Table 7.4 have been tested. In this case (α = 0), the strategy (HS1) is
equivalent to the strategy (S).

Table 7.4: Control strategies description (α = 0)

Strategy Control

(Sα=0) u∗0(t) = arg min
u∈Uad

(c(u, t, 90) + λ
dξ

dt
)

(HSα=0
2 ) uh2(t) = arg min

u∈Uad
(c(u, t, θe) + λ

dξ

dt
)

The strategy (Sα=0) refers to the solution of the problem (7.7) for α = 0, in which the
engine temperature is assumed to be constant (around 90◦C). Following [55], the heuris-
tic strategy (HSα=0

2 ) is a pseudo solution of the problem (7.7), where the adjoint state
associated to the engine temperature is arbitrary set to µ(t) = 0, ∀t in the Hamiltonian.
This simplification reduces the number of the unknown variables from 2 to 1.

Online adaptation of λ As mentioned above for the real-time application, the adjoint
state λ is determined using the ECMS formula in (6.1). The ECMS parameters (λ0, kp)
are tuned to satisfy the final constraint on the SOC.
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7.6 Simulation results

The WLTC cycle is used for the simulations. This driving cycle is more representative of
real driving conditions and it will be used instead of the NEDC as a validation driving
cycle by car manufacturers in Europe from 2017. For all the simulations, the engine, the
DOC, the DPF and the SCR are cold at the beginning of the driving cycle.

7.6.1 Case of α 6= 0

The parameter α is changed in ]0, 1]. For each value of α, the control strategies described
in Table 7.3 are tested in simulation.

7.6.1.1 Simulation using HOT

7.6.1.1.1 Offline case Figure 7.26 details the variation of the fuel consumption as a
function of the NOx emissions (out of the engine and out of the SCR) for various values
of α where the adjoint state λ is determined using the PMP (λ is constant).
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Figure 7.26: Fuel consumption [L/100 km] as a function of NOx emissions [mg/km] out of the
engine (left) and out of the SCR (right) for offline strategies simulated with HOT.

The strategies (S) and (HS2) reduce the NOx emissions out of the engine while they
increase the fuel consumption when α increases. This behavior leads to a reduction of
the NOx emissions out of the SCR. From the plots of Figure 7.26, the maximum NOx

emissions reduction out of the engine using the strategies (S) and (HS2) is 50% and the
maximum NOx emissions reduction out of the SCR is about 33% while the extra-fuel
consumption is 7% comparing to the strategy minimizing only the fuel consumption (for
α = 0). On the other hand, the strategy (HS1) reduces only the NOx emissions out of the
SCR. The maximum NOx emissions reduction is 33% while the extra-fuel consumption is
around 6% comparing to the strategy minimizing only the fuel consumption.

The trajectories of the SOC and the SCR temperature by using the strategies (S) and
(HS1) for increasing values of α are given in Figures 7.27, 7.28, 7.29 and 7.30, respectively.
From Figures 7.27 and 7.28 (where the strategy (S) assumes θe,0 = 90 and θc,0 = 20
without loss of generality), when α is increased, the control strategy (S) improves the
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SCR efficiency by warming it up promptly. To achieve this improvement, the engine is
overused and the additional resulting power is stored in the battery (the SOC trajectories
are higher when α increases). Globally, the efficiency improvement decreases the pollutant
emissions out of the SCR and the fuel consumption increases.
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Figure 7.27: SOC trajectories [%] using (S)
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Figure 7.28: SCR temperature [◦C] using (S)
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Figure 7.29: SOC [%] trajectories using (HS1)
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Figure 7.30: SCR temperature [◦C] using (HS1)

According to Figures 7.29 and 7.30 (compared to Figures 7.27 and 7.28 respectively),
when α is increased, the control strategy (HS1) behaves differently from the strategy (S).
The electric mode is used at the beginning of the driving cycle. This behavior is observed
from the SOC trajectories where the minimum SOC value decreases when α is increased.
As the engine is less and less used, the SCR efficiency remains poor at the beginning
of the driving cycle. Because of the final constraint on the SOC, strategy (HS1) favors
the use of the engine to bring the final SOC to its target value. The SCR temperature
increases quickly. This kind of behavior needs a large battery or a high energy available
in the battery at the beginning of the driving cycle in contrast to the strategy (S).
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7.6.1.1.2 Online case Figure 7.31 details the variation of the fuel consumption as a
function of the NOx emissions (out of the engine and out of the SCR) for various values of
α where the adjoint state λ is determined using the ECMS formula in (6.1). The ECMS
parameters (λ0, kp) are tuned to satisfy the final constraint on the SOC.
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Figure 7.31: Fuel consumption [L/100 km] as a function of NOx emissions [mg/km] out of the
engine (left) and out of the SCR (right). Online strategies tested with HOT.

From the plots of Figure 7.31, when α increases, the strategies (ECMS) and (HECMS2)
reduce the NOx emissions out of the engine and the SCR while they increase the fuel
consumption. On the other hand, the strategy (HECMS1) reduces only the NOx emis-
sions out of the SCR. Comparing to the case where λ is constant (optimal value), the
maximum reduction of the NOx emissions out of the SCR is 29% for the strategies
(ECMS, HECMS2) and 33% for the strategy (HECMS1).

7.6.1.2 Simulation using xMOD

In this section, the xMOD platform is used. The differences between this platform and
HOT are the driver and the transmission models which are more realistic. This platform
is used for the experimental tests on the test bench.

Figure 7.32 details the variation of the fuel consumption as a function of NOx emissions
(out of the engine and out of the SCR) for various values of α where the adjoint state λ is
determined using the ECMS formula in (6.1). The ECMS parameters (λ0, kp) are tuned
to satisfy the final constraint on the SOC. From this figure, the obtained results have
the same tendency as the previous results obtained by HOT in Section 7.6.1.1. The NOx

emissions out of the SCR are reduced by the different tested strategies: the maximum
NOx emissions reduction out of the engine is 50% and out of the SCR is 34% while
the maximum extra-fuel consumption is about 7% comparing to the strategy minimizing
only the fuel consumption. The same remarks as the ones drawn from HOT about the
SOC and the SCR trajectories can be formulated from Figures 7.33 and 7.34: when α
is increased, the strategy (ECMS) recharges the battery at the beginning of the driving
cycle by overusing the engine to provide the power requested by the driver at the wheel
while the strategy (HECMS1) discharges the battery at the beginning of the driving
cycle by using the electric machine to provide the needed power to follow the driving
cycle speed set points.
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Figure 7.32: Fuel Consumption [L/100 km] as a function of NOx emissions [mg/km] out of the
engine (left) and out of the SCR (right) from ECMS (xMOD platform).
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Figure 7.33: SOC trajectories [%] and SCR temperature [◦C] using (ECMS)

7.6.2 Case of α = 0

The fuel consumption obtained with the various control strategies defined in Table 7.4 are
given in Table 7.5. The final constraint on the SOC is satisfied for the tested strategies.

From this table, the two strategies appears as close in terms of fuel consumption for
the different simulations (using HOT and xMOD platforms). The difference between the
strategies (Sα=0) and (HSα=0

2 ) is less than 0.7%).

7.7 Experimental results
Simulation results of Section 7.6 have been shown great accordance of the results of offline
and online strategies. In experiment, we now test ECMS strategies. For the experimental
tests, the adjoint state λ is determined by using the ECMS formula. The calibration of the
ECMS parameters is carried out in order to satisfy the final constraint on the SOC. The
determination of the optimal constant value of λ for the test bench needs some work as
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Figure 7.34: OC [%] trajectories and SCR temperature [◦C] using (HECMS1)

Table 7.5: Fuel Consumption [L/100 km] for α = 0 (Simulation results)

Strategies (Sα=0) (HSα=0
2 )

HOT Simulation (offline) 7.52 7.54
HOT Simulation (online) 7.52 7.55
xMOD Simulation (online) 7.65 7.70

the models used in the simulation are not exact and the engine torque set point requested
by the EMS are not fulfilled8. For all tests, the engine, the DOC, the DPF and the SCR
are cold at the beginning of the driving cycle (around 20◦C).

7.7.1 Case of α = 0

The obtained fuel consumption on the test bench for the different control strategies defined
in Table 7.4 are given in the first line of Table 7.6 (the line corresponding to α = 0). From
Table 7.6, the difference between the two tested strategies is less than 1% comparing to the
fuel consumption for a warm start of the engine (8.17 L/100 km). The strategy (ECMS)
gives the lowest fuel consumption for a cold-start of the engine. The obtained results is
not surprising. Even in the purely thermal mode (using only the engine), the difference
between the fuel consumption for warm and cold start of the engine is less than 2% on
the test bench (the fuel consumption for a warm start is 9.85 L/100 km and for cold start
is 10.02 L/100 km).

As it has been concluded from the simulation, these experimental tests suggest that
the impact of the engine temperature on the calculation of EMS minimizing the fuel con-
sumption can be neglected. This suggestion confirms the conclusion made in Section B.3
for a gasoline engine where the impact of the engine temperature on the fuel consumption
were more important than for the diesel engine considered in this chapter.

8The torque provided at the shaft by the engine is always lower than the set points generated by the
EMS and the driver model based on a model predictive controller modifies the torque requested at the
wheels in order to follow the driving cycle defined by the vehicle speed.
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7.7.2 Case of α 6= 0

Due to some technical problems, the experimental tests concerning the NOx emissions
reduction are limited. Only two tests for each strategy are presented in order to show the
possible reduction of the NOx emissions and its cost in term of fuel consumption. The
results are summarized in Tables 7.6, 7.7 and 7.8, respectively. From these tables, the

Table 7.6: Fuel consumption [L/100 km] (experiments of proposed online strategies)

Strategy (ECMS) (HECMS1) (HECMS2)
α = 0 8.23 8.23 8.30
α = 0.35 8.65 8.72 8.90
Extra-fuel consumption +4.85% +5.6% +6.7%

Table 7.7: NOx emissions [mg/km] out of engine (experiments of proposed online strategies)

Strategy (ECMS) (HECMS1) (HECMS2)
α = 0 435 435 445
α = 0.35 249 450 261
NOx reduction −43% +3.3% −41.3%

Table 7.8: NOx emissions [mg/km] out of the SCR (experiments of proposed online strategies)

Strategy (ECMS) (HECMS1) (HECMS2)
α = 0 120 120 106
α = 0.35 68 55 80
NOx reduction −43.3% −54.1% −24.5%

tested strategies allow the NOx emissions reduction comparing to the strategy minimizing
only the fuel consumption (α = 0). The strategies (ECMS) and (HECMS2) reduce the
NOx emissions out of the engine and out of the SCR while the strategy (HECMS1)
reduces only the NOx emissions out of the SCR:

• The strategy (HECMS1) reduces the NOx emissions out of the SCR by 54% while
the extra-fuel consumption is 5.6% compared to the case for α = 0 (fuel consumption
minimization).

• The strategy (ECMS) also reduces the NOx emissions out of the SCR by 43% while
the extra-fuel consumption is lower (about 4.85%) than in the case of the strategy
(HECMS1).

• The strategy (HECMS2) is less efficient in NOx emissions reduction (25%).

The conclusion of these experiments is that the (HECMS1) and (ECMS) are two good
candidates for an EMS of the considered vehicle. The two strategies generate very different
trajectories through. The SOC, the engine and the SCR temperatures using the strategies
(ECMS) and (HECMS1) for α = 0.35 are given in Figures 7.35 and 7.36, respectively.
These figures show that the strategy (HECMS1) uses only the electric machine at the

100



CHAPTER 7. EXPERIMENTAL TESTS

0 200 400 600 800 1000 1200 1400 1600 1800

0.3

0.4

0.5

0.6

0.7

0.75

Time [s]

State of Charge of the Battery

 

 

(ECMS)
(HECMS

1
)

Figure 7.35: SOC [%] trajectories from the experimental tests

beginning of the driving cycle until 600 s (see the engine and the catalyst temperatures,
they are constant until 600 s). Later, the strategy uses the engine and the electric machine
in order to bring the SOC to its target value at the end of the driving cycle by recharging
the battery. The engine and the SCR temperatures increase. On the other hand, the
strategy (ECMS) chooses to overuse the engine at the beginning of the driving cycle
(recharge the battery) and warm-up quickly the engine and the SCR. The battery is
discharged at the end of the driving cycle in order to meet the final constraint on the SOC.
Despite the difference in the behavior of the two strategies, they reduce the NOx emissions
out of the SCR. These results illustrate that it is not necessary to warm-up quickly the
SCR at the beginning of the driving cycle in order to reduce the NOx emissions.
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Figure 7.36: Temperatures θe [◦C] (left) and θc [◦C] (right) from experimental tests
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7.8 Conclusion
For a parallel HEV equipped with a diesel engine and a SCR system, the impact of the
engine and the SCR temperatures on the calculation of an EMS aiming at minimizing the
a trade-off between fuel consumption and NOx emissions has been studied.

For the engine temperature, the simulations and the experimental results indicate that
it is not necessary to take it into account in the optimization of the fuel consumption.
This result confirms the conclusion of Chapter 4 where the engine is of gasoline type.

For the SCR temperature, the simplest strategies (ECMS) and (HECMS1) guar-
antee a good level of NOx emissions reduction between 40% and 50% with an extra-fuel
consumption of 4.9 − 6% on the test bench. The presented results from the strategy
(HECMS1) show also that it is not necessary to warm-up quickly the SCR at the be-
ginning of the driving cycle to reduce the NOx emissions out of the SCR as the strategy
(ECMS) did.
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Conclusion

In this thesis, the design of an EMS for a parallel HEV by taking into account the impact
of internal temperatures (engine and/or catalyst temperatures) has been addressed. The
objective of this EMS is to reduce pollutant emissions in order to satisfy the European
requirements for regulated emissions with an acceptable extra-fuel consumption. This
question has been studied in Part I from a model complexity viewpoint: the number of
state variables in the optimization problem. Based on results presented in Chapter 4 and
Chapter 7, the single-state model, considering only the SOC dynamics, is an effective way
to calculate control strategies allowing the pollutant emissions (CO for a gasoline engine
and NOx in the case of diesel engine) to satisfy the demanding standard on emissions with
an acceptable extra-fuel consumption stemming from simplification and lack of knowledge
on future vehicle’s path.

Considering various (increasingly) levels of complexity in the modeling has given us
the opportunity to study the question of perturbation in optimal control. Thereafter in
Part II, the general concept of regular perturbations in optimal control problems (OCPs)
under input constraints has been explored. The various problems studied in Part I are
examples of successive model simplifications which can be recast into this concept. The
results of Bensoussan [7] about the robustness of cost, control and state with respect
to model errors has been extended to include input constraints using the results of [47]
about interior penalty approach. Then, we have ended up with a quadratic upper bound
on the error in the cost function of the form Kε2. The estimation of the value of K
as a function of the system parameters has been studied and illustrated via numerical
examples. The presented results show that the estimated upper bound is conservative.
Once K is estimated, we show how its value can be used as a tool to analyze the cost of
simplifying OCPs.

Finally in Part III, real-time strategies for EMS have been investigated. Generaliza-
tions of the feedback law of ECMS were performed in Chapter 6 by using relationships
between the thermal states and their corresponding adjoint states. These correlations
have been identified along extremal calculated in Part I. The proposed strategies give
satisfactory results for the pollutant emissions reduction with an acceptable extra-fuel
consumption compared to optimal strategies.
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Appendix A

Description of driving cycles

A driving cycle is a series of data points representing the speed and the road gradient
profiles as functions of time, to be followed by a vehicle. It provides a basis of comparison
to assess the performance of vehicles, for example with respect to fuel consumption and
pollutant emissions. In practice, these cycles are often used on chassis dynamometers
where the force at the wheels emulates the vehicle energy losses. These tests are carried
out in controlled environments (in terms of temperature, humidity), with strict procedures
being followed in order to reach defined thermal initial conditions for the vehicle [33].
Another use of standard driving cycles is found in vehicle simulations. More precisely,
they are used, in propulsion system simulations, to predict performance of the various
powertrain components: internal combustion engine, transmission, electric drive system
and battery.

Driving cycles are either built arbitrarily by defining steady-state speed phases and
accelerations/decelerations to link these phases (as with NEDC cycle), or from statistical
data collected in real use of vehicles. This driving cycle resulting from the second technique
is considered to fairly reproduce true vehicle usages. The driving cycles used in this thesis
are pictured in the following figures. The WLTC cycle is used in Chapter 7 for the
experimental tests. The gear-box ratios are calculated according to a law based on the
vehicle performance requirements.
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Figure A.1: Wheel speed [km/h] (left) and gear-box ratio (right) for FTP-75 cycle
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Figure A.2: Wheel speed [km/h] (left) and gear-box ratio (right) for WLTCm cycle
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Figure A.3: Wheel speed [km/h] (left) and gear-box ratio (right) for FHDS cycle
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Figure A.4: Wheel speed [km/h] (left) and gear-box ratio (right) for WLTC
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Appendix B

Fuel consumption minimization case

The cost function (B.1) to be minimized is the fuel consumption over a fixed time window
corresponding to a given driving cycle of a duration T :

J0
2 (u) =

∫ T

0

cf (u, t, θe)dt, (B.1)

where u is the control variable (the engine torque), θe is the engine temperature state and
cf (u, t, θe) is the fuel consumption rate when the engine is cold given in equation (4.2).

Two dynamics are taken into account. The first one is the SOC dynamics. It is gov-
erned by the differential equation (3.2) with the final constraint (3.3). The second state
variable is the engine temperature θe described by the differential equation (4.3). The
OCP discussed here is defined by

min
u∈Uad

J0
2 (u),

under the final constraint (3.3), the instantaneous constraint on the SOC (3.5) and the
dynamics (3.2, 4.3). This OCP can be obtained from (OCP2) by setting α = 0 in the cost
function J2 defined in equation (4.1).

B.1 PMP solution and numerical solving

B.1.1 Without instantaneous SOC constraints

Based on the PMP [68], the Hamiltonian H0
2 is defined by

H0
2 (u, t, θe, λ, µ) = c(u, t)e(θe) + λf(u, t) + µg(u, t, θe),

where λ and µ are the adjoint variables associated to ξ and θe respectively1. For a given
control u∗02 , the adjoint states λ(t) and µ(t) are defined by

dλ

dt
= −∂H

0
2

∂ξ
= 0, (B.2)

dµ

dt
= −∂H

0
2

∂θe
= −c(u∗02 , t)

∂e

∂θe
− µ∂g(u∗02 , t, θe)

∂θe
, (B.3)

1In the naming of the Hamiltonian, the superscript indicates the value of α in the Hamiltonian H2

defined in equation (4.5).
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with
µ(T ) = 0, (B.4)

since the final temperature is free and the final time T is fixed. If u∗02 is an optimal control,
then, for every t, u∗02 (t) minimizes the Hamiltonian H0

2 in the set defined by (3.4),

u∗02 (t) ∈ arg min
u∈Uad

H0
2 (u, t, θe(t), λ(t), µ(t)). (B.5)

Equations (3.2, 3.3, B.2, B.3, B.4, B.5) constitute a TPBVP denoted by (P1), where the
final condition λ(T ) is unknown. The control strategy obtained is denoted as (S0

2).
For the numerical method, a specifically tailored single shooting-related method was

used. Classically, the idea of this algorithm is to consider the initial conditions of the
adjoint states (λ0, µ0) as unknown variables and the vector function, which associates
[ξ(T ) − ξ(0)] and µ(T ) and (λ0, µ0), where (ξ, θe, λ, µ) are the solution of the following
system in [0, T ] 

dξ

dt
= f(u∗02 , t), ξ(0) = ξ0,

dθe
dt

= g(u∗02 , t, θe), θe(0) = θ0,

dλ

dt
= 0, λ(0) = λ0,

dµ

dt
= −c(u∗02 , t)

∂e

∂θe
− µ∂g(u∗02 , t, θe)

∂θe
, µ(0) = µ0.

Then, the problem is re-cast into finding zeros of this function from R2 into R2. This is
achieved using Newton’s method implemented in the popular fsolve Matlab function.
The solution given by bvp4c (which is not accurate enough) is used to initialize the fsolve
algorithm.

B.1.2 With instantaneous SOC constraints

To take the SOC constraints into account, the algorithm proposed in [47] was used. A
new cost function parametrized by the penalty weight r is defined

J̄0
2 (u, r) =

∫ T

0

[c(u, t)e(θe) + r · γ(ξ)] dt,

where γ(.) is given by (3.11). For simplicity, and as the SOC trajectories are always below
ξmax for the considered driving cycles, only the constraint ξ(t) ≥ ξmin is considered. To
solve this OCP, the PMP was used and the associated Hamiltonian H0

2r is defined by

H0
2r(u, t, ξ, λ, r) = c(u, t)e(θe) + r · γ(ξ) + λf(u, t) + µg(u, t, θe).

Only the dynamics of the adjoint state λ is modified by comparison with the unconstrained
case presented in the previous section. The new dynamics of λ is given by

λ̇ =
r.ng

(ξ(t)− ξmin)ng+1
, (B.6)
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where λ(T ) is free since the final SOC is constrained. The optimal control ur1(t) minimizes
the Hamiltonian H0

2r in the set defined by (3.4):

ur1(t) ∈ arg min
u∈Uad

H0
2r(u, t, ξ, λ, r). (B.7)

Equations (3.2, 3.3, B.3, B.4, B.6, B.7) constitute a TPBVP denoted by (P r
1 ) where the

final condition λ(T ) is unknown. The parameter ng is set at 1.1. The weight r is initialized
with r0 = 2 · 10−6 for the NEDC, and is then decreased.

B.2 Numerical results
An equivalence factor that is positive and dimensionless, denoted by p, is used instead of
using µ (which is negative). The relationship between the two parameters is given by

p(t) = −Hlhv

Ce
µ(t), (B.8)

where Hlhv is the lower heating value of the fuel. The stationarity condition of the PMP
is expressed on the quantity H̃0

2 given in (B.9) (in power units). H̃0
2 is the sum of three

quantities: the consumed fuel power, the inner (electrochemical) battery power and a
thermal power defined by the engine temperature variation Ptherm(t) = −Ce · θ̇e,

H̃0
2 (u, t, θe, s, p) = c(u, t)e(θe) ·Hlhv + s(t) · Ib(t) · Uocv(t) + p(t) · Ptherm(t), (B.9)

where s is the equivalence factor associated to the SOC defined in (3.15). In the case of
instantaneous constraints on the SOC, the equivalent quantity of H0

2r in power units is

H̃0
2r(u, t, θe, s, p) = [c(u, t)e(θe) + r · γ(ξ)] ·Hlhv + s(t) · Ib(t) · Uocv(t) + p(t) · Ptherm(t).

B.2.1 Without instantaneous SOC constraints

The two strategies (S0) and (S0
2) calculated by solving the two TPBVP (P0) (described in

Section 3.4.2.1) and (P1) (described in Section B.1.1) will be compared2. Table B.1 sum-
marizes the results obtained in terms of fuel consumption for five driving cycles: NEDC,
FUDS, FHDS, FTP and a modified cycle based on WLTC cycle, denoted by WLTCm.
Fuel consumption for a warm engine start is given in the second column corresponding
to the strategy (S0). The optimal trajectories of the SOC, the temperature θe and the
equivalence factor p for the NEDC are given in the Figures B.1 and B.2 respectively. In
the right-hand graph in Figure B.1, the red curve represents the simulated trajectory of
θe using the control calculated from the strategy (S0).

The optimal temperature trajectories in Figure B.1 show that the optimal control
strategy (S0

2) improves the engine efficiency by warming up the engine in the first phase
of the driving cycle (corresponding to the time interval [0, 800] s). In this phase, the
SOC trajectory is higher than the trajectory corresponding to the strategy (S0). The
price paid for achieving this efficiency improvement is an increased fuel consumption due
to the excessive use of the engine. This observation means that the control u∗02 anticipates
the influence of the low engine temperature on the fuel consumption and improves engine
efficiency in the first part of the driving cycle.

2In the naming of the control strategies, the superscript indicates the value of α in the corresponding
Hamiltonian.
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Table B.1: Fuel consumption [L/100 km]

Driving cycle S0
2 S0 (Warm start)

NEDC 4.94 4.38
FUDS 4.54 4.01
FHDS 5.48 5.10
FTP 4.40 4.01
WLTCm 5.215 4.94

0 200 400 600 800 1000

44

46

48

50

52

54

56

58

60

Time [s]

 

 

S
O
C

[%
]

Strategy (S
2
0)

Strategy (S0)

0 200 400 600 800 1000
20

30

40

50

60

70

80

Time [s]

 

 

θ e

Strategy (S
2
0)

Strategy (S0)

Figure B.1: SOC [%] trajectories (left) and simulated θe [◦C] trajectories (right) for NEDC in
the unconstrained case

The equivalence factor p associated to θe for NEDC, shown in Figure B.2, decreases
with time and becomes null when the engine is warm (θe ≥ θw). This is due to the increase
in the engine temperature and, consequently, the fuel consumption becomes independent
of θe after a certain time (corresponding to the time when the thermostat is activated).

B.2.2 Relation between p(0) and θe(0)

The behavior of the equivalence factor p depends on the initial value of the engine temper-
ature θe(0). While the SOC equivalence factor is constant, the temperature equivalence
factor varies substantially in time, tending to zero when θe(t) tends to 80 ◦C (the tem-
perature at which the thermostat is activated). The relationship between p(0) and θe(0)
is identified here in view of a possible estimation of p(0) for real-time application. To do
that, the initial condition of θe is changed and the corresponding optimal solution of (P1)
is calculated. This operation was done for the five driving cycles being considered. The
results, summarized in Figure B.3, show that the relationship between p(0) and θe(0) is
monotonic and that p(0) tends to zero when θe(0) goes to 80◦C. The optimal value of p(0)
can be identified by a quadratic function in θe(0)

p(0) = l1 · θ2
e(0) + l2 · θe(0) + l3,

where the parameters li, i = 1, 2, 3 depend on the driving cycle. These results can be
used for a real-time implementation.
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B.2.3 With instantaneous SOC constraints

For each value of r in a decreasing sequence, the TPBVP (P r
1 ) is solved. The state and

the corresponding costate trajectories for NEDC are shown in Figures B.4 and B.5. The
obtained fuel consumptions are summarized in Table B.2.
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Figure B.4: SOC [%] trajectories (left) and equivalence factor s(t) (right) for NEDC in the
constrained case

Table B.2: J0
2 (ur1) [L/100 km] for NEDC

r J0
2 (ur1) 100 ·min(ξ(t)− ξmin)

2e−6 4.973 8.59
8e−7 4.961 8.30
8e−8 4.957 4.84
5e−9 4.947 4.14

Without constraints 4.94 /
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Figure B.5: Engine temperature θe [◦C] (left) and equivalence factor p (right) for NEDC in the
constrained case

When r decreases, Figure B.4 shows that the SOC trajectories approach the state
constraints and the engine temperature trajectories are affected. The parameter r has
some impact on the history of the SOC (the use of the engine and the electric machine):
for high value of r, the control strategy recharges the battery at the beginning of the
driving cycle by overusing the engine. To minimize the term r · γ(ξ), ξ(t) has to be far
from its lower bound (ξmin). This use of the engine at the beginning of the driving cycle
increases the engine temperature quickly (see Figure B.5). When r tends to zero, the
strategy has more flexibility and the SOC moves close to the constraints. The term γ(ξ)
increases.

The trajectories of equivalence factors s and p given in Figures B.4 and B.5 (right-
hand figures) illustrate the monotonic relation between the initial conditions (s(0), p(0))
and the value of r. When r goes to zero, (s(0), p(0)) converge to their initial values
in the unconstrained case (the black and the cyan trajectories in Figures B.4 and B.5).
This convergence is quite logical as the SOC constraints are never activated even in the
unconstrained case.

To illustrate the usefulness of the interior penalty approach in the presence of active
state constraints, the combined cycle (see Figure 3.12) is considered. The weight r for this
cycle is initialized with r0 = 5 · 10−7. The control strategies obtained for various values of
r are compared in Table B.3 to the unconstrained strategy in terms of fuel consumption.
The SOC and the equivalence factor s trajectories are given in Figures B.6.

Table B.3: J0
2 (ur1) [L/100 km] for the combined cycle

r J0
2 (ur1) 100 ·min(ξ(t)− ξmin)

5e−7 5.089 8.19
1e−7 5.064 5.43
5e−8 5.058 1.85
8e−9 5.054 0.39

Without constraints 5.053 /
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Figure B.6: SOC [%] (left) and equivalence factor s(t) (right) for the combined cycle in the
constrained case

The SOC trajectory approaches the state constraints and the constraints are always
satisfied. When r tends to zero, the minimum distance between the SOC and its lower
bound decreases. After a certain threshold of r for which ξ is very close to ξmin, a jump
in the value of the equivalence factor s appears.

The fuel consumptions given in Table B.3 show that the difference in terms of fuel
consumption for different values of r is less than 2% compared to the unconstrained
strategy. This remark is discussed in Section 5.9 from a theoretical viewpoint.

B.3 Simplified model for EMSminimizing fuel consump-
tion

The objective is to find a trade-off between the order of the model used to calculate the
optimal control (i.e., number of state variables) and the optimality of the used strategy.
The constraints (3.5) on the SOC are omitted.

B.3.1 Control strategies description

The idea presented here is based on simplifying the model used to calculate the optimal
control. Three control strategies are defined:

• The strategy (S0) refers to the solution of the TPBVP (P0) where e(θe) is constant,
e ≡ 1.

• The strategy (S0
2) corresponds to the solution of the TPBVP (P1). It represents the

optimal solution.

• Following the work in [55], the strategy (HS0
2) is a pseudo-solution of the TPBVP

(P1) where µ(t) = 0, ∀t is imposed in the Hamiltonian. This simplification reduces
the number of the unknown variables from 2 to 1.
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The control strategies are formulated in Table B.4. The strategies (S0) and (HS0
2) are

single state strategies where the only unknown variable, the adjoint state λ, is determined
to satisfy the final constraint (3.3).

Table B.4: Control strategies description3

Strategy Unknown Control Opt/Heur

(S0
2) 2 (λ, µ) u∗02 (t) = arg min

u∈Uad
(c(u, t)e(θ) + λ

dξ

dt
+ µ

dθ

dt
) Optimal

(S0) 1 (λ) u∗0(t) = arg min
u∈Uad

(c(u, t) + λ
dξ

dt
) Optimal

(HS0
2) 1 (λ) uh1(t) = arg min

u∈Uad
(c(u, t)e(θ) + λ

dξ

dt
) Heuristic

Note that these strategies are only used to calculate the control. The comparison will
be done using the full model described by (3.2, 4.3, B.1).

B.3.2 Numerical results

The three strategies described above have been implemented and tested in simulation.
Tables B.5 and B.6 summarize the obtained results for five driving cycles: NEDC, FUDS,
FHDS, FTP and WLTCm in terms of fuel consumption (Table B.5) and the satisfaction
of the final constraint (Table B.6). The discussions will be about the NEDC.

Table B.5: Fuel consumption [L/100 km]

S0
2 S0 HS0

2

NEDC 4.94 4.97 (+0.6%) 5.16 (+4.4%)
FUDS 4.54 4.55 (+0.2%) 4.79 (+5.5%)
FHDS 5.48 5.50 (+0.4%) 5.77 (+4.9%)
FTP 4.40 4.42 (+0.5%) 4.99 (+13.4%)

WLTCm 5.21 5.22 (+0.2%) 5.39 (+3.5%)

Table B.6: Constraint violation of the SOC [ξ(T )− ξ(0)]× 100

S0 HS0
2 S0

2

NEDC 0.02 -0.30 0.13
FUDS -0.06 0.11 -0.05
FHDS 0.06 0.25 -0.10
FTP -0.02 -0.31 0.08

WLTCm -0.03 0.07 0.09

The SOC and the temperature θe trajectories for the NEDC are shown in Figure B.7.
The accumulated fuel consumption is shown in Figure B.8.

From Table B.5, the strategy (HS0
2) is far from the strategies (S0) and (S0

2) which are
very close in terms of fuel consumption as well as in the state trajectories (see Figure B.7).

3In the naming of the control strategies, the superscript indicates the value of α in the corresponding
control strategies (without a superscript) described in Table 4.1.
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Figure B.7: SOC [%] (left) and engine temperature θe [◦C] (right) trajectories for NEDC
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Figure B.8: Accumulated fuel consumption [kg] for NEDC

The strategy (HS0
2) uses the electric mode in a first part of the cycle as the engine use

is more costly in this part than the electric machine, and the battery is discharged to
provide the power at the wheels requested by the driver (see Figure B.7). Due to the
presence of the final constraint on the SOC, the control strategy will promote the use of
the engine (thermal mode) in order to bring the final SOC to its target value. Because of
the large SOC excursions, this pattern of behavior requires a large battery, or a high energy
available in the battery at the beginning of the driving cycle in contrast to the strategies
(S0) and (S0

2) (see Figure B.7 for the SOC trajectories) . Note that the disparity between
the strategies (S0), (S0

2) and (HS0
2) in terms of fuel consumption and state trajectories

would be less noticeable if the value of b0 in the correction factor e(θe) were lower than
the value given in Table 4.2.

The optimal temperature trajectory in Figure B.7 shows that the optimal control of
solution (S0

2) improves the engine efficiency by warming up the engine in the first phase
of the driving cycle. The price to be paid for achieving this improvement is an increased
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fuel consumption, as seen in Figure B.8. In the second phase, the engine is warmer and
more efficient and the fuel consumption obtained by using the control u∗02 is less than
when using the control u∗0. However, the control cannot fully exploit the temperature-
dependent efficiency improvement of the engine because it must meet the final constraint
ξ(T ) = ξ(0). Globally, this might explain why thermal management does not significantly
improve fuel consumption in comparison with simply using control u∗0 obtained by solving
the problem (P0), which ignores the influence of the engine temperature on the fuel
consumption. More explanation of these results from a mathematical viewpoint are given
in Section 5.7.

The behavior of the SOC and the engine temperature for the three control strategies
is given in Figures B.9 for FUDS driving cycles.
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Figure B.9: FUDS trajectories: SOC [%] (left);engine temperature θe [◦C] (right)

These figures show that the state trajectories resulting from the control strategy (S0)
are closer to the optimal trajectories obtained using the strategy (S0

2), whereas those for
strategy (HS0

2) are far from optimal.

B.3.3 Conclusion

The numerical results presented above suggest that it may be sufficient to use the strategy
(S0) to compute the optimal torque split minimizing the fuel consumption, even although
engine temperature impacts fuel consumption. Results presented in [87, 88] have suggested
a similar conclusion, where it was shown that the optimal control calculated for a warm
engine start is close to the optimal control calculated for a cold-engine start.

B.4 ECMS extension to include engine temperature

The optimization problem considered has the objective of minimizing the fuel consumption
under the dynamics of the SOC and the engine temperature θe.
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B.4.1 Formulation of θe-ECMS

The TPBVP (P1) described in Section B.1.1 requires the driving cycle to be known in
advance, as the initial values of the adjoint variables λ and µ depend on the future driving
conditions. The objective is to find a relationship between µ and θe which is assumed to
be measured or at least estimated. This relation will be used for a real-time controller
and it has to be robust for driving condition variations.

The proposed method is based on post-analysis of the PMP results. In what follows,
the equivalence factors (s, p) defined in (3.15, B.8) are used instead of (λ, µ). Figure B.10
shows the relationship between p and θe on the optimal trajectories calculated using the
PMP for the five driving cycles. This relationship seems monotonic and has the same
tendency as that between p(0) and θe(0) described in Section B.2.2 (see Figure B.3).
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Figure B.10: Equivalence factor p as a function of θe

The proposed formula is of the form

p(θe) =

{
a1θ

2
e + a2θe + a3, if θe ≤ 80◦C,

0, if θe > 80◦C, (B.10)

where the parameters ai have to be identified. The threshold 80◦C from which the adjoint
state vanishes is justified by the fact that fuel consumption is independent of θe beyond
this value. The p trajectory as a function of θe (θe ∈ [0, 80] ◦C) for the FHDS driving
cycle is shown in Figure B.11. The proposed relation seems to fit the optimal trajectory
of p well.

Table B.7: Identified parameters from the FHDS cycle

a1 a2 a3

-0.0001509 0.00212265 0.654553

For the equivalence factor s (equivalent to the adjoint state λ), the classical ECMS
formula with a proportional gain is used:

s(t) = s0 −Kp · (ξ(t)− ξ(0)), (B.11)
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Figure B.11: Equivalence factor p as a function of θe for FHDS diving cycle

where the parameters s0 and Kp are fixed4. The optimal control u0
2 minimizes the Hamil-

tonian H̃0
2 in the set defined by (3.4),

u0
2 ∈ arg min

u∈Uad
H̃0

2 (u, t, θe, s(ξ), p(θe)),

where H̃0
2 is defined in (B.9) and the equivalence factors (s, p) are given by (B.10, B.11)

respectively. The obtained control strategy is denoted θe-ECMS.

B.4.2 Robustness of θe-ECMS

As a real-time strategy has to be robust for all the driving condition changes, the proposed
rule to update p as a function of θe is tested for other four driving cycles. The obtained
fuel consumption was compared to its optimal value calculated using the PMP. For the
equivalence factor p, the same identified parameters were used for all the driving cycles.
For the adjoint state associated to the SOC, the same procedure described in Section 6.1.3
is used:

• Calibrate (s0, Kp) for each driving cycle such that the obtained performance in
terms of fuel consumption are close to the optimal strategy;

• use each combination of the (calibrated) parameters to simulate other cycles;

• compare the obtained fuel consumption to its optimal value.

The results in terms of fuel consumption and satisfaction of the final SOC constraint
(expressed by the error ξ(T ) − ξ(0)) for the strategy θe-ECMS are summarized in Ta-
bles B.8 and B.9. From these two tables, the optimality of the solution is strongly related

4The relation between kp (used in the formula of λ) and Kp (used in the formula of s) is given by

Kp =
Hlhv

Q0 · Uocv
kp.
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to the choice of the parameters s0 and Kp. In most of the cases, a trade-off between fuel
consumption minimization and final SOC constraint satisfaction has to be made.

Table B.8: Fuel consumption in [L/100 km] using different combinations of ECMS parameters

Tuning PMP NEDC FHDS FTP WLTCm

NEDC 4.946 4.949 (+0.1%) 5.29 (+6.9%) 5.43 (+9.8%) 5.25 (+6.1%)
FHDS 5.48 5.30 (-3.3%) 5.495 (+0.3%) 5.57 (+1.6%) 5.44 (-0.7%)
FTP 4.40 4.15 (-5.7%) 4.32 (-1.8%) 4.40 (+0%) 4.30 (-2.3%)
WLTCm 5.215 5.15 (-1.2%) 5.29 (+1.4%) 5.31 (+1.8%) 5.22 (+0.1%)

For the reasons explained in Section 6.1.3, comparisons must be made between the
equivalent fuel consumption Qe

eq
5 when using the different parameter combinations rather

than the fuel consumption and the final constraint satisfaction separately:

Qe
eq =

∫ T

0

c(u, t)e(θe)dt+ λ · (ξ(T )− ξ(0)). (B.12)

Table B.9: Percentage difference between final value and target value of ξ (ξ(T )− ξ(0)) [%]

Tuning PMP NEDC FHDS FTP WLTCm

NEDC -0.13 0.1 5.76 8 4.8
FHDS -0.16 -4.7 0.08 2.01 -1.4
FTP 0.08 -7.51 -2.52 -0.21 -2.92
WLTCm 0.09 -2.21 2.63 3.25 -0.05

The values of the equivalent fuel consumption obtained in this way, listed in Table B.10,
show that all the combinations have allowed a quasi-optimal equivalent fuel consumption
to be reached.

Table B.10: Equivalent fuel consumption (Qeeq) in [L/100 km] using different ECMS parameters

Tuning PMP NEDC FHDS FTP WLTCm

NEDC 4.938 4.943 (+0.1%) 4.96 (+0.4%) 4.96 (+0.4%) 4.96 (+0.4%)
FHDS 5.488 5.49 (+0.05%) 5.492 (+0.07%) 5.495 (+0.1%) 5.49 (+0.05%)
FTP 4.40 4.415 (+0.35%) 4.41 (+0.2%) 4.41 (+0.2%) 4.41 (+0.2%)

WLTCm 5.213 5.22 (+0.1%) 5.22 (+0.1%) 5.23 (+0.3%) 5.22 (+0.1%)

The state trajectories ξ, θe, the equivalence factor p and the accumulated fuel consump-
tion for the FTP driving cycle are given in Figures B.12, B.13, B.14 and B.15 respectively.
The parameters s0 and Kp used for these trajectories have been calibrated to satisfy the
final constraint on the SOC. The state and the equivalence factor p trajectories for the
optimal strategy (S0

2) and the θe-ECMS are close. From the SOC and θe trajectories,
the θe-ECMS strategy uses the engine less than the optimal strategy in the first part of
the driving cycle. This behavior leads to a lower fuel consumption (see Figure B.15) and

5The superscript e in Qe
eq refers to the use of the control strategy θe-ECMS for cold-engine start.

126



APPENDIX B. FUEL CONSUMPTION MINIMIZATION CASE

0 500 1000 1500 2000

50

52

54

56

58

60

62

Time [s]

 

 
S
O
C

[%
]

Optimal Strategy (S
2
0)

θ
e
−ECMS Strategy

Figure B.12: SOC [%] trajectories for FTP
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Figure B.13: Temperature θe [◦C] trajectories
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Figure B.14: Equivalence factor p
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Figure B.15: Accumulated fuel consumption [kg]

a lower SOC. At the end of the driving cycle and because of the final constraint on the
SOC, the difference between the two solutions is small. The overall fuel consumption over
the driving cycle is almost the same.

B.4.3 Conclusion

The proposed correlation to update p using measurements of θe in (B.10) has been shown
to be robust against the driving conditions change, as the induced sub-optimality in the
equivalent fuel consumption is less than 0.5% and the parameters ai have been calibrated
(identified) for one driving cycle. The main problem is to find an efficient way of estimat-
ing λ, as its calibration greatly impacts the final SOC constraint.
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Appendix C

Additional numerical results for
Chapter 4

C.1 Details about the solutions of OCP2 and OCP1

To solve the (OCP2), two scenarios are possible: engine warm-start and engine cold-start
conditions. In the case of warm start conditions, fuel consumption and CO emissions
become independent of θe and thus its associated equivalence factor p is zero for t ∈ [0, T ].
The number of the state variables is reduced to two (ξ and θc). For cold-start conditions,
the number of the state variables is three (ξ, θe and θc).

For convenience, an equivalence factor that is positive and dimensionless, denoted
by q, is used instead of using ρ (which is negative). The relationship between the two
parameters is given by

q(t) = −Hlhv

Cc
ρ(t).

C.1.1 Engine warm-start case

The engine is assumed to be warm at the beginning of the driving cycle (a temperature
around 80◦ C). The number of the state variables is two (ξ and θc). The associated OCP
is described in Section 4.4.

The obtained results (fuel consumption and CO emissions) are summarized in Fig-
ure C.1 for five driving cycles: NEDC, FUDS, FHDS, FTP and WLTCm for different
values of α. For each cycle, each point is obtained as follows: first, the value of α is fixed
and then the (OCP1) is solved. The corresponding fuel consumption and CO emissions
are presented.

The results have been normalized with respect to the fuel consumption and CO emis-
sion obtained for α = 0 (fuel consumption minimization strategy): the fuel consumption
increases when α increases while CO emissions decreases. These numerical results show
that it is possible to reduce pollutant emissions by 15% to 28% with an extra-fuel con-
sumption of 2.1% compared to a strategy that minimizes only the fuel consumption. The
maximum emission reduction depends on the driving cycle and the weight factor α.

The variations of the initial values of s and q with respect to α for the five considered
cycles are given in plots of Figure C.2. The relationship between (s(0), q(0)) and α for the
considered cycles appears linear and their values for those driving cycles are not scattered.
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Figure C.1: Extra-fuel consumption [%] as a function of CO emissions reduction [%] for engine
warm-start conditions
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Figure C.2: s(0) (left) and q(0) (right) as functions of α for engine warm-start conditions

C.1.2 Engine cold-start conditions

In this case, the engine is cold at the beginning of the driving cycle. The (OCP2) has
been solved for the five driving cycles considered. Fuel consumption and CO emissions
variation for different values of α are summarized in Figure C.3.

The results have been normalized with respect to the fuel consumption and CO emis-
sion obtained for α = 0 as done for warm-start conditions above. These results show that
it is possible to reduce pollutant emissions of 20% to 35% with an extra-fuel consumption
of 2.5%, compared to a strategy minimizing only the fuel consumption. The emissions
reduction obtained depends on the driving cycle and α.

To illustrate the influence of the parameter α on the thermal behavior of the ATS, the
catalyst temperature trajectories for different values of α for NEDC and FHDS cycles are
given in Figures C.4. This shows that, when α is increased, the control strategy improves
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Figure C.3: Extra-fuel consumption [%] as a function of CO emissions reduction [%] for engine
cold-start conditions

the catalyst efficiency by warming it up promptly, which decreases the pollutant emissions
out of the catalyst. The price to pay for achieving this improvement is an increase in fuel
consumption.
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Figure C.4: Catalyst temperature trajectories θc [◦C] for NEDC (left) and FHDS (right) for
engine cold-start conditions

The equivalence factors p and q associated to θe and θc are given in Figures C.5 for
different values of α for NEDC. Similar behaviors of p and q have been obtained for the
other considered driving cycles. The equivalence factor p decreases with time for different
values of α and it becomes null when the engine becomes warm (θe ≥ θw). This behavior
is due to the fact that fuel consumption and CO emissions are independent of θe after θw.
For the equivalence factor q, three phases are distinguished.

1. For θc ≤ 200 ◦C: the cost function is independent of θc, and q increases with time
until it reaches the catalyst activation temperature of 200 ◦C.
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Figure C.5: Equivalence factors p (left) and q (right) for NEDC in the case of engine cold-start
conditions

2. For 200 ◦C≤ θc ≤ 400 ◦C: the cost function depends on θc and an additional term
related to the derivative of ηCO with respect to θc modified the dynamics of q. It
becomes a decreasing function of time.

3. For θc ≥ 400 ◦C: the cost function becomes independent of θc and as the final
temperature θc(T ) is free, q is equal to zero.
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Figure C.6: s(0) (left) and p(0) (right) as functions of α for engine cold-start conditions

The variations of the initial values of s, p and q with respect to α for the five considered
cycles are given in Figures C.6 and C.7 respectively. From these figures, the behavior of
the equivalence factors p and q is interpreted as follows:

• the initial value of p decreases when α increases and the resulting control strategy
becomes less sensitive to the engine temperature;

• the initial value of q increases when α increases and the resulting control strategy
becomes more sensitive to the catalyst temperature.
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The relation between (s(0), p(0)) and α for the considered cycles seems linear while the
relation between q(0) and α is not linear for α ≥ 0.7. For the linear part, s(0) and p(0))
can be approximated by

s(0) = s01α + s02, p(0) = p01α + p02,

where the constants (s01, s02, p01, p02) have to be identified.
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Figure C.7: q(0) as a function of α for engine cold-start conditions

C.2 Additional numerical results for reduced order EMS
including engine and catalyst temperatures

To illustrate the conclusions given in Section 4.6 regarding the simplified control strategy
for pollutant emissions reduction, four driving cycles are considered: FUDS, FHDS, FTP
and WLTCm. In contrast to the NEDC case, where the objective is to meet the European
norm for CO emissions, the objective here is to show that the simplified control strategies
proposed to reduce CO (close to the optimal solution) with an acceptable extra-fuel
consumption remain valid.

The control strategies (S2, S1, S) are tested for the considered driving cycles. The
results in terms of fuel consumption and CO emissions are shown in Figures C.8 and C.9.
The two-state strategy (S1) is very close to the optimal strategy (S2). Strategy (S) reduces
the CO emissions close to their optimal value, with an extra-fuel consumption of the order
of 1% comparing to the strategy (S2). These results confirm that the single-state strategy
(S) is a good candidate to generate a control trajectory allowing the CO emissions to be
reduced with a quasi-optimal fuel consumption.
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Figure C.8: Fuel consumption [L/100 km] as a function of CO emissions [g/km] for FUDS (left)
and FTP(right)
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Figure C.9: Fuel consumption [L/100 km] as a function of CO emissions [g/km] for FHDS (left)
and WLTCm (right)
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Appendix D

Proofs of some results of Chapter 5

D.1 Proof of Proposition 2

For any control u, Jrε (u) can be written

Jrε (u) =

∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt+ ε

∫ T

0

[
N0(t) · δur +N1(t) · δxr

]
dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH
r
ε (σr0 + λµδσr, pr0)(δσr)2dλdµdt,

where
N0(t) , ∂uH1(σr0, p

r
0), N1(t) , ∂xH1(σr0, p

r
0).

Proof For any smooth function F of a variable y, its Taylor expansion can be written as

F (y) = F (y0) + ∂yF (y0)(y − y0) +

∫ 1

0

∫ 1

0

λ∂yyF (y0 + λµ(y − y0))(y − y0)2dλdµ. (D.1)

Using this expansion, Jrε (u) can be written

Jrε (u) =

∫ T

0

[Lε(σ
r
0) + ∂xLε(σ

r
0)δxr + ∂uLε(σ

r
0)δur]dt+ r

∫ T

0

[P (ur0) + ∂uP (ur0)δur]dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσLε(σ
r
0 + λµδσr)(δσr)2dλdµdt

+ r

∫ T

0

∫ 1

0

∫ 1

0

λ∂uuP (ur0 + λµδur)(δur)2dλdµdt. (D.2)

Denote by S
S , ∂xLε(σ

r
0)δxr + ∂uLε(σ

r
0)δur + r∂uP (ur0)δur.

Using equation (5.5) given the adjoint state and the stationarity condition (5.6), S may
be written

S = [−ṗrT0 − prT0 ∂xfε(σ
r
0) + ε∂xL1(σr0) + εprT0 ∂xf1(σr0)]δxr

+ [−prT0 ∂ufε(σ
r
0) + ε∂uL1(σr0) + εprT0 ∂uf1(σr0)]δur.
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By integrating S, we get∫ T

0

S(t)dt = −
∫ T

0

ṗrT0 δxrdt−
∫ T

0

prT0 ∂rσfε(σ
r
0)δσrdt

+ ε

∫ T

0

[
(∂xL1(σr0) + prT0 ∂xf1(σr0))δxr + (∂uL1(σr0) + prT0 ∂uf1(σr0))δur

]
dt,

which, using integration by parts, can be rewritten as∫ T

0

S(t)dt = −

prT0 (T )︸ ︷︷ ︸
=0

δxr(T )− pr0 δxr(0)︸ ︷︷ ︸
=0

−
∫ T

0

prT0 (ẋr − ẋr0)dt

− ∫ T

0

prT0 ∂σfε(σ
r
0)δσrdt

+ ε

∫ T

0

[
(∂xL1(σr0) + prT0 ∂xf1(σr0))δxr + (∂uL1(σr0) + prT0 ∂uf1(σr0))δur

]
dt,

that is, ∫ T

0

S(t)dt = ε

∫ T

0

∂σH1(σr0, p
r
0)δσrdt+

∫ T

0

prT0 (ẋr − ẋr0 − ∂σfε(σr0)δσr)dt.

From expansion (D.1), the term ẋr − ẋr0 − ∂σfε(σr0)δσr can be written

ẋr − ẋr0 − ∂σfε(σr0)δσr = εf1(σr0) +

∫ 1

0

∫ 1

0

λ∂σσfε(σ
r
0 + λµδσr)(δσr)2dλdµ. (D.3)

Using equation (D.3), the expression of S becomes of the form∫ T

0

S(t)dt = ε

∫ T

0

∂σH1(σr0, p
r
0)δσrdt+ ε

∫ T

0

prT0 f1(σr0(t))dt

+

∫ T

0

∫ 1

0

∫ 1

0

λprT0 · ∂σσfε(σr0 + λµδσr)(δσr)2dλdµdt. (D.4)

Recalling that, from the definition of Hr
ε , the term Lε(σ

r
0) + rP (ur0) can be written

Lε(σ
r
0) + rP (ur0) = Hr

ε (σr0, p
r
0)− prT0

dxr0
dt
− εprT0 f1(σr0),

= Hr
ε (σr0, p

r
0)− prT0 fε(σ

r
0). (D.5)

Replacing (D.3, D.4, D.5) in the expansion (D.2), the expression of Jrε (u) becomes

Jrε (u) =

∫ T

0

[Hr
ε (σr0, p

r
0)− prT0

dxr0
dt
− εprT0 f1(σr0)]dt+ ε

∫ T

0

∂σH1(σr0, p
r
0)δσrdt

+ ε

∫ T

0

prT0 f1(σr0(t))dt+

∫ T

0

∫ 1

0

∫ 1

0

λprT0 · ∂σσfε(σr0 + λµδσr)(δσr)2dλdµdt

+

∫ T

0

∫ 1

0

∫ 1

0

λ
[
∂σσH

r
ε (σr0 + λµδσr, pr0)− prT0 ∂σσfε(σ

r
0 + λµδσr)

]
(δσr)2dλdµdt.

The terms εprT0 f1(σr0) and prT0 ∂σσfε(.) appear in the expression of Jrε (u) with positive and
negative sign and they cancel. The formula (5.9) is proven where

N0(t) , ∂uH1(σr0, p
r
0), N1(t) , ∂xH1(σr0, p

r
0).

In the formula (5.9), the penalty disappears from the first order variation. This concludes
the proof.
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D.2 Proof of Proposition 3

Proof The solutions ξr0(t) and xr0(t), for the initial condition x(0), are given by

ξr0(t) = x(0) +

∫ t

0

fε(ξ
r
0(τ), ur0(τ))dτ,

xr0(t) = x(0) +

∫ t

0

f0(xr0(τ), ur0(τ))dτ.

Subtracting the two equations and taking norms yield

‖ξr0(t)− xr0(t)‖ ≤
∫ t

0

‖fε(ξr0(τ), ur0(τ))− fε(xr0(τ), ur0(τ))‖ dτ + ε

∫ t

0

‖f1(xr0(τ), ur0(τ))‖ dτ.

Note that ξr0(t) and xr0(t) have the same control input ur0 and the same initial conditions. As
fε is Γ-Lipschitz and f1 is bounded, the upper bound on ξr0 − xr0 implies

‖ξr0(t)− xr0(t)‖ ≤ Γ

∫ t

0

‖ξr0(τ)− xr0(τ)‖+ εF1t,

for some positive constant F1 defined by

F1 = sup
t∈[0,T ]

‖f1(σr0(t))‖.

Using Gronwall’s lemma [38], the upper bound on ‖ξr0(t)− xr0(t)‖ is given by

‖ξr0(t)− xr0(t)‖ ≤ εF1

∫ t

0

eΓ(t−τ)dτ.

This concludes the proof.

D.3 Proof of Proposition 4

There exist positive constants (α3, α4) and time functions (α1, α2) such that

‖δxrε(t)‖
2 ≤ α1(t)

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α2(t)F 2
1 ε

2,∫ T

0

‖δurε(t)‖
2 dt ≤ α3

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt+ α4F
2
1 ε

2,

where the variable z is defined in (5.17) and

δxr = x− xr0, δur = u− ur0, δσr = σ − σr0.

Proof The dynamic of the error on the state trajectories δxrε can be written as

d(δxrε)

dt
= fε(σ

r
ε)− fε(σr0) + εf1(σr0).
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As δxrε(0) = 0, we can write

δxrε(t) =

∫ t

0

[fε(σ
r
ε)− fε(σr0)] dt+ ε

∫ t

0

f1(σr0)dt.

Since fε is Γ-Lipschitz, this formula yields

‖δxrε(t)‖ ≤ Γ

∫ t

0

[‖δxrε(t)‖+ ‖δurε(t)‖] dt+ ε

∥∥∥∥∫ t

0

f1(σr0)dt

∥∥∥∥ . (D.6)

From the expression of z in equation (5.17), δurε can be written as

δurε = z − [∂uuH
r
0(.)]−1∂uxH

r
0(.)δxrε,

= z −W (.)δxrε.

As the term [∂uuH
r
0(.)]−1 is bounded by

1

β
(from Assumption 3) and ∂uxHr

0(.) is bounded

independently of rP (.) 1, the bound on W (.), denoted by γ1, is independent of rP (.)

γ1 = sup
t∈[0,T ]

‖W (.)‖ ,

and we can write the upper bound on δurε as follows

‖δurε‖ ≤ ‖z(λ, µ, t)‖+ γ1 ‖δxrε‖ . (D.7)

By replacing this inequality in equation (D.6) and using the fact that f1 is bounded, the
upper bound on δxrε implies

‖δxrε(t)‖ ≤ Γ(1 + γ1)

∫ t

0

‖δxrε(t)‖ dt+ Γ

∫ t

0

‖z(λ, µ, s)‖ ds+ εF1t.

Using Gronwall’s lemma [38], the upper bound on δxrε(t) is of the form

‖δxrε(t)‖ ≤ Γ

∫ t

0

eΓ(1+γ1)(t−s) ‖z(λ, µ, s)‖ ds+ εF1

∫ t

0

eΓ(1+γ1)(t−s)ds. (D.8)

From Cauchy-Schwarz inequality for any two real integrable functions f(t) and g(t) in
[0, s], ∫ s

0

f(t)g(t)dt ≤

√∫ s

0

f 2(t)dt

√∫ s

0

g2(t)dt,

applied to the first term of (D.8), the upper bound on δxrε(t) can be written

‖δxrε(t)‖ ≤ Γ

√∫ t

0

e2Γ(1+γ1)(t−s)ds

√∫ t

0

‖z(λ, µ, s)‖2 ds+
εF1

Γ(1 + γ1)
(eΓ(1+γ1)t − 1)

As (x + y)2 ≤ 2x2 + 2y2 and
∫ t

0
‖z(λ, µ, τ)‖2 dτ ≤

∫ T
0
‖z(λ, µ, τ)‖2 dτ , we can write the

following inequality

‖δxrε(t)‖
2 ≤

[
Γ
e2Γ(1+γ1)t − 1

1 + γ1

] ∫ T

0

‖z(λ, µ, s)‖2 ds+ 2ε2F 2
1

[
eΓ(1+γ1)t − 1

Γ(1 + γ1)

]2

.

1∂uxH
r
0 (σ) = ∂uxL0(σ) + pT∂uxf0(σ) as r∂uxP (u) = 0.
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To express the upper bound on δxrε(t) as a function of R, the two sides of this inequality
are multiplied by λ and integrated twice with respect to λ and µ∫ 1

0

∫ 1

0

λ ‖δxrε(t)‖
2 dλdµ ≤

[
Γ
e2Γ(1+γ1)t − 1

1 + γ1

]
R + ε2F 2

1

[
eΓ(1+γ1)t − 1

Γ(1 + γ1)

]2

,

where R is given by

R =

∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt.

As δxrε is independent of λ and µ, the upper bound on δxrε(t) can be written

‖δxrε(t)‖
2 ≤ 2

[
Γ
e2Γ(1+γ1)t − 1

1 + γ1

]
R + 2ε2F 2

1

[
eΓ(1+γ1)t − 1

Γ(1 + γ1)

]2

.

By defining

α1(t) , 2Γ
e2Γ(1+γ1)t − 1

1 + γ1

, α2(t) , 2

[
eΓ(1+γ1)t − 1

Γ(1 + γ1)

]2

, (D.9)

the upper bound on δxrε(t) in (5.15) is proven.
Using (x+ y)2 ≤ 2x2 + 2y2, we can write from the relation (D.7) that

‖δurε‖
2 ≤ 2 ‖z(λ, µ, t)‖2 + 2γ2

1 ‖δxrε‖
2 ,

yielding ∫ T

0

‖δurε‖
2 dt ≤ 2

∫ T

0

‖z(λ, µ, t)‖2 dt+ 2γ2
1

∫ T

0

‖δxrε‖
2 dt. (D.10)

Multiplying by λ and integrating twice with respect to λ and µ, equation (D.10) implies

1

2

∫ T

0

‖δurε‖
2 dt ≤ 2R + γ2

1

∫ T

0

‖δxrε‖
2 dt.

By replacing the upper bound on ‖δxrε‖
2 given by (5.15) in this equation, the relation-

ship (5.16) is proven where

d1 ,
∫ T

0

α1(s)ds, d2 ,
∫ T

0

α2(s)ds, α3 , 2
[
2 + γ2

1d1

]
, α4 , 2γ2

1d2. (D.11)

This concludes the proof.

D.4 Proof of Proposition 5
There exist positive constants c0 and c1 such that

|Jrε (ur0)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt| ≤ (c0F

2
1 + c1)ε2,

where

c0 =
1

2
( sup
t∈[0,T ]

∂xxH
r
0(.) +m)

∫ T

0

q2(t)dt+
1

2
sup
t∈[0,T ]

∂xxH1(.)

∫ T

0

q2(t)dt,

c1 =
1

2m

∫ T

0

k2
1(t)dt,
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where the parameter m is positive constant, q is given in (5.14), F1 is an upper bound on
f1(.) and k1 is an upper bound on N1(t). In particular, the upper bound given in (5.22)
is independent of rP (.).
Proof The proof is based on the second-order decomposition in Proposition 2. The
upper bound given in (5.22) is independent of the penalty, as the input constraints are
still always satisfied. This remark is not true in the presence of state constraints where
the perturbation in the dynamics may lead to violation of the state constraints.

From Proposition 2, the penalized cost function Jrε for ur0 can be written in the form

Jrε (ur0) −
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt = ε

∫ T

0

N1(t) · (ξr0 − xr0)dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ∂xxH
r
ε (xr0 + λµ(ξr0 − xr0), ur0, p

r
0)(ξr0 − xr0)2dλdµdt. (D.12)

Since the first derivatives of L1 and f1 are bounded by assumption, N1 and N0 are
bounded as follows ∣∣N1(t)

∣∣ ≤ k1(t),
∣∣N0(t)

∣∣ ≤ k2(t).

Indeed, terms N1(t) and N0(t) depend only on the nominal trajectories and they can be
bounded by functions of time. To find an upper bound on M0, the following inequality,
for any a and b is used:

2ab ≤ 1

m
a2 +mb2,

where m is a positive constant. The upper bound on N1(t) · (ξr0 − xr0) can be written as

ε

∫ T

0

N1(t) · (ξr0 − xr0)dt ≤ ε2

2m

∫ T

0

(N1(t))2dt+
m

2

∫ T

0

(ξr0 − xr0)2dt. (D.13)

Since ξr0 − xr0 is bounded by F1q(t)ε from equation (5.13), the relation (D.13) yields

ε

∫ T

0

N1(t) · (ξr0 − xr0)dt ≤ ε2

2m

∫ T

0

k2
1(t)dt+

ε2m

2
F 2

1

∫ T

0

q2(t)dt,

≤ ε2

2

(
1

m

∫ T

0

k2
1(t)dt+mF 2

1

∫ T

0

q2(t)dt

)
.

From the decomposition in equation (5.7), we have

∂xxH
r
ε (.) = ∂xxH

r
0(.) + ε∂xxH1(.).

The term ε∂xxH1(.)(ξr0 − xr0)2 in equation (D.12) leads to ε3. As the second derivatives of
L0 and f0 are assumed to be bounded and the term ∂xxH

r
0 is independent of the penalty

P (.), we can write
γ0 = sup

t∈[0,T ]

∂xxH
r
0(.).

By using the relation (5.13), we derive that

|
∫ T

0

∫ 1

0

∫ 1

0

λ∂xxH
r
0(xr0 + λµ(ξr0 − xr0), ur0, p

r
0)(ξr0 − xr0)2dλdµdt| ≤ ε3

2
γ0F

2
1

∫ T

0

q2(t)dt.

(D.14)
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As ε is in [0, 1], ε3 ≤ ε2, and we can write the following upper bound

|
∫ T

0

∫ 1

0

∫ 1

0

λ∂xxH
r
0(xr0 + λµ(ξr0 − xr0), ur0, p

r
0)(ξr0 − xr0)2dλdµdt| ≤ ε2

2
γ0F

2
1

∫ T

0

q2(t)dt.

From equation (D.12), M0 is thus bounded by

|Jrε (ur0)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt| ≤ (c0F

2
1 + c1)ε2.

The constants c0 and c1 are independent of rP (.)

c0 =
1

2
( sup
t∈[0,T ]

∂xxH
r
0(.) +m)

∫ T

0

q2(t)dt+
1

2
sup
t∈[0,T ]

∂xxH1(.)

∫ T

0

q2(t)dt,

c1 =
1

2m

∫ T

0

k2
1(t)dt.

This concludes the proof.

D.5 Proof of Proposition 6
There exists a constant c2 such that∫ T

0

∫ 1

0

∫ 1

0

λ ‖z(λ, µ, t)‖2 dλdµdt ≤ c2ε
2,

where c2 is independent of the penalty rP (.).
Proof Essentially, the proof is based on the decomposition suggested in Proposition 2
and the convexity conditions given in Assumption 3.

Since urε is the optimal control of the perturbed problem, it satisfies

Jrε (urε) ≤ Jrε (ur0),

which is equivalent to

Jrε (urε)−
∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt ≤ Jrε (ur0)−

∫ T

0

[
Hr
ε (wr0)− prT0 ẋr0

]
dt ≤ (c0F

2
1 + c1)ε2.

(D.15)
By using Proposition 2, Jrε (urε) can be rewritten in the form

Jrε (urε)−
∫ T

0

[
Hr
ε (σr0, p

r
0)− prT0 ẋr0

]
dt = ε

∫ T

0

[
N0(t)δurε +N1(t)δxrε

]
dt

+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH
r
ε (., pr0)(δσrε)

2dλdµdt.

By combining this expression with (D.15), we obtain

(c0F
2
1 +c1)ε2 ≥ ε

∫ T

0

[
N0δurε +N1δxrε

]
dt+

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH
r
ε (σr0+λµδσrε , p

r
0)(δσrε)

2dλdµdt.

(D.16)
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From the expression of Hr
ε in (5.7),

∂σσH
r
ε (.) = ∂σσH

r
0(.) + ε∂σσH1(.).

To find a bound on ∂σσHr
0(σr0 + λµδσrε , p

r
0)(δσrε)

2, every factor of δurε in the second-order
variation of the cost Jrε (urε) is substituted by terms in z and δxrε. This allows us to
handle a diagonal quadratic form in terms of z and δxrε. The expression of ∂σσHr

0(σr0 +
λµδσrε , p

r
0)(δσrε)

2 is

∂σσH
r
0(σr0 + λµδσrε , p

r
0)(δσrε)

2 = δxrTε ∂xxH
r
0(σr0 + λµδσrε , p

r
0)δxrε

+δurTε ∂uuH
r
0(σr0 + λµδσrε , p

r
0)δurε + 2δurTε ∂uxH

r
0(σr0 + λµδσrε , p

r
0)δxrε,

which can be written using the variable z as

∂σσH
r
0(.)(δσrε)

2 = zT∂uuH
r
0(.)z + δxrTε

[
∂xxH

r
0 − ∂xuHr

0 [∂uuH
r
0 ]−1∂uxH

r
0

]
(.)δxrε.

The term ∂σσH
r
0(σr0 + λµδσrε , p

r
0)(δσrε)

2 is written as the sum of terms whose signs are
known from the second order optimality conditions given in Assumption 3, and a lower
bound on ∂σσHr

0(.)(δσrε)
2 is of the form

∂σσH
r
0(.)(δσrε)

2 ≥ β ‖z(λ, µ, t)‖2 .

Thus, equation (D.16) implies

(c0F
2
1 + c1)ε2 ≥ ε

∫ T

0

[
N0δurε +N1δxrε

]
dt+ βR

+ε

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH1(σr0 + λµδσrε , p
r
0)(δσrε)

2dλdµdt. (D.17)

By using the formula (holding for any a, b and m > 0)

2ab ≥ − 1

m
a2 −mb2,

the term ε
∫ T

0
[N0δurε(t) +N1δxrε(t)] dt is lower bounded as follows

ε

∫ T

0

[
N0δurε +N1δxrε

]
dt ≥ −

∫ T

0

[
ε2

2m

{
(N0)2 + (N1)2

}
+
m

2

{
‖δxrε‖

2 + ‖δurε‖
2}] dt,

≥ − ε2

2m

∫ T

0

(k2
2(t) + k2

1(t))dt− F 2
1

ε2m

2

(
α4 +

∫ T

0

α2(s)ds

)
−m

2

[
α3 +

∫ T

0

α1(s)ds

]
R.

The inequality (D.17) becomes

(c0F
2
1 + c1)ε2 ≥ −ε2

[
1

2m

∫ T

0

(k2
2(t) + k2

1(t))dt+
m

2
F 2

1 (α4 + d2)

]
− m

2
[α3 + d1]R

+βR + ε

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH1(σr0 + λµδσrε , p
r
0)(δσrε)

2dλdµdt. (D.18)
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The term ε
∫ T

0

∫ 1

0

∫ 1

0
λ∂σσH1(σr0 +λµδσrε , p

r
0)(δσrε)

2dλdµdt gives rise to a term in ε3 (where
we bound ε3 by ε2 as ε ≤ 1). By combining the fact that ∂σσH1 is bounded with the two
inequalities (5.15, 5.16) and ε3 ≤ ε2, we obtain for the last term of (D.18)

ε

∫ T

0

∫ 1

0

∫ 1

0

λ∂σσH1(.)(δσrε)
2dλdµdt ≤ 1

2
sup
t∈[0,T ]

‖∂σσH1(.)‖
[
F 2

1 (α4 + d2)ε2 + ε(α3 + d1)R
]
.

Inequality (D.18) can be written[
β − m

2
(α3 + d1) +

ε

2
sup ‖∂σσH1‖ (α3 + d1)

]
R

≤

[
c0 +

m

2
(α4 + d2)− 1

2
sup
s∈[0,T ]

‖∂σσH1‖ (α4 + d2)

]
F 2

1 ε
2

+

[
c1 +

1

2m

∫ T

0

(k2
2(t) + k2

1(t))dt

]
ε2, (D.19)

where (d1, d2, α3, α4) are defined in (D.11) .The parameter m can be chosen such that

β − m

2

(
α3 +

∫ T

0

α1(s)ds

)
=
β

2
> 0,

which is satisfied if

m =

√√√√√ β

α3 +

∫ T

0

α1(s)ds

> 0.

The parameter m is well defined because the term
[
α3 +

∫ T
0
α1(s)ds

]
in the denominator

is strictly positive. Consider the following notations

s1 =
1

2
sup
s∈[0,T ]

‖∂σσH1(.)‖ (α3 + d1),

s2a = c0 +
m

2
(α4 + d2)− 1

2
sup
s∈[0,T ]

‖∂σσH1(.)‖ (α4 + d2),

s2b = c1 +
1

2m

∫ T

0

(k2
2(t) + k2

1(t))dt.

Inequality (D.19) can be written as

(
β

2
+ s1ε)R ≤ (s2aF

2
1 + s2b)ε

2,

where the constant s1 is strictly positive. Finally, the upper bound on R is given by

R ≤ 2
s2aF

2
1 + s2b

β + 2s1ε
ε2 ≤ 2

β

(
s2aF

2
1 + s2b

)
ε2 , c2ε

2. (D.20)

From the two inequalities (5.15, 5.16), the upper bounds on δxrε and δurε are of the form

‖δxrε(t)‖
2 ≤

[
α1(t)c2 + α2(t)F 2

1

]
ε2 = c2

x(t)ε
2,∫ T

0

‖δurε(t)‖
2 dt ≤

[
α3c2 + α4F

2
1

]
ε2 = c2

uε
2,

and the inequalities (5.18) and (5.19) are proven. This concludes the proof.
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D.6 Proof of Proposition 8
We consider a state constraints of the form g(x(t)) ≤ 0 for all t ∈ [0, T ]. Let a positive
constant s and a given γ̄(r) such that

γ̄(r) ≥
∫ t2

t1

γg(g(x(τ)))dτ.

Proposition 8 gives the upper bound on c(r) of the form

c(r) ≤ − ng

√
s

γ̄(r)Γ(1 + s)(ng+1)
,

where the constant γ̄(r), depending on r, increases when the penalty weight r goes to
zero and Γ is the Lipschitz constant of the function f0.
Proof

We consider a control u ∈ Uad, where Uad is defined in (5.3), xu is the solution of the
following differential equation

dxu

dt
= f0(xu, u), x(0) = X0,

and M = max
t∈[0, T ]

(g(xu(t))) ≤ 0. As the solution xu is continuous with respect to time, we

have
∃t1 : t1 = inf

t∈[0, T ]
(g(xu(t)) = M).

Let N a constant in ]X0,M [. As the function xu(t) is continuous with respect to time,
there exists t2 such that

t2 = sup
t∈[0, t1]

(g(xu(t)) = N).

The function f0 is Lipschitz (by assumption) and from the continuous differentiability of
the function g, there exists a positive constant Γ such that, for all u ∈ Uad, we have

∃Γ > 0 : g(xu(t1))− g(xu(t2)) ≤ Γ(t1 − t2),

yielding

t1 − t2 ≥
M −N

Γ
. (D.21)

The penalty γg(.) is positive and increasing, we can write

∀τ ∈ [t2, t1] : γg(g(xu(τ))) ≥ γg(N).

By integrating this inequality, we get∫ t1

t2

γg(g(xu(τ)))dτ ≥ γg(N)(t1 − t2).

By using the relation (D.21), this inequality becomes∫ t1

t2

γg(g(xu(τ)))dτ ≥ γg(N)
M −N

Γ
. (D.22)
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As N is free in ]X0,M [, we choose N = (1 + s)M where s is positive constant. Equa-
tion (D.22) becomes

γ̄(r) ≥
∫ t1

t2

γg(g(xu(τ)))dτ ≥ −γg((1 + s)M)
sM

Γ
.

By using the expression of γg(.) in (3.11), we can write

γ̄(r) · (−M)ng ≥ s

Γ(1 + s)ng+1
,

and the formula (5.28) is proven for a given γ̄(r) where M = c(r). This concludes the
proof.
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Appendix E

K estimation details

For the toy NL problem and the eco-driving problem described in Section 5.6, the following
notations are used:

• The nominal state and costate trajectories for ε = 0: (y1, y2, λ1, λ2).

• The solutions of the dynamics equations for the nominal control u = u0 and for
ε > 0: (x1, x2).

• The optimal state and costate trajectories for ε > 0: (x∗1, x∗2, λ∗1, λ∗2).

• The error in the state and the control trajectories δX1 = x1 − y1, δX2 = x2 −
y2, δx1 = x∗1 − y1, δx2 = x∗2 − y2, δu = uε − u0.

The estimation of K is done in four steps:

1. estimate an upper bound on δXi,

2. estimate an upper bound on δxi,

3. estimate an upper bound on R,

4. estimate an upper bound on ∆J .

E.1 NL problem

Consider the following OCP

min
u

[
Jε(u) =

∫ T

0

(
0.3u2 + 5(1 +

ε

4
)x2

1

)
dt,

]
,

ẋ1 = (1 + ε
5
)x1 − x1x2, x1(0) = 4,

ẋ2 = −x2 + 1
10

(1 + ε
4
)u, x2(0) = 5,

umin(t) ≤ u(t) ≤ umax(t).
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Upper bounds on δXi

The dynamics of δX1 and δX2 are approximated by the tangent linear system

d(δX1)

dt
≈ (1 +

ε

5
− y2(t))δX1 − y1(t)δX2 +

ε

5
y1, δX1(0) = 0,

d(δX2)

dt
≈ −δX2 +

ε

40
u0, δX2(0) = 0.

The transition matrix Φ of this linear system for ε = 1 calculated numerically is of the
form

Φ(t, τ) =

[
Φ11(t, τ) Φ12(t, τ)

Φ21(t, τ) Φ22(t, τ)

]
. (E.1)

By using the expression of Φ, δX1 and δX2 can be written as

‖δX1(t)‖ ≤ ε

∣∣∣∣∫ t

0

(Φ11(t, τ)
y1(τ)

5
+ Φ12(t, τ)

u0(τ)

40
)dτ

∣∣∣∣ ,
‖δX2(t)‖ ≤ ε

∣∣∣∣∫ t

0

(Φ21(t, τ)
y1(τ)

5
+ Φ22(t, τ)

u0(τ)

40
)dτ

∣∣∣∣ ,
where y1 and y2 are the nominal state trajectories (calculated using the nominal control).
The upper bounds on δX1(t) and δX2(t) are of the form

‖δX1(t)‖ ≤ εα21(t), ‖δX2(t)‖ ≤ εα22(t).

The quantities α21(t) and α22(t) depend only on the nominal trajectories and they are
evaluated numerically.

Upper bounds on δxi

The dynamics of δx1 and δx2 can be approximated by

d(δx1)

dt
≈ (1 +

ε

5
− y2(t))δx1 − y1(t)δx2 +

ε

5
y1, δx1(0) = 0,

d(δx2)

dt
≈ −δx2 +

1

10
(1 +

ε

4
)δu+

ε

40
u0, δx2(0) = 0.

From the transition matrix Φ(t, τ) given in equation (E.1), the solution of this system is
of the form

δx1(t) ≈
∫ t

0

1

10
(1 +

ε

4
)Φ12(t, τ)δu(τ)dτ + ε

∫ t

0

(Φ11(t, τ)
y1(τ)

5
+ Φ12(t, τ)

u0(τ)

40
)dτ,

δx2(t) ≈
∫ t

0

1

10
(1 +

ε

4
)Φ22(t, τ)δu(τ)dτ + ε

∫ t

0

(Φ21(t, τ)
y1(τ)

5
+ Φ22(t, τ)

u0(τ)

40
)dτ.

By using Cauchy-Schwarz inequality and from the expressions of δx1(t) and δx2(t), upper
bounds on δx1(t) and δx1(t) are of the form

|δx1(t)| ≤

√∫ t

0

k2
1(t, τ)dτ

√∫ t

0

δu2(τ)dτ + εα21(t) = α11(t)

√∫ t

0

δu2(τ)dτ + εα21(t),
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|δx2(t)| ≤

√∫ t

0

k2
2(t, τ)dτ

√∫ t

0

δu2(τ)dτ + εα22(t) = α12(t)

√∫ t

0

δu2(τ)dτ + εα22(t).

The upper bounds on δx1(t) and δx2(t) can be written as follows

|δx1(t)| ≤ α11(t)
√
R + εα21(t),

|δx2(t)| ≤ α12(t)
√
R + εα22(t),

where

k1(t, τ) =
1

8
Φ12(t, τ), k2(t, τ) =

1

8
Φ22(t, τ), R =

∫ T

0

δu2(τ)dτ,

M =

∫ T

0

[Hε(y1, y2, u0, λ1, λ2)− λ1ẏ1 − λ2ẏ2] dt.

Upper bound on R

From Proposition 2, J(u0) can be written in the form

Jε(u0) = M + ε

∫ T

0

[N1(t)δX1(t)] dt+

∫ T

0

[
5(1 +

ε

4
)δX2

1 − λ1δX1(t)δX2(t)
]
dt,

where N1(t) =
5y1(t)

2
+
λ1(t)

5
and we can easily derive

|Jε(u0)−M | ≤
∣∣∣∣ε ∫ T

0

[N1(t)δX1(t)] dt+

∫ T

0

[
5(1 +

ε

4
)δX2

1 − λ1δX1(t)δX2(t)
]
dt

∣∣∣∣ ,
yielding

|Jε(u0)−M | ≤ cε2,

where c, that depends only on the nominal trajectories, is given by

c =

[∣∣∣∣∫ T

0

(
5

2
y1(τ) +

1

5
λ1(τ))α21(τ)dτ +

∫ T

0

(
25

4
α2

21(τ)− λ1(τ)α21(τ)α22(τ)

)
dτ

∣∣∣∣] .
The same approach allows J(uε) to be written from Proposition 2

Jε(uε) = M + ε

∫ T

0

[N1(t)δx1(t) +N0(t)δu] dt+

∫ T

0

(0.3δu2 + 5(1 +
ε

4
)δx2

1 − λ1δx1δx2)dt,

(E.2)

where N0 =
λ2

40
. As uε is the optimal control of the perturbed problem and from equa-

tion (E.2), we can write

cε2 ≥ ε

∫ T

0

[N1(t)δx1(t) +N0(t)δu] dt+

∫ T

0

(0.3δu2 + 5(1 +
ε

4
)δx2

1 − λ1δx1δx2)dt.

By using the decomposition xy ≥ − x2

2m
− m

2
y2 (holding for any x, y and m > 0), we obtain

cε2 ≥ − ε2

2m

∫ T

0

[N2
1 (t) +N2

0 (t)]dt− m

2

∫ T

0

[δx2
1(t) + δu2(t)]dt

+

∫ T

0

(0.3δu2 + 5(1 +
ε

4
)δx2

1 − λ1δx1δx2)dt. (E.3)
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In the following, the notations used are

H1(t) = α2
11(t) + α2

12(t),

H2(t) = α2
21(t) + α2

22(t),

D1 = 0.3 + 10

∫ T

0

α2
11(τ)dτ +

∫ T

0

λ1(τ)H1(τ)dτ,

D2 = 0.5 +

∫ T

0

α2
11(τ)dτ.

From the upper bounds on δx1 and δx2, we derive

δx2
1(t) ≤ 2α2

11(t)R + 2ε2α2
21(t),

δx2
2(t) ≤ 2α2

12(t)R + 2ε2α2
22(t),

−δx1(t)δx2(t) ≤ H1(t)R +H2(t)ε2.

The inequality (E.3) can be written[
D1 −mD2 +

5ε

2

∫ T

0

α2
11(τ)dτ

]
R ≤ ε2

2m

∫ T

0

[
N2

1 (t) +N2
0 (t)

]
dt+ cε2

+

[
(m− 10− 5ε

2
)

∫ T

0

α2
21(τ)dτ −

∫ T

0

λ1(τ)H2(τ)dτ

]
ε2,

yielding to the following upper bound on R as

R ≤
cε2 + ε2

2m

∫ T
0

[N2
1 (t) +N2

0 (t)] dt+ (m− 10− 5ε
2

)ε2
∫ T

0
α2

21(τ)dτ − ε2
∫ T

0
λ1(τ)H2(τ)dτ

D1 −mD2 + 5ε
2

∫ T
0
α2

11(τ)dτ
,

where m is chosen to be equal to
D1

2D2

.

As ε ≥ 0, the upper bound on R is
R ≤ c1ε

2,

where

c1 ,
c+ 1

2m

∫ T
0

[N2
1 (t) +N2

0 (t)] dt+ (m− 10)
∫ T

0
α2

21(τ)dτ −
∫ T

0
λ1(τ)H2(τ)dτ

D1 −mD2

.

The upper bounds on δx1 and δx2 become of the form

|δx1(t)| ≤ (α11(t)
√
c1 + α21(t)) ε , cx1(t)ε,

|δx2(t)| ≤ (α12(t)
√
c1 + α22(t)) ε , cx2(t)ε.

Upper bound on ∆J

The final step is to find an upper bound on ∆J = Jε(u0) − Jε(uε) > 0. For this, we
proceed as follows

∆J = Jε(u0)− Jε(uε) ≤ |Jε(u0)−M |+ |Jε(uε)−M | .
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From equation (E.2), and by using the state upper bounds, we have

|Jε(uε)−M | =

∣∣∣∣ε ∫ T

0

[N1δx1(t) +N0δu] dt+

∫ T

0

(0.3δu2 + 5(1 +
ε

4
)δx2

1 − λ1δx1δx2)dt

∣∣∣∣ ,
≤

∫ T

0

[
ε2N1(t)cx1(t) +

ε2

2m1

N2
0 (t)

]
dt+

m1

2
c1ε

2

+

∣∣∣∣5(1 +
ε

4
)ε2

∫ T

0

c2
x1(τ)dt+ 0.3c1ε

2 − ε2

∫ T

0

λ1(τ)cx1(τ)cx2(τ)dτ

∣∣∣∣ ,
≤ K1ε

2.

The parameter m1 is chosen to minimize the term

1

2m1

∫ T

0

N2
0 (t)dt+

m1

2
c1,

and the upper bound on ∆J is
∆J ≤ (c+K1)ε2. (E.4)

E.2 Eco-driving problem
The nominal problem is obtained for ε = 0. The associated TPBVP is

ẋ1 = h1u
∗
0 − h0, x1(0) = 0,

ẋ2 = x1, x2(0) = 0,

λ̇1 = −λ2 − b1u
∗
0, x1(T ) = 0,

λ̇2 = 0, λ2(T ) = β0(x2(T )−D),

u∗0 = −(h1λ1 + b1x1)

2b2

,

(E.5)

where λ1 and λ2 are the adjoint states associated to x1 and x2 respectively. The corre-
sponding Hamiltonian in this case is

H0(x1, x2, λ1, λ2, u) = b1ux1 + b2u
2 + λ1(h1u− h0) + λ2x1.

The perturbed problem is for ε 6= 0. The associated TPBVP is

ẋ∗1 = h1u
∗
1 − h0, x

∗
1(0) = 0,

ẋ∗2 = x∗1, x
∗
2(0) = 0,

λ̇∗1 = −λ∗2 − b1u
∗
1, x

∗
1(T ) = 0,

λ̇∗2 = 0, λ∗2(T ) = (β0 + εβ1)(x∗2(T )−D),

u∗1 = −(h1λ
∗
1 + b1x

∗
1)

2b2

,

(E.6)

where λ∗1 and λ∗2 are the adjoint states associated to x∗1 and x∗2 respectively. The differ-
ence between the two TPBVP described above is the final value of the adjoint state λ2.
Note that

δu = u∗1 − u∗0, δx1 = x∗1 − x1, δx2 = x∗2 − x2, σ = [x1, x2, u].
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Upper bound on δxi

The first step is to find an upper bound on δx1 and δx2 as a function of z defined by

z = δu+
b1

2b2

δx1.

From equations (5.27), the dynamics of δx1 and δx2 are given by{
δẋ1 = h1δu, δx1(0) = 0,
δẋ2 = δx1, δx2(0) = 0.

(E.7)

By using the expression of z, the dynamics of δx1 can be written

δẋ1 = h1z −
h1b1

2b2

δx1, δx1(0) = 0.

The solution of this differential equation is

δx1(t) = h1

∫ t

0

e−k(t−τ)z(τ)dτ, k =
h1b1

2b2

.

By using the Cauchy-Schwarz inequality, this equation can be written

‖δx1(t)‖ ≤ h1

√∫ t

0

e−2k(t−τ)dτ

√∫ T

0

z(τ)2dτ .

From the dynamics of δx2, we obtain

‖δx2(t)‖ ≤ h1

[∫ t

0

√
1− e−2k(t−τ)

2k
dτ

]√∫ T

0

z(τ)2dτ .

The upper bounds on δx1 and δx2 become of the form

‖δx1(t)‖ ≤ c1(t)
√
R,

‖δx2(t)‖ ≤ c2(t)
√
R,

where

R =

∫ T

0

z(τ)2dτ,

c1(t) = h1

√
1− e−2kt

2k
, c2(t) = h1

∫ t

0

√
1− e−2kτ

2k
dτ,

d1 = b2 +
β0

2
c2

2(T )− b2
1

4b2

∫ T

0

c2
1(τ)dτ,

d2 =
1

2
β1c

2
2(T ), d3 =

β2
1

2
(x2(T )−D)2.

The functions c1 and c2 are calculated numerically.
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Upper bound on R

The cost function Jε(u∗1) can be written using Proposition 2 in the form

Jε(u
∗
1) = Jε(u

∗
0) +

∫ T

0

(b1u
∗
0δx1 + (2b2u

∗
0 + b1x1)δu)dt+ (β0 + εβ1)(x2(T )−D)δx2(T )

+
1

2

∫ T

0

(2b1δuδx1 + 2b2δu
2)dt+

1

2
(β0 + εβ1)δx2

2(T ).

Note that S is the following quantity

S =

∫ T

0

(b1u
∗
0δx1 + (2b2u

∗
0 + b1x1)δu)dt.

From equations (E.5), given the formula of u∗0, we can write

2b2u
∗
0 + b1x1 = −h1λ1.

By replacing this expression in the formula of S, we have

S =

∫ T

0

(b1u
∗
0δx1 − h1λ1δu)dt.

From equations (E.7), the term h1δu is equal to δẋ1. Integrating by parts gives the formula
of S in the form

S =

∫ T

0

b1u
∗
0δx1dt− λ1(T ) · δx1(T )︸ ︷︷ ︸

=0

+λ1(0) · δx1(0)︸ ︷︷ ︸
=0

+

∫ T

0

λ̇1δx1dt.

The term δx1(T ) is equal to zero, since the final constraint on x1 at time t = T is satisfied
for the two OCP (E.5) and (E.6). The expression of S is

S =

∫ T

0

(b1u
∗
0 + λ̇1)δx1dt.

From the equation given the dynamics of λ1 in equations (E.5), the formula of S becomes

S = −
∫ T

0

λ2 · δx1dt.

From the dynamics of δx2 in equations (E.7), S can be written

S = −
∫ T

0

λ2 · δẋ2dt.

As λ2 is constant, δx2(0) = 0 and from equations (E.5), S can be simplified to

S = −β0(x2(T )−D)δx2(T ),

yielding to the following expression for ∆J = Jε(u
∗
1)− Jε(u∗0)

∆J =
1

2

∫ T

0

(2b1δuδx1 + 2b2δu
2)dt+ εβ1(x2(T )−D)δx2(T ) +

1

2
(β0 + εβ1)δx2

2(T ). (E.8)
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As u∗1 is the optimal control, it satisfies

Jε(u
∗
1) ≤ Jε(u

∗
0),

and from equation (E.8), we can write

1

2

∫ T

0

(2b1δuδx1 + 2b2δu
2)dt+ εβ1(x2(T )−D)δx2(T ) +

1

2
(β0 + εβ1)δx2

2(T ) ≤ 0. (E.9)

From the relationship between δu and z, we have

2b1δuδx1 + 2b2δu
2 = 2b2z

2 − b2
1

2b2

δx2
1.

From the inequality xy > −x2

2a
− a

2
y2 and the upper bounds on δx1 and δx2, inequality (E.9)

becomes of the form [
d1 −

α

2
c2

2(T ) + εd2

]
R ≤ ε2

α
d3,

where α is chosen such that αc2
2(T ) = d1. Finally, as ε ≥ 0, the upper bound on R is

R ≤ d3ε
2

αd1 − 1
2
α2c2

2(T )
, fε2,

and the upper bounds on δx1 and δx2 are of the form

‖δx1(t)‖ ≤ c1(t)
√
fε, ‖δx2(t)‖ ≤ c2(t)

√
fε.

Upper bound on ∆J

From equation (E.8), the upper bound on ∆J is Kε2 where K is give by

K = β1(D − x2(T ))c2(T )
√
f +

1

2
(β0 + εβ1)c2

2(T )f + b2f +
b2

1

4b2

f

∫ T

0

c2
1(t)dt. (E.10)

E.3 Thermal management problem for HEV
The Hamiltonian associated to the perturbed problem (OCPε) is

Hε(θe, u, λ, µ, t) = e(θe, ε)c(u, t) + λf(u, t) + µg(θe, u, t),

where λ and µ are the adjoint states associated respectively to the SOC and θe. From the
optimality conditions, the associated TPBVP is

e(θ1, ε)∂uc(u
∗
1, t) + λ1∂uf(u∗1, t) + µ1∂ug(θ1, u

∗
1, t) = 0,

λ̇1 = 0, λ1(T ) = 2β(ξ1(T )− ξ1(0)),

−µ̇1 = c(u∗1, t)∂θe(θ1, ε) + µ1∂θg(θ1, u
∗
1, t), µ1(T ) = 0,

where (ξ1, θ1) are solutions of (3.2, 4.3) for the control u∗1. For the nominal problem, the
associated TPBVP is of the form ∂uc(u

∗
0, t) + λ0∂uf(u∗0, t) = 0,

λ̇0 = 0, λ0(T ) = 2β(ξ0(T )− ξ0(0)),
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where (ξ0, θ0) are solutions of (3.2, 4.3) for the control u∗0. The following notations will
be used

δξ = ξ1 − ξ0, δθ = θ1 − θ0, δu = u∗1 − u∗0.

As the perturbation terms are only present in the cost function, the errors on the state
trajectories can be written in the form

|δξ(t)|2 ≤ c2
ξ(t)

∫ T

0

|δu(τ)|2 dτ,

|δθ(t)|2 ≤ c2
θ(t)

∫ T

0

|δu(τ)|2 dτ,

where cξ and cθ are functions of time and the nominal control u∗0. Using Proposition 2,
the optimal cost Jε(u∗1) can be written as

Jε(u
∗
1) = Jε(u

∗
0) + ε

∫ T

0

[(1− θ0

θw
)∂uc(u

∗
0, t) · δu(t)− c(u∗0, t)

θw
· δθ]dt+ β · δξ(T )2

+

∫ T

0

∫ 1

0

∫ 1

0

ρ∂σσH1(σ0 + ρk(σ1 − σ0), λ0, 0, t)(σ1 − σ0)2dρdkdt, (E.11)

where σ = [θ , u]. As u∗1 is the optimal control for the perturbed problem, it satisfies

Jε(u
∗
1) ≤ Jε(u

∗
0).

From equation (E.11), we can write

ε

∫ T

0

[(1− θ0

θw
)∂uc(u

∗
0, t) · δu(t)− c(u∗0, t)

θw
· δθ]dt+ β · δξ(T )2

+

∫ T

0

∫ 1

0

∫ 1

0

ρ∂σσH1(σ0 + ρk(σ1 − σ0), λ0, 0, t)(σ1 − σ0)2dρdkdt ≤ 0. (E.12)

Consider the notations

S1(t) = (1− θ0

θw
)∂uc(u

∗
0, t), S2(t) =

c(u∗0, t)

θw
, S3(θe, u, t) = (1− θe

θw
)c(u, t).

The quantities S1 and S2 are calculated numerically from the nominal trajectories. From
the definition of Hε, we can write

Hε(θe, u, λ0, 0, t) = H0(u, λ0, t) + ε(1− θe
θw

)c(u, t).

Equation (E.12) becomes of the form

ε

∫ T

0

S1(t)δu(t)dt+ βδξ2(T ) +

∫ T

0

∫ 1

0

∫ 1

0

ρ∂uuH0(u0 + ρkδu, λ0, t)δu
2(t)dρdkdt

+ε

∫ T

0

∫ 1

0

∫ 1

0

ρ∂σσS3(σ0 + ρk(σ1 − σ0), t)(σ1 − σ0)2dρdkdt ≤ ε

∫ T

0

S2(t)δθ(t)dt.
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The part ε
∫ T

0

∫ 1

0

∫ 1

0
ρ∂σσS3(σ0 + ρk(σ1 − σ0), t)(σ1 − σ0)2dρdkdt leads to a term in ε3 (as

ε is less than one, ε3 ≤ ε2). We can write from the previous equation that

ε

∫ T

0

S1(t)δu(t)dt+ βδξ2(T ) +

∫ T

0

∫ 1

0

∫ 1

0

ρ∂uuH0(u0 + ρkδu, λ0, t)δu
2(t)dρdkdt

≤ ε

∫ T

0

S2(t)δθ(t)dt. (E.13)

Assume that there exists a positive constant γ such that

∂uuH0(u, λ0, t) ≥ γI, uniformly in u, (E.14)

whereH0 is the Hamiltonian associated to the nominal problem. From the condition (E.14),
we derive ∫ T

0

∫ 1

0

∫ 1

0

ρ∂uuH0(u0 + ρkδu, λ0, t)δu(t)2dρdkdt ≥ γ

2

∫ T

0

δu(t)2dt.

Using the inequalities, for any x, y and α > 0,

− x2

2α2
− α2y2

2
≤ xy ≤ x2

2α2
+
α2y2

2
,

equation (E.13) can be written as

− ε2

2α2

∫ T

0

S2
1(t)dt− α2

2

∫ T

0

δu2(t)dt+ βδξ2(T ) +
γ

2

∫ T

0

δu2(t)dt

≤ ε2

2α2

∫ T

0

S2
2(t)dt+

α2

2

∫ T

0

δθ2(t)dt. (E.15)

Equation (E.15) becomes of the form[
γ

2
+ βc2

ξ(T )− α2

2

[
1 +

∫ T

0

c2
θ(t)dt

]] ∫ T

0

δu2(t)dt ≤ ε2

2α2

∫ T

0

(S2
1(t) + S2

2(t))dt. (E.16)

The parameter α is chosen such that

γ

2
+ βc2

ξ(T )− α2

2

[
1 +

∫ T

0

c2
θ(t)dt

]
=
γ

4
+

1

2
βc2

ξ(T ) , q,

and we get

α =

√
γ
2

+ βc2
ξ(T )

1 +
∫ T

0
c2
θ(t)dt

.

The parameter α is well defined. From equation (E.16), one derives that∫ T

0

δu2(t)dt ≤ ε2

2qα2

∫ T

0

(S2
1(t) + S2

2(t))dt = c2
uε

2,

and the upper bounds on the state trajectories error become of the form

δξ2(T ) ≤ c2
ξc

2
uε

2,

δθ2(t) ≤ c2
θ(t)c

2
uε

2.
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The final step is to find an upper bound of ∆J . From the expression of Jε(u∗1) given
in (E.11), we can write

∆J =

∣∣∣∣ε ∫ T

0

[S1(t)δu− S2(t)δθ]dt+

∫ T

0

∫ 1

0

∫ 1

0

ρ∂uuH0(., λ0, t)δu
2dρdkdt+ βδξ(T )2

∣∣∣∣ ,
≤

[
1

2α1

∫ T

0

(S2
1(t) + S2

2(t))dt+
α1

2
c2
u(1 +

∫ T

0

c2
θ(t)dt) +

1

2
sup
[0T ]

∂uuH0c
2
u + βc2

ξc
2
u

]
ε2,

≤ Kε2,

where α1 is given by

α1 =

√√√√∫ T0 (S2
1(t) + S2

2(t))dt

c2
u + c2

u

∫ T
0
c2
θ(t)dt

.

The formula of K is

K =
1

2α1

∫ T

0

(S2
1(t) + S2

2(t))dt+
α1

2
c2
u +

α1

2
c2
u

∫ T

0

c2
θ(t)dt+

1

2
sup ∂uuH0(.)c2

u + βc2
ξc

2
u. (E.17)
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Appendix F

Details of the proof about the ECMS
stability

The objective here is to study the stability of the following time-variant system with a
time-varying perturbation G

ẋ = −D1(t) · [kpx+ y],

ẏ = kix+ Ġ.

The study is divided into three parts.

F.1 LTI system

In the first step, the following LTI system without perturbation is studied (Ġ = 0)

ẋ = −d · [kpx+ y], (F.1)
ẏ = kix. (F.2)

The purpose of this analysis is to find a Lyapunov function [38] to be used in the following.
The stability of the system (F.1, F.2) can easily be checked by taking a quadratic Lyapunov
function

V =
[
x y

]
P

[
x
y

]
,

where P is a symmetric positive definite matrix solution of the following Lyapunov equa-
tion

ATP + PA = −
[
α 0
0 β

]
,

where α and β are positive constants. The matrix A is the dynamic matrix of the sys-
tem (6.14, 6.15). The matrix P is given by

P =
1

2d

[
p1 p2

p2 p3

]
=

1

2d


α

kp
+
βki
kpd

β

β
αd

kpki
+
βdkp
ki

+
β

kp

 .
156



APPENDIX F. DETAILS OF THE PROOF ABOUT THE ECMS STABILITY

The Lyapunov matrix P is definite positive if the following two inequalities are satisfied{
p1 + p3 > 0,
p1p3 − p2

2 > 0.

The first inequality is satisfied if (ki > 0) and (kp > 0). The second inequality can be
written as follow

α2d

kik2
p

+
kiβ

2

dk2
p

+ αβ

[
d

ki
+

2

k2
p

]
> 0.

The left side of this inequality is a polynomial of degree 2 with respect to α and β where
the coefficients are positives as ki > 0 and kp > 0: this means that if this polynomial has
roots, they will be < 0. So, this inequality is always satisfied for any α and β positives.
Thus, P is positive definite if the gains kp and ki are strictly positive

kp > 0, ki > 0.

In what follows, α and β are set to 1 without loss of generality.

F.2 Time-varying system without source terms

The next step is to introduce a perturbation term δ(t) = D1(t) − d in the dynam-
ics (F.1, F.2),

ẋ = −(d+ δ(t)) · [kpx+ y], (F.3)
ẏ = kix. (F.4)

The dynamic matrix A1 of the system (F.3, F.4) can be written as a linear function of A
defined for the LTI system

A1 = A+

[
−kpδ(t) −δ(t)

0 0

]
. (F.5)

The objective in this second step is to find sufficient conditions on perturbation term δ(t)
so that the system (F.3, F.4) remains stable by using the above Lyapunov matrix P .

Lemma 2 If δ(t) satisfies the two inequalities
δ(t)

d
< r1,

δ(t)

d
> max(

−2d

2d+ ki
, r2),

(F.6)

where ki > 0, kp > 0, r1 (resp. r2) is the positive (resp. the negative) root of

Π(q) = −1

4

[
kp −

ki
kpd
− 1

kp

]2

q2 +

[
2 +

ki
d

]
q + 1,

the system (F.3, F.4) will be stable. The case δ = 0 satisfies the condition (F.6).
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Proof The derivative of (V ) along the trajectories of (F.3, F.4) is given by

V̇ =
[
x y

] ATP + PA+

[
−kpδ(t) −δ(t)

0 0

]T
P + P

[
−kpδ(t) −δ(t)

0 0

][ x

y

]
.

For convenience, the following notation is used

s =
1

kp
+

ki
dkp

.

The derivative of V can be written

V̇ =
[
x y

] [ −1− δ(t)
d
kps − δ(t)

2d
(kp + s)

− δ(t)
2d

(kp + s) − δ(t)
d
− 1

][
x

y

]
.

Let’s suppose that

F =

[
−f1 −f2

−f2 −f3

]
=

[
−1− δ(t)

d
kps − δ(t)

2d
(kp + s)

− δ(t)
2d

(kp + s) − δ(t)
d
− 1

]
. (F.7)

We look for conditions on δ(t) that’s make the matrix F negative definite, which is
equivalent to {

−f1 − f3 < 0,
f1f3 − f 2

2 > 0.
(F.8)

The first inequality leads to the condition

δ(t)

d
>
−2d

2d+ ki
,

while the second condition leads to

−1

4

[
kp −

ki
kpd
− 1

kp

]2
δ2

d2
+

[
2 +

ki
d

]
δ

d
+ 1 > 0,

which is equivalent to

Π(
δ

d
) > 0.

The two roots of Π(.) are

r1 = 2
kps+ 1

(kp − s)2

(
1 +

√
1 +

(s− kp)2

(skp + 1)2

)
> 0,

r2 = 2
kps+ 1

(kp − s)2

(
1−

√
1 +

(s− kp)2

(skp + 1)2

)
< 0.

The condition on δ(t) such that Π( δ
d
) > 0 is

r2 <
δ(t)

d
< r1.

The inequalities (F.6) are proven. So, if δ(t) satisfies the conditions (F.6), the system (F.3,
F.4) will be stable for any kp > 0 and ki > 0. It’s clear that δ(t) = 0 is included in this
domain with strict inequalities. This concludes the proof.
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F.3 Time-varying system with source terms

In this case, the dynamic of the system (6.11, 6.12) can be written[
ẋ

ẏ

]
= A1

[
x

y

]
+

[
0

Ġ(t)

]
, (F.9)

where A1 is defined in (F.5).

Proposition 10 Assuming that the conditions on δ(t) in (F.6) are satisfied. There exists
a set defined by

f1

[
x+

f2

f1

y − Ġ(t)

2df1

]2

+ (f3 −
f 2

2

f1

)

[
y − Ġ(t)

2d

f1s1 − f2

f3f1 − f 2
2

]2

≤ Ġ2(t)

4d2f1

[
1 +

(f1s1 − f2)2

f3f1 − f 2
2

]
outside of it, the Lyapunov function (V ) calculated above decreases and the origin belongs
always to this set. The constant s1 is given by

s1 =
d

kikp
+

1

kp
+
dkp
ki
.

Proof The derivative of the Lyapunov function (V ) along the trajectories of the dynamic
system (F.9) is

V̇ =
[
x y

]
F

[
x

y

]
+
Ġ

d
(x+ s1y),

where F is defined in equation (F.7). In details, V̇ can be written as

V̇ = −f1x
2 − 2f2xy − f3y

2 +
Ġ

d
(x+ s1y),

yielding

V̇ = −f1

[
x+

f2

f1

y

]2

+
Ġ(t)

d
(x+

f2

f1

y)− (f3 −
f 2

2

f1

)y2 +
Ġ(t)

d
(s1 −

f2

f1

)y.

By gathering the two first terms of the right side, V̇ becomes of the form

V̇ = −f1

[
x+

f2

f1

y − Ġ(t)

2df1

]2

−(f3−
f 2

2

f1

)

[
y − Ġ(t)

2d

f1s1 − f2

f3f1 − f 2
2

]2

+
Ġ2(t)

4d2f1

[
1 +

(f1s1 − f2)2

f3f1 − f 2
2

]
,

where f1 > 0 and f3 −
f 2

2

f1

> 0 (the matrix F is negative definite from conditions (F.8)).

So, the derivative of the Lyapunov function will be negative in the region of the state
space [x, y] defined by

f1

[
x+

f2

f1

y − Ġ(t)

2df1

]2

+ (f3 −
f 2

2

f1

)

[
y − Ġ(t)

2d

f1s1 − f2

f3f1 − f 2
2

]2

>
Ġ2(t)

4d2f1

[
1 +

(f1s1 − f2)2

f3f1 − f 2
2

]
.
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The system (F.9), after some finite time, will converge to the set defined by

f1

[
x+

f2

f1

y − Ġ(t)

2df1

]2

+ (f3 −
f 2

2

f1

)

[
y − Ġ(t)

2d

f1s1 − f2

f3f1 − f 2
2

]2

≤ Ġ2(t)

4d2f1

[
1 +

(f1s1 − f2)2

f3f1 − f 2
2

]
,

and will not go out of it in the future time as V̇ is negative. The origin of the state space
is on the boundary of this set When Ġ 6= 0. When G becomes constant after a certain
time, this set is reduced to the origin of the state space [x, y].

The main conclusion is the following: we are not sure that the states x and y will
converge to the origin, but we know that they will be bounded by some functions of the
driving cycle parameters (torque and speed requested at the wheels and parameters of PI
controller) after some finite time. This concludes the proof.
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Appendix G

Experimental data used in the
identification of thermal dynamics

The engine torque and speed set points of the experimental tests used for the identification
and the validation of the thermal dynamics of the engine, DOC, DPF and the SCR are
given in this Appendix.

G.1 Engine temperature

For the engine temperature, the cycle used in the identification of the engine temperature
model parameters is the WLTC. The inputs of engine temperature model (7.1) are the
engine speed and the engine torque.

G.1.1 Ie-Test: Identification

The engine speed and torque set points are given in Figures G.1 and G.2.
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Figure G.1: Engine speed set points [rpm] for Ie-Test
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Figure G.2: Engine torque set points [Nm] for Ie-Test

G.1.2 Ve-Tests: Validation

Three tests are considered for the validation of the engine temperature model: Ve1-Test,
Ve2-Test and Ve3-Test. The engine speed and torque trajectories are given in Figures G.3,
G.4, G.5, G.6, G.7 and G.8. The driving cycle is the WLTC. These tests have been done
for the power assist mode where the control strategies of the EMS (to split the power
requested at the wheel between the engine and the electric machine) are different.

G.1.2.1 Ve1-Test
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Figure G.3: Engine speed set points [rpm] for Ve1-Test
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Figure G.4: Engine torque set points [Nm] for Ve1-Test

G.1.2.2 Ve2-Test
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Figure G.5: Engine speed set points [rpm] for Ve2-Test
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Figure G.6: Engine torque set points [Nm] for Ve2-Test
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G.1.2.3 Ve3-Test
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Figure G.7: Engine speed set points [rpm] for Ve3-Test
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Figure G.8: Engine torque set points [Nm] for Ve3-Test

G.2 After-treatment system temperatures
The after-treatment system is composed of three sub-systems: DOC, DPF and SCR (see
Figure 7.14). For each sub-system, a zero-dimensional model based on physical equations
is considered. The main inputs of the DOC model are the gas flow coming from the engine
ṁexh and the exhaust temperature θexh, given by a quasistatic maps as functions of the
engine torque and the engine speed. For Ic-Test and Vc1-Test, the driving cycle is the
WLTC.

G.2.1 Ic-Test: Identification

The engine speed and torque are given in Figures G.9 and G.10. The corresponding
driving cycle is the WLTC. The operation mode of the vehicle to identify the model
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parameters is the thermal mode (engine only). The engine speed is at the idle speed (780
rpm) when the engine torque equals zero.
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Figure G.9: Engine speed set points [rpm] for Ic-Test
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Figure G.10: Engine torque set points [Nm] for Ic-Test

G.2.2 Vc-Tests: Validation

Three tests are considered: Vc1-Test and Vc2-Test. The engine speed and torque are given
in Figures G.11, G.12, G.13 and G.14.
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G.2.2.1 Vc1-Test
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Figure G.11: Engine speed set points [rpm] for Vc1-Test
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Figure G.12: Engine torque set points [Nm] for Vc1-Test

G.2.2.2 Vc2-Test
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Figure G.13: Engine speed set points [rpm] for Vc2-Test
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Figure G.14: Engine torque set points [Nm] for Vc2-Test

G.3 Illustration of the temperature drop problem
As it has been mentioned in Section 7.3.2, the operation mode of the vehicle used for the
validation of the DOC, DPF and the SCR temperatures is the "power assist" mode: the
engine can be turned off (depending on the control strategy) and there will be no gas flow
coming from the engine over the corresponding time intervals. In this case, because the
temperature sensors measure the gas temperature, the data in regions A, B, C and D in
Figures 7.22 and 7.23 are not representative of the real temperatures. From Figures G.15,
G.16, G.17, G.18 and G.19, when the engine is turned off (engine torque and speed are
zero), the temperatures of the DOC, DPF and the SCR decrease. In the next engine start,
the temperatures increase quickly. Additionally, since the sensors characteristics used
for the temperature measurement in the three sub-systems are different, the maximum
magnitude of the increase/decrease in the temperatures are different.
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Figure G.15: Zoom on normalized engine torque, normalized engine speed and ATS temperatures
for region A
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Figure G.16: Zoom on normalized engine torque, normalized engine speed and ATS temperatures
for region B
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Figure G.17: Zoom on normalized engine torque, normalized engine speed and ATS temperatures
for region C
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Figure G.18: Zoom on normalized engine torque and normalized engine speed for region D
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Figure G.19: Zoom on ATS temperatures for region D
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Appendix H

Eco-driving

This appendix presents another important problem of optimal control which can be ana-
lyzed using the methodology presented in the thesis.

There are different ways of driving during a specific journey, which are not equiva-
lent from an energy consumption viewpoint (see Figure H.1). The so-called eco-driving
methodology consists in finding the optimal way to reduce the overall energy consump-
tion [22, 78]. A driver support system calculates and proposes the speed and the gear-box
ratio set points to the driver through a human machine interface(HMI) integrated in the
dashboard of the vehicles. The aim of vehicle trajectory control is to determine the vehicle
speed profile required to minimize the fuel consumption over a given period under various
constraints. However, for eco-driving to be environmentally friendly, not only fuel con-
sumption but also pollutant emissions should be considered [54]. It was found in [54] that,
while the fuel optimal velocity profile reduces energy consumption, this operation can not
be seen as ecological due to the increase in CO and HC emissions. The mathematical
formulation of this problem is given below.

Figure H.1: Profile speeds and their fuel consumptions [54]. The traveled distances are equal. A
reduction of 27% is achieved.

Let us consider the example of an individual driving his/her full electric car. The
vehicle is powered by a DC electric machine (other kind of primer mover can be considered:
internal combustion engine and permanent-magnet synchronous machine). The individual
wants to travel from point A to point B in a duration T where the traveled distance D
is known in advance and T is fixed. The problem we want to solve is: «what is the best
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speed profile minimizing the vehicle power consumption knowing that the vehicle starts
from point A at rest and must reach the destination point B in a duration T , with a zero
velocity?» to answer this question, we define the electric power consumption Pm. The
cost function to be minimized is ∫ T

0

Pm(v(t), u(t))dt,

where v(t) is the vehicle speed, u is a percent of torque demand to the maximum torque
of the electric machine and it is the control input of the system. This optimization is
carried out under the following dynamical constraint

v̇(t) = f1(v(t), x(t), u(t)),

ẋ(t) = v(t),

where x is the position of the vehicle. Since the speed and the electric machine torque are
limited and the final position and speed are fixed, the optimization must be performed
under the following state and input constraints

x(T ) = D,

v(T ) = 0,

v(t) ∈ [vmin, vmax],

u(t) ∈ [umin, umax].

The solution of this optimization problem gives the optimal speed profile minimizing the
power consumption of the vehicle from point A to point B. The red curve in Figure H.1
represents the optimal speed profile and the gain in fuel consumption is 27% [54].
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Méthodes d’optimisation dynamique de systèmes à plusieurs états
pour l’efficacité énergétique automobile

Résumé : La gestion énergétique (EMS) pour véhicules hybrides a pour ob-
jectif de déterminer la répartition de puissance entre les différentes sources
d’énergie de manière à minimiser la consommation de carburant et/ou les
émissions polluantes. L’objectif de cette thèse est de développer un EMS
en prenant en compte des températures internes (la température du moteur
et/ou la température du système de post-traitement). Dans une première par-
tie et en utilisant une connaissance préalable du cycle de conduite, le calcul
d’un EMS est formulé comme un problème de commande optimale. Ensuite,
le principe du minimum de Pontryagin (PMP) est utilisé pour résoudre ce
problème d’optimisation. En se basant sur les résultats numériques obtenus,
un compromis entre les performances de la stratégie de commande et de la
complexité du modèle utilisé pour la calculer est établi. Les différents prob-
lèmes étudiés dans cette thèse sont des exemples des simplifications succes-
sives de modèle qui peuvent être regroupées dans le concept des perturbations
régulières en contrôle optimal sous contrainte de commande discuté ici. Dans
une deuxième partie, la formulation de l’ECMS a été généralisée pour inclure
les dynamiques thermiques. Ces extensions définissent des stratégies sous-
optimales que nous avons testées numériquement et expérimentalement.
Mots-clés : Superviseur énergétique, véhicule électrique hybride, commande
optimale, PMP, perturbation régulière, généralisation de l’ECMS.

Dynamic optimization in multi-states systems for automobile
energy efficiency

Abstract: Energy management system (EMS) for hybrid vehicles consists on
determining the power split between the different energy sources in order to
minimize the overall fuel consumption and/or pollutant emissions of the ve-
hicle. The objective of this thesis is to develop an EMS taking into account
the internal temperatures (engine temperature and/or catalyst temperature).
In a first part and using a prior knowledge of vehicle driving cycle, the EMS
design is formulated as an optimal control problem. Then, the PMP is used
to solve this optimization problem. Based on the obtained numerical results,
some trade-off between performance of the control strategy and complexity of
the model used to calculate this strategy is established. The various problems
studied in this thesis are examples of successive model simplifications which
can be recast in the concept of regular perturbations in optimal control under
input constraints discussed here. In a second part, the feedback law of ECMS
is generalized to include thermal dynamics. This defines sub-optimal feedback
strategies which we have tested numerically and experimentally.
Keywords: Energy management, hybrid electric vehicle, optimal control,
Pontryagin minimum principle, regular perturbation, ECMS extensions.
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