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Gestion des Grandes Masses de Données dans les Graphes
Réels

Imen BEN DHIA

RESUME : De nos jours, un grand nombre d’applications utilisent de grands graphes pour la modélisation

de données du monde réel. Nous avons assisté, ces dernières années, à une très rapide croissance de

ces graphes dans divers contextes ; à savoir, les réseaux sociaux, la bioinformatique, le web sémantique,

les systèmes de gestion des données géographiques, etc. La gestion, l’analyse et l’interrogation de ces

données constituent un enjeu très important et ont suscité un vaste intérêt dans la communauté des Bases

de Données. Lóbjectif de cette thèse est de fournir des algorithmes efficaces pour líndexation et l’interrogation

des données dans les grands graphes. Nous avons proposé EUQLID, une technique díndexation qui permet

de répondre efficacement aux requêtes de calcul de distance dans les grands graphes orientés. L’efficacité

de cette technique est dûee au fait qu’elle exploite des propriétés intéressantes des graphes du monde réel.

En effet, nous proposons un algorithme basé sur une variante efficace du fameux algorithme 2-hop. Les

résultats obtenus montrent que notre algorithme surpassent les approches existantes en terme de temps

d’indexation, ainsi qu’en temps de réponse. En effet, il permet de calculer la distance entre deux noeuds en

quelques centaines de millisecondes sur de très grands graphes. Nous proposons également un modèle de

contrôle d’accès pour les réseaux sociaux qui permet aux utlisateurs de spécifier leurs poltiques de contrôle

d’accès en se basant sur leurs relations sociales, et qui peut utiliser EUQLID pour passer à lé́chelle. Nous

fournissons une étude de complexité détaillée du protocole de contrôle d’accès et décrivons Primates comme

étant un prototype appliquant le modèle proposé.

MOTS-CLEFS : Contrôle d’accès, algorithmes dápproximation, requêtes de calcul de distance, indexation

de graphes, sécurité, requêtes de test de connexion, échantillonnage, passage à l’échelle, réseaux sociaux.

ABSTRACT : In the last few years, we have been witnessing a rapid growth of networks in a wide

range of applications such as social networking, bio-informatics, semantic web, road maps, etc. Most of

these networks can be naturally modeled as large graphs. Managing, analyzing, and querying such data has

become a very important issue, and, has inspired extensive interest within the database community. In this

thesis, we address the problem of efficiently answering distance queries in very large graphs. We propose

EUQLID, an efficient algorithm to answer distance queries on very large directed graphs. This algorithm

exploits some interesting properties that real-world graphs exhibit. It is based on an efficient variant of the

seminal 2-hop algorithm. We conducted an extensive set of experiments against state-of-the-art algorithms

which show that our approach outperforms existing approaches and that distance queries can be processed

within hundreds of milliseconds on very large real-world directed graphs. We also propose an access control

model for social networks which can make use of EUQLID to scale on very large graphs. This model allows

users to specify fine-grained privacy policies based on their relations with other users in the network. We

describe and demonstrate Primates as a prototype which enforces the proposed access control model and

allows users to specify their privacy preferences via a graphical user-friendly interface.

KEY-WORDS : Access control, approximation algorithms, distance queries, graph indexing, privacy, rea-

chability queries, sampling, scalability, social networks.





With the exception of Appendix A which is a translation in french of Chapters 1 and 6 this
thesis is written in English.

À l’exception de l’annexe A, qui propose une traduction en français des chapitres 1 et 6,
cette thèse est rédigée en anglais.

This thesis is written with the help of the typesetting system LATEX. The comic strips
introducing each chapter were taken from www.phdcomics.com. They are reprinted
here under fair use.

Cette thèse est rédigée à l’aide du système de composition de documents LATEX. Les bandes
dessinées introduisant chaque chapitre ont été prises de www.phdcomics.com. Elles sont
reproduites ici en vertu du droit de citation.



“Life is all about timing... the
unreachable becomes reachable, the
unavailable become available, the
unattainable... attainable. Have the
patience, wait it out It’s all about
timing.”

Stacey Charter
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Chapter 1.

Introduction

Graphs are ubiquitous in computer science. They are widely used for modeling many
real-world data in a large number of applications such as social networks, bio-informatics,
the Internet, road networks, airline connections, to name but a few. Nodes usually
represent real-world objects and edges denote relationships between them, e.g., users
and their relationships in social networks, proteins and their interactions in biological
networks, cities and their connections in city road networks. Nowadays, graphs are
becoming large, and, are growing rapidly in size. For instance, the social networking site
Facebook contains a large network of registered users and their friendships. The number
of Facebook users has grown from almost 50 million in September 2007 to more than 1.15
billion monthly active users in 2013 [facb, faca].

Querying graphs has become a very important task in many applications. For example,
in a social network, one would like to determine his relationship closeness to a given
user (i.e., number hops between him and this user). Additionally, the newly introduced
Facebook Graph Search feature (for more details about this feature, see Section 1.1.2),
which basically performs a search of the Facebook graph to answer a user input natural
language query, could also be considered as a form of querying graphs. For instance, some
of the query examples (that could be specified by users) are the following: “Bars which
have been visited by my friends who live in Paris, France” or “Photos of my friends taken
in Hawaii”. In a road network, one would like to know about the distance between two
cities. In bio-informatics, people often need to compute the number of interactions needed
to transform a given protein into another one. One solution could be to represent the
input graph in a relational database, then query it using SQL queries. Unfortunately, this
solution is often non-efficient (see Section 2.5). Several alternatives have been proposed in
recent years which are often referred to as NoSQL (e.g. neo4j [neo]), however, despite all
the efforts made a viable and satisfactory solution is still missing (see Section 2.5). The
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issue of querying graphs is apparent even in large software companies such as Facebook,
with Graph Search being often unable to deliver exact results [grab]. Therefore, there is
an urgent need for developing powerful and scalable graph querying engines that allow
effective and efficient processing of queries.

Given that there is not yet a viable and practical solution to deal with large arbitrary
graphs, we devise an efficient graph querying system which exploits the properties that
modern real networks exhibit. In particular, we focus on answering distance queries on
such graphs, and, we consider one application of it, which is enforcing privacy constraints
in online social networks. We propose two variants of our approach allowing both main
memory and disk-based index storage and querying. Our extensive experimental study
on real-world graphs shows that we are able to run distance queries in several hundreds
of milliseconds over very large publicly available datasets. To deal with the latter problem,
we also propose an access control model for social networks, which is the application
domain that, in our case, raised the need to work on scaling reachability queries in large
graphs.

This chapter is organized as follows. In Section 1.1, we define the problems to address
in this thesis and give some motivating scenarios for them. Section 1.2 highlights our
contributions, and, Section 1.3 describes the structure of the dissertation.

1.1. Context and Problem Definition

In this section, we discuss the general reachability problem, then we present and describe
the problem of privacy in social networks as an application domain of it.

1.1.1. Scaling reachability and distance queries on large graphs

A reachability query basically seeks to answer the following simple question: can u reach v
in a graph G?, where u and v are two nodes given in input. Depending on the application
scenario, we distinguish three main types of reachability queries: (i) Simple reachability
queries asking whether two nodes are connected in the graph without any constraint
on the path connecting them. An example of a simple reachability query is depicted in
Figure 1.1(a) where u v denotes that u can reach v. (ii) Distance queries are more specific
than simple reachability queries; it does not only ask whether two nodes are reachable,
but it also asks for the distance of the path linking them. An example of a distance query is
depicted in Figure 1.1(b), where d(u, v) denotes the distance of the shortest path between
u and v. Note that there are two types of distance queries: point to Point (p2p) queries ,
and, single source shortest path (sssp) queries. The former type returns the distance of
the shortest path between two nodes, while the latter type returns the distance of shortest
path between a given source node and the rest of the nodes in the graph. And, (iii) distance
and reachability queries with constraints are even more specific and consider constraints on
edge labels, label order, distance, edge direction, etc. Figure 1.1(c) shows an example of
such a query, which seeks to find out whether there is a path between u and v with d(u, x)
edges labeled l1 followed by d(x, v) edges labeled l2.

Here, we highlight several applications domains where reachability queries are crucial:
Social Networks. Social networks are commonly modeled as graphs, where nodes and
edges, respectively, denote users and connections between them. Edge labels denote
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(a) Simple reachability (b) Distance query (c) Label-constraint reachability

Figure 1.1.: Different types of reachability queries

relation types (i.e., friend, colleague, etc.) between users. Many queries in social networks
seek to discover how one node u relates to another node v. These queries in general ask if
there is a path from u to v where the labels of all edges in the path are either of a specific
type or follow a predefined sequence of labels. For instance, if we want to know whether
u is a colleague of a friend of v, we ask if there is a path from u to v with an edge labeled
f riend followed by an edge labeled colleague. And, as described in Section 1.1.2, finding
such information may help social network users to have more control on their shared
information by allowing the desired audience to access it [AD11, DAS12]. Facebook graph
search [fbG] (see Section 1.1.2) can also be considered as an application of distance queries
in social networks as, for instance, users may search for their friends of friends and their
friends for job opportunity purposes (i.e., friends that are 2 and 3 hops away from a given
user). Moreover, in order to measure closeness between the corresponding users in a social
network, we need to compute the distance between them, e.g., when one asks “How are
Germany’s chancellor Angela Merkel, the mathematician Richard Courant, Turing-Award
winner Jim Gray, and the Dalai Lama related?”, saying that all four have a doctoral degree
from a German university requires to compute reachability between each one of them and
the degrees obtained by the others [KRS+09]. Search ranking in social networks [VFD+07],
which is modeled as a function that depends on the distances between users in the friend-
ship graph is an additional application where distance queries are needed.
Bio-informatics. Biological data, such as protein-protein interaction networks andmetabolic
networks (chemical reactions of the metabolism), can be modeled as labeled graphs, where
vertices denote cellular entities (e.g. proteins, genes, etc.). An edge between two entities
denotes a chemical interaction that transforms an entity into another one. Edge labels
record enzymes that are responsible for entity transformation. One of the basic ques-
tions is whether an entity can be transformed into another one under some constraints.
These constraints are described as the availability of a set of enzymes in a given order
within a given distance between the two entities. More generally, a reachability query
in bio-informatics can be formulated as follows: Is there a pathway between two cellular
entities consisting of a given number of interactions with the presence of an ordered set of labels
(enzymes)? Here again, our problem can be described as a constraint reachability query
with constraints on label order and distance of the edges along the path. For instance, bio-
logical scientists need to compute shortest paths in Protein-Protein Interaction Networks
to identify which genes are related to a colorectal cancer [LHL+12]. Reachability queries
are also needed to compute k-hop reachability to compare bio-molecular networks and
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study their properties [ADH+08].
Semantic Web. The RDF data format, designed to represent data for the Semantic Web,
has become a common format for building large data collections. Finding the shortest path
between two nodes in an RDF graph is a fundamental operation that allows to discover
complex relationships between entities. Despite its expressive capabilities, the standard
RDF query language SPARQL does not support the discovery of complex relations be-
tween RDF objects (i.e., checking whether a given object X is reachable from object Y in the
RDF graph). For instance, finding all scientists who were born in France in a knowledge
base can be modeled as reachability queries asking whether there is a path between a
given scientist and France. In addition to that, distance queries are used for computing
closeness between entities in a knowledge base [KRS+09].

There are two basic approaches to answer reachability queries, which are two extremes
in terms of index construction. The first extreme is to precompute and store the full
transitive closure. This allows answering reachability queries in constant time by a single
look-up. However, it requires a quadratic index space, making it practically unfeasible for
large graphs. The other extreme consists in performing a depth-first (DFS) or breadth-first
(BFS) traversal of the graph (see Section 2.4) starting from node u, until either the target
v is reached or it is determined that no such path exists. This approach doesn’t require
any index, but requires O(| V | + | E |) time for each query, which is computationally
expensive in large graphs. Existing approaches lie in-between these two extremes. The
challenge consists in attaining high online query efficiency with a low off-line index
construction cost.

In this thesis, we focus on the problem of answering distance queries in large directed
graphs which is a more specific problem than simple reachability on one hand, and, on
the other hand, a solution for answering distance queries can be used to handle distance
and reachability queries with constraints as explained in Section 6.2.

The classical Dijkstra’s algorithm (see Section 2.4.3) fails at efficiently processing distance
queries in large graphs. Hence, more sophisticated indexing algorithms were proposed.
One of the most successful indexing algorithms for processing distance queries is the
seminal 2-hop cover approach [CHKZ02] (see Section 2.6), which comes with guarantees
on the size of the index as well as fast query response time. Unfortunately, there is no
efficient algorithm for computing a 2-hop cover. While several variants of this approach
have been proposed in recent years [STW04, CYL+08, CY09], a viable and satisfactory
solution is still missing with the largest graphs being prohibitive to be indexed with this
approach. In fact, any indexing algorithm for processing distance queries has to face the
inherent problem of computing a compact representation of all distance information in
the input graph. Such distance information might increase quadratically with the number
of nodes making any index potentially very large in size as well as expensive to compute.

1.1.2. Privacy management in social networks

In an OSN (Online Social Network), each user can easily share information and mul-
timedia content (e.g., personal data, photos, videos, contacts, etc.) with other users in
the network, as well as organize different kind of events (e.g., business, entertainment,
religion, dating etc.). While this presents unprecedented opportunities, it also gives rise
to major privacy issues, as users could often access personal or confidential data of other
users. The availability of such information obviously raises privacy and confidentiality

4



1.1. Context and Problem Definition

issues. For example, many employers search for their candidates on social networking
sites before hiring them [Wor09]. In a tight job market, information that people share (e.g.,
political views, status updates, funny pictures, etc.) might be a deal breaker. The private
information that is available on OSNs could endanger the future employment chances
of job candidates, even before being invited for an interview. A survey commissioned
by Microsoft discovered that 79% of recruiters and hiring managers in the United States
have reviewed online information posted to social networking sites and blogs to screen
job candidates, and 70% have rejected an applicant based on information they found [cnn].
Other potential dangers of private information disclosure could be identity theft, sexual
harassment, and, stalking to name but a few.

(a) (b)

Figure 1.2.: Privacy Setting Tool of Facebook and Google+

Most social networks provide some basic access control policies, e.g., a user can specify
whether a piece of information shall be publicly available, private (no one can see it) or
accessible to friends only. For illustration, we describe the privacy management tool of
Facebook as an example of one of the most popular OSNs these days, and, among the five
top photo-sharing applications on the Internet [top]. As shown in Figure 1.2(a), Facebook
allows two extreme privacy policy options: (i) a loose one, by sharing information with
everyone in the network (public option), and, (ii) a too restrictive by limiting too much
information sharing (i.e., only me option), which contradicts with the communication and
sharing existential purposes of OSNs. Facebook also allows users to create friend lists,
and then specify whether a given profile information should be visible or invisible to
all friends in a particular list. This somehow forces the user to manually assign friends
to lists. However, as the average Facebook user has 144 friends [faca], such task can be
very time-consuming and tedious. Even worse, numerous lists might be required as user
privacy preferences can be different for different pieces of data. As shown in Figure 1.2(b),
Google+ also suffers from the same problem, where lists are denoted as circles.
Moreover, Graph Search [fbG] is a semantic search engine that was introduced by

Facebook in March 2013. This new feature allows users to enter natural language queries
to find friends, and, friends of friends, who share certain interests. It combines the
large amount of data acquired from its over one billion users and external data into a
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Figure 1.3.: Facebook graph search example

search engine providing user-specific search results. For example, if a user is visiting
London and would like to know which restaurants did his friends visit in that city, he
can specify a query to get such information as depicted in Figure 1.3. For setting up a
potential date, a user could also specify the following query “Single men who live in San
Francisco, California and are from Paris, France”. Such tool could be used to uncover
potentially embarrassing information (e.g., companies employing people who like racism)
or illegal interests (e.g., Chinese residents who like the banned group Falun Gong [prib]).
In addition to that, it applies the pre-existing privacy settings (i.e., users can access only the
information already available to them) [pria], which raises privacy concerns as explained
earlier in this section.

Thus, as the set of relationships represented in an OSN nowadays is quite rich and
diverse, with relative relationships as well as the possibility of distinguishing between
acquaintances and close friends becoming increasingly common, there is an increasing
need to providing more sophisticated access control policies. For instance, one would like
to say “invite all children of my colleagues to our child’s birthday party” or “show this picture
of myself wearing a funny costume to my friends and the friends of my friends while not to my
colleagues”. For illustration, let us consider the example depicted in Figure 1.4 showing the
different relations that Alice has. Let us also consider the following example scenarios:

• Scenario 1. Suppose that Alice wants to share an after-work party picture that she
took with her colleagues and some of their friends, yet she is reluctant to let the rest
of her contacts know about that. She would like to share it only with her colleagues
and their friends. The authorized audience would then be Karine, Colin, Julie, and,
Bill.

• Scenario 2. Suppose that Alice wants to organize a surprise party for her child, and,
she would like to share an online invitation that should be visible to the children
of her colleagues who live in Paris only. According to the example, the authorized
audience involves only Manon.

The previously described scenarios highlight some basic user needs that cannot be
specified using the privacy tools provided by existing OSNs. Consequently, we observe
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Figure 1.4.: Example of user relations in an OSN

that there is a clear need to devise a new access control model to allow users specify their
privacy preferences as they would think about it in real-life scenarios (having a specific
audience in mind) and have more control on the spread of their information within OSNs,
without the threat of an unwanted hidden audience being possibly able to access it.

Access control can be considered as an application of the general reachability problem,
as in order to enforce privacy preferences, we need to efficiently answer reachability
queries in large social graphs. For more details about this problem, see Section 1.1.1.

1.2. Contributions

We highlight the contributions of our thesis as follows:

1.2.1. An indexing scheme for efficient distance querying: EUQLID

To deal with the problem of efficiently answering distance queries, we proposed EUQLID
as an efficient indexing scheme. We define a variant of the 2-hop cover where we enforce
an additional constraint to limit the size of the index while allowing partial coverage of
distance information. The missing distance information can be retrieved efficiently at
query time by means of a fast variant of the Dijkstra’s algorithm whose search space is
carefully pruned. Our goal during the indexing phase is then to cover as much distance
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information as possible without violating the size constraint. We show that this variant
of the 2-hop cover admits a 0.63−approximation algorithm which inspired our efficient
indexing algorithm.

In order to select which distance information should be stored in our index, we exploit
an interesting property that we have discovered after performing some experiments on
some real graphs, and, that real-world networks often exhibit. This property says that a
few nodes connect all nodes through short paths (see Section 3.4). These nodes are usually
the nodes with larges degrees in the network. This property can be observed empirically
in our daily routine, as short roads connecting any two cities often go through large cities,
long distance flights connect hubs in the corresponding countries, and researchers are
connected through prominent scientists in their field in the corresponding co-citation
networks. Our idea is to carefully select a set of large degree nodes and to store all distance
information corresponding to paths traversing those nodes. As paths traversing large
degree nodes are not necessarily shortest paths one needs to employ Dijkstra’s algorithm
to find exact distances at query time. However, the search space of Dijkstra’s algorithm
can be effectively pruned by avoiding traversing large degree nodes (as the corresponding
distance information is covered by the index) and using the length of the paths traversing
large degree nodes as maximum depth in the Dijkstra’s algorithm.

We summarize our contributions on answering distance queries as follows:

• We define a new variant of the 2-hop cover where we enforce an additional constraint
that limits the size of the index while improving query response time;

• we develop a 0.63-approximation algorithm for this problem;

• our main contribution is EUQLID, which is an efficient algorithm for indexing and
processing distance queries on very large graphs. Our algorithm is based on an
efficient variant of the approximation algorithm discussed above. Our extensive
experimental evaluation against state-of-the-art algorithms shows that our approach
outperforms existing approaches and that distance queries can be processed within
hundreds of milliseconds on very large real-world directed graphs.

This work was submitted and it is still under review.

1.2.2. A reachability-based access control model for social networks

In order to deal with privacy issues in OSNs (described in Section 1.1.2), we propose
a network-aware access control model that allows users to monitor the spread of their
personal information. According to our model, users can explicitly specify fine-grained
privacy preferences as they think about it in real life scenarios. Our model enables users,
having a specific audience in mind, to associate to each piece of information a given
audience, which is specified based on the relationship nature between the information
owner and his contacts. Following this model, a given user can access an information
if and only if a specific path between him and the owner exists. This path expresses
constraints on relationship types (e.g., friend, colleague, etc.), edge direction, distance,
trust, and, user attributes (e.g., live in Paris, age more than 20, etc.). Deciding whether
access should be granted or not is done on the fly based on a the set of access policies
assigned to the requested information. We studied the worst case running time of the
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access control protocol, and, did experiments to study its performance on real social
graphs, which have shown that our model is practical.

This access control model was presented in DBSocial 2011 and the PhD symposium
joint to ICDT/EDBT 2012.

1.2.3. A privacy management system: Primates

We implemented a privacy management system for OSNs that we called Primates. This
system is an enforcement of the proposed access control model. It allows users to select
some personal information on their profile and assign the desired privacy policies to them.
Privacy preference assignment is a user-friendly process which can be done via a graphical
interface (i.e., using a user-friendly graphical tool). Primates also allows users to preview
and visualize the authorized audience as a graph and change their policy accordingly, in
case they realize that some unwanted users are part of the audience.

Primates was demonstrated at CIKM 2012.

1.3. Dissertation Organization

The remainder of the dissertation is organized as follows:

• Chapter 2 provides a collection of concepts and algorithms as background material.
Firstly, it introduces boolean expressions as they are used to specify privacy settings,
provides some basic graph definitions, and, introduces well-known graph traversal
algorithms. Secondly, it introduces the seminal 2-hop labeling scheme, and, describes
the Set Cover and Max Cover algorithms. Then, it explains a fast algorithm for
computing the Set Cover for large datasets. Finally, it proposes a sampling strategy
for estimating the number of elements satisfying a given property in a very large set
of elements.

• Chapter 3 It first introduces two well-known models of complex networks (random
and scale-free), and, describes some prominent real-world graph properties. Then, it
reports some experiments that were conducted to analyze shortest paths in social
networks, and, studies the impact of some discovered properties on improving the
2-hop algorithm described in Chapter 2.

• Chapter 4 discusses related work about reachability, then defines formally the
problem of answering distance queries and introduces notations and definitions. It
also describes both the indexing algorithm and the query processing algorithm, then
reports an extensive experimental evaluation of our approach against the state of
the art.

• Chapter 5 first discusses existing work on privacy in OSNs and highlights their
limitations. Secondly, it formally defines some notions related to social networks,
and, highlights the requirements to design appropriate access control models for
social networks. Then, it describes the proposed access control model and how it
can be enforced. It also studies the worst case running time of the access control
protocol, and, shows some experimental results. Finally, it presents Primates as an
implementation of the proposed access control model.

9
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• Chapter 6 concludes this thesis by reminding the most important questions that we
studied, the proposed solutions, and, the obtained results. It also presents some
research perspectives to address other issues related to the ones we studied.

10



Chapter 2.

Background and Preliminaries

2.1. Introduction

In this chapter, we introduce a collection of concepts and algorithms as background mate-
rial for the rest of the dissertation. We define and explain the use of boolean expressions
in our access control model in Section 2.2. We recall some basic graph definitions and
describe graph traversal algorithms in Sections 2.3 and 2.4, respectively. In Section 2.5, we
introduce graph database systems, and, describe some experimental studies for comparing
these systems to their relational counterparts in terms of storing and traversing graphs.
We introduce the 2-hop labeling scheme for computing reachablity and distance queries in
Section 2.6. In Sections 2.7 and 2.8, we respectively describe the Set Cover and Max Cover
algorithms, and, give examples of application. In Section 2.10, we explain a fast algorithm
for computing the Set Cover for large datasets. In Section 2.11, we propose a sampling
strategy for estimating the number of elements satisfying a given property in a very large
set of elements. Section 2.12 concludes the chapter.

2.2. Boolean Expressions

A Boolean expression is a logical statement that is either TRUE or FALSE. Boolean expres-
sions can compare data of any type as long as both parts of the expression have the same
basic data type. A Boolean expression is a three-part clause that consists of two items to
be compared separated by a comparison operator. A more complex Boolean expression
can be created by joining any of these three-part expressions with the AND (∧) and OR

(∨) logical operators.
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Boolean expressions could be used to express real-life facts. For instance, the fact that a
person X is a scientist who lives in Paris could be expressed as follows:

P1 ∧ P2 (2.1)

where P1 and P2 are two predicates (P1 = X is a scientist and P1 = X lives in Paris).

A slightly more complicated example could be the following: The subway will be crowded
when the soccer game finishes, unless our team wins. These facts can be expressed as follows:

(P3 → P4) ∨ P5 (2.2)

where P3 = the soccer game f inishes, P4 = the subway will be crowded, and, P5 = our team
wins.

We use boolean expressions to formalize access rules (i.e., user specified privacy settings)
in our access control model as it is illustrated in Section 5.5.1.

2.3. Basic Graph Definitions

In this section, we introduce some of the basic notations and definitions that are commonly
used in graph theory.

Graph. Graphs (i.e., networks) are useful structures in science and mathematics, which
help modeling data that is being generated by many real-world applications. More
formally, a graph G(V, E) consists of two sets of elements of different type, namely, a set
of nodes V and a set of edges E (i.e. a set of ordered pairs (u, v) where u and v are nodes
in G). V(G) and E(G), respectively, denote the set of vertices and the set of edges of G,
and, | V | and | E | denote the number of nodes and edges, respectively. There are several
possibilities to represent a graph G in memory (i.e., adjacency matrix, edge list, adjacency
list [grac]).

Undirected, directed. An undirected graph is a graph where edges have no orientation
(i.e., all edges are symmetric), while edges in a directed graph are directed. An edge
e = (u, v) is considered to be directed from u to v; u is called the head and v is called the
tail of e; v is a direct successor of u, and u is a direct predecessor of v.

Unweighted, weighted. A graph is weighted if each edge e ∈ E is assigned a weight
w(e). Depending on the problem, weights might represent, for example, costs, lengths or
capacities. When no weights are associated to edges, the graph is always assumed to be
unweighted.

Path. A directed path P = u  v is defined as a set of nodes u0, u1, . . . , uk where
u0 = u,uk = v and (ui, ui+1) are edges of G, i = 0, . . . , k− 1. If there is a directed path
u  v in G, we say that u is a predecessor of v and v is a successor of u, while denoting
with S(v) and P(v) the set of successors and predecessors of v, respectively. The length
of a path P is defined as the sum of the weights of the edges in P . d(u, v) is the distance
between u and v in G, that is, the length of the shortest path connecting u and v in G.

Degree. The degree of a given node v denotes the number of edges connected to v. The
in-degree of a node v is defined as the number of predecessors u of v such that there is an
edge (u, v) in G, while the out-degree of v is defined as the number of successors u of v
such that there is an edge (v, u).
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Strongly Connected Component (SCC). A strongly connected component is a maximal
subgraph of a directed graph such that for every pair of nodes u and v in the subgraph,
there is a directed path from u to v and a directed path from v to u.

Directed Acyclic Graph (DAG). A DAG is a directed graph with no directed cycles. It
consists of a set of nodes and directed edges. Each edge connects a node to another in
such a way that makes it impossible to start at a node v and follow a sequence of edges
that eventually loops back to v again. A directed graph can be transformed into a DAG by
collapsing each of its strongly connected components into a single node.

Density. The density of an undirected graph G is defined to be as |E(G)|/|V(G)|, which
also denotes the average node degree in G.

Reachable, unreachable. A node v is reachable from another node u, denoted u v, if
there is a path of any length from u to v.

Figure 2.1 shows a directed and weighted graph, which we will use as a running
example in the remaining sections of this chapter.

v1 v2

v3

v4 v5

v6

1 3

5

2

1

Figure 2.1.: Graph example

2.4. Graph Traversal

In this section, we discuss several graph traversal algorithms which form the basis for
some of the proposed graph algorithms in Chapters 4 and 5. Traversal algorithms are
differentiated according to the way they traverse graphs. In the following, we describe
some of the most well-known ones.

2.4.1. Breadth-first search (BFS)

BFS is a search algorithmwhich exhaustively searches the entire graph (or a part of it) until
it reaches a predefined goal (e.g., reaching a target node, visiting all nodes). According to
the BFS algorithm, all the child nodes that are obtained by expanding a node are added to
a FIFO (i.e., First In, First Out) queue. Whenever a node is visited during the traversal, it
is marked as visited and removed from further exploration. The flow of the BFS algorithm
is described in Algorithm 1. It takes as input a source node s and iteratively explores the
graph level by level.

Let us consider the graph example depicted in Figure 2.1. Let v1 be the source node.
BFS visits the nodes in the following order: v1, v2, v4, v5, v6.

The time and space complexity of BFS is O(| V | + | E |). This algorithm can be used to
solve many problems in graph theory, for instance, finding the shortest path from a node
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Algorithm 1: Breadth-First Search (BFS)

Input :A graph G(V, E) and a source node s.

1 Initialize a FIFO queue Q to s and mark s as visited;
2 Enqueue s in Q;
3 Mark all nodes in G as unvisited except s;
4 while Q 6= ∅ do

5 Dequeue a node v from Q;
6 foreach immediate successor x of v do

7 if x is not marked as visited then

8 Enqueue x in Q and mark it as visited;

to another, exploring all the reachable nodes starting from a given node, finding all nodes
within one connected component, testing a graph for bipartiteness, etc.

Bi-directional search is a variant of BFS, which runs two simultaneous BFS searches:
one forward from a source node, and one backward from a target node, stopping when
the two meet in the middle. While this approach can be faster in some cases, it can also
perform worse than simple BFS when there are many high-degree nodes on the path(s)
between the source and target nodes.

2.4.2. Depth-first search (DFS)

Just like BFS, DFS is also an algorithm for traversing graphs. The only difference is that, it
traverses the depth of any particular sub-graph before exploring its breadth. That is, child
nodes are traversed before visiting sibling nodes. A stack can be used to implement the
algorithm.

As described in Algorithm 2, it takes a source node s as input. Then, it iteratively goes
from the current node to an adjacent unvisited one until it can no longer find unexplored
nodes. The algorithm then backtracks along previously visited nodes, until it finds a node
connected to not yet visited nodes. It will then proceed down the new path as it had
before, backtracking as it encounters dead-ends and ending only when the algorithm has
backtracked the input source node s.

Let us consider again the graph example depicted in Figure 2.1 and v1 as the input
source node. DFS explores the graph in the following order: v1, v2, v4, v5, v6.

The time and space complexity of DFS is O(| V | + | E |). This algorithm is the basis for
many graph algorithms, including topological sorts, planarity and reachability testing, etc.

2.4.3. Dijkstra’s algorithm

Dijkstra’s Algorithm is a graph search algorithm for the single-source shortest path prob-
lem. It takes in input a source node s and outputs the nodes in increasing order of their
distance from s. It can be applied on graphs with non-negative edge weights.

For a given source vertex s, the algorithm finds the shortest path between s and every
other node in the graph. It can also be used for finding costs of shortest paths from a
single vertex to a single destination vertex by stopping the algorithm once the shortest
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Algorithm 2: Depth-First Search (DFS)

Input :A graph G(V, E) and a source node s.

1 Initialize a stack S to s and mark s as visited;
2 Push s to S3 Mark all nodes in G as visited except s;
4 while S 6= ∅ do

5 Pop a node v from S;
6 foreach immediate successor x of v do

7 if x is not marked as visited then

8 Push x to S and mark it as visited;

path to the destination vertex has been determined. For example, if the nodes of the graph
represent cities, and, edge weights represent driving distances between pairs of cities
connected by a direct road, Dijkstra’s algorithm can be used to find the shortest route
between one city and all other cities.

As described in Algorithm 3, Dijkstra’s algorithm recursively traverses the graph start-
ing from s while maintaining the length of the shortest path so far found between s and the
set of traversed nodes. Its worst case running time is O(| V |2). However, the min-priority
queue-based implementation runs in O(| E | + | V | log | V |) [FT87].

Algorithm 3: Dijkstra’s algorithm

Input :A graph G(V, E) and a source node s.
Output : Shortest path distances between s and all the nodes in G

1 Initialize a priority PQ to (s, d(s)) (where d(s) = 0);
2 Associate the value ∞ to the rest of the nodes (d(v) = ∞);
3 Repeatedly choose an unexplored node v ∈ PQ which minimizes

π(v) = min
e=(u,v):u∈S

d(u) + ω(e)

4 add v to PQ and set d(v) to π(v);

The output of Dijkstra’s algorithm when the graph depicted in Figure 2.1 and node v1
are given in input is the following: (v1, 0), (v2, 1), (v3, ∞), (v4, 4), (v5, 6), and, (v6, 5).

We used Dijkstra’s algorithm as a benchmark to compare with in Chapter 4.

2.4.4. Topological sort

The Topological sorting problem consists in finding a linear ordering of nodes in an input
directed graph G such that:

∀(u, v) ∈ E, τ(u) < τ(v) (2.3)

where τ(v) denotes the topological order of a given node v. For instance, if the nodes of
the graph represent tasks to be performed and the edges represent constraints that one
task must be performed before another, a topological ordering is a valid sequence for the
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tasks. Note that, a topological ordering is possible if and only if the graph has no directed
cycles (i.e., if it is a DAG).

As described in Algorithm 4, the topological sort algorithm first identifies nodes with
no incoming edges (the in-degree of these nodes is equal to 0). Then, it iteratively picks
such a node, incrementally assign it with its topological order and delete it along with all
its outgoing edges from the graph. The algorithm stops when all nodes in the graph are
assigned a topological order.

Algorithm 4: Topological Sort Algorithm

Input :A DAG G(V, E).
Output :Topological order of all nodes in G

1 Initialize tp_counter to 0;
2 roots← nodes with no incoming edges in G;
3 while roots 6= ∅ do

4 Dequeue a node v from roots;
5 Delete v and all its outgoing edges from G;
6 tp(v)← tp_counter++;

As an example, the topological order of the nodes in the graph depicted in Figure 2.1
is the following: τ(v1) = 0, τ(v2) = 2, τ(v3) = 1, τ(v4) = 3, τ(v5) = 4, and, τ(v6) = 5.
This algorithm runs in polynomial time. We used it to compute the topological order of
nodes in our graph datasets to further improve the performance of the query algorithm
described in Section 4.4.2.

2.5. Graph Database Systems

One of the main purposes behind storing data using a database management system is the
possibility to efficiently query this data. Several different database systems (e.g., relational
and graph databases) are available for use, but, each variant has its own pros and cons
depending on the structure of the data and the way it should be queried. Our goal, in this
section, is to compare the performance and scalability of relational and graph database
systems in order to choose the most suitable datastore for our graph datasets.

Before describing the settings and reporting some experimental results, let us quickly
define what is a graph database.

Definition 2.1. Graph Databases. A graph database is a type of NoSQL∗ database. It
basically stores data as a collection of nodes and edges. Each node represents an entity
and each edge represents a connection or relationship between two nodes. Every node in a
graph database is defined by a unique identifier, a set of outgoing edges and/or incoming
edges and a set of properties expressed as key/value pairs. Each edge is defined by a
unique identifier, a source node and/or ending node, and, a set of properties.

Figure 2.2 depicts an example of a graph database.

∗an approach to data management and database design, which is useful for very large sets of distributed
data. NoSQL systems doesn’t not follow a relational structure and allow both unstructured and structured
(SQL) query languages, e.g., column stores and graph databases.
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Figure 2.2.: A Graph Database example [Graa]

We performed our experiments on MySQL as a relational database, and, Neo4j as a
graph database (see Section 5.7 for more details about Neo4j). Both implementations were
tested using a sample dataset from the Facebook social network. We considered a sample
of 984K unique users that represents the groundtruth of the Facebook OSN, i.e., a truly
uniform sample of Facebook anonymized user IDs crawled by Gjoka et al. [GKBM10]. It
consists of ∼ 1 million nodes and ∼ 9 million edges. For fair comparison, we created
the relational and graph versions the dataset. The relational version was stored in table
graph(user1, user2), where each row stores an edge going from one user/node to
another. We created an index on the first column user1. The traversal was evaluated on
each database starting from 200 random root nodes.

The results are presented in Table 2.1, which reports the average running time for both
the relational and graph systems (MySQL and Neo4j, respectively). Note that only Neo4j
has the running time for a traversal of length 5. MySQL did not finish after waiting 1
hour to complete. In comparison, Neo4j took ∼ 1.2 seconds to complete a 5-hop traversal,
which is quite fast. It is clear from the results that Neo4j is more suitable for graph traversal
than its relational counterpart. However, this is not really very good news, as the size of
the considered graph is not that large, and, the running time might be far longer over real
graphs (which are much larger).

Our results were confirmed in [VMZ+10], as according to their comparison between
Neo4j and MySQL, Neo4j was performing better on graph traversals. The largest graph
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that they considered consisted of 100K nodes. They performed 4-hop and 128-hop queries
on MySQL and Neo4j versions of the same graph. However, when it comes to executing
queries on node attribute values or making statistics (such as node degree distribution,
etc.), MySQL performs better.

#hops MySQL Neo4j
traversal time (ms) traversal time (ms)

1 124 312
2 922 512
3 8 851 758
4 112 930 956
5 - 1243

Table 2.1.: MySQL and Neo4j traversal performance

As far as we are aware, no comparison study between NoSQL and relational databases
on very large graphs (> 1 million nodes) was published. To evaluate the performance of
MySQL over large datasets, we created the relational version of a twitter dataset (with
40 million nodes and 1.4 billion edges) with an index on the first column. We performed
a 2-hop query (which retrieves and counts all nodes at distance 2 from a given node)
for a randomly chosen sample of 10 root nodes. The average running time was ∼ 20
minutes, which is already very high and inefficient. Note that these experiments were not
possible with Neo4j, as it did not allow us to load and create a graph of such size in order
to evaluate the traversal performance.
We can say that Neo4j is promising but it is still premature to deal with very large

graphs. For instance, importing and indexing large-scale data may take months and there
is no support to full graph scans∗. Neo4j traversal performance depends significantly
on the number of nodes to traverse. The higher this number is, the worse the traversal
performance becomes. To analyze the graph and make statistics over it, it may be better to
use other storage system like an RDMS (Relational Database Management System).

2.6. 2-hop Labeling

The 2-hop labeling is an indexing scheme which allows to compute reachability and
distance queries. It was first introduced by Cohen et al. in [CHKZ02]. Here is a brief
introduction to the 2-hop labeling: Let G = (V, E) be a graph, a 2-hop labeling assigns
to each vertex v ∈ V two sets Lin(v) and Lout(v) such that for each vertex x ∈ Lin(v) and
y ∈ Lout(v), there is a path between x and y which goes through v. A node v is reachable
from a node u, denoted u v, if and only if Lout(u) ∩ Lin(v) 6= ∅.
The size of the labeling is defined to be:

∑
v∈V

|Lin(v)|+ |Lout(v)| (2.4)

Cohen et al. [CHKZ02] proposed an approximation algorithm to compute the 2-hop
cover of a given graph with minimal size, so to obtain a compact version of the transitive

∗http://neo4j.org/nabble/#nabble-td3351599
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closure. This algorithm allows to compute a 2-hop cover whose size is at most by a factor
of O(log | V |) larger than the optimal size. We illustrate Cohen et al.’s algorithm in
Algorithm 5.

Algorithm 5: Two-Hop Cover Algorithm

Input :A graph G = (V, E).
Output :A 2-Hop Labeling H of G

1 H ← ∅;
2 T ← Compute all reachable pairs in G (transitive closure);

⊲ T = {(u, v) | u v}

3 T
′
← T;

4 while (T
′
6= ∅) do

5 foreach v ∈ V do

6 Bv ← Compute the bipartite graph corresponding to v;
⊲ Bv = {(V, E) | V = Vin ∪Vout}

7 denBv ← Compute the densest subgraph of Bv;
8 d(v)← the density of denBv;
9 denBw ← the densest subgraph with the highest density value;

10 w← the center node of denBw;

11 foreach u ∈ Vin of denBw do
H ← H ∪ (u, (u,w))

12 foreach u ∈ Vout of denBw do
H ← H ∪ (u, (w, u))

13 Remove from T
′
the shortest paths covered by w;

⊲ T
′
← T

′
\E(denBw)

14 return H;

Initially, we compute the transitive closure of the input graph G, and, initialize T and T′

with the resulting transitive closure (line 2). At each iteration and for each node v ∈ V,
we compute the corresponding bipartite graph Bv = (V, E) where V = Vin ∪ Vout and
E = {(x, y) | x ∈ Vin ∧ y ∈ Vout ∧ (x, y) is uncovered } (line 7). Vin and Vout, respectively,
denote the set of predecessors and successors of v. Then, we compute the density value
d(v) (line 7), where:

d(v) =| (Vin(v)×Vout(v)) ∩ T
′
| / | Vin(v) +Vout(v) |

d(w) denotes the ratio of the number of connections going through w which are not yet
covered by the total number of nodes involved on such connections. The problem of
finding the two sets Vin(v) and Vout(v) with the highest density value boils into finding
the densest bipartite graph. This can be done as follows: we iteratively eliminate the
node with the minimum degree from Bv(V, E), then compute and store the density of
the resulting graph until V is empty. Once densest subgraphs of all the nodes v ∈ V are
computed, Algorithm 5 picks the one with the highest density (denoted denBw) along with
its corresponding center (denoted w) as illustrated in lines 9 and 10.

Algorithm 5 updates the 2-Hop Cover H by adding new hops (lines 11 and 12) and T′

by eliminating node pairs that correspond to added hops (line 13), and, stops when T′ is
empty (i.e., all shortest paths are covered in H).
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Note that distances d(x, v) and d(v, y) are pre-computed and stored. Given a distance
query, u and v, the index ensures that the returned distance d(u, v) is the distance of the
shortest path between u and v by computing it as follows:

d(u, v) = minwi∈(Lout(u)∩Lin(v))d(v,wi) + d(wi, v) (2.5)

A graph example and its corresponding 2-hop distance labeling are depicted in Figures 2.1
and 2.2, respectively.

Node v Lout(v) Lin(v)
v1 (v4, 2), (v2, 1) ∅
v2 (v4, 1), (v2, 0) (v2, 0)
v3 (v4, 1) ∅
v4 (v4, 0) (v4, 0)
v5 ∅ (v4, 1)
v6 ∅ (v4, 1)

Table 2.2.: 2-hop labeling

2.7. Set Cover

The problem of Set Cover aims to find the smallest sub-collection of sets that covers some
universe of elements. In the Set Cover problem, we are given: (i) a universeU of n elements
(i.e., | U |= n), and, (ii) a collection S = {S1, S2, ..., Sm} of sets of the universe U that may
be overlapping (i.e., S1, S2, ..., Sm ⊆ U). Each subset Si ∈ S has an associated cost ci. A Set
Cover is a collection of some of the sets in S, whose union includes all the elements in the
universe U. More formally, C is a Set Cover if

⋃
Si∈C Si = U. The goal is to find a collection

C of sets Si whose union is equal to U, and, such that ∑ ci
Si∈C

is minimized. Let us consider

the example shown in Figure 2.3. The example shows an input of m = 10 sets Si over the
universe U = {A, B,C,D, E, F,G,H, I} of size n = 9.

A  B  C  D  E 

S
0 

S
1 

S
2 

S
3 

S
4 

S
5 

S
6 

A 

S
7 

E 

S
8 

I 

S
9 

A  B  D  F  G A  F  G 

B  C  G G  H E  H C I 

Figure 2.3.: Example of input S = {S0, ..., S9}

Computing the Set Cover is an NP-Hard problem. The best-known algorithm for com-
puting the Set Cover is based on a greedy heuristic [Joh73]. The greedy algorithm for
computing the Set Cover of a given universe is sketched in Algorithm 6.

Initially, all the elements in U are marked as uncovered (line 1). Then, at each step, the
set having the minimum associated cost value ci is picked and all its elements are marked
as covered. The algorithm terminates when all the elements in U are covered.
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Algorithm 6: Greedy Set Cover Algorithm

Input :A set U of n elements.
A collection S = {S1, S2, ..., Sm} of subsets of U with costs ci.

Output :A Set Cover SC

1 Mark all elements in U as uncovered;
2 SC ← ∅;
3 while (Some elements remain uncovered) do

⊲ U * C
4 Pick Si with the minimum cost ci from S;
5 SC ← SC ∪ Si;
6 Mark all elements in Si as covered;
7 Remove Si from S;
8 return SC;

Figure 2.4 shows an example of running the greedy set cover algorithm on the input
sets in Figure 2.3. For simplicity, we consider in this example the cost ci of a set Si as

1
|Si |

where | Si | is the cardinality of Si. Initially, the sets with the largest number of uncovered
elements are S0 and S1 of size 5. The algorithm picks, then, randomly S0 = {A, B,C,D, E}.
After this step, all elements in S0 are covered (these are shown in lowercase in Figure 2.4).
Now, the set with the largest number of uncovered pairs is of size 2. The greedy algorithm
arbitrarily picks S1 and marks additional items (F and G) as covered. In the next step,
S4 is picked to cover H. Then, S6 is picked in order to cover the remaining item I and
the algorithm terminates. The resulting set cover is then {S0, S1, S4, S6} which is not the
optimal solution as picking the sets S1, S5, and, S6 is sufficient to cover all the items in U.
Thus, the greedy algorithm is an approximation algorithm of the Set Cover.
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After Step 1 After Step 2 

After Step 3 

Figure 2.4.: Greedy algorithm execution example
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2.8. Max Cover

The maximum coverage problem is a classical question in computer science. Given a
universe U of n elements, a collection S = {S1, S2, ..., Sm} of sets of the universe U, and,
an integer value K. For the general weighted max cover problem, the goal is to select k
sets from S such that the sum of costs is minimized. For the unweighted variant of the
max cover problem, the goal consists in picking k sets from S such that the number of
covered elements |

⋃

Si∈S
| Si || is maximized.

The maximum coverage problem is NP-Hard. It admits a greedy approximation algo-
rithm (see Algorithm 7), which selects at each step the set with the maximum number
of uncovered pairs (like the Set Cover greedy algorithm), but, it terminates when k are
already picked. The approximation ratio of this algorithm is (1− 1

e ) [Hoc97b].

Algorithm 7: Greedy Max Cover Algorithm

Input :A set U of n elements.
A collection S = {S1, S2, ..., Sm} of subsets of U with costs ci.
An integer value k.

Output :A max cover MC

1 Mark all elements in U as uncovered;
2 MC ← ∅;
3 while (number of picked sets < k) do
4 Pick Si with the minimum cost ci from S;
5 MC ← MC ∪ Si;
6 Mark all elements in Si as covered;
7 Remove Si from S;

8 return MC;

2.9. Submodular Function Maximization

Given a finite set E, a function f : 2E → R+ is submodular if and only if the following
holds:

∀A, B ⊆ E, f (A) + f (B) > f (A ∪ B) + f (A ∩ B) (2.6)

The problem of maximizing a sub-modular function can be described as follows: Given
a finite set E such that | E |= n, a function f : 2E → R+ and an integer k 6 n, our goal is
to pick at most k sets from E such that ∑

i
f (Si) is maximized. f is specified via an oracle,

which given a set A ⊆ E will return f (A).

The submodular function maximization generalizes the max cover problem, and, it is
an NP-Hard problem. The solution to this problem is based on the greedy approximation
algorithm with a 1− 1

e ≈ 0.632 guarantee.
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2.10. disk-friendly Set Cover

The explained above greedy algorithm (see Algorithm 6) for computing the Set Cover
typically finds solutions that are close to optimal. However, a direct implementation of the
greedy approach does not behave well when the input is very large and/or disk-resident.
One of the bottlenecks of the greedy approach is computing the number of uncovered
elements for each set Si in order to pick the set with the largest number of uncovered items
at each step. To deal with this issue, Cormode et al. [CKW10] proposed a disk-friendly
algorithm to find a Set Cover which is close to that of the greedy algorithm, but, which
can be computed more efficiently. In this section, we describe the fast set cover algorithm
proposed in [CKW10].

As sketched in Algorithm 8, the initial step consists in partitioning the input sets into
sub-collections according to their size (i.e., number of items in each set) for the unweighted
variant of the Set Cover, and, according to the associated cost ci for the weighted case
(line 1). More in detail, a set Si is assigned to a sub-collection k if and only if the following
holds:

pk
6| Si 6 pk+1 (2.7)

where p is a parameter such that p ∈ R and p > 1, which governs both the approximation
ratio of the algorithm and its running time.

Starting with the non-empty sub-collection S(k) with the largest k value. The algorithm
proceeds as follows: it picks the first set Si in S(k) and computes the number of uncovered
items in it. If according to Inequality 2.7, Si still belongs to the current sub-collection S(K),
then Si is added to the Set Cover SC and omitted from further consideration. Otherwise, Si

is removed from its current sub-collection S(k) and placed in the right sub-collection with
respect to Inequality 2.7. The algorithm continues iterating until all items in sub-collections
are processed.

Unlike Algorithm 6 which requires many passes over a given set Si to compute the
number of items along the iterations, Algorithm 8 allows to compute a Set Cover with a
good approximation factor with a few passes over the input sets. More clearly, the benefit
of this algorithm is that it has a good behavior, especially when sets are stored on disk, as
it doesn’t need to compute the number of uncovered items for all the sets at each iteration.
Whenever a set is removed to a lower sub-collection, it becomes smaller in size, thus,
future computation of its number of uncovered items is more efficient.

The worst case running time of Algorithm 8 is:

[1+
1

p− 1
]×∑

i

| Si | (2.8)

which is at most 1+ 1
p−1 as large as the time needed to scan all the sets. In practice, such

worst case examples is not expected to happen. If a set is not added to the Set Cover
in a given iteration, it will be most likely moved down multiple levels, rather than just
one. In addition to that, it is easy to see that disk-resident sub-collections can be accessed
sequentially when the elements of each sub-collection are stored in a separate file.

Figure 2.5 shows an example of executing Algorithm 8 on the input list of sets shown
in Figure 2.3 with p = 2. Initially, the input sets are sorted into three sub-collections
containing sets whose sizes are in the following ranges [4, 7], [2, 3], and, [1, 1], respectively.
At step 1, the algorithm considers the first set in the highest sub-collection (note that
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Algorithm 8: Disk-friendly Set Cover Algorithm

Input :A set U of n elements.
A collection S = {S1, S2, ..., Sm} of subsets of U with costs ci.

Output :A set cover SC

1 Sort the subsets Si of S into K sub-collections according to their cost values ci;
2 foreach k← K down to 1 do

3 foreach set Si in S(k) do

4 if (| Si\SC |> pk) then
5 SC ← SC ∪ Si;

6 Remove Si from S(k) and from further consideration;

else

7 Si ← Si\C;

8 Add the updated set Si to sub-collection S(k
′
) such that pk

′

6| Si |6 pk
′
+1;

9 foreach set Si in S(0) do
10 if (| Si\SC |= 1) then
11 SC ← SC ∪ Si;

12 Remove Si from S(0) and from further consideration;

13 return SC;

4 -7 ABCDE, ABDFG 

2 -3 AFG, BCG, GH, EH, CI, AFG 

1 A, E, I 

Step 1 

2 -3 aFG, bcG, GH, eH, cI, (abd)FG 

1 a, e, I 

Step 2 

2 -3 bcg, gH, eH, cI, (abd)fg 

1 a, e, I 

Before Step 3 

1 a, e, I, (g)H, (e)H, (c)I 

Step 3 

Figure 2.5.: Greedy algorithm execution example

the picked set at each iteration is bold and underlined, and, covered items are shown in
lowercase in Figure 2.5). The next set in the same sub-collection now has only 2 uncovered
items which are F and G, so the new set is moved to a lower sub-collection. At step 2,
the first set aFG has two uncovered elements, so the algorithm adds it to the solution.
Consequently, none of the sets in the current sub-collection are correctly placed as all of
them cover now less than 2 elements, due to items being previously covered. At step 3,
each of the sets I and gH has one uncovered item, thus they are consecutively picked
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and added to the solution. At this point, the remaining sets in the current and last sub-
collection have no uncovered items. Thus, the resulting Set Cover is {ABCDE}, {AFG},
{GH}, {I}, which is different from the resulting Set Cover of the greedy algorithm, but it
has the same number of sets which is 4.

2.11. Wilson Score-based Sampling

In this section, we present our sampling strategy that we need in Chapter 4. Studying a
given property in a very large set of items is an expensive task to perform. For instance, let
us suppose that we have a very large set S of node pairs and an index I which covers some
node pairs. Our goal is to determine the number of pairs in S that are not covered in I.
Given that the total number of pairs in our case is O(| V |2) (see Chapter 4), checking the
pairs exhaustively is a very expensive and it prevents us from computing exact statistics.
To deal with this, we propose to estimate the number of uncovered pairs by sampling.
More clearly, we propose to select an informative sample of node pairs from S based on
which we determine the number of uncovered pairs. In order to decide the size of the

Algorithm 9: Estimating number of uncovered node-pair distances

Input :A center node w, partial 2-hop index LG.
Output :Approximate num. of uncovered shortest paths traversing w.

1 N ←
(Z α

2
)2×p×q

E2 ;

2 while (true) do
3 sample uniformly at random a set S of N node pairs (u, v) where u and v are

predecessors and successors of w in G, respectively;
4 for (u, v) ∈ S do

if (dG(u,w) + dG(w, v) < dL(u, v)) then
declare (u, v) uncovered;

5 Using Wilson formula [Wil27] compute a 0.95 confidence interval I ;

6 if I is not contained in any interval [(1+ ε)j−1, (1+ ε)j] corresponding to the
sub-collection Sj (that is we cannot determine the right sub-collection for Hw) add

1000 to N else break;
7 if (N > 10000) break;

8 return the approximate num. of uncovered node-pair distances;

sample we first initialize the sample size using the following formula [BKH01]:

N =
(Z α

2
)2 × p× q

E2
(2.9)

(Zα

2 )
2 is the z score separating an area of in the right tail of the standard normal distribution,

p and q respectively denote the probability that a node pairs in a given star is covered
or not, and, E denotes the error margin. Since we don’t have information about the
probability that a given node pair is covered or not, we set a probability value of 0.5 to
both p and q.
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We aim at a confidence of 0.95. After initializing N, we estimate the ratio of covered node-
pairs distances by computing the corresponding Wilson Confidence Interval Score [Wil27].
Wilson returns an interval so it might be the case, then that such an interval is not contained
in any of the intervals corresponding to the sub-collections see Algorithm 11. If this is the
case we cannot find the right sub-collection for the bipartite graph at hand. Hence, we
increase the size of the sample by 1000 until we are able to determine with a confidence of
0.95 the right sub-collection for the bipartite graph at hand (that is one interval is contained
into the other interval). Algorithm 9 shows a pseudo-code for our sampling strategy.

2.12. Conclusion

In this chapter, we introduced some basic definitions and state-of-the art algorithms as
background for our indexing scheme for answering distance queries in very large graphs
EUQLID, our access control model, and, its corresponding privacy management system
Primates, which we will respectively detail in Chapters 4 and 5. These algorithms have
been used in the literature for a wide range of problems, especially for graph indexing
problems. In the next chapter, we discuss and study some properties that real graphs
exhibit in order to help devising efficient algorithms on such graphs.
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Chapter 3.

Interesting Properties of Real Graphs

3.1. Introduction

Recently, there has been considerable interest in studying complex real-world networks
(such as social networks, biological networks, road networks, the Internet, etc.), and,
attempting to understand their properties. Several studies have shown that real graphs
are not actually random, but, they share some peculiar properties like the small-world di-
ameter, the power-law node degree distribution, and, the community structure properties,
to name a few. These properties are interesting as they help to not only understand the
nature of real graphs, but also, to devise efficient algorithms to run on such graphs.

In this chapter, we highlight and explain some prominent real graph properties that
have been discovered in the literature. We also report some experiments that we have
conducted to understand such networks. In particular, we discuss an interesting property
of real graphs that we discovered. This property is very interesting, in our case, as it was
useful to devise an efficient algorithm for computing distance queries in large directed
graphs as explained in Chapter 4.

This chapter is organized as follows: In Section 3.2, we introduce and describe two
different models of complex networks (i.e., random and scale-free models). In Section 3.3,
we briefly highlight some well-known real-world graph properties. In Section 3.4 and 3.5,
we respectively analyze shortest paths in several real graph datasets, and, study the impact
of some discovered properties on improving the 2-hop algorithm described in Chapter 2.
Section 3.6 concludes the chapter.
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3.2. Complex Network Models: Random versus Scale-Free

Analyzing the structural and topological properties of complex networks (i.e., graphs)
gives information on how nodes are connected to each other. A noteworthy property
among these properties is the connectivity distribution P(k), which denotes the probability
that a node chosen at random has k links. P(k) characterizes the architecture of a given
network [Bar02, New03]. In the following, we discuss two well-known models of complex
networks: random networkswith a Poisson topology, and, scale-free networkswith a scale-free
topology [Bar02, New03].

Random networks were first described by the Hungarian mathematicians Paul Erdos
and Alfréd Rényi. They could be defined as follows.

Definition 3.1. Erdös Réyni Random graphs. Let n be a positive integer, and, let p be
a given probability such that p ∈ [0, 1]. The random graph G(n, p) is a graph having
n nodes, where there is an edge between two nodes u and v in G with probability p
(P((u, v) ∈ E(G)) = p, with these events mutually independent) [ER60].

In such networks, although some nodes may have more connections than others, they
all have the same connectivity on average.

Scale-free networks were introduced by Barabasi et al. in [Bar02]. Such networks could
be defined as follows:

Definition 3.2. Scale-free networks. A scale-free network is a graph whose degree
distribution follows a power law [BA99]. This can be, mathematically, expressed as
follows:

P(k) ∼ k−γ (3.1)

where k is an integer denoting a node degree, P(k) is the fraction of nodes with degree k,
and, γ is a parameter whose value is most probably in the range ]2, 3[.

In contrast to random networks, the defining characteristic of scale-free networks is their
high heterogeneity, i.e., some nodes have few connections, some have an average number
of connections, and, some have many connections. In other words, in scale-free networks,
the mean connectivity of the nodes is not representative of the actual connectivity of the
whole network.

(a) Random network (with a probability x) (b) Scale-free network

Figure 3.1.: Random versus scale-free network example
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(a) Random network (bell curve) (b) Scale-free network (power-law distribution)

Figure 3.2.: Degree distributions

Figure 3.1(a) depicts an example of a random network. In such graphs, a plot of the node
degree distribution follows a bell-shaped curve as illustrated in Figure 3.2(a) where most
of the nodes have approximately the same degree value. Figure 3.1(b) shows an example
of a scale-free network with some nodes having very high degrees and the rest having
relatively small degree values. In contrast to random networks, in scale-free networks, the
node degree distribution follows a power law. This distribution is depicted in Figure 3.2(b),
and, it results in a straight line, if plotted in a double logarithmic scale.

According to several comparative studies on network theory [BA99, FFF99], a large
number of real networks adopt a scale-free architecture. This feature was found to be a
consequence of two generic mechanisms: (i) networks expand continuously by adding new
nodes, and, (ii) new nodes attach preferentially to nodes that are already well connected.
Examples of these networks include social networks (e.g., friendships, sexual contacts,
scientific collaborations and authors of publications, disease propagation), the Internet
network, and, biological networks (e.g., gene regulation networks, protein networks,
metabolic networks). Figure 3.3 depicts the network structure of some real graphs.

3.3. Well-known Properties

In this section, we report some of the most important properties that appear in real
graphs. We describe two main classes of properties: (i) static properties, which describe
the structure of snapshots of graphs, and, (ii) dynamic properties, which describe how the
structure evolves over time.

3.3.1. Static properties

Heavy-tailed Degree Distribution. The degree distribution of many real graphs follow a
power-law of the form f (d) = d−α, where α is a strictly positive parameter whose value
is typically in the range ]2, 3[ and f (d) is the fraction of nodes with degree d. Intuitively,
such distribution implies the existence of many low-degree nodes in the graph and a few
number of high-degree nodes [LLDM08, FFF99, KKR+99]. Power laws have been found
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(a) Internet network[int] (b) Philosophy citation network[phi] (c) Twitter follower graph[fol]

(d) Yeast protein interactions[MS02] (e) High school dating network[BMS02] (e) Sexual network[New03]

Figure 3.3.: Examples of real networks

in the Internet (Faloutsos et al., [FFF99]), the Web (Kleinberg et al., [KKR+99]; Broder et
al., [BKM+00]), citation graphs (Redner [Red98]), online social networks (Chakrabarti et
al. [CZF04]), etc.

Small Diameter. Most real-world graphs were found to exhibit relatively small diameter
(the small- world phenomenon, or “six degrees of separation” by Milgram[TMTM69]).
For instance, Boldi et al. [BV12] have recently observed that the diameter of Facebook
is 4, which shows that the world is even smaller than what Milgram expected. The di-
ameter of a graph denotes the maximum shortest path distance between any two nodes,
which indicates how quickly we can get from one end of the graph to the other end [Bar03].

Community Structure. Real-world graphs exhibit a modular structure, where nodes
form communities (i.e., groups of people having common interest(s)), and possibly com-
munities within communities [GN02, SW92, FLGC02]. Generally, members within a
community have few relations with people outside that community. Some people, how-
ever, are connected to a large number of communities (e.g., celebrities, politicians). Those
people may be considered the key nodes which are responsible for the small-world phe-
nomenon described in the previous paragraph. As the number of such key nodes cannot
be so large compared to the rest of the nodes in the graph, we can confirm the resulting
fact of the power-law degree distribution (which says that in real graphs, we have a small
number of high-degree nodes connecting the rest of low-degree nodes).
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Figure 3.4.: Evolution of diameter over time [LKF05]

3.3.2. Dynamic properties

Shrinking Diameter. Leskovec et al. [LKF05, LKF07] showed that the diameter of real
graphs is not only small, but it also shrinks then stabilizes over time. The plots shown in
Figure 3.4 illustrate the evolution (i.e., decrease) of the diameter over time of some real
graph datasets.

Densification Power Law (DPL). Leskovec et al. [LKF05] have also shown that, in real-
world graphs, when the number of nodes doubles, the number of edges doubles even
more, hence the densification (i.e., the graphs gets denser). This also explains the shrinking
diameter phenomenon observed in real graphs, which was described earlier.

3.4. Analyzing Shortest Paths

Node degree distributions are important tools for studying and understanding the struc-
ture of real networks. They give insight into their structures and help designing generative
models that capture their growth and dynamics. They are also key tools in the design
and analysis of efficient algorithms for a number of challenging graph problems. Based
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on the fact that node degrees in social graphs follows a power-law distribution, meaning
that in the graph there is small number of high-degree nodes and the rest of nodes have
small degree, we proposed to study the way high-degree nodes and low-degree nodes
are connected to each other within the graph. In other words, we wanted to measure the
importance of high-degree nodes to graph connectivity.

In this section, we take a closer look at shortest paths and check if they exhibit some
additional interesting patterns, which could possibly help us to solve our reachability
problem (described in Chapter 1). To do this, we sampled a large number of shortest paths
for a selection of small and large social graphs, and, studied the degree of nodes that are
involved in such paths.

Datasets and Settings. To perform our experiments, we used a set of datasets, which
were compressed using the WebGraph framework [BRSV11]. This framework provides
simple ways to manage very large graphs while exploiting modern compression tech-
niques. We considered graphs of different sizes with a number of edges ranging from
several hundreds of thousands to almost one billion and a half.

Sampling strategy. To do this, we sampled 300 seed nodes independently at random
for each dataset, and, for each seed node we computed the set of shortest paths of lengths
3 and 4 starting from such nodes. We analyzed the obtained shortest paths by computing
the degrees of nodes that they involve.

Results. After studying node degrees that are involved in the very large number of sam-
pled shortest paths, we observed that in each path there is always at least one node with a
degree far higher then the other node degrees involved in the same path. Based on this
observation, we can say that, in social networks, shortest paths go through high-degree
nodes. We denote such nodes as hubs. We say that a hub w covers a given path p if and
only if p goes through w.

This property is very interesting to improve the 2-hop algorithm described in Chapter2.
In fact, instead of considering all the nodes of the graph as candidate centers, we can only
consider a subset of nodes S (i.e., the set of high-degree nodes involved in shortest paths).
This can make the 2-hop cover indexing process more time-efficient.

In order to determine the set S of high-degree nodes involved in all possible shortest
path in a given graph, we suggested to define a degree threshold θ. All the nodes with a
degree larger than θ should be part of S. Given a degree threshold θ, S could be formally
defined as:

S = {w | w ∈ V ∧ degree(w) > θ} (3.2)

θ is determined as follows. For each sampled node pair, we store the maximum node
degree involved in its shortest paths. If there is more than a shortest path between two
nodes, then, we select the maximum degree among all the degrees in all shortest paths
between these nodes. Then, we select the minimum degree among all stored maximum
degrees as the degree threshold θ. The algorithm for determining shortest paths is based
on a breadth first search which traverses the graph starting from a seed node and computes
the shortest path by maintaining the encountered nodes. Then, degrees of intermediate
nodes that are involved in shortest paths are efficiently computed.

Table 3.1 reports the set of datasets that we considered along with their sizes, density
values, and, the degree threshold θ. Based on θ, we computed the number of hubs (i.e.,
| S |), and, reported the percentage of these nodes in the corresponding graphs. As shown
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Datasets #Nodes #Edges Density Diameter θ % of hubs Source

Small datasets

Enron 69 244 276 143 3.98 34.28 (± 0.295) 70 2.30 [web]
Amazon 2008 735 323 5 158 388 7.01 13.42 (± 0.098) 8 67.87 [web]
DBLP 2010 326 186 1 615 400 4.95 14.64 (± 0.135) 18 11.54 [web]
DBLP 2011 986 324 6 707 236 6.8 8.88 (± 0.076) 14 22.19 [web]

Large datasets

Hollywood 2009 1 139 905 113 891 327 99.91 4.14 (± 0.027) 1084 37.13 [web]
Hollywood 2011 2 180 759 228 985 632 105 4.92 (± 0.045) 494 8.38 [web]

LiveJournal 5 363 260 79 023 142 14.73 7.36 (± 0.068) 50 14.50 [web]
Twitter 41 652 230 1 468 365 182 35.25 5.29 (± 0.016) 873 1.06 [web]

Table 3.1.: Degree threshold in Shortest Paths

in Table 3.1, the percentage of hubs in the datasets is small and gets even smaller when the
graph gets larger and denser. For instance, the percentage of hubs in the Twitter dataset is
1.06% which is very small despite the very large size of the graph.
Note that the set of hubs, and, consequently the degree threshold change according

to the length of paths that we would like to cover. In fact, the number of hubs that we
need to cover paths of length k is the same that we need to cover paths of length k

′
, where

k, k
′
∈ N and k 6 k

′
. More clearly, a path of length k

′
necessarily contains a sub-path of

length k. According to our experiments, all paths of length 3 go through hubs, then, all
paths of length larger than 3 go also through hubs. Based on this, we can say that the
minimum number of hubs that we need to cover paths of length 3 is the same that we
would need to handle paths of length n where n > 3. In Table 3.1, we report results to
cover paths of length 3, as paths of length 2 are not expensive because traversing the 2-hop
neighborhood of a given node in real time is not expensive.
The above experiments as well as those reported in Section 4.5 have shown that real

graphs exhibit the two following properties:

• Property 1. If two nodes u and v are connected in the graph, then, there is at least
one short path connecting u and v, which traverses at least one high-degree node.

• Property 2. The reachability backbone (see Section 3.5) of a real graph forms a
strongly connected component.

We define a short path to be a path whose length does not exceed a given threshold.
This threshold could be the average distance in the graph. In what follows, we explain
these two properties, and, discuss their relation with other well-known properties. The
first property is somehow related to the small-world phenomenon, which says that the
diameter (longest shortest path) in real graphs is relatively small. It could be seen as a
result of it, as the distance between two nodes could not exceed the diameter of the graph
in any case. Moreover, this property confirms the densification power law saying that the
number of edges increases over time much more than the number of nodes, and, makes
graphs get denser over time (causing an increase of the average node degree). The same
property also confirms the fact that the node degree distribution follows a power-law
meaning that new added nodes to the graph tend to connect to high degree nodes.

The small world phenomenon property can be seen as a result of the second property, as
paths going through high degree nodes may consist in shortcut paths between node pairs.
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As a result of the community structure property of real graphs, nodes in a given
community have few relations with nodes outside that community. However, some nodes
(high-degree nodes) are connected to other communities, which confirms the second
property (the reachability backbone forms a strongly connected component). Such high-
degree nodes can be considered as the key nodes which are responsible for the small-world
phenomenon.

3.5. Studying Stars

The subset of high-degree nodes determined based the threshold θ form a graph G
′
(V

′
, E′),

where V
′
= S and E

′
= {(u, v) | u, v ∈ V

′
∧ (u, v) ∈ E}. We define G′ as the Reachability

Backbone of G, as it captures the necessary information to deduce reachability between
nodes. A Star is the set of all predecessors and successors of a given node v, denoted
S∗(v):

S∗(v) = P(v) ∪ S(v) (3.3)

A k-hop star of a node v, denoted S∗k (v), includes the set of predecessors and successors
within k hops from v in backward and forward directions, respectively. To compute the
2-hop cover of a given graph, we need to compute for each candidate center v, its star
S∗(v), which can be very expensive when the input graph is very large and dense like
real-world graphs are. A possible direction to deal with this is to consider k-hop stars (e.g.,
2-hop or 4-hop stars) instead of full stars depending on the length of the paths that we are
interested in. In this section, we study the impact of varying k on the size of stars and the
time needed to get them.

Datasets Reachability Avg. 2-hop 2-hop Avg. 4-hop 4-hop Avg. Star Star Time
Backbone Size Star Size Star Time Star Size Star Time Size

Small datasets

Enron 1592 761 16ms 2787 40ms 2976 75ms
Amazon 2008 499094 3 2ms 12 4ms 1747 1sec
DBLP 2010 37646 52 4ms 2500 46ms 7767 500ms
DBLP 2011 218881 527 9ms 120000 500ms 433362 1sec

Large datasets

Hollywood 2009 423 310 2680 600ms 84618 30sec 84618 6sec
Hollywood 2011 182 851 1662 311ms 365700 30sec 365700 30sec

LiveJournal 778 148 1107 45ms 744391 11sec 1.5M 18sec
Twitter 440 338 206790 90sec 876565 6mins 876565 6mins

Table 3.2.: Statistics on Stars for all datasets

Table 3.2 reports the size of the reachability backbone for all the considered datasets.
Note that the size of the reachablity backbone denotes the number of nodes that it contains.
We do not report the number of edges as G

′
is a strongly connected component, where all

the nodes v ∈ V
′
are connected to each other. This means that all stars of nodes within the

reachability backbone overlap too much. We compared the average size of 2-hop stars,
4-hop stars and full stars, as well as the necessary time to get them from the input graph G.
It is clear from the table, that considering larger k results in larger stars and takes longer to
get them. For some datasets and especially the largest ones where the diameters are small
(4 or 5), we observed that considering the distance (the 4-hop neighborhood) or not has no
impact on the size of stars and the time needed to retrieve them (i.e., most of the nodes
could be reached within a small number of hops).
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Figure 3.5.: Number of stars wrt to different sizes on small datasets
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Figure 3.6.: Average processing time get 2-hop stars on small datasets

Figures 3.5, 3.6, 3.7 and 3.8 report histograms illustrating to the number of stars per size
category for all the datasets and the time needed to get them.
Experiments on studying 2-hop stars size and processing time on small datasets are

reported in Figure 3.5 and Figure 3.6. These experiments were run on a sample of hubs
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Figure 3.7.: Number of stars wrt to different sizes on large datasets
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Figure 3.8.: Average processing time to get 2-hop stars on large datasets

from each of the datasets (a sample of 1482 hubs from enron, a sample of 10184 hubs from
amazon-2008, a sample of 34276 hubs from dblp-2010, and, a sample of 54473 hubs from
dblp-2011).

Experiments on studying 2-hop star sizes and processing time on large datasets are
reported in Figure 3.7 and Figure 3.8. These experiments were run on a sample of 200
hubs of each of the datasets.
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3.6. Conclusion

In this chapter, we studied the structure of real-world graphs in order to understand the
properties that they exhibit. We briefly presented some of the well-known properties
that were already discovered in the literature. Then, we reported and described our own
experiments to study the way high and low-degree nodes are connected in the graph
through our shortest path analysis. We also studied the impact of considering the distance
when computing the stars to compute the 2-hop cover.

Going back to our original motivation of scaling reachability queries to large graphs,
we have now revealed and understood some interesting real graph properties that can be
used to devise an efficient algorithm to deal with the reachability problem described in
Chapter 1. We now proceed, in the following chapter, to the issue of answering distance
queries in large directed graphs.
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Chapter 4.

Answering Distance Queries in Large Directed

Graphs

4.1. Introduction

Computing the distance between any two nodes in a directed graph is a fundamental
operation required in several applications encompassing social networks, road networks,
semantic web and bio-informatics. State-of-the-art algorithms fail at coping with large
real-world graphs which may be dense and may contain billions of links. In this chapter,
we present EUQLID a method for indexing large directed graphs so to efficiently answer
distance queries. EUQLID is based on a fast algorithm for a variant of the 2-hop cover
problem where an additional constraint on the size of the index is enforced. It also
exploits the property of modern real-world graphs that a few nodes connect all nodes
through short paths. Our evaluation on directed social graphs and web graphs shows
that EUQLID outperforms recent approaches and that distance queries can be processed
within hundreds of milliseconds on very large publicly available graphs.

The rest of this chapter is organized as follows. Section 4.2 discusses existing work about
the general reachability problem, Section 4.3 defines formally the problem of answering
distance queries and introduces notations and definitions. Section 4.4 describes both the
indexing algorithm and the query processing algorithm, while Section 4.5 contains an
extensive experimental evaluation of our approach against the state of the art. Finally, we
include in Section 4.6 our conclusions.

4.2. Related Work

As described in Section 1.1.1, we distinguish three main types of reachability queries:
simple reachability queries, distance queries, and, distance and reachability queries with constraints

39



Chapter 4: Answering Distance Queries in Large Directed Graphs

which are even more general and consider constraints on edge labels, label order, distance,
edge direction, etc. We present here related work about answering these three types of
reachability queries.

4.2.1. Simple reachability

Reachability queries consist in checking whether there is a path (of any distance) connect-
ing two given nodes in a graph. The topic of answering reachability queries has been inten-
sively studied, see for instance [ABJ89, BCN08, CP10, CC08, CSC+12, CYL+06, CYL+08,
CHKZ02, JRDX12, JRXW11, JXRF09, STW04, vSdM11], and, [YCZ10, SABW13, CHWF13]
for more recent works. A recent book surveying a number of existing indexing scheme
can be found in [AW10].

Existing approaches for answering simple reachability queries can be classified in two
main categories: (i) off-line indexing approaches, and, (ii) online guided search approaches.
The first category proposes to pre-compute indexes which capture all reachability infor-
mation stored in a compact way. However, the second category of approaches proposes to
pre-compute an index holding some information which helps improving online search.

Several approaches have proposed new techniques [BCN08, CP10, CSC+12, CYL+06,
CYL+08, JXRF09, STW04] to improve the original 2-hop labeling [CHKZ02]. However,
they are very costly in constructing the index and they cannot handle large graphs. As
pointed out in [JRDX12], most of the existing methods can handle relatively small graphs
(i.e., with tens to hundreds of thousands vertices and edges). To process larger graphs,
these methods are either too costly in indexing or in query processing which limits their
application to real-world graphs. For graphs with millions of vertices and edges, only a
few methods [YCZ10, JRDX12, SABW13, CHWF13] were proposed with reasonably good
efficiency. For instance, Jin et al. [JRDX12] proposed a backbone structure as a general
framework, called SCARAB, on top of which existing indexing methods can be applied.
A reachability query (u, v) can be answered by first finding all backbone vertices that
can be reached from u (denoted Bu) and all backbone vertices that can reach v (denoted
Bv). Then, they check whether any vertex in Bu can reach any vertex in Bv. Any existing
method can be applied to the backbone graph to process the second step, and, querying is
generally faster since the backbone might be significantly smaller than the original graph.
Although SCARAB can be used as a general framework to further improve the scalability
of any reachability index, an efficient and scalable method itself is still crucial for query
performance. In fact, SCARAB itself may not be scalable to large graphs, and, the backbone
of a large graph may also still be too large for existing methods.

Yildirim et al. [YCZ10] proposed the GRAIL index which uses k random trees to cover
a DAG, generating as many intervals as a label for each node. Their query processing
algorithm uses these labels to quickly determine non-reachability, otherwise it recursively
queries the nodes underneath in the DAG. In the same perspective, Seufert et al. [SABW13]
proposed Ferrari which trades off query performance for reduced index size and indexing
cost.

4.2.2. Distance queries

Given the sheer size of modern graphs in a large number of applications, computing dis-
tance in graph-structured data has become an important problem in the database research
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community. In this section, we describe the most recent algorithms developed in this
area of research. For an exhaustive and detailed survey about processing distance queries
see [AW10].

Shortest Path Computation. One of the most well-known methods for shortest path
computation is Dijkstra’s algorithm [Dij59], which recursively traverses the graph on the
fly, while maintaining the length of the shortest path so far found between a given source
node s and the set of traversed nodes. Although, this algorithm is elegant and simple, but
it is unfortunately non-efficient for large-scale graphs.

Recently, Wei [Wei10] proposed TEDI as a tree decomposition-based index for answering
shortest path queries online on unweighted undirected graphs. They utilize the tree-width
decomposition to help reduce the search space. This method is does not scale well on large
graphs, because, it precomputes pair-wise shortest path distance between all the nodes
that are stored in each tree, which is prohibitively expensive in large graphs and requires
a huge storage space. In addition to that, since directed tree decomposition tends to be
more elaborate and difficult, it is not clear whether it can be equally effective on weighted
and/or directed graphs. Xiao et al. [XWP+09] also proposed a tree decomposition-based
index to answer shortest path queries online. Despite the modest size of the input graphs,
the overall size of all the compressed BFS trees is still very large. Both [Wei10] and
[XWP+09] assume that the index fits into main memory which is not the case when the
input graph is large or when there are some memory constraints.

Cheng et al. [CKCC12] proposed a disk-based vertex cover approach to answer SSSPs
(Single Source Shortest Paths) in large undirected graphs, which can also be used to answer
point to point distance queries. However, when applying this technique to point to point
distance queries, many irrelevant nodes could be traversed before reaching the desired
target node. Another vertex cover-based approach [CSC+12] was proposed by the same
author to find the k-reachable nodes starting from a given source node for applications like
finding the small world of a user (i.e., closest people) in a social graph.

Landmark Encoding. Several works proposed to use landmarks to approximate the
shortest path distance [PBCG09, GBSW10]. The main idea is to precompute the distance
of the shortest path between all the nodes in the graph and these landmark nodes, then
apply the triangle inequality to estimate the shortest path distance. This method uses a set
of heuristics to select the landmarks. These heuristics are based on node properties such as
the degree and the centrality. More clearly, they introduced the Landmark-Cover problem
which tries to find the minimum number of landmarks such that for any pair of vertices u
and v, there exist at least one landmark in the shortest path from u to v. However, their
objective is to efficiently compute estimates of the actual distance while our goal is to
develop an exact algorithm for computing the distance between any two nodes in the
graph.

2-HOP Labeling. Cohen et al. [CHKZ02] proposed the 2-hop labeling, which is a com-
pact representation of the transitive closure of the graph. See next section and Section 2.6
for a more detailed explanation of this approach.

Shortest path distance computation. A theoretical analysis of several practical point to
point shortest path methods (which was based on modeling road networks as graphs with
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low highway dimension) was conducted by Abraham et al. [AFGW10]. According to this
study, the labeling algorithm had the best time bounds among all the studied methods.
However, the existence of a practical implementation is still an open issue. Based on this
study, Abraham et al. [AFGW10] recently developed a fast and practical algorithm to
heuristically construct the distance labeling on large road networks. However, it is not
clear how this technique which was specifically designed for road networks can be broad-
ened to larger class of graphs. Jin et al. [JRXL12] proposed a highway-centric labeling
approach to answer distance queries in large sparse directed graphs. This approach is
based on the 2-hop labeling approach. It proposes to select a spanning tree in the graph as
a highway. Then, it considers the spanning tree nodes as centers in the 2-hop index. The
distance between two given nodes u and v can be computed as the length of the shortest
path from u to some vertex wi in the highway, then from wi via the highway (i.e., a path in
the spanning tree) to some vertex wj, and finally from wj to v. This approach cannot scale
to large and dense graphs because it requires pre-computing all pairs of shortest paths
in the graph, which is prohibitive. IS-label is a very recent approach that was proposed
by Cheng. et al [AHCR13] to answer point to point distance queries in large directed and
undirected graphs. To the best of our knowledge, it is the most scalable approach that was
so far proposed to answer distance queries. Their indexing algorithm has two main steps :
(i) they first compute a vertex hierarchy (i.e., they consider different levels of nodes), then,
(ii) they assign labels to vertices v ∈ V based the the previously computed vertex hierar-
chy. A vertex belonging to a given hierarchy can be assigned only vertices from the same
hierarchy as its label. To answer a distance query, they preform a bi-directional Dijkstra’s
algorithm guided by the computed index. In this chapter, we conducted an extensive
evaluation on large real world graphswhich shows that our technique outperforms IS-label.

4.2.3. Labeled queries

Existing work has mostly focused on simple reachability and distance queries. Less
attention has been paid to distance and reachability queries with constraints, despite its
importance in many application scenarios (i.e., social networks, protein-protein interaction
networks, RDF graphs, etc.).

Fan et al. [FLM+11] have addressed the problem of adding regular expressions and
patterns to reachability queries. They have evaluated their algorithm on synthetic graphs
of up to 1M nodes and 4M edges. Gubichev and Neumann [GN11] have implemented
a technique of evaluating path queries over RDF graphs using purely database style
indexing and efficient join processing techniques. Although Gubichev and Neumann
have performed experiments on very large RDF graphs, their queries use more join-like
expressions than rich path-patterns.

Jin et al. [JHW+10] proposed a tree-structured index for evaluating label-constraint
reachability (LCR) queries. Given a source node u, a target node v, and, a set of edge labels
S, their goal was to determine whether there is any path between from u to v such that
each edge label on that path is in S. No labels other than those in S can appear on that
path and no order is imposed on edge labels. The distance between nodes is not taken into
account. Jin et al. have evaluated their algorithm on synthetic and real graphs of up to
100K nodes and up to 150K edges. One of the major drawbacks of this approach is the fact
that it requires materializing the transitive closure (i.e., which is to compute and store all
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Notation Description

G(V, E) is a weighted directed graph

w(e) is the weight of a given edge e

u v is a directed path from u to v

P(v) is the set of nodes that can reach v

S(v) is the set of nodes v can reach

Hw is an undirected bipartite graph where V(Hw) ⊆ P(w) ∪ S(w) and there
is an edge going from u ∈ V(Hw) to v ∈ V(Hw) iif d(u, v) is not yet
covered by the current LG

Sw denotes a shortcut for E(Hw)
L(v) is the label of v (Lin(v) ∪ Lout(v))
LG is the two-hop distance labeling (Lin ∪ Lout)

k is the maximum allowed number of center nodes in LG

C is the initial set of K nodes with largest out-degree in G
(candidate centers)

CLG is the set of centers in LG
d(u, v) is the distance between node u and node v

d(u, v)? is a query asking for the distance between node u and node v

Table 4.1.: Frequently used notations I

possible path-labels between all node pairs in the graph). This is obviously too expensive
and impossible to perform for graphs with millions of vertices. In addition to that, to
evaluate a query between two given nodes u and v, they get the set successors of u and
predecessors of v, then they perform a join between these two sets. In real large graphs
having many high-degree nodes, the join process may result in a very large number of
joins which can drastically affect query performance.

Atre et al. [ACZ12] have recently proposed BitPath which is an index for answering
label order constraint queries. Given a source node u, a target node v, and, a sequence
of labels S = (A, B,C), their goal is to determine whether u can reach v through a path,
where all labels in S appear in the specified order. No constraints on the distance are taken
into account. Their approach can be described as follows. Their index is stored as a set of
bit vectors of length | E | and compressed using the Run Length Encoding scheme. The
process of evaluating such a query starts by first checking the reachability between u and
v. Then, they recursively split the query according to the high selectivity of labels in S.
The algorithm stops whenever all the leaf nodes of the query tree are satisfied (yes answer)
or when all node of the query tree are exhausted. While this approach aims to answer
constraint reachability, it is not clear how they deal with simple reachability (i.e., they
just consider it to be trivial and the solution for it boils into computing the intersection
between two bit vectors).

4.3. Preliminaries and Formal Settings

We introduce the following notations and definitions for directed and undirected graphs.
Let G = (V, E) be a weighted directed graph where V is a set of nodes and E is a set of
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edges, i.e. a set of ordered pairs (u, v) where u and v are nodes in G. Each edge comes
with a positive weight w(e). A directed path P = u  v is defined as a set of nodes
u0, u1, . . . , uk where u0 = u,uk = v and (ui, ui+1) are edges of G, i = 0, . . . , k− 1. If there is
a directed path u v in G, we say that u is a predecessor of v and v is a successor of u, while
denoting with S(v) and P(v) the set of successors and predecessors of v, respectively. The
length of a path P is defined as the sum of the weights of the edges in P . We let d(u, v) to
be the distance between u and v in G, that is, the length of the shortest path connecting
u and v in G. The in-degree of a node v is defined as the number of predecessors u of v
such that there is an edge (u, v) in G, while the out-degree of v is defined as the number of
successors u of v such that there is an edge (v, u). We denote by V(G) and E(G) the set of
vertices and the set of edges of G, respectively. The density of an undirected graph G is
defined as |E(G)|/|V(G)|. Table 4.1 summarizes the main notations that are used in this
chapter.

The classic algorithm for computing distances between nodes in a graph is the well-
known Dijkstra’s algorithm [Dij59], whose running time in the worst case is O(|E| +
|V| log |V|) when a min-priority queue is employed. If the input graph is unweighted
then one could use the simple breadth first search algorithm whose worst-case running
time is O(|V|+ |E|). Unfortunately, none of these algorithms are efficient when the input
graph is large as shown by our experiments.

Our approach is based on a variant of the so-called 2-hop distance labeling which is
defined as follows.

Definition 4.1. 2-hop Distance Labeling. Let G = (V, E) be a weighted directed graph. A
2-hop distance labelingLG ofG assigns to each vertex v ∈ V a label L(v) = (Lin(v), Lout(v)),
such that Lin(v) is a collection of pairs (w, d(w, v)) where w is a predecessor of v and sim-
ilarly Lout(v) is a collection of pairs (w, d(v,w)) where w is a successor of v and the
following holds: for any two vertices u, v in V:

a) if u is a predecessor of v in G then there is a node w ∈ V called center such that
(w, d(u,w)) ∈ Lout(u), (w, d(w, v)) ∈ Lin(v), and d(u, v) = d(u,w) + d(w, v).

b) if u is not a predecessor of v then there is no node w such that (w, d(u,w)) ∈ Lout(u)
and (w, d(w, v)) ∈ Lin(v).

The size of the labeling is defined to be:

∑
v∈V

|Lin(v)|+ |Lout(v)|

We denote with CL the set of centers of a 2-hop distance labeling LG. Definition 4.1 sug-
gests how to compute distance queries given a 2-hop distance labeling (see Section 4.4.2).

To the best of our knowledge, no efficient algorithm for computing a 2-hop distance
labeling is known, while computing a compact representation of all-pairs distances suffers
from the inherent problem that the number of node pairs is quadratic. For this reason, we
define a variant of the 2-hop cover problem where we enforce an additional constraint on
the number of centers in the labeling. Such a variant was inspired by the so-called max
cover problem, for which we include a definition for completeness and self-containment.

The (unweighted) max cover problem [Hoc97a] is defined as follows. We are given an
integer k > 0 as well as a collection of sets S = {S1, . . . , Sm} defined over a domain of
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elements X = {1, . . . , n}. We seek to find a sub-collection S̄ ⊆ S containing at most k sets
covering the largest number of elements, i.e., we wish that |

⋃
S∈S̄ S| will be maximized.

There is a simple greedy algorithm for computing the max cover with approximation
guarantee (1− 1

e ) ≈ 0.63 which proceeds as follows. In the first step, we include in the
solution a set Si1 with maximum cardinality among all Si’s. At step t > 2, let Xt be the
current set of covered elements, i.e. Xt =

⋃t
j=1 Sij ; we include in the solution the set

S containing a largest number of uncovered elements that is a set maximizing |Si \ Xt|
among all Si’s. We iterate until all elements in X are covered or exactly k sets have been
included in the solution. For a proof of the approximation guarantee of this algorithm
see [Hoc97a]. Max cover is an instance of the general problem of maximizing monotone
submodular functions subject to cardinality constraints [GLNF78]

The algorithm for max cover is quite simple and straightforward to implement. How-
ever, when the input is very large, such an algorithm turns out to be non-efficient, the
main bottleneck being that we need to compute Si \ Xt for each Si in S at each step. As a
result, the running time of the algorithm is O(k ∑i |Si|) which is also the average running
time of the algorithm according to our experiments. In Section 4.4.1, we present a more
efficient algorithm for this problem which is an adaptation of the algorithm for set cover
presented in [CKW10]. The worst-case running time of this algorithm is bounded by
O((1+ 1

ε
)∑i |Si|), where ε > 0 is a parameter given in input to determine its approxima-

tion guarantee. According to our experiments, such an algorithm works much better in
practice.

We formalize the budgeted version of the 2-hop distance labeling problem as follows.
We relax the constraint a) of Definition 4.1 and we call partial 2-hop distance labeling a
labeling where such a constraint might not hold for every u, v where u is a predecessor of
v. Moreover, we say that the distance between u and v is covered in LG if such a constraint
holds for u and v and uncovered otherwise. We then define the following variant of the
2-hop cover problem.

Problem definition: Max Budgeted 2-hopDistance Labeling (MAXBDL). Given aweighted
directed graph G = (V, E) and a positive integer k > 0, we seek to find a partial 2-hop
distance labeling LG containing at most k centers and covering the largest number of
node-pair distances.

By a reduction from max cover, we can show that Max BDL is also NP-Hard. The reason
for enforcing an upper bound on the number of centers in the index is motivated by the
fact that such a parameter affects both the size of the index and the query time. In the
next section, we develop an approximation algorithm for Max BDL as well as an efficient
heuristic.

4.4. EUQLID

In this section we present the algorithm for building an index (see Section 4.4.1) and
the corresponding query processing algorithm (see Section 4.4.2). Our goal during the
indexing phase is to cover as much distance information as possible without violating
the constraint on the number of centers allowed in the index. We show that this variant
of the 2-hop cover admits a 0.63-approximation algorithm which inspired our efficient
indexing algorithm. In order to select which centers should be included in our index, we
exploit one property that real-world networks often exhibit, that is, a few nodes connect
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all nodes through short paths. These nodes are usually the nodes having largest degree in
the network.

Our idea is to carefully select a set of large degree nodes and to store all distance
information corresponding to paths traversing those nodes. As paths traversing large
degree nodes are not necessarily shortest paths one needs to employ Dijkstra’s algorithm
to find exact distances at query time. However, the search space of Dijkstra’s algorithm
can be effectively pruned by avoiding traversing large degree nodes (as the corresponding
distance information is covered by the index) and using the length of the paths traversing
large degree nodes as maximum depth in the Dijkstra’s algorithm.

One of the technical issues that we need to cope with is to avoid storing redundant
distance information in the index and to do it efficiently. To achieve this task we employ
several techniques from statistics as well as recent results for efficiently optimizing sub-
modular functions subject to cardinality constraints. This is discussed in the rest of this
section.

4.4.1. Indexing Algorithm

We start by devising a greedy approximation algorithm for Max BDL, which turns out to
be non-practical as it computes all-pairs shortest paths. Later on in this section, we shall
see how to adapt our algorithm so to deal with massive datasets.

Our greedy approximation algorithm is inspired by the algorithms for the 2-hop
cover [CHKZ02] and for maximum cover (see [Hoc97a] and Section 2.6), respectively.
The first step is to compute all-pairs shortest paths and declare all node-pairs distances
uncovered. Then, we greedily cover a large number of node-pair distances as follows. At
each step t, for each node w we let Hw = (P(w), S(w), E) be an undirected bipartite graph
where there is an edge between u and v if the distance between u and v is uncovered at step
t, with u and v being predecessor and successor of w on the shortest path connecting u and
v, respectively. At each step, we select the node w whose corresponding Hw contains the
largest number of edges and we include it in the labeling LG, that is, we add (w, d(u,w))
to Lout(u) for every u in P(w) and (w, d(w, v)) to Lin(v) for every v in S(w). We then
update the set of covered node-pair distances, accordingly. We iterate until all node-pair
distances are covered or exactly k centers are included in our index. See Algorithm 10 for
a pseudo-code. Theorem 4.2 follows from the results in [CHKZ02] and [Hoc97a].

Theorem 4.2. Algorithm 10 is a (1− 1
e ) ≈ 0.63-approximation algorithm for Max BDL.

Proof. (Sketch). The proof proceeds by turning any instance of Max BDL to an instance
of max cover (with the same value for an optimum solution) as follows. For every
bipartite graph Hw introduce a set Sw containing the set E(Hw) of edges of Hw. Then, the
approximation guarantee of Max BDL follows directly from the approximation guarantee
of the algorithm for max cover. Alternatively, one could show that the objective function
of Max BDL is monotone and submodular.

Computing all-pairs shortest paths is prohibitive for large graphs. In order to alleviate
the computational cost of our greedy algorithm we make use of sampling techniques and
we relax our definition of uncovered distances as follows. At any step t of our algorithm
let dt(u, v) denote the distance between u ad v in the index at step t, (i.e., at step t = 0 let
d0(u, v) = ∞). Given a node w we include an edge in the corresponding bipartite graph
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Algorithm 10: A (slow) 0.63-approx. algorithm for BDL

Input :A directed graph G = (V, E), a positive k.
Output :An approximate BDL LG with at most k centers.

1 LG ← ∅;
2 size← 0;
3 compute all-pairs distances T in G;
4 while (size < k and T 6= ∅) do
5 for each w ∈ C let Hw = (P(w), S(w), E) be a bipartite graph where (u, v) ∈ E if

the distance between u and v is uncovered;
6 let w be a node such that Hw contains the largest number of edges;
7 add w to LG, remove the covered distances from T;
8 size← size +1 ;

9 return LG;

Hw if there is a path u w v whose length is smaller than dt(u, v). In other words, we
include an edge (u, v) in Hw if by including w the distance between u and v in the index
decreases. We then estimate the number of edges of Hw (i.e. the number of uncovered
node-pair distances) by sampling the edges of Hw. The size of the sample is determined
by the Wilson interval formula [Wil27]. According to our experiments, samples containing
2000 edges of the Hw’s suffice in order to obtain accurate estimates with confidence 0.95
(for the largest datasets). This is much smaller than the quadratic number of shortest-path
computations required by the greedy algorithm in the worst case. Notice that at step t = 1
the number of edges in Hw can be computed efficiently as |P(w)| × |S(w)| (as initially all
node-pairs distances are uncovered).

Another bottleneck of the greedy algorithm is that at each step we need to either keep
track of all node-pair distances that are covered at that step or to store/update all bipartite
graphs. None of these approaches is feasible. Our solution is to devise an efficient
algorithm for max cover (see Section 2.8) which will be used in our indexing algorithm.
For presentation issues, we first present our efficient algorithm for maximum cover and
we then show how it can be used to solve Max BDL.

Our algorithm was inspired by the “disk friendly” algorithm for a different problem
(set cover) which was presented in [CKW10]. Given ε > 0, our algorithm first partitions

the Si’s into sub-collections S1, . . . , Sl , where l = O( log n
ε
) as follows. At step t, let Xt be

the set of covered elements; we say that a sub-collection Sj is the right sub-collection of a
set S if the following holds:

(1+ ε)j−1 6 |S \ Xt| 6 (1+ ε)j.

Then, we first assign each of the Si’s to its right sub-collection. At step t, when looking
for the set with best cardinality we pick (arbitrarily) a set S in Sl̄ , where l̄ is largest so that
Sl̄ is non-empty. We then check whether Sl̄ is still the right sub-collection for S (this might
not be the case as Xt is updated throughout the algorithm). If this is the case then we
include S in the solution and we update Xt. If Sl̄ is not the right sub-collection anymore,
we move S into its right sub-collection or remove it if S \ Xt is empty. We stop when
exactly k sets have been included in the solution or all sub-collections are empty.
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Algorithm 11: Fast algorithm for Max BDL

Input :A directed graph G = (V, E), k > 0, ε > 0
Output :An approximate solution LG to Max BDL

1 C ← l nodes with largest out-degree in G;
2 LG ← ∅;
3 size← 0;
4 for each w ∈ C let |Sw| = |P(w)| × |S(w)|;
5 partition the Sw’s into S1, . . . , Sl where l = log n/ε so that Sw ∈ Sj if

(1+ ε)j−1 6
|Sw|

cw
6 (1+ ε)j, j = 2, . . . , l + 1

6 while (size < k and there is Sj 6= ∅) do
7 choose Sw arbitrarily from the first non-empty sub-collection Sj;

8 estimate the cardinality of Sw i.e. the number of edges in Hw by sampling N node
pairs from P(w)× S(w). N is determined using Wilson score interval formula so
that we can determine the right sub-collection of Sw with confidence of 0.95;

9 if Sj is still the right sub-collections of Sw then add w to the index, add 1 to size,

remove Sw;
10 else place Sw into the right sub-collection;

11 return LG;

It can be shown that for any ε > 0 our efficient algorithm for maximum cover always
computes a solution that is a factor of (1− ε)(1− 1

e ) from the optimum solution, while

we can bound the worst-case running time of our algorithm by O((1+ 1
ε
)∑i |Si|). From a

practical point of view, our algorithm is very efficient as often “good” solutions can be
computed by processing solely the first few sub-collections. Our algorithm for maximum
cover can be used in our algorithm for Max BDL by replacing each of the Si’s with the set
of edges in Hw’s (or an estimator of their cardinality).

Finally, to further improve the running time of the greedy algorithm we restrict the
set of candidate nodes that might be included in the index to be the set of K nodes with
largest out-degree in G, where K is a parameter specified in input. The reason for doing
this is that the nodes with large out-degree increase significantly the search space of the
Dijkstra’s algorithm having significant impact on the running time of the shortest path
computation. If nodes with large out-degree are included in the index, one could safely
avoid traversing large out-degree nodes when executing Dijkstra’s algorithm as shortest
paths traversing those nodes are covered by our index. This is illustrated in Figure 4.2.
Algorithm 11 shows a pseudo-code for our fast algorithm for Max BDL. As observed in
the previous sections, a few large-degree nodes suffice for real-world graphs in order to
deliver good results.

Example 4.3. Let us consider the graph example depicted in Figure 4.1. For simplicity, we
consider an unweighted graph (all edges have the same unit). If we set k to 2, then, it is clear
that the top-k nodes are v2 and v4 with out-degree 7 for both nodes. As shown in Figure 4.2, the
resulting partial 2-hop index LG of the graph G would contain both v2 and v4 as centers and all the
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Figure 4.1.: Running Example
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Figure 4.2.: Partial 2-hop Cover Example

paths going through these two nodes would be indexed. In order to get the distance of the shortest
path between nodes v1 and v36, it is clear from Figure 4.1 that applying Dijkstra’s algorithm results
in traversing the whole graph before reaching the target node v36. However using our algorithm,
only thick edges are traversed.

4.4.2. Query Processing

In this section, we present our algorithm for computing the distance between two nodes
u and v in the input graph. We remind that our index might not cover all node-pairs
distances, therefore after querying the index we employ an efficient variant of the Dijkstra’s
algorithmwhere we do not traverse large out-degree nodes. See Figure 4.1 in Section 4.2 for
an example illustrating the effectiveness of our approach. We proceed as follows. First, we
check whether there is a node w such that (w, d(u,w)) ∈ Lout(u) and (w, d(w, v)) ∈ Lin(v)
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in LG. If this is the case we compute dLG
(u, v) as:

dLG
(u, v) = min

w:(w,d(u,w))∈Lout(u)∧
(w,d(w,v))∈Lin(v)

d(u,w) + d(w, v)

otherwise we set dLG
(u, v) to a very large value. We then run an efficient variant of

Dijkstra’s algorithm where we limit our search space to nodes being at distance at most
dLG

(u, v) from u, while avoiding traversing the center nodes in CLG
(as shortest paths

traversing center nodes are already covered by our index). The latter one can be achieved
by running Dijkstra’s startingwith all center nodes beingmarked as visited. We then return
the minimum value between the distance computed according to our index and the one
computed using our efficient variant of Dijkstra. To further improve the running time of
our algorithm, we employ the Ferrari algorithm presented in [SABW13] or GRAIL [YCZ10]
to decide quickly whether two nodes are not reachable. A pseudo-code of the algorithm for
processing distance queries is shown in Algorithm 12. Next lemma shows the correctness
of our algorithms.

Algorithm 12: Distance query processing

Input :A directed graph G = (V, E), a partial 2-hop index LG, nodes u, v.
Output :The distance d(u, v) between u and v or ∞ if they are not reachable.

1 Use Ferrari [SABW13] or GRAIL [YCZ10] to determine if v is reachable from u. If they
are not reachable return ∞.;

2 Compute the distance dLG
(u, v) between u and v in our index as follows. If there is a

node w such that (w, d(u,w)) ∈ Lout(u) and (w, d(w, v)) ∈ Lin(v) then

dLG
(u, v) = min

w:(w,d(u,w))∈Lout(u)∧
(w,d(w,v))∈Lin(v)

d(u,w) + d(w, v).

3 Otherwise dLG
(u, v)← ∞;

4 Run Dijkstra(u, v) with maximum depth dLG
(u, v) with all center nodes in CLG

being
marked as ’visited’. Denote such a distance with dD(u, v);

5 return min(dD(u, v), dLG
(u, v));

Lemma 4.4. Let LG be a partial 2-hop distance labeling computed by Algorithm 11. Let u, v be
any two nodes in the input graph G and let d̂(u, v) be the distance between u and v computed by
Algorithm 12. The following holds:

d(u, v) = d̂(u, v) ∀u, v ∈ V(G).

Proof. If all shortest paths between u and v do not traverse any center node in CLG
then

dLG
(u, v) = ∞ and our efficient variant of Dijkstra in Algorithm 12 finds at least one such a

path P. If there is at least one shortest path P̂ between u and v traversing a center node w in
CLG

then u belongs to the set of predecessors of w while v belongs to the set of successors
of v. Moreover, as Algorithm 11 computes the distance d(u,w) between u and w as well
as d(w, v) and store them in our index we have that l(P̂) = dLG

(u,w) + dLG
(w, v). We
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conclude the proof by recalling that Algorithm 12 always outputs the minimum between
the l(P̂) and l(P).

Example 4.5. Let us consider the following distance query d(v1, v32). To answer this query, we
first query our index LG according to which dLG

(v1, v32) = 3. This value serves as an upper-
bound on the distance between v1 and the nodes to traverse using our algorithm. Then, starting
from v1, the graph is traversed up to distance 3. As you can see in Figure 4.1, only edges in bold
are traversed up to distance 3 starting from v1. Such traversal does not lead to node v32. This
means that the shortest path between v1 and v32 has been covered in LG, and, d(v1, v32) = 3.

4.4.3. Further optimization

In the following, we introduce some heuristics that can further speed up query processing.

4.4.3.1. Label Ordering

As we explained in the previous section, determining dLG
(u, v) boils down to computing

the intersection Lout(u) ∩ Lin(v), which requires a quadratic number of look-ups in the
labels Lout(u) and Lin(v) (i.e., check for each element in the first label whether it is con-
tained in the second one). For further optimization, we order the labels and perform a
binary search for each element of the label having smaller cardinality. The benefit of this
ordering consists in decreasing the time needed to query the index by avoiding useless
look-ups over labels.

4.4.3.2. Topological Order Pruning

We enhance EUQLID with another criteria that allows additional pruning of the search
space. We maintain for every node v ∈ V its topological order number τ(v). While this
simple variant of node labeling is obviously not sufficient to answer a distance query, a
graph search procedure can benefit from the node labels: For a given query d(u, v), the
online search rooted at u can terminate the expansion of a branch of the graph whenever
for the currently considered node x the following holds τ(x) > τ(v).

Although we focus on point-to-point distance queries on directed graphs, our algorithm
can be easily modified to deal with undirected graphs (which is a special case) and point-
to-many distance queries.We postpone an extensive experimental evaluation to future
work.

4.5. Experimental Evaluation

We evaluate our algorithms in terms of query processing time, indexing construction time
as well as index size and we compare it against the IS-Label approach [AHCR13], which
is to the best of our knowledge the most efficient approach for processing point-to-point
distance queries [AHCR13] on large graphs. We also compare our query processing algo-
rithm against the classical Dijkstra’s algorithm. We implement two versions of EUQLID,
a memory-based version M-EUQLID and a disk-based version D-EUQLID where our
labeling index LG is stored in main memory and on disk, respectively. We compare both
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M-EUQLID and D-EUQLID against the memory-based version of IS-Label which gives
faster query response time than the corresponding disk-based version.

4.5.1. D-EUQLID: Disk-based version

In addition to the memory-based version of EUQLID (denoted M-EUQLID), we devised a
disk-based variant of our indexing scheme (denoted D-EUQLID), which can be applied
when the index is too large to fit into main memory. In this paragraph, we give some
implementation details about D-EUQLID. We store our index in relational database tables
and run SQL queries against these tables to retrieve node labels. This implementation
is based on MySQL 5.6.12, but could be easily carried over to other database platforms.
Note that this approach automatically takes advantage from all the dependability and
manageability benefits of modern database systems (indexing, query optimization, etc.).
For storing the index, we need two tables LIN and LOUT that capture the Lin and Lout

labels for each node v ∈ V. For a given distance query d(u, v)?, we can efficiently retrieve
the labels Lout(u) and Lin(v) using two simple SELECT queries. Then, we compute the
intersection between these two labels in main memory. Note that we could achieve this by
means of a JOIN query on the labels of u and v. However, the first option gives best results
when the number of centers is small enough which is the case in all our experiments.

4.5.2. Settings

We obtained the original source code of IS-Label from the authors and set the parameters
as suggested in [AHCR13]. All algorithms have been implemented in C++ and compiled
with the same compiler. All experiments were run on a machine equipped with 6 Intel
Xeon CPUs at 2.93 GHz, 64 gigabytes of main memory with a 64-bit installation of Linux
Ubuntu operating system(kernel 2.6.32). Since none of the algorithms are parallel all
processes were in fact using one single CPU.

4.5.3. Methodology

We evaluate all algorithms in terms of:
Index construction time. For EUQLID, we set a k value (maximum number of centers in
the index) so to keep a reasonable indexing time for each dataset while delivering fast
response time, and ε to 1. As for IS-LABEL we set all parameters, such as hierarchy levels,
depending on the size of the dataset at hand as suggested by the authors.
Query time. To assess query response time, we randomly generated 100K queries for
small datasets and 2000 queries for the large ones. We then computed the average query
response time.
Index size. We report the corresponding index size for each approach over all datasets.

4.5.4. Datasets

To validate our approach on real-world datasets, we considered a selection of benchmark
datasets that were used in the literature over the last few years (see Table 4.2). A brief
description of these datasets is the following: (1) Wiki-vote is a who-votes-on-whom
directed graph which was extracted from Wikipedia. It contains all the Wikipedia voting
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Datasets #Nodes #Edges Density Max out-deg. Avg. dist. Med. dist. D. % Reach. pairs Source

Wiki-vote 7K 104K 14.57 893 4 4 9 23.83 (±1.19) [les]
Cit-HepPh 35K 421K 12.20 411 12 11 41 40.49 (±1.49) [les]

p2p 63K 148K 2.36 78 10 10 26 22.71 (±1.15) [les]
Enron 70K 276K 4 1392 4.25 5 34.28 11.74 (±0.11) [web]

Soc-Epinions 76K 509K 6.71 1801 5 6 11 45.95 (±1.39) [les]
Soc-sign-slashdot 77K 517K 6.68 426 5 6 10 38.47 (±1.35) [les]

Email-EuAll 265K 419K 1.58 930 5 5 10 13.51 (±0.93) [les]

Table 4.2.: Benchmark Dataset characteristics

Datasets #Nodes #Edges Density Max out-deg. Avg. dist. Med. dist. D. % Reach. pairs Source

Wiki-talk 2.4M 5M 2.10 100022 5 5 9 5.24 (±0.59) [les]
LiveJournal 5.5M 80M 15 2469 6 6 7.36 78.62 (±0.78) [web]

Hollywood 2009 1.14M 113.9M 100 11468 3.87 4 4.14 89.90 (±0.63) [web]
Hollywood 2011 2.18M 229M 105 13107 4 4 5 76.56 (±0.75) [web]

uk-2005 39.5M 936.4M 24 5213 15 18 23 64.30 (±0.62) [web]

Table 4.3.: Large Dataset characteristics

data from its creation till January 2008. Nodes in the network represent users, and, there
is a directed edge from node u to node v denotes that user u has voted on user v, (2) Cit-
HepPh is a High Energy Physics paper citation network, (3) p2p is the graph of connections
between hosts in the Gnutella network topology, (4) Enron is an an exchanging e-mail
messages graph between some Enron employees, (5) Soc-Epinions is a who-trust-whom
online social network of the Epinions.com website. A directed edges from a node u to
a node v denotes that u trusts v, (6) Soc-sign-slashdot is a network where users can tag
each other as friends or foes. There is a directed edge between two users if one of them
has tagged the other, and, (7) Email-EuAll is an exchanging email network which was
generated using email data from a large European research institution.

In addition to that, we performed experiments on much larger datasets which are, to the
best of our knowledge, the largest real-world graphs publicly available. In the following,
we briefly describe each of them, and, we summarize their characteristics in Table 4.3. (1)
Wiki-talk is a directed graph where there is an edge from node u to node v if node u has
edited at least one Wikipedia article created by node v, (2) LiveJournal is a social network
where friend relationships are not necessarily symmetric (i.e., there is an edge from u to v
if u considers v as friend), (3) Hollywood 2009, and, Hollywood 2011 are social networks of
Hollywood actors where there is an edge between actor u and actor v if u declares that
he appeared in a movie with v, and, (4) uk-2005 is a directed graph, obtained from a 2005
crawl of the .uk web graph.

For a better understanding of the datasets we considered, we computed some statistics
on the features that are most relevant for our algorithm. As shown in Tables 4.2 and
4.3, we report for each dataset the density, which is two times the average node degree
as defined in Section 2.3 and the maximum out-degree. We also estimated the average
distance (denoted Avg. dist.), the median distance (denoted Med. dist.), and, the diameter
(the maximum shortest path distance denoted D.) of the graphs with a confidence of 0.95
based on [BKH01]. To estimate the percentage of reachable pairs in the graph, we used the
Wilson score interval to determine an informative sample size [Wil27] with a confidence
of 0.95.
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4.5.5. Results

In the following, we present the results of our evaluation over all the above described
datasets. We first describe our results for distance queries on a selection of graphs ranging
from small to very large size. We provide the index construction time values in millisec-
onds for the small benchmark graphs and in seconds for large graphs . The index size
and the query time are respectively given in KBytes and milliseconds for all datasets
and | V |vis denotes the average number of visited nodes for the set of selected queries.
Missing values are marked as ’-’ whenever a dataset could not be indexed due to long
index construction time (we set the timeout to 48 hours).

Datasets k Index Size (KB) Indexing Time (ms)
M-EUQLID D-EUQLID IS-LABEL M-EUQLID D-EUQLID IS-LABEL

Wiki-vote 70 986.504 700 1300 1988 4531 3546
Cit-HepPh 60 5827.47 2300 8000 5804 21013 22409

p2p 100 9947.720 7350 4200 6316 47043 3010
Enron 95 7616.20 6200 7400 8495 24633 17000

Soc-Epinions 110 13745 8400 10500 8472 31839 15933
Soc-sign-slashdot 110 13170 8050 9700 8021 82812 6510

Email-EuAll 165 31327 20040 13000 26943 85016 108803

Table 4.4.: Index construction results on benchmark datasets

Datasets M-EUQLID D-EUQLID IS-LABEL Dijkstra
querying (ms) | V |vis querying (ms) | V |vis querying (ms) querying (ms) | V |vis

Wiki-vote 0.043 3 0.73 3 0.5 0.378 275
Cit-HepPh 0.139 5 4.49 5 1.2 6.27 10375

p2p 0.21 10 1.4 10 0.3 9.71 6875
Enron 0.24 196 1.1 196 0.203 6.012 2222

Soc-Epinions 0.381 15 3.31 15 1.1 6.87 11074
Soc-sign-slashdot 0.275 12 4.97 12 4 9.7 31399

Email-EuAll 0.97 21 3.1 21 2.4 5.77 3452

Table 4.5.: Query processing on benchmark datasets (10K random queries)

Datasets k Index Size (KB) Indexing Time (sec)
M-EUQLID D-EUQLID IS-LABEL M-EUQLID D-EUQLID IS-LABEL

Wiki-talk 180 328029 200390 114000 141.5 662.595 28701
LiveJournal 200 1250801 1197000 1700000 4697 5581 3630

Hollywood 2009 210 282294.20 312180 1800000 3616.67 6318 21476
Hollywood 2011 210 506106.41 493000 3300000 3947.77 6525 46196

uk-2005 1110 8243634 8637000 - 8804 10673 -

Table 4.6.: Index construction results on web-scale datasets

4.5.5.1. Results over benchmark graphs

Table 4.4 and Figures 4.3 and 4.4 summarize the indexing performance of M-EUQLID,
D-EUQLID and IS-LABEL over the small benchmark datasets. We can see that M-EUQLID
outperform IS-label in terms of index construction time as well as index size for some of
these datasets. Both our memory-based and disk-based versions of EUQLID outperform
IS-label in terms of index construction time for the last dataset (i.e., Email-EuAll). This
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Datasets M-EUQLID D-EUQLID IS-LABEL Dijkstra
querying (ms) | V |vis querying (ms) | V |vis querying (ms) querying (ms) | V |vis

Wiki-talk 22.27 114 25 114 0.8 10 60197
LiveJournal 34.3 242 54 242 66 2360 1953712

Hollywood 2009 62.6 140 83.2 140 96 1315 459401
Hollywood 2011 82.91 128 98.4 128 74 1602 734014

uk-2005 174.11 1080 328 1080 - 7083 1415663

Table 4.7.: Query processing on web-scale datasets (2000 random queries)
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Figure 4.3.: Indexing time for benchmark datasets

might depend on the fact that IS-LABEL needs to perform a relatively expensive pre-
processing step (i.e., computing a layered structure of vertex hierarchy of the input graph)
before it starts assigning node labels, while EUQLID directly starts computing the labels of
the nodes. Table 4.5 and Figure 4.5 shows query response time over the same datasets. We
also include a comparison with the classical Dijkstra’s algorithm that does not build any
index. Table 4.5 shows that query response time for EUQLID is comparable to IS-LABEL
for the small benchmark datasets with both algorithms delivering results within a few
milliseconds. Moreover, both algorithms outperform Dijkstra’s algorithm on these small
datasets. We can already see from this table that the difference in terms of query response
time between Dijkstra’s algorithm and the other two approaches becomes wider as the
size of the input graph increases. This will be even more apparent on larger datasets.

4.5.5.2. Evaluation over web-scale datasets

Tables 4.6 and 4.7 as well as Figures 4.6, 4.7, and, 4.8 summarize our results on very large
graphs. These figures make the advantage of using our approach even more apparent.
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Figure 4.4.: Index size for benchmark datasets

Wiki−vote Cit−HepPh p2p Enron Epinions Slashdot Email−EuAll
0

1

2

3

4

5

6

7

8

9

10

Q
u
e
ry

 t
im

e
 (

m
s
)

M−EUQLID

D−EUQLID

IS−LABEL

Dijkdtra

Figure 4.5.: Query processing time for benchmark datasets

Our indexing algorithm produces indices being significantly smaller than the indices
produced by IS-LABEL while being much faster (Table 4.6) for the first four datasets.
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For uk2005, IS-Label was not able to build an index after 48 hours, while our approach
was able to index the largest dataset (with almost one billion edges) within a few hours.
Table 4.7 confirms fast response time for our algorithm which is slightly better than the
response time of IS-LABEL for the first four large datasets as IS-LABEL does necessarily
not avoid traversing nodes with large out-degree which slows down the search process.
In particular, the memory-based version of our algorithm always delivers results within
174ms while the disk-based version of our algorithm requires 328ms on the largest dataset
with almost one billion edges. For uk, we were not able to make any comparison as IS-
Label could not build any index within 48 hours. Both EUQLID and IS-Label significantly
outperforms Dijkstra’s algorithm with the difference between Dijkstra’s response time
and the other approaches being more apparent for largest graphs. The main reason for
obtaining such good results lies on the fact that we were able to exploit one interesting
property of real-world networks where a few nodes (hubs) connect all nodes through
short paths (not necessarily shortest paths).
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Figure 4.6.: Indexing time for large datasets

4.5.6. Effect on varying k

We studied the effect of varying k which is the maximum number of centers that are
allowed to be included in our index. We have varied the values of k from 5 to 2000. We
have chosen the values of k reported in Tables 4.5 and 4.7 so to keep a reasonable indexing
time for each dataset while delivering fast response time. In general, the indexing time
increases as k increases for all our datasets. We observed that increasing k helps improving
query response time until k reaches the reported value for each dataset. After that there
is no significant improvement in the query response time. This means that the marginal
distance information of the other centers is very small, so that adding them to the index
will not cover a large amount of “new” distance information.
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Figure 4.7.: Index size for large datasets
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Figure 4.8.: Query processing time for large datasets
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4.6. Conclusion

In this chapter, we presented EUQLID an approach for answering distance queries in large
directed real-world graph. Our algorithm is based on a fast algorithm for a variant of
the 2-hop cover where we enforce an additional constraint limiting the size of the index.
We also exploit one key property of real-world graphs where a few nodes connect most
nodes through short paths. Our extensive evaluation (for both a memory-based and a
disk-based version of EUQLID) shows the effectiveness of our approach against state-
of-the-art algorithms and that distance queries can be processed within a few hundred
milliseconds on very large real-world graphs.
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Chapter 5.

Access Control in Social Networks

5.1. Introduction

With the development of Web 2.0 technologies in the last few years, social networks (e.g.,
Facebook, LinkedIn, Flickr, Twitter, etc.) have become among the most successful services
on the Web, used by a constantly increasing number of users. Actually, Facebook now
reports over 900 million active users [facb] and Twitter has 200 million users [twi]. These
so-called Online Social Networks (OSNs) are online communities whose main goal is to
make available an information space, where each social network participant can publish
and share information (e.g., personal data, photos, videos, opinions, contacts, etc.), as
well as meet other people for a variety of purposes (e.g., business, entertainment, religion,
dating, etc.).

The availability of this information obviously raises privacy and confidentiality issues.
Users typically do not want to share all of their information with everyone. Consequently,
OSNs must provide the right mechanisms in order to give users more control on the
distribution of their resources which may be accessed by a community far wider than they
can imagine.

It is clear that users should be provided with more flexible mechanisms to control
access to their own information. As in the real world, OSN members will have in mind a
specific audience for their resources. OSNs should then enable them to specify the desired
audience and enforce their access policies. In this chapter, we propose a network-aware
access control model for OSNs where access control rules are expressed as reachability
constraints. These constraints express an encoding of the type of the path that should exist
between the seeker of a resource and its owner. Thus, each user can specify the target
audience for his resources. Access rules enforcement can be done on the fly when seekers
try to access some shared resources. Our work is a new approach, which generalizes access
constraints by taking into account the properties of the users, the indirect connections
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between these users and enables expressing complex relationships (i.e, sequence of direct
relationships of different types). The main idea is the specification of the target audience
of each access rule in terms of a reachability constraint, which is expressed as a path
expression over the social network graph. Thus, the enforcement of an access rule consists
in the evaluation of a path, which can be computed on the fly when the resource is
requested by the seeker.

This chapter is organized as follows. We first discuss existing work and explain its
limitations in Section 5.2. In Section 5.3 and 5.4, we ,respectively, present some preliminary
material which will be used through-out this chapter, and, highlight the requirements
to design appropriate access control models for social networks. Section 5.5 describes
the proposed access control model and how it can be enforced. In Section 5.6, we study
the worst case running time of our privacy policy enforcement algorithm, and, show our
experimental results in Section 5.7. Finally, in Section 5.8, we demonstrate Primates,
which is a privacy management system for social networks implementing the proposed
access control model. Section 5.9 concludes the chapter.

5.2. Related Work

Access control in social networks is a new research area. It has emerged with the growing
popularity of OSNs, which have become an important part of our daily digital life. In
this section, we give an insight about research work that has been done so far to mitigate
privacy issues and tailor to user privacy needs. We classify existing work into different
categories based on the way privacy policies are expressed.

Automatic Approaches. Several works proposed to automatically infer privacy policies
in an implicit way based on the underlying graph structure and/or the already defined
privacy policies. In this category, we can find approaches which propose automatic
extraction of communities from social graphs as a way to simplify privacy preferences
specification. Danezis [Dan09] proposed to classify users contacts into non-overlapping
lists, so that contacts of the same list can have only access to information that is shared by
their list members. Fang and LeFevre [FL10] proposed a privacy wizard that considers
explicit user privacy preferences as well as automatically extracted communities to build
a privacy preference model. When a user specifies a privacy policy for one of his contacts,
then this policy is automatically applied to the rest of his contacts belonging to the same
community. This privacy preference model can be automatically applied and adapted
whenever the social network graph evolves. Xiao et al. [XAT12] proposed a model, which
automatically recommends ad-hoc circles (i.e., lists of contacts) based on the history
of circles that were already defined by the user. Additionally, Shehab et al. [SCT+10]
proposed a supervised learning mechanism that generates access control policies based on
user provided policy settings example, in a collaborative way. Squicciarini et al. [SSP09]
considered an additional problem: co-ownership. They proposed an automated collective
privacy management solution where data may have multiple owners, and, where owners
might have different and possibly contradictory privacy preferences. This model uses a
game-theoretical algorithm to control access to resources that are owned by more that one
OSN member.

User-Guided Approaches. Unlike automatic approaches, user-guided approaches
allow users to explicitly specify their privacy settings and control the audience of the

62



5.2. Related Work

information that they share. In this category and more related to our work, there is the
rule-based access control model proposed by Carminati et al. [CFP09]. Following this
model, an access control policy is specified through constraints on the relationship type
the requester of information must have in order to get access to the information that he
requested for. This can can be specified as conditions on the type, the maximum depth
and the minimum trust value that the required relationship must satisfy in order to obtain
the access. Additionally, Akcora et al. [ACF12] proposed to associate an estimate risk level
to social network users in order to provide them with a measure that shows how much is
it risky to have interactions with other users, in terms of private information disclosure.
Wang et al. [WZL+12] proposed iSac, an intimacy-based access control mechanism, where
an OSN user can specify his access policy according to intimacy degrees with respect to
other users. Intimacy degrees are computed based on atomic social activities between
users. Only users whose intimacy degrees are within the range specified by the owner are
allowed to access this owner’s information.
Encryption-based Approaches. Some other research work has relied on cryptogra-

phy techniques to protect user information and interactions on OSNs. For instance, the
NOYB model [GTF08] encrypts personal information using a pseudo-random substitution
technique which replaces a personal information with a pseudo-randomly selected infor-
mation from a public dictionary. Another approach, called FlyByNight [LB09], presents a
Facebook application that stores sensitive data in an encrypted form. Jahid et al. have re-
cently proposed EASiER [JMB11],DECENT [JNM+12], and, Cachet [NJM+12] architectures
for providing security and privacy guarantees, which leverage cryptographic techniques
such as attribute-based encryption [SW05] to protect data confidentiality within social
networks.
Anonymization Approaches. Selling OSN information is often a major source of rev-

enue for service providers and publishing social graphs create opportunities for building
new services and expend our understanding about social structures and their dynamics.
However, selling or publishing such data without any further consideration for privacy
may violate user rights for private information sharing in social networks. To alleviate
this problem, several anonymization methods have been proposed to reduce the risk of
a privacy breach on the provided social data, while allowing to analyze them and draw
relevant conclusions. Zhou et al. [ZPL08] gives a survey of this field (i.e., anonymization
for privacy preserving publishing of social network data) and its problems. Recently, Hay
et al. [HMJ+08] proposed an approach that models aggregate network structure, then
allows samples to be drawn from that model. Boldi et al. [BBGT12] also proposed another
anonymization approach, which is based on injecting uncertainty in social graphs and
providing the resulting uncertain graphs.

Limitations. While using automatic approaches users don’t need to specify the desired
privacy policy for some shared information, it is not clear to which extent the automatically
inferred policy is reliable and accurate. As user contact networks grow constantly and the
communities to which user contacts belong to maybe overlapping, it becomes difficult to
make sure that such approaches do not grant access to some undesired users.

User-guided approaches that were so far proposed in the literature are not general
enough to fit to user needs. For instance, the access control model proposed in [CFP09]
does not allow specifying multiple relation types within a given authorization (e.g., one
cannot grant access to the friends of his colleagues). Specifying constraints on relationship
directions is also not supported (e.g., one cannot grant access to people that he considers
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as a friend and not to those who consider him as a friend). Following this model, an OSN
user cannot express the fact that he wants to grant access to contacts at a specific distance
(i.e., only maximum distance is allowed).

While using cryptographic approaches, one can protect data from other users as well as
the OSN provider, key management in such techniques remains a big issue, especially in
large OSNs where scalability can become an obstacle.

The drawback of anonymization techniques is the fact that it is hard to prove to which
extent these methods are secure, as opposed to explicit privacy policies specification or
cryptographic operations. As graph information is partially hidden or obfuscated, other
parts remain intact to be interesting for future use. This makes it impossible to predict
which information maybe available to attackers with the complexity of the current OSNs.

5.3. Preliminaries
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Figure 5.1.: An Online Social Network Subgraph

As defined by Boyd and Ellison in [BE07], an online social network is a web-based service
that allows individuals to:

• create their own profiles,

• share connections with a list of other users,

• view and traverse their list of connections and those made by others within the
service, and, see which information they shared.

As depicted in Figure 5.1, a social network is a dynamic structure made of nodes,
which are connected to each other through various relations. The nodes and the edges
of the graph denote, respectively, the social network users and the relationships that
exist between them. Labels describe the relationship type associated to each edge, i.e.,
Alice considers Bill her friend, Colin considers David his friend, and so on. In this work,
relationships are not supposed to be symmetric, i.e., if Alice considers Bill as a friend, that
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does not mean that Bill considers Alice a friend too. Thus, we consider directed social
network graphs, where each edge have an initial node and a terminal node.

Two types of relationships can be distinguished: direct and indirect relationships. A
direct relationship involves only two nodes: the initial one and the terminal one. However,
an indirect relationship has intermediary nodes, and consists of a finite number of direct
relationships. For instance, Alice has a direct friend-typed relationship with Bill, and
an indirect colleague-typed relationship with Fred. The depth of a given relationship
corresponds to the number of direct relationships (of the same label) it is composed of.

In the real world, some interpersonal relationships are based on trust or reliability
estimations. This can be denoted as weights on the corresponding relationships in the
social network graph. In this case, the relationship type (for instance, babysitting) is
called the utility of the trust, and the weight is the value, which is assigned to the trust
relationship. As depicted in Figure 5.1, Bill trusts David for taking care of children up to
80%, and David trusts Alice up to 60% in the field of biology. When the trust relationship
is direct, it corresponds to an explicit trust (i.e., given by the initial user). When it is an
indirect relationship, its value has to be inferred based on available explicit trust values.
Different trust propagation approaches are proposed in the literature [LLL+08, GKRT04,
ACS09].

5.4. Access Control Requirements

The design and implementation of a suitable access control model for online social net-
works present a number of challenges. We consider that the following requirements are
keys to developing such a model:
Dynamicity. In the real world, interpersonal relationships are varied, numerous, and

changing over time. Consequently, as a first requirement, an access control model for
OSNs should take into account relationships diversity and dynamics.
Suppose that Bill is authorized to access Alice’s holiday album because she considers him
her friend. If Alice does not consider Bill her friend anymore, he should no longer be able
to access her holiday album. In this case, Alice does not need to change access rules that
she has set for her holiday album, she just has to update her relationship with Bill in the
OSN.
Precision. Access control should allow targeting the audience of a given resource

with the granularity that a user might need. Thus, in an OSN context, access control
models should be able to take into account user properties (age, gender, location, status,
hobbies, etc.), relationships between users in an extended sense (i.e., not limited to direct
relationships), and trust measures when they can be inferred based on user input or their
previous interactions.

In our example, Alice should be able to share her resources with her friends, her col-
leagues, her colleagues’ friends, etc. David should be able to share his jokes with those who
consider him as a friend (Elena and Colin), and he should be able to extend the audience to
their friends (George and Bill, for Elena), and so on. Suppose now that Elena is looking for a
baby-sitter for her kids, she may want to publish an advertisement and make it accessible
to only some trusted baby-sitters. For instance, those she personally trusts for baby-sitting
and those trusted by her friends (let us say with a trust level > 0.5). In this case, the
advertisement could be accessible to David.
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Scalability. Access control protocols have to be able to decide on the fly whether to
allow or deny an access request sent by a user. This is important in the context of online
social networks, where the number of active users can reach several hundreds of millions,
and much more relationships between them. The response time in this case is a critical
issue.

5.5. The Access Control Model

Devising an access control model implies the specification of both the access control
policy, and the access control enforcement mechanism. The former corresponds to the
desired rules according to high level requirements, and the latter denotes the access policy
implementation.

Subject Action Ref. Monitor

Access Rules

Object
Allow/Deny

Figure 5.2.: Access control model

As shown in Figure 5.2, the fundamental components of our access control model are:

• The Object is the target resource, to which access may need to be controlled.

• The Subject, also called Principal, is a user who tries to get access to a particular
resource.

• The Action is the operation that the subject wants to execute over the object.

• AccessRules specify the access control policy, i.e., user privacy preferences.

• The Re f erenceMonitor is the component that implements user privacy preferences.
It takes as input a request (an action sent by a subject) and a set of access rules
according to which it will allow or deny access to the targeted object.

Access control policies are presented in section 5.5.1 and the reference monitor is described
in section 5.5.2.

5.5.1. Access control policy

We propose a reachability-based access control model that enables targeting the audience
of the shared resources in a network-aware manner. The intuition behind the design of
this model comes from the observation that, in the real world, we generally conceive our
privacy preferences based on relationships that bind us to each other.

In our model, an OSN is represented as a labeled directed graph, where nodes represent
users and edges denote social relationships between users. User properties (age, gender,
etc.) are expressed as attributes of the graph nodes. Privacy preferences are expressed by a
set of access rules, each one being associated with a given resource (i.e, a shared resource)
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Notation Description

OSN Online Social Network

Σ the set of labels in a graph G (e.g., friend, colleague, etc.)

t a trust computation function

u an owner of a resource r within the OSN

r a requester of a resource r within the OSN

AR an access rule

ARS the set of access rules specified for a resource r

P a set of constraints on the paths connecting two nodes in an AR

pj a path pattern expressing constraints in terms of an edge label l ∈ Σ,

direction dir and distance I

Table 5.1.: Frequently used notations II

and specifies, through a reachability constraint, the set of users who can access such a
resource. Each reachability constraint is represented as a path expression over the OSN
graph.

Definition 1. Online Social Network (OSN)
We formally represent an OSN as a directed graph:

G = (V, E)

where V is a set of nodes denoting social network users and E is a set of directed edges
representing social relationships between them. A labeling function l : E→ 2Σ specifies
the set of labels (where Σ is a set of labels such as friend, colleague, etc.) associated to each
edge, while a function t : E→ [0, 1] measures trust between users. In case a trust value is
not specified, a default value (e.g, 0.5) can be used. Each node is associated with a set of
pairs (attr,value) specifying a set of attributes and their values for the corresponding user.

Definition 2. Access Rule (AR)
An access rule expresses a set of constraints that should be met in order to access a given
resource. Formally, an access rule is defined as a tuple:

AR = (u, r, P,C)

where u denotes the owner of a resource r. As it is very common and natural that access
control policies of a given information in an OSN are expressed by their owners, we
assume in our model that only the owner can specify access policies for his resources. C is
a set of constraints on the attributes of the requester (such as location=’Paris’ or trust> 0.8)
and P = p1, . . . , pk expresses a set of constraints on the paths connecting the requester to
the owner of the resource; each pj is defined as a triple pj = (l, dir, I) where l is a label
in Σ, I = (min,max) is a pair of integers specifying the minimum and maximum length
of pj and dir ∈ {←,→,⇔} indicates the direction of pj. Given a requester v for resource
r, an access rule (u, r, P,C) is satisfied if all constraints C are satisfied and there is a path
between u and v satisfying P; v is granted access to r if there is an access rule at least that
is satisfied.

For instance P = (′ f riend′,→, (1, 2)), (′colleague′,→, (1, 1)) expresses the constraint
that there must be a path between the owner and a requester that first traverses a path of
length in (1, 2) whose edges are labeled ’friend’ and then an edge labeled ’colleague’.

Suppose that Elena wants to make her baby-sitting advertisement (identified as ad)
accessible to her direct friends. She can specify an access rule as follows:
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AR1 = (Elena, ad, (′ f riend′,→, (1, 1)),−)

If Elena wants to extend access to her indirect friends (i.e, the friends of her friends) the
path that should be specified would be (′ f riend′,→, (1, 2)). Again, if she wants to extend
it to the users that consider her as a friend, she should specify an other access rule which
is the following:

AR2 = (Elena, ad, (′ f riend′,←, (1, 2)),−)

If Elena wants to change the access rules associated to her baby-sitting advertisement and
make it accessible to the trustworthy (trust threshold = 0.8) baby-sitters of her friends
within 2 hops then she should specify the following access rule:

AR3 = (Elena, ad, {(′ f riend′,→, (1, 2)),

(′babysitter′,→, (1, 1))}, [trust = 0.8])

Finally, the authorization can be limited to the baby-sitters living in Paris by adding an
additional condition to the access rule as follows:

AR4 = (Elena, ad, {(′ f riend′,→, (1, 2)),

(′babysitter′,→, (1, 1))}, [location = Paris])

Note that the proposed model considers authorization access rules only. Thus, we avoid
access authorization-denial conflicts.

5.5.2. Access control enforcement

The access control enforcement mechanism is performed by the reference monitor, which is
a trusted software module that intercepts each access request submitted by a requester to
access a resource, and, based on the specified access policy, determines whether access
should be granted or denied to the requester. The decision module of the reference monitor
is detailed in Algorithm 13.

Algorithm 13: Access Control Protocol

Precondition :A requester r wants to get access to a resource res of u.
Input :A requester r and a resource res.
Output :Allow or Deny access.

1 ARS← get the set of access rules of the requested resource res;
2 If ARS is empty then ARS← get the default access rule;
3 foreach AR ∈ ARS do

⊲ AR = (u, r, P,C)

4 If there is a path from u to r which satisfies P and r satisfies the trust and attribute
constraints in C then return Allow;

5 If P is not satisfied then skip to next AR;

6 return Deny;

The enforcement of an access rule consists in evaluating the path P that is associated
to it. The problem of evaluating these paths boils into a reachability problem in graph
databases, which is well-known in the database community. Evaluating a reachability
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query, in our case, consists in determining whether two nodes u and r (for instance, the
owner and the requester) in the graph are connected through a path with constraints on
labels and distance.

Suppose that a user r is requesting for a resource res where res is the resource identifier,
and, u is a user owning such a resource. When r submits his/her access request to access
the resource res, the system retrieves the set of access rules ARS associated to that resource
(Line 1). If there are no access rules related to the requested resource, then, the system will
apply the default access rule (Lines 2), which is defined by the user and applied whenever
there are no access rules associated to the requested resource. This prevents the access
control strategy from being too loose (by setting resources having no associated rules to
public) or too restrictive (by setting resources having no associated rules to private).

Then, the reference monitor evaluates the set of retrieved access rules and stops, either
when the requester satisfies one of these rules, or when all the rules were evaluated and
the requester satisfies no rule (Lines 3-6). In the former case, the requester is authorized to
access the resource that he asked for (Line 4). In the latter case, the requester is denied
access because his profile is not consistent with the target audience (Line 6).

Algorithm 13 is an adapted version of the breadth-first-search (BFS) algorithm applied
to the graph together with the specified constraints to reduce the search space. The
evaluation of access rules is an iterative process. For each access rule, a path P (i.e., a
sequence of subpaths pj) is evaluated online using a breadth first search starting from
u to check if r could be reached via P. If r cannot be reached from u with respect to the
path P, then, the current access rule is not satisfied and the system goes directly to the
next rule (Line 5). If r is reached during the search, we determine if r satisfies the set
of attribute-constraints in C. The trust computation process between u and r is done at
the same time, when the graph is explored. However, since our focus is on reachability,
we implemented a simple trust propagation function and consider transitivity as the
only way of propagation. The inferred trust value between two nodes u and r, connected
through a path P, is computed by multiplying the explicit trust values associated with each
edge in p. More sophisticated trust propagation functions can be found in the literature
[LLL+08, GKRT04, ACS09].

5.6. Complexity Analysis

In this section, we focus on estimating the worst case running time of Algorithm 13, in
order to measure its efficiency. The worst case occurs when there are no constraints neither
on edge labels, nor on distances. More precisely, in such a case, we are called to discover
the social graph without any constraints. Since we use a breadth-first search algorithm,
exploring the network graph requires (| V | + | E |) time complexity, where | V | and
| E | denote, respectively, the OSN nodes and edges. After evaluating the first path pj in P,
the algorithm considers a new list of nodes satisfying pj. In the worst case, this list will
contain | V | nodes. The same process is repeated | P | times in order to evaluate all the
paths pj ∈ P. Consequently, the time complexity required to evaluate a path P is of the
order of:

| P | × | V | ×(| V | + | E |) (5.1)

| P | is the maximum number of paths pj that P could contain. In the worst case, the
evaluation of an access policy is iterated | ARS | times, where | ARS | is the maximum
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number of access rules that may be associated to a resource. Thus, the required time
complexity to evaluate the proposed algorithm is of the order of:

| ARS | × | P | × | V | ×(| V | + | E |) (5.2)

Then, we can conclude that the problem for which we implemented Algorithm 13 can be
solved in polynomial time depending on the number of access rules, access paths pj and
the social graph size.

Time costs given in the previous formulas are determined in the worst case. When
users specify their access control rules, constraints they set on the type, direction and
relationship depth levels, considerably reduce the part of the graph to be browsed to
evaluate each access rule. Consequently, the cost of evaluating a path pj is far lower then
the worst case cost (i.e., | V | + | E |). However, the number of access rules | ARS | and
the number of paths | P | have a clear impact on the response time of our algorithm.

5.7. Experiments

In this section, we perform experimental studies on a real social graph datasets to evaluate
the performance of the proposed algorithm in terms of response time to the access requests.
As shown in Table 5.2, we considered 5 datasets. The first 4 datasets are subgraphs of
a sample of 984K unique users that represents the groundtruth of the Facebook OSN,
i.e., a truly uniform sample of Facebook anonymized user IDs crawled by Gjoka et
al. [GKBM10]. This Facebook dataset provides information about relations between
users. It also provides the total number of friends each user has, his privacy settings,
and his network membership. We implemented these sub-graphs in Neo4j 1.2 [neo],
which is becoming one of the foremost graph database systems. Instead of static and
rigid tables, rows and columns, it manipulates a flexible graph network consisting of
nodes, relationships and properties. Its high-speed traversal framework is able to traverse
one million nodes per second [tra]. We have also considered a compressed version of a
snapshot of the liveJournal graph consisting of 5M nodes and 80M edges, which is publicly
available at [web]. The graph was compressed using the WebGraph framework [BRSV11]
which provides algorithms for accessing compressed graphs without any decompressing.
The compressed version of the liveJournal graph fits into main memory and can be accessed
efficiently. User relationships have only a single type, which is Friend. For this reason,
we artificially introduced other relationship types and associated them to edges on the
liveJournal graph. The introduction of these types was done with respect to natural
characteristics of human relations (e.g., a person can have on average 3 children and
at most 2 close friends, etc.). We conducted our testing on a PC with a 2.34 GHz Intel
processor, and 2 GB memory running Windows 7. We associated access rules to randomly
selected user information.

As reported in Table 5.2, we have considered subgraphs consisting of a number of nodes
ranging from 8K to 5M. We measured the response time of access requests on different-
sized graphs. For each graph, we tested a large number of access rules and varied the
distances in access paths pj from 1 to the graph diameter. We fixed the owner and the
requester in a targeted manner, i.e. two nodes connected by a path length corresponding
to the desired path depth, and we measured for each test the average response time.
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Datasets |V| |E| Source

subgraph 1 8K 8K [GKBM10]

subgraph 2 88K 88K [GKBM10]

subgraph 3 310K 309K [GKBM10]

subgraph 4 984K 9M [GKBM10]

liveJournal 5M 80M [web]

Table 5.2.: Sample Datasets
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Figure 5.3.: Reference monitor performance depending on | P |

According to the obtained results (see Figure 5.3, the response time of the reference
monitor depends on the social graph size (i.e., number of nodes and edges within the
graph): it ranges from 0.001 sec for a graph consisting of 8K nodes to 1 sec for a graph
consisting of 5M nodes. We recall that the size is not referred to the order of the whole
social network graph, rather, given a relationship type, it represents the number of nodes
having at least a relationship of such type. When a path depth gets larger, the time required
to traverse the social graph and get the query result increases. As shown in our complexity
study, in the previous section, the response time depends on the number of access rules
to evaluate and the depth of the access paths. This was confirmed by our experiments.
Experimental results have also shown that the number of nodes in the social graph as well
as the number of path pj ∈ P (i.e., | P |) has also a clear impact on the performance of the
reference monitor.

Note that the obtained response time on the liveJournal dataset was better then smaller
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datasets. The reason behind this is the fact that it was implemented using the WebGraph
framework instead of Neo4j as it is the case for the rest of the datasets.

5.8. Primates: A Privacy Management System for OSNs

In this section, we present Primates a privacy management system for social networks.
Primates allows users to specify access control rules for their resources and enforces
access control over all shared resources. The set of users who are allowed to access a given
resource is defined by a set of constraints on the paths connecting the owner of a resource
to its requester in the social graph. We demonstrate the accuracy of our access control
model and the scalability of our system.

5.8.1. Global architecture
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Figure 5.4.: System Architecture

The global architecture of our system is depicted in Figure 5.4. Each user can share
multiple resources. Resources are information (photos, videos, comments, etc.) to which
access may need to be controlled. A user (the owner) can express his privacy policy
preferences for his resources by specifying one or several access rules to them. The
requester, also called subject, is a user who is trying to access some resources of another
user (the owner). The subject can send a request to access resources via the social network
interface. This request is sent to the reference monitor, which is the component that
implements user privacy preferences. It takes as input the access request and based on
the access rules that are associated to the requested resource and social connections in
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the social network graph, it will authorize rendering only the resources for which the
requester is part of its authorized profiles.

5.8.2. Features

1 2 

3 

Figure 5.5.: User interface for specifying an access rule

Primates shows two contributions of our work. The first one is the design of an access
control model that allows users to specify more sophisticated privacy policies which fit
their privacy needs. The second one is the enforcement of this model in such a way that
allows users to intuitively specify their privacy settings and efficiently visualize the set of
users that are allowed to get access to their information.

As shown in Figure 5.5, using Primates, OSN users can select some information and
express the desired privacy settings for it either from a set of access rules predefined by
the system or by expressing new access rules in user-friendly graphical way. They can
express constraints on edge label and distance, and, node properties. The motivation
behind providing users with a graphical interface to specify access rules is that a parser
can convert user actions into path patterns (i.e. access rules) that would be evaluated as
reachability queries behind the scenes. Such suitably comprehensive front-end would
minimize the burden on the user to remember the details of defining access rules.

Once access rules are specified, users will have the possibility to browse and visualize
the graph of authorized users according to the specified privacy preferences. They can then
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navigate this graph and see explicitly who are the authorized users and can eventually
refine access rules based on that. Displayed users on the authorized audience graph can
be clicked on to to display their profile information such as the name, age, city, etc.

Users can also see how each user in the social network sees only information to which
he is authorized to get access. They can see the profile (all shared personal information)
of a user as an information owner on one side and try to get access to that profile from
the perspective of another user on the other side. They will clearly see that not all the
information in the owner’s profile is displayed, but only a subset of that information to
which he/she is allowed to access.

An example scenario run on Primates is available in the following url url_video.

5.9. Conclusion

In this chapter, we presented a network-aware access control model for online social net-
works that enables a fine-grained description of privacy policies. User privacy preferences
are specified in terms of reachability constraints, combined with user properties and trust
considerations. Reachability constraints are expressed as paths in the social network graph.
Thus, an access rule enforcement consists in the evaluation of a path, which can be made
on the fly when the resource is requested by a seeker. Our experimental studies confirmed
this intuition, and showed that the reference monitor of our access control system can
decide on the fly whether a seeker is part of the audience of a given resource or not.
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Conclusions and Research perspectives

The first main goal of this thesis is to devise an efficient algorithm to answer distance
queries in large directed graphs. The second goal is to devise an access control model to
help social network users having more control on the information that they share. The
most important questions that we studied along this thesis are the following:

1. Can we efficiently answer distance queries in large directed and dense graphs?

2. Are there any properties of real graphs that could be used to devise efficient algo-
rithms for answering distance queries?

3. What are the requirements that an access control model for social networks should
take into account to fit to user needs?

4. Is it possible to enforce an access control model which considers these requirements
and which is easy to use by social network users?

In this chapter, we summarize the findings and contributions that were detailed along the
chapters of this thesis by providing answers to the above questions. After that, we bring
forward some directions for future research.

6.1. Put It All Together

The first contribution of the dissertation is EUQLID which is an efficient indexing scheme
for computing distance queries. As described in Chapter 4, EUQLID takes advantage from
an interesting property that real-world graphs exhibit. We proposed two variants of EU-
QLID: a main memory and disk-based variants (M-EUQLID and D-EUQLID respectively).
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The former variant can be used when the index can fit into main memory. The latter one
should be used when there is not enough space to store the index into main memory.
Our experimental studies has shown that EUQLID outperforms existing approaches, and,
that distance queries can be processed within hundreds of milliseconds on the largest
real-world directed graphs publicly available.

The second contribution is a fine-grained access control model described in Chapter 5.
This model allows users to explicitly specify their privacy policy as they may think about
it in real scenarios (based on the nature of relations with the others). Based on the user
specified preferences, the decision of granting access to other users is made on real-time.

The third contribution is Primates (see Chapter 5), which is a privacy management
system that demonstrates the accuracy and feasibility of the proposed model and allows
users to specify their privacy preferences in a user-friendly way.

6.2. Research Perspectives

To conclude this thesis, we would like to highlight some of the most promising research
directions stemming from the research conducted for the two main problems studied in
this thesis (the reachability problem and privacy management in OSNs). We classify these
directions into: (i) the ones that we are already addressing, (ii) those that, we believe, they
require effort, but, should be tractable without any intrinsic difficulties, and (iii) those that
involve intense research.

Let us start with work in progress.

• Disk-resident graphs. A useful extension of EUQLID is to develop I/O-efficient
algorithms to index graphs that cannot fit in main memory. Some graphs are disk-
resident and they don’t fit into main memory because of their large size. This
requires algorithms to access the disk whenever they need information about the
input graph (e.g, list of neighbors of a given node, etc.). However, a large number of
disk accesses may drastically affect the performance of algorithms when the graph
is very large. Methods developed in [CKCC12, WC12, CC12] may be applied to
achieve this task. More clearly, we can adopt the Block nested loop join algorithm as
described in [CKCC12].

The following problems seem reasonably solvable, possibly with some effort:

• Label-constraint reachability. In order to handle reachability queries with con-
straints on labels and distance, we can partition an input labeled graph G into many
subgraphs according to edge labels (i.e., each subgraph contains edges of the same la-
bel only). Then, we apply EUQLID on each of the subgraphs separately. For instance,
let us consider the following label-constraint reachability query u l1, d1\l2, d2  v
which seeks to find out whether there is a path between u and v consisting of d1
edges labeled l1 followed by d2 edges labeled l2. To answer this query, we can use
EUQLID to compute the distance between u and all nodes in the subgraph related to
label l1, and, store a set of nodes S1 = {x | d(u, x) = d1}. Then, we retrieve the set
of nodes S2 within the subgraph of label l2 such that S2 = {y | d(y, v) = d2}. If the
intersection between S1 and S2 is not empty then u can reach v with respect to the
input reachability query, otherwise it is not.
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Note that in typical real life graphs, the total number of distinct edge labels is very
small compared to the total number of edges in the graph. For instance, the UniProt
RDF graph of 22M edges has only 91 distinct edge labels [ACZ12]. This implies
a relatively small number of subgraphs to consider. Moreover, the distribution of
these edge labels is not uniform meaning that a large number of edges have few
distinct labels. In the UniProt dataset, the edge label “rdf:type” appears on around
5M edges, about 10 edge labels appear on 1M edges each, and, about 20 edge labels
occupy around 100K to 200M edges each. This skewed label distribution can help
to prune the potentially large search space of edges within some subgraphs which
results in smaller sets of nodes as input sets of nodes for which we need to compute
the intersection.

• Adopting the parallel set cover algorithm. We can adopt the algorithm proposed
by Berger et al. [BRS94] for designing an efficient parallel version of the greedy
algorithm for Set Cover and integrate it to EUQLID.

• Scaling Primates. In Primates, we need to compute the distance between two nodes
in order to decide whether to grant access to a requester or not. In the current
implementation of Primates, this is done at the same time when traversing the
graphs. In order to scale Primates, we would like to integrate EUQLID to it so to
compute distance between nodes (when needed) in a much more efficient way.

• Point-to-many distance queries. A point-to-many query takes a given a source node
as input and returns the distance of the shortest path between this node and the rest
of the nodes on the graph. EUQLID can be adapted to handle this kind of queries by
simply computing the distance between the given node and the rest of the nodes in
the graph.

Finally, let us present some open issues that we believe to be important to extend the two
addressed problem, and for which we do not know of existing solutions.

• 2-hop index update and maintenance. Instead of rebuilding the labels in response
to each single update in the graph (nodes/edges creation and/or deletion), it is
desirable to devise an efficient 2-hop label maintenance algorithm. This problemwas
studied by Bramandia et al. [BCN08]. One direction to deal with index maintenance
in EUQLID is to adapt the solution proposed in [BCN08].

• Managing privacy policy conflicts. OSN users share their information having a
specific audience in mind with whom they would like to share. In real-life scenarios,
they could also have specific unwanted audience for some information they want to
share. Allowing users to specify the desired and unwanted audience at the same
timemay create authorization conflicts when some contacts belong to both audiences.
To deal with this issue and manage conflicts, some game-theoretical algorithms may
need to be applied as proposed in [SSP09].

• Automatic inference of access policies. One of the advantages of the access control
model that we proposed is the fact that it allows users to explicitly specify their own
privacy settings for each type of information that they would like to share within a
social network. This user-guided approach could be combined with an automatic
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one so to propose to users some inferred privacy policies based on the ones that they
have already specified. This problem is not trivial and should probably be attacked
using some natural language processing techniques combined with some machine
learning algorithms.

The above list of open or partially solved problems has no pretension to be exhaustive.
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Appendix A.

Résumé en français∗

Les graphes sont omniprésents en informatique. En effet, ils sont largement utilisés pour
modéliser des données du monde réel dans divers contextes, citons comme exemples
les réseaux sociaux, la bioinformatique, Internet, les cartes routières et le réseau des
aéroports. Les noeuds représentent généralement des objets du monde réels et les arcs
désignent les relations entre ces différents objets, par exemple, les utilisateurs et leurs
relations personnelles dans les réseaux sociaux, les protéines et leurs interactions dans
les réseaux biologiques, les routeurs et leurs connections sur Internet, les villes et leurs
connexions dans les cartes routières, les aéroports et les vols entre eux dans les réseaux
aériens. De nos jours, les graphes deviennent de plus en plus larges et augmentent très
rapidement en taille. Par exemple, le réseau social Facebook est constitué d’un grand
nombre d’utilisateurs avec leurs relations d’amitié. Le nombre d’utilisateurs Facebook a
augmenté de 50 millions en Septembre 2007 à plus de 1.15 milliard d’utilisateurs actifs
chaque mois en 2013 [facb, faca].

L’interrogation des graphes est devenu une tâche très importante dans plusieurs appli-
cations. Par exemple, dans un réseau social, les utilisateurs s’intéressent éventuellement
à déterminer leurs degré de proximité à d’autres utilisateurs (i.e., distance entre les util-
isateurs). De plus, la nouvelle fonctionnalité de parcours de graphe de Facebook (Ang.
Facebook Graph Search) (pour plus de détails sur cette fonctionnalité, voir Section A.1.2)
permettant de parcourir le graphe de Facebook pour répondre à des requêtes formulées en
langage naturel, peut être aussi considérée comme une forme d’interrogation des graphes.
Considérons les exemples de requêtes suivants pouvant être spécifiés par les utilisateurs
: “les Bars visités par mes amis qui vivent à Paris, France” ou “les Photos de mes amis
pris à Hawaii”. Dans un réseau routier, les utilisateurs ont besoin de connaître la distance
séparant deux villes données. En bioinformatique, on a généralement besoin de calculer
le nombre d’interactions nécessaires pour transformer une protéine en une autre. Pour
résoudre ces problèmes, une solution possible consiste à stocker le graphe dans une base
de données relationnelle, puis, l’interroger en utilisant des requêtes SQL. Cependant, cette
solution n’est pas toujours efficace (voir Section 2.5) et plus particulièrement sur les grands
graphes. D’autres alternatives NoSQL (ex : neo4j [neo]) ont été également proposées
pour le stockage et l’interrogation des données graphe. Toutefois, une solution viable et
satisfaisante reste manquante (voir Section 2.5). Le problème d’interrogation des graphes
apparaît même dans Facebook, où l’outil de parcours du graphe est parfois incapable

∗ This appendix is a translation, in French, of Chapters 1 and 6; it does not contain any additional content,
and may safely be skipped. An English-to-French lexicon of technical terms is also provided at the end of this
chapter.
L’annexe A est une traduction en français de l’introduction, des chapitres 1 et 6. Elle inclut un lexique
anglais-français des termes et expressions techniques utilisés dans cette thèse.
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de fournir des résultats exacts. Par conséquence, le besoin de développer des systèmes
performants et efficaces pour interroger les graphes devient de plus en plus urgent.

Etant donné qu’il n’est pas trivial de trouver une solution pour l’interrogation des
grands graphes aléatoires, nous concevons une technique efficace d’interrogation des
graphes tout en exploitant quelques propriétés intéressantes présentes dans les grands
graphes réels. En particulier, nous nous focalisons sur les requêtes de calcul de distance
dans ces graphes. Nous proposons également un modèle de contrôle d’accès dans les
réseaux sociaux. Ce modèle peut être considéré comme une application du problème
de calcul de distance dans les graphes où il est nécessaire d’appliquer et d’évaluer les
contraintes d’accès formalisées par le modèle proposé.

Dans la suite de cette annexe, nous présentons les problèmes traités dans cette thèse
dans la section 1.1 et nous donnons quelques exemples de motivation. Dans la section 1.2,
nous détaillons la liste des contributions, et décrivons la structure du manuscrit dans la
Section 1.3.

A.1. Contexte et Problématiques

Dans cette section, nous discutons le problème général d’accessibilité dans les graphes,
puis, nous procédons à décrire le problème de sécurité dans les réseau sociaux.

A.1.1. Passage à l’échelle des requêtes d’accessibilité et de calcul de distance

dans les grands graphes

Etant donné deux noeuds u et v dans un graphe G, une requête d’accessibilité consiste
à répondre à la question suivante : v est-il accessible à partir de u dans G ? Nous distin-
guons trois principales catégories de requêtes d’accessibilité en fonction des domaines
d’application : (i) Les requêtes d’accessibilité simple déterminent si deux noeuds donnés sont
connectés dans le graphe sans la prise en compte de contraintes sur le chemin liant ces deux
derniers. Un exemple de requête d’accessibilité simple est illustré dans la figure A.1(a),
où u  v signifie que u peut atteindre v. (ii) Les requêtes de calcul de distance sont plus
spécifiques que les requêtes d’accessibilité simple; elles déterminent non seulement si deux
noeuds donnés sont connectés dans le graphe, mais elles donnent aussi la longueur du
plus court chemin liant ces deux noeuds là. Un exemple de requête de calcul de distance
est décrit dans la figure A.1(b), où d(u, v) désigne la distance entre u et v. Il existe deux
types de requêtes de calcul de distance : requête point à point (Ang. p2p query) dont le
but est de déterminer la distance entre deux noeuds donnés, et, les requêtes qui cherchent
à déterminer la distance entre un noeud source et les reste des noeuds dans le graphe
(Ang. Single Source Shortest Path query). Et, (iii) Les requêtes d’accessibilité sous contraintes
sont encore plus spécifiques et considèrent des contraintes sur les étiquettes ainsi que leur
ordre d’apparition sur le chemin liant deux noeuds, sur la distance, l’orientation des arcs,
etc. Figure A.1(c) montre un exemple de ce type de requêtes, qui cherche à déterminer
s’il existe un chemin entre u et v composé de d(u, x) arc(s) étiqueté(s) l1 suivi par d(x, v)
arc(s) étiqueté(s) l2.

Dans ce qui suit, nous mettons en évidence quelques domaines d’applications où les
requêtes d’accessibilité sont nécessaires :
Les réseaux sociaux. Les réseaux sociaux sont souvent modélisés sous forme de graphes,
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u

v

u v?

u

v

d(u,v)?

u

x v

l1,d(u,x)?

l2,d(x,v)?

(a) Requête d’accessibilité (b) Requête de calcul (c) Requête d’accessibilité

simple de distance sous contraintes

Figure A.1.: Les différents types de requêtes d’accessibilité

où les noeuds et les arcs représentent, respectivement, les utilisateurs et les relations entre
eux. Les étiquettes sur les arcs désignent les différents types de relations entre les utilisa-
teurs (ex : ami, collègue, ...). Plusieurs requêtes dans les réseaux sociaux cherchent à savoir
comment deux noeuds donnés u et v sont connectés. Ces requêtes cherchent généralement
à déterminer s’il existe un chemin allant de u à v ayant des étiquettes de certain type ou
respectant une séquence prédéfinie de types d’étiquette. Par exemple, pour savoir si u est
l’ami d’un collègue de v, il faut vérifier s’il y a un chemin allant de u à v composé d’un
arc étiqueté ami suivi d’un arc étiqueté collgue. Comme expliqué dans la Section A.1.2,
l’obtention de ce type d’information constitue un moyen qui aide les utilisateurs des
réseaux sociaux à avoir plus de contrôle sur les informations qu’ils partagent tout en leur
permettant de spécifier le public autorisé à voir ces informations [AD11, DAS12]. L’outil
de parcours de graphes de Facebook [fbG] (voir Section A.1.2) peut aussi être considéré
comme une application qui nécessite le calcul des distance entre les noeuds, comme par
exemple, les utilisateurs peuvent avoir besoin de chercher les amis de leurs amis ou leurs
amis pour des opportunités de travail (i.e., les amis à une distance 2 ou 3 d’un utilisateur
donné). De plus, afin de pouvoir mesurer le degré de proximité entre deux utilisateurs
dans un réseau social, nous aurons besoin de calculer la distance entre ces deux derniers.
Considérons comme exemple la requête suivante : “Quel est le point commun entre la
chancelière allemande Angela Merkel, le mathématicien Richard Courant, le gagnant du
prix de Turing Jim Gray et Dalai Lama ? ”. Dire que ces quatre personnes ont obtenu une
thèse de doctorat d’une université allemande nécessite la vérification de l’existence de
chemins entre chaque personne et les diplômes obtenus par les autres [KRS+09]. Le search
ranking dans les réseaux sociaux [VFD+07], modélisé comme une fonction qui dépend
des distances entre les utilisateurs dans un réseau d’amitié est une autre application où le
calcul des requêtes de distance est nécessaire.
La bioinformatique. Les données biologiques tels que les réseaux d’interactions entre
proteines et les réseaux métaboliques (réactions chimiques du métabolisme) peuvent être
modélisés comme des graphes étiquetés, où les noeuds désignent les entités cellulaires
(ex : protéine, gènes, ...). Un arc entre deux entités désigne une interaction chimique
transformant une entité donnée en une autre. Les étiquettes sur les arcs désignent les en-
zymes responsables de la transformation. L’une des opérations les plus basiques consiste
à déterminer si une entité peut être transformée en une autre sous certaines contraintes.
Ces contraintes exigent l’existence d’un ensemble d’enzymes dans un ordre prédéfini et
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une distance donnée entre deux entités. Plus généralement, une requête d’accessibilité
en bioinformatique peut être formulée comme suit : Y a-t-il une voie moléculaire entre deux
entités cellulaires composée d’un certain nombre d’interactions avec la présence d’un ensemble
d’étiquettes (enzymes) respectant un ordre bien défini ? Ici encore, le problème peut être réduit
au problème de répondre aux requêtes d’accessibilité sous contraintes. Dans cet exemple,
les contraintes sont définies sur l’ordre des étiquettes et la distance du chemin liant deux
noeuds. En biologie, les scientifiques ont besoin de calculer le chemin le plus court entre
des paires de noeuds dans les réseaux d’interactions protéiques afin d’identifier les gènes
lié à un cancer du côlon [LHL+12]. Les requêtes d’accessibilité sont aussi nécessaires pour
le calcul du voisinage k-hop pour comparer les réseaux biomoléculaires et étudier leurs
propriétés [ADH+08].
Le Web Sémantique. Le format RDF pour la représentation des données du Web séman-
tique, est devenu un format commun pour construire de large collections de données.
Trouver le chemin le plus court entre deux noeuds dans un graphe RDF est une opération
fondamentale permettant d’explorer les relations complexes entre les entités. Malgré
son expressivité, une requête RDF standard, appelée requête SPARQL, ne permet pas
d’explorer la nature des relations entre objets RDF (i.e., vérifier si un objet X peut at-
teindre un autre objet Y dans un graphe RDF). Par exemple, trouver tous les chercheur
nés en France dans une base de connaissances peut être traduit par plusieurs requêtes
d’accessibilité permettant de vérifier s’il existe un chemin entre un chercheur donné est
l’entité France. En plus, les requêtes de calcul de distance sont utilisées pour calculer le
degré de proximité entre les entités dans une base de connaissances [KRS+09].

Les approches classiques permettant l’évaluation des chemins les plus court soit elles
prennent beaucoup de temps pour fournir la réponse quand la taille du graphe est assez
grande (cas des parcours en largeur et en profondeur, voir Section 2.4), soit elles nécessi-
tent un pré-calcul conséquent et beaucoup trop d’espace mémoire (cas de la fermeture
transitive). Le défi qui se présente est de trouver un bon compromis en terme de temps
et d’espace pour pouvoir répondre aux demandes d’accès des utilisateurs en un temps
raisonnable.

Dans cette thèse, nous nous intéressons au problème de calcul de distance entre
les noeuds dans les grands graphes orientés qui est plus spécifique que le problème
d’accessibilité simple, d’une part, et d’autre part, une solution à ce problème peut être
utilisée ultérieurement pour résoudre le problème d’accessibilité sous contraintes comme
expliqué dans la Section 6.2.

L’algorithme classique de Dijkstra (voir Section 2.4.3) ne parvient pas à répondre effi-
cacement aux requêtes de distance dans les grands graphes. Pour cela, des techniques
plus sophistiquées on été proposées. L’une des approches les plus répandues pour le
calcul de distance entre les noeuds d’un graphe est la fameuse approche de couverture
à deux sauts (Ang. 2-hop cover approach) [CHKZ02] (voir Section 2.6), qui donne des
garanties sur la taille de l’index ainsi que sur le temps de réponse. Toutefois, il n’y a
aucun algorithme efficace qui permet de calculer la couverture à deux sauts (ang. 2-hop
cover). Malgré que quelques variantes de cette approches ont été proposées ces dernières
années [STW04, CYL+08, CY09], une solution plus efficace est nécessaire, étant donné
qu’il est impossible d’utiliser cette approche pour indxer de très grands graphes comme
les graphes réels. En fait, tout algorithme d’indexation pour le calcul des distances dans
un graphe doit faire face au problème de calcul d’une représentation compacte de toutes
les informations sur la distance dans le graphe initial. Ces informations sur la distance
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peuvent augmenter de manière quadratique en fonction du nombre de noeuds et rendent
la construction des index sur les grands graphes extrêmement coûteuses.

A.1.2. Sécurité dans les réseaux sociaux

Dans un réseau social en ligne, chaque utilisateur peut partager des informations et du
contenu multimédia (ex : informations personnelles, photos, vidéos, contacts, etc.) avec
d’autres utilisateurs du réseau. Il peut également organiser différents types d’événements
pour des raisons professionnelles, de loisir, de religion, etc. Tandis que ceci crée des op-
portunités, il relèvent des problèmes majeurs de sécurité, comme les utilisateurs peuvent
souvent avoir accès à des informations personnelles, et parfois confidentielles sur d’autres
utilisateurs. La disponibilité de telles informations soulève des problèmes de sécurité et
de confidentialité. Par exemple, beaucoup de recruteurs cherchent leurs candidats sur les
réseaux sociaux avant de les recruter [Wor09]. Sur un marché d’emploi compétitif, les in-
formations que les gens partagent (ex : points de vue politique, statuts, images drôles, etc.)
peuvent avoir des conséquences non-souhaitables. Les informations privées disponibles
sur les réseaux sociaux peuvent mettre en danger les chances des candidats pour être
accepter pour une offre d’emploi, même bien avant d’avoir l’occasion de décrocher un
entretien. Une enquête fournie par Microsoft a montré que 79% des recruteurs et managers
aux Etats-Unis ont consulté les informations publiées en ligne sur les réseaux sociaux et
les blogs pour filtrer les candidats, et 70% ont rejeté des candidats en se basant sur des
informations qu’ils ont trouvées [cnn]. D’autres exemples de dangers potentiels peuvent
être les suivants : vol d’identité, harcèlement sexuel, etc.

(a) (b)

Figure A.2.: Outils de spécification des politiques d’accès sur Facebook and Google+

La plupart des réseaux sociaux fournissent des outils de contrôle d’accès très basiques,
par exemple, un utilisateur peut spécifier si une information doit être publique, privée
(personne ne peut la voir) ou accessible uniquement par les amis directs. Pour illustrer,
nous décrivons l’outil de gestion de la confidentialité de Facebook comme il est un des
réseaux sociaux les plus utilisés ces dernières années d’une part, et d’autre part, il est parmi
le top 5 des applications de partage de photos sur Internet [top]. Comme le montre la
Figure A.2(a), Facebook permet deux options extrêmes de contrôle d’accès : (i) la première
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permet de partager les informations avec tous les utilisateurs du réseau social (option
publique), et (ii) la deuxième permet une politique restrictive qui limite beaucoup le partage
de l’information (i.e., option moi uniquement). La première option met donc en danger la
vie privée des utilisateurs, tandis que la deuxième se contredit avec les finalités ultimes
des réseaux sociaux qui sont la communication et le partage des informations. Facebook
permet aussi aux utilisateurs de classer leurs contacts dans des listes différentes, puis,
spécifier les paramètres de confidentialité pour chaque liste (c-à-d., spécifier pour chaque
liste les informations que ses membres sont autorisés à voir). Ceci oblige les utilisateurs
à affecter manuellement leurs contacts à des listes. Etant donné que le nombre moyen
d’amis d’un utilisateur Facebook est de 144 [faca], cette tâche peut être fastidieuse et peut
prendre beaucoup de temps. De plus, les utilisateurs peuvent être amenés à spécifier un
très grands nombre de listes pour s’adapter à leur besoins qui sont souvent complexes
et varient selon l’information à partager. Comme illustré dans la Figure A.2(b), Google+
souffre aussi du même problème, où les listes de contacts sont désignées par des cercles.

Figure A.3.: Outil de parcours de graphes de Facebook

Par ailleurs, l’outil de parcours de graphe de Facebook [fbG] peut être défini comme
un moteur de recherche sémantique qui a été introduit par Facebook en Mars 2013. Cette
nouvelle fonctionnalité permet aux utilisateurs de saisir des requêtes en langage naturel
pour chercher leurs amis et les amis de leurs amis ayant un ou plusieurs centre(s) d’intéret
commun(s). Ce moteur utilise les données stockées dans le graphe social de Facebook
(constitué de plus d’un milliard d’utilisateurs), ainsi que les données du web pour fournir
des résultats de recherche spécifiques. Par exemple, si un utilisateur compte visiter
Londres et voudrait avoir la liste des restaurants londoniens visités par ses amis, il pourra
saisir une requête pour obtenir de telles informations comme le montre la Figure A.3.
Pour faire des rencontres, un utilisateur peut spécifier la requête suivante “Homme
célibataires d’origine parisienne et vivant à San Francisco, Californie”. Un tel outil peu
être utilisé pour découvrir des informations potentiellement embarrassantes (ex : les
entreprises recrutant des personnes qui aiment le racisme) ou pour des intérêts illégaux
(ex : Résidents chinois qui aiment le groupe Falun Gong censuré par la Chine [prib]).
De plus, cet outil applique les mêmes paramètres de confidentialité pour le partage des
informations (c-à-d., les utilisateurs ne peuvent accéder qu’aux informations qu’ils sont
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déjà autorisés à voir) [pria]. Ceci pose les mêmes problèmes de confidentialité mentionnés
précédemment dans cette section.

Etant donné que l’ensemble des relations sociales existantes dans les réseaux sociaux est
très riche et diverse, avec des liens familiaux ainsi que la possibilité de distinguer entre les
connaissances et les amis proches devenant de plus en plus courante, le besoin de fournir
des politiques de contrôle d’accès plus sophistiqués devient de plus en plus urgent. Par
exemple, un utilisateur voudrait “inviter les enfants de ses collègues pour l’anniversaire de son
enfant” ou “partager ses photos portant une tenue amusante avec les amis et les amis de ses amis
et non pas à ses collègues”. Pour illustrer, nous considérons l’exemple de la Figure A.4 qui
montrent les différents types de relations sociales qu’Alice entretient avec ses contacts.
Nous considérons également les scénarios suivants :

• Scenario 1. Supposons qu’Alice voudrait partager une photo qu’elle a prise dans un
after-work avec ses collègues et quelques uns de leurs amis. En même temps, elle ne
veut pas que le reste de ses contacts voient cette photos. Elle veut donc la partager
uniquement avec ses collègues et les amis de ses collègues. Les utilisateurs autorisés
à accéder à cette photos seront donc Karine, Colin, Julie, et Bill.

• Scenario 2. Supposons qu’Alice voudrait organiser une fête surprise pour son enfant,
et elle voudrait partager une invitation en ligne avec les enfants de ses collègues qui
habitent à paris uniquement. Selon l’exemple de la Figure A.4, le public autorisé
serait donc uniquement Manon.

Les scénarios décrits précédemment mettent en évidence des exemples de besoins que
les utilisateurs ne peuvent pas spécifier en utilisant les outils de gestion de confidentialité
dans les réseaux sociaux existants. Par conséquent, nous constatons qu’il y a un besoin
urgent de concevoir un modèle de contrôle d’accès pour permettre aux utilisateurs de
spécifier leurs préférences de confidentialité comme ils y auraient penser dans les scénarios
de la vie réelle (ayant un public préci en tête), et d’avoir plus de contrôle sur la propagation
de leurs informations dans les réseaux sociaux tout en évitant les publics non-souhaités à
accéder à certaines informations.

Le contrôle d’accès dans les réseaux sociaux, comme décrit précédemment, peut être
considéré comme un domaine d’application du problème général d’accessibilité dans
les graphes. En effet, pour évaluer les paramètres de confidentialité spécifiés par les
utilisateurs, nous aurons besoin de répondre efficacement aux requêtes d’accessibilité
dans les grands graphes. Pour plus de détails sur le problème d’accessibilité dans les
graphes, voir la section A.1.1.

A.2. Contributions

Dans cette section, nous présentons les contributions de cette thèse comme suit :

A.2.1. EUQLID : un schéma d’indexation efficace pour le calcul des distances dans

les graphes

Pour résoudre le problème de répondre efficacement aux requêtes de calcul de distance
dans les graphes, nous proposons EUQLID comme une technique d’indexation efficace.

85



Appendix A: Résumé en français

Figure A.4.: Exemple of user relations in an OSN

Nous définissons une variante de la couverture 2-hop et nous appliquons une contrainte
additionnelle pour limiter la taille de l’index tout en assurant une couverture partielle
des informations concernant les distances entre les noeuds du graphe. Les informations
de distance manquantes (non couvertes) peuvent être déterminées de manière efficaces
au moment de traiter la requête en utilisant une variante rapide de l’algorithme de
Dijkstra sur un espace de recherche soigneusement élagué. Notre but durant la phase
d’indexation consiste, donc, à stocker le maximum possible d’information sur la distance
tout en respectant la contrainte sur la taille de l’index. Nous montrons que cette variante
de la couverture 2-hop admet an algorithme 0.63-approché (ang. 0.63−approximation
algorithm), qui a inspiré notre algorithme d’indexation efficace.

Pour choisir les informations de distance qui doivent être stockées dans note index,
nous exploitons une propriété intéressante qu’on a découverte après avoir effectuer
des expériences sur des graphes réels. Cette propriété dit qu’un ensemble de noeuds
relativement petit connecte le reste des noeuds du graphe à travers un chemin relativement
court (voir Section 3.4). Les noeuds faisant partie de cet ensemble sont généralement les
noeuds ayant les plus hauts degrés dans le graphe. Cette propriété peut être également
observée dans notre quotidien, comme pour aller d’une petite ville à une autre il faut
généralement passer par une grande ville, les correspondances dans les vols assez longs
se font à travers les aéroports internationaux, et les chercheurs sont souvent connectés à
travers les chercheurs les plus connus dans leurs domaines dans un graphe modélisant les
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citations. Notre idée est de choisir de manière prudente un ensemble de noeuds ayant
des degrés élevés et stocker toutes les informations de distance concernant les chemins
qui passent par ces noeuds là. Comme les chemins traversant de tels noeuds ne sont pas
forcément les chemins les plus courts entre deux noeuds donnés, nous avons besoin de
faire appel à l’algorithme de Dijkstra afin de trouver la longueur exacte du chemin le plus
court en temps réel. Cependant, l’espace de recherche de l’algorithme de Dijkstra peut
être drastiquement élagué en évitant la traversée des noeuds ayant des degrés élevés (car
les informations de distance couvertes par ces noeuds là existe déjà dans l’index) et en
utilisant les distances stockés dans l’index comme limite supérieure sur la longueur des
chemins à traverser par l’algorithme de Dijkstra.

Nous résumons les contributions concernant le calcul des distance dans les grands
graphes comme suit :

• Nous définissons une nouvelle variante de la couverture 2-hop tout en appliquant
une contrainte qui limite la taille de l’index et améliorant le temps de réponse;

• Nous développons un algorithme 0.63-approché pour ce problème;

• Notre principale contribution est EUQLID, qui est un algorithme efficace pour
l’indexation et le traitement des requêtes de calcul de distance dans les grands
graphes. Notre algorithme est basé sur une variante efficace de l’algorithme
d’approximation précédemment discuté. Nous avons apporté une étude expéri-
mentale approfondie tout en comparant notre algorithme aux algorithmes existants
dans la littérature. Cette étude montre que notre approche est meilleure en temps
de calcul et d’indexation d’une part, et d’autre part, que les requêtes de distance
peuvent être traitées en quelques centaines de millisecondes sur le plus grands
graphes réel disponible.

Ce travail a été soumis et il est encore sous révision.

A.2.2. Un modèle de contrôle d’accès dans les réseau sociaux basé sur

l’accessibilité

Afin de résoudre le problème de confidentialité dans les réseau sociaux (décrit dans la
Section A.1.2), nous proposons un modèle de contrôle d’accès à grain fin permettant aux
utilisateurs de contrôler la distribution de leurs informations dans les réseaux sociaux.
Selon ce modèle, les utilisateurs peuvent explicitement spécifier leurs paramètres de
confidentialité en fonction de leurs besoins réels. Notre modèle permet aux utilisateurs,
ayant un public visé dans leurs têtes, d’associer à chaque information le public approprié.
Le public visé peut être spécifié en se basant sur les relations sociales entre le propriétaire
de l’information et ses contacts. Un utilisateur donné pourra accéder à des informations, si
et seulement si, il existe un chemin satisfaisant un patron bien défini entre lui et le publieur
de cette information. Le patron exprime des contraintes sur les types de relation (ex : ami,
collègue, etc.), l’orientation des arcs, la distance, la confiance, et les attributs (ex : habite à
Paris, âgé plus de 20 ans, etc.). La décision d’autoriser l’accès ou non à des utilisateurs est
faite en temps réel en se basant sur la politique d’accès spécifiée par les utilisateurs pour
chacune de leurs informations. Nous avons étudié la complexité en temps de réponse su
protocole de contrôle d’accès, et effectué des expériences pour évaluer les performances de
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ce protocole sur des réseaux sociaux réels. Cette étude montre la faisabilité et la pratique
du modèle de contrôle d’accès proposé.
Le modèle de contrôle d’accès proposé a été présenté dans DBSocial 2011, ainsi que

dans le PhD symposium de la conférence ICDT/EDBT 2012.

A.2.3. Primates : un système de gestion de la confidentialité dans les réseaux

sociaux

Nous avons implanté un système de gestion de la confidentialité dans les réseaux sociaux
que nous avons appelé Primates. Ce système applique le modèle de contrôle d’accès
qu’on a proposé, et permet aux utilisateurs de sélectionner les informations personnelles
souhaitées et leur assigner les paramètres de confidentialité qu’ils désirent. Le processus de
spécification est très pratique et convivial. Il est effectué à travers une interface graphique
spécialement conçue pour faciliter cette tâche aux utilisateurs. Primates permet aussi la
prévisualisation du public visé sous forme de graphe, et donne la main aux utilisateurs de
changer leur paramètres au cas où ils se redent compte qu’il y a des utilisateurs non-désirés
dans le public visé.

Primates a été présenté et démontré à CIKM 2012.

A.3. Organisation du Manuscrit

Ce manuscrit est organisée comme suit.

• Dans le chapitre 2, nous introduisons les concepts et algorithmes utilisés tout au
long de ce manuscrit. Tout d’abord, nous introduisons les expressions booléennes
comme elles sont utilisées pour spécifier les paramètres de sécurité. Nous présentons
également des définitions de base dans la théorie des graphes, ainsi que quelques al-
gorithmes de parcours de graphes. Ensuite, nous introduisons le fameux algorithme
2-hop, et décrivons les algorithmes de couverture d’ensemble (ang. Set Cover) et de
couverture maximale (ang. Max Cover). Puis, nous expliquons un algorithme efficace
pour calculer la couverture d’ensemble pour de grands jeux de données. Enfin,
nous décrivons une technique d’échantillonnage pour estimer le nombre d’éléments
respectant une propriété donnée dans un ensemble d’éléments qui est très grands.

• Dans le chapitre 3, nous introduisons, tout d’abord, deuxmodèles connus de graphes
de terrain (ang. complex networks) : graphes aléatoires et graphes scale-free. En-
suite, nous décrivons certaines propriétés importantes des graphes du monde réel.
Puis, nous présentons des expériences que nous avons effectuées pour analyser les
chemins les plus courts dans les graphes réels, et étudions l’impact de quelques
propriétés sur l’amélioration l’algorithme du 2-hop décrit dans le Chapitre 2.

• Dans le chapitre 4, nous présentons l’état de l’art sur les travaux connexes aux prob-
lématiques de calcul des requêtes d’accessibilité dans les grands graphes, ensuite,
nous définissons, d’une manière formelle, le problème de calcul des requêtes de
distance, et présentons quelques notations et définitions. Puis, nous décrivons les
algorithmes d’indexation et de requêtage. Enfin, nous reportons une étude expéri-
mentale approfondie de notre approche tout en la comparant avec les approches
existantes.
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• Dans le chapitre 5, nous présentons l’état de l’art sur les travaux connexes à la prob-
lématique de la gestion de la confidentialité dans les réseaux sociaux et montrons
leurs limites. Ensuite, nous introduisons quelques notions formelles liés aux réseaux
sociaux, et mettons en évidence les conditions requises afin de concevoir un modèle
de contrôle d’accès appropriés aux réseaux sociaux. Ensuite, nous décrivons le
modèle de contrôle d’accès proposé et expliquons comment ceci peut être appliqué
et implanté. Puis, nous étudions la complexité en temps de réponse du protocole
de contrôle d’accès, et, décrivons les expériences effectuées pour étudier ses perfor-
mance. Enfin, nous présentons Primates comme étant un système de gestion de la
confidentialité dans les réseaux sociaux appliquant le modèle proposé.

• Dans le chapitre 6, nous concluons ce rapport en rappelant les problématiques
traitées, les solutions proposées et les résultats obtenus. Nous présentons également
quelques perspectives de recherche pour adresser d’autres problèmes liés à aux
problématiques traités dans cette thèse.

A.4. Conclusion Globale

Nous nous sommes intéressés dans cette thèse, en premier lieu, au problème de calcul
des requêtes d’accessibilité d’une manière générale. Plus précisément, notre but consistait
à concevoir et implanter une technique d’indexation permettant le calcul efficace des
requêtes de distance dans les grands graphes réels. En deuxième lieu, nous avons traité
le problème de gestion de la confidentialité dans les réseaux sociaux, notre objectif étant
d’aider les utilisateurs à avoir plus de contrôle sur diffusion et la distribution des infor-
mations qu’ils partagent. Les questions les plus importantes qu’on a étudiées dans cette
thèse sont les suivantes :

1. Est-il possible de répondre aux requêtes de distance de manière efficace dans les
grands graphes denses et orientés ?

2. Y a-t-il des propriétés spécifiques au grands graphes réels qui peuvent exploitées
afin de concevoir un algorithme efficace pour les calcul des requêtes de distance ?

3. Quelles sont les exigences qu’un modèle de contrôle d’accès dans les réseaux sociaux
doit prendre en compte pour répondre aux besoins des utilisateurs ?

4. Est-il possible de réaliser un modèle de contrôle d’accès qui prend en compte ces
exigences et qui est facile à utiliser par les utilisateurs ?

Dans ce chapitre, nous résumons les principales contributions qui ont été détaillées tout
au long de cette thèse et apportons des réponses aux questions ci-dessus. Ensuite, nous
présentons quelques perspectives de recherche.

A.4.1. Synthèse

La première contribution de cette thèse est EUQLID, qui est un schéma d’indexation
efficace pour le calcul des requêtes de distance. Comme décrit dans le chapitre 4 et après
une étude approfondie de l’état de l’art et des problèmes fondamentaux que soulève
ce domaine de recherche, nous avons proposé une nouvelle technique d’indexation qui
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exploite une propriété spécifique aux grands graphes réels qu’on a découverte. Cette
technique nous semble la plus pratique et la plus efficace pour l’interrogation des grands
graphes réels. Nous proposons deux variantes de notre approche : (i) la première variante,
appelée M-EUQLID, permet de stocker l’index en mémoire vive quand ceci est possible, et
(ii) la deuxième variante, appelée D-EUQLID, stocke l’index sur le disque dur : elle est
utilisée quand il n’y a pas assez d’espace dans la mémoire vive pour stocker l’index. Notre
étude expérimentale a montré que EUQLID surpassent les approches existantes en termes
de temps d’indexation et de réponse, et que les requêtes de calcul de distance peuvent
être traitées en quelques centaines de millisecondes sur le plus grand graphe disponible.

La deuxième contribution est un modèle de contrôle d’accès dans les réseaux sociaux
(voir Chapitre 5). Ce modèle grain fin permet aux utilisateur de spécifier, de manière
explicite, leurs politiques de contrôle d’accès en fonction de leurs besoins (en fonction de
la nature des relations avec les autres utilisateurs). En se basant sur les paramètres de
confidentialité spécifiés, la décision d’autoriser l’accès aux données partagées est prise à la
volée.

La troisième contribution est Primates (voir Chapitre 5), qui est un système de gestion de
la confidentialité dans les réseaux sociaux démontrant la fiabilité du modèle de contrôle
d’accès proposé. Il permet aux utilisateurs de fixés leurs paramètres de confidentialité de
manière simple et conviviale.

A.4.2. Perspectives

En conclusion de cette thèse, nous aimerions relever certains problèmes importants dans
les contextes de l’interrogation des grands graphes réels et de la gestion de la confiden-
tialité dans les réseaux sociaux, respectivement. Nous classifions ces problèmes en : (i)
ceux que nous traitons déjà, (ii) ceux qui demandent, à notre avis, un certain effort mais
devraient pouvoir être résolus sans difficulté intrinsèque, et (iii) ceux qui nécessitent des
travaux de recherche conséquents.

Commençons par les travaux en cours :

• Gestion des graphes stockés sur le disque dur. Une extension utile de EUQLID est
de développer un algorithme efficace pour indexer les graphes qui ne peuvent pas
être entièrement représentés dans la mémoire principale. En effet, certains graphes
ne peuvent pas être contenu dans la mémoire principale à cause de leur grande
taille et ne peuvent être entièrement stockés que sur un disque dur. L’indexation
de ce type de graphes nécessite un accès au disque (Entreés/Sorties ou E/S) à
chaque fois que des informations sur le graphe initial sont demandées (ex : liste
des successeurs directs d’un noeud donné). Cependant, un grand nombre d’E/S
peut affecter considérablement les performances du processus d’indexation surtout
quand il s’agit de très grands graphes. Pour ce faire, les approches proposées
dans [CKCC12, WC12, CC12] peuvent éventuellement être adaptées et appliquées.
Plus précisément, nous pouvons adopter l’algorithme du Block nested loop expliqué
dans [CKCC12].

Les problèmes suivants semblent être raisonnablement résolubles, avec éventuellement
un certain effort :

• Requêtes d’accessibilité avec des contraintes. Afin de traiter les requêtes
d’accessibilité avec des contraintes sur les étiquettes et la distance, nous pouvons
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partionner le graphe initial G (graphe orienté et étiqueté) en plusieurs sous-graphes
en fonction des étiquettes sur les arcs (c-à-d., chaque sous-graphe ne comporte que
des arcs avec une même étiquette). Ensuite, on applique EUQLID sur chaque sou-
graphe de manière séparée. Considérons l’exemple de requête d’accessibilité sous
contraintes suivant : Q = u l1, d1\l2, d2  v cherchant à déterminer s’il existe un
chemin entre u et v qui commence par d1 arcs étiquetés l1 suivis par d2 arcs étiquetés
l2. Pour répondre à cette requête, nous pouvons utiliser EUQLID pour calculer la dis-
tance entre u et le reste des noeuds contenu dans le sous-graphe de l’étiquette l1, et,
on stocke l’ensemble des noeuds S1 = {x | d(u, x) = d1}. Ensuite, nous déterminons
l’ensemble S2 dans le sous-graphe de l’étiquette l2 tel que S2 = {y | d(y, v) = d2}. Si
l’intersection de S1 et S2 n’est pas égale à l’ensemble vide alors u peut atteindre v
tout respectant la requête Q, sinon est le réponse à la requête est négative (c-à-d., il
n’existe aucun chemin entre u et v dans le graphe initial G respectant la requête Q).

Il est à noter que dans les graphes réels, le nombre total des différentes étiquettes
est relativement petit par rapport au nombre total d’arcs dans le graphe. En effet, le
graphe RDF de la base de connaissance UniProt est constitué de 22 millions d’arcs
et de 91 différentes étiquettes uniquement [ACZ12]. Ceci un implique un nombre
relativement petit de sous-graphes résultant du partionnement du graphe. De
plus, la distribution de ces étiquettes n’est pas uniforme ce qui signifie qu’il y a un
grand nombre d’arcs ayant quelques étiquettes distinctes. Dans le graphe UniProt,
l’étiquette “rdf:type” apparaît sur environ 5 millions d’arcs, environ 10 étiquettes
apparaissent sur 1 millions d’arcs chacune, et environ 20 étiquettes occupent de
100 milles à 200 millions arcs chacune. Cette distribution biaisée sert à élaguer
l’espace potentiellement grand des arcs à explorer lors de traverser les sous-graphes
en question. Ceci résulte en des ensembles de noeuds relativement petits pour le
calcul de l’intersection.

• Parallélisation du calcul de la couverture maximale. Nous pouvons adopter
l’algorithme proposé par Berger et al. [BRS94] afin de concevoir une variante paral-
lèle et efficace de l’algorithme incrémental pour le calcul de la couverture maximale
d’un ensemble d’éléments donnés, ensuite l’intégrer à EUQLID.

• Passage à l’échelle de Primates. Dans Primates, nous avons besoin de calculer la
distance entre deux noeuds donnés afin de décider si l’accès doit être autorisé ou
non. Dans l’implantation actuelle de Primates, ceci est fait au moment que l’on
traverse le graphe. Ainsi, pour le passage à l’échelle de Primates, nous désirons y
intégrer EUQLID pour le calcul des distance entre les noeuds (si nécessaire) de façon
beaucoup plus efficace.

• Requête de distance un à plusieurs. Une requête de distance un à plusieurs calcule
la distance entre un noeud source donné et le reste des noeuds dans le graphe.
EUQLID peut être adapté pour répondre à ce type de requêtes de distance en
calculant la distance entre le noeud source et le reste des noeuds un par un.

Enfin, nous présentons quelques problèmes ouverts dont nous pensons qu’ils sont
importants pour les deux problématiques traités dans cette thèse, et pour lesquels nous ne
connaissons pas de solution.
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• Maintenance de l’index 2-hop. Au lieu de re-caluler l’index à chaque fois que
le graphe change suite à la création/suppression de noeuds/arcs, il vaut mieux
concevoir un algorithme permettant la mise à jour de manière efficace de l’index
2-hop déjà crée. Le problème de mise à jour et de maintenance de la couverture
2-hop a été étudié par Bramandia et al. [BCN08]. Une direction possible pour la
maintenance de EUQLID est d’adapter la solution proposée dans [BCN08].

• Gestion des conflits. Les utilisateurs des réseaux sociaux partagent leurs informa-
tions ayant un public visé en tête. Dans les scénarios de la vie réelle, ils peuvent
aussi avoir un public indésirable pour certaines informations partagées. Permettre
aux utilisateurs de spécifier des règles d’autorisation et de refus d’accès en même
temps peut engendrer des conflits quand certains utilisateurs font partie des public
visé et non désiré. Pour résoudre ce type de conflits, des algorithmes de la théorie
des jeux peuvent être éventuellement appliqués [SSP09].

• Génération automatique des paramètres de confidentialité. L’un des avantages du
modèle de contrôle d’accès qu’on a proposé est le fait que ce dernier permet aux util-
isateurs de spécifier de manière explicite leurs propres paramètres de confidentialité.
Ce processus guidé par l’utilisateur peut également être combiné à un autre proces-
sus automatique permettant aux utilisateurs de proposer des paramètres de confi-
dentialité automatiquement déduites en se basant sur les paramètres déjà spécifiés.
Ceci est un problème difficile, qui devrait probablement être attaqué à l’aide d’une
combinaison de techniques de traitement du langage naturel et d’apprentissage
artificiel.

Cette liste de problèmes ouverts ou partiellement résolus n’est bien sûr pas exhaustive.
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Lexique anglais-français

online social network (OSN) réseau social

access control contôle d’accès

p-approximation algorithm algorithm p-
approché

access rules règles d’accès

privacy confidentialité

reachability query requête d’accessibilité

distance query requête de calcul distance

indexing scheme schéma d’indexation

2-hop cover couverture à 2 sauts

set cover couverture d’ensemble

max cover couverture maximale

graph search parcours de graphes

high-degree node noeud à degré élevé

trust confiance

sampling échantillonnage

shortest path chemin le plus court

submodular function fonction sous-modulaire

greedy incrémental

graph traversal parcours de graphe

breadth-first search parcours en largeur

depth-first search parcours en profondeur

spanning couvrant

strongly connected component Composante
fortement connexe

scalability passage à l’échelle

user-guided guidée par l’utilisateur

fine-grained grain fin
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