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A BSTRA CT Dietary risk analysis is a multidisciplinary fi eld par excellence, requiring in particular a mixture of biological, sociological, chemical, cultural, economic, statistical and sanitary expertise to answer practical issues. In a global system w here international exchanges are encouraged, w here mass production favors cheap, profi table production strategies (GM O, pesticides, enriched animal food, addition of colorants, preservatives or artifi cial fl avors, etc.), it is necessary to quantify the risks that result from such economic behaviors. The focus here is on the chronic (year-long) exposure to a set of food contaminants, the long-term toxicity of w hich is already well-know n. Since food consumption is also the privileged way of supplying the body w ith necessary nutrients, nutritional benefi ts (or defi ciencies) are taken into account as well. This thesis is dedicated to a collection of mathematical problems arising from both the analysis of such dietary risks and the nature of the data. First of all, the adequacy of the classical univariate long-term models that are recommended by Efsa (European Food Safety Authority) is discussed at length. They usually assume that observations have a log-normal distribution, thereby neglecting the possibility that they are in fact heavy-tailed. In terms of food risks, this would mean that a very high exposure to a single chemical element is a rare enough event to be neglected. When the component of interest clearly violates this strong assumption, extreme value theory is proposed as a relevant alternative, as revealed by a set of illustrations based on real data. Then, this sub-field of theoretical statistics is adapted to the analysis of the simultaneous exposure to many nutrients and contaminants. Following in the footsteps of classical machine learning techniques, using in particular the recent " Principal N ested Spheres" algorithm of S. Jung, I.L. Dryden and J.S. M arron, we construct a new model that identifi es extreme dependencies in high dimension. This allow s us to defi ne some cocktails of chemicals that are jointly ingested in very high quantities. Remaining in a multivariate framework, we then move to the issue of dietary recommendations. In the line of the " minimum volume set" approach of C. Scott and R. N owak, we propose an algorithm that selects food baskets realizing a compromise between toxicological risk and nutritional benefi t. Finally, as consumption databases often result from complex survey schemes, the estimators constructed under the hypothesis that observations are independent and identically distributed can produce severely biased outcomes. In an attempt to take into account this preliminary sampling phase, we mimic the approaches of J. H àjek and Y. Berger and focus on the specifi c family of Poisson-like survey plans. Under this framework, the asymptotic properties of H orvitz-Thompson empirical processes are inspected, before concluding this thesis on the introduction of a weighted version of the w idely celebrated H ill estimator for the heavy-tail analysis of sampled observations. v xiv

RÉSUM É

Véritable carrefour de problématiques économiques, biologiques, sociologiques, culturelles et sanitaires, l'alimentation suscite de nombreuses polémiques. Dans un contexte où les échanges mondiaux facilitent le transport de denrées alimentaires produites dans des conditions environnementales diverses, où la consommation de masse encourage les stratégies visant à réduire les coûts et maximiser le volume de production (OGM , pesticides, nourriture enrichie donnée aux animaux en élevage, ajout de substances chimiques tels les colorants et les arômes artifi ciels, etc.) il devient nécessaire de quantifi er les risques sanitaires que de tels procédés engendrent. N otre intérêt se place ici sur l'étude de l'exposition chronique, de l'ordre de l'année, à un ensemble quelconque de contaminants dont la nocivité à long terme est d'ores et déjà établie. Les dangers et bénéfi ces de l'alimentation ne se restreignant pas à l'ingestion ou non de substances toxiques, nous ajoutons à nos objectifs l'étude de certains apports nutritionnels. Les travaux réalisés au cours de cette thèse répondent à plusieurs problématiques mathématiques engendrées par l'analyse de ce type de risque alimentaire et par la nature des données utilisées à ces fi ns. Dans un premier temps, nous discutons la portée des modèles classiques dédiés à l'estimation de l'exposition de long terme à un unique composant alimentaire. Ces derniers, dont l'utilisation est recommandée par l'Efsa (European Food Safety Authority), requièrent généralement la log-normalité des observations et interdisent par là-même les distributions à queue plus épaisse, où l'élément chimique étudié aurait une probabilité non négligeable d'être ingéré en de très grandes quantités. N ous montrons alors, exemples à l'appui, comment la théorie des valeurs extrêmes peut être utilisée dans de telles situations. Ce pan de théorie statistique est ensuite adapté à l'étude des fortes expositions à un nombre quelconque (potentiellement très grand) de nutriments et contaminants.

En nous inspirant de techniques traditionnelles de l'apprentissage statistique, notamment le récent algorithme des " Principal N ested Spheres" développé par S. Jung, I.L. Dryden et J.S. M arron, nous construisons un modèle ouvrant l'étude des dépendances extrêmes à la grande dimension, qui nous permet en particulier de défi nir des groupes d'éléments auxquels les consommateurs sont simultanément sur-exposés. Toujours dans une optique multivariée, nous nous éloignons ensuite des expositions extrêmes pour nous placer du côté des consommations alimentaires. En nous basant sur une approche de type " ensemble de volume minimum" comme introduite par C. Scott et R. N owak, nous proposons un algorithme pour identifi er des paniers de produits réalisant un compromis entre risque toxicologique et bénéfi ce nutritionnel. Enfi n, les données alimentaires disponibles résultant souvent de plans de sondage non triviaux, les estimateurs construits sous l'hypothèse que les données sont indépendantes et identiquement distribuées peuvent produire des résultats biaisés. Tentant de prendre en compte cette étape préliminaire d'échantillonnage, nous nous concentrons dans la lignée des travaux de J. H àjek et Y. Berger sur la famille des plans de sondage de type Poisson et étudions le comportement asymptotique des processus empiriques pondérés à la manière H orvitz-Thompson. Suivant la même approche, nous proposons fi nalement une variante de l'estimateur de H ill pour l'analyse des distributions à queue épaisse adaptée au cadre des données de sondage. vi PU BL I CA TI ON S su bmi t t ed f o r pu bl i c at i o n E. Chautru, S. Clémençon, Dimension reduction in multivariate heavy-tail analysis, 2013 P. Bertail, E. Chautru, S. Clémençon, Empirical Processes in Survey Sampling, 2013 P. Bertail, E. Chautru, S. Clémençon, On Tail Index Estimation Based on Survey Data, 2013 t o be su bmi t t ed E. Chautru, S. Clémençon, J. Tressou, Determination of an optimal diet by minimum volume sets, 2013 E. Chautru, J.L. Volatier, Heavy-tail modeling of Usual Intakes, 2013 vii REM ERCI EM EN TS En premier lieu, je souhaite vivement remercier les membres de mon jury d'avoir accepté d'évaluer mon travail et de me faire profi ter par là-même de leurs conseils avisés. Je suis tout particulièrement reconnaissante à Johan Segers et A nne Ruiz-Gazen d'avoir sacrifi é une partie de leur mois d'août pour éplucher mon mémoire en détail. M erci de l'intérêt que vous avez porté à ma thèse et merci pour les critiques constructives qui m'ont permis d'en améliorer la substance. Je suis de même très honorée par la présence dans mon jury de thèse de Liliane Bel, A nne-Laure Fougères, Valentin Patilea et Paul Doukhan, que j'admire personnellement tant sur le plan scientifi que que sur le plan humain.
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x CON TEN TS Pr ef ace p r égi mes a l i men t a i r es, expo si t i o n i n d i vi du el l e et st at i st i q u e p. Variées et nombreuses sont les études scientifi ques pouvant être caractérisées comme analyses du risque alimentaire. Cette désignation fort générale issue du jargon de la santé publique fait référence à toute entreprise visant à la détection, à la compréhension, et au traitement des dangers liés à l'alimentation. Parmi ces derniers, citons par exemple l'une des problématiques classiques des producteurs : le développement de bactéries au cours des différentes étapes de production, de transport, de distribution et de stockage qui précèdent la consommation [START_REF] Rigaux | Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model w ith durability studies: application to Bacillus Cereus on a courgette purée production chain[END_REF]. A une toute autre échelle, l'industrie agroalimentaire doit évaluer les impacts à la fois économiques et sanitaires de techniques de production de masse tels l'utilisation de pesticides (http://www.efsa.europa.eu/en/topics/topic/pesticides.htm) ou l'introduction d'organismes génétiquement modifi és dans les plantations (http:// www.efsa.europa.eu/en/topics/topic/gmo.htm). Selon leur composition chimique et leur mode d'utilisation, les ustensiles de cuisine peuvent aussi représenter une source de danger, comme en témoigne la récente polémique à propos de la présence de bisphénol A dans les biberons (cf. l'avis de l'A nses y ayant fait suite, A nses, 2013). D'autres problèmes de santé peuvent être engendrés par des troubles du comportement alimentaire (e.g. les personnes souffrant d'anorexie aiguë sont particulièrement sujettes aux maladies provoquées par des carences nutritionnelles) ou par des facteurs biologiques particuliers (e.g. le diabète). A la lumière de ces quelques exemples, il est clair que selon la question examinée, des connaissances spécifi ques en chimie, biologie, médecine, sociologie, économie ou même psychologie peuvent être requises, sans oublier la modélisation probabiliste et la gestion informatique des données. L'analyse du risque alimentaire est ainsi un domaine d'étude multidisciplinaire par excellence. Le lecteur curieux d'en apprendre plus est invité à consulter [START_REF] Feinberg | Analysis of food risks[END_REF], manuel expliquant de manière exhaustive les tenants et aboutissants de l'analyse du risque alimentaire selon un point de vue interdisciplinaire.

Le présent travail est dédié à l'étude d'un type spécifi que de risque alimentaire : indépendamment de tout processus de production, de stockage ou de cuisson, ignorant les prédispositions biologiques extraordinaires, nous nous intéressons exclusivement à la très forte (ou très faible) exposition sur le long terme à certains composants alimentaires de la population française dans son ensemble. A près avoir introduit quelques concepts élémentaires du risque alimentaire en section P.1, décrit les données disponibles en section P.2 et brièvement exposé l'état de l'art sur la modélisa-tion probabiliste des risques alimentaires en section P.3, nous présentons en détail en section P.4 les diverses problématiques traitées au cours de cette thèse avant d'en annoncer les contributions scientifi ques principales.

P.1 q u ' est -c e q u e l e r i sq u e a l i men t a i r e ?

Une fois qu'un type spécifi que de risque alimentaire a été porté à la connaissance de tous, son analyse consiste en trois étapes distinctes, respectivement qualifi ées d'évaluation du risque, de gestion du risque et de communication autour du risque. Les divers problèmes soulevés dans chacune de ces phases de recherche sont résumés dans les paragraphes suivants. A fi n d'en faciliter la compréhension, nous en illustrons la substance à l'aide de l'exemple concret des régimes riches en sel, dont l'abus récurrent peut favoriser les problèmes cardiaques (se référer par exemple à la page Internet http://www.anses.fr/en/content/salt et aux références qui y sont mentionnées).

P.1.1 Evaluation du risque

L'évaluation (ou appréciation) du risque peut elle-même être décomposée en quatre sous-étapes, qui consistent à successivement identifi er puis caractériser les dangers potentiels et leur probabilité d'apparition. Dans le cas des régimes riches en sel, le danger n'est autre que celui d'ingérer de manière journalière ou hebdomadaire une trop grande quantité de sodium (N a dans le tableau périodique des éléments), ce qui sur le long terme pourrait engendrer une dégradation du système cardiovasculaire. La connaissance de ces effets nocifs est due à tout un ensemble d'études chimiques et biologiques concernant l'assimilation, l'action et l'élimination du sodium dans le corps humain. Ce processus, appelé identification du danger [START_REF] Barlow | H azard identifi cation by methods of animal-based toxicology[END_REF], est suivi de recherches supplémentaires permettant de défi nir à partir de quel niveau de consommation le composant devient toxique, c'est-à-dire de caractériser le danger. Pour ce faire, des tests dits dose-réponse sont en général réalisés in vitro ou in vivo sur des animaux avant d'en étendre les résultats à l'espèce humaine par le biais de modèles dédiés [START_REF] Dybing | H azard characterisation of chemicals in food and diet: dose response, mechanisms and extrapolation issues[END_REF]. Une fois le processus de contamination compris dans son intégralité, il devient possible d'en estimer la fréquence d'apparition au sein d'une population choisie. Cette dernière phase requiert en premier lieu la description détaillée des distributions de la consommation et de l'exposition dans la population concernée [START_REF] Kroes | A ssessment of intake from the diet[END_REF], avant de les comparer à des doses maximales recommandées, déterminées par des experts à l'issue des tests dose-réponse précédemment évoqués [START_REF] Renw Ick | Risk characterisation of chemicals in food and diet[END_REF] et possiblement raffi nés par des procédés mathématiques [START_REF] Edler | M athematical modelling and quantitative methods[END_REF]. En fonction de la nature des données disponibles, les modèles statistiques utilisés à ces fi ns peuvent inclure une dimension temporelle [START_REF] Bertail | Statistical analysis of a dynamic model for dietary contaminant exposure[END_REF][START_REF] Bertail | A storage model w ith random release rate for modeling exposure to food contaminants[END_REF][START_REF] Tressou | Using decomposed household food acquisitions as inputs of a kinetic dietary exposure model[END_REF], prendre en compte des caractéristiques comportementales ou biologiques individuelles, ou encore tenter de compenser le manque d'information sur les habitudes alimentaires de long terme [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]. Ce dernier problème est discuté en détail en section P.3 et au chapitre 2.

P.1.2 Gestion du risque

A près que le risque a été évalué, il est nécessaire d'en identifi er les déterminants, d'en évaluer les impacts relatifs et de défi nir la stratégie la plus rapide et la plus efficace permettant de le réduire. Ce n'est autre que l'objectif de la gestion du risque. Par exemple, la sur-exposition au sodium peut être attribuée à la consommation répétée de produits à haute teneur en sel comme les plats tout prêts ou les biscuits. Un plan simple d'action dans ce cas serait de prévenir les consommateurs des dangers potentiels et d'imposer en parallèle aux compagnies agroalimentaires de limiter les doses de sel ajoutées à leurs préparations. Dans des situations plus extrêmes, après une évaluation rigoureuse des conséquences économiques d'une telle opération, des produits considérés trop dangereux peuvent même être retirés du marché.

P.1.3 Communication autour du risque

La dernière étape de l'analyse du risque alimentaire est appelée communication autour du risque. Elle peut être mise en place à n'importe quel moment de l'analyse et peut s'adresser aussi bien aux scientifi ques et aux gestionnaires du risque qu'à l'industrie agroalimentaire ou à la population. En tant que telle, elle n'est pas cantonnée aux campagnes publicitaires de santé publique du type " évitez de manger trop salé" . S'y rapportent aussi tous les rapports scientifi ques concernant les procédures considérées appropriées pour détecter et quantifi er les risques, la publications d'études cas-témoin, les discussions internationales sur les politiques agroalimentaires, etc. Dans cette thèse nous sommes tout particulièrement intéressés par la production de résultats permettant d'aiguiller les recherches futures et, lorsque possible, de défi nir des lignes directrices de consommation simples et générales à l'intention de la population.

La grande majorité de nos travaux correspond ainsi à la phase d'évaluation du risque. En quelques mots, nous proposons des méthodes statistiques visant à estimer certaines caractéristiques (comme des quantiles) de la très forte exposition à un ou plusieurs composants alimentaires sur une longue période de temps. A l'exception près du chapitre 4, dans lequel nous élaborons une procédure pour déterminer des paniers de consommation réalisant un compromis entre risque toxicologique et bénéfi ce nutritionnel, les problématiques relevant de la gestion du risque ne sont pas abordées. Les éléments chimiques que nous prenons en considération sont les nutri-ments et contaminants dont les effets sanitaires liés à une sur-ou une sous-exposition chronique ont d'ores et déjà été établis. En particulier, les risque aigus sont ignorés, tels ceux impliquant la contamination bactérienne de la nourriture, qui peuvent affecter l'organisme en quelques jours ou même quelques heures seulement. L'analyse statistique est réalisée dans ce contexte à partir de formats standards de bases de données, dont une description rapide est proposée ci-après. P.2 d es so u r c es mu l t i pl es d ' i n f o r mat i o n A fi n de permettre l'analyse statistique de l'exposition chronique d'une population donnée à une collection de composants alimentaires, il est désirable d'observer de tels types d'exposition sur un large échantillon d'individus pendant une longue période de temps. M alheureusement, les quantités de nutriments et de contaminants ingérés durant un repas ne sont pas directement mesurables; ils ne peuvent qu'être estimés à l'aide de méthodes variées. L'une des procédures classiques consiste à détecter puis quantifi er certains marqueurs biologiques, dont la présence est intimement liée au niveau d'exposition (voir par exemple la page Internet de l'A nses http://www.

institutionnelles dédiées à un niveau national (IN CA 2, A fssa, 2009). N ous nous intéressons ici à deux grandes familles de données, appelées en anglais 24-hour recalls (24H ) et food frequency ou propensity questionnaires (FFQ/ FPQ). La première de ces catégories correspond à des enquêtes de grande envergure (par exemple nationale) où un échantillon de sondés note en détail les quantités d'aliments qu'ils consomment durant 2 à 7 jours, parfois consécutifs, mais la plupart du temps sélectionnés aléatoirement dans l'année. Les prises alimentaires sont indiquées soit de manière exacte, soit relativement à des photographies d'assiettes plus ou moins remplies, qui sont mises à disposition par le sondeur. Bien entendu, la période d'observation étant particulièrement courte, les 24H peuvent sembler inappropriés pour l'étude de l'exposition de long terme [START_REF] Counil | Fitness-for-purpose of dietary survey duration: A case-study w ith the assessment of exposure to ochratoxin A[END_REF]. C'est pourquoi il est souvent demandé aux sondés de remplir en parallèle lesdits FFQ/ FPQ (questionnaires de fréquence ou de propension des prises alimentaires si l'on traduit mot-à-mot). Ils permettent en particulier de distinguer les personnes ne consommant jamais certains produits de celles qui en mangent occasionnellement. Le lecteur curieux d'en apprendre davantage au sujet de ces deux grandes sources d'information est invité à se référer à van [START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF]; [START_REF] Efsa | Guidance of the Scientifi c Committee on a request from EFSA related to Uncertainties in Dietary Exposure A ssessment[END_REF]; [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]. Tout au long de la présente thèse nous utilisons la base IN CA 2 qui, ainsi que décrit ci-après, peut être assimilée à un mélange de 24H et de FFQ.

P.2.1.1 Les habitudes alimentaires en France : INCA2

IN CA 2 (second opus de l'enquête nationale sur les habitudes alimentaires individuelles en France) est une enquête d'envergure nationale mise en place par l'A nses (agence française de sécurité sanitaire de l'alimentation, de l'environnement et du travail) en collaboration avec l'Insee (institut national de la statistique et des études économiques) entre décembre 2005 et avril 2007. Elle collecte les informations concernant les comportements alimentaires de 2624 adultes et 1455 enfants sélectionnés aléatoirement dans la population française.

Ú Plan de sondage Les individus composant IN CA 2 ont été sélectionnés selon un plan de sondage complexe à plusieurs degrés, construit afi n de produire un échantillon représentatif de la population française selon des critères géographiques, sociologiques et économiques. Ces mêmes variables auxiliaires ont ensuite été utilisées lors d'une étape de redressement, réalisée dans un second temps afi n prendre en compte la possible non-réponse de certains sondés ainsi que les fl uctuations d'échantillonnage. Une description détaillée du plan de sondage d'IN CA 2 est disponible dans le rapport A fssa (2009, Chapitre 2 et A ppendice 2).

Ú Données alimentaires Tous les participants ont indiqué la nature et la quantité des aliments qu'ils ont consommés durant les 7 jours consécutifs de l'enquête. Ces produits ont été classifi és selon une nomenclature exhaustive de 1342 aliments, re-groupés en 123 sous-classes et 45 catégories plus larges (A fssa, 2009, Section 2.2.6.3 et A ppendice 1). A fi n de les aider à évaluer les quantités mangées, un carnet de photographies représentant des assiettes et des verres progressivement remplis a été mis à la disposition des sondés, servant d'étalon lorsque des mesures exactes ne pouvaient être réalisées. Des informations complémentaires sur les conditions des repas ont aussi été collectées, concernant par exemple le lieu, l'heure et la durée de ces événements. Six catégories de repas sont indiquées dans la base fi nale, à savoir le petit déjeuner, la collation du matin, le déjeuner, la collation de l'après-midi, le dîner et la collation du soir. Pour prendre en compte les variations saisonnières des habitudes alimentaires, les participants ont été contactés à des moments aléatoires de l'année, durant l'une des 3 vagues successives de collecte des données. Un ensemble de questions concernant la prise de compléments alimentaires a aussi été introduit (A fssa, 2009, Section 2.2.6.4 et Chapitre 8).

Ú Information auxiliaire En complément des régimes alimentaires, un nombre important d'informations au sujet des sondés a été noté, allant des caractéristiques sociologiques (e.g. diplôme, profession, revenu du ménage, nationalité) aux préférences alimentaires, en passant par les activités physiques (e.g. type, fréquence, durée), l'historique médical (e.g. troubles du comportement alimentaire) et d'autres indications générales (e.g. age, poids, sexe).

Ú Consommateurs occasionnels Lorsque l'intérêt est porté sur les habitudes alimentaires et l'exposition de long terme, 7 jours peuvent sembler être une période arbitrairement courte d'observation. En effet, en une semaine seulement, les enquêtés ne peuvent couvrir l'ensemble de leur répertoire alimentaire et de nombreux produits de la nomenclature de référence ne sont pas consommés. Un tel phénomène rend diffi cile la distinction entre les consommateurs occasionnels et ceux qui ne mangent jamais de certains produits. A fi n de remédier à ce problème, il a été demandé aux individus constituant la base IN CA 2 de décrire leurs régimes usuels et de déclarer clairement à quelle catégorie de consommateurs ils appartiennent. Ces questions additionnelles correspondent aux fameux FFQ/ FPQ précédemment mentionnés qui, combinés aux bases de type 24H , facilitent grandement la modélisation statistique [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]et van Klaveren et al., 2012, Sections 3.6 et 3.8).

Ú Information incomplète Comme nous venons de l'évoquer, n'observer les enquêtés que durant 7 jours peut s'avérer être un inconvénient majeur. Cependant, du point de vue des sondés, une semaine complète peut paraître particulièrement long, et la qualité des données peut en pâtir. En effet, comme indiqué dans le rapport A fssa (2009, Section 2.4.2), plusieurs participants ont ponctuellement omis d'indiquer leurs consommations, tandis que d'autres ont largement sous-estimé les quantités ingérées durant leurs repas. Dans nos calculs nous avons pris le parti d'ignorer ces lacunes en rapportant les informations disponibles à l'échelle de la semaine.

Ú Dépendance temporelle La seule réelle différence entre IN CA 2 et les bases de type 24H tient à la nature consécutive des 7 jours d'observation. A insi, bien qu'une semaine complète semble clairement plus appropriée que 2 jours d'enquête pour une analyse de long terme, il est alors plus diffi cile d'ignorer la dépendance temporelle.

Ú Traitement préliminaired'INCA2 Les travaux réalisés dans cette thèse sont dédiés à l'analyse globale des habitudes alimentaires de long terme des adultes en France. En raison de leurs besoins nutritionnels spécifi ques et du caractère temporaire de leur état, nous avons décidé de ne prendre en compte ni les femmes enceintes ni les femmes allaitant dans nos calculs. D'autres individus ont été exclus de nos analyses, notamment ceux ayant omis de renseigner des variables essentielles comme le poids corporel, amenant l'échantillon initial à 2488 unités. Bien entendu, nous aurions pu tenter d'appliquer des méthodes classiques pour remédier au problème des valeurs manquantes. N éanmoins, de telles considérations dépassent le cadre de nos travaux. En particulier, ces techniques statistiques sont en général mises en place pour éviter de dégrader l'estimation de phénomènes moyens. Or notre intérêt est porté sur les événements extrêmes (minimum et maximum). Par ailleurs, la proportion de valeurs manquantes dans l'échantillon étant infi me (seuls 91 individus sont concernés, soit 3; 7% des enquêtés), nous avons préféré les ignorer.

P.2.2 Données de composition

Les bases de données dites de composition regroupent en général un ensemble de mesures chimiques réalisées sur des groupes plus ou moins raffi nés d'aliments. Elles peuvent provenir d'enquêtes de natures variées. Par exemple, des plans de surveillance sont mis en place pour vérifi er la sûreté de produits suspects et induisent la collecte de données à leur sujet. Bien que de nombreux éléments du répertoire alimentaire soient ainsi négligés, le nombre de mesures réalisées dans ce cadre est particulièrement conséquent, avantage non-négligeable pour toute analyse statistique. N éanmoins, en raison de la nature suspecte des produits étudiés, les bases de données résultantes ne peuvent être utilisées pour l'évaluation des risques alimentaires à grande échelle sans introduire un biais non-négligeable. A l'inverse, les études dites de l'alimentation totale tentent de couvrir la quasi-totalité des aliments consommés dans une population d'intérêt. En contrepartie, le nombre de mesures réalisées par produit est bien plus modeste (de 2 à 8 en général). Au vu de nos objectifs, nous préférons ces dernières aux plans de surveillance. Les données de contamination peuvent être combinées aux données de consommation pour ensuite approximer l' exposition à certains composants alimentaires. M alheureusement, les nomenclatures de produits utilisées dans chacune de ces bases peuvent différer substantiellement, ce qui pose un problème supplémentaire au statisticien (voir par exemple le rapport de l'Efsa concernant la mise en commun de données produites par divers pays européens à l'adresse http://www.efsa.europa.eu/en/search/doc/415e.pdf). Comme expliqué ci-après, les bases de données utilisées dans cette thèse ont été construites spécifi quement pour permettre le croisement avec IN CA 2, contournant par là-même le problème sus-mentionné.

P.2.2.1 Apports nutritionnels : CIQUAL 2008

La version 2008 de la base de données CIQUA L (Centre d'Information sur la QUalité des A Liments) liste les concentrations moyennes en un large panel de nutriments des 1342 produits alimentaires de la nomenclature d'IN CA 2. Ces teneurs sont déterminées à partir de multiples sources d'information, allant d'analyses chimiques spécifi quement commanditées pour l'étude à des rapports publiés par des instituts de recherche variés. A chaque source est attribué un poids indiquant sa fi abilité, qui est ensuite pris en compte dans un calcul produisant le résultat fi nal. Plus de détails concernant la construction de cette base de données sont disponibles dans le rapport A nses (2008).

Ú De l'invariance nutritionnelle Bien que relativement exhaustive, CIQUA L 2008 ne donne aucune information concernant la variabilité des concentrations en nutriments à l'intérieur d'un même type d'aliment. Cela suggère par exemple que deux oranges cultivées dans des régions différentes, l'une potentiellement plus ensoleillée que l'autre, ont la même teneur en vitamine A . Si cette hypothèse semble déraisonnable de prime abord, les variations de concentration au sein d'une même famille de produits sont souvent si faibles qu'il est d'usage de considérer les teneurs fi xes, à condition que la nomenclature utilisée soit assez détaillée [START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF](de Boer et al., , p.1433)), contrainte qui se trouve être respectée dans le cas de CIQUA L 2008.

P.2.2.2 Contamination des aliments : EAT2

Contrairement aux plans de surveillance, le second opus de l'étude de l'alimentation totale française (EAT2) a été construite dans le but d'estimer l'exposition de la population française à un large ensemble de contaminants alimentaires. A insi, plus de 80% des aliments consommés en France y sont pris en compte (A nses, 2011), ce qui en fait une base de donnée de choix au vu de nos objectifs. Cependant, elle possède malgré tout un certain nombre de défauts inévitables.

Ú M élange des aliments L'une des principales lacunes d'EAT2 provient de la technique utilisée pour réaliser les mesures de concentration. En effet, les analyses chimiques ont été opérées sur des mélanges d'aliments plutôt que sur des produits bruts : différentes espèces d'une même famille d'aliments ont été mixés avant inspection, et les plats cuisinés ont été étudiés dans leur ensemble, sans en séparer au préalable les ingrédients. A fi n de contourner les problèmes induits par cette procédure, des tables de recettes ont été construites en parallèle, permettant la décomposition des résultats en une nomenclature plus raffi née (A nses, 2011).

Ú Données censurées Comme toute base de donnée de contamination, EAT2 souffre d'un problème intrinsèque de censure lié aux limites des instruments de mesure. En effet, ces derniers ne sont pas d'une précision infinie et peuvent ainsi être incapables de quantifi er voire même de détecter des quantités trop faibles d'éléments chimiques dans la nourriture. Cette censure inévitable est usuellement introduite dans les modèles statistiques par le biais de deux paramètres essentiels : la limite de détection (LDD) et la limite de quantifi cation (LDQ). La première représente la quantité minimale de composant qui doit être présente dans la substance analysée pour pouvoir être détectée par l'appareil de mesure, et la seconde le niveau nécessaire pour permettre la quantifi cation. Toutes deux dépendent bien évidemment de l'instrument utilisé. En pratique, il est d'usage d'adopter l'une des trois hypothèses listées ci-après pour contourner ce problème. N otons t D la quantité réelle de composant lorsqu'elle est en dessous de la LDD, et t Q lorsqu'elle est située entre la LDD et la LDQ. Les trois scénarii possibles sont alors :

1. hypothèse médiane : t D = LDD=2 et t Q = LDQ=2, 2. hypothèse basse : t D = 0 et t Q = LDD, 3. hypothèse haute : t D = LDD et t Q = LDQ.
L'hypothèse médiane est typiquement choisie lorsque le taux de mesures censurées dans la base de données utilisée ne dépasse pas les 60%. N ous décidons ici d'adopter ce scénario, les considérations à propos de la censure des données de contamination dépassant le cadre de nos travaux.

P.3 est i mat i o n d es r i sq ues a l i men t a i r es : pet i t a per ç u d e l ' ét at d e l ' a r t Ces 20 dernières années, pléthore de modèles statistiques a été développé afi n d'évaluer de multiples types de risques alimentaires. Construits pour répondre à des questions pratiques liées à la nature des bases de données disponibles telles que la censure mentionnée au paragraphe précédent [START_REF] Tressou | N onparametric modeling of the left censorship of analytical data in food risk assessment[END_REF], ils continuent d'évoluer avec les nouvelles méthodes de collecte des données. Dans le contexte des bases de type 24H et FFQ/ FPQ, auxquelles IN CA 2 peut être comparée, trois grandes problématiques classiques, décrites dans les paragraphes suivants, sont abordées dans cette thèse.

P.3.1 Exposition extrême de long terme

A fi n de compenser la courte durée des enquêtes de type 24H , les modèles à correction d'erreur ont récemment gagné en popularité [START_REF] Tooze | A new statistical method for estimating the usual intake of episodically consumed foods w ith application to their distribution[END_REF][START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF][START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF][START_REF] Boon | Comparison of different exposure assessment methods to estimate the long-term dietary exposure to dioxins and ochratoxin A[END_REF]. Ils permettent en particulier de prendre en compte deux sources de variabilité de l'exposition observée, à savoir les fl uctuations individuelles autour des prises habituelles et l'hétérogénéité au sein de la population. Toutes deux sont estimées à l'aide de modèles paramétriques et la distribution fi nale de long terme est approchée par simulations de M onte-Carlo en ignorant la variance intra-individuelle. Les hypothèses sur lesquelles reposent les modèles paramétriques évoqués précédemment impliquent en général que la distribution de l'exposition individuelle est de type log-normale. Cependant, pour de nombreux contaminants et nutriments, la queue de distribution de la loi log-normale est souvent trop fi ne pour rendre compte convenablement de la probabilité d'occurrence des événements extrêmes; il y a fort à parier que la sur-exposition à de tels composants alimentaires est alors sous-estimée. Lorsque les très fortes expositions à des nutriments et contaminants alimentaires sont au coeur des préoccupations, la théorie des valeurs extrêmes (TVE) a déjà fait ses preuves dans le cadre de l'estimation des risques aigus (Tressou et al., 2004b,a;[START_REF] Bertail | Statistical analysis of a dynamic model for dietary contaminant exposure[END_REF][START_REF] Kennedy | A hierarchical bayesian model for extreme pesticide residues[END_REF][START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF], nous encourageant ainsi à étendre ces procédures à l'évaluation des risques de long terme.

P.3.2 Exposition simultanée à un ensemble de nutriments et contaminants

Au delà de l'opposition entre risques aigus et risques chroniques, un sujet brûlant d'actualité en évaluation du risque alimentaire est celui de l'exposition simultanée à un cocktail de composants chimiques présents dans la nourriture. En effet, si l'ingestion excessive d'un élément toxique peut avoir des effets dévastateurs sur l'organisme, les connaissances actuelles au sujet des potentiels effets synergétiques, combinés, de plusieurs contaminants sont encore faibles [START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. En France, l'A nses a récemment initié le programme Pericles [START_REF] Crépet | The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to w hich the French population is exposed[END_REF], dans le but d'identifier les cocktails de composants alimentaires effectivement consommés dans la population. Les résultats de ces analyses permettront ensuite aux chimistes et biologistes d'établir un ordre de priorités quant aux recherches à effectuer sur les effets sanitaires d'une telle consommation. Pour le moment, ces travaux sont centrés autour des phénomènes moyens [START_REF] Béchaux | Identification of pesticide mixtures and connection between combined exposure and diet[END_REF], au détriment des extrêmes. Faisant à nouveau appel à la théorie des valeurs extrêmes, la partie multivariée de cette branche de la statistique devrait permettre l'analyse des fortes expositions simultanées. Lorsque seul un petit nombre de composants est considéré, quelques travaux dans cet esprit ont d'ores et déjà été réalisés [START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF]. Cependant, en particulier dans le cas de certains types de contaminants comme les pesticides ou les polychlorobiphényles, qui possèdent des centaines de congénères, il serait désirable d'être à même de gérer les grandes dimensions. M alheureusement, d'un point de vue théorique, la TVE ne permet pas encore de traiter des problèmes de dimension plus grande que 5 or 6. Ce problème concret issu de l'analyse du risque alimentaire fait ainsi naître une problématique tout aussi théorique qu'appliquée.

P.3.3 Données de sondage

Dans toutes les méthodes sus-mentionnées, il est de coutume de supposer que les données disponibles sont indépendantes et identiquement distribuées (iid) selon une certaine mesure de probabilité. Or les bases de données de type 24H comme IN CA 2 sont en général construites à l'aide d'un plan de sondage élaboré, dont l'objectif est de produire un échantillon représentatif de la population d'intérêt. L'hypothèse que les données résultantes sont iid n'est alors pas respectée, et les individus se voient chacun attribué un poids de sondage correspondant à l'inverse de leur probabilité d'être sélectionné dans l'échantillon [START_REF] Droesbeke | Les sondages[END_REF][START_REF] Tillé | Utilisation d'informations auxiliaires dans les enquêtes par sondage[END_REF]. Ignorer cette étape de construction de la base de données et négliger les poids de sondage peut produire des estimateurs biaisés [START_REF] Bonnery | Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatif[END_REF]. Dans le cadre de la présente étude, la probabilité d'occurrence de la très forte exposition à un ou plusieurs composants alimentaires a de fortes chances d'être sur-ou sous-estimée. Bien que la littérature sur les sondages soit déjà très riche [START_REF] Gourieroux | Théorie des sondages[END_REF][START_REF] Droesbeke | Les sondages[END_REF][START_REF] Deville | Réplications d'échantillons, demi-échantillons, Jackknife, bootstrap dans les sondages[END_REF][START_REF] Cochran | Sampling techniques[END_REF][START_REF] Tillé | Sampling algorithms[END_REF], ce n'est que très récemment que des résultats fonctionnels, qui permettent par exemple l'estimation de l'intégralité d'une fonction de répartition, ont commencé de se développer (Breslow andWellner, 2008, 2007;[START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF]. Quant à l'analyse des extrêmes, elle reste à notre connaissance encore inexplorée. Essayant d'apporter des réponses à ces problématiques, nous proposons dans cette thèse un ensemble de méthodes heuristiques et de résultats théoriques développés spécifi quement pour les bases de données de type 24H . Comme expliqué plus tard en détail, plusieurs de ces procédures mathématiques s'avèrent applicables à bien d'autres domaines que l'analyse du risque alimentaire.

P.4 o bj ec t i f s et c o n t r i bu t i o n s pr i n c i pa l es

Au cours du présent travail, nous essayons d'apporter quelques réponses aux problématiques statistiques évoquées à la section précédente. Le mémoire est structuré comme suit : au chapitre 2, nous montrons comment la théorie des valeurs extrêmes peut être utilisée pour la modélisation de l'exposition chronique à un composant ali-mentaire lorsque la distribution sous-jacente est à queue épaisse. N ous tournant ensuite vers le cadre multivarié, nous nous intéressons à la forte exposition simultanée à plusieurs nutriments et contaminants. N ous proposons ainsi au chapitre 3 une nouvelle méthode, mélangeant algorithmes issus de l'apprentissage statistique et analyse de la mesure spectrale, qui permet d'identifi er des groupes de variables dépendantes dans les extrêmes, réduisant par là-même la dimension initiale du problème. Toujours dans une optique multivariée, nous quittons au chapitre 4 les extrêmes en faveur des phénomènes moyens. N ous y présentons une approche en terme d'ensembles de volume minimum pour l'estimation non-paramétrique de la distribution de l'exposition à un cocktail d'éléments chimiques présents dans la nourriture. Ces résultats sont ensuite adaptés à l'identifi cation de paniers de consommation réalisant un compromis entre risque toxicologique et bénéfi ce nutritionnel. Enfi n, nous nous attelons dans les deux derniers chapitres au traitement des données issues d'un plan de sondage. A près avoir étendu quelques résultats fonctionnels usuels en analyse des processus empiriques au cadre des plans de sondages de type Poisson dans le chapitre 5, nous introduisons au chapitre 6 un nouvel estimateur de l'indice de valeurs extrêmes adapté aux échantillons issus de tels plans. Bien qu'encore trop restrictifs pour être directement appliqués à l'analyse du risque alimentaire, ces résultats préliminaires constituent un premier pas dans la direction de futurs développements qui, nous l'espérons, permettront bientôt la construction de modèles plus généraux, adaptés aux bases de données comme IN CA 2. P.4.1 Estimation de l'exposition extrême de long terme à un unique élément chimique N ous commençons dans ce chapitre par une réfl exion sur les modèles à adopter lors du calcul de l'exposition chronique à un unique nutriment ou contaminant alimentaire. Portant un intérêt tout particulier aux phénomènes extrêmes, dans la lignée des travaux de Tressou et al. (2004a), nous remettons au goût du jour une méthode non-paramétrique généralement ignorée en faveur des modèles à correction d'erreur brièvement décrits à la section précédente. Lorsque les données sont issues d'une distribution à queue épaisse, nous montrons qu'elle comporte plusieurs avantages. La première étape de cette technique consiste à moyenner les données temporelles pour les ramener à l'échelle de la journée. N ous évitons ainsi la modélisation statistique des variances intra-et inter-individuelles qui affectent la distribution de l'exposition de long terme, encouragée par [START_REF] Tooze | A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The N CI method[END_REF][START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF]. Les modèles classiques de la théorie des valeurs extrêmes pour l'étude des lois à queue épaisse sont ensuite appliqués pour estimer quantiles extrêmes et faibles probabilités de dépasser un très haut seuil de recommandation. Si l'exposition est en effet à queue plus lourde qu'une loi log-normale, nous montrons qu'en procé-dant de la sorte, à l'inverse des modèles traditionnels, nous évitons de sous-estimer ces quantités. Comme en pratique le statisticien doit choisir le modèle le plus adapté aux données, nous recommandons l'utilisation préliminaire de quelques tests statistiques connus détectant le cas échéant la présence d'une queue lourde. L'intégralité de notre méthodologie est enfi n appliquée à des données réelles pour en montrer les avantages et les inconvénients. P.4.2 Evaluation dela sur-exposition simultanéeà un cocktail decomposants alimentaires N ous étendons ensuite notre approche au cadre multivarié et considérons l'analyse de la forte exposition chronique à plusieurs nutriments et contaminants. Dans l'esprit du programme Pericles [START_REF] Crépet | The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to w hich the French population is exposed[END_REF], nous développons une nouvelle méthode permettant d'identifi er des cocktails de composants chimiques consommés simultanément en très grandes quantités dans une population d'intérêt. N ous nous inspirons pour cela à la fois d'algorithmes d'apprentissage statistique et de concepts de la théorie des valeurs extrêmes multivariée. N ous étudions en particulier la mesure spectrale, objet mathématique qui caractérise la dépendance extrême. Elle peut être défi nie sur l'orthant positif de la sphère unité, i.e. le simplexe, lui-même décomposable en faces ouvertes (sommets et arêtes), chacune indiquant un groupe de variables dépendantes dans les extrêmes. L'objectif est alors d'identifi er les faces du simplexe sur lesquelles la mesure spectrale est défi nie. Pour cela, nous commençons par mettre en oeuvre le récent algorithme de Jung et al. (2012), appelé Principal N ested Spheres, qui réduit la dimension des données en les projetant successivement sur des sphères de dimension de plus en plus faible. A la manière d'une analyse en composantes principales, cette première étape permet de faciliter la suite de l'analyse en réduisant le bruit des observations. Ensuite, nous exhibons un modèle de mélange de la mesure spectrale sur chacune des faces du simplexe et défi nissons une variable latente caractérisant les composantes du mélange. Cette dernière est estimée de manière non-paramétrique en utilisant d'abord un algorithme de classifi cation appelé spherical k-means [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF], puis en utilisant un critère heuristique construit pour déterminer les faces auxquelles les classes obtenues font référence. Ce critère permet de même de choisir le nombre d'observations extrêmes qui peuvent être considérées comme représentatives de la queue de la distribution multivariée. N ous justifi ons notre approche à l'aide d'une étude par simulations, dont les résultats sont fort encourageants, puis l'appliquons enfi n à nos bases de données réelles, IN CA 2, CIQUA L 2008 et EAT2. Les groupes résultants de contaminants et nutriments supposés consommés simultanément et en de très grandes quantités dans la population française font parfaitement sens et sont cohérents avec une analyse paire par paire, ce qui vient renforcer notre confi ance en notre approche. r égi mes a l i men t a i r es, expo si t i o n i n d i v i du el l e et st at i st i q u e P.4.3 Ensembles de volume minimum et approche risque-bénéfice A llant plus loin encore dans l'utilisation de l'apprentissage statistique pour l'analyse du risque alimentaire, nous nous concentrons dans ce chapitre sur les phénomènes moyens, non plus extrêmes. N ous y introduisons pour la première fois la variabilité de la contamination des aliments, les teneurs ayant jusque lors été considérées fi xes au sein d'une même famille de produits. Dans la lignée des travaux de Bertail and Tressou (2006), nous proposons une extension de l'estimation d'ensembles de volume minimum de Scott and N owak (2006) au cas où le volume est inconnu et approché à l'aide d'une U-statistique. Les résultats théoriques sont ensuite appliqués à la construction non-paramétrique des ensembles de niveau de la distribution multivariée de l'exposition à un ensemble de composants alimentaires. Dans un second temps, nous montrons comment cette procédure peut être généralisée à l'identifi cation de paniers de consommation qui réalisent un compromis entre risque toxicologique et bénéfi ce nutritionnel. Encore en cours de programmation, nous espérons pouvoir appliquer cette dernière technique aux bases de données IN CA 2, CIQUA L 2008 et EAT2 afi n de défi nir des recommandations simples dans le même esprit que " mangez cinq fruits et légumes par jour " . P.4.4 Processus empiriques dans le cadre des sondages N ous nous attelons dans les deux derniers chapitres de cette thèse au traitement des données issues d'un plan de sondage, comme le sont souvent les données de consommation. Il est d'un intérêt majeur pour les instituts de santé publique comme l'A nses d'être à même d'estimer convenablement la distribution de l'exposition de long terme à un ou plusieurs éléments chimiques. Or, omettre le plan de sondage dans le processus d'estimation peut induire un biais non-négligeable [START_REF] Bonnery | Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatif[END_REF]. Tentant de contribuer à l'élaboration d'une théorie générale sur les sondages garantissant la normalité asymptotique d'une large classe d'estimateurs, comprenant notamment des estimateurs fonctionnels de la fonction de répartition de l'exposition, nous commençons par étudier les plans de type Poisson. Des extensions à des plans plus complexes comme celui utilisé pour la formation d'IN CA 2 seront envisagées dans un futur proche. N otre approche est directement inspirée des travaux séminaux de H àjek (1964) et [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF]. N ous défi nissons en premier lieu le processus empirique de type H orvitz-Thompson, où les observations sont pondérées par l'inverse de leur probabilité d'inclusion, dans le cadre du plan de Poisson. Sous un ensemble d'hypothèses classiques portant à la fois sur les probabilités d'inclusion et le modèle de surpopulation considéré, que nous espérons relâcher dans des travaux à venir, nous en montrons la convergence vers un processus Gaussien dont nous exhibons la covariance. Dans un second temps, nous généralisons ces résultats aux processus empiriques à la H orvitz-Thompson impliquant des échantillons sélectionnées selon un plan de sondage à forte entropie comme le plan réjectif. Pour ce faire, nous utilisons des résultats connus exhibant la proximité entre les plans de sondage à forte entropie et le plan simple de Poisson. Les théorèmes fonctionnels de la limite centrale ainsi obtenus sont ensuite utilisés pour montrer la normalité asymptotique d'estimateurs pouvant s'écrire comme certaines fonctionnelles (H adamard ou Fréchet différentiables) du processus empirique. Enfi n, nous étudions le cas spécifi que de l'estimateur H orvitz-Thompson de la fonction de répartition et, illustrations à l'appui, montrons comment utiliser nos résultats pour en construire des bandes de confi ance uniformes. Au delà de l'analyse du risque alimentaire, ces résultats semblent tout à fait appropriés à la gestion de bases de données de taille gigantesque (les fameuses " big data" ), dont la taille augmente sans cesse, comme les données fi nancières, et ne peuvent être exploitées sur un unique ordinateur. Dans un tel contexte, l'échantillonnage semble une solution toute naturelle aux problèmes de mémoire informatique. Les plans de sondage que nous avons étudiés se révèlent alors d'un intérêt tout particulier, permettant d'obtenir simplement des estimateurs non biaisés et d'une effi cacité optimale (il suffi t pour cela de calibrer correctement les probabilités d'inclusion) sur des échantillons de taille raisonnable. P.4.5 Estimation de l'indice de valeurs extrêmes à partir de données de sondage N ous concluons cette thèse en revenant au problème initial de l'estimation des phénomènes extrêmes, prenant cette fois-ci en compte le plan de sondage selon lequel les données ont été collectées. A notre connaissance, la théorie des valeurs extrêmes n'a pour le moment pas été étendue au cadre des sondages. N ous commençons donc modestement par l'adaptation dans ce contexte de l'un des estimateurs les plus classiques de la TVE, à savoir l'estimateur de H ill de l'indice de valeurs extrêmes (H ill, 1975). Dans le même esprit que les travaux du chapitre précédent, nous en construisons une version H orvitz-Thompson dont nous montrons la consistance et la normalité asymptotique pour les plans de type Poisson. La vitesse de convergence de ce nouvel estimateur s'avère être la même que si la population entière avait été accessible, et la variance n'est dégradée que d'un paramètre multiplicatif dépendant du choix des probabilités d'inclusion, qu'il est théoriquement possible de minimiser. A l'aide d'expériences numériques, nous montrons que les hypothèses restrictives que nous exigeons pour établir ces résultats mathématiques sont loin d'être nécessaires et pourraient être relâchées dans de futurs travaux. Rappelant enfi n les problématiques inhérentes aux " big data" , nous encourageons l'extension de ces travaux préliminaires à d'autres familles d'estimateurs issus de la TVE.

I N TROD U CTI ON : OF D I ETA RY H A BI TS

A N D EXPOSU RE Dietary risk analysis is a generic public health term that embraces as many scientifi c problems as there are ways for consumers to get sick by eating (or not eating). For instance, food industries are concerned w ith the development of bacteria during the consecutive fabrication, transportation, distribution and stocking processes that precede consumption [START_REF] Rigaux | Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model w ith durability studies: application to Bacillus Cereus on a courgette purée production chain[END_REF]. On another level, agribusinesses may want to evaluate the impact of economically profi table mass production methods (e.g. genetically modifi ed organisms, pesticides) on the human organism (cf. http://www.efsa.europa.eu/en/topics/topic/gmo.htm on GM O and http: //www.efsa.europa.eu/en/topics/topic/pesticides.htm on pesticides). Cooking utensils can also represent a source of danger, depending on their chemical composition and the way they are used, as was recalled by the recent polemic about the presence of bisphenol A in baby bottles (see the ensuing A nses avis, A nses, 2013). Other health issues may be caused by behavioral phenomena such as eating disorders (e.g. people suffering from severe anorexia are likely to develop diseases due to nutritional defi ciency), or by biological determinants (e.g. diabetes). A s suggested by this non-exhaustive list of examples, depending on the examined question, specifi c know ledge in chemistry, medicine, sociology, economy, biology or even psychology may be required, not to mention probabilistic modeling and computer data management, w hich makes dietary risk analysis a multidisciplinary fi eld par excellence. We invite the interested reader to consult [START_REF] Feinberg | Analysis of food risks[END_REF] and the references therein for a comprehensive introduction to the ins and outs of dietary risk analysis from an interdisciplinary point of view.

The present work is dedicated to a very specifi c type of dietary risk: independently from any production, stocking, cooking, or biological predisposition phenomena, we are concerned w ith the very high (or low ) long-term exposure of the French population as a w hole to some food components. A fter having introduced some basic notions about dietary risk analysis in Section 1.1, described the available data in Section 1.2 and quickly reviewed the literature on probabilistic modeling of dietary risks in Section 1.3, we thoroughly present the various problems tackled in this thesis and succinctly report its main scientifi c contributions in Section 1.4.

1.1 get t i n g a t a st e of d i et a r y r i sk a n a l ysi s Once a specifi c type of dietary risk has been brought into focus, its analysis involves three distinct stages, usually referred to as risk evaluation, risk management and risk communication. In the next paragraphs, we give a concise overview of the various issues addressed in these successive and complementary steps. To help better understand the challenges at stake, we illustrate each introduced methodological concept w ith the specifi c example of salty diets, the recurrent abuse of w hich can favor cardiovascular issues (see for instance http://www.anses.fr/en/content/salt and the references therein).

Risk evaluation

Risk evaluation (or assessment) can be schematically decomposed into four substages, w hich consist in successively identifying and characterizing both potential dangers and their probability of occurrence. In the case of salty diets, the danger would be to ingest too much sodium (N a in the periodic table) on a daily or weekly basis, since in the long-run it would be likely to damage the cardiovascular system. These noxious effects were spotted by means of chemical and biological studies about the assimilation, action and elimination of N a in the human organism. This process is called hazard identification [START_REF] Barlow | H azard identifi cation by methods of animal-based toxicology[END_REF]. It is followed by further research designed to understand at w hat point the component becomes noxious, i.e. characterize the danger. In general, danger characterization involves testing dose-response effects in vitro or in vivo on animals before extending the subsequent results to humans by means of dedicated models [START_REF] Dybing | H azard characterisation of chemicals in food and diet: dose response, mechanisms and extrapolation issues[END_REF]. Once the contamination process is fully comprehended, it becomes possible to assess its probability of occurrence in a given population. This requires fi rst a thorough description of the distributions of consumption and exposure in the population [START_REF] Kroes | A ssessment of intake from the diet[END_REF], then a comparison w ith some maximal intake limit determined by experts from the aforementioned dose-response trials [START_REF] Renw Ick | Risk characterisation of chemicals in food and diet[END_REF], possibly enhanced by mathematical designs [START_REF] Edler | M athematical modelling and quantitative methods[END_REF]. Depending especially on the data at hand, statistical models may include a temporal dimension [START_REF] Bertail | Statistical analysis of a dynamic model for dietary contaminant exposure[END_REF][START_REF] Bertail | A storage model w ith random release rate for modeling exposure to food contaminants[END_REF][START_REF] Tressou | Using decomposed household food acquisitions as inputs of a kinetic dietary exposure model[END_REF], take into account individual biological or behavioral characteristics, or try to make up for the limited amount of available information [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]. Considerations on this matter are discussed in detail in Section 1.3 and Chapter 2.

Risk management

Once dietary risks have been evaluated, it is necessary to identify their determinants, evaluate their relative impact and defi ne the best strategy to rapidly and ef-fi ciently reduce risks. This is the exact purpose of risk management. For instance, over-exposure to sodium can sometimes be traced back to the repeated consumption of some salt-saturated products such as precooked dishes or biscuits. A simple line of action there would be to simultaneously warn consumers of the potential dangers and impose food companies to limit the amount of added salt in their preparations. In more extreme cases, after a thorough evaluation of the economic impact of such measures, some foodstuffs may even be taken off the market.

Risk communication

The last stage of dietary risk analysis is called risk communication. It can take place at any moment of the analysis and be intended for scientists and risk managers involved in the process as well as food industries or consumers. A s such, it is not restricted to public health campaigns such as " avoid eating products that contain too much salt" in our example. It also encompasses scientifi c reports about the methods considered appropriate to detect and quantify risks, publications of case study results, international discussions about food policies, etc. In the sequel, we are mainly interested in producing results that would help orient further research and, w hen possible, set general, easily understandable and applicable dietary guidelines to the population.

With this objective in mind, most of our work falls into the evaluation phase of dietary risk analysis: in a few words, we design statistical methods to assess some characteristics (e.g. quantiles) of the very high exposure to some food chemicals over a long period of time. Except in Chapter 4 w here we elaborate a statistical methodology that ascertains balanced food baskets w ith regard to toxicological risk and nutritional benefi t, risk management is not the main concern here. The components of interest are nutrients and contaminants to w hich the chronic over-or under-exposure has know n detrimental sanitary effects. In particular, we disregard acute risks such as those involving bacterial contamination of the food, w hich can impact the organism in only a few days or even a few hours. Statistical analysis is based in this context on some standard types of databases, w hich are described in detail in the next subsection.

1.2 c o l l ec t i n g i n f o r mat i on : mu l t i pl e so ur c es, mu l t i pl e d i f f i c u l t i es

To statistically analyze the chronic dietary exposure of a given population to a collection of food components, we need to observe such types of exposure on a large sample of individuals over a long period of time. Unfortunately, the amounts of nutrients and contaminants ingested during a meal are not directly measurable and can only be assessed by means of various methods. This can be achieved for instance by detecting and quantifying some specifi c biomarkers, the presence of w hich is ultimately linked to the level of exposure (refer for instance to the A nses website http:// www.anses.fr/sites/default/files/documents/RSC1205-DossierParticipants.pdf giving the list of presentations in a dedicated workshop held in M ay 2012). From a practical point of view, this necessitates collecting then chemically analyzing samples of body fl uids, hair or skin of a relatively large array of people. A t a national level, the cost of such procedures can constrain the sample size at the expense of statistical effi ciency. M oreover, many chemicals can be assimilated via other elements than food (e.g. air) and biomarkers cannot distinguish between the various sources of exposure [START_REF] Sirot | Dietary exposure and biomarkers of arsenic in consumers of fi sh and shellfi sh from France[END_REF]. So as to study the sole impact of nourishment on individual exposure, one may use in an alternative manner a combination of two types of databases, one listing the dietary intakes of a sample of consumers and the other the levels of components in a fi ne nomenclature of products. The next paragraphs provide an overview of the main characteristics of these so-called consumption and composition data.

Consumption data

There are many types of data that can be used to assess chronic exposure to nutrients and contaminants in France, ranging from panel cohorts on alimentary expenditures of households (Secodip, N ichèle et al., 2008) to Internet repositories fi lled up on a voluntary basis (N utrinet, H ercberg et al., 2010) and dedicated nationw ide institutional surveys (IN CA 2, A fssa, 2009). Focus is here on two major categories, namely 24-hour recalls (abbreviated 24H ) and food frequency or propensity questionnaires (FFQ/ FPQ). The fi rst category corresponds to large surveys (possibly national) w here a sample of selected individuals report in detail their dietary habits during 2 to 7 days, sometimes consecutive but most of the time randomly picked w ithin the year. Food intakes are given exactly or relative to some pictures of more or less fi lled plates provided by the pollster. Obviously, the short duration of these surveys can impede the estimation of long-term dietary habits [START_REF] Counil | Fitness-for-purpose of dietary survey duration: A case-study w ith the assessment of exposure to ochratoxin A[END_REF]. To help deal w ith this issue, food frequency (or propensity) questionnaires are proposed to the consumers, in w hich they declare w hat type of food they most commonly eat and w hich products they avoid or never consume. We refer the interested reader to van [START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] Efsa | Guidance of the Scientifi c Committee on a request from EFSA related to Uncertainties in Dietary Exposure A ssessment[END_REF]; [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF] for an account of the assets and liabilities of these complementary approaches. In this thesis, we used the IN CA 2 database described herein-after, w hich can be assimilated to a mixture of 24H and FFQ.

1.2.1.1 Dietary habits in the French population : INCA2 IN CA 2 (second opus of the national survey on individual dietary habits in France) is a nationw ide survey conducted by A nses (French agency for food, environmental and occupational health safety) in collaboration w ith Insee (French national institute of statistics and economic studies) between December 2005 and A pril 2007. It collects information about the dietary habits of 2624 adults and 1455 children taken at random in the French population.

Ú Survey scheme Individuals in IN CA 2 were selected according to a complex multistage survey scheme that was designed to produce a representative sample relative to geographical, sociological and economic criteria. Post-calibration methods were applied in a second phase w ith respect to the same set of auxiliary variables to provide corrected survey weights relative to both non-response and sampling fl uctuation. We refer to A fssa (2009, Chapter 2 and A ppendix 2) for a thorough description of the survey plan.

Ú Dietary information A ll participants reported both the nature and the amount of food that they ate during 7 consecutive days. These products were classifi ed according to an exhaustive nomenclature of 1342 foods grouped into 123 sub-classes and 45 w ider categories (A fssa, 2009, Section 2.2.6.3 and A ppendix 1). To help them assess the quantities they ate, inquired people were given a notebook displaying pictures of progressively fi lled plates and glasses. It served as a referential in case exact measurement was not possible. A precise description of each meal was also provided, indicating for instance w hen, w here and w ith w hom they occurred. In the fi nal database, they were classifi ed into six types of meals, namely breakfast, morning snack, lunch, afternoon snack, dinner and evening snack. So that the seasonal variation of dietary habits may be controlled, individuals were contacted randomly at different periods of the year during 3 distinct phases of data collection. A specifi c line of questions was also established to assess food supplement consumption in the French population (A fssa, 2009, Section 2.2.6.4 and Chapter 8).

Ú Auxiliary information In addition to dietary habits, socio-professional characteristics (e.g. diploma, profession, household income, nationality), dietary preferences, physical activities (e.g. type, frequency, duration), medical history (e.g. eating disorders), and other auxiliary information about participants (e.g. age, weight, sex) were listed.

Ú Episodic or non-consumers When interested in long-term dietary habits and food chemical exposure, 7 days of observation appear to be an arbitrarily short period of time. In particular, in only one week, individuals cannot cover their entire food repertoire and many items in the reference nomenclature are not consumed. Thus, it be-comes diffi cult to discriminate between real non-consumers and episodic consumers. So as to make up for this draw back, individuals in IN CA 2 were asked to depict their dietary habits, and clearly declare to w hich category they belonged. These additional queries corresponds to the so-called food frequency/ propensity questionnaires previously mentioned, w hich, w hen combined w ith 24-hour recall data, facilitate the statistical modeling of long-term food or nutritional intakes [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]van Klaveren et al., 2012, Sections 3.6 and3.8 ).

Ú Incompleteinformation Regarding episodic versus non-consumers, collecting data during only 7 days is clearly a liability, and a w ider period of observation might be preferred. Conversely, w hen concerned w ith the quality of answers, an entire week can be considered too long to provide reliable information. Indeed, as mentioned in A fssa (2009, Section 2.4.2), some participants did not report their consumption every day and other under-estimated their intakes. In our calculations, we decided to ignore these faults and simply scaled the observed dietary habits to the entire week.

Ú Timedependence The only difference between IN CA 2 and classical 24-hour recall databases is that the 7 days of observation were consecutive. Consequently, although an entire week is clearly better than the usual 2 days for long-term analysis, it makes temporal dependence harder to ignore.

Ú Preliminary processing of INCA2 The present work is dedicated to the global analysis of the long-term dietary habits of French adults. Because of their very specifi c nutritional needs and the temporary character of their condition, we decided not to take into account pregnant or lactating women. Other individuals were excluded, namely those for w hom important variables were missing (e.g. body weight or consumed food amount), thereby restricting the initial sample to 2488 units. Obviously, we could have tried to apply standard techniques to infer on missing values, but this went beyond the scope of our work. In particular, such methods are usually designed to avoid degrading the estimation of average phenomena. Since we are more interested in extreme (maximum or minimum) events and incomplete data only concerned a very small proportion of the sample, we chose to ignore them instead. In the fi nal considered database, 91 individuals (3.7%) ceased fi lling the questionnaire after only a few days.

Composition data

Composition databases usually collect an array of chemical measurements realized on more or less refi ned groups of foodstuffs. They can originate from surveys of very different natures. For instance, surveillance plans are designed to punctually check the safety of some suspect products. H ence, by nature, they do not cover the entire food repertoire, but are particularly thorough in the sense that the collected samples are of important size. In addition, since the inspected foodstuffs are suspected to be abnormally contaminated, they cannot be used to estimate the toxicological exposure of a large population w ithout introducing a non-negligible bias. A lternative types of data are the total dietary surveys. Based on samples of food of very small sizes (2 to 8 items in general), they however encompass a large array of products. A s such, they are more suitable for our purpose. The main diffi culty w hen crossing them w ith consumption data is that the corresponding nomenclatures may substantially differ, thereby necessitating an additional step, potentially diffi cult, of association of the various sources. This issue is particularly pregnant w ith meaning for international institutes such as Efsa, w hich have to combine data from various countries (see the recent report on the matter at http://www.efsa.europa.eu/en/search/doc/415e.pdf).

H ere, we work w ith databases that were constructed specially to fi t IN CA 2. They are briefl y introduced below.

Nutrient supply : CIQUAL 2008

The 2008 version of the CIQUA L database (Centre d'Information sur la QUalité des A Liments in French) lists the average concentrations w ith regards to a large set of nutrients for each of the 1342 dietary products of the IN CA 2 nomenclature. These levels were determined using multiple sources of information, ranging from specifi cally ordered laboratory analyses to the published reports of various research institutes. Each source was attributed a weight representing its reliability before a fi nal synthesizing calculus. We refer to A nses (2008) for more information concerning the construction of this database.

Ú About nutritional invariability A lthough already quite exhaustive, CIQUA L 2008 does not provide any information about the variability of concentration w ithin a type of food. This suggests for instance that two oranges grow n in different regions, one possibly sunnier than the other, contain the same level of vitamin A . Even if this assumption seems questionable at fi rst sight, nutrient contents usually have such a small variance that it is customary to consider them fi xed, provided the associated food nomenclature is detailed enough [START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF](de Boer et al., , p.1433)). The list of products considered in CIQUA L 2008 was designed to respect this constraint.

Food contamination : TDS2

Contrary to surveillance plans, the second opus of the French Total Dietary Survey (TDS2) is designed to assess the global exposure of the French population to a w hole set of food contaminants and thereto covers more than 80% of the current food repertoire in France (A nses, 2011). Though particularly adapted to our needs, it still possesses some unavoidable draw backs.

Ú Pooling foodstuffs One of the major limitations of TDS2 is that the analyzed products are not raw but pooled, i.e. different species of a same food item were mixed together before chemical inspection. Dishes were also treated as such, meaning that instead of separating the elements of a recipe they were considered as a w hole. To overcome this issue, recipe tables were constructed in parallel, to enable the decomposition of the results of IN CA 2 into a more refi ned nomenclature (A nses, 2011).

Ú Censored data Like all contamination databases, TDS2 suffers from an intrinsic censorship due to the limitations of measurement devices. Indeed, machines cannot have an infi nite precision, and as such can fail quantifying, or worse detecting chemicals in the food. This inconvenient censorship is usually introduced in statistical models using two major parameters, namely the Limit Of Detection (LOD) and the Limit Of Quantifi cation (LOQ). The former represents the minimal amount of chemical that has to be present for the instrument to detect its presence and the latter that for w hich quantifi cation is possible. They clearly depend on the measuring instrument used to perform the chemical analyzes. In practice, the most common method to balance this restriction is to adopt one of the three follow ing hypotheses. Denote by t D the real amount of component w hen below the LOD and by t Q w hen in between the LOD and the LOQ. Then, the three possible scenarios are:

1. median hypothesis: t D = LOD=2 and t Q = LOQ=2, 2. lower hypothesis: t D = 0 and t Q = LOD, 3. upper hypothesis: t D = LOD and t Q = LOQ.

The median hypothesis is typically chosen w hen the censored measures do not represent more than 60% of the entire database. In this thesis, we chose to adopt this specifi c approach, considerations about censorship going beyond the scope of our work.

1.3 st at i st i c a l a ssessmen t o f d i et a r y r i sks: a r ev i ew o f t h e l i t er at u r e

In the last 20 years, a plethora of dedicated statistical methods have been developed to assess dietary risks of various natures. Designed to answer practical issues linked to the type of available data such as the censorship in the measurement of levels of contents [START_REF] Tressou | N onparametric modeling of the left censorship of analytical data in food risk assessment[END_REF], they keep on evolving w ith the new methods of data collection. In the context of 24-hour recalls and food frequency questionnaires, to w hich IN CA 2 is very similar, we can distinguish three major issues, detailed in the next paragraphs, that are to be tackled in the present thesis.

Extreme long-term exposure

To cope w ith the limited duration of 24-hour recalls, statistical models of the measurement error type have recently gained popularity [START_REF] Tooze | A new statistical method for estimating the usual intake of episodically consumed foods w ith application to their distribution[END_REF][START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF][START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF][START_REF] Boon | Comparison of different exposure assessment methods to estimate the long-term dietary exposure to dioxins and ochratoxin A[END_REF]. They account for the presence of two sources of variance in the observed exposure, namely individual fl uctuations around usual habits and populational heterogeneity. Both are estimated by means of parametric modeling and the fi nal long-term distribution is approached w ith M onte-Carlo simulations that disregard the intra-individual variations. The aforementioned parametric assumptions usually implicitly require that the usual intakes have log-normal distribution. H owever, for many nutrients and contaminants, the tails of such probability law s are sometimes too thin to accurately account for the occurrence of extreme events; under-estimation is thus a non-negligible risk. When interested in the very high exposure to nutrients and contaminants, methods issued from extreme value theory (EVT) have already proven useful in acute risk estimation (Tressou et al., 2004b,a;[START_REF] Bertail | Statistical analysis of a dynamic model for dietary contaminant exposure[END_REF][START_REF] Kennedy | A hierarchical bayesian model for extreme pesticide residues[END_REF][START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF], suggesting that an extension to the long-term setting would be worth considering.

Simultaneous exposure to multiple food components

Beyond the issue of chronic versus acute risks, a particularly hot topic in dietary risk assessment is the analysis of simultaneous exposure to multiple chemicals. Indeed, if the excessive ingestion of toxicants can have a detrimental impact on health, know ledge about synergistic, combined effects is still poor [START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. In France, the A nses institute has most recently launched the Pericles program [START_REF] Crépet | The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to w hich the French population is exposed[END_REF] in order to identify cocktails of components that are observed to be consumed in the population. The ensuing results should provide guidelines to chemists and biologists w ho w ill then be in charge of inspecting the corresponding sanitary effects on the human organism. For now, most of this work is focused on average phenomena [START_REF] Béchaux | Identification of pesticide mixtures and connection between combined exposure and diet[END_REF], at the detriment of extremes. Going back to extreme value theory, using the multivariate branch of this fi eld should provide ways of dealing w ith high joint exposure. When only a few dimensions are involved, attempts in that direction have already been published [START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF]. H owever, especially for some types of contaminants such as pesticides or Polychlorinated biphenyls, w hich possess hundreds of congeners, managing high dimensions would be desirable. Unfortunately, from a theoretical point of view, EVT does not handle dimensions higher than 5 or 6 yet, making this branch of dietary risk analysis both a practical and a methodological challenge.

Survey data

In all the aforementioned methods, it is usually assumed that the data at hand is independent, identically distributed (iid) according to some probability measure. H owever, 24-hour recalls and databases like IN CA 2 are typically constructed from some elaborate survey scheme, designed to produce samples that are representative of the population of interest. There, the iid hypothesis is no longer satisfi ed, and individuals are attributed survey weights based on their probability of being included in the sample [START_REF] Droesbeke | Les sondages[END_REF][START_REF] Tillé | Utilisation d'informations auxiliaires dans les enquêtes par sondage[END_REF]. Thus ignoring the underlying design is know n to produce biased estimates [START_REF] Bonnery | Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatif[END_REF], in our case the probability of occurrence of very high exposure is likely to be either over-or under-estimated. Though the literature on survey sampling is quite rich [START_REF] Gourieroux | Théorie des sondages[END_REF][START_REF] Droesbeke | Les sondages[END_REF][START_REF] Deville | Réplications d'échantillons, demi-échantillons, Jackknife, bootstrap dans les sondages[END_REF][START_REF] Cochran | Sampling techniques[END_REF][START_REF] Tillé | Sampling algorithms[END_REF], functional results that would enable the estimation of the entire distribution function are just starting to fl ourish (Breslow andWellner, 2008, 2007;[START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF]) and extreme analysis is, to our know ledge, still unexplored.

In an attempt to answer these issues, we propose in the present work a collection of heuristic methods and theoretical results that are specially built for 24-hour recall types of databases. A s shall be seen later on, some of these mathematical fi ndings have possible applications that go beyond dietary risk analysis.

obj ec t i v es a n d mai n c o n t r i bu t i o n s

In this thesis, we tried to bring some answers to the statistical problems mentioned in the previous section. It is structured as follow s: in Chapter 2, we tackle the issue of heavy-tailed long-term exposure to one specifi c chemical and show how extreme value theory can be of help. M oving then to the multivariate setting, the simultaneous exposure to multiple food components is considered. A new method mixing machine learning algorithms and spectral measure estimation to reduce the dimension in the analysis of multivariate extreme values is introduced in Chapter 3. In Chapter 4, w hile still remaining in a multidimensional optic, we change focus and go back to average phenomena. There, statistical learning methods borrowed from the minimum volume set literature are adapted to the non-parametric estimation of the distribution of exposure to a collection of nutrients and contaminants. A natural extension to the construction of dietary habits that realize a compromise between toxicological risk and nutritional benefit is also proposed. Finally, Chapter 5 and Chapter 6 are dedicated to the treatment of survey data. A fter extending classical functional results on empirical processes to the analysis of observations issued from a Poisson-like sampling scheme in the former, we introduce in the latter a novel estimator of the extreme value index for survey data. A lthough they are not general enough to enable direct application to dietary risk analysis, these preliminary results constitute the basis of future developments that, we hope, w ill soon lead to more comprehensive models that can manage databases like IN CA 2.

Extreme chronic exposure to one chemical

Before even considering multivariate types of exposure to food chemicals, we start by discussing the calculation of the usual intakes of a unique nutrient or contaminant. Particularly interested in extreme phenomena, follow ing in the footsteps of Tressou et al. (2004a), we bring back into fashion a non-parametric method that is usually disregarded in favor of mixed-effects models. It simply relies on the preliminary averaging of temporal observations on a daily scale, thereby avoiding the statistical modeling of the between and w ithin variances that play a role in the distribution of the long-term exposure advocated by [START_REF] Tooze | A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The N CI method[END_REF][START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF]. When dealing w ith heavy-tailed distributions, thus proceeding is show n to avoid the under-estimation of tail characteristics that is bound to occur w ith the classical log-normal parametric modeling of usual intakes. Supporting our arguments w ith a real-data analysis, we propose a systematic procedure that consists in testing fi rst the presence of a fat tail before choosing a specifi c statistical procedure. For this purpose, techniques directly borrowed from the extreme value theory literature are depicted and the suitability of this fi eld for dietary risk analysis is brought into focus.

Simultaneous over-exposure to many food chemicals

Extending next our approach to the multivariate level, we consider the analysis of extreme types of exposure to many nutrients and contaminants. In the same spirit as the Pericles program [START_REF] Crépet | The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to w hich the French population is exposed[END_REF], we propose a new method that identifi es cocktails of chemicals to w hich individuals are simultaneously highly exposed. Inspired by techniques of both the statistical learning and the extreme value analysis fi elds, it consists in assessing in a non-parametric manner the elements of the support of the spectral measure, a mathematical object that characterizes extreme dependencies. It is defi ned on the positive orthant of the unit sphere, w hich is quite naturally decomposable into open faces (edges and vertices) that happen to point out the variables that are linked together. In order to detect the faces on w hich the spectral measure is positive (thus the groups of variables that exhibit extreme dependence), we use a novel algorithm called Principal N ested Spheres [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF] that achieves a sort of Principal Components A nalysis on the unit sphere. It reduces the dimension of the data by systematically projecting the cloud of points on sub-spheres of lower dimension, thereby facilitating further analyzes. Tackling this issue from a latent variable point of view justifi ed by a mixture model of the spectral measure, the projected data is then clustered into groups that supposedly represent the different faces forming its support. Their identifi cation is fi nally handled w ith a new heuristic that seems to perform well on simulations. When applied to the multivariate exposure obtained w ith the IN CA 2, CIQUA L 2008 and TDS2 databases, it produces comprehensible outcomes that support this promising approach.

1.4.3 A minimum volumeset approach to dietary risk-benefit analysis Exploiting further the assets of learning procedures for dietary risk analysis, we focus this time on average phenomena. In this chapter, we introduce for the fi rst time the variability in the contamination process of the food. Follow ing in the footsteps of [START_REF] Bertail | Incomplete generalized U-statistics for food risk assessment[END_REF], we extend the minimum volume set approach of [START_REF] Scott | Learning M inimum Volume Sets[END_REF] to the case w here the volume is unknow n and estimated by a U-statistic. This enables to construct in a non-parametric manner the level sets of the multivariate distribution of types of exposure to multiple chemicals. We then demonstrate how this procedure can be modified to recover in the consumption space the dietary habits that balance toxicological risk and nutritional benefi t. In the near future, these theoretical results are destined to be applied to the IN CA 2, CIQUA L 2008 and TDS2 databases in order to provide general dietary guidelines in the spirit of " eat fi ve fruits and vegetables a day" .

Empirical processes in survey sampling

Our next challenge concerns the nature of the consumption data, w hich often results from a complex survey scheme. Since the distribution of the long-term exposure is of particular interest for public health institutes like A nses, providing functional results about such weighted data would help avoid the bias induced w hen ignoring the survey scheme. Though unable to develop results for the specifi c design employed in IN CA 2 yet, we make our contribution to the elaboration of a more comprehensive theory by studying the asymptotic properties of empirical processes in the context of Poisson-like survey plans. Our approach is directly inspired by the seminal papers of H àjek (1964) and [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF] and exploits the proximity of large entropy designs to the simple Poisson scheme. Under some assumptions on the inclusion probabilities and a superpopulation framework, w hich are bound to be relaxed in the near future, we establish a functional central-limit theorem and show its implications for the asymptotic analysis of a large array of estimators. With illustrations based on simulations we present in particular how it can be applied to the construction of uniform confi dence bands of the distribution function. Beyond dietary risk analysis, such results appear to be of particular interest for the management of huge databases, the sizes of w hich increase in permanence like fi nancial data, and therefore cannot be fully accessed. With complete control over the sampling procedure, the Poisson and rejective plans are revealed as especially convenient for the unbiased statistical analysis of such databases.

Tail index estimation based on survey data

Going back to extreme phenomenons, we propose to adapt the w idely celebrated H ill estimator of the extreme value index (H ill, 1975) to the survey sampling framework. H oping again to extend this results to the complex survey scheme of IN CA 2, we start by establishing its consistency and asymptotic normality for sampling plans of the Poisson type. The rate of convergence of this novel estimator is found to be the same as if the entire population was available, and the variance is only depreciated by a multiplicative term that depends on the way the inclusion probabilities were chosen. With numerical experiments we show that the restrictive hypotheses that were required in our theorems could actually be relaxed. Recalling the issue of big data, we fi nally encourage the extension of those preliminary results to many other branches of the extreme value fi eld.

EXTREM E CH RON I C EXPOSU RE TO ON E

CH EM I CA L

i n t r o du c t i o n

When combined w ith food composition databases, dietary surveys prove useful to assess statistical distributions w ithin a given population of intakes of nutrients as well as different types of chemical substances such as environmental contaminants, food additives or pesticide residues present in the food. Typically, they are built out of short-term follow -ups of representative sub-populations, commonly called 24h-recalls, chosen according to some appropriate survey scheme, and therefore do not enable direct estimation of chronic (long-term) risks. Indeed, participants in cross-sectional representative dietary surveys are usually not solicited more than one week, and the current trend is even to shorten the survey duration to only two or three days (see for instance the reports of the EFCOVA L project on http://www.efcoval.eu/ and [START_REF] Crispim | Two nonconsecutive 24 h recalls using EPIC-Soft software are suffi ciently valid for comparing protein and potassium intake between fi ve European centres-results from the European Food Consumption Validation (EFCOVA L) study[END_REF][START_REF] De Boer | Rationale and methods of the European Food Consumption Validation (EFCOVA L) Project[END_REF]. A s a result, chronic risk evaluation may not be achieved from such data w ithout any statistical modeling.

In answer to these practical limitations, statistical models have been developed in the last 20 years to estimate usual long-term intakes from short-term measurements [START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF]. Originally constructed to assess the unbiased prevalence in some population of interest of inadequate and insuffi cient intakes of nutrients, they are also used now to estimate high percentiles of intake in a food safety perspective. In nutrition, there is for instance a need to verify that upper levels of intakes for vitamins and minerals are not exceeded, considering food fortifi cation or supplements intake. M ost of these models use an analysis of variance to separate between-and w ithin-individuals variabilities of usual intakes. A n assumption of normality of intakes after a Box-Cox transformation is done [START_REF] Tooze | A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The N CI method[END_REF]. The present study tries to propose an adaptation of these methods to better consider high nutrient intakes, w hich are often not normally distributed, in order not to underestimate the risk of exceeding upper levels. This method could also be applied to chronic risk assessment to chemicals in food [START_REF] Boon | Comparison of different exposure assessment methods to estimate the long-term dietary exposure to dioxins and ochratoxin A[END_REF]. This work corresponds to a paper currently being w ritten in collaboration w ith J.L. Volatier (A nses, France).

The chapter is structured as follow s. We start off in Section 2.2 by setting notations and presenting the statistical background on w hich classical models are based. A fter review ing in further detail two popular methods and underlining their limits relative to the estimation of high quantiles and rare events, we thoroughly depict our alternative procedure in Section 2.3.1. A s means of illustration, a case-study is conducted in Section 2.4. The different models previously introduced are subsequently compared on real data, w hich fi nally leads to the discussion of their respective assets and liabilities in Section 2.5. Supplementary details regarding tail estimation are provided in Section 2.6.

2.2 mi xed -ef f ec t s mod el s t o a ssess u sua l i n t a k es

The setting under w hich usual intakes are analyzed is always the same. We observe food consumption of n °1 individuals, indexed by i , taken randomly w ithin a given population, during J P t 2; : : : ; 7u days. Let X i ; j be the true nutrient (or contaminant) intake of individual i on day j , and X i = E X i ; j |i their usual intake. H ere, E (.|i ) represents the expectation conditional on being individual i . Because it is not possible to observe X i ; j directly in a chosen population, we use a proxy, denoted by p X i ; j , obtained by crossing consumption w ith composition data. Specifi cally, let C h i ; j be the amount of food h ingested by individual i on day j , and Q h the average level of nutrient (or contaminant) contained in h. We observe p C h i ; j , an approximation of C h i ; j reported by individual i during a survey, and p Q h an estimated version of Q h obtained via multiple measurements on various samples of food h. It is assumed that E p C h i ; j i ; j = C h i ; j and E p Q h = Q h , i.e. data collection methods produce unbiased estimates of the quantities of interest. M oreover, individuals are supposed to choose and report their food independently from their contents, w hich implies in particular that E p

C h i ; j p Q h = E p C h i ; j E p Q h . Then, for a given nomenclature of H foods, p X i ; j := ∞ H h = 1 p C h i ; j p Q h is
an unbiased estimate of X i ; j , and one can w rite the follow ing measurement error model, for all i P t 1; : : : ; n u, j P t 1; : : : ; Ju: p X i ; j = X i + " i ; j ;

(2.1) w here " i ; j is a w ithin-individual error w ith null expectation. A few additional constraints are assumed to hold: (C 1 ) X 1 ; : : : ; X n are independent, identically distributed (iid) w ith cumulative distribution function (cdf) F, independent from noise terms " i ; j , (C 2 ) w ithin-person errors are individually (over i = 1; : : : ; n ) and temporally (over j = 1; : : : ; J) independent from each other, w ith common cdf F " . N otice that in practice, (C 1 ) requires in particular that two people of the same household are not both included in the sample and that (C 2 ) excludes surveys like IN CA 2, w here the days of observation are consecutive. M any different techniques were developed from this general background [START_REF] Van Klaveren | A European tool for usual intake distribution estimation in relation to data collection by EFSA[END_REF][START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF].

Though all based on the same master model, they can substantially differ on many points. Depending on w hich family of distributions both F and F " are assumed to belong to, confi dence intervals may or may not be computable, episodic consumption taken into account, auxiliary information exploited, etc. The fi nal objective also plays a role in the choice of method, conservatism being sometimes preferred to realism (we would rather have a systematic over-estimation of the quantities of interest than taking the risk of under-estimating them). These techniques are regularly evaluated and compared by scientifi c committees mandated by public health institutes, in order to provide methodological guidelines to practitioners (see for instance Sections 2, 3 and 4 of the latest EFSA report van Klaveren et al., 2012, or the older recommendations of U.S. Environmental Protection A gency, 1999;[START_REF] Wh | Workshop on M ethodology for Exposure A ssessment of Contaminants and Toxins in Food. 7 -8[END_REF][START_REF] Efsa | Guidance of the Scientifi c Committee on a request from EFSA related to Uncertainties in Dietary Exposure A ssessment[END_REF]. H ere we present two major approaches advocated by EFSA , namely the BetaBinomial-N ormal (BBN ) and LogisticN ormal-N ormal (LN N ) models, respectively introduced by de Boer et al. ( 2009) and [START_REF] Tooze | A new statistical method for estimating the usual intake of episodically consumed foods w ith application to their distribution[END_REF][START_REF] Tooze | A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The N CI method[END_REF].

The BetaBinomial-Normal model

Referring to de Boer et al. ( 2009), the BetaBinomial-N ormal model, abbreviated BBN , is particularly appreciated because it enables to deal w ith episodic consumption. It relies on the simple decomposition:

F(x) = P (X i = 0) + P X i § x X i °0 P (X i °0) .
Specifi cally, it considers that the probability of consuming (or intake frequency), namely p 0 := P (X i °0), has Betabinomial distribution, w hile positive intake amounts, denoted by X + i , are normally distributed. Since it can happen that the distribution of X + i is asymmetric, a preliminary logarithmic or power transformation of the data is usually recommended [START_REF] Box | A n analysis of transformations[END_REF]. The BBN model further requires that p 0 and X + i are independent. This prohibits for instance situations w here the occasional intakes of episodic consumers are systematically small. In practice, estimation is achieved in two separate steps, one dealing w ith p 0 and the other w ith X + i , as detailed herein-after.

Step 1 Using both null and non-null observations, the parameters of the Betabinomial distribution of p 0 are assessed by means of maximum likelihood estimation.

Step 2 Relying solely on the positive observations, denoted by p X + i ; j , a preliminary power transformation is achieved:

g p X + i ; j := $ ' ' & ' ' % log p X + i ;j if = 0; p X + i ; j if °0.
To choose an appropriate , a grid of candidate values is explored and the retained value is that minimizing the sum of squared residuals ensuing from a regression of normal Blom scores on the transformed intakes [START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF](de Boer et al., , p.1436)). Then, the parameters of the follow ing model are fi tted w ith the maximum likelihood procedure:

g p X + i ; j = + c i + u i ;j ;
w here c i is the between-person effect w ith N ormal distribution N(0; 2 B ) and u i ; j the w ithin-person effect w ith N ormal distribution N(0; 2 W ). Once all model parameters assessed, the distribution F of the usual intakes is obtained by M onte-Carlo approximation. First, realizations of p 0 are simulated according to its estimated distribution. When they are equal to 1 (i.e. consumption is supposed to occur), the amount is draw n from a normal distribution N(p ; p 2 B ), w here p and p 2 B are the estimated versions of and 2 B respectfully. Concretely, this comes to annihilating the intra-variation effect encapsulated by u i ; j , w hich represents the individual fl uctuations around the corresponding long-term dietary habits. Finally, a back-transformation is performed to go back to the initial scale (before applying the function g to the raw data). N otice that it is also possible to add auxiliary information to the procedure by introducing covariates in the models of p 0 and p X + i ; j [START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF](de Boer et al., , p.1436)).

The LogisticNormal-Normal model

The LogisticN ormal-N ormal model of [START_REF] Tooze | A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The N CI method[END_REF], fi rst introduced in [START_REF] Tooze | A new statistical method for estimating the usual intake of episodically consumed foods w ith application to their distribution[END_REF], is very similar to the BBN method depicted above. The main differences are the follow ing.

-The transformation function is of the Box-Cox form [START_REF] Box | A n analysis of transformations[END_REF] 

g p X + i ;j := $ & % log p X + i ; j if = 0; 1 p X + i ; j 1 if °0;
and the choice of an optimal is directly handled in the maximum likelihood estimation of the parameters of the distribution of p X + i ; j . -Correlation between p 0 and p X + i ;j can be introduced. -The parametric model of p 0 is no longer Betabinomial, but Logistic-N ormal.

In both methods (BBN and LN N ), statistics of interest such as percentiles can be estimated using the simulated usual intakes. Unfortunately, none of these approaches provides associated confi dence intervals, since it would require controlling at the same time the variance of the estimates of the various model parameters, that of the M onte-Carlo approach and the error due to the back-transformation.

Obviously, many more methods than these two seminal contributions have been proposed in the literature. We refer to van Klaveren et al. (2012, Sections 2, 3 and 4) and [START_REF] Dodd | Statistical methods for estimating usual intake of nutrients and foods: a review of the theory[END_REF] for a more detailed account of the available models for usual intakes.

h eav y-t a i l mo d el i n g of u sua l i n t a k es

A ll the methods that were just introduced share a common characteristic: up to a transformation, both usual intakes and the noise terms are supposed normally distributed. If fi tting a Gaussian distribution can convey acceptable approximations of average phenomena, it rarely is the case w hen focus is on extreme objects such as the 95th and 99th percentiles, or the probability of getting over some maximum intake limit. This issue is clearly mentioned in de [START_REF] De Boer | Comparison of two models for the estimation of usual intake addressing zero consumption and non-normality[END_REF]Boer et al. ( , p.1438)): " departures from normality may give biased estimation of the model parameters and, hence, may give wrong inference about the usual intake distribution" . In the next paragraph, we review the basics of extreme value theory that are of help to understand the validity of this statement. Given this background, we then propose an alternative model dedicated to the assessment of the tail of the distribution of positive usual intakes (we are not interested in episodic consumption).

Extreme value theory and heavy-tailed distributions

In a univariate context, extreme value theory is dedicated to the analysis of the tail of some distribution of interest, corresponding here to F(x) := 1 F(x) for all large intakes x P R + . N otice that it is intricately linked to the tail quantile function, defi ned for all x • 1 as

U(x) := inf " y P R + : F(y) § 1 x * ;
by setting p := 1=x for some p P (0; 1), it is easy to see that U(1=p) is no other than the quantile of order 1 p of the studied usual intakes, also denoted by

Q(p) := inf t y P R + : F(y) • pu.
Given a collection of n °1 iid observations X 1 ; : : : ; X n w ith cdf F, extreme value theory (EVT) stipulates that observations in the tail of the distribution are approximately governed by the law of the maximum. Let X 1; 1 § § X n ;n denote the order statistics related to the sample, w ith X n ; n its maximum. Then, in the same spirit as the Central Limit Theorem for the mean, we are led to look for some real sequences of constants a n °0 and b n P R such that, for all n °1, 

.1.2), Equation (2.2) is equivalent to lim t -1 t F a tt u x + b tt u = log G(x); (2.3)
w ith tt u the integer part of t . Fortunately, (univariate) extreme value distributions can be w ritten in a parametric form, introduced fi rst by Fisher and Tippett [START_REF] Fisher | Limiting forms of the frequency distribution of the largest or smallest member of a sample[END_REF] then by Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme maximum d'une série aléatoire[END_REF]:

G(x) = G (x) := exp ! (1 + x) 1=
) ; for 1 + x °0;

(2.4) w ith, by convention, G 0 (x) = exp t e x u and P R. Called the extreme value index (EVI), defi nes three types of maximum domains of attraction. Specifi cally, if F P M D A (G ) w ith °0, then F is said to be in the Fréchet maximum domain of attraction, w hich characterizes heavy-tailed distributions like Pareto law s. Conversely, thin-tailed distributions such as the N ormal or Lognormal law s belong to the Gumbel maximum domain of attraction, w ith = 0. The last maximum domain of attraction, called Weibull, verifi es † 0 and encompasses distributions w ith bounded upper tails. The most classical example of the latter would be the Uniform distribution on some closed interval. Of course, it can so happen that some distributions belong to neither of these three maximum domains of attraction. Log-Pareto distributions w ith cdf F(x) = 1 (1 + (log x u)= ) 1= ; °0, u P R and °0, marked as super-heavy-tailed, are part of these exceptions [START_REF] Cormann | Generalizing the Pareto to the log-Pareto model and statistical inference[END_REF]. Further notice that only some types of thin-tailed (resp. bounded) distributions belong to the Gumbel (resp. Weibull) maximum domain of attraction (Embrechts et al., 2011, Sections 3.3.2 and 3.3.3). In fact, F can have a bounded upper tail and still verify F P M D A (G 0 ). Conversely, light-tailed distributions w ith bounded upper tail can belong to the Weibull maximum domain of attraction. The interested reader may refer to Embrechts et al. (2011, Chapter 3) for a very thorough introduction to the fl uctuations of maxima, enlivened by many detailed examples. In particular, Tables 3.4.2, 3.4.3 and 3.4.4 from p.153 to p.157 in this manual display a list of characteristics of the most common distributions in each maximum domain of attraction, including some possible normalizing constants.

In the present study, we are interested in heavy-tailed distributions that respect F P M D A (G ), °0. They are characterized as follow s (Embrechts et al., 2011, Section 3.3.1):

1 F(x) = x 1= L(x);

(2.5) w here °0 is the EVI and L(x) a slow ly varying function (svf), i.e. for all t °0, L(t x)=L(x) -1 as x -+ 1 . Distributions of that form are said to be regularly varying w ith index 1= [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]; the set of such functions is denoted by R 1= . They enjoy quite a few useful properties, e.g. their tail quantile function is also regularly varying w ith index . When concerned w ith the estimation of the EVI, Equation (2.5) is a typical semi-parametric model, w here the svf L plays the role of the perturbation. A ctually, to guarantee its accuracy, statistical inference often requires this disruptive function to fulfi ll some extra regularity criteria. Called Von M ises or second order conditions, they are usually w ritten as follow s (cf. Goldie and[START_REF] Goldie | Slow variation w ith remainder: theory and applications[END_REF][START_REF] De H Aan | Extremes in higher dimensions: the model and some statistics[END_REF]Ferreira, 2006, Chapter 2).

A ssumpt i on 2.1 The regularly varying tail quantile function U P R w ith °0 is such that there is a real parameter † 0, referred to as the second order parameter, and a positive or negative function A w ith lim

x -+ 1 A (x) = 0 such that for any t °0, 1 A (x) U(t x) U(x) t - x -1 t t 1 ;
or equivalently

1 A 1 F( x ) F(t x) F(x) t 1= - x -1 t 1= t = 1 .
This ensures that L is almost of the form of a H all slow ly varying function 1 c x , w hich makes its infl uence over the Pareto form x 1= of F controllable. There, the parameter controls the speed of convergence in extremes and, as we shall see later on, plays a crucial role in the asymptotic analysis of most estimators.

In terms of nutrient or contaminant intakes, assuming X i has cdf F as in Equation (2.5) means that the larger , the less the probability that X i reaches high levels is negligible. On the contrary, constraining F to be in the Gumbel maximum of attraction comes to considering that extreme events can be rare enough to be disregarded. A ctually, even if normality is not attributed to the raw data but to its Box-Cox-transformed counterpart, usual intakes w ill still be implicitly assumed thintailed [START_REF] Teugels | Box-Cox transformations and heavy-tailed distributions[END_REF][START_REF] Wadsworth | A ccounting for choice of measurement scale in extreme value modeling[END_REF]. Depending on w hich of these two hypotheses is privileged, corresponding large percentiles and probabilities of exceeding some maximum intake limit may differ signifi cantly. In particular, dietary risks are bound to be drastically under-estimated if heavy tails are ignored. So as to decide w hich model to apply to our data, one may use statistical testing procedures borrowed from the literature in EVT such as those depicted in the next section.

Testing the heavy-tail assumption

Because constraining F to be thin-tailed w hen it is in fact heavy-tailed may induce serious bias in tail estimation, we would like to test the null hypothesis H 0 : F P M D A (G ); °0 versus H 1 : F P M D A (G ); § 0. Since we do not observe X i directly but rather a collection of ( p X i ; j ) 1 § j § J as in Equation (2.1), we cannot apply testing procedures directly. A n extra assumption has to be made to enable further analysis and we w ill consider the follow ing conditions.

A ssumpt i on 2.2 The cumulative distribution functions F and F " are such that D`0 P [0; + 1 ] :

1 F " (x) 1 F(x) -

x -1 `0 and @t P (0; 1) ; lim sup

x -+ 1 1 F(t x) 1 F(x) † 1 .
A ssumpt i on 2.3 The cumulative distribution functions F and F " are such that 1 F " (x) 1 F(x) -

x -1 0 and Dx 0 † 1 : @x °x0 ; F " (x) = 1.

If either A ssumption 2.2 or A ssumption 2.3 holds, then under the setting introduced at the beginning of Section 2.2 the cdf of p X i ; j , denoted by F i ; j , is in the Fréchet maximum domain of attraction w ith EVI °0 if and only if F P M D A (G ), as show n in M addipatla et al. (2011, Theorem 3.3 and Remark 3.4). The fi rst mathematical constraint in A ssumption 2.2 simply means that the tail of F " should either be equivalently thick or thinner than that of F. Without this assumption, we cannot tell anything about F based solely on p X i ;j . Though it may seem quite restrictive and cannot be tested, such a requirement encompasses a large class of distributions for both F and F " . In particular, F " can still be heavy-tailed, as long as its EVI does not exceed that of F. N otice that if the former is indeed in the Fréchet maximum domain of attraction w ith EVI " , then to allow the existence of its expectation we need to have " † 1. Similarly, for " i ; j to have a fi nite variance, it is required that " † 1=2. We refer to Embrechts et al. (2011, Section A 3), De H aan and Ferreira (2006, Chapter 1) or Beirlant et al. (2004, Chapter 2) for more details on these properties. H ence, desirable regularity conditions on individual errors limit the thickness of the tail of their distribution, thereby advocating the reasonableness of our required assumption. A t this point, we still cannot use classical testing techniques, because our sample of observations t p X i ; j ; 1 § i § n ; 1 § j § Ju is not iid. H owever, it suffi ces to average the data over time to get into an appropriate setting. A ccording to the model depicted in Section 2.2, we have

X i := 1 J J ∏ j = 1 p X i ; j = X i + 1 J J ∏ j = 1 " i ; j = : X i + " i ; (2.6)
w here all X i , 1 § i § n , are iid w ith cdf F X . Further denote by F " the cdf of J 1 ∞ J j = 1 " i ; j , then if F " fulfi lls A ssumption 2.2 or A ssumption 2.3 instead of F " , we still have the equivalence (F P M D A (G ); °0) Ù (F X P M D A (G )). This requirement is met for a large set of distributions. In particular, if F " has a right upper bound, then so does F " and A ssumption 2.3 is verifi ed. Other examples of accurate distributions can be found, for instance, in Embrechts et al. (2011, Sections 1.3 and A .3.2).

From now on, we w ill consider the model in Equation (2.6) and assume that F " and F fulfi ll either A ssumption 2.2 or A ssumption 2.3. To test w hether F (or equivalently F X ) is in the Fréchet maximum domain of attraction, we fi rst have to check beforehand that it does indeed belong to a maximum domain of attraction. For this purpose, one can use the statistical test introduced by [START_REF] Dietrich | Testing extreme value conditions[END_REF] and studied at length in H üsler and [START_REF] Li | On testing extreme value conditions[END_REF]. It is designed to check H 0 : F P M D A (G ) for some P R, and relies on the statistic

E n ; k := k ª 1 0 log X n tk t u; n log X n k ; n p + t p 1 p (1 p ) ! 2 t dt ;
w here X 1; n § : : : ; § X n ; n denotes the order statistics relative to the sample of average intakes, °0 is a parameter to be chosen, p + and p are the moment estimators of [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF], and k is a fi xed number of upper values of (X 1 ; : : : ; X n ) that are considered to be representative of the tail of their distribution. Under H 0 and for some appropriate choice of k, the quantiles of the asymptotic distribution of E n ; k can be computed and compared to its actual value. For more details on this procedure, we refer to H üsler and [START_REF] Li | On testing extreme value conditions[END_REF], w ho also provide a R package implementing this test. In practice, we compute E n ; k for various choices of k (from 10 to 0.3 n for instance), and accept H 0 if the resulting function almost always remains below the corresponding asymptotic quantiles.

Once it has been established that F is in some maximum domain of attraction, we may focus on testing H 0 : F P M D A (G ), °0 versus H 1 : F P M D A (G ), § 0. M any procedures have been developed in the literature, as reviewed in N eves and A lves (2008). We propose to use the statistic introduced in [START_REF] Beirlant | A goodness-of-fi t statistic for Pareto-type behaviour[END_REF]; it is based on a modifi ed version of the Jackson statistic [START_REF] Jackson | A n analysis of departures from the exponential distribution[END_REF]) that tests the " exponentiality" in the tail of the log-transformed data. Under the second order conditions in A ssumption 2.1 and provided that the parameter is consistently assessed (e.g. w ith an estimator of the class presented in A lves et al. (2003)), it converges as n -+ 1 to a Gaussian distribution. Because it has a complicated form, for clarity purposes we do not provide the explicit formula of this statistic, but rather refer to the original paper [START_REF] Beirlant | A goodness-of-fi t statistic for Pareto-type behaviour[END_REF]. H owever, we precise that just like the aforementioned E n ; k , it depends on the choice of some number k of largest values. A gain, we compute this statistic for k ranging from 10 to 0.3 n , and accept H 0 if the resulting function generally stays in the acceptance interval.

Assessing extreme quantities

In this section we deal w ith the case w here both tests depicted herein-before were accepted, i.e. w here F X , thus F, was found to be heavy-tailed, in the Fréchet maximum domain of attraction. We provide examples of w idely-used estimators to assess the corresponding EVI , extreme percentiles and small probabilities of exceeding some maximum intake limit. Of course, there is a plethora of such estimators, that are eluded here in favor of the general advantage of our probabilistic model for dietary risk assessment. In particular, it is well-know n that the statistical tools introduced herein-after can perform quite poorly in a number of situations (Embrechts et al., 2011, Remarks p.337-338), and alternative estimators may be preferred. H owever, the latter are often quite complicated and based on intricate mathematical results that go beyond the scope of the present chapter. For the sake of clarity, and because we are only interested here in the methodological aspect of the modeling of usual intakes, we deliberately choose to introduce simple, well-know n, techniques as means of illustration. The interested reader may refer to comprehensive textbooks such as [START_REF] Embrechts | M odelling extremal events: for insurance and finance[END_REF]; De [START_REF] De H Aan | Extreme value theory: an introduction[END_REF]; [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF]; [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]; [START_REF] Reiss | Statistical analysis of extreme values: from insurance, finance, hydrology, and other fields[END_REF] or to [START_REF] Caeiro | M inimum-variance reduced-bias tail index and high quantile estimation[END_REF]; [START_REF] Beirlant | A n overview and open research topics in statistics of univariate extremes[END_REF]; [START_REF] Scarrott | A review of extreme value threshold estimation and uncertainty quantifi cation[END_REF] to get a w ider overview of the state of the art on this topic.

Ú The EVI

One of the most famous estimators of the EVI for heavy-tailed distributions is the H ill estimator (H ill, 1975), computed on a number k of largest values in the sample, supposedly representative of the tail of the underlying distribution:

H k ; n := 1 k k ∏ i = 1 log X n i + 1; n log X n k ; n .
(2.7)

It corresponds to the maximum likelihood estimator of w hen the tail of the distribution is assumed to be exactly Pareto, i.e. F(x) = c x 1= for some c °0 and x °x °0 such that ≥ 1

x c= x 1= 1 dx = 1. Under A ssumption 2.1 and assuming

k = k(n ) -1 , k=n -0, ? k A (n =k) - † 1 as n -1 , then ? k (H k ; n ) - n -1 N 1 ; 2 in distribution,
see for instance Embrechts et al. (2011, Example 4.1.12 and Section 6.4.2, M ethod 2), Beirlant et al. (2004, Section 4.4) or De H aan and Ferreira (2006, Section 3.2). Obviously, one needs to select some acceptable value k on w hich to calculate H k ; n w hile ensuring its asymptotic normality. This is a typical bias-variance dilemma: if k is small, the selected observations are likely to belong to the tail of the distribution, producing slightly biased estimates. H owever, they should be in small number, thereby implying a w ide variance. On the contrary, as k increases more observations are used and the variance reduces, but the bias may grow, because observations that are not located in the tail of the distribution, and do not correspond to the stipulated model, may contaminate the estimation. To overcome this issue in practice, we propose to use the double-bootstrap algorithm of [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF], recommended in [START_REF] Gomes | The bootstrap methodology in statistics of extremeschoice of the optimal sample fraction[END_REF].

A ssessing usually represents a preliminary step to the estimation of some extreme quantities, such as high quantiles or small probabilities of exceeding a large threshold. We now review some classical estimators of both objects, based on H k ; n .

Ú Extreme quantiles and the probability of exceeding maximum intake limits From the estimation of , by referring to Equation (2.4) one may easily build estimators to assess extreme quantiles or the probability of getting over some high threshold. Indeed, combining it w ith Equation (2.3) yields the follow ing approximation, for some large enough x P R + and well-chosen t °0:

P X i °x P (X i °x) 1 t 1 + x b tt u a tt u 1= .
(2.8)

N otice that by setting a tt u = U(t ), b tt u = U(t ), °0 and replacing x by (x 1)= in Equation ( 2.3), we recover Equation (2.5). M oreover, if we set t = n =k for some number k of largest observations, then the empirical counterpart of U(n =k) is simply

U n (n =k) := inf # y P R + : 1 n n ∏ i = 1 I t X i °yu § k n + = X n k ; n .
Coupling these remarks to the foregoing approximation in Equation (2.8) conveys quite natural estimators of both Q(p) := U(1=(1 p)), p • 0.95, the quantile of order p, and P (X i °` ) for some maximum intake limit ` (Embrechts et al., 2011, Section 6.4.2, M ethod 2):

p P (X i °` ) := k n ` X n k ;n 1=H k ;n ;
(2.9)

p Q(p) := inf ! y P R + : p P (X i °y) § 1 p ) = X n k ; n n k (1 p) H k ; n ; (2.10)
w here k is the optimal number of largest observations obtained w ith the doublebootstrap algorithm of [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF]. Confi dence intervals may be computed via the asymptotic result below [START_REF] Caeiro | M inimum-variance reduced-bias tail index and high quantile estimation[END_REF], Proposition 1.2), assuming again that k = k(n ) -1 , k=n -0 and ? k A (n =k) - † 1 as n -1 :

? k log k n ( 1 p ) p Q(p) Q(p) 1 ! - n -1 N 1 ; 2 . (2.11)
Equipped w ith these statistical tools, we now illustrate our approach on a set of nutrients, namely iron, zinc, calcium and retinol. Results are subsequently compared to those obtained w ith the BBN and LN N methods recommended by EFSA , w hich were briefl y presented in Section 2.2.

2.4 c ase st u dy: est i mat i n g t h e t a i l o f u sual i n t a k es o f i r on , zi n c , c a l c i u m an d r et i n o l i n t h e f r en c h po pu l at i o n

Description of the data

To assess tail characteristics of the distribution of usual intakes for iron (Fe), zinc (Zn), calcium (Ca) and retinol (arbitrarily abbreviated Re), we crossed the IN CA 2 consumption database w ith the levels of nutrients w ithin foods of the CIQUA L base. They are both described at length in Chapter 1. So as to evaluate the impact of the number of reporting days in our model, we built a 24h-recall like data from the weekly information of IN CA 2. Specifi cally, among all 7 days considered in the latter, we selected one day of the week-end and one day of the week, w ith at least 3 days of interval, to mimic the sampling scheme of 24h-recall surveys. These declared amounts of ingested food were then combined w ith informations on their nutritional composition to produce estimates of individual intakes. We precise that no null intake was observed on the considered data, hence there is no need to model intake frequencies, denoted by p 0 in the presentation of the BBN and LLN methods (Section 2.2).

Results

We start this statistical analysis by computing mean intakes over all dates J = 2; 7, as in Equation (2.6). Before applying a heavy-tail model to all 4 types of nutritional intakes, we use the testing procedure of [START_REF] Dietrich | Testing extreme value conditions[END_REF] mentioned in Section 2.3.2 to check if their distributions belong to one of the three possible maximum domains of attraction. Results are displayed in Figure 2.1. Given that the corresponding test statistics mostly remain in the acceptance area w hen k varies, the distributions of intakes of Fe, Zn and Ca may well respect Equation (2.2). H owever, it is obviously not the case w ith Re; given the shape of its histograms in Figure 2.2, we suspect it is in fact super-heavy-tailed. Because our model does not encompass such distributions, we remove retinol from further analyses. Fi gur e 2.2 -Histograms of intakes of retinol N utrients that passed the former test are then subjected to the second statistical test of [START_REF] Beirlant | A goodness-of-fi t statistic for Pareto-type behaviour[END_REF], designed to detect distributions belonging to the Fréchet maximum domain of attraction (heavy-tailed). Results are presented in Figure 2.3. A gain, statistics remain in the acceptance region w hatever k, especially w ith Fe, thereby suggesting that the distributions of iron, zinc and calcium are all heavy-tailed. It is now possible to estimate the EVI for all three distributions, extreme quantiles and probabilities of getting over some maximum intake limit, w ith the techniques introduced in Section 2.3.3. For comparison purposes, we also assess the last two mentioned quantities w ith the LLN methods recommended by EFSA , using the source SAS code available at http://riskfactor.cancer.gov/diet/usualintakes/macros. html. Results are displayed in Table 2.1 andTable 2.2 In view of Table 2.1, if the various tests performed on the data revealed that they were heavy-tailed, their EVI is relatively small, never exceeding 1=3. Provided these results are correct, this suggests that moments of order at least 3 exist for the distributions of iron, zinc and calcium. M oreover, it seems that observing only 2 days of consumption results in a signifi cant increase in the heaviness of the tail. This phenomenon is naturally passed on to the quantile estimates, as can be observed in Table 2.2. This is relatively natural, since the smaller the period of observation, the further away we are from long-term habits by averaging the daily intakes. Even w ith 7 days, using the H ill estimator makes quantile estimates signifi cantly higher than w ith the LLN model. Given that these usual intakes were found to be heavy-tailed, it is probable here that the LLN approach under-estimates extreme quantiles. From a risk assessment point of view, it is thus safer to rely on extreme value theory than on classical methods to assess tails of distributions.

d i sc u ssi o n

We have show n in this chapter how classical methods like the BetaBinomial-N ormal and LogisticN ormal-N ormal presented in Section 2.2 can severely under-estimate the characteristics of the tail of the distribution of heavy-tailed usual intakes. Far from rejecting these approaches, we underlined in Section 2.3.2 that preliminary testing of the presence of a fat tail can be of substantial help w hen trying to decide w hich method to apply to the data. The nutrients that were taken as examples in Section 2.4 happened to pass these tests, but there are many other substances for w hich normality (up to a Box-Cox transformation) is a reasonable assumption. When it is not, we proposed in Section 2.3.3 simple methods to estimate extreme quantities such as high percentiles. Of course, EVT overfl ow s w ith more refi ned statistics, w hich help avoid the classical problems of the H ill estimator (asymptotic bias). In particular, for distributions in the Fréchet domain of attraction w ith a very small index , [START_REF] Cai | Bias correction in extreme value statistics w ith index around zero[END_REF] have recently developed a family of dedicated estimators. Regression models for extreme values also exist and would permit the insertion of covariates such as the age or the sex of individuals (Beirlant et al., 2004, Chapter 7). Such extensions are of major interest, since nutritional recommendations usually depend on auxiliary variables (women or children do not have the same nutritional needs as adult men). Beyond improvement of the estimation, more work remains to be done, in particular to include the modeling of intake frequencies in our approach. This is left for future research.

su ppl emen t s: o n t h e sec o n d o r d er pa r a met er

Let us dwell for a moment on the estimation of the second order parameter . To approximate its value, we used the family of estimators proposed by A lves et al. (2003) and the tuning parameters they recommend:

p (k; ) = p ( 1; 2; 3; ) n |T (k) = 3 T ( 1; 2; 3; ) n (k) 1 T ( 1; 2; 3; ) n (k) 3 ; w ith P t 0; 0.5; 1; 2u, T ( 1; 2;3; ) n (k) = $ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % M ( 1) n ( k ) M ( 2) n ( k ) =2 =2 M ( 2) n ( k ) =2 =2 M ( 3) n ( k ) =6 =3 °0; log M ( 1) n ( k ) log M ( 2) n ( k ) =2 2 log M ( 2) n ( k ) =2 2 log M ( 3) n ( k ) =6 3 = 0; and M ( m ) n (k) = 1 k k ∏ i = 1
log X ( n i + 1) log X ( n k ) m ; m P t 1; 2; 3u.

For the results can be very volatile w ith k, they recommend to choose a fi nal p w here p (k; ) is the most stable, usually for large k. Therefore, we start by selecting the value of P t 0; 0.5; 1; 2u that yields the most stable sample path t k; p (k; )u; we consider that a path is stable if the difference between two successive occurrences is small for a relatively long period. Thus, for a fi xed , we calculate

D k := p (n k + 1; ) p (n k; )
for k P t 1; ...; n 1u and get the cumulative empirical variance:

V k = 1 k k ∏ i = 1 (D i ) 2 1 k k ∏ i = 1 D i ! 2
; k P t 1; ...; n 1u.

The that minimizes V k for a maximum of occurrences of k is then selected and denoted by 0 . In a second step, we identify the values of k for w hich V 0 k is small, e.g. below the median of V 0 k 1 § k § n 1 , and calculate our fi nal estimate p as the empirical mean of p (k; 0 ) on these k. Results on exposures to our 4 nutrients are displayed in Figure 2.4. In Chapter 2, we focused for a w hile on univariate extreme types of exposure to food nutrients or contaminants. The objective was to analyze the tail of the distribution of the chronic exposure to some chemical. It allowed in particular to estimate the small proportion of individuals in a given population w ho exceed some tolerable doses (the so-called dietary intake limits) and are thus likely to develop serious health problems in the long run. H owever, by analyzing only one component at a time, we ignored further noxious effects that may be caused by possible interactions between elements that are ingested simultaneously [START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. Evaluating the sanitary impact of cocktails of nutrients and contaminants is a hot and complex topic public health institutes are currently mobilizing efforts on. For instance, A nses recently launched the Pericles research program (PEsticide Residue In vitro Combined Level of Exposure Study), w hich is dedicated to the identifi cation and quantifi cation of the risk due to the exposure to mixtures of pesticides [START_REF] Crépet | The PERICLES research program: an integrated approach to characterize the combined effects of mixtures of pesticide residues to w hich the French population is exposed[END_REF][START_REF] Crépet | Accepted for publication in Environmental Research[END_REF][START_REF] Crépet | Bayesian nonparametric model w ith clustering individual co-exposure to pesticides found in the French diet[END_REF][START_REF] Béchaux | Identification of pesticide mixtures and connection between combined exposure and diet[END_REF]. The present chapter corresponds to a paper w ritten in collaboration w ith S. Clémençon (Télécom ParisTech, France) and recently submitted for publication, in w hich we develop a statistical methodology to fi nd groups of any number of chemicals that are jointly absorbed in high quantity in the population of interest.

st at i st i c a l c h a l l en ges a n d o bj ec t i v es

H igh dimension raises important issues in applied multivariate statistics; w hile sample sizes are fi nite, the set on w hich probability measures are defi ned can be so large that extrapolation is intricate. Referred to as the curse of dimensionality [START_REF] Donoho | H igh-dimensional data analysis: The curses and blessings of dimensionality[END_REF], this phenomenon makes the variance of classical estimators explode, thereby impeding inference. In extreme value analysis, the quality of estimation is all the more degraded as it is not carried out on the entire sample, but on some relatively small number of largest observations that are considered representative of the tail of the distribution. Whereas a plethora of techniques has been developed in the fi eld of statistical learning to overcome this issue [START_REF] Friedman | The elements of statistical learning[END_REF], multivariate extremes in dimension larger that 2 are still handled w ith diffi culty. It is the main purpose of the present chapter to address this issue, by developing a 55 non-parametric technique for identifying groups of variables exhibiting asymptotic dependence. Beyond a possible overall description of the tail dependence structure, w hen these classes are of small dimension, our method would enable further and more effi cient assessment of multivariate tails. It combines novel statistical learning algorithms w ith multivariate extreme value theory (M EVT). From a practical perspective, it should be also pointed out that it includes a heuristic criterion to help select the sub-sample of extreme observations on w hich inference should be performed.

From a theoretical perspective, non-parametric assessment of multivariate extreme dependencies is already well documented. It relies on the necessary but quite mild assumption that there exists a tail dependence distribution, or equivalently that once marginal distributions have been transformed into standard Pareto, the cumulative distribution function of the resulting random vector is multivariate regularly varying. Then, its limit measure characterizes the extreme behavior of the original variables and possesses useful properties that facilitate its investigation. In particular, w hen sw itching to a pseudo-polar representation of the data, it can be expressed as a tensor product of two measures, one related to the radius, the other to the angles. The limit measure of the angles, termed spectral or angular measure, exhaustively embodies extreme dependencies. In the bivariate setting, the classical estimators introduced in the literature of this angular measure may vary depending on how marginals are standardized, w hich radius norm is picked and how measures are assessed. For instance, [START_REF] Einmahl | N onparametric estimation of the spectral measure of an extreme value distribution[END_REF]; [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]; [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF] use the rank transform for standardization, then alternatively use the L 1 , L 2 and L 1 norms and ground estimation on the basic empirical measure. H owever, the spectral measure is required to be Lebesgue-dominated, thereby failing to encompass situations w here it is degenerate on some points. Breaking the barrier, [START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF] introduced a maximum empirical likelihood statistic, w hile extending theoretical results to the full set of L p -norms, p • 1. Bayesian models have also fl ourished [START_REF] Boldi | A mixture model for multivariate extremes[END_REF][START_REF] Guillotte | N on-parametric Bayesian inference on bivariate extremes[END_REF]. In the same vein, [START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF] recently proposed a novel algorithm that handles moderate dimensions. Though it can be viewed as a subsequent improvement in multivariate extremes analysis, their technique is only effi cient w hen all variables considered are asymptotically dependent; higher-complexity spectral measures may unfortunately not be studied by their method. H ence the need to fi rst identify groups of dependent variables in regard to their extreme behavior: once this preliminary analysis carried out, the aforementioned estimators would enable more precise estimation up to dimension 5.

Lately, H aug et al. ( 2010) have ingeniously adapted one of the most celebrated dimension reduction method, namely Principal Components A nalysis (PCA ), to multivariate extremes analysis. Under an elliptical copula assumption, they recover the set of straight lines summarizing best the extreme covariance function, thereby leading to a clustering of variables based on extreme dependence. Follow ing in their footsteps, we propose to borrow concepts from statistical learning to achieve dimen-sion reduction, w ithout making any parametric assumption in contrast. We rather base our analysis on a mixture model of the spectral measure exploiting its specifi c geometry, tackled from a latent variable point of view, under w hich useful properties arise and enable identifi cation and interpretation of hopefully small groups of asymptotically dependent variables. Inference mimics classical non-parametric spectral measure estimation and focuses on the cloud of observation angles related to the L 2 -norm. Since they belong to the positive orthant of the unit hypersphere, also called simplex, their structure is explored through a recent algorithm fi tting PCA to Riemannian manifolds [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF]. N ot only does this procedure respect the intrinsic combinatorial geometry of the simplex, but it also enriches the set of eligible summarizing sub-manifolds compared to standard PCA . Identifi cation of the variables exhibiting asymptotic dependence is subsequently achieved using an appropriate clustering technique [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF] on the obtained sub-space. We also provide a heuristic to help select the number of upper values most representative of extremes, thereby circumventing a traditionally intricate issue in M EVT.

To illustrate the assets and liabilities of our method, we perform numerical experiments and conduct a real case study for long-term dietary risk assessment. Extreme value theory (EVT) has already proven useful in studying high exposures to a single toxicant (Tressou et al., 2004a;[START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF], but to our know ledge the question of simultaneous extreme exposures to multiple chemical elements has never been addressed from a statistical point of view.

The chapter is organized as follow s: we start off in Section 3.2 w ith the introduction of a few notations and hypotheses, subsequently used throughout the methodological part of our work in Section 3.3. There, after recalling a few basic notions in spectral measure analysis, we introduce a mixture model for the spectral probability measure and emphasize the ensuing fruitful properties it enjoys, w hen viewed as a latent variable model. Then we turn to the practical aspects of the approach we promote, and thoroughly depict our strategy for statistical inference under the assumed model, based on dimension reduction algorithms, in Section 3.4. It is supported by numerical experiments carried through in Section 3.5, and subsequently applied for illustration purposes to dietary risk assessment in Section 3.6. In view of both simulation and case study results, assets, liabilities, natural extensions and required improvements of our method are fi nally listed and discussed in Section 3.7.

h ypo t h eses a n d n o t at i o n s

We start by introducing a few essential notations used throughout the chapter, followed by a short listing of the main hypotheses involved in the subsequent analysis.

Notations

Ú Vectors We shall deal w ith both random and non-random mathematical objects. To distinguish between them, we use uppercase to refer to random variables and lowercase otherw ise. In both situations, vectors are denoted in bold and are w ritten in columns, so that for any vector x w ith d °1 components,

x = 0 B B @ x 1 . . . x d 1 C C
A and its transpose is denoted by x 1 = (x 1 ; : : : ; x d ).

In particular, we w rite 0 = (0; : : : ; 0) 1 to mean the null vector in R d , and e 1 ; : : : ; e d the vectors of the canonical basis of R d . Operations between vectors should be interpreted matricially, e.g.

x 1 x = ∞ d j = 1 x 2 j .
Ú Sets A s usual, braces refer to sets, and we denote by #I the cardinal of any set I . Its power set is denoted by P(I ), its complementary by I c and we further define P (I ) := P(I )zt H u. When I is included in a topological space, I denotes the reunion of all open subsets of I and I its closure (the smallest closed set containing I ).

Ú Norms When working on R d , recall that all norms are equivalent. For any collection of norms }.} ( 1) ; }.} ( 2) ; : : : in R d , we denote their corresponding unit spheres by S d 1 ( 1) ; S d 1 ( 2) ; : : : respectively, thereby emphasizing the topological dimension of these objects.

Ú Random variables For any sample Z 1 ; : : : ; Z n of n °1 independent and identically distributed (iid) random vectors on a space product of d ordered vector spaces E 1 E d w ith multivariate cumulative distribution function (cdf) F, dimensions are indexed by j P t 1; : : : ; du and observations by i P t 1; : : : ; n u. Order statistics are denoted Z ( 1; j ) § § Z ( n ; j ) , for all j P t 1; : : : ; du. This notion is intrinsically linked to that of ranks; we defi ne the rank function

Ran k : E j -N Z i ; j fi - ∞ n m = 1 I Z m ; j § Z i ; j ( ! ;
w here for any condition A , I t A u = 1 if A is true and 0 otherw ise. Then we have Ran k(Z ( i ; j ) ) = i .

General setting and main hypotheses

Throughout this article, we consider a d-dimensional random vector X := (X 1 ; : : : ; X d ) 1 ; d • 2, w ith Lebesgue-dominated probability distribution P on the positive orthant C d := [0; 1 ] d and cumulative distribution function (cdf) F, the tail structure of w hich we w ish to assess. For 1 § j § d, we denote by P j the j -th 1-dimensional marginal distribution of P, i.e. the probability distribution of X j , w ith corresponding continuous cdf F j (x) := P j ([0; x]), x • 0. Statistical inference on the extreme behavior of F w ill be based on the observation of a sample X 1 ; : : : ; X n , n °1 (we shall w rite X i = (X i ; 1 ; : : : ; X i ; d ) 1 for 1 § i § n ), supposedly draw n independently from P. We do not assume that F is characterized by its marginals, as would be the case in a situation w here the X j 's are independent, or w hen considering copulas for modeling the dependence structure. A dditionally, neither F nor any F j , 1 § j § d, are supposed to belong to the maximum domain of attraction of an extreme value distribution. The only imposed regularity constraint, apart from continuity of marginal cdfs, is the existence of a Radon measure , not identically zero and not degenerate at a point, concentrated on the blunt convex cone

C d := [0; 1 ] d zt 0u such that t P 1 t 1 (1 F 1 (X 1 )) ; : : : ; 1 (1 F d (X d )) P . v - t -1 (.). (3.1)
H ere, the notation " v -" stands for the vague convergence of measures in C d : for all continuous functions f :

C d -R + w ith compact support, t E f 1 t 1 (1 F 1 (X 1 )) ; : : : ; 1 (1 F d (X d )) - t -1 ª C d f d .
In words, Equation (3.1) simply states that there is, indeed, an extreme dependence structure between the random variables X 1 ; : : : ; X d , exhaustively described by measure , see for instance Section 8.2.3 in [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF] or Section 6.5.6 in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]. A lternatively, consider the random vector Z := (Z 1 ; : : : ; Z d ) 1 of standardized components Z j := 1 (1 F j (X j ))

; j P t 1; : : : ; du;

(3.2)

and the corresponding transformed sample Z 1 ; : : : ; Z n . Written this way, all Z j w ith j P t 1; : : : ; du, are standard Pareto distributed, i.e. @x • 1, P Z j °x = x 1 . Let R refer to the set of regularly varying functions w ith index , then by defi nition P Z j °x P R 1 , w ith tail quantile function inft x P R + : P Z j § x • 1 1=t u = t . For more details on univariate regular variation, we refer to Chapter 2 in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]. Then, Equation (3.1) defi nes the distribution of Z as regularly varying in the multivariate sense. A larger overview of multivariate variation can be found for instance in Resnick (2007, Chapters 3 and 6).

Because we are interested in summarizing the dependence structure of the random variables X 1 ; : : : ; X d , focus is here on the analysis of measure in Equation (3.1). Theoretical properties of this mathematical object are detailed in Section 3.3, as a preliminary to the proposed inference technique, subsequently introduced in Section 3.4.

a mi xt u r e mo d el u n d er mu l t i va r i at e r egu l a r va r i at i on

In the present section, after review ing a few know n properties of the limit measure in Equation (3.1) and defi ning spectral (probability) measures, we introduce a useful mixture model of the latter on w hich inference is next based. For simplicity, we shall work exclusively w ith the vector Z of standardized random variables defi ned in the previous section.

Exponent and spectral (probability) measures

Under the regular variation hypotheses listed herein-before, the limit measure in Equation (3.1), called exponent measure, exhibits some convenient properties that we shall exploit later on. Specifi cally, it is homogeneous, i.e. for all 0 † s † 1 and Borel subset B of C d ;

(s B) = s 1 (B); (3.3)
and fulfi lls d marginal constraints expressing the nature of the marginal survival functions, namely for all j = 1; : : : ; d and 0 † z † 1 ;

x P C d : x j °z( = z 1 ;

(3.4) see for instance Section 8.2.2 in [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF] and Section 6.1.4 in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]. Consequently, can be expressed as a tensor product of two measures w hen sw itching to pseudo-polar coordinates. Indeed, choose two norms }.} ( 1) and }.} ( 2) on R d and defi ne the follow ing mapping: Q(.).

T : C d -(0; 1 ] S d 1 ( 2) x fi -( ; ! ) = }x} ( 1) ; x=}x} ( 2) ! ; w ith T 1 ( ; ! ) = ! =}! } ( 1) = x.
(3.9)

In words, the latter expression stipulates that Q is the limit distribution of the angles w hen the radius gets infi nitely large. It thereby encapsulates the extreme (or asymptotic) dependence structure between the d variables in dimension d 1. Observe that Equation (3.4) can be expressed in terms of moment constraints for S and Q respectively. N amely, for all j P t 1; : : : ; du, we have:

ª d 1 ! j }! } ( 1) S(d! ) = 1; (3.10) ª d 1 ! j }! } ( 1) Q(d! ) = 1=S( d 1
).

(3.11)

M ixture model of the spectral probability measure

The extreme dependence structure between the variables X 1 ; : : : ; X d can be expressed in terms of the geometry of the support of Q (or S), w hich we denote by supp(Q). Indeed, recall that supp(Q) is included in d 1 , the positive orthant of the unit hypersphere S d 1

( 2) , or the simplex associated w ith }.} ( 2) . The latter can be partitioned into 2 d 1 non-empty and disjoint open faces w ith dimensions ranging from 0 up to d 1. They are identifi ed by the collections of indexes I 1 ; : : : ; I 2 d 1 forming P (t 1; : : : ; du): for any h P t 1; : : : ; 2 d 1u such that I h P P (t 1; : : : ; du), the open face generated by t e j ; j P I h u is

d 1 h := d 1 (I h ) := hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj d 1 X Vect(t e j ; j P I h u);
w ith dimension m h 1, w here m h := #I h . The star of vertex t e j u, i.e. the reunion of all open faces the closure of w hich contains t e j u, is denoted by st ar(t e j u) w ith corresponding set of indexes S(j ) := t h P t 1; : : : ; 2 d 1u : t e j u Ñ d 1 h u. N otice that we also have S(j ) = t h P t 1; : : : ; 2 d 1u : j P I h u. See Figure 3.1 for an illustration in dimension 3. By extension, we denote by I 0 := t 0u the set referring to the empty face

d 1 0 := H , w ith m 0 = 0. 1 Z 3 Z 3 Z 1 2
Fi gur e 3.1 -The 7 nonempty open faces in the L 2 -norm simplex 2 : the 3 vertices (left), the 3 edges (right), and the interior (bottom). The set st ar (t e 1 u) corresponds to the reunion of the 4 open faces 2 (t 1u), 2 (t 1; 2u), 2 (t 1; 3u) and 2 (t 1; 2; 3u).

Given this decomposition, for any h P t 1; : : : ; 2 d 1u, supp(Q) X d 1 h H means that all X j such that j P I h exhibit asymptotic dependence (see Beirlant et al., 2004, Section 8.2.3). Consequently, recovering the set of faces intersecting the support of Q suffi ces to identify the sets of variables w hich are dependent in the extremes and those w hich are not. This motivates the follow ing mixture model:

Q(.) = 2 d 1 ∏ h = 1 h Q h (.);
(3.12)

w here for all h P t 1; : : :

2 d 1u, Q h (.) := $ & % Q(. X d 1 h )=Q( d 1 h ) if Q( d 1 h ) 0; 0 otherw ise, h := Q( d 1 h ).
In addition, denote by H the set made of all open faces intersecting supp(Q), i.e.

H := t h P t 1; : : : ;

2 d 1u : supp(Q) X d 1 h H u;
then for all h P H , Q h is by defi nition a probability distribution on d 1 h . Obviously,

h P [0; 1], ∞ 2 d 1 h = 1 h = ∞ h PH h = 1
, and by extension 0 = 0.

N ow that the theoretical framework has been set out, follow ing in the footsteps of standard mixture model analysis (see for instance M cLachlan and [START_REF] Peel | Finite mixture models[END_REF], we shall exploit the properties deriving from Equation (3.12) w hen reasoning in terms of latent variables and intrinsic clustering, in order to identify all d 1 h w ith h P H .

Latent variables representation

We consider now the iid copies Z 1 ; : : : ; Z n of the standardized random vector Z defi ned in Section 3.2. Going back to the model in Equation (3.12) and setting H := #H , one would expect the empirical distribution of these observations to refl ect the decomposition of Q as a mixture of H probability measures on î h PH d 1 h

. H ence, there should be an intrinsic (unknow n) clustering of the data into H classes leading to an identifi cation of these open faces. Formally, defi ne n unobserved random vectors i := ( i ; 0 ; i ; 1 ; : : : ; i ; 2 d 1 ) 1 w ith standard multinomial distribution such that P ( i ; h = 1) = : p h P [0; 1], w here

∞ 2 d 1 h = 0 p h = ∞ 2 d 1 h = 0 i ; h = 1.
Consider each i ; h as an indicator of w hether observation Z i is draw n from a distribution w ith spectral probability measure Q h or not, i.e. w hen i ; h = 1, individual i may reach extreme values on the m h variables identifi ed by I h alone. Conversely, for any other h R H , the event i ; h = 1 indicates that each of the d coordinates of Z i should generally have small to moderate values. M athematically, for all h P t 0; : : : ; 2 d 1u, i P t 1; : : : ; n u, we defi ne the latent vector i as satisfying

P ! i P . i • t ; i ; h = 1 D - t -1 $ & % Q h (.) if h P H ; 0 otherw ise;
(3.13) w here ! i and i are respectively the angle and radius of individual i . In fact, for the sake of interpretation, as soon as all i ; h , h P H , are null, we set i = (1; 0; : : : ; 0). In other words, we impose the follow ing equivalence: @h P t 1; : : : ; 2 d 1u; ( h = 0) Ù (p h = 0).

(3.14) Some useful properties can be established in such a setting. We display here two results w hich are subsequently exploited for inference, as shall be seen in the next section. Proofs and technical details are deferred to Section 3.8. The proposition below exhibits the asymptotic behavior of conditional marginals under the latent variable model depicted herein-before.

Pr oposi t i on 3.1 -Intra-class regular variation. We place ourselves in the framework of Section 3.3 and denote by H (j ) the set t h P H : j P I h u, i.e. the intersection between H and S(j ).

Then, for all j P t 1; : : : ; du, h P t 0; : : : ; 2 d 1u, is an open face w here Q is null or if its closure does not contain vertex t e j u, then it cannot project any mass on the j -th dimension. On the contrary, as soon as h P H (j ), the marginal distribution of Z i ;j given that it was draw n from a distribution w ith spectral probability measure Q h is tail equivalent w ith the non-conditional distribution of Z i ; j . H ence, nonempty open faces intersecting w ith supp(Q) are identifi able by remaining only in the univariate level. In particular, the follow ing result reveals that one can build a discriminative function of conditional marginal distributions the asymptotic behavior of w hich enables the characterization of t H (j ); 1 § j § du, and by extension of t I h ; h P H u.

Pr oposi t i on 3.2 -Face-characterizing functional. We place ourselves in the framework of Section 3.3 and consider H (j ) as in Proposition 3.1. For all j in t 1; : : : ; du, h P t 1; : : : ; 2 d 1u, x • 1, define the functional j ; h (t ) := ª 1 1 t P ( i • t ) P Z i ; j °x t i • t ; i ; h = 1 dx;

and assume that there exist some constants P (0; 1), c • 0 and t °1, such that for all j P t 1; : : : ; du, h RH (j ), @x °1; (t °t ) Ò P Z i ;j °x t

i ; h = 1 P Z i ; j °t i ; h = 1 § c x 1= ! . Then j ; h (t ) - t -1 $ & % + 1 if h P H (j ) 0 if h RH (j ) Y t 0u
and @t °t ; j ; 0 (t ) † 1 .

(3.16)

A s a consequence, for fi xed dimension j P t 1; : : : ; du, the set H (j ) consists of all indexes h such that j ; h (t ) diverges as t tends to infi nity, instead of converging towards a fi nite constant, possibly zero. Since for all h P H , I h = t j : h P H (j )u, we have

d 1 h := d 1 (I h ) = d 1 t j : j ; h (t ) - t -1 + 1 u ; h P H ;
(3.17) and H is the set of all h P t 1; : : : ; 2 d 1u such that there exists at least one dimension j P t 1; : : : ; du for w hich j ; h (t ) -+ 1 as t -1 .

Remar k 3.3

The assumption in Proposition 3.2 simply requires that the extreme dependence structure is reached at a reasonably fast rate. It can be directly linked to the concept of hidden regular variation introduced in H effernan and [START_REF] Resnick | H idden regular variation and the rank transform[END_REF]; [START_REF] Resnick | H idden regular variation, second order regular variation and asymptotic independence[END_REF][START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF][START_REF] Resnick | M ultivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit law s[END_REF]; [START_REF] Das | Detecting a conditional extreme value model[END_REF]; [START_REF] Das | Living on the multidimensional edge: seeking hidden risks using regular variation[END_REF]. Roughly speaking, if the distribution of Z had hidden regular variation, there would be an angular measure on d 1 z î h PH d 1 h

w hen making the radius increase w ith some regularly varying function b(t ) = o(t ) w ith index 1= § 1 instead of t . In that case, our assumption guarantees that 1= § † 1, w hich is a rational condition for hidden regular variation not to be mistaken for multivariate regular variation in practice.

The proposed approach to statistical inference is based on Proposition 3.2 and Equation (3.17), as explained at length in the next section. N umerical experiments illustrating the relevance of the method we promote here are subsequently presented in Section 3.5.

st at i st i c a l i n f er en c e

Relying on the probabilistic framework detailed in Section 3.3, we now review the various steps of the proposed methodology to assess the dependence structure governing the extreme values of X 1 ; : : : ; X d . In short, it combines techniques borrowed from multivariate extreme value theory w ith clustering algorithms. Its declared purpose is to try to circumvent the classical curse of dimensionality that gravely deteriorates estimator variances (M assart, 1989). In particular, under some sparsity-like hypothesis, there is real hope of improvement in the estimation of the spectral measure: if supp(Q) is condensed on small manifolds of d 1 , recovering its geometrical structure should be manageable and would ultimately enable inference in lower, well-identifi ed dimensions. Though high dimension is a classical issue in multivariate statistics [START_REF] Friedman | The elements of statistical learning[END_REF][START_REF] Donoho | H igh-dimensional data analysis: The curses and blessings of dimensionality[END_REF], it is even more pregnant w ith meaning in extreme value analysis, w here statistical inference only relies on a small sub-sample of most extreme observations. This justifi es our approach, detailed step by step in the next three subsections: after a brief review of standard preliminaries, we depict our clustering algorithm given that the number H of open faces intersecting w ith supp(Q) is know n. Finally, we propose some heuristic tools to choose both the aforementioned H and the number of upper values on w hich to base statistical analysis appropriately.

Preliminaries

Just as in classical spectral measure assessment, we consider that for some high enough threshold t , asymptotic relations such as in Equations (3.8), (3.9), (3.15) and 3.8.2 are suffi ciently well approached to enable estimation. We use t = n =k in practice, w here k represents a fi xed number of upper radii, that has to be chosen carefully as shall be seen later on. Other essential elements of the aforementioned asymptotics are not know n a priori and need to be estimated beforehand, namely the marginals F 1 ; : : : ; F d , used to standardize the original variables in Equation (3.2). To avoid restrictive hypotheses, we privilege here a non-parametric procedure, usually referred to as the rank transform: for all i P t 1; : : : ; n u and j P t 1; : : : ; du, set p F j (X i ; j ) = 1 n Ran k(X i ; j ) 1 ;

(3.18)

and pursue the analysis w ith p Z i ; j = 1=(1 p F j (X i ; j )), 1 § i § n , 1 § j § d [START_REF] Einmahl | N onparametric estimation of the spectral measure of an extreme value distribution[END_REF][START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF][START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF][START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF]. The generic random vector associated w ith this sample is w ritten p Z = ( p Z 1 ; : : : ; p Z d ) 1 . A ngles and radii are subsequently denoted by ! i and ˆ i respectively. For geometrical reasons explained in the next subsection, we set }.} ( 2) as the L 2 -norm. In addition, we use the L 1 -norm for }.} ( 1) because of its natural adequacy w ith marginal analysis. Observe that w hereas it is unimportant regarding the angle, selecting a specifi c norm for the radius can have major implications. This is due to the selection process of " tail observations" , defi ned as those w ith radius larger than n =k; clearly, different norms are bound to produce different sub-samples [START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF]. H owever, such issues go beyond the scope of our analysis and are not discussed further here.

Dimension reduction and clustering

Equipped w ith the objects and notations introduced herein-before, we now proceed w ith the analysis of the spectral measure. A ssume for the moment that H is know n, k is appropriate, and that our only task is to identify the set of open faces d 1 h , h P H , or equivalently the corresponding collections of indexes I h . For this, we propose to mimic a classical approach in statistical learning, namely Principal Components A nalysis (PCA , [START_REF] Friedman | The elements of statistical learning[END_REF]. A ctually, H aug et al. ( 2010) have already extended PCA to extreme dependence analysis, but they assume an elliptical copula to describe the dependence structure in extremes. Because we would like to avoid any parametric restriction, we propose to work on the angles instead of the raw data and carry out PCA directly on the simplex. Then, choosing the L 2 -norm enables the use of algorithms that respect the intrinsic distance of the unit hypersphere S d 1

( 2) , now identifi ed w ith the usual unit hypersphere S d 1 of R d . We shall refer to the geodesic distance introduced hereafter. Def i n i t i on 3.4 The geodesic distance between two points x and y of R d located on S d 1 is w ritten d G (x; y) := arccos x 1 y .

A mong all algorithms that were proposed in the literature [START_REF] Jung | Principal arc analysis on direct product manifolds[END_REF][START_REF] Ziezold | Principal component analysis for Riemannian manifolds, w ith an application to triangular shape spaces[END_REF][START_REF] Fletcher | Principal geodesic analysis for the study of nonlinear statistics of shape[END_REF], we consider the most general one, namely the Principal N ested Spheres (PN S) technique developed by [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF].

In short, it is an iterative procedure that projects the data on smaller and smaller hyperspheres (S d 2 , S d 3 ; : : : ), until the unit circle S 1 is reached. These so-called PN S enrich the set of summarizing sub-manifolds compared to classical PCA . In Figure 3.2, we provide an illustration of the better adequacy of PN S compared to PCA w hen studying spectral measures. A mong all d 1 resulting PN S, we may pick one of reasonably small dimension, w hich can be considered as representative of the geometry of supp(Q). In practice, this is achieved w ith a simple rule of thumb argument: we iteratively calculate the marginal level of geodesic variance encapsulated in S 1 ; S 2 ; : : : as in [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF], and select the biggest PN S still providing a gain in variance that exceeds a given threshold (e.g. 10% of the total variance). A s was pointed out by [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF], S 1 and S 2 usually capture a high enough level of variance to ignore higher dimensions.

Z 3

Z

Fi gur e 3.2 -A PNS on the L 2 -norm simplex 2 : assume data points are uniformly concentrated around the greyed areas, then there is no straight line that can achieve a better separation than the represented dotted circle.

Once a sub-sphere has been selected, we still need to analyze the structure of the projected points to identify t d 1 h ; h P H u. For this, we propose to use an accurate clustering procedure such as spherical k-means [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF][START_REF] Ramler | A k-mean-directions algorithm for fast clustering of data on the sphere[END_REF], based on the geodesic distance again. Though it may not seem necessary, the fi rst stage of PN S makes the subsequent clustering more robust by getting rid of any misleading noise w hile best preserving the geometry of the original cloud of points. In fi ne, because of the structure of d 1 , we can expect an adequacy between the obtained set of clusters and the underlying mixture model stated in Equation (3.12). Specifi cally, individuals reaching extremes on all t Z j ; j P I h u should be concentrated near d 1 h and projected onto a different zone of the PN S than observations taking high values on t Z j 1; j 1 P I h 1; h 1 hu, and be affected to different classes. H ence, identifying the set of open faces intersecting supp(Q) comes dow n to fi nding out on w hich dimensions individuals of each class reach extreme values. Technicalities about this last process are detailed in the next subsection. Obviously, many other natural techniques in mixture model analysis could have been adopted here (M cLachlan and [START_REF] Peel | Finite mixture models[END_REF]; our preference for geometrical methods is based on a strong belief that Riemannian geometry is a key concept for understanding the structure of the spectral (probability) measure, as suggested by the encouraging results of the numerical experiments conducted in Section 3.5.

Identifying groups of asymptotically dependent variables

Let us begin by still assuming that H is know n and k is well chosen. In view of the procedure explained above, we have at our disposal a clustering into H groups of the set of most extreme observations @ k := t i P t 1; : : : ; n u : ˆ i • n =ku. These correspond to estimates of H coordinates of the unobserved vectors i introduced in Section 3.3.3, for all observations i P @ k . We denote them by p i ; `, `P t 1; : : : ; Hu, i P @ k , w here p i ; `= 1 if i is in group `, and a fi xed `corresponds to some unknow n h P t 1; : : : ; 2 d 1u. Observe that the case h = 0 is neglected, since Proposition 3.1 suggests that P ( i • n =k) 0 for large enough n =k. Unfortunately, we are not able to comprehend to w hich open faces the events p i ; `= 1 are referring yet. In order to recover them, we propose to take advantage of the marginal properties stated in Proposition 3.2, and start by assessing H (j ) w ith the empirical counterpart of j ; h (t ) in Equation (3.17). Formally, defi ne

p j ; `(k) := ª 1 1 1 k n k n `∏ i P@ k I ! p Z i ; j °x n k ; p i ; `= 1 ) dx; 1 § ` § H; 1 § j § d;
w here n k := #@ k is the number of observations the radius of w hich exceeds n =k, and n `:= ∞ i P@ k I t p i ; `= 1u the size of class `. A more explicit version of this statistic and a short discussion regarding its accuracy are available in Section 3.8.3. Then, we set p H (j ) := `P t 1; : : : ; Hu : p j ; `(k) " 0 ( .

In practice, to decide w hich `P t 1; : : : ; Hu provide a large enough p j ;`( k) to be selected, we perform a scree test-like analysis [START_REF] Cattell | The scree test for the number of factors[END_REF]. Specifi cally, we compute p j ;`( k) on all `P t 1; : : : ; Hu, and j P t 1; : : : ; du. The V := H d resulting values, denoted for instance by p 1 ; : : : ; p V , are subsequently ordered so that p ( 1) § § p ( V ) . In fi ne, we say p

v " 0, 1 § v § V, if V v + 1 § argmax 1 § w § V p ( V w + 1) p ( V w ) .
Because to each result index v corresponds a couple (j ; `), we obtain in this way a collection of such couples from w hich all p H (j ), 1 § j § d, are determined. Then, identifi cation of the corresponding open faces is straightforward: for all `P t 1; : : : ; Hu, a natural estimator of I `is p I `:= t j : `P p H (j)u;

subsequently characterizing the desired spaces d 1 ( p I `), 1 § ` § H.

Unfortunately, in practice H is usually unknow n and k has to be picked at hand. To overcome this issue, we develop a heuristic criterion to measure the quality of a clustering, given a couple (k; p H(k)), w here p H(k) is a number of clusters fi xed a priori. Consider p H (j ) as before, but replace H w ith p H(k) in its original defi nition, and set

(k; p H(k)) = d ∏ j = 1 p H ( k ) ∏ `= 1
( 1) I t `Rx H ( j ) u p j ; `(k).

This statistic is simply built from Section 3.8.2: after having computed the empirical counterpart of j ; `(k) on all `P t 1; : : : ; p H(k)u, we add up all quantities corresponding to `P p H (j ) (w hich should be large) and substract the others (supposedly close to zero). When (k; p H(k)) provides an accurate clustering of our data, (k; p H(k)) should reach high values. To avoid possible practical errors, we further refi ne this criterion w ith some additional constraints. Specifi cally, classes should contain more that 1 individual, groups should each identify a different open face and no set p H (j ), 1 § j § d, should be empty. Observe that w hile the fi rst two conditions are just common sense, the last one is necessary to respect the theoretical properties of Q: were there any empty H (j ), marginal distributions could not be standard Pareto, and fi nding extra meaningless classes would come dow n to stating that the chosen threshold was not high enough to get rid of the empty face. Finally, we retain the partition inherited from (k; p H(k)) , defi ned below.

(k; p H(k)) = argmax ( k ; p H ( k ) ) (k; p H(k)) p H ( k ) π `= 1 I t n `°1u d π j = 1 I t p H (j ) H u π 1 § ` `1 § p H ( k ) I t p I ` p I `1u. (3.19)
On account of the nice properties of the rank transform [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF][START_REF] Resnick | H idden regular variation and the rank transform[END_REF][START_REF] Das | Detecting a conditional extreme value model[END_REF], we expect these statistical objects to converge to the true quantities they approximate as n -1 . Unfortunately, due to the lack of probabilistic results on PN S and spherical k-means, w hich were originally introduced as geometrical techniques, we cannot provide here a thorough asymptotic analysis of the solution output by the statistical procedure described above. Further developments are the object of an ongoing work. N onetheless, as shall be seen in the next section, numerical experiments provide strong empirical evidence of the effi ciency of the approach we propose.

n u mer i c a l exper i men t s

We tested our method through a number of numerical experiments, for various values of n , d, and H. In doing so, we tried to handle various types of extreme dependence structures, to illustrate the impact of the complexity of supp(Q) on our algorithm. In the next two subsections, we fi rst describe the different scenarios analyzed, then present and comment on the simulation results.

Settings

We generated n i.i.d. copies of a d-dimensional random vector (X 1 ; : : : ; X d ) 1 w ith varying degrees of extreme dependence. Observations were draw n using a symmetric multivariate logistic model, w ith function rmvevd in R package evd [START_REF] Stephenson | Simulating multivariate extreme value distributions of logistic type[END_REF]. A symptotic dependence was controlled via a parameter r P (0; 1], w hich indicates the strength thereof. In particular, r = 1 gives asymptotic independence, w hereas asymptotic perfect dependence occurs w hen r 0. We repeated 100 trials of our algorithm under 3 scenarios, listed in Table 3. Open faces r d 1 (t 1; 2u) 0.1 d 1 (t 2; 3u) 0.1 d 1 (t 4u) 1 d 1 (t 5; 6u) 0.2

To limit computation time, we tested its performance on 5 different sample sizes, namely n = 5 10 2 ; 10 3 ; 5 10 3 ; 10 4 , and 10 thresholds t = n =k, w ith corresponding k = n 0.001; n 0.002; : : : ; n 0.01. N ot all possible number of classes were exploited either, because the constraint I t n `°1u appearing in the defi nition of (k; p H(k)) in Equation (3.19) restricts the maximum number of clusters to n k =2. In practice, we iteratively compute our criterion for n `= 1; 2; : : : and stop as soon as the next 5 iterations cease improving it. For the same reasons, we disregarded situations w here d °20. H owever, in multivariate EVT, d = 6 and d = 20 can already be considered as high dimensions. Our code is based on the PN S algorithm provided by its authors at http://www.stat.pitt.edu/sungkyu/MiscPage.html, as well as the spherical k-means version of [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF], available in R package skmeans by setting method = "pclust", and start = "S".

Results

Results are displayed in Table 3.2, Table 3.3 and Table 3.4. The highlighted row reports the number of trials w here we managed to exactly recover the set of open faces intersecting w ith the support of the spectral probability measure. To better understand the assets and liabilities of our algorithm, we also provide a detailed account of all inaccurate results, ordered relatively to their impact on the fi nal interpretation. A s expected, in all scenarios, results improve w hen n increases, and success rates become particularly satisfactory as soon as n • 5000, for they then exceed 85% in all 3 scenarios. The best performance is obtained in scenario 1, w here d = 20 and H = 2. Indeed, even w ith a very small sample (n = 500), only 10 trials out of 100 fail to recover the true decomposition of supp(Q), w hile in scenario 3, w here d = 6 and H = 4, this rate never goes below 12% w hatever n . This suggests that rather than the dimension, the complexity of supp(Q) may be one of the principal determinants of the performance of our procedure. A ctually, given two spectral probability measures w ith equivalently complex supports, increasing dimensionality can produce better outcomes. This is the case w ith scenarios 2 and 3, w here supp(Q) is contained on small subsets of 4 open faces, but d = 6 in the former w hile d = 20 in the latter. These results are not surprising and illustrate a typical phenomenon called the blessing of dimensionality [START_REF] Donoho | H igh-dimensional data analysis: The curses and blessings of dimensionality[END_REF]; as d increases, observations occur in relatively small subsets of the original space and are therefore easier to detect and separate. This property is the basis for common techniques in statistical learning, such as the w idely celebrated Support Vector M achine (Friedman et al., 2001, Chapter 12), w hich projects the data onto some space w ith higher dimension in w hich they are well divided. In our numerical experiments, sw itching from Scenario 3 to Scenario 2 signifi cantly reduces the risk of overriding either d 1 (t 1; 2u) or d 1 (t 2; 3u), w hich are very close to one another in the unit hypersphere and may be w rongfully confused during the PN S procedure. Observe nonetheless that these simulations were performed for very small values of parameter r, i.e. all dependencies were strong. Since we used the multivariate logistic model, this means that for all h P H , subsets supp(Q) X d 1 h did not cover the entire open faces d 1 h but were concentrated around small neighborhoods of one of their points. H ad we considered less obvious extreme dependencies, these results would have probably been signifi cantly degraded. This remark can be linked to the infl uence of the hidden spectral measure on inference [START_REF] Resnick | H idden regular variation, second order regular variation and asymptotic independence[END_REF], for it controls the rate at w hich extreme structure is reached and thus dangerously impacts statistical analysis if the chosen threshold n =k is too small. In fi ne, these results are quite encouraging, and underline the usefulness of methods from the fi eld of statistical learning for multivariate EVT. Our next step w ill be to conduct a full theoretical analysis of our approach, w hich would demonstrate its rate of convergence in terms of sample size, strength of extreme dependencies, and complexity of the underlying spectral probability measure. This would for instance enable the construction of some confi dence intervals and may help design a more effi cient algorithm in terms of computation time. Indeed, at this early stage of development, our procedure is very long to implement; this forced us to limit the number of trials to 100 and prevented us from exploring the w hole range of largest values on w hich our criterion may be calculated. Hence, results might have improved, had we been able to reach its true maximum.

a ppl i c at i o n t o d i et a r y r i sk a ssessmen t

While eating is the privileged way of providing the necessary nutrients for the human organism, it also conveys toxic elements that, due to various environmental causes, contaminate the food. When consumed over certain tolerable doses, called dietary intake limits (DIL), these toxic elements can have a non-negligible impact on health. Similar phenomena also occur w hen diets are either too rich or too poor in nutrients. M ore importantly, further noxious effects may be caused by possible interactions between elements that are ingested simultaneously [START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. For international institutes concerned about public health issues such as the WH O (World H ealth Organization), FA O (Food and A griculture Organization), Unep (United N ations Environment Program), Efsa (European Food Safety Authority) or for national agencies such as the A nses (the French agency for food, environmental and occupational health safety), it is then of major interest to identify cocktails of food chemicals to w hich populations are indeed highly exposed. EVT has already proven useful to assess the probability of getting over a single dietary intake limit, in both univariate (Tressou et al., 2004a) and bivariate settings [START_REF] Paulo | A nalysis of multivariate extreme intakes of food chemicals[END_REF].

H ere, we propose to apply the method detailed in Section 3.3 and Section 3.3.3 to examine the relationships between high simultaneous long-term exposure to 6 common nutrients and contaminants, namely iron (Fe), calcium (Ca), sodium (N a), methylmercury (M eH g), cadmium (Cd) and dioxins and dioxin-like polychlorinated biphenyls (PCB-DL). Their long-term toxicity is well-know n, see for instance A nses (2011) and [START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. M ethylmercury, cadmium, and PCB-DL are three contaminants found mainly in seafood products. While cadmium was recognized in 2004 as a type 2 carcinogen by the European Union, methylmercury and PCB-DL can attack the nervous system. Sodium, calcium and iron are three minerals principally found in animal products such as meat or dairy products. Long-term over-exposure to these nutrients is also harmful, e.g. consuming too much calcium can provoke urinary and renal calculi and excessive ingestion of sodium favors cardiovascular issues. A s for iron, some studies have underlined a probable link between its excessive ingestion and Parkinson disease [START_REF] Jenner | N ew insights into the cause of Parkinson's disease[END_REF]. The current know ledge about possible synergistic effects between these chemicals, w hich may increase sanitary risks, is still quite poor, due to the complexity of these phenomena. Only methylmercury and PCB-DL have been studied jointly, and their simultaneous consumption was observed to amplify health issues in a number of experimental surveys [START_REF] Bemis | Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro[END_REF][START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF]. H enceforth, recovering groups of nutrients or contaminants to w hich the population is observed to be simultaneously over-exposed can help orient future biological and chemical research, w hich would in turn provide a better understanding of dietary risks. In terms of statistical analysis, thus reducing the dimension would also enable a more accurate estimation of the complex relationships between these types of exposure. Indeed, even though they are clearly linked by the type of food (fi sh or meat) introduced in the diet, there are differences of composition between species -like tuna or salmon -that can imply independence between types of extreme long-term exposure. In particular, exceeding the DIL of more than 3 of these elements is an event never observed in the data. Because of the variety of individual dietary habits and the complexity of the contamination process, simultaneous types of high exposure are not an obvious phenomenon, are rarely observed, and need to be analyzed in detail. In the next paragraphs, after a brief presentation of the data, we apply the procedure introduced in the previous sections to the 6 aforementioned nutrients and contaminants.

Data and required assumptions

Our vectors of 6 types of exposure were calculated on the n := 2488 non-pregnant, non-lactating adults of the IN CA 2 database for w hich no important variable was missing, as described in Section 1.2. Levels of nutrients w ithin each of the 1342 food items were given in the CIQUA L database and equivalents for contaminants were found in TDS2, both described in Section 1.2.2. In keeping w ith Chapter 2, the vectors of exposure X 1 ; : : : ; X n were obtained by multiplying amounts of food w ith average contents then averaging over the number of reported days. Using similar notations and hypotheses as in the previous chapter, for all components j P t 1; : : : ; du and consumers i P t 1; : : : ; n u, we assume that X i ; j = X i ; j + U i ; j ; w here X i ; j is the long-term individual daily exposure to contaminant or nutrient j (also called usual intake) and U i ; j is an independent noise w ith lighter tail than X i ; j . We also suppose that the n vectors X i are iid and that for any i i 1 and j j 1 , U i ; j is independent from U i 1 ; j 1. Under this setting, it is clear that the extreme dependence between the d components of vector X is determined solely by that between the d components of X , the vector of interest. Relaxing these quite restrictive hypotheses would require further work; this is left for future research.

Analysis of extreme dependencies

Results of our method on the aforementioned sample are summarized in Figure 3.3. For various choices of threshold t = n =k such that k P [10; n 0.3], we selected the partition that maximized our criterion (k; p H(k)) over all (k; p H(k)), and represented schematically the corresponding dependence structure. To get further confi dence in this outcome, we summarize in Table 3.5 the strongest relationships that were found over all thresholds. The evolution of our criterion (k; p H(k)) w ith k is displayed on Figure 3.4. Its maximum is reached w hen k = 564, i.e. w hen calculations are based on the 1591 observations w ith largest radii.

In fact, the dependence structure represented in Figure 3.3 is found on all 16 largest values of (k; p H(k)). The corresponding number of largest values k can be divided into two groups, one w here k is in a neighborhood of 360, and another w here k is around 560, as illustrated by the highlighted regions in Figure 3.4. M oreover, Table 3.5 show s that some dependencies are spotted w hatever the number of largest values. In particular, methylmercury is almost always associated to PCB-DL, w hile cadmium and calcium get separated from all other chemicals. Concerning iron and sodium, uncertainty remains quite high, and a complementary bivariate analysis seems necessary to confi rm the nature of their relationship. Figure 3.5 show s the estimated bivariate spectral probability measures of joint exposure fi rst to M eH g and PCB-DL, then to Fe and N a. They were obtained using the maximum empirical likelihood (abbreviated M EL) approach of [START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF]. Clearly, the strong asymptotic dependence between methylmercury and PCB-DL is confi rmed, on w hatever value of k the estimation may be carried out. The presence of a sub-population reaching extreme exposure to PCB-DL alone is also suggested by the form of Q, w hich gets close to vertical height on the extreme left part of the plot for many values of k. H owever, methylmercury does not exhibit such a behavior, and given that a specifi c class of independent exposure to M eH g only occurs for 7.60% of the largest values, we decide to disregard it. A ctually, in terms of dietary habits, getting two clusters of individuals, one highly exposed to both M eH g and PCB-DL, and another solely to PCB-DL makes perfect sense. Indeed, contrary to PCB-DL, methylmercury is a contaminant found exclusively in seafood products. H ence, it is possible to get over-exposed to PCB-DL w ithout ingesting high amounts of M eH g. N ow, let us turn to iron and sodium. A ccording to the evolution of Q w ith k show n on Figure 3.5, if these two types of exposure exhibit asymptotic dependence, the latter is clearly weak. In fact, we are more inclined to believe in the presence of a mixture of three sub-populations, one ingesting high amounts of both Fe and N a, and the other two getting over-exposed to only one of these nutrients. It is also possible that k = 564 being quite high, the relationship appearing in Figure 3.3 corresponds not to extreme but moderately high levels of exposures. This inconclusive example suggests that extending our approach to the analysis of the hidden spectral measure [START_REF] Resnick | H idden regular variation, second order regular variation and asymptotic independence[END_REF][START_REF] Resnick | M ultivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit law s[END_REF] would be of major interest. N on-parametric analysis of extreme dependencies via the spectral measure in high dimension d is still an open issue in multivariate extreme value theory. Though the bivariate setting has already been thoroughly investigated [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF][START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF][START_REF] De H Aan | Extremes in higher dimensions: the model and some statistics[END_REF][START_REF] Einmahl | N onparametric estimation of the spectral measure of an extreme value distribution[END_REF][START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF][START_REF] Guillotte | N on-parametric Bayesian inference on bivariate extremes[END_REF], and moderate dimensions are now accessible w hen all variables are asymptotically dependent [START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF], the matter is still unresolved for d °5. Follow ing in the footsteps of H aug et al. ( 2010), w ho adapted the most celebrated Principal Components A nalysis to extreme dependence assessment, we proposed a method combining multivariate extreme value theory w ith statistical learning and data mining standards so as to identify sub-groups of variables exhibiting asymptotic dependence. Once these clusters are identifi ed, if they each encompass less than 5 variables, it then becomes possible to further estimate the corresponding sub-parts of the spectral measure w ith any existing method, for instance those that were cited herein-before.

We started in Section 3.3 by developing the theoretical context under w hich our approach was constructed. First of all, contrary to H aug et al. ( 2010), we did not make any parametric assumption on the extreme dependence structure. This led us to focus on the spectral measure itself, or more specifi cally its standardized version called spectral probability measure Q. A fter recalling that this can be viewed as the limit distribution of observation angles given that their radius is getting infi nitely large, we underlined the adequacy between the geometry of its support on the positive orthant of the unit hypersphere and the nature of extreme dependencies. Indeed, if a group of variables, say Z 1 and Z 2 , are asymptotically dependent, then Q w ill have positive mass on the open face generated by the corresponding dimensions, here d 1 (t 1; 2u 

(t ), 1 § j § d, 1 § h § 2 d 1, introduced in Proposition 3.2.
Then, we moved to the practical part of our method in Section 3.4. Because we had pinpointed the major role of geometry for analyzing spectral measures in the preceding section, we adopted geometrical techniques suited for Riemannian objects such as the unit hypersphere for statistical inference. Borrowed from the statistical learning fi eld, they consist in fi rst projecting the initial cloud of points on a lowerdimensional space by means of the Principal N ested Spheres algorithm of [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF], then clustering the obtained data w ith spherical k-means [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF][START_REF] Ramler | A k-mean-directions algorithm for fast clustering of data on the sphere[END_REF]. By fi rst implementing PN S, we reduced potential noise and enabled more effi cient classifi cation. Resulting clusters were then considered as representative of the open faces that intersect supp(Q), and analyzed as such. To recover to w hich d 1 h , 1 § h § 2 d 1, they were referring, we constructed estimators based on the empirical counterpart of the functional j ; h (t ). The latter was also exploited to build a heuristic statistic that selects both the appropriate numbers of groups of dependent variables and of " extreme" observations. Unfortunately, due mainly to the absence of probabilistic analysis of PN S and spherical k-means in the literature, we were not able to provide asymptotic results about the aforementioned objects (this is the object of an ongoing work). H ence, assets and liabilities of our technique were discussed based solely on numerical experiments.

In Section 3.5, we tested our method on a set of simulated data bases. Three scenarios were considered, w hich try to encapsulate as many different situations as possible: they differed depending on d, on the number H of open faces containing mass, and on the complexity of supp(Q). In spite of a clearly improvable practical algorithm, the encouraging results we obtained enabled us to defi ne w hich characteristics of Q have most infl uence on estimation. In particular, we saw that unlike H, d is of negligible importance to the complexity of supp(Q) and the strength of extreme dependence. The closer t d 1 h ; h P H u are to one another (e.g. both d 1 (t 1; 2u) and d 1 (t 2; 3u) intersect supp(Q)), the harder it is to separate and correctly identify each of them. Estimation may also be impeded if H is large in comparison w ith n , or if asymptotic dependencies are weak. Indeed, to easily spot the desired open faces, the corresponding angular distributions denoted by Q h should concentrate most of their mass on a small neighborhood of the middle point of d 1 h ; the weaker dependencies are, the farther we are from this ideal situation. Though they were not considered in the simulations, we added some comments on rates of convergence to the asymptotic dependence structure that were sensed as a determining factor in assessment effi ciency. Specifi cally, we insisted on the role that the hidden spectral measure may play w hen selecting an optimal number of largest values and suggested the interest of generalizing our approach to its analysis.

Further insight into our method was provided by a case-study illustration. A pplied to real databases about exposures to 6 food contaminants, it produced stable outcomes, thereby giving confi dence in the results. We were able to conclude that only two pairs of chemicals are actually linked in extremes, namely methylmercury and PCB-DL on the one hand, and iron and sodium on the other hand. These associations were confi rmed by further computing the M EL estimator of [START_REF] Einmahl | M aximum empirical likelihood estimation of the spectral measure of an extreme-value distribution[END_REF] on the two pairs of variables. In addition, our method spotted a confi guration usually hard to notice w ith traditional estimators, but quite natural given the underlying mixture model on w hich we based the analysis: it underlined the presence of a mixture of populations, some being jointly over-exposed to a couple of elements, w hile others ingest high quantities of only one of them (PCB-DL or N a). In terms of public health implications, this means that people w ho are over-exposed to methylmercury tend to ingest simultaneously high amounts of dioxins and PCB. Know ing that these two toxicants have similar noxious effects on the human organism [START_REF] Fischer | N eonatal co-exposure to low doses of an ortho-PCB (PCB 153) and methyl mercury exacerbate defective developmental neurobehavior in mice[END_REF][START_REF] Weihe | H ealth implications for Faroe Islanders of heavy metals and PCBs from pilot w hales[END_REF], and that w hen combined, synergistic effects can occur [START_REF] Bemis | Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro[END_REF][START_REF] Carpenter | Understanding the human health effects of chemical mixtures[END_REF], this suggests paying particular attention to the populations that do not respect the corresponding DIL. It also justifi es the need for specifi c research on potential combined effects of these two contaminants, w hich would help in assessing the sanitary risks brought upon the concerned population.

In view of these results, one advantage of our multivariate approach is that people in the data are dispatched into multiple classes that embody different types of extreme dependencies. In our case-study example, it facilitates the understanding of over-exposure categories by allow ing classical discriminant analyses. A n interesting alternative would be to model the various h appearing in the mixture model of the spectral probability measure in function of auxiliary covariates, e.g. some sociologic or economic variables here. M ore than providing easily interpretable results, this would probably increase the performance of our procedure by helping discriminate between the various clusters. Such generalizations of the present work w ill be the subject of further investigation in the near future.

pr o o f s a n d su ppl emen t s

Intra-class regular variation

We shall start the proof of Proposition 3.1 by exhibiting two preliminary results. The fi rst one, given in the lemma below, states that h can be viewed as the limit probability that i ; h equals 1, 1 § i § n , w hen the radius becomes infi nitely large. Lemma 3.5 Consider the same framework as in Proposition 3.1, then for all h P t 0; : : : ; 2 d 1u, i P t 1; : : : ; n u,

P i ; h = 1 i • t - t -1 h . (3.20)
Pr oof First of all, extend Q to the w hole sphere by setting Q S d 1

( 2) z d 1 = 0, then consider the follow ing neighborhoods of each of the 2 d 1 open faces of the simplex: for any °0, h P t 1; : : : ; 2 d 1u and the geodesic distance d G (.; . We shall prove that for all h P t 1; : : : ; 2 d 1u, lim t -1

P ! P V ( d 1 h ) • t = Q V ( d 1 h ) ; (3.21)
for an arbitrary small . This result can be obtained by applying the Portmanteau theorem to Equation (3.9), provided that we fi nd at least a decreasing sequence of positive constants 1 ; 2 ; : : : that tends to 0 such that for any m • 1 and open face d 1 h

, the frontier of V m ( d 1 h

) has null measure relative to Q. Since Q is a fi nite measure, its associated cdf admits at most countably many discontinuity sets, hence the requirement is met.

N ow we shall prove that for all h P t 1; : : : 

; 2 d 1u, lim -0 Q V ( d 1 h ) = Q d 1 h . (3.22) Observe that Q V ( d 1 h ) = ≥ I ! P V ( d 1 h ) ( Q(d
P ! P V ( d 1 h ) • t = Q d 1 h ; (3.23)
for all h P t 1; : : : ; 2 d 1u.

N ow let D j , j P t 0; : : : ; d 1u denote the set of indexes h P t 1; : : : ; 2 d 1u that identify j -dimensional open faces. We shall prove Lemma 3.5 by strong induction. First, observe that for all h P D 0 we have d 1 h = d 1 h and that the events t i ; h = 1; h P t 0; : : : ; 2 d 1uu are disjoint by construction. H ence, Equation (3.23) can be rew ritten as follow s:

Q( d 1 h ) = lim -0 lim t -1 2 d 1 ∏ `= 0 P ! P V ( d 1 h ) • t ; i ; `= 1 P i ; `= 1 • t = lim -0 lim t -1 P ! P V ( d 1 h ) • t ; i ; h = 1 P i ;h = 1 • t + 2 d 1 ∏ `= 0 ` h P ! P V ( d 1 h ) • t ; i ; `= 1 P i ; `= 1 • t .
Since Equation (3.15) ensures that lim 

P i ; h = 1 • t = lim t -1 P i ; h = 1 • t = Q( d 1 h ).
Lemma 3.5 is thus true for all h P D 0 . N ow fi x some J P t 1; : : : ; d 2u and assume that it holds for all h P î J j = 0 D j . Set , .

-.

Using the same arguments as before, for all h P D J+ 1 we have:

Q( d 1 h ) = lim -0 lim t -1 P ! P V ( d 1 h ) • t ; i ; h = 1 P i ; h = 1 • t + ∏ `PF ( h ) P ! P V ( d 1 h ) • t ; i ; `= 1 P i ; `= 1 • t + ∏ `RF ( h ) ` h P ! P V ( d 1 h ) • t ; i ; `= 1 P i ; `= 1 • t .
Invoking again Equation (3.15), lim 

P ! P V ( d 1 h ) • t ; i ; `= 1 = $ & % 1 if `P F(h); 0 if `RF(h).
Combined w ith the induction hypothesis, these equations entail lim t -1

P i ; h = 1 • t = Q( d 1 h ) ∏ `PF ( h ) `= h .
This concludes the proof.

The second preliminary result in the lemma below states that the distribution of vector Z i given that i ; h = 1 is multivariate regularly varying w hen h P H . Lemma 3.7 Consider the same framework as in Proposition 3.1, then for all h P H , there is a Radon measure h , non identically zero and not degenerate at a point, concentrated on the blunt convex cone C 

(s B) = (s B) X (C d h ) =p h = s (B X C d h ) =p h = s 1 B X C d h =p h = s 1 h (B) .
A ccording to Theorem 6.1 in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF], it naturally follow s that for all i P t 1; : : : ; n u,

t P Z i t P . i ;h = 1 v - t -1 h (.);
w here, just like , h can be w ritten as the product of a measure on the radius w ith a measure on the angles w hen sw itching to pseudo-polar coordinates:

h T 1 = 1 S h .
We can now tackle the proof of Proposition 3.1, w hich is recalled below for convenience.

Pr oposi t i on -Intra-class regular variation. We place ourselves in the framework of Section 3.3 and denote by H (j ) the set t h P H : j P I h u, i.e. the intersection between H and S(j ). Then, for all j P t 1; : : : ; du, h P t 0; : : : ; 2 d 1u, x • 1, t P Z i ; j °x t i ;h = 1 t -1 c j ; h x 1 ; w here c j ; h P [0; 1=p h ] is non-null if and only if h P H (j ), and

∞ 2 d 1 h = 0 p h c j ; h = 1.
Pr oof Going back to the marginal level, multivariate regular variation of conditional distributions gives for all

x • 1, 1 § i § n , 1 § j § d, t P Z i ; j t °x i ; h = 1 v - t -1 h (t z P C d : z j °xu).
N otice that we now have a null limit for all h R H (j ), i.e. the intersection between H and S(j ), w hich identifi es the star of vertex t e j u. Indeed, if t e j u is not included in the closure of d 1 h , then by defi nition of Q h , S h and h , after projection no mass is put on the j-th dimension. Furthermore, for all h P H (j ), we have

h (t z P C d : z j °xu) = ª d 1 ª ( 0; 1 ] I " ! j }! } ( 1) °x* 1 (d ) S h (d! ) = x 1 ª d 1 ! j }! } ( 1) S h (d! ) l ooooooooooooomooooooooooooon c j ; h .
H ence, for all h P t 0; : : : ; 2 d 1u, i P t 1; : : : ; n u, j P t 1; : : : ; du, x • 1, we can w rite t P Z i ;j °x t i ; h = 1t -1 c j ; h x 1 ; w here c j ; h °0 w hen h P H (j ), and c j ; h = 0 otherw ise. Based on the marginal constraints on S stated in Equation (3.10) and because t d 1 h u 0 § h § 2 d 1 forms a partition of d 1 , we have that c j ; h P [0; 1=p h ] for all h P t 0; : : : ; 2 d 1u and

∞ 2 d 1 h = 0 p h c j ; h = ∞ h PH ( j ) p h c j ; h = 1.

Face-characterizing functional

Before tackling its proof, Proposition 3.2 is recalled for convenience.

Pr oposi t i on -Face-characterizing functional. We place ourselves in the framework of Section 3.3 and consider H (j ) as in Proposition 3.1. For all j in t 1; : : : ; du, h P t 1; : : : ; 2 d 1u, x • 1, defi ne the functional j ; h (t ) := ª 1 1 t P ( i • t ) P Z i ; j °x t i • t ; i ;h = 1 dx;

and assume that there exist some constants P (0; 1), c • 0 and t °1, such that for all j P t 1; : : : ; du, h RH (j ), @x °1; (t °t ) Ò P Z i ; j °x t i ; h = 1 P Z i ; j °t

i ; h = 1 § c x 1= ! . Then j ; h (t ) - t -1 $ & % + 1 if h P H (j ) 0 if h RH (j ) Y t 0u
and @t °t ; j ; 0 (t ) † 1 .

Pr oof We shall handle the situations w here h P H (j ) and h R H (j ) separately. To simplify notations, for all h P t 0; : : : ; 2 d 1u and x • 0 we w ill denote by F j ; h (x) the conditional probability that Z i ; j exceeds x given i ; h equals 1, for any i P t 1; : : : ; n u: F j ; h (x) := P Z i ; j °x i ; h = 1 .

Ú h P H (j ) : p h 0 and h 0

From Equation (3.15) in Proposition 3.1, it is straightforward that F j ; h is regularly varying w ith index 1, i.e. for any x • 1, F j ; h (x t ) F j ; h (t ) t -1

x 1 .

H ence, F j ; h may be w ritten as follow s:

F j ; h (x) = x 1 L j ; h (x); w here L j ; h (x) is a slow ly varying function (L j ; h P R 0 ) that converges to c j ; h as x -1 .

Remar k 3.11 Defi ne x j ; h := inft x • 1 : F j ; h (x) = 0u, the right endpoint of survival function F j ; h for any j P t 1; : : : ; du and any h P t 0; : : : ; 2 d 1u. Then for all h P H (j ), x j ; h = + 1 , that is @ t • 1, F j ; h (t ) °0.

Since Bayes' formula gives ª 1

1 t P ( i • t ) P Z i ; j °x t i • t ; i ; h = 1 dx = ª 1 1 t P Z i ; j °x t ; i • t i ; h = 1 p h P i ;h = 1 i • t dx;
and for all x • 1, P Z i ;j °x t ; i • t i ; h = 1 = F j ; h (x t ), we have ª 1

1 t P ( i • t ) P Z i ; j °x t i • t ; i ; h = 1 dx = t F j ; h (t ) p h P i ; h = 1 i • t ª 1 1 F j ; h (x t ) F j ; h (t ) dx = L j ;h (t ) p h P i ; h = 1 i • t ª 1 1 x 1 L j ; h (x t ) L j ; h (t ) dx.
Fix some °0, small enough to verify c j ; h °0, and some t °0 such that @t • t , we have simultaneously P i ; h = 1 i • t h † (Lemma 3.5) and L(t ) c j ; h † . Obviously, as soon as t • t , we also have L(x t ) c j ; h † for all x • 1, and 0 † c j ; h c j ; h + † L j ;h (x t ) L j ; h (t ) .

H ence, @t • t , ª 1

1 t P ( i • t ) P Z i ; j °x t i • t ; i ; h = 1 dx °(c j ; h ) 2 p h ( h + )(c j ; h + ) ª 1 1 x 1 dx = + 1 ; or equivalently, ª 1 1 t P ( i • t ) P Z i ; j °x t i • t ; i ; h = 1 dx - t -1 + 1 .
Ú h P H zH (j ) : p h 0 and h 0 Contrary to the case w here h P H (j ), we no longer have F j ;h P R 1 . In particular, the conditional cdf can have either fi nite or infi nite right endpoint. When its support is bounded, relying on the Bayes decomposition exhibited in the previous paragraph, the desired result is straightforward: because there exists some t 0 °1 such that for all t °t 0 , F j ; h (t ) = 0, then as t -1 , the integral also becomes null. If on the contrary, F j ; h °0 for all t • 1, then, as previously, we can rew rite the quantity of interest in the follow ing form:

ª 1 1 t P ( i • t ) P Z i ; j °x t i • t ; i ;h = 1 dx = t F j ; h (t ) p h P i ; h = 1 i • t ª 1 1 F j ; h (x t ) F j ; h (t ) dx.
Since as t tends to infi nity t Fj ; h (t ) tends to 0 (Proposition 3.1), P i ; h i • t tends to h °0 (Lemma 3.5) and since p h °0, for the integral of interest to converge to 0 it suffi ces to prove that there exists some t 0 °1 such that for all t °t 0 , ª 1

1 Fj ; h (x t ) Fj ; h (t ) dx † 1 .
A ccording to the assumption in Proposition 3.2, there exists some constants in (0; 1), c • 0 and t °1 such that (t °t ) Ò Fj ; h (x t ) Fj ; h (t ) § c x 1= .

H ence, for all t °t , ª 1

1 Fj ; h (x t ) Fj ; h (t ) dx § c ª 1 1 x 1= dx = c 1 1= † 1 ;
w hich produces the desired outcome.

Ú h P H c zt 0u : p h = h = 0 By defi nition, for all h P t 1; : : : ; 2 d 1u, the equivalence below holds true:

(h P H c zt 0u) Ù ( h = 0) Ù (p h = 0).
Consequently, w hen h P H c zt 0u, we have P Z i ;j °x i • t ; i ; h = 1 = 0 for all x • 0, and by extension ª 1 1 t P ( i • t ) P Z i ; j °x t i • t ; i ;h = 1 dx = 0; for all t °0. This remains true as t -1 .

Ú h = 0 : p h 0 and h = 0

Let us start again w ith the follow ing decomposition : j ; 0 (t ) = t p 0 Fj ; 0 (t ) P i ; 0 = 1 • t ª 1 1 Fj ; 0 (x t ) Fj ; 0 (t ) dx.

Contrary to the case w here h P H zH (j ), we cannot guarantee the convergence of j ;0 (t ) to 0 as t grow s to infi nity, since P i ; 0 = 1 • t now tends to 0 instead of a positive constant. N onetheless, it is still possible to prove that it does not diverge to 1 . Indeed, notice that t p 0 Fj ; 0 (t ) P i ;0 = 1 We have already seen that according to the assumption in Proposition 3.2, there exists some constants P (0; 1), c • 0 and t °1 such that for all t °t , ª 1

1 Fj ; 0 (x t ) Fj ; 0 (t ) dx § c 1 1= .
M oreover, by virtue of Equation (3.8), for all °0 there exists some t °0 such that for all t °t , t P ( • t ) S( d 1 ) † . Fix some °0 and set := (1 1= ) c , then for all t °max(t ; t ), we have j ;0 (t ) § S( d 1 ) c 1 1= + † 1 .

Observe that the smaller , i.e. the faster the limit dependence structure is reached, the smaller the bound of j ; 0 (t ). Ideally, w hen all Fj ; 0 , 1 § j § d, are rapidly varying, i.e. c = 0, we obtain the same result as in the case w here h P H zH (j ). This would correspond in fact to the absence of hidden regular variation, like mentioned in Section 3.5 and Section 3.7 [START_REF] Resnick | H idden regular variation, second order regular variation and asymptotic independence[END_REF][START_REF] Resnick | H idden regular variation and the rank transform[END_REF][START_REF] Resnick | M ultivariate regular variation on cones: application to extreme values, hidden regular variation and conditioned limit law s[END_REF].

About p j ;`( k)

For the sake of clarity, we give here a more explicit version of the statistic p j ; `(k), w hich was defi ned as

p j ; `(k) := ª 1 1 1 k n k n `∏ i P@ k I ! p Z i ; j °x n k ; p i ; `= 1 ) dx; 1 § ` § H; 1 § j § d;
w here n k := #@ k is the number of observations the radius of w hich exceeds n =k, and n `:= ∞ i P@ k I t p i ; `= 1u the size of class `. Recall that `is supposed to refer to some h P t 1; : : : ; du, that indexed the open face d 1 h . Let us begin by considering that k is fi xed, and set

f j ; `(x) = 1 k n k n `∏ i P@ k I ! p Z i ; j °x n k ; p i ; `= 1 ) ; 1 § ` § H; 1 § j § d.
Our statistic of interest, p j ; `(k) is none other than the integral over x • 1 of f j ; `(x).

A ctually, because it relies on a fi nite set of n § 1 observations, f j ; `(x) is a step function w ith support on the interval min the smallest observation p Z ì ; j that exceeds n =k, and arbitrarily set p Z ( n ` u 1; j ) = 1, then f j ; `can be expressed as follow s:

f j ; `(x) = 1 k n k n `u + 1 ∏ u = 1 u I " x P p Z ( n ` u ; j ) k n ; p Z ( n ` u + 1; j ) k n * .
In particular, w hen x • p Z ( n `; j ) k=n , there is no p Z ì ;j , 1 § i § n `, such that p Z ì ; j k=n °x, and conversely, w hen x P h 1; p Z ( n ` u ; j ) k=n , there are exactly u + 1 observations p Z ì ;j in the sub-sample defi ned by p i ; `= 1 that exceed x n =k. Therefore, the integral of f j ; `(x) over all x • 1 verifi es

ª max 1 § i § n p Z ì ; j k =n 1 f j ; `(x) dx = p j ; `(k) = n k n 1 n `u + 1 ∏ u = 1 u p Z ( n ` u + 1; j ) p Z ( n ` u ;j ) .
Let us dwell for a moment on this expression. The part

1 n `u + 1 ∏ u = 1 u p Z ( n ` u + 1; j ) p Z ( n ` u ;j )
represents the integral under the empirical survival function of variable p Z i ;j conditional on i being in cluster `and } p Z i } ( 1) • n =k. When `P H (j ), there should be a lot of extreme observations p Z i ; j in cluster `, and this quantity should be very large. Conversely, in all clusters `1 R H (j ), there should be very few to no extreme values on the j -th dimension, and the corresponding integral should be very small. Figure 3.6 and Figure 3.7 give an illustration of this phenomenon on exposures to the 6 nutrients and contaminants investigated in Section 3.6. N otice that dividing by n ` enables comparison between classes and avoids systematically selecting poor classifi cations. In a similar way, the term n k =n penalizes small values of k, w hich would otherw ise always be preferred to higher ones and provide non-explicable groups, in the sense that they would contain too few observations to be interpreted. In terms of bias-variance compromise, intuitively it would generate overly w ide variances for the fi nal estimates of t d 1 h ; h P H u to be reliable.
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Fi gur e 3.6 -Log-scaled marginal distributions of exposures to the 6 chemical elements within cl ust ers 1, 2, and 4, obtained for the couple (k; p H(k)) as defined in Section 3.4: distributions of contaminants with extreme exposures are displayed in red with black contours, while the others are white with grey contours. The thin horizontal line indicates k 
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Fi gur e 3.7 -Log-scaled marginal distributions of exposures to the 6 chemical elements within cl ust ers 5, 6 and 7, obtained for the couple (k; p H(k)) as defined in Section 3.4: distributions of contaminants with extremeexposures aredisplayed in red with black contours, whiletheothers arewhitewith grey contours. The thin horizontal line indicates k

A little more on PNS and spherical k-means

A s a complement to the succinct description of Principal N ested Spheres and spherical k-means in Section 3.4.2, we provide here a more detailed overview of these algorithms accompanied by illustrative fi gures. With these additional specifi cations we are then able to discuss some technical choices in the implementation that were only briefl y mentioned in the core of the chapter.

Principal Nested Spheres

Recall from Defi nition 3.4 that the geodesic distance between two points x and y of S d 1 (the unit sphere in R d ) is w ritten d G (x; y) = arccosx 1 y; w here x 1 stands for the transpose of vector x. N ow consider any (d 2)-dimensional sub-sphere A d 2 in S d 1 . Relative to the geodesic distance on the sphere, its center and radius are respectively a point v P S d 1 and a distance r P (0; =2] such that Equipped w ith these tools, the main steps of the PN S algorithm can be depicted as follow s.

Ú

Step one Find the subsphere of dimension d 2 that minimizes the mean squared residuals relative to the geodesic distance: Ú

Step two Use a rotation to place v 1 at the north pole.

v 1

Ú

Step three Start by projecting the data on A d 2 (v 1 ; r 1 ), then suppress the d-th dimension to place the sub-sphere equipped w ith the observations on R d 1 .

Ú Step four

Scale A d 2 so that it would coincide w ith the unit sphere S d 2 , and denote by ! The computational algorithm designed to solve the least squares problem that defi nes each sub-sphere can be found in Section 3 of [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF] and the explicit formulas corresponding to the successive transformations of each PN S in Section 2. M any more details are provided in the supplementary materials associated w ith this seminal paper, concerning in particular the geometry of PN S. M ore importantly, a penalized version of the initial procedure is proposed to decide at each step w hether small sub-spheres are more relevant candidates than those w ith maximal radius. A ctually, both the numerical experiments in Section 3.5 and the case study in Section 3.6 are using this refi ned version of the PN S algorithm. We refer to the end of Section 1 (p.7) in the aforementioned supplementary materials for more details on the subject.

A t the end of the procedure, we obtain a collection of unit spheres w ith dimensions ranging from 1 (the unit circle) to d 1 (the space of the original data), w hich can be understood as a spherical equivalent of the principal components in PCA . In order to proceed w ith the rest of the analysis, we need to choose one of these d 1 PN S and work w ith the corresponding projected angles. Recall that for all j P t 1; : : : ; du and i P t 1; : : : ; n k u, ! ( j 1) i denotes the projection of angle ! i on S d j and defi ne

( d j ) i := j 1 π `= 1 sin r `! d G ! ( j ) i ; A d j (v j ; r j ) ;
the corresponding scaled residual. In short, scaling enables comparison between the deviations as if they were all measured on S 1 2 (see [START_REF] Jung | A nalysis of Principal N ested Spheres[END_REF], Sections 2.1 to 2.4). Then the relative variance encapsulated by PN S d j , 1 § j § d, is understood as

V d j := ∞ n k i = 1 ( j 1) i 2 ∞ d `= 1 ∞ n k i = 1 ( ` 1) i 2 .
Given these notations, the selection heuristic evoked in Section 3.4.2 simply consists in picking the smallest sub-sphere S d j such that V d j 1 • 0.1, V d j • 0.1 and V d j + 1 † 0.1. Observe that contrary to PCA , there is no obvious link here between V 1 ; : : : ; V d 1 and the variance of the angles V (! ), ! P R d . Obviously, many refi nements could and should be brought to our method in the near future, starting w ith a more adaptive way of identifying the " optimal" PN S. M oreover, though the situation was never encountered in our applications, many practical diffi culties can arise and should receive appropriate attention. For instance it can so happen that there is no unique Fréchet mean: imagine a cloud of two points (0; 1) and (0; 1), then there are two possible candidates for A 0 , namely ( 1; 0) and (1; 0). These intricate issues are left for future research.

Spherical k-means

Once a selected PN S, clustering is achieved using the spherical k-means algorithm. Before getting into detail, let us introduce a few additional notations. First, denote by ! :

1 ; : : : ; ! : n k the cloud of angles projected onto the optimal PN S. For some fi xed number of clusters H, the objective is to estimate the n k vectors of class indicators 1 ; : : : ; n k , w here @ i P t 1; : : : ; n k u, i := ( i ; 1 ; : : : ; i ; H ). In spherical k-means, clusters are represented by their barycenter: for any set of n • 1 points x 1 ; : : : ; x n on the unit sphere S d 1 Ä R d such that for all i P t 1; : : : ; n u, x i := (x i ;1 ; : : : ; x i ;d ) 1 , the barycenter function is w ritten B (x 1 ; : : :

; x n ) := 1 n n ∏ i = 1 x i ; 1 ; : : : ; 1 n n ∏ i = 1 x i ; d ! 1 ;
and its projection on the unit sphere SB (x 1 ; : : : ; x n ) := B (x 1 ; : : : ; x n ) }B (x 1 ; : : : ; x n )} 2 .

For simplicity, we denote by b h the barycenter of all angles in class h, i.e.

b h := B ! : 1 I t i ; h = 1u; : : : ; ! :

n k I t i ; h = 1u := 1 n k n k ∏ i = 1
! : i ;1 I t i ; h = 1u; : : : ;

1 n k n k ∏ i = 1 ! : i ; d I t i ; h = 1u ! 1 ;
and by c h its projection on the unit sphere, also called the concept vector: c h := SB ! : 1 I t i ; h = 1u; : : : ; ! :

n k I t i ; h = 1u = b h }b h } 2 .
Given these notations, the spherical k-means algorithm tries to fi nd the collection of indicators p i ; h , 1 § i § n , 1 § h § H, that minimize the intra-class geodesic variance, namely

GV t i ; h u1 § i § n 1 § h § H := H ∏ h = 1 n k ∏ i = 1 d 2 G (! : i ; c h ) I t i ; h = 1u;
by implementing the follow ing basic steps. ) .

Ú

Step four A ctualize the classes: for all i P t 1; : : : ; n k u and h P t 1; : : : ; Hu, )

1 § i § n 1 § h § H GV ! ( `) i ; h ) 1 § i § n 1 § h § H
becomes less than a userdefi ned tolerance.

The option "S" in the R package skmeans that we used in our applications stipulates how the initial concept vectors c In words, the fi rst initial concept vector is set as the Fréchet mean of the sample of projected angles, and the rest as the H 1 observations farthest away from all already picked concept vectors. This produces an initial clustering w ith centers as scattered as possible. Obviously, many other initialization techniques may have been applied, e.g. picking the fi rst concept vectors at random. The present version has been chosen in accordance w ith our belief that after projection, the angles corresponding to different faces are disseminated on different regions of the retained PN S w hile those belonging to the same face are concentrated on a common neighborhood.

The main advantage of the spherical k-means algorithm is that it is very simple to implement. H owever, it can often happen that it remains stuck at a local minimum of the intra-class geodesic variance function. To counteract this undesirable effect, many refi nements have been proposed in the literature (see for instance [START_REF] Dhillon | Iterative clustering of high dimensional text data augmented by local search[END_REF] and the references therein). A s a fi rst go, we confi ned ourselves to the basic version of spherical k-means, leaving further considerations on algorithmic improvement for future research.

A M I N I M U M V OL U M E SET A PPROA CH TO D I ETA RY RI SK -BEN EFI T A N A LYSI S

In the same spirit as in Chapter 3, we propose an alternative method to inspect the multivariate distribution of the exposure to multiple food chemicals, w hich accounts for the variability of the contamination of foodstuffs. Directly inspired from typical statistical learning techniques, this non-parametric approach is no longer focused on extreme events. One of its advantages is that it can be very naturally extended to the identifi cation of optimal dietary habits, in the sense that they realize a compromise between toxicological risk and nutritional benefi t. From a practical point of view, such results would facilitate public communication of general dietary recommendations. The present chapter corresponds to a paper currently being w ritten in collaboration w ith J.Tressou (IN RA M et@risk, France) and S. Clémençon (Télécom ParisTech, France). It is not complete yet, in particular we are still working on the practical applications of the theoretical results introduced therein.

It is the major purpose of this chapter to show how to adapt recent (unsupervised) machine-learning techniques, specifi cally introduced to deal w ith very highdimensional data in a non-parametric manner (avoiding thus the curse of dimensionality), to food risk/ benefi t analysis. Precisely, a variant of the minimum-volume set methodology (M V-set in abbreviated form), originally investigated in [START_REF] Polonik | M inimum volume sets and generalized quantile processes[END_REF] (see also [START_REF] Scott | Learning M inimum Volume Sets[END_REF], is proposed in order to determine confi dence or predictive regions for the joint dietary exposure to a variety of chemicals and nutrients present in the food. The main originality of this problem lies in the fact that a natural empirical counterpart of the dietary exposure is of the form of a generalized U-statistic, based on the combination of consumption survey data w ith a database gathering measures of contents of a variety of chemicals and nutrients in most food items. M ainly due to the large number of foodstuffs involved in the observed diets, this statistic cannot be calculated in general, its computation requiring to sum over a prohibitive number of terms. Follow ing in the footsteps of [START_REF] Bertail | Incomplete generalized U-statistics for food risk assessment[END_REF], we replace the latter w ith an incomplete U-statistic [START_REF] Blom | Some properties of incomplete U-statistics[END_REF] the computation of w hich is numerically feasible, and we establish a novel uniform deviation result, which show s that this approximation stage does not damage the learning rate of the M V-set procedure. N ext, similar concepts and results are applied to identify regions w here the multivariate distribution of dietary habits is mostly concentrated and w here types of exposure simultaneously remain w ithin toxicological values of reference (limitation of the risk) and recommended dietary allowances (preservation 99 of the benefi t) w ith maximum probability. Statistical results, i.e. rate bounds guaranteeing the performance of the generic learning techniques we propose, are stated.

The chapter is structured as follow s. A detailed account of the statistical issues related to food risks and benefi ts tackled in the chapter and the learning methods proposed to deal w ith them is given in Section 4.1, together w ith theoretical results claiming their validity. Technical proofs are postponed to Section 4.2.

t h eo r et i c a l a n a l ysi s a n d met h o d s

4.1.1 Assessment of dietary exposure to chemicals and nutrients: a M V-set formulation

We are concerned here w ith dietary types of exposure to d • 1 different food chemicals, contaminants or nutrients, over a certain statistical population of interest during a given period of time, say a week like in the IN CA 2 database. Foods are classifi ed according to some given nomenclature that accounts for H families of products, indexed by label h P t 1; : : : ; Hu. The joint dietary exposure can be then described by a random vector X := (X 1 ; : : : ; X d ), w here

X j := H ∏ h = 1 C h Q h ; j .
(4.1)

for 1 § j § d, denoting by C h the quantity of food item h consumed per week by an individual draw n at random in the studied population and by Q h ; j the (random) content related to food item h and component j . In the fi eld of food safety, risk assessors are interested in building confidence/ predictive regions for the exposure X in R d + : R := arg min

! L (R) : P (X P R) • ; R Ä R d + Borelian ) ; (4.2)
w here P (0; 1) and the Lebesgue measure on R d + is denoted by L . For values of the level close to 1, such minimum volume sets (M V-sets in short, see [START_REF] Scott | Learning M inimum Volume Sets[END_REF] describe regions w here the distribution of exposure is most concentrated, those lying in their complementary sets being possibly interpreted as " abnormal" . The construction of predictive/ confi dence regions for the dietary exposure is based on the observation of the dietary habits of n • 1 individuals independently draw n from the population, yielding an iid sample t C i := (C i ; 1 ; : : : ; C i ; H ) ; 1 § i § n u. They are combined w ith databases w here m h ; j • 1 iid measures of the amount of pollutant or nutrient j present in food h are listed for all h P t 1; : : : ; Hu and j P t 1; : : : ; du. The corresponding vectors of contents are denoted by Q h ; j := (Q 1 h ; j ; : : : ; Q m h ;j h ; j ). Usually, the follow ing hypotheses are supposed to hold true.

A ssumpt i on 4.1 For all couples (h; h) P t 1; : : : ; Hu 2 such that h h and any j P t 1; : : : ; du, level Q h ; j is independent from Q h ; j .

A ssumpt i on 4.2 For all couples (j ; j ) P t 1; : : : ; du 2 such that j j and any h P t 1; : : : ; Hu, level Q h ; j is independent from Q h ; j .

A ssumpt i on 4.3 For any (h; j ) P t 1; : : : ; Hu t 1; : : : ; du, level Q h ; j is independent from consumption vector C i .

A ssumption 4.1, w hich formally states that nutrients and contaminants are independently assimilated by foodstuffs, could easily be relaxed w ithout any substantial impact on the present approach. Its applicability depends mostly on the level of detail provided by the database(s) at hand. On the contrary, A ssumption 4.2 and A ssumption 4.3 are necessary. They respectively stipulate that the contents of one foodstuff are independent from that of others and that dietary habits are not dictated by nutritional or toxicological characteristics of the food. From a more practical point of view, A ssumption 4.2 is likely to be true if consumers get their supplies from various productions and A ssumption 4.3 if they do not base their consumption decision on a systematic scrutiny of the composition of the food.

Based on these data, the probability involved in the constraint of the M V-set problem stipulated in Equation (4.2) is estimated by p P (X P R) := 1

n ∏ i = 1 m 1;1 ∏ `1;1 = 1 : : : m H ;d ∏ `H ; d = 1 I $ & % H ∏ h = 1 C i ;h Q `h ; j h ; j ! 1 § j § d P R
, .

-; (4.3)

w ith := n d π j = 1 H π h = 1
m h ; j and I t .u the indicator function. In practice, all types of sets cannot be explored; the search is restricted to a class R of Borelian sets, the complexity of w hich is controlled, like hypercubes or ellipses (see the next subsection). The level is in turn replaced by , w here is some tolerance level that depends, roughly speaking, on the order of magnitude of sup RPR p P (X P R) P (X P R) .

H ence, one should ideally try to solve the constrained minimization problem:

min RPR L (R) subject to p P (X P R) • . (4.4)
The major difference w ith the formulation in [START_REF] Scott | Learning M inimum Volume Sets[END_REF] lies in the fact that the estimate of the probability involved in the mass constraint is here of the form of a (generalized) U-statistic. Thus, the study of the performance of solutions of Equation (4.4) includes the proof of concentration results for U-processes (i.e. collections of U-statistics). Unfortunately, averaging over the n ± d j = 1 ± H h = 1 m h ; j terms appearing in Equation (4.3) is generally numerically unfeasible, even for moderate sample sizes. In [START_REF] Bertail | Incomplete generalized U-statistics for food risk assessment[END_REF] for instance, w here the estimation of the probability that the exposure to Ochratoxin A exceeds a critical threshold is considered, this corresponds to 4 10 21 terms! A s shall be seen below, the statistic in Equation ( 4.3) can be uniformly approximated by a " M onte-Carlo" version, the computation cost of w hich is drastically reduced.

Remar k 4.4 -Alternative approaches. We underline that the M V-set methodology is by no means the sole possible approach for constructing predictive regions. For instance, density sub-level sets can be built by means of non-parametric density estimation techniques, see [START_REF] Tsybakov | On nonparametric estimation of density level sets[END_REF] and the references therein. H owever, w hen trying to implement such " plug-in" alternatives, even for moderate dimensions, one faces signifi cant computational problems inherent to the curse of dimensionality. This motivates the machine-learning approach promoted here, w hich avoids a preliminary density estimation stage, w hile focusing directly on performance optimization. One may also refer to [START_REF] Vert | Consistency and convergence rates of one-class SVM and related algorithms[END_REF] or [START_REF] Steinwart | A classifi cation framework for anomaly detection[END_REF] for closely related techniques.

Uniform approximation of generalized U-statistics by their incomplete versions

For clarity, we recall below the defi nition of generalized U-statistics. Properties and asymptotic theory of U-statistics can be found in [START_REF] Lee | U-statistics: Theory and practice[END_REF]. Def i n i t i on 4.5 -Generalized U-statistic. Let K • 1, (d 1 ; : : : ; d K ) P N K and consider the vectors X ( k ) 1 ; : : : ; X ( k ) n k , 1 § k § K, corresponding to K independent samples of iid random variables, taking their values in some space X k w ith distribution P k respectively. The generalized (or K-sample) U-statistic of degrees (d 1 ; : : :

; d K ) w ith kernel : X d 1 1 X d K K -R, square integrable w ith respect to the probability distribution P b d 1 1 b b P b d K K , is defi ned as U n ( ) := 1 ± K k = 1 n k d k ∏ I 1 : : : ∏ I K (X ( 1) 
I 1 ; X

( 2) I 2 ; : : : ; X ( K )

I K ); (4.5)
w here ∞ I k refers to the summation over all n k d k subsets X ( k )

I k := X ( k ) i 1 ; : : : ; X ( k ) i d k related to a set I k of d k indexes 1 § i 1 † † i d k § n k . It is said symmetric w hen is permutation symmetric in each set of d k arguments X ( k ) I k .
Observe that the functional in Equation ( 4.3) corresponds to a K-sample U-statistic of degrees (1; 1; : : : ; 1), w ith K = d H + 1 and kernel given by: R (c; q) :=

I $ & % H ∏ h = 1 c h q h ; j ! 1 § j § d P R
, .

-;

for c := (c 1 ; : : : ; c H ) P R H + and q := (q h ; j ; : : : ; q H ;d ) j = 1; : : : ; d P R H d + . Beyond this example, many statistics used for pointw ise estimation or hypothesis testing are actually U-statistics (e.g. the sample variance, the Gini mean difference, the Wilcoxon M ann-Whitney statistic, the Kendall tau). Their popularity mainly arise from their " reduced variance" property: the statistic U n ( ) has minimum variance among all unbiased estimators of the parameter Classically, the limit properties of these statistics (law of large numbers, central limit theorem, etc.) are investigated in an asymptotic framework stipulating that, as the full sample size n := n 1 + + n K tends to infi nity, we have n k =nk °0 for all k P t 1; : : : ; Ku. They can be established by means of a linearization technique (see H oeffding, 1948), permitting to w rite U n ( ) as a sum of K basic sample mean statistics (of the order O P (1= ? n ) each, after recentering), plus possible degenerate terms called degenerate U-statistics.

( ) := E (X ( 
A s mentioned before, in practice, the number ± K k = 1 n k d k of terms to be summed up to compute Equation (4.5) is generally prohibitive. A s a remedy to this computational issue, in the seminal contribution of [START_REF] Blom | Some properties of incomplete U-statistics[END_REF], the concept of incompletegeneralized U-statistic has been introduced: the summation in Equation (4.5) is replaced by a summation involving much less terms, extending only over low cardinality subsets of the n k d k d k -tuples of indexes, 1 § k § K. In the simplest formulation, the subsets of indexes are obtained by sampling w ith replacement, leading to the follow ing defi nition. 

Def i n i t i on

; i ( K ) d K ) 1 § i ( k ) 1 † : : : † i ( k ) d k § n k ; 1 § k § K + .
Remar k 4.7 -Alternative sampling schemes. We point out that, as proposed in [START_REF] Janson | The asymptotic distributions of Incomplete U-statistics[END_REF], other sampling schemes could be considered, in particular sampling w ithout replacement or Bernoulli sampling. The results of this chapter could be extended to these situations. For the sake of simplicity, we restrict our attention here to the sampling w ith replacement scheme.

In practice, B should be chosen much smaller than the cardinality of L , namely #L := ± K k = 1 n k d k , in order to overcome the computational issue previously mentioned. We emphasize that the cost related to the computation of the value taken by the kernel at a given point (x

( 1) I 1 ; : : : ; x ( K ) I K ) depending on the form of is not considered here, focus is solely on the number of terms involved in the summation. A s an estimator of ( ), the statistic in Equation (4.6) is still unbiased but its variance is naturally larger than that of Equation (4.5). Precisely, we have

V r U B ( ) = 1 1 B V (U n ( )) + O 1 B as B -+ 1 ;
refer to Lee (1990, p.193). Incidentally, we underline that the empirical variance of Equation (4.5) is not easy to compute since it involves summing approximately #L terms and bootstrap techniques should be used for this purpose, as proposed in [START_REF] Bertail | Incomplete generalized U-statistics for food risk assessment[END_REF]. The asymptotic properties of incomplete U-statistics have been investigated in several articles, see [START_REF] Janson | The asymptotic distributions of Incomplete U-statistics[END_REF]; [START_REF] Brow | Reduced U-statistics and the H odges-Lehmann estimator[END_REF]; [START_REF] Enqvist | On sampling from sets of random variables with application to incomplete Ustatistics[END_REF]. The angle embraced in the present chapter is of different nature: the key idea we promote here is to use incomplete versions of collections of U-statistics in learning problems such as that described in Section 4.1.1. The follow ing result show s that this approach solves the numerical problem, w hile not damaging the learning rates. It reveals that, under adequate complexity assumptions on the considered collection of (symmetric) kernels (refer to [START_REF] Dudley | Uniform Central Limit Theorems[END_REF], concentration results established for U-processes (i.e. collections of U-statistics) may extend to their incomplete versions.

Th eor em 4.8 -M aximal deviation. Let be a collection of bounded symmetric kernels on :=

± K k = 1 X d k k .
Suppose that is a VC major class of functions w ith fi nite Vapnik-Chervonenkis dimension V and that M := sup

( ; x ) P X | (x)| † + 1 .
Then, the follow ing assertions hold true. i ) For all °0, we have: @ n = (n 1 ; : : : ; n K ) P N K , @ B • 1,

P sup P r U B ( ) U n ( ) ° ! § 2 (1 + #L ) V e B 2 =M 2 .
i i ) For all P (0; 1), w ith probability at least 1 , we have:

@ n k • 1, 1 § k § K, sup P r U B ( ) E r U B ( ) § M # 2 c 2 V log(1 + ) + c log(2= ) + c V log(1 + #L ) + log(4= ) B + ;
w here := min t tn 1 =d 1 u; : : : ; tn K =d K uu and txudenotes the integer part of any real number x.

We refer to Section 4.2 for the proof. Observe that, w ith the asymptotic settings previously specifi ed, n and log(#L ) log(n ) as n -+ 1 . The bounds stated above show that, for a number B := B n of terms tending to infi nity as n -+ 1 at a rate O(n ), the maximal deviation sup P | r U B ( ) ( )| is asymptotically of the order O P ( a log(n )=n ), just like sup P |U n ( ) ( )|. Remarkably, except in the case K = 1 and d K = 1 solely, using such incomplete U-statistics thus yields a signifi cant gain in terms of computational cost and fully preserves the order of the probabilistic upper bounds for the uniform deviations. Before show ing how these results apply to the analysis of the dietary exposure distribution, a few remarks are in order.

Remar k 4.9 -On the complexity assumption. We point out that, as can be seen by examining their proof in Section 4.2, the results above could be extended to other complexity measures than the VC dimension, such as Rademacher averages [START_REF] Boucheron | Theory of Classifi cation: A Survey of Some Recent A dvances[END_REF]. H owever, the confi dence regions we shall consider in practice being of the form of the union of a limited number of hypercubes, the fi nite VC dimension hypothesis is suffi cient to provide a validity framework to the present analysis.

Remar k 4.10 -Learning tasks based on optimization of U-statistics. The uniform deviation result stated in Theorem 4.8 can be proved very useful much beyond the framework described in Section 4.1.1. Indeed, statistical learning problems w here the empirical performance criterion one seeks to optimize is of the form of a (generalized) U-statistic have recently been the subject of a good deal of attention in the literature: supervised ranking [START_REF] Clémençon | Ranking and empirical risk minimization of U-statistics[END_REF], learning on graphs [START_REF] Biau | Statistical Inference on Graphs[END_REF] or dissimilarity-based clustering [START_REF] Clémençon | On U-processes and clustering performance[END_REF] for instance. The result above permits to show that, in such problems, the empirical criterion can be replaced by an incomplete version of much simpler computation, w ith only a slight impact on the learning rate, provided that the parameter B is suitably chosen.

Let us now come back to the specifi c learning task formulated in Section 4.1.1. In order to avoid the computation of Equation ( 4 

∏ ( i ; `h ; j ) PD B I $ & % H ∏ h = 1 C i ; h Q `h ; j h ; j ! 1 § j § d P R
, .

-.

Suppose that the class R is of fi nite VC dimension V. Let P (0; 1) be the target mass and P (0; 1) the desired confi dence level. N otice that in the present case, = min n ; min m h ; j : 1 § j § d; 1 § h § H ( ( . The result below show s that, if the number B of exposure values computed through the sampling scheme and are of the order O(N ), the performance of p R is then comparable to that of the region the selection of w hich is based on the quantities in Equation (4.3) (see Section 4.2 for a sketch of proof).

Cor ol l ar y 4.11 For all P (0; 1), we have w ith probability at least 1 :

L p R § inf RPR : P ( XPR ) • L (R) and P X P p R • 2 (B; N ; ).
From a practical perspective, the constrained optimization program in Equation (4.8) w ill be here performed over a collection of sets obtained as the union of small hypercubes by the means of a simplistic sorting algorithm, detailed at length in the next subsection. A lternative techniques, w hose implementation is less immediate, such as those based on Dyadic Decision Trees (DDT) could be also considered, see Scott and N owak (2006, Subsection 6.2) for further details.

Empirical M V-set estimation based on hypercubes

We now turn to the issue of solving Equation (4.8) from a practical perspective. For simplicity, such regions are built by binding together hypercubes of the positive orthant R d + . Suppose that the exposure X takes its values in the compact set [0; 1] d , even if it means dividing each component of the exposure random vector by a supposedly fi nite essential upper bound. Observe that this assumption makes the present approach quite different from that introduced in Chapter 3, w here the support of the distribution of individual types of exposure could extend to infi nity. Since extremes are no longer of interest here, such refinements are of little concern. N ow let k • 1 and consider the partition of the unit cube ± d j = 1 [s j =k ; (s j + 1)=k] made of sub-cubes of side length 1=k, w ith k • 1 and s j P t 0; : : : ; k 1u for 1 § j § d. Denote by C 1 ; : : : ; C M these sub-cubes, w ith M = k d , and consider the collection R k of subsets obtained as the union of such cubes. Observe that R k is of fi nite cardinality: #R k = 2 k d . In this situation, the theoretical results established in the previous subsection apply, w ith the penalty Let 1 § k † k † + 1 . The issue of selecting the " resolution level" k P t k ; : : : ; k u automatically can be handled through complexity penalization, as show n in Scott and N owak (2006, Section 4). Precisely, one should pick the value

p k := argmin k § k § k ! L p R k ; + k (B; N ; 2 k ) ) ;
minimizing thus a complexity-penalized version of the volume, in order to approximate the M V-set over î k R k as accurately as possible w ithout overfi tting the data. A n oracle inequality show ing that the chosen set p R p k ;

corresponds to an optimal trade-off between excess volume and missing mass can be straightforwardly derived from the analysis carried out in Section 4.1.2, just like in Scott and N owak (2006, Theorem 7). Details are left to the reader.

4.1.4

Optimal regions in the consumption space in regard to dietary risks and benefits

In food safety, one topic of crucial interest is to determine optimal regions in the dietary consumption space R H + in the sense that they achieve a compromise between toxicological risk and nutritional benefi t. Indeed, for each nutrient and contaminant, experts defi ne maximum threshold levels of exposure, generally called dietary intake limits (DIL), above w hich health issues due to excessive supply of chemicals are likely to occur. Equivalent lower bounds are defi ned for nutrients, w hich indicate nutritional defi ciency. From a public health point of view, it is then of particular interest to identify the dietary habits that offer the best chance of respecting both lower and upper DIL and draw general, easily comprehensible dietary guidelines to the concerned population, in the same spirit as " eat at least fi ve fruits and vegetables a day" . Since it is very diffi cult to recommend people to completely alter their habits, public health institutes are more interested in determining realistic food baskets, already consumed by a non-negligible amount of persons, w hich they could set as examples for the rest of the population. This problem can be addressed by means of concepts and tools very similar to those investigated in Section 4.1.1. Consider d • 1 pollutants and nutrients, present in a nomenclature of foodstuffs indexed by h P t 1; : : : ; Hu at (random) concentration levels Q h ; 1 ; : : : ; Q h ; d . We denote by ` (j ) (resp. ` (j )) the maximum (resp. minimum) recommended exposure for element j . By convention, if j is a contaminant, we set ` (j ) = 0. N otice that w hereas those limits are given in terms of amounts of nutrients, regarding contaminants they usually also depend on the body weights of consumers. H ence, from now on, w hen we w rite Q h ; j to designate the amount of chemical j in food family h, if j is a contaminant then we implicitly refer to its standardized version Q h ;j =w i , w ith w i the body weight of individual i .

Equipped w ith these notations, the " safe" situation in regard to nutritional benefi ts and dietary chemical contamination is described by the random subset of the consumption space S Q := c P R K + : @ j P t 1; : : : ; du; c 1 Q j P [` (j ) ; ` (j )] ( (4.9)

w ith c 1 the transpose of vector c, i.e. the set of dietary habits that yield types of exposure respecting all d considered DIL. Conversely, the unsafe consumption zone is denoted by S c Q , the complementary of S Q in R H + . The subscript Q emphasizes their dependence on contents Q h ; j , 1 § h § H, 1 § j § d, (and body weights for contaminants), w hich justifi es the random nature of both sets. Further set S Q j := c P R K + : c 1 Q j P [` (j ) ; ` (j )] Fi gur e 4.1 -Illustration in dimension 2 of the form of S c q for some fixed contamination levels q 1 and q 2 of 2 nutrients. The exterior of the two plain (resp. dotted) lines defines the set S c q 1 (resp. S c q 2 ). Consequently, S c q coincides with A 1 Y A 2 in the left hand graph and with A 3 (theentirespace) in the right hand graph.

A gain, we assume in this section that we dispose of independent samples: iid consumption vectors t C i := (C i ; 1 ; : : : ; C i ; H ) : 1 § i § du are gathered together w ith a number m h ; j of iid measures of content of component j occurring in food item h, namely t Q h ; j := (Q 1 h ; j ; : : : ; Q m h ;j h ; j )u for 1 § h § H, 1 § j § d. For simplicity, dietary habits are divided by some large enough constant so that they may fi t into the unit cube of R d + . The issue mentioned above can be then formulated as follow s. Denote by R H the set of all subspaces in [0; 1] H that can be w ritten as a fi nite (w ith reasonable cardinal, say inferior to some r P N ) union of hyperrectangles, and fi x P [0; 1], a desired level of diet frequency in the studied population. Optimal diets are then defi ned as solutions of the optimization program:

:= argmin PR H ( ) subject to P (C P ) • ; (4.11)
w here is a dietary risk measure. N otice that exploring sub-spaces in the form of hyperrectangles has the advantage of facilitating the eventual communication of the results: it enables interpretations such as " one should eat more or less than this and that amount of specifi c food" . The main question now is to choose an explicit expression for the volume . One very natural way of modeling dietary risks would be to defi ne ( ) as the conditional probability P C P S c Q C P for any P R H . Going back to Equation (4.11), notice that in the case w here solutions are such that P (C P ) =

• , it is equivalent to minimizing the joint probability P C P S c Q X over the set R H of region candidates, subject to P (C P ) • . This problem is very similar to that tackled in Section 4.1.1, except that the target criterion one seeks to optimize now is not a (Lebesgue) volume anymore, but an unknow n probability measure. A s in [START_REF] Scott | A N eyman-Pearson approach to statistical learning[END_REF] and [START_REF] Clémençon | Overlaying Classifi ers: a practical approach to optimal scoring[END_REF], the criterion must then also be replaced by an empirical estimate. Follow ing the approach proposed in Section 4.1.2, we consider the incomplete U-statistic r The follow ing theorem describes the properties of solutions of the problem in Equation (4.12), involving statistical quantities the computation of w hich is feasible, the issue of fi nding such a solution in practice shall be tackled subsequently.

P B C P X S c Q := 1 B ∏ ( i ; `h ; j ) PD B I t C i P u I # H ∏ h = 1 C i ; h Q `h ; j h ; j R[` ( 
Th eor em 4.12 Let ( ; ) P (0; 1) 2 . Suppose that the collection R H is of fi nite VC dimension V † + 1 and set: Then, if r B is a solution of Equation (4.12), we have w ith probability at least 1 :

P C P r B • + 2 1 (n ; =2) and ( r B ) § ( ) + 2 (B; N ; =2); (4.14)
denoting by the penalty given by Equation (4.7) and by any minimizer of (.) among the elements of R H such that P (C P ) • .

The (sketch of the) proof is given in Section 4.2. The statistical procedure described in Section 4.1.3 cannot be extended in a straightforward manner, since the quantity P C P S c Q X C P is far from being constant over the collection of cubes C of fi xed side length 1=k, w hich paves the supposedly compact support of the distribution of C.

Ú Statistically equivalent hypercubes Our proposal to solve Equation (4.12) approximately is to partition [0; 1] H into a fi nite number of hypercubes C 1 ; : : : ; C M (of variable side length) such that r P B C P C m X S c Q , m P t 1; : : : ; M u, remains (approximately) constant, equal to ! := M 1 r P B C P S c Q . This can be achieved by means of a variety of greedy procedures, see section 21.4 in [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF] and the references therein. H ere we use a slightly modifi ed version of the celebrated Gessaman's rule [START_REF] Gessaman | A consistent nonparametric multivariate density estimator based on statistically equivalent blocks[END_REF] as follow s. Recall that the quantities involved are built from the sampled dataset D B := t (i ( b ) ; (`( b )

1; 1 ; : : : ; `( b ) H ; d )) : 1 § b § Bu of cardinality B. For all i P t 1; : : : ; Bu, assign to the observation C i the weight

! i := 1 B B ∏ b = 1 I ! i = i ( b ) ) I # H ∏ h = 1 C i ( b ) ; h Q `( b ) h ; j h ; j R[` ( 
1); ` (1)] or : : :

: : : or H ∏ h = 1 C i ( b ) ; h Q `( b ) h ;j h ; j R[` (d); ` (d)] + .
Equipped w ith this notation, observe that r

P B C P S c Q X C m =
∞ n i = 1 ! i I t C i P C m u for any m P t 1; : : : ; M u. Starting w ith all the consumption data, consider the food item h and a " split value" s P [0; 1] and consider the regions of the consumption space 1 (h; s) := t c P [0; 1] H : c h § su and 2 (h; s) := t c P [0; 1] H : c h °su.

Then fi nd the threshold value s that solves

min sP[0; 1] ∏ i : C i P 1 ( h ; s) ! i ∏ i : C i P 2 ( h ; s) ! i over t (C i ; h ) : 1 § i § n u.
For each food item h, the minimization problem in s can be solved very rapidly by scanning through all of the data projected onto the h-th axis. H aving thus determined the best " split value" , one repeat the binary splitting procedure on both regions in a recursive manner. Let d 1 ; : : : ; d H • 1 . Starting from the w hole consumption space [0; 1] H , identifi ed as the root node, we propose to build a recursive partition, w hich can be represented by a binary tree of depth D = ∞ H h = 1 d h , by using fi rst C 1 as "split variable" to build a complete binary tree of depth d 1 , then using C 2 to grow the tree until depth d 1 + d 2 and continuing in the same way w ith the remaining food items. Its terminal leaves correspond to the cells C 1 ; : : : ; C 2 D of the data-dependent partition. The collection of such regions, obtained by combining hierarchically 2 D 1 splits perpendicular to the coordinate axes is of fi nite VC dimension V D † + 1 (namely, its shatter coeffi cient for m • 1 points is classically bounded by (m + 1) 2H ( 2 D 1) ). In addition, by construction, the latter are such that r P B C P C m X S c Q is approximately equal to r P B C P S c Q =2 D for m = 1; : : : ; 2 D . N ow, from a practical perspective, the target region of the consumption space can be assessed by using a strategy similar to that described in the previous subsection, as follows.

1. Sort the terminal leaves of the tree representing the partition in a way that p P (C P C 1; 2 D ) • : : : • p P (C P C 2 D ; 2 D ) .

w here S m denotes the symmetric group of order m for any m • 1. This representation as an average of sums of independent terms is know n as the (fi rst) H oeffding's decomposition (H oeffding, 1948). Then, using Jensen's inequality in particular, one may easily show that, for any nondecreasing convex function G : R + -R, we have:

E G sup P U n ( ¯ ) ! ! § E G sup P V ¯ (X ( 1) 
1 ; : : : ; X

n 1 ; : : : ; X ( K ) 1 ; : : : ;

X ( K ) n K ) ! ! ; (4.15)
w here we set ¯ := ( ) for all P . N ow, using standard symmetrization and randomization arguments (see [START_REF] Giné | Some limit theorems for empirical processes[END_REF] for instance) and Equation (4.15), we obtain that

E G sup P U n ( ¯ ) ! ! § E (G (2 R )) ; (4.16) w here R := sup P 1 ∏ `= 1 ` X ( 1) 
( ` 1) d 1 + 1 ; : : : ; X

`d 1 ; : : : ;

X ( K ) ( ` 1) d K + 1 ; : : : ; X ( K ) `d K ;
is a Rademacher average based on the Rademacher chaos 1 ; : : : ; (independent random symmetric sign variables), independent from the X ( k ) i 's. We now apply the bounded difference inequality [START_REF] Cdiarmid | On the method of bounded differences[END_REF] to the functional R , seen as a function of the iid random variables ( `; X ( 1) ( ` 1) d 1 + 1 ; : : : ; X ( 1) `d 1 ; : : : ; X ( K ) ( ` 1) d K + 1 ; : : : ; X ( K ) `d K ), 1 § ` § : changing any of these random variables changes the value of R by at most M = . One thus obtains from Equation (4.16) w ith G(x) = expt xu, w here °0 is a parameter w hich shall be chosen later, that:

E exp # sup P U n ( ¯ ) + ! § exp " 2 E (R ) + M 2 2 4 * .
A pplying Chernoff 's method, one then gets:

P sup P U n ( ¯ ) ° ! § exp " + 2 E (R ) + M 2 2 4 * . (4.17)
Using the bound (see Equation ( 6) in [START_REF] Boucheron | Theory of Classifi cation: A Survey of Some Recent A dvances[END_REF] for instance)

E (R ) § M c 2 V log(1 + )
and taking = 2 ( 2 E (R ))=M 2 in Equation (4.17), one fi nally establishes the desired result.

N ow we shall prove Theorem 4.8, the statement of w hich is recalled below.

Th eor em -M aximal deviation. Let be a collection of bounded symmetric kernels on :=

± K k = 1 X d k k .
Suppose that is a VC major class of functions w ith fi nite Vapnik-Chervonenkis dimension V and that M := sup ( ;x ) P X | (x)| † + 1 . Then, the follow ing assertions hold true. i ) For all °0, we have: @n = (n 1 ; : : : ; n K ) P N K , @B • 1,

P sup P r U B ( ) U n ( ) ° ! § 2 (1 + #L ) V e B 2 =M 2 .
i i ) For all P (0; 1), w ith probability at least 1 , we have:

@n k • 1, 1 § k § K, sup P r U B ( ) E r U B ( ) § M # 2 c 2 V log(1 + ) + c log(2= ) + c V log(1 + #L ) + log(4= ) B + ;
w here := min t tn 1 =d 1 u; : : : ; tn K =d K uu and txudenotes the integer part of any real number x.

Pr oof For convenience, we introduce the random sequence := (( b (I )

) I PL ) 1 § b § B ,
w here b (I ) is equal to 1 if the tuple I := (I 1 ; : : : ; I K ) has been selected at the bth draw and to 0 otherw ise: the b 's are iid random vectors and, for all (b; I ) in t 1; : : : ; Bu L , the random variable b (I ) has a Bernoulli distribution w ith parameter 1=#L . We also set X I := (X

I 1 ; : : : ; X ( K ) I K ) for any I in L . Equipped w ith these notations, observe fi rst that one may w rite: @B • 1, @n P

(N ) K , r U B ( ) U n ( ) = 1 B B ∏ b = 1 Z b ( );
w here Z b ( ) := ∞ I PL ( b (I ) 1=#L ) (X I ) for any (b; I ) P t 1; : : : ; Bu L . It follow s from the independence between the X I 's and the (I )'s that, for all P , conditioned upon the X I 's, the variables Z 1 ( ); : : : ; Z B ( ) are independent, centered and almostsurely bounded by 2M (notice that ∞ I PL b (I ) = 1 for all b • 1). By virtue of Sauer 's lemma, since is a VC major class w ith fi nite VC dimension V, we have, for fi xed X I 's: #t ( (X I )) I PL :

P u § (1 + #L ) V .
H ence, conditioned upon the X I 's, using the union bound and next H oeffding's inequality applied to the independent sequence Z 1 ( ); : : : ; Z B ( ), for all °0, we obtain that:

P sup P r U B ( ) U n ( ) ° (X I ) I PL ! § P sup P 1 B B ∏ b = 1 Z b ( ) ° (X I ) I PL ! § 2(1 + #L ) V e B 2 =M 2 ;
w hich proves the fi rst assertion of the theorem. N otice that this can be formulated: for any P (0; 1), we have w ith probability at least 1 :

sup P r U B ( ) U n ( ) § M c V log(1 + #L ) + log(2= ) B . (4.18)
Turning to the second part of the theorem, it straightforwardly results from the fi rst part combined w ith Lemma 4.13.

M aximal deviation in dietary risk analysis

We shall prove Corollary 4.11, the statement of w hich is recalled below.

Cor ol l ar y For all P (0; 1), we have w ith probability at least 1 :

L p R § inf RPR : P ( XPR ) • L (R) and P X P p R • 2 (B; N ; ).
Pr oof Observe fi rst that the assumptions of Theorem 4.8 are fulfi lled w hen taking = t R : R P Ru: the collection of indicator functions is a VC major class of functions w ith fi nite VC dimension V and M 2 = 1. A pplying thus Theorem 4.8, the proof is derived by follow ing line by line the argument of Corollary 6 in [START_REF] Scott | Learning M inimum Volume Sets[END_REF]. Details are left to the reader.

Optimal dietary habits

We shall prove Theorem 4.12, the statement of w hich is recalled below.

Th eor em Let ( ; ) P (0; 1) 2 . Suppose that the collection R H is of fi nite VC dimension V † + 1 and set:

1 (n ; ) := 4 c 2 log(8) + V log(n + 1) + log(2= ) n .
Then, if r B is a solution of Equation (4.12), we have w ith probability at least 1 :

P C P r B • + 2 1 (n ; =2) and ( r B ) § ( ) + 2 (B; N ; =2); (4.19)
denoting by the penalty given by Equation (4.7) and by any minimizer of (.) among the elements of R H such that P (C P ) • .

Pr oof The result immediately follows from the argument of Theorem 10 in Clémençon and Vayatis (2010) combined w ith Theorem 4.8 and Vapnik-Chervonenkis inequality (see Theorem 12.5 in [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF] for instance) to control the deviations of the supremum: Like IN CA 2, most consumption databases are now constructed w ith some survey design to produce representative samples. Formally, this means that in the population of interest, the probability that an individual may be selected is taken into account in the form of a survey weight. For institutional data, these weights often correspond to the so-called true inclusion probabilities, but statisticians may sometimes have at their disposal calibrated or post-stratifi cation weights (e.g. minimizing some discrepancy w ith the inclusion probabilities subject to some margin constraints). In most cases, the survey scheme is ignored, potentially yielding a signifi cant sampling bias. When considering some functional of the empirical process such as the empirical distribution function, this may cause severe draw backs and completely jeopardize the estimation, as can be revealed by simulation experiments. In the context of dietary risk analysis, the impact of such an omission would be for instance an erroneous, greatly biased estimation of the true proportion of over-exposed people. To avoid such undesirable outcomes, many estimators have been developed in the branch of survey sampling theory [START_REF] Tillé | Sampling algorithms[END_REF][START_REF] Gourieroux | Théorie des sondages[END_REF][START_REF] Droesbeke | Les sondages[END_REF], w hich take into account these survey weights and make up for the induced bias of the sampling phase. Unfortunately, to our know ledge, except in the specifi c case of stratifi ed sampling, there is still no general functional result that would guarantee the asymptotic normality of a large family of estimators in the context of survey sampling. In particular, w hen estimating the distribution function of the exposure to some food chemical, the construction of confi dence bands, as opposed to point confidence intervals, has not been made possible yet. We started addressing this issue in the paper presented from Section 5.1 to Section 5.4, in the specifi c case of Poisson-like survey plans w ith no post-calibration. It is the result of a collaboration w ith P. Bertail (Université Paris X, France) and S. Clémençon (Télécom ParisTech, France) and has been submitted for publication. Unfortunately, the results that are presented there do not apply to the complex sampling of IN CA 2; they have to be understood as a fi rst step towards the elaboration of a more general theory that would encompass a w ider range of survey techniques.

The main goal of this chapter is to investigate how to incorporate the survey scheme into the inference procedure dedicated to the estimation of a probability measure P on a measurable space (viewed as a linear operator acting on a certain class of functions F), in order to guarantee its asymptotic normality. This problem 117 has been addressed by [START_REF] Breslow | Weighted likelihood for semiparametric models and two-phase stratifi ed samples, w ith application to Cox regression[END_REF] and [START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF] in the particular case of a stratifi ed survey sampling, w here individuals are selected at random (w ithout replacement) in each stratum, by means of bootstrap limit results. Our approach is different and follow s that of H àjek (1964), extended next by [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF][START_REF] Berger | A symptotic consistency under large entropy sampling designs w ith unequal probabilities[END_REF], and is applicable to more general sampling surveys, namely those w ith unequal fi rst order inclusion probabilities w hich are of the Poisson type or sequential/ rejective. The main result of the chapter is a Functional Central Limit Theorem (FCLT) describing the limit behavior of an adequate version of the empirical process (referred to as the Horvitz-Thompson empirical process throughout the article) in a superpopulation statistical framework. The key argument involved in this asymptotic analysis consists in approximating the distribution of the extended empirical process by that related to a much simpler sampling plan. In order to illustrate the reach of this result, statistical applications are considered, w here the extensions of the empirical process are used to construct confi dence bands around the H orvitz-Thompson estimator of the cumulative distribution function.

The chapter is organized as follow s. In Section 5.1 and Section 5.2, the statistical framework is described at length, notations are set out and some basics on survey sampling theory are recalled, together w ith important examples of survey schemes to w hich the subsequent asymptotic analysis can be applied. The main result of the chapter, a FCLT for the H orvitz-Thompson empirical process, is stated in Section 5.3, w hile applications of the latter to non-parametric functional estimation are displayed in Section 5.4. Finally, technical details are deferred to Section 5.5.

bac k gr o u n d a n d pr el i mi n a r i es

We start off w ith recalling some crucial notions in survey sampling and in modern empirical process theory, w hich shall be extensively used in the subsequent analysis. Throughout the article, the Dirac mass at x in some vector space X is denoted by x and the indicator function of any event E by I t Eu. We also denote by #E the cardinality of any fi nite set E, and by P(E) its power set.

Survey sampling: some basics

The purpose of survey sampling is to study some characteristics of a population U N of N • 1 units (or individuals) identifi ed by an arbitrary collection of labels: U N := t 1; : : : ; N u. For various reasons (limited budget, geographical constraints, etc.), it is usually not possible to reach the w hole population, and the features of interest have to be estimated from a fi nite, relatively small number of its elements, namely a sample s := t i 1 ; : : : ; i n ( s) u Ä U N of size n (s) § N . So as to provide handy ways of controlling the accuracy of estimation, sample units are picked randomly among U N (see for instance [START_REF] Tillé | Sampling algorithms[END_REF], Chapter 1, Tillé, 1999[START_REF] Gourieroux | Théorie des sondages[END_REF] for an introduction to the origins of random sampling). Equipped w ith this representation, a sampling scheme (design/ plan) is determined by a discrete probability measure R N on P(U N ), the set of all possible samples in U N . Depending on the adopted point of view, like in superpopulation models, the characteristics of the population can be considered random too. In the next paragraphs, w hile introducing crucial concepts and notations, we shall discuss both sources of hazard and their classical modeling in survey sampling theory.

Survey schemes without replacement

Consider a sampling scheme R N w here individuals are only selected once, i.e. a design without replacement. Our analysis is restricted to this popular family of survey plans. By defi nition, the two conditions below are always fulfi lled,

1. @s P P(U N ), R N (s) • 0, 2. ∞ sPP ( U N ) R N (s) = 1,
and the mean survey sample size is given by

E R N (n (S)) = ∏ sPP ( U N ) n (s) R N (s).
H ere, the notation E R N (.) denotes the expectation taken w ith respect to the random sample S w ith distribution R N . In a similar fashion, P R N (S P S) refers to the probability of the event t S P Su w ith S Ä P(U N ), w hen S is draw n from R N . In particular, R N (s) = P R N (S = s). Such distributions are entirely characterized by the concepts listed below.

Ú Inclusion probabilities For any i P U N , the quantity usually referred to as the i -th (fi rst order) inclusion probability,

i (R N ) := P R N (i P S) = ∏ sPP ( U N ) R N (s) I t i P su;
is the probability that the individual labeled i belongs to a random sample S under the survey scheme R N . When there is no ambiguity on the sampling design, we w ill simplify notations and w rite i instead of i (R N ). In the subsequent analysis, fi rst order inclusion probabilities are assumed to be strictly positive: @i P U N , i (R N ) °0. We shall even require the stronger hypothesis that they never get either too small or too large, as formally stated below.

A ssumpt i on 5.1 There exist °0 and N 0 P N such that for all N • N 0 and i P U N , i (R N ) ° .

In addition, lim sup

N -+ 1 1 N N ∏ i = 1 i (R N ) † 1.
When the fi rst condition holds, the rate of convergence of the estimators considered in Section 5.2 and Section 5.3 w ill be show n to be typically of order 1= ? N . One could possibly relax it and allow to depend on N , w ith = (N ) decaying to zero as N tends to infi nity at a specifi c rate, and still be able to establish limit results. The analysis would be however much more technical; this is left for further research.

Conditions involving the second order inclusion probabilities shall also be used in our asymptotic analysis. They are denoted by i ; j (R N ) := P R N (i ; j ) P S 2 = ∏ sPP ( U N ) R N (s) I t t i ; j u Ä su; for all (i ; j ) P U 2 N . In other words, i ; j (R N ) is the probability that two distinct individuals labeled i and j are jointly selected under design R N . A gain, we may eventually w rite i ; j w hen there is no need to emphasize the dependency on the sampling plan R N . N otice that higher order inclusion probabilities may be defi ned in a similar way, up to the maximal order for w hich the entire population is selected.

Ú Inclusion indicators The information related to the observed sample S is encapsulated by the random vector ( N ) := ( 1 ; : : : ; N ), w here i := I t i P Su = $ & % 1 w ith probability i ; 0 w ith probability 1 i .

N otice indeed that the set P(U N ) of all possible samples is in one-to-one correspondence w ith t 0; 1u N , w hich provides a handy alternative representation of sampling schemes. A gain, for simplicity, we w ill omit the subscript (N ) w hen no ambiguity is possible. By defi nition, the distribution of := ( N ) has univariate marginals that correspond to the Bernoulli distributions B( i ), i P U N , and covariance matrix given by

N := i ; j i j ( 1 § i ; j § N .
Incidentally we have

∞ N i = 1 i = n (S)
and thus

∞ N i = 1 i = E R N (n (S)).
Before considering the issue of extending the concept of empirical process in the context of survey sampling, we recall a few important classes of survey schemes, to w hich the results established in Section 5.2 and Section 5.3 can be applied. One may refer to [START_REF] Deville | Réplications d'échantillons, demi-échantillons, Jackknife, bootstrap dans les sondages[END_REF] for instance for an excellent account of survey theory, including many more examples of sampling designs.

Exampl e 5.2 -Simple Random Sampling Without Replacement. A simple random sampling w ithout replacement (SRSWOR in abbreviated form) is a sampling design of fi xed size n (S) = n , according to w hich all samples w ith cardinality n in the population U N are equally likely to be chosen, w ith probability (N n )!=n !. It follow s that all units of U N have the same chance of being selected, n =N namely, and all second order probabilities are equal to n (n 1)=(N (N 1)).

Exampl e 5.3 -Poisson survey sampling. The Poisson sampling plan w ithout replacement (POISSWOR), denoted here by T N , is one of the simplest survey schemes. In this case, the N elements of are independent Bernoulli random variables w ith respective parameters i (T N ) = : p i , i P t 1; : : : ; N u so that for any sample s P P(U N ),

T N (s) = π i Ps p i π i Rs (1 p i ) .
N otice that the size n (S) of sample S w ith distribution T N is random (except in the sole situation w here p i P t 0; 1u for i = 1; : : : ; N ) and that the corresponding survey plan is fully characterized by the fi rst order inclusion probabilities. In the specifi c situation w here they are all equal, i.e. p 1 = = p N = p, the design is called Bernoulli.

Exampl e 5.4 -Stratified sampling. A stratifi ed sampling design permits to draw a sample S of fi xed size n (S) = n § N w ithin a population U N that can be partitioned into K • 1 distinct strata U N 1 ; : : : ; U N K (know n a priori) of respective sizes N 1 ; : : : ; N K adding up to N . Let n 1 ; : : : ; n K be non-negative integers such that n 1 + + n K = n , then the draw ing procedure is implemented in K steps: w ithin each stratum U N k , k P t 1; : : : ; Ku, perform a SRSWOR of size n k § N k yielding a sample S k . The fi nal sample is obtained by assembling these sub-samples: S = î K k = 1 S k . The probability of draw ing a specifi c sample s by means of this survey scheme is

R str N (s) = K ∏ k = 1 N k n k 1 .
N aturally, fi rst and second order inclusion probabilities depend on the stratum to w hich each unit belong: for all i j in U N ,

i (R str N ) = K ∏ k = 1 n k N k I t i P U N k u and i ; j (R str N ) = K ∏ k = 1 n k (n k 1) N k (N k 1) I (i ; j ) P U 2 N k ( .
Exampl e 5.5 -Canonical Rejective Sampling. Let n § N and consider a vector R := ( R 1 ; : : : ; R N ) of fi rst order inclusion probabilities. Further defi ne S n := t s P P(U N ) : #s = n u, the set of all samples in population U N w ith car-dinality n . The rejective sampling [START_REF] Àjek | A symptotic theory of rejective sampling w ith varying probabilities from a fi nite population[END_REF][START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF], sometimes called conditional Poisson sampling (CPS), exponential design w ithout replacement or maximum entropy design (Tillé, 2006, Section 5.6), is the sampling design R R N that selects samples of fi xed size n (s) = n so as to maximize the entropy measure

H(R N ) = ∏ sPS n R N (s) log R N (s);
subject to the constraint that its vector of fi rst order inclusion probabilities coincides w ith R . It is easily implemented in two steps.

1. Draw a sample S w ith a POISSWOR plan T N = T p N , w ith properly chosen fi rst order inclusion probabilities vector p := (p 1 ; : : : ; p N ). The representation is called canonical if

∞ N i = 1 p i = n .
In that case, relationships between each p i and R i , 1 § i § N , are established in H àjek (1964). 2. If n (S) n , then reject sample S and go back to step one, otherw ise stop.

Vector p must be chosen in a way that the resulting fi rst order inclusion probabilities coincide w ith R , by means of a dedicated optimization algorithm [START_REF] Tillé | Sampling algorithms[END_REF], A lgorithms 5.5 to 5.9). The corresponding probability distribution is given for all s P P(U N ) by

R R N (s) = T p N (s) I t #s = n u ∞ s 1 PS n T p N (s 1 ) 9 π i Ps p i π i Rs (1 p i ) I t #s = n u;
w here 9 denotes the proportionality. We refer to H àjek (1964, p.1496) for more details on the links between rejective and Poisson sampling plans.

Exampl e 5.6 -Rao-Sampford Sampling. The Rao-Sampford sampling design generates samples s P P(U N ) of fi xed size n (s) = n w ith respect to some given fi rst order inclusion probabilities RS := ( RS 1 ; : : : ; RS N ), fulfi lling

∞ N i = 1 RS i = n , w ith probability R RS N (s) = ∏ i Ps RS i π j Rs RS j 1 RS j . H ere, °0 is chosen such that ∞ sPP ( U N ) R RS N (s) = 1.
In practice, the follow ing algorithm is often used to implement such a design [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF]:

1. select the fi rst unit i w ith probability RS i =n , 2. select the remaining n 1 units j w ith draw ing probabilities proportional to RS j =(1 RS j ), j = 1; : : : ; N , 3. accept the sample if the units draw n are all distinct, otherw ise reject it and go back to step one.

The characteristics of interest in population U N are modeled as follow s. We consider the probability space (U N ; P(U N ); P) and a random variable/ vector X defi ned on the latter, taking its values in a Banach space (X; }.}), w ith probability measure P. We set

X : U N - X i fi -X(i ) = : X i ! ;
and the -algebra induced by the normed vector space topology structure of X is denoted by A . For instance, X could represent the amounts of K food products consumed on a specifi c day. In that case, we would have X = R K + , A the associated Borel algebra, }.} the euclidean norm and X i = (X i ; 1 ; : : : ; X i ; K ) would give the daily intakes of individual i P U N . Then, the studied features correspond to some synoptic mapping (X 1 ; : : : ; X N ) fi -f (X 1 ; : : : ; X N ). In our example, we could consider f (X 1 ; : : : ;

X N ) = (N 1 ∞ N i = 1 X i ; 1 ; : : : ; N 1 ∞ N i = 1 X i ; K ), the average consumption of the K foods in U N .
In survey sampling, a superpopulation is basically an imaginary infi nite population, U 1 say, from w hich U N is supposed to be issued. In a model-based approach, it is assumed that the random vectors of interest X 1 ; : : : ; X N are in fact realizations of N random vectors r X j : U 1 -X, 1 § j § N , w ith joint distribution Q. Then, a superpopulation model is simply a set of conditions that characterize Q (Droesbeke et al., 1987, Chapter 4). The main advantage of such a framework is that it often facilitates statistical inference; in particular, it permits the development of an asymptotic theory, w hen sample and population sizes grow conjointly to infi nity. The superpopulation model we consider here stipulates that all N random vectors X i , i P U N , are independent and identically distributed (iid) w ith common distribution P, i.e. Q = P b N , w here b denotes the tensor product of measures.

Remar k 5.7 The most celebrated iid superpopulation model that we adopt here establishes a setting very similar to that of weighted bootstrap (A rcones and [START_REF] Arcones | On the bootstrap of M -estimators and other statistical functionals[END_REF][START_REF] Barbe | The weighted bootstrap[END_REF]: the original iid N -sample there would correspond to the complete vector (X 1 ; : : : ; X N ), from w hich sub-samples are draw n according to some procedure likened to the survey scheme. A ctually, both approaches are completely equivalent if the survey weights ( 1 = 1 ; : : : ; N = N ) are exchangeable (i.e. the N -variate distribution of this vector is invariant to the order of its elements). For instance, in the specifi c case of stratifi ed sampling, draw ing units w ith equal probabilities in each stratum (w ith a fi nite and given stratum-size) amounts to bootstrapping (w ithout replacement) in some given cell. It is not surprising then that both [START_REF] Breslow | Weighted likelihood for semiparametric models and two-phase stratifi ed samples, w ith application to Cox regression[END_REF] and Saegusa and Wellner (2011) construct a general asymptotic theory in two-phase sampling by using bootstrap type results.

Auxiliary information

In practice, sampling from a population U N is only possible if all individuals are listed somehow, and can be identifi ed once selected. Such documents are called survey frames; in the case of social surveys, they are collected by government institutions and often provide some minimal information about its components. For instance, in France, the geographical situation, the age, the genre and the profession and socio-professional category (" Profession et Catégorie Socioprofessionnelle" , PCS, in French) of citizens are displayed in fi les managed by IN SEE (Institut N ational de la Statistique et des Etudes Economiques). These auxiliary variables, supposedly know n for all i P U N , can sometimes be used to optimize in some sense the survey scheme. In a superpopulation framework, we denote by W the auxiliary random vector, valued in some measurable space W, and set W ( N ) := (W 1 ; : : : ; W N ). A gain, the subscript (N ) shall be dropped w hen no confusion is possible. A s soon as W is correlated w ith X, the vector of interest, it becomes possible to boost the effi ciency of estimators by defi ning inclusion probabilities as a function of W ( N ) [START_REF] Droesbeke | Les sondages[END_REF].

In the present analysis, we denote by P X; W the joint distribution of (X; W) and by P W the marginal distribution of W. Like in most applications, we assume that the W i 's are independent (or exchangeable) random variables/ vectors, linked to the variable of interest X through a linear model (notice that W may be constant over the population). It is required though that W is not proportional to X (in a deterministic sense) to avoid degenerate situations; in such a case, know ing W on the w hole population would mean know ing the empirical process w ithout any error. For the sake of simplicity, the dependence of survey weights in W w ill only be emphasized w hen it is necessary, starting in Section 5.3.

Empirical process indexed by classes of functions

In the context of iid realizations X 1 ; : : : ; X N of a probability measure P, empirical process theory [START_REF] Ledoux | Probability in Banach spaces: isoperimetry and processes[END_REF] consists in the study of the fl uctuations of random processes of the type t G N f ; f P Fu; w here G N := P N P.

There, class F designates a certain set of P-integrable real-valued functions,

P N := 1 N N ∏ i = 1 X i
is the " classical" empirical measure, and for any signed measure Q on a measurable space (X; A ), Qf := ≥ X f (x) Q(dx) w hen the integral is well-defi ned. We assume that class F admits a square integrable envelope H as defi ned below.

A ssumpt i on 5.8 There exists a measurable function H : X -R such that ≥ X H 2 (x) P(dx) † 1 and |f (x)| § H(x) for all x P X and any f P F.

A s a consequence, F is a subset of the space L 2 (P) := h : X -R; h measurable and }h} 2 2; P := E P h 2 (X) † + 1 ( .

N otice that we may assume w ithout loss of generality that there exists °0 such that H(x) ° for every x P X, even if it entails replacing H by H + in the condition above.

Donsker classes

When viewed as a linear operator acting on F, a probability measure P satisfying A ssumption 5.8 may be considered as an element of `1 (F), i.e. the space of all maps :

F -R such that } } F := sup f PF | (f )| † + 1 ;
equipped w ith the uniform convergence norm (or, equivalently, w ith Zolotarev metric), namely

}P Q} F := d F (P; Q) = sup h PF ª h dP ª h dQ ;
for any couple of probability measures P and Q. The main purpose of empirical process theory is to fi nd conditions on the class of functions F guaranteeing that the distribution of ? N G N converges, as N -+ 1 , to that of a Gaussian, Banach space valued process in `1 (F). Such collections of functions are called Donsker classes by analogy to the classical results on the empirical distribution function that analyze ? N (F N F), w here

F N (x) := 1 N N ∏ i = 1 I t X i P ( 1 ; x 1 ] ( 1 ; x d ]u and F(x) := P (X P ( 1 ; x 1 ] ( 1 ; x d ])
for x := (x 1 ; : : : ; x d ) P R d (see Example 5.9). In particular, the study of the uniform deviations over F ? N }P N P} F is of great interest, w ith a variety of applications in statistics, see [START_REF] Shorack | Empirical processes with applications to statistics[END_REF]. A nearly exhaustive review of asymptotic results ensuring that F is a Donsker class of functions is available in van der [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF]. The purpose of this chapter is to extend typical empirical processes results obtained for iid data to the framework of survey sampling.

On measurability issues

Recall that the normed vector space (`1 (F); }.} F ) is (generally) a non-separable Banach space. The major problem one faces w hen dealing w ith sums of random variables taking their values in such an infinite-dimensional non-separable space concerns the measurability of events. For instance, the " classical" empirical process ? N (F N F), w hich can be viewed as a random sequence in the Skorokhod space D ([0; 1]) of càd-làg functions endowed with the supremum norm, is not Borel-measurable. In this specifi c case, the topology induced by the sup-norm on D ([0; 1]) can be classically replaced by the Skorokhod metric in order to overcome this technical diffi culty. A lternative approaches can be found in [START_REF] Pollard | Convergence of stochastic processes[END_REF]. The ideas developed in H offmann-Jørgensen (1991) have led to a general solution, based on the concept of outer probability, extending the original probability measure P to nonmeasurable events by setting P (A ) := inf t P(B) : A Ä B; B measurableu. Then, the related concept of H offman-Jørgensen weak convergence permits somehow to forget the measurability assumptions. H ence, expectations and probabilities must now be understood as outer expectations and probabilities for non-measurable events. For simplicity, the same notations are kept to denote original and outer probabilities (resp. expectations). H ere, weak convergence is metrized through the bounded Lipchitz metric on the space `1 (F): for all random functions X and Y valued in `1 (F),

d B L (X; Y) = sup b PB L 1 ( `1 ( F ) ) E (b(X)) E (b(Y)) ;
w here BL 1 (`1 (F)) is the set of all 1-Lipchitz functions on `1 (F) bounded by 1. In the follow ing we defi ne the P semi-metric under P as P (f ; g) := E P (f (X) g(X)) 2 = : }f g} 2 2; P .

We refer to van der [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF] for technical details and general results.

Uniform covering numbers

A key concept in the study of empirical process is the covering number N(" ; F; |.|), w hich corresponds to the minimal number of balls of radius " °0 for a given semi metric |.| needed to cover F. Donsker classes of functions are often characterized by some integrability conditions of the form ª 1 0 a N(" ; F; |.|) d" † 1 ;

arising from maximal inequalities. Such a condition essentially ensures that the size of class F is not too big and that one may be able to approximate any of its elements (up to " ) by functions in a set of fi nite cardinality. In our non-iid setting, we w ill essentially consider the L 2 (P) norm for |.| and use uniform covering numbers sup QPD N " }H} 2; Q ; F ; }.} 2; Q ;

w here D is the set of all discrete probability measures Q such that 0 † ≥ H 2 dQ † + 1 . Explicit calculus of (uniform) covering numbers for general classes of functions may be found in several textbooks, see [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF] or van de Geer (2000).

5

.2 empi r i c a l pr oc ess i n su r v ey sampl i n g

We now introduce two different empirical processes built from survey data, the asymptotic behaviors of w hich shall be investigated at length in Section 5.3.

The Horvitz-Thompson empirical process

In the context of survey data draw n through a general survey plan R N , the empirical measure P N cannot be computed since the w hole statistical population is not observable. H ence, a variant based on the observations must be naturally considered. For any measurable set M Ä X, the H orvitz-Thompson estimator of the empirical probability P N (M ) = N 1 ∞ N i = 1 X i (M ) based on the survey data described above is defi ned as follow s, see H orvitz and [START_REF] Thompson | A generalization of sampling w ithout replacement from a fi nite universe[END_REF]:

P ( R N ) R N (M ) := 1 N N ∏ i = 1 i i X i (M ) = 1 N ∏ i PS I t i P Su i X i (M ).
(5.1)

We highlight the fact that the measure P ( R N ) R N is an unbiased estimator of P (resp. P N , w hen conditioned upon (X 1 ; : : : ; X N )) although it is not a probability measure. For a fi xed subset M , the consistency and asymptotic normality of the estimator in Equation (5.1) are established in [START_REF] Robinson | On the convergence of the H orvitz-Thompson estimator[END_REF] and [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF], as N tends to infi nity. When considering the estimation of measure P N (the measure of interest in survey sampling) over a class of functions F, we are led to the asymptotic study of the collection of random processes

G ( R N ) R N := G ( R N ) R N f f PF ; w here G ( R N ) R N f := ? N P ( R N ) R N P N f = 1 ? N N ∏ i = 1 i i (R N )
1 f (X i );

(5.2) w hich shall be referred to as the F-indexed Horvitz-Thompson empirical process (H Tempirical process, in short). The seemingly redundant notation G ( R N ) R N is motivated by the fact that extensions involving fi rst order probabilities related to a different sampling scheme T N w ill be considered in the sequel. Precisely, G ( T N ) R N shall denote the process obtained w hen replacing all i (R N ) by i (T N ), 1 § i § N , in Equation (5.2).

The main purpose of this chapter is to establish the convergence of the re-weighted empirical process (G R N f ) f PF under adequate hypotheses involving some properties of measure P, certain characteristics of the sequence of sampling plans (R N ), and the " complexity" of class F (in the classical metric entropy sense) as well. In particular, such a result would permit to describe the asymptotic behavior of the quantity below (assumed to be almost-surely fi nite, see A ssumption 5.8):

G ( R N ) R N F = sup f PF G ( R N ) R N f .
By virtue of Cauchy-Schwarz inequality and A ssumption 5.1 and A ssumption 5.8, we almost-surely have, @N • 1,

G ( R N ) R N 2 F § 1 N N ∏ i = 1 i i i 2 ! N ∏ i = 1 H 2 (X i ) ! § 1 2 N ∏ i = 1 H 2 (X i ) † + 1 .
Under A ssumption 5.1 and A ssumption 5.8, the F-indexed H T-empirical process in Equation (5.2) may thus be seen as a sequence of random elements of `1 (F).

Exampl e 5.9 -Empirical cumulative distribution function. In the case w here X = R d w ith d • 1 for instance, a situation of particular interest is that w here F is the class of indicator functions of rectangles of the type # ( 1 ; x], x P R d , and the goal pursued boils dow n to investigating conditions under w hich uniform versions of the Law of Large N umbers (LLN ) and of the Central Limit Theorem (CLT) hold for F ( R N ) R N (x) F N (x), w here F N (x) := P N ( 1 ; x]. A s shall be seen later, the study of the asymptotic behavior of this empirical process lies at the center of the validity of the confi dence band construction considered in Section 5.4.

Alternative estimate in the Poisson sampling case

The Poisson sampling scheme T N (see Example 5.3) has been the subject of much attention, especially in H àjek (1964), w here asymptotic normality of (pointw ise) H orvitz-Thompson estimators have been established in this specifi c case. Follow ing in the footsteps of this seminal contribution, we consider the follow ing Poisson version of the empirical process rather than the original process :

r G p T N f := 1 ? N N ∏ i = 1 ( i p i ) f (X i ) p i N ; p (f ) ; f P F; (5.3)
w here for all f P F,

N ; p (f ) := 1 d N N ∏ i = 1
(1 p i )f (X i ) and d N :

= N ∏ i = 1 p i (1 p i ).
Under the assumption that d N -+ 1 as N -+ 1 , it has been established in H àjek (1964, Lemma 3.2) that conditioned upon (X 1 ; : : : ; X N ), for fi xed f P F, w hen N tends to infi nity and under a Lindeberg-Feller type condition, the weighted sum of independent random variables in Equation ( 5.3) can be approximated by a centered Gaussian random variable w ith (conditional) variance

V 2 N (f ) = 1 N N ∏ i = 1 f (X i ) p i N ; p (f ) 2 p i (1 p i ).
A s claimed by Theorem 5.14 in the next section, this result can be extended to a functional framework under adequate hypotheses.

A lthough the subscript T N in r G p T N f could have been dropped since the process above only depends on vector p, we keep it in order to emphasize that the corresponding inclusion vector is distributed according to the sampling scheme T N . In this subsection, the weights p i := i (T N ), 1 § i § N , correspond to the inclusion probabilities of the Poisson sampling plan. Later on, w hen investigating a general sampling scheme R N , we shall consider the Poisson-like empirical process defi ned by

r G p R N f := 1 ? N N ∏ i = 1 ( i p i ) f (X i ) p i N ; p (f ) ;
w here p := (p 1 ; : : : ; p N ) is the vector of fi rst order inclusion probabilities of a Poisson design. In general, it w ill not coincide w ith those of R N , namely (R N ), but the subscript specifi es that is still distributed according to R N (in particular, E ( i ) = i (R N ) for i = 1; : : : ; N ). In the subsequent analysis, we start off by establishing that the process r G p T N can be asymptotically approximated by a Gaussian process.

a sympt o t i c r esu l t s

The main results of the chapter are stated in the present section. A s a fi rst go, we establish a FCLT for the empirical process variant of Equation (5.3) in the Poisson survey scheme case. Combined w ith an approximation result, it w ill serve as the main tool for proving next a similar result in the context of rejective sampling.

Limit of the empirical process for the Poisson survey scheme

The purpose of this section is to obtain a Gaussian approximation of the empirical process r G p T N related to a Poisson survey plan T N w ith fi rst order inclusion probabilities p = (p 1 ; : : : ; p N ) depending on some auxiliary variable W (see Section 5.1.1.3). The proof relies on Theorem 2.11.1 in [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF], applied to the triangular collection of independent variables defi ned for all f P F by Z N ; i (f ) := Z N ;i (f ; ) := 1 ? N ( i p i ) f (X i ) p i N ; p (f ) for i P t 1; : : : ; N u.

For clarity, the result is recalled below.

Th eor em 5.10 -Triangular arrays (van der Vaart and Wellner, 1996).

Let Z N ; i (f ), 1 § i § N be independent F-indexed stochastic processes defi ned on the product probability space ± N i = 1 (t 0; 1u; P(t 0; 1u); B( i (R N )) w here the process Z N ; i (f ) := Z N ; i (f ; ) only depends on the i -th coordinate of := ( 1 ; : : : ; N ). A ssume that the maps ( 1 ; : : : ; N ) fi -sup

P ( f ; g ) † N ∏ i = 1 e i (Z N ; i (f ; ) Z N ; i (g; ))
and ( 1 ; : : : ; N ) fi -sup

P ( f ; g ) † N ∏ i = 1 e i (Z N ; i (f ) Z N ; i (g)) 2
are measurable for every °0, every (e 1 ; : : : ; e N ) P t 1; 0; 1u N and every N P N .

Further defi ne the random semi-metric

d 2 N (f ; g) := N ∏ i = 1 (Z N ; i (f ) Z N ; i (g)) 2 ;
and suppose that the follow ing conditions are fulfi lled.

i )

N ∞ i = 1 E }Z N ; i (f )} 2 F I t }Z N ; i (f )} F ° u - N -1 0 for every °0. i i ) sup P ( f ; g ) † N ∞ i = 1 E (Z N ; i (f ) Z N ; i (g)) 2 - N -1 0 as -0. i i i ) ≥ 0 a log N(" ; F; d N ) d" - N -1 0 as -0. i v)
The sequence of covariance functions cov (Z N ; i (f ); Z N ;i (g)) converges pointw ise on F F as N -1 to a non degenerate limit (f ; g).

Then the sequence

∞ N i = 1 (Z N ; i (f ) E (Z N ; i (f ))
) is P -equicontinuous and converges in `1 (F) to a Gaussian process w ith covariance function (f ; g).

Convergence of the covariance operator

The follow ing intermediary results show that condition i v) in Theorem 5.10 is fulfi lled in the particular case of Poisson survey plans. For (f ; g) P F 2 , set cov N ; p (f ; g) :=

1

N N ∏ i = 1 f (X i ) p i N ; p (f ) g(X i ) p i N ; p (g) p i (1 p i ).
Due to the independence of the i 's, it is clear that

cov T N r G p T N (f ); r G p T N (g) := cov r G p T N (f ); r G p T N (g) (X i ; W i ) 1 § i § N = cov N ; p (f ; g).
We thus essentially have to determine conditions ensuring that cov N ; p (f ; g) has a nondegenerate limit. The follow ing assumptions are by no means necessary but provide a useful framework to derive such conditions. Similar types of assumptions may be found in [START_REF] Bonnéry | Propriétés asymptotiques de l'échantillon dans le cas d'un plan de sondage informatif[END_REF]Bonnéry et al. ( ) or H àjek (1964) ) for instance.

Recall that inclusion probabilities were defi ned relative to some auxiliary variable W. A n additional assumption on the latter is required in the subsequent result.

A ssumpt i on 5.11 The couples of random vectors (X 1 ; W 1 ); : : : ; (X N ; W N ) are iid (exchangeable at least) w ith distribution P X; W . M oreover, the conditional inclusion probabilities p := (p 1 ; : : : ; p N ) are then given for all i P t 1; : : : ; N u and W ( N ) P W N by p i := p(W i ) := E i W ( N ) .

Remar k 5.12 It can happen that p i not only depends on W i , but on the entire vector W ( N ) . It is the case, for instance, w hen there is a unique auxiliary variable W to w hich weights are proportional:

p i := n W i ∞ N j = 1 W j .
In such situations the i i d property of the vectors (X i ; W i ), 1 § i § N , can be used to bypass the part involving all (W 1 ; : : : ; W N ) in the subsequent asymptotic analysis.

Under this supplementary condition, we have the follow ing result, the proof of w hich can be found in Section 5.5.1. (1 p(w )) f (x) P X; W (dx; dw ).

Functional Central Limit Theorem

A pplying Theorem 5.10 to the empirical process r G p T N f defi ned in Equation ( 5.3) thus leads to the theorem below, proved in Section 5.5.2.

Th eor em 5.14 -FCLT in thePoisson survey case. Suppose that A ssumption 5.1, A ssumption 5.8 and A ssumption 5.11 hold, as well as the follow ing conditions. i ) Lindeberg-Feller type condition: @ °0,

E (Z N ; i ) 2 I ! Z N ; i ° ? N ) - N -1 0; w ith Z N ; i := ( i p(W i )) sup f PF f ( X i ) p ( W i )
N ; p (f ) .

i i ) Uniform entropy condition: let D be the set of all fi nitely discrete probability measures defi ned in Section 5.1.2.3, and assume ª 1 0 sup QPD b log(N (" }H} 2; Q ; F; }.} 2; Q ) d" † 1 .

Then there exists a P -equicontinuous Gaussian process G in `1 (F) w ith covariance operator given by Equation ( 5.4) such that r G p T N Ò G weakly in `1 (F); as N -1 .

Remar k 5.15 -On theLindeberg-Feller condition. Observe that, as can be proved using H ölder 's inequality, condition i ) in Theorem 5.14 can be replaced by the simpler condition: D °0 such that

i ) E P X;W H(X i ) p(W i ) 2+ E T N ( i p(W i )) 2+ (X i ; W i ) ! † + 1 .

The case of rejective sampling

A s shall be show n herein-after, the result obtained above in the case of a Poisson sampling scheme may carry over to more general survey plans, as originally proposed in the seminal contribution of H àjek (1964).

Reduction to simpler sampling designs

The lemma stated below, follow ing in the footsteps of [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF], show s that the study of the empirical process related to a general sampling design R N may be reduced to that related to a simpler sampling design, T N say, w hich is close to R N w ith respect to some metric and entirely characterized by its fi rst order inclusion probabilities. The only " draw back" is that the estimator involved in this approximation result is not the H orvitz-Thompson estimator, since it does not involves the inclusion probabilities of the sampling plan of interest but those related to a Poisson scheme (H àjek, 1964). H owever, as w ill be show n next, the two estimators may asymptotically coincide, as N tends to + 1 .

In order to formulate the approximation result needed in the sequel, we introduce, for two sampling designs R N and T N , the total variation metric In practice, T N w ill typically be the Poisson sampling plan investigated in the previous subsection and r G ( T N ) T N the corresponding empirical process.

Lemma 5.16 -Approximation result. Let R N and T N be two sampling designs and assume that T N is entirely characterized by its fi rst order inclusion probabilities, (T N ). Then, the empirical processes r G This result, proved in Section 5.5.3, reveals that as soon as a possibly complicated survey design R N can be approximated by a simpler one T N through some coupling argument ensuring that the }.} 1 distance between them decays to zero (as in H àjek, 1964), then an asymptotic approximation result possibly holding true for the empirical process related to T N immediately extends to that related to R N , w hen built w ith the inclusion probabilities p = (T N ). A s shall be seen below, a typical situation w here this result applies corresponds to the case w here R N is a rejective sampling design, w hile T N is a Poisson sampling design, as in H àjek (1964). Other natural applications may arise in the framework of post-stratifi cation, w hich can be connected w ith empirical likelihood results.

Empirical process for the rejective sampling and its variants

The Central Limit Theorem for rejective sampling and some variants of this survey scheme has been studied at length in H àjek (1964) and [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF][START_REF] Berger | A symptotic consistency under large entropy sampling designs w ith unequal probabilities[END_REF]. Consider the rejective sampling scheme defi ned in Example 5.5 from a given vector R corresponding to the vector p := (p 1 ; : : : ; p N ) = (p(W 1 ); : : : ; p(W N )) = : p(W). A ssume in addition that the representation is canonical, i.e. is such that

∞ N i = 1 p(W i ) = n .
The key argument for proving a CLT in the rejective sampling case consists in exhibiting a certain coupling (( 1 ; : : : ; N ); ( 1 ; : : : ; N )) of the Poisson sampling scheme w ith inclusion probabilities p(W 1 ); : : : ; p(W N ) and the rejective sampling scheme w ith corresponding inclusion probabilities R such that }R N T N } 1 -0, see H àjek (1964, p. 1503-1504) for further details. A straightforward application of Lemma 5.16 w ill then immediately yield a functional CLT in our framework. We point out that, under the rejective sampling scheme, the survey size is fi xed, so that

N ∏ i = 1 ( i p(W i )) = n n = 0.
Thus, we have:

r G p R N f := 1 ? N N ∏ i = 1 ( i p(W i )) f (X i ) p(W i ) N ; p (f ) = 1 ? N N ∏ i = 1 i p(W i ) 1 f (X i ) = : G p ( W) R N f .
H ence, the Poisson-like empirical process coincides, in that case, w ith the original H T-empirical process w here the weights p(W) are involved instead of the true inclusion probabilities R , the latter being however asymptotically equivalent to the former, see H àjek (1964).

The next theorem is obtained by combining Lemma 5.16 w ith Theorem 5.14.

Th eor em 5.17 -FCLT in therejectivesurvey with Poisson weights case. Suppose that A ssumption 5.1, A ssumption 5.8, A ssumption 5.11 and conditions i ) and i i ) of Theorem 5.14 are satisfi ed. Then, there exists a P -equicontinuous Gaussian process G in `1 (F) w ith covariance operator given by Equation ( 5.4) such that G p ( W) R N Ò G weakly in `1 (F); as N -1 .

It has been established in [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF] that for a variety of sampling plans R N , including the Rao-Sampford scheme defi ned in Example 5.6, we have D (R N ; T N ) -0 as N -1 . By virtue of Lemma 5.16, Theorem 5.17 naturally extends to these sampling schemes.

Going back to the original H T-empirical process in Equation (5.2) related to the plan R N , the corollary below reveals that the asymptotic result still holds true for the latter (see the proof in Section 5.5.4). This essentially follow s from the fact that the weights p(W) and the inclusion probabilities corresponding to the rejective sampling are asymptotically equivalent.

Cor ol l ar y 5.18 -FCLT in the rejective survey case. Suppose that A ssumption 5.1, A ssumption 5.8, A ssumption 5.11 and conditions i ) and i i ) of Theorem 5.14 are satisfi ed. Then, there exists a P -equicontinuous Gaussian process G in `1 (F) w ith covariance operator given by Equation (5.4) such that G ( R N ) R N Ò G weakly in `1 (F); as N -1 .

a ppl i c at i o n t o n o n -par a met r i c st at i st i c s

For illustration purpose, we consider now several statistical applications of the asymptotic results previously established.

Hadamard differentiable functionals

We fi rst highlight that the FCLT stated above permits to establish the asymptotic normality of any statistic that can be expressed as the empirical version of some H adamard differentiable functional, see [START_REF] Shorack | Empirical processes with applications to statistics[END_REF]. For the sake of clarity, we recall the defi nition of uniform Hadamard differentiability in Defi nition 5.19, adapted from [START_REF] Pons | Von mises method, bootstrap and H adamard differentiability for nonparametric general models[END_REF]. Our results apply to many situations considered in their paper, related in particular to certain functionals of censored data. Other examples are treated in [START_REF] Gill | N on-and semiparametric maximum likelihood estimators and the von M ises method[END_REF], [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF] (see Chapter 3.9 p. 379 therein, in particular refer to the discussion about the validity of the bootstrap for uniform H adamard differentiable functionals). Defi ne B(F; P) as the set of measures Q in `1 (F) w hose paths f P F fi -Qf := ≥ f dQ are }.} 2; Puniformly continuous and bounded. This is the smallest natural space containing G. We consider the uniform H adamard differentiability tangentially to the subspace B(F; P) because it weakens the notion of differentiation and is easier to check in practice.

Def i n i t i on 5.19 A functional T : `1 (F) -R q is said to be uniformly Hadamard differentiable at P tangentially to B(F; P); if and only if there exists a continuous linear mapping dT P such that for any sequence P N converging to P, any h N converging to h P B(F; P) and every t N converging to 0 such that P N + t N .h N P `1 (F), we have:

T(P N + t N .h N ) T(P N ) t N dT P .ht N -0 0.

N otice that T may be defi ned not on the entire space `1 (F) but on a subset L only.

In this case, one must check that P N + t N .h N P L .

Remar k 5.20 We may in addition assume that the differential dT P admits an integral representation, i.e.

dT P .h = ª T ( 1) (x; P) h(dx); w here T ( 1) (.; P) is the infl uence function defi ned from X to B 1 such that we have E P T ( 1) (X; P) = 0.

We recall that in the robustness terminology (H ampel et al., 1986), the infl uence function of the parameter T(P) may be calculated directly by computing the derivative of the functional taken at the contaminated distribution (1 t )P + t x , i.e.

T ( 1) (x; P) := lim t -0 T ((1 t )P + t x ) T(P) t .

In this case, the limiting distribution may be calculated more easily.

Th eor em 5.21 -CLT for Hadamard differentiable functionals. Suppose that the assumptions of Theorem 5.14 hold and that functional T : L Ä `1 (F) -R q is H adamard differentiable at P w ith differential dT P and infl uence function T ( 1) (x; P). Then, as N -+ 1 , we have:

? N T(P ( R N ) R N
) T(P N ) Ò dT P .G; w here G is a Gaussian process w ith covariance operator , as in Equation (5.4).

The result above, the proof of w hich is available in Section 5.5.5, applies in particular to the follow ing statistics.

Exampl e 5.22 -Expectation and variance. It is well-know n that for some appropriate choice of F, the functionals T(P) = E P (X) and T(P) = V P (X) are uniformly H adamard-differentiable. When T(P) = E P (X), Theorem 5.21 exactly reduces to the Central Limit Theorem established in H àjek (1964).

Exampl e 5.23 -Cumulative distribution function. In a univariate setting, the functional T(P) = F(x) := P (X P ( 1 ; x]) can be dealt w ith by simply considering the class of indicator functions u fi -I t u § xu w ith x P R and applying next Theorem 5.17 and Corollary 5.18. We provide illustrations of this specifi c example in Section 5.4.3.

Fréchet differentiable functionals

H adamard differentiability is sometimes diffi cult to prove and it does not yield a precise control of the remainder for further approximations like Edgeworth expansions. A nother approach followed by [START_REF] Dudley | N onlinear functionals of empirical measures and the bootstrap[END_REF] and [START_REF] Barbe | The weighted bootstrap[END_REF] is to assume Fréchet differentiability w ith respect to a metric d F indexed by a class of function F, for w hich some uniform entropy conditions hold. A functional is said to be Fréchet differentiable at P for such a metric if there exists a gradient (for instance the infl uence function T ( 1) (x; P), w hich fulfi lls E P T ( 1) (x; P) = 0) and a continuous function " (.), null at 0, such that for any probability Q, T(Q) T(P) = ª T ( 1) (x; P) (Q P)(dx) + d F (Q; P) " (d F (Q; P)).

It is generally possible to choose the class of functions according to the functional of interest, see for instance A rcones and [START_REF] Arcones | On the bootstrap of M -estimators and other statistical functionals[END_REF] for general classes of M -estimators. N otice that in that case, by applying Fréchet differentiability tw ice, we have

? N T(P ( R N ) R N ) T(P N ) = ? N ª T ( 1) (x; P) (P ( R N ) R N P N )(dx) + r N 1 N ∞ N i = 1 i 1 p i p i I t X i § x k u ∞ N i = 1 i 1 p i p i I t X i § x k u ∞ N i = 1 i (1 p i )
.

2. Derive the Cholesky decomposition p R N (f x k ; f x k ) = LL 1 , w here L is a lowertriangular Cholesky matrix. 3. Generate B °1 independent copies Y 1 ; : : : ; Y B of the Gaussian random vector Y := (Y 1 ; : : : ; Y K ) 1 w ith null expectation and covariance I , the identity matrix. 4. Compute Z b := LY b , b P t 1; : : : ; Bu, w hich are considered as realizations of the limit process G. 5. For each b P t 1; : : : ; Bu, calculate Z b := }Z b } 1 the maximum absolute distance to 0 of the path Z b and sort the obtained sample Z 1; B § § Z B ; B . 6. Set q := Z tB u+ 1; B , the empirical -quantile of the sample of maximum absolute deviations, w here t.udenotes the fl oor function.

In the next subsections, a set of numerical experiments is performed to provide illustrative examples of this technique.

Experiment setting

Simulations were based on the follow ing model, chosen for its simplicity in terms of both computation and interpretation: X = W + U; P t 0; 1u W ; TN( ; 2 W ; w ; w ); U ; N(0; 2 U ); P (W § w ; U § u) = P (W § w) P (U § u) ; w here X is the variable of interest, W the auxiliary information, U a w hite noise independent from W , and TN(0; 2 W ; w ; w ) refers to the truncated N ormal distribution over [w ; w ], w ith expectation and variance 2 W . Such a representation enables a simple control of the dependence between X and W , since their correlation is then corr (

X; W ) = W b 2 W + 2 U .
For a given population U N of size N , w here it is assumed that t W i ; i P U N u (resp. t U i ; i P U N u) are independent (hence exchangeable) realizations of W (resp. U), inclusion probabilities of the Poisson sampling scheme are defi ned as

p i = p(W i ) = n W i ∞ N j = 1 W j ;
(5.5) w ith n the desired expected sample size [START_REF] Àjek | A symptotic theory of rejective sampling w ith varying probabilities from a fi nite population[END_REF](H àjek, , Section 6, p.1512)). When the inclusion probabilities are proportionate to the auxiliary variable like in Equation (5.5), the stronger the correlation between X and W , the smaller the variance of the estimator of the population mean 1 N ∞ N i = 1 X i (or, equivalently, of the total ∞ N i = 1 X i ). Recall that under A ssumption 5.1, we have n =N -c P (0; 1) as both n and N tend to infi nity. H ence, p i can be viewed as the empirical version in the population of p(W) := W c E (W ) .

Observe that thus defi ned, p(W) P [p ; p ], w here p = c w = and p = c w = , w hich offers an easy way of ensuring A ssumption 5.1 is fulfi lled.

N umerical experiments were conducted on a set of populations w ith increasing sizes N = 10 2 , 5 10 2 , 10 3 , 5 10 3 and 10 4 . Though the latter may seem quite small to study asymptotic properties, they are in fact representative of many practical situations, w here populations under the microscope have moderate sizes in comparison to nationw ide surveys. Several scenarios were investigated depending on both the variance parameter 2 U and the coeffi cient , so as to cover situations w here corr(X; W) is high, low or null. They are summarized in Table 5.1. For each scenario, two sample sizes were considered: one small w ith n = 0.1 N and one relatively large w ith n = 0.5 N . Parameters of the distribution of W were chosen to ensure that for all i P U N , p i P [0.01; 1]. Specifi cally, we set = 1, 2 W = 0.09, w = 0.1 and w = 2, thereby implying that (p ; p ) = (0.01; 0.02) w hen n = 0.1 N and (p ; p ) = (0.05; 1) w hen n = 0.5 N . For each scenario, we drew 1000 samples according to a rejective sampling scheme, follow ing A lgorithm 5.9 in [START_REF] Tillé | Sampling algorithms[END_REF]. The true inclusion probabilities, denoted by i , 1 § i § N , could have been deduced from their Poisson equivalents defi ned in Equation (5.5) using Formula (5.13) in [START_REF] Tillé | Sampling algorithms[END_REF]. Though a very popular and natural algorithm, due to the limits of computer precision, the successive approximations it involves can lead to unexpected results like negative inclusion probabilities. Other algorithms have been developed to compute exact inclusion probabilities in a rejective sampling scheme (e.g. A ires, 1999 or Tillé, 2006, A lgorithms 5.8 and 5.9), but again, especially w hen N is large, they have a tendency to produce illogical estimates. This is w hy we adopted a simpler, although computationally expensive M onte-Carlo approximation technique, based on the repetition (10 5 times) of the basic algorithm stated in Example 5.5. N otice that since rejective sampling is a Poisson sampling conditioned upon its size, we have (p i = 1) Ò ( i = 1).

We constructed asymptotic uniform 95% confidence bands of the population cdf F N using A lgorithm 5.24, w ith B = 1000 and K = 10, 20 or 100 depending on the sample size n . M ore precisely, for n • 100, the grid was made of the standard empirical percentile estimators of variable X based on each artifi cial samples. To enable computation of the lower-triangular Cholesky matrix, w hich requires that the covariance matrix has full rank, we confi ned ourselves to deciles for n = 10 and to the quantiles of levels 0.05; 0.1; : : : ; 0.95; 1 for n = 50.

Experiment results

The average and maximal w idth of the confi dence bands over the 1000 simulated samples for each scenario are given in Table 5.2. Coverage probabilities were also estimated, the results of w hich are displayed in Table 5.3. Finally, some graphical illustrations are provided in Figure 5.1. A s expected, the larger N and c, the smaller the confi dence bands. Regarding coverage probabilities, they appear to be close to 95%, the desired level, for any N and c. The most remarkable variability is that observed between scenarios: confidence bands get signifi cantly tighter as the correlation between X and W decreases. A s a consequence, estimated coverage probabilities are systematically smaller in scenarios S 2 and S 3 than in scenario S 1 , especially w hen N = 10 2 and c = 0.1. This phenomenon is due to the formula used to construct inclusion probabilities, in Equation (5.5). Let us dwell for a moment on this expression. It ensures that the H orvitz-Thompson estimator (based on the Poisson inclusion probabilities) of the expectation of W coincides w ith the classical empirical mean in the entire population:

1 N N ∏ i = 1 i p i W i = 1 N N ∏ i = 1 i n W i ∞ N j = 1 W j W i = 1 N N ∏ i = 1 i n N ∏ j = 1 W j = 1 N N ∏ j = 1 W j ;
since ∞ N i = 1 i = n by defi nition. It is no surprise then that the stronger the correlation between X and W , the closer (in terms of variance) the weighted mean 1 N ∞ N i = 1 i p i X i is to its population counterpart. H owever, w hen considering empirical distribution functions, the standard and sample estimators for W are no longer equal. H ence, not only does the model in Equation (5.5) fail to improve the variance of the H T-cdf of X, but the deviations of F p R N are expected to grow as the link between X and W tightens. To counterbalance this draw back, we could for instance choose the inclusion probabilities p i , 1 § i § N , that minimize the uniform difference between the H T and the empirical cdf of W (see for instance [START_REF] Rueda | Estimation of the distribution function w ith calibration methods[END_REF]. Such refi nements are left for further research. A lthough not optimal, the confi dence bands constructed on our numerical experiments are still satisfactory and advocate the utility of our asymptotic results whatever the available inclusion probabilities. (1 p(w )) f (x) P X; W (dx; dw ).

Pr oof N otice fi rst that under A ssumption 5.11, we have: @(f ; g) P F 2 , cov N ; p (f

; g) = 1 N N ∏ i = 1 f (X i ) p(W i ) g(X i ) p(W i ) p(W i ) (1 p(W i )) N ; p (f ) N ; p (g) 1 N N ∏ i = 1 p(W i ) (1 p(W i )); w ith N ; p (f ) = ∞ N i = 1 (1 p(W i )) f (X i ) ∞ N i = 1 (1 p(W i )) p(W i )
.

N ow it is suffi cient to apply the Strong Law of Large N umbers for exchangeable vectors to obtain that

1 N d N = 1 N N ∏ i = 1 (1 p(W i )) p(W i ) - N -1 ª W
(1 p(w )) p(w ) P W (dw ) almost-surely.

The limit above is fi nite, positive under A ssumption 5.1 (that implies there exists p °0 such that p(w ) °p )). A dditionally, we have w ith probability one

1 N N ∏ i = 1 f (X i ) p(W i ) g(X i ) p(W i ) p(W i ) (1 p(W i )) - N -1 ª X W f (x) g(x) 1 p(w )
1 P X; W (dx; dw ).

By virtue of A ssumption 5.8, the latter integral is fi nite. Finally, observe that we almost-surely have

N ; p (f ) - N -1 p (f );
and the desired result follow s. In particular notice that the limiting variance V 2 (f ) is given by

V 2 (f ) := ª X W f (x) 2 1 p(w ) 1 P X; W (dx; dw ) p (f ) 2 ª W (1 p(w )) p(w ) P W (dw );
w hich is strictly positive except in the degenerate case w here f (x) = p(w ). Typically, this occurs w hen the inclusion probabilities are based directly on the variable of interest (or W = c X for some c P R). Positivity of the operator results from Cauchy-Schwarz inequality.

FCLT in the Poisson survey case

We shall prove Theorem 5.14, the statement of w hich is recalled below.

Th eor em Suppose that A ssumption 5.1, A ssumption 5.8 and A ssumption 5.11 hold, as well as the follow ing conditions. i ) Lindeberg-Feller type condition: @ °0,

E (Z N ; i ) 2 I ! Z N ; i ° ? N ) - N -1 0; w ith Z N ; i := ( i p(W i )) sup f PF f ( X i ) p ( W i ) N ; p (f ) .
i i ) Uniform entropy condition: let D be the set of all fi nitely discrete probability measures defi ned in Section 5.1.2.3, and assume ª 1 0 sup QPD b log(N (" }H} 2; Q ; F; }.} 2; Q ) d" † 1 .

Then there exists a P -equicontinuous Gaussian process G in `1 (F) w ith covariance operator given by Equation (5.4) such that r G p T N Ò G weakly in `1 (F); as N -1 .

Pr oof We essentially have to check hypotheses i ) i v) of Theorem 5.10.

Concerning hypothesis i ), the Lindeberg-Feller condition can be w ritten as

1 N N ∏ i = 1 E Z 2 N ; i I ! Z N ; i ° ? N ) - N -1 0 for every °0; w hich reduces to E Z 2 N ; i I Z N ; i ° ? N ( - N -1
0 by exchangeability of the components. This corresponds to condition i ) in Theorem 5.14 above.

Recall that A ssumption 5.8 stipulates the envelope of class F is square-integrable function H and that under A ssumption 5.1, there is some p °0 such that for all i P U N , p(W i ) • p . H ence, we have

N ∏ i = 1 p(W i ) (1 p(W i ) • p (N E (n )) = p N 1 E (n ) N .
as well as

N ; p (f ) § N ; p (H) § 1 p 1 N E (n ) N ∏ i = 1 H(X i ) † 1 .
We thus obtain:

sup f PF f (X i ) p(W i ) N ; p (f ) 2 § 2 sup f PF f (X i ) p(W i ) 2 + sup f PF N ; p (f ) 2 ! § 2 H(X i ) p(W i ) 2 + N ; p (H) 2 ! . Set G 1; i = | i p(W i )| H(X i ) p(W i ) + N ; p (H) ; G 2; i = ( i p(W i )) 2 H(X i ) p(W i ) 2 + N ; p (H) 2 ! .
Observe that it is thus suffi cient to check that

E P X; W E T N G 2; i I ! G 1; i ° ? N ) (X i ; W i ) 1 § i § N - N -1
0 for every °0.

Condition i i ) can be checked immediately by noticing that, in the case of the Poisson process, the equicontinuity condition becomes sup

P ( f ; g ) † N ∏ i = 1 E (Z N ; i (f ) Z N ; i (g)) 2 = sup P ( f ; g ) † 1 N N ∏ i = 1 E P X; W f (X i ) g(X i ) p(W i ) N ; p (f ) + N ;p (g) 2 p(W i )(1 p(W i ))
! § sup P ( f ; g ) † C p 4p 2 E P X; W (f (X 1 ) g(X 1 )) 2 -0; as -0.

In practice, condition i i i ) is checked in an easier manner by using the uniform entropy condition given here, see also Lemma 2.11.6 in van der [START_REF] Van Der Vaart | Weak convergenceand empirical processes[END_REF].

Finally, condition i v) is a direct consequence of Lemma 5.13.

Approximation result

We shall prove Lemma 5.16, the statement of w hich is recalled below.

Lemma Let R N and T N be two sampling designs and assume that T N is entirely characterized by its fi rst order inclusion probabilities, (T N ). Then, the empirical processes r G Pr oof Let b P BL 1 (`1 (F)). We have ( s) ; their expressions depending on the fi rst order inclusion probabilities (T N ) solely.

( T N ) T N and r G ( T N ) R N valued in `1 (F) satisfy the relationships: d B L r G ( T N ) T N ; r G ( T N ) R N § }R N T N } 1 § a 2 D (T N ; R N ).
E T N b G ( T N ) R N E R N b G ( T N ) T N = ∏ sPP ( U N ) R N (s) b G ( T N ) T N ( s) ∏ sPP ( U N ) T N (s)b G ( T N ) R N ( s) § ∏ sPP ( U N ) |T N (s) R N (s)| because b is bounded by 1 and b G ( T N ) T N ( s) = b G ( T N ) R N
The last inequality follow s from the usual inequality between the total variation metric and the entropy [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF], Lemma 2 p.219).

FCLT in the rejective survey case

We shall prove Corollary 5.18, the statement of w hich is recalled below.

Cor ol l ar y Suppose that A ssumption 5.1, A ssumption 5.8, A ssumption 5.11 and conditions i ) and i i ) of Theorem 5.14 are satisfi ed. Then, there exists a Pequicontinuous Gaussian process G in `1 (F) w ith covariance operator given by Equation ( 5.4) such that

G ( R N ) R N Ò G weakly in `1 (F); as N -1 .
Pr oof Follow ing in the footsteps of H àjek (1964), in the rejective sampling situation w here p(W i ) = p i for i P t 1; : : : ; N u, we have max

1 § i § N p i R i 1 - N -1 0. We thus have max 1 § i § N R i p i 1 - N -1 0
under the hypothesis that A ssumption 5.1 is fulfi lled by the p i 's. Then, we can w rite

G p ( W) R N f G ( R N ) R N f = 1 ? N N ∏ i = 1 i p(W i ) i R i f (X i ) = 1 ? N N ∏ i = 1 i p(W i ) 1 p i R i f (X i ); and sup b PB L 1 ( `1 ( F ) ) E b sup f PF G p ( W) R N f b sup f PF G ( R N ) R N f § E sup f PF G p ( W) R N f sup f PF G ( R N ) R N f § E sup f PF 1 ? N N ∏ i = 1 i p(W i ) i R i f (X i ) ! TA I L I N D EX ESTI M A TI ON BA SED ON SU RV EY D A TA
In the previous chapter we investigated the asymptotic behavior of a variant of the H orvitz-Thompson type of the traditional empirical process for survey schemes of the Poisson type. The ensuing Functional Central Limit Theorems proved particularly convenient to derive asymptotic properties for numerous families of estimators, as was suggested in Section 5.4. Unfortunately, w hen interested in extreme phenomena like the very high exposure to some food chemical, these results are no longer suffi cient and estimators need to be analyzed one by one. In extreme value theory, the survey design is usually ignored and the ensuing statistics, already suffering from the rarity of tail observations, possibly exhibit an additional bias due to the omission of the sampling phase. Whereas asymptotic analysis of the H orvitz-Thompson estimator [START_REF] Thompson | A generalization of sampling w ithout replacement from a fi nite universe[END_REF] has been the subject of much attention, in particular in the context of mean estimation and regression (see [START_REF] Àjek | A symptotic theory of rejective sampling w ith varying probabilities from a fi nite population[END_REF][START_REF] Rosen | A symptotic theory for successive sampling[END_REF][START_REF] Robinson | On the convergence of the H orvitz-Thompson estimator[END_REF][START_REF] Gourieroux | Effets d'un sondage: cas du 2 et de la régression[END_REF][START_REF] Deville | Calibration estimators in survey sampling[END_REF][START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF] for instance), and the last few years have w itnessed signifi cant progress towards a comprehensive functional limit theory for the assessment of distribution functions [START_REF] Gill | Large sample theory of empirical distributions in biased sampling models[END_REF]Breslow andWellner, 2007, 2008;[START_REF] Breslow | Improved H orvitz-Thompson estimation of model parameters from two-phase stratifi ed samples: applications in epidemiology[END_REF][START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF][START_REF] Bertail | Empirical processes in survey sampling[END_REF], no result on tail estimation has been documented in the survey sampling literature yet. In a modest attempt to start fi lling this gap, we make our contribution to the elaboration of an extreme value theory for survey data by focusing on a modifi ed (H orvitz-Thompson) version of the most celebrated H ill estimator. This new statistic assesses the extreme value index of univariate heavytailed distributions, w hich essentially indicates to w hat extent extreme events are rare, w hile accounting for the sampling design by means of w hich the data have been collected. Therefore, contrary to the standard H ill estimator, it corrects the bias induced by the survey plan. Its consistency is established for any type of sampling scheme that fulfi lls some adequate assumptions on the fi rst and second order inclusion probabilities. Then, follow ing in the footsteps of H àjek (1964) and along the lines of the previous chapter, its asymptotic normality is investigated for Poisson-like survey designs. The results presented in this chapter originate from a paper w ritten in collaboration w ith P. Bertail (Université Paris X, France) and S. Clémençon (Télécom ParisTech, France) and has been submitted for publication. Regrettably, our analysis does not encompass complex designs such as that of the IN CA 2 database 149 yet, hence no concrete application to dietary risk analysis is provided in this chapter. Such refi nements w ill hopefully be the object of further research in the near future.

The chapter is structured as follow s. Basics about survey sampling and tail index estimation in the standard iid setup are briefl y recalled and notations are set up in Section 6.1. In Section 6.2, we describe at length the proposed modifi cation of the H ill estimator in the context of a general sampling plan and prove its consistency. Its asymptotic normality is investigated next in Section 6.3. Finally, practical issues such as the selection of an optimal number of largest observations on w hich to base the estimation are discussed in Section 6.4, together w ith illustrative numerical experiments. Technical proofs are deferred to Section 6.6.

bac k gr o u n d a n d pr el i mi n a r i es

We fi rst recall the crucial notions in survey sampling that are extensively used in the subsequent analysis, as well as basic concepts of heavy-tail modeling, including Pareto-type distributions and standard strategies for statistical estimation of the related parameters. For the sake of clarity, most notations are kept identical to those in Chapter 5: the Dirac mass at x P R is denoted by x and the indicator function of any event E by I t Eu. We also denote by #E the cardinality of any fi nite set E, and by P(E) its power set. The (left-continuous) general inverse of any non-decreasing function H : (a; b) -R, 1 § a † b § + 1 , is denoted by H -(x) := inf t y P (a; b) : H(y) • xu;

x P R, w ith the convention that the infi mum over an empty set is 1 . When dealing w ith some multivariate distribution function H : R d -R w ith marginals H 1 ; : : : ; H d , we shall w rite H -(x) := H - 1 (x 1 ); : : : ; H - d (x d ) for any x := (x 1 ; : : : ; x d ) P R d . Finally, the minimum (resp. maximum) of two real numbers x and y is denoted by x ^y (resp. x _ y).

Survey sampling

In this section we recall a few essential defi nitions and set out the notations relative to survey sampling. M ore details about the ins and outs of these concepts can be found in Section 5.1.1 of Chapter 5.

Population, sample, inclusion probabilities and indicators

H ere and throughout, we consider a finite population of size N • 1, denoted by U N := t 1; : : : ; N u. We call a sample of (possibly random) size n § N , any subset s := t i 1 ; : : : ; i n ( s) u in P(U N ) w ith cardinality n = : n (s) less than N . A sampling scheme (design/ plan) w ithout replacement is determined by a probability distribution R N on the set of all possible samples s P P(U N ). For any i P t 1; : : : ; N u, the follow ing quantity, generally called (fi rst order) inclusion probability, i (R N ) := P R N (i P S) ; is the probability that the unit i belongs to a random sample S draw n from distribution R N . In vectorial form, we shall w rite (R N ) := ( 1 (R N ); : : : ; N (R N )). First order inclusion probabilities are assumed to be strictly positive in the subsequent analysis: @ i P t 1; : : : ; n u, i (R N ) °0. A dditionally, the second order inclusion probabilities are denoted by i ; j (R N ) := P R N (i ; j ) P S 2 ; for any i j in t 1; : : : ; N u 2 . When no confusion is possible, we shall fail to mention the dependence in R N w hen w riting the fi rst/ second order probabilities of inclusion. The information related to the observed sample S Ä t 1; : : : ; N u is encapsulated by the random vector := ( 1 ; : : : ; N ), w here i = # 1 if i P S 0 otherw ise.

The distribution of the sampling scheme has 1-dimensional marginals that correspond to the Bernoulli distributions B( i ), 1 § i § N , and covariance matrix given by N := i ; j i j ( 1 § i ; j § N .

N otice incidentally that, equipped w ith these notations, we have

∞ N i = 1 i = n (S).
The superpopulation model we consider here stipulates that a real-valued random variable X w ith distribution P and cdf F is observable on the population U N , i.e. X 1 ; : : : ; X N are iid realizations draw n from P. In practice, it is customary to determine the fi rst order inclusion probabilities as a function of an auxiliary variable, w hich is observed on the entire population. H ere, it is denoted by W w ith distribution P W . H ence, for all i P t 1; : : : ; N u we can w rite i = (W i ) for some link function (.). When W and X are strongly correlated, thus proceeding helps select more informative samples and subsequently reduce the variance of estimators (we refer to Section 5.1.1.3 of Chapter 5 for a more detailed discussion on the use of auxiliary information in survey sampling). One may refer to [START_REF] Cochran | Sampling techniques[END_REF]; [START_REF] Gourieroux | Théorie des sondages[END_REF]; [START_REF] Deville | Réplications d'échantillons, demi-échantillons, Jackknife, bootstrap dans les sondages[END_REF] for accounts of survey sampling techniques.

A crucial example: the Poisson survey scheme

Though of extreme simplicity, the Poisson scheme (w ithout replacement) plays a crucial role in sampling theory, insofar as it can be used to approximate a w ide range of survey plans. This is indeed a key observation to establish general asymptotic results in the survey context, see H àjek (1964), Chapter 5 and Section 6.3 of the present chapter. For such a plan, denoted by T N , the i 's are independent Bernoulli random variables w ith parameters p 1 ; : : : ; p N in (0; 1). Thus, the fi rst order inclusion probabilities fully characterize such a plan. Observe in addition that the size n (S) of a sample generated this way is random and goes to infi nity as N -+ 1 w ith probability one, provided that min 1 § i § N p i remains bounded away from zero.

The Horvitz-Thompson empirical measure

We recall that the H orvitz-Thompson estimator of the empirical measure

P N := 1 N N ∏ i = 1 X i
based on the survey data described above is defi ned as follow s (H orvitz and Thompson, 1951):

P ( R N ) R N := 1 N N ∏ i = 1 i i X i = 1 N ∏ i PS 1 i X i ;
w here the subscript R N stipulates that the vector := ( 1 ; : : : ; N ) is in correspondence w ith a sample S draw n at random from distribution R N , and the superscript (R N ) indicates that the inclusion probabilities used in the formula are those of the design R N . When there is no ambiguity, we shall simplify notations and w rite P N instead of P ( R N ) R N . We highlight the fact that, conditional on the complete set of observations t (X i ; W i ); 1 § i § N u, the latter is an unbiased estimator of P N , although it is not a probability measure. Its (pointw ise) consistency and asymptotic normality are established in [START_REF] Robinson | On the convergence of the H orvitz-Thompson estimator[END_REF] and [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF]. Limit results of functional nature are established in [START_REF] Gill | Large sample theory of empirical distributions in biased sampling models[END_REF] for specifi c biased sampling models (see also Breslow andWellner, 2007, 2008;[START_REF] Sabourin | Dirichlet M ixture model for multivariate extremes[END_REF][START_REF] Bertail | Empirical processes in survey sampling[END_REF]. The weighted quantity F N (x) := P N ( 1 ; x] is naturally different from the empirical cumulative distribution function of the observations, F n (x) := n 1 ∞ i PS I t X i § xu namely, w hose asymptotic behavior is investigated in [START_REF] Bonnéry | Propriétés asymptotiques de l'échantillon dans le cas d'un plan de sondage informatif[END_REF]. It is then straightforward to deduce the follow ing (unbiased) estimate of the probability of exceedance F(x) := P (X °x), x P R, given by:

F N (x) := 1 N N ∏ i = 1 i i I t X i °xu = 1 N ∏ i PS 1 i I t X i °xu. (6.1)

Tail index inference -the Hill estimator

In a w ide variety of situations, it is appropriate to assume that a statistical population is described by a heavy-tailed probability distribution (the fi eld of heavy-tail analysis is well depicted in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]. A distribution w ith Pareto-like right tail is any probability measure P on R w ith cdf F such that for all x P R, 1 F(x) = F(x) = x 1= L(x); (6.2) w here °0 is the extreme value index (EVI) of distribution P and L(x) is a slowly varying function, i.e. a function such that L(t x)=L(x) -1 as x -+ 1 for all t °0. N otice that instead of the EVI, focus is often on := 1= , the tail index of the distribution P. Functions of the form introduced in Equation (6.2) are said to be regularly varying w ith index 1= ; the set of such functions is denoted by R 1= . One may refer to [START_REF] Bingham | Regular variation. Encyclopedia of M athematics and its applications[END_REF] for an account of the theory of regularly varying functions. The H ill estimator (H ill, 1975) provides a popular way of estimating the EVI . Its asymptotic behavior and the practical issues related to its computation are well-documented in the literature, see for instance Resnick (2007, Chapter 4) and the references therein. Given an iid population X 1 ; : : : ; X N of size N • 1 draw n from P and K P t 1; : : : ; N 1u largest observations, it is w ritten

H K ; N := 1 K K ∏ i = 1 log X N i + 1; N X N K ; N ; (6.3)
w here X 1; N § § X N ; N denote the order statistics related to the population. Whereas the theory has been extensively developed in the case w here the observations are independent and identically distributed (including questions related to the choice of K in Equation ( 6.3)), to the best of our know ledge the H ill procedure has received no attention w hen data arise from a general survey. We point out that there exist alternative methods for tail index or EVI estimation, refer for instance to Beirlant et al. (2004, Chapter 4) for further details. The argument of the subsequent analysis paves the way for studying extensions of such techniques in the context of survey sampling models.

t h e h i l l est i mat o r i n su r v ey sa mpl i n g

Placing ourselves in the framework described in Section 6.1.1, we shall denote by X 1; n § § X n ;n the order statistics related to the survey sample (X i 1 ; : : : ; X i n ), w here n = n (S) may be random. When unit j is such that X j = X i ; N , the i -th largest observation in the population, 1 § i ; j § N , its inclusion indicator and probability are denoted by i ; N = j and i ; N = j respectively. Similarly, we w rite i ; n := j w hen X i ; n = X j , 1 § i ; j § n . A s a general rule, indexes in uppercase shall designate the full population, as opposed to those in lowercase, w hich shall refer to the sample. We assume in addition that the distribution function F has the semi-parametric form set out in Equation (6.2) w ith unknow n parameter °0 and, for the sake of simplicity, that its support is included in (0; + 1 ]. Because it is destined to be extensively used in the sequel, we also introduce the tail quantile function, w ritten for all x P [1; + 1 ] as U(x) := F -1 1 x .

A ssumpt i on 6.1 There exist °0 and N 0 P N such that for all N • N 0 and i P U N , i ° .

A ssumpt i on 6.2 There exists ` † + 1 such that we almost-surely have @N • 1, max 1 § i ; j § N i ; j i j § ǹ .

A ssumption 6.1 guarantees that fi rst order inclusion probabilities do not vanish asymptotically, w hile A ssumption 6.2 corresponds to the situation w here the second order inclusion probabilities are not too different from those in the case of independent sampling (it is thus fulfi lled by the Poisson design, see Section 6.1.1.2).

Remar k 6.3 -On Assumption 6.1 and Assumption 6.2. The two assumptions introduced herein-before are rather mild and are fulfi lled in a w ide variety of situations. Indeed, A ssumption 6.2 is standard in asymptotic analysis of sampling techniques, see H artley and [START_REF] Rao | Sampling w ith unequal probabilities and w ithout replacement[END_REF][START_REF] Àjek | A symptotic theory of rejective sampling w ith varying probabilities from a fi nite population[END_REF] for instance. A s for A ssumption 6.1, recall that i = (W i ) with W an auxiliary variable and (.) a link function. Then, it is fulfi lled as soon as (.) is continuous and the support of P W is a compact subset of (R + ) d , w here d denotes the dimension of the random vector W and R + the set of positive real numbers.

Given this framework, follow ing in the footsteps of Resnick (2007, Section 4.4.1), the consistency of H K ; N can be handled by exploiting the properties of regularly varying distributions. Indeed, under the heavy-tail assumption in Equation (6.2), provided that K -+ 1 and K=N -0 as N -+ 1 , we have

N K P X U(N =K) P . v - N -1 1= (.)
in the space of Radon measures on (0; + 1 ]. There, " v -" stands for the vague convergence of measures 1 and 1= (.) is such that for all x °0, 1= (x; 1 ] = x 1= (see Resnick, 2007, Theorem 3.6 for instance). Its empirical counterpart in the population, usually called the tail empirical measure, is defi ned as follow s:

N := 1 K N ∏ i = 1 X i =U ( N =K ) .
1. Recall that, in the space of non-negative Radon measures on (0; + 1 ], a sequence ( m ) m • 1 is said to converge vaguely to iff for any compactly supported continuous function h : (0; + 1 ] -R, we have:

≥ + 1 0 h(x) m (dx) - ≥ + 1 0 h(x) (dx) as m -+ 1 .
When replacing U(N =K) by its estimate U N (N =K) in the expression above and assuming that K = K(N ) -+ 1 w here K=N -0 as N -+ 1 , it can be show n that it converges to 1= in probability (Resnick, 2007, Equation (4.21)). Since we have

H K ; N = ª 1 1 N X N K ; N U(N =K) (x; + 1 ] dx x and = ª 1 1 1= (x; + 1 ] dx x ;
the asymptotic properties of N naturally convey the consitency of the H ill estimator. Generalizing this result to the Horvitz-Thompson tail empirical measure

N = 1 K N ∏ i = 1 i i X i =U N ( N =K ) = 1 K ∏ i PS 1 i X i =U N ( N =K ) (6.7)
would then yield the theorem below (see the proof in Section 6.6). It reveals that, in regard to the asymptotic statistical estimation of the EVI , the H orvitz-Thompson variant of the H ill estimator H K ; N is consistent.

Th eor em 6.4 -Consistency. Let K = K(N ) be a sequence of integers such that K -+ 1 and K=N -0 as N ; n -+ 1 . Provided that A ssumption 6.1 and A ssumption 6.2 are fulfi lled, we then have, as N and n tend to + 1 :

H K ; N P -. (6.8)

a sympt o t i c n o r ma l i t y o f H K;N

Whereas the consistency of the standard H ill estimator in Equation ( 6.3) can be proved for any sequence K going to infi nity at a reasonable rate, asymptotic normality cannot be guaranteed at such a level of generality. H igher-order regular variation properties of the heavy-tail model in Equation (6.2) are required (de H aan [START_REF] Peng | Comparison of tail index estimators[END_REF][START_REF] Stadtmüller | Generalized regular variation of second order[END_REF]. M ore specifi cally, consider the hypothesis below, referred to as the Von M ises condition [START_REF] Goldie | Slow variation w ith remainder: theory and applications[END_REF].

A ssumpt i on 6.5 The regularly varying tail quantile function U P R w ith °0 is such that there is a real parameter † 0, referred to as the second order parameter, and a positive or negative function A w ith lim x -+ 1 A (x) = 0 such that for any t °0,

1 A (x) U(t x) U(x) t - x -1 t t 1 ; or equivalently 1 A 1 F( x ) F(t x) F(x) t 1= - x -1 t 1= t = 1 .
This condition simply establishes some constraints about the slow ly varying function L(.) in Equation (6.2) to ensure its infl uence vanishes quickly enough not to interfere w ith the Pareto form x 1= of F.

The limit distribution of the standard H ill estimator in Equation ( 6.3) has been investigated by means of Rényi's exponential representation of log-spacings under A ssumption 6.5. Of course, this condition can hardly be checked in practice and the choice of the number of extremal observations is generally selected so as to minimize an estimate of the asymptotic mean squared error (M SE), see Section 6.4 and the references therein.

Remar k 6.6 -On Hill and the tail empirical process. Other approaches than the Rényi decomposition in log-spacings have been developed to prove the asymptotic normality of the H ill estimator H K ; N (see [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF], Chapters 4 and 9 and the references therein). A long the lines of the study of empirical processes in Chapter 5, the version presented at length in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF] involves the preliminary study of the tail empirical process

T N := ? K N 1= (x 1= ; 1 ]; x • 0;
from w hich the asymptotic properties of the H ill estimator are later deduced. We refer to Theorem 9.1 and Section 9.1.2 in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF] for more details on this seemingly simple but actually quite intricate procedure.

Unfortunately, contrary to the classical empirical process, the asymptotic properties of T N cannot be extended to its H orvitz-Thompson equivalent. This is essentially due to the fact that the population U N contains a finite number of observations. H ence, there is always a maximum X N ; N † 1 bounding P N and sampling fails to distinguish between a distribution w ith fi nite support such as those in the Weibull domain of attraction and a heavy-tailed distribution w ith no endpoint (see Chapter 2 for an introduction to extreme value theory and maximum domains of attractions). A ctually, these arguments are exactly the same as those introduced w hen discussing the applicability of bootstrap in extreme value analysis. Indeed, as explained in Remark 5.7 of Chapter 5, survey sampling under a superpopulation model can be viewed as a generalization of weighted bootstrap. The interested reader may refer to Resnick (2007, Section 6.4) for a brief introduction to the difficulty of bootstrapping heavy-tailed phenomena.

In this section, we shall aim at proving fi rst that under Poisson survey schemes, the H orvitz-Thompson version of the H ill estimator computed on the sample is asymptotically close to its standard version calculated over the entire population. This result is next extended to rejective sampling plans through a coupling argument, similar to that used in H àjek (1964) and in Chapter 5.

The case of the Poisson survey scheme

In this section we assume that the vector corresponds to that of a Poisson survey scheme, such as depicted in Section 6.1.1.2. The distribution of this design is denoted by T N and the fi rst order inclusion probabilities by p 1 ; : : : ; p N . Under this setting, the H orvitz-Thompson variant of the H ill estimator is naturally denoted by H p K ; N and the i 's in Equation (6.6) are to be replaced by the corresponding p i 's. In addition, just like we previously set i = (W i ), we w rite p i = p(W i ) for all i P U N and p the Poisson link function. In keeping w ith the results obtained in Chapter 5, so as to prove the asymptotic normality of H p K ; N , we shall require the p i 's to fulfi ll A ssumption 6.1 w ith lower bound p and the auxiliary variable from w hich they are built to satisfy the condition below.

A ssumpt i on 6.7 The random vectors W 1 ; : : : ; W N are iid w ith continuous distribution P W on W Ä R d , d-variate cdf F W w ith marginals F W 1 ; : : : ; F W d and density f W . The joint distribution of the entailed iid sequence t (X i ; W i ); 1 § i § N u is denoted by P X ; W w ith corresponding cdf F X ; W .

The follow ing result reveals that under the Poisson survey scheme, w hen based on the K largest values among the w hole population X 1 ; : : : ; X N , H p K ; N converges at the same rate (1= ? K namely) to the same limit distribution as H K ;N , up to a multiplicative term in the asymptotic variance induced by the sampling scheme. Further details about the convergence of the classical H ill estimator can be found e.g. in de H aan and Peng (1998, Theorem 1) and Resnick (2007, Section 9).

Th eor em 6.8 -Limit distribution in the Poisson survey case. Suppose that A ssumption 6.5 is fulfi lled by the underlying heavy-tailed model and that A ssumption 6.1 is satisfi ed by the considered sequence of Poisson inclusion probabilities p 1 ; : : : ; p N , N • 1, constructed from some set of auxiliary variables as in A ssumption 6.7. Further assume the conditions introduced herein-after.

i ) The marginal cdf F is absolutely continuous w ith respect to the Lebesgue measure w ith density f . survey scheme has been controlled. Then, follow ing in the lines of a Lindeberg-Feller theorem for independent and non-identically distributed variables (Feller, 1971, Theorem 3, p.262), we exhibit some suffi cient conditions (namely i ), i i ) and i i i ) in Theorem 6.8) under w hich the conditional variance has a fi nite limit in probability relative to t (X i ; W i ); 1 § i § N u. Provided that they are fulfi lled, Q

N converges weakly to a centered Gaussian distribution w ith variance 2 ( 2 p 1). This lets us consider Q

( 2) N and Q

( 3) N as independent random variables (one depends on the data and the other on the survey scheme). Thus, the limit distribution of their sum is simply the sum of their limit distributions, thereby yielding Proof 6.6.2.

Remar k 6.9 -On the asymptotic variance. Looking at the variance term in Proof 6.6.2 of Theorem 6.8, we see that the infl uence of the survey scheme is encapsulated by the multiplicative term 2 p • 1. Ideally, we would like to have at our disposal inclusion probabilities for w hich 2 p is as close to 1 as possible. In that case, the H orvitz-Thompson version of the H ill estimator would perform as well as its population equivalent. For some chosen expected sample size n := E (n (S)), they would solve the follow ing optimization program:

min p ( w ) ª W 1 p(w ) c X ; W (1; F W 1 (w 1 ); : : : ; F W d (w d )) d π j = 1 f W j (w j ) dw 1 : : : dw d 1 subject to N ∏ i = 1 p(W i ) = n ;
provided the ensuing sequence p 1 ; : : : ; p N satisfies A ssumption 6.1.

Extension to rejective sampling schemes

We now show how the result stated in Theorem 6.8 can be extended to an important class of survey plans, namely rejectivesampling schemes. For the sake of clarity, we fi rst provide a brief description of the latter, refer to H àjek (1964) and [START_REF] Berger | Rate of convergence to normal distribution for the H orvitz-Thompson estimator[END_REF] for further details.

Fix n § N and consider a vector ( 1 ; : : : ; N ) of fi rst order inclusion probability. The rejective sampling, sometimes referred to as conditional Poisson sampling (CPS in short), exponential design w ithout replacement or maximum entropy design [START_REF] Tillé | Sampling algorithms[END_REF], is the sampling plan R N w hich picks samples of fi xed size n (S) := n in order to maximize the entropy measure H(R N ) = ∏ t sPP ( U N ) : #s= n u R N (s) log R N (s) subject to the constraint stipulating that its vector of fi rst order inclusion probabilities coincides w ith ( 1 ; : : : ; N ). It can be implemented in two steps, as follow s.

1. Draw a sample S w ith a Poisson sampling plan (w ithout replacement), w ith properly chosen fi rst order inclusion probabilities (p 1 ; : : : ; p N ). The representation is called canonical if ∞ p i = n. In that case the relationships between p i and i , 1 § i § N , are established in H àjek (1964). 2. If n (S) n , then reject it and go back to step one, otherw ise stop. The vector (p 1 ; : : : ; p N ) must be chosen in a way that the resulting fi rst order inclusion probabilities coincide w ith 1 ; : : : ; N , by means of a dedicated optimization algorithm, see [START_REF] Tillé | Sampling algorithms[END_REF]. The corresponding probability distribution is given by: @ s P P(U N ), (1 p i ) I t #s = n u.

Refer to H àjek (1964, p. 1496) for more details on the p i 's.

Turning now to the extension of the result stated in Theorem 6.8 for the Poisson survey scheme to the case of rejective sampling, we introduce the follow ing quantities: @ K § N , D K ; N (R N ; T N ) := r K ; N (R N ; ) H K ; N r K ; N (T N ; p) H p 2 i (1 p i ).

We assume that both R N and T N fulfi ll A ssumption 6.1 for minoring constants and p respectively and that the Poisson inclusion probabilities further satisfy the follow ing condition.

A ssumpt i on 6.10

lim sup N -+ 1 1 N N ∏ i = 1 p i (T N ) † 1.
N otice that, in this situation, d N = o(1=K) and pN is bounded. In addition, as show n in H àjek (1964) (see p.1510 therein), the decomposition below holds for all i P t 1; : : : ; N u:

p i i = pN p i d N + o(1=d N ) p i (1 i ).
This roughly means that the inclusion probabilities of the rejective sampling scheme are very close to those of the underlying Poisson design from w hich it was built. So close in fact that D K ;N (R N ; T N ) and r K ; N (R N ; T N ) asymptotically vanish. Therefore, as revealed by the follow ing result, Theorem 6.8 also holds w hen the sample is constructed w ith a rejective plan.

Th eor em 6.11 -Limit distribution in the rejective survey case. Suppose that all the conditions required in Theorem 6.8 hold together w ith A ssumption 6.10. Then, for f W j (w j ) dw 1 : : : dw d and provided that K -+ 1 as N -+ 1 so that ? KA (N =K) -for some constant P R, we have the convergence in distribution as N -+ 1 : ? K (H K ; N ) Ò N 1 ; 2 2 p . (6.12)

The proof of this theorem is available in Section 6.6. N otice that the limit variance does not depend on the inclusion probabilities 1 ; : : : ; N , but on those of the underlying Poisson design, p 1 ; : : : ; p N namely. In that sense, this result is very similar to those obtained in Chapter 5: the asymptotic properties of the rejective sampling scheme are intricately linked to the Poisson plan w ith w hich it is coupled.

6.4 pr ac t i c a l i ssu es a n d i l l u st r at i v e exper i men t s 6.4.1 On the choice of an optimal k A ll results presented in the previous section depend on some appropriate number K of largest observations in the population X 1 ; : : : ; X N . Unfortunately, the estimated tail quantile X N K ; N from w hich H K ; N is computed may not be included in the sample. H ence, we need to choose a number k of largest values in the sample to w hich we may associate some K that respects the necessary conditions for consistency and asymptotic normality to hold (K = K(N ) -+ 1 and ? KA (N =K) - † 1 as N -+ 1 ). Recall that we defi ned N in Equation (6.5), a non-injective random map that assigns an index k in the sample to any index K in the population so that X n k ; n = U N (N =K). Setting In practice, choosing an optimal threshold X N K ; N is already complicated in the iid case. M any techniques have been proposed in the literature, often based on the minimization of the M SE (see [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF][START_REF] Gomes | The bootstrap methodology in statistics of extremeschoice of the optimal sample fraction[END_REF][START_REF] Goegebeur | Linking Pareto-tail kernel goodness-of-fi t statistics w ith tail index at optimal threshold and second order estimation[END_REF] and the references therein). Since they involve in general the estimation of the second order parameter , w hich goes beyond the scope of our analysis, we leave such considerations for future research. In the meantime, we propose to simply rely on heuristics such as the stability of the H orvitz-Thompson version of the H ill estimator around the appropriate k.

Numerical experiments

A s a complement to the theoretical results established in the previous section, we provide here some illustrations based on simulations. In particular, we consider a model that does not fulfi ll condition i i ) in Theorem 6.8, w hich requires the absolute continuity of F X ; W . The encouraging empirical results we obtain nonetheless give hope that this assumption may be relaxed. Such desirable extensions are left for future research.

Experiment setting

Simulations were based on the follow ing model, chosen for its simplicity in terms of both computation and interpretation: X =

(1 F W (W )) 1 ; °0; W ; TN( ; 2 W ; w ; w ); w here X is the variable of interest, W the auxiliary information w ith cdf F W and TN( ; 2 W ; w ; w ) refers to the truncated N ormal distribution over [w ; w ], w ith expectation and variance 2 W . Under such a representation, the distribution of X is a General Pareto w ith scale parameter 1 and EVI , i.e. F(x) = 1 (1 + x) 1= . This is a well-know n family of distributions, the second order properties of w hich are easily derived (De H aan and Ferreira, 2006, Section 3.2). In particular, we have For each scenario, we drew 1000 samples according to a rejective sampling scheme, follow ing A lgorithm 5.9 in [START_REF] Tillé | Sampling algorithms[END_REF]. The true inclusion probabilities, denoted by i , 1 § i § N , were deduced from their Poisson equivalents defi ned in Equation (6.13) using a M onte-Carlo approximation technique, based on the repetition (10 5 times) of the basic algorithm stated in Section 6.3.2. N otice that since rejective sampling is a Poisson sampling conditioned upon its size, we have (p i = 1) Ò ( i = 1).

The H orvitz-Thompson version of the H ill estimator was calculated using Equation (6.6) on each of the 1000 simulated samples. The ensuing results are presented herein-after.

Experiment results

Illustrations of the behavior of H K ; N in a neighborhood of K (N ) as N grow s are presented in Figure 6.1 for each scenario. A s a complement, we display in Figure 6.2 the empirical estimator of 2 2 p in a neighborhood of K (N ) for each scenario and each sample size as N increases; for large populations, this gives some indication as to the form of the variance of ? K H K ; N .

Since we only considered one fi xed population, these results should be interpreted w ith caution: they only illustrate the behavior of ? K H K ; N H K ; N given the full vector (X 1 ; W 1 ); : : : ; (X N ; W N ). We can see on Figure 6.1 that the H orvitz-Thompson version of the H ill estimator behaves perfectly well, even if the condition i i ) in Theorem 6.8 is not satisfi ed. In particular, both its mean and variance decrease w ith N , more quickly w hen n = 0.5 N than w hen n = 0.1 N , and the distribution of the estimator appears to be symmetric around its classical version, w hich advocates normality. Scrutinizing Figure 6.2, we can see that the asymptotic variance of ? K H K ; N H K ; N seems indeed to be fi nite, depending on both the sample size and 2 (the smaller the EVI, the smaller the variance). This gives hope that the existence of a joint density may not be necessary for the asymptotic normality of our estimator to hold. Fi gur e 6.2 -Estimation of 2 2 p based on the 1000 simulated samples for = 0.1 (dotted lines) and = 0.5 (plain lines) under scenarios S 1 (grey lines), S 2 (black lines) and S 3 (red lines)

di sc u ssi o n

In an attempt to start adapting classical extreme value analysis to the case of survey data, we introduced in Section 6.2 a H orvitz-Thompson version of the w idely celebrated H ill estimator of the extreme value index. A fter exhibiting some suffi cient hypotheses on both the superpopulation model and the sampling scheme for the consistency of this novel statistic to hold in Section 6.2.2, we proved in Section 6.3 its asymptotic convergence to a Gaussian distribution w hen the survey design is of Poisson type. The exhibited rate of convergence appeared to be the same as the standard H ill estimator, namely ? K, and the asymptotic variance was simply perturbed by a multiplicative constant depending solely on the sampling plan. In view of the empirical results presented in Section 6.4, hope is that the existence of a density copula linking those of the variable of interest and of the auxiliary information is not necessary for the asymptotic normality to be true. This encourages further research to try and relax this assumption. Other improvements may be brought to these fi rst results, for instance situations w here the true inclusion probabilities are not available and replaced by an estimated version issued from post-calibration methods could be inspected. The assumptions made on the fi rst and second order inclusion probabilities are also quite restrictive. Follow ing in the lines of [START_REF] Boistard | A pproximation of rejective sampling inclusion probabilities and application to high order correlations[END_REF], higher order conditions could permit to get rid of A ssumption 6.1. This remark is also true concerning the results obtained in Chapter 5. Sampling designs of other nature than the Poisson type may be considered as well, especially complex ones such as that used in the IN CA 2 database.

Though we could not directly apply our fi ndings to dietary risk analysis, they could be of great interest in the context of big data management. Indeed, it is more and more frequent to meet databases that increase regularly (in fi nance, information about the markets is stocked every hour at least) and cannot be saved, thus analyzed, on a single computer. When accessing such huge fi les becomes a challenge, sampling is a natural solution. In this context, the superpopulation model and the asymptotic nature of our results are perfectly relevant. M oreover, the analyst has then complete control over the survey scheme they desire to adopt, w hich is typically rarely the case w ith institutional data. H ence, the Poisson and rejective schemes, w hich are not of frequent use in practice, are revealed as especially convenient for such types of analyses. With these potential assets in mind, we hope that this preliminary step towards the elaboration of a new extreme value theory for survey data w ill engender further research in the near future. We start by establishing the follow ing intermediate results, in order to describe next the limit behavior of the H orvitz-Thompson tail empirical process.

First, we introduce the point measure: =K ) .

˜ N := 1 K N ∏ i = 1 i i X i =U ( N
N otice that the point measure N can be obtained from the latter by replacing the threshold U(N =K) by the empirical counterpart U N (N =K).

Lemma 6.12 Under the assumptions of Theorem 6.4, as N ; n and K tend to infi nity so that K=N -0, we have: (6.14) w here " Ò " denotes weak convergence in the space of positive Radon measures on (0; + 1 ].

˜ N Ò 1= ;
Pr oof Consider fi rst the tail empirical process

N := 1 K N ∏ i = 1 X i =U ( N =K ) .
We shall prove that for any t °0, as N ; n and K tend to + 1 , provided K=N converges to 0, D N (t ) := ˜ N (t ; + 1 ] N (t ; + 1 ] -0 in L 2 . (6.15) Indeed, @ t °0, provided A ssumption 6.1 and A ssumption 6.2 hold, we have

E (D N (t )) = 1 K N ∏ i = 1 E E i t (X i ; W i ) 1 § i § N u i 1 ! I t X i °t U(N =K)u ! = 0; together w ith E D N (t ) 2 = 1 K 2 N ∏ i = 1 E E i i 1 2 t (X i ; W i ) 1 § i § N u ! I t X i °t U(N =K)u ! + 2 K 2 ∏ 1 § i j § N E E i i 1 j j 1 t (X i ; W i ) 1 § i § N u I X i ^Xj °t U(N =K) ( = 1 K 2 N ∏ i = 1 E 1 i 1 I t X i °t U(N =K)u + 2 K 2 ∏ 1 § i j § N E i ; j i j i j I X i ^Xj °t U(N =K) ( § 1 1 1 K 2 N ∏ i = 1 P (X i °t U(N =K)) + `=n 2 2 K 2
∏ 1 § i j § N P X i ^Xj °t U(N =K) = : `N ; K (t ).

Since F is supposed to be regularly varying w ith index 1= and K=N -0, we have P (X i °t U(N =K)) t 1= K=N for all i P t 1; : : : ; N u as N and K go to infi nity. It follow s that as N ; n ; K -+ 1 , `N ; K (t )

1 1 t 1= 1 K + `=n 2 t 2= 1 1 N -0.
H ence, the convergence in Equation (6.15) is proved and the desired convergence w ill then result from the fact that N Ò 1= , see Resnick (2007, Theorem 4.1).

We next prove the lemma below, claiming that the threshold U N (N =K) and U(N =K) are asymptotically equivalent in probability. Lemma 6.14 Under the assumptions of Theorem 6.4, we have: as N ; n and K tend to infi nity, U N (N =K) U(N =K) -1 in probability. (6.16)

Pr oof This is a straightforward consequence of Lemma 6.12. Indeed, for all " °0, Therefore, by virtue of the lemma previously established, we asymptotically have: ˜ N (1 + " ; + 1 ] -1=(1 + " ) 1= † 1 and ˜ N (1 + " ; + 1 ] -1=(1 " ) 1= °1 in probability. Combined w ith the bound above, this proves the lemma.

Equipped w ith these preliminary results, we may now tackle the proof of Theorem 6.4, w hich is recalled below for convenience.

Th eor em -Consistency. Let K = K(N ) be a sequence of integers such that K -+ 1 and K=N -0 as N ; n -+ 1 . Provided that A ssumption 6.1 and A ssumption 6.2 are fulfi lled, we then have, as N and n tend to + 1 : H K ; N -in probability.

(6.17)

Pr oof The consistency result can be established by follow ing line by line the proof for the consistency of the H ill estimator in the iid situation given in [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF]: by a continuous mapping theorem argument, one derives from Lemma 6.12 and Lemma 6.14 that the H orvitz-Thompson tail empirical process N converges in probability to 1= in the space of positive Radon measures on (0; + 1 ]. Then, it classically suffi ces to integrate the tail measures against dt =t (cf. Equation (6.4) and Equation (6.6)) and apply the convergence previously mentioned. See Resnick (2007, Section 4.4.1) for further details.

6.6.2 Limit distribution of H p K;N in the Poisson survey case Before handling Theorem 6.8, we start by establishing three intermediate results, w hich are introduced herein-after. The fi rst lemma claims that the quantity r K ; N defi ned in Equation (6.11) converges to 1 in probability. Lemma 6.17 Let 1 ; : : : ; N and p 1 ; : : : ; p N be respectively the inclusion indicators and probabilities of a Poisson survey plan in some population U N := t 1; : : : ; N u. Then, provided A ssumption 6.1 holds, for any K P t 1; : : : ; N u such that K := K(N ) - Pr oof Recall that under a Poisson sampling plan, all 1 ; : : : ; N are independent.

We had set E i (X i ; W i ) := p i for all i P t 1; : : : ; N u, hence

E (r K ; N ) = 1 K K ∏ i = 1
E E N i + 1; N (X 1 ; W 1 ); : : : ; (X N ; W N ) p N i + 1; N ! = 1.

In addition, V i (X i ; W i ) := p i (1 p i ) for all i P t 1; : : : ; N u, therefore Under A ssumption 6.1 it is clear that V (r K ; N ) = O( 1 K ) w hen K -N -1 + 1 . This concludes the proof.

We now move to the quantity ? K r K ; N H p K ; N H K ; N appearing in Equation (6.10). The result below reveals that is vanishes asymptotically. Lemma 6.19 Suppose that A ssumption 6.5 is fulfi lled by the underlying heavytailed model and that A ssumption 6.1 is satisfi ed by the considered sequence of Poisson inclusion probabilities p 1 ; : : : ; p N , N • 1. A ssume also that K -+ 1 as N -+ 1 so that ? KA (N =K) -for some constant P R. Then we have Pr oof Let us start by introducing the weighted versions of log-spacings in the population, given by @ i P t 1; : : : ; N u; i := i (log X N i + 1; N log X N i ; N ) .

Let K P t 1; : : : ; N u, these random variables are intrinsically linked to both H K ; N and H p K ; N , given by Equation ( 6.3) and Equation (6.6) respectively. Indeed, they can be expressed as When A ssumption 6.5 is fulfi lled, it is possible to approximate the distribution of the i 's corresponding to the K + 1 largest values. Denoting by E 1 ; : : : ; E K a collection of independent random variables w ith standard exponential distribution, the random variables i are approximately distributed as (6.19) This property is at the basis of most of the asymptotic analyzes that were led concerning H K ; N , see de H aan and Resnick (1998) for more details. A s mentioned in Remark 6.6, alternative approaches taking advantage of the Glivenko-Cantelli and Donsker theorems in the formulation of the H ill estimator in Equation (6.3) were also developed, see [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF] for instance.

H K ; N = 1 K K ∏ i = 1
+ i K + 1 A N + 1 K + 1 ! E i ; 1 § i § K.
Given the decomposition in Equation (6.18), just like r K ; N in Lemma 6.17 the expectation and variance of r K ; N H p K ; N H K ; N are easily derived by conditioning upon the full vector of observations (X 1 ; W 1 ); : : : ; (X N ; W N ). In particular, it is straightforward to see that

E r K ; N H p K ; N H K ; N = E 1 K K ∏ i = 1 1 i i ∏ j = 1 N j + 1; N p N j + 1; N 1 ! i ! = 0.
Turning now to the variance, under A ssumption 6.1, we have

V r K ; N H p K ; N H K ; N = 1 K 2 K ∏ i = 1 E 2 i i 2 i ∏ j = 1 1 p N j + 1; N 1 ! § 1 K 2 K ∏ i = 1 E 2 i p 1 1 i .
To simplify notations, set c = p 1 1 and consider the variable A K ; N = A N + 1 K + 1 involved in Equation (6.19). Using this particular equation, we are able to establish asymptotic properties of the right hand side in the inequality herein above: as N ; K -+ 1 we have

1 K 2 K ∏ i = 1 E 2 i c i 1 K 2 K ∏ i = 1 + i K + 1 A K ; N ! 2 E E 2 i c i 2 c 2 K 2 K ∏ i = 1 1 i + 2 c K 2 (K + 1) 2 A 2 K ; N K ∏ i = 1 1 i 2 + 1 + 4 c K 2 (K + 1) A K ; N K ∏ i = 1 1 i + 1 log K K 2 (2 c 2 ) K 2 1 K 2 (K + 1) 2 c A 2 K ; N K 1 K 2 (K + 1) 4 c A K ; N log K K 2 (2 c 2 ) 1 K 2 c A 2 K ; N 1 K 2 4 c A K ; N .
Because A P R w ith † 0, then A K ; N -0 as N ; K -+ 1 , and we can conclude that V r K ; N H p K ; N H K ; N = o(1=K).

The last intermediate result concerns the quantity Q

( 3) N in Equation (6.10). It claims that the latter converges weakly to a centered N ormal distribution. Lemma 6.21 Suppose that A ssumption 6.1 is satisfi ed by the considered sequence of Poisson inclusion probabilities p 1 ; : : : ; p N , N • 1, constructed from some set of auxiliary variables as in A ssumption 6.7. Further assume the conditions i ) i i i ) introduced in Theorem 6.8. Then, for Pr oof This proof is based on the application of Feller (1971, Theorem 3, p.262) to the collection of random variables t Z i ; N ( ); 1 § i § N u defi ned for all i P t 1; : : : ; N u as follow s: Z i ; N ( ) := 1 ? K 1 i p i I t X i °XN K ; N u; w ith distribution P i only depending on the survey scheme (they are conditioned upon the vectors t (X i ; W i ); 1 § i § N u). Indeed, notice that we have ? K (1 r K ; N ) = N ∏ i = 1 Z i ; N ( ).

In order to apply this theorem, we fi rst have to check the three conditions below.

(C 1 ) For all i P t 1; : : : ; N u, we have E (Z i ; N ( )) = 0 and V (Z i ; N ( )) = 2 i † 1 . (C 2 ) There exists some real constant 2 † 1 such that S 2 N :=

∞ N i = 1 2 i P - N -1 2 .
(C 3 ) For each t °0, we have

∞ N i = 1 ≥ |z |• t S N z 2 P i (dz) P - N -1 0.
Ú Condition (C 1 ) Let us start by calculating the expectation of Z i ; N ( ) for all i P t 1; : : : ; N u. Because the 1 ; : : : ; N are independent random variables w ith respective Bernoulli distributions B(p 1 ); : : : ; B(p N ), it is straightforward to see that E (Z i ; N ( )) = 1 ? K 1 E i t (X i ; W i ) 1 § i § N u p i ! I t X i °XN K ; N u = 0.

A s for the variance, we have

V (Z i ; N ( )) = E Z 2 i ; N ( ) = 1 K E 1 i p i 2 t (X i ; W i ) 1 § i § N u ! I t X i °XN K ; N u = 1 K
1 p i p i I t X i °XN K ; N u = : 2 i † 1 .

Therefore, condition (C 1 ) is fulfi lled.

Ú Condition (C 2 )

We now have to prove that S 2 N converges in probability to a fi nite constant 2 as N tends to infi nity and exhibit the required conditions for this property to hold. First observe that S 2 N :=

N ∏ i = 1 2 i = 1 K N ∏ i = 1 1 p i I t X i °XN K ; N u 1;
w here X N K ; N is a consistent estimator of U(N =K) (Resnick, 2007, Section 4.4.1, p.81). With this remark in mind, we w ill proceed in two steps and successively prove that there exists a real constant 2 °0 such that We shall use this decomposition to prove that S N P -N -1 0. Referring to A ssumption 6.1, it is easy to see that S 0. First choose 0 °0 such that for all 0 † § 0 , |c | § , then take some °0. We need to prove that there exists N 0 P N such that for all N • N 0 , P (|S N | °2 ) § . In order to construct this N 0 , fi rst fi x any °0 such that § 0 . Since N ( ) In fi ne, we can conclude that under all the hypotheses stated in Lemma 6.21, RESUME : Véritable carrefour de problématiques économiques, biologiques, sociologiques, culturelles et sanitaires, l'alimentation suscite de nombreuses polémiques. Dans un contexte où les échanges mondiaux facilitent le transport de denrées alimentaires produites dans des conditions environnementales diverses, où la consommation de masse encourage les stratégies visant à réduire les coûts et maximiser le volume de production (OGM, pesticides, etc.) il devient nécessaire de quantifier les risques sanitaires que de tels procédés engendrent. Notre intérêt se place ici sur l'étude de l'exposition chronique, de l'ordre de l'année, à un ensemble de contaminants dont la nocivité à long terme est d'ores et déjà établie. Les dangers et bénéfices de l'alimentation ne se restreignant pas à l'ingestion ou non de substances toxiques, nous ajoutons à nos objectifs l'étude de certains apports nutritionnels. Nos travaux se centrent ainsi autour de trois axes principaux. Dans un premier temps, nous nous intéressons à l'analyse statistique des très fortes expositions chroniques à une ou plusieurs substances chimiques, en nous basant principalement sur des résultats issus de la théorie des valeurs extrêmes. Nous adaptons ensuite des méthodes d'apprentissage statistique de type ensembles de volume minimum pour l'identification de paniers de consommation réalisant un compromis entre risque toxicologique et bénéfice nutritionnel. Enfin, nous étudions les propriétés asymptotiques d'un certain nombre d'estimateurs permettant d'évaluer les caractéristiques de l'exposition, qui prennent en compte le plan de sondage utilisé pour collecter les données. MOTS-CLEFS : Analyse des risques alimentaires -Apports nutritionnels de long terme -Théorie des valeurs extrêmes -Mesure spectrale -Théorie des sondages -Processus empiriques -Estimation de l'indice de valeurs extrêmes -Ensembles de volume minimum -U-statistiques -Risque-bénéfice
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  RÉGI M ES A L I M EN TA I RES, EXPOSI TI ON I N D I V I D U EL L E ET STA TI STI QU E

  any x P R at w hich the limiting distribution function G is continuous. If such normalizing constants exist, then G is called an extremevaluedistribution and F is said to be in the maximum domain of attraction of G (abbreviated F P M D A (G)). Going back to the tail of the distribution and referring to DeH aan and Ferreira (2006, Theorem 1

  gur e 2.3 -Fluctuations of the test statistic of[START_REF] Beirlant | A goodness-of-fi t statistic for Pareto-type behaviour[END_REF] with k on the 30% largest values of the sample, and the corresponding acceptance regions (light pink area for = p and dark pink area for = 2) for iron, zinc and calcium intakes over 2 days (left hand plots) and 7 days (right hand plots) of observation

  gur e 2.4 -Fluctuations of the estimated second order parameter with k on and the corresponding optimal value (red line) for iron, zinc and calcium intakes over 7 days of observation 3 SI M U LTA N EOU S OV ER-EXPOSU RE TO M A N Y FOOD CH EM I CA L S

  1. Tabl e 3.1 -List of scenarios considered in our numerical experiments; open faces intersecting with supp(Q) are filled in, with the corresponding extreme dependence coefficient r

Fi

  gur e 3.3 -Dependence structure between the 6 nu- trients and contaminants of interest, on k = 564 that maximizes our criterion; arrows indicate extreme dependencies and thenumber of observations within each class is given in parentheses Tabl e 3.5 -Number of times extreme dependencies occur among all thresholds t = n =k, k P [10; n 0.3] (in %)

  Fi gur e 3.4 -Evolution in log-scaleof (k; p H (k)) with thenumber of largest values k, where p H (k) is the number of classes maximizing our criterion for some fixed k. The two dashed lines indicate the location of (k; p H(k)) , whilethegrayed areas highlight regions wherethe16 best criteria areobtained measure Q, obtained for various values of k (grey lines) up to k = 564 (black line), theoptimal number of largest values selected by our criterion; the horizontal dashed line represents asymptotic independence, and the vertical one perfect asymptotic dependence 3.7 d i sc u ssi o n
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  A d 2 := A d 2 (v; r ) := x P S d 1 : d G (v; x) = r ( . Given this representation, the signed distance between any point x P S d 1 and a sub-sphere A d 2 (v; r) is naturally defi ned as d S (x; A d 2 (v; r)) := d G (v; x) r.

ÚÚ

  Step Step two A ffect the data to the class represented by the closest concept vector: for all i P t 1; : : : ; n k u and all h P t 1; : : : ; Hu,

  be chosen. Specifi cally, for H • 2 desired clusters, they are successively selected according to the follow ing recurrence relation

  4.6 -Incomplete Generalized U-statistic. Let B • 1. The incomplete version of the U-statistic in Equation (4.5) based on B terms is defi ned by:

  : : : ; m h ; j u; L = ; yielding an index set D B of cardinality B. For any borelian R Ä R d , the probability that the dietary exposure lies in the region R is estimated by the incomplete U

Further

  

  of the constrained minimization problem in Equation (4.8) can be obtained in two steps, as follow s. Let , in (0; 1) and B • 1.1. Sort the sub-cubes C m , 1 § m § M , so that: together the cubes sequentially, until the incomplete U-statistic estimating the mass of the resulting set exceeds k (B; N ; ), yielding the region:

(

  empirical process can be identifi ed w ith the H orvitz-Thompson version of the empirical cumulative distribution function(cdf) 

  Lemma 5.13 -Limit of the covariance operator. Suppose that A ssumption 5

}R

  

(

  ) R N § }R N T N } 1 § a 2 D (T N ; R N ).Consequently, if the sequences (R N ) N • 1 and (T N ) N • 1 are such that }R N T N } 1 tends to 0 or D (T N ; R N ) -0 as N -1 and if there exists a Gaussian process

  5.1 -Example of the 95% confidence bands of the empirical distribution function in the population F N (black line) constructed on one of the 1000 simulated samples under scenario S 1 with c = 0.1 (dark pink area) and c = 0.5 (light pink area) for N = 5 10 2 (left hand plot) and N = 10 4 (right hand plot)
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 5 pr o o f s a n d su ppl emen t s5.5.1 Limit of the covariance operatorWe shall prove Lemma 5.13, the statement of w hich is recalled below.Lemma Suppose that A ssumption 5.1, A ssumption 5.8 and A ssumption 5

  Consequently, if the sequences (R N ) N • 1 and (T N ) N • 1 are such that }R N T N } 1 -0 or D (T N ; R N ) -0 as N -1 and if there exists a Gaussian process G such that d

R

  

  N (R N ; T N ) := r K ; N (R N ; ) r K ; N (T N ; p); w here H K ; N (respectively r K ; N (R N ; )) refers to the H orvitz-Thompson version of the H ill estimator (resp. of r K ; N in Equation (6.11)) under rejective sampling, and H p K ;N (resp. r K ; N (T N ; p)) to its Poisson counterpart. The corresponding inclusion probabilities are denoted by 1 ; : : : ; N and p 1 ; : : : ; p N respectively. The ensuing approach follow s in the footsteps of H àjek(1964) and relies more specifi cally on the results displayed in Theorem 5.1, p.1508. Let us start by defi ning the quantities d

  p K(k) := ( N ) -(k) :r.s is the ceiling function, it is straightforward to show that the limit results stated in the sections above remains true ) -almost-surely. This result can be naturally used to ground the construction of asymptotic Gaussian confi dence intervals. The only work left is to fi nd a suitable estimator p 2 p of 2 p such that, by virtue of Slutsky's Lemma combined w ith Theorem 6.4, the quantity b p K(k) H k ; n =H k ; n p p would be asymptotically pivotal, distributed as a standard Gaussian random variable as N ; k -+ 1 .

  Average values of H K ; N (red line) and empirical 95% confidence band (pink area) computed on the 1000 simulated samples under scenario S 2 for n = 0.1 N (left hand plots) and n = 0.5 N (right hand plots), then compared to H K ; N (black dotted line) for N = 10 3 (upper plots) and N = 5 10 4 (lower plots)
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 6 pr o o f s a n d su ppl emen t s 6.6.1 Consistency of the Horvitz-Thompson variant of the Hill estimator

V

  

  (w j ) dw 1 : : : dw d and provided that K -+ 1 as N -+ 1 so that K = o(N ), we have the convergence in distribution as N -

  N , this w ill yield the desired result.Let us start w ith S2N . By virtue of the law of large numbers, as N -+ 1 (w j ) dx dw 1 : : : dw d + o P (1).Further set u := N K F(x), then for K := K(N) -+ 1 as N -+ 1 and K = o(N ), under A ssumption i i i ) we have: (w j )du dw 1 : : : dw d + o P (1hich we denote by S N for simplicity. For any fixed N P N and °0, it can be decomposed as follow s: X i °U(N =K)u I t X i °XN K ; N u)

  X i °U(N =K)u I t X i °XN K ; N u) i °U(N =K)u I t X i °XN K ; N =K)u I t X i °(1 + ) U(N =K)u.Denote by c N ( ) the quantity in the right hand part of the last inequality, i.e. N =K)u I t X i °(1 + ) U(N =K)u.A pplying the law of large numbers and recalling that F P R 1= , we get that as N

  exists N 0 P N such that for all N • N 0 , we have P (| N ( ) c | ° ) § . In parallel, since § 0 , we have for all N P N :|S N | § | N ( )| § | N ( ) c | + |c | § | N c | + .This implies that for all N • N 0 ,P (|S N | °2 ) § P (| N ( ) c | + °2 ) = P (| N ( ) c | ° ) § .Since this is true for any °0, this means that S

  consists in verifying that for any t °0, the quantity below, denoted for simplicity by Z N (t ), converges to 0 as N -+ 1 . By defi nition,
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  Tabl e 2.1 -Estimates of the EVI based on the Hill estimator (standard errors in parentheses) and

			associated optimal numbers of largest values		
			k			H k ;n	
	N utrient	2 days		7 days	2 days		7 days
	Iron	693		554	0.268 (0.010)		0.218 (0.009)
	Zinc	19		6	0.158 (0.036)		0.134 (0.055)
	Calcium	336		82	0.192 (0.010)		0.143 (0.016)
				Quantiles		
		H ill (7 days)	H ill (2 days)	LLN (2 days)
	N utrient	95%	99%	95%	99%	95%	99%
	Iron	20.51	29.13	22.36	34.41	19.40	23.53
		(0.014)	(0.029)	(0.017)	(0.034)		
	Zinc	14.59	18.09	17.52	22.60	15; 25	17; 97
		(0.165)	(0.078)	(0.068)	(0.010)		
	Calcium	1427	1798	1479	2014	1371	1645
		(0.007)	(0.019)	(0.010)	(0.027)		

Tabl e 2.2 -Estimates of the 95-th and 99-th percentiles using the Hill estimator (standard errors in parentheses) and the LLN method (in mg/day)

  Typical choices of norms include the L p -norm or the sup-norm L 1 . Then, the homogeneity property stated in Equation (3.

	for all Borel subsets B of d 1 . A simple normalization of S yields the so-termed
	spectral probability measure Q on d 1 ,			
	Q := S=S( d 1 ).		(3.7)
	Let us set ! = Z=}Z} ( 2) and = }Z} ( 1) , then Equations (3.1), (3.6) and (3.7) imply
	t P (! P . ; • t )	v -t -1	S(.);	(3.8)
	P ! P .	• t	D -t -1	
					3) implies
	that			
		T 1 :=	1 b S;	(3.5)
	w here the radius measure 1 , defi ned on (0; 1 ], is such that for all x °0, we have
	1 ((x; 1 ]) = x 1 , and the angle measure S, referred to as the spectral measure, has
	support on d 1 := S d 1 ( 2) X C d and satisfi es
	S(B) =	t x P C d : }x} ( 1) • 1; x=}x} ( 2) P Bu	(3.6)

  ). Therefore, we proposed a natural model of the spectral probability measure as a mixture of angular distributions with supports on each of the 2 d 1 non-empty open faces of the simplex. Tackled from a latent variable point of view, this model provided particularly useful properties, formulated in Proposition 3.1 and Proposition 3.2, that reduced an initially d-dimensional problem to d univariate ones. In particular, we showed that open faces intersecting the support of Q, namely t d 1

h

, h P H u, could be identifi ed by means of a simple functional j ; h

anses.fr/sites/default/files/documents/RSC1205-DossierParticipants.pdf, où sont listées les présentations d'un colloque de mai 2012 dédié à ce sujet). D'un point de vue pratique, cela nécessite de collecter puis d'analyser la composition chimique d'échantillons de fl uides corporels, de cheveux ou de peau d'un nombre important de personnes. Au niveau national, le coût de telles enquêtes peut contraindre la quantité de sondés au détriment de l'effi cacité statistique. En outre, de nombreux éléments chimiques peuvent être assimilés par l'intermédiaire d'autres substances que les aliments (e.g. l'air), or les marqueurs biologiques ne permettent pas de distinguer les diverses sources d'exposition[START_REF] Sirot | Dietary exposure and biomarkers of arsenic in consumers of fi sh and shellfi sh from France[END_REF]. Pour pouvoir étudier exclusivement l'impact de l'alimentation sur l'exposition individuelle, il est possible d'utiliser une méthode alternative où deux bases de données sont combinées, la première listant les habitudes alimentaires d'un ensemble de consommateurs et la seconde indiquant les teneurs en composants chimiques d'une nomenclature fi ne de produits. Les principales caractéristiques de ces données, respectivement dites de consommation et de composition, sont décrites dans les paragraphes suivants.

Beyond its computational effi cacy and simplicity, a crucial advantage of the approach described above lies in its capacity to produce regions w hich can be visually summarized by a binary tree, the terminal leaves of w hich can be described by combining elementary rules of the form " c h °s" or " c h § s" in a hierarchical manner. This point is of major importance w hen designing dietary guidelines to improve nutrition over the population of interest.

pr o o f s a n d su ppl emen t s

M aximal deviation

We start by establishing the follow ing intermediary result, w hich extends Corollary 3 in [START_REF] Clémençon | Ranking and empirical risk minimization of U-statistics[END_REF] to the K-sample situation. Lemma 4.13 Suppose that the hypotheses in Theorem 4.8 are fulfi lled. For all P (0; 1), we have w ith probability at least 1 , Pr oof Set = mint tn 1 =d 1 u; : : : ; tn K =d K uu and let V X

( 1) 1 ; : : : ; X for any P . Recall that the K-sample U-statistic U n ( ) can be expressed as

( 1) 1 ( 1) ; : : : ; X

( 1)

1 ( n 1 ) ; : : : ; X ( K ) K ( 1) ; : : : ; X ( K ) ; P N ), w hich was the purpose of Section 5.2 and Section 5.3.

Simulation-based Gaussian asymptotic confidence regions

A straightforward application consists in the building of Gaussian confi dence regions for the (univariate) empirical cumulative distribution function in the entire population, denoted by F N (x), x P R, w hen the survey scheme is of the rejective type. Indeed, consider the class of functions F := t f x (.) := I t . § xu; x P Ru. Provided A ssumption 5.1 is fulfi lled, it respects the required conditions for Corollary 5.18 to hold (see Van der Vaart, 2000, Example 19.16 for the uniform entropy condition and take H(x) = 1 and = 1 w hen checking condition i ) in Remark 5.15), w hich implies in particular that }G ( R N ) R N } F converges in distribution to }G} F as N -+ 1 ( Van der Vaart, 2000, Corrolary 19.21). This yields the follow ing asymptotic uniform confi dence band of level P (0; 1) for the population cdf F N :

is the H orvitz-Thompson estimator of the cdf based on the rejective sample and q the -quantile of random variable }G} F . Since in practice q is unknow n, it needs to be estimated. It can be achieved by means of M onte-carlo simulations, using a simple technique based on the Cholesky decomposition of the covariance matrix (Kroese et al., 2011, A lgorithm 5.1).

A l gor i t h m 5.24 -Simulation of the limit process G and estimation of q .

1. Choose a grid of real values t x 1 ; : : : ; x K u, K °1, and compute the H orvitz-Thompson estimator of (f x k ; f x k ) for each couple (x k ; x k ) in t x 1 ; : :

w hich quantity vanishes asymptotically under A ssumption 5.1, according to Theorem 5.1, Equations (5.7) and (5.26) in H àjek (1964, p. 1508-1510).

The desired convergence is fi nally established by combining this result w ith Theorem 5.17 and the functional version of Slutsky's theorem (see Theorem 3.4 in Resnick, 2007 for instance).

CLT for Hadamard differentiable functionals

We shall prove Theorem 5.21, the statement of w hich is recalled below.

Th eor em Suppose that the assumptions of Theorem 5.14 hold and that functional T : L Ä `1 (F) -R q is H adamard differentiable at P w ith differential dT P and infl uence function T ( 1) (x; P). Then, as N -+ 1 , we have:

w here G is a Gaussian process w ith covariance operator , as in Equation (5.4).

Pr oof The idea is essentially to apply the H adamard differentiability property to the sequence h N = ? N (P

, w hich converges to h = G in `1 (F) and t N = 1 ? N -0. We thus have, as N -+ 1 : N otice that w hen F P R 1= , the corresponding tail quantile function U is also regularly varying w ith index (Beirlant et al., 2004, Sections 2.3.2 and 2.9.3). The goal pursued here is to estimate the tail parameter based on the survey data X i 1 ; : : : ; X i n and the sampling plan R N .

The Horvitz-Thompson variant of the Hill estimator

N otice fi rst that, under the heavy-tail assumption above, we have:

see Beirlant et al. (2004, Section 2.6) for instance. In the case of the iid population X 1 ; : : : ; X N draw n from P, one classically recovers the celebrated H ill estimator by substituting F w ith the empirical cdf F N in Equation ( 6.4) and taking

for some number 1 § K § N 1 of largest observations, supposedly representative of the tail of the distribution. Indeed, we have:

Consistency of this estimator is classically guaranteed as soon as K -+ 1 and K = o(N ) w hen N -+ 1 , see M ason (1982). In this case, the empirical threshold X N K ; N (equivalent in probability to U(N =K)) goes to infi nity (again in probability) as N -+ 1 .

Going back to the survey data situation, one may naturally replace U(N =K) by U N (N =K) and build a plug-in estimate of the EVI based on the H orvitz-Thompson estimator given in Equation (6.1) of the tail probability F(x). Observe that by definition U N (N =K) corresponds to one of the observations in the sample, say X i w ith rank `P t 1; : : : ; n u. To this `obviously corresponds an index k P t 0; : : : ; n 1u such that `= n k, implying X n k ; n = U N (N =K), the H orvitz-Thompson estimator of the quantile of order 1 K=N . We denote by N the map linking k to K in U N under the sampling scheme R N : This leads to the quantity:

H ence, k is to the sample w hat K is to the population: the number of upper values on w hich the estimation should rely. N otice that we may also w rite

w here K is the chosen number of largest observations in the population from w hich k was constructed. Observe that N in Equation (6.5) is a surjective, non-injective random map, w hich suggests that the subsequent asymptotic analysis better rely on some appropriately chosen K and its random image k := N (K) rather than the contrary. Since in practice only k can be computed from the X i 's and i 's, i P S, the total population being partly unobserved, considerations about the choice of an appropriate k are discussed in detail in Section 6.4. From this point forward, the H orvitz-Thompson H ill estimator shall be w ritten H K ; N w ith K P t 1; : : : ; N 1u held fi xed.

Consistency of H K;N

H ere we investigate the limit properties of the estimator H K ; N as N and n simultaneously go to infi nity, w ith n § N . The follow ing assumptions, related to the sample design, shall be involved in the asymptotic analysis. i i ) The joint cdf F X ; W is absolutely continuous w ith Lebesgue-integrable density f X ; W such that for all (x; w ) P (0; + 1 ] W, w = (w 1 ; : : : ; w d ), f X ; W (x; w ) := c X ; W (F(x); F W 1 (w 1 ); : : :

for some copula density c X ; W : R + R d -R and f W 1 ; : : : ; f W d the marginal densities of the distribution of W.

Then, for f W j (w j ) dw 1 : : : dw d and provided that K -+ 1 as N -+ 1 so that ? KA (N =K) -for some constant P R, we have the convergence in distribution as N -+ 1 :

(6.9)

A s can be seen by examining the proof of this theorem in Section 6.6, the limit result in Proof 6.6.2 can be obtained using the follow ing decomposition:

(6.10) w here r K ; N := r K ; N (T N ; p) :

These three quantities are studied independently under the hypotheses required in Theorem 6.8. First, we show that r K ;N converges to 1 in probability as N tends to 1 . Combined w ith Rényi's decomposition in log-spacings of the H ill estimator (refer for instance to Beirlant et al., 2004, Section 4.4), this establishes the asymptotic convergence, in probability, of Q

( 1) N to 0. It also implies that Q

( 2) N is equivalent to ? K (H K ; N ), a well-know n quantity w hich tends to a Gaussian distribution w ith expectation =( 1) and variance 2 under the second order condition stipulated in A ssumption 6.5 (De H aan and Ferreira, 2006, Theorem 3.2.5). A s for Q

( 3) N , we calculate its expectation and variance conditionally on the full vector of observations t (X i ; W i ); 1 § i § N u, yielding expressions w here the randomness induced by the = and A (x) = x = . Follow ing De H aan and Ferreira (2006, p.80), the optimal number of largest observations in the population is

w here txu is the integer part of x. It follow s that ? K A (N =K ) -0 as N -+ 1 . Concerning the joint distribution of X and W, it is straightforward to see that F X ; W (x; w) = F(x) ^FW (w); w hich means that the copula linking both marginals is the well-know n singular copula M (u; v) := u ^v, (u; v) P [0; 1] 2 . Unfortunately, it is not derivable on it entire support and condition i i ) in Theorem 6.8 is not fulfi lled here. H owever, as we shall see in the next subsection, this does not impede tail estimation.

For a given population U N of size N , w here it is assumed that t W i ; i P U N u are independent realizations of W , inclusion probabilities of the Poisson sampling scheme are defi ned as

w ith n = N , P (0; 1), the desired expected sample size (H àjek, 1964, Section 6, p.1512); this is the same formula as in Section 5.4 of Chapter 5. Thus defi ned, p(W ) P [p ; p ], w here p = w = and p = w = , w hich offers an easy way of ensuring A ssumption 6.1 is fulfi lled. Furthermore, given the formula used to compute X as a function of W , the more extreme the observations, the greater the probabilities of inclusion.

N umerical experiments were conducted on a set of populations w ith increasing sizes N = 10 3 , 5 10 3 , 10 4 and 5 10 4 . Several scenarios were investigated depending on the EVI ; they are summarized in Table 6.1. For each scenario, two sample sizes were considered: one small w ith n = 0.1 N and one relatively large w ith n = 0.5 N . Parameters of the distribution of W were chosen to ensure that for all i P U N , p i P [0.01; 1]. Specifi cally, we set = 1, 2 W = 0.09, w = 0.1 and w = 2, thereby implying that (p ; p ) = (0.01; 0.02) w hen n = 0.1 N and (p ; p ) = (0.05; 1) w hen n = 0.5 N . Observe that under A ssumption 6.1, we have

M oreover, conditional on the vectors t (X i ; W i ); 1 § i § N u, the random variable 1 i p i equals either (p i 1)=p i w ith probability p i or 1 w ith probability 1 p i . Therefore, by virtue of M arkov's inequality, we can further bound Z N (t ) from above:

Using again A ssumption 6.1, this yields

w here we have show n that S N P -N -1

. Consequently, the right hand part of this last inequality tends to 0 in probability as N tends to infi nity for any t °0. H ence, condition (C 3 ) is fulfi lled.

With all three conditions (C 1 ), (C 2 ) and (C 3 ) satisfi ed, by virtue of Feller (1971, Theorem 3, p.262) we fi nally have ?

We are now fully equipped to prove Theorem 6.8, the statement of w hich is recalled below.

Th eor em -Limit distribution in thePoisson survey case. Suppose that A ssumption 6.5 is fulfi lled by the underlying heavy-tailed model and that A ssumption 6.1 is satisfi ed by the considered sequence of Poisson inclusion probabilities p 1 ; : : : ; p N , N • 1, constructed from some set of auxiliary variables as in A ssumption 6.7. Further assume the conditions introduced herein-after.

i ) The marginal cdf F is absolutely continuous w ith respect to the Lebesgue measure w ith density f . i i ) The joint cdf F X ; W is absolutely continuous w ith Lebesgue-integrable density f X ; W such that for all (x; w ) P (0; + 1 ] W, w = (w 1 ; : : : ; w d ), f X ; W (x; w ) := c X ; W (F(x); F W 1 (w 1 ); : : :

for some copula density c X ; W : R + R d -R and f W 1 ; : : : ; f W d the marginal densities of the distribution of W.

Then, for

f W j (w j ) dw 1 : : : dw d and provided that K -+ 1 as N -+ 1 so that ? KA (N =K) -for some constant P R, we have the convergence in distribution as N -+ 1 :

Pr oof Recall the decomposition in Equation (6.10):

Combining Lemma 6.17 and Lemma 6.19, provided that A ssumption 6.1 and Assumption 6.5 hold and that K = K(N ) -+ 1 , K = o(N ) and ? KA (N =K) -for some constant P R, we have Q

( 1) N P -N -1 0.

Lemma 6.17 also ensures that under A ssumption 6.1, Q

N is equivalent to ? K (H K ; N ) .

Referring for instance to De H aan and Ferreira (2006, Theorem 3.2.5), this entails that provided A ssumption 6.5 holds and that K = K(N ) -+ 1 , K = o(N ) and ? KA (N =K) -for some constant P R, we have the convergence in distribution as N -+ 1 :

Finally, by virtue of Lemma 6.17 and Lemma 6.21, if A ssumption 6.1, A ssumption 6.7 and conditions i ), i i ), i i i ) in Theorem 6.8 hold together w ith K = K(N ) -+ 1 and K = o(N ), we have the convergence in distribution as N -+ 1 :

Because the limit distribution of Q

( 3) N was established conditionally on the set t (X i ; W i ); 1 § i § N u and in probability relative to this full vector of observations, we can consider Q

( 2) N and Q

( 3) N as independent random variables (one depends on the data and the other on the survey scheme). The limit distribution of their sum is then the sum of their limit distributions. This concludes the proof.

Limit distribution of H K;N in the rejective survey case

We shall prove Theorem 6.11, the statement of w hich is recalled below.

Th eor em -Limit distribution in the rejective survey case. Suppose that all the conditions required in Theorem 6.8 hold together w ith A ssumption 6.10. Then, for f W j (w j ) dw 1 : : : dw d and provided that K -+ 1 as N -+ 1 so that ? KA (N =K) -for some constant P R, we have the convergence in distribution as N -+ 1 :

Pr oof We shall w rite H K ; N (R N ) w hen the H orvitz- 

We shall successively prove that both Q ( 4) N and Q

( 5) N tend to 0 in probability as N -1 .

Let us start w ith Q ( 4) N . We use the bounded Lipschitz metric d B L as defi ned in van der Vaart and Wellner (1996, p.73) and consider, conditionally on the full vector of observations t (X i ; W

w here BL 1 (R) is the set of Lipschitz real functions on R bounded by 1. By virtue of the results in van der Vaart and Wellner (1996, p.73), if this distance tends to 0 as N -1 then we have Q Recall that under A ssumption 6.10 we have d N = o(1=K) and that H K ; N is a consistent estimator of (M ason, 1982). Therefore, by virtue of Lemma 6.19, we can conclude that D K ;N (R N ; T N ) = o P (1= ? K). M imicking exactly this procedure and considering the same set of assumptions, we also obtain: provided that K = K(N ) -+ 1 as N -+ 1 and that K = o(N ). This concludes the proof.