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A BSTRA CT - RÉSU M É

ABSTRACT

Dietary risk analysis is a multidisciplinary field par excellence, requiring in particular a mix-

ture of biological, sociological, chemical, cultural, economic, statistical and sanitary expertise
to answer practical issues. In a global system where international exchanges are encouraged,

where mass production favors cheap, profitable production strategies (GMO, pesticides, en-

riched animal food, addition of colorants, preservatives or artificial flavors, etc.), it is neces-
sary to quantify the risks that result from such economic behaviors. The focus here is on the

chronic (year-long) exposure to a set of food contaminants, the long-term toxicity of which

is already well-known. Since food consumption is also the privileged way of supplying the
body with necessary nutrients, nutritional benefits (or deficiencies) are taken into account as

well. This thesis is dedicated to a collection of mathematical problems arising from both the

analysis of such dietary risks and the nature of the data. First of all, the adequacy of the
classical univariate long-term models that are recommended by Efsa (European Food Safety

Authority) is discussed at length. They usually assume that observations have a log-normal

distribution, thereby neglecting the possibility that they are in fact heavy-tailed. In terms of

food risks, this would mean that a very high exposure to a single chemical element is a rare
enough event to be neglected. When the component of interest clearly violates this strong

assumption, extreme value theory is proposed as a relevant alternative, as revealed by a set

of illustrations based on real data. Then, this sub-field of theoretical statistics is adapted
to the analysis of the simultaneous exposure to many nutrients and contaminants. Follow-

ing in the footsteps of classical machine learning techniques, using in particular the recent

“ Principal Nested Spheres” algorithm of S. Jung, I.L. Dryden and J.S. Marron, we construct a
new model that identifies extreme dependencies in high dimension. This allows us to define

some cocktails of chemicals that are jointly ingested in very high quantities. Remaining in a

multivariate framework, we then move to the issue of dietary recommendations. In the line
of the “ minimum volume set” approach of C. Scott and R. Nowak, we propose an algorithm

that selects food baskets realizing a compromise between toxicological risk and nutritional

benefit. Finally, as consumption databases often result from complex survey schemes, the es-
timators constructed under the hypothesis that observations are independent and identically

distributed can produce severely biased outcomes. In an attempt to take into account this

preliminary sampling phase, we mimic the approaches of J. Hàjek and Y. Berger and focus
on the specific family of Poisson-like survey plans. Under this framework, the asymptotic

properties of Horvitz-Thompson empirical processes are inspected, before concluding this

thesis on the introduction of a weighted version of the widely celebrated Hill estimator for
the heavy-tail analysis of sampled observations.

v



RÉSUM É

Véritable carrefour de problématiques économiques, biologiques, sociologiques, culturelles

et sanitaires, l’alimentation suscite de nombreuses polémiques. Dans un contexte où les

échanges mondiaux facilitent le transport de denrées alimentaires produites dans des con-

ditions environnementales diverses, où la consommation de masse encourage les stratégies

visant à réduire les coûts et maximiser le volume de production (OGM, pesticides, nourriture

enrichie donnée aux animaux en élevage, ajout de substances chimiques tels les colorants et

les arômes artificiels, etc.) i l devient nécessaire de quantifier les risques sanitaires que de

tels procédés engendrent. Notre intérêt se place ici sur l’étude de l’exposition chronique, de

l’ordre de l’année, à un ensemble quelconque de contaminants dont la nocivité à long terme

est d’ores et déjà établie. Les dangers et bénéfices de l’alimentation ne se restreignant pas à

l’ingestion ou non de substances toxiques, nous ajoutons à nos objectifs l’étude de certains

apports nutritionnels. Les travaux réalisés au cours de cette thèse répondent à plusieurs prob-

lématiques mathématiques engendrées par l’analyse de ce type de risque alimentaire et par

la nature des données utilisées à ces fins. Dans un premier temps, nous discutons la portée

des modèles classiques dédiés à l’estimation de l’exposition de long terme à un unique com-

posant alimentaire. Ces derniers, dont l’utilisation est recommandée par l’Efsa (European

Food Safety Authority), requièrent généralement la log-normalité des observations et inter-

disent par là-même les distributions à queue plus épaisse, où l’élément chimique étudié aurait

une probabilité non négligeable d’être ingéré en de très grandes quantités. Nous montrons

alors, exemples à l’appui, comment la théorie des valeurs extrêmes peut être utilisée dans de

telles situations. Ce pan de théorie statistique est ensuite adapté à l’étude des fortes exposi-

tions à un nombre quelconque (potentiellement très grand) de nutriments et contaminants.

En nous inspirant de techniques traditionnelles de l’apprentissage statistique, notamment

le récent algorithme des “ Principal Nested Spheres” développé par S. Jung, I.L. Dryden et

J.S. Marron, nous construisons un modèle ouvrant l’étude des dépendances extrêmes à la

grande dimension, qui nous permet en particulier de définir des groupes d’éléments auxquels

les consommateurs sont simultanément sur-exposés. Toujours dans une optique multivariée,

nous nous éloignons ensuite des expositions extrêmes pour nous placer du côté des con-

sommations alimentaires. En nous basant sur une approche de type “ ensemble de volume

minimum” comme introduite par C. Scott et R. Nowak, nous proposons un algorithme pour

identifier des paniers de produits réalisant un compromis entre risque toxicologique et béné-

fice nutritionnel. Enfin, les données alimentaires disponibles résultant souvent de plans de

sondage non triviaux, les estimateurs construits sous l’hypothèse que les données sont in-

dépendantes et identiquement distribuées peuvent produire des résultats biaisés. Tentant de

prendre en compte cette étape préliminaire d’échantillonnage, nous nous concentrons dans la

lignée des travaux de J. Hàjek et Y. Berger sur la famille des plans de sondage de type Poisson

et étudions le comportement asymptotique des processus empiriques pondérés à la manière

Horvitz-Thompson. Suivant la même approche, nous proposons finalement une variante de

l’estimateur de Hill pour l’analyse des distributions à queue épaisse adaptée au cadre des

données de sondage.
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P
RÉGI M ES A L I M EN TA I RES, EXPOSI TI ON

I N DI V I D U EL LE ET STATI STI QU E

Variées et nombreuses sont les études scientifiques pouvant être caractérisées com-

me analyses du risque alimentaire. Cette désignation fort générale issue du jargon

de la santé publique fait référence à toute entreprise visant à la détection, à la com-

préhension, et au traitement des dangers liés à l’alimentation. Parmi ces derniers,

citons par exemple l’une des problématiques classiques des producteurs : le dévelop-

pement de bactéries au cours des différentes étapes de production, de transport, de

distribution et de stockage qui précèdent la consommation (Rigaux et al., 2012). A

une toute autre échelle, l’industrie agroalimentaire doit évaluer les impacts à la

fois économiques et sanitaires de techniques de production de masse tels l’utilisa-

tion de pesticides (http://www.efsa.europa.eu/en/topics/topic/pesticide s.htm )

ou l’introduction d’organismes génétiquement modifiés dans les plantations (http://

www.efsa.europa.eu/en/topics/topic/gmo.htm ). Selon leur composition chimique

et leur mode d’util isation, les ustensiles de cuisine peuvent aussi représenter une

source de danger, comme en témoigne la récente polémique à propos de la présence

de bisphénol A dans les biberons (cf. l ’avis de l’Anses y ayant fait suite, Anses, 2013).

D’autres problèmes de santé peuvent être engendrés par des troubles du comporte-

ment alimentaire (e.g. les personnes souffrant d’anorexie aiguë sont particulièrement

sujettes aux maladies provoquées par des carences nutritionnelles) ou par des fac-

teurs biologiques particuliers (e.g. le diabète). A la lumière de ces quelques exemples,

il est clair que selon la question examinée, des connaissances spécifiques en chimie,

biologie, médecine, sociologie, économie ou même psychologie peuvent être requi-

ses, sans oublier la modélisation probabiliste et la gestion informatique des données.

L’analyse du risque alimentaire est ainsi un domaine d’étude multidisciplinaire par

excellence. Le lecteur curieux d’en apprendre plus est invité à consulter Feinberg

et al. (2006), manuel expliquant de manière exhaustive les tenants et aboutissants de

l’analyse du risque alimentaire selon un point de vue interdisciplinaire.

Le présent travail est dédié à l’étude d’un type spécifique de risque alimentaire : in-

dépendamment de tout processus de production, de stockage ou de cuisson, ignorant

les prédispositions biologiques extraordinaires, nous nous intéressons exclusivement

à la très forte (ou très faible) exposition sur le long terme à certains composants

alimentaires de la population française dans son ensemble. Après avoir introduit

quelques concepts élémentaires du risque alimentaire en section P.1, décrit les don-

nées disponibles en section P.2 et brièvement exposé l’état de l’art sur la modélisa-

3
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tion probabiliste des risques alimentaires en section P.3, nous présentons en détail

en section P.4 les diverses problématiques traitées au cours de cette thèse avant d’en

annoncer les contributions scientifiques principales.

P.1 qu’est -ce que l e r i sque al i men t ai r e ?

Une fois qu’un type spécifique de risque alimentaire a été porté à la connaissance

de tous, son analyse consiste en trois étapes distinctes, respectivement qualifiées

d’évaluation du risque, de gestion du risque et de communication autour du risque.

Les divers problèmes soulevés dans chacune de ces phases de recherche sont ré-

sumés dans les paragraphes suivants. Afin d’en faciliter la compréhension, nous en

illustrons la substance à l’aide de l’exemple concret des régimes riches en sel, dont

l’abus récurrent peut favoriser les problèmes cardiaques (se référer par exemple à

la page Internet http://www.anses.fr/en/content/salt et aux références qui y sont

mentionnées).

P.1.1 Evaluation du risque

L’évaluation (ou appréciation) du risque peut elle-même être décomposée en qua-

tre sous-étapes, qui consistent à successivement identifier puis caractériser les dan-

gers potentiels et leur probabilité d’apparition. Dans le cas des régimes riches en sel,

le danger n’est autre que celui d’ingérer de manière journalière ou hebdomadaire une

trop grande quantité de sodium (Na dans le tableau périodique des éléments), ce qui

sur le long terme pourrait engendrer une dégradation du système cardiovasculaire.

La connaissance de ces effets nocifs est due à tout un ensemble d’études chimiques

et biologiques concernant l’assimilation, l’action et l’élimination du sodium dans le

corps humain. Ce processus, appelé identification du danger (Barlow et al., 2002), est

suivi de recherches supplémentaires permettant de définir à partir de quel niveau

de consommation le composant devient toxique, c’est-à-dire de caractériser le danger.

Pour ce faire, des tests dits dose-réponse sont en général réalisés in vitro ou in vivo

sur des animaux avant d’en étendre les résultats à l’espèce humaine par le biais de

modèles dédiés (Dybing et al., 2002). Une fois le processus de contamination compris

dans son intégralité, il devient possible d’en estimer la fréquence d’apparition au sein

d’une population choisie. Cette dernière phase requiert en premier lieu la description

détaillée des distributions de la consommation et de l’exposition dans la population

concernée (Kroes et al., 2002), avant de les comparer à des doses maximales recom-

mandées, déterminées par des experts à l’issue des tests dose-réponse précédemment

évoqués (Renwick et al., 2003) et possiblement raffinés par des procédés mathéma-

tiques (Edler et al., 2002). En fonction de la nature des données disponibles, les mod-

èles statistiques utilisés à ces fins peuvent inclure une dimension temporelle (Bertail
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et al., 2010, 2008; Allais and Tressou, 2009), prendre en compte des caractéristiques

comportementales ou biologiques individuelles, ou encore tenter de compenser le

manque d’information sur les habitudes alimentaires de long terme (Dodd et al.,

2006). Ce dernier problème est discuté en détail en section P.3 et au chapitre 2.

P.1.2 Gestion du risque

Après que le risque a été évalué, il est nécessaire d’en identifier les déterminants,

d’en évaluer les impacts relatifs et de définir la stratégie la plus rapide et la plus effi-

cace permettant de le réduire. Ce n’est autre que l’objectif de la gestion du risque. Par

exemple, la sur-exposition au sodium peut être attribuée à la consommation répétée

de produits à haute teneur en sel comme les plats tout prêts ou les biscuits. Un

plan simple d’action dans ce cas serait de prévenir les consommateurs des dangers

potentiels et d’imposer en parallèle aux compagnies agroalimentaires de limiter les

doses de sel ajoutées à leurs préparations. Dans des situations plus extrêmes, après

une évaluation rigoureuse des conséquences économiques d’une telle opération, des

produits considérés trop dangereux peuvent même être retirés du marché.

P.1.3 Communication autour du risque

La dernière étape de l’analyse du risque alimentaire est appelée communication

autour du risque. Elle peut être mise en place à n’importe quel moment de l’analyse

et peut s’adresser aussi bien aux scientifiques et aux gestionnaires du risque qu’à

l’industrie agroalimentaire ou à la population. En tant que telle, elle n’est pas canton-

née aux campagnes publicitaires de santé publique du type “ évitez de manger trop

salé” . S’y rapportent aussi tous les rapports scientifiques concernant les procédures

considérées appropriées pour détecter et quantifier les risques, la publications d’é-

tudes cas-témoin, les discussions internationales sur les politiques agroalimentaires,

etc. Dans cette thèse nous sommes tout particulièrement intéressés par la produc-

tion de résultats permettant d’aiguiller les recherches futures et, lorsque possible, de

définir des lignes directrices de consommation simples et générales à l’intention de

la population.

La grande majorité de nos travaux correspond ainsi à la phase d’évaluation du

risque. En quelques mots, nous proposons des méthodes statistiques visant à estimer

certaines caractéristiques (comme des quantiles) de la très forte exposition à un ou

plusieurs composants alimentaires sur une longue période de temps. A l’exception

près du chapitre 4, dans lequel nous élaborons une procédure pour déterminer des

paniers de consommation réalisant un compromis entre risque toxicologique et béné-

fice nutritionnel, les problématiques relevant de la gestion du risque ne sont pas

abordées. Les éléments chimiques que nous prenons en considération sont les nutri-



6 r égi mes al i men t a i r es, exposi t i on i n di v i duel l e et st at i st i que

ments et contaminants dont les effets sanitaires liés à une sur- ou une sous-exposition

chronique ont d’ores et déjà été établis. En particulier, les risque aigus sont ignorés,

tels ceux impliquant la contamination bactérienne de la nourriture, qui peuvent af-

fecter l’organisme en quelques jours ou même quelques heures seulement. L’analyse

statistique est réalisée dans ce contexte à partir de formats standards de bases de

données, dont une description rapide est proposée ci-après.

P.2 des sour ces mul t i pl es d’ i n f or mat i on

Afin de permettre l’analyse statistique de l’exposition chronique d’une population

donnée à une collection de composants alimentaires, il est désirable d’observer de tels

types d’exposition sur un large échantillon d’individus pendant une longue période

de temps. Malheureusement, les quantités de nutriments et de contaminants ingérés

durant un repas ne sont pas directement mesurables; ils ne peuvent qu’être estimés

à l’aide de méthodes variées. L’une des procédures classiques consiste à détecter

puis quantifier certains marqueurs biologiques, dont la présence est intimement liée

au niveau d’exposition (voir par exemple la page Internet de l’Anses http://www.

anses.fr/sites/default/files/documents/RSC1205-Doss ierParticipants.pdf , où

sont listées les présentations d’un colloque de mai 2012 dédié à ce sujet). D’un point

de vue pratique, cela nécessite de collecter puis d’analyser la composition chimique

d’échantil lons de fluides corporels, de cheveux ou de peau d’un nombre important

de personnes. Au niveau national, le coût de telles enquêtes peut contraindre la quan-

tité de sondés au détriment de l’efficacité statistique. En outre, de nombreux éléments

chimiques peuvent être assimilés par l’intermédiaire d’autres substances que les al-

iments (e.g. l’air), or les marqueurs biologiques ne permettent pas de distinguer les

diverses sources d’exposition (Sirot et al., 2009). Pour pouvoir étudier exclusivement

l’impact de l’alimentation sur l’exposition individuelle, il est possible d’util iser une

méthode alternative où deux bases de données sont combinées, la première listant

les habitudes alimentaires d’un ensemble de consommateurs et la seconde indiquant

les teneurs en composants chimiques d’une nomenclature fine de produits. Les prin-

cipales caractéristiques de ces données, respectivement dites de consommation et de

composition, sont décrites dans les paragraphes suivants.

P.2.1 Données deconsommation

De nombreux types de bases de données peuvent être util isées pour évaluer l’ ex-

position chronique de la population française à des nutriments et des contaminants

alimentaires, allant de cohortes de ménages dont les dépenses en nourriture sont

strictement suivies (Secodip, Nichèle et al., 2008) à des sondages en ligne remplis sur

la base du volontariat (Nutrinet, Hercberg et al., 2010) en passant par des enquêtes



P.2 des sour ces mul t i pl es d’ i n f or mat i on 7

institutionnelles dédiées à un niveau national (INCA2, Afssa, 2009). Nous nous in-

téressons ici à deux grandes familles de données, appelées en anglais 24-hour recalls

(24H) et food frequency ou propensity questionnaires (FFQ/ FPQ). La première de ces

catégories correspond à des enquêtes de grande envergure (par exemple nationale)

où un échantillon de sondés note en détail les quantités d’aliments qu’ils consom-

ment durant 2 à 7 jours, parfois consécutifs, mais la plupart du temps sélectionnés

aléatoirement dans l’année. Les prises alimentaires sont indiquées soit de manière

exacte, soit relativement à des photographies d’assiettes plus ou moins remplies, qui

sont mises à disposition par le sondeur. Bien entendu, la période d’observation étant

particulièrement courte, les 24H peuvent sembler inappropriés pour l’étude de l’ex-

position de long terme (Counil et al., 2006). C’est pourquoi il est souvent demandé

aux sondés de remplir en parallèle lesdits FFQ/ FPQ (questionnaires de fréquence ou

de propension des prises alimentaires si l’on traduit mot-à-mot). Ils permettent en

particulier de distinguer les personnes ne consommant jamais certains produits de

celles qui en mangent occasionnellement. Le lecteur curieux d’en apprendre davan-

tage au sujet de ces deux grandes sources d’information est invité à se référer à van

Klaveren et al. (2012); EFSA (2006); Dodd et al. (2006). Tout au long de la présente

thèse nous util isons la base INCA2 qui, ainsi que décrit ci-après, peut être assimilée

à un mélange de 24H et de FFQ.

P.2.1.1 Les habitudes alimentaires en France: INCA2

INCA2 (second opus de l’enquête nationale sur les habitudes alimentaires indi-

viduelles en France) est une enquête d’envergure nationale mise en place par l’Anses

(agence française de sécurité sanitaire de l’alimentation, de l’environnement et du

travail) en collaboration avec l’Insee (institut national de la statistique et des études

économiques) entre décembre 2005 et avril 2007. Elle collecte les informations con-

cernant les comportements alimentaires de 2624 adultes et 1455 enfants sélectionnés

aléatoirement dans la population française.

Ú Plan de sondage Les individus composant INCA2 ont été sélectionnés selon un

plan de sondage complexe à plusieurs degrés, construit afin de produire un échantil-

lon représentatif de la population française selon des critères géographiques, socio-

logiques et économiques. Ces mêmes variables auxiliaires ont ensuite été util isées lors

d’une étape de redressement, réalisée dans un second temps afin prendre en compte

la possible non-réponse de certains sondés ainsi que les fluctuations d’échantil lon-

nage. Une description détaillée du plan de sondage d’INCA2 est disponible dans le

rapport Afssa (2009, Chapitre 2 et Appendice 2).

Ú Données alimentaires Tous les participants ont indiqué la nature et la quantité

des aliments qu’ils ont consommés durant les 7 jours consécutifs de l’enquête. Ces

produits ont été classifiés selon une nomenclature exhaustive de 1342 aliments, re-
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groupés en 123 sous-classes et 45 catégories plus larges (Afssa, 2009, Section 2.2.6.3

et Appendice 1). Afin de les aider à évaluer les quantités mangées, un carnet de

photographies représentant des assiettes et des verres progressivement remplis a été

mis à la disposition des sondés, servant d’étalon lorsque des mesures exactes ne pou-

vaient être réalisées. Des informations complémentaires sur les conditions des repas

ont aussi été collectées, concernant par exemple le lieu, l’heure et la durée de ces

événements. Six catégories de repas sont indiquées dans la base finale, à savoir le pe-

tit déjeuner, la collation du matin, le déjeuner, la collation de l’après-midi, le dîner et

la collation du soir. Pour prendre en compte les variations saisonnières des habitudes

alimentaires, les participants ont été contactés à des moments aléatoires de l’année,

durant l’une des 3 vagues successives de collecte des données. Un ensemble de ques-

tions concernant la prise de compléments alimentaires a aussi été introduit (Afssa,

2009, Section 2.2.6.4 et Chapitre 8).

Ú Information auxiliaire En complément des régimes alimentaires, un nombre im-

portant d’informations au sujet des sondés a été noté, allant des caractéristiques socio-

logiques (e.g. diplôme, profession, revenu du ménage, nationalité) aux préférences

alimentaires, en passant par les activités physiques (e.g. type, fréquence, durée), l’his-

torique médical (e.g. troubles du comportement alimentaire) et d’autres indications

générales (e.g. age, poids, sexe).

Ú Consommateurs occasionnels Lorsque l’intérêt est porté sur les habitudes alimen-

taires et l’exposition de long terme, 7 jours peuvent sembler être une période arbi-

trairement courte d’observation. En effet, en une semaine seulement, les enquêtés ne

peuvent couvrir l’ensemble de leur répertoire alimentaire et de nombreux produits

de la nomenclature de référence ne sont pas consommés. Un tel phénomène rend

difficile la distinction entre les consommateurs occasionnels et ceux qui ne mangent

jamais de certains produits. Afin de remédier à ce problème, il a été demandé aux

individus constituant la base INCA2 de décrire leurs régimes usuels et de déclarer

clairement à quelle catégorie de consommateurs ils appartiennent. Ces questions ad-

ditionnelles correspondent aux fameux FFQ/ FPQ précédemment mentionnés qui,

combinés aux bases de type 24H, facilitent grandement la modélisation statistique

(Dodd et al., 2006 et van Klaveren et al., 2012, Sections 3.6 et 3.8).

Ú Information incomplète Comme nousvenonsde l’évoquer, n’observer les enquêtés

que durant 7 jours peut s’avérer être un inconvénient majeur. Cependant, du point

de vue des sondés, une semaine complète peut paraître particulièrement long, et la

qualité des données peut en pâtir. En effet, comme indiqué dans le rapport Afssa

(2009, Section 2.4.2), plusieurs participants ont ponctuellement omis d’indiquer leurs

consommations, tandis que d’autres ont largement sous-estimé les quantités ingérées
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durant leurs repas. Dans nos calculs nous avons pris le parti d’ignorer ces lacunes en

rapportant les informations disponibles à l’échelle de la semaine.

Ú Dépendance temporelle La seule réelle différence entre INCA2 et les bases de

type 24H tient à la nature consécutive des 7 jours d’observation. A insi, bien qu’une

semaine complète semble clairement plus appropriée que 2 jours d’enquête pour une

analyse de long terme, il est alors plus difficile d’ignorer la dépendance temporelle.

Ú Traitement préliminaired’INCA2 Les travaux réalisés dans cette thèse sont dédiés

à l’analyse globale des habitudes alimentaires de long terme des adultes en France. En

raison de leurs besoins nutritionnels spécifiques et du caractère temporaire de leur

état, nous avons décidé de ne prendre en compte ni les femmes enceintes ni les

femmes allaitant dans nos calculs. D’autres individus ont été exclus de nos analyses,

notamment ceux ayant omis de renseigner des variables essentielles comme le poids

corporel, amenant l’échantil lon initial à 2488 unités. Bien entendu, nous aurions pu

tenter d’appliquer des méthodes classiques pour remédier au problème des valeurs

manquantes. Néanmoins, de telles considérations dépassent le cadre de nos travaux.

En particulier, ces techniques statistiques sont en général mises en place pour éviter

de dégrader l’estimation de phénomènes moyens. Or notre intérêt est porté sur les

événements extrêmes (minimum et maximum). Par ailleurs, la proportion de valeurs

manquantes dans l’échantil lon étant infime (seuls 91 individus sont concernés, soit

3; 7% des enquêtés), nous avons préféré les ignorer.

P.2.2 Données decomposition

Les bases de données dites de composition regroupent en général un ensemble de

mesures chimiques réalisées sur des groupes plus ou moins raffinés d’aliments. Elles

peuvent provenir d’enquêtes de natures variées. Par exemple, des plans de surveil-

lance sont mis en place pour vérifier la sûreté de produits suspects et induisent la

collecte de données à leur sujet. Bien que de nombreux éléments du répertoire ali-

mentaire soient ainsi négligés, le nombre de mesures réalisées dans ce cadre est par-

ticulièrement conséquent, avantage non-négligeable pour toute analyse statistique.

Néanmoins, en raison de la nature suspecte des produits étudiés, les bases de don-

nées résultantes ne peuvent être util isées pour l’évaluation des risques alimentaires à

grande échelle sans introduire un biais non-négligeable. A l’inverse, les études dites

de l’alimentation totale tentent de couvrir la quasi-totalité des aliments consommés

dans une population d’intérêt. En contrepartie, le nombre de mesures réalisées par

produit est bien plus modeste (de 2 à 8 en général). Au vu de nos objectifs, nous

préférons ces dernières aux plans de surveillance. Les données de contamination peu-

vent être combinées aux données de consommation pour ensuite approximer l’ expo-

sition à certains composants alimentaires. Malheureusement, les nomenclatures de
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produits utilisées dans chacune de ces bases peuvent différer substantiellement, ce

qui pose un problème supplémentaire au statisticien (voir par exemple le rapport

de l’Efsa concernant la mise en commun de données produites par divers pays eu-

ropéens à l’adresse http://www.efsa.europa.eu/en/search/doc/415e.pdf ). Comme

expliqué ci-après, les bases de données utilisées dans cette thèse ont été construites

spécifiquement pour permettre le croisement avec INCA2, contournant par là-même

le problème sus-mentionné.

P.2.2.1 Apports nutritionnels : CIQUAL 2008

La version 2008 de la base de données CIQUAL (Centre d’Information sur la QUal-

ité des ALiments) liste les concentrations moyennes en un large panel de nutriments

des 1342 produits alimentaires de la nomenclature d’INCA2. Ces teneurs sont déter-

minées à partir de multiples sources d’information, allant d’analyses chimiques spé-

cifiquement commanditées pour l’étude à des rapports publiés par des instituts de

recherche variés. A chaque source est attribué un poids indiquant sa fiabilité, qui est

ensuite pris en compte dans un calcul produisant le résultat final. Plus de détails

concernant la construction de cette base de données sont disponibles dans le rapport

Anses (2008).

Ú De l’invariance nutritionnelle Bien que relativement exhaustive, CIQUAL 2008

ne donne aucune information concernant la variabilité des concentrations en nu-

triments à l’intérieur d’un même type d’aliment. Cela suggère par exemple que

deux oranges cultivées dans des régions différentes, l’une potentiellement plus en-

soleillée que l’autre, ont la même teneur en vitamine A. Si cette hypothèse semble

déraisonnable de prime abord, les variations de concentration au sein d’une même

famille de produits sont souvent si faibles qu’il est d’usage de considérer les teneurs

fixes, à condition que la nomenclature utilisée soit assez détaillée (de Boer et al., 2009,

p.1433), contrainte qui se trouve être respectée dans le cas de CIQUAL 2008.

P.2.2.2 Contamination des aliments : EAT2

Contrairement aux plans de surveillance, le second opus de l’étude de l’alimenta-

tion totale française (EAT2) a été construite dans le but d’estimer l’exposition de la

population française à un large ensemble de contaminants alimentaires. A insi, plus

de 80% des aliments consommés en France y sont pris en compte (Anses, 2011), ce qui

en fait une base de donnée de choix au vu de nos objectifs. Cependant, elle possède

malgré tout un certain nombre de défauts inévitables.

Ú Mélange des aliments L’une des principales lacunes d’EAT2 provient de la tech-

nique util isée pour réaliser les mesures de concentration. En effet, les analyses chim-

iques ont été opérées sur des mélanges d’aliments plutôt que sur des produits bruts :

différentes espèces d’une même famille d’aliments ont été mixés avant inspection, et
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les plats cuisinés ont été étudiés dans leur ensemble, sans en séparer au préalable les

ingrédients. Afin de contourner les problèmes induits par cette procédure, des tables

de recettes ont été construites en parallèle, permettant la décomposition des résultats

en une nomenclature plus raffinée (Anses, 2011).

Ú Donnéescensurées Comme toute base de donnée de contamination, EAT2 souffre

d’un problème intrinsèque de censure lié aux limites des instruments de mesure. En

effet, ces derniers ne sont pas d’une précision infinie et peuvent ainsi être incapables

de quantifier voire même de détecter des quantités trop faibles d’éléments chimiques

dans la nourriture. Cette censure inévitable est usuellement introduite dans les mod-

èles statistiques par le biais de deux paramètres essentiels : la limite de détection

(LDD) et la limite de quantification (LDQ). La première représente la quantité mini-

male de composant qui doit être présente dans la substance analysée pour pouvoir

être détectée par l’appareil de mesure, et la seconde le niveau nécessaire pour permet-

tre la quantification. Toutes deux dépendent bien évidemment de l’instrument utilisé.

En pratique, il est d’usage d’adopter l’une des trois hypothèses listées ci-après pour

contourner ce problème. Notons t D la quantité réelle de composant lorsqu’elle est

en dessous de la LDD, et t Q lorsqu’elle est située entre la LDD et la LDQ. Les trois

scénarii possibles sont alors :

1. hypothèsemédiane : t D = LDD=2 et t Q = LDQ=2,

2. hypothèsebasse : t D = 0 et t Q = LDD,

3. hypothèsehaute : t D = LDD et t Q = LDQ.

L’hypothèse médiane est typiquement choisie lorsque le taux de mesures censurées

dans la base de données util isée ne dépasse pas les 60%. Nous décidons ici d’adopter

ce scénario, les considérations à propos de la censure des données de contamination

dépassant le cadre de nos travaux.

P.3 est i mat i on des r i sques al i men t ai r es :

pet i t aper çu de l ’ét at de l ’ar t

Ces 20 dernières années, pléthore de modèles statistiques a été développé afin

d’évaluer de multiples types de risques alimentaires. Construits pour répondre à

des questions pratiques liées à la nature des bases de données disponibles telles

que la censure mentionnée au paragraphe précédent (Tressou, 2006), ils continuent

d’évoluer avec les nouvelles méthodes de collecte des données. Dans le contexte

des bases de type 24H et FFQ/ FPQ, auxquelles INCA2 peut être comparée, trois

grandes problématiques classiques, décrites dans les paragraphes suivants, sont abor-

dées dans cette thèse.
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P.3.1 Exposition extrêmedelong terme

Afin de compenser la courte durée des enquêtes de type 24H, les modèles à correc-

tion d’erreur ont récemment gagné en popularité (Tooze et al., 2006; Dodd et al., 2006;

van Klaveren et al., 2012; de Boer et al., 2009; Boon et al., 2011). Ils permettent en par-

ticulier de prendre en compte deux sources de variabilité de l’exposition observée, à

savoir les fluctuations individuelles autour des prises habituelles et l’hétérogénéité au

sein de la population. Toutes deux sont estimées à l’aide de modèles paramétriques

et la distribution finale de long terme est approchée par simulations de Monte-Carlo

en ignorant la variance intra-individuelle. Les hypothèses sur lesquelles reposent les

modèles paramétriques évoqués précédemment impliquent en général que la dis-

tribution de l’exposition individuelle est de type log-normale. Cependant, pour de

nombreux contaminants et nutriments, la queue de distribution de la loi log-normale

est souvent trop fine pour rendre compte convenablement de la probabilité d’occur-

rence des événements extrêmes; il y a fort à parier que la sur-exposition à de tels

composants alimentaires est alors sous-estimée. Lorsque les très fortes expositions

à des nutriments et contaminants alimentaires sont au cœur des préoccupations, la

théorie des valeurs extrêmes (TVE) a déjà fait ses preuves dans le cadre de l’estima-

tion des risques aigus (Tressou et al., 2004b,a; Bertail et al., 2010; Kennedy et al., 2011;

Paulo et al., 2006), nous encourageant ainsi à étendre ces procédures à l’évaluation

des risques de long terme.

P.3.2 Exposition simultanéeà un ensembledenutriments et

contaminants

Au delà de l’opposition entre risques aigus et risques chroniques, un sujet brûlant

d’actualité en évaluation du risque alimentaire est celui de l’exposition simultanée à

un cocktail de composants chimiques présents dans la nourriture. En effet, si l’inges-

tion excessive d’un élément toxique peut avoir des effets dévastateurs sur l’organisme,

les connaissances actuelles au sujet des potentiels effets synergétiques, combinés, de

plusieurs contaminants sont encore faibles (Carpenter et al., 2002). En France, l’Anses

a récemment initié le programme Pericles (Crépet et al., 2013), dans le but d’identifier

les cocktails de composants alimentaires effectivement consommés dans la popula-

tion. Les résultats de ces analyses permettront ensuite aux chimistes et biologistes

d’établir un ordre de priorités quant aux recherches à effectuer sur les effets sani-

taires d’une telle consommation. Pour le moment, ces travaux sont centrés autour des

phénomènes moyens (Béchaux et al., 2013), au détriment des extrêmes. Faisant à nou-

veau appel à la théorie des valeurs extrêmes, la partie multivariée de cette branche de

la statistique devrait permettre l’analyse des fortes expositions simultanées. Lorsque

seul un petit nombre de composants est considéré, quelques travaux dans cet esprit
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ont d’ores et déjà été réalisés (Paulo et al., 2006). Cependant, en particulier dans le cas

de certains types de contaminants comme les pesticides ou les polychlorobiphényles,

qui possèdent des centaines de congénères, il serait désirable d’être à même de gérer

les grandes dimensions. Malheureusement, d’un point de vue théorique, la TVE ne

permet pas encore de traiter des problèmes de dimension plus grande que 5 or 6. Ce

problème concret issu de l’analyse du risque alimentaire fait ainsi naître une problé-

matique tout aussi théorique qu’appliquée.

P.3.3 Données desondage

Dans toutes les méthodes sus-mentionnées, il est de coutume de supposer que les

données disponibles sont indépendantes et identiquement distribuées (iid) selon une

certaine mesure de probabilité. Or les bases de données de type 24H comme INCA2

sont en général construites à l’aide d’un plan de sondage élaboré, dont l’objectif est

de produire un échantillon représentatif de la population d’intérêt. L’hypothèse que

les données résultantes sont iid n’est alors pas respectée, et les individus se voient

chacun attribué un poids de sondage correspondant à l’inverse de leur probabilité

d’être sélectionné dans l’échantillon (Droesbeke et al., 1987; Tillé, 1999). Ignorer cette

étape de construction de la base de données et négliger les poids de sondage peut

produire des estimateurs biaisés (Bonnery, 2011). Dans le cadre de la présente étude,

la probabilité d’occurrence de la très forte exposition à un ou plusieurs composants

alimentaires a de fortes chances d’être sur- ou sous-estimée. Bien que la littérature

sur les sondages soit déjà très riche (Gourieroux, 1981; Droesbeke et al., 1987; Dev-

il le, 1987; Cochran, 1977; Tillé, 2006), ce n’est que très récemment que des résultats

fonctionnels, qui permettent par exemple l’estimation de l’intégralité d’une fonction

de répartition, ont commencé de se développer (Breslow and Wellner, 2008, 2007;

Saegusa and Wellner, 2011). Quant à l’analyse des extrêmes, elle reste à notre con-

naissance encore inexplorée.

Essayant d’apporter des réponses à ces problématiques, nous proposons dans cette

thèse un ensemble de méthodes heuristiques et de résultats théoriques développés

spécifiquement pour les bases de données de type 24H. Comme expliqué plus tard

en détail, plusieurs de ces procédures mathématiques s’avèrent applicables à bien

d’autres domaines que l’analyse du risque alimentaire.

P.4 obj ect i f s et con t r i but i on s pr i n c i pal es

Au cours du présent travail, nous essayons d’apporter quelques réponses aux prob-

lématiques statistiques évoquées à la section précédente. Le mémoire est structuré

comme suit : au chapitre 2, nous montrons comment la théorie des valeurs extrêmes

peut être util isée pour la modélisation de l’exposition chronique à un composant ali-
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mentaire lorsque la distribution sous-jacente est à queue épaisse. Nous tournant en-

suite vers le cadre multivarié, nous nous intéressons à la forte exposition simultanée

à plusieurs nutriments et contaminants. Nous proposons ainsi au chapitre 3 une nou-

velle méthode, mélangeant algorithmes issus de l’apprentissage statistique et analyse

de la mesure spectrale, qui permet d’identifier des groupes de variables dépendantes

dans les extrêmes, réduisant par là-même la dimension initiale du problème. Toujours

dans une optique multivariée, nous quittons au chapitre 4 les extrêmes en faveur des

phénomènes moyens. Nous y présentons une approche en terme d’ensembles de vol-

ume minimum pour l’estimation non-paramétrique de la distribution de l’exposition

à un cocktail d’éléments chimiques présents dans la nourriture. Ces résultats sont en-

suite adaptés à l’identification de paniers de consommation réalisant un compromis

entre risque toxicologique et bénéfice nutritionnel. Enfin, nous nous attelons dans

les deux derniers chapitres au traitement des données issues d’un plan de sondage.

Après avoir étendu quelques résultats fonctionnels usuels en analyse des processus

empiriques au cadre des plans de sondages de type Poisson dans le chapitre 5, nous

introduisons au chapitre 6 un nouvel estimateur de l’indice de valeurs extrêmes

adapté aux échantillons issus de tels plans. Bien qu’encore trop restrictifs pour être

directement appliqués à l’analyse du risque alimentaire, ces résultats préliminaires

constituent un premier pas dans la direction de futurs développements qui, nous l’e-

spérons, permettront bientôt la construction de modèles plus généraux, adaptés aux

bases de données comme INCA2.

P.4.1 Estimation de l’exposition extrême de long terme à un unique

élément chimique

Nous commençons dans ce chapitre par une réflexion sur les modèles à adopter

lors du calcul de l’exposition chronique à un unique nutriment ou contaminant ali-

mentaire. Portant un intérêt tout particulier aux phénomènes extrêmes, dans la lignée

des travaux de Tressou et al. (2004a), nous remettons au goût du jour une méthode

non-paramétrique généralement ignorée en faveur des modèles à correction d’erreur

brièvement décrits à la section précédente. Lorsque les données sont issues d’une dis-

tribution à queue épaisse, nous montrons qu’elle comporte plusieurs avantages. La

première étape de cette technique consiste à moyenner les données temporelles pour

les ramener à l’échelle de la journée. Nous évitons ainsi la modélisation statistique

des variances intra- et inter-individuelles qui affectent la distribution de l’exposition

de long terme, encouragée par Tooze et al. (2010); van Klaveren et al. (2012); de Boer

et al. (2009). Les modèles classiques de la théorie des valeurs extrêmes pour l’étude

des lois à queue épaisse sont ensuite appliqués pour estimer quantiles extrêmes et

faibles probabilités de dépasser un très haut seuil de recommandation. Si l’exposition

est en effet à queue plus lourde qu’une loi log-normale, nous montrons qu’en procé-
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dant de la sorte, à l’inverse des modèles traditionnels, nous évitons de sous-estimer

ces quantités. Comme en pratique le statisticien doit choisir le modèle le plus adapté

aux données, nous recommandons l’util isation préliminaire de quelques tests statis-

tiques connus détectant le cas échéant la présence d’une queue lourde. L’intégralité

de notre méthodologie est enfin appliquée à des données réelles pour en montrer les

avantages et les inconvénients.

P.4.2 Evaluation delasur-exposition simultanéeàun cocktail decom-

posants alimentaires

Nous étendons ensuite notre approche au cadre multivarié et considérons l’analyse

de la forte exposition chronique à plusieurs nutriments et contaminants. Dans l’esprit

du programme Pericles (Crépet et al., 2013), nous développons une nouvelle méth-

ode permettant d’identifier des cocktails de composants chimiques consommés si-

multanément en très grandes quantités dans une population d’intérêt. Nous nous in-

spirons pour cela à la fois d’algorithmes d’apprentissage statistique et de concepts de

la théorie des valeurs extrêmes multivariée. Nous étudions en particulier la mesure

spectrale, objet mathématique qui caractérise la dépendance extrême. Elle peut être

définie sur l’orthant positif de la sphère unité, i.e. le simplexe, lui-même décompos-

able en faces ouvertes (sommets et arêtes), chacune indiquant un groupe de variables

dépendantes dans les extrêmes. L’objectif est alors d’identifier les faces du simplexe

sur lesquelles la mesure spectrale est définie. Pour cela, nous commençons par met-

tre en œuvre le récent algorithme de Jung et al. (2012), appelé Principal Nested

Spheres, qui réduit la dimension des données en les projetant successivement sur

des sphères de dimension de plus en plus faible. A la manière d’une analyse en com-

posantes principales, cette première étape permet de faciliter la suite de l’analyse en

réduisant le bruit des observations. Ensuite, nous exhibons un modèle de mélange

de la mesure spectrale sur chacune des faces du simplexe et définissons une vari-

able latente caractérisant les composantes du mélange. Cette dernière est estimée de

manière non-paramétrique en utilisant d’abord un algorithme de classification ap-

pelé spherical k-means (Dhillon et al., 2002), puis en util isant un critère heuristique

construit pour déterminer les faces auxquelles les classes obtenues font référence. Ce

critère permet de même de choisir le nombre d’observations extrêmes qui peuvent

être considérées comme représentatives de la queue de la distribution multivariée.

Nous justifions notre approche à l’aide d’une étude par simulations, dont les résul-

tats sont fort encourageants, puis l’appliquons enfin à nos bases de données réelles,

INCA2, CIQUAL 2008 et EAT2. Les groupes résultants de contaminants et nutriments

supposés consommés simultanément et en de très grandes quantités dans la popu-

lation française font parfaitement sens et sont cohérents avec une analyse paire par

paire, ce qui vient renforcer notre confiance en notre approche.
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P.4.3 Ensembles devolumeminimum et approcherisque-bénéfice

Allant plus loin encore dans l’util isation de l’apprentissage statistique pour l’anal-

ysedu risque alimentaire, nous nous concentrons dans ce chapitre sur les phénomènes

moyens, non plus extrêmes. Nous y introduisons pour la première fois la variabilité

de la contamination des aliments, les teneurs ayant jusque lors été considérées fixes

au sein d’une même famille de produits. Dans la lignée des travaux de Bertail and

Tressou (2006), nous proposons une extension de l’estimation d’ensembles de volume

minimum de Scott and Nowak (2006) au cas où le volume est inconnu et approché

à l’aide d’une U-statistique. Les résultats théoriques sont ensuite appliqués à la con-

struction non-paramétrique des ensembles de niveau de la distribution multivariée

de l’exposition à un ensemble de composants alimentaires. Dans un second temps,

nous montrons comment cette procédure peut être généralisée à l’identification de

paniers de consommation qui réalisent un compromis entre risque toxicologique et

bénéfice nutritionnel. Encore en cours de programmation, nous espérons pouvoir ap-

pliquer cette dernière technique aux bases de données INCA2, CIQUAL 2008 et EAT2

afin de définir des recommandations simples dans le même esprit que “ mangez cinq

fruits et légumes par jour ” .

P.4.4 Processus empiriques dans lecadredes sondages

Nous nous attelons dans les deux derniers chapitres de cette thèse au traitement

des données issues d’un plan de sondage, comme le sont souvent les données de

consommation. Il est d’un intérêt majeur pour les instituts de santé publique comme

l’Anses d’être à même d’estimer convenablement la distribution de l’exposition de

long terme à un ou plusieurs éléments chimiques. Or, omettre le plan de sondage

dans le processus d’estimation peut induire un biais non-négligeable (Bonnery, 2011).

Tentant de contribuer à l’élaboration d’une théorie générale sur les sondages garan-

tissant la normalité asymptotique d’une large classe d’estimateurs, comprenant no-

tamment des estimateurs fonctionnels de la fonction de répartition de l’exposition,

nous commençons par étudier les plans de type Poisson. Des extensions à des plans

plus complexes comme celui utilisé pour la formation d’INCA2 seront envisagées

dans un futur proche. Notre approche est directement inspirée des travaux séminaux

de Hàjek (1964) et Berger (1998). Nous définissons en premier lieu le processus em-

pirique de type Horvitz-Thompson, où les observations sont pondérées par l’inverse

de leur probabilité d’inclusion, dans le cadre du plan de Poisson. Sous un ensem-

ble d’hypothèses classiques portant à la fois sur les probabilités d’inclusion et le

modèle de surpopulation considéré, que nous espérons relâcher dans des travaux

à venir, nous en montrons la convergence vers un processus Gaussien dont nous

exhibons la covariance. Dans un second temps, nous généralisons ces résultats aux
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processus empiriques à la Horvitz-Thompson impliquant des échantillons sélection-

nées selon un plan de sondage à forte entropie comme le plan réjectif. Pour ce faire,

nous utilisons des résultats connus exhibant la proximité entre les plans de sondage

à forte entropie et le plan simple de Poisson. Les théorèmes fonctionnels de la limite

centrale ainsi obtenus sont ensuite utilisés pour montrer la normalité asymptotique

d’estimateurs pouvant s’écrire comme certaines fonctionnelles (Hadamard ou Fréchet

différentiables) du processus empirique. Enfin, nous étudions le cas spécifique de l’es-

timateur Horvitz-Thompson de la fonction de répartition et, illustrations à l’appui,

montrons comment util iser nos résultats pour en construire des bandes de confiance

uniformes. Au delà de l’analyse du risque alimentaire, ces résultats semblent tout à

fait appropriés à la gestion de bases de données de taille gigantesque (les fameuses

“ big data” ), dont la taille augmente sans cesse, comme les données financières, et ne

peuvent être exploitées sur un unique ordinateur. Dans un tel contexte, l’échantil lon-

nage semble une solution toute naturelle aux problèmes de mémoire informatique.

Les plans de sondage que nous avons étudiés se révèlent alors d’un intérêt tout partic-

ulier, permettant d’obtenir simplement des estimateurs non biaisés et d’une efficacité

optimale (il suffit pour cela de calibrer correctement les probabilités d’inclusion) sur

des échantillons de taille raisonnable.

P.4.5 Estimation de l’indice de valeurs extrêmes à partir de données

desondage

Nous concluons cette thèse en revenant au problème initial de l’estimation des

phénomènes extrêmes, prenant cette fois-ci en compte le plan de sondage selon lequel

les données ont été collectées. A notre connaissance, la théorie des valeurs extrêmes

n’a pour le moment pas été étendue au cadre des sondages. Nous commençons donc

modestement par l’adaptation dans ce contexte de l’un des estimateurs les plus clas-

siques de la TVE, à savoir l’estimateur de Hill de l’indice de valeurs extrêmes (Hill,

1975). Dans le même esprit que les travaux du chapitre précédent, nous en constru-

isons une version Horvitz-Thompson dont nous montrons la consistance et la nor-

malité asymptotique pour les plans de type Poisson. La vitesse de convergence de ce

nouvel estimateur s’avère être la même que si la population entière avait été acces-

sible, et la variance n’est dégradée que d’un paramètre multiplicatif dépendant du

choix des probabilités d’inclusion, qu’il est théoriquement possible de minimiser. A

l’aide d’expériences numériques, nous montrons que les hypothèses restrictives que

nous exigeons pour établir ces résultats mathématiques sont loin d’être nécessaires et

pourraient être relâchées dans de futurs travaux. Rappelant enfin les problématiques

inhérentes aux “ big data” , nous encourageons l’extension de ces travaux prélimi-

naires à d’autres familles d’estimateurs issus de la TVE.
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1
I N TROD U CTI ON : OF D I ETA RY H A BI TS

A N D EXPOSU RE

Dietary risk analysis is a generic public health term that embraces as many sci-

entific problems as there are ways for consumers to get sick by eating (or not eat-

ing). For instance, food industries are concerned with the development of bacte-

ria during the consecutive fabrication, transportation, distribution and stocking pro-

cesses that precede consumption (Rigaux et al., 2012). On another level, agribusi-

nesses may want to evaluate the impact of economically profitable mass produc-

tion methods (e.g. genetically modified organisms, pesticides) on the human organ-

ism (cf. http://www.efsa.europa.eu/en/topics/topic/gmo.htm on GMO and http:

//www.efsa.europa.eu/en/topics/topic/pesticides.htm on pesticides). Cooking

utensils can also represent a source of danger, depending on their chemical compo-

sition and the way they are used, as was recalled by the recent polemic about the

presence of bisphenol A in baby bottles (see the ensuing Anses avis, Anses, 2013).

Other health issues may be caused by behavioral phenomena such as eating disor-

ders (e.g. people suffering from severe anorexia are likely to develop diseases due to

nutritional deficiency), or by biological determinants (e.g. diabetes). As suggested by

this non-exhaustive list of examples, depending on the examined question, specific

knowledge in chemistry, medicine, sociology, economy, biology or even psychology

may be required, not to mention probabilistic modeling and computer data manage-

ment, which makes dietary risk analysis a multidisciplinary field par excellence. We

invite the interested reader to consult Feinberg et al. (2006) and the references therein

for a comprehensive introduction to the ins and outs of dietary risk analysis from an

interdisciplinary point of view.

The present work is dedicated to a very specific type of dietary risk: independently

from any production, stocking, cooking, or biological predisposition phenomena, we

are concerned with the very high (or low) long-term exposure of the French popu-

lation as a whole to some food components. After having introduced some basic

notions about dietary risk analysis in Section 1.1, described the available data in Sec-

tion 1.2 and quickly reviewed the literature on probabilistic modeling of dietary risks

in Section 1.3, we thoroughly present the various problems tackled in this thesis and

succinctly report its main scientific contributions in Section 1.4.

21
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1.1 get t i n g a t ast e of di et ar y r i sk anal ysi s

Once a specific type of dietary risk has been brought into focus, its analysis in-

volves three distinct stages, usually referred to as risk evaluation, risk management

and risk communication. In the next paragraphs, we give a concise overview of the

various issues addressed in these successive and complementary steps. To help bet-

ter understand the challenges at stake, we illustrate each introduced methodological

concept with the specific example of salty diets, the recurrent abuse of which can

favor cardiovascular issues (see for instance http://www.anses.fr/en/content/salt

and the references therein).

1.1.1 Risk evaluation

Risk evaluation (or assessment) can be schematically decomposed into four sub-

stages, which consist in successively identifying and characterizing both potential

dangers and their probability of occurrence. In the case of salty diets, the danger

would be to ingest too much sodium (Na in the periodic table) on a daily or weekly

basis, since in the long-run it would be likely to damage the cardiovascular system.

These noxious effects were spotted by means of chemical and biological studies about

the assimilation, action and elimination of Na in the human organism. This process

is called hazard identification (Barlow et al., 2002). It is followed by further research de-

signed to understand at what point the component becomes noxious, i.e. characterize

thedanger. In general, danger characterization involves testing dose-response effects

in vitro or in vivo on animals before extending the subsequent results to humans by

means of dedicated models (Dybing et al., 2002). Once the contamination process

is fully comprehended, it becomes possible to assess its probability of occurrence in a

given population. This requires first a thorough description of the distributions of

consumption and exposure in the population (Kroes et al., 2002), then a compari-

son with some maximal intake limit determined by experts from the aforementioned

dose-response trials (Renwick et al., 2003), possibly enhanced by mathematical de-

signs (Edler et al., 2002). Depending especially on the data at hand, statistical models

may include a temporal dimension (Bertail et al., 2010, 2008; Allais and Tressou, 2009),

take into account individual biological or behavioral characteristics, or try to make up

for the limited amount of available information (Dodd et al., 2006). Considerations

on this matter are discussed in detail in Section 1.3 and Chapter 2.

1.1.2 Risk management

Once dietary risks have been evaluated, it is necessary to identify their determi-

nants, evaluate their relative impact and define the best strategy to rapidly and ef-
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ficiently reduce risks. This is the exact purpose of risk management. For instance,

over-exposure to sodium can sometimes be traced back to the repeated consumption

of some salt-saturated products such as precooked dishes or biscuits. A simple line

of action there would be to simultaneously warn consumers of the potential dangers

and impose food companies to limit the amount of added salt in their preparations.

In more extreme cases, after a thorough evaluation of the economic impact of such

measures, some foodstuffs may even be taken off the market.

1.1.3 Risk communication

The last stage of dietary risk analysis is called risk communication. It can take

place at any moment of the analysis and be intended for scientists and risk managers

involved in the process as well as food industries or consumers. As such, it is not

restricted to public health campaigns such as “ avoid eating products that contain too

much salt” in our example. It also encompasses scientific reports about the methods

considered appropriate to detect and quantify risks, publications of case study re-

sults, international discussions about food policies, etc. In the sequel, we are mainly

interested in producing results that would help orient further research and, when

possible, set general, easily understandable and applicable dietary guidelines to the

population.

With this objective in mind, most of our work falls into the evaluation phase of

dietary risk analysis: in a few words, we design statistical methods to assess some

characteristics (e.g. quantiles) of the very high exposure to some food chemicals over

a long period of time. Except in Chapter 4 where we elaborate a statistical method-

ology that ascertains balanced food baskets with regard to toxicological risk and nu-

tritional benefit, risk management is not the main concern here. The components of

interest are nutrients and contaminants to which the chronic over- or under-exposure

has known detrimental sanitary effects. In particular, we disregard acute risks such

as those involving bacterial contamination of the food, which can impact the organ-

ism in only a few days or even a few hours. Statistical analysis is based in this

context on some standard types of databases, which are described in detail in the

next subsection.

1.2 col l ect i n g i n f or mat i on : mul t i pl e

sour ces, mul t i pl e di f f i cu l t i es

To statistically analyze the chronic dietary exposure of a given population to a col-

lection of food components, we need to observe such types of exposure on a large

sample of individuals over a long period of time. Unfortunately, the amounts of
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nutrients and contaminants ingested during a meal are not directly measurable and

can only be assessed by means of various methods. This can be achieved for instance

by detecting and quantifying some specific biomarkers, the presence of which is ulti-

mately linked to the level of exposure (refer for instance to the Anses website http://

www.anses.fr/sites/default/files/documents/RSC1205- DossierParticipants.pdf

giving the list of presentations in a dedicated workshop held in May 2012). From a

practical point of view, this necessitates collecting then chemically analyzing samples

of body fluids, hair or skin of a relatively large array of people. At a national level,

the cost of such procedures can constrain the sample size at the expense of statistical

efficiency. Moreover, many chemicals can be assimilated via other elements than food

(e.g. air) and biomarkers cannot distinguish between the various sources of exposure

(Sirot et al., 2009). So as to study the sole impact of nourishment on individual expo-

sure, one may use in an alternative manner a combination of two types of databases,

one listing the dietary intakes of a sample of consumers and the other the levels of

components in a fine nomenclature of products. The next paragraphs provide an

overview of the main characteristics of these so-called consumption and composition

data.

1.2.1 Consumption data

There are many types of data that can be used to assess chronic exposure to nu-

trients and contaminants in France, ranging from panel cohorts on alimentary ex-

penditures of households (Secodip, Nichèle et al., 2008) to Internet repositories filled

up on a voluntary basis (Nutrinet, Hercberg et al., 2010) and dedicated nationwide

institutional surveys (INCA2, Afssa, 2009). Focus is here on two major categories,

namely 24-hour recalls (abbreviated 24H) and food frequency or propensity question-

naires (FFQ/ FPQ). The first category corresponds to large surveys (possibly national)

where a sample of selected individuals report in detail their dietary habits during 2

to 7 days, sometimes consecutive but most of the time randomly picked within the

year. Food intakes are given exactly or relative to some pictures of more or less filled

plates provided by the pollster. Obviously, the short duration of these surveys can

impede the estimation of long-term dietary habits (Counil et al., 2006). To help deal

with this issue, food frequency (or propensity) questionnaires are proposed to the

consumers, in which they declare what type of food they most commonly eat and

which products they avoid or never consume. We refer the interested reader to van

Klaveren et al. (2012); EFSA (2006); Dodd et al. (2006) for an account of the assets

and liabilities of these complementary approaches. In this thesis, we used the INCA2

database described herein-after, which can be assimilated to a mixture of 24H and

FFQ.
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1.2.1.1 Dietary habits in theFrench population : INCA2

INCA2 (second opus of the national survey on individual dietary habits in France)

is a nationwide survey conducted by Anses (French agency for food, environmental

and occupational health safety) in collaboration with Insee (French national institute

of statistics and economic studies) between December 2005 and April 2007. It col-

lects information about the dietary habits of 2624 adults and 1455 children taken at

random in the French population.

Ú Survey scheme Individuals in INCA2 were selected according to a complex mul-

tistage survey scheme that was designed to produce a representative sample relative

to geographical, sociological and economic criteria. Post-calibration methods were

applied in a second phase with respect to the same set of auxiliary variables to pro-

vide corrected survey weights relative to both non-response and sampling fluctuation.

We refer to Afssa (2009, Chapter 2 and Appendix 2) for a thorough description of the

survey plan.

Ú Dietary information All participants reported both the nature and the amount

of food that they ate during 7 consecutive days. These products were classified ac-

cording to an exhaustive nomenclature of 1342 foods grouped into 123 sub-classes

and 45 wider categories (Afssa, 2009, Section 2.2.6.3 and Appendix 1). To help them

assess the quantities they ate, inquired people were given a notebook displaying

pictures of progressively fi lled plates and glasses. It served as a referential in case

exact measurement was not possible. A precise description of each meal was also

provided, indicating for instance when, where and with whom they occurred. In the

final database, they were classified into six types of meals, namely breakfast, morn-

ing snack, lunch, afternoon snack, dinner and evening snack. So that the seasonal

variation of dietary habits may be controlled, individuals were contacted randomly

at different periods of the year during 3 distinct phases of data collection. A specific

line of questions was also established to assess food supplement consumption in the

French population (Afssa, 2009, Section 2.2.6.4 and Chapter 8).

Ú Auxiliary information In addition to dietary habits, socio-professional character-

istics (e.g. diploma, profession, household income, nationality), dietary preferences,

physical activities (e.g. type, frequency, duration), medical history (e.g. eating disor-

ders), and other auxiliary information about participants (e.g. age, weight, sex) were

listed.

Ú Episodic or non-consumers When interested in long-term dietary habits and food

chemical exposure, 7 days of observation appear to be an arbitrarily short period of

time. In particular, in only one week, individuals cannot cover their entire food reper-

toire and many items in the reference nomenclature are not consumed. Thus, it be-



26 i n t r oduct i on : of d i et ar y h abi t s an d exposur e

comes difficult to discriminate between real non-consumers and episodic consumers.

So as to make up for this drawback, individuals in INCA2 were asked to depict their

dietary habits, and clearly declare to which category they belonged. These additional

queries corresponds to the so-called food frequency/ propensity questionnaires pre-

viously mentioned, which, when combined with 24-hour recall data, facilitate the

statistical modeling of long-term food or nutritional intakes (Dodd et al., 2006 and

van Klaveren et al., 2012, Sections 3.6 and 3.8 ).

Ú Incompleteinformation Regarding episodic versus non-consumers, collecting data

during only 7 days is clearly a liability, and a wider period of observation might be

preferred. Conversely, when concerned with the quality of answers, an entire week

can be considered too long to provide reliable information. Indeed, as mentioned

in Afssa (2009, Section 2.4.2), some participants did not report their consumption ev-

ery day and other under-estimated their intakes. In our calculations, we decided to

ignore these faults and simply scaled the observed dietary habits to the entire week.

Ú Timedependence The only difference between INCA2 and classical 24-hour recall

databases is that the 7 days of observation were consecutive. Consequently, although

an entire week is clearly better than the usual 2 days for long-term analysis, it makes

temporal dependence harder to ignore.

Ú Preliminary processing of INCA2 The present work is dedicated to the global anal-

ysis of the long-term dietary habits of French adults. Because of their very specific

nutritional needs and the temporary character of their condition, we decided not to

take into account pregnant or lactating women. Other individuals were excluded,

namely those for whom important variables were missing (e.g. body weight or con-

sumed food amount), thereby restricting the initial sample to 2488 units. Obviously,

we could have tried to apply standard techniques to infer on missing values, but

this went beyond the scope of our work. In particular, such methods are usually de-

signed to avoid degrading the estimation of average phenomena. Since we are more

interested in extreme (maximum or minimum) events and incomplete data only con-

cerned a very small proportion of the sample, we chose to ignore them instead. In

the final considered database, 91 individuals (3.7%) ceased filling the questionnaire

after only a few days.

1.2.2 Composition data

Composition databases usually collect an array of chemical measurements realized

on more or less refined groups of foodstuffs. They can originate from surveys of very

different natures. For instance, surveillance plans are designed to punctually check

the safety of some suspect products. Hence, by nature, they do not cover the entire
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food repertoire, but are particularly thorough in the sense that the collected samples

are of important size. In addition, since the inspected foodstuffs are suspected to be

abnormally contaminated, they cannot be used to estimate the toxicological exposure

of a large population without introducing a non-negligible bias. A lternative types of

data are the total dietary surveys. Based on samples of food of very small sizes (2

to 8 items in general), they however encompass a large array of products. As such,

they are more suitable for our purpose. The main difficulty when crossing them with

consumption data is that the corresponding nomenclatures may substantially differ,

thereby necessitating an additional step, potentially difficult, of association of the

various sources. This issue is particularly pregnant with meaning for international

institutes such as Efsa, which have to combine data from various countries (see the re-

cent report on the matter at http://www.efsa.europa.eu/en/search/doc/415e.pdf ).

Here, we work with databases that were constructed specially to fit INCA2. They are

briefly introduced below.

1.2.2.1 Nutrient supply : CIQUAL 2008

The 2008 version of the CIQUAL database (Centre d’Information sur la QUalité

des ALiments in French) lists the average concentrations with regards to a large

set of nutrients for each of the 1342 dietary products of the INCA2 nomenclature.

These levels were determined using multiple sources of information, ranging from

specifically ordered laboratory analyses to the published reports of various research

institutes. Each source was attributed a weight representing its reliability before a

final synthesizing calculus. We refer to Anses (2008) for more information concerning

the construction of this database.

Ú About nutritional invariability A lthough already quite exhaustive, CIQUAL 2008

does not provide any information about the variability of concentration within a type

of food. This suggests for instance that two oranges grown in different regions, one

possibly sunnier than the other, contain the same level of vitamin A. Even if this

assumption seems questionable at first sight, nutrient contents usually have such a

small variance that it is customary to consider them fixed, provided the associated

food nomenclature is detailed enough (de Boer et al., 2009, p.1433). The list of prod-

ucts considered in CIQUAL 2008 was designed to respect this constraint.

1.2.2.2 Food contamination : TDS2

Contrary to surveillance plans, the second opus of the French Total Dietary Sur-

vey (TDS2) is designed to assess the global exposure of the French population to a

whole set of food contaminants and thereto covers more than 80% of the current food

repertoire in France (Anses, 2011). Though particularly adapted to our needs, it still

possesses some unavoidable drawbacks.
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Ú Pooling foodstuffs One of the major limitations of TDS2 is that the analyzed prod-

ucts are not raw but pooled, i.e. different species of a same food item were mixed

together before chemical inspection. Dishes were also treated as such, meaning that

instead of separating the elements of a recipe they were considered as a whole. To

overcome this issue, recipe tables were constructed in parallel, to enable the decom-

position of the results of INCA2 into a more refined nomenclature (Anses, 2011).

Ú Censored data Like all contamination databases, TDS2 suffers from an intrinsic

censorship due to the limitations of measurement devices. Indeed, machines can-

not have an infinite precision, and as such can fail quantifying, or worse detecting

chemicals in the food. This inconvenient censorship is usually introduced in statisti-

cal models using two major parameters, namely the Limit Of Detection (LOD) and

the Limit Of Quantification (LOQ). The former represents the minimal amount of

chemical that has to be present for the instrument to detect its presence and the lat-

ter that for which quantification is possible. They clearly depend on the measuring

instrument used to perform the chemical analyzes. In practice, the most common

method to balance this restriction is to adopt one of the three following hypotheses.

Denote by t D the real amount of component when below the LOD and by t Q when

in between the LOD and the LOQ. Then, the three possible scenarios are:

1. median hypothesis: t D = LOD=2 and t Q = LOQ=2,

2. lower hypothesis: t D = 0 and t Q = LOD,

3. upper hypothesis: t D = LOD and t Q = LOQ.

The median hypothesis is typically chosen when the censored measures do not rep-

resent more than 60% of the entire database. In this thesis, we chose to adopt this

specific approach, considerations about censorship going beyond the scope of our

work.

1.3 st at i st i cal assessmen t of d i et ar y r i sks:

a r evi ew of t h e l i t er at ur e

In the last 20 years, a plethora of dedicated statistical methods have been developed

to assess dietary risks of various natures. Designed to answer practical issues linked

to the type of available data such as the censorship in the measurement of levels

of contents (Tressou, 2006), they keep on evolving with the new methods of data

collection. In the context of 24-hour recalls and food frequency questionnaires, to

which INCA2 is very similar, we can distinguish three major issues, detailed in the

next paragraphs, that are to be tackled in the present thesis.
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1.3.1 Extremelong-term exposure

To cope with the limited duration of 24-hour recalls, statistical models of the mea-

surement error type have recently gained popularity (Tooze et al., 2006; Dodd et al.,

2006; van Klaveren et al., 2012; de Boer et al., 2009; Boon et al., 2011). They account for

the presence of two sources of variance in the observed exposure, namely individual

fluctuations around usual habits and populational heterogeneity. Both are estimated

by means of parametric modeling and the final long-term distribution is approached

with Monte-Carlo simulations that disregard the intra-individual variations. The

aforementioned parametric assumptions usually implicitly require that the usual in-

takes have log-normal distribution. However, for many nutrients and contaminants,

the tails of such probability laws are sometimes too thin to accurately account for the

occurrence of extreme events; under-estimation is thus a non-negligible risk. When

interested in the very high exposure to nutrients and contaminants, methods issued

from extreme value theory (EVT) have already proven useful in acute risk estimation

(Tressou et al., 2004b,a; Bertail et al., 2010; Kennedy et al., 2011; Paulo et al., 2006),

suggesting that an extension to the long-term setting would be worth considering.

1.3.2 Simultaneous exposureto multiple food components

Beyond the issue of chronic versus acute risks, a particularly hot topic in dietary

risk assessment is the analysis of simultaneous exposure to multiple chemicals. In-

deed, if the excessive ingestion of toxicants can have a detrimental impact on health,

knowledge about synergistic, combined effects is still poor (Carpenter et al., 2002). In

France, the Anses institute has most recently launched the Pericles program (Crépet

et al., 2013) in order to identify cocktails of components that are observed to be con-

sumed in the population. The ensuing results should provide guidelines to chemists

and biologists who will then be in charge of inspecting the corresponding sanitary

effects on the human organism. For now, most of this work is focused on average

phenomena (Béchaux et al., 2013), at the detriment of extremes. Going back to ex-

treme value theory, using the multivariate branch of this field should provide ways

of dealing with high joint exposure. When only a few dimensions are involved,

attempts in that direction have already been published (Paulo et al., 2006). How-

ever, especially for some types of contaminants such as pesticides or Polychlorinated

biphenyls, which possess hundreds of congeners, managing high dimensions would

be desirable. Unfortunately, from a theoretical point of view, EVT does not handle

dimensions higher than 5 or 6 yet, making this branch of dietary risk analysis both a

practical and a methodological challenge.
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1.3.3 Survey data

In all the aforementioned methods, it is usually assumed that the data at hand

is independent, identically distributed (iid) according to some probability measure.

However, 24-hour recalls and databases like INCA2 are typically constructed from

some elaborate survey scheme, designed to produce samples that are representative

of the population of interest. There, the iid hypothesis is no longer satisfied, and indi-

viduals are attributed survey weights based on their probability of being included in

the sample (Droesbeke et al., 1987; Tillé, 1999). Thus ignoring the underlying design

is known to produce biased estimates (Bonnery, 2011), in our case the probability

of occurrence of very high exposure is likely to be either over- or under-estimated.

Though the literature on survey sampling is quite rich (Gourieroux, 1981; Droesbeke

et al., 1987; Deville, 1987; Cochran, 1977; Tillé, 2006), functional results that would

enable the estimation of the entire distribution function are just starting to flourish

(Breslow and Wellner, 2008, 2007; Saegusa and Wellner, 2011) and extreme analysis

is, to our knowledge, still unexplored.

In an attempt to answer these issues, we propose in the present work a collection

of heuristic methods and theoretical results that are specially built for 24-hour recall

types of databases. As shall be seen later on, some of these mathematical findings

have possible applications that go beyond dietary risk analysis.

1.4 obj ect i ves an d mai n con t r i but i on s

In this thesis, we tried to bring some answers to the statistical problems mentioned

in the previous section. It is structured as follows: in Chapter 2, we tackle the issue

of heavy-tailed long-term exposure to one specific chemical and show how extreme

value theory can be of help. Moving then to the multivariate setting, the simulta-

neous exposure to multiple food components is considered. A new method mixing

machine learning algorithms and spectral measure estimation to reduce the dimen-

sion in the analysis of multivariate extreme values is introduced in Chapter 3. In

Chapter 4, while still remaining in a multidimensional optic, we change focus and

go back to average phenomena. There, statistical learning methods borrowed from

the minimum volume set literature are adapted to the non-parametric estimation of

the distribution of exposure to a collection of nutrients and contaminants. A natural

extension to the construction of dietary habits that realize a compromise between

toxicological risk and nutritional benefit is also proposed. Finally, Chapter 5 and

Chapter 6 are dedicated to the treatment of survey data. After extending classical

functional results on empirical processes to the analysis of observations issued from

a Poisson-like sampling scheme in the former, we introduce in the latter a novel es-

timator of the extreme value index for survey data. A lthough they are not general
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enough to enable direct application to dietary risk analysis, these preliminary results

constitute the basis of future developments that, we hope, will soon lead to more

comprehensive models that can manage databases like INCA2.

1.4.1 Extremechronic exposureto onechemical

Before even considering multivariate types of exposure to food chemicals, we start

by discussing the calculation of the usual intakes of a unique nutrient or contaminant.

Particularly interested in extreme phenomena, following in the footsteps of Tressou

et al. (2004a), we bring back into fashion a non-parametric method that is usually

disregarded in favor of mixed-effects models. It simply relies on the preliminary

averaging of temporal observations on a daily scale, thereby avoiding the statistical

modeling of the between and within variances that play a role in the distribution of

the long-term exposure advocated by Tooze et al. (2010); van Klaveren et al. (2012);

de Boer et al. (2009). When dealing with heavy-tailed distributions, thus proceeding

is shown to avoid the under-estimation of tail characteristics that is bound to occur

with the classical log-normal parametric modeling of usual intakes. Supporting our

arguments with a real-data analysis, we propose a systematic procedure that consists

in testing first the presence of a fat tail before choosing a specific statistical procedure.

For this purpose, techniques directly borrowed from the extreme value theory litera-

ture are depicted and the suitability of this field for dietary risk analysis is brought

into focus.

1.4.2 Simultaneous over-exposureto many food chemicals

Extending next our approach to the multivariate level, we consider the analysis of

extreme types of exposure to many nutrients and contaminants. In the same spirit

as the Pericles program (Crépet et al., 2013), we propose a new method that identi-

fies cocktails of chemicals to which individuals are simultaneously highly exposed.

Inspired by techniques of both the statistical learning and the extreme value anal-

ysis fields, it consists in assessing in a non-parametric manner the elements of the

support of the spectral measure, a mathematical object that characterizes extreme

dependencies. It is defined on the positive orthant of the unit sphere, which is quite

naturally decomposable into open faces (edges and vertices) that happen to point

out the variables that are linked together. In order to detect the faces on which the

spectral measure is positive (thus the groups of variables that exhibit extreme de-

pendence), we use a novel algorithm called Principal Nested Spheres (Jung et al.,

2012) that achieves a sort of Principal Components Analysis on the unit sphere. It

reduces the dimension of the data by systematically projecting the cloud of points on

sub-spheres of lower dimension, thereby facilitating further analyzes. Tackling this
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issue from a latent variable point of view justified by a mixture model of the spectral

measure, the projected data is then clustered into groups that supposedly represent

the different faces forming its support. Their identification is finally handled with a

new heuristic that seems to perform well on simulations. When applied to the mul-

tivariate exposure obtained with the INCA2, CIQUAL 2008 and TDS2 databases, it

produces comprehensible outcomes that support this promising approach.

1.4.3 A minimum volumeset approach todietary risk-benefit analysis

Exploiting further the assets of learning procedures for dietary risk analysis, we

focus this time on average phenomena. In this chapter, we introduce for the first time

the variability in the contamination process of the food. Following in the footsteps

of Bertail and Tressou (2006), we extend the minimum volume set approach of Scott

and Nowak (2006) to the case where the volume is unknown and estimated by a

U-statistic. This enables to construct in a non-parametric manner the level sets of the

multivariate distribution of types of exposure to multiple chemicals. We then demon-

strate how this procedure can be modified to recover in the consumption space the

dietary habits that balance toxicological risk and nutritional benefit. In the near fu-

ture, these theoretical results are destined to be applied to the INCA2, CIQUAL 2008

and TDS2 databases in order to provide general dietary guidelines in the spirit of

“ eat five fruits and vegetables a day” .

1.4.4 Empirical processes in survey sampling

Our next challenge concerns the nature of the consumption data, which often re-

sults from a complex survey scheme. Since the distribution of the long-term exposure

is of particular interest for public health institutes like Anses, providing functional re-

sults about such weighted data would help avoid the bias induced when ignoring the

survey scheme. Though unable to develop results for the specific design employed

in INCA2 yet, we make our contribution to the elaboration of a more comprehensive

theory by studying the asymptotic properties of empirical processes in the context of

Poisson-like survey plans. Our approach is directly inspired by the seminal papers

of Hàjek (1964) and Berger (1998) and exploits the proximity of large entropy designs

to the simple Poisson scheme. Under some assumptions on the inclusion probabil-

ities and a superpopulation framework, which are bound to be relaxed in the near

future, we establish a functional central-limit theorem and show its implications for

the asymptotic analysis of a large array of estimators. With illustrations based on

simulations we present in particular how it can be applied to the construction of

uniform confidence bands of the distribution function. Beyond dietary risk analysis,

such results appear to be of particular interest for the management of huge databases,
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the sizes of which increase in permanence like financial data, and therefore cannot

be fully accessed. With complete control over the sampling procedure, the Poisson

and rejective plans are revealed as especially convenient for the unbiased statistical

analysis of such databases.

1.4.5 Tail index estimation based on survey data

Going back to extreme phenomenons, we propose to adapt the widely celebrated

Hill estimator of the extreme value index (Hill, 1975) to the survey sampling frame-

work. Hoping again to extend this results to the complex survey scheme of INCA2,

we start by establishing its consistency and asymptotic normality for sampling plans

of the Poisson type. The rate of convergence of this novel estimator is found to be the

same as if the entire population was available, and the variance is only depreciated

by a multiplicative term that depends on the way the inclusion probabilities were

chosen. With numerical experiments we show that the restrictive hypotheses that

were required in our theorems could actually be relaxed. Recalling the issue of big

data, we finally encourage the extension of those preliminary results to many other

branches of the extreme value field.





2
EXTREM E CH RON I C EXPOSU RE TO ON E

CH EM I CA L

2.1 i n t r oduct i on

When combined with food composition databases, dietary surveys prove useful to

assess statistical distributions within a given population of intakes of nutrients as well

as different types of chemical substances such as environmental contaminants, food

additives or pesticide residues present in the food. Typically, they are built out of

short-term follow-ups of representative sub-populations, commonly called 24h-recalls,

chosen according to some appropriate survey scheme, and therefore do not enable

direct estimation of chronic (long-term) risks. Indeed, participants in cross-sectional

representative dietary surveys are usually not solicited more than one week, and the

current trend is even to shorten the survey duration to only two or three days (see

for instance the reports of the EFCOVAL project on http://www.efcoval.eu/ and

Crispim et al., 2011; De Boer et al., 2011). As a result, chronic risk evaluation may not

be achieved from such data without any statistical modeling.

In answer to these practical limitations, statistical models have been developed in

the last 20 years to estimate usual long-term intakes from short-term measurements

(van Klaveren et al., 2012; Dodd et al., 2006). Originally constructed to assess the unbi-

ased prevalence in some population of interest of inadequate and insufficient intakes

of nutrients, they are also used now to estimate high percentiles of intake in a food

safety perspective. In nutrition, there is for instance a need to verify that upper levels

of intakes for vitamins and minerals are not exceeded, considering food fortification

or supplements intake. Most of these models use an analysis of variance to separate

between- and within-individuals variabilities of usual intakes. An assumption of

normality of intakes after a Box-Cox transformation is done (Tooze et al., 2010). The

present study tries to propose an adaptation of these methods to better consider high

nutrient intakes, which are often not normally distributed, in order not to under-

estimate the risk of exceeding upper levels. This method could also be applied to

chronic risk assessment to chemicals in food (Boon et al., 2011). This work corre-

sponds to a paper currently being written in collaboration with J.L. Volatier (Anses,

France).

The chapter is structured as follows. We start off in Section 2.2 by setting notations

and presenting the statistical background on which classical models are based. After

35



36 ext r eme ch r on i c exposur e t o on e ch emi cal

reviewing in further detail two popular methods and underlining their limits relative

to the estimation of high quantiles and rare events, we thoroughly depict our alterna-

tive procedure in Section 2.3.1. As means of il lustration, a case-study is conducted in

Section 2.4. The different models previously introduced are subsequently compared

on real data, which finally leads to the discussion of their respective assets and liabil-

ities in Section 2.5. Supplementary details regarding tail estimation are provided in

Section 2.6.

2.2 mi xed-ef f ect s model s t o assess usual

i n t akes

The setting under which usual intakes are analyzed is always the same. We observe

food consumption of n ° 1 individuals, indexed by i , taken randomly within a given

population, during J P t 2; : : : ; 7u days. Let Xi ; j be the true nutrient (or contaminant)

intake of individual i on day j , and Xi = E
�
Xi ; j |i

�
their usual intake. Here, E (.|i )

represents the expectation conditional on being individual i . Because it is not possible

to observe Xi ; j directly in a chosen population, we use a proxy, denoted by pXi ; j ,

obtained by crossing consumption with composition data. Specifically, let Ch
i ; j be

the amount of food h ingested by individual i on day j , and Qh the average level

of nutrient (or contaminant) contained in h. We observe pCh
i ; j , an approximation of

Ch
i ; j reported by individual i during a survey, and pQh an estimated version of Qh

obtained via multiple measurements on various samples of food h. It is assumed

that E
�

pCh
i ; j

�
�i ; j

�
= Ch

i ; j and E
�

pQh
�

= Qh , i.e. data collection methods produce

unbiased estimates of the quantities of interest. Moreover, individuals are supposed

to choose and report their food independently from their contents, which implies in

particular that E
�

pCh
i ; j �

pQh
�

= E
�

pCh
i ; j

�
� E

�
pQh
�

. Then, for a given nomenclature

of H foods, pXi ; j :=
∞ H

h = 1
pCh

i ; j �
pQh is an unbiased estimate of Xi ; j , and one can write

the following measurement error model, for all i P t 1; : : : ; nu, j P t 1; : : : ; Ju:

pXi ; j = Xi + " i ; j ; (2.1)

where " i ; j is a within-individual error with null expectation. A few additional con-

straints are assumed to hold:

(C1 ) X1 ; : : : ; Xn are independent, identically distributed (iid) with cumulative distri-

bution function (cdf) F, independent from noise terms " i ; j ,

(C2 ) within-person errors are individually (over i = 1; : : : ; n) and temporally (over

j = 1; : : : ; J) independent from each other, with common cdf F" .

Notice that in practice, (C1 ) requires in particular that two people of the same house-

hold are not both included in the sample and that (C2 ) excludes surveys like INCA2,

where the days of observation are consecutive. Many different techniques were de-

veloped from this general background (van Klaveren et al., 2012; Dodd et al., 2006).
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Though all based on the same master model, they can substantially differ on many

points. Depending on which family of distributions both F and F" are assumed to

belong to, confidence intervals may or may not be computable, episodic consumption

taken into account, auxiliary information exploited, etc. The final objective also plays

a role in the choice of method, conservatism being sometimes preferred to realism

(we would rather have a systematic over-estimation of the quantities of interest than

taking the risk of under-estimating them). These techniques are regularly evaluated

and compared by scientific committees mandated by public health institutes, in or-

der to provide methodological guidelines to practitioners (see for instance Sections

2, 3 and 4 of the latest EFSA report van Klaveren et al., 2012, or the older recom-

mendations of U.S. Environmental Protection Agency, 1999; WHO, 2000; EFSA, 2006).

Here wepresent two major approaches advocated by EFSA, namely the BetaBinomial-

Normal (BBN) and LogisticNormal-Normal (LNN) models, respectively introduced

by de Boer et al. (2009) and Tooze et al. (2006, 2010).

2.2.1 TheBetaBinomial-Normal model

Referring to de Boer et al. (2009), the BetaBinomial-Normal model, abbreviated

BBN, is particularly appreciated because it enables to deal with episodic consump-

tion. It relies on the simple decomposition:

F(x) = P (Xi = 0) + P
�
Xi § x

�
�Xi ° 0

�
P (Xi ° 0) .

Specifically, it considers that the probability of consuming (or intake frequency),

namely p0 := P (Xi ° 0), has Betabinomial distribution, while positive intake amounts,

denoted by X+
i , are normally distributed. Since it can happen that the distribution

of X+
i is asymmetric, a preliminary logarithmic or power transformation of the data

is usually recommended (Box and Cox, 1964). The BBN model further requires that

p0 and X+
i are independent. This prohibits for instance situations where the occa-

sional intakes of episodic consumers are systematically small. In practice, estimation

is achieved in two separate steps, one dealing with p0 and the other with X+
i , as

detailed herein-after.

Step 1 Using both null and non-null observations, the parameters of the Betabinomial

distribution of p0 are assessed by means of maximum likelihood estimation.

Step 2 Relying solely on the positive observations, denoted by pX+
i ; j , a preliminary

power transformation is achieved:

g�
�

pX+
i ; j

�
:=

$
''&

''%

log pX+
i ; j if � = 0;

�
pX+

i ; j

��
if � ° 0.

To choose an appropriate �, a grid of candidate values is explored and the

retained value�� is that minimizing the sum of squared residuals ensuing from
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a regression of normal Blom scores on the transformed intakes (de Boer et al.,

2009, p.1436). Then, the parameters of the following model are fitted with the

maximum likelihood procedure:

g��
�

pX+
i ; j

�
= �+ ci + u i ; j ;

where ci is the between-person effect with Normal distribution N(0;�2
B ) and

u i ; j the within-person effect with Normal distribution N(0;�2
W ).

Once all model parameters assessed, the distribution F of the usual intakes is ob-

tained by Monte-Carlo approximation. First, realizations of p0 are simulated ac-

cording to its estimated distribution. When they are equal to 1 (i.e. consumption is

supposed to occur), the amount is drawn from a normal distribution N(p�; p�2
B ), where

p�and p�2
B are the estimated versions of �and �2

B respectfully. Concretely, this comes

to annihilating the intra-variation effect encapsulated by u i ; j , which represents the

individual fluctuations around the corresponding long-term dietary habits. Finally, a

back-transformation is performed to go back to the initial scale (before applying the

function g�� to the raw data). Notice that it is also possible to add auxiliary informa-

tion to the procedure by introducing covariates in the models of p0 and pX+
i ; j (de Boer

et al., 2009, p.1436).

2.2.2 TheLogisticNormal-Normal model

The LogisticNormal-Normal model of Tooze et al. (2010), first introduced in Tooze

et al. (2006), is very similar to the BBN method depicted above. The main differences

are the following.

– The transformation function is of the Box-Cox form (Box and Cox, 1964)

g�
�

pX+
i ; j

�
:=

$
&

%

log pX+
i ; j if � = 0;

1
�

��
pX+

i ; j

��
� 1
�

if � ° 0;

and the choice of an optimal � is directly handled in the maximum likelihood

estimation of the parameters of the distribution of pX+
i ; j .

– Correlation between p0 and pX+
i ; j can be introduced.

– The parametric model of p0 is no longer Betabinomial, but Logistic-Normal.

In both methods (BBN and LNN), statistics of interest such as percentiles can be

estimated using the simulated usual intakes. Unfortunately, none of these approaches

provides associated confidence intervals, since it would require controlling at the

same time the variance of the estimates of the various model parameters, that of the

Monte-Carlo approach and the error due to the back-transformation.

Obviously, many more methods than these two seminal contributions have been

proposed in the literature. We refer to van Klaveren et al. (2012, Sections 2, 3 and 4)
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and Dodd et al. (2006) for a more detailed account of the available models for usual

intakes.

2.3 h eavy-t a i l model i n g of usual i n t akes

All the methods that were just introduced share a common characteristic: up to

a transformation, both usual intakes and the noise terms are supposed normally

distributed. If fi tting a Gaussian distribution can convey acceptable approximations

of average phenomena, it rarely is the case when focus is on extreme objects such as

the 95th and 99th percentiles, or the probability of getting over some maximum intake

limit. This issue is clearly mentioned in de Boer et al. (2009, p.1438): “ departures from

normality may give biased estimation of the model parameters and, hence, may give wrong

inference about the usual intake distribution” . In the next paragraph, we review the

basics of extreme value theory that are of help to understand the validity of this

statement. Given this background, we then propose an alternative model dedicated

to the assessment of the tail of the distribution of positive usual intakes (we are not

interested in episodic consumption).

2.3.1 Extremevaluetheory and heavy-tailed distributions

In a univariate context, extreme value theory is dedicated to the analysis of the tail

of some distribution of interest, corresponding here to F(x) := 1� F(x) for all large

intakes x P R+ . Notice that it is intricately linked to the tail quantile function, defined

for all x • 1 as

U(x) := inf
"

y P R+ : F(y) §
1
x

*
;

by setting p := 1=x for some p P (0; 1), it is easy to see that U(1=p) is no other than

the quantile of order 1� p of the studied usual intakes, also denoted by

Q(p) := inf t y PR+ : F(y) • pu.

Given a collection of n ° 1 iid observations X1 ; : : : ; Xn with cdf F, extreme value

theory (EVT) stipulates that observations in the tail of the distribution are approxi-

mately governed by the law of the maximum. Let X1;1 § ���§ Xn ;n denote the order

statistics related to the sample, with Xn ;n its maximum. Then, in the same spirit as

the Central Limit Theorem for the mean, we are led to look for some real sequences

of constants an ° 0 and bn PR such that, for all n ° 1,

lim
n —1

P
�

Xn ;n � bn

an
§ x

�

= G(x); (2.2)

for any x P R at which the limiting distribution function G is continuous. If such

normalizing constants exist, then G is called an extremevaluedistribution and F is said
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to be in the maximum domain of attraction of G (abbreviated F PM DA(G)). Going back

to the tail of the distribution and referring to De Haan and Ferreira (2006, Theorem

1.1.2), Equation (2.2) is equivalent to

lim
t —1

t F
�
at t ux + bt t u

�
= � log G(x); (2.3)

with tt u the integer part of t . Fortunately, (univariate) extreme value distributions

can be written in a parametric form, introduced first by Fisher and Tippett (Fisher

and Tippett, 1928) then by Gnedenko (Gnedenko, 1943):

G(x) = G�(x) := exp
!
�(1+ �x)�1=�

)
; for 1 + �x ° 0; (2.4)

with, by convention, G0 (x) = exp t�e�x u and � P R. Called the extreme value in-

dex (EVI), � defines three types of maximum domains of attraction. Specifically, if

F P M DA(G�) w ith � ° 0, then F is said to be in the Fréchet maximum domain of at-

traction, which characterizes heavy-tailed distributions like Pareto laws. Conversely,

thin-tailed distributions such as the Normal or Lognormal laws belong to the Gumbel

maximum domain of attraction, with �= 0. The last maximum domain of attraction,

called Weibull, verifies � † 0 and encompasses distributions with bounded upper

tails. The most classical example of the latter would be the Uniform distribution on

some closed interval. Of course, it can so happen that some distributions belong

to neither of these three maximum domains of attraction. Log-Pareto distributions

with cdf F(x) = 1� (1+ �(log x� u)=�)�1=� ; � ° 0, u P R and � ° 0, marked as

super-heavy-tailed, are part of these exceptions (Cormann and Reiss, 2009). Further

notice that only some types of thin-tailed (resp. bounded) distributions belong to

the Gumbel (resp. Weibull) maximum domain of attraction (Embrechts et al., 2011,

Sections 3.3.2 and 3.3.3). In fact, F can have a bounded upper tail and stil l verify

F P M DA(G0 ). Conversely, light-tailed distributions with bounded upper tail can

belong to the Weibull maximum domain of attraction. The interested reader may

refer to Embrechts et al. (2011, Chapter 3) for a very thorough introduction to the

fluctuations of maxima, enlivened by many detailed examples. In particular, Tables

3.4.2, 3.4.3 and 3.4.4 from p.153 to p.157 in this manual display a list of characteristics

of the most common distributions in each maximum domain of attraction, including

some possible normalizing constants.

In the present study, we are interested in heavy-tailed distributions that respect

F P M DA(G�), � ° 0. They are characterized as follows (Embrechts et al., 2011,

Section 3.3.1):

1� F(x) = x�1=� L(x); (2.5)

where � ° 0 is the EVI and L(x) a slowly varying function (svf), i.e. for all t ° 0,

L(t x)=L(x) — 1 as x — + 1 . Distributions of that form are said to be regularly

varying with index �1=� (Resnick, 2007); the set of such functions is denoted by

R�1=�. They enjoy quite a few useful properties, e.g. their tail quantile function is
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also regularly varying with index �. When concerned with the estimation of the EVI,

Equation (2.5) is a typical semi-parametric model, where the svf L plays the role of the

perturbation. Actually, to guarantee its accuracy, statistical inference often requires

this disruptive function to fulfi ll some extra regularity criteria. Called Von Mises or

second order conditions, they are usually written as follows (cf. Goldie and Smith, 1987

and De Haan and Ferreira, 2006, Chapter 2).

Assumpt ion 2.1 The regularly varying tail quantile function U PR� with � ° 0

is such that there is a real parameter �† 0, referred to as the second order parameter,

and a positive or negative function A with lim
x —+ 1

A(x) = 0 such that for any t ° 0,

1
A(x)

�
U(t x)
U(x)

� t�
�

�—
x —1

t�
t�� 1
�

;

or equivalently

1

A
�

1
F( x )

�

�
F(t x)

F(x)
� t�1=�

�

�—
x —1

t�1=� t�=� � 1
��

.

This ensures that L is almost of the form of a Hall slowly varying function 1� c x��,

which makes its influence over the Pareto form x�1=� of F controllable. There, the

parameter �controls the speed of convergence in extremes and, as we shall see later

on, plays a crucial role in the asymptotic analysis of most estimators.

In terms of nutrient or contaminant intakes, assuming Xi has cdf F as in Equa-

tion (2.5) means that the larger �, the less the probability that Xi reaches high levels

is negligible. On the contrary, constraining F to be in the Gumbel maximum of

attraction comes to considering that extreme events can be rare enough to be dis-

regarded. Actually, even if normality is not attributed to the raw data but to its

Box-Cox-transformed counterpart, usual intakes will stil l be implicitly assumed thin-

tailed (Teugels and Vanroelen, 2004; Wadsworth et al., 2010). Depending on which

of these two hypotheses is privileged, corresponding large percentiles and probabil-

ities of exceeding some maximum intake limit may differ significantly. In particular,

dietary risks are bound to be drastically under-estimated if heavy tails are ignored.

So as to decide which model to apply to our data, one may use statistical testing

procedures borrowed from the literature in EVT such as those depicted in the next

section.

2.3.2 Testing theheavy-tail assumption

Because constraining F to be thin-tailed when it is in fact heavy-tailed may induce

serious bias in tail estimation, we would like to test the null hypothesis

H 0 : F PM DA(G�); � ° 0 versus H 1 : F PM DA(G�); �§ 0.
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Since we do not observe Xi directly but rather a collection of ( pXi ; j )1§ j § J as in Equa-

tion (2.1), we cannot apply testing procedures directly. An extra assumption has to

be made to enable further analysis and we will consider the following conditions.

Assumpt ion 2.2 The cumulative distribution functions F and F" are such that

D`0 P[0; + 1 ] :
1� F" (x)
1� F(x)

�—
x —1

`0 and @t P(0; 1) ; lim sup
x —+ 1

1� F(t x)
1� F(x)

† 1 .

Assumpt ion 2.3 The cumulative distribution functions F and F" are such that

1� F" (x)
1� F(x)

�—
x —1

0 and Dx0 † 1 : @x ° x0 ; F" (x) = 1.

If either Assumption 2.2 or Assumption 2.3 holds, then under the setting intro-

duced at the beginning of Section 2.2 the cdf of pXi ; j , denoted by Fi ; j , is in the Fréchet

maximum domain of attraction with EVI �� ° 0 if and only if F P M DA(G��), as

shown in Maddipatla et al. (2011, Theorem 3.3 and Remark 3.4). The first mathe-

matical constraint in Assumption 2.2 simply means that the tail of F" should either

be equivalently thick or thinner than that of F. Without this assumption, we cannot

tell anything about F based solely on pXi ; j . Though it may seem quite restrictive and

cannot be tested, such a requirement encompasses a large class of distributions for

both F and F" . In particular, F" can still be heavy-tailed, as long as its EVI does not

exceed that of F. Notice that if the former is indeed in the Fréchet maximum domain

of attraction with EVI �" , then to allow the existence of its expectation we need to

have �" † 1. Similarly, for " i ; j to have a finite variance, it is required that �" † 1=2.

We refer to Embrechts et al. (2011, Section A3), De Haan and Ferreira (2006, Chapter

1) or Beirlant et al. (2004, Chapter 2) for more details on these properties. Hence,

desirable regularity conditions on individual errors limit the thickness of the tail of

their distribution, thereby advocating the reasonableness of our required assumption.

At this point, we stil l cannot use classical testing techniques, because our sample of

observations t pXi ; j ; 1 § i § n ; 1 § j § Juis not iid. However, it suffices to average the

data over time to get into an appropriate setting. According to the model depicted in

Section 2.2, we have

Xi :=
1
J

J∏

j = 1

pXi ; j = Xi +
1
J

J∏

j = 1

" i ; j = : Xi + " i ; (2.6)

where all Xi , 1 § i § n, are iid with cdf FX . Further denote by F" the cdf of

J�1 ∞ J
j = 1 " i ; j , then if F" fulfi lls Assumption 2.2 or Assumption 2.3 instead of F" , we

still have the equivalence (F P M DA(G��); �� ° 0) Ù (FX P M DA(G��)). This re-

quirement is met for a large set of distributions. In particular, if F" has a right upper

bound, then so does F" and Assumption 2.3 is verified. Other examples of accurate
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distributions can be found, for instance, in Embrechts et al. (2011, Sections 1.3 and

A.3.2).

From now on, we will consider the model in Equation (2.6) and assume that F"

and F fulfi ll either Assumption 2.2 or Assumption 2.3. To test whether F (or equiv-

alently FX ) is in the Fréchet maximum domain of attraction, we first have to check

beforehand that it does indeed belong to a maximum domain of attraction. For this

purpose, one can use the statistical test introduced by Dietrich et al. (2002) and stud-

ied at length in Hüsler and Li (2006). It is designed to check H 0 : F P M DA(G�) for

some�PR, and relies on the statistic

En ;k := k
ª 1

0

 
log Xn � tk t u;n � log Xn �k ;n

p�+
�

t� p�� � 1
p��

(1� p�� )

! 2

t�dt ;

where X1;n § : : : ; § Xn ;n denotes the order statistics relative to the sample of average

intakes, �° 0 is a parameter to be chosen, p�+ and p�� are the moment estimators of

Dekkers et al. (1989), and k is a fixed number of upper values of (X1 ; : : : ; Xn ) that

are considered to be representative of the tail of their distribution. Under H 0 and for

some appropriate choice of k, the quantiles of the asymptotic distribution of En ;k can

be computed and compared to its actual value. For more details on this procedure,

we refer to Hüsler and Li (2006), who also provide a R package implementing this

test. In practice, we compute En ;k for various choices of k (from 10 to 0.3� n for

instance), and accept H 0 if the resulting function almost always remains below the

corresponding asymptotic quantiles.

Once it has been established that F is in some maximum domain of attraction, we

may focus on testing H 0 : F P M DA(G�), � ° 0 versus H 1 : F P M DA(G�), � § 0.

Many procedures have been developed in the literature, as reviewed in Neves and

Alves (2008). We propose to use the statistic introduced in Beirlant et al. (2006); it

is based on a modified version of the Jackson statistic (Jackson, 1967) that tests the

“ exponentiality” in the tail of the log-transformed data. Under the second order con-

ditions in Assumption 2.1 and provided that the parameter �is consistently assessed

(e.g. with an estimator of the class presented in Alves et al. (2003)), it converges as

n — + 1 to a Gaussian distribution. Because it has a complicated form, for clar-

ity purposes we do not provide the explicit formula of this statistic, but rather refer

to the original paper (Beirlant et al., 2006). However, we precise that just like the

aforementioned En ;k , it depends on the choice of some number k of largest values.

Again, we compute this statistic for k ranging from 10 to 0.3� n, and accept H 0 if

the resulting function generally stays in the acceptance interval.

2.3.3 Assessing extremequantities

In this section we deal with the case where both tests depicted herein-before were

accepted, i.e. where FX , thus F, was found to be heavy-tailed, in the Fréchet maximum
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domain of attraction. We provide examples of widely-used estimators to assess the

corresponding EVI �, extreme percentiles and small probabilities of exceeding some

maximum intake limit. Of course, there is a plethora of such estimators, that are

eluded here in favor of the general advantage of our probabilistic model for dietary

risk assessment. In particular, it is well-known that the statistical tools introduced

herein-after can perform quite poorly in a number of situations (Embrechts et al.,

2011, Remarks p.337-338), and alternative estimators may be preferred. However, the

latter are often quite complicated and based on intricate mathematical results that

go beyond the scope of the present chapter. For the sake of clarity, and because we

are only interested here in the methodological aspect of the modeling of usual in-

takes, we deliberately choose to introduce simple, well-known, techniques as means

of illustration. The interested reader may refer to comprehensive textbooks such as

Embrechts et al. (2011); De Haan and Ferreira (2006); Beirlant et al. (2004); Resnick

(2007); Reiss and Thomas (1997) or to Caeiro and Gomes (2008); Beirlant et al. (2012);

Scarrott and MacDonald (2012) to get a wider overview of the state of the art on this

topic.

Ú The EVI One of the most famous estimators of the EVI for heavy-tailed distri-

butions is the Hill estimator (Hill, 1975), computed on a number k of largest values

in the sample, supposedly representative of the tail of the underlying distribution:

Hk ;n :=
1
k

k∏

i = 1

log Xn � i + 1;n � log Xn �k ;n . (2.7)

It corresponds to the maximum likelihood estimator of � when the tail of the dis-

tribution is assumed to be exactly Pareto, i.e. F(x) = c x�1=� for some c ° 0 and

x ° x� ° 0 such that
≥1
x�
�c=�x�1=��1 dx = 1. Under Assumption 2.1 and assuming

k = k(n) — 1 , k=n — 0,
?

k A(n=k) — �† 1 as n — 1 , then

?
k (Hk ;n � �) �—

n —1
N
�

�

1� �
; �2

�

in distribution,

see for instance Embrechts et al. (2011, Example 4.1.12 and Section 6.4.2, Method 2),

Beirlant et al. (2004, Section 4.4) or De Haan and Ferreira (2006, Section 3.2). Obvi-

ously, one needs to select some acceptable value k on which to calculate Hk ;n while

ensuring its asymptotic normality. This is a typical bias-variance dilemma: if k is

small, the selected observations are likely to belong to the tail of the distribution, pro-

ducing slightly biased estimates. However, they should be in small number, thereby

implying a wide variance. On the contrary, as k increases more observations are

used and the variance reduces, but the bias may grow, because observations that are

not located in the tail of the distribution, and do not correspond to the stipulated

model, may contaminate the estimation. To overcome this issue in practice, we pro-

pose to use the double-bootstrap algorithm of Danielsson et al. (2001), recommended

in Gomes and Oliveira (2001).
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Assessing � usually represents a preliminary step to the estimation of some ex-

treme quantities, such as high quantiles or small probabilities of exceeding a large

threshold. We now review some classical estimators of both objects, based on Hk ;n .

Ú Extreme quantiles and the probability of exceeding maximum intake limits From the

estimation of �, by referring to Equation (2.4) one may easily build estimators to as-

sess extreme quantiles or the probability of getting over some high threshold. Indeed,

combining it w ith Equation (2.3) yields the following approximation, for some large

enough x PR+ and well-chosen t ° 0:

P
�
Xi ° x

�
� P (Xi ° x) �

1
t

�

1+ �
x� bt t u

at t u

��1=�

. (2.8)

Notice that by setting at t u = �U(t ), bt t u = U(t ), � ° 0 and replacing x by (x� 1)=�

in Equation (2.3), we recover Equation (2.5). Moreover, if we set t = n=k for some

number k of largest observations, then the empirical counterpart of U(n=k) is simply

Un (n=k) := inf

#

y PR+ :
1
n

n∏

i = 1

I t Xi ° yu §
k
n

+

= Xn �k ;n .

Coupling these remarks to the foregoing approximation in Equation (2.8) conveys

quite natural estimators of both Q(p) := U(1=(1� p)), p • 0.95, the quantile of order

p, and P (Xi ° `�) for some maximum intake limit `� (Embrechts et al., 2011, Section

6.4.2, Method 2):

pP (Xi ° `�) :=
k�

n

�
`�

Xn �k �;n

��1=H k�;n

; (2.9)

pQ(p) := inf
!

y P R+ : pP (Xi ° y) § 1� p
)

= Xn �k �;n

�n
k�

(1� p)
��H k�;n

; (2.10)

where k� is the optimal number of largest observations obtained with the double-

bootstrap algorithm of Danielsson et al. (2001). Confidence intervals may be com-

puted via the asymptotic result below (Caeiro and Gomes, 2008, Proposition 1.2),

assuming again that k = k(n) — 1 , k=n — 0 and
?

k A(n=k) — �† 1 as n — 1 :

?
k

log k
n ( 1�p )

 
pQ(p)
Q(p)

� 1

!

�—
n —1

N
�

�

1� �
; �2

�

. (2.11)

Equipped with these statistical tools, we now illustrate our approach on a set of

nutrients, namely iron, zinc, calcium and retinol. Results are subsequently compared

to those obtained with the BBN and LNN methods recommended by EFSA, which

were briefly presented in Section 2.2.
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2.4 case st udy: est i mat i n g t h e t ai l of usual

i n t akes of i r on , zi n c, cal c i um an d

r et i n ol i n t h e f r en ch popul at i on

2.4.1 Description of thedata

To assess tail characteristics of the distribution of usual intakes for iron (Fe), zinc

(Zn), calcium (Ca) and retinol (arbitrarily abbreviated Re), we crossed the INCA2

consumption database with the levels of nutrients within foods of the CIQUAL base.

They are both described at length in Chapter 1. So as to evaluate the impact of

the number of reporting days in our model, we built a 24h-recall l ike data from the

weekly information of INCA2. Specifically, among all 7 days considered in the lat-

ter, we selected one day of the week-end and one day of the week, with at least 3

days of interval, to mimic the sampling scheme of 24h-recall surveys. These declared

amounts of ingested food were then combined with informations on their nutritional

composition to produce estimates of individual intakes. We precise that no null in-

take was observed on the considered data, hence there is no need to model intake

frequencies, denoted by p0 in the presentation of the BBN and LLN methods (Sec-

tion 2.2).

2.4.2 Results

We start this statistical analysis by computing mean intakes over all dates J = 2; 7,

as in Equation (2.6). Before applying a heavy-tail model to all 4 types of nutritional in-

takes, we use the testing procedure of Dietrich et al. (2002) mentioned in Section 2.3.2

to check if their distributions belong to one of the three possible maximum domains

of attraction. Results are displayed in Figure 2.1. Given that the corresponding test

statistics mostly remain in the acceptance area when k varies, the distributions of in-

takes of Fe, Zn and Ca may well respect Equation (2.2). However, it is obviously not

the case with Re; given the shape of its histograms in Figure 2.2, we suspect it is in

fact super-heavy-tailed. Because our model does not encompass such distributions,

we remove retinol from further analyses.
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Figur e 2.2 – Histograms of intakes of retinol

Nutrients that passed the former test are then subjected to the second statistical test

of Beirlant et al. (2006), designed to detect distributions belonging to the Fréchet max-

imum domain of attraction (heavy-tailed). Results are presented in Figure 2.3. Again,

statistics remain in the acceptance region whatever k, especially with Fe, thereby

suggesting that the distributions of iron, zinc and calcium are all heavy-tailed.
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Figur e 2.3 – Fluctuations of the test statistic of Beirlant et al. (2006) with k on the 30% largest
values of the sample, and the corresponding acceptance regions (light pink area for � = p�and dark

pink area for �= �2) for iron, zinc and calcium intakes over 2 days (left hand plots) and 7 days (right

hand plots) of observation
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It is now possible to estimate the EVI � for all three distributions, extreme quantiles

and probabilities of getting over some maximum intake limit, w ith the techniques in-

troduced in Section 2.3.3. For comparison purposes, we also assess the last two men-

tioned quantities with the LLN methods recommended by EFSA, using the source

SAS code available at http://riskfactor.cancer.gov/diet/usualintakes/macr os.

html . Results are displayed in Table 2.1 and Table 2.2.

Tabl e 2.1 – Estimates of the EVI based on the Hill estimator (standard errors in parentheses) and

associated optimal numbers of largest values

k� Hk �;n

Nutrient 2 days 7 days 2 days 7 days

Iron 693 554 0.268 (0.010) 0.218 (0.009)

Zinc 19 6 0.158 (0.036) 0.134 (0.055)

Calcium 336 82 0.192 (0.010) 0.143 (0.016)

Tabl e 2.2 – Estimates of the95-th and 99-th percentiles using theHill estimator (standard errors in
parentheses) and theLLN method (in mg/day)

Quantiles

Hill (7 days) Hill (2 days) LLN (2 days)

Nutrient 95% 99% 95% 99% 95% 99%

Iron 20.51

(0.014)

29.13

(0.029)

22.36

(0.017)

34.41

(0.034)

19.40 23.53

Zinc 14.59

(0.165)

18.09

(0.078)

17.52

(0.068)

22.60

(0.010)

15; 25 17; 97

Calcium 1427

(0.007)

1798

(0.019)

1479

(0.010)

2014

(0.027)

1371 1645

In view of Table 2.1, if the various tests performed on the data revealed that they

were heavy-tailed, their EVI is relatively small, never exceeding 1=3. Provided these

results are correct, this suggests that moments of order at least 3 exist for the dis-

tributions of iron, zinc and calcium. Moreover, it seems that observing only 2 days

of consumption results in a significant increase in the heaviness of the tail. This

phenomenon is naturally passed on to the quantile estimates, as can be observed in

Table 2.2. This is relatively natural, since the smaller the period of observation, the

further away we are from long-term habits by averaging the daily intakes. Even with

7 days, using the Hill estimator makes quantile estimates significantly higher than

with the LLN model. Given that these usual intakes were found to be heavy-tailed,

it is probable here that the LLN approach under-estimates extreme quantiles. From



2.5 di scussi on 51

a risk assessment point of view, it is thus safer to rely on extreme value theory than

on classical methods to assess tails of distributions.

2.5 di scussi on

We have shown in this chapter how classical methods like the BetaBinomial-Normal

and LogisticNormal-Normal presented in Section 2.2 can severely under-estimate the

characteristics of the tail of the distribution of heavy-tailed usual intakes. Far from

rejecting these approaches, we underlined in Section 2.3.2 that preliminary testing

of the presence of a fat tail can be of substantial help when trying to decide which

method to apply to the data. The nutrients that were taken as examples in Section 2.4

happened to pass these tests, but there are many other substances for which normal-

ity (up to a Box-Cox transformation) is a reasonable assumption. When it is not,

we proposed in Section 2.3.3 simple methods to estimate extreme quantities such as

high percentiles. Of course, EVT overflows with more refined statistics, which help

avoid the classical problems of the Hill estimator (asymptotic bias). In particular, for

distributions in the Fréchet domain of attraction with a very small index �, Cai et al.

(2011) have recently developed a family of dedicated estimators. Regression models

for extreme values also exist and would permit the insertion of covariates such as

the age or the sex of individuals (Beirlant et al., 2004, Chapter 7). Such extensions

are of major interest, since nutritional recommendations usually depend on auxiliary

variables (women or children do not have the same nutritional needs as adult men).

Beyond improvement of the estimation, more work remains to be done, in particular

to include the modeling of intake frequencies in our approach. This is left for future

research.

2.6 suppl emen t s: on t h e secon d or der

par amet er �

Let us dwell for a moment on the estimation of the second order parameter �.

To approximate its value, we used the family of estimators proposed by Alves et al.

(2003) and the tuning parameters they recommend:

p�(k;�) = p�( 1;2;3;�)
n |T (k) =

3
�

T( 1;2;3;�)
n (k) � 1

�

T( 1;2;3;�)
n (k) � 3

;
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with �Pt 0; 0.5; 1; 2u,

T( 1;2;3;�)
n (k) =

$
'''''''&

'''''''%

�
M ( 1)

n ( k )
��
�
�

M ( 2)
n ( k ) =2

��=2

�
M (2)

n ( k ) =2
��=2

�
�

M ( 3)
n ( k ) =6

��=3 �° 0;

log
�

M ( 1)
n ( k )

�
� log

�
M ( 2)

n ( k ) =2
��

2

log
�

M ( 2)
n ( k )=2

��
2� log

�
M ( 3)

n ( k )=6
��

3
�= 0;

and

M ( m )
n (k) =

1
k

k∏

i = 1

�
log X( n � i + 1) � log X( n �k )

�m
; m P t 1; 2; 3u.

For the results can be very volatile with k, they recommend to choose a final p�where

p�(k;�) is the most stable, usually for large k. Therefore, we start by selecting the value

of �P t 0; 0.5; 1; 2u that yields the most stable sample path t k; p�(k;�)u; we consider

that a path is stable if the difference between two successive occurrences is small for

a relatively long period. Thus, for a fixed �, we calculate

D�
k := p�(n � k + 1;�) � p�(n � k;�)

for k P t 1; ...; n � 1u and get the cumulative empirical variance:

V �
k =

1
k

k∏

i = 1

(D�
i )2 �

 
1
k

k∏

i = 1

D�
i

! 2

; k P t 1; ...; n � 1u.

The � that minimizes V �
k for a maximum of occurrences of k is then selected and

denoted by �0 . In a second step, we identify the values of k for which V �0
k is small,

e.g. below the median of
�
V �0

k

�

1§ k § n �1 , and calculate our final estimate p� as the

empirical mean of p�(k;�0 ) on these k. Results on exposures to our 4 nutrients are

displayed in Figure 2.4.
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3
SI M U LTA N EOU S OV ER-EXPOSU RE TO

M A N Y FOOD CH EM I CA L S

In Chapter 2, we focused for a while on univariate extreme types of exposure to

food nutrients or contaminants. The objective was to analyze the tail of the distribu-

tion of the chronic exposure to some chemical. It allowed in particular to estimate

the small proportion of individuals in a given population who exceed some tolerable

doses (the so-called dietary intake limits) and are thus likely to develop serious health

problems in the long run. However, by analyzing only one component at a time, we

ignored further noxious effects that may be caused by possible interactions between

elements that are ingested simultaneously (Carpenter et al., 2002). Evaluating the

sanitary impact of cocktails of nutrients and contaminants is a hot and complex topic

public health institutes are currently mobilizing efforts on. For instance, Anses re-

cently launched the Pericles research program (PEsticide Residue In vitro Combined

Level of Exposure Study), which is dedicated to the identification and quantification

of the risk due to the exposure to mixtures of pesticides (Crépet et al., 2013; Crépet

et al., 2012; Crépet and Tressou, 2011; Béchaux et al., 2013). The present chapter cor-

responds to a paper written in collaboration with S. Clémençon (Télécom ParisTech,

France) and recently submitted for publication, in which we develop a statistical

methodology to find groups of any number of chemicals that are jointly absorbed in

high quantity in the population of interest.

3.1 st at i st i cal ch al l en ges an d obj ect i ves

High dimension raises important issues in applied multivariate statistics; while

sample sizes are finite, the set on which probability measures are defined can be

so large that extrapolation is intricate. Referred to as the curse of dimensionality

(Donoho, 2000), this phenomenon makes the variance of classical estimators explode,

thereby impeding inference. In extreme value analysis, the quality of estimation is

all the more degraded as it is not carried out on the entire sample, but on some

relatively small number of largest observations that are considered representative

of the tail of the distribution. Whereas a plethora of techniques has been devel-

oped in the field of statistical learning to overcome this issue (Friedman et al., 2001),

multivariate extremes in dimension larger that 2 are still handled with difficulty. It

is the main purpose of the present chapter to address this issue, by developing a

55
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non-parametric technique for identifying groups of variables exhibiting asymptotic

dependence. Beyond a possible overall description of the tail dependence structure,

when these classes are of small dimension, our method would enable further and

more efficient assessment of multivariate tails. It combines novel statistical learning

algorithms with multivariate extreme value theory (MEVT). From a practical perspec-

tive, it should be also pointed out that it includes a heuristic criterion to help select

the sub-sample of extreme observations on which inference should be performed.

From a theoretical perspective, non-parametric assessment of multivariate extreme

dependencies is already well documented. It relies on the necessary but quite mild

assumption that there exists a tail dependence distribution, or equivalently that once

marginal distributions have been transformed into standard Pareto, the cumulative

distribution function of the resulting random vector is multivariate regularly varying.

Then, its limit measure characterizes the extreme behavior of the original variables

and possesses useful properties that facilitate its investigation. In particular, when

switching to a pseudo-polar representation of the data, it can be expressed as a ten-

sor product of two measures, one related to the radius, the other to the angles. The

limit measure of the angles, termed spectral or angular measure, exhaustively embod-

ies extreme dependencies. In the bivariate setting, the classical estimators introduced

in the literature of this angular measure may vary depending on how marginals are

standardized, which radius norm is picked and how measures are assessed. For

instance, Einmahl et al. (2001); Resnick (2007); Beirlant et al. (2004) use the rank

transform for standardization, then alternatively use the L1 , L2 and L1 norms and

ground estimation on the basic empirical measure. However, the spectral measure is

required to be Lebesgue-dominated, thereby failing to encompass situations where it

is degenerate on some points. Breaking the barrier, Einmahl and Segers (2009) intro-

duced a maximum empirical likelihood statistic, while extending theoretical results

to the full set of Lp -norms, p • 1. Bayesian models have also flourished (Boldi and

Davison, 2007; Guillotte et al., 2011). In the same vein, Sabourin and Naveau (2012)

recently proposed a novel algorithm that handles moderate dimensions. Though it

can be viewed as a subsequent improvement in multivariate extremes analysis, their

technique is only efficient when all variables considered are asymptotically depen-

dent; higher-complexity spectral measures may unfortunately not be studied by their

method. Hence the need to first identify groups of dependent variables in regard

to their extreme behavior: once this preliminary analysis carried out, the aforemen-

tioned estimators would enable more precise estimation up to dimension 5.

Lately, Haug et al. (2010) have ingeniously adapted one of the most celebrated

dimension reduction method, namely Principal Components Analysis (PCA), to mul-

tivariate extremes analysis. Under an elliptical copula assumption, they recover the

set of straight lines summarizing best the extreme covariance function, thereby lead-

ing to a clustering of variables based on extreme dependence. Following in their

footsteps, we propose to borrow concepts from statistical learning to achieve dimen-
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sion reduction, without making any parametric assumption in contrast. We rather

base our analysis on a mixture model of the spectral measure exploiting its specific

geometry, tackled from a latent variable point of view, under which useful proper-

ties arise and enable identification and interpretation of hopefully small groups of

asymptotically dependent variables. Inference mimics classical non-parametric spec-

tral measure estimation and focuses on the cloud of observation angles related to

the L2 -norm. Since they belong to the positive orthant of the unit hypersphere, also

called simplex, their structure is explored through a recent algorithm fitting PCA

to Riemannian manifolds (Jung et al., 2012). Not only does this procedure respect

the intrinsic combinatorial geometry of the simplex, but it also enriches the set of

eligible summarizing sub-manifolds compared to standard PCA. Identification of the

variables exhibiting asymptotic dependence is subsequently achieved using an appro-

priate clustering technique (Dhillon et al., 2002) on the obtained sub-space. We also

provide a heuristic to help select the number of upper values most representative of

extremes, thereby circumventing a traditionally intricate issue in MEVT.

To illustrate the assets and liabilities of our method, we perform numerical experi-

ments and conduct a real case study for long-term dietary risk assessment. Extreme

value theory (EVT) has already proven useful in studying high exposures to a single

toxicant (Tressou et al., 2004a; Paulo et al., 2006), but to our knowledge the ques-

tion of simultaneous extreme exposures to multiple chemical elements has never been

addressed from a statistical point of view.

The chapter is organized as follows: we start off in Section 3.2 with the introduction

of a few notations and hypotheses, subsequently used throughout the methodolog-

ical part of our work in Section 3.3. There, after recalling a few basic notions in

spectral measure analysis, we introduce a mixture model for the spectral probability

measure and emphasize the ensuing fruitful properties it enjoys, when viewed as a

latent variable model. Then we turn to the practical aspects of the approach we pro-

mote, and thoroughly depict our strategy for statistical inference under the assumed

model, based on dimension reduction algorithms, in Section 3.4. It is supported

by numerical experiments carried through in Section 3.5, and subsequently applied

for illustration purposes to dietary risk assessment in Section 3.6. In view of both

simulation and case study results, assets, liabilities, natural extensions and required

improvements of our method are finally listed and discussed in Section 3.7.

3.2 h ypot h eses an d n ot at i on s

We start by introducing a few essential notations used throughout the chapter, fol-

lowed by a short listing of the main hypotheses involved in the subsequent analysis.
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3.2.1 Notations

Ú Vectors We shall deal with both random and non-random mathematical objects.

To distinguish between them, we use uppercase to refer to random variables and

lowercase otherwise. In both situations, vectors are denoted in bold and are written

in columns, so that for any vector x with d ° 1 components,

x =

0

B
B
@

x1
...

xd

1

C
C
A and its transpose is denoted by x1 = (x1 ; : : : ; xd ).

In particular, we write 0 = (0; : : : ; 0)1 to mean the null vector in Rd , and e1 ; : : : ; ed

the vectors of the canonical basis of Rd . Operations between vectors should be inter-

preted matricially, e.g. x1x =
∞ d

j = 1 x2
j .

Ú Sets As usual, braces refer to sets, and we denote by #I the cardinal of any

set I . Its power set is denoted by P(I ), its complementary by I c and we further define

P�(I ) := P(I )zt H u. When I is included in a topological space,
�

I denotes the reunion

of all open subsets of I and I its closure (the smallest closed set containing I ).

Ú Norms When working on Rd , recall that all norms are equivalent. For any col-

lection of norms }.} ( 1) ; }.} ( 2) ; : : : in Rd , we denote their corresponding unit spheres

by Sd�1
(1) ; Sd�1

( 2) ; : : : respectively, thereby emphasizing the topological dimension of

these objects.

Ú Random variables For any sample Z1 ; : : : ; Zn of n ° 1 independent and identi-

cally distributed (iid) random vectors on a space product of d ordered vector spaces

E1 ����� Ed with multivariate cumulative distribution function (cdf) F, dimensions

are indexed by j P t 1; : : : ; du and observations by i P t 1; : : : ; nu. Order statistics are

denoted Z( 1; j ) § ���§ Z( n ; j ) , for all j P t 1; : : : ; du. This notion is intrinsically linked

to that of ranks; we define the rank function

Rank :

 
E j �— N �

Z i ; j fi�—
∞ n

m = 1 I
 
Zm ;j § Z i ; j

(

!

;

where for any condition A, I t Au = 1 if A is true and 0 otherwise. Then we have

Rank(Z( i ; j ) ) = i .

3.2.2 General setting and main hypotheses

Throughout this article, we consider a d-dimensional random vector

X := (X1 ; : : : ; Xd )1;
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d • 2, with Lebesgue-dominated probability distribution P on the positive orthant

Cd := [0; 1 ]d and cumulative distribution function (cdf) F, the tail structure of which

we wish to assess. For 1 § j § d, we denote by P j the j -th 1-dimensional marginal

distribution of P, i.e. the probability distribution of Xj , w ith corresponding continuous

cdf Fj (x) := P j ([0; x]), x • 0. Statistical inference on the extreme behavior of F

will be based on the observation of a sample X1 ; : : : ; Xn , n ° 1 (we shall write

Xi = (Xi ;1 ; : : : ; Xi ;d )1 for 1 § i § n), supposedly drawn independently from P. We

do not assume that F is characterized by its marginals, as would be the case in a

situation where the Xj ’s are independent, or when considering copulas for modeling

the dependence structure. Additionally, neither Fnor any Fj , 1 § j § d, are supposed

to belong to the maximum domain of attraction of an extreme value distribution. The

only imposed regularity constraint, apart from continuity of marginal cdfs, is the

existence of a Radon measure �, not identically zero and not degenerate at a point,

concentrated on the blunt convex cone Cd
� := [0; 1 ]d zt 0u such that

t P
�

1
t

�
1

(1� F1 (X1 ))
; : : : ;

1
(1� Fd (Xd ))

�

P .
�

v
�—
t —1

�(.). (3.1)

Here, the notation " v
�—” stands for the vague convergence of measures in Cd

�: for all

continuous functions f : Cd
� — R+ with compact support,

t E
�

f
�

1
t

�
1

(1� F1(X1 ))
; : : : ;

1
(1� Fd (Xd ))

���

�—
t —1

ª

Cd
�

f d�.

In words, Equation (3.1) simply states that there is, indeed, an extreme dependence

structure between the random variables X1 ; : : : ; Xd , exhaustively described by mea-

sure�, see for instance Section 8.2.3 in Beirlant et al. (2004) or Section 6.5.6 in Resnick

(2007). Alternatively, consider the random vector Z := (Z1 ; : : : ; Zd )1 of standardized

components

Z j :=
1

(1� Fj (Xj ))
; j P t 1; : : : ; du; (3.2)

and the corresponding transformed sample Z1 ; : : : ; Zn . Written this way, all Z j with

j P t 1; : : : ; du, are standard Pareto distributed, i.e. @x • 1, P
�
Z j ° x

�
= x�1 . Let

R� refer to the set of regularly varying functions with index �, then by definition

P
�
Z j ° x

�
P R�1 , w ith tail quantile function inft x P R+ : P

�
Z j § x

�
• 1� 1=t u = t .

For more details on univariate regular variation, we refer to Chapter 2 in Resnick

(2007). Then, Equation (3.1) defines the distribution of Z as regularly varying in the

multivariate sense. A larger overview of multivariate variation can be found for in-

stance in Resnick (2007, Chapters 3 and 6).

Because we are interested in summarizing the dependence structure of the random

variables X1 ; : : : ; Xd , focus is here on the analysis of measure� in Equation (3.1). The-

oretical properties of this mathematical object are detailed in Section 3.3, as a prelim-

inary to the proposed inference technique, subsequently introduced in Section 3.4.
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3.3 a mi xt ur e model un der mul t i var i at e

r egul ar var i at i on

In the present section, after reviewing a few known properties of the limit measure

� in Equation (3.1) and defining spectral (probability) measures, we introduce a use-

ful mixture model of the latter on which inference is next based. For simplicity, we

shall work exclusively with the vector Z of standardized random variables defined

in the previous section.

3.3.1 Exponent and spectral (probability) measures

Under the regular variation hypotheses listed herein-before, the limit measure� in

Equation (3.1), called exponent measure, exhibits some convenient properties that we

shall exploit later on. Specifically, it is homogeneous, i.e.

for all 0 † s † 1 and Borel subset B of Cd
�;

�(sB) = s�1 �(B); (3.3)

and fulfi lls d marginal constraints expressing the nature of the marginal survival

functions, namely

for all j = 1; : : : ; d and 0 † z † 1 ;

�
� 

x P Cd
� : xj ° z

(�
= z�1 ; (3.4)

see for instance Section 8.2.2 in Beirlant et al. (2004) and Section 6.1.4 in Resnick

(2007). Consequently, � can be expressed as a tensor product of two measures when

switching to pseudo-polar coordinates. Indeed, choose two norms }.} ( 1) and }.} ( 2)

on Rd and define the following mapping:

T :

 
Cd
� �— (0; 1 ]� Sd�1

( 2)

x fi�— (�; ! ) =
�
}x} ( 1) ; x=}x} ( 2)

�

!

;

w ith T�1 (�; ! ) = �! =}! } ( 1) = x. Typical choices of norms include the Lp -norm or

the sup-norm L1 . Then, the homogeneity property stated in Equation (3.3) implies

that

��T�1 := ��1 b S; (3.5)

where the radius measure ��1 , defined on (0; 1 ], is such that for all x ° 0, we have

��1 ((x; 1 ]) = x�1 , and the angle measure S, referred to as the spectral measure, has

support on � d�1 := Sd�1
( 2) X Cd

� and satisfies

S(B) = �
�
t x PCd

� : }x} ( 1) • 1; x=}x} ( 2) PBu
�

(3.6)
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for all Borel subsets B of � d�1 . A simple normalization of S yields the so-termed

spectral probability measureQ on � d�1 ,

Q := S=S(� d�1). (3.7)

Let us set ! = Z=}Z} ( 2) and �= }Z} ( 1) , then Equations (3.1), (3.6) and (3.7) imply

t P (! P . ; �• t ) v
�—
t —1

S(.); (3.8)

P
�
! P .

�
��• t

� D
�—
t —1

Q(.). (3.9)

In words, the latter expression stipulates that Q is the limit distribution of the an-

gles when the radius gets infinitely large. It thereby encapsulates the extreme (or

asymptotic) dependence structure between the d variables in dimension d � 1. Ob-

serve that Equation (3.4) can be expressed in terms of moment constraints for S and

Q respectively. Namely, for all j P t 1; : : : ; du, we have:
ª

� d� 1

! j

}! } ( 1)
S(d! ) = 1; (3.10)

ª

� d� 1

! j

}! } ( 1)
Q(d! ) = 1=S(� d�1 ). (3.11)

3.3.2 Mixturemodel of thespectral probability measure

The extreme dependence structure between the variables X1 ; : : : ; Xd can be ex-

pressed in terms of the geometry of the support of Q (or S), which we denote by

supp(Q). Indeed, recall that supp(Q) is included in �d�1 , the positive orthant of

the unit hypersphere Sd�1
( 2) , or the simplex associated with }.} ( 2) . The latter can be

partitioned into 2d � 1 non-empty and disjoint open faces with dimensions ranging

from 0 up to d � 1. They are identified by the collections of indexes I 1 ; : : : ; I 2d�1

forming P�(t 1; : : : ; du): for any h P t 1; : : : ; 2d � 1u such that I h P P�(t 1; : : : ; du), the

open face generated by t ej ; j P I h u is

� d�1
h := � d�1 (I h ) :=

�hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

� d�1 X Vect(t ej ; j P I h u);

with dimension mh � 1, where mh := #I h . The star of vertex t ej u, i.e. the reunion

of all open faces the closure of which contains t ej u, is denoted by st ar(t ej u) with

corresponding set of indexes S(j ) := t h P t 1; : : : ; 2d � 1u : t ej u Ñ �d�1
h u. Notice that

we also have S(j ) = t h P t 1; : : : ; 2d � 1u : j P I h u. See Figure 3.1 for an illustration in

dimension 3. By extension, we denote by I 0 := t 0u the set referring to the empty face

�d�1
0 := H , with m0 = 0.
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1

Z3Z3

Z

12

Figur e 3.1 – The 7 nonempty open faces in the L2 -norm simplex � 2 : the 3 vertices (left), the 3

edges (right), and the interior (bottom). The set st ar(t e1u) corresponds to the reunion of the 4 open
faces� 2(t 1u), � 2 (t 1; 2u), � 2 (t 1; 3u) and� 2 (t 1; 2; 3u).

Given this decomposition, for any h P t 1; : : : ; 2d � 1u, supp(Q) X � d�1
h � H means

that all Xj such that j P I h exhibit asymptotic dependence (see Beirlant et al., 2004,

Section 8.2.3). Consequently, recovering the set of faces intersecting the support of

Q suffices to identify the sets of variables which are dependent in the extremes and

those which are not. This motivates the following mixturemodel:

Q(.) =
2d�1∏

h = 1

�h Qh (.); (3.12)

where for all h P t 1; : : : 2d � 1u,

Qh (.) :=

$
&

%
Q(. X � d�1

h )=Q(� d�1
h ) if Q(� d�1

h ) � 0;

0 otherwise,

�h := Q(� d�1
h ).

In addition, denote by H the set made of all open faces intersecting supp(Q), i.e.

H := t h P t 1; : : : ; 2d � 1u : supp(Q) X � d�1
h � H u;

then for all h PH , Qh is by definition a probability distribution on � d�1
h . Obviously,

�h P[0; 1],
∞ 2d�1

h = 1 �h =
∞

h PH �h = 1, and by extension �0 = 0.
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Now that the theoretical framework has been set out, following in the footsteps

of standard mixture model analysis (see for instance McLachlan and Peel, 2000), we

shall exploit the properties deriving from Equation (3.12) when reasoning in terms

of latent variables and intrinsic clustering, in order to identify all � d�1
h with h PH .

3.3.3 Latent variables representation

We consider now the iid copies Z1 ; : : : ; Zn of the standardized random vector Z de-

fined in Section 3.2. Going back to the model in Equation (3.12) and setting H := #H ,

one would expect the empirical distribution of these observations to reflect the de-

composition of Q as a mixture of H probability measures on
î

h PH � d�1
h . Hence,

there should be an intrinsic (unknown) clustering of the data into H classes leading

to an identification of these open faces. Formally, define n unobserved random vec-

tors �i := (�i ;0 ;�i ;1 ; : : : ;�i ;2d�1)1 with standard multinomial distribution such that

P (�i ;h = 1) = : ph P [0; 1], where
∞ 2d�1

h = 0 ph =
∞ 2d�1

h = 0 �i ;h = 1. Consider each �i ;h

as an indicator of whether observation Z i is drawn from a distribution with spectral

probability measure Qh or not, i.e. when �i ;h = 1, individual i may reach extreme

values on the mh variables identified by I h alone. Conversely, for any other h R H ,

the event �i ;h = 1 indicates that each of the d coordinates of Zi should generally have

small to moderate values. Mathematically, for all h P t 0; : : : ; 2d � 1u, i P t 1; : : : ; nu,

we define the latent vector �i as satisfying

P
�
! i P .

�
��i • t ; �i ;h = 1

� D
�—
t —1

$
&

%
Qh (.) if h PH ;

0 otherwise;
(3.13)

where ! i and �i are respectively the angle and radius of individual i . In fact, for the

sake of interpretation, as soon as all �i ;h , h P H , are null, we set �i = (1; 0; : : : ; 0). In

other words, we impose the following equivalence:

@h Pt 1; : : : ; 2d � 1u; (�h = 0) Ù (ph = 0). (3.14)

Some useful properties can be established in such a setting. We display here two

results which are subsequently exploited for inference, as shall be seen in the next

section. Proofs and technical details are deferred to Section 3.8. The proposition

below exhibits the asymptotic behavior of conditional marginals under the latent

variable model depicted herein-before.
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Pr oposi t ion 3.1 – Intra-classregular variation. We place ourselves in the frame-

work of Section 3.3 and denote by H (j ) the set t h PH : j P I h u, i.e. the intersection

between H and S(j ).

Then, for all j P t 1; : : : ; du, h P t 0; : : : ; 2d � 1u, x • 1,

t P
�
Z i ; j ° x t

�
��i ;h = 1

�
�—
t —1

cj ;h x�1 ; (3.15)

where cj ;h P[0; 1=ph ] is non-null if and only if h PH (j ), and
∞ 2d�1

h = 0 ph cj ;h = 1.

In words, if �d�1
h is an open face where Q is null or if its closure does not contain

vertex t ej u, then it cannot project any mass on the j -th dimension. On the con-

trary, as soon as h P H (j ), the marginal distribution of Zi ; j given that it was drawn

from a distribution with spectral probability measure Qh is tail equivalent with the

non-conditional distribution of Z i ; j . Hence, nonempty open faces intersecting with

supp(Q) are identifiable by remaining only in the univariate level. In particular, the

following result reveals that one can build a discriminative function of conditional

marginal distributions the asymptotic behavior of which enables the characterization

of t H (j ); 1 § j § du, and by extension of t I h ; h PH u.

Pr oposi t ion 3.2 – Face-characterizing functional. We place ourselves in the

framework of Section 3.3 and consider H (j ) as in Proposition 3.1. For all j in

t 1; : : : ; du, h P t 1; : : : ; 2d � 1u, x • 1, define the functional

�j ;h (t ) :=
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx;

and assume that there exist some constants��P(0; 1), c� • 0 and t� ° 1, such that

for all j P t 1; : : : ; du, h RH (j ),

@x ° 1; (t ° t�) Ò

 
P
�
Z i ; j ° x t

�
��i ;h = 1

�

P
�
Z i ; j ° t

�
��i ;h = 1

� § c�x�1=��
!

.

Then

�j ;h (t ) �—
t —1

$
&

%
+ 1 if h PH (j )

0 if h RH (j ) Y t 0u
and @t ° t�; �j ;0 (t ) † 1 . (3.16)

As a consequence, for fixed dimension j P t 1; : : : ; du, the set H (j ) consists of all

indexes h such that �j ;h (t ) diverges as t tends to infinity, instead of converging

towards a finite constant, possibly zero. Since for all h P H , I h = t j : h P H (j )u, we

have

� d�1
h := � d�1 (I h ) = � d�1

�
t j :�j ;h (t ) �—

t —1
+ 1 u

�
; h P H ; (3.17)
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and H is the set of all h P t 1; : : : ; 2d � 1u such that there exists at least one dimension

j P t 1; : : : ; du for which �j ;h (t ) — + 1 as t — 1 .

Remar k 3.3 The assumption in Proposition 3.2 simply requires that the ex-

treme dependence structure is reached at a reasonably fast rate. It can be di-

rectly linked to the concept of hidden regular variation introduced in Heffernan

and Resnick (2005); Resnick (2002, 2007, 2008); Das and Resnick (2011); Das et al.

(2013). Roughly speaking, if the distribution of Z had hidden regular variation,

there would be an angular measure on � d�1z
î

h PH � d�1
h when making the ra-

dius increase with some regularly varying function b(t ) = o(t ) w ith index 1=� § 1

instead of t . In that case, our assumption guarantees that 1=� § �� † 1, which is a

rational condition for hidden regular variation not to be mistaken for multivariate

regular variation in practice.

The proposed approach to statistical inference is based on Proposition 3.2 and

Equation (3.17), as explained at length in the next section. Numerical experiments

illustrating the relevance of the method we promote here are subsequently presented

in Section 3.5.

3.4 st at i st i cal i n f er en ce

Relying on the probabilistic framework detailed in Section 3.3, we now review the

various steps of the proposed methodology to assess the dependence structure gov-

erning the extreme values of X1 ; : : : ; Xd . In short, it combines techniques borrowed

from multivariate extreme value theory with clustering algorithms. Its declared pur-

pose is to try to circumvent the classical curse of dimensionality that gravely dete-

riorates estimator variances (Massart, 1989). In particular, under some sparsity-like

hypothesis, there is real hope of improvement in the estimation of the spectral mea-

sure: if supp(Q) is condensed on small manifolds of � d�1 , recovering its geometri-

cal structure should be manageable and would ultimately enable inference in lower,

well-identified dimensions. Though high dimension is a classical issue in multivari-

ate statistics (Friedman et al., 2001; Donoho, 2000), it is even more pregnant with

meaning in extreme value analysis, where statistical inference only relies on a small

sub-sample of most extreme observations. This justifies our approach, detailed step

by step in the next three subsections: after a brief review of standard preliminaries,

we depict our clustering algorithm given that the number H of open faces intersect-

ing with supp(Q) is known. Finally, we propose some heuristic tools to choose both

the aforementioned H and the number of upper values on which to base statistical

analysis appropriately.
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3.4.1 Preliminaries

Just as in classical spectral measure assessment, we consider that for some high

enough threshold t , asymptotic relations such as in Equations (3.8), (3.9), (3.15) and

3.8.2 are sufficiently well approached to enable estimation. We use t = n=k in

practice, where k represents a fixed number of upper radii, that has to be chosen

carefully as shall be seen later on. Other essential elements of the aforementioned

asymptotics are not known a priori and need to be estimated beforehand, namely the

marginals F1 ; : : : ; Fd , used to standardize the original variables in Equation (3.2). To

avoid restrictive hypotheses, we privilege here a non-parametric procedure, usually

referred to as the rank transform: for all i P t 1; : : : ; nu and j P t 1; : : : ; du, set

pFj (Xi ; j ) =
1
n

�
Rank(Xi ; j ) � 1

�
; (3.18)

and pursue the analysis with pZ i ; j = 1=(1� pFj (Xi ; j )), 1 § i § n, 1 § j § d (Einmahl

et al., 2001; Beirlant et al., 2004; Resnick, 2007; Einmahl and Segers, 2009). The generic

random vector associated with this sample is written pZ = ( pZ1 ; : : : ; pZd )1. Angles and

radii are subsequently denoted by ˆ! i and �̂i respectively. For geometrical reasons

explained in the next subsection, we set }.} ( 2) as the L2 -norm. In addition, we use the

L1 -norm for }.} ( 1) because of its natural adequacy with marginal analysis. Observe

that whereas it is unimportant regarding the angle, selecting a specific norm for

the radius can have major implications. This is due to the selection process of “ tail

observations” , defined as those with radius larger than n=k; clearly, different norms

are bound to produce different sub-samples (Einmahl and Segers, 2009). However,

such issues go beyond the scope of our analysis and are not discussed further here.

3.4.2 Dimension reduction and clustering

Equipped with the objects and notations introduced herein-before, we now proceed

with the analysis of the spectral measure. Assume for the moment that H is known, k

is appropriate, and that our only task is to identify the set of open faces�d�1
h , h PH ,

or equivalently the corresponding collections of indexes I h . For this, we propose

to mimic a classical approach in statistical learning, namely Principal Components

Analysis (PCA, Friedman et al., 2001). Actually, Haug et al. (2010) have already

extended PCA to extreme dependence analysis, but they assume an elliptical copula

to describe the dependence structure in extremes. Because we would like to avoid

any parametric restriction, we propose to work on the angles instead of the raw data

and carry out PCA directly on the simplex. Then, choosing the L2 -norm enables the

use of algorithms that respect the intrinsic distance of the unit hypersphere Sd�1
(2) ,

now identified with the usual unit hypersphere Sd�1 of Rd . We shall refer to the

geodesic distance introduced hereafter.
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Def in i t ion 3.4 The geodesic distance between two points x and y of Rd located

on Sd�1 is written

dG (x; y) := arccos
�
x1y
�

.

Among all algorithms that were proposed in the literature (Jung et al., 2011; Huck-

emann and Ziezold, 2006; Fletcher et al., 2004), we consider the most general one,

namely the Principal Nested Spheres (PNS) technique developed by Jung et al. (2012).

In short, it is an iterative procedure that projects the data on smaller and smaller

hyperspheres (Sd�2 , Sd�3 ; : : : ), until the unit circle S1 is reached. These so-called

PNS enrich the set of summarizing sub-manifolds compared to classical PCA. In

Figure 3.2, we provide an illustration of the better adequacy of PNS compared to

PCA when studying spectral measures. Among all d � 1 resulting PNS, we may pick

one of reasonably small dimension, which can be considered as representative of the

geometry of supp(Q). In practice, this is achieved with a simple rule of thumb argu-

ment: we iteratively calculate the marginal level of geodesic variance encapsulated

in S1 ; S2 ; : : : as in Jung et al. (2012), and select the biggest PNS still providing a gain

in variance that exceeds a given threshold (e.g. 10% of the total variance). As was

pointed out by Jung et al. (2012), S1 and S2 usually capture a high enough level of

variance to ignore higher dimensions.

Z3

Z

Figur e 3.2 – A PNS on the L2 -norm simplex � 2 : assume data points are uniformly concentrated

around the greyed areas, then there is no straight line that can achieve a better separation than the

represented dotted circle.

Once a sub-sphere has been selected, we still need to analyze the structure of

the projected points to identify t� d�1
h ; h P H u. For this, we propose to use an

accurate clustering procedure such as spherical k-means (Dhillon et al., 2002; Maitra

and Ramler, 2010), based on the geodesic distance again. Though it may not seem

necessary, the first stage of PNS makes the subsequent clustering more robust by

getting rid of any misleading noise while best preserving the geometry of the original

cloud of points. In fine, because of the structure of � d�1 , we can expect an adequacy

between the obtained set of clusters and the underlying mixture model stated in

Equation (3.12). Specifically, individuals reaching extremes on all t Zj ; j P I h u should
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be concentrated near � d�1
h and projected onto a different zone of the PNS than

observations taking high values on t Z j 1; j1 P I h 1; h1� hu, and be affected to different

classes. Hence, identifying the set of open faces intersecting supp(Q) comes down

to finding out on which dimensions individuals of each class reach extreme values.

Technicalities about this last process are detailed in the next subsection. Obviously,

many other natural techniques in mixture model analysis could have been adopted

here (McLachlan and Peel, 2000); our preference for geometrical methods is based

on a strong belief that Riemannian geometry is a key concept for understanding

the structure of the spectral (probability) measure, as suggested by the encouraging

results of the numerical experiments conducted in Section 3.5.

3.4.3 Identifying groups of asymptotically dependent variables

Let us begin by still assuming that H is known and k is well chosen. In view of

the procedure explained above, we have at our disposal a clustering into H groups

of the set of most extreme observations @k := t i P t 1; : : : ; nu : �̂i • n=ku. These

correspond to estimates of H coordinates of the unobserved vectors �i introduced

in Section 3.3.3, for all observations i P @k . We denote them by p�i ; ` , ` P t 1; : : : ; Hu,

i P @k , where p�i ; ` = 1 if i is in group `, and a fixed ` corresponds to some unknown

h P t 1; : : : ; 2d � 1u. Observe that the case h = 0 is neglected, since Proposition 3.1

suggests that P (�i • n=k) � 0 for large enough n=k. Unfortunately, we are not able

to comprehend to which open faces the events p�i ; ` = 1 are referring yet. In order

to recover them, we propose to take advantage of the marginal properties stated in

Proposition 3.2, and start by assessing H (j ) w ith the empirical counterpart of �j ;h (t )

in Equation (3.17). Formally, define

p�j ; ` (k) :=
ª 1

1

1
k

nk

n `

∏

i P@k

I
!

pZ i ; j ° x
n
k

; p�i ; ` = 1
)

dx; 1 § ` § H; 1 § j § d;

where nk := #@k is the number of observations the radius of which exceeds n=k, and

n ` :=
∞

i P@k
I tp�i ; ` = 1u the size of class `. A more explicit version of this statistic and

a short discussion regarding its accuracy are available in Section 3.8.3. Then, we set

pH (j ) :=
 
` P t 1; : : : ; Hu : p�j ; ` (k) " 0

(
.

In practice, to decide which ` P t 1; : : : ; Hu provide a large enough p�j ;` (k) to be se-

lected, we perform a scree test-like analysis (Cattell, 1966). Specifically, we compute

p�j ;` (k) on all ` P t 1; : : : ; Hu, and j P t 1; : : : ; du. The V := H � d resulting values, de-

noted for instance by p�1 ; : : : ; p�V , are subsequently ordered so that p�( 1) § ���§ p�(V ) .

In fine, we say p�v " 0, 1 § v § V, if

V � v + 1 § argmax
1§ w § V

p�( V �w + 1) � p�( V�w ) .
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Because to each result index v corresponds a couple (j ; `), we obtain in this way

a collection of such couples from which all pH (j ), 1 § j § d, are determined. Then,

identification of the corresponding open faces is straightforward: for all ` P t 1; : : : ; Hu,

a natural estimator of I ` is
pI ` := t j : ` P pH (j)u;

subsequently characterizing the desired spaces�d�1 (pI ` ), 1 § ` § H.

Unfortunately, in practice H is usually unknown and k has to be picked at hand.

To overcome this issue, we develop a heuristic criterion to measure the quality of a

clustering, given a couple (k; pH(k)), where pH(k) is a number of clusters fixed a priori.

Consider pH (j ) as before, but replace H with pH(k) in its original definition, and set

�(k; pH(k)) =
d∏

j = 1

pH ( k )∏

` = 1

(�1) I t ` RxH ( j ) u p�j ; ` (k).

This statistic is simply built from Section 3.8.2: after having computed the empirical

counterpart of �j ; ` (k) on all ` P t 1; : : : ; pH(k)u, we add up all quantities corresponding

to ` P pH (j ) (which should be large) and substract the others (supposedly close to

zero). When (k; pH(k)) provides an accurate clustering of our data, �(k; pH(k)) should

reach high values. To avoid possible practical errors, we further refine this criterion

with some additional constraints. Specifically, classes should contain more that 1

individual, groups should each identify a different open face and no set pH (j ), 1 §

j § d, should be empty. Observe that while the first two conditions are just common

sense, the last one is necessary to respect the theoretical properties of Q: were there

any empty H (j ), marginal distributions could not be standard Pareto, and finding

extra meaningless classes would come down to stating that the chosen threshold was

not high enough to get rid of the empty face. Finally, we retain the partition inherited

from (k; pH(k))�, defined below.

(k; pH(k))�= argmax
( k ; pH ( k ) )

�(k; pH(k)) �

pH (k )π

` = 1

I t n ` ° 1u

�

dπ

j = 1

I t pH (j ) � H u�
π

1§ `�` 1§ pH ( k )

I t pI ` � pI ` 1u. (3.19)

On account of the nice properties of the rank transform (Resnick, 2007; Heffernan and

Resnick, 2005; Das and Resnick, 2011), we expect these statistical objects to converge

to the true quantities they approximate as n — 1 . Unfortunately, due to the lack of

probabilistic results on PNSand spherical k-means, which were originally introduced

as geometrical techniques, we cannot provide here a thorough asymptotic analysis

of the solution output by the statistical procedure described above. Further develop-

ments are the object of an ongoing work. Nonetheless, as shall be seen in the next

section, numerical experiments provide strong empirical evidence of the efficiency of

the approach we propose.



70 si mul t an eous over -exposur e t o man y f ood ch emi cal s

3.5 n umer i cal exper i men t s

We tested our method through a number of numerical experiments, for various

values of n , d, and H. In doing so, we tried to handle various types of extreme

dependence structures, to illustrate the impact of the complexity of supp(Q) on our

algorithm. In the next two subsections, we first describe the different scenarios ana-

lyzed, then present and comment on the simulation results.

3.5.1 Settings

We generated n i.i.d. copies of a d-dimensional random vector (X1 ; : : : ; Xd )1 with

varying degrees of extreme dependence. Observations were drawn using a symmet-

ric multivariate logistic model, w ith function rmvevd in R package evd (Stephenson,

2003). Asymptotic dependence was controlled via a parameter r P (0; 1], which in-

dicates the strength thereof. In particular, r = 1 gives asymptotic independence,

whereas asymptotic perfect dependence occurs when r � 0. We repeated 100 trials

of our algorithm under 3 scenarios, listed in Table 3.1.

Tabl e 3.1 – List of scenarios considered in our numerical experiments; open faces intersecting with

supp(Q) arefilled in, with thecorresponding extremedependencecoefficient r

Scenario 1

H = 2 d = 20

Open faces r

� d�1 (t 1; 2; 3u) 0.1

� d�1 (t 4; : : : ; 20u) 0.1

Scenario 2

H = 4 d = 20

Open faces r

� d�1 (t 1; 2u) 0.1

� d�1 (t 2; 3u) 0.1

� d�1 (t 4u) 1

� d�1 (t 5; : : : ; 20u) 0.2

Scenario 3

H = 4 d = 6

Open faces r

� d�1(t 1; 2u) 0.1

� d�1(t 2; 3u) 0.1

� d�1(t 4u) 1

� d�1(t 5; 6u) 0.2

To limit computation time, we tested its performance on 5 different sample sizes,

namely n = 5� 102 ; 103 ; 5� 103 ; 104 , and 10 thresholds t = n=k, with correspond-

ing k = n � 0.001; n � 0.002; : : : ; n � 0.01. Not all possible number of classes were

exploited either, because the constraint I t n ` ° 1u appearing in the definition of

(k; pH(k))� in Equation (3.19) restricts the maximum number of clusters to n k =2. In

practice, we iteratively compute our criterion for n ` = 1; 2; : : : and stop as soon as

the next 5 iterations cease improving it. For the same reasons, we disregarded situa-

tions where d ° 20. However, in multivariate EVT, d = 6 and d = 20 can already be

considered as high dimensions. Our code is based on the PNS algorithm provided

by its authors at http://www.stat.pitt.edu/sungkyu/MiscPage.html , as well as the

spherical k-means version of Dhillon et al. (2002), available in R package skmeans by

setting method = "pclust" , and start = "S" .
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3.5.2 Results

Results are displayed in Table 3.2, Table 3.3 and Table 3.4. The highlighted row re-

ports the number of trials where we managed to exactly recover the set of open faces

intersecting with the support of the spectral probability measure. To better under-

stand the assets and liabilities of our algorithm, we also provide a detailed account

of all inaccurate results, ordered relatively to their impact on the final interpretation.

Tabl e 3.2 – Results of our numerical experiments in Scenario 1, repeated on 100 trials

n
pI ` ; ` P t 1; : : : ; pH(k)u 500 1000 5000 10000

Accurate sets t 1; 2; 3u; t 4; : : : ; 20u 90 96 100 100

Other inaccurate sets 10 4 0 0

Tabl e 3.3 – Results of our numerical experiments in Scenario 2, repeated on 100 trials

n
pI ` ; ` P t 1; : : : ; pH(k)u 500 1000 5000 10000

Accurate sets t 1; 2u; t 2; 3u; t 4u; t 5; : : : ; 20u 54 72 97 93

Extra sets

w ith cardinal

1

t 1; 2u; t 2; 3u; t 4u; t 5; : : : ; 20u; t 1u 2 3 0 0

t 1; 2u; t 2; 3u; t 4u; t 5; : : : ; 20u; t 3u 7 2 0 1

t 1; 2u; t 2; 3u; t 4u; t 5; : : : ; 20u; t 1u; t 3u 1 0 0 0

Missing set
t 1; 2u or

t 2; 3u

t 1; 2u; t 3u; t 4u; t 5; : : : ; 20u 13 12 0 1

t 1u; t 1; 2u; t 3u; t 4u; t 5; : : : ; 20u 1 0 0 0

t 1u; t 2; 3u; t 3u; t 4u; t 5; : : : ; 20u 8 5 1 1

t 1u; t 2; 3u; t 4u; t 5; : : : ; 20u 0 0 0 0

Other inaccurate sets 14 6 2 4

Tabl e 3.4 – Results of our numerical experiments in Scenario 3, repeated on 100 trials

n
pI ` ; ` P t 1; : : : ; pH(k)u 500 1000 5000 10000

Accurate sets t 1; 2u; t 2; 3u; t 4u; t 5; 6u 39 65 85 88

Extra sets with
cardinal 1

t 1; 2u; t 2; 3u; t 4u; t 5; 6u; t 1u 0 1 0 0

t 1; 2u; t 2; 3u; t 4u; t 5; 6u; t 3u 1 1 0 0

t 1; 2u; t 2; 3u; t 4u; t 5; 6u; t 1u; t 3u 1 0 0 0

Missing set

t 1; 2u or t 2; 3u

t 1; 2u; t 3u; t 4u; t 5; 6u 16 11 6 2

t 1u; t 1; 2u; t 3u; t 4u; t 5; 6u 0 0 0 0

t 1u; t 2; 3u; t 3u; t 4u; t 5; 6u 23 14 5 6

t 1u; t 2; 3u; t 4u; t 5; 6u 0 0 0 1

Other inaccurate sets 20 8 4 3
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As expected, in all scenarios, results improve when n increases, and success rates

become particularly satisfactory as soon as n • 5000, for they then exceed 85% in

all 3 scenarios. The best performance is obtained in scenario 1, where d = 20 and

H = 2. Indeed, even with a very small sample (n = 500), only 10 trials out of 100 fail

to recover the true decomposition of supp(Q), while in scenario 3, where d = 6 and

H = 4, this rate never goes below 12% whatever n. This suggests that rather than the

dimension, the complexity of supp(Q) may be one of the principal determinants of

the performance of our procedure. Actually, given two spectral probability measures

with equivalently complex supports, increasing dimensionality can produce better

outcomes. This is the case with scenarios 2 and 3, where supp(Q) is contained on

small subsets of 4 open faces, but d = 6 in the former while d = 20 in the latter. These

results are not surprising and illustrate a typical phenomenon called the blessing of

dimensionality (Donoho, 2000); as d increases, observations occur in relatively small

subsets of the original space and are therefore easier to detect and separate. This

property is the basis for common techniques in statistical learning, such as the widely

celebrated Support Vector Machine (Friedman et al., 2001, Chapter 12), which projects

the data onto some space with higher dimension in which they are well divided. In

our numerical experiments, switching from Scenario 3 to Scenario 2 significantly re-

duces the risk of overriding either � d�1 (t 1; 2u) or � d�1 (t 2; 3u), which are very close

to one another in the unit hypersphere and may be wrongfully confused during the

PNSprocedure. Observe nonetheless that these simulations were performed for very

small values of parameter r, i.e. all dependencies were strong. Since we used the mul-

tivariate logistic model, this means that for all h P H , subsets supp(Q) X � d�1
h did

not cover the entire open faces � d�1
h but were concentrated around small neighbor-

hoods of one of their points. Had we considered less obvious extreme dependencies,

these results would have probably been significantly degraded. This remark can be

linked to the influence of the hidden spectral measure on inference (Resnick, 2002),

for it controls the rate at which extreme structure is reached and thus dangerously

impacts statistical analysis if the chosen threshold n=k is too small.

In fine, these results are quite encouraging, and underline the usefulness of meth-

ods from the field of statistical learning for multivariate EVT. Our next step will be

to conduct a full theoretical analysis of our approach, which would demonstrate its

rate of convergence in terms of sample size, strength of extreme dependencies, and

complexity of the underlying spectral probability measure. This would for instance

enable the construction of some confidence intervals and may help design a more

efficient algorithm in terms of computation time. Indeed, at this early stage of devel-

opment, our procedure is very long to implement; this forced us to limit the number

of trials to 100 and prevented us from exploring the whole range of largest values on

which our criterion may be calculated. Hence, results might have improved, had we

been able to reach its true maximum.



3.6 appl i cat i on t o di et ar y r i sk assessmen t 73

3.6 appl i cat i on t o di et ar y r i sk assessmen t

While eating is the privileged way of providing the necessary nutrients for the

human organism, it also conveys toxic elements that, due to various environmental

causes, contaminate the food. When consumed over certain tolerable doses, called

dietary intake limits (DIL), these toxic elements can have a non-negligible impact on

health. Similar phenomena also occur when diets are either too rich or too poor

in nutrients. More importantly, further noxious effects may be caused by possi-

ble interactions between elements that are ingested simultaneously (Carpenter et al.,

2002). For international institutes concerned about public health issues such as the

WHO (World Health Organization), FAO (Food and Agriculture Organization), Unep

(United Nations Environment Program), Efsa (European Food Safety Authority) or

for national agencies such as the Anses (the French agency for food, environmental

and occupational health safety), it is then of major interest to identify cocktails of

food chemicals to which populations are indeed highly exposed. EVT has already

proven useful to assess the probability of getting over a single dietary intake limit,

in both univariate (Tressou et al., 2004a) and bivariate settings (Paulo et al., 2006).

Here, we propose to apply the method detailed in Section 3.3 and Section 3.3.3 to ex-

amine the relationships between high simultaneous long-term exposure to 6 common

nutrients and contaminants, namely iron (Fe), calcium (Ca), sodium (Na), methylmer-

cury (MeHg), cadmium (Cd) and dioxins and dioxin-like polychlorinated biphenyls

(PCB-DL). Their long-term toxicity is well-known, see for instance Anses (2011) and

Carpenter et al. (2002). Methylmercury, cadmium, and PCB-DL are three contami-

nants found mainly in seafood products. While cadmium was recognized in 2004 as

a type 2 carcinogen by the European Union, methylmercury and PCB-DL can attack

the nervous system. Sodium, calcium and iron are three minerals principally found

in animal products such as meat or dairy products. Long-term over-exposure to these

nutrients is also harmful, e.g. consuming too much calcium can provoke urinary and

renal calculi and excessive ingestion of sodium favors cardiovascular issues. As for

iron, some studies have underlined a probable link between its excessive ingestion

and Parkinson disease (Jenner et al., 1992). The current knowledge about possible

synergistic effects between these chemicals, which may increase sanitary risks, is

stil l quite poor, due to the complexity of these phenomena. Only methylmercury

and PCB-DL have been studied jointly, and their simultaneous consumption was ob-

served to amplify health issues in a number of experimental surveys (Bemis and

Seegal, 1999; Carpenter et al., 2002). Henceforth, recovering groups of nutrients or

contaminants to which the population is observed to be simultaneously over-exposed

can help orient future biological and chemical research, which would in turn provide

a better understanding of dietary risks. In terms of statistical analysis, thus reducing

the dimension would also enable a more accurate estimation of the complex relation-

ships between these types of exposure. Indeed, even though they are clearly linked
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by the type of food (fish or meat) introduced in the diet, there are differences of

composition between species — like tuna or salmon — that can imply independence

between types of extreme long-term exposure. In particular, exceeding the DIL of

more than 3 of these elements is an event never observed in the data. Because of the

variety of individual dietary habits and the complexity of the contamination process,

simultaneous types of high exposure are not an obvious phenomenon, are rarely

observed, and need to be analyzed in detail. In the next paragraphs, after a brief

presentation of the data, we apply the procedure introduced in the previous sections

to the 6 aforementioned nutrients and contaminants.

3.6.1 Data and required assumptions

Our vectors of 6 types of exposure were calculated on the n := 2488 non-pregnant,

non-lactating adults of the INCA2 database for which no important variable was

missing, as described in Section 1.2. Levels of nutrients within each of the 1342

food items were given in the CIQUAL database and equivalents for contaminants

were found in TDS2, both described in Section 1.2.2. In keeping with Chapter 2, the

vectors of exposure X1 ; : : : ; Xn were obtained by multiplying amounts of food with

average contents then averaging over the number of reported days. Using similar

notations and hypotheses as in the previous chapter, for all components j P t 1; : : : ; du

and consumers i P t 1; : : : ; nu, we assume that

Xi ; j = X�i ; j + U i ; j ;

where X�i ; j is the long-term individual daily exposure to contaminant or nutrient j

(also called usual intake) and Ui ; j is an independent noise with lighter tail than X�i ; j .

We also suppose that the n vectors Xi are iid and that for any i � i 1 and j � j1, U i ; j is

independent from Ui 1; j 1. Under this setting, it is clear that the extreme dependence

between the d components of vector X is determined solely by that between the d

components of X�, the vector of interest. Relaxing these quite restrictive hypotheses

would require further work; this is left for future research.

3.6.2 Analysis of extremedependencies

Results of our method on the aforementioned sample are summarized in Figure 3.3.

For various choices of threshold t = n=k such that k P [10; n � 0.3], we selected the

partition that maximized our criterion �(k; pH(k)) over all (k; pH(k)), and represented

schematically the corresponding dependence structure. To get further confidence in

this outcome, we summarize in Table 3.5 the strongest relationships that were found

over all thresholds. The evolution of our criterion �(k; pH(k)) with k is displayed on

Figure 3.4. Its maximum is reached when k = 564, i.e. when calculations are based

on the 1591 observations with largest radii.
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In fact, the dependence structure represented in Figure 3.3 is found on all 16 largest

values of �(k; pH(k)). The corresponding number of largest values k can be divided

into two groups, one where k is in a neighborhood of 360, and another where k

is around 560, as illustrated by the highlighted regions in Figure 3.4. Moreover,

Table 3.5 shows that some dependencies are spotted whatever the number of largest

values. In particular, methylmercury is almost always associated to PCB-DL, while

cadmium and calcium get separated from all other chemicals. Concerning iron and

sodium, uncertainty remains quite high, and a complementary bivariate analysis

seems necessary to confirm the nature of their relationship. Figure 3.5 shows the

estimated bivariate spectral probability measures of joint exposure first to MeHg and

PCB-DL, then to Fe and Na. They were obtained using the maximum empirical

likelihood (abbreviated MEL) approach of Einmahl and Segers (2009).

Figur e 3.3 – Dependencestructurebetween the 6 nu-
trients and contaminants of interest, on k = 564 that

maximizes our criterion; arrows indicateextremedepen-

denciesand thenumber of observationswithin each class
is given in parentheses

Tabl e 3.5 – Number of times extreme

dependencies occur among all thresh-
olds t = n=k, k P [10; n � 0.3] (in %)

MeHg MeHg &

PCB-DL

PCB-DL

7.60 97.15 45.32

Cd Ca

95.52 78.83

Fe & Na Na

50.88 48.85

Clearly, the strong asymptotic dependence between methylmercury and PCB-DL

is confirmed, on whatever value of k the estimation may be carried out. The presence

of a sub-population reaching extreme exposure to PCB-DL alone is also suggested by

the form of Q̂, which gets close to vertical height on the extreme left part of the plot

for many values of k. However, methylmercury does not exhibit such a behavior, and

given that a specific class of independent exposure to MeHg only occurs for 7.60%

of the largest values, we decide to disregard it. Actually, in terms of dietary habits,

getting two clusters of individuals, one highly exposed to both MeHg and PCB-DL,

and another solely to PCB-DL makes perfect sense. Indeed, contrary to PCB-DL,

methylmercury is a contaminant found exclusively in seafood products. Hence, it is

possible to get over-exposed to PCB-DL without ingesting high amounts of MeHg.
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Now, let us turn to iron and sodium. According to the evolution of Q̂ with k

shown on Figure 3.5, if these two types of exposure exhibit asymptotic dependence,

the latter is clearly weak. In fact, we are more inclined to believe in the presence of a

mixture of three sub-populations, one ingesting high amounts of both Fe and Na, and

the other two getting over-exposed to only one of these nutrients. It is also possible

that k = 564 being quite high, the relationship appearing in Figure 3.3 corresponds

not to extreme but moderately high levels of exposures. This inconclusive example

suggests that extending our approach to the analysis of the hidden spectral measure

(Resnick, 2002, 2008) would be of major interest.
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Figur e 3.4 – Evolution in log-scaleof �(k; pH�(k)) with thenumber of largest valuesk, where pH�(k)

is thenumber of classes maximizing our criterion for somefixed k. The two dashed lines indicate the
location of �(k; pH(k))�, whilethegrayed areashighlight regionswherethe16 best criteriaareobtained
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3.7 di scussi on

Non-parametric analysis of extreme dependencies via the spectral measure in high

dimension d is still an open issue in multivariate extreme value theory. Though the bi-

variate setting has already been thoroughly investigated (Beirlant et al., 2004; Resnick,

2007; de Haan, 1985; Einmahl et al., 2001; Einmahl and Segers, 2009; Guillotte et al.,

2011), and moderate dimensions are now accessible when all variables are asymptoti-

cally dependent (Sabourin and Naveau, 2012), the matter is stil l unresolved for d ° 5.

Following in the footsteps of Haug et al. (2010), who adapted the most celebrated

Principal Components Analysis to extreme dependence assessment, we proposed a

method combining multivariate extreme value theory with statistical learning and

data mining standards so as to identify sub-groups of variables exhibiting asymp-

totic dependence. Once these clusters are identified, if they each encompass less than

5 variables, it then becomes possible to further estimate the corresponding sub-parts

of the spectral measure with any existing method, for instance those that were cited

herein-before.

We started in Section 3.3 by developing the theoretical context under which our

approach was constructed. First of all, contrary to Haug et al. (2010), we did not make

any parametric assumption on the extreme dependence structure. This led us to focus

on the spectral measure itself, or more specifically its standardized version called

spectral probability measure Q. After recalling that this can be viewed as the limit

distribution of observation angles given that their radius is getting infinitely large,

we underlined the adequacy between the geometry of its support on the positive

orthant of the unit hypersphere and the nature of extreme dependencies. Indeed, if

a group of variables, say Z1 and Z2 , are asymptotically dependent, then Q will have

positive mass on the open face generated by the corresponding dimensions, here

�d�1 (t 1; 2u). Therefore, we proposed a natural model of the spectral probability

measure as a mixture of angular distributions with supports on each of the 2d � 1

non-empty open faces of the simplex. Tackled from a latent variable point of view,

this model provided particularly useful properties, formulated in Proposition 3.1

and Proposition 3.2, that reduced an initially d-dimensional problem to d univariate

ones. In particular, we showed that open faces intersecting the support of Q, namely

t� d�1
h , h PH u, could be identified by means of a simple functional �j ;h (t ), 1 § j § d,

1 § h § 2d � 1, introduced in Proposition 3.2.

Then, we moved to the practical part of our method in Section 3.4. Because we

had pinpointed the major role of geometry for analyzing spectral measures in the

preceding section, we adopted geometrical techniques suited for Riemannian objects

such as the unit hypersphere for statistical inference. Borrowed from the statistical

learning field, they consist in first projecting the initial cloud of points on a lower-

dimensional space by means of the Principal Nested Spheres algorithm of Jung et al.
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(2012), then clustering the obtained data with spherical k-means (Dhillon et al., 2002;

Maitra and Ramler, 2010). By first implementing PNS, we reduced potential noise

and enabled more efficient classification. Resulting clusters were then considered

as representative of the open faces that intersect supp(Q), and analyzed as such.

To recover to which �d�1
h , 1 § h § 2d � 1, they were referring, we constructed

estimators based on the empirical counterpart of the functional �j ;h (t ). The latter was

also exploited to build a heuristic statistic that selects both the appropriate numbers

of groups of dependent variables and of “ extreme” observations. Unfortunately, due

mainly to the absence of probabilistic analysis of PNS and spherical k-means in the

literature, we were not able to provide asymptotic results about the aforementioned

objects (this is the object of an ongoing work). Hence, assets and liabilities of our

technique were discussed based solely on numerical experiments.

In Section 3.5, we tested our method on a set of simulated data bases. Three scenar-

ios were considered, which try to encapsulate as many different situations as possible:

they differed depending on d, on the number H of open faces containing mass, and

on the complexity of supp(Q). In spite of a clearly improvable practical algorithm,

the encouraging results we obtained enabled us to define which characteristics of

Q have most influence on estimation. In particular, we saw that unlike H, d is of

negligible importance to the complexity of supp(Q) and the strength of extreme de-

pendence. The closer t� d�1
h ; h P H u are to one another (e.g. both � d�1 (t 1; 2u) and

� d�1 (t 2; 3u) intersect supp(Q)), the harder it is to separate and correctly identify

each of them. Estimation may also be impeded if H is large in comparison with n, or

if asymptotic dependencies are weak. Indeed, to easily spot the desired open faces,

the corresponding angular distributions denoted by Qh should concentrate most of

their mass on a small neighborhood of the middle point of � d�1
h ; the weaker de-

pendencies are, the farther we are from this ideal situation. Though they were not

considered in the simulations, we added some comments on rates of convergence

to the asymptotic dependence structure that were sensed as a determining factor

in assessment efficiency. Specifically, we insisted on the role that the hidden spectral

measure may play when selecting an optimal number of largest values and suggested

the interest of generalizing our approach to its analysis.

Further insight into our method was provided by a case-study illustration. Ap-

plied to real databases about exposures to 6 food contaminants, it produced stable

outcomes, thereby giving confidence in the results. We were able to conclude that

only two pairs of chemicals are actually linked in extremes, namely methylmercury

and PCB-DL on the one hand, and iron and sodium on the other hand. These as-

sociations were confirmed by further computing the MEL estimator of Einmahl and

Segers (2009) on the two pairs of variables. In addition, our method spotted a con-

figuration usually hard to notice with traditional estimators, but quite natural given

the underlying mixture model on which we based the analysis: it underlined the

presence of a mixture of populations, some being jointly over-exposed to a couple of
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elements, while others ingest high quantities of only one of them (PCB-DL or Na).

In terms of public health implications, this means that people who are over-exposed

to methylmercury tend to ingest simultaneously high amounts of dioxins and PCB.

Knowing that these two toxicants have similar noxious effects on the human organ-

ism (Fischer et al., 2008; Weihe et al., 1996), and that when combined, synergistic

effects can occur (Bemis and Seegal, 1999; Carpenter et al., 2002), this suggests pay-

ing particular attention to the populations that do not respect the corresponding DIL.

It also justifies the need for specific research on potential combined effects of these

two contaminants, which would help in assessing the sanitary risks brought upon

the concerned population.

In view of these results, one advantage of our multivariate approach is that peo-

ple in the data are dispatched into multiple classes that embody different types of

extreme dependencies. In our case-study example, it facilitates the understanding of

over-exposure categories by allowing classical discriminant analyses. An interesting

alternative would be to model the various�h appearing in the mixture model of the

spectral probability measure in function of auxiliary covariates, e.g. some sociologic

or economic variables here. More than providing easily interpretable results, this

would probably increase the performance of our procedure by helping discriminate

between the various clusters. Such generalizations of the present work will be the

subject of further investigation in the near future.

3.8 pr oof s an d suppl emen t s

3.8.1 Intra-class regular variation

We shall start the proof of Proposition 3.1 by exhibiting two preliminary results.

The first one, given in the lemma below, states that �h can be viewed as the limit

probability that �i ;h equals 1, 1 § i § n, when the radius becomes infinitely large.

Lemma 3.5 Consider the same framework as in Proposition 3.1, then for all

h P t 0; : : : ; 2d � 1u, i P t 1; : : : ; nu,

P
�
�i ;h = 1

�
��i • t

�
�—
t —1

�h . (3.20)

Pr oof First of all, extend Q to the whole sphere by setting Q
�

Sd�1
( 2) z� d�1

�
= 0,

then consider the following neighborhoods of each of the 2d � 1 open faces of the

simplex: for any �° 0, h P t 1; : : : ; 2d � 1u and the geodesic distance dG (.; .) on �d�1 ,

set

V�(� d�1
h ) :=

!
! PSd�1

( 2) : inf
 
dG (! ; x) ; x P� d�1

h

(
§ �

)
.
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We shall prove that for all h P t 1; : : : ; 2d � 1u,

lim
t —1

P
�
! P V�(� d�1

h )
�
��• t

�
= Q

�
V�(� d�1

h )
�

; (3.21)

for an arbitrary small �. This result can be obtained by applying the Portmanteau

theorem to Equation (3.9), provided that we find at least a decreasing sequence of

positive constants �1 ;�2 ; : : : that tends to 0 such that for any m • 1 and open face

� d�1
h , the frontier of V�m (� d�1

h ) has null measure relative to Q. Since Q is a finite

measure, its associated cdf admits at most countably many discontinuity sets, hence

the requirement is met.

Now we shall prove that for all h P t 1; : : : ; 2d � 1u,

lim
�—0

Q
�
V�(� d�1

h )
�

= Q
�
�d�1

h

�
. (3.22)

Observe that Q
�
V�(�d�1

h )
�

=
≥

I
 
! P V�(� d�1

h )
(

Q(d! ); and that V�(� d�1
h ) tends

to � d�1
h as � tends to 0. Therefore, Equation (3.22) can be deduced from the domi-

nated convergence theorem, using I
 
! PV�(�d�1

h )
(

† 1.

By combining Equation (3.21) and Equation (3.22), we obtain

lim
�—0

lim
t —1

P
�
! P V�(� d�1

h )
�
��• t

�
= Q

�
� d�1

h

�
; (3.23)

for all h P t 1; : : : ; 2d � 1u.

Now let D j , j P t 0; : : : ; d � 1u denote the set of indexes h P t 1; : : : ; 2d � 1u that

identify j -dimensional open faces. We shall prove Lemma 3.5 by strong induction.

First, observe that for all h P D0 we have � d�1
h = � d�1

h and that the events

t�i ;h = 1; h P t 0; : : : ; 2d � 1uu are disjoint by construction. Hence, Equation (3.23)

can be rewritten as follows:

Q(� d�1
h ) = lim

�—0
lim

t —1

2d�1∏

` = 0

P
�
! P V�(�d�1

h )
�
��• t ; �i ; ` = 1

�
P
�
�i ; ` = 1

�
��• t

�

= lim
�—0

lim
t —1

�

P
�
! PV�(� d�1

h )
�
��• t ; �i ;h = 1

�
P
�
�i ;h = 1

�
��• t

�

+
2d�1∏

` = 0
`�h

P
�
! PV�(� d�1

h )
�
��• t ; �i ; ` = 1

�
P
�
�i ; ` = 1

�
��• t

�
�

.

Since Equation (3.15) ensures that lim
t —1

P
�
! P V�(� d�1

h )
�
��• t ; �i ;h = 1

�
= 1 for all

�° 0 and that for all ` � h, lim
�—0

l im
t —1

P
�
! PV�(�d�1

h )
�
��• t ; �i ; ` = 1

�
= 0, we can

conclude that

lim
�—0

lim
t —1

P
�
�i ;h = 1

�
��• t

�
= lim

t —1
P
�
�i ;h = 1

�
��• t

�
= Q(�d�1

h ).
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Lemma 3.5 is thus true for all h P D0 . Now fix some J P t 1; : : : ; d � 2u and assume

that it holds for all h P
î J

j = 0 D j . Set

F(h) :=

$
&

%
` P t 1; : : : ; 2d � 1u :�d�1

` P� d�1
h

J �hkkkkkkj

� d�1
h

,
.

-
.

Using the same arguments as before, for all h P DJ+ 1 we have:

Q(�d�1
h ) = lim

�—0
lim

t —1

�

P
�
! P V�(� d�1

h )
�
��• t ; �i ;h = 1

�
P
�
�i ;h = 1

�
��• t

�

+
∏

` PF (h )

P
�
! PV�(�d�1

h )
�
��• t ; �i ; ` = 1

�
P
�
�i ; ` = 1

�
��• t

�

+
∏

` RF (h )
`�h

P
�
! PV�(�d�1

h )
�
��• t ; �i ; ` = 1

�
P
�
�i ; ` = 1

�
��• t

�
�

.

Invoking again Equation (3.15), lim
t —1

P
�
! PV�(�d�1

h )
�
��• t ; �i ;h = 1

�
= 1 for all

�° 0 and for all ` � h,

lim
�—0

lim
t —1

P
�
! P V�(� d�1

h )
�
��• t ; �i ; ` = 1

�
=

$
&

%
1 if ` PF(h);

0 if ` RF(h).

Combined with the induction hypothesis, these equations entail

l im
t —1

P
�
�i ;h = 1

�
��• t

�
= Q(� d�1

h ) �
∏

` PF ( h )

�̀ = �h .

This concludes the proof. �

The second preliminary result in the lemma below states that the distribution of

vector Zi given that �i ;h = 1 is multivariate regularly varying when h PH .

Lemma 3.7 Consider the same framework as in Proposition 3.1, then for all

h P H , there is a Radon measure �h , non identically zero and not degenerate at

a point, concentrated on the blunt convex cone Cd
h := t x P Cd

� : x=}x} ( 2) P� d�1
h u,

such that

t P
�

Z i

t
P .
�

v
�—
t —1

�h (.). (3.24)

Pr oof By Lemma 3.5, Equation (3.8) and Equation (3.13), we have that

t P
�
! i P . ; �i • t

�
��i ;h = 1

� v
�—
t —1

Sh (.) :=

$
&

%
S(. X � d�1

h )=ph if h PH ;

0 otherwise,
(3.25)

where by definition,

S(. X �d�1
h ) = �

�
t x PCd

� : }x} ( 1) • 1; x=}x} ( 2) P. X � d�1
h u

�
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= �
�
t x PCd

� : }x} ( 1) • 1; x=}x} ( 2) P. uX t x PCd
� : x=}x} ( 2) P� d�1

h u
�

.

Recall that Cd
h := t x PCd

� : x=}x} ( 2) P�d�1
h u, and set

�h (.) :=

$
&

%
�(. X Cd

h )=ph if h PH

0 otherwise,

then we can rewrite Sh in function of �h as below:

Sh (.) = �h (t x PCd
� : }x} ( 1) • 1; x=}x} ( 2) P. u).

Since Cd
h is a cone, the homogeneity property of � stated in Equation (3.3) is passed

on �h , h P H . Indeed, for all 0 † s † 1 and Borel subset B of Cd
�,

�h (sB) = �
�
(sB) X (Cd

h )
�

=ph = �
�
s (B X Cd

h )
�

=ph = s�1�
�
B X Cd

h

�
=ph = s�1�h (B) .

According to Theorem 6.1 in Resnick (2007), it naturally follows that for all i P t 1; : : : ; nu,

t P
�

Z i

t
P .
�
��i ;h = 1

�
v
�—
t —1

�h (.);

where, just like�, �h can be written as the product of a measure on the radius with

a measure on the angles when switching to pseudo-polar coordinates:

�h �T�1 = ��1 � Sh .

�

We can now tackle the proof of Proposition 3.1, which is recalled below for conve-

nience.

Pr oposi t ion – Intra-class regular variation. We place ourselves in the frame-

work of Section 3.3 and denote by H (j ) the set t h PH : j P I h u, i.e. the intersection

between H and S(j ).

Then, for all j P t 1; : : : ; du, h P t 0; : : : ; 2d � 1u, x • 1,

t P
�
Z i ; j ° x t

�
��i ;h = 1

�
�—
t —1

cj ;h x�1 ;

where cj ;h P[0; 1=ph ] is non-null if and only if h PH (j ), and
∞ 2d�1

h = 0 ph cj ;h = 1.

Pr oof Going back to the marginal level, multivariate regular variation of condi-

tional distributions gives for all x • 1, 1 § i § n, 1 § j § d,

t P
�

Z i ; j

t
° x

�
��i ;h = 1

�
v
�—
t —1

�h (t z PCd
� : zj ° xu).

Notice that we now have a null limit for all h RH (j ), i.e. the intersection between H

and S(j ), which identifies the star of vertex t ej u. Indeed, if t ej u is not included in the



3.8 pr oof s an d suppl emen t s 83

closure of �d�1
h , then by definition of Qh , Sh and �h , after projection no mass is put

on the j-th dimension. Furthermore, for all h P H (j ), we have

�h (t z PCd
� : zj ° xu) =

ª

� d� 1

ª

( 0;1 ]
I

"
�

! j

}! } ( 1)
° x

*
��1 (d�) Sh (d! )

= x�1
ª

� d� 1

! j

}! } ( 1)
Sh (d! )

l ooooooooooooomooooooooooooon
c j ;h

.

Hence, for all h P t 0; : : : ; 2d � 1u, i P t 1; : : : ; nu, j P t 1; : : : ; du, x • 1, we can write

t P
�
Z i ; j ° x t

�
��i ;h = 1

�
�—
t —1

cj ;h x�1 ;

where cj ;h ° 0 when h P H (j ), and cj ;h = 0 otherwise. Based on the marginal

constraints on S stated in Equation (3.10) and because t� d�1
h u0§ h § 2d�1 forms a

partition of � d�1 , we have that cj ;h P [0; 1=ph ] for all h P t 0; : : : ; 2d � 1u and
∞ 2d�1

h = 0 ph cj ;h =
∞

h PH ( j ) ph cj ;h = 1. �

3.8.2 Face-characterizing functional

Before tackling its proof, Proposition 3.2 is recalled for convenience.

Pr oposi t ion – Face-characterizing functional. We place ourselves in the frame-

work of Section 3.3 and consider H (j ) as in Proposition 3.1. For all j in t 1; : : : ; du,

h P t 1; : : : ; 2d � 1u, x • 1, define the functional

�j ;h (t ) :=
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx;

and assume that there exist some constants��P(0; 1), c� • 0 and t� ° 1, such that

for all j P t 1; : : : ; du, h RH (j ),

@x ° 1; (t ° t�) Ò

 
P
�
Z i ; j ° x t

�
��i ;h = 1

�

P
�
Z i ; j ° t

�
��i ;h = 1

� § c�x�1=��
!

.

Then

�j ;h (t ) �—
t —1

$
&

%
+ 1 if h P H (j )

0 if h RH (j ) Y t 0u
and @t ° t�; �j ;0(t ) † 1 .

Pr oof We shall handle the situations where h P H (j ) and h RH (j ) separately. To

simplify notations, for all h P t 0; : : : ; 2d � 1u and x • 0 we will denote by Fj ;h (x) the

conditional probability that Z i ; j exceeds x given �i ;h equals 1, for any i P t 1; : : : ; nu:

Fj ;h (x) := P
�
Z i ; j ° x

�
��i ;h = 1

�
.
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Ú h P H (j ) : ph � 0 and�h � 0

From Equation (3.15) in Proposition 3.1, it is straightforward that Fj ;h is regularly

varying with index �1, i.e. for any x • 1,

Fj ;h (x t )

Fj ;h (t )
�—
t —1

x�1 .

Hence, Fj ;h may be written as follows:

Fj ;h (x) = x�1 Lj ;h (x);

where Lj ;h (x) is a slowly varying function (Lj ;h PR0 ) that converges to cj ;h as x — 1 .

Remar k 3.11 Define x�j ;h := inft x • 1 : Fj ;h (x) = 0u, the right endpoint of

survival function Fj ;h for any j P t 1; : : : ; du and any h P t 0; : : : ; 2d � 1u. Then for

all h PH (j ), x�j ;h = + 1 , that is @t • 1, Fj ;h (t ) ° 0.

Since Bayes’ formula gives
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx =

ª 1

1

t P
�
Z i ; j ° x t ; �i • t

�
��i ;h = 1

�
ph

P
�
�i ;h = 1

�
��i • t

� dx;

and for all x • 1, P
�
Z i ; j ° x t ; �i • t

�
��i ;h = 1

�
= Fj ;h (x t ), we have

ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx =

t Fj ;h (t ) ph

P
�
�i ;h = 1

�
��i • t

�

ª 1

1

Fj ;h (x t )

Fj ;h (t )
dx =

Lj ;h (t ) ph

P
�
�i ;h = 1

�
��i • t

�

ª 1

1
x�1 Lj ;h (x t )

Lj ;h (t )
dx.

Fix some � ° 0, small enough to verify cj ;h � � ° 0, and some t� ° 0 such that

@t • t�, we have simultaneously
�
�P
�
�i ;h = 1

�
��i • t

�
� �h

�
�† � (Lemma 3.5) and

�
�L(t ) � cj ;h

�
�† �. Obviously, as soon as t • t�, we also have

�
�L(x t ) � cj ;h

�
�† � for all

x • 1, and

0 †
cj ;h ��

cj ;h + �
†

Lj ;h (x t )
Lj ;h (t )

.

Hence, @t • t�,
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx °

(cj ;h � �)2 ph

(�h + �)(cj ;h + �)

ª 1

1
x�1 dx = + 1 ;

or equivalently,
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx �—

t —1
+ 1 .



3.8 pr oof s an d suppl emen t s 85

Ú h PH zH (j ) : ph � 0 and�h � 0

Contrary to the case where h P H (j ), we no longer have Fj ;h P R�1 . In particular,

the conditional cdf can have either finite or infinite right endpoint. When its support

is bounded, relying on the Bayes decomposition exhibited in the previous paragraph,

the desired result is straightforward: because there exists some t 0 ° 1 such that for

all t ° t 0 , Fj ;h (t ) = 0, then as t — 1 , the integral also becomes null. If on the

contrary, Fj ;h ° 0 for all t • 1, then, as previously, we can rewrite the quantity of

interest in the following form:

ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx =

t Fj ;h (t ) ph

P
�
�i ;h = 1

�
��i • t

�

ª 1

1

Fj ;h (x t )

Fj ;h (t )
dx.

Since as t tends to infinity t F̄j ;h (t ) tends to 0 (Proposition 3.1), P
�
�i ;h

�
��i • t

�

tends to �h ° 0 (Lemma 3.5) and since ph ° 0, for the integral of interest to converge

to 0 it suffices to prove that there exists some t 0 ° 1 such that for all t ° t 0 ,

ª 1

1

F̄j ;h (x t )
F̄j ;h (t )

dx † 1 .

According to the assumption in Proposition 3.2, there exists some constants �� in

(0; 1), c� • 0 and t� ° 1 such that

(t ° t�) Ò
�

F̄j ;h (x t )
F̄j ;h (t )

§ c�x�1=��
�

.

Hence, for all t ° t�,
ª 1

1

F̄j ;h (x t )
F̄j ;h (t )

dx § c�
ª 1

1
x�1=�� dx =

�c�

1� 1=��
† 1 ;

which produces the desired outcome.

Ú h PH c zt 0u : ph = �h = 0

By definition, for all h P t 1; : : : ; 2d � 1u, the equivalence below holds true:

(h PH c zt 0u) Ù (�h = 0) Ù (ph = 0).

Consequently, when h P H c zt 0u, we have P
�
Z i ; j ° x

�
��i • t ; �i ;h = 1

�
= 0 for all

x • 0, and by extension
ª 1

1
t P (�i • t ) P

�
Z i ; j ° x t

�
��i • t ; �i ;h = 1

�
dx = 0;

for all t ° 0. This remains true as t — 1 .
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Ú h = 0 : ph � 0 and�h = 0

Let us start again with the following decomposition :

�j ;0(t ) =
t p0 F̄j ;0(t )

P
�
�i ;0 = 1

�
��• t

�

ª 1

1

F̄j ;0(x t )
F̄j ;0 (t )

dx.

Contrary to the case where h P H zH (j ), we cannot guarantee the convergence of

�j ;0 (t ) to 0 as t grows to infinity, since P
�
�i ;0 = 1

�
��• t

�
now tends to 0 instead of

a positive constant. Nonetheless, it is stil l possible to prove that it does not diverge

to 1 . Indeed, notice that

t p0 F̄j ;0 (t )
P
�
�i ;0 = 1

�
��• t

�=
t P (�• t ) F̄j ;0(t )

P
�
�• t

�
��i ;0 = 1

�;

and that F̄j ;0 (t ) § P
�
�• t

�
��i ;0 = 1

�
. Hence,

�j ;0 (t ) § t P (�• t )
ª 1

1

F̄j ;0 (x t )
F̄j ;0(t )

dx.

We have already seen that according to the assumption in Proposition 3.2, there exists

some constants��P (0; 1), c� • 0 and t� ° 1 such that for all t ° t�,
ª 1

1

F̄j ;0 (x t )
F̄j ;0(t )

dx §
�c�

1� 1=��
.

Moreover, by virtue of Equation (3.8), for all �° 0 there exists some t� ° 0 such that

for all t ° t�,
�
�t P (�• t ) � S(� d�1 )

�
�† �. Fix some�° 0 and set �� :=

��(1� 1=��)
c�

,

then for all t ° max(t�; t�), we have

�j ;0 (t ) §
�S(�d�1 ) c�

1� 1=��
+ ��† 1 .

Observe that the smaller ��, i.e. the faster the limit dependence structure is reached,

the smaller the bound of �j ;0 (t ). Ideally, when all F̄j ;0 , 1 § j § d, are rapidly

varying, i.e. c� = 0, we obtain the same result as in the case where h P H zH (j ). This

would correspond in fact to the absence of hidden regular variation, like mentioned

in Section 3.5 and Section 3.7 (Resnick, 2002; Heffernan and Resnick, 2005; Resnick,

2008).

�

3.8.3 About p�j ;`(k)

For the sake of clarity, we give here a more explicit version of the statistic p�j ; ` (k),

which was defined as

p�j ; ` (k) :=
ª 1

1

1
k

nk

n `

∏

i P@k

I
!

pZ i ; j ° x
n
k

; p�i ; ` = 1
)

dx; 1 § ` § H; 1 § j § d;
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where nk := #@k is the number of observations the radius of which exceeds n=k, and

n ` :=
∞

i P@k
I tp�i ; ` = 1u the size of class `. Recall that ` is supposed to refer to some

h P t 1; : : : ; du, that indexed the open face� d�1
h .

Let us begin by considering that k is fixed, and set

f j ; ` (x) =
1
k

nk

n `

∏

i P@k

I
!

pZ i ; j ° x
n
k

; p�i ; ` = 1
)

; 1 § ` § H; 1 § j § d.

Our statistic of interest, p�j ; ` (k) is none other than the integral over x • 1 of f j ; ` (x).

Actually, because it relies on a finite set of n § 1 observations, f j ; ` (x) is a step function

with support on the interval
�

min
1§ i § n

pZ i ; j k=n; max
1§ i § n

pZ i ; j k=n
�

. As f j ; ` only takes into

account observations verifying p�i ; ` = 1, we denote by ( pZ`
1;j ; : : : ; pZ`

n ` ; j ) the sub-sample

of n ` observations within ( pZ1; j ; : : : ; pZn ; j ), for any j P t 1; : : : ; du. Corresponding

ordered statistics are denoted by pZ`
( 1; j ) † : : : † pZ`

( n ` ; j ) . Further consider

pZ`
( n `�u �; j ) = inft pZ`

i ; j ; 1 § i § n ` : pZ`
i ; j •

n
k

u;

the smallest observation pZ`
i ; j that exceeds n=k, and arbitrarily set pZ`

( n `�u ��1; j ) = 1,

then f j ; ` can be expressed as follows:

f j ; ` (x) =
1
k

n k

n `

u �+ 1∏

u = 1

u I
"

x P
�

pZ`
( n `�u ; j )

k
n

; pZ`
( n `�u + 1; j )

k
n

�*
.

In particular, when x • pZ`
( n ` ; j ) k=n, there is no pZ`

i ; j , 1 § i § n ` , such that pZ`
i ; j k=n ° x,

and conversely, when x P
h
1; pZ`

( n `�u �; j ) k=n
�

, there are exactly u�+ 1 observations

pZ`
i ; j in the sub-sample defined by p�i ; ` = 1 that exceed x n=k. Therefore, the integral

of f j ; ` (x) over all x • 1 verifies

ª max
1§ i § n

pZ `
i ; j k =n

1
f j ; ` (x) dx = p�j ; ` (k) =

nk

n
1

n `

u �+ 1∏

u = 1

u
�

pZ`
( n `�u + 1; j ) �

pZ`
( n `�u ;j )

�
.

Let us dwell for a moment on this expression. The part

1
n `

u �+ 1∏

u = 1

u
�

pZ`
( n `�u + 1; j ) �

pZ`
( n `�u ;j )

�

represents the integral under the empirical survival function of variable pZ i ; j condi-

tional on i being in cluster ` and }pZ i } ( 1) • n=k. When ` P H (j ), there should be a

lot of extreme observations pZ i ; j in cluster `, and this quantity should be very large.

Conversely, in all clusters `1 R H (j ), there should be very few to no extreme values

on the j -th dimension, and the corresponding integral should be very small. Fig-

ure 3.6 and Figure 3.7 give an illustration of this phenomenon on exposures to the

6 nutrients and contaminants investigated in Section 3.6. Notice that dividing by n `
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enables comparison between classes and avoids systematically selecting poor classi-

fications. In a similar way, the term n k =n penalizes small values of k, which would

otherwise always be preferred to higher ones and provide non-explicable groups, in

the sense that they would contain too few observations to be interpreted. In terms

of bias-variance compromise, intuitively it would generate overly wide variances for

the final estimates of t�d�1
h ; h PH u to be reliable.
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Figur e 3.6 – Log-scaled marginal distributions of exposures to the6 chemical elements within clus-

ters 1, 2, 3 and 4, obtained for the couple (k; pH(k))� as defined in Section 3.4: distributions of
contaminants with extreme exposures are displayed in red with black contours, while the others are

whitewith grey contours. Thethin horizontal line indicates k�
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Figur e 3.7 – Log-scaled marginal distributions of exposures to the6 chemical elements within clus-
ters 5, 6 and 7, obtained for thecouple(k; pH(k))�as defined in Section 3.4: distributions of contami-

nants with extremeexposures aredisplayed in red with black contours, whiletheothers arewhitewith

grey contours. Thethin horizontal line indicates k�

3.8.4 A littlemoreon PNS and spherical k-means

As a complement to the succinct description of Principal Nested Spheres and spher-

ical k-means in Section 3.4.2, we provide here a more detailed overview of these al-

gorithms accompanied by illustrative figures. With these additional specifications we

are then able to discuss some technical choices in the implementation that were only

briefly mentioned in the core of the chapter.
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3.8.4.1 Principal Nested Spheres

Recall from Definition 3.4 that the geodesic distance between two points x and y of

Sd�1 (the unit sphere in Rd ) is written

dG (x; y) = arccosx1y;

where x1 stands for the transpose of vector x. Now consider any (d � 2)-dimensional

sub-sphere Ad�2 in Sd�1 . Relative to the geodesic distance on the sphere, its center

and radius are respectively a point v PSd�1 and a distance r P (0;�=2] such that

Ad�2 := Ad�2 (v; r ) :=
 
x PSd�1 : dG (v; x) = r

(
.

Given this representation, the signed distance between any point x P Sd�1 and a

sub-sphere Ad�2 (v; r) is naturally defined as

dS(x; Ad�2 (v; r)) := dG (v; x) � r .

Equipped with these tools, the main steps of the PNS algorithm can be depicted as

follows.

Ú Step one Find the sub-

sphere of dimension d � 2

that minimizes the mean

squared residuals relative to

the geodesic distance:

Ad�2 (v1 ; r1 ) :=

argmin
v PSd�1

r P( 0; �2 ]

n k∏

i = 1

d2
S(! i ; Ad�2(v; r)).

Ú Step two Use a rotation

to place v1 at the north pole.

v1
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Ú Step three Start by

projecting the data on

Ad�2 (v1; r1 ), then suppress

the d-th dimension to place

the sub-sphere equipped

with the observations on

Rd�1 .

Ú Step four Scale Ad�2 so

that it would coincide with

the unit sphere Sd�2 , and de-

note by ! ( 1)
i P Sd�2 the new

vectors of observations that

are now elements of Rd�1 .

Ú Step five Repeat the pro-

cedure to get

Ad�3 (v2 ; r2 ) :=

argmin
v PSd� 2

r P( 0; �2 ]

n k∏

i = 1

d2
S(! ( 1)

i ; Ad�3 (v; r ))

and identify it w ith Sd�3 .

v2
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Ú Step six Continue the

same way until the unit circle

S1 is reached, and define

A0 :=

argmin
x PS1

n k∏

i = 1

d2
G (! ( d�2)

i ; x);

the Fréchet mean of the data.

The computational algorithm designed to solve the least squares problem that de-

fines each sub-sphere can be found in Section 3 of Jung et al. (2012) and the explicit

formulas corresponding to the successive transformations of each PNS in Section 2.

Many more details are provided in the supplementary materials associated with this

seminal paper, concerning in particular the geometry of PNS. More importantly, a

penalized version of the initial procedure is proposed to decide at each step whether

small sub-spheres are more relevant candidates than those with maximal radius. Ac-

tually, both the numerical experiments in Section 3.5 and the case study in Section 3.6

are using this refined version of the PNS algorithm. We refer to the end of Section 1

(p.7) in the aforementioned supplementary materials for more details on the subject.

At the end of the procedure, we obtain a collection of unit spheres with dimensions

ranging from 1 (the unit circle) to d � 1 (the space of the original data), which can be

understood as a spherical equivalent of the principal components in PCA. In order

to proceed with the rest of the analysis, we need to choose one of these d � 1 PNS

and work with the corresponding projected angles. Recall that for all j P t 1; : : : ; du

and i P t 1; : : : ; nk u, ! ( j�1)
i denotes the projection of angle ! i on Sd� j and define

�
( d� j )
i :=

 
j�1π

` = 1

sin r `

!

dG

�
! ( j )

i ; Ad� j (v j ; r j )
�

;

the corresponding scaled residual. In short, scaling enables comparison between the

deviations as if they were all measured on S1
2 (see Jung et al., 2012, Sections 2.1 to

2.4). Then the relative variance encapsulated by PNS d � j , 1 § j § d, is understood

as

Vd� j :=

∞ n k
i = 1

�
�

( j�1)
i

�2

∞ d
` = 1

∞ n k
i = 1

�
�

( `�1)
i

�2 .

Given these notations, the selection heuristic evoked in Section 3.4.2 simply consists

in picking the smallest sub-sphere Sd� j such that Vd� j�1 • 0.1, Vd� j • 0.1 and

Vd� j + 1 † 0.1. Observe that contrary to PCA, there is no obvious link here between
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V1 ; : : : ; Vd�1 and the variance of the angles V (! ), ! P Rd . Obviously, many refine-

ments could and should be brought to our method in the near future, starting with a

more adaptive way of identifying the “ optimal” PNS. Moreover, though the situation

was never encountered in our applications, many practical difficulties can arise and

should receive appropriate attention. For instance it can so happen that there is no

unique Fréchet mean: imagine a cloud of two points (0;�1) and (0; 1), then there are

two possible candidates for A0 , namely (�1; 0) and (1; 0). These intricate issues are

left for future research.

3.8.4.2 Spherical k-means

Once a selected PNS, clustering is achieved using the spherical k-means algorithm.

Before getting into detail, let us introduce a few additional notations. First, denote

by ! :
1 ; : : : ; ! :

n k the cloud of angles projected onto the optimal PNS. For some fixed

number of clusters H, the objective is to estimate the nk vectors of class indicators

�1 ; : : : ;�n k , where @i P t 1; : : : ; n k u, �i := (�i ;1 ; : : : ;�i ;H ). In spherical k-means,

clusters are represented by their barycenter: for any set of n • 1 points x1 ; : : : ; xn on

the unit sphere Sd�1 Ä Rd such that for all i P t 1; : : : ; nu, xi := (xi ;1 ; : : : ; xi ;d )1, the

barycenter function is written

B (x1 ; : : : ; xn ) :=

 
1
n

n∏

i = 1

xi ;1 ; : : : ;
1
n

n∏

i = 1

xi ;d

! 1

;

and its projection on the unit sphere

SB (x1 ; : : : ; xn ) :=
B (x1 ; : : : ; xn )

}B (x1 ; : : : ; xn )}2
.

For simplicity, we denote by bh the barycenter of all angles in class h, i.e.

bh := B
�

! :
1 I t�i ;h = 1u; : : : ; ! :

n k
I t�i ;h = 1u

�

:=

 
1

n k

n k∏

i = 1

! :
i ;1 I t�i ;h = 1u; : : : ;

1
nk

n k∏

i = 1

! :
i ;d I t�i ;h = 1u

! 1

;

and by ch its projection on the unit sphere, also called the concept vector:

ch := SB
�

! :
1 I t�i ;h = 1u; : : : ; ! :

n k
I t�i ;h = 1u

�
=

bh

}bh }2
.

Given these notations, the spherical k-means algorithm tries to find the collection

of indicators p�i ;h , 1 § i § n, 1 § h § H, that minimize the intra-class geodesic

variance, namely

GV
�

t�i ;h u1 § i § n
1 § h § H

�
:=

H∏

h = 1

n k∏

i = 1

d2
G (! :

i ; ch ) I t�i ;h = 1u;

by implementing the following basic steps.
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Ú Step one Choose a collec-

tion of initial concept vectors

c( 0)
1 ; : : : ; c( 0)

H .

Ú Step two Affect the data

to theclass represented by the

closest concept vector: for all

i P t 1; : : : ; nk u and all h P

t 1; : : : ; Hu,

�
( 0)
i ;h := I

"
h =

argmin
1§ ` § H

d2
G

�
! :

i ; c( 0)
`

�*
.

Ú Step three Identify the

concept vectors in each new

class: for all h P t 1; : : : ; Hu,

c( 1)
h := SB

�
! :

1 I
!
�

( 0)
i ;h = 1

)
;

: : : ; ! :
n k

I
!
�

( 0)
i ;h = 1

) �
.
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Ú Step four Actualize the

classes: for all i P t 1; : : : ; n k u

and h P t 1; : : : ; Hu,

�
( 1)
i ;h := I

"
h =

argmin
1§ ` § H

d2
G

�
! :

i ; c( 1)
`

�*
.

Ú Step five Repeat the pro-

cedure until

GV
�!
�

( `�1)
i ;h

)

1 § i § n
1 § h § H

�

�GV
�!
�

( ` )
i ;h

)

1 § i § n
1 § h § H

�

becomes less than a user-

defined tolerance.

The option “S” in the R package skmeans that we used in our applications stipulates

how the initial concept vectors c( 0)
1 ; : : : ; c( 0)

H are to be chosen. Specifically, for H • 2

desired clusters, they are successively selected according to the following recurrence

relation:
$
''&

''%

c( 0)
1 := A0 ;

c( 0)
h := argmax

t ! :
i ; 1§ i § n k u

d2
G

�
! :

i ; SB
�

c( 0)
1 ; : : : ; c( 0)

h�1

��
; h • 2.

In words, the first initial concept vector is set as the Fréchet mean of the sample of

projected angles, and the rest as the H� 1 observations farthest away from all already

picked concept vectors. This produces an initial clustering with centers as scattered

as possible. Obviously, many other initialization techniques may have been applied,

e.g. picking the first concept vectors at random. The present version has been cho-

sen in accordance with our belief that after projection, the angles corresponding to

different faces are disseminated on different regions of the retained PNS while those

belonging to the same face are concentrated on a common neighborhood.

The main advantage of the spherical k-means algorithm is that it is very simple to

implement. However, it can often happen that it remains stuck at a local minimum of
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the intra-class geodesic variance function. To counteract this undesirable effect, many

refinements have been proposed in the literature (see for instance Dhillon et al., 2002

and the references therein). As a first go, we confined ourselves to the basic version

of spherical k-means, leaving further considerations on algorithmic improvement for

future research.





4
A M I N I M U M V OL U M E SET A PPROA CH TO

D I ETA RY RI SK -BEN EFI T A N A LYSI S

In the same spirit as in Chapter 3, we propose an alternative method to inspect the

multivariate distribution of the exposure to multiple food chemicals, which accounts

for the variability of the contamination of foodstuffs. Directly inspired from typical

statistical learning techniques, this non-parametric approach is no longer focused on

extreme events. One of its advantages is that it can be very naturally extended to

the identification of optimal dietary habits, in the sense that they realize a compro-

mise between toxicological risk and nutritional benefit. From a practical point of

view, such results would facilitate public communication of general dietary recom-

mendations. The present chapter corresponds to a paper currently being written in

collaboration with J.Tressou (INRA Met@risk, France) and S. Clémençon (Télécom

ParisTech, France). It is not complete yet, in particular we are still working on the

practical applications of the theoretical results introduced therein.

It is the major purpose of this chapter to show how to adapt recent (unsuper-

vised) machine-learning techniques, specifically introduced to deal with very high-

dimensional data in a non-parametric manner (avoiding thus the curse of dimension-

ality), to food risk/ benefit analysis. Precisely, a variant of the minimum-volume set

methodology (MV-set in abbreviated form), originally investigated in Polonik (1997)

(see also Scott and Nowak, 2006), is proposed in order to determine confidence or

predictive regions for the joint dietary exposure to a variety of chemicals and nutri-

ents present in the food. The main originality of this problem lies in the fact that a

natural empirical counterpart of the dietary exposure is of the form of a generalized

U-statistic, based on the combination of consumption survey data with a database

gathering measures of contents of a variety of chemicals and nutrients in most food

items. Mainly due to the large number of foodstuffs involved in the observed diets,

this statistic cannot be calculated in general, its computation requiring to sum over

a prohibitive number of terms. Following in the footsteps of Bertail and Tressou

(2006), we replace the latter with an incomplete U-statistic (Blom, 1976) the compu-

tation of which is numerically feasible, and we establish a novel uniform deviation

result, which shows that this approximation stage does not damage the learning rate

of the MV-set procedure. Next, similar concepts and results are applied to identify

regions where the multivariate distribution of dietary habits is mostly concentrated

and where types of exposure simultaneously remain within toxicological values of

reference (limitation of the risk) and recommended dietary allowances (preservation

99
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of the benefit) with maximum probability. Statistical results, i.e. rate bounds guar-

anteeing the performance of the generic learning techniques we propose, are stated.

The chapter is structured as follows. A detailed account of the statistical issues

related to food risks and benefits tackled in the chapter and the learning methods

proposed to deal with them is given in Section 4.1, together with theoretical results

claiming their validity. Technical proofs are postponed to Section 4.2.

4.1 t h eor et i cal anal ysi s an d met h ods

4.1.1 Assessment of dietary exposureto chemicals and nutrients:

a MV-set formulation

We are concerned here with dietary types of exposure to d • 1 different food

chemicals, contaminants or nutrients, over a certain statistical population of interest

during a given period of time, say a week like in the INCA2 database. Foods are clas-

sified according to some given nomenclature that accounts for H families of products,

indexed by label h P t 1; : : : ; Hu. The joint dietary exposure can be then described by

a random vector X := (X1 ; : : : ; Xd ), where

Xj :=
H∏

h = 1

Ch �Qh ; j . (4.1)

for 1 § j § d, denoting by Ch the quantity of food item h consumed per week by

an individual drawn at random in the studied population and by Qh ; j the (random)

content related to food item h and component j . In the field of food safety, risk

assessors are interested in building confidence/ predictive regions for the exposure X

in Rd
+ :

R� := arg min
!

L (R) : P (X PR) • �; R Ä Rd
+ Borelian

)
; (4.2)

where�P (0; 1) and the Lebesgue measure on Rd
+ is denoted by L . For values of the

level � close to 1, such minimum volumesets (MV-sets in short, see Scott and Nowak,

2006) describe regions where the distribution of exposure is most concentrated, those

lying in their complementary sets being possibly interpreted as “ abnormal” . The

construction of predictive/ confidence regions for the dietary exposure is based on

the observation of the dietary habits of n • 1 individuals independently drawn from

the population, yielding an iid sample t Ci := (Ci ;1 ; : : : ; Ci ;H ) ; 1 § i § nu. They are

combined with databases where mh ; j • 1 iid measures of the amount of pollutant

or nutrient j present in food h are listed for all h P t 1; : : : ; Hu and j P t 1; : : : ; du. The

corresponding vectors of contents are denoted by Qh ; j := (Q1
h ; j ; : : : ; Qm h ;j

h ; j ). Usually,

the following hypotheses are supposed to hold true.
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Assumpt ion 4.1 For all couples (h; h̃) P t 1; : : : ; Hu2 such that h � h̃ and any

j P t 1; : : : ; du, level Qh ; j is independent from Qh̃ ; j .

Assumpt ion 4.2 For all couples (j ; j̃ ) P t 1; : : : ; du2 such that j � j̃ and any

h P t 1; : : : ; Hu, level Qh ; j is independent from Qh ; j̃ .

Assumpt ion 4.3 For any (h; j ) P t 1; : : : ; Hu� t 1; : : : ; du, level Qh ; j is indepen-

dent from consumption vector Ci .

Assumption 4.1, which formally states that nutrients and contaminants are indepen-

dently assimilated by foodstuffs, could easily be relaxed without any substantial im-

pact on the present approach. Its applicability depends mostly on the level of detail

provided by the database(s) at hand. On the contrary, Assumption 4.2 and Assump-

tion 4.3 are necessary. They respectively stipulate that the contents of one foodstuff

are independent from that of others and that dietary habits are not dictated by nu-

tritional or toxicological characteristics of the food. From a more practical point of

view, Assumption 4.2 is likely to be true if consumers get their supplies from various

productions and Assumption 4.3 if they do not base their consumption decision on a

systematic scrutiny of the composition of the food.

Based on these data, the probability involved in the constraint of the MV-set prob-

lem stipulated in Equation (4.2) is estimated by

pP (X PR) :=
1
�

n∏

i = 1

m 1;1∏

` 1;1= 1

: : :
m H ;d∏

` H ;d = 1

I

$
&

%

 
H∏

h = 1

Ci ;h Q` h ; j
h ; j

!

1§ j § d

P R

,
.

-
; (4.3)

with

� := n
dπ

j = 1

Hπ

h = 1

mh ; j

and I t .u the indicator function. In practice, all types of sets cannot be explored; the

search is restricted to a class R of Borelian sets, the complexity of which is controlled,

like hypercubes or ellipses (see the next subsection). The level � is in turn replaced

by �� � , where � is some tolerance level that depends, roughly speaking, on the

order of magnitude of

sup
RPR

�
�
�pP (X P R) � P (X PR)

�
�
�.

Hence, one should ideally try to solve the constrained minimization problem:

min
RPR

L (R) subject to pP (X PR) • ��� . (4.4)

The major difference with the formulation in Scott and Nowak (2006) lies in the fact

that the estimate of the probability involved in the mass constraint is here of the form
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of a (generalized) U-statistic. Thus, the study of the performance of solutions of Equa-

tion (4.4) includes the proof of concentration results for U-processes (i.e. collections of

U-statistics). Unfortunately, averaging over the n �
± d

j = 1
± H

h = 1 mh ; j terms appear-

ing in Equation (4.3) is generally numerically unfeasible, even for moderate sample

sizes. In Bertail and Tressou (2006) for instance, where the estimation of the probabil-

ity that the exposure to Ochratoxin A exceeds a critical threshold is considered, this

corresponds to 4� 1021 terms! As shall be seen below, the statistic in Equation (4.3)

can be uniformly approximated by a “ Monte-Carlo” version, the computation cost of

which is drastically reduced.

Remar k 4.4 – Alternative approaches. We underline that the MV-set methodol-

ogy is by no means the sole possible approach for constructing predictive regions.

For instance, density sub-level sets can be built by means of non-parametric den-

sity estimation techniques, see Tsybakov (1997) and the references therein. How-

ever, when trying to implement such “ plug-in” alternatives, even for moderate

dimensions, one faces significant computational problems inherent to the curse

of dimensionality. This motivates the machine-learning approach promoted here,

which avoids a preliminary density estimation stage, while focusing directly on

performance optimization. One may also refer to Vert and Vert (2006) or Steinwart

et al. (2005) for closely related techniques.

4.1.2 Uniform approximation of generalized U-statistics by their

incompleteversions

For clarity, we recall below the definition of generalized U-statistics. Properties

and asymptotic theory of U-statistics can be found in Lee (1990).

Def in i t ion 4.5 – Generalized U-statistic. Let K • 1, (d1 ; : : : ; dK ) P N �K and

consider the vectors
�

X( k )
1 ; : : : ; X( k )

n k

�
, 1 § k § K, corresponding to K indepen-

dent samples of iid random variables, taking their values in some space Xk with

distribution Pk respectively. The generalized (or K-sample) U-statistic of degrees

(d1 ; : : : ; dK ) w ith kernel  : Xd 1
1 � ���� Xd K

K — R, square integrable with respect

to the probability distribution Pb d 1
1 b ���b Pb d K

K , is defined as

Un( ) :=
1

± K
k = 1

�n k
d k

�
∏

I 1

: : :
∏

I K

 (X( 1)
I 1

; X( 2)
I 2

; : : : ; X( K )
I K

); (4.5)

where
∞

I k
refers to the summation over all

�n k
d k

�
subsets X( k )

I k
:=
�

X( k )
i 1

; : : : ; X( k )
i d k

�

related to a set I k of dk indexes 1 § i 1 † ���† i d k § n k . It is said symmetric when

 is permutation symmetric in each set of dk arguments X( k )
I k

.
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Observe that the functional in Equation (4.3) corresponds to a K-sample U-statistic

of degrees (1; 1; : : : ; 1), w ith K = d � H + 1 and kernel given by:

 R(c; q) := I

$
&

%

 
H∏

h = 1

ch �qh ; j

!

1§ j § d

PR

,
.

-
;

for c := (c1 ; : : : ; cH ) P RH
+ and q :=

�
(qh ; j ; : : : ; qH ;d ) j = 1; : : : ;d

�
P RH�d

+ . Beyond

this example, many statistics used for pointwise estimation or hypothesis testing are

actually U-statistics (e.g. the sample variance, the Gini mean difference, the Wilcoxon

Mann-Whitney statistic, the Kendall tau). Their popularity mainly arise from their

“ reduced variance” property: the statistic Un( ) has minimum variance among all

unbiased estimators of the parameter

�( ) := E
�

 (X( 1)
1 ; : : : ; X( 1)

d 1
; : : : ; X(K )

1 ; : : : ; X( K )
d k

)
�

.

Classically, the limit properties of these statistics (law of large numbers, central limit

theorem, etc.) are investigated in an asymptotic framework stipulating that, as the

full sample size

n := n1 + ���+ nK

tends to infinity, we have n k =n — �k ° 0 for all k P t 1; : : : ; Ku. They can be es-

tablished by means of a linearization technique (see Hoeffding, 1948), permitting to

write Un( ) as a sum of K basic sample mean statistics (of the order OP (1=
?

n) each,

after recentering), plus possible degenerate terms called degenerateU-statistics.

As mentioned before, in practice, the number
± K

k = 1

�n k
d k

�
of terms to be summed up

to compute Equation (4.5) is generally prohibitive. As a remedy to this computational

issue, in the seminal contribution of Blom (1976), the concept of incompletegeneralized

U-statistic has been introduced: the summation in Equation (4.5) is replaced by a

summation involving much less terms, extending only over low cardinality subsets

of the
�n k

d k

�
dk -tuples of indexes, 1 § k § K. In the simplest formulation, the sub-

sets of indexes are obtained by sampling with replacement, leading to the following

definition.

Def in i t ion 4.6 – IncompleteGeneralized U-statistic. Let B • 1. The incomplete

version of the U-statistic in Equation (4.5) based on B terms is defined by:

rUB ( ) :=
1
B

∏

( I 1 ; : : : ; I K ) PD B

 (X( 1)
I 1

; : : : ; X( K )
I K

); (4.6)

where DB is a set of cardinality B built by sampling with replacement in the set

L :=

#
�

(i ( 1)
1 ; : : : ; i ( 1)

d 1
); : : : ; (i ( K )

1 ; : : : ; i ( K )
d K

)
�

1§ i ( k )
1 † :: :† i ( k )

d k
§ n k ; 1§ k § K

+

.
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Remar k 4.7 – Alternative sampling schemes. We point out that, as proposed in

Janson (1984), other sampling schemes could be considered, in particular sampling

without replacement or Bernoulli sampling. The results of this chapter could be

extended to these situations. For the sake of simplicity, we restrict our attention

here to the sampling with replacement scheme.

In practice, B should be chosen much smaller than the cardinality of L , namely

#L :=
± K

k = 1

�n k
d k

�
, in order to overcome the computational issue previously men-

tioned. We emphasize that the cost related to the computation of the value taken

by the kernel  at a given point (x( 1)
I 1

; : : : ; x( K )
I K

) depending on the form of  is not

considered here, focus is solely on the number of terms involved in the summation.

As an estimator of �( ), the statistic in Equation (4.6) is stil l unbiased but its variance

is naturally larger than that of Equation (4.5). Precisely, we have

V
�

rUB ( )
�

=
�

1�
1
B

�

V (Un( )) + O
�

1
B

�

as B — + 1 ;

refer to Lee (1990, p.193). Incidentally, we underline that the empirical variance of

Equation (4.5) is not easy to compute since it involves summing approximately #L

terms and bootstrap techniques should be used for this purpose, as proposed in

Bertail and Tressou (2006). The asymptotic properties of incomplete U-statistics have

been investigated in several articles, see Janson (1984); Brown and Kildea (1978); En-

qvist (1978). The angle embraced in the present chapter is of different nature: the

key idea we promote here is to use incomplete versions of collections of U-statistics

in learning problems such as that described in Section 4.1.1. The following result

shows that this approach solves the numerical problem, while not damaging the

learning rates. It reveals that, under adequate complexity assumptions on the con-

sidered collection � of (symmetric) kernels  (refer to Dudley, 1999), concentration

results established for U-processes (i.e. collections of U-statistics) may extend to their

incomplete versions.

Theor em 4.8 – Maximal deviation. Let � be a collection of bounded symmetric

kernels on � :=
± K

k = 1 Xd k
k . Suppose that � is a VC major class of functions with

finite Vapnik-Chervonenkis dimension V and that M� := sup
(  ;x ) P��X

| (x)| † + 1 .

Then, the following assertions hold true.

i ) For all �° 0, we have: @n = (n1 ; : : : ; nK ) P N �K , @B • 1,

P

 

sup
 P�

�
�
�rUB ( ) � Un( )

�
�
�° �

!

§ 2(1 + #L )V e�B�2 =M 2
� .

i i ) For all �P(0; 1), w ith probability at least 1� �, we have: @n k • 1, 1 § k § K,
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sup
 P�

�
�
�rUB ( ) � E

�
rUB ( )

��
�
�§

M�

#

2

c
2V log(1+ �)

�
+

c
log(2=�)

�
+

c
V log(1 + #L ) + log(4=�)

B

+

;

where

�:= min t tn1=d1u; : : : ; tnK =dK uu

and txudenotes the integer part of any real number x.

We refer to Section 4.2 for the proof. Observe that, w ith the asymptotic settings

previously specified, �� n and log(#L ) � log(n) as n — + 1 . The bounds stated

above show that, for a number B := Bn of terms tending to infinity as n — + 1

at a rate O(n), the maximal deviation sup P� | rUB ( ) � �( )| is asymptotically of

the order OP(
a

log(n)=n), just like sup P� |Un( ) � �( )|. Remarkably, except in

the case K = 1 and dK = 1 solely, using such incomplete U-statistics thus yields a

significant gain in terms of computational cost and fully preserves the order of the

probabilistic upper bounds for the uniform deviations. Before showing how these

results apply to the analysis of the dietary exposure distribution, a few remarks are

in order.

Remar k 4.9 – On thecomplexity assumption. We point out that, as can be seen

by examining their proof in Section 4.2, the results above could be extended to

other complexity measures than the VC dimension, such as Rademacher averages

(Boucheron et al., 2005). However, the confidence regions we shall consider in

practice being of the form of the union of a limited number of hypercubes, the

finite VC dimension hypothesis is sufficient to provide a validity framework to the

present analysis.

Remar k 4.10 – Learning tasksbased on optimization of U-statistics. The uniform

deviation result stated in Theorem 4.8 can be proved very useful much beyond

the framework described in Section 4.1.1. Indeed, statistical learning problems

where the empirical performance criterion one seeks to optimize is of the form of a

(generalized) U-statistic have recently been the subject of a good deal of attention

in the literature: supervised ranking (Clémençon et al., 2008), learning on graphs

(Biau and Bleakley, 2006) or dissimilarity-based clustering (Clémençon, 2011) for

instance. The result above permits to show that, in such problems, the empirical

criterion can be replaced by an incomplete version of much simpler computation,

with only a slight impact on the learning rate, provided that the parameter B is

suitably chosen.
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Let us now come back to the specific learning task formulated in Section 4.1.1.

In order to avoid the computation of Equation (4.3), which involves summing over

� := n
± d

j = 1
± H

h = 1 mh ; j terms based on N := n +
∞ d

j = 1
∞ H

h = 1 mh ; j observations,

Theorem 4.8 suggests to draw with replacement B times in the set of indexes

L := t 1; : : : ; nu�
dπ

j = 1

Hπ

h = 1

t 1; : : : ; mh ; j u; L = �;

yielding an index set DB of cardinality B. For any borelian R Ä Rd , the proba-

bility that the dietary exposure lies in the region R is estimated by the incomplete

U-statistic:

rPB (X PR) :=
1
B

∏

( i ; ` h ; j )PD B

I

$
&

%

 
H∏

h = 1

Ci ;h Q` h ; j
h ; j

!

1§ j § d

PR

,
.

-
.

Suppose that the class R is of finite VC dimension V. Let �P(0; 1) be the target mass

and �P (0; 1) the desired confidence level. Notice that in the present case,

�= min
 
n ; min

 
mh ; j : 1 § j § d; 1 § h § H

( (
.

Further define the complexity penalty by

�(B; N;�) := 2

c
2V log(1+ �)

�
+

c
log(2=�)

�
+

c
V log(1+ �) + log(4=�)

B
; (4.7)

and consider the solution pR� of the constrained optimization problem:

min
RPR

L (R) subject to rP (X P R) • �� �(B; N;�). (4.8)

The result below shows that, if the number B of exposure values computed through

the sampling scheme and � are of the order O(N), the performance of pR� is then

comparable to that of the region the selection of which is based on the quantities in

Equation (4.3) (see Section 4.2 for a sketch of proof).

Cor ol l ar y 4.11 For all �P (0; 1), we have with probability at least 1��:

L
�

pR�
�

§ inf
RPR : P ( XPR ) • �

L (R) and P
�

X P pR�
�

• �� 2�(B; N;�).

From a practical perspective, the constrained optimization program in Equation (4.8)

will be here performed over a collection of sets obtained as the union of small hyper-

cubes by the means of a simplistic sorting algorithm, detailed at length in the next

subsection. A lternative techniques, whose implementation is less immediate, such as

those based on Dyadic Decision Trees (DDT) could be also considered, see Scott and

Nowak (2006, Subsection 6.2) for further details.
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4.1.3 Empirical MV-set estimation based on hypercubes

We now turn to the issue of solving Equation (4.8) from a practical perspective.

For simplicity, such regions are built by binding together hypercubes of the posi-

tive orthant Rd
+ . Suppose that the exposure X takes its values in the compact set

[0; 1]d , even if it means dividing each component of the exposure random vector by

a supposedly finite essential upper bound. Observe that this assumption makes the

present approach quite different from that introduced in Chapter 3, where the sup-

port of the distribution of individual types of exposure could extend to infinity. Since

extremes are no longer of interest here, such refinements are of little concern. Now

let k • 1 and consider the partition of the unit cube
± d

j = 1 [sj =k ; (sj + 1)=k] made

of sub-cubes of side length 1=k, with k • 1 and sj P t 0; : : : ; k � 1u for 1 § j § d.

Denote by C1 ; : : : ; CM these sub-cubes, with M = kd , and consider the collection Rk

of subsets obtained as the union of such cubes. Observe that Rk is of finite cardinal-

ity: #Rk = 2k d
. In this situation, the theoretical results established in the previous

subsection apply, with the penalty

�k (B; N;�) := 2

c
2kd log(1+ �)

�
+

c
log(2=�)

�
+

c
kd log(1+ �) + log(4=�)

B
;

and a solution of the constrained minimization problem in Equation (4.8) can be

obtained in two steps, as follows. Let �, �in (0; 1) and B • 1.

1. Sort the sub-cubes Cm , 1 § m § M , so that:

rPB (X PC1;M ) • ���• rPB (X P CM ;M ) .

2. Bind together the cubes sequentially, until the incomplete U-statistic estimating

the mass of the resulting set exceeds���k (B; N;�), yielding the region:

pRk ;� :=
M �§

m = 1

Cm ;M ;

where

M � := min

#

M • 1 :
M∏

m = 1

rPB (X P Cm ;M ) • �� �k (B; N;�)

+

.

Let 1 § k� † k�† + 1 . The issue of selecting the “ resolution level” k P t k�; : : : ; k�u

automatically can be handled through complexity penalization, as shown in Scott

and Nowak (2006, Section 4). Precisely, one should pick the value

pk := argmin
k �§ k § k �

!
L
�

pRk ;�

�
+ �k (B; N;�2�k )

)
;

minimizing thus a complexity-penalized version of the volume, in order to approx-

imate the MV-set over
î

k Rk as accurately as possible without overfitting the data.

An oracle inequality showing that the chosen set pRpk ;� corresponds to an optimal

trade-off between excess volume and missing mass can be straightforwardly derived

from the analysis carried out in Section 4.1.2, just like in Scott and Nowak (2006,

Theorem 7). Details are left to the reader.
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4.1.4 Optimal regions in the consumption space in regard to dietary

risks and benefits

In food safety, one topic of crucial interest is to determine optimal regions in the

dietary consumption space RH
+ in the sense that they achieve a compromise between

toxicological risk and nutritional benefit. Indeed, for each nutrient and contaminant,

experts define maximum threshold levels of exposure, generally called dietary in-

take limits (DIL), above which health issues due to excessive supply of chemicals are

likely to occur. Equivalent lower bounds are defined for nutrients, which indicate

nutritional deficiency. From a public health point of view, it is then of particular

interest to identify the dietary habits that offer the best chance of respecting both

lower and upper DIL and draw general, easily comprehensible dietary guidelines to

the concerned population, in the same spirit as “ eat at least five fruits and vegeta-

bles a day” . Since it is very difficult to recommend people to completely alter their

habits, public health institutes are more interested in determining realistic food bas-

kets, already consumed by a non-negligible amount of persons, which they could set

as examples for the rest of the population. This problem can be addressed by means

of concepts and tools very similar to those investigated in Section 4.1.1. Consider

d • 1 pollutants and nutrients, present in a nomenclature of foodstuffs indexed by

h P t 1; : : : ; Hu at (random) concentration levels Qh ;1 ; : : : ; Qh ;d . We denote by `�(j )

(resp. `�(j )) the maximum (resp. minimum) recommended exposure for element j .

By convention, if j is a contaminant, we set `�(j ) = 0. Notice that whereas those lim-

its are given in terms of amounts of nutrients, regarding contaminants they usually

also depend on the body weights of consumers. Hence, from now on, when we write

Qh ; j to designate the amount of chemical j in food family h, if j is a contaminant then

we implicitly refer to its standardized version Qh ;j =w i , w ith w i the body weight of

individual i .

Equipped with these notations, the “ safe” situation in regard to nutritional ben-

efits and dietary chemical contamination is described by the random subset of the

consumption space

SQ :=
 
c PRK

+ : @j P t 1; : : : ; du; c1Q j P [`�(j ) ; `�(j )]
(

(4.9)

with c1 the transpose of vector c, i.e. the set of dietary habits that yield types of

exposure respecting all d considered DIL. Conversely, the unsafe consumption zone

is denoted by Sc
Q , the complementary of SQ in RH

+ . The subscript Q emphasizes

their dependence on contents Qh ; j , 1 § h § H, 1 § j § d, (and body weights for

contaminants), which justifies the random nature of both sets. Further set

SQ j :=
 
c PRK

+ : c1Q j P [`�(j ) ; `�(j )]
(

; (4.10)
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the safe zone for chemical element j and Sc
Q j

its complementary, then according to

Equation (4.9), we have SQ :=
ì d

j = 1 SQ j and Sc
Q :=

î d
j = 1 Sc

Q j
. Graphical examples of

some possible realizations of Sc
Q are given in Figure 4.1.

Food 2 Food 2

Figur e 4.1 – Illustration in dimension 2 of the form of Sc
q for some fixed contamination levels q1

and q2 of 2 nutrients. Theexterior of the two plain (resp. dotted) lines defines theset Sc
q1

(resp. Sc
q2

).

Consequently, Sc
q coincides with A1 Y A2 in theleft hand graph and with A3 (theentirespace) in the

right hand graph.

Again, we assume in this section that we dispose of independent samples: iid

consumption vectors t Ci := (Ci ;1 ; : : : ; Ci ;H ) : 1 § i § du are gathered together with

a number mh ; j of iid measures of content of component j occurring in food item h,

namely t Qh ; j := (Q1
h ; j ; : : : ; Q

m h ;j
h ; j )u for 1 § h § H, 1 § j § d. For simplicity, dietary

habits are divided by some large enough constant so that they may fit into the unit

cube of Rd
+ . The issue mentioned above can be then formulated as follows. Denote

by RH the set of all subspaces in [0; 1]H that can be written as a finite (with reasonable

cardinal, say inferior to some r� P N ) union of hyperrectangles, and fix � P [0; 1], a

desired level of diet frequency in the studied population. Optimal diets�� are then

defined as solutions of the optimization program:

�� := argmin
� PR H

�(� ) subject to P (C P� ) • ��� ; (4.11)

where � is a dietary risk measure. Notice that exploring sub-spaces in the form

of hyperrectangles has the advantage of facilitating the eventual communication of

the results: it enables interpretations such as “ one should eat more or less than

this and that amount of specific food” . The main question now is to choose an

explicit expression for the volume�. One very natural way of modeling dietary risks

would be to define �(� ) as the conditional probability P
�

C PSc
Q

�
�C P�

�
for any

� PRH . Going back to Equation (4.11), notice that in the case where solutions��are

such that P (C P��) = �� • �, it is equivalent to minimizing the joint probability

P
�

C PSc
Q X �

�
over the set RH of region candidates, subject to P (C P� ) • ��. This

problem is very similar to that tackled in Section 4.1.1, except that the target criterion

one seeks to optimize now is not a (Lebesgue) volume anymore, but an unknown
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probability measure. As in Scott and Nowak (2005) and Clémençon and Vayatis

(2010), the criterion must then also be replaced by an empirical estimate. Following

the approach proposed in Section 4.1.2, we consider the incomplete U-statistic

rPB
�
C P� X Sc

Q

�
:=

1
B

∏

( i ; ` h ; j ) PD B

I t Ci P�u I

#
H∏

h = 1

Ci ;h Q` h ; j
h ; j R[`�(1); `�(1)] or : : :

: : : or
H∏

h = 1

Ci ;h Q` h ; j
h ; j R[`�(d); `�(d)]

+

;

where DB is the index set of cardinality B obtained by drawing with replacement B

times in the set of indexes L := t 1; : : : ; nu�
± H

h = 1
± d

j = 1 t 1; : : : ; mh ; j u. This leads to

the constrained optimization problem:

min
� PR H

rPB
�
C P� X Sc

Q

�
subject to pP (C P� ) • �� �; (4.12)

where

pP (C P� ) :=
1
n

n∏

i = 1

I t Ci P�u. (4.13)

The following theorem describes the properties of solutions of the problem in Equa-

tion (4.12), involving statistical quantities the computation of which is feasible, the is-

sue of finding such a solution in practice shall be tackled subsequently.

Theor em 4.12 Let (�;�) P (0; 1)2 . Suppose that the collection RH is of finite VC

dimension V † + 1 and set:

� 1(n ;�) := 4

c
2 log(8) + V log(n + 1) + log(2=�)

n
.

Then, if r�B is a solution of Equation (4.12), we have with probability at least 1��:

P
�

C P r�B

�
• �+ 2� 1(n;�=2) and �( r�B ) § �(��) + 2�(B; N;�=2); (4.14)

denoting by � the penalty given by Equation (4.7) and by �� any minimizer of

�(.) among the elements� of RH such that P (C P� ) • �.

The (sketch of the) proof is given in Section 4.2. The statistical procedure described

in Section 4.1.3 cannot be extended in a straightforward manner, since the quantity

P
�

C PSc
Q X C P�

�
is far from being constant over the collection of cubes C of fixed

side length 1=k, which paves the supposedly compact support of the distribution of

C.

Ú Statistically equivalent hypercubes Our proposal to solve Equation (4.12) approxi-

mately is to partition [0; 1]H into a finite number of hypercubes C1 ; : : : ; CM (of vari-

able side length) such that rPB

�
C PCm X Sc

Q

�
, m P t 1; : : : ; M u, remains (approxi-

mately) constant, equal to ! := M �1 rPB

�
C PSc

Q

�
. This can be achieved by means of
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a variety of greedy procedures, see section 21.4 in Devroye et al. (1996) and the refer-

ences therein. Here we use a slightly modified version of the celebrated Gessaman’s

rule (Gessaman, 1970) as follows. Recall that the quantities involved are built from

the sampled dataset DB := t (i ( b ) ; (`( b )
1;1 ; : : : ; `( b )

H ;d )) : 1 § b § Bu of cardinality B. For

all i P t 1; : : : ; Bu, assign to the observation Ci the weight

! i :=
1
B

B∏

b = 1

I
!

i = i ( b )
)

I

#
H∏

h = 1

Ci ( b ) ;h Q
` ( b )

h ; j
h ; j R[`�(1); `�(1)] or : : :

: : : or
H∏

h = 1

Ci ( b ) ;h Q
` ( b )

h ;j
h ; j R[`�(d); `�(d)]

+

.

Equipped with this notation, observe that rPB

�
C PSc

Q X Cm

�
=
∞ n

i = 1 ! i I t Ci P Cm u

for any m P t 1; : : : ; M u. Starting with all the consumption data, consider the food

item h and a “ split value” s P [0; 1] and consider the regions of the consumption

space

�1(h; s) := t c P [0; 1]H : ch § su and �2 (h; s) := t c P [0; 1]H : ch ° su.

Then find the threshold value s� that solves

min
sP[0;1]

�
�
�
�
�
�

∏

i : Ci P�1 ( h ;s)

! i �
∏

i : Ci P�2 ( h ;s)

! i

�
�
�
�
�
�

over t (Ci ;h ) : 1 § i § nu. For each food item h, the minimization problem in s can

be solved very rapidly by scanning through all of the data projected onto the h-th

axis. Having thus determined the best “ split value” , one repeat the binary splitting

procedure on both regions in a recursive manner. Let d1 ; : : : ; dH • 1 . Starting

from the whole consumption space [0; 1]H , identified as the root node, we propose

to build a recursive partition, which can be represented by a binary tree of depth

D =
∞ H

h = 1 dh , by using first C1 as "split variable" to build a complete binary tree

of depth d1 , then using C2 to grow the tree until depth d1 + d2 and continuing

in the same way with the remaining food items. Its terminal leaves correspond to

the cells C1 ; : : : ; C2D of the data-dependent partition. The collection of such regions,

obtained by combining hierarchically 2D � 1 splits perpendicular to the coordinate

axes is of finite VC dimension VD † + 1 (namely, its shatter coefficient for m • 1

points is classically bounded by (m + 1)2H ( 2D �1) ). In addition, by construction, the

latter are such that rPB

�
C PCm X Sc

Q

�
is approximately equal to rPB

�
C PSc

Q

�
=2D

for m = 1; : : : ; 2D .

Now, from a practical perspective, the target region of the consumption space can

be assessed by using a strategy similar to that described in the previous subsection,

as follows.

1. Sort the terminal leaves of the tree representing the partition in a way that

pP (C P C1;2D ) • : : : • pP (C PC2D ;2D ) .
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2. Bind together the cells sequentially, until the empirical estimate of the mass of

the resulting set exceeds�� �D (B; N;�), yielding the region:

p�D ;� :=
M �§

m = 1

Cm ;2D ;

where

M � := min

#

M • 1 :
M∏

m = 1

pP (C PCm ;2D ) • ���D (B; N;�)

+

.

Beyond its computational efficacy and simplicity, a crucial advantage of the ap-

proach described above lies in its capacity to produce regions which can be visually

summarized by a binary tree, the terminal leaves of which can be described by com-

bining elementary rules of the form “ ch ° s” or “ ch § s” in a hierarchical manner.

This point is of major importance when designing dietary guidelines to improve nu-

trition over the population of interest.

4.2 pr oof s an d suppl emen t s

4.2.1 Maximal deviation

We start by establishing the following intermediary result, which extends Corol-

lary 3 in Clémençon et al. (2008) to the K-sample situation.

Lemma 4.13 Suppose that the hypotheses in Theorem 4.8 are fulfi lled. For all

�P(0; 1), we have with probability at least 1� �,

sup
 P�

|Un( ) ��( )| § M�

#

2

c
2V log(1+ �)

�
+

c
log(1=�)

�

+

.

Pr oof Set �= mint tn1=d1u; : : : ; tnK =dK uu and let

V 

�
X( 1)

1 ; : : : ; X( 1)
n 1 ; : : : ; X( K )

1 ; : : : ; X( K )
n K

�
:=

1
�

"
 
�

X( 1)
1 ; : : : ; X( 1)

d 1
; : : : ; X( K )

1 ; : : : ; X(K )
d K

�

+  
�

X( 1)
d 1 + 1 ; : : : ; X( 1)

2d 1
; : : : ; X( K )

d K + 1 ; : : : ; X( K )
2d K

�
+ : : :

+  
�

X( 1)
�d 1�d 1+ 1 ; : : : ; X( 1)

�d 1
; : : : ; X( K )

�d K�d K + 1 ; : : : ; X( K )
�d K

�*
;

for any  P�. Recall that the K-sample U-statistic Un( ) can be expressed as

Un( ) =
1

n1 !���nK !

∏

�1PS n 1: : :

�K PS n K

V 

�
X( 1)
�1 ( 1) ; : : : ; X( 1)

�1 ( n 1 ) ; : : : ; X(K )
�K ( 1) ; : : : ; X( K )

�K ( n K )

�
;



4.2 pr oof s an d suppl emen t s 113

where S m denotes the symmetric group of order m for any m • 1. This representa-

tion as an average of sums of �independent terms is known as the (first) Hoeffding’s

decomposition (Hoeffding, 1948). Then, using Jensen’s inequality in particular, one

may easily show that, for any nondecreasing convex function G : R+ — R, we have:

E

 

G

 

sup
 P�

�
�Un( ̄ )

�
�

! !

§

E

 

G

 

sup
 P�

�
�
�V ¯ (X( 1)

1 ; : : : ; X( 1)
n 1 ; : : : ; X( K )

1 ; : : : ; X( K )
n K )

�
�
�

! !

; (4.15)

where we set ¯ :=  � �( ) for all  P�. Now, using standard symmetrization and

randomization arguments (see Giné and Zinn (1984) for instance) and Equation (4.15),

we obtain that

E

 

G

 

sup
 P�

�
�Un( ¯ )

�
�

! !

§ E (G (2R�)) ; (4.16)

where

R� := sup
 P�

1
�

�∏

` = 1

�̀  
�

X( 1)
( `�1) d 1 + 1 ; : : : ; X( 1)

` d 1
; : : : ; X( K )

( `�1) d K + 1 ; : : : ; X(K )
` d K

�
;

is a Rademacher average based on the Rademacher chaos �1 ; : : : ;�� (independent

random symmetric sign variables), independent from the X( k )
i ’s. We now apply the

bounded difference inequality (McDiarmid, 1989) to the functional R�, seen as a func-

tion of the iid random variables (�̀ ; X( 1)
( `�1) d 1 + 1 ; : : : ; X( 1)

` d 1
; : : : ; X(K )

( `�1) d K + 1 ; : : : ; X( K )
` d K

),

1 § ` § �: changing any of these random variables changes the value of R� by at

most M�=�. One thus obtains from Equation (4.16) with G(x) = expt�xu, where

�° 0 is a parameter which shall be chosen later, that:

E

 

exp

#

�sup
 P�

�
�Un( ¯ )

�
�

+ !

§ exp
"

2�E (R�) +
M 2
� �

2

4�

*
.

Applying Chernoff ’s method, one then gets:

P

 

sup
 P�

�
�Un( ¯ )

�
�° �

!

§ exp
"
���+ 2�E (R�) +

M 2
� �

2

4�

*
. (4.17)

Using the bound (see Equation (6) in Boucheron et al. (2005) for instance)

E (R�) § M�

c
2V log(1+ �)

�

and taking � = 2�(�� 2E (R�))=M 2
� in Equation (4.17), one finally establishes the

desired result. �

Now we shall prove Theorem 4.8, the statement of which is recalled below.
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Theor em – Maximal deviation. Let � be a collection of bounded symmetric ker-

nels on � :=
± K

k = 1 Xd k
k . Suppose that � is a VC major class of functions with finite

Vapnik-Chervonenkis dimension V and that M� := sup
(  ;x ) P��X

| (x)| † + 1 . Then,

the following assertions hold true.

i ) For all �° 0, we have: @n = (n1 ; : : : ; nK ) P N �K , @B • 1,

P

 

sup
 P�

�
�
�rUB ( ) � Un( )

�
�
�° �

!

§ 2(1 + #L )V e�B�2 =M 2
� .

i i ) For all �P(0; 1), w ith probability at least 1��, we have: @n k • 1, 1 § k § K,

sup
 P�

�
�
�rUB ( ) � E

�
rUB ( )

��
�
�§

M�

#

2

c
2V log(1+ �)

�
+

c
log(2=�)

�
+

c
V log(1+ #L ) + log(4=�)

B

+

;

where

� := min t tn1=d1u; : : : ; tnK =dK uu

and txudenotes the integer part of any real number x.

Pr oof For convenience, we introduce the random sequence� := ((�b (I )) I PL )1§ b § B ,

where �b (I ) is equal to 1 if the tuple I := (I 1 ; : : : ; I K ) has been selected at the b-

th draw and to 0 otherwise: the �b ’s are iid random vectors and, for all (b; I ) in

t 1; : : : ; Bu� L , the random variable �b (I ) has a Bernoulli distribution with param-

eter 1=#L . We also set XI := (X( 1)
I 1

; : : : ; X( K )
I K

) for any I in L . Equipped with these

notations, observe first that one may write: @B • 1, @n P (N �)K ,

rUB ( ) � Un( ) =
1
B

B∏

b = 1

Zb ( );

where Zb ( ) :=
∞

I PL (�b (I ) � 1=#L ) (XI ) for any (b; I ) P t 1; : : : ; Bu� L . It follows

from the independence between the XI ’s and the�(I )’s that, for all  P�, conditioned

upon the XI ’s, the variables Z1 ( ); : : : ; ZB ( ) are independent, centered and almost-

surely bounded by 2M� (notice that
∞

I PL �b (I ) = 1 for all b • 1). By virtue of

Sauer ’s lemma, since� is a VC major class with finite VC dimension V, we have, for

fixed XI ’s:

#t ( (XI ))I PL :  P�u § (1+ #L )V .

Hence, conditioned upon the XI ’s, using the union bound and next Hoeffding’s in-

equality applied to the independent sequence Z1( ); : : : ; ZB ( ), for all � ° 0, we

obtain that:

P

 

sup
 P�

�
�
�rUB ( ) � Un( )

�
�
�° �

�
�
�
�(XI )I PL

!

§ P

 

sup
 P�

�
�
�
�
�

1
B

B∏

b = 1

Zb ( )

�
�
�
�
�

° �

�
�
�
�(XI )I PL

!
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§ 2(1+ #L )V e�B�2 =M 2
� ;

which proves the first assertion of the theorem. Notice that this can be formulated:

for any �P(0; 1), we have with probability at least 1��:

sup
 P�

�
�
�rUB ( ) � Un( )

�
�
�§ M�

c
V log(1 + #L ) + log(2=�)

B
. (4.18)

Turning to the second part of the theorem, it straightforwardly results from the first

part combined with Lemma 4.13. �

4.2.2 Maximal deviation in dietary risk analysis

We shall prove Corollary 4.11, the statement of which is recalled below.

Cor ol l ar y For all �P(0; 1), we have with probability at least 1��:

L
�

pR�
�

§ inf
RPR : P ( XPR ) • �

L (R) and P
�

X P pR�
�

• �� 2�(B; N;�).

Pr oof Observe first that the assumptions of Theorem 4.8 are fulfi lled when taking

� = t  R : R P Ru: the collection � of indicator functions is a VC major class of

functions with finite VC dimension V and M 2
� = 1. Applying thus Theorem 4.8, the

proof is derived by following line by line the argument of Corollary 6 in Scott and

Nowak (2006). Details are left to the reader. �

4.2.3 Optimal dietary habits

We shall prove Theorem 4.12, the statement of which is recalled below.

Theor em Let (�;�) P (0; 1)2 . Suppose that the collection RH is of finite VC

dimension V † + 1 and set:

� 1(n ;�) := 4

c
2 log(8) + V log(n + 1) + log(2=�)

n
.

Then, if r�B is a solution of Equation (4.12), we have with probability at least 1��:

P
�

C P r�B

�
• �+ 2� 1(n;�=2) and �( r�B ) § �(��) + 2�(B; N;�=2); (4.19)

denoting by � the penalty given by Equation (4.7) and by �� any minimizer of

�(.) among the elements� of RH such that P (C P� ) • �.
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Pr oof The result immediately follows from the argument of Theorem 10 in Clé-

mençon and Vayatis (2010) combined with Theorem 4.8 and Vapnik-Chervonenkis

inequality (see Theorem 12.5 in Devroye et al., 1996 for instance) to control the devi-

ations of the supremum:

sup
� PR H

�
�
�pP (C P� ) � P (C P� )

�
�
�.

�



5
EM PI RI CA L PROCESSES I N SU RV EY

SA M PL I N G

Like INCA2, most consumption databases are now constructed with some survey

design to produce representative samples. Formally, this means that in the popu-

lation of interest, the probability that an individual may be selected is taken into

account in the form of a survey weight. For institutional data, these weights often

correspond to the so-called true inclusion probabilities, but statisticians may some-

times have at their disposal calibrated or post-stratification weights (e.g. minimizing

some discrepancy with the inclusion probabilitiessubject to some margin constraints).

In most cases, the survey scheme is ignored, potentially yielding a significant sam-

pling bias. When considering some functional of the empirical process such as the

empirical distribution function, this may cause severe drawbacks and completely

jeopardize the estimation, as can be revealed by simulation experiments. In the con-

text of dietary risk analysis, the impact of such an omission would be for instance

an erroneous, greatly biased estimation of the true proportion of over-exposed peo-

ple. To avoid such undesirable outcomes, many estimators have been developed in

the branch of survey sampling theory (Tillé, 2006; Gourieroux, 1981; Droesbeke et al.,

1987), which take into account these survey weights and make up for the induced

bias of the sampling phase. Unfortunately, to our knowledge, except in the specific

case of stratified sampling, there is still no general functional result that would guar-

antee the asymptotic normality of a large family of estimators in the context of survey

sampling. In particular, when estimating the distribution function of the exposure to

some food chemical, the construction of confidence bands, as opposed to point confi-

dence intervals, has not been made possible yet. We started addressing this issue in

the paper presented from Section 5.1 to Section 5.4, in the specific case of Poisson-like

survey plans with no post-calibration. It is the result of a collaboration with P. Bertail

(Université Paris X, France) and S. Clémençon (Télécom ParisTech, France) and has

been submitted for publication. Unfortunately, the results that are presented there

do not apply to the complex sampling of INCA2; they have to be understood as a

first step towards the elaboration of a more general theory that would encompass a

wider range of survey techniques.

The main goal of this chapter is to investigate how to incorporate the survey

scheme into the inference procedure dedicated to the estimation of a probability

measure P on a measurable space (viewed as a linear operator acting on a certain

class of functions F), in order to guarantee its asymptotic normality. This problem

117
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has been addressed by Breslow and Wellner (2007) and Saegusa and Wellner (2011)

in the particular case of a stratified survey sampling, where individuals are selected

at random (without replacement) in each stratum, by means of bootstrap limit results.

Our approach is different and follows that of Hàjek (1964), extended next by Berger

(1998, 2011), and is applicable to more general sampling surveys, namely those with

unequal first order inclusion probabilities which are of the Poisson type or sequen-

tial/ rejective. The main result of the chapter is a Functional Central Limit Theorem

(FCLT) describing the limit behavior of an adequate version of the empirical process

(referred to as the Horvitz-Thompson empirical process throughout the article) in a su-

perpopulation statistical framework. The key argument involved in this asymptotic

analysis consists in approximating the distribution of the extended empirical process

by that related to a much simpler sampling plan. In order to illustrate the reach of

this result, statistical applications are considered, where the extensions of the empir-

ical process are used to construct confidence bands around the Horvitz-Thompson

estimator of the cumulative distribution function.

The chapter is organized as follows. In Section 5.1 and Section 5.2, the statistical

framework is described at length, notations are set out and some basics on survey

sampling theory are recalled, together with important examples of survey schemes

to which the subsequent asymptotic analysis can be applied. The main result of the

chapter, a FCLT for the Horvitz-Thompson empirical process, is stated in Section 5.3,

while applications of the latter to non-parametric functional estimation are displayed

in Section 5.4. Finally, technical details are deferred to Section 5.5.

5.1 backgr oun d an d pr el i mi nar i es

We start off with recalling some crucial notions in survey sampling and in modern

empirical process theory, which shall be extensively used in the subsequent analysis.

Throughout the article, the Dirac mass at x in some vector space X is denoted by

�x and the indicator function of any event E by I t Eu. We also denote by #E the

cardinality of any finite set E, and by P(E) its power set.

5.1.1 Survey sampling: somebasics

The purpose of survey sampling is to study some characteristics of a population

UN of N • 1 units (or individuals) identified by an arbitrary collection of labels:

UN := t 1; : : : ; Nu. For various reasons (limited budget, geographical constraints, etc.),

it is usually not possible to reach the whole population, and the features of interest

have to be estimated from a finite, relatively small number of its elements, namely

a sample s := t i 1 ; : : : ; i n ( s) u Ä UN of size n(s) § N. So as to provide handy ways

of controlling the accuracy of estimation, sample units are picked randomly among



5.1 backgr oun d an d pr el i mi nar i es 119

UN (see for instance Tillé, 2006, Chapter 1, Tillé, 1999 or Gourieroux, 1981 for an

introduction to the origins of random sampling). Equipped with this representation,

a sampling scheme (design/ plan) is determined by a discrete probability measure RN

on P(UN ), the set of all possible samples in UN . Depending on the adopted point

of view, like in superpopulation models, the characteristics of the population can be

considered random too. In the next paragraphs, while introducing crucial concepts

and notations, we shall discuss both sources of hazard and their classical modeling

in survey sampling theory.

5.1.1.1 Survey schemes without replacement

Consider a sampling scheme RN where individuals are only selected once, i.e. a

design without replacement. Our analysis is restricted to this popular family of survey

plans. By definition, the two conditions below are always fulfi lled,

1. @s PP(UN ), RN (s) • 0,

2.
∞

sPP( U N ) RN (s) = 1,

and the mean survey sample size is given by

ERN (n(S)) =
∏

sPP (U N )

n(s) RN (s).

Here, the notation ERN (.) denotes the expectation taken with respect to the random

sample S with distribution RN . In a similar fashion, PRN (S PS) refers to the proba-

bility of the event t S P Su with S Ä P(UN ), when S is drawn from RN . In particular,

RN (s) = PRN (S = s). Such distributions are entirely characterized by the concepts

listed below.

Ú Inclusion probabilities For any i P UN , the quantity usually referred to as the i -th

(first order) inclusion probability,

�i (RN ) := PRN (i PS) =
∏

sPP ( U N )

RN (s) I t i Psu;

is the probability that the individual labeled i belongs to a random sample S under

the survey scheme RN . When there is no ambiguity on the sampling design, we will

simplify notations and write �i instead of �i (RN ). In the subsequent analysis, first

order inclusion probabilities are assumed to be strictly positive: @i PUN , �i (RN ) ° 0.

We shall even require the stronger hypothesis that they never get either too small or

too large, as formally stated below.

Assumpt ion 5.1 There exist �� ° 0 and N0 P N � such that for all N • N0 and

i PUN ,

�i (RN ) ° ��.
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In addition,

lim sup
N —+ 1

1
N

N∏

i = 1

�i (RN ) † 1.

When the first condition holds, the rate of convergence of the estimators considered

in Section 5.2 and Section 5.3 will be shown to be typically of order 1=
?

N. One could

possibly relax it and allow �� to depend on N, with �� = ��(N) decaying to zero as

N tends to infinity at a specific rate, and still be able to establish limit results. The

analysis would be however much more technical; this is left for further research.

Conditions involving the second order inclusion probabilities shall also be used in our

asymptotic analysis. They are denoted by

�i ; j (RN ) := PRN

�
(i ; j ) PS2�=

∏

sPP ( U N )

RN (s) I t t i ; ju Ä su;

for all (i ; j ) PU2
N . In other words, �i ; j (RN ) is the probability that two distinct individ-

uals labeled i and j are jointly selected under design RN . Again, we may eventually

write�i ; j when there is no need to emphasize the dependency on the sampling plan

RN . Notice that higher order inclusion probabilities may be defined in a similar way,

up to the maximal order for which the entire population is selected.

Ú Inclusion indicators The information related to the observed sample S is encap-

sulated by the random vector �(N ) := (�1 ; : : : ;�N ), where

�i := I t i PSu =

$
&

%
1 with probability �i ;

0 with probability 1��i .

Notice indeed that the set P(UN ) of all possible samples is in one-to-one correspon-

dence with t 0; 1uN , which provides a handy alternative representation of sampling

schemes. Again, for simplicity, we will omit the subscript (N) when no ambiguity

is possible. By definition, the distribution of � := �( N ) has univariate marginals

that correspond to the Bernoulli distributions B(�i ), i P UN , and covariance matrix

given by

�N :=
 
�i ; j ��i�j

(
1§ i ; j § N .

Incidentally we have
∞ N

i = 1 �i = n(S) and thus
∞ N

i = 1 �i = ERN (n(S)).

Before considering the issue of extending the concept of empirical process in the

context of survey sampling, we recall a few important classes of survey schemes, to

which the results established in Section 5.2 and Section 5.3 can be applied. One may

refer to Deville (1987) for instance for an excellent account of survey theory, including

many more examples of sampling designs.
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Exampl e 5.2 – Simple Random Sampling Without Replacement. A simple ran-

dom sampling without replacement (SRSWOR in abbreviated form) is a sampling

design of fixed size n(S) = n, according to which all samples with cardinality n in

the population UN are equally likely to be chosen, with probability (N � n)!=n !. It

follows that all units of UN have the same chance of being selected, n=N namely,

and all second order probabilities are equal to n(n � 1)=(N(N � 1)).

Exampl e 5.3 – Poisson survey sampling. The Poisson sampling plan without re-

placement (POISSWOR), denoted here by TN , is one of thesimplest survey schemes.

In this case, the N elements of �are independent Bernoulli random variables with re-

spective parameters�i (TN ) = : pi , i P t 1; : : : ; Nu so that for any sample s P P(UN ),

TN (s) =
π

i Ps

pi

π

i Rs

(1� pi ) .

Notice that the size n(S) of sample S with distribution TN is random (except in

the sole situation where pi P t 0; 1u for i = 1; : : : ; N) and that the corresponding

survey plan is fully characterized by the first order inclusion probabilities. In the

specific situation where they are all equal, i.e. p1 = ���= pN = p, the design is

called Bernoulli.

Exampl e 5.4 – Stratified sampling. A stratified sampling design permits to draw

a sample S of fixed size n(S) = n § N within a population UN that can be parti-

tioned into K • 1 distinct strata UN 1 ; : : : ; UN K (known a priori) of respective sizes

N1 ; : : : ; NK adding up to N. Let n1 ; : : : ; nK be non-negative integers such that

n1 + ���+ nK = n, then the drawing procedure is implemented in K steps: within

each stratum UN k , k P t 1; : : : ; Ku, perform a SRSWOR of size nk § N k yield-

ing a sample Sk . The final sample is obtained by assembling these sub-samples:

S =
î K

k = 1 Sk . The probability of drawing a specific sample s by means of this

survey scheme is

Rstr
N (s) =

K∏

k = 1

�
N k

nk

��1

.

Naturally, first and second order inclusion probabilities depend on the stratum to

which each unit belong: for all i � j in UN ,

�i (Rstr
N ) =

K∏

k = 1

nk

N k
I t i PUN k u and �i ; j (Rstr

N ) =
K∏

k = 1

nk (n k � 1)
N k (N k � 1)

I
 
(i ; j ) P U2

N k

(
.

Exampl e 5.5 – Canonical Rejective Sampling. Let n § N and consider a vec-

tor �R := (�R
1 ; : : : ; �R

N ) of first order inclusion probabilities. Further define

Sn := t s P P(UN ) : #s = nu, the set of all samples in population UN with car-
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dinality n. The rejective sampling (Hàjek, 1964; Berger, 1998), sometimes called

conditional Poisson sampling (CPS), exponential design without replacement or

maximum entropy design (Tillé, 2006, Section 5.6), is the sampling design RR
N that

selects samples of fixed size n(s) = n so as to maximize the entropy measure

H(RN ) = �
∏

sPSn

RN (s) log RN (s);

subject to the constraint that its vector of first order inclusion probabilities coincides

with �R. It is easily implemented in two steps.

1. Draw a sample Swith a POISSWOR plan TN = Tp
N , w ith properly chosen first

order inclusion probabilities vector p := (p1 ; : : : ; pN ). The representation is

called canonical if
∞ N

i = 1 pi = n. In that case, relationships between each pi

and �R
i , 1 § i § N, are established in Hàjek (1964).

2. If n(S) � n, then reject sample S and go back to step one, otherwise stop.

Vector p must be chosen in a way that the resulting first order inclusion probabili-

ties coincide with �R, by means of a dedicated optimization algorithm (Tillé, 2006,

Algorithms 5.5 to 5.9). The corresponding probability distribution is given for all

s PP(UN ) by

RR
N (s) =

Tp
N (s) I t #s = nu
∞

s1PSn
Tp

N (s1)
9
π

i Ps

pi

π

i Rs

(1� pi ) � I t #s = nu;

where 9 denotes the proportionality. We refer to Hàjek (1964, p.1496) for more

details on the links between rejective and Poisson sampling plans.

Exampl e 5.6 – Rao-Sampford Sampling. The Rao-Sampford sampling design

generates samples s P P(UN ) of fixed size n(s) = n with respect to some given

first order inclusion probabilities �RS := (�RS
1 ; : : : ;�RS

N ), fulfi ll ing
∞ N

i = 1 �
RS
i = n,

with probability

RRS
N (s) = �

∏

i Ps

�RS
i

π

j Rs

�RS
j

1��RS
j

.

Here, � ° 0 is chosen such that
∞

sPP (U N ) RRS
N (s) = 1. In practice, the following

algorithm is often used to implement such a design (Berger, 1998):

1. select the first unit i w ith probability �RS
i =n,

2. select the remaining n � 1 units j w ith drawing probabilities proportional to

�RS
j =(1��RS

j ), j = 1; : : : ; N,

3. accept the sample if the units drawn are all distinct, otherwise reject it and

go back to step one.
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5.1.1.2 Superpopulation models

The characteristics of interest in population UN are modeled as follows. We con-

sider the probability space (UN ; P(UN ); P) and a random variable/ vector X defined

on the latter, taking its values in a Banach space (X; }.}), w ith probability measure P.

We set

X :

 
UN �— X

i fi�— X(i ) = : Xi

!

;

and the �-algebra induced by the normed vector space topology structure of X is

denoted by A. For instance, X could represent the amounts of K food products

consumed on a specific day. In that case, we would have X = RK
+ , A the associ-

ated Borel algebra, }.} the euclidean norm and Xi = (Xi ;1 ; : : : ; Xi ;K ) would give the

daily intakes of individual i P UN . Then, the studied features correspond to some

synoptic mapping (X1 ; : : : ; XN ) fi— f (X1 ; : : : ; XN ). In our example, we could consider

f (X1 ; : : : ; XN ) = (N�1 ∞ N
i = 1 Xi ;1 ; : : : ; N�1 ∞ N

i = 1 Xi ;K ), the average consumption of the

K foods in UN .

In survey sampling, a superpopulation is basically an imaginary infinite population,

U1 say, from which UN is supposed to be issued. In a model-based approach, it is

assumed that the random vectors of interest X1 ; : : : ; XN are in fact realizations of N

random vectors rXj : U1 — X, 1 § j § N, with joint distribution Q. Then, a super-

population model is simply a set of conditions that characterize Q (Droesbeke et al.,

1987, Chapter 4). The main advantage of such a framework is that it often facilitates

statistical inference; in particular, it permits the development of an asymptotic theory,

when sample and population sizes grow conjointly to infinity. The superpopulation

model we consider here stipulates that all N random vectors Xi , i P UN , are inde-

pendent and identically distributed (iid) with common distribution P, i.e. Q = Pb N ,

where b denotes the tensor product of measures.

Remar k 5.7 The most celebrated iid superpopulation model that we adopt here

establishes a setting very similar to that of weighted bootstrap (Arcones and Giné,

1992; Barbe and Bertail, 1995): the original iid N-sample there would correspond

to the complete vector (X1 ; : : : ; XN ), from which sub-samples are drawn according

to some procedure likened to the survey scheme. Actually, both approaches are

completely equivalent if the survey weights (�1=�1 ; : : : ;�N =�N ) are exchangeable

(i.e. the N-variate distribution of this vector is invariant to the order of its elements).

For instance, in the specific case of stratified sampling, drawing units with equal

probabilities in each stratum (with a finite and given stratum-size) amounts to

bootstrapping (without replacement) in some given cell. It is not surprising then

that both Breslow and Wellner (2007) and Saegusa and Wellner (2011) construct a

general asymptotic theory in two-phase sampling by using bootstrap type results.
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5.1.1.3 Auxiliary information

In practice, sampling from a population UN is only possible if all individuals are

listed somehow, and can be identified once selected. Such documents are called

survey frames; in the case of social surveys, they are collected by government in-

stitutions and often provide some minimal information about its components. For

instance, in France, the geographical situation, the age, the genre and the profes-

sion and socio-professional category (“ Profession et Catégorie Socioprofessionnelle” ,

PCS, in French) of citizens are displayed in files managed by INSEE (Institut National

de la Statistique et des Etudes Economiques). These auxiliary variables, supposedly

known for all i P UN , can sometimes be used to optimize in some sense the survey

scheme. In a superpopulation framework, we denote by W the auxiliary random

vector, valued in some measurable space W, and set W( N ) := (W1 ; : : : ; WN ). Again,

the subscript (N) shall be dropped when no confusion is possible. As soon as W is

correlated with X, the vector of interest, it becomes possible to boost the efficiency of

estimators by defining inclusion probabilities as a function of W( N ) (Droesbeke et al.,

1987).

In the present analysis, we denote by PX;W the joint distribution of (X; W) and

by PW the marginal distribution of W. Like in most applications, we assume that

the W i ’s are independent (or exchangeable) random variables/ vectors, linked to the

variable of interest X through a linear model (notice that W may be constant over the

population). It is required though that W is not proportional to X (in a deterministic

sense) to avoid degenerate situations; in such a case, knowing W on the whole popu-

lation would mean knowing the empirical process without any error. For the sake of

simplicity, the dependence of survey weights in W will only be emphasized when it

is necessary, starting in Section 5.3.

5.1.2 Empirical process indexed by classes of functions

In the context of iid realizations X1 ; : : : ; XN of a probability measure P, empirical

process theory (Ledoux and Talagrand, 1991) consists in the study of the fluctuations

of random processes of the type

t GN f ; f PFu; where GN := PN � P.

There, class F designates a certain set of P-integrable real-valued functions,

PN :=
1
N

N∏

i = 1

�Xi

is the “ classical” empirical measure, and for any signed measure Q on a measurable

space (X; A), Qf :=
≥
X f (x) Q(dx) when the integral is well-defined. We assume that

class F admits a square integrable envelope H as defined below.
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Assumpt ion 5.8 There exists a measurable function H : X — R such that
≥
X H2 (x) P(dx) † 1 and |f (x)| § H(x) for all x PX and any f P F.

As a consequence, F is a subset of the space

L2 (P) :=
 
h : X — R; h measurable and }h}2

2;P := EP
�
h2(X)

�
† + 1

(
.

Notice that we may assume without loss of generality that there exists � ° 0 such

that H(x) ° � for every x P X, even if it entails replacing H by H + � in the condition

above.

5.1.2.1 Donsker classes

When viewed as a linear operator acting on F, a probability measure P satisfying

Assumption 5.8 may be considered as an element of `1 (F), i.e. the space of all maps

� : F — R such that

}�}F := sup
f PF

|�(f )| † + 1 ;

equipped with the uniform convergence norm (or, equivalently, w ith Zolotarev met-

ric), namely

}P �Q}F := dF (P; Q) = sup
h PF

�
�
�
�

ª
h dP �

ª
h dQ

�
�
�
�;

for any couple of probability measures P and Q. The main purpose of empirical

process theory is to find conditions on the class of functions F guaranteeing that the

distribution of
?

N GN converges, as N — + 1 , to that of a Gaussian, Banach space

valued process in `1 (F). Such collections of functions are called Donsker classes by

analogy to the classical results on the empirical distribution function that analyze
?

N (FN � F), where

FN (x) :=
1
N

N∏

i = 1

I t Xi P(�1 ; x1 ]����� (�1 ; xd ]u

and

F(x) := P (X P(�1 ; x1 ]����� (�1 ; xd ])

for x := (x1 ; : : : ; xd ) P Rd (see Example 5.9). In particular, the study of the uniform

deviations over F
?

N }PN � P}F

is of great interest, w ith a variety of applications in statistics, see Shorack and Wellner

(1986). A nearly exhaustive review of asymptotic results ensuring that F is a Donsker

class of functions is available in van der Vaart and Wellner (1996). The purpose of

this chapter is to extend typical empirical processes results obtained for iid data to

the framework of survey sampling.
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5.1.2.2 On measurability issues

Recall that the normed vector space (`1 (F); }.}F ) is (generally) a non-separable

Banach space. The major problem one faces when dealing with sums of random vari-

ables taking their values in such an infinite-dimensional non-separable space con-

cerns the measurability of events. For instance, the “ classical” empirical process
?

N (FN � F), which can be viewed as a random sequence in the Skorokhod space

D ([0; 1]) of càd-làg functions endowed with the supremum norm, is not Borel-mea-

surable. In this specific case, the topology induced by the sup-norm on D ([0; 1])

can be classically replaced by the Skorokhod metric in order to overcome this tech-

nical difficulty. A lternative approaches can be found in Pollard (1984). The ideas

developed in Hoffmann-Jørgensen (1991) have led to a general solution, based on

the concept of outer probability, extending the original probability measure P to non-

measurable events by setting P�(A) := inf t P(B) : A Ä B; B measurableu. Then, the

related concept of Hoffman-Jørgensen weak convergence permits somehow to forget

the measurability assumptions. Hence, expectations and probabilities must now be

understood as outer expectations and probabilities for non-measurable events. For

simplicity, the same notations are kept to denote original and outer probabilities

(resp. expectations). Here, weak convergence is metrized through the bounded Lip-

chitz metric on the space `1 (F): for all random functions X and Y valued in `1 (F),

dBL (X; Y) = sup
b PBL 1 ( ` 1 (F ) )

�
�E (b(X)) � E (b(Y))

�
�;

where BL1 (`1 (F)) is the set of all 1-Lipchitz functions on `1 (F) bounded by 1. In the

following we define the�P semi-metric under P as

�P(f ; g) := EP
�
(f (X) � g(X))2�= : }f � g}2

2;P .

We refer to van der Vaart and Wellner (1996) for technical details and general results.

5.1.2.3 Uniform covering numbers

A key concept in the study of empirical process is the covering number N(" ; F; |.|),

which corresponds to the minimal number of balls of radius " ° 0 for a given semi

metric |.| needed to cover F. Donsker classes of functions are often characterized by

some integrability conditions of the form
ª 1

0

a
N(" ; F; |.|) d" † 1 ;

arising from maximal inequalities. Such a condition essentially ensures that the size

of class F is not too big and that one may be able to approximate any of its elements

(up to " ) by functions in a set of finite cardinality. In our non-iid setting, we will

essentially consider the L2 (P) norm for |.| and use uniform covering numbers

sup
QPD

N
�
" }H}2;Q ; F ; }.}2;Q

�
;
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where D is the set of all discrete probability measures Q such that 0 †
≥

H2dQ † + 1 .

Explicit calculus of (uniform) covering numbers for general classes of functions may

be found in several textbooks, see van der Vaart and Wellner (1996) or van de Geer

(2000).

5.2 empi r i cal pr ocess i n sur vey sampl i n g

We now introduce two different empirical processes built from survey data, the

asymptotic behaviors of which shall be investigated at length in Section 5.3.

5.2.1 TheHorvitz-Thompson empirical process

In the context of survey data drawn through a general survey plan RN , the em-

pirical measure PN cannot be computed since the whole statistical population is not

observable. Hence, a variant based on the observations must be naturally considered.

For any measurable set M Ä X, the Horvitz-Thompson estimator of the empirical

probability PN (M ) = N�1 ∞ N
i = 1 �Xi (M ) based on the survey data described above is

defined as follows, see Horvitz and Thompson (1951):

P�( RN )
RN

(M ) :=
1
N

N∏

i = 1

�i

�i
�Xi (M ) =

1
N

∏

i PS

I t i PSu
�i

�Xi (M ). (5.1)

We highlight the fact that the measure P�(RN )
RN

is an unbiased estimator of P (resp.

PN , when conditioned upon (X1 ; : : : ; XN )) although it is not a probability measure.

For a fixed subset M , the consistency and asymptotic normality of the estimator in

Equation (5.1) are established in Robinson (1982) and Berger (1998), as N tends to

infinity. When considering the estimation of measure PN (the measure of interest in

survey sampling) over a class of functions F, we are led to the asymptotic study of

the collection of random processes

G�( RN )
RN

:=
�

G�( RN )
RN

f
�

f PF
;

where

G�(RN )
RN

f :=
?

N
�

P�( RN )
RN

� PN

�
f =

1
?

N

N∏

i = 1

�
�i

�i (RN )
� 1
�

f (Xi ); (5.2)

which shall be referred to as the F-indexed Horvitz-Thompson empirical process (HT-

empirical process, in short). The seemingly redundant notation G�( RN )
RN

is motivated

by the fact that extensions involving first order probabilities related to a different sam-

pling scheme TN will be considered in the sequel. Precisely, G�( TN )
RN

shall denote the

process obtained when replacing all �i (RN ) by �i (TN ), 1 § i § N, in Equation (5.2).
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The main purpose of this chapter is to establish the convergence of the re-weighted

empirical process (G�
RN

f )f PF under adequate hypotheses involving some properties

of measure P, certain characteristics of the sequence of sampling plans (RN ), and the

“ complexity” of class F (in the classical metric entropy sense) as well. In particular,

such a result would permit to describe the asymptotic behavior of the quantity below

(assumed to be almost-surely finite, see Assumption 5.8):
�
�
�G�( RN )

RN

�
�
�

F
= sup

f PF

�
�
�G�( RN )

RN
f
�
�
�.

By virtue of Cauchy-Schwarz inequality and Assumption 5.1 and Assumption 5.8,

we almost-surely have, @N • 1,

�
�
�G�( RN )

RN

�
�
�

2

F
§

1
N

 
N∏

i = 1

�
�i ��i

�i

�2
!  

N∏

i = 1

H2(Xi )

!

§
1
�2
�

N∏

i = 1

H2(Xi ) † + 1 .

Under Assumption 5.1 and Assumption 5.8, the F-indexed HT-empirical process in

Equation (5.2) may thus be seen as a sequence of random elements of `1 (F).

Exampl e 5.9 – Empirical cumulative distribution function. In the case where

X = Rd with d • 1 for instance, a situation of particular interest is that where F is

the class of indicator functions of rectangles of the type

#

(�1 ; x] :=
dπ

j = 1

�
�1 ; xj

�
; x = (x1 ; : : : ; xd )

+

.

Then, the empirical process can be identified with the Horvitz-Thompson version

of the empirical cumulative distribution function (cdf) F�( RN )
RN

(x) := P�( RN )
RN

(�1 ; x],

x P Rd , and the goal pursued boils down to investigating conditions under which

uniform versions of the Law of Large Numbers (LLN) and of the Central Limit

Theorem (CLT) hold for F�( RN )
RN

(x) � FN (x), where FN (x) := PN (�1 ; x]. As shall

be seen later, the study of the asymptotic behavior of this empirical process lies

at the center of the validity of the confidence band construction considered in

Section 5.4.

5.2.2 Alternativeestimate in thePoisson sampling case

The Poisson sampling scheme TN (see Example 5.3) has been the subject of much at-

tention, especially in Hàjek (1964), whereasymptotic normality of (pointwise) Horvitz-

Thompson estimators have been established in this specific case. Following in the
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footsteps of this seminal contribution, we consider the following Poisson version of

the empirical process rather than the original process :

rGp
TN

f :=
1

?
N

N∏

i = 1

(�i � pi )
�

f (Xi )
pi

��N ;p(f )
�

; f P F; (5.3)

where for all f PF,

�N ;p(f ) :=
1

dN

N∏

i = 1

(1� pi )f (Xi ) and dN :=
N∏

i = 1

pi (1� pi ).

Under the assumption that dN — + 1 as N — + 1 , it has been established in Hàjek

(1964, Lemma 3.2) that conditioned upon (X1 ; : : : ; XN ), for fixed f P F, when N

tends to infinity and under a Lindeberg-Feller type condition, the weighted sum of

independent random variables in Equation (5.3) can be approximated by a centered

Gaussian random variable with (conditional) variance

V2
N (f ) =

1
N

N∏

i = 1

�
f (Xi )

pi
� �N ;p(f )

�2

pi (1� pi ).

As claimed by Theorem 5.14 in the next section, this result can be extended to a

functional framework under adequate hypotheses.

A lthough the subscript TN in rGp
TN

f could have been dropped since the process

above only depends on vector p, we keep it in order to emphasize that the corre-

sponding inclusion vector � is distributed according to the sampling scheme TN . In

this subsection, the weights pi := �i (TN ), 1 § i § N, correspond to the inclusion

probabilities of the Poisson sampling plan. Later on, when investigating a general

sampling scheme RN , we shall consider the Poisson-likeempirical process defined by

rGp
RN

f :=
1

?
N

N∏

i = 1

(�i � pi )
�

f (Xi )
pi

��N ;p(f )
�

;

where p := (p1 ; : : : ; pN ) is the vector of first order inclusion probabilities of a Poisson

design. In general, it w ill not coincide with those of RN , namely �(RN ), but the

subscript specifies that � is still distributed according to RN (in particular, E (�i ) =

�i (RN ) for i = 1; : : : ; N). In the subsequent analysis, we start off by establishing that

the process rGp
TN

can be asymptotically approximated by a Gaussian process.

5.3 asympt ot i c r esul t s

The main results of the chapter are stated in the present section. As a first go, we

establish a FCLT for the empirical process variant of Equation (5.3) in the Poisson

survey scheme case. Combined with an approximation result, it w ill serve as the

main tool for proving next a similar result in the context of rejective sampling.



130 empi r i ca l pr ocesses i n sur vey sampl i n g

5.3.1 Limit of theempirical process for thePoisson survey scheme

The purpose of this section is to obtain a Gaussian approximation of the empirical

process rGp
TN

related to a Poisson survey plan TN with first order inclusion probabil-

ities p = (p1 ; : : : ; pN ) depending on some auxiliary variable W (see Section 5.1.1.3).

The proof relies on Theorem 2.11.1 in van der Vaart and Wellner (1996), applied to

the triangular collection of independent variables defined for all f P F by

ZN ;i (f ) := ZN ;i (f ;�) :=
1

?
N

(�i � pi )
�

f (Xi )
pi

� �N ;p(f )
�

for i P t 1; : : : ; Nu.

For clarity, the result is recalled below.

Theor em 5.10 – Triangular arrays (van der Vaart and Wellner, 1996).

Let ZN ;i (f ), 1 § i § N be independent F-indexed stochastic processes defined on

the product probability space
± N

i = 1 (t 0; 1u; P(t 0; 1u); B(�i (RN )) where the process

ZN ;i (f ) := ZN ;i (f ;�) only depends on the i -th coordinate of � := (�1 ; : : : ;�N ).

Assume that the maps

(�1 ; : : : ;�N ) fi— sup
�P ( f ;g ) † �

�
�
�
�
�

N∏

i = 1

ei (ZN ;i (f ;�) � ZN ;i (g;�))

�
�
�
�
�

and

(�1 ; : : : ;�N ) fi— sup
�P ( f ;g ) † �

�
�
�
�
�

N∏

i = 1

ei (ZN ;i (f ) � ZN ;i (g))2

�
�
�
�
�

are measurable for every �° 0, every (e1 ; : : : ; eN ) P t�1; 0; 1uN and every N PN .

Further define the random semi-metric

d2
N (f ; g) :=

N∏

i = 1

(ZN ;i (f ) � ZN ;i (g))2 ;

and suppose that the following conditions are fulfi lled.

i )
N∞

i = 1
E
�
}ZN ;i (f )}2

F �I t }ZN ;i (f )}F ° �u
�
�—

N —1
0 for every �° 0.

i i ) sup
�P ( f ;g ) † �

N∞

i = 1
E
�

(ZN ;i (f ) � ZN ;i (g))2
�

�—
N —1

0 as�— 0.

i i i )
≥�
0

a
log N(" ; F; dN ) d" �—

N —1
0 as�— 0.

iv) The sequence of covariance functions cov (ZN ;i (f ); ZN ;i (g)) converges point-

wise on F � F as N — 1 to a non degenerate limit �(f ; g).

Then the sequence
∞ N

i = 1 (ZN ;i (f ) � E (ZN ;i (f ))) is �P-equicontinuous and con-

verges in `1 (F) to a Gaussian process with covariance function �(f ; g).
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5.3.1.1 Convergenceof thecovarianceoperator

The following intermediary results show that condition i v) in Theorem 5.10 is

fulfi lled in the particular case of Poisson survey plans. For (f ; g) P F2 , set

covN ;p(f ; g) :=
1
N

N∏

i = 1

�
f (Xi )

pi
� �N ;p(f )

��
g(Xi )

pi
��N ;p(g)

�

pi (1� pi ).

Due to the independence of the�i ’s, it is clear that

covTN

�
rGp

TN
(f ); rGp

TN
(g)
�

:= cov
�

rGp
TN

(f ); rGp
TN

(g)
�
�(Xi ; W i )1§ i § N

�
= covN ;p(f ; g).

We thus essentially have to determine conditions ensuring that covN ;p(f ; g) has a non-

degenerate limit. The following assumptions are by no means necessary but provide

a useful framework to derive such conditions. Similar types of assumptions may be

found in Bonnéry et al. (2011) or Hàjek (1964) for instance.

Recall that inclusion probabilities were defined relative to some auxiliary vari-

able W. An additional assumption on the latter is required in the subsequent result.

Assumpt ion 5.11 The couples of random vectors (X1 ; W1); : : : ; (XN ; WN ) are

iid (exchangeable at least) with distribution PX;W . Moreover, the conditional in-

clusion probabilities p := (p1 ; : : : ; pN ) are then given for all i P t 1; : : : ; Nu and

W( N ) PWN by

pi := p(W i ) := E
�
�i
�
�W(N )

�
.

Remar k 5.12 It can happen that pi not only depends on W i , but on the entire

vector W( N ) . It is the case, for instance, when there is a unique auxiliary variable

W to which weights are proportional:

pi := n
Wi

∞ N
j = 1 Wj

.

In such situations the i i d property of the vectors (Xi ; Wi ), 1 § i § N, can be used to

bypass the part involving all (W1 ; : : : ; WN ) in the subsequent asymptotic analysis.

Under this supplementary condition, we have the following result, the proof of

which can be found in Section 5.5.1.

Lemma 5.13 – Limit of the covariance operator. Suppose that Assumption 5.1,

Assumption 5.8 and Assumption 5.11 are fulfi lled and that

0 †
ª

W
p2 (w) PW(dw) † 1 .
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Then we have

1
N

dN �—
N —1

Dp :=
ª

W
(1� p(w)) p(w) PW(dw) ° 0

and

covN ;p(f ; g) �—
N —1

�(f ; g);

where for all (f ; g) PF2 ,

�(f ; g) :=
ª

X�W
f (x)g(x)

�
1

p(w)
� 1
�

PX;W(dx; dw) � �p (f )�p (g) Dp ; (5.4)

with

�p (f ) :=
1

Dp

ª

X�W
(1� p(w)) f (x) PX;W(dx; dw).

5.3.1.2 Functional Central Limit Theorem

Applying Theorem 5.10 to the empirical process rGp
TN

f defined in Equation (5.3)

thus leads to the theorem below, proved in Section 5.5.2.

Theor em 5.14 – FCLT in thePoisson survey case. Suppose that Assumption 5.1,

Assumption 5.8 and Assumption 5.11 hold, as well as the following conditions.

i ) Lindeberg-Feller typecondition: @�° 0,

E
�

(ZN ;i )
2 I

!
ZN ;i ° �

?
N

) �
�—

N —1
0;

with ZN ;i := (�i � p(W i )) supf PF

�
�
�

f (Xi )
p ( W i ) � �N ;p(f )

�
�
�.

i i ) Uniform entropy condition: let D be the set of all finitely discrete probability

measures defined in Section 5.1.2.3, and assume
ª 1

0
sup
QPD

b
log(N(" }H}2;Q ; F; }.}2;Q) d" † 1 .

Then there exists a�P -equicontinuous Gaussian process G in `1 (F) with covariance

operator � given by Equation (5.4) such that

rGp
TN

Ò G weakly in `1 (F); as N — 1 .

Remar k 5.15 – On theLindeberg-Feller condition. Observe that, as can be proved

using Hölder ’s inequality, condition i ) in Theorem 5.14 can be replaced by the

simpler condition: D�° 0 such that
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i�) EPX;W

 �
�
�
�
H(Xi )
p(W i )

�
�
�
�

2+ �

ETN

�
(�i � p(W i ))

2+ � ��(Xi ; W i )
�

!

† + 1 .

5.3.2 Thecaseof rejectivesampling

As shall be shown herein-after, the result obtained above in the case of a Poisson

sampling scheme may carry over to more general survey plans, as originally pro-

posed in the seminal contribution of Hàjek (1964).

5.3.2.1 Reduction to simpler sampling designs

The lemma stated below, following in the footsteps of Berger (1998), shows that the

study of the empirical process related to a general sampling design RN may be re-

duced to that related to a simpler sampling design, TN say, which is close to RN with

respect to some metric and entirely characterized by its first order inclusion proba-

bilities. The only “ drawback” is that the estimator involved in this approximation

result is not the Horvitz-Thompson estimator, since it does not involves the inclusion

probabilities of the sampling plan of interest but those related to a Poisson scheme

(Hàjek, 1964). However, as will be shown next, the two estimators may asymptotically

coincide, as N tends to + 1 .

In order to formulate the approximation result needed in the sequel, we introduce,

for two sampling designs RN and TN , the total variation metric

}RN � TN }1 :=
∏

sPP (U N )

|RN (s) � TN (s)| ;

as well as the entropy

D(TN ; RN ) :=
∏

sPP (U N )

TN (s) log
�

TN (s)
RN (s)

�

.

In practice, TN will typically be the Poisson sampling plan investigated in the previ-

ous subsection and rG�( TN )
TN

the corresponding empirical process.

Lemma 5.16 – Approximation result. Let RN and TN be two sampling designs

and assume that TN is entirely characterized by its first order inclusion probabil-

ities, �(TN ). Then, the empirical processes rG�(TN )
TN

and rG�( TN )
RN

valued in `1 (F)

satisfy the relationships:

dBL

�
rG�( TN )

TN
; rG�( TN )

RN

�
§ }RN � TN }1 §

a
2D(TN ; RN ).
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Consequently, if the sequences (RN )N • 1 and (TN )N • 1 are such that }RN � TN }1

tends to 0 or D(TN ; RN ) — 0 as N — 1 and if there exists a Gaussian process G

such that

dB L ( rG�( TN )
TN

; G) �—
N —1

0;

then we also have

dBL ( rG�( TN )
RN

; G) �—
N —1

0.

The same result holds true when replacing rG�( TN )
TN

and rG�( TN )
RN

by G�( TN )
TN

and

G�( TN )
RN

respectively.

This result, proved in Section 5.5.3, reveals that as soon as a possibly complicated

survey design RN can be approximated by a simpler one TN through some coupling

argument ensuring that the }.}1 distance between them decays to zero (as in Hàjek,

1964), then an asymptotic approximation result possibly holding true for the empiri-

cal process related to TN immediately extends to that related to RN , when built w ith

the inclusion probabilities p = �(TN ). As shall be seen below, a typical situation

where this result applies corresponds to the case where RN is a rejective sampling

design, while TN is a Poisson sampling design, as in Hàjek (1964). Other natural ap-

plications may arise in the framework of post-stratification, which can be connected

with empirical likelihood results.

5.3.2.2 Empirical process for therejectivesampling and its variants

The Central Limit Theorem for rejective sampling and some variants of this survey

scheme has been studied at length in Hàjek (1964) and Berger (1998, 2011). Consider

the rejective sampling scheme defined in Example 5.5 from a given vector �R corre-

sponding to the vector p := (p1 ; : : : ; pN ) = (p(W1 ); : : : ; p(WN )) = : p(W). Assume in

addition that the representation is canonical, i.e. is such that
∞ N

i = 1 p(W i ) = n. The

key argument for proving a CLT in the rejective sampling case consists in exhibiting

a certain coupling ((�1 ; : : : ;�N ); (��1 ; : : : ;��N )) of the Poisson sampling scheme with

inclusion probabilities p(W1 ); : : : ; p(WN ) and the rejective sampling scheme with cor-

responding inclusion probabilities �R such that }RN � TN }1 — 0, see Hàjek (1964, p.

1503-1504) for further details. A straightforward application of Lemma 5.16 will then

immediately yield a functional CLT in our framework. We point out that, under the

rejective sampling scheme, the survey size is fixed, so that

N∏

i = 1

(�i � p(Wi )) = n � n = 0.

Thus, we have:

rGp
RN

f :=
1

?
N

N∏

i = 1

(�i � p(W i ))
�

f (Xi )
p(W i )

��N ;p(f )
�
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=
1

?
N

N∏

i = 1

�
�i

p(W i )
� 1
�

f (Xi )

= : Gp ( W)
RN

f .

Hence, the Poisson-like empirical process coincides, in that case, with the origi-

nal HT-empirical process where the weights p(W) are involved instead of the true

inclusion probabilities �R, the latter being however asymptotically equivalent to the

former, see Hàjek (1964).

The next theorem is obtained by combining Lemma 5.16 with Theorem 5.14.

Theor em 5.17 – FCLT in therejectivesurvey with Poisson weightscase. Suppose

that Assumption 5.1, Assumption 5.8, Assumption 5.11 and conditions i ) and i i )

of Theorem 5.14 are satisfied. Then, there exists a �P -equicontinuous Gaussian

process G in `1 (F) with covariance operator � given by Equation (5.4) such that

Gp ( W)
RN

Ò G weakly in `1 (F); as N — 1 .

It has been established in Berger (1998) that for a variety of sampling plans RN , in-

cluding the Rao-Sampford scheme defined in Example 5.6, we have D(RN ; TN ) — 0

as N — 1 . By virtue of Lemma 5.16, Theorem 5.17 naturally extends to these sam-

pling schemes.

Going back to the original HT-empirical process in Equation (5.2) related to the

plan RN , the corollary below reveals that the asymptotic result still holds true for the

latter (see the proof in Section 5.5.4). This essentially follows from the fact that the

weights p(W) and the inclusion probabilities corresponding to the rejective sampling

are asymptotically equivalent.

Cor ol l ar y 5.18 – FCLT in the rejective survey case. Suppose that Assump-

tion 5.1, Assumption 5.8, Assumption 5.11 and conditions i ) and i i ) of Theo-

rem 5.14 are satisfied. Then, there exists a �P -equicontinuous Gaussian process

G in `1 (F) with covariance operator � given by Equation (5.4) such that

G�( RN )
RN

Ò G weakly in `1 (F); as N — 1 .

5.4 appl i cat i on t o n on -par amet r i c st at i st i cs

For illustration purpose, we consider now several statistical applications of the

asymptotic results previously established.
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5.4.1 Hadamard differentiable functionals

We first highlight that the FCLT stated above permits to establish the asymptotic

normality of any statistic that can be expressed as the empirical version of some

Hadamard differentiable functional, see Shorack and Wellner (1986). For the sake of

clarity, we recall the definition of uniform Hadamard differentiability in Definition 5.19,

adapted from Pons and de Turkheim (1991). Our results apply to many situations

considered in their paper, related in particular to certain functionals of censored data.

Other examples are treated in Gill (1989), van der Vaart and Wellner (1996) (see

Chapter 3.9 p. 379 therein, in particular refer to the discussion about the validity

of the bootstrap for uniform Hadamard differentiable functionals). Define B(F; P)

as the set of measures Q in `1 (F) whose paths f P F fi— Qf :=
≥

f dQ are }.}2;P -

uniformly continuous and bounded. This is the smallest natural space containing G.

We consider the uniform Hadamard differentiability tangentially to the subspace

B(F; P) because it weakens the notion of differentiation and is easier to check in

practice.

Def in i t ion 5.19 A functional T : `1 (F) — Rq is said to be uniformly Hadamard

differentiable at P tangentially to B(F; P); if and only if there exists a continuous

linear mapping dTP such that for any sequence PN converging to P, any hN con-

verging to h P B(F; P) and every t N converging to 0 such that PN + t N .hN P `1 (F),

we have:
T(PN + t N .hN ) � T(PN )

t N
� dTP .h �—

t N —0
0.

Notice that T may be defined not on the entire space `1 (F) but on a subset L only.

In this case, one must check that PN + t N .hN P L .

Remar k 5.20 We may in addition assume that the differential dTP admits an

integral representation, i.e.

dTP .h =
ª

T( 1) (x; P) h(dx);

where T( 1) (.; P) is the influence function defined from X to B1 such that we have

EP

�
T( 1) (X; P)

�
= 0.

We recall that in the robustness terminology (Hampel et al., 1986), the influence

function of the parameter T(P) may be calculated directly by computing the deriva-

tive of the functional taken at the contaminated distribution (1� t )P + t�x, i.e.

T( 1) (x; P) := lim
t —0

T ((1� t )P + t�x) � T(P)
t

.

In this case, the limiting distribution may be calculated more easily.
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Theor em 5.21 – CLT for Hadamard differentiable functionals. Suppose that the

assumptions of Theorem 5.14 hold and that functional T : L Ä `1 (F) — Rq

is Hadamard differentiable at P with differential dTP and influence function

T( 1) (x; P). Then, as N — + 1 , we have:

?
N
�

T(P�( RN )
RN

) � T(PN )
�

Ò dTP .G;

where G is a Gaussian process with covariance operator �, as in Equation (5.4).

The result above, the proof of which is available in Section 5.5.5, applies in partic-

ular to the following statistics.

Exampl e 5.22 – Expectation and variance. It is well-known that for some appro-

priate choice of F, the functionals T(P) = EP (X) and T(P) = V P (X) are uniformly

Hadamard-differentiable. When T(P) = EP (X), Theorem 5.21 exactly reduces to

the Central Limit Theorem established in Hàjek (1964).

Exampl e 5.23 – Cumulative distribution function. In a univariate setting, the

functional T(P) = F(x) := P (X P(�1 ; x]) can be dealt with by simply considering

the class of indicator functions u fi— I t u § xu with x P R and applying next The-

orem 5.17 and Corollary 5.18. We provide illustrations of this specific example in

Section 5.4.3.

5.4.2 Fréchet differentiable functionals

Hadamard differentiability is sometimes difficult to prove and it does not yield a

precise control of the remainder for further approximations like Edgeworth expan-

sions. Another approach followed by Dudley (1990) and Barbe and Bertail (1995) is

to assume Fréchet differentiability with respect to a metric dF indexed by a class of

function F, for which some uniform entropy conditions hold. A functional is said to

be Fréchet differentiable at P for such a metric if there exists a gradient (for instance

the influence function T( 1) (x; P), which fulfi lls EP
�
T( 1) (x; P)

�
= 0) and a continuous

function " (.), null at 0, such that for any probability Q,

T(Q) � T(P) =
ª

T( 1) (x; P) (Q� P)(dx) + dF (Q; P) " (dF (Q; P)).

It is generally possible to choose the class of functions according to the functional of

interest, see for instance Arcones and Giné (1992) for general classes of M-estimators.

Notice that in that case, by applying Fréchet differentiability tw ice, we have

?
N
�

T(P�( RN )
RN

) � T(PN )
�

=
?

N
ª

T( 1) (x; P) (P�( RN )
RN

� PN )(dx) + rN



138 empi r i ca l pr ocesses i n sur vey sampl i n g

=
1

?
N

N∏

i = 1

�i

�i
T( 1) (Xi ; P) + rN ;

w ith a remainder

rN =
?

N dF (P�( RN )
RN

; P) " (dF (P�(RN )
RN

; P)) +
?

N dF (PN ; P) " (dF (PN ; P)).

By virtue of the results in Hàjek (1964), it is then obvious that the linear term in

this approximation is asymptotically Gaussian with known variance. Controlling the

remainder essentially amounts to controlling the behavior of
?

N dF (P�( RN )
RN

; P) or

alternatively, by the triangular inequality, that of
?

N dF (P�(RN )
RN

; PN ), which was the

purpose of Section 5.2 and Section 5.3.

5.4.3 Simulation-based Gaussian asymptotic confidenceregions

A straightforward application consists in the building of Gaussian confidence re-

gions for the (univariate) empirical cumulative distribution function in the entire

population, denoted by FN (x), x PR, when the survey scheme is of the rejective type.

Indeed, consider the class of functions F := t f x (.) := I t . § xu; x P Ru. Provided

Assumption 5.1 is fulfi lled, it respects the required conditions for Corollary 5.18 to

hold (see Van der Vaart, 2000, Example 19.16 for the uniform entropy condition and

take H(x) = 1 and � = 1 when checking condition i�) in Remark 5.15), which im-

plies in particular that }G�( RN )
RN

}F converges in distribution to }G}F as N — + 1

(Van der Vaart, 2000, Corrolary 19.21). This yields the following asymptotic uniform

confidence band of level �P (0; 1) for the population cdf FN :

CB� :=
�

F�( RN )
RN

�
q�?

N
; F�( RN )

RN
+

q�?
N

�

;

where F�( RN )
RN

is the Horvitz-Thompson estimator of the cdf based on the rejective

sample and q� the �-quantile of random variable }G}F . Since in practice q� is

unknown, it needs to be estimated. It can be achieved by means of Monte-carlo

simulations, using a simple technique based on the Cholesky decomposition of the

covariance matrix (Kroese et al., 2011, Algorithm 5.1).

Al gor i t hm 5.24 – Simulation of the limit process G and estimation of q�.

1. Choose a grid of real values t x1 ; : : : ; xK u, K ° 1, and compute the Horvitz-

Thompson estimator of �(f x k ; f x k�) for each couple (xk ; xk �) in t x1 ; : : : ; xK u2 ,

namely

�
p
RN

(f x k ; f x k�) :=
1
N

N∏

i = 1

�i
1� pi

p2
i

I t Xi § min(xk ; xk �)u
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�
1
N

∞ N
i = 1 �i

1�p i
p i

I t Xi § xk u
∞ N

i = 1 �i
1�p i

p i
I t Xi § xk �u

∞ N
i = 1 �i (1� pi )

.

2. Derive the Cholesky decomposition �p
RN

(f x k ; f x k�
) = LL1, where L is a lower-

triangular Cholesky matrix.

3. Generate B ° 1 independent copies Y1 ; : : : ; YB of the Gaussian random vec-

tor Y := (Y1 ; : : : ; YK )1 with null expectation and covariance I , the identity

matrix.

4. Compute Zb := LYb , b P t 1; : : : ; Bu, which are considered as realizations of

the limit process G.

5. For each b P t 1; : : : ; Bu, calculate Z�b := }Zb }1 the maximum absolute dis-

tance to 0 of the path Zb and sort the obtained sample Z�1;B § ���§ Z�B;B .

6. Set q̂� := Z�tB�u+ 1;B , the empirical �-quantile of the sample of maximum

absolute deviations, where t.udenotes the floor function.

In the next subsections, a set of numerical experiments is performed to provide illus-

trative examples of this technique.

5.4.3.1 Experiment setting

Simulations were based on the following model, chosen for its simplicity in terms

of both computation and interpretation:

X = �W + U; �Pt 0; 1u

W ; TN(�;�2
W ; w�; w�);

U ; N(0;�2
U );

P (W § w ; U § u) = P (W § w) P (U § u) ;

where X is the variable of interest, W the auxiliary information, U a white noise inde-

pendent from W, and TN(0;�2
W ; w�; w�) refers to the truncated Normal distribution

over [w�; w�], w ith expectation � and variance �2
W . Such a representation enables a

simple control of the dependence between X and W, since their correlation is then

corr(X; W) = �
�Wb
�2

W + �2
U

.

For a given population UN of size N, where it is assumed that t Wi ; i P UN u (resp.

t U i ; i P UN u) are independent (hence exchangeable) realizations of W (resp. U),

inclusion probabilities of the Poisson sampling scheme are defined as

pi = p(Wi ) = n
Wi

∞ N
j = 1 Wj

; (5.5)

with n the desired expected sample size (Hàjek, 1964, Section 6, p.1512). When the in-

clusion probabilities are proportionate to the auxiliary variable like in Equation (5.5),



140 empi r i ca l pr ocesses i n sur vey sampl i n g

the stronger the correlation between X and W, the smaller the variance of the estima-

tor of the population mean 1
N

∞ N
i = 1 Xi (or, equivalently, of the total

∞ N
i = 1 Xi ). Recall

that under Assumption 5.1, we have n=N — c P(0; 1) as both n and N tend to infinity.

Hence, pi can be viewed as the empirical version in the population of

p(W) := W
c

E(W)
.

Observe that thus defined, p(W) P [p�; p�], where p� = c w�=� and p� = c w�=�,

which offers an easy way of ensuring Assumption 5.1 is fulfi lled.

Numerical experiments were conducted on a set of populations with increasing

sizes N = 102 , 5� 102 , 103 , 5� 103 and 104 . Though the latter may seem quite small

to study asymptotic properties, they are in fact representative of many practical situa-

tions, where populations under the microscope have moderate sizes in comparison to

nationwide surveys. Several scenarios were investigated depending on both the vari-

ance parameter �2
U and the coefficient �, so as to cover situations where corr(X; W)

is high, low or null. They are summarized in Table 5.1. For each scenario, two sam-

ple sizes were considered: one small w ith n = 0.1� N and one relatively large with

n = 0.5� N. Parameters of the distribution of W were chosen to ensure that for all

i P UN , pi P [0.01; 1]. Specifically, we set � = 1, �2
W = 0.09, w� = 0.1 and w� = 2,

thereby implying that (p�; p�) = (0.01; 0.02) when n = 0.1�N and (p�; p�) = (0.05; 1)

when n = 0.5� N.

Tabl e 5.1 – List of scenarios depending on � and�2
U , and corresponding model characteristics

Scenario � �2
U corr(X; W)

S1 1 0.01 0.95

S2 1 35.91 0.05

S3 0 35.91 0

For each scenario, we drew 1000 samples according to a rejective sampling scheme,

following Algorithm 5.9 in Tillé (2006). The true inclusion probabilities, denoted by

�i , 1 § i § N, could have been deduced from their Poisson equivalents defined

in Equation (5.5) using Formula (5.13) in Tillé (2006). Though a very popular and

natural algorithm, due to the limits of computer precision, the successive approxima-

tions it involves can lead to unexpected results like negative inclusion probabilities.

Other algorithms have been developed to compute exact inclusion probabilities in a

rejective sampling scheme (e.g. A ires, 1999 or Tillé, 2006, Algorithms 5.8 and 5.9), but

again, especially when N is large, they have a tendency to produce illogical estimates.

This is why we adopted a simpler, although computationally expensive Monte-Carlo

approximation technique, based on the repetition (105 times) of the basic algorithm

stated in Example 5.5. Notice that since rejective sampling is a Poisson sampling

conditioned upon its size, we have (pi = 1) Ò (�i = 1).
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We constructed asymptotic uniform 95% confidence bands of the population cdf

FN using Algorithm 5.24, with B = 1000 and K = 10, 20 or 100 depending on the

sample size n. More precisely, for n • 100, the grid was made of the standard

empirical percentile estimators of variable X based on each artificial samples. To

enable computation of the lower-triangular Cholesky matrix, which requires that the

covariance matrix has full rank, we confined ourselves to deciles for n = 10 and to

the quantiles of levels 0.05; 0.1; : : : ; 0.95; 1 for n = 50.

5.4.3.2 Experiment results

The average and maximal width of the confidence bands over the 1000 simulated

samples for each scenario are given in Table 5.2. Coverage probabilities were also

estimated, the results of which are displayed in Table 5.3. Finally, some graphical

il lustrations are provided in Figure 5.1.

Tabl e 5.2 – Average(Av) and maximal (Mx) width of confidencebands multiplied by 100

N

102 5� 102 103 5� 103 104

Scenario c Av Mx Av Mx Av Mx Av Mx Av Mx

S1
0.5 31.24 37.12 15.68 20.70 11.43 14.61 5.10 5.76 3.58 3.94

0.1 87.68 116.62 42.67 68.80 32.67 45.64 14.46 18.15 10.19 12.33

S2
0.5 27.74 33.55 13.77 16.52 9.95 12.88 4.48 5.05 3.17 3.56

0.1 76.43 103.01 37.63 53.10 28.40 40.36 12.70 15.95 8.99 10.81

S3
0.5 27.53 32.79 13.67 16.12 9.85 13.36 4.43 5.13 3.14 3.41

0.1 75.65 105.18 37.20 53.93 27.93 38.51 12.57 15.92 8.90 10.61

Tabl e 5.3 – Estimated coverageprobabilities (in %)

N

Scenario c 102 5� 102 103 5� 103 104

S1
0.5 96.30 96.80 96.80 97.80 97.00

0.1 94.74 97.20 97.12 98.30 98.50

S2
0.5 92.50 97.30 95.60 96.40 96.40

0.1 89.12 93.80 93.55 95.60 96.90

S3
0.5 91.80 96.50 95.50 96.10 95.60

0.1 87.82 93.50 93.48 94.80 96.70
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Figur e 5.1 – Example of the 95% confidence bands of the empirical distribution function in the

population FN (black line) constructed on one of the 1000 simulated samples under scenario S1 with
c = 0.1 (dark pink area) and c = 0.5 (light pink area) for N = 5� 102 (left hand plot) and N = 104

(right hand plot)

As expected, the larger N and c, the smaller the confidence bands. Regarding

coverage probabilities, they appear to be close to 95%, the desired level, for any N

and c. The most remarkable variability is that observed between scenarios: confi-

dence bands get significantly tighter as the correlation between X and W decreases.

As a consequence, estimated coverage probabilities are systematically smaller in sce-

narios S2 and S3 than in scenario S1 , especially when N = 102 and c = 0.1. This

phenomenon is due to the formula used to construct inclusion probabilities, in Equa-

tion (5.5). Let us dwell for a moment on this expression. It ensures that the Horvitz-

Thompson estimator (based on the Poisson inclusion probabilities) of the expectation

of W coincides with the classical empirical mean in the entire population:

1
N

N∏

i = 1

�i

pi
Wi =

1
N

N∏

i = 1

�i

n W i∞ N
j = 1 W j

Wi =
1
N

N∏

i = 1

�i

n

N∏

j = 1

Wj =
1
N

N∏

j = 1

Wj ;

since
∞ N

i = 1 �i = n by definition. It is no surprise then that the stronger the correlation

between X and W, the closer (in terms of variance) the weighted mean 1
N

∞ N
i = 1

�i
p i

Xi

is to its population counterpart. However, when considering empirical distribution

functions, the standard and sample estimators for W are no longer equal. Hence,

not only does the model in Equation (5.5) fail to improve the variance of the HT-cdf

of X, but the deviations of Fp
RN

are expected to grow as the link between X and W

tightens. To counterbalance this drawback, we could for instance choose the inclusion

probabilities pi , 1 § i § N, that minimize the uniform difference between the HT and

the empirical cdf of W (see for instance Rueda et al., 2007). Such refinements are left

for further research. A lthough not optimal, the confidence bands constructed on our
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numerical experiments are still satisfactory and advocate the utility of our asymptotic

results whatever the available inclusion probabilities.

5.5 pr oof s an d suppl emen t s

5.5.1 Limit of thecovarianceoperator

We shall prove Lemma 5.13, thestatement of which is recalled below.

Lemma Suppose that Assumption 5.1, Assumption 5.8 and Assumption 5.11 are

fulfi lled and that

0 †
ª

W
p2 (w) PW(dw) † 1 .

Then we have

1
N

dN �—
N —1

Dp :=
ª

W
(1� p(w)) p(w) PW(dw) ° 0

and

covN ;p(f ; g) �—
N —1

�(f ; g);

where for all (f ; g) PF2 ,

�(f ; g) :=
ª

X�W
f (x)g(x)

�
1

p(w)
� 1
�

PX;W(dx; dw) � �p (f )�p (g) Dp ;

w ith

�p (f ) :=
1

Dp

ª

X�W
(1� p(w)) f (x) PX;W(dx; dw).

Pr oof Notice first that under Assumption 5.11, we have: @(f ; g) P F2 ,

covN ;p(f ; g) =
1
N

N∏

i = 1

f (Xi )
p(W i )

g(Xi )
p(W i )

p(W i ) (1� p(W i ))

��N ;p(f ) �N ;p(g)
1
N

N∏

i = 1

p(W i ) (1� p(W i ));

w ith

�N ;p(f ) =
∞ N

i = 1 (1� p(Wi )) f (Xi )
∞ N

i = 1(1� p(Wi )) p(W i )
.

Now it is sufficient to apply the Strong Law of Large Numbers for exchangeable

vectors to obtain that

1
N

dN =
1
N

N∏

i = 1

(1� p(W i )) p(W i )
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�—
N —1

ª

W
(1� p(w)) p(w) PW(dw) almost-surely.

The limit above is finite, positive under Assumption 5.1 (that implies there exists

p� ° 0 such that p(w) ° p�)). Additionally, we have with probability one

1
N

N∏

i = 1

f (Xi )
p(W i )

g(Xi )
p(W i )

p(W i ) (1� p(W i )) �—
N —1

ª

X�W
f (x) g(x)

�
1

p(w)
� 1
�

PX;W(dx; dw).

By virtue of Assumption 5.8, the latter integral is finite. Finally, observe that we

almost-surely have

�N ;p(f ) �—
N —1

�p (f );

and the desired result follows. In particular notice that the limiting variance V2 (f ) is

given by

V2 (f ) :=
ª

X�W
f (x)2

�
1

p(w)
� 1
�

PX;W(dx; dw)

� �p (f )2
ª

W
(1� p(w)) p(w) PW(dw);

which is strictly positive except in the degenerate case where f (x) = p(w). Typically,

this occurs when the inclusion probabilities are based directly on the variable of

interest (or W = c � X for some c P R). Positivity of the operator results from

Cauchy-Schwarz inequality. �

5.5.2 FCLT in thePoisson survey case

We shall prove Theorem 5.14, the statement of which is recalled below.

Theor em Suppose that Assumption 5.1, Assumption 5.8 and Assumption 5.11

hold, as well as the following conditions.

i ) Lindeberg-Feller typecondition: @�° 0,

E
�

(ZN ;i )
2 I

!
ZN ;i ° �

?
N

) �
�—

N —1
0;

with ZN ;i := (�i � p(W i )) supf PF

�
�
�

f (Xi )
p ( W i ) � �N ;p(f )

�
�
�.

i i ) Uniform entropy condition: let D be the set of all finitely discrete probability

measures defined in Section 5.1.2.3, and assume
ª 1

0
sup
QPD

b
log(N(" }H}2;Q ; F; }.}2;Q) d" † 1 .
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Then there exists a�P -equicontinuousGaussian process G in `1 (F) with covariance

operator � given by Equation (5.4) such that

rGp
TN

Ò G weakly in `1 (F); as N — 1 .

Pr oof We essentially have to check hypotheses i ) � i v) of Theorem 5.10.

Concerning hypothesis i ), the Lindeberg-Feller condition can be written as

1
N

N∏

i = 1

E
�

Z2
N ;i I

!
ZN ;i ° �

?
N

) �
�—

N —1
0 for every �° 0;

which reduces to E
�
Z2

N ;i I
 
ZN ;i ° �

?
N

(�
�—

N —1
0 by exchangeability of the compo-

nents. This corresponds to condition i ) in Theorem 5.14 above.

Recall that Assumption 5.8 stipulates the envelope of class F is square-integrable

function H and that under Assumption 5.1, there is some p� ° 0 such that for all

i PUN , p(W i ) • p�. Hence, we have

N∏

i = 1

p(W i ) (1� p(W i ) • p�(N � E (n)) = p�N
�

1�
E (n)

N

�

.

as well as
�
��N ;p(f )

�
�§ �N ;p(H) §

1
p�

1
N � E (n)

N∏

i = 1

H(Xi ) † 1 .

We thus obtain:

sup
f PF

�
�
�
�

f (Xi )
p(W i )

��N ;p(f )

�
�
�
�

2

§ 2

 

sup
f PF

�
�
�
�

f (Xi )
p(Wi )

�
�
�
�

2

+ sup
f PF

�
��N ;p(f )

�
�2

!

§ 2

 �
�
�
�
H(Xi )
p(W i )

�
�
�
�

2

+
�
��N ;p(H)

�
�2

!

.

Set

G1; i = |�i � p(W i )|
��
�
�
�
H(Xi )
p(W i )

�
�
�
�+
�
��N ;p(H)

�
�
�

;

G2; i = (�i � p(W i ))2

 �
�
�
�
H(Xi )
p(W i )

�
�
�
�

2

+
�
��N ;p(H)

�
�2

!

.

Observe that it is thus sufficient to check that

EPX;W

�
ETN

�
G2; i I

!
G1; i ° �

?
N

) �
�(Xi ; W i )1§ i § N

��
�—

N —1
0 for every �° 0.

Condition i i ) can be checked immediately by noticing that, in the case of the Pois-

son process, the equicontinuity condition becomes
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sup
�P ( f ;g ) † �

N∏

i = 1

E
�

(ZN ;i (f ) � ZN ;i (g))2
�

=

sup
�P ( f ;g ) † �

1
N

N∏

i = 1

EPX;W

 �
f (Xi ) � g(Xi )

p(W i )
� �N ;p(f ) + �N ;p(g)

�2

p(W i )(1� p(W i ))

!

§ sup
�P ( f ;g ) † �

Cp �

4p2
�

EPX;W

�
(f (X1 ) � g(X1 ))2

�
— 0; as�— 0.

In practice, condition i i i ) is checked in an easier manner by using the uniform en-

tropy condition given here, see also Lemma 2.11.6 in van der Vaart and Wellner

(1996).

Finally, condition i v) is a direct consequence of Lemma 5.13. �

5.5.3 Approximation result

We shall prove Lemma 5.16, the statement of which is recalled below.

Lemma Let RN and TN be two sampling designs and assume that TN is entirely

characterized by its first order inclusion probabilities, �(TN ). Then, the empirical

processes rG�( TN )
TN

and rG�( TN )
RN

valued in `1 (F) satisfy the relationships:

dB L

�
rG�(TN )

TN
; rG�( TN )

RN

�
§ }RN � TN }1 §

a
2D(TN ; RN ).

Consequently, if the sequences (RN )N • 1 and (TN )N • 1 are such that }RN � TN }1 —

0 or D(TN ; RN ) — 0 as N — 1 and if there exists a Gaussian process G such that

dB L ( rG�( TN )
TN

; G) �—
N —1

0;

then we also have

dBL ( rG�( TN )
RN

; G) �—
N —1

0.

The same result holds true when replacing rG�( TN )
TN

and rG�( TN )
RN

by G�( TN )
TN

and

G�( TN )
RN

respectively.

Pr oof Let b P BL1 (`1 (F)). We have

ETN

�
b
�

G�( TN )
RN

��
� ERN

�
b
�

G�( TN )
TN

��
=

∏

sPP (U N )

RN (s) b
�

G�( TN )
TN ( s)

�

�
∏

sPP( U N )

TN (s)b
�

G�( TN )
RN ( s)

�

§
∏

sPP (U N )

|TN (s) � RN (s)|
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because b is bounded by 1 and

b
�

G�(TN )
TN ( s)

�
= b

�
G�(TN )

RN ( s)

�
;

their expressions depending on the first order inclusion probabilities�(TN ) solely.

The last inequality follows from the usual inequality between the total variation

metric and the entropy (Berger, 1998, Lemma 2 p.219). �

5.5.4 FCLT in therejectivesurvey case

We shall prove Corollary 5.18, the statement of which is recalled below.

Cor ol l ar y Suppose that Assumption 5.1, Assumption 5.8, Assumption 5.11

and conditions i ) and i i ) of Theorem 5.14 are satisfied. Then, there exists a �P -

equicontinuous Gaussian process G in `1 (F) with covariance operator � given by

Equation (5.4) such that

G�( RN )
RN

Ò G weakly in `1 (F); as N — 1 .

Pr oof Following in the footsteps of Hàjek (1964), in the rejective sampling situa-

tion where p(W i ) = pi for i P t 1; : : : ; Nu, we have

max
1§ i § N

�
�
�
�
pi

�R
i

� 1

�
�
�
��—

N —1
0.

We thus have

max
1§ i § N

�
�
�
�
�R

i

pi
� 1

�
�
�
��—

N —1
0

under the hypothesis that Assumption 5.1 is fulfi lled by the pi ’s. Then, we can write

Gp ( W)
RN

f �G�( RN )
RN

f =
1

?
N

N∏

i = 1

�
�i

p(W i )
�
�i

�R
i

�

f (Xi )

=
1

?
N

N∏

i = 1

�i

p(Wi )

�

1�
pi

�R
i

�

f (Xi );

and

sup
b PBL 1 ( ` 1 (F ) )

E
��
�
�
�b
�

sup
f PF

Gp ( W)
RN

f
�

� b
�

sup
f PF

G�( RN )
RN

f
��
�
�
�

�

§ E
��
�
�
�sup
f PF

Gp ( W)
RN

f � sup
f PF

G�( RN )
RN

f

�
�
�
�

�

§ E

 

sup
f PF

�
�
�
�
�

1
?

N

N∏

i = 1

�
�i

p(W i )
�
�i

�R
i

�

f (Xi )

�
�
�
�
�

!
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§
1

?
N

N∏

i = 1

�
�
�
�
�R

i

p(W i )
� 1

�
�
�
�H(Xi );

which quantity vanishes asymptotically under Assumption 5.1, according to Theo-

rem 5.1, Equations (5.7) and (5.26) in Hàjek (1964, p. 1508-1510).

The desired convergence is finally established by combining this result w ith Theo-

rem 5.17 and the functional version of Slutsky’s theorem (see Theorem 3.4 in Resnick,

2007 for instance). �

5.5.5 CLT for Hadamard differentiable functionals

We shall prove Theorem 5.21, the statement of which is recalled below.

Theor em Suppose that the assumptions of Theorem 5.14 hold and that func-

tional T : L Ä `1 (F) — Rq is Hadamard differentiable at P with differential dTP

and influence function T( 1) (x; P). Then, as N — + 1 , we have:

?
N
�

T(P�( RN )
RN

) � T(PN )
�

Ò dTP .G;

where G is a Gaussian process with covariance operator �, as in Equation (5.4).

Pr oof The idea is essentially to apply the Hadamard differentiability property to

the sequence hN =
?

N(P�( RN )
RN

�PN ) = : G�( RN )
RN

, which converges to h = G in `1 (F)

and t N = 1?
N

— 0. We thus have, as N — + 1 :

?
N
�

T(P�(RN )
RN

) � T(PN )
�

=
?

N
�

T(PN +
1

?
N

hN ) � T(PN )
�

�— dTP .G.

�



6
TA I L I N D EX ESTI M ATI ON BA SED ON

SU RV EY D ATA

In the previous chapter we investigated the asymptotic behavior of a variant of the

Horvitz-Thompson type of the traditional empirical process for survey schemes of

the Poisson type. The ensuing Functional Central Limit Theorems proved particu-

larly convenient to derive asymptotic properties for numerous families of estimators,

as was suggested in Section 5.4. Unfortunately, when interested in extreme phenom-

ena like the very high exposure to some food chemical, these results are no longer

sufficient and estimators need to be analyzed one by one. In extreme value theory, the

survey design is usually ignored and the ensuing statistics, already suffering from

the rarity of tail observations, possibly exhibit an additional bias due to the omis-

sion of the sampling phase. Whereas asymptotic analysis of the Horvitz-Thompson

estimator (Horvitz and Thompson, 1951) has been the subject of much attention, in

particular in the context of mean estimation and regression (see Hàjek, 1964; Rosen,

1972; Robinson, 1982; Gourieroux, 1987; Deville and Särndal, 1992; Berger, 1998 for

instance), and the last few years have witnessed significant progress towards a com-

prehensive functional limit theory for the assessment of distribution functions (Gill

et al., 1988; Breslow and Wellner, 2007, 2008; Breslow et al., 2009; Saegusa and Well-

ner, 2011; Bertail et al., 2013), no result on tail estimation has been documented in

the survey sampling literature yet. In a modest attempt to start fi lling this gap, we

make our contribution to the elaboration of an extreme value theory for survey data

by focusing on a modified (Horvitz-Thompson) version of the most celebrated Hill

estimator. This new statistic assesses the extreme value index of univariate heavy-

tailed distributions, which essentially indicates to what extent extreme events are

rare, while accounting for the sampling design by means of which the data have

been collected. Therefore, contrary to the standard Hill estimator, it corrects the bias

induced by the survey plan. Its consistency is established for any type of sampling

scheme that fulfi lls some adequate assumptions on the first and second order inclu-

sion probabilities. Then, following in the footsteps of Hàjek (1964) and along the

lines of the previous chapter, its asymptotic normality is investigated for Poisson-like

survey designs. The results presented in this chapter originate from a paper writ-

ten in collaboration with P. Bertail (Université Paris X, France) and S. Clémençon

(Télécom ParisTech, France) and has been submitted for publication. Regrettably, our

analysis does not encompass complex designs such as that of the INCA2 database

149
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yet, hence no concrete application to dietary risk analysis is provided in this chapter.

Such refinements will hopefully be the object of further research in the near future.

The chapter is structured as follows. Basics about survey sampling and tail index

estimation in the standard iid setup are briefly recalled and notations are set up in

Section 6.1. In Section 6.2, we describe at length the proposed modification of the

Hill estimator in the context of a general sampling plan and prove its consistency. Its

asymptotic normality is investigated next in Section 6.3. Finally, practical issues such

as the selection of an optimal number of largest observations on which to base the

estimation are discussed in Section 6.4, together with illustrative numerical experi-

ments. Technical proofs are deferred to Section 6.6.

6.1 backgr oun d an d pr el i mi nar i es

We first recall the crucial notions in survey sampling that are extensively used in

the subsequent analysis, as well as basic concepts of heavy-tail modeling, including

Pareto-type distributions and standard strategies for statistical estimation of the re-

lated parameters. For the sake of clarity, most notations are kept identical to those in

Chapter 5: the Dirac mass at x P R is denoted by �x and the indicator function of any

event E by I t Eu. We also denote by #E the cardinality of any finite set E, and by P(E)

its power set. The (left-continuous) general inverse of any non-decreasing function

H : (a; b) — R, �1 § a † b § + 1 , is denoted by

H– (x) := inf t y P (a; b) : H(y) • xu;

x PR, with the convention that the infimum over an empty set is�1 . When dealing

with some multivariate distribution function H : Rd — R with marginals H1 ; : : : ; Hd ,

we shall write H– (x) :=
�
H–

1 (x1 ); : : : ; H–
d (xd )

�
for any x := (x1 ; : : : ; xd ) P Rd . Fi-

nally, the minimum (resp. maximum) of two real numbers x and y is denoted by

x ^ y (resp. x _ y).

6.1.1 Survey sampling

In this section we recall a few essential definitions and set out the notations relative

to survey sampling. More details about the ins and outs of these concepts can be

found in Section 5.1.1 of Chapter 5.

6.1.1.1 Population, sample, inclusion probabilities and indicators

Here and throughout, we consider a finite population of size N • 1, denoted by

UN := t 1; : : : ; Nu. We call a sample of (possibly random) size n § N, any subset

s := t i 1 ; : : : ; i n (s) u in P(UN ) with cardinality n = : n(s) less than N. A sampling
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scheme (design/ plan) without replacement is determined by a probability distribu-

tion RN on the set of all possible samples s P P(UN ). For any i P t 1; : : : ; Nu, the

following quantity, generally called (first order) inclusion probability,

�i (RN ) := PRN (i PS) ;

is the probability that the unit i belongs to a random sample S drawn from distribu-

tion RN . In vectorial form, we shall write�(RN ) := (�1 (RN ); : : : ;�N (RN )). First order

inclusion probabilities are assumed to be strictly positive in the subsequent analysis:

@i P t 1; : : : ; nu, �i (RN ) ° 0. Additionally, the second order inclusion probabilities are

denoted by

�i ; j (RN ) := PRN

�
(i ; j ) PS2�;

for any i � j in t 1; : : : ; Nu2 . When no confusion is possible, we shall fail to mention

the dependence in RN when writing the first/ second order probabilities of inclusion.

The information related to the observed sample S Ä t 1; : : : ; Nu is encapsulated by the

random vector � := (�1 ; : : : ;�N ), where

�i =

#
1 if i PS

0 otherwise.

The distribution of the sampling scheme � has 1-dimensional marginals that corre-

spond to the Bernoulli distributions B(�i ), 1 § i § N, and covariance matrix given

by

�N :=
 
�i ; j ��i�j

(
1§ i ; j § N .

Notice incidentally that, equipped with these notations, we have
∞ N

i = 1 �i = n(S).

The superpopulation model we consider here stipulates that a real-valued random

variable X with distribution P and cdf F is observable on the population UN , i.e.

X1 ; : : : ; XN are iid realizations drawn from P. In practice, it is customary to deter-

mine the first order inclusion probabilities as a function of an auxiliary variable, which

is observed on the entire population. Here, it is denoted by W with distribution

PW . Hence, for all i P t 1; : : : ; Nu we can write �i = �(W i ) for some link function

�(.). When W and X are strongly correlated, thus proceeding helps select more in-

formative samples and subsequently reduce the variance of estimators (we refer to

Section 5.1.1.3 of Chapter 5 for a more detailed discussion on the use of auxiliary in-

formation in survey sampling). One may refer to Cochran (1977); Gourieroux (1981);

Deville (1987) for accounts of survey sampling techniques.

6.1.1.2 A crucial example: thePoisson survey scheme

Though of extreme simplicity, the Poisson scheme (without replacement) plays a

crucial role in sampling theory, insofar as it can be used to approximate a wide range

of survey plans. This is indeed a key observation to establish general asymptotic

results in the survey context, see Hàjek (1964), Chapter 5 and Section 6.3 of the
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present chapter. For such a plan, denoted by TN , the �i ’s are independent Bernoulli

random variables with parameters p1 ; : : : ; pN in (0; 1). Thus, the first order inclusion

probabilities fully characterize such a plan. Observe in addition that the size n(S)

of a sample generated this way is random and goes to infinity as N — + 1 with

probability one, provided that min
1§ i § N

pi remains bounded away from zero.

6.1.1.3 TheHorvitz-Thompson empirical measure

We recall that the Horvitz-Thompson estimator of the empirical measure

PN :=
1
N

N∏

i = 1

�X i

based on the survey data described above is defined as follows (Horvitz and Thomp-

son, 1951):

P�( RN )
RN

:=
1
N

N∏

i = 1

�i

�i
�X i =

1
N

∏

i PS

1
�i
�X i ;

where the subscript RN stipulates that the vector � := (�1 ; : : : ;�N ) is in correspon-

dence with a sample S drawn at random from distribution RN , and the superscript

�(RN ) indicates that the inclusion probabilities used in the formula are those of the

design RN . When there is no ambiguity, we shall simplify notations and write P�N
instead of P�( RN )

RN
. We highlight the fact that, conditional on the complete set of ob-

servations t (Xi ; W i ); 1 § i § Nu, the latter is an unbiased estimator of PN , although

it is not a probability measure. Its (pointwise) consistency and asymptotic normal-

ity are established in Robinson (1982) and Berger (1998). Limit results of functional

nature are established in Gill et al. (1988) for specific biased sampling models (see

also Breslow and Wellner, 2007, 2008; Saegusa and Wellner, 2011; Bertail et al., 2013).

The weighted quantity F�N (x) := P�N (�1 ; x] is naturally different from the empirical

cumulative distribution function of the observations, Fn (x) := n�1 ∞
i PS I t Xi § xu

namely, whose asymptotic behavior is investigated in Bonnéry et al. (2011). It is

then straightforward to deduce the following (unbiased) estimate of the probability

of exceedance F(x) := P (X ° x), x P R, given by:

F
�

N (x) :=
1
N

N∏

i = 1

�i

�i
I t Xi ° xu =

1
N

∏

i PS

1
�i

I t Xi ° xu. (6.1)

6.1.2 Tail index inference- theHill estimator

In a wide variety of situations, it is appropriate to assume that a statistical popu-

lation is described by a heavy-tailed probability distribution (the field of heavy-tail

analysis is well depicted in Resnick, 2007). A distribution with Pareto-like right tail

is any probability measure P on R with cdf F such that for all x P R,

1� F(x) = F(x) = x�1=� L(x); (6.2)
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where � ° 0 is the extreme value index (EVI) of distribution P and L(x) is a slowly

varying function, i.e. a function such that L(t x)=L(x) — 1 as x — + 1 for all t ° 0.

Notice that instead of the EVI, focus is often on � := 1=�, the tail index of the dis-

tribution P. Functions of the form introduced in Equation (6.2) are said to be regu-

larly varying with index �1=�; the set of such functions is denoted by R�1=�. One

may refer to Bingham et al. (1987) for an account of the theory of regularly varying

functions. The Hill estimator (Hill, 1975) provides a popular way of estimating the

EVI �. Its asymptotic behavior and the practical issues related to its computation are

well-documented in the literature, see for instance Resnick (2007, Chapter 4) and the

references therein. Given an iid population X1 ; : : : ; XN of size N • 1 drawn from P

and K Pt 1; : : : ; N � 1u largest observations, it is written

HK ;N :=
1
K

K∏

i = 1

log
�

XN � i + 1;N

XN �K ;N

�

; (6.3)

where X1;N § ���§ XN ;N denote the order statistics related to the population.

Whereas the theory has been extensively developed in the case where the obser-

vations are independent and identically distributed (including questions related to

the choice of K in Equation (6.3)), to the best of our knowledge the Hill procedure

has received no attention when data arise from a general survey. We point out that

there exist alternative methods for tail index or EVI estimation, refer for instance to

Beirlant et al. (2004, Chapter 4) for further details. The argument of the subsequent

analysis paves the way for studying extensions of such techniques in the context of

survey sampling models.

6.2 t h e h i l l est i mat or i n sur vey sampl i n g

Placing ourselves in the framework described in Section 6.1.1, we shall denote by

X1;n § ���§ Xn ;n the order statistics related to the survey sample (Xi 1 ; : : : ; Xi n ),

where n = n(S) may be random. When unit j is such that Xj = Xi ;N , the i -th largest

observation in the population, 1 § i ; j § N, its inclusion indicator and probability are

denoted by �i ;N = �j and �i ;N = �j respectively. Similarly, we write�i ;n := �j when

Xi ;n = Xj , 1 § i ; j § n. As a general rule, indexes in uppercase shall designate the

full population, as opposed to those in lowercase, which shall refer to the sample. We

assume in addition that the distribution function F has the semi-parametric form set

out in Equation (6.2) with unknown parameter � ° 0 and, for the sake of simplicity,

that its support is included in (0; + 1 ]. Because it is destined to be extensively used

in the sequel, we also introduce the tail quantile function, written for all x P [1; + 1 ] as

U(x) := F–
�

1�
1
x

�

.
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Its empirical and Horvitz-Thompson equivalents are respectively denoted by

UN (x) := F–
N

�

1�
1
x

�

and U�
N (x) := (F�N )–

�

1�
1
x

�

.

Notice that when F P R�1=�, the corresponding tail quantile function U is also reg-

ularly varying with index � (Beirlant et al., 2004, Sections 2.3.2 and 2.9.3). The goal

pursued here is to estimate the tail parameter �based on the survey data Xi 1 ; : : : ; Xi n

and the sampling plan RN .

6.2.1 TheHorvitz-Thompson variant of theHill estimator

Notice first that, under the heavy-tail assumption above, we have:

�= lim
x —1

ª + 1

x

F(u)

F(x)

du
u

; (6.4)

see Beirlant et al. (2004, Section 2.6) for instance. In the case of the iid population

X1 ; : : : ; XN drawn from P, one classically recovers the celebrated Hill estimator by

substituting F with the empirical cdf FN in Equation (6.4) and taking

x = UN (N=K) = XN �K ;N

for some number 1 § K § N � 1 of largest observations, supposedly representative

of the tail of the distribution. Indeed, we have:

ª + 1

X N �K ;N

FN (u)

FN (XN �K ;N )

du
u

=
K∏

i = 1

ª X N � i + 1;N

X N � i ;N

FN (u)

FN (XN �K ;N )

du
u

=
K∏

i = 1

i
K

(log XN � i + 1;N � log XN � i ;N )

=
1
K

K∏

i = 1

log
�

XN � i + 1;N

XN �K ;N

�

= HK ;N .

Consistency of this estimator is classically guaranteed as soon as K — + 1 and

K = o(N) when N — + 1 , see Mason (1982). In this case, the empirical threshold

XN �K ;N (equivalent in probability to U(N=K)) goes to infinity (again in probability)

as N — + 1 .

Going back to the survey data situation, one may naturally replace U(N=K) by

U�
N (N=K) and build a plug-in estimate of the EVI �based on the Horvitz-Thompson

estimator given in Equation (6.1) of the tail probability F(x). Observe that by defi-

nition U�
N (N=K) corresponds to one of the observations in the sample, say Xi � with

rank ` P t 1; : : : ; nu. To this ` obviously corresponds an index k P t 0; : : : ; n � 1u such

that ` = n � k, implying Xn �k ;n = U�
N (N=K), the Horvitz-Thompson estimator of
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the quantile of order 1� K=N. We denote by ��N the map linking k to K in UN under

the sampling scheme RN :

��N :

 
t 1; : : : ; N � 1u �— t 1; : : : ; n � 1u

K fi�— k := ��N (K)

!

;

where

��N (K) := n � inf

#

i P t 1; : : : ; n � 1u :
i∏

j = 1

1
�j ;n

• N � K

+

. (6.5)

This leads to the quantity:

p�=
ª + 1

X n � k ;n

F
�(RN )
RN

(u)

F
�( RN )
RN

(Xn �k ;n )

du
u

=
k∏

i = 1

ª X n � i + 1;n

X n � i ;n

F
�( RN )
RN

(u)

F
�( RN )
RN

(Xn �k ;n )

du
u

=
k∏

i = 1

0

@

∞ i
j = 1

1
�n � j + 1;n

∞ k
j = 1

1
�n � j + 1;n

1

A � (log(Xn � i + 1;n ) � log(Xn � i ;n ))

=

 
k∏

j = 1

1
�n � j + 1;n

! �1 k∏

i = 1

1
�n � i + 1;n

log
�

Xn � i + 1;n

Xn �k ;n

�

= : H�
k ;n .

Hence, k is to the sample what K is to the population: the number of upper values

on which the estimation should rely. Notice that we may also write

H�
k ;n =

 
K∏

j = 1

�N � j + 1;N

�N � j + 1;N

! �1 K∏

i = 1

�N � i + 1;N

�N � i + 1;N
log

�
XN � i + 1;N

XN �K ;N

�

= : H�
K ;N ; (6.6)

where K is the chosen number of largest observations in the population from which

k was constructed. Observe that ��N in Equation (6.5) is a surjective, non-injective

random map, which suggests that the subsequent asymptotic analysis better rely

on some appropriately chosen K and its random image k := ��N (K) rather than the

contrary. Since in practice only k can be computed from the Xi ’s and �i ’s, i P S,

the total population being partly unobserved, considerations about the choice of an

appropriate k are discussed in detail in Section 6.4. From this point forward, the

Horvitz-Thompson Hill estimator shall be written H�
K ;N with K P t 1; : : : ; N � 1u held

fixed.

6.2.2 Consistency of H�
K;N

Here we investigate the limit properties of the estimator H�
K ;N as N and n simulta-

neously go to infinity, w ith n § N. The following assumptions, related to the sample

design, shall be involved in the asymptotic analysis.
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Assumpt ion 6.1 There exist �� ° 0 and N0 P N � such that for all N • N0 and

i PUN ,

�i ° ��.

Assumpt ion 6.2 There exists ` † + 1 such that we almost-surely have @N • 1,

max
1§ i ; j § N

�
��i ; j � �i �j

�
�§

`
n

.

Assumption 6.1 guarantees that first order inclusion probabilities do not vanish

asymptotically, while Assumption 6.2 corresponds to the situation where the second

order inclusion probabilities are not too different from those in the case of indepen-

dent sampling (it is thus fulfi lled by the Poisson design, see Section 6.1.1.2).

Remar k 6.3 – On Assumption 6.1 and Assumption 6.2. The two assumptions

introduced herein-before are rather mild and are fulfi lled in a wide variety of sit-

uations. Indeed, Assumption 6.2 is standard in asymptotic analysis of sampling

techniques, see Hartley and Rao (1962) and Hàjek (1964) for instance. As for As-

sumption 6.1, recall that �i = �(W i ) with W an auxiliary variable and �(.) a link

function. Then, it is fulfi lled as soon as�(.) is continuous and the support of PW is

a compact subset of (R�
+ )d , where d denotes the dimension of the random vector W

and R�
+ the set of positive real numbers.

Given this framework, following in the footsteps of Resnick (2007, Section 4.4.1),

the consistency of H�
K ;N can be handled by exploiting the properties of regularly

varying distributions. Indeed, under the heavy-tail assumption in Equation (6.2),

provided that K — + 1 and K=N — 0 as N — + 1 , we have

N
K

P
�

X
U(N=K)

P .
�

v
�—

N —1
��1=�(.)

in the space of Radon measures on (0; + 1 ]. There, “ v—” stands for the vague conver-

gence of measures1 and ��1=�(.) is such that for all x ° 0, ��1=�(x; 1 ] = x�1=� (see

Resnick, 2007, Theorem 3.6 for instance). Its empirical counterpart in the population,

usually called the tail empirical measure, is defined as follows:

�N :=
1
K

N∏

i = 1

�X i =U ( N =K ) .

1. Recall that, in the space of non-negative Radon measures on (0; + 1 ], a sequence (�m )m • 1 is said

to converge vaguely to � iff for any compactly supported continuous function h : (0; + 1 ] — R, we

have:
≥+ 1
0 h(x)�m (dx) —

≥+ 1
0 h(x)�(dx) as m — + 1 .
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When replacing U(N=K) by its estimate UN (N=K) in the expression above and as-

suming that K = K(N) — + 1 where K=N — 0 as N — + 1 , it can be shown that it

converges to ��1=� in probability (Resnick, 2007, Equation (4.21)). Since we have

HK ;N =
ª 1

1
�N

�
XN �K ;N

U(N=K)
(x; + 1 ]

�
dx
x

and

�=
ª 1

1
��1=�(x; + 1 ]

dx
x

;

the asymptotic properties of �N naturally convey the consitency of the Hill estimator.

Generalizing this result to the Horvitz-Thompson tail empirical measure

��N =
1
K

N∏

i = 1

�i

�i
�X i =U �

N ( N =K ) =
1
K

∏

i PS

1
�i
�X i =U �

N ( N =K ) (6.7)

would then yield the theorem below (see the proof in Section 6.6). It reveals that, in

regard to the asymptotic statistical estimation of the EVI �, the Horvitz-Thompson

variant of the Hill estimator H�
K ;N is consistent.

Theor em 6.4 – Consistency. Let K = K(N) be a sequence of integers such that

K — + 1 and K=N — 0 as N; n — + 1 . Provided that Assumption 6.1 and

Assumption 6.2 are fulfi lled, we then have, as N and n tend to + 1 :

H�
K ;N

P
�— �. (6.8)

6.3 asympt ot i c n or mal i t y of H�
K;N

Whereas the consistency of the standard Hill estimator in Equation (6.3) can be

proved for any sequence K going to infinity at a reasonable rate, asymptotic normal-

ity cannot be guaranteed at such a level of generality. Higher-order regular variation

properties of the heavy-tail model in Equation (6.2) are required (de Haan and Peng,

1998; de Haan and Stadtmüller, 1996). More specifically, consider the hypothesis be-

low, referred to as the Von Misescondition (Goldie and Smith, 1987).

Assumpt ion 6.5 The regularly varying tail quantile function U PR� with � ° 0

is such that there is a real parameter �† 0, referred to as the second order parameter,

and a positive or negative function A with lim
x —+ 1

A(x) = 0 such that for any t ° 0,

1
A(x)

�
U(t x)
U(x)

� t�
�

�—
x —1

t�
t�� 1
�

;
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or equivalently

1

A
�

1
F( x )

�

�
F(t x)

F(x)
� t�1=�

�

�—
x —1

t�1=� t�=� � 1
��

.

This condition simply establishes some constraints about the slowly varying function

L(.) in Equation (6.2) to ensure its influence vanishes quickly enough not to interfere

with the Pareto form x�1=� of F.

The limit distribution of the standard Hill estimator in Equation (6.3) has been

investigated by means of Rényi’s exponential representation of log-spacings under

Assumption 6.5. Of course, this condition can hardly be checked in practice and the

choice of the number of extremal observations is generally selected so as to minimize

an estimate of the asymptotic mean squared error (MSE), see Section 6.4 and the

references therein.

Remar k 6.6 – On Hill and thetail empirical process. Other approaches than the

Rényi decomposition in log-spacings have been developed to prove the asymptotic

normality of the Hill estimator HK ;N (see Resnick, 2007, Chapters 4 and 9 and the

references therein). A long the lines of the study of empirical processes in Chapter 5,

the version presented at length in Resnick (2007) involves the preliminary study of

the tail empirical process

T N :=
?

K
�
�N ���1=�

�
(x�1=�; 1 ]; x • 0;

from which the asymptotic properties of the Hill estimator are later deduced. We

refer to Theorem 9.1 and Section 9.1.2 in Resnick (2007) for more details on this

seemingly simple but actually quite intricate procedure.

Unfortunately, contrary to the classical empirical process, the asymptotic proper-

ties of T N cannot be extended to its Horvitz-Thompson equivalent. This is essen-

tially due to the fact that the population UN contains a finite number of observa-

tions. Hence, there is always a maximum XN ;N † 1 bounding PN and sampling

fails to distinguish between a distribution with finite support such as those in the

Weibull domain of attraction and a heavy-tailed distribution with no endpoint (see

Chapter 2 for an introduction to extreme value theory and maximum domains of

attractions). Actually, these arguments are exactly the same as those introduced

when discussing the applicability of bootstrap in extreme value analysis. Indeed,

as explained in Remark 5.7 of Chapter 5, survey sampling under a superpopula-

tion model can be viewed as a generalization of weighted bootstrap. The interested

reader may refer to Resnick (2007, Section 6.4) for a brief introduction to the diffi-

culty of bootstrapping heavy-tailed phenomena.
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In this section, we shall aim at proving first that under Poisson survey schemes, the

Horvitz-Thompson version of the Hill estimator computed on the sample is asymp-

totically close to its standard version calculated over the entire population. This result

is next extended to rejective sampling plans through a coupling argument, similar to

that used in Hàjek (1964) and in Chapter 5.

6.3.1 Thecaseof thePoisson survey scheme

In this section we assume that the vector �corresponds to that of a Poisson survey

scheme, such as depicted in Section 6.1.1.2. The distribution of this design is denoted

by TN and the first order inclusion probabilities by p1 ; : : : ; pN . Under this setting, the

Horvitz-Thompson variant of the Hill estimator is naturally denoted by Hp
K ;N and

the �i ’s in Equation (6.6) are to be replaced by the corresponding pi ’s. In addition,

just like we previously set �i = �(W i ), we write pi = p(W i ) for all i P UN and

p the Poisson link function. In keeping with the results obtained in Chapter 5, so

as to prove the asymptotic normality of Hp
K ;N , we shall require the pi ’s to fulfi ll

Assumption 6.1 with lower bound p� and the auxiliary variable from which they are

built to satisfy the condition below.

Assumpt ion 6.7 The random vectors W1 ; : : : ; WN are iid with continuous distri-

bution PW on W Ä Rd , d-variate cdf FW with marginals FW 1 ; : : : ; FW d and density

f W . The joint distribution of the entailed iid sequence t (Xi ; W i ); 1 § i § Nu is

denoted by PX ;W with corresponding cdf FX ;W .

The following result reveals that under the Poisson survey scheme, when based on

the K largest values among the whole population X1 ; : : : ; XN , Hp
K ;N converges at the

same rate (1=
?

K namely) to the same limit distribution as HK ;N , up to a multiplica-

tive term in the asymptotic variance induced by the sampling scheme. Further details

about the convergence of the classical Hill estimator can be found e.g. in de Haan and

Peng (1998, Theorem 1) and Resnick (2007, Section 9).

Theor em 6.8 – Limit distribution in the Poisson survey case. Suppose that As-

sumption 6.5 is fulfi lled by the underlying heavy-tailed model and that Assump-

tion 6.1 is satisfied by the considered sequence of Poisson inclusion probabilities

p1 ; : : : ; pN , N • 1, constructed from some set of auxiliary variables as in Assump-

tion 6.7. Further assume the conditions introduced herein-after.

i ) The marginal cdf F is absolutely continuous with respect to the Lebesgue

measure with density f .
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i i ) The joint cdf FX ;W is absolutely continuous with Lebesgue-integrable density

f X ;W such that for all (x; w) P (0; + 1 ]�W, w = (w1 ; : : : ; wd ),

f X ;W(x; w) := cX ;W (F(x); FW 1 (w1 ); : : : ; FW d (wd )) f (x)
dπ

j = 1

f W j (w j );

for some copula density cX ;W : R�
+ � Rd — R and f W 1 ; : : : ; f W d the marginal

densities of the distribution of W.

i i i ) cX ;W bounded in a neighborhood of t 1u� [0; 1]d .

Then, for

�2
p :=

ª

W

1
p(w)

cX ;W(1; FW 1 (w1 ); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd

and provided that K — + 1 as N — + 1 so that
?

KA(N=K) — �for some constant

�P R, we have the convergence in distribution as N — + 1 :

?
K
�
Hp

K ;N � �
�

Ò N
�

�

1� �
; �2 �2

p

�

. (6.9)

As can be seen by examining the proof of this theorem in Section 6.6, the limit result

in Proof 6.6.2 can be obtained using the following decomposition:

?
K
�
Hp

K ;N � �
�

=

?
K

rK ;N

�
rK ;N Hp

K ;N � HK ;N
�

l ooooooooooooooooomooooooooooooooooon

Q ( 1)
N

+

?
K

rK ;N
(HK ;N � �)

l oooooooooomoooooooooon

Q ( 2)
N

+ �
?

K
�

1
rK;N

� 1
�

l oooooooooomoooooooooon

Q (3)
N

; (6.10)

where

rK ;N := rK ;N (TN ; p) :=
1
K

K∏

i = 1

�N � i + 1;N

pN � i + 1;N
. (6.11)

These three quantities are studied independently under the hypotheses required

in Theorem 6.8. First, we show that rK ;N converges to 1 in probability as N tends

to 1 . Combined with Rényi’s decomposition in log-spacings of the Hill estimator

(refer for instance to Beirlant et al., 2004, Section 4.4), this establishes the asymptotic

convergence, in probability, of Q( 1)
N to 0. It also implies that Q( 2)

N is equivalent to
?

K (HK ;N � �), a well-known quantity which tends to a Gaussian distribution with

expectation �=(1� �) and variance �2 under the second order condition stipulated

in Assumption 6.5 (De Haan and Ferreira, 2006, Theorem 3.2.5). As for Q( 3)
N , we

calculate its expectation and variance conditionally on the full vector of observations

t (Xi ; W i ); 1 § i § Nu, yielding expressions where the randomness induced by the
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survey scheme has been controlled. Then, following in the lines of a Lindeberg-

Feller theorem for independent and non-identically distributed variables (Feller, 1971,

Theorem 3, p.262), we exhibit some sufficient conditions (namely i ), i i ) and i i i ) in

Theorem 6.8) under which the conditional variance has a finite limit in probability

relative to t (Xi ; W i ); 1 § i § Nu. Provided that they are fulfi lled, Q( 3)
N converges

weakly to a centered Gaussian distribution with variance �2 (�2
p � 1). This lets us

consider Q( 2)
N and Q( 3)

N as independent random variables (one depends on the data

and the other on the survey scheme). Thus, the limit distribution of their sum is

simply the sum of their limit distributions, thereby yielding Proof 6.6.2.

Remar k 6.9 – On the asymptotic variance. Looking at the variance term in

Proof 6.6.2 of Theorem 6.8, we see that the influence of the survey scheme is en-

capsulated by the multiplicative term �2
p • 1. Ideally, we would like to have at our

disposal inclusion probabilities for which �2
p is as close to 1 as possible. In that

case, the Horvitz-Thompson version of the Hill estimator would perform as well

as its population equivalent. For some chosen expected sample size n� := E (n(S)),

they would solve the following optimization program:

min
p ( w)

ª

W

1
p(w)

cX ;W (1; FW 1 (w1 ); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd � 1

subject to
N∏

i = 1

p(W i ) = n�;

provided the ensuing sequence p1 ; : : : ; pN satisfies Assumption 6.1.

6.3.2 Extension to rejectivesampling schemes

We now show how the result stated in Theorem 6.8 can be extended to an impor-

tant class of survey plans, namely rejectivesampling schemes. For the sake of clarity, we

first provide a brief description of the latter, refer to Hàjek (1964) and Berger (1998)

for further details.

Fix n § N and consider a vector (�1 ; : : : ;�N ) of first order inclusion probability.

The rejective sampling, sometimes referred to as conditional Poisson sampling (CPS in

short), exponential design without replacement or maximum entropy design (Tillé,

2006), is the sampling plan RN which picks samples of fixed size n(S) := n in order

to maximize the entropy measure

H(RN ) = �
∏

t sPP ( U N ) : #s= n u

RN (s) log RN (s)

subject to the constraint stipulating that its vector of first order inclusion probabilities

coincides with (�1 ; : : : ;�N ). It can be implemented in two steps, as follows.
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1. Draw a sample S with a Poisson sampling plan (without replacement), w ith

properly chosen first order inclusion probabilities (p1 ; : : : ; pN ). The representa-

tion is called canonical if
∞

pi = n. In that case the relationships between pi

and �i , 1 § i § N, are established in Hàjek (1964).

2. If n(S) � n, then reject it and go back to step one, otherwise stop.

The vector (p1 ; : : : ; pN ) must be chosen in a way that the resulting first order in-

clusion probabilities coincide with �1 ; : : : ;�N , by means of a dedicated optimization

algorithm, see Tillé (2006). The corresponding probability distribution is given by:

@s P P(UN ),

RN (s) =
Tp

N (s)I t #s = nu
∞

t s1PP( U N ) : #s1= n u Tp
N (s1)

9
π

i Ps

pi

π

i Rs

(1� pi ) � I t #s = nu.

Refer to Hàjek (1964, p. 1496) for more details on the pi ’s.

Turning now to the extension of the result stated in Theorem 6.8 for the Poisson

survey scheme to the caseof rejectivesampling, we introduce the following quantities:

@K § N,

DK ;N (RN ; TN ) := rK ;N (RN ;�) H�
K ;N � rK ;N (TN ; p) Hp

K ;N

and

rK ;N (RN ; TN ) := rK ;N (RN ;�) � rK ;N (TN ; p);

where H�
K ;N (respectively rK ;N (RN ;�)) refers to the Horvitz-Thompson version of

the Hill estimator (resp. of rK ;N in Equation (6.11)) under rejective sampling, and

Hp
K ;N (resp. rK ;N (TN ; p)) to its Poisson counterpart. The corresponding inclusion

probabilities are denoted by �1 ; : : : ;�N and p1 ; : : : ; pN respectively. The ensuing

approach follows in the footsteps of Hàjek (1964) and relies more specifically on the

results displayed in Theorem 5.1, p.1508. Let us start by defining the quantities

dN =
N∏

i = 1

pi (1� pi ) and p̄N =
1

dN

N∏

i = 1

p2
i (1� pi ).

We assume that both RN and TN fulfi ll Assumption 6.1 for minoring constants ��
and p� respectively and that the Poisson inclusion probabilities further satisfy the

following condition.

Assumpt ion 6.10

lim sup
N —+ 1

1
N

N∏

i = 1

pi (TN ) † 1.

Notice that, in this situation, dN = o(1=K) and p̄N is bounded. In addition, as

shown in Hàjek (1964) (see p.1510 therein), the decomposition below holds for all

i P t 1; : : : ; Nu:

pi ��i =
�

p̄N � pi

dN
+ o(1=dN )

�

pi (1� �i ).
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This roughly means that the inclusion probabilities of the rejective sampling scheme

are very close to those of the underlying Poisson design from which it was built. So

close in fact that DK ;N (RN ; TN ) and rK ;N (RN ; TN ) asymptotically vanish. Therefore,

as revealed by the following result, Theorem 6.8 also holds when the sample is con-

structed with a rejective plan.

Theor em 6.11 – Limit distribution in therejectivesurvey case. Suppose that all

the conditions required in Theorem 6.8 hold together with Assumption 6.10. Then,

for

�2
p :=

ª

W

1
p(w)

cX ;W(1; FW 1 (w1); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd

and provided that K — + 1 as N — + 1 so that
?

KA(N=K) — �for some constant

�P R, we have the convergence in distribution as N — + 1 :

?
K (H�

K ;N ��) Ò N
�

�

1��
; �2 �2

p

�

. (6.12)

The proof of this theorem is available in Section 6.6. Notice that the limit variance

does not depend on the inclusion probabilities �1 ; : : : ;�N , but on those of the un-

derlying Poisson design, p1 ; : : : ; pN namely. In that sense, this result is very similar

to those obtained in Chapter 5: the asymptotic properties of the rejective sampling

scheme are intricately linked to the Poisson plan with which it is coupled.

6.4 pr act i cal i ssues an d i l l ust r at i ve

exper i men t s

6.4.1 On thechoiceof an optimal k

All results presented in the previous section depend on some appropriate number

K of largest observations in the population X1 ; : : : ; XN . Unfortunately, the estimated

tail quantile XN �K ;N from which H�
K ;N is computed may not be included in the

sample. Hence, we need to choose a number k of largest values in the sample to

which we may associate some K that respects the necessary conditions for consistency

and asymptotic normality to hold (K = K(N) — + 1 and
?

KA(N=K) — � † 1 as

N — + 1 ). Recall that we defined ��N in Equation (6.5), a non-injective random

map that assigns an index k in the sample to any index K in the population so that

Xn �k ;n = U�
N (N=K). Setting

pK(k) := (��N )– (k) :=

S

N �

n �k∏

i = 1

1
�i ;n

W

;
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where r.s is the ceiling function, it is straightforward to show that the limit results

stated in the sections above remains true for
b

pK(k)
�
H�

k ;n ��
�

as N; k — + 1 so that
b

pK(k) A(N=pK(k)) — �almost-surely. This result can be naturally used to ground the

construction of asymptotic Gaussian confidence intervals. The only work left is to

find a suitable estimator p�2
p of �2

p such that, by virtue of Slutsky’s Lemma combined

with Theorem 6.4, the quantity
b

pK(k)
�
H�

k ;n ��
�

=H�
k ;n p�p would be asymptotically

pivotal, distributed as a standard Gaussian random variable as N; k — + 1 .

In practice, choosing an optimal threshold XN �K ;N is already complicated in the

iid case. Many techniques have been proposed in the literature, often based on the

minimization of the MSE (see Danielsson et al., 2001; Gomes and Oliveira, 2001;

Goegebeur et al., 2008 and the references therein). Since they involve in general

the estimation of the second order parameter �, which goes beyond the scope of

our analysis, we leave such considerations for future research. In the meantime, we

propose to simply rely on heuristics such as the stability of the Horvitz-Thompson

version of the Hill estimator around the appropriate k.

6.4.2 Numerical experiments

As a complement to the theoretical results established in the previous section, we

provide here some illustrations based on simulations. In particular, we consider a

model that does not fulfi ll condition i i ) in Theorem 6.8, which requires the absolute

continuity of FX ;W . The encouraging empirical results we obtain nonetheless give

hope that this assumption may be relaxed. Such desirable extensions are left for

future research.

6.4.2.1 Experiment setting

Simulations were based on the following model, chosen for its simplicity in terms

of both computation and interpretation:

X =
(1� FW (W))� � 1

�
; � ° 0;

W ; TN(�;�2
W ; w�; w�);

where X is the variable of interest, W the auxiliary information with cdf FW and

TN(�;�2
W ; w�; w�) refers to the truncated Normal distribution over [w�; w�], w ith

expectation � and variance �2
W . Under such a representation, the distribution of X

is a General Pareto with scale parameter 1 and EVI �, i.e. F(x) = 1� (1+ �x)�1=�.

This is a well-known family of distributions, the second order properties of which

are easily derived (De Haan and Ferreira, 2006, Section 3.2). In particular, we have
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�= ��and A(x) = x��=�. Following De Haan and Ferreira (2006, p.80), the optimal

number of largest observations in the population is

K�= K�(N) �

[ �
N2�

2
�3 (1+ �)2

�1=(2�+ 1)
_

;

where txu is the integer part of x. It follows that
?

K�A(N=K�) — 0 as N — + 1 .

Concerning the joint distribution of X and W, it is straightforward to see that

FX ;W (x; w) = F(x) ^ FW (w);

which means that the copula linking both marginals is the well-known singular cop-

ula M (u; v) := u ^ v, (u; v) P [0; 1]2 . Unfortunately, it is not derivable on it entire

support and condition i i ) in Theorem 6.8 is not fulfi lled here. However, as we shall

see in the next subsection, this does not impede tail estimation.

For a given population UN of size N, where it is assumed that t Wi ; i P UN u

are independent realizations of W, inclusion probabilities of the Poisson sampling

scheme are defined as

pi = p(Wi ) = n
Wi

∞ N
j = 1 Wj

; (6.13)

with n = �N, � P (0; 1), the desired expected sample size (Hàjek, 1964, Section

6, p.1512); this is the same formula as in Section 5.4 of Chapter 5. Thus defined,

p(W) P [p�; p�], where p� = �w�=� and p� = �w�=�, which offers an easy way

of ensuring Assumption 6.1 is fulfi lled. Furthermore, given the formula used to

compute X as a function of W, the more extreme the observations, the greater the

probabilities of inclusion.

Numerical experiments were conducted on a set of populations with increasing

sizes N = 103 , 5� 103 , 104 and 5� 104 . Several scenarios were investigated depend-

ing on the EVI �; they are summarized in Table 6.1. For each scenario, two sample

sizes were considered: one small w ith n = 0.1� N and one relatively large with

n = 0.5� N. Parameters of the distribution of W were chosen to ensure that for all

i P UN , pi P [0.01; 1]. Specifically, we set � = 1, �2
W = 0.09, w� = 0.1 and w� = 2,

thereby implying that (p�; p�) = (0.01; 0.02) when n = 0.1�N and (p�; p�) = (0.05; 1)

when n = 0.5� N.

Tabl e 6.1 – List of scenarios depending on �and corresponding optimal K�(N)

K�(N)

Scenario � N = 103 N = 5� 103 N = 104 N = 5� 104

S1 1=2 11 26 37 83

S2 1 125 368 584 1709

S3 2 514 1863 3245 11760
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For each scenario, we drew 1000 samples according to a rejective sampling scheme,

following Algorithm 5.9 in Tillé (2006). The true inclusion probabilities, denoted

by �i , 1 § i § N, were deduced from their Poisson equivalents defined in Equa-

tion (6.13) using a Monte-Carlo approximation technique, based on the repetition (105

times) of the basic algorithm stated in Section 6.3.2. Notice that since rejective sam-

pling is a Poisson sampling conditioned upon its size, we have (pi = 1) Ò (�i = 1).

The Horvitz-Thompson version of the Hill estimator was calculated using Equa-

tion (6.6) on each of the 1000 simulated samples. The ensuing results are presented

herein-after.

6.4.2.2 Experiment results

Il lustrations of the behavior of H�
K ;N in a neighborhood of K�(N) as N grows are

presented in Figure 6.1 for each scenario. As a complement, we display in Figure 6.2

the empirical estimator of ��2 �2
p in a neighborhood of K�(N) for each scenario and

each sample size as N increases; for large populations, this gives some indication as

to the form of the variance of
?

K
�
H�

K ;N � �
�
.

Since we only considered one fixed population, these results should be interpreted

with caution: they only illustrate the behavior of
?

K
�
H�

K ;N � HK ;N
�

given the full

vector (X1 ; W1 ); : : : ; (XN ; WN ). We can see on Figure 6.1 that the Horvitz-Thompson

version of the Hill estimator behaves perfectly well, even if the condition i i ) in The-

orem 6.8 is not satisfied. In particular, both its mean and variance decrease with N,

more quickly when n = 0.5� N than when n = 0.1� N, and the distribution of

the estimator appears to be symmetric around its classical version, which advo-

cates normality. Scrutinizing Figure 6.2, we can see that the asymptotic variance

of
?

K
�
H�

K ;N � HK ;N
�

seems indeed to be finite, depending on both the sample size

and �2 (the smaller the EVI, the smaller the variance). This gives hope that the ex-

istence of a joint density may not be necessary for the asymptotic normality of our

estimator to hold.
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Figur e 6.1 – Average values of H�
K ;N (red line) and empirical 95% confidence band (pink area)

computed on the 1000 simulated samples under scenario S2 for n = 0.1� N (left hand plots) and

n = 0.5�N (right hand plots), then compared to HK ;N (black dotted line) for N = 103 (upper plots)
and N = 5� 104 (lower plots)
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Figur e 6.2 – Estimation of ��2 �2
p based on the 1000 simulated samples for �= 0.1 (dotted lines)

and �= 0.5 (plain lines) under scenarios S1 (grey lines), S2 (black lines) and S3 (red lines)

6.5 di scussi on

In an attempt to start adapting classical extreme value analysis to the case of sur-

vey data, we introduced in Section 6.2 a Horvitz-Thompson version of the widely

celebrated Hill estimator of the extreme value index. After exhibiting some sufficient

hypotheses on both the superpopulation model and the sampling scheme for the

consistency of this novel statistic to hold in Section 6.2.2, we proved in Section 6.3

its asymptotic convergence to a Gaussian distribution when the survey design is of

Poisson type. The exhibited rate of convergence appeared to be the same as the stan-

dard Hill estimator, namely
?

K, and the asymptotic variance was simply perturbed

by a multiplicative constant depending solely on the sampling plan. In view of the

empirical results presented in Section 6.4, hope is that the existence of a density cop-

ula linking those of the variable of interest and of the auxiliary information is not
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necessary for the asymptotic normality to be true. This encourages further research

to try and relax this assumption. Other improvements may be brought to these first

results, for instance situations where the true inclusion probabilities are not available

and replaced by an estimated version issued from post-calibration methods could be

inspected. The assumptions made on the first and second order inclusion probabil-

ities are also quite restrictive. Following in the lines of Boistard et al. (2012), higher

order conditions could permit to get rid of Assumption 6.1. This remark is also true

concerning the results obtained in Chapter 5. Sampling designs of other nature than

the Poisson type may be considered as well, especially complex ones such as that

used in the INCA2 database.

Though we could not directly apply our findings to dietary risk analysis, they

could be of great interest in the context of big data management. Indeed, it is more

and more frequent to meet databases that increase regularly (in finance, information

about the markets is stocked every hour at least) and cannot be saved, thus analyzed,

on a single computer. When accessing such huge files becomes a challenge, sampling

is a natural solution. In this context, the superpopulation model and the asymptotic

nature of our results are perfectly relevant. Moreover, the analyst has then complete

control over the survey scheme they desire to adopt, which is typically rarely the

case with institutional data. Hence, the Poisson and rejective schemes, which are

not of frequent use in practice, are revealed as especially convenient for such types

of analyses. With these potential assets in mind, we hope that this preliminary step

towards the elaboration of a new extreme value theory for survey data will engender

further research in the near future.

6.6 pr oof s an d suppl emen t s

6.6.1 Consistency of theHorvitz-Thompson variant of theHill

estimator

We start by establishing the following intermediate results, in order to describe

next the limit behavior of the Horvitz-Thompson tail empirical process.

First, we introduce the point measure:

�̃�N :=
1
K

N∏

i = 1

�i

�i
�X i =U ( N =K ) .

Notice that the point measure ��N can be obtained from the latter by replacing the

threshold U(N=K) by the empirical counterpart U�
N (N=K).
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Lemma 6.12 Under the assumptions of Theorem 6.4, as N; n and K tend to

infinity so that K=N — 0, we have:

�̃�N Ò ��1=�; (6.14)

where “ Ò ” denotes weak convergence in the space of positive Radon measures on

(0; + 1 ].

Pr oof Consider first the tail empirical process

�N :=
1
K

N∏

i = 1

�X i =U ( N =K ) .

We shall prove that for any t ° 0, as N; n and K tend to + 1 , provided K=N converges

to 0,

D�
N (t ) := �̃�N (t ; + 1 ]� �N (t ; + 1 ] — 0 in L2 . (6.15)

Indeed, @t ° 0, provided Assumption 6.1 and Assumption 6.2 hold, we have

E (D�
N (t )) =

1
K

N∏

i = 1

E

  
E
�
�i
�
�t (Xi ; W i )1§ i § N u

�

�i
� 1

!

I t Xi ° t U(N=K)u

!

= 0;

together with

E
�
D�

N (t )2�=
1

K2

N∏

i = 1

E

 

E

 �
�i

�i
� 1
�2 ��

�
�t (Xi ; W i )1§ i § N u

!

I t Xi ° t U(N=K)u

!

+
2

K2

∏

1§ i � j § N

E
�

E
��

�i

�i
� 1
� �

�j

�j
� 1
� �
�
�
�t (Xi ; W i )1§ i § N u

�

� I
 
Xi ^ Xj ° t U(N=K)

(
�

=
1

K2

N∏

i = 1

E
��

1
�i
� 1
�

I t Xi ° t U(N=K)u
�

+
2

K2

∏

1§ i � j § N

E
��

�i ; j ��i �j

�i �j
I

 
Xi ^ Xj ° t U(N=K)

(
��

§
�

1
��
� 1
�

1
K2

N∏

i = 1

P (Xi ° t U(N=K))

+
�

`=n
�2
�

�
2

K2

∏

1§ i � j § N

P
�
Xi ^ Xj ° t U(N=K)

�
= : `N ;K (t ).

Since F is supposed to be regularly varying with index �1=�and K=N — 0, we have

P (Xi ° t U(N=K)) � t�1=� K=N for all i P t 1; : : : ; Nu as N and K go to infinity. It

follows that as N; n; K — + 1 ,

`N ;K (t ) �
�

1
��
� 1
�

t�1=� 1
K

+
�

`=n
�2
�

�

t�2=�
�

1�
1
N

�

— 0.
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Hence, the convergence in Equation (6.15) is proved and the desired convergence will

then result from the fact that �N Ò ��1=�, see Resnick (2007, Theorem 4.1). �

We next prove the lemma below, claiming that the threshold U�
N (N=K) and U(N=K)

are asymptotically equivalent in probability.

Lemma 6.14 Under the assumptions of Theorem 6.4, we have: as N; n and K

tend to infinity,
U�

N (N=K)
U(N=K)

— 1 in probability. (6.16)

Pr oof This is a straightforward consequence of Lemma 6.12. Indeed, for all " ° 0,

we have:

P
��
�
�
�
U�

N (N=K)
U(N=K)

� 1

�
�
�
�° "

�

= P (U�
N (N=K) ° (1+ " ) U(N=K))

+ P (U�
N (N=K) † (1� " ) U(N=K))

§ P

 
1
N

N∏

i = 1

�i

�i
�X i ((1+ " ) U(N=K); + 1 ] •

K
N

!

+ P

 
1
N

N∏

i = 1

�i

�i
�X i ((1� " ) U(N=K); + 1 ] †

K
N

!

§ P (�̃�N (1+ " ; + 1 ] • 1) + P (�̃�N (1� " ; + 1 ] § 1) .

Therefore, by virtue of the lemma previously established, we asymptotically have:

�̃�N (1 + " ; + 1 ] — 1=(1 + " )1=� † 1 and �̃�N (1 + " ; + 1 ] — 1=(1� " )1=� ° 1 in proba-

bility. Combined with the bound above, this proves the lemma. �

Equipped with these preliminary results, we may now tackle the proof of Theo-

rem 6.4, which is recalled below for convenience.

Theor em – Consistency. Let K = K(N) be a sequence of integers such that

K — + 1 and K=N — 0 as N; n — + 1 . Provided that Assumption 6.1 and As-

sumption 6.2 are fulfi lled, we then have, as N and n tend to + 1 :

H�
K ;N �— � in probability. (6.17)

Pr oof The consistency result can be established by following line by line the

proof for the consistency of the Hill estimator in the iid situation given in Resnick

(2007): by a continuous mapping theorem argument, one derives from Lemma 6.12

and Lemma 6.14 that the Horvitz-Thompson tail empirical process ��N converges in

probability to ��1=� in the space of positive Radon measures on (0; + 1 ]. Then, it

classically suffices to integrate the tail measures against dt =t (cf. Equation (6.4) and

Equation (6.6)) and apply the convergence previously mentioned. See Resnick (2007,

Section 4.4.1) for further details. �
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6.6.2 Limit distribution of Hp
K;N in thePoisson survey case

Before handling Theorem 6.8, we start by establishing three intermediate results,

which are introduced herein-after. The first lemma claims that the quantity rK ;N

defined in Equation (6.11) converges to 1 in probability.

Lemma 6.17 Let �1 ; : : : ;�N and p1 ; : : : ; pN be respectively the inclusion

indicators and probabilities of a Poisson survey plan in some population

UN := t 1; : : : ; Nu. Then, provided Assumption 6.1 holds, for any K P t 1; : : : ; Nu

such that K := K(N) �—
N —1

+ 1 we have

rK ;N :=
1
K

K∏

i = 1

�N � i + 1;N

pN � i + 1;N

P
�—

N —1
1.

Pr oof Recall that under a Poisson sampling plan, all �1 ; : : : ;�N are independent.

We had set E
�
�i
�
�(Xi ; W i )

�
:= pi for all i P t 1; : : : ; Nu, hence

E (rK ;N ) =
1
K

K∏

i = 1

E

 
E
�
�N � i + 1;N

�
�(X1 ; W1 ); : : : ; (XN ; WN )

�

pN � i + 1;N

!

= 1.

In addition, V
�
�i
�
�(Xi ; W i )

�
:= pi (1� pi ) for all i P t 1; : : : ; Nu, therefore

V (rK ;N ) =
1

K2

K∏

i = 1

E

 
V
�
�N � i + 1;N

�
�(X1 ; W1 ); : : : ; (XN ; WN )

�

p2
N � i + 1;N

!

+
1

K2

K∏

i = 1

V

 
E
�
�N � i + 1;N

�
�(X1 ; W1 ); : : : ; (XN ; WN )

�

pN � i + 1;N

!

=
1

K2

K∏

i = 1

E
�

1
pN � i + 1;N

�

�
1
K

.

Under Assumption 6.1 it is clear that V (rK ;N ) = O( 1
K ) when K �—

N —1
+ 1 . This

concludes the proof. �

We now move to the quantity
?

K
�
rK ;N Hp

K ;N � HK ;N
�

appearing in Equation (6.10).

The result below reveals that is vanishes asymptotically.

Lemma 6.19 Suppose that Assumption 6.5 is fulfi lled by the underlying heavy-

tailed model and that Assumption 6.1 is satisfied by the considered sequence of

Poisson inclusion probabilities p1 ; : : : ; pN , N • 1. Assume also that K — + 1 as

N — + 1 so that
?

KA(N=K) — �for some constant �PR. Then we have

?
K
�
rK ;N Hp

K ;N � HK ;N
� P
�—

N —1
0.



6.6 pr oof s an d suppl emen t s 173

Pr oof Let us start by introducing the weighted versions of log-spacings in the pop-

ulation, given by

@i P t 1; : : : ; Nu; �i := i (log XN � i + 1;N � log XN � i ;N ) .

Let K P t 1; : : : ; Nu, these random variables are intrinsically linked to both HK ;N and

Hp
K ;N , given by Equation (6.3) and Equation (6.6) respectively. Indeed, they can be

expressed as

HK ;N =
1
K

K∏

i = 1

�i

and

Hp
K ;N =

 
1
K

K∏

j = 1

" N � j + 1;N

pN � j + 1;N

! �1
1
K

K∏

i = 1

 
1
i

i∏

j = 1

" N � j + 1;N

pN � j + 1;N

!

�i .

Combining the two we immediately obtain

rK ;N Hp
K ;N � HK ;N =

1
K

K∏

i = 1

 
1
i

i∏

j = 1

" N � j + 1;N

pN � j + 1;N
� 1

!

�i . (6.18)

When Assumption 6.5 is fulfi lled, it is possible to approximate the distribution of the

�i ’s corresponding to the K + 1 largest values. Denoting by E1 ; : : : ; EK a collection of

independent random variables with standard exponential distribution, the random

variables�i are approximately distributed as
 

�+
�

i
K + 1

���

A
�

N + 1
K + 1

�!

Ei ; 1 § i § K. (6.19)

This property is at the basis of most of the asymptotic analyzes that were led con-

cerning HK ;N , see de Haan and Resnick (1998) for more details. As mentioned in

Remark 6.6, alternative approaches taking advantage of the Glivenko-Cantelli and

Donsker theorems in the formulation of the Hill estimator in Equation (6.3) were also

developed, see Resnick (2007) for instance.

Given the decomposition in Equation (6.18), just like rK ;N in Lemma 6.17 the expec-

tation and variance of rK ;N Hp
K ;N �HK ;N are easily derived by conditioning upon the

full vector of observations (X1 ; W1 ); : : : ; (XN ; WN ). In particular, it is straightforward

to see that

E
�
rK ;N Hp

K ;N � HK ;N
�

= E

 
1
K

K∏

i = 1

 
1
i

i∏

j = 1

�N � j + 1;N

pN � j + 1;N
� 1

!

�i

!

= 0.

Turning now to the variance, under Assumption 6.1, we have

V
�
rK ;N Hp

K ;N � HK ;N
�

=
1

K2

K∏

i = 1

E

 
�2

i

i 2

i∏

j = 1

�
1

pN � j + 1;N
� 1
�!

§
1

K2

K∏

i = 1

E
�
�2

i

�p�1
� � 1

i
.
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To simplify notations, set c = p�1
� � 1 and consider the variable AK ;N = A

�
N + 1
K + 1

�

involved in Equation (6.19). Using this particular equation, we are able to estab-

lish asymptotic properties of the right hand side in the inequality herein above: as

N; K — + 1 we have

1
K2

K∏

i = 1

E
�
�2

i

� c
i
�

1
K2

K∏

i = 1

 

�+
�

i
K + 1

���

AK ;N

! 2

E
�
E2

i

� c
i

�
2c�2

K2

K∏

i = 1

1
i

+
2c

K2 (K + 1)�2� A2
K ;N

K∏

i = 1

1
i 2�+ 1

+
4c�

K2 (K + 1)��
AK ;N

K∏

i = 1

1
i�+ 1

�
log K
K2 (2c�2) �

K�2�� 1
K2 (K + 1)�2�

c
�

A2
K ;N

�
K��� 1

K2 (K + 1)��
4c�
�

AK ;N

�
log K
K2 (2c�2) �

1
K2

c
�

A2
K ;N �

1
K2

4c�
�

AK ;N .

Because A PR� with �† 0, then AK ;N — 0 as N; K — + 1 , and we can conclude that

V
�
rK ;N Hp

K ;N � HK ;N
�

= o(1=K). �

The last intermediate result concerns the quantity Q( 3)
N in Equation (6.10). It claims

that the latter converges weakly to a centered Normal distribution.

Lemma 6.21 Suppose that Assumption 6.1 is satisfied by the considered se-

quence of Poisson inclusion probabilities p1 ; : : : ; pN , N • 1, constructed from

some set of auxiliary variables as in Assumption 6.7. Further assume the condi-

tions i ) � i i i ) introduced in Theorem 6.8. Then, for

�2
p :=

ª

W

1
p(w)

cX ;W(1; FW 1 (w1 ); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd

and provided that K — + 1 as N — + 1 so that K = o(N), we have the convergence

in distribution as N — + 1 :

?
K (1� rK ;N ) Ò N

�
0; �2

p � 1
�

.

Pr oof This proof is based on the application of Feller (1971, Theorem 3, p.262) to

the collection of random variables t Z i ;N (�); 1 § i § Nu defined for all i P t 1; : : : ; Nu

as follows:

Z i ;N (�) :=
1

?
K

�

1�
�i

pi

�

I t Xi ° XN �K ;N u;
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with distribution P i only depending on the survey scheme (they are conditioned

upon the vectors t (Xi ; W i ); 1 § i § Nu). Indeed, notice that we have

?
K (1� rK ;N ) =

N∏

i = 1

Zi ;N (�).

In order to apply this theorem, we first have to check the three conditions below.

(C1) For all i P t 1; : : : ; Nu, we have E (Z i ;N (�)) = 0 and V (Z i ;N (�)) = �2
i † 1 .

(C2) There exists some real constant �2 † 1 such that S2
N :=

∞ N
i = 1 �

2
i

P
�—

N —1
�2 .

(C3) For each t ° 0, we have
∞ N

i = 1

≥
|z |• t SN

z2 P i (dz) P
�—

N —1
0.

Ú Condition (C1 ) Let us start by calculating the expectation of Z i ;N (�) for all i P

t 1; : : : ; Nu. Because the�1 ; : : : ;�N are independent random variables with respective

Bernoulli distributions B(p1 ); : : : ; B(pN ), it is straightforward to see that

E (Z i ;N (�)) =
1

?
K

 

1�
E
�
�i
�
�t (Xi ; W i )1§ i § N u

�

pi

!

I t Xi ° XN �K ;N u = 0.

As for the variance, we have

V (Z i ;N (�)) = E
�
Z2

i ;N (�)
�

=
1
K

E

 �
1�

�i

pi

�2 ��
�
�t (Xi ; W i )1§ i § N u

!

I t Xi ° XN �K ;N u

=
1
K

1� pi

pi
I t Xi ° XN �K ;N u = :�2

i † 1 .

Therefore, condition (C1 ) is fulfi lled.

Ú Condition (C2 ) We now have to prove that S2
N converges in probability to a

finite constant �2 as N tends to infinity and exhibit the required conditions for this

property to hold. First observe that

S2
N :=

N∏

i = 1

�2
i =

1
K

N∏

i = 1

1
pi

I t Xi ° XN �K ;N u� 1;

where XN �K ;N is a consistent estimator of U(N=K) (Resnick, 2007, Section 4.4.1, p.81).

With this remark in mind, we will proceed in two steps and successively prove that

there exists a real constant �2 ° 0 such that

S̃2
N :=

1
K

N∏

i = 1

1
pi

I t Xi ° U(N=K)u� 1 P
�—

N —1
�2 ;

then that S2
N � S̃2

N
P
�—

N —1
0. Since S2

N = S2
N � S̃2

N + S̃2
N , this will yield the desired

result.
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Let us start w ith S̃2
N . By virtue of the law of large numbers, as N — + 1 we have

S̃2
N + 1 =

N
K

ª

W

ª 1

U (N =K )

1
p(w)

PX ;W(dx; dw) + oP (1);

provided that this integral exists. Under Assumptions i ) and i i ) in Theorem 6.8, this

yields

S̃2
N + 1 =

N
K

ª

W

ª 1

U ( N =K )

1
p(w)

cX ;W (F(x); FW 1 (w1 ); : : : ; FW d (wd ))

� f (x)
dπ

j = 1

f W j (w j ) dx dw1 : : : dwd + oP (1).

Further set u := N
K F(x), then for K := K(N) — + 1 as N — + 1 and K = o(N), under

Assumption i i i ) we have:

S̃2
N + 1 =

ª

W

ª 1

0

1
p(w)

cX ;W

�

1�
K
N

u; FW 1 (w1 ); : : : ; FW d (wd )
�

�

dπ

j = 1

f W j (w j )du dw1 : : : dwd + oP (1)

P—
ª

W

1
p(w)

cX ;W(1; FW 1 (w1 ); : : : ; FW d (wd ))

�

dπ

j = 1

f W j (w j )dw1 : : : dwd = :�2
p .

Provided that all the aforementioned hypotheses hold, we can conclude that

S̃2
N

P
�—

N —1
�2

p � 1.

There remains to control the quantity
�
�S2

N � S̃2
N

�
�, which we denote by SN for sim-

plicity. For any fixed N PN � and �° 0, it can be decomposed as follows:

SN :=
1
K

N∏

i = 1

1
pi

(I t Xi ° U(N=K)u� I t Xi ° XN �K ;N u) = S( 1)
N (�) + S( 2)

N (�);

where

S( 1)
N (�) := SN I

" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�° �

*

and

S( 2)
N (�) = SN I

" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�§ �

*
.

We shall use this decomposition to prove that SN
P
�—

N —1
0. Referring to Assump-

tion 6.1, it is easy to see that S( 1)
N (�) P

�—
N —1

0. Indeed,

�
�
�S( 1)

N (�)
�
�
�§

1
p�

�
�
�
�
�

1
K

N∏

i = 1

(I t Xi ° U(N=K)u� I t Xi ° XN �K ;N u)

�
�
�
�
�
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� I
" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�° �

*

§
1
p�

�
�
�
�
�

1
K

N∏

i = 1

I t Xi ° U(N=K)u� 1

�
�
�
�
�
� I

" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�° �

*
.

The law of large numbers ensures that as N — 1 ,

1
K

N∏

i = 1

I t Xi ° U(N=K)u� 1 =
N
K

P (Xi ° U(N=K)) � 1 + oP (1) — 0.

In addition, we know that for all �° 0,

I
" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�° �

*
P
�—

N —1
0

(Resnick, 2007, Section 4.4.1, p.81), hence S( 1)
N (�) P

�—
N —1

0.

As for S( 2)
N (�), combining Assumption 6.1 with triangular inequalities provides an

absolute bound:

�
�
�S( 2)

N (�)
�
�
�§

1
p�

1
K

N∏

i = 1

|I t Xi ° U(N=K)u� I t Xi ° XN �K ;N u|

� I
" �
�
�
�
XN �K ;N

U(N=K)
� 1

�
�
�
�§ �

*

§
1
p�

1
K

N∏

i = 1

I t (1� �) U(N=K) † Xi § (1 + �) U(N=K)u

§
1
p�

1
K

N∏

i = 1

I t Xi ° (1� �) U(N=K)u� I t Xi ° (1+ �) U(N=K)u.

Denote by cN (�) the quantity in the right hand part of the last inequality, i.e.

cN (�) :=
1
p�

1
K

N∏

i = 1

I t Xi ° (1��) U(N=K)u� I t Xi ° (1+ �) U(N=K)u.

Applying the law of large numbers and recalling that F P R�1=�, we get that as

N — + 1 ,

cN (�) =
1
p�

N
K

�
(1��)�1=� � (1+ �)�1=�

�
F(U(N=K)) + oP(1)

P
�—

1
p�

�
(1��)�1=� � (1+ �)�1=�

�
= : c�;

meaning that cN (�) P
�—

N —1
c�. Furthermore, notice that c� �—

�—0
0, since

|c�| =
1
p�

�
�
�(1� �)�1=� � (1+ �)�1=�

�
�
�

§
1
p�

�
�
�
�(1+

�

�
+ o(�)) � (1�

�

�
+ o(�))

�
�
�
�
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§
2�

p��
+ o(�) �—

�—0
0.

We may now prove that SN
P
�—

N —1
0 by going back to the definition.

Formally, we have shown that |SN | § |S( 1)
N (�)| + cN (�) = : �N (�), for all �° 0. We

also know that �N (�) P
�—

N —1
c� and c� �—

�—0
0. Now for any fixed �° 0, we have to

verify that P (|SN | ° 2�) �—
N —1

0. First choose �0 ° 0 such that for all 0 † � § �0 ,

|c�| § �, then take some�° 0. We need to prove that there exists N0 P N such that

for all N • N0 , P (|SN | ° 2�) § �. In order to construct this N0 , first fix any � ° 0

such that �§ �0 . Since�N (�) P
�—

N —1
c�, there exists N0 P N such that for all N • N0 ,

we have P (|�N (�) � c�| ° �) § �. In parallel, since�§ �0 , we have for all N P N :

|SN | § |�N (�)| § |�N (�) � c�| + |c�| § |�N � c�| + �.

This implies that for all N • N0 ,

P (|SN | ° 2�) § P (|�N (�) � c�| + �° 2�) = P (|�N (�) � c�| ° �) § �.

Since this is true for any �° 0, this means that SN
P
�—

N —1
0.

In fine, we can conclude that under all the hypotheses stated in Lemma 6.21,

S2
N

P
�—

N —1
�2

p � 1.

Ú Condition (C3 ) Our last task consists in verifying that for any t ° 0, the quantity

below, denoted for simplicity by ZN (t ), converges to 0 as N — + 1 . By definition,

we have

ZN (t ) :=
N∏

i = 1

ª

|z|• t SN

z2 P i (dz)

=
N∏

i = 1

E
�
Z2

i ;N (�) I t |Z i ;N (�)| • t SN u
�
�t (Xi ; W i )1§ i § N u

�

=
1
K

N∏

i = 1

I t Xi ° XN �K ;N u

� E

 �
1�

�i

pi

�2

I
" �
�
�
�1�

�i

pi

�
�
�
�•

t SN

K I t Xi ° XN �K ;N u

* �
�
�
�t (Xi ; W i )1§ i § N u

!

.

Using Hölder ’s inequality, we obtain

ZN (t ) §
1
K

N∏

i = 1

I t Xi ° XN �K ;N u E

 �
1�

�i

pi

�3 ��
�
�t (Xi ; W i )1§ i § N u

! 2=3

� E
�

I
" �
�
�
�1�

�i

pi

�
�
�
�•

t SN

K I t Xi ° XN �K ;N u

* �
�
�
�t (Xi ; W i )1§ i § N u

�1=3

.
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Observe that under Assumption 6.1, we have
 

E

 �
1�

�i

pi

�3 ��
�
�t (Xi ; W i )1§ i § N u

! ! 2=3

=
�

1
pi

�

3�
1
pi

�

� 2
�2=3

§
�

3
�

1
p�
� 1
��2=3

.

Moreover, conditional on the vectors t (Xi ; W i ); 1 § i § Nu, the random variable�
�
�1� �i

p i

�
�
�equals either (pi � 1)=pi with probability pi or 1 with probability 1� pi .

Therefore, by virtue of Markov’s inequality, we can further bound ZN (t ) from above:

ZN (t ) §
1
K

N∏

i = 1

I t Xi ° XN �K ;N u
�

3
�

1
p�
� 1
��2=3

�

�
1
K

I t Xi ° XN �K ;N u
2(1� pi )

t SN

�1=3

§
32=3

K4=3

�
1
p�
� 1
�2=3 N∏

i = 1

I t Xi ° XN �K ;N u
�

2(1� pi )
t SN

�1=3

.

Using again Assumption 6.1, this yields

ZN (t ) §
21=3 � 32=3

K4=3

�
1
p�
� 1
�2=3 �1� p�

t SN

�1=3 N∏

i = 1

I t Xi ° XN �K ;N u

§
21=3 � 32=3

K1=3

�
1
p�
� 1
�2=3 �1� p�

t SN

�1=3

;

where we have shown that SN
P
�—

N —1
�. Consequently, the right hand part of this

last inequality tends to 0 in probability as N tends to infinity for any t ° 0. Hence,

condition (C3 ) is fulfi lled.

With all three conditions (C1 ), (C2 ) and (C3 ) satisfied, by virtue of Feller (1971,

Theorem 3, p.262) we finally have
?

K (1� rK ;N ) Ò
N —+ 1

N
�
0; �2

p � 1
�

.

�

We are now fully equipped to prove Theorem 6.8, the statement of which is recalled

below.

Theor em – Limit distribution in thePoisson survey case. Suppose that Assump-

tion 6.5 is fulfi lled by theunderlying heavy-tailed model and that Assumption 6.1 is

satisfied by the considered sequence of Poisson inclusion probabilities p1 ; : : : ; pN ,

N • 1, constructed from some set of auxiliary variables as in Assumption 6.7.

Further assume the conditions introduced herein-after.
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i ) The marginal cdf F is absolutely continuous with respect to the Lebesgue

measure with density f .

i i ) The joint cdf FX ;W is absolutely continuous with Lebesgue-integrable density

f X ;W such that for all (x; w) P (0; + 1 ]�W, w = (w1 ; : : : ; wd ),

f X ;W(x; w) := cX ;W (F(x); FW 1 (w1 ); : : : ; FW d (wd )) f (x)
dπ

j = 1

f W j (w j );

for some copula density cX ;W : R�
+ � Rd — R and f W 1 ; : : : ; f W d the marginal

densities of the distribution of W.

i i i ) cX ;W bounded in a neighborhood of t 1u� [0; 1]d .

Then, for

�2
p :=

ª

W

1
p(w)

cX ;W(1; FW 1 (w1 ); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd

and provided that K — + 1 as N — + 1 so that
?

KA(N=K) — �for some constant

�P R, we have the convergence in distribution as N — + 1 :

?
K
�
Hp

K ;N � �
�

Ò N
�

�

1� �
; �2 �2

p

�

.

Pr oof Recall the decomposition in Equation (6.10):

?
K
�
Hp

K ;N � �
�

=

?
K

rK ;N

�
rK ;N Hp

K ;N � HK ;N
�

l ooooooooooooooooomooooooooooooooooon

Q ( 1)
N

+

?
K

rK ;N
(HK ;N � �)

l oooooooooomoooooooooon

Q ( 2)
N

+ �
?

K
�

1
rK;N

� 1
�

l oooooooooomoooooooooon

Q (3)
N

.

Combining Lemma 6.17 and Lemma 6.19, provided that Assumption 6.1 and As-

sumption 6.5 hold and that K = K(N) — + 1 , K = o(N) and
?

KA(N=K) — � for

some constant �P R, we have

Q( 1)
N

P
�—

N —1
0.

Lemma 6.17 also ensures that under Assumption 6.1, Q( 2)
N is equivalent to

?
K (HK ;N � �) .

Referring for instance to De Haan and Ferreira (2006, Theorem 3.2.5), this entails

that provided Assumption 6.5 holds and that K = K(N) — + 1 , K = o(N) and
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?
KA(N=K) — � for some constant �P R, we have the convergence in distribution as

N — + 1 :

Q( 2)
N Ò N

�
�

1��
; �2

�

.

Finally, by virtue of Lemma 6.17 and Lemma 6.21, if Assumption 6.1, Assump-

tion 6.7 and conditions i ), i i ), i i i ) in Theorem 6.8 hold together with K = K(N) — + 1

and K = o(N), we have the convergence in distribution as N — + 1 :

Q( 3)
N Ò N

�
0; �2 ��2

p � 1
��

.

Because the limit distribution of Q( 3)
N was established conditionally on the set

t (Xi ; W i ); 1 § i § Nu and in probability relative to this full vector of observations,

we can consider Q( 2)
N and Q( 3)

N as independent random variables (one depends on

the data and the other on the survey scheme). The limit distribution of their sum is

then the sum of their limit distributions. This concludes the proof. �

6.6.3 Limit distribution of H�
K;N in therejectivesurvey case

We shall prove Theorem 6.11, the statement of which is recalled below.

Theor em – Limit distribution in the rejective survey case. Suppose that all the

conditions required in Theorem 6.8 hold together with Assumption 6.10. Then, for

�2
p :=

ª

W

1
p(w)

cX ;W(1; FW 1 (w1); : : : ; FW d (wd ))
dπ

j = 1

f W j (w j ) dw1 : : : dwd

and provided that K — + 1 as N — + 1 so that
?

KA(N=K) — �for some constant

�P R, we have the convergence in distribution as N — + 1 :

?
K (H�

K ;N ��) Ò N
�

�

1��
; �2 �2

p

�

.

Pr oof We shall write H�
K ;N (RN ) when the Horvitz-Thompson version of the Hill

estimator involves the inclusion variables�1 ; : : : ;�N drawn under the sampling plan

RN and the probabilities of inclusion �1 ; : : : ;�N . Consider a Poisson scheme TN

with probabilities p1 ; : : : ; pN and a Rejective scheme RN with probabilities�1 ; : : : ;�N .

Since Theorem 6.8 establishes the asymptotic convergence of
?

K
�
Hp

K ;N (TN ) � �
�

to a

Normal distribution, we only have to control the quantity
?

K
�
�H�

K ;N (RN ) � Hp
K ;N (TN )

�
�.

Using triangular inequalities, we obtain
?

K
�
�H�

K ;N (RN ) � Hp
K ;N (TN )

�
�§

?
K |H�

K ;N (RN ) � H�
K ;N (TN )|l oooooooooooooooooomoooooooooooooooooon

Q (4)
N

+
?

K
�
�H�

K ;N (TN ) � Hp
K ;N (TN )

�
�

l oooooooooooooooooomoooooooooooooooooon

Q ( 5)
N

.
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We shall successively prove that both Q( 4)
N and Q( 5)

N tend to 0 in probability as

N — 1 .

Let us start w ith Q( 4)
N . We use the bounded Lipschitz metric dBL as defined in

van der Vaart and Wellner (1996, p.73) and consider, conditionally on the full vector

of observations t (Xi ; W i ); 1 § i § Nu,

dBL (
?

K H�
K ;N (RN );

?
K H�

K ;N (RN )) :=

sup
b PBL 1 ( R)

�
�
�ERN

�
b
�?

K H�
K ;N (RN )

��
� ETN

�
b
�?

K H�
K ;N (TN )

���
�
�;

where BL1 (R) is the set of Lipschitz real functions on R bounded by 1. By virtue

of the results in van der Vaart and Wellner (1996, p.73), if this distance tends to 0 as

N — 1 then we have Q( 4)
N

P
�—

N —1
0. Take b PBL1(R), then

ERN

�
b
�?

K H�
K ;N (RN )

��
� ETN

�
b
�?

K H�
K ;N (TN )

��
=

∏

sPP( U N )

b
�?

K H�
K ;N (RN (s))

�
RN (s) �

∏

sPP (U N )

b
�?

K H�
K ;N (TN (s))

�
TN (s)

§
∏

sPP ( U N )

RN (s) � TN (s) §
∏

sPP( U N )

|RN (s) � TN (s)|;

since b is bounded by 1 and for a fixed sample s,

b
�?

K H�
K ;N (RN (s))

�
= b

�?
K H�

K ;N (TN (s))
�

.

As established in Berger (1998); Hàjek (1964), the right hand part of this last inequality

converges to 0 as N — 1 . Therefore, Q( 4)
N

P
�—

N —1
0.

Let us now turn to Q( 5)
N . We have:

Q( 5)
N =

?
K
�
�H�

K ;N (TN ) � Hp
K ;N (TN )

�
�

=

�
�
�
�
�

?
K DK ;N (RN ; TN ) + Hp

K ;N (TN )
?

K rK ;N (RN ; TN )
rK ;N (RN ; TN ) + rK ;N (TN ; p)

�
�
�
�
�

§

?
K |DK ;N (RN ; TN )| + Hp

K ;N (TN )
?

K |rK ;N (RN ; TN )|
rK ;N (RN ; TN ) + rK ;N (TN ; p)

.

We start by analyzing DK ;N (RN ; TN ). Observe that it can be written as a function of

dN and p̄, which have nice asymptotic properties:

DK ;N (RN ; TN ) =
1
K

K∏

i = 1

�N � i + 1;N

�
1

�N � i + 1;N
�

1
pN � i + 1;N

�

log
�

XN � i + 1;N

XN �K ;N

�

=
1
K

K∏

i = 1

�N � i + 1;N

pN � i + 1;N

pN � i + 1;N ��N � i + 1;N

�N � i + 1;N
log

�
XN � i + 1;N

XN �K ;N

�

=
1
K

K∏

i = 1

�N � i + 1;N

pN � i + 1;N

�
p̄N � pN � i + 1;N

dN
+ o(1=dN )

�
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� pN � i + 1;N

�
1

�N � i + 1;N
� 1
�

log
�

XN � i + 1;N

XN �K ;N

�

.

Set �� := (1� p�)
�

1
��
� 1
�

, then under Assumption 6.1 we have @K § N,

|DK ;N (RN ; TN )| §
1
K

K∏

i = 1

�N � i + 1;N

pN � i + 1;N

�
�
�
�
��

dN
+ o(1=dN )

�
�
�
�log

�
XN � i + 1;N

XN �K ;N

�

§ rK ;N (TN ; p) Hp
K ;N (TN ) |��+ o(1)|

1
dN

§
�
rK ;N (TN ; p) Hp

K ;N (TN ) � HK ;N
�

|��+ o(1)|
1

dN

+
HK ;N

dN
|��+ o(1)|

Recall that under Assumption 6.10 we have dN = o(1=K) and that HK ;N is a con-

sistent estimator of � (Mason, 1982). Therefore, by virtue of Lemma 6.19, we can

conclude that DK ;N (RN ; TN ) = oP (1=
?

K). Mimicking exactly this procedure and

considering the same set of assumptions, we also obtain:

|rK ;N (RN ; TN )| § rK ;N (TN ; p) |��+ o(1)|
1

dN
;

leading to rK ;N (RN ; TN ) = oP(1=
?

K) by virtue of Lemma 6.17. Combining these two

results with Theorem 6.4 yields

?
K
�
H�

K ;N (TN ) � Hp
K ;N (TN )

� P
�—

N —1
0;

provided that K = K(N) — + 1 as N — + 1 and that K = o(N). This concludes the

proof. �
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RESUME : Véritable carrefour de problématiques économiques, biologiques, sociologiques, culturelles
et sanitaires, l’alimentation suscite de nombreuses polémiques. Dans un contexte où les échanges mondiaux
facilitent le transport de denrées alimentaires produites dans des conditions environnementales diverses, où
la consommation de masse encourage les stratégies visant à réduire les coûts et maximiser le volume de pro-
duction (OGM, pesticides, etc.) il devient nécessaire de quantifier les risques sanitaires que de tels procédés
engendrent. Notre intérêt se place ici sur l’étude de l’exposition chronique, de l’ordre de l’année, à un en-
semble de contaminants dont la nocivité à long terme est d’ores et déjà établie. Les dangers et bénéfices de
l’alimentation ne se restreignant pas à l’ingestion ou non de substances toxiques, nous ajoutons à nos ob-
jectifs l’étude de certains apports nutritionnels. Nos travaux se centrent ainsi autour de trois axes principaux.
Dans un premier temps, nous nous intéressons à l’analyse statistique des très fortes expositions chroniques
à une ou plusieurs substances chimiques, en nous basant principalement sur des résultats issus de la théorie
des valeurs extrêmes. Nous adaptons ensuite des méthodes d’apprentissage statistique de type ensembles
de volume minimum pour l’identification de paniers de consommation réalisant un compromis entre risque
toxicologique et bénéfice nutritionnel. Enfin, nous étudions les propriétés asymptotiques d’un certain nombre
d’estimateurs permettant d’évaluer les caractéristiques de l’exposition, qui prennent en compte le plan de
sondage utilisé pour collecter les données.

MOTS-CLEFS : Analyse des risques alimentaires - Apports nutritionnels de long terme - Théorie des
valeurs extrêmes - Mesure spectrale - Théorie des sondages - Processus empiriques - Estimation de l’indice
de valeurs extrêmes - Ensembles de volume minimum - U-statistiques - Risque-bénéfice


