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The versatility of high-content high-throughput time-lapse screening data:

developing generic methods for data re-use and comparative analyses

by Alice SCHOENAUER SEBAG

Biological screens test large sets of experimental conditions with respect to their specific

biological effect on living systems.

Live cell imaging is an excellent tool to study in detail the consequences of chemical per-
turbation on a given biological process. However, the analysis of live cell screens demands
the combination of robust computer vision methods and quality control procedures, and

efficient statistical approaches for the detection of significant effects.

This thesis addresses these challenges by developing analytical methods for High Through-
put time-lapse microscopy screening data. The developed frameworks are applied to
publicly available HCS data, demonstrating their applicability and the benefits of HCS
data remining. The first multivariate workflow for the study of single cell motility in such
large-scale data is detailed in Chapter 2. Chapter 3 presents this workflow application
to previously published data, and the development of a new distance for drug target
inference by in silico comparisons of parallel siRNA and drug screens. Finally, chapter
4 presents a complete methodological pipeline for performing HT time-lapse screens in

Environmental Toxicology.
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TABLE 1: Abbreviations

ADCCM Asymmetric Distribution of Condensed Chromosome Masses
AURKA B Aurora kinase A, B

BPA bisphenol-A

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

ds double stranded

Endo a-endosulfan

FACS fluorescence-activated cell sorter
FCS fetal calf serum

H2B histone 2B

HC high-content

HCS high-content screening

HT high-throughput

MeHg methylmercury

MSD mean squared displacement
PCB153 2,244’ 5. 5’-Hexachlorobiphenyl
PCNA proliferating cell nuclear antigen
RNA ribonucleic acid

RT-qPCR  real-time quantitative polymerase chain reaction
TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin
TOP1 topoisomerase (DNA) 1

TABLE 2: Main definitions

Condition  Combination of a dose and a chemical
Any chemical which is foreign to an organism, i.e. is

Xenobioti . in i
CHOPIOUE either produced nor expected to be found in it.
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Chapter 1

Introduction

Résumé - Introduction (see infra for English text)

De récents progrés en chimie organique et en biologie moléculaire ont permis la constitution
de géantes librairies de molécules, qui sont respectivement des médicaments potentiels et
des composés concus pour aboutir & la sur- ou sous-expression d’un géne d’un organisme
donné. Ces produits nécessitent d’étre testés : il importe de vérifier la toxicologie comme
Ieffet attendu des médicaments potentiels. D’autre part, ’existence de librairies de petites
molécules comme de siRNAs permettent de tester systématiquement la fonction des génes
d’une espéce.

Des milliers de nouveaux produits chimiques sont par ailleurs synthétisés & des fins in-
dustrielles chaque année. Il importe également de les tester, ce qui fait de la toxicologie
environnementale un troisiéme champ d’application majeur pour les cribles biologiques.
Un crible biologique est un ensemble d’expériences congu pour tester en paralléle les effets
de plusieurs composés sur une action biologique spécifique dans un organisme donné. Une
expérience de vidéomicroscopie & épifluorescence est une expérience durant laquelle de
multiples images d’échantillons fluorescents sont acquises au cours du temps. Cela fournit
beaucoup d’informations supplémentaires par rapport a la prise d’une unique image, comme
par exemple 'observation d’événements rares ou encore 'ordonnancement des événements
observés.

Les données de cribles biologiques & haut débit réalisés avec de la vidéomicroscopie sont
donc trés riches ; leur analyse nécessite la mise au point de techniques statistiques mul-
tivariées robustes. La question est donc de savoir comment développer optimalement des
méthodes analytiques pour de telles données. Nous présenterons dans le chapitre 2 le
premier workflow pour 1’étude de la motilité cellulaire individuelle dans de telles don-
nées. Le chapitre 3 appliquera ce workflow ainsi que d’autres aux données du projet Mi-
tocheck [Neumann et al., 2010], démontrant 'utilité de la ré-utilisation de telles données.
Enfin, le chapitre 4 développera une approche méthodologique pour 'analyse de données
de vidéomicroscopie & fin de criblage en toxicologie environnementale.
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Biological screens

Progress in organic chemistry and molecular biology have led to the constitution of giant
libraries, respectively of putative drugs and potential biologically active small molecules,
and engineered organisms or proteins for gene silencing or overexpression. As an ex-
ample, the Biomolecular Screening Facility of the EPFL (Lausanne, Switzerland) has
a collection of 65,000 compounds and 130,000 small interfering RNAs (siRNAs'), while
most bio-technological companies offer to ship custom genome-wide siRNA libraries over
a fortnight. Pharmaceutical industry libraries are impressive as well, most containing

more than one million compounds.

Putative drugs need to be tested for the expected biological effect and against undesir-
able secondary effects. Understanding their mode-of-action, which screening experiments
can help to do, is also a major concern during drug discovery, and often its rate-limiting
step |Eggert et al., 2004|. Screens have therefore become a major component of drug dis-
covery processes [Wei et al., 2012|. On the other hand, the development of biomolecular
engineering, and small molecule and siRNA libraries at (more) affordable costs, has led
to a significant increase in functional genomic screens, which test for gene function and
gene relations. For example, [Giaever et al., 2002] exhaustively engineered gene-deletion
mutants of the yeast Saccharomyces cerevisiae, while [Gwack et al., 2006] performed a

genome-wide siRNA screen in the fruit fly Drosophila melanogaster.

Finally, progress in organic chemistry has also led to the explosion of the number of new
molecules which are synthesized each year for industrial purposes (e.g. pesticides, plas-
tics, food additives). This calls for the development of systematic testing experiments,
both for the desired action and against undesirable effects on living organisms. Hence a

third major field of application for biological screens is Environmental Toxicology.

Biological screens are experiments which are designed for testing a set of compounds
for a specific biological action in a given organism. The latter can be any organism
in which the action is easily detected, such as a fish (Danio rerio), a fly (Drosophila
melanogaster), a worm (Caenorhabditis elegans) or a human cell (Homo sapiens). The
biological action which is tested can go from a simple univariate assessment of cell death,
to the multivariate quantification of an effect on a complex cellular phenotype such as cell
division or motility. This will determine the screen content, which would respectively be
low and high. Another important parameter of biological screens are their throughput.
It ranges from low, for example when testing a dozen of carefully selected compounds,

to high for hundreds of thousands of siRNAs in the case of a genome-wide screen.

'Small interfering RNAs are short double-stranded RN A molecules which interfers with the expression
of genes that present complementary nucleotide sequences.
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FIGURE 1.1: Images of a wild-type C. elegans worm (top left, nuclear staining, [Biol.,

2005]), 12 D. melanogaster larvae (top right, colors: spatial repartition of different

mRNAs, [Lecuyer et al., 2007]) and human breast cancer cells (bottom, red: DNA,
green: cytoplasmic membrane, our data)

Time-lapse microscopy

Time-lapse microscopy experiments are experiments in which images are regularly ac-
quired over time. Hence they produce rich 3 or 4-dimensional datasets: they are high-
content (HC) almost by definition. Most time-lapse data comes from fluorescent samples.
Fluorescent labelling has the advantage of being presently very affordable, (mostly) non-
toxic to living organisms and flexible. It makes it possible to easily follow a single protein
of interest, which would have been delicate in bright-field images. Furthermore, although
it demands either the addition of some reagent when acquiring for a few minutes or hours,
or cell genetic modification when acquiring repeatedly for a few days, fluorescence im-
ages are easier to segment and analyze than bright field images. This generalized use of
fluorescent proteins was permitted by their recent discovery, which started by the green
fluorescent protein (GFP) [Chalfie et al., 1994], [Muzzey and van Oudenaarden, 2009].

The use of time-lapse microscopy rather complicates data acquisition: samples need to
be maintained in the appropriate atmosphere at the appropriate temperature, and one
should be certain to avoid phototoxicity from repeated light exposure. Nevertheless,

they provide a wealth of information which it is not possible to access otherwise. First
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of all, time-lapse microscopy experiments seem natural for studying dynamic processes
such as cell division or cell motility. Furthermore, they enable to visualize very transient
events, which are barely observed in endpoints assays, such as early anaphases [Neumann
et al., 2010]. Time-lapse microscopy experiments also permit to establish causality links
between phenotypes [Perlman et al., 2004|. Indeed, it makes it possible to observe the
order in which phenotypes occur, therefore enabling to determine which one leads to
the other. It also makes it possible to study cell population heterogeneity in response
to gene silencing or chemical exposure: tracking cells over time permits to perform in
silico cell alignment, and therefore to determine if there exists cell subpopulations with
different phenotypic stories. This is not surprising given the stochastic nature of gene
expression |[Raj and van Oudenaarden, 2008|, and can already been found in the Event
Order Maps of [Neumann et al., 2010| (although it was not formalized in that direction
in the latter).

Despite more complex experimental procedures, time-lapse microscopy therefore has a
real advantage over endpoint assays when studying complex phenotypes: they truly
permit to functionally dig into the consequences of either gene silencing or chemical
exposure. As such, it started being used approximately 15 years ago, although some
pioneering studies date back from the 1980s (e.g. [Sulston et al., 1983], see [Muzzey and
van Oudenaarden, 2009| for a review on quantitative time-lapse fluorescence microscopy
in single cells). We hereafter refer to time-lapse fluorescence microscopy data by time-

lapse data.

Analysis of high-throughput time-lapse screening data

High-throughput (HT) screening experiments have only been made recently possible by
the development of screening robots, automated microscopes and measurement devices,
and relevant software. These tools are necessary for preparing and performing the experi-
ments. In the case of low-content experiments, result analysis remains simple, although it
should not be forgotten that statistics on large datasets should not be done as on small
ones (see paragraph on the control of false discovery rate in section 2.2.3.2). Quality

control procedures shall be included in the pipeline as well.

On top of quality control and large dataset statistics, robust and efficient multivariate
analytical methods are necessary to deal with HC HT screening experiments. This applies
to HT time-lapse screening data as well. It is indeed a specific type of HC HT screening
data, in which one data dimension is time. Most of the time, analyzing such datasets
demands to combine computer vision methods to multivariate statistical algorithms for
significant effect detection. These methods should be tailored to the biological process

which is studied, but they all have in common the challenges to be robust when faced
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with noise, and scalable as dataset sizes increase. The question is to know how to develop

analytical methods for optimally exploiting such datasets.

A first biological process which seems natural to be studied with time-lapse microscopy
is single cell motility. A systematic functional genomics approach to cell motility is
all the more needed since all the involved proteins and pathways are not yet known.
Nevertheless, it was never studied using multivariate statistical tests in HT settings.
During this thesis, we therefore developed a generic methodological workflow for studying
single cell motility in HT time-lapse screening data, which will be presented in chapter

2. As will be detailed, an ad-hoc statistical procedure indeed had to be developed.

The generic quality of this workflow enabled it to be applied to an existing dataset, the
Mitocheck dataset (see section 1.1.1 for a presentation of this dataset). This revealed
the quantity of unexploited information in this dataset, and more generally the wealth
of existing HT time-lapse screening data which can be re-used to different purposes than
the original experimental design. Proofs of this constitutes chapter 3, which presents
how an ontology of single cell trajectories could be extracted from the Mitocheck dataset
(section 3.2.2). The latter was also used for detecting cell cycle genes (section 3.3).
In section 3.4, it also permitted to perform drug target inference on an unpublished

time-lapse drug screen, which made it necessary to develop a new distance.

Finally, as was mentioned in the beginning of this introduction, one of the most im-
portant applications of screening is in Toxicology. Moreover, HT time-lapse screening
experiments have never been performed in Environmental Toxicology. We therefore
developed a robust methodological workflow and its visualization Web-interface, for con-
ducting and analyzing H'T time-lapse screening data in Environmental Toxicology. This

composes chapter 4.

Before diving into the main matters, all the datasets which were analyzed in the course
of this thesis, as well as the software which we used to this end, are briefly described in

the following section.

1.1 Data sets

Four time-lapse datasets were used in our work, which will briefly be presented in this
section: the Mitocheck dataset, which is the first genome-wide siRNA time-lapse screen,
a PCNA dataset for the study of cell cycle phases, an unpublished drug screen in similar

settings to those of the Mitocheck dataset, and an unpublished xenobiotic screen.
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1.1.1 Mitocheck data set

The main dataset which we used is a previously published genome-wide data set of time-
resolved records of cellular phenotype responses to gene silencing, which were generated
for virtually all protein-coding genes [Neumann et al., 2010]. It is publicly available at

mitocheck.org.

For this, arrays of transfection cocktails containing small interfering RNA (siRNA) were
spotted directly into live cell-imaging chambers in a 384 format. Hela cells (ATCC®
CCL-2™) stably expressing the core histone 2B tagged with GFP were seeded on top
of the arrays, and imaged 18 h after the transfection for 48 h with a time-lapse of 30 min
(Plan10x, NA 0.4; Olympus - see fig. 1.2 for an example). Imaging chambers were sealed
during imaging. Each microarray contained 8 negative controls (scrambled: not targeting
any gene) and 12 positive controls showing different phenotypes. 22,612 protein-coding
genes have been targeted by at least 2 siRNAs each, in total 51,767 siRNAs. For each
siRNA, there is data from at least 3 technical replicates, which created 182,191 quality
controlled time-lapse experiments in total. Due to updates in the genome annotation,
some reagents could not be mapped to the current ENSEMBL version. In total, the data
set contains data for 17,816 protein-coding genes in 144,909 quality controlled time-lapse

experiments.

HeLa cells are epithelial cancer cells which were derived from the adenocarcinoma of
Henrietta Lacks in 1951. Being the first human cell line to survive ez vivo for more than
a few days, they are very appreciated from cell biologists as they are easy to grow and
transfect. Indeed, this cell line is mentioned in approximately 0.3% of PubMed abstracts
although 64% of its genome has a copy number greater than three [Adey et al., 2013]. Tt is
not motile as can be the case of other cell lines which are widely used in migration studies
such as the epithelial metastatic breast-cancer derived MDA-MB-231 cell line (ATCC®
HTB-26"™), or the epithelial metastatic lung-cancer derived NCI-H1299 (ATCC® CRL-
5803T™). Indeed, it was the 16 slowest out of 54 in the first World Cell Race [Maiuri
et al., 2012]. Gene silencing in this background therefore makes it easier to identify
migration suppressors, that is, genes whose silencing will enhance cell motility, rather

than migration enhancers, given that HelLa basal cell motility is rather low.

1.1.2 PCNA data set

In section 3.3, another published dataset is mentioned, which is related to the study of

cell cycle phases. It was published with [Held et al., 2010] and is publicly available with

annotations?.

http://www.cellcognition.org/downloads/data


http://www.mitocheck.org
http://www.cellcognition.org/downloads/data

Introduction 7

FIGURE 1.2: Image from a control video of the Mitocheck dataset (white: histone 2B)

Briefly, HeLa cells were stably transfected for a red fluorescent chromatin protein (hi-
stone 2B fused to mCherry, H2B-mCherry) and a green fluorescent DNA replication
factory (proliferating nuclear antigen fused to GFP, PCNA-mEGFP). Cells were seeded
on LabTek chambered coverslips for live microscopy, and imaged for 48h with a time-lapse
of 6 min (Plan10x, NA 0.5; Nikon - see fig. 1.3 for an example). Cells were maintained
at 37°C in humidified atmosphere of 5% CO2 during imaging. Following this, cell nu-
clei were segmented using local adaptative thresholding, improved by a split-and-merge
approach as described, and samples for the different cell cycle phases were manually

annotated using the open-source software Cell Cognition [Held et al., 2010].

FIGURE 1.3: Image from a control video of the PCNA dataset (white: histone 2B,
green: PCNA)



Introduction 8

1.1.3 Drug screen

In section 3.4, we analyze an unpublished time-lapse drug screen®. In this dataset, 25
drugs were screened for their effect on HeLa cells in similar experimental settings to that

of the Mitocheck dataset.

Experiments were not conducted in the context of this PhD. They were performed at the
Advanced Light Microscopy facility of the EMBL (Heidelberg, Germany) by Beate Neu-
mann, Jutta Bulkescher and Thomas Walter. Briefly, HeLa cells were stably transfected
for a green fluorescent chromatin protein (H2B-GFP). Cells were seeded on 384-well
plates for live microscopy **h prior to imaging. Drug exposure occurred ***h prior to
imaging. Finally, cells were imaged for 48h with a time-lapse of 30 min (Plan10x, ** NA;
[MICROSCOPE BRAND)]). Cells were maintained at 37°C in humidified atmosphere of
5% CO2 during imaging.

1.1.4 Xenobiotic screen

In chapter 4, we analyze an unpublished time-lapse xenobiotic screen, for which we
performed the experiments. In this dataset, 5 xenobiotics were screened for their effect
on MCF-7 cells.

Briefly, MCF-7 cells (ATCC® Catalog N°HTB-22T™) were stably transfected for a red
fluorescent chromatin protein (H2B-mCherry) and a green fluorescent membrane protein
(myrPalm fused to GFP, myrPalm-GFP). Cells were seeded on 96-well plates 24h prior
to exposure, and they were exposed to xenobiotics 24h prior to imaging. Finally, cells
were imaged for 48h with a time-lapse of 15 min (Plan10x, 0.3 M27; Zeiss - see bottom of
fig. 1.1 for an example). Imaging plates were sealed during imaging. Our experimental

procedures will be detailed in section 4.1.

1.2 Software

We use CellCognition [Held et al., 2010]* for segmentation and object feature extrac-
tion in all projects. To store, manage and access screening data, we use a previously
published data format CellH5 [Sommer et al., 2013|. All scripts are written in the pro-
gramming language Python 2.7° using scipy [Jones et al., 2001], numpy, scikit-learn,

3Manuscript in preparation
*http://cellcognition.org
http://www.python.org
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http://www.python.org
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fastcluster [Miillner, 2013], rpy2 and statsmodels, and all plots were generated by mat-
plotlib [Hunter, 2007]. The Web-based user interface which was used for data visualiza-
tion and sharing is based on Django®, Linux-Apache web-server, mod wsgi and SQLite”.
The R statistical function stats.p adjust was used for adjusting p-values according to
the Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995]. Finally, CPlex®

was used for optimization in the tracking procedure.

Shttps://www.djangoproject.com/
Thttps://sqlite.org/
8http://www-01.ibm.com/software/commerce/optimization /cplex-optimizer/
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Chapter 2

A generic methodological framework

for studying single cell motility

This chapter was published in [Schoenauer Sebag et al., 2015].

Résumé - Un cadre méthodologique général pour ’étude de la motilité cellulaire
individuelle (see infra for English text)

Il existe de nombreux tests de motilité cellulaire, dont la majorité fournissent des infor-
mations & l’échelle d’'une population de cellules (comme le test de la blessure). Toutefois,
I'information & ’échelle individuelle est cruciale, car elle permet de détecter 'existence de
sous-populations de cellules en terme comportemental.

Une seule autre étude de motilité cellulaire individuelle & haut débit a par conséquent été
publiée, qui se base sur les empreintes des cellules sur un tapis de polymére [van Roosmalen
et al., 2015]. Dans ce chapitre, nous présentons la premiére approche méthodologique pour
étudier la motilité cellulaire individuelle dans des données de vidéomicroscopie d’un crible
a grande échelle.

Ce workflow, MotIW (pour Motility Integrated Workflow), est constitué des étapes suiv-
antes. Aprés 'acquisition des données, la segmentation et la description des objets sont
réalisées a l'aide du logiciel libre Cell Cognition [Held et al., 2010]. Le suivi cellulaire
est ensuite réalisé. Pour ce faire, nous nous sommes inspirés de [Lou and Hamprecht,
2011], qui formule le suivi de cellules entre deux images consécutives comme un probléme
d’apprentissage structuré. Le suivi cellulaire permet de résumer chaque expérience comme
un ensemble de trajectoires de cellules, qui sont décrites a I'aide d'un ensemble original de
15 descripteurs. Enfin, les distributions de ces descripteurs permettent de caractériser une
expérience : elles sont utilisées dans un test statistique multi-varié que nous avons congu
afin de déterminer si la motilité cellulaire individuelle y est différente de celle des expéri-
ences controles. Le workflow permet donc d’aller d’'un ensemble de molécules test & une
liste des molécules modifiant significativement la motilité cellulaire. Enfin, nous montrons
dans la derniére partie 'intérét et le pouvoir de notre méthode en 'appliquant & un jeu de
données simulé.

10
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2.1 Studying single cell motility in a HT setup

Cell migration describes "any directed cell movement within the body", as according
to [Kramer et al., 2013]. On the other hand, cell motility more broadly encompasses
any cell movement which is active, i.e. energy-consuming. Cell motility plays a key
role in many physiological processes including embryonic development or immune re-
sponse [Friedl and Weigelin, 2008], and is also involved in pathological processes such as
fibrosis and metastasis. The latter is dependent on the ability of cancer cells to migrate,
both as single cells and collectively |Decaestecker et al., 2007|, [Yilmaz and Christofori,
2010], which highlights the need to understand the molecular basis of both processes.

Cell motility assays

Many in vitro assays have been specifically designed to study cell motility [Decaestecker
et al., 2007], [Kramer et al., 2013]. The most classic methods are wound healing assay,
cell exclusion zone assay, and trans-well migration assay. They measure the ability of
cells to migrate into some free space (the wound, the exclusion zone) or a new chamber,
in a limited amount of time. These assays have the advantage of being widely known;
as an example, the Boyden assay is a trans-well migration assay which was introduced
in 1962 |Boyden, 1962|. More recently, particle-coated plates were developed, in which
particles are phagocyted by cells as they move [Albrecht-Buehler, 1977]. In this assay, a
single picture is taken at the end of the experiment, showing the path that was cleared
by the moving cell. Analysis of these images is therefore equivalent to the analysis of the

temporal projection of single cell trajectories.

Live-imaging data can be obtained from experiments using any of these methods (ex-
cept the trans-well migration assay in its classical version). Data at single cell level could
therefore theoretically be obtained. But the classic assays are most of the time used as
endpoint assays: the experimenter is focused on getting aggregated data at the level of
the cell population (e.g. wound closure time or percentage of cells staying in the upper

compartment of the well).

However, single cell characteristics are relevant: they enable to detect patterns which
are not visible at the population level, such as the existence of cell subpopulations with
regard to their motility behaviours [Mokhtari et al., 2013], [Wong et al., 2014], [Maiuri
et al., 2015|, [Schoenauer Sebag et al., 2015]. This finds an application in drug design,
as one might want to target specific populations [Perlman et al., 2004], [Singh et al.,
2010]. The little use of single cell motility assays is probably due to both cultural and

technical reasons: people are used to proceeding at population level, and univariate
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analysis is easier than multivariate analysis. Furthermore, single cell motility studies
in live cell imaging data have so far been limited to low-to-medium throughput [Lara
et al., 2011], [Maiuri et al., 2015]. While this limitation has in principle be alleviated
recently [Neumann et al., 2010], live cell imaging still remains a relatively expensive tech-
nique and produces large amounts of data, thus requiring an appropriate infrastructure,

both for imaging and IT.

HT motility studies

As a consequence, there are only few automatic workflows for the comprehensive analysis
of single cell trajectories including tracking, statistical analysis and data mining, appli-
cable to HCS data: [van Roosmalen et al., 2015] analyses temporal projections of single
cell trajectories, as observed by cell imprints (see above). Information on membrane
dynamics is indirectly inferred from these data, but the data is not informative about
direct movement features, such as instantaneous speed, curvature or, more importantly,
resting time and speed variations. The methods published in [Mokhtari et al., 2013] are

based on manual tracking and do therefore not scale easily to HCS.

In this chapter, we present MotIW (Motility study Integrated Workflow). A generic
methodological framework, MotIW enables to quantitatively study cell motility at single
cell resolution in HT time-lapse data in an unsupervised way. It consists of cell tracking,
cell trajectory mapping to an original feature space, and outlier experiment detection
according to a new statistical procedure (cf figure 2.1). We show the power of our method
in section 2.3 by applying MotIW to simulated data, which allows us to estimate recall
and precision to be expected on real data. We then apply this workflow to a previously
published genome-wide screen by RNA interference (RNAi) and live cell imaging, the
Mitocheck dataset, in section 3.2 of chapter 3.

Chemicals

Comparison to controls
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FIGURE 2.1: Overview of MotIW

2.2 MotIW overview

In this section, we present MotIW, our workflow for the automatic and quantitative

analysis of single cell motility in video sets from time-lapse microscopy-based screens.

D Hit list



Chapter 2 - A generic methodological framework for studying single cell motility 13

Figure 2.1 summarizes its different steps. Briefly, for each video nuclei are segmented and
features are extracted as published previously [Walter et al., 2010], [Held et al., 2010].
Cells are tracked using a machine-learning based tracking procedure, described in sec-
tion 2.2.1. The trajectories are then mapped to a feature space described in section 2.2.2.
Presented in section 2.2.3, an original statistical procedure then enables the detection
of experiments in which single cell motility is significantly different than that in control
movies. Finally, section 2.3 describes the simulation of trajectories which allows us to

validate the performance of the workflow.

2.2.1 Segmentation and tracking

The first step of the workflow is the establishment of single cell trajectories: we want
to follow individual cells over time and record their spatial displacements. Many meth-
ods have been proposed in the image analysis and computer vision communities for the
automatic tracking of individual objects. When it comes to the tracking of biological
objects, such as cells or particles (e.g. single molecules or vesicles), there are two main
approaches. On the one hand, it is possible to associate pre-segmented objects in con-
secutive frames, e.g. [Lou and Hamprecht, 2011], [Meijering et al., 2012, [Chenouard
et al., 2014]. On the other hand, the deformable model approach relies on identifying and
modeling objects in the first frame, and linking them to objects in consecutive frames
by updating the models, e.g. [Zimmer et al., 2002]. Methods also differ in the amount of
prior knowledge which is hard-coded in the tracking model. For example, |Li et al., 2008]
assumes that there are three types of cell motion: Brownian motion, migration at a con-
stant speed, and migration at a constant acceleration. At the other extreme, [Sbalzarini
and Koumoutsakos, 2005] formulates tracking as an optimization problem, where a cost
function of particle matches, typically depending on distance and intensity moments,
is minimized. In particular, no constraint - except for maximal speed - on the type of

movement is imposed.

We chose to keep segmentation and tracking steps independent: objects are identified be-
fore the establishment of object temporal correspondences by our tracking model. While
the deformable model approach is in principle appealing as it jointly solves segmentation
and tracking, it relies on a high time resolution and is therefore less generally applicable.
Furthermore, as segmentation and tracking are not independent in this approach, the

resulting method is necessarily less modular.
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2.2.1.1 Segmentation

Segmentation of nuclei is in principle a relatively simple problem, as nuclei appear as
bright objects on a dark background. The main difficulty arises when two or more
nuclei come in close proximity to each other and are therefore segmented as one single
object. Classically, this problem is solved by splitting objects after the first segmentation,
e.g. [Held et al., 2010|. Briefly, a distance map of the binary segmentation is calculated,
where we assign to each pixel its distance to the closest background pixel. If objects are
touching, this typically generates important concavities in the resulting binary shape,
thereby producing prominent maxima in the distance map. The final split is generated
by calculating the Watershed transformation on the inverted distance map. To avoid
false splits, the distance map is typically preprocessed by either morphological or linear
filtering. The problem of this strategy is that non-convex shapes may be also split,
and consequently the detection of multi-nucleated morphologies will be more difficult
[Walter et al., 2010|. Nevertheless, we chose to start from this segmentation strategy, as
implemented in CellCognition, as the main purpose of this study is to track nuclei and

to analyze spatial trajectories, which will be eased by splitting the nuclei.

2.2.1.2 Cell tracking by supervised learning

Cell tracking should be able to face several challenges which are common in videos
from high content screens. They include high population density in each picture, high
phenotypic inter-cell variability, and possibly low time resolution between successive
images. Furthermore, the algorithm has to handle apparitions, disparitions, divisions
and fusions. Cells can indeed disappear, e.g. when they move outside the field of view or
lose adhesion. They can also appear, for instance if they enter the field of view or more
rarely if the expression of their fluorescent marker increases. Finally, they can fuse or
seem to fuse, for example when a nucleus moves on top of another, or if two nuclei are

still connected by chromosome bridges.

To be applicable in a screening context, we cannot a prior: model cell motion, as such
hypotheses are bound to break in the presence of phenotypes. Indeed, the impact of
chemical exposure on cell motion is not known. As we also wished to avoid any manual
parameter tuning, we extended a non-parametric structured learning approach from [Lou

and Hamprecht, 2011].

We first characterize each cell nucleus in each image by a set of 239 shape and texture
features on the one hand ( [Walter et al., 2010], [Held et al., 2010]), and geometric

features on the other hand (its distance to the border, its position in the image, and
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the orientation of its main axis). The goal of cell tracking in this approach is to match
cells in successive images, by assigning them the most likely instant temporal behaviour
in the set E = {move, appear, disappear, split in 2 or 3, merge at 2 or 3}. All possi-
ble matches between cells in consecutive frames are exhaustively considered, subject to

distance thresholding. Match features are:
e the absolute difference of shape and texture features if the event is mowe, split,
merge, the object features otherwise

e the geometrical distance between object at time ¢, Obj; ; and object at time ¢t + 1,
Objj 41, if the event is mowve, split, merge, the minimal distance to the image border

otherwise,

e the angle between Obj; ¢ and the elements of Obj; 1, if the event is a split (angle
« on fig. 2.2),

e the angle between the main axis of Obj;; and Objj11 weighted by their average

eccentricity, if the event is a move (angle 8 on fig. 2.2).

Obj a OBl 11 Obj; ¢

/ Objj,t+1

FI1GURE 2.2: Tllustration of angular match features.

The optimal object matching z(t) comes down to bi-partite graph matching: it is solved
by maximizing a likelihood function L which depends on the weights w of match features
and the match features ff;, subject to the constraint that all objects are matched in both

frames (cf equation 2.3).

Z(t) = arg(r:)lax L(z(t);w) (2.1)

st Vi Y 2t =1 (2.2)
Objj,tJrl

and Vj Y 25(t) =1 (2.3)
Obji
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where

Liz(t)w) = Y <uw ff; > 2f;(t)
ecE
Obji ¢
Objj 141
The weights w are learned by a structured support vector machine using annotated tra-
jectories, following the formulation of [Lou and Hamprecht, 2011] (drawing on [Tsochan-

taridis et al., 2005]). The likelihood maximization, an integer linear programming (ILP)

problem, is solved by IBM Cplex.

The extension compared to [Lou and Hamprecht, 2011] lies in the choice of match fea-
tures. Furthermore, we enabled the tracking model to learn from partial annotations of
different experiments!. This permits the user to integrate examples from both control
and non-control experiments in the training set, which is crucial to guarantee that the
model can efficiently track cells in all conditions. We also added three object division
and fusion to E. This is important in a screening context, where aberrant cell divisions
may occur. We also implemented a more time-efficient computation of match hypotheses

using kd-trees.

2.2.1.3 Validation of MotIW cell tracking model

To validate MotIW’s cell tracking procedure, we compare it to Cell Cognition’s con-
strained nearest-neighbour (CNN) tracking algorithm, and to |Jaqaman et al., 2008] as
implemented in Cell Profiler [Carpenter et al., 2006]. We have chosen these two ap-
proaches for benchmarking, as they are available in popular High Content Screening
software. [Jagaman et al., 2008 views tracking as a linear assignment problem (LAP).
It starts by computing 1-to-1 matches in consecutive frames, which produces tracklets.
It then connects these tracklets by solving an optimization problem which is global both
in time and space (2D-space and time duration of the experiment). For performing this
optimization, that is, for choosing when to perform tracklet merges, splits, appearances

and disappearances, it uses user-defined costs.

Our training set consists of approximately 32,000 matches, among which 0.5% appear,
0.5% disappear, 1% merge and 2% split. Data was taken from the Mitocheck data set, and
in particular from both control experiments and experiments as selected by [Neumann
et al., 2010] for being significantly different from controls regarding nuclear morphology.

This ensures that the algorithm also works in the presence of phenotypes. One may

"However, this is not learning from partial annotations in the sense of [Lou and Hamprecht, 2012].
Indeed, in our implementation of [Lou and Hamprecht, 2011], the user chooses a subset of cells which
has to be annotated on all movie frames. In [Lou and Hamprecht, 2012], the user can choose both a
subset of movie frames and a subset of cells (s)he wishes to annotate on those frames.
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nevertheless be willing to perform cell tracking before having performed any statistical
analysis. In this case, learning from control experiments only slightly diminishes the cell

tracker performances, albeit non significantly.

To establish the data set, we first performed tracking with CellCognition’s CNN tracking
and manually corrected for mistakes made by the algorithm. As in most cases, even
such a simple tracker is able to find the correct assignment, we found this procedure
much less time consuming than annotating all correspondences from scratch. As shown
in Table 2.1, MotIW outperforms the other two methods as measured by the average
accuracy on the five movement types. Note that these are not the overall accuracies of
correct assignments, which are much higher for all three methods. As can be seen on
fig. 2.3, all three methods show similarly good performances on move events and have
therefore similar overall (pooled) accuracies. The contribution of the learning approach
is most important for the other events, such as cell division, when object matching is

less trivial.

In particular, it is interesting to see that this method even outperforms [Jagaman et al.,
2008|, which relies on an optimization scheme in space and time, i.e. optimizes not
only the assignments between two consecutive frames, but on the entire video sequence.
While this might seem surprising at first sight, it is explicable by the fact that the latter
approach was developed for particle tracking. Particles have only few distinguishing
features, such as intensity and size. It is therefore feasible to manually define and tune a
cost function for particle tracking based on these features only. It is nevertheless hardly
feasible for larger feature sets, which are necessary to track more complex objects in

terms of texture and shape.

In the future, it will be interesting to see whether this result can still be improved by an
optimization scheme in time. Another promising strategy for future investigation will be
to couple segmentation with tracking without relying on a deformable model approach.
In particular, we could argue that split algorithms can provide us with alternative hy-
potheses on segmentation. The best combination of segmentation and tracking can then

be found by global optimization in time.

Altogether, we conclude that the tracking procedure is sufficiently accurate to generate

single cell trajectories.

TABLE 2.1: Mean recall and precision on all types of matches E (10-fold cross-

validation)
Algorithm | Mean recall (%) | Mean precision(%)
CNN 2.7 62.8
[Jagaman et al., 2008] 78.3 73.0

MotIW 91.1 91.5
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[0 CNN
H jagaman et al.

Precision by event class
y T T N MotIwW

100 ‘ Recall by‘event cIaS§
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Recall
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Move Appear Disappear Merge Split Move Appear Disappear Merge Split

FI1GURE 2.3: Details of tracking precision and recall according to event types

2.2.2 Trajectory features

Once cell tracking has been performed, each experiment is summarized as a set of cell
trajectories in the two-dimensional space over time. Instead of analyzing these point
sequences directly, we calculate for each trajectory a set of relevant features which will
allow us to represent each trajectory to a point in this feature space. For instance, cell
speed is an important characteristic of cell motion, and it is certainly the most studied
one. However, it makes sense to also describe other aspects of movement. For instance, if
we congider the example trajectory of fig. 2.4, one might also be interested in quantifying
the percentage of time which is spent in each englobing blue ball, or whether diffusion
would have been an appropriate model for this particular cell. A multivariate study of cell
trajectories is therefore relevant to capture all the information which they contain. For
this, a set of 15 features was assembled, partly from previous publications on quantitative

motility analysis, partly newly designed.

Robust and precise features are needed to account for the partial stochasticity of cell

migratory behaviour. We use three types of features, as detailed in table 2.2.

2.2.2.1 Particle motion features

This group of features encompasses the diffusion coefficient and the movement type,
which were in the first place used to study particle motion (see |Ferrari et al., 2001|, |[Sbalzarini

and Koumoutsakos, 2005] for one of its applications to single particle motion in Biology).
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FI1GURE 2.4: A cell trajectory with notations

TaBLE 2.2: Cell trajectory features and their formulas. Notations: (m;)i=1.. 1, time
sequence of cell 2D positions. T, track time duration. P, total track length

Particle motion features

Diffusion coefficient According to [Shalzarini and Koumoutsakos, 2005]
Diffusion adequation Correlation between MSD(t) and ¢

Movement type According to |Shalzarini and Koumoutsakos, 2005]
Englobing ball number See text

Track entropy See text

Other global features

Convex hull area -
Effective path length L = ||mgp — mq||2

Effective speed L/ VT
Largest move -
Straightness index VTL/P
Track curvature See text

Averaged local features

Mean squared

1
displacement T S Iy — my—1 |3
(MSD) B
Mean signed arctan( Ysin(ap41 — o)

turning angle Y cos(ayy1 — o)

Let us consider a particle, and note m; its position at timepoint t. The moment of order

p of this particle, < dP >, can be computed according to the following formula:
< dP >=<||my — my_1|h >4

For large t, it is proportionate to ¢ for most dispersive processes [Ferrari et al., 2001].
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Assuming that -, is proportionate to p (i.e. that the particle movement is strongly self-
similar), the constant v = v, /p (hereafter the particle’s Movement type) quantifies how
directed the particle motion is. If 7 is equal to 1, the movement is perfectly directed,
whereas if 7 is equal to 0.5, it is perfectly diffusive. Between 0.5 and 1, the movement is

super-diffusive, whereas below 0.5 it is called sub-diffusive.

Furthermore, assuming v = 0.5, the constant linking < d? > (that is, the mean squared
displacement) and ¢ can be computed: it is the Diffusion coefficient. The Diffusion
adequation is the correlation coefficient between < d? > and ¢, hence measuring how well

the diffusive model applies to the track at hand.

Here, we present two newly designed features to characterize the alternance between
periods of diffusive motion and periods of directed motion: the track entropy and the

englobing ball number.

It has been observed that cell motion in 2D alternates between diffusive and directed
motions (in the absence of any perturbation or chemical gradient). The feature track
Entropy was designed to measure how the time sequence of 2D cell positions my = (x4, y¢)
distributes in balls of radius r. This will be computed greedily by recursively searching
the center of a new ball of radius » among the set of remaining track points, that will
contain the biggest number of them. This feature is calculated according to the following

procedure, for each track of time duration 7"

1. S={1,...,T}

2. while S # {}:
i. do t* < argmaxg card(By,(t))
where B,(t) ={i | ||m; —my|2 <r and
min([[mi—1 — mil2, [|mit1 — mull2) <}
ii. do S+ S\B,(t*)

3. Compute the track Entropy according to the following formula:

1 card(By) card(By)

Entropy, = —7 > T log( T ) (2.4)

The track Entropy measures the entropy of the distribution of track positions in balls
of radius r. To deal with cells whose trajectories are concentrated in space, but were
not concentrated in time, the constraint is imposed that these balls shall contain only

consecutive positions in time. The englobing Ball number is the number of balls of
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radius r that contain all track positions. It is normalized by the square root of T to be

independent of the track time-length 7'

Different radii may be relevant for different data (depending of, e.g., the experiment time-
lapse, the pixel size or the cell type). We chose to use two different radii 71 and ry with
r1 < T9, to incorporate information about cell trajectories on two different time-scales.
r1 and 9 were manually chosen, such that for the Mitocheck data set, the corresponding
features are neither constant over a large number of trajectories nor too correlated. They
respectively correspond to approximately 2.5um and 12um. In the following, the features

Entropy © and Ball number i correspond to radius r;.

2.2.2.2 Other global features

We further defined the following global descriptors of cell trajectories: the cell’s Largest
mowve along the trajectory, its track Convezr hull area and its average Track curvature.
The track Convez hull area is the area of the convex hull containing all track points, as
coloured in green on fig. 2.5. It is normalized by the square root of the track time-length.
Following |Naffar-Abu-Amara et al., 2008|, this feature enables us to have an idea of
the area which the cell has visited during its trajectory, although it does not exactly
indicate the area which its cytoplasm has covered. Finally, for each trajectory and each
time-point ¢, an orthogonal regression is performed on {(z;,y;)|i € {t,...,t+ A;}} using
orthogonal distance regression (A; = 10). The mean Track curvature of the trajectory

is the average of all regression sums of squares.

2.2.2.3 Averaged local features

Finally, two features are averaged local features, which are the cell means squared dis-

placement (MSD) and its Mean signed turning angle (see table 2.2 for the formulae).

2.2.2.4 Feature set evaluation

Track time-length is an irrelevant random variable for studying single cell motility, which
could bias some features. Therefore, we ensured that they are not significantly correlated
with this parameter: the correlation between track time-lengths and features is maximal
for the Effective space length, where it is equal to approximately 30% (on a subset of the
Mitocheck dataset, data not shown).
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FI1GURE 2.5: Convex hull of the example track from figure 2.4

Feature correlation

P =

Mean curvature
Signed turning angle

Diffusion adequation

2 [

Movement type

Straightness index

Entropy 2

Englobing ball number 2
Convex hull area
Effective speed

Effective space length

Mean squared displacement
Diffusion coefficient

Largest move
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Englobing ball number 1
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FIGURE 2.6: Heatmap showing trajectory feature similarities on a subset of the Mi-

tocheck dataset (1.1 million trajectories coming from detected motility hit experiments

according to MotIW). The dengrograms were obtained using the Ward method and the
euclidean distance between feature correlations.
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Figure 2.6 shows the correlation matrix for the extracted features. One group of highly
correlated features are visible in the bottom-left corner of the heatmap, which encom-
passes speed-related features. The existence of two feature subgroups within this group
can be explained by the following observation: the first group of features, from Ball num-

ber 1 to MSD, is linked to cell instantaneous displacements, whereas the second group,



Chapter 2 - A generic methodological framework for studying single cell motility 23

from Effective speed to Entropy 2, is linked to its displacements on the whole trajectory.

The other correlations can as well be explained by feature definitions. As an example,
the anti-correlation between Mean signed turning angle and Movement type can be in-
terpreted as follows: a low signed turning angle is indicative of correlated motion, which

is super-diffusive and translates into a high Movement type.

Fig. 2.6 indicates that there are less degrees of freedom than features, which was verified
by a principal component analysis (PCA). On the same trajectory subset, approximately

95% of the variance is explained by the first seven principal components.

2.2.3 Statistical procedure
2.2.3.1 Trajectory quality control

Prior to statistical analysis, a trajectory quality control is performed. First of all, tra-
jectories resulting from object fusion are discarded. Indeed, trajectories resulting from a
fusion are most of the times cell cluster trajectories, rather than cell trajectories. Tra-
jectories which are shorter than 10 frames are also discarded, to ensure that features
such as the diffusion coefficient are computed on a sufficiently large number of points.
Finally, because we are interested by single cell motility rather than collective motility,
all trajectories with more than 5 neighbours in a perimeter of 50 pixels are deleted. This
trajectory quality control ensures that cell clusters are not considered, and increases the
dataset robustness. This quality controls eliminates 11.6 +13.3% (median+interquartile
range) of cell trajectories per experiment, as estimated on a random subset of 1,000

experiments from the Mitocheck dataset.

HT screening data is organized in batches of experiments which have been acquired
simultaneously. Each batch includes a set of negative controls, i.e. conditions where
no effect is expected. Due to a non-negligible batch effect, an experiment can only be

compared with controls of the same batch in most of the cases.

Let us consider an experiment ¢. Following to trajectory feature extraction, it can be
summarized as a set of © feature distributions (© = 15). The comparison of these
distributions with those of controls from the same batch B;, using Kolmogorov-Smirnov

2-sample test, provides a list of p-values (pg)o=1..0-

A final statistic S; combining the p-values of all features is obtained by Fisher’s formula

Si=-2>In(ps) (2.5)
0
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As shown on fig. 2.6, the features are not independent. Therefore, the distribution of
this statistic under the null hypothesis does not follow a chi-squared law with 20 degrees
of freedom. To assess which values of this statistic should be considered as indicative
of altered motility, a sample of the distribution of S under the null hypothesis is then
computed by comparing the control experiments which were not used in the experiment-

controls comparisons, with the other controls from the same batch.

In the absence of an explicit form for the null distribution, this sample allows to quantify
the intra-batch variations of single cell motility features. The variations can be due to
technical artefacts or biological variability. Then, the comparison of the distribution of
S statistics obtained from control-experiment comparisons, to the distribution obtained
from control-control comparisons, permits the computation of empirical p-values. This

enables the detection of hit experiments with regard to single cell motility.

2.2.3.2 False discovery rate control

False discoveries are controlled using the Benjamini-Hochberg procedure [Benjamini and
Hochberg, 1995]. Indeed, in the current case, approximately 150,000 statistical tests will
be performed. Selecting experiments whose p-value is below 0.05 rigorously means that
there will be 5% false discoveries. Without any adjustment, 150,000 tests will produce

7,500 false discoveries, which is not acceptable.

There are different ways to adjust p-values. If the statistical tests are independent, the
Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995] is a procedure to adjust
p-values and control the false discovery rate. If the tests are not independent, there
are other procedures (see for example [Benjamini and Yekutieli, 2001] or [Delattre and
Roquain, 2015]). Here, we assume in a first approximation that the tests are independent.
Rigorously speaking, they are not: experiments which are performed on the same day
share some dependence, which may be the influence of the temperature, the pressure,
the passage number of the cells or another experimental variable. We do the hypothesis

that we can neglect this local dependence (384 experiments versus 150,000).

2.2.3.3 Formal statistical procedure

This procedure is repeated n times to ensure that the final p-value of an experiment i
does not depend on the choice of a specific subset of control experiments in its batch.

Here is its formalized description:
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1. Compute a sample of statistic (2.5) under null hypothesis from control-
control comparisons.
For each batch b,

For k in {1,...,Cy(Cy — 1)/2}, where Cj is the number of controls of batch b
that passed the quality control

a. Randomly split the control experiments in two groups Ay of cardinal 2,
and By, of cardinal Cp — 2

b. For each control j of Ay, compute the statistic Sgkj (2.5) by comparing it
to the pooled group of controls By x

2. Compute statistics from experiment-control comparisons. For computa-
tion time feasibility, only n = 5 repetitions corresponding to n splits of the controls

set (Apk, Bp ) are selected on each batch for experiment-control comparisons.
a. For each repetition k in {1,...,n}:

For each experiment ¢ belonging to a batch b, compute the statistic Sy ;(2.5)
by comparing it to the pooled group of controls By

b. Combine distinct iterations. In order to be conservative, we chose the following
approach:
Si = MaXpe(1..n} Sk (2.6)

3. For each experiment ¢, compute the p-value p;:

(card({(0, k)G, = 51) '
"o card{(b, %)) card({(b k7))

4. For each experiment i, compute the adjusted p-value p] to control the false discovery

rate (Benjamini-Hochberg procedure [Benjamini and Hochberg, 1995])

Fach experiment is characterized by an adjusted p-value ; significantly different experi-
ments are those whose adjusted p-values are below a certain threshold. An experimental
condition is selected as being a hit if 50% or more of its replicate experiments are signifi-
cantly different. This is a way of ensuring reproducibility. It amounts to representing an
experimental condition by the median of its replicate scores. Since the mean is sensitive
to outliers, using the mean of its replicate scores instead of their median would lead to

too many false positives.
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2.3 Validation on a simulated screen

2.3.1 Screen simulation

In order to evaluate the performance of our workflow on data for which the groundtruth

is known, we designed a process to simulate a HT screening experiment.

In a first step, five types of single cell movements were designed, in agreement with
qualitative observations from the dataset: random, fast-random, curbed-directed, flip-

directed and stop-and-go (see fig. 2.7).

Let (d¢, ¢¢) be the polar coordinates of the difference vector m;—1 — m; of any two
consecutive points. For random movement, ¢; is chosen at random and the distance
di = ||my —my—1]|2 is drawn from a normal distribution, whose parameters are estimated
from the data. The same holds for fast-random with increased distance d;. For the
curbed-directed movement type, d; follows again a normal distribution as for random
movement, but the angle is calculated as ¢; + € with ¢ = ¢r_1 + A, where A¢; and €
follow normal distributions, whose parameters are set manually to visually match some

observed trajectories.

Flip-directed and stop-and-go are two composite types of movement, where the cells
alternate between different states. The dwelling times in the two states are random
integers with manually fixed ranges (which can be different for the two states) and are
drawn independently for each trajectory. Flip-directed movement corresponds to directed
movement (¢; is drawn from a normal distribution) with a 180 degree flip for every state
transition. Finally, stop-and-go movement alternates between slow random movement
(where ¢y is drawn from a uniform distribution) and fast directed movement (where ¢,

is drawn from a normal distribution).
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FIGURE 2.7: Simulated trajectories: stop-and-go (green), flip-directed (red), random
(orange), fast random (purple), curbed-directed (blue)

In a second step, we want to simulate movies (controls and experiments), i.e. sets of

trajectories. For this, we define five movie types with different proportions of single
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cell movement types (cf supra). Normal movies account both for control movies and
experiments in which cell motility is similar to that of controls. They contain on average
80% of random trajectories, and a mix of the four other trajectory types. This reflects
our observation that in real data, experiments and controls typically contain all possible
types of cell trajectories and that phenotypes are characterized in a shift in percentage.
All other movie types contain (on average) from 50 to 65% random trajectories, the rest
being completed according to the movie type. For example, movie type fast is composed
of 30% of fast-random trajectories, 60% of random trajectories, and a mix of the three

other trajectory types.

The total number of trajectories in each movie was drawn at random from real data in
the following way: first, a batch is randomly chosen in the data set. Then, we assign a
permutation of the real trajectory numbers from the experiments of the picked batch to
the simulated positions. This enables to include potential batch effects in our simulated
data. Furthermore, they match those from the dataset on which we developed this
workflow, namely the Mitocheck dataset. The number of trajectories of each movement
type in each movie is drawn from the corresponding movie type multinomial distribution,

where the percentages were defined as described above.

The third step was the simulation of approximately 50,000 experimental conditions,
which were distributed on 130 plates, and performed in triplicate as in Mitocheck exper-
imental setup [Neumann et al., 2010]. For sake of simplicity, triplicates were supposed to
belong to the same movie type. On each plate, between 5% and 15% of the experiments

were selected to be other than normal movies.

2.3.2 Application to a simulated screen

Our workflow successfully recognized more than 98% of the experiments, as detailed in
table 2.3.

TABLE 2.3: Results from the application of MotIW to simulated data

Recall (%) | Precision (%)
Outlier experiment detection 99.2 98.9
Outlier condition detection 99.5 100.0
Trajectory clustering ‘ 914+21 ‘ 89.4+4.8 ‘

Our simulation pipeline was also used to estimate how useful the trajectory feature set
is to capture the differences between different types of trajectory motion. 500 samples of
each trajectory type were simulated, and their features extracted. A PCA was performed,

after which we retained the eigth first principal components, which explain approximately
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95% of the data set variance. Finally, k-means was applied to the data set with k = 5.
Many simulation parameters (e.g. each track length) are chosen at random, and k-means’
results depend on its initialization: the procedure was therefore repeated 10 times. The
results are presented in table 2.3. Although distinguishing trajectory types is subject to
some errors, it shows that the whole pipeline is robust enough to identify experiments in

which cell motility is significantly different.

We therefore conclude that MotIW is capable of identifying trajectory clusters in an
unsupervised way. Hence, we are confident that this methodological workflow will allow
the identification of migratory behaviors in HT live cell imaging data sets. Moreover, we
believe that the general strategy of identifying hit experiments prior to cluster analysis

might be useful for unsupervised approaches to HCS data.

This strategy can indeed also be seen as a way of intelligently downsampling the data
to a reasonable size. Compared to random sampling, it has the advantage of enriching
the data set in extreme cases. In a supervised setting, this occurs as a natural result
from the annotation process: the numbers of samples in each class of the training set
rarely reflect their proportion in the whole dataset. The training set is therefore most of
the times enriched in rare classes. This seems to be beneficial as well for unsupervised

learning approaches to large biological data mining.
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High-content screening data as a

resource

Résumé - Les données de crible a haut débit en tant que ressources (see infra
for English text)

Les cribles & haut contenu constituent des jeux de données riches et complexes, auxquels
il est pour la plupart possible d’accéder sur le Web. Nous pensons qu’au-dela de cet accés,
il serait encore plus bénéfique pour la communauté de généraliser les analyses secondaires
de telles données. En effet, il y a généralement matiére & plusieurs études dans un seul
ensemble d’expériences & haut contenu, qu’il s’agisse d’approfondir celle du méme processus
biologique ou d’en étudier un autre.

Les analyses secondaires sont probablement encore peu nombreuses du fait des probléma-
tiques générales liées au partage de données (qualité des données et méta-données, partage
de vocabulaire, persistence des données), comme de problématiques spécifiques : la taille
des jeux de données complique leur partage, dont I'utilité n’a pas encore été démontrée.
C’est ce & quoi nous nous attachons dans ce chapitre, a travers trois exemples de ré-
analyse des données Mitocheck [Neumann et al., 2010]. Dans la section 3.2, 'application
de MotIW [Schoenauer Sebag et al., 2015] permet d’aboutir & une liste de génes poten-
tiellement impliqués dans la motilité cellulaire, comme & une ontologie des trajectoires
cellulaires individuelles. La section 3.3 se concentre sur ’étude des génes impliqués dans le
cycle cellulaire. Enfin, la section 3.4 décrit le développement d’une nouvelle distance pour
I'inférence de cibles thérapeutiques, appliquée aux expériences de Mitocheck ainsi qu’a un
crible pharmacologique non publié.

29
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3.1 Data re-use in Bioimage Informatics

Modern biology has many features of big data science: it is characterized by systematic
large-scale studies, generating enormous amounts of biological data, and it relies on
advanced data mining methods in order to infer the biological information from these

large and heterogeneous data sets.

Imaging experiments are no exception to this. The advent of HCS has indeed led to the
generation of extremely large and complex image datasets. Computational analysis of
such data, and of genetic screens in particular, has helped to identify the genes required
for cellular processes as diverse and as fundamental as protein secretion [Simpson et al.,
2012], endocytosis [Collinet et al., 2010] and cell division [Neumann et al., 2010], and

allowed for the phenotypic annotation of many genes.

On the other hand, producing such comprehensive and high quality data sets is a major
investment in terms of time, manpower and money. The resulting data sets are extremely
rich in information and usually, their information content goes beyond what is typically
published in articles. It seems therefore more than reasonable to provide access to these
data sets. Indeed, this has been recognized already by the scientific community: some
of these large scale projects have made the initial image data publicly available as a
scientific resource. For instance, [Neumann et al., 2010] generated a data set published
on mitocheck.org. There, scientists can check the loss-of-function phenotype for genes
they are interested in, both in terms of raw data and analysis results. On the same
platform, several other phenotypic screens are published, which makes it possible to

search across different phenotypic aspects.

While the utility as a resource for consultation has thus been shown, we believe that
the usefulness of such data sets goes beyond single gene queries and visual inspection
of the recorded image data. Indeed, although such data sets are mostly generated by a
laboratory or a consortium in order to answer a specific question, the acquired data is
usually informative about many different aspects of cellular phenotypes. Therefore, one
single analysis - typically performed by the groups that performed the screen - does not

exploit all information contained in these rich datasets.

Here, we advocate the re-use of HCS data by raw image data re-mining. This can be
aimed at performing more detailed analyses of the same biological process, or in view of
finding answers to different biological questions. For example, cell nucleus images can be
used to analyze mitotic phases, the number of nucleoli, or even to assess phenotypic het-
erogeneity for different biological processes. Second, genome-wide data sources provide
us with reference datasets, to which other experimental data can be compared. Third,

availability and re-use of easy-to-access biological data sets enable method comparison.
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Finally, as pointed out by [Choudhury et al., 2014], data accessibility and reuse is well
in harmony with the current trend of general transparency in science. Indeed, there are
several examples in particular in the gene expression literature, where re-analysis of data

has led to a debate on the stability and validity of reported results.

While the use of annotated data sets for method comparison have become increasingly
important to the computer vision community (see [Choudhury et al., 2014] for a list
of benchmark data sets) and are indeed used frequently, re-mining data studies are still
very sparse in this field. Regarding the Mitocheck data set for example, four articles only
have been re-using it since the original paper [Neumann et al., 2010] was published: [Os-
taszewski et al., 2012] is interested by linking phenotype and genotype in the context
of cell cycle, [Suratanee et al., 2014| searches for evidence of protein-protein interac-
tions in siRNA experiment similarity, and [Pau et al., 2013] dynamically models nuclear

phenotypes.

I see various reasons for the little data re-use which is currently experienced in Bioimage
informatics. First, the general issues associated to dara sharing and re-use do apply
to the case at hand: data and metadata should be of optimal quality, in order to ease
re-analysis and make the data structure understandable. Laboratories should also share
controlled vocabularies [Peng, 2008, as well as formats, for data to be easily accessed and
understood by all parties. Data re-use should be born in mind while acquiring it [Wruck
et al., 2014], since post-experimental data re-organization is harder and likely to never
happen. Data should also be persistent, which demands time, fundings, and incentive.
Second, HCS data set tend to be large. While many institutes have the IT infrastructure
to both store these data and to computationally analyze them using compute clusters,
it is still a challenge to actually transfer the data. The only working solution today is to
actually send hard disks by mail. More appealing solutions such as a common computing
cloud where people could perform their analysis directly without transferring entire data
sets, would require an important funding effort, which might not be straightforward to
obtain. The third reason is that so far, the usefulness of re-mining existing image data
sets has not yet been shown sufficiently. Once the scientific community is aware of the
potential data mining of HCS data sets provides us with, the technical challenges might
be properly addressed.

Here we will show different cases of data reuse. Starting from the data set published
in [Neumann et al., 2010], we will show an in-depth analysis of nuclear motility by
applying MotIW to this data set. This led to the discovery of genes which are likely
to be involved in cell motility, as well as an ontology of cell trajectories (section 3.2).

Furthermore, combining tracking with nuclear phenotypic classification enables to detect



Chapter 3 - High-content screening data as a resource 32

genes which have an impact on cell cycle length, as described in section 3.3. Finally, in
the context of drug development, the comparison between Mitocheck phenotypic profiles
and those following drug exposure enables to identify a few possible drug target pathways
for each investigated substance, as is exposed in section 3.4. We hope that this work
will make a case for the remining of HCS data and the usefulness of HCS as a scientific

resource in terms of systematic and comprehensive analysis.

3.2 MotIW reveals modes of movement and genes involved

in nuclear motility

Part of this section was published in [Schoenauer Sebag et al., 2015].

Analysis of the Mitocheck dataset with our workflow allows the identification of genes
with putative role in nuclear and/or cellular motility (section 3.2.1). Furthermore, it
reveals the existence of a cell trajectory ontology in the dataset. Without any prior
assumption on cell motion, we are able to identify eight types of cell trajectories (sec-
tion 3.2.2). Finally, we also observed that all motility behaviours exist in negative con-
trols: the only effect of gene silencing is a change in the measured proportion of distinct

motility modes.

3.2.1 Hit list

After evaluating MotIW on simulated data, we then apply it to the whole genome-wide
screen Mitocheck [Neumann et al., 2010]. In the context of the Mitocheck dataset, the
identification of an experiment in which cell motility is significantly different from neg-
ative controls leads to the identification of siRNAs which significantly and reproducibly
alter cell motility. A gene was selected as possibly involved in motility mechanisms if it
was targeted by at least one hit siRNA. Indeed, it is well known that only a proportion
of the siRNAs targeting a particular gene will effectively lead to a significant down-
regulation. The reasons which could explain this are still not completely understood.
Therefore, requiring that more than one siRNA related to a given gene are selected for

the gene to be selected would have led to too many false negatives.

The application of MotIW to the Mitocheck dataset enabled the identification of the
experiments which significantly deviate from controls (5%; 7,153 out of 144,909). It
amounts to 1,180 genes (out of 17,816), which are available as a supplementary to this

thesis (see Supp. table 1).
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3.2.1.1 Functional analysis

Some of these genes are well known to be involved in cellular motility, such as RhoA (Ras
homolog family, member A) or CDK5 (cyclin-dependent kinase 5). However, the list is
not overall significantly enriched in genes which are linked to cell motility according to

the Gene Ontology database and DAVID online analysis tools [Jiao et al., 2012].

The three first functional annotation clusters which were found on MotIW’s hit list
are respectively related to protein kinases and ATP-binding proteins, G-protein coupled
receptors, and neurotransmitter receptor activity (respective enrichment scores: 6.69,
4.86 and 4.56). Nevertheless, the fourth functional annotation cluster which was found
using DAVID tools is composed of three "Cellular components" GO terms: integral
to plasma membrane (GO:0005887), intrinsic to plasma membrane (GO:0031226) and
plasma membrane part (GO:0044459) (enrichment score: 3.33). This is consistent with
what has already been observed [Naffar-Abu-Amara et al., 2008]: changes in cell adhesion
to the extra-cellular matrix and to neighbouring cells are bound to have major impacts
on cell motility. As an example, cell motility processes are involved when cells divide as
they detach from the plate surface, or as they probe their close environment. Perturbing
cell adhesion or cell protrusion mechanisms through the silencing of one of the numerous
membrane proteins which these processes involve, will therefore modify cell motility.

This explains that our hit list is enriched in genes which are related to cell membrane.

Comparing this finding with results from other recent screens on cell migration, we ob-
serve that a lack of enrichment seems to be the rule rather than the exception. [Simpson
et al., 2008] describes a study of 1,081 genes regarding cell motility in human breast cells
(MCF-10A cell line). Using wound healing, they identify 66 high confidence genes of
which only 24 were previously associated with cell motility. Similarly, [Lara et al., 2011]
is focused on the involvement of kinases (779 genes) in cell motility of human lung cancer
cells (A549 cell line). Using single cell tracking, they identify 70 hit genes, of which only
13 were previously linked to cell motility. Finally, [van Roosmalen et al., 2015] study
1,429 genes using phago-kinetic tracks in human lung cancer cells (H1299 cell line), find-
ing 136 hits. Thanks to a personal communication of the authors, we could access their
hit list and see that only 13 of their hit genes are functionally linked to cell motility
(Gene Ontology biological process GO:0048870).

Hence it seems that medium- to HT approaches to cell motility study tend to complement
the older ones, rather than abide by them. In fact, this seems to be a more general
trend of genetic screen hit lists. For example, Mitocheck mitotic hit list contains more
than 50% genes which were not functionally linked to cell division before [Neumann

et al., 2010]; [Eggert et al., 2004|’s cytokinesis-linked gene list contains only 20% genes
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which were previously known to be involved in this cellular process. Modern systematic
and automatic approaches to gene functional inference are indeed likely to detect genes

whose involvement in the cellular process at hand was too subtle to be detected by

lower-throughput and more ancient methods.

3.2.1.2

Intersection with other published motility gene lists

The next step is to analyse the intersections between different published medium- to

high-throughput studies about cell motility. They are detailed in table 3.1.

TABLE 3.1: Existing medium- to high-throughput studies of cell motility

Study Assay Cell line Gene list | Hit gene list
[Simpson et al., 2008| Wound healing MCF-10A | 1,081 66
[Lara et al., 2011] Single cell tracking Ab549 779 70
[Yang et al., 2013] Matrigel invasion chambers | U87 1,954 25
[Zhang et al., 2013] Cell area growth HeLa 710 81
Us Single cell tracking HeLa 17,816 1,180
[van Roosmalen et al., 2015] | Phago-kinetic tracks H1299 1,429 136
TABLE 3.2: Hit list intersections
Simpson | Lara | Yang | Zhang | Us van Roosmalen

[Simpson et al., 2008| 66 4 0 19 10 4

[Lara et al., 2011] 4 0 |0 4 4 2

[Yang et al., 2013] 0 0 25 0 4 0

[Zhang et al., 2013] 19 4 0 81 13 5

Us 10 4 4 13 1,180 | 6

[van Roosmalen et al., 2015] | 4 2 0 5 6 136

Following the information which is presented in table 3.2, there is little intersection be-
tween the hit genes which were obtained by the existing medium- to high-throughput
studies of cell motility. There are different explanations: first, some of the assays in-
vestigate collective migration, some others, single cell migration. It might be that there
is little overlap between the machineries that govern migration in these two situations.
Second, each cellular model (such as normal breast epithelial cells, lung cancer epithelial
cells, cervix cancer epithelial cells) is depending on specific and partly distinct machiner-
ies for cell motility. Third, all cell lines do not have identical basal speed and motility
behaviours. As a consequence, genes that change motility parameters for slow cells such
as HelLa cells, might have an opposite or even no effect on faster cells, such as H1299 cells.
Indeed, the effects of a perturbation on a given cell depend both on the perturbation

and its cellular state at the moment of the perturbation. This makes these comparisons
difficult.
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Nevertheless, we also observe that some "stars" of cell motility as RhoA are identified by
all studies. Finally, as for hit list enrichment in previously known genes, little overlap is
generally observed between medium- to HT screen outputs in other fields as well [Neu-

mann et al., 2010].

3.2.2 Cell trajectory ontology

A question which is related to motility gene discovery is to know whether there exists
an ontology of cell trajectories. The approach to answer it would be to apply unsuper-
vised clustering methods on the whole trajectory dataset and try to identify a number of
motility patterns for which the clustering is of good quality. This is measured by cluster
quality indices, which depend on the clustering method (see e.g. [Tan et al., 2005, Chap-
ter 8], or [Halkidi et al., 2001]). As an example, two common indices to evaluate the
output of k-means are the intra-cluster cohesion C'(K) and the silhouette score S(K).
They both compare intra-cluster distances to inter-cluster distances, if N is the number

of data points centered in cgguq:
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A slope change in C'(k) and a maximum in S(k) are expected at the appropriate number
of clusters, if it exists. Other interesting measures of clustering quality encompasses for

example the Bayesian Information Criterion or clustering stability [Ben-Hur et al., 2002].

This approach did not prove to be successful when applied to pooled trajectories from
all experiments, for a wide range of clustering techniques (k-means, Gaussian mixtures
models, spectral clustering, fuzzy c-means, kernel k-means with a radial basis function -
data not shown). Concretely, no combination of clustering algorithm and cluster number
could be found, whose quality was clearly over the quality obtained by the same clustering
algorithm and other cluster numbers. It did not seem possible to find any structure in

the data.

Nevertheless, clustering succeeded when only trajectories from MotIW hit experiments

were pooled together. Indeed, this small subset contains only experiments which have



Chapter 3 - High-content screening data as a resource 36

been selected for being significantly different of controls in terms of single cell motility:
it is enriched in rare trajectories. Our interpretation is the following. Let us assume that
we have a number of k clusters in the whole trajectory dataset. Due to biological vari-
ability, each trajectory is at a certain random distance (in the feature space) to its latent
trajectory cluster center. Given the dataset size (approximately 50 million trajectories),
this produces a continuous dataset in the feature space, preventing the identification of
any cluster. Furthermore, the different clusters are unbalanced. Uniformly subsampling
the whole dataset is therefore inefficient as well (data not shown). Applying MotIW
to find experiments which are enriched in rarer trajectories enabled us to identify the
underlying cluster structure of the dataset, since it performed a stratified subsampling

with respect to the latter.

After retaining the first seven principal components (explaining 95% of the variance),
k-means was applied to the resulting dataset of approximately 1.1 million pooled trajec-
tories. Fig. 3.1 shows the evolution of intra-cluster cohesion and silhouette score with
respect to the number of clusters. It points to £ = 8 as being both the best and a
good quality clustering on this dataset. Indeed, a break and a maximum are respectively
expected in the cluster cohesion and the silhouette score curves at the correct cluster
number, if it exists. It is compared to the evolution of those indices, if k-means is applied

to a uniformly random dataset and a normal dataset (in R®).
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FIGURE 3.1: Evaluation of k-means clustering quality as a function of the number of

clusters (average and standard deviation on 10 algorithm initializations). The same

protocol was applied to a subset of the Mitocheck dataset, and two samples of the same
dimensions, respectively drawn from the Uniform and the Normal distributions.

A first insight on cell motility from this clustering is presented figure 3.2. It presents the

distribution of trajectory distributions in the eight identified clusters. One can observe
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that there are no cluster which is specific to either controls or hit experiments. From
this we see that rather than creating new modes of movement, gene silencing rather
leads to shifting the probability of entering a certain mode of movement. This can be
explained by the fact that a certain number of motility behaviours are possible for the
cell to adopt at any time. Its molecular and cellular state, as well as the stochasticity
of gene expression dictates which one it chooses. Hence some behaviours will be rarer
in control videos, but become more frequent as siRNA exposure modifies cell molecular

state.
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FIGURE 3.2: Comparison of cluster distributions between controls (Ctrl) and exper-
iments (Exp) for the eight trajectory clusters which were identified in the Mitocheck
dataset. The clusters are in the same order as in figure 3.3.

The cluster characteristics are illustrated in fig. 3.3. Each column in the heatmap corre-
sponds to one cell trajectory, for which the rows show the standard scores of a subset of
features. The single cell trajectories are arranged according to the cluster to which they

belong. For each cluster, we randomly selected the same number (1000) of trajectories.

A result about single cell motility patterns is obtained from experiments which were
selected on the basis of their trajectory feature distributions. This shows that meaningful
single cell information can be retrieved by our statistical procedure, which works at the

experiment level.

In the second place, it shows that there is more than speed for differentiating trajectory
types. For example, clusters 2 and 3 present very similar MSDs and Effective space
length. However, trajectory curvatures are different: the features Mean curvature and
Straigthness index are quite distinct between the two clusters. This can be observed
in the Supplementary movie, where cells whose trajectory belongs to cluster 2 (green)
are much straighter than those belonging to cluster 3 (red). In this video, cells whose
trajectory passed the trajectory quality control have a dot, whose colour corresponds to

its cluster as indicated in fig. 3.3.

3.3 Cell cycle length study

The combination of the Mitocheck dataset and of our methodological workflow is also

very well suited to study cell cycle genes. Indeed, one only needs to combine tracking and
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F1cURE 3.3: Characterization of our ontology of trajectories. Each column is a sin-
gle cell trajectory ; trajectories are grouped by cluster label. 1,000 trajectories were
randomly selected per trajectory cluster.

nucleus classification to recover a set of complete trajectories in each experiment, that is,
trajectories which start with a mitosis and end with a mitosis. Using the methodological
procedure described in 2.2.3, it is then possible to detect the experiments in which cell
cycle length distribution is significantly different from that in control experiments. This

results in a list of genes.
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Segmentation
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Real mitoses Other splits

FI1GURE 3.4: Examples of object divisions from the Mitocheck dataset

3.3.1 Complete cell cycle detection

The first step to study cell cycle length distribution according to siRNA exposure is to
filter out complete trajectories from the others. By complete, we mean trajectory which
start with a mitosis rather than the end of a merge event, an apparition, the split of an
apoptotic debris or the beginning of the film, and which end with a mitosis rather than
a merge, a disappearance or the end of the film. The distinctions are easily made by a

human eye, as can be seen on figure 3.4. To automatize this filtering, one can rely on the
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nucleus classification as described in section 3.4.1.3 and [Neumann et al., 2010]: prior
to a mitosis, the nucleus will likely be observed in M_y = {prometaphase, metaphase,
metaphase alignement problem}. Similarly, following a mitosis, the nucleus will likely be

observed in M, = {anaphase}.

However, given that the classifier is not 100% correct, it is not fully certain. Furthermore,
there could be cases of accelerated mitoses, in which it would not be possible to observe
both the mother cell in M_; and the daughter cell in M,;. Hence we developped a
scoring approach with respect to each track of interest 7 going from Tg to T, as detailed
in figure 3.5:

scorey r = 1(Mother, € M_1)+ 1(rp, € M11)

scoreg; = 1(rr, € M_1) + Z 1(c e M)

7's children

Briefly, the scores compute the number of right classifications in the starting and ending
splits. To evaluate where to threshold those scores in order to filter out the unwanted
tracks, 20 movies were randomly sampled from the Mitocheck dataset, all splits scored
and all 2,100 tracks manually divided into complete and other trajectories. Selecting
tracks longer than 1 frame with score; > 1 and scores > 1 enables to select more than

87% complete trajectories.
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F1GURE 3.5: Approach to cell cycle study

3.3.2 Cell cycle length hit list

The principle of MotIW’s statistical procedure (see 2.2.3 and [Schoenauer Sebag et al.,
2015]) was then applied to the distributions of complete trajectory length: 2 sample
Kolmogorov-Smirnov tests were realized between cell cycle length distributions of each
experiment and the controls of the same batch. It was compared to the empirical null
distribution in a second time. The latter is the distribution of 2 sample Kolmogorov-

Smirnov tests comparing controls to controls. Finally, the empirical p-values which were
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obtained were adjusted for multiple testing, following the Benjamini-Hochberg proce-
dure [Benjamini and Hochberg, 1995].

Setting a threshold of 0.05 enabled the identification of 66 genes whose cell cycle length
distribution differs from that of controls from the same batch. The list is fully provided
in appendix, see section A.l. Interestingly, the down-regulation of only three genes
produces a longer cell cycle length: APOA1, RPS20, SEFMBT2 (coding respectively for
the apolipoprotein A1, ribosomal protein S20 and Scm-like with four mbt domains 2).
SFMBT?2 silencing has already been found to decrease cell growth in human prostate

cancer cells [Lee et al., 2013].

Gene Ontology analysis reveals that there are three annotation clusters which are highly
enriched in this list. The first one is related to protein kinase activity. It contains such
genes as BMPR-IB which encodes the bone morphogenetic protein receptor, type IB,
and whose reduced expression is correlated to poor prognosis in breast cancer [Bokobza
et al., 2009], and tumor grade in prostate cancer [Kim et al., 2000]. The second cluster is
related to nucleotide binding. It contains genes such as the integrin-linked kinase whose
silencing has interestingly been found to slow cell cycle in human gastric carcinoma
cells [Song et al., 2013], whereas we have found its silencing to speed cell cycle in HeLa
cells. Finally, the third cluster contains genes which encode proteins which are intrinsic
to plasma membrane, such as the melatonin receptor 1A whose absence has been found
to be correlated with bad prognosis in triple-negative breast cancer [Oprea-Ilies et al.,
2013|.

3.3.3 Discussion

Our approach for studying cell cycle length enabled us to obtain a list of 66 genes
which may be involved in cell cycle regulation. Gene Ontology analysis revealed that a
certain number of these genes has already been found to be linked to cell cycle duration
regulation. This list contains 3 genes whose silencing lengthens cell cycle, and 63 whose
silencing shortens it. It is possible that this more broadly reflects that there are more
proteins which play a role of checkpoints rather than cell cycle enhancers, hence the
fact that gene silencing experiments produce more experiments where cell proliferation
is increased than decreased. This is supported by other studies such as [Moffat et al.,
2006], which found 87 (resp. 15) genes whose silencing significantly increases (resp.

decreases) the mitotic index of HT29 cells.

Method bias
Our method was applied to the whole Mitocheck dataset, enabling the obtention of
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complete trajectory length distributions for all experiments. Experiments with less than
10 complete trajectories were not considered for further analysis. This explains why
decreased proliferation genes as provided by [Neumann et al., 2010] could not be found:
the proliferation is so low that no mitosis is observed, hence no complete trajectories
can be found. Trying to diminish this bias in experiment selection, we also included
trajectories which finish with the end of the experiment rather than a mitosis (hereafter

called incomplete trajectories).

However, this approach was not successful. For some siRNAs, it seems that incomplete
trajectory length distribution indeed has the same shift as that of complete ones (see the
example of arylsulfatase F gene, ARSF, on fig. 3.6). However, for most of the siRNAs,
incomplete trajectory length distributions seem to be more dependent on the batch than
on the chemical exposure. Two examples are shown fig. 3.7 which concern the genes
CACNAI1D and DIMT1 (respectively coding for the calcium channel, voltage-dependent,
L Type, Alpha 1D subunit and DIM1 dimethyladenosine transferase 1 homolog). The
outcome of the statistical analysis consistently proved too noisy to enable the detection
of any hit siRNA for incomplete trajectory length (up to the following threshold for
adjusted p-values: 0.1).
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FIGURE 3.6: Histograms showing cell cycle length for complete (top) and incomplete
(bottom) trajectories, for two experiments of the Mitocheck dataset concerning ARSF
which were detected as significantly different from controls for cell cycle length.

Perspective: cell cycle phase detection

Cell cycle can furthermore be split in four sequential phases: G1, S, Go, and M. S is



Chapter 3 - High-content screening data as a resource 42

CACNAID DIMTL

[0 LT0027_44--00120 [ LT0027_45--00120 [0 LT0010_06--00190
[ Ctrl 74 and 315 same pl [ Ctrl 74 and 315 same pl [ Ctrl 74 and 315 same pl

[ LT0010_27--00190
[ Ctrl 74 and 315 same pl

{llhn e [ A1
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

FIGURE 3.7: Histograms showing cell cycle length for complete (top) and incom-

plete (bottom) trajectories, for two experiments of the Mitocheck dataset concerning

CACNAID (left) and DIMT1 (right), which were detected as significantly different
from controls for cell cycle length.

the DNA replication phase and M stands for mitosis. To distinguish S from G7 and G,
PCNA (proliferating cell nuclear antigen) is usually used. It forms sparkling nuclear dots

during DNA replication, as it is recruited to replication foci [Leonhardt et al., 2000].

However, the only marker available in the Mitocheck dataset is the core histone 2B
(H2B). The question is then to know whether it is possible to use this marker for S
detection. [Coquelle et al., 2006], using cell size and H2B-GFP fluorescence, managed to
FACS-purify RKO cells in G1, S and G2. Furthermore, [Loo et al., 2007] uses a "cell cycle
heuristic" to separate between the different phases of the cell cycle using DNA size and
intensity as provided by Hoechst 33342 as a DNA marker (Supplementary figure 3,b-c).
They use it to infer links between small molecule exposure and cell cycle modification;

however they do not prove the accuracy of their heuristic.

This led us to the hypothesis that it might be possible to use the information contained in
the H2B-GFP fluorescence signal for in stlico sorting of HeLa cells. As expression levels
vary between cells, we cannot expect that intensity features will be directly informative,
but we hypothesized that changes in nuclear intensity and size should give us cues on
potential G1— S transitions. However, the problem turned out to be less straightforward.
As shown on fig. 3.8, nuclei grow linearly during cell cycle without showing any clear
slope break. This is confirmed on fig. 3.9. This latter plot has the same configuration as

that of Supp. fig. 3 from [Loo et al., 2007]. However, although this study uses a heuristic
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model that defines a clear separation between nuclei in different cell cycle phases, we do
not find it in our data. Nevertheless, nuclear intensity and size are clearly linked to cell

cycle phases.

Hence to answer this question, we had the idea to use a published dataset of HeLa
cells which were stained for both H2B and PCNA [Held et al., 2010]. Cell cycle phase
annotations of this dataset are available on the Cell Cognition website'. This training
set was created using the information on the PCNA channel. It makes it possible to
test the following hypothesis: can a classifier be trained, which uses H2B information for
cell cycle phase identification? Preliminary work shows that all tested methods have an
accuracy below 70% (random forest, gradient boosting, support vector machine, logistic
regression). However, using this information, cell tracking, and Hidden Markov Models
for error correction can significantly improve these results.

roisize total intensity

10F
20
30F
a0k
50 |
60 F
70

o 0 10 20 30 40 50 60
roisize

FIGURE 3.8: Example of the time evolutions of nuclear size ("roisize", top left and

bottom) and nuclear intensity ("total intensity", top right) for all complete trajectories

of a control experiment from the Mitocheck dataset. As discussed in the text, no clear

slope break is seen for most trajectories for any of the two indicators, hence preventing
the delimitation of cell cycle phases using only this information.

"http:/ /www.cellcognition.org/downloads/data
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FIGURE 3.9: DNA intensity and size as provided by H2B-GFP information is not
sufficient to differenciate between the different cell cycle phases. Data and labelling
come from the PCNA dataset.
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3.4 Functional inference by in silico comparison of small-

molecule and siRNA screens

Finally, on top of enabling the discovery of cell cycle and motility genes, and identifying
an ontology of cell trajectories, the Mitocheck dataset can be re-used for drug target

inference?.

Indeed, genome screens contain very rich information about how selective gene knock-
down perturbs normal cell processes such as cell division, cytoplasmic morphology or
motility. If cells are screened against drugs or putative drugs in the same experimen-
tal context (e.g. the same seeding density, the same markers, the same cell line), the
comparison between drug exposure profile and genetic profiles can point at the biolog-
ical processes which the drug targets [Parsons et al., 2006]. The comparison between
gene knockdown and drug phenotypic profiles is therefore more and more considered as
an efficient tool for drug discovery [Feng et al., 2009]. In principle, it should allow for
the systematic and direct identification of drug target, as opposed to targeted bioassays

which demand specific prior knowledge or an extreme amount of time and means.

This view has been applied under different forms in the recent years, either in the com-
parison of yeast deletion mutants to drug exposed yeast [Ohnuki et al., 2010], or the
comparison of parallel RNAi and small molecule screens in Drosophila [Parsons et al.,
2006] or HeLa cells [Young et al., 2008].

However, when applied, it rapidly appears that these comparisons cannot directly point
at the drug target or mode-of-action. This is mainly due to two reasons, which are biolog-
ical rather than technical. On the one hand, drug action can often not be summarized by
a unique "entry point" into an organism’s cellular processes [Schirle and Jenkins, 2015].
On the other hand, two drugs which are targeted at different molecules albeit occuring
in the same pathway will very probably produce the same phenotypic profiles. Inferred

targets remain to be confirmed and/or refined [Schenone et al., 2013].

A difficulty of another order is the complexity of HCS data and therefore the difficulty
of exploiting it. For the same reason as the preference for univariate measures of cell
motility, targeted bioassays can be preferred because they are easier to understand and
exploit. Multivariate analysis methods for HCS profile comparison are however more
and more developed [Loo et al., 2007], [Young et al., 2008]. Nevertheless, drug target

inference from HCS time-lapse data has to our knowledge never been done.

This section therefore presents different methods for drug target inference by pheno-

typic profile comparison between siRNA and drug screen experiments in HeLLa H2B-GFP

2Manuscript in preparation
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cells. After introducing the dataset and the image analysis methods which were used
(section 3.4.1), six distances between phenotypic profiles are introduced and compared
(section 3.4.2) before being applied to drug similarity evaluation and target inference in

section 3.4.3.

3.4.1 Materials and methods

3.4.1.1 Experimental work

This data set was not produced in the context of this PhD. Rather, the experiments were
conducted at the EMBL (Heidelberg, Germany) by Beate Neumann, Jutta Bulkescher
and Thomas Walter. See table 3.3 for a list of the drugs and doses which were tested.

TABLE 3.3: Selected drugs and dose ranges. All drugs were tested for 11 doses.

Drug Dose 0 (uM) | Dose 10 (uM)
Acyclovir 0.036 36.768
(-)-Adenosine 3 0.025 25.152
Aminopurine, 6-benzyl 0.036 36.76
Anisomycin 0.03 31.209
Azacytidine-5 0.033 33.907
Camptothecine(S,+) 0.023 23.77
Daunorubicinhydrochloride | 0.014 14.682
Dexamethasoneacetate 0.019 19.057
Doxorubicinhydrochloride 0.014 14.277
Epiandrosterone 0.028 28.509
Etoposide 0.014 14.068
Hesperidin 0.013 13.562
Idoxuridine 0.023 23.384
JNJ7706621 0.008 8.28
MLN8&054 0.008 8.28
Methotrexate 0.018 18.221
Nocodazole 0.027 27.48
Paclitaxel 0.009 9.697
R763 0.008 8.28
Ribavirin 0.033 33.907
Sulfaguanidine 0.038 38.647
Sulfathiazole 0.032 32.43
Thalidomide 0.031 32.065
VX680 0.008 8.28
Zidovudine, AZT 0.03 30.984
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3.4.1.2 Object segmentation

Since we are interested in nuclear morphologies in this context, the original segmentation

of the Mitocheck project was used, as previously described [Walter et al., 2010].

3.4.1.3 Object classification and phenotypic scores

The use of the original segmentation from the Mitocheck project made it possible to re-
use its training set, albeit strengthened for classes which were previously slightly under-
represented. This can be seen on fig. 3.10 in comparison with figure 3 from [Walter
et al., 2010]. A visual inspection of the dataset enabled us to verify that the drug screen
experiments did not contain new morphological classes (that is, absent in the Mitocheck
experiments). This would have made it necessary to include nuclei from drug screen

experiments into our training set.

Cell Cognition [Held et al., 2010] was used for learning an RBF (Radial Base Function)
kernel SVM classifier, whose precision and recall are also indicated on fig. 3.10. Its

parameters were optimised by grid-search (y =277, C = 8).

Name Samples Color = %PR %SE
1 Interphase 420 B c0.4 (895
2 Large 80 86.0 92.5
3 Elongated 110 | EXEEN
4 shape1 346 | BT
5 Shape3 473 B sos 844
6 Grape 99 B a7
7 Metaphase 74 B c:0 854
8 Anaphase 85 88.6 91.8
9 MetaphaseAlignment 176 86.7 81.8
10 Prometaphase 345 857 |B5.2
11 ADCCM 99 85.6 838
12 Apoptosis 308 Bl -7 sss
13 Hole 114 89.3  80.7
14 Folded 58 B e 638
15 smallirregular 165 B2 824
16 Artefact 112 80.7 857
17 UndefinedCondensed 47 B> 02
18 OutOfFocus 325 | XS
# overal 3436 87.5 |87.1

FIGURE 3.10: Precision and recall per class as provided by Cell Cognition. Com-

pared with the original classifier as published in [Walter et al., 2010], classes ADCCM

(Asymmetric Distribution of Condensed Chromosome Masses) and Out of focus were

added. More nuclei were furthermore included for training in most classes. Shapel

(resp. Shape3, MetaphaseAlignement) corresponds to binucleated (resp. polylobed,
metaphase alignement problem) nuclei.

This provides a representation of each video as a set of time-series, which are the evolution
of the percentage of nuclei in each phenotypic class over time. To evaluate how an
experiment ¢ diverges from control experiments from the same batch C; for its temporal

evolution of class k, we used phenotypic scores as previously described [Walter et al.,
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2010|. Briefly, temporal evolutions of the percentages of nuclei in class k for experiment
i, (Yorit)e and its controls (% ¢, +)¢ are regularized using a locally weighted scatterplot
smoothing as implemented in the Python package statsmodels. The fraction of data
points which is used for smoothing was manually chosen to be f = 50%. The maximum
deviation between the two regularized time series is then computed, where ps stands for
"phenotypic score':

o reg reg
PSk;i = Ion_%}f(%k,i,t — Yo, t)

3.4.1.4 Quality control

One plate had to be eliminated due to an issue during image acquisition. An abrupt
increase in fluorescence intensity around the 80 frame of all experiments from this
plate causes a sudden increase in the number of detected object which prevents any

time-consistent analysis.

For the other experiments, a threshold of ¢ cells at the beginning of the movie, and
maximum p% out-of-focus objects were used to remove unexploitable movies. ¢ = 50
and p = 40 were selected. Out-of-focus objects and cells that were neither artefacts
nor out-of-focus objects were identified following segmentation, feature extraction and

classification as described supra.

Out of 1,232 experiments on four plates, 904 experiments from three plates passed the

quality control, among which 98 control experiments.

3.4.1.5 Selection of Mitocheck experiments for target inference

The Mitocheck project led to the identification of 1,249 mitotic hits in the primary screen.
1,042 were identified by manual thresholds on phenotypic scores from the following phe-
notypic classes: Prometaphase, Metaphase Alignement Problem, Binucleated, Polylobed,
Grape. 207 genes were further identified by manual annotations. 1,128 of these genes

were screened again in a validation screen.

Lists of hit genes according to the following measures were also published:

e phenotypic score of Large nuclei,
e cell death, as measured by phenotypic score of Apoptosis nuclei,

e nuclear dynamic changes, as measured by the sum of phenotypic scores for Hole,

Folded and Small irregular,



Chapter 3 - High-content screening data as a resource 49

e and cell proliferation.

Finally, a list of hit experiments for Elongated nuclei was computed, which can be found

as a supplementary to this thesis (see Supp. table 2).

Given the evolution of the reference sequence of the genome, not all those genes were
in fact targeted in the Mitocheck experiments. An updated mapping of the siRNAs
which were used in the primary and validation Mitocheck screens to the present refer-
ence sequence of the genome was graciously provided by Jean-Karim Hériché (EMBL,
Heidelberg, Germany). Once this and the quality control are taken into account, the final
list of hits in at least one of the listed categories amounts to 2,614 genes (cf fig. 3.11),
which are covered by 4,847 siRNAs.

0.35 Distribution of genes selected for target inference
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F1GURE 3.11: Number of hit genes per category. As hit detection is univariate, a gene
can be in more than one category.

Given the variations in siRNA coverage between genes which were, for example, included
or not in the validation screen, each gene was chosen to be represented by the siRNA
which showed the maximum effect. This was measured by the median of the phenotypic

scores for Interphase nuclei of this siRNA experiments.

3.4.1.6 Detection of drug screen hit experiments

Phenotypic scores of the drug screen experiments were computed as described supra.

Experiments whose Interphase phenotypic score was lower than Q§"' —1.5 x IQ R were
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selected as hit experiments, where Q‘f”l and TQR are respectively the first quartile
and the inter-quartile range of control Interphase scores. This is a robust one-sided way
to select outliers, as the distribution of control Interphase scores cannot be assumed to

be Gaussian.

It corresponds to the 197 experiments which are under the bottom whisker on the Inter-
phase subplot of fig. 3.12. Supplementary plots represent the distribution of phenotypic
scores as a function of dose and drug, see "Phenotypic score plots_typel" in "Supple-

mentaries" folder.

Hit conditions are conditions for which stricly more than 50% of their replicates are hit

experiments.
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FIGURE 3.12: Distributions of phenotypic scores from the drug screen experiments.
Each boxplot corresponds to the distribution of control phenotypic scores, whereas
each red dot is an experiment in which cells were exposed to a drug.

3.4.1.7 Other analyses

Proliferation hit detection
Proliferation hit detection was realized similarly to hit experiment detection: experiments

whose proliferation rate was higher than ng” + 1.5 x IQR" or lower than Qﬁm —
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1.5 x IQR*" were considered proliferation hit experiments. Proliferation hit conditions
were conditions for which stricly more than 50% of their replicates are proliferation hit
experiments. Interestingly, only one condition (Azacytidin, dose 7) was a proliferation

hit without being a hit.

Hierarchical clustering

Condition hierarchical clustering was performed using the median of condition replicates.
The Python package fastcluster [Miillner, 2013| was used to this end. In each case, the
clustering method which visually produced the best result was used, from Ward, centroid

and single methods.

Target pathway inference and analysis

Target pathways were infered for groups of selected conditions following hierarchical clus-
tering. For each group, experiments from all group conditions were pooled together and
considered as replicates of one artificial condition. This condition was characterized by
all experiment distances to Mitocheck experiments. A way to consider each experiment
nearest neighbours consistently accross group experiments is to use rank products [Bre-
itling et al., 2004]. Briefly, the idea is that if a gene is consistently close to all experiments,
it will consistently be in the top of each ranked experiment-gene list. The product of
its ranks will therefore be small. This is the final variable which was used to compute
the nearest neighbours for each condition group. The list of 200 nearest genes to each
condition group was then analyzed using DAVID online tool [Jiao et al., 2012|, and its
enrichment in GO terms computed by comparison with the list of Mitocheck hit genes

selected as described in section 3.4.1.5.

Data visualization
A Web-based user interface was designed and implemented for result visualization and

result sharing among collaborators. It is described more in details infra, see section 4.1.2.

3.4.2 Phenotypic profile distances

Screening experiments provide us with temporal sequences of information. They can
be seen as sequences of two-dimensional intensity distributions [Rajaram et al., 2012],
sequences of object feature distributions or sequences of phenotypic class distributions.
In our case, we chose to summarize each experiment by a set of temporal evolutions
of phenotypic classes, that is, we chose to represent our experiments by their pheno-
typic profile. The question remains to know how to measure the similarity between two

instances of this representation of the information.
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We decided to test the following distances on the question to know whether we can apply

phenotypic profiling for drug target inference from parallel drug and siRNA screens:

e 3 very simple approach, the Euclidean distance of phenotypic scores,

e astate-of-the-art approach, the phenotypic trajectory distance as defined in [Walter
et al., 2010|,

e a divergence which enables the use of biological prior knowledge, the Sinkhorn

divergence [Cuturi, 2013].

Let ¢ be a screening experiment, and p the number of phenotypic classes (p = 15 in our

case).

3.4.2.1 Euclidean distance on phenotypic scores

i can be represented in R? by (psg.;)r the vector of its phenotypic scores. The distance
between two experiments is then the Euclidean distance of their vectors of phenotypic
scores, excluding Interphase and Anaphase scores. Interphase score is excluded as its
decrease is most of the time a summary of the increases of other scores. It is therefore
the least specific measurement we can look at. Anaphase score is excluded because there
is no single condition which leads to an accumulation in anaphases: this chromosome
configuration is not stable and consequently, cells cannot remain in this phase. An
observed accumulation of anaphase is therefore sure to correspond to an artifact (typically

observed when anaphase is confounded with apoptosis).

These vectors can be normalized with respect to the mean and standard deviation of
phenotypic scores in the dataset. This will correspond to the Normalized phenotypic
score distance in the following, whereas the non-normalized version will simply be called

Phenotypic score distance.

These distances are robust to time delay in the onset of phenotypic changes. Indeed,
as controls basically show a constant percentage of Interphase nuclei, phenotypic scores
will be identical for two experiments which show an increase in, e.g., Apoptosis nuclei
respectively at the beginning and at the end of the experiments. Hence the strength of
these distances is that even if one experiment is identical with a delay to another, their
distance will be small. It will however still be small if they're distinctly ordered, e.g. if
one experiments shows the same phenotypic events than the other, albeit in the opposite

order.
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3.4.2.2 Phenotypic trajectory distance

On the other hand, it is possible to use the phenotypic trajectory distance as published
in [Walter et al., 2010]. Briefly, let us re-use the notations of section 3.4.1.3: i is seen as
(Yok,it)k=1..p.t=1..T, that is, a sequence in [0 ; 1]P. This sequence is then approximated by
two p-dimensional vectors. The phenotypic trajectory distance between two experiments
is then a distance between their vectors, as defined in formula 7 of [Walter et al., 2010].

This distance will be called phenotypic trajectory distance in the following.

This distance does not take explicitly time into account, but it respects the order of
phenotypic changes. Hence its strength is that even if one experiment is identical with
a delay to another, their distance will be small. It will not if they’re distinctly ordered,

as opposed to the phenotypic score distances.

3.4.2.3 Sinkhorn divergence

Motivations

Finally, we wanted to test a distance which would enable us to use some prior biological
knowledge of phenotypic class relationships. If we consider the two previous distances,
they implicitly consider each phenotypic class to be independent of the others, and
equally biologically far away from all. Indeed, the phenotypic score distances operate
in R? to sum the squared differences of phenotypic scores, hence treating the different
phenotypes independently of each other. However, different morphological classes do
not all point to entirely different phenotypic situations. For example, Hole, Folded and
Small Irregular all point to problems in nuclear stability. Accumulations in Metaphase
Alignment Problems (MAP) and Prometaphase are observed if the mitotic spindle is
not capable of aligning chromosomes in the metaphase plate. Binucleated, Polylobed and
Grape nuclei arise as secondary consequence of mitotic failures that were not detrimental
to the cell. Hence the biological intuition is that a chemical causing a great increase in
Polylobed nuclei has probably a closer mode of action to that of another drug causing an

increase in Grape nuclei than to another drug causing a strict increase in Apoptosis.

Ideally, the idea is then that the distance of a% Grape nuclei to b% Polylobed nuclei is
smaller than that to b% Apoptosis nuclei, or that it "costs" less to go from a% Grape
nuclei to b% Polylobed nuclei than to b% Apoptosis. This is precisely the idea behind
the Earth Mover’s distance (or transportation distance, or Wasserstein distance). This
distance was developed in the first place to compute the cost to move a certain number
of piles of dirt into a certain number of holes. To optimally do so, one needs to take into

account the distance between piles and holes.
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Definitions

Let us formalize this intuition and briefly introduce transportation distance®. We note
Yg={z¢€ ]Ri\led = 1} the probability simplex. In our case, d = 13: we can consider
either the distributions of phenotypes in a given experiment over all time-points, or this

distribution in a specific frame.

Given r and c in X4, the transport polytope U(r, ¢) is the set of matrices such that
U(r,c) = {P e R¥P1y=r,PT1, = c}

If X and Y are two discrete random variables with valuesin {1, ..., d} whose distributions
are r and ¢, the elements of U(r, ¢) are in fact the possible joint probabilities of (X,Y).
Given a cost matrix M in R%? the optimal transportation distance between 7 and ¢
is the solution of the following optimization program, where < -,- > is the Frobenius
matrix norm:

dy(ryc) = PEI%i(Irl',c) < M,P > (3.1)
Optimal solutions P* of 3.1 can be obtained. Furthermore, if M is a metric matrix,
this quantity is a distance [Villani, 2009]. This optimization program’s complexity
is in O (d3 log d) in theory and in practice, which makes it less applicable to high-

dimensionality problems.

In our case however, d = 13, hence complexity is not a serious issue. An issue which is
more relevant is that optimal solutions P* will lie on the vertices of U(r,¢). This is due
to the linear quality of the optimization problem. It will produce almost deterministic
joint probabilities [Cuturi, 2013]. The idea is therefore to solve a regularized version of

this program, placing ourselves in the following convex subset of U(r,¢), for o > 0:

Uy (r,c) = {P € U (r,c) KL (P||rc") < a}

The Sinkhorn divergence will be the following quantity, for a > 0:

dra(r,c) = PeI[I]liI(lr ) <M,P > (3.2)

This will produce less deterministic optimal solutions, which will converge to P* as «
increases, while djs (7, c) converges to dys(r,c). In practice, there exists an efficient
method for solving the dual of this problem, Sinkhorn fixed-point algorithm [Sinkhorn
and Knopp, 1967].

3References and proofs can be found in [Cuturi, 2013].
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The solution for obtaining a faster computation of an approximate transportation dis-
tance is therefore to solve the dual problem of 3.2. Its solution will be used to compute the
Sinkhorn divergence. For any o > 0, there exists A > 0 such that das (7, ¢) = dara (7, ¢),
with

1
dya(r,c) =< M, P>, P =argmin< M,P > ——h(P)
PeU(r,c) A

The use of this divergence will enable us to take into account prior biological knowl-
edge while computing distances between phenotypic distributions. This knowledge will
be encoded in the cost matrix M. Its choice as well as A’s is described infra. Practi-
cally, Sinkhorn fixed-point algorithm was implemented in Python to compute Sinkhorn

divergences.

Finally, there are two ways to apply Sinkhorn divergence to the problem at hand. Let

us consider two experiments ¢ and j of duration 7"

e one can pool all nuclei from all frames by representing the experiments in 4. This

distance will be called global Sinkhorn divergence in the following:
D@ ) = duma((Yori)rs (Yox.5)k) (3-3)

e one can choose to keep the temporal information by representing the experiments

in (3q)". We will define two distances from this:

max time Sinkhorn divergence, which is the maximum of all timepoints

Sinkhorn divergences:
ﬁaf (4,7) = m?X dM,)\((%k,i,t)k, (%k7j7t>k> (3.4)

sum of time Sinkhorn divergence, which is the sum of all timepoints

Sinkhorn divergences:

Digx (i, 7) ZdMA (Poki,) ks (Pok 5. k) (3.5)

Choice of phenotypic cost matrix

The phenotypic cost matrix summarizes our biological knowledge about the phenotypes
which were observed in the Mitocheck dataset (they include those which were observed
in the drug screen). We made the choice to set inter-phenotypic costs according to the
cellular process which is perturbed when they appear, or which they represent. The

phenotypic cost matrix which we chose is illustrated fig. 3.13.
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To resume our previous example, Polylobed, Grape and Binucleated nuclei were con-
sidered to be closer to each other than to any other phenotype, as they are all non-
detrimental failures of division defects. Binucleated nuclei were set slightly further apart
from Polylobed and Grape nuclei, because they correspond to cytokinesis defects, whereas
the latter correspond to segregation defects. Hence we set a cost of 1 between Grape and
Polylobed, and 2 between Polylobed and Binucleated, and Grape and Binucleated. The
three classes then have a cost of 3 between them and the different versions of interphases
(interphase, Elongated, Large) and different mitotic classes (Prometaphase, Metaphase,
Anaphase, Metaphase Alignment Problems (MAP), ADCCM), and 5 to Apoptosis. Fi-
nally, they are at a cost 4 of nuclear stability phenotypes which do not result from cell

division defects (such as Hole or Folded).
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FiGUrE 3.13: Cost matrix for phenotypic Sinkhorn divergence

Choice of A

This choice will determine how close the Sinkhorn divergence is to the transportation
distance. As expected, when A increases, the Sinkhorn divergence converges. This is
illustrated fig. 3.14. This figure also enables us to see that in the range of A which we
investigated, there seems to be mainly two different behaviours: one which is shown at
A =0.01 and A = 0.1, and one which is shown at A =1 and A = 10.

Our choice of A was driven by the ability to differenciate between Mitocheck hit ex-

periments. As detailed in section 3.4.1.5, these experiments are grouped according to
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the phenotype(s) of which they present a strikingly high percentage. We therefore vi-
sually compared the ability of \'s two different value ranges to separate Mitocheck hit

experiment from different phenotypic hit lists.

This is shown on figures 3.15 and 3.16: Mitocheck hit experiments are represented fol-
lowing the use of multi-dimensional scaling in 2 dimensions of their global Sinkhorn
divergences. We clearly see that A = 10 seems to distinguish - to a certain extent -
between distinct phenotypes, as opposed to A = 0.1. This is striking if we consider the
example of Binuclear and Cell death hits (see also figures in Appendix, section A.2.1).

A = 10 was hence chosen.

=30

nce for lambda:

ion coefficient with respect to dista

i
N
S

Variati

FIGURE 3.14: Convergence of Sinkhorn divergence as a function of lambda. Diver-

gences were computed between drug screen experiments and Mitocheck hit experiments

for different values of lambda, and the distribution of their relative variation to the di-
vergences computed for A = 30 are showed here.

3.4.2.4 Distance quality evaluation

Six distances were selected to compare phenotypic profiles following drug/siRNA expo-
sure. We then wanted to evaluate their ability to distinguish between different conditions
without distinguishing between condition replicates. For this purpose, we computed for
each distance d and condition C' a separability score S4(C) as defined in formula 3.6
and a replicability score Ry(C) as defined in formula 3.7. Separability compares the
distance between replicates of the same condition to the distance to other conditions,
whereas replicability measures the correlation between condition replicates to Mitocheck

hit experiments.
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FIGURE 3.15: Separation between Mitocheck hit categories (left) for A = 0.1. Global
Sinkhorn divergences between Mitocheck hit experiments were computed for A = 0.1,
and multi-dimensional scaling was used for representing them in two dimensions in
the first two lines. Divergences between these experiments and the drug screen were
included and their multi-dimension scaling is shown on the right plot.
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FIGURE 3.16: Separation between Mitocheck hit categories (left) for A = 10. Global
Sinkhorn divergences between Mitocheck hit experiments were computed for A = 10,
and multi-dimensional scaling was used for representing them in two dimensions in
the first two lines. Divergences between these experiments and the drug screen were
included and their multi-dimension scaling is shown on the right plot.

Notations: for each experiment ¢ we note C; its condition, d(i, M) the vector of distances

between ¢ and all Mitocheck hit experiments and corr the Pearson correlation.

Di|Cs=C 2ok|cpte AT, K)

Zi|C’i:C Zj#‘cj:(; d(i, j) (3.6)

Sa(C) =
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RiC) = s 37 S corr(d(i, M), d(j, M) (37)
(- Din-2) 2 2
Ci:CCj:C

The results are presented fig. 3.17. We can observe that all investigated distances score
the same on average in terms of replicability and separability on drug screen hit condi-
tions ; they are more different on all drug screen conditions. In the latter case, Sinkhorn
divergences and the simple phenotypic score distance seem to better separate conditions
than normalized phenotypic score and phenotypic trajectory distance, although not sig-

nificantly.

In both cases, there is a high standard deviation, as some conditions were visually ob-
served to have lower reproducibility levels than the others. One can for example con-
sider the reproducibility of the 10th dose of JNJ7706621 (see fig. A.3 in appendix, sec-
tion A.2.2). This high standard deviation is therefore at least partly experimental, which

means that none of the investigated distances is robust enough to cover it.

Based on these results, we chose to restrict ourselves to the phenotypic score distance,

the phenotypic trajectory distance, the sum of time and global Sinkhorn divergences.
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FIGURE 3.17: Mean separability and replicability scores of investigated distances on
all conditions (left) and hit conditions only (right - bars represent standard deviations).

3.4.3 Applications

There are two main applications of phenotypic profiling to drug or small molecule

screens |Loo et al., 2007]. On the one hand, one might be interested in studying the
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similarity between the different conditions cells were exposed to. If there are drugs with
known targets, we can then hypothesize that drugs with similar phenotypic effects will
target the same pathway. On the other hand, if there exists a parallel genetic screen,
that is, a genetic screen which was performed in the same experimental conditions, one
might be interested in comparing phenotypic profiles resulting from gene silencing or
over-expression to phenotypic profiles resulting from drug exposure. These two applica-
tions could lead to the inference of possible targets for unknown chemicals, and might

even give a hint as to a possible mode of action.

3.4.3.1 Small molecule similarity evaluation

Distance (arbitrary units)

Value at
1st decile

93% of hit conditions
with 3 hit experiments

Mitocheck genes

FIGURE 3.18: Drug screen condition - Mitocheck siRNA two-dimensional hierarchical
clustering using global Sinkhorn divergence. Ward method was used in combination
with the Euclidean distance.

Condition clustering

The median distance of each condition replicates to Mitocheck hit experiments was used
to perform condition hierarchical clustering, for each investigated distance. The output
for the global Sinkhorn divergence is illustrated fig. 3.18, and outputs for the other

distances can be seen in appendix (see section A.2.3).

From 89% to 100% of (drug screen) hit conditions are clustering together, depending

on the used distance. Furthermore, the clusters they belong to are composed of hit
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conditions at purity levels ranging from 85% to 91%. The dendrogram shows that these
clusters present subclusters, which are at a certain distance from eachother (i.e. the
dendrogram is not flat - see purple, white and blue clusters as indicated on the y-absciss
colorbar on fig. 3.18). On the other hand, non-hit conditions are grouped in one large
and flat cluster (see the red cluster on fig. 3.18). This means that non-hit conditions as
described by their distance to Mitocheck hit experiments are not distinguishable, whereas

hit conditions are.

We have chosen to summarize experiments by their nuclear phenotypic profiles, that
is, the temporal sequence of nuclear phenotype distributions. This also means that
any perturbation which do not result in a change in percentage of any of these class
distributions cannot be detected. This might concern perturbations that alter nuclear
morphologies without changing their class assignment. For example, if the number of
nucleoli was changed by a perturbation, the resulting interphase would still be classified
as interphase and the change would remain unnoticed. It can also concern perturbations
which affect an aspect of cell life that is not measured at all by our assay. For instance
thalidomide, whose known teratogenic effects might be linked to an inhibition of ubiquitin
ligase [Ito et al., 2010], might simply have no affect on nuclear morphology. Some drugs
might also not have any effect on Hel.a cells, or demand a longer exposure time for an

effect to be detected.

The conclusion of these clusterings is that our method (combining our choice for infor-
mation representation and similarity evaluation) is suitable for detecting and infering
knowledge regarding mitotic hit conditions and conditions which modify nuclear mor-
phology as described by the phenotypic classes which were chosen, whereas it is not for
other conditions. We therefore restrict ourselves to the hit conditions which we have

detected as described in section 3.4.1.6.

Hit condition clustering

Hit condition clustering was realized in the same way. The output for the global Sinkhorn
divergence can be seen fig. 3.19 ; other distance outputs are displayed in appendix sec-
tion A.2.4.

Existing knowledge about hit condition targets, as displayed in table 3.4, can be used
to evaluate the consistency of clustering results*. Ideally, drugs with similar targets and
similar doses from the same drug should cluster together. A way to visualize how the

different distances perform with regard to that, is to look at the binary maps which are

4Unfortunately, our dose ranges are too different from that of [Perlman et al., 2004] to compare our
clustering results to those of [Loo et al., 2007].
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F1GURE 3.19: Drug screen hit condition - Mitocheck siRNA two-dimensional hierarchi-
cal clustering using global Sinkhorn divergence. Ward method was used in combination
with the Euclidean distance.

presented on fig. 3.20, 3.21 and in appendix section A.2.4. On these binary maps, drugs
have been grouped by target similarity as in table 3.4.

The binary map from phenotypic score distance (fig. 3.20) shows little agreement with
the literature: conditions belonging to the same clusters seem to be randomly distributed
and in particular not to reflect the structure suggested by the literature. On the other
hand, the binary map from global Sinkhorn divergence produces a structure which is
more in agreement with the current knowledge (fig. 3.21). For example, doses 5 to 10 of
Paclitaxel are clustered together with doses 8 to 10 of Nocodazole, which is consistent
with their common target S-tubulin. Another interesting example is that of Anisomycin.
Its doses 5 to 8 constitute a single cluster according to global Sinkhorn divergence. This
is consistent with Anisomycin being the only drug in the drug screen to inhibit protein
synthesis. The same effect can be observed for doses 3 to 10 of Camptothecin (S,+):
they cluster together in an almost pure cluster, which is consistent with Camptothecin

(S,4) being the only drug inhibiting topoisomerase (DNA) I (TOP1).

Furthermore, the hierarchy of these clusters is also understandable in the light of the ex-

isting literature. Indeed, the highest doses of drugs which are targeted at Aurora kinases

n
Doxoruglclnh ydrochjoride-2
Banorabicinhydrochloride--1
Daunorubicinhydrochloride--5
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TABLE 3.4: Known protein targets of hit drugs (bold: present in Mitocheck hit exper-
iments). Drugs are grouped by target similarity. Source: DrugBank [Wishart et al.,
2008] unless specified.

Drug Protein target (HUGO gene symbol) Other targets
RPLI0OL, RPL13A, RPL23, RPL15,
Anisomycin RPL19, RPL23A, RSL24D1, RPL26L1,
RPLS, RPL37, RPL3, RPL11, NHP2L1
- DNA and RNA
Azacytidine 5 DNMT1 hypomethylation
Camptothecin TOP1
(S,+)
Daunorub@n TOP2A, TOP2B ds-DNA intercalating
hydrochloride agent
Doxorubicin ds-DNA intercalating
hydrochloride TOP2A agent
Etoposide TOP2A, TOP2B
AURKA, AURKB, CDK1, CDK2,
JNJ7706621 CDK3, CDK4, CDK6 [Emanuel et al.,
2005]
MLNS8054 AURKA [Huck et al., 2010]
R763 AURKA, AURKB, FLT3,
VEGFR2 [McLaughlin et al., 2010]
VX680 AURKA, AURKB
Nocodazole HPGDS, TUBB (B2A, B4A,B4B,B6) | crotubule
destabilizer
Paclitaxel ﬁi;;’TUBBL NRII2, MAPT, MAP4, Microtubule stabilizer

(JNJ7706621, MLN8054 and VX680 which are in the dark blue cluster on fig. 3.19) is
the closest cluster to the one which contains high Paclitaxel and Nocodazole doses (pink
cluster). The latter drugs are targeted at tubulin, when Aurora kinases are linked to
microtubules as well (NCBI Gene webpages [Pruitt et al., 2014]). The cluster hierarchy

is therefore consistent, since closer clusters point to a common biological process.

The binary map from time Sinkhorn divergence (fig. A.8) shows little difference with
that from global Sinkhorn divergence. Finally, the binary map from phenotypic trajec-
tory distance (fig. A.10) shows more agreement with the literature than the phenotypic
score distance’s (e.g. a high number of conditions of Etoposide, Doxorubicin hydrochlo-
ride and Daunorubicin hydrochloride cluster together), but seems less refined than any
of the Sinkhorn’s maps (e.g. most doses of Camptothecin (S,+) are included in the

aforementioned cluster).

Another observation can be made from these clustering results. All three "sophisticated"
distances, the phenotypic trajectory distance, the global and time Sinkhorn divergences,

present a cluster which can be named a small dose cluster (respectively green, yellow and
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red as indicated by the y-absciss colorbar on figures A.9, 3.19 and A.7). It contains mostly
the smallest doses for each drug hit: Anisomycin dose 1, Daunorubicin hydrochloride dose
0, Azacytidin 5 doses 8 and 9, etc. Interestingly, these conditions have in common very
unspecific phenotypic consequences: slight increases in Elongated and/or Large and/or
Polylobed and/or Binucleated nuclei, without any increase in Apoptosis nuclei. This can
be seen in the phenotypic plots which are in the supplementaries, folder "Phenotypic

score plots type2".

Global and time Sinkhorn divergence results present a second unspecific effect cluster
(respectively green and yellow-green on figures 3.19 and A.7), which contains mostly
small to medium doses for each drug hit: Daunorubicin hydrochloride doses 2, 3, 4,
Azacytidin 5 dose 10, etc. Similarly to the small dose cluster, these conditions have
very unspecific effects in common. Contrary to the small dose clusters, they present a
non-negligeable level of Apoptosis nuclei. This cluster is not present in the phenotypic

trajectory distance results.

F1cURE 3.20: Visualization of condition clustering for phenotypic score distance. A
black dot means that the conditions belong to the same cluster, a white dot that they
do not.
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FIGURE 3.21: Visualization of condition clustering for global Sinkhorn divergence. A
black dot means that the conditions belong to the same cluster, a white dot that they
do not.

From these observations we can conclude that both Sinkhorn divergences (and especially
global Sinkhorn divergence) produce drug similarities which better correspond to the
existing knowledge. Furthermore, these similarities are easily understandable by going
back to the phenotypic scores and the cost matrix, as opposed to the phenotypic trajec-
tory distance. As an example, Anisomycin doses 5-8 cluster is very likely a result of the
exclusive high increase in Apoptosis nuclei which is observed in these experiments, and
of Apoptosis being at a cost of 5 from all other phenotypes. Finally, these results also
show that for almost all drugs, small doses produce unspecific effects which seem difficult
to be robustly linked to any gene silencing experiment. Our focus for target pathway
inference will therefore be condition clusters which are not small/medium dose clusters,

using global Sinkhorn divergence.



Chapter 3 - High-content screening data as a resource 66

3.4.3.2 Target pathway inference

Meaningful condition groups were established in the previous section. They enable us
to circumscribe the search for drug target to dose ranges which are most likely to show
on-target specific effects. We will consider the following condition groups (corresponding

colors in fig. 3.18 in brackets):
1. Nocodazole, doses 8 to 10 (pink, top)
2. Paclitaxel, doses 5 to 9 (pink, bottom)
3. VX680, doses 8 to 10 and MLN8054, dose 10 (dark blue, top)
4. Anisomycin, doses 5 to 8 (light blue)
5. Camptothecine (S,+), doses 6 to 10 (red, top)
For each condition group, Mitocheck hit genes were ordered according to their global

distance to group experiments, as described in section 3.4.1.7. The list of ordered genes

for each condition group can be found in the Supplementaries, folder "Gene ranks".

TABLE 3.5: Rank of known drug targets, when applicable. Condition group are iden-
tical to that in the text.

Protein target
Condition group | (HUGO gene Rank
symbol)
HPGDS o977
TUBB2A 548
1 TUBB4A over 1,000
Nocodazole TUBB4B 416
TUBBG6 987
BCL2 389
TUBB2A 466
2 TUBB4A over 1,000
Paclitaxel TUBB4B 317
TUBB6 over 1,000
3 AURKA 39
VX680 AURKB 21
4 RPL19 over 1,000
Anisomycin NHP2L1 15
5 na

A first result from these lists is the index of known drug targets in each, as can be seen in
table 3.5. This result does not enable to assess the predictions for any drug whose known
target is not in Mitocheck hit list, such as Camptothecin(S,+). It furthermore only relies

on two or three Mitocheck experiments in each case. A solution to this drawback is to
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consider the closest genes to condition groups, and anlyze significantly representend gene
functions using Gene Ontology and DAVID online tools [Jiao et al., 2012]. A summary
of the results from such an analysis are presented in table 3.6 ; the whole results can be

found in the Supplementaries folder "Gene ranks".

From both tables, it appears that results from the different condition groups are unequal.
On the one hand, functional analysis of the closest genes to the Anisomycin group does
not show any terms which are related to ribosomal proteins, whom Anisomycin is mainly
targeted at. Functional analysis identifies as the three most import functional clusters
for the Anisomycin group one cluster related to cell cycle and microtubule cytoskeleton,
one related to chemical homeostasis, and one related to serine/threonine protein kinase
- whose enrichment scores range from 1.6 to 1.4. Similarly, functional analysis of Camp-
tothecin(S,+) group shows relation neither with DNA binding nor with DNA topological
change. They rather point at cell-cell junctions, cyclic nucleotide binding proteins and
ion channel activity. This does not prevent one of Anisomycin targets, NHP2L1 (SNU13
homolog, small nuclear ribonucleoprotein (U4/U6.U5)), of being its 15th closest gene.

On the other hand, functional analysis of the closest genes to the VX680-MLN8054
group is quite consistent with them being targeted at Aurora kinases. Indeed, these cell-
cycle regulated proteins are thought to be involved in the formation of microtubules and
their stabilization at the spindle pole, which can be retrieved in the two first functional
clusters. Furthermore, AURKA and AURKB (Aurora kinases A and B) are respectively
the 39th and 21st closest genes to this condition group.

In between these cases, although the main targets of Nocodazole and Paclitaxel are not
extremely close to these condition groups, functional analysis does retrieve their impact
on microtubule-bagsed process. In conclusion, our method provides a list of genes and their
similarity to drug exposure, for each group of drug conditions it identifies. Functional
analysis of the top 10% of these lists reveals that our method performs unequally well
for retrieving target gene function in all cases. It works very well on drugs which directly
act on mitosis-related proteins (e.g. VX680 or Paclitaxel), whereas it is not as helpful

on drugs which are targeted at other biological processes (e.g. Anisomycin).

3.4.4 Discussion

In this section, we were interested in evaluating drug similarity and drug target from
time-lapse HC-HT drug screening data. To this end, we introduced a new divergence,
the Sinkhorn divergence, from which we derived three different flavours, and which we
compared to a simple Euclidean distance on phenotypic scores, and a state-of-the-art

measure, the phenotypic trajectory distance.
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TABLE 3.6: Rank of known drug targets, when applicable. Condition group are iden-

tical to that in the text.

Condi-
tion
group

Cluster
rank

Terms from relevant functional annotation
clusters

Enrichment score

5/66

Microtubule cytoskeleton organization

Microtubule-based process

Cytoskeleton organization

0.97

1/51

2/51

Microtubule cytoskeleton

Cell division

Cell cycle

Centromere

Chromosome segregation

Spindle

Microtubule cytoskeleton

Microtubule cytoskeleton organization
Microtubule organizing center organization
Centrosome cycle

Microtubule-based process

2.24

1.89

1/66

2/66

3/66

Regulation of cell cycle

Mitotic cell cycle checkpoint
Kinetochore

Regulation of cell cycle process
Cell cycle

Microtubule cytoskeleton
Spindle

M phase

Centrosome

Chromosome, centromeric region

Metaphase

2.49

2.19

2.13

/62

-/63

Distance quality evaluation on our drug screening dataset showed that all distances were

affected by a medium experimental reproducibility to the same extent. Interestingly

enough, this is also the case for global Sinkhorn divergence, which should be more robust

as it pools a temporal sequence of phenotype distributions into a single set of phenotype

distributions. In order to reduce the impact of batch effect, one could think of normal-

izing all experiment phenotype distributions from one batch by the median of control
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distributions from this batch. This should compensate batch effects which modify basal
cell state. However, it could also be the case that batch effects impact how cells respond
to drug exposure. If response timing is different, one could think of applying dynamic
time warping when evaluating time Sinkhorn divergence, and possibly phenotypic trajec-
tory distance. However, if the phenotypic response itself varies from batch to batch, this
might be an interesting information about the drug: cell response might be stochastic in

the same measure as is gene expression [Elowitz et al., 2002].

Drug similarity evaluation showed that our information representation is only suitable
for drugs which show an impact on nuclear phenotypes as measured by chosen classes
in less than 48 hours. Hence, drugs which have an impact on nuclear texture such as
the number of nucleoli, or on other biological processes with no nuclear consequences
within 48 hours, will not be detected. In the first case, new phenotypic classes could
be added to the existing set, or hit experiment detection should be done directly from
object feature distributions (e.g. nuclear perimeter, nuclear excentricity, etc.) rather
than phenotypic distributions. [Young et al., 2008] gives an example of such a strategy,
which is nevertheless challenging in high dimensional feature spaces. In the second case,
one would need more fluorescent markers in order to quantify other phenotypic aspects
(markers for the Golgi apparatus, plasma membrane, cytoskeleton, etc.). However, as
the number of markers is necessarily limited, effects of all drugs can never be identified in
the same assay. One strategy might therefore be to perform drug screens with respect to
one specific biological process, and to chose cell markers such that they are informative

about all aspects of this particular process.

Drug similarity evaluation on hit conditions performed well, with Sinkhorn divergences
performing better than all other distances. This was measured by the grouping of drugs
with similar targets and mode-of-actions, as could be found in the literature. Fur-
thermore, not only were similar drugs grouped together, but the hierarchical clustering
performed using global Sinkhorn divergences also proved to be biologically meaningful.
Indeed, it grouped microtubule-related drugs JNJ7706621, MLN8054 and VX680, and
Paclitaxel and Nocodazole in the same cluster, which was further refined in two different
clusters as they are respectively targeted at Aurora kinases and tubulin. Finally, hier-
archical clustering also identified conditions which produced non-specific effects (with
and without apoptosis), enabling to restrict drug target inference to drug doses which
showed specific effects. This restriction has already been searched for |Loo et al., 2007],
as results from drug target inference on small doses will probably not be robust and/or

meaningful.

Finally, we used global Sinkhorn divergence between Mitocheck hit experiment and mean-

ingful condition groups to perform drug target inference. Although it should theoretically
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be possible to identify drug targets from drug and genetic screen comparison, it is gener-
ally only providing a list of putative targets, which remain to be tested [Schenone et al.,
2013]. This is due to the fact that drugs generally do not have a single target, and that
many genes share the same phenotype upon knockdown. It is also explained by the fact
that drug exposure and siRNA exposure do not strictly have the same impact on the
targeted protein. Indeed, siRNA phenotypic onset can be rather different than that of a
drug, because drugs directly act on their target, whereas siRNAs cause the destruction
of target mRNAs. Furthermore, phenotype penetrance in drug screen experiments is

always higher than that in siRNA experiments.

This is precisely what was experienced in this analysis, with known drug targets never
being the closest gene to drug experiments. Furthermore, one can observe that due to
the fact that we used a marker which was optimized to observe chromosome segregation,
drug target inference performed well on mitotic hits per se, such as VX680. For other
drugs such as Anisomycin, our method identifies closest genes based on their impact on
the nucleus when silenced, which could explain that they were not related to translation.
In these cases, the workflow will indicate the downstream impact of the drug on nuclear
morphologies. But even in cases where the combination of markers and classes are not
optimal, our method can still identify hits and group them together. In some cases
however, no effect at all was observed. They demand additional phenotypic classes

and/or other markers.
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Xenobiotic screen

Résumé - Les cribles xénobiotiques (see infra for English text)

Environ 100,000 nouvelles molécules sont synthétisées chaque année. D’autre part, les ré-
glementations européennes sont de plus en plus strictes en ce qui concerne I'expérimentation
animale. L’utilisation de cribles biologiques & haut débit et haut contenu semble donc in-
diquée en toxicologie environnementale : ils constitueraient une procédure expérimentale
ayant I’avantage d’étre a la fois in vitro et trés informative. Toutefois, la plupart des tests
actuellement utilisés en toxicologie environnementale sont a faible contenu, ou analysés
manuellement - ce qui empéche leur utilisation a haut débit.

Afin d’étudier la faisabilité d’une telle approche, nous avons réalisé un crible de 5 xénobi-
otiques connus tels que la dioxine (TCDD), produisant un jeu de données de vidéomicro-
scopie a épifluoresence. Ces données ont d’une part été analysées a 'aide de MotIW [Schoe-
nauer Sebag et al., 2015| pour la motilité cellulaire individuelle (cf. section 4.2.2), d’autre
part a ’aide de la procédure dévelopée par [Walter et al., 2010] pour le cycle et la division
cellulaires (cf. section 4.2.3). Une interface Web a également été congue pour le partage
des résultats entre les laboratoires, qui est présentée dans la section 4.1.2.1.

Ces expériences n’ont toutefois pas permis de conclure a 'utilité de 'approche pour I’étude
de 'impact sub-toxique des xénobiotiques choisis. Plusieurs pistes quant & ’origine de ces
résultats sont discutées dans la section 4.3. Il serait en premier lieu intéressant de réaliser
une batterie d’expériences primaires & faible contenu avant le crible lui-méme, afin de
choisir un ensemble de doses resserré auxquelles un effet est attendu de maniére certaine.
Dans un second lieu, le choix de la lignée cellulaire pourrait étre revu afin de choisir une
lignée la plus homogeéne possible.
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Environmental health consists in studying the impact of Man’s environment on his health.
This can be done following either one of two major paradigms: Epidemiology and Tox-
icology. The former deals with human populations, looking for significant link between
past exposure and present pathologies. Toxicology can itself be in vivo, in vitro or in
silico, depending whether one chooses to study the impact of a precise exposure on a
population of living organisms, a population of cells, or based on chemical descriptors of

the exposure.

Causal links can be quite delicate to establish in Epidemiology. There is a great number
of variables which are involved (e.g. genetic or behavioral) ; the effects can have a
weak penetration and are often delayed by a certain number of years with respect to
the exposure. To mitigate these effects, Toxicology enables to select the chemical (or

xenobiotic!) of interest, as well as precisely control the experimental settings.

However, Toxicology is currently facing two major challenges:

e Around 100 000 new compounds are synthesized each year. There is therefore the

need for high-throughput (HT) and safe toxicity tests.

e Furopean regulations are stricter and stricter with animal testing, hence the need

for novel in vitro toxicity tests.

This led us to think of importing the technique of drug screening from pharmacological
Toxicology, replacing prospective drugs with xenobiotics. The basic idea of screening is

to perform a given assay on hundreds of compounds in parallel.

Classical in vitro toxicological screening procedures have been in use for some time, such
as the Comet assay for DNA damage, which is known since 1984 [Ostling and Johanson,
1984]. This type of test is now routinely done in a HT setup. However, it provides very
crude information compared to what high content (HC) assays would indicate regarding
for example, cell cycle modulation following BPA exposure. Subtler tests are being
developed in a HT setup, either endpoint [Freitas et al., 2014], [Vecchio et al., 2014] or
real-time assays [Wlodkowic et al., 2011], [Timm et al., 2013]. This was recently made

possible by technical and computational progresses.

Nevertheless, the majority of new in witro toxicological methods are not HC?, i.e. they

do not allow detailed observation of phenotypes at the single cell level. Such methods

LA xenobiotic is, with regard to a species, any compound which was not produced by an individual
of this species.

23 papers dealing with new toxicological assays out of 10 present HC methods (PubMed searches: "en-
vironmental AND cellular AND (screening|Other Term| OR High throughput/high content assays|Other
Term]|)", and "time-lapse AND toxicology" on the 3/19/2015).
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are common practice in molecular biology and have been scaled up, so as to be presently
applicable in a HC setup. More specifically, there are many biological processes which
are best studied with time-lapse microscopy. Surprisingly, this type of experiment is
still rarely used in Environmental Toxicology - regardless of the throughput. When it is,
data is manually analyzed most of the time (e.g. [Fiorini et al., 2008], [Gatti et al., 2004],
or |Costa, 1983]). However, time-lapse experiments would be a significant improvement
over endpoint assays, as they enable for example to assess event sequences following

exposure rather than record cell death.

Environmental Toxicology time-lapse data was therefore newly generated, in order to as-
sess whether HC time-lapse screening is applicable in this context : is this approach rele-
vant for toxicity detection and characterization of environmentally relevant compounds?
Time-lapse HCS usability in this context would lead to the potential development of a

time-lapse HC-HT assay for Environmental Toxicology.

Hence five well-known xenobiotics were selected and screened for their effects on nu-
clear motility and nuclear morphology. The whole pipeline is illustrated fig. 4.1 (and
the experimental settings are detailed fig. 4.2). Briefly, cells were chemically exposed
prior to image acquisition over time. Cells were segmented on each image of each exper-
iment using the open-source software CellCognition [Held et al., 2010]. Object features
were extracted using the same software, for two purposes: nuclear tracking and nuclear

morphology classification.

Nuclear tracking was performed as described in the methodological article [Schoenauer Se-
bag et al., 2015]. This step was followed by trajectory feature extraction, and statistical

hit detection, as described in the same article.

CellCognition was used to establish a training set of annotated nuclear morphologies, to
train a classifier and apply this classifier to each nucleus in the data set. This allowed us
to describe each experiment by a set of class percentage time series, whose comparison

with control time series allow us to detect significant differences.

As this was a proof of concept experiment, the goal was slightly different than that
when applying MotIW on the Mitocheck dataset. In the latter case the goal was to
select relevant genes for nuclear motility with high confidence, which explains why an ad
hoc statistical procedure had to be developed to make sure that p-values were not over-
estimated. In the case at hand, the goal was rather to select experimental conditions with
mild-to-high confidence for performing confirmatory experiments. Our goal was therefore
to obtain a ranking of all conditions with respect to the tested endpoint (motility or cell

cycle) rather than computing absolute p-values.
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FIGURE 4.1: Xenobiotic screen complete workflow

4.1 Materials and methods

4.1.1 Experimental work

4.1.1.1 Chemicals

TCDD was bought from LGC Standards (Molsheim, France), TGF 81 from R&D Systems™ ™

Comparison to controls

(Minneapolis, MN, USA), BPA, MeHg and PCB153 from Sigma Aldrich® (Saint-Louis,

MO, USA). a-Endosulfan was bought from Cambridge Isotope Laboratories, Inc. (Tewks-

bury, MA, USA) and DMSO from Merck Millipore (Billerica, MA, USA).

The following media were used:

e normal medium: DMEM (Gibco®, Life Technologies™  Puteaux, France) with

phenol red and supplemented with 10% fetal calf serum (FCS), 200 units/ml peni-

cillin, 500 pg/ml streptomycin, 3g/ml glutamin, 10ug/mL insulin and 0.1nmol/mL

of non-essential amino acids solution (all from Life Technologies™), and 0.5 ug/ml

fungizone (Squibb, Princeton, NJ, USA),

e imaging medium: COs-independent medium (Gibco®) supplemented with 10%

FCS, 200 units/ml penicillin, 500 pg/ml streptomycin, 3g/ml glutamin, 10ug/mL

insulin and 0.1nmol/mL of non-essential amino acids solution, and 0.5 pg/ml fun-

gizone.

4.1.1.2 Cell culture

The human mammary tumor cell line MCF-7 (ATCC® Catalog N°HTB-22™™) was main-

tained in normal medium as defined above.

D Hit list
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4.1.1.3 Cell transfection and clonal selection

MCEF-7 cells were transfected with two plasmids : one containing human histone H2B
fused to the gene encoding a red fluorescent protein (mCherry), isolated from Discosoma
species (Addgene, plasmid #21045), one containing human membrane lipid Myr/Palm
fused to the gene encoding the green fluorescent protein (GFP) of Aequorea victoria (Ad-
dgene, plasmid #21037). The aim was to generate a stable line constitutively expressing
H2B-mCherry and Myr/Palm-GFP.

On the day before transfection, MCF-7 cells were seeded into 10cm dish with normal
medium (2 millions per dish). On the day of transfection, cell medium was replaced with
2mL of normal medium and a mix composed of 72ul Lipofectamin® 2000 reagent and
24pg of total plasmid DNA (either H2B-mCherry alone, Myr/Palm-GFP alone or both),
completed to a volume of 3mL with Optimem (Life technologies™). Cells were then
incubated for 5 hours at 37°C, after what 5mL of normal medium was added. Antibiotic
selection started 7 days after transfection, with 1mg/mL of neomycin and 1ug/mL of
puromycin added to normal cell medium ; selection medium was replaced every other

day.

Clonal selection was realized by infinite dilution: three weeks following the beginning of
antibiotic selection, transfected cells were seeded in two 96-well plates with 64 wells at
0.3 cell/well, 64 wells at 1 cells/well and 64 wells at at 3 cells/well. Once clones had
suffienctly grown, a few clones were selected based on their level of plasmid expression.
They were tested for the expression of the following genes with and without exposure
to 25nM TCDD for 48 hours: Aryl hydrocarbon receptor (AHR), Cytochrome P450
1A1 (CYP1Al) and E-cadherin genes. Most clones responded as expected (increased
expression of AHR and CYP1A1l and decreased expression of E-cadherin - data not

shown). One clone was discarded.

Following this step, modified cells were maintained in normal medium with 1mg/mL of
neomycin and 1ug/mL of puromycin. Hereafter, "MCF-7 cells" refers to a selected clone

of such modified cells.

4.1.1.4 Production of 96 well-plate for imaging

48h prior to imaging, MCF-7 cells were seeded in normal medium into one 96 well-plastic
plate, at a density of 6,000 cells per well. The plate was placed back in the incubator
at constant temperature (37°C) and COg pressure (5%). 24 hours prior to imaging,
dilutions (cf table 4.2) of selected compounds with constant solvent percentage were

freshly prepared in imaging medium. Cell medium was changed with 198uL of imaging



Chapter 4 - Xenobiotic screen

76

>
24h 48h{72h
Expgsure Data acquisition
F1GURE 4.2: Tllustration of the experimental settings
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FI1GURE 4.3: Example of a plate setup. ClI: clone number, Indpt 10: COs-independent
cell medium with 10% FCS.

medium and 2uli of chemical dilution or solvent dilution per well. Six control wells for

each solvent and three wells with cell medium only were put on each plate. Plate design

was not random, but control wells were not grouped (see fig 4.3 for an example of a plate

setup).

The plate was placed back in the incubator. Immediately before image acquisition, the

plate was sealed using an adhesive optical film. This procedure is illustrated on figure 4.2.

4.1.1.5 Time-lapse imaging

Images were acquired every 15 minutes in each well for forty-eight hours, with an au-

tomated epifluorescence microscope (Axio Observer Z1; Zeiss, Oberkochen, Germany)
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with motorized objectives in z-axis (resolution 10nm) and using 10x objective (EC Plan-
Neofluar;0.3 M27). Each well was imaged 800ms at lengthwave A\ = 555nm (mCherry)
and 300 ms at A = 470nm (GFP).

The microscope is integrated into a microscope incubation chamber to provide constant
temperature (+37°C), which was turned on at least one hour prior to the beginning of
image acquisition. Zeiss software ZEN2011 was used for data recording. Focus was done

manually, and was updated by definite focus.

4.1.1.6 Phototoxicity assays

One plate was prepared with 12 wells following the above-described procedure, except
that no chemical was added prior to image acquisition. Images were acquired for 24h,

with the four different imaging conditions :

e 10 imaging
e 500ms at A = 555nm, 300 ms at A = 470nm
e 1 000ms at A = 555nm, 300 ms at A = 470nm

e 1 500ms at A = 555nm, 300 ms at A = 470nm

2uL of alamarBlue™ Cell Viability Assay Reagent (Thermo Scientific, Rockford, IL,
USA) were then added to each well. Following 2h of incubation at 37°C, absorbance was
measured at A = 570nm and 600nm using an EnSpire® (PerkinElmer, Waltham, MS,

USA). The index of cell viability was computed following the manufacturer’s formula.

4.1.1.7 Chemical dose choice

Doses were chosen so that the lower end is close to human exposure levels, and that the

higher end is not cytotoxic.

The first goal was attained through a literature review, whose results can be seen in
appendix, section A.3. The second goal was attained through cytoxicity tests. One plate
was prepared with 76 wells as described above, although with 5,000 cells per well. 24h
after seeding, cells were exposed either to solvents, either to doses 6 to 10 of selected
compounds. 24h after exposure, 2uL of alamarBlue™ Cell Viability Assay Reagent were
added to each well. After 24h of incubation, fluorescence was measured in each well at
A = 555nm, and cell viability index was computed following the manufacturer’s formula.
In the end, 9 to 10 doses for each of the five chosen xenobiotics were selected, the total

summing to approximately 50 different conditions to which cells were exposed.
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4.1.2 Bioinformatics methods
4.1.2.1 Web-based user interface for result visualization

A web-based user interface was designed for raw and quality control data visualization. It
is accessible at the following address: http://olympia.biomedicale.univ-paris.fr/plates/
(login: wuser, password: zbscreen). It was implemented using Django?® web framework,
the programming language Python 2.7¢, and runs under Linux-Apache web server and
mod_ wsgi module. SQLite® was used for storing experimental metadata (plate setups,
experimental conditions such as cell medium or the percentage of FCS). The database

was built as visible on fig 4.4.

Briefly, each well is linked to a unique plate, a unique condition (medium and percentage
of FCS) and a unique treatment (xenobiotic and dose). As the data was (crudely)
password-protected, a second database contains logins and passwords, as well as admin

permissions.

After logging in, any user has access to the list of plates in anti-chronological order. A
plate page displays the plate setup, as well as some overall features of all experiments,
such as initial number of objects or the proliferation rate in each well. This enables
to see a significant geographical bias, which could be due to chemical exposure or the
experimental settings. In the latter case, the plate should not be used for analysis and
the experimental protocol modified ; such visualization tools were useful for designing

the protocol.

By clicking on a particular well on any image of the plate page, one accesses per-well
information: well experimental conditions, well raw movies, and time evolutions of mean
intensity, percentage of out-of-focus objects, number of cells, number of objects, and

percentage of objects in all classes (as detailed below).

4.1.2.2 Quality control

Due to microscope hardware and/or software instability, images showed mean intensity
variation on both channels. Hence, images ¢ whose mean intensity on the mCherry
channel I, verified the following inequality were not considered for further analysis, where

oy is the standard deviation of (Iy)i=1.. 7:

Zi:o...lo Tt
1, — Si=0d0

3
TR

3https://www.djangoproject.com/
“http://www.python.org
®https://sqlite.org/
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FIGURE 4.4: Diagram of the databases for experimental metadata storage

Furthermore, a threshold of ¢ cells at the beginning of the movie, and maximum p% out-
of-focus objects were used to further remove unexploitable movies. We fixed the threshold
after visual inspection to ¢ = 23 and p = 37. Out-of-focus objects and cells that were
neither artefacts nor out-of-focus objects were identified following segmentation, feature

extraction and classification as described below.

4.1.2.3 Object segmentation

Object segmentation was done using a newly-designed plugin implemented in the open-
source software CellCognition [Held et al., 2010]. MCF-7 cells are smaller than HeLa
cells and tended to form clusters in our experiments. While the method described in
2.2.1 and previously published in several papers, e.g. in [Held et al., 2010], is in principle
capable of splitting clustered nuclei, we felt that the filtering of the distance transform,
which ultimately influences the decision on whether to split or not, was suboptimal.
Here, we used morphological dynamics to improve the splitting step of this segmentation
method.

The first steps of the method are therefore identical to what we have presented in 2.2.1:
images are prefiltered (here by a median filter) and we assign to each pixel the difference
of its value to the average in a window centered in the pixel. This average value can be
efficiently calculated with integral images. By applying a global threshold to the residue
image, we obtain a first segmentation result which gives accurate results for isolated

nuclei, but which tends to segment close nuclei together as a single object.

usar_permissions (usar)
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The last step is to calculate the Watershed transformation on the inverse distance map.
This is a standard technique to divide close convex objects after segmentation |Lantue-
joul, 1982, Chapter Geodesic segmentation]. This method splits the binary segmentation
result in as many objects as there are local minima in the inverse distance map. As small
irregularities in the contours can lead to such minima, it is often necessary to apply a
filter on the distance map in order to avoid oversegmentation. One option is to use a
simple Gaussian filter, as proposed in [Wahlby et al., 2002] and [Held et al., 2010].
However, this does not permit an intuitive control over which minima are really kept,
and even worse: it does not guarantee that larger filters always suppress more minima.
Here, we propose to use morphological dynamics for this purpose [Soille, 2003]. While
this technique is widely used in the morphology community, it is to our knowledge not

used for the splitting of cells, even though it perfectly applies to this problem.

Morphological dynamics assign to each local minimum the value at which it fuses to a
region coming from a minimum with lower value (the dynamic of the lowest minimum
is set to 00). As the watershed algorithm iterates through the values in an ordered way,
this value is identical to the minimum height that has to be passed to reach a lower
minimum. Let p; ; be a path that joins minima ¢ and j, the dynamic of minimum 7 is

the following:
dyn(i) = win  max (f(x) — £(7)

GO
Hence, to avoid the usual over-segmentation produced by the watershed algorithm, we
only use the subset of minima with dynamic larger than a certain threshold. The num-
ber of objects decreases as this threshold increases, and the control is intuitive: small
concavities produce local minima with relatively low dynamic (independently from their

spatial arrangement or the size of the objects).

The computational cost of the morphological dynamics is the same as the watershed
algorithm. Depending on the size of the data sets, this is not negligible, even though it
compares favorably to smoothing filters, as they were used in this context. To further
reduce the computational complexity, we implemented the dynamic filter in such a way
that it is directly combined with the watershed algorithm. Indeed, the criterion can be
checked each time a pixel is about to be assigned to the watershed line. Consequently

no additional flooding step is necessary.

Finally, an object filter is applied to eliminate the objects that are (or whose mean

intensity is) too small.
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4.1.2.4 Object feature extraction

Object feature extraction was done using the open-source software CellCognition |[Held
et al., 2010], as previously described [Walter et al., 2010]. Briefly, for each object on each
image, approximately 240 features are extracted, characterizing their shape and texture.
These features enable to classify nuclei in user-defined nuclear phenotypic classes and to

track them over time.

4.1.2.5 Object classification

Object classification was also performed using CellCognition. The class definitions are
illustrated in table 4.1. The set of morphological classes is supposed to cover the mor-
phological variability of the screen. The set therefore contains wildtype morphological
classes, such as the morphologies corresponding to the different mitotic phases and aber-
rant morphologies indicating the presence of a phenotype. As our screen consisted in
50 conditions, we almost exhaustively inspected the dataset and are therefore confident

that no aberrant nuclear phenotype was missed.

In detail, Clusters are clustered nuclei which the segmentation algorithm failed to split.
Folded nuclei represent elongated or round nuclei with two shades of grey. Frozen nuclei
are nuclei whose DNA shows a heterogeneous condensed pattern, persistent over time.
Frozen nuclei either remain in the same class or lead to apoptosis. Biologically, they
might correspond to dying nuclei and resemble nuclei experiencing phototoxicity (per-
sonal communication, Beate Neumann, EMBL Heidelberg, Germany). As these nuclei
were observed following exposure to certain conditions only, we believe that this class
does not translate a simple technological artifact. It would rather be the consequence of

cell sensitization to phototoxicity which certain exposures could have produced.

A training set was annotated, containing 2,576 nuclei. Support Vector Machines (SVMs)
were used for classification, as they work well for nucleus phenotypic classification (
[Kovalev et al., 2006] for a comparison of classification algorithms in this context, and
for application e.g. [Held et al., 2010], [Walter et al., 2010]). An RBF (Radial Base
Function) kernel SVM was trained, whose parameters were obtained by grid search,

using Cell Cognition’s interface (y =277, C = 8).

This step provides us with a representation of each video as a set of time-series, which
are the evolution of the percentage of nuclei in each phenotypic class over time. The
distance of an experiment ¢ to its reference set j for class obj is the following:

) T
o — / (6obji,s — Yoobjs¢) dt
0

Z?]
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TABLE 4.1: Nuclear morphology classes with examples. The artefact and cluster ex-
amples are shown with segmentation contours.

Normal classes

Interphase . .
Pro-metaphase . .

Metaphase
Apoptosis H

Aberrant morphology classes

Anaphase

e 4]

Frozen

Cluster H

Folded

Maicronucleated

Polylobed
Technical problem classes

Out-of-focus -

Artefacts

Due to the visual similarities between Micronucleated and Polylobed nuclei in our dataset,
these classes were pooled together for computing distances. The corresponding distance

is named Micronucleated in the following.
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4.1.2.6 Object tracking and trajectory feature extraction

Those steps were performed as described in the methodological article [Schoenauer Sebag
et al., 2015].

TABLE 4.2: Chemical dilutions

Chemical | Solvent Final solvent per- Doses (nM)
centage (vol)

BPA DMSO | 1.0 107! 0.1, 1, 10, 50, 100,

1 000, 5 000, 10 000, 50 000
Endo DMSO | 2.010°! 1, 10, 50, 100, 500,

1 000, 5 000, 10 000, 50 000, 100 000
MeHg DMSO | 1.01073 0.01, 0.1, 1, 5, 10,

50, 100, 500, 1 000
PCB153 | DMSO | 3.6 1071 0.1, 1, 10, 50, 100,

1 000, 5 000, 10 000, 50 000,100 000
TCDD Nonane | 3.2 1072 0.001, 0.01, 0.025, 0.1, 0.25,

1, 10, 25, 50

4.2 Results

4.2.1 Preliminary choices

After testing a few clones for the expected behaviour in response to TCDD exposure,
one clone was selected and five plates were imaged following the described procedure,
producing 415 videos. In the following, each plate is named after the day image acquisi-
tion was launched. The quality control eliminated 22% of the experiments, leaving 324

experiments for analysis with three biological replicates per condition minimum.

Due to the observed high variability in control trajectory statistics on the different plates
(cf fig. 4.5), the reference was chosen to be the whole plate as opposed to control wells
only. This is a valid choice as long as (1) there is no bias in the distribution of chemical
conditions (and possibly results) on distinct plates, and (2) most wells do not show any

effect [Birmingham et al., 2009].

4.2.2 Motility study

MotIW was applied to this dataset, which as described in [Schoenauer Sebag et al., 2015]
enabled to go from a set of nuclear trajectories to a single statistic for each experiment.

However, this statistic was not evenly distributed with respect to the plates. This was
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FIGURE 4.5: Trajectory feature heatmaps corresponding to control wells. Each line

corresponds to an experiment, whose plate and name are indicated. Each column

corresponds to a trajectory feature. A robust normalization (with median and inter-

quartile range) was applied, using all plate, which still permits to see that control
responses vary from well to well and plate to plate.

measured by a Mann-Whitney U test comparing the list of statistics for one plate with the
list of statistics for all remaining plates. Indeed, plates 271214 and 271114 respectively
output p-values of 0.06 and 0.02 at this test.

In the Mitocheck study, all experiments from all plates were ranked together ; a p-value
threshold was set ; conditions which were more than 50% of the time under that threshold

were considered as significantly modifying nuclear motility.

In the case at hand, statistics from all plates cannot be ranked together because of an
important batch effet. Hence, the approach which was chosen is that of the RankProd-
uct [Breitling et al., 2004]|. Briefly, this approach consists in formalizing the following
idea: we are interested in conditions which have consistently high statistics on the differ-
ent plates. Our goal is therefore to compute their rank in the statistic list of each plate,
and its variations depending on the plate. The Rank Product statistic of a condition

c is the following, where pl. i is the i*" plate and card(i) the number of experiments
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performed on the same plate®:

rg(e, i
RP(c) = y (M
Intuitively, the Rank Product of a condition which significantly alters nuclear motility is
going to be small. Empirical p-values for the Rank Product statistics are computed by
permutation, that is, each plate trajectory statistics are permuted N times and the Rank
Product statistics for each condition computed each time. This produces the empirical
null distribution of the Rank Product statistics, that is, the distribution of statistics
under the hypothesis Hy that no condition alters single nucleus motility more than the
average response of all conditions (which was observed to be biologically non-interesting).
Empirical p-values are then the proportion of permuted Rank Product statistics which

are bigger.

Selecting conditions whose empirical p-values are smaller than 0.05 (N = 10,000 permu-

tations) produces the following result:

Condition Dose | P-value | Example
Endo,10 100uM | 0.0001 | Supp. movie 1
BPA 9 50pM | 0.0001 | Supp. movie 2
PCB,10 100pM | 0.0028

Endo,9 50uM | 0.016

MeHg,9 1puM | 0.042

PCB,9 50uM | 0.048

Rather than peculiar movement types, according to our approach, the consistent results
are conditions which are so strong as to freeze any nuclear motion (cf. supplementary
movies 1 and 2). We therefore conclude that motility is significantly altered, albeit not
primarily: measured motility alterations result from potent effects on cell viability. In
contrast, motility alterations in Mitocheck are not coupled to cell death or cell division
phenotypes. Consequently, this confirms that the identified genes are candidates for cell
motility regulators: they do not trigger motility alterations as a secondary effect of other

alterations, as it seems to be the case here.

51f a condition was replicated on the same plate, we used
rg(e, 1) = median({rg(c;,i)|j technical replicate of ¢ on i}).
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4.2.3 Phenotypic study

4.2.3.1 Phenotypic class selection

Phenotypic classes were chosen after an almost exhaustive visual inspection of the dataset.
The first result is that except frozen nuclei which were observed in medium and high
dose experiments only, no other striking phenotypes were observed following xenobiotic
exposure only. Indeed micronucleated and polylobed nuclei are present in all wells at a

non-negligible base level, and do not significantly appear following xenobiotic exposure.

4.2.3.2 Results

As opposed to the motility case, no specific plate distance distribution for any of the
classes is significantly different to that of all other plate distance distribution. Hence

distinct plate distances can be directly compared.

When no effect is expected, most cells are in interphase. Therefore, strong effects will
be visible in a decrease of interphase percentage. A preliminary step consists in looking
at conditions for which interphase distance is especially low. The interphase distances
are represented on fig. 4.6. One can observe that only high doses (plain red dots) are
consistently under the rest of the scatter plot. This depletion of interphases is explained
by an increase in frozen and apoptotic nuclei (cf. the frozen distance scatter plot on
fig. 4.6).

The observation of the distance distributions of other classes does not provide other
results as to possible consequences of xenobiotic exposure on cell division, and especially
low dose exposure: there is no low dose condition which show a consistent effect over

distinct plates for any phenotypic class. Graphs are shown in annex, section A.4.

These observations are supported by the computation of Rank product statistics for In-
terphase, Frozen and Micronucleated nuclei (cf. table 4.3). The significant increase in
Micronucleated nuclei following exposure to PCB at the first dose could be visually con-
firmed in 1 out of 4 experiments only. Furthermore, the level of micronucleation in the
latter experiment is comparable to the level that can be observed in other experiments
with nothing or Nonane. Indeed, there is a significant base-level of aberrant cell divi-
sions, as is stressed by the small p-value for wells containing nothing (Rien) and visual

inspection of the dataset.
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TABLE 4.3: Rank product p-values for different phenotypic distances (<0.05)

Condition Dose | P-value | Example
Decreased Interphase distances
BPA.9 50uM | 0.0001
MeHg,9 1uM | 0.0048
PCB,10 100uM | 0.0059
Increased Frozen distances

BPA 9 50pM | 0.0001 | Supp. movie 2
PCB,10 100uM | 0.0003 | Supp. movie 3
MeHg,9 1pM | 0.0054
Endo,10 100uM | 0.0097
PCB,9 50uM | 0.048

Increased Micronucleated distances
PCB,1 0.1nM | 0.015 | Supp. movie 4
Rien 0| 0.072 | Supp. movie 5

4.3 Discussion

A workflow is established, which is accompanied by a Web interface, to enable the analysis
of time-lapse xenobiotic screening experiments. However, on the panel of xenobiotics
and doses which were chosen for our set of experiments, it was not possible to detect
subtler effects than a toxic effect at the highest doses. This is probably due to one or a
combination of the following reasons: we observed a relatively high level of experimental
noise, even in negative controls, which might be due to (1) the biological variability
of the used cell line, which showed many aberrant divisions, to (2) experimental noise
due to microscope intensity variations and (3) low intensity of the fluorescence signal
and (4) the sensitivity of our trajectory measurements. Even though our results are
not conclusive on this project, we feel that it would be premature to conclude that the

screening approach is not suited for Environmental Toxicology.

As a general remark, it should not be forgotten that it is very likely that a xenobiotic
screen will never be as visually extraordinary as a siRNA or drug screen. Most xenobiotics
are not - at sub-toxic doses - targeted at one single vital cellular process, as opposed to
some siRNAs (especially those which were enlighted by the Mitocheck project, whose
goal was to study cell division). Hence, they are less specific, and their effects can be
slower. Nevertheless, previous results had let one hope that, e.g., significant cell division
defects could be obtained following TCDD exposure ( [Hutt et al., 2010], [Oikawa et al.,
2008|, [Oikawa et al., 2001]).

Dose choices

Ten doses were chosen for each xenobiotic, spanning from four to six orders of magnitude.
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FIGURE 4.6: Interphase (up) and frozen(down) distances. Colors are black for control

wells, yellow to red for xenobiotics ranked by increased dose, and magenta for TGF-£1.

Legend: B: BPA, D: DMSO, E: Endo, M: MeHg, N: Nonane, P: PCB, R: nothing,
T(red): TCDD, T(magenta): TGF-51
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Dose ranges were selected in order to be non-toxic, as well as to include real human
exposure dose (following a literature survey, see appendix A.3). This may not have been
the surest way to detect an effect. Indeed, depending on their mechanisms of action,
xenobiotics are going to be active in a smaller range, which we could easily have missed

in the current setting.

In the future, dose choices could be improved in two ways. First of all, although human
exposure doses are extremely relevant, they may be too small for an exploratory screen,
where effects should be observed for the screen to be an efficient proof of concept. Rather,
if previous similar studies exist, the doses which they find to be effective on cell division
or cell motility should be used. However, given the novelty of the current approach in
Environmental Toxicology, such previous similar studies are extremely rare. Previous

studies using different cell lines or different measures for evaluating the same process
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should be considered with caution’.

Hence a second and more robust way to improve dose choices would be to perform
pre-screening (which also enables quality control setting and instrument and reagent val-
idation - personal communications, Dr Wolfgang Huber and Dr Beate Neumann, EMBL,
Heidelberg, Germany). The simplest way is to look for the lowest slightly toxic dose
starting from 10 to 50pM, and further dilute it of a factor 2 or 3 (rather than 10).

This is precisely the approach which was chosen by [Zimmer et al., 2014]. Willing to
define a framework for developmental toxicity test battery, they had to select compounds
for performing a proof of concept. They do note that human plasma concentrations
are relevant when it comes to environmental contaminants such as PCB153. However
given that they are around InM for the latter example, they also search for evidence
of developmental toxicity in the literature, and do use higher concentrations while pre-
screening and screening it. More elaborate approaches to pre-screening are also possible.
As an example, [Peyre et al., 2014] used both cell viability assays and measures of cell
area, mitochondrial activity and percentage of cells below 2N to define a "zone of interest"

for further investigation.

In summary, dose choices should be chosen according to pratical reasons (significant
effect observed with local experimental parameters) instead of theoretical reasons (human
exposure). Another parameter which should be set in this way is the time-lapse between

cell exposure and screen start.

Cell line choice

A second parameter of importance is the cell line. Although MCF-7 cells are often
chosen as a model for breast cancer, they exhibit a significant basal heterogeneity with
regard to oestrogen receptor status and cell area [Palmari et al., 2000]. Screening is
already subject to a certain amount of variance in its results, due to cell sensitivity
to experimental parameters such as cell local confluence level [Snijder et al., 2009] or
passage number, and gene expression stochasticity ( [Elowitz et al., 2002|, [Raj and van
Oudenaarden, 2008]). For a proof of concept, it may therefore be relevant to choose a

cell line which is inherently as homogeneous as possible.

In the current case, MCF-7 cells were genetically modified for incorporating H2B-mCherry
and myrPalm-GFP. It appears that the chosen clone exhibits a high basal level of mi-
cronuclei. In the future, genetically modified clones should be checked both for a normal

response to TCDD exposure and normal cell division.

" As an example, although there exists several studies about measuring the impact of TCDD exposure
on MCF-7 cell motility (e.g. [Diry et al., 2006], [Chen et al., 2012]), it is not clear at all that the same
parameters are measured by MotIW (single cell motility versus cell population migration).



Chapter 5

Conclusion

Résumé - Conclusion (see infra for English text)

Grace aux progrés dans les domaines de la robotique, de l'informatique, de la chimie
organique et de la biologie moléculaire, les cribles biologiques & haut débit et haut contenu
se sont multipliés ces derniéres années. Parmi les techniques utilisées, la vidéomicroscopie
a l’avantage de permettre une analyse plus fin des phénomeénes rares et/ou dynamiques
tels que la division ou la motilité cellulaires.

Cette approche produit de riches jeux de données, dont I'exploitation optimale reste une
question ouverte. C’est ce & quoi nous nous sommes attachés a répondre dans cette thése.
Nous avons tout d’abord présenté le premier cadre méthodologique générale pour ’étude
de la motilité cellulaire individuelle dans de telles données, MotIW. Le chapitre 3 démon-
tre ensuite par trois exemples I'intérét de la ré-utilisation des données de vidéomicroscopie
produites dans le cadre de cribles & haut débit : D'application de MotIW aux données
du projet Mitocheck |[Neumann et al., 2010], I’étude du cycle cellulaire dans ces mémes
données, et enfin leur utilisation pour 'inférence de cibles thérapeutiques par leur compara-
ison avec un crible pharmaceutique non-publié. Le chapitre 4 présente en dernier lieu une
approche méthodologique globale pour I'utilisation de la vidéomicroscopie en toxicologie
environnementale.

Cette thése a conduit & ’établissement de pistes sérieuses en ce qui concerne les génes
impliqués dans la motilité cellulaire, comme dans le cycle cellulaire. Elle a également
abouti au développement d’une distance pour l'inférence de cibles thérapeutiques dans les
données de vidéomicroscopie. Ces résultats gagneraient respectivement & étre confirmés
et utilisés dans d’autres systémes. D’autre part, les expériences réalisées en toxicologie
environnementale ont permis d’identifier les pierres d’achoppement de la procédure ex-
périmentale. Une des perspectives de cette thése serait par conséquent de reconduire les
expériences en tenant compte des modifications suggérées.

90
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In the last two decades, constant progress in the fields of molecular and cellular biology,
laboratory hardware automation and computational methods for large scale data storage
and data mining, have permitted high-throughput high-content experiments to presently
be almost affordable and mainstream. As such, time-lapse microscopy has become more
and more used. This has enabled a better understanding of complex dynamic biological
processes such as cell division, which endpoint assays can more hardly help grasp. Not
only are endpoint assays bound to miss rare and transient events, but they do not permit

any assessment of the order in which displayed events happened.

Nevertheless, the question to know how to optimally develop computational methods for
mining such large and complex datasets remains open. Indeed, time-lapse microscopy
experiments produce three to five-dimensional datasets: 2 or 3 dimensions come from the
images, time constitutes another one, and when a specific perturbation was studied (e.g.
gene silencing, chemical exposure), it adds another dimension. The high-throughput

quality of such experiments finally adds another difficulty: the size of the final dataset.

Main highlights

This is precisely the question which we have aimed at tackling in this thesis.

Given both that single cell motility is a particularly appropriate subject to be studied
using time-lapse microscopy, and that there is currently no fully automated multivariate
method for addressing such a question in this type of data, we have in the first place
designed a generic methodological workflow for studying single cell motility in HT time-
lapse microscopy experiments in chapter 2. This workflow was furthermore validated on

a simulated screen, and applied to an existing dataset of approximately 150,000 videos.

This leads to the second main contribution of this thesis, namely the proof that HT
HC time-lapse microscopy datasets constitute a rich and much valuable good. We think
in particular that, should they be easily accessible and re-mined, their content could
lead to more than one or two high-impact discoveries. In chapter 3, we therefore
attached ourselves to re-discovering the Mitocheck dataset [Neumann et al., 2010] from
the perspectives of single cell motility, cell cycle and drug target inference. This permitted
to discover an ontology of single cell motility behaviours as well as a list of putative
cell cycle genes. Furthermore, it enabled us to develop various other methods: for
studying cell cycle in time-lapse experiments, and for performing drug target inference

using phenotypic profiling on parallel siRNA and drug screens.

Finally, drawing on this methodological development, we exported the technique of HT
HC time-lapse microscopy to Environmental Tozxicology in chapter 4. Although the

results we observed in our newly generated dataset were not up to our expectations, all
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necessary methodological and practical tools have been developped, which are ready to

be used on new data.

Perspectives

Application of our methodological workflow to the Mitocheck dataset produced a list
of genes that might play a role in single cell motility. This list of genes was obtained
in a specific model, HeLia cells, using a specific set of siRNAs. Therefore, confirmatory
experiments in one (or more) different cell lines, using another set of siRNAs, should be
performed in order to confirm our results. This would also permit to know if the ontology

of single cell motility behaviour we obtained exists in other cell lines.

Similarly, we have developed a new distance for drug target inference by phenotypic
profile comparison between parallel siIRNA and drug screens. It would be interesting to
confirm that this distance can apply to datasets using different markers and phenotypic
clagses. This distance could also benefit from further methodological development, which

would take into account the temporal dimension of our data.

Finally, the reasons for the little success which was obtained in chapter 4 were at least
partly identified. As the need for sophisticated and HT assays in Environmental Toxi-
cology are rather increasing than diminishing, new data should be generated following
the guidelines which this thesis permitted to identify. A simple and homogenous model
organism should be used. It would be made fluorescent for one or two relevant markers,
whose genetic insertion using modern techniques such as the CRISPR/Cas system would
not alter any fundamental cellular processes. Last but not least, xenobiotics and doses
should be chosen following robust preliminary experiments. HT use of such an assay in

Environmental Toxicology would help us better understand our chemical environment.
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Appendices

A.1 Cell cycle gene list

93



Appendices 94
TABLE A.1: Cell cycle gene list. In bold are the three genes for which we found an
extension of cell cycle length.

Hugo Gene Name | Ensembl gene id Hugo Gene Name | Ensembl gene id

ADAMTS3 ENSG00000156140 || MARK1 ENSG00000116141
APOA1 ENSG00000118137 || MECR ENSG00000116353
ARSF ENSG00000062096 || MGAT4A ENSG00000071073
ATR ENSG00000175054 || MMP24 ENSG00000125966
B4GALT3 ENSG00000158850 || MST1R ENSG00000164078
BMPR1B ENSG00000138696 || MT-CO1 ENSG00000198804
BMPR2 ENSG00000204217 || MTNR1A ENSG00000168412
CACNA1D ENSGO00000157388 || NEK10 ENSG00000163491
CDK15 ENSG00000138395 || NOX1 ENSG00000007952
CDKN3 ENSG00000100526 || NPC1 ENSG00000141458
CHRNA5 ENSG00000169684 || NR1D1 ENSG00000126368
CIB3 ENSG00000141977 || OR1F1 ENSG00000168124
CKB ENSG00000166165 || OSBP2 ENSG00000184792
CPp ENSG00000047457 || OSMR ENSG00000145623
DCK ENSG00000156136 || PAPD7 ENSG00000112941
DHPS ENSG00000095059 || PRPS2 ENSG00000101911
DIMT1 ENSG00000086189 || PXDNL ENSG00000147485
EIF2AK1 ENSG00000086232 || PYGB ENSG00000100994
F9 ENSG00000101981 || RAB6B ENSG00000154917
GDA ENSG00000119125 || RGL1 ENSG00000143344
GPRI12 ENSG00000132975 || RIPK2 ENSG00000104312
GPRC5C ENSG00000170412 || RNASEL ENSG00000135828
HAS3 ENSG00000103044 || RPS20 ENSG00000008988
ILK ENSG00000166333 || RPS6KA3 ENSG00000177189
ILVBL ENSG00000105135 || SERPINF1 ENSG00000132386
IP6K3 ENSG00000161896 || SFMBT2 ENSG00000198879
KCNH6 ENSG00000173826 || SGK1 ENSG00000118515
KCNMA1 ENSGO00000156113 || SPSB2 ENSG00000111671
KCNN1 ENSG00000105642 || TAB1 ENSG00000100324
KIF20B ENSG00000138182 || TGMbH ENSG00000104055
KIFC2 ENSG00000167702 || TRMT2A ENSG00000099899
MAP4K4 ENSG00000071054 || TTL ENSG00000114999
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A.2 Functional inference by in silico comparison of small-

molecule and siRNA screens

A.2.1 Choice of \ parameter

15 10 3 20 3

oo Gape i v+ increased prolferation Cell Death .. +ve Binuciear . v+ Dynamic changes
0.8 .
10 1 2 1 32 2 . .
0.6 . 1.0
05 : s {1 o4 . 1 1
e e, . . . 0.5
0.2
0.0 o . 1 0 1 00
0.0
<. : -0.5
-05 PR { -02 -1
i W £ 04 = -1.0
-0 1 -0 -2 1 -1s
-15 -0.8 -3 -2.0
15 -10 -05 00 05 10 15 -1.0-08-0.6-0.4-0200 02 04 0.6 -4 -3 -2 -1 0 1 2 3 -20-15-1.0-050.0 0.5 10 15 2 3
2.0 3 3 15
Gorge T+e Mitotic defayjarest Foiyiobed
15 1
2 2 1 10
10 4
05 1 1 {1 o5
0.0 4
0 1 00
-05 4
-1.0 1 -1 { -05
-15 4
-2 1 -10
-2.0 4
-25 -3 -15 0.0
=2.0-15-1.0-0.5 0.0 0.5 1.0 15 2. 5 =2.52.0-1.5-1.0-0.50.0 0.5 1.0 15 2.0 ~-2.0-15-1.0-050.0 05 1.0 15 20 00 02 04 06 08 L
2.0 4 3 3 P 3
“+ Acydiour “++ Dexamethasoneacetate Tee MNBOSS wor Sufathiazole
15 . . | 3 ++ Adenosine3 +++ Doxerubicinnydrochioride ++e Methotrexate <+« Thalidomide
- 2 Aminopurine§benzy! 5 o Epiandrosterone 2 5 Nocodazole 2k
3 5 ++ Anisomycin +e Exoposide S e mctanet ++ Zidovudine.AZT
10 4 +e Keacytidines ot [ees Hospendin
1 Camptothecine(S,+) 1 LI Idoxuridine 1 - Ribavirin 1
0.5 1 o | +* Daunorubicinhydrochioride o e purrosea . «+4 Sulfaguanidine I
0 ¥ o
0.0 1 0 4 0 of
-1 ¥, e .
=05 1 " " 1 o3 1 1l
-1.0 1 3 . :
g R B 3 -2 . . 1 =2 § -2t
-15 . 1 -
-2.0 -5 -3 -3 -3
=252.0-151.0-050.0 05 1.0 1520 -4 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 -3 -2 -1 o0 1 2 3 =3 -2 -1 o0 1 2 3

FIGURE A.1l: Separation between Mitocheck hit categories for A = 0.1. Global
Sinkhorn divergences between Mitocheck hit experiments were computed for A = 0.1,
and multi-dimensional scaling was used for representing them in two dimensions in
the first two lines. Divergences between theses experiments and the drug screen were
included and their multi-dimension scaling is showed on the last line (grey: controls).
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FIGURE A.2: Separation between Mitocheck hit categories for A = 10. Global Sinkhorn
divergences between Mitocheck hit experiments were computed for A = 10, and multi-
dimensional scaling was used for representing them in two dimensions in the first two
lines. Divergences between theses experiments and the drug screen were included and

their multi-dimension scaling is showed on the last line (grey: controls).
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A.2.2 Phenotypic scores of JNJ7706621

INJ7706621
LT0900_01 LT0900_02 LT0900_03
o 1 2 3 4 5 6 7 8 9 10 [ 1 2 3 4 5 6 7 8 9 10 [ 1 2 3 4 5 6 7 8 9 10
Interphase [ ‘ ‘ ‘ ‘ ‘ ‘ Interphase ‘ ‘ ‘ ‘ Interphase - ‘ ‘ ‘ ‘
Large Large <4 Large
Elongated 1 Elongated Elongated |-
Binucleated 4 Binucleated 4 Binucleated
Polylobed | Polylobed| + Polylobed |
Grape |- 4 Grape | = | Grape |-
Metaphase | Metaphase Metaphase
Anaphase 4 Anaphase Anaphase
MetaphaseAlignment |- MetaphalseAlignment |- MetaphaseAlignment
Prometaphase Prometaphase Prometaphase |-
ADCCM 1 ADCCM |- ADCCM
Apoptosis 4 Apoptosis |- 1 Apoptosis
Hole 4 Hole Hole
Folded - El Folded - 4 Folded
Smalllrregular Smalllrregular Sinalllrregular |-

F1GURE A.3: Phenotypic scores of JNJ7706621 experiments, as a function of plate
(left, middle, right) and dose (abscissa). The redder a square, the further away from
control phenotypic scores.
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A.2.3 Two-dimensional hierarchical clustering of drug screen condition
distance to Mitocheck siRINAs for different distances

Distance (arbitrary units)

Value at Value at
1st decile 9th decile

100% of hit conditions
with 3 hit experiments

Drug screen conditions

Mitocheck genes

FIGURE A.4: Drug screen condition - Mitocheck siRNA two-dimensional hierarchical
clustering using sum of time Sinkhorn divergence. Ward method was used in combina-
tion with the Euclidean distance.

Distance (arbitrary units)

Value at
1st decile

91% of hit conditions
with 3 hit experiments

Drug screen conditions

Mitocheck genes

FIGURE A.5: Drug screen condition - Mitocheck siRNA two-dimensional hierarchical
clustering using phenotypic trajectory distance. Ward method was used in combination
with the Euclidean distance.
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Distance (arbitrary units)

Value at Value at
1st decile 9th decilelae=a

Drug screen conditions

Mitocheck genes

89% of hit conditions
with 3 hit experiments

FIGURE A.6: Drug screen condition - Mitocheck siRNA two-dimensional hierarchical
clustering using Euclidean distance of phenotypic scores. Ward method was used in

combination with the Euclidean distance.
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A.2.4 Two-dimensional hierarchical clustering of drug screen hit con-
dition distance to Mitocheck siRNAs for different distances
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FIGURE A.7: Drug screen hit condition - Mitocheck siRNA two-dimensional hierar-
chical clustering using sum of time Sinkhorn divergence. Ward method was used in
combination with the Euclidean distance.
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FiGure A.8: Corresponding visualization of condition clustering for time Sinkhorn
divergence. A black dot means that the conditions belong to the same cluster, a white
dot that they do not.
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FIGURE A.9: Drug screen hit condition - Mitocheck siRNA two-dimensional hierar-
chical clustering using phenotypic trajectory distance. Centroid method was used in

combination with the Euclidean distance.
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FicUre A.10: Corresponding visualization of condition clustering for phenotypic tra-
jectory distance. A black dot means that the conditions belong to the same cluster, a
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FIGURE A.11: Drug screen hit condition - Mitocheck siRNA two-dimensional hierar-
chical clustering using Euclidean distance of phenotypic scores. Ward method was used

in combination with the Euclidean distance.
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A.3 Literature review

TABLE A.2: Human xenobiotic levels

Name Human levels
BPA Serum levels: order 0.9 to 87.6 nM(unconjugated, 0.2 to 20 ng/ml) [Vandenberg
et al., 2009]
Blood level: between 0.28.1073 pM and 0.27 pM
e Seveso, Italy: 12.4 pg/g lipid and 5.5 pg/g lipid (medians, plasma sampled
between 1992 and 1994 vs accident in 1976, resp high contamination area a
low contamination area, [Consonni et al., 2012])
e Japan: 1 pg/g lipid, 2 pg/g lipid (resp median, p75) [Arisawa et al., 2011].
Same order of magnitude in Canada [Rawn et al., 2012]
Dioxin
e Germany: 0.020 pg/g lipid, 3.92 pg/g lipid (resp median, max) [Fromme
et al., 2009]
e Industrialized area, Germany: 1.3 pg/g lipid, 4.9 pg/g lipid (resp median,
max) [Wittsiepe et al., 2007]
Adipose tissue: 2.05 pg/g lipid, 2.45 pg/g lipid (resp mean, P75
Spain [Lopez-Espinosa et al., 2008])
Breast milk: 0.882 pg/g lipid, 3.58 pg/g lipid (resp median, max, China [Deng
et al., 2012]), 1.5 pg/g lipid, 5.3 pg/g lipid (resp median, max, industrialized are
Germany [Wittsiepe et al., 2007]). Same order of magnitude in France [Focant
et al., 2013]
Serum levels (1, 2):
e Contaminated Brasilian area: approx. 0.5, 0.6 nM (median), 1.1-1.2, 1.5-1.;
nM (p75) (resp. approx. 0.22, 0.25 ng/ml and 0.42-0.51, 0.62-0.75
ng/ml, [Freire et al., 2013])
Endosulfan e Baseline serum levels in farm workers: 1.30 pM (mean, 530 ng/ml, [Dalvie
et al., 2009])
e Young male Spaniards: 3.61,3.43 nM (median, 1.47, 1.00 ng/ml [Carreno
et al., 2007])
McHg Blood plasma: 1.30 nM, 7.23nM (resp mean, max, 0.28ug/L, 1.56ug/L, Hong-Kc
residents |Liang et al., 2013])
Continued on next p:




Appendices

106

Name

Human levels

Whole blood:

e 78.8 nM, 519.4 nM (resp median, max, 17.0 pg/L, 112 pg/L, Canadian
inuits |Valera et al., 2013|)

e 89.0 nM (P75 19.2 pg/L, contaminated environment, China [Chang et al.,
2008])

e méme ordre de grandeur (eg Sardaigne) ou un au-dessus (eg Breésil) dans

différents endroits contaminés [Chang et al., 2008]

PCB153

Serum levels: approx between 1nM and 500 nM
e Napoli: 42.3 ng/g lipid, 195.3 ng/g lipid (median, max |[Esposito et al., 201

o Slovakia: 232/578 ng/g lipid, 5,193/25,089 ng/g lipid (background

area/contaminated area, median, max [Esposito et al., 2014])

e =65 years old, Canada: 73.6 ng/g lipid, 208 ng/g lipid (median,
P95 [Medehouenou et al., 2011])

e Inuits, Canada:177 ng/g lipid, 6,020 ng/g lipid (geom mean,
max [Medehouenou et al., 2010])

Whole blood: 0.89 nM, 6.65 nM (0.32 ug/l median, 2.4 pg/l max, industrialized
region, Germany |Wittsiepe et al., 2007])

Breast milk: 20 ng/g lipid, 49 ng/g lipig (median, max, Philippines [Malarvanna:
et al., 2013]), 3.4 ng/g lipid, 8.0 ng/g lipid (mean, max, Turkey [Cok et al., 2012
range 20-183 ng/g lipid (Northern Russia [Polder et al., 2008])
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A.4 Phenotypic study
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Colors (up) are black for control wells, yel-

Apoptosis distances.

FIGURE A.12:

B:

low to red for xenobiotics ranked by increased dose, and magenta for TGF-51.

BPA, D:DMSO, E: Endo, M: MeHg, N: Nonane, P:PCB, R: nothing, T(red):TCDD,

T(magenta): TGF-31. Colors (down) are for plates.
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Colors (up) are black for control wells, yel-

low to red for xenobiotics ranked by increased dose, and magenta for TGF-51.

Interphase distances.

FIGURE A.14:

B:

BPA, D:DMSO, E: Endo, M: MeHg, N: Nonane, P:PCB, R: nothing, T(red):TCDD,

T(magenta): TGF-31. Colors (down) are for plates.
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Colors (up) are black for control wells, yel-

low to red for xenobiotics ranked by increased dose, and magenta for TGF-51.

FIGURE A.15: Metaphase distances.

B:

BPA, D:DMSO, E: Endo, M: MeHg, N: Nonane, P:PCB, R: nothing, T(red):TCDD,

T(magenta): TGF-F1. Colors (down) are for plates.
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FIGURE A.16: Micronucleated distances. Colors (up) are black for control wells, yel-
B:

low to red for xenobiotics ranked by increased dose, and magenta for TGF-51.

BPA, D:DMSO, E: Endo, M: MeHg, N: Nonane, P:PCB, R: nothing, T(red):TCDD,

T(magenta): TGF-F1. Colors (down) are for plates.
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Colors (up) are black for control wells, yel-
low to red for xenobiotics ranked by increased dose, and magenta for TGF-51.

FIGURE A.17: Prometaphase distances.

B:

BPA, D:DMSO, E: Endo, M: MeHg, N: Nonane, P:PCB, R: nothing, T(red):TCDD,

T(magenta): TGF-F1. Colors (down) are for plates.
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Développements méthodologiques pour données de cribles temporels a

haut contenu et haut débit

Résumeé : Un crible biologique a pour objectif de tester en paralléle I'impact de nombreuses
conditions expérimentales sur un processus biologique d’'un organisme modéle. L’imagerie sur
cellules vivantes est un excellent outil pour étudier en détail les conséquences d’une perturba-
tion chimique sur un processus biologique. L’analyse des cribles sur cellules vivantes demande
toutefois la combinaison de méthodes robustes d’imagerie par ordinateur et de controle qualité,
et d’approches statistiques efficaces pour la détection des effets significatifs. La présente thése
répond & ces défis par le développement de méthodes analytiques pour les images de cribles
temporels & haut débit. Les cadres qui y sont développés sont appliqués a des données publiées,
démontrant par 14 leur applicabilité ainsi que les bénéfices d’une ré-analyse des données de cribles
a haut contenu (HCS). Le premier workflow pour 1’étude de la motilité cellulaire & 1’échelle d’une
cellule dans de telles données constitue le chapitre 2. Le chapitre 3 applique ce workflow & des
données publiées et présente une nouvelle distance pour l'inférence de cible thérapeutique a
partir d’images de cribles temporels. Enfin, le chapitre 4 présente une pipeline méthodologique

compléte pour la conduite de cribles temporels & haut débit en toxicologie environnementale.

Mots clefs : Fouille de données, Apprentissage statistique, Bioinformatique, Informatique de

I’image biologique, Cribles & haut contenu, Toxicologie

The versatility of HC HT time-lapse screening data

Abstract: Biological screens test large sets of experimental conditions with respect to their
specific biological effect on living systems. Live cell imaging is an excellent tool to study in detail
the consequences of chemical perturbation on a given biological process. However, the analysis
of live cell screens demands the combination of robust computer vision methods and quality
control procedures, and efficient statistical approaches for the detection of significant effects. This
thesis addresses these challenges by developing analytical methods for High Throughput time-
lapse microscopy screening data. The developed frameworks are applied to publicly available
HCS data, demonstrating their applicability and the benefits of HCS data remining. The first
multivariate workflow for the study of single cell motility in such large-scale data is detailed
in Chapter 2. Chapter 3 presents this workflow application to previously published data, and
the development of a new distance for drug target inference by in silico comparisons of parallel
siRNA and drug screens. Finally, chapter 4 presents a complete methodological pipeline for

performing HT time-lapse screens in Environmental Toxicology.

Keywords: Data mining, Machine Learning, Bioinformatics, Bioimage informatics, High-

content screening, Toxicology
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