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et je les encourage à continuer leur travail fantastique.



Acknowledgments

This thesis was part of a collaboration between MINES ParisTech and STIE (Schneider
Toshiba Inverter Europe) and was supported by ANRT (Association Nationale pour la
Recherche et la Technologie), the French governmental organization promoting scientific
research. It could not have been carried out without the help of many people I would like
to thank now.

I would like to express my gratitude to my advisors Pierre ROUCHON et Philippe
MARTIN from MINES ParisTech, and François MALRAIT from STIE for the time they
spent helping me realize this thesis. Their valuable advice widened my knowledge of the
control and electro-technical fields and their punctilious questions highlighted the unclear
points in my reasoning. Without them this work would not have been so innovative and
consistent.

I am grateful to Carlos CANUDAS DE WIT for having accepted to be the chairman
of the jury, to John CHIASSON and Alain GLUMINEAU for being the referees and to
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Notations

In this section we give a sorted list of the notations employed throughout this document.
We do not intend here to give an exhaustive list of all the notations used at some point
in this document but only of notations which are employed throughout the document so
that the reader can refer to this list to retrieve a notation he forgot.

Frames

Below are defined frames where vector variables are expressed in this document.

as

bs

cs

ar

br

cr

αs

βs
αrβr

θ

(a) Physical frames abc linked to stator and rotor and corresponding αβ frames.

αs

βs
αrβr

θ

d

q

θs

(b) Definition of dq frame with respect to
stator αβ frame.

d

q

v
w

θi

(c) Definition of injection vw frame with
respect to dq frame.

αs

βs
αrβr

D

Q

θ

(d) Definition of DQ frame with respect
to rotor αβ frame for geometrically salient
motors.

αs

βs
αrβr

θ

D

Q

α

(e) Definition of DQ frame with respect
to rotor αβ frame for geometrically non
salient motors. α is the angle of the rotor
flux in rotor αβ frame.

xiii



xiv Notations

Scalar variables

Hereafter are listed the scalar variable notations employed throughout this document.

Angles

Hereafter are defined the angles used throughout this document. They relate the positions
of the frames with respect to one another.

θm Mechanical angle of the rotor
θ Electrical angle of the rotor
θs Angle of dq frame with respect to stator αβ frame
θi Angle of injection frame vw with respect to DQ frame

Angular speeds

The aforementioned angles are linked to the corresponding speeds defined below.
ωm := θ̇m Mechanical angular speed of the rotor

ω := θ̇ Electrical angular speed of the rotor

ωs := θ̇s Angular speed of electrical variables
ωg := ωs − ω Slip speed.

ωi := θ̇i Angular speed of injection with respect to DQ frame

Mechanical variables

ρ Electrical kinetic momentum
Te Electromagnetic torque
TL Load torque

Motor parameters

Rs Stator resistance
Rr Rotor resistance
n Number of stator pole pairs
JL Inertia of the load

Vector variables

Hereafter are listed the vector variable notations employed throughout this document and
the related conventions.

Convention

Throughout this document, space vector representation of electrical values will be exten-
sively used. The vector x expressed in the frame uvw will be denoted xuvw = (xu, xv, xw)T .
The same convention fuvw will be used for scalar functions of vectors to underline the fact
that they are expressed using variables in a given frame. The gradient of fuvw with re-

spect to xuvw will be noted ∂fuvw

∂xuvw
=
(
∂fuvw

∂xu
, ∂f

uvw

∂xv
, ∂f

uvw

∂xw

)T
; to be consistent when fuvw is



Notations xv

a vector function ∂fuvw

∂xuvw
is the transpose of its Jacobian matrix and for scalar functions

∂2fuvw

∂xuvw∂yuvw
=


∂2fuvw

∂xu∂yu
∂2fuvw

∂xu∂yv
∂2fuvw

∂xu∂yw

∂2fuvw

∂xv∂yu
∂2fuvw

∂xv∂yv
∂2fuvw

∂xv∂yw

∂2fuvw

∂xw∂yu
∂2fuvw

∂xw∂yv
∂2fuvw

∂xw∂yw

 =
(

∂2fuvw

∂yuvw∂xuvw

)T
.

Variables

These vector variables will be expressed in one of the frames following the above conven-
tions.

us Vector of voltage drops at the bounds of stator windings
ıs Vector of currents in stator windings
ır Vector of currents in rotor windings
φs Vector of stator flux (linkages)
φr Vector of rotor flux (linkages)
ϕr := Lm

Lr
φr Vector of equivalent rotor flux on stator

Equivalence with complex numbers

The two dimensional vector xuv = (xu, xv)T can be equivalently represented by the scalar
complex number xuv = xu + xv. The real values can be recovered by

xu = <(xuv) = xuv + xuv∗

2
xv = =(xuv) = xuv − xuv∗

2 .

Using this convention, the two-dimensional real-valued system

dxuv

dt
= Axuv with A =

(
a b
c d

)

can be conveyed using complex variables under the scalar form

dxuv

dt
=
(
a+ d

2 + 
c− b

2

)
xuv +

(
a− d

2 + 
c+ b

2

)
xuv∗.

This is equivalent to decompose the matrix A ∈M2(R) on the orthogonal basis

I2 =
(

1 0
0 1

)
J2 =

(
0 −1
1 0

)
Z =

(
1 0
0 −1

)
Y =

(
0 1
1 0

)
.

which is orthogonal with respect to the Frobenius scalar product on the 2x2 real matrix
vector space Mn(R)

< A|B >= tr(ATB) = tr(BTA) =
n∑
j=1

n∑
i=1

Ai,jBi,j.

Moreover, as I2, Z and Y are symmetric, they define an orthogonal basis of S2(R), the
vector space of 2x2 real symmetric matrices.



Energy functions

Here are the energy function which are used throughout this manuscript. They will be
associated to a superscript to denote the frame in which the electrical vector state variables
are expressed. When a subscript is used, it demotes a constraint due to the connection
scheme.

L Lagrangian function
H Hamiltonian function

Inductances matrices

These matrices link the fluxes to the currents. Depending on the frame in which these
variables are expressed, the expression of the inductances matrix will change, as they do
not always commute with the transformation matrices from one frame to another. So the
frame is demoted in superscript. Additional subscripts m, s and r denotes mutual, stator
self, rotor self inductances respectively.

L Inductance matrix (link currents to fluxes)
Lc Chord inductance matrix
Lt Tangent inductance matrix
Γ Inverse inductance matrix (link fluxes to currents)
Γc Chord inverse inductance matrix
Γt Tangent inverse inductance matrix

Types of variables

Additional superscripts and accents are used to denote the type of the variables

x Complex representation of x, vector of R2 (space vector)
x Low frequency value of x
x̃ High frequency amplitude of x
xnom Nominal value of x
xe Value of the variable x at the considered equilibrium
δx := x− xe Variable x linearized near an equilibrium
xr Reference value of x
xf Filtered reference value of x
xm Measured value of x
x̂ Observed/estimated value of x
∆x Error on variable x
xl Maximum value of variable x
xs Saturated reference for variable x
xi Integral state on variable x



Operators on variables

xT Transpose of vector or matrix x

x−T :=
(
xT
)−1

=
(
x−1

)T
Inverse transpose of square matrix x

<(x) Real part of complex number x
=(x) Imaginary part of complex number x
x∗ Conjugate of complex scalar, vector or matrix x

x† :=
(
x∗
)T

=
(
xT
)∗

Conjugate of transpose of complex vector or matrix x

|x| Absolute value of real or modulus of complex
‖x‖ Norm of vector x
< x|y > Scalar product of vectors x and y





Introduction (version française)

Depuis le XIXe siècle, les moteurs électriques ont été largement utilisés dans l’industrie
et les transports. Cependant, on les connectait autrefois directement au réseau électrique,
alors qu’actuellement on passe de plus en plus par des variateurs de vitesse. Ils permettent
de mieux contrôler le point de fonctionnement et, par conséquent, de choisir ceux pour
lesquels le rendement est le meilleur, ce qui devient aujourd’hui de plus en plus important
à cause de la forte hausse du prix de l’énergie. D’un autre côté, grâce aux progrès faits
en électronique, la puissance de calcul devient de moins en moins chère, ce qui permet
aux fabricants de variateurs de vitesse d’embarquer des algorithmes de contrôle de plus
en plus puissants avec un nombre accru de fonctionnalités. Ainsi, en plus de la simple
loi de contrôle U/f, qui permet seulement de lisser le courant pendant les transitoires, on
propose aujourd’hui les lois de contrôle « sans capteur », qui peuvent contrôler avec un
bon rendement la vitesse et le couple des moteurs électriques, même si seuls les courants
stator sont mesurés.

D’un point de vue industriel, les lois de contrôle « sans capteur » sont intéressantes
car elles diminuent les coûts et simplifient la mise en œuvre des moteurs électriques.
Cependant, elles ont pour le moment l’inconvénient majeur de ne pas être utilisables à
basse vitesse, car l’observabilité des machines électriques dégénère. L’injection de signal
haute-fréquence est la solution la plus prometteuse pour palier ce problème, mais ces effets
ne sont pas très bien compris jusqu’à maintenant.

L’étude du contrôle « sans capteur » des moteurs électriques et l’injection de signal
seront par conséquent l’objet de cette thèse de doctorat, qui a été financée par l’ANRT
(Association Nationale pour la Recherche et la Technologie) et s’est déroulée au sein
d’une collaboration entre le CAS MINES ParisTech et STIE (Schneider Toshiba Inverter
Europe). STIE est l’un des principaux fabricants de variateurs de vitesse. Le travail fait
pendant la préparation de cette thèse est résumé dans ce document dont l’organisation
est détaillée ci-dessous.

Dans le chapitre 1 La présentation du contexte industriel et scientifique, esquissée ici,
est détaillée.

Dans le chapitre 2 Les dispositifs expérimentaux fournis par SITE sont décrits ainsi
que les problèmes rencontrés en les utilisant.

Dans le chapitre 3 Une nouvelle approche pour la modélisation des machines élec-
triques est présentée, parce que les effets de l’injection de signal ne peuvent pas être
expliqués de façon satisfaisante par le traditionnel modèle sinusöıdal non-saturé.
Cette approche permet de modéliser un moteur électrique par une seule fonction
scalaire et justifie la modélisation de la saturation dans les repères fictifs, ce qui a
toujours été admis mais jamais prouvé à notre connaissance.
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Dans le chapitre 4 L’observabilité des moteurs sinusöıdaux saturés est étudiée en uti-
lisant la nouvelle approche pour la modélisation. On montre ainsi que l’injection
de signal haute-fréquence est une solution à la perte d’observabilité à basse vitesse.
En effet, l’injection de signal peut être vue comme un moyen d’obtenir des mesures
supplémentaires, qui pourront être utilisées pour retrouver les flux ou la vitesse de
rotation avec un observateur.

Dans le chapitre 5 La fonction d’énergie modélisant un moteur synchrone à reluctance
réel et un moteur à induction réel est recherché. Il est simple de trouver un modèle
pour le moteur synchrone à reluctance et un modèle satisfaisant est proposé. Au
contraire, il est beaucoup plus compliqué de trouver le modèle d’un moteur à induc-
tion, car les courants et flux rotor ne peuvent pas être mesurés, et malheureusement
aucun modèle satisfaisant n’a pu être trouvé.

Dans le chapitre 6 Une loi de contrôle « sans capteur » pour le moteur synchrone à
reluctance est décrite et sa stabilité, prouvée. Grâce aux similarités entre les moteurs
synchrones à reluctance et à aimants permanents, qui sont soulignées par la méthode
de modélisation proposée, la loi contrôle peut être étendue avec des changements
mineurs à ces derniers.

Dans le chapitre 7 Le contrôle « sans capteur » des moteurs à induction est abordé
et les limitations de l’approche traditionnelle sont soulignées. En effet, dans cer-
tains cas, l’approche traditionnelle de l’injection de signal peut ne donner aucune
information.

Les contributions majeures de cette thèse de doctorat sont

Modélisation des machines électriques Grâce à l’approche proposée dans ce manus-
crit, la modélisation magnétique dans des repères fictifs est justifiée. De plus, les mo-
dèles basés sur l’énergie peuvent être conçus sans connâıtre les détails de construction
du moteur électrique considéré.

Analyse de l’injection de signal L’injection de signal, replacée dans un contexte gé-
néral, s’avère être un moyen d’assurer l’observabilité non-linéaire et peut être vue
comme une méthode pour ajouter de nouvelles mesures virtuelles à un système. Ce
résultat amène des explications plus simples et plus claires du contrôle sans capteur
pour les moteurs électriques.

Quelques uns des résultats présentés ici ont été publiés dans

[1] A. Jebai, P. Combes, F. Malrait, P. Martin, and P. Rouchon, « Energy-based mo-
deling of electric motors », IEEE 53rd Annual Conference on Decision and Control
(CDC), pp. 6009–6016 (2014).

[12] P. Combes, A. Jebai, F. Malrait, P. Martin, and P. Rouchon, « Adding virtual mea-
surements by HF signal injection », soumis à Americal Control Conference (ACC),
(2016).



Introduction

Electric motors have widely been used in the industry and transportation since the XIXth

century. However, they used to be connected directly to the grid, whereas they are now
more and more driven by Variable Speed Drives (VSDs). It allows more control on the
working point of the electric motor; consequently the most efficient ones can be selected,
which is more and more considered nowadays, due to the substantial increase in energy
price. Besides, thanks to the progress done in electronics, computational power is less and
less expensive, which enables drive manufacturers to embed control algorithms with more
and more capabilities and functionalities. Thus, we went from the basic U/f control law,
which allows only to smoothen current transients, to so-called “sensorless” control laws,
which can efficiently control the speed or torque of electric motors, even though only the
currents are measured.

“Sensorless” control is very interesting from an industrial point of view, as it decreases
the costs and facilitates implementation of electric motors. However, they currently have
a major drawback: they are not usable at low speed, as observability of electric motors
degenerates. High frequency injection is the most promising solution to this problem, but
its effects are not very well understood until now.

This PhD thesis is thus devoted to the study of “sensorless” control for electric motors
and high frequency signal injection. It is funded by French ANRT (Association Nationale
pour la Recherche et la Technologie) and supported by a collaboration between CAS
MINES ParisTech and STIE (Schneider Toshiba Inverter Europe). STIE is one of the
world leaders in electric motor drives manufacturing. A comprehensive summary of the
work done is given in this document, which is organized as follows.

In chapter 1 The presentation of the industrial and scientific context, sketched here, is
detailed.

In chapter 2 The experimental facilities, provided by STIE, are described. The related
problems we encountered when acquiring experimental data, are also mentioned.

In chapter 3 A new framework for electric machine modeling is presented, because the
effects of signal injection cannot be satisfactorily explained with the traditional
unsaturated sinusoidal model. Thanks to this modeling framework, any electric
motor can be described by one scalar energy function. This approach additionally
justifies the design of saturation models for electric machines in non physical frames,
which has always been taken at granted but was never proven to our knowledge.

In chapter 4 Using the new modeling approach, the observability of saturated sinusoidal
motors is studied, which shows that high frequency signal injection is a solution to
avoid loss of observability at low speed. Indeed, signal injection can be seen as a
way to get additional virtual measurements, which can then be used to estimate the
fluxes or the rotor speed with an observer.
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In chapter 5 The right energy function to model a real Synchronous Reluctance Motor
and a real Induction Machine, is searched. For Synchronous Reluctance Motor
finding the saturated model is simple and a satisfactory model is proposed. On the
opposite, the IM case is much more difficult, as the rotor currents and fluxes cannot
be measured, and no satisfactory model was found.

In chapter 6 A “sensorless” control law for the Synchronous Reluctance Motor at rated
and high speed is described and its stability is proven. Thanks to the similarities
between Permanent Magnet Synchronous Motors and Synchronous Reluctance Mo-
tors, underlined by energy-based modeling, the control law can easily be extended
to those motors.

In chapter 7 Low speed “sensorless” induction motor control using signal injection is
considered and the limitations of the traditional approach are highlighted. Indeed,
the usual processing of motor response to signal injection may not lead to any
information in some cases.

The major contributions of this thesis are

Electric machine modeling Thanks to the proposed framework for electric motor mod-
eling, the design of magnetic models in non-physical frames is justified. Moreover,
energy-based models can be designed without knowing the details of the motor
internal layout;

Analysis of signal injection Signal injection is replaced in a general context. It shows
that signal injection is a mean of ensuring a nonlinear observability criterion and
can be seen as a way to add virtual measurements to a system. This result leads
to simpler and clearer explanations for the low speed “sensorless” control of electric
motors.

Some of the results presented here were published in

[1] A. Jebai, P. Combes, F. Malrait, P. Martin, and P. Rouchon, “Energy-based mod-
eling of electric motors”, IEEE 53rd Annual Conference on Decision and Control
(CDC), pp. 6009–6016 (2014).

[12] P. Combes, A. Jebai, F. Malrait, P. Martin, and P. Rouchon, “Adding virtual
measurements by HF signal injection”, submitted to Americal Control Conference
(ACC), (2016).



Chapter 1

Scientific and industrial context

Chapitre 1 — Contexte scientifique et industriel
Ce chapitre détaille la présentation du contexte industriel, technique et scientifique es-
quissée en introduction. Il présente les défis liés à l’utilisation des moteurs électriques
dans l’industrie et les transports. En ce qui concerne leur contrôle, plusieurs possibili-
tés existent : Le contrôle U/f, le contrôle vectoriel avec capteur de vitesse et le contrôle
vectoriel « sans capteur » (de vitesse). C’est cette dernière possibilité qui pose un pro-
blème théorique. En effet, à cause de la perte d’observabilité des machines électriques à
basse vitesse, le comportement des lois de contrôle dans ce domaine n’est pas satisfaisant.
L’injection de signal, évoquée à la fin de ce chpitre, est une méthode prometteuse pour
contourner ce problème.

As was said in the introduction we will study in this document electric motor control.
From an industrial point of view this is a very challenging and profitable field where there
still exist open scientific questions as will be shown in this chapter.

We first present in section 1.1 the electric motors which will be studied in this docu-
ment. Then we show in section 1.2 how these machines are controlled and what are the
limitations of modern control laws. Signal injection, the method presented in section 1.3,
is the most widespread technique to solve the key challenge of the so-called “sensorless”
control of electric motors at low speed.

1.1 Electric motors

Electric machines are devices which convert energy between mechanical and electrical
forms. Electric generators transform mechanical energy into electrical energy. On the op-
posite, electric motors are devices which convert electrical energy into mechanical energy.
As these devices are similarly built, some of the results we obtain can be applied to both
types of machines. We thus use the word “machine”, even though we focus on electric
motors. As most of them are rotational electric motors, that is to say devices which
convert electrical energy into rotational mechanical energy, we consider only them in this
manuscript and they will be called simply electric motors. Nevertheless the reader should
know that there exist linear electric motors (see [23, sec. 2.7] or [34, sec. 2.2] for instance),
transforming electrical energy into translative mechanical energy, which are seldom used
even when translative mechanical energy is needed. Rotational electric machines have 2
main mechanical parts: the rotor which rotates and transmits mechanical energy to the
load and the stator which is fixed and receives the electrical power from the grid.

1



2 Chapter 1. Scientific and industrial context

(a) Photograph of the SynRM
used in tests.

(b) Photograph of a PMSM. (c) Photograph of the IM used
in tests.

Figure 1.1 – Photographs of the three main kinds of AC rotating electric motors.

Electric motors can be powered by AC or DC electric networks. AC networks can
have any number of phases, the most widespread being the mono-phase and the three-
phase networks which can power mono-phase and three-phase electric motors. In this
manuscript we will focus only on three-phase AC electric motors and thus often omit the
qualification of three-phase AC. We will particularly be interested by

• The Synchronous Reluctance Motor (SynRM) described in section 1.1.1

• The Permanent Magnet Synchronous Motor (PMSM) described in section 1.1.2

• The Induction machine (IM) also known as the asynchronous motor described in
section 1.1.3

which are the three most widespread kind of AC electric motors.
But before describing how these electric motors are built we shall make the following

remark. The descriptions proposed hereafter are the descriptions of one pole pitch of an
electric machine. For a one-pole-pair electric motor this will be the design of the whole
machine, however for a two-pole-pair motor this will be the design of one half of the
machine, the other half having exactly the same design and so on for higher number n of
pole pairs. This artifact allows to build electric motors yielding a torque multiplied by n
and rotating at a speed divided by n under the same currents and voltages, which often
allows to use smaller mechanical speed reducers.

1.1.1 The synchronous reluctance motor (SynRM)

Here is briefly described the construction and operating principles of SynRMs. More
details can be found in Sul [23, pp. 55;144–145].

1.1.1.1 Construction

Like most of three-phase AC electric motors the stator of the SynRM supports three
electrical windings. These windings are connected to the phases of the grid and are
designed by the letters a, b and c. When powered, an electrical winding creates a magnetic
dipole whose magnetic poles are denoted as a and a′ for the winding a and so on. The
electrical windings are arranged so that the magnetic poles are equally spread around the
periphery of the stator in the order: a, c′, b, a′, c, b′.
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Figure 1.2 – Schematic transverse representation of a three-phase one-pole-pair SynRM

The rotor of the SynRM is built of a laminated ferro-magnetic material in which
magnetic barriers are set. This special design creates paths which are favored by the
magnetic flux and consequently tend to align with it.

Fig. 1.1a is the photograph of the SynRM which was used for the tests and fig. 1.2
presents a schematic two-dimensional representation of the internal layout of a one-pole-
pair SynRM.

1.1.1.2 Principle of operation

When the stator is connected to a three-phase balanced electrical power source the cur-
rents circulating in the three stator windings create a rotating magnetic field. When this
magnetic field crosses the rotor it will follow the aforementioned magnetic paths and the
rotor will tend to align with the magnetic flux, thus creating a torque. If it is strong
enough, this torque rotates the rotor at the speed of the stator flux. This is the reason
why this motor is qualified as synchronous.

1.1.2 The permanent magnet synchronous motor (PMSM)

We recall the internal layout of PMSM which can also be found in Chiasson [45, sec. 6.10]
or Sul [23, sec. 3.3.3].

1.1.2.1 Construction

PMSM stators are built exactly as SyRM stators. However the rotor contains a permanent
magnet which can be buried inside the rotor core in the case of the Internal Permanent
Magnet (IPM) PMSM or fixed on its surface in the case of the Surface Permanent Magnet
(SPM) PMSM. We will show in chapter 3 that both kinds of PMSMs can be modeled in
the same way.

Fig. 1.1b is the picture of a PMSM and fig. 1.3 presents a schematic two-dimensional
representation of the internal layout a one-pole-pair PMSM.
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Figure 1.3 – Schematic transverse representation of a three-phase one-pole-pair PMSM.

1.1.2.2 Principle of operation

As in the SynRM case a rotating magnetic field is produced by the stator when it is
connected to a three-phase electrical network. Similarly to the needle of the compass
the permanent magnet in the rotor will tend to align with the rotating magnetic field
thus creating a torque and rotating the machine at the speed of the stator magnetic field
divided by the number of pole pairs n. Hence it is qualified as synchronous like the
SynRM.

1.1.3 The induction motor (IM)

We describe here the construction and operating principles of IMs, which is detailed in
Boldea and Nassar [34].

1.1.3.1 Construction

As SynRM and PMSM stators IM stators support electrical windings which are spread in
exactly the same way.

However the rotor is built differently: it also supports electrical windings. These
windings can be made similarly as stator windings in which case the IM is qualified as
rotor-wound. However this design is seldom used and squirrel-cage rotors are preferred
because they are cheaper. In squirrel-cage rotors the windings are made of bars linked by
2 rings at the extremities. It is shown in Chiasson [45, sec. 6.7] that squirrel cages can be
considered equivalent to short-circuited windings.

Fig. 1.1c is the photograph of a IM and fig. 1.4 presents schematic two-dimensional
representations the two kinds of IM.

1.1.3.2 Principle of operation

As for PMSMs and SynRMs the stator windings create a rotating magnetic field when
they are connected to a three-phase balanced AC power source. When the rotor does not
rotate at the same speed as the magnetic field, its windings are submitted to a varying
magnetic flux. As stated by Faraday law an Electro-Motive Force (EMF) is created in
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(b) Wound-rotor IM.

Figure 1.4 – Schematic transverse representations of a three-phase one-pole-pair IMs.

Criterion SynRM PMSM IM

Synchronous yes yes no
Efficiency ++ + + + +

Motor price ++ + + + +
Setup easyness + ++ + + +

Table 1.1 – Comparison of the three kind of AC rotating electric motors.

the rotor windings. The current circulating in the rotor windings creates a magnetic flux
which opposes the stator magnetic flux according to Lenz law and thus creates a torque.

Unlike the SynRM and the PMSM presented herein before the IM cannot rotate at
the same speed as the stator magnetic fields, since there would be no rotor current and
consequently neither rotor flux nor torque. It is shown in Boldea and Nassar [34, ch. 7] or
Chiasson [45, ch. 7] that it rotates a little slower depending on the torque needed. This
kind of motor is thence qualified as asynchronous.

1.1.4 Comparison of electric motors

Table 1.1 compares some essential characteristics of electric motors. As they are the
most efficient but also the most expensive PMSMs are mostly used for applications where
efficiency is critical. They are also often used in high precision applications because precise
operation is easier to achieve on this kind of machines. In contrast IMs are preferred when
the price is critical or when the motor is directly connected to electrical grid which is now
seldom done. SynRMs, which appeared recently on the market, are now replacing IMs in
some applications where the price difference is paid off by the efficiency gain and replacing
PMSMs in applications where efficiency is not critical enough.
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1.1.5 Applications of electric motors

AC electric motors and in particular AC rotational electric motors produce most of the
mechanical energy used by industry and households. Their major applications are listed
below by categories.

Hoisting Electric motors power lifts, conveyor belts and cranes. As it does not really
requires high efficiency or high precision the IM is most widespread.

Pumps and fans For these applications the price matters, thus the IM is preferred.
However, as these machines are running a lot, efficiency is taken into consideration
and nowadays the SynRM replaces the IM.

Industry AC electric motors are used to power industrial appliances such as machine-
tools. In machine-tools high precision is needed, thus the PMSMs are widespread.

Transportation Electric motors to power some means of transportation such as trains
and now cars. In cars the efficiency really matters, thus PMSMs are used. In trains,
as high power is needed, IMs are usually used but they begin to be replaced by
PMSMs for the efficiency.

1.2 Electric motor control

From the explanations given in section 1.1 on how electric motors work, it may seem that
they will rotate as soon as they are connected to an AC power source. Even though this
is possible this mode of operation has some drawbacks presented in section 1.2.1 and the
usage of Variable Speed Drives (VSD or shortly drives) presented in section 1.2.2 is often
preferred.

These power electronic devices embed control laws which allow to regulate the speed
of the motor to a reference. We chose to separate these control laws in three categories:

“U/f” control laws They are the most simple control laws and are presented in sec-
tion 1.2.3.

“sensored” control laws They are more complex but of course more efficient than“U/f”
and require a mechanical speed sensor (encoder, resolver or tachometer) and are
presented in section 1.2.4

“sensorless” control laws These laws require neither position nor speed sensor even
though they do control the speed of the motor. They are presented in section 1.2.5

1.2.1 Need for control

First of all, as described in section 1.1, when they are directly connected to the grid, elec-
tric motors rotate at a fixed speed under a given load. Besides the current needed to start
the motor can be very important. This is not satisfactory for most applications. Indeed,
the user generally wants the speed to follow a trajectory which ensures the acceleration
and sometimes its derivative, the jerk, is bounded. To achieve this, the frequency of the
power source must be adjustable.

Secondly, even when the frequency of the power source is suitably adjusted, the speed
may depend on the torque for IM or the targeted working point may be an unstable
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Figure 1.5 – Synoptic scheme of power conversion in a drive.

critical point of the motor. We thus have to control the power source so that the targeted
working point is a stable equilibrium for the controlled motor.

Finally there are different ways, more or less efficient, of reaching a working point
specified in terms of torque and speed. When electric motors are not controlled properly,
the most efficient way is not always selected and their operation may be inefficient.

1.2.2 Variable Speed Drives (VSDs)

Due to the problems mentioned in the previous section a VSD is often used to drive a
motor. A VSD is a power electronic device which can transform a constant frequency
constant amplitude electrical network into an adjustable frequency adjustable amplitude
electrical network. Most drives first transform the input AC power into DC power with
a rectifier. The variation of the rectified power is then smoothed and finally transformed
back to AC power at the desired frequency and amplitude using an inverter. A synoptic
scheme of this process is given in fig. 1.5. More information on VSDs can be found in
section 2.2.1 of this document Krause, Wasynczuk, et al. [56, ch. 13] or Sul [23, sec. 2.18].

Many companies such as Schneider Electric, which supported this work, Siemens,
ABB, Toshiba, General Electric design and manufacture VSDs such as the Altivar 71
(see fig. 1.6) by Scheider Electric which is the commercial drive used for experiments (see
section 2.2.1 for more details on the test bench). Among other activites these companies
must design and implement the control laws which will be able to regulate the speed
and stabilize the chosen working point. Over time many such algorithms, categorized
hereafter, have been designed to regulate the speed of electric motors. State of the art for
motor control can be found in Sul [23], Chiasson [45], Krause, Wasynczuk, et al. [56].

1.2.3 “U/f” control laws

These control laws, described more extensively in Krause, Wasynczuk, et al. [56, ch. 14.2],
rely on the model of electric motors on permanent trajectories which shows that when
operating at constant flux the needed voltage amplitude is proportional to the frequency
of the AC network and thus to the frequency of rotation. The frequency and amplitude of
the voltage output by the drive are then adjusted in open-loop to these references. At low
speeds a voltage boost is required to compensate for the voltage drop due to the resistance
of the stator windings, which become non-negligible with respect to back electromotive
forces. There exist many compensation strategies which will not be detailed here (see [56,
ch. 14.2]).

However, these laws do not ensure the stability of the chosen working point and worse,
they do not ensure that the speed of an IM is equal to the reference. Furthermore,
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Figure 1.6 – Photograph of an Altivar 71 built by Schneider Electric, the commercial drive
used for experiments.

maximum efficiency cannot be achieved for all working points.
Consequently this control law is only used for applications which are not very dynamic

and where the working point does not change much, such as pumps and fans.

1.2.4 “Sensored” control laws

These control laws use current sensors and a mechanical position or speed sensor to
measure a part of the state of the motor. Hence, they are qualified as “sensored”. The
rest of the state can be estimated thanks to the model of the motor. Extensive study of
existing closed-loop control laws can be found in Chiasson [45, ch. 8–9] or Sul [23, ch. 5].

These control laws are used when high performance is needed. Indeed thanks to the
speed sensor the desired speed is ensured. Besides, they are stable and maximum efficiency
can be reached whatever reachable working point is chosen.

However, these control laws have one drawback: they require a mechanical speed
sensor. These sensors are expensive, cumbersome and the measurement signals can be
altered by the neighboring high currents. Besides, these sensors can be submitted to dusty
or hot environments which can reduce their lifetime. That is why it is interesting to design
control laws which do not need such sensors but still ensure the desired working point is
reached.

1.2.5 “Sensorless” control laws

These control laws are called “sensorless” because they do not require a mechanical sensor,
which is very advantageous as explained at the end of the previous section. Even though
the speed is not measured, it can be estimated from the current measurements and these
control laws ensure that the required speed is reached with maximum efficiency. For
extensive study of “sensorless” control law refer to Glumineau and de Leon Morales [67].

However, these control laws are more sensitive to the accuracy of the model, particu-
larly in the low speed domain. Moreover, the speed of the AC electric motors cannot be
estimated when the frequency of the network is zero as is shown in section 4.1.4 of this



document or Glumineau and de Leon Morales [67, ch. 2]. This is a major drawback of
these control laws which can thus not be used when low speeds are required. Overcoming
this drawback is currently one of the hottest challenge for VSD manufacturers such as
Schneider Electric. That is why it will be studied in depth in this manuscript.

1.3 Signal injection

Signal injection is the most promising solution to the aforementioned problem of “sensor-
less” control laws. Superimposing a signal on the control signals of electric motors was
proposed by Jansen and Lorenz [78] for IMs and Corley and Lorenz [85] for PMSMs. The
current response of the motor to this supplementary excitation is then extracted from
the current measurement and some signal processing allows to retrieve the speed or the
position of the rotor at low or even zero speed.

Following the activity in the literature ([2–4] and many others) the most interesting
signal injection method is HF signal injection where the frequency of the injected signal
is high with respect to the frequency of excitation of the motor and the bandpass of the
controllers. That is why it is extensively studied in section 4.2 of this document.

HF signal injection is even proposed in some commercial drives, but these control laws
are difficult to tune because the motor response to signal injection is not explained well
by the traditional unsaturated motor model. To explain it, magnetic saturation of the
motor must be taken into account. This is the reason why we propose a new modeling
approach to easily design (magnetically) saturated models for electric motors in chapter 3
and devote chapter 5 to the identification of the parameters of such models.





Chapter 2

Experimental facilities and related
problems

Chapitre 2 — Moyens de test et problèmes associés
Ce chapitre décrit les moyens expérimentaux qui ont été utilisés pour les parties expé-
rimentales de cette thèse. Les caractéristiques des moteurs testés (moteur synchrone à
reluctance et moteur à induction) sont données, ainsi que des précisions sur le banc de
test. Le cœur de ce banc de test est un système de prototypage rapide dSpace (ACMC
solution) pour la commande, associé à un variateur de vitesse industriel pour la puissance.
La fin de ce chapitre est consacrée à une étude théorique et expérimentale des limitations
du banc de test, telles que la présence de chutes de pont, de temps morts additionnels ou
d’harmoniques dues à la non-sinusöıdalité de la machine de charge.

In chapters 5 to 7 we consider electric motor modeling and control. To verify the
models or the control laws we design, we had to test them on real machines. The two
machines which were used for tests are described in section 2.1. Those machines were set
on a test bench which is described in section 2.2.

Of course we had to make some approximations due to the chosen experimental setup.
In section 2.3 we describe all the effects which are neglected in later experiments.

2.1 Motors

In the experiments which are presented further in this document we used electric motors
of two kinds

• A SynRM which is described in section 2.1.1

• An IM which is described in section 2.1.2

2.1.1 Synchronous reluctance motor

In the experimental tests, a 0.75kW SynRM built by KSB [5] was used. Its name plate
and parameters are given in the table 2.1 below and fig. 1.1a is a photograph of this
motor. By convention we set the Q axis to be aligned with the largest inductance and the
D axis to be aligned with the smallest. This convention was preferred because it is what
is obtained when the magnetic field of a PMSM is set to 0.

11
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Rated power 0.75kW
Rated mechanical speed 1500rpm
Rated torque 5N.m
Rated voltage 400V peak
Rated current 2A RMS
Maximum current 5A peak

Number of pole pairs n 2
Inertia momentum JL 5 · 10−3kg.m2

Stator resistance Rs 6.5Ω
Larger inductance LQs 0.3H
Smaller inductance LDs 0.1H

Table 2.1 – Parameters of the 0.75kW SynRM used in tests.

2.1.2 Induction motor

We used in experimental tests a 0.75kW IM built by Leroy Somer [6]. This motor was
chosen because it is one of the cheapest on the market and thus is widely used. Its name
plate and parameters are given in the table 2.2 below and fig. 1.1c is a photograph of this
motor.

Rated power 0.75kW
Rated mechanical speed 1500rpm
Rated torque 5N.m
Rated voltage 400V peak
Rated current 2A RMS
Maximum current 5A peak

Number of pole pairs n 2
Inertia momentum JL 5 · 10−3kg.m2

Stator resistance Rs 13Ω
Rotor resistance Rr 10Ω
Mutual inductance Lm 0.42H
Stator leakage inductance Lls 0.05H
Rotor leakage inductance Llr 0.05H

Table 2.2 – Parameters of the 0.75kW IM used in tests.

2.2 The dSpace test bench

The test bench used for experiments is described here. Almost all data presented here
was measured using this test bench. Only the oscilloscope records were not obtained on
this test bench. Fig. 2.1 is a photograph of the test bench is schematically represented in
fig. 2.2.
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Figure 2.1 – Photograph of the test bench.

On this test bench we can mount any type of rotational electric motor provided some
mechanical adaptations and it is under 1.5kW (which is the rated power of the inverter).
The shaft of the motor is connected via elastic couplings, a torque-meter (see section 2.2.4)
and an incremental encoder (see section 2.2.5) to a load machine (see section 2.2.6).

The motor is powered by the inverter stage of a 1.5kW commercial drive described in
section 2.2.1 and the output currents of the drive are measured thanks to external current
sensors (see section 2.2.3).

A dSpacer box generates the control signal for the inverter and records the measure-
ments. It is controlled thanks to a computer running dSpacer software. See section 2.2.2
and [7] for more information on dSpacer software and hardware capabilities.

2.2.1 The inverter

When high power is involved, it becomes almost impossible and certainly inefficient to
build a linear amplifier because this results in dissipating a lot of power in the circuit. The
preferred solution is to use PWM (Pulse Width Modulation) where the voltage signal is a
square wave with an adjustable duty cycle α. The potential reference is generally chosen
such that the two potential levels are Vbus

2 and −Vbus
2 . In fig. 2.3 some periods of such a

signal are represented. As a phase of an electric motor is equivalent to an RL circuit up
to the back EMF (Electro-Motive Force), the voltage seen by the motor is averaged over
one period of the PWM signal (TPWM)

v = 1
TPWM

∫ TPWM

0
v(s)ds = α

Vbus
2 − (1− α)Vbus2 =

(
α− 1

2

)
Vbus.

Thus any voltage v between −Vbus
2 and Vbus

2 can be obtained using two switches as shown
in fig. 2.4a.

However, some limitations must be mentioned. Firstly, the two switches must not
be closed simultaneously, otherwise the constant voltage is short-circuited. To enforce
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Figure 2.2 – Synoptic scheme of the test bench used for experiments.
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Figure 2.3 – Five periods of a PWM signal in blue solid lines. The red crosses represent
the potential seen by a low-pass filter such as a motor

this condition a dead time is added between the commutations of the two switches. This
causes some problems described in section 2.3.2. Secondly the switches are built using
transistors, specifically IGBTs (Insulated Gate Bipolar Transistors), which are not re-
versible in current. A so-called freewheeling diode is added to allow the current to flow in
the reverse direction. Finally the association of the IGBT and the diode creates a voltage
drop, called inverter voltage drop, as the voltage at their bounds is not zero but equal to
the PN junction voltage drop. This effect is detailed in section 2.3.1.

To obtain three adjustable potentials the previously described setup is repeated thrice
as shown in fig. 2.4b. The 3 PWM waves are synchronized so that the middle of the active
range coincide as shown on the upper part of fig. 2.5. When we compute instantaneous
values of the star-point potential and the voltages across the windings of a star-connected
electric machine, we obtain the curves shown in the lower part of fig. 2.5. There we can
see that the voltages change values 6 times in a PMW period. Moreover the potential of
the star-point is not zero but instead oscillates between −Vbus

2 and Vbus
2 . Nevertheless the

PWM frequency is chosen high enough so that the effect are averaged by the motor which
behaves as a low-pass filter.

In the case of the test bench we use the inverter stage of an ATV71 built by Schneider
Electric [8]. We also use the ATV71 ASIC (Application Specific Integrated Circuit) to
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Figure 2.4 – The circuits used to generate adjustable potentials.

symmetrize the three PWM signals coming from dSpacer hardware. In the ATV71, the
DC voltage Vbus is obtained from the three phase AC network using a diode rectifier and
stabilized using a capacitor.

2.2.2 dSpace solution

dSpacer ACMC solution [7] was chosen because it is tailored for fast prototyping of
control laws for three-phase electric machines. On the one side, it allows to rapidly
generate the code needed to run the control law on dSpacer hardware. On the other side,
measurements and internal variables of the control law can be recorded for later use using
dSpacer software. Most experimental data presented here was obtained in this way.

dSpacer hardware for fast prototyping of motor control laws consists of three boards
which are usually racked in a box (in the center of the photograph fig. 2.1)

DS1005 board This is a powerful DSP (Digital Signal Processor) board. The control
algorithm runs on this board. It also handles the communication with the computer
in real-time through an optical fiber and with the other boards through a proprietary
bus called PHS bus.

DS5202 board It is a FPGA-based board. With the help of EV1048 board it can
handle the generation of the 6 PWM signals needed to control the 6 transistors of
an inverter. However we use only three of them and generate the three other using
the ASIC built in the drive (see section 2.2.1). It converts encoder signals measured
by EV1048 board into a position signal. It also embeds 8 ADCs (Analog to Digital
Converters) whose measurements can be averaged and synchronized with PWM.

EV1048 board It is a signal conditioning board which outputs the PWM signals gen-
erated by the DS5202 board and receives the encoder signals.

The control algorithm running on DS1005 board is easily generated from Simulinkr

thanks to dSpacer additions. Only minimal adaptations are needed: the control law must
of course be discretized and I/O blocks must be added in the place of the simulated motor.
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Figure 2.5 – Four periods of a three phase PWM signal, the star-point voltage vN and
the voltages across the windings in solid lines. The crosses represent the potentials and
voltages seen by a low-pass filter such as a motor.
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dSpacer Control Desk software allows to display in real-time and record the measure-
ments coming from the hardware. It also allows the user to change parameters even while
the control law is running.

2.2.3 The current sensors

To get accurate current measurements, we used external current sensors. The three cur-
rents coming out the drive are measured thanks to three T60404-N4644-X400 currents
sensors manufactured by Vacuumschmelze [9]. These are small transformers which re-
duce the current to an acceptable level for measurement electronics. The signal is then
electronically processed to obtain a linear gain.

To filter out disturbances due to switch commutations, the measure is further processed
by an active low-pass filter with bandwidth 1kHz.

We calibrated all the currents sensors by connecting then to a voltage source with
adjustable current limit, which allowed us to have a variable current pass through the
sensors. The currents where measured by the dSpacer and a calibrated ampere-meter.
We thus found that the current sensors are perfectly linear in the range±10A and obtained
the scaling factor. The measured standard deviation was found to be smaller than 5·10−3A
for all measurements.

2.2.4 The torque-meter

The torque sensor we chose for the test bench is the torquemaster TM207 manufactured
by Vibro-meter [10]. It is built of a torsion shaft whose ends are bound to two concentric
cylinders which separate a pair of coils. When the torque applied to the torsion shaft
varies, induction between the two coils changes. Electronic processing gives the torque up
to a scaling factor.

As we do not have any simple way of calibrating the torque sensor we used the infor-
mation given in the manual [10] which tells us that it outputs a voltage in the range ±10V
for a torque in the range ±20N.m and that its accuracy is 0.1% of its nominal torque,
which is 0.01N.m in our case.

2.2.5 The encoder

The test bench is also equipped with an incremental encoder mounted on the rotat-
ing shaft. We used two different encoders: the old NHT912596I from Ideacod and the
more recent XCC1912PS11RN from Schneider Electric [11]. Their operating principle is
the same: a slotted disk periodically blocks a light beam which is received by a photo-
transistor. Thus when the shaft rotates a square wave is output from the encoder. In the
encoders we use, there are two such tracks in quadrature and a special track with only
one slot, which gives a zero. These encoders allow us to obtain the angular position up
to a constant.

The problem with dSpacer hardware interface for incremental encoders is that when
it sees the zero it resets the position to zero and sets a boolean value to one which is not
useful for us, as we are not interested in absolute position but only in the angle (modulo
2π). To tackle this problem we used the following procedure:

• First the position provided by dSpacer (which starts at 0 at the beginning of the
test run) is used to compute the mechanical position θm = mod(θdS + π, 2π)− π;
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• When the zero is first seen, the value θ0
dS is saved;

• Then the saved value is added to the position given by dSpacer and the mechanical
position is computed as θm = mod(θdS + θ0

dS + π, 2π)− π

which can be summarized in the z space by

θ0
dS(z) =

{
θdS(z) if the boolean value is false
θ0
dS(z − 1) if the boolean value is true

(2.1a)

θm(z) =
{

mod(θdS(z) + π, 2π)− π if the boolean value is false
mod(θdS(z) + θ0

dS(z) + π, 2π)− π if the boolean value is true
(2.1b)

To get the angular speed I use a Luemberger observer for the system

dθm
dt

= ωm (2.2a)

y = mod(θm + π, 2π)− π (2.2b)

which reads

dθ̂m
dt

= ω̂m +Kθ
p mod(y − θ̂m + π, 2π)− π (2.3a)

dω̂m
dt

= Kθ
ı mod(y − θ̂m + π, 2π)− π. (2.3b)

Assuming the speed is constant, the errors ∆ωm = ωm − ω̂m and ∆θm = θm − θ̂m follow
the dynamic

d∆θm
dt

= ∆ωm −Kθ
p mod(mod(θm + π, 2π)− θ̂m, 2π) + π (2.4a)

d∆ωm
dt

= −Kθ
ı mod(mod(θm + π, 2π)− θ̂m, 2π) + π. (2.4b)

This system reaches equilibrium when θ̂m ≡ θm[2π] and ∆ωm = 0. Around such equilibria
the system can be linearized under the form

d∆θm
dt

= ∆ωm −Kθ
p∆θm (2.5a)

d∆ωm
dt

= −Kθ
ı ∆θm (2.5b)

which proves that all equiblibria where θ̂m ≡ θm[2π] and ∆ωm = 0 are stable. We thus
get an estimate of the mechanical speed ω̂m.

2.2.6 The load machine

The load machine is a 4kW brush-less DC servomotor BMH22422R1TF2I built by NUM
which is controlled using the adapted commercial controller. The fact that the back-EMF
of such machines is trapezoidal causes some harmonic problems described in section 2.3.3
even with a suitable controller.

The machine can be controlled in two ways:

• Either a speed reference is given and the torque is limited;
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• Or it provides a constant torque whatever the speed.

Controlling the speed and torque reference with dSpacer was one of the improvement
axes of the test bench we envisaged. However we did not implement it as the test bench
could then only be used with dSpacer . The speed and torque reference are then adjusted
manually thanks to two potentiometers, thus allowing us to get any desired trajectory.

2.3 Experimental problems

We here analyze the problems which can arise due to practical imperfections of the test
bench described in section 2.2. We show that those imperfections are negligible or we
present compensation methods.

2.3.1 Inverter voltage drops

Due to the PN junction voltage drop in semi-conductors, the potential we get at the
output of the inverter is not exactly the desired one. Besides, the voltage drop in the
diodes and the IGBTs are not the same as the IGBTs contain two PN junctions whereas
the diodes have only one.

As stated by Weber and Steiner [13], the inverter voltage drops can affect the behavior
of the controlled electric machine. We thus have to model them so that we can compensate
them (see section 2.3.1.3). In addition to affecting the control signals of the drive, Gabriel,
De Belie, et al. [14], Guerrero, Leetmaa, et al. [15], Wolbank and Machl [16] states that
inverter voltage drops can have disturbing effects on the HF injection. We studied this
phenomenon to determine how much the HF signal is altered by inverter voltage drops.

First of all, we consider the causes of inverter voltage drops. As said, the inverter
voltage drops depend on which element is conducing. The four possible cases are shown
in fig. 2.6 and are listed here:

• The upper IGBT is conducing (see fig. 2.6a);

• The upper diode is conducing (see fig. 2.6b);

• The lower IGBT is conducing (see fig. 2.6c);

• The lower diode is conducing (see fig. 2.6d).

Thus, in a three-phase inverter, the voltage drops will depend on the sign of the cur-
rent (see section 2.3.1.1) but also on the direction of the voltage space vector (see sec-
tion 2.3.1.2) as there are three output bridges.

2.3.1.1 Influence of the current

To determine the influence of the current on voltage drops, we set different positive volt-
age references along the axis a (from 0V to 30V ). We then recorded both the voltage
reference vrs and the measured current ıms using dSpacer . The voltages between all the
phases and the point at −Vbus

2 were also measured using a digital oscilloscope. As these
voltage measurements are of course PWM signals, we filter them using a sliding average
on one period of PWM to obtain vms .
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Figure 2.6 – The four different ways the current can cross the output bridge of an inverter.

We can thus compute the voltage drops using either one of the formulae

Vdrop = vrs − vms (2.6a)

Vdrop = vrs −Rsı
m
s (2.6b)

where Rs is the stator resistance of the motor and was measured using an ohmmeter.
Test are short enough so that we can suppose that the temperature of the motor does
not change much. The results are depicted in fig. 2.7 where we can see that, up to the
precision of the measurement, the inverter voltage drops do not depend on the current
level, but only on its sign.

2.3.1.2 Influence of the direction of the voltage space vector

To highlight the influence of the direction of the voltage reference, we used a constant
norm voltage reference with a variable direction (one point every 15◦). The voltage drops
can now be obtained only using eq. (2.6a) as the resistance may change depending on the
orientation. In fig. 2.8 we notice that the voltage drops greatly depend on the voltage
reference direction.

As expected, the curves are similar with a phase difference of 2π
3 . Moreover they look

like the theoretical inverter voltage drop curves (see for instance [17]) which is dashed in
fig. 2.8. This model for inverter voltage drops read

V abc
drop = 1

3

 2 −1 −1
−1 2 −1
−1 −1 2

V 0
drop sgn (ıabcs ). (2.7)
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(b) Voltage drops on phases a, b and c as a
function of the stator current computed using
the current measurement and eq. (2.6b).

Figure 2.7 – The voltage drops computed using both methods proposed in eq. (2.6).

where V 0
drop ≈ 1V in our case.

Such voltage drops may cause torque ripple at integer multiples of 6ωs because the
three signals combine their effects. Such harmonics were indeed observed on the test bench
on both the SynRM and the IM. However, these can also be caused by the motor being not
perfectly sinusoidally wound, as shown in section 3.7.5. For the SynRM these harmonics
are at the same frequencies as those caused by the load machine (see section 2.3.3 below).

2.3.1.3 Inverter voltage drop compensation

The idea is to add the inverter voltage drops forecast by the model eq. (2.7) to the voltage
reference. As the function sgn is difficult to implement and can cause numerical problems
we used the approximation

sgn (x) = max(min(ax, 1),−1) (2.8)

with a large a for the implementation of voltage drop compensation (see fig. 2.9).
In fig. 2.10 we compare the potentials we obtain at the output of the drive measured

with an oscilloscope at 25MHz with and without inverter voltage drop compensation.
From fig. 2.10b we see that inverter voltage drops have a great influence when the voltage
is low, however their influence decreases when the voltage is increased as can be noticed
in fig. 2.10d. Numeric data in table 2.3 show that at low voltages, the precision of the
potential is increased by 2, however at high voltages the effect is less visible.

2.3.1.4 Influence of inverter voltage drops on HF injection

As inverter voltage drops only vary when the current orientation changes, their effect on
HF injection will be limited because HF injection do not change the sign of the current
when the mean current is high enough. Thus inverter voltage drops only affect zero current
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Figure 2.8 – Influence of the orientation of the voltage reference on inverter voltage drops
on phases a, b and c. The model (dashed lines) is compared with the measured data (solid
lines).
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(a) Reference (dashed lines) and measured (solid lines) potentials on phases a, b and c without
compensation of inverter voltage drops on a 10V signal at 10Hz.
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(b) Reference (dashed lines) and measured (solid lines) potentials on phases a, b and c with
compensation of inverter voltage drops on a 10V signal at 10Hz.
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(c) Reference (dashed lines) and measured (solid lines) potentials on phases a, b and c without
compensation of inverter voltage drops on a 30V signal at 10Hz.
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(d) Reference (dashed lines) and measured (solid lines) potentials on phases a, b and c with
compensation of inverter voltage drops on a 30V signal at 10Hz.

Figure 2.10 – Experimental results on voltage drop compensation and influence of the
voltage reference. The voltage measurements were done using an oscilloscope with a
sampling frequency of 25Mhz. The data thus obtained was averaged off-line on each
PWM period (6250 points)
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Axis
Voltage reference: 10V Voltage reference: 30V
Without With Without With

a 0.79V 0.46V 0.62V 0.38V
b 0.86V 0.50V 0.62V 0.59V
c 0.83V 0.44V 0.47V 0.52V

Average 0.83 0.47 0.56 0.50

Table 2.3 – Mean value of absolute value of inverter voltage drop with and without com-
pensation.
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Figure 2.11 – Effect of inverter voltage drop on the 20V 500Hz injected HF voltage signal
on phases a, b and c. Comparison between the references (dotted lines), the simulated HF
voltage with voltage drop (dashed lines) and the experimental measurement (solid lines).

operation as shown in fig. 2.11. In this case, the HF currents, which are the primitives of
the HF voltages, change signs in the middle of the voltage levels. This will create a small
step in the middle of the voltage levels as can be seen in fig. 2.11.

In fig. 2.11 we see that the perturbation of the HF voltage signal is minimal even in
the worst case where the current changes sign. This is due to the fact that the injection
has a large amplitude with respect to voltage drops. In this case, the relative error caused
by inverter voltage drops on the HF signal is less than 5% which is negligible. Moreover,
the deformation of the current signal is also minimal. With larger injection amplitudes,
the inverter voltage drops will affect even less the HF signal. Thus we did not always use
voltage drop compensation in our tests.

2.3.2 Dead times

As was mentioned in section 2.2.1, the two switches on the same branch of the bridge
(see fig. 2.4a) cannot be closed simultaneously, otherwise the DC bus is short-circuited.
Moreover, the switches do not commute instantaneously and not necessarily at the same
speed. Thus we cannot send the commutation order at the same time for the upper and
the lower switches. We must introduce a small interval T0, called dead-time, between
the open and the close order. The control signals of the upper and lower switches for the
bridges look like what is presented in fig. 2.12 where the dead-times have been highlighted.
When α ∈

[
T0

TPWM
, 1− T0

TPWM

]
we can set

Th = αTPWM − T0 (2.9a)
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Figure 2.12 – Theoretical (dashed lines) and real (solid lines) control of the upper (blue)
and lower (green) switches of an inverter bridge with dead-times highlighted (in red).

Tl = (1− α)TPWM − T0 (2.9b)

where Th and Tl are the times when the upper and lower switch are closed respectively.
This does not change the voltage seen by the motor in average as the terms containing T0
cancel each other out. Otherwise if α ∈

[
0, T0

TPWM

]
Th = 0 (2.10a)

Tl = (1− 2α)TPWM (2.10b)

and if α ∈
[
1− T0

TPWM
, 1
]

Th = (2α− 1)TPWM (2.11a)

Tl = 0 (2.11b)

In this way all potentials in the range
[
−Vbus

2 , Vbus2

]
can still be achieved.

Besides, the switches we use, namely IGBTs, do not commute instantaneously from
closed to open state: a small amount of time, called switching time, is needed to commute
from closed to open state and vice versa. This additional dead-time must also be taken
into account if we want to have the desired voltages at the bounds of the motor.

As was said in section 2.2.1 above, the drive of the test bench contains a specialized
ASIC which symmetrizes the PWM orders coming from dSpacer , introduces the dead-
times and compensates the transistors switching times.

2.3.3 Load machine harmonics

As was said in section 2.2.6, the load machine is a brush-less DC motor. These motors
are known to generate undesirable load harmonics even with a suitable controller. This
was verified on our test bench where important harmonics were observed in the spectrum
of the load torque signal at integer multiples of the frequency of rotation.

First, we rotated the motor by hand. Since it is not sinusoidally wound and the magnet
is very strong, the saliencies are easily sensed. We thus found 36 saliencies per turn. This
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(a) Amplitude spectrum of the electromagnetic torque.
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(b) Amplitude spectrum of the mechanical speed.

Figure 2.13 – Spectra of the signals recorded during the experiments to get harmonics
caused by the load machine.

means that the motor has 36 slots as the saliencies are caused by the slot boundaries
attracting the magnet. This gives us some insight on how the motor is internally built
however this does not tell us what harmonics are generated when it is driven by its
controller.

To measure the harmonics caused by the load machine, we used the test bench in the
opposite direction as usual, that is to say we rotated it at ωm ≈ 0.20Hz connected to an
IM or an SynRM not fed. In this situation, only the load machine can generate harmonics
as the other machine only creates some additional friction torque which is mostly constant.
During the experiments we recorded the speed (see fig. 2.13b for its FFT) and the load
(see fig. 2.13a for its FFT).

As can be seen in table 2.4, the main harmonics are at frequencies which are at an
integer multiple of 36ωm (notice that the harmonics at 15ωm are very low with respect
to the others). These hamonics will be seen on later experiments, mainly on those of
section 3.7.5 where we study the harmonics caused by the non-sinusoidality of the motors.



Frequency |L(Te)| |L(ωm)| Meaning

3.067Hz 0.001N.m − 15ωm
7.324Hz 0.003N.m 0.009Hz 36ωm
14.65Hz 0.005N.m 0.006Hz 72ωm
21.96Hz 0.001N.m 0.001Hz 108ωm

Table 2.4 – Main harmonics measured when the load machine is driven at ωm ≈ 0.2Hz
and the motor is not fed.





Chapter 3

Energy-based modeling of electric
machines

Chapitre 3 — Modélisation énergétique des machines électriques
Ce chapitre présente une nouvelle approche pour la modélisation des machines électriques.
Elle repose sur des résultats classiques de mécanique analytique qui sont appliqués aux
machines électriques. Elle permet de justifier la modélisation de la saturation dans des
repères fictifs, alors qu’elle se produit dans le repère physique, ainsi que la conservation
de l’expression du couple électromagnétique pour les machines électriques saturées. Les
conditions de réciprocité sont automatiquement vérifiées par les modèles construits selon
cette approche. En considérant le cas le plus simple, cette approche permet de retrouver
facilement les modèles sinusöıdaux non saturés des moteurs électriques, mais elle peut
aisément être étendue à la modélisation de moteurs saturés ou/et non sinusöıdaux.

After a small review of electric motor modeling approaches, we propose here a complete
energy-based framework to design electric motor models. This approach requires only a
basic understanding on how electric motor are built and the model can be expressed as a
single scalar function instead of a set of differential equations and current-flux relations.

Thanks to this approach we are also able to show that electric motors are very similar.
This finding is used in chapter 4 where a generic observability study is done and chapter 6
where a generic “sensorless” control law for SynRMs and PMSMs is designed.

3.1 Preliminaries: Electric motor modeling

3.1.1 Traditional microscopic approach

Electric machines are traditionally modeled by a microscopic approach relying on the
application of Maxwell equations under integral form. Such approaches are developed
in Mukerji, Khan, et al. [18], Chiasson [45] for instance. The most well known models
for electric motors, the unsaturated sinusoidal models, can be obtained with this method
by assuming a linear relation between currents and fluxes and sinusoidally distributed
windings.

The unsaturated sinusoidal model allows to control electric motors reasonably well
and has been intensively used to design control algorithms (see for instance [23, 45, 56]).
With a suitable adjustment of parameters all working points for electric motors can be
explained. This lead to the design of adaptive control laws for electric machines.

29



30 Chapter 3. Energy-based modeling of electric machines

Alternatively, the dependence of the parameters on the working point can be predicted
by using nonlinear current-flux relations. Saturated models were proposed since the 1990s
(see [19–21] for example) to avoid parameter adaptation which leads to complicated proofs.
However nonlinear modeling became really interesting with signal injection (see section 1.3
and [78, 85]). Indeed magnetic saturation is paramount to explain the effects of signal
injection (see for instance [22, 78]).

Furthermore electric machines are not precisely sinusoidally wound. Some effort has
been invested on extending the basic unsaturated sinusoidal models to account for the
effects of non-sinusoidal windings. This reduces torque harmonics (see [24–26]), but can
also be used to estimate the position of non-sinusoidally wound electric machines (see
[27, 28]).

However these extensions must be done with care. Indeed the current-flux relations
must respect the so-called reciprocity condition as stated by Melkebeek and Willems
[29], Sauer [30]. Besides this method is also quite tedious and requires the knowledge of
the internal layout of electric machines.

3.1.2 Macroscopic approach

An alternative modeling approach is based on analytical mechanics (see Landau and Lif-
shitz [31], Raimond [32]) which allows one to derive dynamic models from the specification
of a single scalar function related to energy. The premises of this technique can be found
in White and Woodson [33] where the energy function associated with the unsaturated
sinusoidal model is given.

When saturated models are designed, the reciprocity conditions are automatically
enforced by this approach (see [1]), which is very advantageous. Furthermore it requires
only the specification of a single scalar function instead of many vector functions and
only requires a basic understanding of the internal layout of electric machines. Hence this
approach was proposed to model saturation in electric motors (see [35, 36]). And it was
eventually successfully applied by Jebai [37] to model a saturated PMSM. In addition
to that Jebai, Combes, et al. [1] shows that the unsaturated sinusoidal models are the
most basic models which can be obtained when the symmetries of electric machines are
considered.

Due to these numerous advantages, this approach was favored in this work to model
saturated and non-sinusoidally wound electric motors. It was generalized to show that it
can be applied to any kind of electric motor, not only PMSMs.

3.2 Energy-based modeling for 3 phase electric mo-

tors

As explained in section 3.1 we favor in this work a macroscopic approach based on energy
considerations and analytical mechanics. The underlying idea is that the trajectories
followed by a system over time are those which are extremal for some function analogous
to an energy.

Here is given a small introduction to analytical mechanics which is much more detailed
in [31, 32]. Its application to electric machines is also proposed (see [33] for more details).
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3.2.1 Lagrangian modeling

The physical state of a system can be described by a set of variables called the generalized
coordinates of the system and denoted q ∈ Rn. Thus, assigning values to all coordinates of
a system uniquely determines its state. The generalized coordinates must be independent
from one another.

The time derivatives q̇ ∈ Rn of these generalized coordinates are called generalized
speeds. Analytical mechanics (see [31, 32]) postulates the existence of a function of gen-
eralized coordinates, generalized speeds and optionally of the time, L(q, q̇, t), such that
the action S defined by

S :=
∫ tf

t0
L(q(τ), q̇(τ), τ)dτ (3.1)

is extremal along the trajectories which are followed by the system when it evolves over
time without any external force. This stems from a fundamental principle in physics,
called the least action principle. Eq. (3.1) is a variational principle under integral form.
The corresponding differential form is called the Euler-Lagrange equation and reads

d

dt

∂L
∂q̇

= ∂L
∂q
. (3.2)

Eq. (3.2) is valid only for a system on which no external forces apply. But it can be
easily extended to the case where generalized external forces Q are applied (see Raimond
[32, sec. 1.4]). In this case the system follows the dynamic

d

dt

∂L
∂q̇

= ∂L
∂q

+Q. (3.3)

There is one problem with this formulation: eq. (3.3) is not under state form which will
not be very practical for simulations and control law design. We are going to solve this
problem in the next section.

Moreover, the evolution of L over time is

dL
dt

=
(
∂L
∂q

)T
dq

dt
+
(
∂L
∂q̇

)T
dq̇

dt
+ ∂L
∂t

= q̇T
∂L
∂q

+ d

dt

(
q̇T
∂L
∂q̇

)
− q̇T d

dt

∂L
∂q̇

+ ∂L
∂t

= d

dt

(
q̇T
∂L
∂q̇

)
− q̇TQ+ ∂L

∂t
(3.4)

which shows that, even in the absence of external forces (Q = 0) and when there is no
intrinsic variation (∂L

∂t
= 0), the Lagrangian is not conserved over time. Thus, even though

it is homogeneous and analogous to an energy, the Lagrangian is not the energy of the
system, which should be conserved over time in this case.

3.2.2 Hamiltonian modeling

To get a state form instead of eq. (3.3), we use a Legendre transformation and defineH, the
Hamiltonian of the system. The state variables will be the generalized coordinates q ∈ Rn

and the generalized momenta p := ∂L
∂q̇
∈ Rn. In this case the Legendre transformation

reads
H := q̇Tp− L. (3.5)
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Computing the differential of H using eq. (3.5) we get

dH = pTdq̇ + q̇Tdp−
(
∂L
∂q

)T
dq −

(
∂L
∂q̇

)T
dq̇ − ∂L

∂t
dt = q̇Tdp−

(
∂L
∂q

)T
dq − ∂L

∂t
dt.

Hence H can be seen as a function of the generalized coordinates q and of the generalized
momenta p and possibly of the time t. Identifying the previous formula with the usual
formula

dH =
(
∂H
∂q

)T
dq +

(
∂H
∂p

)T
dp+ ∂H

∂t
dt,

we get the equations of evolution for the generalized coordinates and the generalized
momenta, i.e. the state equations of the system

dp

dt
= −∂H

∂q
+Q (3.6a)

dq

dt
= ∂H

∂p
. (3.6b)

The state form eq. (3.6) is usually referred to as Hamilton’s equations and is much more
convenient for the purposes of simulating the motor and designing control laws.

Moreover, if we take a look back at the considerations of eq. (3.4), we realize that H is
the conserved quantity when the system evolves in the absence of external forces (Q = 0)
and intrinsic variation (∂L

∂t
= −∂H

∂t
= 0). This conserved quantity is called the energy of

the system. Furthermore, in the presence of external forces, but still in the absence of
intrinsic variation (∂L

∂t
= −∂H

∂t
= 0), we have

dH
dt

= q̇TQ. (3.7)

Thus, q̇TQ is the work of the generalized forces along the trajectory of the system.

3.2.3 Using complex state variables

The equations of electric machines are often written using complex state variables (called
space vectors) as this allows more compact formulae. Even though this approach is not
often used in this document, the result is recalled here. As shown in [35, 36] it is possible
to extend analytical mechanics to use complex variables. We have two sets of generalized
coordinates:

• The vector of the c complex valued coordinates q
c
∈ Cc and

• The vector of the r real valued coordinates qr ∈ Rr

The equivalent vector of real-valued coordinates is obtained by taking the real part <q
c

and imaginary part =q
c

of the complex coordinates q
c

and taking the real coordinates as
they are, i.e. define

q :=
(
q
c

+ q∗
c

2 ,
q
c
− q∗

c

2 , qr

)T
∈ R2c+r

A similar definition can be used to define q̇, the equivalent set or real-valued speeds
associated with q̇r and q̇

c
as well as p the equivalent set of real-valued momenta associated

with pr and p
c
.
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We can now define
L(q

c
, q∗
c
, qr, q̇c, q̇

∗
c
, q̇r) := L(q, q̇).

where L is still a real-valued scalar function. Computing partial derivatives of L with
respect to the generalized coordinates, we find

∂L
∂q

c

= ∂q

∂q
c

∂L
∂q

= 1
2
∂L
∂<q

c

− 

2
∂L
∂=q

c

∂L
∂q∗

c

= ∂q

∂q∗
c

∂L
∂q

= 1
2
∂L
∂<q

c

+ 

2
∂L
∂=q

c

∂L
∂qr

= ∂q

∂qr

∂L
∂q

= ∂L
∂qr

.

Similar results are obtained for the partial derivatives with respect to generalized speeds.
Thus the Euler-Lagrange equations using complex-valued variables read

2 d
dt

∂L
∂q̇∗

c

= 2 ∂L
∂q∗

c

+Q
c

(3.8a)

d

dt

∂L
∂q̇r

= ∂L
∂qr

+Qr (3.8b)

where Qr are the generalized forces associated with qr and Q
c

:= <Q
c
+ =Q

c
, <Q

c
being

the generalized forces associated with <q
c

and =Q
c

being associated with =q
c
. The factor

2 in eq. (3.8) comes from the fact that the transformation from complex-valued variable
to the associated real-valued variables is not normalized, but it was preferred for historical
reasons.

Similarly we can derive Hamilton’s equations associated with the complex Hamiltonian
defined by

H(q
c
, q∗
c
, qr, pc, p

∗
c
, pr) := H(q, p)

which gives

dp
c

dt
= −2∂H

∂q∗
c

+Q
c

(3.9a)

dpr
dt

= −∂H
∂qr

+Qr (3.9b)

dq
c

dt
= 2∂H

∂p∗
c

(3.9c)

dqr
dt

= ∂H
∂pr

(3.9d)

3.2.4 Application of energy-based modeling to electric machines

We are now going to specify the energy-based formulations developed in sections 3.2.1
and 3.2.2 for electric motors as done in White and Woodson [33].

We are now considering the most general three-phase electric motor possible. It has
n pole pairs and, thus, 3n windings in the stator. It is assumed that the rotor can be
modeled by 3n windings as well. They are now considered unconnected so that there
are no constraints (see section 3.5 for details on how to handle connection constraints).
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Figure 3.1 – Power exchanges in an electric motor.

As all the poles are built identically, the motor can be reduced to a single pole pair
motor by considering electrical equivalent of mechanical variables. The three windings of
the equivalent simplified motor will be noted a, b and c. For such an electromechanical
system, the generalized coordinates are

q = (θ, qas , qbs, qcs, qar , qbr, qcr)

where θ = nθm is the electrical rotor angle, qabcs , the vector of charges in the stator
windings and qabcr , the vector of charges in the rotor windings. The associated generalized
speeds will be given by

q̇ = (ω, ıas , ıbs, ıcs, ıar , ıbr, ıcr)

where ω = nωm is the electrical speed of rotation of the motor, ıabcs , the vector of currents
in the stator windings and ıabcr , the vector of currents in the rotor windings.

As shown in fig. 3.1, a three-phase electrical motor

• Receives from the grid the electrical power ıabcs
T
uabcs , thus uabcs , the vector of the

voltage drops across the stator windings, is a generalized force associated with the
stator currents ıabcs ;

• Loses the electrical power −Rsı
abc
s

T
ıabcs in its stator resistance Rs, thus Rsı

abc
s is a

generalized force associated with the stator currents ıabcs ;

• Loses the electrical power −Rrı
abc
r

T
ıabcr in the rotor resistance Rr, thus Rrı

abc
r is a

generalized force associated with the rotor currents ıabcr ;

• Yields to the load the mechanical power −ω
n
TL, where TL is the load torque and

thus the generalized force associated with the electrical speed ω is TL
n

.

As there is no capacitive element, and consequently, no storage of electrical charges,
the energy functions will not depend on the charges. The behavior of a motor does not
change over time, so the energy functions will not depend on time either. Thus in the
most general case, the Lagrangian of an electric motor expressed using the above defined
generalized coordinates and speeds will be of the form

Labc(θ, ω, ıabcs , ıabcr ). (3.10)
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We denoted the Lagrangian of the electric motor by Labc to underline the fact that it
is expressed using variables in the abc frame. Taking into account the aforementioned
generalized forces and applying eq. (3.3) gives

d

dt

∂Labc

∂ıabcs
= uabcs −Rsı

abc
s (3.11a)

d

dt

∂Labc

∂ıabcr
= −Rrı

abc
r (3.11b)

d

dt

∂Labc

∂ω
= ∂Labc

∂θ
− TL

n
. (3.11c)

By defining the electromagnetic torque,

Te(θ, ω, ıabcs , ıabcr ) := n
∂Labc

∂θ
(θ, ω, ıabcs , ıabcr ) (3.12)

and the generalized momenta associated with the currents and the speed

φabcs (θ, ω, ıabcs , ıabcr ) := ∂Labc

∂ıabcs
(θ, ω, ıabcs , ıabcr ) (3.13a)

φabcr (θ, ω, ıabcs , ıabcr ) := ∂Labc

∂ıabcr
(θ, ω, ıabcs , ıabcr ), (3.13b)

ρ(θ, ω, ıabcs , ıabcr ) := n2∂Labc

∂ω
(θ, ω, ıabcs , ıabcr ), (3.13c)

which turn out to be the fluxes through the windings and the electrical kinetic momentum,
we recover the motor equations under the usual form (see [23, 45, 56]). Notice the n2 factor
in eq. (3.13c), which stems from the fact that the transformation from the mechanical
variables into electrical ones is not normalized. Indeed defining ρ := nρm and ω := nωm,
we obtain with variables omitted for the sake of compactness

ρ = n
∂Labc

∂ωm
= n

∂ω

∂ωm

∂Labc

∂ω
= n2∂Labc

∂ω

However eq. (3.11) is not in state form which is not very practical.

A state form can be obtained by a Legendre transformation, thus defining the Hamil-
tonian of an electric motor as in section 3.2.2

Habc(θ, ρ, φabcs , φabcr ). (3.14)

Applying eq. (3.6a) to this energy function gives the desired state form

dφabcs
dt

= uabcs −Rsı
abc
s (θ, ρ, φabcs , φabcr ) (3.15a)

dφabcr
dt

= −Rrı
abc
r (θ, ρ, φabcs , φabcr ) (3.15b)

1
n

dρ

dt
= Te(θ, ρ, φabcs , φabcr )− TL (3.15c)

dθ

dt
= ω (3.15d)
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with

ıabcs (θ, ρ, φabcs , φabcr ) = ∂Habc

∂φabcs
(θ, ρ, φabcs , φabcr ) (3.16a)

ıabcr (θ, ρ, φabcs , φabcr ) = ∂Habc

∂φabcr
(θ, ρ, φabcs , φabcr ) (3.16b)

Te(θ, ρ, φabcs , φabcr ) = −n∂H
abc

∂θ
(θ, ρ, φabcs , φabcr ) (3.16c)

ω(θ, ρ, φabcs , φabcr ) = n2∂Habc

∂ρ
(θ, ρ, φabcs , φabcr ). (3.16d)

The n2 factor in eq. (3.16d) stems from the same reason as in the Lagrangian case.

3.3 Frame changes

For three-phase electric machines the electrical variables are 3 dimensional vectors, which
were expressed in the physical frame abc in the previous section 3.2. However the frame
abc as given lacks an interesting feature: none of its axes are aligned with the rotation
axis. We will see later in section 3.4 that this axis plays an important role due to the
construction symmetries of electric motors.

Moreover the stator variables are expressed in a frame linked with the stator whereas
the rotor variables are expressed in a frame linked with the rotor. This will not be
convenient to model the electromagnetic coupling between stator and rotor.

In this section, we define the frames we are going to use. These are similar to those
used in the literature (see Krause, Wasynczuk, et al. [56, ch. 3] and Sul [23, ch. 3]), but
we must explain how to change frames using the Hamiltonian formalism.

3.3.1 Transformations

We are now interested in doing a change of variables in the energy functions. The partic-
ular transformations we will use later will be applicable to the Lagrangian or the Hamil-
tonian. However in the general case presented here, the changes of coordinates can be
applied only to the Hamiltonian variables.

A change of variable is a bijective transformation from the initial variables (q, p) to
other variables (q′, p′)

T : Rn × Rn → Rn × Rn

(q, p) 7→ (q′, p′).

We define an energy function in the new state space by H̃(q′, p′) := H(q(q′, p′), p(q′, p′)).
This energy function H̃ is similar to a Hamiltonian, but the state equations using variables
(q′, p′) may not be given by Hamilton’s equations.

A canonical transformation is a transformation which does not change Hamilton’s
equations. The theory of canonical transformations is very developed and will not be
fully detailed (see [32, sec. 2.4]). Yet we present a criterion to check if a transformation
is canonical. The chain rule gives us on the one hand(

∂H
∂q
∂H
∂p

)
=
∂q′

∂q
∂p′

∂q
∂q′

∂p
∂p′

∂p

∂H̃
∂q′

∂H̃
∂p′

 = ∂(q′, p′)
∂(q, p)

∂H̃
∂q′

∂H̃
∂p′


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and on the other hand

(
dq′

dt
dp′

dt

)
=
∂q′

∂q

T ∂q′

∂p

T

∂p′

∂q

T ∂p′

∂p

T

(dq
dt
dp
dt

)
=
(
∂(q′, p′)
∂(q, p)

)T (dq
dt
dp
dt

)

where ∂(q′,p′)
∂(p,q) represents the transpose of the Jacobian matrix of the transformation T . So

the state equations using (q′, p′) variables are

(
dq′

dt
dp′

dt

)
=
(
∂(q′, p′)
∂(q, p)

)T ( 0n In
−In 0n

)
∂(q′, p′)
∂(q, p)

∂H̃
∂q′

∂H̃
∂p′

 =
(
∂(q′, p′)
∂(q, p)

)T
Jn
∂(q′, p′)
∂(q, p)

∂H̃
∂q′

∂H̃
∂p′

 .
Thus Hamilton’s equations are conserved if and only if

(
∂(q′, p′)
∂(q, p)

)T
Jn
∂(q′, p′)
∂(q, p) = Jn (3.17)

i.e. the Jacobian matrix of the transformation T is symplectic. By extension, the trans-
formation T is called a symplectic transformation.

When q′ depends only on q, p′ depends only on p and the transformation between
q and q′ on the one hand and p and p′ on the other are the same, i.e. the generalized
coordinates and momenta are transformed separately but similarly, the Jacobian matrix
is diagonal by blocks and the blocks are identical. In this particular case, the condition
eq. (3.17) boils down to the block being an orthogonal matrix.

3.3.2 Frame orthonormalization

As was said in introduction of section 3.3, the rotation axis of the motor, which will be
called the 0-axis and is collinear to the abc frame vector (1, 1, 1)T , plays a major role when
construction symmetries are considered (see section 3.4). We will thus select it among
the basis vectors of our new frame. Then we choose the α-axis to be in the plane defined
by a-axis and 0-axis and finally β orthogonal to this plane. After some algebra, we find
the transformation matrix from the abc frame to the αβ0 frame (which is the so-called
Concordia transformation)

Pabc→αβ0 :=
√

2
3


1 −1

2 −1
2

0
√

3
2 −

√
3

2√
2

2

√
2

2

√
2

2

 (3.18)

The matrix Pabc→αβ0 is orthogonal, so Hamilton’s equations will be left unchanged
when the energy is expressed using αβ0 state variables, φαβ0

s = Pabc→αβ0φ
abc
s and φαβ0

r =
Pabc→αβ0φ

abc
r . It should be noted that stator variables are still expressed in a stator-linked

frame whereas rotor variables are in a rotor-linked frame. We define the Hamiltonian
function using these new variables as

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) := Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r ). (3.19)
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Hamilton’s equations are not changed, so eq. (3.15) gives

dφαβ0
s

dt
= uαβ0

s −Rsı
αβ0
s (θ, ρ, φαβ0

s , φαβ0
r ) (3.20a)

dφαβ0
r

dt
= −Rrı

αβ0
r (θ, ρ, φαβ0

s , φαβ0
r ) (3.20b)

1
n

dρ

dt
= Te(θ, ρ, φαβ0

s , φαβ0
r )− TL (3.20c)

dθ

dt
= ω (3.20d)

with

ıαβ0
s (θ, ρ, φαβ0

s , φαβ0
r ) = ∂Hαβ0

∂φαβ0
s

(θ, ρ, φαβ0
s , φαβ0

r ) (3.21a)

ıαβ0
r (θ, ρ, φαβ0

s , φαβ0
r ) = ∂Hαβ0

∂φαβ0
r

(θ, ρ, φαβ0
s , φαβ0

r ) (3.21b)

Te(θ, ρ, φαβ0
s , φαβ0

r ) = −n∂H
αβ0

∂θ
(θ, ρ, φαβ0

s , φαβ0
r ) (3.21c)

ω(θ, ρ, φαβ0
s , φαβ0

r ) = n2∂Hαβ0

∂ρ
(θ, ρ, φαβ0

s , φαβ0
r ). (3.21d)

3.3.3 Synchronous frame

The principle of operation of an electric motor is that the magnetic field rotates at the
stator frequency ωs. Thus neither abc nor αβ0 variables will be constant on permanent
trajectories, in which the motor turns at constant speed. So we define a new family of
frames, called dq0 frames, which are obtained from the αβ0 frame by a rotation of angle
θs, with dθs

dt
= ωs, around the 0-axis. We are going to express all the variables in this

frame, so the transformation matrix for stator variables will be Pαβ0→dq0(θs) whereas the
transformation matrix for rotor variables will be Pαβ0→dq0(θs − θ), where

Pαβ0→dq0(η) =

 cos η sin η 0
− sin η cos η 0

0 0 1

 (3.22)

The transformation matrices for stator and rotor variables are both orthogonal matrices,
but do not define a canonical transformation as they depend on θ and t through θs.
Nevertheless we can define functions analogous to the Lagrangian and the Hamiltonian
with altered state equations.

We define an energy function in any dq0 frame by

Hdq0(θ, ρ, φdq0s , φdq0r ) := Hαβ0(θ, ρ, P−1
αβ0→dq0(θs)φdq0s , P−1

αβ0→dq0(θs − θ)φdq0r ). (3.23)

Some calculations are now needed to get the state equations

dφdq0s

dt
= d

dt

(
Pαβ0→dq0(θs)φαβ0

s

)
= Pαβ0→dq0(θs)

dφαβ0
s

dt
+ d

dt
(Pαβ0→dq0(θs))φαβ0

s

= Pαβ0→dq0(θs)(uαβ0
s −Rsı

αβ0
s ) + ωsP

′
αβ0→dq0(θs)P−1

αβ0→dq0(θs)φdq0s
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dφdq0s

dt
= udq0s −Rsı

dq0
s (θ, ρ, φdq0s , φdq0r )− J3ωsφ

dq0
s (3.24a)

dφdq0r

dt
= d

dt

(
Pαβ0→dq0(θs − θ)φαβ0

r

)
= Pαβ0→dq0(θs − θ)

dφαβ0
r

dt
+ d

dt
(Pαβ0→dq0(θs − θ))φαβ0

r

= −Pαβ0→dq0(θs − θ)Rrı
αβ0
r + (ωs − ω)P ′αβ0→dq0(θs − θ)P−1

αβ0→dq0(θs − θ)φdq0r

dφdq0r

dt
= −Rrı

dq0
r (θ, ρ, φdq0s , φdq0r )− J3

(
ωs − ω(θ, ρ, φdq0s , φdq0r )

)
φdq0r (3.24b)

1
n

dρ

dt
= Te(θ, ρ, φdq0s , φdq0r )− TL (3.24c)

dθ

dt
= ω (3.24d)

where we used

P ′αβ0→dq0P
−1
αβ0→dq0 =

− sin η cos η 0
− cos η − sin η 0

0 0 0


cos η − sin η 0

sin η cos η 0
0 0 1

 =

 0 1 0
−1 0 0
0 0 0

 =: −J3

As expected by comparison with the literature (see for instance Chiasson [45, chs. 8–9]),
the αβ0 to a dq0 frame change leads to the appearance of back electromotive forces in
the flux equations. The derivative of Hdq0 with respect to θ is also modified, indeed

∂Hdq0

∂θ
= ∂Hαβ0

∂θ
+ ∂

∂θ

(
P−1
αβ0→dq0(θs − θ)φdq0r

)T ∂Hαβ0

∂φαβ0
r

= ∂Hαβ0

∂θ
− φdq0r

T
Pαβ0→dq0P−Tαβ0→dq0

′(θs − θ)P−1
αβ0→dq0(θs − θ)

∂Hdq0

∂φdq0r

= ∂Hαβ0

∂θ
+ φdq0r

TJ3
∂Hdq0

∂φdq0r

,

but derivatives with respect to φdq0s , φdq0r and ρ do not change. Thus the currents, the
speed and the electromagnetic torque are given by

ıdq0s (θ, ρ, φdq0s , φdq0r ) = ∂Hdq0

∂φdq0s

(θ, ρ, φdq0s , φdq0r ) (3.25a)

ıdq0r (θ, ρ, φdq0s , φdq0r ) = ∂Hdq0

∂φdq0r

(θ, ρ, φdq0s , φdq0r ) (3.25b)

ω(θ, ρ, φdq0s , φdq0r ) = n2∂Hdq0

∂ρ
(θ, ρ, φdq0s , φdq0r ) (3.25c)

Te(θ, ρ, φdq0s , φdq0r ) = −n∂H
dq0

∂θ
(θ, ρ, φdq0s , φdq0r ) + nφdq0r

TJ3ı
dq0
r (θ, ρ, φdq0s , φdq0r ) (3.25d)

The eqs. (3.25a) and (3.25b) show that energy-based modeling automatically enforces the
reciprocity conditions mentioned in Sauer [30] since

∂ıds
∂φqs

= ∂2Hdq0

∂φds∂φ
q
s

= ∂2Hdq0

∂φqs∂φds
= ∂ıqs
∂φds

(3.26a)

∂ıdr
∂φqr

= ∂2Hdq0

∂φdr∂φ
q
r

= ∂2Hdq0

∂φqr∂φdr
= ∂ıqr
∂φdr

. (3.26b)

In fact the reciprocity conditions come from energy conservation considerations.
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3.3.4 Rotor-oriented frame

3.3.4.1 Salient rotor case

Rotor saliency induces a new privileged direction that we would like to have in our frame.
As we will see in sections 3.6 and 3.7, this simplifies energy-based models. The new frame
we are looking for is the rotor αβ0 frame up to a rotation of a constant angle (as shown
in section 3.3.1, constant angle rotations do not affect Hamilton’s equations, so we will
consider that we chose appropriately the a axis for this angle to be zero). We define the
transformation matrix from the stator αβ0 frame to the rotor-linked DQ0 frame by

Pαβ0→DQ0(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (3.27)

Again, this transformation is not canonical due to the dependency on θ of the matrix
Pαβ0→DQ0. But just as in section 3.3.3, we can find equations not very far from Hamilton’s
equations.

We define an energy function in this frame by

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(θ)φDQ0

s , φαβ0
r ). (3.28)

Similar calculations as those of eq. (3.24) will give us the state form

dφDQ0
s

dt
= uDQ0

s −Rsı
DQ0
s (θ, ρ, φDQ0

s , φDQ0
r )− J3ωφ

DQ0
s (3.29a)

dφDQ0
r

dt
= −Rrı

DQ0
r (θ, ρ, φDQ0

s , φDQ0
r ) (3.29b)

1
n

dρ

dt
= Te(θ, ρ, φDQ0

s , φDQ0
r )− TL (3.29c)

dθ

dt
= ω. (3.29d)

As previously, the derivative of the energy function with respect to θ is modified

∂HDQ0

∂θ
= ∂Hαβ0

∂θ
+ ∂

∂θ

(
P−1
αβ0→DQ0(θ)φDQ0

s

)T ∂Hαβ0

∂φαβ0
s

= ∂Hαβ0

∂θ
+ φDQ0

s

T
Pαβ0→DQ0P−Tαβ0→DQ0

′(θ)P−1
αβ0→DQ0(θ)∂H

DQ0

∂φDQ0
s

= ∂Hαβ0

∂θ
− φDQ0

s

TJ3
∂HDQ0

∂φDQ0
s

while the other derivatives of HDQ0 are not affected. Thus, the current-flux relations, the
electromagnetic torque expression and the electrical speed will be given by

ıDQ0
s (θ, ρ, φDQ0

s , φDQ0
r ) = ∂HDQ0

∂φDQ0
s

(θ, ρ, φDQ0
s , φDQ0

r ) (3.30a)

ıDQ0
r (θ, ρ, φDQ0

s , φDQ0
r ) = ∂HDQ0

∂φDQ0
r

(θ, ρ, φDQ0
s , φDQ0

r ) (3.30b)

ω(θ, ρ, φDQ0
s , φDQ0

r ) = n2∂HDQ0

∂ρ
(θ, ρ, φDQ0

s , φDQ0
r ) (3.30c)

Te(θ, ρ, φDQ0
s , φDQ0

r ) = −n∂H
DQ0

∂θ
(θ, ρ, φDQ0

s , φDQ0
r )

−nφDQ0
s

TJ3ı
DQ0
s (θ, ρ, φDQ0

s , φDQ0
r ). (3.30d)
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3.3.4.2 Non-salient rotor case

In the case of a non salient motor, we will define the DQ0 frame using the direction of
the rotor flux when it is not zero: the D-axis will be taken collinear with the rotor flux.
This is a particular case of the tranformations defined in section 3.3.3 since the rotor flux
rotates at synchronous speed. The transformation matrix for rotor variables will thus be
Pαβ0→DQ0(α) and for stator variables it will be Pαβ0→DQ0(α+θ) where α is an argument of
φαβ
r

= φαr + φβr and Pαβ0→DQ0 is defined by eq. (3.27). The transformation in the salient
case done in section 3.3.4.1 can also be seen as a particular case of this transformation
obtained by setting α = 0. It should be noted that we will always have φQr = 0 due to the
way the frame was defined. Again this transformation is not canonical.

The energy function in the DQ0 frame is defined as

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) := Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r ). (3.31)

We are now looking for the state equations associated with this energy function. The first
step is to compute the time derivative of α, which gives

dα

dt
= d

dt
arctan

(
φβr
φαr

)
=

(
dφαβ0
r

dt

)T
J3φ

αβ0
r

‖φαβr ‖2
=

(
dφDQ0
r

dt

)T
J3φ

DQ0
r

‖φDQr ‖2
= −Rr

ıQr
φDr

. (3.32)

Then, we find the time derivatives of the state variables in the DQ0 frame

dφDQ0
s

dt
= d

dt

(
Pαβ0→DQ0(α + θ)φαβ0

s

)
= Pαβ0→DQ0(α + θ)(uαβ0

s −Rsı
αβ0
s )

+
(
dα

dt
+ ω

)
P ′αβ0→DQ0(α + θ)P−1

αβ0→DQ0(α + θ)φDQ0
s

dφDQ0
s

dt
= uDQ0

s −Rsı
DQ0
s − J3ωφ

DQ0
s + J3Rr

ıQr
φDr

φDQ0
s (3.33a)

dφDQ0
r

dt
= d

dt

(
Pαβ0→DQ0(α)φαβ0

r

)
= −Pαβ0→DQ0(α)Rrı

αβ0
r + dα

dt
P ′αβ0→DQ0(α)P−1

αβ0→DQ0(α)φDQ0
r

dφDQ0
r

dt
= −Rrı

DQ0
r + J3Rr

ıQr
φDr

φDQ0
r (3.33b)

1
n

dρ

dt
= Te(θ, ρ, φDQ0

s , φDQ0
r )− TL (3.33c)

dθ

dt
= ω. (3.33d)

To obtain the current-flux relations, we need the partial derivative of α with respect
to φαβ0

r

∂α

∂φαβ0
r

=


∂α
∂φαr
∂α

∂φβr
∂α
∂φ0

r

 =


∂
∂φαr

arctan
(
φβr
φαr

)
∂

∂φβr
arctan

(
φβr
φαr

)
∂
∂φ0

r
arctan

(
φβr
φαr

)

 =


− φβr

|φαβ
r
|2

φαr

|φαβ
r
|2

0

 = 1
‖φαβr ‖2

J3φ
αβ0
r .
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We then find the current-flux relations

ıDQ0
s (θ, ρ, φDQ0

s , φDQ0
r ) = Pαβ0→DQ0(θ + α)∂H

αβ0

∂φαβ0
s

= ∂HDQ0

∂φDQ0
s

(θ, ρ, φDQ0
s , φDQ0

r ) (3.35a)

ıDQ0
r (θ, ρ, φDQ0

s , φDQ0
r ) = Pαβ0→DQ0(α)∂H

αβ0

∂φαβ0
r

= Pαβ0→DQ0(α)
(
∂φDQ0

s

∂φαβ0
r

∂HDQ0

∂φDQ0
s

+ ∂φDQ0
r

∂φαβ0
r

∂HDQ0

∂φDQ0
r

)

= Pαβ0→DQ0(α)
P ′αβ0→DQ0(θ + α)φαβ0

s

(
∂α

∂φαβ0
r

)TT ∂HDQ0

∂φDQ0
s

+ Pαβ0→DQ0(α)Pαβ0→DQ0(α)T ∂H
DQ0

∂φDQ0
r

+ Pαβ0→DQ0(α)
P ′αβ0→DQ0(α)φαβ0

r

(
∂α

∂φαβ0
r

)TT ∂HDQ0

∂φDQ0
r

= Pαβ0→DQ0(α) 1
‖φαβr ‖2

J3φ
αβ0
r φDQ0

s

TJ3ı
DQ0
s

+ ∂HDQ0

∂φDQ0
r

+ Pαβ0→DQ0(α) 1
‖φαβr ‖2

J3φ
αβ0
r φDQ0

r

TJ3
∂HDQ0

∂φDQ0
r

= ∂HDQ0

∂φDQ0
r

+ 1
‖φαβr ‖

(
φDQ0
s

TJ3ı
DQ0
s + φDQ0

r

TJ3
∂HDQ0

∂φDQ0
r

)0
1
0



=


∂HDQ0

∂φDr
(θ, ρ, φDQ0

s , φDQ0
r )

1
φDr
φDQ0
s

TJ3ı
DQ0
s (θ, ρ, φDQ0

s , φDQ0
r )

∂HDQ0

∂φ0
r

(θ, ρ, φDQ0
s , φDQ0

r )

 (3.35a)

as well as the derivative of the energy function with respect to θ

∂HDQ0

∂θ
= ∂Hαβ0

∂θ
+ ∂

∂θ

(
P−1
αβ0→DQ0(θ + α)φDQ0

s

)T ∂Hαβ0

∂φαβ0
s

= ∂Hαβ0

∂θ
+ φDQ0

s

T
Pαβ0→DQ0P−Tαβ0→DQ0

′(θ + α)P−1
αβ0→DQ0(θ + α)ıDQ0

s

= ∂Hαβ0

∂θ
− φDQ0

s

TJ3ı
DQ0
s .

The electromagnetic torque expressed with variables in the DQ0 frame thus reads

Te(θ, ρ, φDQ0
s , φDQ0

r ) = −n∂H
DQ0

∂θ
− nφDQ0

s

TJ3ı
DQ0
s (θ, ρ, φDQ0

s , φDQ0
r ). (3.36)

3.4 Symmetries

The state equations we found in the previous sections are valid for any electric motor.
However, the energy functions, and thus the current-flux relations and electromagnetic
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State equations Algebraic relations

a
bc

dφabcs
dt

=uabcs −Rsı
abc
s

dφabcr
dt

=−Rrı
abc
r

1
n
dρ
dt

=Te − TL
dθ
dt

=ω

ıabcs =∂Habc
∂φabcs

ıabcr =∂Habc
∂φabcr

ω=n2 ∂Habc
∂ρ

Te=−n∂H
abc

∂θ

α
β

0

dφαβ0
s

dt
=uαβ0

s −Rsı
αβ0
s

dφαβ0
r

dt
=−Rrı

αβ0
r

1
n
dρ
dt

=Te − TL
dθ
dt

=ω

ıαβ0
s =∂Hαβ0

∂φαβ0
s

ıαβ0
r =∂Hαβ0

∂φαβ0
r

ω=n2 ∂Hαβ0

∂ρ

Te=−n∂H
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∂θ

d
q0

dφdq0s

dt
=udq0s −Rsı

dq0
s − J3ωsφ

dq0
s

dφdq0r

dt
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dq0
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1
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dρ
dt

=Te − TL
dθ
dt
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ıdq0s =∂Hdq0
∂φdq0s

ıdq0r =∂Hdq0
∂φdq0r
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∂ρ
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dq0

∂θ
+ nφdq0r

TJ3ı
dq0
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0 dφDQ0
s

dt
=uDQ0

s −Rsı
DQ0
s − J3ωφ

DQ0
s

dφDQ0
r

dt
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dθ
dt

=ω

ıDQ0
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φDQ0
s

dφDQ0
r

dt
=−Rrı

DQ0
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ıQr
φDr
φDQ0
r

1
n
dρ
dt

=Te − TL
dθ
dt

=ω

ıDQ0
s =∂HDQ0

∂φDQ0
s

ıDQ0
r =


∂HDQ0

∂φDr

1
φDr

(
φDQ0
s

TJ3ı
DQ0
s

)
∂HDQ0

∂φ0
r


ω=n2 ∂HDQ0

∂ρ

Te=−n∂H
DQ0

∂θ
− nφDQ0

s
TJ3ı

DQ0
s

Table 3.1 – Summary of the equations obtained in the different frames where dependencies
have been omitted for the sake of compactness.
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Figure 3.2 – The frames introduced in this section.

torque formula, are not specified. Considering some basic construction symmetries, which
are necessarily enforced in any well-built electric machine, will help us to constrain the
form of the energy function.

The basic physical principle on which will rely all of the developments done in this
section is: Applying a transformation to the motor as a whole does not change its energy.
Indeed an electric motor operates similarly whatever its spatial orientation.

3.4.1 Symmetries due to stator layout

In three phase electric motors, all the phases are wound identically for the positive and
the negative poles. This basic construction symmetry of the stator will allow us to get
some constraints on the energy function.

3.4.1.1 Stator phase permutation

If the stator phases are circularly permuted and the rotor is rotated by 2π
3 , the energy of

the motor is not changed, since a rotation of the whole motor by −2π
3 around the rotor

axis allows us to go back to initial state as shown in fig. 3.3. Thus

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + 2π
3 , ρ,P

abcφabcs , φabcr ) (3.37)

where the phase permutation matrix is defined as

Pabc :=

0 0 1
1 0 0
0 1 0

 . (3.38)

When we rewrite this invariance using αβ0 variables, we get

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Habc(θ + 2π
3 , ρ,P

abcP−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Hαβ0(θ + 2π
3 , ρ, Pabc→αβ0PabcP−1

abc→αβ0φ
αβ0
s , Pabc→αβ0P

−1
abc→αβ0φ

αβ0
r )

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Hαβ0(θ + 2π
3 , ρ,P

αβ0φαβ0
s , φαβ0

r ) (3.39)
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Figure 3.3 – Illustration of the stator phase permutation invariance.

where

Pαβ0 := Pabc→αβ0PabcP−1
abc→αβ0 =

−
1
2 −

√
3

2 0√
3

2 −1
2 0

0 0 1

 = Rαβ0(2π
3 )

with Rαβ0 is the matrix of the rotation around the 0-axis expressed in the αβ0 frame.
This is still not a very simple invariance. However, if we rewrite it in the DQ0 frame, we
get

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r )
= Hαβ0(θ + 2π

3 , ρ,P
αβ0P−1

αβ0→DQ0(α + θ)φDQ0
s , P−1

αβ0→DQ0(α)φDQ0
r )

= HDQ0(θ + 2π
3 , ρ,

Pαβ0→DQ0(α + θ + 2π
3 )Pαβ0P−1

αβ0→DQ0(α + θ)φDQ0
s ,

Pαβ0→DQ0(α)P−1
αβ0→DQ0(α)φDQ0

r )
HDQ0(θ, ρ, φDQ0

s , φDQ0
r ) = HDQ0(θ + 2π

3 , ρ, φ
DQ0
s , φDQ0

r ).

Notice that the current value of the angles α and θ must be used in the transformation
matrices Pαβ0→DQ0. That is why between the first and third equalities the angles in the
transformation matrices are not the same. This gives after simplification

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + 2π

3 , ρ, φ
D
s , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r , φ

0
r). (3.40)

Thus the energy function of any well-built electric motor expressed in the DQ0 frame is
2π
3 -periodic with respect to θ.

3.4.1.2 Stator current reversal

If the currents in the stator phases are reversed and the rotor is rotated by an angle of π,
the energy is left unaltered, as a rotation of the whole motor by −π puts the motor back
in the initial state as is shown in fig. 3.4. Thus we have in the abc frame

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + π, ρ,−φabcs , φabcr ) (3.41)
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Figure 3.4 – Illustration of the stator phase current reversal invariance.

which gives in the αβ0 frame

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Habc(θ + π, ρ,−P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Hαβ0(θ + π, ρ,−Pabc→αβ0P
−1
abc→αβ0φ

αβ0
s , Pabc→αβ0P

−1
abc→αβ0φ

αβ0
r )

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Hαβ0(θ + π, ρ,−φαβ0
s , φαβ0

r ). (3.42)

After the algebra required to transform this constraint to DQ0 frame,

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r )
= Hαβ0(θ + π, ρ,−P−1

αβ0→DQ0(α + θ)φDQ0
s , P−1

αβ0→DQ0(α)φDQ0
r )

= HDQ0(θ + π, ρ,−Pαβ0→DQ0(α + θ + π)P−1
αβ0→DQ0(α + θ)φDQ0

s ,

Pαβ0→DQ0(α)P−1
αβ0→DQ0(α)φDQ0

r ),

we obtain

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + π, ρ, φDs , φ

Q
s ,−φ0

s, φ
D
r , φ

Q
r , φ

0
r). (3.43)

3.4.2 Symmetries due to rotor layout

Rotors of electric motors may present a saliency along orthogonal planes, called saliency
planes. As was said in section 3.3.4.1 we take the rotor-linked a-axis and α-axis in one of
these planes. The possible cases are presented in fig. 3.5.

We are now considering the effect of all possible symmetries of the rotor. We will later
make some assumptions on motor construction and use the conditions derived below to
simplify the energy function.

3.4.2.1 When the rotor is symmetric with respect to saliency plane

In this section we are going to assume that the rotor has a construction symmetry with
respect to one of the saliency planes as in fig. 3.5b. Under this hypothesis, there is one
invariance condition on top of those presented in section 3.4.1.

If the phases b and c are swapped in both the stator and the rotor and, if the direction
of the rotation is reversed, then the energy does not change as a symmetry of the whole
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(a) A schematic rotor with 15
bars and no symmetry.

(b) A schematic rotor with 15
bars and a planar symmetry.

(c) A schematic rotor with 12
bars and an axial symmetry.

(d) A schematic rotor with 12
bars, an axial and 2 planar
symmetries.

Figure 3.5 – The different configurations possible for the rotor.

motor with respect to the saliency plane puts the motor back in its initial state as shown
in fig. 3.6. Thus, we have in the abc frame

Habc(θ, ρ, φabcs , φabcr ) = Habc(−θ,−ρ,Oabcφabcs ,Oabcφabcr ) (3.44)

with

Oabc =

1 0 0
0 0 1
0 1 0

 (3.45)

Expressed in the αβ0 frame this condition reads

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Habc(−θ,−ρ,OabcP−1
abc→αβ0φ

αβ0
s ,OabcP−1

abc→αβ0φ
αβ0
r )

= Hαβ0(−θ,−ρ, Pabc→αβ0OabcP−1
abc→αβ0φ

αβ0
s ,

Pabc→αβ0OabcP−1
abc→αβ0φ

αβ0
r )

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Hαβ0(−θ,−ρ,Oαβ0φαβ0
s ,Oαβ0φαβ0

r ) (3.46)

where we used

Oαβ0 := Pabc→αβ0OabcP−1
abc→αβ0 =

1 0 0
0 −1 0
0 0 1

 .
This constraint is now transformed to DQ0 frame as follows

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r )
= Hαβ0(−θ,−ρ,Oαβ0P−1

αβ0→DQ0(α + θ)φDQ0
s ,
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Figure 3.6 – Illustration of the stator and rotor phase exchange invariance when the rotor
is symmetric with respect to a plane.

Oαβ0P−1
αβ0→DQ0(α)φDQ0

r )
= HDQ0(−θ,−ρ, Pαβ0→DQ0(−α− θ)Oαβ0P−1

αβ0→DQ0(α + θ)φDQ0
s ,

Pαβ0→DQ0(−α)Oαβ0P−1
αβ0→DQ0(α)φDQ0

r )

In the first and last equality θ and α are not the same as they both changed value in
between. Rewritten component-wise this gives

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(−θ,−ρ, φDs ,−φQs , φ0

s, φ
D
r ,−φQr , φ0

r). (3.47)

3.4.2.2 When the rotor is symmetric with respect to rotation axis

In this section we will suppose that the rotor has a central symmetry with respect to its
rotation axis as shown in fig. 3.5c. This hypothesis gives also a new invariance condition.
Indeed, if the rotor currents are reversed and the rotor is rotated by π, the energy does
not change as a rotation of the whole space by −π around the rotor axis allows us to go
back to initial state as shown in fig. 3.7. Thus we have in the abc frame

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + π, ρ, φabcs ,−φabcr ) (3.48)

which gives in the αβ0 frame

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Habc(θ + π, ρ, P−1
abc→αβ0φ

αβ0
s ,−P−1

abc→αβ0φ
αβ0
r )

= Hαβ0(θ + π, ρ, Pabc→αβ0P
−1
abc→αβ0φ

αβ0
s ,−Pabc→αβ0P

−1
abc→αβ0φ

αβ0
r )

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Hαβ0(θ + π, ρ, φαβ0
s ,−φαβ0

r ). (3.49)

In DQ0 frame, for a non-salient motor (α is the argument of φαβ
r

), this gives

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r )
= Hαβ0(θ + π, ρ, P−1

αβ0→DQ0(α + θ)φDQ0
s ,−P−1

αβ0→DQ0(α)φDQ0
r )

= HDQ0(θ + π, ρ, Pαβ0→DQ0(α + π + θ + π)P−1
αβ0→DQ0(α + θ)φDQ0

s ,

−Pαβ0→DQ0(α + π)P−1
αβ0→DQ0(α)φDQ0

r )

and we find

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + π, ρ, φDs , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r ,−φ0

r). (3.50)
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Figure 3.7 – Illustration of the stator and rotor phase current reversal invariance when
the rotor is symmetric with respect to its rotation axis.
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Figure 3.8 – Illustration of the rotor phase permutation invariance when the rotor is not
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In DQ0 frame, for a salient motor (α = 0), this gives

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(θ)φDQ0

s , φDQ0
r )

= Hαβ0(θ + π, ρ, P−1
αβ0→DQ0(θ)φDQ0

s ,−φDQ0
r )

= HDQ0(θ + π, ρ, Pαβ0→DQ0(θ + π)P−1
αβ0→DQ0(θ)φDQ0

s ,−φDQ0
r )

and after simplification, we obtain

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + π, ρ,−φDs ,−φQs , φ0

s,−φDr ,−φQr ,−φ0
r).
(3.51)

3.4.2.3 Non-salient rotor

In this section we are going to assume that the rotor is not salient with respect to any
axis and has nr bars. This means that if we rotate the rotor flux vector by −2π

nr
around

the 0-axis and rotate the rotor by 2π
nr

the energy will not be changed as the state of the
motor is not changed as shown in fig. 3.8.

As there is an invariance by rotation around the rotor axis (which is the 0-axis) and
as the abc frame is the only frame where physical reasonings can be done, we need to find
the expression of a rotation around the 0-axis for vectors of the abc frame. We know that
for vectors of the αβ0 frame such a rotation is

Rαβ0(η) :=

cos η − sin η 0
sin η cos η 0

0 0 1

 , (3.52)
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so, the rotation for vectors of the abc frame will be

Rabc(η) := P−1
abc→αβ0Rαβ0Pabc→αβ0

= 2
3


1
2 + cos (η) 1

2 + cos
(
η − 4π

3

)
1
2 + cos

(
η − 2π

3

)
1
2 + cos

(
η − 2π

3

)
1
2 + cos (η) 1

2 + cos
(
η − 4π

3

)
1
2 + cos

(
η − 4π

3

)
1
2 + cos

(
η − 2π

3

)
1
2 + cos (η)

 . (3.53)

Thus in the abc frame, we have

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + 2π
nr
, ρ, φabcs ,Rabc(−2π

nr
)φabcr ) (3.54)

which gives in the αβ0 frame

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Habc(θ, ρ, P−1
abc→αβ0φ

αβ0
s , P−1

abc→αβ0φ
αβ0
r )

= Habc(θ + 2π
nr
, ρ, P−1

abc→αβ0φ
αβ0
s ,Rabc(−2π

nr
)P−1

abc→αβ0φ
αβ0
r )

= Hαβ0(θ + 2π
nr
, ρ, Pabc→αβ0P

−1
abc→αβ0φ

αβ0
s ,

Pabc→αβ0Rabc(−2π
nr

)P−1
abc→αβ0φ

αβ0
r )

Hαβ0(θ, ρ, φαβ0
s , φαβ0

r ) = Hαβ0(θ + 2π
nr
, ρ, φαβ0

s ,Rαβ0(−2π
nr

)φαβ0
r ). (3.55)

In the DQ0 frame, this invariance gives

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = Hαβ0(θ, ρ, P−1
αβ0→DQ0(α + θ)φDQ0

s , P−1
αβ0→DQ0(α)φDQ0

r )
= Hαβ0(θ + 2π

nr
, ρ, P−1

αβ0→DQ0(α + θ)φDQ0
s ,

Rαβ0(−2π
nr

)P−1
αβ0→DQ0(α)φDQ0

r )
= HDQ0(θ + 2π

nr
, ρ,

Pαβ0→DQ0(α− 2π
nr

+ θ + 2π
nr

)P−1
αβ0→DQ0(α + θ)φDQ0

s ,

Pαβ0→DQ0(α− 2π
nr

)Rαβ0(−2π
nr

)P−1
αβ0→DQ0(α)φDQ0

r )

and after simplification, we find the simple 2π
nr

-periodicity condition with respect to θ

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + 2π

nr
, ρ, φDs , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r , φ

0
r). (3.56)

3.5 Connection to the grid

We now want to take into account how the windings are connected to the power source.
There exist 2 main connection schemes for stator windings described in fig. 3.9. There
are 2 possibilities for rotor windings:

• They are short circuited (see section 3.5.1);

• There are not any rotor windings but instead permanent magnets, which can be rep-
resented by fictitious windings, where a constant current circulates. (section 3.5.2).

The simplifications allowed by considering the implied constraints they impose on state
variables are studied below. The reasoning can be done in many frames, so we introduce
the xyz frame notation for any frame we have introduced so far and the xy0 frame notation
for any frame with the 0-axis (i.e., αβ0, dq0 or DQ0).
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Symmetry HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = Condition

S
ta

to
r Phase permutation HDQ0(θ + 2π

3 , ρ, φ
D
s , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r , φ

0
r) Identical windings

Current reversal HDQ0(θ + π, ρ, φDs , φ
Q
s ,−φ0

s, φ
D
r , φ

Q
r , φ

0
r) Axial symmetry

S
al

ie
n
t

R
ot

or Phase exchange HDQ0(−θ,−ρ, φDs ,−φQs , φ0
s, φ

D
r ,−φQr , φ0

r) Planar symmetry

Current reversal HDQ0(θ + π, ρ,−φDs ,−φQs , φ0
s,−φDr ,−φQr ,−φ0

r) Axial symmetry

N
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-s
al

ie
n
t

R
ot

or

Phase exchange HDQ0(−θ,−ρ, φDs ,−φQs , φ0
s, φ

D
r ,−φQr , φ0

r) Planar symmetry

Current reversal HDQ0(θ + π, ρ, φDs , φ
Q
s , φ

0
s, φ

D
r , φ

Q
r ,−φ0

r) Axial symmetry

Phase permutation HDQ0(θ + 2π
nr
, ρ, φDs , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r , φ

0
r) Identical windings

Table 3.2 – Constraints implied on the energy function by the symmetries of the electric
motors.
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Figure 3.9 – The 2 major connection scheme for electric motors.
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Figure 3.10 – The connection scheme for rotor windings: rotor windings are short-
circuited.

3.5.1 Connection scheme for the rotor windings

The rotor windings of most current electric motors are short-circuited, which is the only
case we will study. As can be seen on the equivalent circuit of fig. 3.10, the sum of the
currents in the three phases will be constrained to 0, i.e.

ıar + ıbr + ıcr = 0 (3.57)

This condition is very easily taken into account in any frame xy0 having the 0-axis
since it boils down to

ı0r(θ, ρ, φxy0
s , φxyr , φ

0
r) = ∂Hxy0

∂φ0
r

(θ, ρ, φxy0
s , φxyr , φ

0
r) = 0.

If the energy function is not degenerate, i.e. ∂2Hxy0

∂φ0
r
2 6= 0, then using the implicit function

theorem, φ0
r can be expressed as function of θ, ρ, φxy0

s and φxyr . We can thus define the
Hamiltonian function for a motor with short-circuited rotor windings by

Hxy0
c (θ, ρ, φxy0

s , φxyr ) := Hxy0(θ, ρ, φxy0
s , φxyr , φ

0
r(θ, ρ, φxy0

s , φxyr )). (3.58)

The partial derivative of this energy function with respect to the state will not be affected,
since ∀x ∈ {θ, ρ, φs, φr} we have

∂Hxy0
c

∂x
= ∂

∂x
Hxy0(θ, ρ, φxy0

s , φxyr , φ
0
r(θ, ρ, φxys , φxyr )) = ∂Hxy0

∂x
+ ∂φ0

r

∂x

∂Hxy0

∂φ0
r

= ∂Hxy0

∂x
,

where we used the fact that ∂Hxy0

∂φ0
r

is constrained to 0 by the coupling. Thus the electro-
magnetic couplings are not changed

ıxy0
s (θ, ρ, φxy0

s , φxyr ) = ∂Hxy0
c

∂φxy0
s

(θ, ρ, φxy0
s , φxyr ) (3.59a)

ıxyr (θ, ρ, φxy0
s , φxyr ) = ∂Hxy0

c

∂φxyr
(θ, ρ, φxy0

s , φxyr ) (3.59b)

and the electromagnetic torque is given by an equation similar to eqs. (3.21c), (3.25d),
(3.30d) and (3.36) depending on the chosen frame. The 0-axis rotor flux can then be
decoupled in the state equations, which shows that the 0-axis rotor flux is constant. The
state equations are otherwise similar to the previously obtained ones (see eqs. (3.20),
(3.24), (3.29) and (3.33)).
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3.5.2 Rotor without windings

PMSMs do not have rotor windings but instead their rotor is built using permanent
magnets creating a constant magnetic field. To model the permanent magnets, we can
define a fictitious constant current ıM looping inside the magnet [45, sec. 3.3] which creates
a constant magnetic flux, φM , equal to the flux of the permanent magnet. This constraint
is most easily handled by the Lagrangian: In any rotor-linked frame xyz, we can define
the Lagrangian under the constraint ıxyzr = ıM constant as

Lxyz0 (θ, ω, ıxyzs ) := Lxyz(θ, ω, ıxyzs , ıM) (3.60)

associated with the Euler-Lagrange equations

d

dt

∂Lxyz0
∂ıxyzs

= uxyzs −Rsı
xyz
s − J2ω

∂Lxyz0
∂ıxyzs

(θ, ω, ıxyzs ) (3.61a)

n
d

dt

∂Lxyz0
∂ω

= Te(θ, ω, ıxyzs )− TL (3.61b)

where we used

Te(θ, ω, ıxyzs ) := n
∂Lxyz0
∂θ

(θ, ω, ıxyzs ) + nıTs J3φ
xyz
s (θ, ω, ıxyzs ).

The generalized momenta associated with ıxyzs and ω are respectively

φxyzs (θ, ω, ıxyzs ) := ∂Lxyz0
∂ıxyzs

(θ, ω, ıxyzs )

ρ(θ, ω, ıxyzs ) := n2∂L
xyz
0

∂ω
(θ, ω, ıxyzs )

as in the unconstrained case.
The associated Hamiltonian formulation is obtained as described in section 3.2.2 using

a Legendre transformation

Hxyz
0 := ıxyzs

Tφxyzs + ρω

n2 − L (3.62)

which is a function of θ, ρ and φxyzs . The associated Hamilton’s equations are

dφxyzs

dt
= uxyzs −Rsı

xyz
s − J2ωφ

xyz
s (3.63a)

1
n

dρ

dt
= Te − TL (3.63b)

dθ

dt
= ω(θ, ρ, φxyzs ) (3.63c)

with

ıxyzs (θ, ρ, φxyzs ) = ∂Hxyz
0

∂φxyzs
(θ, ρ, φxyzs ) (3.64a)

Te(θ, ρ, φxyzs ) = −n∂H
xyz
0

∂θ
(θ, ω, ıxyzs )− nφxyzs

TJ3ı
xyz
s (θ, ω, ıxyzs ) (3.64b)

ω(θ, ρ, φxyzs ) = n2∂H
xyz
0

∂ρ
(θ, ρ, φxyzs ). (3.64c)
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Interestingly, the same result could have been obtained by considering that the fic-
titious currents do not dissipate energy, which is equivalent to setting Rr = 0. Conse-
quently, the state equation for the rotor flux shows that in any rotor-linked frame, the
rotor flux is equal to a constant φM and Hxyz

0 (θ, ρ, φxyzs ) := Hxyz(θ, ρ, φxyzs , φM) can be
defined associated to the state equations eq. (3.63).

The case of the SynRM, which does not have windings nor permanent magnets on the
rotor, can be handled similarly by considering that the permanent magnetic flux φM and
the current ıM are zero.

3.5.3 Star-connected electric machines

The star connection scheme described in fig. 3.9a constrains the sum of the three stator
phase currents to be 0, i.e.

ıas + ıbs + ıcs = 0. (3.65)

This constraint is very similar to the one we encountered in section 3.5.1. As previously
this constraint is best handled in a frame xy0 containing the 0-axis. In such a frame, it
boils down to

ı0s(θ, ρ, φxys , φ0
s, φ

xy0
r ) = ∂Hxy0

∂φ0
s

(θ, ρ, φxys , φ0
s, φ

xy0
r ) = 0

which means by the implicit function theorem that φ0
s can be expressed as a function of

θ, ρ, φxys and φxy0
r , if the energy function is not degenerate (∂

2Hxy0

∂φ0
s
2 6= 0). We can thus

define the Hamiltonian of a star connected electric machine by

Hxy0
? (θ, ρ, φxys , φxy0

r ) := Hxy0(θ, ρ, φxys , φ0
s(θ, ρ, φxys , φxy0

r ), φxy0
r ). (3.66)

Similar calculations as in section 3.5.1 show that the partial derivatives of the energy
function with respect to the state variables are not affected and the 0-axis can be decoupled
in the stator current-flux relations

ıxys (θ, ρ, φxys , φxy0
r ) = ∂Hxy0

?

∂φxys
(θ, ρ, φxys , φxy0

r ) (3.67a)

ıxy0
r (θ, ρ, φxys , φxy0

r ) = ∂Hxy0
?

∂φxy0
r

(θ, ρ, φxys , φxy0
r ). (3.67b)

The electromagnetic torque is given by an equation similar to eqs. (3.21c), (3.25d), (3.30d)
and (3.36) depending on the chosen frame. The 0-axis stator flux can then be decoupled
in the state equations, which shows that the 0-axis stator flux follows the dynamic

dφ0
s

dt
= u0

s. (3.68)

The state equations are otherwise similar to the previously obtained ones (see eqs. (3.20),
(3.24), (3.29) and (3.33)).

In this connection scheme, the drive imposes the potentials vas , v
b
s, v

c
s and not the

voltages uas , u
b
s, u

c
s we used as input in our saturation model. The relation between

voltages and potentials reads

uas = vas − vN
ubs = vbs − vN
ucs = vcs − vN
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Thus in xy0 frame we have u0
s = v0

s −
√

3vN = −
√

3vN and uxys = vxys , consequently
eq. (3.68) becomes

dφ0
s

dt
= −
√

3vN .

3.5.4 Delta-connected electric machines

The delta connection scheme described in fig. 3.9b implies that

uas + ubs + ucs = 0. (3.69)

This constraint is again best handled in a frame xy0 containing the 0-axis where it boils
down to

u0
s = 0.

Thus, in a delta connected electric machine the inputs are constrained, but the state
is not. Thus, we cannot decouple the 0-axis in the general case of a saturated energy
function as was done in section 3.5.3.

As in the case of the star connection scheme (see section 3.5.3) the drive does not
impose the voltages uas , u

b
s and ucs, but the potentials vas , v

b
s and vcs. They are linked by

the formulae

uas = vcs − vbs
ubs = vas − vcs
ucs = vbs − vas .

However these equations do not determine uniquely the potentials when the voltages are
fixed. Indeed we can choose freely

v0
s = 1√

3
(vas + vbs + vcs)

and then the potentials are given as a function of the voltages by

vas = ubs − ucs + v0
s

vbs = ucs − uas + v0
s

vcs = uas − ubs + v0
s .

Furthermore, when the stator of an electric machine is delta connected, the currents
in the stator windings are not measured. Indeed, we measure

as = ıbs − ıcs
bs = ıcs − ıas
cs = ıas − ıbs.

As for the voltages, these equations do not enable us to know the currents in the stator
windings when the currents are measured: we can choose arbitrarily

ı0s = 1√
3

(ıas + ıbs + ıcs).
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With that set, we can compute the currents in the windings by

ıas = cs − bs + ı0s
ıbs = as − cs + ı0s
ıcs = bs − as + ı0s.

3.6 Unsaturated sinusoidal case

In this section we consider the simplest energy function possible: a quadratic form. Thus
the currents will be linear functions of the fluxes and the model will be said to be unsat-
urated. Moreover we are going to suppose that the stator is sinusoidally wound, which
means that we can make an arbitrary rotation of the stator variables around the rotation
axis without changing the energy if the rotor is rotated by the same angle. Thus, the
invariance condition eq. (3.37) is generalized into

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + η, ρ,Rabc(η)φabcs , φabcr )

in the abc frame, which gives in the DQ0 frame

HDQ0(θ, ρ, φDs , φQs , φ0
s, φ

D
r , φ

Q
r , φ

0
r) = HDQ0(θ + η, ρ, φDs , φ

Q
s , φ

0
s, φ

D
r , φ

Q
r , φ

0
r) (3.70)

in place of eq. (3.40). This means that the energy in the DQ0 frame does not depend on
θ.

We will also assume that there is no product terms involving the speed ω and the
fluxes. Such a term would mean that the saturation changes depending on the speed of
the motor, which has never been observed.

Under the aforementioned assumptions, the most general quadratic energy function of
an electric motor can be written

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) := 1
2JLn2ρ

2 + a+ bTφDQ0
s + cTφDQ0

r

+φDQ0
s

T
DφDQ0

s + φDQ0
r

T
EφDQ0

s + φDQ0
r

T
FφDQ0

r (3.71)

where a ∈ R, (b, c) ∈ R
(
R3
)2

and (D,E, F ) ∈ M3(R)3. Without any loss of generality we
can consider that D and F are symmetric matrices. However E might be non-symmetric.
As energies are defined up to a constant, our energy function is parametrized by 27 param-
eters. But the conditions we obtained in section 3.4 constrain a lot of these parameters
to be zero.

3.6.1 For the universal electric motor

Let’s consider the most general electric machine possible: it has a rotor with a saliency
and windings. The rotor thus could have no symmetry as was underlined in section 3.4.2,
but we will suppose we have some additional sensible symmetries. The stator will still
have the symmetry presented in section 3.4.1.2.

To enforce the invariance condition eq. (3.43) the coefficients in front of odd powers
of φ0

s must be 0, which cancels 6 of the parameters. On top of the stator symmetry, we
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suppose that the rotor is symmetric with respect to its rotation axis. So eq. (3.51) must
be enforced which implies that the coefficient of the linear terms are 0. With these 2
symmetry conditions, we have b = c = 03,1 and the matrices of eq. (3.71) now look like

D =

d1,1 d1,2 0
d2,1 d2,2 0
0 0 d3,3

 E =

e1,1 e1,2 0
e2,1 e2,2 0
e3,1 e3,2 0

 F =

f1,1 f1,2 f1,3
f2,1 f2,2 f2,3
f3,1 f3,2 f3,3


Moreover, if the rotor is symmetric with respect to 2 orthogonal saliency planes, as

defined in section 3.4.2.1, then the condition eq. (3.47) implies that terms with odd powers
of φDs , φQs , φDr , φQr except φDs φ

D
r and φQs φ

Q
r will be zero. This cancels 10 additional terms

and the matrices D, E and F are diagonal.
With these two symmetries we can rewrite the energy function defined by eq. (3.71)

as

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = 1
2JLn2ρ

2 + 1
2φ

DQ
s

TΓDQls φDQs + 1
2φ

DQ
r

TΓDQlr φDQr

+ 1
2(φDQs + φDQr )TΓDQm (φDQs + φDQr )

+ 1
2Γ0

lsφ
0
s

2 + 1
2Γ0

lrφ
0
r

2
(3.72)

where

ΓDQm :=
(
e1,1 0
0 e2,2

)
Γ0
ls := 2d3,3 Γ0

lr := 2f3,3.

ΓDQls :=
(

2d1,1 − e1,1 0
0 2d2,2 − e2,2

)
ΓDQlr :=

(
2f1,1 − e1,1 0

0 2f2,2 − e2,2

)
This energy function is very similar to the one we will obtain in section 3.6.2 in the

case of IMs. It can be seen as a “salient induction motor”.
The state equations for such a machine are given by eq. (3.29) and the eqs. (3.30a)

and (3.30b) give the current-flux relations in such motors

ıDQs (θ, ρ, φDQ0
s , φDQ0

r ) = ΓDQm (φDQs + φDQr ) + ΓDQls φDQs (3.73a)

ı0s(θ, ρ, φDQ0
s , φDQ0

r ) = Γ0
ls (3.73b)

ıDQr (θ, ρ, φDQ0
s , φDQ0

r ) = ΓDQm (φDQs + φDQr ) + ΓDQlr φDQr (3.73c)

ı0s(θ, ρ, φDQ0
s , φDQ0

r ) = Γ0
lr. (3.73d)

As this energy does not depend on θ, the electromagnetic torque is given by

Te(θ, ρ, φDQ0
s , φDQ0

r ) = (ΓDm + ΓDls − ΓQm − ΓQls)φDs φQs + ΓDmφDr φQs − ΓQmφQr φDs (3.74)

To study the equilibrium when the input is a three-phase balanced sinusoidal source,
we must go to a synchronous frame dq0, where the state equations are given by eq. (3.24)
and the energy function form is conserved. However, for x ∈ {m, ls, lr}, the matrices Γdqx
depend on θ − θs and are given by

Γdqx := ΓDx + ΓQx
2 I2 + ΓDx − ΓQx

2

(
cos 2(θ − θs) − sin 2(θ − θs)
− sin 2(θ − θs) − cos 2(θ − θs)

)

= ΓDx + ΓQx
2 I2 + ΓDx − ΓQx

2 Z − ΓDx − ΓQx
2 Y
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where we used the notations defined at the beginning of this document (page xv). Thus,
if ∃ x ∈ {m, ls, lr} ΓDx − ΓQx 6= 0 the torque expression will involve terms depending
on θ − θs. For them to be constant at the equilibrium, we must have θ − θs constant,
i.e. ω = ωs. Even though the current-flux relations look like those of the induction
motor which is an asynchronous motor, this general motor is thus a synchronous motor.
Moreover, at the equilibrium, there is no current in the rotor windings. This conclusion
holds as long as the saliency is large enough to create the required electromagnetic Te
torque. When it is too small but still exists, there is no point of equilibrium, but a limit
cycle where the electromagnetic torque Te is around the load torque TL and the electrical
speed ω oscillates between ωs and ωs−ωg where ωg = RrTL

n‖φDQr ‖2
is the well-known slip speed.

Finally when there is no saliency at all (∀x ∈ {m, ls, lr} ΓDx = ΓQx ) we find the case of the
induction motor described in section 3.6.2 for which the equilibrium is at the electrical
speed is ωs−ωg. There is thus a smooth transformation from this salient machine rotating
at ωs into a non salient machine rotating at ωs − ωg.

3.6.2 For the IM

We are now considering the case of the induction machine. As was mentioned above, it
has a non salient-rotor with a symmetry with respect to its axis.

However, there exist motors, the so-called skewed-rotor motors, whose rotor slots are
not parallel with the rotor axis: They follow an helix with a large tread (see [34, sec. 4.12]
and [38]). This is done to reduce torque harmonics due to rotor slotting. Skewed rotors
cannot be symmetric with respect to any plane, because a planar symmetry changes the
orientation of helices, i.e., of the rotor slots.

3.6.2.1 Skewed-rotor induction motors

The symmetry of the stator and the rotor with respect to the rotation axis imply that all
the coefficients of terms with a odd power of φ0

s or φ0
r are zero. This cancels 11 parameters

among the 27 we have.
As the rotor and stator are supposed non-salient and sinusoidal, in any synchronous

dq0 frame, the energy is identical to the one in the particular DQ0 frame. So b = c = 0 and
D, E and F commute with any rotation around the 0-axis, i.e. (D,E, F ) are themselves
rotations around the 0-axis.

Combining these hypotheses, the energy function can be rewritten

HDQ0(θ, ρ, φDQ0
s , φDQ0

r ) = ρ2

2JLn2 + 1
2(φDQs + φDQr )TΓDQm (φDQs + φDQr ) + ΓxmφDQr

TJ2φ
DQ
s

+ 1
2φ

DQ
s

TΓDQls φDQs + 1
2φ

DQ
r

TΓDQlr φDQr

+ 1
2Γ0

lsφ
0
s

2 + 1
2Γ0

lrφ
0
r

2
(3.75)

where

ΓDQm :=
(

Γm 0
0 Γm

)
=
(
e1,1 0
0 e2,2

)

ΓDQls :=
(

Γls 0
0 Γls

)
=
(

2d1,1 − e1,1 0
0 2d2,2 − e2,2

)
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ΓDQlr :=
(

Γlr 0
0 Γlr

)
=
(

2f1,1 − e1,1 0
0 2d2,2 − f2,2

)
Γxm := e2,1 = −e1,2

Γ0
ls := 2d3,3

Γ0
lr := 2f3,3.

It should be noted that this expression is valid for any synchronous dq0 frame, as the
matrices D, E and F commute with rotations. The state equations and the electromag-
netic torque are given by eqs. (3.24) and (3.25d) or eqs. (3.33) and (3.36) depending on
the synchronous frame which is chosen. In any dq0 frame, the current-flux relations will
be given by

ıdqs = Γdqm (φdqs + φdqr ) + Γdqls φdqs − ΓxmJ2φ
dq
r (3.76a)

ı0s = Γ0
lsφ

0
s (3.76b)

ıdqr = Γdqm (φdqs + φdqr ) + Γdqlr φdqr + ΓxmJ2φ
dq
s (3.76c)

ı0r = Γ0
lrφ

0
r. (3.76d)

These are not the equations known as the unsaturated sinusoidal model of the induction
motor. This is due to the fact that non-skewed rotor are usually assumed so there is
another symmetry.

3.6.2.2 Non-skewed-rotor induction motors

On top of the symmetries of section 3.6.2.1, the rotor now presents a planar symmetry
which further constrains the form we got for skewed-rotor induction machines. To enforce
the condition eq. (3.47) we must have Γxm = 0.

The energy function still has the form of eq. (3.75) but the matrices now read

ΓDQm := ΓmI2 ΓDQls := ΓlsI2 ΓDQlr := ΓlrI2

where I2 is the identity of M2(R) and thus the current-flux relations in any dq0 frame
simplify to

ıdqs = Γm(φdqs + φdqr ) + Γlsφdqs (3.77a)

ı0s = Γ0
lsφ

0
s (3.77b)

ıdqr = Γm(φdqs + φdqr ) + Γlrφdqr (3.77c)

ı0r = Γ0
lrφ

0
r. (3.77d)

With the state form eq. (3.24) and the associated electromagnetic torque expression
eq. (3.25d) these equations form the well-known unsaturated sinusoidal model of the
induction motor.

3.6.3 For the PMSM

A PMSM is one kind of electric motor which has no windings in the rotor. In section 3.5.2,
it is explained that in this case the equations concerning φr can be decoupled in the state
equations, and that it is then necessarily constant. In this section we are going to assume
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that the rotor is salient in the sense of section 3.3.4.1. Hence, the general energy function
eq. (3.71) boils down to

HDQ0(θ, ρ, φDQ0
s ) := 1

2JLn2ρ
2 + a′ + b′TφDQ0

s + φDQ0
s

T
DφDQ0

s (3.78)

where

a′ = cTφDQ0
r + φDQ0

r

T
FφDQ0

r

b′ = b+ ETφDQ0
r

are constant because rotor flux is constant.

3.6.3.1 General case for a salient PMSM

The stator of a PMSM is symmetric with respect to the rotation axis, so, its energy
function respects the condition of eq. (3.43). Hence, terms involving odd powers of φ0

s are
forbidden. Choosing appropriately a′, the energy function HDQ0 can be written under the
form

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 + 1

2(φDQs − φDQM )TΓDQs (φDQs − φDQM ) + 1
2Γ0

sφ
0
s

2
(3.79)

where φDQM , ΓDQs and Γ0
s are defined by

ΓDQs :=
(

ΓDs Γxs
Γxs ΓQs

)
= 2

(
d1,1 d1,2
d2,1 d2,2

)
Γ0
s := 2d3,3

φDQM := −
ΓDQs + ΓDQs

T

2

−1

b′ = −ΓDQs
−1
b′.

The current-flux relations read

ıDQs = ΓDQs (φDQs − φDQM ) (3.80a)

ı0s = Γ0
sφ

0
s. (3.80b)

3.6.3.2 Usual case for a salient PMSM

In most PMSMs the rotor flux is aligned with one of the saliency axes considered to be
the D-axis. Thus the rotor is symmetric with a saliency plane and the condition eq. (3.47)
must be enforced and the terms with odd powers of φQs are zero. As we made the same
assumptions as in Jebai [37], we recover the energy function proposed there

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 + 1

2ΓDs (φDs − φM)2 + 1
2ΓQs φQs

2 + 1
2Γ0

sφ
0
s

2
(3.81)

with the associated current-flux relations

ıDs = ΓDs (φDs − φM) (3.82a)

ıQs = ΓQs φQs (3.82b)

ı0s = Γ0
sφ

0
s (3.82c)
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3.6.3.3 Non-salient PMSM

The non-salient case is obtained with ΓDs = ΓQs = Γs. The DQ0 frame is defined in this
case by the permanent magnet flux. The energy then reads

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 + 1

2Γs(φDs − φM)2 + 1
2ΓsφQs

2 + 1
2Γ0

sφ
0
s

2
(3.83)

and the current-flux relations are then

ıDs = Γs(φDs − φM) (3.84a)

ıQs = ΓsφQs (3.84b)

ı0s = Γ0
sφ

0
s. (3.84c)

3.6.4 For the SynRM

SynRMs, like PMSMs, do not have windings in the rotor, but the constant rotor flux is
zero. To produce a torque, we must have a salient rotor which will be symmetric with
respect to its axis and two orthogonal planes.

When the symmetries are not taken into account, the energy function has the form
given by eq. (3.78). As in the case of the PMSM, taking into account the symmetry with
respect to the rotation axis cancels all the terms involving odd powers of φ0

s. Taking into
account the symmetry of the rotor with respect to the two orthogonal saliency planes, we
find that all the coefficients of terms with odd powers of φDs or φQs will also be zero. Thus,
the energy function for a SynRM reads

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 + 1

2ΓDs φDs
2 + 1

2ΓQs φQs
2 + 1

2Γ0
sφ

0
s

2
(3.85)

where

ΓDs = d1,1 ΓQs = d2,2 Γ0
s = d3,3.

The current-flux relations in the DQ0 frame are then

ıDs = ΓDs φDs (3.86a)

ıQs = ΓQs φQs (3.86b)

ı0s = Γ0
sφ

0
s. (3.86c)

3.7 Non-sinusoidal motor model

We are now considering the general case where the energy depends on θ and is not nec-
essarily quadratic. As in the unsaturated sinusoidal case developed in section 3.6, the
symmetries obtained in section 3.4 will allow us to constrain the admissible functions.

Besides, as we are not interested in mechanical modeling, we will use in this section
the simplest form for the kinetic energy which is ρ2/(2JLn2).
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Figure 3.11 – Descending from general quadratic form to the energy functions of each
electric motor using the symmetries presented on section 3.4. The symmetry hypotheses
are given in trapezia, their consequences inside rounded rectangles. The energy-based
models of the electric motors are given in rectangular nodes. Here the tree is pruned at
the point where motors with no rotor windings are considered (see fig. 3.12 for this case).
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Figure 3.12 – Descending from quadratic form to the energy functions of each electric
motor without rotor windings using the symmetries presented in section 3.4. The symme-
try hypotheses are given in trapezia, their consequences inside rounded rectangles. The
energy-based models of the electric motors are given in rectangular nodes.
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3.7.1 In the general case

First of all, we suppose that the rotor windings are short-circuited, so the rotor 0-axis can
be decoupled and we can define the constrained Hamiltonian HDQ0

c (θ, ρ, φDQ0
s , φDQr ) (see

section 3.5.1). Eq. (3.40) shows that HDQ0
c is 2π

3 -periodic with respect to θ, hence it can
be expanded as a Fourrier series with respect to θ

HDQ0
c (θ, ρ, φDQ0

s , φDQr ) = 1
2JLn2ρ

2 +HDQ0(φDQ0
s , φDQr )

+
∞∑
k=1

a3k(φDQ0
s , φDQr ) cos 3kθ + b3k(φDQ0

s , φDQr ) sin 3kθ. (3.87)

On top of that, the stator of an electric motor is symmetric with respect to the 0-axis
(see section 3.4.1.2), so HDQ0 must respect the condition eq. (3.43), which implies

HDQ0(φDs , φQs , φ0
s, φ

D
r , φ

Q
r ) = HDQ0(φDs , φQs ,−φ0

s, φ
D
r , φ

Q
r )

a3k(φDs , φQs , φ0
s, φ

D
r , φ

Q
r ) = (−1)ka3k(φDs , φQs ,−φ0

s, φ
D
r , φ

Q
r )

b3k(φDs , φQs , φ0
s, φ

D
r , φ

Q
r ) = (−1)kb3k(φDs , φQs ,−φ0

s, φ
D
r , φ

Q
r ).

Thus HDQ0
, {a6k} and {b6k} are even with respect to φ0

s whereas {a6k+3} and {b6k+3} are
odd with respect to φ0

s.
If we make the assumption that the rotor is symmetric with respect to the two orthog-

onal saliency planes as in section 3.6.1, then, due to eq. (3.47), we must have the parity
conditions

HDQ0(φDs , φQs , φ0
s, φ

D
r , φ

Q
r ) = HDQ0(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = HDQ0(−φDs , φQs , φ0

s,−φDr , φQr )
a3k(φDs , φQs , φ0

s, φ
D
r , φ

Q
r ) = a6k(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = a3k(−φDs , φQs , φ0

s,−φDr , φQr )
b3k(φDs , φQs , φ0

s, φ
D
r , φ

Q
r ) = −b6k(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = −b3k(−φDs , φQs , φ0

s,−φDr , φQr ).
With eqs. (3.30a) and (3.30b) we find the current-flux relations and with eq. (3.30d)

the electromagnetic torque

ıDQ0
s (θ, ρ, φDQ0

s , φDQr ) = ∂HDQ0

∂φDQ0
s

(φDQ0
s , φDQr )

+
∞∑
k=1

∂a3k

∂φDQ0
s

(φDQ0
s , φDQr ) cos 3kθ

+
∞∑
k=1

∂b3k

∂φDQ0
s

(φDQ0
s , φDQr ) sin 3kθ (3.88a)

ıDQr (θ, ρ, φDQ0
s , φDQr ) = ∂HDQ0

∂φDQr
(φDQ0

s , φDQr )

+
∞∑
k=1

∂a3k

∂φDQr
(φDQ0

s , φDQr ) cos 3kθ

+
∞∑
k=1

∂b3k

∂φDQr
(φDQ0

s , φDQr ) sin 3kθ (3.88b)

Te(θ, ρ, φDQ0
s , φDQr ) = nıDQ0

s

TJ3φ
DQ0
s

+ n
∞∑
k=1

3ka3k(φDQ0
s , φDQr ) sin 3kθ

− n
∞∑
k=1

3kb3k(φDQ0
s , φDQr ) cos 3kθ. (3.88c)
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This shows that the currents and the torque are also 2π
3 -periodic with respect to θ.

If the star connection scheme (see section 3.5.3) is used, then the stator 0-axis can be
decoupled and we can define the associated energy function HDQ

? which does not depend
on φ0

s. Thus the odd parity condition on {a6k+3} and {b6k+3} constrain them to be zero.
Thus HDQ

? can be written

HDQ
? (θ, ρ, φDQs , φDQr ) = 1

2JLn2ρ
2 +HDQ(φDQs , φDQr )

+
∞∑
k=1

a6k(φDQs , φDQr ) cos 6kθ + b6k(φDQs , φDQr ) sin 6kθ (3.89)

and applying eqs. (3.30a) and (3.30b) we find that the currents and the electromagnetic
torque are π

3 -periodic with respect to θ

ıDQs (θ, ρ, φDQs , φDQr ) = ∂HDQ

∂φDQs
(φDQs , φDQr )

+
∞∑
k=1

∂a6k

∂φDQs
(φDQs , φDQr ) cos 6kθ

+
∞∑
k=1

∂b6k

∂φDQs
(φDQs , φDQr ) sin 6kθ (3.90a)

ıDQr (θ, ρ, φDQs , φDQr ) = ∂H
∂φDQr

(φDQs , φDQr )

+
∞∑
k=1

∂a6k

∂φDQr
(φDQs , φDQr ) cos 6kθ

+
∞∑
k=1

∂b6k

∂φDQr
(φDQs , φDQr ) sin 6kθ (3.90b)

Te(θ, ρ, φDQs , φDQr ) = nıDQs
TJ3φ

DQ
s

+ n
∞∑
k=1

6ka6k(φDQs , φDQr ) sin 6kθ

− n
∞∑
k=1

6kb6k(φDQs , φDQr ) cos 6kθ. (3.90c)

3.7.2 For the IM

IMs have non-salient rotors, so the condition eq. (3.56) holds. Moreover, as in the case
of section 3.7.1, the rotor windings are short-circuited and the rotor is assumed to be
symmetric with respect to its axis. Thus the energy function must respect both a π

3 -
periodicity condition and a 2π

nr
-periodicity condition. Hence its period with respect to θ is

2π
lcm 6,nr = 2π

nrs
and decomposing in Fourier series we get

HDQ0
c (θ, ρ, φDQ0

s , φDQr ) = 1
2JLn2ρ

2 +HDQ0(φDQ0
s , φDQr )

+
∞∑
k=1

anrsk(φDQ0
s , φDQr ) cosnrskθ

+
∞∑
k=1

bnrsk(φDQ0
s , φDQr ) sinnrskθ. (3.91)
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On top of that, the stator of an electric motor is symmetric with respect to the 0-axis
(see section 3.4.1.2), so HDQ0 must respect the condition eq. (3.43), which implies as

previously HDQ0
, {anrsk} and {bnrsk} are even with respect to φ0

s.
Skewed-rotors IMs do not have any other symmetry. On the opposite as in sec-

tion 3.6.2.2 non-skewed rotors are symmetric with respect to 2 orthogonal planes and
eq. (3.47) leads to

HDQ0(φDs , φQs , φ0
s, φ

D
r , φ

Q
r ) = HDQ0(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = HDQ0(−φDs , φQs , φ0

s,−φDr , φQr )
a6k(φDs , φQs , φ0

s, φ
D
r , φ

Q
r ) = a6k(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = a6k(−φDs , φQs , φ0

s,−φDr , φQr )
b6k(φDs , φQs , φ0

s, φ
D
r , φ

Q
r ) = −b6k(φDs ,−φQs , φ0

s, φ
D
r ,−φQr ) = −b6k(−φDs , φQs , φ0

s,−φDr , φQr ).

Similarly as in section 3.7.1 the currents and the torque are 2π
nrs

-periodic with respect
to θ.

3.7.3 For the PMSM

As PMSMs do not have rotor windings, φr can be decoupled. Besides its stator still
respects the phase permutation symmetry described in section 3.4.1.1, so the condition
eq. (3.40) should be respected and the energy function is 2π

3 -periodic with respect to θ.
Consequently its Fourier series read

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 +HDQ0(φDQ0

s ) +
∞∑
k=1

a3k(φDQ0
s ) cos 3kθ + b3k(φDQ0

s ) sin 3kθ.

(3.92)
The stator of a PMSM is also symmetric with respect to its axis so the condition

eq. (3.43) gives

HDQ0(φDs , φQs , φ0
s) = HDQ0(φDs , φQs ,−φ0

s)
a3k(φDs , φQs , φ0

s) = (−1)ka3k(φDs , φQs ,−φ0
s)

b3k(φDs , φQs , φ0
s) = (−1)kb3k(φDs , φQs ,−φ0

s)

which means HDQ0
, {a6k} and {b6k} are even with respect to φ0

s whereas {a6k+3} and
{b6k+3} are odd with respect to φ0

s.
In most cases the rotor is also symmetric with respect to one plane which defines the

D-axis. In such a case the condition eq. (3.47) reads

HDQ0(φDs , φQs , φ0
s) = HDQ0(φDs ,−φQs , φ0

s)
a3k(φDs , φQs , φ0

s) = a3k(φDs ,−φQs , φ0
s)

b3k(φDs , φQs , φ0
s) = −b3k(φDs ,−φQs , φ0

s)

which means HDQ0
and {a3k} are even with respect to φQs , whereas {b3k} are odd with

respect to φQs .
Applying eqs. (3.30a) and (3.30d), one gets the current-flux relations and the electro-

magnetic torque expression

ıDQ0
s (θ, ρ, φDQ0

s ) = ∂HDQ0

∂φDQ0
s

(φDQ0
s )

+
∞∑
k=1

∂a3k

∂φDQ0
s

(φDQ0
s ) cos 3kθ + ∂b3k

∂φDQ0
s

(φDQ0
s ) sin 3kθ (3.93a)
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Te(θ, ρ, φDQ0
s ) = nıDQ0

s

TJ3φ
DQ0
s

− n
∞∑
k=1

3ka3k(φDQ0
s ) sin 3kθ + 3kb3k(φDQ0

s ) cos 3kθ (3.93b)

which shows that the current and the torque are 2π
3 -periodic with respect to θ.

When the star connection scheme is used, the stator 0-axis can be decoupled (as shown
in section 3.5.3) and we can define the associated energy function which does not depend
on φ0

s. Thus the odd parity condition on {a6k+3} and {b6k+3} boils down to all of them
being zero. HDQ

? can thus be written

HDQ
? (θ, ρ, φDQs ) = 1

2JLn2ρ
2 +HDQ(φDQs )+

∞∑
k=1

a6k(φDQs ) cos 6kθ+b6k(φDQs ) sin 6kθ. (3.94)

Using the eq. (3.67a) for the stator currents and the eq. (3.30d) for the electromagnetic
torque we find

ıDQs (θ, ρ, φDQs ) = ∂HDQ

∂φDQs
(φDQs ) +

∞∑
k=1

∂a6k

∂φDQs
(φDQs ) cos 6kθ + ∂b6k

∂φDQs
(φDQs ) sin 6kθ (3.95a)

Te(θ, ρ, φDQs ) = nıDQs
TJ3φ

DQ
s

− n
∞∑
k=1
−6ka6k(φDQs ) sin 6kθ + 6kb6k(φDQs ) cos 6kθ (3.95b)

which shows that, when the star connection scheme is used, they should be π
3 -periodic

with respect to θ. This can be illustrated by the curves in Jebai [37, fig. 4.4] where
π
3 -periodic oscillations can be seen in the measured currents and electromagnetic torque.

3.7.4 For the SynRM

As SynRM stators respect the phase permutation symmetry presented in section 3.4.1.1,
the energy function of an SynRM in the DQ0 frame is 2π

3 periodic with respect to θ, hence
it can be expanded as a Fourrier series with respect to θ

HDQ0(θ, ρ, φDQ0
s ) = 1

2JLn2ρ
2 +HDQ0(φDQ0

s ) +
∞∑
k=1

a3k(φDQ0
s ) cos 3kθ + b3k(φDQ0

s ) sin 3kθ.

(3.96)
As the stator is symmetric with respect to the 0-axis, the condition eq. (3.43) must be

respected. As in section 3.7.3 HDQ0
, {a6k} and {b6k} are even with respect to φ0

s whereas
{a6k+3} and {b6k+3} are odd with respect to φ0

s.
Moreover the rotor is symmetric with respect to the two saliency planes, so using

eq. (3.47),

HDQ0(φDs , φQs , φ0
s) = HDQ0(φDs ,−φQs , φ0

s) = HDQ0(−φDs , φQs , φ0
s)

a3k(φDs , φQs , φ0
s) = a3k(φDs ,−φQs , φ0

s) = a3k(−φDs , φQs , φ0
s)

b3k(φDs , φQs , φ0
s) = −b3k(φDs ,−φQs , φ0

s) = −b3k(−φDs , φQs , φ0
s)

which means HDQ0
and {a3k} are even with respect to φDs and φQs , whereas {b6k} are odd

with respect to φDs and φQs .
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Applying eqs. (3.30a) and (3.30d), one gets the current-flux relations and the electro-
magnetic torque expression

ıDQ0
s (θ, ρ, φDQ0

s ) = ∂HDQ0

∂φDQ0
s

(φDQ0
s )

+
∞∑
k=1

∂a3k

∂φDQ0
s

(φDQ0
s ) cos 3kθ + ∂b3k

∂φDQ0
s

(φDQ0
s ) sin 3kθ (3.97a)

Te(θ, ρ, φDQ0
s ) = nıDQ0

s

TJ3φ
DQ0
s

− n
∞∑
k=1
−3ka3k(φDQ0

s ) sin 3kθ + 3kb3k(φDQ0
s ) cos 3kθ (3.97b)

which shows that the current and the torque are 2π
3 -periodic with respect to θ.

As in the PMSM case (see section 3.7.3), when the star connection scheme is used, the
0-axis can be decoupled in the energy function, so the {a6k+3} and {b6k+3} are zero and
thus the current and the electromagnetic torque are π

3 -periodic with respect to θ.

3.7.5 Experimental results

The torque ripple due to non-sinusoidal windings is a well-known phenomenon and has
been highlighted on many kinds of motors (see [39–41] for the IM and [24–26] for the
PMSMs). The main harmonics are always at 3k or 6k and it has also been shown that
the harmonics power decreases rapidly with k.

On the dSpacer test bench, we recorded the stator currents ıabcs , the mechanical speed
ωm and the electromagnetic torque Te while the motor (SynRM table 2.1 or IM table 2.2)
was excited with a 0.9Hz sinusoidal voltage, the load machine being disconnected. Similar
tests have been made on the PMSM, see Jebai [37]. Open-loop control was chosen since
closed-loop control would mix the harmonics. However, there are still additional har-
monics coming from the voltage drops, described in section 2.3.1, and the load machine
harmonics, presented in section 2.3.3. As the amplitude of harmonics are quite small, we
give the spectra of the recorded signals which were obtained off-line by FFT. Fig. 3.13 for
the SynRM and fig. 3.14 show the spectra of the recorded signals. The main harmonics
are listed in table 3.3 for the SynRM and table 3.4 for the IM, where it can be seen that
the harmonics with the largest amplitude are indeed obtained at 6kωs (k ∈ N∗).

The tables show that these phenomena are very small with respect to rated values.
To simplify the models, we are going to neglect these effects in the modeling phase and
consider it as a noise in the control design phase. The only terms we will consider later

will be HDQ0
, the nonlinear fundamental of the energy function and the kinetic energy.

3.8 Saturated sinusoidal motor model

As shown in section 3.7.5, harmonics in the measurements are quite small with respect

to the fundamental, which means that HDQ0
is a very good approximation of HDQ0 for

the all electric motors studied in this document. Thus, the invariance conditions for a
saturated sinusoidal motor will be exactly those of the fundamentals in section 3.7 recalled
in table 3.5.

As this approximation will be used in the rest of the document, we find it judicious
to show what the sinusoidal assumption means in term of saliency (see section 3.8.1) and
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(d) Amplitude spectrum of the mechanical speed.

Figure 3.13 – Spectra of the signals recorded on the SynRM described by table 2.1.
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Figure 3.14 – Spectra of the signals recorded on the IM described by table 2.2.
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Frequency
∣∣∣L(ıDs )

∣∣∣ ∣∣∣L(ıQs )
∣∣∣ |L(Te)| |L(ωm)| Signification

0.9Hz − 0.003A − − ωs
1.8Hz 0.008A 0.003A − 0.008Hz 2ωs
2.7Hz − 0.003A 0.003N.m − 3ωs
3.6Hz 0.003A 0.002A − 0.007Hz 4ωs
5.4Hz 0.008A 0.004A 0.011N.m 0.032Hz 6ωs
7.2Hz − 0.001A 0.002N.m − 8ωs
8.1Hz 0.001A 0.001A 0.008N.m 0.012Hz 9ωs
9.0Hz − 0.001A 0.003N.m − 10ωs
10.8Hz − 0.002A 0.003N.m 0.013Hz 12ωs
11.7Hz − 0.001A − − 13ωs
12.6Hz − 0.001A 0.003N.m − 14ωs
13.5Hz − 0.002A 0.003N.m − 15ωs
14.4Hz − 0.002A − 0.007Hz 16ωs
16.2Hz 0.002A 0.005A 0.007N.m 0.023Hz 18ωs
18.0Hz − − 0.003N.m − 20ωs
21.6Hz − − 0.004N.m − 24ωs
27.0Hz − − 0.002N.m − 30ωs
32.4Hz − − 0.004N.m − 36ωs
37.8Hz − − 0.002N.m − 42ωs

Table 3.3 – Main harmonics in the response of the SynRM described by table 2.1.

how the saturated case differs from the unsaturated case presented in section 3.6 (see
section 3.8.2). Moreover, since a star-connected motor is always used in the rest of the
document, the 0-axis can be decoupled and we will consider that the model of the electric
motor is given by one of the energy functions Hαβ, Hdq or HDQ, depending on the chosen
frame, omitting the star subscript for the sake of clearness.

3.8.1 About saliency

In the literature on signal injection two concepts of saliency are introduced: the mechanical
saliency and the magnetic saliency (see Ha, Sul, et al. [42], Jansen and Lorenz [78]). The
mechanical saliency is due to the design of the electric motor whereas the magnetic saliency
is caused by the saturation of magnetic paths. However these concepts are generally not
properly explained in the literature and we try here to rectify this. Our conclusions are
summarized in table 3.6.

3.8.1.1 Mechanical saliency

In the traditional literature (Krause, Wasynczuk, et al. [56] for instance) the salient mo-
tors refers to electric motors whose rotor has a particular axis defined by its geometry.
However, the permanent magnet flux is traditionally not taken into account. In this doc-
ument however we prefer to take it into account as the permanent magnet flux really
defines a specific direction. Thus non-salient PMSMs will be considered as mechanically
salient motors.
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Frequency
∣∣∣L(ıds)

∣∣∣ |L(ıqs)| |L(Te)| |L(ωm)| Signification

0.4Hz − − 0.006N.m − ωm
0.9Hz − 0.002A − − ωs
1.8Hz 0.004A 0.002A − 0.004Hz 2ωs
2.7Hz 0.002A 0.002A − 0.002Hz 3ωs
3.6Hz 0.001A 0.001A − 0.002Hz 4ωs
5.4Hz 0.004A 0.001A 0.008N.m 0.011Hz 6ωs
7.2Hz − − − 0.001Hz 8ωs
8.1Hz − − 0.002N.m 0.001Hz 9ωs
9.3Hz − − 0.003N.m 0.002Hz 36ωm − 6ωs
10.8Hz 0.001A 0.002A 0.005N.m 0.003Hz 12ωs
12.9Hz − − 0.003N.m 0.002Hz 36ωm − 2ωs
14.3Hz 0.001A 0.001A 0.006N.m 0.004Hz 35ωm
14.7Hz 0.003A 0.003A 0.015N.m 0.009Hz 36ωm
15.1Hz 0.001A 0.001A 0.004N.m 0.004Hz 37ωm
16.2Hz 0.001A 0.002A 0.003N.m 0.002Hz 18ωs
16.5Hz − − 0.002N.m 0.001Hz 36ωm + 2ωs
20.1Hz − − 0.002N.m 0.001Hz 36ωm + 6ωs
21.6Hz − 0.001A 0.002N.m − 24ωs
28.9Hz − − 0.003N.m 0.001Hz 71ωm
29.3Hz − − 0.003N.m 0.001Hz 72ωm
29.7Hz − − 0.003N.m 0.001Hz 73ωm

Table 3.4 – Main harmonics in the response of the IM described by table 2.2.

For non-salient electric motors there is no particular direction for the rotor, thence the
energy remains unchanged whatever the position of the rotor, i.e. ∀η ∈]− π, π]

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + η, ρ, φabcs ,Rabc(−η)φabcr ) (3.98a)

Habc(θ, ρ, φabcs , φabcr ) = Habc(θ + η, ρ,Rabc(η)φabcs , φabcr ). (3.98b)

When rewritten in the dq frame for a star-connected machine, they gives

Hdq(θ, ρ, φdqs , φdqr ) = Hdq(θ + η, ρ, φdqs , φ
dq
r ) (3.99a)

Hdq(θ, ρ, φdqs , φdqr ) = Hdq(θ + η, ρ,Rdq(η)φdqs ,Rdq(η)φdqr ). (3.99b)

Eq. (3.99a) means that the energy function of a non-salient sinusoidal motor in dq frame
does not depend on theta either. By eq. (3.99b), the energy function of a non-salient
machine is independent on θ in any frame identical to the dq frame up to a rotation around
the 0-axis which includes the αβ and DQ frames as in the unsaturated case. In contrast
salient electric motor will not satisfy neither eq. (3.98) nor eq. (3.99). Consequently, their
energy function will depend on θ through θs − θ

Hdq(θ, ρ, φdqs , φdqr ) = HDQ(ρ, Pdq→DQ(θs − θ)φdqs , Pdq→DQ(θs − θ)φdqr ) (3.100)

where we used again that the energy function in the DQ frame does not depend on θ for
sinusoidal machines.
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Symmetry HDQ0(ρ, φDs , φQs , φ0
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r) Axial symmetry

Table 3.5 – Symmetry constraints on the form of the Hamiltonian for sinusoidal nonlinar
models.

As the energy function in dq frames depends on θs−θ, all salient electric motors rotate
at the electrical speed ωs when the equilibrium is reached, otherwise the energy of the
electric motor would not be constant in dq frames. In contrast the non-salient motors,
such as the IM, can rotate at any speed at equilibrium.

3.8.1.2 Magnetic saliency

In the literature [42, 78, 85] it has been shown that the response of electric machines
to signal injection depends on the direction of the injection and a lot of experimental
data given in this document will confirm this. For SynRMs and salient PMSMs, this is
very well explained by the fact that the saliency influences the HF response. However for
non-salient PMSM and IM it is much more difficult to explain.

Indeed in section 4.2.3 we prove that the HF current response of a star-connected IM
to voltage injection in dq frames can be computed as

ı̃dqs = ∂2Hdq

∂φdqs
2 (φdqs , φdqr )ũdqs

where ũdqs is the amplitude of the injected voltage in the chosen dq frame. Similar proofs
can be applied to the PMSM (see [37, 43]) and the SynRM and we obtain

ı̃DQs = ∂2HDQ

∂φDQs
2 (φDQs , φDQr )ũDQs .

When the response and the injection are expressed in the orthogonal frame of the injection
vw where v is along the instantaneous injection axis we obtain

ı̃vws = P−1
vw→DQ(θi)

∂2HDQ

∂φDQs
2 (φDQs , φDQr )Pvw→DQ(θi)

(
ũs
0

)
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Electric motor Model type Mechanically salient Magnetically non salient

SynRM
unsaturated Yes Yes
saturated Yes Yes

Salient PMSM
unsaturated Yes Yes
saturated Yes Yes

Non-salient PMSM
unsaturated Yes No
saturated Yes Yes

IM
unsaturated No No
saturated No Yes

Table 3.6 – Summary of section 3.8.1

where Pvw→DQ is the rotation of R2 of angle −θi

Pvw→DQ(θi) =
(

cos θi sin θi
− sin θi cos θi

)
,

θi being the angle between DQ and vw frames.

For the unsaturated SynRM and the unsaturated salient PMSM we easily obtain from
eqs. (3.79) and (3.85) that

∂2Hdq

∂φDQs
2 (φDQs , φDQr ) =

(
ΓDs 0
0 ΓQs

)

does not commute with rotations and thus the HF current response to HF signal injection
depends on the injection axis. However for the unsaturated non-salient PMSM and the
IM we have (see eqs. (3.75) and (3.83))

∂2Hdq

∂φDQs
2 (φDQs , φDQr ) =

(
Γs 0
0 Γs

)

which commutes with rotations. Thus, the unsaturated model does not explain why the
HF current response of the motor to HF signal injection depends on the injection axis. It
should be noted that the unsaturated non-salient PMSM is in this the second category,
whereas it is mechanically salient. Consequently we deal with a different kind of saliency
which is usually qualified as “magnetic” as magnetic saturation can cause it as we show
below.

We now consider saturated electric motors. In this case ∂2HDQ

∂φDQs
2 (φDQs , φDQr ) is a sym-

metric matrix, however its diagonal terms may not be equal and the anti-diagonal terms
may not be zero. Consequently, this matrix does not commute with rotations and the HF
current response to HF signal injection depends on the injection axis. For the non-salient
PMSM and the IM this dependency cannot be explained with the unsaturated motor
model and we have to take into account magnetic saturation.
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3.8.2 Chord and tangent inductances

In the unsaturated SynRM case we have for the current-flux relations

ıDs = ΓDs φDs (3.101a)

ıQs = ΓQs φQs (3.101b)

which defines the inverse inductances as being

ΓDs = ıDs
φDs

= ∂ıDs
∂φDs

= ∂2HDQ

∂φDs
2 (3.102a)

ΓQs = ıQs
φQs

= ∂ıQs
∂φQs

= ∂2HDQ

∂φQs
2 . (3.102b)

However for the saturated SynRM case, the quotient of the currents by the fluxes is
not equal to the partial derivatives of the currents by the fluxes. Thus we have two
kinds of inverse inductances. In the literature they are usually defined and studied in
the one dimensional case [44, 46], which is not suitable for us. Yet, we will stick to the
denominations of tangent inductances (also called dynamic inductances) for the partial
derivatives and chord inductances (also called static inductances) for the quotient.

We define the tangent inductances, denoted Lt, as the partial derivatives of the fluxes
with respect to the currents, which depend on the currents. Conversely we can define the
tangent inverse inductances, Γt, as the partial derivatives of the currents with respect to
the fluxes which are much more handy when using Hamiltonian models. For the SynRM
we have

ΓtDQs (φDQs ) := ∂ıDQs
∂φDQs

(φDQs ) = ∂2HDQ

∂φDQs
2 (φDQs ). (3.103)

Defining the chord inductances, denoted Lc, in the two-dimensional case is a bit more
difficult. Admittedly we can define the chord inverse inductances, Γc, as

ΓcDQs (φDQs ) :=

 ıDs (φDQs )
φDs

0
0 ıQs (φDQs )

φQs


but this is not the most judicious definition as the chord inverse inductance on one axis
depends on the fluxes of both axis. The problem can be restated as follows: finding a
matrix ΓcDQs such that ıDQs = ΓcDQs φDQs . However this equation does not define properly
ΓcDQs and we can add the additional constraint that we would like the diagonal terms to
depend only on the flux of the corresponding axis. The most sensible definition is thus

ΓcDQs (φDQs ) :=

 ıDs (φDs ,0)
φDs

ıDs (φDs ,φ
Q
s )−ıDs (φDs ,0)
φQs

ıQs (φDs ,φ
Q
s )−ıQs (0,φQs )
φDs

ıQs (0,φQs )
φQs

 . (3.104)

The definition of the chord and tangent inverse inductances is illustrated in fig. 3.15
for the saturated SynRM case, where it can be seen that, as in the one-dimensional case,
tangent inverse inductances are related to the tangent space of the current-flux surface
and chord inductances are related to paths from the origin to the working point.

For the PMSM similar definitions can be used. The tangent inverse inductances are
defined as

ΓtDQs (φDQs ) := ∂ıDQs
∂φDQs

(φDQs ) = ∂2HDQ

∂φDQs
2 (φDQs ). (3.105)
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Figure 3.15 – The currents as functions of the fluxes from the model obtained in section 5.2.
The slopes of the red lines are chord inverse inductances and the slopes of the violet lines
are tangent inverse inductances.



and the chord inverse inductances as

ΓcDQs (φDQs ) :=

 ıDs (φDs ,0)
φDs −φDM

ıDs (φDs ,φ
Q
s )−ıDs (φDs ,0)

φQs −φQM
ıQs (φDs ,φ

Q
s )−ıQs (0,φQs )

φDs −φDM
ıQs (0,φQs )
φQs −φQM

 . (3.106)

and thus ıDQs = ΓcDQs (φDQs − φDQM ).
Generalizing the definition of the tangent inductances for the IM, we find

Γtdqs (φdqs , φdqr ) := ∂ıdqs
∂φdqs

= ∂2Hdq

∂φdqs
2 (3.107a)

Γtdqm (φdqs , φdqr ) := ∂ıdqs
∂φdqr

= ∂2Hdq

∂φdqs ∂φ
dq
r

= ∂2Hdq

∂φdqr ∂φ
dq
s

= ∂ıdqr
∂φdqs

(3.107b)

Γtdqr (φdqs , φdqr ) := ∂ıdqr
∂φdqr

= ∂2Hdq

∂φdqr
2 . (3.107c)

However generalizing the definition of chord inverse inductances for the IM is quite difficult
and we did not find any suitable definition. We can still say that the chord inverse
inductances exist and verify the relations

ıdqs = Γcdqm (φdqs , φdqr )(φdqs + φdqr ) + Γcdqls (φdqs , φdqr )φdqs (3.108a)

ıdqr = Γcdqm (φdqs , φdqr )(φdqs + φdqr ) + Γcdqlr (φdqs , φdqr )φdqr (3.108b)

which are inspired from eqs. (3.77a) and (3.77c).

3.9 Partial conclusion

In this chapter results of analytical mechanics are adapted to electric motors, which sim-
plify their modeling. This approach justifies the modeling of magnetic saturation in the
fictitious dq frame, whereas it happens in the physical abc frame. It also proves that the
expression of electromagnetic torque is not affected by magnetic saturation. Besides the
saturated models for electric motors, constructed following this approach, automatically
verify the reciprocity conditions, which are constraints that current-flux relations must
satisfy to be physically acceptable.

This approach also handles very easily constraints due to the symmetries in the layout
of electric motors and constraints due to the connection schemes of stator and rotor
windings. The variables held constant by the connection scheme are decoupled from the
model and the symmetries are reflected on the form of the energy function in DQ frame.

Using this approach we can retrieve more easily the unsaturated sinusoidal models for
electric motors and similarities between the diverse electric motors are highlighted. We
also predicted the forms of ripples due to non-sinusoidality and showed we can neglect
them in experiments as they are quite small with respect to nominal values. The expected
forms of saturated sinusoidal models are described but no explicit model is given. This is
addressed in chapter 5.





Chapter 4

Low-speed observability issues

Chapitre 4 — Problèmes d’observabilité à basse vitesse

Ce chapitre est consacré à une étude théorique de l’injection de signal pour le contrôle
« sans capteur » des machines électriques. Il commence par une étude de l’observabilité
des machines électriques, qui s’avèrent être non observables sur les trajectoires où la
pulsation stator est nulle. Une étude plus poussée autour de ces trajectoires montre que
ce problème peut être théoriquement contourné et que l’injection de signal est une mise
en pratique du critère théorique. Alternativement, elle peut être vue comme une méthode
permettant d’obtenir des mesures supplémentaires sans ajouter de capteur. C’est cette
dernière approche qui permet de construire facilement des observateurs pour les flux ou
la vitesse de rotation qui convergent à basse vitesse et même à vitesse nulle.

The “sensorless” observability of electric motors, that is to say the possibility to re-
trieve the state of electric motors from the knowledge of inputs and current measurements,
is studied in section 4.1.4. We show that “sensorless” control for electric motors at low
stator frequency, ωs, is inherently difficult as the state of the motor cannot be retrieved
accurately. Then, by studying the observability of the induction machine around such tra-
jectories, we find that“sensorless”observability can be recovered if a permanent excitation
is added (see section 4.1.5). Following Jansen and Lorenz [78] we chose to inject a HF
signal. The effects of HF signal injection are described and explained in section 4.2, using
second order averaging (see Sanders, Verhulst, et al. [47, sec. 2.9]). Finally in section 4.4,
using HF signal injection, we design “sensorless” flux and speed observers for IMs.

4.1 Low speed observability issues

We study here the “sensorless” observability of electric motors. As we want to regulate
their speed, the observability will be studied on permanent trajectories where the motor
rotates at constant speed, ωs,e. As shown in section 4.1.2, in any dq frame, these trajecto-
ries are equilibria, hence any dq frame is most suitable to carry out the observability study.
It is shown in section 4.1.4 that observability on the desired trajectories is not possible
when ωs,e = 0. By studying observability around such trajectories in section 4.1.5, we
find that observability can be recovered thanks to a permanent excitation.

79



80 Chapter 4. Low-speed observability issues

4.1.1 Bibliography

Observability criteria were applied to “sensorless” control of electric motors in Malrait [17,
secs. 4.2.5, 4.3] for IMs and in Vaclavek and Blaha [48] for PMSMs. This is summarized in
Glumineau and de Leon Morales [67, ch. 2]. To our knowledge, observability of SynRMs
has never been studied.

In the aforementioned literature, the observability study is carried out in the αβ frame,
as the measurements and controls can easily be expressed in this frame. However, in the αβ
frame, the permanent trajectories of interest are not equilibria and nonlinear observability
criteria must be used.

The conclusions of these studies are that PMSMs are not observable on trajectories
where ωs,e = ωe = 0 and IMs are not observable when ωe = ωs,e − ωg,e = −ωg,e. All this
can be summarized by saying that PMSMs and IMs are not observable when ωs,e = 0.

4.1.2 Steady-state trajectory

We are considering that the electric motor is star-connected and fed with a balanced three-
phase voltage uabcs,e of frequency ωs,e. In its domain of operation, under these conditions,
it yields a constant torque TL,e and rotates at a constant speed ωe. In the abc frame, this
is obviously not an equilibrium as the input depends on time.

To get an equilibrium we change to a synchronous dq0 frame rotating at ωs,e. In this
frame the input voltage udqs,e is constant and so are the fluxes φdqs,e and φdqr,e and the currents
ıdqs,e and ıdqr,e. We have thus

0 = udqs,e −Rsı
dq
s,e − J2ωs,eφ

dq
s,e (4.1a)

0 = −Rrı
dq
r,e − J2(ωs,e − ωe)φdqr,e (4.1b)

0 = Te,e − TL,e (4.1c)

where

J2 =
(

0 −1
1 0

)
(4.2)

4.1.3 Model

A framework for electric machine modeling was developed in chapter 3. It can handle
all electric motor types and can convey all conservative phenomena. However, as said in
section 3.8, the sinusoidal motor is a very good representation of most three-phase electric
motors. We will thus consider only sinusoidal models in this section.

The DQ frame is not adapted to the observability study because it is unknown and
not properly defined when there is no rotor flux. As we are considering trajectories close
to the trajectory of section 4.1.2, it is better to be in the synchronous dq frame rotating
at ωs,e. The effect of this transformation depends on whether the motor is mechanically
salient (see section 3.8.1.1) or not.

4.1.3.1 Non salient case

For mechanically non-salient motors (see section 3.8.1.1), we simply have

Hdq(ρ, φdqs , φdqr ) = HDQ(ρ, φdqs , φdqr ) (4.3)
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as the energy in any dq frame should be equal to the energy in the particular DQ frame
(see section 3.8). The current-flux relations will thus be

ıdqs (φdqs , φdqr ) = ∂Hdq

∂φdqs
(φdqs , φdqr ) = ∂HDQ

∂φDQs
(φdqs , φdqr ) (4.4a)

ıdqr (φdqs , φdqr ) = ∂Hdq

∂φdqr
(φdqs , φdqr ) = ∂HDQ

∂φDQr
(φdqs , φdqr ). (4.4b)

Using eq. (3.25d) and eq. (3.36) and the fact that rotation matrices commute with J2,
the electromagnetic torque can be obtained with any of the formulae

Te(φdqs , φdqr ) = nφdqr
TJ2ı

dq
r (φdqs , φdqr )

= −nφdqs
TJ2ı

dq
s (φdqs , φdqr ). (4.5)

4.1.3.2 Salient case

Since we consider sinusoidally wound electric motor, HDQ do not depend on θ. Hence,
for a mechanically salient electric motor (see section 3.8.1.1), the energy in any dq frame
will depend on θ through θs − θ and can be written

Hdq(θs − θ, ρ, φdqs , φdqr ) = HDQ(ρ, Pdq0→DQ0(θ − θs)φdqs , Pdq0→DQ0(θ − θs)φdqr ).

To compact notations, we define η = θs − θ and R(η) as the rotation around the 0-axis
by the angle η and get

Hdq(η, ρ, φdqs , φdqr ) = HDQ(ρ,R(η)φdqs ,R(η)φdqr ). (4.6)

The current-flux relations read

ıdqs (η, φdqs , φdqr ) = ∂Hdq

∂φdqs
(η, φdqs , φdqr ) = RT (η)∂H

DQ

∂φDQs
(R(η)φdqs ,R(η)φdqr ) (4.7a)

ıdqr (η, φdqs , φdqr ) = ∂Hdq

∂φdqr
(η, φdqs , φdqr ) = RT (η)∂H

DQ

∂φDQr
(R(η)φdqs ,R(η)φdqr ) (4.7b)

and the electromagnetic torque can be calculated as

Te(η, φdqs , φdqr ) = −n∂H
dq

∂θ
(η, φdqs , φdqr ) + nφdqr

TJ2ı
dq
r (η, φdqs , φdqr )

= nφdqs
TRT (η)J2

T ∂HDQ

∂φDQs
(R(η)φdqs ,R(η)φdqr )

+nφdqr
TRT (η)J2

T ∂HDQ

∂φDQr
(R(η)φdqs ,R(η)φdqr )

+nφdqr
TJ2RT (η)∂H

DQ

∂φDQr
(R(η)φdqs ,R(η)φdqr )

= −nφdqs
TJ2RT (η)∂H

DQ

∂φDQs
(R(η)φdqs ,R(η)φdqr )

= −nφdqs
TJ2ı

dq
s (η, φdqs , φdqr ) (4.8)

since J2 commutes with rotations.
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4.1.3.3 State form

We want to get the load torque as well as the state variables. We will thus add it to the
state and suppose it is constant. Thus, in the general case, the state equations for the
observability study are

dφdqs
dt

= udqs −Rsı
dq
s − J2ωs,eφ

dq
s (4.9a)

dφdqr
dt

= −Rrı
dq
r − J2(ωs,e − ω)φdqr (4.9b)

dω

dt
= n

JL
(Te − TL) (4.9c)

dη

dt
= ωs,e − ω (4.9d)

dTL
dt

= 0. (4.9e)

For non-salient motors, η is defined up to a constant as an anti-derivative of ωs,e − ω.
Since it does not appear in the right-hand side of the equations this will not be a problem
as it can be removed from the state in this case. In fact we will see that in the case of
non-salient electric motors η or equivalently θ, is not observable.

The physical input is uabcs . Nevertheless, as we know the transformation matrices from
the abc frame to the chosen dq0 frame (via the αβ0 frame), we can consider that udqs is
our input. Similarly we can consider ıdqs as the measurement even though the physical
measurement is ıabcs . As ωs is constant on the studied trajectories, ωs,e in eq. (4.9) can be
considered as a parameter.

As was said in section 3.5.2 some electric machines do not have rotor windings. For
such machines the rotor flux is constant in the DQ frame and thus could be removed from
the state equations. The current-flux relations are still valid but the partial derivatives of
the energy function with respect to the rotor flux will be zero.

4.1.4 Linear observability

In section 4.1.3 we obtained saturated models of electric motors we want to study on
the steady-state trajectory introduced in section 4.1.2. We will prove that all the electric
motors are first-order observable when ωs,e 6= 0 whereas they are first-order unobservable

when ωs,e = 0. In the latter case only the acceleration dω
dt

can be recovered from the
measurement ıdqs . Depending on the saliency, the unobservability condition ωs,e = 0
defines straight lines in the (ωm, TL)-plane, which are shown on fig. 4.1.

4.1.4.1 Linearization of the model

The linearized model state equations are given by

dδφdqs
dt

= δudqs −Rsδı
dq
s − J2ωs,eδφ

dq
s (4.10a)

dδφdqr
dt

= −Rrδı
dq
r − J2ωg,eδφ

dq
r + J2φ

dq
r,eδω (4.10b)

dδω

dt
= n

JL
(δTe − δTL) (4.10c)
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Figure 4.1 – Loci of unobservable working points for electric motors (in red for SynRMs
and PMSMs and in magenta for IMs).

dδη

dt
= −δω (4.10d)

dδTL
dt

= 0 (4.10e)

where we introduced the slip speed ωg,e = ωs,e − ωe, which is zero for salient motors.
Linearizing either eq. (4.5) or eq. (4.8), we obtain the linearized electromagnetic torque

δTe = −nφdqs,e
TJ2δı

dq
s + nıdqs,e

TJ2δφ
dq
s . (4.11)

Non-salient case When linearized, the current-flux relations eq. (4.4) give

δıdqs = ∂2Hdq

∂φdqs
2 (φdqs,e, φdqr,e)δφdqs + ∂2Hdq

∂φdqs ∂φ
dq
r

(φdqs,e, φdqr,e)δφdqr (4.12a)

δıdqr = ∂2Hdq

∂φdqr ∂φ
dq
s

(φdqs,e, φdqr,e)δφdqs + ∂2Hdq

∂φdqr
2 (φdqs,e, φdqr,e)δφdqr . (4.12b)

Salient case The currents now depend on η as well. Linearizing eq. (4.7) we get for the
linearized current-flux relations

δıdqs = RT (ηe)J2
T ∂HDQ

∂φDQs
δη

+RT (ηe)
∂2HDQ

∂φDQs
2 J2R(ηe)φdqs,eδη +RT (ηe)

∂2HDQ

∂φDQs ∂φDQr
J2R(ηe)φdqr,eδη

+RT (ηe)
∂2HDQ

∂φDQs
2 R(ηe)δφdqs +RT (ηe)

∂2HDQ

∂φDQs ∂φDQr
R(ηe)δφdqr (4.13a)

δıdqr = RT (ηe)J2
T ∂HDQ

∂φDQr
δη

+RT (ηe)
∂2HDQ

∂φDQr ∂φDQs
J2R(ηe)φdqs,eδη +RT (ηe)

∂2HDQ

∂φDQr
2 J2R(ηe)φdqr,eδη

+RT (ηe)
∂2HDQ

∂φDQr ∂φDQs
R(ηe)δφdqs +RT (ηe)

∂2HDQ

∂φDQr
2 R(ηe)δφdqr (4.13b)
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Non-salient case Salient case

∆ıdqs :=0

∆ıdqr :=0

∆ıdqs :=−RT (ηe)J2
∂HDQ
∂φDQs

(R(ηe)φdqs,e,R(ηe)φdqr,e)

+RT (ηe)∂
2HDQ

∂φDQs
2 (R(ηe)φdqs,e,R(ηe)φdqr,e)J2R(ηe)φdqs,e

+RT (ηe) ∂2HDQ
∂φDQs ∂φDQr

(R(ηe)φdqs,e,R(ηe)φdqr,e)J2R(ηe)φdqr,e
∆ıdqr :=−RT (ηe)J2

∂HDQ
∂φDQr

(R(ηe)φdqs,e,R(ηe)φdqr,e)

+RT (ηe) ∂2HDQ
∂φDQr ∂φDQs

(R(ηe)φdqs,e,R(ηe)φdqr,e)J2R(ηe)φdqs,e
+RT (ηe)∂

2HDQ

∂φDQr
2 (R(ηe)φdqs,e,R(ηe)φdqr,e)J2R(ηe)φdqr,e

∂2Hdq

∂φdqs
2 =∂2HDQ

∂φDQs
2 (φdqs,e, φdqr,e)

∂2Hdq
∂φdqr ∂φ

dq
s

= ∂2HDQ
∂φDQr ∂φDQs

(φdqs,e, φdqr,e)
∂2Hdq

∂φdqs ∂φ
dq
r

= ∂2HDQ
∂φDQs ∂φDQr

(φdqs,e, φdqr,e)
∂2Hdq

∂φdqr
2 =∂2HDQ

∂φDQr
2 (φdqs,e, φdqr,e)

∂2Hdq

∂φdqs
2 =RT (ηe)∂

2HDQ

∂φDQs
2 (R(ηe)φdqs,e,R(ηe)φdqr,e)R(ηe)

∂2Hdq
∂φdqr ∂φ

dq
s

=RT (ηe) ∂2HDQ
∂φDQr ∂φDQs

(R(ηe)φdqs,e,R(ηe)φdqr,e)R(ηe)
∂2Hdq

∂φdqs ∂φ
dq
r

=RT (ηe) ∂2HDQ
∂φDQs ∂φDQr

(R(ηe)φdqs,e,R(ηe)φdqr,e)R(ηe)
∂2Hdq

∂φdqr
2 =RT (ηe)∂

2HDQ

∂φDQr
2 (R(ηe)φdqs,e,R(ηe)φdqr,e)R(ηe)

Table 4.1 – Matrix parameters aggregates defined to unify the salient and non-salient
cases.

where the dependencies of the matrix partial derivatives of the energy function on the
fluxes R(ηe)φdqs,e and R(ηe)φdqr,e are hidden as they are constants since dηe

dt
= ωs,e − ωe = 0

for salient electric motors (see section 3.8.1.1).

Unification Both eqs. (4.12) and (4.13) can be conveyed under the following form

δıdqs = ∆ıdqs δη + ∂2Hdq

∂φdqs
2 δφ

dq
s + ∂2Hdq

∂φdqs ∂φ
dq
r

δφdqr (4.14a)

δıdqr = ∆ıdqr δη + ∂2Hdq

∂φdqr ∂φ
dq
s

δφdqs + ∂2Hdq

∂φdqr
2 δφ

dq
r (4.14b)

where the variables aggregates are defined appropriately, see table 4.1.
The linearized system can be written in the standard form for linear systems as

dδX

dt
= AδX +BδU (4.15a)

δY = CδX (4.15b)

with δX = (δφdqs , δφdqr , δω, δη, δTL)T , δU = δudqs , δY = δıdqs and

A :=



−Rs
∂2Hdq

∂φdqs
2 − J2ωs,e −Rs

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 −Rs∆ıdqs 02,1

−Rr
∂2Hdq

∂φdqr ∂φ
dq
s

−Rr
∂2Hdq

∂φdqr
2 − J2ωg,e J2φ

dq
r,e −Rr∆ıdqr 02,1

n2

JL
ıdqs,e

TJ2 − n2

JL
φdqs,e

TJ2
∂2Hdq

∂φdqs
2 − n2

JL
φdqs,e

TJ2
∂2Hdq

∂φdqs ∂φ
dq
r

0 n2

JL
φdqs,e

TJ2∆ıdqs − n
JL

01,2 01,2 −1 0 0
01,2 01,2 0 0 0


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B :=
(
I2 02,2 02,1 02,1 02,1

)T
C :=

(
∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 ∆ıdqs 02,1

)
.

4.1.4.2 Linear observability study

The Kalman criterion could be used but it leads to very tedious computations in this
general case. Indeed, it implies computing the rank of an 7x7 matrix. We will thus chose
an alternative approach relying on the definition of first-order observability: A system
is observable on a permanent trajectory when all the linearized state variables can be
expressed as linear combinations of the linearized inputs, the linearized outputs and their
derivatives. We are thus going to compute the derivatives of the linearized measurement
δıdqs and we will then show that the linearized state variables can be expressed as a linear
combination of these variables. This method is strictly equivalent to Kalman criterion, so
we will have the rank of a 7x7 matrix to compute, however simplifications are more easily
handled. To simplify even further the notations we will use the notation LC(. . . ) for any
linear combination of its arguments.

First of all we have

δıdqs = ∆ıdqs δη + ∂2Hdq

∂φdqs
2 δφ

dq
s + ∂2Hdq

∂φdqs ∂φ
dq
r

δφdqr . (4.16)

The first time-derivative of the linearized measurement δıdqs reads

dδıdqs
dt

= ∆ıdqs
dη

dt
+ ∂2Hdq

∂φdqs
2
dδφdqs
dt

+ ∂2Hdq

∂φdqs ∂φ
dq
r

dδφdqr
dt

= −
Rr

∂2Hdq

∂φdqs ∂φ
dq
r

∂2Hdq

∂φdqr ∂φ
dq
s

+ ∂2Hdq

∂φdqs
2 J2ωs,e

 δφdqs
− ∂2Hdq

∂φdqs ∂φ
dq
r

Rr
∂2Hdq

∂φdqr
2 + J2ωg,e

 δφdqr
−Rr

∂2Hdq

∂φdqs ∂φ
dq
r

∆ıdqr δη +
(

∂2Hdq

∂φdqs ∂φ
dq
r

J2φ
dq
r,e −∆ıdqs

)
δω + LC(δudqs , δıdqs ). (4.17)

When there are rotor windings, we define the matrices

Ωr = Rr
∂2Hdq

∂φdqr ∂φ
dq
s

−Rr
∂2Hdq

∂φdqr
2

(
∂2Hdq

∂φdqs ∂φ
dq
r

)−1
∂2Hdq

∂φdqs
2 (4.18a)

Xr = ∂2Hdq

∂φdqs ∂φ
dq
r

J2

(
∂2Hdq

∂φdqs ∂φ
dq
r

)−1

(4.18b)

which are not properly defined when there are no rotor windings. However when there
are no rotor windings, the energy and thus the measurements do not depend on δφdqr . We
can thus take them to be zero in this case. Using these notations we find

dδıdqs
dt
− ∂2Hdq

∂φdqs ∂φ
dq
r

(
Ωr −Rr

∂2Hdq

∂φdqr ∂φ
dq
s

)∂2Hdq

∂φdqs
2

−1

δıdqs +Xrωg,eδı
dq
s

= −M1δφ
dq
s − v2δη + v3δω + LC(δudqs , δıdqs ). (4.19)
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where the following matrices were used

M1 := ∂2Hdq

∂φdqs ∂φ
dq
r

Ωr + ∂2Hdq

∂φdqs
2 J2ωs,e −Xr

∂2Hdq

∂φdqs
2 ωg,e

v2 := ∂2Hdq

∂φdqs ∂φ
dq
r

(
Ωr −Rr

∂2Hdq

∂φdqr ∂φ
dq
s

)∂2Hdq

∂φdqs
2

−1

∆ıdqs −Xrωg,e∆ıdqs +Rr
∂2Hdq

∂φdqs ∂φ
dq
r

∆ıdqr

v3 := ∂2Hdq

∂φdqs ∂φ
dq
r

J2φ
dq
r,e −∆ıdqs .

Differentiating the previous expression with respect to time we find

d2δıdqs
dt2

− ∂2Hdq

∂φdqs ∂φ
dq
r

(
Ωr −Rr

∂2Hdq

∂φdqr ∂φ
dq
s

)∂2Hdq

∂φdqs
2

−1
dδıdqs
dt

+Xrωg,e
dδıdqs
dt

= M1J2ωs,eδφ
dq
s + v2δω + v3

dδω

dt
+ LC(δudqs , δıdqs , δudqs

˙
δudqs , δıdqs

˙
δıdqs ). (4.20)

d3δıdqs
dt3

− ∂2Hdq

∂φdqs ∂φ
dq
r

(
Ωr −Rr

∂2Hdq

∂φdqr ∂φ
dq
s

)∂2Hdq

∂φdqs
2

−1
d2δıdqs
dt2

+Xrωg,e
d2δıdqs
dt2

= M1(ωs,e)2δφdqs + v2
dδω

dt
+ v3

d2δω

dt2
+ LC(δudqs , δıdqs , δudqs

˙
δudqs , δıdqs

˙
δıdqs ). (4.21)

From eq. (4.10c) and eq. (4.11) we have

dδω

dt
= n2

JL
ıdqs,e

TJ2δφ
dq
s −

n

JL
δTL − LC(δıdqs ) (4.22)

and consequently ∀i ≥ 2

diδω

dti
= n2

JL
ωi−1
s,e ı

dq
s,e

TJ2
iδφdqs − LC(δudqs , δıdqs , . . . , δudqs

(i−2)
, δıdqs

(i−2)
, δıdqs

(i−1)) (4.23)

which is a linear combination of the inputs, the outputs and their derivatives when ωs,e =
0.

Before concluding we should discuss the invertibiliy of the matrix M1. When there
are no rotor windings, this is trivial as it boils down to the Hessian of the energy function
multiplied by J2. However when there are rotor windings, this is more complicated and
we must suppose that we are not far from the unsaturated case where this matrix has the
form aI2+bJ2 which is always invertible as a matrix of rotation. Thus M1 will be supposed
invertible as it is close to a rotation matrix. Moreover ∀x ∈ R2 det(M1J2M

−1
1 x, x) 6= 0

as M1J2M
−1
1 is close to the rotation of angle π

2 (J2).

Rotor windings and saliency When there are rotor windings and a saliency, the
state of the motor is of dimension 7. Yet when ωs,e = 0, it can be seen from eqs. (4.16)
and (4.19) to (4.23) that the observability matrix has the same rank as

∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 ∆ıdqs 02,1

−M1 02,2 v3 −v2 02,1
n2

JL
v3ı

dq
s,e
TJ2 02,2 v2 02,1 − n

JL
v3

n2

JL
v2ı

dq
s,e
TJ2 02,2 02,1 02,1 − n

JL
v2

 .
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The first four lines of this matrix are admittedly of rank 4 as ∂2Hdq
∂φdqs ∂φ

dq
r

and M1 are invertible,

but the last four lines have only 2 independent columns and thus is of rank 2. The total
rank of the observability matrix can thus not exceed 6. Moreover further derivations do
not give more information. Hence the state of the electric motor is not observable. We can

only recover dδω
dt

from d3δıdqs
dt3

. When ωs,e 6= 0, we can show from from eqs. (4.16) and (4.19)
to (4.23) that the observability matrix has the same rank as


∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 ∆ıdqs 02,1

−M1 02,2 v3 −v2 02,1
n2

JL
v3ı

dq
s,e
TJ2 02,2 v2 +M1J2M

−1
1 v3ωs,e −M1J2M

−1
1 v2ωs,e − n

JL
v3

n2

JL
v2ı

dq
s,e
TJ2 02,2 v3 −v2 − n

JL
v2


thus, if v2 and v3 are independent vectors, the system is observable as the observability
matrix is of rank 7.

Rotor windings without saliency When there is no rotor saliency the state of the
motor can be reduced to dimension 6 by removing η. However v2 is zero and it can be
seen from eqs. (4.16), (4.19), (4.20), (4.22) and (4.23) that the observability matrix has
the same rank as 

∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 02,1 02,1

−M1 02,2 v3 02,1 02,1
n2

JL
v3ı

dq
s,e
TJ2 02,2 02,1 02,1 − n

JL
v3

 .
whose last 2 lines are collinear. Further derivations do not give more information. The
rank of the observability matrix is thus bounded by 5. Hence the system is not observable.

Again we can only recover dδω
dt

from d2δıdqs
dt2

. When ωs,e 6= 0, the observability matrix has
the same rank as 

∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1 02,1

−M1 02,2 v3 02,1
n2

JL
v3ı

dq
s,e
TJ2 02,2 M1J2M

−1
1 v3ωs,e − n

JL
v3


where M1J2M

−1
1 v3 and v3 are independent. Thus the rank of the observability matrix is

6 and the system is observable.

Saliency without rotor windings When there are no rotor windings the state of the
motor can be reduced to dimension 5 by removing φdqr . However v2 is zero and we find
from eqs. (4.16), (4.19), (4.20) and (4.22) that the rank of the observability matrix is


∂2Hdq

∂φdqs
2 02,1 ∆ıdqs 02,1

02,2 v3 02,1 02,1
n2

JL
v3ı

dq
s,e
TJ2 02,1 02,1 − n

JL
v3


whose last four lines have only two independent columns. The total rank of this matrix
cannot exceed 4 and further derivations do not give more information. Hence the system

is not observable. We can only recover dδω
dt

from d2δıdqs
dt2

. When ωs,e 6= 0, the observability
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matrix has the same rank as
∂2Hdq

∂φdqs
2 02,1 ∆ıdqs 02,1

−∂2Hdq

∂φdqs
2 J2ωs,e −∆ıdqs 02,1 02,1

− n2

JL
∆ıdqs ıdqs,e

TJ2 −∂2Hdq

∂φdqs
2 J2ωs,e

(
∂2Hdq

∂φdqs
2

)−1
∆ıdqs 02,1

n
JL

∆ıdqs

 .

As the last two lines are independent with any other lines and as ∂2Hdq

∂φdqs
2 J2

(
∂2Hdq

∂φdqs
2

)−1
∆ıdqs

and ∆ıdqs are not collinear, this matrix is of rank 5. Hence the state of the system is
observable.

4.1.4.3 Conclusion on linear observability

With this generic approach we showed that

• All sinusoidal electric motors are unobservable on permanent trajectories where
ωs,e = 0. In all the cases, only the acceleration can be recovered from the measure-
ments;

• On permanent trajectories where ωs,e 6= 0, the electric motors are observable.

Furthermore, the position cannot be retrieved when the rotor is non-salient (IM), since it
can be decoupled from the state.

4.1.5 Nonlinear observability

In section 4.1.4 we showed that all electric motors are unobservable on permanent tra-
jectories where ωs,e = 0 which means that “sensorless” control of electric motors around
these trajectories is inherently difficult. Still we would like to design a“sensorless”observer
which works near such trajectories, because it is interesting from an industrial point of
view, as explained in section 1.2.5. We are thus going to consider trajectories which are
close to the permanent trajectory but on which the IM is observable thanks to the stator
currents measurement (see fig. 4.2 for an example of such a trajectory). To investigate the
observability of the electric motors, we must use nonlinear observability. This approach
was deployed for the saturated sinusoidal PMSM in Jebai [37] and we are going to apply
it here to the IM. The study will be done in the synchronous dq frame rotating at ωs,e.

As in the generic case of section 4.1.4 the state of the IM is X :=
(
φdqs

T
, φdqr

T
, ω, TL

)T
,

the input is U :=
(
udqs

T
, 01,2, TL, 0

)T
and the measurement Y := ıdqs . The system can be

written as

dX

dt
= A(X) + U (4.24a)

Y = C(X) (4.24b)

where the vector fields A and C are defined by

A : X ∈ R6 7→


−Rsı

dq
s (φdqs , φdqr )− J2ωs,eφ

dq
s

−Rrı
dq
r (φdqs , φdqr )− J2(ωs,e − ω)φdqr
n
JL

(
Te(φdqs , φdqr )− TL

)
0

 ∈ R6 (4.25a)

C : X ∈ R6 7→ ıdqs (φdqs , φdqr ) ∈ R2. (4.25b)
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∅ε

Figure 4.2 – The desired permanent trajectory where the IM is unobservable and an
example of a close trajectory on which the motor may be observable.

For nonlinear observability, there exists a criterion similar to Kalman criterion: The
matrix constituted by the 0th, 1st, . . . Lie derivatives of the measurement along the flow
of the system must be full rank. We now compute these Lie derivatives.

The zeroth Lie derivative of C along the flow of A is

L0
AC =

(
∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,2

)
. (4.26)

Then we have

dıdqs
dt

= ∂2Hdq

∂φdqs
2
dφdqs
dt

+ ∂2Hdq

∂φdqs ∂φ
dq
r

dφdqr
dt

= ∂2Hdq

∂φdqs
2 (udqs −Rsı

dq
s − J2ωs,eφ

dq
s ) + ∂2Hdq

∂φdqs ∂φ
dq
r

(−Rrır − J2(ωs,e − ω)φdqr )

and the first Lie derivative of C along the flow of A is

L1
AC =

(
∂

∂φdqs

dıdqs
dt

∂

∂φdqr

dıdqs
dt

∂
∂ω

dıdqs
dt

02,1

)
(4.27)

with

∂

∂φdqs

dıdqs
dt
∼ −∂

2Hdq

∂φdqs
2 J2ωs,e −Rr

∂2Hdq

∂φdqs ∂φ
dq
r

∂2Hdq

∂φdqr ∂φ
dq
s

+ ∂

∂φdqs

∂2Hdq

∂φdqs
2
dφdqs
dt

+ ∂2Hdq

∂φdqs ∂φ
dq
r

dφdqr
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where ∼ means equality up to a matrix combination of the previous lines of the Lie
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∂

∂TL

d2ıdqs
dt2

= − n

JL

∂2Hdq

∂φdqs ∂φ
dq
r

J2φ
dq
r

Subtracting ∂2Hdq
∂φdqs ∂φ

dq
r

(
−Rr

∂2Hdq

∂φdqr
2 − J2(ωs,e − ω)

)(
∂2Hdq

∂φdqs ∂φ
dq
r

)−1
multiplied by the third and

fourth lines from the last two lines we show

∂

∂φdqs

d2ıdqs
dt2
∼ −∂

2Hdq

∂φdqs
2 ω

2
s,e + ∂2Hdq

∂φdqs ∂φ
dq
r

ΩrJ2ωs,e −Xr
∂2Hdq

∂φdqs
2 J2ωs,e

+n2

JL

∂2Hdq

∂φdqs ∂φ
dq
r

J2φ
dq
r ı

dq
s

TJ2

+Terms in dφdqs
dt

and dφdqs
dt

we do not need to compute

∂

∂φdqr

d2ıdqs
dt2
∼ ∂2Hdq

∂φdqs ∂φ
dq
r

J2
dω

dt

+Terms in dφdqs
dt

and dφdqs
dt

we do not need to compute

∂

∂ω

d2ıdqs
dt2
∼ ∂2Hdq

∂φdqs ∂φ
dq
r

J2
dφdqr
dt

+ ∂

∂φdqr

∂2Hdq

∂φdqs
2
dφdqs
dt

+ ∂2Hdq

∂φdqs ∂φ
dq
r

dφdqr
dt

J2φ
dq
r

∂

∂TL

d2ıdqs
dt2

= − n

JL

∂2Hdq

∂φdqs ∂φ
dq
r

J2φ
dq
r

When ωs,e 6= 0 On the permanent trajectory introduced in section 4.1.2 when ωs,e 6= 0
we recover of course the results obtained for linear observability in section 4.1.4, as nonlin-
ear observability on a permanent trajectory is equivalent to linear observability. Namely,
the IM is observable on permanent trajectories where ωs,e 6= 0, as the Lie derivatives
matrix has the same rank as
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trix is of rank 6 and the IM is observable on permanent trajectories where ωs,e 6= 0.

When ωs,e = 0 On the permanent trajectory we retrieve of course the results we got in
section 4.1.4: The IM is unobservable on permanent trajectories when ωs,e = 0. This can
be seen as
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up to a matrix linear combination of the first four lines of the Lie derivative matrix. The
0th, 1st and 2nd Lie derivative matrix is thus not full rank.
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Moreover, removing the terms in udqs , ıdqs and their derivatives and using ωs,e = 0 we
obtain for n ≥ 2
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whose first term can be canceled by adding a (matrix) linear combination of dıdqs
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. Thus
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which which is collinear to L2

AC. The Lie derivative matrix is thus of rank 5.

Around a permanent trajectory at ωs,e = 0 As was said at the beginning of the
section we are now considering a trajectory which is close to the target permanent trajec-
tory. This means that the time derivatives of the fluxes and the speed are not zero any
more. The Lie derivative matrix thus has the same rank as
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modified by the addition of the time derivatives, the observability is recovered as soon as
any of
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is large enough. To satisfy eq. (4.29a) we must have a large dw
dt

, which is not desirable,
as we want to control ω close to its constant reference. But eq. (4.29b) can be satisfied
without perturbing much the behavior of the electric motor: In section 4.2 it will be shown

that we can ensure dφdqs
dt

large enough while keeping the other state variables close to the
permanent trajectory.

4.2 High frequency injection effects

In section 4.1 we showed that observability can be recovered near permanent trajectories

where ωs,e = 0, under the condition that dφdqs
dt
6= 0. We present in section 4.2.1 methods

to ensure this condition is verified.



94 Chapter 4. Low-speed observability issues

We focus on high frequency signal injection (HF injection) which was introduced by
Jansen and Lorenz [78], Corley and Lorenz [85]. We prove in section 4.2.3 that the

condition dφdqs
dt
6= 0 can be ensured without disturbing too much the other state variables.

In particular we will see that the speed of the motor is very close to the target speed.

4.2.1 Bibliography on signal injection

Multiple techniques are proposed in the literature to enforce one of the conditions
eqs. (4.29a) and (4.29b). The most interesting are those based on signal injection, other-
wise the effects are to small to be measurable on a real implementation.

The preferred type of signal injection uses the motor response to a high-frequency
signal as proposed by Jansen and Lorenz [78] for IMs and Corley and Lorenz [85] for
PMSMs. This technique was generalized to SynRMs, in Capecchi, Guglielmi, et al. [49]
for instance. It is generally explained on the equivalent magnetic circuit of the motor.
Indeed, it can be shown that the signal injection propagates in the leakage flux paths
which are saturated by the magnetic flux (see [2, 28, 50–52]). The stator current response
of the motor to signal injection thus depends on the orientation of the magnetic flux.
The other state variables of the motor are mostly unaffected by the injection. Extensive
reviews of HF signal injection techniques are given in Holtz [53] and Sul [23, sec. 6.4].

An alternative technique for signal injection is proposed in Hinkkanen, Leppänen, et
al. [54], Li and Wu [55], where a low-frequency signal is used. It is superimposed on the
control signals as well. Thanks to its effects on the currents, the speed of the motor can
again be obtained. However, the motor is much more disturbed by low-frequency than by
high-frequency signal injection. That is why this technique is less employed.

4.2.2 High-frequency injection

First of all, in the case of signal injection, a HF signal is a signal whose frequency is higher
than the natural frequencies of the electric motor. Hereafter is a small review of existing
types of HF injection (see Holtz [53] for more details).

In the literature two methods are proposed to inject HF signals

HF voltage signal injection A HF voltage signal is superimposed to the output of the
controller and its effect on stator currents is extracted from the measurements. This
method is the most widely used (see for instance [2, 4, 50, 52]) because it is the most
simple to implement.

HF current signal injection A HF current signal is superimposed to the input of a
broad bandwidth current controller. It results in the control voltage having HF
harmonics which are extracted. This method is far less used because it its more
difficult to implement. Indeed we must have a current controller which does not
filter out the injected signal. This type of injection is discussed in Ha and Sul [57]
and used in Rudolph, Laczynski, et al. [52].

In the literature we find also different polarizations for the injected signal

Axial polarization The injected signal oscillates along an axis slowly, with respect to
the high frequency, moving in the αβ frame where it can be written using complex
variables

ũαβs (t) = ũeθi(t)f(Ωt). (4.30)
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This kind of signal is used by Yoon and Sul [4], Jebai [37].

Circular polarization The injected signal is a constant amplitude space vector rotating
at high frequency with respect to the αβ frame where it can be written using complex
variables

ũαβs (t) = ũeΩt. (4.31)

This kind of signal is used by Jansen and Lorenz [78].

Elliptical polarization Similarly to circular polarization, the injected signal rotates at
high frequency with respect to the αβ frame, but now its amplitude varies period-
ically at the same frequency. In the αβ frame this can be written using complex
variables

ũαβs (t) = ũeΩtf(Ωt). (4.32)

This kind of injection is used in Bottiglieri, Consoli, et al. [58].

It should be noted that, due to the usage of sine and cosine, circular and elliptical po-
larizations are difficult to implement as the high frequency may be close to the PWM
frequency.

Finally we should decide on the shape of the signal injected. Using a sinusoidal in-
jection has the same drawbacks as circular polarization. Yoon and Sul [4], Jebai [37]
proposed a square wave signal which is much simpler to implement, when injection and
PWM frequencies are close to each other.

We chose to use HF voltage injection, thus avoiding to take the current controller into
account to predict the effects of HF injection. For the frequency of the injected signal to
be high enough with respect to the electrical time constants of the motors (see section 2.1),
we selected it to be 500Hz, which is five times the bandwidth of the current controller we
use. The chosen sampling and PWM frequency being 4kHz, we cannot generate proper
sinusoids as we have only eight points per HF period. We thus used experimentally a
square-wave signal polarized along an axis.

4.2.3 Second order averaging

We are now considering the case of HF voltage signal injection, which was elected as
it is much simpler to implement. The input voltages are uαβs (t) = uαβs (t) + ũαβs (t,Ωt)
where ũαβs , the injected HF signal, is periodic with respect to its second variable. Using
second-order averaging (see [47, sec. 2.9]), we will show that the effects of HF voltage
signal injection are of order 1 in 1

Ω on the stator flux and of order 2 in 1
Ω on the other

state variables, which includes the speed. At first order, the behavior of electric motor is

not modified by signal injection, except for dφαβs
dt

which is of order 1 similarly to ũαβs .
The equations of an electric motor eq. (3.20) in the αβ frame can be rewritten

dX

dt
= A(X) + U (t) + Ũ (t,Ωt) (4.33)

with

X =
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U (t) =
(
uαβs (t)T 0 TL(t) 0

)T
Ũ (t,Ωt) =

(
ũαβs (t,Ωt)T 0 0 0

)T
.

Following Sanders, Verhulst, et al. [47, sec. 3.3], to obtain the standard form of averaging,
we change the time-scale of eq. (4.33) by defining the “fast time” σ = Ωt and include the
“slow” time t in the state

dX

dσ
= ε

(
A(X) + U (t) + Ũ (t, σ)

)
(4.34a)

dt

dσ
= ε. (4.34b)

where ε = 1
Ω . The corresponding averaged system is

dX

dσ
= ε

(
A(X ) + U (t)

)
(4.35a)

dt

dσ
= ε (4.35b)

which describes the behavior of an electric motor in the absence of HF signal injection.
Under the assumptions that A is Lipschitz and that the system eq. (4.35a) is asymp-

totically stable, the theorem of averaging [47, Th. 5.5.1] states that the difference between
X, solution of eq. (4.34), and X , solution of eq. (4.35) with the same initial condition, is
dominated by ε for all t ≥ 0. As eq. (4.35) are the dynamical equations of the electric
motor without signal injection, this means that the HF injection does not disturb the
electric motor at first order. This is an essential feature of HF injection which otherwise
could not be used, as altering the behavior of the electric motor is not desirable.

To explain the response of electric motors to signal injection, we thus need to solve
eq. (4.34) at a higher order in ε = 1

Ω . We introduce the concept of pseudo-identity
transformation (see [47, sec. 2.9])

X = Υ(X̆ , σ, ε) = X̆ +
∞∑
k=1

εkΥk(X̆ , t, σ). (4.36)

Substituting eq. (4.36), truncated at order 1 in ε, into eq. (4.34), we find

dX̆

dσ
+ ε

∂Υ1

∂X̆

dX̆

dσ
+ ε2∂Υ1

∂t
+ ε

∂Υ1
∂σ

= ε

(
A(X̆ ) + U (t) + ε

∂A

∂X
Υ1 + Ũ (t, σ)

)
.

By truncating this expression at order 2 in ε and grouping the terms by order in ε, we
obtain

dX

dσ
= ε

(
A(X ) + U (t) + Ũ (t, σ)− ∂Υ1

∂σ

)
︸ ︷︷ ︸

A1(X,t)

+ε2
(
∂A

∂X
Υ1 −

∂Υ1

∂X̆
A1 −

∂Υ1
∂t

)

where we find the first homological equation

∂Υ1
∂σ

= A(X ) + U (t) + Ũ (t, σ)− A1(X, t). (4.37)

As we want to ensure A1 does not depend on σ, we choose Υ1(X̆ , t, σ) to be the anti-

derivative of Ũ (t, σ) with zero mean in σ and A1(X, t) = A(X ) + U (t). As
∂Υ1
∂t

also has
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zero mean when averaged with respect to σ, the averaging of the term of order 2 in ε
gives 0. Thus X is again the solution of eq. (4.35), but the improved estimate of X reads
X + εΥ1(t, σ) + O(ε2) shows the effect of HF injection on the response of the electric
machine.

Particularizing this result with the form of Ũ , we find that the only state variable
affected by HF voltage injection at order 1 in ε is the stator flux. All other state variables
are affected only at order 2 or more in ε. The behavior of electric motors is thus not
modified much by signal injection, which is an essential feature of HF injection.

Axial polarization Using complex variables, form eq. (4.30), we obtain φαβ
s

= φ
αβ

s
+

ũ
Ωe

θi(t)F (Ωt) where F is the anti-derivative of f with zero mean. Thus

ıαβs = ∂Hαβ

∂φαβ
s

∗

(
θ, ρ, φ

αβ

s
+ ũ

Ωe
θi(t)F (Ωt), φαβ

s

∗
+ ũ

Ωe
−θi(t)F (Ωt), φαβ

r
, φ

αβ

r

∗)

= ıαβs + ∂2Hαβ

∂φαβ
s

∗
∂φαβ

s

ũ

Ωe
θi(t)F (Ωt) + ∂2Hαβ

∂φαβ
s

∗2
ũ

Ωe
−θi(t)F (Ωt) (4.38)

Circular polarization Using complex variables, form eq. (4.31), we obtain φαβ
s

= φ
αβ

s
−

 ũΩe
Ωt and thus

ıαβs = ∂Hαβ

∂φαβ
s

∗

(
θ, ρ, φ

αβ

s
−  ũΩe

Ωt, φ
αβ

s

∗
+ 

ũ

Ωe
−Ωt, φ

αβ

r
, φ

αβ

r

∗)

= ıαβs −
∂2Hαβ

∂φαβ
s

∗
∂φαβ

s


ũ

Ωe
Ωt + ∂2Hαβ

∂φαβ
s

∗2 
ũ

Ωe
−Ωt (4.39)

The slowly varying current, ıαβs , and the HF current ripple can be separately extracted
from the current measurement by techniques presented in section 7.1.3.

It can be checked that the obtained current ripple in experiments or simulation is
close to the prediction of theory on an unsaturated IM (see fig. 4.3).The slight difference
between experimental data and simulation or theory comes from the voltage drops on the
test bench (see section 2.3.1). Moreover, we verified experimentally that the effect of HF
injection on the speed is negligible and in simulation we also confirmed that the effect of
HF injection is negligible on the rotor flux φαβr as predicted by the theory.

4.2.4 Using lower frequencies

For some industrial applications the frequency Ω must be limited to lower frequencies,
closer to the natural frequencies. In this case, the triangle wave is altered as can be seen
in fig. 4.4. As the high frequency Ω is reduced, 1

Ω cannot be considered small enough any
more.

We go one order further in the averaging process to get an error in O
(

1
Ω3

)
. We

substitute eq. (4.36), truncated at order 2 in ε, into eq. (4.34), find

dX̆

dσ
+ ε

∂Υ1

∂X̆

dX̆

dσ
+ ε2∂Υ1

∂t
+ ε

∂Υ1
∂σ

+ ε2∂Υ2

∂X̆

dX̆

dσ
+ ε3∂Υ2

∂t
+ ε2∂Υ2

∂σ

= ε

(
A(X̆ ) + U (t) + ε

∂A

∂X
Υ1 + ε2 ∂A

∂X
Υ2 + Ũ (t, σ)

)
.
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Figure 4.3 – Stator voltage with injected HF signal with the corresponding current re-
sponses traced from theory (solid lines), obtained by simulation (dotted lines) and ex-
perimentally measured on the IM described by table 2.2. To be in the range where the
current-flux relations are unsaturated, there is no fundamental voltages and currents.

and, after grouping the terms of the same order in ε and truncating at order 3, we obtain

dX

dσ
= ε

(
A(X ) + U (t) + Ũ (t, σ)− ∂Υ1

∂σ

)
︸ ︷︷ ︸

A1(X,t)

+ ε2
(
∂A

∂X
Υ1 −

∂Υ1

∂X̆
A1 −

∂Υ1
∂t
− ∂Υ2

∂σ

)
︸ ︷︷ ︸

A2(X,t)

+ ε3
(
∂A

∂X
Υ2 −

∂Υ1

∂X̆
A2 −

∂Υ2

∂X̆
A1 −

∂Υ2
∂t

)
.

The first line of the above equation leads to the same first homological equation as in
second order averaging (eq. (4.37)). It is solved similarly to obtain A1(X, t) = A(X )+U (t)
and Υ1(X̆ , t, σ) is again the anti-derivative of Ũ (t, σ) with respect to σ with zero mean.
The second line gives the second homological equation

∂Υ2
∂σ

= ∂A

∂X
Υ1 −

∂Υ1
∂t
− A2(X, t). (4.40)

where we used
∂Υ1
∂X̆
≡ 0. To solve it we choose Υ2(X̆ , t, σ) as the anti-derivative of

∂A
∂X

Υ1−
∂Υ1
∂t

with respect to σ with zero mean and obtain A2(X, t) = 0. Assuming partial
derivatives of Υ1 and Υ2 also have zero mean, we find that X is the solution of eq. (4.34).
The improved estimate of X now reads X +εΥ1(t, σ)+ε2Υ2(X, t, σ)+O(ε3). Third order
averaging shows that all state variables are affected by HF injection at order 2 in 1

Ω .

As can be seen in fig. 4.4, using averaging at order 3 indeed improves the approximation
of the current ripple. Continuing further would improve the results even more, but the
calculations become really hard.
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Figure 4.4 – Reconstruction of HF ripples using averaging (1st order dashed, 2nd order
dotted, 3rd order dash-dotted) compared to the real HF ripples obtained in simulation
(solid line) on an unsaturated IM at Ω = 100Hz.
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4.3 Obtaining virtual measurements by HF injection

In this section HF injection is considered in the more general context of nonlinear systems,
as proposed in Combes, Jebai, et al. [12]. Because electric motors are Multiple-Input
Multiple-Output systems, we will generalize this study. More precisely, the model of the
system we want to control can be written under state form as

dx

dt
= f(x) + g(x)u (4.41a)

y = h(x) (4.41b)

where x ∈ Rn, u ∈ Rm and y ∈ Rl; f, g and h are smooth enough maps.
As shown in section 4.3.2, in the general case the supplementary information obtained

by HF signal injection reads

yv := Lgh(x) = ∂h
∂g (x)g(x). (4.42)

As explained in section 4.3.3, these l = dim(y) additional “virtual” measurements can be
retrieved from the l = dim(y) measurements y in the time-scale of the injection, when
the system is excited by HF signal injection. We can thus assume we have them when
designing the controller. However, to satisfactorily prove the main result in section 4.3.2,
we need a technical lemma on second-order averaging for exponentially stable systems.

4.3.1 Second-order averaging for exponentially stable systems

The approximations given by first- and second-order averaging are a priori valid only on
the timescale 1

ε
, as stated by Sanders, Verhulst, et al. [47, theorems 2.8.1; 2.9.2]. However,

with the additional assumption of exponential stability of the averaged system, they can
be continued to infinity. This is a well-known result for first-order averaging, see e.g. [47,
Theorem 5.5.1], recalled below.

Lemma 1. Consider the two systems

dx

dt
= εF1(x, t) (4.43a)

dz

dt
= εG1(z), (4.43b)

where F1 is periodic with respect to t and G1 is its average on one period. We suppose
that the origin is an exponentially stable equilibrium for eq. (4.43b). Then, there exist a
compact neighborhood V of the origin, such that ∀z0 ∈ V the solution z(t) of eq. (4.43b)
with initial condition z0 at t0 is valid on [t0,+∞[. Besides, there exists ε0 > 0 such that
∀ε ∈ [0, ε0[, the solution x(t) of eq. (4.43a) with initial condition x0 = z0 at t0 is valid on
[t0,+∞[ and ∃C ∈ R+ such that

sup
t∈[t0,+∞[

‖x(t)− z(t)‖ < Cε. (4.44)

The following lemma, which does not seem to exist in the literature, extends this result
to the case of second-order averaging.
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Lemma 2. Consider the two systems

dx

dt
= εF1(x, t) + ε2F2(x, t) (4.45a)

dz

dt
= εG1(z) + ε2G2(z) (4.45b)

where F1 and F2 are periodic with respect to t and G1 and G2 are obtained as in sec-
tion section 4.3.2. We suppose that the origin is an exponentially stable equilibrium for
eq. (4.43b). Then, there exists a compact neighborhood V of the origin and ε0 > 0 such
that ∀ε ∈ [0, ε0[ and ∀z0 ∈ V, the solution z(t) of eq. (4.45b) with initial condition z0 at
t0 and the solution x(t) of eq. (4.45a) with initial condition x0 = z0 + εΥ1(z0, 0) at t0 are
valid on [t0,+∞[ and ∃C ∈ R+ such that

sup
t∈[t0,+∞[

‖x(t)− z(t)− εΥ1(z, t)‖ < Cε2,

where Υ1 is defined as in section 4.3.2.

Proof. V is chosen as a compact included in the domain of attraction of the origin and
z0 ∈ V . Then by a perturbation theorem (e.g. Khalil [59, Theorem 8.1]), ∃ε1 > 0 such
that ∀ε ∈ [0, ε1[ eq. (4.45b) admits a solution starting at z0 on [t0,+∞[. Besides, we know
from [47, Lemma 2.9.1] that eq. (4.45a) can be transformed into

dy

dt
= εG1(y) + ε2G̃G2(y, t)

by the change of variables x = y + εΥ1(y, t). By a perturbation theorem (e.g. Khalil [59,
Th. 8.1]), ∃ε2 > 0 such that ∀ε ∈ [0, ε2[ eq. (4.45a) admits a solution on [t0,+∞[ starting
at x0 = z0 + εΥ1(z0, 0).

We call ξ(t) = z(t) + εΥ1(z, t). We know from [47, Lemma 2.9.2] that

∃L ∈ R+ ∀t ∈
[
t0, t0 + L

ε

[
‖x(t)− ξ(t)‖ < Cε2.

We partition the time into segments of length L
ε⋃

m∈N
Im =

⋃
m∈N

[
t0 +m

L

ε
, t0 + (m+ 1)L

ε

]
.

On each segment Im we define zm as the solution of the truncated averaged equation

eq. (4.45b) with a initial condition verifying xm
(
t0 +mL

ε

)
= zm

(
t0 +mL

ε

)
+ εΥ1

(
zm
(
t0 +

mL
ε

)
, t0

)
and also ξm := zm + εΥ1(zm, t). We note ‖·‖Im := sup

t∈Im
‖·‖.

m ∈ N is now fixed. From the theorem of second-order averaging [47, Theorem 2.9.2]
∃k such that

‖ξm − x‖Im ≤ kε2

and form the definition of the truncated pseudo-identity transformation Υ(z, t) = z +
εΥ1(z, t), ∃λ such that

‖ξ − ξm‖Im = ‖Υ(z, t)−Υ(zm, t)‖Im ≤ (1 + ελ)‖z − zm‖Im
‖z − zm‖Im = ‖Υ−1(ξ, t)−Υ−1(ξm, t)‖Im ≤ (1 + ελ)‖ξ − ξm‖Im .
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Besides from (see [47, Lemma 5.2.7])

‖z − zm‖Im ≤ κ

∥∥∥∥z (t0 +m
L

ε

)
− zm

(
t0 +m

L

ε

)∥∥∥∥
which can be rewritten by prolonging zm on Im−1

‖z − zm‖Im ≤ κ‖z − zm‖Im−1 ,

where κ can be made as small as desired by taking ε small enough. By applying the
triangle inequality, we find

‖ξ − x‖Im ≤ ‖ξ − ξm‖Im + ‖ξm − x‖Im
≤ (1 + ελ)‖z − zm‖Im + kε2

≤ (1 + ελ)κ‖z − zm‖Im−1 + kε2

≤ (1 + ελ)κ(1 + ελ)‖ξ − ξm‖Im−1 + kε2

≤ κ′‖ξ − x‖Im−1 + k(1 + κ′)ε2

where κ′ = (1 + ελ)κ(1 + ελ) < 1 is smaller than 1 for 0 ≤ ε < ε3.
Then with a simple recursion we obtain

‖ξ − x‖Im ≤ κ′
m‖ξ − x‖I0 +

(
m−1∑
n=0

κ′
n

)
(1 + κ′)kε2

‖ξ − x‖Im ≤ κ′
m+1‖ξ(t0)− x(t0)‖+

(
m∑
n=0

κ′
n

)
(1 + κ′)kε2.

Using the fact that ξ(t0) = x(t0) and that the sum is monotonically increasing, we obtain
that

‖ξ − x‖Im ≤
1 + κ′

1− κ′kε
2.

Finally, as the previous equation is valid for all m ∈ N, we find that

sup
t∈[t0,∞[

‖ξ − x‖ = sup
m∈N
‖ξ − x‖Im ≤

1 + κ′

1− κ′kε
2 =: Cε2.

Taking ε0 := min({ε1, ε2, ε3}), completes the proof.

Even though we do not prove it here, we suppose that this result is still valid for
higher-order averaging approximations.

4.3.2 Signal injection for nonlinear systems

Consider the system eq. (4.41a) with the two outputs eqs. (4.41b) and (4.42). Assume we
have designed a suitable control law

u = α(η, y, yv, t) (4.46a)
dη

dt
= a(η, y, yv, t), (4.46b)

with η ∈ Rp. By “suitable”, we mean the closed-loop system

dx

dt
= f(x) + g(x)α(η, h(x),Lgh(x), t) (4.47a)

dη

dt
= a(η, h(x),Lgh(x), t) (4.47b)
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has the desired exponentially stable equilibrium point (or family of equilibrium points);
we have changed the notation of the state to (x, η), so as to distinguish between the
solutions of eqs. (4.47) and (4.49).

A control law using HF signal injection can be written

u = α(η, y, yv, t) + f(Ωt) (4.48a)
dη

dt
= a(η, y, yv, t) (4.48b)

y = h(x) + εκ(x,Ωt) +O
(
ε2
)

(4.48c)

yv = Lgh(x) + εκv(x,Ωt) +O
(
ε2
)

(4.48d)

where f is a periodic function with period 1 and zero mean, i.e.
∫ 1

0 f(σ)dσ = 0; κ and
κv are correction functions which are 1-periodic and have zero mean with respect to their
second argument; Ω := 1

ε
is a “large” parameter, so that the signal superimposed to the

base control law is fast-varying. Corollary 1 explains how κ and κv are chosen so that y
and yv corresponds to actually available signals. The closed-loop system then reads

dx

dt
= f(x) + g(x)α(η, y, yv, t) + g(x)f(Ωt) (4.49a)

dη

dt
= a(η, y, yv, t) (4.49b)

y = h(x) + εκ(x,Ωt) +O
(
ε2
)

(4.49c)

yv = Lgh(x) + εκv(x,Ωt) +O
(
ε2
)

(4.49d)

The goal of injecting a fast-varying oscillation is to “create” the virtual output yv, while
not disturbing too much the system.

The following theorem characterizes the effect of signal injection by comparing the
solutions of eqs. (4.47) and (4.49).

Theorem 1. Let
(
x(t), η(t)

)
and

(
x(t), η(t)

)
be the solution of the closed-loop systems

eqs. (4.47) and (4.49) respectively, starting from the same initial condition. Then for all
t ≥ 0,

x(t) = x(t) + εg(x(t))F (Ωt) +O
(
ε2
)

(4.50a)

η(t) = η(t) +O
(
ε2
)

(4.50b)

y(t) = h
(
x(t)

)
+ εLgh(x(t))F (Ωt) +O

(
ε2
)
, (4.50c)

where F is the (of course also 1-periodic) anti-derivative of f with zero mean, i.e.

F (σ) :=
∫ σ

0
f(τ)dτ −

∫ 1

0

∫ s

0
f(τ)dτds.

In other words, signal injection

• has a small effect (of order ε) on the state variables directly affected by the input;

• has a very small effect (of order ε2) on the state variables not directly affected by the
input. In many systems of interest, and in particular in electric motors where only
the fluxes and the currents are directly affected and we want to control the speed
(or the position) of the rotor, the input affects directly only some state variables
whereas the control objective is a combination of other stable variables; the control
objective is thus hardly affected by the high-frequency excitation;
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• creates a small ripple (of order ε) in the measured output. The amplitude of this
ripple is precisely the virtual output. A procedure to extract h(x(t)) and Lgh(x(t))
from y(t) is presented in section 4.3.3; using these signals in the control law of
eq. (4.48) amounts to a particular choice of κ and κv, see corollary 1.

Proof. The proof is a direct application of second-order averaging for differential equa-
tions [47, section 2.9], with slow time dependence [47, section 3.3]. We first recall the
main result of this theory, and then apply it to our case.

Consider the perturbed system

dX

dσ
= εF1(X, σ) + ε2F2(X, σ)

with initial condition X(0) := X0 + εΥ1(X0, 0), where F1 is T -periodic with respect to
their third arguments, and the averaged system

dX

dσ
= εG1(X ) + ε2G2(X ) (4.51)

with initial condition X (0) := X0; finally, G1, Υ1 and G2 are defined by

G1(X ) := 1
T

∫ T

0
F1(X, s)ds

γ1(X, σ) :=
∫ σ

0

[
F1(X, s)−G1(X )

]
ds

Υ1(X, σ) := ζ1(X, σ)− 1
T

∫ T

0
γ1(X, s)ds

K2(X, σ) := F2(X, σ) + ∂F1
∂X

(X, σ)Υ1(X, σ)− ∂Υ1
∂X

(X, σ)G1(X, σ)

G2(X ) := 1
T

∫ T

0
K2(X, s)ds.

The theory of second-order averaging then asserts that the solution X(σ) of the perturbed
system and the solution X (σ) of the perturbed system are related by

X(σ) = X (σ) + εΥ1(X, σ) +O
(
ε2
)

on the timescale 1
ε
. If moreover the averaged system has an exponentially stable equi-

librium point with region of attraction D, and if the initial condition X0 belongs to a
compact subset of D, then this approximation can be continued to infinity by lemma 1.

To apply this result to our case, we define X := (x, η, t) and ε := 1
Ω . Then we rewrite

eq. (4.49) in the fast time σ := Ωt = t
ε
. This yields

dX

dσ
= ε

(
FF1(X) + F̃F1(X)f(σ)

)
+ ε2F2(X, σ) +O

(
ε3
)
,

where

FF1(X, σ) :=

f(x) + g(x)α(η, h(x),Lgh(x), t)
a(η, h(x),Lgh(x), t)

1


F̃F1(X) :=

g(x)
0p,1
0


F2(X, σ) :=

g(x) (∂2α(η, h(x),Lgh(x), t)κ(x, σ) + ∂3α(η, h(x),Lgh(x), t)κv(x, σ))
∂2a(η, h(x),Lgh(x), t)κ(x, σ) + ∂3a(η, h(x),Lgh(x), t)κv(x, σ)

0

 .
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We then find

G1(X ) = FF1(X )
γ1(X, σ) = F̃F1(X )

∫ σ

0
f(s)ds

Υ1(X, σ) = F̃F1(X )F (σ)
K2(X, σ) = F2(X, σ)− F̃F′1(X )FF1(X )F (σ)

+FF′1(X )F̃F1(X )F (σ) + F̃F′1(X )F̃F1(X )F (σ)f(σ)
G2(X ) = 0,

remembering that κ, κv, f , F and thus Ff have zero mean. We then rewrite the averaged
system eq. (4.51) in the slow time t to find exactly the closed-loop system eq. (4.47).
Moreover, X and X are related by

X(t) = X (t) + εF̃F1(X (t))F (Ωt) +O
(
ε2
)
,

which is eqs. (4.50a) and (4.50b). Finally, we get eq. (4.50c) by injecting eq. (4.50a) in
the expression of the output,

y(t) = h(x(t))
= h

(
x(t) + εg(x(t))F (Ωt) +O

(
ε2
))

= h(x(t)) + εLgh(x(t))F (Ωt) +O
(
ε2
)
.

We have assumed without loss of generality that F (0) = 0, which implies X(0) = X (0),
as this is always possible by suitably shifting in time the signal f .

Corollary 1. Assume the signals h(x(t)) and Lgh(x(t)) in eq. (4.50c) are available. Then
the control law eq. (4.48) is actually implementable by choosing

κ(x,Ωt) := −εLgh(x)F (Ωt)
κv(x,Ωt) := −εL2

gh(x)F (Ωt).

Proof. Using eq. (4.50a) we obviously have

h(x)− εLgh(x)F (Ωt) = h
(
x + εg(x)F (Ωt) +O

(
ε2
))

−εLgh
(
x + εg(x)F (Ωt) +O

(
ε2
))
F (Ωt)

= h(x) +O
(
ε2
)

Lgh(x)− εL2
gh(x)F (Ωt) = Lgh(x) +O

(
ε2
)
,

i.e. y = h(x) in eq. (4.48c) and yv = Lgh(x) in eq. (4.48d).

4.3.3 Extracting the measurements

We now turn to extracting the information contained in eq. (4.50c), so that the h(x(t))
and Lgh(x(t)) are available as proposed in corollary 1 and the control law proposed in
eq. (4.46) can be implemented. In other words, given a signal of the form

y(t) = y(t) + εỹ(t)F (Ωt) + ν(t), (4.52)
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corrupted by the measurement noise ν, we would like to recover its components y(t) and
ỹ(t). We will show this can be achieved by the estimators

ŷ(t) := 1
T

∫ t

t−T
y(τ)dτ (4.53a)

̂̃y(t) := 1
ε

1
T

∫ t
t−T

(
y
(
τ − T

2

)
− ŷ(τ)

)
F
(
Ω
(
τ − T

2

))
dτ

1
T

∫ t
t−T F

2(Ωτ)dτ
, (4.53b)

where T := nε = n
Ω is a multiple of the HF signal period. We study the accuracy of these

estimators without noise in section 4.3.3.1, and their sensitivity to noise in section 4.3.3.2.
Indeed, since the noise is additive and enters the estimators linearly, the two issues can
be studied independently.

4.3.3.1 Accuracy of the estimators

Proposition 1. The accuracy of the estimators eq. (4.53a) and eq. (4.53b) is as follows

ŷ(t) = y
(
t− T

2

)
+O

(
T 2
)

= y(t) +O(T ) (4.54a)

̂̃y(t) = ỹ(t) +O

(
T 2

ε

)
(4.54b)

Proof. The signals y and ỹ are considered to be continuously derivable. Such signals can
be written as Taylor series with integral remainder

y(t− δt) = y(t)− δtẏ(t) + δt2R(t, δt)
ỹ(t− δt) = ỹ(t)− δt ˙̃y(t) + δt2R̃(t, δt),

with for all t ∈ R, R(t, δt) and R̃(t, δt) bounded for δt ∈ [0, T ]. Using these expressions,
we find

ŷ(t) = 1
T

∫ t

t−T
y(τ)dτ + ε

1
T

∫ t

t−T
ỹ(τ)F (Ωτ)dτ

= 1
T

∫ T

0
y(t− δt)dδt+ ε

1
T

∫ T

0
ỹ(t− δt)F (Ω(t− δt)) dδt

= y(t) 1
T

∫ T

0
dδt− ẏ(t) 1

T

∫ T

0
δt dδt+ 1

T

∫ T

0
δt2R(t, δt)dδt

+εỹ(t) 1
T

∫ T

0
F (Ω(t− σ)) dδt− ε ˙̃y(t) 1

T

∫ T

0
δtF (Ω(t− σ)) dδt

+ε 1
T

∫ T

0
δt2R̃(t, δt)F (Ω(t− σ)) dδt

= y(t)− T

2 ẏ(t) + T 2

3 O(1)

+ε2F(Ωt)− εT 2

3 sup
δt∈[0,T ]

(|F (Ω(t− δt))|)O(1)

= y
(
t− T

2

)
+O

(
T 2
)

where F is the anti-derivative of F with zero mean. Consequently, we have

y
(
t− T

2

)
− ŷ(t)

ε
= ỹ

(
t− T

2

)
F
(

Ω
(
t− T

2

))
+O

(
T 2

ε

)
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which leads to

F ̂̃y(t) = 1
T

∫ t

t−T
ỹ
(
τ − T

2

)
F
(

Ω
(
τ − T

2

))2
+O

(
T 2

ε

)

= 1
T

∫ T

0
ỹ
(
t− δt− T

2

)
F
(

Ω
(
t− δt− T

2

))2
dδt+O

(
T 2

ε

)

= ỹ
(
t− T

2

) 1
T

∫ T

0
F
(

Ω
(
t− δt− T

2

))2
dδt

− ˙̃y
(
t− T

2

) 1
T

∫ T

0
δtF

(
Ω
(
t− δt− T

2

))2
dδt

+ 1
T

T∫
0

δt2R̃
(
t− T

2 , δt
)
F
(

Ω
(
t− δt− T

2

))2
dδt+O

(
T 2

ε

)

= F 2ỹ
(
t− T

2

)
− ε ˙̃y

(
t− T

2

)
F2

(
Ω
(
t− T

2

))
+T

2

3 sup
δt∈[0,T ]

(∣∣∣∣F 2
(
t− δt− T

2

)∣∣∣∣)O(1) +O

(
T 2

ε

)

= F 2ỹ(t) +O

(
T 2

ε

)

where F2 is the anti-derivative of F 2 with zero mean.

It should be noted that the simpler formula

̂̃y(t) = 1
ε

1
T

∫ t
t−T y(τ)F ( τ

ε
)dτ

1
T

∫ t
t−T F ( τ

ε
)2dτ

(4.55)

proposed in Jebai, Malrait, et al. [43] by considering y and ỹ are constant on one period
ε of the high-frequency signal is less accurate than eq. (4.53b), since valid only if y and ỹ
vary very slowly.

4.3.3.2 Sensitivity to noise

As the virtual measurement estimate is scaled by a factor ε, it may be more sensitive to
noise than the original measurement. To study this issue, we assume the measurement
noise ν is white with Power Spectral Density PSD [ν] (independent on the frequency). For
simplicity, we moreover consider eq. (4.55) instead of eq. (4.53b). The additive noise ν
obviously creates additive noises on the estimates ŷ and ̂̃y, denoted respectively ν and ν̃ .
Their PSDs are given by

PSD [ν ] (ω) = PSD [ν] (ω)|H(ω)|2

PSD [ν̃ ] (ω) = 1
ε2F 22 PSD [Fν] (ω)|H(ω)|2,

where H(ω) := 1−e−Tω
Tω

= exp
(
−T2ω

)
sinc

(
T
2ω
)

is the transfer function of the sliding
average. It remains to compute PSD [Fν], i.e. the Fourier transform of the autocorrelation
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of F (Ωt) ν(t) which is non-stationary. The autocorrelation is

R(τ) = lim
∆T→∞

1
2∆T

∫ ∆T

−∆T
F (Ωt)F (Ω(t+ τ))ν(t)ν(t+ τ)dt

= lim
∆T→∞

1
2∆T

∫ ∆T

−∆T
F (Ωt)F (Ω(t+ τ))dt lim

∆T→∞

1
2∆T

∫ ∆T

−∆T
ν(t)ν(t+ τ)dt

=
(

Ω
∫ 1

Ω

0
F (Ωt)F (Ω(t+ τ))dt

)
PSD [ν] δ(τ)

= F 2PSD [ν] δ(τ),

since F and ν are independent. The signal ν(t)F (Ωt) thus behaves in average as a white
noise with a reduced PSD.

As the cardinal sine function is bounded by the inverse function after one period, the
gain of the sliding average over a time range nε is bounded by the gain of a low-pass
filter with bandwidth 22π

T
. The estimators ŷ and ̂̃y thus have a built-in filtering effect. To

decrease the influence of measurement noise, we can therefore

• increase the amplitude of the high-frequency oscillation f , without exceeding O(1)

• average on a longer time by using a larger n, at the cost of a larger delay.

4.4 State estimator using high frequency injection

As explained in sections 4.2 and 4.3, HF frequency injection in IMs gives two new virtual
measurements

ı̃dqs = ∂2Hdq

∂φdqs
2
ũdqs
Ω (4.56)

on top of the still available current ıdqs measurements. In the SynRM and PMSM cases
(see Capecchi, Guglielmi, et al. [49] and Jebai, Malrait, et al. [43] respectively), the virtual
measurements directly depend on the position of the rotor. Hence the rotor position can
easily be retrieved thanks to signal injection.

However, in the IM case, neither the rotor position nor its speed can be retrieved
directly from the virtual measurements. Nevertheless, the rotor and stator fluxes can be
retrieved from the currents and the virtual measurements, provided an accurate saturated
model of the IM is known, as is explained in section 4.4.1. But we will also show that in
some kind of IMs whose magnetic saliency is too small, this estimation is greatly disturbed
by measurement errors and thus unusable. This issue is addressed in section 4.4.2, where
an observer for the rotor speed and the stator and rotor fluxes is proposed.

4.4.1 Flux estimator

As explained above, thanks to HF voltage injection, we obtain two virtual measurements

ıdqs = ∂Hdq

∂φdqs
(φdqs , φ

dq

r ) (4.57a)

ı̃dqs = ∂2Hdq

∂φdqs
2 (φdqs , φ

dq

r )φ̃dqs . (4.57b)
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Function Expression Parameter Value

fm(x) = Γdqm
(
1 + x2

φ2
m

) Γdqm = 0.52H−1

φm = 3.16Wb

fL(x) = ΓdqL
(

1 + x2

φ2
L

) ΓdqL = 4.25H−1

φL = 1Wb

Table 4.2 – Magnetic parameters for the model eq. (4.59)

Eq. (4.57) is a non linear system with 4 equations and 4 unknowns. The implicit function
theorem states that it can be inverted if

det

 ∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

∂

∂φdqs

(
∂2Hdq

∂φdqs
2 φ̃dqs

)
∂

∂φdqr

(
∂2Hdq

∂φdqs
2 φ̃dqs

)
 6= 0 (4.58)

where the matrix is computed at the flux working point (φdqs , φ
dq

r ). Under this condition,
we manage to estimate the fluxes around the permanent trajectory ωs,e = 0, which is not
possible without HF injection, as was shown in section 4.1.4.

However, the condition eq. (4.58) is not always verified, depending on the motor model,
the working point and on the direction of the injection. Indeed, the determinant will be
an offset sinusoidal function with respect to the HF injection direction, which crosses the
horizontal axis at some point depending on the working point.

We still tried this approach in simulation on an IM driven by a closed loop control law
with speed measurement at low speed. The IM is modeled by the energy function

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2fm
(∣∣∣φdq

s
+ φdq

r

∣∣∣) ∣∣∣φdq
s

+ φdq
r

∣∣∣2
+ 1

2fL
(∣∣∣φdq

s
+ φdq

r

∣∣∣) ∣∣∣φdq
s
− φdq

r

∣∣∣2 . (4.59)

with parameters listed in table 4.2. This model is proposed in section 5.3.3 to explain the
behavior of an unloaded IM. For this model we numerically found out that the condition
eq. (4.58) is always true for directions congruent with π

18 modulo π
2 . We applied the method

proposed in section 7.1.3 to obtain the averaged stator current ıdqs and the amplitude of
stator current ripple the ı̃dqs . The results of the simulation are given in fig. 4.5. Even though
the norm of the flux is well estimated, the estimation of its angle is not good enough. As
with the theoretical stator current amplitude, the fluxes are exactly estimated, we can
conclude that the estimation errors stems from the measurement error on ı̃dqs .

Indeed the error on the measurement of the stator current ripple amplitude ı̃dqs impacts
greatly the flux estimation. This is due to the fact that eq. (4.59) can be seen as a
perturbation of the unsaturated model which does not verify the condition eq. (4.58) at
any point. Using the scalar product of S2(R) introduced in the notation section (page xv),

the projection of ∂2Hdq

∂φdqs
2 on span({I2})⊥ is very small with respect to its projection on I2.

We can thus note
∂2Hdq

∂φdqs
2 = α(φdqs , φdqr )I2 + εM(φdqs , φdqr )

where M ∈ span({Z, Y }) and then the last 2 lines of the matrix of eq. (4.58) can be
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Figure 4.5 – Simulated flux (red dashed lines) and fluxes estimated using the measured
current ripple (dash-dotted lines) and using the theoretical current ripple (solid lines).

written as(
φ̃ds
φ̃qs

)(
∂α
∂φds

∂α
∂φqs

∂α
∂φdr

∂α
∂φqr

)
+ ε

(
∂

∂φdqs

(
M(φdqs , φdqr )φ̃dqs

)
∂

∂φdqr

(
M(φdqs , φdqr )φ̃dqs

))
(4.60)

which means that the determinant of eq. (4.58) is of order ε. Consequently, the accuracy
of the estimator will be low, which is what is observed in fig. 4.5.

From this computation, we can conclude that to retrieve observability of the fluxes at
low-speed, the projection of ∂

2Hdq

∂φdqs
2 on span({I2})⊥ must be large enough which is equivalent

to having a large
∂2Hdq

∂φdq
s

∗2 .

4.4.2 Full state estimator

The conclusion of section 4.4.1 is very pessimistic. Indeed, it states that on some IMs the
fluxes cannot be retrieved from the virtual measurements ıdqs and ı̃dqs .

Nevertheless, signal injection still provides additional information: the projection of
∂2Hdq

∂φdqs
2 on span({I2}), which can be expressed as 1

2

(
∂2Hdq
∂φds

2 + ∂2Hdq
∂φqs

2

)
or, using complex vari-

ables,
∂2Hdq

∂φdq
s
∂φdq

s

∗ . This signal will be noted ỹ here. Besides, the condition eq. (4.58) does

not coincide with the condition found by the nonlinear observability study (eq. (4.29a)).
All this let us hope that low speed “sensorless” observability may still be recovered thanks
to HF injection.

We thus study the linear observability of the IM at low speed with only one virtual
measurement. In addition to observe the fluxes we now want also the mechanical speed.
The linearized matrices are

A :=


−Rs

∂2Hdq

∂φdqs
2 − J2ωs −Rs

∂2Hdq
∂φdqs ∂φ

dq
r

02,1

−Rr
∂2Hdq

∂φdqr ∂φ
dq
s

−Rr
∂2Hdq

∂φdqr
2 − J2(ωs − nωm) J2φ

dq
r

01,2 01,2 0


C :=

 ∂2Hdq

∂φdqs
2

∂2Hdq
∂φdqs ∂φ

dq
r

02,1

∂

∂φdqs

(
∂2Hdq
∂φds

2 + ∂2Hdq
∂φqs

2

)
∂

∂φdqr

(
∂2Hdq
∂φds

2 + ∂2Hdq
∂φqs

2

)
0


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Figure 4.6 – Absolute value of the observability criterion in logarithmic scale. For com-
parison, the red rectangle is the determinant which is obtained in for the criterion of
section 4.4.1.

where the third equation was not used so that we do not need to include TL which would
complicate the study.

We numerically computed the determinant of the observability matrix

O :=
(
C
CA

)

where only the 2 first lines of A are used. The result as a function of the mechanical
speed and electromagnetic torque is shown in fig. 4.6. It is compared to the value of the
determinant of eq. (4.58) and we thus found out that the observability is far better.

These results are very encouraging. We designed an observer for the flux and the speed
in the following way. Classically we used the error on the currents to adjust the estimates
of the fluxes by

dφ̂dqs
dt

= udqs −Rsı̂
dq
s − J2ωsφ̂

dq
s + L(ıdq,ms − ı̂dqs ) (4.61a)

dφ̂dqr
dt

= −Rr ı̂
dq
r − J2(ωs − nω̂m)φ̂dqr (4.61b)

where we used the compact notations

ı̂dqs := ∂Hdq

∂φdqs
(φ̂dqs , φ̂dqr )

ı̂dqr := ∂Hdq

∂φdqr
(φ̂dqs , φ̂dqr ).

At this point, the virtual measurement was not used yet, but estimate of the speed was
not designed yet either. The error dynamics read

d∆φdqs
dt

= −(Rs + L)(ıdqs − ı̂dqs )− J2ωs∆φdqs (4.62a)

d∆φdqr
dt

= −Rr(ıdqr − ı̂dqr )− J2(ωs − nωm)∆φdqr + J2n∆ωmφ̂dqr . (4.62b)
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Following Lohmiller and Slotine [60], the associated virtual displacement can be obtained
by linearizing these equations around 0. Let our metric on virtual displacements be

E := ‖δ∆φ
dq
s ‖2

2(Rs + L) + ‖δ∆φ
dq
r ‖2

2Rr

where we noted δ∆φdqs and δ∆φdqr the virtual displacements associated with ∆φdqs and
∆φdqr respectively. Its time derivative is calculated as follows

dE

dt
= −δ∆φdqs

T

∂2Hdq

∂φdqs
2 δ∆φ

dq
s −

∂2Hdq

∂φdqs ∂φ
dq
r

δ∆φdqr + J2
ωs

Rs + L
δ∆φdqs


−δ∆φdqr

T

 ∂2Hdq

∂φdqr ∂φ
dq
s

δ∆φdqs −
∂2Hdq

∂φdqr
2 δ∆φ

dq
r + J2

ωs − nωm
Rr

δ∆φdqs


+δ∆φdqr

TJ2∆ωmφ̂dqr

=
(
−δ∆φdqs

T
δ∆φdqr

T
)∂2Hdq

∂φdqs
2 + J2

ωs
Rs+L

∂2Hdq
∂φdqs ∂φ

dq
r

∂2Hdq
∂φdqr ∂φ

dq
s

∂2Hdq

∂φdqr
2 + J2

ωs−nωm
Rr

(−δ∆φdqs
δ∆φdqr

)

+δ∆φdqr
TJ2∆ωmφ̂dqr (4.63)

which shows by contraction (see [60]) that the observer would be a good estimator of the
fluxes it there were no error on the speed estimate (for instance in the case a control law
with a mechanical speed sensor), as the Hessian of the energy is definite positive.

Eq. (4.62) also shows that a positive ∆ωm induces a overestimated rotor flux which
in turn leads with the proposed model to an over estimated current ripple. The following
scheme is proposed to get an estimate of ωm

dωi

dt
= K̃ı

(
1
2

(
∂2Hdq

∂φds
2 (φ̂dqs , φ̂dqr ) + ∂2Hdq

∂φqs
2 (φ̂dqs , φ̂dqr )

)
− ỹ

)
(4.64a)

ω̂m = ωi + K̃p

(
1
2

(
∂2Hdq

∂φds
2 (φ̂dqs , φ̂dqr ) + ∂2Hdq

∂φqs
2 (φ̂dqs , φ̂dqr )

)
− ỹ

)
. (4.64b)

The proposed observer was tested in the same model as in section 4.4.1 (see eq. (4.59)
and table 4.2). To test the observed we simulated a“sensored”control law under MATLAB
Simulinkr . Signal injection was used and the virtual measurement ỹ was retrieved using
the procedure described in section 7.1.3. The bandwidth of the speed estimation in the
state observer was set to 10Hz. Simulation results are given in fig. 4.7 which shows a far
better flux estimation than obtained in section 4.4.1. Besides, the speed estimate could
be used in a “sensorless” control law.

This show how signal injection can be used to retrieve the speed of an IM with a
small magnetic saliency. The procedure is far more involved than for PMSMs (see Jebai,
Malrait, et al. [43]) or SynRMs (see Capecchi, Guglielmi, et al. [49]). We think that the
proposed method could also be used to improve existing “sensorless” control laws using
signal injection.

4.5 Partial conclusion

This chapter studies the observability of electric motors. Thanks to the similarities found
by the modeling approach presented in chapter 3, a generic first-order observability result
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(a) Simulated flux (red dashed lines) and fluxes estimated using the measured current
ripple (dash-dotted lines) and using the theoretical current ripple (solid lines).
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(b) Simulated speed (red dashed lines) and speeds estimated using the measured current
ripple (dash-dotted lines) and using the theoretical current ripple (solid lines).

Figure 4.7 – Estimating the flux and speed thanks to the observer proposed in section 4.4.2
on the simulated IM with the model given by eq. (4.59) and table 4.2.



can be given: all electric motors are unobservable at first order with the sole stator
current measurements when the stator excitation frequency ωs,e and its derivatives are
zero. A nonlinear observability study adds no further information as long as we stay at
the desired equilibrium, but it also shows that observability may be recovered on some
close trajectories.

HF voltage signal injection is one of the solutions to implement such trajectories. A
thorough analysis of this technique, which can be generalized to nonlinear systems, shows
that additional information is retrieved. In the case of IMs, this information can be used
to solve the low-speed observability problem. Observers which can retrieve the fluxes and
the rotor angular speed are presented. However these results are still partial and can be
improved.



Chapter 5

Identification of the magnetic models

Chapitre 5 — Identification des modèles magnétiques
Ce chapitre détaille les tentatives faites pour trouver des modèles magnétiques permettant
d’expliquer les effets observés par injection de signal sur deux types de moteurs électriques.
Le moteur synchrone à reluctance s’est avéré assez facile à modéliser et deux techniques
pour le modéliser sont proposées dans ce chapitre. À cause d’effets liés à l’hystéresis
magnétique, les deux techniques donnent des résultats sensiblement différents, mais tout
de même compatibles. Au contraire, la modélisation du moteur à induction est bien plus
ardue, à cause des deux variables d’état supplémentaires qui ne sont pas mesurées. Des
résultats expérimentaux, ainsi que des tentatives de modélisation, sont donnés, mais aucun
modèle complet n’a pu être trouvé pour modéliser les effets de l’injection de signal.

Using the framework proposed in chapter 3 we now want to obtain models for real
electric motors, namely the two described in section 2.1. As we always use star connected
electric machines, thanks to the energy based approach this only involves finding the right
function HDQ.

To calibrate the models we will use information retrieved using signal injection, the
technique proposed in section 4.2 to retrieve low speed“sensorless”observability of electric
motors. As explained there, thanks to HF signal injection we get additional measurements
which are particularly useful to tune the model.

5.1 Preliminaries: Existing models for electric mo-

tors

Here is a review of traditional saturated models for SynRMs in section 5.1.1 and for IMs
in section 5.1.2. We then recall the proposed saturated energy-based models.

5.1.1 Saturation models for SynRMs

As in SynRMs electromagnetic torque is created by the difference between the d-axis and
q-axis inductances, magnetic saturation is emphasized in most SynRM control literature.

Kilthau and Pacas [61], Stumberger, Stumberger, et al. [62] give interesting experi-
mental data highlighting the saturation of inductances by the flux on both axes. Kilthau
and Pacas [61] even propose a polynomial model for the saturation of the inductances as
a function of the current, however it seems that the reciprocity conditions (see [29, 30])
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are not enforced by their approach, which may thus lead to an invalid model from the
point of view of the power balance.

Vagati, Pastorelli, et al. [63] propose a more rigorous modeling method, which relies
on co-energy and thus enforces the reciprocity conditions. They also give experimental
data, but no detailed model.

Finally Qu, Tuovinen, et al. [64] also give a model, which respects the reciprocity
conditions, where the current are polynomial functions of the fluxes. Rewritten with our
notations, the relations current-flux they propose read

ıDs (φDQs ) = φDs
L0D

s

1 + |αφDs |a + γL0D
s

d+ 2 |φ
D
s |c|φQs |d+2


ıQs (φDQs ) = φQs

L0Q
s

1 + |βφQs |b + γL0Q
s

c+ 2 |φ
D
s |c+2|φQs |d


and stem from the energy function

HDQ(φDQs ) = ρ2

2JLn2

+ 1
2L0D

s

(
1 + |αφ

D
s |a

a+ 2

)
φDs

2 + 1
2L0Q

s

(
1 + |βφ

Q
s |b

b+ 2

)
φQs

2 + γ|φDs |c+2|φQs |d+2

(c+ 2)(d+ 2) .

They calibrated the model (all positive real numbers) by measuring the back-EMF while
the motor is run at 30% of the nominal speed.

5.1.2 Saturation models for IMs

IMs have been around for much longer than SynRMs. Hence there is a very detailed
literature on the saturation of an IM, even though it is not as large as for SynRMs. In
IMs, there are many magnetic paths which saturate differently:

• The main magnetic path where the magnetizing flux φdqm = φdqs +φdqr
2 circulates, and

• The leakage magnetic paths where the leakage fluxes circulate.

5.1.2.1 Main magnetic path saturation

The main magnetic path saturation has been studied a lot because it limits the torque the
IM can yield. The usual model for main flux saturation can be written φdqm = Ldqm (‖ıdqm‖2)ıdqm
or equivalently ıdqm = Γdqm (‖φdqm‖2)φdqm where ıdqm = ıdqs +ıdqr

2 (see for instance [17, 21]). This
model is compatible with our energy-based approach. Indeed the associated energy func-
tion in dq reads

Hdq(φdqs ) = 1
2JLn2ρ

2 + 1
2F

dq
m (φdqm

T
φdqm ) + 1

2Γdql φdqs
T
φdqs + 1

2Γdql φdqr
T
φdqr (5.1)

where F dq
m is the anti-derivative of Γdqm − Γdql .

The problem is to find a suitable function Ldqm or Γdqm . Some of the possible functions
Ldqm or Γdqm are given in [17, 21, 65, 66, 68]. These saturation functions for the main flux
path explain well the torque limitation. However, as can be shown in simulation, it does
not explain the effects of signal injection at all. This can be explained intuitively, because
the HF signal injection does not follow the main flux paths but only the leakage flux
paths, whose impedance at high frequencies is lower (see Jansen and Lorenz [78]).
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5.1.2.2 Leakage magnetic path saturation

In fact, as emphasized by Boldea and Nassar [34], there are many leakage flux paths. Ojo,
Consoli, et al. [20], Lipo and Consoli [69] model the saturation of each of these individual
paths. This lead to a quite complicated model which is hardly rewritable in terms of
energy or usable for control.

However Hinkkanen, Repo, et al. [46], Tuovinen, Hinkkanen, et al. [70] propose to start
from the unsaturated model where all these magnetic paths are aggregated into one or two
paths. This approach is closer to energy based modeling as it does not detail the internal
layout of the motor. However [46] does not provide an explicit model. In [70] an explicit
model is proposed which respects the reciprocity conditions. They start from the so-called
“Γ-model” of the induction machine which however does not lead to the same Hamilton’s
equations as those presented here for saturated electric motors. They propose to express
the rotor current as a polynomial function of the magnetizing flux and the leakage flux.
Calibration methods for this model are proposed in Ranta [68] and references therein.

In Sudhoff, Aliprantis, et al. [71] a more complex model is proposed for the relation
between rotor flux φdqr and rotor current ıdqr in IMs, which is written as a transfer function.
This means that the proposed model has more state variables than traditional models.
The proposed model cannot be easily expressed in our framework. In [72] a method is
proposed to calibrate such models on real IMs.

5.1.3 Saturated energy-based models for electric motors

The premises of the proposed framework are found in Basic, Malrait, et al. [35], Basic,
Jebai, et al. [36] where Lagrangian and Hamiltonian models are proposed for IMs and
PMSMs. Magnetic saturation is also taken into account. Even though it is not clearly
stated, the symmetry constraints found in section 3.4 are respected by the proposed
models. However no experimental data is provided in these articles.

The first application of the proposed framework can be found in Jebai [37] where a
saturated model is designed for PMSMs. The proposed model is a polynomial perturbation
of the unsaturated model which respects the symmetry constrains (see section 3.4). The
proposed energy function reads

HDQ(ρ, φDQs ) = 1
2JLn2ρ

2

+ 1
2LDs

(
φDs − φM

)2
+ 1

2LQs

(
φQs
)2

+
4∑

m=3

bm2 c∑
n=0

αm−2n,2n
(
φDs − φM

)m−2n(
φQs
)2n

and leads to the current-flux relations

ıDs (φDs ) = ∂HDQ

∂φDs
= φDs − φM

LDs
+

3∑
m=2

bm2 c∑
n=0

(m− 2n+ 1)αm−2n+1,2n
(
φDs − φM

)m−2n(
φQs
)2n

ıQs (φQs ) = ∂HDQ

∂φQs
= φQs
LQs

+
3∑

m=2

dm2 e∑
n=1

2nαm−(2n−1),2n
(
φDs − φM

)m−(2n−1)(
φQs
)2n−1

.

This can be seen as a Taylor series expansion around the nominal flux working point of
the PMSM, which does not change much as the flux remains close to the rotor flux. A
calibration procedure using HF signal injection was then proposed in [37].
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5.2 A saturated SynRM model

In this section we will derive the simplest saturated sinusoidal model describing experi-
mental observations for the SynRM described in section 2.1.1. As was explained at the
beginning of section 3.8, the model should be expressed in the DQ0 frame so that the
energy function does not depend on θ. Moreover the motor being star-connected, the 0
axis can be decoupled when doing magnetic modeling (see section 3.5.3). Hence, it can
be expressed as HDQ(ρ, φDQs ) with the energy function being even with respect to φDs and
φQs as recalled in table 3.5.

5.2.1 Using HF injection

From section 4.2.3 we know that HF injection gives us insight on the partial derivatives
of the energy function, also called tangent inductances (see section 3.8.2). In this section
we are going to use this information to design a saturation model for SynRMs.

5.2.1.1 Experimental procedure

To study cross-saturation we need to have non-zero constant flux on both D and Q axes,
which creates torque. To prevent the motor from rotating under this torque we lock the
rotor.

We then need to identify the orientation of the DQ frame with respect to the αβ
frame. By convention, we take D axis to be the smallest inductance axis and Q axis to
have the largest inductance. Two methods can be used:

• Use HF injection under zero flux which will enable us to retrieve easily the D and Q
axes by maximizing and minimizing the size of the HF current ripple on the injection
axis or

• Inject nominal DC current along the supposed Q axis and correct until the torque-
meter gives the lowest value.

I used the second method, which turned out to be more accurate when done manually.

A constant voltage uDQs is then set which produces a measured constant current ıDQs .
The currents are the only piece of information we can obtain on the magnetic state of the
motor as the fluxes φDQs cannot be measured.

To gather all the information which can be found using HF injection, we inject the HF
voltage along an axis rotating slowly (at θ̇i = ωi = 1Hz) in the DQ frame. This defines
a new vw frame with PDQ→vw(θi) = R(−θi), the rotation of R2 by the angle −θi. Using
complex notations it reads ũDQs = ũeωitf(Ωt). This HF injection creates current ripple
on both the injection and quadrature axes.

5.2.1.2 Theoretical analysis

According to section 4.2.3, the injection ũDQs produces the current ripple in the DQ frame

ı̃DQs = 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗
ũ

Ωe
ωitF (Ωt) + 2 ∂

2HDQ

∂φDQ
s

∗2
ũ

Ωe
−ωitF (Ωt) (5.2)
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and transforming back to vw frame

ı̃vws = ı̃DQs e−ωit = 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗
ũ

ΩF (Ωt) + 2 ∂
2HDQ

∂φDQ
s

∗2
ũ

Ωe
−2ωitF (Ωt). (5.3)

Projecting on the axes of the vw frame, we find the expression of the recorded ripples

ı̃vs = <ı̃vws = 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗
ũ

ΩF (Ωt)

+2

∣∣∣∣∣∣ ∂
2HDQ

∂φDQ
s

∗2

∣∣∣∣∣∣ ũΩ cos
2ωit− Arg ∂

2HDQ

∂φDQ
s

∗2

F (Ωt) (5.4a)

ı̃ws = =ı̃vws = −2

∣∣∣∣∣∣ ∂
2HDQ

∂φDQ
s

∗2

∣∣∣∣∣∣ ũΩ sin
2ωit− Arg ∂

2HDQ

∂φDQ
s

∗2

F (Ωt) (5.4b)

as
∂2HDQ

∂φDQ
s

∂φDQ
s

∗ is real. Thus, the amplitude of the current ripple on the injection axis should

be modulated by a sinusoid of amplitude 2
∣∣∣∣∣ ∂2HDQ

∂φDQ
s

∗2

∣∣∣∣∣ with an offset 2 ∂2HDQ

∂φDQ
s

∂φDQ
s

∗ whereas on

the quadrature axis the modulating signal is a π
2 phase-shifted sinusoid with the same

amplitude and no offset. This is really observed experimentally and we can easily extract
the partial derivatives of the complex energy function by heterodyning (see section 7.1.3).

However due to the saliency it is more handy to use the real energy function. Its
partial derivatives can easily be computed from the partial derivatives of the complex
energy function eq. (5.4) using the chain rule

ΓtDs = 1
LtDs

= ∂2HDQ

∂φDs
2 = ∂2HDQ

∂φDQ
s

2 + 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗ + ∂2HDQ

∂φDQ
s

∗2

= 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗ + 2

∣∣∣∣∣∣ ∂
2HDQ

∂φDQ
s

∗2

∣∣∣∣∣∣ cos
Arg ∂

2HDQ

∂φDQ
s

∗2

 (5.5a)

ΓtQs = 1
LtQs

= ∂2HDQ

∂φQs
2 = −∂

2HDQ

∂φDQ
s

2 + 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗ −
∂2HDQ

∂φDQ
s

∗2

= 2 ∂2HDQ

∂φDQ
s
∂φDQ

s

∗ − 2

∣∣∣∣∣∣ ∂
2HDQ

∂φDQ
s

∗2

∣∣∣∣∣∣ cos
Arg ∂

2HDQ

∂φDQ
s

∗2

 (5.5b)

∂2HDQ

∂φDs ∂φ
Q
s

= 
∂2HDQ

∂φDQ
s

2 − 
∂2HDQ

∂φDQ
s

∗2

= 2

∣∣∣∣∣∣ ∂
2HDQ

∂φDQ
s

∗2

∣∣∣∣∣∣ sin
Arg ∂

2HDQ

∂φDQ
s

∗2

 (5.5c)

where we used the fact that
∂2HDQ

∂φDQ
s

2 is the complex conjugate of
∂2HDQ

∂φDQ
s

∗2 .

5.2.1.3 Experimental results

We used this method on the 0.75kW SynRM motor described in section 2.1.1. Fig. 5.1
shows the results of the experiments, extracted using the aforementioned method. The
tests were made for some fixed levels on ıQs and steps of approximately 0.2A on ıDs .
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Ũ Ω

(A
)

ıQs ≈ 0A
ıQs ≈ 0.5A
ıQs ≈ 1A
ıQs ≈ 1.5A
ıQs ≈ 2A

+ v axis data
× w axis data

(a) ∂2HDQ
∂φDs

2
ũ
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Figure 5.1 – Information retrieved using HF injection on a 0.75kW SynRM (see table 2.1).
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Due to the parity of the energy function with respect to φDs and φQs (see section 3.4.2.1),
its partial derivatives have the parities described in table 5.1. The current-flux relations
should be invertible and we find that φDs is odd with respect to ıDs and even with respect
to ıQs and φQs is odd with respect to ıQs and even with respect to ıDs . Thus the curves of
figs. 5.1a and 5.1b should be even whereas those of fig. 5.1c should be odd, which is indeed
what is observed.

φDs φQs

ıDs = ∂HDQ
∂φDs

odd even

ıQs = ∂HDQ
∂φQs

even odd

ΓtDs = ∂2HDQ
∂φDs

2 even even

ΓtQs = ∂2HDQ

∂φQs
2 even even

∂2HDQ
∂φDs ∂φ

Q
s

odd odd

Table 5.1 – Parities of the partial derivatives of the energy function HDQ with respect to
φDs and φQs .

We notice in fig. 5.1 that we obtain the same values using v or w axis data, as stated
by theory. Fig. 5.1a shows that there is obviously an important saturation of Lt

D
s by ıDs ,

but there is also some cross-saturation of Lt
D
s by ıQs . On the contrary, Lt

Q
s is not saturated

by ıDs even though it still saturates due to ıQs as shown by fig. 5.1b. Fig. 5.1c shows that
there is a small cross-saturation effect.

5.2.1.4 A saturated model for the SynRM

Having made these observations we propose the following form for the energy function of
SynRMs

HDQ(ρ, φDQs ) = 1
2JLn2ρ

2 + 1
2f

D
(
φDs

2)+ 1
2f

Q
(
φQs

2)+ 1
2f

x
(
φQs

2)
φDs

2
. (5.6)

with fx(0) = 0 which is a generalization of the polynomial model proposed in Qu, Tuovi-
nen, et al. [64]. We find for the tangent inverse inductances

ΓtDs (φDs , φQs ) = fD
′(
φDs

2)+ 2fD ′′
(
φDs

2)
φDs

2 + fx
(
φQs

2)
ΓtQs (φDs , φQs ) = fQ

′(
φQs

2)+ 2fQ′′
(
φQs

2)
φQs

2 +
(
fx′
(
φQs

2)+ 2fx′′
(
φQs

2)
φQs

2)
φDs

2

which synthesizes the main saturation effects as well as cross-saturation. Considering
these expressions when one of the fluxes is 0

ΓtDs (φDs , 0) = fD
′(
φDs

2)+ 2fD ′′
(
φDs

2)
φDs

2

ΓtDs (0, φQs ) = fD
′(0) + fx

(
φQs

2)
ΓtQs (0, φQs ) = fQ

′(
φQs

2)+ 2fQ′′
(
φQs

2)
φQs

2

ΓtQs (φDs , 0) = fQ
′(0),
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Ω
∂2HDQ

∂φQs
2 (0, ıQs ).

Figure 5.2 – Partial derivatives of the energy function when one of the fluxes is 0. + mark
injection v axis data and × quadrature w axis data.

we find a simple way to determine the saturation functions. Due to the structure of the
chosen model the cross-saturation is decoupled when tests are made on one of the saliency
axes.

However, as we cannot measure the fluxes, the experimental measurements are func-
tions of the currents which are given by

ıDs (φDs , 0) = fD
′ (
φDs

2)
φDs

ıQs (0, φQs ) = fQ
′ (
φQs

2)
φQs .

On both the D and Q axes we have ıs = f(φ2
s)φs and Γts = ∂ıs

∂φs
= f(φ2

s) + 2f ′(φ2
s)φ2

s. We

define f(ıs) = f(φs(ıs)2) and using the dot to denote the total derivative with respect to
ıs we get

ıs = fφs
1 = ḟfφs + f φ̇s

Γts = f + ḟf
φs

φ̇s

where the second relation was obtained by taking the total derivative with respect to ıs
of the first one. Combining the 2 last relations we find

Γts = f + 1− f φ̇s
φ̇s

= 1
φ̇s
. (5.7)

Thus φs can be retrieved from the experimental data collected using HF signal injection.
For the method to work properly we need to have enough working points. This is not
the case in the experiment presented in fig. 5.1 as we only have 5 points for ıQs . We did
two similar experiments with one flux being zero in each experiment and obtained the
results in fig. 5.2 where we have one data point each 0.1A approximately on ıDs or ıQs . We
applied to these measurements the method proposed above to compute the flux and got
the current-flux relation shown in fig. 5.3.

Because the derivative of an arbitrarily close fit to a curve can be arbitrarily far from
the derivative of the curve, we should not fit the current-flux curves in fig. 5.3 but instead
use this relation to find ΓtDs (φDs , 0) and ΓtQs (0, φQs ) which are represented in fig. 5.4.
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Figure 5.3 – The main current-flux relations φDs (ıDs , 0) and φQs (0, ıQs ) obtained using the
HF signal injection data.

The variation of ΓtQs with respect to φDs (blue curve in fig. 5.4b) is so small it can be
taken constant. The shape of the curve ΓtQs (0, φQs ) (in green in fig. 5.4b) can be represented
by a third or fourth order polynomial in φQs

2
and similarly ΓtDs (0, φQs ) (in green in fig. 5.4a)

can be modeled by a first or second order polynomial in φQs
2
, which agrees with the poly-

nomial model proposed in Qu, Tuovinen, et al. [64]. However the curve ΓtDs (φDs , 0) (in blue
in fig. 5.4a) looks like a Lorentzian or a Gaussian function. As Lorentzian functions can be
integrated more easily than Gaussian, we will choose this type of function. Depending on
the type of the curve we used nonlinear least squares or polynomial fitting and obtained
the parameters given in table 5.2 together with the inverse inductances expression. After
integration of these expressions we find the analytical current-flux relations

ıDs (φDs , φQs ) = Γ0
D
s

1 + φD2
2

φD1
2f1

φDs 2
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φDs (5.8a)
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φQs (5.8b)

where we used the C∞ function

x ∈ R 7→ f1(x) =


1− arctan

√
|x|√

|x|
si x > 0

arctan
√
|x|√

|x|
− 1 si x < 0

0 si x = 0.

Integrating again we find the model functions

fD
(
φDs

2) = Γ0
D
s

φDs 2 + φD2
4

φD1
2F1

φDs 2

φD2
2
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Ω
∂2HDQ
∂φDs

2 (φDs , 0) and ũ
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Figure 5.4 – Partial derivatives of the energy function when one of the fluxes is 0 repre-
sented as functions of the fluxes and the models (dashed red curves).

fQ
(
φQs
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28φQ3
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φQs
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15φQ2
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fx
(
φQs

2) = Γ0
D
s

φQs 4

φx2
4 + φQs

2

φx1
2


where F1 is the anti-derivative of f1 which vanishes at 0, is given by

x ∈ R 7→ F1(x) = |x| − 2
√
|x| arctan

√
|x|+ ln (1 + |x|).

Finally replacing these expressions in eq. (5.6), we find the energy function

HDQ(ρ, φDQs ) = 1
2JLn2ρ

2 + 1
2Γ0

D
s

1 + φD2
2

φD1
2f2

φDs 2

φD2
2

+ φQs
4

φx2
4 + φQs

2

φx1
2

φDs 2

+ 1
2Γ0

Q
s

1 + φQs
2

6φQ1
2 −

φQs
4

15φQ2
4 + φQs

6

28φQ3
6

φQs 2
(5.9)

where we used the C∞ function f2 defined by

x ∈ R 7→ f2(x) =
{

2f1(x)− sgn x+ ln (1+|x|)
x

si x 6= 0
0 si x = 0.

5.2.1.5 Checking the model

To check that this model conveys accurately the effects of signal injection we simulated it
using Simulinkr software. We measured the currents and the associated ripples for some
experimental working points and computed the relative error between the experimental
data and the simulation results. We obtained the results shown in table 5.3 which are
very satisfactory, even though you may think that the phase is poorly represented. This
is due to the fact that at some working points the amplitude of the sinusoid we want to
fit is very small and so the algorithm cannot find the phase accurately.
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Inverse inductance Expression Parameters

ΓtDs (φDs , 0) = 1
L0D
s

1 + 1
φD1

2
φDs

2

1+φDs
2

φD2
2

 L0D
s 0.339H

φD1 0.036Wb
φD2 0.083Wb

ΓtDs (0, φQs ) = 1
L0D
s

(
φQs

4

φx2
4 + φQs

2

φx1
2 + 1

) L0D
s 0.316H

φx1 0.824Wb
φx2 1.275Wb

ΓtQs (0, φQs ) = 1
L0Q
s

(
φQs

6

φQ3
6 − φQs

4

φQ2
4 + φQs

2

φQ1
2 + 1

) L0Q
s 0.459H

φQ1 0.924Wb

φQ2 0.759Wb

φQ3 0.648Wb

ΓtQs (φDs , 0) = 1
L0Q
s

L0Q
s 0.445H

Table 5.2 – Expression of the model for inverse inductances as functions of the fluxes.
Parameters were fitted on data obtained using HF signal injection on the 0.75kW SynRM
described in table 2.1.

Variable Axis Maximum relative error Average relative error

2∂
2HDQ
∂φ∗

s
∂φ

s

ũ
Ω

v 3.9% 1.1%
w 0.4% 0.1%

2
∣∣∣∣∂2HDQ

∂φ∗
s

2

∣∣∣∣ ũΩ v 5.3% 1.5%
w 5.6% 1.7%

Arg ∂2HDQ

∂φ∗
s

2
v 5.9◦ 0.3◦
w 5.8◦ 0.3◦

Table 5.3 – Relative error between experimental data and model simulation results.
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vas vbs vcs uas ubs ucs uDs uQs

Axe a ±Vbus
2 ∓Vbus

2 ∓Vbus
2 ±2

3Vbus ∓
1
3Vbus ∓

1
3Vbus ±2

3Vbus 0
Axe b ∓Vbus

2 ±Vbus
2 ∓Vbus

2 ∓1
3Vbus ±

2
3Vbus ∓

1
3Vbus ∓1

3Vbus ±
√

3
3 Vbus

Axe c ∓Vbus
2 ∓Vbus

2 ±Vbus
2 ∓1

3Vbus ∓
1
3Vbus ±

2
3Vbus ∓1

3Vbus ±
√

3
3 Vbus

Table 5.4 – Values of the potentials and voltage drops set on the abc frame axes during
Inform method and corresponding voltage drops in the DQ frame.

5.2.2 Using the Inform method

Industrial drives made by Schneider Electric use the so-called Inform method at standstill
to estimate magnetic parameters at some working points. This method can also be used
to estimate the saturated current-flux relations.

5.2.2.1 Experimental procedure

First of all we use a DC injection on α axis to align it with the Q axis (which is taken to
have the largest inductance). Once the rotor is aligned, the Inform sequence is started. It
consists of series of short potential pulses on the three axes of the abc frame. The length of
the pulses is extended until the desired current is reached. Each pulse can be subdivided
in 3 steps

1. The potentials are set at +Vbus
2 for the chosen axis and −Vbus

2 on the other axes
during a fourth of the pulse length

2. The potentials are reversed to the opposite of their initial values during half of the
pulse length

3. The potentials are set back to their initial values during the last fourth of the pulse
length.

5.2.2.2 Theoretical analysis

Supposing the coils are symmetric we find the voltage drops at the bounds of the (star-
connected) coils during Inform pulses (see table 5.4). We then apply abc → DQ trans-
formation to the currents and voltages since the model is most easily written in the DQ
frame.

As can be seen from table 5.4, the Inform method do not allow to study cross-saturation
as the voltage on the D is proportional to the voltage on the Q axis. Thus we will consider
a Hamiltonian without cross-saturation (fx ≡ 0 in eq. (5.6)). As we are at standstill
(ω = 0), the model of the SynRM is given by

dφDs
dt

= uDs −Rsf
D ′
(
φDs

2)
φDs (5.10a)

dφQs
dt

= uQs −Rsf
Q′
(
φQs

2)
φQs . (5.10b)
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Figure 5.5 – Voltage drops and currents in the DQ frame

It was empirically noticed that

Γ0
D
s ≤ fD

′(
φDs

2) ≤ Γ∞Ds
Γ0
Q
s ≤ fQ

′(
φQs

2) ≤ Γ∞Qs

so, using the fact that uDQs is piecewise constant, on all the intervals [tb, te] where it is
constant

φDs (tb) + 1
Γ0
D
s Rs

uDs
(
1− e−RsΓ0Ds t′

)
≤φDs (t)≤ φDs (tb) + 1

Γ∞Ds Rs

uDs
(
1− e−RsΓ∞Ds t′

)
(5.11a)

φQs (tb) + 1
Γ0
Q
s Rs

uQs
(
1− e−RsΓ0

Q
s t
′) ≤φQs (t)≤ φQs (tb) + 1

Γ∞Qs Rs

uQs
(
1− e−RsΓ∞

Q
s t
′)
. (5.11b)

where t′ = t − tb. Starting from 0, to reach the desired current level I, the length of the

first part of an Inform pulse is not more than 1
Γ0Ds Rs

ln
(
1− Γ0Ds

Γ∞Ds
Rs

I
uDs

)
≈ I

Γ∞Ds uDs
for D axis

or 1
Γ0Qs Rs

ln
(

1− Γ0Qs
Γ∞Ds

Rs
I

uQs

)
≈ I

Γ∞Qs uQs
for Q axis, which are small with respect to the time

constants 1
RsΓ0Ds

and 1
RsΓ0Qs

. Thus the fluxes can be approximated as the integral of the

voltages drops over time.

5.2.2.3 Experimental results

We measured using a numeric oscilloscope the 3 currents ıabcs and the bus voltage Vbus
during the auto-tuning of an industrial VSD. After transforming the voltages and the
currents to the DQ frame we obtain the curves of fig. 5.5.

Finally integrating the voltage drops over time as described in the previous paragraph
we get the current-flux relation plotted in fig. 5.6.

5.2.3 A saturated model for the SRM

The shapes of the curves are identical to those which were retrieved using HF injection
data. Thus we are going to use the same model functions. The parameters in table 5.5 were
obtained using the same method as previously. However the current-flux relations were
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Figure 5.6 – Main current-flux relations obtained from Inform data when applied along
a, b and c axes and the models for ıDs (φDs , 0) and ıQs (0, φQs )

Current Expression Parameters

ıDs (φDs , 0) = 1
L0D
s

(
1 + φD2

2

φD1
2f1

(
φDs

2

φD2
2

))
φDs

L0D
s 0.584H

φD1 0.033Wb
φD2 0.148Wb

ıQs (0, φQs ) = 1
L0Q
s

(
φQs

6

7φQ3
6 − φQs

4

5φQ2
4 + φQs

2

3φQ1
2 + 1

)
φQs

L0Q
s 0.590H

φQ1 1.278Wb

φQ2 0.947Wb

φQ3 0.810Wb

Table 5.5 – Expression of the model for inverse inductances as functions of the fluxes.
Parameters were fitted for the current-flux relation obtained thanks to Inform method.

fitted directly because information on the derivatives of the current-flux relation is not
available, so this model will not represent very accurately HF injection results. Besides,
using the Inform method, cross-saturation cannot be modeled. The energy model is given
by

HDQ(ρ, φDQs ) = 1
2JLn2ρ

2 + 1
2Γ0

D
s

1 + φD2
2

φD1
2f2

φDs 2

φD2
2

φDs 2

+ 1
2Γ0

Q
s

1 + φQs
2

6φQ1
2 + φQs

4

15φQ2
4 + φQs

6

28φQ3
6

φQs 2
(5.12)

where f2 is the special function introduced previously and the parameters are given in
table 5.5.
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Figure 5.7 – Measured (solid lines) and simulated (dashed lines) currents on a, b and c
axes during an Inform sequence at nominal current on the SynRM described by table 2.1.

5.2.3.1 Validating the model

To check that this model reproduces what was experimentally observed we simulated an
Inform sequence using Simulinkr software. The result is plotted with dashed lines in
fig. 5.7 which shows that the simulated currents are very close to the measured ones.
Moreover the only differences are a priori due to alignment errors, as there should be
symmetries between b and c axis currents. Thus, the effects of Inform sequence are
satisfactorily reproduced by the model. However, this model may not reproduce accurately
the effects of signal injection as we did not fit tangent inductances.

5.2.4 Conclusion

In fig. 5.8 we plotted the current-flux relations obtained by HF signal injection and by
the Inform method. The D axis curves are quite close and the difference can be explained
by experimental errors. However the Q axis curves differs by approximately 20% which
cannot be explained by experimental errors. Indeed in the Inform test, the inverter voltage
drops (see section 2.3.1) and the dead times (see section 2.3.2) bias the voltages by less
than 3V (i.e. a relative error of 0.5%) while the currents and the bus voltage are measured
accurately by calibrated current clamp and differential probes on a digital oscilloscope. In
the signal injection test, the errors due to inverter non-linearities can be relatively larger,
up to 10% as the voltages involved are lower, but the accuracy of the current measurement
with dSpacer is 1% in the worst case. This is really strange as the simulations of both
models give results really close to experiments.

A potential explanation is given in Cordier, Landsmann, et al. [73] which states that,
as the HF injection follows Raleigh loops (an effect due to magnetic hysteresis detailed in
section 5.3.2), the HF ripple is amplified. This means that the current-flux relations will
be shrunk, which is what is observed in fig. 5.8. The Inform test could also be affected by
magnetic hysteresis, but the main hysteresis cycle (see fig. 5.12) will be followed in this
case. The method we used in section 5.2.2 to obtain the current-flux relations with Inform
data is not sensitive to hysteresis. To see if there really was hysteresis in our SynRM,
we plotted the real fluxes and currents which are obtained using Inform method at 120%
of the nominal current. To obtain more readable curves, the data were filtered using a
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Figure 5.8 – Current-flux relations φDs (ıDs , 0) and φQs (0, ıQs ) obtained by signal injection
(dashed line) and Inform method (solid line).

sliding average filter on 4 points, but no further processing was done to cancel hysteresis.
The results are plotted in fig. 5.9 where a small hysteresis cycle can be noticed.

Furthermore, after computing the reachable torque under nominal current we found
that the model obtained with the Inform method is closer to motor manufacturer data at
the nominal working point because nominal torque is not reached under nominal current
for the model designed using HF signal injection. We are thus going to keep the model
obtained with the Inform method for the main saturation in the next chapters. However,
cross-saturation will be modeled using the data collected using signal injection, as the
Inform method do not provide any information on cross-saturation.

5.3 A saturated IM model

We are going to devise the most-simple saturated model for the IM. On the contrary
to the SynRM, the IM has a non-salient rotor so we can work in any synchronous dq0
frame. The stator is star-connected and the rotor is short-circuited, so the 0 axis can be
decoupled for both the stator and rotor fluxes as demonstrated in sections 3.5.1 and 3.5.3.
We again neglect non-sinusoidal effects (see section 3.7) and design a saturated sinusoidal
model for IMs. According to section 3.8 the energy function in the chosen dq frame can
be written as Hdq(ρ, φdqs , φdqr ) and has the invariance constraints listed in table 3.5.

This being said, the IM is still much more difficult to model than the SynRM due to
the fact that there are 2 new state variables which are not measured. To simplify the
modeling, we will make assumptions on the model and then design the most simple tests.

Unfortunately we did not manage to obtain a model representing the HF response of
the IM. However we developed interesting ideas which could be enhanced and reused in
the future. That is why I present here our approach which relies on energy. It should be
noted that all models enforcing the reciprocity conditions (see Sauer [30]) can be modeled
using this approach which is quite generic.
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Figure 5.9 – Current-flus relations obtained without deleting hysteresis: φDs (ıDs , 0) obtained
by a step on a-axis and φQs (0, ıQs ) obtained by a step on b-axis or c-axis. For the a-axis and
b-axis test the flux is first increased to its maximum value, then decreased to its minimum
value and finally reset to 0 and the for c-axis it is done in the opposite order. We can
notice that there is indeed a slight hysteresis effect.

5.3.1 Zero load tests

At first, we followed the approach proposed in the literature, that is to say start from
an unsaturated model and replace the inductances by nonlinear functions (see [17, 70]).
However, we applied this idea to the energy function instead of the current-flux relations.
This has the notable advantage of ensuring the reciprocity conditions (see [30]). In sec-
tion 3.6.2 we found the energy function associated to the saturated sinusoidal model of a
non-skewed-rotor IM recalled here using complex notations

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2Γdqm
∣∣∣φdq
s

+ φdq
r

∣∣∣ 2 + 1
2Γdqls

∣∣∣φdq
s

∣∣∣ 2 + 1
2Γdqlr

∣∣∣φdq
r

∣∣∣ 2
. (5.13)

As we don’t have any clue regarding the values of the leakage inductances, we suppose
that they are equal ΓDQls = ΓDQlr = ΓDQl in a first time. The energy function eq. (5.13) can
thus be rewritten

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2ΓdqM
∣∣∣φdq
s

+ φdq
r

∣∣∣ 2 + 1
2ΓdqL

∣∣∣φdq
s
− φdq

r

∣∣∣ 2
. (5.14)

with ΓdqM := Γdqm + Γdq
l

2 and ΓdqL := Γdq
l

2 . The terms of this expressions are related to
well described phenomena, the second being the energy stored in the mutual inductance
whereas the third is associated with leakage energy. The first idea which arises is thus to
saturate each energy with the associated flux

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2fM
(∣∣∣φdq

s
+ φdq

r

∣∣∣ 2)+ 1
2fL

(∣∣∣φdq
s
− φdq

r

∣∣∣ 2)
. (5.15)
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Due to the special structure of the model, tests at zero load should be sufficient to
characterize the model. That is why we chose to do no-load tests in a first place.

5.3.1.1 Experimental procedure

IMs produce a torque only when there is a difference of speed between the fluxes and the
rotor. Thus, to make zero load tests at standstill we just set a constant voltage along some
axis (any axis can be taken as the motor is non salient) which will be the d axis (this will be
the axis of the flux). This voltage creates a current along the same axis only. We injected
an HF signal along this axis or the quadrature axis, which is sufficient to parametrize
the model eq. (5.15). Similarly to the SynRM case addressed in section 5.2.1.2, this will
enable us to retrieve

ı̃ds = ∂2Hdq

∂φds
2
ũ

ΩF (Ωt) = ∂2Hdq

∂φ∗
s
∂φ

s

ũ

ΩF (Ωt) + ∂2Hdq

∂φ∗
s

2
ũ

ΩF (Ωt)

ı̃qs = ∂2Hdq

∂φqs
2
ũ

ΩF (Ωt) = ∂2Hdq

∂φ∗
s
∂φ

s

ũ

ΩF (Ωt)− ∂2Hdq

∂φ∗
s

2
ũ

ΩF (Ωt)

We recorded one point every 0.1A. This test is the simplest possible and has the additional
advantage of avoiding non-sinusoidal effects.

To confirm the validity of this test, we made other zero load tests using the load
machine to drive the motor at synchronous speed ωs = nωm = 1.6Hz. As in the previous
tests, we set a constant voltage along some axis of the chosen dq frame and injected a HF
signal along this axis or the quadrature axis. We repeated this experiment for one value
of the stator current every 0.1A.

5.3.1.2 Experimental results

Surprisingly, if we make the tests described in the previous paragraph, we get non sym-
metrical curves which is in contradiction with theory which forecasts even curves (see
section 3.4). This is explained by the hysteresis phenomenon in magnetic materials which
is described in section 5.3.2. This phenomenon cannot be taken into account by our
energy-based approach as it is non-conservative. Moreover, as we want the simplest model
for control, modeling hysteresis is not desirable. To avoid it which is not paramount in
control, we will do 2 tests:

• The constant voltage is increased from negative values to positive values and

• The constant voltage is decreased from positive values to negative values.

The results of the test at standstill are given in fig. 5.10 where we can see that the test
with increasing current gives curves which are the exact symmetric of those obtained with
decreasing currents. We also notice that the magnetic saturation has an important effect
on all the inductances. However the d and q axes inductances are saturated similarly
which was not the case in the SynRM where saturation curves differed greatly. Similar
results with a reduced effect of hysteresis are found running tests at synchronous speed
(see fig. 5.11).



5.3. A saturated IM model 133

−4 −2 0 2 4
0

0.5

1

Stator current (A)

∂
2
H
d
q

∂
φ
d s

2
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Figure 5.10 – Stator current ripple amplitudes on the flux and quadrature axes during tests
at standstill for the IM described by table 2.2 with increasing current (+) and decreasing
current (×).
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Figure 5.11 – Stator current ripple amplitudes on the flux and quadrature axes during
tests at synchronous speed for the IM described by table 2.2 with increasing current (+)
and decreasing current (×).
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Figure 5.12 – Effects of magnetic hysteresis on magnetic materials (taken from Cordier,
Landsmann, et al. [73]).

5.3.2 Hysteresis

5.3.2.1 Presentation of the phenomenon

When written in matter, Maxwell equations define 2 new fields, the magnetic induction
field H and the electric displacement field, associated respectively with the magnetic field
B and the electric field (see Mukerji, Khan, et al. [18, ch. 1]). The relation between H
and B is given by

B = µ0(H + M) (5.16)

where µ0 is the vacuum permeability and M is called the magnetization and is the cause
of magnetic hysteresis in ferromagnetic materials. In such materials M is a function of
the previous state of the material and the variation of H. This creates what is called the
hysteresis cycle shown in blue in fig. 5.12.

As we are doing HF signal injection, there is one other effect we should mention:
When the magnetic material is submitted to HF, the main hysteresis cycle is not followed.
Instead small cycles which are called Rayleigh loops are followed (in green in fig. 5.12).

Magnetic hysteresis modeling is still an open subject. There exist a lot of magnetic
hysteresis models (see listings in [74–77]), each one representing some experimental effects
but none taking all phenomena of fig. 5.12 into account. Furthermore much effort has
been done to model magnetic hysteresis along one axis whereas to model the IM a 2D
model of hysteresis is needed as the fluxes are rotating around the motor axis.
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5.3.2.2 Magnetic hysteresis at fundamental frequency

During our tests, we magnetized the motor in the negative or positive and then increased
or decreased the current. The fundamental flux follow thus the hysteresis cycle. This
phenomenon can easily explain the experimental results. Indeed, for a given current,
the flux will not be the same if the current is increasing or decreasing. Knowing that
the curves should be even with respect to φds in the absence of hysteresis, we can easily
explain the symmetry observed between the curves.

As we are not interested in modeling magnetic hysteresis in electric motors we would
like to get the ripple as if the relation current-flux was the dash-dotted curve in fig. 5.12.
The best approximation of this ideal curve (which is never followed) we can obtain from
our experimental results is the average of the increasing and the decreasing tests for every
current level. The approximation is obviously incorrect in the middle part of the curve
but it is quite good for higher flux and in particular around nominal flux.

5.3.2.3 Finding the cause of hysteresis

It would be interesting (for the next section) to know whether the magnetic hysteresis
is caused by the stator iron, the rotor iron or both. We carried out the following two
experiments on the IM described in section 2.1.2:

First experiment The motor is magnetized using a constant current along an axis before
beginning of the recording. We then inject a HF signal with no fundamental along
an axis while rotating the rotor. We computed the stator current ripple amplitude
along the axis and the quadrature axis and got the curves shown in fig. 5.13.

Second experiment The motor is again magnetized using a constant current along an
axis before beginning of the recording. We then inject a HF signal along an axis
slowly rotating synchronously with the rotor. We computed the stator current ripple
amplitude along the injection and quadrature axes and obtained the curves shown
in fig. 5.14.

In fig. 5.13 we notice that the amplitude of the ripple changes only when the rotor is
rotating whereas it only changes when the injection and the rotor electrical position are
desynchronized as can be seen in fig. 5.14. This means that hysteresis in the IM is caused
by the rotor iron. The curves of fig. 5.14 are much more noisy as the stator of the IM is
not sinusoidally wound.

5.3.2.4 Magnetic hysteresis and HF injection

According to what was said in section 5.3.2.1 and Cordier, Landsmann, et al. [73] the HF
response of the motor to an injected signal should follow the Rayleigh loops and the HF
response should consequently be affected by hysteresis. However as shown in section 4.2.3
HF voltage injection does not affect the rotor flux (at first order). So the response on
the stator current should not be affected by hysteresis caused by the rotor iron. This is
verified in experiments as the HF stator current ripple is triangular which would not be
the case otherwise.
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Figure 5.13 – The electrical angle θ (solid black line) and the stator current ripple ampli-
tude along the injection and the quadrature axes recorded during the first experiment on
the IM described intable 2.2.
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Figure 5.14 – The electrical angle θ (solid black line), the injection axis angle θi (dashed
black line) and the stator current ripple amplitude along the injection and the quadrature
axes recorded during the second experiment on on the IM described intable 2.2.
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5.3.3 A model for zero load test results

The energy function of eq. (5.15) leads to the current-flux relations

ıdqs + ıdqr = f ′M
(∣∣∣φdq

s
+ φdq

r

∣∣∣ 2) (
φdq
s

+ φdq
r

)
(5.17a)

ıdqs − ıdqr = f ′L
(∣∣∣φdq

s
− φdq

r

∣∣∣ 2) (
φdq
s
− φdq

r

)
. (5.17b)

The saturation of the magnetizing current-flux relation (here eq. (5.17a)) is well-known
and has been well studied because it has great influence on control laws as said in sec-
tion 5.1.2.1. We will use the model proposed by Malrait [17] which is with our notations

φdq
s

+ φdq
r

= Ldql (ıdqs + ıdqr ) + 2f
(
Ldqm

∣∣∣ıdqs + ıdqr
∣∣∣) (ıdqs + ıdqr )∣∣∣ıdqs + ıdqr

∣∣∣ = F
(∣∣∣ıdqs + ıdqr

∣∣∣) (ıdqs + ıdqr ).

To invert this relation we need to get the module of the magnetizing flux as a function of
the currents which is obtained by multiplying this relation by its complex conjugate and
take the square root

∣∣∣φdq
s

+ φdq
r

∣∣∣ =
Ldql +

2f
(
Ldqm

∣∣∣ıdqs + ıdqr
∣∣∣)∣∣∣ıdqs + ıdqr

∣∣∣
 ∣∣∣ıdqs + ıdqr

∣∣∣ = F
(∣∣∣ıdqs + ıdqr

∣∣∣) ∣∣∣ıdqs + ıdqr
∣∣∣ .

With G denoting the inverse of x 7→ F (x)x the magnetizing flux-current relation is given
by

ıdqs + ıdqr = 1
F
(
G
(∣∣∣φdq

s
+ φdq

r

∣∣∣))(φdq
s

+ φdq
r

). (5.18)

However this function cannot explain the HF response of the IM. Indeed in the interval
where the current-flux relation is linear, the ripple amplitude would be constant. Yet the
ripple varies by a factor 3 or 4 as can be seen on fig. 5.10.

This can be explained thanks to the saturation of the leakage flux. In section 5.3.1
we made the hypothesis that the leakage flux is saturated by itself. However on second
thoughts we realized that it is quite difficult to get the shape of the curve on fig. 5.10.
Moreover Tuovinen, Hinkkanen, et al. [70] propose a saturation of the leakage flux by the
magnetizing flux. This can easily explain the shape of the experimental curves figs. 5.10
and 5.11. We thus replace the energy function of eq. (5.15) by

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2fM
(∣∣∣φdq

s
+ φdq

r

∣∣∣ 2)+ 1
2ΓdqL fL

(∣∣∣φdq
s

+ φdq
r

∣∣∣ 2) ∣∣∣φdq
s
− φdq

r

∣∣∣ 2
.

(5.19)
With the saturation functions given by

f ′M(φ2
m) = 1

F (G (φm)) (5.20a)

fL(φ2
m) = 1 + φ2

m

φ2
0

(5.20b)

and the parameters given in table 5.6 we obtained the solid lines drawn in fig. 5.15. This
is quite a good result and we can hope that this model can also represent the HF response
of a motor under load.
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Magnetic parameter Numeric value

Ldqm 0.420H
Ldql = Ldqls = Ldqlr 0.117H

φ1 0.7Wb
φ2 0.85Wb
φ0 0.952Wb

Table 5.6 – The magnetic parameters of the model given by eqs. (5.19) and (5.20) (φ1 and
φ2 are defined in [17]).
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Figure 5.15 – Experimental HF response (+ and ×) obtained on the IM described in
table 2.2 and simulated HF response (solid lines) using the model described by eqs. (5.19)
and (5.20) with the parameters from table 5.6.
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5.3.4 Tests with load

IMs yield a torque under the condition that ωs 6= ω. We thus have 2 basic solutions:
Either rotating the IM with the load machine at ωs = 0 or locking the rotor and taking
ωs 6= 0. As we are interested by the low speed domain and as the load machine cannot
rotate regularly at low speed under torque, we must choose the second solution. The
drawback is that we will have to filter out the noise caused by the non-sinusoidality of the
stator wirings.

5.3.4.1 Experimental protocol

The IM is locked using the brake of the test bench. We inject some constant current along
the d axis of a dq frame which rotates at the chosen frequency ωs with respect to the αβ
frame.

We also inject a ±20V HF square signal of frequency 500Hz along an axis rotating
slowly (at ωi = θ̇i = 1Hz) with respect to the chosen dq frame. The HF response is
measured along the injection axis u and the orthogonal axis v. As in section 5.2.1.2 this

allows us to get
∂2Hdq
∂φ∗

s
∂φ

s

and the modulus and phase of
∂2Hdq

∂φ∗
s

2 .

5.3.4.2 Experimental results

The aforementioned test was repeated for some values of ωs and for each 0.1A for the
constant current. After adequate processing to extract the ripple and remove the noise
caused by non-sinusoidality of the motor, we obtained the curves shown in fig. 5.16.

By contrast with the curves of figs. 5.10 and 5.11 increasing or decreasing current has
the same effect which means that hysteresis does not affect the results anymore.

Considering the symmetries of the energy function (see section 3.4) we can prove that
its partial derivatives have the parities listed in table 5.7. Moreover when the stator
current is reverted all fluxes components are reverted whereas when the stator speed is
reverted only φqs and φqr are reverted. Thus the curves of figs. 5.16a and 5.16b should
be even with respect to the stator current and the stator speed whereas the curves of
fig. 5.16c should be even with respect to the stator current and odd with respect to the
stator speed. The data plotted in fig. 5.16 obviously agree with what was foretold using
the symmetries of the IM.

We also notice that the amplitude of the magnetic saliency is very small: It hardly
goes above 0.1A. For modeling this is not a problem but when trying to control the IM
using signal injection we will have to use a larger HF injection.

Finally the model eqs. (5.19) and (5.20) do not convey what is observed under load.
Neither the shape of the curves of fig. 5.16a nor the large phase variation in fig. 5.16c can
be explained by the proposed model. It seems that the load and thus the appearance of
rotor currents has an important effect on the HF response.

Compared to the case of the PMSM (see [37]) a much wider flux range is covered as
in the SynRM case. This will prevent us from using a Taylor series as in the case of the
SynRM. However the whole flux range is not used in normal operation of the IM as the
flux remains usually close to its nominal value. We thus carried out another test with a
more constant flux.
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Figure 5.16 – Information extracted using HF injection applied to the 0.75kW IM de-
scribed in table 2.2.
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φds φqs φdr φqr

ıds = ∂Hdq
∂φds

odd even even even

ıqs = ∂Hdq
∂φqs

even odd even even

Γtds = ∂2Hdq
∂φds

2 even even even even

Γtqs = ∂2Hdq
∂φqs

2 even even even even
∂2Hdq
∂φds∂φ

q
s

odd odd even even

Table 5.7 – Parities of the paratial derivatives of the energy function.

5.3.4.3 Experimental protocol

The IM is still locked but instead of choosing the constant current we inject, we compute
the voltage needed to achieve a constant flux target. We thus ensure that the flux is
aligned along the d axis and has the desired norm. As before we inject a ±20V HF square
signal along an axis rotating slowly (at ωi = θ̇i = 1Hz) with respect to the chosen dq
frame. The HF response is measured along the injection axis u and the orthogonal axis v.

5.3.4.4 Experimental results

The aforementioned test was repeated for some values of the flux norm and for each 0.1Hz
for ωs. We thus obtained the experimental points represented in fig. 5.17.

Again hysteresis does not affect the results. We also find the same symmetries as
before: The curves in figs. 5.17a and 5.17b are even with respect to the stator speed
whereas the curves in fig. 5.17c are odd with respect to the stator speed. They should
also be even with respect to the flux, but this is not visible as we only used positive fluxes.

As noted previously the amplitude of the magnetic saliency is quite small as in the
previous tests. Moreover, contrarily to intuition, it decreases when the flux increases. The
only solution we have is thus to increase the amplitude of the HF signal.

The phase again varies greatly around zero load. We can observe that it is almost in
quadrature with the estimated direction of the rotor flux φdqr , i.e. the estimated direction
of the rotor current ıdqr . Our model obviously do not convey this phenomenon.

5.3.5 Modeling tentatives

From the result of the section section 5.3.4 it becomes obvious that the model, eqs. (5.19)
and (5.20), is not sufficient to describe the induction machine. Moreover the model is
valid only in the domain where the IM does not yield any power.

To control the IM a more accurate model is needed. We would like it to be valid at
least in the range [0.5φnr , 1.5φnr ] which is the range where the motor will be most probably
used. We thus avoid the range where hysteresis has a notable effect. For its design we
are going to use again the energy-based framework which was fruitful until now. Our
interesting attempts to model the magnetic saturation of the IM under load are presented
in this section, even though we failed to obtain a model conveying all the observed effects.
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Figure 5.17 – Information extracted at almost constant flux using HF injection applied to
the 0.75kW IM described in table 2.2.
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5.3.5.1 Rotation of the eigen-spaces of the current-flux relation

The energy function which gave good results at zero load (see eq. (5.19)) can be written
with complex variables (see section 3.2.3 for how they can be used with energy-based
modeling)

Hdq(θ, ρ, φdq
s
, φdq

s

∗
, φdq

r

∗
, φdq

r
) =

(
φdq
r

φdq
s

)†
R†(0, π4 , 0)Γ

(∣∣∣φmdq∣∣∣ 2)R(0, π4 , 0)
(
φdq
r

φdq
s

)
(5.21)

where R(0, π4 , 0) ∈ SO(2) ⊂M2(R) is the rotation of angle π
4 . As it seems that the phase

of the eigenvectors is modified, our idea is to change the orientation of the eigenvectors
by changing this rotation. As we are working with complex numbers, we will be working
with the unit group SU(2) ⊂M2(C) which can be parametrized as follows

R(ηx, ηy, ηz) :=
(

eηz cos(ηy) eηx sin(ηy)
−e−ηx sin(ηy) e−ηz cos(ηy)

)
.

To obtain the curves of figs. 5.16 and 5.17 ηx, ηy and ηz must depend on the fluxes
and be equal to 0, π

4 and 0 respectively when there is no load. This can lead to quite
complex computations in the general case. Thus we will suppose that the disturbance is
small enough and use the first order approximation of R

R(ηx, ηy, ηz) =
(

1 + ηz + o(ηx, ηy, ηz) ηy(1 + ηx) + o(ηx, ηxηz)
−ηy(1− ηx) + o(ηx, ηxηz) 1− ηz + o(ηx, ηy, ηz)

)
(5.22a)

≈
(

1 0
0 1

)
+
(

0 
 0

)
ηyηx +

(
0 1
−1 0

)
ηy +

(
 0
0 −

)
ηz (5.22b)

≈ I2 + σxηyηx + σyηy + σzηz (5.22c)

where σx, σy and σz are Pauli matrices.
As the computations are quite tedious due to the dependencies of the angle on the

fluxes even with the first order approximation of matrices of SU(2), I tested only the most

simple case in simulation: The angles ηx, ηy and ηz are linear functions of =(φdq
s
φdq
r

∗)2

with coefficients αx, αy and αz. For the inverse inductance matrix Γ, we used both the
unsaturated model (see fig. 5.18), to see the effects of each term, and the saturated model
developed in section 5.3.3 (see fig. 5.19) which worked at zero torque.

As simulations did not gave good results, this approach was abandoned because it
seemed sterile and rapidly lead to very complex computations.

5.3.5.2 Different leakage inductances

As the presence of rotor current seems to impact greatly the measured ripple we studied
more carefully the layout of the rotor and discovered by comparing to the literature [78]
that the motor has most probably closed slots on the rotor (whereas stator slots are open).
Thus taking equal leakage inductances is not possible and we must consider that they are
not equal. Besides the current response to HF signal injection is mainly caused by the
saturation of the leakage flux paths (see section 5.1.2). We still would like to have a
formula similar to eq. (5.14) and we find

Hdq(ρ, φdq
s
, φdq

r
) = 1

2JLn2ρ
2 + 1

2ΓdqM
∣∣∣φdq
s

+ φdq
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2ΓdqL
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s
− φdq

r
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+ ΓdqX<
(
(φdq

s
+ φdq

r
)(φdq

s
− φdq

r
)∗
)

(5.23)
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Figure 5.18 – Testing the modeling approach of section 5.3.5.1 in simulation on an unsat-
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to understand the effects of the parameter of the rotation R.
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Figure 5.19 – Testing the modeling approach proposed in section 5.3.5.1 in simulation
on a saturated IM model under nominal flux with the parameters ηx, ηy and ηz linearly

depending on =
(
φdq
s
φdq
r

∗)2
.
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with ΓdqM := Γdqm + Γdq
ls

+Γdq
lr

4 , ΓdqL := Γdq
ls

+Γdq
lr

4 and ΓdqX := Γdq
ls
−Γdq

lr

4 . This is a generalization of
eq. (5.14) the eigenvectors are not aligned with (1, 1)T and (1,−1)T any more.

Of course we need to saturate the inductances. For the magnetizing inductance ΓdqM
we stick to the function proposed in section 5.3.3. But for the leakage inductance there
is no model in the literature. Moreover we cannot even get the shape of these functions.
We tried sensible functions based on sensible shapes. However the results were not good
enough.

5.3.5.3 Polynomial term creating no ripple at zero load

The major problem with Hamiltonian modeling stems from the fact that the 2 state
variables (i.e. φdq

s
and φdq

r
) are almost collinear. Indeed, these are fluxes going through

the stator and rotor surfaces respectively and these surfaces are by construction as close
as possible. Thus, there will not be an important difference between the two fluxes.
Therefore in most Hamiltonian models, the phase of the stator current ripple amplitude
is almost aligned with the main flux (see [57, 78]), but this is not what is observed in the
experiments.

Indeed during experiments it was found to be almost in quadrature with respect to
the estimated value of φdq

r
. To a lesser extent this is signaled in Yoon and Sul [4] where

the maximum of the ripple amplitude shifts by 20◦ from the flux axis. It would thus be

interesting to find terms creating a ripple orthogonal to φdq
r

or φdq
r

2
. We try it on the

simplest energy function possible, the polynomial

P (φdq
s
, φdq

s

∗
, φdq

r
, φdq

r

∗) =
∑

(a1,a2,a3,a4)∈N4

αa1a2a3a4φ
dq

s

a1
φdq
s

∗a2
φdq
r

a3
φdq
r

∗a4
. (5.24)

Creating a ripple orthogonal to φdq
r

is not possible, when the symmetry conditions are

respected. However creating a ripple orthogonal to φdq
r

2
is possible under the following

conditions.

Real Hamiltonian The energy function should be real that is to say it should be equal
to its complex conjugate which reads

P (φdq
s
, φdq

s

∗
, φdq

r
, φdq

r

∗) = P (φdq
s

∗
, φdq

s
, φdq

r

∗
, φdq

r
) (5.25)

Invariance The energy function should be invariant by rotation and the symmetry de-
scribed in section 3.4.2.1, that is to say, including the previous condition

P (φdq
s
, φdq

s

∗
, φdq

r
, φdq

r

∗) = P
(∣∣∣φdq

s

∣∣∣2 , 2<(φdq
s
φdq
r

∗)
,
∣∣∣φdq
r

∣∣∣2) (5.26)

Orthogonality The double derivative of the energy function with respect to φdq
s

∗
should

be orthogonal to φdq
r

2
which means that the dot product between them should be

zero, i.e.

−
∑

(a1,a2,a3,a4)∈N4

a2(a2 − 1)αa1a2a3a4φ
dq
s

a1
φdq
s

∗a2−2
φdq
r

a3
φdq
r

∗a4+2

=
∑

(a′1,a′2,a′3,a′4)∈N4

a′2(a′2 − 1)αa′1a′2a′3a′4φ
dq
s

a′2−2
φdq
s

∗a′1φdq
r

a′4+2
φ∗
r

a′3 (5.27)
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These relations give constraints on the coefficients αa1a2a3a4 of the polynomial:

• Eq. (5.25) is equivalent to ∀(a1, a2, a3, a4) ∈ N4

αa1a2a3a4 = αa2a1a4a3 (5.28)

• Eq. (5.26) implies to ∀(a1, a2, a3, a4) ∈ N4

(a1 + a3) 6= (a2 + a4)⇒ αa1a2a3a4 = 0 (5.29)

• Eq. (5.27) is equivalent to ∀(a1, a2, a3, a4) ∈ N4

(a2 + 2)(a2 + 1)αa1(a2+2)(a3+2)a4 = −(a1 + 2)(a1 + 1)αa2(a1+2)(a4+2)a3 (5.30)

It was found algorithmically that the constraints eqs. (5.28) to (5.30) can be verified
simultaneously, the lower degree polynomials being

φdq
s
φdq
s

∗2
φdq
r

2
φdq
r

∗ + φdq
s

2
φdq
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∗
φdq
r
φdq
r

∗2 − 1
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dq
s
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3
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s
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s
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r
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s

∗4
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s
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s
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r
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r
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s
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r
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As can be seen in fig. 5.20 in blue when one of these polynomial terms is added to
an unsaturated energy function the phase matches the experimental phase. On the other
hand the mean value and the amplitude of the ripple are badly modeled of course. However
when saturation is added (in green in fig. 5.20) to the leakage inductance, the quality of
the phase model decreases and the modeling of the mean value and amplitude of ripple
are not increased much.

5.3.5.4 Lagrangian-based modeling in dq frame

The rotor current seems to have a great influence on the stator current ripple amplitude
as was demonstrated in section 5.3.4. Besides the phase of the ripple was experimentally
shown to be in the direction of the rotor current. It seems that the rotor slots bridges (see
[34, ch. 4-6]) are saturated by the leakage flux created by the rotor current. It could be
thus interesting to have the rotor current ıdqr as one of our state variables. To do this we
just have to use Lagrangian based modeling. The only problem is that we will not have
such simple equations as the Lagrangian does not yield state equations directly.

A Lagrangian model of a generic electric motor is given in the abc frame in section 3.2.4.
Applying the same method as in sections 3.3.2 and 3.3.3 this model can be transformed
to dq0 frame. After decoupling the 0 axis as in section 3.5, Euler-Lagrange equations in
dq frame in the case of a sinusoidal motor are given by

d

dt

∂Ldq

∂ıdqs
= udqs −Rsı

dq
s − ωs

∂Ldq

∂ıdqs
(5.31a)

d

dt

∂Ldq

∂ıdqr
= −Rrı

dq
r − (ωs − ω)∂L

dq

∂ıdqr
(5.31b)

d

dt

∂Ldq

∂ω
= ∂Ldq

∂ıdqr
J2ı

dq
r −

TL
n

(5.31c)
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(A

) Experimental data
Unsaturated
φ0 = 1Wb
φ0 = 0.7Wb

+ v axis data
+ w axis data

(b)

∣∣∣∣∣ ∂2Hdq

∂φdq
s

∗2
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Figure 5.20 – Testing the modeling approach proposed in section 5.3.5.3 in simulation on
a saturated IM model under nominal flux with 100 times the polynomial of order 6 added
to the energy function.
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which are not a state form as expected. Using the chain rule and supposing that the
flux-current relations do not depend on ω we find d

dt
∂Ldq
∂ıdqs

d
dt
∂Ldq
∂ıdqr

 = d

dt

∂Ldq
∂ıdqs
∂Ldq
∂ıdqr

 =
 ∂2Ldq
∂ıdqs ∂ı

dq
s

∂2Ldq
∂ıdqs ∂ı

dq
r

∂2Ldq
∂ıdqr ∂ı

dq
s

∂2Ldq
∂ıdqr ∂ı

dq
r

dıdqs
dt
dıdqr
dt

 = ∂2Ldq

∂(ıdqs , ıdqr )2

dıdqs
dt
dıdqr
dt


where ∂2Ldq

∂(ıdqs ,ıdqr )
2 is the Hessian matrix of the magnetic part of the Lagrangian function.

Using the currents and the speed as state variables and supposing the mechanical energy

is 1
2JL

(
ω
n

)2
, we find as state form


d
dt
ıdqs

d
dt
ıdqr
d
dt
ω

 =


(

∂2Ldq

∂(ıdqs ,ıdqr )
2

)−1
04,1

01,4
n
JL



udqs −Rsı

dq
s − ωs ∂L

dq

∂ıdqs

−Rrı
dq
r − (ωs − ω)∂Ldq

∂ıdqr

n∂L
dq

∂ıdqr
J2ı

dq
r − TL

 . (5.32)

We know from section 4.2.3 that the stator voltage ripple ũdqs = ũf(Ωt) creates a stator

flux ripple φ̃dqs = ũ
ΩF (Ωt). At first order the current ripple can be expressed

(
ı̃dqs
ı̃dqr

)
=
 ∂2Ldq

∂(ıdqs , ıdqr )2

−1 (
ũ
ΩF (Ωt)

02,1

)
(5.33)

using the chain rule as above. Alternatively, using the Jacobian matrices of the flux-
current relations, the stator current ripple can be expressed as

ı̃dqs =
∂φdqs
∂ıdqs

− ∂φdqs
∂ıdqr

(
∂φdqr
∂ıdqr

)−1
∂φdqr
∂ıdqs

−1
ũ

ΩF (Ωt). (5.34)

We showed how to make a Lagrangian-based model of an IM and computed the ex-
pected stator current ripple using the partial derivatives of the energy function. The
currents are now state variables which is advantageous. However it has a major draw-
back: The algebraic calculation of the ripple are almost impossible. Despite this problem
I wrote some Lagrangian models of IM based on

Ldq(ω, ıdqs , ıdqr ) = 1
2
JL
n2 ω

2 + 1
2fm

(∣∣∣ıdqs + ıdqr
∣∣∣ 2)+ 1

2Llsfl
(∣∣∣ıdqs + ıdqr

∣∣∣ 2) ∣∣∣ıdqs ∣∣∣ 2

+1
2Llrfl

(∣∣∣ıdqs + ıdqr
∣∣∣ 2)

fr
(∣∣∣ıdqr ∣∣∣ 2) ∣∣∣ıdqr ∣∣∣ 2

(5.35)

with the parameters given in table 5.8. This expression includes the main flux path
saturation (see [17, 21]) through fm but also leakage flux path saturation as in section 5.3.3
through fl and saturation of the rotor leakage flux path through fr. It gave quite good
results as can be seen in fig. 5.21 but I could not tune correctly the coefficients and was
not able fit the experimental curves.

5.3.5.5 Other choices of state variables in dq frame

The preceding sections shows that we have to trade off between the complexity of the
calculations and the choice of state variables. It is very advantageous to have the rotor
current as a state variable as it seems to have a great effect on the saturation of the motor.
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Model Function Expression Parameters

1
fm

(∣∣∣ıdqs + ıdqr
∣∣∣2)=Lm Lm = 0.42H

Lls = 0.09H
Llr = 0.15H
x∞r = 0.2
i0 = 0.32A

fl

(∣∣∣ıdqs + ıdqr
∣∣∣2)= 1

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+
|ıdqr |2
i20

2
fm

(∣∣∣ıdqs + ıdqr
∣∣∣2)=Lm Lm = 0.42H

Lls = 0.12H
Llr = 0.12H
x∞r = 0.5
i0 = 0.1A

fl

(∣∣∣ıdqs + ıdqr
∣∣∣2)= 1

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+

√
|ıdqr |2
i0

3
fm

(∣∣∣ıdqs + ıdqr
∣∣∣2) see Malrait [17] Lm = 0.42H

Lls = 0.07H
Llr = 0.14H
φ1 = 0.7Wb
φ2 = 1.2Wb
x∞l = 0.25
i1 = 2A
x∞r = 0.25
i0 = 0.32A

fl

(∣∣∣ıdqs + ıdqr
∣∣∣2)=x∞l + 1−x∞l

1+

√
|ıdqs +ıdqr |2

i1

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+
|ıdqr |2
i0

Table 5.8 – Saturation functions and parameters tested in simulation with the Lagrangian
model eq. (5.35).
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Figure 5.21 – Testing the modeling approach proposed in section 5.3.5.4 in simulation on
a saturated IM model under nominal flux with the saturation functions and parameters
listed in table 5.8.
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But if the stator current is also used the calculations are too difficult. Thus we will choose
the stator flux as the other state variable. It should be noted that we thus get similar
state variables as Tuovinen, Hinkkanen, et al. [70].

To obtain such a model, we should make a partial Legendre transformation

Edq = φdqs
T
ıdqs + ρω

n2 − L
dq (5.36)

which gives, when its differential is written in the sinusoidal case,

dEdq = φdqs
T
dıdqs + ıdqs

T
dφdqs + ρ

n2dω + ω

n2dρ−
∂Ldq

∂ω
dω − ∂Ldq

∂ıdqs

T

dıdqs −
∂Ldq

∂ıdqr

T

dıdqr

= ıdqs
T
dφdqs + ωdρ− ∂Ldq

∂ıdqr

T

dıdqr .

Thus Edq can be seen as a function of ω, φdqs and ıdqr which is exactly what we wanted.
Identifying the above equation with the usual differential expression, we find

n2∂Edq

∂ρ
= ω (5.37a)

∂Edq

∂φdqs
= ıdqs (5.37b)

∂Edq

∂ıdqr
= −∂L

dq

∂ıdqr

T

= −φdqr . (5.37c)

Euler-Lagrange equations are then transformed into

dφdqs
dt

= udqs −Rsı
dq
s − ωsφdqs (5.38a)

d

dt

∂Edq

∂ıdqr
= Rrı

dq
r − (ωs − ω)∂E

dq

∂ıdqr
(5.38b)

1
n

dρ

dt
= −n∂E

dq

∂ıdqr
J2ı

dq
r − TL (5.38c)

which is not a state form. As in the Lagrangian case a state-form can be obtained using
the chain rule in the following way

d

dt

∂Edq

∂ıdqr
= ∂2Edq

∂ıdqr ∂φ
dq
s

dφdqs
dt

+ ∂2Edq

∂ıdqr
2
dıdqr
dt

where we supposed as always that the magnetic part of this energy function does not
depend on ρ. The state-form thus reads


d
dt
φdqs
d
dt
ıdqr
d
dt
ω




I2 0 02,1

−
(
∂2Edq

∂ıdqr
2

)−1
∂2Edq

∂ıdqr ∂φ
dq
s

(
∂2Edq

∂ıdqr
2

)−1
02,1

01,2 01,2 1


 udqs −Rsı

dq
s − ωsφdqs

−Rrı
dq
r − (ωs − ω)φdqr

n2

JL
φdqr J2ı

dq
r − n

JL
TL

 . (5.39)

where the current-flux relations are given by eq. (5.37). The current-flux relations are
now less complex than they are in the Lagrangian case above. We have only to invert a
2x2 matrix in the real case.
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The ripple can be computed similarly as in the Lagrangian case. The differential of
the current-flux relations reads

d

(
ıdqs
φdqr

)
=

 ∂2Edq

∂φdqs
2

∂2Edq
∂φdqs ∂ı

dq
r

∂2Edq
∂ıdqr ∂φ

dq
s

∂2Edq

∂ıdqr
2

 d(φdqs
ıdqr

)

As we know from section 4.2.3 that the voltage injection ũdqs = ũf(Ωt) creates a stator

flux ripple φ̃dqs = ũ
ΩF (Ωt) and no rotor flux ripple, the ripple on the stator current will be

given by

ı̃dqs =
∂2Edq

∂φdqs
2 −

∂2Edq

∂φdqs ∂ı
dq
r

(
∂2Edq

∂ıdqr
2

)−1
∂2Edq

∂ıdqr ∂φ
dq
s

 ũ

ΩF (Ωt) (5.40)

As the state form, this expression is simpler than the one we obtained for the Lagrangian
as there is only a 2x2 matrix to invert. This energy function is thus a trade-off between
the complexity of the calculations and the fact that we don’t want to have collinear state
variables.

We designed some models based on the energy function

Edq(ρ, φdq
s
, φdq

r
) = 1

2fm
(∣∣∣φdq

s

∣∣∣ 2)− 1
2fx

(∣∣∣φdq
s

∣∣∣ 2)<(φdq
s
ıdqr
∗)− 1

2Llrfr


∣∣∣∣∣∣ıdqr − φdq

s

Llr

∣∣∣∣∣∣
2
 ∣∣∣ıdqr ∣∣∣ 2

+1
2

1
JLn2ρ

2 (5.41)

with the parameters listed in table 5.9 and got quite good results as can be seen in
fig. 5.22 since we could make some calculations. However we were not able to make a
model explaining all the curves of fig. 5.17.

5.3.5.6 Hamiltonian-based modeling in DQ frame

In the two previous sections we showed that the only computationally possible choice of
state variables is the stator and rotor fluxes. However those are quite close from one
another. In section 3.3.4.2 we designed a model for non-salient motors in the DQ frame
which is recalled below for convenience. As the motor is star-connected the 0-axis can be
decoupled and we study the sinusoidal case. Moreover due to the definition of the DQ
frame in the non-salient case φQr ≡ 0. We will thus denote φDr by φr. With all these
simplifications the state-form reads

dφDQs
dt

= uDQs −Rsı
DQ
s − J2

(
ω +Rr

ıQr
φr

)
φDQs (5.42a)

dφr
dt

= −Rrı
D
r (5.42b)

1
n

dρ

dt
= Te − TL (5.42c)

with the associated current-flux relations

ıDQs = ∂HDQ

∂φDQs
(5.43a)

ıDr = ∂HDQ

∂φr
(5.43b)
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Model Function Expression Parameters

1
fm

(∣∣∣φdq
s

∣∣∣2)= 1
Lm+Lls

∣∣∣φdq
s

∣∣∣2 Lm = 0.42H
Lls = 0.12H
Llr = 0.25H
x∞r = 0.2
i0 = 0.32A

fx

(∣∣∣φdq
s

∣∣∣2)= Lm
Lm+Lls

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+
|ıdqr |2
i20

2
fm

(∣∣∣φdq
s

∣∣∣2)= |φ
s
|2

Lm+Lls

(
1 + |φs|

2p

φ2p
0

)
Lm = 0.6H
Lls = 0.12H
Llr = 0.25H
p= 3
φ0 = 1.5Wb
x∞r = 0.1
i0 = 1.41A

fx

(∣∣∣φdq
s

∣∣∣2)= Lm
Lm+Lls

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+
|ıdqr |2
i0

3
fm

(∣∣∣ıdqs + ıdqr
∣∣∣2)= |φ

s
|2

Lm+Lls

(
1 + |φs|

2p

φ2p
0

)
Lm = 0.42H
Lls = 0.12H
Llr = 0.25H
p= 5
φ0 = 1.3Wb
φ1 = 1Wb
x∞r = 0.5
i0 = 1A

fx

(∣∣∣φdq
s

∣∣∣2)= 1 + |φ
dq
s
|2

φ2
1

fr

(∣∣∣ıdqr ∣∣∣2)=x∞r + 1−x∞r

1+
|ıdqr |2
i0

Table 5.9 – Saturation functions and parameters tested in simulation with the energy
model eq. (5.41).
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Figure 5.22 – Testing the modeling approach proposed in section 5.3.5.5 in simulation on
a saturated IM model under nominal flux with the saturation functions and parameters
listed in table 5.9.
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TJ2ı
DQ
s
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(5.43c)

ω = n2∂HDQ

∂ρ
(5.43d)

Te = −nφDQs
TJ2ı

DQ
s . (5.43e)

Thanks to this special change of frame we were able to remove another state variable. In
this frame the IM has only three state variables which is very interesting. This change of
variables is obviously not valid at zero flux but this is not a problem as the IM does not
yield any torque at zero flux.

As we are interested in working points close to constant rotor flux φr will be considered
almost constant. We are thus close to the PMSM case developed in Jebai [37] and recalled
in section 5.1.3. However the saturation is too important to be modeled by third of fourth
order polynomial as were used there. We thus tried different functions but did not find
any model to represent the experimental results.

This formulation seems strangely to be totally different than what was obtained in a
dq frame. However, the DQ state variables can be expressed using dq variables

φDs = φdqs
T
φdqr

‖φdqr ‖
=
<
(
φdq
r

∗
φdq
s

)
∣∣∣φdq
r

∣∣∣ (5.44a)

φQs = φdqs
TJ2φ

dq
r

‖φdqr ‖
=
=
(
φdq
r

∗
φdq
s

)
∣∣∣φdq
r

∣∣∣ (5.44b)

as they are the projection of the stator and rotor fluxes on the rotor flux. Changing the
frame is thus equivalent to working with special combinations of state variables.

5.3.6 Conclusion

In this section we tried to devise a saturated IM model which conveys the effects of HF
voltage signal injection. IM modeling is much more complex than SynRM or PMSM
modelling due to the presence of unmeasured rotor variables.

In a first time we considered a simple extension of the unsaturated sinusoidal IM model.
Doing so we faced unexpected phenomena linked with magnetic hysteresis occurring in the
rotor core. We could fit a model for no load experimental data. However the experimental
results drastically change as soon as the IM is under load. We could unfortunately not
find a suitable model which conveys the effects observed experimentally due to lack of
time. This might also be due to two-dimensional magnetic hysteresis effects for which no
complete model exist.





Chapter 6

“Sensorless” motor control at
medium and high speed

Chapitre 6 — Contrôle « sans capteur » à moyenne et haute vitesse
Ce chapitre propose une loi de contrôle « sans capteur » conçue initialement pour le moteur
synchrone à reluctance. Sa stabilité est prouvée pour le modèle saturé en s’appuyant sur
la séparation des échelles de temps. L’influence des limitations de courant stator et de
tension stator (imposées par le variateur de vitesse) est étudiée et détaillé dans le cas non
saturé. Le point de fonctionnement choisi est optimisé afin de minimiser les pertes par effet
Joule dans les enroulements du stator. Grâce aux similarités entre moteurs synchrones à
reluctance et à aimant permanent, cette loi est très facilement étendue à ces derniers.

In chapter 3 we described a general framework to build consistent models for electric
machines. Thanks to this original approach, we are able to convey the behavior of electric
machines using one scalar function. We now want to design a “sensorless” control law
which is based on such models. Furthermore, this modeling approach shows that electric
motors are very similar from one another: by choosing the parameters of a fictitious
generic electric motor one can transform it into an IM, a PMSM or a SynRM. This let us
think that a generic control law for all kind of electric motors can be designed. However,
we were not able to generalize it to IMs yet. Currently it can only handle SynRMs and
PMSMs.

We showed in section 4.1.4 that all electric motors are not linearly observable on
permanent trajectories where ωs,e = 0 when they are not instrumented using mechanical
sensors. Due to parametric errors, this unobservability zone extends to the low speed
domain. The control of electric motors is thus inherently difficult at low speed where we
need to resort to HF injection (see Capecchi, Guglielmi, et al. [49], Jansen and Lorenz
[78], Corley and Lorenz [85] and chapter 7). This is the reason why the control laws
described in this section can only be used to control electric motors at rated or high
speeds.

6.1 A control law for the SynRM

Speaking in terms of energy-based models, the SynRM was shown in section 3.6 to be the
most simple electric motor. It is thus logical to consider it in the first place. The control
law will then be extended to the PMSM (see section 6.2).
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We first express the model under a form which is suitable for the control in sec-
tion 6.1.2. Secondly, the proposed control law is described and its stability is proven (see
sections 6.1.3 and 6.1.4). Thirdly, we consider how the torque is limited by the current
and voltage limitations and how to get maximum efficiency from the SynRM in all cases
(see sections 6.1.5 and 6.1.6). It will lead us to reconsider the so-called “field-weakening”
approach (see section 6.1.1 for details). Finally, in section 6.1.7 we give simulation results
which highlight the performance of the control law, even when pushed to its limits.

6.1.1 Preliminary: Existing control laws

Capecchi, Guglielmi, et al. [49], Lagerquist, Boldea, et al. [79] propose control laws which
can be separated in the following parts:

Flux and speed observers Allows to get an estimate of the speed and fluxes, from the
current measurements. Sometimes, they are separated, but not always.

Speed controller It regulates the speed based on the estimate provided by the speed
observer. It outputs a torque reference.

Flux or current controller It controls the currents, or equivalently the fluxes, so that
the SynRM yields the desired torque.

Even though it is not stated clearly, the stability of those control laws relies on time scale
separation between these parts.

The computation of the flux reference from of the torque reference is critical to de-
sign efficient control laws. The locus of the most efficient working points is often found
experimentally (see Lagerquist, Boldea, et al. [79]), because it depends of the model non-
linearities. Malekian, Sharif, et al. [80] gives the solution in the unsaturated SynRM case,
which will be detailed in section 6.1.6, to show how it can be adapted to the saturated
model.

At higher speeds the flux must be limited, otherwise the needed voltage might be too
high. This is traditionally called “field weakening”. Lagerquist, Boldea, et al. [79] and
Malekian, Sharif, et al. [80] propose two approaches, the second one being the best, as it
allows to reach some working points which are not reachable using the first one.

6.1.2 SynRM model

We consider here a star-connected saturated sinusoidal SynRM. Under these assumptions
it is shown in sections 3.5.3 and 3.8 that the behavior of the SynRM can be conveyed by
the energy functionHDQ(ρ, φDQs ) associated with the state equations eq. (3.29). Moreover,
the energy can be separated in two parts: the kinetic energy, depending only on ρ, the
kinetic momentum, which will be taken as ρ2/(2JLn2), since we are not interested in
mechanical modeling; and the magnetic energy, depending only on φDQs in the sinusoidal
case. That said, the state eq. (3.29) rewrites

dφDQs
dt

= uDQs −Rsı
DQ
s (φDQs )− J2ωφ

DQ
s (6.1a)

JL
n

dω

dt
= Te(φDQs )− TL (6.1b)

dθ

dt
= ω (6.1c)
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where

ıDQs (φDQs ) = ∂HDQ

∂φDQs
(φDQs ) (6.2a)

Te(φDQs ) = nıDQs
TJ2φ

DQ
s . (6.2b)

However, the position of the DQ frame is not known in “sensorless” control laws. The
measurements are the currents in the chosen dq frame, ıdqs , and the controls, the voltages
in the chosen dq frame, udqs . θs being the angle between the αβ and the chosen dq frames,
the relations between dq and DQ variables are

uDQs = R(−η)udqs (6.3a)

ıdqs = R(η)ıDQs (6.3b)

where the angle of the rotation is η := θ − θs. Fig. 6.1 gives the respective positions of
the different frames. Looking back to the system eqs. (6.1), (6.3a) and (6.3b) we see that
θ enters the equations only as η. The state equations can thus be rewritten

dφDQs
dt

= R(−η)udqs −Rsı
DQ
s (φDQs )− J2ωφ

DQ
s (6.4a)

JL
n

dω

dt
= Te(φDQs )− TL (6.4b)

dη

dt
= ω − ωs (6.4c)

where ωs := dθs
dt

and the stator currents and the electromagnetic torque are given by
eqs. (6.2a) and (6.2b) respectively. Eq. (6.4) with the 2 current measurements eq. (6.3b)
represents the state form of the SynRM. The controls at our disposal are the 2 voltages
udqs and the stator speed ωs.

α

β

DQ
d

q

θ θs

η

Figure 6.1 – Respective position of the different frames.

6.1.3 Control law description

The control law proposed hereafter relies on time-scale separation (see Khalil [59, ch. 9.2]).
In section 6.1.3.1 we describe how to drive the stator flux to its reference, but this requires
that the chosen dq frame is a good estimate of the DQ frame. This is ensured thanks to
the controller, described in section 6.1.3.2, which will also yield an estimate of the speed.
Using this speed estimate, we control the motor to the desired speed reference using the
controller described in section 6.1.3.3. From the output of this controller which is the
electromagnetic torque we compute the flux reference, following the procedure described
in section 6.1.6. The design of the proposed control law is summarized in fig. 6.2.
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Figure 6.2 – A schematic representation of the proposed control law. The controllers
time-scales, identified in section 6.1.4, are represented by the colors: Red for the fastest,
blue for the slowest and green for the intermediate time-scale. Black blocks represent
algebraic computations.
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6.1.3.1 Flux controller

The aim of this controller is to stabilize the stator flux to the flux reference φdq,rs using the
voltages controls. To ensure time scale separation, the flux reference φdq,rs is first low-pass
filtered at frequency $φ

0
dφdq,fs

dt
= $φ

0 (φdq,rs − φdq,fs ). (6.5)

The filtered stator flux reference is then used as reference by a feed-forward controller
for the flux eq. (6.4a)

udqs = dφdq,fs

dt
+Rs

∂HDQ

∂φDQs
(φdq,fs ) + J2ωsφ

dq,f
s + vdqs , (6.6)

where vdqs is the new input which can be used after the feed-forward has been applied to
stabilize the control law.

Injecting eq. (6.6) into the model eq. (6.4a) we obtain

dφDQs
dt

= R(−η)vdqs −Rs

(
∂HDQ

∂φDQs
(φDQs )− ∂HDQ

∂φDQs
(φdq,fs )

)
− J2ω

(
φDQs −R(−η)φdq,fs

)
−J2(ω − ωs)R(−η)φdq,fs +R(−η)dφ

dq,f
s

dt
+Rs(R(−η)− I2)∂H

DQ

∂φDQs
(φdq,fs ).

Noting that −J2(ω − ωs)R(−η)φdq,fs +R(−η)dφ
dq,f
s

dt
= dR(−η)φdq,fs

dt
= dφDQ,fs

dt
, we obtain

d

dt

(
φDQs − φDQ,fs

)
= −Rs

(
∂HDQ

∂φDQs
(φDQs )− ∂HDQ

∂φDQs
(R(η)φDQ,fs )

)
− J2ω

(
φDQs − φDQ,fs

)
+Rs(R(−η)− I2)∂H

DQ

∂φDQs
(R(η)φDQ,fs ) +R(−η)vdqs . (6.7)

This means that the variable which is susceptible to converge to zero is φDQs − φDQ,fs and
not φDQs − φdq,fs , as could be expected. Of course, we will try to ensure that both frames
are identical using the controller described hereafter, but to ensure time scale separation,
we should use φDQ,fs .

6.1.3.2 Saliency frame estimation

Estimating the position of the DQ frame is equivalent to ensuring η converges to 0.
However η is not measured. Thus we first need to estimate η using the currents measure-
ments. Then, given the simplicity of eq. (6.4c), a PI controller on this estimate ensures
the convergence of η to 0 up to the estimation error.

On the one hand, the current measurements rewritten in terms of the chosen state
variables read

ıdqs = R(η)ıDQs = R(η)∂H
DQ

∂φDQs
(φDQs ). (6.8)

On the other hand, the measurement estimate ı̂dqs from the flux reference φdq,fs is

ı̂dqs = ∂HDQ

∂φDQs
(φdq,fs ) = ∂HDQ

∂φDQs
(R(η)φDQ,fs ). (6.9)
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Assuming now that η is sufficiently small we obtain at first order

ıdqs − ı̂dqs =
(
∂HDQ

∂φDQs
(φDQs )− ∂HDQ

∂φDQs
(φDQ,fs )

)
+ η

J2
∂HDQ

∂φDQs
(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s


(6.10)

whose first term will not be large, if the flux controller of section 6.1.3.1 is initialized
correctly and converges, and whose second term is η up to a vector factor. We thus get
two estimates of η. The problem is now to combine them in such a way that the factor is
not too small.

With the notations introduced in section 3.8.2 for sinusoidal nonlinear electric ma-
chine models, the vector factor of the last term of eq. (6.10) rewrites J2

∂HDQ
∂φDQs

(φDQs ) −
∂2HDQ

∂φDQs
2 J2φ

DQ,f
s = (J2ΓcDQs − ΓtDQs J2)φDQ,fs when the equilibrium φDQs,e = φDQ,fs is reached.

It is thus the stator flux left-multiplied by a matrix conveying the saliency. To combine
the two estimates of η we got, it is thus logic to take the scalar or vector product with
the stator flux. All in all, we propose as estimate of η

η̂ = φdq,fs
T
κ(ıdqs − ı̂dqs )

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)

= η
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s

)
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)

+
φdq,fs

T
κ
(
∂HDQ
∂φDQs

(φDQs )− ∂HDQ
∂φDQs

(φDQ,fs )
)

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
= aηη + bη

(6.11)

where κ ∈ M2(R) will be chosen later to ensure stability and we have aη ≈ 1, bη ≈ 0.
This choice for the estimate of η obviously implies that the stator flux must not be zero.
We will see in section 6.1.6 how this condition is ensured.

As was said at the beginning of this section, the estimate η̂ is then used by a fast PI
controller to regulate η to 0 thanks to the input ωs

ωs = Kη
p η̂ + ηi (6.12a)

dηi

dt
= Kη

ı η̂ . (6.12b)

When the equations of this controller are injected in eq. (6.4c), we obtain

dη

dt
= ω − ωs = ω −Kη

p (aηη + bη)− ηi (6.13a)

dηi

dt
= Kη

ı (aηη + bη). (6.13b)

At the equilibrium we will have ωs,e = ωe which means that ωs will be an estimate of ω
we can used in the mechanical loop hereafter.
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6.1.3.3 Speed controller

First of all, to ensure time-scale separation, the speed estimate should be low-pass filtered
with bandwidth $ω

0
dω̂

dt
= $ω

0 (ωs − ω̂). (6.14)

The speed ω which is driven by the electromagnetic torque Te, as can be seen in
eq. (6.4b), is controlled to its reference ωr by a PI controller on the error ωr− ω̂. However
current and voltage limitations impose some constraints on the value of the torque Te. It
is shown in section 6.1.5 that the electromagnetic torque cannot exceed the value T le(ω).
An anti-windup term is thus added to the PI controller which reads

T re = JL
n
Kω
p (ωr − ω̂) + ωi (6.15a)

T se = min(max(T re ,−T le(ω̂)), T le(ω̂)) (6.15b)

dωi

dt
= JL

n
Kω
ı (ωr − ω̂) + 2K

ω
ı

Kω
p

(T se − T re ) (6.15c)

Consequently, outside of the torque limitation domain, the speed of the motor will follow

dω

dt
= n

JL
(Te(φDQs )− Te(φdq,rs )) +Kω

p (ωr − ω̂) + n

JL
ωi − n

JL
TL (6.16a)

dωi

dt
= JL

n
Kω
ı (ωr − ω̂). (6.16b)

The flux reference computation from T se is described in section 6.1.6. It is shown there
that due to voltage limitation the flux reference φdq,rs will depend not only on Te but also
on ω̂.

6.1.4 Stability of the control law

In this section we will prove that the control law is stable using the singular perturbation
theorem. Both unsaturated and saturated SynRMs will be considered. However, for the
sake of simplicity, parametric errors and limitations will not be considered.

6.1.4.1 Equations of the controlled SynRM

To show the time-scale separations we regroup here all the SynRM and controller equations
(eqs. (6.5), (6.7), (6.13), (6.14) and (6.16))

dηi

dt
= Kη

ı (aηη + bη) (6.17a)

dη

dt
= ω −Kη

p (aηη + bη)− ηi (6.17b)

d

dt

(
φDQs − φDQ,fs

)
= −Rs

(
∂HDQ

∂φDQs
(φDQs )− ∂HDQ

∂φDQs
(R(η)φDQ,fs )

)
− J2ω

(
φDQs − φDQ,fs

)
+Rs(R(−η)− I2)∂H

DQ

∂φDQs
(φdq,fs ) +R(−η)vdqs (6.17c)

dφdq,fs

dt
= $φ

0 (φdq,rs (Te, ω̂)− φdq,fs ) (6.17d)
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Time-scale Bandwidth Gains Parameters

DQ frame estimation Ωη
0 = 100Hz Kη

ı = Ωη
0

2

Kη
p = 2ξηΩη

0 ξη = 0.7

Stator flux Ωφ
0 = 25Hz $φ

0 = kφΩφ
0 kφ = 1

Speed Ωω
0 = 5Hz

$ω
0 = kωΩω

0 kω = 3.8
Kω
ı = Ωω

0
2

Kω
p = 2ξωΩω

0 ξω = 1

Table 6.1 – Gains used in the SynRM control law.

dω̂

dt
= $ω

0 (Kη
p (aηη + bη) + ηi − ω̂) (6.17e)

dωi

dt
= JL

n
Kω
ı (ωr − ω̂) (6.17f)

d

dt
(ω − ωr) = n

JL
(Te(φDQs )− Te(φdq,rs )) +Kω

p (ωr − ω̂) + n

JL
ωi − n

JL
TL. (6.17g)

The chosen bandwidths for the controllers and the filters are listed in table 6.1. We
apply a standard normalisation process on the equations to make the time scales appear

1
Ωη

0

dηi
′

dt
= (aηη + bη) (6.18a)

1
Ωη

0

dη

dt
= ω

Ωη
0
− 2ξη(aηη + bη)− ηi

′
(6.18b)

1
Ωφ

0

d

dt

(
φDQs − φDQ,fs

)
= 1

Ωφ
0
R(−η)vdqs −

Rs

Ωφ
0

(
∂HDQ

∂φDQs
(φDQs )− ∂HDQ

∂φDQs
(R(η)φDQ,fs )

)

−J2
ω

Ωφ
0

(
φDQs − φDQ,fs

)
+ Rs

Ωφ
0

(R(−η)− I2)∂H
DQ

∂φDQs
(φdq,fs ) (6.18c)

1
Ωφ

0

dφdq,fs

dt
= kφ(φdq,rs (Te, ω̂)− φdq,fs ) (6.18d)

1
Ωω

0

dω̂

dt
= kω(2ξηΩη

0(aηη + bη) + Ωη
0η

i′ − ω̂) (6.18e)

1
Ωω

0

dωi
′

dt
= (ωr − ω̂) (6.18f)

1
Ωω

0

d

dt
(ω − ωr) = n

JL

1
Ωω

0
(Te(φDQs )− Te(φdq,rs )) + 2ξω(ωr − ω̂) + ωi

′

− n

JL

TL
Ωω

0
. (6.18g)

where ηi
′ = ηi

Ωη0
and ωi

′ = n
JL

ωi

Ωω0
are the normalized values of the integral states ηi and

ωi respectively. Noting Ωφ
0 is of the order of magnitude of Rs

Lds
and Rs

Lqs
, it is clear that

eqs. (6.18a) and (6.18b) on the one side and eqs. (6.18c) and (6.18d) on the other side
form a system in standard Tikhonov form, on which the singular perturbation theorem
(see Khalil [59, Th. 9.3]) can be applied. However ωs = 2ξηΩη

0(aηη + bη) + Ωη
0η

i′ should
not be in eq. (6.18e) for the whole system to be in a suitable form. To circumvent this
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problem we compute ωs using eq. (6.18b) and inject it in eq. (6.18e) thus obtaining

1
Ωω

0

d

dt
(ω̂ +$ω

0 η) = kω(ω − ŵ).

We see that the right-hand side of this equation does not depend on ωs any more. The vari-
able ω̂′ = ω̂ +$ω

0 η is thence a good candidate for a slow variable. We rewrite eqs. (6.18e)
to (6.18g) using this variable as a replacement of ω̂

1
Ωω

0

dω̂′

dt
= kω(ω − ω̂′) + k2

ωΩω
0 η (6.19a)

1
Ωω

0

dωi
′

dt
= (ωr − ω̂′) + kωΩω

0 η (6.19b)

1
Ωω

0

d

dt
(ω − ωr) = n

JL

1
Ωω

0
(Te(φDQs )− Te(φdq,rs )) + 2ξω(ωr − ω̂′) + ωi

′

− n

JL

1
Ωω

0
TL + 2kωξωΩω

0 η. (6.19c)

Eqs. (6.18a) to (6.18d) on the one side and eqs. (6.19a) to (6.19c) on the other now form
a system under standard Tikhonov form.

We have thus separated three time-scales

• The fastest time-scale with bandwidth Ωη
0. The state variables ηi

′
and η evolve in

this time scale.

• The intermediate time scale which is around Ωφ
0 with the state variables φDQs −φDQ,fs

and φdq,fs .

• The slowest time-scale, where mechanical variables ω̂′, ωi
′

and ω − ωr evolve, with
bandwidth Ωω

0 .

6.1.4.2 Saliency frame estimation time scale

We consider here the eqs. (6.18a) and (6.18b), recalled hereafter for convenience, which
evolve in the fastest time-scale

1
Ωη

0

dηi
′

dt
= (aηη + bη) (6.20a)

1
Ωη

0

dη

dt
= ω

Ωη
0
− 2ξη(aηη + bη)− ηi

′
. (6.20b)

As aη and bη are functions of slower variables, this is a two-dimensional linear system
whose characteristic polynomial is(

X

Ωη
0

)2

+ 2ξηaη
X

Ωη
0

+ aη.

As aη ≈ 1 is ensured by slower time scale controllers this system is exponentially stable
uniformly in the slower time scale variables. Consequently, the singular perturbation
theorem can be applied and, in slower time scales, we can consider that the equilibrium

ηe = − bη
aη

= −
φdq,fs

T
κ
(
∂HDQ
∂φDQs

(φDQs )− ∂HDQ
∂φDQs

(φDQ,fs )
)

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s

) (6.21)

has been reached.
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6.1.4.3 Flux time-scale

The system of eqs. (6.18c) and (6.18d) is triangular by blocs as eq. (6.18d) do not depend
on ∆φDQs = φDQs − φDQ,fs . Moreover the flux reference filter eq. (6.18d) is obviously
exponentially stable uniformly on the flux reference. We thus have only to prove that
eq. (6.18c) is exponentially stable uniformly on the speed and the flux reference.

The aim of our control law is to ensure that the fluxes converges to their target. We
will thus consider that ∆φDQs is small. Besides we know that in this time-scale eq. (6.21)
is reached. Thus, as

η = −
φdq,fs

T
κ∂

2HDQ

∂φDQs
2 ∆φDQs

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s

) ,
it can be considered small as well in eq. (6.18c), which rewrites with this observation

1
Ωφ

0

d∆φDQs
dt

= −Rs

Ωφ
0

∂2HDQ

∂φDQs
2 ∆φDQs − J2

ω

Ωφ
0

∆φDQs

+Rs

Ωφ
0

∂2HDQ

∂φDQs
2 J2φ

dq,f
s − J2

∂HDQ

∂φDQs
(φdq,fs )

 η +R(−η)vdqs .

Linearizing around the equilibrium φDQs,e = φDQ,fs , we find

1
Ωφ

0

d∆φDQs
dt

= −Rs

Ωφ
0

(
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

))
∂2HDQ

∂φDQs
2 ∆φDQs

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)

+Rs

Ωφ
0

(
∂2HDQ

∂φDQs
2 J2φ

dq,f
s − J2

∂HDQ
∂φDQs

(φdq,fs )
)(

φdq,fs
T
κ∂

2HDQ

∂φDQs
2 ∆φDQs

)
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
− ω

Ωφ
0
J2∆φDQs +R(−η)vdqs

= −Rs

Ωφ
0

−J2κ
Tφdq,fs

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
J2

∂2HDQ

∂φDQs
2

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

) ∆φDQs

− ω

Ωφ
0
J2∆φDQs +R(−η)vdqs

= A∆φDQs +R(−η)vdqs

where we used ∀(x, y, z) ∈ (R2)3 (xTy)z − y(xT z) = −J2x(yTJ2z) = (−J2xy
TJ2)z to

combine te first two terms. we thus have a simple two dimensional linear system. Using the
fact that ∀(x, y) ∈ (R2)2 we have on the one hand tr(−J2xy

TJ2 +J2) = tr(−J2xy
TJ2) =

xTy and on the other hand det(−J2xy
TJ2 − J2) = 1 − xTJ2y, we find for the linear

system

trA = −Rs

Ωφ
0

φdq,fs
T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

) = −Rs

Ωφ
0

(6.22a)
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detA =
(
ω

Ωφ
0

)2

+ ω

Ωφ
0

Rs

Ωφ
0

φdq,fs
T
κJ2

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
φdq,fs

T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

) . (6.22b)

As said before, due to the choice we made for the error signal η̂, we must ensure that
the stator flux norm is larger than some minimal value. Moreover, it will obviously be
impossible to ensure the needed exponential stability uniformly in ω if ω is allowed to go
to zero. This is due to unobservability of the SynRM at ω = ωs = 0 (see section 4.1).
That is why this control law is designed only for rated and high speed. We can thus

suppose that ∃ε > 0 ω > Ωφ
0

√
εRs

Ωφ0
. Under these conditions we must ensure trA < 0

det > ε|trA|. By setting

κ = −J2
(
J2ΓcDQs − ΓtDQs J2

)−1
J2 (6.23)

the second term of the determinant will be cancelled and thus detA > ε|trA| which en-
sures exponential stability uniformly in ω and φdq,fs of this system. The whole system
eqs. (6.18c) and (6.18d) is thus exponentially stable uniformly in ω and φdq,rs . It should
be noted that the input vdqs of the flux feed-forward was not used to stabilize the con-
troller. However it can be helpful to deal with parametric errors or limitations in a real
implementation.

6.1.4.4 Speed time-scale

In this time-scale, we can assume that the flux converged to its reference, which implies
that Te(φDQs ) = Te(φdq,rs ), on the one hand and that η = 0, on the other hand. Thus
eq. (6.19) rewrites

1
Ωω

0

dω̂′

dt
= kω(ω − ω̂′) (6.24a)

1
Ωω

0

dωi
′

dt
= −(ω − ωr) + (ω − ω̂′) (6.24b)

1
Ωω

0

d

dt
(ω − ωr) = −2ξω(ω − ωr) + 2ξω(ω − ω̂′) + ωi

′ − n

JL

1
Ωω

0
TL. (6.24c)

This is a linear system associated with the Hurwitz matrix−kω − 2ξω −1 2ξω
1 0 −1

2ξω 1 −2ξω

 .
6.1.4.5 Conclusion

We proved here the stability of the proposed control law for the SynRM at rated or high
speed. The proof was made in the saturated case and relies on the fact that the saliency
matrix

(
J2ΓcDQs − ΓtDQs J2

)
can be inverted. This is the case for unsaturated SynRM as it

is equal to (ΓDs − ΓQs )Y . For saturated SynRMs without cross-saturation it becomes(
0 ΓtDs − ΓcQs

ΓcDs − ΓtQs 0

)
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which will also be invertible as long as none of the terms vanish. Finally for saturated
SynRM with cross-saturation, the property will hold as long as the saliency is not too
important as we will be close to the unsaturated case.

However limitations on the voltage and the currents were not handled. These cases
should be handled before a real implementation is considered. We also did not consider
parametric errors which will occur in a real implementation. The feed-forward input vDQs
may be helpful in this case even though it was not needed in the basic case presented
hereinabove.

6.1.5 Torque limitation

The maximal reachable torque T le under voltage and current limitations is determined
here. It can be restated as the optimization problem

T le = max
({
Te(φDQs ) ‖ıDQs ‖ < I l and ‖uDQs ‖ < U l

})
. (6.25)

The obtained torque limitation will be used for the speed controller anti-windup (see
section 6.1.3.3).

First of all we have

∂Te

∂φDQs
= −nJ2ı

DQ
s + n

(
∂ıDQs
∂φDQs

)T
J2φ

DQ
s = −n(J2ΓcDQs − ΓtDQs J2)φDQs

which is zero only at the origin of the flux plane. Thus the solutions of the problem
described by eq. (6.25) will be on the boundaries.

Secondly, the constraints are not expressed in terms of stator fluxes but in terms of
stator currents and voltages. The current constraint is easily converted to a flux constraint
as the currents are functions of the fluxes. However the voltages are not functions of the
fluxes only. Indeed from eq. (6.4a) we obtain

uDQs = dφDQs
dt

+Rsı
DQ
s + J2ωφ

DQ
s .

As the variation of the flux and the Ohmic losses are very small with respect to the voltage
limitation, the constraint can be simplified into ‖φDQs ‖ < U l

ω
when it is active. Moreover

the constraints can equivalently be expressed as

‖ıDQs ‖2 = ıDQs
T
ıDQs < I l

2
(6.26a)

‖φDQs ‖2 = φDQs
T
φDQs <

U l2

ω2 (6.26b)

whose gradients are

∂ıDQs
T
ıDQs

∂φDQs
= 2 ∂ı

DQ
s

∂φDQs
ıDQs = 2ΓtDQs ΓcDQs φDQs

∂φDQs
T
φDQs

∂φDQs
= 2φDQs .

From the expression of the constraints, we see that, at low speed, only the current
constraint will be active whereas, at high speed, only the voltage constraint will be active.
By continuity, there will be a speed range [ωl, ωh] in which both constraints will be active.
This is illustrated by fig. 6.3.

We now solve the optimization problem described by eq. (6.25) in the case of the
unsaturated SynRM.
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φDs = φQsΓDs φDs = ΓQs φQs

φDs = −φQs
ΓDs φDs = −ΓQs φQs

ω1

ωl
ω2

ωh
ω3

φDs

φQs

Figure 6.3 – The red ellipsis is the current limitation constraint, blue circles are voltage
limitations at speeds ω1 < ωl < ω2 < ωh < ω3 and the green hyperlolae are maximum
reachable torque isolines. When the speed increases, the radius of the voltage constraint
circle decreases and the maximum reachable torque isoline move towards the origin which
means the maximum reachable torque decreases.
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In the speed range |ω| ∈ [0, ωl] Only the current constraint is active. The maximum
torque is reached at the points where the gradient of Te is collinear to the gradient
of the current constraint, which are at the intersections between the boundary and
the line where ΓDs φDs = ΓQs φQs . At these points the torque is

T le = n

2

(
1

ΓQs
− 1

ΓDs

)
I l

2
.

Moreover the speed ωl is such that both the voltage and the current boundaries
crosses the line ΓDs φDs = ΓQs φQs at the same point, i.e

ωl =

√√√√√ 2ΓDs
2ΓQs

2

ΓDs
2 + ΓQs

2
U l

I l

In the speed range |ω| ∈ [ωh,+∞[ Only the voltage constraint is active. The max-
imum torque is reached at the points where the gradient of Te is collinear to the
gradient of the voltage constraint, which are at the intersections between the bound-
ary and the line where φDs = φQs . At these points the torque is

T le = n

2
(
ΓDs − ΓQs

)(U l

ω

)2

.

Moreover the speed ωh is such that both the voltage and the current boundaries
crosses the line φDs = φQs at the same point, i.e

ωh =

√√√√ΓDs
2 + ΓQs

2

2
U l

I l

In the speed range |ω| ∈ [ωl, ωh] Both constraints are active. The maximum torque is
thus reached at points where the boundaries intersect. These points have coordinates
which verify

φDs
2 =

I l
2 − ΓQs

2 (U l
ω

)2

ΓDs
2 − ΓQs

2

φQs
2 =

I l
2 − ΓDs

2 (U l
ω

)2

ΓQs
2 − ΓDs

2

and thus the maximum reachable torque is

T le = n

∣∣∣∣I l2 − ΓQs
2 (U l

ω

)2
∣∣∣∣1/2 ∣∣∣∣I l2 − ΓDs

2 (U l
ω

)2
∣∣∣∣1/2

ΓDs + ΓQs

In fig. 6.4 we plotted the maximum reachable torque under current and voltage limitation
for a unsaturated SynRM. We note that as expected the maximum torque is constant at
low speed, then it begins to decrease and finally for very high speeds the torque decreases
as 1/ω2.



6.1. A control law for the SynRM 173

ωl−ωl ωh−ωh
ω

T le

Figure 6.4 – The maximum reachable torque T le as a function of ω. The domains of speed
where the constraints are active are highlighted by color. The curve is red when only the
current constraint is active, green when only the voltage constraint is active and brown
when both constraints are active.

6.1.6 Optimal flux working point

We present now how the flux reference φDQ,rs is computed from the electromagnetic torque
T se coming from the speed controller.

On the one hand, we must ensure that the unstable flux points of the control law are
avoided. For the saturated SynRM, we have to compute the places where the saliency
matrix defined in section 6.1.4.5 is invertible. This must be done numerically. In the
unsaturated case the problem is much simpler, as it boils to to avoiding the origin of
the flux plane. When the torque is high enough this condition is automatically ensured,
however when we are at low torque we can choose between setting the flux on the higher
or the lower inductance axis. As the SynRM is stable in open-loop at low torque when
the flux is set on the largest inductance axis, this method is favored.

On the other hand, we want to minimize the energy consumed to produce the torque
T se computed by the speed controller. Looking at the power balance in the SynRM we
easily find that this is equivalent to minimizing the current and thus the optimization
problem we want to solve is

φDQ,rs = argmin
({
‖ıDQs (φDQs )‖ Te(φDQs ) = T se and ‖uDQs ‖ < U l

})
. (6.27)

The problem described by eq. (6.27) surely has a solution, as the torque is limited by
the maximum reachable torque computed in the previous section 6.1.5. In the unsaturated
SynRM case, when the voltage limitation is not active, the optimal point is reached at
the intersections between the torque constraint and the lines ΓDs φDs = ±ΓQs φQs which is

φDs = ±
√√√√√ T se

nΓDs
2
(

1
ΓQs
− 1

ΓDs

) (6.28a)
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φQs = ±
√√√√√ T se

nΓQs
2
(

1
ΓQs
− 1

ΓDs

) . (6.28b)

Due to voltage limitation this point may not be reachable. The optimal points will
the be at intersections between the the torque constraint and the voltage boundary which
are given by

(
φDs

2
, φQs

2) =



1
2

(
U l

ω

)2
+ 1

2

√(
U l

ω

)2
−
(

2Tes
n(ΓDs −ΓQs )

)2
, 1

2

(
U l

ω

)2
− 1

2

√(
U l

ω

)2
−
(

2Tes
n(ΓDs −ΓQs )

)2
1

2

(
U l

ω

)2
− 1

2

√(
U l

ω

)2
−
(

2Tes
n(ΓDs −ΓQs )

)2
, 1

2

(
U l

ω

)2
+ 1

2

√(
U l

ω

)2
−
(

2Tes
n(ΓDs −ΓQs )

)2


Of the four solutions only the two closer to the lines ΓDs φDs = ±ΓQs φQs are optimal. If LDs
is the smaller inductance, the we should select the value for which φDs

2
< φQs

2
, i.e.

φDs = ±

√√√√√1
2

(
U l

ω

)2

− 1
2

√√√√(U l

ω

)2

−
(

2Tes

n(ΓDs − ΓQs )

)2

(6.29a)

φQs = ±

√√√√√1
2

(
U l

ω

)2

+ 1
2

√√√√(U l

ω

)2

−
(

2Tes

n(ΓDs − ΓQs )

)2

(6.29b)

Fig. 6.5 illustrates the shift of the optimal flux reference from the line ΓDs φDs = ΓQs φQs where
the optimal points are when the voltage constraint is not active to the line φDs = φQs where
the optimal point is when the voltage constraint is active.

6.1.7 Simulation results

To check that the time-scale separation is valid, the control law was implemented on an
unsaturated SynRM model. We used as parameters those of table 2.1 with the current
limitation I l = 5A and U l = 550V . The simulation was run using Simulinkr with a
continuous time control law.

We give here some interesting test results:

• Mechanical speed 1s ramp from 0Hz to nominal value 25Hz under zero load in
fig. 6.6;

• Load torque step from 0N.m to nominal value 5N.m at nominal mechanical speed
25Hz in fig. 6.7;

• Load torque 10s triangle from 0N.m to 8N.m at ωm = 100Hz. This test was run to
show that the proposed control low handles well the voltage and current limitation.
Indeed it can be seen in fig. 6.8 that the maximum theoretical torque is reached for
all speeds.

As can be seen in figs. 6.6 and 6.7, the control law responds well to changes in the
reference ωrm and rejects well the disturbance TL in the absence of parametric errors.
Fig. 6.8 shows that limitations are enforced and that maximum efficiency is always reached.
The control law was simulated in continuous time which will not be the case for a real
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φDs = φQs

ΓDs φDs = ΓQs φQs

ω1
ω2ω3

+φrs(Te, ω1)

+φrs(Te, ω2)

+φrs(Te, ω3)

φDs

φQs

Figure 6.5 – The red ellipsis is the current limitation constraint, blue circles are voltage
limitations at speeds ω1 < ω2 < ω3 and the green hyperlolae are troque target isoline.
When the the speed increases, the optimal flux reference shifts from the optimal position
under current limitation to the optimal position under voltage limitation.
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(a) Mechanical speed ωm and its reference
ωrm as functions of time.
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(b) Load torque Te and electromagnetic torque
Te as functions of time.
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(c) Reference TL(ωrm) and measure Te(ωm) in
the speed-torque plane.

Figure 6.6 – Results of the test where the speed was ramped from 0Hz to nominal value
25Hz under zero load for the SynRM described by table 2.1.
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(c) Reference TL(ωrm) and measure Te(ωm)
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Figure 6.7 – Results of the test where the torque was stepped from 0N.m to nominal value
5N.m at nominal mechanical speed 25Hz for the SynRM described by table 2.1.
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(c) Reference TL(ωrm) and measure Te(ωm)
in the speed-torque plane. To show that the
maximum torque is reached for all speeds we
recalled the curve presented on fig. 6.4.
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Figure 6.8 – Results of the test where we ensured that the current and voltage limitations
are well handled. The test was run on the SynRM described by table 2.1.
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implementation. Using Euler explicit discretization scheme, when the sample time is high
enough this is not a problem, but at high speeds with a reasonable sample time some
undesirable ripple appears. This is caused by the fact that the eigenvalues of the flux
controller (eq. (6.18c)) have large imaginary parts at high speeds. This problem can be
solved by handling the discretization process with care and using the feed-forward input
vdqs to change the positions of the eigenvalues in the complex plane.

6.2 Generalisation to the PMSM

Under the same assumptions made for the SynRM in section 6.1.2, the same Hamilton’s
equations as eq. (6.1) are obtained. Only the expressions of the currents and the elec-
tromagnetic torque differ. As the control law described in section 6.1.3 does mostly not
depend on these expressions, it should work for PMSMs as well. The only places where
the current expressions were used in the description or the proof of stability of the control
law is the design of the estimate of the error angle η and the coupling matrix. The com-
putations of the maximum torque under current and voltage limitations and the optimal
flux working point must also be adapted. Having made these remarks, we will not detail
the control law proposed for the PMSM but only give the modifications.

“Sensorless” control of salient and non-salient PMSMs has been studied extensively
and description of “Sensorless” control laws for PMSMs can be found in textbooks (Sul
[23, secs. 6.2, 6.3] and Glumineau and de Leon Morales [67, chs. 4, 6] for instance).
The proposed control laws rely on the observer-controller scheme, as those proposed for
SynRMs listed in section 6.1.1. The calculation of the optimal flux worhing point for a
given torque reference can be found in Chiasson [45, sec. 9.2] for the non-salient PMSMs
and Meyer and Bocker [81] for salient PMSMs. This is reviewed in sections 6.2.2 and 6.2.3
of this document.

As it is a generalization, the control law proposed here still works for SynRMs. In
between the classical PMSMs (low saliency and high flux) and SynRMs (high saliency
and no flux) are the Permanent Magnet Assisted SynRMs (see Guglielmi, Pastorelli, et
al. [82]), which present a high saliency, like SynRMs, but also have a small flux, like
PMSMs. The control law proposed here can be applied to such motors which can be seen
as highly salient PMSMs.

6.2.1 Estimation of the saliency frame

The computations which lead to eq. (6.10) are still valid as the currents are still given as
partial derivatives of the energy function with respect to the fluxes. However the expres-
sion for the vector factor of its second term we obtain by using the notations of section 3.8.2
is altered. It now reads J2ΓcDQs φDQ,fs −ΓtDQs J2φ

DQ,f
s −J2ΓcDQs φDQM , where φDQ,fs is not easily

factorized any more. Nevertheless, looking at the chosen coupling matrix (see eq. (6.23)),

we note that it in fact ensures κTφdq,fs is proportional to
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
.

We thus propose as error signal

η̂ =

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ(ıdqs − ı̂dqs )(

J2
∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
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= η

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
J2

∂HDQ
∂φDQs

(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s

)
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)

+

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
∂HDQ
∂φDQs

(φDQs )− ∂HDQ
∂φDQs

(φDQ,fs )
)

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
= aηη + bη (6.30)

where aη ≈ 1 and bη ≈ 0. The coupling matrix κ ∈ M2(R) is chosen hereafter for
stability of the control law as in the SynRM case. If the PMSM is very salient and has a
low permanent magnet flux, i.e. if we consider the so-called Permanent Magnet Assisted
SynRM (see [82]), the denominator could vanish. However, we will ensure in the flux
reference computation that it does never occur.

All the rest of the control law is identical. Tikhonov theorem can again be applied
and the three time-scales can again be separated as in section 6.1.4. As the form of the
estimate of η, η̂ = aηη+ bη, is unchanged in the fast time-scale, the fast time-scale is still
exponentially stable uniformly in the slower variables. The expression (see eq. (6.21)) of
η at the equilibrium is of course altered and becomes

ηe = − bη
aη

= −

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
∂HDQ
∂φDQs

(φDQs )− ∂HDQ
∂φDQs

(φDQ,fs )
)

(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)T
κ
(
J2

∂HDQ
∂φDQs

(φDQs )− ∂2HDQ

∂φDQs
2 J2φ

DQ,f
s

) .
Similar computations as those made in section 6.1.4.3 lead to the trace and determinant

of the linearized flux error system

trA = −Rs

Ωφ
0

∆ıcts
T
κ∆ıcts

∆ıcts Tκ∆ıcts
= −Rs

Ωφ
0

(6.31a)

detA =
(
ω

Ωφ
0

)2

+ ω

Ωφ
0

Rs

Ωφ
0

∆ıcts
T
κJ2∆ıcts

∆ıcts Tκ∆ıcts
. (6.31b)

where we used ∆ıcts =
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
for the sake of compactness. By

simply taking κ = I2, the second term of the determinant is canceled out. Thus assuming

we are not at low speed (∃ε > 0 ω > Ωφ
0

√
εRs

Ωφ0
), we have trA < 0 and detA > ε|trA|,

which means that the linearized flux-error system is exponentially stable uniformly in ω
and φdq,fs .

The rest of the proof is identical to what is done in section 6.1.4 and is thus not
repeated here. The proposed control law ensures stability of the speed of a PMSM under
torque disturbance as soon as the speed is high enough.

6.2.2 Torque limitation

As the expressions of the electromagnetic torque and the currents as functions of the
fluxes is not the same for PMSMs and SynRMs, the maximum torque a PMSM can reach
under current and voltage limitation will not be the same. However the reasoning is the
same and the results are similar as what is obtained in section 6.1.5.
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The optimization problem we want to solve is still

T le = max
({
Te(φDQs ) ‖ıDQs ‖ < I l and ‖uDQs ‖ < U l

})
. (6.32)

The gradient of the electromagnetic torque is now given by

∂Te

∂φDQs
= −nJ2ı

DQ
s + n

(
∂ıDQs
∂φDQs

)T
J2φ

DQ
s = −n(J2ΓcDQs − ΓtDQs J2)φDQs + nJ2ΓcDQs φDQM

which may vanish. But this will never occur as the flux reference computation ensures
that this term (which is also in the denominator of the estimate of η) does not vanish.
Thus the optimal torque is reached on the boundaries.

With the same reasoning as before the constraints can be expressed as

‖ıDQs ‖2 = ıDQs
T
ıDQs < I l

2
(6.33a)

‖φDQs ‖2 = φDQs
T
φDQs <

U l2

ω2 (6.33b)

whose gradients are

∂ıDQs
T
ıDQs

∂φDQs
= 2 ∂ı

DQ
s

∂φDQs
ıDQs = 2ΓtDQs ΓcDQs (φDQs − φDQM )

∂φDQs
T
φDQs

∂φDQs
= 2φDQs .

Similarly to the SynRM, at low speed, the voltage constraint is inactive. However, if
the current constraint is too small there will be a point where the two authorized sets are
disjoint and thus there will be a speed the motor cannot overpass without violating one
of the constraints. When the current limitation is large enough, there is no such problem
and we will have 3 speed domains as in the SynRM case.

In the general unsaturated case, the optimization problem described by eq. (6.32) can
be solved analytically as for the SynRM, however the calculations are messier and of little
interest (see [81]). We will only give here the analytic solution for the non-salient case
where ΓDs = ΓQs = Γs, which is also given in Chiasson [45, sec. 9.2]. In this case the D-axis
is defined by the direction of the permanent magnet flux φM . The other cases will only be
illustrated in fig. 6.9 which was created using PMSMs with parameters given on table 6.2.

First of all, we search when the constraint domains can be disjoint: it can occur at
high speeds, when the origin is not included in the current constraint domain, i.e. when
I l < ΓDs φM . In this case the motor cannot rotate faster than

ωl = U l

ΓsφM − I l
(6.34)

without violating the voltage limitation. The reference is thus saturated by this value ωl.

When only the current constraint is active In the non-salient case, torque is pro-
portional to φQs and maximum torque is reached when all the current is along Q
axis, i.e.

φDs = φM

φQs = I l

Γs



6.2. Generalisation to the PMSM 181

ω1

ω2

ω3 φDs

φQs

(a) For a non-salient PMSM.
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Figure 6.9 – Maximum torque under current (red ellipses) and voltage (blue circles) limi-
tations for different speeds ω1 < w2 < ω3. The gray lines are the loci of critical points for
the current or the voltage at given torque (This problem will be solved in section 6.2.3),
the solid lines being the loci of the global extrema and the dashed line being only local
extrema. The green hyperbolae are the maximum reachable torque isolines at the different
speeds. Again when the speeds increases, the radius of the voltage constraint decreases
and the torque isoline goes closer to the horizontal axis, which means that the maximum
reachable torque decreases.
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and consequently
T le = nφMI

l. (6.35)

The speed above which the voltage constraint becomes active, is the speed at which
this point is on the voltage constraint boundary,

ωl =

√√√√ Γ2
sU

l2

I l2 + Γ2
sφ

2
M

. (6.36)

When only the voltage constraint is active The torque being proportional to φQs ,
the maximum torque is reached when all the flux is on Q axis, i.e.

φDs = 0

φQs = U l

ω

and thence

T le = nΓsφM
U l

ω
. (6.37)

The speed below which the current constraint becomes active is the speed at which
this point is on the current constraint boundary,

ωh =

√√√√ Γ2
sU

l2

I l2 − Γ2
sφ

2
M

, (6.38)

assuming the domains are not disjoint.

When both constraints are active The maximum torque is reached at the intersec-
tion of the voltage and current constraint boundaries which is at the coordinates

φds = 1
2φM + 1

2φM

(
U l

ω

)2

− 1
2φM

(
I l

Γs

)2

φqs = ± 1
2φM

√√√√√
(φM + U l

ω

)2

−
(
I l

Γs

)2
(φM − U l

ω

)2

−
(
I l

Γs

)2
.

Consequently the maximum reachable torque is

T le = n

2 Γs

√√√√√
(φM + U l

ω

)2

−
(
I l

Γs

)2
(φM − U l

ω

)2

−
(
I l

Γs

)2
. (6.39)

6.2.3 Optimal flux working point

We extend here the results obtained for SynRMs in section 6.1.6 to PMSMs.
On the one side, we want to avoid the domains where the control law is unstable, that is

to say where the vector
(
J2

∂HDQ
∂φDQs

(φdq,fs )− ∂2HDQ

∂φDQs
2 J2φ

dq,f
s

)
vanishes. For saturated PMSMs,

these domains can have a quite complex shape which must be computed numerically.
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Number Characteristic φM LDs LQs

1 Non-salient PMSM 1Wb 0.3H 0.3H
2 PMSM with small saliency 1Wb 0.3H 0.35H
3 PMSM with speed limit 1Wb 0.1H 0.15H
4 PMSM with large saliency and low flux 0.1Wb 0.1H 0.3H

Table 6.2 – Characteristics of the simulated PMSMs.

ω

T le
PMSM 1
PMSM 2
PMSM 3
PMSM 4

Constrained by current
Both constraints active
Constrained by voltage

Figure 6.10 – The maximum reachable torque T le as a function of ω for the motors listed
in table 6.2. The domains of speed where the constraints are active are highlighted by
color.

When unsaturated PMSMs are considered, it boils down to avoiding the point (φDs , φQs ) =(
ΓDs

ΓDs −ΓQs
φM , 0

)
.

On the other side, we want to minimize the losses. In PMSMs the losses are given by
Rs‖ıDQs ‖2 as for SynRMs. We thus want to solve the optimization problem

φDQ,rs = argmin(
{
‖ıDQs (φDQs )‖2 Te(φDQs ) = T se and ‖uDQs ‖ < U l

}
). (6.40)

As |T se | < T le and |ωr| < ωl this problem has certainly a solution. It is now solved in the
case of the non-salient unsaturated PMSM (see also [45, sec. 9.2]).

When the voltage constraint is not active the optimal point is

φDs = 0 (6.41a)

φQs = Te
nΓsφM

(6.41b)

which means that all the current is on Q axis. When this point is not achievable, the
optimal point will be at the intersection between the torque constraint and the voltage
boundary which is in the half-plane φDs ≥ 0, given by

φDs =

√√√√(U l

ω

)2

−
(

Te
nΓsφM

)2

(6.42a)

φQs = Te
nΓsφM

. (6.42b)
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Figure 6.11 – The red ellipsis is the current limitation constraint, blue circles are voltage
limitations at speeds ω1 < ω2 < ω3 and the green hyperlolae are troque target isoline. For
a given torque and a given speed, the optimal flux reference is materialized as a red cross.
When the the speed increases, the optimal flux reference shifts from the optimal position
under current limitation to the optimal position under voltage limitation.
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Figure 6.12 – Trajectory in the speed-torque plane during a load-torque from 0N.m to
16N.m triangle at ωm = 100Hz for the PMSMs with magnetic parameters given in ta-
ble 6.2.

6.2.4 Simulation results

The proposed control law has been simulated on unsaturated PMSMs with parameters
given in table 6.2. We used only the following scenario: a 10s load torque triangle from
0N.m to 16N.m at ωm = 100Hz. This scenario was chosen because it is the most difficult
and it highlights the fact that the control law behaves correctly at high speed and high
torque. The simulation was done under Simulinkr using a continuous time control law.
The resulting trajectory in the speed-torque plane is given in fig. 6.12.

6.3 Partial conclusion

In this chapter is presented a“sensorless”control law for SynRM at medium to high speed.
The proof of stability of the control law is detailed. On the unsaturated SynRM model,
we also study the constraints implied by the stator voltage and current limitations and
the computation of the optimal flux reference to reach a given torque. Simulation results
are also given.

Due to the similarities between SynRM and PMSM models, this control law can easily
be extended to control salient and non salient PMSMs. Only a few changes are required.
We again give the constraints imposed by current and voltage limitations and the compu-
tation of the optimal flux reference to reach a given torque on any unsaturated PMSM.
Simulations results are given for a few unsaturated PMSM models.

Admittedly parametric sensitivity of the proposed control law should be analyzed, but
we disregarded it due to lack of time. Besides we think that the proposed control law
can be extended to IMs, even though we did not have enough time to write a thorough
proof.





Chapter 7

“Sensorless” low speed motor control

Chapitre 7 — Contrôle « sans capteur » à basse vitesse

Ce chapitre est consacré à la mise en œuvre de l’injection de signal pour le contrôle « sans
capteur » à basse vitesse du moteur à induction. Les moyens expérimentaux contraignent
fortement le choix de la fréquence de l’injection qui ne doit pas être trop basse, pour
ne pas interférer avec le contrôleur, ni trop haute, à cause de la fréquence PWM. Les
retards de la boucle d’acquisition posent aussi un problème qui est résolu par l’utilisation
d’un observateur d’oscillation du flux stator. Ce chapitre se termine avec la description
d’une loi de contrôle « sans capteur » pour le moteur à induction à basse vitesse en
suivant l’approche traditionnelle et le mise en évidence du mauvais conditionnement de
ces méthodes pour certains moteurs.

We are now interested in low speed “sensorless” control for electric motors. As is
explained in section 4.1, electric motors are poorly observable at low speed, and even
unobservable at zero speed. In section 4.2 a method to recover observability even at zero
speed is proposed: HF signal injection. We will have to resort to this technique in order
to achieve low speed “sensorless” control of electric motors.

That is why, we devote section 7.1 to the interaction between HF signal injection and
the control law. It turns out to be more involved than in the theoretical approach of
section 4.3 due to implementation constraints. We then try in section 7.2 to apply signal
injection to control the IM described in section 2.1.2. Doing this, we faced again the
problem signaled in section 4.4.1, i.e. the ill-conditioning of the virtual measurements ob-
tained by signal injection on IMs with a small magnetic saliency. However, the promising
approach proposed in section 4.4.2 is not applied due to time shortage.

7.1 Using high frequency injection for control

We showed in section 4.2 that HF injection is a solution to retrieve observability on the
trajectories which are close to the permanent trajectory at ωs,e = 0 where motors have
been proven to be unobservable in section 4.1. In section 4.3, we explained in a theoretical
way how signal injection can be integrated with a control law. We see in this section
how the experimental constraints hinder this theoretical approach. Namely, the injection
frequency must be squeezed in between the bandwidth of the controller (≈ 100Hz) and
the PWM frequency (4kHz).

187
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7.1.1 High frequency injection in closed loop

Our aim is to design a “sensorless” control law, but the study in section 4.2 was done
in open loop and section 4.3 is very theoretical. We show here how it applies to electric
motors, where the controller bandwidth below and the PWM frequency above constrain
the signal injection.

7.1.1.1 Ideal control law

The system to be controlled can be expressed by eq. (4.33), recalled here

dX

dt
= A(X) + U(t) (7.1)

where U(t) is the sum of the HF signal injection Ũ (t,Ωt) and the low frequency input
of the system U (t). The control of the system uαβs (t) is now given by the output of the
controller which is described by

uαβs (t) = Σ(η, ıαβ,ms , ωrm, φ
r
r) (7.2a)

dη

dt
= I(η, ıαβ,ms , ωrm, φ

r
r) (7.2b)

where η is the state of the controller. On the contrary to what is done in section 4.3, the
demodulation procedure is embedded in the controller.

Setting

X =
(
X
η

)

Ũ (t,Ωt) =
(
Ũ (t,Ωt)
0dim(η),1

)

A(X , ωrm, φrr) =
(
A(X)

0dim(η),1

)
+


Σ(η, ıαβ,ms (X), ωrm, φrr)

02,1
TL(t)

0
I(η, ıαβ,ms (X), ωrm, φrr)

 ,

the system can be rewritten as

dX
dt

= A(X , ωrm, φrr) + Ũ (t,Ωt), (7.3)

which is very similar to eq. (7.1) up to the vector field expressions. The controller is
designed to have a 100Hz bandwidth which is five times lower than the frequency Ω.
Under these conditions, second order averaging (see section 4.2.3 and [47, sec. 2.9]) is
still a good enough approximation and we can show that HF injection has an effect of
amplitude 1

Ω on the stator flux and even lower on the other state variables. Thus HF
injection does not disturb much the behavior of the control law. The flux ripple will be
almost identical to what was observed in the open loop case.

We verified this conclusion with a simulation using the saturated IM model given by
eq. (4.59) with the saturation functions given by table 4.2 controlled at low speed using
the speed sensor. We ran two simulations
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Figure 7.1 – Comparison between closed loop ripple (solid line) and open loop ripple
(dashed line) on the stator flux along the injection axis u.

• The current controller was fed with the unfiltered measured current;

• The current controller was fed with the measured current from which the effects of
the injection have been filtered out (see section 7.1.3 to see how this can be done).

During both simulations, the stator flux was recorded and we found that the 2 records
only differ by the shape of the flux ripple, as shown by fig. 7.1. This is due to the fact
that the second order averaging is less valid, as the bandwidth of the current controller
is too close to the injection frequency. It could be taken into account as was done in
section 4.2.4.

7.1.1.2 Implementation on the test bench

When the same test was done on the test bench, we discovered that the current ripple
was not at all what is expected of the results of section 7.1.1.1. Surprisingly, the current
ripple was far larger than we expected.

After investigation, we found out that it was caused by the delays in the control
application (1TPWM = 2.5 ·10−4s) and in the current measurement (1TPWM = 2.5 ·10−4s).
Indeed as said in section 2.2.1, the voltage is imposed at the bounds of the electric motor
one period after having been computed by the control law and the current measurement is
seen by the controller one period after having been computed. From the controller point
of view, this can be modeled by a two-period delay on the current measurement.

This was verified with simulations where we used two models (with and without delay)
and recorded the simulated stator flux in both simulations. As can be seen in fig. 7.2 the
stator flux ripple is totally modified by this two-period delay on the current measurement.
The results of averaging found in section 7.1.1.1 stating that the stator flux ripple is not
affected much are not valid any more.

7.1.2 A flux ripple observer

To solve the problem mentioned in section 7.1.1.2, we can obviously filter out the HF
injection from the measured current before feeding it to the control law. Indeed, the
averaged current can be extracted by low-pass filtering or using a sliding average on
one period of the HF signal as described in section 4.3.3. However, this is not really
satisfactory, as we have to take into account the delay the estimator introduces (see
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Figure 7.2 – Comparison between closed loop stator flux ripple with (solid line) and
without (dashed line) delay along the injection axis u.

proposition 1) in the current controller design. We preferred an alternative approach
which enables us to obtain the flux ripple thanks to a flux ripple observer.

7.1.2.1 Description of the observer

The stator flux in αβ frame evolves according to

dφαβs
dt

= uαβs −Rsı
αβ
s (7.4)

where the variable can be separated according to their time scales

uαβs = uαβs + ũαβs
ıαβs = ıαβs + ı̃αβs

φαβs = φ
αβ

s + φ̃αβs .

As was shown in section 4.2.3, φ
αβ

s obeys to the averaged equation

dφ
αβ

s

dt
= uαβs −Rsı

αβ
s (7.5)

and consequently

dφ̃αβs
dt

= ũαβs −Rsı̃
αβ
s . (7.6)

To estimate the stator flux ripple φ̃αβs , we consider the following observer

d
̂̃
φ
αβ

s

dt
= uαβs − R̂sı

αβ
s − ΩK̃

∫ t

t− 1
Ω

̂̃
φ
αβ

s (s)ds (7.7)

where uαβs is the (known) control, ıαβs is measured and K̃ is the observer gain. Subtracting
eq. (7.6) from eq. (7.7), we obtain the dynamic of the error ∆φ̃αβs between the estimated
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flux ripple
̂̃
φ
αβ

s and the real one φ̃αβs

d∆φ̃αβs
dt

= uαβs −Rsı
αβ
s −∆Rsı̃

αβ
s − ΩK̃

∫ t

t− 1
Ω

̂̃
φ
αβ

s (s)ds

= uαβs −Rsı
αβ
s −∆Rsı̃

αβ
s − ΩK̃

∫ t

t− 1
Ω

∆φ̃αβs (s)ds

where we used the notation ∆Rs = R̂s − Rs and the fact that φ̃αβs has zero mean on
intervals of length 1

Ω as was shown in section 4.2.3. The averaged variables follow the
usual equation of the electric machine. Besides, we are on a permanent trajectory where
ωs,e ≈ 0. Consequently, we have uαβs − Rsı

αβ
s ≈ 0. Moreover, we are going to consider

that the stator resistance is well known and thus ∆Rs ≈ 0. Taking into account these
approximations, we obtain as dynamics of the error

d∆φ̃αβs
dt

= −ΩK̃
∫ t

t− 1
Ω

∆φ̃αβs (s)ds (7.8)

which has only one equilibrium point ∆φ̃αβs = 0.

7.1.2.2 Stability of the observer

We are going to study the stability of the observer to determine the values of K̃ for which
the observer is stable. In the most general case, K̃ could be chosen as a matrix but due
to the form of the eq. (7.8), it will be better to take a scalar gain (or a diagonal matrix).
The two axes α and β can be decoupled and we obtain after applying Laplace transform
two scalar systems of the form

sX(s)− x0 = U(s)− ΩK̃
1− exp

(
− s

Ω

)
s

X(s)

where x0 is the initial value of the error. This can be rewritten

X(s) =
1
K̃

1 + Ω
s

(
1− s

Ω + s2

ΩK̃
− exp

(
− s

Ω

))(U(s) + x0).

The equation of the associated Nyquist locus is

N($) = Ω
$

(
1− $

Ω −
$2

ΩK̃
− exp

(
−$Ω

))
$ ∈ ]−∞,+∞[ . (7.9)

Around $ = 0, the Nyquist locus is approximated by

N($) = $
( 1
K̃
− 1

2Ω

)
− $2

6Ω2 + o
(
$3
)

and near ±∞
N($) ∼ 

$

K
− 1.

We thus find the limits of the Nyquist locus given in table 7.1. Even though the calculation
of the limits of Nyquist locus is informative, it is not sufficient: it only proves that for
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Condition lim
$→−∞

lim
$→0−

lim
$→0+

lim
$→+∞

K̃ < 2Ω −∞ 0− 0+ +∞
K̃ = 2Ω −∞ 0− 0− +∞
K̃ > 2Ω −∞ 0+ 0− +∞

Table 7.1 – Limits of Nyquist locus depending on the value of K̃.

K̃ > 2Ω = 1000Hz the Nyquist locus crosses the horizontal axis in another place than
the origin, but we cannot say whether it loops around the point of affix z = −1.

The Nyquist locus crosses the horizontal axis at the pulsations $0 given by

=(N($0)) = 0⇔ 1− $2
0

ΩK̃
= cos $0

Ω (7.10)

It can easily be proven that

• For K̃ ≤ 2Ω, there is only one solution: $0 = 0Hz;

• For K̃ > 2Ω, there are 3 solutions among which is obviously $0 = 0Hz.

If K̃ ≤ 2Ω we are sure that the observer is stable, because the Nyquist locus crosses
the horizontal axis only at the origin, but it is only a sufficient condition as there are
higher values of K̃ for which the Nyquist locus does not loop around the point of affix
z = −1. For K̃ > 2Ω we consider the abscissae of these points which are given by

<(N($0)) = −1− Ω
$0

sin $0

Ω

= −1± Ω
$0

√√√√1−
(

1− $2
0

ΩK̃

)2

= −1±
√

2Ω
K̃
− $2

0

K̃2
(7.11)

We have thus <(N($0)) = −1 ⇔ K̃ = $2
0

2Ω and sin $0
Ω = −1 ⇔ $0 ≡ 0[πΩ]. Conse-

quently, the highest value of K̃ for which the observer is stable is K̃0 = π2

2 Ω ≈ 2467.4Hz.

To illustrate this proof, I plotted the Nyquist loci for some interesting values of K̃ in
fig. 7.3. In simulations and experiments I chose the value K̃ = 2000Hz which ensures a
fast convergence still ensuring a stability margin. This can be verified in fig. 7.4 which
shows the observed stator flux ripple compared to the real one obtained in simulation.

7.1.3 Extracting the information from the current ripple

As in section 4.3.3, we want to separate the fundamental current, used for controlling the
motor, and the HF current which is the response of the motor to HF voltage injection.
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Figure 7.3 – Nyquist loci for some values of K̃.
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Figure 7.4 – Observed stator flux ripple (solid lines) on d and q axes compared to simulated
stator flux ripple (dashed red lines).
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7.1.3.1 Obtaining the fundamental current and the current ripple

The traditional method uses a low-pass filter to get the fundamental current and a band-
pass or a high-pass filter to obtain the current ripple (see [2, 4]). As the response of
the motor to HF injection has zero mean, we preferred using a sliding average on a HF
period, to extract the fundamental current, as is proposed in section 4.3.3. As stated by
proposition 1, this allows us to retrieve the ripple with an error of order 1

Ω2 with a delay
of 1

2Ω . The ripple ı̃αβs can be obtained by subtracting the fundamental current from the
measured current delayed by 1

2Ω as in eq. (4.53b).
We showed in section 7.1.1 that filtering the fundamental current was not really needed

for the control law to work. We thus only need to extract the current ripple and the
information it contains.

Once the fundamental current and the current ripple ı̃αβs are separated, the information
it contains on the state of the motor, which is contained in its amplitude, needs to be
extracted.

7.1.3.2 Obtaining the amplitude of the current ripple

In the literature ([78] for instance), the most widely used approach to extract the ampli-
tude of the current ripple is to heterodyne it

Axial polarization From eq. (4.38) with a sinusoidal injection (F (σ) = sin (2πσ + ϕ)),
we get by heterodyning

ıαβs F (Ωt) = ıαβs F (Ωt) + ũ

Ω
∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ e
θi(t)F 2(Ωt) + ũ

Ω
∂2Hαβ

∂φαβ
s

∗2 e
−θi(t)F 2(Ωt)

= ıαβs sin (2πΩt+ ϕ) + ũ

2Ω

 ∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ e
θi(t) + ∂2Hαβ

∂φαβ
s

∗2 e
−θi(t)


+ ũ

2Ω

 ∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ e
θi(t) + ∂2Hαβ

∂φαβ
s

∗2 e
−θi(t)

 sin (2 · 2πΩt+ 2ϕ) (7.12)

from which the slowly varying term ũ
2Ω

(
∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ + ∂2Hαβ

∂φαβ
s

∗2 e
−2θi(t)

)
can be extracted

by low-pass filtering.

Circular polarization From eq. (4.39) we obtain by heterodyning

− e−Ωtıαβs = −e−Ωtıαβs + ũ

Ω
∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ −
ũ

Ω
∂2Hαβ

∂φαβ
s

∗2 e
−2Ωt (7.13a)

eΩtıαβs = e−Ωtıαβs −
ũ

Ω
∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ e
2Ωt + ũ

Ω
∂2Hαβ

∂φαβ
s

∗2 (7.13b)

from which the slowly varying terms ũ
Ω

∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ and ũ
Ω
∂2Hαβ

∂φαβ
s

∗2 can be extracted by

low-pass filtering.

As explained in Jebai [37] and section 4.3.3, the method of eq. (7.12) can be extended
to non-sinusoidal zero mean functions. Indeed the same information can be obtained by
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taking the sliding average of ıαβs F (Ωt) on a HF period and dividing by the sliding average
of F 2(Ωt).

However, we saw in section 7.1.1.2 that HF injection is affected by delays due to
implementation. To circumvent this problem, we used the flux ripple observer to estimate
the flux ripple. We can get the same information as previously by computing∫ t

t− 1
Ω

ı̃αβs
(̂̃
φ
αβ

s

)∗
∫ t

t− 1
Ω

∣∣∣∣∣̂̃φαβs
∣∣∣∣∣
2 ≈ ∂2Hαβ

∂φαβ
s
∂φαβ

s

∗ + ∂2Hαβ

∂φαβ
s

∗2 e
−2Arg φ̃

αβ

s (7.14)

where Arg φ̃αβ
s

can be approximated using

∫ t

t− 1
Ω

(̂̃
φ
αβ

s

)2

∫ t

t− 1
Ω

∣∣∣∣∣̂̃φαβs
∣∣∣∣∣
2 ≈ e2Arg φ̃

αβ

s . (7.15)

7.2 IM low speed “sensorless” control

A brief study of the literature in section 7.2.1 about“sensorless”control of the IM show that
the virtual measurement which is traditionally used to retrieve low speed observability,
is the orientation of the rotor flux. Consequently, we show in section 7.2.2 that it can
indeed be retrieved thanks to the virtual measurement and construct in section 7.2.3 a
robust control law using this supplementary measurement to achieve low speed“sensorless”
control of an IM. This is done in simulation, so that the virtual measurement is available.
Finally, we try in section 7.2.4 the proposed “sensorless” control law with the estimation
procedure for the orientation of the rotor flux on a real IM (see section 2.1.2).

7.2.1 Bibliography

In the literature (see [2, 4, 52, 78]), “sensorless” control of IMs at low speed relies on the
determination of a magnetic saliency using HF injection. This magnetic saliency is caused

by the term
∂2Hdq

∂φdq
s

∗2 . Indeed, when the injection response is rewritten in the injection frame

vw as done in section 5.2.1.2, we obtain for an axial injection

ı̃vs = 2 ∂2Hdq

∂φdq
s
∂φdq

s

∗
ũ

ΩF (Ωt) + 2

∣∣∣∣∣∣ ∂
2Hdq

∂φdq
s

∗2

∣∣∣∣∣∣ ũΩ cos
2ωit− Arg ∂

2Hdq

∂φdq
s

∗2

F (Ωt) (7.16a)

ı̃ws = −2

∣∣∣∣∣∣ ∂
2Hdq

∂φdq
s

∗2

∣∣∣∣∣∣ ũΩ sin
2ωit− Arg ∂

2Hdq

∂φdq
s

∗2

F (Ωt), (7.16b)

which shows that the amplitude of the response depends on the position of the injection.
A similar result is obtained in the case of a circular injection. Thanks to this saliency, an

information on Arg ∂2Hdq

∂φdq
s

∗2 is obtained, either by computing the arctangent of eq. (7.16b)

over eq. (7.16a) whose first term has been filtered out (see [2, 4]), or using a PLL (see
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Figure 7.5 – Saliency orientation shift ∆α as a function of the load torque.

[53]). This information can be directly fed to the vector control algorithm as in [2] or used
by an observer to retrieve estimates of the speed [4] or the fluxes [78].

It is generally assumed that the largest HF response is in the direction of the main flux
(see [2, 52, 78] for instance), which can be physically explained: the main flux saturates
the leakage inductances, which increase the size of the HF response. However, Yoon and
Sul [4] notice a saliency orientation shift from the main flux axis by approximately 20◦.

7.2.2 Observing the rotor flux angle

We will here follow the proposition of the literature (see section 7.2.1) and extract the
saliency direction from the eq. (7.14). We propose to regulate the direction of the injection
by a PI on the imaginary part of eq. (7.14). Then, at steady state, we have

Arg ∂
2Hαβ

∂φαβ
s

∗2 = 2 Arg φ̃αβ
s

which can be obtained using eq. (7.15). However, according to Yoon and Sul [4], the
saliency may not be in the direction of the rotor flux axis. The difference between the
direction of the saliency and the position of the rotor flux

∆α = Arg ∂
2Hαβ

∂φαβ
s

∗2 − Arg φαβ
r

(7.17)

is called the saliency shift. With the experimental results presented in figs. 5.16c and 5.17c,
the test IM presents certainly a saliency orientation shift. To estimate it, we inject a HF
signal and apply the aforementioned method to get the saliency orientation, while the
motor is being driven at low speed by a control law using the encoder of the test bench.
With this experiment we found out that saliency orientation does mostly not depend on
the speed, but it has a strong dependency on the torque as shown by the solid blue line
in fig. 7.5.

It can be modeled by

∆α = 2
3 arctan 3TL + π

90TL (7.18)
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as shown by the dashed red line in fig. 7.5. By removing it from the measured value of
the saliency orientation, the rotor flux direction can be estimated

α̂ = Arg ∂
2Hαβ

∂φαβ
s

∗2 −∆α = Arg ∂
2Hαβ

∂φαβ
s

∗2 −
2
3 arctan 3TL −

π

90TL. (7.19)

7.2.3 A control law using the rotor flux angle

Thanks to HF injection and the proposed signal processing (see sections 7.1.3 and 7.2.2),
the rotor flux direction α = Arg φαβr can be used to design a controller for the IM. Basically
we inserted a so-called flux controller between the current and the speed controller. This
new controller is in charge of ensuring that the control dq is oriented along the estimated
rotor flux. The proposed control law is represented as a bloc scheme in fig. 7.6.

The proposed control law is based on an existing “sensorless” control law for IMs
described succinctly hereafter. This control law is based on the unsaturated model of the
IM with state variables ıdqs and ϕdqr which reads

σLs
dıdqs
dt

= udqs − (Rs +Req
r )ıdqs − JσLsωsıdqs + 1

Tr
ϕdqr − ωϕdqr (7.20a)

dϕdqr
dt

= Req
r ı

dq
s −

1
Tr
ϕdqr − (ωs − ω)ϕdqr (7.20b)

JL
n

dω

dt
= Te − TL (7.20c)

where Te(ıdqs , ϕdqr ) = nLm
Lr
ıdqs

TJ2ϕ
dq
r , Tr := Lr

Rr
, Req

r := Rr
L2
m

L2
r

and σ := L2
m

LsLr
. The nonlin-

earity of the studied IM is used only to explain the results obtained by signal injection.
The current controller is based on the feed-forward

udqs = dıdq,fs

dt
+ (Rs +Req

r )ıdq,fs + JσLsωsıdq,fs − 1
Tr
ϕ̂dqr + vdqs (7.21)

where the input after feed-forward, vdqs , is used to q-axis current

vds = 0 (7.22a)

vqs = K ı
p(ıq,fs − ıq,ms ) + ıi (7.22b)

dıi

dt
= K ı

ı(ıq,fs − ıq,ms ). (7.22c)

The flux is observed thanks to the observer

dϕ̂dqr
dt

= Req
r ı̂

dq
s −

1
Tr
ϕ̂dqr − ω̂gϕ̂dqr . (7.23)

At the equilibrium of this controller, thanks to the value of the integral state ıi, an estimate
of the speed ω̂m can be obtained. After filtering, this speed will be used in the mechanical
loop as an estimate of the IM speed.

The current reference is computed from the required torque and rotor flux

ıd,rs = Lr
L2
m

ϕrr (7.24a)

ıq,rs = T re
nϕrr

(7.24b)
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Figure 7.6 – Bloc scheme of the control law. The time-scales of the controllers have been
highlighted with colors: red for the fastest, green for the intermediate and blue for the
slowest time-scale.
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which are low-pass filtered to obtain ıdq,fs . The estimate of the slip speed ω̂g is given by

ω̂g = Req
r T

r
e

nϕrr
2 . (7.25)

However, instead of adding ω̂ to ω̂g to obtain ωs, we use now a PI controller on α− θs to
ensure d-axis is collinear to the rotor flux

dαi

dt
= Kα

p (α− θs) (7.26a)

ωs = Kα
ı (α− θs) + αi. (7.26b)

The mechanical controller is similar to the one proposed in section 6.1.3.3, recalled
here

T re = JL
n
Kω
p (ωr − ω̂) + ωi (7.27a)

T se = min(max(T re ,−T le(ω̂)), T le(ω̂)) (7.27b)

dωi

dt
= JL

n
Kω
ı (ωr − ω̂) + 2K

ω
ı

Kω
p

(T se − Te). (7.27c)

This control law was tested in simulation on a motor where the virtual measurement
α was added. It really allows “sensorless” operation of the IM at low speed and is robust
to parametric errors.

7.2.4 Using HF injection for low speed “sensorless” control

Having seen the performances of the control law proposed in section 7.2.3, we can hope
that, when the estimated value of α given by eq. (7.19) is used instead of its real value,
the behavior of the controlled IM will be similar.

In simulation we noticed that the performance did not meet our expectations, but is
still worked well for saturated IMs with a small saliency orientation shift (e.g. model
eq. (4.59) with parameters table 4.2). By carefully tuning the gains and the parameters
of the unsaturated IM model used in the control law, we were able to control a saturated
IM with a large saliency orientation shift as modeled by eq. (7.18).

However, we were never able to make this work on a real IM, because the control law
proposed in section 7.2.3 is not robust enough to support the problems caused by a real
implementation on the test bench. After analysis of the results, we found out that a huge
ripple in 6ωs disturbs α̂ as shown in fig. 7.7. This ripple is caused by a non-sinusoidal
stator as explained in section 3.7 and inverter voltage drops (see section 2.3.1). However
it should not be so large, as non-sinusoidal effects seemed negligible in section 3.7.5.

The amplification of the 6ωs ripple is due to the fact that amplitude of variation of the
ripple size is very small on this motor. Indeed, it can be seen in figs. 5.16b and 5.17b, that
it does not exceed 0.15A with an injection of amplitude 40V (ũ = 20V ) and frequency
Ω = 500Hz whereas the average size is around 1A for the same injection. The estimation
is thus badly conditioned. This problem is also noticed in section 4.4.1, when we try to
build a flux observer thanks to information obtained with HF injection.

After looking at the articles [4, 78, 83, 84], we found out that the important ratio is

2(Ltds − Lt
q
s)

Ltds + Ltqs
= 2(Γtds − Γtqs)

Γtds + Γtqs
=

∣∣∣∣ ∂2Hdq

∂φdqs
∗2

∣∣∣∣
∂2Hdq

∂φdq
s
∂φdq

s

∗

. (7.28)
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Figure 7.7 – The error signal obtained on the IM described by table 2.2 while ωs was
around −17.5Hz. A large 6ωs harmonic can be observed.

Source Larger saliency ratio Smaller saliency ratio

Simulated IM (eq. (4.59) and table 4.2) 0.08 0.019
Test IM (table 2.2) 0.12 0.02

Jansen and Lorenz [78, fig. 11] 0.2 0.15
Yoon and Sul [4, fig. 4] 0.08 0.03

Drevenšek, Žarko, et al. [83, fig. 11] 0.5 0.5
Zatocil [84, fig. 3] 0.18 0.03

Table 7.2 – Saliency ratios, as defined by eq. (7.28), computed for the test IM, described
by table 2.2, and IM from the literature.

Table 7.2 compares the ratio obtained for the tested IM and the IM used in the literature.
The saliency ratios found in the literature vary in a wide range. It seems that very careful
signal processing is needed to achieve “sensorless” control of IMs using this technique.
This may not be feasible in an industrial VSD.

7.3 Partial conclusion

In this chapter implementation problems of a “sensorless” control law for an IM at low
speed on the test bench described in section 2.2 is considered. Due to the close bandwidth
of the current controller and the injection frequency, we choose not to filter out the HF
current response before feeding it in the current controller. In an ideal implementation
this would not have any undesirable effect. However, we realized that the delays in the
control loop greatly affected the results. This problem was circumvented by constructing
a flux ripple observer, which is used to estimate the real value of the stator flux ripple.

A low-speed “sensorless” control law, relying on the estimation of the saliency due to
magnetic saturation, was then proposed. However we realized that on the tested motor
the saliency was too small for this method to be reliable because of non-sinusoidal effects.
This is due to a low conditioning of the proposed method, which is greatly disturbed by
these uncompensated disturbances.



Conclusion

A new approach to electric motor modeling was proposed here. Thanks to it, electric
motors can be modeled by a single scalar energy function without knowing all the details
of their internal layout. This approach also justifies the modeling of magnetic saturation in
a rotating orthogonal frame (such as dq or DQ frames) whereas it occurs in the physical
abc frame. Besides this modeling approach highlights the similarities between electric
motors. Using the new models, the observability of electric machines is considered, and
all electric motors turn out to be“sensorlessly”unobservable at zero stator frequency. High
frequency signal injection is presented as a good solution to the loss of observability at
low speed. When considered in a the general context of nonlinear systems, it proves to be
a mean of adding virtual measurements, whereby flux or speed observers can be designed.
An energy based model for a Synchronous Reluctance Motor is proposed. The methods
we used to obtain it are easily generalizable to any kind of Synchronous Reluctance Motor.
However, modeling an Induction Machine turned out to be very difficult due to the lack
of information and no satisfactory model was found. Indeed, the rotor variables cannot
be accurately estimated. Thanks to the similarities between electric motors, underlined
by energy-based modeling, a control law designed for Synchronous Reluctance Motors can
easily be generalized to Permanent Magnet Synchronous Motors. Finally the low speed
“sensorless” control of electric machines is considered. The effect of signal injection on the
control law is quantified and methods to extract the information contained in the response
of the motor are proposed. Besides, the control of our induction machine with a small
magnetic saliency turned out to be impossible using the traditional approaches, which
was expected from the results on observability using signal injection, but the improved
speed observer could not be satisfactorily used in closed loop on a real system due to the
lack of a proper model. Indeed for this observer to be implemented, a complete model
of the current-flux relations and their differentials (the relations linking the flux to the
Hessian of the energy function) is required.

The present work can be improved in many ways. First, the proposed modeling ap-
proach can be extended to take into account magnetic hysteresis, whose effects are notice-
able when high frequency injection is used on Synchronous Reluctance Motors or Induction
Machines. Besides a way to reliably estimate the rotor current or flux must be found so
that sensible models for Induction Machines can be designed. Secondly, the performance
of the control law using the flux and speed observer for lowly salient electric motors can
be improved by designing a better nonlinear observer and integrating it in the control
law.
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[7] J. Lakemeier, A. Tenge, and F. Wishmeier for dSpace GmbH, User guide for “dSpace
AC motor control solution”, v. 7.1.1 (2011)

[8] Schneider Electric, Catalog for “Variable Speed Drives Altivar 71”

[9] Vacuumschmelze, Datasheet for “T60404-N4644-X400” (2009)

[10] N. Francey for Vibro-meter, Manual for “Torquemaster TM200 series”, v. 4 (1997)

[11] Schneider Electric, Datasheet for “XCC1912PS11RN”

[12] P. Combes, A. Jebai, F. Malrait, P. Martin, and P. Rouchon, “Adding virtual mea-
surements by HF signal injection”, submitted to American Control Conference (ACC)
(2016).

[13] A. R. Weber and G. Steiner, “An accurate identification and compensation method
for nonlinear inverter characteristics for AC motor drives”, Instrumentation and
Measurement Technology (I2MTC), IEEE International Conference on, pp. 821–826
(2012).

203



204 Bibliography

[14] F. Gabriel, F. De Belie, et al., “Compensating the influence of the stator resistor and
inverter nonlinearities in signal-injection based sensorless strategies”, Vehicle Power
and Propulsion, IEEE Conference on, pp. 249–256 (2009).

[15] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarró, and L. R. D., “Inverter nonlinearity
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l’analyse par éléments finis des systémes de chauffage par induction. PhD thesis,
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INSTITUT DES SCIENCES ET TECHNOLOGIES

Injection de signal et contrôle « sans capteurs » des moteurs électriques

Résumé : Cette thèse propose une étude approfondie de certains aspects des algorithmes de
contrôle « sans capteur ». Grâce aux progrès faits en électronique, ces algorithmes sont devenus
ces dernières années un standard que les clients attendent de tous les variateurs de vitesse pour
tous les moteurs électriques. Cependant, le contrôle « sans capteur » des moteurs électriques
à basse vitesse est particulièrement difficile à cause d’une limitation théorique expliquée ici par
une étude d’observabilité. L’injection de signal est une technique prometteuse pour contourner ce
problème, mais ses effets demeurent mal compris. En particulier le traditionnel modèle sinusöıdal
non-saturé ne permet pas d’expliquer les résultats expérimentaux. Par conséquent, on propose ici
une nouvelle méthode pour modéliser les moteurs électriques. Elle est nettement plus simple que
les approches traditionnelles et permet de justifier rigoureusement la modélisation de la saturation
dans le repère dq fictif. Les effets de l’injection de signal sont ensuite expliqués grâce à une
séparation des échelles de temps. Replacée dans le contexte plus général des systèmes non-linéaires,
elle s’avère être une technique permettant d’obtenir des informations supplémentaires sans ajouter
de capteur. Les informations ainsi obtenues permettent théoriquement le contrôle des moteurs
électriques « sans capteur » à basse vitesse, mais la mise en œuvre de cette solution pour certains
types de moteurs peut demeurer compliquée à cause de contraintes industrielles. On montre aussi
comment les modèles proposés peuvent être calibrés expérimentalement pour le cas du Moteur
Synchrone à Reluctance et du Moteur à Induction sans charge. À cause du manque de mesures et
d’effets liés à l’hystéresis dans les matériaux ferromagnétiques, on n’a malheureusement pas réussi
à obtenir un modèle expliquant le comportement du Moteur à Induction en charge. Par ailleurs,
grâce à la similarité entre les moteurs électriques mise en évidence par l’approche de modélisation
proposée ici, on a pu concevoir une loi permettant de contrôler aussi bien un Moteur Synchrone
à Reluctance que n’importe quel Moteur Synchrone à Aimants Permanents.
Mots clés : Contrôle non-linéaire, Moteurs électriques, Modélisation, Contrôle sans capteurs,
Injection de signal

Signal injection and “sensorless” control of electric motors

Abstract: This thesis proposes an in-depth study of some aspects of “sensorless” control algo-
rithms for electric machines. Over the past few years, thanks to the progress made in electronics,
“sensorless”control laws became a standard expected from any variable speed drive for any electric
motor. However low-speed “sensorless” operation of electric motors is inherently difficult, due to
a theoretical limitation explained here by an observability study. Signal injection is a promising
solution to circumvent this limitation, but its effects are not yet fully understood. In particular,
experimental results are not explained by traditional unsaturated sinusoidal models for electric
motors. Hence a new modeling approach for electric motors is proposed here. It is much simpler
than the usual ones and explains thoroughly why saturation can be modeled in the nonphysical
dq frame. Signal injection effects are then explained using a multiple time-scale approach and,
when put into the general context of nonlinear systems, it turns out to be a technique which allows
to obtain more information without adding sensors. Thanks to this additional information, “sen-
sorless”control of electric motors becomes theoretically possible, even though the implementation
remains challenging due to industrial constraints. Models for the Synchronous Reluctance Motor
and the Induction Motor at no load are designed using the proposed approach and calibrated on
experimental data but the procedure failed for the Induction Motor under load due to a lack of
measurements combined to hysteresis effects. Besides, thanks to the similarities between electric
motors, underlined by the proposed modeling approach, we are able to generalize the proof of a
“sensorless” control law designed for Synchronous Reluctance Motors to any kind of Permanent
Magnet Synchronous Motor.
Keywords: Nonlinear control, electric motors, modeling, Sensorless control, Signal injection
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