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Extended abstract of the thesis 

in French 

            Résumé étendu  de la thèse 
 

Introduction générale 

Le réchauffement climatique et l’ampleur de l’effet des déchets non-biodégradables sur 

l’environnement sont devenus des problématiques d’actualité sur lesquelles les industriels se 

sont penchés. Cela a généré la mise en place de stratégies de développement durable qui 

encouragent à chercher une alternative aux matériaux fossiles à la fois respectueuse de 

l’environnement et garante de performances similaires. 

Dans ce contexte, les fibres naturelles ont reçues une grande attention au cours des deux 

dernières décennies pour remplacer les fibres de verre comme renfort dans les composites 

polymères. En plus de leur aspect écologique, les principales raisons qui incitent à l’utilisation 

des fibres naturelles dans les composites sont leur faible coût et le gain en poids toute en 

gardant des propriétés mécaniques similaires aux composites à fibres de verre. La faible 

densité des fibres naturelles attire particulièrement le secteur des transports (automobile, 

ferroviaire, aéronautique…) très sensible à la réduction de poids. Les composites à fibres 

naturelles sont utilisés dans les automobiles pour des pièces intérieures comme des 

revêtements, des garnitures de tableaux de bord, des panneaux de porte... D'autres secteurs 

d’application des composites à fibres naturelles sont apparus comme le sport et loisirs (ski, 

snowboard, vélo...) grâce à leurs bonnes propriétés d'amortissement, les instruments de 

musique et haut-parleurs en raison de leurs excellentes performances acoustiques, ou aussi 

l’ameublement (bureau, chaise...) en raison de leurs aspect lorsque les fibres sont mélangés 

avec une matrice translucide. 
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Les fibres naturelles techniques utilisées comme renfort des polymères sont soit des fibres 

ligno-cellulosiques, provenant de tiges de plantes comme les lin, chanvre, jute et kenaf ou de 

graines (coton) ou de feuilles (sisal), soit des fibres à 100 % cellulosiques filées telles que les 

fibres Tencel (procédé Lyocell) ou viscose. Dans ce travail, deux types de fibres naturelles ont 

été utilisés, le lin et Tencel avec une matrice polypropylène, avec pour objectif :  

 d'étudier et de comprendre l'influence des différentes compositions et morphologies de 

fibres : 

o sur la microstructure des composites, c’est à dire la taille, l’orientation et la 

concentration de fibres, 

o sur les propriétés rhéologiques et mécaniques qui en résultent,  

 de vérifier si les modèles développés pour les fibres de verre peuvent prédire la pression 

pendant le remplissage de moule en injection et l'orientation des fibres naturelles dans 

des pièces moulées. 

Les fibres de lin et Tencel sont différentes. Les composants principaux du lin sont la cellulose 

(64-81 %), l’hémicellulose (11-17 %), la lignine (2-3 %) et la pectine (2 %) tandis que Tencel 

est basée sur de la cellulose pure. De plus, elles présentent une morphologie différente. Tencel 

est une fibre élémentaire mince et flexible avec un diamètre uniforme (dû au procédé de 

filage), tandis que le lin est un «mélange» de fibres élémentaires semi-rigides minces et de 

faisceaux épais et rigides composés de fibres élémentaires assemblées. Enfin, leurs propriétés 

mécaniques intrinsèques sont également différentes. Il est donc supposé que ces différences 

de propriétés des fibres auront une influence sur la microstructure et les propriétés des 

composites. 

En France, le lin de haute qualité est aujourd'hui cultivé dans les régions du nord (Normandie, 

Picardie et Nord-Pas-de-Calais) en raison des conditions climatiques modérées et du savoir-

faire des liniculteurs. Avant d'être en mesure de renforcer un polymère, les fibres de lin sont 

soumises à un long cycle d'extraction comprenant le rouissage, la rupture, le teillage et le 

peignage. Plus de 80 % de la production de lin est aujourd'hui tournée vers l'industrie textile 

qui est leur application historique et seulement 10 % sont dédiés à un usage technique. 

Le principal producteur de fibres de Tencel est la société autrichienne Lenzing qui nous a les 

aimablement fournies. La cellulose de base des fibres Tencel est extraite de la pulpe 
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principalement trouvée dans les eucalyptus. La cellulose est dissoute dans du N-

méthylmorpholine-N-oxyde monohydrate, puis filtrée, centrifugée, filée, coagulée et séchée. 

En plus de leur utilisation principale dans l'industrie textile, les fibres Tencel sont 

couramment employées pour la fabrication de cordes ou des filtres automobiles.  

Nous nous intéressons dans ce travail au polypropylène renforcé de fibres discontinues de lin 

et Tencel. Le mélange fibre/matrice se fait par extrusion bivis pour produire des granulés, qui 

sont ensuite transformés par injection. D’autres façons de fabriquer des composites 

thermoplastiques existent comme, par exemple, le moulage par compression. L’injection reste 

la méthode préférée pour fabriquer des pièces de géométries complexes avec une haute 

cadence et un faible coût de production. Le marché du moulage par injection est en pleine 

croissance avec l'augmentation des domaines d'application pour les composites à fibres 

naturelles. Le potentiel de ces matériaux combiné à la productivité du procédé d’injection 

satisfait au défi environnemental et à la performance industrielle. Toutefois, en raison de la 

complexité de choix et de la variété des fibres naturelles plusieurs questions subsistent. 

Dans ce contexte, cette thèse a été lancée en octobre 2012 au Centre de Mise en Forme de 

Matériaux (Cemef) de Mines ParisTech, dans le cadre de la Chaire Industrielle Bioplastiques. 

Cette chaire est cofinancée par Mines ParisTech et cinq entreprises: Arkema, L'Oréal, Nestlé, 

PSA Peugeot Citroën et Schneider Electric. C’est un grand projet de recherche de 7 ans qui 

comprend différents thèmes dont l’objectif est de soutenir le développement et les 

applications de divers matériaux bio-sourcés (bioplastiques, matériaux ligno-cellulosiques et 

composites polymères à fibres naturelles). Une précédente thèse s’est déroulée dans le cadre 

de cette chaire portant sur le comportement et la rupture de fibres cellulosiques lors de leur 

compoundage avec une matrice polymère. La présente thèse vient compléter ce travail et se 

concentre sur l'étude et la compréhension des propriétés d’un polypropylène renforcé de fibres 

naturelles en abordant certaines questions autours du moulage par injection. 

Problématiques 

Les polymères renforcés de fibres de verre discontinues ont été largement étudiés et 

optimisés. La question principale ici est de savoir si les résultats et approches peuvent être 

étendus aux fibres naturelles. Les fibres de verre sont rigides, de diamètre constant et de 

propriétés uniformes. Comme mentionné ci-dessus, les fibres de lin techniques sont un 
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mélange de fibres élémentaires et de faisceaux. Pendant la mise en œuvre, les faisceaux se 

dissocient en faisceaux plus minces voire même en fibres élémentaires. En fonction de leur 

diamètre et longueur, les fibres de lin peuvent se présenter comme semi-rigides ou rigides. En 

outre, les fibres de lin sont un produit d’agriculture dont les propriétés varient avec les 

conditions de culture et d'extraction et la variété dont elles proviennent. Tout cela fait que leur 

morphologie est très différente de celle des fibres de verre. L'autre type de fibres de cellulose 

utilisée dans ce travail est Tencel. Ces fibres sont filées à partir d’une solution de cellulose, et 

donc leur morphologie, composition et propriétés sont bien contrôlées. Cependant, leur 

morphologie est très différente non seulement du verre mais aussi du lin. La principale 

différence avec des fibres de verre est que les fibres Tencel sont très flexibles, ce qui, a priori, 

ne permet pas d’adopter les approches développées pour des fibres de verre. Considérant tout 

cela, les points suivants seront précisés : 

1) L'effet du procédé sur les fibres naturelles (rupture, dissociation en faisceaux) est crucial 

pour la compréhension de la microstructure au sein des pièces moulées par injection. Quelle 

différence d’endommagement entre lin, Tencel et verre va en avoir lieu pendant la mise en 

œuvre ? Quelle est l’ampleur de la casse des fibres pendant l'injection ? Quel est l’effet de la 

concentration sur la rupture des fibres ? 

2) Les propriétés rhéologiques des polymères thermoplastiques renforcés de fibres naturelles à 

l’état fondu sont très importantes pour la simulation du procédé d’injection. Ces propriétés 

sont assez bien connues pour les composites à fibres de verre. Le comportement rhéologique 

des composites à fibres naturelles est-il similaire à celui des fibres de verre ? Quelle est 

l'influence du type de fibre et de leur flexibilité sur les propriétés viscoélastiques du 

composite à l’état fondu ? 

3) Etant donné que la morphologie des fibres naturelles est différente de celle des fibres de 

verre, l'extrapolation aux fibres naturelles des méthodes utilisées pour caractériser la 

microstructure des composites à fibres de verre semble être discutable. Si elle s’avère 

impossible, une nouvelle méthode pour l'analyse de la distribution et de l'orientation des fibres 

doit être développée. 
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4) Comme les propriétés mécaniques des composites sont en corrélation directe avec la 

microstructure, les relations microstructure-propriétés devraient être étudiées pour la 

compréhension et pour l'amélioration des performances. 

5) Dans le but d'optimiser les conditions d’injection pour les composites à fibres naturelles, il 

est essentiel de vérifier si les modèles d'orientation des fibres et de simulation du procédé 

existantes pour les thermoplastiques renforcés de fibres de verre sont adaptés aux polymères 

renforcés de fibres naturelles. 

Pour répondre à ces questions, après l’introduction générale (Chapitre 1), la thèse se compose 

des parties suivantes : 

Chapitre 2, qui décrit les matériaux et les méthodes utilisés dans cette étude 

Chapitre 3, où la distribution de taille des fibres est analysée, 

Chapitre 4, où la microstructure (orientation, concentration, courbures) des fibres est analysée 

Chapitre 5, où le comportement rhéologique est mesuré 

Chapitre 6, consacré au comportement mécanique 

Chapitre 7, sur l’analyse et la simulation du procédé d’injection 

Dans la suite nous allons présenter l’objectif de chaque chapitre et les principaux résultats 

trouvés. 

Chapitre 2 : Matériaux et méthodes 

Ce chapitre décrit les matériaux utilisés dans ce travail ainsi que les méthodes de préparation 

et de caractérisation de composites. Bien que ce travail concerne principalement les 

polymères thermoplastiques renforcés de fibres naturelles, l’étude est étendue aux fibres de 

verre pour comparaison. A titre de référence, le polypropylène pur a été également étudié.  

Dans la première partie de ce chapitre, les informations sur tous les matériaux utilisés dans la 

présente étude ont été détaillées. Ensuite, les deux étapes de mise en forme, l’extrusion bivis 

et l’injection, ont été présentées. Les techniques expérimentales utilisées pour évaluer la 

microstructure des composites (microscopie optique et électronique), leurs propriétés 
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rhéologiques (en mode dynamique et capillaire) et leurs performances mécaniques (en tension 

et choc) ont été également décrites. 

Chapitre 3 : Analyse de taille de fibres 

Les fibres de lin, Tencel et de verre ont été mélangées avec le polypropylène par extrusion 

bivis en plusieurs concentrations. Les différents composites ont été injectés dans un moule en 

forme de boîte. La distribution de tailles des fibres a été analysée après mélange et après 

injection, par dissolution du polypropylène et analyse par microscopie optique, cartographie et 

analyse d’images. Les fibres de verre ont été fortement cassées pendant le mélange et 

relativement peu endommagées lors du moulage par injection. La réduction de longueur est 

nettement moindre pour les fibres Tencel
®
. Les fibres de lin voient leur longueur et leur 

diamètre réduits au cours des deux étapes, les faisceaux étant dissociés. Le rapport de forme 

est donc constant. Quel que soit le type de fibres, la casse est plus importante lorsque la 

concentration augmente. 

Chapitre 4 : Orientation et dispersion des fibres dans des pièces injectées  

La complexité de la morphologie des fibres de lin et Tencel a nécessité une nouvelle approche 

de caractérisation permettant la quantification de leur orientation, distribution et courbure. 

Des surfaces de coupes parallèles au plan de la boite ont été obtenues par polissage pour 

plusieurs niveaux dans l’épaisseur. Des images de ces sections ont été ensuite prises par 

microscopie optique en mode réflexion et analysées par un logiciel de traitement d’image 

semi automatiquement.  

En fonction de leurs formes apparentes, les fibres ont été classées en quatre catégories: 

droites, en forme de C, en forme de S et particules ou fibres hors-plan. Nous avons démontré 

qu'à cause de la différence de flexibilité, les fibres Tencel peuvent se courber en deux 

conformations: en forme de C ou en forme de S, tandis que les fibres de lin élémentaires se 

courbent seulement en forme de C.  

Les fibres sont généralement alignées dans la direction d’écoulement à la surface de boite et 

perpendiculairement à cette direction dans le plan médian. Le nombre de fibres Tencel est 

trois fois plus grand que celui de lin pour la même concentration en volume. Cela a été 
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expliqué par la présence de faisceaux dans le lin qui persistent et n’arrivaient pas à se 

dissocier après l’injection. En outre, comme pour les fibres de verre, la concentration de lin 

augmente de la surface au plan milieu dans l’épaisseur, alors que la concentration Tencel est 

pratiquement indépendante de l'épaisseur. 

Chapitre 5 : Propriétés rhéologiques des composites 

Les propriétés des différents polypropylènes renforcés ont été étudiées en géométrie plan-plan 

en mode dynamique et en rhéométrie capillaire, pour des concentrations en fibres de 0 à 30 % 

en poids et des températures comprises entre 180 et 200 °C. Les mesures rhéologiques 

dynamiques ont montré que l'augmentation de la teneur en fibres et de la flexibilité de fibres 

(cas de Tencel) conduit à l’augmentation de la viscosité complexe et des modules élastique et 

visqueux. Une contrainte seuil apparente a été identifiée à basses fréquences lorsque la 

concentration volumique de fibres atteint le régime concentré. Cela est dû aux interactions 

entre fibres qui sont encore plus marquées lorsque la flexibilité de la fibre augmente. Pour la 

même concentration, les composites à fibres Tencel présentent une viscosité et une contrainte 

seuil apparente modérément plus élevées que celles des composites de verre et largement 

supérieures à celles du lin. Ceci est dû à la haute flexibilité et au plus grand nombre des fibres 

Tencel. 

L'influence de la température sur la viscosité des composites a été analysée en utilisant la loi 

d'Arrhenius permettant le calcul de l'énergie d'activation. Pour les trois types de composites, 

l’énergie d’activation augmente quand la teneur en fibres augmente. L’ajout de fibres au 

polypropylène semble augmenter la "résistance" du composite à s’écouler. Les composites 

Tencel présentent une énergie d'activation plus élevée par rapport à celle du lin et du verre. 

Nous suggérons que des restrictions supplémentaires aux mouvements de chaînes de 

polymères peuvent être causées par la structure en réseau de fibres extrêmement flexibles.  

La superposition rhéologie capillaire/dynamique obéit à la loi de Cox-Merz. Les courbes 

maitresses comprenant les mesures en dynamique et capillaire ont été modélisées par 

l’équation de Carreau-Yasuda à seuil. Le résultat obtenu donne l'évolution de la viscosité pour 

une large gamme de taux de cisaillement. Ce sera une donnée d’entrée importante pour le 

calcul numérique de la pression et de l'orientation des fibres (Chapitre 7). 
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Chapitre 6 : Propriétés mécaniques des composites 

L'influence de la microstructure sur les propriétés en traction des composites a été étudiée 

dans des éprouvettes prélevées dans les boites injectées, à différents angles par rapport à la 

direction principale d'écoulement. Les échantillons alignés avec cette direction présentent de 

meilleures propriétés en traction que ceux orientés à 45 ° et 90 ° pour tous les composites 

étudiés. Les composites à base de verre présentent un module d’Young et une résistance à la 

traction supérieurs aux composites à fibres de lin et de Tencel, et ce quel que soit la 

concentration en fibres. Les composites Tencel montrent un plus grand allongement à la 

rupture par rapport aux composites de verre et de lin. 

Les modèles de Cox-Krenchel et Kelly-Tyson ont été utilisés pour analyser la rigidité et la 

résistance à la traction, en utilisant des facteurs d'orientation améliorés et déterminés à partir 

des observations au Chapitre 4. Certains écarts se sont produits au niveau de la prédiction des 

propriétés de traction dans la direction principale d'écoulement. Ces écarts ont été associés à 

l'imprécision des valeurs de module de la fibre, à l'orientation des fibres hors plan, aux 

courbures des fibres et à la possibilité de présence d’une couche appauvrie en fibres vers la 

surface.  

L'investigation des propriétés d'impact des composites sur des éprouvettes séparément 

injectées a montré que les composites à fibres Tencel ont la résistance à l'impact la plus élevée 

par rapport au polypropylène renforcé par des fibres de verre et de lin. Cela a été interprété 

par la flexibilité et le nombre important de fibres à fraction volumique identique qui peuvent 

former un réseau qui résiste à la propagation de fissures. L'analyse de la résistance à l'impact a 

été réalisée en utilisant le modèle de Thomason et Vlug. Il a été démontré que les prédictions 

sont en accord avec les résultats expérimentaux à l'exception des composites à faible 

concentrations. 

Chapitre 7 : Simulation de la pression et de l’orientation de fibre : 

comparaison avec l’expérience 
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Lors des campagnes d’injection, les pressions sur des capteurs situés dans la cavité ont été 

mesurées. Le niveau des pressions mesurées pour les différents matériaux (concentration et 

types de fibres) est bien corrélé aux niveaux de viscosité mesurée au Chapitre 5. 

La pression a été calculée pendant la phase de remplissage avec le logiciel Rem3D. L’accord 

avec l’expérience est correct. Il y a un écart essentiellement au début de l'évolution de la 

pression qui se réduit lorsque la matière fondue progresse dans la cavité. Ceci est vrai pour le 

polypropylène pur et pour tous les composites étudiés. Cette constatation pourrait être 

expliquée par l'imprécision des paramètres thermiques requis pour la mise en place des 

calculs. 

L'orientation des fibres de verre calculée à la fin du remplissage avec Rem3D
®
 est en accord 

avec l’expérience, sauf dans les couches à cœur où un écart est observé. Les erreurs peuvent 

être attribuées aux conditions aux limites thermiques, au modèle d'orientation et aux erreurs 

expérimentales. 

La prédiction de l'orientation des fibres de lin et de Tencel dans les pièces injectées a été aussi 

réalisée. L'objectif était de savoir si le modèle d’orientation de fibres rigides peut être 

appliqué aux deux types de fibres naturelles bien que leurs structures soient très différentes de 

celles des fibres de verre rigides.  

L’orientation calculée des fibres de lin correspond approximativement aux résultats 

expérimentaux. Des paramètres de calcul ajustés pourraient améliorer la précision des calculs. 

Cet accord satisfaisant peut s’expliquer par le fait que les fibres sont en partie sous forme de 

faisceaux rigides. 

L'orientation calculée des fibres Tencel est extrêmement loin de ce qui a été obtenu dans 

l'expérience. Les fibres Tencel sont très flexibles et leur comportement pendant l'écoulement 

ne peut être estimé via un modèle de fibres rigides. Par conséquent, un modèle de fibre 

flexible serait nécessaire pour les thermoplastiques renforcés de fibres Tencel pour obtenir des 

résultats d'orientation adéquats. Cependant, cela ne semble pas si évident vu que le passage du 

régime dilue au régime concentré des modèles fibres flexibles n’est encore pas maitrisé. 
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Conclusions et perspectives 

Le travail réalisé a fourni une analyse en profondeur de la relation procédé-microstructure-

propriétés pour l’injection du polypropylène renforcé de fibres naturelles. Ce type de 

composites prend progressivement de l’ampleur car il présente des avantages par rapport aux 

composites à fibres de verre tels que la réduction de poids, le faible coût, l’aspect 

environnemental toute en gardant des propriétés mécaniques similaires. 

Nous avons effectué nos travaux avec deux types de fibres naturelles, Tencel et lin qui ont 

différentes structures intrinsèques: le lin est un mélange de fibres élémentaires semi-rigides et 

de faisceaux épais et rigides, alors que les fibres Tencel sont individuelles et très flexibles. 

Les fibres de verre rigides ont été également utilisées pour la comparaison. Une variété de 

techniques expérimentales a été utilisée dont certaines ont été mises au point pour évaluer la 

microstructure, les propriétés mécaniques et rhéologiques des composites. Une simulation de 

la phase de remplissage lors de l’injection a été effectuée, ce qui a permis de comparer la 

pression et l'orientation des fibres calculées avec celles obtenues expérimentalement.  

A la lumière de ce travail, plusieurs perspectives peuvent être envisagées. Une première est de 

développer une méthode automatique d’analyse de taille et d’orientation des fibres, ce qui 

aidera beaucoup à réduire le volume du travail expérimental. Une deuxième perspective est de 

tester différentes conditions d’injection, que ce soit au niveau de la forme de la cavité, de 

l’épaisseur et du type de seuil ou au niveau des conditions machines : débit, pression de 

maintien, température de moule. Une autre perspective qui parait importante est de tester 

d’autres fibres analogues au lin comme par exemple les fibres de chanvre ou de sisal, ou des 

fibres se rapprochant des fibres Tencel comme le coton pour vérifier les résultats obtenus. 

Enfin, l’amélioration des modèles d’orientation de fibres en prenant compte des particularités 

des fibres naturelles est une piste qui mériterait d’être envisagée. 
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Chapter 1             

General Introduction 
Global warming and enormous amount of non-biodegradable waste are current problems that 

have to be solved. This speeds up industries to replace the fossil-based materials by 

alternative eco-friendly ones, which should provide similar performances together with a 

minimum of environmental footprint. 

Within this context, natural fibres have gained a great attention over the two past decades, 

aiming to substitute glass fibres as reinforcement for polymer composites. In addition to their 

renewability, the main reasons that make natural fibres useful when applied in composites are 

cost and weight saving, keeping similar composite mechanical properties compared to glass 

fibre filled polymers. The low density of natural fibres particularly attracts the automotive 

industry and gives solution to the weight reduction issue. Natural fibre composites are used in 

automotive industry for producing interior parts as trim parts in dashboards, door panels, 

parcel shelves, backrests and cabin linings. In 2013, 30,000 tons of natural fibres were used in 

the European automotive production [Dammer et al. (2013)]. For example, Mercedes-Benz 

used 46 kg of renewable materials including natural fibre composites in 87 components of the 

S-class cars (2013). For the same reasons as mentioned above, natural fibre composite were 

welcomed to be applied for interior cladding of railway carriages and aircraft bodies. 

Some other applications have also emerged for natural fibres composites such sport and 

leisure (ski, snowboard, bicycle…) thanks to their good damping properties, or musical 

instrument and loudspeakers because of their excellent acoustic performances, or furniture 

(desk, chair,…) due to their exceptional optical properties when mixed with translucent 

matrix. Natural fibres composites as a whole thus account for around 15% of the volume of 

composites manufactured in Europe [Dammer et al. 2013]. 
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Natural fibres used in field of polymer composites are either lignocellulose fibres extracted 

from wood, from the bast of plants (flax, hemp, jute, kenaf), from seeds (cotton), from leafs 

(sisal) and also man-made spun cellulose fibres such as Tencel from Lyocell process and 

viscose.  

In this work, two types of cellulosic fibres were mixed with polypropylene: flax and Tencel. 

The reason was to study and to understand the influence of fibre composition, morphology 

and properties on composite structure and properties, starting from fibre breakage during 

compounding and injection moulding, to molten composite morphology, composite 

microstructure, composite mechanical properties and finally checking if models developed for 

glass fibres can predict fibre orientation in injection moulded parts with cellulosic fibres. Flax 

and Tencel are very different. First, they have different composition: the main component of 

flax is cellulose by 64-81 %, but hemi cellulose (11-17 %), lignin (2-3 %) and pectin (2 %) 

are also present [Baley (2002); Le Moigne (2014)], while Tencel is based on pure cellulose 

[Fink et al. (2014)]. Second, they have different morphology: Tencel is elementary thin and 

flexible fibre with uniform diameter (determined by spinning process) while flax is a 

“mixture” of thin semi-rigid elementary fibres and thick rigid bundles made of elementary 

fibres assembled together. Finally, their intrinsic mechanical properties are also different. It is 

thus supposed that these differences in fibres properties would influence composite 

microstructure and properties. 

The use of natural fibres by humans, in particular flax (Linum usitatissimum L.), dates back 

the ancient Egyptian civilisation. It was imported in Europe by the Middle East Phoenician 

traders 2,000 years ago. The translation of its scientific name is “linen most useful”, signing 

its importance in the world economy [Tortora and Collier (1997); Borland and Berglund 

(2002); Akin (2012)]. In France, high-quality flax is today cultivated in the northern regions 

(Normandie, Picardie and Nord Pas de Calais) due to the moderate climate conditions and the 

developed know-how. Before being able to reinforce composite, flax fibres undergo a long 

cycle of extraction that  includes retting, breaking, scutching and hackling (see more details in 

Bos (2004) and Müssig (2010)). More than 80 % of flax production is today designated for 

textile industry that is their classical application, and only 10 % are dedicated for a technical 

use. 

Tencel fibres are made via Lyocell process that was first commercialised in 1992 by 

Courtaulds. Today, the major producer of these fibres is the Austrian company Lenzing who 
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kindly provided these fibres for the current study. The cellulose for Tencel fibres is extracted 

from the pulp of hardwood trees, mainly eucalyptus. The cellulose is dissolved in N-

methylmorpholine-N-oxide monohydrate, filtered, spun, coagulated and dried. In addition to 

their primary use in textile industry, Tencel fibres are commonly applied in ropes, automotive 

filters, abrasive materials and protecting suiting materials. 

Natural fibres composites are generally manufactured under different processes either with 

thermoplastic or thermoset matrices. Thermoplastics are usually mixed with short natural 

fibres in twin-screw extruder to produce pellets that are in turn processed by injection 

moulding. Some other ways for producing composites are also possible such as compression 

moulding. Injection moulding is the preferred method to manufacture parts with a complex 

geometry at high production rate and low price. The market for injection moulding is 

constantly growing with increasing application areas for the natural fibre composites.  

 

The potential of natural fibre composites together with the efficient productivity of injection 

moulding make clearly a balance between the environmental challenge and the industrial 

performance. However, because of the complexity and multiple choices of natural fibres some 

questions still need to be answered. Within this context, the present thesis was launched in 

October 2012 at the Centre for Material Forming (Cemef) of Mines ParisTech, in the frame of 

the Industrial Chair in Bioplastics. This Chair is co-financed by Mines ParisTech and five 

companies: Arkema, L'Oréal, Nestlé, PSA Peugeot Citroën and Schneider Electric. It is a 7-

years large research project that includes different research topics, supporting the 

development and applications of various materials based on biomass polymer (bioplastics, 

lignocellulose, polymer composites with natural fibres). A previous thesis on natural fibre 

based composites in the frame of this Chair investigated the behaviour and rupture 

mechanisms of cellulosic fibres during their compounding with a polymer matrix [Le Duc 

(2013)]. The present thesis continues this topic and focuses on studying and understanding of 

the properties of natural fibre based composites particularly when processed by injection 

moulding. 

Even though the understanding of natural fibre reinforced composites has recently been 

significantly improved, several issues related to injection moulding process remain unsolved. 

The main question here is if the approaches developed for rigid glass fibre based composites 

can be applied to composites with cellulosic fibres. Glass fibres are rigid with a uniform 

diameter and defined properties. As mentioned above, technical flax fibres are a mixture of 
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elementary fibres and bundles. During processing, bundles dissociate into thinner ones and/or 

into elementary fibres. Depending on their diameter and length, flax fibres and bundles can be 

semi-flexible or rigid. Flax fibres are agriculture based products; their properties depend on 

the cultivation and the extraction conditions. Flax fibres that are harvested from different 

varieties exhibit different properties. Their morphology is thus very different from that of 

glass fibres. The other type of cellulosic fibres used in this work is Tencel. They are spun 

cellulose fibres and thus of uniform and controlled morphology, composition and properties. 

However, their morphology is very different from glass fibres and also from flax. The main 

difference with glass fibres is that Tencel is very flexible, which may cause problems when 

using approaches developed for glass fibres.  

Considering all said above, the following points should be clarified: 

1) The effect of processing on natural fibres breakage and dissociation into bundles is crucial 

in terms of the understanding of composite microstructure within injection moulded parts. Are 

flax and Tencel breaken to the same extent? Is there a significant breakage during injection 

moulding? Does the fibre concentration influence the fibre breakage? 

2) The rheological properties of molten composites are very important for predicting the 

outputs of the injection moulding process. They are reasonably well understood for glass fibre 

based composites. Are they similar or not to natural fibre reinforced composites? What is the 

influence, if any, of fibre type and flexibility on molten composite viscoelastic properties?  

2) Since the morphology of natural fibres is different from glass fibres, the applicability of the 

methods used to characterize the microstructure of glass reinforced polymer on the 

microstructure characterisation of natural fibre composites is questionable. If not applicable, a 

new method for the analysis of fibre dispersion and orientation should be developed.  

3) As the composite mechanical properties are directly correlated with the microstructure, the 

relationships microstructure-properties should be studied for understanding and for improving 

the performance of natural fibre based composites.  

4) In order to optimise the injection moulding conditions for composites with cellulosic fibres, 

it is important to check if the existing fibre orientation models based on glass fibre-composite 

are able to simulate or not the natural fibre composites.  

To answer these questions, the thesis is composed of seven chapters:  
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Chapter 1 is the general introduction (the current chapter), in which the context, the issues 

and the content of the thesis are presented.  

Chapter 2 sums up all details of materials and processing steps used to make the fibre 

reinforced polypropylene, from compounding to injection moulding. The methods used to 

characterize the composite microstructure (optical and scanning electron microscopy) and 

properties (rheology and mechanical performances) are also presented in this chapter. 

The five other chapters are divided into two main parts: the first part presents a literature 

review on the subtopic of the ongoing chapter and the second part shows the results obtained 

in this work. Below is a brief presentation of each chapter. 

Chapter 3 is dedicated to the study of the influence of processing (extrusion and injection) 

and of fibre concentration on fibre size distributions. Both types of cellulosic fibres, flax and 

Tencel, and also glass fibres, were investigated. For flax fibres length and diameter were 

analysed. This was done by dissolving polypropylene matrix and using optical microscopy, 

cartography and image analysis to obtain length, diameter and aspect ratio distributions for 

each case.  

Chapter 4 studies the microstructure of injection moulded polypropylene reinforced with 20.5 

vol % of flax, Tencel and glass fibres. A sample is extracted from the injected box and 

polished at different depths. The microstructure is analysed using optical microscope in 

reflection mode. The differences in the microstructural features (orientation and dispersion) 

between glass and natural fibres are demonstrated, showing the impossibility of using 

approaches developed for glass fibres to quantify their orientation in composite. To 

quantitatively describe the microstructure of composites with cellulosic fibres, a new 

approach is suggested which divides fibres in four classes according to their curvature. The 

distribution of the fibres along the depth of composite and fibre orientation is quantified, 

Chapter 5 presents the investigation of the viscoelastic properties of flax, Tencel
® 

and glass 

based polypropylene composites, focusing on the effect of fibre type, concentration and 

flexibility. Correlations between the dynamic and capillary viscosity of composites are also 

presented and discussed.  

Chapter 6 exhibits a correlation between fibre microstructure in the injection moulded parts 

and the tensile and impact properties of composites based on flax, Tencel and glass. For the 
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study of tensile properties, samples were cut from boxes with different orientations relative to 

the main flow direction: 0°, 45° and 90°. The experimentally obtained results are compared to 

models existing in literature.  

Chapter 7 starts with the analysis of the experimental results of pressure recorded during the 

injection moulding of composites. Then pressure is calculated using Rem3D
®
 simulation 

software developed for glass fibre based composites and compared with the experimental 

results. Fibre orientation is also modelled using Rem3D
®
, and compared to the experimental 

orientation shown in Chapter 4. The applicability of this simulation tool to natural fibres is 

discussed in this chapter. 
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Chapter 2            

Materials & Methods 
This chapter describes materials used in the study, methods to prepare composites and 

methods to characterize them. 

Although this work primarily concerns natural fibre reinforced polypropylene, glass fibre 

reinforced polypropylene with the same fibre volume fractions were prepared and used for 

comparison. As a reference, neat polypropylene was also studied. The information on all the 

materials used in this study are given in this chapter.  

The major part of this chapter provides the details of the processing steps used to make the 

composites, from extrusion to injection moulding. The detailed conditions for manufacturing 

injection moulded parts used in this study are given. The techniques used to assess the 

composite microstructure, rheology and mechanical performances are also described.  
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1. Materials 

1.1. Polypropylene 

The polypropylene used is PPH9020 homopolymer from Total Petrochemical. Table 2.1 

shows characteristics given by the supplier.  

Table 2.1 Characteristics of the polypropylene used in this study 

 Method Unit Value 

Melt Flow Index 

230°C/2.16 kg 

ISO 1133 g/10 min 25 

Melting point  ISO 3146 ° C 165 

Density ISO 1183 g/cm
3
 0.905 

Tensile Strength at Yield  ISO 527-2 MPa 37 

Elongation at Yield ISO 527-2 % 8 

Tensile Modulus ISO 527-2 MPa 1700 

Flexural Modulus ISO 178 MPa 1600 

Izod Impact Strength 

(notched) at 23°C 

ISO 180 kJ/m² 4 

Charpy Impact Strength 

(notched) at 23°C 

ISO 179 kJ/m² 4.5 

 

1.2. Fibres 

 Flax 1.2.1. 

Flax fibres were supplied by Dehondt Technologies (France) as NATTEX roving which were 

harvested in 2010 from Drakkar variety (France). These rovings were cut to a length of 0.5 

mm by the company Apply Carbon (France). After these transformations, fibres appear as a 

mixture of thin and rather flexible elementary fibres and thick rigid bundles composed of 

elementary fibres “glued” together (Figure 2.1a). Bundles were partially separated during 

compounding (Figure 2.1 b).  
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Figure 2.1 

Flax fibres: “mixture” of bundles and elementary fibres a) as delivered and b) after 

compounding (in polypropylene matrix) 

 Tencel 1.2.2. 

These are man-made cellulose II fibres produced with Lyocell process, kindly provided by 

Lenzing AG (Austria). Tencel fibres are regenerated cellulose fibres formed in a wet fibre-

formation process out of eucalyptus pulp dissolved in N-methylmorpholine-N-oxide 

monohydrate. They are individual flexible fibres with a diameter of 10 µm (Figure 2.2). 

Fibres with the average length of 500 µm (as given by the producer) were made from longer 

fibres by milling. 

     

Figure 2.2 

Tencel fibres a) as delivered and b) after compounding (in the matrix) 

 Glass fibres 1.2.3. 

Glass fibres were kindly provided by Arkema. Fibres are of 2 500 µm as initial average 

length, 10 µm as diameter, 2.5 g/cm
3
 as density and 73 GPa as elastic modulus. Contrary to 

natural fibres, glass fibres show a straight shape (Figure 2.3.a) and a regular cross-section 

a b 

a b 
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(Figure 2.3.b). Moreover, the density of glass fibres is 70 % higher than that of flax and 

Tencel. 

      

Figure 2.3 

Glass fibres: a) as delivered and b) after compounding 

 

Decalin (decahydronaphthalene) was purchased from Sigma-Aldrich and used to dissolve 

polypropylene for the measurements of fibre size distribution. 

2.  Processing: compounding and injection moulding 

2.1. Compounding 

 Principle 2.1.1. 

The purpose of compounding is to enable a good dispersion of fibres throughout a polymer 

melt. The twin screw extruder is usually used for composite compounding. Basically, a twin 

screw extruder consists of two parallel screws turning within a 8-shaped housing barrel. The 

most industrially used one has a corotating and intermeshing screws configuration. Screws 

and barrel may be built up from different segments. Barrel wall is usually smooth, but it can 

be constructed with longitudinal or helical grooves, for particular applications requiring an 

intensive shear rate solicitation. The screws are designed as three main zones from the inlet to 

the die: melting zone, mixing zone and conveying zone (Figure 2.4.a). The screws can be 

adjustable depending on the particular configuration of each zone. Conveying elements are 

used in melting and conveying zones (Figure 2.4.b). They may have different pitches and 

spacing between flights. Mixing zone contains reverse flight screw elements or kneading 

elements for more intensive mixing (Figure 2.4.c and d).  

500 µm 

a b 
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Figure 2.4 

Twin screw configuration a) main zones of screws b) convoying elements c) kneading 

elements d) reverse flight elements  

 Compounding conditions 2.1.2. 

Four concentrations of fibres were prepared for each type of fibre, flax, Tencel and glass. 

Because of the difference in density  between glass and cellulosic fibres, it is the volume 

fraction that was chosen to be the same (Table 2.2).  

Table 2.2 Composite formulations 

Volume 

fraction, % 

Weight fraction, % 

Flax 

 

Tencel Glass 

3.6 5 5 9.3 

6.3 10 10 15.6 

13.1 20 20 29.4 

20.5 30 30 41.6 

 

a 

b 

Convoying zone Mixing zone Melting zone 

c d 
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For a better understanding of composite rheology, no coupling agent was used in composite 

formulation, with the purpose of not modifying the matrix viscosity when varying fibre 

concentration [Le Moigne et al. (2013)]. 

Before compounding, fibres were dried at 105 °C for 2 hours. Clextral BC21 extruder (Centre 

des Matériaux, Ecole des Mines d’Alès) was used to prepare composites. It is a co-rotating 

twin screw extruder with a centreline distance of 21 mm and a screw length of 900 mm. The 

global flow rate was 7 kg/h and the screw speed was 200 RPM. A dedicated feeder was 

operated to control the fibre feed rate relatively to the one of matrix, which enables to get the 

desired concentration. The screw profile (Figure 2.3.a) was built in Centre de Matériaux 

d’Ales by combining conveying and mixing elements ensuring short residence time of fibres 

to protect them from temperature degradation and breakage. The barrel temperature was 

progressively increased throughout 12 zones from 60 ° C to 190 ° C, as shown in Figure 2.5. 

The matrix and fibres were fed from zones 1 and 7, respectively.  

 

zone 1 2 3 4 5 6 7 8 9 10 11 12 

T°C 60 80 120 140 190 190 190 190 190 190 180 190 

 

 

  

Figure 2.5 

Screw profile used for composite compounding 

At the die exit, composite was immediately quenched in water (Figure 2.6.a), then granulated 

into pellets whose size around 5 mm (Figure 2.6.a), as required by injection moulding 

processing. The maximum measured temperature was 195 °C. The relative rise in temperature 

with respect to the setting temperature is caused by the viscous heating.  
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Figure 2.6 

a) A water bath used for cooling compound after extrusion b) obtained granules after 

pellitisizing 

2.2. Injection moulding 

2.2.1.  Principle 

The injection moulding process has been essentially made for unfilled thermoplastic 

materials. The same machines are used to process reinforced thermoplastics. Injection 

moulding machine can commonly be divided into two units: an injection unit and a clamping 

unit, as shown in Figure 2.7. 

    

Figure 2.7 

Injection moulding machine and its main constituents 

Compound granules 
Hopper 

Injection unit                    Clamping unit 

Moveable platen holding the mould  

Screw and barrel surrounded by heaters 

Nozzle 

 a  b 
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 Clamping unit and mould 2.2.2. 

The functions of the clamping unit are to open and to close the moveable platen that holds 

mould, and to eject components from the mould (Figure 2.8). Melts resin enters into mould 

from the sprue bushing which is directly connected with injection barrel by the nozzle. The 

sprue feeds the cavity through channels which are also referred as runners .The melt flows 

through the runners and arrives in the cavities by the gates. The entire design containing 

sprue, runners and cavities is machined out on the mould and the amount of melt needed to 

fill them is called “shot”. Ejection is possible by a sprue puller and ejector pins, also known as 

knock out pins, located throughout the cavity and the runners. A cooling system is passing 

water through series of channels drilled and connected in the mould to form a continuous 

pathway. The role of water is to keep the mould at a desired temperature in order to solidify 

the polymer. The mould description here is primary and simple. More tools can be used for 

complex moulds with sophisticated design. For example, sliders enabling side-actions can be 

put on the mould when the part shows undercuts.  

 

              

Figure 2.8 

A typical two plate injection mould including a cavity and its system of injection (sprue, 

runners and gate framed with the dashed line red rectangle) 

Nozzle 

Water channels 
Sprue bushing 

Ejector pins 

Sprue puller 

Moveable platen 

Stationary platen 

Sprue 

Cavity 

Gate 

Runners 
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 Injection unit 2.2.3. 

The injection unit functions are to plasticise material and to inject it into the mould. These 

functions are handled by a three-section-screw (feed, compression and metering) (Figure 2.9). 

Modern standard screws have an overall length of 20-23 D (length as a product of diameter). 

The length of the feed section is generally the half-length of the screw, while compression and 

metering sections accounting together the residual half-length and having approximately the 

same length. The pitch varies between 0.8-1 D from the feed to the metering zones across the 

screw flights.  

 

 

Figure 2.9 

 Screw in injection moulding machine and its sequence during the injection moulding cycle 

[Rosoto et al. (2000)]  

Figure 2.9 describes schematically the sequence of the screw along the cycle of injection 

moulding. At the beginning of cycle, the screw is at a retracted position in the barrel and the 

melt occupies the region between the screw tip and the nozzle (Figure.2.9.a). Then during 

injection the screw advances taking the function of piston when the mould halves closed and 

clamping force applied (Figure.2.9.b). This induces the material displacement through the 

nozzle and the filling of the mould cavity. Once the mould is filled, pressure is maintained in 

the injection cylinder till the material in the mould gates solidifies. During this holding stage, 

Feed Metering Compression 

Barrel 

Nozzle 

Pitch 

Flight 

Composite 

granules 

Composite melt 
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an additional melt from the barrel compensates the polymer cooling shrinkage. After this 

stage a new dose of melt is prepared for the next injection cycle. The screw rotates enabling 

the material melting and mixing through its transfer from hopper to screw forward 

(Figure.2.9.c). Pressure generated in the melt transfer allows the retraction of screw in the 

barrel. This pressure can be varied by controlling the axial displacement of screw; this 

procedure is called the application of back pressure. Once the new dose is ready, the 

solidified part is ejected from the cavity and the mould is clamped again to start the 

subsequent cycle. As the screw comes forward, the melt can flow through its flights. A non-

return valve is usually located to the front of the screw, preventing the melt backflow.  

 Injection moulding conditions 2.2.4. 

The granules of composites were further processed in DK Codim NGH 110/200 injection 

machine (Figure 2.6), with 28 mm as screw diameter and 84 cm
3
 as practical shot volume. The 

injection moulded part is a “box” with dimensions of 175 mm x 71 mm x 59 mm (Figure 2.10). 

Table 2.3 regroups the injection moulding conditions.  

                      

Figure 2.10  

Injection molded box, all dimensions are in mm 

 

 

Transducer 1: X= 23, Y= 21, Z= 0 

Transducer 2:  X= 80, Y= 0, Z= 0 

Transducer 3: X= 87.5, Y= 0, Z= 51 
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Table 2.3 Injection moulding conditions 

Injection temperature, °C 190     Cooling time, s 10 

Mold temperature, °C       30     Holding time, s 10 

Flow rate, cm
3
/s    92.4       Holding pressure, bar 600 

Shot length, mm      115     Back pressure, bar  0 

Clamping force, KN    1100     Screw speed, RPM 120 

 

Several pressure and temperature sensors were placed in and around the mould. Five pressure 

transducers are used: three transducers are located in the mould as shown in Figure 2.10, one 

is before the mould entrance at the nozzle and another one is placed in the hydraulic cylinder 

behind the screw. A temperature sensor was installed in the mould located at 2 cm from the 

cavity surface.   

3.  Characterisation 

3.1. Fibre size analysis 

Fibre length and diameter after compounding and after injection were determined as 

following: the composite was diluted with Decalin
®
 to get a fibre concentration in the mixture 

(polypropylene, fibres and Decalin
®

) lower than 10 %, which avoids fibre overlapping and 

facilitates a later fibre size measurement. As shown in Figure 2.11, the mixture is placed in a 

ball-flask immersed in an oil bath and gently stirred during 2h under 170 °C (see more details 

in ref. LeMoigne et al. (2011); LeDuc et al. (2011); Soccalingame et al. (2015)).  
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Figure 2.11 

Extraction of fibres from composites under a gentle stirring 

A few drops of polypropylene-Decalin-fibre suspension were deposited on a glass plate and 

analysed in transmission optical microscopy by using Leica DP 4500 optical microscope 

equipped with a high resolution 3-CDD numerical camera (JVC KY-F75U, 1 360 x 1 024 

pixels). The glass slide is held by a microscope stage that can be displaced in x and y 

directions as described in Figure 2.12. This displacement is controlled by a handed stage 

driver. The displacement of the stage is monitored by a position detector related to a 

computer, in which was installed Cartograph (Microvision
®
). Images were taken by the 

camera at each position of the stage. The focus is adjusted by moving the stage in the z 

direction. Cartograph enables to assemble the different images with respect to their positions 

in the specimen. A real time homogenization between the elementary images was performed 

automatically by a dedicated tool in Cartograph software.  

 

Polypropylene+ fibres+ Decalin® (In the ball-flask) 

 

Oil bath 

Hot plate stirrer  

Condenser  
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Figure 2.12 

Leica DP 4500 optical microscope equipped with accessories dedicated to perform specimen 

cartographies  

The analysis of fibre size was then performed using cartography of ≃ 5 x5 mm² built-up from 

50 elementary transmission images (830 µm x 640 µm) per composite formulation. The 

measurement of fibre size was done semi-automatically by Archimed (Microvision
®
), the 

image processing software dedicated to measurement. After selecting the fibre pattern “by 

hand”, a numerical calliper integrated in the image acquisition software allowed the 

measurement of each fibre length and diameter (Figure 2.13). The statistical analysis was 

based on 200 fibres per sample. Each formulation was analysed at least three times, giving the 

difference in the size within an uncertainty interval of 10 %. The minimal size that was taken 

into account was 10 µm.  

The non-processed (initial) fibre size was analysed in the same way by dispersing fibres on a 

glass slide and using the cartography approach. 

Numerical Camera 

x y

y 

Stage handed-driver 

Stage position detector 

Moving stage 

z 

Image acquisition and processing 

Specimen 

stage 



Chapter 2: Materials and Methods 

36 

 

                            

Figure 2.13 

A part of a cartography of flax-based composite obtained by assembling elementary images 

(dashed rectangles), the red numbers correspond to the measurements of fibre size (lines for 

length and circle for diameter)  

3.2. Microstructure analysis 

A sample was cut at 70 mm from the gate in xy-plane of the injection moulded box as shown in 

Figure 2.14.a. It was then embedded with epoxy resin and polished to analyse the microstructure 

at different depths from the surface (Figure.2.14.b). Six layers down from the surface to the 

middle plane, at 100 µm, 200 µm, 400 µm, 600 µm, 800 µm and 900 µm (middle layer) were 

made, allowing the analysis of fibre orientation in planes parallel to the surface (xy plane in our 

case). We assumed the symmetric pattern of flow with respect to the middle plane. Two 

transverse cross sections in zy and zx planes were also analysed to have a 3D overview of the 

fibre orientation.  
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The preparation of the sample surface requires a great care to have a good image quality suitable 

for characterizing the fibre microstructure. The sample is firstly polished by abrasives, starting 

with coarse ones and finishing with fine ones, and secondly polished by diamond paste. At least 

a difference in depth of 100 µm was needed between two successive layers to avoid scratches 

and to get a polished surface plausible for analysing. The sample was analysed with optical 

microscopy in reflection mode, and 5 mm x 5 mm cartographies were recorded by assembling 

“elementary” images (Figure.2.14.c, see details in the section 3.1 Fibre size analysis). The 

obtained image was semi-automatically analysed by Archimed (Microvision
®
) software. Fully 

automatic measurements were not possible because of the variation of contrast within the fibres 

themselves and the irregularity of fibres shape. This aspect will be further discussed in Chapter 4. 

 

 

Figure 2.14 

A schematic representation of a sample cut from the injected box and polished as 6 layers in the 

flow xy-plane  

 

(c) Cartography 

reconstruction 

(b) Polishing 

(a) Sample cutting out 
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3.3. Rheology of molten composites 

 Dynamic rheology 3.3.1. 

Viscoelastic properties of molten composites were studied using oscillatory parallel plates 

rheometer that imposes on the sample a shear sinusoidal deformation with frequency ω and 

follows the resultant stress response. The typical experiment consists of placing a sample 

between two plates as shown in Figure 2.15.a. While the bottom plate remains fixed, a motor 

rotates the top one, inducing a time dependent strain given by: 

𝛾(𝑡) = 𝛾0 sin(𝜔𝑡)                                                                                                            [Eq.2.1] 

Concurrently, the time dependent shear stress 𝜎(𝑡) = 𝜎0𝑠𝑖𝑛(𝜔𝑡 + 𝛿) is deduced by 

measuring the torque that sample imposes on the bottom plate. For an elastic material, the 

stress is exactly in phase with the sinusoidal strain. For a purely viscous material, the applied 

strain and the measured stress are out of phase, with a phase angle 𝛿 = 𝜋/2. Viscoelastic 

materials are in between with 0 < 𝛿 < 𝜋/2 (Figure 2.15.b). Storage modulus 𝐺′(𝜔) and loss 

modulus 𝐺′′(𝜔) are the solid-like and liquid-like contributions to the measured stress 

response, respectively. Therefore, the stress of a viscoelastic material is given by  

 

𝜎(𝑡) = 𝐺′(𝜔)𝛾0 sin(𝜔𝑡) + 𝐺′′(𝜔)𝛾0 cos (𝜔𝑡)                                                               [Eq.2.2] 

Complex viscosity * is defined by as 

  휂∗(𝜔) =
√(𝐺′)2+(𝐺′′)2

𝜔
                                                                                                     [Eq.2.3] 

and phase angle 𝛿 by  

tan 𝛿 =
𝐺′′

𝐺′
                                                                                                                        [Eq.2.4] 
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Figure 2.15 

Dynamic rheology, a) schematic representation of the dynamic rheometer b) typical stress 

shear responses  

In this study, the dynamic rheological measurements (small amplitude oscillatory shear) were 

performed on Anton Paar MCR302 rheometer, using parallel plate geometry with plates of 25 

mm as diameter and 1 mm as gap. Samples were made with Minijet Themofisher
®
 that is a 

lab scale injection moulding machine. The injection temperature, mould temperature, 

injection and holding pressures were respectively 190 °C, 50 °C, 500 bar and 100 bar.  

Frequency sweep tests were performed from 100 to 0.1 rad/s at 180 °C, 190 °C and 200 °C. 

The strain was fixed at 1 % for the entire series of frequency sweep tests, ensuring that all 

composites are in a linear visco-elastic regime. The thermal stability of composites was also 

checked: no viscosity variation was recorded during 30 minutes within the experimental 

errors, which is much longer than the duration of frequency sweep experiment. 

 Capillary rheology   3.3.2. 

Capillary rheometer is designed to characterize polymer melts at high shear rates typically 

from 10 s
-1

 to 10 000 s
-1

. Such shear rate can be reached in injection moulding process. The 

measurement principle consists of injecting a molten polymer into a capillary of a circular 

cross section and measuring the pressure drop for a given flow rate. 

Pressure transducer 

a b 
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The capillary rheology measurements were performed with RheoArt rheometer at 190 °C using 

different extrusion speeds and die lengths (0, 4, 8 and 16 mm), constant die diameter (2 mm) and 

apparent shear rates ranging from 100 to 1 000 s
-1

. The RheoArt is a capillary rheometer with a 

pre-shearing Couette chamber (Figure 2.16.a). After feeding (Figure 2.16.b), the material is first 

pre-sheared at a shear rate of 10 s
-1

 for 60 seconds (Figure 2.16.c). Then it is transferred in the 

bottom chamber and the central piston injects the polymer through the die (Figure 2.16.d, e and 

f).  

 

Figure. 2.16 

Schematic representation of RheoArt capillary rheometer and the different sequences of the 

experiment, a) General description of the RheoArt rheometer, b) Material feeding, c) Couette 

Preshearing, d) the central piston mooves up and the housing piston moves down to compress 

the melt e) the central piston pushes the melt into the die 

Figure 2.17 shows typical pressure plateaus at different piston speeds and different die lengths. 

Some oscillations in pressure curves can occur because fibres block the flow around the capillary 

entrance. The experiments were considered when the pressure plateaus are flat on average and a 
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Temperature sensors 
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Die 

   Pressure transducer 

   Strip heaters 
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 a 

 b  c  d  e 
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steady state is reached to give plausible pressure values that can be considered for a further 

capillary rheology analysis. 

 

Figure 2.17 

Typical pressure curves for different speeds and different die length, example of 20.% vol % 

Tencel/PP composite. 

Figure 2.18 shows the average of pressure plateaus as function of the L/D of die for the different 

apparent wall shear rate values. The obtained plots are linear and their slopes increase when the 

shear rate increases, as expected. These are the Bagley plots that enable determining entrance 

and exit pressure losses. After these corrections, we can plot wall shear stress vs apparent shear 

rate, as shown in Figure 2.19 (20.5 vol % Tencel/PP was taken as an example). For all materials 

studied, these flow curves appear as a straight line, meaning that they follow a power law all 

over the shear rate range of the measurements, and then the power law index value can be 

determined.  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000

Speed, mm/s Pressure, bar 

Time,s 

Pressure, L=8 Pressure, L=4

Pressure, L=0 Speed



Chapter 2: Materials and Methods 

42 

 

 

Figure 2.18 

Pressure vs die aspect ratio for different apparent shear rate values from 100 s
-1

 to 1 000 s
-1

, 

for 20.5 vol % Tencel/PP
 

 

 

Figure 2.19  

Shear stress versus the apparent shear rate, for 20.5 vol % Tencel/PP, n = 0.277 

The Rabinowich correction enables determining the wall shear rate as a function of the 

apparent wall shear rate and of the power law index m. By knowing the wall shear stress and 

the wall shear rate, we can plot the viscosity curve as shown in Figure 2.20.  
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Figure 2.20 

Final viscosity curve for 20.5 vol % Tencel/PP 

3.4. Mechanical properties of composites 

 Tensile test 3.4.1. 

Tensile test set-up commonly involves fixing the sample by grips in the testing machine and 

extending it until failure. The elongation of the gauge section is recorded versus the applied 

force using a mechanical sensor. The elongational strain  is calculated using the following 

equation: 

휀 =
𝐿−𝐿0

𝐿0
                                                                                                                            [Eq.2.5] 

 

where 𝐿 − 𝐿0 =  Δ𝐿 is the change in gauge length, 𝐿0 is the initial and L the final lengths, 

respectively. The force measurement is used to calculate the stress, σ, given by equation  

𝜎 =
𝐹

𝑆
                                                                                                                                [Eq.2.6] 

 

where 𝐹 is the tensile force and 𝑆 is the initial cross-section of the sample.  

The apparent stress–strain curve can be plotted. Tensile properties can be deduced from that 

plot, such as Young’s modulus, ultimate tensile strength and elongation at failure. 

Tensile trials were performed with Erichsen machine equipped by 2 kN transducer. The 

tensile specimens were cut out from the moulded box at the location (x = 70 mm, y = 0 mm) 
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along three angles (0°, 45°, 90°) with respect to the flow direction x (Figure 2.21). The aim is 

to investigate the influence of fibre orientation on tensile properties. The dimensions of “dog 

bone” samples were according NF ISO527-25B standard: 30 mm x 4 mm x 1.8 mm. The tests 

were performed on three samples of each formulation.  

 

Figure 2.21 

Schematic presentation of the position of tensile samples cut out from the injected box, with 

respect to x, the main flow direction 

 Charpy Impact test  3.4.2. 

Charpy impact test enables the determination of energy needed to fracture a material. The 

samples were moulded and designed following the ISO 179-1/1eA standard, using a mould 

with four cavities as drawn in Figure 2.22. The composite in granules was inserted in the 

same machine used to make the “boxes”, DK codim NGH 110/200. Table 2.4 gives details of 

injection moulding conditions.  
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Figure 2.22  

Injection molded impact cavity and dimensions of samples; all dimensions are in mm 

 

 

Table 2.4 Injection moulding conditions for making impact bars 

Injection temperature, °C 190 Cooling time, s 10 

Mold temperature, °C 30 Holding time, s 10 

Flow rate, cm
3
/s 94 Holding pressure, bar 270 

Shot length, mm 48 Back pressure, bar 50 

Clamping force, KN 1100 Screw speed, RPM 120 

 

Impact tests were performed on Instron Ceast 9050 under the following conditions: 1 J 

hammer, speed of 2.9 m.s
-1

, temperature of 25 °C, with “A” notch type and a support of 60 

mm.  

Sample after notching 
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3.5.  Observation of composites morphology by Scanning Electron Microscopy (SEM) 

The SEM enables images by scanning sample surfaces with a focused beam of electrons. The 

interactions between the sample and the electron beam provide electron loss energy shaped as 

a teardrop and called the interaction volume (Figure 2.23). We can distinguish two types of 

interactions: 1) elastic interactions with energy close to the incident one. The reflected 

electrons are called the backscattered electrons and give information about the material 

composition because they reach a deep level in the sample 2) inelastic interactions with lower 

energy than the elastic one and their corresponding electrons are called secondary electrons. 

They provide information about the topography. 

 

Figure 2.23 

 The interaction volume in SEM 

SEM observations were performed on a XL30 ESEM by setting up the acceleration voltage at 

15 keV and a diaphragm of 20 µm. The objective is to get a qualitative characterization of the 

topography (secondary electrons) in three cases 1) the rupture surfaces after tensile and 

impact testing, 2) the fibre microstructure in composites extruded in capillary rheometer, and 

3) microstructure in the moulded part. The idea is to closely observe fibres, aiming to get the 

information complementary to the optical microscopy observations described in Section 4.2. 
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Chapter 3                  

Fibre size analysis 

during processing 
The mechanical properties of composites generally depend on fibres size (aspect ratio), fibre 

dispersion in the matrix and fibre-matrix adhesion. As glass fibres, natural fibres are broken 

when mixed with polymer and when injected into a mould. Studying and understanding the 

evolution of fibre size during processing is thus extremely important. 

The first part of this chapter is dedicated to the state of the art on the fibre size evolution 

during processing for glass fibre- and natural fibre-reinforced thermoplastics. The second 

part focuses on the results of the statistical analysis of fibre size performed on all studied 

composites, at each processing step, from the initial fibres to their size after extrusion and 

finally after injection. The aim is to show the influence of each process step and also of the 

fibre concentration on the fibre size. A comparison between glass and natural fibre cases is 

discussed.  
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1.  The state of the art 

The technique usually used to investigate the fibre size consists of separating fibres from the 

polymer matrix either by burning matrix when it is possible (in the case of glass fibre, for 

example) or by dissolving it with an appropriate solvent. Recently, [Shen et al. (2004), 

Bernasconi et al. (2012); Tausif et al. (2014); Thi et al. (2015)] a non-destructive technique 

that is X-ray µCT (Micro Computed Tomography) has been used to analyse the 

microstructure of composites, in particular the fibre size. The statistical analysis of fibre 

dimensions are based on the number-average of fibre length Ln, diameter Dn and aspect ratio 

(L/D)n, and weight-average fibre length Lw, diameter Dw and aspect ratio (L/D)w defined as 

follows: 

𝑃𝑛 =
∑ 𝑛𝑖𝑃𝑖𝑖

∑ 𝑛𝑖𝑖
                                                                                                                       [Eq 3.1]            

𝑃𝑤 =
∑ 𝑛𝑖𝑃𝑖

2
𝑖

∑ 𝑛𝑖𝑖 𝑃𝑖
                                                                                                                     [Eq 3.2]            

𝑛𝑖 is the number of fibres and 𝑃𝑖 can be 𝐿𝑖 as fibre length or 𝐷𝑖 as fibre diameter or (𝐿/𝐷)𝑖 as 

fibre aspect ratio. 

1.1.  Glass fibre reinforced thermoplastic 

Yilmazer and Cansever (2002) investigated the breakage of glass fibre in polyamide-6 based 

composites and demonstrated that compounding highly reduces the fibre length and additional 

fibre breakage can be caused by injection moulding. The initial glass fibre length was 4 500 

µm. This value decreased to Ln = 122-195 µm and  Lw = 406-496 µm after extrusion and 

further decreased to Ln = 104-141 µm and Lw = 206-302 µm after injection moulding. The 

extent of decrease in Lw is larger that of Ln, meaning that long fibres remained after extrusion 

are broken during injection moulding. Lw was reduced by 90 % in twin screw extruder and it 

was further reduced by 37 % after injection molding. The extent of fibre breakage after 

compounding decreased with the increase of the screw speed and slightly increased with the 

feed rate. Inceoglu et al. (2011) reported similar findings in what concerns compounding of 

30 wt % glass fibre reinforced polyamide-12. 
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Fu et al. (1999) reviewed the main aspects of design and process for glass fibre reinforced 

thermoplastics, influencing fibre rupture during compounding and injection moulding (Table 

3.1). For compounding, in addition to the aspects mentionned earlier (lower screw speed and 

higher feed rate), a higher barrel temperature can reduce the glass fibre breakage, due to the 

lower resultant viscosity and stress. For injection moulding, a higher back pressure has more 

dramatic effect on the fibre breakage than a higher injection moulding speed. The back 

pressure value is directly related to the extent of the shot plasticizing in the barrel-screw 

system (similar to extrusion system), before being injected into the cavity. Increasing fibre 

content leads also to more fibre breakage, which was explained by more intense fibre-fibre 

and fibre-wall interactions. In addition, Turkovich and Erwin (1983) demonstrated that longer 

intial fibre leads to longer fibre length in the final part for the injection moulding of glass fibre 

reinforced polyamide 6-6 composite. However, Akay and Barkley (1991) showed that only a 

slight effect of the intial fibre length can be observed in the residual fibre length after 

processing for the case of glass fibre reinforced polypropylene. Reprocessing composites 

causes a further rupture of fibres.    

Table 3.1 Influence of design/fabrication factors on final fibre length in short fibre reinforced 

polymer composite  [Fu et al. (1999)] 

Design /fabrication factors Average 

fibre length 

Compounding Lower screw speed Higher 

Higher barrel temperature 

Lower mixing times 

Injection Molding  Lower back pressure Higher 

Lower injection speed 

More generous gate & 

runners dimensions 

Lower fibre content Higher 

Larger original fibre Higher 

Reprocessing Lower 

 

Lafranche et al. (2006) measured the evolution of glass fibre length along the injection 

molding screw, the non-return valve, nozzle and cavity. Almost 70 % of fibre breakage 

happens at the compression section of the screw.  
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Ramini et al. (1995) investigated the evolution of glass fibre length in SPS (syndiotatic 

polystyrene) matrix for three extrusion-screw designs, and for different locations in the 

injection-moulded part (A, B and C) (Figure. 3.1.a). The composite was moulded with zero 

back pressure and low injection molding speed to avoid fibre breakage. Figure 3.1.b shows 

that whatever the screw design, Ln decreases from the sprue to the end of the cavity.  

 
 

 

Figure 3.1 

 a) Injection moulded tensile bar showing positions of samples A,B and C in which fibre 

lengths were measured b) The number-average of glass fibre length Ln as a function of the 

position in the moulded part [Ramini et al. (1995)] 

1.2.  Natural fibre reinforced thermoplastic 

It was recently demonstrated that the breakage mechanism of natural fibres is different from 

glass fibres [Le Duc et al. (2011); Le Duc (2013)]. Flax and Tencel fibres were observed 

using a rheo-optical equipment. It was shown that Tencel fibre is broken after accumulation of 

fatigue at the points where fibre bends (Figure.3.2.a). The flax bundles were firstly dissociated 

into elementary fibres that were in turn broken at defects (kink bands) because of the 

cumulated fatigue (Figure.3.2.b). The kink bands appear during the extraction of fibres from 

the stems [Le Duc et al. (2011)]. 

a 
b 
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Figure 3.2 

Fibre breakage observed by rheo-optic a) Tencel fibre b) elementary flax fibre [Le Duc et al. 

(2011)] 

As mentioned above, flax fibres usually appear as bundles of elementary fibres. To obtain the 

longest possible aspect ratio, bundles should be dissociated without the breakage of the 

elementary fibres. Using rheo-optics, Le Duc et al. (2011) demonstrated that the dissociation 

of flax bundles happens under flow for various cumulated strains (Figure 3.3). Bundles 

dissociation increases with increasing the cumulated strain.  

 

Figure 3.3  

Rheo-optical images of flax bundles dissociation under flow at various cumulated strains γ, 

(a) γ = 0.2 (b) γ = 110 (c) γ = 180 (d) γ = 970 [Le Duc et al. (2011)] 

 

 

200 µm 

a b 
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Moreover, Le Moigne et al. (2011) showed that when fibre is initially structured in bundles, it 

tends to be divided into elementary fibres, thus diameter decreases, while when fibre is 

already elementary before processing, diameter remains constant and length decreases (Figure 

3.4). The mechanism of rupture of glass fibres is different and simpler than that of natural 

fibres. Glass fibres have a constant diameter and their rupture occurs when the surrounding 

stress overcomes a critical value [Tukovich and Erwin (1983)].  

 

Figure 3.4  

Schematic representation of the evolution of fibre length and aspect ratio with increasing fibre 

concentration associated to (a) breakage of the elementary fibres into smaller particles and (b) 

delamination of the bundles into elementary fibres [Le Moigne et al. (2011)]  

Beaugrand and Berzin (2012) showed that the presence of moisture in hemp fibres when 

added to polycaprolactone (PCL) can lead to higher bundles dissociation, which seems 

contrarily to what is normally expected. This was explained by the role of water for reducing 

the softening of fibres and for resisting against the defects induced by processing, which 

causes weakness points initiating fibre fracture. The authors showed also that an increase in 

temperature can reduce the obtained aspect ratio after extrusion, which is in disagreement 

with what is known for glass fibres literature [Fu et al. (1999)]. Beaugrand and Berzin (2012) 

argued this by the possible degradation of some fibre components such as lignin up to 160 °C. 

These results were obtained with a particular biodegradable matrix (PCL) with low melting 

temperature (60 °C) and must be checked with other current thermoplastic matrices such as 

polypropylene or polyethylene. Berzin and Beaugrand (2012) and Berzin et al. (2014) showed 

that lower screw speed and higher flow rate during extrusion lead to lower hemp fibre 

breakage during compounding, which is in agreement with the glass fibre case [Yilmazer and 

Cansever (2002); Inceoglu et al. (2011); Fu et al. (1999)]. It was shown by Berzin et al. 

(2014) for hemp fibre reinforced polycaprolactone and LeDuc (2013) for flax fibre reinforced 

polypropylene that upon a critical value of Specific Mechanical Energy (SME), the fibre 
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breakage is excessive; this is also in agreement with the results of Inceoglu et al. (2011) in 

case of glass fibre reinforced polyamide. SME is a significant parameter that can assess the 

fibre breakage due to the cumulative strain involved during compounding.  

Keller (2003) investigated the size of hemp fibres in PEA (co-polyesteramide) and PHBV 

(poly(3-hydroxybutyrate-co3hydroxyvalerate)) matrices after compounding and after 

injection moulding. Two types of hemp fibres differently extracted from the plants were 

studied: BIA (fibre degummed by the biological separation process) and DDA (fibres 

separated by the steam explosion process) with two different initial number-average lengths 

Ln = 8 mm and Ln = 15.2 mm and number-average diameters Dn = 23 ± 6 µm and Dn = 25 ± 8 

µm, respectively. A particular screw configuration was used for each system and the moulded 

parts were shaped as tensile bars. The fibre length dramatically decreased: the residual Ln in 

the moulded tensile bar was 530 µm for PEA/DDA hemp and 100 µm for PEA/BIA hemp. 

However, no variation of fibre diameter even after injection has been shown, which seems 

somewhat ambiguous. Berzin et al. (2014) demonstrated that the breakage of natural fibres 

can be partially limited by optimizing the screw profile during compounding.  

Contrarily to glass fibre case, when the screw configuration was the same, Keller (2003) 

found that the length distribution of the resultant hemp fibre (type DDA) in the granules was 

independent on the fibre content (Figure 3.5).  

 

Figure 3.5 

DDA-hemp length distribution for granules compounded with PEA for different concentration 

[Keller (2003)] 
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In addition, injection moulding did not cause a further shortening of hemp fibres in DDA/PEA 

composites (Figure 3.6).  

 

Figure 3.6  

Comparison between DDA-hemp fibre length distribution at granules after compounding and 

at tensile test bars after injection moulding, the matrix is PEA [Keller (2003)] 

Barkoula et al. (2010) studied the fibre size evolution during compounding and injection 

moulding of flax fibre reinforced polypropylene. They demonstrated that a further fibre 

shortening happens during injection moulding. The distribution of fibre length given in Figure 

3.7 shows that the amount fibre length ≥ 0.8 mm decreases from 88 % after compounding to 

55 % after injection and the maximum length reduced from 2.4 mm after compounding to 2 

mm after injection.  
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Figure 3.7  

Comparison between length of fibre for 28 wt % flax reinforced-polypropylene after 

compounding and after injection moulding [Barkoula et al. (2010)] 

The variation of fibre diameter of flax fibres during compounding and injection moulding was 

not taken into account despite of the “obvious” distribution of diameter observed in injection 

moulded part as shown in Figure 3.8.  

 

Figure 3.8 

Image of flax fibres extracted from flax/PP composites after injection moulding [Barkoula et 

al. (2010)]   

Using the X-ray tomography technique, Alemdar et al. (2008) investigated the fibre length 

and diameter of wood-reinforced polypropylene before and after processing (including 

compounding and injection moulding). Before processing, the length range of almost 80 % of 
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wood fibres is between 316 µm and 600 µm. It decreases after processing, giving a length 

average of 238 µm and 285 µm for wood/PP with and without coupling agent, respectively. 

The diameter of wood fibres was reduced by 61 % and 69 % for wood/PP with and without 

coupling agent, respectively [Alemdar et al. (2008)]. For the same system (wood/PP), by 

using SEM cross-section analysis, Soccalingame et al. (2015) showed that thick 

fibres/particles are more sensitive to breakdown and processing has no effect under a critical 

diameter. Moreover, the authors concluded that adding coupling agent does not show any 

influence on the fibre breaking during processing. 

1.3.  Conclusion 

The mechanism of breakage of glass fibres in a thermoplastic matrix during twin screw 

compounding and injection moulding processes is rather well understood. The key parameters 

influencing the breakage of a glass fibre during compounding and injection moulding were 

investigated in details. The comparison between glass fibre and natural fibre breakage cases 

enables to conclude, on the one hand, some similarities under particular process conditions, 

such as the decrease of fibre breakage with increasing the feed rate and decreasing the screw 

speed at compounding step, and on the other hand, some differences such as the evolution of 

fibre length with increasing fibre content and the additional breakage of fibre after injection. 

The main reason behind these dissimilarities is probably the difference of morphology 

between natural fibres and glass fibres. An adequate comparison between glass fibre and 

natural fibre breakage during process would have more credibility and precision under the 

same process conditions.  
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2.  Results and discussions  

The aim of this section is to show a comparative study among flax-, Tencel- and glass-fibre 

size distributions, after compounding and after injection moulding, in a polypropylene matrix. 

All composites were processed under the same conditions and with the same polypropylene 

matrix, as described in Chapter 2. A statistical analysis of fibre size (length L, diameter D and 

aspect ratio L/D) is performed for different fibre types (Tencel, flax and glass), after 

compounding and injection, and for different fibre concentrations (from 3.6 vol % to 20.5 vol 

%). We will firstly present separately the case of each type of fibre, and then examine the 

effect of the fibre type on the fibre size.  

2.1. Glass fibres  

 Effect of processing  2.1.1. 

Figure 3.9 shows a comparison between the length distribution of glass fibres as 

delivered, after compounding and after injection for the example of 20.5 vol %. The initial 

length distribution is bimodal with a minor peak around 1 500 µm and a sharper one around 

3 000 µm. After compounding the length distribution becomes unimodal with a peak around 

400 µm, indicating a strong fibre breakage. This peak is then marginally shifted to shorter 

lengths after injection moulding. 
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Figure 3.9 

The evolution of glass fibre length distribution during compounding and injection for 20.5 vol 

% glass/PP composite 

 

Table 3.2 shows that fibres are shortened by 80 % during compounding. Injection moulding 

causes a further fibre breakage by 20 %. In addition, after injection, Ln is slightly shortened 

while Lmax is nearly two times reduced, which means that long fibres keep breaking during 

injection. This seems similar to the results of Yilmazer and Cansever (2002). 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20 Frequency, % 

Length, µm 

Glass as delivered

Glass 20.5 vol%, after compounding

Glass 20.5 vol%, after injection



Chapter 3: Fibre size analysis during processing 

61 

 

Table 3.2 Glass fibre sizes as delivered, after compounding and after injection 

 

 
As 

delivered After compounding After injection moulding 

Wt %  - 9.4 15.6 29.4 41.6 9.4 15.6 29.4 41.6 

Vol %  - 3.6 6.3 13.1 20.5 3.6 6.3 13.1 20.5 

Ln 2512 618 498 391 330 495 379 302 286 

Lw 2941 858 607 571 438 719 502 412 361 

Lmax 6475 2550 2498 2353 1659 2066 1170 1035 715 

Lmin 317 87 64 43 49 30 39 30 44 

(L/D)n 251 62 50 39 33 49 38 30 29 

(L/D)w 294 86 61 57 44 72 50 41 36 

 

 Influence of fibre concentration 2.1.2. 

Figure 3.10 shows the influence of fibre content on fibre length distribution after injection. 

The length distibution in 3.1 vol % glass/PP is a large distribution, extending over a wide 

length range from 20 µm to 2 000 µm. The length distribution of  composite with 20.5 vol % 

presents a sharper peak around 200 µm, and the range of sizes is reduced to 20-700 µm. We 

can conclude that glass fibre length decreases with the increase of fibre content, which seems 

in agreement with Fu et al. (1999) results. 

 

Figure 3.10 

Glass/PP composite: influence of fibre content on the fibre length distribution after injection 
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2.2. Tencel  

 Influence of processing 2.2.1. 

Figure 3.11 shows a comparison between the length distribution of Tencel fibres as delivered, 

after compounding and after injection, for the volume fraction of 20.5 vol %. The length 

distributions after compounding and after injection are similar and no significant difference 

can be distinguished. Both distributions are slightly shifted to shorter lengths compared to the 

distribution of the initial fibres.  

 

Figure 3.11 

The evolution of Tencel fibre length distribution at different processing steps in the 

composite for 20.5 vol % Tencel/PP 

 

Contrarily to the glass fibre case, Table 3.3 shows that injection moulding did not cause an 

additional length reduction for Tencel fibres. The difference in length between after 

compounding and after injection moulding lies in the error experimental range 10 % (as 

mentionned in Chapter 3, Section 3.1 Fibre size anlysis).  
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Table 3.3 Sizes of Tencel fibres: as delivered, after compounding and after injection moulding 

 

 

As 

delivered After compounding After injection moulding 

Wt  %  - 5 10 20 30 5 10 20 30 

Vol  %  - 3.6 6.3 13.1 20.5 3.6 6.3 13.1 20.5 

Ln 300 240 242 237 195 262 255 230 202 

Lw 338 294 318 306 264 342 277 290 287 

L max 714 680 793 656 820 738 627 562 688 

L min 113 53 30 29 34 50 50 46 21 

(L/D)n 30 24 24.2 23.7 19.5 26.2 25.5 23 20.2 

(L/D)w 33.8 29.4 31.8 30.6 26.4 34.2 27.7 29 28.7 

 

 Influence of concentration 2.2.2. 

Table 3.3 shows that fibre length practically does not change with the increase of fibre 

concentration from 3.6 to 13.1 vol % after compounding. However, a considerable fibre 

breakage can be observed at 20.5 vol %. Figure 3.12 presents the influence of fibre content on 

the fibre length distribution after injection for Tencel/PP composites. The distribution peak is 

progressively moved to shorter length values and the distribution gets sharper with the 

increase of the fibre concentration. This results in Ln reduction from 255 µm for 6.5 vol % 

concentration to 202 µm for 20.5 vol % concentration, as shown in Table 3.3. Fibre 

concentration has a stronger influence on fibre size than processing. 
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Figure 3.12  

Influence of fibre content on Tencel fibre length distribution after injection moulding 

 

As man-made fibres, the aspect ratio of Tencel is the length over a constant diameter, 

meaning that the aspect ratio has the same variation of the length. This is also the case of glass 

fibre but not that of flax fibres that will be shown in the next section. 

2.3. Flax 

The analysis of flax fibres size consists of studying the evolution of two variables: length and 

diameter. Table 3.4 regroups all these measurements.  

 

Table 3.4 Flax fibre sizes as delivered, after compounding and after injection moulding  

 

 

As 

delivered After compounding After injection moulding 

Wt  %  - 5 10 20 30 5 10 20 30 

Vol  %  - 3.6 6.3 13.1 20.5 3.6 6.3 13.1 20.5 

Ln 450 433 415 434 422 428 407 420 388 

Lw 458 478 472 469 477 464 446 458 433 

L max 1020 1028 1150 874 1116 855 827 922 863 

L min 211 53 64 60 74 98 85 71 81 

Dn 48 35 34 39 39 34 36 32 28 

Dw 84 46 49 60 54 46 54 43 34 
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D max 238 133 151 254 143 126 168 101 119 

D min 10 9 11 12 11 14 11 11 13 

(L/D)n 14.8 14.9 15.7 14.6 13.5 15.3 14.4 15.9 15.1 

(L/D)w 20 18 21 18 17 19 18 20 18 

(L/D) max 50 52 52 40 43 39 36 56 44 

(L/D) min 2 2 1 2 2 2 2 4 3 

 

 Influence of processing  2.3.1. 

Figure 3.13 a, b and c shows the length, diameter and aspect ratio distributions of flax 

fibres, respectively, for three states of fibres: as delivered, after compounding and after 

injection moulding, and this for the concentration of 20.5 vol %. The initial fibres reveal a 

unimodal length distribution with a sharp peak around 400 µm and an overall range between 

200 µm and 1 000 µm. The distributions of fibre length after compounding and after injection 

are similar, exhibiting a wide peak also around 400 µm and a range of length between 50 µm 

and 800 µm (Figure 3.13. a). This means that fibres were broken during processing and thus 

Ln decreases from 450 µm, as delivered, to 422 µm after compounding and 388 µm after 

injection moulding.  
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Figure 3.13 

The evolution of distributions of (a) fibre length, (b) fibre diameter and (c) aspect ratio, 

along processing for 20.5 vol % flax/PP 
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The diameter distribution in Figure 3.13 b shows that, on the one hand, Dn ≥160 µm 

disappear after compounding and 120 µm ≤ Dn ≤ 160 µm disappear after injection, and on 

the other hand, the frequency of fibres with the diameter of 20-40 µm increases progressively 

along the process, from fibres as delivered to fibres after injection. Dn and Dw decrease from 

48 µm and 84 µm as delivered to 39 µm and 54 µm after compounding, and to 28 µm and 34 

µm after injection, respectively. This means that not only the length is reduced during 

processing but also the diameter, due to the bundles’ dissociation.  

The distribution of the aspect ratio is similar for all steps of processing (Figure 3.13.c). 

Because the extent of length decrease is nearly equal to the extent of diameter decrease (Table 

3.4), (L/D)n is almost unchanged during processing. However, the initial fibres are thick and 

long while the final fibres are thin and short (Figure 3.14). 

 

 

Figure 3.14  

Schematic representation of the degradation of flax fibres during processing  

 

 Influence of concentration 2.3.2. 

Figure 3.15 a, b and c shows a comparison between length, diameter and aspect ratio 

distributions in composites with 20.5 vol % and 3.1 vol % of flax, respectively. Some long 

fibres (Ln ≥ 740 µm) with low frequencies ~ 1 % disappear and the frequency of some short 

fibres (Ln ≤ 300 µm) increases when concentration increases from 3.1 % vol. to 20.1 vol % , 

hence Ln and Lw slightly decrease from 428 µm and 464 µm to 388 µm and 433 µm, 

respectively. However, there is almost no difference in length between 3.1 vol %, and 13.1 

vol %, according to Table 3.4, which means that the major fibre breakage happens when the 

concentration reaches 20.5 vol %. A similar statement for diameter distribution can be 

concluded (Figure 3.15.b). This leads to a decrease of Dn and Dw from 34 µm and 46 µm to 28 
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and 34 µm, respectively, when increasing concentration from 3.1 vol % to 20.5 vol %. 

However, the diameter remains constant between 3.6 vol % and 13.1 vol % as shown in Table 

3.4. Figure 3.15.c provides the distribution of the aspect ratio that remains moderately 

unchanged with the increase of fibre concentration. (L/D)n and (L/D)w remain constant around 

15 and 18-19, respectively, as given in Table 3.4.  
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Figure 3.15 

Influence of fibre content on flax fibre (a) length (b) diameter and(c) fibre aspect ratio 

distributions after injection 
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2.4. Comparison between fibre types 

Figure 3.16 shows Ln evolution with the fibre content, for glass, Tencel and flax composites 

during processing. Glass fibre length dramatically decreases by almost 80 %, from the 

unprocessed fibres to fibres in the 3.1 vol % composite after compounding. For the 

concentration between 3.1 vol % and 20.5 vol %, fibre length remains decreasing with a much 

lower rate compared to concentration between zero (unprocessed fibres) and 3.1 vol %. 

Injection moulding causes an additional glass fibre breakage. The difference of length 

between fibres after compounding and fibres after injection moulding decreases when fibre 

content increases. For flax and Tencel fibres, most of length reduction occurs from the initial 

fibres to after compounding fibres. While Ln of Flax fibres marginally decreases as the fibre 

content gets higher after injection moulding, that of Tencel remains unchanged. Considering 

that Ln of glass fibres keeps decreasing with a higher slope than flax fibres, flax fibres 

becomes progressively longer than glass ones. Tencel fibres are initially shorter than flax and 

glass ones. Because Tencel fibre length evolution with fibre content is similar to the flax one, 

the difference between Tencel and flax fibre length is almost constant all over the studied 

concentrations (about 120-150 µm). However, the difference of fibre length between Tencel 

and glass fibres decreases from 260 µm at 3.1 vol % to 80 µm at 20.5 vol % after injection 

moulding.  
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Figure 3.16 

a) Ln evolution with the fibre content; zero volume fraction corresponds to the initial 

fibres (unprocessed), b) zoom of the figure “a” in the dashed line rectangle 

 

Figure 3.17. presents Dn of flax fibre as a function of the fibre content, after compounding and 

after injection. The unprocessed fibres show a Dn = 48 µm. Considering that Dn of elementary 

fibres is 10-15 µm, the number-average of the elementary fibres per bundle is about 3-4. The 

reduction from Dn = 48 µm for fibres as delivered to Dn = 34 µm for fibres in the 3.1 vol % 

composite after compounding, corresponds to a dissociation of one elementary fibre from a 

bundle of four elementary fibres, which results in bundle of three elementary fibres. 

Compounding reduces the diameter with lower extent for 13.1 and 20.5 vol % when 

compared to 3.6 and 6.3 vol %. However, after injection moulding, Dn progressively 

decreases from 48 µm as delivered until 28 µm at 20.5 vol %, which corresponds on average 

to a bundle of two elementary fibres.  
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Figure 3.17 

Evolution of flax Dn with the fibre content; zero volume fraction corresponds to the initial 

fibres (unprocessed) 

 

Figure 3.18 shows (L/D)n evolution with fibre content for glass, Tencel and flax fibre 

composite during processing. Because the diameter of glass and Tencel fibres is constant (10 

µm), (L/D)n presents the same evolution as their Ln but divided by ten. For flax fibre, the 

aspect ratio is unchanged either by increasing concentration or by the injection moulding. 

This is the result of the simultaneous dissociation of bundles and the diminution of length as 

explained in Figure 3.17. In conclusion, the final aspect ratio after injection moulding can be 

organized in descendant order 1) glass 2) Tencel 3) flax.  
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Figure 3.18 

a) (L/D)n evolution with the fibre content; zero volume fraction corresponds to 

the   initial fibres (unprocessed) b) zoom of the figure (a) within the dashed 

rectangle 
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2.5. Conclusions 

A substantial investigation of fibre rupture was performed along the entire process, from the 

initial fibres to those in the moulded part. The breakage of glass fibres is different from flax 

and Tencel fibres ones.  

The influence of compounding and injection moulding, and the concentration of fibres were 

investigated. Glass fibres are initially longer than flax and Tencel fibres. Glass fibres undergo 

an intensive breakage during compounding and an additional slight one during injection 

moulding. The increase of fibre content shortens fibres to some extent. This was in agreement 

with the state of the art. The breakage of Tencel fibres is much smaller on average as 

compared to glass fibres. The maximum of Tencel fibre breakage is around 30 % at high 

concentration after injection moulding. The length of flax fibre is reduced. Because of the 

decrease of flax diameter, its aspect ratio does not vary, becoming lower than those of Tencel 

and glass. This behaviour is completely different from the glass fibre rupture during 

processing, which reflects the specificity of natural fibres made of bundles.  

The mechanical properties of the final moulded parts depend not only on fibre length or 

aspect ratio but also on other microstructure features such as orientation and dispersion. This 

will be detailed in the next chapter. 
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Chapter 4                  

Fibre orientation and 

dispersion in injection-

moulded parts 
Rupture of fibre during processing severely limits the mechanical properties of the injection 

moulded component. An unfavourable orientation and dispersion during the flow in the mould 

cavity can have a similar effect on composite mechanical properties. The set of fibre size, 

orientation and dispersion is commonly called microstructure in the field of fibre-reinforced 

thermoplastics. We analysed in Chapter 3 the fibre size that is one of the important 

microstructural features. In injection moulding process, the fibre orientation and dispersion are 

induced by the flow. While very little is known about the microstructure of natural fibre 

reinforced thermoplastic, the case of glass fibre is more mature and well-studied. 

In this chapter, we begin by the state of the art in order to understand the difference between 

glass and natural fibres related to the flow induced orientation and dispersion. We suggest a 

method of characterization of natural fibres orientation, enabling to take into account some of 

their inherent features. A major part of the results and discussions section is concerned with the 

microstructure of natural fibre reinforced polypropylene; the case of glass fibre microstructure 

is also investigated for comparison.  
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1.  State of the art 

1.1. Characterization techniques and approaches in fibre orientation characterisation 

 Dispersion 1.1.1. 

The dispersion of fibres consists of investigating the volume fraction distribution in the 

injection-moulded part. The most used technique is to determine the density of composite 

across the thickness by grinding sample to an appropriate thickness. Reproducing this 

experiment in several locations in the injection-moulded part enables to map out the 

distribution of the fibre volume fraction all over this part.  

In order to evaluate the extent of the density variation, the experimental measurements are 

compared with the reference density. The latter is calculated by the mixing rule equation 

defined as: 

𝜌𝑐 = 𝜌𝑓𝑓 + 𝜌𝑚(1 − 𝑓)                                                                                                    [Eq.4.1] 

were 𝜌𝑐 , 𝜌𝑓and 𝜌𝑚 are the densities of composite, fibres and matrix, respectively. 𝑓 is the 

volume fraction of fibre. 

The matrix is usually assumed to keep the same density throughout the thickness. This leads 

to a small error because it is expected that matrix increases in crystallinity and thus in density 

nearby the mid-plane of the studied part. Nevertheless, when the fibres are much denser than 

matrix this error can be neglected [Sphar et al. (1990)]. 

  Orientation 1.1.2. 

1.1.2.1. Glass fibres 

The technique classically used to analyse the orientation of glass fibre reinforced polymers 

(Figure 4.1) consists of observing a cross-section in the part thickness either with optical 

microscope in reflected light mode or with Scanning Electron Microscope (SEM). An 

example of a cross-section is given in Figure 4.1.  
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Figure 4.1 

Example of a polished surface perpendicular to the main flow direction observed by scanning 

electron microscopy [Vincent et al. (2005)] 

Both angles  (in xy-plane) and can define the fibre orientation as presented in Figure 4.2 

 

Figure 4.2 

Definition of the angles and, 𝑝 is the unit vector associated to fibre 
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We outline that we will consider that x is the flow direction, xy is the plane of the moulded 

parts and z is the thickness axis, in all the following sections.  

Assuming that all fibres have the same diameter, cylindrical glass fibres meet the polished 

surface either as circles (with diameter equal to the fibre diameter) or as ellipses (with minor 

axis equivalent to the fibre diameter) (Figure 4.3.b). When a fibre is perfectly perpendicular to 

the cross-section, the apparent shape result is circular. When a fibre makes an angle with 

respect to a cross-section, the minor and the major axis of ellipses determine the orientation 

angle  of a fibre with respect to the cross section, and the orientation of the ellipse gives the 

angle  (Equation. 4.2) [Vincent et al. (2005)]. Therefore, the full 3D orientation can be 

determined (except indeterminacy between  and . 

휃 = 𝑐𝑜𝑠−1 (
𝑄

𝐽
)                                                                                                                [Eq. 4.2] 

where “𝐽” is the major axis and “𝑄” is the minor of the ellipse (Figure 4.3b) 

                                 

Figure 4.3 

(a) fibre cross-section perpendicular to xy-plane and (b) ellipses method for quantification of 

fibre orientation [Neves et al. (1998)] 

 

Advani and Tucker (1987) defined an orientation tensor, assuming that fibres are rigid 

cylinders, their section is circular and their concentration is spatially uniform, given by: 

𝑎𝑖𝑗 = ∫ 𝑝𝑖𝑝𝑗𝜓(𝒑)𝑑𝒑
𝑝

                                                                                                      [Eq. 4.3] 

where 𝒑 is the unit vector associated to fibre whose component 𝑝𝑖 are function of the angles 휃 

and 𝜙 (Figure 4.2) and 𝜓(𝒑) is the distribution function, such that 𝜓(휃, 𝜙) 𝑠𝑖𝑛휃 𝑑휃 𝑑𝜙 

indicates the probability that fibres are between 휃 and 휃 + 𝑑휃 and 𝜙 and 𝜙 + 𝑑𝜙. 
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Figure 4.4 

(a) aligned fibres along x-axis, (b) aligned fibres along y-axis and (c) random orientation in 

xy-plane 

The long fibres and the fibres oriented perpendicular to the main flow direction have a higher 

probability to appear in the cutting section. Furthermore, fibre oriented with (휃, 𝜙) and 

(𝜋 − 휃, 𝜙 + 𝜋) are undistinguishable. This must be counterbalanced by the function 𝐹(휃) as 

defined by Bay and Tucker (1992) and reported later by Vincent et al. (2005): 

𝐹(𝜃)

𝐹(90)
=

1
𝐿

𝐷
𝑐𝑜𝑠𝜃+𝑠𝑖𝑛𝜃

                                                                                                            [Eq. 4.4]  

where 𝐹(90) is the weighting function for 휃 = 90°, L is the fibre length  and D is the fibre 

diameter. The average of 𝑎𝑖𝑗 of n fibres of orientation 𝑝𝑖
𝑘 becomes: 

𝑎𝑖𝑗 =
1

𝑛
 
∑ 𝑝𝑖

𝑘𝑝𝑗
𝑘𝐹(𝜃𝑘)𝑛

𝑘=1

∑ 𝐹(𝜃𝑘)𝑛
𝑘=1

                                                                                                      [Eq. 4.5] 

X-ray computed microtomography (µCT) is another technique that has been used to 

characterize the orientation of glass fibre reinforced polymer in injection moulded parts [Shen 

et al. (2004); Bernasconi at al. (2012); Tausif et al. (2014); Thi et al. (2015)]. This technique 

enables not only the study of fibre orientation but also a complete description of 

microstructure including fibre length and dispersion. Some results of fibre size analysis 

obtained by using this technique were already presented in the Chapter 3. This technique 

consists of slicing a sample into thin sections and imaging it from multiple rotation angles. 

The multitude of images is processed by sophisticated computer algorithms, providing a three 

dimensional reconstruction of the microstructure of fibres. An example of a three dimensional 

representation of a glass fibre reinforced polypropylene is shown in Figure 4.5.  
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Figure 4.5 

Three-dimensional representation of a sample taken from injection moulded part of glass 

reinforced polypropylene [Kastner et al. (2012)] 

1.1.2.2. Natural fibres 

The ellipses method used to quantify the glass fibre orientation by analysing cross sections 

cannot be extended to the natural fibre case because the apparent sections of fibres are 

irregular. Figure 4.6 presents an example of two images taken by optical microscopy in 

reflection, which correspond to xz and yz planes of a tensile bar with 20 wt % flax/starch 

acetate [Peltola et al. 2011]. Figure 4.7 shows another example of yz-plane of tensile bar of 30 

wt % pulp fibre reinforced polypropylene [Nystrom (2007)]. The quantification of orientation 

by ellipses method showed previously for glass fibres requires some assumptions such as the 

fibre rigidity and a circular fibre cross-section, which is not the case of natural fibre 

morphology. Natural fibres contain bundles and elementary fibres all of non-circular section.  
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Y 

Z 

            

Figure 4.6  

xz (a) and yz (b) planes with x the main flow direction  

 

 

 

Figure 4.7 

A surface of 30 wt % pulp reinforced polypropylene obtained using polarized light 

microscopy [Nystrom (2007)] 

In most studies dealing with natural fibres the xy-plane at different levels of thickness is 

observed. The observations may be done by optical microscopy in transmission and reflection 

or by SEM. Hornsby et al. (1997) observed flax straw fibres reinforced polypropylene by 

optical microscopy in reflection in xy-plane of the injection-moulded part. Figure 4.8 shows 

two cross sections nearby surface and at the mid-plane of the part.  
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Y 

X 
                                 

Figure 4.8 

Cross sections in xy-plane (a) near surface and (b) at the mid-plane, x is the main flow 

direction [Hornsby et al. (1997)] 

Aurich and Mennig (2001) observed injection moulded plaque based on 30 wt % flax 

reinforced polypropylene by optical microscopy in transmission. An example of two cross 

sections at 0.02 and 0.2 mm from the surface in xy-plane is presented in Figure 4.9.            

    

Figure 4.9 

xy-cross section at two different levels in thickness: at 0.02 mm (a) and at 0.2 mm (b) from 

the surface, 2 mm is the entire thickness and x is the main flow direction [Aurich and Mennig 

(2001)] 

Similar observations of the same xy-plane with the same system (flax fibre-reinforced 

polypropylene) were performed by Bourmaud et al. (2013) on a tensile test bar at 0.1 mm and 

1 mm from the surface of the part using SEM (Figure 4.10) 
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Figure 4.10 

Cross sections at 0.1 mm (a) and 1 mm (half-thickness) (b) from the surface 20 wt % of flax 

fibre- reinforced polypropylene, x the main flow direction [Bourmaud et al. (2013)] 

The surfaces in xy planes shown in Figures 4.8, 4.9 and 4.10 seem suitable to quantify the 

orientation of natural fibres in injection-moulded parts, whatever the microscopy technique 

used for observations. However, the quantification of fibre orientation in xy-plane requires 

more experimental work because sections at different levels in thickness are needed to obtain 

the orientation state across thickness. By using ellipses method, only one cross section 

perpendicular to xy-plane is performed to characterize the orientation state of glass fibres.     

Other studies have focused on the X-ray µCT as an experimental technique to assess the 

orientation of natural fibre-reinforced thermoplastic. However, this technique has its 

limitations because if high resolution is needed only small field of view is possible. Because 

the conservation of small details is important for the understanding of the microstructure of 

natural fibres (irregular shape, fibre curvature), a high resolution is required to detect the 

exact fibre cross section. Therefore, observations are limited to samples not large enough to 

establish analyses of fibre orientation in the scale of injected-moulded parts. Furthermore, the 

density of natural fibres (𝜌 ≈ 1.5 g/cm
3
) is close to the one of thermoplastic matrix (𝜌 ≈ 0.9-

1.2 g/cm
3
), which makes the X-ray attenuation coefficient low and materials 
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undistinguishable. Presently, many researchers work on improving this technique and recently 

some progress have been made in the determination of the fibre length distribution [Alemdar 

et al. (2008), Joffre et al. (2014)], but fibre orientation distribution in a wide region of 

observation with high resolution and 3D reconstruction, such as the glass fibre case, is not yet 

reached. Figure 4.11 presents two examples of a 3D reconstruction in µCT of wood fibre- and 

hemp fibre-reinforced polypropylene. Only qualitative observations were carried out and a 

statistical analysis of fibre orientation was not possible. 

   

Figure 4.11 

3D visualization of the fibre structure in the polypropylene (a) wood fibres and (b) hemp 

fibres reinforced composites [Alemdar et al. (2008)] 

1.2. Fibre orientation results  

 Glass fibres 1.2.1. 

An example of the evolution of 𝑎𝑥𝑥 as a function of thickness from the surface of injection-

moulded part for glass fibre reinforced PAA (polyacrylamide)) is presented in Figure 4.12. A 

symmetric orientation with respect to the mid-plane is typically obtained with 𝑎𝑥𝑥 close to 

zero at the core (0.2 here) and 𝑎𝑥𝑥 close to one at surface (0.8 here), concluding that 

orientation of fibre changes across the thickness from surface to the mid-plane. 

 b  a 



 Chapter 4: Fibre orientation and dispersion in injection moulded parts 

89 

 

 

Figure 4.12 

Evolution of  𝑎𝑥𝑥 along the thickness of injected part for glass reinforced PAA with 50 wt % 

(triangle)  and 30 wt % (square) fibres [Vincent et al. (2005)] 

Bay and Tucker (1992) predicted by computation and observed experimentally five main 

layers: two skin layers (which are the thinnest and the least oriented ones), two shell layers 

and one core layer. Intermediate layer can exist between shell and core layers, but it is usually 

ignored and added to core layer as one continuous layer.  

The typical fibre orientation in an edge-gated part is shown in Figure 4.13. In the shell layers 

fibres are oriented in the flow direction and in the core layer perpendicular to the flow 

direction. The shell layer is located in a zone were shear is dominant (Figure 4.13). The skin 

layer resulting from the fountain flow exhibits a random orientation and its thickness depends 

on the cooling and the filling times. Greatz number (𝐺𝑧) gives the range of the skin layer 

thickness: 

𝐺𝑧 =
4𝑒2

𝛼.𝑡𝑓𝑖𝑙𝑙
                                                                                                                        [Eq.4.6] 

where 2𝑒, 𝛼 and 𝑡𝑓𝑖𝑙𝑙 are the cavity thickness, the thermal diffusivity of the melt and the 

mould filling time, respectively. The thickness of the skin layer increases with 𝐺𝑧 increasing, 

however Bay and Tucker (1992) proposed that no skin can appear if 𝐺𝑧 > 100. 
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Figure 4.13 

Typical three-dimensional orientation with the different possible layers, x is the main flow 

direction 

The entrance of the cavity that is the junction between feeding channel or sprue and the cavity 

itself is usually a divergent because the section of the channel is much smaller than the section 

of the cavity. Therefore, the flow is highly extensional at the centre, thus fibres get oriented 

perpendicular to the flow direction. Near the surface, a shear flow is predominant, and fibres 

are mostly oriented along the flow direction. Fibres located very close to the surface (skin 

region) were submitted to the fountain flow ([Tadmor 1974], Figure 4.14). The complex flow 

with extensional deformations (but not only) leads to a random or slight orientation at the 

flow direction. This orientation state is rapidly frozen very close to the cold mould walls. 

                  

Figure 4.14 

A typical flow in a cavity channel. The shaded areas show schematically the transport of 

material from the centre to the wall [Toll and Anderson (1993)] 
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It was also shown that the thickness of the core layer may also depend on fibre length and 

concentration. Spahr et al. (1990) investigated the concentration of glass fibres across the 

thickness of injection-moulded plaques. Two different lengths of fibres (long fibres Ln= 3-4 

mm and short fibres Ln ≤ 1 mm) and four concentrations from 10 wt % to 40 wt % of glass 

fibres were investigated. Figure 4.15 shows the ratio core thickness/part thickness that is 

plotted as a function of the volume fraction. The core thickness increases by increasing the 

fibre concentration and the fibre length.  

 

Figure 4.15 

Change in core thickness with fibre volume fraction for long and short glass fibre reinforced 

polypropylene [Spahr et al. (1990)] 

Figure 4.16 shows the local volume fraction of glass fibres in shell and core layers as a 

function of the overall volume fraction. The core layer is denser than the shell one by 

increasing the fibre concentration. The difference in the local concentration induced by long 

and short fibres is higher at the core as compared to the shell, when the overall concentration 

increases. 
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Figure 4.16 

Difference between shell- and core- local fibre volume fraction as a function of the nominal 

overall fibre volume fraction for long and short glass fibre reinforced polypropylene [Spahr et 

al. (1990)] 

Spahr et al. (1990) calculated the fibre orientation factor 𝑓𝑝 = 2𝑎𝑥𝑥 − 1, considering that 

𝑎𝑥𝑥 ≥ 0.5 when fibres are in the shell layer resulting in 𝑓𝑝 ≥ 0 and 𝑎𝑥𝑥 ≤ 0.5 when fibres are 

in the core layer resulting in 𝑓𝑝 ≤ 0. Moreover, when fibres are strongly aligned along the 

flow direction (x) or along the direction perpendicular to the flow (y), 𝑓𝑝 is close to 1 or -1, 

respectively. Figure 4.17 shows 𝑓𝑝 vs the overall volume fraction for short and long fibres. 

Fibres in both shell and core layers become more aligned when the fibre volume fraction 

increases. Short fibres are more oriented than the long ones. Based on SEM images in xz and 

yz cross sections, the orientation of long fibres was measured by two methods: i) personal 

evaluation or “by hand” (unfilled symbol) and ii) image analysis. However, short fibre 

orientation was only measured by “hand”.   
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Figure 4.17 

𝑓𝑝 as function of overall volume fraction of long and short fibres [Spahr et al. (1990)] 

Understanding which factors can influence dispersion and orientation of fibres is important to 

control the mechanical properties of the moulded part. The main key factors are the injection 

conditions such as the injection speed, the packing holding and cooling time, the geometry of 

cavity and the melt rheology. Many studies have investigated the influence of these factors on 

the alignment of fibres or the thickness of skin, shell and core layers. The results are 

summarized in Table 4.1.  
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Table 4.1 Factors influencing the orientation and dispersion of glass fibre in thermoplastic 

composites, GF means glass fibres 

 

Factors System 

(GF: glass fibres) 

Observations 

(orientation with 

respect to the main 

flow direction) 

References 

Gate  Point-centre 

gate 

GF reinforced -

nylon and -

polypropylene 

Perpendicular core  Bay and Tucker 1992) 

 Film-sprue 

gate 

GF reinforced 

nylon 66 

 

 

GF reinforced 

polypropylene 

 

 

Aligned core 

Darlington and Smith 

(1987) 

 

Sanou et al. (1985) 

Injection speed  Faster  GF reinforced 

polypropylene 

Ticker and 

perpendicular core  

Akay and Barkley 

(1991) 

Slower GF reinforced 

polypropylene 

Thinner and 

perpendicular core 

Bright et al. (1978) 

Thicker cavity  - - GF reinforced 

polypropylene 

- Glass-flake 

filled 

polypropylene 

 

 

 

 

Thicker and 

perpendicular core 

Bouti et al. 1989 

Fisa and Rahmani 

(1991) 

Gillepsie et al. (1985) 

Gupta and Wang 

(1993) 

Colder walls - GF reinforced 

polypropylene 

Thinner and 

perpendicular core 

+ thicker skin layers 

Vincent and Agassant 

(1986) 

Akay and Barkley 
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(1991) 

Gupta and Wang 

(1993) 

Lower power 

law index 

(more shear-

thinning) 

-  Thicker and 

perpendicular core 

Darlington and Smith 

(1987) 

Bay and Tucker 1992) 

Edges effect Closer to the 

edge 

 

GF reinforced 

polypropylene 

Thinner and 

perpendicular core 

Kenig (1986) 

Akay and Barkley 

(1991) 

Fibre depletion 

and fibre 

segregation 

 

 

 

 

 

 

 

- 

Glass bead filled 

polypropylene  

Gradual depletion 

of fibre from the 

core to the skin 

Shmidt (1977) 

Fibre reinforced 

polypropylene/po

lyamide 

Bright et al. 1987 

Akay and Barkley 

(1991) 

Helger and Mennig 

(1985) 

Singh and Kamal 

(1989) 

Short/ Long GF 

reinforced 

polypropylene 

Sphar et al. 1990 

Akay and Barkley 

(1991)  

GF reinforced 

Vertron resin  

Bailey and Rzepka 

(1991) 

Packing and 

holding 

Without  GF reinforced 

PET 

Aligned core Malzahn and Schultz 

(1986) With Perpendicular core 
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Increase Long fibre 

reinforced 

Vertron resin 

- Thinner and 

perpendicular core 

- The longer the 

time of maintaining 

pressure, the more 

aligned fibres (in 

the transition 

core/shell area) 

Bailey and Rzepka 

(1991) 

Higher aspect 

ratio of fibres 

 

 

 

 

 

 

- 

GF reinforced 

polypropylene or 

other polymers 

- Thicker core 

- Less fibre mobility 

at the melt front 

- Higher depletion 

from the core to the 

skin 

- Lower degree of 

orientation in both  

shell and core layers  

- Possibility of fibre 

bending 

- Jetting and 

irregular filling  

- Higher fibre wall 

interaction  

Spahr et al. (1990) 

Bailey and Rzepka 

(1991) 

Blanc et al. (1987) 

McLelland and Gibson 

(1990) 

Truckenmuller and 

Fritz (1991) 

 Higher fibre 

concentration  

 

 

- 

GF reinforced 

polypropylene  

Glass-flake filled 

polypropylene 

 

-Thicker core 

-Flatter velocity 

profile 

-Clamping force 

increases 

quadratically with 

fibre volume 

fraction 

 

Spahr et al. (1990) 

Bouti et al. (1989)  
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 Natural fibres 1.2.2. 

Whereas the microstructure of glass fibre-reinforced thermoplastic reached a good 

understanding, the literature of natural fibre case is not yet mature and a lack of information 

still exists. The dispersion of natural fibres in injection-moulded parts was not previously 

studied and most of the studies dealing with fibre orientation have been limited to some 

qualitative observations. All the xy-plane observations shown in Chapter 4, section 1.1.2.2 

Natural fibres, indicate a considerable change of orientation of fibres nearby surface 

compared to the core, which seems similar to the core-shell structure seen earlier for glass 

fibres. The main study, in which a significant quantification of flow-induced orientation was 

performed, is the one of Aurich and Mennig (2001). They quantified the orientation of 30 wt 

% flax fibre-reinforced polypropylene by optical microscopy in transmission. They observed 

and quantified the orientation in xy-plane for 11 cross sections with different levels across 

thickness and for four locations in a film-gated plaque, as shown in Figure 4.18. In each cross 

section, 600 fibres were characterized. Unfortunately, the method of the fibre orientation 

measurement was not detailed enough. Furthermore, only the average of fibre aspect ratio was 

provided (L/D= 13), whereas flax fibres contain bundles and their length and diameter are 

critical parameters to consider when analysing a composite microstructure.  

                                   

Figure 4.18  

Injection moulded plaque with locations of orientation; all dimensions are in mm [Aurich and 

Mennig (2001)]   

 

Despite of the lack of some microstructural information, Aurich and Mennig (2001) 

demonstrated that a core-shell structure appears in flax fibre composites. At 0.1 mm from the 

plaque surface, the fibre orientation distribution presents a unimodal distribution peaking 
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around the x-direction (0° angle) (Figure 4.19.a). At z= 0.5 mm the distribution becomes 

bimodal (Figure 4.18.b) and their maxima moved and fused with the perpendicular flow 

direction +/- 90° when approaching to the mid-plane (z= 1 mm, Figure 4.19.c).    

  

                      

                       

                          

Figure.4.19 

Fibre orientation distribution with respect to x-direction at location A (see figure 4.17) for 

three levels in the thickness (a) 0.1 mm, near to the surface (b) 0.5 mm, intermediate layer, 

and (c) 1 mm mid-plane[Aurich and Mennig (2001)] 

Z = 0.1 mm 

a 

Z = 0.5 mm  b 

Z = 1 mm  c 
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Aurich and Mennig (2001) used the tensor components without the correction of the 

distribution function 𝐹(휃) as defined by  

 𝑎𝑖𝑗 =
1

𝑛
∑ 𝑝𝑖

𝑘𝑝𝑗
𝑘𝑛

𝑘=1                                                                                                           [Eq. 4.7] 

This leads to three main components of orientation  

 𝑎𝑥𝑥 =< 𝑠𝑖𝑛2휃 𝑐𝑜𝑠2𝜙 >                                                                                                [Eq. 4.8] 

 𝑎𝑥𝑦 =< 𝑠𝑖𝑛2휃 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 >                                                                                         [Eq. 4.9] 

  𝑎𝑦𝑦 =< 𝑠𝑖𝑛2휃 𝑠𝑖𝑛2𝜙 >                                                                                               [Eq.4.10]                                                                                                              

Considering that the orientation is planar, some simplifications take place as 휃 = 90° (Figure 

4.3), so  𝑠𝑖𝑛휃 = 1:  

 𝑎𝑥𝑥 =<  𝑐𝑜𝑠2𝜙 >                                                                                                        [Eq. 4.11] 

 𝑎𝑥𝑦 =< 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 >                                                                                                  [Eq. 4.12] 

𝑎𝑦𝑦 =< 𝑠𝑖𝑛2𝜙 >                                                                                                          [Eq. 4.13]  

Figure 4.20.a shows that at the  location A,  𝑎𝑥𝑥 increases from 0.6 at z = 0.02 mm to 0.9 at z 

= 0.2 mm, indicating a strong alignment along x-direction. It then decreases until 0.2 at z = 0.9 

mm and remains almost constant at the mid-plane z = 1mm, which is again a sign of strong 

fibres alignment but along y-direction. A similar trend was noticed for B and C locations. 

However, for location D closer to the plate edge (Figure 4.20.b), at z = 0.2 mm the orientation 

is quite similar to that of location A, but at the mid-plane instead of decreasing till 0.2,  𝑎𝑥𝑥 

decreases only until 0.7, signifying that fibres in the core are more aligned to x-direction than 

to y-direction. Moreover,  𝑎𝑥𝑦 of location D is not close to zero compared to location A, 

meaning that the direction of the principal orientation at location D is different to x-direction 

or y-axis [Tucker (1988)]. According to authors, an “uneven flow velocity” close to the edge 

is behind this orientation. Compared to the edge effect shown in Table 4.1, this seems in 

disagreement with glass fibre reinforced polypropylene studies [Kenig (1986), Akay and 

Barkley (1991)] in which, even closer to the part edges, a perpendicular core was kept with 

thinner thickness than at a middle part location.  
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Figure. 4.20 

Components of orientation tensors at location “A” (a) and location “D” (b) [Aurich and 

Mennig (2001)], see the text for more details 

Recently, Lafranche et al. (2013) investigated the orientation of flax fibre-reinforced 

polypropylene. The studied sample was taken from the middle of a tensile bar. Using 

microtome, the flow plane was observed by the optical microscopy in reflection mode at 

different levels across thickness and 150 measurements of fibre orientation were carried out 

for each layer by a dedicated image processing software. Figure 4.21 shows  𝑎𝑥𝑥 evolution 

across the thickness for different volume fractions. Starting from 10 % in depth from the 

surface, fibres become quite aligned in the main direction of flow ( 𝑎𝑥𝑥= 0.9) and keep the 

same orientation toward the core, except the highest fibre concentration of 22 vol % for which 

fibres are less aligned near the surface ( 𝑎𝑥𝑥= 0.6-0.7) and are rather randomly oriented ( 𝑎𝑥𝑥 

 𝑎𝑥𝑥  

 𝑎𝑥𝑦  

a 

Core Surface 

b 

 𝑎𝑥𝑥  

 𝑎𝑥𝑦  

Surface Core 
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= 0.5-0.6) at the core. The core-shell structure here is not well pronounced. The reason is 

probably related to the moulding conditions and the shape of the gate, as mentioned in Table 

4.1. Lafranche et al. (2013) investigated the orientation state with increasing fibre 

concentration, providing results from large number of analysed layers. Nevertheless, neither 

details about the method of fibre orientation measurement nor images of the cut surfaces were 

provided. 

          

Figure 4.21 

The orientation state regarding the main flow direction across the thickness for different fibre 

concentrations [Lafranche et al. (2013)] 

1.3. Conclusions 

The fibre orientation and dispersion are important factors to control the final properties of 

injection-moulded parts. A good understanding of these parameters has been built up for glass 

fibre reinforced composites. A typical orientation of core-shell structure was observed, 

characterized and modelled. The dispersion of fibre across thickness was correlated to fibre 

orientation, length and concentration. Furthermore, most factors that can influence the 

orientation and the dispersion of glass fibre in a thermoplastic polymer have been studied in 

details such as the injection conditions, the mould geometry and the rheology of melt. 

Two possible techniques of fibre orientation characterization that are the microscopy (either 

optical or scanning electron) analysis of cross section perpendicular to xy-plane (xz or yz) and 

X-ray micro-tomography, were presented. Each one has its limitations when it is related to 

natural fibres, whereas it is going thoroughly with glass fibres. Until now, most studies on 

Surface Core 

 𝑎𝑥𝑥  
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natural fibres have been limited to qualitative observations. Only few studies have been 

dealing with the orientation quantification of natural fibres in cross sections parallel to the 

part plane (xy). A core-shell structure similar to glass fibre composites has been observed for 

the natural fibres case. However, these studies did not take into account their specific features 

(flexibility, bundles structure). Moreover, the dispersion of natural fibres in injection-moulded 

parts is not yet investigated and correlated to fibre orientation. In the following section, we 

suggest a new method of microstructure characterization based on the cross section analysis, 

dealing with the specific features of natural fibres. This method enables to investigate the 

fibre dispersion, orientation and bending.  
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2.  Results and discussion 

2.1. Qualitative observations 

Figure 4.22 shows two cross sections in xz-plane and yz-plane of 20.5 vol % flax/PP. The 

location of both sections in injection-moulded box is presented in the same figure. The 

orientation of fibre changes across the thickness from surface to core. A core-shell structure 

similar to that observed for glass fibre composites is obtained. While fibres are aligned along 

x-direction close to surface in xz-plane, they are aligned along y-direction around the core in 

yz-plane. The magnified image shown in Figure 4.22 confirms that the cross section of flax 

fibre is irregular. The reason is that the majority of flax fibres consist of bundles in which 

elementary fibres are “glued” together in an asymmetrical way. The number of elementary 

fibres in a bundle varies from few to several tens, giving 3-4 elementary fibres per bundle on 

average (as measured in Chapter 3, section 2.3. Flax) and they are assembled in different 

ways. 
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Figure 4.22 

Two cross sections in xz-and zy-planes and their positions in the injection-moulded box. 
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Figure 4.23 shows a comparison between glass and Tencel fibre cross sections in xz-plane 

nearby surface. Because of their “slenderness”, Tencel fibres do not have a circular cross-

section like glass fibres, even if their equivalent diameter seems almost constant.  

        

Figure 4.23 

SEM images of cross sections of (a) 20.5 vol %  Tencel/PP and (b) 20.5 vol % glass/PP at xz-

plane around core (same position of the zoomed image in Figure 4.21) 

Moreover, Tencel fibres are very flexible, making the notion of orientation questionable, as 

schematically shown in Figure 4.24.  

 

Figure 4.24 

Schematic representation of Tencel fibre orientation, analysing the apparent ellipses of cross 

section gives the dashed line vectors, whereas the solid line vector represents the real 

orientation. 

 

a b 
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In summary, the approach of analysing fibres cross sections in xz-and yz-planes developed to 

determine the orientation of glass fibres in a polymer matrix cannot be applied for Tencel and 

flax, which is in agreement with what we concluded from the state of the art section. 

We suggest then to investigate the microstructure of fibres in xy-plane, as it was done in the 

study of Aurich and Mennig (2001) presented in the state of art section. Figure 4.25 shows 

how the sample was cut from the moulded box and observed in xy-plane (same location to 

Figure 4.21 but different observation plane).  

                                                         

Figure 4.25 

Location of sample used for xy-plane observation in the moulded box 

First, a suitable way for the analysis of fibre orientation in composites had to be found. 

Optical microscopy images in transmission and reflection modes of cross-sections of flax/PP 

composites were performed (Figure 4.26). In general, the transmitted light technique provides 

more information of fibres’ spatial position than the reflected one. In transmission, the entire 

fibres can be seen even if they are positioned “below” the surface. However, because of fibres 

overlapping the analysis of fibre dimensions from the images made in transmission mode 

seems very complicated and may lead to artefacts. Moreover, with transmitted light, only a 

thin layer (< 100 µm) of composite sample must be prepared, which causes practical problems 

in samples preparation.  

 

Y 

X 

Z 
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Figure 4.26  

xy cross section of flax/PP composite, fibre concentration is 6.3 vol %: comparison between 

optical microscopy image in reflection (a) and in transmission (b) modes; the scale is the same 

for both images. 

The reflected light technique is simpler than the transmitted one because only the surface 

matters, so the sample thickness is not critical. In addition, reflected light technique enables a 

good contrast, so that a quantitative image analysis can be performed. Hence, the optical 

microscopy in reflection was chosen to analyse fibres orientation. Surfaces in xy-plane at 

different levels across thickness are then required to quantify orientation, as mentioned in 

Section 1.1.2. As a representative concentration of fibres, 20.5 vol % was chosen for all 

composites (flax, Tencel and glass). 

It should be noted that three fibre orientations are possible with respect to xy-plane: i) fibres 

are fully “in-plane”, i.e. an orientation angle  with respect to the xy-plane is 90° (see Figure 

4.2), ii) fibres form a certain (large) angle with xy-plane, i.e. an orientation angle  with 

respect to the xy-plane between 0° and 90°, meaning that only an apparent shape of fibres can 

be seen in xy-plane) and iii) fibres are almost perpendicular to xy-plane (i.e. = 0°). The first 

two cases cannot not be distinguished when analysing the images taken in xy-plane and thus 

both will be considered together. We shall say that fibres are out of xy-plane when their width 

(or diameter) is comparable with their length on the cross section. 

Figure 4.27 provides the flax fibre orientation state in xy-plane (at location shown in Figure 

4.25: x = 70 mm, y = 0 mm) at six different levels across the thickness from z = 100 µm 

(~shell) to  z= 900 µm (core). We remind here that observed surfaces have dimension of 5 x 5 

mm², made by bringing 50 reflected optical microscopy images together into one cartography 

(see Chapter 2). Whereas fibres show a parallel orientation to x-axis in the shell region at z = 

a b 
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100 µm and z = 200 µm), they are mainly aligned perpendicular to x-axis in the core region at 

z = 800 µm and z = 900 µm. The transition region i.e. between the shell and the core (from 

400 µm to 600 µm) shows a random orientation, which is in agreement with the finding of 

Aurich and Mennig (2001). Figure 4.28 shows a similar orientation state for Tencel fibres. 

However, the number of Tencel fibres per cartography is higher as compared to that of flax.  

 

             

              

100 µm 200 µm 

400 µm 600 µm 
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Figure 4.27 

Microstructure (optical microscopy in reflected light) of 20.5 vol %  flax reinforced 

polypropylene; 5 x 5 mm² polished surfaces in xy-plane across the thickness from sample’s 

surface to core 
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Figure 4.28 

Microstructure (optical microscopy in reflected light) of 20.5 vol %  Tencel reinforced 

polypropylene; 5 x 5 mm² polished surfaces in xy-plane across the thickness from sample’s 

surface to core 

To compare Tencel- and flax-based composites with glass fibre ones, xy-cross sections of 

glass fibre composites were also prepared (Figure 4.29). We limited our observations to three 

representative layers: in the shell region, in transition zone (between shell and core) and in the 

core region; they correspond to the position z = 100 µm, z = 600 µm and z = 900 µm, 

respectively (Figure 4.29). A succession of parallel-random-perpendicular orientation 

regarding the main flow direction can be attributed to glass fibres. This core-shell structure 

800 µm 900 µm 

X= Main flow direction 

Y 
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seems to be common for all types of fibres. Nevertheless, the alignment in each fibre type 

appears different. This will be further detailed in the next section in which the fibre 

orientation is quantified.  

   

 

 

100 µm 
600 µm 
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Figure 4.29 

Microstructure (optical microscopy in reflected light) of 20.5 vol % glass reinforced 

polypropylene; 5 x 5 mm² cross sections in xy-plane across the thickness from sample’s 

surface to core. Blue colour represents rectangles fitting the glass fibres used for quantifying 

the microstructure and helping to clarify the cartography regarding the optical artefacts which 

come from polishing (black area surrounding fibres) as shown in the zoomed image.  

To quantify the microstructural features in xy-plane, we suggest to approximate fibre by a 

rectangle. We measure its width (b), length (a) and orientation angle (ϕ) relative to x-axis 

(Table 4.2). We suggest four fibre categories depending on their apparent shape (Table 4.2): 

straight fibres, C-shaped, S-shaped and “particles” (width is comparable to length). The latter 

category can be made of two classes of fibres: those which are out-of-plane (orientation angle 

 close to 0 °) and simply small particles that  appear during fibre breakage. We suppose that 

when a “particle” is an “agglomerate” of smaller ones, as shown in Figure 4.22, it is a bundle 

of flax that is out-of-plane. However, it is difficult to distinguish between a simple small 

particle and an elementary fibre that is out-of-plane and gives a similar apparent shape. Here, 

it is again another example of the difficulty arising during the analysis of natural fibre based 

composites, as far as flax fibres can make a “dust” due to breakage into small pieces and 

fibrillation [Le Moigne et al. (2014)]. Category 4 was characterised by the equivalent 

diameter Da approximated by Huebscher formula [Huebscher (1948)]. The bending angle β 

X= Main flow direction 

Y 

900 µm 
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and the extended-fibre length average 𝐿𝑐𝑛 and 𝐿𝑠𝑛 were deduced from the rectangle 

dimensions by approximating fibres as a bent rod (or “C-shaped fibre”) for category 2 and “S-

shaped” rod for category 3. In the cartographies, the apparent objects that are represented by 

rectangle dimensions under 10 µm x 10 µm were not taken into account.  

Table 4.2 Approach to quantify the dimensions and orientation of natural fibres in composites 

In-plane fibres 

 

Particles/out-of-plane 

fibres 

Category 4 

 

 

 

 

Category 1 

Straight fibres 

 

Category 2 

C-shaped fibres 

 

Category 3 

S-shaped fibres 

 

This category is 

related to bundles and 

short elementary 

fibres not long 

enough to be bent 

 

 

ϕ = orientation angle 

a = fibre apparent 

length 

b = fibre apparent 

diameter 

Extended fibre length 

average 

𝐿𝑐𝑛 = 2√𝑏2 + (
𝑎

2
)

2

 

 

Extended fibre length 

average 

𝐿𝑠𝑛 = 4√(
𝑏

2
)

2

+ (
𝑎

4
)

2

 

 

 

 

𝐷𝑎 = 1,3 [
(𝑎𝑏)5

(𝑎 + 𝑏)2
]

1
8

 

(Huebscher formula) 

 
𝛽 =

2 𝑏

𝑎
 

𝑎 = end to end vector 

𝑏 = bending 

Fibre diameter= elementary fibre 

diameter (10 µm) 

 

2.2. Distribution of fibre concentration throughout the thickness  

Figure 4.30.a, b and c represents the distribution of flax, Tencel and glass fibres across the 

thickness for different fibre categories, respectively. We consider that glass fibres are fully 

straight, and even if some particles appear at the cross section, they are usually under our 

critical size of measurement (10 x 10 µm²). The quantification of the number of fibres per 
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cross section was possible because all cartographies have the same size (5 x 5 mm²). Figure 

4.30.a shows that the total number of flax fibres increases twice from z = 100 µm to z = 400 

µm, and it remains almost constant up to the core layer (z = 900 µm). The dominant category 

is the straight fibres; they make around 60 % of the total number of fibres, followed by the 

particles/out-of-plane category with 30 % and C-shaped category with around 10 %. S-shaped 

category does not appear in the case of flax fibres, which is probably due to their high 

stiffness and low aspect ratio.  
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Figure 4.30 

Distribution of the different categories of fibres (straight, C-shaped, S-shaped and 

particles/out-of-plane) for (a) flax, (b) Tencel and (c) glass across the thickness of sample. For 

glass fibres only one category (straight) is considered  

 

Concerning the evolution of flax fibre number across sample thickness, the total number of 

fibres increases from 100 to 400 µm and remains almost constant from 400 µm to 900 µm. 

The straight fibres category keeps increasing from surface to core. Taking into account that 

most of straight fibres are in bundles, two assumptions are possible i) bundles are transferred 

toward the core, escaping high shear zones and ii) bundles are dissociated into elementary 

fibres or thinner bundles on high shear zone close to surface and “new” fibres are then 

transferred to the core. For glass fibres case (only rigid straight fibres) presented in Figure 

24.c, their number is three time higher at the core (z = 900 µm) than near the surface (z = 100 

µm). This is in agreement with results of Spahr et al. (1990) showing that core layer contains 

more fibres than shell layer. Moreover, the number of fibres at the core compared to surface is 

higher for glass than for flax fibres. This can be explained by the higher aspect ratio of glass 

fibres as demonstrated in Chapter 3 (see the influence of a higher aspect ratio in Table 4.1, 

section 1.2 [Spahr et al. (1990); Bailey and Rzepka (1991); Blanc et al. (1987); McLelland and 

Gibson (1990); Truckenmuller and Fritz (1991)]. Another reason is that when flax fibres are 
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broken, they leave away more “dust” or small particles that decrease the amount of straight 

fibres obtained after breakage. 

The total number of Tencel fibres is almost three times greater than that of flax fibres 

(compare Figure 4.30.a and 4.30.b). This is also illustrated in Figure 4.30 that compares two 

cross sections of flax and Tencel composites taken at the same position from sample surface, z 

= 400 µm. Figure 4.31 demonstrates that this difference is caused by the effect of bundles that 

are present in flax fibres even after processing. Furthermore, the total number of Tencel fibre 

remains almost constant across composite thickness, which seems different from glass case 

for which core contains more fibres. Tencel fibres may disobey the dispersion trends in the 

cavity because of their higher flexibility compared to flax and glass fibres. While around 50 

% of Tencel fibres are straight (most of them have short aspect ratio), 30 % are particles/out-

of-plane and the rest are curved in which less than 4 % are S-shaped fibres. The latter 

category appears only in Tencel, which may be also caused by the high flexibility of these 

fibres. The number of C-shaped category of Tencel decreases almost twice from surface to 

core. The most probable reason is that a lower shear is produced at core as compared to 

surface, leading to less curved fibre at core. 

                   

Figure 4.31 

 Comparison between flax (a) and Tencel (b) fibres dispersion (at the same location and 

position in thickness, z = 400 µm), number of Tencel fibres is much higher than that of flax 

which are partially structured in bundles  

2.3. Distribution of fibre orientation throughout the thickness  

 In-plane orientation 

Figure 4.32.a, .b and .c presents the distribution of fibre orientation, i.e. angle ϕ towards the 

main flow direction in xy-plane (see Figure 4.2), for the cases of straight flax, Tencel and 

a b 
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glass fibres, respectively. We selected three representative layers corresponding to three main 

regions in thickness (shell, transition and core regions). Figure 4.32.a demonstrates that flax 

fibres in the shell region (z= 100 µm) are mostly oriented around 0 °, i.e. along the main flow 

direction. In the transition region (z= 600 µm), fibre orientation shows two large peaks at ± 40 

°. The maxima of these peaks move towards ±80 ° in the core region (z= 900 µm), indicating 

the orientation perpendicular to the flow direction; this is in agreement with the finding of 

Aurich and Mennig (2001).  
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Figure 4.32 

Distribution of orientation angle  (in xy-plane, towards the main flow direction) for the 

category of straight fibres, for 900 µm, 600 µm and 100 µm of depth from surface for (a) flax 

(b) Tencel and (c) glass. 

The global pattern of the fibre orientation distribution is almost the same for flax and Tencel. 

However, the sharpness of peaks varies with fibres type, indicating the difference in the 

alignment regarding the main flow direction. This difference is probably due to the difference 

in aspect ratio, flexibility and interactions between fibres during the flow, which leads in turn 

to a different melt viscosity between each fibre-type composite. It is known that a variation of 

aspect ratio results in a different composite rheology [Darlington and Smith (1987); Bay and 

Tucker (1993)]. Consequently, depending on the melt viscosity, a flatter or a sharper melt 

front during flow leads to a change in fibre orientation. For example, a higher fibre 

concentration leads to more interactions between fibres, and thus to flatter velocity profile 

during flow, so a different orientation in core and shell layers (see Table 4.1, section 

“influence of higher fibre concentration” [Spahr et et al. (1990); Bouti et al. (1989)]. A similar 

analogy can be considered when we compare Tencel to flax. The local concentration of fibres 

is higher for Tencel than for flax, leading to more interactions between Tencel fibres than 

between flax ones, and thus a different orientation of fibres. Moreover, according to Table 

4.1, a higher aspect ratio causes a lower degree of orientation in both core and shell layers 

(Table 4.1). This matches well with glass fibre as far as they present a higher aspect ratio than 
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flax and Tencel fibres (Figure 4.32.c). More details on the correlation between the 

morphology of fibres and composite viscosity will be provided in the next chapter.  

 For curved fibres, Figure 4.34 shows the case of Tencel C-shaped fibres, the result is similar 

to that of straight fibres (we remind here that the orientation of curved categories is 

represented by the orientation of the end-to-end vector).  

 

Figure 4.34 

Distribution of orientation angle  (in xy-plane, towards main flow direction) for C-shaped 

category of Tencel for 900 µm, 600 µm and 100 µm of depth from surface 

Another way to describe the orientation of fibres in xy-plane across thickness from surface to 

core is to use the first component of the orientation tensor 𝑎𝑥𝑥. The latter varies from 1, when 

fibres are parallel to x-axis, to 0, when fibres are perpendicular to this direction i.e. oriented 

along y-axis (see Figure 4.4).   

Figure 4.34.a presents the evolution of 𝑎𝑥𝑥 for straight and C-shaped flax fibres across 

thickness from surface to core. Both categories are well aligned along x-direction from z= 100 

µm to z= 200 µm (the shell layer) with 0.8 < 𝑎𝑥𝑥 < 0.9, whereas their orientation from z= 400 

µm to z= 900 µm is almost isotropic, showing 0.3 < 𝑎𝑥𝑥 < 0.6. 

 Figure 4.34.b shows the evolution of 𝑎𝑥𝑥 of straight, C-shaped and S-shaped Tencel fibres 

across thickness from surface to core. The three categories are aligned to x-direction in the 
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layers z= 100 µm and z= 200 µm, showing 0.75 < 𝑎𝑥𝑥 < 0.85. From z= 400 µm to z= 600 µm, 

they show an isotropic orientation with 0.4 < 𝑎𝑥𝑥 < 0.65. At core, from z= 800 µm to z= 900 

µm, all fibres are aligned along y-direction with 0.15 < 𝑎𝑥𝑥 <0.25, except the S-shaped ones 

with 𝑎𝑥𝑥 ≈ 0.5.   

 

 

Figure 4.34 

𝑎𝑥𝑥  orientation component across the thickness from shell to core, for various fibre categories 

(straight, C-shaped and S-shaped fibres) for (a) flax and (b) Tencel 

Next, we “mix” all categories except particles/out-of-plane category for which a description 

of fibre orientation cannot be considered, aiming to get a single generalised 𝑎𝑥𝑥 value. The 

contribution of each category in the entire orientation depends on its proportion relative to the 

total number of fibre. Therefore, to obtain a global interpretation of the orientation state 𝑎𝑥𝑥 
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was weighted by the number of fibres in each category. Figure 4.35 presents the result of this 

approach for flax and Tencel superposed on the orientation curve of glass fibre (for which 

only one category, the straight fibres, is present). In shell region, flax fibres are most aligned, 

followed by Tencel and glass that are the least aligned fibres. In the core, Tencel fibres tend to 

be aligned perpendicular to the flow (along y-direction), whereas flax and glass fibres are 

randomly oriented.  

 

Figure 4.35 

Generalised 𝑎𝑥𝑥  (in-plane categories) of flax, Tencel and glass as a function of the sample 

thickness from surface to core 

 Influence of out-of-plane orientation 

It is know that glass fibres make a small angle (angle , see Figure 4.2) regarding xy-plane 

[Phelps and Tucker (2009)]. In our study, this orientation can be observed in Figure 4.26 that 

exhibits a comparison between optical microscopy images in reflection and in transmission 

modes. As seen by transmission light observation, some fibres are in xy-plane but some others 

continue “under” the surface. Therefore, in xy-plane they appear shorter than they really are. It 

is thus interesting to compare how fibre length and diameter measured from the cross sections 

(“apparent length” and “apparent diameter”, see Table 4.2) correlate with real fibre 

dimensions measured in Chapter 3.  
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Figure 4.36 shows the number average of the apparent length and diameter of the straight 

fibres category of flax across the thickness. Flax apparent average length is almost constant 

(180- 200 µm) along sample thickness. The apparent average diameter increases from 26 at z 

= 100 µm to 40 at z= 900 µm. Hence, the resultant aspect ratio decreases from 8.6 to 5.3 (not 

shown in Figure 4.36).  

 

Figure 4.36 

The evolution of the apparent average length and diameter of the straight flax fibre category 

across sample thickness from surface to core 

The results of the fibre size analysis presented previously in Chapter 3 show that after 

injection flax fibre is characterised by Ln= 388 µm, Dn= 28 µm, and (L/D)n= 16 for the 

concentration of 20.5 vol %.; the sample analysed was taken from the same location as used 

for the analysis of microstructure in the injected box). The “real” length of fibres seems to be 

twice greater than the apparent one. This seems surprising but it can be justified: according to 

equation 4.2 (J and Q are the apparent L and D, respectively), we plotted in Figure 4.37 a 

theoretical correlation between the apparent aspect ratio and the angle regarding xy-plane. Let 

us consider a rigid fibres with a constant diameter (case of glass), when θ= 0°, Q=J=D and θ= 

90° Q=D and J=L, the real dimensions of the fibre, but 0°<θ< 90°, the apparent fibre length is 

smaller than L, so that the apparent L/D (J/Q) is smaller than the real L/D. For low apparent 

aspect ratio fibres, a deviation of small angle regarding the xy-plane, leads to a higher 

decrease in aspect ratio than what is expected. For example, to reduce the aspect ratio from 

fifteen in the real dimension to five as appearing in the cross section, the fibre must make an 
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angle of 4~5° to the cross-section. This angle deviation is quite small but its influence on the 

apparent length in the cross section is great, and this is in agreement with literature in glass 

fibres [Phelps and Tucker (2009)].  

 

Figure 4.37 

The apparent aspect ratio as function of the angle to xy-plane 

2.4. Fibre bending  

Figure 4.38 shows that the average of angle β (bending angle, see Table 4.2) is ranging 

between 20° and 30°, remaining almost constant between 100 µm and 900 µm of depth. For 

C-shaped category, the “Extended fibre length average” Lcn (see Table 4.2) of flax fibres are 

apparently longer than Tencel ones (Figure 4.39). As seen before, this can be explained by the 

fact that flax fibres are stiffer than Tencel ones (Eflax > ETencel, see Chapter 2, Section 1. 

Materials), thus flax has to be longer to recover some flexibility and to bend like Tencel. The 

“Extended fibre length average” Lsn of S-shaped Tencel fibre is slightly higher than that of C-

shaped category Lcn (Figure 4.39). S-shaped fibres form different conformation while for C-

shaped practically only one angle of bending was observed. Forgacs and Mason (1959) 

studied the motion of a flexible fibre in shear flow when they rotate. Stiff fibres rotate with 

orbits as predicted by Jeffry (1922). When fibres are less stiff, they rotate as springy orbits i.e. 

fibres slightly buckle and then become straight as they realigned along flow direction. 

Increasing flexibility, fibres showed different conformations called “snake-turn”, “S-turn” or 

other complex shape, and this seems to be similar to what we observed for C-shaped and S-

shaped categories.  
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Figure 4.38 

The evolution of the bending angle β across the thickness for C-shaped and S-shaped 

categories of Tencel and for C-shaped category of flax 

 

 

Figure 4.39 

The evolution of the extended fibre average length across thickness for C-shaped and S-

shaped categories of Tencel and for C-shaped category of flax 
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2.5. Conclusions 

A novel experimental approach have been suggested to study in details the microstructure of 

the injection moulded flax -and Tencel- reinforced polypropylene. The orientation and 

dispersion (number of fibre per layer) were quantified, using optical microscopy in reflection 

mode and image analysis. Cross sections performed by polishing a sample cut for the 

moulded box in xy-plane, for several levels in thickness from shell to core region. Fibres were 

classified into four categories depending on their apparent shapes: straight, C-shaped, S-

shaped and particles/out-of-plane fibres. Because of flexibility difference between flax and 

Tencel (typically proportional to aspect ratio over Young modulus), Tencel fibres can be bent 

in two conformations: C-shaped and S-shaped, whereas elementary flax fibres can be bent 

only in one conformation that is C-shaped .  

The xy-cross sections were carefully analysed in terms of fibres distribution and fibre 

orientation across the sample thickness for each category. The following conclusions can be 

drawn from this study:  

- Flax and Tencel fibres exhibit a core-shell structure in the moulding, being similar to 

what was reported for glass fibres reinforced polymer. While the shell fibres are 

aligned along the flow direction, the core ones are perpendicular.  

- The distributions over the sample thickness of flax and Tencel fibres are different: as 

for glass fibres, the concentration of flax increased from surface to core, whereas that 

of Tencel was practically unchanged. 

- Another difference between flax and Tencel was observed in term of fibre dispersion 

throughout thickness: the number of Tencel fibres was three times larger than that of 

flax. This difference was explained by the fact that even after injection, a lot of flax 

fibres remained in bundles. For glass fibres, the change of concentration per layer was 

important as the number of fibres was lower than that of flax at surface and become 

larger at core.  

-  The alignment of fibres with respect to the main flow direction depends on the fibre 

type. Flax, Tencel and glass fibres show 𝑎𝑥𝑥 near surface-core of 0.9-0.3, 0.8-0.2 and 

0.7-0.5, respectively.  

- Finally, the fibre apparent length measured at the cross section is smaller than the true 

one obtained in Chapter 3 via matrix dissolution. This was explained by out-of-plane 

orientation.  
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Concluding, this chapter shows certain similarities and differences in the microstructure of 

Tencel-and flax-based composites compared to glass fibre ones. Fibre flexibility plays an 

important role in microstructure and has to be taken into account when predicting and 

modelling injection moulding process. The influence of fibre flexibility on the rheological 

properties of composites will be presented in the next chapter. 
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Chapter 5       

Rheological properties of 

composites 
The flow behaviour of molten composites is directly correlated to their microstructure. As seen in 

the previous chapter, the pattern of the melt front during cavity filling controls and designs the 

dispersion and the alignment of fibres. Therefore, assessing the composite rheology is required 

to correlate the microstructure with the results obtained during injection moulding process. 

Moreover, rheology experiments provide input data to simulate the filling stage, which enables 

to optimize modelling assumptions and also to predict the mechanical properties of the moulded 

part.  

In the following chapter, we firstly present the state of the art on dynamic and capillary rheology 

of glass fibre- and natural fibre- reinforced thermoplastics. Then the results of this work about 

the viscoelastic properties of flax, Tencel and glass based composites are provided and 

discussed, focusing on fibre morphology and flexibility. The effect of fibre content and aspect 

ratio on rheology of composites will be demonstrated. Furthermore, the correlations between the 

dynamic and capillary viscosity will be assessed.  

  



Chapter 5: Rheological properties of composites 

136 

 

1.  State of the art 

1.1. Dynamic rheology 

 Influence of fibre concentration and aspect ratio 1.1.1. 

Recently, some considerable studies of dynamic rheology of natural fibre-reinforced 

thermoplastics have emerged in literature. Twite-Kamamba et al. (2009) studied hemp-

reinforced polypropylene, Le Moigne et al. (2013) flax- and sisal-reinforced polypropylene and 

Sojoudiasli et al. (2014) flax -reinforced polypropylene. All these studies showed that increasing 

fibre content leads to an important change in the rheological behaviour of composites. We are 

going to focus on the study of Le Moigne et al. (2013) to describe this change. Figure 5.1 shows 

the evolution of complex viscosity η* versus frequency 𝜔 for neat matrix with or without 

compatibilizer and two concentrations 20 wt % and 50 wt % of flax-reinforced polypropylene. 

The influence of compatibilizer will be discussed in section 1.1.2 (Influence of compatibilizer). 

At low frequencies, compared to neat matrix showing a Newtonian plateau, the complex 

viscosity of 20 wt % flax/PP composites keeps increasing when decreasing the frequency. By 

increasing the fibre content until 50 wt %, the slope of the viscosity rise becomes sharper. At 

high frequencies, the complex viscosity of 20 wt % merges to the matrix one, whereas that of 50 

wt % follows a similar shear thinning slope to matrix at a greater magnitude. The complex 

viscosity evolution is essentially related to the viscous (G’’) and elastic (G’) moduli. Figure 5.2 

shows G’ and G” versus frequency curves, for neat PP and for two concentrations of flax-

reinforced polypropylene (30 wt % and 50 wt %). According to authors, viscous modulus of neat 

polypropylene is higher in magnitude than the elastic one, and the slopes of both elastic and 

viscous moduli at low frequencies are almost 1.3 and 0.8, respectively. The addition of fibres 

increases the magnitude of viscous and elastic moduli and reduces their slopes at low 

frequencies, showing plateau-like (slope≈ 0) for 50 wt % fibre content. The difference in 

magnitude between viscous modulus and elastic modulus becomes lower as fibre content 

increases. Above 20 wt %, the elastic modulus value overtakes the viscous one. Such a 

rheological response is similar to that of glass fibre reinforced thermoplastic. [Greene et al. 

(1995); Thomasset et al. (2005); Eberle et al. (2008)].  



Chapter 5: Rheological properties of composites 

137 

 

 

Figure 5.1 

Dynamic viscosity of 20 and 50 wt % flax /PP and their corresponding MAPP/PP matrices, 

2.5 % MAPP/PP (calculated) and 10 % MAPP/PP (experimental). Solid line corresponds to 

neat PP (experimental) [Le Moigne et al. (2013)] 

 

Figure 5.2 

Elastic and viscous moduli versus frequency for 30 wt % and 50 wt % flax reinforced 

polypropylene [Le Moigne et al. (2013)] 

Le Moigne et al. (2013) showed that increasing fibre content has a larger impact on complex 

viscosity and G’ and G” moduli at concentrated regime as compared to dilute and semi dilute 

regimes. The transition from semi-dilute to concentrated regime occurs when volume fraction is 
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higher than the inverse of the fibre aspect ratio (L/D)
-1

. By increasing the aspect ratio, the 

transition semi-dilute /concentrated moves to lower concentrations. This means that the viscosity 

rise at low frequencies becomes greater when fibre aspect ratio increases, at the same fibre 

concentration. Authors concluded that the transition between semi dilute and concentrated 

regimes is a sign of the commencement of fibre-fibre interactions, becoming larger either by 

increasing fibre content or fibre aspect ratio. The fibre-fibre interactions lead to build a network-

like structure at low frequencies, which lets the molten composite owning more elasticity. This is 

a typical solid-like behaviour indicating the presence of an apparent yield stress at low 

frequencies. 

In order to assess the apparent yield stress, Le Moigne et al. (2013) and previously Twite-

Kamamba et al. (2009) fitted the experimental curves with the modified Carreau-Yusuda 

model described by: 

휂(𝜔) =
𝜎0

𝜔
+ 휂0 [1 + 𝜆𝜔𝑎]

(𝑛−1)

𝑎                                                                                [Eq.5.1] 

where 𝜎0 is the apparent yield stress, 휂0 is the zero shear viscosity, 𝜆 is the  material 

characteristic time, a is the Yasuda parameter, 𝜔 is the frequency and 𝑛 is the power-law 

index. 

Using an approach of suspensions of solid particles [Heymann et al. (2002); Mueller et al. 

(2010)], Le Moigne et al. (2013) suggested apparent yield stress versus fibre volume fraction 

dependence similar to Krieger-Dougherty model 

𝜎0 = 𝜎∗ ((1 −
𝑓

𝑓𝑚
)

[𝜂]𝑓𝑚

− 1)                                                                                           [Eq.5.2] 

where 𝜎∗ is a fitting parameter related to the size of fibres , [휂] is the intrinsic viscosity,  𝑓 is 

the volume fraction and 𝑓𝑚 is maximal packing volume fraction that depends on fibre aspect 

ratio and size polydispersity. Two semi-empirical equations were used to asses 𝑓𝑚 

𝑓𝑚 = 0.54 − 0.0125 (
𝐿

𝐷
)  [Kitano et al. (1981)]                                                            [Eq.5.3] 

𝑓𝑚 =
2

0.32(
𝐿

𝐷
)+3.02

  [Mueller et al. (2010)]                                                                        [Eq.5.4] 

Figure 5.3 shows that 𝜎0 keeps gradually increasing with fibre content up to a critical 

concentration above which the increase becomes very steep. This critical concentration 
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corresponds to the transition from semi-dilute to concentrated regime. By comparing sisal/PP 

with (L/D)n = 2.6 and flax/PP with (L/D)n = 5.5 at the same concentration (0.303 vol % = 40 

wt %), the authors concluded that the apparent yield stress decreases when L/D decreases.  

 

Figure 5.3 

Apparent yield stress as function as the volume fraction 𝑓, for flax/PP and sisal/PP 

composites. Solid line for Eq 5.2 for flax with 𝑓𝑚, [휂]𝑓𝑚= 4.58 and 𝜎∗ = 164 Pa, (L/D)n varies 

between 2.8 and 5.5 [Le Moigne et al. (2013)] 

The apparent yield stress was differently interpreted by Kerekes et al. (1985) and Bennington 

et al. (1990) for pulp and synthetic fibres immersed in water based liquids. They defined the 

apparent yield stress that is due to the presence of fibre network-like structure, taking into 

account the Young’s modulus of fibres (𝐸𝑓) as well as the fibre aspect ratio and the fibre 

content as follows:  

𝜎0 = 𝑎 (𝐸𝑓)
𝑐

(
𝐿

𝐷
)

𝑑

𝑓𝑏                                                                                                      [Eq.5.5] 

where a, b, c and d are constants for a given fibre type and 𝑓 the volume fraction. 

Bennington et al. (1990) derived a theory for evaluating the apparent yield stress based on 

elastic fibre bending that induces frictional resistance at fibre contact points. They obtained 

Eq.5.5 with theoretical exponents b = 3, c = 1 and d = 2, a being an adjustable value. 

Figure 5.4 shows the log-log plot of apparent yield stress versus fibre volume fraction for 

three types of pulp fibre suspension (Semi-Bleached Kraft: SBK, Stone Ground Wood: SGW 



Chapter 5: Rheological properties of composites 

140 

 

and Themo-Mechanical Pulp: TMP). The correlation between power law predictions and 

Eq.5.5 enables to assume that the apparent yield stress depends on the volume fraction raised 

to almost the third power (b = 2.72-3.56), which is approximately in agreement with 

Bennington et al. (1990). In addition, the apparent yield stress is greatly dependent on the 

aspect ratio and the Young’s modulus fibre (𝑎 (𝐸𝑓)
𝑐

(
𝐿

𝐷
)

𝑑

= 3.82. 10
5
- 2.63 .10

6
). However, no 

exact dependence can be made to estimate 𝑎, 𝑐 and 𝑑.  

                                           

Fibre 5.4 

The apparent yield stress as function of fibre volume fraction for pulp fibre suspensions, SBK 

(L/D = 64.7-93.7, Ef  = 35.2 MPa), SGW (L/D = 20.3, Ef  = 923 MPa, TMP (L/D = 38.7, Ef  =  

1080 MPa), power law predictions are shown in solid lines, the coefficient of variation of 

yield stress measurement is ±10 % [Bennington et al. (1990)] 

 Influence of compatibilizer and composition 1.1.2. 

Adding compatibilizer to natural fibres based composite improves the adhesion between 

matrix and fibres. Maleic Anhydride grafted Polypropylene (MAPP) is suitable for natural 

fibre reinforced polypropylene. According to Gauthier et al. (1998), the key parameters of 

   SBK: σ0 = 3.82 .10
5 

f 
2.72

 

   SGW: σ0 = 1.08 .10
6 

f 
3.36

 

   TMP: σ0 = 2.63 .10
6 

f 
3.56

 

f  

𝜎0, Pa 
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using MAPP are the degree of grafting (Maleic Anhydride (MA) content) and the length of 

the grafted chains (PP chains). When MA content in MAPP increases, the interactions 

between MA and the fibre surface get larger. However, the possibility of the presence of free 

MA in composites is higher. Concerning chains of PP in MAPP, an easier entanglement with 

the fibre surface is possible, when they are long. 

 A decrease in viscosity is observed upon the addition of MAPP (Eastman G-3015, 3.1 % 

MA) to the neat polypropylene, as shown in Figure 5.1 [LeMoigne et al. (2013)]. This effect 

is then counterbalanced when fibres are added. Similar results were found by Twite-Kabamba 

et al. (2009) who studied hemp/PP composites.  

Sojoudiasli et al. (2014) investigated the effect of two different MAPP compatibilizers (Epolene 

E43 (MA 3.8 wt %) and Orevac 18729 (MA 1 wt %)) on flax reinforced polypropylene 

composite. The decrease in complex viscosity is higher for MAPP with higher MA content 

(Epolene E43) at the same composite formulation. 

Le Moigne et al. (2014) showed that using flax treated with an organosilane coupling agent can 

significantly improve the fibre-matrix adhesion for flax/ PLA (poly (lactid acid)) composites.  

 Influence of temperature and activation energy 1.1.3. 

The determination of temperature-dependent viscoelastic properties requires applying the 

time-temperature superposition principle. This principle typically involves the following 

steps: 1) experimental determination of viscosity versus frequency curves at several 

temperatures and a fixed frequency range 2) selection of a reference temperature 𝑇0  3) all 

viscosity vs frequency curves corresponding to different temperatures are shifted along both 

vertical and horizontal axis, fitting the reference viscosity curve ( 휂𝑇0
 versus 𝜔𝑇0

) 4) 

considering the temperature shift factor 𝑎𝑇 , the obtained master curve at the reference 

temperature is a plot of the shifted viscosity 𝑎𝑇 휂𝑇0 as function of the shifted frequency 

𝜔𝑇0
/𝑎𝑇  

The shift factor 𝑎𝑇  is usually correlated to the activation energy 𝐸𝑎 using an Arrhenius-type 

equation as follows  

𝑎𝑇 = 𝑒𝑥𝑝 [
𝐸𝑎

𝑅
(

1

𝑇
−

1

𝑇0
)]                                                                                                     [Eq.5.6] 

 



Chapter 5: Rheological properties of composites 

142 

 

where R is the universal gas constant, T is the temperature in K and T0 is the reference 

temperature. 

The influence of fibre concentration on the activation energy of molten composites seems to 

be an opened question. In some studies Ea is dependent on fibre content, while in some others, 

it is independent and remains constant when compared to matrix Ea. 

Islam and Begum (2015) showed that Ea of coir/PP composite increases from about 40 kJ/mol 

for neat PP to about 80 kJ/mol for 30 wt % concentration (Figure 5.5). According to authors, 

this was interpreted by the additional energy needed to drag fibres into the fluid-motion, when 

compared to flowing without fibres.  

 

Figure 5.5 

Ea of coir/PP as function of fibre content [Islam and Begum (2015)] 

 

Herrera (2014) found a similar result showing that Ea of PLA increases from 74 to 82 kJ/mol 

by adding 5 wt % of flax fibre.  

Nevertheless, some other authors found that activation energy decreases by increasing the 

fibre content: this was the case for sisal fibre/poly(butylene succinate) composites (Ea 

decreased from 35 kJ/mol for the neat polymer to 1-2 kJ/mol for 50 wt % sisal composite) 

[Feng et al. (2011)] and for glass fibres/PP composites (from 10 kJ/mol for the neat PP to 6 

kJ/mol after adding 30 wt % glass fibres) [Tiptipakorn et al. (2009)]. The reason of this 

decrease may be that Ea was calculated within the shear thinning regime. 
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Laun (1984) studied the activation energy of 30 wt % glass fibre-reinforced for different 

matrices (PP, HDPE, LDPE, and PA6) in steady state mode. 𝐸𝑎 of 30 wt % glass/PP (82± 3.2 

kJ/mol) and 30 wt % glass/HDPE (34.9± 1.4 kJ/mol), are slightly higher than that of neat PP 

(44 kJ/mol) and neat HDPE (28 kJ/mol). Whereas, 𝐸𝑎 is not affected by fibres in case of 

LDPE (51 kJ/mol for neat LDPE versus 48.7± 3.6 for 30 wt % glass/LDPE) and PA6 (80 

kJ/mol for neat PA6 versus 82± 3.2 kJ/mol). 

 Influence of fibre flexibility 1.1.4. 

To interpret the rheological properties of a suspension of flexible fibres, Switzer et al. (2003) 

used the criterion of flexibility F that couples fibre Young’s modulus and aspect ratio with the 

shear stress 
𝑚
γ̇ surrounding fibres: 

𝐹 =
64

π
(

𝐿

𝐷
)

4 𝑚γ̇

𝐸𝑓
                                                                                                              [Eq.5.7] 

m is the matrix viscosity. When F → ∞, fibres are perfectly flexible threads; when F → 0, 

fibres become rigid. Keshtkar et al. (2008) applied this criterion to study the dynamic 

rheology of model synthetic (Polyacrylate and Nylon) fibres dispersed in silicone oil. Figure 

5.6.a shows that  higher complex viscosity and elastic modulus were obtained at the same 

fibre concentration (6.5 vol %) either for fibres with lower Young’s modulus at the same the 

same fibre aspect ratio or for fibres with higher aspect ratio at the same Young’s modulus. 

This means that complex viscosity and elastic modulus of suspensions are larger as fibre 

flexibility increases (lower Young’s modulus and higher aspect ratio). The difference in 

complex viscosity and elastic modulus between suspensions becomes progressively smaller as 

the frequency increases. This trend was more pronounced for composites with higher fibre 

concentrations. They concluded that with more flexible fibres a “stronger structure” is formed 

due to larger number of fibre-fibre interactions. The authors outlined that the complex 

viscosity does not depend on the fibre stiffness (fibre Young’s modulus) after a high pre-

shearing of 5 s
-1

 (results presented in Figure 5.6 were made after a pre-shear of 0.1 s
-1

). 
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Figure 5.6 

Complex viscosity (a) and elastic modulus (b) of Polyacrylate- and Nylon fibres-silicone oil 

suspensions with different aspect ratio and fibre stiffness, after pre-shearing at 0.1 s
-1

 

[Keshtkar et al. (2008)] 

1.2. Capillary rheology and comparison with dynamic  

The capillary rheology of natural fibre composite was investigated by Basu et al. (1992), 

comparing jute fibre- to glass fibre-reinforced polypropylene. The initial fibre length of glass 

and jute fibres is 4.7 mm and 1-5mm, respectively. Figure 5.7 shows that the viscosity of both 

composite systems increases as fibre content increases, for a shear rate ranging from 60 s
-1

 to 

4000 s
-1

. The increase of viscosity becomes smaller when the shear rate gets higher. 

Considering that jute and glass fibres do not possess the same density, the comparison at the 

same weight fraction (so different volume fraction) between jute and glass fibre composites is 

difficult. The same volume fraction is needed to obtain a plausible comparison.  
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Figure 5.7 

Variation of melt viscosity with shear rate at 210 °C for neat PP and for composites with 5, 10 

and 20 wt % (a) jute/PP and (b) glass/PP [Basu et al. (1992)] 

Le Moigne et al. (2013) investigated also the capillary rheology of flax fibre based composites 

(Figure 5.8). Similar results to that of Basu et al. (1992) were obtained. They showed that the 

viscosity obtained from dynamic and capillary experiments did not follow the Cox-Merz rule 

(Eq.5.8): capillary viscosity was lower than that obtained in dynamic mode.  

휂(𝛾) = |휂∗(𝜔)|𝜔=�̇�                                                                                                          [Eq.5.8] 

Le Moigne et al. 2013 argued this deviation by the difference in the orientation of fibres in 

oscillatory shear experiments (fibres are randomly oriented) and capillary mode (fibres are 

well aligned along the flow direction). Mobuchon et al. (2005) observed a less pronounced 

deviation for 30 wt % glass fibre reinforced polypropylene. Laun (1984) found that glass 

fibre- reinforced polyethylene were following Cox Merz rule (Figure 5.9).  

 

Neat PP 

20 %wt jute/PP 

5 %wt jute/PP 
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5 %wt glass/PP 

20 %wt glass/PP 
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�̇� , s
-1

 

η, Pa.s 
 

a) b) 



Chapter 5: Rheological properties of composites 

146 

 

 

Figure 5.8 

Cox-Merz plot for the viscosity of flax/PP composites obtained from dynamic measurements 

(filled symbols), and capillary measurements (open symbols). Lines for capillary data are 

given to guide eye [ Le Moigne et al. (2013)] 

 

Figure 5.9 

Viscosity versus shear for high density polyethylene melt without fibres and with 30 wt % 

glass fibres [Laun (1984)] 
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1.3. Conclusions  

A brief review of literature on the rheological properties of fibres suspended in a fluid under 

simple shear showed that viscoelastic properties depend on fibre concentration, aspect ratio, 

flexibility and also on the presence of compatibilizer. Natural fibres have much complex 

morphology compared to glass fibres; they can be rigid or flexible (or semi-rigid) and can 

consist of elementary fibres and/or bundles in which fibres are “glued” together. The rheology 

of such composites is more complex and strongly depends on fibre type, in addition to all 

other “classical” parameters. In the next section, we describe the results obtained for flax and 

Tencel-based polypropylene composites and compare them with the viscoelastic properties of 

glass fibre based composites, all obtained in the same conditions.  
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2.  Results and discussion 

2.1. Dynamic rheology results 

We remind that no compatibilizer was used in this study in order not to modify matrix 

viscoelastic properties. The correlation between volume and weight concentrations is 

presented in Chapter 2, Table 2.3. 

 Influence of fibre concentration on composite viscoelastic properties  2.1.1. 

Figures 5.10 and 5.11 show complex viscosity 휂∗ and tan𝛿 = G”/G’ as a function of 

frequency 𝜔 at 190 °C for the neat polypropylene and composites with 6.3 and 20.5 vol % of 

flax, Tencel and glass. The results obtained for other fibre concentration (3.1 vol % and 13.1 

vol %) are not shown in order not to overload the graphs. Polypropylene shows a classical 

rheological behaviour with a Newtonian plateau at low frequencies and shear thinning at 

higher frequencies. The increase of fibre concentration leads to a viscosity rise and the 

disappearance of the Newtonian plateau, which is in agreement with literature Le Moigne et 

al. (2013) Sojoudiasli et al. (2014)  

 

 

Figure 5.10 

Complex viscosity of neat PP, flax/PP, Tencel/PP and glass/PP composites with 6.3 and 20.5 

vol % of fibres at 190 °C.  
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The tangent of phase angle  represents to what extent the system is more viscous or more 

elastic. For all studied systems, tan is greater than 1 overall studied frequencies, which is 

expected for the case of neat PP (Figure 5.11). The lower the frequency, the higher tan. The 

increase of fibre concentration leads to a decrease of tan, indicating a greater elasticity of the 

system that is particularly pronounced at low frequencies. For 20.5 vol % concentration of 

Tencel/PP and flax/PP composites, tanis around 2 at low frequencies and around 1 at high 

frequencies. tanwas also obtained for glass fibre based composites, as already reported 

in literature [Kitano et al. (1984); Drozdov et al. (2003); Mobuchon et al. (2005); Guo et al. 

(2005)].  

 

Figure 5.11 

tanδ = G”/G’ of neat PP, flax/PP, Tencel/PP and glass/PP composites with 6.3 and 20.5 vol % 

of fibres at 190 °C 

Figure 5.12a and 5.12.b show G’ and G” of neat PP and of composites with 6.3 vol % and 

20.5 vol % of Tencel, glass and flax. The higher the fibre concentration is, the higher the 

moduli are. This effect is more pronounced at low frequencies and for Tencel-based 

composite, followed firstly by glass and then by flax-based composites. According to 

Maxwell model of viscoelastic fluids, G’ and G” are power-law dependent on frequency with 

exponents being u = 2 and v = 1 at low frequencies, respectively. The obtained u and v 

exponents are regrouped in Table 5.1. For the neat polypropylene u = 1.6 and v = 0.98; the 

deviation of u exponent from the model value may be due to the polydispersity of the polymer 
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chains[Le Moigne et al. (2013)]. Both exponents decrease when fibre concentration increases. 

At high fibre concentration strong elasticity is developed, signifying the appearance of a 

plateau-like region. 

 

 

Figure 5.12 

Elastic G’ (a) and viscous (G”) (b) moduli vs frequency at 190 °C for the neat PP and 6.3 and 

20.5 vol % of fibres for Tencel/PP, flax/PP and glass/PP composites 
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Table 5.1 G’ and G” power-law exponents, x and y, respectively, at low frequencies 

 vol %  u  v 

Neat PP  0 1.59 0.98 

Tencel/PP 6.3 0.84 0.73 

flax/PP 6.3 0.86 0.92 

glass/PP 6.3 0.38 0.64 

Tencel/PP 20.5 0.32 0.29 

flax/PP 20.5 0.53 0.56 

glass/PP 20.5 0.02 0.15 

 

Figure 5.13 shows shear stress-frequency dependence of Tencel/PP, glass/PP and flax/PP at 

190 °C for two fibre concentrations, 6.3 and 20.5 vol %. The shear stress is defined by s = G* 

× γ, where G* = × is the norm of complex modulus and γ is the strain. At the same fibre 

concentration, Tencel-based composites have higher shear stress than glass and flax based 

composites at low frequencies; however at high frequencies all curves merge together. 

 

Figure 5.13 

Stress shear vs frequency of flax/PP and Tencel/PP composites with 6.3 and 20.5 vol % of 

fibres at 190 °C 
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The apparent yield stress s0 for each composite at each temperature was determined by the 

following steps: 1) plotting the s (the shear stress) versus frequency in a conventional plot 

(not log-log plot) 2) fitting the low frequency-end of curve by a linear model (s= a ω +b) 3) 

“b” gives the shear stress at zero frequency “s0” that corresponds to the apparent yield stress. 

Figure 5.14 gives examples of calculation of s0 of 20.5 vol % of Tencel, flax and glass 

composites, respectively  

 

Figure 5.14 

Shear stress vs frequency for 20.5 vol % composites with different fibre types 

Figure 5.15 demonstrates the influence of fibre type, concentration and temperature on s0. 

The higher the concentration is, the higher the s0 is, being higher for Tencel-based 

composites and glass and lower for flax. Moreover, increasing temperature leads to decrease 

s0. Measured flax and Tencel yield stress-concentration dependences were fitted with power 

law, shown as solid lines in Figure 5.14. In all cases studied the yield stress is proportional to 

fibre volume fraction to the power 3 within 20 % of deviation, as predicted at Bennington et 

al. (1990) study. It is difficult to predict the other exponents in Eq. 5.5 as far as there are too 

many variables and the influence of temperature on fibre Young’s modulus is not known.  
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Figure 5.15 

Apparent yield stress evolution with fibre volume fraction for Tencel/PP,flax/PP and glass/PP 

composites at 180 and 200 °C; lines are power law approximations 

 Viscosity-temperature dependence 2.1.2. 

Figure 5.16 shows an example of complex viscosity-frequency dependence for the case of the 

neat polypropylene and 20.5 vol % flax and Tencel composite at different temperatures (180, 

190 and 200 °C). Similar results were obtained for other fibre concentrations and for glass 

fibre based composite (not shown). As expected, viscosity decreases as temperature gets 

higher, for all studied systems. Master plots were built using time-temperature superposition 

principle and shift factors 𝑎𝑇 for each composite were determined, as explained in Section 

1.1.3 (Influence of temperature and activation energy). The examples for the neat PP and 20.5 

vol % composites with flax/PP, Tencel/PP and glass/PP are shown in Figures 5.15 and 5.16.  
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Figure 5.16 

Viscosity vs frequency for the neat PP and 20.5 vol % flax/PP and Tencel/PP composite at 

three temperatures (from top to bottom): 180 (blue), 190 (green) and 200 (red) °C 

Figure 5.17 

Master plots of the neat PP (1) and 20.5 vol % flax/PP (2), glass/PP(3) and Tencel/PP (4) 

composites at the reference temperature 190 °C 
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Figure 5.18 shows Ln (𝑎𝑇) versus (1/T)-(1/T0) of neat PP and Tencel/PP composite. Similar 

results were obtained for flax and glass based composites (not shown here). The shift factor 

𝑎𝑇 seems to obey to Arrhenius law (Eq. 5.4). The slope of the curve enables to assess Ea. 

 

 

Figure 5.18 

Ln (𝑎𝑇) versus (1/T)-(1/T0), for neat PP and Tencel/PP for different concentrations, the 

reference temperature (T0) is 463 K = 190 °C. 

Figure 5.19 shows the activation energy for all composites studied as a function of fibre 

concentration. Ea increases with fibre content for all types of fibres. Below 5 vol %, the 

composites with different types of fibres show very similar activation energy. From 5 vol % 

to 13 vol % Tencel and flax based composites have similar evolutions, while Ea of glass fibre 

composites shows a smaller increase. A steep increase in the activation energy for Tencel 

based composites occurs between 13 and 20.5 vol % while flax and glass based composites’ 

activation energies are almost constant and very close. Our results are in agreement with the 

studies of Islam and Begum (2015) and Herrera (2014) showing that an increase of fibre 

concentration in composites leads to enhance the activation energy. We suppose that fibres 

prevent polymer chains to move as they would do without them. The increase of fibre 

concentration also leads to increase interactions between fibres (friction, overlapping, etc.) 

and between fibres and matrix, requiring an additional energy to flow. A quantitative 
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interpretation of the influence of fibre concentration on the activation energy of viscous flow 

of composites requires a separate study. 

 

Figure 5.19 

Activation energy evolution with fibre concentration for Tencel/PP, flax/PP and glass/PP 

composites; zero fibre content corresponds to the neat polypropylene 

 

 Correlation between composite rheology and microstructure 2.1.3. 

All results presented above demonstrate that composites with Tencel fibres show higher 

viscosity, elasticity, apparent yield stress and activation energy as compared to glass- and 

flax-based composites at the same fibre concentration. Several reasons can be given to explain 

this finding. The first one is related to the number of fibres Ni per 1 mm
3
 of 30 wt % flax and 

Tencel
®
 composites, calculated as follows: 

𝑁𝑖 =
4𝑓

𝜋𝐿𝑖𝐷𝑖
2                                                                        [Eq.5.9] 

where subscript “i” is “n” or “w” corresponding to length and diameter weighted either in 

number or in weight. 

 For example, for 20.5 vol % fibre concentration, the number of Tencel fibres Nn and Nw is 

almost 10 times higher than the corresponding numbers for flax and 1.5- 2 times higher than 

for glass fibres.  
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Table 5.2 Microstructural features of fibres at 20.5 vol % and corresponding flexibility of at 𝜔 

= 0.1 rad/s(low frequency) 

Fibre 

type 

Ef 

(GPa) 

 

(L/D)n 

(20.5 vol %) 

(L/D)w 

(20.5 vol %) 

N 

(20.5 vol %) 

f(sd/c) 

(vol %) 

(휂𝑚�̇�) 

(Pa) 

(𝜔 = 0.1 rad/s) 

F (𝜔 = 0.1 rad/s) 

Nn Nw Fn Fw 

Tencel 10-15 20 

(Dn = 10 µm) 

26 

(Dw = 10 µm) 

13392 9891 3-4 119 2.6 10
-2

-

3.8 10
-2

 

7.410
-2

-

1.1 10
-1

 

Glass 73 33 

(Dn = 10 µm) 

44 

(Dw = 10 µm) 

7
 
913 5962 2-3 70.8 2.3 10

-2
 7.3 10

-2
 

Flax 30-110 14 

(Dn = 29 µm) 

17 

(Dw = 54 µm) 

1586 1013 6-7 25.7 2 10
-3

- 

7 10
-4

 

1.4 10
-3

-

4 10
-4 

 

-L/D: fibre aspect ratio (L/D)w averaged in weight, (L/D)n: averaged in number 

-Ef: fibre Young’s modulus 

-N = Number of fibres per unit volume,: Nw average in weight, Nn: average in number 

-f(s-d/c) = volume fraction of the transition semi-dilute/concentrated regime 

-F: Flexibility [Eq 5.7], Fn average in number, Fw average in weight 

 

The second reason is that the transition from the semi-dilute to concentrated regime f(s-d/c) 

occurs at different concentrations depending on the type of fibre: f(s-d/c) (glass) < f(s-d/c) 

(Tencel) < f(s-d/c) (flax), due to the difference in (L/D) values (Table 5.2). High dispersion in 

fibre dimensions (See Chapter 4, Section 2) and wide L/D distribution do not enable to 

calculate the exact value of this concentration. However, Figure 5.10 shows that for the 

concentration of 6.3 vol % a yield-like stress occurs at low frequency in case of Tencel and 

glass, signing that fibre-fibre interactions get already larger and a concentrated regime is well 

established. However, at the same concentration, the flax curve viscosity looks similar to that 

of polypropylene with a slight increase of viscosity at low frequencies, which means that 

fibre-fibre interactions just started to take place and the f(s-d/c) may be not reached. This is in 

agreement with the estimation of f(s-d/c) presented in Table 5.2. 

 It should also be taken into account that glass fibre aspect ratio strongly decreases when fibre 

concentration increases. If fibre aspect ratio was the only parameter controlling composite 

viscosity and yield stress (at a given fibre concentration), it would be glass fibre based 



Chapter 5: Rheological properties of composites 

158 

 

composite and not Tencel-based that should have the highest values. However, the number of 

glass fibres is lower than that of Tencel, and thus the third fact, which is the fibre flexibility, 

has to be taken into account, as discussed below.  

To illustrate the influence of fibre flexibility, we calculated the flexibility F (Eq.5.7) for fibre 

concentration of 20.5 vol % and frequency of ω = 0.1 rad/s. Moreover, we used both aspect 

ratios, (L/D)n and (L/D)w, to give the interval of flexibility values that we call Fn and Fw, 

respectively. The results are presented in Table 5.2. We approximate that the shear stress 

surrounding fibres is the same applied to the melt composite at a given frequency. Because it 

is impossible to prepare glass, flax and Tencel-based composites with the same fibre aspect 

ratio keeping the same processing conditions, the flexibility F reflects the influence of both 

fibre aspect ratio and Young’s modulus. The flexibility of Tencel fibres is slightly higher than 

that of glass fibres and more than two orders of magnitude higher than for flax fibres.  

As discussed in the state of the art section, flexible fibres (here the most flexible is Tencel) 

flow in a different way compared to the rigid ones (here glass fibres and flax bundles). 

Flexibility makes fibres turning under shear as S-turn or C-turn, which leads to shorter 

effective aspect ratio [Forgacs and Mason (1959)]. This will induce quicker rotation compared 

to rigid fibres, increasing the probability of fibre-fibre interactions, creating a larger normal 

stresses and longer time not aligned in the flow direction. All these factors contribute to the 

additional dissipation of viscous energy, higher yield stress, viscosity and elasticity of Tencel-

based composites.  

 Although, glass fibres have higher aspect ratio, Tencel based composites show higher 

viscosity, elasticity and higher yield stress (at a given fibre concentration). The specificity of 

cellulosic fibres has thus to be taken into account: if comparing Tencel and flax based 

composites, the number of fibres per volume unit is much higher for Tencel than for flax. The 

reason is that a major part of flax fibres are in bundles, and in addition Tencel is more flexible 

than flax. The understanding of fibre morphology and the adequate analysis of the 

distributions of both fibre length and diameter in natural fibre based composite are thus the 

key points for the interpretation of composite rheological properties. 

2.2. Capillary rheology and comparison with dynamic  

Figure 5.20 shows a superposition of viscosity values obtained with capillary and dynamic 

rheology for neat PP and Tencel/PP composites for all studied concentrations, 3.6, 6.3, 13.1 
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and 20.5 vol %. Contrary to Le Moigne et al. (2013), the Cox-Merz rule applies reasonably 

well. By increasing the shear rate, the curves corresponding to different concentrations tend to 

merge. For each concentration, the entire viscosity curve comprising dynamic and capillary 

measurements is fitted with the modified Carreau-Yasuda model (solid line) [Eq. 5.1]. 

 

Figure 5.20 

Dynamic (filled symbols) and capillary (open symbols) viscosity curves, for neat PP and 

Tencel/PP composites with 3.6, 6.3, 13.1 and 20.5 vol % at 190 °C. The solid lines 

correspond to fits with modified Carreau-Yasuda model 

Figure 5.21 shows a comparison among Tencel, glass and flax composites with 20.5 vol % 

and neat PP. At high shear rate, the curve of glass based composite merges with the one of 

Tencel, while flax and PP curves remain decreasing parallel to Tencel’s curve.  
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Figure 5.21 

Dynamic (filled symbols) and capillary (open symbols) viscosity curves, for neat PP and 

composites with 20.5 vol % for Tencel/PP, glass/PP and flax/PP at 190 °C. The solid line 

represents the fitting according to the modified Carreau-Yasuda model 

All curves including capillary and dynamic viscosity were fitted with the modified Carreau-

Yasuda model at 190 °C, as shown in figure 5.20 and 5.21. The fitting results are summarized 

in Table 5.3. 
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Table 5.3 Fitting results of the modified Carreau-Yasuda model 

 Vol % 𝜎0 0    𝑛   𝑎 

Neat PP 0 0.0 1201 0.04 0.38 0.85 

Tencel  3.6 53 2003 0.20 0.53 0.85 

 6.3 227 2702 0.19 0.48 0.85 

 13.1 2032 3457 0.04 0.23 0.85 

 20.5 10285 12025 0.15 0.23 0.85 

glass 3.6 61 1597 0.20 0.55 0.85 

 6.3 257 2000 0.20 0.53 0.85 

 13.1 1278 3492 0.14 0.39 0.85 

 20.5 6435 3968 0.02 0.12 0.85 

flax 3.6 11 1500 0.05 0.40 0.85 

 6.3 43 15115 0.05 0.35 0.85 

 13.1 431 3056 0.07 0.30 0.85 

 20.5 2180 6173 0.09 0.21 0.85 

 

Table 5.3 shows that s0 increases with the fibre content whereas n decreases. At low 

concentration (3.6 and 6.3 vol % for Tencel and glass, 3.6 vol % for flax) n is larger for the 

composite than for the PP. For the highest concentration, the values of  (that is the 

characteristic time corresponding to the transition from Newtonian plateau to shear thinning) 

and of 0 (that is zero shear rate viscosity) have to be taken with care as far as these 

composites show apparent yield stress and no Newtonian plateau is detectable. To set up the 

fitting of the experimental curves by Carreau-Yasuda model we have dealt with parameters as 

follows 

- The apparent yield stress s0 we used the method described in Section 2.1.1.  

-“𝑛” was determined by fitting the end (high shear rate) of viscosity-shear rate curve, 

respectively 

- “𝑎” is calculated from the neat PP curve and fixed for all composites. This parameter defines 

the shear rate length of the transition between the Newtonian plateau (without considering the 

yield stress) and the power law region at high shear rate. According to Figure 5.21, the shear 
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thinning part of Tencel composites curves is connected to the Newtonian plateau in the same 

shear rate range as the one of the neat PP. This is also true for glass and flax composites that 

are not presented in Figure 5.21. This approach was already used by Lertwimolnun (2006) for 

nanocomposites of clay reinforced polypropylene with similar rheological behaviour. 

- “” and “0” were calculated using Microsoft Solver
©

 in Excel
©

.  

Figure 5.22 shows SEM images of cross sections of Tencel, glass and flax fibre based 

composites with 20.5 vol %. Most glass fibres appear aligned in the flow direction. Most 

Tencel fibres seem to be perpendicular which is unexpected. The number of flax fibres seems 

to be much lower than that of the two other composites. This is in agreement with the number 

of fibres per unit volume given in Table 5.2. Glass fibres appear as straight rods, whereas and 

Tencel are curved. Flax fibres appear as elementary semi-rigid fibres and as thick bundles. 
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Figure 5.22 

SEM images of cross sections of composite extruded from capillary rheometer with 20.5 vol 

% for (a) Tencel/PP (b) flax/PP (c) glass/PP 

The increase of viscosity with fibre content can be evaluated by shifting curves to a reference 

concentration. Considering the concentration shift factor 𝑎𝑓 , the obtained master curve at the 

reference concentration is a plot of the shifted viscosity 𝑎𝑓휂𝑓 as function of the shifted 

frequency 𝜔𝑓/𝑎𝑓 . Figure 5.23 shows the master plot of viscosity as a function of the 

frequency (for dynamic mode) and shear rate (for capillary mode). At high shear rates all 

curves merge into a master curve. At low shear rates, the superposition does not work because 

of the yield stress. To get a master curve on all the shear rate range, it would be necessary to 

apply a shift factor on the yield stress. 

a b 

c 
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Figure 5.23 

Master plot of dynamic and capillary viscosity vs frequency and shear rate at 20.5 % the 

reference concentration 

Figure 5.24 presents the evolution of 𝑎𝑓 with fibre content 𝑓 for all studied composites and 

neat PP. 𝑎𝑓 = 1 for 20.5 vol %, the reference concentration. For each composite 𝑎𝑓 was fitted 

with exponential function: 𝑎𝑓 = 𝐴 𝑒−𝐵𝑓where A and B are adjustable constants. 𝑎𝑓 does not 

follow Arrhenius-type equation as 𝑎𝑇 (Eq. 5.5) . The couple of variables (𝐴,𝐵) increases from 

(9.34, 11.01) for flax/PP to (10.89, 11.89) for glass/PP and to higher values (12.25, 12.25) for 

Tencel/PP.  
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Figure 5.24 

Concentration shift factor vs fibre volume fraction at 190 °C for Tencel, glass and flax 

composites. Zero concentration corresponds to the neat polypropylene. Equations in the graph 

correspond to the fitting of the plotted curves 

2.3. Conclusions 

Viscoelastic properties of molten polypropylene cellulose (Tencel) and natural fibre (flax) 

based composites were studied and compared with glass fibre composites prepared in the 

same conditions. Oscillatory and dynamic rheology was used. Fibre concentration was varied 

from 3.6 to 20.5 vol % and composite temperature from 180 to 200 °C. To correlate the 

rheological properties with fibre size and morphology, the analysis of fibre dimensions in 

composites already presented in Chapter 3 was used.  

For dynamic rheology, we showed that complex viscosity, viscous and elastic moduli increase 

especially at low frequencies, when the fibre aspect ratio, flexibility and concentration 

increase. An apparent yield stress at low frequencies was evaluated and correlated with the 

fibre content. We interpreted the apparent yield stress by the enhancement of fibre-fibre 

interactions, which leads to network-like structure when volume fraction reaches the 

concentrated regime. The influence of temperature was modelled by Arrhenius law enabling 

Tencel/PP af = 12,25 e-12,25f 

glass/PP af = 10,89 e-11,89f 

flax/PP af = 9,34 e-11,01f 
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to evaluate the composite activation energy. The latter increases as fibre content gets higher. 

Tencel composites showed higher activation energy as compared to flax and glass ones. This 

was explained by reducing the polymer chains mobility when fibres are added to polymer. 

The fibre-fibre and fibre-matrix interactions increase when fibre content is greater, which 

needs more energy to let polymer chains flow. 

The superposition dynamic/capillary rheology obeyed the Cox-Merz approximation. The 

overall curves including dynamic and capillary measurement were fitted with the modified 

Carreau-Yasuda model. The obtained results are plausible to be as inputs rheological data for 

further injection moulding process simulation. This will be the aim of Chapter 7. Finally, the 

increase in viscosity due to the concentration enhancement is evaluated by a concentration 

shift factor following an exponential evolution as a function of fibre concentration.  
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Chapter 6        

Mechanical properties of 

composites 
Mechanical properties of short fibre reinforced thermoplastics strongly depend on the 

microstructure established during processing. As seen in the previous chapters, the flow-

induced microstructure in injection moulded parts leads to a multilayer-structure in which 

fibres are usually oriented parallel to the flow direction near the surface and perpendicular to 

the flow direction at the mid-plane. Therefore, injection moulded parts can be considered as 

anisotropic materials. The mechanical behaviour of such materials is dependent on the 

dispersion, size and orientation of fibres and the reinforcement is expected from the fibres 

aligned along the load direction.  

The aim of this chapter is to correlate fibre microstructure in the injection moulded parts with 

the tensile and impact properties of composites. First, we present the state of the art related i) 

to the mechanical properties of natural fibre- and glass fibre-reinforced thermoplastics, 

focusing on the correlations with composite microstructure and ii) to the existing models 

classically used to predict their mechanical properties. We present then the experimental 

results of tensile tests performed on samples that were cut out from the moulded “box” along 

three different directions with respect to the main flow direction. The correlation with the 

microstructure was possible since tensile samples have been cut from the same location as the 

samples used for the microstructure analysis. The data that were obtained from the 

quantification of orientation in Chapter 4 and from fibre size analysis in chapter 3 will be 

used to model the tensile properties of composites. Moreover, an investigation of the impact 

properties made with impact bars injected separately will be presented and analysed. A 

comparison between experimental and theoretical results predicted by models will be 

discussed.  
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1.  State of the art 

1.1. Tensile properties  

 Experimental results 1.1.1. 

Many studies report on the mechanical properties of natural fibre reinforced thermoplastics, 

but only few studies correlate them with the microstructure in injection moulded parts. Aurich 

and Mennig (2001) studied the stiffness of 30 wt % flax reinforced polypropylene with fibre 

aspect ratio being 13 and with 2 wt % of MAPP added to improve adhesion. Tensile 

specimens were taken in parallel and in perpendicular directions to the main flow direction; 

the obtained elastic moduli were 3020 MPa and 2200 MPa, respectively. The authors 

explained the difference between elastic moduli in the parallel and the perpendicular 

directions by the different fibre alignment in the core and shell regions. The orientation 

component 𝑎𝑥𝑥 (with respect to the main flow direction) was 0.9 at the sample surface and 0.2 

at the core in the central area of the plaque, and 0.6-0.9 close to the lateral border. The fibres 

are more aligned close to surface as compared to core. Similar results were found by Neves et 

al. (1998) for glass fibre-reinforced polycarbonate. The main factors influencing fibre 

alignment, and shell and core layers thickness were pointed out at Chapter 3 (State of the art 

section).  

Bourmaud et al. (2013) investigated the stiffness of 13.7 vol % flax-reinforced polypropylene. 

To understand the difference in tensile properties between core and shell layers, a dog-bone 

sample with thickness of 4 mm was cut into 3 samples of the same shape such as the thickness 

of each was 1 mm (Figure 6.1). The samples from the shell layer were taken at a distance of 

0.1 mm from the surface and the core sample was taken from the mid-plane. The tensile test 

was performed on the entire 4 mm thick sample and for the core and the shell samples of 1 

mm thick each.  
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Figure 6.1 

Sampling of the shell and core of the tensile specimen [Bourmaud et al. (2013)] 

Figure 6.2 shows the stress-strain curves of the flax/PP core (a) and shell (b) specimens and 

their corresponding scans showing the presence of fibre aggregates (white areas). Three 

samples were tested for each core and shell regions. All samples were scanned before and 

after testing, using a scan micrograph. The purpose is to show the influence of fibre dispersion 

on the tensile properties. According to authors, the bundles’ concentration is greater at the 

core than at the shell. For the core stress-strain curves (a), authors concluded that samples 3 

and 2 contain larger bundles’ size than the sample 1. The breakage occurs earlier as the 

bundles’ size is larger, leading to a lower elongation at break. The strength also decreases as 

the bundles size is greater. For the shell stress-strain curves (b), the cross-sections show a 

lower bundles amount than at the core sample, explained by the higher shear close to the dog-

bone surface. Only sample 1 in Figure 6.2.b has a bundle in the effective cross-section, which 

led to a premature breaking compared to the shell samples 2 and 3. In addition, whatever the 

sample is cut from shell or core, the presence of bundles does not affect the Young’s modulus. 

The authors observed also cross sections of samples (parallel to the dog-bone plane) by SEM 

and showed that flax fibres are more aligned in the shell than in the core, the reason 

explaining the difference in term of strength and stiffness between core and shell samples. 

However, the microstructure investigation was limited to a qualitative observation and no 

quantitative analysis of fibre orientation was performed.  
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Figure 6.2 

Stress-strain curves of the flax/PP of core samples (a) and shell samples (b) and the 

corresponding image obtained by micrograph scanning, before and after testing [Bourmaud et 

al. (2013)] 

Bourmaud et al. (2013) observed also the breakage of the core sample during testing by a 

SEM micrograph. During the extension of the sample, the crack is initiated at the bundles, 

which make angle to the cross section plane (Figure 6.3). The authors considered that these 

bundles should present weakness areas that affect the composite properties. Therefore, 

improving bundles’ dissociation could result in better tensile properties.  

 a 

b 
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Figure 6.3 

SEM micrograph of a core 13.7 vol % flax/PP during tensile testing [Bourmaud et al. (2013)] 

Figure 6.4 presents a comparison between flax fibre- and glass fibre-reinforced polypropylene 

at the same volume fraction 13.7 vol % [Bourmaud et al. (2013)]. With the same volume 

fraction, the weight fractions are different because of the difference in fibre density. In 

addition, 4 wt % of MAPP was added in the case of natural fibre composite. A considerable 

difference in stiffness and strength at break is observed between shell and core specimens, for 

each type of composite. The shell samples show a much higher Young’s modulus as 

compared to core ones, by +69 % and +24 % for glass and flax based composites, 

respectively. The shell samples exhibit also a larger strength at break as compared to the core 

ones, by +81 % and +21 %, for glass and flax based composites, respectively. The glass fibre 

based composites reveal more important stiffness and strength at core and shell samples as 

compared to the flax based. The authors explained this by the higher stiffness of glass fibres, 

in addition to the bundle structure of flax that  limits their dispersion in matrix and orientation 

in the tensile direction. Moreover, in a previous study of Bourmaud and Baley (2010), nano-

indentation measurements demonstrated that the mechanical properties of the cell wall of flax 

fibres decrease after compounding and injection moulding, which changes their structure, 

composition, cohesion and water content. Bourmaud et al. (2013) did not focus on the 

influence of the fibre size on the tensile properties. The difference of properties between glass 

and flax based composites can be related to the difference of fibre size in composites, in 
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addition to the other reasons (fibre properties and orientation). It is known that fibre size 

decreases by processing and the mechanism of rupture of flax fibre is dissimilar to the glass 

one. Therefore, a difference of size of flax fibres compared to glass ones is expected after the 

injection moulding of composites (See Chapter 3, Section 2.4. Comparison between fibre 

types). The elongation at break is about 2.2-3.4 % for both types of composites. The neat 

polypropylene has an elongation at break of 3.4 % at the core and 11.2 % at the shell (not 

shown in Figure 6.4). Whereas, the elongation at break of composites considerably decreases 

at the shell samples compared to the neat PP, it remains almost constant at the core samples.  

 

Figure 6.4 

Stress-strain curves of the core and shell of glass and flax based composites at the same 

volume faction 13.7 vol % and different weight fraction (30 wt % Glass/PP and 21 wt % 

Flax/PP) [Bourmaud et al. (2013)] 

Many authors studied the influence of various parameters, else than fibre orientation and 

dispersion, on the mechanical properties of composites. By analysing the influence of length 

and concentration on the stiffness of glass/PP composites [Thamason and Vlug (1996,a,b)] 

and flax/PP composites [Nechwatal et al. (2005)], it was shown that the fibre length needed to 

reach the maximum stiffness is much lower than that needed to reach the maximum strength. 

For glass/PP, a fibre length higher than 0.8 mm is enough to make the stiffness of a short fibre 

composite equivalent to 90 % of the stiffness of a continuous fibre composite, whereas 90 % 

of strength requires at least a fibre length of 13 mm [Thamason and Vlug (1996,a)]. For 
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flax/PP composites the equivalent length enabling a maximum stiffness is 1 mm, which is 8 

times shorter than the length needed for a maximum strength [Nechwatal et al. (2005)]. Peijis 

et al. (1998), Van Den Oever et al. 2000, Gharkhail et al. (2000), Karmaker et al. (1996) and 

Barkoula et al. (2010) showed that MAPP improves the composite strength but has almost no 

effect on the stiffness for flax fibres based systems. Ganster and Fink (2006) focused on the 

mechanical properties of composite reinforced with man-made cellulose fibres. Figure 6.5 

shows a comparison among composites with several types of man-made fibres and jute; all of 

them were made with 25 wt % of fibres and 1 wt % of MAPP. Tencel/PP composites show 

the highest Young’s modulus. All composites show reduced elongations at break compared to 

the neat polypropylene.  

 

Figure 6.5 

Strength, modulus and elongation for injection moulded composite test bars with 25 wt % 

fibre load as a function of fibre type; “no” corresponds to the neat polypropylene: Cord = 

Cordenka 700, Visc = Viscose, Carb = Carbamate[Ganster and Fink (2006)] 

 Models of tensile stiffness and strength of composites 1.1.2. 

 Tensile stiffness  

The prediction of tensile stiffness of natural fibre-reinforced thermoplastics uses models 

already developed for discontinuous (short) glass or synthetic fibre composites. The model of 

Cox and Krenchel [Cox (1952), Krenchel (1964)] (Eq.6.1) is commonly used to predict the 

stiffness 𝐸𝑐 for oriented short fibre composite, which is the case of injection moulded parts.  



Chapter 6: Mechanical properties of composites 

180 

 

𝐸𝑐 = 𝜉0𝜉1𝑓𝐸𝑓 + (1 − 𝑓)𝐸𝑚                                                                                            [Eq.6.1]     

where 𝐸𝑓, 𝐸𝑚 and 𝑓 are the fibre Young’s modulus, matrix Young’s modulus and the fibre 

volume fraction, respectively. 𝜉0 and 𝜉1 are the orientation and the efficiency factors, 

respectively. 

𝜉1 = [1 −
tanh (

𝜅𝐿

2
)

𝛽𝐿

2

]                                                                                                          [Eq.6.2] 

𝜅 =
2

𝐷
[

2𝐺𝑚

𝐸𝑓𝑙𝑛(√
𝑟

𝑅
)

]

1

2

                                                                                                             [Eq.6.3] 

where 𝐿 is the fibre length, 𝐺𝑚 is the shear modulus of the matrix, 𝜒𝑖 is a factor depending on 

the geometrical packing arrangement of fibres, 𝑟 is the fibre radius and 𝑅 is the centre to 

centre spacing of fibres. The 
𝑟

𝑅
  factor can be related to the fibre volume fraction 𝑓 as follows:  

𝐿𝑛 (√
𝑟

𝑅
) = 𝐿𝑛 (√𝜋/𝜒𝑖𝑓 )                                                                                               [Eq.6.4] 

Thomason et al. (1996) suggested  𝜒𝑖 = 4 for glass fibre- reinforced polypropylene. 

𝜉0 is actually the theoretical orientation factor of Krenchel [Krenchel (1964)] that takes into 

account fibre orientation as follows: 

𝜉0 = ∑ 𝑓𝑛𝑛 𝑐𝑜𝑠4𝜙𝑛                                                                                                           [Eq.6.5] 

where 𝑓𝑛 is the fraction of fibres with the orientation angle 𝜙𝑛 with respect to the tensile 

direction axis. It was shown by Krenchel (1964) and Folkes (1985) that 𝜉0= 3/8 for random 

planar orientation and 𝜉0= 1/5 for three dimensional random fibre orientation, and 1 for all 

fibres oriented in the direction of traction. Gharkhail et al. (2000) discussed these values and 

suggested that deviations may likely occur for flax fibres due to the out-of-plane oriented 

fibres and the bending of fibres.  

 Tensile strength  

Kelly and Tyson (1965) extended the rule of mixture to predict strength 𝜎𝑐 of unidirectional 

fibre-reinforced polymer composites as follows: 
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𝜎𝑐 = 휁𝐿𝑓𝜎𝑓 + (1 − 𝑓)𝜎𝑚                                                                                                 [Eq.6.6] 

where 𝜎𝑓 is the fibre tensile strength, 𝜎𝑚 is the matrix strength. 휁𝐿 is the fibre length 

efficiency factor: 

휁𝐿 =
1

𝑓
[∑

𝐿𝑖𝑓𝑖

2𝐿𝑐
+ ∑ 𝑓𝑗 (1 −

𝐿𝑐

2𝐿𝑗
)]                                                                                       [Eq.6.7] 

Equation 6.7 contains two parts depending on if fibre length is subcritical 𝐿𝑖 < 𝐿𝑐 (first 

summation) or supercritical 𝐿𝑗 > 𝐿𝑐 (second summation), where 𝐿𝑐 is the critical length:  

𝐿𝑐 =
𝜎𝑓𝐷

2𝜏
                                                                                                                           [Eq.6.8] 

where 𝐷 is the fibre diameter and 𝜏 is the fibre-matrix interfacial shear strength.   

The critical length 𝐿𝑐 = 𝜎𝑓 (
𝐷

2𝜏
) can be determined either experimentally as a single fibre 

fragmentation test [Beckermann and Pickering (2009)] or calculated knowing the strength of 

the fibre 𝜎𝑓. The interfacial shear strength 𝜏 are usually assessed by micromechanical tests. 

Bowyer and Bader (1972) suggested a modified Kelly and Tyson model by adding an 

orientation factor to take into account the fibre orientation. Applied on sisal fibre composite, 

this model provides results that fit well the experimentally obtained tensile strengths [Li et al. 

(2000); Kalaprasard et al. (1997)].  Thomason et al. (1996) used an empirical orientation 

factor equal to 0.2 to fit the experimental measurements of glass/PP composites  

1.2. Impact properties    

 Experimental results 1.2.1. 

Most studies related to impact properties of natural fibre-reinforced thermoplastics were not 

associated with injection moulding process, except those of Paunikallio et al. (2003, 2004) 

and Ganster and Fink (2006). Ganster and Fink (2006) focused on the composites with man-

made cellulosic fibres; they showed that Tencel/PP exhibits better impact strength over 

jute/PP and viscose/PP but lower than Cordenka/PP at the same fibre concentration (25 wt %) 

(Figure 6.6). However, no correlation among composite microstructure, fibre concentration 

and impact properties was performed.  
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Figure 6.6 

Charpy, notched Charpy “Charpy (n)” impact strength and heat distortion temperature (HDT-

A) for injection moulded composite test bars with 25 wt % fibre load as a function of fibre 

type and for the neat PP “no” (n.b means not broken) (Cord = Cordenka 700, Visc = Viscose, 

Carb = Carbamate) [Ganster and fink (2006)] 

For processes else than injection moulding, Wambua et al. (2003) made a comparison among 

Charpy impact properties of compressed randomly oriented kenaf, coir, sisal, hemp and jute 

fibre reinforced polypropylene. It turned out that hemp and sisal composites have better 

impact properties over others. Moreover, it was shown that impact strength increases with the 

fibre content. 

Van den Oever et al. (2000) investigated mechanical properties of flax mat reinforced 

polypropylene and showed that while impact strength increases with increasing fibre content 

and fibre length, it decreases with increasing fibre-matrix adhesion. This was explained by the 

fact that higher adhesion results in shorter average pull-out length. Similar results were found 

by Gharkhail et al. (2000) for a random non-woven flax fibre mats/polypropylene and Gironès 

et al. (2011) for abaca/polypropylene composites. This statement was even more confirmed 

by Bax and Müssig (2009) for flax/PLA and Plackett et al. (2003) for jute/PLA, where fibre-
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matrix adhesion is naturally good and adding fibre can unexpectedly decrease the impact 

strength.  

Clemons et al. (2003) studied the injection moulded pulp-reinforced polypropylene and 

demonstrated that dynamic fracture toughness during impact test increased when fibres are 

oriented perpendicular to the crack direction. For the injection moulding of glass fibre-

reinforced polypropylene, Thomason and Vlug (1997) demonstrated that impact strength 

increases when the length and the concentration of fibres get higher. Furthermore, an 

improved fibre-matrix interaction decreases impact strength, as found for the natural fibre 

case. 

A small enhancement in impact strength can be obtained with a temperature decrease. Various 

mechanisms of energy dissipation may operate during impact test. Wells and Beaumont 

(1985) revealed that composite containing short fibres randomly dispersed and aligned 

follows a fibre pull-out, as energy dissipation mechanism preceding a fast fracture. Thomason 

and Vlug (1997) considered that fibre fracture is the dominant energy dissipation mechanism. 

The identification of the fracture mechanism is classically possible by a microscopy 

observation. 

 Models of impact strength 1.2.2. 

Cottrell (1964) developed a model for composites containing unidirectional fibres, including 

three possible mechanisms of energy dissipation: 1) matrix fracture, 2) fibre fracture and 3) 

fibre pull-out. The predicted impact energy increases with fibre length up to a critical fibre 

length 𝐿𝑐 in a similar way to Kelly and Tyson (1965) model prediction for the composite 

strength. The maximum of impact energy was correlated with the change in the mode of 

fracture: from fibre pull-out for length < 𝐿𝑐 to fibre fracture for length > 𝐿𝑐. Since this model 

has been considered only for the unidirectional reinforcement, it is somewhat questionable to 

apply it for randomly oriented fibres or multi-layer oriented structure as the case of injection 

moulding of short fibre-reinforced composite. Therefore, Thomason and Vlug (1997) 

developed a simpler fibre strain energy model based on the rule of mixture as follows: 

𝑈𝑐 = 𝑓 (
𝜎𝑓

2𝐿𝑑

2𝐸𝑓
) (

𝐿

𝐿+𝐿𝑐
) + (1 − 𝑓)𝑈𝑚                                                                             [Eq.6.9] 

where 𝑈𝑐 is composite impact strength, 𝑓 is the fibre volume fraction, 𝐸𝑓 is the fibre Young’s 

modulus, 𝐿 is the fibre length, 𝑈𝑚 is the matrix impact strength, 𝐿𝑑 is the length of the 
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debonding fibre, 𝜎𝑓 is the fibre strength and 𝐸𝑓 is the fibre Young’s modulus. The term 

(
𝜎𝑓

2𝐿𝑑

2𝐸𝑓
) corresponds to the total energy for the fracture of a single fibre. According to 

Thomason and Vlug (1997), 𝐿𝑑 increases when 𝐿𝑐 increases. However the effect of fibre 

orientation is not taken into account.  

1.3. Conclusions  

The mechanical performances of natural fibres reinforced thermoplastic are directly related to 

fibre aspect ratio and length, concentration, orientation and dispersion. The flow-induced 

microstructure formed in composite leads to a material with anisotropic properties. This 

anisotropy is directly reflected by tensile stiffness and strength. In most cases, the Young’s 

modulus and the tensile strength are higher when specimen tensile bar is parallel to the main 

direction of flow than perpendicular. This stems from a different fibre alignment at the shell 

layer compared to the core layer. Higher fibre aspect ratio and concentration lead to better 

tensile and impact properties. While adding compatibilizer increases the tensile strength, it 

has almost no effect on the tensile stiffness and decreases the impact strength.  

Models predicting the mechanical properties of composites were developed for glass fibre 

reinforced plastics and the same models are presently extended to the case of natural fibres. 

The models of the tensile properties are associated to fibre critical length; below it the 

contribution of fibres in composite performance is less important than above it. The value of 

the critical length varies from one study to other and depends on the use of compatibilizer or 

not. This must be one of the main reasons of the deviation of the estimated mechanical 

properties for natural fibre-reinforced thermoplastics. Some recent modifications of the 

models dedicated to tensile stiffness and strength enable to take into account fibre orientation, 

which makes the predicted results closer to the experimental ones. However, the existing 

models of prediction of the impact properties do not yet include the orientation effect.   

 

 

 



Chapter 6: Mechanical properties of composites 

185 

 

2.  Results and discussion 

2.1. Tensile Properties  

 Experimental results: influence of fibre orientation 2.1.1. 

The location of dog-bone samples is identical to the sample used to characterize the fibre 

orientation, dispersion and length. This enables to correlate the tensile properties to the 

microstructure in the injection moulded box. All testing conditions were described in Chapter 

2. 

 

Figure 6.7 

Top view of the injection moulded box in xy-plane, is the fibre orientation in xy-plane,  is 

the tensile test direction, three different testing directions (α = 0 °, α = 45 ° and α = 90 °) with 

respect to x-direction  

Figure 6.7 shows the three orientations α = 0 °, α = 45 ° and α = 90 ° of the specimen with 

respect to the local flow direction. Figure 6.8 shows an example of tensile test of 20.5 vol % 

flax/PP for the three orientations. The best tensile properties occur for = 0 °. In Chapter 4, 

we found 𝑎𝑥𝑥 is 0.8-0.9 at the shell, meaning that fibres are well oriented along the flow 

direction. In the core, 𝑎𝑥𝑥 is around 0.3-0.4. This corresponds to a slight orientation 

perpendicular to the flow direction (0 would be perfect orientation, and 0.5 means random in-

plane orientation). Therefore, there is a qualitative agreement between the measured 

orientation and the mechanical response. Similar stress-strain curves were obtained for 

glass/PP and Tencel/PP (not shown). 

fibre orientation in xy-plane 

Fibre 

 Tensile test direction  Microstructure analysis 



Chapter 6: Mechanical properties of composites 

186 

 

  

Figure 6.8  

Stress-strain dependences of 20.5 vol % flax/PP for α=  0 °,45 ° and 90 ° 

Figures 6.9, 6.10 and 6.11 show the fracture surface after the tensile test of 20.5 vol % flax, 

Tencel and glass composites, respectively. For each type of composite, zy-plane and zx-plane 

are shown, corresponding to the traction of samples along x-direction (α = 0 °) and y-direction 

(α = 90 °), respectively. Two observations can be pointed out: 1) the shell layers are thicker 

than the core ones especially for flax and glass fibres 2) only fibres oriented in the extension 

direction are broken or/and pulled out. This means that fibres aligned in the tensile direction 

contribute marginally to the resistance against the sample extension. Moreover, thicker shell 

layers enable to explain more the higher tensile properties when samples are extended in x-

direction than perpendicular. This seems reasonable because shell layers are almost aligned in 

the x-direction. The flax fibres that are pulled-out from matrix or broken during tensile testing 

can be elementary fibres or structured in bundles (Figure 6.9). This means that the mechanism 

of rupture is not dependent on the fibre morphology.  
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Figure 6.9 

Fracture surface after tensile testing of two 20.5 vol % flax/PP samples in xz-plane and yz-

plane, extended along y-direction (α = 90 °) and x-direction (α = 0 °), respectively 
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Figure 6.10 

Fracture surface after tensile testing of two 20.5 vol % Tencel/PP samples in xz-plane and yz-

plane, extended along y-direction (α= 90 °) and x-direction (α= 0 °), respectively 
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Figure 6.11 

Fracture surface after tensile testing of two 20.5 vol % Tencel/PP samples in xz-plane and yz-

plane, extended along y-direction (α= 90 °) and x-direction (α= 0 °), respectively 

 Experimental results: influence of fibre type 2.1.2. 

Figure 6.12 shows Young’s moduli of 20.5 vol % composites for different fibre types and 

different angles α (with respect to x-direction). The glass composite shows the highest 

Young’s modulus as compared to flax and Tencel ones overall angles α. As compared to the 

neat PP, Young’s modulus of glass-reinforced composites is 116 % higher, while it is only 66 

X main flow direction  

Z 

Y tensile direction (α = 90 °) 

Shell 

Core 

Core 

Shell 

Z 

X main flow direction and 

tensile direction (α = 90 °) 
   

Y 



Chapter 6: Mechanical properties of composites 

190 

 

% and 43 % higher for flax and Tencel based composites, respectively. One of the reasons is 

that the aspect ratio of glass fibres is twice higher than that of flax and 1.5 higher than that of 

Tencel (see Chapter 3). Moreover, glass fibre Young’s modulus is 73 GPa, whereas that of 

Tencel is 10-15 GPa and that of flax varies between 50 and 110 GPa depending on flax fibre 

diameter [Charlet et al. (2010)]. In our case, most of flax fibres are in bundles and thus their 

moduli should be close to 50 GPa.  

The obtained moduli of composites decrease with α increasing from 0 ° to 45 ° and then 

remain almost constant for α from 45 ° to 90 ° overall fibre types. Moreover, when α 

increases, the difference in modulus between Tencel and flax composites becomes smaller. 

This can be explained by the fact that when the traction direction is perpendicular to the flow 

direction (α= 90 °), the core fibres are more effective than the shell ones, and according to 

results obtained in Chapter 4, Tencel fibres are more aligned than flax fibres at core (𝑎𝑥𝑥 (flax)= 

0.33 at 𝑎𝑥𝑥 (Tencel)= 0.17) 

 

Figure 6.12 

Young’s modulus of 20.5 vol % composites for different types of fibres (flax, Tencel and 

glass) and for different loading directions (α= 0 °, α= 45 °, α= 90 °) 

Figure 6.13 shows the ultimate tensile strength for composites of 20. 5 vol % for different 

fibre types and different angles α. Tensile strength decreases when α increases for all fibre 

types. The glass composite strength is higher than that of flax and Tencel. Nevertheless, the 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

α=0° α=45° α=90° 

E, MPa Flax Tencel Glass Neat PP



Chapter 6: Mechanical properties of composites 

191 

 

difference in strength between glass and flax is relatively small compared to the difference in 

Young’s modulus seen in Figure 6.11. The improvement in tensile strength relative to the neat 

PP is lower than the one of Young’s modulus. For example at α= 0 °, the addition of fibres to 

PP increases strength of composite by 45 % with glass, by 40 % with and by Tencel. 

According to Peijis et al. (1998), Van Den Oever et al. (2000), Gharkhail et al. (2000) and 

Barkoula et al. (2010) compatibilizer effect is more pronounced on the tensile strength than on 

tensile stiffness. Therefore, the lower improvement of tensile strength of composites relative 

to the neat PP is due to the absence of compatibilizer.  

 

Figure 6.13  

Tensile strength of 20.5 vol % composites for different types of fibres (flax, Tencel and glass) 

and different directions towards main flow α= 0 °, α= 45 °, α= 90 ° 

Figure 6.14 shows the elongation at break as a function of α and fibre type. The elongation of 

composites is strongly reduced compared to the neat polypropylene at α= 0 °, and it is similar 

at α= 90 °. The neat PP shows high elongation at break when the sample is cut as α= 0 °. This 

was explained by the high orientation of chains of injected PP along the main flow direction 

[Kalay and Bevis (1997)]. In fact, an injection-moulded neat polypropylene presents a core-

shell structure appearing at the scale of the polymer chains, which leads to different properties 

along the flow direction and perpendicular. Tencel based composites elongation at break is 

twice larger as compared to flax and glass based ones. Interestingly, the elongation at break of 
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Tencel based composite does not depend on how the sample is positioned (and extended) with 

respect to the main flow direction. The most probable reason is that Tencel fibres are curved 

and extremely flexible so that they can be stretched under tensile force whatever the direction.  

 

Figure 6.14 

Elongation at break of 20.5 vol % composites for different types of fibres (flax, Tencel and 

glass) and different directions (α= 0 °, α= 45 °, α= 90 °) 

 Predictions of composite tensile properties and comparison with experimental results 2.1.3. 

 Stiffness 

In this study we assume that fibre orientation is planar and symmetric with respect to the mid 

thickness plane. Considering that the orientation measurements were carried out for many 

layers at different depths across sample thickness from surface to core (Chapter 4), we 

approximate that 𝑎𝑥𝑥 between two successive layers does not vary and thus thickness “e” can 

be divided into smaller sub-thicknesses ‘en’ each with different orientation components 𝑎𝑥𝑥. 

We approximate also that the orientation coefficient 𝜉0 (see Eq6.5) can be calculated by a 

quadratic assumption such as 𝑐𝑜𝑠4𝜑𝑛 = 𝑎𝑥𝑥𝑥𝑥 = (𝑎𝑥𝑥)2 when sample main axis (and thus 

extension direction) is parallel to the flow direction (α= 0 °), and 𝑐𝑜𝑠4𝜑𝑛 = 𝑎𝑥𝑥𝑥𝑥 = (𝑎𝑦𝑦)
2
 

when sample main axis direction is perpendicular to the flow direction (α= 90 °). 𝑎𝑦𝑦 is 

calculated with 𝑎𝑥𝑥 + 𝑎𝑦𝑦 = 1, the normalization approach of the components in the 

orientation tensor (see chapter 4), assuming that 𝑎𝑧𝑧 is small when compared to 𝑎𝑥𝑥 and 𝑎𝑦𝑦 . 

This enables to describe the core-shell orientation induced by injection moulding flow and 
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provides orientation factors 𝜉0𝑥 and 𝜉0𝑦 in x-direction and y-direction, respectively, as 

follows: 

𝜉0𝑥 = ∑
𝑒𝑛(𝑎𝑥𝑥𝑛)

2

𝑒𝑛                                                                                                           [Eq.6.10]  

and  𝜉0𝑦 = ∑
𝑒𝑛(𝑎𝑦𝑦𝑛

)
2

𝑒𝑛                                                                                                  [Eq.6.11]  

We suppose that these factors remain constant with concentration variation. Table 6.1 

presents the results of this approximation.  

Table 6.1 Orientation factors for different composite types 

 flax/PP Tencel/PP glass/PP 

𝝃𝟎𝒙 0.38 0.28 0.34 

𝝃𝟎𝒚 0.2 0.3 0.18 

 

The efficiency factor 𝜉1  [Eq.6.2] varies with fibre size that in turn varies with fibre content 

and fibre type. The results of fibre size during processing presented previously in Chapter 3 

were used to estimate the efficiency factor 𝜉1. Table 6.2 presents all calculated values.  
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Table 6.2 Efficiency factor variation with fibre type and fibre content 

                  Fibre content (vol %) 𝝃𝟏 

flax 3.6 0.39 

6.3 0.39 

13.1 0.53 

20.5 0.61 

Tencel 3.6 0.82 

6.3 0.84 

13.11 0.85 

20.5 0.86 

Glass 3.6 0.79 

6.3 0.76 

13.1 0.75 

                             20.5    0.77    

 

Figure 6.15. a, b and c shows a comparison between experimental and predicted Young’s 

modulus with Cox and Krenchel model as a function of fibre content for flax/PP, Tencel/PP 

and glass/PP, respectively. For flax composites, while the predicted moduli in x- and y-

directions matche well the measured ones until 13.1 vol %, a deviation occurs at 20.5 vol %. 

The moduli are 20 % overestimated. The same range of deviation was found by Aurich and 

Mennig (2001) for 30 wt % flax/PP (which is the same fibre concentration in weight).  

For Tencel based composites, the model predicts a nearly isotropic behaviour, despite a skin-

core structure. The evolution with the fibre concentration is quite well predicted, but the 

model underestimates the measured values. Both predicted moduli of Tencel merge together 

towards high concentrations. Their two respective orientation factors are close, as seen in 

Table 6.1. Therefore, the only considerable difference to move them apart is the difference 

between Young’s modulus of matrix in x and y directions, and this effect decreases 

progressively by adding fibres.  

For glass composites, the y-direction modulus is well fitted with Cox-Krenchel prediction, 

whereas in the x-direction the modulus is overestimated and the difference between the 

measured and the modelled modulus gets larger with increasing the fibre content.The 
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measurement of orientation provided in Chapter 4 showed that 𝑎𝑥𝑥 = 0.7-0.4, which means 

that the average of 𝑎𝑥𝑥 give almost a random orientation. This is reflected in the experimental 

stiffness by close moduli in x and y directions, and a quite isotropic material. However, the 

orientation factors obtained by the quadratic assumption we adopted in Eq.6.10 and Eq. 6.11 

predict a considerable anisotropy (Table 6.1), which is not in agreement with experiments. 

We can conclude that all y-direction moduli are fitted well the measured ones.  
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Figure 6.15 

Experimental and Cox-Krenchel predicted Young’s moduli (x-direction, α = 0 ° and y-

direction, α = 90 °) as a function of fibre content, a) flax/PP b) Tencel/PP c) glass/PP 

 Strength 

To take into account the orientation effect for predicting tensile strength with Kelly and Tyson 

model [Eq. 6.6], we suggest considering the orientation coefficient in the same way as it was 

done for Young’s modulus prediction. This results in 𝜎𝑐 as follows:  

𝜎𝑐 = 휁0휁𝐿𝑓𝜎𝑓 + (1 − 𝑓)𝜎𝑚                                                                                         [Eq.6.12]              

where 휁0 is the orientation factor either denoted 𝜉0𝑥 (Eq. 6.10) when sample is oriented along 

x (α= 0 °) or denoted 𝜉0𝑦 (Eq. 6.10) when sample is oriented along y (α= 90 °). To predict the 

critical length, we used the results obtained on fibre size analysis and for flax/PP system 

without MAPP 𝜎𝑓= 980 MPa and 𝜏 =13 MPa [Van Den Oever and Bos (1998)]; for Tencel 𝜎𝑓 

= 570 MPa given by the manufacturer and 𝜏= 5 Pa measured by Adusumalli et al. (2006 a, b), 

and for glass 𝜎𝑓 = 1818 MPa and 𝜏= 13 MPa according to Thomason and Vlug (1997). The 

calculated critical length Lc, the fibre strength, the fibre-matrix interfacial shear strength τ and 

dimensions of fibres are shown at Table 6.3. 
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Table 6.3 Parameters used for tensile strength modelling 

 vol % Lc,( µm) σf, (MPa) τ (MPa) Ln (µm) Dn (µm) 

 

      Flax 

3.6 1278 980 13 428 34 

6.3 1368 980 13 407 36 

13.11 1206 980 13 420 32 

20.05 1067 980 13 388 28 

     

    Tencel 

3.6 570 570 5 262 10 

6.3 570 570 5 255 10 

13.11 570 570 5 229 10 

20.05 570 570 5 211 10 

     

     Glass 

3.6 6992 1818 13 494 10 

6.3 6992 1818 13 379 10 

13.11 6692 1818 13 301 10 

20.05 6692 1818 13 286 10 

 

The calculated critical length (Table 6.3) is far higher than the fibre length in composites for 

the three fibre types, thus the second summation in equation 6.7 is not considered in our 

study. 

Figure 6.16 a, b and c shows comparisons between the predicted and the measured tensile 

strengths as a function of fibre content for flax/PP, Tencel/PP and glass/PP, respectively. The 

tensile strength increases when the fibre content increases, and it is higher when sample axis 

(and stretching direction) is parallel to the main flow direction (x-direction) compared to the 

perpendicular (y-direction). The difference in strength between both directions x and y gets 

higher for glass composite over the other composites. For flax composites, while the predicted 

strength curve fits well the measured strength along x-direction with a small deviation at high 

fibre concentration, it is underestimated at α= 90 °, along y-direction. For Tencel composite, 

the predicted strength is underestimated for both x and y directions. One of the possible 

explanations is that Tencel fibres are flexible and can be curved, such as they can be easily 

interlocked and build network-like structure. A part of energy was probably dissipated to 

make them straight or to break this structure before rupture or pulling-out, which is not taken 

into account in the model of Kelly and Tyson. The effective fibre length can be shorter than it 
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is really, which affects the predicted strength.  For glass composites, strength in y-direction is 

well predicted by the Kelly and Tyson model. However, a deviation occurs at high 

concentration values such as the predicted strength is higher than the measured one. The most 

important reasons for the deviation in strength is the incertitude in the measured 𝜎𝑓 that can 

widely vary as a function of fibre diameter, matrix properties and the presence or not of a 

compatibilizer. Since we have not used any compatibilizer in this study, adding MAPP to the 

formulation of composite can improve the obtained tensile strength. 
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Figure 6.16 

Experimental and Kelly-Tyson predicted tensile strengths (x-direction, α= 0 ° and y-direction, 

α= 90 °) as a function of fibre content, a) flax/PP b) Tencel/PP c) glass/PP 

2.2. Impact properties  

 Experimental results 2.2.1. 

Figure 6.17 shows the impact strength 𝑈𝑐 as a function of fibre volume fraction, for the neat 

PP and flax, Tencel and glass composites. The impact strength slightly decreases for 3.6 and 

6.3 vol % of fibres compared to the neat PP, and then increases from 13.1 to 20.5 vol %, for 

all types of fibres used. This increase rate and the values at the highest fibre concentration is 

the highest for Tencel followed by glass and then by flax based composites. The decrease of 

reinforced polypropylene impact strength for 3.6 and 6.3 vol % can be explained by a large 

spacing among fibres, which probably causes an easy crack propagation. Lhymn and Schultz 

(1982) studied the crack morphology in injection moulded glass/PET (Polyethylene 

terephthalate) and demonstrated that crack path takes an irregular zig-zag shape propagating 

along the easiest and the weakest way around the main crack direction. Moreover, the crack 

tip progresses within composite by the connectivity between several discrete micro-cracks at 

the ends of fibres. As mentioned in Chapter 4, up to 6.3 vol % Chapter 5 fibre-fibre 

interactions become larger and a network-like structure starts to take place, and thus may push 
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the crack to get a longer way to progress prior the composite breakdown. Tencel composites 

exhibit a much larger number of flexible fibres as compared to glass and flax fibres, as 

demonstrated in Chapter 4 and 5. A more developed network of Tencel fibres creates 

cooperative obstacles against the crack propagation, leading to higher impact strength. This is 

the main plausible reason explaining that Tencel composite shows the highest impact strength 

at high concentration over glass and flax composites (Figure 6.17). 

 

Figure 6.17 

Impact strength of flax/PP, Tencel/PP and glass/PP, as a function of the fibre content. Lines 

are given to guide the eye 

This impact strength depends also on the fibre orientation in the tested bar. Clemons et al. 

(2003) showed that fibres perpendicular to the crack direction enable higher impact strength. 

In our case, the impact samples were moulded separately and not cut from the moulded box as 

the way for tensile samples. The sample dimensions required for testing in agreement with the 

standard norms were not compatible with the dimensions of the box. The flow direction in the 

impact bar is perpendicular to the notch direction. By analogy to the microstructure in the 

box, a considerable part of fibres should be aligned along the flow direction, and thus 

perpendicular to the crack direction. 

Basically, three rupture modes are possible, matrix fracture, fibre pull-out or debonding and 

fibre fracture, according to Cottrell (1964). The pull-out turned out the dominant rupture 
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mechanism for short fibre reinforced polymer [Cottrell (1964), Cooper (1970), Lhymn and 

Schultz (1982)]. To have a better understanding of the impact strength results, the rupture 

surfaces of 20.5 vol % composites were observed by SEM. Figure 6.18. a and c shows that the 

flax and glass fibres were debonded at the matrix-fibre interface (marks of fibres’ tearing in 

the matrix), while some fibres were pulled out (black voids and empty space) and some others 

remain glued to the matrix. Figure 6.18.b shows that fracture can occur in the unsupported 

length of fibre. According to Lhymn and Schultz (1982), this is characteristically the result of 

fibre fatigue. Figure 6.18.e and f presents the case of Tencel, where large fibre-fibre 

interactions are observed. Some voids appear in Figure 6.18.f with a larger magnification, 

indicating fibres pull-out. Considering the SEM observations we can roughly conclude that all 

rupture modes are present in the rupture surface with a slight domination of the pull-out 

mechanism.  

   

                                                                   

a b 

c d 



Chapter 6: Mechanical properties of composites 

202 

 

              

Figure 6.18 

SEM images representing the fracture surfaces of 20 vol %  composites for flax/PP (a,b), 

glass/PP (c,d) and Tencel/PP (e,f)  

 Predictions of composite impact properties and comparison with experimental 2.2.2. 

results 

Figure 6.19 a, b and c show a comparison between the measured and calculated impact 

strength that is predicted by Thomason and Vlug model [Eq. 6.9] as a function of fibre 

content for flax/PP, Tencel/PP and glass/PP, respectively. The parameters 𝐿𝑐, 𝜎𝑓 and 𝐿 are the 

same used earlier to model the tensile strength (Table 6.3). The debonding length 𝐿𝑑 was 

determined by varying 𝐿𝑑 in equation 6.9 to get the best fitting of the experimental curve. 

This results in 𝐿𝑑 of 2.8 mm for flax, 6 mm for Tencel and 14 mm for glass fibre. According 

to Thomason and Vlug (1996), the debonding length obtained by fitting glass/PP composites 

varies between 8.7-18.2 mm to give a good agreement with experimental data. Moreover, it 

turned out that 𝐿𝑑 increases as the critical length 𝐿𝑐 increases. However, this fitting lost its 

physical signification, since 𝐿𝑑 is much higher the possible fibre length in injection moulding 

process. Therefore the obtained results must be interpreted as a quantitative manner. The 

calculated impact strength of flax, glass and glass composites show an important deviation 

compared to experiment at low fibre concentration. That deviation becomes progressively 

smaller by increasing concentration until 20.5 vol % for which a good agreement with 

experiment is noted. The disagreement of the prediction at low concentration may be due to 

the low capability of the Thomas and Vlug model to predict the different mechanism of 

rupture within multilayer structured composite, considering that orientation of fibres was not 

taken into account in this model. The incertitude in fibre-matrix adhesion and fibre curvature 

e f 
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are also the reasons behind the deviations of the calculated values compared to experimental 

ones.  
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Figure 6.19 

Experimental and calculated (according to Thomason and Vlug model, Eq.6.9) impact 

strength as a function of fibre content: a) flax/PP b) Tencel/PP and c) glass/PP  
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2.3. Conclusions 

We investigated the tensile and impact properties of injection-moulded natural fibre 

reinforced polypropylene. We compared them with glass fibre composite based, using the 

same matrix. Fibre volume concentrations varied from 3.6 to 20.5 vol % and were the same 

for composites with different fibre types. The experimental values were compared to the 

corresponding calculated ones according to different models presented in the State of the art 

section. The microstructure of composites (particularly fibre orientation) was taken into 

account. 

Tensile bars were cut from injected boxes with three orientations with respect to the main 

flow direction and their properties were investigated as a function of fibre type and 

concentration. Tensile experiments showed that all glass composites are stiffer and stronger as 

compared to flax and Tencel composites. Nevertheless, Tencel composites showed the highest 

elongation at break, around 13 %. Samples with the main axis oriented along the direction of 

flow exhibit higher tensile performance as compared with those oriented along 45° and 90°, 

for all studied composites.  

Measured Young’s modulus and tensile strength were compared to those predicted by Cox-

Krenchel model for stiffness and Kelly and Tyson for strength. This was performed for tensile 

properties along the flow direction and perpendicular. We suggested a method to calculate the 

orientation factors in the models, based on the orientation analysis presented in Chapter 4. 

The predicted values increase with the fibre concentration, as experimentally. The predicted 

tensile stiffness and strength fit well the experimental ones in y-direction. The prediction 

overestimates the tensile properties in x-direction (main flow direction). The highest deviation 

(about 20 %) was particularly obtained for the tensile and strength at high concentration, 

when tensile direction is parallel to the flow. The main reasons are that no compatibilizer was 

used to improve fibre-matrix adhesion, the incertitude in the measurement of the fibre 

strength 𝜎𝑓(particularly for flax fibres), the out-of-plane fibre orientation, the fibre bending 

and the skin fibre-free-layers. Most of these reasons were discussed in Chapter 4.  

The investigation of composites’ impact properties showed that Tencel based composites have 

the highest impact strength as compared to glass and flax reinforced composites. This was 

interpreted by the well-developed network structure of Tencel fibres due to their large number 

and flexibility that supposed to limit the crack propagation during failure. The experimental 



Chapter 6: Mechanical properties of composites 

206 

 

results were compared to the impact strength calculated according to Thomason and Vlug 

model as a function of fibre content. A considerable deviation occurs at low fibre content and 

becomes smaller by increasing fibre concentration; this is true overall studied composites.  

As already mentioned in the previous chapters, flax based composites are the most complex 

ones to be analysed.  The complexity is related to the flax fibre morphology (bundles or 

fibres, various composition, flexibility, length and diameter) that leads to deviations between 

the theoretically predicted values and those experimentally obtained. 
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Chapter 7           

Pressure and fibre 

orientation simulation: 

comparison to 

experiments 
Numerical simulation of injection moulding is an important tool for analysing the process 

parameters and optimizing the final properties of parts. The main outputs of simulation 

software that can be experimentally evaluated are the pressure in the mould cavity and the 

fibre orientation. In this chapter, we will first present a brief literature review about the 

common computational techniques used in simulation of injection moulding, some results 

known from literature related to the cavity pressure and the fibre orientation models of rigid 

and flexible fibres. Second, we will present the experimental pressure results obtained during 

the injection moulding for the neat and fibre-reinforced polypropylene. The effect of viscosity 

variation due to the fibre type and fibre concentration will be correlated with pressure results 

and discussed. Third, we will compare the experimental pressure and the fibre orientation 

results to those numerically obtained with Rem3D
®

, the simulation software used in this 

study. 
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1.  State of the art 

1.1. Pressure in the mould cavity 

Injection moulding is an intermittent cyclic process with three main stages: (1) filling, (2) 

packing and holding (3) cooling (Figure 7.1). These stages can be observed by following the 

pressure in the cavity. Filling is the stage when the melt flows into an empty cavity whose walls 

are held at a temperature below the solidification one. Once the cavity is full, additional material 

is packed into the mould to counterbalance the shrinkage caused by cooling, and thus pressure 

increases sharply to a plateau maintained for some time. After holding/packing step, cooling 

stage occurs, enabling the ejection of the component and the decrease of pressure.  

 

Figure 7.1 

Pressure curve in the mould cavity showing the stages of a typical injection moulding cycle  

 

Filling stage is the most comprehensively studied stage of injection moulding process 

[Papathanasiou and Guel (1997)]. The relevant feature of the mould filling is the existence of an 

advancing front. The filling stage has a great influence on the final properties of moulded fibre-

reinforced thermoplastics because, as seen in Chapter 4, fibre orientation is dependent on the 

flow within the cavity.  

1.2. Computation of injection moulding 

The use of computational techniques for analysing the flow during mould filling started in the 

1970s with Kamal and Kenig (1972 a,b) and Kuo and Kamal (1976). The level of sophistication 

increased in 1980s [Hieber and Shen 1980; Hieber et al. (1983)] with the incorporation of the 

finite element method to solve the Hele Shaw equations for thin gap geometry with a viscous 

non-Newtonian behaviour law. Shen (1984) introduced the energy equation to compute the heat 

transfer in the mould cavity. The consideration of viscoelasticity and fountain flow were 

introduced by Kamal et al. (1986) and Mavridis et al. (1988). The coupling between filling and 
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post-filling stages (packing, holding and cooling) was performed by Chiang et al. (1991,a,b). 

Further studies were performed in the two past decades to optimise the computation time by 

implementing sophisticated techniques. Most of today’s simulation software are founded on the 

Hele-Shaw approach [Papathanasiou and Guell (1997)]. The reason is that injection moulded 

parts classically present a thickness smaller than other dimensions and there are no sudden 

variations of thickness, which is in agreement with Hele-Shaw assumptions. The approach of 

Hele-Shaw mainly consists of coupling a pressure equation to an energy equation through a 

temperature-dependent viscosity that can be the Arrhenius or the Williams-Landel-Ferry 

functions. The energy equation represents the heat convection due to the melt advancement, 

the heat conduction (due to the difference of temperature between cavity walls and the melt) 

and viscous dissipation. Manzione (1987) coupled the flow and heat transfer analysis in the 

cavity, the heat transfer in the mould and included the cooling channels influence. If such 

coupling is not possible, the boundary condition at the polymer–mould surface can be either a 

constant wall temperature or a heat transfer coefficient.  

1.3. Experimental pressure and comparison with simulation  

Few works in literature have dealt with the pressure evolution in the mould cavity. Moreover, 

most of the studied cases used an unreinforced polymer material. In the following, we will 

focus on the results that concern the neat polypropylene, because it is the polymer matrix used 

in the present study. Two examples of polypropylene studies, Chiang et al. (1991) and Han 

and Im (1997), will be presented. All conditions of injection moulding are regrouped in Table 

7.1. 
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Table 7.1 Conditions of the injection moulding of polypropylene in Chiang et al. (1991) and 

Han and Im (1997) studies 

 Chiang et al. (1991,b) Han and Im (1997) 

Cavity thickness (mm) 2.54 2 

Melt temperature (°C) 200 180 

Flow rate (cm
3
/s) 26.8 7.4 

Fill time (s) 0.69 1.5 

Hydraulic hold pressure (MPa) 6.9 - 

Holding duration (s) >15 6 

Coolant temperature (°C) 32 40 

   

Chiang et al. (1991,b) investigated the filling and the post-filling pressure of polypropylene in 

a sprue-gated plaque. The pressure measurement was carried out by three transducers located 

in the cavity as shown in Figure 7.2.  

 

Figure 7.2 

Representation of the cavity and the locations of the pressure transducers [Chiang et al. 

(1991,b)] 

The experimental pressure measured in the transducer 1 was imposed as an input pressure for 

the simulation of the plaque injection moulding. A superposition of the predicted pressures at 

locations 2 and 3, and the experimental pressures in locations 1, 2 and 3 is presented in Figure 

7.3.a. The first part of the pressure curve (0 s < t < 0. 69 s) represents the filling pressure, 

while the rest of the curve (t > 0.69 s) represents the post filling pressure i.e. the packing, 
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holding and cooling phases. The predicted pressures at locations 2 and 3 are in agreement 

with the experimental ones at the same locations, except in the cycle end, where a slight 

deviation happened. Silva (2007) reproduced the numerical simulation of Chiang et al. 

(1991,b) by using Rem3D
®
 (the software used in this study). The pressures obtained by 

Rem3D
®
 are close to the ones numerically obtained by Chiang et al. (1991,b) except pressure 

at location1, because the referred authors (Chiang et al. (1991,b)) used the data of this 

transducer as boundary conditions (Fig. 7.3b). The filling sequence of Rem3D
®
 simulation is 

presented in Figure 7.4.  

 

 

Figure 7.3 

a) Pressures in experiment (solid lines) and predicted (symbols) for two transducers 

located in the plaque [Chiang et al. (1991)] 

 

b) Pressures predicted by Rem3D
®
 (coloured symbols)  [(Silva 2006)] 

a 

b 
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Figure 7.4 

Filling of the plaque obtained by Rem3D
®
 [(Silva 2006)] 

Han and Im (1997) simulated the filling and the post filling phases of polypropylene within 

the cavity presented in Figure 7.5.a. The predicted melt front advancement is presented in 

Figure 7.5.b. The cavity is filled in the order: lower, upper, right and left cavities.  

 

 

 

 

 

 



Chapter 7: Pressure and fibre orientation simulation: comparison to experiments 

219 

 

 

 

Figure 7.5 

a) Sprue, runners and cavity design and the location of pressure transducers, b) the 

predicted melt flow advancement [Han and Im (1997)] 

Figure 7.6 shows that the experimental and the predicted pressure curves are similar. The 

predicted pressure P1 closely fits the experimental one for filling and post filling stages. 

However, the predicted pressure P2 (pressure in location 2, Figure 7.5.a) exhibits a deviation 

at the post-filling stage by almost 20 %. The authors justified that by the inaccuracy of the 

thermal properties used in calculations.  

a 

b 
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Figure 7.6 

Experimental and predicted pressures in the cavity, the left hand figure is a zoom of the 

dashed rectangle of the right hand figure [Han and Im (1997)] 

The filling phase simulation of the sprue-centre gated-box (the moulded part in this study) 

was performed by Agassant et al. (1996). Figure 7.7 shows the pressure isovalues in the box 

filling. The top side fills to some extent the big lateral sides and then the smaller lateral ones.  

 

Figure 7.7 

Isovalues of pressure at different filling times (t1, t2, t3 and t4) of the sprue-centre gated-box 

[Agassant et al. (1996)] 

t1 = 0.09 s t2 = 0.15 s 

t3 = 0.21 s t4 = 0.27 s 
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1.4. Prediction of fibre orientation 

 Rigid fibres’ models 1.4.1. 

The modelling of fibre orientation began with Jeffrey equation [Jeffery (1922)], considering a single 

ellipsoid of aspect ratio L/D (in fact Jeffery considered ellipsoids with three different axes, but we will 

restrain here the analysis to two different axes) immersed in a Newtonian fluid. The unit vector p is 

parallel to the major axis, as shown in Figure 7.8. The orientation of 𝑝 is a function of two angles θ 

and ϕ. 

                                                          

Figure 7.8 

Ellipsoids orientation representation 

The motion of the vector 𝑝 is described as follows: 

�̇� =
𝐷𝑝

𝐷𝑡
= Ω. 𝑝 + Γ[�̇�. 𝑝 − �̇�: 𝑝𝑝𝑝]                                                                                   [Eq. 7.1] 

where  Γ =
(L/D)2−1

(L/D)2+1
 , Ω and �̇� are vorticity and rate of deformation tensors, respectively. 

Jeffery’s analysis is only valid for rigid fibres in a dilute regime. To take into account fibre-

fibre interactions, Folgar and Tucker (1984) introduced the orientation tensor evolution and 

added a diffusion term 𝐷𝑟 (see Eq. 7.3) such as: 

𝐷𝑟 = 𝐶𝐼�̇�                                                                                                                         [Eq. 7.2] 

𝐷𝑎𝑖𝑗

𝐷𝑡
= Ω. 𝑎𝑖𝑗 + Γ[�̇�. 𝑎𝑖𝑗 − 2�̇�: 𝑎𝑖𝑗𝑘𝑙] + 2 𝐷𝑟(𝐼 − 2 𝑎𝑖𝑗)                                                  [Eq. 7.3] 

�̇� is the generalized shear rate and 𝐶𝐼 is the interaction coefficient, a dimensionless number 

usually taken lower than 10
-
² to enable a good fit with experimental fibre orientation data. The 

evolution of the second order orientation tensor aij (Eq. 7.3) requires the knowledge of the 

X 

  

  

Y 

Z 

𝜙 

θ 𝑝  
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fourth order orientation tensor aijkl. To cope with this, dedicated approximations are suggested 

in the literature for representing the fourth order orientation tensor as a function of the second 

order one. The simplest closure approximations are: linear closure Hand (1962), quadratic 

closure Doi (1981), hybrid closure Advani and Tucker (1987) and Orthotropic closure 

approximation Cintra and Tucker (1995). More sophisticated approximations appeared after 

the latter one, and they are still a research area. New equations for the time evolution of aij 

have appeared, bringing a better precision for the orientation field by a strain reduction factor 

and/or anisotropic fibre-fibre interactions [Huynh (2001); Chung and Kwon (2002 a,b); 

Sepehr et al. (2004 a,b,c); Wang et al. (2008); Férec et al. (2009)] 

 Flexible fibres’ models 1.4.2. 

The individual flexible fibre is considered as an assembly of multiple rigid parts linked to 

each other. The most relevant models are the bead-chain model, needle-chain model and rod-

chain model. Yamamoto and Masyoka (1993; 1994) developed a bead-chain model for 

flexible fibre in dilute regime without hydrodynamic interactions. The flexible fibre is 

represented by a series of spheres lined up and bonded to each other (Figure 7.9). Yamamoto 

and Masyoka (1995; 1996) modified their first model to take into account the hydrodynamic 

interactions.  

 

Figure 7.9 

Bead chain model, a is the radius of beads 

Ross and Klingenberg (1997) suggested a new representation of flexible fibres by a series of 

rigid spheroid connected through ball and socket joints, currently called the needle chain 

model (Figure 7.10). The difference from Yamamoto and Masyoka model is in the joints 

whose resistance can be varied to adapt the model for various flexibilities. The rotation period 

in shear flow of the needle chain model is in agreement with Jeffrey’s equation for rigid fibres 
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and Forgacs and Mason (1959) experimental results for flexible fibres. However, this model 

did not take into account the hydrodynamic interactions, and it is limited to the dilute regime. 

Schmid et al. (2000) introduced the notions of the irregular fibre equilibrium and the frictional 

fibre interactions into the needle chain model to develop a model called the particle-level 

model. Further improvements in this model were carried out by Switzer (2002) to well 

describe the relationship between fibre properties, fibre interactions and rheological properties 

under a simple shear flow. 

 

Figure 7.10 

Needle chain model, a, b and c are the major and the minor axis of the ellipsoids and the 

distance between two successive ellipsoids, respectively.  

Wang et al. (2006) proposed the rod-chain model that consists of a series of rigid rods. Each 

rod is itself a series of beads. The length of rod can vary with the number of beads inside, 

which is a way to model the extent of fibre flexibility (Figure 7.11). The rod chain model is 

similar to the needle chain model but used a different concept to assess the internal constraint 

forces.  
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Figure 7.11 

Rod-chain model, Pi are the unit vectors of each rod  

1.5. Examples of simulation and comparison with experiment  

The modelling of flexible fibre suspensions has not reached the level of rigid fibre 

suspensions. Most of the results related to flexible fibres’ models have dealt with a dilute 

regime system. The prediction of the orientation of rigid fibres has been well developed, 

considering the important progress in modelling and the wide experimental studies of glass 

fibre-based composites. First, we will focus on Bay and Tucker (1992) study, using a 

modified Jeffry model, taking into account the coefficient of interaction of Folgar and Tucker 

(Eqs.7.2 and 7.3), without any optimisation for slowing the kinetics of fibre orientation or 

fibres interactions; this is the same model used in Rem3D
®

 software used in this study. 

Second, we will present three main results using improved models that slow down the fibre 

orientation to closely match the experimental orientation: 1) strain reduction factor (SRF) 

[Huynh (2001), Wang (2007)] 2) reducing strain closure (RSC) [Wang et al. (2008)], and 3) 

anisotropic rotary diffusion (ARD) [Phelps and Tucker (2009)]. 

Bay and Tucker (1992) investigated the fibre orientation in two different injection-moulded 

parts (film gated strip and a centre gated disk). The composite material was 43 wt % 

glass/Nylon 6-6. The authors performed a comparison between the measured fibre orientation 

using the ellipses method (See Chapter 4) and the simulation results. Figure 7.12.a represents 

the predicted and the experimental orientation components (𝑎𝑥𝑥 and 𝑎𝑧𝑧) of the film–gated 

strip. x is the main flow direction and z is the direction perpendicular to the plaque plane. The 

value of 𝐶𝐼= 0.01 was chosen to fit the measurement. Γ was taken as 1[Eq. 7.1], meaning that 

the aspect ratio was considered as infinite. The inlet orientation (𝑎𝑥𝑥= 0.5, 𝑎𝑦𝑦= 0.2, 𝑎𝑧𝑧= 0.3 
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and 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 0) that is the initial condition for the fibre orientation equation 

resolution was determined by experimental measurements near the gate. The computed 

orientation shows a typical core-shell structure that fits the experimental ones. According to 

the authors, the surprising rise in the predicted 𝑎𝑥𝑥 at the surface is an artefact of the 

calculation related to the fountain flow calculation. Figure 7.12.b represents the predicted and 

the experimental orientation components (𝑎𝑥𝑥 and 𝑎𝑧𝑧) for the centre–gated disk. The same 

parameters 𝐶𝐼= 0.01 and Γ= 1 are again used, since the same material has been used for the 

centre-gated disk and the film-gated strip. The inlet orientation was assumed to be random in 

space ((𝑎𝑥𝑥= 𝑎𝑦𝑦= 𝑎𝑧𝑧= 1/3 and 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 0). However, compared to the strip, the 

choice of the inlet orientation had almost no influence on the fibre orientation because the 

circumferential stretching flow is strong within the disk.  

                          

𝒂𝒙𝒙 
𝒂𝒛𝒛 

𝒂𝒙𝒙-predicted 
𝒂𝒛𝒛-predicted 

Surface                         Core                               Surface 

 a 
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Figure 7.12 

Comparison between the experimental and the predicted orientation components at a position 

of 5.7 times the part thickness a) in the film- gated strip b) in the centre gated disk [Bay and 

Tucker (1992)] 

 

For a further position from the gate (40.4 times the disk thickness), a considerable deviation 

turned out between the predicted and the experimental orientation. The predicted 𝑎𝑥𝑥 at the 

core is much lower than the experimental one. The core, measured in experiment, gets larger 

compared to the position near the gate and there is preferred orientation somewhere between 

the shell and the core layers, which is also not well predicted by simulation. According to the 

authors, this is due to the circumferential stretching dominating the flow in the disk. 

Bay and Tucker (1992) examined the sensitivity to the processing conditions for the same 

glass fibre-reinforced polyamide 6-6 in the disk mould. The obtained results showed that 

varying the wall temperature from 337 to 357 K and the inlet temperature from 540 to 560 K 

has a slight influence on the fibre orientation. The variation of the filling time controls to 

some extent the thickness and the orientation of each layer across the disk thickness. For 

example, a short filling time prevents the appearance of a skin layer (layer between shell layer 

and wall) and a long filling time enables a more aligned core.                                             

𝒂𝒙𝒙 
𝒂𝒛𝒛 

𝒂𝒙𝒙-predicted 
𝒂𝒛𝒛-predicted 

Surface                             Core                              Surface 
  

b 
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Bay and Tucker (1992) examined also the effect of the coefficient of interaction 𝐶𝐼. They 

found that increasing this coefficient leads to move orientation towards random-in-space and 

to increase the thickness of the shell layer. Decreasing 𝐶𝐼 makes the fibres in core more 

aligned perpendicular to the flow and in the shell more aligned parallel to the flow direction.  

Finally the authors highlighted that the deviation in the prediction occurs at the transition 

between core and shell. They argued this deviation by the closure approximation used in the 

model. The effect of the closure approximation is to overestimate the out-of-plane orientation 

(greater 𝑎𝑧𝑧 and 𝑎𝑥𝑧 than expected), which results in thinner core and thicker shell as 

compared to experiment. In their study, Bay and Tucker (1992) used a hybrid closure 

approximation. A closure approximation that provides a smaller out-of-plane-orientation 

would give a better agreement between simulation and experiments. 

Wang (2007) investigated the fibre orientation as the same geometries to Bay and Tucker 

(1992) (film gated strip and a centre gated disk) for 30 wt % glass/PBT (polybutylene 

terephtalate). Figure 7.13 shows that the improved Folgar and Tucker model including the 

strain reduction factor [Huynh (2001)] fits better the experimental orientation than the original 

Folgar and Tucker model.   

                           

Figure 7.13 

Fibre orientation comparison of experimental data (points) with predictions using standard 

model (dotted line) and SRF model (solid lines) for 1.5 mm thick strip [Wang (2007)] 

𝒂𝒙𝒙 
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Surface    Core  Surface  
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According to Wang et al. (2008), even if the SRF provides a good match with experiment, its 

generalization is inconsistent because the model does not pass the rheological objectivity 

principle. Therefore, the authors suggested an objective model using reducing strain closure 

(RSC) to provide slower orientation kinetics. Another area of upgrading Folgar and Tucker 

family-models is the fibre interactions. Fan et al. (1998) and Phan-Thien et al. (2002) replaced 

the coefficient of interaction 𝐶𝐼 by a second-order tensor 𝑪. This makes the rotary diffusion 

isotropic. Building on the latter work, a great improvement of this assumption was reached by 

Phelps and Tucker (2009) by assuming that the rotary diffusion is anisotrocpic. Figure 7.14 

shows a comparison between orientations measured within part shaped as an end gated-strip 

made of 40 wt % glass/polypropylene and predicted by RSC assumption model and mixed 

ARD-RSC model. RSC and ARD-RSC models considerably improve the results precision. 

However, a deviation is still remained at the core. According to Phelps and Tucker (2009), 

these errors could mainly come from differences of the melt temperature.  

 

                               

Figure 7.14 

Fibre orientation comparison of experimental data (points) with predictions using standard 

RSC model and ARD-RSC model for 3 mm thick strip [Phelps and Tucker (2009)] 

1.6.  Conclusions 

The state of the art presented in this section copes with the simulation of the pressure during 

injection moulding and the orientation of fibres in the cavity. Some studies that handled the 

𝒂𝒙𝒙 

Surface    Core   Surface  
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computation of the pressure in the filling and the post filling stages were presented. While the 

predicted pressure in the filling stage is close to experimental results, some deviations were 

noted in the post filling stages. Moreover, the investigations were limited to unfilled 

thermoplastics and no studies have yet emerged in literature to assess the pressure for fibre-

reinforced thermoplastics. The main models classically used to compute the rigid and the 

flexible fibre orientation were briefly presented. Rigid fibres’ models are well optimized, but 

more works must be done to improve the flexible fibres models. This is due to the complexity 

of the equations that describe the flexible fibres’ orientation and calculation issues when 

moved from dilute regime to semi-dilute and concentrated regimes (fibre bending, fibre 

interactions…). Natural fibres contain elementary flexible fibres and rigid bundles. Therefore, 

computing the flexible fibres orientation is in our interest, but no further investigation is 

performed in this study, considering the lack of today’s numerical tools to simulate such 

complex materials. The optimization of flexible fibres’ models must be separately studied. 

We thus focused on the literature of the rigid fibres’ models, which provides glass fibres 

orientation results in injection moulded parts, and they can be compared with experiments. 

The predicted results give a shell-core structure similar to the experimental one. Many factors 

can influence the computed orientation such as rheological and heat transfer data, the closure 

approximation and the interaction coefficient. Inaccuracies of these factors can probably 

cause some errors in the prediction.   
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2.  Results and discussions 

2.1. Experimental Pressures 

The aim of this section is to understand the effect of fibre concentration and fibre type on the 

measured pressures. Neat PP and all the studied composites were moulded in the same 

conditions (summarized in Chapter 2). The experiments were repeated until reaching a stable 

thermal regime. The three last trials were then recorded. The range of variation in the 

measured pressure is around +/-10 %. We filtered the parasitic signals and averaged the 

measurements to get smooth pressure curves suitable for investigations.   

 Influence of the location of pressure measurement  2.1.1. 

The mould is equipped with three transducers located at different sites within the cavity. 

Transducer 1 is close to the gate, transducers 2 and 3 are placed at the end of the box top-side 

and at the small lateral side, respectively (Figure 7.15).  

                                 

Figure 7.15 

Location of the pressure transducers in the cavity (distances in mm) 

Figure 7.16 shows the pressure evolution for the 20.5 vol % Tencel/PP. Similar curves were 

obtained for flax and glass based composites. In the filling stage, the pressure starts to rise 

when the flow front reaches the transducers and falls down when the melt gets frozen. 

At the switch-over point, (from filling with speed control to packing with pressure control, 

around 0.7 s) there is a sharp increase of pressure. After the pressure overshoot, the transducer 

1 shows a plateau-like curve between 1.6 and 4.2 s. Then, the pressure falls rapidly down. In 

fact, around 4.2 s, the polymer is solidified somewhere between the cavity entrance and the 

transducer. The polymer around the transducer does not feel anymore the pressure imposed by 

Transducer 1  
X = 23, Y = 21, Z = 0 

Transducer 2  
X = 80, Y = 0, Z = 0 

Transducer 3  
X = 87.5, Y =0, Z = 51 
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the machine; and as it cools down, it shrinks and applies less stress on the transducer. The 

solidification will occur first around the thinnest area of the cavity that is located on the top 

box side. An order of magnitude of the cooling time is generally given by e
2
/a, where “e” is 

the half thickness (here 0.9 mm) and “a” the thermal diffusivity (of the order of 10
-7

 m
2
/s for 

a polymer), leading to an estimate of 8 s. 

After the switch-over point, the P2 presents a “decreasing plateau-like” answer and falls down 

1 s earlier than P1. P3 shows a direct pressure drop 3 s earlier than P2. The reason is that the 

melt solidification occurs earlier as far as the entrance is (more polymer cooling due to a 

longer path and less influence of new hot material coming up during the packing stage). 

While an important pressure drop occurs from P1 to P2, only a slight loss of pressure can be 

noted between P2 and P3.  

 

Figure 7.16 

The pressures P1, P2 and P3 during the injection moulding of 20.5 vol % Tencel/PP  

 Influence of fibre concentration  2.1.2. 

Figure 7.17.a and b shows the evolution of the pressure (P1) throughout time for the neat 

polypropylene and Tencel composites with different concentrations. During the filling stage, 

the pressure increases as the fibre content gets larger (Fig. 7.17b). This is because of the 

viscosity increase when adding fibres, as discussed in Chapter 5. The level of the plateaus 

during the packing stage for the different composites is also correlated to the fibre content. 

The end of the plateau is around 5.7 s for the neat PP and 3.6 vol %, 5.3 s for 6.3 vol %, 4.7 s 
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for 13.1 vol % and 4 s for 20.5 vol %. We can conclude that solidification occurs earlier when 

the fibre concentration increases. 

 

 

Figure 7.17 

a) The overall injection pressure P1 vs time obtained (filling and post-filling stages) for 

different concentrations of Tencel/PP composite and the neat polypropylene 

b) Zoom on the pressure during the filling stage for the same materials of figure a. 

Similar trends were obtained for P2 and P3 with lower values of pressure and shorter time 

ranges of measurement with respect to P1, because of the pressure losses in between 

transducers. An example of P2 curve for Tencel composite is plotted in Figure 7.18. The 
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glass and flax based composites present a similar schematic fall of pressure (not shown). 

The effect of the fibre type on the pressure will be interpreted in the next section. 

 

Figure 7.18 

The overall injection pressure P2 vs time (filling and post-filling stages) for different 

concentrations of Tencel/PP composite and the neat polypropylene 

 Influence of fibre type 2.1.3. 

Figure 7.19 shows a comparison between the pressure P1 for Tencel, glass and flax based 

composites with two different concentrations 3.6 vol % and 20.5 vol %. During the filling 

stage, the neat PP pressure is the lowest as compared to composites (Fig. 7.19.b). At 3.6 %, up 

to 0.6 s, the pressure of flax composite gets higher, but around  the switch-over point, Tencel 

pressure becomes equivalent. At 20.5 vol %, flax composite pressure becomes the lowest and 

those of Tencel and glass composites are similar. Around the switch-over, Tencel composite 

pressure shows a sharper overshoot as compared to glass composite. 

The level of the plateau during the packing stage (Fig. 7.19a) for the different composites is 

higher for 20.5 than 3.6 vol %. For each concentration, the composites rank as follows: 

- at 3.6 vol % : Tencel < glass < flax 

- at 20.5 vol % : flax < glass < Tencel 
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There is no direct correlation with the viscosity, which means that the packing pressure is not 

only proportional to the viscosity.  

 

 

Figure 7.19 

Influence of the fibre type (Tencel, flax and glass) on the pressure P1  

Figure 7.20 shows the evolution of P1 and P2 at time = 0.65 s (almost 85 % of the cavity is 

filled) as a function of the fibre content for Tencel, glass and flax based composites. The 

pressure increases as the fibre contents gets greater. For both pressures P1 and P2, the Tencel 

composite shows higher values as compared to glass and flax composites. An important rise 

in P1 occurs at 20.5 vol % for Tencel composite and for glass composites with lesser extent. 
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This is similar to the results obtained in the rheology characterisation (Chapter 5) in which the 

viscosity of composite highly increased at 20.5 vol % fibre content, specifically for Tencel 

based composite. This was argued by the strong fibre-fibre interactions due to the fibre 

flexibility (high fibre aspect ratio and low fibre stiffness) and the local fibre dispersion. The 

increase in pressure is of the same magnitude of viscosity. For example, the viscosity of 20.5 

vol % Tencel is 2-3 times higher than that of neat PP at high shear rate (capillary rheology 

range that represents the injection moulding shear rate, see Chapter 5). In Figure 7.20 the 

pressure of 20.5 vol % Tencel/PP is also 2-3 times larger than the pressure of neat PP. This 

means that any change in viscosity is directly reflected in pressure. The viscosity measured 

through a capillary rheometer with fibres mostly oriented along the flow direction can be even 

used for more complex flow and fibre orientation such those involved during injection 

moulding.  

 

Figure 7.20 

Pressures P1and P2 as a function of the fibre content for different types of fibre filled 

polypropylene 

2.2. Simulation results and comparison with experiment 

 Parameters of simulation 2.2.1. 

The simulation was performed with the Rem3D
®
 package, using a classical mixed finite 
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- Mechanical equations (velocity, stress…), assuming a Carreau-Yasuda behaviour law 

and incompressible material. The flow rate is imposed at the cavity entrance and a 

sticking contact is used along the mould cavity walls. 

- The energy equation, taking into account conduction, convection and viscous 

dissipation. The enthalpy of crystallization is neglected. The inlet temperature is given 

and the mould temperature is imposed at the wall. 

- Position of the flow front: the whole cavity domain (polymer and air during the filling 

stage) is meshed and the position of the flow front is represented with a level set 

method. The latter is used to evaluate the material characteristics to be considered 

(polymer or air). 

Additionally, the Folgar and Tucker equation (Eq. 7.3) is solved with a quadratic closure 

approximation. Rem3D
®
 software is developed for a fixed interaction coefficient 𝐶𝐼 = 0.01.  

The geometry of the moulded box is symmetric with respect to both xz and yz planes. This 

enables to simulate the quarter of the box, leading to a considerable CPU time and memory 

reduction (Figure 7.21). To compare with the experimental pressures three numerical 

transducers were placed throughout the box, as shown in Figure 7.15.  

 

Figure 7.21 

The quarter of the moulded box used for the filling stage simulation 

Ten to twelve nodes through the thickness are adequate to capture velocity, temperature and 

orientation gradients. Moreover, the adaptive meshing of Rem3D
®

 automatically refines the 

mesh where it is needed i.e. near the flow front, walls and gate. 
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To set up the simulation, we used the fitted rheological parameters except the yield stress in 

the modified Carreau-Yasuada model, because it concerns the low shear rate and strain range 

far from what expected in injection moulding. The activation energy results obtained by the 

time-temperature superposition principle (Chapter 5) were used. The thermal conductivity “k” 

and the specific heat “𝐶𝑝” of polypropylene used to set up the simulation are 0.25 W.m
-1

.°C
-1

 

and 1500 J.kg
-1

.K
-1

 [Weidenfeller al (2004)], respectively. The thermal conductivity of 

composites was calculated with mixture law-type equations as follows: 

𝑘𝑐 = 𝑓𝑘𝑓 + (1 − 𝑓)𝑘𝑚                                                                                                   [Eq. 7.4] 

where 𝑓 is the fibre volume fraction, and 𝑘𝑐, 𝑘𝑓 and 𝑘𝑚 are the thermal conductivity of 

composite, fibres and matrix, respectively. Other models for 𝑘𝑐 that contain factors taking into 

account the fibre orientation were presented in the literature [(Nielsen (1974), Sanou et al. 

(1985), Papathanasiou et al. (1995)]. Since fibre orientation varies across the moulded part 

thickness, the investigation of the influence of each model on the predicted results seems 

extremely complicated. 

The specific heat of composites “(𝐶𝑝)𝑐” and the density “𝜌𝑐” were also calculated by a 

mixture law-type, as the same manner of 𝑘𝑐, considering that (𝐶𝑝)𝑓 and 𝜌𝑓 are the specific 

heat and the density of fibres, respectively and “(𝐶𝑝)𝑚 and 𝜌𝑚 are those of the matrix. The 

thermal conductivity 𝑘𝑓 and the specific heat 𝐻𝑓 of glass fibres are 1.2 W.m
-1

.K
-1

 and 800 

J.kg
-1

.K
-1

, respectively according to Weidenfeller et al. (2004), and those of flax fibres are 1.2 

W.m
-1

.K
-1

 and 800 J.kg
-1

.K
-1

 respectively according to Li et al. (2008). We assume that 

Tencel fibres present nearly the same properties as flax fibres, considering Tencel as a 

regenerated cellulose mainly based on cellulose and flax based on more than circa 70 % of 

cellulose. We assume also that all studied materials are incompressible, thus the density 

remains constant during the filling stage.  

 The fibres aspect ratios experimentally calculated after injection for each fibre concentration 

(Chapter 3) were used for the filling stage simulation. The inlet orientation was random in 

space, meaning that ((𝑎𝑥𝑥= 𝑎𝑦𝑦= 𝑎𝑧𝑧= 1/3 and 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 𝑎𝑥𝑦 = 0). We used an injection 

temperature of 190 °C (temperature of the last barrel heating rings) and a flow rate of 92.3 

cm
3
/s, as in experiment.  In order to estimate the wall temperature, a sensor was located at 2 

cm from the cavity wall. The measured temperaturevaries between 40 and 60 °C. Considering 
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the distance separating the cavity from the measurement point, the temperature at the cavity 

wall should be higher than that measured by sensor. We decided to use a wall temperature of 

70 °C. This temperature is may be not accurate enough; therefore additional tests were 

performed concerning the effect of the wall temperature together with the composite thermal 

conductivity on the predicted pressure and fibre orientation. This will be shown throughout 

the predicted results obtained on the following.Table 7.2 summarises all the material input 

parameters used for simulating the filling stage 

Table 7.2 The input material parameters used for simulation 

 Vol % 𝜌 

(kg.m-3) 

k 

(W.m
-1

.°C
-1

) 

𝐶𝑝  

(J.kg
-1

.°C
-1

) 

Ea 

(J.mol
-1

) 

L/D 휂0 

(Pa.s) 

𝜆 

  (s) 

n a 

Neat PP - 905 0.25 1377 45501 - 1201 0.04 0.38 0.85 

 

Tencel/PP 

3.6 926 0.284 1496 52354 26 2003 0.2 0.53 0.85 

6.3 942 0.31 1492 61284 25 2702 0.19 0.48 0.85 

13.1 983 0.374 1483 74458 23 3457 0.04 0.23 0.85 

20.5 1026 0.444 1474 140000 20 12025 0.15 0.23 0.85 

 

Flax/PP 

3.6 926 0.284 1496 48969 15 1500 0.05 0.4 0.85 

6.3 942 0.31 1492 61284 15 1515 0.05 0.35 0.85 

13.1 983 0.374 1483 67904 14 3055 0.07 0.3 0.85 

20.5 1026 0.444 1474 69089 15 6173 0.09 0.21 0.85 

 

Glass/PP 

3.6 962 0.284 1475 42334 49 1597 0.2 0.55 0.85 

6.3 1005 0.310 1456 45500 38 2000 0.2 0.53 0.85 

13.1 1114 0.374 1408 55617 30.2 3492 0.14 0.39 0.85 

20.5 1232 0.444 1354 55617 29 3968 0.02 0.118 0.85 

*Conditions for all materials: 

-Flow rate = 92.3 cm
3
/s 

-Injection temperature = 190 °C 

-Wall temperature = 70 °C 

 

 Filling stage analysis and comparison with experiment  2.2.2. 

In this section, we will primarily analyse the pressure during the filling stage for the neat 

polypropylene and compare with the experimental results. Second, we will present the filling 

stage pressure and the induced fibre orientation in composites. A comparison with the 

experimental results will be also discussed.  
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2.2.2.1. The neat polypropylene 

 Cavity filling  

Figure 7.22 shows the sequence of the box filling for the neat PP. The time needed to fill the 

entire box is 0.717 s. As the sprue is located in the centre of the box top-side (xy), the initial 

flow around the sprue is circumferential (Figure 7.22.a and b).The top side (xy) fills to some 

extent the large lateral side (zx) (Figure 7.22.c,d and f) that in turn feeds the small lateral side 

(yz) (Figure 7.22.h, g and i).  

 

         

          

 

0.013 s 0.05 s 

0.132 s 
0.285 s 

a b 

c d 

X Y 
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Figure 7.22 

                                                The box filling for different times  

 Pressure 

We are going to focus on the pressure (P1) to analyse the predicted results and to compare 

with experiment. Figure 7.23 shows a comparison between the predicted and the experimental 

pressure P1 during the filling stage. Considering the error due to the experiment repeatability 

(20 %), the prediction fits the experimental pressure except in the filling start-up where a 

deviation can be noticed. The overshoot in the experimental curve is due to the packing 

coming after the filling stage. 

0.426 s 0.536 s 

0.608 s 0.702 s 

f g 

h  i 
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Figure 7.23 

Comparison between the predicted (k = 0.25 W/m.°C, Twall = 70 °C) and the experimental 

pressure (P1)  

 Thermal sensitivity 

Studying the thermal sensitivity can indicate errors in the input data, which might be 

responsible for the disagreement between predictions and experiments. The value of the 

thermal conductivity of polypropylene used in Rem3D
®
 was taken from literature 

[Weidenfeller et al. (2004)] and no characterization was performed to assess its accurate 

value. Moreover, assuming that the cavity-wall temperature is constant (70 °C) overall the 

cavity is may be not precise enough to reach a well agreement with experiment. Therefore, the 

influence of the thermal conductivity and the wall temperature must be examined. Figures 

7.24 and 7.25 show the influence of the thermal conductivity “k” and the wall temperature 

“Twall” on the pressure of transducer P1 for the neat polypropylene, respectively. All other 

variables were left unchanged as in Table 7.2. The predicted pressure is higher as “k” 

increases and “Twall”decreases, meaning that the prediction of the pressure during the filling 

stage is sensitive to the thermal boundary condition. While the range of deviation related to k 

and Twall change is closely equal to the experimental error range at the filling end, it is slight 

and has almost no effect on the filling start-up where the predicted results overestimate 

experiments. This error can be associated to the assumption that the melt temperature at the 

cavity entrance is constant and equal to the temperature imposed in the barrel surrounding the 
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screw at the plasticisation unit. Viscous heating takes place due to the high shear rate in the 

nozzle of the injection moulding machine. Some other inaccuracies in the prediction by 

Rem3D
®
 software can also be caused by the ignorance of the kinetics of the crystallinity 

(which is also the case of most similar software). Pantani et al. (2005) demonstrated the 

important influence of crystallinity on the interpretation of pressure during the injection 

moulding of an isostatic polypropylene. According to the authors, an increase in 

crystallization during flow leads to a greater pressure involved. Many studies in literature 

have dealt with the prediction of the development of crystallinity during injection moulding 

process [Manzione (1987); Lafleur and Kamal (1986); Papathanasiou et al. (1995); Hieber 

(2002)]. 

 

Figure 7.24 

The influence of thermal conductivity “k” on the predicted pressure (P1) for a Twall = 70 °C 

and comparison with the experimental pressure  
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Figure 7.25 

The influence of wall temperature “Twall” on the predicted pressure (P1) for a k= 0.25 W/m.°C 

and comparison with the experimental pressure  

2.2.2.2. Composites 

 Pressure 

Figures 7.26, 7.27 and 7.28 show comparisons between the experimental and the predicted 

pressures (P1) during the filling stage, for different concentrations of Tencel, flax and glass 

based composites, respectively. For flax composites and to a lesser extent for glass 

composites the agreement is correct. Numerical results overestimate the pressure for Tencel 

composites especially at 20.5 vol %. For most cases, the computation overestimates the 

pressure at the beginning, as was observed for the neat polypropylene. The pressure at the end 

is correctly predicted. The increase of pressure with the fibre content is in agreement with the 

measurements. 

The prediction of pressure is more complicated for composites than for unreinforced 

polymers. Flow induced microstructure affects the thermal conductivity and the rheology. 

This microstructure changes through time, but it is usually accounted on average (rheology 

for a given orientation in the rheometers, mixing law for the thermal conductivity). 
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Concerning moulding experiments, there are some difficulties such as material expulsion 

when the nozzle of the injection unit is not in contact with the mould and even if all 

precautions have been taken, some material thermal degradation cannot be avoided. 

 

Figure 7.26 

Comparison between the experimental and the predicted pressures P1 for different 

concentrations of Tencel/PP 
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Figure 7.27 

Comparison between the experimental and the predicted pressures P1 for different 

concentrations of flax/PP 

 

Figure 7.28 

Comparison between the experimental and the predicted pressures P1 for different 

concentrations of glass/PP 
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 Fibre orientation 

Orientation model in Rem3D
®
 is basically made to predict the orientation of rigid fibres. 

Therefore, we are going first to focus on the case of glass fibres (rigid fibres) to analyse the 

fibre orientation in the box after filling. We will secondly compare with the experimental 

results and investigate those predicted for flax and Tencel based composites. Considering the 

lack of orientation models taking into account the properties of natural fibres, the aim here is 

to estimate the precision that can be expected from a rigid fibre model. 

a) Glass fibre based composite 

-Effect of the distance from the gate  

Figure 7.29 maps out the predicted orientation component 𝑎𝑥𝑥 in several cross sections in yz-

plane and xz-plane for the 20.5 vol % glass/PP. The xz-cross-section at y= 0 mm shows a 

core-shell structure. The core exhibits fibres well aligned to y-direction (blue area). They 

become progressively less aligned near the sprue. For xz-cross-section performed at y= 17.75 

mm, in the core, fibres are aligned to x- direction, whereas near the surface fibres are 

randomly aligned (yellow and green areas). The yz-cross sections show that fibre alignment is 

different for y between 17.75 and y= 35.5 mm compared to y between 0 and y= 17.75 mm. 

compared to y between 0 and y= 17.75 mm.  
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Figure 7.29 

xz-and yz-cross-sections in different positions in the moulded box for 20.5 vol % glass/PP 

obtained by simulation with Rem3D
®
 software 

Figures 30 and 31 present 𝑎𝑥𝑥 evolution for different x-positions along y= 0 mm and y= 30 

mm, respectively. For y= 0 mm (Figure 30), for all x-positions, 𝑎𝑥𝑥 is almost equal to 0.5 at 

surface, indicating a random orientation and signing the presence of a skin layer. 𝑎𝑥𝑥 

increases rapidly to almost 0.95 at z= 100 µm. From z=100 µm to z= 400 µm, 𝑎𝑥𝑥 remains 

constant 0.9-0.95, indicating a shell layer well aligned in the x-direction. Then, 𝑎𝑥𝑥 decreases 

to reach values between 0.05 and 0.35 in the core. The difference between each x-position is 

the degree of alignment transverse to x and the thickness of the core layer, between z= 400 µm 

and z= 1500 µm. For the position x= 10 mm, near the sprue, the core is large (around 700 µm) 

with 𝑎𝑥𝑥 around 0.2. The maximum of the core alignment is obtained at the position x= 30 
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mm with 𝑎𝑥𝑥 around 0.05 and the minimum one at x=80 mm far from the sprue with 𝑎𝑥𝑥 

around 0.35.  

For y=30 mm near the edge, the evolution 𝑎𝑥𝑥 across thickness for different x-positions is 

very different from that of y=0 mm. Figure 31 shows that for the position x= 10 mm the core 

is aligned to x-direction and the shell is perpendicular, inversely oriented to what is known 

about the core-shell structure. This is caused by the central location of the sprue, resulting in a 

radial flow near the entrance of the cavity. The orientation in the core is perpendicular to the 

flow direction, which is here the y-direction, and parallel at the skin. Above x= 50 mm, the 

fibre alignment follows the typical shell-core structure with a shell parallel to x-direction, the 

main flow direction, and a perpendicular core. The maximum of the core and the shell 

alignment is reached at the position x= 70 mm and x= 80 mm, respectively. 

 

Figure 7.30 

Predicted 𝑎𝑥𝑥 across thickness of 20.5 vol % glass/PP for different positions along x-axis, and 

fixed position in y-axis (y= 0 mm)  
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Figure 7.31 

Predicted 𝑎𝑥𝑥 across thickness of 20.5 vol % glass/PP for different positions along x-axis, and 

fixed position in y-axis (y= 30 mm, near the edge)  

-Effect of fibre content 

Figure 7.32 shows the predicted 𝑎𝑥𝑥 vs thickness for different concentrations of glass/PP at 

the location (x= 70 mm, y= 0 mm). The orientations at the skin and the shell layers remain 

unchanged by increasing the fibre content. The core orientation for 3.6 to 13.1 vol % is mostly 

along the flow direction (𝑎𝑥𝑥 around 0.7-0.8), whereas for 20.5 vol %, it becomes strongly 

perpendicular to the flow direction (𝑎𝑥𝑥 around 0.2). Some studies in the literature [Spahr et 

al. (1990); Bouti et al. (1989)] concluded that increasing fibre content results in a thicker core 

that is highly oriented perpendicular to the main flow direction, which is in agreement with our 

results. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 300 600 900 1200 1500 1800

𝒂𝒙𝒙 

Z, µm 

y= 30 mm 

x=10 mm

x=30 mm

x=50 mm

x=70 mm

x= 80 mm



Chapter 7: Pressure and fibre orientation simulation: comparison to experiments 

250 

 

 

Figure 7.32 

Predicted 𝑎𝑥𝑥 vs thickness for different concentrations of glass/PP at the location (x= 70 mm, 

y= 0 mm) 

-Thermal sensitivity 

 We have seen earlier that the thermal boundary condition has a great influence on the 

pressure involved during filling. We also checked its influence on the fibre orientation state 

across thickness. Figures 7.33 and 7.34 show the experimental and the predicted 𝑎𝑥𝑥 for 20.5 

vol % glass/PP obtained by different thermal conductivities “k” and wall temperatures Twall, 

respectively. All other variables left unchanged with respect to standard conditions in Table 

7.2. We can conclude that increasing k and decreasing Twall lead to move the core orientation 

from well aligned perpendicular to x-direction to randomly oriented in xy-plane. This is 

probably related to the respective sizes of the fluid core and solidified layer near the mould 

walls (although there is no real solidification criteria in Rem3D, the velocity is almost zero 

near the walls because of the low temperature and high viscosity, mimicking the solidified 

layer). The shear rate (responsible for the flow direction orientation at the surface) and the 

elongational rate (due to the central position of the sprue, responsible for the orientation 

perpendicular to the flow direction in the core) repartitions are dependent on the solidified 

layers. 
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-Comparison with experimental results 

As mentioned in Chapter 4, the characterization of the fibre orientation was conducted for 

20.5 vol % composites at the location (x= 70 mm, y= 0 mm) for six different levels across 

thickness from z= 100 µm (near surface) to z= 900 µm (the mid-plane). The experimental 

characterization along z= 0-100 µm was not possible because the cross-section is obtained by 

polishing. At least a distance of 100 µm from surface is required to achieve a smooth surface 

of sample suitable for image processing investigation. We assume that fibre orientation is 

symmetric with respect to the mid-plane, thus the fibre orientation was not investigated from 

900 µm to 1800 µm. Characterisation of the orientation state is essentially focused on flax and 

Tencel fibres. Only three levels across thickness were investigated for the glass based 

composite to reduce the extent of the experimental work. The predicted 𝑎𝑥𝑥 for k= 0.7 

W/m.°C (Figure 7.33) or for Twall = 30 °C (Figure 7.34) closely fit the experimental 𝑎𝑥𝑥 

carried out at (y= 0 mm, x= 70 mm). The standard boundary conditions used for simulation in 

Table 7.2 (k= 0.444 W/m.°C and Twall= 70 °C) overestimates the core alignment (at z= 900 

µm) with respect to experiment. This reveals again the influence of the thermal boundary 

conditions on the pressure and the fibre orientation state, and partially clarifies the causes of 

the deviation between simulation and experimental results.  

 

Figure 7.33 

The predicted 𝑎𝑥𝑥 vs thickness for 20 vol % glass/PP with different k, compared with result 

obtained in experiment  
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Figure 7.34 

The predicted 𝑎𝑥𝑥 vs thickness for 20 vol % glass/PP with different Twall, at location (x= 70 

mm, y= 0), compared with result obtained in experiment  

Other factors can explain the differences between experiments and computation. The first one 

concerns the interaction coefficient 𝐶𝐼 (Eq.7.2). According to Folgar and Tucker (1984) and 

Bay and Tucker (1992), 𝐶𝐼 is usually found by fitting predictions to experiments. However, 

varying only 𝐶𝐼 would not enable to fit our experimental results. Generally, decreasing 𝐶𝐼 

leads to higher fibre alignment in both shell and core layers [Bay and Tucker (1992)]. The 

second factor that may explain the prediction error is the closure approximation used in the 

simulation. The effect of an inappropriate closure approximation is to overestimate the out-of-

plane fibres (fibres that make angle to xy-plane), leading to a shell layer too thick and a core 

too thin. Rem3D
®
 uses the simple quadratic closure approximation. A better closure 

approximation such as the hybrid one [Advani and Tucker (1987)] could improve the 

precision of the prediction. Nevertheless, by using improved models of orientation (RSC and 

ARD, see section 1.5), Phelps and Tucker (2009) found that the core alignment is not well 

estimated. The experimental measurement error can also be a source of disagreement between 

the experimental and the predicted fibre orientation  

b) Flax and Tencel based composites 

Figure 7.35 shows the experimental and the predicted 𝑎𝑥𝑥 across thickness carried out at the 

same location (x= 70 mm, y= 0 mm), for 20 vol % Tencel, flax and glass based composites. 
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The material data for the simulation are that presented in Table 7.2. The orientation state 

predicted for Tencel composite is extremely different from the experimental one. This was 

expected due to the high flexibility of Tencel fibres, considering that Rem3D
®

 is basically 

dedicated to rigid fibres. The experimental error can also be an important reason behind this 

deviation, since we have approximated fibre orientation by the end-to-end vector. We can thus 

conclude that Rem3D
®
 does not represent the real behaviour of Tencel fibres. For flax (almost 

rigid fibres) based composites, the predicted 𝑎𝑥𝑥 is broadly consistent with the major trends of 

the shell-core structure. Some experimental points were closely predicted (z= 100 µm and z= 

800 µm), but for some other deviations exist, particularly in the shell/core transition. By 

adjusting the simulation with accurate thermal parameters, the prediction could closely fit 

experiment. Moreover, considering that flax fibres contain bundles, the number of fibres is 

smaller as compared to glass fibres (individual fibres) for the same aspect ratio and 

concentration, which limits the fibre-fibre interactions. Therefore a better evaluation of the 

interaction coefficient 𝐶𝐼 can bring more accuracy to the predicted orientation for flax fibre 

composites.  

 

Figure 7.35 

The experimental and the predicted 𝑎𝑥𝑥 across thickness at location (x= 70 mm, y= 0) for 20.5 

vol % glass/PP, flax/PP and Tencel/PP 
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2.3. Conclusions 

In this chapter we have investigated the pressure and the fibre orientation predicted by 

simulation of the injection moulding of glass, flax and Tencel reinforced polypropylene and 

compared with those experimentally obtained. We found a strong correlation between the 

rheology of composite and the experimental pressure. The increase of viscosity, due to either 

the fibre concentration or the fibre aspect ratio/flexibility increase, leads to enhance the 

pressure in cavity. It turned out that pressure increase is of the same magnitude to the 

viscosity increase. The simulation of the filling stage overestimates the experimental pressure 

around the start-up of the pressure evolution. The difference reduces when the melt progresses 

into the cavity. This is for the neat polypropylene and overall the studied composites. Thermal 

boundary conditions parameters have a large influence on the predicted pressure. 

Since the software Rem3D
®
 uses a computational model adapted to rigid fibres, we have 

conducted a detailed investigation of glass fibres orientation in the moulded box. A core-shell 

structure across the thickness dominates the moulded part. The evolution of the orientation 

tensor component axx across the thickness is nearly the same for concentrations between 3.6 

and 13.1 vol %. It turned out that the core layer with fibres oriented perpendicular to the flow 

direction appears only for 20.5 vol %. 

 According experimental data performed for glass fibre reinforced polypropylene, only partial 

conclusions can be drawn concerning the accuracy of the simulation. The simulation predicts 

well the experimental orientation except in the core layer in which the simulation 

overestimates the degree of alignment perpendicular to the flow direction. The thermal 

boundary conditions can be modified to get a good agreement. 

The simulation of orientation of flax and Tencel fibre cases were carried out. The purpose is 

to test to what extent a rigid fibres’ model can simulate both types of natural fibres. It turned 

out that the predicted flax fibres’ orientation matches correctly the experimental results, while 

that of Tencel fibre is extremely far from experiment. The flax fibres contain partially rigid 

bundles. An accurate set-up of the thermal conditions input could clearly improve the 

obtained results. However, Tencel fibres are very flexible and their behaviour during the flow 

cannot be modelled by a rigid fibres model. A specific flexible fibre model is required to get 

more promising results. Our work is one of the first investigations about the prediction of the 

orientation of natural fibres based composites. This could be a contribution to the ongoing 
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discussions about which models are suitable to predict the microstructure of natural fibres in 

injection moulded parts.  
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General conclusions and 

prospects 

1.  Conclusions 

The work undertaken has provided an in-depth analysis of processing-microstructure-

properties relationships in injection moulding of natural fibre-reinforced polypropylene. This 

type of composites are quickly developing and have several advantages compared to glass 

fibre based composites such as lower density, reduced environmental foot print and low cost. 

We have conducted our work with two types of cellulose-based fibres, Tencel and flax which 

have different intrinsic structures: flax is a mixture of semi-rigid thin elementary fibres and 

thick rigid bundles and Tencel is thin elementary flexible fibre. Classical rigid glass fibres 

were also used for comparison. A variety of experimental techniques has been used and some 

were developed to assess the microstructure and mechanical and rheological properties of 

composites. A simulation of the filling stage during injection moulding has been performed, 

enabling to compare the predicted pressure and fibre orientation with those experimentally 

obtained. A summary of the main results obtained is presented below. 

1- Influence of compounding and injection on fibre size distribution 

The influences of compounding and injection moulding have revealed the dissimilarities in 

fibre breakage between glass, flax and Tencel fibres. Glass fibres, which are rigid rods, are 

submitted to large breakage during compounding and an additional slight breakage during 

injection moulding. For Tencel fibres, which are individual and flexible, their length after 

processing is shortened by 30 % and fibres break more with the increase of fibre content. For 

flax fibres, both length and diameter are reduced during processing, but the resulting aspect 

ratio remains almost unchanged when compared to its initial value. Some bundles persist even 

after injection moulding, giving an aspect ratio lower than those of glass and Tencel fibres, 

despite that the length of flax fibres is higher than that of Tencel. This bundle’s structure is a 
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specific feature of a typical natural fibre, which leads to a different rupture mechanism during 

processing compared to glass fibres. 

2- Microstructure of Tencel and flax composites 

A novel experimental approach has been developed to study in details the microstructure of 

the injection moulded flax and Tencel reinforced polypropylene. Cross-sections parallel to the 

part plane (xy-plane) were analysed by optical microscopy in reflection mode and image 

analysis for several levels in the thickness.  

Depending on their apparent shapes, fibres were classified into four categories: straight, C-

shaped, S-shaped and short particles or out-of-plane fibres. We demonstrated that because of 

flexibility difference between flax and Tencel (flexibility being proportional to aspect ratio 

over Young’s modulus), Tencel fibres can be bent in two conformations: C-shaped and S-

shaped, whereas elementary flax fibres are bent only in C-shaped conformation. We showed 

that as in glass fibres based composites, flax and Tencel composites generally show a core-

shell structure where fibres are aligned along the main flow direction near the surface and 

perpendicular to it in the core. 

Some differences between flax and Tencel fibres in terms of the spatial distribution and 

bending conformation were identified. The number of Tencel fibres is three times larger than 

that of flax for the same volume concentration. This was explained by the presence of bundles 

in flax containing several elementary fibres “glued together” that remained after processing. 

Moreover, as for glass fibres, the concentration of flax increases from surface to core, while 

Tencel concentration is practically independent on thickness.  

3- Composite rheological properties 

The dynamic rheological measurements have shown that the increase of fibre content and 

flexibility (case of Tencel) lead to enhanced complex viscosity and viscous and elastic 

moduli. An apparent yield stress was recorded at low frequencies when fibre volume fraction 

reaches the concentrated regime. This is due to fibre-fibre interactions which become more 

pronounced as the fibre content increases, and they are further increased when fibre flexibility 

increases. For the same volume fraction, because of the larger number of fibres and their high 

flexibility, Tencel-based composites show a viscosity and an apparent yield stress that are 
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moderately higher than those of the glass based composites and further higher than of the flax 

ones.  

The influence of temperature on composite viscosity was analysed using Arrhenius law, 

enabling the calculation of composite activation energy. For the three types of composites, the 

activation energy increases as the fibre content increases. Adding fibres to polypropylene 

seems to increase composite “resistance” to flow. Tencel composites exhibit higher activation 

energy compared to flax and glass ones. We suggest that additional restrictions of polymer 

chains motion may be caused by the strong network-like structure of flexible fibres. The 

superposition dynamic/capillary rheology obeyed the Cox-Merz approximation. The overall 

curves including dynamic and capillary measurement were fitted with the yield stress 

Carreau-Yasuda model. The obtained data, which give the viscosity evolution throughout a 

large range of shear rate, are important input for the simulation of the pressure during 

injection and of the fibre orientation within the filling stage.  

4- Composite tensile properties 

The influence of the microstructure on composite tensile properties was investigated by 

testing specimen cut-out in the moulded part at different angles with respect to the main flow 

direction. Samples aligned with the main flow direction exhibit larger tensile performance 

compared to those oriented at 45° and 90°, for all studied composites. All glass-based 

composites with different fibre concentrations are stiffer and stronger compared to flax and 

Tencel composites. Tencel composites show higher elongation at break compared to glass and 

flax. Cox-Krenchel and Kelly-Tyson models were used to analyse composites tensile stiffness 

and strength using orientation factors that were calculated on the basis of experimentally 

obtained fibre orientation. Some deviations occurs when predicting the tensile properties 

along the main flow direction, which were associated to the inaccuracy of the fibre strength 

values, the out-of-plane fibre orientation, the fibre bending and the skin fibre-free-layers. 

5- Composite impact properties 

The investigation of composites’ impact properties showed that Tencel based composites have 

the highest impact strength compared to glass and flax reinforced composites. This was 

interpreted by the well-developed network of Tencel fibres because of their largest number 

and flexibility. The analysis of the impact strength was performed using Thomason and Vlug 
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model; it was demonstrated that the predicted impact strength fits well the experimental and 

high concentration but deviation occurs at low concentrations.  

6- Analysis of pressure during injection: experiment vs model prediction 

Pressure evolution during injection was measured and calculated using Rem3D
®
 software. 

The experimental analysis of the pressure involved during the injection moulding cycle 

showed that higher melt viscosity (due to the increase in either fibre concentration or fibre 

aspect ratio or flexibility) increased the pressure in the cavity. The range of the pressure 

increase is close to that of viscosity when fibre content gets larger. The pressure during the 

filling stage, predicted with Rem3D
®
 software, matches experimental pressure with a 

deviation mostly at the start-up of the pressure evolution, for neat polypropylene and over all 

studied composites. This error is reduced when the melt progresses into the cavity for the neat 

polypropylene and for all the studied composites. The deviation was explained by the 

inaccuracy of the thermal parameters required for setting-up the calculations.  

7- Fibre orientation: theoretical prediction vs experiment 

The prediction of glass fibre orientation after filling performed with Rem3D
®
 fits well the 

experimental one, except in the core layer where the fibre alignment is overestimated. The 

errors were related to thermal conditions set-up in the model, but the orientation model itself 

may be questionable. 

The prediction of the orientation of flax and Tencel fibres in the moulded part was carried out. 

The goal was to examine if rigid fibres’ model can predict the orientation of both types of 

natural fibres which have very different structure compared to rigid glass fibres. Considering 

that flax fibres contain rigid bundles, we found that their predicted orientation approximately 

matches the experimental results; an accurate set-up of the calculation parameters would bring 

improvements to the obtained orientation. The predicted orientation of Tencel fibres is 

extremely far from what was obtained in experiment. Tencel fibres are very flexible and their 

behaviour during the flow cannot be modelled by a typical rigid fibres model. Therefore, a 

flexible fibre model is required for Tencel based composites to reach adequate orientation 

results. 
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2.  Prospects 

Because this work is one of the first investigations of the microstructure of natural fibre 

reinforced composites and its correlation with composite processing and properties, a lot of 

points still need clarifications.  

1. In our study a semi-automated method was used to quantify the microstructure across the 

thickness of the injection moulded part. Development of a fully automated image analysis 

of fibre size and orientation would enormously help in reducing this time-consuming 

experimental work. X-ray microtomography will be also a possibility, if applicable to 

fibres whose contrast regarding the matrix is low. 

2. We demonstrated that cellulosic fibres are broken during compounding and injection 

moulding. Despite some progress in the understanding of the mechanisms of fibres 

breakage during processing (work in Cemef using rheo-optics), some questions remain 

opened. For example, till now, there is no clear answer on what is the main parameter 

controlling fibre rupture: is it specific mechanical energy, or cumulated strain, or a 

combination of both? Does it depend on fibre type and flexibility? These answers are 

needed to predict fibre sizes in the final composite.  

3. A simple sprue-gated box was used in this work for the analysis of the microstructure of 

Tencel and flax based composites. Other mould and gate geometries need to be used to 

confirm (or not) the results obtained and to reach further advance in the understanding of 

natural fibre composite microstructure.  

4. The experiments that we conducted were with unique injection moulding conditions. 

Nothing is known about their influence (flow rate, mould temperature, packing 

parameters) on the microstructure of natural fibre reinforced composites. These studies 

would open-up discussions and comparison with the results known for glass fibre based 

composites. 

5.  We performed the analysis of composites microstructure and structure-properties 

correlations for two types of fibres, flax and Tencel. This work should be extended to 

other types of cellulosic fibres. For example, the results obtained on Tencel should be 

checked on cotton fibres that are also based on pure cellulose and are flexible elementary 

fibres. The results obtained on flax should be checked on hemp or sisal that are similar to 

flax with semi-rigid elementary fibres and bundles.  
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6. To predict the orientation of natural fibres within an injected part we used Rem3D
®
 

software that is developed for rigid fibres. We demonstrated that it does not work for 

Tencel fibres. Thus numerical modelling of microstructure during injection of composites 

based on fibres with different flexibility and different diameters is strongly needed, if 

willing to further develop natural fibre reinforced composites. This is not an easy task that 

should be undertaken step by step from simple to complex cases.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Injection de Polypropylène Renforcé de Fibres Naturelles : Procédé, Microstructure et Propriétés 

Resumé. Les fibres naturelles sont une alternative aux fibres de verre pour renforcer les polymères. Lors 

de la mise en œuvre par injection, la taille, l’orientation et la distribution de fibres évoluent en fonction de 

l’écoulement, et cela conditionne les propriétés des pièces injectées. L’objectif de cette thèse est de 

caractériser la microstructure de composites à base de deux types de fibres, le lin et Tencel, et d'établir une 

corrélation avec leurs propriétés.  

Les fibres et matrice ont été mélangés en extrusion bivis et les composites obtenus injectés. La rupture de 

fibres est plus importante lorsque leur concentration augmente. La casse est principalement pendant la phase 

de mélange. Une nouvelle approche de caractérisation permettant la quantification des orientation, 

distribution et courbure de fibres a été développée. Les composites présentent une structure cœur-peau dans 

l'épaisseur de la pièce injectée. Les propriétés rhéologiques des composites ont été étudiées en modes 

dynamique et capillaire. Les fibres Tencel, qui sont les plus flexibles, conduisent à une augmentation plus 

grande des viscosités, modules et seuil d’écoulement. Les propriétés mécaniques en traction et au choc ont 

été déterminées dans des éprouvettes prélevées dans des boites injectées avec différentes orientation par 

rapport à l’axe d’écoulement. Les propriétés d'impact des composites à fibres Tencel sont supérieures à 

celles à base de lin et de verre. Des modèles ont été testés en prenant en compte l’orientation de fibres. Lors 

des campagnes d’injection, les pressions sur des capteurs situés dans la cavité ont été mesurées. Les 

pressions calculées avec le logiciel Rem3D
®
 sont en assez bon accord avec la mesure. Le modèle 

d’orientation de fibre rigide utilisé dans Rem3D
®
 donne des résultats corrects pour les fibres de lin, mais il 

s’est avéré inapproprié pour prédire l'orientation des fibres Tencel extrêmement flexibles. 

Ce travail est réalisé dans le cadre de la Chaire Industrielle Bioplastiques financée par Mines ParisTech et 

Arkema, l’Oréal, Nestlé, PSA et Schneider Electric.  

Mots clefs : fibres naturelles, composites, rhéologie, injection, microstructure, modélisation 

Injection Moulding of Natural Fibre Reinforced Polypropylene: Process, Microstructure and 

Properties 

Abstract. Natural fibres are an alternative to glass fibres for reinforcing polymers. During 

injection, fibre size, orientation and distribution evolve as a function of flow and determine 

composite properties. The goal of this thesis is to characterize the microstructure of composites 

based on two types of fibres, flax and Tencel, and to correlate with composite properties. 

The composites were prepared by extrusion and injection. Fibre rupture was higher at higher fibre 

concentrations. There was practically no breakage during injection. A new approach allowing 

quantification of fibre orientation, distribution and curvature was developed. The composites with 

cellulosic fibres have core-skin structure along the part thickness. The rheological properties of 

composites were studied in dynamic and capillary modes. Tencel fibres, which are the most 

flexible, showed the highest viscosity, moduli and yield stress. Tension and impact were measured 

for samples cut from the moulded part at different orientations towards the main flow direction. 

Impact properties of Tencel-based composites were the highest compared to flax and glass fibre 

composites. Models taking into account fibre orientation were tested. Pressure in the mould during 

injection was recorded. Pressure calculated with Rem3D® software showed a reasonable agreement 

with the experiment. Modelling of fibre orientation with Rem3D® gave results comparable with 

experiment for flax but turned out to be not applicable for Tencel which are flexible. 

The work was performed within the Industrial Chair in Bioplastics supported by MINES ParisTech 

and Arkema, L’Oréal, Nestlé, PSA and Schneider Electric. 

Key-words: Natural fibres, composites, rheology, injection, microstructure, modelling. 
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