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Introduction

(English version follows.)

Lhistoire commence par le développement d'un programme informatique nommé
DEDUKTI. DEDUKTI est un vérificateur de preuves, c’est-a-dire un outil capable de
vérifier automatiquement la validité d’'une preuve mathématique.

Quest ce qu'une preuve? Une preuve est une justification de la vérité d'une pro-
position. La preuve de la mortalité de Socrate en est un exemple classique :

Socrate est un homme ; tout homme est mortel ; donc, Socrate est mortel.

Dans cette preuve, on trouve les énoncés de deux hypothéses (Socrate est un homme
et tout homme est mortel) et de la conclusion (Socrate est mortel). Le mot donc pré-
cise que la conclusion se déduit logiquement des hypothéses. Cependant, la nature
de cette étape déductive reste implicite.

Les mathématiciens s’'intéressent depuis longtemps a la notion de preuve et de
raisonnement logique. La théorie de la preuve est la branche des mathématiques qui
s'intéresse aux preuves en tant qu’objets mathématiques. Ce domaine a été particu-
lierement actif depuis le début du 19e siécle, et en particulier depuis la publication
par Gottlob Frege de son Begriffsschrift (1879). Giuseppe Peano, Bertrand Russell, Ri-
chard Dedekind, David Hilbert, Kurt Godel et Gerhard Gentzen, pour n’en citer que
quelques uns, ont chacun apporté une importante contribution au domaine pen-
dant la premiére moitié du 20e siecle. Ces travaux ont donné naissance a de nom-
breuses notions formelles de preuve. On peut, par exemple, voir une preuve comme
un arbre étiqueté par des propositions.

Vx, Homme(x) = Mortel(x) (Inst.)
Homme(Socrate) — Mortel(Socrate) ' Homme(Socrate)

M-P
Mortel(Socrate) ( )

Cet arbre est une représentation formelle de la preuve de la mortalité de Socrate
donnée plus haut. Comme le langage naturel est souvent ambigu, on écrit les pro-
positions dans un langage plus précis et proche du vernaculaire mathématique. En
haut, aux feuilles de I'arbre, Vx, Homme(x) — Mortel(x) et Homme(Socrate) sont
les hypotheses (ou axiomes) de la preuve; la premiere signifie, pour tout x, si x est
un homme, alors x est mortel, ou, plus simplement, fout homme est mortel; la se-
conde signifie Socrate est un homme. En bas, la racine de I'arbre, Mortel(Socrate),
est la conclusion de la preuve; elle signifie que Socrate est mortel.

Larbre contient aussi deux nceuds internes, (Inst.) et (M-P), qui correspondent a
des étapes du raisonnement logique. Le premier nceud, (Inst.), est une instance de



la régle d’instanciation. Cette regle dit que, pour tout objet o, il est logiquement va-
lide de déduire P(0) a partir de la proposition Vx.P(x), ou P(x) est une proposition
dépendant d'une variable x, et P (o) estla proposition P(x) oul'on a remplacé les oc-
currences de la variable x par o. Icila proposition P(x) est Homme(x) =— Mortel(x)
et 'objet o est Socrate. Le second nceud, (M-P), est une instance de la regle du Mo-
dus Ponens. Cette regle dit que, pour toutes propositions P et Q, on peut déduire
Q des deux propositions P et P = Q. Ici, on déduit Mortel(Socrate) a partir de
Homme(Socrate) et Homme(Socrate) — Mortel(Socrate).

1l est évident que cette preuve formelle de la mortalité de Socrate est beaucoup
plus détaillée et précise que la preuve informelle avec laquelle on a commencé. Une
preuve formelle permet donc d’avoir un plus grand degré de confiance que n'im-
porte quelle autre notion de preuve puisqu’elle réduit tout a la validité d'un (petit)
ensemble d’axiomes et de regles de déduction. Bien sur, en contrepartie, une preuve
formelle est aussi plus fastidieuse a écrire puisque chaque étape du raisonnement
logique doit étre explicitée.

En choisissant le langage des propositions, les régles de déduction ainsi que les
axiomes, on peut définir plusieurs types de logiques : classique, constructive, mini-
male, linéaire, modale, temporelle, etc.

Un vérificateur de preuves, c’est quoi? Si on fixe 'ensemble des axiomes et des
regles de déduction que I'on a le droit d’utiliser dans une preuve, la vérification de la
validité d'une preuve formelle peut étre automatisée. En effet, une preuve est valide
si c’est un arbre dont les feuilles sont des axiomes, dont la racine est la conclusion
et dont chaque nceud interne est une instance d'une regle de déduction. Ceci nous
ouvre doncla voie a la vérification automatique de preuves par des programmes. On
appelle ces programmes des vérificateurs de preuve.

Le premier vérificateur de preuve, Automath [NGdV94|, a été concu par Nico-
laas Govert de Bruijn a la fin des années 60. Depuis, de nombreux vérificateurs ont
été développés. Parmi les plus connus on peut citer Agda [BDN09], Coq [CDTI, Isa-
belle [NWP02], PVS [ORS92], Nuprl [Kre], Twelf [PS99] ou encore Beluga [Piel0].

La preuve de programmes Parce que les preuves formelles sont tres détaillées et
peuvent étre automatiquement vérifiées, elles permettent un haut niveau de confiance.
La preuve de programmes est un important domaine d’application pour les preuves
formelles. Le but est de prouver qu'un programme informatique correspond bien a
sa spécification, autrement dit, qu’il ne contient pas de bogues. Ces méthodes for-
melles sont déja utilisées dans I'industrie, pour prouver que des systémes critiques
ne contiennent pas d’erreurs, par exemple dans les domaines du transport (avion,
train, métro) ou de la sécurité informatique (cryptographie, protocoles).

Comment fonctionne un vérificateur de preuves? La majorité des vérificateurs
de preuves s’appuient sur une correspondance forte entre preuves formelles et pro-
grammes fonctionnels que 'on appelle la correspondance de Curry-Howard ou in-
terprétation formule/type.

Cette correspondance permet de remplacer la vérification qu'une preuve corres-
pond a une proposition par la vérification qu'un programme fonctionnel a un type
donné, l'intuition étant que les regles de déduction peuvent étre vues comme des
regles de typage pour programmes fonctionnels.

Par exemple, la regle du Modus Ponens, que I'on a déja évoquée,



P=Q p
Q

correspond a la regle de typage de I'application d’'une fonction f a un argument
a en programmation fonctionnelle, un style de programmation inspiré du A-calcul
développé par Alonzo Church.

f:A— B a:A
fa:B

Cette regle permet, a partir d'une fonction de type A — B (c’est-a-dire une fonc-
tion qui prend un argument de type A et produit un élément de type B) et d'un ar-
gument de type A, de construire 'application (f a) de type B. Par exemple, si 42 est
de type Entier (le type des entiers naturels) et EstPair est une fonction de type
Entier — Booleen, c’est-a-dire une fonction des entiers vers les booléens (le type
de vrai et faux), alors 'expression (EstPair 42) est de type Booleen.

On peut remarquer qu’il y a une correspondance (a un renommage pres : P en
A, Q en Bet = en —) entre les propositions de la regle de Modus Ponens et les
types de la regle de typage de I'application. Cette correspondance peut étre éten-
due a d’autres regles de déduction et de typage, construisant ainsi une connexion
tres forte entre les systemes logiques et les systémes de types. De plus, grace a cette
connexion, on peut voir un programme de type A comme une preuve de la proposi-
tion correspondant a A. A partir de cette idée, les vérificateurs de preuves modernes,
implémentent généralement a la fois un systéme logique et un langage de program-
mation.

DEDUKTI implémente une variante de la correspondance formule/type, 1a corres-
pondance jugement/type [HHP93|. L'idée de base est la méme : on réduit un pro-
bléme de vérification de preuve a un probleme de vérification de type. Par contre
on abandonne la correspondance entre les propositions et les types. Les proposi-
tions ainsi que les regles de déduction et axiomes sont traduits en programmes en
utilisant des encodages spécifiques. Choisir un encodage permet de choisir une lo-
gique. Ainsi, DEDUKTI est un vérificateur de preuves universel car il est indépendant
de la logique considérée. On appelle un tel vérificateur un logical framework (cadre
logique).

DEDUKT!I est utilisé comme back-end par de nombreuses implémentations d’en-
codages.

¢ CoqInE [BB12] (Coq In dEdukti) produit des preuves DEDUKTI a partir de preuves
Coq [CDT].

¢ Holide [AB14] (HOL In DEdukti) produit des preuves DEDUKTI a partir de
preuves HOL [Har09] au format Open Theory [Hurl1].

* Focalide [Cau] (FoCaLize In DEdukti) produit des fichiers DEDUKTI a partir
des développements FoCaLize [HPWD].

* Krajono [Ass|] (Pencil en espéranto) produit des preuves DEDUKTI a partir de
preuves Matita [ARCT11].

* iProver Modulo [Burl3] est une extension de iProver [Kor08|, un prouveur au-
tomatique de théorémes fondé sur la méthode de résolution, permettant le
support de la déduction modulo et produisant des preuves DEDUKTI.

10



* Zenon Modulo [DDG™13] est une extension de Zenon [BDD07], un prouveur
automatique de théoremes fondé sur la méthode des tableaux, avec du typage
et de la déduction modulo, produisant des preuves DEDUKTI.

Quelle est la particularité de DEDUKTI? Les vérificateurs de preuves fondés sur
la correspondance de Curry-Howard implémentent en méme temps un systéme lo-
gique et un langage de programmation. Cela signifie que 1'on peut calculer avec les
preuves (puisque ce sont aussi des programmes), mais cela permet aussi de calculer
dans les preuves. En effet, les vérificateurs de preuves identifient généralement les
propositions qui sont identiques a un calcul pres. Par exemple, la proposition 2+2 =
4 est identifiée a la proposition 4=4, puisque le résultat du calcul 2+2 est 4. Cela veut
dire que prouver que 2+2 est égal a 4 se réduit a un simple calcul et a 'utilisation du
principe de réflexivité de 1'égalité :

YXX=X )
_4=4 (Calcul)
2+2=4

La particularité de DEDUKTI est de permettre de facilement étendre cette notion
de calcul grace a 'ajout de regles de réécriture. Par exemple, 'addition d’entiers de
Peano peut étre calculée grace aux regles suivantes :

n+0 —n
n+Sm <—Smn+m)

Un entier de Peano est un entier représenté par un mot de la forme S (... (S 0)).
Le symbole 0 signifie zéro et le symbole S (successeur) incrémente un entier de un.
Lentier 2 est donc représenté par S (S 0) et 4 par S (S (S (S 0))). La premiere regle de
réécriture dit que, pour tout n, n + 0 vaut n. La seconde regle dit que, pour tout n et
m, n+ (m+1) vaut (n+m) + 1.

Les regles de réécriture de DEDUKTI permettent donc d’avoir un controle précis
sur la notion de calcul.

Une breve histoire de DEDUKTI Le projet DEDUKTI a été initié par Dowek comme
un vérificateur de preuves/types fondé sur le AIT-Calcul Modulo [CD07], un forma-
lisme a base de types dépendants (c’est-a-dire des types dépendant de valeurs) et de
regles de réécriture. Une premiere version a été développée par Boespflug [Boell],
puis par Carbonneaux [BCH12|. Cette premiere version implémentait une architec-
ture logicielle originale. La vérification de type se passait en deux étapes : d’abord
le probleme était lu par le programme qui générait un vérificateur dédié; dans un
second temps, le code généré était compilé et exécuté pour obtenir le résultat. Cette
architecture permettait d’'implémenter les lieurs en utilisant la syntaxe abstraite d’ordre
supérieure [PE88]| et la réduction en utilisant la normalisation par évaluation [BS91].
De plus, le calcul implémenté était sans contexte [Boell]. Plusieurs variantes de
cette premiére version ont existé mettant en ceuvre différents langages de program-
mation : d’abord une version Haskell générant du code Haskell, ensuite une version
Haskell générant du code Lua, et enfin, une version C générant du code Lua.

Pour pallier des problémes de performance et de passage a I’échelle, nous avons
développé une nouvelle version en OCamlimplémentant une architecture plus stan-
dard (une seule étape). Cette thése a pour but de décrire les fondations théoriques
de cette nouvelle version, étendue, de DEDUKTI.
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De quoi parle cette these? Au fil du temps, I'implémentation de DEDUKTTI a évo-
lué : des fonctionnalités ont été ajoutées; plus de systémes de réécriture ont été
supportés, etc. D’'un autre c6té, la définition du AIT-Calcul Modulo a peu évolué de-
puis l'article original de Cousineau et Dowek [CDQ7]. De plus, ce premier papier ne
se concentre pas sur 'étude du AIT-Calcul Modulo, mais cherche plutot a motiver
son utilisation a travers un exemple détaillé, I'encodage des Systemes de Types Purs
Fonctionnels. Par conséquent, il y avait un décalage entre le AII-Calcul Modulo de
Cousineau et Dowek et le calcul implémenté dans DEDUKTI. En particulier :

* la facon de vérifier le bon typage des régles de réécriture dans DEDUKTI etait
plus générale que la définition initiale du AIT-Calcul Modulo, notamment parce
que DEDUKTI procede itérativement : les regles préalablement ajoutées au
systéme sont utilisées pour typer les nouvelles;

¢ les conditions nécessaires a la décidabilité de la vérification de type et né-
cessaires a la correction de 'algorithme de vérification de type étaient mal
connues;

¢ peu d’outils théoriques permettaient de vérifier que ces conditions étaient vé-
rifiées pour un systeme de réécriture donné.

Cette these répond a ces probléemes spécifiques de trois facons :

¢ en proposant une nouvelle version du AIl-Calcul Modulo facilement compa-
rable avec son implémentation dans DEDUKTI ;

¢ en effectuant une étude théorique détaillée de ce nouveau calcul, en se concen-
trant en particulier sur les conditions nécessaires au systéme de réécriture
rendant la vérification de type décidable et plus généralement permettant au
systeme de type de bien se comporter;

* et en donnant des criteres effectifs permettant de garantir ces conditions.

Résumé et contributions de la thése

* Le chapitre 1 rappelle certaines notions classiques de théorie de la réécriture
concernant les systemes de réduction abstraits, la réécriture du premier ordre,
le A-calcul et leur combinaison qui seront utilisées dans les chapitres suivants.
On s’intéresse en particulier aux résultats de confluence.

¢ Le chapitre 2 donne une nouvelle présentation du AIT-Calcul Modulo corres-
pondant au calcul implémenté par DEDUKTI. Cette nouvelle version améliore
celle de Cousineau et Dowek de deux manieres. D’abord on définit une no-
tion de réécriture sur les termes sans aucune notion de typage. Ceci permet
de rendre sa comparaison avec son implémentation plus directe. Ensuite, on
explicite et on clarifie le typage des regles de réécriture.

On procede a une étude théorique précise du AIl-Calcul Modulo. En particu-
lier, on met en exergue les conditions qui assurent que le systéme de types
vérifie des propriétés élémentaires telles que la préservation du typage par ré-
duction ou I'unicité des types. Ces conditions sont la compatibilité du produit
et le bon typage des regles de réécriture. Pour finir, on considére une exten-
sion du AIT-Calcul Modulo avec du polymorphisme et des opérateurs de type
que 'on appelle le Calcul des Constructions Modulo.
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¢ Le chapitre 3 étudie la propriété de bon typage des regles de réécriture. Une
regle de réécriture est bien typée si elle préserve le typage. Partant d'un critére
simple, a savoir que le membre gauche de la regle doit étre algébrique et les
membres gauche et droit doivent avoir le méme type, on généralise progressi-
vement le résultat pour considérer des membres gauches non algébriques et
mal typés. Cette généralisation est particulierement importante en présence
de types dépendants, pour permettre de conserver des regles de réécriture
linéaires a gauche et préserver la confluence du systeme de réécriture. On
donne aussi une caractérisation exacte de la notion de bon typage pour les
régles de réécriture sous forme d'un probléme d’unification et on prouve son
indécidabilité.

¢ Le chapitre 4 définit une notion de réécriture modulo § pour le AIT-Calcul Mo-
dulo. En partant des observations que (1) la confluence du systéme de réécri-
ture est une propriété vivement souhaitée car elle a pour conséquence la pro-
priété de la compatibilité du produit ainsi que, avec la terminaison, la décida-
bilité de la congruence et que (2) la confluence est facilement perdue lorsque
les regles de réécriture filtrent sous les abstractions, on propose une nouvelle
notion de réécriture qui réconcilie confluence et filtrage sous les abstractions.
Cette nouvelle notion est définie a travers un encodage des termes vers un sys-
teme de réécriture d’ordre supérieur. Ceci permet d’'importer dans AIl-Calcul
Modulo les résultats de confluence existants pour les systemes d’ordre supé-
rieur. On détaille aussi comment la réécriture modulo 8 peut étre efficace-
ment implémentée par la compilation des regles de réécriture en arbres de
décision.

* Le chapitre 5 considere les régles de réécriture non linéaires a gauche. Com-
binées avec la f-réduction, ces régles génerent généralement un systeme de
réécriture non confluent. Ceci est un probléme car la confluence est notre ou-
til principal pour prouver la compatibilité du produit. On prouve que la pro-
priété de compatibilité du produit est toujours vérifiée (méme sans la confluence)
lorsque les regles de réécriture sont toutes au niveau objet. Ensuite on étudie
cette propriété en présence de regles non linéaires a gauche et de regles au
niveau type. Pour cela, on introduit une variante du AIl-Calcul Modulo ot la
conversion est contrainte par une notion de typage faible.

* Le chapitre 6 décrit les algorithmes de vérification de type pour les différents
éléments du AIT-Calcul Modulo : termes, contextes locaux et contextes glo-
baux. On montre aussi que ces algorithmes sont corrects et complets en utili-
sant les résultats des chapitres précédents.
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Introduction

The story begins with the development of a piece of software called DEDUKTI. DE-
DUKTI is a proof checker, that is a tool able to automatically check the validity of
mathematical proofs.

What is a proof? A proof is a justification of the truth of a proposition. An early
example is the proof of the proposition Socrate is mortal:

Socrate is a man; men are mortal; therefore, Socrate is mortal.

In this proof we can find the statement of two hypotheses (Socrate is a man and Men
are mortal) and the conclusion Socrate is mortal. The word therefore suggests that
the conclusion can be logically deduced from the hypotheses. The nature of this
deductive step is, however, left implicit.

Mathematicians have been interested for a long time in the notion of proof and
in the rules of logical reasoning. Proof Theory is the branch of mathematics that
studies proofs as mathematical objects. This domain has been particularly active
since the end of the 19th century, starting with the work of Gottlob Frege in his
Begriffsschrift (1879). Giuseppe Peano, Bertrand Russell, Richard Dedekind, David
Hilbert, Kurt Godel and Gerhard Gentzen, to cite only a few, brought important con-
tributions to the field during the first half of the 20th century. These works gave rise
to many formal notions of proof. A particularly convenient one is the presentation
of proofs as trees labeled by propositions.

Vx,IsAMan(x) — IsMortal(x) (Inst.)
IsAMan(Socrate) —> IsMortal(Socrate) ' IsAMan(Socrate)
IsMortal(Socrate)

(M-P)

This tree is a formal representation of the proof that Socrate is mortal given
above. Natural language being often ambiguous, we write the propositions in a more
precise language, close to the mathematical vernacular. At the top, the leaves of the
tree Vx,IsAMan(x) — IsMortal(x) and IsAMan(Socrate) are the hypotheses (or ax-
ioms) of the proof; the first one stands for, for all x, if x is a man, then x is mortal,
or, in short, men are mortal; the second one stands for Socrate is a man. At the bot-
tom, the root of the tree IsMortal(Socrate) is the conclusion of the proof; it stands
for Socrate is mortal.

The tree contains also two internal nodes, (Inst.) and (M-P); they correspond to
the deductive steps of the logical reasoning. The first one (Inst.) is an instance of
the Instantiation rule. This rule states that, for any object o, it is logically valid to
deduce P(o0) from a proposition Vx.P(x), where P(x) is a proposition depending on
the variable x and P(o) is the proposition P(x) where we replaced every occurrence
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of x by o. Here the proposition P(x) is IsAMan(x) = IsMortal(x) and the object
o is Socrate. The second one (M-P) is an instance of the Modus Ponens rule. This
rule says that, for any propositions P and Q, we can deduce Q from the two proposi-
tions P and P = Q. Here, we deduce IsMortal(Socrate) from IsAMan(Socrate) and
IsAMan(Socrate) = IsMortal(Socrate).

As we can see, the formal proof that Socrate is mortal is much more detailed and
precise than the informal proof we began with. This allows having a much higher
degree of confidence in formal proofs than in any other notion of proof as everything
is reduced to the validity of a (small) set of axioms and a (small) set of deductive
rules. Of course, it is also more tedious to write since every logical step is made
explicit.

By choosing the language of propositions, the deductive rules and the axioms,
we can define several kinds of logics: classical, constructive, minimal, linear, modal,
temporal, etc.

What is a proof checker? If we fix the set of axioms and the set of deductive rules
that can be used in a proof, the verification of the validity of a formal proof can be
mechanized. Indeed, a proof is valid if it is a tree where the leaves are axioms, the
root is the conclusion and each internal node is an instance of a deductive rule.
This opens the possibility of automatic proof verification by programs. We call these
programs proof checkers.

The first proof checker, Automath [NGdV94], has been designed by Nicolaas
Govert de Bruijn in the late sixties. Since then, many other proof checkers have been
developed. Among the better known are Agda [BDNQ9|, Coq [CDT], Isabelle [NWP02],
PVS [ORS92], Nuprl [Kre], Twelf [PS99] and Beluga [Piel0].

Proof of programs Because formal proofs are very detailed and can be automat-
ically verified, they offer a strong degree of confidence. An important application
domain for formal proofs is the proofs of programs. The goal is to prove that a com-
puter program correspond to its specification. In other words, we prove that a pro-
gram has no bugs. This has already been used in the industry to prove that critical
systems were bug-free, for instance in the transport (airplane, railways, subway) or
security (cryptography, protocols).

How do proof checkers work? Most existing proof checkers are based on a strong
correspondence between formal proofs and functional programs known as the Curry-
Howard correspondence, or the formulas-as-types interpretation.

Roughly speaking, the correspondence states that it is the same thing to check
that a proof justifies a given proposition, or to check that a functional program has
a given type. The intuition is that deduction rules can be seen as rules for typing
functional programs.

For instance the Modus Ponens rule, that we have already mentioned,

P = Q p
Q

corresponds to the rule for typing the application of a function f to an argument a in
functional programming, a programming style inspired by the A-calculus developed
by Church.
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f:A—B a:A
fa:B

This rule says that, if f is a function of type A — B, meaning that it takes an ar-
gument of type A and produces an element of type B, and a is an argument of
type A, then the application (f a) of f to a is an expression of type B. For in-
stance, if 42 has type Integer (the type of integers) and isEven is a function of
type Integer — Boolean, that is to say a function from integers to booleans (the
type of true and false), then the expression (isEven 42) has type Boolean.

We can see that there is a correspondence (up to some renaming: P to A, Q to B
and = to —) between the propositions occurring in the Modus Ponens rule and
the types occurring in the typing rule for the application. The correspondence can
be extended to other logical and typing rules, building a strong connection between
logical systems and type systems. Moreover, following this connection, a program of
type A can be seen as a proof of the proposition corresponding to A. Based on this
idea, modern proof checkers usually implement a calculus that is at the same time
alogical system and a programming language.

DEDUKTI implements a variant of the formulas-as-types correspondence known
as the judgment-as-type correspondence [HHP93|. The basic idea is the same: we
reduce the problem of proof checking to the problem of type checking. However, we
give up the correspondence between propositions and types. The propositions as
well as the deductive steps and the axioms are translated to programs using specific
encodings. Choosing an encoding allows choosing a logic. By this means, DEDUKTI
is a universal proof checker, as it is logic-agnostic. Such a proof checker is called a
logical framework.

DEDUKTI has been used as a backend by many implementations of encodings.

¢ CoqInE [BB12] (Coq In dEdukti) produces DEDUKTI proofs from Cog [CDT]
proofs.

* Holide [AB14] (HOL In DEdukti) produces DEDUKTI proofs from HOL [Har09]
proofs, using the Open Theory [Hurll] standard.

¢ Focalide [Cau] (FoCaLize In DEdukti) produces DEDUKTI files from FoCalL-
ize [HPWD] developments.

¢ Krajono [Ass] (Pencilin Esperanto) produces DEDUKTI files from Matita [ARCT11]
proofs.

¢ iProver Modulo [Burl3] is an extension of the resolution automated theorem
prover iProver [Kor08] with deduction modulo, producing DEDUKTI files.

e Zenon Modulo [DDG™13| is an extension of the tableaux-based automated
theorem prover Zenon [BDDO07] with typing and deduction modulo, produc-
ing DEDUKT! files.

What is so special about DEDUKTI? Proof-checkers based on the Curry-Howard
correspondence implement at the same time a logical system and a programming
language. This means that we can compute with proofs (proofs are programs) but
they also allow computing in proofs. Indeed, proof checkers usually identify propo-
sitions that are the same up to some computation. For instance, the proposition 2+2
=4 is identified with the proposition 4 = 4 because 2+2 computes to 4. This means
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that proving that 2+2 is equal to 4 is just a matter of performing a simple computa-
tion and using the reflexivity of the equality:

% (Inst.)
Sio=4 (Computation)

The distinctive feature of DEDUKTI is to provide a simple means to extend this no-
tion of computation through rewrite rules. For instance, typical rewrite rules for the
addition on Peano integers are:

n+0 —n
n+Sm —Smn+m)

Peano integers is a simple representation of integers as words of the form S (... (S 0)).
The symbol 0 is the zero and the symbol S (successor) adds one to an integer. This
means that 2 is represented by S (S 0) and 4 by S (S (S (S 0))). The first rewrite rule
says that, for all n, n+ 0 computes to n. The second one says that, for all n and m,
n+(m+1) computes to (n+m) + 1.

Rewrite rules allow DEDUKTI users to have a precise control over the notion of
computation.

Ashorthistoryof DEDUKTI DEDUKTI has been initiated by Dowek as a proof check-
er/type checker based on the AIl-Calculus Modulo [CDO07], a formalism featuring
dependent types (i.e., types depending on values) and rewrite rules (the reason for
the Modulo qualifier). A first version has been developed by Boespflug [Boell] and
then by Carbonneaux [BCH12]. This first version featured an original architecture.
The type-checking process was performed in two steps: first the input problem was
parsed and a dedicated type-checker was generated; second the generated code
was compiled and run to obtain the result. This architecture allowed implement-
ing binders using Higher-Order Abstract Syntax [PE88|] and reduction using Nor-
malization by Evaluation [BS91]. Moreover, the calculus implemented was context-
free [Boell]. Several variants of this first version have been implemented using dif-
ferent programming languages: first a Haskell version generating Haskell code, then
a Haskell version generating Lua code and finally a C version generating Lua code.
Because all these variants suffered from performance and scaling issues, we have
developed a new version in OCaml implementing a more standard (one step) archi-
tecture. This thesis describes the theoretical underpinnings of this prototype.

What is addressed in this thesis? Through time, the implementation of DEDUKTI
has evolved: features were added; more rewrite systems were supported, etc. On
the other hand, the definition of the AIT-Calculus Modulo did not evolve since the
seminal paper of Cousineau and Dowek [CD07]. Moreover, this first paper did not
focus on the theoretical side of the AIT-Calculus Modulo but rather motivated its use
as a logical framework. As a result, there was a gap between Cousineau and Dowek’s
AII-Calculus Modulo and the calculus implemented in DEDUKTI. In particular:

¢ the way rewrites rules are typed in DEDUKTI goes beyond the initial definition
of the AIT-Calculus Modulo as it is iterative; rewrite rules previously added can
be used to type new ones;
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* the conditions under which type-checking in the AIl-Calculus Modulo is de-
cidable and the conditions under which DEDUKTI is sound had not been stud-
ied in detail;

* there were few theoretical tools allowing verifying that these conditions hold
for a given set of rewrite rules.

This thesis gives answers to these specific problems in three ways:

* by proposing a new version of the AIT-Calculus Modulo that is easy to compare
with the calculus implemented by DEDUKTT;

¢ by performing a detailed theoretical study of this new calculus, focused in par-
ticular on making explicit the conditions under which type-checking is decid-
able and, more generally, the conditions under which the type-system is well-
behaved,

* and by designing effective criteria on the rewrite system to ensure that these
conditions hold.

Outline and contributions of the thesis

* Chapter 1 reviews some basic notions and results in rewriting theory about
abstract reduction systems, term rewriting systems, the A-calculus and their
combination. In particular, we are interested in confluence results.

¢ Chapter 2 introduces a new presentation of the AII-Calculus Modulo, the cal-
culus implemented in DEDUKTI. This new version aims at improving Cousineau
and Dowek’s AII-Calculus Modulo by two modifications. First we define the
notion of rewriting on untyped terms. This makes the calculus easier to com-
pare with its implementation in DEDUKTI. Second, we make explicit and we
clarify the typing of the rewrite rules.

We undertake a precise theoretical study of the AIl-Calculus Modulo. In par-
ticular, we put forward two conditions ensuring that the typing system verifies
basic properties such as subject reduction and uniqueness of types. These con-
ditions are product compatibility and well-typedness of rewrite rules. Finally,
we consider an extension of the AIT-Calculus Modulo with polymorphism and
type operators that we call the Calculus of Constructions Modulo.

¢ Chapter 3 investigates the property of well-typedness for rewrite rules. A rewrite
rule is well-typed if it preserves typing. Starting from the simple criterion that
the rewrite rules should be left-algebraic and both sides of the rule should
have the same type, we progressively generalize the result to allow non-algebraic
and ill-typed left-hand sides. This latter generalization is particularly impor-
tant to keep rewrite rules left-linear in presence of dependent typing and to
preserve the confluence of the rewriting system. We also give an exact charac-
terisation of well-typedness for rewrite rules as a unification problem and we
prove the undecidability of the problem.

¢ Chapter 4 introduces a notion of rewriting modulo § for the AIT-Calculus Mod-
ulo. Starting from the observations that (1) the confluence of the rewriting
system is a very desirable property as it implies product compatibility and,
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together with termination, the decidability of the congruence and (2) con-
fluence is easily lost when we allow matching under binders, we introduce
the notion of rewriting modulo S to reconcile confluence and matching un-
der binders. This new notion of rewriting is defined through an encoding in
Higher-Order Rewrite Systems. This allows bringing to the AIl-Calculus Mod-
ulo the confluence criteria designed for Higher-Order Rewrite Systems. We
also detail how rewriting modulo § can be efficiently implemented by com-
piling the rewrite rules to decision trees.

Chapter 5 considers non left-linear rewrite rules. Non-left linear rewrite rules
usually generate non-confluent rewriting systems when combined with S-
reduction. This is an issue because confluence is our main tool to prove prod-
uct compatibility. Adapting previous works, we prove that product compati-
bility holds when the rewrite rules are at object-level only, even if confluence
does not hold. Then we study the problem of proving product compatibility in
presence of non left-linear and type-level rewrite rules. For this we introduce
a variant of the AIl-Calculus Modulo where the conversion is constrained to
verify a weak notion of typing.

Chapter 6 gives algorithms to type-check the different elements of the AIl-
Calculus Modulo: terms, local contexts, rewrite rules and global contexts. These
algorithms are shown to be sound and complete using the results of the pre-
vious chapters.
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Chapter 1

Preliminaries

Résumé Ce chapitre rappelle certaines notions classiques de théorie de la réécri-
ture concernant les systemes de réduction abstraits, la réécriture du premier ordre,
le A-calcul et leur combinaison qui seront utilisées dans les chapitres suivants. On
s'intéresse en particulier aux résultats de confluence.

This short chapter reviews some basic notions and results about abstract reduction
systems, term rewriting systems, A-calculus and their combination that we will use
in the next chapters. In particular, we are interested in confluence results.

1.1 Abstract Reduction Systems

The notion of abstract reduction system is, as its name suggests, the most abstract
definition of rewriting that exists. In particular, it makes no assumptions on the na-
ture of the objects being reduced (or rewritten). Though very simple, this notion
allows us to formally define basic properties of rewriting such as confluence or ter-
mination.

Definition 1.1.1 (Abstract Reduction System). An abstract reduction system (ARS)
is a pair made of a set o and a binary relation — on o/ (i.e., —C o x ).

Notation 1.1.2.
¢ We use the infix notation x — y to denote (x, y) €—.
e We write —* for the reflexive and transitive closure of —.
o We write = for the reflexive, symmetric and transitive closure of —.

Definition 1.1.3. Two objects x,y € </ are joinable (written x | y), if there exists z
such thatx —* zand y —* z.

Definition 1.1.4. An element x € &« isnormal if there is no y such that x — y.
Definition 1.1.5. An abstract reduction system is said to be:

¢ locally confluent (or weakly confluent) when, forall x,y, z, if x — y and x — z,
theny| z;
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e confluent when, forall x,y,z ifx =" yand x —* z, then y | z;

¢ normalizing (or weakly normalizing) when, for all x, there exists y normal such
that x —* y.

e terminating (or strongly normalizing) when there is no infinite reduction chain
ay— dy) — ..., — ....

Theorem 1.1.6 (Newman’s Lemma [New42]). A terminating ARS is confluent if and
only ifit is locally confluent.

1.2 Term Rewriting Systems

A (first-order) term rewriting system is an abstract rewriting system where the ob-
jects are first-order terms, and where the reduction relation is given by a set of rewrite
rules.

1.2.1 Definition

Definition 1.2.1 (Signature). Asignature is a set X of constant symbols together with
an arity function from X to positive integers.

Definition 1.2.2 (Term). If X is a signature andV a set of variables (disjoint from
and infinite), then the set T(X,7) of (first-order) terms over X is defined inductively
as follows:

e avariablev eV isaterm;

* if f € X isaconstant symbol of arityn and ty,..., t, aren terms, then f (t1,..., t,)
is a term.

If t is a term, we write Var(t) the set of variables occurringin t.

Definition 1.2.3 (Substitution). A substitution is a function from the set of variables
to the set of terms with a finite domain. The domain of a substitution is the set { x €
V0ox)#x}.

If o is a substitution and t is a term, we write o (t) the term t where we replaced
the variables by their image by o.

Definition 1.2.4 (Rewrite Rule). A rewrite rule is a pair (I,1) of terms such that l is
not a variable and Var(r) < Var(l).
We write (I — r) for the rewrite rule (I, r).

Definition 1.2.5 (Term Rewriting System). A Term Rewriting System (TRS) for a sig-
nature X and a set of variables V' is a set of rewrite rules R over the signature X.

When it is convenient, we identify a TRS with its underlying ARS (T(Z,7),—R)
where — g is the relation on T (X, V') defined inductively as follows:

e g(l) »ra(r)if(l— r) € R and o is a substitution;

* f(t1,..., tn) =R f($1,...,8,) If, for somei, t; —g s; and, forall j # i, tj = s;.
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1.2.2 (Critical Pairs

Definition 1.2.6 (Position and Subterm). Let t be a term. The set of positions in
t, Pos(t), of sequences of integers and the subterm 1), of t at position p € Pos(t) are
defined inductively as follows:

* ift isavariable, then Pos(t) = {e} and tic = t;

e ift=f(t1,...,tn), then Pos(t) = {e} U{l.qlq € Pos(t;)} U...U{n.qlq € Pos(t,)},
fle = t and lig= t,‘|q.

Definition 1.2.7 (Most General Substitution). Let u, v be two terms.
A substitution o is a most general substitution for u and v if:

e g(uw)=0);

e forall oy such that og(u) = 0¢(v), there exists a substitution § such that, for all
x,00(x) =6(0(x)).

Notation 1.2.8. Let t and u be two terms and p be a position in t. We write t{u], for
the term t where we replaced the subterm at position p by u.

Definition 1.2.9 (Critical Pair). Let[; — r; for (i = 1,2) be two rewrite rules. Suppose
that they do not share any variable (variables can be renamed if needed).

If there exists p € Pos(ly) such that 1), is not a variable and o is a most general
unifier 0f(l1|p, ly) then we have the following reductions o (1) — o(r1) and o(l;) —
(ol (r)]p.

We say that the pair (o (I1)) [o(r2)]p,0(r)) isa critical pair and that the two rewrite
rules overlap.

We write (a X b) when (a, b) is a critical pair.

Theorem 1.2.10 (Critical Pair Theorem [KB83]). A TRS is locally confluent if and only
ifits critical pairs are joinable.

Combined with Newman’s Lemma (Theorem 1.1.6), we get the following result.

Corollary 1.2.11. A terminating TRS is confluent if and only if its critical pairs are
joinable.

1.2.3 Confluence

A TRS which is orthogonal, meaning that it is left-linear and does not have critical
pairs, is confluent.

Definition 1.2.12 (Linearity).
* Aterm islinear if no variable occurs twice in it.
o Arewrite rule (I — r) isleft-linear if [ is linear.
o A TRS isleft-linear if all its rewrite rules are left-linear.

Definition 1.2.13 (Orthogonality). A rewrite system is orthogonal if it is left-linear
and includes no critical pairs.

Theorem 1.2.14 (Confluence by Orthogonality [Ros73}[Hue80]). Orthogonal systems
are confluent.
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The criterion of orthogonality can be generalized to TRSs whose critical pairs are
parallel closed.

Definition 1.2.15 (=2). Let R be a TRS. The relation = of parallel reduction is de-
fined inductively as follows:

* X IR X,
e f(ti,....tn) 3R f(s1,...,85) if, foralli, t; =R si;
* tpsift—pgs.

Definition 1.2.16 (Parallel Closed TRS). A TRS R is parallel closed if t; =g t» for
every critical pair t) X t,.

Theorem 1.2.17 (Parallel Closure Theorem [Hue80]). Left-linear and parallel closed
systems are confluent.

Another way to get confluence is by combining confluent TRSs provided that
their signatures are disjoint.

Theorem 1.2.18 (Modularity of Confluence [Toy87]). LetR;, R, betwo TRSson T(21,7)
and T(Z,,7) respectively.

If 2, and X, are disjoint signatures and both Ry and R, are confluent, then the
TRSRiURy on T(Z1 UZy,7) is confluent.

1.3 The A-Calculus

The A-calculus is a formalism invented by Alonzo Church in the 1930s. It has been
designed to capture the most basic aspects of the ways that functions can be com-
bined to form other functions. As it makes use of bound variables, it is an abstract
reduction system but not a term rewriting system.

Definition 1.3.1 (1-Terms). We assume given an infinite set of variables. The set of
A-terms built from the set of constants € is defined as follows:

e any variable is a term;

e any constant in € is a term;

e ifu and v are terms, then the application uv is a term;

e if Aand t are terms and x is a variable, then the abstraction Ax : A.t is a term.

Definition 1.3.2 (Free and Bound Variables). The set of free variables of a term t,
written FV (1), is defined as follows:

e FV(x) = {x};
e FV(uv)=FV(u)UFV(v);
e FV(Ax:A.u) = FV(A) U (FV(u)\{x}).

Variables occurring in t that are not free are called bound.
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Convention We identify A-terms that can be obtained from each other by a renam-
ing of bound variables in a way such that free variables do not become bound.

Definition 1.3.3 (Substitution). Let x be a variable and t, u be two terms. The substi-
tution of x by u in t, written t[x/ u] is defined as follows:

o x[x/ul =u;
e ylxiul=y, ify#x;
e (h)lx/ul=tlx/ultz(x/ul;

o (Ay: A.)[x/u]l = Ay : Alx/ul.tlx/ul, ifx # y and y ¢ FV(u). Remark that we
can always rename the bound variables so that these conditions are verified.

Definition 1.3.4 (8-Reduction). Thehead B-reduction — ph on A-terms is defined as
follows:

* (Ax:A.yu—gn tlx/ul for all A-terms A, t and u;
The B-reduction relation — g on A-terms is defined as follows:

* h—pn by

* ifty —p tr, then hu—g uand uty —g uty;

* ifti —pltr, thenAx: Aty —gAx: Ap and Ax: f.u —g Ax: f.u.
We write — i for—g\ —gh-
Theorem 1.3.5 (Confluence [CR36l). The relation — g is confluent.

The following theorem is an easy consequence of the so-called standardization
theorem |CF58].

Theorem 1.3.6. If 1, —>2 1, then there exists t3 such that t; —»;h t3 —>Ei 1.

1.4 Combining Term Rewriting Systems and the A-Calculus

We now study some extensions of the A-calculus with rewrite rules from TRSs.

1.4.1 Applicative Term Rewriting Systems

The A-calculus has no notion of arity; therefore to see first-order terms as A-terms,
we need to currify them.

Definition 1.4.1 (Applicative TRS). A TRS is applicative if it is built from a signature
{e} U€ where  is a symbol of arity 2 and the symbols in € have arity 0.

Definition 1.4.2 (Curryfication of a TRS). Let X be a signature. Let X" be the signa-
ture {#} U6 where € contains the constants in £ but with arity 0.

The function cur of curryfication from terms over the signature X to terms over
the signature 2" is defined as follows:

cur(x) =X
cur(f(ty,...,t5)) =-e(..(o(f,cur(sy)),...,)cur(t,))

Let R be a TRS over the signature 2. The applicative TRS R°“" over the signature
Teur js{ (cur(l),cur(r)) | l—r)eR}.

Theorem 1.4.3 (Preservation of Confluence by Curryfication [Ter03]). Let R be a
TRS. If R is confluent, then R°“" is confluent.
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1.4.2 Combining Term Rewriting Systems and the 1-Calculus

Definition 1.4.4 (From TRS Terms to A-terms). Let {¢} U¥ be a signature where ¢ is
a symbol of arity 2 and the symbols in € have arity 0.

The function .|y from first-order terms over {} U6 to A-terms over € is defined as
follows:

|x]2 =x if x is a variable
lcla =c ifce®
le(n, 2)Ix  =ltlrlt2lz

Definition 1.4.5 (AR-Calculus). Let R be an applicative TRS for the signature {¢} U6
The relation — gr on A-terms is defined as follows:

* ift—ps, thent—ggs;
* if(l —r) € R and o is a substitution, then o(|1]) —pro(rl});
* ifty —pR b, then tyu —gp Lou and ut, — gg uly;

* ift1 —pRr b, then Ax: Aty —gp Ax: A.pu and Ax: f.u—gpr AX: bp.U.

1.4.3 Confluence

When the TRS is left-linear, the confluence is preserved when combined with f-
reduction, provided that it is non variable-applying.

Definition 1.4.6 (Variable-Applying TRS). An applicative TRS R isvariable-applying
if, for some (1, 1) € R, there is a subterm of | of the form «(x, t) where x is a variable.

Theorem 1.4.7 (Confluence for Left-Linear Systems [Miil92]). Let R be a left-linear
and non-variable-applying TRS.
If R is confluent, then — g is confluent.

However, when the TRS is not left-linear, adding the §-reduction breaks the con-
fluence in most cases.

Lemma 1.4.8 (Turing’s Q Combinator). Let A be an arbitrary type and let Z = Az :
AAx:Ax (z zx). Theterm Q = Z Z is a fix-point combinator, i.e., for any term t,
Qt —»Z t Q1.

Proof. ZZt:()Lz:A.)Lx:A.x(zzx))Zt—»%t(ZZt). O
In the following theorems, we write ¢ u instead of (¢, u).

Theorem 1.4.9. Let R = {(minus n n — 0), (minus (S n) n — S 0)} whereminus,S and
0 are constants. The relation — gg is not confluent.

Proof. We have the following reductions:

minus (Q8) (Q8) —gr 0.
minus (Q8S) (QS) —»; minus (S (Q28)) (QS) —gr S 0.

However 0 and S 0 are not joinable. O

Theorem 1.4.10 ([Klo80]). Let R = {(eq n n — true)}. The relation —gg is not con-
fluent.

25



Proof. Letc=Q (Ax:AAdy:Aeqy(xy))anda=Qc.

Wehavea:Qc—»Eca.

Moreover,ca=Q (Ax: Adly:Aeqy(xy) a —»E (Ax:AAy:Aeqy(xy)ca —»E
eqal(ca) —»E eq (ca) (c a) —ppg true.

Since c a —»E ¢ (¢ a), we also have c a — %, ¢ true.

pR

Therefore, ¢ a _)ER trueandca _)ER c true.

If the relation — g is confluent, then we have ¢ true —gg true. We now prove
that it is impossible (hence, that — gg is not confluent).

Suppose that ¢ true —»ZR true.

Take the shortest reduction sequence ¢ true —»E t —7% true such that the se-
quence c true —>E t is standard (i.e., the B-reduction are made from left to right).
Such a sequence exists, by the standardization theorem [Ter03|] and because the rule
of R cannot create B-redexes.

This sequence has the following shape: ctrue =Q (Ax: A.1ly: A.eqy (x y)) true —»E
(Ax:Adly:Aeqy (x ) ctrue —»E eq true (c true) —»BR true. Therefore, this se-
quence must contain a standard sub-sequence c true —>E t —% true to perform the

last reductions. This is impossible by assumption. O
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Chapter 2

The AII-Calculus Modulo

Résumé Ce chapitre donne une nouvelle présentation du AIl-Calcul Modulo cor-
respondant au calcul implémenté par DEDUKTI. Cette nouvelle version améliore
celle de Cousineau et Dowek de deux manieres. D’abord on définit une notion de
réécriture sur les termes sans aucune notion de typage. Ceci permet de rendre sa
comparaison avec son implémentation plus directe. Ensuite, on explicite et on cla-
rifie le typage des regles de réécriture.

On procede a une étude théorique précise du AIl-Calcul Modulo. En particu-
lier, on met en exergue les conditions qui assurent que le systéme de types vérifie
des propriétés élémentaires telles que la préservation du typage par réduction ou
I'unicité des types. Ces conditions sont la compatibilité du produit et le bon typage
des régles de réécriture. Pour finir, on considere une extension du AIl-Calcul Mo-
dulo avec du polymorphisme et des opérateurs de type que 'on appelle le Calcul
des Constructions Modulo.

2.1 Introduction

The AIT-Calculus Modulo has been introduced by Cousineau and Dowek [CD07] as
an extension of the AIl-Calculus (the dependently typed A-calculus) meant to ex-
press the proofs of Deduction Modulo [DHKO03|. This extension features a general-
ized conversion rule where the congruence is extended to take into account user-
defined rewrite rules. Types are not identified modulo §-conversion but modulo
BR-conversion where R is a set of rewrite rules. They show that the resulting cal-
culus, although very simple, is a very expressive logical framework [HHP93]. It can
embed, in a shallow way, that is in a way that preserves their computational con-
tent, many logics and calculus such as: functional Pure Type Systems [CDO07], First-
Order Logic [Dorl11], Higher-Order Logic [AB14], the Calculus of Inductive Construc-
tions [BB12], resolution and superposition proofs [Burl3], or the ¢-calculus [CD15].

The original presentation of the AIl-Calculus Modulo did not include any the-
oretical study of the calculus and gave a restricted version of it, the article being
concerned on how to encode functional pure type systems in it.

In this chapter we give a new presentation of the AIT-Calculus Modulo and we
study its properties in details. This presentation differs from the original one by sev-
eral aspects. Firstly, it is build upon a completely untyped notion of rewriting. Sec-
ondly, we make explicit the typing of rewrite rules and we make it iterative: rewrite
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X,z e T (Object Variable)
of € %o (Object Constant)
CF € Er (Type Constant)
Luv = x|cluv|Ax:U.t (Object)
T,UV == ClUy|Ax:U.T|Nx:U.T (Type)
K = Type|llx:U.K (Kind)
tu,v w= u|U]|K|Kind (Term)

Figure 2.1: Terms of the AIT-Calculus Modulo

rules previously added are taken in account when typing new ones. All these modi-
fications make our presentation closer to its implementation in DEDUKTI.

2.2 Terms, Contexts and Rewrite Rules

We start by defining the basic elements of our calculus and giving their syntax.

2.2.1 Terms
The terms of the AIT-Calculus Modulo are the same as for the AIT-Calculus.

Definition 2.2.1 (Terms). Anobject is either avariable in the set ¥y, or an object con-
stant in the set 6, or an application u v where u and v are objects, or an abstraction
Ax:U.t wheret is an object and U is a type.

A type is either a type constant in the set €, or an application U v where U is
a type and v is an object, or an abstraction Ax : U.V where U and V are types, or a
productIlx: U.V where U and V are types.

Akind is either aproduct I1x : U.K where U is a type and K is a kind or the symbol
Type.

Aterm is either an object, a type, a kind or the symbol Kind.

We write A for the set of terms.

The sets Vo, 6o and €t are assumed to be infinite and pairwise disjoint. The

grammars for objects, types, kinds and terms are given

We have chosen a syntactic presentation of terms that enforces the distinction
between objects, types and kinds. Another approach would be to define these cate-
gories by typing: kinds are terms whose type is Kind; types have type Type and ob-
jects are terms whose type is a type. The benefit of the syntactic approach over the
typed approach is that it will allow us to ensure syntactically that rewriting preserves
this stratification. This will later simplify the theory of the AIl-Calculus Modulo, in
particular when confluence is not known.

Notation 2.2.2. In addition with the naming convention of{Figure 2.1}, we use:
* ¢, f to denote object or type constants;

e A, B, T, U,V todenote types, kinds or Kind;
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A == @|Ax:T) (Local Context)

Figure 2.2: Local contexts of the AII-Calculus Modulo

R = (uU—v|U<=YV) (Rewrite Rule)
E == R|ER (Batch of Rewrite Rules)
I == @|T(c:D|TC:K)|TE (Global Context)

Figure 2.3: Global contexts of the AII-Calculus Modulo

¢ s for Type or Kind.

Moreover we write til to denote the application of t to an arbitrary number of argu-
mentsuy,..., U,. Terms are identified up to renaming of bound variables (a -equivalence).
We write u[x/v] for the usual (capture avoiding) substitution of x by v in u. We write

A — B forTlx: A.B when B does not depend on x. If t is a term, we write FV(¢) (re-
spectively BV (t)) for the set of free (respectively bound) variables of t. By convention,

we assume that the sets of bound and free variables in a terms are always disjoint.
This can always be obtained by an appropriate renaming of bound variables.

2.2.2 Local Contexts

As in the AIT-Calculus, local contexts consist of typing declarations for variables.

Definition 2.2.3 (Local Context). A local context is a list of pairs made of an object
variable together with a type. The grammar for local contexts is given[Figure 2.2

Notation 2.2.4. We write dom(A) for theset {x € V|(x: A) € A}. If (x, A) € A, we some-
times write A(x) for A. We write Ay € A if Ay is a prefix of A,.

2.2.3 Rewrite Rules and Global Contexts

We now define rewrite rules and global contexts, two distinctive features of the AIl-
Calculus Modulo with respect to the AIl-Calculus.

Definition 2.2.5 (Rewrite Rules). An object-level rewrite rule is a pair of objects. A
type-level rewrite rule is a pair of types. A rewrite rule is either an object-level rewrite
rule or a type-level rewrite rule.

This definition is different from the one in [CDO07]. There, a rewrite rule is a
quadruple made of two terms, a typing context and a type. The reason is that we
do not use exactly the same notion of rewriting (see[Definition 2.3.3).

A global context contains typing declaration for constants. They can also contain
rewrite rules.

Definition 2.2.6 (Global Contexts). A global context is a list of pairs formed by an
object constant with a type, pairs formed by a type constant with a kind and lists of
rewrite rules. The grammar for global contexts is given
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Remark that the rewrite rules are not added one by one in the context but by
groups. This will have its importance for the type system (seelRemark 2.4.11).

Notation 2.2.7. As for local contexts, we writeI') c 'y if 'y is a prefix of T'». We write
dom(T') for the set{ceT|(c: A) €T}. If (c, A) € T', we sometimes write'(c) for A.

The distinction between local and global contexts, as well as the presence of
rewrite rules in the global context, are distinctive features of our presentation of the
AIl-Calculus Modulo with respect to the original one. First, Cousineau and Dowek
do not distinguish between variables and constants (there are only variables). Sec-
ond, we want to make explicit the role of the rewrite rules to be able to dynamically
add them in a type-safe manner.

2.3 Rewriting

In the AIT-Calculus Modulo we distinguish two kinds of rewriting.

2.3.1 p-Reduction
The first kind of rewriting is S-reduction, which is defined as usual.

Definition 2.3.1 (f-reduction). The -reduction relation — g is the smallest relation
on terms containing (Ax : A.u)v — g ulx/v] for any A, u and v and closed by subterm
reduction.

Notation 2.3.2. We write —»E for the reflexive and transitive closure of —p and =g for
the congruence generated by — g.

2.3.2 TI'-Reduction

The second kind of rewriting is I'-reduction, the relation generated by the rewrite
rules of a global context I'.

Definition 2.3.3 (I'-Reduction). LetT be a global context. The I'-reduction relation
—r is the smallest relation on terms containing u —r v for each rule (u — v) € T and
closed by substitution and subterm reduction.

Notation 2.3.4. We write —. for the reflexive and transitive closure of —r, =r for the
congruence generated by —r, —pgr for —p U —r, —»z;r for the reflexive and transitive
closure of — gr and =gr for the equivalence relation generated by — gr.

As already mentioned, our notion of rewriting is different from the one in [CDQ7].
In the original presentation a rewrite rule is a quadruple (A, [, r, T) where A is a con-
text, I and r are, respectively, the left-hand side and the right-hand side and T is
their common type within the context A. Rewriting is defined as follows: if o is a
well-typed substitution from A to A, then o (1) rewrites to o (r) in
the context A,. Anticipating a bit, this means that rewriting and typing are two mu-
tually defined notions. Indeed, typing depends on rewriting through the conversion
rule which says that we can change the type of terms if the two types are convertible.

On the contrary, our notion of rewriting does not depend on typing. There-
fore, our definition is simpler. Moreover, untyped rewriting is what is usually im-
plemented in type checkers such as DEDUKTI. It would be completely inefficient
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to check the well-typedness of the substitution at each reduction step. Therefore
proving the correspondence between the AIT-Calculus Modulo and DEDUKTI will be
easier. The original presentation of AIl-Calculus Modulo is, in this respect, closely
related to Martin Lof Logical Framework [NPS90].

Of course, untyped reduction brings its own difficulties; in particular the proof
of subject reduction (Theorem 2.6.22) will require additional hypotheses.

We can now prove our first lemma about rewriting, which states that rewriting
respects syntactical categories.

Lemma 2.3.5 (Stratification of the Conversion). LetT be a global context.
¢ If Kind =gr f, then t = Kind.
* If Type =gr t, then t = Type.
o Iflix :T.Ky=prt, then t =Ilx K, Ti=pr I and Ky =gr Ka.

* If u=gr v and u is an object (respectively a type), then v is an object (respec-
tively a type).

Proof.
¢ By definition of rewriting, no term reduces to Kind or Type.

* Note that since ITx: T1.K] is a kind, if £ —gr [Tx: T1.K,, then t=Tlx: T5.K; or

t=Ix:T1.K with Ty —pr T or K1 —pr K2 respectively.
¢ B-reduction and I'-reduction preserve objects, types and kinds.
O

Definition 2.3.6 (Convertible Local Contexts). LetI" be a global context. Two local
contexts Ay and A are convertible inT if they declare the same variables in the same
order and, for all x € dom(A1) = dom(Az), Ay (x) =gr Az (x).

We write Ay =gr Ay if Ay and A are convertible inT.

2.4 Type System

We now give the typing rules of the AIl-Calculus Modulo. We start by the typing
rules for terms; then we proceed with the typing rules for local contexts. Finally, we
discuss well-typedness for global contexts.

2.4.1 Terms

Definition 2.4.1 (Well-Typed Term). We say that a term t has type A in global context
' and local context A if the judgment T; A -t : A is derivable by the inference rules of

We say that a term is well-typed if such an A exists.

Remark 2.4.2. The only difference with the AI1-Calculus is the replacement, in the
(Conversion) rule, of =g by the extended congruence =gr. The congruence now de-
pends on the global context.
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(Sort) T;A+ Type : Kind

. (x:A)eA
(Variable) TAFx:A
(c:A) el
(Constant) TArciA
I’AFt:1Ix: A.B ITAFu: A
A l- . ) i
(Application) AR tu: Blx/ul
. ITA(x:AFt:B I5AFTIXx: AB:s
Al
(Abstraction) T;AF Ax:Az:Tlx: AB
IAE A:Typ I’A(x:AFB:
(Product) © (x: 4) s
I5AFIIx: AB:s
. ;AR A I’AREB:s AzﬁrB
(Conversion)

I’A-t:B

Figure 2.4: Typing rules for terms in the AIT-Calculus Modulo.

(Empty Local Context) T e g

[ A [;AFU:Type x ¢ dom(A)

(Variable Declaration)
[ - A(x: U)

Figure 2.5: Well-formedness rules for local contexts
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2.4.2 Local Contexts

For local contexts, the typing rules basically ensure that type declarations are well-
typed. The rules are the same as for the AIT-Calculus.

Definition 2.4.3 (Well-Formed Local Context). A local context A iswell-formed with
respect to a global contextT if the judgment T -°* A is derivable by the inference rules

of|Figure 2.5

2.4.3 Global Contexts

Besides the new conversion relation, the main difference between the AIl-calculus
and the AIT-Calculus Modulo is the presence of rewrite rules in global contexts. We
need to take this into account when typing global contexts.

A key feature of any type system is the preservation of typing by reduction: the
subject reduction property.

Definition 2.4.4 (Subject Reduction). Let —, be a relation on terms. We say that a
global contextT satisfies the subject reduction property for —, if the following propo-
sition is verified.

For any local context A well-formed for T, terms t; and t» such that t; —, t» and
teem T, if I;AF 4 : T thenT; A1 T.

We write SR” (T') if T satisfies the subject reduction property for — .

In the AIl-Calculus Modulo, we cannot allow adding arbitrary rewrite rules in
the context if we want to preserve subject reduction for — gr.

In particular, as we will see, subject reduction for the S-reduction requires the
following property to hold:

Definition 2.4.5 (Product Compatibility). We say that a global context I' satisfies
the product compatibility property if the following proposition is verified for any
Al, Ag, Bl, Bg and A:

IFTHF"AandT;AFTlx: A1.By:sandT;AFTIx: Ap.By i s and Tlx : A1.By =gr
[Ix: A2.B>, then we have Ay =gr Az and By =gr Bs.

We write PC(I') when product compatibility holds forT .

On the other hand, subject reduction for I'-reduction requires rewrite rules to be
well-typed in the following sense:

Definition 2.4.6 (Well Typed Rewrite Rules). A rewrite rule (u — v) iswell-typed for
a global context T if, for any substitution o, any well-formed local context A and any
teem T,if T;AFo(w): T, thenT;AFo(v): T.

We writel - u— v if (u— v) is well-typed inT.

The simplest way to show that a rewrite rule is well-typed is to show that it is
strongly well-formed.

Definition 2.4.7 (Algebraic Term). A term is algebraic if it is built from constants,
variables and applications, variables do not have arguments and it is not a variable.

Definition 2.4.8 (Strongly Well-Formed Rewrite Rule). LetI" be a global context such
that — gr is confluent. A rewrite rule (u — v) is strongly-well-formed in ' if u is
algebraic and, for some local context A and term T, we have:
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e dom(A) = FV(u),
o THA,
e I;AFu:T and
e NARV:T
We writeT =" u— v if (u— v) is strongly well-formed inT.

We can now define the notion of well-typed global context. Contrary to terms
and local contexts, we give an axiomatic definition and not an inductive definition
based on inference rules. The reason is that there is not one obvious set of inference
rules for this notion. In fact, in this thesis, we define different notions of well-formed
global contexts based on different sets of inference rules. Each time, we prove that
well-formed global contexts are well-typed.

Definition 2.4.9 (Well-Typed Global Contexts). A global contextT iswell-typed if:

¢ (Well-Typed Declarations) forall (c: T) €T, we havel';¢ - T : s, for some sort
S;

¢ (Product Compatibility) I' satisfies the product compatibility property;
¢ (Well-Typed Rewrite Rules) for all (u — v) €T, we haveT' + u— v.

It is not obvious how to check that product compatibility and well-typedness of
rewrite rules hold. In fact they are undecidable properties (Section 2.6.6/ and Sec-
tion 3.7.5) and an important part of this thesis is dedicated to finding sufficient
criteria for them to hold. For instance criteria for typing of rewrite rules are given
in[Chapter 3|and criteria for product compatibility are given in[Chapter 4and Chap-
ter 5.

We now give a first notion of well-formed global context using inference rules:
strongly well-formed global contexts.

Definition 2.4.10 (Strongly Well-Formed Global Context). A global context isstrongly
well-formed if the judgmentT swf is derivable by the inference rules of[Figure 2.6

In[Section 2.6.3] we will prove that strongly well-formed global contexts are well-
typed.

Remark 2.4.11. The rule (Rewrite Rules) allows adding several rewrite rules at once.
On the one hand, only the confluence of the whole system is required (and not the
confluence after adding each rewrite rule). On the other hand, the rewrite rules must
be shown strongly well-typed independently from the other rules added at the same
time (i.e. inT and notinTE).

2.4.4 Substitutions

Definition 2.4.12 (Well-typed substitution). A substitution o is well-typed from A,
toAp inT, writteno : Ay ~~1 Ay if, for all x € dom(A;), we haveT'; Ay - o (x) : 0 (A1 (X)).

2.5 Examples

We give simple examples of strongly well-formed global contexts.
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(Empty Global Context)
@ swf
(Object Declaration)
I swf I ¢+ U:Type c¢ dom(T)
T(c: U) swf
(Type Declaration)
I swf I'o F K:Kind C ¢ dom()
I'(C: K) swf
(Rewrite Rules)
(VT - u; — v;
T swf —prz is confluent ZE=(up— v1)...(Up — vy)
I'E swf
Figure 2.6: Strong well-formedness rules for global contexts

2.5.1 Arithmetic Operations on Peano Integers

Addition and multiplication on Peano integers are easily expressed in the AII-Calculus
Modulo. We use parentheses in terms in the usual way.

We begin by the definition of Peano integers using three declarations of con-
stants.

nat : Type.
0 : nat.
S : nat — nat.
k times

oy . . . ’—_
For readability, we will write k instead S (S ... (S 0)).
We now declare a constant for the addition and we add rewrite rules related to it. We
use italics to distinguish variables.

plus : nat — nat — nat.
plusO0n — n.
plus (S n1) np — S (plus ny ny).

We do the same thing for the multiplication.

mult : nat — nat — nat.
mult0n — O.
mult (S n1) ny — plus ny (mult n; ny).

Then we add a weak form of equality (only convertible terms are equal).

eq : nat — nat — Type.
refl : [In:nat.eqn n.

The term ref1 4 has type eq (plus 2 2) 4. We have just proved that 2 + 2 = 4!
The rewrite system we have defined so far is orthogonal (it is left-linear and there
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are no critical pairs between the rewrite rules); this is not mandatory. For instance,
it is possible to complete the definition of plus with the following rewrite rules that
are symmetric to the previous ones:

plusn0 — n.
plus ny (S ny) — S (plus ny ny).

Other rewrite rules we might want to consider are rules for associativity and com-
mutativity of the addition:

plus n; (plus np n3) — plus (plus ny ny) n3.
plllS ny np — plllS np ni.

By[l.47] the rewrite system, although not orthogonal, is still confluent; therefore the
context is still strongly well-formed. However, the last rewrite rule is obviously not
terminating. We usually do not consider non-terminating rewrite rules as they make
type checking undecidable.

2.5.2 The Map Function on Lists
Let us define the type of lists of integers.

list : Type.
nil : list.
cons : nat — list — list.

The function map allows applying a function to every element of a list.

map : (nat — nat) — list — list.
map fnil — nil.
map f (cons hd tl) — cons (f hd) (map f tl).

For instance, we can use this function to increment the elements of a list by a con-
stant.

map (plus 3) (cons 1 (cons 2 (cons 3nil))) _’Er cons 4 (cons 5 (cons 6nil))

2.5.3 Addition on Brouwer’s Ordinals

We now define addition on Brouwer’s ordinals:

ord : Type.

0_0 : ord.

o0_S : ord — ord.

lim : (nat — ord) — ord.

o_plus : ord — ord — ord.

o_pluso Ox — x.

o_plus (0_Sx) y — o_S (o_plus xy).

o_plus (lim f) y — lim (Ax:nat.o_plus (f x) y).

2.6 Properties

In this section we give some meta-theoretical results about the AIl-Calculus Mod-
ulo. We start by basic lemmas, and then we prove more interesting properties about
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well-typed and strongly well-formed contexts, subject reduction and uniqueness of
types. Then, we show the undecidability of subject reduction and uniqueness of

types.

2.6.1 Basic Properties

This subsection gathers technical lemmas about the AIl-Calculus Modulo.
Lemma 2.6.1 (Inversion). If I';AFt: T then

e cither t = Type and T = Kind;

* ort=x and there exists A such that (x: A) € A and T =gr A;

* ort=cand thereexists A such that (c: A) el and T =gr A;

e ort = fu and there exist A and B such thatT;AF f:1Ix: ABandT;AFu: A
and T =gr Blx/u);

e ort=Ax:A.t and there exist B and a sort s such thatT;A +1Tlx: A.B: s and
[A(x: A Ft:Band T =grllx: A.B;

e ort =1Ilx: A.B and there exists a sort s such thatT;A + A: Type and I'; A(x :
AFB:sandT =s.

Proof. By induction on the typing derivation and Lemma 2.3.5 O
Lemma 2.6.2. No term containing Kind is typable.

Proof. By induction on the typing derivation, we have that, if ¢ typable, then Kind ¢
t. O

Lemma 2.6.3. Every sub-term of a well-typed term is well-typed.
Proof. By induction on the typing derivation. O

Lemma 2.6.4 (Local Weakening). Let Ay and A, be two local contexts. Assume that
Ay is a subset of \,.
IfT;A ¢t T, thenT; Ap 1t T

Proof. By induction on the typing derivation. O
Lemma 2.6.5 (Global Weakening). If I;AF t: T andT, 2T, thenTy;AFt:T.

Proof. By induction on the typing derivation. O
Lemma 2.6.6 (Inversion for %), If T F* A(x: A), thenT F* A andT;A - A: Type.
Proof. By induction on the typing derivation. O

Lemma 2.6.7 (Well-Typed Local Declaration). If T %A and (x: A) € A, thenT;A -
A:Type.

Proof. By induction on the typing derivation and local weakening (Cemma 2.6.4).
O
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Lemma 2.6.8. LetT a global context. Suppose that Ay and A, are two local contexts
such that Ay =gr Ay and T H¥ Ay,
IfT;A ¢t T, thenT; Ap -t T.

Proof. We prove that, for all local context X, if [ A1 X+ ¢: T, then [ ApZ £ : T. We
proceed by induction on the pair ( A;, derivation of I;A1Z F ¢: T') ordered lexico-
graphically.

¢ Cases (Sort) and (Constant). Trivial.
¢ Case (Variable):

- ift=xedomX) thenT;AZF¢t:T;

— if t = x € dom(A;) then (x: T) € A; and, therefore T =gr T2, for some
T, such that (x: T») € A,. Since A; is well-formed, there is a well-formed
(strict) prefix 2y of A such thatT'; =y F T : Type. By induction hypothesis
on Z;, we have I'; 2, - T : Type, where =, is the prefix of A, such that
E1 =gr Z2. By local weakening (Cemma?2.6.4), T'; A, - T : Type. It follows,
by the conversion rule, that I'; Ay - x: T.

* Cases (Application), (Abstraction), (Product), (Conversion). By induction
hypothesis.

Lemma 2.6.9. LetT be a global context whose declarations are closed.
Ifo:Ay~r Ay andT; A1t T, thenT; Ao Fo (1) :o(T).

Proof. By induction on the typing derivation.
¢ (Sort) Trivial.
¢ (Variable) By hypothesis.
¢ (Constant) Trivial, since global declarations are closed.

¢ (Application), (Abstraction), (Product), (Conversion) By induction hypothe-
sis.

O

Lemma 2.6.10 (Stratification). LetT" be a global context whose declarations are well-

typed.
T A andT;AVv t: T, then

e eithert is an object, T is a type andT'; A+ T : Type
e ortisatype, T isakind andT; A+ T :Kind
e ortisakindand T = Kind.
Proof. By induction on the typing derivation.
¢ (Sort) Trivial.

e (Variable) By well-typedness of local declarations (Lemma 2.6.7).
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¢ (Constant) By hypothesis.

e (Application) If r = uv, then T = B[x\v], ;A u:Tlx: ABand ;A v: A.
If ¢ is an object, then u is an object and, by induction hypothesis, I1x: A.Bisa
type and I'; A+ I1x : A.B : Type. It follows that B and B[x/u] are also types. By
inversion (Cemma 2.6.1), T';A(x: A) - B : Type and I'; A - A : Type. Finally, by
the property of well-typed substitutions (Lemma 2.6.9), I'; A - B[x/v] : Type.

If ¢ is a type, then u is a type and a similar reasoning applies.
e (Abstraction) If t = Ax: Au,then T=IIx: AB,T;A(x: A)-u:Band ;A
IIx:A.B:s.

If ¢ is an object, then u is an object and, by induction hypothesis, B is a type.
It follows that ITx : A.B is a type and, by induction hypothesis, I'; A I s : Kind.
Thus, s = Type.

If ¢ is a type, then u is a type and, by induction hypothesis, B is a kind. It
follows that ITx : A.B is a kind and, by induction hypothesis, s = Kind.

e (Product) If t =IIx: A.B,then T =5, ;A A:Typeand I'; A(x: A) - B:s.
If B is a type (respectively kind), then I1x : A.B is a type (respectively kind) and,
by induction hypothesis, s = Type (respectively s = Kind).

e (Conversion) IfI';AFt: A, thenT; A T:sand A =gr T.

If ¢ is an object, then by induction hypothesis, A is a type and I'; A - A : Type.
Since A =gr T, by[Lemma 2.3.5] T is also a type. Therefore, by induction hy-
pothesis, s is a kind. Hence, s = Type.

If ¢ is a type, then by induction hypothesis, A is a kind and I'; A + A : Kind.
Since A =gr T, by[Lemma 2.3.5] T is also a kind. Therefore, by induction hy-
pothesis, s = Kind.

If zis akind, then by induction hypothesis, A = Kind. Since A =gr T, bylLemma 2.3.5]

T = Kind.
O

2.6.2 Product Compatibility

The usual way to prove product compatibility is by showing the confluence of the
rewrite system.

Theorem 2.6.11 (Product Compatibility from Confluence). LetT be a global context.
If — gr is confluent, then product compatibility holds forT.

Proof. Assume that I1x : Ay.By =gr Ilx : A2.B; then, by confluence, there exist Ag
and By such that A, —>Er Ay, A2 —'EF Ay, By —'Er By and By —>Er By. It follows that
Al =pr Ag and31 =pr Bz. O
[Section T.4lprovides several criteria for proving confluence of — 4.
Moreover, product compatibility cannot be lost by adding object constants in
the global context.

Lemma 2.6.12. Let T be a well-typed global context. IfT'; @ - U : Type, then product
compatibility holds forT'(c: U).
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Proof. Suppose that I1x : A1.B1 =gr(c.uy) [1x: A2.B, '(c: U);AFTlx: Ay.By @ s1 and
I'(c:U);AFTIx: Az.By: s2.

Then we have, for a fresh variable z, (ITx : A;.By)[c/ z] =pr (x: A2.Bp)[c/ 2], T;(z:
U)Alc/z] = (IIx: A1.By)[c/z) : s and T (z: U)Alc/z] = (ITx : A2.By)[c/z] : sp.

By product compatibility for I', we have A;[c/z] =gr Az[c/z] and Bilc/z] =gr
Bs[c/z].

It follows that A; =BT (1)) A and B; =BT (V) Bo. O

Because type variables do not exist in the AIl-Calculus Modulo, the proof of the
lemma above does not work for type declarations.
However, we conjecture that the result holds nonetheless for type declarations.

Conjecture 2.6.13. LetT be a well-typed global context. IfT'; @ + C : Kind, then prod-
uct compatibility holds forT' (C : K).

2.6.3 Strongly Well-Formed Global Contexts

In this section, we prove that strongly well-formed global contexts are well-typed,
opening the road to an iterative way to check well-typedness of global contexts.

Lemma 2.6.14 (Well-typed Global Declarations). If T is a strongly well-formed global
context, then, forall (c: A) €T, we haveT';@ - A: s, for some sort s.

Proof. By induction on the derivation of I' swf and global weakening (Lemma 2.6.5).
O

Lemma 2.6.15 (Product Compatibility). Product compatibility holds for strongly well-
formed global contexts.

Proof. Byinduction on the derivation of I' swf, we have that — gr is confluent. There-

fore,[Theorem 2.6.11lapplies. O

A rewrite rule that remains well-typed in all possible extensions of the global
context I' is called permanently well-typed inT'.

Definition 2.6.16 (Permanently Well-Typed Rewrite Rules). A rewrite rule is perma-
nently well-typed in T if it is well-typed for any well-typed extension o > T.

The notion of permanently well-typed rewrite rule makes possible to type-check
rewrite rules once and for all and not each time we make new declarations or add
other rewrite rules in the context.

We will see in that not all well-typed rewrite rules are permanently
well-typed.

Remark 2.6.17. If a rewrite rule is permanently well-typed in T, then it is also per-
manently well-typed in any extension of T'.

Strongly well-formed rewrite rules are permanently well-typed.

Lemma 2.6.18. LetT be a well-typed global context and (u — v) be a rewrite rule. If
(u— v) is strongly well-formed in T, then it is permanently well-typed inT.

Proof. See[Theorem 3.2.11 O
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We are now able to prove that strongly well-formed global contexts are well-
typed.

Theorem 2.6.19. If T is a strongly well-formed global context, then it is well-typed.

Proof. We already know that global declarations are well-typed and
that product compatibility holds (Lemma 2.6.15).

We prove, by induction on the derivation of I" swf, that the rewrite rules in I" are
permanently well-typed.

¢ (Empty Global Context) Trivial.
* (Object Declaration), (Type Declaration) By[Remark 2.6.17
¢ (Rewrite Rules) By[Remark 2.6.17] Lemma 2.6.18land induction hypothesis.

O

2.6.4 Subject Reduction

The subject reduction property (also called type preservation property) is a key prop-
erty of a type system. It basically says that reduction preserves typing and it implies
that the set of well-typed terms is closed by reduction. It is the very purpose of a
type system to capture an information (the type) that is invariant by computation
(reduction). Therefore, a type system that does not satisfy such property is not in-
teresting. In particular, one cannot hope to use it to prove dynamic properties such
as termination.

We claimed in the previous sections that subject reduction for — g follows from
product compatibility. We now prove it.

Lemma 2.6.20 (Subject Reduction for —g). LetT" be a global context satisfying well-
typedness of rewrite rules and product compatibility and let A be a local context well-
formed forT.

IfT;AF 6 : T andty —p b, thenT; A1 0 T.

Proof. We proceed by inductionon ;A #;: T.
* (Sort), (Constant), (Variable). Impossible.

¢ (Application). #; = u;v; and there exist A and B such that I;A F u; : [Ix :
A1.B;, ;AR v Ayand T = By [x/vq].

— If u; = (Ax: Az.ug) and t, = up[x/v1] then, by inversion (Lemma 2.6.1),
AR Ay : Type, T5A(x : A2) F up : B and [x : A;.By =gr llx : Az.By.
By product compatibility, A; =gr Az and By =gr By. Therefore, we have
[;AF vy : Ay and, by the property of well-typed substitutions (Lemma 2.6.9),
we have T'; A+ ug[x/v1] : Bo[x/ v1]. Finally, since, by stratification (Lemma?2.6.10),
T is well-typed and T =gr Ba2[x/v1], we have I'; A uglx/vq]: T.

- If & = up vy with uy — g u, then the induction hypothesis applies.

- If , = wyvp with v; —g v then, using the induction hypothesis, we get
ARt : Bilx/ve]. Byl[Lemma 2.6.10 T;A + T : s. Therefore, using the
conversion rule, we have I'; A £, : T.
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¢ (Abstraction). f; = Ax: A;.u; and there is B such that T'; A+ A; : Type, I A(x :
A up:B,and T =1I1x: A.B.

- Iftp = Ax: Ay.up with uy —p Uz, then, by induction hypothesis, I'; A(x :
A7) F uy : B and therefore I'; AF Ax: Ay .up : TIx: A;.B.

- If tp = Ax: Ap.uy with A} —p Az, then, by induction hypothesis, we have
[;A+ Ap: Type. Byl[Lemma2.6.8 T; A(x: A2) F u; : B and therefore T; A -
Ax: Ag.up : Tlx : Ap.B. By[Lemma 2.6.10] we have T;A +Tlx : A.B : s.
Therefore, by the conversion rule, I; A+ Ax: Ay.uy : I1x: A;.B.

¢ (Product). t; =I1x: A;.Bjandwehave[';A+ A; : Typeand I A(x: A)) F By :s,
for some sort s.

- If &, =Tlx: A;.B; with By —4 B, then, by induction hypothesis, we have
I';A(x: A)) F By : s and therefore I'; A - 15 @ s.

- If ip =Tlx: A».B; with A} —g A, then, by induction hypothesis, we have
I A+ Ay : Type and, by[Lemma 2.6.8) T; A(x : A2) By : s. It follows that
IARTIx: Az.Bl LS.

¢ (Conversion). By induction hypothesis.
O
Subject reduction for —r directly follows from well-typedness of rewrite rules.

Lemma 2.6.21 (Subject Reduction for —r). LetT" be a global context satisfying well-
typedness of declarations and well-typedness of rewrite rules and let A be a local con-
text well-formed forT.

IfT;AF:Tandty —r 6, thenT; At : T.

Proof. Same proof as for[Lemma 2.6.200 Remark that product compatibility is not
needed, since we do not need to consider 3-redexes. However, well-typedness of
rewrite rules is needed to deal with I'-redexes. O

From the lemma above, one can deduce that product compatibility is not nec-
essary to prove subject reduction for —r. This is not quite true since one cannot
expect to prove that a (dependently typed) rewrite rule is well-typed without prod-
uct compatibility (see the proof of[Lemma 2.6.18).

Theorem 2.6.22 (Subject Reduction). LetI' be a well-typed global context and A a
local context well-formed forT.
Ifl";AI— t1:Tandt — BT L, thenT;AFt: T.

Proof. It follows from[Lemma 2.6.20land[Lemma 2.6.21] O
Corollary 2.6.23. Subject reduction holds for strongly well-formed global contexts.

Proof. By[Theorem 2.6.22] since strongly well-formed global contexts are well-typed
(Theorem 2.6.19). O
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2.6.5 Uniqueness of Types

Uniqueness of types is another key property of the AIl-Calculus Modulo. It states
that all the types of a given term are convertible. An important application of this is
that type checking can be reduced to type inference and a convertibility check.

Definition 2.6.24 (Uniqueness of Types). The property of uniqueness of types for a
global context T, written UT(I), is the following proposition.

For any terms t, Ty, T and local context A, if T F* A and T;A V- t: Ty and T; A -
t: Tg, then Tl =pr Tg.

Theorem 2.6.25. If T is a well-typed global context, then it satisfies the uniqueness
of types property.
Proof. By induction on the first typing derivation.

* (Sort), (Variable), (Constant) By inversion on the second typing derivation.

¢ (Application) Suppose that t = uv, ;A F u:Ilx: A;.By, ;A F v: A; and
T, = Bi[x/v]. By inversion on the second typing derivation, I;A F u : I1x :
A.Bp, ;A = v : Ay and Tz =gr Bz[x/v]. By induction hypothesis, we have
[x : A1.By =pr [1x : A2.B;. By product compatibility, By =gr Bz. Therefore,
T, = By[x/v] =gr Byx/v] =gr To.

* (Abstraction) By inversion on the second typing derivation and induction hy-
pothesis.

¢ (Product) By inversion on the second typing derivation, induction hypothesis

and[Cemma2.3.5

¢ (Conversion) By induction hypothesis.
O

Remark 2.6.26. We have also shown that the (Conversion) rule commutes with the
other inference rules.

Corollary 2.6.27. Uniqueness of types holds for strongly well-formed global contexts.

Proof. By[Theorem 2.6.25] since strongly well-formed global contexts are well-typed
(Theorem 2.6.19). O

2.6.6 Undecidability Results

We have seen that subject reduction (for —g) and uniqueness of types are key prop-
erties of the AIl-Calculus Modulo and that they follow from product compatibility.
We study in this section the exact relation between these properties and show that
one cannot decide in general if they hold for a particular global context.

Product Compatibility from Subject Reduction for — g

[Cemma 2.6.20] shows that product compatibility implies subject reduction for —g.
In this section we show that these properties are in fact equivalent.

First we prove that product compatibility always holds for non-dependent prod-
ucts.
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Lemma 2.6.28 (Non-Dependent Product Compatibility). LetI' be a global context
whose declarations are well-typed and satisfying the subject reduction property for 3.

If x: A1.By =gr [Ix: A2.B>, T FXA T;AFTIX: A1.By s, T;AFTIx: A By @ 5o
and By does not depend on x, then, for all a such thatT;A ‘- a: Az, we have B =gr
By[x/al].

Proof. By[Lemma 2.3.5and stratification (Lemma 2.6.10), s1 = sp. If s; = s, = Kind,
then [Lemma 2.3.5 applies. Otherwise, s; = s, = Type. From Ilx : A;.B; =gr Ilx :
A2.Br and ;A ¢ a: A we can derive I';A(y : By) F (Ax : Aj.y)a: Ba[x/a] for some
fresh variable y. By subject reduction, I'; A(y : B1) - y: B2[x/al. Finally, by inversion
(Cemma2.6.1), we have By =gr B2[x/al. O

Corollary 2.6.29. Let I be a global context whose declarations are well-typed and
satisfying the subject reduction property for f.
IfTHE™AandT; At (Ax: Ax)a: T then A=gr T.

Proof. By inversion (Cemma 2.6.1), we have T;A - Ax: A.x:Tlx: A2.Bo, ;A a: Ay
and T =gr B2[x/al. Also, by inversion, we have I'; A(x : A) F x: By (with A =gr B1),
for some By and I1x : A.By =gr I1x: A.B; =g [1x: A.A. Finally, by[Lemma 2.6.28] we
haVeAEﬁr Bg[x/a] =pr T. O

Lemma 2.6.30. LetT a global context whose declarations are well-typed.
PC(I) < SR?(I)

Proof. We already know that product compatibility implies subject reduction for f
(Cemma2.6.20).

We now prove the converse. Assume thatI' FS* A, T;A FTIx: A;.By : s, [;A
Ix: Ap.By : s, and Tlx : Ay.By =gr Ilx : Ap.B,. By stratification (Lemma 2.3.5/ and
Cemma 2.6.10), s; = sp. If s = s, = Kind then [Lemma 2.3.5 applies. Otherwise,
s1 =52 =Type.

e From I';A(a: A))(f : Ix : A1.B1) F (Ax: A1.f((Ay : A1.y)x))a : Balx/a]l we
deduce, by subject reduction, I';A(a : A2)(f : IIx : A1.By) F f((Ay: Ar.y)a) :
B[x/a). The set of typed terms being closed by taking a subterm (Cemma2.6.3),
we have, for some T, I';A(a : A2)(f : TIx: A1.B)) = (Ay : A1.y)a: T. Then,
by [Corollary 2.6.29, we have A; =g T. f-Reducing further, we have I';A(a :
Ap)(f : llx : A1.B1) F a: T. Thus, by inversion, T =gr Ap. It follows that
A; =gr As.

e From [TA(x: A))(f : TIx: A1.B)) F (Ay: A1.((Az : B1[x/y].2)(f¥))x : Ba, we
deduce, by subject reduction, I';A(x: A2)(f : [Ix: A;.By) - (Az: B1.2)(fx) : By.

By|Corollary 2.6.29) we have By =gr B>.
O

As a corollary, we get that subject reduction implies uniqueness of types.

Corollary 2.6.31. LetT a global context whose declarations are well-typed.
SRA (I = UTM)

Proof. Remark that, in the proof of Theorem 2.6.25] we only need product com-
patibility. Therefore, since subject reduction for f implies product compatibility

(Cemma 2.6.30), it also implies uniqueness of types. O
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Right Product Compatibility from Uniqueness of Type

Product compatibility implies uniqueness of types (Theorem 2.6.25). The converse
is not true. In fact, uniqueness of types is equivalent to a restricted notion of product
compatibility that we call right product compatibility.

Definition 2.6.32 (Right Product Compatibility). A global contextI satisfies theright
product compatibility property if, for all A, By, By, s1,s2 and A, if T = A, T;AFTlx:
A.By:s1, IAFIIx: ABy: sy andllx: A.By =gr [lx: A.By, then By =gr Bs.

We write R-PC(I') if T satisfies right product compatibility.

Remark 2.6.33. Product compatibility implies right product compatibility.

Lemma 2.6.34. LetT be a global context whose declarations are well-typed.
R-PC(T) < UTD)
Proof.

¢ To prove that right product compatibility implies uniqueness of types, it suf-
fices to adapt[Theorem 2.6.251 Remark that, in the proof, we do not need full
product compatibility. Indeed, from A; =gr A (induction hypothesis) and
[x : A1.By =gr Ilx : A2.B2, we can deduce that Ix : A1.By =gr Ilx : A1.B>.
Then, by right product compatibility, we have By =gr Bs.

* We now prove that uniqueness of types implies right product compatibility.
Assume that A FTlx: A.By: sy, A FTIx: A.By @ sp and Ix : A.By =gr [1x:
A.B;. By[Lemma 2.3.5land[Lemma 2.6.10] s; = $».

- If 5; = s, = Kind, then[Lemma 2.3 .5]applies.

- If s; = s, = Type, then we have [;A(f : TIx: A.B))(x: A+ f x: By, T;A(f :
[x: A.By)(x: A) + f:Tlx: A.B, and therefore T;A(f : Tlx: A.By)(x: A) -
f x: By. By uniqueness of types, we deduce B; =gr Bo.

Undecidability of (Right) Product Compatibility

In this section we prove that product compatibility and right product compatibility
are undecidable properties. Therefore, subject reduction and uniqueness of types
are also undecidable. This is not really surprising; product compatibility has a lot
to do with confluence and confluence is already undecidable for (first-order) term
rewriting systems. Indeed, we adapt the proof of undecidability for confluence found
in [Ter03] to product compatibility.

We will reduce the following word problem to both product compatibility and
right product compatibility.

Theorem 2.6.35 (Matijasevitch [Mat67]). The equality relation on words over the al-
phabet {a, b} generated from the set of equations E of[Figure 2.7is undecidable.

Lemma 2.6.36 (Undecidability of (Right) Product Compatibility). LetT be a global
context. Product compatibility in T is undecidable. Right product compatibility inT
is undecidable.
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x(yz) = (xyz
abaabb = bbaaba
aababba = bbaaaba
abaaabb = abbabaa
bbbaabbaaba = bbbaabbaaaa
aaaabbaaba = bbaaaa
Figure 2.7: Equational theory with an undecidable word problem.

Proof. We reduce the word problem for E to (right) product-compatibility.
To each pair of words p = (w;, w») on the alphabet {a, b}, we associate a global con-
text I',. Then we prove that w; =g w; if and only if (right) product compatibility
holds for I'p,.

I, is built from a prefix common for every pair.

Word : Type.

€ : Word.

a : Word — Word.
b : Word — Word.

Word corresponds to the type of words. € corresponds to the empty word. a and b
are word constructors, appending the letter a or b to a word.
This allows us to define an encoding |w| of a word w.

lel—¢€, lawg|— alwogl, |bwol— blwol,

Since we want to work modulo the equalities in E, we add them as rewrite rules in
both directions:

|abaabb| — |bbaabal.
laababbal — |bbaaabal.
labaaabb| — |abbabaal.
|bbbaabbaabal — |bbbaabbaaaal.
|laaaabbaabal — |bbaaaal.
|bbaabal — |abaabb|.
|bbaaabal — |aababbal.
labbabaal — |abaaabb.
|bbbaabbaaaal — |bbbaabbaabal.
|bbaaaal — |aaaabbaabal.

Finally, to get I, for a given pair p = (w1, w2), we add two type declarations and two
rewrite rules:

B : Word — Type.
T : Type.

T — Word — B |w;]|.
T — Word — B |w»]|.

First we prove that, if w, =g wy, then (right) product compatibility holds for I' (write
I for T';). By[Theorem 2.6.11] it suffices to prove that the reduction is confluent,
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and since —r is orthogonal to — 4, by [Theorem 1.4.7] it suffices to prove that —r
is confluent. Suppose that £y —»lf t and £ —>ii t,. Then ty = C[T,...,T] where C is
a multi context that does not contain T, t; = C;[Uj,...,U,] with C —»1’5 C; (without
using a T-rule) and T —»;;r Ui and 1 = C3[Wy,..., Vy] with C —[ C; (without using
aT-rule)and T —»EF V;. Since all rewrite rules except the rules on T are reversible,
we have C; —»Er C, C —»Er C, lunl —»Er |w-| and, for all i, U; —»EF Word — B |ws]|
and V; —>*r Word — B |w»|. It follows that both #; and t reduce to C[Word —
Blws|,...,Word — B |wy]].

Now, we prove that, if (right) product compatibility holds for I', then w; =g w».
Since Word — B |w;| — T — Word — B |w,|, we have, by right product compatibil-
ity, B lw1| =gr B |ws|. In fact we have also B |w| =gr B |w.| without T-rule (replace
any T and reduct of T by, say, Word). And, since the rewrite system without the T
rules is confluent and there are no possible g-redexes, we have B |w;| |r B |wy|. It
follows that |w;| | |wz| and w; =g wo. O

Corollary 2.6.37 (Undecidability of Subject Reduction). Subject reduction of -reduction
in a global context is undecidable.

Proof. It follows from[Lemma 2.6.30land[Lemma 2.6.361 O

Corollary 2.6.38 (Undecidability of Uniqueness of Type). Uniqueness of types in a
global context is undecidable.

Proof. Tt follows from[Lemma 2.6.34land [Lemma 2.6.36] O

2.7 Applications

As already said, the main purpose of the AII-Calculus Modulo is to serve as a logi-
cal framework, that is, a framework in which we express other logics or calculus by
encoding them. The AIl-Calculus has also been used with success for the same pur-
pose [HHP93} |[CHJ"12|. The advantage of the AIT-Calculus Modulo is that, thanks
to its extended notion of rewriting, it allows designing shallow encodings. The term
shallow has been used in the literature as an informal term meaning that an encod-
ing reuses the target language features to encode the corresponding features in the
source language. In particular, if there exists a notion of computation in the encoded
language, we want to preserve it by the translation. More concretely, a reduction step
in the source language should correspond to one or more § (I')-reduction steps in
the AIl-Calculus (Modulo). Another example: if there is a notion of judgment in the
source language, as in typed A-calculi or in natural deduction, then we want to link
this notion to the typing judgments of the AIT-Calculus (Modulo). An encoding that
is not shallow is deep.

In this section, we illustrate the use of the AIl-Calculus Modulo by giving shal-
low encodings for various logics and calculus. We proceed in the same way for each
example; first we define a global context declaring the constants and rewrite rules
used by the encoding; then we explain how we encode the elements of the source
language (depending on the encoded system these are terms, propositions and/or
proofs); finally we prove theorems formalizing the correspondence between the ini-
tial system and the encoding.
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2.7.1 Constructive Predicate Logic

In this section, we encode the constructive predicate logic [Gen35] (also called first-
order intuitionistic logic) following Dorra [Dor11].

Definition

Definition 2.7.1 (Terms). Let X be a signature, that is a set of function symbols and
predicate symbols with their arity, and let V be a set of variables.
Let set of first-order terms is defined as follows:

* ifx is a variable, then x is a term;

e ifcisa function symbol of arity n and t1,...t, aren terms, then c(ty,...,t,) isa
term.

Definition 2.7.2 (Propositions). The set of first order propositions is defined as fol-
lows:

e if P is a predicate symbol of arity n and t,, ... t, are n terms, then P(ty,...,t,) is
a proposition;

e T and L are propositions;
¢ if P and Q are propositions, then PAQ, Pv Q and P = Q are propositions;
¢ if P is a proposition, then ¥V x.P and 3x.P are propositions.

Definition 2.7.3 (Constructive Predicate Logic). Let X be a signature and = be a set
of proposition.

The proposition P is provable in the context E in constructive predicate logic if the
judgment Z -5 P is derivable from the inference rules of[Figure 2.8

Global Context

We introduce two types for the propositions and the terms of the logic:
prop : Type.

term : Type.

We also introduce constants for the logical connectors:

true : prop.

false : prop.

imp : prop — prop — prop.

and : prop — prop — prop.

Or : prop — prop — prop.

forall : (term — prop) — prop.

exists : (term — prop) — prop.

We add a constant to represent the proofs of a given proposition as a type:

prf : prop — Type.

Now we add rewrite rules to describe what the proofs of a proposition are. We mimic
the elimination rules of natural deduction.
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Pe= Z,PksQ

ErsT (True) =hP (Axiom) ErP =0 (= -intro)
EFsP=0Q EbszP , E+zP EFsQ
EFsQ (= -elim) ZF5PAC (A-intro)
EFsPAQ . EFsPAQ . _
TErP (Left-A-elim) TERQ (Right-A-elim)
EFz P : EkFzQ . .
=r.pvoO -V- ————— (Right-v-int
Zr; PV O (Left-v-intro) ZrPv0 (Right-v-intro)
EFs PVQ EksP = R ZFsQ = R ,
= (v-elim)
=ZFs R
Eks P Xx¢= . EFy Vx.P .
Erpvep o) Ery Plo/g el
EFs Plx/1] .
W (3-intro)
Etsdx.P EFs P = Q x¢Z2,Q .
(3-elim)

ZFsQ

Figure 2.8: Inference rules of Constructive Predicate Logic
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A proof of the implication imp P Q is a function from the proofs of P to the proofs
of Q:
prf Amp P Q) — prfP—prfQ.

A proof of a universally quantified formula forall P is a function mapping an x of
type term to a proof of P(x):

prf (forall P) — Ilx:term.prf (P x).
A proof of the universally valid proposition is the identity function:
prf true <— IIP:prop.prf P— prf P.
A proof of the absurd proposition is a function giving a proof for any proposition:
prf false < [IIP:prop.(prf P).

A proof of the conjunction and P; P, is a function from the proofs that P, implies P,
implies Q to the proofs of Q:

prf (and Py P;) — IIQ:prop.prf (imp P; (imp P; Q)) — prf Q.

A proof of the disjunction or P; P is a function building a proof of Q from a proof
that P; implies Q and a proof that P, implies Q:

prf (or Py P;) — IIQ:prop.prf (imp P; Q) — prf (imp P, Q) — prf Q.

A proof of the existentially quantified formula exists P is a function building a
proof of Q from a proof that P x implies Q for some x:

prf (exists P) — IIQ:prop.(Ilx:term.prf (imp (P x) Q)) — prf Q.

Embedding
Let I'FO be the global context defined in the previous section.

Definition 2.7.4 (Embedding of Signatures). IfZX is a signature, then the global con-
textT'(Z) is obtained from T'YC by adding the following declarations:

* for each function symbol f of arity n, we declare a variable f of type term” —
term;

* for each predicate symbol P of arity n, we declare a variable P of type term” —
prop.

We writeT instead of T'(X) when no confusion is possible.
Lemma 2.7.5. T'(X) is a strongly well-formed global context.
Proof. Trivial. O

The propositions of the constructive predicate logic are translated into AIl-terms
using the following function.
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Definition 2.7.6 (Embedding of Propositions).

llxl x where x is a variable
lf,.... )l = f||t1||.--||tn||

1P(tr,.... el = Pleall... N 2all

Tl = true

I LI = false

I1P=Ql = imp [|P| QI

1P AQI = and ||P] QI

IPvQl = or [Pl IQIl

[IVx.PJ = forall (Ax:term.|P|)

[|13x.P|| = exists (Ax:term.|P|)

Notation 2.7.7. When P is a proposition, we write |P| for prf | P|.

Definition 2.7.8 (Embedding of Hypothesis). Let Z = Hy,..., H, be a set of proposi-
tions. We write | 2| for the local context (hy : |Hl)...(hy : |Hpl).

Remark 2.7.9. Let E be a set of proposition and x1, ..., x, be the variables occurring
freein 2. The local context (x1 : term)...(x, : term) |Z| is well-formed in T (Z).

Soundness and Conservativity

We have the following correspondences between the proofs in constructive predi-
cate logic and the typing judgments for the context I" in the AIl-Calculus Modulo.

Theorem 2.7.10 (Soundness). If Z 5 P and xy,...,x, are the variables occurring
freeinE and P, then there exists m such thatT'(X);A - m: |PlandA = (x; : term)...(xy,:
term) |E|.

Proof. We proceed by induction on the proof of the sequent = +5 | P|. We write I for
') and Vp for (x; : term)...(x, : term), where x;,..., x;, are the variables free in P
but not occurring in =.

* (True) P = T We have |P| = IIx : prop.Ily : |x|.|x| and T;A + Ax : prop.Ay:
|x|.y : IIx: prop.Ily: |x|.|x].

¢ (Axiom) P € =. For some h, we have (h: |P|) € |Z|. Therefore, I';A+ h:|P|.

* (= -intro) P= A = B. We have |A = B| =g |A| — |B.
By induction hypothesis, I'; A(h: |A)) - g : |B|.
By (Abstraction), we have I'; A+ Ah:|Al.np : |Al — |B].
By (Conversion), it follows that ;A - Ah: |Al.wp : |P].
¢ (= -elim) P = B. By induction hypothesis, we have I';A; -7, : |A = B]|
and T;Ap F o 0 | Al

Since all the variable declarations in A; and A; are in A, by[Lemma 2.6.4] we
haveT';AF7m:|A = BlandT;AF 7y : | Al

Since |A = B| =gr |A| — |B|, by (Conversion), we have [;A 7, : |A| —
|B].

By (Application), I'; A+ my 72 : |BJ.
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¢ (A-intro) P = AAB. We have |AAB| =pr I[lx: prop.(|Al — |B| — [x]) — |xI.
By induction hypothesis, we have I';AqFm4: |Aland I';Ap - 7p 1 | BI.

Let A, = A(x:prop)(y:|Al — |B] — |x|). Since all the variable declarations
in A4 and Ap are in A,, by[Lemma 2.6.4] we have I';Ay - 74 : |Al and T;A, -
ng:|Bl.

By (Application), we have I'; Ao -y m4 g @ |x].

By (Abstraction), we have I';A - Ax : prop.Ay: (|A| — |B| — |x|).y ma np:
[x:prop.(Al — |B] — |x]) — |x|.

Finally, by (Conversion), we have I'; A+ Ax: prop.Ay: (|Al — |B| — |x|).yma7p:
|AAB].
¢ (Left-A-elim) P = A. By induction hypothesis, we have I'; A 7y : [AA B.

Since Ilx : prop.(|A| — [B| — |x|) — |x| =gr |A A B|, by (Conversion), we
have I'; A+ g : Ilx : prop.(|JA] — |B| — |x]) — |x|.

By (Application), we have I';A -7 || Al : (JA] — |B] — |A]) — | A|
Moreover, by (Abstraction), wehave I'; A- Ax: |Al.Ay:|Bl.x:|A| — |B] — |Al.
Therefore, by (Application), we have I'; A - g || All (Ax:|Al.Ay :|Bl.x) : |Al.

¢ (Right-A-elim) P = B. As (Left-A-elim), with 7 =7 || B|| (Ax: |Al.Ay :|Bl.y).

¢ (Left-v-intro) P = AvB. We have | AV B| =gr I1x: prop.(|Al — [x]) — (IB| —
|x]) — |x|, By induction hypothesis, we have I'; A g 4 : |Al.

Since all the variable declarations in A 4 are in A, by local weakening (Lemma 2.6.4),
we have I'; A(x : prop)(a: |Al — |x)(b: Bl — |x|) F 4 : | Al

By (Application), we have I'; A(x : prop)(a: |Al — [x)(b: |B| — [x) Famy:
| x].

By (Abstraction), we have [';A - Ax :prop.Aa: |Al — |x|.AD:|B| — |x|.amx:
IIx: prop.(|A| — |x]) — (IB| — |x]) — |x.

By (Conversion), we have I'; A+ Ax :prop.Aa:|A|l — |x|.Ab:|B| — |x|.amy:
|AvV B|.

¢ (Right-v-intro) P = Av B. As (Left-v-intro), with 7 = Ax : prop.Aa: |A| —
|x|.Ab:|B| — |x|.bp.

¢ (v-elim) By induction hypothesis, we have I';A; - 71 : [AV B, IA2 7o :
|A = PlandT;A3+7m3:|B = P|.

By[Lemma 2.6.4l we have [;A+ 7, : |[AVB|, T;AF72:|A = Pland ;A 73:
|B = P|.

Since |AV B| =gr [1x : prop.(|A| — |x]) — (IB| — |x]) — |x|, |A = P|=pr
|Al — |Bl and |[B = P| =gr |B| — |P|, by (Conversion), we have I[';A -
my : x : prop.(|Al — [x]) — (IB] — |x|) — |x|, [;A F 72 : |A] — |P| and
;A m3:|Bl|— |P].

By (Application), we have I'; A+ 7y || P|| 7w 73 1 | P).

e (V-intro) P = Vx.A. We have |Vx.A| =gr Ilx: term.|Al.
By induction hypothesis, we have I'; A4 - 4 : | Al
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By[Lemma 2.6.4] we have I'; A(x: term) - 74 : |Al.
By (Abstraction), we have I'; A+ Ax:term.m 4 : Ilx : term.|Al.

By (Conversion), we have I'; A+ Ax.term.m4 : [Vx.Al.

e (V-elim) P = A[x/t]. We have |A[x/t]| = |Allx/] £]l].
By induction hypothesis, we have I'; Ag - 7rg : [V x. Al
By[Lemma 2.6.8] we have I';A - 7q : [Vx. Al
Since [Vx.A| =gr [1x: term.|Al, by (Conversion), we have I'; A 7o : [1x : term.|Al.
By (Application), I'; A+ || £] : |Alx/t]].

e (3-intro) P = Ix.A. We have |Ix.A| =pr Iy : prop.(Ilz : term.|A[x/z]| —
yh — Iyl
By induction hypothesis, we have I'; A 7 : |Alx/ £]].

Bylocal weakening (Lemma 2.6.4), we have T; A(y : prop)(w : I1z: term.|A[x/z]| —
lyD F 7o [ALx/ 2]l

By (Application), we have I'; A(y : prop) (w : 1z : term.|A[x/z]| — |yD F w || £]l 7o :
Iyl

By (Abstraction), I; A+ Ay : prop.Aw : (Ilz : term.|Alx/z]| — |y]).w ||t 7o :
My :prop.(Ilz: term.|A[x/z]| — |y) — |yI.

By (Conversion), I; A Ay :prop.A: w: (Ilz: term.|A[x/z]| — |yD.w | £] 7o :
[3x.Al.

¢ (3-elim) By induction hypothesis, we have I';A; 7y : [Ix. Al and T;Ap 75 ¢
|A = P|.
BylLemma 2.6.4] we have I'; A+ 7y : |3x.Pland ;A 72 1 |[A = PJ.

By (Conversion), since |3x.P| =gr [1g : prop.Ily: term.prf (imp (Ax:term. P y) q) —
prf q, I;A F my : 1q : propJly : termprf (imp ((Ax : term.|P]) y) q) —

prf q.

By (Application), I';A 7y |Qll x 72 : |P].

O

Lemma 2.7.11 (Termination). Therelation — gr is weakly normalizing on well-typed
terms.

Lemma 2.7.12. Let P and Q be two propositions. If |P| =gr) |Q|, then P = Q.
Proof. By induction on P and Q. O

Lemma2.7.13. If I;A(x: A)F t: T and x does not occur in A, thenT'(x: A);AFt: T,
where x is now an object constant.

Proof. By induction on the typing derivation. O

Theorem 2.7.14 (Conservativity). If there exist a term n and a local context A such
thatT(Z) F* A and T(Z);A b 7 |P| with A = (x; : term)...(x, : term)|Z|, then = s
P is provable.
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Proof. We write I for I'(Z). By[Lemma 2.7.11]and subject reduction[Theorem 2.6.22]
we can assume that 7 is normal.
We proceed by induction on 7. Remark that r is an object.

* 7 cannot be a constant or an application headed by a constant, since object-
level constant have type prop or T — prop, for some 7.

* Suppose that 7 = Ax : U.u. By inversion, I;A(x: U) - u: V and |P| =gr [lx :
U.v.

- If P =T, then P is provable.

- If P =1, then |P| =pr [lx : prop.|x|. By product compatibility, we have
U =gr prop and V =gr |x|.

Therefore, we have I'; A(x : prop) - u: |x].
By[Lemma 2.7.13] we have ['(Z U {x}); A+ u:|x|.
By induction hypothesis, Z 5y x.
Substituting x by L, we have E+5 L.

- If P=A = B, then |P| =gr |A| — |B|. By product compatibility, we

have U =gr | Al and V =pr |BI.

Therefore, we have I'; A(x : |A]) - u: | B.

By induction hypothesis, =, A5 B is provable.
Therefore, Z+s A = B is provable.

— If P= AAB, then |P| =pr Ilx:prop.|(A = B = x) = x|. By product
compatibility, we have U =gr prop and V =gr [(A = B = x) = x|.
Therefore, we have I'; A(x : prop) F u: |[(A = B = x) = x|.
Byl[Lemma 2.7.13] we have T (Z U {x}); A+ u:|(A = B = x) = xl.
By induction hypothesis, Z Fyyy (A = B = x) = x.

Substituting x by AAB,weget =5 (A = B = (AAB)) = (AAB).
Since E+s A = B = (A A B) is provable, Z 5 A A B is also provable.

— If P=Av B, then |P| =gr [lx:prop.|(A = x) = (B = x) = xl.

By product compatibility, we have U =gr prop and V =gr [(A = x) =
(B = x) = x|.

Therefore, we have I'; A(x : prop) F u: |[(A = x) = (B = x) = Xx|.
By Lemma 2.7.13] we have TCU{x});AF u:|[(A = x) = (B =
x) = x|.

By induction hypothesis, Z sy (A = x) = (B = x) = x.
Substituting x by AvB,wegetZE+s (A = (AVB)) = (B = (AV
B)) = (AvVB).

Since (A = (AVB)) and (B = (AV B)) are provable, =5 AV Bisalso
provable.

- If P = Vx.A, then |P| =gr Ilx : term.|A|. By product compatibility, we
have U =gr termand V =gr | Al.

Therefore, we have I'; A(x : term) F u: | Al.

Byl[Lemma 2.6.4] we have T; (x: term)A - u: | Al.

By induction hypothesis, = 5 A is provable and, since x¢ =, E x5 Vx. A
is also provable.
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- If P=3z.A, then |P| =gr [1x : prop.|(Vz.A = x) = x|.
By product compatibility, we have U =gr prop and V =gr [(Vz.A =
xX) = x|.
Therefore, we have I'; A(x : prop) F u: |(Vz. A = x) = x|.
By[Lemma2.7.13l we have [(Z U {x});AF u:|(Vz.A = x) = x|.
By induction hypothesis, E Fsyy (V2. A = x) = x.
Substituting x by 3z.4, we get Etx (Vz.A = (Fz.4)) = (Jz.A).
Since E+3 Vz.A = (Jz.A) is provable, E x> Jz.A is also provable.

* Supposethatm=h u;...up. Wehave I’ A h:|H|for HeZand E 5 H.
We prove, by induction on g, that, if g < p, then there exists A; such that
LAFhu...uqg:|Agland Z k-5 Ay
If g =0, we take Ay = H.
If g = r +1, by induction hypothesis, I5AF h uy ... uy : |Aland E 5 A,.
We proceed by case analysis on A,.
- If A, =T, 1,A,v or 3, then u, has type prop and there exists a proposi-
tion U such that |Ul| = u4. If A, =T, wetake A, =U — U.If A, =1,
we take Ag = U.If A, = Py A P>, wetake Ay = (P, = P, = U) = U.
If A, =P VP, wetake Ay = (P, = U) = (P, = U) = U. If
Ay, =3x.Py, we take Ay = (3x.Po(x) = U) = U.
- If A, =P} = P», then u, has type |P1|. We take A; = P.
- If A; = Vx.Py, then uy has type term and there exists a term ¢ such that
£l = ug. We take Ag = Polx/1].

By[Theorem 2.6.25 |P| =gr | Ap|. Therefore, by[Lemma 2.7.12} P = A, is prov-
able.

O

2.7.2 The Calculus Of Constructions

In this section, we encode the Calculus of Constructions [CH88|, an extension of the
AIl-Calculus introducing polymorphism and type operators. This is (a particular
case of) the original motivational example for the AIT-Calculus Modulo [CDO7].

Definition

Definition 2.7.15 (Terms and Contexts). A ferm of the calculus of constructions is
either a variable x, an application uv when u and v are terms, an abstraction Ax : A.u
when A and u are terms, an productIlx : A.B when A and B are terms or a sort among
Type and Kind.

A context is a list of variables together with a term.

Definition 2.7.16 (Calculus of Constructions). A term t has type T in the context
A in the calculus of construction if the judgment A +°C t : T is derivable from the

inference rules of[Figure 2.9
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pCoC A ARU:s x & dom(A)

CoC
Fe T A(x: U)
| CoC A FCoC A (x:A)eA
A +¢C Type : Kind AFCCx:A

AFCC ¢ TIx: A.B ARCC A
AFCC ty: Blx/ul

Ax: A FCCt:B ARCCTIx: AB:s
AFCCAx: Ar:Tlx: AB

ARCC AL Ax: A FCCRB:s,
AFCCTIx: AB:s,

ARDCE:A ARPCB:s  A=4B
ARCCr:B

Figure 2.9: Typing rules for the Calculus of Constructions.

Global Context

For each sort s € {Type, Kind}, we declare a type constant U (the universe associated

with §) and a decoding function €, to see the elements of U; as types:

Utype : Type. (written Ut for short)
Ukind : Type. (written Uk for short)
€type : Ur — Type. (written et for short)
€xind : Ux — Type. (written ex for short)

We add the constant type of type Uk as the representative of Type in the universe Uk:
type : Uk.

We add representatives for the different product types in the universe Ut and Uxk:

Ml
(7,6
Mx,m -
H(K,[() :

Finally, we add rewrite rules to relate sorts and product seen as objects (whose type

: [Ix:Ur.(((eT x) — U) — Ur).
: IIx:Ur.(((eT x) — Ug) — Uk).
Ilx : Uk.(((ex x) — Ut) — Ut).
Ix : Uk.(((eg x) — Ug) — Ug).

is a universe) and seen as types (universes):

ex (type) — Ur.

er(Ilr.7) x y) — z: (€1 x).€T (¥ 2).
ex(Irx) X y) — Mz: (€1 X).ex (¥ 2).
etk 1) x y) — Mz (ex x).€1 (¥ 2).
eK(ILI(K,IQ x y) — Ilz: (ex x).ex (¥ 2).

Let I be this global context.
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Lemma 2.7.17. T is a strongly well-formed.

Proof. Trivial. O

Embedding

We now give two encodings for the terms of the Calculus of Construction. The first
one is an encoding as objects.

Definition 2.7.18 (Translation as Object).

| x| = X

[Type| = type

Mx:A.Bl = Il1) |Al (Ax: (et |AD.IBl) if A and B are types
MMx:AB| = ILI(T,K) |Al (Ax: (eT |AD.IBl) ifAisatypeandB isa kind
IIx: A.B|] = H(K,T) |A| (Ax: (ex |Al).IBl) ifAisakindand B is a type
ITix: A.Bl = Tl |Al (Ax:(ex |AD.IBl) if A and B are kinds
[Ax:A.t] = Ax:(etlAD.|¢] if Ais atype

[Ax:At] = Ax:(exlAD.|t| if Aisakind

[tul = |t lul

The second one is an encoding as types.

Definition 2.7.19 (Translation as Type).

Al
IKind||

es|Al  if A has type s.
Uk

This encoding extends to typing contexts in the obvious way:

Definition 2.7.20 (Translation of Contexts).

ol = 9
1Z(x: A 121 Cx = LAID

Soundness and Conservativity

Let I' be the global context defined in the previous section. We have the following
correspondences between terms of the Calculus of Constructions and their encod-
ing.

Theorem 2.7.21 (f-reduction [CDO7]). Ifty —p to then|ti| —g |12].

Theorem 2.7.22 (Termination [Dow15]). The relation — gr is strongly normalizing
on well-typed terms.

Theorem 2.7.23 (Soundness [CD07]). If Z+%C: ¢B, thenT - | 2| andT;||Z|| & |t] :
IB].

Theorem 2.7.24 (Convervativity [CDO7]). If T;|1Zll = N : |Bll and T FCX 12, then
there exists M such that then = +%C M : B.

2.7.3 Heyting Arithmetic

In this section we embed Heyting Arithmetic, following Dowek and Werner [DWO05].
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Definition

Definition 2.7.25 (Signature of Heyting Arithmetic). The signature 2y, of Heyting
arithmetic contains the following symbols:

e the predicate symbol = of arity 2;

e the function symbol O of arity 0;

e the function symbol S of arity 1;

¢ and the function symbols + and * of arity 2.

Definition 2.7.26 (Heyting Arithmetic). A proposition P built from the signatureX g
is provable under the hypotheses E in Heyting arithmetic if P is provable in construc-
tive predicate logic under the assumptions 2 and the following propositions (axioms):

e for all proposition P with free variable x:
Vn.Vm.n=m = P[x/n] = Plx/m];

e VYn.m(S(n) =0);

e VYnVm.S(n)=S(m) = n=m;

* Vnl0+n=n;

s Yn.VYm.S(n)+ m=Sn+m);

e Vn0xn=0;

e YnVmSn)*sm=nxm+m;

* P[x/0] = (Vn.P[x/n] = P[x/S(n)]) = (Vn.P[x/n]).

We write Z 4 P if P is provable under the hypotheses = in Heyting arithmetic.

Global Context

Since Heyting Arithmetic is a theory of constructive predicate logic, we extend the
context I defined in[Section 2.7.11
We add Peano integers.

nat : Type.

0 : nat.
S : nat — nat.

We identify the terms and the naturals.
term — nat.
We add a notion of equality.

eq : nat — nat — prop.
eq 00 — true.

eq (S I’ll) (S I’lg) — eqn np.
eq(Sn)0 — false.

eq0 (S n) — false.

We define addition.
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plus : nat — nat — nat.
plusO0n — n.
plus (S ny) np — S (plus ny ny).

We define multiplication.

mult : nat — nat — nat.
multO0n — 0.
mult (S ny) np — plus ny (mult n; ny).

Finally, we add an induction principle.

rec : [I p:(mat — prop).prf (p0) — (IIn:nat.prf (pn) — prf (p (Sn))) — In:
nat.prf (p n).

Let I'14 be this global context. We abbreviate it by I' when no confusion is possible.

Embedding

The encoding of terms and proposition of Heyting Arithmetic is the same as for any
theory of constructive predicate logic (see[Section 2.7.1).

Lemma 2.7.27. T4 js a strongly well-formed global context.

Proof. Trivial. O

Soundness and Conservativity

Theorem 2.7.28 (Soundness). IfE g4 P and x;,...,x, are the variables occurring
freeinZ and P, then there exists w such that, I'; A+ 1 : |P|, where A = (x1 : term)... (X, :
term) |E|.

Proof. Since we already haveTheorem 2.7.10] it suffices to consider the cases where
P is an axiom.

e If P=Vn.(S(n) =0) = 1), then |P| =IIn:nat.|S(n) = 0| — |L| and, since
|S(n) =0] —r | L], we take 7 = An.Ax : prf (eq (S n) 0).x.

e IfP=VnVm.S(n) = S(m) = n = m, then |P| =IIn:nat.Ilm:nat.|S(n) =
S(m)| — |n = m|. Since |S(n) = S(m)| —r |n = m|, we take 7 = An :nat.Am:
nat.Ax:|S(n) = S(m)|.x.

e IfP=VnO0+n=norP=Vn0xn=0,then |P| =IIn:nat.|T|. We take 7 =
An:nat.Ax:prop.dy:|x|.y.

e fP=VYnVvm.Sn)+m=S(n+m)or P=VYnVm.S(n) * m =n+* m+ m, then
|P| = IIn : nat.Ilm : nat.|T|. We take 7 = An : nat.Am : nat.Ax : prop.Ay:
|xl].y.

e If P=Q[x/0] = (Vn.Q[x/n] = Q[x/S(n)]) = (Vn.Q[x/n]), then we take
T =rec (Ax:nat.|Ql).

O

Theorem 2.7.29 (Conservativity). If there exist a term n and a local context A such
thatT F* A andT;A + 2 |P| with A = (x1 : term)... (X, : term)|Z|, then kg4 P is
provable.
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X2 Yo (Object Variable)

XY, Z Vr (Type Variable)

[ ]_“ 6o (Object Constant)

C,F €Er (Type Constant)

Ly xlcluviuV|Ax:U.t (Object)
|AX:K.t

LUV == X|C|Uv|UV|Ax:UT (Type)
|AX:K.T|Tx:U.T|TIX:K.T

K = Type|lx:U.K|IIX:K.K (Kind)

t,u,v x=  u|U|K|Kind (Term)

Figure 2.10: Syntax for the terms of the Calculus of Constructions Modulo

Proof. We proceed as in[Theorem 2.7.14l The case where 7 is a constant or an ap-
plication headed by a constant is now possible if the constant is rec. In this case we
proceed as for the variable case. O

2.8 The Calculus Of Constructions Modulo

The All-calculus is one vertex of the A-cube [B*91]. Extending the conversion of the
All-calculus with rewrite rules gives us the AIl-Calculus Modulo. Extending the AIT-
calculus with polymorphism and type operators gives us the Calculus of Construc-
tions. Mixing this two extensions we get a new system: the Calculus of Constructions
Modulo.

2.8.1 Terms and Contexts

To be able to have polymorphic terms (objects depending on types) and type opera-
tors (types depending on types), we need to extend our definition of terms allowing
types applied to types, types applied to objects, as well as abstractions over types.

Definition 2.8.1 (Term). An object is either an object variable in the set Vo, or an
object constant in the set €, or an application u v where u is an objects and v is an
object or a type, or an abstraction over a type Ax: U.t where t is an objectand U is a
type or an abstraction over a kind A X : K.t where t is an object and K is a kind.

A type is either a type variable in the set ¥r, or a type constant in the set €, or
an application U v where U is a type and v is a type or an object, or an abstraction
over atype Ax: U.V whereU andV are types or an abstraction over akind A X : K.U
where U is a type and K is a kind or a product over a type I1x : U.V where U and V
are types or aproduct over a kind I1X : K.U where K is a kind and U is a type.

Akind is either a product over a type I1x : U.K where U is a type and K is a kind
Akind is either a product over a kind 11X : K;.K> where Ky and K, are kind or the
symbol Type.

Aterm is either an object, a type, a kind or the symbol Kind.
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A = @|Ax:T)|AX:K) (Local Context)

Figure 2.11: Syntax for local contexts of the Calculus of Constructions Modulo

I5AFA: s ITA(x:AFB:sy
IARTIx: A.B: sy

(CoC-Product)

Figure 2.12: Product rule for the Calculus of Constructions Modulo

The sets Vo, VT, 60 and €1 are assumed to be infinite and pairwise disjoint. The
grammars for objects, types, kinds and terms are given|Figure 2.10

We also extend the notion of local context to cope with type variables.

Definition 2.8.2 (Local Context). A local context is a list of pairs of object variables
together with a type or type variables together with a kind. The grammar for local

contexts is given|Figure 2.11
The notions of global context (Definition 2.2.6) and rewriting (Definition 2.3.3)

do not change.

2.8.2 Type System

The only thing we need to modify to allow polymorphism and type operators is to
generalize the (Product) rule for typing terms.

Definition 2.8.3 (Well-Typed Term). We say that a term t has type A in a global
context ' and a local context A if the judgment I';A - t: A is derivable by the in-
ference rules of[Figure 2.4 replacing the rule (Product) by the rule (CoC-Product) of

The typing of local contexts is updated to check type variable declarations.

Definition 2.8.4 (Well-Formed Local Context). A local context A iswell-formed with
respect to a global contextT if the judgment T - A is derivable by the inference rules

0
The definitions of well-typed global contexts and strongly well-

formed global context do not change.
(Empty) [ e g

T A I;AF K :Kind X ¢ dom(A)
THF®AX: K)

(Type Declaration)

[ A [;A+ U : Type x & dom(A)
T A(x: U)

(Object Declaration)

Figure 2.13: Typing rules for local contexts
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2.8.3 Example

Polymorphism and type operators allow us defining polymorphic lists, that is lists
parametrized by the type of their elements:

PList : Type — Type.
PNil : IIX :Type.PList X.
PCons : IIX :Type.X — PList X — PList X.

Remark that none of the three declarations above are allowed in the AIT-Calculus
Modulo, since they all quantify over Type. We can now define a function Plength
computing the size of a polymorphic list:

Plength:IIX :Type.PList X — nat.
Plength X (PNil X) — 0.
Plength X (PCons X x [) — S (Plength X I).

2.8.4 Properties

Most of the properties we have proved so far for the AII-Calculus Modulo continue
to hold for the Calculus of Constructions Modulo (sometimes with minor modifica-
tions).

The inversion lemma has to be updated for the case where f is a
product.

Lemma 2.8.5 (Inversion for the Calculus of Constructions Modulo). IfT;AF t: T
then

e either t = Type and T = Kind
* ort=x and there exists A such that (x: A) € A and T =gr A.
s ort=candT=grI'(c).

e ort= fu and there exist A and B such thatT;A ‘- f:1lx: AB,T;A+ u: Aand
TEﬁFB[x/u].

e ort=Ax:A.uand thereexist B and s such thatT';A+1lx: AB:s, T';A(x: A+
u:B,and T =pr[x: A.B.

e ort=1IIx: A.B and there exist s; and s, such thatT;A+ A: s, T;A(x: A FB:
so,andT =s;.

Proof. By induction on the typing derivation. O

The following properties stated for the AIT-Calculus Modulo still hold without a
change and with the same proof for the Calculus of Constructions Modulo:

* Kind is not typable (Cemma 2.6.2);

* subterms of well-typed terms are well-typed (Cemma 2.6.3);
* local weakening (Lemma 2.6.4);

* the property of convertible local contexts (Cemma 2.6.8);
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* the property of well-typed substitutions (Cemma 2.6.9);

« stratification (CLemma 2.6.10) (a few more cases have to be considered in the
proof);

* product compatibility by confluence (Theorem 2.6.11);

* global weakening (Lemma 2.6.5);

* well-typed global declarations (Cemma 2.6.14);

 product compatibility preserved by object declarations (Lemma 2.6.12);

* product compatibility for strongly well-formed global contexts ;
« well-typedness of rules for strongly well-formed rewrite rules ;
* subject reduction (Theorem 2.6.22);

* uniqueness of typed (Theorem 2.6.25)

¢ and undecidablity of product compatibility (Cemma 2.6.36).

Inversion of local contexts has a slightly different statement:

Lemma 2.8.6 (Inversion for ™). If T F* A(x: A), thenT - A andT; A+ A: s for
some s € {Type, Kind}.

Proof. By induction on the typing derivation. O

Lemma 2.8.7 (Well-typed Local Declaration). IfT -* A and (x: A) € A, thenT;A -
A:s.

Proof. By induction on the typing derivation. O

Finally[Conjecture 2.6.13|can be proved for the Calculus of Constructions Mod-
ulo.

Lemma 2.8.8. If product compatibility holds for T, then it also holds forI'(C : K).

Proof. Since we now have type variables we can adapt the proof of[Lemma 2.6.12
O

2.8.5 Toward Pure Type Systems Modulo

A natural extension from there would be to consider an arbitrary pure type system
and extend it with rewrite rules. We conjecture that most of the results of this chapter
still hold for an arbitrary functional pure type system. However, in the AIT-Calculus
Modulo and the Calculus of Constructions Modulo, we use the syntactic classifica-
tion of terms into objects, types and kinds to ensure that rewriting respects the strat-
ification of terms. Such a classification does not exist a priori in pure type systems.
Thus, extra assumptions may be needed.
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2.9 Related Work

The first work on the combination of typed A-calculus and Term Rewriting Systems
is due to Breazu-Tannen [Tan88]. He showed that confluence is preserved when we
combine the simply typed lambda-calculus with a confluent TRS. This work was
soon extended to system F and to strong normalization by Breazu-Tannen and Gal-
lier [TG89] and, independently, by Okada [Oka89]. Barbanera [Bar90] extended the
result of strong normalization to the Calculus of Constructions (with §-conversion
only) and Dougherty [Dou92| proved the preservation of confluence and strong nor-
malization for any stable set of 1-terms.

An important step was reached by Jouannaud and Okada [JO91] with the in-
troduction of the General Schemata, a criterion for strong normalization able to
deal with higher-order rewrite rules, that is rewrite rules where the variables can
have functional types. The General Schemata was successively adapted to deal with
F® [BF93b], intersection types [BF93al, the systems of the A-cube [BFG94] and Pure
Type Systems [BG95].

A different and more powerful criterion called Higher-Order Recursive Path Or-
dering (HORPO) was then introduced by Jouannaud and A. Rubio [JR99] for simply
typed lambda calculus with higher-order rewrite rules.

In 1999, Jouannaud, Okada and Blanqui [BJO99] extended the General Schema,
keeping simply typed symbols, in order to deal with strictly positive types.

For formalizing the metatheory of the Calculus of Inductive Constructions in
Coq, Barras [Bar99] defined a notion of pure type systems with operators.

In 2000, Walukiewicz [Wal03] extended HORPO to the Calculus of Constructions.

But these works have in common that rewriting is always confined to the object
level. Blanqui [Bla05a} Bla04] worked on the termination in the Calculus of Algebraic
Constructions, an extension of the Calculus of Constructions with object-level and
type-level rewrite rules.

2.10 Conclusion

We have presented a new version of the AIl-Calculus Modulo. It differs from the
original presentation [CDO07] by two aspects: it uses an untyped notion of reduction
and it explicits the typing of the rewrite rules and makes it iterative. These two mod-
ifications clarify the relation between rewriting and typing and make the framework
closer to its implementation in DEDUKTI.

We have provided a complete meta-theoretical study of the AII-Calculus Modulo
which was lacking in its original presentation. In particular, we have emphasized the
role played by two properties, product compatibility and well-typedness of rewrite
rules, in the proofs of many basic results such as subject reduction and uniqueness
of types. These properties will be studied further in the next chapters. We have
also given several examples of encodings in the AIT-Calculus Modulo. Finally, we
have studied an extension of the AIT-Calculus Modulo with polymorphism and type
operators.
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Chapter 3

Typing Rewrite Rules

Résumé Ce chapitre étudie la propriété de bon typage des regles de réécriture.
Une regle de réécriture est bien typée si elle préserve le typage. Partant d'un cri-
tére simple, a savoir que le membre gauche de la regle doit étre algébrique et les
membres gauche et droit doivent avoir le méme type, on généralise progressivement
le résultat pour considérer des membres gauches non algébriques et mal typés. Cette
généralisation est particulierement importante en présence de types dépendants,
pour permettre de conserver des regles de réécriture linéaires a gauche et préserver
la confluence du systéme de réécriture. On donne aussi une caractérisation exacte
de la notion de bon typage pour les regles de réécriture sous forme d'un probleme
d’unification et on prouve son indécidabilité.

3.1 Introduction

We have seen in the previous chapter that most properties of the AIl-Calculus Mod-
ulo depend on two of them: product compatibility and well-typedness of rewrite
rules. In this chapter we are interested in finding sufficient conditions to ensure the
second property. The criterion that we have used so far is the following (for the proof

see[Section 3.2):

Definition 3.1.1 (Strongly Well-Formed Rewrite Rule). LetI" be a global context such
that — gr is confluent. A rewrite rule (u — v) is strongly-well-formed in T if, for some
local context A and term T,

* u is algebraic,

e dom(A) = FV(u),
o THCTA,

e A+ u:Tand
e NARV:T

Theorem (Strongly Well-Formed Rewrite Rules are Permanently Well-Typed). Let
I’ be a well-typed global context. If (u — v) is strongly well-formed in T, then it is
permanently well-typed.
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This criterion is not entirely satisfactory for two reasons. First, the restriction to
algebraic left-hand side is too strong. We would like to be able to type-check rewrite
rules such as this one:

getCst : (nat — nat) — nat.
getCst (Ax:nat.n) — n.

This rewrite rule extracts the value of a constant function. While it is well-typed (as
we will see), it is not strongly well-formed because of the abstraction on the left-
hand side.

Second, the restriction to well-typed left-hand sides is also too strong. This may
be more surprising. This restriction often makes the criterion incompatible with
another important property of the system: the confluence of the rewriting system
(recall that confluence is our main tool to prove product compatibility). The reason
is that, in presence of dependent types, strongly well-formed rewrite rules tend to
be non left-linear. And B-reduction do not behave nicely with non left-linear rewrite
rules (see[Section 1.4.3).

Consider the following example. We want to define basic functions to manipu-
late vectors. We first define the type Vector of lists parametrized by their length.

term : Type.

Vector : nat — Type.
vnil : Vector 0.
vcons : IIln:nat.term — Vector n — Vector (S n).

vnil is the empty vector. vcons builds a vector of size (S n) from an element of type
term and a vector of size n. Let us define the function head to extract the first ele-
ment of a non-empty vector.

head : [In:nat.Vector (S n) — term.
head n (vconsnel) —e.

This last rewrite rule is strongly well-formed. However, it is not left-linear since the
variable n occurs twice in the left-hand side. In fact, we can show that the resulting
rewrite system is not confluent (Section 1.4.3).

We can wonder what happens if we replace the last rewrite rule by its linearized
version where we use two different variables instead of two occurrences of the same
variable:

head n7 (vcons np el) — e.

The first consequence is that we immediately get back the confluence of the rewrit-
ing system since applies. But is it still the rewrite rule we wanted to
add? The short answer is yes. Indeed, both rewrite rules (the non left-linear rule and
its linearized version) match the same redexes as soon as the redexes are well-typed.
In other words, both rewrite rules have the same computational behaviour on well-
typed terms. If the redex r = o(head n; (vcons ny e l)) is well-typed (and normal)
then it necessarily verifies o(n;) = o(n2). Therefore, r is also a redex of the non-
linear rule since r = g, (head n (vcons n e I)) for o, = 0 U {n — o(n;)}. By replacing
the non-left-linear rule by its linearized version, we are able to recover confluence
of the rewriting system without modifying the behaviour of the rule on well-typed
terms. Moreover, we will see that this linearization is type-safe.

In this chapter, we build on these ideas to iteratively generalize the criterion for
well-typedness of rewrite rules given above in order to allow non-algebraic and ill-
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typed left-hand sides. In particular we justify the linearization of rewrite rules pre-
sented above. We conclude by a characterization of well-typedness for rewrite rules
as a problem of inclusion between two sets of solutions of unifications problems
and a proof of its undecidability.

3.2 Strongly Well-Formed Rewrite Rules

We begin by proving that strongly well-formed rewrite rules are permanently well-
typed.

Theorem 3.2.1 (Strongly Well-Formed Rewrite Rules are Permanently Well-typed).
LetT be a global context such that — gr is confluent. If (u — v) is strongly well-formed
inT, then it is permanently well-typed.

Most of the proofs in this chapter will follow the same scheme. The idea is to
prove that, if aredex o (u) is well-typed and u is algebraic then, first, the substitution
o is well-typed and, second, the redex has type o (Tp) where Ty is the type of u. More
precisely, from I'g;Ag - u: Tp and AR o(w) : T, we prove 0 : Ag ~»r Aand T =pr
o (Tp). Subsequently, by the property of well-typed substitutions and
by conversion, we can conclude from I'p; Ag - v: Ty that ;A o(v) : T.

For each theorem in the chapter, we prove a main lemma corresponding to the
first part of the proof.

Lemma 3.2.2 (Main Lemma for[Theorem 3.2.1). Let Ty be a global context such that
— g1, 1S confluent and let T be a well-typed extension of Ty. Assume that:

e tisalgebraic,

o THCXA,

e ;AFOo(): T

e andTo;AgF t: Tp.
Then, we have:

* T=pro(Tp),

e ;A o(R): s for somereduct R of Ty

* and, forallx € FV (1), [; A 0 (x) : Ty with Ty =gr o (Ao(x)).
Proof. We proceed by induction on ¢.

e If t = f is a constant, then FV(#) = ¢ and, by inversion, on the one hand,
To =pr, I'o(f) and, on the other hand, T =pr T'(f). Since a(Ty(f)) =T(f), we
have o(To) =gr T. By confluence 0f—>ﬁr0, Ty and I’y (f) have a common reduct
R. Since o(I'g(f)) —pr o(R) and a(To(f)) = ['(f) is well-typed, by subject re-
duction (Theorem 2.6.22), R is well-typed.

e If t = uv with u and v algebraic, then, by inversion, on the one hand, I'p; Ag -
u:Tlx: Ag.Bo, To; Ao F v : Ag and Ty =gr, Bolx/v]. On the other hand, I;A -
ow):Mx:ABT;AFo(w):Aand T =gr Blx/o(v)].
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By induction hypothesis on u, o (I1x : Ag.Bo) =gr [1x: A.B, [;AF o (R) : s for
some reduct R of I1x : Ag.Bg and, for all x € FV(u), I'; A+ o(x) : T with T =pr
(Ao (x)).

Let R=1IIx: Ay.By, we have I'; A+ o(lx: As.By) : s, ;AR IIx: A.B: s and
o(Ilx : A2.Bp) =gr Ilx : A.B; therefore, by product-compatibility, o(A2) =gr A
and o (B>) =gr B.

It follows that o (To) =gr o (Bolx/v]) =gr o (Bz2[x/v]) =gr Blx/o(v)] =gr T.
Moreover, we have B, [x/v] is areduct of Tp and I'; A+ o (B2 [x/v]) : s.

By induction hypothesis on v, for all x € FV(v), I A+ g (x) : Ty with Ty =gr
0 (Ag(x)).

e If t = ux with u algebraic and x a variable, then, by inversion, on the one hand,
Lo;Ag = u:1ly: Ag.Bo, Io; Ao = x: Ag, Ao =gr, Ao(X), and Ty =gr, Boly/x]. On
the other hand, I; Ao (u) : Ty : A.B, ;A o(x): A, and T =gr Bly/o(x)].

By induction hypothesis on u, o(Ily : Ag.Bo) =grlly: AB,I;AF0(R):s for
some reduct R of Tp and, forall ze FV(u),T; A+ o(z) : T, with T, =pr 0(Ao(2)).

Let R=1Ily: A».By, we have ;A F+ o(Ily : A2.By) : s, AR Ily: A.B: s and
o(Ily: A2.Bp) =gr Iy : A.B; therefore, by product-compatibility, o(A2) =gr A
and o (B>) =gr B.

Itfollows that T =gr Bly/o(x)] =gr 0 (B2)[y/o(x)] = o (Ba2[y/ x]) =gr o (Boly/x]) =gr
O'(To).

To type o(x), we can take T = A, since I';A F o(x) : Awith A =gr 0(Ao) =gr
0 (Ag(x)).

Bs is areduct of By and, by inversion, o (B) is well-typed.

It follows that the substitution o is well-typed.

Lemma 3.2.3. LetT be a global context and A be a local context well-formed inT.
If, for all x € dom(Ag), T; A= o0(x) : Ty with Ty =gr 0(Ag(X)), then o : Ag ~r A.

Proof. By induction on T - A,.
¢ (Empty Local Context) Trivial.

e (Variable Declaration) Suppose that, Ag = Ay(x: A), T ™ Ay and ;A5 - A
Type.
By induction hypothesis, o : Ay ~>r A, that is to say, for all x € dom(A,), ;A -
o(x):0(Ag(x)).

We have I'; A+ o (x) : Ty with Ty =gr 0 (A). Moreover, by[Lemma 2.6.9, we have
;A o(A) : Type. It follows, by conversion, that I'; A+ a(x) : 0 (A).

Thus, 0 : Ag ~1 A.

We can now prove the theorem:
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Proof of(Theorem 3.2.11 Let (u — v) be a strongly-well-formed rewrite rule for Ty
and let I" be a well-typed extension of T'g. Assume that, for some A, o and T, we
haveT'F* Aand ;A o(w): T.

By hypothesis, for some Ag and Ty, T'g; Ag F ©: Top and I'g; Ag F v : Tp. By the main
lemma (Lemma 3.2.2), T =gr 0(Tp) and, for all x € FV(u) = dom(Ag), T;A - o(x) : Ty
with Ty =gr 0(Ag(x)). By[Lemma3.2.3] 0 : Ag ~~r A.

Finally, by the property of well-typed substitutions (Lemma 2.6.9), we have T'; A -
o (v) : a(Tp). It follows, by conversion, that ;A - o(v) : T. O

3.3 Left-Hand Sides Need not be Algebraic

We now try to weaken the assumption of algebraicity for left-hand side in Theo-
rem 3.2.1. First, remark that this assumption cannot be dropped completely. We
have

I; (x :nat — nat)(y :nat) - S(x y) :nat and
I';(x :nat — nat)(y:nat) - x (S y) :nat.

However, the following rewrite rule is not well-typed.
Sxy)—=x@Sy.

Indeed, using this rewrite rule, we have

S ((Ax :prop.0) true) — (Ax: prop.0) (S true).

While S ((Ax : prop.0) true) has type nat, (Ax : prop.0) (S true) is obviously ill-
typed.

The assumption of algebraicity is used to ensure that we cannot substitute the
variables with terms of the wrong type without losing well-typedness. In fact, the
types of the free variables of a well-typed algebraic term are uniquely defined. More-
over, the type of an algebraic term as well as the types of its free variables can be
inferred. This is basically what is used in the proof of[Lemma 3.2.2] This property is
not specific to algebraic terms and it is closely related to type inference.

Algorithms able to reconstruct the type of a term with only partial information
about the type of the free variables exist. They are usually based on bidirectional
type systems. In these systems, the typing rules are split in two groups: typing rules
to synthesize (infer) the type of a term and typing rules to check that a term has a
given type.

Instead of requiring that the left-hand side of a rewrite rule is algebraic, we can
require that its type as well as the types of its free variables can be inferred by some
bidirectional typing system defined below.

Definition 3.3.1. The relations I-; and I\~ are defined inductively from the inference

rules of|Figure 3.1

The judgment I'; A1;Z |F; £ = T, A, is an inference judgment. It means: knowing
the types of the variables in A; and X, we can synthesize the type T for ¢ as well as
the types of the variables in A,. The variables in A; and A, are variables that are
globally free in the term being explored (that is, the variables that will be matched)
and the variables in X are variables that are bound.

The judgment I';A}; 2 I, t < T | Ay is a checking judgment. It means: knowing
the types of the variables in A; and X, we can check that ¢ has type T and synthesize
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(Sort) I A; 2 IF; Type = Kind, A
(f:AeT
OAZE f=AA

(x:A)eX
AZIFE, x> AA

(Constant)

(Z-Variable)

(x:A)eA

A-Variabl
(A-Variable) ASI x> AA

(S-Application)

T;ALZIF, u=>T,A) T—»Erl'lx:A.B ;A2 IF.ve Al Ag

T;A1; 21 uv = Blx/ul,As

(S-Abstraction)
AL ZIF. A<= Type | A, T;A0;2(x: Al u= B,A3
AL ZIR Ax: A u=>Tlx: A.B,A3

(Product)

A2, A<=Type | A IAZ(x: A)lF.B<s|As
A2 TIx: A.B=s,A3

x ¢ dom(AX) FV(A)ndom(Z) =@

(Free Variable)
AZIFcx<=A|lAx:A)

F;AI;Z“_I'LLDAZ,AZ Al =pr A2

(Inversion)
ALGZIFcuse A | Ay

(C-Abstraction)
T—»Er H.X,'ZAz.B F;Al;z”_c AlcType|A2
A1 =pr Az T;A2;3(x: Ay lFe u< Bl As
DGAGEIFcAx: Au<sT| Az

(C-Application)

(x:A)ex A2 u<sTlx: AB| A
ALZIFcux<B| Ay

Figure 3.1: Bidirectional typing rules for rewrite rules
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a type for the variables in Aj.

Remark 3.3.2. The typing system of[Figure 3.1] is very close to an algorithm able to
infer the type of a term together with the types of its free variables. Indeed, for each
term, at most one inference rule of |- or|; can be applied. Moreover, we can see -,
and |+; as two mutually recursively defined functions. |; is a function taking two
local contexts A1 and X as well as a term t as arguments and producing a term T and
a local context Ay such that the judgment T; A2 1 t = T,A, is derivable. |- is a
function taking two local contexts A and X and two terms t and T as arguments and
produces a local context A such that the judgmentT;A; 2 |F. t < T | Ay is derivable.
Assuming that the side conditions (for instance the congruence) are decidable, this
gives us an algorithm to infer the type of a term when the type of some free variables
is missing.

Theorem 3.3.3. LetT be a global context. If, for some A and T, we have:
e I50;0IF; u= T,A,
e andT;Avv: T,

then (u — v) is permanently well-typed inT.
As previously, we first prove a main lemma.

Lemma 3.3.4 (Main Lemma for[Theorem 3.3.3). Let T be a global context andT be
a well-formed extension of T'y. Assume that:

o TH™AG(T),

I AcE)Fo(0): T,
e dom(Z) ndom(o) = @,
e dom(Z) N codom(o) = @
e ando Ay ~1 A.
We have
o if To; A 21 t= Ty, Ag then

- T =pr o(To),
- TAc(2) Fo(Ty): s or Ty =Kind

— ando:Ng~r A;

o if T; A ZlFct =Tyl Ao, T =pr 0(Ty) andT;Aoc X)) Fo(Ty): s, theno : Ag ~r
A.

Proof. We proceed byinductiononT'o;A;Z1F; t = Ty, Agand To; A Z ke £ < Ty | Ap.
e CaseI'g;A1;2Z1F; t= Tp, Ag.

- (Sort) By inversion onI'; Ac(Z) o () : T, we have T = Kind = o (7).
- (Constant) By inversion, T =gr I'(f) = To(f) = 0(To(f)) = o (Tp).

- (Z-Variable) By inversion, T =gr 0(2Z(x)) = 0(Tp). Since Ao (Z) is well-
formed, I'; Ao (2) o (Z(x)) : Type.
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— (A-Variable) By hypothesis, we have I'; A - o (x) : 0(A1(x)), Ag = A7 and
Ao Fo(x): T.
We have I;A + 0(x) : 0(A1(x)), and, by weakening, we have I'; Ao (Z) +
o(x):0(A(x)).
Therefore, by uniqueness of types, o (A1 (x)) = prT.
Finally, by stratification, I'; Ag (£) F 0 (A; (x)) : Type.

— (S-Application) Suppose that t = uv, To = Bo[x/v], To; A1;Z1F; u= P Ay,
p —»Er IIx: Ag.Bp and I'g; Ap; Z Ik v <= A Ap.
By inversion, we have I'; Acg(2) o (u) : IIx: A.B,T;Ac(Z) o (v) : Aand
T =gr Blx/o(v)].
By induction hypothesis on u, we have o (I1x : Ag.By) =grllx: A.B,T;Ac(2) -
o(IIx:Ag.By) :s,and 0 : Ap ~>r A.
By product-compatibility of T', a(Ap) =gr A and o (By) =gr B.
By induction hypothesis on v, 0 : Ag ~~1 A.
Moreover, g (Ty) = o (Bglx/v]) =gr Blx/o(v)] =pr T.

— (S-Abstraction) Suppose that t = Ax: Ag.u, Ty =x: Ag.By, To; A1; Z ¢
Ag <= Type | Ay and T'g; Ag; Z(x: Ag) IF; u = By, Ag.
By inversion, we have I'; Ac(Z) - o (Ap) : Type, I'; Ac (Z(x: Ag)) Fo(u) : B
and T =gr [x: 0(Ag).B.
By induction hypothesis on Ay, 0 : Ay ~>1 A.
By induction hypothesis on u, o(Bp) =gr B and o : Ag ~r1 A.
Thus, o(Tp) = o(I1x : Ag.Bo) =gr I1x:0(Ag).B=pr T.

- (Product) Suppose that t =Tlx: A.B, Tp = s, T'g;A;; Z -, A < Type | A
andTp; Ag;Z(x: A)IF. B<s| Ag.
By inversion, T =5, ;A0 (2) -0 (A) : Type and I'; Ac(Z(x: A) Fa(B):s.
By induction hypothesis on A, o : Ay ~»1 A.
By induction hypothesis on B, 0 : Ag ~1 A.

* CaseT'g;A1; 20l <= Ty | A, T =gr (Tp) and T;Ac (2) -0 (Tp) : s.

- (C-Abstraction) Suppose that t = Ax: Ay.u, 0(To) =gr T, I'; Ao (2) = o (Top) :
s, To —>EF [x: A2.Bo, A1 =gr Az, To; A1;Z 1 Ay < Type | Az and T'g; Ap; Z(x:
A F.u<= By | Ap.

By inversion, T =gr [1x:0(A1).B, [;A0(Z) -0 (A1) : Type and I'; Ao (Z(x :
A)Fo(u):B.

Since o (I1x : A2.By) =gr 0(Tp) =gr T =pr I1x : 0(A1).B, we have, by product-
compatibility, o (Bo) =gr B.

By induction hypothesis on Ay, 0 : Ap ~~1 A.

By induction hypothesis on u, o : Ag ~~1 A.

- (C-Application) Suppose that t = ux, (x: Ag) € £ and I'p; A2 . u <
Ix: A().T() | A().

By inversion, I;Ac(Z) Fo(w) :Tlx: A.B,T;Ac(Z)Fx: A A =gr oZ(x)) =
o(Ap) and T =gr B.

We have o (ITx : Ag.To) = [Ix.0(Ap).0(Tp) =gr [lx: A.B and, by induction
hypothesis, 0 : Ag ~>1 A.
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— (Free Variable) Suppose that t = x and x ¢ dom(A;Z) and Ag = A1 (x: Tp).
Since we have o : A; ~»1 A, to prove o : Ag ~~r1 A, it suffices to show that
I5AFo(x):0(Tp).

We have ;Ao (2) - o(x) : T. Since o (Tp) is well-typed, by conversion, we
haveT'; Ao (Z) Fo(x) : 0(Tp).

Since dom(X) N codom(o) = @ and FV(Ty) ndom(Z) = @, we have I'; A -
o(x):0(Ty).

— (Inversion) By induction hypothesis.

Using the main lemma, we can prove[Theorem 3.3.3

Proof oflTheorem 3.3.3 Let T be a well-typed extension of Ty and let (« — v) be a
rewrite rule such that T'o; @; @ IF; u = Ty, Ag and T'g;Ag - v : Tp.

Assume that, for some A, 0 and T, we have T F* A and T;AFo(u): T. By global
weakening, we have I'; Ag - v : Ty.

By the main lemma (Lemma 3.3.4), T =gr 0(Tp) and 0 : Ag ~1 A.

Finally, by Lemma 2.6.9] we have I;A - a(v) : a(Tp). It follows, by conversion,
thatT;AFo(v): T. O

As a corollary, we get that the first rewrite rule from the beginning of this chapter
is well-typed.

Corollary 3.3.5. The rewrite rule (getCst (Ax : nat.n) — n) is permanently well-
typed.

Proof. Using the rules (Constant), (Inversion), (C-Abstraction) and (Free Variable)
we have:

(nat:Type) eI’
I';¢; 9 I-i nat = Type, @ n#x
T;9; ¢ lFc.nat < Type | @ T;%;(x:nat) k. n <nat | (n:nat)
I;0;0F: (Ax:nat.n) <nat — nat | (n:nat)

It follows, by the rule (S-Application)
I;¢;¢1-; getCst = (IIx:nat.nat) — nat,d
I;0;0 k. (Ax:nat.n) <nat — nat | (n:nat)
I;¢; @1 getCst (Ax:nat.n) = nat, (n:nat)

Moreover, we have I'; (n : nat) - n:nat. Therefore, by[Theorem 3.3.3 the rewrite
rule (getCst (Ax:nat.n) — n) is permanently well-typed. O

Chapter 4|also contains many examples of rewrite rules with non-algebraic left-
hand sides that can be shown well-typed usingTheorem 3.3.3
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T;A;ZIF2 Ap < Type | Az

(Abs-No-Check) T— ;;r Mx:A,.B T30 2(x: A)IF2 u<B| A3

DALGZIF2 Ax: Aj.u<T| A3
AGZIF u= Ay, Ay
DA ue Al Ay
LAGEIF v= AN,
DAGZIF2uv<BlA;

(Inv-No-Check)

(App-No-Check)

(No-Check) D ALZIF2 u<B| A

Figure 3.2: Additional typing rules for rewrite rules

3.4 Left-Hand Sides Need not be Well-Typed

The bidirectional type system of[Figure 3.1]is sound with respect to |-.

Theorem 3.4.1. LetT be a well-typed global context.
IFTHFYA T andT;A 2 = T,Ap, thenT FY A2 andT; A2 -t T.

Proof. ByinductiononT;A; 21k t= T, As. O
Surprisingly, Theorem 3.4.1lis not used in the proof of Theorem 3.3.3] The as-

sumption that the redex is well-typed is sufficient. Looking closely at the proof
of we remark that some premises of the rules of I; and I, are never
used. In particular, in the rules (Inversion) and (C-Abstraction), the hypothesis
Ay =gr A is not used.

Since we are not interested in being sound with respect to +, they can be re-
moved. Moreover, we can make additional improvements. For instance, if some
variable is not used in the right-hand side of a rewrite rule, it is not necessary to be
able to infer its type since it will not be used. More generally, all the parts of the
left-hand side that do not give any new information about the type of the term or
the types of the free variables occurring in the right-hand side do not need to be
inspected.

These considerations lead us to some improvements of the relations I-; and I+-.

Definition 3.4.2. The relations IFlz. and |2 are defined inductively from the typing
rules of|Figure 3.1l and|Figure 3.2

H—% features two new rules (Inv-No-Check) and (Abs-No-Check) similar to (In-
version) and (C-Abstraction) but without the unnecessary conversion test. We also
add the rules (No-Check) and (App-No-Check) allowing to skip inspecting some
subterm when its type (or the type of a superterm) is already known.

Using this new type system,Theorem 3.3.3]can be generalized one step further.

Theorem 3.4.3. LetT be a global context. If T'; ¢; @ Il—lz. u=>T,AandT;A+v:T, then
(u— v) is permanently well-typed.

As usual, we first prove the corresponding main lemma. We will use the following
notation.
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Notation 3.4.4. Let A be a local context and o be a substitution. We write o (A) for the
context defined as follows:

() = @
ogAg(x:A) = oAy if x € dom(o)
o0(QAp(x:4) = o(Ay)(x:0(A) ifxé¢dom(o)

Lemma 3.4.5. Let T’y be a global context and T be a well-typed extension of Ty. As-
sume that:

s T AG(Z),

e SAcX)Fo(): T,

e g:A;~TA,

e dom(Z)ndom(o)=¢

e and dom(X) N codom(o) = @.
We have

 if To; A2y IH £= Ty, Ao, then

- T =pro(To),
- TAc(@) Fo(Ty): s or Ty =Kind,

- 0:Ag~TA,
o if To; A2 IF2 1= T | Ao, T =pr 0(Tp) andT;Ac (2) o (To) : s, then
- 0:Ag~TA,

Proof. As in the proof of[Lemma 3.3.4] we proceed by induction on Tp; Aj; 2 IF; £ =
To,Ag and T'g; A 2y k¢ £ < Ty | Ag. We only consider the new cases.

¢ (Abs-No-Check) Same as (C-Abstraction).
¢ (Inv-No-Check) Same as (Inversion).
* (App-No-Check) By induction hypothesis.

¢ (No-Check) Trivial.

O
Proof of[Theorem 3.4.3 Same as [Theorem 3.3.3| but using [Cemma 3.4.9] instead of
Lemma 4 O

We are now able to prove that the second example from the beginning of this
chapter is well-typed.

Corollary 3.4.6. The rewrite rule (head n; (vcons ny e l) — e) is permanently well-
typed.
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Proof. Using the rules (Constant), (S-Application) and (Free Variable), we have, on
the one hand,

;0,9 Il—lz. head n; = Vector (S n;) — term, Ay
for A1 = (n7 :nat) and, on the other hand,
ALY H—% vcons ny e I => Vector (S ny), Ay

for Ay = (n7 :nat)(ny :nat)(e:term)(l: Vector ny).
By the (Inv-No-Check) rule, we have

I;A1;90 IF% vcons ny e l < Vector (S ny) | As.

Remark that this rule permits changing the type of vcons ny e [ from Vector (S ny)
to Vector (S ny).
Finally, by the rule (S-Application), we have

I';@;® IH head ny (vcons np e ) = term, A;.

On the other hand, we have I'; A, I- e: term. Therefore, by[Theorem 3.4.3 the rewrite
rule (head n; (vcons ny e I) — e) is permanently well-typed. O

3.5 Taking Advantage of Typing Constraints

We have justified the linearization of the rewrite rule for the function head, which
extracts the first element of a vector. Let us see if we can do the same for the function
tail, which removes the first element of a vector.

tail : [In:nat.Vector (S n) — Vector n.
tail n (vconsnel)—[.

The linearized version would be:
tail n; (vconsnpel) — 1.
We have

;0,0 Il-lz. tail n; (vcons ny e l) = Vector np, A
and ;A [:Vector np
for A = (n; :nat)(n, :nat)(e:term)(l: Vector ny).

But we cannot use[Theorem 3.4.3] since Vector n; is not convertible with Vector n,.

However, we can see that any substitution o such that theredex o (tail n; (vcons ny e l))
is well-typed will verify the constraint o(Vector (S n1)) =gr o(Vector (S ny)) and,
therefore, will verify o (n1) =gr 0(n2) and o (Vector ny) =gr o(Vector ny). It follows
that the rewrite rule is in fact well-typed.

In the previous section, we basically ignored the typing constraints (conversion
tests) arising during the typechecking of the left-hand side of the rewrite rules. The
example above shows that we need to extract information from them. This leads us
to a new generalisation offTheorem 3.4.3

We adapt the typing rules of[Figure 3.2]to take into account the conversion tests
and record them. The new inference relation, not only synthesizes the type of the
left-hand side together with the types of its free variables, but also records the typing
constraints that a well-typed redex will satisfy.
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(Sort) I;A; 26 lI-; Type = (A, Kind, €6)
(f:A)eT
L0561 f= (A A6

(x:A)eX
A6 1 x= (A A6)

(x:A)eA
LA 26N x=> (A AE)

(Constant)

(2-Variable)

(A-Variable)

(S-Application)
[ALGE 6 IR u= (A, T, 62)
00,26 . v<=A| (A3, 63) T —»Er IIx: A.B
IA1;Z,61 I uv=> (A3, Blx/v],63)

(S-Abstraction)
A1, 26 IFc A< Type | (A2, 6>)
;A 2(x: A); 65 IIH; u= (A3, B,63)
T;A52,6 I Ax: A.lu= (A3, TIx: A.B,63)

(Product)
A1, 2,6 IF A< Type | (A2, 6>)
T;A0;2(x: A); 6 lI-. B< s | (A3, 63)
T;A1;2;,61IF; TIx: A.B= (A3, s,%63)

Figure 3.3: Bidirectional typing rules for pseudo-well-formed rewrite rules (Part
1: Synthesis)

3.5.1 Typing Constraints

Definition 3.5.1 (Constraints). A set of constraints is a set of pairs of terms.

A set of constraints is also a unification problem modulo the relation =gr.

Definition 3.5.2 (Solutions of Constraints). LetT be a global context, V, a set of (im-

plicitly bound) variables, and €, a set of constraints.
The set Solr (V,€) of solutions of € inT is the set of substitutions o such that:

e dom(o)cV

* and, for all (A,B) €6, 0(A) =gr 0(B).

The most general solution (MGS) (or most general unifier) is a classical notion
of unification theory. A solution 7 is most general when it subsumes all other so-
lutions in the following sense: if o is another solution, then o = g7 for some oy.
For our purpose, we also require a MGS to be idempotent and not to introduce new

variables, which is equivalent to the following definition.
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FV(A)ndom(Z) =@ X ¢ dom(A1) Udom(Z)

Free Variabl
(Free Variable) AL G IFcx <= Al (AL (x: A),6))

(C-Abstraction)

T—»Er IIx: A».B

[A1;Z;6) IFc Ay < Type | (A2, 62)
T;00;2(x: A1) 6 - u< B | (A3, 63)
F;AI;Z;‘gl |”_c Ax: Al.u <T | (Ag,%;g U {(AZ.Al,/IlZ.Ag)})

(C-Application)

(x:A)ex AT 6 e u<sTlx: AB| (Ag,6s)
F;AI;Z;(gl H'_c ux<B-B | (Az,(gz)

(Inversion)

[5A152,61 IF; u= (Az, Az, 62)
F;Al;z;%l |”‘c u<A | (Ag,%z U {(AZAI,AZAZ)})

(App-No-Check)

[5A1;2,61 I v = (A2, A,62)
F;Al;Z;‘gl \H—C uv<B | (Ag,%z)

(No-Check)

LAGZ G IFcueT| (A,6G)

Figure 3.4: Bidirectional typing rules for pseudo-well-formed rewrite rules (Part
2: Checking)
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Definition 3.5.3 (Most General Solution (MGS)). LetT be a global context, V be a set
of variables and € be a set of constraints.

A substitution T € Solp(V,6) is a most general solution (MGS) for € inT if, for
anyo € Solp (V,€),0 =grot on V.

Since we are doing unification modulo =gr, MGSs do not always exist. For in-
stance, the equation Ax: A.y x =gr Ax: A.c x has two incomparable solutions {y —
c} and {y — Ax: A.c x}. Therefore, we introduce the weaker notion of pre-solution.
A pre-solution is more general than any solution but need not be a solution itself.

Definition 3.5.4 (Pre-Solution). LetT be a global context, V be a set of variables and
€ be a set of constraints.

Apre-solution for € is a substitution T such that, for any o € Solp(V,€), 0 =gr 07
onV.

We write PreSolr (V,6) the set of pre-solutions for € inT.

Remark 3.5.5. The identity substitution is a pre-solution, for any set of constraints.
Therefore, contrarily to the set of MGSs, the set of pre-solutions is never empty.

If we take the set of constraints € = {(Vector (S n;),Vector (S ny))} and the set
of variables V = {n, n,}, then, by confluence of the reduction — pr, We know that,
if o € Solp (V, ), then 0 n; =pr 0 Ny. As a consequence, we have that the following
substitutions are pre-solutions:

e {m — ny},
e {np— m}

Since they are in Solr (V,6), they are also MGSs.

3.5.2 Fine-Grained Typing of Rewrite Rules

We now generalize [Theorem 3.4.31 We use the notion of pre-solution to take ad-
vantage of the information extracted from typing constraints obtained by typing the
left-hand side of the rewrite rule, when typing the right-hand side.

Notation 3.5.6. If t a term and Z is a local context, then we write AZ.t for the term
AX: A.t whereX =dom(Z) and A; = Z(x;).

Definition 3.5.7. The relations |l-; and |-, are defined inductively from the typing
rules of{Figure 3.3, and|[Figure 3.4,

The inference rules for lIF; and ll-,, are the same as for Il—lz. and Il—g except that,
instead of ignoring the typing constraints, we record them.

Theorem 3.5.8. LetT be a well-formed global context.
Ifthere exist A, T and v such that

e 50,0, 0l- u= (A, T,96),
e 7€ PreSolr(dom(A),6),
o TH* 1 (A)

e andT;t(A)Fv:t(T),
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then (u— v) is well-typed inT.

Remark 3.5.9. If we take the identity substitution, T = id, for the pre-solution, then
we get back exactly the assumptions of{Theorem 3.4.3

As usual, we first prove the corresponding main lemma.

Lemma 3.5.10 (Main Lemma for[Theorem 3.5.8). LetT a well-typed global context.
Suppose that:

e TH™AG(Z),
e NAcX)Fo(t): T,
e g€ Solr(dom(A1),61),
e dom(Z)ndom(o) =@,
e dom(Z) N codom(o) = @
e ando : A ~~1A.
Then, we have:
o if ;A1 Z 61 IR t = (Ao, To, 60), then

- T'=pr o(To),
- T'=Kind orT;Ac(Z) Fo(Tp) : s,
— 0 € Solr(dom(Ay), 6p)

— ando:Ng~r A;

* if ;015261 ke t <= Ty | (Ao, 60) and T =gr 0(Ty) withT;Ac(Z) Fo(To) : s,
then

— 0 € Solr(dom(Ag), 6p)

— ando : Ao ~r A.

Proof. We prove both properties at the same time by induction on I';A1;Z;%6) lIF;
= (Ao, To,%o) and F;Al;Z;%l |”_C t<Ty | (AQ,(g()).

* (Sort) = Type. By inversion, T = Kind = o(Kind) = o (Tp).
* (Constant) ¢ = f is a constant. By inversion, T =gr I'(f) = o (I'(f)) = o (To).

* (2-Variable) ¢ = x € dom(Z) is a variable and Ty = Z(x). By inversion, T =gr
0(Z(x)) =o(Tp).

¢ (A-Variable) t = x € dom(A) is a variable and Ty = A;(x). We have I'; Ag(Z)
o(x): Tand ;A0 (Z) Fo(x):0(A(x)).

By uniqueness of types, T =gr 0(A1(x)) = o(Tp).
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¢ (S-Application) Suppose that t = uv, Ty = B2[x/ V], [;A1; 2,61 IF; u= (Ay, B6»),

;00,26 - v <= Ay | (A3, 63) andP—»EF IIx: Ay.By.

By inversion, we deduce I';Ac(Z) F o(u) : llx : A.B, [;A0c(Z) F o(v) : A and
T Eﬁr B[X/O'(U)]

By induction hypothesis on u, we have, o (P) =grllx: A.B, ;A0 (Z) - a(P):s,
o € Sol(dom(A,),6>) and 0 : Ay ~>1 A.

By stratification, I';Ac(Z) F I1x : A.B : s. By subject reduction, I';Ac(Z) +
o(IIx : A».By) : s. Thus, from o(Ilx : As.Bs) =pr Ilx : A.B, by product com-
patibility, we deduce o (Ay) =pr A and o (By) =pr B.

By induction hypothesis on v, o € Sol(dom(A3),63) and o : Az ~> A.
Moreover, T =gr Blx/o(v)] =gr o(B)[x/o(v)] =0o(Tp).
Finally, since, by inversion, I'; A (Z)(x: 0(A2)) F o(By): sand [ Ao (Z) F o (v) :
o (Az), we have, by substitution, I'; Ag () - o (Tp) : s.

¢ (S-Abstraction) Suppose that t = Ax : Ag.u, Ty = [1x : Ag.By, [ A1;Z;61 Ik,
Ag = Type | (A2, 62) and T';Ag; Z(x: Ag); 62 lIF; u= (As, By, 63).

By inversion, we have I'; Ag(2) F 0 (Ay) : Type, [ Ao (Z(x: Ag)) Fo(u): B, B#
Kindand T =gr [1x: 0 (Ag).B.

By induction hypothesis on Ay, we have, o € Sol(dom(Ay),6») and o : Ap ~~1
A.

By induction hypothesis on u, o(Bo) =gr B, T;A0(Z)(x : 6(Ag)) F a(By) : s,
o € Sol(dom(A3),63) and 0 : Az ~>1 A.

Finally, T =pr [lx:0(Ap).B =gr l1x: 0(Ag).0(By) = o (Tp) andT;Ac () Fo(Ix:
A().B()) .S,

¢ (Product) Suppose that t =I1x: Ag.By, Tp = 5, I;A1; ;6 I Ag < Type | (A2, 6>)
and ;A0 Z(x: Ag); 6> lIF:. By < s | (A3, 63).

By inversion, we have I'; Ad(X) - a(Ay) : Type, I'; Ac(Z(x : Ag)) - o(Bp) : s and
T=s.

By induction hypothesis on Ay, we have o € Sol(dom(Ay),6>) and o : Ap ~~1 A.
By induction hypothesis on u, o € Sol(dom(A3),63) and 0 : Az ~~1 A.
Finally, T = s = a(Tj).

* (Free Variable) Suppose that t = x, 0(Tp) =pr T, I;A0(Z) - 0(Tp) : s, x ¢
dom(A1) Udom(Z) and Ag = A1 (x: Tp).
We have I'; Ag(2) F o (x) : T and, by conversion, I'; Ag (£) - o (x) : o (Tp).

Since dom(X) N codom(o) = @ and FV(Ty) ndom(Z) = @, we also have I'; A +
o(x):0(Tp).

Therefore, since o : A1 ~»1 A, we also have o : Ag ~r A.

¢ (C-Abstraction) Suppose that t = Ax: A;.u, o(Tp) =pr T, ;A0 (2) o (To) : s,
To _)ZF [x: Ag.By, I3 A1;Z;61 IFc Ay < Type | (A2, 62) and T A Z(x: Ay); 62 I
U< By | (A3, 63).

From ITA0(Z) F o(Ax : Ay.u) : T, by inversion, we have I'; Ac(Z) F o(A}) :
Type, I; Ao (Z(x: A))) Fo(w): B, B#Kind and T =grIlx:0(A1).B.
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Therefore, we have Ilx : 0(A1).B =gr o(Ilx : Ag.Bp). Since IAc(Z) = Ix :
o(A1).B : s and, by subject reduction, I'; Ag(Z) + o(Ilx : Ag.By) : s, we have,
by product compatibility, 0 (A;) = pr 0 (Ag) and B = pr 0 (Bo).

By induction hypothesis on A;, 0 € Sol(dom(Ay),6») and 0 : Ay ~~1 A.
By induction hypothesis on u, o € Sol(dom(A3),63) and 0 : Az ~~1 A.
Moreover, since 6y = 63 U {(AZ.A1,A1Z.Ag)}, we have o € Sol(A3,6)).

* (C-Application) Suppose that t = u x, o(To) =gr T, [;Ac(Z) - o(Tp) : s, (x:
Ag)eZand;A1;2;61 b, u<Tlx: Ag.To | (An,65).

From ;A0 (Z)F o(u x): T, by inversion, we deduce I'; Ac(2) o (u) : IIx: A.B
IA0(Z) - o(x): Aand T =gr B. Moreover, since x ¢ dom(o), we have g(x) = x
and A =pr 0(Z(x)) = 0 (Ay).

Therefore, we have [1x: A.B =gr o (Ilx: Ag.To).
By induction hypothesis, we have, o € Sol(dom(A;),6>) and 0 : A, ~»1 A.

¢ (Inversion) Suppose that we have T =gr o(Tp), ;A0 (X) -0 (Ty) : s, 6o = 62U
{AZ. Ty, AZ. T} and T';A1; 2,61 IF; t = (Ap, T, 65).

By induction hypothesis, o € Sol(dom(Ay),6»), and o : Ap ~1 A, T =gr 0(1»)
andT;Ac(X) Fo(Ty):s.

Since o (Tp) =gr T =pr 0(T2), we have o € Sol(dom(A3), 6p).
* (App-No-Check) By induction hypothesis.

¢ (No-Check) Trivial.

We can now prove[Theorem 3.5.81

Proof oflTheorem 3.5.8 Let T be a well-formed global context.

Suppose that T;8; 8, lI-; u = (Ag, Ty, €), T € PreSolr(dom(Ag),€), T F A
and I'; 7(Ag) F v : 1 (Tp).

Suppose that, for some A, o and T, we have I;A - o(u) : T and T - A. Since
FV(u) U FV(v) c dom(A), we can assume wlog that dom(o) c dom(A).

By[Lemma 3.5.10} o € Solr(dom(Ag),€) and 7 : Ag ~~1 A.

Therefore, we have, for all x € dom(t(A)), [ A F o (x) : Ty with Ty = a(Ao(X)) =gr
07(Ag(x)). Byl[Lemma 3.2.3] we have then o : T(Ag) ~r A.

By[Lemma 2.6.9] we have T'; A+ o (v) : 07(Tp).

Finally, since o7(Tp) = pro(To) =gr T, then we have, by conversion, I'; A+ o(v) :
T. O

It is now possible to show that the rewrite rule for tail is well-typed.
Corollary 3.5.11. The rewrite rule (tail n; (vcons np e l) — 1) is well-typed.

Proof. Using the rules (Constant), (S-Application) and (Free Variable), we have, on
the one hand,

I;0;0;9lIF; tail np = (A1, Vector (S n;) — Vector nj, @)

for Ay = (n; :nat) and, on the other hand,
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I;A1;;0,0IF; veons np e I = (Ay,Vector (S ny), @)

for Ay = (n7 :nat)(ny :nat)(e:term)(l: Vector ny).
By the (Inversion) rule, we have

IA1;0;0IF.vcons np el «Vector (S ny) | (Az,6)

for € = {(Vector (S ny),Vector (S np))}.
Finally, by the rule (S-Application), we have

I;0;0; 9 I tail ny (veons ny e l) = (A, Vector ny,6).
As we have already seen, 7 = {n; — ny} € PreSolr(dom(A,),¢) and we have
I;7(A2) F l:t(Vector np) with 7(Ay) = (np :nat)(e: term)(l: Vector ny).

Therefore, by Theorem 3.5.8 the rewrite rule (tail n; (vcons np e I) — [) is well-
typedinT. O

3.6 Weakly Well-Formed Global Contexts

So far, we_have proved that the rewrite rules satisfying the assumptions of Theo-
rem 3.5.8 are well-typed but not that they are permanently well-typed. In fact, these
rewrite rules are not permanently well-typed in general.

Consider the rewrite rule on tail:

tail n; (vconsnpel) — 1.

We know that it satisfies the assumptions of[Theorem 3.5.8/for I'. Now, consider the
following extension I',:

NonEmptyVector : Type.
Vector (S n) — NonEmptyVector.

In the local context A = (n; :nat)(n; :nat)(e: term)(l: Vector np), since Vector (S my) =gr,
NonEmptyVector =gr, Vector (S ny), we have:

I';; A tail ny (vcons ny e l) : Vector nj.
and the following reduction:
tail ny (vcons npel) —r, L.

However, we do not have I';; A - [ : Vector n; since Vector n; and Vector ny are
not convertible. Subject reduction is broken and the rewrite rule is not permanently
well-typed.

The problem is that the pre-solution 7 = {n; — n,} for € = {(Vector (S n;), Vector (S ny))}
in T in V = {n),ny,e,1}) is no more a pre-solution for € in I',. That is to say, 7 €
PreSolr(V,6), but 7 ¢ PreSolr, (V,). Theorem 3.5.8/do not apply anymore.

Therefore, to prove that a rewrite rule is permanently well-typed we need a stronger
notion of pre-solution. We need to characterize the substitutions that remain pre-
solutions in any extension of the global context.

Definition 3.6.1 (Permanent Pre-Solution (First Attempt)). LetT be a global context,
V be a set of variables and € be a set of constraints.

A permanent pre-solution for € is a substitution T such that, for any well-typed
extension > of T and any o € Solr,(V,6), 0 =gr, oT 0n V.
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Unfortunately, this new definition is useless. When ¥ is a set of constraints orig-
inating from a typing problem in the AIl-Calculus Modulo, then the only permanent
pre-solution in the sense of[Definition 3.6.1lis the identity substitution.

Indeed, the (satisfiable) typing constraints arising when typing a term in the AIl-
Calculus Modulo can be decomposed into constraints of the form (C7, Cii) where C
is a constant. The problem is that, for permanent pre-solutions, we need to consider
every possible extensions of the global context, in particular the extension where the
constraint is trivially verified, for example if we have the rewrite rule (CU — Cii). It
follows that the identity is the only permanent pre-solution. Therefore, we are back
to[Section 3.4..

A simple solution to this problem is to restrict the possible extensions of the
global context to contexts verifying some properties that we can use to find non-
trivial permanent pre-solutions.

Let us look back at our example where € = {(Vector (S n;),Vector (S ny))}. To
prove that T = {n; — ny} is a pre-solution, we need, first, to remark that there are
no rewrite rules whose head symbol is Vector or S and, second, that we use the
confluence of — gr. We call safe the global contexts verifying these conditions.

3.6.1 Safe Global Context

We consider that we have a partition of the set of constants in two (infinite) sets:
€ = €swWEp.

Definition 3.6.2 (Static and Definable Symbols). Constants in 6€s are called static
symbols. Constants in €p are called definable symbols.

Static symbols are meant to be not rewritten; we will forbid the rewrite rules
whose head constant is a static symbol. On the contrary, there are no restrictions for
definable symbols.

For our examples on vectors, the type constant Vector and the object constants
0 and S are not meant to be rewritten: they should be static symbols. On the other
hand, there are rewrite rules defining the constants head and tail; therefore, they
should be declared as definable symbols.

Definition 3.6.3 (Safe Global Context). A global context T is safe if:
o T is well-typed;
* —pr is confluent;

e forall(u— v)el, u= fiv where f is a definable symbol.

3.6.2 Weakly Well-Formed Rewrite Rules
Now we can give a revised definition of permanent pre-solutions.

Definition 3.6.4 (Permanent Pre-Solution). Let T be a global context, V be a set of
variables and € be a set of constraints.

A permanent pre-solution for € in T is a substitution T such that, for any safe
extension T of I and any o € Solr,(V,6), we have o =gr, OT.

We write PreSoll’fer(V, %) the set of permanent pre-solutions for € inT.
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We now use the notion of permanent pre-solution to define weakly well-formed
rewrite rules.

Definition 3.6.5 (Weakly Well-Formed Rewrite Rule). A rewriterule(u — v) isweakly-
well-formed inT if there exist A, T and 1 such that

e 158;0,0 Ik u= (A, T,96),
* 1€ PreSoll” (dom(D),6),
o TH7(A)
e andIl;t(A) Fv:t(T)
We writeT % u— v if (u— v) is weakly well-formed inT.

As expected, weakly well-formed rewrite rules remain well-typed as long as con-
fluence is preserved and no rewrite rule is associated to a static symbol.

Theorem 3.6.6. LetT be a global context andT'» be a safe extension of T.
If a rewrite rule is weakly-well-formed in T, then it is well-typed inT,.

The proof follows the lines of the proof of[Theorem 3.5.81 We only state the cor-
responding main lemma.

Lemma 3.6.7 (Main Lemma for[Theorem 3.6.6). Let T be a global context and Ty be
a safe extension of T'. Suppose that:

e I'y;AcX)o(h): T,
e g€ Solr, (dom(Ay),61),
e dom(Z)ndom(o) =@,
* dom(Z) N codom(o) = @
e ando: A} ~T, A
We have
o if T5ALZ 61 IR t= (A2, Tz, 65), then

- T =B, O’(Tg),
- T=Kind orT3;AcX)Fo(T3):s,
o € Solr, (dom(A3),6>),

- and o : Ay ~1, A;

e if T;ALZ01lF.t <= T | (Ag,02) and T =gr, 0(T1) withTy;Ac(Z) Fo(Ty) : s,
then

- o€ Solr, (dom(Az),6»),

- ando: Ay ~1, A
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(Empty Global Context)
@ wwf
(Object Declaration)
I wwf ;9 U:Type c¢ dom(T)
I'(c: U) wwf
(Type Declaration)
T wwf [0+ K:Kind C ¢ dom(I)
I'(C: K) wwf
(Rewrite Rules)
VOTHY u; — v;
(Vi) fi is a definable symbol
I wwf — grz is confluent E=(fith — v)...(fnllp— vp)
I'Z wwf
Figure 3.5: Weakly well-formedness rules for global contexts

3.6.3 Weakly Well-Formed Global Contexts

We now define a variant of the notion of strongly well-formed global context based
on the notion of weakly well-formed rewrite rule instead of that of strongly well-
formed rewrite rule.

Definition 3.6.8 (Weakly Well-Formed Global Contexts). A global contextT isweakly
well-formed if the judgment T wwf is derivable from the inference rules of[Figure 3.5

Theorem 3.6.9. Weakly well-formed global contexts are safe.
Proof. By induction on the derivation of wwf, we prove that:

* the declarations are well-typed;

* —pgr is confluent;

e forall (u— v) €T, u= ci where c is a definable symbol;

¢ and the rewrite rules are weakly well-typed in some prefix of T'.

By[Theorem 2.6.11] product compatibility holds. By[Theorem 3.6.6] the rewrite rules
are well-typed. Therefore I' is safe. O

Corollary 3.6.10. Weakly well-formed global contexts are well-typed.

3.6.4 Examples

We now look at some examples of weakly well-formed global contexts.
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Functions on Vectors _Suppose that Vector and S are static symbols. Using Theo-
rem 3.6.6, we can show that the following context is weakly well-formed.
The rewrite rule for tail:

tail n; (vconsnpel) — 1.

The rewrite rules for vmap, the function that applies a function to any element of a
vector, are:

vmap : [Ix:nat.(term — term) — Vector n — Vector n.
vmap 0 f vnil — vnil.
vmap (S np) f (vcons ny e l) — vcons ny (f e) (vmap ny f ).

The rewrite rules for vappend, the function that concatenates two vectors, are:

vappend : IIn; :nat.lln, :nat.Vector n; — Vector ny — Vector (plus n; ny).
vappend 0 nvnil [ — [.
vappend (S n1) m (vcons np e l1) lp — vcons (plus ny m) e (vappend np m Iy lp).

Remark 3.6.11. We could write the second rewrite rule on vappend differently:
vappend (S nj) m (vcons ny e l;) I, — vcons (plus n; m) e (vappend ny m I bp).

These two rules should be equivalent since, morally, ny and ny are convertible. How-
ever, consider the following rewrite rule:

vappend n 0/ vnil — [.

In both cases we have a new critical peak. With the first version of the rule on vappend,
the critical peak is joinable and the confluence is preserved {Theorem 1.4.7).

vappend (S n1) 0 (vcons np e [) vnil

T

vcons (plus ny 0) e (vappend ny 0 / vnil) vcons np el

With the second version of the rule, the peak is not joinable; confluence is lost.

vappend (S n1) 0 (vcons np e [) vnil

T

vcons (plus n; 0) e (vappend n; 0/ vnil) vcons np el
Therefore, the way we linearize a rewrite rule matters for proving confluence.

The Simply Typed A-Calculus Let us define an encoding of the simply typed A-
calculus. Simple types are the terms of type stype built from the base type : and
the constructor arrow. A-terms of simple type A are encoded by the terms of type
1lterm A. The symbols lapp and labs correspond, respectively, to application and
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abstraction in the simply typed A-calculus.

stype : Type.

L. stype.

arrow : stype — stype — stype.

lterm : stype — Type.

lapp : [Ix:stype.lly:stype.lterm (arrow x y) — lterm x — lterm y.
labs : [Ix:stype.lly:stype.(lterm x — lterm y) — lterm (arrow x }).

B-reduction in the simply typed A-calculus is simulated using the following rewrite
rule:

lapp a1 b1 (labs az by 1) th — 1] .

Assuming that 1term and arrow are static symbols, by [Theorem 3.6.6] this rewrite
rule is weakly well-typed.

3.6.5 Optimizing Pattern Matching

So far, we have motivated the use of ill-typed left-hand side of rewrite rules to turn
non-left-linear rewrite rules into left-linear rewrite rules to recover the confluence
of the rewriting relation. Very similar ideas have been used [BMMO03] to optimize de-
pendent pattern matching and the representation of terms in memory in the context
of dependent type theory with inductive types and elimination operators. One of the
ideas is that the rule:

vmap (S n) f (vcons nel) — vcons n (f e) (vmap n f I).
can be replaced by:
vmap n; f (vcons ny e l) — vcons ny (f e) (vmap ny f I).

since, at runtime, because of typing constraints, n; can only be convertible with
S ny. Here we have done more than just linearizing the rule since we have also
deleted the constant S, resulting in an optimization of the pattern matching. This
last rewrite rule is weakly well-formed; therefore this notion can also be used to jus-
tify the type-safety of such optimizations.
These ideas have been implemented in Agda using an algorithm similar to ours [Nor07].

3.7 Characterisation of Well-Typedness of Rewrite Rules
Even if the notion of weakly well-formed rewrite rule is much more general than the

notion of strongly well-formed rewrite rule we started with, it does not coincide with
the notion of well-typed rewrite rule. Consider the following rewrite rules.

y—=1y. (Identity)
(Ax:nat.y x) — y. (n-reduction on nat)
(Ax:nat.y) 0—y. (Trivial B-redex)

The three rewrite rules are well-typed, but none of them is weakly well-formed.
The reason is that, in each case, it is not possible to infer the type of y because it is
not uniquely defined. For instance, Ax :nat.S x and A : x : nat.isZero x are two
instances of the n-reduction rule. In the first case, y is substituted by the term S of
type nat — nat and, in the second case, by the term isZero of type nat — prop.
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(Sort) [;ZIF¢ Type: (9, 9, Kind)
(c:A)el
L2 c: (2,9, A)

(x:A)eX
;2 x: (9,0, A)

(Constant)

(Z-Variable)

x & dom(X)
;2R x: ({x}, @, Xx)

(Free Variable)

(O-Application)
{X} = dom(X)
L ZIFCu: (7,1, T) X is a fresh type variable
2R v: (15,60, A) C3=61UGU{AZ.T=AZIly: AX X y)}
LEIFCuv:(AU¥s,635,X X0)

(T-Application)
;2R U : (31,61, 11x: A;.B)
F;Z“—e I):(Vg,cgz,Az) (gg Z(gl U(gZU{(AZ.Al ZAZ.Az)}
L;ZIFe U v: (11 U¥s,63,Blx/v])
(Abstraction)

B #Kind
[;Z1F¢ A: (31,61, Type) I 2(x: A) IR u: (95,62, B)
;2R Ax: Au: (AU Vs, 6, U6, IIx: A.B)

(T-Product)

I;ZIF¢ A: (77,61, Type) I2(x: A) IR B: (35,65, )
2R MIx: AB: (J1 U5, 61 U6, s)

Figure 3.6: Typing constraints for terms

In this section, we give an exact characterization of well-typed rewrite rules as a
problem of inclusion between sets of solutions to unification constraints.

3.7.1 TypingAll Terms

We give the definition of a type system similar to [Definition 3.5.7]but that is able to
fype more terms.

Definition 3.7.1. The relation I-¢ is defined by induction from the inference rules of

Remark that in the rule (Free Variable) and (O-Application), we make use of
type-level variables. Moreover, we assume that every (object-level) variable x is as-
sociated to a type-level variable X;.
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As for IIF, the type system I-¢ records the typing constraints of the term. But, to
be able to synthesize a type in any case, it may introduce fresh type variables when
the type cannot be inferred.

The judgment T; 2 1-¢ A: (¥,%, T) means that we are exploring the term A in the
local context X. 7 is the set of variables free in A that are not in dom(Z) and € is the
set of typing constraints that should be verified for A to be well-typed of type T

Remark 3.7.2. The case of type-level application (T-Application) is different from
that of object-level application (O-Application). Indeed, since kind-level product
types are only convertible to other product types, we may assume that the type of the
term in function position is already a product-type. The only constraint we need to
add then is that the expected type and inferred type of the argument match.

Remark 3.7.3. ForanyT, X and t, there exists at most one tuple (V,6,T) (up to fresh
variable renaming) such that T;Z |F¢ ¢ : (V,6,T). We say that the pair (V,6) is a
unification problem.

Notation 3.7.4. When € is a set of constraints, we write FTV (€) for the set of free
type variables occurring in € .

3.7.2 Solutions of a Set of Typing Constraints

In the previous sections, a solution of a set of constraints was a substitution o equat-
ing all the constraints. Here we also consider a substitution 7 substituting the type
variables introduced by the rules (Free Variable) and (O-Application). To type these
substitutions we also need to consider a local context A.

Definition 3.7.5. Let T be a well-typed global context, V' be a set of variables and €
be a set of constraints.
The triple (A, 0, 1) is a solution of (V,6) if

o THA;
o ¥ =dom(o);
¢ 1 is a type-level substitution such that

dom(t) = {X,|x € dom(o)}UFTV(6),
forall x e dom(o),T;AF o(x): 1(Xy),
0T(Xy) =7(Xy)

and, for all (Ty, T2) € €, 01(T1) =gr 01(T2).

We write Sol(V',€) the set of solutions of (V,6).

Remark 3.7.6. If (A,0,71) € Sol(¥V,€), then codom(c) U codom(t) c dom(A). This
follows from the fact that, for all x € dom(o),T;AF o(x) : 7(Xy),

Lemma 3.7.7. LetT be a well-typed global context.
If(A,O'W/l,Tl) € 801(7/1,%1), (A,O’|7/2,T2) € 501(7/2,%2) and FTV(Cgl) ﬂFTV(ng) c
{ Xx | x € dom(0) }, then there exists T3 such that (A, 03,47, 73) € Sol(11 UV,, €1 U6>).
Moreover, for all X € dom(t1), we have 13(X) =gr 11(X) and, for all X € dom(>),
we have 13(X) =gr 72(X).
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Proof. Since, for all x € dom(0),T;A F o(x) : 11(Xy) and [;A F o(x) : 72(Xy), by
uniqueness of types, we have 7, (X) =pr 12(X) for all X € dom(t1) ndom(t,). There-
fore, we can take

71(X) if X € dom(t,),

T3(X) = { TZ(X) if X e dom(‘[z) \ dOm(TI)

3.7.3 A Characterisation of Well-Typed Rewrite Rules

The following theorem says that the well-typedness problem for rewrite rules corre-
sponds to an inclusion problem between sets of solutions of unification constraints.

Theorem 3.7.8. Let" be a well-typed global context such that — gr is confluent. Sup-
pose thatT; @ IF¢ u: (Vy,, 6y, Ty) andT; 3 1= v (¥, 6y, Tyy). The two following propo-
sitions are equivalent:

e therewrite rule (u — v) is well-typed forT';

e forall(A,0,711) € Sol(Vy,,6,), there exists T, such that (A, 0, 7>2) € Sol(V,,UV,, €, U
€, U{(Ty =Ty)).

Before proving the theorem, we need to prove several lemmas.
First, as in the previous sections, we prove the main lemma.

Lemma 3.7.9. LetT" be a well-typed global context such that — gr is confluent.
Suppose that:

e IRt (V,€, Ty,

o THCXA

e dom(Z) ndom(o) = @,

e codom(o)Nndom(Z) =@

e andT;AcX)Fo(t): T.
Then, there exists T such that:

o (Aoyy,T) € Sol(V,%€)

* andot(Tp) =pr T.
Proof. By inductiononT;Z1-¢t: (V,6, Tp).

¢ (Sort) Trivial.

¢ (Constant) Trivial.

e (X-Variable) Trivial.

* (Free Variable) Suppose ¢ = x ¢ dom(Z) and Tp = X,. We have I';Ac(X) -
o(x): T. Since codom(c) N dom(X) = ¢ (and dom(Z) = dom(o(X))), we have
FV(o(x)) ndom(o (X)) = @; therefore, there exists a reduct T» of T such that
IA0(2) Fo(x): Tr and FV(T») ndom(o (X)) = @. It follows that we also have
ITAFO(x): To.

We can take 7 = { X, — T>}.
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¢ (O-Application) Supposethat t=u v, Tp =X X v,V =N UPs, € =6LUG»U
{AZ.P=AZI0y: Ag. X X )}, [;ZIF¢ u: (71,61, P) and T3 2 1H6 v : (¥, 6%, Ao).

By inversion, we have I';Ac(Z) - o(w) : 1y : A Band I';Ag(2) F o(v) : A and
T =gr Bly/o(v)].

By induction hypothesis, (A, 013, 71) € Sol(34,61), (A, 0135, T2) € Sol(¥3,62), Iy :
A.B E,BF O‘Tl(P) and A E,BI‘ O‘Tz(Ao).

BylLemma 3.7.7] there exists 73 such that (A, 0}y, 73) € Sol(V, 61 U 62).
We take T=13W{X — AX:Z(X).Ay: A.B}.
We have T =gr Bly/o()] =gr AX:Z2(X).Ay:AB)Xo(v)=01(X X v).
¢ (T-Application) Suppose that t =U v, To = B1[x/v], V =1 U Vs, € =61 UG U
{AZ. A1 = AZ. AL T EIFC U - (74,%6,11x: A1.By) and T3 2 1€ v (75,65, Ag).

By inversion, we have I;Ac(2) - o(U) : IIx: A.Band I';Ac(2) - o(v) : Aand
Tzﬁr B(x/o(v)].

By induction hypothesis, (A, 03, 71) € Sol(71,61), (A, 013, T2) € Sol(¥2,%6>), 1x :
A.B=grot(llx: A1.By) and A =gr 072(A3).

By confluence, A=gr 071(A1) and B =gr o71(By).

BylLemma 3.7.7] there exists 7 such that (A, oy, 7) € Sol(¥V, 61 U6,); forall X €
dom(t1), we have 7(X) =gr 71(X) and, for all X € dom(t), we have 7(X) =gr
T2(X).

Wehave: 07(Az) =gr 072(Az) =gr A=gr o71(A1) =gr o7(A1). Therefore (A, 01y, 7) €
Sol(V, €1 UG, U{(AZ.A1 = AZ.A0)}).

Moreover, T =pgr Blx/o(v)] =gr 0T (B1[x/v]).
¢ (Abstraction) Suppose that t = Ax : Ag.u, To =Ilx: Ag.By, ¥V =N U Vs, € =
G1UG,, [;ZIFE Ag: (71,61, Type) and T Z(x : Ag) IF€ u: (73,6, By).

By inversion, we have I'; Ac(2) F o(Ag) : Type, I';Ac(Z(x : Ag)) - u: B and
T Eﬁl" IIx: O'(AQ).B.

By induction hypothesis, (A, 013, 71) € Sol(11,61), (A, 03, T2) € Sol(¥2,6>) and
B Eﬁr (TTZ(B()).

By [Lemma 3.7.7 there exists T such that (A, oy, 1) € Sol(¥,%); for all X €
dom(t1), we have 7(X) =gr 71(X) and, for all X € dom(t), we have 7(X) =gr
T2(X).

Moreover, T =gr [1x: 0 (Ag).B =gr o1 (llx: Ag.Bp) with o1 (Ag) = 0(Ap).

¢ (Product) Suppose that t =Tlx: A.B, To =5,V =71 UV2, € = 6L UG, [} X1
A: (11,61, Type) and [;Z(x: A) I8 B: (75,63, 5).
By inversion, we have I'; Ag (£) - 0 (A) : Type and ;Ao (2(x: A)) - B:s.
By induction hypothesis, (A,013;,71) € Sol(¥1,61) and (A, 013, T2) € Sol(¥2,6>).
BylLemma 3.7.7] there exists 73 such that (A, oy, 73) € Sol(¥,6).

We now prove the converse.
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Lemma 3.7.10. LetT be a well-typed global context such that — gr is confluent.
Suppose that:

e I;ZIFC t: (V,6, Ty),
e dom(o)ndom(Z) =@,
* codom(o)ndom(Z) =@,
* (A0,7)€Sol(V,6)
e and no type variable occursin t or X.
Then, we haveT'; Ao (Z) = o (8) : T for T =gr o1(Tp).

Proof. ByinductiononT;ZI-¢¢: (V,€,T).

* (Sort) Suppose that ¢ = Type and Ty = Kind. We have I'; Ao (Z) - Type : Kind,

o (Type) = Type and o7 (Kind) = Kind.

¢ (Constant) Suppose that t = cand Tp =I'(c). We have o(c) = ¢, ot(I'(c)) =T'(¢c)

(sinceI'(c) is closed) and T';Ac(Z) Fc¢: T'(c).

¢ (Z-Variable) Suppose that f = x € dom(Z) and Ty = Z(x). Since dom(X) N
dom(o) = @, we have o(¢) = x. Moreover, since there are no type variables

in Ty, we have 17(Ty) = T, therefore, I'; Ad (Z) - x: 0T (Z(x)).

* (Free Variable) Suppose that t = x ¢ dom(X) and Tp = X,. By hypothesis,
AR o(x): T(Xy). Since 07(Xy) = 7(X,), by local weakening, I'; Ao (2) - o (x) :

oT(Xy).

¢ (O-Application) Supposethatt=u v, To=X X v, [;ZIF¢ u: (31,1, P), T; Z 1€

v: (12,62, A,V =NUVand € =6, UG U{AZ.P=AZIly: A.X X y)}.

We have (0, A, 1) € Sol(71,%6)1) and (0, A, T) € Sol(¥,,6>); therefore, by induction
hypothesis, we get IAc (Z) F o(p) : Ty and T;A0(Z) - o(q) : T with T =gr

otT(P)and T» =pr oT(A).

Moreover, we have 07 (P) =gr oT(Ily : A.X X y). It follows that T} =gr ot (Ily:

AXZXy

By confluence, there exist Ag and By such that T, —gr Ay, T1 —pr Iy : Ag.Bo

and ot (X X y) —»;;r By.
By conversion, [ Ao (Z) Fo(p): 1y : Ag.By and I'; Ao (Z) o (g) : Ag.

It follows that I'; Aa(2) - o (p q) : Boly/o(q)] with Byly/o(g)] =prot(X X q).

¢ (T-Application) Suppose that t =U v, To = B1[x/v], V =1 U Vs, € =61 UG U

{(AZ.A1 =AZ.A)}L, [;ZIFC U : (77,61, T1x : A1.By) and T Z1FC vt (72,62, A2).

Wehave (0,A,1) € Sol(71,%61) and (0, A, 7) € Sol(¥,,6»), therefore, by induction
hypothesis, I';Ac(Z) Fo(U) : Ty and ;A0 (Z) F o(v) : T» with Ty =gr ot(Ilx:

Al.Bl) and T2 =pT O’T(Az).

Moreover, 0T (A;) =pr oT(A).

By confluence, there exist Ag and By such that T> —gr Ao, T1 —pgr [1x: Ag.By

and o7(B;) _)EF By.
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By conversion, [ Ao (2) o (U) : Tlx: Ag.Bp and I Ao (2) F o (v) : Ag.
Therefore, we have and I';Ac(Z) - o (U v) : Bylx/o(v)] with By[x/o(v)] =gr
ot(By[x/v]).

¢ (Abstraction) Suppose that t = Ax : Ag.u, To =Tlx: Ag.By, ¥V =1 U2, € =
CLUG,, T;ZIHC Ay : (71,61, Type) and T3 Z(x : Ag) IF€ u: (75,65, By).

We have (o0,A, 1) € Sol(7,%6)) and (0,A, 1) € Sol(¥3,%6>), therefore, by induc-
tion hypothesis, I'; A (2) F 0(Ap) : Type and I'; Ao (Z(x : Ag)) F o(u) : T> with
T, =pr ot (By).
It follows that I';Ac () - o(Ax : Ap.u) : Tlx : 0(Ap).T2 and Ix : 0(Ap).T> =gr
ot(IIx: Ag.Bp).

¢ (Product) Suppose that t =IIx: A.B, Top=s,V =T UV, € =61 U6, I3 ZIF°
A: (7,6, Type) and I[';Z(x: A) IF® B: (75,63, 5).

We have (0, A, 1) € Sol(71,%61) and (0, A, T) € Sol(¥,,%6>); therefore, by induction
hypothesis, I''A0 (Z) - o(A) : Type and I'; Ao (Z(x: A)) o (B) : s.

It follows that I'; Ac(Z) F o(I1x: A.B) : s.

Finally, we can now prove[Theorem 3.7.8|

Proof of[Theorem 3.7.8 Let I be a well-typed global context such that — gr is con-
fluent. Suppose that T; @ I-¢ u: (¥;,,6,, Ty) and T; 8 - v (¥, 6y, Ty).
¢ Assume that (z — v) is well-typed for I. Let (A, 0,7,,) € Sol(Vy,, 6,)-

By[Lemma 3.7.10, we have I'; A+ o (u) : 07,(T,) and, by well-typedness of the
rewrite rule, ;A R o (v) : 01, (Ty).

BylLemma 3.7.9} there exists 7, such that (A, 0, 7,) € Sol(¥,,6,) and 07, (T,)) =g
otTyu(Ty).

By[Lemma 3.7.7] there exists T such that (A, 0,1) € Sol(¥,6,, U6,), forall X €
dom(t ), we have 7(X) =gr 7,(X) and, for all X € dom(t,), we have 7(X) =gr
Ty(X).

It follows that 07(Ty) =gr 07(Ty) and (A, 0, 7yy) € Sol(V, €, U6, UL(Ty, = Ty)}).
e Now assume that, if (A,0,7,) € Sol(¥,,%6,), then there exists 1, such that
(A)U)TMU) € SOlU/u va;cgu U %y U {(Tu = TV)})
Let (v — v) be a rewrite rule and suppose that ;Ao (u): T.
BylLemma3.7.9} for some 7, we have (A, 0,7,) € Sol(¥,,, 6,) and T =gr 07,(Ty,).

Thus, by hypothesis, there exists 7, such that (A,0,7,,) € Sol(V, UV, €, U
<gu U{(Ty = Ty)h.

Therefore, (A, 0,Ty,) € Sol(V,,6,) and, by [Lemma 3.7.10| T;A - o(v) : V for
14 =pr oTyuy(Ty) =pr oTyuy(Ty) =pr T.

It follows, by the conversion rule, thatI'; Ao (v) : T.
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3.7.4 Applications

Using[Theorem 3.7.8| we are now able to prove that the rewrite rules from the begin-
ning of the section are well-typed.

Corollary 3.7.11. The rewrite rules (Identity), (n-reduction) and (Trivial S-redex)
are well-typed.

Proof.

¢ (Identity) We have:
Lol y: ({y}, @, Xy) and Sol({y}, ®) < Sol({y}, {(X, = X})}).
Therefore, by[Theorem 3.7.8} the rewrite rule y — y is well-typed.

¢ (n-reduction) We have:
;9 Ax:nat.y x: ({y},%6,l1x:nat.X x)
with € = {(Type = Type), (X), = [1x :nat.X x)}
and ;0 1-¢ y: ({y}, 8, X).
Since € U @ U {(X, =Ilx :nat.X x)}) = ¢, by[Theorem 3.7.8] the rewrite rule
Ax:nat.y x — yis well-typed.

* (Trivial S-redex) We have:
[;¢IF¢ (Ax:nat.y) 0: ({y},6, X 0)
with € = {(Type = Type), (I1x : nat.X), x = [Ix:nat.X x)}
and ;0 1-¢ y: ({3}, 8, X,).
By product compatibility, Sol({y}, {(Type = Type), (Ilx : nat.X, = IIx:nat.X x)}) <
Sol({y}, {(Type = Type), (I1x : nat.Xy x =Ilx:nat.B x), (X 0= X))}).

Therefore, by[Theorem 3.7.8} the rewrite rule (1x:nat.y) 0 — y is well-typed.

O

3.7.5 Undecidability
We now show the undecidability of well-typedness of rewrite rules.

Lemma 3.7.12 (Undecidability of Unification). Let I' be a global context without
rewrite rule and containing the declaration (i : Type). Unification modulo =gr (=
=p) is undecidable.

More precisely, there exists a set Pol of terms of type CN" — CN (with CN =1 —
(t — 1) — 1), for some n, such that it is not decidable, given two terms in Pol p and
q of type CN™ — CN and CN"2 — CN respectively, to tell if there exist two vectors i
of size ny and ii, of size ny such that p it =gr q i>.

Proof. We can easily reduce Hilbert tenth problem as it is done for proving the un-
decidability of higher-order unification in [Dow01]. The set Pol corresponds to a set
of polynomials represented by Church’s numerals. O

Theorem 3.7.13 (Undecidablity of Well-Typedness for Rewrite Rules). Well-typedness
of a rewrite rule is undecidable.

Proof. We reduce the problem of unification modulo =4 of[Lemma3.7.12 Let T be
the global context containing the following declarations:

i : Type.
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E : CN — Type.
f:IIX:CN.E (p X) — 1.
g : IIy:CN.E (g y).

where p and q are two arbitrary terms in Pol. Consider the rewrite rule:
fX(g)) —Az:1Lz.

According to[Theorem 3.7.8} it is well-typed if and only if for all (o, A, 71) € Solr ({%, 7}, {(E (p %) =
E (g )}, there exists 75 such that (0,A,72) € Solr (X, JL{(E(pX)=E (g ¥),t=1—
0.
Since the equation ¢ =gr t — 1 is not satisfiable, the rewrite rule is well-typed if
and only if Solr({X, y},{(E (p X) = E (g y)}) = @.
By[Lemma 3.7.12] we cannot decide such equality. O

3.8 Conclusion

We have studied the property of well-typedness of rewrite rules. Starting from the
notion of strongly well-formed rewrite rule, we have generalized gradually the crite-
rion of well-typedness to allow non-algebraic and ill-typed left-hand sides. In par-
ticular, the new criterion justifies the linearization of left-hand sides of rewrite rules
when non-linearity arises from typing constraints. Keeping left-linear rewrite rules
is important to preserve confluence of the rewrite system. Indeed, the combination
of non left-linear rewrite rules with B-reduction is often non-confluent as the ex-
amples of[Section T.4.3lshow. Confluence can then be used to prove, among others,
product compatibility. Finally, we have given an exact characterisation of the well-
typedness property for rewrite rules as a problem of inclusion between solutions of
two unification problems and we have used this characterisation to show the unde-
cidability of well-typedness of rewrite rules.
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Chapter 4

Rewriting Modulo £

Résumé Ce chapitre définit une notion de réécriture modulo f pour le AIl-Calcul
Modulo. En partant des observations que (1) la confluence du systéme de réécri-
ture est une propriété vivement souhaitée car elle a pour conséquence la propriété
de la compatibilité du produit ainsi que, avec la terminaison, la décidabilité de la
congruence et que (2) la confluence est facilement perdue lorsque les regles de ré-
écriture filtrent sous les abstractions, on propose une nouvelle notion de réécriture
qui réconcilie confluence et filtrage sous les abstractions. Cette nouvelle notion est
définie a travers un encodage des termes vers un systeme de réécriture d’ordre supé-
rieur. Ceci permet d'importer dans le AIT-Calcul Modulo les résultats de confluence
congus pour les systemes d’ordre supérieur. On détaille aussi comment la réécri-
ture modulo S peut étre efficacement implémentée par la compilation des régles de
réécriture en arbres de décision.

4.1 Introduction

In this chapter, we are interested in the confluence of rewriting systems. In par-
ticular, we study a problem arising from the combination of rewrite rules with -
reduction. Remember that confluence is a highly desirable property of the AII-
Calculus Modulo for several reasons. First, confluence is the most direct way to
prove the product compatibility property (Theorem 2.6.11). Second, as soon as the
rewrite relation is also strongly normalizing, confluence entails the decidability of
the congruence: two terms are convertible if and only if they have the same normal
form. Third, confluence has also been used in the previous chapter for proving that
weakly-well-formed rewrite rules are permanently well-typed. More generally, any
property based on unification will require confluence. Lastly, confluence is used to
prove strong normalization when there are type-level rewrite rules [Bla05b].

One case where confluence is easily lost is if one allows rewrite rules with A-
abstractions on their left-hand side. For instance, consider the following rewrite
rule (which reflects the mathematical equality (e/)’ = f * e/):

D (Ax:R.Exp (f x)) — fMult (D (Ax:R.f x)) (Ax: R.Exp (f x)).

This rule introduces a non-joinable critical peak when combined with S-reduction:
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D (Ax:R.Exp ((Ay:R.y) x))

D

fMult D (Ax:R.(Ay:R.y) x)) (Ax: R.(Exp ((Ay:R.y) x))) D (Ax: R.Exp x)

A way to recover confluence is to consider a generalized rewriting relation where
matching is done modulo f-reduction. In this setting, D (1x : R.Exp x) is reducible
because it is f-equivalent to the redexD (Ax: R.Exp((1y: R.y) x)) and, as we will see,
this allows closing the critical peak.

In this chapter, we formalize the notion of rewriting modulo 8 in the context of
the AIl-Calculus Modulo. We achieve this by encoding the AIl-Calculus Modulo into
Nipkow’s Higher-Order Rewrite Systems |[Nip91]. This encoding allows us, first, to
properly define matching modulo f using the notion of higher-order rewriting and,
secondly, to make the confluence results for higher-order rewriting available for the
AlIl-Calculus Modulo.

Then, we prove a version of the subject reduction property for rewriting modulo
B and that the confluence of the new rewriting relation implies the product compat-
ibility property, generalizing the results of the previous chapters.

4.2 A Naive Definition of Rewriting Modulo

As already mentioned, our goal is to give a notion of rewriting modulo f in the set-
ting of the AIl-Calculus Modulo. We first exhibit the issues arising from a naive def-
inition of this notion.

In an untyped setting, we could define rewriting modulo f in this manner:
rewrites to # if, for some rewrite rule (u — v) and substitution o, o(u) =g f; and
0 (v) =g tp. This definition is not satisfactory for several reasons.

It breaks subject reduction. For the rewrite rule of taking o = {f —
Ay : Q.y} where Q is some ill-typed term, we have

D (Ax:R.Exp x) — fMult D (Ax:R.(Ay:Q.y) x)) (Ax: R.Exp ((1y:Q.y) x))

and, even if D (Ax : R.Exp x) is well-typed, its reduct is ill-typed since it contains an
ill-typed subterm.

It may introduce free variables. In the example above, Q2 has no reason to be
closed.

It does not provide confluence. If we consider the following variant of the rewrite
rule
D (Ax:R.Exp (f x)) — fMult D f) (Ax: R.Exp (f x))

and take o1 = {f — Ay : A;.y} and 02 = {f — Ay : Ay.y} where A; and A, are two
non-convertible types, then we have:
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D (Ax:R.Exp ((Ay:R.y) x))

DL

£Mult (D (Ay: A1.y)) (Ax: R.(Exp (Ay: A1.y) X)) D72

£Mult (D (Ay: Az.y)) (Ax: R.(Exp (Ay: Az.y) X))

and the peak is not joinable.

Therefore, we need to find a definition that takes care of these issues. We will
achieve this using an embedding of AIT-Calculus Modulo into Higher-Order Rewrite
Systems.

4.3 Higher-Order Rewrite Systems

In 1991, Nipkow [Nip91] introduced Higher-Order Rewrite Systems (HRS) in order
to lift termination and confluence results from first-order rewriting to rewriting over
A-terms. More generally, the goal was to study rewriting over terms with bound vari-
ables such as programs, theorems and proofs.

Unlike the AIT-Calculus Modulo, in HRSs -reduction and rewriting do not oper-
ate at the same level. Rewriting is defined as a relation between the fn-equivalence
classes of simply typed A-terms: the A-calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)terms of the simply-typed
A-calculus built from a signature. A signature is a set of base types & and a set of
typed constants. A simple type is either a base type b € 9 or an arrow A — B where
A and B are simple types.

Definition 4.3.1 (Preterm). A preterm of type A is

e either avariable x of type A (we assume given for each simple type A an infinite
number of variables of this type),

* oraconstant f of type A,

e oranapplication t(u) wheret is a preterm of type B— A and u is a preterm of

type B,
e or, if A= B — C, an abstraction Ax.t where x is a variable of type B and t is a
preterm of type C.

In order to distinguish the abstraction of HRSs from the abstraction of AIT-Calculus
Modulo, we use the underlined symbol A instead of A. Similarly, we write the ap-
plication #(u) for HRSs (instead of tu). We use the abbreviation ¢(uy,...,u,) for
t(uy)...(up). If Ais a simple type, we write Al for Aand A" for A— A",

Notice also that HRSs abstractions do not have type annotations because vari-
ables are typed.

B-reduction for preterms is defined as usual.

Definition 4.3.2 (Restricted n-expansion). Therelation of restricted n-expansion (writ-
ten —3) is defined as follows:
Cls] -7 ClAx.s x]

if the following conditions are satisfied:
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* s has type A— B, for some types A and B;
* x is a fresh variable of type A;
* sisnotoftheformAz.sy;

¢ inthe preterm C|[s], s does not occur as the left part of an application (it means
that restricted n-expansions do not create f3-redexes).

Remark 4.3.3. A preterm t is equivalent to a unique preterm in ffn-normal form. We
write IZ t for the fn-normal form of t.

Definition 4.3.4 (HRS-Term). Aterm is a preterm in fn-normal form.

Definition 4.3.5 (Pattern). A term t is a pattern if every free occurrence of a variable
F is in a subterm of t of the form Fii such that il is n-equivalent to a list of distinct
bound variables.

The crucial result about patterns (due to Miller [Mil91]) is the decidability of
their higher-order unification (unification modulo fn). Moreover, if two patterns
are unifiable, then a most general unifier exists and is computable.

The notion of rewrite rule for HRSs is the following:

Definition 4.3.6 (Rewrite Rules). Arewrite rule is a pair of terms (I — r) such that 1
is a pattern not n-equivalent to a variable, FV(r) c FV(l) and | and r have the same
base type.

The restriction to patterns for the left-hand side ensures that matching is decid-
able but also that, when it exists, the resulting substitution is unique. This way, the
situation is very close to first-order (i.e. syntactic) matching.

Definition 4.3.7 (Higher-Order Rewriting System (HRS)). A Higher-Order Rewriting
System is a set R of rewrite rules.
The rewrite relation — g on terms is inductively defined as follows:

e forany (I — r) € R and any substitution o, IZ oD —»RIZ o(r);

* ift) —g tp and x is a variable, then x(..., t,...) =r x(..., I2,...);
* ift) —g tp and f is a constant, then f(...,t1,...) =r f(..., t2,..);
* ift) =g t, then Ax.t) —r Ax.1o.

The standard example of an HRS is the untyped A-calculus. The signature in-
volves a single base type Term and two constants:

Lam: (Term — Term) — Term

App:Term — Term — Term

and a single rewrite rule for f-reduction:

(beta) App(Lam(Ax.X(x)),Y) — X (V)
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4.4 AnEncoding of the AIT-Calculus Modulo into Higher
Order Rewrite Systems

4.4.1 Encoding of Terms

We now mimic the encoding of the untyped A-calculus as an HRS and encode the
terms of the AIT-Calculus Modulo. First we specify the signature.

Definition 4.4.1. The signature Sig(AIl) is composed of a single base type Term, the
constants Type and Kind of type Term, the constant App of type Term — Term —
Term, the constants Lam and Pi of type Term — (Term — Term) — Term and the
constants c of type Tern for every constant ¢c € 6o U 6.

Then, we define the encoding of AIl-terms.

Definition 4.4.2 (Encoding of All-term). The function |.|| from AIl-terms to HRS-
terms in the signature Sig(AIl) is defined as follows:

IKind|| = Kind

I Typell := Type

Il :=  x (variable of type Term)
el = c

luvll = App(lul, vl

[Ax: Azl = Lam(|All, Ax.l 2D

ITlx: A.Bll  := Pi(lAl,Ax.1BI)

This function is a bijection between the untyped terms of the AIT-Calculus Mod-
ulo and well-typed terms of the corresponding HRS.

Lemma 4.4.3. The function ||.|| is a bijection from the All-terms to HRS-terms of type
Term.

Proof. By induction on the fi-normal form. O
Notation 4.4.4. We write .|} for the inverse of ||.||.
Remark 4.4.5. ||.| and|.|~! are compositional for substitution.

o lelx/ulll = el lx/ Null;

o lelx/ull™ = el =/ a1

4.4.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to encode the rewrite rules.
First, we introduce a rule (beta) for -reduction in the HRS.

(beta) App(Lam(w,Ax.y(x)),z) — y(2)
We have the following correspondence:

Lemma4.4.6. Ift; —p b2, then | | — weta) I 21l
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Proof. Wehave [[(Ax: A.f)ull = App(Lam(|| All, Ax.Il£]}), l ul) _’(beta)I’Z (Ax iz Nuld) =

el lx/Null] = N ¢[x/ulll. Indeed, |Iz]l[x/||u]] is already a normal form since the vari-
able x cannot have arguments in | ¢|| and therefore the substitution does not intro-
duce B-redexes. O

Lemma 4.4.7. Ift; = (petg) 2 and t1, t, have type Term, then |17 — 4 [ 2] 7.

Proof. 1f :IZ (o (App(Lam(A, Ax.£(x)), 1)) — (beta) L2 =IZ (o(t(w)) and x € dom(o),
then | 11! = (Ax: o (A1 T @@ D)1 Dllo@ ™ —p 1 15 @0 017 (/o @) ™' =
TG @I~ =Nl 0

By encoding rewrite rules in the obvious way (i.e., translating (x — v) by (|ull —
llvl)), we would get a similar result for I'-reduction. But, since we want to incorpo-
rate rewriting modulo §, we proceed differently.

First, we introduce the notion of uniform terms. These are terms verifying an
arity constraint on their free variables.

Definition 4.4.8 (Uniform terms). A term t isuniform for a set V of variables if all oc-
currences of a variable in V and free in t is applied to the same number of arguments.
A uniform term is a term uniform for its free variables.

Now, we define an encoding for uniform terms.

Definition 4.4.9 (Encoding of uniform terms). Let V be a set of variables and t be a
term uniform in V. The HRS-term | ullv of type Tern is defined as follows:

[IKind||y = Kind

ITypellv ;= Type

lxllv = x, ifx¢V (variable of type Term)

lelv = c

IAx:Auly = Lam(|[Alv,Ax.llullviig)

IMx:ABly = Pi(lAllv,Ax.IIBllv\ix)

vy = x(IVlly), ifx €V (x of type Term"™*! where n = |7|)
luvilvy = AppUlullv,lIviv), ifuv # x i forx ¢ V

Remark 4.4.10. The restriction to uniform terms in the previous definition comes
from the fact that we need to type the HRS-variables and make sure that the encoding
is a HRS-term of type Term.

Now, we define an equivalent of patterns for the AIl-Calculus Modulo.

Definition 4.4.11 (All-patterns). A All-pattern is a uniform term t = f i such that,
for any variable x, if x occurs free in t then it occurs in a subterm of the form xy where
¥ is a vector of pairwise distinct variables bound in t.

Remark 4.4.12. All-patterns are defined in such a way that their encodings as uni-
form terms exactly match the definition of patterns in HRSs. If p is a AIl-pattern, then
IpllFvip) is a pattern.

We now define the encoding of rewrite rules.

Definition 4.4.13 (Encoding of Rewrite Rules). Let (u — v) be a rewrite rule such
that

e u is a All-pattern;
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e FV(v)c FV(u);

e all free occurrences of a variable in u or v are applied to the same number of
arguments.

The encoding of (u— v) is|u — vl = lullrywy — IVIFvay-

The first and second assumptions ensure that |u — v| is indeed a rewrite rule
for[Definition 4.3.6l The third assumption says that u and v are uniform terms and
that, moreover, the arity constraint is the same for u and v. This ensures that the
encoding of a variable has a unique simple type.

Definition 4.4.14 (HRS(I')). LetT be a global context whose rewrite rules satisfy the

conditions of[Definition 4.4.13, We write HRS(T') for the HRS {|lu — v|| | (u— v) € T}
and HRS(BI') for HRS(I') U {(beta)}.

4.5 Rewriting Modulo

4.5.1 Definition

We are now able to properly define rewriting modulo . As for usual rewriting,
rewriting modulo S is defined on all (untyped) terms of the AIT-Calculus Modulo.

Definition 4.5.1 (Rewriting Modulo f). LetT be a global context whose rewrite rules

satisfy the condition of|Definition 4.4.13, We say that t; rewrites to t, modulo § (writ-
ten t1 —u ) if | 11 rewrites to || t2|| in HRS(T'). Similarly, we write t; —prb L2 if ity ll
rewrites to || 21| in HRS(BT).

Lemma 4.5.2. — grp=—» U —p.

Proof. Follows from[Lemma 4.4.6land[Lemma 4.4.7] O
Lemma4.5.3. Ift; —r b, then t1 —pb b3.
Proof. Let (u— v) €T'. Suppose that t; = o(u) —r 0(v) = f,. Then, we have | 1| =

a(lull) = a(lvl) = | &| for g = {x— llo(x)}. O

4.5.2 Example

Let us look at the example from the introduction. Now we have :
D (Ax:R.Exp x) —p» fMult (D (Ax: R.x)) (Ax: R.Exp x)
Indeed, for o = {f — Ay.y} we have

ID(Ax:R.Exp x)| =App(D,Lam(R,Ax.App(Exp,x)))
=1}, o (App(D, Lam(R, Ax.App(Exp, f(x)))))
and

[fMult (D (Ax:R.x)) (Ax: R.Exp x)||
= App(fMult, App(D,Lam(R, Ax.x)),Lam(R, Ax.App(Exp, X)))
:IZ o(App(fMult, App(D,Lam(R, Ax.f(x))),Lam(R, Ax.App(Exp, f (x)))))
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Therefore, the peak is now joinable and, anticipating a bit, the rewrite system is
confluent.
D (Ax:R.Exp (Ay:R.y) x))

e

fMult D (Ax:R.(Ay:R.y) x)) (Ax: R.(Exp (Ay: R.y) x))) D (Ax: R.Exp x)

2

fMult (D (Ax:R.x)) (Ax: R.Exp x)

4.5.3 Properties
Rewriting modulo § preserves typing.

Theorem 4.5.4 (Subject Reduction for —r»). LetI' be a well-formed global context
and A a local context well-formed forT. If I;A - t1: T and ty —pb o, then ;A - £
T.

It directly follows from the following lemma:

Lemma 4.5.5. If ty —p» 12, then for some t| and t,, we have t «—E f =1t —>E I.
Moreover, if t, is well-typed, then we can choose t| such that it is well-typed in the

same context.

Proof. The idea is to lift the S-reductions that occur at the HRS level to the AIl-
Calculus Modulo. Suppose #; —p» 2. For some rewrite rule (¢ — v) and (HRS)
substitution o, we have IZ o(u) = || and IZ o(v) = | &2]|. We define the (AIl) sub-
stitution & as follows: 6(x) = lo(x)[|~! if o'(x) has type Term; 6(x) = A% : A.|lul " if
0(x) = AX.u has type Term” — Term where the A; are arbitrary types. We have, at
the AIl level, 6 (1) —r 6(v), 6(w) —»E f1 and & (v) —»E tp. If 1; is well-typed, then the
A; can be chosen so that 6 (u) is also well-typed. O

Another consequence of this lemma is that the rewriting modulo § does not
modify the congruence.

Theorem 4.5.6. The congruence =gy generated by — grv is equal 1o =pr.

Proof. Follows from[Lemma 4.5.3|and[Lemma 4.5.5| O

Theorem 4.5.7. LetT be a global context. If HRS(PI') is confluent, then product com-
patibility holds forT.

Proof. Assume thatIlx: Ay.B) =gr [1x: A2.By. Then, bylTheorem 4.5.6} ITx : A;.B; =prb
Ilx : A2.B,. By confluence, there exist Ay and By such that A; —»;rh Ag, Ao —»Zrb Ay,

By _’Zrb By and B, _’;rb By. It follows, by[Theorem 4.5.6 that A} =gr A and By =g

B;. O
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(Empty Global Context)

@ wif

(Object Declaration)
I wif [;0 - U:Type c ¢ dom(T)

I(c:U) wif

(Type Declaration)
r wf’ T;¢ + K :Kind C ¢ dom(T)

[(C:K) wif

(Rewrite Rules)
(VOTHY fii— v;
(Vi) fi is a definable symbol
T wff — przyv is confluent E=(fity — v1)...(fully — vp)

= wif

Figure 4.1: Weakly well-formedness rules for global contexts

4.5.4 [-Well-Formed Global Contexts

Since product compatibility follows from confluence modulo §, we can update the
notion of weakly well-formed global context defined in[Section 3.6] weakening the
assumption of confluence to confluence of rewriting modulo 8. This gives us the
notion of -well-formed global context.

Definition 4.5.8 (8-Well-Formed Contexts). A global contextT is $-well-formed, if
the judgment T wifP is derivable from the inference rules of[Figure 4.]]

Remark 4.5.9. Weakly well-formed contexts are -well formed.
As expected, B-well-formed global contexts are well-typed.
Theorem 4.5.10. (-well-formed global contexts are safe. Hence they are well-typed.

Proof. Same proof as[Theorem 3.6.9] but product compatibility is obtained by The-
orem 4.5.7. O

4.6 Proving Confluence of Rewriting Modulo 3

We have shown that the confluence of the rewriting modulo S relation has nice con-
sequences on the type system. Now, we give a powerful criterion for proving conflu-
ence.

For Higher-Order Rewrite Systems, as for (first-order) Term Rewriting Systems,
there are two general categories of rewrite systems for which confluence results are
known: first, the terminating rewrite systems, for which confluence is decidable;
second, the left-linear systems, for which several criteria for confluence exist.
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Both results are based on the notion of overlapping patterns and higher-order
critical pairs.

Notation 4.6.1. We write 1), for the subterm of t at position p and t[u], for the term
t where its subterm at position p is replaced by u.

Definition 4.6.2 (Overlapping Patterns). Let u and v be two patterns and p be a po-
sition in v. Suppose that:

* X are the free variables of v|,, that are bound in v;

* o is a substitution that maps every free variable z; of type A in u to zp(X) where
2 is a fresh variable of type B— A and B are the types of %;

¢ y are the variables free in IZ (o(w) and vp;
* v|p is not a variable free in v.

If there exists a substitution 6 with domain y such that IZ OBAX.0Ww)) = IZ OAX.vp)),
then we say that u overlaps with v at position p.

Critical pairs arise from overlaps between two rewrite rules.

Definition 4.6.3 (Higher-Order Critical Pair). Let (u; — v1) and (u, — v2) be two
HRS rewrite rules such that u; overlaps with uy at position p. Let 0 be a most general
unifier of AX.0(u1) and AX.uz|, (for X and o as in[Definition 4.6.2). The pair (IZ
O(uzlo(u)lp), IZ (0(v2))) is called a critical pair.

When the overlap occurs at the root of uy (i.e., p =€), then the pair is a root critical
pair. Otherwise, it is an inner critical pair.

We write a x b when (a, b) is a critical pair.

Theorem 4.6.4 (Nipkow [Nip91]). A terminating higher-order rewrite system is con-
fluent if and only if its critical pairs are joinable.

For our purpose, [Theorem 4.6.4]is of little use since the (beta) rule is not termi-
nating and there is no modularity result (Theorem 1.2.18) for HRSs.

Our second criteria applies to left-linear rewrite systems whose critical pairs are
joinable by simultaneous reduction.

Definition 4.6.5 (Simultaneous Reduction). Let R be a HRS. The simultaneous re-
duction relation —e~ is the relation on terms defined by:

e ifS—e~ [ and x is a variable, then x(3)-o~ x(1);

e ifS—~ T and f is a constant, then f(3)-e~ f(1);

* ifs——t, then Ax.s——> Ax.t;

¢ ifu— veR and, for all x,0;(x)— 0,(x), then IZ (Hl(u))—e-»IZ @2(v).

Theorem 4.6.6 (Developpement Closure Theorem (V. van Oostrom [vO95])). Let R
be a left-linear HRS such that:

e for every root critical pair t) X t,, there exists t3 such that t)—e~ t3 and t, —g 3

* and, for every inner critical pair t; X tp, t—e— b,
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then R is confluent.
This criterion can be adapted for our purpose.

Corollary 4.6.7. If T is a global context such that HRS(I') satisfies the hypothesis

oflTheorem 4.6.6, then — . is confluent.

Proof. Therule (beta) is left-linear and cannot overlap with a rewrite rule in HRS(T).
O

4.7 Applications

4.7.1 Parsing and Solving Equations

The context declarations and rewrite rules of define a function to_expr
that parses a function of type Nat to Nat into an expression of the form a * x+ b
(represented by the term mk_expr a b) where a and b are constants. The left-hand
sides of the rewrite rules for to_expr are AIl-patterns. This allows defining to_expr
by inspecting under the binders.

The function solve can then be used to solve the linear equation a * x + b =
0. The answer is either None, if there is no solution, A11, if any x is a solution, or
One m n, if —-m/(n+ 1) is the only solution.

For instance, we have (writing — 3 for One 1 2):

solve (to_expr(Ax:Nat.plus x (plus x (S x)))) _’Er ~3
By[Theorem 4.6.6land [Theorem 3.2.1 the global context of[Figure 4.2)is §-well-

formed.

4.7.2 Negation Normal Form

The example of[Figure 4.3]is drawn from [Ter03]. It defines a rewrite system to nor-
malize the propositions with respect to negations. It pushes negation inside the
propositions and eliminates double negations. In order to push negation inside the
quantifiers, the last two rewrite rules feature abstraction on their left-hand side. As
previously, [Theorem 4.6.6| and [Theorem 3.2.1| can be used to show that this global
context is well-formed.

4.7.3 Universe Reflection

In [Ass15], Assaf defines a version of the Calculus of Constructions with explicit uni-
verse subtyping thanks to an extended notion of conversion generated by a set of
rewrite rules. This work can easily be adapted to fit in the framework of the AII-
Calculus Modulo. Product compatibility holds because the rewriting system is con-
fluent modulo S.

4.8 Compiling Rewrite Rules for Rewriting Modulo S
We now address the problem of compiling pattern matching modulo S to decision

trees. This problem has been studied by Maranget [Mar08] in the case of syntactic
pattern matching. We extend his work to handle pattern matching modulo g.
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expr : Type.

mk_expr : Nat — Nat — expr.
expr_S : exXpr — expr.

expr_S (mk_expr a b) — mk_expr a (S b).
expr_P : exXpr — exXpr — expr.

expr_P (mk_expr a; b)) (mk_expr ay by)
— mk_expr (plus a; ay) (plus by by).

to_expr : (Nat — Nat) — expr.
to_expr (Ax:Nat.0) — mk_expr00.

to_expr (Ax:Nat.S (f x)) — expr_S (to_expr (Ax:Nat.f x)).
to_expr (Ax:Nat.x) — mk_expr (S0)0.

to_expr (Ax:Nat.plus (f x) (g x)) <
expr_P (to_expr (Ax:Nat.f x)) (to_expr (Ax:Nat.g x)).

Solution : Type.

All : Solution.

One : Nat — Nat — Solution.
None : Solution.

solve : expr — Solution.

solve (mk_expr 00) — All.

solve (mk_expr 0 (S n)) — None.

solve (mk_expr (S n) m) — (One mn.

Figure 4.2: Parsing and solving linear equations

prop : Type

Term : Type

not : prop — prop

or : prop — prop — prop

and : prop — prop — prop
forall : (Term — prop) — prop
exists : (Term — prop) — prop
not (not p) — p

not (and p; p2) — or (not pi) (not p2)

not (or p1 p2) — and (not pj) (not py)

not (forall (Ax:Term.p x)) — exists (Ax:Term.not (p x))
not (exists (Ax:Term.p x)) — forall (Ax:Term.not (p x))

Figure 4.3: Negation normal form
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If we want to test if a term plus u v matches one of the four rules below:

plus 0 n— n.
plus n0— n.
plus (S n1) np — S (plus n; ny).
plus n; (S np) — S (plus n; ny).

the naive approach is to try to successively match the term plus u v against each of
the left-hand sides of the four rewrite rules. In the worst case (i.e., if only the last rule
is a match), we need to inspect u twice (first to see if it is 0 in the first rule and then
to see if it is a successor in the third rule) and v twice as well (for the second and last
rules).

Instead, we could inspect only once the shape of each argument z and v, and still
be able to say which rewrite rule to apply. This is the idea behind the compilation to
decision trees.

The situation is similar if the rewrite rules require matching modulo g:

to_expr (Ax:Nat.0) — mk_expr 00.

to_expr (Ax:Nat.S (f x)) — expr_S (to_expr (Ax:Nat.f x)).
to_expr (Ax:Nat.x) — mk_expr (S0) 0.

to_expr (Ax:Nat.plus (f x) (g X)) —

expr_P (to_expr (Ax:Nat.f x)) (to_expr (Ax:Nat.g x)).

Here, again, if we try to match to_expr u against each rewrite rule, we will test four
times that u is an abstraction.

To be able to deal with matching modulo B, the notion of decision tree must be
modified for two reasons.

* First, since there may be abstractions occurring in the left-hand sides of the
rewrite rules, we need to handle bound variables.

* Second, in decision trees for regular pattern matching, the leaves correspond
to unification problems in solved form, that is, of the form {x; = ¢;} where the
x; are distinct (if the rewrite rules are left-linear) and none of the x; occur in
any t;. Such problems always have a unique solution. For matching modulo f
the situation is different. The leaves correspond to a set of flexible-rigid equa-
tions of the form x; y; = t; where j; are bound variables and none of the x;
occur in any t;. Such problems have a solution (which is unique) only if the
free variables of t; are among ;. The semantics of the decision trees has to be
modified in consequence.

4.8.1 Decision Trees
We define the syntax of decision trees and their semantics.

Definition 4.8.1 (Decision Tree). A decision tree is:

o cither the tree Leaf(t, p, D) where t is a term, p is a partial function from vari-
ables to pairs (3, n), where y is a vector of distinct variables and n is an integer,
and D is a decision tree,

 or the tree Switch(j, F, D) where j is an integer, F is a partial function from
{AU ((Go UET) xN) to decision trees and D is a decision tree.
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p ={x— (Jx, jx)}
o ={x~ Ayx.Sj.} Vx e dom(p), FV(s; )NV <y

Leaf
(EJV) - Leaf(v,p,D) — y;‘/ ( ea )
SV)F-D—t
Leaf-El
(3,7) + Leaf(v,p,D) — t (Le se)
Fum=Dy _ sj=ub__[fl=n__ GEBFDu=t
iich-
(3,7) - Switch(j, D) — t (Switch-C)
F(/l):D,l sj:/lx;A_u (E'A'UJ/U{X}H_DAHt
(Switch-L)

(5,7) - Switch(j, D) — t

sj#Ax:Au
S, 7)ED—t sj # ub with n = 7| and (u, n) € dom(F)
(5,7) F Switch(j, D) — t

(Switch-Else)

Figure 4.4: Operational semantics for decision trees

e or the treeFail.

We now define the semantics of decision trees. We use the following notation to
avoid, as much as possible, the reference to the construction of rewriting modulo f
through HRS when working with AII-terms.

Notation 4.8.2. Let 7 be a set of variables, t be a term uniform in FV(£)\V and o be
a HRS substitution such that dom(o) NV = @ and o (||t|y) is a preterm (of type Term).
We write t3) for the term | IZ eIt

For example, if t =Exp (f x),V ={x} and o = f — Ay.y, then we have t; = Exp x.

Notation 4.8.3 (Head Reduction). We write 1 —>;’b Lo if i —pb 12 and the reduction
occurs at the root of t; and not in a subterm.

Remark 4.8.4. 1, —»?h ty for the rewrite rule u — v if and only if there is a HRS-
substitution o such that t; = ug and t, = vg.

Definition 4.8.5. The operational semantics for decision trees is given|Figure 4.4 in
the form of a judgment (5,7) = D — t where s is a vector of terms (the stack), V is a
set of variables, D is a decision tree and t is a term.

If the judgment (3,7) b D — t is derivable, we say that D reduces to t in the con-
text (5,7).

Intuitively, a decision tree is meant to be executed with a stack 3 (i.e., a vector of
terms s;) and a set of variables 7.

The decision tree Leaf(v, {x — (Jx, jx)}, D) corresponds to a potential match. If
the unification problem {AZ.x(yx) =g AZ.|ls; I} with 7 = {Z} has a solution o, then
the result of the matching is v;‘,. This situation corresponds to the rule (Leaf). If
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there are no solutions, then we continue, executing the decision tree D (Leaf-Else).
Remark that if there are no bound variables (i.e., 7 is empty), then a solution always
exists.

The decision tree Switch(j, F, D) is a branching node in our search for a match.
It tells us to look at the shape of s;. If s; is an abstraction and F(A) = D, is defined,
then we continue with D, (Switch-L). If s; = u7 is a constant application or a bound
variable application, and F(u, n) = D, is defined for n = ||, then we continue with
D,, (Switch-C). Otherwise we continue with D (Switch-Else).

The construction Fail corresponds to the situation where the term does not match
any rewrite rule.

4.8.2 From Rewrite Rules to Decision Tree

Let I" be a global context for which — gr is well-defined. The goal of this section is to
define a function CCr from constants to decision trees such that:

(it ) - CCr (f) — tifand only if f&i —", .

We call the function CCr the compilation function. It will use matrices.
Here, (pairs of) matrices are concise representations of sets of rewrite rules for
the same constant and with the same number of arguments.

Definition 4.8.6 (Matrix Patterns). A matrix pattern is either a All-pattern or the
symbol x’ which we call joker.

Definition 4.8.7 (Matrix). A matrix is a pair M = (U — V) where U is an array of
matrix patterns of size m* n (m lines, n columns) and V is a vector of terms of size m.
Theline i of (U — V) is the pair (il — v) whereii = U(i) and v = V (i).
The size of the matrix (U — V) ism * n.

We now give the correspondence between rewrite rules and matrices.

Definition 4.8.8 (Rewrite Rules as a Matrix). A set of rewrite rules (fii; — v;)i1<i=m
for the same constant f and with the same number n of arguments (for all i, |ii;| = n)
can be represented by the matrix (U — V) of size m = n defined as follows:

* U(i,j)=ujj forl<sismandl < j=<n,
e Vi)=v;, forl<i<m.
The rewrite rule (fii; — v;) corresponds to the line (ii; — v;). Remark that the

constant f is not stored in the matrix.

Examples The matrix representing the rewrite rules for plus is

0 n n

n 0 n
Mplus - S ny ny - S (plus ny ng)

n S ny S (plus ni I’lg)

The matrix representing the rewrite rules for to_expr is

Ax:Nat.0 mk_expr 00
M. _ Ax:Nat.S (f x) = expr_S (to_expr (Ax:Nat.f x))
to_expr = Ax:Nat.x mk_expr (S0) 0
Ax:Nat.plus (f x) (g x) expr_P (to_expr (Ax:Nat.f x)) (to_expr (Ax:Nat.g x))
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We know how to see a set of rewrite rules as a matrix. Now, we explain how to
transform a matrix into a decision tree. This compilation process uses two opera-
tions on matrices: the extraction of the default matrix and the specialization of a
matrix.

Definition 4.8.9 (Default Matrix). Let M = (U — V) be a matrix of sizem=+n,1 < j <
nandV asetof variables.

The default matrix for M at Column j with bound variablesV (written2(V, j, U —
V) is the matrix built from the lines i of M where U (i)(j) is either a joker or a term
Xy with x a variable notin'V .

Examples
0 n n
n 0 n n 0 n
2,1, Sm m s (plus n; ny) )= (m S nz) - (S (plus m I’lg))

n S ny S (plus n nz)

* Nat 0 mk_expr00

* Nat S(fx) | expr_S (to_expr (Ax:Nat.fx) |, _

203 yag X mk_expr (S0) 0 )=90
* Nat plus (f x) (g x) expr_P ...

Definition 4.8.10 (Specialized Matrix). Let M = (U — V) be a matrix of size m % n,
1< j=n,V beasetofvariables, u be a constant or avariableinV and k be an integer.
The specialized matrix S, r) (V, j, M) is built from M as follows:

¢ we keep only the lines i of M where U (i, j) is either a joker, or a term xy with x
a variable notinV, or a term uv with |v| = k;

e we add k new columns at the end of U: if U(i, j) = u?, then we fill the new
columns with U; otherwise, we fill the new columns with jokers;

e ifU(i, j) = ub, then we replace it by a joker.
The specialized matrix % (¥, j, M) is built from M as follows:

* we keep only the lines i of M where U (i, j) is either a joker, or a term xy with x
a variable not inV, or an abstraction;

* we add 2 new columns at the end of U: ifU(i, j) = Ax: A.w, then we fill the two
new columns by A and w; otherwise, we fill the new columns with jokers;

e ifU(i, j) is an abstraction, we replace it by a joker.

Remark 4.8.11. Jokers are used to mark positions in the matrix that have already
been matched or that should match anything.
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Examples

0 n n
n 0 n n 0 * n
n S no S (plus n ng) 1 2 p 172
Ax:Nat.0 mk_expr ... * Nat 0
Ax:Nat.S (f x) expr_S ... * Nat S(fx)
Z1@,1, Ax:Nat.x - mk_expr ...|" [* Nat X
Ax:Nat.plus (f x) (g x) expr_P ... * Nat plus(f x) (g x)

The compilation of matrices to decision trees is defined as follows. Since several
decision trees may correspond to one matrix, we define the result of the compilation
as a set of decision trees.

Definition 4.8.12 (Compilation of Matrices). Let M = (U — V) be a matrix andV be
a set of variables.
The set of decision trees CC(¥V', M) is defined as follows:

e Faile CC(7, @).
* Leaf(v, p, D) € CC(¥, M), if, for some line i of M:
- forall j, either U(i)(j) is a joker, or U(i)(j) = x;j; where x; is a variable
notin¥, yj <V and p(x;j) = (¥, J);
- D e CC(V, M) where M, is M without the line i,
— andv=V(i).

« Switch(j, ;D) € CC(V, M), if

-1<j=n,

- F isa function with domain
{(u,n) |i.UQ)(j) = uv, where u is a constant or a variable in ¥V and |V| =
ntU{A | i.UG)(j) = Ax: A.u} such that

* F(u,n) e CCV, HumV, j, M))
* and F(A) e CC(Y u{x}, A, j, M),
- and D e CC(V,2(V, j,M)).

Two parameters make CC(¥, M) be a set and not a single decision tree. First,
if M has several lines containing only jokers and free variables applications, then,
depending of the chosen line, several Leaf decision trees are possible. Second, if
the width of the matrix is strictly greater than one, then we can choose to switch on
different columns. These two parameters may be used to optimize either the size of
the decision tree or its depth [Mar08]. We do not detail this here.

We now give some examples of decision trees.
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Symmetric Addition A decision tree in CC(@, Mp1ys):

Switch(1,{(0,0) — Dy, (S,1) — Ds}, Dg)

Leaf(n, (n— (2,2)}, DY) Leaf(S (plus nj np),{n; — (@,3), no — (,2)}, DY)

Dy

Switch(2, {(0,0) — Dy, (8,1) — Dg}, Fail) Switch(2, {(0,0) — Dy, (S,1) — Dg}, Fail)

R

D Leaf(n, {n — (@, 1)}, Fail) Dg

Leaf(S (plus m ny),{n; — (,1), ny — (¢,3)},Fail) Leaf(S (plus n; ny),{n — (3,1), nz — (»,4)}, Fail)

Parsing of Expressions A decision tree in CC(®, Mto_expr):

Switch(1, {1 — D;}, Fail)

D,

Switch(2, {(Nat,0) — Dyat}, Fail)

Dyat

Switch(3,{(0,0) — Dy, (S,1) — Ds, (x,0) — Dy, (plus,2) — Dp1us}, Fail)

Dy Ds
Leaf(mk_expr 0 0, @, Fail) Leaf(expr_S ..., {f — ({x},4)}, Fail)
Dy Dplus

Leaf(mk_expr (S 0) 0,4,Fail)  Leaf(expr_P...,{f — ({x},4), g — ({x},5)}, Fail)

4.8.3 Soundness and Completeness

Recall that our goal is to define a function CCr verifying the following properties:

* (Soundness) If (&L, ) - CCr(f) — ¢, then fii —, 1.
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¢ (Completeness) If f i —»?b t, then (i, ) - CCr(f) — t.
Let I" be a global context such that:

* —pp is well-defined (i.e., the rewrite rules satisfy the assumptions of Defini-
tion 4.4.13);

¢ the rewrite rules are left-linear;
¢ all the rewrite rules for a single symbol have the same number of arguments.

We can take CCr = f — D € CC(@, M) for My the matrix representing the rewrite
rules whose head symbol is f.

We now prove the soundness and completeness properties for CCr, using a no-
tion a matching for vectors of terms.

Definition 4.8.13 (Match). Let S be a vector of terms, V' be a set of variables and M =
(U — V) be a matrix.

Match(s, 7, M) is the set of terms t such that, for some integer i and HRS-substitution
o:

e forall j,u=U(,j) is either a joker or sj = ug;
e andt=vj forv="V().

Remark 4.8.14. LetT be a global context and M be the matrix corresponding to the
rules (fii— v) inT.
We have f$—r» t (by a toplevel reduction) if and only if t € Match(s, @, M).

Notation 4.8.15. We write M) c M, if My contains at least all the lines of M, .

Remark 4.8.16. If M| c M, then Match(s,7, M;) c Match(s, 7, M>).

Soundness for Matrix Specialization and Default Matrix

Lemma 4.8.17 (Soundness of Ay ). If'sj = ub and |V| = n, with u a constant or a
variable in V', then Match(s, 7, M) = Match(s.7, 7, HAu,nm (V, j, M)).

Proof. By definition of A, ) (V, j, M). O

Lemma 4.8.18 (Soundness of #}). If'sj = Ax: A.u, thenMatch(s,7, M) = Match(5. A.u, VU
{xt, AWV, j, M)).

Proof. By definition of # (7, j, M). O
Lemma 4.8.19 (Soundness of ). Suppose that:
* ifsj=Ax:A.u, then, foralli,U(i, j) is not an abstraction;

* ifsj = ub with u a constant or a variable in'V, then, for all i, U(i, j) # uiv with
|| =l

Then, we have Match(s, 7, M) = Match(s, 7,2V, j, M)).
Proof. By definition of 2(7, j, M). O
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Soundness of the Compilation to Decision Trees

Theorem 4.8.20 (Soundness of CC). Let S be a vector of terms, ¥ be a set of variables,
D be a decision tree, M = U — V be a matrix and t be a term.
If(5,7)F D — t and D € CC(V, M), then t € Match(s, 7, M).

Proof. Byinduction on |-.

(Leaf) Suppose that D = Leaf(v, p, Do), t = vy, p = x— (Vx, jx), VX, FV(sj) N
Vcyrando=x— A.yy.sj,.

Since D € CC(¥, M), there exists i such that, for all j, U(i, j) is either a joker or
zj, for variables z and j,, and v = V (i).

It follows that, for all j, u = U(i, j) is either a joker or s; = uJ and t = v €
Match(s, 7, M).

(Leaf-Else) Suppose that D = Leaf(v, p, Do) and (5,7) F Dy — t.

Since D € CC(¥, M), we have Dy € CC(¥, M) for My < M.

By induction hypothesis, ¢ € Match(s, 7, My).

BylRemark 4.8.16] ¢ € Match(s, 7, M).

(Switch-C) Suppose that D = Switch(j, F, Dy), F(u,n) = Dy, sj = ub, Ul =n
and (5.7,7) D, — t.

Since D € CC(¥, M), we have D, € CC(V, Au,my V', j, M)).

By induction hypothesis, we have ¢t € Match(s.7, 7, H,,n (7, j, M)).
By[Lemma 4.8.177] we have ¢ € Match(s, 7, M).

(Switch-L) Suppose that D = Switch(j, F, Do), F(A) = Dy, s; = Ax : A.u and
(S.A.u, 7V Uu{x) F Dy —t.

Since D € CC(¥, M), we have D) € CC(¥V U {x}, A (V, j, M)).

By induction hypothesis, t € Match(s.A.u, 7 U {x}, A (V, j, M)).

By[Lemma 4.8.18| ¢ € Match(s, 7, M).

(Switch-Else) Suppose that D = Switch(j, F,Dy) and (5,7) F Dy — t.
Since D € CC(¥, M), we have Dy € CC(V,2(V, j, M)).

By induction hypothesis, ¢ € Match(s, 7,2 (¥, j, M)).

Therefore, since 2 (¥, j, M) c M, by[Remark 4.8.16} ¢ € Match(s, 7, M).

O
Corollary 4.8.21 (Soundness fo CCr). If(5, @) - CCr(f) — t, then f§—>?h L.
Proof. By[Remark 4.8.14land[Theorem 4.8.20 O
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Completeness of the Compilation to Decision Trees

Theorem 4.8.22 (Completeness of CC). Ift € Match(s, 7, M) and D € CC(V, M), then
S7VED—t.

Proof. We proceed by induction on CC(¥, M). Let D € CC(¥, M).
¢ Since Match(s, 7, M) # @, then M # @ and D # Fail.

¢ Suppose that D = Leaf(v, p, Dy); then, there exists i such that, for all j, U(i, j)
is either a joker or is equal to x;; with x; ¢ ¥ and y; < 7, p(x;) = (¥}, J), and
Dy € CC(¥, My) for My the matrix M without the line i.

IfVx;, FV(sj)n¥ cyjand t = v;i, for o = x; — Ayj.s;, then, by (Leaf), we have
G, 7)ED—t.

Otherwise, s does not match the line i and ¢ € Match(s, 7, Mp). By induction
hypothesis, (s5,%) - Dy — t and, by (Leaf-Else), (5,7) D — t.

* Suppose that D = Switch(j, F, Dy) with Dy € CC(V,2(V, j, M)),
dom(F) = { (u,n) | for some i, U(i, j) = u?, u is a constant or a variable in 7 and | 7| =
n}u{ | forsomei, U(i,j) = Ax : A.u} and, when it is defined, we have
F(u,n) € CC(V, HumV, j,M)) and F(A) € CC(V U {x}, AT, j, M)).

- If s; = u¥,|9| = nand (u, n) € dom(F), then, by[Lemma 4.8.17] t € Match(s, 7, A, (V, j, M)).
By induction hypothesis, we have (5,7) - F(u, n) — t.
It follows, by (Switch-C), that (5,7) D — t.
- ifsj = Ax: A.uand A € dom(F), then, by[Lemma 4.8.18 ¢ € Match(s.A.u, VU
{xh, AU, j,M)).
By induction hypothesis, we have (5,7 U {x}) - F(1) — t.
It follows, by (Switch-L), that (5, V) - D — t.
- otherwise, by[Lemma 4.8.19] we have ¢ € Match(s, V u{x},2(V, j, M))
By induction hypothesis, we have (5, V) - Dy — t.
It follows, by (Switch-Else), that (5, V) - D — t.

Corollary 4.8.23 (Completeness for CCr). If fs —{’h t, then (5,@) - CCr(f) — t.
Proof. BylRemark 4.8.14land[Theorem 4.8.22 O

4.9 Conclusion

We have defined a notion of rewriting modulo g for the AIl-Calculus Modulo. We
achieved this by encoding the AIl-Calculus Modulo into the framework of Higher-
Order Rewrite Systems. As a consequence, we also make the confluence results
for HRSs available for the AIl-Calculus Modulo. We proved that rewriting mod-
ulo S preserves typing and that confluence of rewriting modulo f implies product-
compatibility, allowing us to generalize the notion of weakly well-formed global con-
text to f-well-formed global contexts.

We have also studied an efficient implementation of rewriting modulo g through
the compilation of rewrite rules to decision trees, extending the work of Maranget [Mar08].
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A natural extension of this work would be to consider rewriting modulo fn as
in Higher-Order Rewrite Systems. This requires extending the conversion with 7-
reduction. But, as remarked in [Geu92] (attributed to Nederpelt), — pn 1s not conflu-
ent on untyped terms as the following example shows:

Ay:B.y —pAx:A.Ay:B.y)x—pAx: Ax

Therefore properties such as product compatibility need to be proved another way.

For the All-calculus a notion of higher-order pattern matching has been pro-
posed [Pie08] based on Contextual Type Theory (CTT) [NPPO08]|. This notion is simi-
lar to ours. However, it is defined using the notion of meta-variable (which is native
in CTT) instead of a translation into HRSs.

In [Blal5], Blanqui studies the termination of the combination of S-reduction
with a set of rewrite rules with matching modulo 7 in the polymorphic A-calculus.
His definition of rewriting modulo fn is direct and does not use any encoding. This
leads to a slightly different notion a rewriting modulo S. For instance, D(A : R.Exp x)
would reduce to fMult (D (Ax: R.(Ay: R.y) x)) (Ax: R.Exp ((Ay: R.y) x)) instead of
fMult (D (Ax: R.x)) (Ax: R.Exp x). It would be interesting to know whether the two
definitions are equivalent with respect to confluence, that is to say if, for the same
set of rewrite rules, the rewrite relation for his definition of rewriting modulo g is
confluent if and only if the rewrite relation for our definition of rewriting modulo S
is confluent.
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Chapter 5

Non-Left-Linear Systems

Résumé Ce chapitre considere les régles de réécriture non linéaires a gauche. Com-
binées avec la -réduction, ces regles géneérent généralement un systéme de réécri-
ture non confluent. Ceci est un probléme car la confluence est notre outil principal
pour prouver la compatibilité du produit. On prouve que la propriété de compatibi-
lité du produit est toujours vérifiée (méme sans la confluence) lorsque les regles de
réécriture sont toutes au niveau objet. Ensuite on étudie cette propriété en présence
de regles non linéaires a gauche et de régles au niveau type. Pour cela, on introduit
une variante du AIl-Calcul Modulo ot la conversion est contrainte par une notion
de typage faible.

5.1 Introduction

In the previous chapters, we used the confluence of the rewrite relation each time
we proved that a global context is well-typed, and, in particular, that it satisfies
product compatibility. More precisely, we used either the confluence of — g1 (Theo-
rem 2.6.11) or the confluence of — g, (Theorem 4.5.7).

Relying on the confluence of the rewriting relation basically prevents us from
considering non left-linear rewrite rules. Indeed, all the criteria that we have at hand
for proving the confluence of — gr (Theorem 1.4.7) or — gp» require
the rewrite rules to be left-linear. Worse, the rewrite system generated by a non left-
linear rewrite rule together with f-reduction is almost always non-confluent (see
[Section T.4.3).

One part of this problem has been solved in where we have shown
how to eliminate non left-linearity of rewrite rules when it is due to typing con-
straints. For instance, the non left-linear rewrite rule

tailn(vconsnel)— L
can be replaced by its linearized version
tail n; (vconsnpel) — 1.

because both left-hand sides match the same well-typed terms. However, this tech-
nique does not apply if the non left-linearity is intended as in:

eqnn<— true.
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Obviously, this rewrite rule cannot be replaced by:
eq ny np — true.

since both rewrite rules do not have the same behavior.

Therefore, the question remains: can we prove product compatibility in pres-
ence of non left-linear rewrite rules or, more generally, when the rewrite system is
not confluent? And, if so, how to proceed?

Barbanera, Geuvers and Ferndndez [BFG94] already addressed this question by
proving, without any assumption on confluence, that when the rewrite rules are only
at object level, product compatibility always holds. They proved this theorem for the
Algebraic 1-Cube, but, as we will see, it can be adapted for the AIT-Calculus Modulo.
For instance, the following global context I satisfies product compatibility because
all the rewrite rules are at object level:

nat : Type.

minus : nat — nat — nat.
minus n0— n.

minus (S n;1) (S np) — minus n, ny.
minus 0 n— 0.

minus nn— 0.

minus (Sn) n—SO0.

However, the relation — gr is non-confluent. Indeed, let Q be the fix-point combi-
nator introduced in[Lemma 1.4.8] We have:

minus (2 8) (2S) —r0andminus (2 8) (29) —»E minus (S (Q28)) (2S)—rSO0.

However 0 and S 0 are not joinable.

But, what about global contexts containing at the same time non left-linear rewrite
rules and type-level rewrite rules? Barbanera’s result has been extended by Blan-
qui [Bla05a] to rewrite systems without product types in the right-hand side of rewrite
rules. Still, the question remains for global contexts with non left-linear rewrite rules
and rewrite rules with product types on the right-hand side.

In general, product compatibility does not hold if the reduction — gr is not con-
fluent. Consider the following extension of the global context above:

A : Type.

T : nat — Type.

T 0 — nat — A.

T (S0) — nat — nat.

Since, as we have seen above, 0 =gr S 0, we have:
(nat — A) < T 0=pr T (S 0) —r (nat — nat).

But, we do not have A =gr nat. Hence, product compatibility does not hold.

The problem here is that the non-confluence occurring at object level on terms
of type nat is propagated at type level through the rewrite rules on the symbol T
whose behaviour depends on its argument of type nat.

To avoid such a situation, we would like to use a criterion based on typing to
separate the type-level part of the rewrite system from the non left-linear part.

However, this is not possible because conversions between two well-typed terms
may contain ill-typed terms and, therefore, no argument based on typing can be ap-
plied. This problem is strongly connected to our choice of using an untyped reduc-
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tion and an untyped conversion in the AIl-Calculus Modulo.

A radical solution would be to consider a typed conversion. We leave this line of
research for future work as we believe it deeply modifies the type system (see Sec-
tion 5.7). Instead, we consider a variant of the AIl-Calculus Modulo where the con-
version respects a weak form of typing and for which we give a general criterion
for product compatibility able to deal with global contexts containing at the same
time non left-linear rewrite rules and rewrite rules with product types on their right-
hand side. This can be thought as a first step toward the study of the subject reduc-
tion property in the AIl-Calculus Modulo with a typed conversion. As we will see
in another interesting consequence of proving product compatibility for
this variant is that it can be used to prove the soundness of the inference algorithm
with respect to the unmodified AI1-Calculus Modulo.

Convention In this chapter, we only consider rewrite rules of the form (fii — v)
where f is a constant. We call f the head symbol of the rule. This restriction is
needed to prove the Postponement Lemmas and the Commutations Lemma (see be-
low) and to define some of the notions introduced hereafter.

5.2 Object-Level Rewrite Systems

To begin with, we prove, by adapting the work of Barbanera, Geuvers and Fernan-
dez [BEG94] and Blanqui [Bla05a] to the AII-Calculus Modulo, that product compat-
ibility always holds for global context without I1-producing rewrite rules.

Definition 5.2.1 (II-Producing Rewrite Rules). A rewrite rule (u— v) isIl-producing
e thereis a product type in v;
e this product type is not in the type annotation of an abstraction.

Remark 5.2.2. Object-level rewrite rules are not I1-producing.

Remark 5.2.3. Right-hand sides of I1-producing rewrite rules are of the form (AX :
T.Ily: A.B)T where X and t may be empty vectors.

The main results of this section are the following:

Theorem 5.2.4. Global contexts without any I1-producing rewrite rules satisfy the
product compatibility property.

Corollary 5.2.5. Global contexts containing only object-level rewrite rules satisfy the
product compatibility property.

Proof. By[Theorem 5.2.4land Remark 5.2.2 O

The proof of[Theorem 5.2.4lrelies on two lemmas: a postponement lemma and a
commutation lemma.

The postponement lemma says that I'-reductions can be postponed after the -
steps occurring in head position (8"-reduction) when we reduce toward a product

type.
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Lemma 5.2.6 (Postponement). LetT' be a global context without any I1-producing
rewrite rules.

IfTy -1 T —>;h Ilx : Ay.B,, then there exist Ay and By such that Ty —»;h Ix :
Ay.B; —>ik- Ilx: Ay.B>.
Proof. Since there are no I1-producing rules, it is sufficient to show that if T} —[
T, —*, P and P contains a product type (but not inside the type annotation of an
abstraction), then, for some T3, we have T; —»;h T3 —[ P.

We proceed by induction on the number of 8" steps. The base case is trivial.

* (Inductive Step) Suppose that T} —[ T — ’ﬁch Py —gn P and P contains a prod-

uct type. Then Py = (Ax: Us.Vo)uy, P = Vo[x/uy] and V; contains a product
type. By induction hypothesis, we have T; —»;h To —f Ax: Uz.V2)up — ph P

Since rules are non-II-producing, we have Ty = (Ax : U;.V})uy with V; —»l"i Vs

and u; —| up. Thus, we have T} —»;h To= Ax:Up.VDuy —pn V1 [x/u1] =}
Vg[x/ug] =P.
O
The commutationlemma says that —r and — g commute.

Lemma 5.2.7 (Commutation). LetT be a global context.
Ift —»l’;h ty and ty —{ 13, then, for some ty, we have t, —{ ty and t3 —>;h ls.

Proof. We proceed by induction on the number of f"-steps.
Suppose that t; —»;h uy —gh tz. By induction hypothesis, there exists u, such

that 13 —»;h up and uy — 7 up.

Since u; is p"*-reducible, u; = (Ax: Aj.fi)aywy and up = (Ax : Az. fo) ap w, with
A1 —>1)i Ag, f1 —>F fz, a) —’F ar and LUl —’F Iig.
Moreover, we have f, = (fi[x/a;]) W) and we can take t4 = (f2[x/az]) W,. O

Using these two lemmas, we can prove[Theorem 5.2.41

Proof of[Theorem 5.2.4 Suppose that ITx: A;.By =gr [1x: Ay.Bo.

Since (=gr) = (Ir U | p)*, we also have Ilx: A;.By (Ir U |p)* I1x: Az.Bo.

We prove, by induction on #, that, if ITx : A;.B; (|r U lﬁ)” T, then T —»;h Ix:
Ay.By with Ay =pT Ay and B, =pr Bs.

It suffices to prove, for |=|g and |=|r, that, if T} | T> and Ty —»;h IIx: Ay.B;,
then, for some A, and B>, T» —»;h Ix: A».Bp with Ay =gr A and By =gr By.

If |=|4 (see[Figure 5.1), then it follows from

1. confluence of — 5 (Theorem 1.3.5) and

2. standardization (Theorem 1.3.6).

If | =|r (see[Figure 5.1)), then it follows from
1. the commutation lemma (Cemma5.2.7) and

2. the postponement lemma (Cemma 5.2.6).
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Figure 5.1: Proof of product compatibility
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5.3 Towards a New Criterion For Product Compatibility

As already mentioned, our goal is to design a new criterion for product compatibility
able to deal with global contexts containing II-producing rewrite rules and non left-
linear rewrite rules.

Suppose that we want to define polymorphic pairs. Following the encoding of

polymorphism of[Secfion 2.7.2 we can proceed as follows?:
Ur : Type.

€ : Ur — Type.
II: Ma:Ur.Ix: (¢ a— Ur).Ur.
é([Tab)—TIlx:éac(bx).

Pair : Ur — Ur — Type.

7w, : Ha:UpIlb:Up.Pairab—é€ a.

7o : Mla:UpJlb:Up.Pairab—¢b.

mk_pair : I[l.a:Ur.Il.b:Ur.é a— é b— Pairab.
1 ay by (mk_pair ap by x y) — x.

72 ap by (mk_pair as by x y) — y.

If we want the pairs to be surjective, we need to add this non left-linear rewrite rule:
mk _pairab (my abp) (my, ab p) — p.

We get a global context mixing IT-producing rewrite rules and non left-linear rewrite
rules. However, the types involved in the IT-producing rewrite rule (Ur and Type)
are different from the type involved in the non left-linear rewrite rule (Pair). There-
fore, these rewrite rules should not interact. We will show that, in this case, product
compatibility holds.

We will proceed as follows.

e First, in we define a weak notion of typing, for which subject re-
duction is easy to prove.

* Then, in[Section 5.5 we define a variant of the AII-Calculus Modulo, in which
the conversion rule is assumed to be weakly well-typed.

* Finally, in[Section 5.6] we prove a general criterion for product compatibility
for this variant of the AIT-Calculus Modulo. We introduce two rewriting rela-
tion —,,; and —;, for which we prove a postponement lemma and a commu-
tationlemma. This allows us to prove a theorem similar to[Theorem 5.2.4] but
allowing, under some assumptions, [1-producing rewrite rules.

5.4 Weak Typing

We now define formally the notions of weak types and weak typing. Recall that the
goal is to have an alternative notion of typing for which subject reduction is easy to
prove. We obtain the new notion of typing by dropping dependent types for simple

types.
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A,B == Kind | Type | Black | White | A— B

Figure 5.2: Syntax for simple types

5.4.1 Weak Types

Definition 5.4.1 (Weak Types). Weak types are simple types built from the constants
Kind, Type, Black and White. The concrete syntax for weak types is given|Figure 5.2

Assuming that we have a function Color(.) giving a color (black or white) to any
type constant, we can associate to any type or kind of the AIl-Calculus Modulo a
weak type. We simply ignore type dependencies.

Definition 5.4.2 (Stripping Function). The stripping function |.|l, from types and
kinds to weak types, is defined as follows:

[|Kind|| = Kind

(I Typell = Type

ICll = Color(C)

| Az = Al

IAx: A.Bl = Bl
IMx:AB| = |Al— Bl

Remark that the type constants in the AII-Calculus Modulo are collapsed, when
translated into weak types, into only two constants: Black and White. The reason for
this collapse (we could have kept all the type constants in weak types) is that it max-
imizes our chances to subsequently use weak subject reduction (Theorem 5.4.25).
On the other side, we need at least two constants because, in[Section 5.6] we will use
weak typing to discriminate between two kinds of terms: roughly speaking, terms
allowed to be non confluent and terms that are not.

The stripping function is invariant by substitutions since substitutions only con-
cern objects.

Lemma5.4.3. [o(A)l = Al

Proof. By induction on A. Remark that objects are ignored in the definition of ||.|.
O

We now define for weak types an equivalent of the relation — gr for terms.

Definition 5.4.4. Let T' be a global context. The relation —[' on weak types is the
smallest relation closed by subterm rewriting such that |U]| —»}” IVl for any type-
level rewrite rule (U — V) eT.

We write =}’ for the congruence generated by —".

The stripping function commutes with the reduction.
Lemma 5.4.5. If A —gr B, then either || All = | Bl or | Al = I B.
Proof. By induction on — gr, using[Lemma 5.4.3] O

As a corollary, we get that the stripping function commutes with the congruence.

2Remark the last two rewrite rules have been linearized as explained in[Chapter 3}
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Lemma 5.4.6. If A=gr B, then || A| ={ | B].
Proof. By induction on =gr, using[Lemma 5.4.5 O
The color of weak types is defined as follows:

Definition 5.4.7 (Black and White Weak Types). The color of a weak type (Black or
White) is defined as follows:

Color(Kind) = Black
Color(Type) = Black
Color(Black) = Black
Color(White) = White
Color(A— B) = Color(B)

A type-level rewrite rule that preserves the color of weak types is called non-
confusing.

Definition 5.4.8 (Non-Confusing Rewrite Rules). A type-level rewrite rule (U — V)
is non-confusing if Color (|| U||) = Color (|| V).

Lemmab5.4.9. LetT bea global context whose type-level rewrite rules are non-confusing.
If A and B are weak types such that A=Y B, then Color(A) = Color(B).

Proof. By induction on the definition of =} and on A. O

5.4.2 Weak Typing

We now show how to associate weak types to the terms of the AIT-Calculus Modulo
using a typing discipline close to the simply typed A-calculus.

Definition 5.4.10 (Weak Typing). LetT be a global context. A term t has weak type
T in the local context A if the judgment ;A &, t: T is derivable from the inference

rules of Figure’5.3

A term t is weakly well-typed if such a T exists.

The notion of weak typing is an approximation of usual typing in the following
sense:

Lemma5.4.11. If ;AR t: T, thenT;A by, t: | T.
Proof. By induction on the typing derivation.
¢ (Type, Variable, Constant) Trivial.
* (Application) By induction hypothesis and[Lemma 5.4.3
¢ (Abstraction) By induction hypothesis.
¢ (Product) By induction hypothesis.
¢ (Conversion) By induction hypothesis and[Lemma 5.4.6l
O

The converse is not true. For instance plus 0 true is obviously ill-typed; how-
ever it is weakly well-typed if we take Color(nat) = Color(prop).
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(Sort)

I'; A+, Type: Kind

. (x:A)eA
1 _ W AeEa
(Variable) ;AT %1 A]
(c:A) el
C tant _—
(Constant) T;AFpc: Al
(Application)
AR, t:A—B AR u: A
AR, tu:B
(Abstraction)
ARy A:Type IA(x:A) by t:B B # Kind
AR, Ax:At:||Al — B
(Product)
AR, A:Type IA(x:AbFyB:s
I5AF,IIx:AB:s
(Conversion)
AR, A AR, B:s A=Y |B|
T;A Ry, Bl

Figure 5.3: Weak typing rules for terms

(Empty Local Context)

IS A

|l

Ay U:Type

x & dom(A)

(Variable Declaration)

TS A(x: U)

Figure 5.4: Weak well-formedness rules for local contexts
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Definition 5.4.12 (Weakly Well-Formed Local Contexts). A local context A is weakly
well-formed with respect to a global context T if the judgment T =S A is derivable by

the inference rules of[Figure 5.4,
Lemma5.4.13. If T A, thenT S A,

Proof. By induction on the derivation, using[Lemma 5.4.111 O

Definition 5.4.14 (Weakly Well-Typed Rewrite Rules). LetT" be a global context.

A rewrite rule (u — v) is weakly well-typed! in T if, for any substitution o, weak
type T and weakly well-formed local context A, if T;AFy o) : T, thenT;A by 0(v):
T.

Remark 5.4.15. Well-typed rewrite rules are not necessarily weakly well-typed. For
instance the rule (plus 0 true — Ax :nat.x) is well-typed because it is not possible
to use it on a well-typed term. However, if we take Color(nat) = Color(prop) = Black,
then the rule is not weakly well-typed because the weak-types of its left-hand side
(Black) and right-hand side (Black — Black) are different.

In we give a simple criterion for showing that a rewrite rule is
weakly well-typed.

To prove weak subject reduction, we need a weak notion of product compatibil-
ity.
Definition 5.4.16 (Weak Product Compatibility). A global contextT satisfies theweak
product compatibility if, for any A, Ay, A2, By, By such that: 1x: A;.B; E}” Ix:A.By,
we have A; =% A, and B1 =Y Bs.

Lemma 5.4.17. Let ' be a global context. If —{" is confluent, then weak product
compatibility holds forT.

Proof. If TIx : A1.By EIE” Ilx : Ay.B,, then, for some Ay and By, we have A; —>1‘_" Ay,
A2 —>ILF Ao, Bl —>I"-U BO and Bz _)I'{/ Bo. O

Remark 5.4.18. It is much easier to prove weak product compatibility than to prove
product compatibility. As we have seen, it follows from the confluence of the rewrite
system obtained by stripping the type-level rewrite rules. It means that there is no need
to consider object-level rewrite rules nor B-reduction. Therefore, the difficulty associ-
ated with non left-linear rewrite rules vanishes. Moreover, such a system is ground (no
variable in the rewrite rules); therefore its confluence is decidable [CGNOI|] in polyno-
mial time.

Definition 5.4.19 (Weakly Well-Typed Global Context). A global contextT is weakly
well-typed if

e forall(c:A)el,I;0F, A:s;
o all rewrite rules in T are weakly-well typed;
 all type-level rewrite rules are non-confusing;

o T satisfies the weak product compatibility property.

INot to be confused with weakly well-formed rewrite rules (Definifion 3.6.5). We never use the latter
notion in this chapter.
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5.4.3 Properties

Many typing properties of the AII-Calculus Modulo have a weak counterpart.
We begin by proving some simple lemmas.

Lemma 5.4.20 (Inversion). If ;A t: T then
e cither t = Type and T = Kind;
e ort = x and there exists A such that (x: A)e A and T =¥ || A|;
e ort=c and there exists A such that (c: A)eT and T =¥ || Al;

e ort = fu and there exist A and B such thatT;A vy f:A— B, AR, u: A
andTEf"B;

e or t = Ax : A.t and there exists B # Kind such thatT;A +,, A: Type, [A(x :
Ay t:B andT=Y | Al — B;

e ort=1IIx: A.B and thereexists a sort s such thatT';A+,, A:Type, [ A(x: A)
B:sandT =s.

Proof. By induction on the typing derivation. O
Lemma 5.4.21. IfAy —pr Az andT;A 11y t: A, thenT; Az by £ A,

Proof. By induction on the typing derivation and Lemma 5.4.5 O
Lemma5.4.22. If ;A(x: Ay u:TandT;AF, v ||All, thenT; ARy ulx/v]: T.
Proof. By induction on the typing derivation. O

We now prove a weak subject reduction theorem, i.e., that reduction preserves
weak typing.

Lemma 5.4.23 (Weak Subject Reduction for —r). Let T be a global context whose
rewrite rules are weakly well-typed.
IfT;AF, t:Tandty -t tp, thenT;AbF £ : T.

Proof. We proceed by induction on #; and follow the proof of usual subject reduc-

tion for — (Cemma2.6.21). We use[Lemma 5.4.20} [Lemma 5.4.22]and[Lemma 5.4.21}
O

Lemma 5.4.24 (Weak Subject Reduction for —g). Let T be a global context that sat-
isfies the weak product compatibility property.
IfT;AFy t1: T and ty —g f, thenlU; Ay 10 T

Proof. We proceed by induction on #; and follow the proof of usual subject reduc-
tion for —4 (Lemma 2.6.20). As previously, Lemma 5.4.22] and [Lemma 5.4.21] are
needed. We detail the redex case.

Suppose that #; = (Ax: Ap.u)v and %, = u[x/v]. By inversion, on the one hand,
AR, Ax:Ag.u:A— B, T;AF, v:Aand T =% B and, on the other hand, ;A -,
Ao :Type, I A(x: Ag) Fy u: By and Ag — By E#’A—>B.

By weak product compatibility, Ay =} A and By = B. By[Lemma 5.4.22} from
[ A(x:Ag)Fyu:Tand ;A v || Agll, we deduce T3 Ay ulx/v]: T. O

From these two lemmas, we get weak subject reduction.
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Theorem 5.4.25 (Weak Subject Reduction). LetT be a global context that satisfies the
weak product compatibility property and whose rewrite rules are weakly well-typed.
IfT; ARy 1 : T and ty —pr B, thenT; Ay 12 T.

Proof. Follows from[Lemma 5.4.24]and [Lemma 5.4.23] O

From weak product compatibility, we can also prove the uniqueness of weak

types.

Theorem 5.4.26 (Uniqueness of Weak Types). LetT" be a global context satisfying the
weak product compatibility property and let A be a weakly well-formed local context.
If ;AR t: Ty andT;A ¢y t: Tp, then Ty = Tp.

Proof. By induction on the first typing derivation.
* (Sort), (Variable), (Constant) By inversion on the second typing derivation.

¢ (Application) Suppose that t = uv, ;A u: Ay — T1, T;A Ry v Ar

By inversion on the second typing derivation, I';A by, u: Ap — By, ;A v
Ag and Tg EF’ Bz.

By induction hypothesis, we have A} — T E’F" Ay — Bo.

Finally, by weak product compatibility, Ty ={ B = T>.

* (Abstraction) and (Product) By inversion on the second typing derivation and
induction hypothesis.

¢ (Conversion) By induction hypothesis.

O

In the following, we focus on weakly well-typed rewrite rules and we give a sim-
ple criterion for showing that a rewrite rule is weakly well-typed.

Theorem 5.4.27. LetT be a global context satisfying the weak product compatibility
property. Suppose that:

e f1ii isalgebraic;

e THIEA;

dom(A) = FV(fii);

L]

ARy, fu:T;
e AR, v:T.
Then, (f il — v) is weakly well-typed inT.

This theorem is a weak version of[Theorem 3.3.3] The proofs are similar.
First, we need to introduce the notion of weakly well-typed substitution.

Definition 5.4.28 (Weakly Well-Typed Substitutions). A substitution o isweakly well-
typed from Ay to Ay in T, written o : Ay ~[" Ay, if, for all x € dom(A;), we have
A2 Fy o (xX) 1AL ()]
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Lemma 5.4.29. LetT be a global context whose declarations are closed. If o : Ay ~~{"
Ay andT;A by t: T, thenT; Ao =y o(8): T

Proof. By induction on the typing derivation. O

Then, we prove a main lemma.

Lemma 5.4.30. Let T be a global context satisfying the weak product compatibility
property. Assume that:

* tis algebraic;

o IAgky t: Tp,

o THCXA,

e ARy o(): T,
We have

s T={Ty,

e and, forallx e FV(1),T; Ay, a(x) : [[Ag(X)]].
Proof. We proceed by induction on t.

* Suppose that ¢ = f is a constant. By inversion (Lemma 5.4.20), we have Ty ="
ITHI = T.

* Suppose that = uv with u and v algebraic terms. By inversion (Lemma5.4.20),
ontheonehand, I';Ag -y u: Ag — Bo, I';Ag v : Ag and Ty Ef" By.
On the other hand, ;A 0Ww):A— B, T;AF,0W):A,and T EF’ B.

By induction hypothesis, A — B zg’ Ag — By, A EF’ Ap and, for all x €
Fv(),T;A R, o(x): 1A (X)]l.

By weak product compatibility, B = By. It follows that T =}’ To.

e Suppose that t = ux with u algebraic and x a variable in Ag. By inversion
(Cemma 5.4.20), on the one hand, I'; Ag -, ©: Ag — By, I'; Ag Fy x : Ag with
Ap =" Ag(x) and Tp =[ Bo.

On the other hand, ;A 0(u): A— B, ;AR 0(x): Aand T Ef" B.

By induction hypothesis, A— B =% Ay — By and, for all x € FV(u),T;A -y,
0 (x) : 1 Ag(x) .

By weak product compatibility, A = Ag and B = By. It follows that T ="
B=Y B() EIEU T().

Moreover, we have I'; A -, 0(x) : Awith A=Y A zf" 1Ag(x)].

Finally, we can prove the theorem.

Proof of[Theorem 5.4.27. Suppose that we have I;A &y, o (fii) : T, T;A0 by fii: T
andT;Ag by v: Tp.

By[Lemma5.4.30) we have T =% Ty and, forall x € FV(£),T; A Fy, o (x) : [ Ag(x)].

By induction on I F* A, we can conclude that o : Ag ~ A.

By[Lemma 5.4.29] we have I';A +,, (v) : Ty and, by conversion, T;A Fy, o(v) :
T. O
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At A ;A B:s IAFY A=B

(Restricted Conversion) -
AR t:B

Figure 5.5: Restricted conversion rule

In fact, the other criteria of could also be adapted to prove the weak
well-typedness of rewrite rules.

5.5 The Colored AIl-Calculus Modulo

In this section, we define a variant of the AIl-Calculus Modulo, where the con-
version is assumed to be weakly well-typed.

5.5.1 Weakly Well-Typed Conversion

Definition 5.5.1 (Weakly Well-Typed Conversion). LetT" be a global context and A be
a local context. We writeT; A" t) = t, if the pair (1, t2) is in the reflexive, symmetric
and transitive closure of the relation { (t;, t2) | AT.T;A by, ty : T and —pr b2}

Remark 5.5.2. If [ARY H =1, then =pr L.

The converse is not true in general. However, it holds in the particular case where
the rewriting relation is confluent.

Lemma 5.5.3. Let I" be a global context satisfying the weak product compatibility
property, whose rewrite rules are weakly well-typed and such that — gr is confluent.
Ifty =gr 1, and t; and t; are weakly well-typed in A, thenT'; A FYH =0

Proof. By confluence, we have f, | gr #,. By weak subject reduction (Theorem 5.4.25),
all the reducts of #; and t, are weakly well-typed. O

The weakly well-typed conversion ensures that every term in the conversion has
the same weak type.

Lemma 5.5.4. Let T be a global context satisfying the weak product compatibility
property and whose rewrite rules are weakly well-typed.

IfT;AFy t1: T andT; ARY 1 = 1, then, for every term t in the B -path between
t and ty, we havel'; Ay, t: T.

Proof. By weak subject reduction (Theorem 5.4.25). O

5.5.2 The Colored AIT-Calculus Modulo

Definition 5.5.5 (The Colored AIl-Calculus Modulo). The relation ' is defined by

the inference rules of[Figure 2.4 (the typing rules for usual typing) where we replace
the (Conversion) rule by the (Restricted Conversion) rule of[Figure 5.5,

The relation ' is contained in .

Lemma5.5.6. If [;AF ¢:T, thenT;Av-t:T.
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Proof. Follows from[Remark 5.5.2 O

Moreover, if the relation — gr is confluent, then the typing relations " and - are
equal.

Lemma 5.5.7. Let T" be a global context satisfying the weak product compatibility
property, whose rewrite rules are weakly well-typed and such that — gr is confluent.
We haveT; Az ¢: T ifand only if T; AV ¢ T.

Proof. BylLemma 5.5.6land[Lemma 5.5.31 O

5.6 A General Criterion for Product Compatibility for
the Colored AIl-Calculus Modulo

In this section we prove a general criterion for product compatibility (Theo-
rem 5.6.5) in the Colored AIT-Calculus Modulo defined in[Section 5.5l We begin by
some definitions.

The color of a rewrite rule is the color of its head symbol.

Definition 5.6.1 (Black and White Rewite Rules). LetT" be a global context. The color
of a rewrite rule (fii — v) is the color of [T (f)Il.

Remark 5.6.2. The distinction between black and white rewrite rules formalizes the
distinction safe and unsafe rewrite rules that we introduced inlSection 5.1}

Notation 5.6.3. We write t} —gjqck 2 if t1 —T t2 using a black rewrite rule.

Definition 5.6.4 (Black and White Positions). LetT be a global context. A position p
in a term t is black (respectively white) if:

* either 1), = fu and Color(|T'(f)|l) = Black (respectively White);

* orp=gq., tig= fu, IL()l = Ay — ... — A, — B and Color(A;) = Black
(respectively White).

Theorem 5.6.5 (Product Compatibility). LetT be a global context. Suppose that:
* (A1) I is weakly well-typed;
* (A2) black rewrite rules are left-linear;

* (A3) the relation generated by the black rewrite rules together with B-reduction
is confluent;

* (A4) for any black rewrite rule (u — v) € T', all the non-variable subterms of u
are at black positions;

then, T satisfies the product compatibility in the Colored AI1-Calculus Modulo.
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5.6.1 The Rewriting Relations —;, and —,,;
To prove [Theorem 5.6.5, we will mimic the proof of Theorem 5.2.41 However, the

roles of — ph and —r will be played by two new relations, —;, and —,,; that we
define in this section.
First, we need to introduce the notion of black and white terms.

Definition 5.6.6 (Black and White Terms). LetT be a global context. We say that a
term t is black (respectively white) in a local context A if, for some T, we haveT'; A+,
t: T with Color (|| T|)) = Black (respectively Color(|| T||) = White).

The sets of black and white terms are disjoint. They form a partition of the weakly
well-typed terms.

Lemma 5.6.7. LetT be a weakly well-typed global context and A be a weakly well-
formed local context forT.
Ifwe havel'; Aty t: Ty andT';A by, t: T, then Color (|| 71 ||) = Color (|| T2 D).

Proof. By uniqueness of weak types (Theorem 5.4.26) and[Lemma 5.4.91 O

The sets of black and white terms are stable by reduction.

Lemma 5.6.8. Let T be a weakly well-typed global context and A be a weakly well-
formed local context forT.

If ty is black (respectively white) in A and t1 — pr t2, then t, is black (respectively
white) in A.

Proof. Tt follows from weak subject reduction (Theorem 5.4.25). O
Applying a term preserves its color.

Lemma 5.6.9. LetI" be a weakly well-typed global context and A be a weakly well-
formed local context forU. IfT;A ¢y u: Ty andT;A -y u v: Ty, then Color(Ty) =
Color(T3).

Proof. By inversion (Lemma5.4.20), [;A -y u: A— B, I;AFy v:Aand To =V B.
Moreover, by uniqueness of weak types (Theorem 5.4.26), 71 =) A— B.
Finally, by[Lemma 5.4.9] Color(T;) = Color(A — B) = Color(B) = Color(T,). O

Redexes of black (respectively white) rewrite rules are black (respectively white).

Lemma 5.6.10. Let T be a weakly well-typed global context and A be a weakly well-
formed local context forT.

If t; is weakly well-typed in A and is a redex of a black (respectively white) rewrite
ruleinT, then it is black (respectively white).

Proof. By definition of black and white rewrite rules and[Lemma5.6.9 O
The subterms at a black (respectively white) position are black (respectively white).

Lemma 5.6.11. LetT" be a weakly well-typed global context and A be a weakly well-
formed local context forT.

If u is weakly well-typed in A and p is a black (respectively white) position in u,
then uyy, is black (respectively white) in A.

Proof. By definition of black and white positions. O
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Using the notions of black and white terms, we can define the relations of inter-
nal reduction —;, and of external reduction — ;.

Definition 5.6.12 (The Relation —;,). LetT be a weakly well-typed global context, A
be a weakly well-formed local context for I and t, a term weakly well-typed in A.

We write ty —in B2 if i —pr f2 and the reduction occurs inside a white subterm
(no matter the position white or black).

The relation — 4, is the complement of —;;, with respect to —gr.
Definition 5.6.13 (The Relation —,y;). We write — oy for —pr \ —in.
Lemma 5.6.14. (—oy:) < (—p U = Bjack)-

Proof. White rewrite rules rewrite white terms (Lemma 5.6.10). By definition — ;-
steps cannot involve white subterms. O

Lemma 5.6.15. Under the hypotheses of [Theorem 5.6.3, the relation — ,; is left-
linear.

Proof. Follows from[Lemma5.6.14land Assumption (A2). O

5.6.2 Proof of Product Compatibility
We now prove [Theorem 5.6.51 We follow the proof of [Theorem 5.2.4] and we first

prove three lemmas: a postponement lemma, a commutation lemma and a product
types lemma.
In the remaining of the section we work under the hypotheses of[Theorem 5.6.51

Postponement

Lemma 5.6.16. Let t; be a weakly well-typed term.
Ift1 —in W1 —our b2, then there exists up such that ty — oy U —>;‘n .

Proof. By definition, the —,,,;-redex cannot be inside the —;,,-contractum.
Moreover, the —;,-contractum does not overlap with the —,,;-redex. Indeed,
by (A4), black rewrite rules do not filter on white subterms and the —;;-contractum
is white.
Thus, there are only two possible situations:

* either the two reductions are parallel, and then they can occur in any order;

¢ or the —;,-contractum is inside the —,,;-redex and, since —,; is left-linear
(Cemma 5.6.19), there exists u, such that #; — oy up =7, 2.

O
Lemma5.6.17 (Postponement). Let t; be a weakly well-typed term. If t —»Er 1, then
there exists u such that ty —,,, u—7 .

Proof. We proceed by induction on the n-tuple (m;y,..., m,) ordered lexicographi-
cally, where n is the number of (—,,;)-steps and m; is the number of (—;;)-steps
on the left of the i-th — ;.

e If (my,...,my) = (0,...,0), then the reduction has the form #; -, u —>;.kn L.

¢ Otherwise, using[Lemma 5.6.16l makes the tuple decrease.
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Figure 5.6: Proof of the Commutation Lemma

Commutation

Lemma 5.6.18. Let t; be a black term.
Ifti = our t and t) — i, t3, then there exists ty such that ts — .y ty and tp —>;.kn ty.

Proof. By definition, the —,,;-redex cannot be inside the —;,,-redex (with or with-
out overlap).

Moreover, the —;,-redexes do not overlap inside the —,,;-redex, since — ;¢
does not filter on white subterms (A4)

Therefore, either the redexes are independent or the —;,-redex is inside the
—our-redex. Since —,; is left-linear (Cemma 5.6.19), in both cases, the reductions
commute. O

Lemma 5.6.19 (Commutation). Let t; be a black term.

Ifty =3, 12 and ty —7, 13, then there exists ty such that t3 —7, . ty and t; —} 1.
Proof. Weprove that, if 1 —7,, > and f; —7 13, then there exists 4 such that 13 — 7,
ty and 6 _ijn 1.

We proceed by induction on the pair (n, m) ordered lexicographically. We use

[Cemma5.6.18l (Lem.) and the induction hypothesis (IH), as illustrated in[Figure 5.6
O

Product Types

Beside the postponement lemma and the commutation lemma, we will need the fol-
lowing lemma, which says that internal reductions cannot introduce product types
at the root of a term.

Lemma5.6.20. Ift —>;.“n IMx: Ay.By, thent; =1lx: A,.By with Ay — i, Ay and By —
B,.

Proof. Byweak subject reduction, #; has the same type as the product type, that is to
say Type or Kind. Therefore, t is black. A —;,-redex is either white or occurs inside
a white term; therefore the reductions cannot occur at the root of t;. Thus, #; is a
product type. O
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Figure 5.7: Proof of product compatibility

Proof ofTheorem 5.6.5
We now have the tools to prove[Theorem 5.6.5

Proof of[Theoreni 5.6.3. Assume that we have T;A -% ITx: A;.B; =Tlx: Ay.By.

We have, for some n, I1x: A;.B1(lour U | in)"IIx : A2.B>. Moreover, all the terms
in the conversion are weakly well-typed.

We prove, by induction on n, thatif Ty —,, ITx : A;.By and T1 (lous U 1in)" T,
then there exist A, and B, such that T, —},,, IIx: A».By, [ AFY Ay = Ay and T A(x:
A1) =" By = Bs.

It boils down to proving, for |=|,,; and |=|;p, that,if T; | T and T} —},, IIx:
A;.B;, then, for some Ay, By, T, —F . Ilx: Ay.Bo with ;A FY A; = Ay and T'; A(x :
Al) Fw Bl = Bz.

*
out

* Case |=|oys (see[Figure 5.7). Let Ty be the common reduct of T} and T>:
T1 _);ut To and T2 —'Zut T().
1. By[Lemma 5.6.14land confluence of — 5 U — pj4c (A3), there exist Ag and

By such thatIlx: A;.By (=g U —pjack) “Tlx : Ag.Bo and To(—g U —prack) “Tlx:

Ao.Bo.
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2. By the postponement lemma (Lemma 5.6.17), there exists U such that
Tg —* U_)jn H.X,'ZA().B().

out

3. Finally, by the product types lemma (Cemma 5.6.20), U = I1x: A;.B;.

Moreover, by weak subject reduction (Theorem 5.4.25), we have T; A ¥ A =
Ag and F;A(x : Al) w Bl = Bz.

* Case |=|;, (see[Figure5.7). Let Ty be the common reduct of 71 and T»: T —7,
To and T2 _';kn T().

1. By the commutation lemma (Lemma 5.6.19), there exist Ay and By such
that Tlx: Ay.By —7, Tlx: Ag.Bp and T —,,, [1x : Ag.By.

out

2. By the postponement lemma (Cemma 5.6.17), there exists U such that
T2—>* U—>:(n Ilx: Ag.By.

out

3. Finally, by the product types lemma (Cemma 5.6.20), U = [1x: A,.B;.

Moreover, we have [ A Y A} = A, and T;A(x: A)) =¥ By = Bo.

5.6.3 Application

We now use[Theorem 5.6.5/to prove that the global context from[Section 5.3|satisfies
product compatibility:

Ur : Type.

€ : Ur — Type.

I : [a:Up.Ix: (éa— Uyp).Ur.
é(1ab)—Tx:éaé (bx).

Pair : Ur — Ur — Type.

w1 : a:UpJlb:Urp.Pairab— ¢ a.
7ty : Ha:UrIIb:Ur.Pairab— € b.
mk_pair : Il.a:U7p.ILb:Ur.é a— é b— Pair a b.
71 a; by (mk_pair ap by x y) — x.

7o ay by (mk_pair as by x y) — y.
mk_pairab (m; abp) (my ab p) — p.
We take:

Color(Ut) = Color(¢) = Black and
Color(Pair) = White.

The (only) type-level rewrite rule is non-confusing since

Color(||¢ (IT a b)||) = Color(||¢])) = Color(é) = Black and
Color(||ITx: € a.¢ (b x)||) = Color(||¢ (b x)||) = Color(¢) = Black.

By[Theorem 5.4.27] the rewrite rules are weakly well-typed.
The weak rewrite relation —[" is the relation generated by

lé (T a b)|| = |ITlx: € a.¢ (b x)| = Black — Black — Black.

Therefore, it is confluent and, by[Lemma 5.4.17] weak product compatibility holds.
It follows that I' is weakly well-typed (A1).
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The only black rewrite rule is (¢ (IT a b) — x:é a — ¢é (b x)). It is left-linear (A2)
and confluent together with §-reduction (A3).

Finally, all the non-variable subterms of é (I a b) are at black positions (A4).

Therefore, byTheorem 5.6.5} product compatibility holds for this global context
in the Colored AIl-Calculus Modulo defined in[Section 5.51

5.6.4 Back to the AII-Calculus Modulo

We do not know if the global context above verifies the product compatibility prop-
erty for the unmodified AIT-Calculus Modulo. However, the criterion is, in general,
not applicable if we do not work with the weakly well-typed conversion. Here is a
counter example:

nat : Type.

A : Type.

B : Type.
dllA.

a . A.

T : A— Type.
Ta —A— A
T ay — B— B.

choose : nat — nat — nat — nat — nat.
choosennxy— x.
choose(Sn)nxy—y.

The only possible choice for a coloring is the following:
Color(nat) = White and Color(A) = Color(B) = Color(T) = Black.
For this coloring, the first two rules are black and the last two are white. One can
check that the assumptions of[Theorem 5.6.5 are verified. However, we have:

T(choose (2S) (Q2S)a; ax) »r T a; - r A— Aand
T(choose (2 S) (2 S) a1 ay) —»Z T (choose (S (Q8)) (2 8) a1 a2) —pr T az —pr
B — B.

But we do not have nat =gr A; hence product compatibility does not hold. Of
course, to be able to show that A — A =gr B — B, we need to go through the
term T(choose (2 S) (Q S) a; ap) which is not weakly well-typed. In particular, the
terms a; and ay have a black type but are used at black positions. Therefore, this
conversion is not weakly well-typed.

5.7 Conclusion

We have studied the problem of proving product compatibility without using the
confluence of the rewriting relations — gr or — gr». Proving product compatibility
without confluence allows us to consider global contexts with non-left-linear rewrite
rules. Indeed, non-left-linear rewrite rules often generate non-confluent rewriting
relations.

First, we have proven that product compatibility always holds for global contexts
without IT-producing rewrite rules and, in particular, if the rewrite rules are at object
level only.
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Then, we have given a general criterion for product compatibility allowing mix-
ing I1-producing rewrite rules and non-left-linear rewrite rules. To be able to prove
this criterion, we modified the definition of the AIl-Calculus Modulo to constrain
conversion to go only through terms respecting a weak notion of typing. This new
notion of typing, weak typing, has been defined and studied in detail. Its main fea-
ture is that it is an approximation of usual typing for which subject reduction is easy
to prove.

Unfortunately, the criterion does not apply for the AIl-Calculus Modulo. How-
ever, product compatibility for its variant can be used to prove other properties of
the unmodified AI1-Calculus Modulo. For instance, in|Chapter 6, we will use Theo-
rem 5.6.5 to prove the soundness of the type inference algorithm with respect to the
AIl-Calculus Modulo and the Colored AIT-Calculus Modulo at the same time.

Confluence by Termination in the Colored AIl-Calculus Modulo Beside being use-
ful to prove the product compatibility property, confluence is also a key property to

prove termination of the relation — gr on well-typed terms in presence of type-level

rewrite rules [Bla05a]. We conjecture that, for the Colored AIl-Calculus Modulo, the

assumption of confluence can be weakened to the confluence of (=g U —pjack)

when the assumptions of [Theorem 5.6.9] are verified. This way, instead of using

the confluence for all (untyped) terms to prove termination of well-typed terms, we

use the confluence of (—g U —pj4ck) on untyped terms to prove the termination of
well-typed terms. Then, using Newman'’s lemma (Theorem 1.1.6), we can decide the

confluence of — gr for well-typed terms. If it holds, it means that the congruence is

decidable for well-typed terms and, therefore, that type-checking is decidable.

Typed Conversion vs. Untyped Conversion When designing the Colored AIT-Calculus
Modulo, we have chosen to constrain the conversion to contain only weakly well-
typed terms because weak subject reduction makes the set of weakly well-typed
terms easy to manipulate. Another approach would be to constrain the conversion
to contain only well-typed terms. This approach is the one used by Martin Lof’s Type
Theory [NPS90]. In this case, reduction is typed: rewriting and typing are mutually
defined. The relation between systems with a typed reduction and systems with
an untyped reduction is not easy to make. It has been studied by Adams [Ada06]
and Siles and Herbelin [SH12|]. They showed that, in the case of pure type systems
with B-reduction, the two approaches (typed and untyped) are equivalent: the set
of well-typed terms are the same. Their approach relies on a proof of confluence
of the B-reduction based on parallel moves. We conjecture that their proof can be
adapted for the AIl-Calculus Modulo when the rewriting relation — gr is parallel-
closed [Hue80]. More generally, it would be interesting to develop a version of the
AIl-Calculus Modulo with a typed reduction and study the relation with the origi-
nal AIl-Calculus Modulo and with Martin L6f’s Type Theory, in particular when the
global context contains non-left-linear rewrite rules.
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Chapter 6

Type Inference

Résumé Ce chapitre décrit les algorithmes de vérification de type pour les diffé-
rents éléments du AIl-Calcul Modulo : termes, contextes locaux et contextes glo-
baux. On montre aussi que ces algorithmes sont corrects et complets en utilisant les
résultats des chapitres précédents.

6.1 Introduction

In this chapter, we give algorithms to infer and check types for terms, check well-
formedness of local contexts and check well-typedness of global contexts in the AII-
Calculus Modulo. Using the theorems proved in the previous chapters, we study the
conditions under which these algorithms are sound, complete and terminating.

We write the programs using pseudo code whose syntax is close to the OCaml
programming language.

Since, we often need to reduce terms in the algorithms presented below, we as-
sume given a function normalize that, given a global context I' and a term ¢, com-
putes a normal form for # with respect to the rewriting relation — gr.

val normalize : global context — term — term

Of course, this function need not terminate if the term is not strongly normaliz-
ing. Therefore we will use it with global contexts I' and terms ¢ such that ¢ is well-
typed in I and — gr is strongly normalizing on well-typed terms. However, in some
cases we need to reduce potentially ill-typed terms. In these cases, to preserve ter-
mination, we will use a function bounded normalize that computes a normal form
but fails if no normal form is reached after a fixed number of steps. This function
always terminates but may fail to compute a normal form for some entries.

val bounded normalize : global context — term — term

We also assume a function term _eq to compare terms up to a-equivalence (i.e.,
up to renaming of bound variables).

val term _eq : term — term — boolean
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6.2 Type Inference

We give below an algorithm for inferring a type for a given term.

let infer T At =
match ¢ with
| Kind — fail
| Type — Kind
| ¢ —=T(c)
| x =A%)
| uv-—
begin
let T, =inferT A uin
let T, =inferT A vin
match normalize T T, with
| T x:AB —
if ( term_eq A (normalize I T})) ) then B[x/v]
else fail
| - fail
end
| A x:Au—
begin
match infer T' A A with
| Type — let B = infer T (A(x:A)) uin I1 x:A.B

|  — fail
end
| T x:AB —
begin
match infer T A A with
| Type —
begin
match infer T' (A(x:A)) B with
| Kind — Kind
| Type — Type
|  — fail
end
|  — fail
end

This algorithm recursively inspects the shape of a term and applies the corre-
sponding inference rules for the typing relation t-. The rule (Conversion)
is never used directly. However, in the case of an application, the inferred type of the
function is reduced to ensure that it is a product type as in the premise of the (Ap-
plication) rule.

Remark 6.2.1. We do not need to fully normalize the term T, on line 11. It suffices to
reduce it until a product type is reached. However, in this case we need to normalize
A before comparing it with the normal form of T,.

Theorem 6.2.2 (Soundness of infer). Let T' be a well-typed global context and let A
be a local context well-formed inT.
IfinferTAt=T, thenT;AF1t:T.
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Proof. We proceed by induction on ¢.
We only detail the case where ¢ is an application.

* Suppose that t = u v. We have infer T A u =Ty, infer T A v =T, and
normalize I' T,, = II x:A.B.
By induction hypothesis, we have I'; A u: T, and ;A - v: Ty,

By subject reduction (Theorem 2.6.22) and conversion, we have [; A F w: Tlx :
A.B and, by inversion, we get I'; A+ A: Type.

Since term _eq A (normalize I' T;), we have A =gr T,.
Therefore, by (Conversion), we have I'; A+ v: A.

Finally, using the (Application) rule, we get I'; A+ u v: Blx/v].
O

Since we use the subject reduction property in the proof, we need I to be well-
typed and A to be well-formed. To avoid the need for subject reduction, we can
modify the algorithm to check that the result of the normalize function is well-typed.

let safe infer T At =

match ¢ with

()

| uv—

begin

let T, =safe infer T A uin
let T, =safe _inferT A vin
match normalize T T, with

| 11 x:A.B —
begin
match safe_infer I' A (I1 x:A.B) with
| Kind | Type —
if term_eq A (normalize ' T,) then B[x/v]
else fail
| - fail
end
| - fail
end
()

This allows us to drop the assumptions on T and A.
Theorem 6.2.3 (Soundness of safe_infer). If safe_infer TA¢t=T, then[;AF¢t:T.

Proof. We proceed by induction on t.
We only detail the case where ¢ is an application.

 Supposethat t = u v. Wehave safe_infer T A u = Ty, safe_infer T A v = T,
normalize ' T, = T x:A.B, safe_infer ' A (Il x:A.B) =s.

By induction hypothesis, we have ;AR u: Ty, ;AR v: Ty, and T;A F Ix :
A.B:s.

By inversion, we get I'; A - A: Type.
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Since term_eq A (normalize I' T;), we have A =gr T,.
Therefore, by (Conversion), we have I';AF u:Ilx: A Band ;AR v: A.
It follows, by (Application), that ;A u v: B[x/v].

O

However, in practice we prefer to make sure that subject reduction holds and
use the function infer instead of safe infer. Indeed, the extra recursive call may be
costly and it is, in most cases, useless.

Using the theorems of we can also prove that the function infer is
sound if the global context verifies the product compatibility property for the variant
of the AIT-Calculus Modulo introduced in[Section 5.5

Theorem 6.2.4. Let T be a global context well-typed for +' (Definition 5.5.5) and let

A be a local context well-formed inT for+'.
IfinferTAt=T, thenT;AFt:T.

Proof. Doing the same proof as in[Theorem 6.2.2] we get that infer I A ¢t = T im-
pliesT;AF ¢:T.

But, as remarked in[Lemma5.5.6] we have (') < (). Therefore, infer TAt =T
impliesI'; A+ t: T as well. O

This means that, in the case where we cannot prove that a global context I veri-
fies the product compatibility property (hence that it is well-typed) because it con-
tains non-linear rewrite rules and IT-producing rewrite rules, we can still use Theo-
rem 5.6.5 to prove that I' is well-typed for " and deduce the soundness of infer with
respect to both - and I-.

Regarding termination issues, note that recursive calls of infer are made on strict
subterms. Therefore, the only possible source of non-termination is the use of the
function normalize. However, if the relation — gr is terminating on well-typed terms,
then the function normalize always terminates.

Theorem 6.2.5 (Termination). Let I' be a well-typed global context such that — gr
terminates on well-typed terms and let A be a local context well-formed inT .
The callinfer T' A t terminates on all entries t.

Proof. Recursive calls are made on strict subterms. The function normalize is used
on well-typed terms only. O

Without confluence, normal forms may not be unique, convertible terms may
have different normal forms and terms convertible with a product type may have a
normal form that is not a product type. On the other hand, without strong normal-
ization, the function normalize may not terminate. For all these reasons, the func-
tion infer may fail to synthesize a type. However, if the relation — gr is confluent
and terminating, the algorithm is complete.

Theorem 6.2.6 (Completeness of infer). Let I' be a well-typed global context such
that the relation — gr is confluent and terminating on well-typed terms and let A be a
local context well-formed inT.

If ;A t: T, then there exists T, such thatinfer T A t = T,.

Moreover, we haveT; A - t: T and T =pr 7.
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Proof. First remark that, if [;AF ¢: T and infer T A t = T, then, by soundness of
infer and uniqueness of types (Theorem 2.6.25), we have I';A - ¢ :
Tg and Tg EﬁF T.

We proceed by induction on the typing derivation I'; A+ ¢: T.

¢ (Sort) Take T, = Kind.
¢ (Variable) Take T> = A(x).
¢ (Constant) Take T, =T'(c)

* (Application) Suppose that t = u v.
By inversion, we have I A F u:Tlx: V.U, ;AR v: Vand T =gr Ulx/v].

By induction hypothesis, there exist T, and T, such that infer T A u = Ty,
and infer TA v =T,.

Moreover, since Ty =gr I1x: U.V and —gr is confluent and terminating, we
have normalize T T, = II x:A.B, for some A and B such that T}, —>EF A.

Therefore, we have infer T' A r = B[x/v].
¢ (Abstraction) By inversion and induction hypothesis (used twice).
¢ (Product) By inversion and induction hypothesis (used twice).

¢ (Conversion) By induction hypothesis.

6.3 Type Checking

By uniqueness of types, typechecking can be decomposed into inferring a type and
then performing a convertibility test between the expected type and the inferred

type.

let check TAt T =
if term_eq T Kind then ( term_eq (infer T A ) Kind )
else
match infer T A T with
| Type | Kind — ( term _eq (normalize T T) (normalize T (infer T A 1)) )
| — false

Theorem 6.3.1. LetT" be a well-typed global context and let A be a local context well-
formed inT.

¢ (Soundness) If check T' A t T = true, thenT;A¢t:T.

* (Termination) If —gr is terminating on well-typed terms, then check termi-
nates on all entries t and T.

* (Completeness) Assuming that — gr is confluent and terminating on well-typed
terms, if [; A t: T, thencheck T A t T = true.

Proof.

145




* (Soundness) Suppose that T = Kind. By[Theorem 6.2.2]and the fact that sorts
are only convertible to themselves (Lemma 2.3.5), we have T'; A F ¢ : Kind.

Suppose that T # Kind. If we havecheck T' A t T = true,then infer T A T =
sand infer T' A t = T, with T =4r T». Therefore, by[Theorem 6.2.2] we have
AR t: T, and ;A T: s. By conversion, it follows that ;AR £: T.

* (Termination) By[Theorem 6.2.5land the assumption that — gr is terminating
on well-typed terms.

¢ (Completeness) Suppose that T = Kind. By[Theorem 6.2.6/and [Lemma 2.3.5]
we have infer T A t = Kind.

Suppose that T # Kind. Ifwe have ;A + ¢ : T, then, by stratification (CLemma 2.6.10),
[;AF T:s. BylTheorem 6.2.6land[Cemma2.3.9] infer T A T =sand infer TAt =T,
with T =gr T». Therefore, check T' A ¢ T = true.

O

6.4 Well-Formedness Checking for Local Contexts

Checking that a local context is well-formed boils down to verifying that the types of
its variables are well-typed.

let local wfT A =
match A with
| @ — true
| Ao(x:T) —
if (local _wf T Ag) A (x ¢ dom(Ag)) then ( term _eq (infer I' Ag T) Type
else false

Theorem 6.4.1. LetT be a well-typed global context.
* (Soundness) If local wf T A = true, thenT ¥ A.

* (Termination) If the relation —gr is terminating on well-typed terms, then
local wf terminates on all entries A.

* (Completeness) Assuming that the relation — gr is confluent and terminating
on well-typed terms, if T =% A, thenlocal _wf T A = true.

Proof. By induction on the local context A. The case A = @ is trivial. Suppose A =
Ao(x:T).

¢ (Soundness) Suppose thatlocal wf A = true. [t means thatlocal wf I' Ay = true,
x ¢ Agand infer T Ag T = Type. By induction hypothesis, we have I' % A
and, by soundness of infer (Theorem 6.2.2), we have T;Ag - T : Type. It fol-
lows that T - A,

* (Termination) By termination of infer (Theorem 6.2.5).

 (Completeness) Suppose that I' - A. By inversion for -°* (Lemma 2.6.6),
we have I' - Ay, x ¢ Ag and T';Ag - T : Type. By induction hypothesis, we
have local wf T' Ag = true. By completeness of infer (Theorem 6.2.6), we
have infer T Ag T = Type. It follows that local wf T' Ay = true.

O
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6.5 Well-Typedness Checking for Rewrite Rules

In [Chapter 3} we have given several methods to prove that a rewrite rule is well-
typed. We now implement the check based on weakly well-formed rewrite rules

6.5.1 Solving Unification Constraints

This criterion is based on the computation of a permanent presolution (Definition 3.6.1).
The function find _presolution takes as arguments a global context T, a set of vari-
ables 7 and a set of constraints ¥ to solve. It computes a presolution for ¢ whose
domainisin 7.

let find presolution T' ¥ € =
match € with
| @ — id
| 6o(t1,2) —
begin
match bounded normalize T' #;, bounded normalize T' t, with
(* Atomic Terms )
| Kind, Kind
| Type, Type
| ¢1, o when (¢ =¢)
| x1, x when (x; = x2 A x1 ¢ ¥ ) — find_presolution T 7 %,
(* Solved Equations *)
| x, t | t, xwhen (xe¥V ) —
if x¢ FV(¢) then
let €, = map ( fun (a,b) — (a[x/t],b[x/?]) ) €, in
(find_presolution TV 6,) w{x —t}
else fail (* occur check x)
(* Rigid/Rigid Equation *)
| c1 th, ¢ il; when (¢ = ¢z A |il|=|il2] A not (is_definable ¢;) ) —
find_presolution T ¥ (%6o(th,t2))
‘ X1 LTI, X2 122 when ( X1=X AX1 &€V A ‘121|=|L_[2| ) —
find_presolution T ¥ (%o(th,t2))
| A x:Ar.up, A x:Az.up — find_presolution T ¥ (6o(A1,A2) (141, u2))
| I x:A;.By, 1T x:Ay.B, — find_presolution T ¥ (6y(A1,A2)(B1,B2))
(* Ignored Constraints x)
| x i, t|t, x i, when (xe¥ )
| ¢, t| t, c when (is_definable c)
| ¢, t| t, ¢ iiwhen (is_definable ¢) — find_presolution T ¥ %,
(* Failure x)
| ., - fail
end

To compute a permanent presolution for a set of equations, we adapt Herbrand’s
unification algorithm [Ter03]. We recursively unify syntactically the normalized equa-
tions, but we drop them when we do not know how to solve them. This is possible
because we do not need to compute a solution of the unification problem but only
a prefix to all solutions. Remark that we need to use bounded normalize instead of
normalize because we do not know if the constraints are well-typed.
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Lemma 6.5.1. Let T" be a global context, V' be a set of variables and € be a set of
constraints.

e If find_presolution T 7 € = o, theno € PreSollf’er(V,cg).
¢ The function find _presolution terminates on all entries.

Proof. By induction on the pair (n, E) ordered lexicographically where 7 is the num-
ber of variables in 7 occurring in 6 and E is the set{ a | 3b,(a,b) e € v (b,a) € € }
ordered by the multiset extension [DM79] of the subterm ordering.

Let I'; a safe extension of I" and o such that o (A) =gr, g(B), for all (4, B) € 6.

We only detail the case where € = 6y (t, ) with bounded _normalize T #; = ¢ ],
bounded normalize T t, = ¢ i, and c is a static symbol.

* We have o(cii;) =gr, o(cifz). Moreover —gr, is confluent by hypothesis of
safeness for I';. Since c is static, by confluence of — gr,, we have o (ii1) =gr,
o (ii2). Therefore any solution of 6, (i7}, if2) is a solution of ¢ and any perma-
nent presolution of 6 (if1, &i2) is a permanent presolution of €.

It follows, by induction hypothesis, that o is a permanent presolution of €.

O

6.5.2 Checking Weak Well-Formedness of Rewrite Rules

We now (partially) implement the relations I'; A1, 2,6 lIF; £ = (A2, T,%62) and I'; Ay 2,6 |-,
t < T | (A2,%6>), necessary to type the left-hand side of weakly well-formed rewrite
rules.

let infer hs TAZ €6 t=

match ¢ with

| ¢ — (AT(c),¥)

| x = (A(AZ)(x).€)

| uv —

begin
let (A2,P,%6;) =infer IhsT AX 6 uin
match bounded normalize T' P with
| 11 x:A.B — let (A3,%3) = check_lhsT Ay £ 6, v Ain (A3,B[x/v],€3)
|  — fail

end

| - fail

let check hsTAX € ¢t T =
match ¢ with
| x when (x ¢ dom(AX) ) —
if FV(T) n dom(Z) = @ then (A(x:T), €)

else fail
| ux when ( x € dom(X) ) — check lhsT A £ € u (I1 y:Z(x).T)
| A x:Au —
begin
match bounded normalize I' T with
| T x:A,.B —

let (A2,%6>) = check |hs T A (£(x:42)) € u B in (A2,%6,)
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|~ fail
end
| - let (AZ,TQ,ng) = infer_lhs TAX€ tin (Az,cgg(T,Tz))

We chose to implement only some inference rules of[Figure 3.3|and[Figure 3.4] In
particular, we do not check type annotations on abstraction and do not infer the type
of abstractions. Since abstractions always occur as arguments in left-hand sides of
rewrite rules, their types is always known in advance, and therefore the information
given by the type annotation is redundant.

Lemma 6.5.2 (Soundness of lhs_infer and lhs_check).

e If infer_lhs T A} £ 6) t = (A2, T,%62), thenT;A1,2,61 IIF; t = (Ay, T,62).

e Ifcheck IhsT A} £ €1 t T = (A2,%6>), thenT;A155,6) Ikt < T | (A2, 65).
Proof. By induction on t. O

Finally, we can implement the weak well-formedness check for rewrite rules.

let rewrite wfT (f ii — v) =
let (A,€,T)=infer |hsT @ ¢ @ (f i) in
let ¢ = find_presolution T FV(f &) € in
if ( is_definable f A local wf T o(A) ) then
check I a(A) v o(T)
else false

Lemma 6.5.3. LetT be a well-typed global context.

¢ (Soundness) If rewrite_ wf T’ (f ii — v) = true, then (fii — v) is weakly well-
formed and f is a definable symbol.

* (Termination) If — gr is terminating on well-typed terms, then rewrite_ wf ter-
minates on all entries (u — v).

Proof.
* (Soundness) Follows from the soundness of infer _|hs and check lhs (Cemma®6.5.2),
soundness of find Eresolution ([é%%é %%I i, soundness of local wf (Theo-
rem 6.4.1) and soundness of check .
¢ (Termination) The termination of rewrite wf follows from the termination
of infer lhs and check lhs (recursive calls are made on strict subterms), of

find_presolution (Cemma®.5.1), oflocal wf (Theorem 6.4.1) and check (The-

orem 6.3.1).

O

6.6 Checking Well-Typedness for Global Contexts
We have shown in [Chapter 3} that S-well-formed global contexts

are well-typed. We now have most of the tools to check that a global context is -
well-formed.
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The only missing element is confluence checking for — gr. We consider that we
have a function is_confluent that, given a global context T, tries to decide if — prb
is confluent. This property is undecidable but we may assume that this function
implements a simplification of Van Oostrom’s development closed theorem (Theo-
rem 4.6.6) such as the one in [AYT09].

type ext_bool = ext_true | ext false | maybe
val is_confluent : global context — ext bool

The implementation of the -well-formedness test is now straightforward.

let global wfT =

match T with

| @ — true

| To(c:T) —
if (global wf Ty) A (¢ ¢ dom(Ty)) then term_eq (infer Ty @ T) Type
else false

| To(C:K) —
if (global _wfTy) A (C ¢ dom(Ty)) then term_eq (infer Iy @ K) Kind
else false

| ToZ —
if (global wf I'y) then

(is_confluent T' = ext_true) A (V (u — v) € E, rewrite_wf Ty (1 — p))

else false

Theorem 6.6.1 (Soundness of global_wf). If global wf ' = true, then T is well-

typed.
Moreover, global _wf terminates on all entries.

Proof. We prove by induction on T that it is -well-formed. Hence, by[Theorem 4.5.10}
it is well-typed.

e Suppose that I" = @. Trivial.

¢ SupposethatT' =Ty(c: T). We have global wf I'g = true, infer Ty @ T = Type
and c ¢ dom(I'y).

By induction hypothesis, I'y is f-well-formed (and well-typed). By soundness
of infer (Theorem 6.2.2), we have I'; @ - T : Type.

It follows that I is S-well-formed.
* SupposethatT =Ty(C: K). Wehave global wf I'g = true, infer Ty ¢ K = Kind
and C ¢ dom(T'y).

By induction hypothesis, I'y is f-well-formed (and well-typed). By soundness
of infer (Theorem 6.2.2), we have I'; @ - K : Kind.

It follows that I is B-well-formed.

* Suppose that ' = TyE. We have global wf Ty = true, for all (u — v) € 5,
rewrite_ wf Iy (u — v)and is_confluent T = ext_true.

By induction hypothesis, Ty is f-well-formed. By soundness of rewrite wf
(Cemma 6.5.3), the rewrite rules in = are weakly well-formed for Ty and are of
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the form (f#i — v) where f is a definable symbol. Moreover, — pro is conflu-
ent.

It follows that T is B-well-formed.

Since, recursive calls are made on strictly smaller global contexts, termination
follows from the termination of infer (Theorem 6.2.5) and rewrite wf (CLemma6.5.3).
O

6.7 Conclusion

We have given algorithms to infer and check types for terms, check well-formedness
of local contexts and check well-typedness of global contexts in the AIT-Calculus
Modulo and we have proven that they are sound, complete and terminating. These
algorithms have been implemented in DEDUKTI [BCHS], our type checker for the
AlIl-Calculus Modulo.
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Conclusion

(English version follows.)

Dans cette thése, nous avons développé une nouvelle présentation formelle du AII-
Calcul Modulo qui sert de fondation théorique au vérificateur de preuve DEDUKTI,
que nous avons également implémenté.

Résumé des Contributions

¢ Dans le chapitre 2, nous avons présenté une nouvelle version du AIl-Calcul
Modulo, un systéme de types a base de types dépendants et de regles de ré-
écriture, et nous en avons fait une étude détaillée. Nous avons introduit la
notion de contexte global bien typé de maniere a caractériser les contextes
globaux pour lesquels le systéme de types vérifie certaines propriétés élémen-
taires telles que la préservation du type par réduction ou encore I'unicité des
types. Un contexte global est bien typé si les déclarations de constantes sont
bien typées, les régles de réécriture sont bien typées et la propriété de la com-
patibilité du produit est vérifiée. Nous avons aussi étudié le Calcul des Construc-
tions Modulo, une extension du AIl-Calcul Modulo avec du polymorphisme et
des opérateurs de type.

* Dans le chapitre 3, nous avons étudié la propriété de bon typage des régles
de réécriture. En partant de la preuve que les régles de réécriture fortement
bien formées sont bien typées, on généralise le résultat en introduisant la no-
tion de regle de réécriture faiblement bien formée. Contrairement aux regles
fortement bien formées, les regles faiblement bien formées peuvent avoir un
membre gauche non algébrique et mal typé. Ainsi on permet le filtrage sous
leslieurs. On permet aussi de se débarrasser d'un certain type de non-linéarité
a gauche di aux contraintes du typage, et de préserver la confluence du sys-
teme de réécriture. Enfin, nous avons donné une caractérisation exacte de la
notion de bon typage pour les régles de réécriture vue comme un probleme
d’inclusion entre des ensembles de solutions de deux problemes d'unification
et nous en avons déduit I'indécidabilité du probleme.

* Dans le chapitre 4, nous avons résolu un probleme relatif a la présence de
lieurs dans le membre gauche des regles de réécriture : la combinaison de
telles regles avec la f-réduction génére un systéme de réécriture non confluent;;
la confluence ne peut donc pas étre utilisée pour prouver la propriété de com-
patibilité du produit ni pour décider le typage. Nous avons défini une notion
de réécriture modulo f pour le AII-Calcul Modulo qui ne souffre pas du méme
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probléeme. Nous avons montré que la confluence de cette nouvelle notion de
réécriture peut étre utilisée pour prouver la propriété de compatibilité du pro-
duit et pour décider le typage. La réécriture modulo S est définie grace a un
encodage des termes du AIl-Calcul Modulo dans un systeme de réécriture
d’ordre supérieur. Ceci permet d'importer dans le AIT-Calcul Modulo les résul-
tats de confluence prouvés dans le contexte des systémes de réécriture d’ordre
supérieur. Nous avons aussi décrit comment implémenter efficacement la ré-
écriture modulo f grace a la compilation des regles de réécriture en arbres de
décision.

¢ Dansle chapitre 5, nous avons étudié 'impact de I'ajout de regles de réécriture
non linéaires a gauche dans le AIl-Calcul Modulo. Les régles non linéaires a
gauche génerent la plupart du temps un systeme de réécriture non confluent
lorsqu’on les associe a la f-réduction. Ceci rend la preuve de la propriété de
la compatibilité du produit plus difficile. Nous montrons que cette propriété
est vérifiée, indépendamment de la confluence, lorsqu’on ne considéere que
des régles de réécriture au niveau objet. Nous donnons aussi un critére pour
prouver la propriété de la compatibilité du produit dans le cas ol le contexte
global contient des regles non linéaires a gauche et des régles produisant des
types produits. Ce critere est applicable dans le AIT-Calcul Modulo coloré dans
lequel la relation de conversion est faiblement typée.

¢ Dans le chapitre 6, nous avons donné des algorithmes pour inférer et véri-
fier le type d'un terme, pour vérifier qu'un contexte local est bien formé, pour
vérifier qu'une regle de réécriture est faiblement bien formée et pour vérifier
qu’'un contexte global est B-bien-formé. Nous prouvons aussi que ces algo-
rithmes sont corrects et complets en utilisant les résultats des chapitres pré-
cédents.

Perspectives

Terminaison Parmi les conditions qui rendent la vérification de type décidable,
nous n'avons pas étudié la terminaison du systéme de réécriture sur les termes bien
typés. La terminaison est donc un prolongement logique a ce travail. La terminaison
de calculs incorporant des types dépendants et des regles de réécriture a été étu-
diée par de nombreux auteurs (cf[Section 2.9). Nous pensons que le travail de Blan-
qui [Bla04] sur la terminaison a base de types dans le Calcul des Constructions Algé-
briques peut étre aisément adapté au cadre du AIT-Calcul Modulo. Cependant, cer-
taines modifications sont nécessaires pour prendre en compte notre notion de regle
de réécriture bien typée ainsi que la réécriture modulo . Limplémentation d’'un
critere de terminaison a base de types [Abel(0] dans DEDUKTI serait aussi un défi
intéressant. La terminaison de la réécriture modulo fn a été étudiée dans [Blal5],
mais dans un cadre simplement typé seulement.

Réécriture modulo une théorie équationnelle Lacommutativité est une propriété
de certains opérateurs algébriques qui ne se comporte pas bien sous forme de regle
de réécriture. En arithmétique, par exemple, il est commode de raisonner modulo
la commutativité de I'addition et de la multiplication. Cependant, la regle de réécri-
ture
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plus n m<— plus m n.

génere un systeme de réécriture qui, de maniére évidente, ne termine pas, ce qui
nous empéche de I'utiliser dans DEDUKTI. Une approche possible pour résoudre ce
probleme est de considérer une notion de réécriture plus générale qui filtre modulo
une théorie équationnelle donnée, par exemple modulo la commutativité de I’addi-
tion et de la multiplication. De la méme manieére que pour la réécriture modulo g, la
confluence de la réécriture modulo théorie permettrait de prouver la compatibilité
du produit et de décider le typage.

Conversion typée Quand nous avons défini le AIl-Calcul Modulo, nous sommes
parti d'un notion de réécriture non typée. Lidée était, d'une part, d’avoir une sépa-
ration nette entre les notions de réécriture et de typage et, d’autre part, d’avoir une
définition du calcul aussi proche que possible de son implémentation. Dans le cha-
pitre 5, nous avons vu que cette notion libérale de la réécriture était problématique
lorsque I'on considere des régles non linéaires a gauche, car la confluence est im-
médiatement perdue. Ce probleme pourrait étre résolu en considérant des notions
de réécriture et de conversion typées. Cependant, nous ne savons pas dans quelle
mesure cette restriction modifie la théorie du AIl-Calcul Modulo et si les résultats
présentés dans cette these restent valides. Une comparaison précise entre les ap-
proches typée et non typée de la réécriture nous en apprendrait davantage.

Au-dela du Calcul des Constructions Modulo Comme nousl’avons montré, le AIl-
Calcul Modulo est un cadre logique trés puissant lorsque 1'on considére I'interpré-
tions jugement/type. D’'un autre coté, par la correspondance de Curry-Howard, le
systeme de type correspond a la logique minimale du premier ordre modulo, un
systeme logique proche de la Déduction Modulo [DHKO3]. Si I'on ajoutait du po-
lymorphisme, des opérateurs de type (cf et des univers, on obtiendrait
une logique d’ordre supérieur modulo tres puissante. Nous pensons que ce systéme
pourrait servir de fondation pour un nouvel assistant de preuve fondé sur la réécri-
ture. Cette idée est trés proche du projet de Chrzaszcz and Walukiewicz-Chrzaszcz
d’ajouter de la réécriture a I’assistant de preuve Coq [CWCO7].
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Conclusion

In this thesis, we have developed a new formal presentation of the AIl-Calculus
Modulo to serve as a theoretical foundation its the proof checker, DEDUKTI, which
we implemented.

Summary of Contributions

» In|Chapter 2} we have given a new presentation of the AIl-Calculus Modulo, a
type system featuring dependent types and rewrite rules, together with a de-
tailed theoretical study of the system. We have introduced the notion of well-
typed global contexts to characterize global contexts for which basic proper-
ties such as subject reduction and uniqueness of types hold. A global context
is well-typed if constant declarations are well-typed, rewrite rules are well-
typed and product compatibility holds. We have also studied the Calculus of
Constructions Modulo, an extension of the AIl-Calculus Modulo with poly-
morphism and type operators.

¢ In|Chapter 3} we have investigated the property of well-typedness of rewrite
rules. Starting from the proof that strongly well-formed rewrite rules are well-
typed, we have generalized the result through the notion of weakly well-formed
rewrite rules. Unlike strongly well-formed rewrite rules, weakly well-formed
rewrite rules can have a left-hand side that is neither algebraic nor well-typed.
This allows matching under binders. It also permits getting rid of the non-left-
linearities due to typing constraints, in order to preserve a confluent rewrite
system. Finally, we have given an exact characterization of the well-typedness
property for rewrite rules as a problem of inclusion between solutions of two
unification problems and we have used this characterization to show the un-
decidability of well-typedness of rewrite rules.

¢ In|Chapter 4] we have solved a problem arising from the presence of binders
on the left-hand side of rewrite rules: confluence is lost for the combination
of B-reduction with these rewrite rules; therefore, confluence cannot be used
to prove product compatibility or decidability of type-checking. We have in-
troduced a notion of rewriting modulo B for the AIl-Calculus Modulo that
does not suffer this problem. We have shown that the confluence of this new
rewriting relation can be used to prove product compatibility and decidabil-
ity of type-checking. Rewriting modulo S is defined through an encoding of
the terms of the AIT-Calculus Modulo into Higher-Order Rewrite Systems. As
a result, it allows using confluence criteria designed for HRSs to prove the
confluence of rewriting modulo f in the AIl-Calculus Modulo. We have also
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described a way to efficiently implement rewriting modulo 8 by compiling
rewrite rules into decision trees.

 In|Chapter 5} we have studied the impact of non-left-linear rewrite rules in the
ATI-Calculus Modulo. Non-left-linear rewrite rules almost always generate a
non-confluent rewrite system when combined with B-reduction. This makes
the proof of product compatibility more difficult. We have shown that prod-
uct compatibility holds for object-level rewrite systems independently of con-
fluence. We have also given a criterion for proving product compatibility for
global contexts containing at the same time non-left-linear rewrite rules and
(type-level) II-producing rewrite rules. This criterion applies to the Colored
AII-Calculus Modulo where the conversion rule is constrained to be weakly-
well-typed.

 In|Chapter 6} we have given algorithms to infer or check the type of a term,
check that a local context is well-formed, check that a rewrite rule is weakly
well-formed and check that a global context is -well-formed. We have proved
that these algorithms are sound and complete using the results of the previous
chapters.

Perspectives

Termination Among the conditions making type-checking decidable, we have not
studied the termination of rewrite systems on well-typed terms. This makes termi-
nation analysis an obvious continuation of this work. Termination in calculus mix-
ing depgndent types and rewrite rules has been studied by several authors (see Sec-
tion 2.9). We believe that the work of Blanqui [Bla04] on the termination in the Cal-
culus of Algebraic Constructions using type-based technics can be adapted to the
AII-Calculus Modulo. However, Blanqui'’s criteria might need some modifications to
cope with our notion of well-typed rewrite rules and our notion of rewriting modulo
B. The implementation of a type-based termination [Abel0] criterion in DEDUKTI is
also an interesting challenge.

Rewriting Modulo an Equational Theory Commutativity is a property of algebraic
operators that does not behave well as a rewrite rule. In arithmetics for instance, it
can be convenient to reason modulo the commutativity of the addition and the mul-
tiplication. However, the rewrite rule

plus n m— plus mn.

generates a rewrite relation which is obviously non-terminating, preventing us to
use it in DEDUKTI. One possible approach to solve this issue would be to consider a
more general notion of rewriting where matching is done modulo some equational
theory, for instance modulo the commutativity of addition and multiplication. As
for rewriting modulo f, we expect that the confluence of rewriting modulo an equa-
tional theory ensures product compatibility and restores the decidability of type
checking.

Typed Conversion When defining the AIl-Calculus Modulo we chose to rely on
an untyped notion of rewriting. The idea was to have a clean separation between
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rewriting and typing and a system as close as possible to its implementation. In Chap-
ter 5, we have seen that this liberal notion of rewriting is problematic when we con-
sider non-left-linear rewrite rules because confluence is immediately lost. This issue
could be solved by considering typed notions of rewriting and conversion. However,
we do not know to which extent taking a typed notion of conversion changes the the-
ory of the AIl-Calculus Modulo and if the results presented in this thesis still hold in
this setting. A precise comparison between both systems (with and without typed
conversion) would be interesting.

Beyond the Calculus of Construction Modulo The AIT-Calculus Modulo has shown
to be a powerful logical framework, seeing it through the judgment-as-type inter-

pretation. On the other hand, by the proposition-as-type interpretation, it corre-

sponds to minimal predicate logic modulo, a proof system close to Deduction Mod-

ulo [DHKO03]. By adding polymorphism, type operators (as in[Section 2.8) and uni-

verses we would get a very powerful higher-order logic modulo. We believe that

this logic can be used as a foundation for a new proof assistant based on rewriting.

This idea is very close to the project of Chrzaszcz and Walukiewicz-Chrzaszcz to add

rewriting to the Coq proof assistant [CWCO07].
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Vérification de typage pour le \II-Calcul Modulo : théorie et pratique

Résumé : |a vérification automatique de preuves consiste 3 faire vérifier par un ordinateur la validité
de démonstrations d'énoncés mathématiques. Cette vérification étant purement calculatoire, elle offre un
haut degré de confiance. Elle est donc particulierement utile pour vérifier qu'un logiciel critique, c'est-a-dire
dont le bon fonctionnement a un impact important sur la sécurité ou la vie des personnes, des entreprises
ou des biens, correspond exactement a sa spécification. DEDUKTI est I'un de ces vérificateurs de preuves.
Il implémente un systéme de types, le AII-Calcul Modulo, qui est une extension du A-calcul avec types
dépendants avec des régles de réécriture du premier ordre. Suivant la correspondance de Curry-Howard,
DEDUKTI implémente a la fois un puissant langage de programmation et un systéme logique trés expressif.
Par ailleurs ce langage est particulierement bien adapté a I'encodage d'autres systéemes logiques. On peut,
par exemple, importer dans DEDUKTTI des théorémes prouvés en utilisant d'autres outils tels que Coq, HOL
ou encore Zenon, ouvrant ainsi la voie a |'interopérabilité entre tous ces systémes.

Le AII-Calcul Modulo est un langage trés expressif. En contrepartie, certaines propriétés fondamentales
du systeme, telles que I'unicité des types ou la stabilité du typage par réduction, ne sont pas garanties dans
le cas général et dépendent des régles de réécriture considérées. Or ces propriétés sont nécessaires pour
garantir la cohérence des systémes de preuve utilisés, mais aussi pour prouver la correction et la complétude
des algorithmes de vérification de types implémentés par DEDUKTI. Malheureusement, ces propriétés sont
indécidables. Dans cette thése, nous avons donc cherché a concevoir des critéres garantissant la stabilité du
typage par réduction et I'unicité des types qui soient décidables, de maniére a pouvoir étre implémentés par
DEDUKTIL

Pour cela, nous donnons une nouvelle définition du ATI-Calcul Modulo qui rend compte de I'aspect itératif
de I'ajout des regles de réécriture dans le systéme en les explicitant dans le contexte. Une étude détaillée
de ce nouveau calcul permet de comprendre qu'on peut ramener le probléme de la stabilité du typage par
réduction et de I'unicité des types a deux propriétés plus simples qui sont la compatibilité du produit et le
bon typage des régles de réécriture. Nous étudions donc ces deux propriétés séparément et en donnons des
conditions suffisantes effectives.

Ces idées ont été implémentées dans DEDUKTI, permettant d’augmenter grandement sa fiabilité.

Mots clés : théorie de la preuve, théorie des types, méthodes formelles
Typechecking in the \II-Calculus Modulo: Theory and Practice

Abstract: Automatic proof checking is about using a computer to check the validity of proofs of math-
ematical statements. Since this verification is purely computational, it offers a high degree of confidence.
Therefore, it is particularly useful for checking that a critical software, i.e., a software that when malfunc-
tioning may result in death or serious injury to people, loss or severe damage to equipment or environmental
harm, corresponds to its specification. DEDUKTI is such a proof-checker. It implements a type system, the
AlI-Calculus Modulo, that is an extension of the dependently typed A-calculus with first-order rewrite rules.
Through the Curry-Howard correspondence, DEDUKTI implements both a powerful programming language
and an expressive logical system. Furthermore, this language is particularly well suited for encoding other
proof systems. For instance, we can import in DEDUKTI theorems proved using other tools such as Cogq,
HOL or Zenon, initiating a form of interoperability between these systems.

The AII-Calculus Modulo is a very expressive language. On the other hand, some fundamental properties
such as subject reduction (that is, stability of typing by reduction) and uniqueness of types are not guaranteed
in general and depend on the rewrite rules considered. Yet, these properties are necessary for guarantying
the coherence of the proof system, but also for proving the soundness and completeness of the type-
checking algorithms implemented in DEDUKTI. Unfortunately, these properties are undecidable. In this
thesis we design new criteria for subject reduction and uniqueness of types that are decidable, in order to
be implemented in DEDUKTI.

For this purpose, we give a new definition of the AII-Calculus Modulo that takes into account the iterative
aspect of the addition of rewrite rules in the typing context. A detailed study of this new system shows that
the problems of subject reduction and uniqueness of types can be reduced to two simpler properties that
are called product compatibility and well-typedness of rewrite rules. Hence, we study these two properties
separately and we give effective sufficient conditions for them to hold.

These ideas have been implemented in DEDUKTI increasing its reliability.

Keywords: proof theory, type theory, formal methods
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